| Systems Reference Library

IBM System/360

PL/I Reference Manual

This publication provides the rules for
writing PL/I programs that are to be com-
piled using the PL/I (F) Compiler under

| the IBM System/360 Operating System.

File No. S$360-29
Form C28-~8201-1

Second Edition (March 1968)

This edition, C28-8201-1, obsoletes the previous edition, C28-8201-0.
Chapters 14 and 15 are completely new and should be reviewed in their
entirety; other changes are indicated by a vertical line to the left of
the changed text, while changes to illustrations are indicated by the
symbol ¢ to the left of the caption.

Specifications contained herein are subject to change from time to time.
Any such change will be reported in subsequent revisions or Technical
Newsletters.

This publication was prepared for production using an IBM computer to
update the text and to control the page and 1line format. Page
impressions for photo-offset printing were obtained from an IBM 1403
Printer using a special print chain.

A form is provided at the back of this publication for reader's
comments. If the form has been removed, comments may be addressed to
IBM United Kingdom Laboratories Ltd., Programming Publications, Hursley
Park, Winchester, Hampshire, England.

© International Business Machines Corporation 1967, 1968

PREFACE

This publication is planned for use as a
reference book by the PL/I programmer. It
is mnot intended to be a tutorial publica-
tion, but is designed for the reader who
already has a knowledge of the language and
who requires a source of reference materi-
al.

It is divided into two parts. Part I
contains discussions of concepts of the
language. Part II contains detailed rules

and syntactic descriptions.

Although implementation information is
included, the book is not a complete des-
cription of any implementation environment.
In general, it contains information needed
in writing a program; it does not contain
all of the information required to execute
a program.

The following features, discussed in
this publication, are implemented in the
fourth version of the F Compiler but are
not implemented in the third version:

e Based storage facilities:

The BASED,
attributes;

POINTER, AREA, and OFFSET

The ADDR, NULL, NULLO, and EMPTY built-
in functions;
The AREA condition;

Area-to—area and locator-to-locator

assignment;
The LOCATE statement;

The IN option on the ALLOCATE and FREE
statements;

The SET option on the READ, LOCATE, and
ALLOCATE statements;

The REFER option in a based structure
declaration;

The pointer qualification symbol.
e Multitasking facilities:

The TASK, EVENT, and PRIORITY options
on the CALL statement;

The EVENT option on the DISPLAY state-
ment with the REPLY option;

The TASK option in the OPTIONS list;
The TASK attribute;

Explicit declaration of event varia-

bles;

The use of event arrays in the WAIT
statement, and the use of an expression
specifying the number of events ¢to be
waited for;

The STATUS and PRIORITY built-in func-
tions and pseudo-variables;

The EXCLUSIVE file attribute;

The UNLOCK statement;

The NOLOCK option on the READ
ment.

state-

e Data interchange: the COBOL option in the
ENVIRONMENT attribute.

¢ Carriage control: the CTLASA and CTL360
options in the ENVIRONMENT attribute.

e The STRINGRANGE condition.
data-

e Omission of the data list from a
directed PUT statement.

e Use of the LINESIZE option for any stream
output file; wuse of the SKIP option and
the COLUMN and SKIP format items, in GET
statements for stream input files.

e Use of VARYING strings in the INTO and
FROM options of record-oriented
input/output statements.

e Omission of +the KEY option from the
DELETE statement (to allow deletion from
SEQUENTIAL UPDATE files for INDEXED data
sets).

REQUISITE PUBLICATION

For information necessary to compile,
linkage edit, and execute a program, the
reader should be familiaxr with the
following publication:

IBM _System/360
(F) Programmer's Guide,

Operating System, PL/I
Form C28-6594

RECOMMENDED PUBLICATIONS

The following publications contain other
information that might be valuable to the
PL/I programmer or to a programmer who is
learning PL/:

A PL/I Primer, Form C28-6808

A Guide to PL/I for Commercial Program-
mers, Form C20-1651

A__Guide to PL/I for FORTRAN Users, Form
Cc20-1637

CONTENTS

CHAPTER 1:
PL/Tc ¢ ¢ o o o o o o o« « «

Machine Independence
Program Structure.

Multiprogramming « . . . « .

-

BASIC CHARACTERISTICS

Data Types and Data Description.

Default Assumptions.
Storage Allocation . . « . .
Expressions. . « « <« . < . .
Data Collections « « .« . « .
Input and Output . . « « . .
Compile-Time Operations. . .
Interrupt Activities
CHAPTER 2: PROGRAM ELEMENTS.
Character Sets .« . . + « <« .
60-Character Set.
48-Character Set.
Using the Character Set .
Identifiers. « +« « . .

The Use of Blanks. . .

comments . « ¢ o & o .

Basic Program Structure. . .

Simple and Compound Statements

Statement Prefixes . .
Groups and Blocks

CHAPTER 3: DATA ELEMENTS . .
Data Types . « « « « <« « « &

Problem Data o« « o « o « o o«
Arithmetic Data

Decimal Fixed-Point Data

Sterling Fixed-Point Data.
Binary Fixed-Point Data.
Decimal Floating-Point Data.
Binary Floating-Point Data .
Complex Arithmetic Data.

Numeric Character Data
String Data « « « o « «
Character-String Data.
Bit-String Data. « . .

.
.
.
.

Program Control Data
Label Data. . .
Event Data. . .
Task Data « «
Locator Data. .

-

OF

-

« & s 0

« s e o

19
19
19
19
19
20
20
20
21
21
21

22

Area Data = o« o o ¢ o o o

Data Organization. . .
AYXrayS. « o o o o o o o o
Expressions as Subscripts
Cross Sections of Arrays
Structures. « « « < ¢« ¢ o .
Qualified Names.
Arrays of Structures. . . .

Other Attributes . « « « . . .
The DEFINED Attribute. .
The LIKE Attribute . . .

The ALIGNED and PACKED
Attributes.
The INITIAL Attribute. .

CHAPTER 4: EXPRESSIONS

Use of ExpressionsS . « « . . .
Data Conversion in Operational

EXpressions . « « o« « « « o .
Problem Data Conversion . .

CONTENTS

Bit-String to Character-String .
Character-string to Bit-String .
Character-String to Arithmetic .
Arithmetic to Character-String .

Bit-String to Arithmetic
Arithmetic to Bit-String

Arithmetic Mode Conversion

Arithmetic Base and Scale
Conversion. « .« « « « o
Locator Data Conversion . .
Offset to Pointer. . . .
Pointer to Offset. . . .

Conversion by Assignment . . .

Expression Operations.
Arithmetic Operations . . .
Data Conversion in
Operations. .« . « . . .

-

Arithmetic

Results of Arithmetic Operations

Bit-String Operations . . .
Comparison Operations . . .
Concatenation Operations. .
Combinations of Operations.

Priority of Operators. .

Array Expressions. .« . « . . .
Prefix Operators and Arrays
Infix Operators and Arrays.

-

Array and Element Operations
Array and Array Operations .
Array and Structure Operations .

Data Conversion in Array
EXpPressions « . « « « .

Structure Expressions.

Prefix Operators and Structures . .
Infix Operators and Structures.

45

45
45
45
45
46
4eé
46

ueé
46

4o

Structure and Element Operations
Structure and Structure

Operations. . « « « « = « « o« =«
Structure Assignment BY NAME . .

Operands Of EXPressionsS. « « « « o« « =
Function Reference Operands

Concepts of Data Conversion.

Target Attributes for Type Conversion.
Bit to Character and Character to
Bite o o o o o o o o o o « o « o«
Arithmetic to String. . . . « . . .
String to Arithmetic. . . -
Target Attributes for Arlthmetlc
Expression Operands
Precision and Length of
Expression Operand Targets. . .
Precision for Arithmetic
CONVEersions « o« « o & o o « o =
Lengths of Character-String
TArgetsS o« o o o o o o = o o =« @
Lengths of Bit-String Targets. .
conversion of the Value of an
EXpression. .« « ¢ « ¢« o ¢« o« o =

conversion OperationS. . « « « « « +« «

The CONVERSION, SIZE, FIXEDOVERFLOW,
and OVERFLOW Conditions . .« « « « .« «
CHAPTER 5: STATEMENT CLASSIFICATION. .
Classes of StatementSe. « « ¢ « &« o« o
Descriptive StatementS. . . « « .« .
The DECLARE Statement. . . .
Other Descriptive Statements . .
Input/Output Statements
RECORD I/0 Transfer Statements .
STREAM 1/0 Transfer Statements .
Input/Output Control Statements.
The DISPLAY Statement.
Data Movement and Computational
Statements . . . < . . . « o o e
The Assignment Statement e e e
The STRING Option. . « « « « «
Control Statements.
The GO TO Statement. . « « « . =«
The IF Statement « . =«
The DO Statement
Noniterative DO Statements « . 0.
The CALL, RETURN, and END
tatements. . o . « o o . .
The STOP and EXIT Statements - .
Exception Control Statements. . . .
The ON Statement « . .
The REVERT Statement
The SIGNAL Statement
Program Structure Statements. . . .
The PROCEDURE Statement.
The ENTRY Statement.
The BEGIN Statement.
The DO Statement -
The ALLOCATE and FREE Statements

CHAPTER 6: BLOCKS, FLOW OF CONTROL,
AND STORAGE ALLOCATION. . . « .« & « =«

55

55
55

56
56

57
58
58
58
58
59
59
60

61
61

61

61

62

BlOCKS o ¢ 4 ¢ o o o o o o« o o =« » &=
Procedure BlOoCkS. « o « « « o « =
Begin Blocks.« .
Internal and External Blocks.

Use of the END Statement with
Nested Blocks and DO-Groups
(Multiple Closure).

Activation and Termination of Blocks
Activation. ¢
Termination « . « ¢« « ¢« « « o « =

Begin Block Termination. . . .
Procedure Termination.
Program Termination.
Storage Allocation. . « «
Static Storage
Automatic Storage.
Controlled Storage . . . « «
Based StOorage. « o« « « o o« « o

Reactivation of an Active Procedure
(ReCursion) .+ « « « « = « o o o o «
Effect of Recursion on Storage
ClaSSeS o« « « o o o = o o« + =

Prologues and Epilogues.
ProloguesS. « =« « « o o « o = o
EpilOGUeSe o =« o o o o o o « =«

CHAPTER 7: RECOGNITION OF NAMES.

Explicit Declaration
Scope of an Explicit Declaration.

Contextual Declaration . . . « . . .
Scope of a Contextual Declaration

Implicit Declaration . « . « . « . .
Examples of Declarations
Application of Default Attributes. .
The INTERNAL and EXTERNAL Attributes

Multiple Declarations and Ambiguous
References. « v v o« ¢ o o o o o = =

CHAPTER 8: INPUT AND OUTPUT.

Types of Data Transmission

FileS. o o o o o o o o o o o « = o &«
File Attributes . « &« ¢« ¢ « o « &
The FILE Attribute . . . e =
Alternative and Addltlve
Attributes.
Alternative Attributes . . .

The STREAM and RECORD Attrlbutes

The INPUT, OUTPUT, and UPDATE
Attributes. s .
The SEQUENTIAL and DIRECT
Attributes. .
The BUFFERED and UNBUFFERED
Attributes. . . « e e e s @
Additive Attrlbutes. e e e e
The PRINT Attribute.
The BACKWARDS Attribute. . . .

83

83
su

84

85
85
86

87

88

The KEYED Attribute. . . .« . . .
The EXCLUSIVE Attribute.
The ENVIRONMENT Attribute. . . .
Opening and Closing Files
The OPEN Statement « .
Implicit Opening . « « « ¢« « - &«
Merging of Attributes.
Associating Data Sets with Files
The CLOSE Statement. « « « ¢ «
Layout of STREAM Files.
Page Layout For Print Files
Standard Files. . « ¢ ¢ ¢ ¢ ¢ « o« &

Environmental Considerations for Data
SEESe 4 o o 2 « 2 o s o o o o & o o o
Device Independence of Input and
Output Statements.- .

The ENVIRONMENT Attrlbute. .
Record Formate. « o« o o o o = «
Data Set Positioning . . .
Buffer Allocation. «
Data Set Organization.

Carriage Control
Data Interchange

Data TransmissSion. « « « « o o « o « =

Stream-Oriented Transmission «
List-Directed Transmission . . .
Data-Directed Transmission . . .
Edit-Directed Transmission . . .

Data Specifications for Stream
Transmission . « « o« « ¢ & o o «
Data LisStsS o« o o « o o o « & o o
Repetitive Specification
Transmission of Data-List
Elements. « o o ¢ o o o o o o »
List-Directed Data Specification. .
List-Directed Data in the Stream
List-Directed Input Format . . .
List-Directed Output Format. . .
Data-Directed Data Specification. .
Data-Directed Data in the Stream
Data-Directed Input Format . . .
Data-Directed Output Format. . .
Length of Data-Directed Output
Fields. . . . e o e s o o
Edit-Directed Data Spe01f1cat10n. .
Format ListsS ¢ o ¢ & ¢ o « o « &
Stream-Oriented Data Transmission
Statements . <« .+ & o e o o 2 e e

Record-Oriented Transmission . « « «
Record-Oriented Data Transmission
Statements « « .« - ¢ . . . - o o
Options of Record- Orlented
Transmission Statements
Record-Oriented Transmission
Statement Formats . ¢ o« « o o
Summary of Record-Oriented
TYanSmiSSiON. « « o o s o © « o

Examples of Declarations for RECORD
FileS o v v o o « o o o s o o o o o =

CHAPTER 9: EDITING AND STRING
HANDLING ¢ o ¢ o o o o & o« o « o« o =

. 98
. 98
. 98
. 99
- 99
. 99
.104
.105

.105

.105
.106
.106
.106

.106
.106
.107

.108
.109
.109
.109
.109
.110
.110
.111
111
112
.112
<114
.117
<117
.118
.118
121

.123

.124

.125

Editing by Assignment.
Altering the Length of String Data.
Other Forms of Assignment

Input and Output Operations .

The STRING Option in GET and PUT

Statements. « ¢ ¢ ¢ ¢ o e o o .

The Picture Specification
Character-String Picture

Specifications

Numeric Character Picture
Specifications « o o

Values of Numeric Character

Variables . « .« « .+ « .« . . .

Editing Numeric Character Data .
Using Numeric Character Data . .
Bit-String Handling . . « « « .« o«
Character-String and Bit-String
Built-In Functions . . « « « « « «

CHAPTER 10: SUBROUTINES AND FUNCTIONS.

Arguments and Parameters . . . « .« o .
Subroutines. . « . ¢ ¢ <« ¢ ¢ ¢ o . o .

Functions. . . . - e s & o e s ®w e
Attributes of Returned Values. .
Built-=In Functions . . « « « « «

Relationship of Arguments and

ParametersS. « « .« 2 o o 2 ® o o o o
Dummy Arguments . « « o « ¢ o o o
The ENTRY Attribute « .«
Entry Names as Arguments
Allocation of Parameters. . . -
Parameter Bounds and Lengths .- .

Simple Parameter Bounds and
Lengths o« ¢« & ¢« o &« o &« . .
Controlled Parameter Bounds and
Lengths « . ¢« ¢ ¢ ¢ ¢« ¢ & o« & &«
Argument and Parameter Types. . . .

Generic Names and References

CHAPTER 11: EXCEPTIONAL CONDITION
HANDLING AND PROGRAM CHECKOUT

Enabled Conditions and Established

ACtiONe v o« o o « o » o o o o 5 o » =
condition Prefixes . « « « o o o«
Scope of the Condition Prefix. .
The ON Statement
The Null On-Unit
Scope of the ON Statement.
The REVERT Statement . . .
The SIGNAL Statement . .« « o » =«
The CONDITION Condition.
The CHECK Condition.« .
The SUBSCRIPTRANGE Condltlon PO
The STRINGRANGE Condition. . . .
Condition Built-In Functions
Condition Codes « v« « o o o «

Example of Use of ON-Conditions. . . .
CHAPTER 12: COMPILE-TIME FACILITIES. .

Introduction « « . « o o ¢ o « o o o o

125
.125
.126
.126

.126
.127

.127
.128

.128

.129
.13¢
.131

.132
.134
.134
.135

.136
-137
.138

.140
.40
.140
141
.1u3
.143

143

<143
<144

.145
<147

. 147
147
=147
148
.1u48
<149
.149
.149
.149
.150
.150
.150

.150
.151
.154

.154

Preprocessor Input and Output. . .
Preprocessor SCan . « « « « «
Rescanning and Replacement .

Preprocessor Variables
Preprocessor Expressions . . « .+

Preprocessor Procedures. . . « « «
Invocation of Preprocessor
ProcedUres . « .« o« o o o« o« « o
Arguments and Parameters for
Preprocessor Functions
Returned Value
Use of the SUBSTR Bullt—In
Function.« « « « « .

The Preprocessor DO-Group.
Inclusion Of External Text
Preprocessor Statements.
CHAPTER 13: EFFICIENT PERFORMANCE

Efficient Performance and Data
CONVErsioN. v« o « « « o « « « « =

Adjustable Bounds and String Lengths

VARYING String Lengths
Blocks and GroupS. « « « « « « « «
The PACKED and ALIGNED Attributes.
The Use of the PICTURE Attribute .

CHAPTER 14: BASED STORAGE AND LIST
PROCESSING. « ¢ « « « o o o« o o =«

Introduction « « o« ¢« ¢ & ¢ ¢ o« o o

Based Variables and Pointer Variables.

Pointer Qualification
Rules and Restrictions.
Pointer Defining
Self-Defining Data. . « « « « &
The REFER Option

Pointer Setting, Based Storage
Allocation, and Inputs/Output. . .
Read with Set
Locate with and w1thout Set -
Allocate with and without Set .
Pointer Assignment.
The ADDR Built-in Functlon .
The NULL Built-in Function .

Freeing Based Storage.
The Free Statement.
Implicit Freeing. . . «

Areas and OffsetS. ¢« o « o« « o o o
Area Variables. .« « « o ¢ o «
Rules and Restrictions . . .
Offset Variables. .« « « « o« «
Rules and Restrictions . . .

.154
.154
-155
.156
157
.157
-157

.158
.159

.160
.160
.160
.161

.163

-163
.163
-163
.163
.163

.164

.165
.165

.166
.166
.166
.167
.167
-167

.168
.168
.168
.169
.169
-169
.170

.170
.170
.170

.171
.171
.171
.172
-172

Allocation within an Area
Setting Offset Values
The NULLO Built-in Functlon. .

Area Assignment and Input/output.
The EMPTY Built-in Function. . .
The AREA ON-Condition. . « « «
Input and Output

Area and Offset Defining.

Communication between Procedures . . .
Arguments and Parameters.
Pointer to Pointer
Offset to Pointer. « . « « « =
Offset to Offset « .« . .
Pointer to Offset. « « ¢« « « « .
Area tO AYEA <« o « o 2 o = o » «
Returns from Entry Points
Locator Returns. « « o« o« « =« =« =
Area RetUrnsS « « « « « o o o o «
Variable Length Parameter Lists . .

Examples of List Processing Technique.
CHAPTER 15: MULTITASKING
Introduction « « ¢ ¢ ¢ o« ¢ o o o o o .

Creation of Tasks.
The Call Statement. . .« . « o « & .
The TASK Option. « « « « « « & &

The EVENT Option . . e s e e .

The PRIORITY Optlon. « o o o s o
Priority of Tasks. « « .« « « « .

Coordination and Synchronization
TASKS ¢ ¢ e o o o o o o o s o o s o =
Sharing Data between TasksS.
Sharing Files between Tasks
The EXCLUSIVE Attribute.

The Wait Statement.

Testing and Setting Event Variables

The Delay Statement . . -« « « « « .
Termination of Tasks « o« « &« « & & = .
Programming Example. . . . « « « « & .
CHAPTER 16: A PL/I PROGRAM . . « . «
SECTION A: SYNTAX NOTATION.
SECTION B: CHARACTER SETS WITH EBCDIC

AND CARD-PUNCH CODES. & ©« © o = « « =
60-Character Set. v o« « o « o + o «
48-Character Set. o . o« o o o ¢ = «

SECTION C: KEYWORDS AND KEYWORD
ABBREVIATIONS . . « . o =« o = o o = =

SECTION D: PICTURE SPECIFICATION
CHARACTERS. ¢« « & o o o = o o o« o « =

Picture Characters for
Character-String Data « « « « = « « &

Picture Characters For Numeric
Character Dat@. « « « o« « = = o = o =«
Digit and Decimal-Point Specifiers.

<172
.172
.173
.173
173
<173
.174
174

<174
.174
-174
175
.175
.175
.175
.175
.175
.176
-176

<177
.180
.180
-181
.181
.181
.182

.182
.182

.183
.183
.184
.184
.185
.185
.186
.186
-187
.191
.197
.199

.199
.200

.201

. 205

.205

-206
207

Zero Suppression Characters .
Insertion Characters.
Signs And Currency Symbol . .
Credit, Debit, And Overpunched
SigNSe « ¢« o o o « ¢ o + o
Exponent Specifiers
Scaling Factor. . « « « « «
Sterling Pictures . . « . .+ .

SECTION E: EDIT-DIRECTED FORMAT

Data Format Items. « « « « . « &
control Format Items . . « . .
Spacing Format Item.
Remote Format Item . . <« .« + «
Use of Format Items.

ALPHABETIC LIST OF FORMAT
The A Format Item.
The B Format Item.
The C Format Item. . . « .
The COLUMN Format Item . .
The E Format Item. . . « .
The F Format Item.
The LINE Format Item . . .
The P Format Item.
The PAGE Format Item . .+ .
The R Format Item. « . . .
The SKIP Format Item . . .
The X Format Item. . « « .

SECTION F: PROBLEM DATA CONVERSIO
Arithmetic Conversion
Floating-Point Conversion.
Mode Conversion. . « . «
Precision Conversion . . .

Base Conversion. . . -
Coded Arithmetic to Numerlc
Character

Numeric Character to Coded
Arithmetic. + « « « « « &
Data Type Conversion.

ITEMS

N

.

Character-String to Arlthmetlc -
Arithmetic to Character-String .
Character-String to Bit-String .
Bit-String to Character-String .

Arithmetic to Bit-String .
Bit-String to Arithmetic .
Table of Ceiling Values . . .

Tables for Results of Arlthmetlc

Operations . « « « « « o « &

SECTION G: BUILT-IN FUNCTIONS AND
PSEUDO-VARIABLES. « ¢ « o« « »

Computational Built-In Functions

o e

. e

. e

String Handling Built-in Functions.
BIT String Built-in Function . .
BOOL String Built-in Function. .
CHAR String Built-in Function. .
HIGH String Built-in Function. .
INDEX String Built-in Function .
LENGTH String Built-in Function.
LOW String Built-in Function . .

. 207
.209
.210

.212
.213
.214
. 214

.216
.216
.216
.217
.217
.217

.217
. 217
. 217
.218
.218
.219
.220
.221
.221
.221
<221
.222
222

.223
.223
.223
. 223
.224
. 224

.224

.224
.224
.224
.225
.227
<227
. 227
.227
.230

.230

.233

.234
.234
. 234
.234
.235
.235
.235
.236
.236

REPEAT String Built-in Function.
SUBSTR String Built-in Function.
UNSPEC String Built-in Function.

Arithmetic Built-In Functions . . .

ABS Arithmetic Built-in Function
ADD Arithmetic Built-in Function
BINARY Arithmetic Built-in

Function. « o« o o ¢ o o o o o =«
CEIL Arithmetic Built-in

Function. . . « « « o & e o
COMPLEX Arithmetic Bullt—ln

Functione. o o o o « o o o o o o«
CONJG Arithmetic Built-in

Function.
DECIMAL Arithmetic BUllt—ln
Function. . . . « o o o e

DIVIDE Arlthmetlc Bullt—ln
Function. « « ¢ ¢ ¢ o o o « « =«
FIXED Arithmetic Built-in

Function. . . e o o s = =
FLOAT Arlthmetlc Bu11t—1n
Function. . « « « .« . o o =
FLOOR Arithmetic Bu11t—1n
FanctioNe ¢« o ¢ &« o o o o o « «
IMAG Arithmetic Built-in
Function. . . e o s e s s ° =

MAX Arithmetic Bullt in Function
MIN Arithmetic Built-in Function
MOD Arithmetic Built-in Function
MULTIPLY Arithmetic Built-in
FUnNctioN. « = « « « o o o « o =
PRECISION Arithmetic Built-in
Function. - s o
REAL Arithmetic Bullt-ln
Function. . « « « . = e o s o
ROUND Arithmetic Built- 1n
Function. . . . e e e s s e »
SIGN Arithmetic BUllt-ln
FunctioN. « « o« « o o o o = « =
TRUNC Arithmetic Built-in
FunctiofNe « o o« o o o « & .

Mathematical Built-in Functlons o .

ATAN Mathematical Built-in

Fanction. . . . e
ATAND Mathematlcal Bu1lt—1n
Function. . . « « « « & e o o

ATANH Mathematical Bu11t-1n
FUNCtiONae « ¢ o « o o« o o o =
COS Mathematical Built-in
Function. « = .
COSD Mathematlcal Bullt—ln
Function. « o =
COSH Mathematlcal Bu11t—1n
Function. . . - « o o &
ERF Mathematlcal Bu1lt-1n
Function. . . - . . . w e
ERFC Mathematlcal Bullt-ln
Functione. « o o o « « « o e
EXP Mathematical Built-in
Function. . « o o « o s« o o o =
LOG Mathematical Built-in

Function. « - .
LOG10 Mathematical Bu1lt 1n
Function. e o

LOG2 Mathematlcal Bu11t-1n
Function. . « « o ¢« o o o « = =«
SIN Mathematical Built-in
FunctioN. « « o o 2 o « =« o « =

.236
.237
.237
.238
.238
.239
.239
.239
.239
.239
. 240
. 240
.240
. 240
.240
.2u1
.241
.2u1
261
.242
.242
.242
.2u2
.243

.243
.243

.243
. 244
. 244
. 2044
.24y
- 245
- 245
. 245
.245
. 245
.245
. 245

.2h6

SIND Mathematical Built-in

Function. . . . PR . e e
SINH Mathematlcal Bullt—ln
Function.« - s .
SQRT Mathematlcal Bu1lt-1n
Function. « « « o o o o « o « «
TAN Mathematical Built-in
Function. . . . - o « o
TAND Mathematlcal Bu1lt-1n
Functions e o o =

TANH Mathematical Bullt in
FUNCtioN. « & ¢ « o o o = o o
Summary of Mathematical
FUNCtions « o« o« ¢ ¢ « o « o = «

Array Manipulation Built-in
FunctionsS. .« o <« o o o o o 4 o . o

ALL Array Manipulation Function.
ANY Array Manipulation Function,
DIM Array Manipulation Function.
HBOUND Array Manipulation
Function. « « o« « &« ¢ & & o« .« .
LBOUND Array Manipulation
Function. « o .
POLY Array Manlpulatlon Functlon
PROD Array Manipulation Function
SUM Array Manipulation Function.

Ccondition Built-in Functions

Based

DATAFIELD Condition Built-in
Function. « « « - « . e e & @
ONCHAR Condition Built-in
Function. . . e« o o = e @
ONCODE Condltlon Bu11t -in
Function. (S
ONCOUNT Condltlon Bu11t~In
Function. « o o o o 2 o o o o« «
ONFILE Condition Built-in
Function. « o« o« ¢ o ¢ o o = o o
ONKEY Condition Built-in
FuUnctione « « o o o« « o 2 o o« «
ONLOC Condition Built-in
Function. « « « « « + & o « o
ONSOURCE Condition Bullt-ln
FUnctioNe « « o« « 2 « s o « o« =

Storage Built-in Functions . . .

ADDR Based Storage Built-in
Function. . .« . . . « «

EMPTY Based Storage Built-in

Function. . . “ e
NULL Based Storage Bu1lt-1n
Function.- . . .

NULLO Based Storage Bu11t-1n
Function. « « o « ¢ ¢ o o o o =

Multitasking Built-in Functions. . . .

COMPLETION Multitasking Built-in

Function. . . « o a e s o o @
PRIORITY Multltasklng Built-in
Function. e & o o @

STATUS Multltasklng Bullt—ln
Function. « « o« o o o o o o o &

Miscellaneous Built-In Functions . . .

ALLOCATION Built-in Function . .
COUNT Built-in Function.
DATE Built-in Function
LINENO Built-in Function

.246
. 246
.246
246
.2u7
.247
.248
-249
.249
-249
.249
. 249
.250
. 250
.250
.250
.250

.251

.251

.251
.251
. 251
. 252
.252
.252
.252
.252
.252
. 253
.253
.253
. 253
.253
. 253
.254

.254
.254

TIME Built-in Function . . .

Pseudo-Variables . . «
COMPLETION Pseudo—varlable .
COMPLEX Pseudo-variable. . .
IMAG Pseudo-variable . .
ONCHAR Pseudo-variable . . .
ONSOURCE Pseudo-variable . .
PRIORITY Pseudo-variable . .
REAL Pseudo-variable
STATUS Pseudo-variable . . .
SUBSTR Pseudo-variable . . .
UNSPEC Pseudo-variable . . .

SECTION H: ON-CONDITIONS

Introduction
condition Codes (ON—Codes) .
Multiple Interrupts.

Section Organization <« .

Computational Conditions
The AREA Condition . . . « .
The CONVERSION Condition . .
The FIXEDOVERFLOW Condition.
The OVERFLOW Condition . . .
The SIZE Condition
The UNDERFLOW Condition. . .
The ZERODIVIDE Condition . .

Input/Output Conditions.
The ENDFILE Condition. .
The ENDPAGE Condition.
The KEY Condition. . .
The NAME Condition . .
The RECORD Condition .
The TRANSMIT Condition -
The UNDEFINEDFILE Condltlon.

LI T T Y
s 0 s 2
.

Program-Checkout Conditions. . . .
The CHECK Condition. . . «
The SUBSCRIPTRANGE Condltlon
The STRINGRANGE Condition. .

System Action Conditions
The ERROR Condition.
The FINISH Condition

Programmer-Named Condition
The CONDITION Condltlon. . o

SECTION I: ATTRIBUTES.

Specification of Attributes. . . .
Factoring of Attributes

Data Attributes.
Problem Data. « « « « « o o o »
Program Control Data.

Entry Name Attributes.

File Description Attributes. . . .

Scope Attributes

Storage Class Attributes

. 254

. 254
.255
. 255
. 255
.255
. 255
.255
. 256
. 256
.256
.256

- 257

. 257
.258
.259

.260

.260
.260
.261
.261
.261
262
262
262

.262
.262
263
.263
.264
.264
.264
.265

-265
. 265
.267
. 267
.268
.268
.268

.268
.268

.269

- 269
. 269

- 269
. 269
. 270
. 270
.270
270

.271

Alphabetic List of Attributes.
ABNORMAL and NORMAL.
ALIGNED and PACKED (Array and

Structure Attributes)
AREA (Program Control Data
Attribute). « ¢ ¢ ¢ o 4 ¢ o o

AUTOMATIC, STATIC, CONTROLLED
and BASED (Storage Class
Attributes) - o

BACKWARDS (File Descrlptnon
Attribute). « o . .
BASED (Storage Class Att1bute) .
BINARY and DECIMAL (Arithmetic
Data Attributes). . . © o o =
BIT and CHARACTER (Strlng
Attributes)
BUFFERED and UNBUFFERED (Flle
Description Attributes)
BUILTIN (Entry Attribute). . . .
CHARACTER (String Attribute) . .
COMPLEX and REAL (Arithmetic
Data Attributes). . . +« « « . .
CONTROLLED (Storage Class
Attribute). o o o
DECIMAL (Arithmetic Data
Attribute). . . ¢« < . 4 o ¢ . .
DEFINED (Data Attribute)
Dimension (Array Attribute). . .
DIRECT and SEQUENTIAL (File
Description Attributes)
ENTRY Attribute. « « « o« o & «
ENVIRONMENT (Flle Description
Attribute). . ¢ . . o ¢ o ¢ . .
EVENT (Program Control Data
Attribute). . . . - - . o
EXCLUSIVE (File Descrlptlon
Attribute).- .
EXTERNAL and INTERNAL (Scope
Attributes) . . . ¢ . ¢ ¢ & . .
FILE (File Description
Attribute).« . .
FIXED and FLOAT (Arlthmetlc Data
Attributes) « o e o .
FLOAT (Arithmetic Data
Attribute).
GENERIC (Entry Name Attribute) .
INITIAL (Data Attribute) . . .
INPUT, OUTPUT, and UPDATE (Flle
Description Attributes)
INTERNAL (Scope Attribute) . . .
IRREDUCIBLE and REDUCIBLE. . . .
KEYED (File Description
Attribute). o o
LABEL (Program cControl Data
Attribute). . . . -
Length (String Attrlbute). .
LIKE (Structure Attribute) .
NORMAL o ¢ o o o = o o &« .
OFFSET and POINTER (Program
Control Data Attributes). . . .
OUTPUT (File Description
Attribute). o
PACKED (Array and Structure
Attribute). . . ¢ 4 ¢ ¢ ¢ o . .
PICTURE (Data?Attribute)
POINTER (Program Control Data
Attribute). . . « o o
POSITION (Data Attrlbute). « .

« o s
¢ 8 &

.271
.271

.271

«272

.272

. 273
.273

.273
.274
. 274

275
. 275

.275

.275
.275
. 275
.278

279
<279

.280
.281
.283
.283
.283
.284
. 284
.284
. 285
.287
.287
.287
.287
.287
. 288
.288
.289
.289
.289

.289
+290

«292
292

Precision (Arithmetic Data
Attribute). . . « o o o o w o
PRINT (File Descrlptlon
Attribute). e e e
REAL (Arithmetic Data Attrlbute)
RECORD and STREAM (File
Description Attributes)
REDUCIBLE. ¢« o = « ¢ o o o o =
RETURNS (Entry Name Attribute) .
SEQUENTIAL (File Description
Attribute). ¢
SETS and USES. . . . e o o
STATIC (Storage Class Attrlbute)
STREAM (File Description
Attribute). « o o
TASK (Program Control Data
Attribute).« .
UNBUFFERED (File Descrlptlon
Attribute). 4 . . .
UPDATE (File Description
Attribute).+
USES -« « « & . o = o o .
VARYING (Strlng Attrlbute) e v e

SECTION J:
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The

STATEMENTS. @ ¢ « « o o o« «
ALLOCATE Statement .
Assignment Statement
BEGIN Statement. . .
CALL Statement . . .
CLOSE Statement. . .
DECLARE Statement. .
DELAY Statement.
DELETE Statement

DISPLAY Statement.
DO Statement .« « o« « o « o o
END Statement. « . .
ENTRY Statement. . « - . . .

EXIT Statement
FORMAT Statement

FREE Statement
GET Statement. .
GO TO Statement.
IF Statement . .
LOCATE Statement
Null Statement .
ON Statement . .
OPEN Statement . . . « +« « .
PROCEDURE Statement.
PUT Statement. « o« ¢« « o «
READ Statement
RETURN Statement « « « « «
REVERT Statement
REWRITE Statement.
SIGNAL Statement . « . « . .
STOP Statement . . .
UNLOCK Statement . .
WAIT statement . . .
WRITE Statement. . .

o 2 8 a ¥ o
e o & ¢ & 0 @
i o & o o & &

Preprocessor Statements. «
The %ACTIVATE Statement.
The % Assignment Statement . . .
The %DEACTIVATE Statement. . . .
The %DECLARE Statement
The %DO Statement.
The %END Statement . . . « « « .
The %GO TO Statement . . .
The %IF Statement. . .« . « .+ «

292

.293
.293

.293
.294
.294

. 294
.294
<295

. 295
.295
«295

.295
«295
.295

. 296
«296
.298
.302
.302
.303
.303
.304
.304
. 305
.305
.308
.308
.309
.309
.309
.310
.311
312
.312
.313
.313
-314
.315
.316
.318
«320
.320
.321
«322
322
.322
.323
.324

.325
.325

»325

«326
.326
<327
. 327
<327
.328

The %INCLUDE Statement328
The % Null Statement329
The %PROCEDURE Statement329
The Preprocessor RETURN

Statement « « « ¢ « ¢ « « o « o« 330

SECTION K: DEFINITIONS OF TERMS331

INDEXe o o o o « o o« o o = = =« « » « « 339

Figure 7-1. Scopes of Data
Declarations. . .

Figure 7-2. Scopes of Entry and Label
Declarations However, it could appear
in a CALL statement in E, since the
CALL statement itself would provide a
contextual declaration of A, which
would then result in the scope of A
being all of A and all of E..

Figure 8-1. General Format for
Repetitive Specifications..

Figure 8-2. Example of Data-Directed
Transmission (Both Input and Output).

Figure 11-1. A Program Checkout
Routine . . . c e s e s o ¢ o

Figure 14-1. Example of
Two-Directional Chain . « . ¢« « « . .

Figure 15-1. Synchronous and
Asynchronous Operation. « « « « « « .

Figure 15-2. Flow Diagram for
Programming Example of Multitasking .

Figure D-1. Pictured Character-String
EXampleSe o« o o o« o o o o o o o o o =

Figure D-2. Pictured Numeric
Character ExampleS. .« « « ¢ o « o « &«

Figure D-3. Examples of Zero
SUPPYESSiON « o o o o s o o o o o o o

.108
.113
.152
177
.180
.190
.206
.207
.208

FIGURES

Figure D-4. Examples of Insertion
Characters. . ¢« ¢ o v ¢ o o ¢ o o o »
Figure D-5. Examples of Drifting
Picture Characters.
Figure D-6. Examples of CR, DB, T, I,
and R Picture Characters. . . « . . .
Figure D-7. Examples of Floating-Point
Picture Specifications. « « « « « o &
Figure D-8. Examples of Scaling Factor
Picture Characters. e o .
Figure D-9. Examples of sterllng
Picture Specifications. . « . .« . . .
Figure F-1. Examples of Conversion
from Fixed-Point to Character-String.
Figure F-2. Examples of Conversion
From Arithmetic to Bit-String
Figure G-1. Mathematical Built-In
Functions e o s o o
Figure I-1. Perm1551ble Items for
oOverlay Defining. . . e e s e s e
Figure J-1. General Formats of the
Assignment Statement. . . - ..
Figure J-2. General Format of the DO
Statement “ o e o
Figure J-3. General Format of the
%DECLARE Statement. « « « « « o « «

.210
.211
.213
.213
. 214
.215
.226
.228
. 247
277
.299
.306

.326

TABLES

Table 2-1. Some Functions of Special
Characters. . « o« ¢ o o o o o o « o« &
Table 4-1. Target Types for
Expression Operands . « « « « « « « &

Table 4-2. Precision for Arithmetic
Conversion. . . « . .
Table 4-3. Lengths of Character Strlng
Targets« . « .o .

Table 4-4. Lengths of B1t Strlng
Targets .« . « <« « « & & . . - o .

Table 4-5. Circumstances that Can
Cause COnversioN. « o« « « « « « o o =
Table 15-1. Effect of Operations on
EXCLUSIVE Files
Table F~1. Data Type of Result of
Bit-String Operation.« s .
Table F-2. Data Type of Result of
Concatenation Operation
Table F-3a. Data Type of Result of
Comparison Operation. . . « e e
Table F-3b. Data Type of Intermedlate
Operands of Comparison Operation. . .

. 24
. 58
. 60
. 61
. 61
. 62
.184
.228
.228
.228
229

Table F-4. Data Type of Result of

Arithmetic Operation. . . . « o .
Table F-5. Precision for Arlthmetlc
CONVEersSionsS . « « « « =« . e o o

Table F-6. Lengths of Converted
Character Strings (Arithmetic To
Character-String) . .« « « « . « .

Table F-7. Lengths of Converted Blt
strings (Arithmetic to Blt—StIlng).

Table F-8 Ceiling Values

Table F-9. Attributes of Result in
Addition and Subtraction Operations

Table F-9. Attributes of Result in
Addition and Subtraction Operations

Table F-10. Attributes of Result in
Multiplication Operations

Table F-11. Attributes of Result in
Division Operations

Table F-12. Attributes of Result 1n
Exponentiation Operations . . « . .

.229

«229

230

.230
.230

230
.231
.231
.232

.232

PL/I is a programming langquage designed
to cover as wide a range of programming
applications as possible. A Dbasic belief
underlying the design of PL/I is that
programmers have common problems, regard-
less of the different applications with
which they may be concerned.

The language also is designed to reduce
the cost of programming, including the cost
of training programmers, the cost of debug-
ging, and, in particular, the cost of
program maintenance.

Training programmers to use a particular
language can often be expensive, particu-
larly if each programmer must be taught the
entire language, even if he need use only a
part of it.
the design of PL/I is modularity; in gener-
al, a programmer need know only as much of
the language as he requires to solve his
problemns.

Another factor that contributes to pro-
gramming cost is that a program frequently
must be rewritten, sometimes because the
system under which it is used has changed,
sometimes because the program is to be run
on a new machine. It is not uncommon to
find that rewriting a program costs as much
as writing it in the first place.

Two basic characteristics of PL/I are
intended to reduce the need to rewrite
complete programs if either the machine
environment or the application environment
changes. These characteristics are the
block structure used in the language and
its machine independence.

A PL/I program is composed of blocks of
statements called procedure blocks (oxr
procedures) and begin blocks, each of which
defines a region of the program. A single
program may consist of one procedure or of
several procedures and begin blocks. Eith-
er a procedure block or a begin block can
contain other blocks; a begin block must be
contained in a procedure block. Each
external procedure, that 1is, a procedure
that is not contained in another procedure,
is compiled separately. The same external
procedure might be used in a number of
different programs. Consequently, a neces-
sary change made in that one block effec-
tively makes the change in all programs
that use it.

One of the prime features in.

INTRODUCTION

PL/I is much less machine dependent than
most commonly used programming languages.
In the interest of efficiency, however,
certain features are provided that allow
machine dependence for those cases in which
complete independence would be too costly.

The variety of features provided by
PL/I, as well as the simplicity of the
concepts underlying them, demonstrate the
versatility of the language, its universal-
ity, and the ease with which different
subsets can be defined to meet the needs of
different users.

USE_OF THIS PUBLICATION

This publication 1is designed as a ref-
erence book for the PL/I programmer. Its
two-part format allows a presentation of
the material in such a way that references
can be found quickly, in as much or as
little detail as the user needs.

Part I, "Concepts of PL/I," is composed
of discussions and examples that explain
the different features of the language .and
their interrelationships. To reduce the
need for cross references and to allow each
chapter to stand alone as a complete ref-
erence to its subject, some information is
repeated from one chapter to another. Part
I can, nevertheless, be read sSequentially
in its entirety.

Part IX¥, "Rules and Syntactic Descrip-
tions," provides a quick reference to
specific information. It includes less
information about interrelationships, but
it is organized so that a particular ques-
tion can be answered quickly. Part II is
organized purely from a reference point of
view; it 1is not intended for sequential
reading.

For example, a programmer would read
Chapter 5 in Part I, "Statement Classifica-
tion," for information about the interac-
tions of different statements in a program;
but he would look in Section J of Part 1II,
"Statements," to find all the rules for the
use of a specific statement, its effect,
options allowed, and the format in which it
is written.

In the same manner, he would read Chap-
ter 4 in Part I, "Expressions,"™ for a
discussion of the concepts of data conver-
sion, but he would use Section F of Part
II, "Problem Data Conversion," to determine
the exact results of a particular type of
conversion.

15

An explanation of the syntax language
used in this publication to describe ele-
ments of PL/I is contained in Part II,
Section A, "Syntax Notation."

IMPLEMENTATION CONSIDERATIONS

This. publication reflects features of
jthe fourth version of the F Compiler. No
attempt is made to provide complete implem-
entation information; this publication is
designed for wuse in conjunction with IBM
System/360 Operating System: PL/I _(F)
Programmer's Guide, Form C28-6594. Discus-
sion of implementation is limited to those
features that are required for a full
explanation of the language. For example,
references to certain parameters of the
Data Definition (DD) job control language

16

statement are essential to an explanation

of record-oriented input and output file
organization.

Implementation features identified by
the phrase "for System/360 implementa-

tions..." apply to all implementations for
IBM System/360 computers. Features iden-
tified by the phrase. "for the F
Compiler..." apply specifically to the IBM
F Compiler under the IBM System/360 Operat-
ing System.

A separate publication, IBM__System/360:
PL/I Subset Reference Manual, Form
C28-8202, provides the same type of implem-
entation information as it applies to the D
Compiler used under the IBM System/360 Disk
and Tape Operating Systems.

PART I

The modularity of PIL/I, the ease with
which subsets can be defined to meet dJdif-
ferent needs, becomes apparent when one
examines the different features of the
language. Such modularity is one of the
most important characteristics of PL/I..

This chapter contains brief discussions
of most of the basic features to provide an
overall description of ‘the language. Each
is treated in more detail in subsequent
chapters. An annotated example in Chapter
i4, "A PL/I Program," illustrates the use
of many of these features.

MACHINE INDEPENDENCE

No 1language can be completely machine
independent, but PL/I is much less machine
dependent than most commonly used program-
ming languages. The wmethods used to
achieve this show in the form of restric-
tions in . the 1language. The most obvious
example is that data with different charac-
teristics cannot in general share the same
storage; to equate a floating-point number
with a certain number of alphabetic charac-
ters would be to make assumptions about the
representation of these data items which
would not be true for all machines.

It is recognized that the price entailed
by machine independence may sometimes be
too high. In the interxest of efficiency,
certain features such as the UNSPEC builtrs
in function and record-oriented data
transmission, do permit a degree of machine
dependence.

PROGRAM_ STRUCTURE

A PL/I program consists of one or more
blocks of statements called procedures. A
procedure may be thought of as a subrou-
tine. Procedures may invoke other proce-
dures, and these procedures or subroutines
may either be compiled separately, or may
be nested within the calling procedure and
compiled with it. Each procedure may con-
tain declarations that define names and
control allocation of storage.

The zrules defining the use of proce-
dures, communication between procedures,

Chapter 1:

procedure

‘has been reached, or until an

CHAPTER 1: BASIC CHARACTERISTICS OF PL/I

the meaning of names, and allocation of
storage are fundamental to +the proper
understanding of PL/I at any level but the
most elementary. These rules give the
programmer considerable control over the

‘degree of interaction between subroutines.

They permit flexible communication and
storage allocation, at the same time allow-
ing the definition of names and allocation
of storage for private use within a proce-
dure.

By giving the programmer freedom to
determine the degree to which a subroutine
is self-contained, PL/I makes it possible
to write procedures which can freely be
used in other environments, while still
allowing interaction in procedures where
interaction is desirable.

MULTIPROGRAMMING

By means of the PL/T multitasking facil-
ities, the programmer can specify that an
invoked procedure is to be executed concur-
rently with the invoking procedure, thus
making use of the multiprogramming capabil-
ities of the system. In this way, the
central processing unit can be occupied
with one part of the program while the
input/output channels are occupied with
other parts of the program; this can reduce
the overall amount of waiting time during
execution.

execution of different parts
of a program does not imply that the
program cannot be coordinated. The pro-
grammer can specify that execution of a
will be suspended at a specified
point until some point in another procedure
input/output

Concurrent

operation has been completed.

DATA TYPES AND DATA DESCRIPTION

The characteristic of PL/I that most
contributes to the range of applications
for which it can be used is the variety of
data types that can be represented and
manipulated. PL/I deals with arithmetic
data, string data (bit and character), and
program control data, such as labels.
Arithmetic data may be represented in a
variety of ways; it can be binary or

Basic Characteristics of PL/I 19

decimal,
real or
specified.

fixed-point or floating-point,
complex, and its precision may be

PL/1I provides features to perform arith-
metic operations, operations for compari-
sons, logical manipulation of bit strings,
and operations and functions for assem-
bling, scanning, and subdividing character
strings.

The compiler must be able to determine,
for eavery name used in a program, the
complete set of attributes associated with
that name. The programmer may specify
these attributes explicitly by means of a

DECLARE statement, the compiler may deter-
mine all or some of the attributes by
context, or the attributes may be assumed

by default.

DEFAULT ASSUMPTIONS

An important feature of PL/I is its
default philosophy. If all the attributes
associated with a name, or all the options
permitted in a statement, are not specified
by the programmer, attributes or options
may be assigned by the compiler. This
default action has two main consequences.
First, it reduces the amount of declaration
and other program writing required; second,
it makes it possible to teach and wuse
subsets of the 1language for which the
programmer need not know all possible
alternatives, or even that alternatives
exist.

Since defaults are based on assumptions
about the intent of the programmer, errors
or omissions may be overlooked, and incor-
rect attributes may be assigned by default.
To reduce the chance of this, the F Compil-
er optionally provides an attribute 1list-
ing, which can be used to check the names
in the program and the attributes associat-
ed with them.

STORAGE ALLOCATION

PL/I goes beyond most other languages in
the flexibility of storage allocation that
it provides. Dynamic storage allocation is
comparatively difficult for an assembly
language programmer to handle for himself;
yet it is automatically provided in PL/I.
There are four different storage classes:
AUTOMATIC, STATIC, CONTROLLED, and BASED.
In general, the default storage class in
PL/I is AUTOMATIC. This class of storage

20

is allocated whenever the block in which
the variables are declared is activated.
At that time the bounds of arrays and the
lengths of “strings are calculated. AUTO-
MATIC storage is freed and is available for
re-use whenever control leaves the block in
which the storage is allocated.

Storage also may be declared STATIC, in
which case it is allocated when the program
is loaded; it may be declared CONTROLLED,
in which case it is explicitly controlled
by +the programmer with ALLOCATE and FREE
statements, independent of the invocation
of blocks; or it may be declared BASED,
which gives the programmer an even higher
degree of control.

The existence of several storage classes
enables the programmer to determine for
himself the speed, storage space, Or pro-
gramming economy that he needs for each
application. The cost of a particular
facility will depend upon the implementa-
tion, but it will usually be true that the
more dynamic the storage allocation, the
greater the overhead in execution time.

EXPRESSIONS

Calculations in PL/I are specified by
expressions. An expression has a meaning
in PL/I that is similar to that of elemen-
tary algebra. For example:

A+ B *C

This specifies multiplication of the wvalue
of B by the value of C and adding the value
of A to the result. PL/I places few
restrictions on the kinds of data that can
be used in an expression. For example, it
is conceivable, though unlikely, that A
could be a floating-point number, B a
fixed-point number, and C a character
string.

When such mixed expressions are speci-
fied, the operands will be converted so
that the operation can be evaluated mean-
ingfully. Note, however, that the rules
for conversion must be considered careful-

ly; converted data may not have the same
value as the original. And, of course, any
conversion requires additional compiler-

generated coding, which increases execution
time.

The results of the evaluation of
expressions are assigned to variables by
means of the assignment statement.” An
example of an assignment statement is:

X =A + B *C;

This means: evaluate the expression on the
right and store the result in X. If the
attributes of X differ from the attributes
of the result of the expression, conversion
will again be performed.

DATA_COLLECTIONS

PL/I permits the programmer many ways of
describing and operating on collections of
data, or data aggregates. Arrays are col-
lections of data elements, all of the same
type, collected into lists or tables of one
or more dimensions. Structures are hierar-
chical collections of data, not necessarily
all of the same type. Each 1level of the
hierarchy may contain other structures of
deeper levels. The deepest levels of the
hierarchy represent elementary data items
or arrays.

An element of an array may be a sStruc-
ture; similarly, any level of a structure
may be an array. Operations can be speci-
fied for arrays, structures, or parts of
arrays or structures. For example:

A =B+ C;

In this assignment statement, A, B, and C

could be arrays or structures.

INPUT AND_ OUTPUT

Facilities <£for input and output allow
the user to choose between factors such as
simplicity, machine independence, and effi-
ciency. There are two broad classes of
input/output in PL/I: stream-oriented and
record-oriented.

Stream-oriented input/output is almost
completely machine independent. On input,
data items are selected one by one from
what is assumed to be a continuous stream
of characters that are converted to inter-
nal form and assigned to variables speci-
fied in a list. Similarly, on output, data
items are converted one by one to external
character form and are added to a concep-
tually continuous stream of characters.
Within the class of stream input/output,
the programmer can choose different levels
of control over the way data items are
edited and selected from or added to the
stream,

For printing, the output stream may be
considered to be divided into lines and
pages. An output stream £file may be

Chapter 1:

declared to be a print file with a speci-
fied line size and page size. The program-
mer has facilities to detect the end of a
page and to specify the beginning of a line
or a page. These facilities may be used in
subroutines that can be developed into a
report generating system suitable for a
particular installation or application.

Record-oriented input/output is machine
dependent. It deals with collections of
data, called records, and transmits these a
record at a time without any data conver-
sion; the external representation is an
exact copy of the internal representation.
Because the aggregate 1is treated as a
whole, and because no conversion is per-
formed, this form of input/output is poten-
tially more efficient than stream-oriented
input/output, although the actual efficien-
cy of each class will, of course, depend on
the implementation.

Stream-oriented input and output usually
sacrifices efficiency for ease of handling.
Each data item 1is transmitted separately
and 1is examined to determine if data con-
version is required. Record-oriented input
and output, on the other hand, provides
faster transmission by transmitting data as
entire records, without conversion.

COMPILE-TIME OPERATIONS

Most programming is concerned only with
operations upon data. PL/I permits a
compile-time level of operation, in which
preprocessor statements specify operations
upon the text of the source program itself.
The simplest, and perhaps the commonest
preprocessor statement is %INCLUDE (in gen-
eral, preprocessor statements are preceded
by a percent sign). This statement causes
text to be inserted into the program,
replacing the %INCLUDE statement itself. A
typical use could be to copy declarations

from an installation's standard set of
definitions into the program.

Another function provided by compile-
time facilities is the selective
compilation of program text. For example,

it might specify the inclusion or deletion
of debugging statements.

Since a simple but powerful part of the
PL/1I language is available for compile-time
activity, the generation, or replacement
and deletion, of text can Dbecome more
elaborate, and more subtle transformations
can be performed. Such transformations
might then be considered to be
installation-defined extensions to the lan-
guage.

Basic Characteristics of PL/I 21

INTERRUPT ACTIVITIES

Modern computing systems provide facili-
ties for interrupting the execution of a
program whenever an exceptional condition
arises. Further, they allow the program to
deal with the exceptional condition and to
return to the point at which the interrupt
occurred.

22

PL/I provides facilities for detecting a
variety of exceptional conditions. It

allows the programmer to specify, by means
of a condition prefix, whether certain
interrupts will or will not occur if the

condition should arise. And, by use of an
ON statement, he can specify the action to
be taken when an interrupt does occur.

There are few restrictions in the format
of PL/I statements. Consequently, programs
can be written without consideration of
special coding forms or checking to see
that each statement begins in a specific
column. As long as each statement is
terminated by a semicolon, the format is
completely free. Each statement may begin
in the next column or position after the
previous statement, or any number of blanks
may intervene.

CHARACTER_SETS

One of two character sets may be used to
write a source program; either a
60-character set or. a U8-character set.
For a given external procedure, the choice
between the two sets 1is optional. In
practice, this choice will depend upon the
available equipment.

60-CHARACTER SET

60-character set is

The composed of
digits, special characters, and alphabetic
characters.

There are 29 alphabetic characters

beginning with the currency symbol ($), the
number sign (#), and the commercial "at"
sign (a), which precede the 26 1letters of
the English alphabet in the IBM System/360
collating sequence in Extended Binary-
Coded-Decimal Interchange Code (EBCDIC).
For use with languages other than English,
the first three alphabetic characters can
be used to cause printing of letters that
are not included in the standard English
alphabet.

The

There are ten digits. decimal

digits are the digits 0 through 9. A
binary digit is either a 0 or a 1.

There are 21 special characters. They
are as follows:
Name Character
Blank

Equal sign or assignment symbol
Plus sign

Minus sign

Asterisk or multiply symbol

* 1+ 1

CHAPTER 2: PROGRAM ELEMENTS

Name Character
Slash or divide symbol
Left parenthesis

Right parenthesis

Comma

Point or period
Single quotation mark
or apostrophe

Percent symbol
Semicolon

Colon

"Not" symbol

"And" symbol

"Or" symbol

"Greater than" symbol
"Less than" symbol
Break character®

Question mark

s W o\

A Ve Grad e w31

wl

Special characters are combined to
create other symbols. For example, <=
means "less than or equal +to," 1= means
"not equal to." The combination ** denotes
exponentiation (X**2 means X2). Blanks are
not permitted in such composite symbols.

An alphameric character is either an
alphabetic character or a digit, but not a
special character.

Note: The question mark, at present, has
no specific wuse in the language, even
though it is included in the 60-character
set.

48~CHARACTER SET

The U8-character set is composed of u8
characters of the 60-character set. In all
but four cases, +the characters of the
reduced set can be combined to represent
the missing characters from the larger set.
For example, the percent symbol (%) is not
included in the #48-character set, but a

double slash (//) can be used to represent
ite The four characters that are not
duplicated are the commercial "at" sign,

the number sign, the break character, and

the question mark.

The restrictions and
character set are described

changes for this
in Part II,

iThe break character is the same as the
typewriter underline character. It can be
used with a name, such as GROSS_PAY, to
improve readability.

Chapter 2: Program Elements 23

Section B, "Character Sets with EBCDIC and
Card-Punch Codes."

USING THE CHARACTER SET

All the elements that make up a PL/I
program are constructed from the PL/I char-
acter sets. There are two exceptions:
charactex-string constants and comments may
contain any character permitted by a parti-
cular machine configuration.

Certain characters perform specific
functions in a PL/I program. For example,
many characters function as operators.

There are four types of operators:
arithmetic, comparison, bit-string, and
string.

The arithmetic operators are:

+ denoting addition or prefix plus

The comparison operators are:

> denoting "greater than"”
1> denoting "not greater than"

= denoting "greater than or

equal to"
denoting "equal to"
denoting "not equal to"
denoting "less than or equal to"
denoting "less than"

denoting "not less than"

A=

- A
A

The bit-string operators are:

1 denoting "not"
& denoting "and"
| denoting "or"

The string operator is:

denoting subtraction or prefix
minus]| denoting concatenation

* denoting multiplication

/ denoting division Table 2-1 shows some of the functions of

** denoting exponentiation other special characters.
Table 2-1. Some Functions of Special Characters
r = P]
| Name Character Use |
s - —_— ")
[) Ll
| comma ’ Separates elements of a list |
[|
|period - Indicates decimal point or binary point;
| connects elements of a qualified name |
| |
|semicolon : Terminates statements |
[|
|assignment = Indicates assignment of values? |
| symbol |
| |
| colon : Connects prefixes to statements; can be |
| used in specification for bounds of an |
| array |
| |
{blank Separates elements of a statement |
I |
|single gquotation ' Encloses string constants and picture
| mark specification |
| |
| parentheses () Enclose lists; specify information
| associated with various keywords; in |
| conjunction with operators and operands, |
| delimit portions of a computational
| expression |
i |
|arrow -> Denotes pointer qualification |
| |
{percent symbol % Indicates statements to be executed by the |
! compiler preprocessor |
L 4
r 1
|*Note that the character = can be used as an equal sign and as an assignment symbol. |
L ¥]

N
F—

Identifiers

In a PL/I program, names or labels are
given to data, files, statements, and entry
points of different program areas. In
creating a name or label, a programmer must
observe the syntactic rules for creating an
identifier.

An identifier is a single alphabetic
character or a string of alphameric and
break characters, not contained in a com-

ment or constant, and preceded and followed
by a blank or some other delimiter; the
initial character of +the string must be
alphabetic. For System/360 implementation,
the length must not exceed 31 characters.

Language keywords also are identifiers.
A keyword is an identifier that, when used
in proper context, has a specific meaning

to the compiler. A keyword can specify
such things as the action to be taken, the
nature of data, the purpose of a name. For

example, READ, DECIMAL, and ENDFILE are
keywords. Some keywords can be abbreviat-
ed. A complete list of keywords and their

abbreviations 1is c¢ontained in Part 1II,
Section C, "Keywords and Keyword Abbrevia-

tions."
Note: PL/I keywords are not reserved
words. They are recognized as keywords by

the compiler only when they appear in their
proper context. In other contexts they may
be used as programmer-defined identifiers.

No identifier can exceed 31 characters
in 1length; for the F Compiler, some iden-
tifiers, as discussed in later chapters,
cannot exceed seven characters in length.
This 1limitation is placed wupon certain
names, called external names, that may be
referred to by the operating system or by
more - than one separately compiled proce-
dure. If an external name contains more
than seven characters, it is truncated by
the compiler, which concatenates the first
four characters with the last three charac-
ters.

Examples of identifiers +that could be
used for names or labels:

A
FILE2

'LOOP_3
RATE_OF_PAY

#32

The Use of Blanks

Blanks may be used freely throughout a
PL/I program. They may or may not surround
operators and most other delimiters. 1In
general, any number of blanks may appear
wherever one blank is allowed, such as
between words in a statement.

One or more blanks must be used to
separate identifiers and constants that are
not separated by some other delimiter or by
a comment. However, identifiers, constants
(except character-string constants) and
composite operators (for example, =) can-
not contain blanks.

Other cases that require or permit
blanks are noted in the text where the
feature of the language is discussed. Some

examples of the use of blanks are:
AB+BC is equivalent to AB + BC
TABLE(10) is equivalent to TABLE (10)
FIRST,SECOND is equivalent to FIRST, SECOND

ATOB is not equivalent to.A TO B

Comments

Comments
are allowed in a program,

are permitted wherever blanks
except within

data items, such as a character string. A
comment is treated as a blank and can
therefore be wused in place of a required

separating blank. Comments do not other-
wise affect execution of a program; they
are used only for documentation purposes.
Comments may be punched into the same cards
as statements, either inserted between
statements or in the middle of them.

The general format of a comment is:

/* character-string */
The character pair /* indicates the
beginning of a comment. The same character
pair reversed, */, indicates its end. No

blanks or other characters can separate the
two characters of either composite pair;
the slash and the asterisk must be immedi-
ately adjacent. The comment itself may
contain any characters except the */ combi-
nation, which would be interpreted as ter-
minating the comment.

Example:
/% THIS WHOLE SENTENCE COULD BE
INSERTED AS A COMMENT */

Chapter 2: Program Elements 25

Any characters permitted for a particu-
lar machine configuration may be used in
comments.

BASIC PROGRAM STRUCTURE

A PL/I program is constructed from basic
program elements called statements. There
are two types of statements: simple and
compound. These statements make up larger
program elements called groups and blocks.

SIMPLE AND COMPOUND STATEMENTS

There are three types of simple state-
ments: keyword, assignment, and null, each
of which contains a statement body that is
terminated by a semicolon.

A'keyword statement has a keyword to
indicate the function of the statement; the

statement body 1is the remainder of the
statement.

The assignment statement contains the
assignment symbol (=) and does not have a
keyword.

The null statement consists only of a
semicolon and indicates no operation; the
semicolon is the statement body.

Examples of simple statements are:
GO TO LOOP_3; (GO TO is a keyword; the
blank between GO and TO

is optional. The state-

ment body is LOOP_3;)

A =B+ C; (assignment statement)

A compound statement is a statement that
contains one or more other statements as a
part of its statement body. There are two
compound statements: the IF statement and
the ON statement. The final statement of a
compound statement 1is a simple statement
that is terminated by a semicolon. Hence,
the compound statement is terminated by
this semicolon. The IF statement can con-
tain two simple statements as shown in the
following example:

IF A > B THEN A = B+C; ELSE GO TO
LOOP_3;
This example can also be written as
follows:
IF A>B

THEN A=B+C;
ELSE GO TO LOOP_3;

26

Following are examples of the ON state-

ment:
ON OVERFLOW GO TO OVFIX;
ON UNDERFLOW;
The contained statement in the second
example is the null statement represented
by a semicolon only; it indicates that no

action is to be taken when an UNDERFLOW
interrupt occurs.

Statement Prefixes

Both simple and compound statements may
have one or more prefixes. There are two
types of prefixes; the label prefix and the
condition prefix.

A label prefix identifies a statement so
that it can be referred to at some other
point in the program. A label prefix is an
identifier that precedes the statement and
is connected to the statement by a colon.
Any statement may have one or more 1labels.
If more than one are specified, they may be
used interchangeably to refer to that
statement.

A condition prefix specifies whether or
not interrupts are to <result from the
occurrence of the named conditions. Condi-
tion names are language keywords, each of

which represents an exceptional condition
that might arise during execution of a
program. Examples are OVERFLOW and SIZE.

The OVERFLOW condition arises when the
exponent of a floating-point number exceeds
the maximum allowed (representing a maximum
value of about 10735), The SIZE condition
arises when a value is assigned to a
variable with loss of high-order digits or
bits.

A condition name in a condition prefix
may be preceded by the word NO to indicate
that, effectively, no interrupt is to occur
if the condition arises. If NO is used,
there can be no intervening blank between
the NO and the condition name.

A condition prefix consists of a list of
one or more condition names, separated by
commas and enclosed in parentheses. One or
more condition prefixes may be attached to
a statement, and each parenthesized 1list
must be followed by a colon. cCondition
prefixes precede the entire statement,
including any possible label prefixés for
the statement. For example:

(SIZE, NOOVERFLOW) :COMPUTE:A = B * C #*# D;

The single condition prefix indicates that
an interrupt is to occur if the SIZE
condition arises during execution of the
assignment statement, but that no interrupt
is to occur if the OVERFLOW condition
arises. Note that the condition prefix

precedes the label prefix COMPUTE.

Since intervening blanks between a pre-
fix and its associated statement are
ignored, it 1is often convenient to punch
the condition prefix into a separate card
that precedes the card into which the
statement is punched. Thus, after debug-
ging, the prefix can be easily removed.
For example:

(NOCONVERSION) :
(SIZE,NOOVERFLOW) :
COMPUTE: A = B * C ** D;
Note that there are two condition prefixes.
The first specifies that no interrupt is to
occur if an invalid character is encounter-
ed during an attempted data conversion.
Condition prefixes are discussed in

Chapter 11, "Exceptional Condition Handling
and Program Checkout."

GROUPS AND BLOCKS

A group is a sequence of statements
headed by a DO statement and terminated by

-appear within a block.

a corresponding END statement. It is wused
for control purposes. A group also may be
called a DO-group. :

A block is a sequence of statements that
defines an area of a program. It is used
to delimit the scope of a name and for
control purposes. A program may consist of
one or more blocks. Every statement must
There are two kinds

of blocks: begin blocks and procedure
blocks. A begin block is delimited by a

BEGIN statement and an END statement. A
procedure block is delimited by a PROCEDURE
statement and an END statement. Every
begin block must be contained within some
procedure block.

Execution passes sequentially into and
out of a begin block. However, a procedure
block must be invoked by execution of a
statement in another block. The first
procedure in a program to be executed is
invoked automatically by the operating sys-
tem. For System/360 implementations, this
first procedure must be identified by
specifying OPTIONS (MAIN) in the PROCEDURE
statement.

A procedure block may be invoked as a

task, in which case it is executed concur-
rently with the invoking procedure. Tasks
are discussed in Chapter 15,

"Multitasking."

Chapter 2: Program Elements 27

CHAPTER 3: DATA ELEMENTS

Data is generally defined as a represen-
tation of information or of value.

In PL/I, reference to a data item,
arithmetic or string, 1is made by using
either a variable or a constant (the terms
are not exactly the same as in general
mathematical usage).

A variable is a symbolic name having a
value that may change during execution of a
program.

A constant (which is not a symbolic
name) has a value that cannot change.

The following statement has both varia-
bles and constants:

AREA = RADIUS#**2%3.1416;

AREA and RADIUS are variables; the numbers
2 and 3.1416 are constants. The value of
RADIUS 4is a data item, and the result of
the computation will be a data item that
will be assigned as the value of AREA. The
number 3.14816 in the statement is itself
the data item; the characters 3.1416 also
are written to refer to the data item.

If the number 3.1416 is to be used in
more than one place in the program, it may
be convenient to represent it as a variable
to which the value 3.1416 has been
assigned. Thus, the above statement could
be written as:

PI = 3.1416;
AREA = RADIUS**2%*PI;

In this statement, only the digit 2 is a
constant.

In preparing a PL/I program, the pro-
grammer must be familiar with the types of
data that are permitted, the ways in which
data can be organized, and the methods by
which data can be referred to. The follow-
ing paragraphs discuss these features.

DATA_TYPES

The types of data that may be used in a
PL/I program fall into two categories:
problem data and program control data.
Problem _data is used to represent values to
be processed by a program. It consists of
two data types, arithmetic and string.

28

Program control data is used by the pro-
grammer to control the execution of his
program. Program control data consists of
the following types: label, event, task,
locator, and area.

A constant does more than state a value;
it demonstrates various characteristics of
the data item. For example, 3.1416 shows
that the data type is arithmetic and that
the data item is a decimal number of five
digits and that four of these digits are to
the right of the decimal point.

The characteristics of a variable are
not immediately apparent in the name.
Since these characteristics, called attri-
butes, must be known, certain keywords and

expressions may be wused to specify the
attributes of a variable in a DECLARE
statement. The attributes used to describe

each data type are discussed briefly in
this chapter. A complete discussion of
each attribute appears in Part II, Section
I, "Attributes."

PROBLEM DATA

The types of problem data are arithmetic

and string.

ARITHMETIC DATA

An item of arithmetic data is one with a
numeric value. Arithmetic data items have

the characteristics of base, scale, preci-
sion, and mode. The characteristics of
data items represented by an arithmetic
variable are specified by attributes
declared for the name, or assumed by
default.

The base of an arithmetic data item is

either decimal or binary.

The scale of an arithmetic data item is
either fixed-point or floating-point. A
fixed-point data item is a number in which
the position of the decimal or binary point
is specified, either by its appearance in a
constant or by a scale factor declared for
a variable. A floating-point data item is
a number followed by an optionally signed
exponent. The exponent specifies the
assumed position of the decimal or binary

point, relative to the position in which it
appears.

The precision of an arithmetic data item
is the number of digits the data item may
contain, in the case of fixed-point, or the
minimum number of significant digits
(excluding the exponent) to be maintained,
in the case of floating-point. For fixed-
point data items, precision can also
specify the assumed position of the decimal
or binary point, relative to the rightmost
digit of the number.

Whenever a data item is assigned to a
fixed-point variable, the declared preci-
sion is maintained. The assigned item is
aligned on the decimal or binary point.
Leading zeros are inserted if the assigned
item contains fewer integer digits than
declared; trailing zeros are inserted if it
contains fewer fractional digits. A SIZE
error may occur if the assigned item con-
tains too many integer digits; truncation
on the right may occur if it contains too
many fractional digits.

The mode of an arithmetic data item is
either real or complex. A real data item
is a number that expresses a real value. A
complex data item is a pair of numbers: the
first is real and the second is imaginary.
For a variable representing complex data
items, the base, scale, and precision of
the two parts must be identical.

Base, scale, and mode of arithmetic
variables are specified by keywords; preci-
sion is specified by parenthesized decimal
integer constants.

In the following sections, the real
arithmetic data types discussed are decimal
fixed-point, sterling fixed-point, binary
fixed-point, decimal floating-point, and
binary floating-point. Any of these,
except sterling fixed-point, can be used as
the real part of a complex data item. The
imaginary part of a complex number 1is
discussed in the section "Complex Arithmet-
ic Data," in this chapter.

Complex arithmetic variables must be
explicitly declared with the COMPLEX attri-
bute. '~ Real arithmetic variables may be
explicitly declared to have the REAL attri-
bute, but it is not necessary to do so,
since any arithmetic variable is assumed to
be real wunless it is explicitly declared
complex.

Decimal Fixed-Point Data

consists
with an

A decimal fixed-point constant
of one or more decimal digits

optional decimal point. If no decimal
point appears, the point is assumed to be
immediately to the right of the rightmost
digit. In most uses, a sign may optionally
precede a decimal fixed-point constant.

Examples of decimal fixed-point
stants as written in a program are:

con-

3.1416
455.3
732
003
5280
.0012

The keyword attributes for declaring
decimal fixed-point variables are DECIMAL
and FIXED. Precision is stated by two
decimal integers, separated by a comma and
enclosed in parentheses. The first, which
muast be unsigned, specifies the total num-
ber of digits; the second, the scale fac-
tor, may be signed and specifies the number

of digits to the right of the decimal
point. If the variable is to represent
integers, the scale factor and its preced-

ing comma can be omitted. The attributes
may appear in any order, but the precision
specification must follow either DECIMAL or
FIXED (or REAL or COMPLEX).

Following are examples of declarations
of decimal fixed-point variables:

DECLARE A FIXED DECIMAL (5,4);
DECLARE B FIXED (6,0) DECIMAL;
DECLARE C FIXED (7,-2) DECIMAL;

The first DECLARE statement specifies that
the identifier A is to represent decimal
fixed-point items of not more than five
digits, four of which are to be treated as
fractional, that 1is, +to the right of the
assumed decimal point. Any item assigned
to A will be converted to decimal fixed-
point and aligned on the decimal point.
The second DECLARE statement specifies that
B is to represent integers of no more than
6 digits. Note that the comma and the zero
are unnecessary: it could have been
specified B FIXED DECIMAL (6). The third
DECLARE statement specifies a negative
scale factor of -2; this means that the
assumed decimal point is two places to the
right of the rightmost digit of the item.

The maximum number of decimal digits
allowed for System/360 implementations 1is
15. Default precision, assumed when no
specification is made, 1is (5,0). The

Chapter 3: Data Elements 29

internal coded arithmetic form of decimal
fixed-point data is packed decimal. Packed
decimal is stored two digits to the byte,
with a sign indication in the rightmost
four bits of +the rightmost byte. Conse-
quently, a decimal fixed-point data item is
always stored as an odd number of digits,
even though the declaration of the variable
may specify the number of digits (p) as an
[even number. When the declaration speci-
fies an even number of digits, the extra
digit place is in the high-order position,
and it participates in any operations per-
formed upon the data item, such as in a
comparison operation. Any arithmetic over-
flow or assignment into an extra high-order
digit place can be detected only if the
SIZE condition is enabled.

Sterling Fixed-Point Data

PL/I has a facility for handling con-
stants stated in terms of sterling currency
value. The data wmay be written 1in a
program with pounds, shillings, and pence
fields, each separated by a period. Such
data is converted and maintained internally

as a decimal fixed-point number represent-
ing the equivalent in pence. &2 sterling
data constant ends with the letter 1L,
representing the pounds symbol. All three

fields (pounds, shillings, and pence) must
be present in a sterling constant. Note
that the pence field is one or more decimal
digits with an optional decimal point (the
integer part must be 1less than 12 and
cannot be omitted).

Examples of sterling fixed-point con-

stants as written in a program are:

101.13.8L

1.10.0L

0.0.2.5L

2.4.6L
The +third example represents twopence-
halfpenny. The last example represents two
pounds, four shillings, and six pence. It

is converted and stored internally as 534
(pence).

There are no keyword attributes for
declaring sterling variables, but a
variable can be declared with a sterling
picture, or sterling values may be
expressed in pence as decimal fixed-point
data. The precision of a sterling constant
is the precision of its value expressed in
rence.

30

Binary Fixed-Point Data

A binary fixed-point constant consists
of one or more binary digits with an
optional binary point, followed immediately
by the letter B, with no intervening blank.
In most uses, a sign may optionally precede
the constant.

Examples of binary fixed-point constants
as written in a program are:

10110B
111118
101B
111.01B
1011.111B

The keyword attributes for declaring
binary fixed-point variables are BINARY and
FIXED. Precision is specified by two deci-
mal integer constants, enclosed 1in paren-
theses, to represent the maximum number of
binary digits and the number of digits to
the right of the binary point, respectiwve-
ly. If the variable is to represent inte-
gers, the second digit and the comma can be
omitted. The attributes can appear in any
order, but the precision specification must
follow either BINARY or FIXED (or REAL or
COMPLEX) .

Following is an example of declaration
of a binary fixed-point variable:

DECLARE FACTOR BINARY FIXED (20,2);
FACTOR is declared to be a wvariable that
can represent arithmetic dJdata items as
large as 20 binary digits, two of which are
fractional. The decimal equivalent of that
value range is from -262,144.00 through
+262,143.75.

The maximum number of binary digits
allowed for System/360 implementations is
31. Default precision 1is (15,0). The
internal coded arithmetic form of binary
fixed-point data is a fixed-point binary
full word. A full word is 31 bits plus a
sign bit. Any binary fixed-point data item
is always stored as 31 digits, even thcugh
the declaration of the variable may specify
fewer digits. The declared number of
digits are considered to be in the 1low-

order positions, but the extra high-order
digits participate in any operations
performed upon the data item. Any arith-

metic overflow into such extra high-order
digit positions can be detected only if the
SIZE condition is enabled.

An identifier for which no declaration
is made is assumed to be a binary fixed-
point variable, with default precision, if
its first 1letter is any of the letters I
through N.

Decimal Floating-Point Data

A decimal floating-point constant is
written as a field of decimal digits
followed by the letter E, followed by an
optionally signed decimal integer exponent.
The first field of digits may contain a
decimal point. The entire constant may be
preceded by a plus or minus sign. Examples
of decimal floating-point constants as
written in a program are:

15E-23

15E23

4E-3
48333E65
438E0
3141593E-6
.003141593E3

The last two examples same

value.

represent the

The keyword attributes for declaring
decimal floating-point variables are DECI-
MAL and FLOAT. Precision is stated by a
decimal integer constant enclosed in paren-

theses. It specifies the minimum number of
significant digits to be maintained. If an
item assigned to a variable has a field

width larger than the declared precision of
the variable, truncation may occur on the
right. The least significant digit is the
first +that is lost. Attributes may appear
in any order, but the precision specifi-
cation must follow either DECIMAL or FLOAT
(or REAL or COMPLEX).

Following is an example of declaration
of a decimal floating-point variable:

DECLARE LIGHT_YEARS DECIMAL FLOAT(5);

This statement specifies that LIGHT_YEARS
is to represent decimal floating-point data
items with an accuracy of at least five
significant digits.

The maximum precision allowed for deci-
mal floating-point data items for
System/360 implementations 'is (16); the
exponent cannot exceed two digits. A value
range of approximately 10-78 to 1075 can be

is any

expressed by a decimal floating-point data
item. Default precision is (6). The
internal coded arithmetic form of decimal
floating-point data is normalized hexadeci-
mal floating-point, with the point assumed
to the left of the first hexadecimal digit.
If the declared precision is less than or
equal to (6), short floating-point form is
used; 1if the declared precision is greater
than (6), long floating-point form is used.

An identifier for which no declaration
is made is assumed to be a decimal
floating-point variable if its first letter
of the 1letters A through H, O
through 2, or one of the alphabetic exten-
ders, $, #, a.

Binary Floating~Point Data

A binary floating-point constant con-
sists of a field of binary digits followed
by the letter E, followed by an optionally
signed decimal integer exponent followed by
the letter B. The exponent is a string of
decimal digits and specifies an integral
power of two. The field of binary digits
may contain a -binary point. A binary
floating-point constant may be preceded by
a plus or minus sign. Examples of binary
floating-point constants as written in a
program are:

101101E5B
101.101E2B
11101E-28B

The keyword attributes for declaring
binary floating-point variables are BINARY
and FLOAT. Precision is expressed as a
decimal integer constant, enclosed in
parentheses, to specify the minimum number
of significant digits to be maintained.
The attributes can appear in any order, but
the precision specification must follow
either BINARY or FLOAT (or REAL or
COMPLEX) . Following is an example of dec-
laration of a binary floating-point varia-
ble:

DECLARE S BINARY FLOAT (16);
This

represent binary floating-point data
with 16 digits in the binary field.

specifies that the identifier S is to
items

The maximum precision allowed for binary
floating-point data items for System/360
implementations is (53); default precision
is (21). The exponent cannot exceed three
decimal digits. A value range of approxi-
mately 2-260 to 2252 can be expressed by a

Chapter 3: Data Elements 31

binary floating-point data item. The
internal coded arithmetic form of binary
floating-point data is normalized hexadeci-
mal floating-point. If the declared preci-
sion is 1less than or equal to (21), short
floating-point form is used; if the
declared precision is greater than (21),
long floating-point form is used.

Complex Arithmetic Data

In the complex mode, an arithmetic data
item is considered to consist of two parts,
the first a real part and the second a
signed imaginary part. There are no com-
plex constants in PL/I. The effect is
obtained by writing a real constant and an
imaginary constant.

An imaginary constant is written as a
real constant of any type (except sterling
fixed-point) immediately followed by the
letter I.

Examples of imaginary constants as writ-
ten in a program are:

271
3.968E101
11011.01BI

Each of these is considered to have a real
part of zero. Although complex constants
cannot be written with a nonzero real part,
PL/I provides the facility to express such
values in the following form:

real-constant{+|-}imaginary-constant

Thus a complex value could be written as
38+271.

The keyword
complex variable is
variable can have
valid for the
arithmetic data.
and precision attributes
fields.

attribute for declaring a
COMPLEX. A complex
any of the attributes
different types of real

Each of the base, scale,
applies to both

Unless a variable is explicitly declared
to have the COMPLEX attribute, it is
assumed to represent real data items.

Numeric Character Data

(also
the

A numeric character data item
known as a numeric field data item) is

32

value of a variable that has been declared
with the PICTURE attribute and a mnumeric
picture specification. The data item is
the character representation of a decimal
fixed-point or floating-point value.

A numeric picture specification des-
cribes a character string to which only

data that has, or can be converted to, an
arithmetic value 1is to be assigned. A
numeric picture specification cannot con-

tain eéither of the picture characters A or
X, which are used for non-numeric picture-
character strings. The basic form of a
numeric picture specification 1is omne or
more occurrences of +the digit-specifying
picture character 9 and an optional
occurrence of the picture character V, to
indicate the assumed location of a decimal

point. The picture specification must be
enclosed in single quotation marks. For
example:

999V99
This numeric picture specification des-

cribes a data item consisting of up to five
decimal digits in character form, with a
decimal point assumed to precede the right-
most two digits.

Repetition factors may be used in numer-
ic picture specifications. A repetition
factor is a decimal integer constant,
enclosed in parentheses, that indicates the
number or repetitions of the immediately
following picture character. For example,
the following picture specification would
result in the same description as the
example shown above:

*(3)9v(2)9"

The format for declaring a numeric char-
acter variable is:

DECLARE identifier PICTURE
‘numeric-picture-specification';

For example:
DECLARE PRICE PICTURE °'999V99°*;

This specifies that any value assigned to
PRICE 1is to be maintained as a character
string of five decimal digits, with an
assumed decimal point preceding the right-
most two digits. Data assigned to PRICE
will be aligned on the assumed point in the
same way that point alignment is maintained
for fixed-point decimal data.

The numeric picture specification can
specify all of the arithmetic attributes of
data in much the same way that they are
specified by the appearance of a constant.
Only decimal numeric data can be represent-
ed by picture characters. Complex data can

COMPLEX
picture
either a
item.

be declared by specifying the
attribute along with a single
specification that describes

fixed-point or a floating-point data

It is important to note that, although
numeric character data has arithmetic
attributes, it 1is not stored 1in coded
arithmetic form. In System/360 implement-
ations, numeric character data is stored in
zoned decimal format; before it can be used
in arithmetic computations, it must be
converted either to packed decimal or to
hexadecimal floating-point format. Such
conversions are done automatically, but
they require extra execution time.

Although numeric character data 1is in
character form, like character strings, and
although it is aligned on the decimal point
like coded arithmetic data, it is processed
differently from the way either coded
arithmetic items or character strings are
processed., Editing characters can be spec-
ified for insertion into a numeric charac-
ter data item, and such characters are
actually stored within the data item. Con-
sequently, when +the item is printed or
treated as a character string, the editing
characters are included in the assignment.
I1f, however, a numeric character item is
assigned to another numeric character or
arithmetic variable, the editing characters
will not be included in the assignment;
only the actual digits and the location of
the assumed decimal point are assigned.

Consider the following example:

DECLARE PRICE PICTURE *$99V.99',
COST CHARACTER (6),
VALUE FIXED DECIMAL (6,2);

PRICE = 12.28;
COST = '$12.28";

In the picture specification for PRICE, the
currency symbol ($) and the decimal point
.) are editing characters. They are
stored as characters in the data item.
They are not, however, a part of its
arithmetic value. After execution of the
second assignment statement, +the actual
internal character representation of PRICE
and COST can be considered identical. If
they were printed, they would print exactly
the same. They do not, however, always
function the same. For example:

VALUE = PRICE;
COST = PRICE;

VALUE = COST;

PRICE COsT;

After the first two assignment state-
ments are executed, the value of VALUE
would be 0012.28 and the wvalue of COST
would be '$12.28'., In the assignment of
PRICE to VALUE, the currency symbol and the
decimal point are considered to be editing
characters, and they are not part of the
assignment; the arithmetic value of PRICE
is converted to internal coded arithmetic

form. In the assignment of PRICE to COST,
however, the assignment is to a character
string, and the editing characters of a

numeric picture specification always parti-
cipate in such an assignment. No conver-
sion 1s necessary because PRICE is stored
in character form.

The third and fourth assignment state-
ments would cause errors. The value of
COST cannot be assigned to VALUE because
the currency symbol in the string makes it

invalid as an arithmetic constant. The
value of COST cannot be assigned to PRICE
for exactly the same reason. Only values

that are of arithmetic type, or that can be
converted to arithmetic type, can be
assigned to a variable declared with a
numeric picture specification.

Note: Although the decimal point can be an
editing character or an actual character in

a character string, it will not cause an
error in converting to arithmetic form,
since 1its appearance is valid in an arith-

metic constant. The same would be true of
a valid plus or minus sign, since arithmet-
ic constants can be preceded by signs.

Other editing characters, including zero

suppression characters, drifting charac-
ters, and insertion characters, can be used
in numeric picture specifications. For

complete discussions of picture characters,
see Part II, Section D, "Picture Specifi-
cation Characters" and the discussion of
the PICTURE attribute in Part II, Section
I, "Attributes."

STRING DATA

A string is a contiguous sequence of

characters (or binary digits) that is
treated as a single data item. The length
of the string is the number of characters

(or binary digits) it contains.

There are two types of strings: charac-
ter strings and bit strings.

Chapter 3: Data Elements 33

Character-Sstring Data

A character string can include any

digit, letter, or svecial character recog-
nized as a character by the particular
machine configuration. Any blank included

in a character string is an integral char-
acter and is included in the count of
length. A comment that is inserted within
a character string will not be recognized
as a comment. The comment, as well as the
comment: delimiters (/* and */), will be
considered to be part of the character-
string data.

Character-string constants, when written
in a program, must be enclosed in single
quotatién marks. If a single quotation
mark is a character in a string, it must be
written as two single guotation marks with
no intervening blank. The length of a
character string is the number of
characters between the enclosing quotation
marks. If two single quotation marks are
used within the string to represent a
single quotation mark, they are counted as
a single character.

Examples of character-string constants

are:

' LOGARITHM TABLE'

'PAGE 5

' SHAKESPEARE''S *'' 'HAMLET'*'""

*ACU438-19"

(2)"WALLA
The third example actually indicates
SHAKESPEARE'S ''HAMLET'' WITH A LENGTH OF

24, In the last example, the parenthesized
number is a repetition factorxr, which indi-
cates repetition of the characters that
follow. = This example specifies the con-
stant "WALLA WALLA ' (the blank is included
as one of the characters to be repeated).
The repetition factor must be an unsigned

decimal | integer constant, enclosed in
parentheses.
The keyword attribute for declaring a

character-string variable is CHARACTER.
Length is declared by an expression or a
decimal integer constant, enclosed in
rarentheses, which specifies the number of
characters in the string. The 1length
specification must follow the keyword CHAR-
ACTER. For example:

DECLARE NAME CHARACTER (15); °~
This DECLARE statement specifies that the

identifier NAME is to represent character-

34

string data items, 15 characters in length.
If a character string shorter than 15
characters were to be assigned to NAME, it
would be left adjusted and padded on the
right with blanks to a length of 15. If a
longer string were assigned, it would be
truncated on the right. (Note: If such
truncation occurs, no interrupt will result
as it might for truncation of arithmetic
data, and there is no ON condition in PL/I
to deal with string truncation.)

Character-string variables may also be
declared to have the VARYING attribute, as
follows:

DECLARE NAME CHARACTER (15) VARYING;

This DECLARE statement specifies that the
identifier NAME is to be used to represent
varying-length character-string data items
with a maximum length of 15. The actual
length attribute for NAME at any particular
time is the 1length of the data item
assigned to it at that time. The program-
mer need not keep track of the length of a
varying-length character string; this is
done automatically. The 1length at any
given time can be determined by the pro-
grammer, however, by use of +the LENGTH
built-in function, as discussed in Chapter
9, "Editing and String Handling." Note for
the F Compiler that until a varying-length
string variable is given an initial wvalue,
its length is set to zero.

Character-string data in System/360
implementations is maintained internally in
character format, that is, each character
occupies one byte of storage. The maximum
length allowed for variables declared with
the CHARACTER attribute 1is 32,767. The
maximum Llength allowed for a character-
string constant after application of
repetition factors varies according to the
amount of storage available to the compil-
er, but it never will be 1less than 1,007
(see IBM System/360 Operating System: PIL/I
(F), Programmer's Guide, Form C28-6594).
The minimum length for a character string
is zero.

Character-string variables alsc can be
declared using the PICTURE attribute of the
form:

PICTURE 'character-picture-specification’

The character picture specification is a
string composed of the picture specifi-
cation characters A, X, and 9. The string
of picture characters must be enclosed in
single quotation marks, and it must contain
at least one A or X and no other picture
characters except 9. The character A spe-
cifies that the corresponding position in
the described field will contain an alpha-
betic character or blank. The character X

specifies that any character may appear in
the corresponding position in the field.
The picture character 9 specifies that the

Chapter 3: Data Elements 34.1

will contain a
For example:

corresponding position
numeric character or blank.

DECLARE PART_NO PICTURE *AR9999X999';

This DECLARE statement specifies that the
identifier PART_NO will represent
character-string data items consisting of
two alphabetic characters, four numeric
characters, one character that may be any
character, and three numeric characters.

Repetition factors are used in picture
specifications differently £from the way
they are used in string constants. Repeti-
tion factors must be placed inside the
quotation marks. The repetition factor
specifies repetition of the immediately
following picture charactexr. For example,
the above picture specification could be
written:

*(2)AW)IIX(3)9"

The maximum length allowed for a picture
specification is the same as that allowed

for character-string constants, as dis-
cussed above.
Note that, for character picture speci-

fications, the picture character 9 speci-
fies a digit or_a blank, while, for numeric
picture specifications, the same character

specifies only a digit.

Bit-String Data

constant is written in a
program as a series of binary digits
enclosed in single quotation marks and
followed immediately by the letter B.

A Dbit-string

Examples of bit-string constants as

written in a program are:
'1'B
*11111010110001"B
(64)°0'B

The parenthesized number in the last exam-
ple is a repetition factor which specifies
that the following series of digits is to
be repeated the specified number of times.
The example shown would result in a string
of 64 binary zeros.

A bit-string variable is declared with
the BIT keyword attribute. Length is spec-
ified by an expression or a decimal integer
constant, enclosed in parentheses, to spec-
ify the number of binary digits in the
string. The letter B is mnot included in

the 1length specification since it is not
part of the string. The 1length specifi-
cation must follow the keyword BIT. Fol-
lowing is an example of declaration of a
bit-string variable:

DECLARE SYMPTOMS BIT (64);
Like character strings, bit strings are
assigned to variables from left to right.
If a string is 1longer than the length
declared for the variable, the rightmost

digits are truncated; if shorter, padding,
on the right, is with zeros.
the

A bit-string variable may be given

VARYING attribute to indicate it is to be
used to represent varying-length bit
strings. Its application is the same as

that described for character-string varia-
bles in the preceding section.

With System/360 implementations, bit
strings are stored eight bits to a byte.
The maximum length allowed for a bit-string
variable with +the F Compiler is 32,767.
The maximum length allowed for a bit-string
constant after application of repetition
factors depends upon the amount of storage
available to the compiler, but it will
never be less than 8,056 (1,007 bytes).
The minimum length for a bit string is
zero.

PROGRAM CONTROL DATA

The types of program control data are
| Label, event, task, locator, and area.

LABEL DATA

A label data item is a label constant or
the value of a label variable.

A label constant is an identifier writ-
ten as a prefix to a statement so that,
during execution, program control can be
transferred to that statement through a
reference to its label. A colon connects
the label to the statement.

ABCDE: DISTANCE = RATE*TIME;

In this example, ABCDE is the statement
label. The statement can be executed eith-
er by normal sequential execution of
instructions or by transferring control to
this statement from some other point in the
program by means of a GO TO statement.

As used above, ABCDE can be classified
further as a statement-label constant. A

Chapter 3: Data Elements 35

statement-label variable is an identifier
that refers to statement-label constants.
consider the following example:

LBL_A: statement;
LBL B: statement;
LBL_X = LBL_A;
GO TO LBL_X;
IBL_A and LBL_B are statement-label con-

stants because they are prefixed to state-
ments. LBL_X is a statement-label varia-
ble. By assigning LBL_A to LBL_X, the
statement GO TO LBL_X causes a transfer to
the LBL_A statement. Elsewhere, the pro-
gram may contain a statement assigning
LBL_ B to LBL_X. Then, any reference to
LBL_X would be the same as a reference to
LBL_B. This value of LBL X is retained
until another value is assigned to it.

A statement-label variable must be
declared with the LABEL attribute, as fol-
lows:

DECLARE LBL_X LABEL;

EVENT DATA

Event variables are used to coordinate
the concurrent execution of a number of
procedures, or to allow a degree of overlap
between a record-oriented input/output
operation and the execution of other state-
ments in the procedure that initiated the
operation.

A wvariable is given the EVENT attribute
by its appearance in an EVENT option or a
WAIT statement, or by explicit declaration,
as in the following example:

DECLARE ENDEVT EVENT;
For detailed infcormation, see Chapter

15, "Multitasking," and "The EVENT Option"
in Chapter 8, "Input and Output."

36

TASK DATA

Task variables are used to control the
relative priorities of different tasks
(i.e., concurrent separate executions of a
procedure or procedures).

A variable is given the TASK attribute
by its appearance in a TASK option, or by
explicit declaration, as in the following
example:

DECLARE ADTASK TASK;

For detailed information,
15, "Multitasking."

see Chapter

LOCATOR DATA

There are two types of locator data:
pointer and offset.

The value of a pointer variable is
effectively an address of a location in
storage, and so it can be used to qualify a
reference to a variable that may have been
allocated storage in several different
locations, all of which are immediately
accessible. Since based storage is so
allocated, reference to a based variable
must be qualified in some way:; with +the F
Compiler, this gqualification must be pro-
vided by a pointer variable.

The value of an offset variable speci-
fies a location relative to the start of a
reserved area of storage and remains valid
when the address of the area itself chan-
ges.

Locator variables can be declared as in
the following example:

DECLARE HEADPTR POINTER,
FIRST OFFSET (AREAl);

In this example, AREA1 is the name of the
reserved area of storage that will contain
the location specified by FIRST.

A variable can also be given the POINTER
attribute by its appearance in the BASED
attribute, by its appearance on the left-
hand side of a pointer qualification
symbol, or by its appearance in a SET
option.

For detailed information, see Chapter
14, "Based Storage and List Processing."

AREA DATA

Area variables are used to describe
areas of storage that are +to be reserved
for the allocation of based variables. An
area can be assigned or transmitted com—
plete with its contained allocations; thus,
a set of based allocations can be treated
as one unit for assignment and input/output
while each allocation retains its dindivi~-
dual identity.

is given the AREA attribute
either by its appearance in the OFFSET
attribute or an IN option, or by explicit
declaration, as in the following example:

A variable

DECLARE AREA1 AREA(2000),
AREA2 AREA;

The number of bytes of storage +o be
reserved can be stated explicitly, as it
has been for AREAl in the example; other-
wise a default size is assumed. For the F
Compiler, this default size is 1000 bytes.

For detailed information, see Chapter
14, "Based Storage and List Processing."™

DATA ORGANIZATION

In PL/I, data items may be single data
elements, or they may be grouped together
to form data collections called arrays and
structures. A variable that represents a
single element is an element variable (also
called a scalar variable). A variable that
represents a collection of data elements is

either an array variable or a structure
variable.
Any type of problem data or program

control data can be collected into

or structures.

arrays

ARRAYS

Data elements having the same charac-
teristics, that is, of the same data type
and of the same precisjion or length, may be
grouped together to form an array. An
array is an n-dimensional collection of
elements, all of which have identical
attributes. Only the array itself is given
a name, An individual item of an array is
referred to by giving its relative position
within the array.

Cconsider the following two declarations:
DECLARE LIST (8) FIXED DECIMAL (3);

DECLARE TABLE (4,2) FIXED DECIMAL (3);

In the first example, LIST is declared to

be a one-dimensional array of eight ele-
ments, each of which 1is a fixed-point
decimal item of three digits. In the

second example, TABLE is declared to be a
two~dimensional array, also of eight fixed-
point decimal elements.

The parenthesized number or numbers
following the array name in a DECLARE
statement is the dimension attribute speci-
fication. It must follow the array name,
with or without an intervening blank. . It
specifies the number of dimensions of the
array and the bounds, or extent, of each
dimension. Since only one bounds specifi-
cation appears for LIST, it 1is a one-
dimensional array. Two bounds specifi-
cations; separated by a comma, are listed
for TABLE; consequently, it is declared to
be a two-dimensional array.

I

The bounds of a dimension are the
bedinning and the end of that dimension.
The extent is the number of integers

between, and including, the lower and upper
bounds. If only one integer appears in the
bounds specification for a dimension, the

lower bound is assumed to be 1. The one
dimension of LIST has bounds of 1 and 8;
its extent is 8. The two dimensions of
TABLE have bounds of 1 and 4 and 1 and 2;

the extents are 4 and 2.

If the lower bound of a dimension is not
1, both the upper bound and the lower bound

must be stated explicitly, with the two
numbers connected with a colon. For exam-
ple:

DECLARE LIST A (4:11);
DECLARE LIST_B (-4:3);

In the first example, the bounds are U and
11; in the second they are -4 and 3. Note
that the extents are the same; in each
case, there are 8 integers from the lower
bound through the upper bound. It is
important to note the difference between
the bounds and the extent of an array. 1In
the manipulation of array data (discussed
in Chapter 4, "Expressions") involving more
than one array, the bounds -- not merely
the extents -- must be identical. Although
LIST, LIST_A, and LIST B all have the same
extent, the bounds are not identical.

The bounds of an array determine the way
elements of the array can be referred to.
For example, assume that the following data

Chapter 3: Data Elements 37

items are assigned to the
declared above:

array LIST, as

20 5 10 30 630 150 310 70

The different elements would be referred
to as follows:

Reference Element
LIST (1) 20
LIST (2) 5
LIST (3) 10
LIST (4) 30
LIST (5) 630
LIST (6) 150
LIST (7) 310
LIST (8) 70

Each of the numbers following the name
LIST is a subscript. A parenthesized sub-
script following an array name, with or
without an intervening blank, specifies the
relative position of a data item within the
array. A subscripted name, such as
LIST(4), refers to a single element and is
an element variable. The entire array can
be referred to by the unsubscripted name of
the array, for example, LIST. In this
case, LIST is an array variable. Note the
difference between a subscript and the
dimension attribute specification. The
latter, which appears in a declaration,
specifies the dimensionality and the number
of elements in an array. Subscripts are
used in other references to identify speci-
fic elemehts within the array.

The same data assigned to LIST A and
LIST_B, as declared above, would be
referred to as follows:

Reference Element Reference
LIST_ A (W) 20 LIST B (-4)
LIST A (5) 5 LIST B (-3)
LIST A (6) 10 LIST B (-2)
LIST A (7 30 LIST B (-1)
LIST A (8) 630 LIST_B (0)
LIST A (9) 150 LIST B (1)
LIST A (10) 310 LIST_B (2)
LIST_A (11) 70 LIST_B (3)

Assume that the same data were assigned
to TABLE, which is declared as a two-
dimensional array. TABLE can be

38

illustrated as a matrix of four rows and
two columns, as follows:

TABLE (m,n) (m,1) (m, 2)
(1,n) 20 5
(2,n) 10 30
(3,n) 630 150
(4,n) 310 70

An element of TABLE is referred to by a
subscripted name with two parenthesized
subscripts, separated by a comma. For
example, TABLE (2,1) would specify the
first item in the second row, in this case,
the data item 10.
illustrate

Note: The use of a matrix to

TABLE is purely conceptual. It has no
relationship to the way in which the items
are actually organized in storage. Data

items are assigned to an array in row major
order, that is, with the right-most sub-
script varying most rapidly. For example,
assignment to TABLE would be to TABLE(1,1),
TABLE(1,2), TABLE(2,1), TABLE(2,2) and so
forth.

Arrays are not limited to two dimen-

sions. The PL/I F Compiler allows as many
as 32 dimensions to be declared for an
array. In a reference to an element of any

array, a subscripted name must contain as
many subscripts as there are dimensions in
the array.

Examples of arrays in this chapter have
shown arrays of arithmetic data. Other
data types may be collected into arrays.
String arrays, either character or bit, are
valid, as are arrays of statement labels.

Expressions as Subscripts

The subscripts of a subscripted name
need not be constants. Any expression that
yields a valid arithmetic value can be
used. If the evaluation of such an expres-
sion does not yield an integer value, the
fractional portion is ignored. For
System/360 implementations, the integer
value is converted, if necessary, to a
fixed-point binary number of precision
(15,0), since subscripts are maintained
internally as binary integers.

Subscripts are frequently expressed as
variables or other expressions. Thus,
TABLE(I,J*X) could be used to refer to the
different elements of TABLE by varying the
values of I, J, and K.

Cross Sections of Arrays

Cross sections of arrays can be referred
to by substituting an asterisk for a sub-
script in a subscripted name. The asterisk
then specifies that the entire extent is to
be used. For example, TABLE(*,1) refers to
all of the elements in the first column of
TABLE. It specifies the cross section
consisting of TABLE(1,1), TABLE(2,1),
TABLE(3,1), and TABLE(4,1). The subscript-
ed name TABLE(2,*) refers to all of the
data items in the second row of TABLE.
TABLE (*,%*) refers to the entire arraye.

Note that a subscripted name containing
asterisk subscripts represents, not a sin-
gle data element, but an array with as many
dimensions as there are asterisks. Conse-
quently, such a name is not an element
expression, but an array expression.

STRUCTURES

Data items that need not have identical
characteristics, but that possess a logical
relationship to one another, can be grouped
into aggregates called structures.

Like an array, the entire structure is
given a name that can be used to refer to
the entire collection of data. Unlike an
array, however, each element of a structure

also has a name.

A structure is a hierarchical collection
of names. At the bottom of the hierarchy
is a collection of elements, each of which
represents a single data item or an array.
At the top of the hierarchy is the struc-
ture mname, which represents the entire
collection of element variables. For exam-
ple, the following is a collection of
element variables that might be used to
compute a weekly payroll:

LAST_NAME
FIRST NAME
REGULAR_HOURS
OVERTIME_HOURS
REGULAR_RATE
OVERTIME_RATE

variables could be collected into
single structure
refer to the

These
a structure and given a
name, PAYROLL, which would
entire collection.

PAYROLL

LAST_ NAME REGULAR_HOURS REGULAR_RATE -

FIRST_NAME OVERTIME_HOURS OVERTIME_RATE

Any reference to PAYROLL would be a
reference to all of the element variables.
For example:

GET DATA (PAYROLL) ;

This input statement could cause data to
be assigned to each of the element varia-
bles of the structure PAYROLL.

It often is convenient to subdivide the
entire collection into smaller logical col-
lections. In the above examples, LAST_NAME
and FIRST_NAME might make a logical subcol-
lection, as might REGULAR_HOURS and
OVERTIME_HOURS, as well as REGULAR_RATE and
OVERTIME_RATE. In a structure, such sub-
collections also are given names.

PAYROLL
NAME HOURS RATE
FIRST REGULAR REGULAR
LAST OVERTIME OVERTIME

Note that the hierarchy of names can be
considered to have different levels, At
the first 1level 1is the structure name
(called a major structure name); at a
deeper level are the names of substructures
(called minor structure names); and at the
deepest are the element names (called elem-
entary names). An elementary name in a
structure can represent an array, in which
case it is not an element variable, but an
array variable.

The organization of a structure is spec-
ified in a DECILARE statement through the
use of level numbers. A major structure
name must be declared with the level number
1. Minor structures and elementary names
must be declared with level numbers arith-
metically greater than 1; they must be
decimal integer constants. A Dblank must
separate the level number and its associat-
ed name.

For example, the items of a weekly
payroll could be declared as follows:

DECLARE 1 PAYROLL,
2 NAME,
3 LAST,
3 FIRST,
2 HOURS,
3 REGULAR,
3 OVERTIME,
2 RATE,
3 REGULAR,
3 OVERTIME;

Chapter 3: Data Elements 39

Note: 1In an actual declaration of the
structure PAYROLL, attributes would be
specified for each of the elementary names.
The pattern of indention in this example is
used only for readability. The statement
could be written in a continuous string as
DECLARE 1 PAYROLL, 2 NAME, 3 LAST, etc.

PAYROLL is declared as a major structure
containing the minor structures NAME,
HOURS, and RATE. Each minor structure
contains two elementary names. A program-

mer can refer to the entire structure by
the name PAYROLL, or he can refer to
portions of the structure by referring to

the minor structure names. He can refer to
an element by referring to an elementary
name.

Note that in the declaration, each level
number precedes its associated name and is
separated from the name by a blank. The
numbers = chosen for successively deeper
levels need not be the immediately succeed-
ing integers. They are used merely to
specify the relative level of a name. A
minor :‘structure at level n contains all the
names with 1level numbers greater than n
that lie between that minor structure name
and the next name with a level number less
than or equal to n. PAYROLL might have
been declared as follows:

DECLARE 1 PAYROLL,
4 NAME,
5 LAST,
5 FIRST,
2 HOURS,
6 REGULAR,
5 OVERTIME,
2 RATE,
3 REGULAR,
3 OVERTIME;

This declaration would
the same structuring as the previous
laration.

result in exactly
dec-

The description of a major structure
name is terminated by the declaration of
another item with a level number 1, by the
declaration of another item with no level
number, or by a semicolon terminating the
DECLARE statement.

Level numbers are specified with struc-
ture names only in DECLARE statements. 1In
references to the structure or its ele-
ments, no level numbers are used.

Qualified Names

A minor structure or a structure element
can be referred to by the minor structure
name or the elementary name alone if there

40

is no ambiguity. Note, however, that each
of the names REGULAR and OVERTIME appears
twice 1in the structure declaration for
PAYROLL. A reference to either name would
be ambiguous without some qualification to
make the name unique.

PL/I allows the use of qualified names
to avoid this ambiguity. A gualified name
is an elementary name or a minor structure

name +that is made unique by qualifying it
with one or more names at a higher level.
In the PAYROLL example, REGULAR and OVER-
TIME could be made unique through use of

the qualified names HOURS.REGULAR,
HOURS.OVERTINME, RATE.REGULAR, and
RATE.OVERTIME.

The different names of a qualified name
are connected by periods. Blanks may or
may not appear surrounding the period.
Qualification is in the order of levels;

that is, the name at the highest level must
appear first, with the name at the deepest
level appearing last.

Any of the names in a structure, except
the major structure name itself, need not
be unique within the procedure in which it
is declared. For example, the qualified

name PAYROLL.HOURS . REGULAR might be
required to make the reference unique
(another structure, say WORK, might also

have the name REGULAR in a minor structure
HOURS; it could be made unique with the
name WORK.HOURS.REGULAR) . All of the
qualifying names need not be used, although
they may be, if desired. Qualification
need go only so far as necessary to make
the name unique. Intermediate qualifying
names can be omitted. The name
PAYROLL.LAST is a valid reference to the
name PAYROLL.NAME.LAST.

ARRAYS OF STRUCTURES

A structure name, either major or minor,
can be given a dimension attribute in a
DECLARE statement to declare an array of
structures. An array of structures is an
array whose elements are structures having
identical names, levels, and elements. For
example, if a structure, WEATHER, were used
to process meteorological information for
each month of a year, it might be declared
as follows:

Form C28-8201-1,

DECLARE 1 WEATHER(12),

2 TEMPERATURE,
3 HIGH DECIMAL FIXED(4,1),
3 LOW DECIMAL FIXED(3,1),

2 WIND_VELOCITY,
3 HIGH DECIMAL FIXED(3),
3 LOW DECIMAL FIXED(2),

2 PRECIPITATION,
3 TOTAL DECIMAL FIXED(3,1),
3 AVERAGE DECIMAL FIXED(3,1);

could refer to the
month of July by

Thus, a programmer
weather data for the
specifying WEATHER(7). Portions of the
July weather could be referred to by
TEMPERATURE(7), WIND_VELOCITY(7), and
PRECIPITATION(7), Dbut TOTAL(7) would refer
to the total precipitation during the month
of July.

"TEMPERATURE.HIGH(3), which would
to the high temperature in March,
subscripted qualified name.

refer
is a

The need for subscripted qualified names
becomes more apparent when an array of
structures contains minor structures that
are arrays. For example, consideér the
following array of structures:

DECLARE 1 A (6,6),
2 B (5,
3 c,
3 D,
2 E;

Both A and B are arrays of structures. To
identify a data item, it may be necessary
to use as many as three names and three
subscripts. For example, A(1,1).B{(2).C

identifies a particular C that is an ele-
ment of B in a structure in A.

So 1long as the order of subscripts
remains unchanged, subscripts in such ref-

erences may be moved to the right or left
and attached to names at a lower or higher
level. For example, A.B.C(1,1,2) and
A(1,1,2).B.C have the same meaning as
A(1,1).B(2).C for, the above array of struc-
tures. Unless all of the subscripts are
moved to the lowest or highest 1level, the
qualified name is said to have interleaved
subscripts; thus, A.B(1,1,2).C has inter-
leaved subscripts.

An array declared within an array of
structures inherits dimensions declared in
the containing structure. For example, in
the above declaration for the array of

structures A, the array B is a three-
- dimensional structure, because it inherits
the two dimensions declared for A. If B is

unique and requires no qualification, any
reference to a particular B would require
three subscripts, two to identify the
specific A and one to identify the specific
B within that A.

Page Revised by TNL N33-6008,

5/1/68

OTHER ATTRIBUTES

Keyword attributes for data variables
such as BINARY and DECIMAL are discussed
briefly 1in the preceding sections of this
chapter. Other attributes that are not
peculiar to one data type may also be
applicable. A complete discussion of these
attributes is contained in Part II, Section
I, "Attributes." Some that are especially
applicable to a discussion of data type and
data organization are DEFINED, LIKE,
ALIGNED, UNALIGNED, and INITIAL.

The DEFINED Attribute

The DEFINED attribute specifies that the
named data element, structure, or array is
to occupy the same storage area as that
assigned to other data. For example,

DECLARE LIST (100,100),
LIST _ITEM (100,100) DEFINED LIST;

LIST is a 100 by 100 two-dimensional array.
LIST ITEM is an identical array defined on
LIST. A reference to an element in
LIST_ITEM is the same as a reference to the
corresponding element in LIST.

The DEFINED attribute, along with the
POSITION attribute, can be used to subdi-
vide or overlay a data item. For example:

DECLARE LIST CHARACTER (50),
LISTA CHARACTER(10) DEFINED LIST,
LISTB CHARACTER(10) DEFINED LIST
POSITION(11),
LISTC CHARACTER(30) DEFINED LIST
POSITION(21);

LISTA refers to the first ten characters of
LIsT. LISTR refers +to the second ten
characters of LIST. LISTC refers to the
last thirty characters of LIST.

The DEFINED attribute may also be wused
to specify parts of an array through use of
isUB variables, in order to constitute a
new array. The iSUB variables are dummy
variables where 1 can be specified as any
decimal integer constant from 1 through n
(where n represents the nunber of dimen-
sions for the defined item). The value of
the dummy variable (iSUB) ranges from the
lower bound to the upper bLkound of the
dimension specified by n. For example:

DECLARE A (20,20},
B(10) DEFINED A(2*1SUB, 2*¥1SUB) ;

Chapter 3: Data Elements 41

Form C28-8201-1, Page Revised by TNL N33-6008,

B is a subset of A consisting of

every even element in the diagonal of the
array, A. In other words, B(1l) corresponds
to A(2,2), B(2) corresponds to A(4,4),

The LIKE Attribute

The LIKE attribute is used to indicate
that the name being declared is to be given
the same structuring as the major structure
or minor structure name following the
attribute LIKE. For example:

DECLARE 1 BUDGET,

2 RENT,

2 FOOD,
3 MEAT,
3 EGGS,
3 BUTTER,

2 TRANSPORTATION,
3 WORK,
3 OTHER,

2 ENTERTAINMENT,

1 COST_OF_LIVING LIKE BUDGET;

This declaration for COST_OF_LIVING is the
same as if it had been declared:

DECLARE 1 COST_OF_LIVING,

2 RENT,

2 FOOD,
3 MEAT,
3 EGGS,
3 BUTTER,

2 TRANSPORTATION,
3 WORK,
3 OTHER,

2 ENTERTAINMENT;

Note: The LIKE attribute copies structur-
ing, names, and attributes of the structure
below the level of the specified name only.
No dimensionality of the specified name is
copied. For example, if BUDGET were
declared as 1 BUDGET(12), the declaration
of COST OF_LIVING LIKE BUDGET would not
give the dimension attribute to
COST_OF LIVING. To achieve dimensionality
of COST_OF_LIVING, the declaration would
have to be DECLARE 1 COST _OF_LIVING(12)
LIKE BUDGET.

A winor structure name can be declared
LIKE a major structure or LIKE another
minor structure. A major structure name

can be declared LIKE a minor structure or

LIKE another major structure.

The ALIGNED and UNALIGNED Attributes

The ALIGNED and UNALIGNED attributes are
used to specify the positioning in storage

42

5/1/68

of data elements, to influence speed of
access or storage economy respectively.

Note: Use of the UNALIGNED attribute allows
data interchange with FORTRAN files. See
*Managing Programs' in the PL/I ()
Programmer's Guide, Form C28-6594.

ALIGNED in System/360 implementations
specifies that the data element is to be
aligned on the storage boundary correspond-
ing to its data type requirement.

UNALIGNED in System/360 implementations
specifies that each data element is to be
stored contiguously with the data element
preceding it: a character-string item is to
be mapped on the next byte boundary, a
bit-string item is to be marped on the next
bit, and a word and doubleword item is to
be mapped on the next byte koundary.

Defaults are applied at element level.
The default for bit-string data, character-
string data, and numeric character data is
UNALIGNED; for all other types of data, the
default is ALIGNED.

ALIGNED or UNALIGNED can be specified
for element, array, or structure variables.
The application of either attribute to a
structure 1is equivalent +to applying the
attribute to all contained elements that

are not explicitly declared ALIGNED or
UNALIGNED.

The following example 1illustrates the
effect of ALIGNED and UNALIGNED
declarations for a structure and its ele-
ments:

DECLARE 1 STRUCTURE,
2 X BIT(2), /* UNALIGNED BY
DEFAULT */
2 A ALIGNED, /% ALIGNED EXPLICITLY */
3 B, /* ALIGNED FROM A */
3 C UNALIGNED, /* UNALIGNED
EXPLICITLY */
4 D, /% UNALIGNED FROM C */
4 E ALIGNED, /* ALIGNEL EXPLICITLY */
4 r, /% UNALIGNED FROM C */
3 G, /7% ALIGNED FROM A */
2 H; /% ALIGNED BY DEFAULT */

Although UNALIGNED causes economic use
of data storage, for System/360 implementa-
tions it will increase the amount of code
generated to access data items that are not
aligned on the required byte boundaries.

The INITIAL Attribute

The INITIAL attribute specifies an ini-
tial value to be assigned to a variable at
the time storage is allocated for it. For
example:

DECLARE NAME CHARACTER(10) INITIAL DECLARE TABLE (100,100) INITIAL CALL

(*JOHN DOE") ; : SUBR (ALPHA) ;
DECLARE PI FIXED DECIMAL (S5,4) INITIAL . When storage is allocated for NAME, the
(3.1416) ; character string 'JOHN DOE' (padded to 10

Chapter 3: Data Elements #42.1

characters) will be assigned to it. When
PI is allocated, it will be initialized to
the value 3.1416.. Either value may be
‘'retained throughout the program, or it may
be changed during execution. The third
example illustrates the CALL option. It
indicates that the procedure SUBR is to be
invoked to perform the initialization.

For a variable that 1is allocated when
the program is loaded, that is, a static
variable, which remains in allocation
throughout execution of the program, any
value specified in an INITIAL attribute is
assigned only once. For automatic vari-
ables, which are allocated at each activa-
tion of the declaring block, any specified
initialization is assigned with each allo-
cation. For controlled variables, which
are allocated at the execution of ALLOCATE
statements, any specified initialization is
assigned with each allocation. Note, how-
ever, that this initialization can be over-
ridden in the ALLOCATE statement. The F
Compiler does not allow the INITIAL attri-
bute to be specified for based variables.

The INITIAL attribute cannot be given
for entry names, file names, DEFINED data,
entire structures, parameters, task data,
or event data.

Note: The CALL option cannot be used with
the INITIAL attribute for static data.

The INITIAL attribute cannot be used
without the CALL option for pointer, off-
set, or area data. An area variable is
automatically initialized with the value of
the EMPTY built-in function, on allocation,
after which any specified INITIAL CALL is
applied.

The INITIAL attribute can be specified
for arrays, as well as for element vari-
ables. In a structure declaration, only
elementary names can be given the INITIAL
attribute.

An array or an array of structures can
be partly initialized or fully initialized.
For example:

DECLARE A(15) CHARACTER(13) INITIAL
(*JOHN DOE', 'RICHARD ROW',
'MARY SMITH'),

B (10,10) DECIMAL FIXED(5)
INITIAL((25)0, (25)1, (50)0),

1¢c(8),
2 D INITIAL (0),
2 E INITIAL((8)0);

In this example, only the first three
elements of A are initialized; the rest of
the array is uninitialized. The array B is
fully initialized, with the first 25 ele-
nents initialized to 0, the next 25 to 1,

and the last 50 to 0. The parenthesized
numbers (25, 25, and 50) are iteration
factors, that specify the number of ele-
ments to be initialized. 1In the structure
C, where the dimension (8) has been inher-
ited by D, only the first element of D is
initialized; where the dimension (8) has
been inherited by E, all the elements of E
are initialized.)

When an array of structures is declared
with the LIKE attribute to obtain the same
structuring as a structure whose elements
have been initialized, it should be noted
that only the first structure in this array
of structures will be initialized. For
example:

DECLARE 1 G,
2 H INITIAL(O),
2 I INITIAL(O),
1 J(8) LIKE G;

In this example, only J(1).H and J(1).I are
initialized in the array of structures.

For STATIC
must be
arrays
factors may be
expressions.

arrays, iteration factors

decimal integer constants; for
of other storage classes, iteration
constants, variables, or

The iteration factor should not be con-
fused with the string repetition factor
discussed earlier in this chapter. Consid-
er the following example:

DECLARE TABLE (50) CHARACTER (10)
INITIAL ((10)*A",(25)(10)'B",
@y ch);

This INITIAL attribute specification con-
tains both iteration factors and repetition
factors. It specifies that the first ele-
ment of TABLE is to be initialized with a
string consisting of 10 A's, each of the
next 25 elements is to be initialized with
a string consisting of 10 B's, and each of
the last 24 elements is to be initialized
with the single character C. In the INI-
TIAL attribute specification for a string
array, a single parenthesized factor
preceding a string constant is assumed to
be a string repetition factor (as in
(10)*A'). If more than one appears, the
first is assumed to be an iteration factor,
and the second a string repetition factor.
For this reason (as in (21)(1)°'C'), a
string repetition factor of 1 must be
inserted if a single string constant is to
be used to initialize more than one ele-
ment.

The CALL option can be used to initial-

ize arrays, except for arrays of static
storage class.

Chapter 3: Data Elements 43

CHAPTER 4: EXPRESSIONS

An expression is a representation of a

value. A single constant or a variable is
an expression. Combinations of constants
and/or variables, along with operators

and/or parentheses, are
expression that contains operators is an
operational expression. The constants and
variables of an operational expression are
called operands.

expressions. An

Examples of expressions are:

27

1L,Oss

A+B

{SQTY-QTY) *SPRICE

can be classified as an
called a scalar

Any expression
element expression (also
expression), an array expression, or a
structure expression. An element expres-
sion is one that represents an element
value. An array expression is one that
represents an array value. A structure
expression is one that represents a struc-
ture value.

For the F Compiler, array variables and
structure variables cannot appear in the
same expression. Element variables and
constants, however, can appear in either
array expressions or structure expressions.
An elementary name within a structure or a
subscripted name that specifies a single
element of an array is an element expres-
sion.

Note: If an elementary name of a structure
is given the dimension attribute, that
elementary name is an array variable and
can appear only in array expressions.

In the examples that follow, assume that
the variables have attributes declared as
follows:

DECLARE A(10,10) BINARY FIXED (31),

B(10,10) BINARY FIXED (31),
1 RATE, 2 PRIMARY DECIMAL FIXED (4,2),

2 SECONDARY DECIMAL FIXED (4,2),
1 COsT, 2 PRIMARY DECIMAL FIXED (&4,2),

2 SECONDARY DECIMAL FIXED (4,2),
C BINARY FIXED (15),
D BINARY FIXED (15);

4y

Examples of element expressions are:
C ¥ D
A(3,2) + B(4,8)
RATE. PRIMARY - COST.PRIMARY
A(4,4) * C
RATE.SECONDARY / 4
A(4,6) * COST.SECONDARY
All of these expressions are element
expressions because each operand 1is an
element variable or constant (even though
some may be elements of arrays or elementa-
ry names of structures); hence, each
expression represents an element value.
Examples of array expressions are:
A + B
A ¥ C-D
B/ 10B
All of these expressions are array expres-
sions because at least one operand of each
is an array variable; hence, each expres-
sion represents an array value. Note that
the third example contains the binary
fixed-point constant 10B.
Examples of structure expressions are:
RATE * COST
RATE / 2
Both of these expressions are structure
expressions because at least one operand of

each is a structure variable; hence, each
expression represents a structure value.

USE_OF EXPRESSIONS

Expressions that are single constants or
single variables may appear freely through-
out a program. However, the syntax of many

PL/I statements allows the appearance of
operational expressions, so long as evalua-
tion of the expression yields a wvalid
value.

In syntactic descriptions used in this
publication, the ungqualified term

"expression" refers to an element expres-
sion, an array expression, or a structure
expression. For cases in which the kind of
expression is restricted, the type of res-
triction is noted; for example, the term
"element-expression™ in a syntactic des-
cription indicates that neither an array
expression nor a structure expression is
valid.

Note: Although operational expressions can
appear in a number of different PL/I state-
ments, their most common occurrences are in
assignment statements of the form:

The assignment statement has no PL/I key-
word. The assignment symbol (=) indicates
that the value of the expression on the
right (B + C) 1is to be assigned to the
variable on the left (A). For purposes of
illustration in this chapter, some examples
of expressions are shown in assignment
statements. -

DATA CONVERSION IN OPERATIONAL EXPRESSIONS

An operational expression consists of
one or more single operations. A single
operation is either a prefix operation (an
operator preceding a single operand) or an
infix operation (an operator between two
operands) . The two operands of any infix
operation, when the operation is performed,
usually must be of the same data type, as
specified by the attributes of a variable
or the notation used in writing a constant.

The operands of an operation in a PL/I
expression are automatically converted, if
necessary, to a common representation
before the operation is performed. General
rules for conversion of different data
types are discussed in the following para-
graphs and in a later section of this
chapter, "Concepts of Data Conversion."
Detailed rules for specific cases, includ-
ing rules for computing the precision or
length of a converted item, can be found in
Part II, Section F, "Problem Data Conver-
sion."

Data
problem data.
with program control data is
between offset and pointer types.

conversion 1is mainly confined to
The only conversion possible
conversion

PROBLEM DATA CONVERSION

Data conversion can be applied to all
types of problem data, as listed below.

Bit-String to Character-Strinag

The bit 1 becomes the character 1; the
bit 0 becomes the character 0.

Character-String to Bit-String

The character string should contain the
characters 1 and 0 only, in which case the
character 1 becomes the bit 1, and the
character 0 becomes the bit 0. The CONVER-
SION condition is raised by an attempt to
convert any character other than 1 or 0 to
a bit.

Character-String to Arithmetic

The character string must be in the form
of a signed or unsigned arithmetic constant
(or an expression representation of a COM-
PLEX data item). The constant may be
surrounded by blanks, but blanks must not
be imbedded in a number. Any character
other than those allowed in arithmetic data
will raise the CONVERSION condition if
conversion is attempted.

Note: 1In the conversion, for an infix
operation, of a character string that rep-
resents a fixed-point constant -- either
decimal or binary -- any fractional portion
will be lost if it is converted to fixed-
point. For the F Compiler, integer digits
will be truncated if the character string
contains more than 5 decimal integer digits
or 15 binary digits. If the conversion is
to floating-point, it will retain its
fractional value. Rules for the precision
of such conversion are listed in Part II,
Section F, "Problem Data Conversion."

Arithmetic to Character-String

The value of an internal coded arithmet-
ic operand is converted to its character
representation. The converted field is a

Chapter #4: Expressions 45

character string in the form of a wvalid
arithmetic constant. The length of the
character string is dependent upon the

precision of the arithmetic data item.

Bit-String to Arithmetic

A bit string 1is interpreted as an
unsigned binary integer and is converted to
fixed-point binary of positive value. The
base and scale are further converted, if
necessary.

Arithmetic to Bit-String

absolute value is converted, if
to a real fixed-point binary
integer. Ignoring the plus sign, the inte-
ger 1is then interpreted as a bit string.
The length of the bit string is dependent
upon - the precision of the original uncon-
verted arithmetic data item.

The
necessary,

Arithmetic Mode Conversion

If a complex data item is converted to a
real data item, the result is the real part
of the complex item.

item is converted to a
item by adding an imaginary

A real data
complex data
part of zero.

Arithmetic Base and Scale Conversion

The precision of the result of an arith-
metic base or scale conversion is dependent
upon the precision of the original arith-

metic data item. The rules are listed in
Part II, Section F, "Problem Data Conver-
sion."

LOCATOR DATA CONVERSION

Only offset to pointer conversion occurs
as a result of an operational expression
(locator variables are restricted to = and
1= comparison operations), but either of
the following types of conversion can

46

result from assignment. (See also Chapter
14, "Based Storage and List Processing.")

Offset to Pointer

An offset value is converted to pointer
by combining the offset wvalue with the
pointer value relating to the start of the
area named in the OFFSET attribute.

Pointer to Offset

A pointer value is converted to offset
by effectively deducting the pointer value
for the start of the area from the pointer
value to be converted. This conversion is
limited to pointer values that relate to
addresses within the area named in the
OFFSET attribute.

CONVERSION_ Y ASSIGNMENT

In addition to conversion performed as
the result of an operation in the evalua-
tion of an expression, conversion will also
occur when a data item -- or the result of
an expression evaluation -- is assigned to
a variable whose attributes differ from the
attributes of the item assigned. The rules
for such conversion are generally the same
as those discussed above and in Part II,
Section F, "Problem Data Conversion."

EXPRESSION OPERATIONS

An operational expression can specify
one oOr more single operations. The class
of operation is dependent upon the class of

operator specified for the operation.
There are four classes of
operations -- arithmetic, bit-string, com-

parison, and concatenation.

ARITHMETIC OPERATIONS

An arithmetic operation is one. that is
specified by combining operands with one of
the following operators:

+ - *x / *x%

The plus sign and the minus sign can appear
either as prefix operators (associated with
and preceding a single operand, such as +A

or -A) or as infix operators (associated
with and between two operands, such as A+B
or A-B). All other arithmetic operators

can appear only as infix operators.

An expression of greater complexity can
be composed of a set of such arithmetic
operations. Note that prefix operators can
precede and be associated with any of the
operands of an infix operation. For exam-
ple, in the expression A*-B, the minus sign
preceding the variable B indicates that the
value of A 1is to be multiplied by the
negative value of B.

More than one prefix operator can pre-
cede and be associated with a single varia-
ble. More than one positive prefix opera-
tor will have no cumulative effect, but two
consecutive negative prefix operators will
have the same effect as a single positive
prefix operator. For example:

~A The single minus sign has the effect
of reversing the sign of the value
that A represents.

~--A One minus sign reverses the sign of

the wvalue that A represents. The

second minus sign again reverses the

sign of the value, restoring it to

-the original arithmetic value rep-
resented by A.

---A Three minus signs reverse the sign of

the value three times, giving the
same result as a single minus sign.

Data Conversion in Arithmetic Operations

The two operands of an arithmetic opera-
tion may differ in type, base, mode, preci-

sion, and scale. When they differ, conver-
sion takes place according to rules 1listed
below. Certain other rules —-- as stated
below —-- may apply in cases of exponentia-
tion.

TYPE: Character-string operands, numeric

character field operands (digits recorded
in character form), and bit-string operands

are converted to internal coded arithmetic
type. The result of an arithmetic opera-
tion is always in coded arithmetic form.

Note that type conversion is the only
conversion that can take place in an arith-
metic prefix operation.

BASE: If +the bases of the two operands
differ, the decimal operand is converted to
binary.

MODE: If the modes of the +two operands
differ, the real operand is converted to
complex mode (by acquiring an imaginary
part of zero with the same base, scale, and
precision as the real part). The exception
to this rule is in the case of exponentia-
tion when the second operand (the exponent
of the operation) is fixed-point real with
a scale factor of zero. 1In such a case, no
conversion is necessary.
PRECISION: If only precisions differ, no
type conversion is necessary.

SCALE: If the scales of the two operands
differ, the fixed-point operand is convert-
ed to floating-point scale. The exception
to this rule is in the case of exponentia-
tion when the first operand is of floating-
point scale and the second operand (the
exponent of the operation) is fixed-point
with a scale factor of zero, that is, a
fixed-point integer constant or a variable
that has been declared with precision
(p,0). In such a case, no conversion is
necessary, but the result will be floating-
point.

If both operands of an exponentiation
operation are fixed-point, conversions may
occur, as follows:

1. Both operands are converted to
floating-point if the exponent has a
‘precision other than (p,0).

2. The first operand is converted to
floating-point unless the exponent is
an unsigned fixed-point integer con-
stant.

3. The first operand is converted to

floating-point if precisions indicate
that the result of the fixed-point
exponentiation would exceed the maxi-
mum number of digits allowed for the
implementation (for System/360, 15
decimal digits or 31 binary digits).
Further details and examples of con-
version in exponentiation are included
in the section "Concepts of Data
Conversion" in this chapter.

Results of Arithmetic Operations

The "result" of an arithmetic operation,
as used in the following text, may refer to
an intermediate result if the operation is
only one of several operations specified in
a single operational expression. Any
result may require further conversion if it
is an intermediate result that is used as
an operand of a subsequent operation or if
it is assigned to a variable.

Chapter 4: Expressions 47

After required conversions have taken
place, the arithmetic operation is per-
formed. If maximum precision is exceeded
and truncation is necessary, the truncation
is performed on low-order fractional
digits, regardless of base or scale of the
operands. In some cases involving fixed-
point data, however, high-order digits may
sometimes be lost when scale factors are
such that point alignment does not allow
for the declared number of integer digits.

The base, scale, mode, and precision of
the result depend upon the operands and the
operator involved.

For prefix operations, the result has
the same base, scale, mode, and precision
as the converted operand. Note that the

result of -A, where A is a
arithmetic result, since
converted to coded arithmetic

the operation can be performed.

string, 1is an
A must first be
form before

For infix operations, the result depends

upon the scale of the operands in the
following ways:
FLOATING-POINT: If the converted operands

of an infix operation are of floating-point
scale, the result is of floating-point
scale, and the base and mode of the result
are the common base and mode of the
operands. The precision of the result is
the greater of the precisions of the two
operands.

FIXED-POINT: If the converted operands of
an infix operation are of fixed-point
scale, the result is of fixed-point scale,
and the '‘base and mode of the result are the
common base and mode of the operands. The
precision of a fixed-point result depends
upon operands, according to the rules list-
ed below.

In the formulas for computing precision,

the symbols used are as follows:

P represents the total number of
digits of the result

q represents the scale factor of
the result
Pa represents the total number of

digits of the first operand

da represents the scale factor of

the first operand

Pa represents the total number of
digits of the second operand

da represents the scale factor of

the second operand

u8

ADDITION AND SUBTRACTION: The total number
of digits in the result is equal to 1 plus
the number of integer digits of the operand
having the greater number of integer digits
plus the number of fractional digits of the
operand having the greater number of frac-
tional digits. The total number of posi-
tions cannot exceed'the maximum number of
digits allowed (15 decimal digits, 31
binary digits). The scale factor of the
result is equal to the larger scale factor
of the two operands.

Formulas:

]

1 + maximum (p;-di, P2-qz)
+ maximum (gqy, gz)

p

q = maximum (g., g2)
Example:

12354.2385 + 222.11111
A B C D

The total number of digits in the result
would be equal to 1 plus the number of
digits in A plus the number of digits in D.
The scale factor of the result would be
equal to the number of digits in D. Preci-
sion of the result would be (11,5).

MULTIPLICATION: The total number of digits
in the result 1is equal +to one plus the
number of digits in operand one plus the
number of digits in operand two. The total
number of digits cannot exceed the maximum
number of digits allowed for the implemen-
tation (15 decimal, 31 binary). The scale
factor of the result is +the sum of the
scale factors of the two operands.

Formulas:
P=PpP1tpz+ 1
q = da * d2
Example:

345.432 * 22.45

A B C D
The total number of digits in the result
would be equal to 1 plus the sum of the
number of digits in A, B, C, and D. The

scale factor of the result would be the sum
of the number of digits in B and D.
Precision of the result would be (11,5).

DIVISION: The total number of digits in
the quotient 1is equal +to the maximum
allowed by the implementation (15 decimal,
31 binary). The scale factor of the quo-
tient is dependent upon the number of
integer digits of the dividend (A in the
example below), and the number of fraction-
al digits of the divisor (D in the example

below). The scale factor is equal to the
total number of digits of the result minus
the sum of A and D.

Formulas:

p = 15 decimal, 31 binary

q = 15 (or 31)-((pyi-qi) + gz)
Example:

432.432 7 2
A B C D

The total number of digits in the quotient
would be 15 (the maximum number allowed).
The scale factor would be 15 minus the sum
of 3 (A, the number of integer digits in
the dividend) and zero (D, the number of
fractional digits in the divisor). Preci-
sion of the quotient would be (15,12).

Note +that any change in the number of
integer digits in the dividend or any
change in the number of fractional digits
in the divisor will change the precision of
the quotient, even if all additional digits
are zeros.

Examples:
00u432.432 /7 2
432.432 7/ 2.0000

Precision of the quotient of +the first
example would be (15,10); scale factor is
equal to 15-(5+0). Precision of the quo-
tient of the second example would be
(15,8); scale factor is equal to 15-(3+4),

Caution: In the use of fixed-point divi-
sion operations, care should be taken that
declared precision of variables and appar-
ent precision of constants will not give a
result with a scale factor that can force
the result of subsequent operations to
exceed the maximum number of digits allowed
by the implementation.

EXPONENTIATION: If the second operand (the
exponent) is an unsigned nonzero real
fixed-point constant of precision (p,0),

the total number of positions in the result
is equal to one less than the product of a
number that is one greater than the number
of digits in the first operand multiplied
by the value of the second operand (the
exponent) . The scale factor of the result
is equal to the product of the scale factor
of the first operand multiplied by the
value of the second operand (the exponent).

Note: Some special cases of exponentiation
are defined as follows:

1. Real mode, x**y
a. If x=0 and y>0, the result is 0.

b. If x=0 and y<0, the ERROR condi-
tion is raised.

c. If x#0 and y=0, the result is 1.

d. If x<0 and y is not fixed-point
with precision (p,0), +the ERROR
condition is raised.

2. Complex mode, x**y

a. If x=0 and y has its real part >0
and its imaginary part =0, the
result is 0.

b. If x=0 and the real part of y <0
or the imaginary part of y =0, the
ERROR condition is raised.

(As pointed out under "Data Conversion in
Arithmetic Operations," if the exponent is
not an unsigned real fixed-point integer
constant, or if the total number of digits
of the result would exceed 15 decimal
digits or 31 binary digits, the first
operand is converted to floating-point
scale, and the rules for floating-point
exponentiation apply.)

Formulas:

P ((py+1)* (value-of-exponent))-1

q = g, * (value-of-exponent)
Example:
32 ** 5

The total number of digits in the result
would be 14. This is arrived at by multi-
plying a number equal +to one plus the
number of digits in the first operand (1+2)
by the value of the exponent and subtract-
ing one. The scale factor of the result
would be =zero (0 * 5, scale factor of the
first operand multiplied by the value of
the exponent).

BIT-STRING OPERATIONS

A Dbit-string operation is one that is
specified by combining operands with one of
the following operators:

1 & |

The first operator, the "not" symbol, can
be used as a prefix operator only. The
second and third operators, the "and" sym-
bol and the "or" symbol, can be used as

Chapter 4: Expressions 4o

infix operators only. (The operators have
the same function as in Boolean algebra.)

Operands of a bit-string operation are,
if necessary, converted to bit strings
before the operation is performed. If the
operands of an infix operation are of
unequal length, the shorter is extended on
the right with zeros.

The result of a bit-string operation is
a bit string equal in length to the length
of the operands (the two operands, after
conversion, always are the same length).
If either is a varying-length bit string,
the result is of varying length.

Bit-string operations are performed on a
bit-by-bit basis. The effect of the "not"
operation is bit reversal; that is, the
result of 41 is 0; the result of 10 is 1.
The result of an "and" operation is 1 only
if both corresponding bits are 1; in all
other cases, the result is 0. The result
of an "or" operation is 1 if either or both
of the corresponding bits are 1; in all
other cases, the result is 0. The follow-
ing table illustrates the result for each
bit position for each of the operators:

r T TT T T T 1
| & | B | «A| B | AsE | A|B |
b + -t + $----—1
| | Il | | | |
{1 | 1 | o o [1 | 1 |
| -t ¥ $-m-——
| | I | | | |
| 1+ p o I of 1 | o | 1 |
b $ommmmm E o omme --——-
| | I | | | |
o | 1 I 1] o | o | 1 |
e e t---——1
| | 1 |] | |
|l o | o |l 1| 1] o | o |
L L Ly L L L 4

More than one bit-string operation can
be combined in a single expression that
yields a bit-string value.

In the following examples, if the value
of operand A is '010111'B, the value of
operand B is '111111'B, and the value of
operand C is °110?B, then:

1 A yields '101000'B
1 C yields "001'B
C & B yields *110000'B
A | B yields "111111'B
C | B yields '111111"B
A | (C) yields '011111°B

1 0(:C) | (B)) yields "110111°'B

50

COMPARISON OPERATIONS

A comparison operation is one that is
specified by combining operands with one of
the following operators:

< 1< <= = 1= >= > '|>

These operators specify "less than,"™ "not
less than," "less than or equal to," "equal
to," "not equal to," "greater than or equal
to," "greater than," and “not greater
than."

There are three types of comparisons:

1. Algebraic, which involves the compari-
son of signed arithmetic values in
internal coded arithmetic form. If
operands differ in base, scale, preci-
sion, or mode, they are converted
according to the rules for arithmetic

operations. Numeric character data is
converted to coded arithmetic before
comparison.

2. Character, which involves 1left-to-
right, character-by-character compari-
sons of characters according to the
collating sequence.

3. Bit, which involves left-to-right,
bit-by-bit comparison of binary
digits.

If the operands of a comparison are not
immediately compatible (that is, if their
data types are appropriate to different
types of comparison), the operand of the
lower comparison type is converted to con-
form to the comparison type of the operand
of the higher type. The priority of com-
parison types is (1) algebraic (highest),
(2) character string, (3) bit string.
Thus, for example, if a bit string were to
be compared with a fixed decimal value, the
bit string would be converted to arithmetic
(i.e., fixed binary) for algebraic compari-
son with the decimal value (which would
also be converted to fixed binary for the
comparison).

If operands of a character-string com-
parison, after conversion, are of different
lengths, the shorter operand is extended on
the right with blanks. If operands cf a
bit-string comparison are of different
lengths, the shorter is extended on the
right with zeros.

The result of a comparison operation
always is a bit string of length one; the
value is '1'B if the relationship is true,
or '"0'B if the relationship-is not true.

The most common occurrences of compari-
son operations are in the IF statement, of
the following format:

IFA =B
THEN action-if-true
ELSE action-if-false

The evaluation of the expression A = B
yields either '1'B or "0'B. Depending upon
the wvalue, either the THEN portion or the
ELSE portion of the IF statement is execut-
ed.

Comparison operations need not be limit-
ed to IF statements, however. The follow-
ing assignment statement could be valid:

X = A < B;

In this example, the value '1'B would be
assigned to X if A is less than B; other-
wise, the value '0?'B would be assigned. In
the same way, the following assignment
statement could be valid:

X = A= B;

The first symbol (=) 1is the assignment
symbol; the second (=) is the comparison
operator. If A is equal to B, the value of
X will be *'1'B; if A is not equal to B, the
value of X will be '0'B.

Oonly the comparison operations of
"equal®™ and "not -equal" are valid for
comparisons of complex operands, or compar-
isons of locator operands. Comparison
operations with program control data other
than locator data are not allowed.

CONCATENATION OPERATIONS

A concatenation operation is one that is
specified by combining operands with the
concatenation symbol:

It signifies that the operands are to be
joined in such a way that the last charac-
ter or bit of the operand to the left will
immediately precede the first character or
bit of the operand to the right, with no
intervening bits or characters.

The concatenation operator can cause
conversion to string type since concatena-
tion can be performed only upon strings,
either character strings or bit strings.
If both operands are character strings or
if both operands are bit strings, no con-
version takes place. Otherwise both oper-
ands are converted to character strings.

| of length 32767 will be

The results of concatenation operations
are as follows:

Bit_String: A bit string whose 1length is
equal to the sum of the lengths of the two
bit-string operands.

Character String: A character string whose
length is equal to the sum of the 1lengths
of the two character-string operands. If
an operand requires conversion for the
concatenation operation, the result is
dependent upon the length of the character
string to which the operand is converted.

if A has the attributes and
of +the

For example,
value of the constant *'010111°'B, B

constant '101'B, C of the constant 'XY,Z2°',
and D of the constant 'AA/BB', then
A|l|{B yields *010111101'B
AllA] B yields '010111010111101'B

Cc}{p yields 'XY,ZAA/BB'
D||C yields 'AA/BBXY,2'
Bf{|D yields '101AA/BB'

Note that, in the 1last example, the bit
string "101'B is converted to the charadter
string '101' Dbefore the concatenation is
performed. The result 1is a character
string consisting of eight characters.

Note: If either of the
concatenation operation has the VARYING
attribute, the result will be a VARYING
string. When VARYING strings are concaten-
ated, the intermediate string created has a
length equal to the sum of the maximum
lengths. If the maximum lengths are known
at compile time and their sum exceeds
32767, then a truncated intermediate string
created and an
error message produced. If the maximum
length of either operand is not known at
compile time and their sum exceeds 32767, a
truncated intermediate string of 1length
32767 will be created but there will be no
diagnostic message.

operands of a

COMBINATIONS OF OPERATIONS

Different types of operations can be
combined within the same operational
expression. Any combination can be wused.

For example, the expression shown in the
following assignment statement is valid:

RESULT = A + B < C & D;

Each operation within the expression is

Chapter 4: Expressions 51

evaluated according to the rules for that
kind of operation, with necessary data
conversions taking place before the opera-
tion is performed.

Assume that the variables above
are declared as follows:

given

DECLARE RESULT BIT(3),
A FIXED DECIMAL(1),
B FIXED BINARY (3),
C CHARACTER(2), D BIT(4);

e The decimal value of A would be con-
verted to binary base.

e The binary addition would be performed,
adding A and B.

* The binary result would be compared
with the converted binary value of C.

» The bit-string result of the comparison
would be extended to the length of the
bit string D; and the "and" operation
would be performed.

e The result of the "and" operation, a
bit string. of 1length 4, would be
assigned to RESULT without conversion,
but with truncation on the right.

The expression in this example is des-
cribed as being evaluated
operation-by-operation, from left to right.
Such would be the case for this particular
expression. The order of evaluation,
however, depends upon the priority of the
operators appearing in the expression.

Priority of Operators

In the evaluation of expressions, prior-
ity of the operators is as follows:

** prefix+ prefix- 1 (highest)
* / |
infix+ infix- |

11 |
< 1< <= = 4= = > 4> ‘

& v

| (lowest)

If two or more operators of the highest
priority appear in the same expression, the
order of priority of those operators is
from right to left; that is, the rightmost
exponentiation or prefix operator has the
highest priority. Each succeeding exponen-
tiation or prefix operator to the left has
the next highest priority.

For all other operators, if two or more
operators of the same priority appear in

52

the same expression, the order of priority
of those operators is from left to right.

Note that the order of evaluation of the
expression in the assignment statement:

RESULT = A + B < C & D;

is the result of the priority of the
operators. It is as if various elements of
the expression were enclosed in parentheses
as follows:

(a) + (B)
(a4 + B) < (O)
(A + BL<C) & (D)

The order of evaluation (and, conse-
quently, the result) of an expression can
be changed through the use of parentheses.
The above expression, for example, might be
changed as follows:

(A + B) < (C & D)

The order of evaluation of this expres-
sion would vyield a bit string of length
one, the result of the comparison opera-
tion. In such an expression, those expres-
sions enclosed in parentheses are evaluated
first, to be reduced to a single value,
before they are considered in relation to
surrounding operators. Within the lan-
guage, however, no rules specify which of
two parenthesized expressions, such as
those in the above example, would be evalu-
ated first.

The value of A would be converted to
fixed-point binary, and the addition would
be performed, yielding a fixed-point birary
result (RESULT_1). The value of C would be
converted to a bit string (if valid for
such conversion) and the "and" operation
would be performed.

At this point, the expression would have
been reduced to:

RESULT_1 < RESULT_2

RESULT_2 would be converted to binary, and
the algebraic comparison would be per-
formed, yielding the bit-string result of
the entire expression.

The priority of operators is defined
only within operands (or sub-operands). It

does not necessarily hold true for an
entire expression. Consider the following
example:

A+ (B<C) &§ (D || E # F)

The priority of the operators specifies, in
this case, only that the exponentiation
will occur before the concatenation. It
does not specify the order of the operat.ion

in relation to the evaluation of the other operands and operator of <that operation
operand (A + (B < C)). determine the attributes of the result of
the entire expression. For instance, in

Any operational expression (except a the first example of combining operations
prefix expression) must eventually be (which contains no parentheses), the "and"

reduced to a single infix operation. The

chapter 4: Expressions 52.1

e———

operator is the operator of the final infix

operation; in this case, the result of
evaluation of the expression is a bit
string of length 4. In the second example
(because of the use of parentheses), the

operator of the final infix operation is
the comparison operator, and the evaluation
yields a bit string of length .1.

In general, unless parentheses are used
within the expression, the operator of
lowest priority determines the operands of
the final operation. For example:

A+B*k3 || C*D~E

In this case, the concatenation operator
indicates that the final operation will be:
(A + B ** 3) || (C* D~ E)

The evaluation will yield a character-

string result.

Subexpressions can be analyzed in the
same way. The two operands of the
expression can be defined as follows:

A + (B ** 3)

(C * D) - E

ARRAY EXPRESSIONS

An array expression is a single array
variable or an expression that includes at
least one array operand. Array expressions
may also include operators -- both prefix
and infix element variables and con-
stants.

-

Evaluation of an array expression yields
an array result. All operations performed
on arrays are performed on an element-by-
element basis, in row-major order.
Therefore, all arrays referred to in an
array expression must be of identical
bounds.

Although comparison operators are valid
for use with array operands, an array
operand cannot appear in the IF clause of
an IF statement. Only an element expres-
sion is wvalid in the IF clause, since the
IF statement tests a single true or false
result.

Note: Array expressions are not always
expressions of conventional matrix alagebra.

DREFIX OPERATORS AND ARRAYS

The result of the operation of a prefix
operator on an array is an array of identi-
cal bounds, each element of which is the

result of the operation having been per-
formed upon each element of the original
array. For example:

If A is the array 5 3 -9

1 -2 7

6 3 -4

then -A is the array -5 -3 9

-1 2 -7

-6 -3 4

INFIX OPERATORS AND ARRAYS

Infix operations that include an array
variable as one operand may have an element
or another array as the other operand.

Array and Element Operations

The result of an operation in which an
element and an array are connected by an
infix operator is an array with bounds
identical to the original array, each ele-
ment of which is the result of the opera-

tion performed upon the corresponding ele-
ment of the original array and the single
element. For example:
If A is the array 5 10 8
12 11 3
then A*3 is the array 15 30 24

36 33 9

The element of an array-element opera-
tion can be an element of the same array.
For example, the expression A*A(2,3) would
give the same result in the case of the
array A above, since the value of A(2,3) is
3.

Consider the following assignment state-
ment ¢

A=A * A(1,2);

Chapter #: Expressions 53

Again, using the above values for A, the
newly assigned value of A would be:

50 100 800

1200 1100 300

Note that the original value for
which is 10, is used in the evaluation for
only the first two elements of A. Since
the result of the expression is assigned to
A, changing the value of A, the new value
of A(1,2) is used for all subsequent opera-
tions. The first two elements are multi-
plied Dby 10, the original value of A(1,2);
all other elements are multiplied by 100,
the new value of A(1,2).

A(1,2),

Array and Array Opergtions

If two arrays are connected by an infix
operator, the two arrays must be of identi-
cal bounds. The result is an array with
bounds identical to those of the original
arrays; the operation is performed upon the
corresponding elements of the two original
arrays.

Note that the arrays must have identical

bounds. They must have the same number of
dimensions, and corresponding dimensions

must have identical lower bounds and ident-
ical upper bounds. For example, the bounds
of an array declared X(10,6) are not ident-
ical to the bounds of an array declared
¥(2:11,3:8) although the extents are the
same for corresponding dimensions, and the
number of elements is the same.

Examples of array infix expressions are:

1f A is the array 2 4 3
6 1 7
4 8 2
and if B is the array 1 5 7
8 3)
6 3 1
then A+B is the array 3 9 10

14 4 11

10 11 3

54

and A*B is the array 2 20 21
48 3 28

24 24 2

Array and Structure Operations

For the F Compiler, no reference can be
made to both an array and a structure in
the same expression or in the same assign-
ment statement.

Data Conversion in Array Expressions

The examples in this discussion of array
expressions have shown only single arith-
metic operations. The rules for combining
operations and for data conversion of cper-
ands are the same as those for element
operations.

STRUCTURE EXPRESSIONS

A structure expression 1is a single
structure variable or an expression that
includes at least one structure operand and
does not contain an array operand. Element
variables and constants can be operands of
a structure expression. Evaluation of a
structure expression yields a structure
result. A structure operand can be a major
structure name or a minor structure name.

Although comparison operators are valid
for use with structure operands, a struc-
ture operand cannot appear in the IF clause
of an IF statement. Only an element
expression is valid in the IF clause, since
the IF statement tests a single true or
false result.

All operations performed on structures
are performed on an element-by-element
basis. Except in a BY NAME assignment (see
below), all structure variables appearing
in a structure expression must have identi-
cal structuring.

Identical structuring means that the
structures must have the same minor struc-
turing and the same number of contained
elements and arrays and that the position-
ing of the elements and arrays within the
structure (and within the minor structures
if any) must be the same. Arrays in
corresponding positions must have identical
bounds. Names do not have to be the same.
Data types of corresponding elements do not

have to be the same, so long as valid
conversion can be performed.

PREFIX OPERATORS AND STRUCTURES

The result of the operation of a prefix
operator on a structure is a structure of
identical structuring, each element of
which is the result of the operation having
been performed upon each element of the
original structure.

Note: Since structures may contain elements
of many different data types, a prefix
operation in a structure expression would
be meaningless unless the operation can be
validly performed upon every element rep-
resented by the structure variable, which
is either a major structure name or a minor
structure name.

INFIX OPERATORS AND STRUCTURES

Infix operations that include a struc-

ture variable as one operand may have an
element or another structure as the other
operand.

Structure operands in a structure
expression need not be major structure

names. A minor structure name, at any
level, is a structure variable. Thus, if
M.N is a minor structure in +the major
structure M, the following is a structure
expression:

M.N & "1010'B

Structure and Element Operations

When an operation has one structure and
one element operand, it is the same as a
series of operations, one for each element
in the structure. Each sub-operation
involves a structure element and the single
element.

Consider the following structure:

1A
2

N
WWwwh wwww
HIGQ HOO

If X is an element variable, then A * X is
equivalent to:

* % H R X ¥
A DX

Structure and Structure Operations

When an operation has two structure
operands, it 1is the same as a series of
element operations, one for each corres-

ponding pair of elements.,

For example, if A is the structure shown
in the previous example and if M is the
following structure:

iM
2 N
30
3P
30
2 R
3 s
37T
3 U
then A |} M is equivalent to:
A.C || M.O
A.D || M.P
A.E || M.Q
A.G || M.s
A.H || M.T
A.I || M.U
Structure ssignment BY NAME

One exception to the rule that operands
of a structure expression must have the
same structuring is the case in which the
structure expression appears in an assign-
ment statement with the BY NAME option.

at the end of a
statement and is

The BY NAME appears
structure assignment

preceded by a comma. Examples are shown
below.
Consider the following structures and

assignment statements:

Chapter 4: Expressions 55

1 ONE 1 TWO 1 THREE

2 PART1 2 PART1 2 PART1
3 RED 3 BLUE 3 RED
3 ORANGE 3 GREEN 3 BLUE

2 PART2 3 RED 3 BROWN
3 YELLOW 2 PART2 2 PART2
3 BLUE 3 BROWN 3 YELLOW
3 GREEN 3 YELLOW 3 GREEN

ONE = TWO, BY NAME;
ONE.PART1 = THREE.PART1, BY NAME;
ONE = TWO + THREE, BY NAME;

The first assignment statement would be the
same as the following:

ONE.PART1.RED = TWO.PART1.RED;
ONE.PART2.YELLOW = TWO.PART2.YELLOW;

The second assignment statement would be
the same as the following:

ONE.PART1.RED = THREE.PART1.RED;

The third assignment statement would be the
same as the following:

ONE.PART1.RED = TWO.PART1.RED
+ THREE.PART1.RED;

ONE.PART2.YELLOW = TWO.PART2.YELLOW
+ THREE.PART2.YELLOW;

The BY NAME option can appear in an
assignment statement only. It indicates
that assignment of elements of a structure
is to be made only for those elements whose
names are common to both structures.
Except for the highest-level qualifier
specified in the assignment statement, all
qualifying names must be identical.

If an operational expression appears in
an assignment statement with the BY NAME
option, operation and assignment are per-
formed only upon those elements whose names
have been declared in each of the struc-
tures. In the third assignment statement
above, no operation is performed upon
ONE.PART2.GREEN and THREE. PART2.GREEN,
because GREEN does not appear as an elemen-
tary name in PART2 of TWO.

OPERANDS OF EXPRESSIONS

An operand of an expression can be a
constant, an element variable, an array
variable, or a structure variable. An
operand can also be an expression that
represents a value that is the result of a
computation, as shown in the following
assignment statement:

A = B * SQRT(C);

56

In this example, the expression SQRT(C)
represents a value that is equal to the
square root of the value of C. Such an
expression is called a function reference.

FUNCTION REFERENCE OPERANDS

A function reference consists of a name
and, wusually, a parenthesized list of one
or more variables, constants, or other
expressions. The name is the name of a
block of coding written to perform specific
computations upon the data represented by
the 1list and to substitute the computed
value in place of the function reference.

Assume, in the above example, that C has
the value 16. The function reference
SQRT(C) causes execution of the coding that
would compute the square root of 16 and
replace the function reference with the
value 4. In effect, the assignment state-
ment would become:

A =B *x U4;

The coding represented by the name in
the function reference is called a func-
tion. The function SQRT is one of the PL/I
built-in_functions. Built-in functions,
which provide a number of different opera-
tions, are a part of the PL/I language. A
complete discussion of each appears in Part
II, Section G, "Built-In Functions and
Pseudo-Variables." In addition, a program-
mer may write functions for other purposes
(as described in Chapter 10, "Subroutines
and Functions"), and the names of those
functions can be used in function referen-
ces.

The use of a function reference is not
limited to operands of operational expres-
sions. A function reference is, in itself,
an expression and can be used wherever an
expression is allowed. It cannot be used
in those cases where a variable represents
a receiving field, such as to the 1left of
an assignment symbol.

There are, however, ten built-in func-
tions that can be used as pseudo-variables.
A pseudo-variable is a built-in function
name that is used in a receiving field.
Consider the following example:

DECLARE A CHARACTER(10),
B CHARACTER(30);

SUBSTR(A, 6,5) = SUBSTR(B, 20,5);

In this assignment statement, the SUBSTR
built~-in function name is used both in a
normal function reference and as a pseudo-
variable,

The SUBSTR built-in function extracts a
substring of specified 1length from the
named string. As a pseudo-variable, it
indicates the 1location, within a named
string, that is the receiving field.

In the above example, a substring five
characters in length, beginning with
character 20 of the string B, 1is to be
assigned to the last five characters of the
string A. That is, the last five charac-
ters of A are to be replaced by characters
20 through 24 of B. The first five charac-
ters of A remain unchanged, as do all of
the characters of B.

All ten of the built-in functions that
can be used as pseudo-variables are dis-
cussed in Part II, Section G, "Built-In
Functions and Pseudo-Variables." No
programmer-written function can be used as
a pseudo-variable.

CONCEPTS_OF_ DATA CONVERSION

Data conversion is the transformation of
the representation of a value from one form
to another. PL/I makes very few restric-
tions upon the use of the available forms
of data representation or upon the mixing
of different representations within an
expression.

Programmers who wish to make use of this

freedom must understand that mixed expres-
sions imply conversions. If conversions
take place at execution time, they will

slow down the execution, sometimes signifi-
cantly. Unless care is taken, conversions
can result in loss of precision and can
cause unexpected results. A lack of under-
standing of conversions can lead to logical
errors and inaccuracies that are sometimes
hard to trace.

This section is concerned primarily with
the concepts of conversion operations.
Specific rules for each kind of conversion
are 1listed in Part 1II, Section F, "Problem
Data Conversion." Earlier sections of this
chapter discuss circumstances under which
conversion can occur during evaluation of
expressions. This section deals with the
processes of the conversion.

The subject of conversion can be consid-
ered in two parts, first, determining the
target attributes, and, second, the conver-
sion operation with known source and target

This section deals with deter-
mining target attributes. Rules for con-
version operations are given in Part II,
Section F, "Problem Data Conversion."
Within each section, here and in Part II,
arithmetic conversion and type conversion
are considered separately.

attributes.

conversion is the
which the converted
value is assigned. 1In the case of a direct
assignment, such as A = B, in which conver-
sion must take place, the variable to the
left of the assignment symbol (in this
case, A) 1is the target. Consider the
following example, however:

The target of a
receiving field to

DECLARE A CHARACTER(8),
B FIXED DECIMAL(3,2),
C FIXED BINARY(10);

A =B + (C;
During the evaluation of the expression B+C

and during the assignment of +that result,
there are four different targets, as fol-

lows:

1. The compiler-created temporary to
which the converted binary equivalent
of B is assigned

2. The compiler-created temporary to

‘'which the binary result of the addi-
tion is assigned

3. The temporary to which +the converted
decimal fixed-point equivalent of the
binary result is assigned

final destination of the
result, to which the converted
character-string equivalent of the
decimal fixed-point representation of
the value is assigned

4. A, the

The attributes of the first target are
determined from the attributes of the
source (B), from the operator, and from the
attributes of the other operand (if one
operand of an arithmetic infix operator is
binary, the other is converted to binary

before evaluation). The attributes of the
second target are determined from the
attributes of the source (C and the con-
verted representation of B). The attri-

butes of the third target are determined in
part from the source (the second target)
and in part from the attributes of the
eventual target (A). (The only attribute
determined from the eventual target is
DECIMAL, since a binary arithmetic rep-
resentation must be converted to decimal
representation before it can be converted
to a charactexr string.) The attributes of
the fourth target (A) are known from the
DECLARE statement.

Chapter 4: Expressions 57

when an expression 1is evaluated, the
target attributes usually are partly de-
rived from the source, partly from the
operation being performed, and partly from
the attributes of a second operand. Some
assumptions may be made, and some implemen-
tation restrictions (for example, maximum
precision) and conventions exist. After an
expression is evaluated, the result may be
further converted. In this case, the tar-
get attributes usually are independent of
the source. Since the process of determin-
ing target attributes is different for
expression operands and for the results of
expression evaluation, the two cases are
dealt with separately.

A conversion always involves a source
data item and a target data item, that is,
the original representation of the value
and the converted representation of the
value. All of the attributes of both the
source data item and the target data item
are known, or assumed, at compile time.

It 1is possible for a conversion to
involve intermediate results whose attri-
butes may depend wupon the source value.
For example, conversion from character
string to arithmetic may require an inter-
mediate conversion and, thus, an inter-
mediate result, before final conversion is
completed. The final target attributes in
such cases, however, are always determined
from the source data item and are indepen-
dent of the values of the variables.

It should be realized that constants
also have attributes; the constant 1.0 is
different from the constants 1, '1'B, ‘'1°',
1B, or 1EO0. Constants may be converted at
compile time or at execution time, but in
either case, the rules are the same.

TARGET ATTRIBUTES FOR TYPE CONVERSION

When an expression operand requires type
conversion, some target attributes must be
assumed or deduced from the source. Some
of these assumptions can be made based on
the operator, as shown in Table 4-1,

58

Table 4-1. Target Types for Expression
Operands

e it —==—=1
| Operator | Target Type |
T B - 1
| + = * / **| coded arithmetic |
| | I
| & | 4 | bit string |
] | |
| 1 | character string (unless|
| | both operands are Dbit|
i | strings) {
> <	arithmetic, unless both]
>= <=	operands are strings; thenj
= 1=	character string, wunless]
1> 1<	both operands are Dbit]
{	strings; then bit string
1 —_— J	
BIT TO CHARACTER AND CHARACTER TO BIT

In the conversion of bit +to character,

and character +to bit, the length of the
target (in bits or characters) is the same
as the 1length of the source (in bits cr
characters).

ARITHMETIC TO STRING

In the conversion of arithmetic to bit-
string or character-string data, the length
of the target is deduced from the precision
of the source. Algorithms for determining
the length of the target are given below
under the headings "Lengths of Bit-String
Targets"™ and "Lengths of Character-String
Targets." In the case of expression
operands, there is no truncation of the
resulting character-string value, since the
length of the target is the length of the
intermediate string.

STRING TO ARITHMETIC

In the conversion
character-string data to
string must consist

of Dbit-string or
arithmetic, the
of digits that rep-

resent a valid arithmetic constant. The
compiler has no way of determining the
attributes of the constant represented by

the string; therefore, attributes must be

assumed for the target.

In the case of character-string to
arithmetic conversion, the attributes
assumed for the target are those attributes
that would have been assumed if a fixed-
point decimal integer of precision (15,0)
had appeared in place of the string.
Similarly, for a bit-string source that is
to be converted to arithmetic type, the
attributes of the target are the attributes
that would have been given to the target if
a fixed-point binary integer of precision
(31,0) had appeared in place of the bit
string.

Target Attributes for Arithmetic Expression

Operands

Except for exponentiation, the target
attributes for arithmetic conversion are
assumed as follows:

BINARY unless both operands are DECI-
MAL, in which case no base
conversion is performed

FLOAT unless both operands are FIXED,
in which case no scale conver-
sion is performed

COMPLEX unless both operands are REAL,
in which case no mode conver-
sion is performed

unless base Or scale conversion
is performed (see Table u#-2,
"Precision for Arithmetic
Conversion")

precision
of source

In the case of exponentiation, the base
and precision are determined as for other
operations. The target scale of the first
operand 1is always FLOAT unless the first
operand source 1is FIXED and the second
operand (the exponent) is an unsigned
fixed-point integer constant with a value
small enough that the result of the
exponentiation will not exceed the maximum
number of digits allowed (for System/360
implementations, 31, if binary, or 15, if
decimal). The target scale of the second
operand is FLOAT unless it is an integer
constant or a variable of precision (p,0).
If either of the operands is COMPLEX, the
target mode 1is COMPLEX for both operands
unless the second operand is a REAL integer
constant or variable of precision (p,0).
In either case, the target mode for the
second operand is REAL (that is, its mode
is not converted).

In the examples of exponentiation shown
below, the variables are those named in the
following DECLARE statement:

DECLARE A FIXED DECIMAL(Z)’
B FIXED DECIMAL(3,2),
C FLOAT DECIMAL(W),
D FLOAT DECIMAL(7),
E FIXED DECIMAL(8),
F FIXED DECIMAL(15),
G

COMPLEX FLOAT DECIMAL(6);

Note: If only one digit appears in the
precision attribute specification for a
fixed-point variable, the scale factor is,
by default, zero; the precision is (p,0).

D *% C No conversion necessary. Both
operands are floating-point.

A ** 4 No conversion necessary. Sec-

ond operand is unsigned fixed-

point integer constant, and the

result will not exceed 15

digits.

No conversion necessary. First
operand is floating-point; sec-
ond is fixed-point with preci-
sion (p,0).

No conversion necessary. First
operand is floating-point; sec-
ond 1is fixed-point with preci-
sion (p,0).

E *% A First operand is converted to
floating-point because second
operand is not unsigned fixed-
point integer constant. Second
operand is not converted
because it has precision (p,0).
D ** B Second operand is converted to
floating-point because it does
not have precision (p,0). Even
if B had an integer value with
a fractional part of zero, it
still would be converted, since
its declared precision is
(3,2).

First operand is complex. Sec—
ond operand is converted to
floating-point complex because
its precision is not (p,0).

Note: All of these examples would be the
same if they had been declared binary
rather than decimal, except that the maxi-
mum number of binary digits allowed is 31. .

Precision and Length of Expression Operand

Targets

The following rules apply to all calcu-
lations of precision and length:

Chapter 4: Expressions 59

Table 4-2.

Precision and 1length specifications
are always integers. If any of the
calculations given below produces a
nonintegral value, the next largest
integer is +taken as the resulting
precision, In the case of scale fac-
tors, which can be negative, it is the
absolute (positive) value that is used
to take the next largest integer; the
result, of course, will be negative if
the scurce scale factor is negative.

The following illustrates how preci-
sion would be computed in a conversion
from DECIMAL FIXED (13,-4) +to BINARY
FIXED:

1 + 13 * 3,32 = 44,16 resulting number
of digits (p) is
u5

-4 * 3.32 = -13.28 resulting scale
factor (q) is
-14

Thus, the resulting precision is
(45,-14); however, due to rule 2
below, it becomes (31,-14).

There is an implementation-defined
maximum for the precision of each
arithmetic representation. If any
calculation yields a value greater
than the implementation-defined limit,
then the implementation limit is used
instead. In System/360 implementa-
tions, these limits are:

FIXED DECIMAL -- 15 digits
FIXED EINARY -- 31 digits
FLOAT DECIMAL -- 16 digits

FLOAT BINARY -- 53 digits

Because of the particular values for
these implementations, these 1limits
will usually come into effect only for
conversions from fixed-point decimal
to fixed-point binary.

The scale factor for both binary and
decimal base has the range +127 to
-128 1in System/360 implementations.
This 1imit will rarely concern the
programmer.

Precision for Arithmetic Conversions

Table 4-2 gives the target precision for
an operand if base or scale conversion
occurs.

The target precision of one operand of
an expression is not affected by the preci-
sion of the other operand. This can have a
significant effect on accuracy, particular-
ly if one of the operands is a constant.

Precision for Arithmetic Conversion

iSou;ge Attributes
1D§E;MAL FIXED(p,q)
‘DECIMAL FIXED(p,q)
%DECIMAL FIXED(p,q)
%DECIMAL FLOAT (p)
‘BINARY FIXED(p,q)
iBINARY FIXED(p,q)
:BINARY FIXED(p,q)

|
| BINARY FLOAT (p)

Target Attributes

Tarxget Precision

DECIMAL FLOAT

BINARY FIXED

BINARY FLOAT

BINARY FLOAT

BINARY FLOAT

DECIMAL FIXED

DECIMAL FLOAT

DECIMAL FLOAT

S Spu———

p

1+p*3.32, q#*3.32
p*3.32

p*3.32

p

1+p/3.32, g/3.32
p/3.32

p/3.32

e e e e e e e e e e e e —

|Note: Conversion from floating-point to fixed-point scale will occur only when a target
|precision is known, as in assignment to a fixed-point variable. If the target
|precision is incapable of holding the floating-point value, truncation on both left
|and right will occur, and the SIZE condition will be raised (if enabled) if significant

jdigits are lost.
1

b o s e e s e e T e S S Ao, s e, S . S—— Tt S s, ot e)

60

Table 4-3. Lengths of Character-String Targets

r T -T-—- ittt =1
| Source Attributes { Conditions | Target Length |
[N e e e e e e e e e e e e e e e e o e e + ___________ {
1 L]

DECIMAL FIXED(p,q)	If p>=g>=0	p+3
	If op	p+3+k
}	or] (where k = number of decimal	
	q negative	digits to express scale i
		factor)
	I	
DECIMAL FLOAT (p)		p+6
]
Numeric character field		Same as source
L i 1 e 4
Lengths of Character-String Targets Table 4-4., Lengths of Bit-String Targets

The length of a character-string target
is related to the precision of the decimal
source, as shown in Table 4-3.

Note: If a binary data item is converted
to character, it 1is first converted to
decimal. The precision of this intermedi-
ate conversion result controls the length
of the final character-string target.
Algorithms for computing the intermediate
precision of a decimal item converted from
binary are shown in Table 4-2.

For complex coded arithmetic sources,
the target length is one greater than twice
the 1length of the target for the corres-
ponding real source. For complex numeric
character data, the target length is twice
the length of the real part of the source.

Lengths of Bit-String Targets

When converting arithmetic operands to
bit string, the arithmetic source is con-
verted to a positive binary integer. The
precision of the binary integer target is
the same as the length of the bit-string
target as given in Table u4-4,

Note that p-gq represents the number of
binary or decimal digits to the left of the
point. This could be zero or negative, in
which case no conversion is performed and,
for the F Compiler, the final result is a
null string.

r T TETETTE T T 1
| Source Attributes | Target Length |
L 4 4
r t 9
|DECIMAL FIXED(p,q) | (p-q)#*3.32 |
|] |
|DECIMAL FLOAT (p) | p*3.32 |
| I |
|{BINARY FIXED(p,q) ! p-q |
i | |
| BINARY FLOAT(p) | p |
L _ ——_— 1 -1
conversion of the Value of an Expression
The result of a completely evaluated

expression may require further conversion.
The circumstances in which this can occur,
and the target attributes for each situa-
tion, are given in Table 4-5. In addition,
certain built-in functions cause conver-
sion. Any subscript reference is converted
to binary integer.

CONVERSION_ OPERATIONS

As in the case of determining target
attributes, conversion operations may also
be considered in two stages: type conver-
sion and arithmetic conversion. For exam-
ple, when a character-string source is
converted to a coded arithmetic target, the
string is first converted to an arithmetic
form whose attributes are determined by the
constant expressed by the string. This
intermediate result is then converted (if
necessary) to the attributes of the target.
These two stages may not be separated in an
actual implementation, but for the purpose
of description it is convenient to consider
them separately.

Chapter 4: Expressions 61

Table 4-5.

Circumstances that Can Cause Conversion

r |}
| The following may cause conversion to any target attributes: {
] |
| cause Target Attributes |
| Assignment Attributes of variable to the left of the assignment symbcl |
I ' |
| Argument to procedure Attributes of corresponding parameter declared in ENTRY |
| with ENTRY declared declaration |
] |
| RETURN(expression) Attributes specified in PROCEDURE or ENTRY statement |
1 4
L} 1
] The following may cause conversion to character-string: |
| |
| Statément Option String Length |
| OPEN: TITLE Source, 8-character maximum |
| : |
| DISPLAY Source, 100~-character maximum |
| |
| RECORD I/0 KEYFROM Key length specified in DD statement |
| |
| KEY Key length specified in DD statement (or eight |
| characters in the case of the regional number) |
¢ - -- ——m——
t :
| The following may cause conversion to a binary integer whose precision, as defined|
| for the F Compiler, is given below: |
] |
| Statement Option/Attribute Precision |
| DECLARE/ALLOCATE length 15 [
] |
| bounds 15 |
| |
] repetition factor 15 |
i |
| DELAY milliseconds 31 |
| ' |
| FORMAT iteration factor 15 |
| (and format items \ 15 |
| in GET and PUT) d 7 |
| s 7 |
| |
| OPEN. LINESIZE 15 |
| PAGESIZE 15 i
| I
| I/0 SKIP 15 |
| |
| LINE 15 |
| |
| IGNORE 15 |
L —— ——— 3
There are six cases of type conversion: version, see Part II, Section F, "Problem

Arithmetic to character-string
Character-string to arithmetic
Ar;thmetic to bit-string
Bit-string to arithmetic
Character-string to bit-string
Bit-string to character-string

For :specific rules for each of the cases
of type conversion and for arithmetic con-

62

Data Conversion."

THE CONVERSION, SIZE, FIXEDOVERFLOW, AND
OVERFLOW CONDITIONS

When data is converted from one rep-
resentation to another, the CONVERSION or
SIZE conditions may be raised. The OVER-
FLOW and FIXEDOVERFLOW conditions are
raised only when the result of an arithmet-
ic operation exceeds the implementation-
defined limit. When an operand is convert-

ed from one representation to another, if
the value of the result will not fit in the
declared precision for the new representa-
tion, the SIZE condition is raised.

The SIZE condition is raised when signi-
ficant digits are lost from the left-hand
side of an arithmetic wvalue. This can
occur- during conversion within an expres-
sion, or upon assigning the result of an
expression. It is not raised in conversion
to character string or bit string even if
the value is truncated. It 1is raised on
conversion to E or F format in edit-
directed transmission if +the field width
specified will not hold the value of the
list item. The SIZE condition is normally
disabled, so an interrupt will occur only
if the condition is raised within the scope
of a SIZE prefix.

The CONVERSION condition is raised when
the source field contains a character that
is invalid for - the conversion being

performed. For example, CONVERSION would
be raised if a <character string being
converted to arithmetic contains any char-
acter other than those allowed in arithmet-
ic constants, or if a character string that
is being converted to bit contains any
character other than 0 and 1. Each invalid
character raises the CONVERSION condition
once, S0 a single conversion operation
causes several interrupts if more than one
invalid character is encountered. The CON-
VERSION condition is normally enabled, so
when the condition is raised, an interrupt
will occur. It can be disabled by a
NOCONVERSION prefix, in which case an
interrupt will not occur when the condition
is raised.

Note that the OVERFLOW and FIXEDOVERFLOW
conditions are raised when an implementa-
tion maximum is exceeded, while the SIZE
condition is raised when a declared preci-
sion is exceeded.

Chapter 4: Expressions 63

CHAPTER 5: STATEMENT CLASSIFICATION

classifies statements
according to their functions. Statements
in each functional class are listed, the
purpose of each statement is described, and
examples of their use are shown.

This chapter

A detailed description of each statement
is not included in this chapter but may be
found . in Part II, Section J, "Statements."

CLASSHS OF STATEMENTS

Statements can be grouped into the fol-
lowing six classes:

Descriptive

Input/Output

Data Movement and Computational
Control

Exception Control

Program Structure

The names of the classes have been chosen
for descriptive purposes only; they have no

fundamental significance in the language.
Some statements are included in more than
one class, since they can have more than
one function.
DESCRIPTIVE STATEMENTS

When a PL/I program is executed, it may
manipulate many different kinds of data.
Each data item, except a constant, is
referred to in the program by a name. The

PL/I language requires that the properties
(or attributes) of data items referred to
must be known at the time the program is
compiled. There are a few exceptions to
this <rule; the bounds of the dimensions of
arrays, the length of strings, and some
file attributes may be determined during
execution of the program.

The DECLARE Statement

The DECLARE statement is
means | of specifying the

the principal
attributes of a

64

name. A name used in a program need not
always appear in a DECLARE statement; its
attributes often can be determined by con-
text. If the attributes are not specifi-
cally declared and if they cannot be deter-
mined by context, then default rules are
applied. The combination of default rules
and context determination can make it unne-
cessary, in some cases, to use a DECLARE
statement.

DECLARE statements are always needed for
fixed-point decimal and floating-point
binary variables, character- and bit-string

variables, 1label variables, arrays and
structures, static, controlled, and based
variables, offset variables, and all data

An ENTRY dec-
DECLARE state-

with the PICTURE attribute.
laration must be made in a
ment for the name of any function that
returns a value with attributes different
from the default attributes that would be
assumed for the name -- FIXED BINARY(1l5) if
the first letter of the name is I through
N; otherwise, DECIMAL FLOAT (6) . (The
default precisions are those defined for
System/360 implementations.) An ENTRY dec-
laration also must be made if arguments and
parameters do not match exactly, as may be
the case when constants are passed as
arguments.

DECLARE statements may also be an impor-

tant part of the documentation of a pro-
gram; consequently, programmers may make
liberal wuse of declarations, even when
default attributes apply or when a contex-
tual declaration is possible. Because
there are no restrictions on the number of
DECLARE statements, different DECLARE

statements can be used for different groups

of names. This can make modification e=asi-
er and the interpretation of diagnostics
clearer.

Other Descriptive Statements

The OPEN statement allows certain attri-
butes to be specified for a file name and
may, therefore, also be classified as a
descriptive statement. The FORMAT state-
ment may be thought of as describing the
layout of data on an external medium, such
as on a page or an input card.

INPUT/OUTPUT STATEMENTS

The principal statements of the
input/output class are those that actually
cause a transfer of data between internal
storage and an external medium. Other
input/output statements, which affect such
transfers, may be considered input/output
control statements.

In the following 1list, the statements
that cause a transfer of data are grouped
into two subclasses, RECORD I/0 and STREAM
I/0:

RECORD I/0 Transfer Statements
READ
WRITE
REWRITE
LOCATE
DELETE
STREAM I/O Transfer Statements
GET
PUT
I/0 Control Statements
OPEN
CLOSE
UNLOCK

An allied
these statements,

statement, discussed with
is the DISPLAY statement.

There are two important differences
between STRFAM transmission and RECORD
transmission. In STREAM transmission, each
data item is treated individually, whereas
RECORD transmission is concerned with col-
lections of data items (records) as a
whole. In STREAM transmission, each item
may be edited and converted as it is
transmitted; in RECORD transmission, the
record on the external medium is an exact
copy of the record as it exists in internal
storage, with no editing or conversion
performed.

As a result of these differences, record
transmission is particularly applicable for
processing large files that are written in
an internal representation, such as in
binary or packed decimal. Stream transmis-
sion may be used for processing keypunched
data and for producing readable output,
where editing is required. Since files for

which stream transmission is used tend to
be smaller, the larger processing overhead
can be ignored.
RECORD_I/0O Transfer Statements

The READ statement transmits records
directly into working storage or makes
records available for processing. The

WRITE statement creates new records, trans-

ferring collections of data to the output
device. The LOCATE statement allocates
storage for a variable within an output
buffer, setting a pointer to indicate the
location in the buffer, having previously

caused any record already 1located in a
buffer for this file to be written out.

The REWRITE
records in an
statement removes
file.

statement alters existing
UPDATE file. The DELETE
records from an UPDATE

STREAM I/0 Transfer Statements

Only sequential files can be processed
with the GET and PUT statements. Record
boundaries generally are ignored; data is
considered to be a stream of individual
data items, either coming from (GET) or
going to (PUT) the external medium.

The GET and PUT statements may transmit
a list of items in one of three modes,
data~directed, 1list-directed, or edit-
directed. In data-directed transmission,
the names of the data items, as well as
their values, are recorded on the external
medium. In list-directed transmission, the
data is recorded externally as a 1list of
constants, separated by blanks or commas.
In edit-directed transmission, the data is
recorded externally as a string of
characters to be treated character by char-
acter according to a format list.

Data-directed transmission is most use-
ful for reading a relatively small number
of values and for producing self-annotated
debugging output. List-directed input is
suitable for reading in larger volumes of
data punched in free form. Edit-directed
transmission 1is wused wherever format must
be strictly controlled, for example, in
producing reports and for reading cards
punched in a fixed format.

Note: The GET and PUT statements can
be used for

also
internal data movement, by

specifying a string name in the STRING
option instead of specifying the FILE
option. Although the facility may be used

Chapter 5: Statement Classification 65

with READ and WRITE statements for moving
data to and from a buffer, it is not
actually a part of the input/output opera-
tion. GET and PUT statements with the
STRING option are discussed in the section
"Data Movement and Computational State-
ments," in this chapter.

Input/Output Control Statements

The OPEN statement associates a file
name with a data set and prepares the data
set for processing. It may also specify
additional attributes for the file.

An OPEN statement need not always be
written. Execution of any input or output
transmission statement that specifies the
name of an unopened file will result in an
automatic opening of the file before the
data transmission takes place.

used to
PRINT

The OPEN statement may be
declare attributes for a file; for a

file, the length of each printed line and
the number of lines per page can be speci-
fied only in an OPEN statement. The OPEN

statement can also be used to specify a
name (in the TITLE option) other than the
file nanme, as a link between the data set
and the file.

The CLOSE statement dissociates a data
set from a file. All files are «closed at
termination of a program, so a CLOSE state-
ment is not always regquired.

statement releases a record
that has been temporarily 1locked by the
task executing the UNLOCK statement, so
that other concurrent tasks may resume
access to the record. The UNLOCK statement
is not always required; the unlocking
operation 1is automatic when the task that
locked the record deletes or rewrites it,
or closes the file, or when the task is
terminated.

The UNLOCK

The DISPLAY Statement

The DISPLAY statement is used to write
messages on the console, usually to the
operator. It may also be used, with the
REPLY option, to allow the operator to
communicate with the program by typing in a
code or a message. The REPLY option may be
" used merely as a means of suspending pro-
gram execution until the operator acknowl-
edges the message.

66

DATA MOVEMENT AND COMPUTATIONAL STATEMENTS

Internal data movement involves the
assignment of the value of an expression to
a specified variable. The expression may

be a constant or a variable, or it may be
an expression that specifies computations
to be made.

The most commonly used statement for

internal data movement, as well as for
specifying computations, is the assignment
statement. The GET and PUT statements with
the STRING option also can be wused for
internal data movement. The PUT statement
can, in addition, specify computations to
be made.

The Assignment Statement

The assignment statement, which has no
keyword, is identified by the assignment

symbol (=). It generally takes one of two
forms:

A = B;

A =B + C;
The first form can be used purely for
internal data movement. The value of the

variable (or constant) to the right of the
assignment symbol is to be assigned to the
variable to the left. The second form
includes an operational expression whose
value is to be assigned to the variable to
the left of the assignment symbol. The
second form specifies computations to be
made, as well as data movement.

Since the attributes of the variable on
the left may differ from the attributes of
the result of the expression (or of the
variable or constant), the assignment
statement can also be used for conversion
and editing.

The variable on the left may be the name
of an array or a structure; the expression
on the right may yield an array or struc-
ture value. Thus the assignment statement
can be used to move aggregates of data, as
well as single items.

Multiple Assignment

The value of the expression in an
assignment statement can be assigned to
more than one variable in a statement of

the following form:

A, X =B + C;

Such a statement is executed in exactly the
same way as a single assignment, except
that the value of B + C is assigned to both
A and X. In general, it has the same
effect as if the following two statements
had been written:

A =B + C;
X =B + C;
Note: If multiple assignment is used for a

structure assignment BY NAME, the elementa-
ry names affected will be only those that
are common to all of the structures listed
to the left of the assignment symbol.

The STRING Option

If the STRING option appears in a GET or
PUT statement in place of a FILE option,
execution of the statement will result only
in internal data movement; neither input
nor output is involved.

Assume that NAME is a string of 30
characters and that FIRST, MIDDLE, and LAST
are string variables. cConsider the follow-
ing example:

GET STRING (NAME) EDIT
(FIRST,MIDDLE, LAST)
(A{12),A(1) ,AT));

This statement specifies that the first 12
characters of NAME are to be assigned to
FIRST, the next character to MIDDLE, and
the remaining 17 characters to LAST.

The PUT statement with the string option
specifies the reverse operation, that is,
that the values of the specified variables
are to be concatenated into a string and
assigned as the value of the string named
in the STRING option. For example:

PUT STRING (NAME) EDIT
(FIRST,MIDDLE, LAST)
(A(12) ,A(1),2(17));

This statement specifies that the values of
FIRST, MIDDLE, and LAST are to be concaten-
ated, in that order, and assigned to the
string variable NAME.

Computations to be performed can be
specified in a PUT statement by including
operational expressions in the data list.
Assume, for the following example, that the
variables A, B, and C represent arithmetic
data and BUFFER represents a character
string:

PUT STRING (BUFFER) LIST (A%*3,B+C);

This statement specifies that the character
string assigned to BUFFER is to consist of
the character representations of the value
of A multiplied by 3 and the value of the
sum of B and C.

Operational expressions in the data list
of a PUT statement are not limited to PUT
statements with the STRING option. Opera-
tional expressions can appear in PUT state-
ments that specify output to a file.

CONTROL STATEMENTS

Statements in a PL/I program, in gener-
al, are executed sequentially wunless the
flow of control is modified by the occur-
rence of an interrupt or the execution of
cne of the following control statements:

GO TO
IF

DC
CALL
RETURN
END
STOP

EXIT

The GO TO Statement

The GO TO statement is most frequently
used as an unccnditional branch. If the
destination of the GO TO is specified by a
label variable, it may then be wused as a
switch by assigning 1label constants, as
values, to the label variable.

If the label variable is subscripted,
the switch may be controlled by varying the
subscript. Since multidimensional 1label
arrays are allowed, and since 1logical
values may be used as subscripts, quite
subtle switching can be effected. It is
usually true, however, that simple control
statements are the most efficient.

The keyword of the GO TO statement may
be written either as two words separated by
a blank or as a single word, GOTO.

Chapter 5: Statement Classification 67

The IF Statement

The IF statement provides the most com-
mon conditional branch and is usually used
with a simple comparison expression follow-
ing the word IF. For example:

IFA=08B

THEN action-if-true
ELSE action-if-false

1f the comparison is true, the THEN
clause (the "action to be taken") is exe-
cuted. After execution of the THEN clause,
control branches around the ELSE clause
{(the "alternate action"), and execution
continues with the next statement. Note
that the THEN clause can contain a GO TO
statement or some other control statement
that would result in a different transfer
of control.

If the comparison is not +true, control
branches around the THEN clause, and the
ELSE clause 1is executed. control then
continues normally.

The IF statement might be as follows:

IF A =B

THEN C D;

ELSE C

E;

If A is equal to B, the value of D is
assigned to C, and control branches around
the ELSE clause. If A is not equal to B,
control branches around the THEN clause,
and the value of E is assigned to C.

Either +the THEN clause or the ELSE
clause can contain some other control
statement +that causes a fkranch, either

conditional or unconditional. If the THEN
clause contains a GO TO statement, for

example, there is no need to specify an
ELSE clause. Consider the following exam-
ple:

IF A=B

THEN GO TO LABEL_1;
next-statement

If A is equal to B, the GO TO statement of
the THEN clause causes an unconditional
branch to LABEL_ 1. If A is not equal to B,
control branches around the THEN clause to
the next statement, whether or not it is an
ELSE clause associated with the IF state-
ment:. .

68

Note: If +the THEN clause does not cause a
transfer of control and if it is not
followed by an ELSE clause, the next state-
ment will be executed whether or not the
THEN clause is executed.

The expression following the IF keyword
can be only an e€lement expression; it
cannot be an array or structure expression.
It can, however, be a 1logical expression
with more than one operator. For example:

IFA=BE&C=D
THEN GO TO R;

The same kind of test could be made with
nested IF statements. The following three
examples are equivalent:

IFA=B & C=0D
THEN GO TO R;
B =B+ 1;

IF A =B
THEN IF C = D
THEN GO TO R;
B=B+ 1;

IF A 4= B THEN GO TO S;
IF C 4= D THEN GO TO S;
GO TO R;

S: B=B + 1;

The DO_Statement

The most common use of the DO statement
is to specify that a group of statements is
to be executed a stated number of times
while a control variable is incremented
each time through the loop. Such a group
might take the form:

DO I =1 TO 10;

END;

The statements to be executed iteratively
must be delimited by the DO statement and
an associated END statement. In this case,
the group of statements will be executed
ten times, while the value of the control
variable I ranges from 1 through 10. The
effect of the DO and END statements would
be the same as the following:

I 0;
A: I I+ 1;
IF I > 10 THEN GO TO B;

GO TO A;
B: next statement

that the increment is made before the
control variable is tested and that, in
general, control goes to the statement
following the group only when the value of
the control variable exceeds the limit set
in the DO statement. If a reference is
made to a control variable after the last
iteration is completed, the value of the
variable will be one increment beyond the
specified limit.

Note

The DO statement can also be used with
the WHILE option and no control variable,
as follows:

DO WHILE (A = B);

This statement, heading a group, causes the
group to be executed repeatedly so long as
the value of A remains equal to the value
of B.

The WHILE option can be combined with a
control variable of the form:

DO I =1 TO 10 WHILE (A = B);

This statement specifies two tests. Each
time that I is incremented, a test is made
to see that I has not exceeded 10. An
additional test then is made to see that A
is equal to B. Only if both conditions are
satisfied will the statements of the group
be executed.

More than one successive iteration
specification can be included in a single
DO statement. Consider each of the follow-
ing DO statements:

DO I =1 TO 10, 13 TO 15;
DO I =1 T0 10, 11 WHILE (A = B);
The first statement specifies that the DO

group is to be executed a total of thirteen
times, ten times with the value of I equal
to 1 through 10, and three times with the
value of I equal to 13 +through 15. The
second DO statement specifies that the
group is to be executed at least ten times,
and then (provided that A is equal to B)
once more; 1f "BY 0" were inserted after
"11", execution would continue with I set

to 11 as 1long as A remained equal to B.
Note that in both statements a comma 1is
used to separate the two specifications.

This indicates that a succeeding specifi-
cation 1is to be considered only after the
preceding specification has been satisfied.

The control variable of a DO statement
can be used as a subscript in statements
within the DO-group, so that each iteration
deals with successive elements of a table
cr array. For example:

DO I =1 TO 10;
A(I) = I;
END;

In this example, the first ten elements of
A are set to 1,2,...,10, respectively.

The increment in the iteration specifi-
cation is assumed to be one unless some
other value is stated, as follows:

DO I = 2 TO 10 BY 2;
This specifies that <the 1loop is to be

executed five +times, with the value of I
equal to 2, 4, 6, 8, and 10.

Noniterative DO Statements

The DO statement need not specify
repeated execution of the statements of a
DO-group. A simple DO statement, in con-
junction with a DO-group, can be used as
follows:

DO;

END;

The use of the simple DO statement in this
manner merely indicates that the DO-group

is to be treated logically as a single
statement. It can be used to specify a
number of statements to be executed in the

THEN clause or the ELSE clause of an IF
statement, thus maintaining sequential con-
trol without the use of a begin block.
(Only a single statement, a DO-group, Oor a
begin block can be specified in the THEN
clause or in the ELSE clause.)

"The_CALL, RETURN, and END Statements

A subroutine may be invoked by a CALL
statement that names an entry point of the
subroutine. When the multitasking facili-
ties are not in use, control is returned to
the activating, or invoking, procedure when
a RETURN statement 1is executed in the
subroutine or when execution of the END
statement terminates the subroutine. If
the CALL statement contains one of the
multitasking options, TASK, EVENT, or
PRIORITY, the subroutine is executed by a

subtask with its own separate flow of
control; in this case, the RETURN or END
statement merely terminates the separate

established for the sub-
"Multitasking."™)

flow of control
task. (See Chapter 15,

Chapter 5: Statement Classification 69

The RETURN statement with a parenthe-
sized expression is wused in a function
procedure to return a value to a function

reference. This form is used to return a
value from a procedure that has been
invoked by a function reference.

Normal termination of a program occurs
as the result of execution of the final END

statement of the main procedure or of a
RETURN statement in the main procedure,
either of which returns control to the

operating system.

The STOP and EXIT Statements

The STOP and EXIT statements are both
used to cause abnormal termination. The
STOP statement terminates execution of the
entire program, including all concurrent
tasks. The EXIT statement terminates only
the task that executes it, together with
any attached tasks. (See Chapter 15,
"Multitasking.")

EXCEPTION CONTROL STATEMENTS

The control statements, discussed in the
preceding section, alter the flow of con-
trol whenever they are executed. Another
way in which the seguence of execution can
be altered 1is by the occurrence of a
program interrupt caused by an exceptional
condition that arises.

In general, an exceptional condition is
the occurrence of an unexpected action,
such as an overflow error, or of an expect-
ed action, such as an end of file, that
occurs at an unpredictable time. A
detailed discussion of the handling of
these conditions appears in Chapter 11,
"Exceptional Condition Handling and Program
Checkout."

The three exception control statements

are the ON statement, the REVERT statement,
and the SIGNAL statement.

The ON Statement

The ON statement is used to specify
action to be taken when any subseguent
occurrence of a specified condition causes
a program interrupt. ON statements may
specify particular action for any of a
number of different conditions. For all of
these conditions, a standard system action
exists as a part of PL/I, and if no ON

70

statement is in force at the time an
interrupt occurs, the standard system
action will take place. For most condi-
tions, the standard system action 1is to

print a message and terminate execution.
The ON statement takes the form:
ON condition-name{SYSTEM; |on-unit}

The "condition name" is one of the keywords
listed in Part II, Section H,
"ON-Conditions." The "on-unit" is a single
statement or a begin block that specifies
action to be taken when that condition
arises and an interrupt occurs. For
example:

ON ENDFILE(DETAIL) GO TO NEXT_MASTER;

This statement specifies that when an
interrupt occurs as the result of trying to
read beyond the end of the file named
DETAIL, control is to be transferred to the
statement labeled NEXT_MASTER..

When execution of an on-unit is success-
fully completed, control will normally
return to the point of the interrupt or to
a point immediately following it, depending
upon the condition that caused the inter-
rupt.

An important use of the ON statement is
for debugging. The CHECK condition causes
debugging information to be printed whenev-
er the value of one of a list of specified
variables is changed or whenever a speci-
fied statement is executed.

The effect of an ON statement, fhe
establishment of the on-unit, can be
changed within a block (1) by execution of
another ON statement naming the same condi-
tion with either another on-unit or the
word SYSTEM, which re-establishes standard
system action, or (2) by the execution of a
REVERT statement naming that condition.
On-units in effect at the time another
block 1is activated remain in effect in the
activated block, and in other blocks acti-
vated by it, unless another ON statement
for the same condition is executed. When
control returns to an activating block,
on-units are re-established as they exist-
ed.

The REVERT Statement

The REVERT statement is used to cancel
the effect of all ON statements for +the

same condition that have been executed in
the block in which the REVERT statement
appears.

The REVERT statement, which must specify
the condition name, re-establishes the on-
unit that was in effect in the activating
block at the time the current block was
invoked.

The SIGNAL Statement

The SIGNAL statement simulates the
occurrence of an interrupt for a named
condition. It can be used to test the

coding of the on-unit established by execu-
tion of an ON statement. For example:

SIGNAL OVERFLOW;

This statement would simulate the occur-
rence of an overflow interrupt and would
cause execution of the on-unit established
for +the OVERFLOW condition. If an on-unit
has not been established, standard system
action is taken.

PROGRAM STRUCTURE STATEMENTS

The program structure statements are
those statements used to delimit sections
of a program into blocks and groups, and to
control the allocation of storage within a
program. These statements are the PROCE-
DURE statement, the END statement, the
ENTRY statement, the BEGIN statement, the
DO statement, the ALLOCATE statement, and
the FREE statement. The concept of blocks
and groups 1is fundamental to a proper
understanding of PL/I and is dealt with in
detail in Chapters 6, 7, and 10.

Proper division of a program into blocks
simplifies the writing and testing of the
program, particularly when a number of
programmers are co-operating in writing a
single program. It may also result in more
efficient use of storage, since dynamic
storage of the automatic class is allocated

on entry +to the block in which it is
declared.
The PROCEDURE_Statement

The principal function of a procedure

block, which is delimited by a PROCEDURE
statement and an associated END statement,
is to define a sequence of operations to be
performed upon specified data. This
sequence of operations is given a name (the
label of the PROCEDURE statement) and can
be invoked from any point at which the name
is known.

. causes a

Every program must have at least one
PROCEDURE statement and one END statement.
A program may consist of a number of

separately written procedures linked
together. A procedure may also contain
other procedures nested within it. These

internal procedures may contain declara-
tions that are treated (unless otherwise
specified) as local definitions of names.
Such definitions are not known outside
their own block, and the names cannot be
referred to in the containing procedure.
Storage associated with these names is
generally allocated upon entry to the block
in which such a name is defined, and it is
freed upon exit from the block.

The sequence of statements defined by a
procedure can be executed at any point at
which the procedure name is known. This
execution can be either synchronous (that
is, the execution of the invoking procedure
is suspended until control is returned to
it) or asynchronous (that is, execution of
the invoking procedure proceeds concurrent-
ly with that of the invoked procedure); for
details of asynchronous operation, see
Chapter 15, "Multitasking." A procedure is
invoked either by a CALL statement or by
the appearance of its name in an expres-
sion, in which case the procedure is called
a function procedure. A function reference
value to be calculated and
returned to the function reference for use
in the evaluation of +the expression. A
function procedure cannot be executed asyn-
chronously with the invoking procedure.

Commrunication between two procedures is
by means of arguments passed from an invok-
ing procedure to the invoked procedure, by
a value returned from an invoked procedure,
and by names known within both procedures.
A procedure may therefore operate upon
different data when it is invoked from
different points. A value is returned from
a function procedure to a function ref-
erence by means of the RETURN statement.

The ENTRY Statement

The ENTRY statement is used +to provide
an alternate entry point +to a procedure
and, possibly, an alternate parameter 1list
to which arguments can be passed, corres-
ponding to that entry point.

Note: It is important +to distinguish
between the ENTRY statement, which speci-
fies an entry to the procedure in which it
occurs, and the ENTRY attribute specifi-
cation, which describes the attributes of
parameters of procedures that are invoked
from the procedure in which the ENTRY
attribute specification appears.

Chapter 5: Statement Classification 71

The BEGIN Statement

Local definitions of names can also be
made within begin blocks, which are delim-
ited by a BEGIN statement and an associated
END statement. Begin blocks, however, are
executed in the normal flow of a program,
either sequentially or as a result of a GO
TO or an IF statement transfer. One of the
most common uses of a begin block is as the
on-unit of an ON statement, in which case
it is not executed through normal flow of
control, but only upon occurrence of the
specified condition. It is also useful for
delimiting a section of a program in which
some automatic storage is to be allocated.

Each begin block must be nested within a
procedure or another begin block.

The DO Statement

Another kind of program structure is
provided by the DO-group, which is delimit-
ed by a DO statement and an associated END
statement. A DO-group does not have any
effect upon the allocation of storage or
the meaning of names. A DO-group specifies
that the statements contained within it are
to be considered as an entity for the
purpose of flow of control.

72

A DO statement may specify repeated
execution of a sequence of statements until
a criterion is satisfied, or it may indi-
cate within an IF statement that a group of
statements 1is to be taken together as the
whole of the THEN clause or of the ELSE
clause.

The ALLOCATE and FREE Statements

As with many other conventions in PL/I,
the convention concerning storage alloca-
tion and the scope of definitions of names
can be overridden by the programmer. The
storage class attribute AUTOMATIC is
assumed for mwost variables. However a
variable can be declared STATIC, in which
case it is allocated throughout the entire
program; or it can be declared CONTROLLED,
or BASED, in which case its allocation can
be explicitly specified by the programmer.

The ALLOCATE statement is used to assign
storage to controlled and based data, inde-
pendent of block boundaries. The bounds of
controlled arrays and the length of con-
trolled strings, as well as their initial
values, may also be specified at the time
the ALLOCATE statement is executed. The
FREE statement is used to free controlled
and based storage after it has been allo-
cated.

CHAPTER_6:

BLOCKS,

FLOW OF CONTROL, ANLC STORAGE ALLOCATION

This section discusses how statements
can be organized into blocks to form a PL/I
program, how control flows within a program
from one block of statements +to another,
and how storage may be allocated for data
within a block of statements. The discus-
sion in this chapter does not completely
cover multitasking, which is discussed in
detail in Chapter 15. However, the discus-
sion generally applies to all blocks,
whether or not they are executed concur-
rently.

BLOCKS

A Dblock is a delimited sequence of
statements that constitutes a section of a
program. It localizes names declared with-
in the block and limits the allocation of
variables. There are two kinds of blocks:
procedure blocks and begin blocks.

PROCEDURE BLOCKS

A procedure block, simply called a pro-
cedure, 1is a sequence of statements headed
by a PROCEDURE statement and ended by an
END statement, as follows:

label: [label:l... PROCEDURE;

ENé[label];

All procedures must be named because the
procedure mname 1is the primary point of
entry through which control can be trans-
ferred +to a procedure. Hence, a PROCEDURE
statement must have at least one label. A
label need not appear after the keyword END
in the END statement, but if one does
appear, it must match the label (or one of
the 1labels) of the PROCEDURE statement to
which the END statement corresponds.
(There are exceptions; see "Use of the END
Statement with Nested Blocks and DO-Groups"
in this chapter.) An example of a proce-
dure follows:

Chapter 6:

Blocks,

A: READIN: PROCEDURE
statement-1
statement-2

statement-n
END READIN;

In general, control is transferred to a

procedure through a reference to the name
(or one of the names) of the procedure.
Thus, the procedure in the above example

would be given control by a reference to
either of its names, A or READIN.

A PL/I program consists of one or more
such procedures, each of which may contain
other procedures and/or begin blocks.

BEGIN BLOCKS

A begin block 1is a set of statements
headed by a BEGIN statement and ended by an
END statement, as follows:

[label:}... BEGIN;

END [labell;

Unlike a procedure block, a 1label is
optional for a begin block. If one or more
labels. are prefixed to a BEGIN statement,
they serve only to identify the starting
point of the block. (Control may pass to a
begin block without reference to the name
of that block through normal sequential
execution, although control can be trans-
ferred to a 1labeled BEGIN statement by
execution of a GO TO statement.) The label
following END is optional. However, a
label can appear after END, matching a
label of the corresponding BEGIN statement.
(There are exceptions; see "Use of the END
Statement with Nested Blocks and DO-Groups"
in this chapter.) An example of a begin
block follows:

B: CONTROL: BEGIN;
statement-1
statement-2
statement-n
END B;

Flow of Control, and Storage Allocation 73

Unlike procedures, begin blocks general-
ly are not given control through special
references to them. The normal sequence of
control governing ordinary statement execu-
tion also governs the execution of begin
blocks. Control passes into a begin block
sequentially, following execution of the
preceding statement.

Begin blocks are not essential to the
construction of a PL/I program. However,
there are times when it is advantageous to
use begin blocks to delimit certain areas
of a program. These advantages are dis-
cussed in this chapter and in Chapter 7,
"Recognition of Names."

INTERNAL AND EXTERNAL BLOCKS

Any block can contain one or more
blocks. That is, a procedure, as well as a
begin block, can contain other procedures
and begin blocks. However, there can be no
overlapping of blocks; a block that con-
tains another block must totally encompass
that block.
contained

A procedure block that is

D: BEGIN;
statement-dl
statement-d2
statement-d3
E: PROCEDURE;

statement-el

statement-e2

END E;
statement-di
END D;

END C;
statement-aé
statement-a7
END A;

In the above example, procedure block A
is an external procedure because it is not
contained in any other block. Block B is a
begin block that is contained in &; it
contains no other blocks. Block C is an
internal procedure; it contains begin block
D, which, in turn, contains internal proce-
dure E. This example contains three levels
of nesting relative to A; B and C are at
the first 1level, D is at the second level
(but the first level relative to C) and E
is at the third 1level (the second level
relative to C, and the first level relative
to D).

Use of the END Statement with Nested Blocks

within another block is called an internal
procedure. A procedure block that is not

contained within another block is called an
external procedure. There must always be
at least one external procedure in a PL/I
program. (Note: With System/360 implemen-
tations, each external procedure is com-
piled separately. Entry names of external
procedures cannot exceed seven characters.)

Begin blocks are always internal; they
must always be contained within another
block.

Internal procedure and begin blocks can
also be referred to as nested blocks.
Nested blocks, in turn, may have blocks
nested within them, and so on. The outer-
most - block always must be a procedure.
Consider the following example:

A: PROCEDURE;
statement-al
statement-a2
statement-a3
B: BEGIN;
statement-bl
statement-b2
statement-b3
END B;

statement-al

statement-ab

C: PROCEDURE;
statement-cl
statement-c2

T4

and DO-Groups (Multiple Closure)

The use of +the END statement with a
procedure, begin block, or DO-group is
governed by the following rules:

1. If a label is not used after END, the
END statement closes (i.e., ends) that
unclosed block headed by the BEGIN or
PROCEDURE statement, or that unclosed
DO-group headed by the DO statement,
that physically precedes, and appears
closest to, the END statement.

2. If the optional 1label is used after
END, the END statement c¢loses that
unclosed block or DO-group headed by
the BEGIN, PROCEDURE, or DO statement

that has a matching label, and that
physically precedes, and appears clo-
sest to, the END statement. Any

unclosed blocks or DO-groups nested
within such a block or DO-group are
automatically closed by this END
statement; this is known as multiple
closure.

From the second rule, it is evident that
nested blocks sometimes make it possible
for a single END statement to close more
than one block. For example, assume that
the following external procedure has been
defined:

FRST: PROCEDURE;
statement-f1
statement-£2
ABLK: BEGIN;
statement-al
statement-a2
SCND: PROCEDURE;
statement~-sl
BBLK: BEGIN;
statement-bl
END;
END;
statement-a3
END ABLK;
END FRST;

In this example, begin block BBLK and
internal procedure SCND effectively end in
the same place; that 1is, there are no
statements between the END statements for
each. This is also true for begin block
ABLK and external procedure FRST. In such
cases, it is not necessary to use an END
statement for each block, as shown; rather,
one END statement can be used to end BBLK
and SCND, and another END can be used to
end ABLK and FRST. In the first case, the
statement would be END SCND, because one
END statement with no following label would
close only the begin block BBLK (see the
first rule above). In the second case,
only the statement END FRST is required;
the statement END ABLK 1is superfluous.
Thus, the example could be specified as
follows:

FRST: PROCEDURE;
statement-£f1
statement-£2
ABLK: BEGIN;
statement-al
statement-a2
SCND: PROCEDURE;
statement-sl
statement-s2
BBLK: BEGIN;
statement-bl
statement~-b2
END SCND;
statement-a3
END FRST;

ACTIVATION AND TERMINATION OF BLOCKS

ACTIVATION

Although the begin block and the proce-
dure have a physical resemblance and play
the same role in the allocation and freeing
of storage, as well as in delimiting the
scope of names, they differ in the way they
are activated and executed. A begin block,
like a single statement, is activated and
executed in the course of normal sequential

Chapter 6: Blocks,

program flow (except when specified as an
on-unit) and, in general, can appear where-
ver a single statement can appear. For a
procedure, however, normal sequential pro-
gram flow passes around the procedure, from
the statement before the PROCEDURE state-
ment to the statement after the END state-
ment of that procedure. The only way in
which a procedure can be activated is by a
procedure reference.

A procedure reference is the appearance
of an entry name (defined below) in one of
the following contexts:

1. 'After the keyword CALL in a CALL

‘ statement

2. After the keyword CALL in the CALL
joption of +the INITIAL attribute (see
|the discussion of the INITIAL attri-
ibute in Part 11, Section I,
"Attributes," for details)

3. BAs a function reference (see Chapter

10, "Subroutines and Functions," for

details)

This chapter uses examples of the first
of these; that is, with the procedure
reference of the form:

CALL entry-name;

The material, however, is relevant to the

other two forms as well.

An entry name is defined as either of

the following:

1. The label, or one of the labels, of a
PROCEDURE statement
2. The label, or one of the labels, of an

ENTRY statement
procedure

appearing within a

The first of these is called the primary
entry point to a procedure; the second is
known as a secondary entry point to a
procedure. The following is an example of
a procedure containing secondary entry
points:

A: PROCEDURE;
statement-1
statement-2
ENTRY;
statement-3
statement-4
statement-5
ENTRY;
statement-6
statement-7
statement-8
END A;

ERRT:

NEXT: RETR:

Flow of Control, and Storage Allocation 75

In this example, A is the primary entry
point to the procedure, and ERRT, NEXT, and
RETR specify secondary entry points.
Actually, since they are both labels of the
same ENTRY statement, NEXT and RETR specify
the same secondary entry point.

When a procedure reference is
the procedure containing the specified
entry point is activated and is said to be
invoked; control 1is transferred +to the
specified entry point.1 The point at which
the procedure reference appears is called
the point of invocation and the block in
which the reference is made is called the
invoking block. An invoking block remains
active even though control is transferred
from it to the block it invokes.

executed,

Whenever a procedure is invoked at its
primary entry point, execution begins with
the first executable statement in the
invoked procedure. However, when a proce-
dure is invoked at a secondary entry point,
execution begins with the first executable

statement following the ENTRY statement
that defines that secondary entry point.
Therefore, if all of the numbered state-

ments. in the last example are executable,
the statement CALL A would invoke procedure
A at its primary entry point, and execution
would begin with statement-1; the statement
CALL ERRT would invoke procedure A at the
secondary entry point ERRT, and execution
would begin with statement-3; either of the
statements CALL NEXT or CALL RETR would
invoke procedure A at its other secondary
entry point, and execution would begin with
statement-6. Note that any ENTRY state-
ments. encountered during sequential flow
are never executed; control flows around
the ENTRY statement as though the statement
were a comment.

Any procedure, whether external or
internal, can always invoke an external
procedure, but it cannot always invoke an

internal procedure that 1is contained in
some other procedure. Those internal pro-
cedures +that are at the first level of
nesting relative to a containing procedure
can always be invoked by that containing
procedure, or by each other. For example:

1 This

statement does not apply when the

CALL statement specifies one of the multi-
tasking options. See Chapter 15,
"Multitasking."

76

PRMAIN: PROCEDURE;
statement-1
statement-2
statement-3
A: PROCEDURE;

statement-al
statement-a2
B: PROCEDURE;
statement-bl
statement-b2
END A;
statement-4
statement-5
C: PROCEDURE;
statement-cl
statement~-c?2
END C;
statement-6
statement-7
END PRMAIN;

In this example, PRMAIN can invoke pro-
cedures A and C, but not B; procedure A can
invoke procedures B and C; procedure B can
invoke procedure C; and procedure C can
invoke procedure A but not B.

The foregoing discussion about the acti-
vation of blocks presupposes that a program
has already been activated. A PL/I program

becomes active when a calling program
invokes the initial procedure. This call-
ing program usually is the operating sys-

tem, although it could be another prcgram.
For System/360 implementations, the initial
procedure, called the main procedure, must
be an external procedure whose PROCEDURE
statement has the OPTIONS(MAIN) specifi-
cation, as shown in the following example:

CONTRL: PROCEDURE OPTIONS(MAIN);
CALL A;
CALL B;
CALL C;
END CONTRL;

the initial
other procedures

In this example, CONTRL is
procedure and it invokes
in the program.

The following is a summary of what has
been stated, or at least implied, about the
activation of blocks:

ini-
the

e A program becomes active when the
tial procedure 1is activated by
operating system.

¢ Except for the initial procedure,
external and internal procedures con-
tained in a program are activated only
when they are invoked by a procedure
reference.

e Begin blocks are activated through nor-
mal sequential flow or as on-units.

* The
for the duration of the program.

active
below) .

e All activated blocks remain
until they are terminated (see

TERMINATION

In general, a procedure block is termi-
nated when, by some means other than a
procedure reference, control passes back to
the invoking block or to some other active
block. Similarly, a begin block is termi-
nated when, by some means other than a
procedure reference, control passes to
another active block. There are a number
of ways by which such transfers of control
can be accomplished, and their interpreta-
tions differ according to the type of block
being terminated.

Note that when a block is terminated,

any task attached by that block is termi-
nated (see Chapter 15, "Multitasking").

Begin Block Termination

A Dbegin block is terminated when any of
the following occurs:

1. Control reaches the END statement for
the block. When this occurs, control
moves to the statement physically fol-
lowing the END, except when the block
is an on-unit.

2. The execution of a GO TO statement
within the begin block (or any block
activated from within that begin

block) transfers control +to a point
not contained within the block.

3. A STOP or EXIT statement is executed
(thereby terminating execution).

4. Control reaches a RETURN statement
that transfers contrcl out of the
begin block and out of its containing
procedure as well.

A GO TO statement of the type described
in item 2 can also cause the termination of
other blocks as follows:

If the transfer point is contained in a
block that did not directly activate the
block being terminated, all intervening
blocks in the activation sequence are
terminated. -

if begin block B is con-
block A, then a GO TO

For example,
tained in begin

Chapter 6: Blocks,

initial procedure remains active

statement in B that transfers control to a
point contained in neither A nor B effec-
tively terminates both A and B. This case
is illustrated below:

FRST: PROCEDURE OPTIONS(MAIN) ;
statement-1
statement-2
statement-3
A: BEGIN;
statement-~al
statement-a2
B: BEGIN;
statement-bl
statement-b2
GO TO LAB;
statement-Db3
END B;
statement-a3
END A;
statement-4
statement-5
statement-6
statement-7
END FRST;

LAB:

After FRST is invoked, the first three
statements are executed and then begin
block A is activated. The first two state-
ments in A are executed and then begin
block B is activated (A remaining active).
When the GO TO statement in B is executed,
control passes to statement-6 in FRST.
Since statement-6 is contained in neither A
nor B, both A and B are terminated. Thus,
the transfer of control out of begin block
B results in the termination of intervening
block A as well as termination of block B.

Procedure Termination

A procedure is terminated when one of
the following occurs:

1. Control reaches a RETURN statement
within the procedure. The execution
of a RETURN statement causes control
to be returned to the point of invoca-
tion in the invoking procedure. If
the point of invocation 1is a CALL
statement, execution in the invoking
procedure resumes with the statement
following the CALL. If the point of
invocation is one of the other forms
of procedure references (that 1is, a
CALIL option or a function reference),
execution of the statement containing
the reference will be resumed.

2. Control reaches +the END statement of
the procedure. Effectively, this is
equivalent to the execution of a
RETURN statement.

Flow of Control, and Storage Allocation 77

3. The execution of a GO TO statement
within the procedure (or any block
activated from within that procedure)
transfers control to a point not con-
tained within the procedure.

4. A S3TOP or EXIT statement is executed
(thereby terminating execution).

Items 1, 2, and 3 are
terminations;

normal procedure
item 4 is abnormal procedure

termination.
As with a begin block, the type of
termination described in item 3 can some-

times result in the termination of several
procedures and/or begin Dblocks. Specifi-
cally, if the transfer point specified by
the GO TO statement is contained in a block
that did not directly activate the block
being terminated, all intervening blocks in
the activation sequence are terminated.
Cconsider the following examole:

A: PROCEDURE OPTIONS(MAIN) ;
statement-1
statement-2
B: BEGIN;

statement-bl
statement-b2
CALL C;
statement-b3
END B;
statement-3
statement-4
C: PROCEDURE;
statement-cl
statement-c2
statement-c3
D: BEGIN;
statement-41
statement-d2
GO TO LAB;
statement-d3
END D;
statement-cl
END C;
statement-5
LAB: statement-6
statement-7
END A;

In the above example, A activates B,
which activates C, which activates D. In
D, the statement GO TO LAB transfers con-
trol to statement-6 in A. Since this
statement is not contained in D, C, or B,
all three blocks are terminated; A remains

active. Thus, the transfer of control out
of D results in the termination of inter-
vening blocks B and C as well as the

termination of block D.

78

Program Termination

A program is terminated when any one of
the following occurs:

1. Control for the
EXIT statement.
mination.

program reaches an
This is abnormal ter-

2. Control for the program reaches a STOP
statement.? This also is abnormal ter-
mination.

3. Control reaches a RETURN statement or
the final END statement in the main

procedure. This is normal termina-
tion.
4., An on-unit for the ERROR condition is

executed with normal return (that is,
a GO TO statement does not transfer
control out of the on-unit) or the
FINISH condition is raised as a result
of the standard system action for the
ERROR condition.

Note: The termination of a program, wheth-
er normal or abnormal , raises the FINISH
condition. The standard system action for
this condition is to return control to the
operating system control program. For nor-
mal termination, the control program will
then pass control to the calling program,
if any. For abnormal termination, it will
terminate the job. (See Part 1II, Section
H, "ON-Conditions.™)

STORAGE ALLOCATION

Storage allocation is the process of
associating an area of storage with a
variable so that the data item(s) to be

represented by the variable may be recorded

internally. When storage has been asso-
ciated with a variable, +the variable is
said to be allocated. Allocation for a

given wvariable may take place statically,
that is, before the execution of the pro-
gram, or dynamically, during execution. A
variable that is allocated statically
remains allocated for the duration of the
program. A variable that 1is allocated
dynamically will relinquish its storage
either wupon the termination of the block
containing that wvariable or at the request
of the programmer, depending upon its stor-
age class.

1 When multitasking is in operation, the
vrogram (i.e., the major task) is terminat-
ed when any task reaches a STOP statement.
See Chapter 15, "Multitasking."

The manner in which storage is allocated
for a variable is determined by the storage
class of that wvariable. There are four
storage classes: static, automatic, con-
trolled, and based. Each storage class is
specified by its corresponding storage
class attribute: STATIC, AUTOMATIC, CON-
TROLLED, and BASED, respectively, The last
three define dynamic storage allocation.

Storage class attributes may be declared
explicitly for element, array, and major
structure variables. If a variable is an
array or a major structure variable, the
storage class declared for that variable
applies to all of the elements in the array
or structure.

All variables that have not been expli-
citly declared with a storage class attri-
bute qare assumed +to have the AUTOMATIC
attribute, with one exception: any variable
that has the EXTERNAL attribute is assumed
to have the STATIC attribute.

Static Storage

All variables that have the STATIC
attribute are allocated storage before the
execution of the program begins and they
remain allocated for the duration of the

program. For example:
OUTP: PROCEDURE;
DECLARE X FIXED STATIC INITIAL (1);
PUT DATA (X);
X = X+1;
END OUTP;
Before the execution of a program
begins, all static variables are allocated

and any initial values specified for them
are assigned. Therefore, in +the above
exanmple, the first time that procedure OUTP
is invoked, X has the value 1 and execution
of the PUT statement causes the item X=1 to
be written. Before OUTP is terminated, the
assignment statement X=X+1 increases the
value of X by 1. If OUTP is invoked a
second time, and if the value of X is not
changed elsewhere in the program, X has the
value 2 (X 1is not re-initialized +to 1
because static variables are initialized
only once before execution). When the PUT
statement is executed for the second time,
the item X=2 is written into the stream,
etc. Thus, the static variable X might be
used to recorxrd the number of times that
OUTP is invoked.

Chapter 6:

Blocks, Flow of Control, and Storage Allocation

Automatic Storage

A variable that has the AUTOMATIC attri-
bute is allocated storage upon activation
of +the block in which that variable is
declared. The variable remains allocated
as 1long as the block remains active; it is
freed when the block is terminated. Once a
variable is freed, its value is lost.

Controlled Storage

A variable that has the CONTROLLED
attribute is allocated storage only upon
the execution of an ALLOCATE statement
specifying that variable. Storage remains
allocated for that variable until the exe-
cution of a FREE statement in which the
variable 1is specified. This allocation
remains even after termination of the block
in which it is allocated. Thus, the allo-
cation and freeing of storage for variables
declared with +the CONTROLLED attribute is
directly under the control of the program-
mer.

A controlled variable may be stacked;
that is, storage may be allocated for a
controlled wvariable even when a previous
allocation for that variable exists. In
terms of ALLOCATE and FREE statements,
stacking occurs when an allocated con-
trolled wvariable is specified in an ALLO-~-
CATE statement without first having been
specified in a FREE statement. When this
occurs, the previous allocation is not
released; its value remains the same but,
for the time being, this wvalue is not
available to the programmer. Conceptually,
the new allocation is stacked on top of the
previous allocation, with the result that
the previous allocation is "pushed-down" in
the stack. Subsequent allocations are
always added to the top of the stack.

Any reference to a stacked controlled
variable always refers to the most recent
allocation for that variable; i.e., to the
allocation at the top of the stack. Thus,
a FREE statement specifying a stacked con-
trolled wvariable will cause the allocation
at the top of the stack to be freed. When

this occurs, the other allocations in the
stack are “popped-up", the most recent
previous allocation coming to the top and

being available once again. When an allo-
cation is popped up to the top of a stack,
its value is the same as it was when it was

pushed down.

79

Based Storage

Based storage is similar to controlled
storage in that it can be allocated by the
ALLOCATE statement and freed by the FREE
statement; and more than one allocation can
exist for one variable. However, the pro-
grammer has a much greater degree of con-
trol with based storage. For example, all
current based allocations are available at
any time: unique reference to a particular
allocation is provided by a pointer value
qualifying the based variakle reference.

the most powerful of
it must be

Based storage is
the PL/I storage classes, but
used carefully; many of the safeguards
against error that are provided for other
storage classes cannot be provided for
based.

For full details of based storage, see
Chapter 14, "Based Storage and List Proc-
essing."”

REACTIVATION OF AN ACTIVE PROCEDURE
(RECURSION)

An active procedure that can be reacti-
vated from within itself or from within
another active procedure is said to be a

recursive procedure; such reactivation is
called recursion.

A procedure can be invoked recursively
only if +the RECURSIVE option has been
specified in its PROCEDURE statement. This

option also applies to the names of any
secondary entry points that the procedure
might have.

(that is, values of
automatic variables, etc.) of every invo-
cation of a recursive procedure is pres-
erved in a manner analogous to the stacking
of allocations of a controlled variable.
An environment can thus be thought of as
being "pushed down" at a recursive invoca-
tion, and "popped up" at the termination of
that invocation. Note that a 1label con-
stant always contains information identify-
ing the current invocation of the block
that contains the label. Hence, if a label
constant is assigned to a label variable in
a particular invocation, a GO TO statement
naming that variable in another invocation
could restore the environment that existed
when the assignment was performed.

The environment

80

Consider the following example:

RECURS: PROCEDURE RECURSIVE;
DECLARE X STATIC EXTERNAL INITIAL (0);

X=X+1;

PUT DATA (X);

IF X =5 THEN GO TO LAB;
CALL AGN;

X =X-1;

PUT DATA (X);

LAB: END RECURS;

AGN: PROCEDURE RECURSIVE;
DECLARE X STATIC EXTERNAL INITIAL (0);

X=X+1;
PUT DATA(X);

CALL RECURS;
X=X-1;

PUT DATA (X);
END AGN;

In the above example, RECURS and AGN are
both recursive procedures. Since X is
static and has the INITIAL attribute, it is
allocated and initialized before execution
of the program begins.

The first time that RECURS is invoked, X
is incremented by 1 and X=1 is transmitted
by the PUT statement. Since X is less than
5, AGN is invoked. 1In AGN, X is increment=-
ed by 1 and X=2 is transmitted (also by a
PUT statement). AGN then reinvokes RECURS.

This second invocation of RECURS is a
recursive invocation, because RECURS is
still active. X is incremented as before,
and then X=3 is transmitted. X is still
less than 5, so AGN is invoked again.
Since AGN 1is active when invoked, this
invocation of AGN is also recursive. X is

incremented once again, X=4 is transmitted,
and RECURS is invoked for the third time.

The third invocation of RECURS results
in the transmission of X=5. But, since X
is no longer less than 5, GO TO LAB is
executed, and then RECURS is terminated.
However, only the third invocation of
RECURS is terminated, with the result that
control returns to the procedure that
invoked RECURS for the third time; that is,
control returns to the statement following
CALL RECURS in the second invocation of
AGN. At this point X is decremented by 1
and X=4 is transmitted. Then the second

invocation of AGN is terminated, and con-
trol returns to the procedure that invoked
AGN for the second time; that is, control

returns to the statement following CALL AGN
in the second invocation of RECURS. Here X
is decremented again and X=3 is transmit-
ted, after which the second invocation of
RECURS is terminated and control returns to
the first invocation of AGN. X is decre-
mented again, X=2 is transmitted, the first
invocation of AGN is terminated, and con-
trol returns to the first invocation of
RECURS. X is decremented, X=1 is transmit-
ted, X 1is reset to 0, and the first
invocation of RECURS is terminated. Con-
trol then returns to the procedure that
invoked RECURS in the first place.

Note the AJdifference between recursive
and reentrant procedures. A procedure is
recursive only if the RECURSIVE option is
specified in the PROCEDURE statement.
Every procedure compiled by the F Compiler
is reentrant; that is, it 1is a procedure
that does not modify itself during its
execution, so that subsequent execution of

the procedure with the same data will

always give the same result.

Effect of Recursion on Storage Classes
Allocation of static variables (as

illustrated above) is not affected by
recursion, because they are allocated stor-
age outside the environment of a recursive
procedure. Allocation of controlled varia-
bles is 1likewise unaffected because their
allocation and release is completely under
the control of the programmer. However,
allocation of automa variables 1is
a e because they are a part of the
environment of a particular invocation and
also because their allocation and release
is not directly controlled by the program-
mer.

Each time a procedure is invoked recur-
sively, storage for each automatic variable
is reallocated, and the previous allocation
is pushed down in a stack. Each time an
activation of a recursive procedure 1is
terminated, automatic storage is popped up
to yield the next most recent generation of
automatic storage. Hence, each generation
of automatic storage is preserved as part
of the environment of the corresponding
recursive activation.

PROLOGUES AND EPILOGUES

Each time a block is activated, certain
activities must be performed before control

Chapter 6:

Blocks,

can reach the first executable statement in
the block. This set of activities is
called a prologue. Similarly, when a block
is terminated, certain activities must be
performed before control can be transferred
out of the block; this set of activities is
called an epilogque.

Prologues and epilogues are the
responsibility of the compiler and not of
the programmer. They are discussed here
because knowledge of them may assist the

programmer in improving the performance of
his program.

Prologues

A prologue is a compiler-written routine
logically appended to the beginning of a
block and executed as the first step in the
activation of a block. In general, activi-
ties performed by a prologue are as fol-
lows:

¢ Computing dimension bounds and string
lengths for automatic and DEFINED vari-
ables and ENTRY declarations.

¢ Allocating storage for automatic varia-

bles and initialization, if specified.
e Determining which currently active
blocks are known to the procedure, so

auto-
and the

that the correct generations of
matic storage are accessible,
correct on-units may be entered.

¢ Allocating storage for dummy arguments
that may be passed from this block,

The prologue may need to evaluate
expressions defining lengths, bounds, iter-
ation factors, and initial values. Note
that if an item is referred to in an
expression and the allocation or initiali-
zation of a second item depends on that
expression, then the first item must be in
no way dependent on the second item for its
own allocation and initialization. Furth-
er, the first item must bhe in no way
dependent on any other item that so depends
on the second item. For example, the
following declaration is invalid:

DCL A(B(1)) INITIAL(2),
B(A(1)) INITIAL(3);
declaration is

However, the

valid:

following

DCL N INITIAL(3),
A(N),
B CHAR(N);

Flow of Control, and Storage Allocation 81

Epiloques

An epilogque 1is a compiler-written rou-
tine logically appended to the end of a
block and executed as the final step in the
termination of a block. In general, the
activities performed bv an epilogue are as
follows:

s Re-establishing the on-unit environment
existing before the block was activat-
ed.

e Releasing storage for all automatic
variables allocated in the block.

82

A PL/I program consists of a collection
of identifiers, constants, and special
characters used as operators or delimiters.
Identifiers themselves may be either key-
words or names with a meaning specified by
the programmer. The PL/I language is con-
structed so that the compiler can determine
from context whether or not an identifier
is a keyword, so there is no 1list of
reserved words that must not be used for
programmer~defined names. Any identifiex
may be used as a name; the only restriction

is that at any point in a program a name
can have one and only one meaning. For
example, +the same name cannot be used for

both a file and a floating-point variable.

Note: The above is true so long as the
60-character set is wused. Certain iden-
tifiers of the 48-character set cannot be
used as programmer-defined identifiers in a
program written using the U8-character set;
these identifiers are: GT, GE, NE, LT, NG,
LE, NL, CAT, OR, AND, NOT, and PT.

It is not necessary, however, for a name
to have the same meaning throughout a
program. A name declared within a block
has a meaning only within that block.
Outside the block it is unknown unless the
same name has also been declared in the
outer block. In this case, the name in the
outer block refers to a different object.
This enables programmers to specify local
definitions and, hence, to write procedures
or begin blocks without knowing all the
names being used by other programmers writ-
ing other parts of the program.

Since it is possible for a name to have
more than one meaning, it is important to
define which part of the program a particu-
lar meaning applies to. In PL/I a name is
given attributes and a meaning by a dec-
laration (not necessarily explicit). The
part of the program for which the meaning
applies is called the score of the declara-
tion of that name. In most cases, the
scope of a name is determined entirely by
the position at which the name is declared
within the program (or assumed to be
declared if the declaration is not
explicit). There are cases in which more
than one generation of data may exist with
the same name (such as in recursion); such
cases are considered separately.

In order to understand the rules for the
scope of a name, it is necessary to under-
stand the terms "contained in" and
"internal to."

CHAPTER_7: RECOGNITION OF NAMES

Contained In:

All of the text of a block, from the
PROCEDURE or BEGIN statement through
the corresponding END statement, is
said to be contained in that block.
Note, however, that the labels of the
BEGIN or PROCEDURE statement heading
the block, as well as the labels of
any ENTRY statements that apply to the
block, are not contained in that
block. Nested blocks are contained in
the block in which they appear.

Internal To:

Text that is contained in a block, but
not contained in any other block nest-
ed within it, is said to be internal
to that block. Note that entry names
of a procedure (and labels of a BEGIN
statement) are not contained in that

block. Consequently, they are inter-
nal to the containing block. Entry
names of an external procedure are

treated as if they were external to

the external procedure.

In &addition to these terms, the differ-

ent types of declaration are important.
The three different types -- explicit dec-
laration, contextual declaration, and
implicit declaration -- are discussed in
the following sections.
EXPLICIT DECLARATION
A name 1is explicitly declared if it
appears:
1. In a DECLARE statement
2. In a parameter list
3. As a statement label
4. As a label of a PROCEDURE or ENTRY
statement
The appearance of a name in a parameter

list is the same as if a DECLARE statement
for that name appeared immediately follow-
ing the PROCEDURE or ENTRY statement in
which the parameter list occurs {(though the
Same name may also appear in a DECLARE
statement internal to the same block).

The appearance of a name as the label of
either a PROCEDURE or ENTRY statement is

Chapter 7: Recognition of Names 83

the same as if it were declared in a
DECLARE statement immediately preceding the
PROCEDURE statement for the procedure to
which it refers.

The appearance of a statement 1label
prefix constitutes explicit declaration
equivalent to the declaration of a variable
in a DECLARE statement internal to the same
block as the statement to which it applies.

SCOPE OF AN EXPLICIT DECLARATION

The scope of an explicit declaration of
a name is that block to which the declara-
tion is internal, but excluding all con-

tained blocks to which another explicit
declaration of the same identifier is
internal.

For example:

P: PROCEDURE; 7 A
DECLARE A, B;
Q: PROCEDURE;
DECLARE B, C;
END Q;

END P;

N

The lines to the right indicate the
scope of the names. B and B' indicate the
two distinct uses of the name B.

CONTEXTUAL DECLARATION

When a name appears in certain contexts,
some of its attributes can be determined
without explicit declaration. In such a
case, if the appearance of a name does not
lie within the scope of an explicit dec-
laration for the same name, the name is
said to be contextually declared.

A name that has not been declared expli-
citly will be recognized and declared con-
textually in the following cases:

1. A name that appears in a CALL state-
ment, in a CALL option, or followed by
a parenthesized 1list in a function
reference (in a context where an
expression is expected) is given the
ENTRY and EXTERNAL attributes.

2. A name that appears in a FILE option,
or a name that appears in an ON,

84

SIGNAL, or REVERT statement for a
condition that requires a file name,
is given the FILE and EXTERNAL attri-
butes.

A name that appears in an ON CONDI-
TION, SIGNAL CONDITION, or REVERT CON-
DITION statement is recognized as a
programmer-defined condition name.

A name that appears in an EVENT option
or in a WAIT statement is given the
EVENT attribute.

A name that appears in a TASK option
is given the TASK attribute.

A name that appears in the BASED
attribute, in a SET option, or on the
left-hand side of a pointer qualifica-
tion symbol is given the POINTER
attribute.

A name that appears in an IN option,
or 1in the OFFSET gttribute is given

the AREA attribute. Note, however,
that all contextually declared area
variables are given the AUTOMATIC
attribute. The F Compiler implementa-

tion requires that the variable named
in the OFFSET attribute must be based;
if a nonbased area variable is named,
the offset variable will be changed to
a pointer variable. Hence, unless the
variable named in the OFFSET attribute
is explicitly declared, OFFSET effec-
tively becomes POINTER, and a severe
error OCCurs.

If an undeclared identifier appears:

a. before the equal sign in an
assignment statement, or

b. before the assignment symbol in a
DO statement (or in a repetitive
specification), or

Cc. 1in the data 1list of a GET state-
ment
and if that identifier is neither

enclosed within an argument 1list nor
immediately followed by an argument
list, that identifier is contextually
declared to be a variarle and not a
reference to a built-in function or
pseudo-variable. This rule does not
apply to the identifiers ONCHAR,
ONSOURCE, and PRIORITY.

Examples of contextual declaration are:

READ FILE (PREQ) INTO (Q);

ON CONDITION (NEG) CALL CREDIT;

In these statements, PREQ is given the FILE
attribute, NEG is recognized as a
programmer-defined condition name, and
CREDIT is given the ENTRY attribute. The
EXTERNAL attribute is given to all three by
default.

SCOPE OF A CONTEXTUAL DECLARATION

The scope of a contextual declaration is
determined as if the declaration were made
in a DECLARE statement immediately follow-
ing the PROCEDURE statement of the external
procedure in which the name appears.

Note that contextual declaration has the
same effect as if the name were declared in
the external procedare, even when the
statement that causes the contextual dec-
larations is internal to a block (called B,
for example) that 1is contained 1in the
external procedure. Consequently, the name
is known throughout +the entire external
procedure, except for any blocks in which
the name is explicitly declared. It is as
if Dblock B has inherited the declaration
from the containing external procedure.

Since a contextual declaration cannot
exist within the scope of an explicit
declaration, it is impossible for the con-
text of a name to add to the attributes
established for that name in an explicit
declaration.

For example, the following procedure is
invalid:

P: PROC (F);

READ FILE(F) INTO(X);

END P;

The identifier F is in a parameter list and
is, therefore, explicitly declared. It is
given the attributes REAL DECIMAL FLOAT by
default. Since F is explicitly declared,
its appearance in the FILE option does not
constitute a contextual declaration. Such
use of the identifier is in error.

IMPLICIT DECLARATION

If a name appears in a program and is
not explicitly or contextually declared, it
is said to be implicitly declared. The
scope of an implicit declaration is deter-

mined as if the name were declared in a

‘DECLARE statement immediately following the

first PROCEDURE statement of the external
procedure in which the name is used.

An implicit declaration causes default
attributes to be applied, depending upon
the first letter of the name. If the name
begins with any of the letters I through N
it is given the attributes REAL FIXED
BINARY (15,0). If the name begins with any
other letter including one of the alphabet-
ic extenders §$, #, or @, it is given the
attributes REAL FLOAT DECIMAL (6). (The
default precisions are those defined for
System/360 implementations.)

EXAMPLES OF DECLARATIONS

Scopes of data declarations are illus-
trated in Figure 7-1. The brackets to the
left indicate the block structure; the
brackets to the right show the scope of
each declaration of a name. In the
diagram, the sccpes of the two declarations
of Q and R are shown as Q and Q' and R and
R'.

P 1is declared in the block A and known
throughout A since it is not redeclared.

Q is declared in A, and redeclared in B.
The scope of the first declaration is all

of A except B; the scope of the second
declaration is block B only.

R is declared in block ¢, but a ref-
erence to R is also made in block B. The

reference to R in block B results in an
implicit declaration of R in A,the external
procedure. Two separate names with differ-
ent scopes exist, therefore. The scope of
the explicitly declared R is C; the scope
of the implicitly declared R is all of A
except block C.

referred to in block C. This
results in an implicit declaration in the
external procedure A. As a result, this
declaration applies to all of A, including
the contained procedures B, C and D.

I is

S is explicitly declared in procedure D
and is known only within D.

Scopes of entry name and statement label
declarations are illustrated in Figure 7-2.
The example shows two external procedures.
The names of these procedures, A and E, are
assumed to be explicitly declared with the
EXTERNAL attribute within the procedures to
which they apply. In addition, E is con-
textually declared in A as an EXTERNAL
entry name by its appearance in the CALL
statement in block C. The contextual dec-

Chapter 7: Recognition of Names 85

r———- - - 1
| i P © Q' R R' s I |
| A: PROCEDURE; 7] T 1
| DECLARE P, Q; |
I - B: PROCEDURE;) |
| DECLARE Q; |
| R = Q; |
| C: BEGIN; |
I DECLARE R; |
| . DOI =1 TO 10; |
| END; |
|- END C; |
{ L END B; |
| [D: PROCEDURE; - |
| DECLARE S;] |
| L END Dj; |
| END A; _ 4 1
L _ - _— _— — _— J
Figure 7-1. Scopes of Data Declarations

L ——- e - oo

ﬁ | - 1 11' L2 A B C D E |

P A: PROCEDURE; q 7 1 1 i
I _ Li: P = Q; |
] B: PROCEDURE; |
I L2: CALL C; A I
| C: PROCEDURE; |
| Ll: X =Y; |
| CALL E;]
| END C; |
| GO TO Ll; |
| L END B; |
{ i D: PROCEDURE; |
| | END D; - |
[CALL B; |
[L END A; Jd 1
| B E: PROCEDURE; I
| END E; |
L = i —_— R ———— A

eFigure 7-2. Scopes of Entry and Label Declarations

laration of E applies throughout block A but since they are INTERNAL, they cannot be
and is linked to the explicit declaration referred to in block E (unless passed as an
of E that applies throughout block E. The argument to E).

scope of the name E is all of block A and

all of block E. The scope of the name A is C is explicitly declared in B and can be
only all of the block A, and not E. referred to from within B, but not from
However, it could appear in a CALL state- outside B.

ment in E, since the CALL statement itself

would provide a contextual declaration of L2 is declared in B and can be referred
A, which would then result in the scope of to in block B, including C, which is
A being all of A and all of E. contained in B, but not from outside B.

The 1label L1 appears with statements
internal to A and to C. Two separate
‘declarations are therefore established; the
first applies to all of block A except APPLICATION OF DEFAULT ATTRIBUTES
block ¢, the second applies to block C
only. Therefore, when the GO TO statement

in block B is executed, control 1is trans- The attributes associated with a name
ferred to 1.1 in Dblock A, and block B is comprise those explicitly, contextually, or
terminated. implicitly declared for that name, as well

as those assumed by default. The default
D and B are explicitly declared in block for each attribute is given in Part 1II,
A and can be referred to anywhere within A; Section I, "Attributes."

86

THE_INTERNAL AND EXTERNAL ATTRIBUTES

The scope of a name with the INTERNAL
attribute 1is the same as the scope of its
declaration. Any other explicit declara-
tion of that name refers to a new object
with a different, non-overlapping scope.

A name with the EXTERNAL attribute may
be declared more than once in the same
program, either in different external pro-
cedures or within blocks contained in
external procedures. Each declaration of
the name establishes a scope. These dJdec-
larations are linked together and, within a
program, all declarations of the same iden-
tifier with the EXTERNAL attribute refer to
the same name. The scope of the name is
the sum of the scopes of all the declara-
tions of that name within the program.

Note: External names cannot be more than
seven characters long for System/360
implementations.

Since these declarations all refer to
the same thing, they must all result in the
same set of attributes. It may be impossi-
ble for the compiler to check this, parti-
cularly if the names are declared in dif-
ferent procedures, so care should be taken
to ensure that different declarations of
the same name with the EXTERNAL attribute
do have matching attributes. The attribute
listing, which is available as optional
output from the F Compiler, helps to check
the use of names. The following example
illustrates the above points in a program:

A: PROCEDURE;
DECLARE S CHARACTER (20);
CALL SET (3);
E: GET LIST (5,M,N);
B: BEGIN;
DECLARE X(M,N), Y(M);
GET LIST (X,Y);
CALL C(X,Y);
C: PROCEDURE (P,Q);
DECLARE P(*,%*), Q(*),
S BINARY FIXED EXTERNAL;
s = 0;
DO I =1 TO M;
IF SUM (P(I,*)) = Q(I)
THEN GO TO B;
S = S+1;
IF S = 3 THEN CALL OUT (E);
CALL D(I);
B: END;
END C;
D: PROCEDURE (N);
PUT LIST (*ERROR IN ROW ',
N, "TABLE NAME ', S);
END D;
END B;
GO TO E;
END A;

OUT: PROCEDURE (R);
DECLARE R LABEL,

(M, L) STATIC INTERNAL
INITIAL (0),
BINARY FIXED EXTERNAL,
FIXED DECIMAL(1);
M M+1; S5=0;
IF M<L THEN STOP; ELSE GO TO R;
ENTRY (2Z);

I =0

SET:

END OUT;

A 1is an external procedure name; its
scope is all of block A, plus any other
blocks where A is declared (explicitly ox
contextually) as external.

S is explicitly declared in block A and
block C. The character string declaration
applies to all of block A except block C;
the fixed binary declaration applies only
within block C. Notice that although D is
called from within block C, the reference
to S in the PUT statement in D is to the
character string S, and not to the S
declared in block C.

N appears as a parameter in block D, but
is also used outside the block. Its apear-
ance as a parameter establishes an explicit
declaration of N within D; the references
outside D cause an implicit declaration of
N in block A. These two declarations of
the name N refer to different objects,
although in this case, the objects have the
same data attributes, which are, by
default, FIXED (15,0), BINARY, and INTER-
NAL.

X and Y are known throughout B and could
be referred to in block C or D within B,
but not in that part of A outside B.

P and Q are
their appearance
sufficient to constitute an

parameters, and therefore
in the parameter 1list is
explicit dec-

laration. However, a separate DECLARE
statement 1is required in order to specify
that P and Q are arrays. Note that

although the arguments X and Y are declared
as arrays and are known in block C, it is
still necessary to declare P and Q in a
DECLARE statement to establish that they,
too, are arrays. (The asterisk notation
indicates that the bounds of the parameters
are the same as the bounds of the argu-
ments.)

I and M are not explicitly declared in

the external procedure A; they are there-
fore implicitly declared and are known
throughout A, even though I appears only

within block C.

Within the external procedure A, OUT and
SET are contextually declared as entry
names, since they follow the keyword CALL.

Chapter 7: Recognition of Names 87

They are therefore considered to be
declared in A and are given the EXTERNAL
attribute by default.

The second external procedure in the
example has two entry names, SET and OUT.
These are considered to be explicitly
declared with the EXTERNAL attribute. The
two entry names SET and OUT are therefore
known throughout the two procedures.
in the

The label B appears twice pro-

gram, once as the label of a begin block,
which is an explicit declaration, as a
label: in A. It is redeclared as a label

within block C by its appearance as a
prefix to the END statement. The reference
to B in the GO TO statement within block C
therefore refers to the label of the END
statement within block C. Outside block C,
any reference to B would be to the label of
the begin block.

NMote that C and D can be called from any
point within B but not from that part of A
outside B, nor from another external proce-
dure. Similarly, since E is known through-
out the external procedure A, a transfer to

E may be made from any point within A. The
label B within block ¢, however, can only
be referred to from within C. Transfers

out of a block by a GO TO statement can be
made; . but such transfers into a nested
block generally cannot. An exception is
shown - in the external procedure OUT, where
the label E from block A is passed as an
argument to the label parameter R.

The statement GO TO R causes control to
pass to the label E, even though E is
declared within A, and not known within
OUT.

The wvariables M and L are declared
within the block OUT to be STATIC, so their
values are preserved between calls to OUT.

In order to
procedure OUT
dure C, both have been
attribute EXTERNAL.

identify the S in the
as the same S in the proce-
declared with the

MULTIPLE DECLARATIONS AND AMBIGUOUS
REFERENCES)

Two or more declarations of the same
identifier internal to the same block con-
stitute a multiple declaration, unless at
least one of the identifiers is declared

88

within a structure in such a way that name
qualification can be used to make the names
unique.

Two or more declarations anywhere in a
program of the same identifier as different
names with the EXTERNAL attribute consti-
tute a multiple declaration.

Multiple declarations are in error.

A name need have only encugh qualifica-
tion to make the name unique. Reference to
a name 1is always taken to apply to the
identifier declared in the innermost block
containing the reference. An ambiguous
reference is a name with insufficient qual-
ification to make the name unique.

illustrate both
ambiguous ref-

The following examples
multiple declarations and
erences:

DECLARE 1 A,
BEGIN;
DECLARE 1 A,
A.C = D.E;

2C, 2D, 3 E;

2B, 3C, 3 E;

In this example, A.C refers to C in the
inner block; D.E refers to E in the outer
block.

DECLARE 1 A, 2B, 2B, 2C, 3D, 2D;
In this example, B has been multiply
declared. A.D refers to the second D,
since A.D 1is a complete qualification of
only the second D; the first D would have
to be referred to as A.C.D.

DECIARE 1 A, 2 B, 3 ¢C, 2 D, 3 C;
In this example, A.C is ambiguous because
neither C is completely qualified by this

reference.
DECLARE 1 A, 2 A, 3 A;

In this example, A refers to the first A,
A.A refers to the second A, and A.A.A
refers to the third A.

DECLARE X;

DECLARE 1 Y, 2 X, 3 2, 3 A,
2Y, 32, 3 A;

In this example, X refers to the first
DECLARE statement. A reference to Y.Z is
ambiguous; Y.Y.Z refers +to the second %Z;
and Y.X.Z refers to the first Z.

PL/I provides input and output state-
ments that enable data to be transmitted
between the internal and external storage
devices of a computer. A collection of
data external to a program is called a data
set. Transmission of data from a data set
to a program is called input, and transmis-
sion of data from-a program to a data set
is called output.

Data sets are stored on a variety of

external storage media, such as punched
cards, reels of magnetic tape, magnetic
disks, magnetic drums, and punched paper
tape. Despite their wvariety, external
storage media have many common charac-
teristics that permit standard methods of

collecting, storing, and transmitting data.

For convenience, thus, the general term
volume is used to refer +to a unit of

external storage, such as a reel of magnet-
ic tape or a disk pack, without regard to
its specific physical composition.

items within a data set are
arranged in distinct physical groupings
called blocks. These blocks allow the data
set to be transmitted and processed in
portions rather than as a unit. For proc-
essing purposes, each block may consist of
one or more logical subdivisions called
records, each of which contains one or more
ata items.

The data

A block is also called a physical
record, because it is the unit of data that
is physically transmitted to and from a
volume. To avoid confusion between a phy-
sical record and its logical subdivisions,
the logical subdivisions are called logical
records.

When a Dblock contains two or more
records, the records are said to Dbe
blocked. Blocked records often permit more

compact and efficient use of storage. Con-
sider how data is stored on magnetic tape:
the data between two successive interrecord
gaps is one block, or physical record. If
several logical records are contained with-
in one block, the number of interblock gaps
is reduced, and much more data can be
stored on a full 1length of tape. For
example, on a tape of density 800
characters/inch with an interrecord gap of
0.6 inches, a card image of 80 characters
would take wup 0.1 inches. If the records
were unblocked, each record would require
0.1 inches, plus 0.6 inches for the inter-

record gap, making a total of 0.7 inches.
100 records would therefore take up 70
inches of tape. If the records were

CHAPTER _8: INPUT AND OUTPUT

blocked, however, at, say, 10 records to a

block, each block of 10 records would take
up 1 inch, plus 0.6 inches for the gap,
making a total of 1.6 inches. Thus, 100

records would now take up only 16 inches of
tape; this is less than 25 percent of the
amount needed for unblocked records.

Most data processing applications are
concerned with logical records rather than
physical records. Therefore, the input and
output statements of PL/I generally refer
to logical records; this allows the pro-
grammer to concentrate on the data to be
processed, without being directly concerned
about its physical organization in external
storage.

TYPES OF DATA TRANSMISSION

Two different types of data transmission
can be used by a PL/I program, stream—
oriented transmission and record-oriented
transmission.

In stream-oriented transmission, the
data in the data set is considered to be a
continuous stream of data items in
character form. Consequently, data conver-
sion 1is implied in stream transmission,
from character form to internal form on
input, and from internal form to character
form on output. The GET and PUT statements
are the data transmission statements used
in stream-oriented transmission. Varia-
bles, to which input data items are
assigned, and expressions, from which out-
put data items are transmitted, are gener-
ally specified in a data list with each GET
or PUT statement.

Although data in the data set exists in
record format, either unblocked or blocked,
in stream transmission such organization is
ignored within the program, and the data is
treated as though it actually were a con-
tinuous stream of individual data items.

In record-oriented transmission, data in
the data set is considered to be a collec-
tion of discrete logical records, recorded
in any format acceptable to the computer.
No data conversion is performed during
record transmission; on input it is trans-
mitted exactly as it is recorded in the
data set; on output it 1is transmitted
exactly as it is recorded internally.

Chapter 8: Input and Output 89

The READ, REWRITE, LOCATE, and WRITE
statements cause a single logical record to
be transmitted to or from a data variable.

Note ‘that although records may be
blocked, in which case the physical record
actually is transmitted to or from the data
set as an entity, each data transmission
statement in record I/0 is concerned with a
logical record. Blocked records are
unblocked automatically.

of files and
of particular
using record-

The following discussion
file attributes should be
interest to a programmer

oriented transmission. File handling is
simpler when using stream-oriented
transmission, and, as can be noted, fewer

attributes are applicable to stream files.

FILES

To allow a source program to deal pri-
marily with the 1logical aspects of data
rather than with its physical organization
in a data set, PL/I employs a symbolic
representation of a data set called a file.
This symbolic representation determines how
input and output statements access and
process the associated data set. Unlike a
data set, however, a file has significance
only within the source program and does not
exist as a physical entity external to the
program.

PL/I requires a file name to be declared
for a file and allows the characteristics
of a file to be described with keywords
called file attributes, which are specified
for the file name.

FILE ATTRIBUTES

The following lists show file attributes
that are applicable ¢to each type of data
transmission:

Stream Transmission
FILE

STREAM

INPUT

QuTPUT

PRINT

INTERNAL

EXTERNAL
ENVIRONMENT

90

Record Transmission
FILE

RECORD
INPUT
OUTPUT
UPDATE
INTERNAL
EXTERNAL
ENVIRONMENT
SEQUENTIAL
DIRECT
BUFFERED
UNBUFFERED
KEYED
BACKWARDS
EXCLUSIVE

A detailed description of each of these
attributes appears in Part II, Section I,
"Attributes." The discussions below give a
brief description of each attribute and
show how attributes are declared for a
file.

The FILE Attribute

The FILE attribute indicates that the
associated identifier is a file name. For
example, the identifier MASTER is declared
to be a file name in the following state-
ment :

DECLARE MASTER FILE;

Alternative and Additive Attributes

The attributes associated with the FILE

attribute fall into two categories: alter-
native attributes and additive attributes.
An alternative attribute is one that is

chosen from a group of attributes. If no
explicit or implicit declaration is given
for one of the alternative attributes in a
group and if one of the alternatives is
required, a default attribute is assumed.

An additive attribute is one that must
be stated explicitly or is implied by
another explicitly stated attribute or
name. The additive attribute KEYED can be
implied by the DIRECT attribute. The addi-
tive attribute PRINT can be implied by the
standard output file name SYSPRINT. An
additive attribute can never be applied by
default.

Note: With the exception of the INTERNAL
and EXTERNAL scope attributes, all the
alternative and additive attributes imply
the FILE attribute. Therefore, the FILE
attribute need not be specified for a file
that has at least one of the alternative or

additive attributes already specified
explicitly. The FILE attribute must be
specified explicitly, however, if only the
INTERNAL or EXTERNAL attribute is speci-
fied; otherwise, the identifier will be
assumed, by default, to be an arithmetic
variable rather than a file name.

Alternative Attributes

PL/I provides five groups of alternative
file attributes. Each group is discussed
individually. Following is a list of the
groups and the default for each:

Group Alternative Default
Type Attributes Attribute
Usage STREAM| RECORD STREAM
Function INPUT|OUTPUT| UPDATE INPUT
Access SEQUENTIAL|DIRECT SEQUENTIAL
Buffering BUFFERED|UNBUFFERED BUFFERED
Scope EXTERNAL | INTERNAL EXTERNAL

The STREAM and RECORD Attributes

The STREAM and RECORD attributes des-
cribe +the type of data transmission
(stream-oriented or record-oriented) to be
used in input and output operations for the
file.

The STREAM attribute causes a file to be
treated as a continuous stream of data
items recorded only in character form.

‘The RECORD attribute causes a file to be
treated as a sequence of logical records,
each record consisting of one or more data
items recorded in any internal form
acceptable to the implementation.

DECLARE MASTER FILE RECORD,
DETAIL FILE STREAM;

The INPUT, OUTPUT, and UPDATE Attributes

The function attributes determine the
direction of data transmission permitted
for a file. The INPUT attribute applies to
files that are to be read only. The OUTPUT
attribute applies to files that are to be
created, and hence are to be written only.
The UPDATE attribute describes a file that
is to be used for both input and output; it
allows reccrds to be inserted into an

existing file and other records already in
that file to be altered or deleted.

DECLARE
DETAIL FILE INPUT,
REPORT FILE OUTPUT,
MASTER FILE UPDATE;

The SEQUENTIAL and DIRECT Attributes

The access attributes apply only to a
file with the RECORD attribute and describe
how the records in the £file axre to be
accessed.

The SEQUENTIAL attribute normally speci-
fies that successive records in the file
are to be accessed on the basis of their
successive physical positions, such as they
are on magnetic tape.

The DIRECT attribute specifies that a
record in a file is to be accessed on the
basis of its location in the file and not
on the basis of its position relative to
the record previously read or written. The
location of the record is determined by a
key; therefore, the DIRECT attribute
implies the KEYED attribute. The associat-
ed data set must be in a direct-access
volume.

The BUFFERED and UNBUFFERED Attributes

The buffering attributes apply only to a
file that has the SEQUENTIAL and RECORD
attributes. The BUFFERED attribute indi-
cates that logical records transmitted to
and from a file must pass through an
intermediate internal-storage area. The
size of a buffer usually corresponds to the
size of the blocks (physical records) in
the data set associated with the file (a
discussion of block size and buffer alloca-
tion appears in this chapter in
"ENVIRONMENT Attribute"). The use of buf-
fers may help speed up processing by allow-
ing an overlap of transmission and comput-
ing time. It further allows the automatic
blocking and unblocking of records.

The UNBUFFERED attribute indicates that
a logical record in a data set need not
pass through a buffer but may be transmit-
ted directly to and from the internal
storage associated with a variable. The
logical records and physical records are
generally +the same size in a data set that
is associated with an UNBRUFFFRED file.

Chapter 8: Input and Output 921

Note: Specification of UNBUFFERED does not
preciude the use of Dbuffers. In some
cases, "hidden buffers" are required.
Those cases are listed in the discussion of
the BUFFERED and UNBUFFERED attributes in
Part II, Section I, "Attributes."

Additive Attributes

The additive attributes are:
PRINT
BACKWARDS
KEYED
EXCLUSIVE

ENVIRONMENT (option-list)

The PRINT Attribute

The PRINT attribute applies only to
files with the STREAM and OUTPUT attri-
butes. It indicates that the file is

eventually to be printed, that is, the data
associated with the file is to appear on
printed pages, although it may first be
written on some other medium. The PRINT
attribute causes the associated record to
be created with the initial byte reserved
for a printer control character.

The BACKWARDS Attribute

The BACKWARDS attribute applies only to
files with +the SEQUENTIAL, RECORD, and
INPUT attributes and only to data sets on

magnetic tape. It indicates that a file is
to be accessed in reverse order, beginning
with the last record and proceeding through
the file wuntil the first record is
accessed.

The KEYED Attribute

The KEYED attribute indicates that
records 1in the file are to be accessed
using one of the key options (KEY, KEYTO,
or KEYFROM) of data transmission statements
or of the DELETE statement. Note that the
KEYED attribute does not necessarily indi-
cate that the actual keys exist or are to
be written in the data set. consequently,
it need not be specified unless one of the

key options is to be used, even if keys
actually exist in the associated data set.
The STREAM and PRINT attributes cannot be
applied to "a file that has the KEYED
attribute. The use of keys is discussed in
detail in the sections "Environmental Con-
siderations for Data Sets" and
"Record-Oriented Transmission" in this
chapter.

The EXCLUSIVE Attribute

The EXCLUSIVE attribute applies only to
files with the RECORD, DIRECT, and UPDATE
attributes. It specifies that any record
in the file may be automatically locked by
a task while it is operating on that
record, to prevent interference by another
concurrent task. It can be suppressed by
the NOLOCK option on the READ statement.

For detailed information on the effects

of operations on EXCLUSIVE files, sez "The
EXCLUSIVE Attribute," in Chapter 14.

The ENVIRONMENT Attribute

The ENVIRONMENT attribute specifies
information about the physical organization
of the data set associated with a file.
These characteristics are indicated in a
parenthesized option list in the ENVIRON-
MENT attribute specification and are depen-
dent wupon the implementation. The option
list for the F Compiler is discussed in
"Environmental Considerations for Data
Sets."

OPENING AND CLOSING FILES

Before the data associated with a file
can be