
Systems Refelaence Library

IBM System/360

PL/I ReferencI3 Manual

This publication provides the rules for
writing PL/I programs that are to be com­
piled using the! PL/I (F) Compiler under
the IBM System/360 Operating System.

File No. S360-29
Form C28-8201-1 OS

Second Edition (March 1968)

This edition, C28-8201-1, obsoletes the previous edition, C28-8201-0.
Chapters 14 and 15 are completely new and should be reviewed in their
entirety: other changes are indicated by a vertical line to the left of
the changed text, while changes to illustrations are indicated by the
symbol • to the left of the caption.

Specifications contained herein are subject to change from time to time.
Any such change will be reported in subsequent revisions or Technical
Newsletters.

This publication was prepared for production using an IBM
update the text and to control the page and line
impressions for photo-offset printing were obtained from
Printer using a special print chain.

computer to
format. Page
an IBM 1403

A form is provided at the back of this publication for reader's
comments. If the form has been removed, comments may be addressed to
IBM United Kingdom Laboratories Ltd., Programming Publications, Hursley
Park, Winchester, Hampshire, England.

C International Business Machines Corporation 1967, 1968

PREFACE

This publication is planned for use as a
reference book by the PL/I programmer. It
is not intended to be a tutorial publica­
tion, but is designed for the reader who
already has a knowledge of the language and
who requires a source of reference materi­
al.

It is divided into two parts.
contains discussions of concepts
language. Part II contains dE~tailed
and syntactic descriptions.

Part I
of the
rules

Al though implementation :Lnformation is
included, the book is not a complete des­
cription of any implementation environment.
In general, it contains infOll::mation needed
in writing a program; it does not contain
all of the information required to ~~cute
a program.

The following features, discussed in
this publication., are impl'emented in the
fourth version of the F Compiler but are
not implemented in the third v'ersion:

• Based storage facilities:

The BASED, POINTER, AREA, and OFFSET
attributes;

The ADDRf NULL. NULLO, and EMPTY built­
in functions;

The AREA condition;

Area-to-area
assignment;

and

The LOCATE statement;

locator-to-Iocator

The IN option on the ALLOCATE and FREE
statements;

The SET option on the RE~J), LOCATE" and
ALLOCATE statements;

The REFER option in a l~sed structure
declaration;

The pointer qualification symbol.

• Multitasking facilities:

The TASK, EVENT, and PRIORITY options
on the CALL statement;

The EVENT option on the DISPLAY state­
ment with the REPLY option;

The TASK option in the OPTIONS list;

The TASK attribute;

Explicit declaration of event varia­
bles;

The use of event arrays in the WAIT
statement, and the use of an expression
specifying the number of events to be
waited for;

The STATUS and PRIORITY built-in func­
tions and pseudo-variables;

The EXCLUSIVE file attribute;

The UNLOCK statement;

The NOLOCK option on the READ state­
ment.

• Data interchange: the COBOL option in the
ENVIRONMENT attribute •

• Carriage control: the CTLASA and CTL360
options in the ENVIRONMENT attribute.

• The STRINGRANGE condition.

• Omission of the data list from a data­
directed PUT statement.

• Use of the LINESIZE option for any stream
output file; use of the SKIP option and
the COLUMN and SKIP format items, in GET
statements for stream input files.

• Use of VARYING strings in the INTO and
FROM options of record-oriented
input/output statements.

• Omission of the KEY option from the
DELETE statement (to allow deletion from
SEQUENTIAL UPDATE files for INDEXED data
sets).

REQUISITE PUBLICATION

For information necessary to compile,
linkage edit, and execute a program, the
reader should be familiar with the
following publication:

IBM System/360 Operating system, PL/I
(F) Programmer's Guide, Form C28-6594

~ECOM~ENDED PUBLICATIONS

']~he following publications contain other
information that might be valuable to the
PL/I programmer or to a programmer ~ho is
learning PL/:

~ PL/I Primer, Form C28-6808

A Guide to PL/I for Commercial Proqram­
~ers; Form C20-1651

A Guide to PL/I for FORTRAN Users" Form
C20-1637

CONTENTS

CHAPTER 1: BASIC CHARACTERISTICS OF
PL/I •••

Machine Independence

Program Structure. •

,Mul tiprogramming • •

Data Types and Data Description. •

Default Assumptions.

Storage Allocation •

Expressions. • •

Data Collections

Input and Output

Compile-Time Operations. •

Interrupt Activities • • •

CHAPTER 2: PROGRAM ELEMENTS ••

Character Sets • • •
60-Character Set.
48-Character set.
Using the Character Set

Identifiers •••
The Use of Blanks. •
Comments.....

Basic Program Structure.
Simple and compound Sta-tement,s.

Statement Prefixes • • • • •
Groups and Blocks • • •

CHAPTER 3: DATA ELEMENTS ••

Data Types • • • • •

Problem Data • •• • •
Arithmetic Data •

Decimal Fixed-Point Data
sterling Fixed-Point Data. •
Binary Fixed-Point Data. • •
Decimal Floating-Point Data. .
Binary Floating-Point Data
Complex Arithmetic Data.
Numeric Character Data

String Data • • • •
Character-String Data.
Bit-String Data. • • • • •

Program Control Data
Label Data. • • • • • •
Event Data ••
Task Data • • • •
Locator Data.

• 19

19

• 19

19

• 19

• • 20

• 20

• 20

• 21

• 21

• • 21

• • 22

• 23

• 23
• 23
• 23
• 24
• 25
• 25
• 25

• 26
• 26
• 26
• 27

• 28

• 28

• 28
• 28
• 29
• 30
• 30

31
• 31
• 32
• 32
• 33
• 34
• 35

• 35
• 35
• 36
• 36
• 36

CONTENTS

Area Data . • • •

Data Organization. • • • • •
Arrays. • • • • • •••

Expressions as Subscripts.
Cross Sections of Arrays

Structures. • • •
Qualified Names ••••

Arrays of Structures.

• 37

• 37
37

• 38
• 39

39
• 40
• 40

other Attributes • • • • • 41
The DEFINED Attribute. • 41
The LIKE Attribute • • • • • • • • 42
The ALIGNED and PACKED
Attributes. • • • • '. • • • • • • 42

The INITIAL Attribute. • • • 42

CHAPTER 4: EXPRESSIONS. • 44

Use of Expressions • 44

Data Conversion in Operational
Expressions • • • • . • • • • • • 45

Problem Data Conversion • • • • • • • 45
Bit-String to Character-String • • 45
Character-String to Bit-String •• 45
Character-String to Arithmetic • • 45
Arithmetic to Character-String • • 45
Bit-String to Arithmetic • • 46
Arithmetic to Bit-String • • 46
Arithmetic Mode Conversion • • 46
Arithmetic Base and Scale

• 46 Conversion. • • • • •
Locator Data Conversion •

Offset to Pointer.
Pointer to Offset. •

• • • • • • 46
• • • • • • 46

Conversion by Assignment

Expression Operations ••
Arithmetic Operations

• 46

• 46

• 46
• 46

Data Conversion in Arithmetic
Operations. • • • • • . • • • • • 47

Results of Arithmetic Operations • 47
Bit-String Operations • • • • • 49
Comp?rison Operations • • • • • 50
Concatenation Operations. • • • 51
Combinations of Operations.. • 51

Priority of Operators. • • • 52

Array Expressions ••••••••
Prefix Operators and Arrays • • • .
Infix Operators and Arrays ••

Array and Element Operations
Array and Array Operations •
Array and Structure Operations .
Data Conversion in Array

Expressions • • •

structure Expressions. • • ••••
Prefix operators and Structures •
Infix Operators and Structures.

4 53
• 53

53
• 53
• 54
• 54

• 54

• 54
55

• 55

structure and Element Operations . 55
Structure and structure
Operations. • • • • • • •• • 55

structure Assignment BY NAME • • • 55

Operands of Expressions. • • • • • 56
Function Reference Operands • • • 56

concepts of Data Conversion. • • • 57

Target A'ttributes for Type Conversion. • 58
Bit to Character and Character to
Bit. • • • • • • • • • • 58

Arithmetic to String. • • • • • • • • 58
string to Arithmetic. • • • • • . • • 58

Target Attributes for Arithmetic
Expression Operands • • • • • 59

Precision and Length of
Expression Operand Targets. • 59

Precision for Arithmetic
Conversions • • • • • • • • . 60

Lengths of Character-String
Targets • • • • • • • . • • • 61

Lengths of Bit-String Targets. • • 61
Conversion of the Value of an
Expression. • • • • • 61

Conversion Operations. • • 61

The CONVERSION, SIZE, FIXEDOVERFLOW,
and OVERFLOW Conditions •••••••• 62

CHAPTER 5: STATEMENT CLASSIFICATION. • • 64

64
• 64

Classes of Statements. • • • •
Descriptive Statements. •

The DECLARE statement. • • 64
Other Descriptive Statements

Input/Output Statements • • • •
RECORD I/O Transfer Statements •
STREAM I/O Transfer Statements •
Input/Output Control Statements.
The DISPLAY Statement. • • • •

Data Movement and Computational
Statements • • • • • • • •

The Assignment Statement •
The STRING Option. • •

Control Statements. • • •
The GO TO Statement.
The IF Statement • • • • • • • •
The DO Statement • •
Noniterative DO Statements •
The CALL, RETURN, and END

statements. • • • • • • • •
The STOP and EXIT Statements

• 64
• 65
• 65
• 65
• 66

66

• 66
• 66
• 67
• 67
• 67
• 68
• 68
• 69

• 69
• 70
• 70 Exception Control Statements. •

The ON Statement • • • • • • 70
The REVERT Statement • • • •
The SIGNAL Statement • • • • •

Program Structure Statements. •
The PROCEDURE Statement.
The ENTRY Statement. •
The BEGIN Statement. • •
The DO Statement • • • • •

• 70
71

· 71
• 71
• 71
• 72

72
72 The ALLOCATE and FREE Statements •

CHAPTER 6: BLOCKS, FLOW OF CONTROL,
AND STORAGE ALLOCATION. • • • • • • • • 73

Blocks • • _ • • • • . • • • • • • 73
Procedure Blocks. • 73
Begin Blocks. • • • • •• . • 73
Internal and External Blocks. .• 74

Use of the END Statement with
Nested Blocks and DO-GrOups
(Multiple Closure) •••••••• 74

Activation and Termination of Blocks •• 75
Activation. • • • . • • • 75
Termination • . • • • • • 77

Begin Block Termination. • • • 77
Procedure Termination. • • • • • • 77
Program Termination. • • • • • • • 78

Storage Allocation. • • . • 78
Static Storage • • • • • 79
Automatic Storage. • 79
Controlled storage • • 79
Based storage. • • • • • • • • 80

Reactivation of an Active Procedure
(Recursion) • • • • • • • • • • • • • • 80

Effect of Recursion on Storage
Classes • • • • • • 81

Prologues and Epilogues.
Prologues.
Epilogues. • • • •

• 81
• 81
• 81

CHAPTER 7: RECOGNITION OF NAMES •.. 83

Explicit Declaration • • • • • • • • 83
Scope of an Explicit Declaration. • • 84

contextual Declaration • • • • • • • • • 84
Scope of a Contextual Declaration • • 85

Implicit Declaration • • • 85

Examples of Declarations . 85

Application of Default Attributes. • 86

The INTERNAL and EXTERNAL Attributes • • 87

Multiple Declarations and Ambiguous
References. •• • • • • • 88

CHAPTER 8: INPUT AND OUTPUT. • 89

Types of Data Transmission • • 89

Files. • • • • • • • • • • 90
File Attributes • • • • • • • • • 90

The FILE Attribute •••••• 90
Alternative and Additive
Attributes. • • • • • • • • • • • 90

Alternative Attributes • • 91
The STREAM and RECORD Attributes • 91
The INPUT, OUTPUT, and UPDATE
Attributes. • •••••

The SEQUENTIAL and DIRECT
Attributes. • • • • • •

The BUFFERED and UNBUFFERED
Attributes. '. • • • •

Additive Attributes ••••••.
The PRINT Attribute. • • • • • .,
The BACKWARDS Attribute. • • • .'

• 91

• 91

• 91
• 92
• 92
• 92

The KEYED Attribute. • • • •
The EXCLUSIVE Attribute. • •
The ENVIRONMENT Attribute. •

Opening and Closing Files •

92
• 92
• 92
• 92
• 93
• 93

The OPEN Statement • •
Implicit Opening • • • • •
Merging of Attributes.
Associating Data Sets with
The CLOSE Statement. • • •

• 93
Files • 94

• • 96
Layout of STREAM Files •••
Page Layout For Print Files • •
Standard Files. • • • • •••••

Environmental Considerations for Data
Sets. • • • • • • • •

Device Independence of Input and
Output Statements. • • . • • •

The ENVIRONMENT Attribute. •
Record Format. • • •
Data Set Positioning •
Buffer Allocation. • •

• 96
• 96

97

• 97

• 98
· 98
• 98
• 99
• 99
• 99 Data Set Organization.

Carriage control • • • • •
Data Interchange • • • • • •

• .104
.105

Data Transmission. • • •

stream-Oriented Transmission • •
List-Directed Transmission •
Data-Directed Transmission •
Edit-Directed Transmission •

Data Specifications for Stream
Transmission • • • • • • • • •

Data Lists • • • • • • • • •
Repetitive Specification •
Transmission of Data-List

Elements. • • • • • • • • •
List-Directed Data Specification. •

List-Directed Data in the Stream
List-Directed Input Format • • •
List-Directed Output Format. • •

Data-Directed Data Specification. •
Data-Directed Data in the Stream
Data-Directed Input Format • • •
Data-Directed output Format. ••
Length of Data-Directed Output

.105

.105

.106

.106

.106

.106

.106
• 107

.108

.109

.109

.109

.109

.110

.110
• 111
.111

Fields •••••••••••••. 112
Edit-Directed Data Specification ••• 112

Format Lists ••••••••••• 114
Stream-Oriented Data Transmission
Statements • • • • • • • .117

Record-Oriented Transmission. • .117
Record-Oriented Data Transmission

Statements • • • • • • • • • .118
Options of Record-Oriented

Transmission Statements. .118
Record-Oriented Transmission

Statement Formats • • • • • .121
Summary of Record-Oriented
Transmission. • • .123

Examples of Declarations for RECORD
Files. •••• • ••••••• 124

CHAPTER 9: EDITING AND STRING
HANDLING • ••• 125

Editing by Assignment •••••••••• 125
Altering,the Length of String Data •• 125
Other Forms of Assignment ••• _ •• 126

Input and Output Operations •• 126
The STRING Option in GET and PUT

Statements. • • • • • • • • .126
The Picture Spe9ification •••••• 127

Character-String Picture
Specifications ••••••••• 127

Numeric Character Picture
Specifications ••••••••• 128

Values of Numeric Character
Variables. • • • • • • •• .128

Editing Numeric Character Data •• 129
Using Numeric Character Data ••• 130

Bit-String Handling • • • • • • .131
Character-String and Bit-String
Built-In Functions • • • • • • .132

CHAPTER 10: SUBROUTINES AND FUNCTIONS •• 134

Arguments and Parameters .134

Subroutines. • • .135

Functions. • • • • • • .136
Attributes of Returned Values ••• 137
Built-In Functions •••••••• 138

Relationship of Arguments and
Parameters. • • ... • .140

, ,flO Dummy Arguments • • • • • • • • • •
The ENTRY Attribute • • • • • .140

••• 141
.143
.143

Entry Names as Arguments • •
Allocation of Parameters. • •

Parameter Bounds and Lengths • •
Simple Parameter Bounds and
Lengths ••••••••••••• 143

Controlled Parameter Bounds and
Lengths • • • • • • • • • • .143

Argument and Parameter Types. • .144

Generic Names and References . • • .145

CHAPTER 11: EXCEPTIONAL CONDITION
HANDLING AND PROGRAM CHECKOUT ••••• 147

Enabled Conditions and Established
Action. • • • • • • • • • • • •• 147

Condition Prefixes •••••••• 147
Scope of the Condition Prefix ••• 147
The ON Statement • • • • .148
The Null On-Unit. • • .148
Scope of the ON Statement. • .149
The REVERT Statement. • • • .149
The SIGNAL Statement ••••••• 149
The CONDITION Condition. • • .149
The CHECK Condition. • • • .150
The SUBSCRIPTRANGE Condition ••• 150
The STRINGRANGE Condition. • .150
Condition Built-In Functions and
Condition Codes ••••••••• 150

Example of Use of ON-Conditions •• .151

CHAPTER 12: COMPILE-TIME FACILITIES ••• 154

Introduction • • • • • • .154

Preprocessor Input and Output •••••• 154
Preprocessor Scan •••••••••• 154

Rescanning and Replacement. .155

Preprocessor Variables •

Preprocessor Expressions •

Preprocessor Procedures.
Invocation of Preprocessor

Procedures •• , •••••••
Arguments and Parameters for
Preprocessor Functions • • • •

Returned Value • • • • • • • •
Use of the SUBSTR Built-In

F'unction.

The Preprocessor DO-Group.

Inclusion Of External Text •

.156

.157

.157

.157

.158
• .159

• .160

.160

.160

Preprocessor Statements. • • •••• 161

CHAPTER 13: EFFICIENT PERFORMANCE .163

Efficient Performance and Data
Conversion. • • • • • • • • • .163

Adjustable Bounds and String Lengths •• 163

VARYING String Lengths • .163

Blocks and Groups. • • • .163

The PACKED and ALIGNED Attributes. .163

The Use of the PICTURE Attribute •••• 164

CHAPTER 14: BASED STORAGE AND LIST
PROCESSING. • .165

Introduction • • .165

Based Variables and Pointer Variables. .166
Pointer Qualification. • .166
Rules and Restrictions. • .166

Pointer Defining .167
Self-Defining Data. • • • • • • .167

The REFER Option. • .167

Pointer Setting, Based Storage
Allocation, and Input/Output. •

Read with Set • • • • • • • •
I~oca te with and without Set • •
Allocate with and without Set.
Pointer Assignment. • • • • • •

The ADDR Built-in Function •
rrhe NULL Built-in Function •

Freeing Based Storage. •
Th~ Free Statement.
Implicit Freeing.

Areas and Offsets.. • • • •

.168

.168

.168

.169

.169

.169
• .• .170

.170

.170
.• .170

Area Variables. • •• • • • •
.171

•• 171
.171
.172

••• 172

Rules and Restrictions • •
Offset Variables. • • • •

Rules and Restrictions •

Allocation within an Area • • • • .
setting Offset Values • • • • • • .

The NULLO Built-in Function.
Area Assignment and Input/output. .

The EMPTY Built-in Function.
The AREA ON-Condition.
Input and Output • • • • • •

Area and Offset Defining ••••

• 172
.172
.173
.173
.173
.173
.174
.174

communication between Procedures. .174
Arguments and Parameters ••••••• 174

Pointer to Pointer. • .174
Offset to Pointer. • ••••• 175
Offset to Offset. .175
Pointer to Offset. • ••••• 175
Area to Area. • • .175

Returns from Entry Points •••••• 175
Locator Returns. • • • • • •175
Area Returns ••••••••••• 176

Variable Length Parameter Lists ••• 176

Examples of List Processing Technique •• 177

CHAPTER 15: MULTITASKING .180

Introduction • • • • •• 180

Creation of Tasks •••• .181
The Call Statement. •

The TASK Option. •
The EVENT Option •

• • • • . .181
• • • • • • • .181

The PRIORITY Option. •
Priority of Tasks •••

• • • • • .182
• • • • • .182

.182

Coordination and Synchronization of
Tasks. • • • • • • • • • • • • .183

Sharing Data between Tasks. • .183
Sharing Files between Tasks. .184

The EXCLUSIVE Attribute. • .184
The Wait Statement. .185
Testing and Setting Event Variables. .185
The Delay Statement ••••••••• 186

Termination of Tasks .186

Programming Example. .187

CHAPTER 16: A PL/ I PROGRAM .• .191

SECTION A: SYNTAX NOTATION. •• 197

SECTION B: CHARACTER SETS WITH EBCDIC
AND CARD-PUNCH CODES. • •• • • • • 199

6 O-Char acter Set. • • • • • .199
48-Character Set. •• • ••••• 200

SECTION C: KEYWORDS AND KEYWORD
ABBREVIATIONS ••••••••••••• 201

SECTION D: PICTURE SPECIFICATION
CHARACTERS. • •• • •••••••• 205

Picture Characters for
Character-String Data

Picture Characters For Numeric

'. • • • .205

Character Data. • • • • •••• 206
Digit and Decimal-Point Specifiers •• 207

Zero Suppression Characters ••••• 207
Insertion Characters. • • • • • .209
Signs And Currency Symbol. • • .210
Credit, Debit, And overpunched

Signs. • • • • • • • • • • • .212
.213
.214
.214

Exponent Specifiers •
Scaling Factor. • • • • • • • •
sterling Pictures • • • • • •

SECTION E: EDIT-DIRECTED FORMA.T ITEMS .216

Data Format Items. . · .216

Control Format Items . . . · .216

Spacing Format Item. · · · · . .217

Remote Format Item . · · · · .217

Use of Format Items. · · · · .217

ALPHABETIC LIST OF FORMAT ITEMS ••
The A Format Item. • • • •

.217

.217

.217 The B Format Item. • •
The C Format Item. • • • •
The COLUMN Format Item • •
The E Format Item. •
The F Format Item. • • • • •
The LINE Format Item •
The P Format Item. • . • • •
The PAGE Format Item •
The R Format Item. •
The SKIP Format Item •
The X Format Item. •

SECTION F: PROBLEM DATA CONVERSION
Arithmet~c Conversion • . • • • .

Floating-Point Conversion.
Mode Conversion. • • • • • •
Precision Conversion • • •
Base Conversion. • • • • •
coded Arithmetic to Numeric
character • • • • • • • • •

Numeric Character to CodE~d

• .218
.218
.219
.220
.221
.221
.221
.221

• .222
.222

.223
• .223

.223

.223
• .224
• .224

.224

Arithmetic. • • • • • .224
Data Type Conversion. • • .224

Character-String to Aritt~etic •• 224
Arithmetic to Character-String •• 225
Character-String to Bit-String •• 227
Bit-String to Character-String •• 227
Arithmetic to Bit-String ••••• 227
Bit-String to Arithmetic ••••• 227

Table of Ceiling Values ••••••. 230
Tables for Results of Arithmetic

Operations • • • • • • • • • • .230

SECTION G: BUILT-IN FUNCTIONS l\ND
PSEUDO-VARIABLES •••• ~ . • • • .233

Computational Built-In Functions. .234
String Handling Built-in Functions •• 234

BIT string Built-in Function ••• 234
BOOL String Built-in Function ••• 234
CHAR String Built-in Function ••• 235
HIGH String Built-in Function ••• 235
INDEX String Built-in Function •• 235
LENGTH String Built-in Function •• 236
LOW String Built-in Funct:ion • • .236

REPEAT String Built-in Function •• 236
SUBSTR String Built-in Function •• 237
UNSPEC String Built-in Function •• 237

Arithmetic Built-In Functions •••• 238
ABS Arithmetic Built-in Function .238
ADD Arithmetic Built-in Function .239
BINARY Arithmetic Built-in

Function. • • • • • • • • • .239
CEIL Arithmetic Built-in
Function. • • • • • .239

COMPLEX Arithmetic Built-in
Function. • • • • • • • • • .239

CONJG Arithmetic Built-in
Function. • • • • • • • • .239

DECIMAL Arithmetic Built-in
Function. • • • • • • • • • .240

DIVIDE Arithmetic Built-in
Function4 • • • • • • • • .240

FIXED Arithmetic Built-in
Function. • • • • • • • • • .240

FLOAT Arithmetic Built-in
Function. • • • • • • • • • .240

FLOOR Arithmetic Built-in
Function. • • • • • • • .240

IMAG Arithmetic Built-in
Function. • • • • • • • • .241

MAX Arithmetic Built-in Function .241
MIN Arithmetic Built-in Function .241
MOD Arithmetic Built-in Function .241
MULTIPLY Arithmetic Built-in

Function •• _ •••••••••• 242
PRECISION Arithmetic Built-in
Function. • • • • • • • .242

REAL Arithmetic Built-in
Function. • • • • • • • .242

ROUND Arithmetic Built-in
Function. • • • • • • • • .242

SIGN Arithmetic Built-in
Function. • • • • • • • • .243

TRUNC Arithmetic Built-in
Function. • • • • • • • • • .243

Mathematical Built-in Functions ••• 243
ATAN Mathematical Built-in

Function. • • • • • • • • • .243
ATAND Mathematical Built-in

Function ••••••••••••• 244
ATANH Mathematical Built-in
Function. • • • • • • • • • .244

COS Mathematical Built-in
Function. • • • • • • • • • .244

COSD Mathematical Built-in
Function •• _ • • • • • • • .244

COSH r1athematical Buil t- in
Function. • • • • • • • • .245

ERF Mathematical Built-in
Function •• _ • • • • • • • .245

ERFC Mathematical Built-in
Function. • • • • • • • • • .245

EXP Mathematical Built-in
Function. • • • • • • • • • .245

LOG Mathematical Built-in
Function. • • • • • • • • .245

LOG10 Mathematical Built-in
Function. • • • • • • • • .245

LOG2 Mathematical Built-in
Function. • _ • • • • • • • .245

SIN Mathematical Built-in
Function. • _ • • • • • • .246

SIND Mathematical Built-in
Func,tion. • • • • • • • • .246

SINH Mathematical Built-in
Function. • • • • • • • • • .246

SQRT Mathematical Built-in
Function. • • • • • • • • •

TAN Mathematical Built-in
Function. • • • • • • • •

TAND Mathematical Built-in
Functions • • • • • • • • •

TANH Mathemat~cal Built-in
Function. • • • • • • •

Summary of Mathematical
Functions • • • .'. • • •

Array Manipulation Built-in
Functions. • • • • • • •

ALL Array Manipulation Function.
ANY Array Manipulation Function.
DLM Array Manipulation 'Function.
HBOUND Array Manipulation

Function. • • • • • • • • •
LBOUND Array Manipulation

Function. • • • • • • • • •
POLY Array Manipulation Function
PROD Array Manipulation Function
SUM Array Manipulation Function.

.246

.246

.246

. 246

.247

.247

.248

.249

.249

.249

.249

.249

.250

.250

condition Built-in Functions •••• _ .250
DATAFIELD Condition Built-in

Function. • • • • • • • • .250
ONCHAR Condition Built-in

Function. • • • • • • • • • .250
ONCODE Condition Built-in
Fu~ction. • • • • • • • • • .251

ONCOUNT Condition Built-In
Function. • • • • • • • • .251

ONFILE Condition Built-in
Function. • • • • • • • .251

ONKEY Condition BUilt-in
Function. • • • • • • • • .251

ONLOC Condition Built-in
Function. • • • • .251

ONSOURCE Condition Built-in
Function. • • • •

Based Storage Built-in Functions •
ADDR Based storage Built-in

Function. • • • • • • • • •
EMPTY Based Storage Built-in

Function. • • • • • • • • •
NULL Based Storage Built-in
Function..........

NULLO Based Storage Built-in
Function. • • • • • • • •

• .252

.252

.252

.252

.252

.252

Multitasking Built-in Functions. • .253
COMPLETION Multitasking Built-in

Ftmction ••••••••••••• 253
PRIORITY Multitasking Built-in
Function. • • • • • • • • • .253

STATUS Multitasking Built-in
Ftmction. • • • • • • • • .253

Miscellaneous Built-In Functions • •
ALI.OCATION Built-in Function
COUNT Built-in Function.
DATE Built-in Function ••
tINENO Built-in Function •

• .253
.253
.254
.254

• .254

TIME Built-in Function

Pseudo-Variables • • • • • •
COMPLETION Pseudo-variable •
COMPLEX Pseudo-variable.
IMAG Pseudo-variable • • • •
ONCHAR Pseudo-variable •
ONSOURCE Pseudo-variable
PRIORITY Pseudo-variable • •
REAL Pseudo-variable •
STATUS Pseudo-variable
SUBSTR Pseudo-variable •
UNSPEC Pseudo-variable •

SECTION H: ON-CONDITIONS •

Introduction • • • • • •
Condition Codes <ON-Codes)
Multiple Interrupts ••

section Organization • •

.254

.254

.255

.255

.255

.255

.255

.255
• .256
• .256

.256

.256

.257

.257
• .258

.259

.260

Computational conditions .260
The AREA Condition .260
The CONVERSION Condition. • .261
The FIXEDOVERFLOW Condition •••• 261
The OVERFLOW Condition. • • .261
The SIZE Condition. • • .262
The UNDERFLOW Condition. .262
The ZERODIVIDE Condition .262

Input/Output Conditions. • •
The ENDFILE Condition.
The ENDPAGE Condition.
The KEY Condition. • •
The NAME Condition • •
The RECORD Condition.
The TRANSMIT Condition
The UNDEFINEDFILE Condition.

.262
••• 262

.263

.263

.264
• .264

.264

.265

Program-Checkout Conditions •• _ •••• 265
The CHECK Condition •••••••• 265
The SUBSCRIPTRANGE Condition ••• 267
The STRINGRANGE Condition. • .267

system Action Conditions • •
The ERROR Condition. •
The FINISH Condition.

Programmer-Named Condition •
The CONDITION Condition.

SECTION I: ATTRIBUTES ••••

Specification of Attributes.
Factoring of Attributes •

Data Attributes. •
Problem Data. •
Program Control Data.

Entry Name Attributes. •

File Description Attributes.

Scope Attributes

Storage Class Attributes • •

.268

.268

.268

.268

.268

.269

.269

.269

.269

.269

.270

.270

.270

• .270

.271

Alphabetic List of Attributes. '. • • .. .271
ABNORMAL and NORMALo ••••••• 271
ALIGNED and PACKED (Array and
Structure Attributes) • •

AREA (Program Control Dat:a
.271

Attribute) •••• 0 ••••••• 272
AUTOMATIC, STATIC, CONTROLLED

and BASED (Storage Class
Attributes) ••••••••••• 272

BACKWARDS (File Descripti.on
Attribute) •••••••••••• 273

BASED (Storage Class Atti.bute) •• 273
BINARY and DECIMAL (Arithmetic
Data Attributes) •••••

BIT and CHARA.CTER (Stringr
Attributes) • • • • • • • •

BUFFERED and UNBUFFERED (File
Description Attributes) • •

BUILTIN (Entry Attribute) ••
CHARACTER (String Attribute)
COMPLEX and REAL (Arithmetic

Data Attributes) ••••••
CONTROLLED (Storage Class.
Attribute). • • • • • • •

DECIMAL (Arithmetic Data

.273

.274

.274

.275

.275

.275

'. .275

Attribute). • • • • • • .275
DEFINED (Data Attribute) .275
Dimension (Array Attribute) •••• 278
DIRECT and SEQUENTIAL (File
Description Attributes) • •

ENTRY Attribute. • • • • • •
ENVIRONMENT (File Description
Attribute). • • • '. • • • •

EVENT (Program Control Data
Attribute) •••••••••

EXCLUSIVE (File Description
Attribute). • • • • • • • •

EXTERNAL and INTERNAL (Scope
Attributes) • • • • • •

FILE (File Description

.279

.279

.280

.281

.283

.283

Attribute) •••••••••••• 283
FIXED and FLOAT (Arithmetic Data
Attributes) ••••••••••• 284

FLOAT (Arithmetic Data
Attribute) •••••••••••• 284

GENERIC (Entry Name Attribute) •• 284
INITIAL (Data Attribute) ••••• 285
INPUT, OUTPUT, and UPDATE (File
Description Attributes) • •

INTERNAL (Scope Attribute)
IRREDUCIBLE and REDUCIBLE.
KEYED (File Description
Attribute). • • • • • • • •

LABEL (Program Control Data

.287

.287

.287

.287

Attribute). • • • • • • • • .287
Length (String Attribute) ••••• 288
LIKE (structure Attribute) • .288
NORMAL • • • • • .. • • • • • .289
OFFSET and POINTER (Program
Control Data Attributes) ••

OUTPUT (File Description
Attribute). • • • • • • • '.

PACKED (Array and Structure
Attribute) ,. • • • • • •

PICTURE (Data~Attribute) ...
POINTER (Program Control lData

.289

.289

.289
• 290

Attribute). • • • • • •• • .292
POSI'I'ION (Data Attribute). • • • .292

Precision (Arithmetic Data
Attribute). .. • • • • • .292

PRINT (File Description
Attribute). • .. • • • • • .293

REAL (Arithmetic Data Attribute) .293
RECORD and STREAM (File
Description Attributes) 293

REDUCIBLE. •• • • • • • • • '. • .294
RETURNS (Entry Name Attribute) •• 294
SEQUENTIAL (File Description
Attribute) 294

SETS and USES ••••••••••• 294
STATIC (Storage Class Attribute) .295
STREAM (File Description
Attribute). • • • • • • .. • .295

TASK (Program Control Data
Attribute). • • • • • • .. • .295

UNBUFFERED (File Description
Attribute). • • • • • • • .295

UPDATE (File Description
Attribute) •••••••••••• 295

USES 295
VARYING (String Attribute) • • • .2.95

SECTION J: STATEMENTS.. • • • • ..296
The ALLOCATE Statement. • .296
The Assignment Statement. • .298
The BEGIN Statement. • • .302
The CALL Statement .0 • .302
The CLOSE Statement. • • .303
The DECLARE Statement. .303
The DELAY Stat'ement. • .304
The DELETE Statement. • • .304
The DISPLAY Statement. • •• 305
The DO Statement ••••••••• 305
The END Statement ••••••••• 308
The ENTRY Statement. '. • '. • ,. • .308
The EXIT Stateroent.. .309
The FORMAT Statement. • .309
The FREE Statement 309
The GET Statement. • • • • • '. • .310
The GO TO Statement 311
The IF Statement ••••••••• 312
The LOCATE Statement. .312
The Null' Statement •••••••• 313
The ON Statement '. • • • .313
The OPEN Statement. • .314
The PROCEDURE Statement. .315
The PUT Statement 316
The READ Statement. • .318
The RETURN Statement • • • ,.320
The REVERT Statement. .320
The REWRITE Statement. • .. '. • • .321
The SIGNAL Statement '. • • • '. • .322
The STOP Statement. • .322
The UNLOCK Statement.. • '. • .. • .322
The WAIT statement •••••••• 323
The WRITE Statement 324

Preprocessor Statements. •
The %ACTIVATE Statement. • •
The % Assignment Statement
The %DEACTIVATE Statement.
The %DECLARE Statement
The %00 Statement. • •
The %END Statement • •
The %GO TO Statement
The %IF Statement. • •

.325

.325
• ,.325

.326
• .326
• .. 327

.327
• .327

.328

The %INCLUDE Statement. .328
The % Null Statement • • • .329
The %PROCEDURE Statement. .329
The Preprocessor RETURN
Statement. • • • • .330

SECTION K:

INDEX. • •

DEFINITIONS OF TERMS • .331

.339

Figure 7-1. Scopes of Data
Declarations. • .. • • • • • • • • • • • 86

Figure 7-2. Scopes of Entry and Label
Declarations However, it could appear
in a CALL statement in E, since the
CALL statement itself would provide a
contextual declaration of A, which
would then result in the SCOp4~ of A
being all of A and all of E 86

Figure 8-1. General Format for
Repetitive SpecificationsD ••••••• 108

Figure 8-2. Example of Data-Directed
Transmission (Both Input and Output) •• 113

Figure 11-1. A Program Checkout
Routine. • • • • • • • • • • • • .152

Figure 14-1. Example of
Two-Directional Chain • • . • • • .177

Figure 15-1. Synchronous and
Asynchronous Operation. • • • • • .180

Figure 15-2. Flow Diagram for
Programming Example of Multitasking •• 190

Figure D-l. Pictured Character·-String
Examples. • • • • • • • • • • • .206

Figure D-2oo Pictured Numeric
Character Examples. • • • • • .207

Figure D-3. Examples of Zero
Suppression • • • • .. • • .208

FIGURES

Figure D-4. Examples of Insertion
Characters. • • . • • • • • • • . .210

Figure D-5. Examples of Drifting
Picture Characters. • • • • • • • • • .211

Figure D-6. Examples of CR, DB, T, I,
and R Picture Characters. • • • • .. 213

Figure D-7. Examples of Floating-Point
Picture specifications 213

Figure D-8. Examples of Scaling Factor
Picture Characters 214

Figure D-9. Examples of Sterling
Picture Specifications ••••••••• 215

Figure F-l. Examples of Conversion
from Fixed-Point to Character-String •• 226

Figure F-2. Examples of Conversion
From Arithmetic to Bit-String. • .228

Figure G-l. Mathematical Built-In
Functions 247

Figure I-i. Permissible Items for
Overlay Defining. • • • • ..277

Figure J-l. General Formats of the
Assignment Statement. • • • • .299

Figure J-2. General Format of the DO
Statement • • • • • • • • • • • .306

Figure J-3. General Format of the
%DECLARE Statement. • • • .. • • .326

TABLES

Table 2-1. Some Functions of Special
Characters. • • • • • •

Table 4-1. Target Types for
Expression Operands • •

Table 4-2. Precision for Arithmetic
Conversion. • • ~

Table 4-3. Lengths of Character-String
Targets • • • • • • • • • • • • •

Table 4-4. Lengths of Bit-String

• 24

• 58

• 60

61

Targets • • • • • • • • • • 61
Table 4-5. Circumstances that Can

Cause Conversion. • • • • • • • • • 62
Table 15-1. Effect of Operations on

EXCLUSIVE Files • • • : .. • • • .184
TableF-l. Data Type of Result of
Bit-String Operation. • • • • • .228

Table F-2. Data Type of Result of
Concatenation Operation .228

Table F-3a. Data Type of Result of
Comparison Operation. • • • • • • .228

Table F-3b. Data Type of Intermediate
Operands of Comparison Operation •••• 229

Table F-4. Data Type of Result of
Arithmetic Operation •••••••••• 229

Table F-5. Precision for Arithmetic
Conversions. • . • • • • • • •. .229

Table F-6. Lengths of Converted
Character Strings (Arithmetic To
Character-String) • • • • • • • • .230

Table F-7. Lengths of Converted Bit
Strings (Arithmetic to Bit-String) •.• 230

Table F-8. Ceiling Values ••••••• 230
Table F-9. Attributes of Result in
Addition and Subtraction Operations •• 230

Table F-9. Attributes of Result in
Addition and Subtraction Operations •• 231

Table F-l0. Attributes of Result in
Multiplication Operations •••.••• 231

Table F-ll. Attributes of Result in
Division Operations •••••••••• 232

Table F-12. Attributes of Result in
Exponentiation Operations • • .. . '. . .232

PL/I is a programming lang'uage designed
to cover as wide a range of programming
applications as possible. A basic belief
underlying the design of PL/I is that
programmers have common problems, regard­
less of the different. applications with
which they may be concerned.

The language also is designed to reduce
the cost of programming, including the cost
of training programmers, the cost of debug­
ging, and, in particular, the cost of
program maintenance.

Training programmers to use a particular
language can often be expensive, particu­
larly if each programmer mus1:. be taught the
entire language, even if he need use only a
part of it. One of the prime features in
the design of PL/I is modularity: in gener­
al, a programmer need know only as much of
the language as he requirE~s to solve his
problems.

Another factor that contributes to pro'"
gramming cost is that a proqram frequently
must be rewritten, sometimes because the
system under which-it is uS4ed has changed,
sometimes because the program is to be run
on a new machine. I't is not uncommon to
find that rewriting a program costs as much
as writing it in the first place.

Two basic characteristics of PL/I are
intended to reduce the need to rewrite
complete programs if either the machine
environment or the application environment
changes. These characteristics are the
block structure used in the language and
its machine independence. '

A PL/I program is composed of blocks of
statements called procedure blocks (or
procedures) and begin blocks, each of which
defines a region of the, program. A single
program may consist of one procedure or of
several procedures and begin blocks. Eith­
er a procedure block or a begin block can
contain other blocks; a begin block must be
contained in a procedure block. Each
external procedure, that is~ a procedure
that is not contained in another procedure,
is compiled separately. The same external
procedure might be used in a number of
different programs. Consequently, a neces­
sary change made in that one block effec­
tively makes the change in all programs
that use it.

INTRODUCTION

PL/I is much less machine dependent than
most commonly used programming languages.
In the interest of efficiency" however,
certain features are provided that allow
machine dependence for those cases in which
complete independence would be too costly.

The variety of features provided by
PL/I, as well as the simplicity of the
concepts underlying them, demonstrate the
versatility of the language, its universal­
ity. and the ease with which different
subsets can be defined to meet the needs of
different users.

USE OF THIS PUBLICATION

This publication is designed as a ref­
erence ,book for the PL/I prog~ammer,. Its
two-part format allows a presentation of
the material in such a way that references
can be found quickly, in as much or as
little detail as the user needs.

Part I, "concepts of PL/I,," is composed
of discussions a.nd examples that explain
the different features of the language : and
their interrelationships. To reduce the
need for cross references ann to allow each
chapter to stand alone as a complete ref­
erence to its subject, some information is
repeated from one chapter to another. Part
I can~ nevertheless, be read Sequentially
in its entirety.

Part II, "Rules and Syntactic Descrip­
tions," provides, a quick reference to
specific information. It includes less
information about interrelationships, but
it is organized so that a particular ques­
tion can be answerej quickly. Part II is
organized purely from a reference point of
view: it is not intended for sequential
reading ..

For example, a programmer would read
Chapter 5 in Part I, "Statement Classifica­
tion," for information about the interac­
tions of different statements in a program;
but he would look in section J of Part II,
"statements," to find all the rules for the
use of a specific statement, its effect,
options allowed, and the format in which it
is written.

In the same manner, he would read Chap­
ter 4 in Part I, "Expressions," for a
discussion of the concepts of data conver­
sion, but he would use section F of Part
II, "Problem Data Conversion," to determine
the exact results of a particular type of
conversion.

15

An explanation of the syntax language
used in this publication to describe ele­
ments of PL/I is contained in Part II,
Section A, "Syntax Notation."

IMPLEMENTATION CONSIDERATIONS

This,publication reflects features of
Ithe fourth version of the F Compiler. No
attempt is made to provide complete implem­
entatio:p information; this publication is
designed for use in conjunction with IBM
Syste~/360 Operating System: PL/I (F)
PrQg!:.?mmer's Guide. Form C28-6594. Discus­
sion of implementation is limited to those
feature$ that are required for a full
explanation of the language. For example"
references to certain parameters of the
Data D$fini tion (DD) job control language

16

statement are essential to
of record-oriented input
organization.

an explanat~ion
anj output file

Implementation features identified by
the phrase "for System/360 implementa­
tions ••• " apply to all implementations for
IBM System/360 computers. Features iden­
tified by the phrase. "for the F
Compiler ••. " apply specifically to the IBM
F Compiler under the IBM System/360 Operat­
ing System.

A separate publication, IBM System/360:
PL/I Subset Reference Manual, Form
C28-8202. provides the same type of implem­
entation information as it applies to the D
Compiler used under the IBM System/360 Disk
and Tape Operating Systems.

PART I

The modulari ty of PI,II" the ease with
which subsets can be defined to. meet dif­
ferent needs. becomes apparent when one
examines the different features of the
language. Such modularity is one of the
most important characteristics of PL/I, •.

This chapter contains brief discussions
of most of the basic features t,o provide an
overall description of ' the language. Each
is treated in more detail in subsequent
chapters,. An annotated example in Chapter
14" "A PL/I Program,," illustrates the use
of many of these features.

MACHINE INDEPENDENCE

No language can be comple:tely machine
independent, but PL/I is much less machine
dependent than most commonly used program­
ming languages. The methods used to
achieve this show in the form of restric­
tions in ,the language. The most obvious
example is that data with different charac­
teristics cannot in general share the same
storage; to equate a floating-point number
with a certain number of alphabetic charac­
ters would be to make assumptions about the
representation of these data items which
would not be true for all machines.

It is recognized that the price entailed
by machine independence may sometimes be
too high. In the interest of efficiency#
certain features such as the, UNSPEC built.:­
in function and record-oriented datjl
transmission, do permit a degree of mach~n~
depEmdence ..

PROGRAM STRUCTURE

A PL/I program consists of one or more
blocks of statements called procedures. A
procedure may be thought of as a subrou­
tine. Procedures may invoke other proce­
dures, and these procedures or subroutines
may either be compiled separately, or may
be nested within the calling procedure and
compiled with it. Each procedure may con­
tain declarations that define names and
control allocation of storage.

The rules defining t.he Ulse of proce­
dures, communication between procedures,

CHAPTER 1: BASIC CHARACTERISTICS OF PL/I

the meaning of names, and allocation of
storage are fundamental to the proper
understanding of PL/I at any level but the
most elementary. These rules give the
programmer considerable control over the
degree of interaction between subroutines.
They permit flexible communication and
storage allocation" at the same time allow­
ing the definition of names and allocation
of storage for private use within a proce­
dure.

By giving the programmer freedom to
determine the degree to which a subroutine
is self-contained. PL/I makes it possible
to write procedures which can freely be
used in other environments, while still
allowing interaction in procedures where
interaction is desirable.

MULTIPROGRAMMING

By means of the PL/I multitasking facil­
ities, the programmer can specify that an
invoked procedure is to be executed concur­
rently with the invoking procedure, thus
making use of the multiprogramming capabil­
ities of the system. In this way~ the
central processing unit can be occupied
with one part of the program while the
input/output channels are occupied with
other parts of the program; this can reduce
the overall amount of waiting time during
execution.

Concurrent execution of different parts
of a program does not imply that the
program cannot be coordinated. The pro­
grammer can specify that execution of a
,procedure will be suspended at a specified
point until some point in another procedure
has been reached, or until an input/output
operation has been completed.

DATA TYPES AND DATA DESCRIPTION

The characteristic of PL/I that most
contributes to the range of applications
for which it can be used is the variety of
data types that can be represented and
manipulated. PL/I deals with arithmetic
data, string data (bit and character), and
program control data, such as labels.
Arithmetic data may be represented in a
variety of ways; it can be binary or

Cha,pter 1: Basic Characteristics of PL/I 19

decimal, fixed-point or floating-point,
real or complex, and its precision may be
specified.

PL/I provides features to perform arith­
metic operat-ions, operations for compari­
sons, logical manipulation of bit strings,
and operations and functions for assem~
bling" scanning, and subdividing character
strings.

The: compiler must be able to determine,
for every name used in a program, the
complete set of attributes associated with
that name. The programmer may specify
these attributes explicitly by means of a
DECLARE statement, the compiler may deter­
mine all or some of the attributes by
context, or the attributes may be assumed
by default.

DEFAUDT ASSUMPTIONS

An important feature of PL/I is its
default philosophy. If all the attributes
associated with a name, or all the options
permit,ted in a statement, are not specified
by the programmer, attributes or options
may be assigned by the compiler. This
defaul:t action has two main consequences.
Firs-t, it reduces the amount of declaration
and other program writing required; second,
it makes it possible to teach and use
subsets of the language for which the
programmer need not know all possible
alternatives. or even that alternatives
exis-t.

Since defaults are based on assumptions
about thE~ intent of the programmer, errors
or omissions may be overlooked. and incor­
rect attributes may be assigned by default.
To reduce the chance of this, the F Compil­
er optionally provides an attribute list­
ing, which can be used to check the names
in the program and the attributes associat­
ed with them.

~TORAGE ALLOCATION

PL/I goes beyond most other languages in
the flexibility of storage allocation that
it provides. Dynamic storage allocation is
comparatively difficult for an assembly
language programmer to handle for himself;
yet it is automatically provided in PL/I.
There are four different storage classes:
AUTOMATIC, STATIC, CONTROLLED, and BASED.
In general, the default storage class in
PL/I is AUTOMATIC. This class of storage

20

is allocated whenever the block in which
the variables are declared is activated.
At that time the bounds of arrays and the
lengths of \strings are calculated. AUTO­
MATIC storage is freed and is availablE:! for
re-use whenever control leaves the block in
which the storage is allocated.

Storage also may be declared STATIC., in
which case it is allocated when the program
is loaded; it may be declared CONTRO]~LED,
in which case it is explicitly controlled
by the programmer with ALLOCATE and FREE
statements, independent of the invocation

I
of blocks; or it may be declared Bl~SED,
which gives the programmer an even higher
degree of control.

The existence of several storage classes
enables the programmer to determine for
himself the speed, storage space, or pro­
gramming economy that he needs for each
application. The cost of a particular
facility will depend upon the implementa­
tion, but it will usually be true that the
more dynamic the storage allocation., the
greater the overhead in execution time.

EXPRESSIONS

Calculations in PL/I are specified by
expressions. An expression has a meaning
in PL/I that is similar to that of elemen­
tary algebra. For example:

A + B * C

This specifies multiplication of the value
of B by the value of C and adding the value
of A to the result. PL/I places few
restrictions on the kinds of data that: can
be used in an expression. For example, it
is conceivable, though unlikely, that A
could be a floating-point number, B a
fixed-point number, and C a character
string.

When such mixed expressions are speci­
fied, the operands will be converted so
that the operation can be evaluated mean­
ingfully. Note, however, that the rules
for conversion must be considered careful­
ly; converted data may not have the same
value as the ori'ginal. And, of course, any
conversion requires additional compiler­
generated coding, which increases execution
time,.

The results of the evaluation of
expressions are assigned to variables by
means of the assignment statement." An
example of an assignment statement is:

x = A + B * C;

This means: evaluate the expression on the
right and store the result in X. If the
attributes of X differ from th~e attributes
of the result of the expression, conversion
will again be performed.

DATA COLLECTIONS

PL/I permits the programmer many ways of
describing and operating on collections of
data~ or data aggregates. Arrays are col­
lections of data elements, all of the same
type, collected into lists or tables of one
or more dimensions. Structures are hierar­
chical collections of data, not necessarily
all of the same type. Each l~evel of the
hierarchy may contain other structures of
deeper levels. The deepest levels of the
hierarchy represent elementa:ry data items
or arrays.

An element of an array may be a struc­
ture; similarly, any level of a structure
may be an array. Operations can be speci­
fied for arrays, structures" or parts of
arrays or structures. For example:

A = B + C;

In this assignment statement~ A, B, and C
could be arrays or structures.

INPUT AND OUTPUT

Facilities for input and output allow
the user to choose between factors such as
simplicity., machine independence, and effi­
ciency. There are two broad classes of
input/output in PL/I: stream-oriented and
record-oriented.

Stream-oriented input/output is almost
completely machine independent. On input,
data items are selected onle by one from
what is assumed to be a continuous stream
of characters that are conver-ted to inter­
nal form and assigned to variables speci­
fied in a list. Similarly, on output, data
i terns are converted one by on~e to external
character form and are added to a concep­
tually continuous stream of characters.
Within the class of stream input/output,
the programmer can choose different levels
of control over the way data items are
edited and selected from or added to the
stream.

For printing, the output stream may be
considered to be divided into lines and
pages. An output stream file may be

declared to be a print file with a speci­
fied line size and page size. The program­
mer has facilities to detect the end of a
page and to specify the beginning of a line
or a page. These facilities may be used in
subroutines that can be developed into a
report generating system suitable for a
particular installation or application.

Record-oriented input/output is machine
dependent. It deals with collections of
data, called records, and transmits these a
record at a time without any data conver­
sion; the external representation is an
exact copy of the internal representation.
Because the aggregate is treated as a
whole, and because no conversion is per­
formed, this form of input/output is poten­
tially more efficient than stream-oriented
input/output, although the actual efficien­
cy of each class will, of course, depend on
the implementation.

stream-oriented input and output usually
sacrifices effic~ency for ease of handling.
Each data item is transmitted separately
and is examined to determine if data con­
version is required. Record-oriented input
and output, on the other hand. provides
faster transmission by transmitting data as
entire records, without conversion.

COMPILE-TIME OPERATIONS

Most programming is concerned only with
operations upon data.. PL/I permits a
compile-time level of operation, in which
preprocessor statements specify operations
upon the text of the source program itself.
The simplest, and perhaps the commonest
preprocessor statement is %INCLUDE (in gen­
eral, preprocessor statements are preceded
by a percent sign). This statement causes
text to be inserted into the program,
replacing the %INCLUDE statement itself. A
typical use could be to copy declarations
from an installation's standard set of
definitions into the program.

Another function p:ovided by compile­
time facilities 1S the selective
compilation of program text. For example,
it might specify the inclusion or deletion
of debugging statements.

Since a simple but powerful part of the
PL/I language is available for compile-time
activity, the generation, or replacement
and deletion, of text can become roore
elaborate, and more subtle transformations
can be performed. Such transformations
might then be considered to be
installation-defined extensions to the lan­
guage.

Chapter 1: Basic Characteristics of PL/I 21

INTERRUPT ACTIVITIES

Modern computing systems provide facili­
ties for interrupting the execution of a
program whenever an exceptional condition
arises. Further, they allow the program to
deal with the exceptional condition and to
return to the point at which the interrupt
occurred.

22

PL/I provides facilities for detecting a
variety of exceptional conditions. It
allows the programmer to specify. by means
of a condition prefix., whether ce:rtain
interrupts will or will not occur if the
condition should arise,. And, by use of an
ON statement, he can specify the action to
be taken when an interrupt does occur.

There are few restrictions l;n the format
of PL/I statements. Consequent:ly, programs
can be written without consideration of
special coding forms or checking to see
that each statement begins in a specific
column. As long as each statement is
terminated by a semicolon, t:he format is
completely free. Each ~tatemellt may begin
in the next column or position after the
previous statement, or any number of blanks
may intervene.

CHARACTER SETS

One of two character sets may be used to
write a source program; either a
60-character set or· a 48-character set.
For a given external procedure., the choice
between the two sets is optional. In
practice, this choice will depE:!nd upon the
available equipment.

60-CHARACTER SET

The 60-character set is composed of
digits, special characters_ and alphabetic
characters.

There are 29 alphabetic characters
beginning with the currency symbol ($) " the
number sign on, and the commercial "at"
sign (0» " which precede the 26 letters of
the English alphabet in 'the IBM System/360
collating sequence in Extended Binary­
Coded-Decimal Interchange Code (EBCDIC).
For use with languages o·ther than English;,
the first three alphabetic characters can
be used to cause printing of letters that
are not included in the standard English
alphabet.

There are ten digits. The decimal
digits are the digits 0 through 9. A
binary digit is either a 0 or a 1.

There are 21 special characters.
are as follows:

Name
BIailk
Equal sign
Plus Sign
Minus sign
Asterisk or

Character

or assignment symbol =
+

multiply symbol *

They

CHAPTER 2: PROGRAM ELEMENTS

Name
Slash or divide symbol
Left parenthesis
Right parenthesis
Comma
Point or period
Single quotation mark
or apostrophe

Percent symbol
Semicolon
Colon
"Not" symbol
"And" symbol
"Or" symbol
"Greater than" symbol
"Less than" symbol
Break character1.
Question mark

Character
/
(
)

%

,
&

I
>
<

Special characters are combined to
create other symbols. For example, <=
means "less than or equal to," ,- means
"not equal to." The combination ** denotes
exponentiation (X**2 means X2). Blanks are
not permitted in such composite symbols.

An alphameric character is either an
alphabetic character or a digit~ but not a
special character.

Note: The question mark, at present, has
no specific use in the language, even
though it is included in the 60-character
set.

48-CHARACTER SET

The 48-character set is composed of 48
characters of the 60-character set. In all
but four cases, the characters of the
reduced set can be combined to represent
the missing characters from the larger set.
For example" the percent symbol (%) is not
included in the 48-character set, but a
double slash (//) can be used to represent
it. The four characters that are not
duplicated are the commercial "at" sign,
the number sign, the break character, and
the question mark.

The restrictions and changes for this
character set are described in Part II,

1.The break character is the same as the
typewri ter underline character.. It can be
used with a name, such as GROSS PAY, to
improve readability. -

Chapter 2: Program Elements 23

section B, "Character Sets with EBCDIC and
Card-Punch codes."

USING THE CHARACTER SET

All the elements that make up a PL/I
program are constructed from the PL/I char­
acter sets. There are two exceptions:
character-string constants and comments may
contain any character permitted by a parti­
cular machine configuration.

certain characters perform specific
functi.:.ons in a PL/I program. For example,
many characters function as operators .•

There are
arithmetic,
string.

four types of operators:
comparison, bit-string, and

The arithmetic operators are:

+ denoting addition or prefix plus
denoting subtraction or prefix

minus

* denoting multiplication
/ denoting division

** denoting exponentiation

The comQarison operators are:

> denoting "greater than"
,> denoting "not greater than"
>= denoting "greater than or

equal to"
denoting "equal to"

,= denoting "n"ot equal to"
<= denoting "less than or equal 1:'0"

< denoting "less than"
,< denoting "not less than"

The bit-string operators are:

, denoting "not"
& denoting "and"
I denoting "or"

The string operator is:

I I denoting concatenation

Table 2-1 shows some of the functions of
other special characters.

Table 2-1. Some Functions of Special Characters
r---1
I Name Character Use I
.---i

comma Separates elements of a list I

period

semicolon

assignment
symbol

colon

blank

single quotation
mark

parentheses

arrow

()

->

Indicates decimal point or binary point;
connects elements of a qualified name

Terminates statements

Indicates assignment of values 1

Connects prefixes to statements; can be
used in specification for bounds of an
array

Separates elements of a statement

Encloses string constants and picture
specification

Enclose lists; specify information
associated with various keywords; in
conjunction wi"th operators and operands,
delimit portions of a computational
expression

Denotes pointer qualification

percent symbol % Indicates statements to be executed by the
compiler preprocessor

.---i
11 Note that the character = can be used as an equal sign and as an assignment symbol. I l ___ J

24

I,dentif iers

In a PL/I program, names or labels are
given to data, files, statements. and entry
points of different program areas. In
creating a name or label, a pr9grammer must
observe the syntactic rules for creating an
i.dentif ier,.

An identifier is a single alphabetic
character or a string of alphameric and
break characters, not contained in a com­
ment or constant, and preceded and followed
by a blank or some other delimiter; the
i.nitial character of the string must be
a.lphabe·tic. For system/3'60 implementation.,
the length must not exceed 31 characters.

Language keywords also are identifiers.
A ke,!!!ord is an identifier that, when used
i.n proper context" has a specif ic meaning
to the compiler. A keyword can specify
such things as the action to be taken" the
nature of data, the purpose of a name. For
example, READ" DECIMAL, and ENDFILE are
keywords. Some keywords can be abbreviat­
ed. A complete list of keywords and their
abbreviations is contained in Part II,
Section C, "Keywords and Keyword Abbrevia­
tions."

~ote: PL/I keywords are not reserved
words. They are recognized as keywords by
t.he compiler only when they appe~ar in their
proper context. In other contex:ts they may
be used as programmer-defined identifiers.

No identifier can exceed 31 characters
i.n length; for the F Compiler, some iden­
tifiers, as discussed in later chapters~
cannot exceed seven characters in length.
'I'his limitation is placed upon certain
names" called external names, that 'may be
referred to by the operating system or by
more than one separately compiled proce­
dure. If an external name contains more
than seven characters, it is t.runcated by
the compiler, which concatenates the first
four characters with the last th.ree charac­
t~ers,.

Examples of identifiers that could be
used for names or labels:

A

FILE2

. LOOP_3

RATE OF_PAY

#32

The Use of Blanks

Blanks may be used freely throughout a
PL/I program. They mayor may not surround
operators and most other delimiters. In
general, any number of blanks may appear
wherever one blank is allowed, such as
between words in a statement.

One or more blanks must be used to
separate identifiers and constants that are
not separated by some other delimiter or by
a comment. However, identifiers" constants
(except character-string constants) and
composite operators (for example, ,=) can­
not contain blanks.

Other cases that require or permit
blanks are noted in the text where the
feature of the language is discussed. Some
examples of the use of blanks are:

AB+BC is equivalent to AB + BC

TABLE(10} is equivalent to TABLE (10)

FIRST, SECOND is equivalent to FIRST, SECOND

ATOB is not equivalent to_A TO B

Comments are permitted wherever blanks
are allowed in a program, except within
data items" such as a character string. A
comment is treated as a blank and can
therefore be used in place of a required
separating blank. Comments do not other­
wise affect execution of a program; they
are used only for documentation purposes.
Comments may be punched into the same cards
as statements, either inserted between
statements or in the middle of them.

The general format of a comment is:

/* character-string

The character pair /* indicates the
beginning of a comment. The same character
pair reversed, */, indicates its end. No
blanks or other characters can separate the
two characters of either composite pair;
the slash and the asterisk must be immedi­
a.tely adjacent. The comment itself may
contain any characters except the */ combi­
nation, which would be interpreted as ter­
minating the comment •

Example:

/* THIS WHOLE SENTENCE COULD BE
INSERTED AS A COMMENT */

Chapter 2: Program Elements 25

Any characters permitted for a particu­
lar machine configuration may be used in
comments.

BASIC PROGRAM STRUCTURE

A PL/I program is constructed from basic
program elements called statements. There
are two types of statements: simple and
compound. These statements make up larger
program elements called groups and blocks.

SIMPLE AND COMPOUND STATEMENTS

There are three types of simple state­
ments: keyword, assignment, and null, each
of which contains a statement body that is
terminated by a semicolon.

A keyword statement has a keyword to
indicate the function of the statement; the
statement body is the remainder of the
statement.

The ~ssignment
assignment symbol
keyword.

statement contains the
(=) and does not have a

The null statement consists only of a
semicolon and indicates no operation; the
semicolon is the statement body.

Examples of simple statements are:

GO TO LOOP_3; (GO TO is a keyword; the
blank between GO and TO
is optional. The state­
ment body is LOOP_3;)

A = B + C; (assignment statement)

A compound statement is a statement that
contains one or more other statements as a
part of its statement body. There are two
compound statements: the IF statement and
the ON statement. The final statement of a
compound statement is a simple statement
that is terminated by a semicolon. Hence,
the compound statement is terminated by
this semicolon. The IF statement can con­
tain two simple statements as shown in the
following example:

IF A>B THEN A
LOOP_3;

B+C; ELSE GO TO

This example can also be written as
follows:

IF A>B
THEN A=B+C;
ELSE GO TO LOOP_3;

26

Following are examples of the ON state­
ment:

ON OVERFLOW GO TO OVFIX;

ON UNDERFLOW;

The contained statement in the second
example is the null statement represented
by a semicolon only; it indicates that no
action- is to be taken when an UNDERFLOW
interrupt occurs.

statement Prefixes

Both simple and compound statemen"ts may
have one or more prefixes. There are two
types of prefixes; the label prefix and the
condition prefix.

A label prefix identifies a stateml:mt so
that it can be referred to at some other
point in the program. A label prefix is an
identifier that precedes the statement and
is connected to the statement by a colon.
Any statement may have one or more labels.
If more than one are specified, they may be
used interchangeably to refer to that
statement.

A condition prefix specifies whether or
not interrupts are to result from the
occurrence of the named conditions. Condi­
tion names are language keywords" each of
which represents an exceptional condition
that might arise during execution of a
program. Examples are OVERFLOW and SIZE.
The OVERFLOW condition arises when the
exponent of a floating-point number e:<ceeds
the maximum allowed (representing a ma.ximum
value of about 1075). The SIZE condition
arises when a value is assigned to a
variable with loss of high-order digits or
bits.

A condition name in a condition prefix
may be preceded by the word NO to indicate
that, effectively, no interrupt is to occur
if the condition arises. If NO is used~
there can be no intervening blank b(~tween
the NO and the condition name.

A condition prefix consists of a list of
one or more condition names, separat(~d by
commas and enclosed in parentheses. One or
more condition prefixes may be attached to
a statement, and each parenthesized list
must be followed by a colon. Condition
prefixes precede the entire statE~ment,
including any possible label prefixes for
the statement. For example:

(SI ZE, NOOVERFLOW) : COMPUTE: A = B * C * ~~ D;

The single condition prefix indicates that
an interrupt is to occur if the SIZE
condition arises during execution of the
assignment statement. but that no interrupt
i.s to occur if the OVERFLOW condition
arises. Note that the condition prefix
precedes the label prefix COMPUTE.

Since intervening blanks between a pre­
fix and its associated statement are
i.gnored, it is often convenient to punch
t.he condition prefix into a separate card
that precedes the card into which the
statement is punched. Thus, after debug­
ging, the prefix can be easily removed.
F'or example:

(NOCONVERSION):

(SIZE,NOOVERFLOW):

COMPUTE: A = B * C ** D;

Note that th~re are two condition prefixes.
The first specifies that no interrupt is to
occur if an invalid character is encounter­
ed during an attempted data conversion.

Condition prefixes are discussed in
Chapter 11, "Exceptional Condition Handling
and Program Checkout."

I GROUPS AND BLOCKS

A group is a sequence of statements
headed by a DO statement and terminated by

a corresponding END statement. It is used
for control purposes. A group also may be
called a DO-group.

A block is a sequence of statements that
defines an area of a program. It is used
to delimit the scope of a name and for
control purposes. A program may consist of
one or more blocks. Every statement must
·appea.r within a block. There are two kinds
of blocks: begin blocks and procedure
blocks. A begin block is delimited by a
BEGIN s~atement and an END statement. A
procedure block is delimited by a PROCEDURE
statement and an END statement. Every
begin block must be contained within some
procedure block.

Execution passes sequentially into and
out of a begin block. However. a procedure
block must be invoked by execution of a
statement in another block. The first
procedure in a program to be executed is
invoked automatically by the operating sys­
tem. For System/360 implementations, this
first procedure must be identified by
specifying OPTIONS (MAIN) in the PROCEDURE
statement.

A procedure block may be invoked as a
task .• in which case it is executed concur­
rently with the invoking procedure. Tasks
are discussed in Chapter 15.
n :Mul ti tasking .• n

Chapter 2: Program Elements 27

~~ 3: DATA ELEMENTS

Data is generally defined as a represen­
tation of information or of value,.

In PL/I, reference to a data item,
arithmetic or string, is made by using
either a variable or a constant (the terms
are not exactly the same as in general
mathematical usage).

A yariable is a symbolic name having a
value that may change during execution of a
program.

A constant <which is not a symbolic
name) has a value that cannot change.

The following statement has both varia­
bles and constants:

AREA = RADIUS**2*3.1416;

AREA and RADIUS are variables; the numbers
2 and 3.1416 are constants. The value of
RADIOS is a data item, and the result of
the computation will be a data item that
will be assigned as the value of AREA. The
number 3.1416 in the statement is itself
the data item; the characters 3.1416 also
are written to refer to the data item.

If the number 3.1416 is to be used in
more than one place in the program, it may
be convenient to represent it as a variable
to which the value 3.1416 has been
assigned. Thus, the above statement could
be written as:

PI = 3.1416;
AREA = RADIUS**2*PIi

In this statement, only the digit 2 is a
constant.

In preparing a PL/I program, the pro­
grammer must be familiar with the types of
data that are permitted, the ways in which
dat,a can be organized, and the methods by
which data can be referred to. The follow­
ing paragraphs discuss these features.

The types of data that may be used in a
PL/I program fall into two categories:
problem data and program control data.
~blem_data is used to represent values to
be processed by a program. It consists of
two data types, arithmetic and string.

28

Program control data is used by the pro­
grammer to control the execution of his

I
program. Program control data consists Of,
the following types: label, event, task,
locator, and area.

A constant does more than state a value;
it demonstrates various characteristics of
the data item. For example, 3,.1416 shows
that the data type is arithmetic and that
the data item is a decimal number of five
digits and that four of these digits are to
the right of the decimal point.

The characteristics of a variable are
not immediately apparent in the name.
Since these characteristics, called attri­
butes, must be known, certain keywords and
expressions may be used to specify the
attributes of a variable in a DECLARE
statement. The attributes used to de'scribe
each data type are discussed briefly in
this chapter. A complete discussion of
each attribute appears in Part II~ Section
I, "Attributes."

PROBLEM DATA

The types of problem data are arithmetic
and string.

ARITHMETIC DATA

An item of arithmetic data is one with a
numeric value. Arithmetic data items have
the characteristics of base, scale~ preci­
sion~ and mode. The characteristics of
data items represented by an arithmetic
variable are specified by attributes
declared for the name, or assumed by
default.

The base of an arithmetic data item is
either decImal or binary.

The scale of an arithmetic data item is
either fixed-point or floating-point. A
fixed-point data item is a number in which
the position of the decimal or binary point
is specified, either by its appearance in a
constant or by a scale factor declared for
a variable. A floating-point data item is
a number followed by an optionally signed
exponent. The exponent specifies the
assumed position of the decimal or binary

point, relative to the posi1:ion in which it
appears.

The precision of an arithmetic data item
is the number of digits the data item may
contain, in the case of fixE~d-point, or thE~
minimum number of significant digits
(excluding the exponent) to be maintained,
in the case of floating-point. For fixed-,
point data items, precision can also
specify the assumed position of the decimal
or binary pOint, relati ve t~() the rightmost
digit of the number.

Whenever a data item is assigned to a
fixed-point variable, the declared preci­
sion is maintained. The assigned item is
aligned on the decimal or binary point.
Leading zeros are inserted if the assigned
item contains fewer integer digits than
declared; trailing zeros are inserted if it
contains fewer fractional digits. A SIZE
error may occur if the assigned item con­
tains too many integer digits; truncation
on the right may occur if it contains too
many fractional digits.

The mode of an arithmetic data item is
either -real or complex. ~ real data item
is a number that expresses a real value. A
complex data item is a pair of numbers: the
first is real and the second is imaginary.
For a variable representing complex data
items, the base, scale, and precision of
the two parts must be identical.

Base, scale, artd mode of arithmetic
variables are specified by k~~ywords; preci­
sion is specified by parenth~~sized decimal
integer constants.

In the following sections, the real
arithmetic data types discussed are decimal
fixed-point, sterling fixed--point, binary
fixed-point, decimal floating-point, and
binary floating-point" Jrny of these,
except sterling fixed-point, can be used as
the real part of a complex data item. The
imaginary part of a complex number is
discussed in the section "complex Arithmet­
ic Data," in this chapter.

Complex arithmetic varia.bles must be
explicitly declared with the COMPLEX attri­
bute. 'Real arithmetic variables may be
explicitly declared to have t.he REAL attri­
bute, but it is not necessary to do so,
since any arithmetic variable~ is assumed to
be real unless it is explicitly declared
complex.

Decimal Fixed-Point Data

A decimal fixed-point constant
of one or more decimal digits

consists
with an

optional decimal point. If no decimal
point appears, the point is assumed to be
immediately to the right of the rightmost
digit. In most uses# a sign may optionally
precede a decimal fixed-point constant.

Examples of decimal fixed-point con­
stants as written in a program are:

3.1416

455.3

732

003

5280

.0012

The keyword attributes for declaring
decimal fixed-point variables are DECIMAL
and FIXED. Precision is stated by two
decimal integers" separated by a comma and
enclosed in parentheses. The first, which
must be unsigned, specifies the total num­
ber of digits; the second~ the scale fac­
tor, may be signed and specifies the number
of digits to the right of the decimal
point. If the variable is to represent
integers# the scale factor and its preced­
ing comma can be omitted. The attributes
may appear in any order" but the precision
specification must follow either DECIMAL or
FIXED (or REAL or COMPLEX).

Following are examples of declarations
of decimal fixed-point variables:

DECL~RE A FIXED DECIMAL (5,4);

DECLARE B FIXED (6, 0) DEC IMAL ;

DECLARE C FIXED (7,-2) DECIMAL;

The first DECLARE statement specifies that
the identifier A is to represent decimal
fixed-point items of not more than five
digi ts" four of which are to be treated as
fractional, that is, to the right of the
assumed decimal point. Any item assigned
to A will be converted to decimal fixed­
point and aligned on the decimal point.
The second DECLARE statement specifies that
B is to represent integers of no more than
6 digits. Note that the comma and the zero
are unnecessary; it could have been
specified B FIXED DECIMAL (6). The third
DECLARE statement specifies a negative
scale factor of -2; this means that the
assumed decimal paint is two places to the
right of the rightmost digit of the item.

The maximum number of decimal digits
allowed for System/360 implementations is
15. Default precision, assumed when no
specification is made" is (5,0). The

Chapter 3: Data Elements 29

internal coded arithmetic form of decimal
fixed-point data is packed decimal. Packed
decimal is stored two digits to the byte,
with a sign indication in the rightmost
four bits of the rightmost byte. Conse­
quently, a decimal fixed-point data item is
always store~ as an odd number of digits,
even though the declaration of the variable
may specify the number of digits (p) as an

'I even numb, ere When the declaration speci­
fies an even number of digits, the extra
digit place is in the high-order position,
and i·t participates in any operat ions per­
formed upon the data item, such as in a
comparison operation. Any arithmetic over­
flow or assignment into an extra high-order
digit place can be detected only if the
SIZE condition is enabled.

PL/I has a facility for handling con­
stants stated in terms of ster li ng' currency
value. The data may be written in a
program with pounds, shillings, and pence
fields, each separated by a period. such
data is converted and maintained internally
as a decimal fixed-point number represent­
ing the equivalent in pence. ~ sterling
data constant ends with the letter L,
representing the pounds symbol. All three
fields (pounds. shillings, and pence) must
be present in a sterling constant. Note
that the pence field is one or more decimal
digits with an optional decimal point (the
integer part must be less than 12 and
cannot. be ami tted) •

Examples of sterling fixed-point con­
stants as written in a program are:

101.13.8L

1.10.OL

O.O.2.SL

2.4.6L

The t:hird example represents twopence­
halfpenny. The last example represents two
pounds, four shillings, and six pence. It
is converted and stored internally as 534
(pence) •

There are no keyword attributes for
declaring sterling variables, but a
variable can be declared with a sterling
picture, or sterling values may be
expressed in pence as decimal fixed-point
data. The precision of a sterling constant
is thE~ precision of its value expressed in
pence.

30

Binary Fixed-Point Data

A binary fixed-point constant consists
of one or more binary digits with an
optional binary point, followed immediately
by the letter B, with no intervening blan.k.
In most uses, a sign may optionally precede
the constant.

Examples of binary fixed-point constants
as written in a program are:

10110B

IllllB

lOlB

lll.OlB

1011. 111B

The keyword attributes for declaring
binary fixed-point variables are BINARY and
FIXED. Precision is specified by two deci­
mal integer constants, enclosed in paren­
theses, to represent the maximum number of
binary digits and the number of digits to
the right of the binary point, respective­
ly. If the variable is to represent inte­
gers, the second digit and the comma can be
omitted. The attributes ca~ appear in any
orler, but the precision specification must
follow either BINARY or FIXED (or REAL or
COMPLEX).

Following is an example of declaration
of a binary fixed-point variable:

DECLARE FACTOR BINARY FIXED (20,2);

FACTOR is declared to be a variable that
can represent arithmetic data ite~s as
large as 20 binary digits, two of which are
fractional. The decimal equivalent of that
value range is from -262,144.00 through
+262,143.75.

'rhe rna ximum number of binary digi ts
allowed for System/360 implementations is
31. Default precision is (15,0). The
internal coded arithmetic form of binary
fixeJ-point data is a fixe1-point binary
full word. A full word is 31 bits plus a
sign bit. Any binary fixed-point data item
is always stored as 31 digits, even though
the declaration of the variable may specify
fewer digits. The declared number of
digits are considered to be in the low­
order pOSitions, but the extra high-order
digits participate in any operations
performed upon the data item. Any arith­
metic overflow into such extra high-order
digit positions can be detected only if the
SIZE condition is enabled.

An identifier for which no declaration
is made is assumed to be a binary fixed­
point variable, with default precision, if
its first letter is any of the letters I
through N.

Decimal Floating-Point Data

A decimal floating-point constant is
written as a field of decimal digits
followed by the letter E, followed by an
optionally signed decimal integer exponent.
The first field of digits may contain a
decimal point. The entire constant may be
preceded by a plus or minus sign. Examples
of decimal floating-point constants as
written in a program are:

15E-23

15E23

4E-3

48333E65

438EO

3141593E-6

.003141593E3

The last two examples represent the same
value.

The keyword attributes for declaring
decimal floating-point variables are DECI­
MAL and FLOAT. Precision is stated by a
decimal integer constant enclosed in paren­
theses. It specifies the minimum number of
significant digits to be maintained. If an
item assigned to a variable has a field
width larger than the declared precision of
the variable, truncation may occUr on the
right. The least significant digit is the
first that is lost. Attributes may appear
in any order, but the precision specifi­
cation must follow either DECIM~L or FLOAT
(or REAL or COMPLEX).

Following is an example of declaration
of a decimal floating-point variable:

DECLARE LIGHT_YEARS DECIMALFLOAT(5);

This statement specifies that LIGHT_YEARS
is to represent decimal floating'-point data
items with an accuracy of at least five
significant digits.

The maximum precision allowed for deci­
mal floating-point data items for
System/360 implementations is (16); the
exponent cannot exceed two digits. A value
range of approximately 10-78 to 1075 can be

expressed by a decimal floating-point data
item. Default precision is (6). The
internal coded arithmetic form of decimal
floating-point data is normalized hexadeci­
mal floating-point, with the point assumed
to the left of the first hexadecimal digit.
If the declared precision is less than or
equal to (6), short floating-point form is
used; if the declared precision is greater
than (6), long floating-point form is used.

An identifier for which no declaration
is made is assumed to be a decimal
floating-point variable if its first letter
is any of the letters A through H, 0
through Z, or one of the alphabetic exten­
de rs, $ " #, @ •

Binary Floating-Point Data

A binary floating-point constant con­
sists of a field of binary digits followed
by the letter E, followed by an optionally
signed decimal integer exponent followed by
the letter B. The exponent is a string of
decimal digits and specifies an integral
power of two. The field of binary digits
may contain a binary point. A binary
floating-point constant may be preceded by
a plus or minus sign. Examples of binary
floating-point constants as written in a
program are:

101101E5B

101.101E2B

11101E-28B

The keyword attributes for declaring
binary floating-point variables are BINARY
and FLOAT. Precision is expressed as a
decimal integer constant, enclosed in
parentheses, to specify the minimum number
of significant digits to be maintained.
The attributes can appear in any order, but
the precision specification must follow
either BINARY or FLOAT (or REAL or
COMPLEX). Following is an example of dec­
laration of a binary floating-point varia­
ble:

DECLARE S BINARY FLOAT (16);

This specifies that the identifier S is to
represent binary floating-point data items
with 16 digits in the binary field.

The maximum precision allowed for binary
floating-point data items for System/360
implementations is (53); default precision
is (21). The exponent cannot exceed three
decimal digits. A value range of approxi­
mately 2- 260 to 2252 can be expressed by a

Chapter 3: Data Elements 31

binary floating-point data item. The
int~ernal coded arithmetic form of binary
floating-point data is normalized hexadeci­
mal floating-point. If the declared preci­
sion is less than or equal to (21), short
floating-point form is used; if the
declared precision is greater than (21),
long floating-point form is used.

Complex Arithmetic Data

In the complex mode, an arithmetic data
item is considered to consist of two parts,
the first a real part and the second a
signed imaginary part. There are no com­
plex constants in PL/I. The effect is
obtained by writing a real constant and an
imaginary constant.

An imaginary constant is written as a
real constant of any type (except sterling
fixed-point) immediately followed by the
letter I.

Examples of imaginary constants as writ­
ten in a program are:

271

3.968E10I

11011.01BI

Each of these is considered to have a real
part of zero. Although complex constants
cannot be written with a nonzero real part,
PL/I provides the facility to express such
values in the following form:

real-constant{+I-limaginary-constant

Thus a complex value could be written as
38+271.

The keyword attribute for declaring a
complex variable is COMPLEX. A complex
variable can have any of the attributes
valid for the different types of real
ari.thmetic data. Each of the base, scale.
and precision attributes applies to both
fields.

Unless a variable is explicitly declared
to have the COMPLEX attribute, it is
assumed to represent real data items.

~eric Character Data

A numeric character data item (also
known as a numeric field data item) is the

32

value of a variable that has been declared
with the PICTURE attribute and a numeric
picture specification. The data item is
the character representation of a decimal
fixed-point or floating-point value.

A numeric picture specification des­
cribes a character string to which only
data that has, or can be converted to, an
arithmetic value is to be assigned. A
numeric picture specification cannot con­
tain either of the picture characters A or
X, which are used for non-numeric picture­
character strings. The basic form of a
numeric picture specification is one or
more occurrences of the digit-specifying
picture character 9 and an optional
occurrence of the picture character V, to
indicate the assumed location of a decimal
point. The picture specification must be
enclosed in single quotation marks. For
example:

• 999V99'

This numeric picture specification des­
cribes a data item consisting of up to five
decimal digits in character form, with a
decimal point assumed to precede the right­
most two digits.

Repetition factors may be used in numer­
ic picture specifications. A repetition
factor is a decimal integer constant,
enclosed in parentheses~ that indicates the
number or repetitions of the immediately
following picture character. For example,
the following picture specification would
result in the same description as the
example shown above:

, (3) 9V (2) 9'

The format for declaring a numeric char­
acter variable is:

DECLARE identifier PICTURE
'numeric-picture-specification';

For example:

DECLARE PRICE PICTURE '999V99';

This specifies that any value assigned to
PRICE is to be maintained as a character
string of five decimal digits~ with an
assumed decimal point preceding the right­
most two digits. Data assigned to PRICE
will be aligned on the assumed point in the
same way that point alignment is maintained
for fixed-point decimal data.

The numeric picture specification can
specify all of the arithmetic attributes of
data in much the same way that they are
specified by the appearance of a constant.
Only decimal numeric data can be represent­
ed by picture characters. Complex data can

be declared by specifying the COMPLEX
attribute along with a single picture
specification that describes either a
fixed-point or a floating-point data item.

I-t is important to note that, although
numeric character data has arithmetic
attributes, it is not stored in coded
arithmetic form. In System/360 implement­
ations, numeric character data is stored in
zoned decimal format; before it can be used
in arithmetic computations, it must be
converted either to packed decimal or to
hexadecimal floating-point form~t. Such
conversions are done automatically, but
they require extra execution time.

Although numeric character data is in
character form, like character strings, and
although it is aligned on the decimal point
like coded arithmetic data, it is processed
differently from the way either coded
arithmetic items or character strings are
processed. Editing characters can be spec­
ified for insertion into a numeric charac­
ter data item, and such chara cters are
actually stored within the data item. Con­
sequently, ~.07hen the item is printed. or
treated as a character string, the editing
characters are included in the assignment.
If, however, a numeric character item is
assigned to another numeric character or
arithmetic variable, the edi ti ng characters
will not be included in the assignment;
only the actual digits and the location of
the assumed decimal point are assigned.

consider the following example:

DECLARE PRICE PICTURE '$99V.99',
COST CHARACTER (6),
VALUE FIXED DECIMAL (6,2);

PRICE = 12.28;

COST = '$12.28';

In the picture specification for PRICE, the
currency symbol ($) and the decimal point
(.) are editing characters. They are
stored as characters in the data item.
They are not, however, a part of its
arithmetic value. After execution of the
second assignment statement:, the actual
internal character representation of PRICE
and COST can be considered identical. If
they were printed, they would print exactly
the same. They do not, however, always
function the same. For example:

VALUE = PRICE;

COST = PRICE;

VALUE COST;

PRICE COST;

~fter the first two assignment state­
ments are executed, the value of VALUE
would be 0012.28 and the value of COST
would be '$12.28'. In the assignment of
PRICE to VALUE, the currency symbol and the
decimal point are considered to be editing
characters, and they are not part of the
assignment; the arithmetic value of PRICE
is converted to internal coded arithmetic
form. In the assignment of PRICE to COST,
however, the assignment is to a character
string~ and the editing characters of a
numeric picture specification always parti­
cipate in such an assignment. No conver­
sion is necessary because PRICE is stored
in character form.

The third and fourth assignment state­
ments would cause errors. The value of
COST cannot be assigned to VALUE because
the currency symbol in the string makes it
invalid as an arithmetic constant. The
value of COST cannot be assigned to PRICE
for exactly the same reason. Only values
that are of arithmetic type, or that can be
converted to arithmetic type, can be
assigned to a variable declared with a
numeric picture specification.

Note: ~lthough the decimal point can be an
editing character or an actual character in
a character string, it will not cause an
error in converting to arithmetic form,
since its appearance is valid in an arith­
metic constant. The same would be true of
a valid plus or minus sign, since arithmet­
ic constants can be preceded by signs.

Other editing characters, including zero
suppression characters, drifting charac­
ters, and insertion characters, can be used
in numeric picture specifications. For
complete discussions of picture characters,
see Part II, section D6 "Picture Specifi­
cation Characters" and the discussion of
the PICTURE attribute in Part II, Section
I, "Attributes."

STRING DATA

A string is a contiguous sequence of
characters (or binary digits) that is
treated as a single data item. The length
of the string is the number of characters
(or binary digits) it contains.

There are two types of strings: charac­
ter strings and bit strings.

Chapter 3: Data Elements 33

Character-String Data

~ character string can include any
digit~ letter, or sgecial character recog­
nized ~s a character by the particular
machine: configuration. Any blank included
in a character string is an integral char­
acter and is included in the count of
length. A comment that is inserted within
a character string will not be recognized
as a comment. The comment, as well as the
comment delimiters (/* and */), wi 11 be
consideted to be part of the character­
strin9 diata.

Character-string constants, when written
in a pr¢gram, must be enclosed in single
quotat:i6n marks. If a single quotation
mark is a character in a string, it must be
written as two single quotation marks with
no intervening blank. The length of a
character string is the number of
characters between the enclosing quotation
marks. If two single quotation marks are
used within the string to represent a
single quotation mark, they are counted as
a single character.

Examples of character-string constants
are:

'LOGA.RITHM TABLE'

'PAGE 5'

'SHAKESPEA~E"S ""HAMLET"'"

'AC43 8-19'

(2"'WALLA '

The third example actually indicates
SHAKESPBARE'S "H~lLET" WITH A LENGTH OF
24. In the last example, the parenthesized
number iis a reEtition factor, which indi­
cates repetition of the characte~s that
follow. This example specifies the con­
stant 'WALLA WALLA ' (the blank is included
as one of the characters to be repeated).
The repetition factor must be an unsigned
decimal integer constant, enclosed in
parentheses.

The keyword attribute for declaring a
charact~r-string variable is CHARACTER.
Length is declared by an expression or a
decimal integer constant, enclosed in
parentheses, which specifies the number of
charact~rs in the string. The length
specific:ation must follow the keyword CHAR­
ACTER.,For example:

DECLARE NAME CHARACTER (15);

This DECLAIlli statement specifies that the
identifiier NAME is to represent character-

34

string data items, 15 characters in length.
If a character string shorter than 15
characters were to be assigned to NAME, it
would be left adjustej and padded on the
right with blanks to a length of 15. If a
longer string were assigned, it would be
truncated on the right. (Note: If such
truncation occurs, no interrupt will result
as it might for truncation of arithmetic
data, and there is no ON condition in PL/I
to deal with string truncation.>

Character-string variables may also be
declared to have the VARYING attribute, as
follows:

DECLARE NAME CHARACTER (15) VARYING:

This DECLARE statement specifies that the
identifier NAME is to be used to reoresent
varying-length character-string data" items
with a maximum length of 15. The actual
length attribute for N&~E at any particular
time is the length of the data item
assigned to it at that time. The program­
mer need not keep track of the length of a
varying-length character string; this is
done automatically. The length at any
given time can be determine3 by the pro­
grammer, however, by use of the LENGTH
built-in function, as discussed in Chap-ter
9, "Editing and String Handling." Note for
the F Compiler that until a varying-length
string variable is given an initial value,
its length is set to zero.

Character-string data in system/360
implementations 'is maintained internally in
character format, that is, each character
occupies one byte of storaqe. 'I'he maximum
length allowe,j for variabies declared with
the CHARACTER attribute is 32 8 767. The
maximum length allowed for a charactl~r­
string constant after application of
repetition factors varies according to the
amount of storage available to the compil­
er, but it never will be less than 1,007
(see IBM System/360 02eratinq system: PI.,/I
iKLz.. Programmer's Guide, Form C28-659l~).
The minimum length for a character string
is zero.

Character-string variables also can be
declared using the PICTURE attribute of 1:he
form:

PICTURE 'character-picture-specification'

The character picture specification is a
string composed of the picture specifi­
cation characters A, X, and 9. The string
of picture characters must be enclosed in
single quotation marks, and it must contain
at least one A or X and no other picture
characters except 9. The character A spe­
cifies that the corresponding position in
the described field will contain an alpha­
betic character or blank. The character X

specifies that any character may appear in
the corresponding position in the field.
The picture character 9 specifies that the

Chapter 3: Data Elements 34.1

corresponding position will contain a
numeric character or blank. For example:

DECLARE PART_NO PICTURE 'ru\9999X999';

~rhis DECLARE statement specifies that the
identifier PART_NO will represent
character-string data items consisting of
two alphabetic characters, four numeric
characters~ one character that may be any
character, and three numeric characters.

Repetition factors are used in picture
specifications differently from the way
they are used in string constants. Repeti­
tion factors must be placed inside the
quotation marks. The repetit:ion factor
specifies repetition of the immediately
following picture character. For example,
the above picture specification could be
written:

• (2)A(4)9X(3)9'

The maximum length allowed for a picture
specification is the same as that allowed
for character-string constants~ as dis­
cussed above.

Note that, for character picture speci­
fications, the picture charact.er 9 speci­
fies a digit or a blank, while, for numeric
picture specifications" the sam€~ character
specifies only a digit.

~it-string Data

A bit-string constant is written in a
program as a series of binary digits
enclosed in single quotation marks and
followed immediately by the letter B.

Examples of bit-string constants
written in a program are:

'liB

'11111010110001~B

(64)'0'B

as

The parenthesized number in the last exam­
ple is a repetition factor which specifies
that the following series of digits is to
be repeated the specified number of times~
The example shown would result :in a string
of 64 binary zeros.

A bit-string variable is declared with
the BIT keyword attribute. Leng·th is spec­
ified by an expression or a decimal integer
constant, enclosed in parentheses# to spec­
ify the number of binary di9its in the
string. The letter B is not included in

the length specification since it is not
part of the string~ The length specifi­
cation must follow the keyword BIT. Fol­
lowing is an example of declaration of a
bit-string variable:

DECLARE SYMPTOMS BIT (64);

Like character strings, bit strings are
assigned to variables from left to right.
If a string is longer than the length
declared for the variable, the rightmost
digits are truncated; if shorter, padding,
on the right, is with zeros.

A bit-string variable may be given the
VARYING attribute to indicate it is to be
used to represent varying-length bit
strings. Its application is the same as
that described for character-string varia­
bles in the preceding section.

with System/360 implementations, bit
strings are stored eight bits to a byte.
The maximum length allowed for a bit-string
variable with the F compiler is 32,767.
The maximum length allowed for a bit-string
constant after application of repetition
factors depends upon the amount of storage
available to the compiler, but it will
never be less than 8,056 (1,007 bytes).
The minimum length for a bit string is
zero.

PROGRAM CONTROL DATA

The types of program control data are
Ilabel, event, task" locator, and area.

LABEL DATA

A label data item is a label constant or
the value of a label variable.

A label constant is an identifier writ­
ten as a prefix to a statement so that,
during execution# program control can be
transferred to that statement through a
reference to its label. A colon connects
the label to the statement.

ABCDE: DISTANCE = RATE*TIME;

In this example, ABCDE is the statement
label. The statement can be executed eith­
er by normal sequential execution of
instructions or by transferring control to
this statement from some other point in the
p:rogram by means of a GO TO statement.

As used above, ABCDE can be classified
further as a statement-label constant. A

Chapter 3: Data Elements 35

sta-tement-label variable is an identifier
that refers to statement-label constants.
Consider the following example:

LBL_A! statement;

statement;

GO TO LBL~X;

LBL_A and LBL B are statement-label con­
stants because they are prefixed to state­
ments. LBL X is a statement-label varia­
ble. By assigning LBL_A to LBL_X, the
statement GO TO LBL_X causes a transfer to
the LBL_A statement. Elsewhere., the pro­
gram may contain a statement assigning
LBL B to LBL X. Then, any reference to
LBL_X would be the same as a reference to
LBL B. This value of LBL X is retained
untIl another value is assigned to it.

A statement-label variable must be
declared with the LABEL attribute., as fol­
lows:

DECLARE LBL X LABEL:

EVENT DATA

Event variables are used to coordinate
the concurrent execution of a number of
procedures, or to allow a degree of overlap
between a record-oriented input/output
operation and the execution of other state­
ments in the procedure that initiated the
operation.

A variable is ~iven the EVENT attribute
by its appearance 1n an EVENT option or a
WAIT statement, or by explicit declaration,
as in the following example:

DECLARE ENDEVT EVENT;

For detailed information, see Chapter
15, "Multitasking.," and "The EVENT Option"
in Chapter 8, "Input and output."

36

TASK DATA

Task variables are used to control the
relative priorities of different tasks
(i.e., concurrent separate executions of a
procedure or procedures).

A variable is given the TASK attI: ibute
by its appearance in a TASK option, or by
explicit declaration., as in the following
example:

DECLARE ADTASK TASK;

For detailed information, see Chapter
15, "Multitasking."

LOCATOR DATA

There are two types of locator data:
pOinter and offset.

The value of a pointer variable is
effectively an address of a location in
storage, and so it can be used to qualify a
reference to a variable that may have been
allocated storage in several different
locations, all of which are immediately
accessible. Since based storage is so
allocated, reference to a based va:riable
must be qualif ied in some way ; with -the F
Compiler, this qualification must b,= pro­
vided by a pOinter variable.

The value of an offset variable speci­
fies a location relative to the start of a
reserved area of storage and remains valid
when the address of the area itself chan­
ges ..

Locator variables can be declared a.s in
the following example:

DECLARE HEADPTR POINTER,
FIRST OFFSET (AREAl);

In this example, AREAl is the name of 'the
reserved area of storage that will contain
the location specified by FIRST.

A variable can also be given the POINTER
attribute by its appearance in the BASED
attribute, by its appearance on the left­
hand side of a pointer qualification
symbol, or by its appearance in a SET
option.

For detailed information, see Chapter
14, "Based Storage and List Processing."

AREA DATA

Area variables are llsed to describe
areas of storage that are to be reserved
for the allocation of based variables. An
area can be assigned or transtnitted com­
plete with its contained allocations; thus,
a set of based allocations can be treated
as one uni-t for assignmen1: and input/output
while each allocation retains its indivi­
dual identity.

A variable is given the AREA attribute
either by its appearance in the OFFSET
attribute or an IN option, or by explicit
declaration, as in the following example:

DECLARE AREAl AREA(20dO),
AREA2 AREA;

The number of bytes of storage to be
reserved can be stated explicitly, as it
has been for AREAl in the example; other­
wise a default size is assumed. For the F
Compiler, this default size is 1000 bytes .•

For detailed information, see Chapter
14" "Based Storage and List Processing."

DATA ORGANIZATION

In PL/I, data items may be single data
elements, or they may be grouped together
to form data collections called arrays and
structures. A variable that represents a
single element is an element variable (also
called a scalar variable).. A variable that
represents a collection of data elements is
either an array variable or a structure
variable.

Any type of problem data or program
control data can be collected into arrays
or structures.

ARRAYS

Data elements having the same charac­
teristics, that is" of the same data type
and of the same precision or IEmgth, may be
grouped together to form an array. An
array is an n-dimensional collection of
elements" all of which havE~ identical
attributes. Only the array itself is given
a name. An individual item of an array is
referred to by giving its rela1:ive pOSition
within the array.

consider the following two declarations:

DECLARE LIST (8) FIXED DECIMAL (3);

DECLARE TABLE (4,2) FIXED DECIMAL (3);

In the first example, LIST is declared to
be a one-dimensional array of eight ele­
ments, each of which is a fixed-point
decimal item of three digits.. In the
second example, TABLE is declared to be a
two-dimensional array, also of eight fixed­
point decimal elements.

The parenthesized number or numbers
following the array name in a DECLARE
statement is the dimension attribute speci­
fication. It must follow the array name,
with or without an intervening blank. It
specifies the number of dimensions of the
array and the bounds, or extent, of each
dimension. Since only one bounds specifi­
cation appears for LIST, it is a one­
dimensional array. Two bounds specifi­
cations; separated by a comma., are listed
for TABLE; consequently, it is declared to
be a two-dimensional array.

The bounds of a dimension are the
beginning and the end of that dimension .•
The extent is the number of integers
between, and including, the lower and upper
bounds. If only one integer appears in the
bounds specification for a dimension, the
lower bound is assumed to be 1. The one
dimension of LIST has bounds of 1 and 8;
its extent is 8. The two dimensions of
TAB I.E have bounds of 1 and 4 and 1 and 2 ;
the extents are 4 and 2,.

I If the lower bound of a dimension is not
1, both the upper bound and the lower bound
must be stated explicitly., with the two
numbers connected with a colon. For exam­
ple:

DECLARE LIST_A (4:11);

DECLARE LIST_B (-4:3);

In the first example" the bounds are 4 and
11; in the second they are -4 and 3. Note
that the extents are the same; in each
case, there are 8 integers from the lower
bound through the upper bound. It is
important to note the difference between
the bounds and the extent of an array. In
the manipulation of array data (discussed
in Chapter 4, "Expressions") involving more
than one array., the bounds -- not merely
the extents -- must be identicalq Although
LIST, LIST A. and LIST B all have the same
extent, the bounds are-not identical.

The bounds of an array determine the way
elements of the array can be referred to.
For example, assume that the following data

Chapter 3: Data Elements 37

items are assigned to the array LIST, as
declared above:

20 5 10 30 630 150 310 70

The different elements would be referred
to as follows:

Reference Element
LIST-rr-)- 20

LIST (2) 5

LIST (3) 10

LIST (4) 30

LIST (5) 630

LIS'!' (6) 150

LIST (7) 310

LIST (8) 70

Each of the numbers following the name
LIST is a subscript. A parenthesized sub­
script following an array name, with or
without an intervening blank, specifies the
relative position of a data item within the
array. A subscripted name, such as
LIST(4), refers to a single element and is
an element variable. The entire array can
be referred to by the unsubscripted name of
the array, for example, LIST. In this
case q LIST is an array variable. Note the
difference between a subscript and the
dimension attribute specification. The
latter, which appears in a declaration."
specifies the dimensionality and the number
of elements in an array. Subscripts are
used in other references to identify speci­
fic elements within the array.

The same data assigned to LIST A and
LIST __ B, as declared above, would be
referred to as follows:

Reference Element Reference
iIST_A(4) --"20- LIST_B (-4)

LIST_,A (5) 5 LIST_B (-3)

LIST_A (6) 10 LIST_B (-2)

I~IST_A (7) 30 LIST_B (-1)

I~IST A (8) 630 LIST_B (0)

I~IST_A (9) 150 LIST_B (1)

I.IST~A (10) 310 LIST_B (2)

LIST_A (11) 70 LIST_B (3)

Assume that the same data were assigned
to 'l'ABLE, which is declared as a two-
dimensional array. TABLE can be

38

illustrated as a matrix of four rOWB and
two columns, as follows:

TABLE(m,n) (m,l) (m,,2)
(l,n) 20 5

(2,n) 10 30

(3,n) 630 150

(4,n) 310 10

An element of TABLE is referred to by a
subscripted name with two parenthesized
subscripts, separated by a comma. For
example, TABLE (2,1) would specify the
first item in the second row, in this case,
the data item 10.

Note: The use of a matrix to illust:rate
TABLE is purely conceptual. It has no
relationship to the way in which the items
are actually organized in storage. Data
items are assigned to an array in row major
order, that is, with the right-most sub­
script varying most rapidly. For example,
assignment to TABLE would be to TABLE(l,l),
TABLE(1,2), TABLE(2,1), TABLE(2,2) and so
forth.

Arrays are not limited to two dimen­
sions. The PL/I F Compiler allows as many
as 32 dimensions to be declared for an
array. In a reference to an element of any
array, a subscripted name must contain as
many subscripts as there are dimensions in
the array.

Examples of arrays in this chapter have
shown arrays of arithmetic data. Other
data types may be collected into arrays.
string arrays, either character or bit, are
valid" as are arrays of statement labels.

Expressions as Subscripts

The subscripts of a subscripted name
need not be constants. Any expression that
yields a valid arithmetic value can. be
used. If the evaluation of such an expres­
sion does not yield an integer value, the
fractional portion is ignored. For
System/360 implementations" the integer
value is converted, if necessary~ to a
fixed-point binary number of precision
(15~0), since subscripts are maintained
internally as binary integers.

Subscripts are frequently expressed as
va~iables or other expressions. Thus,
TABLE(I,J*K) could be used to refer to the
different elements of TABLE by varying the
values of I, J, and K.

Cross Sections of Arrays

Cross sections of arrays can be referred
to by substituting an asterisk for a sub­
script in a subscripted name. The asterisk
then specifies that the entire extent is to
be used. For example, TABLE(*,l) refers to
all of the elements in the first column of
TABLE. It specifies the Cl:OSS section
consisting of TABLE(l g l), TABLE(2,1),
TABLE(3,1), and TABLE(4,1). The subscript­
ed name TABLE(2,*) refers to all of the
data i terns in the second l:OW of TABLE.
TABLE(*,*) refers to the entire array.

Note that a subscripted name containing
asterisk subscripts represents, not a sin­
gle data element, but an array with as many
dimensions as there are asterisks. Conse­
quently, such a name is not an element
expression, but an array expression.

$TRUCTURES

Data items that need not have identical
characteristics~ but that possess a logical
relationship to one another, cam be grouped
into aggregates c~lled structures.

Like an array~ the entire structure is
given a name that can be used to refer to
the entire collection of data. Unlike an
array" however, each element of' a structure
also has a name.

A structure is a hierarchical collection
of names. At the bottom of the hierarchy
is a collection of elements, each of which
represents a single data item or an array.
At the top of the hierarchy i.s the struc­
ture name. which represents the entire
collection of element variables. For exam­
ple, the following is a collection of
element variables that might be used to
compute a weekly payroll:

LAST NAME
FIRST NAME
REGULAR_HOURS
OVERTIME_HOURS
REGULAR_RATE
OVERTIME_RATE

These variables could be collected into
a structure and given a single structure
name, PAYROLL" which would refer to the
entire collection.

PAYROLL

LAST_NAME

OVERTIME_HOURS OVERTIME_RATE

Any reference to PAYROLL would be a
reference to all of the element variables.
For example:

GET DATA (PAYROLL);

This input statement could cause data to
be assigned to each of the element varia­
bles of the structure PAYROLL.

It often is convenient to subdivide the
entire collection into smaller logical col­
lections. In the above examples, LAST_NAME
and FIRST_NAME might make a logical subcol­
lection, as might REGULAR_HOURS and
OVERTIME_HOURS, as well as REGULAR_RATE and
OVERTIME RATE. In a structure, such sub­
collections also are given names.

NAME

FIRST
LAST

PAYROLL

HOURS

REGULAR
OVERTIME

RATE

REGULAR
OVERTIME

Note that the hierarchy of names can be
considered to have different levels. At
the· first level is the structure name
(called a major structure name); at a
deeper level are the names of substructures
(called minor structure names); and at the
deepest are the element names (called elem­
entary names). An elementary name in a
structure can represent an array, in which
case it is not an element variable, but an
array variable.

The organization of a structure is spec­
ified in a DEcr/ARE statement through the
use of level numbers. A major structure
name must be declared with the level number
1. Minor structures and elementary names
must be declared with level numbers arith­
metically greater than 1; they must be
decimal integer constants. A blank must
separate the level number and its associat­
ed name.

For example, the items of a weekly
payroll could be declared as follows:

DECLARE 1 PAYROLL,
2 NAME.,

3 LAST,
3 FIRST,

2 HOURS,
3 REGULAR,
3 OVERTIME,

2 RATE,
3 REGULAR,
3 OVERTIME;

Chapter 3: Data Elements 39

Not~~ In an actual declaration of the
stru.cture PAYROLL. attributes would be
specified for each of the elementary names.
The pattern of indention in this example is
used only for readability. The statement
could be written in a continuous string as
DECLARE 1 PAYROLL, 2 NAMEI 3 LAST, etc.

PAYROLL is declared as a major structure
containing the minor structures NAME,
HOURS, and RATE. Each minor structure
contains two elementary names. A program­
mer can refer to the entire structure by
the name PAYROLL, or he can refer to
portions of the structure by referring to
the minor structure names. He can refer to
an element by referring to an elementary
name.

Note that in the declaration. each level
number precedes its associated name and is
separated from the name by a blank. The
numbers chosen for successively deeper
levels need not be the immediately succeed­
ing integers. They are used merely to
specify the relative level of a name. A
minor structure at level n contains all the
names with level numbers greater than ~
that lie between that minor structure name
and the next name with a level number less
than or equal to n. PAYROLL might have
been declared as follows:

DECLARE 1 PAYROLL,
4 NAME,

5 LAST,
5 FIRST,

2 HOURS.,
6 REGULAR,
5 OVERTIME,

2 RATE,
3 REGULAR,
3 OVERTIME;

This declaration would result in exactly
the same structuring as the previous dec­
laration.

The description of a major structure
name is terminated by the declaration of
another item with a level number 1, by the
declaration of another item with no level
number, or by a semicolon terminating the
DECLARE statement.

Level numbers are specified with struc­
ture names only in DECLARE statements.. In
references to the structure or its ele­
ments, no level numbers are used.

Qualified Names

A minor structure or a structure element
can be referred to by the minor structure
name or the elementary name alone if there

40

is no ambiguity. Note, however, that each
of the names REGULAR and OVERTIME appears
twice in the structure declaration for
PAYROLL. A reference to either name 'Nould
be ambiguous without some qualification ·to
make the name unique.

PL/I allows the use of qualified names
to avoid this ambiguity. A qualified. name
is an elementary name or a minor structure
name ·that is made unique by qualifying it
with one or more names at a higher l'evel.
In the PAYROLL example, REGUUL~ and OVER­
TIME could be made unique through us,e of
the qualified names HOURS. REGULAR,
HOURS. OVERTIME, RATE. REGULAR, and
RATE .• OVERT IME.

The different names of a qualified name
are connected by periods. Blanks mayor
may not appear surrounding the pe:c iod .•
Qualification is in the order of levels;
that is, the name at the highest level must
appear first, with the name at the de'epest
level appearing last.

Any of the names in a structure, except
the major structure name itself, need not
be unique within the procedure in which it
is declared. For example, the qualified
name PAYROLL. HOURS. REGULAR might be
required to make the reference unique
(another structure, say WORK, might also
have the name REGULAR in a minor structure
HOURS; it could be made unique with the
name WORK.HOURS.REGULAR). All of the
qualifying names need not be used, although
they may be, if desired. Qualification
need go only so far as necessary to make
the name unique. Intermediate qualifying
names can be omitted. The name
PAYROLL. LAST is a valid reference to the
name PAYROLL. NAME. LAST.

ARRAYS OF STRUCTURES

A structure name., either major or minor,
can be given a dimension attribute in a
DECLARE statement to declare an arra:{ of
structures. An array of structures is an
array whose elements are structures having
identical names, levels, and elements. For
example, if a structure, WEATHER, were used
to process meteorological information for
each month of a year, it might be declared
as follows:

Form C28-8201-1, Page Revised by TNL N33-6008, 5/1/68

DECLARE 1 WEATHER (12) ,
2 TEMPERATURE,

3 HIGH DECIMAL FIXED(4,1),
3 LOW DECIMAL FIXED(3,1),

2 WIND VELOC ITY ,
3 HIGH DECIMAL FIXED(3),
3 LOW DECIMAL FIXED(-2),

2 PRECIPITATION,
3 TOTAL DECIMAL FIXED(3,1),
3 AVERAGE DECIMAL FIXED (3,1) ;

the
by

the

Thus, a. programmer could refer to
weather data for the month of July
specifying WEATHER(7). Portions of
July weather could be referred to by

and
refer
month

TEMPERA'I'URE(7), WIND VELOCITY(7),
PRECIPI'I'ATION (7) , but TOTAL (7) would
to the t.otal precipitation during the
of July.

·TEMPERATURE.HIGH(3), which would refer
to the high temperature in March, is a
subscriEted qualified name.

The need for subscripted qualified names
becomes more apparent when an array of
structures contains minor structures that
are arrays. For example, consider the
following array of structures:

DECLARE 1 A. (6,6) ,
2 B (5) ,

3 C,
3 D,

2 E;

Both A and B are. arrays of structures. To
identify a data item, it may be necessary
to use as many as three names and three
subscripts. For example, A(1,1).B(2).C
identifies a particular C that is an ele­
ment of B in a structure in A.

So long as the order of subscripts
remains unchanged, subscripts in such ref­
erences may be moved to the right or left
and attached to names at a lower or higher
level. For example, A.B.C(1,1,2) and
A(1,1,2).B.C have the same meaning as
A(1,1).B(2).C for. the above array of struc­
tures. Unless all of the subscripts are
moved to the lowest or higheBt level, the
qualified name is said to have interleaved
subscripts; thus, A. B(1,1,2) .. C has inter­
leaved subscripts.

An array declared within an array of
structures inherits dimensions declared in
the containing structure. For example, in
the above declaration for the array of
structures A, the array B is a three­
dimensional structure, because it inherits
the two dimensions declared for A. If B is
unique and requires no qualification, any
reference to a particular B would require
three subscripts, two to identify the
specific A and one to identify the specific
B within that A.

OTHER ATTRIBUTES

Keyword attributes for data variables
such as BINARY and DECIMAL are discussed
briefly in the preceding sections of this
chapter. Other attributes that are not
peculiar to one data type may also be
applicable. A complete discussion of these
attributes is contained in Part II, Section
I, "Attributes." Some that are especially

I
applicable to a discussion of data type and
data organization are DEFINED, LIKE,
ALIGNED, UNALIGNED, and INI'IIAL.

The DEFINED Attribute

The DEFINED attribute soecifies that the
named data element, structure, or array is
to occupy the same storage area as that
assigned to other data. For example,

DECLARE LIST (100,100),
LIST ITEM (100,100) DEFINED LIST;

LIST is a 100 by 100 two-dimensional array.
LIST ITEM is an identical array defined on
LIST~ A reference to an element in
LIST ITEM is the same as a reference to the
corresponding element in LIST.

The DEFINED attribute, along with the
POSITION attribute, can be used to subdi­
vide or overlay a data item. For example:

DECLARE LIST CHARACTER (50),
LISTA CHARACTER(10) DEFINED LIST,
LISTB CHARACTER(10) DEFINED LIST

POSITION(ll),
LISTC CHARACTER(30) DEFINED LIST

POSITION (21) ;

LISTA refers to the first ten characters of
LIST. LISTB refers to the second ten
characters of LIST. LISTC refers to the
last thirty characters of LIST.

The DEFINED attribute may also be used
to specify parts of an array through use of
iSUB variables, in order to constitute a
new array. The iSUB variables are dummy
variables where i can be specified as any
decimal integer constant from 1 through ~
(where n represents the number of dimen­
sions for the-defined item). The value of
the dummy variable (iSUB) ranges from the
lower bound to the upper cound of the
dimension specified by~. For example:

DECLARE A(20,20),
B(10) DEFINED A(2.*lSUB, 2*lSUB);

Chapter 3: Data Elements 41

Form C28-8201-1, Page Revised by TNL N33-6008, 5/1/68

B is a subset of A consisting of
every even element in the diagonal of the
array, A. In other words, B(l) corresponds
to A(2,:2), B(2) corresponds to A(4,4).

The LIKE Attribute

The LIKE attribute is used to indicate
that the name being declared is to be given
the same structuring as the major structure
or minor structure name following the
attribute LIKE. For example:

DECLARE 1 BUDGET,
2 RENT,
2 FOOD,

3 MEAT,
3 EGGS,
3 BUTTER,

2 TRANSPORTATION,
3 WORK,
3 OTHER,

2 ENTERTAINMENT,
1 COST_OF_LIVING LIKE BUDGET;

This declaration for COST OF LIVING is the
same as if it had been declared:

DECLARE 1 COST OF LIVING,
2 RENT,-
2 FOOD,

3 MEAT,
3 EGGS,
3 BUTTER,

2 TRANSPORTATION,
3 WORK,
3 OTHER,

2 ENTERTAINMENT;

Note: The LIKE attribute copies structur­
lng, names, and attributes of the structure
below t:he level of the specified name only.
No dimensionality of the specified name is
copied., For example, if BUDGET were
declared as 1 BUDGET(12), the declaration
of COST OF LIVING LIKE BUDGET would not
give -the dimension attribute to
COST Olr LIVING. To achieve dimensionality
of COST OF LIVING, the declaration would
have to -be- DECLARE 1 COST_OF_LIVING(12)
LIKE BUDGET.

A minor structure name can be declared
LIKE a major structure or LIKE another
minor structure. A major structure name
can be declared LIKE a minor structure or
LIKE another major structure.

The ALIGNED and UNALIGNED Attributes

The ALIGNED and UNALIGNED attributes are
used ·to specify the positioning in storage

42

of data elements, to influence speed of
access or storage economy respectively.

Note: Use of the UNALIGNED attribute allo\gs
data interchange with FORTRAN files. SE~e
'Managing Programs' in the PL/I on
Programmer's Guide, Form C28-6594.

ALIGNED in System/360 implementations
specifies that the data element is to be
aligned on the storage boundary correspond­
ing to its data type requirement.

UNALIGNED in System/360 implementations
specifies that each data element is to be
stored contiguously with the data eleme::1t
preceding it: a character-string item is to
be mapped on the next byte boundary, a
bit-string item is to be mapped on the next
bit, and a word and doubleword item is to
be mapped on the next byte toundary.

Defaults are applied at element level.
The default for bit-string data, character­
string data, and numeric character data is
UNALIGNED; for all other types of data, the
default is ALIGNED.

ALIGNED or UNALIGNED can be specified
for element, array, or structure variables.
The application of either attribute to a
structure is equivalent to applying the
attribute to all contained elements that
are not explicitly declared ALIGNED or
UNALIGNED.

The following example illustra·tes the
effect of ALIGNED and UNALIGNED
declarations for a structure and i·ts ele­
ments:

DECLARE 1 STRUCTURE,
2 X BIT(2), /* UNALIGNED BY

DEFAULT */
2 A ALIGNED, /* ALIGNED EXPLICITLY */

3 B, /* ALIG NED FROM A */
3 C UNALIGNED, /* UNALIGNED

EXPLICITLY */
4 D, /* UNALIGNED FROM C */
4 E ALIGNED, /* ALIGNE~ EXPLICITLY */
4 F, /* UNALIGNED FROM C */

3 G, /* ALIGNED FROM A */
2 H: /* ALIGNED BY DEFAULT */

Although UNALIGNED causes economic use
of data storage, for System/360 implement~a­
tions it will increase the amount of code
generated to access data items that are not
aligned on the required byte boundaries.

The INITIAL Attribute

The INITIAL attribute specifies an ini­
tial value to be assigned to a variable at
the time storage is allocated for it. F'or
example:

DECLARE NAME CHARACTER (10) INITIAL
('JOHN DOE") ;

DECLARE PI FIXED DECIMAl, (5,4) INITIAL
(3.1416) ;

DECLARE TABLE (100,100) INITIAL CALL
SUBR (ALPHA) ;

. When storage is allocated for NAME, the
character string 'JOHN DOE' (padded to 10

Chapter 3: Data Elements 42.1

characters) will be assigned to it. When
PI is allocated, it will be initialized to
the value 3.1416. Either value may be

. retained throughout the program, or it may
be changed during execution. The third
example illustrates the CALL option. It
indicates that the procedure SUBR is to be
invoked to perform the initialization.

For a variable that is allocated when
the program is loaded, thc~t is, a static
variable, which remains in allocation
throughout execution of the program" any
value specified in an INITI11U. attribute is
assigned only once. For automatic vari­
ables" whiGh are allocated at each activa­
tion of the declaring block, any specified
initialization is assigned 'IIi th each allo­
cation. For controlled val:-iables., which
are allocated at the execution of ALLOCATE
statements" any specified init ialization is
assigned with each allocation. Note" how­
ever, that this initialization can be over­
ridden in the ALLOCATE statement. The F
Compiler does not allow the INITIAL attri­
bute to be specified for based variables.

The INITIAL attribute cannot be given
for entry names, file names, DEFINED data,
entire structures, parametE!rS, task data,
or event data.

Note: The CALL option cannot. be used with
the INITIAL attribute for static data.

The INITIAL attribute cannot be used
without the CALL option for pointer, off­
set, or area data. An area variable is
automatically initialized with the value of
the EMPTY built-in function., on allocation,
after which any specified INITIAL CALL is
applied.

The INITIAL attribute can be specified
for arrays, as well as for element vari­
ables. In a structure declaration, only
elementary names can be given the INITIAL
attribute.

I An array or an array of :structures can
be partly initialized or fully initialized.
For example:

DECI.ARE A(15) CHARACTER(13) INITIAL
(• JOHN DOE', 'RICHARD ROW',

'MARY SMITH')"
B (10.10) DECIMruL FIXED(5)

INITIAL ((25) 0, (25) 1, (50) 0) ,
1 C(8),

2 D INITIAL (0),
2 E INITIAL « 8) 0) :

In this example, only the first three
elements of A are initialized: the rest of
the array is uninitialized. The array B is
fully initialized, with the first 25 ele­
nents initialized to 0, the next 25 to 1,

and the last 50 to O. The parenthesized
numbers (25, 25, and 50) are iteration
factors, that specify the number of ele­
ments to be initialized. In the structure
C, where the dimension (8) has been inher­
ited by D, only the first element of D is
initialized; where the dimension (8) has
been inherited by E, all the elements of E
are initialized. '

When an array of structures is declared
with the LIKE attribute to obtain the same
structuring as a structure whose elements
have been initializedw it should be noted
that only the first structure in this array
of structures will be initialized. For
example:

DECLA RE 1 G.,
2 H INITIAL (0) ,
2 I INITIAL (0) ,

1 J (8) LI KEG:

In this example" only J (1' • Hand J (1) • I are
initialized in the array of structures.

For STATIC arrays., iteration factors
must be decimal integer constants; for
arrays of other storage classes, iteration
factors may be constants, variables, or
expressions.

The iteration factor should not be con­
fused with the string repetition factor
discussed earlier in this chapter. Consid­
er the following example:

DECLARE TABLE (50) CHARACTER (10)
INITIAL «10)'A",. (25) (10) IB'"
(24) (1)" C') ;

This INITIAL attribute specification con­
tains both iteration factors and repetition
factors. It specifies that the first ele­
ment of TABLE is to be initialized with a
string consisting of 10 A's, each of the
next 25 elements is to be initialized with
a string consisting of 10 B's, and each of
the last 24 elements is to be initialized
with the single character C. In the INI­
TIAL attribute specification for a string
array, a single parenthesized factor
preceding a string constant is assumed to
be a string repetition factor (as in
(10}'A"). If more than one appears, the
first is assumed to be an iteration factor,
and the second a string repetition factor.
For this reason (as in (24)(l)'C'), a
string repetition factor of 1 must be
inserted if a single string constant is to
be used to initialize more than one ele­
ment,.

The CALL option can be used to initial­
ize arrays,. except for arrays of static
storage class.

Chapter 3: Data Elements 43

CHAPTER 4: EXPRESSIONS

An expression is a representation of a
value. A single constant or a variable is
an expression. Combinations of constants
and/or variables, along with operators
and/or parentheses, are expressions. An
expression that contains operators is an
Q2~rational~ression. The constants and
variables of an operational expression are
called ope~ands.

Examples of expressions are:

27

I.OSS

1\+8

(SQTY-QTY)*SPRICE

Any expression can be classified as an
elemel}Lex~ession (also called a scalar
expression), an array expression, or a
structure e~ression. An element expres­
sion is one that _represents an element
value. An array expression is one that
represents an array val ue. A structure
expression is one that represents a struc­
ture value.

For the F Compiler, array variables and
struc·ture variables cannot appear in the
same expression. Element variables and
constants, however, can appear in either
array expressions or structure expressions.
An elementary name within a structure or a
subscripted name that specifies a single
element of an array is an element expres­
sion.

Note: If an elementary name of a structure
is given the dimension attribute, that
elementary name is an array variable and
can appear only in array expressions.

In the examples that follow, assume that
the variables have attributes declared as
follows:

DECLARE A(10,10) BINARY FIXED (31),
B(10,10) BINARY FIXED (31)~

44

1 RATE, 2 PRIMARY DECIMAL FIXED (4,2),
2 SECONDARY DECIMAL FIXED (4,2),

1 COST, 2 PRIMARY DECIMAL FIXED (4,2),
2 SECONDARY DECIMAL FIXED (4,2),

C BINARY FIXED (15),
D BINARY FIXED (15);

Examples of element expressions are:

C * D

A(3,2) + B(4,8)

RATE. PRIMARY - COST. PRIMARY

A(4,4) * C

RATE. SECONDARY / 4

A(4,6) * COST. SECONDARY

All of these expressions are element
expressions because each operand is an
element variable or constant (even though
some may be elements of arrays or elementa­
ry names of structures); hence, each
expression represents an element value.

Examples of array expressions are:

A + B

A * C - D

B / lOB

All of these expressions are array expres­
sions because at least one operand of €'ach
is an array variable; hence, each exp~es­
sion represents an array value. Note t.hat
the third example contains the binary
fixed-point constant lOB.

Examples of structure expressions are:

RATE * COST

RATE / 2

Both of these expressions are structure
expressions because at least one operand of
each is a structure variable; hence, E~ach
expression represents a structure value.

USE OF EXPRESSIONS

Expressions that are single constants or
single variables may appear freely through­
out a program. However, the syntax of many
PL/I statements allows the appearancl:! of
operational expressions, so long as evalua­
tion of the expression yields a va.lid
value.

In syntactic descriptions used in -this
publication, the unqualified -term

"expression" refers to an element expres­
sion~ an array expression, or a structure
expression. For cases in which the kind of
expression is restricted, the type of res­
triction is noted; for example, the term
"element-expression" in a syntactic des­
cription indicates that neither an array
expression nor a structure expression is
valid.

~ Although operational expressions can
appear in a number of different PL/I state­
ments, their most common occurrences are in
assignment statements of the form:

A = B + C;

'The assignment statement has no PL/I key­
word. The assignment symbol (:=) indicates
that the value of the expression on the
right (B + C) is to be assigned to the
variable on the left (A). For purposes of
illustration in this chapter, some examples
of expressions are shown in assignment
statements.

PATA CONVERSION IN OPERATIONAL EXPRESSIONS

An operational expression consists of
one or more single operations. A single
operation is either a prefix operation (an
operator preceding a single op4erand) or an
1nfix operation (an operator between two
operands). The two operands of any infix
operation, when the operation is performed,
usually must be of the same data type" as
specified by the attributes o:E a variable
or the notation used in writing a constant.

The operands of an operation in a PL/I
expression are automatically converted, if
necessary, to a common representation
before the operation is performed. General
:cules for conversion of different data
-types are discussed in the following para­
graphs and in a later section of this
chapter, "Concepts of Data Conversion."
Detailed rules for specific cases~ includ­
ing rules for computing the precision or
length of a converted item, can be found in
Part II, Section F, "Problem Data Conver­
sion."

Data conversion is mainly confined to
problem data.. The only conversion possible
with program control data is conversion
between offset and pointer types.

PROBLEM DATA CONVERSION

Data conversion can be applied to all
types of problem data, as listed below.

:Sit-String to Character-Strino

The bit 1 becomes the character 1; the
bit 0 becomes the character O.

~haracter-String to Bit-string

The character string should contain the
characters 1 and 0 only, in which case the
character 1 becomes the bit 1, and the
character 0 beqomes the bit O. The CONVER­
SION condition is raised by an attempt to
convert any character other than 1 or 0 to
a bit.

Character-Strin9-to ~~ithrnetic

The character string must be in the form
of a signed or unsigned arithmetic constant
(or an expression representation of a COM­
PLEX data item). The constant may be
surrounded by blanks, but blanks must not
be imbedded in a number. Any character
other than those allowed in arithmetic data
will raise the CONVERSION condition if
conversion is attempted.

Note: In the conversion, for an infix
operation, of a character string that rep­
resents a fixed-point constant -- either
decimal or binary -- any fractional portion
will be lost if it is converted to fixed­
point. For the F Compiler~ integer digits
will be truncated if the character string
contains more than 5 decimal integer digits
or 15 binary digits. If the conversion is
to floating-point, it will retain its
fractional value. Rules for the prec1s10n

1
0f such conversion are listed in Part II,
section F, "Problem Data Conversion."

Arithmetic to Character-String

The value of an internal coded arithmet­
ic operand is converted to its character
representation. The converted field is a

Chapter 4: Expressions 45

character string in the form of a valid
arithmetic constant. The length of the
character string is dependent upon the
precision of the arithmetic data item.

Bit-String tO,Arithmetic

A bit string is interpreted as an
unsigned binary integer and is converted to
fixed-point binary of positive value. The
base and scale are further converted, if
necessary.

Arithmetic, to Bit-String

The absolute value is converted, if
necessary, to a real fixed-point binary
integ7r., Ignoring the plus sign, the inte­
ger 1S then interpreted as a bit string.
The length of the bit string is dependent
upon the precision of the original uncon­
verted arithmetic data item.

Arithme~ic Mode Conversion

if a complex data item is converted to a
real data item, the result is the real part
of the complex item.

A real data item is converted to a
comp1ex data item by adding an imaginary
part of zero.

Arithmetic Base and Scale Conversion

The preciSion of the result of an arith­
metic base or scale conversion is dependent
upon the precision of the original arith­
metic data item. The rules are listed in
Part II, Section F, "Problem Data Conver­
sion."

LOC,1\TOR DATA CONVERSION

Only offset to pointer conversion occurs
as a result of an operational expression
(locator variables are restricted to = and
,= comparison operations), but either of
the following types of conversion can

46

result fronl assignment. (See also Chapter
14, "Based Storage and List Processing.")

Offset to Pointer

An offset value is converted to pointer
by combining the offset value with the
pointer value relating to the start of the
area named in the OFFSET attribute.

Pointer to Offset

A pointer value is converted to offset
by effectively deducting the pointer value
for the start of the area from the pointer
value to be converted. This conversion is
limited to pointer values that rela1:e to
addresses within the area named in the
OFFSET attribute,.

CONVERSION Y ASSIGNMENT

In addition to conversion performed as
the result of an operation in the e"alua­
tion of an expression, conversion will also
occur when a data item -- or the result of
an expression evaluation -- is assigned to
a variable whose attributes differ from the
attributes of the item assigned. The rules
for such conversion are generally the same
as those discussed above and in Part II,

I Section F, "Problem Data Conversion."

EXPRESSION OPERATIONS

An operational expression can specify
one or more single operations. The class
of operation is dependent upon the class of
operator specified for the operation.
There are four classes of
operations -- arithmetic, bi t-string " com­
parison, and concatenation.

ARITHMETIC OPERATIONS

An arithmetic operation is one that is
specified by combining operands with one of
the following operators:

+ * / **

The plus sign and the minus sign can appear
either as prefix operator§ (associated with
and preceding a single operand, such as +A
or -A) or as infix operators (associated
with and between two operands, such as A+B
or A-B). All other arithmetic operators
can appear only as infix operators.

An expression of greater complexity can
be composed of a set of such arithmetic
operations. Note that prefix operators can
precede and be associated wi t.h any of the
operands of an infix operation. For exam­
ple, in the expression A*-B, the minus sign
preceding the variable B indicates that the
value of A is to be multiplied by the
negative value of B.

More than one prefix operator can pre­
cede and be associated with a single varia­
ble. More than one positive prefix opera­
tor will have no cumulative effect., but two
consecutive negative prefix operators will
have the same effect as a single positive
prefix operator. For example:

-A The single minus sign has the effect
of reversing the sign of the value
that A represents.

--A One minus sign reverses the sign of
the value that A represents. The
second minus sign again reverses the
sign of the value. restoring it to
the original arithmetic value rep­
resented by A.

---A Three minus signs reverse the sign of
the value three times~ giving the
same result as a single minus sign.

pata Conversion in Arithmetic Operations

The two operands of an arithmetic opera­
tion may differ in type, base, mode, preci­
sion, and scale. When they differ, conver­
sion takes place according to rules listed
below. Certain other rules -- as stated
below -- may apply in cases of exponentia­
"tion.

~rypE: Character-string operands" numeric
character field operands (digits recorded
in character form)~ and bit-string operands
are converted to internal coded arithmetic
type. The result of an arithmetic opera­
tion is always in coded arithmetic form.
Note that type conversion is the only
conversion that can take place in an arith­
metic prefix operation.

BASE: If the bases of the t.wo operands
differ, the decimal operand is converted to
binary.

MODE: If the modes of the two operands
differ, the real operand is converted to
complex mode (by acquiring an imaginary
part o~ zero with the same base, scale, and
precis10n as the real part). The exception
to this rule is in the case of exponentia­
tion when the second operand (the exponent
of the operation) is fixed-point real with
a scale factor of zerQ. In such a case~ no
conversion is necessary.

PRECISION: If only precisions differ, no
type conversion is necessary.

SCALE: If the scales of the two operands
differ, the fixed-point operand is convert­
ed to floating-point scale. The exception
to this rule is in the case of exponentia­
tion when the first operand is of floating­
point scale and the second operand (the
exponent of the operation) is fixed-point
with a scale factor of zero, that is, a
fixed-point integer constant or a variable
that has been declared with precision
(p,O). In such a case~ no conversion is
necessary, but "the result will be floating­
pOint ..

If both operands of an exponentiation
operation are fixed-point, conversions may
occur, as follows:

1. Both operands are converted to
floating-point if the exponent has a
precision other than (p,O).

2. The first operand is converted to
floating-point unless the exponent is
an unsigned fixed-point integer con­
stant.

3. The first operand is converted to
floating-point if precisions indicate
that the result of the fixed-point
exponentiation would exceed the maxi­
mum number of digits allowed for the
implementation (for System/360, 15
decimal digits or 31 binary digits).
Further details and examples of con­
version in exponentiation are included
in the section "Concepts of Data
Conversion" in this chapter .•

Results of Arithmetic Operations

The "result" of an arithmetic operation,
as used in the following text, may refer to
an intermediate result if the operation is
only one of several operations specified in
a single operational expression. Any
result may require further conversion if it
is an intermediate result that is used as
an operand of a subsequent operation or if
it is assigned to a variable.

Chapter 4: Expressions 47

After required conversions have taken
place, the arithmetic operation is per­
formed. If maximum precision is exceeded
and truncation is necessary, the truncation
is performed on low-order fractional
digits, regardless of base or scale of the
operands. In some cases involving fixed­
point data, however, high-order digits may
sometimes be lost when scale factors are
such that point alignment does not allow
for the declared number of integer digits.

The base, scale, mode, and precision of
the result depend upon the operands and the
operator involved.

For prefix operations, the result has
the same base, scale, mode, and precision
as the converted operand. Note that the
result of -A, where A is a string. is an
arithmetic result, since A must first be
converted to coded arithmetic form before
the operation can be performed.

For infix operations, the result depends
upon the scale of the operands in the
following ways:

FLOATING-POINT: If the converted operands
of an infix operation are of floating-point
scale, the result is of floating-point
scale, and the base and mode of the result
are the common base and mode of the
operands. The precision of the result is
the greater of the precisions of the two
operands.

FIXED-POINT: If the converted operands of
ail- infix -operation are of fixed-point
scale, the result is of fixed-point scale,
and the 'base and mode of the result are the
common base and mode of the operands. The
precision of a fixed-point result depends
upon operands, according to the rules list­
ed below.

In the formulas for computing precision.,
the symbols used are as follows:

p represents the total number of
digits of the result

q represents the scale factor of
the result

P1. represents the total number of
digits of the first operand

q1. represents the scale factor of
the first operand

P;a represents the total number of
digits of the second operand

q2 represents the scale factor of
the second operand

48

ADDITION AND SUBTRACTION: The total number
of digits in the result is equal to 1 plus
the number of integer digits of the operand
having the greater number of integer digits
plus the number of fractional digits of the
operand having the greater number of j:rac­
tional digits. The total number of posi­
tions cannot exceed" the maximum number of
digits allowed (15 decimal digits, 31
binary digits). The scale factor of the
result is equal to the larger scale factor
of the two operands.

Formulas:

p = 1 + maximum (P1.-q1.' P2-Q2)
+ maximum (q1., q2)

Example:

12354.2385 + 222.11111
ABC D

The total number of digits in the result
would be equal to 1 plus the number of
digits in A plus the number of digits in D.
The scale factor of the result would be
equal to the number of digits in D. Preci­
sion of the result would be (11~5).

MULTIPLICATION: The total number of digits
in the result is equal to one plus the
number of digits in operand one plus the
number of digits in operand two. The total
number of digits cannot exceed the maximum
number of digits allowed for the implemen­
tation (15 decimal. 31 binary). The scale
factor of the result is the sum of the
scale factors of the two operands.

Formulas:

P P1. + P2 + 1

Example:

345.432 * 22 .• 45
ABC D

The total number of digits in the result
would be equal to 1 plus the sum of the
number of digits in A, B, C., and D. The
scale factor of the result would be the sum
of the number of digits in Band D.
Precision of the result would be (11~5).

DIVISION: The total number of digits in
the quotient is equal to the maximum
allowed by the implementation (15 decimal,
31 binary). The scale factor of the quo­
tient is dependent upon the number of
integer digits of the dividend (A in the
example below), and the number of fraction­
al digits of the divisor (D in the example

below). The scale factor is equal to the
total number of digits of the result minus
the sum of A and D,.

Formulas:

P 15 decimal, 31 binary

Example:

432 .. 432 / 2
ABC D

The total number of digits in the quotient
would be 15 (the maximum number allowed) '.
The scale factor would be 15 minus the sum
of 3 (A, the number of integer digits in
the dividend) and zero (D" t~he number of
fractional digits in the divisor). Preci­
sion of the quotient would be (15,12).

Note that any change in t~he number of
integer digits 1n the dividend or any
change in the number of fract~ional digits
in the divisor will change the precision of
the quotient, ~ven if all addit~ional diqi ts
are zeros,.

Examples:

00432.432 / 2

432.432 / 2.0000

Precision of the quotient of the first
example would be (15,10); scale factor is
equal to 15-(5+0). Precision of the quo­
tient of the second examplE~ would be
(15,8); scale factor is equal to 15-(3+4).

caution: In the use of fixed-point divi­
sion operations, care should be taken that
declared precision of variables and appar­
ent precision of constants will not give a
result with a scale factor that can force
the result of subsequent operations to
exceed the maximum number of digits allowed
by the implementation.

EXPONENTIATION: If the second operand (the
exponent) is an unsigned nonzero real
fixed-point constant of preci.sion (p,O),
the total number of positions i.n the result
is equal to one less than the product of a
number that is one greater than the number
of digits in the first operand multiplied
by the value of the second operand (the
exponent)~ The scale factor of the result
is equal to the product of the scale factor
of the first operand multiplied by the
value of the second operand (the exponent).

Note: Some special cases of exponentiation
are defined as follows:

1. Real mode, x**y

a. If x=O and y>O, the result is 0.,

b. If x=O and y~O, the ERROR condi­
tion is raised.

c. If x*O and y=O, the result is 1.

d. If x<O and y is not fixed-point
with prec1s10n (p~O), the ERROR
condition is raised.

2. Complex mode, x**y

a. If x=0 and y has its real part >0
and its imaginary part =0, the
result is o.

b. If x=O and the real part of y ~o
or the imaginary part of y =0, the
ERROR condition is raised.

(As pointed out under "Data Conversion in
Arithmetic Oper?J,tions," if the exponent is
not an unsigned real fixed-point integer
constant, or if the total number of digits
of the result would exceed 15 decimal
digits or 31 binary digits, the first
operand is converted to floating-point
scale, and the rules for floating-point
exponentiation apply.)

Formulas:

p «P1+1)*(value-of-exponent»-1

q q1 * (value-of-exponent)

Example:

32 ** 5

The total number of digits in the result
would be 14. This is arrived at by multi­
plying a number equal to one plus the
number of digits in the first operand (1+2)
by the value of the exponent and subtract­
ing one. The scale factor of the result
wo~ld be zero (0 * 5, scale factor of the
first operand multiplied by the value of
the exponent).

BIT-STRING OPERATIONS

A bit-string operation is one that is
specified by combining operands with one of
the following operators:

, & I

The first operator, the "not" symbol, can
be used as a prefix operator only. The
second and third operators, the "and" sym­
bol and the "or" symbol, can be used as

Chapter 4: Expressions 49

infix op(~rators only. (The operators have
the same function as in Boolean algebra.)

Operands of a bit-string operation are,
if necessary, converted to bit strings
before the operation is performed. If the
operands of an infix operation are of
unequal length, the shorter is extended on
the .right with zeros.

The result of a bit-string operation is
a bit string equal in length to the length
of the operands (the two operands, after
conversion, always are the same length).
If either is a varying-length bit string,
the result is of varying length.

Bit-string operations are performed on d

bit-by-bit basis. The effect of the "not"
operation is bit reversal; that is, the
result of ,1 is 0; the result of ,0 is 1.
The result of an "and" operation is 1 only
if both corresponding bits are 1; in all
other cases, the result is o. The result
of an "or" operation is 1 if either or both
of the corresponding bits are 1; in all
other cases, the result is o. The follow­
ing table illustrates the result for each
bit position for each of the operators:

r------T------TT-----T-------T------T-----'
I A I B I' , A I , B I A&B I A I B I
~------+------++-----+-------+------+-----i
I I II I I I I
I 1 I 1 II 0 I 0 I 1 I 1 I
~------+------++-----+-------+------+-----i
! I II I I I I
11 1011 01 1 I 0 111
~------+-.-----++-----+-------+------+-----~
I I II I J I I
I 0 I 1 II 1 I 0 I 0 I 1 I
.------+------++-----+-------+------+-----i
, I II I ! I I
10 1011 11 1 10 10 J L ______ ~ ______ ~~ _____ ~ _______ L ______ ~ _____ J

More than one bit-string operation can
be combined in a single expression that
yields a bit-string value.

In the following examples, if the value
of operand A is '010111'B, the value of
operand B is '111111'B, and the value of
operand C is 8110-B, then:

, A yields '101000'B

, C yields " 001' B

C & B yields '110000'B

A B yields '111111'B

C B yields '111111"B

A I (, C) yields 'Olllll'B

, «,C) I <,B» yields 'l10111'B

50

COMPARISON OPERATIONS

A comparison operation is one that is
specified by combining operands with one of
the following operators:

< , < <= ,= >= > ,>

These operators specify "less than," "not
less than," "less than or equal to," "equal
to," "not equal to," "greater than or equal
to, n "greater than,," and "not grE~ater
than. n

There are three types of comparisons:

1. Algebraic, which involves the compari­
son of signed arithmetic valuE!s in
internal coded arithmetic form. If
operands differ in base, scale. preci­
sion, or mode., they are convE!rted
according to the rules for arithmetic
operations. Numeric character dat:a is
converted to coded arithmetic before
comparison.

2. Character, which involves left-to­
right, character-by-character compari­
sons of characters according to the
collating sequence.

3. Bit, which
bit-by-bit
digits.

involves left-to-right,
comparison of binary

If the operands of a comparison are not
immediately compatible (that is, if t~heir
data types are appropriate to different
types of comparison), the operand of the
lo~er comparison type is converted to con­
form to the comparison type of the ope!rand
of the higher type. The priority of com­
parison types is (1) algebraic (highest),
(2) character string, (3) bit string~
Thus, for example, if a bit string were to
be compared with a fixed decimal value, the
bit string would be converted to arithmetic
(i.e., fixed binary) for algebraic compari­
son with the decimal value (which would
also be converted to fixed binary for the
comparison) •

If operands of a character-string com­
parison, aftei conversion, are of different
lengths, the shorter operand is extended on
the right with blanks. If operands of a
bit-string comparison are of different
lengths, the shorter is extended on the
right with zeros.

The result of a comparison operation
always is a bit string of length one; the
value is 'l'B if the relationship is true.
or 'O'B if the relationship' is not true.

The most common occurrenCE~S of compari­
son operations are in the Il~ statement, of
the following format:

IF A = B

THEN action-if-true

ELSE action-if-false

The evaluation of the expression A B
yields either 'l'B or 'O'B. Depending upon
the value, either the THEN portion or the
ELSE portion of the IF statement is execut­
ed.

comparison operations need not be limit­
ed to IF statements, however. The follow­
ing assignment statement. could be valid:

x = A < Bi

In this example, the value 11'B would be
assigned to X if A is less than Bi other­
wise, the value '0" B would bE~ assigned. In
the same way, the following assignment
statement could be valid:

X = A = Bi

The firs·t symbol (=) is t~he assignment
symboli the second (=) is the compar1son
operator. If A is equal to B, the value of
X will be '1' Bi if A is not equal to B" the
value of X will be 'O'B.

Only the comparison operations of
"equal" and "not equal" are valid for
comparisons of complex operands, or compar­
isons of locator operands. Comparison
operations with program cont,rol data other
than locator data are not allowed.

CONCATENATION OPERATIONS

A concatenation operation is one that is
specified by combining operands with the
concatenation symbol:

II
It signifies that the oper'ands are to be
joined in such CI. way that the~ last charac­
ter or bit of the operand to the left will
immediately precede the first character or
bit of the operand to the right, with no
intervening bits or characters.

The concatenation operator can cause
conversion to string type since concatena­
tion can be performed only upon strings,
either character strings or bit strings.
If both operands are character strings or
if both operands are bit strings, no con­
version takes place. Otherwise both oper­
ands are converted to character strings.

The results of concatenation operations
are as follows:

Bit String: A bit string whose length is
equal to the sum of the lengths of the two
bit-string operands.

Character String: A character string whose
length is equal to the sum of the lengths
of the two character-string operands. If
an operand requires conversion for the
concatenation operation, the result is
dependent upon the length of the character
string to which the operand is converted.

For example, if A has the attributes and
value of the constant 1010111'B, B of the
constant '101"B, C of the constant 'XY,Z',
and D of the constant 'AA/BB', then

AIIB yields '010111101'B

AIIAIIB yields '010111010111101'B

CI ID yields 'XY,ZAA/BB'

DIIC yields 'AA/BBXY,Z'

BIID yields '101AA/BB'

Note that, in the last example, the bit
string '101'B is converted to"the character
string '101' before the concatenation is
performed. The resUlt is a character
string consisting of eight characters.

Note: If either of the operands of a
concatenation operation has the VARYING
attribute, the result will be a VARYING
string. When VARYING strings are concaten­
ated, the intermediate string created has a
length equal to the sum of the maximum
lengths. If the maximum lengths are known
at compile time and their sum exceeds
32767, then a truncated intermediate string
of length 32767 will be created and an
error message produced. If the maximum
length of either operand is not known at
compile time and their sum exceeds 32767, a
truncated intermediate string of length
32767 will be created but there will be no
diagnostic message.

COMBINATIONS OF OPERATIONS

Different types of operations can be
combined within the same operational
expression. Any combination can be used.
For example, the expression shown in the
following assignment statement is valid:

RESULT = A + B < C & Di

Each operation within the expression is

Chapter 4: Expressions 51

evaluated according to the rules for that
kind of operation, with necessary data
conversions taking place before the opera­
tion is performed.

Assume that the variables given above
are declared as follows:

DECLARE RESULT BIT (3) ,
A FIXED DECIMAL(l),
B FIXED BINARY (3),
C CHARACTER(2), D BIT(4);

• The decimal value of A would be con­
verted to binary base.

• The binary addition would be performed,
adding A and B,.

• The binary result would be compared
with the converted binary value of C.

• The bit-string result of the comparison
would be extended to the length of the
bit string Dr and the "and" operation
would be performed .•

• The result of th~ "and" operation, a
bit string of length 4, would be
assigned to RESULT without conversion,
but with truncation on the right.

The expression in this example is des­
cribed as being evaluated
operation-by-operation, from left to right.
such would be the c~se for this particular
expression. The order of evaluation"
however" depends upon the priority of the
operators appearing in the expression.

Priority of operators

In the evaluation of expreSSions, prior­
ity of the operators is as follows:

** prefix+ prefix- , (highest)
* / I
infix'" infix- I
II I
< ,< <= ,= >= > ,> I

& V

I (lowest)

If two or more operators of the highest
priority appear in the same expression, the
order of priority of those operators is
from :right to left: that is, the rightmost
exponentiation or prefix operator has the
highest' priority. Each succeeding exponen­
tiation or prefix operator to the left has
the next highest priority~

Fo:r all other operators, if two or more
opera·tors of the same priority appear in

52

the same expression., the order of priority
of those operators is from left to right .•

Note that the order of evaluation of the
expression in the assignment statement:

RESULT = A + B < C & D:

is the result of the p'riority of the
operators,. It is as if various elements of
the expression were enclosed in parentheses
as fqllows:

(A) + (B)

(1\ + B) < <C)
(A + B < C) & (D)

The order of evaluation (and., conse­
quently, the result) of an expression can
be changed through the use of parentheses.
The above expression. for example. might be
changed as follows:

(A + B) < (C & D)

The order of evaluation of this expres­
sion would yield a bit string of length
one., the result of the ~omparison opera­
tion. In such an expressJ.on, those expres­
sions enclosed in parentheses are evaluated
first, to be reduced to a single value,
before they are considered in relation to
surrounding operators. within the lan­
guage, however, no rules specify which of
two parenthesized expressions, such as
those in the above example, would be eva.l u­
ated first.

The value of A would be convertecl to
fixed-point binary" and the addit ion would
be performed" yielding a fixed-point binary
result (RESULT 1). The value of C woulCl be
converted to -a bit string (if valid for
such conversion) and the "and" operat:ion
would be performed.

At this point, the expression would have
been reduced to:

RESULT 2 would be converted to binary" and
the algebraic comparison would be per­
formed" yielding the bit-string result: of
the entire expression.

The priority of operators is defi.ned
only within operands (or sub-operands). It
does not necessarily hold true for an
entire expression. consider the follo\lring
example:

A + (B < C) & (D I I E ** F)

The priority of the operators specifies, in
this case, only that the exponentiat:ion
will occur before the concatenation. It
does not specify the order of the operat:ion

in relation to the evaluation of the other
operand (A + (B < C».

Any
prefix
reduced

operational expression (except
expression) must eventually
to a single infix operation.

a
be

The

operands and operator of that operation
determine the attributes of the result of
the entire expression. For instance, in
the first example of combining operations
(which contains no parentheses), the "and"

Chapter 4: Expressions 52.1

operator is the operator of thE~ final infix

I
operation; in this case. the result of
evaluation of the expression is a bit
string of length 4. In t:he second example
(because of the use of parentheses), the
operator of the final infix operation is

I the comparison operator, and the evaluation
yields a bit string of length 1.

In general~ unless parentheses are used
within the expression, the operator of
lowest priority determines the operands of
the final operation. For example:

A + B ** 3 II C * D - E

In this case, the concatenat:ion operator
indicates that the final operat:ion will be:

(A + B ** 3) II (C * D - ED

The evaluation will yield a character­
string result,.

Subexpressions can be analyzed in the
same way. The two operands of the
expression can be defined as follows:

A + (B ** 3)

(C * D) - E

A.RRAY EXPRESSIONS

An array expression is a single array
variable or an expression that includes at
least one array operand. Array expressions
may also include operators -- both prefix
and infix element variables arid con­
s·tants.

Evaluation of an array exprE~ssion yields
an array result. All operations performed
on arrays are performed on an element-by­
element basis" in row-major order.
Therefore, all arrays referred to in an
array expression must be of identical
bounds.

Although comparison operators are valid
for use with array operands, an array
operand cannot appear in the IE' clause of
an IF statement. Only an element expres­
sion is valid in the IF clause, since the
IF statement tests a single t:rue or false
result.

Note: Array expressions are not always
expressions of conventional mat:rix algebra.

PREFIX OPERATORS AND ARRAYS

The result of the operation of a prefix
operator on an array is an array of identi­
cal: bounds, each element of which is the
result of the operation having been per­
formed upon each element of the original
array. For example:

If A is the array 5 3 -9

1 -2 7

6 3 -4

then -A is the array -5 -3 9

-1 2 -7

-6 -3 4

INFIX OPERATORS AND ARRAYS

Infix operations that include an array
variable as one operand may have an element
or another array as the other operand.

Array and Element Operations

The result of an operation in which an
element and an array are connected by dn
infix operator is an array with bounds
identical to the original array., each ele­
ment of which is the result of the opera­
tion performed upon the corresponding ele­
ment of the original array and the single
element. For example:

If A is the array 5 10 8

12 11 3

then A*3 is the array 15 30 24

36 33 9

The element of an array-element opera­
tion can be an element of the same array.
For example, the expression A*A(2,3) would
give the same result ~n the case of the
array A above, since the value of A(2,3) is
3.

Consider the following assignment state­
ment:

A A * A(1,2);

Chapter 4: Expressions 53

Again. using the above values for A. the
newly assigned value of A would be:

50 100 800

1.200 1100 300

Note that the original value for A(1,2),
which is 10, is used in the evaluation for
only the first two elements of A. Since
the result of the expression is assigned to
A, changing the value of A, the new value
of A(1,2) is used for all subsequent opera­
tions~ The first two elements are multi­
plied by 10, the original value of A(1,2);
all other elements are multiplied by 100,
the new value of A(1.2).

Array and Array Operations

If two arrays are connected by an infix
operator. the two arrays must be of identi­
cal bounds. The result is an array with
bounds identical to those of the original
arrays; the operation is performed upon the
corresponding elements of the two original
arrays.

Note that the arrays must have identical
bounds. They must have the same number of
dimensions, and corresponding dimensions
must have identical lower bounds and ident­
ical upper bounds. For example. the bounds
of an array declared X(10,6) are not ident­
ical to the bounds of an array declared
Y(2:11.3:8) although the extents are the
same for corresponding dimensions,. and the
number of elements is the same.

54

Examples of array infix expressions are:

If A is the array 2

6

4

and if B is the array 1

8

6

then A+B is the array 3

14

10

4

1

8

5

3

3

9

4

11

3

7

2

7

4

1

10

11

3

and A*B is the array 2 20 21

48 3 28

24 24 2

Array and structure Operations

For the F Compiler. no reference can be
made to both an array and a structure in
the same expression or in the same assign­
ment statement.

Data Conversion in Array Expressions

The examples in this discussion of array
expressions have shown only single arith­
metic operations. The rules for combining
operations and for data conversion of oper­
ands are the same as those for element
operations.

STRUCTURE EXPRESSIONS

A structure expression is a single
structure variable or an expression that
includes at least one structure operand and
does not contain an array operand. Element
variables and constants can be operands of
a structure expression. Evaluation of a
structure expression yields a structure
result. A structure operand can be a major
structure name or a minor structure name.

Although comparison operators are valid
for use with structure operands, a struc­
ture operand cannot appear in the IF clause
of an IF statement. Only an element
expression is valid in the IF clause. since
the IF statement tests a Single true or
false result.

All operations performed on structures
are performed on an element-by-element
basis. Except in a BY NAME assignment (see
below). all structure variables appearing
in a structure expression must have identi­
cal structuring,.

Identical structuring means, that the
str.uctures must have the same minor struc­
turing and the same number of contained
elements and arrays and that the position­
ing of the elements and arrays within the
structure (and within the minor structures
if any) must be the same. Arrays in
corresponding positions must have identical
bounds. Names do not have to be the same.
Data types of corresponding elements do not

have to be the same, so long as valid
conversion can be performed~

PREFIX OPERATORS AND STRUCTURES

The result of the operation of a prefix
operator on a structure is a structure of
identical structuring, each element of
which is the result of the operation having
been performed upon each element of the
original structure~

Note: Since structures may cont:ain elements
~any different data types, a prefix
operation in a structure expression would
be meaningless unless the operation can be
validly performed upon every element rep­
resented by the structure val~iable, which
is either a major structure name or a minor
structure name,~

INFIX OPERATORS AND STRUCTURES

Infix operations that include a struc­
ture variable as one operand may have an
element or another structure as the other
operand.

Structure operands in a structure
expression need not be major structure
names. A minor structure name, at any
level, is a structure variable. Thus, if
M.N is a minor structure in the major
structure M" the following is a structure
expression:

M.N & "1010'B

9tructure and Element Operations

When ari operation has one st:ructure and
one element operand, it is t:he same as a
series of operations, one for E!ach element
in the s·tructure. Each sub-operation
involves a structure element and the single
element.

Conside:r the following structure:

1 A
2 B

3 C
3 D
3 E

2 F
3 G
3 H
3 I

If X is an element variable, then A * X is
equivalent to:

A.C * X
A.D * X
A.E * X
A.G * X
A.H * X
A.I * X

Structure and Structure Operations

When an operation has two structure
operands, it is the same as a series of
element operations" one for each corres­
ponding pair of elements.

For example, if A is the structure shown
in the previous example and if M is the
following structure:

1 M
2 N

3 0
3 P
3 Q

2 R
3 S
3 T
3 U

then A 11 M is equivalent to:

A.C J I M.O
A.D II M.P
A.E II M.Q
A.G II M.S
A.H II M.T
A.I II M.U

Structure ssignment BY NAME

One exception to the rule that operands
of a structure express'ion must have the
same structuring is the case in which the
structure expression appears in an assign­
ment statement with the BY NAME option.

The BY NAME appears
structure assignment
preceded by a comma.
below.

at the end of a
statement and is

Examples are shown

consider the following structures and
assignment statements:

Chapter 4: Expressions 55

1 ONE 1 TWO 1 THREE
2 PARTl 2 PARTl 2 PARTl

3 RED 3 BLUE 3 RED
3 ORANGE 3 GREEN 3 BLUE

2 PART 2 3 RED 3 BROWN
3 YELLOW 2 PART 2 2 PART 2
3 BLUE 3 BROWN 3 YELLOW
3 GREEN 3 YELLOW 3 GREEN

ONE = TWO, BY NAME;
ONE.PARTl THREE.PART1, BY NAME;
ONE = TWO + THREE, BY NAME;

The firs-t assignment statement would be the
same as the following:

ONE •. PART1. RED = TWO. PARTl • RED;

ONE.PART2.YELLOW = TWO.PART2.YELLOW;

The second assignment statement would be
the same as the following:

ONE .• PART1. RED = THREE. PART1. RED;

The third assignment statement would be the
same as -the following:

ONE. PART1 .. RED = TWO .• PART1. RED
+ THREE.PART1.RED:

ONE.PART2.YELLOW TWO.PART2.YELLOW
+ THREE .• PART2 • YELLOW:

T'he BY NAME option can appear in an
assignment statement only. It indicates
that assignment of elements of a structure
is to be made only for those elements whose
names are common to both structures.
Except for the highest-level qualifier
specified in the assignment statement, all
qualifying names must be identical.

If an operational expression appears in
an assignment statement with the BY NAME
option, operation and assignment are per­
formed only upon those elements whose names
have been declared in each of the struc­
tures. In the third assignment statement
above, no operation is performed upon
ONE. PART2. GREEN and THREE. PART2. GREEN,
because GREEN does not appear as an elemen­
tary name in PART2 of TWO.

OPERANDS OF EXPRESSIONS

An operand of an expression can be a
constant f an element variable, an array
variable, or a structure variable. An
operand can also be an expression that
represents a value that is the result of a
computation, as shown in the following
assignment statement:

A = B * SQRT(C);

56

In this example, the expression SQJRT(C)
represents a value that is equal to the
square root of the va.lue of C. Such an
expression is called a function reference.

FUNCTION REFERENCE OPERANDS

A function reference consists of a name
and, usually, a parenthesized list of one
or more variables, constants, or other
expressions. The name is the name of a
block of coding writ-ten to perform specific
computations upon the data represented by
the list and to substitute the computed
value in place of the function reference.

Assume, in the above example, that C has
the value 16. The function reference
SQRT(C) causes execution of the coding that
would compute the square root of 16 and
replace the function reference with the
value 4. In effect, the assignment s·tate­
ment would become:

A = B * 4;

The coding represented by the name in
the function reference is called a func­
tion. The function SQRT is one of the" PL/I
bUIlt-in functions. Built-in functions,
which provide a number of different opera­
tions, are a part of the PL/I languag,e. A
complete discussion of each appears in Part
II, Section G, "Built-In Functions and
Pseudo-Variables." In addition, a pro9ram­
mer may write functions for other purposes
(as described in Chapter 10, "Subroutines
and Functions") , and the names: of ·those
functions can be used in function ref,eren­
ces.

The use of a function reference i:s not
limited to operands of operational expres­
sions. A function reference is, in itself,
an expression and can be used wherev,er an
expression is allowed. It cannot be used
in those cases where a variable represents
a receiving field, such as to the left of
an assignment symbol.

I There are, however, ten built-in :Eunc­
tions that can be used as pseudo-variables.
A pseudo-variable is a built-in function
name that is used in a rece1v1ng field.
Consider the following example:

DECLARE A CHARACTER(lO),
B CHARACTER(30);

SUBSTR(A,,6,5) = SUBSTRCB,,20 .. S);

In this assignment statement, the SUBSTR
built-in function name is used both in a
normal function reference and a.s a pseudo­
variable ..

The SUBSTR
substring of
named string .•
indicates the
string., that is

built-in function extracts a
specified length from the

As a pseudo-variable, it
location, within a named
the receiving field.

In the above example, a substring five
characters in length, beginning with
character 20 of the string B, 1S to be
assigned to the last five characters of the
string A. That is, the last five charac­
ters of A are to be replaced by characters
20 through 24 of B. The first five charac­
ters of A remain unchanged, as do all of
the characters of B.

All ten of the built-in functions that
can be used as pseudo-variables are dis­
cussed in Part II, section G, "Built-In
Functions and Pseudo-Variables." No
programmer-·wri tten function can be used as
a pseudo-variable.

CONCEPTS OF' DATA CONVERSION

Data conversion is the transformation of
the representation of a value from one form
to another. PL/I makes very few restric­
tions upon the use of the available forms
of data representation or upon the mixing
of different representations within an
expression.

Programmers who wish to make use of this
freedom must understand that mixed expres­
sions imply conversions. If conversions
take place at execution time, they will
slow down the execution, sometimes signifi­
cantly.. Unless care is taken, conversions
~an result in loss of precision and can
cause unexpected results. A lack of under­
standing of conversions can lead to logical
errors and inaccuracies that are sometimes
hard to trace.

This section is concerned primarily with
the concepts of conversion operations.
Specific rules for each kind of conversion

I are listed in Part II, Section F, "Problem
Data Conversion." Earlier sections of this
chapter discuss circumstances under which
conversion can occur during evaluation of
expressions. This section deals with the
p.rocesses of the conversion.

The subject of conversion can be consid­
ered in two parts, first, detE:!rmining the
target attributes~ and, second, the conver­
sion operation with known source and target

attributes. This section deals with deter­
mining target attributes. Rules for con­
ve~sion operations are given in Part II,
Section F# "Problem Data Conversion."
Within each section, here and in Part II,
arithmetic conversion and type conversion
are considered separately.

The target of a conversion is the
receiving field to which the converted
value is assigned. In the case of a direct
assignment, such as A = B, in which conver­
sion must take place, the variable to the
left of the assignment symbol (in this
case, A) is the target. Consider the
following example, however:

DECLARE A CHARACTER(S),
B FIXED DECIMAL(3,2),
C FIXED BINARY(10);

A = B + C;

During the eva~uation of the expression B+C
and during the assignment of that result,
there are four different targets, as fol­
lows:

1. The compiler-created temporary to
which the converted binary equivalent
of B is assigned

2. The compiler-created temporary to
which the binary result of the addi­
tion is assigned

3.. The temporary to which the converted
decimal fixed-point equivalent of the
binary result is assigned

4. A, the final destination of the
result, to which the converted
character-string equivalent of the
decimal fixed-point representation of
the value is assigned

The attributes of the first target are
determined from the attributes of the
source (B), from the operator, and from the
attributes of the other operand (if one
operand of an arithmetic infix operator is
binary, the other is converted to binary
before evaluation). The attributes of the
second target are determined from the
attributes of the source (C and the con­
ver.ted representation of B). The attri­
butes of the third target are determined in
part from the source (the second target)
and in part from the attributes of the
eventual target (A). (The only attribute
determined from the eventual target is
DECIMAL, since a binary arithmetic rep­
resentation must be converted to decimal
representation before it can be converted
to a character string.) The attributes of
the fourth target (A) are known from the
DECLARE statement.

Chapter 4: Expressions 57

when an expression is evaluated, the
target attributes usually are partly de­
rived from the source, partly from the
operation being performed, and partly from
the attributes of a second operand. Some
assumptions may be made, and some implemen­
tation restrictions (for example, maximum
precision) and conventions exist. After an
expression is evaluated, the result may be
further converted. In this case, the tar­
get attributes usually are independent of
the sOurce. Since the process of determin­
ing target attributes is different for
expression operands and for the results of
expression evaluation, the two cases are
dealt with separately.

A conversion always involves a source
data item and a target data item, that is,
the original representation of the value
and the converted representation of the
value. All of the attributes of both the
source data item and the target data item
are known, or assumed, at compile time.

It is possible for a conversion to
involve intermediate results whose attri­
butes may depend upon the source value.
For example u conversion from character
string to arithmetic may require an inter­
mediate conversion and, thus. an inter­
mediate result, before final conversion is
completed. The final target attributes in
such cases, however, are always determined
from the source data item and are indepen­
dent of the values of the variables.

It should be realized that constants
also have attributes; the constant 1.0 is
different from the constants 1, 'liB, '1',
lB, or lEO. Constants may be converted at
compile time or at execution time, but in
either case, the rules are the same.

TARGET ATTRIBUTES FOR TYPE CONVERSION

When an expression operand requires type
conversion, some target attributes must be
assumed or deduced from the source. Some
of these assumptions can be made based on
the operator, as shown in Table 4-1.

58

Table 4-1. Target Types for Expression
Operands

r-----------T-----------------------------,
I Operator I Target Type I
~-----------+-----------------------------~
I + - * / ** coded arithmetic I
I I
I & I , bit string I
1 I
I II character string (unless I
I both operands are bitl
I strings) I
I I
I > < arithmetic, unless both I
I >= <= operands are strings; thenl
I ,= character string, unlessl
I,> ,< both operands are bitl
I strings: then bit string I L ___________ ~ _____________________________ J

BIT TO CHARACTER AND CHARACTER TO BIT

In the conversion of bit to character.
and character to bit, the length of the
tar.get (in bits or characters) is the same
as the length of the source (in bits' or
characters).

ARITHMEI'IC TO STRING

In the conversion of arithmetic to bit­
string or character-string data, the length
of the target is deduced from the preciSion
of the source. Algorithms for determining
the length of the target are given below
under the headings "Lengths of Bit-string
Targets" and "Lengths of Character-string
Tar.gets." In the case of expression
operands. there is no truncation of the
resulting character-string value, since the
length of the target is the length of the
intermediate string.

STRING TO ARITHMETIC

In the conversion of bit-strinq or
character-string data to arithmetic, the
string must consist of digits that rep­
resent a valid arithmetic constant.. The
compiler has no way of determininq the
attributes of the constant represen1:ed by
the string; therefore, attributes must be
assumed for the target.

In the case of character-string to
arithmetic conversion, the attributes
assumed for the target are those attributes
that would have been assumed if a fixed­
point decimal integer of precision (15,0)
had appeared in place of the string.
Similarly, for a bit-string source that is
to be converted to arithmetic type, the
attributes of the target are the attributes
that would have been given to it.he target if

l
a fixed-point binary integer of precision
(31,0) had appeared in place of the bit
string ..

Target Attributes for Arithmetic Expression
Operands

Except for exponentiation, the target
attributes for arithmetic conversion are
assumed as follows:

BINARY

FLOAT

COMPLEX

precision
of source

unless both operands are DECI­
MAL, in which case no base
conversion is performed

unless both operands are FIXED"
in which case no scale conver­
sion is performed

unless both operands are REAL.,
in which case no mode conver­
sion is performed

unless base or scale conversion
is performed (see Table 4-2,
"Precision for Arithmetic
Conversion")

In the case of exponentiation, the base
and precision are determined as for other
operationsm The target scale of the first
operand is always FLOAT unless the first
operand source is FIXED and the second
operand (the exponent) is an unsigned
fixed-point integer constant with a value
small enough that the result of the
exponentiation will not exceed the maximum
number of digits allowed (for System/360
implementat.ions, 31, if binary;, or 15, if
decimal). The target scale of the second
operand is FLOAT unless it is an integer
constant or a variable of precision (p,O).
If either of the operands is COMPLEX~ the
target mode is COMPLEX for both operands
unless the second operand is a REAL integer
constant or variable of precision (p,O).
In either case, the target mode for the
second operand is REAL (that is, its mode
is not converted).

In the examples of exponentiation shown
below., the variables are those named in the
following DECLARE statement:

DECLARE A FIXED DECIMAL(2)t
B FIXED DECIMAL(3,2),
C FLOAT DECIMAL(4),
D FLOAT DECIMAL (7) .•
E FIXED DECIMAL(S)"
F FIXED DECIMAL(15)_
G COMPLEX FLOAT DECIMAL(6);

Note: If only one digit appears in the
preclsion attribute specification for a
fixed-point variable, the scale factor is,
by default, zero; the precision is (p,O).

D ** C

A ** 4

D ** 5

D ** A

E ** A

D ** B

G *1* B

No conversion necessary. Both
operands are floating-point.

No conversion necessary. Sec­
ond operand is unsigned fixed­
point integer constant, and the
result will not exceed 15
digits.

No conversion necessary. First
operand is floating-point; sec­
ond is fixed-point with preci­
sion (p,O).

No conversion necessary. First
operand is floating-point; sec­
ond is fixed-point with preci­
sion <p,O).

First operand is converted to
floating-point because second
operand is not unsigned fixed­
point integer constant. Second
operand is not converted
because it has precision <p,O).

Second operand is converted to
floating-point because it does
not have precision (p,O). Even
if B had an integer value with
a fractional part of zero, it
still would be converted, since
its declared precision is
(3,2).

First operand is complex. Sec­
ond operand is converted to
floating-point complex because
its precision is not <PDO).

~ All of these examples would be the
same if they had been declared binary
rather than decimal, except that the maxi­
mum number of binary digits allowed is 31.

Precision and Length of Expression Operand
Targets

The following rules apply to all calcu­
lations of precision and length:

Chapter 4: Expressions 59

1. Precision and length specifications
are always integers. If any of the
calculations given below produces a
nonintegral valuer the next largest
integer is taken as the resulting
prec~sion. In the case of scale fac­
tors r which can be negative r it is the
absolute (positive) value that is used
to take the next largest integer; the
resl.llt r of courser will be negative if
the source scale factor is negative.

The following illustrates how preci­
sion would be computed in a conversion
from DECIMAL FIXED (13,-4) to BINARY
FIXED:

1 + 13 ... 3.32 44.16 resulting number
of digits (p) is
45

-4 * 3.32 -13.28 resulting scale
factor (q) is
-14

Thus r the resulting prec1s10n is
(45 6 -14): however r due to rule 2
below, it becomes (31,-14).

2. There is an implementation-defined
maximum for the precision of each
arithmetic representation. If any
calculation yields a value greater
than the implementation-defined limitr
then the implementation limit is used
ins·tead. In System/360 implementa­
tions r these limits are:

FIXED DECIMAL -- 15 digits

FIXED BINARY -- 31 digits

FLOAT DECIMAL -- 16 digits

FLOAT BINARY -- 53 digits

Because of the particular values for
these implementations, these limits
will usually come into effect only for
conversions from fixed-point decimal
to fixed-point binary.

The scale factor for both binary and
decimal base has the range +127 to
-128 in System/360 implementations.
This limit will rarely concern the
programmer.

Precision for Arithmetic Conversions

Table 4-2 gives the target precision for
an operand if base or scale conversion
occurs.

The target precision of one operand of
an expression is not affected by the preci­
sion of the other operand. This can have a
significant effect on accuracYr particular­
ly if one of the operands is a constant.

Table 4-2. Precision for Arithmetic Conversion
r----~-----------------T------------------------------T---------------------------------,
ISourde Attributes I Target Attributes I Target Precision I
~---~-----------------+------------------------------+-----------------------------.----~
DECIMAL FIXED(p.q) I DECIMAL FLOAT P I

I I
DECIMAL FIXED(p.q> I BINARY FIXED 1+p*3.32 r q*3.32 J

I
DECIMAL FIXED(p,q) I BINARY FLOAT p*3.32

I
DECIMAL FLOAT(p) I BINARY FLOAT p*3.32

I
BINARY FIXED(p,q) I BINARY FLOAT P

I
BINARY FIXED(p,q> I DECIMAL FIXED 1+p/3.32, q/3.32

I
BINARY J?IXED (Pr q) I DECIMAL FLOAT p/3. 32

I
BINARY FLOAT(p) I DECIMAL FLOAT p/3.32
.----------------------~------------------------------~--------------------------~------~
I~ Conversion from floating-point to fixed-point scale will occur only when a target I
Iprecision is known r as in assignment to a fixed-point variable. If the target I
Iprecision is incapable of holding the floating-point value, truncation on both lert I
land right will occur, and the SIZE condition will be raised (if enabled> if significant I
Idigits are lost. I
L ___ . _______________________ ---------------------------__________________________________ J

60

Table 4-3. Lengths of Character-String Targets
r-------------------------T---------------------------T---------------------------------,
ISource Attributes I conditions I Target Length I
~-------------------------+---------------------------+---------------------------------~
IDECIMAL FIXED(p,q> I If p>=q>=O I p+3 I
I I I I
I I If q>p I p+3+k I
• I or I (where k = number of decimal I
I I q negative I digits to express scale I
I I I factor) I
I I I J
I DECIMAL F:LOAT (p) I I p+6 I
I I I 1
INumeric character field I I Same as source I
l_~-----------------------~---------------------------~ ___________ ~---------------------J

Lengths of character-string Targets

The length of a character-s"t:ring target
is related to the precision of the decimal
source, as shown in Table 4-3.

Note: If a binary data item is converted
to character, it is first converted to
decimal. The precision of this intermedi­
ate conversion result controls the length
of the final character-string target.
Algorithms for computing the intermediate
precision of a decimal item converted from
binary are shown in Table 4-2.

For complex coded arithmetic sources,
the target length is one greatE!r than twice
the length of the target for the corres­
ponding real source. For complex numeric
character data, the target length is twice
the length of the real part of the source.

Lengths of Bit-String Tar~§

When converting arithmetic operands to
bit string w the arithmetic source is con­
verted to a positive binary integer. The
precision of the binary integer target is
the same as the length of the bit-string
target as given in Table 4-4.

Note that p-q represents the number of
binary or decimal digits to the left of the
point. This could be zero or negative, in
which case no conversion is performed and.,
for the F Compiler, the final result is a
null string.

Table 4-4. Lengths of Bit-string Targets
r--------------------T--------------------,
ISource Attributes I Target Length I
.--------------------+--------------------~
IDECIMAL FIXED(p~q) I (p-q>*3.32 I
I I I
IDECIMAL FLOAT(p) I p*3.32 I
I I I
IBINARY FIXED(p,q) 1 p-q I
1 I I
IBINARY FLOAT(p) I p I l ____________________ ~ ____________________ J

Conversion of the Value of an Expression

The result of a completely evaluated
expression may require further conversion.
The circumstances in which this can occur,
and the target attributes for each situa­
tion, are given in Table 4-5. In addition,
certain built-in functions cause conver­
sion. Any subscript reference is converted
to binary integer.

CONVERSION OPERATIONS

As in the case of determining target
attributes, conversion operations may also
be considered in two stages: type conver­
sion and arithmetic conversion. For exam­
ple, when a character-string source is
converted to a coded arithmetic target, the
string is first converted to an arithmetic
for.rn whose attributes are· determined by the
constant expressed by the string. This
intermediate result is then converted (if
necessary) to the attributes of the target.
These two stages may not be separated in an
actual implementation, but for the purpose
of description it is convenient to consider
them separately.

Chapter 4: Expressions 61

Table 4-5. Circumstances that Can Cause Conversion
r---, I The following may cause conversion to any target attributes: I
I I
I Cause Target Attributes I
I Assignment Attributes of varialole to the left of the assignment symbol I
I I
I Argu~ent to procedure Attributes of corresponding parameter declared in ENTRY I
I with ENTRY declared declaration I
J I
I RETURN (expression) Attributes specified in PROCEDURE or ENTRY statement I
t---~--------------------------.---------~ 1 The following may cause conversion to character-string: I
I I
I Statement Option String Length I
I OPEN TITLE Source, 8-character maximum I
I I
I DISPLAY Source, 100-character maximum I
I I
I REcoRD I/O KEYFROM Key length specified in DD statement I
! I
I KEY Key length specified in DD statement (or eight I
I characters: in the case of the regional number) I
.----.-~---i I The following may cause conversion to a binary integer whose precision, as defined
for ·tbe F Compiler, is given below:

statement
DECLARE/ALLOCATE

FORMAT
(and format items
in GET and PUT)

OPEN

I/O

Option/Attribute
length

bounds

repetition factor

milliseconds

iteration factor
w
d
s

LINESIZE
PAGESIZE

SKIP

LINE

IGNORE

Precision
15

15

15

31

15
15

7
7

15
15

15

15

15

There are six cases of type conversion: I ver.sion, see Part II,,, Section
Data Conversion."

Arithmetic to character-string

Ch~racter-string to arithmetic

F, "Problem

A.rithmetic to bit-string
THE CONVERSION, SIZE." FIXEDOVERFLOW, AND
OVERFLOW CONDITIONS

Bit-string to arithmetic

Character-string to bit-string

Bit-string to character-string

For specific rules for each of the cases
of type conversion and for arithmetic con-

When data is converted from one rep­
resentation to another, the CONVERSION or
SIZE conditions may be raised. The OVER­
FLOW and FIXEDOVERFLOW conditions are
raised only when the result of an arithmet­
ic operation exceeds the implementation­
defined limit. When an operand is convert-

62

ed from one representation to another, if
the value of the result will not fit in the
declared precision for the new representa­
tion, the SIZE condition is raised.

The SIZE condition is raised when signi­
ficant digits are lost from the left-hand
side of an arithmetic value. This can
occur· during conversion withi.n an expres­
sion, or upon assigning the result of an
expression. It is not raised i.n conversion
to character string or bit string even if
the value is truncated. It is raised on
conversion to E or F format in edit­
directed transmission if the field width
specified will not hold the value of the
list item. The SIZE condition is normally
disabled~ so an interrupt will occur only
if the condition is raised within the scope
of a SIZE prefix.

The CONVERSION condition is raised when
the source field contains a character that
is invalid for the conversion being

performed. For example, CONVERSION would
be raised if a character string being
converted to arithmetic contains any char­
acter other than those allowed in arithmet­
ic constants, or if a character string that
is being converted to bit contains any
character other than 0 and 1. Each invalid
character raises the CONVERSION condition
once, so a single conversion operation
causes several interrupts if more than one
invalid character is encountered,. The CON­
VERSION condition is normally enabled, so
when the condition is raised, an interrupt
will occur. It can be disabled by a
NOCONVERSION prefix, in which case an
interrupt will not occur when the conditi0n
is raised.

Note that the OVERFLOW and FIXEDOVERFLOW
conditions are raised when an implementa­
tion maximum is exceeded, while the SIZE
condition is raised when a declared preci­
siQn is exceeded.

Chapter 4: Expressions 63

CHAPTER 5: STATEMENT CLASSIFICATION

This chapter classifies statements
~ccording to their functions. Statements
1n each functional class are listed, the
purpose of each statement is described, and
examples of their use are shown.

A detailed description of each statement
is not included in this chapter but may be
found in Part II, Section J, "Statements."

CLASSES OF STATEMENTS

statements can be grouped into the fol­
lowing six classes:

Descriptive

Input/Output

Data Movement and Computational

Control

Exception Control

Program Structure

The names of the classes have been chosen
for descriptive purposes only; they have no
fundamental significance in the language.
Some statements are in~luded in more than
one class, since they can have more than
one function.

DESCRIPTIVE STATEMENTS

When a PL/I program is executed, it may
manipulate many different kinds of data.
Each data item.., except a constant, is
referred to in the program by a name. The
PL/I language requires that the properties
(or attributes) of data items referred to
must 'be known at the time the program is
compiled. There are a few exceptions to
this rule; the bounds of the dimensions of
arrays, the length of strings, and some
file attributes may be determined during
execution of the program.

The DECLARE statement

The DECLARE statement is
means of specifying the

64

the principal
attributes of a

name. A name used in a program need not
always appear in a DECLARE statement; its
attributes often can be determined by con­
text. If the attributes are not specifi­
cally declared and if they cannot be deter­
mined by context, then default rules are
applied. The combination of default rules
and context determination can make it unne­
cessary, in some cases, to use a DECLARE
statement.

DECLARE statements are always needed for
fixed-point decimal and floating-point
binary variables~ character- and bit-string
var.iables, label variables, arrays and

I structures, static, controlled, and based
variables, offset variables. and all data
with the PICTURE attribute. An ENTRY dec-
laration must be made in a DECLARE state­
ment for the name of any function that
returns a value with attributes different
from the default attributes that would be
assumed for the name -- FIXED BINARY(l'5) if
the first letter of the name is I through
N; otherwise, DECIMAL FLOAT(6). (The
default precisions are those defined for
System/360 implementations.) An ENTRY dec­
laration also must be made if argument:::; and
parameters do not match exactly. as may be
the case when constants are passed as
arguments.

DECLARE statements may also be an impor­
tant part of the documentation of a pro­
gram; consequently. programmers may make
liberal use of declarations, even when
default attributes apply or when a contex­
tual declaration is possible. Because
there are no restrictions on the number of
DECLARE statements., different DECLARE
statements can be used for different groups
of names. This can make modification easi­
er and the interpretation of diagnostics
clearer.

Other Descriptive Statements

The OPEN statement allows certain attri­
butes to be specified for a file name and
may~ therefore, also be classified as a
descriptive statement. The FORMAT s·tate­
ment may be thought of as describinq the
layout of data on an external medium, such
as on a page or an input card~

INPUT/OUTPUT STATEMENTS

The principal statements of the
input/output class are those that actually
cause a transfer of data bet:ween internal
storage and an external medium. Other
input/output statements . ., which affect such
transfers, may be considerE~d input/output
control statements,.

In the following list, the statements
that cause a transfer of data are grouped
into two subclasses, RECORD I/O and STREAM
I/O:

RECORD I/O Transfer statements

READ

WRITE

REWRITE

LOCATE

DELETE

STREAM I/O Transfer statements

GET

PUT

I/O Control statements

OPEN

CLOSE

UNLOCK

An allied statement, discussed with
these statements, is the DISPLAY statement.

There are two importan't differences
between STREAM transmission and RECORD
transmission.. In STREAM transmission, each
data item is treated indi vi1dually, whereas
RECORD t:ransmiss ion is concerned with col­
lections of data items (records) as a
whole. In STREAM transmission, each item
may be edited and converted as it is
transmit.ted; in RECORD transmission" the
record on the external medium is an exact
copy of the record as it exists in internal
storage, with no editing or conversion
performed.

As a result of these differences, record
transmission is particularly applicable for
processing large files that are written in
an internal representation, such as in
binary or packed decimal. Stream transmis­
sion may be used for processing keypunched
data and for producing readable output,
where editing is required. Since files for

which stream transmission is used tend to
be smaller, the larger processing overhead
can be ignored.

RECORD I/O Transfer Statements

The READ statement transmits records
directly into working storage or makes
records available for processing. The
WRITE statement creates new records, trans­
ferring collections of data to the output
device. The LOCATE statement allocates
storage for a variable within an output
buffer" setting a pointer to indicate the
location in the buffer. having previously
caused any record already located in a
buffer for this file to be written out.

The REWRITE statement alters existing
records in an UPDATE file. The DELETE
statement removes records from an UPDATE
file ..

STREAM I/O Transfer Statements

Only sequential files can be processed
with the GET and PUT statements. Record
boundaries generally are ignored; data is
considered to be a stream of individual
data items, either coming from (GET) or
going to (PUT) the external medium.

The GET and PUT statements may transmit
a list of items in one of three modes,
data-directed" list-directed, or edit­
directed. In data-directed transmission,
the names of the data items" as well as
their values, are recorded on the external
medium. In list-directed transmission, the
data is recorded externally as a list of
constants" separated by blanks or commas.
In edit-directed transmission, the data is
recorded externally as a string of
characters to be treated character by char­
acter according to a format list.

Data-directed transmission is most use­
ful for reading a relatively small number
of values and for producing self-annotated
debugging output. List-dir~ted input is
suitable for reading in larger volumes of
data punched in free form. Edit-directed
transmission is used wherever format must
be strictly controlled. for example, in
producing reports and for reading cards
punched in a fixed format.

Note: The GET and PUT statements can also
be used for internal data movement" by
specifying a string name in the STRING
option instead of specifying the FILE
option. Although the facility may be used

Chapter 5: Statement Classification 65

with READ and WRITE statements for moving
data to and from a buffer, it is not
actually a part of the input/output opera­
tion. GET and PUT statements with the
STRING opt.ion are discussed in the section
"Data Movement and Computational state­
ments," in this chapter.

Input~Output Control statements

The OPEN statement associates a file
name with a data set and prepares the data
set for processing.. It may also specify
addi tional attributes for the file .•

An OPEN statement need not always be
written. Execution of any input or output
transmission statement that specifies the
name o£ an unopened file will result in an
automatic opening of the file before the
data transmission takes place.

The OPEN statement may be used to
declare attributes for a file~ for a PRINT
file, the length of each printed line and
the number of lines per page can be speci­
fied only in an OPEN statement. The OPEN
statement can also be used to specify a
name (in the TITLE option) other than the
file name, as a link between the data set
and the file.

The CLOSE statement dissociates a data
set from a file.. All files are closed at
termination of a program, so a CLOSE state­
ment is not always required.

The UNLOCK statement releases a record
that has been temporarily locked by the
task executing the UNLOCK statement, so
that other concurrent tasks may resume
access to the record. The UNLOCK statement
is not always required~ the unlocking
operation is automatic when the task that
locked the record deletes or rewrites it.,
or closes the file., or when the task is
terminated.

'rhe DISPLAY Statement

The DISPLAY statement is used to write
messages on the console, usually to the
operator. It may also be used, with the
REPLY option, to allow the operator to
communicate with the program by typing in a
code or a message. The REPLY option may be
used merely as a means of suspending pro­
gram execution until the operator acknowl­
edges the message.

66

DATA MOVEMENT AND COMPUTATIONAL STATEME~~S

Internal data movement involves the
assignment of the value of an expression to
a specified variable. The expression may
be a constant or a variable, or it may be
an expression that specifies computations
to be made.

The most commonly used statement for
internal data movement" as well as for
specifying computations., is the assignment
statement. The GET and PUT statements \',l'ith
the STRING option also can be used for
internal data movement. The PUT statement
can, in addi tioD, speci fy computations to
be made.

The Assignment Statement

The assignment statement, which has no
keyword., is identified by the assignment
symbol (=). It generally takes one of two
forms:

A B;

A B + C;

The first form can be used purely for
internal data movement.. The value of t.he
variable (or constant) to the right of 'the
assignment symbol is to be assigned to 1the
variable to the left. The second form
includes an operational expression whose
value is to be assigned to the variable to
the left of the assignment symbol. ~rhe
second form specifies computations to be
made. as well as data movement.

Since the attributes of the variable on
the left may differ from the attributes of
the result of the expression (or of 1:he
variable or constant) , the assignmEmt
statement can also be used for conversion
and editing.

The variable on the left may be the name
of an array or a structure; the expression
on the right may yield an array or struc­
ture value. Thus the assignment statemEmt
can be used to move aggregates of data, as
well as single items.

Multiple Assignrrent

The value of the expression in an
assignment statement can be assigned to
more than one variable in a statement of
the following form:

A, X = B + C;

Such a statement is executed in exactly the
same way as a single assignment. except
that the value of B + C is assigned to both
A and X. In general, it has the same
effect as if the following two statements
had been written:

A B + C;

X B + C;

N~ If multiple assignment is used for a
structure assignment BY NAME, the elementa­
ry names affected will be only those that
are common to all of the structures listed
to the left of the assignment symbol.

If the S~rRING option appears in a GET or
PUT statement in place of a FILE option,
execution of the statement will result only
in internal data movement; neither input
nor output is involved.

Assume that NAME is a string of 30
characters and that FIRST, MIDDLE, and LAST
are string variables. consider the follow­
ing example~

GET STRING (NAME) EDIT
(FIRST,MIDDLE, LAST)
(A(12),A(1),A(17»;

Tllis statement specifies that the first 12
characters of NAME are to be assigned to
FIRST, the next character to MIDDLE, and
the remaining 17 characters to LAST.

The PUT statement with the string option
specifies the reverse operation, that is,
that the values of the specified variables
are to be concatenated into a string and
assigned as the value of the string named
in the STRING option. For example:

PUT STRING (NAME) EDIT
(FIRST, MIDDLE., LAST)
(A(12),A(1),A(17»j

This statement specifies that the values of
FIRST, MIDDLE. and LAST are to be concaten­
ated, in that order, and assigned to the
string variable NAME.

computations to be performed can be
specified in a PUT statement by including
operational expressions in the data list.
Assume, for the following exampl,e, that the
variables A, B, and C represent arithmetic
data and BUFFER represents a character
string:

PUT STRING (BUFFER) LIST (A*3"B+C>;

This statement specifies that the character
string assigned to BUFFER is to consist of
the character representations of the value
of A multiplied by 3 and the value of the
sum of Band C.

Operational expressions in the data list
of a PUT statement are not limited to PUT
statements with the STRING option. Opera­
tional expressions can appear in PUT state­
ments that specify output to a file.

CONTROL STATEMENTS

Statements in a PL/I programs in gener­
al, are executed sequentially unless the
flow of control is modified by the occur­
rence of an interrupt or the execution of
one of 'the foliowing control statements:

GO TO

IF

DO

CALL

RETURN

END

STOP

EXIT

The GO TO Statement

The GO TO statement is most frequently
used as an unconditional branch. If the
destination of the GO TO is specified by a
label variable, it may then be used as a
switch by assigning label constants, as
values, to the label variable.

If the label variable is subscripted,
the switch may be controlled by varying the
subscript. Since multidimensional label
arrays are allowed, and since logical
values may be used as subscripts, quite
subtle switching can be effected,. It is
usually true, however, that simple control
statements are the most efficient.

The keyword of the GO TO statement may
be written either as two words separated by
a blank or as a Single word, GOTO.

Chapter 5: Statement Classification 67

The .IF Statement

The IF statement provides the most com­
mon conditional branch and is usually used
with a simple comparison expression follow­
ing the word IF. For example:

IF A B

THEN action-if-true

ELSE action-if-false

If the comparison is true, the THEN
clause (the "action to be taken") is exe­
cuted. After execution of the THEN clause,
control branches around the ELSE clause
(the "alternate action"), and execution
continues with the next statement. Note
that the THEN clause can contain a GO TO
statement or some other control statement
that would result in a different transfer
of control.

If the comparison is not true, control
branches around the THEN clause, and the
ELSE clause is executed. Control then
con1::inues normally.

']~he IF statement might be as follows:

IF A = B

'I'HEN C D;

ELSE C E;

If A is equal to B, the value of D is
assigned to C, and control branches around
the ELSE clause. If A is not equal to B,
control branches around the THEN clause.
and the value of E is assigned to C.

Either the THEN clause or the ELSE
clause can contain some other control
statement that causes a branch, either
conditional or unconditional. If the THEN
clause contains a GO TO statement, for
example, there is no need to specify an
ELSE clause. Consider the following exam­
ple:

IF A = B

THEN GO TO LABEL_1i

next-statement

If Ais equal to B, the GO TO statement of
the THEN clause causes an unconditional
branch to LABEL 1. If A is not equal to B,
control branches around the THEN clause to
the next statement, whether or not it is an
ELSE clause associated with the IF state­
men1::.

68

Note: If the THEN clause does not cause a
transfer of control and if it is not
followed by an ELSE clause, the next state­
ment will be executed whether or not the
THEN clause is executed.

The expression following the IF keyword
can be only an element expression; it
cannot be an array or structure expression.
It can, however, be a logical expression
with more than one operator. For example:

IF A = B & C = D
THEN GO TO R;

The same kind of test could be made with
nested IF statements. The following three
examples are equivalent:

IF A = B & C = D
THEN GO TO R;

B = B + 1;

IF A = B
THEN IF C = D

THEN GO TO R;
B = B + 1;

IF A ,= B THEN GO TO S;
IF C ,= D THEN GO TO Si
GO TO R;

S: B = B + 1;

The DO Statement

The most common use of the DO statement
is to specify that a group of statements is
to be executed a stated number of times
while a control variable is incremented
each time through the loop. Such a group
might take the form:

DO I = 1 TO 10;

END;

The statements to be executed iteratively
must be delimited by the DO statement and
an associated END statement. In this case,
the group of statements will be executed
ten times, while the value of the control
va~iable I ranges from 1 through 10. The
effect of the'DO and END statements would
be the same as the following:

I = 0;
A: I = I + 1i

IF I > 10 THEN GO TO B;

GO TO Ai
B: next statement

Note that the increment is made before the
control variable is tested and that, in
general, control goes to the statement
following the group only when the value of
the control variable exceeds the limit set
in the DO statement. If a reference is
made to a control variable after the last
iteration is completed, the value of the
variable will be one increment beyond the
specified limit.

The DO statement can also be used with
the WHILE option and no control variable,
as follows:

DO HHILE (~ = B);

This stat.ement, heading a group, causes the
group to be executed repeatedly so long as
the value of ~ remains equal to the value
of B.

The WHILE option can be combined with a
control variable of the form:

DO I = 1 TO 10 WHII,E (~ = B);

This statement specifies two tests. Each
,time that I is increment,ed, a test is made
to see that I has not ex:ceeded 10. ~n
additional test then is made to see that A
is equal to B. Only if both conditions are
satisfied will the stat.ements of the group
be executed.

More than one successive iteration
specification can be included. in a single
DO statement. Consider each of the follow­
ing DO statements:

DO I 1 TO 10, 13 TO 15·;

DO I 1 TO 10, 11 WHILE: (A = B);

The first statement specifies that the DO
group is to be executed a tot.al of thirteen
times, ten times with the value of I equal
to 1 through 10, and three times with the
value of I equal to 13 through 15. The
second DO statement specifies that the
group is to be executed at least ten times,
and then (provided that A is equal to B)
once more; if "BY 0" were inserted after
"11", execution would continue with I set
to 11 as long as A remained equal to B.
Note that in both statements: a comma is
used to separate the two s:pecifications.
This indicates that a succeeding specifi­
cation is to be considered only after the
preceding specification has been satisfied.

The control variable of a DO statement
can be use~ as a subscript in statements
within the DO-group, so that each iteration
deals wi'th successive element:s of a table
cr array. For example:

DO I = 1 TO 10;
A(I) = I;
END;

In this example" the first ten elements of
A are set to 1,2., •••. ,10, respectively.

The increment in the iteration specifi­
cation is assumed to be one unless some
other value is stated, as follows:

DO I = 2 TO 10 BY 2;

This specifies that the loop is to be
executed five times, with the value of I
equal to 2, 4, 6., 8, and 10.

Noniterative DO Statements

The DO statement need not specify
repeated execution of the statements of a
DO-group.. A simple DO statement, in con­
junction with a DO-group, can be used as
follows:

DO;

END;

The use of the simple DO statement in this
manner merely indicates that the DO-group
is to be treated logically as a single
statement. It can be used to specify a
number of statements to be executed in the
THEN clause or the ELSE clause of an IF
statement, thus maintaining sequential con­
trol without the use of a begin block.
(Only a single statement, a DO-group, or a
begin block can be specified in the THEN
clause or in the ELSE clause.)

A subroutine may be invoked by a CALL
statement that names an entry pOint of the
subroutine. When the multitasking facili­
ties are not in use, control is returned to
the activating, or invoking, procedure when
a RETURN statement is executed in the
subroutine or when execution of the END
statement terminates the subroutine. If
the CALL statement contains one of the
multitasking options, T~SK, EVENT, or
PRIORITY., the subroutine is executed by a
subtask with its own separate flow of
control; in this case, the RETURN or END
statement merely terminates the separate
flow of control established for the sub­
task. (See Chapter 15, "Multitasking.")

Chapter 5: Statement Classification 69

The RETURN statement with a parenthe­
sized expression is used in a function
procedure to return a value to a function
reference. This form is used to return a
value from a procedure that has been
invoked by a function reference.

Normal termination of a program occurs
as the result of execution of the final END
statement of the main procedure or of a
RETURN statement in the main procedure,
either of which returns control to the
operating system.

The STOP and EXIT Statements

The STOP and EXIT statements are both
used to cause abnormal termination. The
STOP statement terminates execution of the
entire program, inclu1ing all concurrent
tasks. The EXIT statement terminates only
the task that executes it, together with
any attached tasks. (See Chapter 15,
"Multitasking. ")

EXCEPTION CONTROL STATEMENTS

The control statements, discussed in the
precejing section, alter the flow of con­
·trolwhenever they are executed. Another
way in which the sequence of execution can
be altered is by the occurrence of a
program interrupt caused by an exceptional
condition that arises.

In general, an exceptional condition is
the occurrence of an unexpected action,
such as an overflow error, or of an eKpect­
ed actLon, such as an end of file, that
occurs at an unpredictable time. A
detailed discussion of the handling :::>f
these conditions appears in Chapter 11,
"Exceptional Condition Handling and Program
Checkout. "

The three exception control statements
are the ON statement, the REVERT statement,
and the SIGNAL statement.

The ON statement is used to specify
action to be taken when any subsequent
occurrence of a specified condition causes
a program interrupt. ON statements may
specify particular action for any of a
number of different conditions. For all of
these conditions, a standard system action
exists as n part of PL/I, and if no ON

70

statement is in force at the time an
interrupt occurs, the standard syst.em
action will take place. For most condi-
tions, the standard system action is to
print a message and terminate execution.

The ON statement takes the form:

ON condition-name {SYSTEM; lon-unit}

The "condition name" is one of the keywords
listed in Part II, section H,
"ON-Conditions." The "on-unit" is a single
statement or a begin block that specifies
action to be taken when that condi ti on
arises and an interrupt occurs. For
example:

ON ENDFILE(DETAIL) GO TO NEXT_MASTEH;

This statement specifies that when an
interrupt occurs as the result of trying to
read beyond the end of the file named
DETAIL, control is to be trans ferred to 1:he
statement labeled NEXT_MASTER.

When execution of an on- uni t is success­
fully completed, control will normally
return to the point of the interrupt or to
a point immediately following it" depending
upon the condition that caused the inter­
rupt.

An important use of the ON statement is
for debugging. The CHECK condition cam:;es
debugging information to be printed whenE~v­
er the value of one of a list of specified
variables is changed or whenever a speci­
fied statement is executed.

The effect of an ON statement, 1:he
establishment of the on-unit, can be
changed within a block (1) by execution of
another ON statement naminq the same condi­
tion with either another on-unit or 1:he
word SYSTEM, which re- esta blis hes standard
system action, or (2) by the execution of a
REVERT statement naming that condition.
On-units in effect at the time another
block is activated remain in effect in the
acti vated block, and in other blocks ac1:i­
vated by it, unless another ON statemEmt
for the same condition is executed. When
control returns to an activating block,
on-uni ts are re-established as they exist­
ed.

The REVERT Statement

The REVERT statement is used to cancel
the effect of all ON statements for 1:he
same condition that have been executed in
the block in which the REVERT statemEmt
appears.

The REVERT statement, which must specify
the condition name, re-establishes the on­
unit that was in effect in the activating
block at the time the current block was
invoked.

~rhe SIGNAL Statement

The SIGNAL statement simulates the
occurrence of an interrupt for a named
condition. It can be used to test the
coding of the on-uni t establishE~d by execu­
tion of an ON statement.. For example:

SIGNAL OVERFLOW;

This statement would simulate the occur­
rence of an overf low in·t.errupt and would
cause execution of the on-unit established
for the OVERFLOW condition.. If an on-unit
has not been established, standard system
a.ction is taken ..

PROGRAM STRUCTURE STATEMENTS

The program structure statements are
those statements used to delimit sections
of a program into blocks and groups, and to
control the allocation of storage within a
program. These statements are the PROCE­
DURE statement, the END statement, the
ENTRY statement" the BEGIN stat.ement, the
DO statement, the ALLOCATE statement, and
the FREE statement~ The concept of blocks
and groups is fundamental to a proper
understanding of PL/I and is dealt with in
detail in Chapters 6, 7, and 10.

Proper division of a program into blocks
Bimplifies the writing and testing of the
program, particularly when a number of
programmers are co-opera't.ing in writing a
Bingle program. It may also result in more
efficient use of storage, since dynamic
Btorage of the automatic class is allocated
on ent.ry to the block in which it is
declared.

The PROS~DURE Statement

The principal function of a procedure
block., which is delimi ted by a PROCEDURE
statement and an associated END statement,
is to define a sequence of operations to be
performed upon specified data. This
sequence of operations is given a name (the
label of the PROCEDURE statement) and can
be invoked from any point at which the name
is known.

Every program must have at least one
PROCEDURE statement and one END statement.
A program may consist of a number of
separately written procedures linked
together. A procedure may also contain
other procedures nested within it. These
internal prpcedures may contain declara­
tions that are treated <unless otherwise
specified) as local definitions of names.
such definitions are not known outside
their own block, and the names cannot be
r.eferred to in the containing procedure.
Storage associated with these names is
generally allocated upon entry to the block
in which such a name is defined, and it is
freed upon exit from the block.

The sequence of statements defined by a
procedure can be executed at any point at
~l1hich the procedure name is known. This
execution can be either synchronous (that
is~ the execution of the invoking procedure
is suspended until control is returned to
it)' or asynchronous (that is, execution of
the invoking procedure proceeds concurrent­
ly with that of the invoked procedure); for
details of asynchronous operation, see
Chapter 15, "Multitasking .. " A procedure is
invoked either by a CALL statement or by
the appearance of its name in an expres­
sion# in which case the procedure is called
a function procedure.. A function reference
causes a value to be calculated and
returned to the function reference for use

lin the evaluation of the expression .. A
function procedure cannot be executed asyn­
chronously with the invoking procedure ..

communication between two procedures is
by means of arguments passed from an invok­
ing procedure to the invoked procedure, by
a value returned from an invoked procedure,
and by names known within both procedures.
A procedure may therefore operate upon
different data when it is invoked from
different points. A value is returned from
a function procedure to a function ref­
erence by means of the RETURN statement.

The ENTRY Statement

The ENTRY statement is used to provide
an alternate entry point to a procedure
and, possibly, an alternate parameter list
to which arguments can be passed, corres­
ponding to that entry point.

Note: It is important to distinguish
between the ENTRY statement~ which speci­
fies an entry to the procedure in which it
occurs, and the ENTRY attribute specifi­
cation, which describes the attributes of
par.ameters of procedures that are invoked
from the procedure in which the ENTRY
attribute specification appears.

Chapter 5: Statement Classification 71

The BEGIN Statement

Local definitions of names can also be
made within begin blocks, which are delim­
ited by a BEGIN statement and an associated
END statement. Begin blocks, however, are
executed in the normal flow of a program,
either sequentially or as a result of a GO
TO or an IF statement transfer. One of the
most common uses of a begin block is as the
on-unit of an ON statement, in which case
it is not executed through normal flow of
control, but only upon occurrence of the
specified condition. It is also useful for
delimiting a section of a program in which
some automatic storage is to be allocated a

Each begin block must be nested within a
procedure or another begin block.

The DO Statement

;z:mother kind of program structure is
provided by the DO-group, which is delimit­
ed by a DO statement and an associated END
statement. A DO-group does not have any
effect upon the allocation of storage or
the meaning of names. A DO-group specifies
that the statements contained within it are
to be considered as an entity for the
purpose of flow of control.

72

A DO statement may specify repeated
execution of a sequence of statements until
a criterion is satisfied, or it may indi­
cate within an IF statement that a group of
statements is to be taken together as the
whole of the THEN clause or of the ELSE
clause.

The ALLOCATE and FREE Statements

As with many other conventions in PL/I,
the convention concerning storage alloca­
tion and the scope of definitions of names
can be overridden by the programmer. The
storage class attribute AUTOMATIC is
assumed for most variables. However a
variable can be declared STATIC, in which
case it is allocated throughout the entire

, program; or it can be declared CONTROLLED,
or BASED, in which case its allocation can
be explicitly specified by the programmer,.

The ALLOCATE statement is used to assign
storage to controlled and based data., inde­
pendent of block boundaries. The bounds of
controlled arrays and the length of con­
trolled strings, as well as their initial
values, may also be specified at the time

I

the ALLOCATE statement is executed. The
FREE statement is used to free controlled
and based storage after it has been allo­
cated.

CHAPTER 6: BLOC~S, FLOW OF CONTROL, AN~ STORAGE ALLOCATION

This section discusses hOlti' statements
can be organized into blocks to form a PL/I
program, how control flows within a program
from one block of statements t.o another,
and how storage may be allocat.ed for data
within a block of statements. The discus­
sion in this chapter does not completely
cover multitasking, which is discussed in
detail in Chapter 15. However, the discus­
sion generally applies to all blocks~
whether or not they are execu.ted concur­
rently.

BLOCKS

A block is a delimited sequence of
statements that constitutes a section of a
program. It localizes names declared with­
in the block and limits the allocation of
variables. There are two kinds of blocks:
procedure blocks and begin blocks.

PROCEDURE BI.OCKS

A procedure block, simply called a pro­
cedure, is a sequence of statements headed
by a PROCEDURE statement and ended by an
END statement, as follows:

label: [label:] ••• PROCEDURE;

END[label];

All procedures must be named because the
procedure name is the primary point of
entry through which control can be trans­
ferred to a procedure. Hence, a PROCEDURE
s·tatement must have at least one label. A
label need not appear after the keyword END
in the END statement, but if one does
appear, it must match the label (or one of
the labels> of the PROCEDURE 's·tatement to
which the END statement c()rresponds.
(There are exceptions; see "Use of the END
Statement with Nested Blocks and DO-Groups"
in this chapter.~ An example of a proce­
dure follows:

A: READIN: PROCEDURE
statement-l
statement-2

statement-n
END READIN;

In general, control is transferred to a
procedure through a reference to the name
(or one of the names) of the procedure.
Thus, the procedure in the above example
would be given control by a reference to
either of its names w A or READ IN.

A PL/I program consists of one or more
such procedures, each of which may contain
other proceduree and/or begin blocks.

BEGIN BLOCKS

A begin block is a set of statements
headed by a BEGIN statement and ended by an
END s·tatement, as follows:

[label:] ••• BEGIN;

END [label];

Unlike a procedure block, a label is
optional for a begin block. If one or more
labels are prefixed to a BEGIN statement~
they serve only to identify the starting
point of the block. (Control ~ay pass to a
begin block without reference to the name
of that block through normal sequential
execution, although control can be trans­
ferred to a labeled BEGIN statement by
execution of a GO TO statement.) The label
following END is optional. However, a
label can appear after END, matching a
label of the corresponding BEGIN statement.
(There are exceptions; see "Use of the END
Statement with Nested Blocks and DO-GrOups"
in this chapter.) An example of a begin
block follows:

B: CONTROL: BEGIN;
statement-l
statement-2

statement-n
END Bf

Chapter 6: Blocks, Flow of Control, and Storage Allocation 73

Unlike procedures, begin blocks general­
ly are not given control through special
references to them. The normal sequence of
control governing ordinary statement execu­
tion also governs the execution of begin
blocks. Control passes into a begin block
sequentially, following execution of the
preceding statement.

Begin blocks are not essential to the
const.ruction of a PL/I program. However,
there are times when it is advantageous to
use begin blocks to delimit certain areas
of a program. These advantages are dis­
cussed in this chapter and in Chapter 7"
"Recognition of Names."

INTERNAL AND EXTERNAL BLOCKS

Any block can contain one or more
blocks. That is, a procedure, as well as a
begin block, can contain other procedures
and begin blocks. However, there can be no
overlapping of blocks; a block that con­
tains another block must totally encompass
that block.

A procedure block that is contained
within another block is called an inte~al
£EQ~edu~e. A procedure block that ~s not
contained within another block is called an
external procedure. There must always be
at least one external procedure in a PL/I
program. (Note: With System/360 implemen­
tations~ each external procedure is com­
piled separately. Entry names of external
procedures cannot exceed seven characters.)

Begin blocks
must always be
block.

are always internal; they
contained within another

Internal procedure and begin blocks can
also be referred to as nested blocks.
Nested blocks, in turn, may have blocks
nested within them, and so on. The outer­
most block always must be a procedure.
Consider the following example:

74

A: PROCEDURE;
statement-al
statement-a2
statement-a3
B: BEGIN;

statement-bl
statement-b2
statement-b3
END B;

statement-a4
statement-a5
C: PROCEDURE;

statement-cl
statement-c2

D: BEGIN;
statement-dl
statement-d2
statement-d3
E: PROCEDURE;

statement-el
statement-e2
END E;

statement-d4
END 0;

END C;
stateroent-a6
statement-a7
END Ai

In the above example, procedure block A
is an external procedure because it is not
contained in any other block. Block B is a
begin block that is contained in A; it
contains no other blocks. Block C is an
internal procedure; it contains begin block
D, which, in turn, contains internal proce­
dure E. This example contains three levels
of nesting relative to Ai Band C are at
the first level, 0 is at the second level
(but the first level relative to C) and E
is at the third level (the second level
relative to C~ and the first level relative
to D).

Use of the END Statement with Nested Blocks
and OO-Groups (Multiple Closure)

The use of the END statement with a
procedure, begin block~ or DO-group is
governed by the following rules:

1. If a label is not used after END, the
END statement closes <i.e., ends) that
unclosed block headed by the BEGIN or
PROCEDURE statement, or that unclosed
DO-group headed by the DO statl~ment,

that physically precedes, and appears
closest to, the END statement.

2. If the optional label is used after
END, the END statement closes that
unclosed block or DO-group headed by
the BEGIN, PROCEDURE~ or DO statement
that has a matching label, and that
physically precedes, and appears clo­
sest to, the END statement,. Any
unclosed blocks or DO-groups nested
within such a block or DO-group are
automatically closed by this END
statement; this is known as multiple
closure.

From the second rule, it is evident that
nested blocks sometimes make it possible
for. a single END statement to close more
than one block. For example, assume that
the following external procedure has been
defined:

FRST: PROCEDURE;
statement-fl
st.atement-f2
ABLK: BEGIN;

statement-al
statement-a2
SCND: PROCEDURE;

statement-sl
BBLK: BEGIN;

stat€~ment-bl
END;

END;
statement-a3
END ABLK;

END FRST;

In this example, begin block BBLK and
internal procedure SCND effectively end in
the same place; that is# there are no
statements between the END statements for
each. This is also true for begin block
ABLK and external procedure FRST. In such
cases, it is not necessary to use an END
statement for each block, as shown; rather.
one END statement can be used to end BBLK
and SCND, and another END can be used to
end ABLK and FRST. In the first case, the
statement would be END SeND, because one
END sta.tement with no following label would
close only the begin block BBLK (see the
first rule above>. In the second case,
only the statement END FRST is required;
the st.atement END ABLK is superfluous.
Thus, the example could be specified as
follows:

FRST: PROCEDURE;
statement-fl
statement-f2
ABLK: BEGIN;

statement-al
statement-a2
SCND: PROCEDURE;

statement-sl
statement-52
BBLK: BEGIN;

statement-bl
s ta tf.~ment;-. b 2

END SeND;
statement-a3

END FRST;

~CTIVATION AND TERMINATION OF BI~OCKS

ACTIVATION

Although the begin block and the proce­
dure have a physical resemblance and play
the same role in the allocation and freeing
of storage, as well as in delimiting the
scope of names, they differ in t:he way they
are activated and executed~ A begin block,
like a single statement, is activated and
executed in the course of normal sequential

program flow (except when specified as an
on-unit> and~ in general, can a~pear where­
ver a single statement can appear. For a
procedure, however, normal sequential pro-
9ram flow passes around the procedure, from
the statement before the PROCEDURE state­
ment to the statement after the END state­
ment of that procedure. The only way in
which a procedure can be activated is by a
procedure reference.

A procedure reference is the appearance
of an entry name (defined below> in one of
the following contexts:

1. ;After the keyword CALL in a CALL
• statement

2. I After the keyword CALL in the CALL
loption of the INITIAL attribute (see
Ithe discussion of the INITIAL attri­
ibute in Part II, Section I,
"Attribut~s," for details>

3. As a function reference (see Chapter
10, "Subroutines and Functions," for
details>

This chapter uses examples of the first
of these; that is, with the procedure
reference of the form:

CALL entry-name;

']~he material, however. is relevant to the
other two forms as well.

An entry name is defined as either of
the following:

1. The label, or one of the labels~ of a
PROCEDURE statement

2. The label, or one of the labels 8 of an
ENTRY statement appearing within a
procedure

The first of these is called the prima~
entry point to a procedure; the second is
known as a secondary entry point to a
procedure. The following is an example of
a procedure containing secondary entry
points:

A: PROCEDURE;
statement-l
statement-2

ERRT: ENTRY;
statement-3
statement-4
statement-5

NEXT: RETR: ENTRY;
statement-6
statement-7
statement-8
END A;

Chapter 6: Blocks, Flow of Control, and Storage Allocation 75

In this example, A is the primary entry
point to the procedure, and ERRT, NEXT, and
RETR specify secondary entry points.
Actually, since they are both labels of the
same ENTRY statement, NEXT and RETR specify
the same secondary entry pOint.

VJhen a procedure reference is executed,
the procedure containing the specified
entry point is activated and is said to be
invoked: control is transferred to the

I specified entry point.1. The point at which
the procedure reference appears is called
the pOint of invocation and the block in
which the reference is made is called the
~~ing_blQck. An invoking block remains
active even though control is transferred
from it to the block it invokes.

Whenever a procedure is invoked at its
primary entry point, execution begins with
the first executable statement in the
invoked procedure. However, when a proce­
dure is invoked at a secondary entry point"
execution begins with the first executable
statement following the ENTRY statement
that: defines that secondary entry point.
Therefore, if all of the numbered state­
ments in the last example are executable,
the statement CALL A would invoke procedure
A at its primary entry point, and execution
would begin with statement-l; the statement
CALL ERRT would invoke procedure A at the
secondary entry point ERRT, and execution
would begin with statement-3; either of the
statements CALL NEXT or CALL RETR would
invoke procedure A at its other secondary
entry point, and execution would begin with
statement-6. Note that any ENTRY state­
ments encountered during sequential flow
are never executed; control flows around
the ENTRY statement as though the statement
werE~ a comment ..

Any procedure, whether external or
interrial, can always invoke an external
procedure, but it cannot always invoke an
interrial procedure that is contained in
some other procedure. Those internal pro­
cedures that are at the first level of
nesting relative to a containing procedure
can always be invoked by that containing
proceduroe, or by each other. For example:

/

1. This statement does not
CALL statement specifies one
tasking options. See
"Multitasking."

76

apply when the
of the multi­
Chapter 15,

PRMAIN: PROCEDURE:
statement-l
statement-2
statement-3
A: PROCEDURE;

statement-al
statement-a2
B: PROCEDURE;

statement-bl
statement-b2

END A;
statement-4
statement-5
C: PROCEDURE;

statement-cl
statement-c2
END C;

statement-6
statement-7
END PRMAIN:

In this example, PRMAIN can invoke pro­
cedures A and C, but not B: procedure A can
invoke procedures Band C: procedure B can
invoke procedure C: and procedure C can
invoke procedure A but not B.

The foregoing discussion about the acti­
vation of blocks presupposes that a program
has already been activated. A PL/I program
becomes active when a calling program
invokes the initial procedure. This call­
ing program usually is the operating sys­
tem, although it could be another program.
For System/360 implementations, the initial
procedure, called the main procedure, must
be an external procedure whose PROCEDURE
statement has the OPTIONS (MAIN) sp€'cifi­
cation, as shown in the following example:

CONTRL: PROCEDURE OPTIONS(MAIN):
CALL A:
CALL B:
CALL C;
END CONTRL:

In this example, CONTRL is
procedure and it invokes other
in the program.

the initial
proc€~dures

The following is a summary of wha.t has
been stated, or at least implied, about the
activation of blocks:

• A program becomes active when the
tial procedure is activated by
operating system.

ini­
the

• Except for the initial procedure~
external and internal procedures con­
tained in a program are activatedl only
when they are invoked by a procedure
reference.

• Begin blocks are activated through nor­
mal sequential flow or as on-uni b:;:.

• The initial procedure remains active
for the duration of the program.

• All activated blocks remain
until they are terminated (see

TERMINATION

active
below).

In general, a procedure block is termi­
nated when, by some means other than a
procedure reference, control passes back to
the invoking block or to some other active
block. Similarly, a begin block is termi­
nated when, by some means other than a
procejure reference, control passes to
another active block. There are a number
of ways by which such transfers of control
can be accomplished, and their interpreta­
tions differ according to the type of block
being terminated.

Note that when a block is terminated,
any task attached by that block is termi­
nated (see Chapter 15, "Multitasking").

Begin B!ock Termination

A begin block is terminated when any of
the following occurs:

1. Control reaches the END statement for
the block. When this occurs, control
moves to the statement physically fol­
lowing the END, except when the block
is an on-unit.

2. The execution of a GO TO statement
wi"thin the begin block (or any block
ac"ti vated from wi thin that begin
block) transfers cont,ro I to a point,
not contained within the block.

3. A STOP or EXIT statement is executed
(thereby terminating execution).

4. Control reaches a RETURN statement
that transfers control out of the!
begin block and out of its containing
procedure as well.

A GO TO statement of the type described
in item 2 can also cause the! termination of
other blocks as follows:

If the transfer point is contained in a
block that did not direct,ly activate the~
block being terminated, all intervening
blocks in the activation sequence are
term:inated.

For example, if begin block B
tained in begin block A, then

is con­
a GO TO

statement in B that transfers control to a
point contained in neither A nor B effec­
tively terminates both A and B. This case
is illustrated below:

FRST: PROCEDURE OPTIONS(MAIN) ;
statement-l
statement-2
statement-3
A: BEGIN;

statement-al
statement-a2
B: BEGIN;

statement- bl
statement-b2
GO TO LAB;
statement-b3
END Bi

statement-a3
END Ai

statement-4
statement-5

LAB: statement-6
statement-7
END FRST;

After FRST is invoked, the first three
statements are executed and then begin
block A is activated. The first two state­
ments in A are executed and then begin
block B is activated (A remaining active).
when the GO TO statement in B is executed,
control passes to statement-6 in FRST.
since statement-6 is contained in neither A
nor B, both A and B are terminated. Thus,
the transfer of control out of begin block
B results in the termination of intervening
block A as well as termination of block B.

Procedure Termination

A procedure is terminated when one of
the following occurs:

1,. Control reaches a RETURN statement
within the procedure. The execution
of a RETURN statement causes control
to be returned to the point of invoca­
tion in the invoking procedure. If
the point of invocation is a CALL
statement, execution in the invoking
procedure resumes with the statement
following the CALL. If the point of
invocation is one of the other forms
of procedure references (that is, a
CALL option or a function reference),
execution of the statement containing
the reference will be resumed.

20 Control reaches the END statement of
the procedure. Effectively, this is
equivalent to the execution of a
RETURN statement.

Chapter 6: Blocks, Flow of Control, and Storage Allocation 77

3. The execution of a GO TO statement
wi.thin the procedure (or any block
activated from within that procedure)
transfers control to a point not con­
tained within the procedure.

4. A STOP or EXIT statement is executed
(t~hereby terminating execution).

Items 1, 2, and 3 are normal procedure
terminations: item 4 is abnormal procedure
termination.

As with a begin block, the type of
termination described in item 3 can some­
times result in the termination of several
procedures and/or begin blocks. Specifi­
cally, if the transfer point specified by
the GO TO statement is contained in a block
that did not directly activate the block
being terminated, all intervening blocks in
the activa·tion sequence are terminated.
Consider the following examole:

A: PROCEDURE OPTIONS(MAIN);
statement-l
statement-2
B: BEGIN;

statement-bl
stat-ement-b2
CALL C:
statement-b3
END B:

statement-3
stat ement- 4
c: PROCEDURE;

statement-cl
statement-c2
stat. ement-c3
D: BEGIN;

statement-dl
statement-d2
GO TO LAB:
statement-d3
END D;

statement-c4
END C;

sta tement- 5
LAB: statement-6

statement-7
END Ai

In the above example, ~ activates B,
which activates C, which activates D. In
D, the statement GO TO LAB transfers con­
trol to statement-6 in~. Since this
statement is not contained in D, C, or B,
all three blocks are terminated; A remains
active. Thus, the transfer of control out
of D results in the termination of inter­
vening blocks Band C as well as the
termination of block D.

78

Program Termination

A program is terminated when anyone of
the following occurs:

1. Control for the program reaches an
EXIT statement. This is abnormal ter­
mination.

2. Control for the program reaches a STOP
statement. 1 This also is abnormal ter­
mination.

3. Control reaches a RETURN statement or
the final END statement in the main
procedure. This is normal termina­
tion.

4. An on-unit for the ERROR condition is
executed with normal return (that 1:5,

a GO TO statement does not transfer
control out of the on-unit) or the
FINISH condition is raised as a result
of the standard system action for the
ERROR condition..

Note: The termination of a program, i-lheth­
er-nDrmal or abnormal, raises -the FINISH
condition. The standard system action for
this condition is to return control to the
operating system control program. For nor­
mal termination, the control program will
then pass control to the calling program,
if any. For abnormal termination, it will
terminate the job. (See Part II, Section
H, "ON-Conditions.")

STORAGE ALLOC~TION

storage allocation is the process of
associating an area of storage with a
variable so that the data item(s) to be
represented by the variable may be recorded
internally. When storage has been asso­
ciated with a variable, the variable is
said to be allocated. Allocation for a
given variable may take place staticall·l,
that is, before the execution of the pro­
gram, or dynamically, during execution. A
variable that is allocated statically
remains allocated for the duration of the
progra1\. A variable tha t is allocated
dynamically will relinquish its storage
either upon the termination of the block
containing that variable or at the request
of the programmer, depending upon its stor­
age class.

1 When multitasking is in operation, the
program (i.e., the major task) is terminat­
ed when any task reaches a STOP statement.
See Chapter 15, "Multitasking."

The manner in which storage is allocated
for a variable is determined by the storage
class of that variable. There are four
storage classes: static. automatic. con-

I trolled. and based. Each storage class is
specified by its corresponding storage
class attri.bute: STATIC. AUTOMATIC, CON-

I TROLLED, and BASED, respectively, The last
three define dynamic storage allocation.

Storage class attributes may be declared
explicitly for element. array. and major
structure variables. If a variable is an
array or a major structure variable. the
storage class declared for that variable
applies to all of the elements in the array
or structure.

All variables that have not been expli­
citly declared with a storage class attri­
bute~re assumed to have the AUTOMATIC
attribute, with one exception: any variable
that has the EXTERNAL attribute is assumed
to have the STATIC attribute.

§tatic Storage

All variables that have the STATIC
attribute are allocated storage before the
execution of the program begins and they
remain allocated for the duration of the
program. For example:

OUTP: PROCEDURE:
DECLARE X FIXED STATIC INITIAL (1);

PUT DATA (X);

X X+1:
END OUTP;

Before the execution of a program
begins~ all static variables are allocated
and any initial values specified for them
are assigned. Therefore~ in the above
example, the first time that procedure OUTP
is invoked, X has the value 1 and execution
of the PUT statement causes the item X=l to
be written~ Before OUTP is terminated. the
assignment statement X=X+1 increases the
value of X by 1. If OUTP is invoked a
second time. and if the value of X is not
changed elsewhere in the program, X has the
value 2 (X is not re-initialized to 1
because static variables are initialized
only once before execution). When the PUT
statement is executed for the second time.
the item X=2 is written into the stream,
etc. Thus., the static variable X might be
used to record the number of times that
OUTP is invoked,.

Automatic Storage

A variable that has the AUTOMATIC attri­
bute is allocated storage upon activation
of the block in which that variable is
declared. The variable remains allocated
as long as the block remains active: it is
freed when the block is terminated. Once a
var.iable is freed, its value is lost.

controlled Storage

A variable that has the CONTROLLED
attribute is allocated storage only upon
the execution of an ALLOCATE statement
specifying that variable. Storage remains
allocated for that variable until the exe­
cution of a FREE statement in which the
variable is specified. This allocation
remains even after termination of the block
in which it is allocated. Thus. the allo­
cation and freeing of storage for variables
declared with the CONTROLLED attribute is
dir.ectly under the control of the program­
mer.

A controlled variable may be stacked:
that is, storage may be allocated for a
controlled variable even when a previous
allocation for that variable exists. In
terms of ALLOCATE and FREE statements,
stacking occurs when an allocated con­
trolled variable is specified in an ALLO­
CATE statement without first having been
specified in a FREE statement.. When this
occurs, the previous allocation is not
released: its value remains the same but~
for. the time being, this value is not
available to the programmer. conceptually.
the new allocation is stacked on top of the
previous allocation, with the result that
the previous allocation is "pushed-down" in
the stack. Subsequent allocations are
always added to the top of the stack.

Any reference to a stacked controlled
variable always refers to the most recent
allocation for that variable: iue., to the
allocation at the top of the stack. Thus.
a FREE statement specifying a stacked con­
trolled variable will cause the allocation
at the top of the stack to be freed. When
this occurs. the other allocations in the
stack are "popped-up", the most recent
previous allocation coming to the top and
being available once again. When an allo­
cation is E22ped~ to the top of a stack,
its value is the same as it was when it was
pushed down..

Chapter 6: Blocks, Flow of Control. and Storage Allocation 79

Based storage is similar to controlled
storage in that it can be allocated by the
ALLOCATE statement and freed by the FREE
statement; and more than one allocation can
exist for one variable. However. the pro­
grammer has a much greater degree of con­
trol with based storage. For example. all
current based allocations are available at
any time: unique reference to a particular
allocation is provided by a pointer value
qualifying the based variable reference.

Based storage is the most powerful of
the PL/I storage classes, but it must be
used carefully; many of the safeguards
against error that are provided for other
storage classes cannot be provided for
based.

For full details of based storage. see
Chapter 14. "Based storage and List Proc­
essing."

REACTIVATION OF AN ACTIVE PROCEDURE
.(RE~URSION)

An active procedure that
vated from within itself
another active procedure is
recursive procedure; such
cafie<ll !ecursion.

can be reacti­
or from within

said to be a
reactivation is

A procedure can be invoked recursively
only if the RECURSIVE option has been
specified in its PROCEDURE statement. This
opti.on also applies to the names of any
secondary entry points that the procedure
might have.

The environment (that is, values of
automatic variables, etc.) of every invo­
cation of a recursive procedure is pres­
erved in a manner analogous to the stacking
of allocations of a controlled variable.
An environment can thus be thought of as
being "pushed down" at a recursive invoca­
tion, and "popped up" at the termination of
that invocation. Note that a label con­
stant always contains information identify­
ing the current invocation of the block
that contains the label. Hence, if a label
constant is assigned to a label variable in
a particular invocation. a GO TO statement
naming that variable in another invocation
could restore the environment that existed
when the assignment was performed.

80

Consider the following example:

RECURS: PROCEDURE RECURSIVE;
DECLARE X STATIC EXTERNAL INITIA]~ (0);

X=X+l;
PUT DATA (X);
IF X =5 THEN GO TO LAB;
CALL AGN;
X'=X-l;
PUT DATA (X);

LAB: END RECURS;

AGN: PROCEDURE RECURSIVE;
DECLARE X STATIC EXTERNAL INITIAl. (0);

X=X+l;
PUT DATA(X);

CALL RECURS;
X=X-l;
PUT DATA (X>:
END AGN;

In the above example. RECURS and AGN are
both recursive procedures. Since X is
static and has the INITIAL attribute, it is
allocated and initialized before execution
of the program begins.

The first time that RECURS is invoked. X
is incremented by 1 and X=l is transmitted
by the PUT statement. Since X is less than
5, AGN is invoked. In AGN, X is increment­
ed by 1 and X=2 is transmitted (also by a
PUT statement). AGN then reinvokes RECURS.

This second invocation of RECURS is a
recursive invocation. because RECURS is
still active. X is incremented as before.,
and then X=3 is transmitted. X is still
less than 5, so AGN is invoked again.
Since AGN is active when invoked, this
invocation of AGN is also recursive. X is
incremented once again. X=4 is transmitted.
and RECURS is invoked for the third time,.

The third invocation of RECURS results
in the transmission of X=5. But, since X
is no longer less than 5, GO TO LAB is
executed, and then RECURS is terminated.
However, only the third invocation of
RECURS is terminated. with the result that
control returns to the procedure that
invoked RECURS for the third time; tha't is.
control returns to the statement f0110wing
CALL RECURS in the second invocation of
AGN. At this point X is decremented by 1
and X=4 is transmitted. Then the second

invocation of AGN is terminated, and con­
trol returns to the procedure that invoked
AGN for the second time; that is, control
returns to the statement following CALL AGN
in the second invocation of HECURS. Here X
is decremented again and X=3 is transmit­
ted, after which the second invocation of
RECURS is terminated and cont.rol returns to
the first invocation of AGN. X is decre­
mented again, X=2 is transmitted, the first
invocation of AGN is terminated, and con­
trol returns to the first invocation of
RECURS. X is decremented, X=l is transmit­
ted, X is reset to 0, and the first
invocation of RECURS is terminated. Con­
trol then returns to the procedure that
invoked RECURS in the first place.

Note the difference bet~,een recursive
and reentrant procedures. A procedure is
recursive only if the RECURSIVE option is
specified in the PROCEDURE statement.
Every procedure compiled by the F Compiler
is reentrant; that is, it is a procedure
that does not modify itself during its
execution, so that subsequent. execution of
the procedure with the same data will
always give the same result.

Effect of Recursion on storaqg-.f.lasse§.

Allocation of ~static variables (as
illustrated above) is not affected by
recursion, because they a~illocated stor­
age outside the environment of a recursive
procedure. Allocation of controlled varia­
bles is likewise unaffected because their
allocation and release is completely under
the control of the programmer. However,
allocation of automati~ va~iables is
affected. because they are a part of t~

-environment of a particular invocation and
also because their allocation and release
is not directly controlled by the program­
mer.

Each time a procedure is invoked recur­
sively, storage for each automatic variable
is reallocated, and the previ::>us allocation
is pushed down in a stack,. Each time an
activation of a recursive procedure is
terminated, automatic storage is popped up
to yield the next most recent generation of
automatic storage. Hence, each generation
of automatic storage is preserved as part
of the environment of the corresponding
recursive activation.

PROLOGUES AND EPILOGUES

Each time a block is activated, certain
activities must be performed before control

can reach the first executable statement in
the block. This set of activities is
called a prologue. Similarly, when a block
is terminated, certain activities must be
performed before control can be transferred
out of the block; this set of activities is
called an epilogue.

Prologues and epilogues are the
responsibility of the compiler and not of
the programmer. They are discussed here
because knowledge of them may assist the
programmer in improving the performance of
his program.

A prologue is a compiler-written routine
logically appended to the beginning of a
block and executed as the first step in the
activation of a block. In general, activi­
ties performed by a prologue are as fol­
lows:

• Computing dimension bounds and string
lengths for automatic and DEFINED vari­
ables and ENTRY declarations.

• Allocating storage for automatic varia­
bles and initialization, if specified.

• Determining which currently active
blocks are known to the procedure, so
that the correct generations of auto­
matic storage are accessible, and the
correct on-units may be entered.

• Allocating storage for dummy arguments
that may be passed from this block.

The prologue may need to evaluate
expressions defining lengths, bounds, iter­
ation factors, and initial values. Note
that if an item is referred to in an
expression and the allocation or initiali­
zation of a second item depends on that
expression, then the first item must be in
no way dependent on the second item for its
own allocation and initialization. Furth­
er, the first item must he in no way
dependent on any other item that so depends
on the second item. For example, the
following declaration is invalid:

DCL A(B(l» INITIAL(2),
B(A(l) INITIAL(3);

However, the following
valid:

DCL N INITIAL (3) ,
A{N),
B CHAR(N);

declaration is

Chapter 6: Blocks, Flow of Control, and Storage Allocation 81

An epilogue is a compiler-written rou­
tine logically appended to the end of a
block and executed as the final step in the
termination of a block. In gene~al, the
activities performed bv an epilogue are as
follows:

82

• RE!-establishing the on-unit environment
existing before the block was activat­
ed •

• Releasing storage for all automatic
variables allocated in the block.

A PL/I program consists of a collection
of identifiers. constants, and special
characters used as operators or delimiters~
Identifiers themselves may be I~ither key­
words or names with a meaning specified by
·the programmer. The PL/I language is con­
structed so that the compiler can determine
:from context whether or not an identifier
is a keyword, so there is no list of
reserved words that must not be used for
programmer-defined names. Any identifier
may be used as a name; the only restriction
is that a.t any point in a program a name
can have one and only one meaning. For
example, the same name cannot be used for
both a file and a floating-point variable.

Note: The above is true so long as the
60-character set is used. Certain iden­
tifiers of the 48-character set cannot be
used as programmer-defined identifiers in a
program written using the 48-character set;
these identifiers are: GT, GE, NE, LT, NG,

I :LE,. NL, CAT, OR, AND., NOT, and PT.

It is not necessarYI1 however" for a name
·to have the same meaning throughout a
program. A name declared within a block
has a meaning only within that block.
outside the block it is unknown unless the
same name has also been declared in the
outer block. In this case, the name in the
outer block refers to a different object.
This enables programmers to specify local
definitions and, hence, to write procedures
or begin blocks without knowing all the
names being used by other programmers writ­
ing other parts of the program.

since it is possible for a name to have
more than one meaning, it is important to
define which part of the program a particu­
lar meaning applies to. In PL/I a name is
given attributes and a meaning by a dec­
laration (not necessarily explicit). The
part of the program for which the meaning
applies is called the scope of the declara­
tion of that name. In most cases~ the
SCO'i?e of a name is determined entirely by
the position at which the name is declared
within the program (or assumed to be
declared if the declaration is not
explicit). There are cases in which more
than one generation of data may exist with
the same name (such as in recursion); such
cases are considered separately.

In order to understand the rules for the
scope of a name, it is necessary to under­
stand the terms "contained in" and
"internal t.o."

CHAPTER 7: RECOGNI~ION OF NAMES

Contained In:

All of the text of a block, from the
PROCEDURE or BEGIN statement through
the corresponding END statement, is
said to be contained in that block.
Note, however, that the labels of the
BEGIN or PROCEDURE statement heading
the block, as well as the labels of
any ENTRY statements that apply to the
block, are not contained in that
block. Nested blocks are contained in
the block in which they appear.

,;rnternal To:

Text that is contained in a block, but
not contained in any other block nest­
ed within itv is said to be internal
to that block.. Note that entry names
of a procedure Cand labels of a BEGIN
statement) are not contained in that
block. Consequently, they are inter­
nal to the containing block. Entry
names of an external procedure are
treated as if they were external to
the external procedure.

In addition to these terms, the differ­
I:mt types of declaration are important.
The three different types -- explicit dec­
lar.ation, contextual declaration, and
implicit declaration -- are discussed in
the following sections.

EXPLICIT DECLARATION

A name is explicitly declared if it
appears:

1. In a DECLARE statement

2. In a parameter list

3. As a statement label

4. As a label of a PROCEDURE or ENTRY
statement

The appearance of a name in a parameter
list is the same as if a DECLARE statewent
for that name appeared immediately follow­
ing the PROCEDURE or ENTRY statement in
~~hich the parameter list occurs (though the
same name may also appear in a DECLARE
statement internal to the same block).

The appearance of a name as the label of
leither a PROCEDURE or ENTRY statement is

Chapter 7: Recognition of Names 83

the same as if it were declared in a
DECLARE statement immediately preceding the
PROCEDURE statement for the procedure to
which it refers.

The appearance of a statement label
prefix constitutes explicit dec~aration
equivalent to the declaration of a variable
in a DECLARE statement internal to the same
block as the statement to which it applies.

SCOPE OF AN EXPLICIT DECLARATION

The scope of an explicit declaration of
a name is that block to which the declara­
tion is internal, but excluding all con­
tained blocks to which another explicit
declaration of the same identifier is
internal.

For example:

P A B Q B' C
P: PROCEDURE;

DECLARE A, B;]
Q: PROCEDURE;

DECLARE B, C;

END Q;

END P;

]]
]

The lines to the right indicate the
scope of the names. Band B' indicate the
two distinct uses of the name B.

CONT.EXTUAL DECLARATION

When a name appears in certain contexts,
some of its attributes can be determined
without explicit declaration. In such a
case, if the appearance of a name does not
lie within the scope of an explicit dec­
laration for the same name, the name is
saij to be contextually declared.

A name that has not been declared expli­
citly will be recognized and declared con­
textually in the following cases:

1. A name that appears in a CALL state­
ment, in a CALL option, or followed by
a parenthesized list in a function
reference (in a context where an
expression is expected) is given the
ENTRY and EXTERNAL attributes.

2. A name that appears in a FILE option,
or a name that appears in an ON,

84

3.

4.

5.

6.

7.

SIGNAL, or REVERT statement for a
condition that requires a file name,
is given the FILE and EXTERNAL attri­
butes.

A name that appears in an ON CONDI­
TION, SIGNAL CONDITION, or REVER~r CON­
DITION statement is recognized as a
programmer-defined condition name.

A name that appears in an EVENT option
or in a WAIT statement is given the
EVENT attribute.

A name that appears in a TASK option
is given the TASK attribute.

A name that
attribute, in
left-hand side
tion symbol
attribute.

appears in the BASED
a SET option, or on the
of a pointer qualifica­
is given the POINTER

A name that appears in an IN option,
or in the OFFSET ~ttribute is given
the AREA attribute. Note ll hml7ever,
that all contextually declared area
variables are given the AUTOMATIC
attribute. The F Compiler implernenta";"
tion requires that the variable named
in the OFFSET attribute must be based;
if a nonbased area variable is named,
the offset variable will be changed to
a pointer variable. Hence# unless the
variable named in the OFFSET attribute
is explicitly declared, OFFSET effec­
tively becomes POINTER, and a severe
error occurs.

8. If an undeclared identifier appears:

a. before the equal sign in an
assignment statement, or

b. before the assignment symbol in a
DO statement (or in a repetitive
specification), or

c. in the data list of a GET state­
ment

and if that identifier is neither
enclosed within an argument list nor
immediately followed by an ar9ument
list, that identifier is contexi:ually
declared to be a variarle and not a
reference to a built-in function or
pseudo-variable. This rule dOE~s not
apply to the identifiers ONCHAR,
ONSOURCE, and PRIORITY.

Examples of contextual declaration are:

READ FILE CPREQ) INTO CQ};

ON CONDITION (NEG) CALL CREDIT;

In these statements" PREQ is given the FILE
attribute, NEG is recognized as a
programmer-defined condition harne, and
CREDIT is given the ENTRY attribute. The
EXTERNAL attribute is given to all three by
default.

SCOPE OF A CONTEXTUAL DECLARATION

The scope of a contextual declaration is
determined as if the decla.ration were made
in a DECLARE statement immediately follow­
ing the PROCEDURE statement of the external
procedure in which the name appears.

Note that contextual dE~claration has the
same effect as if the namE~ were declared in
the external proced"lre, even when the
statement that causes the contextual dec­
larations is internal to at block (called B,
for example) that is contained in the
external procedure. Cons€!quently, the name
is known throughout the entire external
procedure, except for any blocks in which
the name is explicitly declared. It is as
if block B has inherited the decla~ation
from the containing external procedure.

Since a contextual declaration cannot
exist within the scope of an explicit
declaration, it is impossible for the con­
text of a name to add to the attributes
established for that name in an explicit
declaration.

For example, the following procedure is
invalid:

P: PROC (F);

READ FILE(F) INTO(X);

END P;

The identifier F is in a parameter list and
is, therefore, explicitly declared. It is
given the attributes REAL DECIMAL FLOAT by
default. Since F is explicitly declared,
its appearance in the FILE option does not
consti·tute a contextual declaration. Such
use of the identifier is in error.

IMPLICIT DECLARATION

If a name appears in a program and is
not explicitly or contextually declared, it
is said to be implicitly declared. The
scope of an implicit declaration is deter·-

mined as if the name were declared in a
DECLARE statement immediately following the
first PROCEDURE statement of the external
procedure in which the name is used.

An implicit declaration causes default
attributes to be applied, depending upon
the first letter of the name. If the name
begins with any of the let·ters I through N
it is given the attributes REAL FIXED
BINARY (15,0). If the name begins with any
other letter including one of the alphabet­
ic extenders $" #, or @, it is given the
attributes REAL FLOAT DECIMAL (6). (The
default precisions ar~ those defined for
System/360 implementations.)

EXAMPLES OF DECLARATIONS

scopes of data declarations are illus­
trated in Figure 7-1. The brackets to the
left indicate the block structure; the
brackets to the right show the scope of
each declaration of a name. In the
diagram" the sc cpes of the two declarations
of Q and R are shown as Q and QI and Rand
R' •

P is declared in the block A and known
throughout A since it is not redeclared.

Q is declared in A, and redeclared in B.
The scope of the first declaration is all
of A except B; the scope of the second
declaration is block B only.

R is declared in block C, but a ref­
erence to R is also made in block B. The
reference to R in block B results in an
implicit declaration of R in A,the external
procedure. Two separate names with differ­
ent scopes exist, therefore. The scope of
the explicitly declared R is C; the scope
of the implicitly declared R is all of A
ex£ept block C.

I is referred to in block C. This
results in an implicit declaration in the
external procedure A. As a result, this
declaration applies to all of A, including
the contained procedures B, C and D.

S is explicitly declared in procedure D
and is known only within D.

Scopes of entry name and statement label
declarations are illustrated in Figure 7-2.
The example shows two external procedures.
The names of these procedures, A and E, are
assumed to be explicitly declared with the
EXTERNAL attribute within the procedures to
which they apply. In addition, E is con­
textually declared in A as an EXTERNAL
entry name by its appearance in the CALL
statement in block C. The contextual dec-

Chapter 7: Recognition of Names 85

r------------------------------------~---,
, P Q Q' R R' S I
" A: PROCEDURE;]

DECLARE P, Q;
, B: PROCEDURE;

DECLARE Q;
R = Q;
C: BEGIN;

DECLARE R;
DO I = 1 TO 10;
END;
END C;

END B;
PROCEDURE;
DECLARE S;
END D;

END A;
] 1 J

________ . ___ J

Figure 7-1. scopes of Data Declarations

r--------·---,
, Ll Ll' L2 ABC DE,

A: PROCEDURE;
Ll: P = Q;
B: PROCEDURE;

L2: CALL C;

Ll: X = Y i

[

C: PROCEDURE;

CALL E;
END C;

, GO TO Ll; 1 I , END B; ,
I: [D: PROCEDURE; I
I END D; 1
I CALL B; I
I END A; \ , [E: PROCEDURE;] "
I END Ei \ L ___ J

.Figure 7-2. Scopes of Entry and Label Declarations

laration of E applies throughout block ~
and is linked to the explicit declaration
of E that applies throughout block E. The
scope of the name E is all of block ~ and
all of block E. The scope of the name A is
only all of the block A, and not E.
However, it could appear in a CALL state­
ment in E, since the CALL statement itself
would provide a contextual declaration of
A, which would then result in the scope of
A being all of ~ and all of E.

The label L1 appears with statements
internal to A and to C. Two separate
·declarations are therefore established; the
first applies to all of block A except
block C, the second applies to block C
only. Therefore, when the GO TO statement
in block B is executed, control is trans­
ferred to L1 in block A, and block B is
termina·ted.

D and B are explicitly declared in block
A and can bE~ referred to anywhere within Ai

86

but since they are INTERNAL, they cannot b~
referred to in block E (unless passed as an
argumen t to E).

C is explicitly declared in B and can be
referred to from within B, but not from
outside B.

L2 is declared in B and can be referred
to in block B, including C, which is
contained in B, but not from outside B.

APPLICATION OF DEFAULT ATTRIBUTES

The attributes associated. with a name
comprise those explicitly, contextually, or
implicitly declared for that name, as well
as those assumed by default. The default
for each attribute is given in Part II,
Section I, "Attributes."

THE INTE~NAL AND EXTERNAL ATTRIBUTES

The scope of a name with the INTERNAL
attribute is the same as the scope of its
declaration. Any other explicit declara­
tion of t.hat name refers tea new object
with a different, non-overlapping scope.

A name with the EXTERNAL at·tribute may
be declared more than once in the same
program, either in different external pro­
cedures or within blocks contained in
external procedures. Each declaration of
the name establishes a scope. These dec­
larations are linked together and, within a
program, all declarations of the same iden­
tifier with the EXTERNAL attribute refer to
the same name. The scope of the name is
the sum of the scopes of all the declara­
tions of that name within the program.

~ote: External names cannot be more than
seven characters long for System/360
implementations.

Since these declarations all refer to
the same thing~ they must all result in the
same set of attributes. It may be impossi­
ble for the compiler to check this, parti­
cularly if the names are declared in dif­
ferent procedures, so care should be taken
to en~ure that different declarations of
the same name with the Ex'rERNAL attribute
do have matching attributes. The attribute
listing, which is available as optional
output from the F Compiler, helps to check
the use of names. The following example
illustrates the above points in a program:

A: PROCEDURE;
DECLARE S CHARACTER (20);
CALL SET (3);

E: GET LIST (S,M,N);
B: BEGIN;

DECLARE X(M,N), Y(M);
GET LIST (X,Y);
CALL C(X,Y);
C: PROCEDURE (P,Q);

DECLARE P(*,*), Q(*),
S BINARY FIXED EXTERNAL;

S = 0;
DO I = 1 TO M;
IF SUM (P(I,*» Q(I)

THEN GO TO B;
S = S+l;
IF S = 3 THEN CALL OUT (E);
CALL D(I);

B: END;
END C;

D: PROCEDURE (N);
PUT LIST ('ERROR IN ROW '

N,'TABLE NAME'S);
END D;

END B;
GO TO E;
END A;

OUT: PROCEDURE (R);
DECLARE R LABEL,

(M,L) STATIC INTERNAL
INITIAL (O)D

S BINARY FIXED EXTERNAL.
Z FIXED DECIMAL(l);

M = M+l; S=O;
IF M<L THEN STOP; ELSE GO TO R;

SET: ENTRY (Z);
L=Z;
RETURN;
END OUT;

A is an external procedure name; its
scope is all of block A, plus any other
blocks where A is declared (explicitly or
contextually) as external.

S is explicitly declared in block A and
block C. The character string declaration
applies to all of block A except block C;
the fixed binary declaration applies only
1Nithin block C. Notice that although D is
called from wi thin block C., the reference
to S in the PUT statement in D is to the
character string S, and not to the S
declared in block C.

N appears as a parameter in block D, but
is also used outside the block. Its apear­
ance as a parameter establishes an explicit
declaration of N within D; the references
outside D cause an implicit declaration of
N in block A. These two declarations of
the name N refer to different objects,
although in this casen the objects have the
same data attributes, which are, by
default, FIXED (15,0), BINARY, and INTER­
NAL.

X and Yare known throughout B and could
be referred to in block C or D within B#
but not in that part of A outside B.

P andQ are parameters, and therefore
their appearance in the parameter list is
sufficient to constitute an explicit dec­
laration. However, a separate DECLARE
statement is required in order to specify
that P and Q are arrays. Note that
although the arguments X and Yare declared
as arrays and are known in block C, it is
still necessary to declare P and Q in a
DECLARE statement to establish that they,
·too, are arrays. (The asterisk notation
indicates that the bounds of the parameters
are the same as the bounds of the argu­
ments.)

I and M are not explicitly declared in
the external procedure A; they are there­
fore implicitly declared and are known
th~oughout A, even though I appears only
within block C.

Within the external procedure A# OUT and
SET are contextually declared as entry
names, since they follow the keyword CALL~

Chapter 7: Recognition of Names 87

They are therefore considered to be
declared in A and are given the EXTERNAL
attribute by default.

The second external procedure in the
example has two entry names, SET and OUT.
These are considered to be explicitly
declared with the EXTERNAL attribute. The
two entry names SET and OUT are therefore
known throughout the two procedures.

'rhe label B appears twice in the pro­
gram, once as the label of a begin block,
which is an explicit declaration, as a
label in A. It is redeclared as a label
within block C by its appearance as a
prefix to the END statement. The reference
to B in the GO TO statement within block C
therefore refers to the label of the END
statement within block C. Outside block C.
any reference to B would be to the label of
the begin block.

Note that C and D can be called from any
point within B but not from that part of A
outside B, nor from another external proce­
dUrE!. Similarly. since E is known through­
out the external procedure A, a transfer to
E may be made from any point within A. The
label B within block C. however, can only
be referred to from within C. Transfers
out of a block by a GO TO statement can be
made; but such transfers into a nested
block generally cannot. An -exception is
shown in the external procedure OUT, where
the label E from block A is passed as an
argument to the label parameter R.

'I'he statement GO TO R causes control to
pass to the label E, even though E is
declared within A, and not known within
OUT.

The variables M and L are declared
within the block OUT to be STATIC, so their
values are preserved between calls to OUT.

In order to identify the S in the
procedure OUT as the same S in the proce­
dure C, both have been declared with the
attribute EXTERNAL.

MULTIPLE DECLARATIONS AND AMBIGUOUS
REFERENCES '

Two or more declarations of the same
identifier internal to the same block con­
stitute a multiple declaration. unless at
least one of the identifiers is declared

88

within a structure in such a way that name
qualification can be used to make the names
unique.

Two or more declarations anywhere in a
program of the same identifier as different
names with the EXTERNAL attribute consti­
tute a multiple declaration.

Multiple declarations are in error.

A name need have only enough qualifica­
tion to make the name unique. Reference to
a name is always taken to apply to the
identifier declared in the innermost block
containing the reference. An ambiguous
reference is a name with insufficient qual­
ification to make the name unique.

The following examples illustrate both
multiple declarations and ambiguous ref­
erences:

DECLARE 1 A. 2 c, 2 D, 3 Ei
BEGIN;
DECLARE 1 A, 2 B, 3 c, 3 Ei
A.C = D.E;

In this example, A.C refers to C in the
inner block; D.E refers to E in the outer
block.

DECLARE 1 A~ 2 B, 2B, 2 C~ 3 Dw 2 D;

In this example" B has been mul tiply
declared. A.D refers to the second Dw
since A.D is a complete qualification of
only the second D; the first D would have
to be referred to as A.C.D.

DECLARE 1 A, 2 B, 3 C# 2 D, 3 C;

In this example, A.C is ambiguous because
neither C is completely qualified by this
reference.

DECLARE 1 A. 2 A. 3 A;

In this example, A refers to the first A#
A.A refers to the second A, and A.A.A
refers to the third A.

DECLARE X;

DECLARE 1 Y. 2 X, 3 z~ 3 A.
2 Y, 3 Z, 3 Ai

In this example, X refers to the first
DECLARE statement. A reference to Y.:~ is
ambiguous; Y.Y.Z refers to the second Z;
and Y.X.Z refers to the first Z.

PL/I provides input and output state­
ments "that enable data to be transmitted
between the internal and external storage
devices of a computer. A collection of
data external to a program is called a data
set. Transmission of data from a data set
~a program is called inpu!, and transmis­
sion of data from a program to a data set
is called output.

Data sets are stored on a variety of
external storage media, such as punched
cards, reels of magnetic tape, magnetic
disks, magnetic drums, and punched paper
tape. Despite their variety, external
storage media have many common charac­
teristics that permit standard methods of
collecting, stori~g, and transmitting data.
F'or convenience, thus n the general term
volume is used to refer to a unit of
ex~al storage, such as a reel of magnet­
ic tape or a disk pack, without regard to
its specific physical composition.

The data items within a data set are
arranged in distinct physical groupings
called blocks. These blocks allow the data
set to ~.-transmi tted and processed in
portions rather than as a unit. For proc­
essing purposes, each block may consist of
one or more logical subdivisions called
records, each of which contains one or more
data items.

A block is also called a Qhy§ical
record, because it is the unit of data that
ls physically transmitted to and from a
volume. To avoid confusion between a phy­
sical record and its logical subdivisions n
the logical subdivisions are called logical
records.

When a block contains two or more
records, the records are said to be
blocked. Blocked records often permit more
compact and efficient use of storage,. Con­
sider how data is stored on magnetic tape:
the data between two successive interrecord
gaps is one block, or physical record. If
several logical records are contained with­
in one block~ the number of interblock gaps
is reduced, and much more data can be
stored on a full length of tape~ For
example, on a tape of density 800
characters/inch with an interrecord gap of
0.6 inches, a card image of 80 characters
would take up 0.1 inches. If the records
were unblocked" each record would require
0.1 inches, plus 0.6 inches for the inter­
record gap, making a total of 0.7 inches.
100 records would therefore take up 70
inches of tape. If the records were

CHAPTER 8: INPUT AND OUTPUT

blocked, however" at" say, 10 records to a
block, each block of 10 records would take
up 1 inch, plus 0.6 inches for the gap,
making a total of 1.6 inches. Thus, 100
records would now take up only 16 inches of
tape: this is less than 25 percent of the
amount needed for unblocked records.

Most data processing applications are
concerned with logical records rather than
physical records. Therefore. the input and
output statements of PL/I generally refer
to logical records: this allows the pro­
grammer to concentrate on the data to be
processed, without being directly concerned
about its physical organization in external
storage.

Two different types of data transmission
can be used by a PL/I program, stream­
oriented transmission and record-oriented
transmission.

In stream-oriented transmission, the
data in the data set is considered to be a
continuous stream of data items in
character form. Consequently. data conver­
sion is implied in stream transmission,
from character form to internal form on
input, and from internal form to character
form on output. The GET and PUT statements
are the data transmission statements used
in stream-oriented transmission. Varia­
bles, to which input data items are
assigned, and expressions, from which out­
put data items are transmitted, are gener­
ally specified in a data list with each GET
or PUT statement.

Although data in the data set exists in
record format, either unblocked or blocked.
in stream transmission such organization is
ignored within the program, and the data is
treated as though it actually were a con­
tinuous stream of individual data items.

In record-oriented transmission, data in
the data set is considered to be a collec­
tion of discrete logical records, recorded
in any format acceptable to the computer.
No data conversion is performed during
record transmission; on input it is trans­
mitted exactly as it is recorded in the
data set: on output it is transmitted
exactly as it is recorded internally.

Chapter 8: Input and output 89

The READ, REWRITE, LOCATE, and WRITE
statements cause a single logical record to
be transmitted to or from a data variable.

Note that although records may be
blocked f in which case the physical record
actually is transmitted to or from the data
set as an entity, each data transmission
statement in record I/O is concerned with a
logical record. Blocked records are
unblocked automatically.

The following discussion of files and
file attributes should be of particular
interest to a programmer using record­
oriented transmission. File handling is
simpler when using stream-oriented
transmission, and, as can be noted, fewer
attributes are applicable to stream files.

To allow a source program to deal pri­
marily with the logical aspects of data
rather than with its physical organization
in a data set, PL/I employs a symbolic
representation of a data set called a file.
This symbolic representation determines how
input and output statements access and
process the associated data set. Unlike a
data set, however, a file has significance
only within the source program and does not
exist as a physical entity external to the
program.

PL/I requires a file name to be declared
for a file and allows the characteristics
of a file to be described with keywords
call~d file attributes, which are specified
for the file name.

FILE ATTRIBUTES

The following lists show file attributes
that are applicable to each type of data
transmission:

90

Stream Transmission
FILi-;--
STREAM
INPUT
OUTPUT
PRINT
INTERNAL
EXTERNAL
ENVIRONMENT

Record Transmission
FILE
RECORD
INPUT
OUTPUT
UPDATE
INTERNAL
EXTERNAL
ENVIRONMENT
SEQUENTIAL
DIRECT
BUFFERED
UNBUFFERED
KEYED
BACKWARDS
EXCLUSIVE

A detailed description of each of these
attributes appears in Part II. Section I,
"Attributes." The discussions below give a
brief description of each attribute and
show how attributes are declared for a
file.

The FILE Attribute

The FILE attribute indicates that the
associated identifier is a file name. For
example, the identifier MASTER is declared
to be a file name in the following state­
ment:

DECLARE MASTER FILE;

Alternative and Additive Attributes

The attributes associated with the FILE
attribute fall into two categories: alter­
native attributes and additive attri~utes.
An alternative attribute is one that is
chosen from a group of attributes. If no
explicit or implicit declaration is given
for one of the alternative attributes in a
group and if one of the alternatives is
required, a default attribute is assmned.

An additive attribute is one that must
be stated-e;{plicitly --or is impli<ed by
another explicitly stated attribute or
name. The additive attribute KEYED can be
implied by the, DIRECT attribute. The addi­
tive attribute PRINT can be implied by the
standard output file name SYSPRINT. An
additive attribute can never be applied by
defaul t.

Note: With the exception of the IN'rERNAL
and EXTERNAL scope attributes. all the
alternative and additive attributes imply
the FILE attribute. Therefore, the FILE
attribute need not be specified for a file
that has at least one of the alternative or

additive attributes already specified
explicitly. The FILE attribute must be
specified explicitly, however, if only the
INTERNAL or EXTERNAL attribute is speci­
fied; otherwise, the identifier will be
assumed, by default, to be an arithmetic
variable rather than a file name.

~].t,ernative ¥Eibutes

PL/I provides five groups of alternative
file attributes. Each group is discussed
individually. Following is a list of the
groups and the default for each:

Group Alternative Default
~ Attributes Attribute
Usage STREAM I RECORD STREAM

Function INPUT I OUTPUT I UPDATE INPUT

A.ccess SEQUENTIAL I DIRECT SEQUENTIAL

Buffering BUFFERED I UNBUFFERED BUFFERED

Scope EXTERNAL I INTERNAL EXTERNAL

The STREAM and RECORD Attributes
....,... i

The STREAM and
cribe the type
(stream-oriented
used in input and
file.

RECORD attributes des­
of data transmission

or record-oriented) to be
output operations for the

The STREAM attribute causes a file to be
treated as a continuous stream of data
it.ems recorded only in character form.

The RECORD attribute causes a file to be
treated as a sequence of logical records,
each record consisting of one or more data
i·tems recorded in any internal form
acceptable to the implementation.

DECLARE MASTER FILE RECORD,
DETAIL FILE STREAM;

±he INPUT" OUTPUT" and UPDATE At:t.ributes

The function attributes determine the
direction of data transmission permitted
for a file. The INPUT attribute applies to
files that are to be read only. The OUTPUT
attribute applies to files that are to be
created~ and hence are to be written only.
The UPDATE attribute describes a file that
is to be used for both input and output; it
allows records to be inserted into an

existing file and other records already in
that file to be altered or deleted.

DECLARE
DETAIL FILE INPUT,
REPORT FILE OUTPUT,
MASTER FILE UPDATE;

The SEQUENTIAL and DIRECT Attributes

The access attributes apply only to a
file with the RECORD attribute and describe
how the records in the file are to be
accessed.

The SEQUENTIAL attribute normally speci­
fies that successive records in the file
are to be accessed on the basis of their
successive physical positions, such as they
are on magnetic tape.

The DIRECT attribute specifies that a
record in a file is to be accessed on the
basis of its location in the file and not
on the basis of its position relative to
the record previously read or written. The
location of the record is determined by a
key; therefore, the DIRECT attribute
implies the KEYED attribute. The associat­
ed data set must be in a direct-access
volume.

The BUFFERED and UNBUFFERED Attributes

The buffering attributes apply only to a
file that has the SEQUENTIAL and RECORD
attributes. The BUFFERED attribute indi­
cates that logical records transmitted to
and from a file must pass through an
intermediate internal-storage area. The
size of a buffer usually corresponds to the
size of the blocks <physical records) in
the data set associated with the file (a
discussion of block size and buffer alloca­
tion appears in this chapter in
"ENVIRONMENT Attribute"). The use of buf­
flers may help speed up processing by allow­
ing an overlap of transmission and comput­
ing time. It further allows the automatic
blocking and unblocking of records.

The UNBUFFERED attribute indicates that
a logical record in a data set need not
pass through a buffer but may be transwit­
tled directly to and from the internal
storage associated with a variable. The
logical records and physical records are
generally the same size in a data set that
is associated with an UNBUFFFRED file.

Chapter 8: Input and Output 91

Note: Specification of UNBUFFERED does not
preclude the use of buffers. In some
cases, "hidden buffers" are required.
Those cases are listed in the discussion of
the BUFFERED and UNBUFFERED attributes in
Part II. S~ction I, "Attributes."

Adgitive Attributes

The additive attributes are:

PRINT

BACKWARDS

KEYED

EXCLUSIVE

ENVIRONMENT (option-list)

The PRINT Attribute
~ --------- (

The PRINT attribute applies only to
files with the STREAM and OUTPUT attri­
butes. It indicates that the file is
eventually to be printed, that is~ the data
associated with the file is to appear on
printed pages, although it may first be
written on some other medium. The PRINT
attribute causes the associated record to
be created with the initial byte reserved
for a printer control character.

The BACKWARDS attribute applies only to
files with the SEQUENTIAL. RECORD, and
INPUT attributes and only to data sets on
magnetic tape. It indicates that a file is
to be accessed in reverse order, beginning
with the last record and proceeding through
the file until the first record is
accessed.

']~he KEYED attribute indicates that
records in the file are to be accessed
using one of the key options (KEY. KEYTO,
or KEYFROM) of data transmission statements
or of the DELETE statement. Note that the
KEYED attribute does not necessarily indi­
cate that the actual keys exist or are to
be written in the data set. consequently,
it need not be specified unless one of the

92

key options is to be used, even if keys
actually exist in the associated data set.
The STREAM and PRINT attributes cannot be
applied to "a file that has the KEYED
attribute. The use of keys is discussed in
detail in the sections "Environmental Con­
siderations for Data Sets" and
"Record-Oriented Transmission" in this
chapter.

The EXCLUSIVE Attribute

The EXCLUSIVE attribute applies only to
files with the RECORD, DIREC'I, and UPDATE
attr ibutes. It specifies that any :record
in the file may be automatically lock,ed by
a task while it is operating on that
record, to prevent interference by another
concurrent task. It can be suppressed by
the NOLOCK option on the READ statement.

For detailed information on the effects
of operations on EXCLUSIVE files, see "The
EXCLUSIVE Attribute," in Chapter 14.

The ENVIRONMENT Attribute

The ENVIRONMENT attribute specifies
information about the physical organization
of the data set associated with a file.
These characteristics are indicated in a
parenthesized option list in the ENVIRON­
MENT attribute specification and are depen­
dent upon the implementation. The option
list for the F Compiler is discussed in
"Environmental Considerations for Data
sets."

OPENING AND CLOSING FILES

Before the data associated with a file
can be transmitted by input or output
statements, certain file preparation activ­
ities must occur, such as checking for the
availabili ty of external storage media.,
positioning the medium, and allocating
appropriate programming support. Such
activity is known as opening a file,. Also"
when processing is completed~ the file must
be closed. Closing a file involves releas­
ing the facilities that were established
during the opening of the file.

PL/I provides two statements, OPEN and
CLOSE, to perform these functions. These
statements, however, are·optional. If an
OPEN statement is not executed for a file,
the file is opened automatically when the
first data transmission statement for that

file is executed: in this case, the auto­
matic file preparation consists of standard
system procedures that use information
about the file as specified in a DECLARE
statement (or assumed from a contextual
declaration). Similarly, if a file has not
been closed before completion of a program,
the file is closed automatically upon nor­
mal completion of the program.

The following discussions show the
effect of OPEN and CLOSE statements upon
files specified in these statements.

'I'he OPEN stateIIJent

Execution of an OPEN state~ment causes
one or more files to be opened explicitly.
']~he OPEN statement has the following basic
format:

OPEN FILE(file-name) [option-list]
[,FILE(file-name) [option-list]] ••• :

The option list of the OPEN statement can
specify any of the alternative and additive
attributes, except the INTERNAL., EXTERNAL,
and ENVIRONMENT attributes. Attributes
included as options in the OPEN statement
are merged with those stated in a DECLARE
statement. The same attributes need not be
listed in both an OPEN statement and a
DECLARE statement for the same~ file, and,
of course, there can be no conflict. Other
options that can appear in the OPEN state­
ment are the TITLE option, used to asso­
ciate the file name with the dat.a set" and
the PAGESIZE and LINESIZE options, used to

I specify layout of a data set. All of these
options are discussed later in this chap­
ter. The option list may precede the FILE
(file name) specification.

For the F Compiler, the OPEN statement
is executed by library routines that are
loaded dynamically at the time the OPEN
statement is executed. Consequently, exe­
cution time can be reduced if more than one
file is specified in the same OPEN state­
ment, since the routine~ need be loaded
only once, regardless of the number of
files being opened. Note, however, that
such multiple opening may require consider­
ably more storage than might otherwise be
needed .•

For a file to be opened explicitly, the
OPEN statement must be executed before any
of the input and output statements listed
below in "Implicit Opening" are executed
for the same file.

Implicit Opening

An implicit opening of a file occurs
",'hen one of the statements listed below is
executed for a file for which an OPEN
statement has not already been executed.
The statement type determines which unspe­
cified alternatives are applied to the file
when it is opened.

The following list contains the state­
ment identifiers and the attributes deduced
from each:

statement Identifier
GET

PUT

READ

WRITE

LOCATE

REWRITE

DELETE

UNLOCK

Attributes Deduced
STREAM, INPUT

STREAM, OUTPUT

RECORD, INPUT
(see Note)

RECORD, OUTPUT
(see Note)

RECORD, OUTPUT,
SEQUENTIAL, BUFFERED

RECORD, UPDATE

RECORD, UPDATE

RECORD, DIRECT,
UPDATE, EXCLUSIVE

An implicit opening caused by one of the
above statements is equivalent to preceding
t.he statement with an OPEN statement that
specifies the deduced attributes.

Note: INPUT and OUTPUT are deduced from
READ and WRITE only if UPDATE has not been
explicitly declared.

Mer.ging of Attributes

There must be no conflict between the
attributes specified in a file declaration
and the attributes merged -- explicitly or
implicitly as the result of the file
opening. For example, the attributes INPUT
and UPDATE are in conflict, as are the
attributes UPDATE and STREAM~

After the attributes are merged, the
attribute implications listed below are
applied prior to the application of the
default attributes discussed earlier.
Implied attributes can also cause a con­
flict. If a conflict in attributes exists
after the application of default attri­
butes, the UNDEFINEDFILE condition is
x'aised.

Chapter 8: Input and output 93

Following is a list of merged attributes
and attributes that each implies after
merging:

Me~~Attributes
UPDATE

Implied Attributes
RECORD

SEQUENTIAL

DIRECT

BUFFERED

UNBUFFERED

PRINT

BACKWARDS

KEYED

EXCLUSIVE

RECORD

RECORD, KEYED

RECORD,
SEQUENTIAL

RECORD,
SEQUENTIAL

OUTPUT, STREAM

RECORD,
SEQUENTIAL,
INPUT

RECORD

RECORD, KEYED,
DIRECT, UPDATE

The following two examples illustrate
attribute merging for an explicit opening
and for an implicit opening.

Explicit opening:

DECLARE LISTING FILE STREAMi

OPEN FILE(LISTING) PRINTi

Attributes after merge due to execution of
the OPEN statement are STREAM and PRINT.
Attributes after implication are STREAM,
PRINT, and OUTPUT. Attributes after
default application are STREAM, PRINT, OUT­
PUT, and EXTERNAL.

Note: The attributes SEQUENTIAL or DIRECT
and:E.UFFERED or UNBUFFERED do not apply to
a file with the STREAM attribute.

Implicit opening:

DECLARE MASTER FILE KEYED INTERNALi

READ FILE (MASTER) INTO
(MASTER RECORD) KEYTO(MASTER_KEY)i

Attributes after merge due to the opening
caused by execution of the READ statement
are KEYED, INTERNAL, RECORD, and INPUT.
Attribut.es after implic~tion are KEYED,
INTERNAL, RECORD, and INPUT. There are no
additional attributes implied. Attributes
aftE~r default. application are KEYED, INTER-

94

NAL, RECORD, INPUT, SEQUENTIAL, and BUF­
FERED.

With the System/360 Operating System,
the association of a file with a specific
data set is accomplished using job control
language, outside the PL/I program. .~t the
time a file is opened, the PL/I file name
is associated with the name (ddname) of a
data definition statement (CD statement),
which is, in turn, associated with the name
of a specific data set (dsname). Nob~ that
the direct association is with the name of
a DD statement, not with the name of the
data set itself.

A ddname can be associated with a PL/I
file either through the file name or
through the character-string value of the
expression in the TITLE option of the
associated OPEN statement.

If a file is opened implicitly, or if no
TITLE option is included in the OPEN state­
ment that causes explicit opening of the
file, the ddname is assumed to be the same
as the file name. If the file name is
longer than eight characters, the ddname is
assumed to be composed of the first eight
characters of the file name.

~ Since external names are limi t.ed to
seven characters for the F Compiler, an
external file name of more than seven
characters is shortened into a concatena­
tion of the first four and the last three
characters of the file name. such a shor­
tened name is not, however, the namE~ used
as the ddname in the associated DD state­
ment.

consider the following statements:

1. OPEN FILE(MASTER)i

2. OPEN FILE(OLDMASTER)i

3. READ FILE(DETAIL) ••• i

When statement number 1 is executed, the
file name MASTER is taken to be the salme as
the ddname of a DD statement in the current
job step. When statement number 2 is
executed, the name OLDMASTE is taken to be
the same as the ddname of a DD statemE!nt in
the current job step. (The first eight
characters of a file name form the ddname.
Note, however., that if OLDMASTER i.s an
external name, it will be shortened by the
compiler to OLDMTER for use within. the
program.) If statement number 3 causes
implicit opening of the file DETAIL, the
name DETAIL is taken to be the same as the

ddname of a DD statement in the current job
s·tep .•

In each of the above cases. a corres­
ponding DD statement must appear in the job
stream; otherwise, the UNDEFINID)FILE condi­
tion would be raised. The three DD state­
ments would appear, in part, as follows:

1. //MASTER DD DSNAME=., ••

2. / /OLDMASTE DD DSNAME= a

3.. //DETAIL DD DSNAME= po 0 •

If a file is opened explicitly by an
OPEN statement that includes a TITLE
option. the ddname is taken from the TITLE
option, and the file name is not used
outside the program. The TITLE option
appears in an OPEN statement as shown in
the following format:

OPEN FILE(file-name) TITLE(expression);

The expression in the TITLE option is
evaluat.ed and. converted to a character
string, if necessary, that is assumed to be
the ddname identifying the appropriate data
set. If the character string is longer
than eight characters. only the first eight
characters are used. The following OPEN
s·tatement ill ustrates how the ~CITLE option
might be used:

OPEN FILE(DETAIL) TITLE('DETAIL1');

If this
be a DD
in the
ddname.
follows:

statement were executed N there must
statement in the curren1: job step

job stream with DETAILl as its
It might appear, in part, as

//DETAILl DD DSNAME=DETAILA, •••

Thus, the data set DETAILA is associated
with the file DETAIL through the ddname
DETAILl..

Although a data set name represents a
specific collection of data, the file name
can~ at different times, represent entirely
different data sets. Using the above exam­
ple of the OPEN statement., whatever data
set is named in the DSNAME parameter of the
DETAIL1 DD statement is the one that is
associated with DETAIL at the time it is
opened.

Use of the TITLE option allows a pro­
grammer to choose dynamically, at open
time, one among several data sets to be
associated with a particular file name.
Consider the following example:

DECLARE 1 INREC, 2 FIELD 1 ••• ,
2 FILE_IDENT CHARACTER(S),

DETAIL FILE INPUT ••• ,
MASTER FILE INPUT •• o;

OPEN FILE(DETAIL);

READ FILE(DETAIL) INTO (INREC);

OPEN FILE(MASTER) TITLE(FILE_IDENT);

Assume that the program containing these
statements is used to process several dif­
fe~ent detail data sets, each of which has
a different corresponding master data set.
Assume, further, that the first record of
each detail data set contains, as its last
data item, a character string that iden­
tifies the appropriate master data set.
The following DD statements might appear in
the current job step:

//DETAIL DD DSNAME= •••

//MASTER1A DD DSNAME=MASTER1A •••

//MASTER1B DD DSNAME=MASTER1Bo ••

/ /MASTER1C DD DSNAME=MASTER1C

In this case, MASTER1A, MASTER1B, and
MASTER1C represent three different master
files. The first record of DETAIL would
contain as its last item, either
'MASTER1A', 'MASTER1B', or 'MASTER1C',
which is assigned to the character-string
variable FILE IDENT. When the OPEN state­
ment is executed to open the file MASTER,
1:he current value of FILE IDENT would be
taken to be the ddnaree, and the appropriate
data set identified by that ddname would be
associated with the file name MASTER.

Another similar use of the TITLE option
is illustrated in the following statements:

DCL IDENT(3) CHAR(l)
INITIAL('A', 'B', 'C');

DO I = 1 TO 3;

END;

OPEN FILE(MASTER)
TITLE('MASTER1'IIIDENT(I»;

CLOSE FILE(MASTER);

In this example, IDENT is declared as a
character-string array with three elements
having as values the specific character
strings 'A', 'B', and 'ct. When MASTER is
opened during the first iteration of the
DO-group, the character constant ~MASTER1'
is concatenated with the value of the first
element of IDENT, and the associated ddname
is taken to be MASTER1A. After processing,
the file is closed, dissociating the file
name and the ddname. During the second

Chapter S: Input and Output 95

iteration of the group# MASTER is opened
again. This time, however, the value of
the second element of IDENT is taken, and
MASTER is associated with the ddname
MASTER1B. Similarly, during the final
iteration of the group, MASTER is associat­
ed with the ddname MASTER1C.

Note: The character set of the job control
language does not contain the break charac­
ter (). ConsequentlYn this character can­
not appear in ddnames. Care snould thus be
taken to avoid using break characters among
the first eight characters of file names,
unless the file is to be opened with a
TITLE option with a valid ddname as its
expression. The alphabetic extender char­
acters $, ru, and #, however, are valid for
ddnames.

The basic form of the CLOSE statement
is:

CLOSE FILE (file-name)
[,FILE (file-name)] •• ,.;

Executing a CLOSE st~tement dissociates the
specified file from the data set with which
it became associated when the file was
opened. The CLOSE statement also disso­
ciates from the file all attributes esta­
blished for it by the implicit or explicit
opening process.. If desired, new attri­
butes may be specified for the file name in
a subsequent OPEN statement. However, all
attributes explicitly given to the file
name in a DECLARE statement remain in
effl:!ct.

As with the OPEN statement, closing more
than one file with a single CLOSE statement
can save execution time, but it may require
the use of more storage than would other­
wise be needed.

Note: Closing an already closed file or
openIng an already opened file has no
effect.

LAYOUT OF STREAM FILES

When a stream data set is being created#
its layout is governed by the LINESIZE
option (and, if the associated file is a
PRINT file, by the PAGESIZE option) on the
OPEN statement that opens the file for
output. The discussion below shows the
effect of these options on a PRINT file;
however, all stream data sets have a line
size associated with them which is concep-

96

tually as described below, except that the
line size might not necessarily refer to a
line that is actually printed. If LINESIZE
is not specified on the OPEN statemeni: for
a PRINT file, a default value is assumed
(120 characters per line for the F
Compiler). The line size for input is the
line size with ~hich the data set was
cr~ated. If PAGESIZE is not specified on
the OPEN statement for a PRINT file, a
default value is assumed (60 lines pelc page
for. ·the F compiler).

PAGE LAYOUT FOR PRINT FILES

The overall layout of a page in a file
that has the PRINT attribute is contl:-olled
by means of the PAGESIZE and LINESIZE
options of the OPEN statement. For exam­
ple:

OPEN FILE(REPORT) OUTPUT STREAM PRINT
PAGESIZE(55) LINESIZE(110);

This statement opens the REPORT file as a
PRINT file. The specification PAGESIZE(55)
indica tes that each page should con1:ain a
maximum of 55 lines. An attempt to write
on a page after 55 lines have already been
written (or skipped) will raise the ENDPAGE
condition. The standard system action for
the ENDPAGE condition is to skip to a new
page, but the programmer can establish his
own action through use of the ON statE~ment,.

The ENDPAGE condition is raised only
once per page. Consequently, printing can
be continued beyond the specified PAGESIZE
after the ENDPAGE condition has been raised
the first time. This can be useful, for
example, if a footing is to be written at
the bottom of each page. consider the
following example:

ON ENDPAGE(REPORT) BEGIN;
PUT FILE (REPORT) SKIP LIST

(FOOTING);
PUT FILE (REPORT) PAGE;
N = N + 1;
PUT FILE (REPORT) LIST

(. PAGE • II N) ;
PUT FILE (REPORT) SKIP (3) ;

END;

Assume that' REPORT has been openecl with
PAGESIZE(55), as shown in the previous
example. When an attempt is made to write
on line 56 (or to skip beyond line 55), the
ENDPAGE condition will arise, and the begin
block shown here will be executed. The
first PUT statement specifies that a line
is to be skipped g and the value of" FOOTING,
presumably a character string, is t.o be
printed on line 57 (when ENDPAGE arises,
the current line is always PAGESIZE+1).

The second PUT statement causes a skip to
the next page and the END PAGE counter is
automatically reset for the new page. The
page number is incremented, and the charac­
ter string 'PAGE ' is conca.tenated with the
new page number and printed. ,The final PUT
statement causes three lines to be skipped,
so tha"t the next printing \lt1ill be on line
4. Control returns from the begin block to
the PUT statement that ca.used the ENDPAGE
condition, and thedat.a is: printed. Any
SKIP option specified in t.hat statement is
ignored, however.

The specification LINESIZE(110) indi­
cates that each line on the page can
contain a maximum of 110 characters. An
attempt to write a line greater than 110
characters wi 11 cause the excess characters
to be placed on the next line.

The PAGESIZE option can be specified
only for a file wit.h the~ PRINT attribute
(as stated earlier, the PRINT attribute
implies the OUTPUT and S~REAM attributes>
and only in the OPEN statement. The
LlNESIZE option can be specified only for a
file with the OUTPUT and STREAM attributes,
with 0:1:' without the PRINT a.ttribute.

Further details of writing in PRINT
files appear later in this chapter in nData
Transmission. n

STANDARD FILES

Two standard system files are provided
that can be used by any PL/I program. One
is the standard system input file called
SYSIN. The other is the standard system
output file called SYSPRINT,. These files
need not be declared or opened explicitly;
a standard set of attri.butes i.s applied
automatically. For SYSIN, these attributes
specify that it is a stream-oriented input
file. For SYSPRINT, the standard attri­
butes specify stream-orient.ed output that
is to be printed. Both file names, SYSIN
and SYSPRINT" are assume!d to have the
EXTERNAL attribute, even though SYSPRINT
contains more than seven characters.

names need not be explicitly
and PUT statements when these

be used. GET and PUT 1/0
do not name any file are

These file
stated in GET
files are to
statements that
equivalent to:

GET FILE(SYSIN) ••. ;

PUT FILE(SYSPRINT) ••• ;

Any other references to SY'SIN and SYSPRINT
(such as in ON statements or in record­
oriented statements) must be stated
explicitly.

The identifiers SYSIN and SYSPRINT are
not reserved for the specific purposes
described above. These identifiers can be
used for other purposes besides identifying
standard system files. Other attributes
can be applied to them, either explicitly
or contextually, but the PRINT attribute is
applied automatically to SYSPRINT when it
is declared as a file name, unless the
INTERNAL attribute is declare1 for it.

Note: Special care must be taken when
SYSIN or SYSPRINT is declared by the pro­
grammer as anything other than a STREAM
file. The F Compiler causes, in effect,
the identifier SYSIN to be inserted into
each GET statement in which no file name is
explicitly stated and the identifier SYS­
PRINT to be inserted into each PUT state­
ment in which no file name is explicitly
stated. consequently;, the following would
be in error:

DECLARE (SYSIN" SYSPRINT) FIXED
DECIMAL (4 .. 2);

GET LIST (A,B,C);
PUT LIST (D,E, F);

The identifier SYSIN would be inserted into
the GET statement, and SYSPRINT in the PUT
statement. In this case, however, they
would not refer to the standard files, but
to the fixed-point variables declared in
the block.

ENVIRONMENTAL CONSIDERATIONS FOR DATA SETS

The PLII compile1 program produced by
the F Compiler is designed to be executed
under control of the operating system for
System/360. This operating system provides
data management facilities that control the
organization, location, storage, and
retrieval of data sets. The PLII program
calls upon these facilities when it is
being executed. The following discussions
describe the relationship between the input
and output statements of a PLII program and
the various data set organizations support­
ed by the data management facilities of the
operating system. A complete discussion of
data management appears in the publication:
IBM System/360 Operating
System: Supervisor and Data Management
Services" Form C28-664 6.

Chapter 8: Input and Output 97

DEVICE INDEPENDENCE OF INPUT AND OUTPUT
STATEMENTS

The input and output statements of a
PL/I source program are concerned with the
logical organization of a data set ana not
with its physical characteristics,. Much of
the detailed information ultimately
required by a PL/I program to process a
data set (that is, information such as
input/output device type, unit number,
recording density, and buffering technique)
need not be stated until the PL/I program
is ready to be executed. Device indepen­
dence of this type allows changes in this
information without requiring changes to
the PL/I program itself. The required
information about specific input/output
devices is supplied through data definition
(DO) statements in the job step that calls
for execution of the program. By changing
the DD statements, different input/output
devices or even different data sets may be
~pecified for a file. Therefore, a PL/I
program can be designed without specific
knowledge of the input/output devices that
will be used when the program is executed.

Some of the information specified in the
ENVIRONMENT attribute can alternatively be
specified in a DD statement.

The ENVIRONMENT Attribute

The ENVIRONMENT attribute provides
information about the physical organization
of the data set associated with a file.
This information allows the compiler to
determine the method of accessing the data
set.

For the F Compiler, the ENVIRONMENT
attribute has the following general format:

ENVIRONMENT (option-list)

where "option list n is:

98

[

F(blOCk-Size[,record-Size]j
V{Slms} (max-block-size

[imax-record-size])
U(max-block-size)

[BUFFERS(n)]

~
CONSECUTIVE]
INDEXED
REGIONAL (1)
REGIONAL (2)
REGIONAL (3)

rLFAVE 1
LR~lINI1

[
CTLASAl
CTL360J

[COBOL]

[INDEXAREA[(index-area-size)]]
[NOWRITE]

[GENKEY]

For ease of discussion, the options in the
ENVIRONMENT attribute are divided into
eight groups: record format, buffer alloca­
tion, data set organization, vol ume dispo­
sition, carriage control* data interchange,
data management optimization, and key clas­
sification. The information supplied by
the first three options can be alternative­
ly specified in DO statements or by
default. Options may appear in any order.

Logical records can appear in the fol­
lowing formats: fixed-length (F-format),
variable-length (V-format, VS-format,
VBS-format', or undefined (U-format). The
block size and record size are specified in
number of bytes. Record format., block
size, and record size must appear together
either in the ENVIRONMENT attribute or in
the DCB parameter of the DO statement.

Fixed-length records: For fixed-length
records, the block size must always be
stated. If the records are blocked, the
record size must also be stated; if no
record size is specified, the records are
assumed to be unblocked (that is, each
block contains only one record). The
records are blocked and deblocked in accor­
dance with the specified block size and
record size. The block size must be an
exact multiple of the record size.

Variable-length records: For variable­
length V-format records., the maximum block
size must always be stated. If the records
are blocked" the maximum record size must
also be stated; if maximum record size is
not specified" the records are assumed to
be unblocked. Four bytes are used in each
block to specify the block length, and four
bytes are used in each record to specify
the record length; the programmer must
therefore allow an additional four bytes
when stating the block size and when
stating the record size. The record size
must never exceed the block size. For
example. if the maximum number of bytes in
a record is likely to be 120* the specified
block size must not be less than 128 bytes
whether the records are blocked or not,
since unblocked records are considered to
be in blocks of one record each; if the

records are blocked, the record size must
not be less than 124 bytes, and must be at
least four bytes less than the specified

block size.

For variable-length VS-format records,
the maximum block size must always be
stated. VS-format records can exceed the
block size; when they do, t.hey are segment­
ed and the segments placed' in consecutive
blocks. Each block can contain only one
record or segment of a record. Deblocking
depends on control information at the
beginning of each block and at the begin­
ning of each record: four bytes are used in
each block to spec ify block length; anothe!r
four bytes are used in each record or
segment of a record to indicate record or
segment length and to indicate whether a
segment is the first, intermediate, last:,
or the only part of a record. For example,
if the record format i8 specified as
VS(SO, 200), a record that includes 1BO
bytes of data wi 11 appear in the data SE~t
as two blocks of SO bytes (8 control bytes
and 72 data bytes) and one block of 44
bytes (8 control bytes and 36 data bytes).

variable-length VBS-format records are
similar to VS-format records except that
they are blocked, that is, each block
contains as many records or segments as it
can accommodate; each block is substantial­
ly the same size, although there can be a
variat.ion of up to four bytes, since each
segment must contain at least one byte of
data. For example, a block might contain
the last segment of one record, one or more
complete records, and the first segment of
another record.

VS-format and VBS-format records are
known as spanned records hecause they can
start in one block and be continued in the
next. However, segmentation does not
affect the programmer as it occurs automa·t­
ically and the records always appear as
complete logical records. The use of
spanned records allows the programmer to
select a block size, independently of
record size, that will combine optimum
usage of external storage space with maxi­
mum efficiency of transmission.

lndefined-length records: For undefined­
length records, all processing of records
is the responsibility of the programmer.
If a length specification is included in
the record, the programmer must insert it
himself, and he must retrieve the
information himself.

Buffer Allocation

A buffer is an internal program-storage
area that is used for intermediate storage
of data transmitted to and from a data set.
Allocating two or more buffers for a data
set permits input and output activity to
occur concurrently with internal process­
ing.

The option BUFFERS (n) in the ENVIRON­
MENT attribute specifies the number (n) of
buffers to be allocated for a data set.
This number must not exceed 255. The BUFNO
subparameter in the DD statement can be
used., instead of the BUFFERS option in the
ENVIRONMENT attribute, to specify the num­
ber of buffers.. If the number of buffers
is not specified, it is assumed to be
either one or two, depending on the access
method used. Note that a buffer specifi­
cation for DIRECT files is ignored.

Data Set organization

The organization of a data set deter­
mines how data is recorded in a data set
volume and, once recorded, how data is
subsequently retrieved so that it can be
transmitted to the program. Logical
records are stored in and retrieved from a
data set" in either STREAM or RECORD
SEQUENTIAL transmission# on the basis of
successive physical positions or, in DIRECT
RECORD transmission, on the basis of the
values of keys specified in data transmis­
sion statements. These storage and retrie­
val methods provide PL/I with three general
data set organizations: CONSECUTIVE,
INDEXED., and REGIONAL. CONSECUTIVE organi­
zation is assumed by default.

Record Keys: Both INDEXED and REGIONAL
data set organization allow the use of keys
to identify specific records. There are
two kinds of keys" recorded keys and source
keys. A recorded key is a character string
that actually appears in the data set,
along with the record, as a positive iden­
tification of that record. It cannot
exceed 255 bytes in length. A source key
is a character string (or expression) that
appears in a record-oriented data transmis­
sion statement to identify the record to
which the statement refers.

The way keys are specified and used
differs between INDEXED and REGIONAL, as
well as among the three different kinds of
REGIONAL organization. For data sets that
contain recorded keys, a part or all of the
source key must exactly match the recorded
key in order to positively identify a
record.

Chapter 8: Input and Output 99

Whenever source keys are used in a
program to access or create a data set
(using the KEY or KEYFROM option) or whene­
ver the KEYTO option is specified, the
KEYED attribute must be specified for the
file. In addition, for data sets that
contain recorded keys.. the KEYLEN subparam­
eter of the DCB parameter of the associated
DD statement must be used to specify the
actual length, in bytes, of the recorded
key ..

The type and use of keys for each of the
different data set organizations is
explained in the discussions below. Keys
are not used in the processing of CONSECU­
TIVE data sets ..

CONSECUTIVE DATA SET ORGANIZATION: In a
data set with CONSECUTIVE organization" the
logical records are organized solely on the
basis of their successive physical posi­
tions, such as they appear on magnetic
tape. such a data set does not use keys to
determine the position of each record.
Records are retrieved only in sequential
order; therefore, the associated file must
have the SEQUENTIAL attribute (or be a
STREAM file). Records may be F-format or
V-format, blocked or unblocked" or U­
format. .

Input/output devices permitted for
CONSECUTIVE data sets include magnetic tape
units, card readers and punches., printers"
direct-access storage units, and paper tape
readers ..

Later discussions will show that both
stream-oriented and record-oriented trans­
mission statements can process data sets
with CONSECUTIVE organizations. However,
stream-oriented statements are restricted
to this type of organization; record­
oriented statements are not.

After a CONSECUTIVE data set is created,
it may be opened only for input or update
operations" unless DISP=MOD is specified in
the DD statement, in which case it can be
opened for output (records can then be
added to the end of the data set). Reading
of such a data set may be either forwards
air backwards if the data set is recorded on
magnetic tape. To read the data set
backwards, the associated file must be
cpened with the BACKWARDS attribute. If a
data set is first read or written forwards
and then read backwards in the same pro­
g~am, the LEAVE option in the ENVIRONMENT
attribute must be specified to prevent the
r:prmal rewind when the file is closed or
when volume switching occurs with a multi­
volume data set. V-format records cannot
be read backwards.

Note the difference between the
CONSECUTIVE option of the ENVIRONMENT

100

attribute and the SEQUENTIAL attribute.
CONSECUTIVE specifies the physical organi­
zation of a data set; SEQUENTIAL specifies
how a file is to be processed. A data set
with CONSECUTIVE organization must be asso­
ciated with a SEQUENTIAL file; but a data
set with INDEXED or REGIONAL organization
can be associated with either a SEQUENTIAL
or DIRECT file.

INDEXED D PrA SET ORGANIZATION: A data se·t
with INDEXED organization, which must be on
a direct-access device" has its record:s
arranged in logical sequence according to
keys that are associated with every record.
The key is a character string that usually
represents an item within the record.. such
as a part number " a da te, or a name.
Logical records are arranged in ascendinq
sequence on their keys~ according to the
collating sequence. There are indexes thait
specify the highest key for each track and
for each cylinder.

Only fixed-length records (F-format) I'

unblocked or blocked., can be used wi th th~~
INDEXED organization.

Two subparameters of the DCB parameter
must be specified for each INDEXED data
set.. They are:

DSORG=IS

KEYLEN=length-of-recorded-key

In addition, if the key is embedded within
the record, the RKP subparameter must bE!
included., giving the location of the key;
the value specified in the RKP subparameter
is one less than the byte number of thE!
first character of the key; that is, if
RKP=l, the key starts in the second byte of
the record. The value assumed" if this
subparameter is omitted" is RKP=O" which
specifies that the key is not embedded in
the record but is separate from it.. Also
if any records are to be deleted, or if
already deleted records are to be ignored,
the subparameter OPTCD=L must be specified.
The OPTCD subparameter cannot be changed.
after the data set has been created.

Note: For unblocked records, the key, even
if embedded, is always recorded in a posi­
tion preceding the actual data. Conse­
quently, the RKP subparameter need not be
specified for unblocked records.

Unlike CONSECUTIVE organization, INDEXED
organization does not require every record
to be accessed in sequential fashion. Ran­
dom retrieval., addition, deletion, and
replacement of logical records are permit­
ted in INDEXED data sets. However" if the
programmer desires. either sequential
access or direct access can be used with a
data set that has INDEXED organization.

The key associated with a logical record
in an INDEXED data se1t consists of a
character string con'taining a maximum of
255 characters. It is always recorded in
the data set and is usually a part of the
data. The length of the recorded key must
be specified in the DCB subparameter KEYLEN
of the associated DD statement. Records in
an INDEXED data set are accessed by means
of record-oriented trans~~ssion statements.
If access is direct, 1:hese statements
employ a source key that identifies a
particular record by the value of its
recorded key.

Logical records withi.n an INDEXED data
set are either actual records containing
valid data, or deleted or dummy records
that can later be replaced by valid data.
The programmer can create! dummy records by
marking the record as "deleted" (that is"
by specifying the constant (8)'1'B as the
first byte of the data section of the
record) •

An INDEXED data set can be created only
sequentially. Once an INDEXED data set has
been created" its associated file may have
the INPUT or UPDATE attributes as well as
the SEQUENTIAL or DIRECT attributes. When
the file has the DIRECT at.tribute., records
may be retrieved, added" deleted, and
replaced at random.

SEQUE~TIAL INDEXED Files: The file of an
INDEXED data set accessed in SEQUENTIAL
fashion may be opened with either the INPUT
or the UPDATE attribute;, but the data
transmission statements need not include
source keys, nor need the file have the
REYED attribute. Sequential access is in
the order of ascending recorded-key values.
Logical records are retrieved in this ord~~r
and not necessarily in the order in which
they were added to the data set.

When an INDEXED data set is accessed
sequentially for either INPUT or UPDATE
activity, it is possible 1:'0 reposition the
data set by using either a unique source
key or a generic key in a READ statement:.
(The use of a generic key is discussed in
the section "Key Classification" in this
chapter.) For repositioning to occur, the
associated file must have the KEYED attri­
bute. Repositioning can occur in either a
forward or backward direction to the specl­
fied record that is to be retrieved.
should a subsequent READ statement not
contain a source key, the J::'ecord with the
next higher recorded key wlll be retrieved,.

When the file of an INDEXED data set has
the SEQUENTIAL and UPDATE: attributes, the
only I/O statements (other than OPEN and
CLOSE) that can refer to the file are READ
and REWRITE. Before a REWRITE statement
can be executed" the specified record must

have been retrieved by a READ statement.
Every record that has been retrieved, how­
ever. need not be rewritten. Logical
records cannot be added to an INDEXED data
set that is being accessed in the SEQUEN­
TIAL UPDATE mode.

DIRECT INDEXED Files: The file of an
INDEXED data set accessed in· DIRECT fashion
may be opened with either the INPUT or the
UPDATE attribute.. For a file with the
DIRECT and UPDATE attributes~ logical
records may be retrieved., added" deleted,
and replaced according to the following
conventions:

1. Retrieval: Deleted records are not
made available by a READ statement.

2. Addition: If the key is unique, the
logical record is inserted by a WRITE
statement into the data set, replacing
one marked as deleted, if it has the
same key. If no space exists for the
additional record, the ~EY condition
is raised. The KEY condition is also
raised if the additional record has a
key that is the same as the recorded
key of a record already in the data
set., but is not marked as deleted.

3. Deletion: The record specified by a
source key in a DELETE statement is
retrieved, marked as deleted, and
rewritten into the data set. Deletion
is possible only when the DD statement
associated with the data set contains
the DCB subparameter OPTCD=L. If the
data set has blocked records and
RKP=O, then records cannot be deleted.

4. Replacement: The record specified by a
source key is replaced by the new
record. Unblocked records may. be
replaced without being read. However,
if the data set contains blocked
records, the specified record must
first be retrieved with a READ state­
ment and then replaced with a REWRITE
statement.

Note: The length specified in the DCB
subparameter KEYLEN always gives the length
of the recorded key and not necessarily the
length of the source key. If the lengths
of the source and recorded keys differ when
an INDEXED data set is accessed,. the
lengths are made equal by truncating the
source key on the right or by extending it
on the right with blank characters.

The operating system permits recorded
keys to be separate from or embedded within
logical records. When the recorded keys
are separate from the logical records,. the
bCB subparameter RKP=O in the nD statement
associated with the data set need not be

Chapter 8: Input and output 101

specified, since it is the default assump­
tion.

Unblocked records always have a separate
recorded key preceding each logical record,
whether or not the key is also embedded
~ithin the record. Only the key of the
last l09ical record in a block of records
is recorded separately, preceding the
block.

REGIONA~ DATA SET ORGANIZATION: REGIONAL
crganizatian of a data set provides control
of the physical placement of records in the
data set. This type of control allows the
programmer to optimize the record access
time required by a particular application.
such optimization is not available with
CONSECUTIVE and INDEXED organizations, in
which successive records are written either
in stric·t physical sequence or in logical
sequence depending upon ascending key
values. Neither of these methods takes
advantag·e of the timing characteristics of
direct-access storage devices. The
input/output devices allowed for REGIONAL
data sets are restricted to direct-access
ctorage devices.

A data se1: with REGIONAL organization is
divided into regions, each of which is
identified by a region number and each of
which may contain one or more records. The
Iegions are numbered in succession. begin­
ning with zero .. and a record is accessed by
specifying its region number in the source
key of a record-oriented transmission
statement. 'rwo kinds of regional specifi­
cations are used, relative record and rela­
ti ve track. A relative record specifi­
cation refers to a region of the data set
by specifying the number of a particular
record, relative to the first record in the
data set, which is number zero. A relative
tracJ~ specification refers to a region of
the data set by specifying the number of a
particular track relative to the first
track of the data set, which is track zero.
In some cases, as is discussed later,
either the relative record or the relative
track indicates only the beginning of a
region in which a record is to be written
or from which it is to be accessed.

There are three types of REGIONAL organ­
ization" two of which, REGIONAL(2) and
REGIONAL(3) permit recorded keys to appear
physically in the data set with the logical
records. Unlike the keys for INDEXED data
sets, however. these recorded keys are
never embedded within a record. When REG­
IONAL records are accessed by record­
oriented statements, the source keys,
specifi'ed in the statements, represent a
region number and may also represent a
recorded key.

102

Direct access of REGIONAL data sets
employs the region number, specified in the
source key" for direct access of the
region.. Once the region has been accessed,
a sequential search mayor may not be
performed for a record that contains a
recorded key identical to the source key.
The search is performed from the located
region onward through the other regions.

Sequential processing of REGIONAL data
sets accesses records in ascending relati v€!
position., the initial position being region
zero.. The values of recorded keys do not
affect this access sequence.

Each of the three REGIONAL types is:
described in the following discussions.

REGIONAL(l) Organization: A data set with
REGIONAL (1) organization contains unblocked
F-format records that do not have recorded
keys. Each region in the data set contaim;
only one logical record: therefore., each
region number corresponds to a relativE~
record position within the data set.. ThE~
relative position of the first record is
zero,.

Since there are no recorded keys to b4:!
used for comparison., only a region number.,
which serves as the sole identification o:E
a particular logical record., is meaningful
in a source key. The character-strinq
value of the source key must represent an
unsigned decimal integer that does no·t
exceed 16777215. Only the characters 0
through 9 and the blank character are valid
in the source key (leading blanks are
interpreted as zeros). If more than eight
characters appear in the key" only the
eight rightmost characters are used as the
region number. If there are fewer than
eight characters, blanks (interpreted as
zeros) are inserted on the left.

REGIONAL(2) Organization: A data set with
REGIONAL(2) organization contains unblocked
F-format records that have recorded keys.
As with REGIONAL (1) organization, each
region in the data set contains only one
logical record.

The recorded k7y associated with each
logical record 1.S a character string
recorded in the data set and immediately
preceding the record. The recorded key mCLY
or may not include the regional number clS

its rightmost eight characters. The source
key (specified as a constant or some other
expression) consists of a character-string
value. It may be thought of as having t\1O
logical parts, the region specification and
the specification of a comparison key to be
compared, on input, with the recorded key,
or to be written. on output, as the record­
ed key.

The rightmost eight characters of the
source key make up the region specifi­
cation, which states the region number.
(Leading blanks in the region specification
are interpreted as zeros.) A substring
beginning at the left of the source key and
containing the number of characters speci­
fied in the KEYLEN subparameter is the
£Qmparison key specification. To retrieve
a record, this substring mtmt exactly match
the recorded key of the record. The com­
parison key can include thE~ region specifi­
cation if the region number is a part of
the recorded key; in stich a case" the
source key and the comparison key specifi­
cation are identical. In other cases, a
portion of the source key may not be used.
The comparison key is always equal t.O
KEYLEN; if the source key is longer tha.n
KEYLEN+8, the characters in the source key

between the comparison key and the region
specification are ignored.

consider the following examples of
source keys (the character "b" represents a
blank) :

KEY ('JOHNbDOEbbbbbb12363251')

The rightmost eight characters make up the
region specification, the relative number
of the record. Assume that the associated
DD statement has the subparameter
KEYLEN=14. In retrieving a record, the
search will begin with the beginning of the
track upon which record number 12363251 is
recorded, and it will continue until a
record is found having the recorded key of
JOHNbDOEbbbbbb.

Chapter 8: Input and Output 102.1

If the subparameter were lCEYLEN=22, the
search still would begin at the same place,
but since the compar ison sped. fica tion and
the source key are the same length, the
search would be for a record having the
recorded key 'JOHNbDOEbbbbbb12363251'.

KEY ('JOHNbDOEbbbbbbDIVISIONbLI23bbbb34627')

In this example, the rightmost eight char­
acters contain blanks, which are interpret­
ed as zeros. The search will begin at
record number 00034627. If KEYLEN=14 is
specified, the characters DIVISIONb423b
will be ignored.

Assume that COUNTER is declared FIXED
BINARY (21) and NAME is declared
CHARACTER(15). The key might be specified
as:

KEY (NAME I I COUNTER)

The value of COUNTER will be converted to a
character string of eleven characters (the
rules for conversion specify that a binary
value of this length, when converted to
character, will result in a string of
length 11, three blanks followed" by eight
decimal digits). The value of the right­
most eight characters of the converted
string will be taken to be the region
specification. Then if the keylength
specification is KEYLEN=15, the value of
NAME will be taken to be the comparison
speci fication.

In any of these examples, if the opera­
tion were output, the search would begin at
the beginning of the track of the region
specified, and the recorded key and the
record would be written in thE~ first avai­
l~bl e_~.ace. In either input or output,
the region specification indicates merely
the beginning of the area where the search
is to commence; it does not indicate a
specific position where the record can be
found or where it is to 1::;<2 written.

The closer a logical record is to the
specified region, the more efficient it
becomes to access the recore, because the
search continues through the entire data
set, going from the region specified to the
end of the data set, then from the begin­
ning of the data set back to the specified
region. The search can be limited, howev­
er, by the DD statement DCB subparameter
LIMCT=n, where n is the number of- regions
to be searched. The search will continue
only through the track containing the
region whose number is gi VE!n by r+n-l,
where r is the region number specified in
the source key.

The regional
REGIONAL(2) data
16,777,215 in value.

specification
sets cannot

for
exceed

In a REGIONAL data set, a source key
must be specified, but it need be no longer
than one character. For example:

KEY ('3')

The character '3' represents the region
number. The comparison key, if shorter
than the KEYLEN specification, is extended
on the right with blanks. If KEYLEN=8 is
specified# the comparison key will be con­
sidered to be '3bbbbbbb'.

REGIONAL (3) Organization: A data set with
REGIONAL(3) organization contains unblocked
logical records with F-, V-, or U-formats.
Each record also has a recorded key, which
is used like the recorded key in
REGIONAL(2) organization.

Each region in a data set with
REGIONAL(3) organization, differing from
REGIONAL(2), corresponds to a track on the
direct-access storage device;--therefore,
the source key for a REGIONAI(3) data set
is the same as for REGIONAL(2), except that
the region specification specifies a rela­
tive track number.

The search for matching source and
recorded keys is the same as the search in
REGIONAL (2) organization, except that the
value of the region number (relative track
number) must not exceed 32,767, and LIMCT,
if specified in the DD statement, limits
the number of tracks to be searched. Logi­
cal records are inserted into the first
available space within, or following, the
specified region.

Comparisons of REGIONAL Types: Records in
a REGIONAL data set are either "actual,"
representing valid data, or "dummy," rep­
resenting deleted records. Unlike INDEXED
data sets, REGIONAL data sets do not
require the DCB subparameter OPTCD=L in the
DD statement to eliminate deleted records
or to create dummy records. Dummy records,
in F-format, are identical in REGIONAL(2)
and REGIONAL(3) data sets. Since record
lengths of U-format or V-format cannot be
known beforehand, dummy records cannot be
used for REGIONAL(3) data sets of U-format
or V-format records. The system, however,
maintains counts of space used and space
available on each track in the capacity
record for that track.

When a REGIONAL file is opened for
DIRECT OUTPUT, the whole of the initial
allocation of space is initialized. For
F-format records, it is filled with dummy
records; for U-format or V-format records,
a capacity record is written for each
track, which indicates that the track con­
tains no records.

Chapter 8: Input and output 103

Fonn C28!-8201-1, Page Revised by TNL N33-6008, 5/1/68

When a REGIONAL file is created by
SEQUENTIAL OUTPUT with F-format records,
regions that are incomplete when the region
number is incremented, are filled out with
dummy records. For U-format and V-format
records, the capacity record of each track
(i.e., region) is written when the region
number is incremented. When the file is
closed, the remainder of the current extent
is initialized.

For retrieving records, a DIRECT file
associated with a REGIONAL data set can
have either INPUT or UPDATE attributes.
For ret1!"ieving records, a SEQUENTIAL file
associated with a REGIONAL data set must
have t.he INPUT or UPDATE attribute. For
REGIONAL(l) and REGIONAL (2) data sets,
sequential access occurs in the order of
ascending relative records. For
REGIONAL(3), it occurs in the order of
ascending relative tracks. The values of
recorded keys do not affect the order of
sequential access and the KEY option cannot
be used. All records within a REGIONAL(l)
data set, whether dummy or actual, are
retrieved in sequence; therefore, the PL/I
program should be prepared to recognize
dummy records when they are in REGIONAL(l)
data sets (the constant (8)'1'B in the
initial byte) 8 Dummy records in
REGIONAL (2) and REGIONAL(3) data sets are
not made available to the program when
accessed sequentially.

When a REGIONAL data set is associated
with a file that has the DIRECT attribute,
records can be retrieved, added, deleted,
and replaced according to the following
conventions:

104

REGIONAL(l): All records, whether
dummy or actual, can be
retrieved.

REGICNAL(2): Dummy records cannot be
retrieved.

REGIONAL(3): Dummy records cannot be
retrieved.

REGIONAL(l): Addition involves the
replacement of existing
records, whether dummy
or actual (no error
condition is raised in
either case).

REGIONAL(2): Addition involves the
replac'emen t of dummy
records within speci­
fied regions (or within
subsequent regions if
extended searches have

been permitted by. the
DeB subparameter LIMCT
in a DD statement).

REGIONAL(3): For F-format records,
addition is the same as
that for REGIONAL(2).
V- and U-format records
are added to available
space within specified
tracks (or within sub­
sequent tracks if
extended searches have
been permitted by the
DCB sUbparameter LIMCT
in a DD statement).

3. Deletion

REGIONAL (1) : The specified record is
marked as a dummy
record. The record
space is available for
re-use.

REGIONAL(2): The specified record is
marked as a dummy
record. ~he recorded
key is replaced with a
dummy key. The record
space is available for
re-use.

REGIONAL(3): For F-format records,
deletion is the same as
for REGIONAL(2) . v­
and U-format records
are marked as dummy
records. ~he recorded
keys are replaced with
dummy keys. The record
space is not available
for re-use.

4. Replacement

REGIONAL (1)

REGIONAL (2)

The specified record,
whether dummy or
actual, is rewritten.

A record with the spec­
ified key must exist.
The record is rewrit­
ten.

REGIONAL(3): Replacerrent is the same
as for REGIONAL(2).
All reccrd forrrats are
rewritten.

Volume Disposition

The volume disposition options allow the
user to specify the action to be taken (1)
when the end of a magnetic tape' volume is

reac hed and (2) when a. da ta set on a
magnetic tape volume is closed normally or
abnormally.

The action specified by the LEAVE option
depends on the volume position.

1. If the end of the~ volume has be:en
reached~ no repositioning of the tape
occurs and the channel is freed.

2. If a data set is closed normally or
abnormally before the end of the vol­
ume, the tape is repositioned at the
end of the data set (unless it is
already there) or at the end of the
current volume if a multivolume data
set is being accessed. The channel is
kept busy during repositioning.

The REWIND option allows the end-of­
volumE~ or data-set-closure tape action to
be controlled by the DISP field of the
associated DD statement. If
DISP=(status,DELETE) is specified in the DD
statement, the tape is rewound but not
unloaded. If DISP=(status,KEEPICATLGI
UNCATI..G) is specified, the tape is rewound
and unloaded. If DISP= (status, PASS) is
specified, the tape is wound on to the end
of the data set" unless a BACKWARDS file is
being used, in which case the tape is
repositioned at the beginning of the data
set. When DISP=(status,PASS) is specified,
the channel is kept busy when pos i tionin':J;
in the other two cases the channel is freed
when positioning.

If neither LEAVE nor REWIND is specified
in the options list of the ENVIRONMENT
attribute, the tape is repositioned at the
beginning of the current data set on the
current volume. The channel is kept busy
while repositioning.

If both LEAVE and REWIND are specified
as options of the ENVIRONMENT attribute,
REWIND is ignored.

Carriage control

The carriage control options in the
ENVIRONMENT attribute specify that the
first character of a rlecord is to be
interpreted as a carriage control
character.

1. The CTLASA option specifies ASA stand­
ard control characters.

2. The CTL360 option specifies IBM
System/360 machine code control char­
acters.

Data Interchange

The COBOL option in the ENVIRONMENT
attribute specifies that the file will
contain structures mapped according to the
COBOL (F) algorithm. This type of file is
subject to the following restrictions:

1. The file can be used only for READ
INTO and WRITE FROM statements.

2. The EVENT option cannot be used with
the above statements.

3. If an ON-condition arises as a result
of the READ INTO statement, the varia­
ble named in the INTO option cannot be
used in the on-unit. and return from
the on-unit must be normal if the
completed variable is required .•

4. The file name cannot be passed as an
argument.

Data Management Optimization

The data management optimization options
in the ENVIRONMENT attribute increase pro­
gram efficiency~ in certain circumstances,
when DIRECT INDEXED data sets are to be
accessed.

The INDEXAREA option improves the
input/output speed of a DIRECT INPUT or
DIRECT UPDATE file with INDEXED data set
organization, by having the highest level
of index placed in main storage. The
"index area size.," when specified, must be
a decimal integer constant whose value lies
within the range zero through 32,767. If
an index area size is not specified, the
highest level index is moved unconditional­
ly into main storage. If an index area
size is specified, the highest level index
is held in main storage, provided that its
size does not exceed that specified. If
the specified size is less than zero or
greater than 32,,767, the compiler issues a
warning message and ignores the option.

The NOWRITE option can be specified only
for DIRECT UPDATE files with INDEXED data
set organization.. It informs the compiler
that no records are to be added to the data
set and that data management modules con­
cerned solely with adding records are not
required; it thus allows the size of the
compiled program to be reduced.

Chapter 8: Input and Output 105

Key Classification

The GENKEY (generic key) option applies
only to INDEXED data sets. It enables the
programmer to classify keys recorded in a
data set and to use a SEQUE1'ITIAL KEYED
INPUT or SEQUENTIAL KEYED UPDATE file to
access records according to their key
classes ..

A generic key is a character string that
identifies a class of keys: all keys that
begin with the string are members of that
class. For example, the recorded keys
'ABCD', 'ABCE ' , and 'ABDF' are all members
of the classes i1entified by the generic
keys 'AN and 'AB', and the first two are
also members of the class 'ABC'; and the
three recorded keys can be considered to be
unique members of the classes '~BCD',
'ABCE', and 'ABDF', respectively.

The GENKEY option allows the programmer
to start sequential reading or updating of
an INDEXED data set from the first non­
dummy record that has a key in a particular
class; the class is identified by the
inclusion of its generic key in the KEY
option of a READ statement. Subsequent
records can be read by ~E~D statements
without the KEY option. No indication is
given when the end of a key class is
reached.

In -the following example, an embed1ed
key with a length of more than three bytes
is ass~ned at the beginning of each record:

DCL IND FILE RECORD SEQUENTIAL KEYED
UPDATE ENV (INDEXED GENKEY) ;

READ FILE<IND) INTO (INFIELD) KEY('ABC');
IF SUBSTR(INFIELD,1,3),= 'ABC' THEN GO TO

END;

NEXT: READ FILE (IND) INTO (INFIELD);

GO TO NEXT;

The first READ statement causes the first
non-dummy record in the data set whose key
begins with 'ABC' to be read into INFIELD;
each time the second READ statement is
executed, the non-dummy record with the
next higher key will .be retrieved.
Repeated execution of the second RE~D

: statement could result in reading records
from higher key classes since no indication
is given when the end of a key class is
reached. It is the responsibility of the
programmer to check each key if he does not

106

wish to read beyon1 the key class. Any
subsequent execution of the first read
statement would reposition to the first
record of the key class 'ABC'.

DATA TRANSMISSION

As discussed earlier in this chapter,
PLII provides two types of data transmis­
sion, stream-oriented and record-oriented.

with stream-oriented transmission, a
data set is considered to be a continuou.s
stream of data items in character form;
internal bit-string representations and the
internal formats of coded arithmetic data
do not appear in the stream. Data items
are assigned from the stream to program
variables or from program variables (or
expressions) into the stream, wi t.h
appropriate conversion from or. to character
form. Stream-oriented transmission statE~­
ments ignore the physical and logical boun­
daries between records.

with record-oriented transmission, a
data set is treated as a collection of
logical records" each of which consists of
one or more data items. The data items cam
have any representation, internal or exter­
naL, that is acceptable to the computer,
and there is no data conversion. Each
logical record is transmitted. as a unit t~o
or from a program variable.

Stream trans nission uses only two input
and output statements, GET and PUT, which
get the next series of data items from the
stream or put a specified set of data i terns
into the stream. In record transmission,
the corresponding statements are READ and
WRITE, which read a logical record from the
data set or write a specified logical
record into the data set. A third statE~­
ment., REWRITE, causes replacement of an
existing record in an UPDATE file.

A fourth statement, LOCATE, is used for
based variables only; it allocates storaqe
for the variable in an output buffer, and
writes out the record automatically at the
next output statement on the file.

It is possible for the same data set 1:'0

be processed at different times for ei th.~r
stream transmission or record transmission;
however, all items in the data set would
have to be in character form.

One of the attributes, STREAM or RECORD,
specified for the file associated with a
data set determines which transmission
method is applicable to the file each time
it is opened.

STREAM-ORIENTED TRANSMISSION

There are three modes of stream trans­
miss ion: list-directed, da·ta-directed, and
edit-directed. All threle modes use the
same statements for input and output, the
GET and PUT statements. 'rhese statements,
in general, require the following informa­
tion for each mode:

1. The name of the file associated with
t.he data set from which data is to be
obtained or to which data is to be
assigned .•

2. A list of program variables to which
data items are to be assigned during
input or from which data items are 1:0
be obtained during output. This list
is called a data list.. On output, the
data list also can include constants
and other expressions.

3. ,!Ihe format of
stream.

each data item in t\le
\

Under certain conditions all of this
required information can be implied; in
other cases, only a portion of it need be
stated explicitly. If the file name is not
specified, one of the standard files, SYSIN
or SYSPRINT, is assumed; this applies to
each of the three modes. In list-directed
and data-directed transmission, the forma·ts
of data items are not specified in GET and
PUT statements; and in data-directE~d
transmission, even the data list need not
be specified .•

List-Directed Transmission

List-directed transmission permits the
user to specify the variables to which dat:a
is assigned and to specify data to be
transmitted without specifying the format:.

Input.!. In general, the dat.a items in the
stream are character strings in the form of
optionally signed valid constants or in the
form of expressions that represent complex
constants. The variables 1:0 which the dat:a
is to be assigned are specified by a dat:a
1 ist. Items are separa1:ed by a comma
and/or one or more blanks.

Output: The data values to be transmitted
are specified by a variable, a constant, or
an expression that rE~presE~nts a data item.
Each data item placed in the stream is a
character-string representation that
reflects the attributes of the variable.
Items are separated by a blank. Leading
zeros of arithmetic data are suppressed.
Binary fixed-point and floating-point

items, however., are character strings that
express the value in decimal representa­
tion.

For PRINT files, data items are automat­
ically aligned on implementation-defined
preset tab positions. For the F Compiler,
these positions are 1, 25, 49, 73, 97, and
121w but provision is made for the program­
mer to alter these values (for information,
see the publication IBM System/360 Operat­
i!!g~temL-PL/I (F) Programmer's Guide,
Form C28-6594).

Data-Directed Transmission

Data-directed transmission permits the
user to transmit self-identifying data.

Input: Each data item in the stream is in
the form of an assignment statement that
specifies both the value and the variable
to which it is to be assigned. In general,
values are in the form of valid constants.
Items are separated by a comma and/or one
or more blanks. A semicolon must end each
group of items to be accessed by a single
GET statement. A data list in the GET
statement is optional., since the semicolon
determines the number of items to be
obtained from the stream.

Ouiput.!. The data values to be transmitted
may be specified by an optional data list.
Each data item placed in the stream has the
form of an assignment sta temEmt without a
semicolon. Items are separated by a blank.
The last item transmitted by each PUT
statement is followed by a semicolon.
Leading zeros of arithmetic data are sup­
pressed. The character representation of
each value reflects the attributes of the
variable, except for fixed-point and
floating-point binary items, which appear
as values expressed in decimal notation.

If the data list is omitted, it is
assumed to specify all variables that are
known within the block containing the
statement and are permitted in data­
directed output.

For PRINT files, data items are
automatically aligned on implementation­
defined preset tab positions, referred to
under "List-Directed Transmission."

Edit-Directed Transmission

Edit-directed transmission pennits the
user to specify the variables to which data
is to be assigned or to specify data to be

Chapter 8: Input and Output 106. 1

transmitted. E~it-directed transmission
a:llows a programmer to specify the format
for each item on the external medium.

Input: Data in the stream is a continuous
s'tring of characters; different data items
axe not separated. The variables to which
the data is to be assigned is specified by
a data list. Format items in a format list
in the GET statement specify the number of
characters to be assigned to each variable
~nd describe characteristics of the data
(for example, 'the assumed location of a
r'lecimal point).

cutput: The data values to be
are defined by a nata list.
that the data is to have in the
defined by a fo~mat list.

106.2

transmitted
The format
stream is

DATA SPEC! FICATIONS FOR STREAM TRANSMISSI ')N

Data specifications are given in GET and
PUT statements to identify the data to be
transmitted. The data specifications cor­
respond to the modes of transmission.

List-directed, data-directed, and edit­
directed data specifications require a data

list to specify the data items to be
transmitted.

General format:

(data-list)

where "data list" is defined as:

element {,element] •••

Syntax rules:

The nature of the elements depends upon
whether the data list is used for input or
for output. The rules are as follows:

1. On input, a. data-list E~lement for
edit-directed and list-directed
transmission can be one of the follow­
ing: an element, array, or structure
variable, a pseudo-variable., or a
repetitive specification (similar to a
repetitive specification of a DO
group) involving any of these ele­
ments. For a data-directed data
specificationw a data-list element can
be an element., array., or structure
variable~ None of the names in a
data-directed data list can be sub­
scripted~ but qualified names are
allowed.

2... On. output" a data-list element for
edit-directed and list-directed data
specifications can be one of the fol­
lowing: an element expression, an
array expression, a structure expres­
sion~ or a repetitive specification
involving any of these elements.. For
a data-directed data specification, a
data-list element can be an element,
array" or structure variable, or a
repetitive specification involving any
of these elements. Subscripts are
allowed for data-directed output .•

3. The elements of a data list must be of
arithmetic or string data type.

4. A data list must always be enclosed in
parentheses.

Repetitive Specification

The general format of a repetitive
specification is shown in Figure 8-1..

Syntax rules:

1. An element in the element list of the
repetitive specification can be any of
those allowed as data-list elements as
listed above.

2. The expressions in the specification,
which are the same as those in a DO
statement, are described as follows:

a. Each expression in the specifi­
cation is an element expression.

b. In the specification, expression 1
represents the starting value of
the control variable or pseudo­
variable. Expression 3 represents
the increment to be added to the
control variable after each
~epetition of data-list elements
in the repetitive specification.
Expression 2 represents the termi­
nating value of the control varia­
ble. Expression 4 represents a
second condition to control the
number of repetitions. The exact
meaning of the specification is
identical to that of a DO state­
ment with the same specification.
When the last specification is
completed, control passes to the
next element in the data list.

3. Each repetitive specification must be
enclosed in parentheses, as shown in
the general format. Note that if a
repetitive specification is the only
element in a data list, two sets of
outer parentheses are required, since
the data list must have one set of
parentheses and the repetitive speci­
fication must have a separate set.

4. As Figure 8-1 shows, the "speci­
fication" portion of a repetitive
specification can be repeated a number
of times, as in the following form:

DO I = 1 TO 4, 6 TO 10

Repetitive specifications can be nest­
ed: that is, an element of a repeti­
tive specification can itself be a
repetitive specification. Each DO
portion must be delimited on the right
with a right parenthesis (with its
matching left parenthesis added to the
beginning of the entire repetitive
specification).

When DO portions are nested, the
rightmost DO is at the outer level of
nesting. For example, consider the
following statement:

GET LIST [«A(I,J) DO I = 1 TO 2)
DO J = 3 TO 4»;

Note the three sets of parentheses, in
addition to the set used to delimit
the subscript. The outermost set is
the set required by the data list: the
next is that required by the outer
repetitive specification. The third

Chapter 8: Input and Output 107

r--,
I { variable } I
I(element [,element] ••• DO = specification(, specification] •••) J
I pseudo-variable I
I I
I I
JA "specification" has the following format: I
I I
I I
I [TO expression-2 [BY exp resSiOn-3]J J
Jexpression-l " [WHILE (expression-4)] I
1 BY expression-3 [TO expression-2] 1 l ___ J

Figure 8-1. General Format for Repetitive Specifications.

set of parentheses is that required by
the inner repetitive specification.
This statement is equivalent to the
following nested DO-groups:

DO J = 3 TO 4;
DO I = 1 TO 2;
GET LIST (A (I,J»i
END;

END;

It gives values to the elements of the
array A in the following order:

A(1,3), A(2,3), A(1,4), A(2,4)

Note: Although the DO keyword is used
rn--the repetitive specification, a
corresponding END statement is not
allowed.

~ns~~~sion of Data-List Elements

If a data-list element is of complex
mode, the real part is transmitted before
the imaginary part.

If a data-list element is an array
variable, the "elements of the array are
transmitted in row-major order~ that is,
with the rightmost subscript of the array
varying most frequently.

If a data-list element is a structure
variable, the elements of the structure are
transmitted in the order specified in the
structure declaration.

108

For example, if a declaration is:

DECLARE 1 A (10), 2 B, 2 C;

then the statement:

PUT FILE(X) LIST(A)i

would result in the output being ordel~ed as
follows:

A • B (1) A • C (1) A • B (2) A • C (2) 1~ • B (3)
A.C(3) ••• etc.

If, however, the declaration had been::

DECLARE 1 A, 2 B(lO), 2 C(lO);

then the same PUT statement would result in
the output being ordered as follows:

A.B(l) A.B(2)
A.C(l) A.C(2)

A.B(3) ••• A.B(10)
A.C(3) ••• A.C(10)

If~ within a data list used in an input
statement for list-directed or edit­
directed transmission, a variable is
assigned a value, this new value is used if
the variable appears in a later reference
in the data list. For example:

GET LIST (N,(X(I) DO 1=1 TO N), J# K#
SUBSTR (NAME, J,K»;

When this statement is executed, data is
transmitted and assigned in the following
order:

1. A new value is assigned to N.

2. Elements are assigned to the array X
as specified in the repetitive speci­
fication in the order
X(1),X(2), ••• X(N), with the new value
of N used to specify the number of
items to be assigned.

3. A new value is assigned to J.

4. A new value is assigned to K.

5. A substring of length K is assigned to
the string variable NAME, beginning at
the Jth character.

LIST-DIRECTED DATA SPECIFICATION

General format for a list-directed data
specification, either input or output, is
as follows:

LIST (data-list)

The data list is described in the preceding
discussion. The keyword LIST must appear
to specify the list-directed mode of trans­
mission.

List-Directed Data in the Strea~
• j

Data in the stream, ei the:r input or
output, is of character data type and has
one of the following general forms:

[+1-] arithmetic~constant

character-string-constant

bit-string-constant

[+ 1-] real-constant {+ I-} imagina:ry-constant

These forms correspond exactly to the forms
used for writing optionally signed con­
stants in a PL/I program. However., sterl­
ing constants cannot be used. A string
constant must be one of the t'NO permitted
forms listed above: iteration and string
:repeti tion factors are not allowed.. A
blank must not precede the central + or
in complex expressions.

~ist-Directed Input Format

When the data named is an array., the
data consists of constants, the first of
which is assigned to the first element of
the array, the second constant to the
second element, etc.~ in row-major order.

A structure name in the data list rep­
resents a list of the contained element
variables and arrays in the order specified
in the structure description.

On input, data items in the stream must
be separated either by a blank or by a
comma. This separator may be surrounded by
an arbitrary number of blanks. A null
field in the stream is indicated either by

the first non-blank character in the data
set being a comma, or by two commas sepa­
rated by an arbitrary number of blanks. A
null field specifies that the value of the
associated item in the data list is to
remain unchanged.

The transmission O.f the list of con­
:stants on input is terminated by expiration
of the list or by the end-of-file condi­
tion. In the former case, positioning in
the stream for the next GET statement is
always at the character following the first
blank or comma following the last data item
transmitted. More than one blank can sep­
arate two data items, and a comma separator
may be preceded or followed by one or more
blanks. In such cases, a subsequent GET
statement will ignore intervening blanks
and the comma (if present) and will access
the next data item. However, if an edit­
di~ected GET statement should follow, the
first character accessed will be the
character to which the file has been posi­
-tioned (in other words, the next data item
will begin with the first character follow­
ing the blank or comma that separated it
:from the previous data item).

If the data is a character-string con­
stant, the surrounding quotation marks are
:removed., and the enclosed characters are
interpreted as a character string.

If the data is a bit-string constant,
enclosing quotation marks and the trailing
character B are removed, and the enclosed
characters are interpreted as a bit string.

If the data is an arithmetic constant or
complex expression, it is converted to
coded arithmetic form with the base, scale,
mode, and precision implied by the con­
stant.

Data type conversions follow the rules
for conversion from character type, as

I listed in Part II, Section F, "Problem Data
Conversion."

Lis,t-Directed outm!Lformat

The values of the element variables and
expressions in the data list are converted
to character representations and transmit­
ted to the data stream.

A blank separates successive data items
transmitted. (For PRINT files, items are
separated according to program tab set­
tings .•)

The length of the data field placed in
the stream is a function of the attributes
of the data item., including precision and

Chapter 8: Input and Output 109

length. Detailed discussions of the con­
version rules and their effect upon preci­
sion are listed in the sections covering
conversion to character type in Part II,
Section F, "Problem Data Conversion."

Fixed-point and floating-point binary
data items are converted to decimal nota­
tion before being placed in the stream.

For numeric character values, the
character-string value is transmitted.

Bit strings are converted to character
representation of bit-string constants,
consisting of the characters 0 and 1,
enclosed in quotation marks, and followed
by the letter B.

Character strings are written out. If
the file does not have the attribute PRINT,
enclosing quotation marks are supplied, and
contained single quotation marks or apos­
trophes ar~ replaced by two quotation
marks. The field width is the current
length of the string plus the number of
added quotation marks. If the file has the
attribute PRINT, enclosing quotation marks
are not supplied, and contained single
quotation marks or apostrophes are unmodi­
fied. The field width is the current
length of the string.

Examples of list-directed data specifi­
cations:

LIST (CARD, RATE, DYNAMIC_FLOW)

LIST «THICKNESS(DISTANCE)
DO DISTANCE = 1 TO 1000»

LIST (P, Z, M, R)

LIST (A*B/C, (X+Y)**2)

The specification in the last example
can be used only for output, since it
contains operational expressions. such
expressio~s are evaluated when the state­
men1: is executed, and the result is placed
in 1:he stream.

DATA-DIR.ECTED DATA SPECIFICATION

General format for a data-directed data

I specification, either for input or output,
is as follows:

Option 1: DATA

Option 2: DATA (data-list)

110

General rules:

1. The data list is described in "Data
Lists" in this chapter. It cannot
include parameters, defined variables,
or based variables. For input, the
data list cannot contain subscripted
names. Names 'of structure elements in
the data list need only have enough
qualification to resolve any ambigui­
ty; full qualification is not
.required.

2. Option 1 implies that a data list is
assumed. This assumed data list con­
tains all the names that are kno'W'n to
the block and are valid for data­
directed transmission. On input." if
the stream contains a name not known
within the block, the NAME condition
is raised. If the assumed data list
contains a name that is not included
in the stream, the value of the
associated variable remains unchanged.
On output, all items in the assumed
data list are transmitted.

3. Recognition of a semicolon or an end
of file in the stream on input causes
transmission to cease, whether or not
a data list is specified. On output,
a semicolon is written into the stream
after the last data item transmitted
by each PUT statement.

Data-Directed Data in the Stream

The data in the stream associated with
data-directed transmission is in the form
of a list of element assignments having the
following general format (the optionally
signed constants, like the variable names
and the equal signs, are in character
form) :

element-variable = constant
[{bl,Jelernent-variable = constant] ••• ;

General rules:

1. The element variable may be a sub­
scripted name. Subscripts must be
optionally signed decimal integer con­
stants.

2. On input, the element assignments may
be separated by either a blank (Q in
the above format) or a comma. Redun­
dant blanks are ignored. On output,
the aSSignments are separated by a
blank.

3. Each constant in the stream has one of
the forms described for list-directed
transmission.

Qata-Di~ected Input Format

General rules for data-directed input:

18 If the data specification in option 1
is usedH the names in the stream may
be any names known at the point of
transmission. Qualified names in the
input stream must be fully qualified.

2. If option 2 is used, each element of
the data list must be an element,
array, or structure variable. Names
cannot be subscripted" but qualified
names are allowed in the data list.
All names in the stream should appear
in the data list:'however, the order
of the names need not be the same, and
the data list may include names that
do not appear in the stream. If a
name appears in the stream but not in
the data list, the NAME condition is
raised.

For example, consider the following
data list, where A, B, C, and Dare
names of element variables:

DA'l'A (B" A" C, D)

This data list may be associated with
the following input data stream:

A= 2.5, B= .0047, D= 125, Z= 'ABC';

Note: C appears in the data list but
not in the stream, and Z, not in the
data list, will raise the NAME condi­
tion~ The value of C will be unalt­
ered.

3. If the data list in option 2 includes
the name of an array, subscripted
references to that array may appear in
the stream although subscripted names
cannot appear in the data list. The
entire array need not appear in the
stream; only those elements that
actually appear in the stream will be
assigned.

Let X be the name of a two-dimensional
array declared as follows:

DECLARE X (2,3);

Consider the following data list and
input data stream:

Data List
DATA (X)

Input Cata Stream
X(l,l)= 7.95, X(1,2)= 8085,
X(1,3)= 73;

Although the data list has
name of the array, the
input stream may contain

only the
associated

values for

individual elements of the array. In
this case, only three elements are
assigned; the remainder of the array
is unchanged.

48 If the data list includes the names of
structure elements, then fully quali­
fied names must appear in the stream,
although full qualification is not
required in the data list. Consider
the following structures:

DECLARE 1 CARDIN, 2 PARTNO, 2 DESCRP,
2 PRICE" 3 RETAIL, 3 WHSL,
1 CARDOUT, 2 PARTNO r 2 DESCRP,
2 PRICED 3 RETAIL, 3 WHSL;

If it is desired to read a value for
CARDIN. PRICE. RETAIL, the data specifi­
cation and input data stream could
have the following forms:

Data_Specifi£ati2~ Input Data stream
DATA <CARDIN. RETAIL) CARDIN. PRICE.

RETAIL = 4.28;

5. Interleaved subscripts cannot appear
in qualified names in the stream. All
subscripts must be moved all the way
to the right, following the last name
of the qualified name. For example,
assume that Y is declared as follows:

DECLARE 1 Y(5,S),2 A(10),3 B,
3 C, 3 Di

An element name would have to appear
in the stream as follows:

Y.A.B(2,3,8)= 8.72

The name in the data list, of course,
could not contain the subscript.

Data-Directed Output Format

General rules for data-directed output:

1. An element of the data list may be an
element, array, or structure variable,
or a repetitive specification involv­
ing any of these elements or further
repetitive specifications. Subscript­
ed names can appear. The names
appearing in the data list, together
with their values, are transmitted in
the form of a list of element assign­
ments separated by blanks and termi­
nated by a semicolon. (For PRINT
files, items are separated according
to program tab settings.)

2. Array variables in the data list are
treated as a list of the contained

Chapter 8: Input and Output 111

subscripted
order.

elements in row-major

Let X be an array declared as follows:

DECLARE X (2,4);

Let X appear in a data list as fol­
lows:

DATA (X)

Then, on output, the output
stream would be as follows:

X(l,l)= 1 X(1,2)= 2 X(1~3)= 3
X(1,4)= 4 X(2,1)= 5 X(2,2)= 6
X(2~3)= 7 X(2,4)= 8;

data

Note: In actual output, more than one
blank would follow the equal sign. In
conversion from coded arithmetic to
character, leading zeros are converted
to blanks, and up to three additional
blanks may appear at the beginning of
the field.

3. Subscript expressions that appear in a
data list are evaluated and replaced
by the value.

4. Items that are part of a structure
appearing in the data list are trans­
mitted with the full qualification,
but subscripts follow the qualified
names rather than being interleaved.
If a data list is specified for a
structure element transmitted under
data-directed output as follows:

DATA (Y(1,-3).Q)

then the associated data field in the
output stream is as follows:

Y.Q(1,-3)= 3.756;

5. Structure names in the data list are
interpreted as a list of the contained
element or array elements, and any
contained arrays are treated as above.

112

consider the following structure:

1 A, 2 B, 2 c, 3 D

If a data list for data-directed out­
put is as follows:

DATA (A)

then, if the values of Band D were 2
and 17, respectively, the associated
data fields in the output stream would
be as follows:

A.B= 2 A.C.D= 17;

6. In the following cases, data-directed
output is not valid for subsequent
data-directed input:

a. when the precision attribute of a
fixed-point variable is such that
the assumed point is located out­
side the field with assumed zeros
intervening; that is, if for pre­
cision <p,q) p is less than q, or
q is less than zero. (In this
case an exponent is transmitted,
preceded by a letter F which is
not valid for conversion to arith­
metic type.)

b. When the character-string value of
a numeric character variable does
not represent a valid optionally
Signed arithmetic constant. For
example, this is always true for
complex numeric character varia­
bles.

Length of Data-Directed OUi£ut Fields

The length of the data field on the
external medium is a function of the attri­
butes declared for the variable and~ since
the name is also included, the length of
the fully qualified subscripted name. The
field length for output items conv'~rted
from coded arithmetic data, nUIPeric charac­
ter data, and bit-string data is the same
as that for list-directed output data. and
is governed by the rules for data conver­
sion to character type as described in Part
II~ Section F, "Problem Data Conversion."

For character-string data, the contents
of the character string are written out
enclosed in quotation marks. Each quota­
tion mark or apostrophe contained within
the character string is represented by two
successive quotation marks.

In the example shown in Figure 8-2,
assume that A is declared as a one­
dimensional array of six elements; B is a
one-dimensional array of seven elements.
The procedure calculates and writes out
values for A(I) = B(I+l) + B(I).

EDIT-DIRECTED DATA SPECIFICATION

General format for an edit-directed data
specification, either for input or out:put,
is as follows:

EDIT (data-list) (format-list)
[(data-list) (format-list)] •••

r---,
AB: PROCEDURE:

Input stream
DECLARE A(6), B(7):

B(l)=l, B(2)=2, B(3)=3,
GET FILE (X) DATA (B):

B(4)=1, B(5)=2, B(6)=3, B(7)=4:
DO I = 1 TO 6;

A (1) = B (I+1) + B (I):
Output Stream

END;

PUT FILE (Y) DATA (A):
A(l)= 3 A(2)= 5 A(3)= 4 A(4)= 3

A(S)= S A(6)= 7:
END AB:

Figure 8-2. Example of D'ata-Directed Transmission (Both Input and Output).

1. The data list~ which must be enclosed
in parentheses, is described above in
"Data Lists~" The format list. which
also must be enclosed in parentheses~
contains one or more format items.
There are three types of format items:
data format items, which describe data
in the stream: control format items,
which describe page, line, and spacing
operations: and remote format items,,,
which specify the label of a separate
statement that contains the format
J,ist to be used. Format lists and
format items are discussed in more
detail in "Format Lists," below.
Edit-directed transmission is the only
mode that can be used for reading or
writing sterling data, by use of a
picture specification.

2~ For input. data in the stream is
considered to be a continuous string
of characters not separated into indi­
vidual data items. The number of
characters for each data item is spec­
ified by a format item in the format
list. The characters are treated
according to the associated format
item.

3,. For output" the value of each item in
the data list is converted to a format
specified by the associated format
item and placed in the stream in a
field whose width also is specified by
the format item.

4. For either input or output, the first
data format item is associated with
the first item in the data list~ the
second data format item w~th the sec­
ond item in the data list~ and so
forth~ If a format list contains
fewer format items than there are
i€emif in the associated data list, ~
format un'] j §t-.is re~Nsed: if there are
excessive format items~ they are

iqpore~, Suppose a format list con­
tains five data format items and its
associated data list specifies ten
items to be transmitted. Then the
sixth item in the data list will be
associated with the first data format
item, and so forth. Suppose a format
list contains ten data format items
and its associated data list specifies
only five items. Then the sixth
through the tenth format items will be
ignored.

5. An array or structure variable in a
data list is equivalent to n items in
the data list, where n is the number
of element items in the array or
structure, each of which will be asso­
ciated with a separate use of a data
format item.

6. If a data list item is associated with
a control format item, that control
action is executed" and the data list
item is paired with the next format
item.

7. The specified transmission is complete
when the last item in the data list
has been processed using its corres­
ponding format item. subsequent for­
mat items, including control format
items, are ignored.

8. On output# data items are not automat­
ically separated, but arithmetic data
items generally include leading blanks
because of data conversion rules and
zero suppression.

Examples:

GET EDIT (NAME,. DATA, SALARY)
(A(N), X(2)" A(6), F(6,2»;

PUT EDIT ('INVENTORY=', IINUM,INVCODE)
(A 17 F (5)) :

Chapter 8: Input and Output 113

The first example specifies that the
first N characters in the stream are to be
treated as a character string and assigned
to NAME; the next two characters are to be
skipped; the next six are to be assigned to
DATA in character format; and the next six
characters are to be considered as an
optionally signed decimal fixed-point con­
stant and assigned to SALARY.

The second example specifies that the
character string 'INVENTORY=' is to be
concatenated with the value of INUM and
claced in the stream in a field whose width
is the length of the resultant string.
Then the value of INVCODE is to be convert­
ed to character to represent an optionally
signed decimal fixed-point integer constant
and is then to be placed in the stream
right-adjusted in a field with a width of
five characters (leading characters may be
blankS). Note that operational expressions
and constants can appear in output data
lists only.

Each edit-directed data specification
requires its own format list.

General format:

(format-list)

where "format list" is defined as:

item I
: ~:::mat-list) ~

item]
: n item •••

I n (format-list)

Syntax rules:

1. Each "item" represents a format item
as described below.

2. The letter n represents an iteration
factor, which is either an expression
enclosed in parentheses or an unsigned
decimal integer constant., If it is
the latter~ a blank must separate the
constant and the following format
item. The iteration factor specifies
that the associated format item or
format list is to be used n successive
times. A zero or negative iteration
factor specifies that the associated
format item or format list is to be
skipped and not Qsed (the data list
item will be associated with the next
format item). If an expression is
used to represent the iteration fac-

114

tor, it is evaluated and converted to
an integer once for each set of itera­
tions. The associated format item or
format list is that item or list of
items immediately to the right of the
iteration factor.

General rule:

There are three types of format
items: data format items, control format
items; and the remote format item. Data
format items specify the external forms
that data fields are to take. Control

Iformat items specify the page, line,
column, and spacing operations. The remote
format item allows format items to be
specified in a separate FORMAT statement
elsewhere in the block.

Detailed discussions of the various
types of format items appear in Part II,
Section E, "Edit-Directed Format Items."
The following discussions show how the
format items are used in edit-directed data
specifications.

Data Format Items

On input, each data format item speci­
fies the number of characters to be asso­
ciated with the data item and hO'ioi to
interpret the external data. The data item
is assigned to the associated variable
named in the data list, with necessary
conversion to conform to the attribubes of
the variable. On output, the value of the
associated element in the data list is
converted to the character representation
specified by the format item and is insert­
ed into the data stream.

There are six data format items: fixed­
point (F), floating-point (E), complex (C>,
picture (P), character-string (A)~ and bit­
string (E). They are, in general,
specified as follows:

F (w [, d r" p]])

E (w,d[,s])

C (real-format-item [, real-format-it~3m])

P 'picture-specification'

A [(w)]

E (w)]

In this list, the letter ~ represents an
expression that specifies the number of
characters in the field. The letter d
specif ies the number of digits to the J~ight
of a decimal point; it may be omitted for
integers. The real format item of the
complex format item represents the appear-

ance of either an F, E or P format item.
The picture spe~ification of the P format
it.em can be eit~er a numeric character
specification or a character-string
specification. On output, data associated
with E and F format items is rounded if the
internal precision exceeds the external
precision.

A third specification (E) is allowed in
the F format item~ it is a scaling factor.
A third specification (8) is allowed in the
E format item to specIfy the number of
digits that must be maintained in the first
subfield of the floatinq-point number.
These specificatio~s are discussed in
detail in Part II., Section E,
" Edit-Directed Format Item~:;."

Note: Fixed-point binary and floating­
point binary data items must always be
represented in the input ~3tream with their
values expresse~l in decimal digits. The F
and E format items then are used to access
them, and the values 'l1ill be converted to
binary representation upon assignment. On
output, binary items are converted to
decimal values and the associated F or E
format items must state the field width and
point placement in terms of the converted
decimal number.

The following examples illustrate the
use of format items:

1. GET FILE (INFILE) EDIT (ITEM) (A(20));

This statement causes the next 20
characters in the file called INFILE
to be assiqne1 ·to ITEM. The value is
automatically transformed from its
character representation specified by
the format item A(20), to the rep­
resentation specified by the attri­
butes declared for ITEM.

Note: If the data list and format list
were used for output, the length of a
string item need not be specified in
the format item if the field width is
to be the same as the length of the
string, that is, if no blanks are to
follow the string.

2. PUT FILE (~A.SKFLE) EDIT (MASK) (B) ~

Assume MASK has the attributes BIT
(25) i then the above sta tement iNri tes
t.he value of MASK in ~the file callE~d
MASKFLE as a string of 25 characters
consisting of O's and l's. A field
width specification can be given in
the B format item. I1t must be stated
for input. ----

3. PUT EDIT (TOTAL) (F(6,2»;

Assume TOTAL has the attributes FIXED

(4,2); then the above statement speci­
fies that the value of TOTAL is to be
converted to the character representa­
tion of a fixed-point n~~ber and writ­
ten into the standard output file
SYSPRINT. A decimal point is to be
inserted before the last two numeric
characters, and the number will be
right-adjusted in a fie11 of six char­
acters. Leading zeros will be changed
to blanks, and, if necessary, a minus
sign will be placed to the left of the
first numeric character.

In conversion from internal decimal
fixed-point type to character type,
the resultant string always is three
characters longer than p, the number
of digits in the precision specifi­
cation of a decimal fixed-point varia­
ble. The extra characters may appear
as blanks preceding the number in the
convertej string. And, since leading
zeros are converted to blanks, addi­
tional blanks may preceje the number.
If a decimal point or a minus sign
appears, either will cause one leading
blank to be replaced.

In edit-directed output, the field
width specification in the format item
(in this case, the 6 in the F(6,2)
format item) can be used to truncate
leading zeros. In this specification,
one zero is truncated. TOTAL would be
convertec to a character string of
length seven. If all four digits of
the converte~ number are greater than
zero, the number, with its inserted
decimal point, will require five digit
positions; if the number is negative,
another digit position will be
required for the minus sign. C0!.1se­
quently, the F(6,2) specification will
always allow all digits, the point,
and a possible sign to appear, but
will remove the extra blank by trunca­
tion.

4. GET FILE(A) EDIT (ESTIMATE) (E(10,6»~

This statement obtains the next ten
characters from the file called A and
interprets them as a floating-point
decimal number. A decimal pOint is
assumed before the rightmost six
digits of the mantissa. An actual
point within the data can override
this assumption. The value of the
number is converted to the attributes
of ESTIMATE and assigned to this vari­
able.

5. GET EDIT (NAME, TOTAL)
(P'AAAAA' ,P'9999') ~

When this statement is executed, the
standard input file SYSIN is assumed.

Chapter 8: Input and Output 115

The first five characters must be
alphabetic or blank and they are
assigned to NAME. The next four char­
acters must be non blank numeric char­
acters and they are assigned to TOTAL.

Control Format Items

The control format items are the spacing
format item (X). and the COLUMN, LINE,
PAGE, and SKIP format items. The spacing
format i·tem specifies relative spacing in
the data stream. The PAGE and LINE format
items can be used only with PRINT files
and, consequently, can only appear in PUT
statements. All but PAGE generally include
expressions. LINE, PAGE, and SKIP can also
appear separately as options in the PUT
statement; SKIP can appear as an option in
the GET statement.

The following examples illustrate the
use of the control format items:

1. GET EDIT (NUMBER, REBATE)
(A(S), xeS). A(S');

This statement treats the next lS
characters from the standard input
file, SYSIN, as follows: the first
five characters are assigned to NUM­
BER, the next five characters are
spaced over and ignored., and the
remaining five characters are assigned
to REBATE.

2. GET FILE(IN) EDIT (MAN, OVERTIME)
(SKIP(l). A(6), COLUMN(60), F(4,2»;

This statement positions the data set
assoc;iated with file IN to a new line;
the first six characters on the line
are assigned to MAN, and the four
cha:raicters beginning a t character
position 60 are assigned to OVERTIME.

3. PUT FILE(OUT) EDIT (PART, COUNT)
(A(4), X(2), F(S»;

This statement places in the file
named OUT four characters that rep­
resent the value of PART, then two
blank characters, and finally five
characters that represent the fixed­
point value of COUNT.

4. The following examples show the use of
the COLUMN, LINE, PAGE, and SKIP
format items in combination with one
other ..

116

PUT EDIT (. QUARTERLY STATEMENT')
(PAGE, LINE(2), A(19»;

PUT EDIT
(ACCT#, BOUGHT, SOLD,
PAYMENT, BALANCE)

(SKIP(3). A(6), COLUMN(14),
F(7, 2), COLUMN (30), F (7, 2),
COLUMN(4S), F(7,2),
COLUMN(60), F(7,2»;

The first PUT statement specifies that
the heading QUARTERLY STATEMENT is to
be written on line two of a new pagE~
in the standard output file SYSPRINT.
The second statement specifies that
two lines are to be skipped (that is,
"skip to the third following line")
and the value of ACCT# is to be
written, beginning at the first char-·
acter of the fifth line; the value of
BOUGHT, beginning at character posi-'
tion 14; the value of SOLD, beginnin9
at character position 30; the value of
PAYMENT, beginning at character posi-'
tion 4S; ·and the value of' BALANCE at~
character position 60.

Note: Control format items are executed at~
the time they are encountered in the format~
list.. Any control format list that appear~i
after the data list is exhausted will have
no effect .•

Remote Format Item

The remote format item (R) specifies the
label of a FORMAT statement (or a label
variable whose value is the label of cl
FORMAT statement) located elsewhere; thE~
FORMAT statement and the GET or PUT state-·
ment specifying the remote format item must~
be internal to the same block. The FORMA'l'
statement contains the remotely situated
format items. This facility permits thE~
choice of different format specifications
3.t execution time, as illustrated by thE!
following example:

DECLARE SWITCH LABEL;
GET FILE(IN) LISTCCODE);
IF CODE = 1

THEN SWITCH = L1;
ELSE SWITCH = L2;

GET FILE(IN) EDIT (W,X,Y,Z)
(R C SWITCH)) ;

L1: FORMAT (4 FCS,3»;
L2: FORMAT (4 E(12,6»;

SWITCH has been declared to be a label
variable; the second GET statement can bE!
made to operate with either of the two
FORMAT statements.

Expressions in Format Items

The ~. 2.~, and ~ specifications in
data format items" as well as the specifi­
cations in control format items. need not
be decimal integer constants. Expressions
are allowed. They may be variables or
other expressions.

On input,
can be used in
with anotner
list.

a value read into a variable
a format item associated

variable later in the data

PUT EDIT (NAME, NUMBER" CITY)
(A(N),A(N-4),A(10»i

GET EDIT (M.STRING AgI,STRING B)
CF (2) f1 A (M) • X (M) • F (2) ., A (I) ') ;

In the first example, the value of NAME is
inserted in the stream as a character
string left-adjusted in a field of N char­
acters; NUMBER is left-adjustE!d in a field
of N-4 characters; and CITY is left­
adjusted in a field of 10 characters. In
the second example, the first two
characters are assigned to M. The value of
M is then taken to specify t:he number of
characters to be assigned to STRING A and
also to specify the number of charac~ers to
be ignored before two characters are
assigned to 117 whose value then is used to
specify the number of characters to be
assigned to STRING_B.

STREAr~-ORIENTED DATA TRANSMISSION
STATEMENTS

The following provides a summary of the
STREAM data transmission statements, along
with their options~ according to file
attributes (the statements are discussed
individually in detail in Part II, Section
J~ "Statements").

pTREAM

STREAM

STREAM

INPUT:

GET [FILE (file-name)]
data-specification [COpy]
[SKIP [(expression)]] ;

OUTPUT:

PUT [FILE (file-name)]
data-specification
[SKIP [(expression)]];

OUTPUT PRINT:

PUT [FILE (file-name)]
[data-specification]

G
AGE [LINE (expression)] J

SKIP[(expression)] ;
INE (expression)

Note: The data specification can be omit­
ted for STREAM OUTPUT PRINT files only if
one of the control options appears.

In all of the above, the data specifi­
cation can have one of the following forms:

LIST (data-list)

DATA [(data-list)]

EDIT (data-list) (format-list)
[(data-list) (format-list)] •••

The COPY option for STREAM INPUT specifies
that each data item is to be written"
exactly as read, into the standard output
file SYSPRINT.

Format lists may use any of the follow­
ing format items:

A,B,C,E,F,
P, R, X,
SKIP [(w)]
COLUr-1N (w)

PAGE
LINE (w)

which may be used with
any STREAM file

which can be used with
STREAN OUTPUT PRINT
files only

Note that for non-PRINT files, the
expression ~ in the SKIP option must have a
value that is greater than zero when con­
verted to an integer. If it has not# the F
Compiler substitutes a value of 1.

RECORD-ORIENTED TRANSMISSION

Data sets that contain discrete records~
or which are to be created as collections
of discrete records, may be manipulated
with record-oriented operation statements.
These statements are READ, WRITE, REWRITE,
LOCATE, and DELE'rE. A general description
of each of these statements is contained in
this chapter; they are described in detail
in Part II" Section J, "Staterrents." Each
record obtained from a data set or trans­
mitted to a data set is defined in terms of
the data attributes of a variable (usually
a structure). For input operations, the
record is obtained from the data set and
assigned. without conversion, to the varia­
ble. For output operations~ the data is
transmitted without conversion into the
data set,o

The variables involved in record trans­
mission must be unsubscripted. of level 1
(element and array variables not contained
in structures are of level 1 by default),
and may be of any storage class. The
variables cannot be parameters or defined
variables. They may be label, pointer# or

Chapter 8: Input and output 117

event variables, but such data may lose its
validity in transmission.

RECORD-ORIENTED DATA TRANSMISSION
STATEMENTS

There are four statements that actually
cause .transmission of records to or from

I external storage. They are READ, WRITE,
LOCATE, and REWRITE. A fifth statement,
the DELETE statement, is used to delete

I records from an UPDATE file. The attri-
butes of the file determine which state­
ments can be used.

The READ statement can be used with any
INPUT or UPDATE file. It causes a record
to be transmitted from the data set to the
program, either directly to a variable or
to a buffer. In the case of blocked
records, the READ statement causes a logi­
cal record to be transferred from a buffer
to the variable. For blocked records,
consequently, every READ statement may not
cause physical input.

The WRITE statement can be used with any
OUTPUT file, and wi th DIRECT UPDATE" but
not with SEQUENTIAL UPDATE. It causes a
record to be transmitted from the program
to the data set. For unblocked records,
the transmission may be directly from a
variable or from a buffer. For blocked
records, the WRITE statement causes a logi­
cal record to be placed into a buffer.
Only when the blocking of the record is
comple!te is there actual physical output.

The RE,WRITE statement causes a record to
be replaced in an UPDATE file. For SEQUEN­
TIAL UPDATE files, the REWRITE statement
specifies that the last record read from
the file is to be rewritten; consequently a
record, must be read before it can be
rewritten. For DIRECT UPDATE files., the
REWRITE statement must specify a key: con­
sequently, any record can be rewritten
whether or not it has first been read.

The, LOCATE statement can be used only
with an OUTPUT SEQUENTIAL BUFFERED file.
It allocates storage within an output buf­
fer for a based variable, setting a pointer
to the' location in the buffer as it does
so. This pointer can then be used to refer
to the allocation so that data can be moved
into the buffer. The record is written,out
automat.ically, immediately before execution
of 'the next WRITE or LOCATE statement for
the file, or before the file is closed.
See also Chapter 14, "Based Storage and
List P~ocessing."

The DELETE statement
I record in an UPDATE

118

specifies that a
file be marked as

I deleted. For a DIRECT UPDATE file, the
DELETE statement must specify a key: conse­
quently, any record can be deleted.

Options of Record-Oriented TransmissioQ
Statements

Options that are allowed for record­
oriented data transmission statements
differ according to the attributes of the
associated file and the purpose of the
statement. A list of all of the allowed
combinations for each type of file is given
later in this chapter.

Each option consists of a keyword fol­
low:ed by a value, which is a file nam4:, a
variable. or an expression. This value
always must be enclosed in parentheses. In
any statement, the options may appear in
any order.

The FILE Option

The FILE option must appear in 4:very
record-oriented statement. It specifies
the name of the file upon which' the opera­
tion is to take place. It consists of the
keyword FILE followed by the file name
enclosed in parentheses. An example of the
FILE option is shown in each of the state­
ments in this section.

The INTO Option

The INTO option can be used in the READ
statement for any type of INPUT or UPDATE
file. The INTO option specifies a variable
to which the logical record is to be
assigned.

READ FILE (DETAIL) INTO (RECORD_l);

This specifies
record is to
RECORD_l.

that the next sequential
be assigned to the variable

Note that the INTO option can namE~ an
element string variable of varying length;
thus it is possible to read a record whose
length is unknown and cannot be determined
from the data. The current length ~f the
string is set to the length of the record.
The LENGTH buil t- in function can be uSE~d to
find the length of the record.

The FROM Option

The FROM option must be used in the
WRITE statement for any OUTPUT file and for
a DIRECT UPDATE file. It also can be used
in the REWRITE statement for any UPDATE
file. The FROM option specifies the varia­
ble from which the record is to be written.

I
If this variable is a string of varying
length, thE! current length of the string
determines the size of the record.

For files other than DIRECT UPDATE or
SEQUENTIAL UNBUFFERED UPDATE files, the
FROM option can be omitted. If the last
record was read by a READ statement with
the INTO option, REWRITE without FROM has
no effect on the record in the data set;
but if the last record was read by a READ
statement with the SET option. the record
will be updated, in the buffer, by whatever
assignments were made.

WRITE FILE (MASTER) FROM tMAS_REC)i

REWRITE FILE (MASTER) FROM (MAS_REC);

Both statements specify that the value of
the variable MAS REC is to be written into
t.he file MASTER:- In the case of the WRITE
statement, it specifies a new record in a
SEQUENTIAL OUTPUT file.

The REWRITE statement specifies
MAS_REC is to replace the last record
from a SEQUENTIAL UPDATE file.

The SET Option

that
read

The SET option can be used with a READ
statement or a LOCATE statement. It speci­
fies that a named pointer variable is to be
set to point to the location in the buffer
into which data has been moved during the
READ operation, or which has been allocated
by the LOCATE statement.

For detailed information. see Chapter
14, "Based storage and List Processing."

The IGNORE Option

The IGNORE option can be used in a READ
statement for any SEQUENTIAL INPUT or
UPDATE file. It includes an expression

IWhose integral value specifies a number of
records to be skipped over and ignored.

READ FILE (IN) IGNORE (3);

This statement
three rec()rds
skipped.

specifies that the next
in the file are to be

The KEY Option

The KEY option applies only to files
associated with data sets of REGIONAL or
INDEXED organization. It can be used in
the READ statement for files with the INPUT
or UPDATE attributes. (If the file has the
SEQUENTIAL attribute, the associated data
set must be of INDEXED organization.) ~he
KEY option also is used in the REWRITE and
DELETE statements for DIRECT UPDATE files.
Any file for which the KEY option is used
must also have the KEYED attribute.

The KEY option consists of the keyword
KEY followed by a parenthesized expression,
which is a source key that identifies a
particular record. The expression may be a
character-string constant, a variable, or
any other element expression. An expres­
sion is evaluated and converted to a char­
acter string.

Following is a summary of what the
character string is and what it represents
for each of the data set organizations to
which it is applicable:

REGIONAL (1)

REGIONAL (2)

A string of characters
consisting of digits or
blanks. the rightmost
eight of which specify
the relative record
number of the desired
record.

A string of characters,
the rightmost eight of
which must consist of
digits or blanks.
These rightmost eight
characters specify a
relative record number
that is the beginning
of a region to be
searched. The record
to be accessed is iden­
tified by a recorded
key that exactly match­
es that portion of the
source key character
string whose length,
beginning from the
left, extends the num­
ber of characters spec­
ified in the KEYLEN
subparameter of the
associated DD state­
ment. This string may
or may not include the
rightmost eight charac­
ters.

Chapter 8: Input and Output 119

REGIONAL (3)

INDEXED

Same as REGIONAL (2),
except that the right­
most eight characters
specify a relative
track that is the
beginning of the region
to be searched.

A string of characters,
the first n of which
exactly match the
recorded key of the
record (where n is the
number specified by
KEYLEN). If the
recorded key is embed­
ded in the record and
the record is blocked,
its location must be
specified in the RKP
subparameter of the DD
statement.

If, for a REGIONAL(l) data set, the source
key is longer than eight characters, other
characters to the left are ignored. If the
source key character string of a REGIONAL
(2), REGIONAL (3), or INDEXED data set is
shorter than the length specified by KEY­
LEN, it is extended on the right with
blanks before a comparison is made. If
longer, it is truncated on the right before
comparison.

READ FILE (MASTER) INTO (MAS_REC) KEY
('00003253');

DELETE FILE (FILEX) KEY (NAMEIIAREA#);

REWRITE FILE (FILEZ) FROM (PAY_REC)
KEY (NAME);

The first statement specifies that record
number 3253 in the REGIONAL (1) data set
associated with the file MASTER is to be
read and assigned to the variable MAS_REC.

The second statement, which would be
appropriate for either a REGIONAL (2) or
REGIONAL (3) data set, specifies that a
record is to be deleted from the DIRECT
UPDATE file FILEX. The record is to be
found in a region identified by the value
of AREA#, which, in this case., must be a
number of at least eight digits. The
specific record is to be recognized by a
r.ecorded key that matches all or the first
portion of the concatenated string of the
length specified by KEYLEN.

The third statement., which would be
appropriate for an INDEXED data set~ speci­
fies that the value of the variable PAY REC
is to be written in the DIRECT UPDATE file
FILEZ. It is to replace the record which
has a recorded key that matches the value
of NAME~ NAME could be an element of

120

PAY_REC, assuming that PAY_REC has been
declared to be a structure.

~ote: The fact that certain data set
organizations are mentioned in connection
with the above examples does not mean that
an example implies a specific organization;
what is meant is that the example is
typical of that organization.

The KEYFROM Option

The KEYFROM option must be specified in
a WRITE statement used to create a REGIONAL
or INDEXED data set or in a WRITE statement
used to add new records to an INDEXED or
REGIONAL data set.. It cannot be used with
CONSECUTIVE organization. Therefore, it
can appear in a WRITE statement for a
SEQUENTIAL OUTPUT file, either BUFFERED or
UNBUFFERED, or for a DIRECT OUTPUT or

, DIRECT UPDATE file. It can be used with a
LOCATE statement. Any file for which the
KEYFROM option is specified must have the
KEYED attribute.

The KEY FROM option specifies the loca­
tion., wi thin the data set, where the record
is to be written. For REGIONAL (1) data
sets., it specifies only the region number ..
For REGIONAL(2) and REGIONAL(3) data sets.,
it also specifies a character string to be
written as a recorded key. For INDEXED
data sets~ it specifies a recorded key.
whose value is used to determine the loca­
tion. It is written with the keyword
KEYFROM followed by a parenthesized expres­
sion. The expression can be a constant, a
variable, or any other expression. The
value is always converted to a character
string. For all but REGIONAL(l), the KEY­
LEN DD statement subparameter must specify
the length of the recorded key to be
written .•

WRITE FILE (PAYROLL) FROM (PAY REe)
KEYFROM (NAME I ICOUNTER+l); -

WRITE FILE (LOANS) KEYFROM (LOAN#)
FROM (LOAN_REC);

The first statement, which coul:] be
appropriate for a REGIONAL (2) data set,
specifies that the value of PAY REC is to
be written as the next sequential-record in
the file PAYROLL. The value of COUNTER+l
specifies the region immediately following
that in which the last record was wri·tten.
The source key is to be a concatenation of
the value of NAME and the value of the
expression COUNTER+l, with the first ~
characters to be written as the recorded
key (the value of ~ must be specified by
KEYLEN) •

The second statement specifies that the
value of LOAN_REC is to be written a:3 the

next record in the file LOANS, with the
value of LOAN# to be used as thE~ key,.

The KEYTO Option

The KEYTO option can be used, in the READ
s·tatement for a SEQUENTIAL INPUT or UPDATE
file that is associated with a REGIONAL or
INDEXED da-ta set. It is specified by
writing the keyword KEYTO, followed by the
parenthesized name of a character-string
variable.

For REGIONAL(l) data sets, the KEYTO
option specifies that the region number of
the record being read is to be assigned to
the specified variable. For REGIONAL(2)~
HEGIONAL(3), or INDEXED data set~s, it spe­
cifies that only the recorded ~§y is to be
assigned. Any file for which the KEYTO
option is specified must have the KEYED
attribute. For example:

READ FILE(DETAIL) INTO (INVTRY)
KEYTO (KEY_CHK) ;

'rhe first s·tatement specifies that the next
record in the file DETAIL is to be assigned
to INVTRY and the key of the record is to
be assigned to KEY_CHK.

The EVENT Option

The EVENT option can be specified in any
READ" WRITE" REWRITE" or DELETE statement
for an UNBUFFERED file, either SEQUENTIAL
or DIRECT. The option specifies asynchron­
ous processing" with input/output opera­
tions proceeding while other processing
continues,.

The EVENT option is specified with the
keyword EVENT followed by a pa.renthesized
name of an event variable. The! appearance
of an event variable in the EVENT option
constitutes a contextual declarationj con­
sequently, the scope of an event variable
i.s throughout the external block.

The EVENT option specifies that the
input or output operation is to take place
a.synchronously and that record I/O inter­
rupts (except for UNDEFINEDFILE) are not to
occur until a WAIT statement, specifying

I the same event variable, is executed by the
same task. For example:

READ FILE (MASTER) INTO (REC_VAR)
EVENT (RECORD_l);

WAIT H~ECORD_l) ;

When the READ statement is executed, the
i.nput operation is started. As soon as the

input operation is commenced, in-line proc­
essing continues. No I/O interrupt for
RECORD, TRANSMIT, KEY, or ENDFILE condi­
tions will take place until the WAIT state­
ment is executed. If, when the WAIT state­
ment is executed. the input operation is
not complete. and if none of the four
conditions is raised, in-line processing
stops. but the operation continues. When
the operation is successfully completed,
processing continues with the next state­
ment following the WAIT statement. If any
of the four conditions arise during execu­
tion of the READ statement, an interrupt
will occur when the WAIT statement is
executed_ On-units will be entered in the
order in which the conditions arose. Then.
upon normal return from all of the affected
on-units, processing continues with the
next statement following the WAIT state­
ment.

Note that although the EVENT option
specifies asynchronous processing, it also
specifies synchronous interrupts; none of
the four conditions can cause an interrupt
until they are synchroni~ed with processing
by the WAIT statement.

Other interrupts can occur. however.
F..ny condition that arises during the in­
line processing will. of course. cause an
interrupt if it is enabled. In addition,
if t,he I/O statement containing the EVENT
option should cause implicit opening of the
file, and if the UNDEFINEDFILE condition
should arise because of that implicit
opening, the interrupt will occur at the
time the UNDEFINEDFILE condition is raised.
Only the four conditions TRANSMIT. KEY,
RECORD" and ENDFILE can be synchronized by
t,he WAIT statement.

Once a statement containing an EVENT
option is executed, the event variable
named in the option is considered to be
active. It cannot be specified again in an
EVENT option until after its corresponding
WAIT statement has been executed.

With the F Compiler. an input/output
e,vent should be waited for only by the task
that initiated the input/output operation.

(The EVENT option is also used with the
CALL statement to specify asynchronous exe­
cution of procedures. See Chapter 15,
"Multitasking.")

Record-Oriented Transmission Statement
Formats

This section provides a summary of the
allowed RECORD transmission statements"
along with their options, according to file

Chopter 8: Input and output, 121

attributes.
order.

options can appear in any

SEQUENTIAL BUFFERED INPUT:

READ FILE (file-name)
INTO (variable)
[KEYTO (character-string-variable)];

READ FILE (file-name)
[IGNORE (expression)];

READ FILE (file-name)
INTO (variable)
KEY (expression);

READ FILE (file-name)
SET (pointer-variable)
[KEYTO (character-string-variable)];

READ FILE (file-name)
SET (pointer-variable)
KEY (expression);

§~YENTIAL BUFFERED OUTPUT:

WRITE FILE (file-name)
FROM (variable)
[KEYFROM (expression)];

LOCATE variable FILE (file-name)
SET (pointer-variable)
[KEYFROM (expression)];

SEQUENTIAL BUFFERED UPDATE:

RE~D FILE (file-name)
INTO (variable)
[KEYTO (character-string-variable)];

REWRITE FILE (file-name);

REWRITE FILE (file-name)
FROM (variable);

READ FILE (file-name)
(IGNORE (expression)];

READ FILE (file-name)
INTO (variable)
KEY (expression);

READ FILE (file-name)
SET (pointer-variable)
[KEYTO (character-string-variable)];

READ FILE (file-name)
SET (pointer-variable)
KEY (expression);

DELETE FILE (file-name);

SEQUENTIAL UNBUFFERED INPUT:

READ FILE (file-name)
INTO (variable)

122

[KEYTO (character-string-variable)]
[EVENT (event-variable)];

READ FILE (file-name)
[IGNORE (expression)]
[EVENT (event-variable}];

READ FILE (file-name)
INTO (variable)
KEY (expression)
[EVENT (event-variable)];

SEQUENTIAL UNBUFFERED OUTPUT:

WRITE FILE (file-name)
FROM (variable)
[KEYFROM (expression)]
[EVENT (event-variable)];

SEQUENTIAL UNBUFFERED UPDATE:

READ FILE (file-name)
INTO (variable)
[KEYTO (character-string-variabl,e)]
[EVENT (event-variable)];

REWRITE FILE (file-name)
FROM (variable)
[EVENT (event-variable)];

READ FILE (file-name)
[IGNORE (expression)]
[EVENT (event-variable)];

READ FILE (file-name)
INTO (variable)
KEY (expression)
[EVENT (event-variable)];

DELETE FILE (file-name)
[EVEN~ (event-variable)];

DIRECT INPUT:

READ FILE (file-name)
INTO (variable)
KEY (expression)
[EVENT (event-variable)];

DIRECT OUTPUT:

WRITE FILE (file-name)
FROM (variable)
KEYFROM (expression)
[EVENT (event-variable)];

DIRECT UPDATE:

READ FILE (file-name)
INTO (variable)
KEY (expression)
[EVENT (event-variable)];

REWRITE FILE (file-name)
FROM (variable)
KEY (expression)
[EVENT (event-variable)];

WRITE FILE (file-name)
FROM (variable)
KEYFROM (expression)
[EVENT (event-variable)];

DELETE FILE (file-name)
KEY (expression)
[EVENT (event-variable)];

DIRECT UPDATE EXCLUSIVE

READ FILE (file-name)
INTO (variable)
KEY (expression) [NOLOCK]
[EVENT (event-variable)];

REWRITE FILE (file-name)
FROM (variable)
KEY (expression)
[EVENT (event-variable)];

WRITE FILE (filename)
FROM (variable)
KEYFROM (expression)
[EVENT (event-variable)];

DELETE FILE (file-name)
KEY (expression)
[EVENT (event-variable)];

UNLOCK FILE (file-name)
KEY (expression);

§ummary of Record-Oriented Transmission

The following points cover the salient
environmental factors in the use of RECORD
transmission:

:L.

2,.

3.

A SEQUENTIAL file specifies that the
accessing, creation, or modification
of the data set records is performed
in a particular order~ that is, from
the first record of the data set to
the last record of the data set (or
from the last to the first if the
BACKWARDS attribute has been
specified) .•

A DIRECT file specifies that the
accessing. creation, or modification
of the data set records may be per­
formed in random order. The particu­
lar record of the data set to be
operated upon is identified by a spec­
ified key.

A data set that is accessed~ created~
or modified in the SEQUENTIAL access
method mayor may not have recorded
keys. If it does, the keys may be
ignored while accessing sequentially,
or they may be extracted from the data
set or placed into the data set by the
KEYFROM and KEYTO options. The most

efficient way to create a data set
containing recorded keys is as a
SEQUENTIAL OUTPUT file. It then can
be accessed as a DIRECT file.

4. SEQUENTIAL INPUT and SEQUENTIAL UPDATE
files may be positioned to a particu­
lar record within the data set by a
READ operation that specifies the key
of the desired record. Thereafter,
successive READ statements without the
KEY option will access the records
sequentially. This kind of accessing
may. be used only if the data set has
INDEXED organization and if the file
has the KEYED attribute.

5. Existing records of a data set in a
SEQUENTIAL UPDATE file can be rewrit­
ten, modified. ignored, or deleted.
The DELETE statement used with this
type of file specifies that the last
record read is to be deleted. 1 Opera­
tion with a DIRECT UPDATE file, howev­
er, can specify which record is to be
deleted by means of a key; also~
records can be added to the data set
by means of the WRITE statement. An
existing record in an UPDATE file can
be replaced through use of a REWRITE
statement.

6. The FROM option in a REWRITE statement
for a SEQUENTIAL UPDATE must specifi­
cally name the variable into which the
data has been read if that data is to
be rewritten. For the F Compiler" a
REWRITE statement without a FROM
option is treated as a currently null
statement.

7. When a file has the DIRECT UPDATE
EXCLUSIVE attributes, it is possible
to protect individual records that are
read from the data set. For an EXCLU­
SIVE file, any READ statement without
a NOLOCK option automatically locks
the record read. No other task oper­
ating upon the same file can access a
locked record until it is unlocked by
the locking task. Any task referring
to a locked record will wait at that
pOint until the record is unlocked. A
record can be explicitly unlocked by
the locking task through execution of
a REWRITE, DELETE, UNLOCK, or CLOSE
statement. Records are unlocked auto­
matically upon completion of the lock­
ing task. The EXCLUSIVE attribute
applies only to the file and not the
data set. Consequently# record pro­
tection is provided only if all tasks
refer to the data set through use of

1

1If the DELETE statement is
SEQUENTIAL file, the data
INDEXED organization.

used with a
set must have

Chapter 8: Input and output 123

the same file: if they refer to the
same data set using different files,
the protection does not apply. In
addition, the data set to which ref­
erence is made by more than one task
through the same file must be opened
by a parent of all these tasks. Note
that a reference to a file parameter
and its associated argument are ref­
erences to the same file.

8. A WRITE statement adds a record to a
data set, while a REWRITE statement
replaces a record. Thus, a WRITE
statement may be used with OUTPUT
files, and DIRECT UPDATE files, but a
REWRITE statement may be used with
UPDATE files only. Moreover, for
DIRECT files, a REWRITE statement uses
the KEY option to identify the exi.st­
ing record to be replaced: a WRITE
statement. uses the KEYFROM option,
which not only specifies where the
record is to be written in the data
set, but also specifies, except for
REGIONAL (1), an identifying key to be
recorded in the data set.

9. Records of a SEQUENTIAL INPUT or
SEQUENTIAL UPDATE file can be skipped
over and ignored by use of the IGNORE
option of a READ statement. The
expression of the IGNORE option speci­
fies the number of records to be
skipped. A READ statement in which
only the FILE option appears indicates
that one record is to be skipped.

EX~lPLES OF DECLARATIONS FOR RECORD FILES

Following are examples of declarations
of files, including the ENVIRONMENT attri­
bute:

DECLARE FILE#3 INPUT DIRECT
ENVIRONMENT (V(328) REGIONAL(3»;

This declaration specifies only three file
attributes: INPUT, DIRECT, and ENVIRONMENT.
Other implied attributes are FILE (implied
by any of the attributes) and RECORD and
KEYED (implied by DIRECT). Scope is EXTER­
NAL, by default. The ENVIRONMENT attribute
specifies that the data set is of the
REGIONAL (3) orqanization and contains
unblocked varying-length records with a
maximum length of 328 bytes. Note that a
maximum length record will contain only 320
bytes of data to be used by the program,
because 8 bytes are required for control
information in such V-format records. The

124

KEY option must be specified in each READ
statement that refers to this file.

DECLARE INVNTay UPDATE BUFFERED
ENVIRONMENT(F(100) INDEXED BUFFERS(4»:

This declaration also specifies only three
file attributes: UPDATE, BUFFERED, and
ENVIRONMENT. Implied attributes areE'ILE,
RECORD, and SEQUENTIAL (the last two attri­
butes are implied by BUFFERED) .. Scope is
EXTERNAL, by default. The data set is of
INDEXED organization, and it contains
fixed-length records of 100 bytes each.
Four buffers are to be allocated for use in
accessing the data set. Note that although
the data set actual!y contains recorded
keys, the KEYTO option cannot be specified
in a READ statement, since the KEYED attri­
bute has not been specified.

Note that for both of the above declara­
tions, all necessary attributes are either
stated or implied in the DECLARE statement.
None of the attributes can be changed in an
OPEN statement or in a DD statement. The
second declaration might have been written:

DECLARE INVNTRY
ENVIRONMENT(F(100) INDEXED);

With such a declaration. I NVNTRY can be
opened for different purposes. It could,
for example, be opened as follows:

OPEN FILE(INVNTRY)
UPDATE SEQUENTIAL BUFFERED:

With this OPEN statement, the file attri­
butes would be the same as those specified
(or implied) in the DECLARE statement in
the second example above (the number of
buffers would have to be stated in the
associated DD statement). The file might
be opened in this way, then closed, and
then later opened with a different set of
attributes, for example:

OPEN FILE(INVNTRY)
INPUT SEQUENTIAL KEYED:

This OPEN statement allows records to be
read with either the KEYTO or the KEYED
option. Because the file is SEQUENTIAL and
the data set is INDEXED, the data set may
be accessed in a purely sequential manner:
or, by means of a READ statement with a KEY
option, it may be accessed randomly. A KEY
option in a READ statement with a file of
this description causes a specified record
to be obtained. Subsequent READ statements
without a KEY option access records sequen­
tially, beginning with the next record.

The data manipulation performed by the
arithmetic, comparison, and bit-string
operators are extended in PL/I by a variety
of string-handling and editing features.
These features are specified by data attri­
butes, statement options, built-in func­
tions, and pseudo-variables.

The following discussions give general
descriptions of each feature, along with
illustrative examples.

EDITING BY ASSIGNMENT

The most fundamental form of editing
performed by the assignment statement
involves converting the data type of the
value on the right side of the ~ssignment
symbol to conform to the attributes of the
receiving variable. Because the assigned
value is made to conform to the attributes
of the receiving field, the precision or
length of the assigned value may be
altered. Such alteration can involve the
addition of digits or characters to and the
deletion of digits or characters from the
converted item. The rules for data conver­
sion are discussed in Chapter 4,
"Expressions~n and in Part II, Section F.

I "Problem Data Conversion. n

ALTERING THE LENGTH OF STRING DATA

When a value is assigned to a string
variable, it is converted, if necessary, to
the same string type (character or bit) as
the receiving string and also, if neces­
sary, is truncated or extended on the right
to conform to the declared length of the
receiving string. For example, assume
SUBJECT has the attributes CHARACTER (10),
indicating a fixed-length character string
of ten characters. Consider the following
statement:

SUBJECT = 'TRANSFORMATIONS';

The length of the string on the right is
fifteen characters; therefore, five charac­
ters will be truncated from the right end
of the string when it is assigned to
SUBJECT. This is equivalent to executing:

SUBJECT = 'TRANSFORMA';

CHAPTER 9: EDITING AND STRING HANDLING

If the assigned string is shorter than
the length declared for the receiving
st~ing variable. the assigned string is
extended on the right either with blanks,
in the case of a character-string variable,
or with zeros, in the case of a bit-string
variable. Assume SUBJECT still has the
attributes CHARACTER (10). Then the fol­
lowing two statements assign equivalent
values to SUBJECT:

SUBJECT 'PHYSICS';

SUBJECT 'PHYSICSbbb' ;

The letter ~ indicates a blank character.

Let CODE be a bit-string variable with
the attributes l3I"I (10) • Then the following
two statements assign equivalent values to
CODE:

CODE '110011'B;

CODE "1100110000'B;

Note, however, that the following statE!­
ments do not assign equivalent values to
SUBJECT if it has the attributes CHARACTER
(10) :

SUBJECT '110011'B;

SUBJECT '1100110000'B;

When the first statement is executed, the
bit-string constant on the right is first
converted to a character string and is then
extended on the right with blank characters
rather than zero bits. This statement is
equivalent to:

SUBJECT = '110011bbbb';

The second of the two statements
requires only a conversion froro bit-string
to character-string type and is equivalent
to:

SUBJECT = '1100110000~;

A string value, however, is not extended
with blank characters or zero bits when it
is assigned to a string variable that has
the VARYING attribute. Instead., the length
specification of the receiving string vari­
able is effectively adjusted to describe
the length of each assigned string. Trun­
cation will occur, though, if the length of
the assigned string exceeds the maximum
length declared for the varying-length
string variable.

Chapter 9: Editing and string Handling 125

OTHER FOlli~S OF ASSIGNMENT

In addition to the assignment statement,
PL/I provides other ways of assigning
values to variables. Among these are two
methodls that involve input and output
sta1:e~ents: one in which actual input and
output operations are performed, and one in
which: data movement is entirely internal.

!gp~~and Output Operations

Although the assignment statement is
concerned with the transmission of data
between storage locations internal to a
computer, input and output operations can
also be treated as related forms of assign­
ment~ in which transmission occurs between
the internal and external storage facili­
ties of the computer.

Re¢ord-oriented operations., however, do
not cause any data conversion of items in a
logical record when it is transmitted.
Required editing of the record must be
performed within internal storage either
before the record is written or after it is
read ..

Stream-oriented operations, on the other
hand, do provide a variety of editing
functions that can be applied when data
items are read or written. These editing
functions are similar to those provided by
the assignment statement, except that any
data conversion always involves character
typ~, conversion from character type on
input, and conversion to character type on
output.

The STRING Option in GET and PUT Statements

The STRING option in GET and PUT state­
ments ;allows the statements to be used to
transmit data between internal storage
locat~ons rather than.between the internal
and external storage facilities. In both
GET and PUT statements, the FILE option,
specified by FILE (file-name), is .replaced
by the STRING option, as shown in the
follo~ing formats:

GET STRING (character-string-variable)
data-specification;

PUT STRING (character-string-variable)
data-specification;

The G~T statement specifies that data items
to be assigned to variables 1.n the data
list are to be obtained from the specified

126

character string. The PUT statement speci­
fies that data items of the data list are
to be assigned to the specified character­
string variable. The "data-specification"
is the same as described for input and
output. In general, it takes one of the
following forms:

DATA [(data-list)]

LIST (data-list)

EDIT (data-list) (format-list)

Although the STRING option can be used
with each of the three modes of stream­
oriented transmission" it is most useful
with edit-directed transmission, which
considers the input stream to be a continu­
ous string of characters. For list­
dir.ected and data-directed GET statements,
individual items in the character string
must be separated by commas or blanks; for
data-directed GET statements, the string
must also include the transmission­
ter.minating semicolon, and each data item
must appear in the form of an assignment
statement. Edit-directed transmission
provides editing facility by means of the
format list.

The STRING option permits data gathering
or scattering operations to be performed
with a single statement, and it allows
stream-oriented processing of character
strings that are transmitted by record­
oriented statements.

Consider the following statement:

PUT STRING (RECORD) EDIT
(NAME, PAY#. HOURS*RATE)
(A(12), A(7), P'$999V.99');

This statement specifies that the
character-string value of NAME is to be
assigned to the first (leftmost) 12 charac­
ter positions of the string named RECORD,
and that the character-string value of PAY#
is to be assigned to the next seven charac­
ter positions of RECORD. The value of
HOURS is then to be multiplied by the value
of RATE, and the product is to be edited
into the next seven character pOSitions,
according to the picture specification.

Frequently, it is necessary to read
records of different formats, each of 'lI1hich
gives an indication of its format within
the record by the value of a data item.
The STRING option provides an easy way to
handle such records; for example:

READ FILE (INPUTR) INTO (TEMP);
GET STRING (TEMP) EDI'I' (CODE) ("FCL» i
IF CODE 1 = 1 THEN GO TO OTHER_TYPE;
GET STRING (TEMP) EDIT (X,Y,Z)

(X (1), 3 F (10., 4)) ;

The READ statement reads a record from the
input file INPUTR. The first GET statement
uses the STRING option to extract the code
from the first byte of the record and to
assign it to CODE. The code is tested to
determine the format of the record. If the
code is 1, the second GET statement then
uses the STRING option to assign the items
in the record to X,Y, and Z. Note that the
second GET statement specifies that the
first character in the string TEMP is to be
ignored (the X(l) format item in the format
list). Each GET statement with the STRING
option always specifies that the scanning
is to begin at the first character of the
string. Thus, the character that is
ignored in the second GET statement is the
same character that is assigned to CODE by
the first GET statement.

In a similar way, the PU'I' statement with
a STRING option can be used to create a
record within internal storage. In the
following example, assume that the file
OUTPRT is eventually to be print.ed.

PUT STRING (RECORD) EDIT
(NAME" PAY#, HOURS*RATE)
(X(l), A(12)~ X(10), A(1), X(10),
P'$999V.99');

WRITE FILE (OUTPRT) FROM (RECORD);

The PUT statement specifies, by the X(l)
spacing format item, that the first charac­
ter assigned to the character-string varia­
ble is to be a single blank, the ASA
carriage-control code that specifies a sin­
gle space before printing. Following that,
the values of the variables NAME and PAY#
and of the expression HOURS*RATE are
assigned. The format list sp,:!cifies that
ten blank characters are to be inserted
between NAME and PAY# and between PAY# and
·the expression value. The WRITE: statement
specifies that record transmission is to be
used to write the record into the file
OUTPRT.

'rHE PICTURE SPECIFICATION

The editing capabilities associated with
data assignment" namely" conversion to a
specified d,ata type with accompanying trun­
cation and/or padding, can be extended by
use of the picture specification. A pic­
ture specification consists of a sequence
of character codes (picture characters)
that specify editing operations to be'per­
formed on a character string. (A detailed
discussion of each picture character,
'together with examples of its use, appears
in Part II, Section D, "Picture Specifi­
cation Characters." The follo1f1iing discus­
sions are concerned with general principles

that govern the use of the picture specifi­
cation.)

A picture specification can be used to
describe ordinary character-string data, or
it can be used to describe numeric charac­
te~ data, which is data that represents a
numeric value.

A picture specification is always
enclosed in quotation marks and is used
either with a PICTURE attribute in a
DECLARE statement or with a P format item
in an edit-directed GET, PUT, or FORMAT
statement:

DECLARE CODE PICTURE 'XXXXX';

GET FILE (IN) EDIT (CODE) (P'XXXXX');

PUT FILE (OUT) EDIT (CODE) (P'XXXXX');

Character-StrinLPicture Specifications

A character-string picture specification
describes a fixed-length character string;
the number of picture characters in the
specification determines the length of the
string. For example, the PICTURE attribute
in the above DECLARE statement describes
CODE as a character string of length five
and is equivalent to the attribute CHARAC­
TER (5). The picture character X also
specifies that any character recognized by
the computer can occur in the corresponding
position of the character string.

Any value assigned to CODE will be
converted, if necessary, to a character
str.ing and will be truncated or extended on
the right as required, to meet the five­
character length of CODE. Consider the
following examples:

CODE 'A2B9C8';

CODE • 4:E" ;

In the first assignment, one character is
truncated from the right end of the
assigned character string. In the second
assignment, three blank characters are
appended to the right end of the assigned
character string.

The format item P 'xxxxx' in the above
GET and PUT statements describes a charac­
ter string of length five in external
storage and is equivalent to the format
item A(5).

Additional character-string picture
characters, other than X. can restrict the
characters in the corresponding positions
of the character string to a specific type

Chapter 9: Editing and string Handling 127

of character. For example, the picture
chara,cters A and 9 specify , respectively,
alphabetic or blank and decimal numeric or
blank characters. Consider the following
PICTURE attributes:

PICTURE 'AAAAA'

PICTURE 'X9999'

Both of these attribute specifications des­
cribe character strings of length five.
The first, however, requires all characters
in the string to be alphabetic or blank.
The second requires all but the first
character to be numeric or blank. Any
attempt to assign to the string a character
with a type different from that specified
by the corresponding picture character will
raise the CONVERSION error condition.

Only the picture characters X, A, and 9
can appear in a character-string specifi­
cation, and all can appear in the same
picture specification:

DECLARE TAG PICTURE' XX99AA" :

This statement declares TAG to be a
character-string variable representing a
string of length six, in which the two
leftmost positions can contain any charac­
ters, the two middle characters must con­
tain numeric or blank characters o and the
two rightmost characters must contain
alphabetic or blank characters. The fol­
lowing assignment statement illustrates a
correct use of TAG:

TAG = "*906RZ':

rrhe follo~ing statement, however" is incor­
rect:

TAG = 'ABCDEF':

In this assignment, the two middle charac­
ters are not numeric: consequently, the
CONVERSION error condition will be raised.

Any picture specification that contains
at least one X or A describes a character­
strin~ field. If the picture specification
contalns neither X nor A, it is said to
describe a numeric character field" because
the associated character string can be
9iven a numeric interpretation.

Numeric Character Picture Specifications

In addition to the picture character 9,
numeric character specifications can
contain other picture characters that are
used ~o edit numeric character data. These
additional characters apply only to numeric

128

character data and, thereforeo cannot be
used in any specification that contains
either an X or an A. The general functions
performed by the additional picture charac­
ters are described in "Editing Numeric
Character Data" below.

~ote: The picture character 9 in a
character-string picture specification
indicates that the associated character can
be either a digit or a blank. The same
character in a numeric character spE!cifi­
cation, however, indicates that the asso­
ciated character can be a digit only.

Assignment to character-string variables
is always from left to right: padding and
truncation are on the right. Assignment to
a numeric character variable, ho~rever,
depends upon the location of an assumed
decimal point (specified by the picture
character V). Values assigned to numeric
character fields are always point aligned.

Values of Numeric Character Variables

The value of a numeric character varia­
ble can be interpreted in two ways, either
as an arithmetic value or as a character­
string value.

For a numeric character variable
described with a picture specification that
contains only one or more occurrences of
the character 9, the arithmetic value is
the value expressed by the character
string, that is, a decimal integer.

If, however, editing characters are
included in the picture specification, the
arithmetic value and the character-string
value generally would be different. Edit­
ing characters are actually stored inter­
nally in the specified positions of the
data item. The editing characters then are
considered to be part of the character­
string value of the variable. The editing
characters are not, however, a part of the
variable's arithmetic value, which involves
only decimal digits, the assumed location
of a decimal point, and a sign (if one is
present) •

If the value of a numeric character
variable is assigned to another numeric
character variable or to a coded arithmetic
variable, only the arithmetic value is
assigned. In the assignment to a coded
arithmetic variable (or in the appearance
of a numeric character variable in an
ari~hmetic expression operation), con­
ver.sion to coded arithmetic is performed.

If the
var.iable

value of a numeric character
is assigned to a character-string

variable, no actual conversion is
necessary, and any specified editing char­
acters are included in the assignment.

An ordinary character-string variable
(specified with the CHARACTER attribute)
can be defined on a numeric character
variable, using the DEFINED attribute
specification. Any reference to the
character-string variable is a reference to
the character-string value of the numeric
character variable. For example:

DECLARE A PICTURE '$999V. 99",
B CHARACTER(7} DEFINED A,
C DECIMAL FIXED (S,2);

A 128.76;

C = Ai

After the constant is assigned to A, its
arithmetic value is 128.76. This is the
value that is assigned to C (after con­
version to internal coded arithmetic). The
character-string value of A, however, is
$128.76; if it were assigned to a
character-string variable with a length of
7 or greater, this is the value that would
be assigned. The same value, $128.76~ is
the value of B. since a character string
defined on a numeric character variable
represents the character-string value of
the numeric character variable. Note that
the assigr~ent of B to C would raise the
CONVERSION condition, since the character­
string value of A represents an invalid
arithmetic constant.

No arithmetic variable (except another
numeric character variable) can be defined
on a numeric character variable without
causing an error.

~ditinq Numeric Character Data

Because the picture specification of a
numeric character field cannot contain the
characters X and A, the value of a numeric
character data item can always be given a
numeric interpretation.. consider the
following declaration:

DECLARE COUNT PICTURE '99999-;

Although COUNT is a string of five charac­
ters, it can only contain numeric digits;
therefore, it is a numeric character varia­
ble whose value can be interpreted as a
five-digit fixed-point decimal integer.

Unless specified otherwise (with the pic­
ture character V), a deciroal point is
always assumed to be at the right end of a
numeric character data item. For example,
let COUNT, as declared above, appear in the
following assignment statement:

COUNT = 111.01B;

Because COUNT is a numeric character varia­
ble~ the binary constant 111.01B is first
converted to decimal with the value 7.25.
When the assignment is performed., the deci­
mal point is aligned on the assumed point
declared by the numeric character variable,
and the two rightmost digits are truncated.
Four zero digits are then appended on the
left end. The effect of the above assign­
ment therefore, is equivalent to the fol­
lo~ing statement:

COUNT = 00007;

The picture character V allows an
assumed decimal ,point to be specified any­
where in a numeric data item, and not just
at the right end:

DECLARE TOTAL PICTURE '999V99';

Here the value of TOTAL is interpreted as a
string of five characters representing a
five-digit, unsigned fixed-point decimal
number with two fractional places. The
decimal point of a value assigned to TOTAL
will be aligned between the third and
fourth digits as specified by the picture
character V,. Consequently, the following
·two ass ignment statements are equivalent:

TOTAL 123;

TOTAL 123.00;

Note, however, that TOTAL contains only
five characters. The picture character V
does not specify an actual character posi­
tion in the nuroeric character field; it is
used only to align decimal points. And if
TOTAL were printed, no decimal point would
appear in the printed field; its character­
string value does not include a decimal
point.

A decimal point picture character(.}
can appear 1n a numeric picture
specification. It merely indicates that a
point is to be included in the character
representation of the value. Therefore,
the decimal point is a part of its
character-string value. The decimal point
picture character does not cause decimal
point alignment during assignment; it is
not a part of the variable's arithmetic
value. Only the character V causes align­
ment of decimal points. For example:

DECLARE SUM PICTURE '999V.99';

Chapter 9: Editing and String Handling 129

SUM is a numeric character variable rep­
resenting numbers of five digits with a
d~cimal point assumed between the third and
fourth digits. The actual point specified
by the decimal pOint insertion character is
not a par~ of the arithmetic value; it is,
however, part of its character-string
value. (The decimal point picture charac­
ter can appear on either side of the
character V. See Part II, Section 0,
"Picture Specification Characters.") The
following two statements assign the same
character string to SUM:

SUM = 123;

SUM 123.00;

In the first statement, two zero digits are
added to the right of the digits 123.

Note the effect of the following dec­
laration:

DECLARE RATE PICTURE '9V99.99";

Let RATE be used as follows:

RATE 7 .. 62;

When this statement is executed, decimal
point alignment occurs on the character V
and not on the decimal point picture char­
acter that appears in the picture specifi­
cation for RATE. If RATE were printed, it
would appear as '762.00', but its arithmet­
ic value would be 7.6200~

Unlike the character V, which can appear
only once in a picture specification~ the
decimal point picture character can appear
more than once; this allows digit groups
within t~e numeric character data item to
be separated by points, as is common in
Dewey decimal notation and in the numeric
notations of some European countries,.

BeCause a decimal point picture charac­
ter causes a period character to be insert­
ed into the character-string value of a
numeric character data item, it is called
an insertion character. PL/I provides
three other insertion characters: comma
("), slash (I)" anti blank (B), which are used
in the same way as the decimal pOint
picture character except that a comma,
slash~ or blank is inserted into the char­
acter string. Consider the following
statements:

DECLARE RESULT PICTURE' 9.999.999., V99' ;

RESULT = 1234567;

The character-string value of RESULT would
be '1.234.567,00'. Note that decimal point
alignment occurs before the two rightmost
digit pOSitions, as specified by the char-

130

acter V. If RESULT were assigned to a
coded arithmetic field, the value of the
data converted to arithmetic would be
1234567.00.

Besides supplying insertion characters,
PLII also provides replacement characters
that allow zeros i~ ~pecified positions to
be replaced by blanks or asterisks. One
such picture character is the character Z,
which is used to replace leading (leftmost)
zeros with blanks:

DECLARE TALLY PICTURE 'ZZZ9'i

TALLY = 0012;

The character-string value of TALLY is
equivalent to the character-string constant
• bb12' (where the letter b indicat.es a
blank character).

Other picture characters control the
appearance of signs and the currency symbol
($) in specified positions of numeric char­
acter data items. For example, a dollar
sign can be appended to the left of a
numeric character item, as indicated in the
following statements:

DECLARE PRICE PICTURE '$99V.99';

PRICE = 12.45;

The character-string value of PRICE is
equivalent to the character-string constant
'. $12 .• 45' • Its arithmetic value., how1ever.,
is 12.45.

The picture specification can also spec­
ify floating-point and British sterling
formats, as well as scaling factors for
fixed-point values. These formats are dis­
cussed in Part II~ Section D, "Picture
specification Characters."

Using Numeric Character Lata

One purpose of a numeric character pic­
ture specification is to edit data that is
to be printed. For example, in a payrOll
application, the digits representing an
employee's salary might be 0017250. These
digits would be much more meaningful on a
paycheck in an edited formw such as
$**172.50; the asterisks would also dis­
courage an attempt to alter the amount.
This could be done, for example, with the
specification '$****9.9~·.

PL/I, however" does not restrict the use
of numeric character data to output purpos­
es. Numeric character variables can be
used wherever arithmetic expressions are
permitted. Consider the following example:

Fonn C28-8201-1, Page Revised by TNL N33-6008,. S/1/68

DECLARE RESULT PICTURE 'XXXXXX', COST'
PICTURE '$9V.99';

COST 7.1S;

RESULT = COST;

In thil:l example, the arithmetic value of
COST would be 7.1S. When COST is assigned
to RESULT, however, the insertion
characters ($ and.) appear as part of the
character string, and the value of RESULT
is '$7.15b'. Note that in the assignment
of numeric character data to character­
string variables, leading blanks are not
inserted as they are in conversion from
arithmetic type to character type. The
only differences between the numeric
character data and the character-string
data is that the character-string value is
left-adjusted and the insertion characters
Ere actually a part of the data, while with
a numeric character variable, data is point
aligned and insertion characters, though
Ectually present, are not considered to be
a part of the arithmetic value.

If specified in an arithmetic expres­
sion, the value of a numeric character data
jtem is converted to coded arithmetic.
~ote, however, that this conversion will
always require the compiler to insert extra
coding. Note also, that any editing char­
acters in the picture specification will be
lost in the conversion.

Assume that RESULT and COST in the
following statements are declared as above:

COST 1.10;

RESULT 2*COST;

The character-string value of COST is
$1.10. The editing characters ($ and .)
are present in the item. Hm.qever, when the
expression 2*COST is evaluated, the arith­
metic value of COST is converted to coded
arithmetic. When the value of the expres­
sion is assigned to RESULT, the value of
RESULT will be 'bb2.20' (conversion of an
arithmetic item to character type causes
insertion of three leading blanks, one of
which is deleted when the field expands to
allow for the decimal point). Note that if
RESULT had been declared as PICTURE
'XXXXX', the value of RESULT, after assign­
rrent, would have been 'bb2.2'. Since a
character string is assigned from left to
right, truncation is always on the right;
and the inserted lea ding blank s would force
truncation.

BIT-STRING HANDLING

The following examples illustr~te" some
of the facilities of PUI that can be us"ed
in bit-string·manipulations.

DECLARE 1 PERSONNEL RECORD,
2 NAME, -

3 LAST CHARACTER(lS),
3 FIRST CHARACTER(10),
3 MIDDLE CHARACTER(l),

2 CODE STRING,
3 MALE BIT(l),
3 SECRETARIAL BIT(l),
3 AGE,

4 (UNDER 20,
TWENTY TC 30,
OVER_30) EIT(l),

3 HEIGHT,
4 (OVER 6,

FIVE-SIX 'IC 6,
UNDER_S_6) BITel),

3 WEIGHT,
4 (OVER 180,

ONE TEN TO 180,
UNDER_1I0)-BIT(1),

3 EYES,
4 (BLUE,

BROWN,
HAZEL,
GREY,
OTHER) BIT(l),

3 HAIR,
4 (BROWN,

BLACK,
BLOND,
RED,
GREY,
BALD) BIT (1),

3 EDUCATION,
4 (COLLEGE,

HIGH SCHCCL,
GRAMMAR_SCHCOL) EIT(l);

This structure contains NAME, a minor
structure of character-strings, and
CODE STRING, a minor structure of bit­
strings. By default, the elements of
PERSONNEL-RECORD have the UNALIGNED attri­
bute. Consequently, CODE_STRING is mapped
with eight elements per tyte, that is, in
the same way as a bit-string of length 2S.

Each of the first two bits of the string
represents only two alternatives: MALE or
,MALE and SECRETARIAL or ,SECRE'IARIAL. The
other categories (at level 3) list several
alternatives each. (Note that the level
number 4 and the attributes BIT(l) are
factored for each category.)

Chapter 9: Editing and String Handling 131

Form C28-8201-1, Page Revised by TNL N33-6008, 5/1/68

The following portion of a program might
be used wit,h PERSONNEL_RECORD:

INREC: READ FILE (PERSONNEL)
INTO (PERSONNEL_RECORD);

IF (,MALE & SECRETARIAL
& UNDER 20
& UNDER 5 6
& UNDER:\io
&
&
&

I
&
&
&
&
&

BLUE
(HAIR. BROWN I BLOND)
HIGH SCHOOL)
(MALE & ,SECRETARIAL
OVER_30
OVER 6
OVER=)a 0
EYES. GREY
BALD

&. COLLEGE)

THEN PUT LIST (NAME);

GO TO INREC;

Another way to program the same informa­
tion retrieval operation, as shown in the
following coding, would result in consider­
ably shorter execution time:

DECLARE PERS STRING BIT(25) DEFINED
CODE_STRING;

IF PERS STRING
=-'0110000100110000100000010'B
'I'HEN GO TO OUTP;

IF PERS STRING
=-'0110000100110000001000010'B
THEN GO TO OUTP;

IF PERS STRING
=-'1000110010000010000001100'B
THEN GO TO OUTP;

GO TO INREC;

OUTP: PUT LIST (NAME);

GO TO INREC;

In this ,example, the bit string PERS_S'IRING
is defined on the minor struct ure
CODE STRING. Bit-string constants are con­
structed to represent the values of the
information being sought. The bit string
'then is compared, in turn, with each of the
bit-string constants. Note that the first
and second constants are identical except
that the first tests for brown hair and the
second tests for blond hair. These two
variations are specified in the first exam­
ple by (HAIR.BROWNIBLOND).

Note that the second method of testing
PERSONNEL RECORD could not be used if the
structure were ALIGNED (the base identifier
for overlay defining must be UNALIGNED).

132

The first method, if it were used, would be
more efficient with an ALIGNED structure.

The tests might also be made with a
series of IF statements, either nested or
unnested, in which each bit would be tested
with a single IF statement. It would
require a greater amount of coding, but it
would be faster at execution time than an
IF statement containing many bit-string
operators.

CHARACTER-STRING AND BIT-STRING BUILT-IN
FUNCTIONS

PL/I provides a number of built-in func­
tions, some of which also can be used as
pseudo-variables, to add power to -t:he
string-handling facilities of the language.
Following are brief descriptions of thE~se
functions (more detailed descriptions
appear in Part II, section G, "Built-In
Functions and Pseudo-Variables"):

The BIT built~in function specifies that
a data item is to be ccnverted to a bit
string. The built-in function allows a
programmer to specify the length of 1:he
converted string, overriding the lenqth
that would result frcm the standard rules
of data conversion.

The CHAR built-in function is exac1:ly
the same as the BIT built-in function,
except that the conversion is to a charac­
ter string of a specified length.

The SUBSTR built-in function, which can
also serve as a pseudo-variable in a
receiving field, allows a specific sub­
string to be extracted from (or aSSigned
to, in the case of a pseudo-variable) a
specified string value.

The INDEX built-in function allows a
string, either a character string or a bit
string, to be searched for the first occur­
rence of a specified substring, which can
be a single character or tit. The value
returned is the location of the first
character or bit of the substring, relative
to the beginning of the string. The value
is express ed as a bi nary integer. If i:he
substring does not occur in the specified
string, the value returned is zero.

The LENGTH built-in function gives the
current length of a character string or bit
string. It is particularly useful with
strings that have the VARYING attribute.

The HIGH built-in function provides a
string of a specified length that consists
of repeated occurrences of the highf~st
character in the collating sequence. l?or

Form C28-8201-1, Page Revised by TNL N33-6008, 5/1/68

System/360 implementations, the character
is hexadecimal FF.

The LOW built-in functi on provides a
string of a specified length that consists
of repeated occurrences of the lowest char­
acter in the collating sequence. For
System/360 implementations, the character
is hexadecimal 00.

The REPEAT built-in fun~~ion permits a
string to be formed from repeated occurren­
ces of a specified substring. It is used
to create string patterns.

The STRING built-in function concaten­
ates all the elements in an aggregate
variable into a single string element.

The BOOL built-in function allows up to
16 different Boolean operations to be
applied to two specified bit strings.

The UNSPEC built-in function, which can
also be used as a pseudo-variable, speci­
fies that the internal coded representation
of a value is to be regarded as a bit
string with no conversion.

Chapter 9: Editing and string Handling 133

fHAPTEB 10: SUBROUTINES AND FUNCTIONS

ARGUMENTS AND PARAMETERS

Data can be made known in an invoked
procedure by extending the scope of the
names identifying that data to include the
invoked procedure. This extension of scope
is accomplished by nesting procedures or by
specifying the EXTERNAL attribute for the
names.

There: is yet another way in which data
can be made known in an invoked procedure,
and tha.t is to specify the names as argu­
ments in a list in the invoking statement.
Each arg:ument in the list is an expression,
a file name, a statement label constant or
variable:, or an entry name that is to be
passed bo the invoked procedure.

Since' arguments are pass ed to it, the
invoked procedure must have some way of
accepting them. This is done by the expli­
ci t declaration of one or more parameters
in a list in the PROCEDURE or ENTRY state­
ment that is the entry point at which the
procedure is invoked. A parameter is a
name used within the invoked procedure to
represent another name (or expression) that
is passed to the procedure as an argument.
Each parameter in the parameter list of the
invoked procedure has a corresponding argu­
ment in- 1:he argument list of the invoking
statement. This correspondence is taken
from left-to-right; the first argument cor­
responds to the first parameter, the second
argument corresponds to the second paramet­
er, and so forth. In general, any ref­
erence to a parameter within the invoked
procedure is treated as a reference to the
corresponding argument. The number of
arguments and parameters must be the same.

The example below illustrates how param­
eters and arguments may be used:

134

PRMAIN: PROCEDURE:
DECLARE NAME CHARACTER (20),

ITEM BIT(S);

CALL OUTSUB (NAME. ITEM);

END PRMAIN;

OUTSUB: PROCEDURE (A,B);
DECLARE A CHARACTER (20),

B BIT(S);

PUT LIST (A, B);

END OUTSUB;

In procedure PRMAIN, NAME is declared as
a character string, and ITEM as a bit
string. The CALL statement in PR~~IN
invokes the procedure called OUTSUB, and
'lL parenthesized list included in this
procedure reference contains the two argu­
ments being passed to OUTSUB. The PRa~E­
DURE statement defining ourrSUB declares 'two
parameters, A and B. When OUTSUB is
invoked, NAME is associated with A and rrEM
is associated with B. Each reference to A
in OUTSUB is treated as a reference to NAME
and each reference to E is treated as a
reference to ITEM. Therefore, the PUT LIST
CA,B) statement causes the values of NAME
and ITEM to be written into the standard
system output file,. SYSPRINT.

Note that the passing of arguments usu­
ally involves the passing of names and not
merely the values represented by th.~se
names. (In general, the name that is
passed is usually the address of the value
or an address that can be used to retril~ve
the value.) As a result. storage alloca-ted
for a variable before it is passed as an
argument is not duplicated when the proce­
dure is invoked. Any change of value
specified for a parameter actually is a
change in the value of the argument. Such
changes are in effect when control is
returned to the invoking block.

A parameter can be thought of as indi­
rectly representing the value that is
directly represented by an argument. Thus,
since both the argument and the parame"ter
represent the same value, the attributes of
a parameter and its corresponding argu!fl=nt
must agree. For example, an oevious error
exists if a parameter has the attrihJ.te
FILE and its corresponding argument has the
attribute FLOAT. However, there are cases
in which such an error may not be so
obvious, for example, when an argument is a
constant. Certain inconsistencies between
the attributes of an argument and its
associated parameter can be resolved by
specifying. in an invoking procedure, the
E!'iTRY attribute for an entry name to be

invoked. The ENTRY attribute specification
provides the facility to specify that the
compiler is to generate coding to convert
one or more arguments to con~Eorm with the
attributes of the associated parameters.
This topic is discussed later in this
chapter in the sections "The ENTRY
Attribute" and "Dummy Arguments."

A name is explicitly ,declared to be a
parameter by its appearance in the paramet­
er list of a PROCEDURE or ENTRY statement.
However, its attributes, unless defaults
apply~ must be explicitly stated within
that procedure in a DECLARE statement.

Parameters, therefore, provide the means
for generalizing procedures so that data
whose names may not be known within such
procedures can, nevertheless, be operated
upon. There are two types of generalized
procedures that can be written in PL/I:
subroutine procedures (called simply,
subroutines) and function procedures
(functions).

,SU IROUTINES

(The discussion in this section applies to
synchronous operation and does not com­
pletely cover asynchronous operation#
although the rules apply generally to all
subroutines, whether or not the CALL state­
ment contains one of the multitasking
options. Multitasking is discussed in
Chapter 15, "Multitasking.")

A subroutine is a procedure that usually
requires arguments to be passed to it in an
invoking CALL statement. It can be either
an external or internal procedure. A ref­
erence to such a procedure is known as a
subroutine reference. The general format
of a subroutine reference is as follows:

CALL entry-name [(argument[,argument] •••)]~

Note that a subroutine can also be invoked
'through the CALL option of an INITIAL
attribute specification.

Whenever a subroutine is invoked, the
arguments of the invoking st.atement are
associated with the parameters of the entry
point, and control is then passed to that
entry point. The subroutine is thus acti­
vated, and execution begins.

Upon termination of a subroutine, con­
·trol normally is returned to 1:he invoking
block. A subroutine can be terminated
normally in any of the following ways:

1. Control reaches the final END state­
ment of the subroutine. Execution of
this statement causes control to be
returned to the first executable
statement logically following the
statement that originally invoked the
subroutine. There is an exception,
however: return of control from a
subroutine invoked by the CALL option
is to the statement containing the
CALL option at the point immediately
following that option. Either of
these is considered to be a normal
return.

2. Control reaches a RETURN statement in
the subroutine. This causes the same
normal return caused by the END state­
ment.

3. Control reaches a GO TO statement that
transfers control out of the subrou­
tine. (This is not permitted if the
subroutine is invoked by the CALL
option.) The GO TO statement may
specify a label in a containing block
(the label must be known within the
subroutine)~ or it may specify a par­
ameter that has been associated with a
label argument passed to the subrou­
tine. Although this is considered to
be normal termination of the subrou­
tine, it is not normal return of
control~ as effected by an END or
RETURN statement.

With synchronous operation, a STOP or
EXIT statement encountered in a subroutine
abnormally terminates execution of that
subroutine and of the entire program asso­
ciated with the procedure that invoked it.

The following example illustrates how a
subroutine interacts with the procedure
that invokes it:

A: PROCEDURE~

DECLARE RATE FLOAT (10), TIME FLOAT(S),
DISTANCE FLOAT (15), l'JASTER FILE ~

CALL READCM (RATE, TIME" DISTANCE,
MASTER) ~

END A;

Chapter 10: Subroutines and Functions 135

READCM: PROCEDURE <W,X,Y,Z);
DECLARE W FLOAT (10), X FLOAT(S),

Y FLOAT(lS), Z FILE;

GET FILE (Z) LIST <W.X,Y};

y= W*X;
IF Y > 0 THEN RETURN;

ELSE PUT LIST('ERROR READCM');
END READCM;

The arguments RATE, TIME, DISTANCE, and
MASTER are passed to the parameters W, X,
Y, and Z. Consequently, in the subroutine,
a reference to W is the same as a reference
to RATE, X the same as TIME, Y the same as
DISTANCE, and Z the same as MASTER.

A function is a procedure that usually
requires arguments to be passed to it when

I it is invoked. It cannot be executed
asynchronously with the invoking procedure.
Unlike a subroutine, which is invoked by a
CALL statement or CALL option, a function
is invoked by the appearance of the func­
tion name (and associated arguments) in an
expression. Such an appearance is called a
function reference. Like a subroutine, a
function can-operate upon the arguments
passed to it and upon other known data.
But unlike a subroutine, a function is
written to compute a single value which is
returned, with control, to the point of
invocati"on., the function reference. This
single value can be of arithmetic, string

I (including picture data), locator, or area
typeo An example of a function reference
is contained in the following procedure:

MAINP: PROCEDURE;

GET LIST (A, B, C, Y);

X Y**3+SPROD(A,B,C);

END MAINP;

In the above procedure, the assignment
statement

X = Y**3+SPROD(A,B,C)i

contains a reference to a function called

136

SPROD. The parenthesized list following
the function name contains the arguments
that are being passed to SPROD. Assume
that SPROD has been defined as follows::

SPROD: PROCEDURE (U,V,W);

IF U > V + W
THEN RETURN (0);
ELSE RETURN (U*V*W);

END SPROD;

When SPROD is invoked by MAINP, the
arguments A, B, and C are associated with
the parameters U, V, and W, respectively.
Since attributes have not been explicitly
declared for the arguments and parame1:ers,
default attributes of FLOAT DECIMAL (6) are
applied to each argument and paramE~ter.
(The default precision is that defined for
System/360 implementations.) Hence, the
attributes are consistent, and the associa­
tion of the arguments with the parameters
produces no error.

During the execution of SPROD, the IF
statement is encountered and a test is
made. If U is greater than V + W, the
statement associated with the THEN clause
is executed; otherwise, the statement asso­
ciated with the ELSE clause is executed.
In either case, the executed statement is a
RETURN statement.

The RETURN statement is the usual way by
which a function is terminated and control
is returned to the invoking procedure. Its
use in a function differs somewhat from its
use in a subroutine; in a function, not
only does it return control but it also
returns a value to the point of invocat.ion.
The general form of the RE'IURN statement,
when it is used in a function~ is as
follows:

RETURN (element-expression);

The expression must be present and must
represent a Single value; i.e., it cannot
be an array or structure expression. It is
this value that is returned to the invoking
procedure at the point of invocation.
Thus, for the above example, SPROD returns
either 0 or the value represented by U*V*W,
along with control to the invoking expres­
sion in MAINP. The returned value then
effectively replaces the function ref­
erence, and evaluation of the invoking
expression continues.

A function can also be terminated by
execution of a GO TO statement. If this
method is used. evaluation of the expres-

sion that i.nvoked the function will not be
completed, and control will go to the
designated statement. As in a subroutine.
the transfer point specified in a GO TO
statement may be a parameter that has been
associated with a label argument~ For
example, assume that MAINP and SPROD have
been defined as follows:

MAINP: PROCEDURE;

GET LIST (A.B.C.Y);
X Y**3+SPROD(A"B,C .• LAB1} i

LAB1: CALL ERRTi

END MAINP;

SPROD: PROCEDURE (U"v,W.Z);
DECLARE Z LABE'L;

IF U > V + W
THEN GO TO Z;
ELSE RETURN (U*V*W);

END SPRODi

In MAINP, LABl is explicitly declared to
be a statement label constant by its
appearance as a label for the CALL ERRT
statement. When SPROD is invoked, LABI is
associated with parameter Z. Since the
attributes of A must agree with those of
LABI. Z is declared to have the LABEL
attribute. When the IF statement in SPROD
is executed. a test is made. If U is
greater than V + W. the THEN clause is
executed" control returns to MAINP at the
st~atement labeled LAB I , and evaluation of
the expression that invoked SPROD is dis­
continued. If U is not greater than V + w,
the ELSE clause is executed and a return to

'MAINP is made in the normal fashion. Addi­
tional information about the use of label
arguments and label parameters is contained
in the section "Relationship of Arguments
and Parameters" in this chapter.

Note: In some instances. a function may be
so defined that it does not require argu­
ments. In such cases, the appearance of
the function name within an expression will
be recognized as a function reference only
if the funct.ion name has been explicitly or
contextually declared to be an entry name.
See "The EN'1~RY Attribute" in this chapter
for additional information.

Attributes of Returned Values

The attributes of the value returned by
a function may be declared in two ways:

1. They may be declared by
according to the first letter
function name.

default
of the

2. They may be explicitly declared fol­
lowing the parameter list in the func­
tion PROCEDURE (or ENTRY) statement.

Note that the value of the expression in
the RETURN statement is converted within
the function,. whenever necessary 11 to con­
form to the attributes specified by one of
the two methods above.

In the previous examples of MAINP and
SPROD. the PROCEDURE statement of SPROD
contains no attributes declared for the
value it returns. Thus, these attributes
must be determined from the firs,t letter of
its name, S. The attributes of the
r.eturned value are therefore FLOAT and
DECIMAL. Since these are the attributes
that the returned value is expected to
have. no conflict exists.

Note: Unless the invoking procedure pro­
vides the compiler with information to the
contrary, the attributes of the value
returned by a function to the invoking
procedure are always determined from the
fir.st letter of the function name.

The way in which attributes can be
declared for the returned value in the
PROCEDURE or ENTRY statement is illustrated
in the following example. Assume that the
PROCEDURE statement for SPROD has been
specified as follows:

SPROD: PROCEDURE (U,V,w,Z> FIXED BINARY;

with this declaration, the value returned
by SPROD will have the attributes FIXED and
BINARY. However.. since these attributes
differ from those that would be determined
from the first letter of the function name,
this difference must be stated in the
invoking procedure to avoid a possible
error. The PL/I programmer communicates
this information to the compiler with the
RETURNS ~ttribute specified in the invoking
procedure.

The RETURNS attribute is specified in a
DECLARE statement for an entry name. It
specifies the attributes of the value
returntd by that function. It further
specifies, by implication, the ENTRY attri­
bute for the name; consequently. it is an
entry name attribute specification. Unless
default attributes for the entry name

Chapter 10: Subroutines and Functions 137

applyw any invocation of a function must
appear within the scope of a RETURNS attri­
bute declaration for the entry name. For
an internal function, the RETURNS attribute
can be specified only in a DECLARE state­
ment that is internal to the same block as
the function procedure.

The general format of the RETURNS attri­
bute is:

RETURNS (attribute-list)

A RETURNS attribute specifies that within
the invoking procedure the value returned
from the named entry point is to be treated
as though it had the attributes given in
the attribute list. The word treated is
used because no conversion is performea- in
an invoking block upon any value returned
to it. Therefore, if the attributes of the
returned value do not agree with those in
the attribute list of the RETURNS attri­
bute, an error will probably result.

In order to specify to the compiler that
coding for MAINP is to handle the FIXED
BINARY value being returned by SPROD, the
following declaration must be given within
MAINP:

DECLARE SPROD RETURNS (FIXED BINARY);

It is important to note some of the
things that are implied in the above dis­
cussion. Principally, it should be remem­
bered that during compilation of the invok­
ing block, there is no way for the compiler
to check a function procedure to determine
the attributes of the value it returns. In
the absence of explicit information in a
RETURNS attribute specification, the com­
piler can only assume that the attributes
will be consistent with the attributes
implied by the first letter of the function
name. This is true even if the function
procedure is contained in the invoking
procedure. If the returned value does not
have the attributes that the invoking pro­
cedure is prepared to receive, no conver­
sion can be performed. The RETURNS attri­
bute must be declared for a function that
returns any value with attributes not con­
sistent with default attributes for the
function name.

uilt-In Functions

Similar to function procedures that a
programmer can define for himself is a
comprehensive set of pre-defined functions
called built-in functions.

The set of built-in
intrinsic part of PL/I.

138

functions is an
It includes not

only the commonly used arithmetic func·tions
but also other necessary or useful func­
tions related to language facilities, such
as functions for manipulating strings and
arrays.

Built-in functions are invoked in the
same way that programmer-defined functions
are invoked. However, many built-in fUnc­
tions can return array or structure values,
whereas a programmer-defined function can
return only an element value.

Note: Some built-in functions may actually
be compiled as in-line code rather than as
procedure invocations. All are referred to
in a PL/I source program, however, by
function references, whether or not they
result in an actual procedure invocation .•

Neither the ENTRY attribute nor the
RETURNS attribute can be specified for any
built-in function name. The use of the
name in a function reference is recognized
without need for any further identifi­
cation; attributes of values returned by
built-in functions are known by the compil­
er.

But since built-in function names are
PL/ I keywords, they are not reserved; ·the
same identifiers can be used as programmer­
defined names. Consequently" ambiguity
might occur if a built-in function
reference were to be used in a block that
is contained in another block in which the
same identifier is declared for some other
purpose. To avoid this ambiguity, the
BUILTIN attribute can be declared for a
built-in function name in any block that
has inherited, from a containing block,
some other declaration of the identifier.
Consider the following example.

A: PROCEDURE;

B: BEGIN;
DECLARE SQRT FLOAT BINARY;

C: BEGIN;
DECLARE SQRT BUILTIN;

END C;

END B;

END A;

Assume that in external procedure A"
SQRT is neither explicitly nor contextually
declared for some other use. consequently"
any reference to SQRT would refer to the
buil t-in function of that name. In B"
however, SQRT is declared to be a floating­
point binary variable" and it cannot be
used in any other way. Finally, in C, SQRT
is declared with the BUILTIN attribute so
that any reference to SQRT will be
recognized as a reference to the built-in
function and not to the floating-point
binary variable declared in B.

Note that a variable having the same
identifier as a built-in fu:nction can be
contextually declared by its appearance on
the left-hand side of an assignment symbol
(in an assignment stateme:nt" a DO state­
ment, or a repetitive specification) or in
the data list of a GET statement, provided
that it is neither enclosed within nor
immediately followed by an argument list.
(This does not apply to the names ONCHAR"
ONSOURCE, and PRIORITY which are pseudo­
variables that do not require arguments.)
For example., if the statement SQRT = 1 had
appeared in procedure B instead of the
explicit declaration., SQRTwouid have been
contextually declared as a floating-point
decimal variable.

A programmer can even use a built-in
function name as the entry name of a
programmer-wri tten function and" in the
same program, use both the built-in
function and the programmer-written func­
tion. This can be accomplished by use of
the BUILTIN attribute and the ENTRY attri­
bute. (The ENTRY attribute" which is used
in a DECLARE statement to specify that the
associated identifier is an entry name, is
discussed in a later section of this chap­
ter.)

The following example illustrates use of
the ENTRY attribute in conjunction with the
BUILTIN attribute.

SQRT: PROCEDURE (PARAM) FIXED (6,2);
DECLARE PARAM FIXED (12);

END SQRT;

A: PROCEDURE;
DECLARE SQRT ENTRY RETURNS

(FIXED(6,,2) },' Y FIXED (12) ;

X SQRT(Y);

B: BEGIN;
DECLARE SQRT BUIL,TIN;

Z SQRT (P);

END B;

END A;

The use of SQRT as the label of the
first PROCEDURE statement is an explicit
declaration of the identifier as an entry
name. Since., in this case., SQRT is not the
built-in function, the entry name must .be
explicitly declared in A (and the RETURNS
attribute is specified because the attri­
butes of the returned value are not appar­
ent in the function name). The function
reference in the assignment statement in A
thus refers to the programmer-written SQRT
function. In the begin block" the iden­
tifie~ SQRT is declared with the BUILTIN
attribute,. Consequently" the function ref­
erence in the assignment statement in B
refers to the built-in SQRT function.

If a programmer-written function using
the name of a built-in function is exter­
nal# any procedure containing a reference
to that function name must also contain an
entry declaration of that name; ot.herwise a
reference to the identifier would be a
reference to the built-in function. In the
above example, if the PROCEDURE B were not
contained in A. there would be no need to
specify the BUILTIN attribute; so long as
the identifier SQRT is not known as some
other name" the identifier would refer to
the built-in function.

If a programmer-written function using
the name of a built-in function is inter­
nal" any reference to the identifier in the
containing block would be a reference to
the programmer-written function" provided
that its name is known in the block in
which the reference is made. No entry name
attributes would have to be specified if
attributes to the returned value could be
inferred from the entry name.

RELATIONSHIP OF ARGUMENTS AND PARAMETERS

When a function or subroutine is
invoked, a relationship is established
between the arguments of the invoking
sta~ement or expression and the parameters
of the inVOked entry point. This relation­
ship i~ dependent upon whether or not dummy
arguments are created.

Chapter 10: 'Subroutines and Functions 139

DUMMY ARGUMENTS

In the introductory discussion of argu­
ments and parameters, it is pointed out
that the name of an argument, not its
value, is passed to a subroutine or func­
t.ion. However, there are times when an
argument has no name. A constant, for
example, has no name; nor does an opera­
tional expression. But the mechanism that
associates arguments with parameters cannot
handle such values directly. Therefore,
t.he compiler must provide storage for such
values and assign an internal name for
each. These internal names are called
~~~9~uments. They are not accessible 
to the PLiI programmer, but he should be 
aware of their existence because any change 
to a parameter will be reflected only in 
the value of the dummy argument and not in 
the value of the original argument from 
which it was constructed. 

A dummy argument is always created for 
any of the following cases: 

1. If an argument is a constant 

2. If an argument is an expression 
involving operators 

3. If an argument is an expression in 
parentheses 

4. If an argument is a variable whose 
data attributes are different from the 
data attributes declared for the par­
ameter in an entry name attribute 
speCification appearing in the invok­
ing block 

5. If an argument is itself a function 
reference containing arguments 

6. If, for the F compiler, an argument is 
a controlled array or string associat­
ed with a simple parameter, unless the 
asterisk notation is used. 

In all other cases, the argument name is 
passed directly. The parameter becomes 
identical with the passed argument; thus, 
Changes to the value of a parameter will be 
reflected in the value of the original 
argument, only if a dummy argument is not 
passed. 

A task variable cannot be passed as an 
argument if this would cause a dummy argu­
ment to be created. 

140 

THE ENTRY ATTRIBUTE 

There is no way during compilation of a 
subroutine or function that the compi1 1er 
can know the attributes of arguments that 
will be passed to a parameter. The compil­
er must assume that the attributes of ea(:=h 
argument will agree with the attributes of 
its associated parameter. Wherever there 
is disagreement, the program must provide, 
in the invoking procedure, an ENTRY attri­
bute declaration for the entry name of the 
subroutine or function being invoked. The 
general fonn of the ENTRY attribute is as 
follows: 

ENTRY [Cparameter-attribute-list 
L, parameter-attribute-list] ••• ) ] 

Note that the above format allows the 
keyword ENTRY to be specified witho'.lt 
accompanying parameter attribute lists, as 
it might be used to identify a function 
entry name that does not require argument::;. 

Each parameter attribute list in the 
ENTRY attribute specification corresponds 
to one parameter of the subroutine or 
function involved and specifies the attri­
butes of that parameter. In general, if 
the attributes of an argument do not agree 
with those of its corresponding parameter 
Cas speci fied in a parameter attribu·te 
list), a dummy argument is constructed for 
that argument if convers ion is possib1 t=. 
The dummy argument contains the value of 
the original argument converted· to conform 
with the attributes of the corresponding 
parameter. Th us, when the subroutine or 
function is invoked, it is the dummy argu­
ment that is passed to it. 

If an ENTRY attribute with paramet,er 
attribute lists is not used, the compiler 
assumes that the arguments are compatible 
and acts according to the default attri­
butes of the parameters. If the argument 
attributes do not agree with the attribut~=s 
of the corresDonding parameter, no conver­
sion occurs, and an error probably results. 
For example, if a fixed decimal argumen-t, 
which should be byte a1 igned, is passed 'to 
a procedure which expects a fixed binary 
argument, then a specification interrupt 
probably occurs when the argument is trea-t­
ed as full word binary. 

When the above form of the ENTRY attri­
bute is used, each parameter of the subrou­
tine or function must be accounted for. If 
there is no need to specify the attributes 
of a particular parameter, its place must 
be kept by a comma. For example, the 
statement: 

DECLARE SUBR ENTRY (FIXED"FLOAT); 



specifies that SUBR is an entry name that 
has three parameters: the first and third 
ha.ve the attributes FIXED and FLOAT, res­
pectively, while the attributes of the 
second are presumably the same as those of 
the argument being passed. Since the 
attributes of the second parameter are not 
stated, no assumptions are made and no 
conversions are performed. 

As mentioned earlier, the ENTRY attri­
bute may be specified without parameter 
attribute lists. It is used in this way to 
indicate that the associated identifier is 
an entry name. such an indication is 
necessary if an identifier is not otherwise 
recognizable as an entry name, that is, if 
it is not explicitly or contextually 
declared to be an entry name in one of the 
following ways: 

1. By its appearance as a label of a 
PROCEDURE or ENTRY statement 
(explicit) 

2. By its appearance immediately follow­
ing the keyword CALL (contextual) 

3. By its appearance as the function name 
in a function reference that contains 
an argument list (contextual) 

Therefore, if a reference is made to an 
entry name in a block in which it does not 
appear in one of these three ways, the 
identifi~r must be given the ENTRY attri­
bute explicitly~ or by implication (see 
"Note" below), in a DECLARE sta-tement wi th­
in the block. For example, assume that the 
following has been specified: 

A: PROCEDURE: 

PUT LIST (RANDOM): 

END A: 

Assume also that A is an external proce­
dure and RANDOM is an external function 
that requires no arguments and returns a 
:random number. As the procedure is shown 
above, RANDOM is not recognizable within A 
as an entry name, and the result of the PUT 
statement therefore is undefined. In order 
for RANDOM to be recognized within A as an 
entry name" it must be declared to have the 
:ENTRY attribute. For example: 

A: PROCEDURE: 
DECLAPE RANDOM ENTRY: 

PUT LIST (RANDOM); 

END A; 

NOW, RANDOM is recognized as an entry 
name, and the appearance of RANDOM in the 
PUT statement cannot be interpreted as 
anything but a function reference. There­
fore, the PUT statement results in the 
output transmission of the random number 
returned by RANDOM. 

Note: The ENTRY attribute is implied -- and 
therefore need not be stated explicitly 
for an identifier that is declared in a 
DECLARE statement to have one of the entry 
name attributes RETURNS, REDUCIBLE, IRREDU­
CIBLE, USES, or SETS. 

Entry Names as Arguments 

When an entry name is specified as an 
argument of a function or subroutine ref­
erence, one of the following applies: 

1. If the entry name argument" call it M., 
is specified with an argument list of 
its own_, it is recogniz ed as a func­
tion reference; M is invoked~ and the 
value returned by M effectively repla­
ces M and its argument list in the 
containing argument list. 

2. If the entry name argument appears 
without an argument list, but within 
an operational expression or within 
parentheses, then it is taken to be a 
function reference with no arguments. 
For example: 

CALL A ( (B) ) ; 

This pa sses,w as the argument to proce­
dure A~ the value returned by the 
function procedure B. 

3. If the entry name argument appears 
without an argument list and neither 
within an operational expression nor 
within parentheses n the entry name 
itself is passed to the function or 
subroutine being invoked. In such 
cases, the entry name is not taken to 
be a function reference, even if it is 
the name of a function that does not 
require arguments. For example: 

CALL A (E) ; 

Chapter 10: Subroutines and Functions 141 



This passes the entry name B as an 
argument to procedure A. 

There is an exception to this rule, 
however: if an identifier is known as 
an entry name and appears as an argu­
ment and if the parameter attribute 
list for that argument specifies an 
attribute other than ENTRY, the entry 
name will be invoked and its returned 
value passed. For example: 

A: PROCEDURE; 
DECLARE B ENTRY, 

C ENTRY ( FLOAT) ; 

x = C(B); 

END A; 

In this case, B is invoked and its 
returned value is passed to C. 

consider the following example: 

CALLP: PROCEDURE; 
DECLARE RREAD ENTRY, 

SUBR ENTRY (ENTRY, FLOAT, 
FIXED BINARY, LABEL); 

GET LIST (R, S) ; 

CALL SUBR (RREAD., SQRT (R), S, 
LABl); 

LABl: CALL ERRT(S); 

END CALLP; 

SUBR: PROCEDURE(NAME. X, J, TRANPT); 
DECLARE NAME ENTRY, TRANPT LABEL; 

IF X > J THEN CALL NAME(J); 
ELSE GO TO TRANPT; 

END SUER; 

In this example, assume that CALLP, 
SUBR, and RREAD are external. In CALLP, 
both RREAD and SUBR are explicitly declared 
to have the ENTRY attribute.. (Actually, 
the explicit declaration for SUBR is used 

142 

principally to provide information about 
the characteristics of the parameters of 
SUBR.) Four arguments are specified in the 
CALL SUBR statement. These arguments are 
interpreted as follows: 

1. The first argument, RREAD, is recog­
nized as an entry name (because of the 
ENTRY attribute declaration). This 
argument is not in conflict with the 
first parameter as specified in the 
parameter attribute list in the ENTRY 
attribute declaration for SUBR in 
CALLP. Therefore, since RREAD is rec­
ognized as an entry name and not as a 
function reference. the entry name is 
passed at invocation. 

2. The second argument, SQRT(R), is rec­
ognized as a function reference 
because of the argument list accom­
panying the entry name. SQRT is 
invoked, and the value returned by 
SQRT 1.S assigned to a durrmy argument, 
which effectively replaces the ref­
erence to SQRT. The attributes of the 
dummy argument agree with those of the 
second parameter, as specified in the 
parameter attribute list declaration. 
When SUBR is invoked, the dummy argu­
ment is passed to it. 

3. The third argument, S, is simply a 
decimal floating-point element varia­
ble. However., since its attributes do 
not agree with those of the third 
parameter, as specified in the param­
eter attribute list declaration, a 
dummy argument is created containing 
the value of S converted to the attri­
butes of the third parameter. When 
SUBR is invoked, the dummy argument is 
passed. 

4. The fourth argument., LAB1, is a 
statement-label constant. Its attri­
butes agree with those of the fourth 
parameter. But since it is a con­
stant, a dummy argument is created for 
it. When SUBR is invoked, the dummy 
argument is passed. 

In SUBR, four parameters are explicitly 
declared in the PROCEDURE statement. If no 
further explicit declarations were given 
for these parameters, arith~etic default 
attributes would be supplied for each. 
Therefore, since NAME must represent an 
entry name, it is explicitly declared with 
the ENTRY attribute, and since TRANPT must 
r.epresent a statement label" it is expli­
citly declared with the LABEL attribut.e. X 
and J are arithmetic~ so the defaults are 
allowed to apply. 

Note that the appearance of NAME in the 
CALL statement does not constitute a con­
textual declaration of NAME as an ,entry 



name. Such a contextual declaration can be 
made only if no explicit declaration 
applies, and the appearance of NAME in the 
~ROCEDURE statement of SUBR constitutes an 
expl icit~ declaration of NA."'I.E as a paramet­
er. If the attri~utes of a parameter are 
not explicitly declared in a complementary 
DECLARE statement, arithmetic defaults 
apply. Consequently, N.AME must be expli­
citly declared to have the ENTRY attribute; 
otherwise, it would be assumed to be a 
binary fixed-point variable, and its use in 
the CALL statement would result in an 
error. 

ALLOCATION OF PARAMETERS 

A parameter cannot be declared to have 
any of the storage cla3s attributes STATIC, 
AUTOMATIC, or BASED. It can, however, be 
declared to have ·tt1e CONTROLLED attribute. 
Thus, there are two classes of parameters, 
as far as storage allocation is concerned: 
those that have no storage class, i. e. , 
~imp~_parameters" and those that have the 
CON'rROLLED attribute, i. e." controll~~r­
ameterso 

A simple parameter may be associated 
with an argument of any storage class. 
However, if more than one generation of the 
argument exists, the parameter is associat­
(d only with that generation existing at 
the time of invocation. 

A controlled parameter must always have 
a corresponding controlled argument. Such 
an argument cannot be subscripted, cannot 
te an element of a structure, and cannot 
cause a dummy to be created. If more than 
cne generation of the argument exists at 
the time of invocation, the parameter cor­
responds to the entire stack of thesE! 
generations. ThUS, at the time of invoca­
tion, a controlled parameter represents the 
current generation of the! corresponding 
argument. A controlled parameter may be 
allocated and freed in the invoked proce­
dure, thus allowing the manipulation of the 
allocation stack of the associated argu­
rrent. A simple parameter cannot be speci-· 
fied in an ALLOCATE or FREE statement. 

Parameter Bounds and Lengths 

If an argument is a string or an array, 
the length of the string or the bounds of 
the array must be declared for the corres-· 
ponding parameter. The number of dimen-· 
sions and the bounds of an array parameter 
or the length of a string parameter must be 
the same as that for the current generation 

of the corresponding argument. Usually, 
this can be assured simply by specifying 
actual numbers for the bounds or length of 
the parameter. However, the actual bounds 
or length may not always be known at the 
time that the subroutine or fUnction is 
written. Whenever this is the case, bounds 
or length for a simple parameter may be 
specified by asterisks; bounds or length 
for a controlled parameter may be specified 
either by asterisks or by expressions. 

§i~ele Parameter Bounds and Lengths 

When the actual length or bounds of a 
simple parameter are not known, they can be 
specifiej in a DECLARE statement by aster­
isks. When a~ asterisk is used, the length 
or bounds are taken from the current qener­
ation of the corresponding argument; if no 
current genera t.ion exi sts, any reference to 
the variable is an error. If an asterisk 
is used to represent the bounds of one 
dimension of an array parameter, the bounds 
of all other dimensions of that parameter 
must be specified by asterisks. 

Controlled Parameter Bounds and Lengths 

The bounds or length of a controlled 
parameter can be representei in a DECLARE 
statement either by asterisks or by element 
expressions. 

Asterisk Notation: When asterisks are 
used ll length or bounds of the controlled 
parameter are taken from the current gener­
ation of the corresponding argument. Any 
subsequent allocation of the controlled 
parameter uses these same bounds or length, 
unless they are overridden by a different 
length or bounis specification in the ALLO­
CATE statement. If no current generation 
of the argument exists, the asterisks only 
determine the dimensionality of the param­
eter ll and an ALLOCATE statement in the 
invoked procedure must specify bounds or 
length for the controlled parameter before 
other references to the parameter can be 
made. 

~~pre~~iQ~~QiatioD~ The bounds or length 
of a controlled parameter can also be 
specified by element expressions. These 
expressions are evaluated at the time of 
allocation. Each time the parameter is 
allocated ll the expressions are re-evaluated 
to give current bounds or length for the 
new allocation. However, such expressions 
in a DECLARE statement can be overridden by 
a bounds or length specification in the 
ALLOCArE statement itself. 

Chapter 10: Subroutines and Functions 143 



If a current generation of the argument 
exists at the time of invocation, the 
expressions evaluated at invocation must 
give the same bounds or length as the 
argument. If a current generation does not 
exist, then no requirements are made on the 
values of these expressions. They are 
evaluated each time the parameter is allo­
cated, except in those cases where the 
expressions are overridden by a bounds or 
length sipecification in the ALLOCATE state­
ment itself~ For example: 

144 

MAIN: PROCEDURE OPTIONS(MAIN); 
DECLARE (A(20), BOO), C(100), 

D(100»CONTROLLED, 
NAME CHARACTER C 20) , 
I FIXED(3,0); 

ALLOCATE A,B; 
CALL SUB1(A,B); 

FREE A,B; 

FREE A,B; 
GE'I' LIST (NAME, I} ; 
CALL SUB2 (C,D,NAME,I); 

FREE C,D; 

END MAIN; 

SUB1: PROCEDURE CU,V); 
DECLARE (U(*), V(*» CONTROLLED; 

ALLOCATE U(30), V(40}; 

RE'rURNi 
END SUBI; 

SUB2: PROCEDURE CX,Y,NAMEA,N); 
DECLARE (XCN).YCN»CONTROLLED, 

NAMEA CHARACTER <*), 
N FIXEDC3, 0) i 

ALLOCATE X,Y; 

RETURN; 
END SUB2; 

In the procedure MAIN, the arrays A, B, C, 
and Dare d.eclared with the CONTROLLED 
storage class attribute; NAME and I are 
AUTOMATIC by default. 

When SUBl is invoked, A and B, which 
have been allocated as declared~ are 
passed. SUBl declares its parameters w:Lth 
the asterisk notation. The ALLOCATE sta1:e­
ment., however, specifies bounds for 1:he 
arrays; consequently, the allocated arrays, 
which are actually a second generation of A 
and B, have bounds different from the first 
generation (if no bounds were specified in 
the ALLOCATE statement, the bounds of t:he 
new generation would be id.entical to those 
of the first generation). 

After control returns to MAIN, the first 
FREE statement frees the second generati.on 
of A and B (allocated in SUBl as 
parameters) , and the second FREE statemE~nt 
frees the first generation (allocated in 
MAIN). 

When SUB2 is invoked, C and D are passed 
to X and Y, NAME is passed to NAMEA, and I 
is passed to N. In SUB2, X and Yare 
declared with bounds that depend upon the 
value of I (passed to N). When X and Yare 
allocated, this value determines the bounds 
of the allocated array. 

Although NAME (corresponding to NAMEA) 
is not controlled, the asterisk notation 
for the length of NAMEA indicates that the 
length is to be pickea up from the declara­
tion of the argument (NAME). 

ARGUMENT AND PARAMETER TYPES 

In general, an argument and its corres­
ponding parameter may be of any data orga:!1-
ization and type. For example, an argument 
may be a statement label., provided that the 
corresponding parameter is declared with 
the L1\BEL attribute; it may be an entry 
name, provided that the corresponding par­
ameter is an entry name .. and so on. :-fowev­
er, not all parameter/argument relation­
ships are so clear-cut. Some need furtht~r 
definition and clarification. Such cases 
are given below. 

If a parameter is an element, i.e., a 
variable that is neither a structure nor an 
array, the argument must be an element 
expression. If the argument is a sub­
scripted variable., the subscripts are 
evaluated before the subroutine or function 
is invoked and the name of the specifiE~d 
element is passed. If the argument is a 
constant, the attributes of the correspond­
ing parameter must agree with the attri­
butes indicated by the constant, unless the 



ENTRY attribute is specified for the entry 
name. 

If a parameter is an array, the argument 
must be an array expression or an element 
expression. If the argument is an element 
expression, the corresponding parameter 
attribute list must specify the' bounds of 
the array parameter. (Note, however, that 
in this case the bounds in the parameter 
attribute list cannot be asterisks.) This 
causes the construction of ,a dummy array 
argument, whose bounds are those of the 
array parameter. The value of the element 
express10n then becomes the value of each 
element of the dummy array argument. 

If a parameter is a structure, the 
argument must be a struct ur'e expression or 
an element expression. If the argument is 
an element expression, the corresponding 
parameter attribute list must specify the 
structure description of the structure par­
ameter (only level numbers need be used -­
see the discussion of the ENTRY attribute 
in Part II, Section I, "Attributes, n for 
details). This causes the construction of 
a dummy structure argument, whose descrip­
tion matches that of the structure paramet­
er. The value of the element expression 
then becomes the value of each element of 
the dummy structure argument. The relative 
structuring of the argument and the param­
eter must be the same; the level numbers 
need not be identical. The element value 
must be one that can be converted to 
conform with the attributes of all the 
elementary names of the structure. 

If a parameter is an element label 
variable, the argument must be either an 
element label variable or a label constant. 
If the argument is a label constant, a 
durruny argument is constructed. 

If the parameter is an arraY_-1~bel 
variabl~, the argument must be an array 
label variable" an element l,abel variable, 
or a label constant. If 'the argument is 
either of the latter two, the corresponding 
parameter attribute list must specify that 
the parameter is a label array, giving the 
bounds of that array. This causes the 
construction of a dummy array label argu­
ment, whose bounds are those of the label 
array parameter. 

If a parameter is an ~ntry name, the 
argument. must be an entry name. Note that 
the name of a mathematical built-in func­
tion can be passed as an argument" but no 
other built-in function n.ames can be 
passed. 

If a parameter is a file name, the 
argument: must be a file name". The attri­
butes of the file name param1eter are always 
ignored. 

If a parameter is a fixed-length string 
variable. the argument should be a fixed­
length string. If the argument is of 
varying length, a parameter attribute list 
describing the parameter as a fixed-length 
string must be given in the invoking 
procedure. Similarly, if a parameter is a 
varying-length string variable, the argu­
ment should be a varying-length string. If 
the argument is of fixed length, a paramet­
er attribute list describing the parameter 
as a varying-length string must be given in 
the invoking procedure. Whenever a 
varying-length string argument is passed to 
a non-varying string parameter whose length 
is undefined (i.e. specified by an 
asterisk). the maximum length of the argu­
ment is passed to the invoked procedure. 
This is true even when the argument is an 
element; the object of passing the maximum 
length rather than the current length is to 
maintain a consistent rule for both element 
and array arguments. (If the argument were 
a varying-length string array passed to a 
non-varying undefined-length parameter, 
only one length could be passed, and this 
would naturally be the maximum length.) 

Example: 

DECLARE A CHARACTER(50) VARYING, 
PROCl ENTRY (CHARACTER(*}); 

A='123' ; 
CALL PROCl (A) ; 

PROC1: PROCEDURE (B); 
DECLARE B CHARACTER(*), 

C CHARACTER ( 5) ; 

C=B II '45'; 
1* C=·123bb' NOT '12345' */ 

In this example, to pass A, a dummy of 
length 50 (i.e., the maximum length of A) 
is created. In the concatenation opera­
tion, '45' is concatenated at the right of 
the character string of length 50 (which 
contains 1123' followed by 47 blanks). The 
result is then truncated to fit into C, 
which has length 5, so that C='123bb l

• 

If a parameter is a locator variable of 
either pointer or offset type, the argument 
must be a locator variable of either type. 
If the types differ, a dummy argument is 
created. (See also Chapter 14, "Based 
Storage and List Processing.") 

Chapter 10: Subroutines and Functions 145 



A generic name represents a family of 
procedure entry points, each member of 
which can be invoked by a generic ref­
erence, that is, a procedure reference 
using the generic name in place of the 
actual entry name. The member invoked is 
determined according to the number and 
attributes of the arguments soecified in 
he generic reference; it is~that member 

whose parameters match the arguments in 
number and attributes. 

A generic name must be declared with the 
GENERIC attribute. The general format of 
this attribute is as followS: 

generic-name GENERIC (member-declaration 
[ ,member-declaration] ••• ) 

Each member declaration corresponds to 
one procedure entry point in the family. 
It specifies the entry name of the member, 

146 

followed by the ENrRY attribute and :its 
associated parameter attribute list; this 
list gives the number and attributes of 'the 
parameters for that entry name. For exam­
ple, consider the following statement: 

DECLARE CALC GENERIC 
(FXDCAL ENTRYCFIXED,FIXED), 
FLOCAL ENTRY(FLOAT,FLOAT), 
MIXED ENTRY (FLOAT,FIXED»i 

This statement defines CALC as a gene:cic 
name having three members, FXDCAL, FLOC1\L, 
and MIXED. One of these three function 
procedures will be invoked by a generic 
reference to CALC, depending on the charac­
teristics of the two arguments in that 
reference. For example., consider the fol­
lowing statement: 

Z= X + CALC(X,Y)i 

If X and Yare floating-point and fix4~d­
point, respectively, MIXED will be invok4~d. 



CH:1\PTER 11: EXCEPTIONAL CONDITION HANDLING AND PROGRAM CHECKOUT 

When a PL/I program is executed, a large 
number of exceptional conditions are 
monitored by the system and their occurren­
ces are automatically detected whenever 
they arise. These exceptional conditions 
may be errors, such as overflow or an 
input/output transmission error" or they 
may be conditions that are expected but 
infrequent, such as the end of a file or 
the end of a page when output is being 
printed. When checking out a program" a 
programmer can also get a selective flow 
trace and dumps by specifying that the 
occurrence of anyone of a list of iden­
tifiers be treated as an exceptional condi­
tion,. 

Each of the conditions for which a test 
may be made has been given a name, and 
these names are used by the programmer to 
control the handling of exceptional condi­
tions. The list of condition names is part 
of the PL/I language. For keyword names 
and descriptions of each of ·the conditions" 
see Part: II, Section H, "ON-Conditions." 

ENABLED CONDITIONS AND ESTABLISHED ACTION 

A condition that is being monitored" and 
the occurrence of which 'wi 11 cause an 
interrupt, is said to be enabled. Any 
action specified to take place when an 
occurrence of the condition causes an 
interrupt, is said to be established. 

Most conditions are checked for automat­
ically, and when they occur, the system 
will take control and perform some standard 
action specified for the condition. These 
conditions are enabled by default, and the 
standard system action is established for 
them. 

The most common system action is to 
raise the ERROR condition. 'This provides a 
common condition that may be used to check 
for a number of different types of errors., 
rather than checking each error type indi­
vidually. standard system action for the 
ERROR condition is: 

1. If the condition is raised in a major 
task# the FINISH condition is raised 
and, subsequently, the major task is 
terminated. 

2. If the condition is raised in any 
other task, that task is terminated. 

The programmer may specify whether or 
not some conditions are to be enabled, that 
is., are to be checked for' so that they will 
cause an interrupt when they arise. If a 
condition is disabled, an occurrence of the 
condition will not cause an interrupt. 

All input/output conditions and the 
ERROR and FINISH conditions are always 
enabled and cannot be disabled. All of the 
computational conditions and the program 
checkout conditions may be enabled or disa­
bled. The program checkout conditions and 
the SIZE condition must be explicitly ena­
bled if they are to cause an interrupt; all 
other conditions are enabled by default and 
must be explicitly disabled if they are not 
to cause an interrupt when they occur. 

Condition Prefixes 

Enabling and disabling can be specified 
for certain conditions by a condition pre­
fix.. A condition prefix is a list of one 
or more condition names., enclosed in paren­
theses and separated by commas, and con­
nected to a statement (or a statement 
label> by a colon. The prefix always 
precedes the statement and any statement 
labels. A condition name in a prefix list 
indicates that the corresponding condition 
is enabled within the scope of the prefix. 
Some condition names can be preceded by the 
word NO., without a separating blank or 
connector" to indicate that the correspond­
ing condition is disabled. 

sco~Qf the Condition Prefix 

The scope of the prefix" that is, the 
part of the program throughout which it 
applies, is usually the statement to which 
the prefix is attached. The prefix does 
not apply to any functions or subroutines 
that may be invoked in the execution of the 
statement. 

A condition prefix to an IF statement 
applies only to the evaluation of the 
expression following the IF; it does not 
apply to the statements in the THEN or ELSE 
clauses, although these may themselves have 
prefixes. Similarly, a prefix to the ON 
statement has no effect on the statements 
in the on-unit. A condition prefix to a DO 
statement applies only to the evaluation of 

Chapter 11: Exceptional Condition Handling and Program Checkout 147 



any expressions in the DO statement itself 
and ~ot to any other statement in the DO­
group. 

condition prefixes to the PROCEDURE 
statement and the BEGIN statement are spe­
cial (though commonly used) cases. A con­
dition prefix attached to a PROCEDURE or 
BEGIN $tatement applies to all the state­
ments up to and including the corresponding 
END statement. This includes other PROCE­
DURE or BEGIN statements nested within that 
bl~k. It does not apply to any procedures 
lying outsine that block, which may be 
invoked during execution of the program. 

The enabling or disabling of a condition 
may bE~ redefined within a block by attach­
ing a prefix to statements within the 
block, inclu1ing PROCEDURE and BEGIN state­
ments (thus redefining the enabling or 
disabling of the condition within nested 
blocks). Such a redefinition applies only 
to the execution of the statement to which 
the prefix is attached. In the case of a 
nested PROCEDURE or BEGIN statement, it 
applies only to the block the statement 
defines, as well as any blocks contained 
within that block. When control passes out 
of the scope of the redefining prefix, the 
redefinition no longer applies. A condi­
tion prefix can be attached to any state­
ment except a DECLARE or ENTRY statement. 

A system action exists for every condi­
tion, and if an interrupt occurs, the 
system action will be performed unless the 
programmer has specified an alternate 
action in an ON statement for that condi­
tion. The purpose of the ON statement is 
to establish the action to be taken when an 
interrupt results from an exceptional con­
dition that has been enabled" either by 
default or by a condition prefix. 

Note~ The action specified in an ON state­
ment will not be executed during any por­
tion of a program throughout which the 
condition has been disabled. 

The form of the ON statement is: 

ON condition-name [SNAP] on-unit 
SYSTEM; 

(See Part II, Section J, "Statements" for a 
full description.) 

The keyword SYSTEM followed by a semico­
lon specifies standard system action whene­
ver an interrupt occurs. It re-establishes 
system action for a condition for which 
some other action has been established. 

148 

The Qn-unit is used by the programmer to 
specify an alternate action to be taken 
whenever an interrupt occurs. 

The SNAP option specifies that when an 
interrupt occurs, debugging information 
will be written in a debugging file. The 
form and content of the information depends 
upon the implementation. For the F Compil­
er, it is a list of all active procedures. 
The information is written in the standard 
system file SYSPRINT. If SNAP is speci­
fied, the action of the SNAP option pre­
cedes the action of the on-unit. If SNAP 
SYSTEM is specified, the system action 
message is followed immediately by a list 
of active procedures. 

The on-unit must be either a 
single,unlabeled, simple statement or an 
unlabeled begin block. The single state­
ment cannot be a RETURN, FOR~~T, or DECL~RE 
statement. It cannot be either of the two 
compound statements, IF and ON, or a DO­
group. (PROCEDURE, BEGIN, END, and DO 
statements can never appear as single 
statements.) The begin block, if it 
appears, can contain any statement except 
RETURN, although the RETURN statement can 
appear within a procedure nested in the 
begin block. 

The single statement on-unit, or the 
begin block on-unit, is executed as though 
it were a procedure (without parameters) 
that was called at the point in the program 
at which the interrupt occurred. If the 
on-unit is a single statement it behaves 
exactly as though it were enclosed by 
PROCEDURE and END statements; when execu­
tion reaches the END statement of the unit, 
control returns to the point from which the 
block was invoked. Just as with a proce­
dure, control may be transferred out of an 
on-unit by a GO TO statement; in this case, 
control is transferred to the point speci­
fied in the GO TO, and a normal return does 
not occur. 

Note: The specific point to which control 
returns from an on-unit varies for differ­
ent conditions. In some cases, it returns 
to the paint that immediately follows the 
action in which the condition arose. In 
other cases, control returns to the actual 
point of interrUpt, and the action is 
reattempted. An example of the latter case 
is the return from the on-unit of an ON 
CONVERSION statement. When an inter:r"upt 
occurs as the result of a conversion erIor, 
control returns from the on-unit to re'at­
tempt conversion of the character that 
caused the error (on the assumption that 
the invalid character has been changed 
during execution of the on-unit). If the 
invalid character is not changed, the ERROR 
condition is raised. 



The N~ll_ On-unit 

A special case of an on-unit is the null 
statement. The effect of this is to say 

chapter 11: Exceptional Condition Handling and Program Checkout 148.1 



"When an interrupt occurs as a result of 
this condition. do nothing." 

Use of the null on-unit is not the same 
as disabling. for two reasons: first, a 
null on-unit may be specified for any 
condition~ but not all conditions can be 
disabled; and, second" disabling a condi­
tion, if possible, may save time by avoid­
ing any checking for this condition. If a 
null on-unit is specified" the system must 
still check for occurrence of the condi­
tion. transfer control to the on-unit 
whenever an interrupt occurs, and then, 
after doing nothing, return from the on­
unit. 

Note: with the F Compiler, a null on-unit 
for the CONVERSION condition will not cause 
a permanent loop if a conversion error 
occurs, because no conversion is re­
attempted unless the invalid character is 
changed in the on-unit. If it is not 
changed~ the ERROR condition is raised. 

Scope of the ON Statement 

The eXE~cution of an ON statement 
associates an action specification with the 
named condition. Once this association is 
established, it remains until it is over­
ridden or until termination of the block in 
which the ON statement is executed. 

An established interrupt action passes 
from a block to any block it activates,,, and 
the action remains in force for all subse­
quently activated blocks unless it is over­
ridden by the execution of another ON 
statement for the same condition.. If it is 
overridden, the new action remains in force 
only until that block is t.erminated.. When 
control returns to the activating block" 
all established interrupt actions that 
existed at that point are re-established. 
This makes it impossible for a subroutine 
to alter the interrupt action established 
for the biock that invoked the subroutine. 

If more than one ON st.atement for the 
same condition appears in the! same block" 
each subsequently execut.ed ON statement 
permanently overrides the prev'iously esta­
blished condition. No re-establishment is 
possible" except through execution of 
another ON statement wi th aln identical 
action specification (or re-execution" 
through some transfer of cont~rol" of an 
overridden ON statement). 

~he REVERT Statement 

The REVERT statement is used to cancel 
,the effect of one or more previously exe­
cuted ON statementso It can affect only ON 
statements that are internal to the block 
in which the REVERT statement occurs and 
'which have been executed in the same invo­
cation of that block. The effect of the 
REVERT statement is to cancel the effect of 
any ON statement for the named condition 
that has been executed in the same block in 
'which the REVERT statement is executed. It 
then re-establishes the action that was in 
force at that time of activation of that 
block. This statement has the form: 

REVERT condition-name; 

A REVERT statement that is executed in a 
block in which no on-unit has been esta­
blished for the named condition is treated 
as a null statement. 

,The SIGNAL Statement 

The programmer may simulate the occur­
rence of an ON condition by means of the 
SIGNAL statement. An interrupt will occur 
unless the named condition is disabled. 
This statement has the form: 

SIGNAL condition-name; 

The SIGNAL statement causes execution of 
the interrupt action currently established 
for the specified condition. The principal 
use of this statement is in program check­
ing, to test the action of an on-unit, and 
to determine that the correct action is 
associated with the condition. 

If the signaled condition is not ena­
bled, the SIGNAL statement is treated as a 
null statement. 

The CONDITION Condition 

The ON-condition of the form: 

CONDITION (identifier) 

allows a programmer to establish an on-unit 
that will be executed whenever a SIGNAL 
statement is executed specifying CONDITION 
and that identifier. 

As a debugging aid, this condition can 
be used to establish an on-unit whose 
execution results in printing information 
that shows the current status of the pro-

Chapter 11: Exceptional Condition Handling and Program Checkout 149 



gram. The advantage of using this tech­
nique is that the statements of the on-unit 
need be written only once.. They can be 
executed from any point in the program 
through placement of a SIGNAL statement. 

Pollowing is an example of how the 
CONDITION condition might be included in a 
program: 

ON CONDITION (TEST) BEGIN; 

END; 

Execution of the begin block would be 
caused wherever the following statement 
appears: 

SIGNAL CONDITION (TEST); 

The CONDITION condition always is ena­
bled~ but it can be raised only by the 
SIGNAL statement. 

The CHECK condition is an important tool 
provided in PL/I for program testing. The 
keyword CHECK in a prefix list is followed 
by a parenthesized name list. The names in 
the list may be statement label constants~ 
entry names, and variables, including array 
and struc·ture variables, !..abel variables, 

I task variables, eve. nt variables., area vari­
ables, and locator variables. Subscripted 
names are not allowed but qualified names 

I can be used. Paramete~~ and variables 
with the DEFINED or BASED attributes cannot 
be checked ... 
!':_'r!f~~~O:-:'f:::~ £:!·F:~.4 

The CHECK prefix may be attached only to 
PROCEDURE or BEGIN statements, and there­
fore, it always applies to an entire block. 

An interrupt will generally occur 
immediately after the execution of a state­
ment in which the value of a variable in a 
check list may have been altered. Excep­
tions are as follows: 

1. With the F Compiler, during data­
directed input, the interrupt occurs 
after the first checked variable 
receives its value. 

2.. wi th statement labels and entry names, 
the interrupt occurs immediately 
before the execution of the statement 
or the invocation of the entry name. 

The system action for the CHECK condition 
is to print the identifie'r causing the 
interrupt and, if it is a variable (other 

150 

Ithan a program control variable). to print 
its new value in the form of data-directed 

I output. For label variables and other 
program control variables. only the varia­
ble is printed; no value is included .• 

Thus, by preceding a block with a CHECK 
prefix, as shown in the example in Figure 
11-1. the programmer can obtain selective 
dumps in a readable format by specifying 
variables; he can obtain a flow trace by 
specifying labels and entry names. 

The CHECK condition may also be speci­
fied in an ON statement, if other than 
system action is required. This gives the 
user all the facilities of PL/I. including 
the simplicity of data-directed output for 
controlling and editing his debugging 
information. 

The SUBSCRIPTRANGE Condition 

Another ON condition that is used prin­
cipally for program checkout. but tha·t may 
also be used in production. is the SUB­
SCRIPTRANGE condition. This condition must 
be enabled in a condition prefix. When it 
is enabled, each subscript in an array 
reference is checked every time it is 
evaluated to see that it lies within the 
specified bounds. The condition is raised 
if any subscript is too high or too lm~. 

Since this checking involves a substan­
tial overhead, it usually is used only in 
program testing. and is removed for produc­
tion programs. 

The STRINGRANGE condition 

The STRINGRANGE condition is not enabled 
unless it appears in a condition prefix. 
It is raised by an invalid reference to the 
SUBSTR buil t- in function and pSE!udo­
variable.. the arguments to which must: lie 
within certain bounds (see "SUBSTR String 
Built-in Function.," in section G). It 
allows execution to continue with a SUESTR 
reference that has been revised either 
automatically (that is, by standard system 
action) or by the programmer using' an 
on-unit. 

Condition Built-In Functions and Condition 
Codes 

When an on-unit is invoked, it is as if 
it were a procedure without arguments. It 



is therefore impossible to pass to the 
on-unit any information about the interrupt 
(other than the name of the condition). To 
assist the programmer in making use of 
on-units" some special functions are 
provided that may be used to inquire about 
the cause of an interrupt and. possibly to 
attempt to correct the error. 

These condition built-in functions can 
be used only in on-units or in blocks 
invoked by on-units. They are listed in 
Part II~ section G~ "Built-In Functions and 
Pseudo-Variables." 

The condition built-in functions provide 
information such as the name of the proce­
dure in which the interru~t occurred, the 
character or character string that caused a 
conversion interrupt~ the value of the key 
used in the last record transmitted, and so 
on. Some can be used as pseudo-variables 
for error correction. 

The ONCODE function provid.es a binary 
integer whose value depends on the cause of 
the last interrupt. This function, used in 
conjunction with the ERROR condition. 
allows the programmer to deal ~lI7i th errors 
that may be detected by the implementation. 
but that are not represented by condition 
names in the language. 

EXAMPLE OF USE OF ON-CONDITIONS 

The routine shown in Figure 11-1 illus­
·trates the use of the ON statement" the 
SIGNAL and REVERT statements, and condition 
prefixes. The routine reads batches of 
cards containing test readings. Each batch 
has a header card with a sample number" 
called SNO~ of zero and a trailer card with 
SNO equal to 9999. If a conversion error 
is found" one retry is attempted with the 
error character set to zero. Two data 
fields are used to calculate a subscript; 
if the subscript is out of range" the 
sample is ignored. If there is more than 
one subscript error or more than one con­
version error in a batch, that batch is 
·then ignored. 

The numbers to the right of each line 
are card sequence numbers, which are not 
part of the program itself. 

The CHECK prefixes in cards 1 and 25 are 
included to help with debugqing; in a 
production program, they would be removed. 
The prefix specifies that just before the 
statements HEADER., NEWBATCH, and BADBATCH 
are executed~ and just before the procedure 
INPUT is invoked, an interrupt 'ilTil1 occur. 
since no ON statement has been executed for 

the CHECK condition, system action is per­
formed. This will result in the appropri­
ate name being written on SYSPRINT. 

Since the labels used within the inter­
nal procedure INPUT are not known in DIST, 
they cannot be specified in a CHECK list 
fo~ DIST. A separate CHECK prefix is 
th~refore inserted just before the proce­
dure statement heading INPUT. This check 
list specifies the labels in INPUT" and the 
array TABLE. 

It is worth noting again that the CHECK 
condition prefix can be applied only to 
PROCEDURE and BEGIN blocks, and not to 
individual statements. The first statement 
executed is the ON ENDFILE statement in 
card 9. This specifies that the external 
procedure SUMMARY is to be called when an 
ENDFILE interrupt occurs. This action 
applies within DIST and within INPUT and 
within all othe~ procedures called by DIST, 
unless they establish their own ,action for 
ENDFILE. 

Throughout the procedure" any conditions 
lexcept SIZE" SUBSCRIPTRANGE, STRINGRANGE, 
and CHECK are enabled by default; and for 
all conditions except those mentioned 
explicitly in ON statements, the system 
action applies. This system action, in 
most cases, is to generate a message and 
then to raise the ERROR condition. The 
action specified for the ERROR condition in 
card 13 is to display the contents of the 
card being processed. When the ERROR 
action is completed~ the FINISH condition 
is raised~ and execution of the prograrr is 
terminated. 

The statement 
action to be taken 
interrupt occurs. 
sists of more than 
bracketed by BEGIN 

in card 10 specifies 
whenever a CONVERSION 

Since this action con­
one statement, it is 

and END statements. 

The main loop of the program starts with 
the statement HEADER. Since the CHECK 
condition is enabled for HEADER." an inter­
rupt will occur before HEADER is executed. 
The READ statement with the INTO option 
will not cause a CHECK condition to be 
raised for the variable specified in the 
INTO option; consequently" SAMPLE does not 
appear in a CHECK list. Instead" PUT DATA 
statements are used to list the input. 

The card read is assumed to be a header' 
card. If it is not, the SIGNAL CONVERSION 
statement causes execution of the BEGIN 
block~ which in turn calls a procedure (not 
~3hown here) that reads on, ignoring cards 
until it reaches a header card,. The begin 
block ends with a GO TO statement that 
terminates the on-unit. 

Chapter 11: Exceptional Condition Handling and Program Checkout 151 



r---------------------------------------------------------------------------------------, 
CCHECK(HEADER,NEWBATCH,INPUT,BADBATCH»: /*DEBUG*/ 01 

DIST: PROCEDURE; 02 
DECLARE 1 SAMPLE EXTERNAL, 03 

2 BATCH CHARACTER(6), 04 
2 SNO PICTURE '9999', 05 
2 READINGS CHARACTER(70), 06 

TABLE(15.15) EXTERNAL; 07 
/* ESTABLISH INTERRUPT ACTIONS FOR ENDFILE & CONVERSION */ 08 

ON ENDFILE (PDATA) CALL SUMMARY; 09 
ON CONVERSION BEGIN; CALL SKIPBCH; 10 

GO TO NEWBATCH; 11 
END: 

ON ERROR DISPLAY (BATCH I ISNOI IREADINGS); 
/* MAIN LOOP TO PROCESS HEADER & TABLE */ 

HEADER: READ INTO (SAMPLE) FILE (PDATA): 
PUT DATA (SAMPLE): /*PEBUG*/ 
IF SNO ,= 0 THEN SIGNAL CONVERSION: 

NEWBATCH: GET LIST (OMIN"OINT,AMIN,AINT) STRING (READINGS>; 
TABLE = 0; 
CALL INPUT; 
CALL PROCESS: 
GO TO HEADER; 

/* ERROR RETURN FROM INPUT */ 
BADBATCH: SIGNAL CONVERSION; 
(CHECK (IN1, IN2, ERR2" ERR1, TABLE» : 

INPUT: PROCEDURE; 
/*DEBUG*/ 

/* ESTABLISH INTERRUPT ACTIONS FOR CONVERSION & SUBRG */ 
ON CONVERSION BEGIN; 

12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 

IF ONCODE 
THEN DO; 

624 & ONCHAR " 29 
ONCHAR = '0': 30 
GO TO ERR1: 31 

END; 32 
ELSE GO TO BADBATCH; 33 

END; 34 
ON SUBSCRIPTRANGE GO TO ERR2; 35 

/* LOOP TO READ SAMPLE DATA AND ENTER IN TABLE */ 36 
INl: READ INTO (SAMPLE) FILE (PDATA); 37 

IF SNO = 9999 THEN RETURN~ /*TRAILER CARD*/ 38 
IN2: GET EDIT (R,OMEGA,ALPHA) (3 P'999') 39 

STRING (READINGS); 40 
(SUBSCR~PTRANGE): TABLE(COMEGA-OMIN)/OINT,CALPHA-AMIN)/AINT) = R; 41 

GO TO IN1; 42 
/* FIRST CONVERSION & SUBSCRIPTRANGE ERROR IN THIS BATCH */ 43 

ERR2: ON SUBSCRIPTRANGE GO TO BADBATCH; /*FOR NEXT ERROR*/ 44 
CALL ERRMESS(SAMPLE,02); 45 
GO TO IN1; 46 

ERR1: REVERT CONVERSION; /*SWITCH FOR NEXT ERROR*/ 47 
CALL ERRMESS{SAMPLE,01); 48 
GO TO IN2; 49 
END INPUT; 50 

END DIST: 51 - _______________________________________________________________________________________ J 

Figure 11-1. A Program Checkout Routine 

The GET statement labeled NEWBATCH uses 
the STRING option to get the different test 
numbers that have been read into the char­
acter string READINGS, which is an element 
of SAMPLE. Since the variables named in 
the data list are not explicitly declared, 
their appearance causes implicit declara­
tion with the attributes FLOAT DECIMAL (6). 

The array TABLE is initialized to zero 
before the procedure INPUT is called. This 
procedure inherits the on-units already 

152 

established in DIST, but it can override 
them,. 

The first statement of INPUT establishes 
a new action for CONVERSION interrupts .. 
Whenever an interrupt occurs" the ONCODE is 
tested to check that the interrupt is due 
to an illegal P format input character and 
that the illegal character is a blank. If 
the illegal character is a blank" it~ is 
replaced by a zero, and control is t:rans­
fer.red to ERR1. 



ERRl is internal to the procedure INPUT. 
The statement" REVERT CONVERSION, nullifies 
the ON CONVERSION statement executed in 
INPUT and restores the action specified for 
conversion int~rrupts in DIST (which causes 
the batch to be ignored). 

After a routine is called. to write an 
error message, control goes to IN2, which 
retries the conversion. If another conver­
sion error occurs, the interru.pt action is 
that specified in cards 10 and 11. 

The second ON statement, in INPUT esta­
blishes the action for a SUBSCRIPTRANGE 
int·errupt. This condition ,must be expli­
citly enabled by a SUBSCRIPTRANGE prefix 
for an interrupt to occur. If an interrupt 
does occur. the on-unit causes a transfer 
to ERR2. which establishes a new on-unit 
for SUBSCRIPTRANGE interrupts., overriding 
the action specified in the ON statement in 
card 35. Any subsequent subscript errors 
in this batch will. therefore, cause con­
trol to go to BADBATCH, which signals the 
CONVERSION condition as it existed in the 
procedure DIST. Note that on leaving 

INPUT. the on-action reverts to that esta­
blished in DIST. which in this case calls 
SKIPBCH to get to the next header card. 

After establishment of a new on-unit, a 
message is printed, and a new sample card 
is read. 

The statement labeled INl reads an 
aD-column card image into the structure 
SAMPLE. A READ statement does not cause 
input data to be checked" so the CONVERSION 
condition cannot arise. 

The statement IN2 checks and edits the 
data in card columns 11 through 19 
according to the picture format item. A 
non-numeric character (including blank) in 
these columns will cause a conversion 
interrupt, with the results discussed 
above. 

The next statement (card 41) has a 
SUBSCRIPTRANGE prefix. The data just read 
is used to calculate a double subscript. 
If either subscript falls outside the 
bounds declared for TABLE, an interrupt 
occurs. If both fall outside the range, 
two interrupts occur. 

Chapter 11: Exceptional Condition Handling and Program Checkout 153 



CHAPT~R 12: COMPILE-TIME FACILITIES 

Compile time is generally defined as 
that time during which a user's source 
program is compiled, or translated, into an 
executable object program. Ordinarily, 
changes to a source program may not be made 
at this time. 

However, with PL/I, the programmer does 
have some control over his source program 
during compile time. His source program 
can cqntain special statements (identified 
by a leading %) that can cause parts of the 
source program to be altered in various 
ways: 

1. Any identifier appearing in the source 
program can be changed. 

2. If conditional compilation is desired, 
the programmer can indicate which sec­
tions of his program are to be com­
piled. 

3. Strings of 
library or a 
incorporated 

text residing in a user 
system library can be 
into the source program. 

PL/I makes source program alteration at 
compile time possible by a somewhat differ­
ent approach to compile time processing. 
compile time as defined in PL/I has two 
stages: 

1. Tl!~_-.R!:~rocess2!:2:!:i!9~ During this 
stage, the user's source program is 
scanned for .2.feprocessor statements" 
special statements that cause the 
preprocessor to alter the text being 
scanned. These statements are consid­
ered part of the source program~ and 
appear freely intermixed with the 
statements and other text of the 
source program. The altered source 
program, resulting from the action of 
the preprocessor statements, then 
Serves as input to the second stage. 
Note that the preprocessor stage is 
Gptional; the publication IBM 
System/360 Operatigg---2yst~PL/lln 
Programmer's Guide, Form C28-6594, 
describes how this stage can be used 
or avoided for the F-level PL/I Com­
piler. 

2. The Processor Stage During this 

154 

stage, the output from the first stage 
is compiled into an executable object 
program. 

This chapter is concerned with the first 
stage; the actual compilation of a program 
is not discussed. 

PREPROCESSOR INPUT AND OUTPUT 

The preprocessor interprets preprocessor 
statements and acts upon the source program 
accordingly. Input to the preprocessor is 
a sequence of characters that is the user's 
source program. It contains preprocessor 
statements freely intermixed with the rest 
of the user's source program. Preprocessor 
statements are identified by a leading 
percent symbol ( %) and are executed as 
they are encountered by the preprocessor 
(with the exception of preprocessor proce­
dures, which must be invoked in order to be 
executed). One or more blanks may separate 
the percent symbol from the statement. 

While checking the preprocessor state­
ments for correct format and such, the 
preprocessor also checks the rest of the 
source program text to insure that there 
are no unmatched comment or character­
string delimiters. A percent symbol 
appearing within a comment or character 
string is considered to -be part of that 
comment or string. This is the extent of 
the checking done at this stage on all text 
other than preprocessor statements. 

Output from the preprocessor consists of 
a new character string called the .2.fepro­
cessed text~ which consists of the altered 
source program and which serves as input to 
the processor stage. Note that preproces­
sor statements are replaced by blanks in 
the preprocessed text. 

PREPROCESSOR SCAN 

The preprocessor starts its scan of the 
input text at the beginning of the string 
and scans each character sequentially. As 
long as a preprocessor statement is not 
encountered, the characters are placed into 
the preprocessed text in the same order and 
general form in which they were scanned. 
Ho~ever, when a preprocessor statement is 
encountered~ it is executed. This execu­
tion can cause the scanning of the source 
program and the subsequent formation of 
preprocessed text to be altered in either 
of two ways: 



1. The executed sta ,t em en 1::. may cause the 
preprocessor to continue the scan from 
a different point in the program. 
This new point may very well be one 
that has already been scanned. 

2. The executed statement may initiate 
replacement activity. That is, it may 
cause an identifier not appearing in a 
preprocessor statement to be replaced 
when that identifier is subsequently 
encountered in the scan., The replace­
ment value will then be written into 
the preprocessed text;. in place of the 
old identifier (see "Rescanning and 
Replacement" below for details). 

The scan is terminated whem an attempt 
is made to scan beyond the last character 
in the source program.. The~ preprocessed 
text is completed and the second stage of 
compilation can then begin. 

Rescanninq and Replacement 

For an identifier to be replaced by a 
new value, the identifier must first be 
activated for replacement. Initially# an 
identifier is activated by its appearance 
in a preprocessor DECLARE statement (i. e,. , 
a % DECLARE statement). (It can be deacti­
vated by appearing in a % DE~,CTIVATE state­
ment and it can be reactivated by appearing 
in a % ACTIVATE statement.) After it has 
been activated initially, it must be given 
a replacement va'lue. This is usually done 
via the execution of a preprocessor assign­
ment statement. Once an identifier has 
been activated and been given a value, any 
occurrence of that identifier in text other 
than preprocessor statements is replaced by 
that value., provided that the identifier is 
still active when it is encountered by the 
scan. The new value is not immediately 
inserted into the preprocessed text, howev­
er; it must be checked to s e'e whether or 
not it, or any part of it, is subject to 
replacement by still another value (a res­
can is made to determine this). If it 
cannot be replaced, it is inserted into the 
preprocessed text; if it can be replaced, 
replacement activity continues until no 
further replacements can be made. Thus, 
insertion of a value into preprocessed text 
takes place only after all possible 
replacements have been made. Note that the 
deactivation of an identifier causes it to 
lose its replacement capability but not its 
value. Hence" the subsequent reactivation 
of such an identifier need not be accompan-

ied by the assignment of a replacement 
value. 

For example, if the source program con­
tained the following sequence of state­
ments: 

%DECLARE A CHARACTER, B FIXED; 
%A = 'B+C'; 
%B = 2; 
X = A; 

then the following would be inserted into 
the preprocessed text in place of the above 
sequence: 

X = 2+C; 

In this example, the first statement is 
a preprocessor DECLARE statement that acti­
vates A and B and also establishes them as 
preprocessor variables. (An identifier 
must be established as a preprocessor vari­
able before it can be assigne1 a value in a 
preprocessor statement; it can be so esta­
blished only through a preprocessor DECLARE 
statement,.) The second and third state­
ments are preprocessor assignment state­
ments; the second assigns the character 
string 'B+C' to A., and the third assigns 
the constant 2 to B. The fourth statement 
is a nonpreprocessor statement 1 and, there­
fore. is not executed at this stage. How­
ever, because this statement contains A, 
and A is a preprocessor variable that has 
been activated for replacement, the current 
value of A will replace it in that state­
ment. Thus, the string 'B+C' replaces A in 
the statement. But this string contains 
the preprocessor variable B. Upon checking 
B, the preprocessor finds that it has been 
activated and that it has been assigned a 
value of 2. Hence, the value 2 replaces B 
in the string. Further checking shows that 
2 cannot be replaced; scarining resumes with 
+C which, again, cannot be replaced. Thus, 
the chain of replacements comes to an end 
and the resulting statement is inserted 
into the preprocessed text. 

Note that the preprocessor variable B 
has a default precision of (5,0) and, 
therefore, actually contains 2 preceded by 
four zeros. when this value replaces B in 
the string 'B+C' it is converted to a 
character string and becomes 2 preceded by 
seven blanks (the rules for conversion of 
decimal fixed-point values to character 

~For the purpose of this discussion, a 
nonpreprocessor statement is any statement 
or set of one or more identifiers that 
appears in the source program but is not 
contained in a preprocessor statement, nor 
in a preprocessor procedure, nor in a 
comment. 

Chapter 12: Compile-Time Facilities 155 



string are followed). See the section 
"Preprocessor Expressions" for details. 

Also note that each time a replacement 
occurs, a blank is appended to each end of 
the rE~placernent value. Hence. in the above 
example. the first replacement results in a 
blank b~ing appended to each end of the 
string 'B+C', and the second replacement 
results in another blank being appended to 
each side of the 2 that replaces the B. 
The result, therefore, will have nine addi­
tional blanks immediately before the 2, one 
addi tional blank irnmedia tely a fter the 2, 
and one additional blank immediately after 
the C. 

Replacement values must not contain per­
cent symbols, unmatched quotation marks, or 
unmatched comment delimiters. 

The following example illustrates how 
compile-time facilities can be used to 
speed up the execution of a DO-loop. 

A programmer might include the following 
loop in his program: 

DO 1=1 TO 10; 
~~ (I)=X(I) +Y(I); 
END; 

The following sequence would accomplish the 
same thing, but without the requirements of 
incrementing and testing during execution 
of the compiled program: 

~~DECLARE I FIXED; 
%1:::1; 
%LAB: ; 
~~ (I) =X (I) +Y (I) ; 
,n:::I+1; 
%IF 1<=10 %THEN %GO TO LAB; 
%D~ACTIVATE I; 

The first statement activates I and 
establishes it as a preprocessor variable. 
The seoond statement assigns the value 1 to 
I. This means that subsequent encounters 
of the identifier I in non-preprocessor 
statements will be replcced by 1 (provided 
that I remains activated). The third 
statement is a preprocessor null statement 
that is used as the transfer target for the 
preprocessor GO TO statement appearing 
later .. 

The fourth statement, not being a prep­
rocessor statement. is only scanned for 
replacement activity; it is not executed. 
The first. time that this statement is 
scanned, I has the value 1 and has been 
activated. Therefore. each occurrence of I 
in this'statement is replaced by 1 and the 
following is inserted into the preprocessed 
text being formed: 

z ( 1 ) =X ( 1 ) +Y ( 1 ); 

156 

Note that each 1 is actually preceded by 
seven blanks of its own in addition to the 
one replacement blank shown. 

The fifth statement increments the value 
of I by 1 and the sixth statement, a 
preprocessor IF statement, tests the value 
of I.. If I is not greater than 10, the 
scan is resumed at the statement labeled 
LAB; otherwise, the scan continues with the 
text immediately following the %GO TO 
statement. Hence, for each increment of I, 
up to and including 10, the assignment 
statement is rescanned and each occurrence 
of I is replaced by its current value. As 
a result, the following statements are 
inserted into the preprocessed text: 

Z( 1 )=X( 1 )+Y( 1 ); 

Z( 2 )=X( 2 )+Y( 2 ); 

Z( 10 )=X( 10 )+Y( 10 ); 

As before, each number from 1 through 9 
is preceded by seven blanks in addition to 
the replacement blank shown; 10 is preceded 
by six blanks in addition to the replace­
ment blank shown. 

When the value of I reaches 11, control 
falls through to the %DEACTIVATE statement. 
This statement is interpreted as follows: 
subsequent encounters of the identifier I 
in source program text are not to be 
replaced by the value 11 in the prepro­
cessed text being formed; each I will be 
left unmodified, either for the remainder 
of the scan or at least until I is reacti­
vated by a %ACTIVATE statement. If I is 
again activated, it will still have the 
value 11" (unless an intervening prepro­
cessor aSSignment statement has established 
a new value for I). 

PREPROCESSOR VARIABLES 

A preprocessor variable is an identifier 
that has been specified in a %DECLARE 
statement with either the FIXED or CHARAC­
TER attribute. No other attributes can be 
declared for a preprocessor variable. 
Defaults are applied, however. A prepro­
cessor variable declared with the FIXED 
attribute is also given the attributes 
DECIMAL and, for the F Compiler, prec1s10n 
(5,0) by default; a CHARACTER preprocessor 
variable is given the VARYING attribute 
with no maximum length. No contextual or 
implicit declaration of identifiers is 
allowed in preprocessor statements. 



The scope of a preprocessor variable 
encompasses all text except those prepro­
cessor procedures that have redeclared that 
variable. The scope of a preprocessor 
variable that has been declared in a pre­
processor procedure is the ent:ire procedure 
(there is no nesting of preprocessor 
procedures) • 

When a preprocessor variable has been 
given a value, that value replaces all 
occurrences of the corresponding identifier 
in text other than preprocessor statements 

Chapter 12: Compile-Time Facilities 156.1 



during the time that ·the variable is 
active. If the preprocessor variable is 
inactive (or if it has no value), replace­
ment activity cannot occur for the corres­
ponding identifier. 

A preprocessor variable is activated 
initially by its appearance in the %DECLARE 
statement. It can be deactivated and sub­
sequently reactivated by its appearance in 
'%DEACTIVATE and %.ACTIVATE statements, res­
pecti vely. Deacti va tion of a p.reprocessor 
variable does not strip it of its value; in 
other words, an inactive preprocessor vari­
able retains the value it had while it was 
active and can be altered by a preprocessor 
statement or procedure if so desired. 

PREPROCESSOR EXPRESSIONS 

Preprocessor expressions are written and 
evaluated in the same way as source program 
expressions. with the following exceptions: 

1. The operands of a preprocessor expres­
sion can consist only of preprocessor 
variables. references to preprocessor 
procedures. decimal integer constants" 
bit-string constants, character-string 
constants, and references to the 
built-in function SUBSTR. Repetition 
f~ctors are not allowed with the 
string constants and the arguments of 
a reference to SUBSTR must be prepro­
cessor expressions. 

2. The exponentiation symbol (**> cannot 
be used as an arithmetic operator. 

3. For arithmetic operations. only deci­
mal integer arithmetic of precision 
(5,0) is performed; that is. each 
operand is converted to a decimal 
fixed-point value of precision (5,0) 
before the operation is performed. and 
the decimal fixed-point result is con­
verted to precision (5,0) also. Any 
character string being converted to an 
arithmetic value must be in the form 
of an optionally signed decimal inte­
ger constant. Note that the proper­
ties of the division operator are 
affected. For example, the expression 
3/5 evaluates to O. rather than to 
0.6. 

4. The conversion of a fixed-point deci­
mal number to a character string 
always results in a string of length 
8. (Leading zeros in the number are 
replaced by blanks and an additional 
three blanks are appended to the left 
end of the number, one of which is 
replaced by a minus sign if the number 
is negative.) 

A character string in an expression 
being assigned to a preprocessor variable 
may include preprocessor variables, ref­
erences to preprocessor procedures, con­
stants, and operators; preprocessor state­
ments cannot be included in such strings. 
Note that if the programmer desires to 
insert a multiple character operator such 
as ,= into preprocessed text, the operator 
must appear in the source program as an 
entity. For example, one cannot have a ,A 
in the source program and expect a %A='=~ 

statement to generate the operator ,= in 
the preprocessed text. The reason is that 
all replacements cause a blank to be 
appended to each end of the replacement 
value. Thus, the hypothetical case cited 
would result in ,b=b (where each Q rep­
resents a blank) being inserted into the 
preprocessed text. 

PREPROCESSOR PROCEDURES 

A preprocessor procedure is ~n internal 
function procedure that can be executed 
only at the preprocessor stage. Its syntax 
differs from other function procedures in 
that its PROCEDURE and END statements must 
each have a leading percent symbol. The 
format of a preprocessor procedure is as 
follows: 

%label: (label:]e •• PROCEDURE [(identifier 
[,identifier] ••• )] 
{CHARACTERIFIXED}; 

[label:]~ •• RETURN 
(preprocessor-expression); 

% [label:] END [label]; 

More than one RETURN statement may 
appear. The general rules governing the 
statements that can appear within a prepro­
cessor procedure are given in the descrip­
tion of the %PROCEDURE statement in Part 
11., Section J, "Statements." One thing 
should be noted, however: no statewent 
appearing within a preprocessor procedure 
can have a leading percent symbol. 

I~VOCATION OF PREPROCESSOR PROCEDURES 

A preprocessor procedure is invoked by a 
function reference in the usual sensei 
i.e., by the appearance of the entry name 
and its associated argument list Cif any) 
in an expression. The function reference 

Chapter 12: Compile-Time Facilities 157 



can appear in a preprocessor statement or 
in a nonpreprocessor statement. However, 
at least one condition must be met for the 
function to be invoked: regardless of where 
the reference appears, the function can be 
invoked if and only if the entry name used 
in that reference has been explicitly 
declared with the ENTRY and. RETURNS attri­
butes in a %DECLARE statement. This, and 
not its appearance as a label of a 
%PROCEDURE statement, is what establishes 
it as an entry name; in fact., it is not 
even necessary for the preprocessor proce­
dure to have been scanned before the ref­
erence is encountered (the procedure has 
only to be in the source program somewhere 

anywhere when the reference is 
encountered). This is the only condition 
that must be met for a preprocessor proce­
dure to be invoked by a reference in a 
preprocessor statement. 

A second condition must be met if the 
reference to the preprocessor procedure is 
made in a nonpreprocessor statement: the 
entry name used in the reference must be 
active at the time the reference is encoun­
tered. Entry names of preprocessor func­
tions are the same as preprocessor varia­
bles as far as activation and deactivation 
is concerned; i. e .... , they must be activated 
initially by a %DECLARE statement and they 
can be deactivated and reactivated thereaf­
ter by %DEACTIVATE and %ACTIVATE state­
ments. Thus, since the first condition 
requires that the entry name appear in a 
%DECLARE statement. this second condition 
would be restrictive only if the entry name 
had later appeared in a %DEACTIVATE state­
ment .. 

The value returned by a preprocessor 
function >(i.e., the value of the prepro­
cessor expression in the RETURN statement) 
always replaces the function reference and 
its associated argument list. Note that 
for a reference made in a preprocessor 
statement, the replacement is only for that 
particular execution of the statement; a 
subsequent scanning of the statement would 
again result in the invocation of the 
func1:ion. 

ARGUMENTS AND PARAMETERS FOR PREPROCESSOR 
FUNCTIONS 

The number of arguments in a prepro­
cessor function reference must always agree 
with the number of parameters accounted for 
in 1:he ENTRY attribute specified for that 
function in a %DECLARE statement. If par­
ameters are not accounted for., the prepro­
cessor assumes that the corresponding pro­
cedure has none and no arguments are 
passed. If, however, parameters are 

158 

ac.counted for, the preprocessor expects to 
find a parenthesized list of arguments~ 
separated by commas and equal in number to 
the parameters accounted for in the proce­
dur.e reference. The number of parameters 
accounted for in the ENTRY attribute and 
the actual number of parameters in the 
%PROCEDURE statement, however, need not be 
the same. The arguments are interpreted 
according to the type of statement 
(preprocessor or nonpreprocessor) in which 
the function reference appears. The argu­
ments in the argument list are evaluated 
before any match is made with the parameter 
list.. If there are more arguments than 
parameters, the excess arguments on the 
right are ignored. (Note that for a func­
tion reference argument., the function. is 
invoked and executed, even if the argument 
is ignored later.) If there are fewer 
arguments than parameters., the excess par­
ameters on the right are given values of 
zero., for FIXED parameters, or the null 
string, for CHARACTER parameters.. The 
usual rules concerning the creation. of 
dummy arguments apply if the function ref­
erence is in a preprocessor statement, but 
dummy arguments are always created if the 
function reference occurs in a nonpre~pro­
cessor statement. 

If the function reference appears in a 
no:qpreprocessor statement, the arguments 
are interpreted as character strings and 
are delimited by the appearance of a comma 
or a right parenthesis occurring outside of 
balanced parentheses. For example., the 
argument list (A(B,C).,D) has two argume~nts., 
namely., the string A(B.C) and the string D. 
Each argument is then scanned for possible 
replacement activity. Both the procedure 
name and its argument list must be found at 
one replacement level. Thus., only the 
commas and parentheses seen in the text 
being scanned when the procedure name~ is 
encountered are considered in this context. 
After all replacements have been made~ each 
resulting argument is converted to the type 
indicated by the corresponding parameter 
attribute in the ENTRY attribute declara­
tion for the function entry name (i.e.~ the 
ENTRY attribute declaration in the %DECLARE 
statement). No conversion is performe~d if 
a corresponding parameter attribute is not 
given in the ENTRY declaration. (The ENTRY 
attribute is discussed under "The %DECLARE 
statement" in Part II., Section J., 
"Statements.") 

If the function reference appears in a 
preprocessor statement., the arguments: are 
associated with the parameters in the nor­
mal fashion.. If there is a disagreement., 
the arguments are converted to the at.tri­
butes of the corresponding paramete.rs as 
specified in the ENTRY attribute of the 
%DECLARE statement for the entry name. 
Only preprocessor variables, character-



string constants, and fixed-point decimal 
constants can be passed to a preprocessor 
function invoked by a preprocE~ssor state­
ment. 

Returned Value 

The value returned by a preprocessor 
function to the point of invocation is 
represented by the preprocessor expression 
in the RETURN statement of that function. 
Before being returned, this value is con­
verted (if necessary) to the attribute 
(CHARACTER or FIXED) specified in the 
function' s %PROCEDURE statE~ment. The 
attribute of the retur·ned value must be 
consistent with the attribute specified 
with the RETURNS attribute in the ENTRY 
attribute specification of t.he %DECLARE 
statement for the entry name. If the point 
of invocat·ion is in a nonpreprocessor 
statement, the value is scanned for 
replacement activity after it has replaced 
'the function reference. No1:e that the 
replacement of a function reference in a 
nonpreprocessor statement involves sur­
rounding the replacement value by blanks 
(one blank on each end) in the same way 
that it does for the replac~~ment of an 
identifier by the value of the preprocessor 
variable. Following are examples of 
preprocessor functions. 

In the statements below, VALUE is a 
preprocessor function procedure that 
returns a character string of the form 
arg1(arg2), where arg1 and a~ represent 
the arguments that have been passed to the 
function. 

Assume that the source program contains 
the following sequence: 

%DECLARE A CHARACTER, 
VALUE ENTRY (CHARACTER., FIXED) 

RETURNS(CHARACTER); 
DECLARE (Z(10), Q) FIXED; 
%A=' Z' ; 
%VALUE: PROCEDURE (ARG1.,ARG2) 

CHARACTER; 
DECLARE ARG1 CHARACTER, 

ARG2 FIXED; 
RETURN (ARG11 I ' (" II ARG211" ) I ) ; 

%END VALUE; 
Q = 6+VALUE(A,3); 

When the scan encounters the last state­
ment, A is active and is thus eligible for 
replacement. Since VALUE is also active" 
the reference to it in the last statement 
causes the preprocessor to invoke the pre­
processor function procedure lOf that name. 
However, before the arguments ,A and 3 are 
passed to VALUE., A is replaced by its value 
Z (assigned to A in a previous assignment 

statement), and 3 is converted to fixed­
point to conform to the attribute of its 
corresponding parameter. VALUE then 
performs a concatenation of these arguments 
and the parentheses and returns the conca­
tenated value, that is, the string Z (3). 
to the point of invocation. The returned 
value replaces the function reference and 
the result is inserted into the prepro­
cessed text. Thus, the preprocessed text 
generated by the above sequence is as 
follows (replacement blanks are not shown): 

DECLARE (Z(10),Q) FIXED; 
Q = 6+Z(3); 

The preprocessor function procedure GEN 
defined in the following example can gener­
ate GENERIC declarations for up to 99 
parameters. Only four are generated in 
this example, however. 

Assume that the source program contains 
the following sequence: 

%DCL GEN ENTRY (CHAR, FIXED, FIXED" 
CHAR) RETURNS (CHAR); 

DCL A GEN (A, 2, 5, FIXED), •• '. ; 

%GEN: PROC (NAME."LOW,HIGH..ATTR) 
CHAR; 

DCL (NAME" SUFFIX, A'I'TR, STRING) 
CHAR, (LOW, HIGa, I" J) FIXED; 

STRING='GENERIC('; 
DO I=LOW TO HIGH; /* ENTRY DCL 

LOOP */ 
IF 1>9 

THEN SUFFIX=SUBSTR(I" 7, 2); 
/* 2 DIG1T*/ 

ELSE SUFFIX=SUBSTR(I, 8, 1); 
/*1 DIGIT*/ 

STRING=STRINGIINAMEIISUFFIXII 
• ENTRY (Ii 

DO J=l TO Ii /* PAR ATTR LIST*/ 
STRING=STRINGI IATTR; 
IF J<I /* PARAM ATTR 

SEPARATOR */ 
THEN STRING=STRING] I','; 
ELSE STRING=STRINGII')'; 

END; 
IF I<HIGH /* ENTRY DCL 

SEPARATOR*/ 
THEN STRING=STRINGII-,'; 
ELSE STRING=STR~NGII')'; 

END; 
RETURN (STRING); 

% END; 

Chapter 12: compile-Time Facilities 159 



The following is generated into 
preprocessed text: 

DCL A GENERIC(A2 ENTRY (FIXED,FIXED), 
A3 ENTRY (FIXED" FIXED, 

FIXED) , 
A4 ENTRY (FIXED, FIXED, 

FIXED, FIXED)., 
A5 ENTRY (FIXEDn FIXED, 

FIXEDn FIXED, FIXED», 

Note that the above example refers to 
the built-in function SUBSTR. It is the 
only built-in function that can be invoked 
at the preprocessor stage. It can be 
invoked by a reference in either a prepro­
cessor or a nonpreprocessor statement. 

Use of the ~UBSTR Built-In Function 

A reference to SUBSTR in a nonpreproces­
sor statement is executed by the prepro­
cessor only if the name SUBSTR is active. 
The built-in function SUBSTR can be acti­
vated only by a %ACTIVATE statement. If 
the id:entifier SUBSTR is given the ENTRY 
attribute in a %DECLARE statement, it is 
assumed to refer to a user-defined prepro­
cessor procedure of that name. The argu­
ments in a nonpreprocessor statement ref­
erence to the built-in function SUBSTR are 
interpreted in the same way that arguments 
in any nonpreprocessor statement reference 
to a preprocessor function are interpreted, 
that is, as character strings. 

A preprocessor statement reference to 
SUBs'rR is always valid. 

THE ~RgP~9cESSOR DO-GROUP 

The preprocessor DO-group can provide 
iterative execution of the preprocessor 
statements contained within the group. The 
formdt of the preprocessor DO-group is as 
follows: 

% [label:] ••• DO [i=ml[T
B

Oy m2 [BY m3]]; 
m3[TO m2] 

%[label:J ••• END[labeIJ; 

In the above format., .! must be a prepro­
cessor variable and ml, m2, and m3 must be 
preprocessor expressIonS. Thelabel that 
can follow the keyword END must be one of 
the labels preceding the keyword DO. Pre­
prOCE~S$Or DO-groups may be nested and mul­
tiple closure is allowed. 

160 

Control cannot be transferred into a 
preprocessor DO-group specifying iteration, 
except by way of a return from a pr,epro­
cessor procedure invoked from within the 
group. 

Both preprocessor statements and text 
other than preprocessor statements can 
appear within a preprocessor DO-group. 
However, only the preprocessor statements 
are executed; nonpreprocessor statements 
are scanned but only for possible replace­
ment acti vi ty .• 

Noniterative preprocessor DO-groups are 
useful as THEN or ELSE clauses of %IF 
statements. 

The expansion of a preprocessor DO-group 
is the same as that shown under the 
nonpreprocessor DO statement in Part II, 
Section J, "Statements." 

The example below results in the same 
expansion generated for the example of 
preprocessor loop expansion in the section 
"Rescanning and Replacement" in this chap­
ter: 

%DECLARE I FIXED; 
%00 1=1 TO 10; 
Z(I)=X(I)+Y(I)i 
%ENDi 
%DEACTIVATE Ii 

The second example under "Returned 
Value" shows how preprocessor DO-groups can 
be used within a preprocessor procedure 
(percent symbols must be omitted, of 
course) • 

INCLUSION OF EXTERNAL TEXT 

strings of external text can be incorpo­
rated into the source program at the pre­
processor stage by use of the %INCLUDE 
statement. Such text, once incorporated., 
is called included text and may consist of 
both preprocessor and nonpreprocessor 
statements. Hence, included text can con­
tribute to the preprocessed text being 
formed. 

The general format and the rules govern­
ing the use of the %INCLUDE statement are 
presented in Part II, Section J, 
"Statements." 

The text specified by a %INCLUDE st.ate­
ment is incorporated into the source pro­
gram immediately after the point at Vj'hich 
the statement is executed. The scan there­
fore continues with the first charaeter in 
the included text. All preprocessor state­
ments in this text are executed and 
replacements are made where required. 



Preprocessor procedures whose declara­
tions appear in external text can be 
invoked only after that extE~rnal text 
becomes included text. The result of a 
preprocessor procedure reference encoun­
tered before that procedure has been incor­
porated into the source program is unde­
fined. 

Assume that PAYRL is a member of the 
data set SYSLIB and contains the following 
structure declaration: 

DECLARE 1 PAYROLL,. 
2 NAME. 

3 LAST CHARACTER (30) VARYING, 
3 FIRST CHARACTER (15)1 VARYING, 
3 MIDDLE CHARACTE,R (3) VARYING, 

2 MAN NO FIXED DECIMAL (6.0), 
3 REGLR FIXED DECIMAL (8,2), 
3 OVERTIM FIXED DECIMAL (8.2), 

2 RATE,. 
3 REGLAR FIXED DECII-iAIA (8,2). 
3 OVERTIME FIXED DEClflmL (8, 2) ; 

Then the following sequence of prepro­
cessor statements: 

%DECLARE PAYROLL CHARACTER;' 
%PAYROLL='CUM PAY'; 
%INCLUDE PAYRL; 
%DEACTIVATE PAYROLL; 
%INCLUDE PAYRL; 

will generate two identical structure dec­
larations into the preprocessed text. the 
only diffe:rence being their names," CUM_PAY 
and PAYROLL. Execution of the first 
%INCLUDE statement causes the text in PAYRL 
1:0 be incorporated into the source program. 
When the scan encounters the identifier 
PAYROLL in this included text. it replaces 
it by the current value of the active 
preprocessor variable PAYROLL. namely. 
CUM_PAY. Further scanning of t:he included 
1:ext results in no additional rE~placements. 
'J?he scan then encounters the %DEACTIVATE 
statement. Execution of this statement 
deactivates the preprocessor variable PAY­
ROLL and makes the identifier ineligible 
for replacement. When the second %INCLUDE 
statement is executed, the tE!xt in PAYRL 
once again is incorporated into the source 
program. This time, however, scanning of 
the included text,results in no replace­
ments whatsoever, because none of the iden-
1:ifiers in the included text are active. 
Thus. two structure declarations, differing 
in name only.. are inserted into pre­
processed text. 

pREPROCESSOR STATEMENTS 

This sec,tion lists those stat:ements that 
can be used at the preprocessor stage and 

briefly discusses those preprocessor state­
ments that have not yet been explained in 
this chapter. All of the preprocessor 
statement.s, their formats, and the rules 
governing their use are described in the 
section "Preprocessor statements" in Part 
II, Section J, "statements." 

But first. some unrelated comments per­
taining to preprocessor statements in gen­
eral should be made: 

1. Some keywords appearing in prepro­
cessor statements can be abbreviated 
as shown in Part II. Section C, 
"Keywords and Abbreviations." 

2. Comments can appear within prepro­
cessor statements wherever blanks can 
appear; however. such comments are 
never inserted into preprocessed text. 

3. All preprocessor statements can be 
labeled. Such labels must appear 
immediately following the, % (only 
blanks can intervene). All labels 
must be unsubscripted statement label 
constants. (Labels on %DECLARE state­
ments are ignored.) 

The functions performed by the following 
preprocessor statements have already been 
discussed in this chapter: 

% ACTIVATE 
% DEACTIVATE 
% DECLARE 
% DO 
% END 
% INCLUDE 
% PROCEDURE 
RETURN 

Note that the preprocessor RETURN state­
ment cannot have a leading % because it can 
be used only within a preprocessor proce­
dure, and all percent symbols must be 
omitted therein. 

Four other statements can be executed at 
the preprocessor stage: 

% assignment 
% GO '1'0 
% IF 
% null 

The preprocessor assignment statement is 
used to evaluate preprocessor expressions 
and to assign the result to a preprocessor 
variable. All of the examples shown in 
this section make use of this statement. 

The % GO TO statement causes the prepro­
cessor to interrupt its sequential scanning 
and continue it elsewhere in the source 
program, specifically at the label speci-

Chapter 12: Compile-Time Facilities 161 



fied in the % GO TO. Thus, it can be 
useful for rescanning or avoiding text. 

The % IF statement can be used to 
control the sequence of the scan according 
to the value of a preprocessor expression. 
It must have a THEN clause and it can have 
an ELSE clause. Each clause, as well as 
each preprocessor statement within the 
clause, must be preceded by a %. Nesting 
of ~IF statements is allowed and must 

162 

follow the same rules that apply fOJC the 
nesting of nonpreprocessor IF statements. 

The preprocessor null statement is the 
same as a nonpreprocessor null statement 
(except for the I). It can be used to 
provide transfer targ~ts for %GO TO state­
ments or it can be used l.n nested %IF 
statements to balance the %ELSE clauses. 
For example, %ELSE%~ is a null ELSE clause. 



Form C28-8201-1, Page Revised by TNL N33-6008, 5/1/68 

In PL/I there are often several ways of 
producing a given effect, but one method is 
not necessarily as efficien1:, from a parti­
cular point of view, as another. For 
exampl e, eff icient use of s1:orage sometimes 
affects the efficiency of the object code, 
and vice versa. The efficiency of the 
object code is also dependent on such 
considerations as the number of conversions 
required and the program structure. 

other factors that can improve perfor­
mance are the use of based storage and 
multitasking facilities. These subjects 
are discussed separately in Chapters 14 and 
15. 

EFFICIENT PERFORMANCE AND D.l!~TA CONVERSION 

One . of the features of PL/I is thE~ 
variety of conversions pE!rmitted within 
expressions. It must, however, be appre-· 
ciat ed that ,,.,henever converso ions occur a t~ 
execution time, there is liable to be some 
loss of efficiency. The amount of time 
taken to'perform any particular conversion 
will obviously vary widely and will depend 
upon the implementation. 

Some general questions that a programmer 
should ask when concerned with the effi­
ciency of a particular statement are: 

1. Is a conversion implied? For example, 
a decimal constant subscript implies 
conversion to binary before it is 
used. 

2. will the conversion be performed at 
compile time? 

3. Could the conversion be avoided? 

4. Could it be moved outside a loop? 

The answers to the first two questions 
depend upon the implementation. For furth­
er details, see IBM System/360 Operating 
£ystem: _P~L~/~I~(F~) ___ P_r_o_g~r_ammer's Guide, Form 
C2 8- 6 5 94. 

ADJUSTABLE BOUNDS AND STRING LENGTHS 

While the use of expressions for bounds 
of array dimensions and lengths of strings 
may result in much more effective use of 

CHAPTER 13: EFFICIENT PERFORMANCE 

storage, it will also usually result in 
rather slower object code, since there is 
less opportunity for performing address 
calculations at compile time. The degree 
to which this affects the speed of the 
program will, of course, depend upon the 
program and the implementation. 

VARYING STRING LENGTHS 

VARYING strings do not result in an 
economy of storage in the F-level implemen­
tation, since storage is always allocated 
to the maximum length specified for a 
string. They should, therefore, be used 
only when required by the logic of the 
program. 

BLOCKS AND GROUPS 

A DO-group has a much sirrpler function 
than a begin block, since it has no effect 
upon the scope of names, the allocation of 
storage, and the handling of interrupts. 
Therefore, DO-groups shoulj be used in 
preference to begin blocks whenever possi­
ble. In the F-Ievel i~~lementation, a 
begin block requires extra coding for a 
prologue and an epilogue, while a nonitera­
tive DO-group does not usually require 
extra coding to be generated. 

THE ALIGNED AND UN ELIGNED ATTRIBUTES 

When a programmer is dealing with many 
data elements, he will usually have to 
choose between economy of storage and speed 
of execution. The ALIGNE~ and UNALIGNED 
attributes allow him to s~ecify his choice 
for element or aggregate variables. 

The ALIGNED attribute specifies that the 
implementation is free to choose the boun­
daries on which data ite~s are to be 
aligned. This makes it possible for the 
implementation to speed up the execution of 
the program at some cost in data storage. 
In System/360 implementations, ALIGNED bit 
strings begin on byte boundaries. Since 
System/360 has character-hanjling instruc­
tions, there is no need to align character 
strinqs, and so the attribute is effective­
ly ignored (except that it still prohibits 
overlay defining). 

Chapter 13: Efficient PErtormance 163 



Form C28-8201-1, Page Revised by TNL N33-6008. 5/1/68 

The effect of the UNALIGNED attribute in 
System/3'60 implementations is that data 
elements are stored in contiguous posi­
tions. Character-string items and word and 
doubleword items are mapped on the next 
available byte boundary; bit-string items 
are mapped on the next available bit. This 
has two ~ain consequences; the most effi­
cient tise is made of storage, and the 
effect of defining a structure on a 
characte:r- or bit-string element variable 
is predictable. 

Either attribute applied to an array or 
structure affects the contained members, 
except those members or elements that are 
explicitly declared otherwise. Application 
of either attribute to a contained array or 
structure overrides an ALIGNED or UNALIGNED 
attribute that has been declared for the 
containing structure. 

164 

THE USE OF THE PICTURE ATTRIEUTE 

A numeric character data item is an 
entirely different thing from a coded 
arithmetic item. It is always stored in 
character form, and it may contain editing 
characters. Arithmetic operations with 
numeric character fields always imply con­
version. and the conversicn may not be 
trivial. 

The principal use of picture characters 
in PL/I is for editing, and not for com~u­
tation. If the values are required more 
than once for computation, it is usually 
advisable to assign them to a temporary 
coded arithmetic variable. 



The purpose of this chapt,er is to des­
cribe the PL/I based storage facilities 
currently implemented by the F Compiler" 
and to give some indication of their use. 

storage allocation is the association of 
the requisite amount of storage with ~ 
variable; it is effectively a two-way proc­
ess: the storage is associated with a 
variable, and the variable is associated 
with the storage. Allocation will be made 
either statically (that is~ before the 
program is executed), or dynamically (that 
is, during execution)b A statically allo­
cated variable remains allocated for the 
duration of the program, but a dynamically 
allocated variable may relinquish its stor-· 
age before the program has finished. 

The storage class attributes determine 
which kind of allocation i.s to apply to a 
given variable. STATIC specifies that. 
allocation will be made sta.tically; AUTO­
MATIC, CONTROLLED, and BASED each specify a, 
type of dynamic allocation. Automatic 
storage is allocated automatically on entry 
to the block in which t,he variable is 
declared, and freed automatically when the~ 
block is terminated; once freed~ the value 
of the variable is lost.. Controlled stor­
age allocation is under the direct control 
of the programmer, using the· ALLOCATE and 
FREE statements. Based storage allocation 
is also under the direct control of the 
programmer., but with some essential differ­
ences f:r:om controlled allocation. 

When the programmer reallocates a con­
trolled variable without first freeing it# 
the value of the earlier allocation is not 
lost. All values are held# but in such a 
way that only one value is available for 
use at a given time. Effectively, the 
values are stacked. On the other hand" 
when a based variable is reallocated with­
out first being freed# all the values are 
not only held. but are also available for 
use at any time,. 

Whenever a based variable is allocated" 
a pointer variable is set to a value 
relating to the address of the allocation; 
by including this pointer variable in a 
reference to the based variable. the pro­
grammer can distingu.ish between different 
allocations of one based variable. In 
other words" reference to the based varia-

CHAPTER 14: BASED STORAGE AND LIST PROCESSING 

ble can be qualified by a pointer value. 
The pointer variable is one of two types of 
locator variable. The o,ther type, the 
offset variable, is discussed later.' 

The based variable can be a structure 
containing a locator for another alloca­
tion, which in turn can contain a locator 
for yet another allocation, and so on. 
This is the fundamental concept underlying 
PL/I list processing; different allocations 
can be chained together in a specific 
order. In fact# they can be chained 
together in several different orders at 
once by using several different sets of 
locators. Thus. for example, it is possi­
ble to sort a list without duplicating the 
list items or moving them around; any 
sequence can be specified by a set of 
locators. This facility can' also be used 
to chain like items together without neces­
sarily implying a particular order. 

A list or chain of associated based 
variables could be scattered over a large 
area of storage, linked only by pointers. 
However. to facilitate input/output and 
assig,nment, the based variables can be 
collected together into a reserved area. 
The relative locations of the items--can 
then be established. The reason for this 
provision is that the value of a pointer is 
absolute and refers to only one allocation 
of a variable; for example, if a list of 
associated based structures containing 
pointers.were written out and later read in 
again, this would constitute a realloca­
tion~ within which the pointer values would 
be meaningless because the addresses would 
be different. However., another kind of 
locator variable" called an off set varia­
bl~L is available" which establ ishes the 
location of an item relative to the start 
of an area. Because it is relative l the 
value of an offset variable retains its 
meaning across input/output and assignment. 

As well as providing a list processing 
facility., based storage allows the program­
mer to make more efficient use of record­
oriented input/output. This type of 
input/output normally involves the use of 
intermediate buffers and work areas; but a 
based variable can be virtually overlaid on 
a buffer, and processing can take place 
within the buffer. Several separate based 
variables can be effectively overlaid on 
the same buffer at once; this allows easy 
handling of files containing different 
types of record. (The type of record would 
be designated within the record itself; the 
correct based variable could then be 

Chapter 14: Based Storage and List Processing 165 



determined from a test made after the 
record has been read into the buffer.) 
This type of input/output using based vari­
ables is the PL/I form of locate mode 
input/output. 

BASED V.ARIABLES AND POINTER VARIABLES 

A based variable is a variable that can 
be alloca'tecl in more than one location in 
storage, thus simultaneously representing a 
number of values" any of which can be 
retrieved by specifying a pointer variable 
associated with the relevant storage loca­
tion. 

When a based variable is declared, it is 
associated with a pointer variable. The 
form of the declaration is: 

identifier BASED (pointer-variable) 

DECLARE X BASED (P); 

This declaration also contextually declares 
P to be a pointer variable unless an 
explicit declaration for P exists. Pointer 
variables can be declared explicitly, with 
the following format: 

identifier POINTER 

When an unqualified reference is made to 
the based variable, the value of the poin­
ter variable included in the declaration 
will be used to determine which allocation 
is concerned. For example: 

x = X + 1; 

In this statement, the pointer variable 
used to determine the location of X will in 
both cases be P; that is, the references to 
X are implicitly gualified by the pointer 
P. Note, however. that X could have been 
explici.tly qualified by other pointer vari­
ables. Explicit pointer qualification is 
discussed below. 

POINTER QUALIFICATION 

RefE~rence to a based variable can be 
explicitly-~alified by means of the fol­
lowing format: 

pointer-variable -> based-variable 

166 

The pointer variable must be nei the~r 
subscripted nor based; a qualified name is 
allowed. For example: 

P -> X = Q -> X: 

This statement means simply that the value 
of one allocation of X is to be assigned to 
another allocation of X; the X allocated j~n 
the location associated with P is to be 
made equal to the X allocated in the 
location associated with Q. The appearance 
of P and Q in the statement contextually 
declares them as pointer variables, unless 
explicit declarations exist for P and Q. 

The arrow, or pointer qualifier, is a 
composite symbol made up of a minus siqn 
followed by a greater-than sign. Its equi­
valent in the 48..!character set is PT. It 
does not signify an operation: its function 
is similar to that of the period symbol in 
an ordinary qualified name. 

RULES AND RESTRICTIONS 

Full details of the rules governing 
based variables and pointer variables are 
given under the respective attributes in 
Section L, Attributes. However, the fol­
lowing points should be carefully noted: 

1. Based variables may not have the 
EXTERNAL, VARYING, or INITIAL attri­
butes. 

2. Based label arrays cannot be initial­
ized by subscripted label prefixes. 

3. Based variables cannot be checked by 
means of a CHECK condition prefix. 

4. Based variables cannot be transmitted 
using data-directed input/output. 

5. The pointer variable qualifying a 
based variable <whether implicitly or 
explicitly) cannot itself be based, 
nor can it be subscripted; it must be 
an element variable, or an element of 
a structure; a qualified name is 
allowed. <Arrays of pointer variables 
are allowed, but the value of an 
element of such an array would have to 
be assigned to an element pointer 
variable before it could be used to 
qualify a based reference.) 



6. Pointer variables cannot be operands 
of any operators except the comparison 
operators = and ,=. The value of a 
pointer variable can bl~ compared with 
that of any other locator variable" or 
with a locator value returned by a 
function .. 

7. Assignment of a pointer variable valuE~ 
can be made only to another locator 
variable,. 

8. Pointer variables carulot be transmit­
ted using STREAM input/output. 

9. The pointer variable dE~clared with a 
based variable is not given the value 
of the NULL built-in function by the 
declaration. 

10. Only the INITIAL CAr~L form of the 
INITIAL attribute is allowed in poin­
ter declarations. 

Note: The allocation of a based variable 
will always take at least Edght bytes of 
storage" even if the basE~d variable is a 
bit-string variable of lengt:h 1. 

Pointer Defining 

A pointer variable can be defined on 
another pointer variable using overlay or 
correspondence defining,. 

SELF-DEFINING DATA 

A self-defining record is one which 
contains, within itself, information about 
its own fields. such as the length of a 
string. PL/I allows the programmer to 
declare a based structure in a way that is 
designed to help manipulate such data. ThE! 
F Compiler supports this to a limited 
extent: a based structure can be declared 
to have either one adj ustabl e array bound 
or one adjustable string IEmgth, governed 
by a 'variable contained wi thin the struc-' 
ture itself. This variable is given a 
value when the structure is allocated; the! 
value is assigned from a variable outside 
the structure,. Note that~ the variable! 
outside the structure is used only on 
allocation (either by an ALI,OCATE statement, 
or by a LOCATE statement); for any other 
reference to the structure, the variable! 
inside ,the structure will apply. 

The REFER Option 

The REFER option is used in the declara­
tion of a based structure to specify that, 
on allocation of the structure, the value 
of a variable outside the struct~re is to 
be assigned to an element of the structure, 
and that this value will be the length or 
bound of another element of the same allo­
cation of the structure. 

The REFER option has the following gen­
eral form: 

element-variable REFER (element-variable) 

The element variables must be unsubscripted 
fixed binary variables of default precision 
(15~0). The variable on the left~hand side 
of the keyword must not belong to the 
structure; it can be qualified or pointer­
qualified. The variable on the right-hand 
side must belong to the structure. 

For example: 

DCL 1 STR BASED (P)~ 
2 Y FIXED BINARY, 
2 Z (B.X REFER (Y»; 

This declaration specifies that the based 
structure STR will consist of an array Z 
and an element Y; when STR is allocated, 
the upper bound of Z is set equal to the 
current value of B.X" and this value is 
assigned to Y. For any other reference to 
the variable, the bound value is taken from 
Y. 

Not~ that this option can be used only 
once 1n a declaration. If it is used to 
specify an array bound, the bound must be 
the upper bound of the leading dimension of 
the element with which it is used, and the 
dimension must belong to the last element 
in the structure declaration, or to a minor 
structure containing the last element. 

For exampl e : 

DCL 1 STR BASED (P), 
2 A, 

3 B FIXED BINARY, 
3 C CHARACTER ( 20) " 

2 D, 
3 E FIXED BINARY, 
3 F (0: X REFER (E), 0: 9) i 

In this declaration, the REFER option is 
used to specify an adjustable upper bound 
for the array Fi in this case, it could not 
have appeared in any place other than that 
shown. 

Note: Since the adjustable bound must be 
part of the leading dimension of the 
element with which it is declared, it is 

Chapt,er 14: Based Storage and List Processing 167 



LOCATE WITH AND WITHOUT SET 

The I~OCATE statement has the following 
basic format: 

LOCATE based-variable FILE (file-name) 
[SET (pointer-variable)]; 

The pointer variable can be any variable 
that represents a single pointer value. 

This statement allocates storage, in an 
output buffer, for a based variable. The 
action is similar to that of the READ and 
SET, in that the based variable is, in 
effect, overlaid on the buffer. In this 
case, however. data is moved (by subsequent 
statements) into the output buffer in such 

a way that the fields of the record are 
located relative to the elements of the 
based variable; the record is automatically 
written onto the specified file immediately 
before execution of the next WRITE, LOCATE, 
or CLOSE statement (or implicit close 
operation) for the file. This means that 
the programmer must assign values to the 
variable after allocation and before the 
next input/output operation on the file. 

Again, a pointer variable is set to 
point to the buffer. This pointer variable 
will be that specified in the SET option, 
if the option appears; if the option is 
omitted, the pointer variable that was 
declared with the specified based variable 
is set. 

Chapb~r 14: Based Storage and List Processing 168.1 



not possible for that element to inherit a 
dimension from a higher level. (Inherited 
dimensions would automatically become the 
leading dimensions of the lower-level mem­
ber.) 

For exampl e: 

DCL 1 STR BASED (P), 
2 D (10), 

3 E (50), 
3 F (50); 

In this declaration, both E and F would 
have implied bounds of 1:10, inherited from 
D; the REFER option could not have been 
used with them but could have been used 
with D (in place of 10). 

If the REFER option is used to specify a 
string length, that string must be an 
element variable, and it must be the last 
element variable in the structure declara­
tion. 

If the element variable on 
hand side of REFER varies 
program then: 

the right­
during the 

1. The structure must not be freed until 
the element variable is restored to 
the value it had when allocated; 

2. The structure must not be written out 
while the element variable has a value 
greater than the value with which it 
was allocated. 

3. The structure may be written out when 
the element variable has a value equal 
to or less than the value it had when 
allocated. The number of elements or 
the string length actually written 
will be that indicated by the ~urre~~ 
value of the variable. 

For example~ 

DCL 1 REC BASED (P), 
2 N, 
2 A (M REFER (N», 

M INITIAL (100); 

ALLOCATE REC; 

N = 86; 

WRITE FILE (X) FROM (REe); 

In this example, 86 elements of REC are 
written. It would be an error to attempt 
to free REC at this point, since N must be 
restored to the value it had when allocated 
(i.e. 100), If N was assigned a value 
greater than 100. an error would occur when 
the WRITE statement was encountered. 

168 

POINTER SETTING, BASED STORAGE ALLOCATION,_ 
AND INPUT/OUTPUT 

Before a reference can be made to a 
based variable, the qualifying pointE~r 
variable must have a value. This value can 
be set in any of five different ways: 

1. With the SET option of a READ statE~­
ment; 

2. By a LOCATE statement; 

3. By an ALLOCATE statement; 

4. By assignment of the value of anothE~r 
locator variable. or a locator value 
returned by a user-defined function; 

5. By assignment of an ADDR built-in 
function value. 

Note that the actual value is in all 
cases set by the implementation. The pro­
grammer has no direct control over address­
ing; he cannot, for example, assign a 
constant to a pointer variable. 

A special form of assignment to a poin­
ter variable is made using the NULL buiI1:.­
in function. This assigns a special value 
to the pointer, that cannot be related 1:'0 

any address; its purpose is to give a 
positive indication that the pointer dOE~s 
not currently identify any allocation of a 
variable. 

READ WITH SET 

The READ statement with the SET option 
has the following basic format: 

READ FILE (file-name) 
SET (pointer-variable); 

The pointer variable can be any variable 
that represents a single pointer valuE~. 
This form of the READ statement causes a 
record to be read into a buffer and the 
specified pointer variable to be set to 
point to the buffer. A based variable 
reference, qualif ied by the same pointeJ~, 
will then relate to the fields of the 
record. 

A based variable used to describe a 
record in a buffer is effectively overlaid 
on the buffer. The result of a reference 
to an element of the based variable is the 
same as it would be if the record had be.~n 
read directly into the structure described. 



ALLOCATE WITH AND WITHOUT SE'I' 

The ALLOCATE statement, as used with 
based variables, has the following basic 
format: 

ALLOCATE based-variable [IN{area-variable)] 
[SET(pointer-variable)]; 

The effect of this statement is similar 
to that of the LOCATE statemE~nt, in that it 
allocates storage for the based variable 
and sets a pointer to point to the alloca­
tion. In this case, however,no output is 
implied; the storage is not allocated in a 
buffer. If the SET option appears, the 
specified pointer variable is set; if the 
option is omitted, the poi.nter variable 
that was declared with the specified based 
variable is set. 

The IN option, if included, specifies 
that the allocation is to be made within 
the reserved area of storage named. Areas 
are discussed in detail later in this 
chapter. The area variablE~ can be any 
variable that represents a si.ngle area; the 
pointer variable can be any variable that 
represents a single pointer value. 

POINTER ASSIGNMENT 

The value of a pointer variable may be 
assigned to another pointer variable in a 
simple assignment statement. Assume that P 
and Q are pointer variables and that P has 
a valid pointer value. 

Q = P; 

Tbis statement specifies that Q is to be 
set to point to the same location that P 
points to. A reference to a based variable 
qualified by Q will then be effectively 
ident~ical to a reference to the same based 
variable qualified by P. For example 
(assuming that X is a based variable asso­
ciated with the pointer P by declaration), 
the references X, P -> X, and Q -> X will 
be ioentical in effect. 

Th~~~~B_ Built-in Function 

The value returned by thE~ ADDR built-in 
function is a valid pointE!r value that 
specifies the location of a data variable 
named as the argument of the fUnction 
reference. For example: 

P = ADDR (X); 

Execution of th1s staterrent will give 
the pointer variable P a value so that it 
points to the location of the data variable 
X. The value of an ADDR function reference 
can be assigned to a locator variable only. 

The argument can be a variable that 
represents an element, an array, a struc­
ture~ an area, an element of an array, a 
minor structure, or an elerrent of a struc­
ture. The value returned is always a 
pointer value. Note that if a based varia­
ble has not been allocated, its ADDR is 
undefined; however, the ADDR value of an 
unallocated controlled variable is null. 

The ADDR of an element of an array or 
structure returns a value that relates to 
the address of the element. However, a 
pointer qualifying a subscripted or quali­
fied variable is assumed to point to the 
array or structure in which the element is 
contained, not to the element itself. For 
example: 

DCL A (10,10) CHARACTER (20) BASED (P), 
B CHARACTER (20) BASED (Q), 
C (10 r l0) CHARACTER (20); 

Given this declaration, if ADDR (C) is 
assigned to P, then A (1,1) will refer to 
the first element of C. If ADDR (C(2,3» 
is assigned to Q, then B is effectively 
overlaid on the third element in the second 
row of C. (This technique, like the other 
overlaying techniques made fossible by the 
use of based variables and pointers, is 
extremely powerful; however, such tech­
niques should be used only with the under­
standing that the compiler has no rreans of 
recognizing incompatibilities between the 
attributes of the based variable and the 
attributes of the variable being effective­
ly over laid. ) 

Since ADDR returns a single value only, 
the elements of an array or structure 
argument must occupy sUGcessive locations 
in storage. For example: 

D Cl, A ( 1 0 , 10) ; 

For the array declarei above, ADDR would 
not be permitte0 for the cross-section 
A(*,10), because each element in the cross­
section would belong to a different row, 
and would be separated from its column 
neighbor by other elements in its row. 
ADDR would, however, be perrr.itted for the 
cross-section A(10,*); this cross-section 
consists of one entire row whose elerrents 
occupy successive locations in storage. 

Note also that since the F Compiler 
implementation of based storage does not 
support bit addressing, the argument to the 
ADDR built-in function must be aligned on a 
byte (or higher) boundary. In·the case of 

Chapter 14: Based Storage and List Processing 169 



Form C28-8201-1, Page Revised by TNL N33-6008, 5/1/68 

bit strings belonging to unaligne!9 arrays 
and structures, therefore, ADDR should be 
used only for the level 1 name or for minor 
structures that are not composed entirely 
of bit strings. 

The NULL built-in function requires no 
arguwents; it returns a null pointer value 
(that is, a special pointer value that 
cannct relate to any addrpss in storage). 
Its purpose is to provide a positive 
indicatiion that a pointer does not current­
ly ioen~ify any allocation of a variable. 
Examples of its use include the following: 

1. If NULL is assigned to a pointer at 
the start of a program, a later test 
of t:he pointer aga inst NULL wi 11 show 
wh~ther a based variable qualified by 
the pointer has been allocated or not. 

2. A terminal pointer in a chain can be 
set to the value of NULL so that the 
beginning or end of the chain can be 
t:"ecognized. 

XBEEI~G BASED STORAGE 

The storage that has been associated 
with a based variable by one of the alloca­
tion wethods described above can be freed 
explicitly or, in certain cases, implicit­
ly, fo~ possible re-use. Once the storage 
for a based variable has been freed, a 
reference to the associated pointer becomes 
inval id,. 

THE FctEE STATEMENT 

rrh,::; FREE statement, as applied to based 
variables, has the following basic format: 

FHEE qualified-reference 
[IN(area-variable)] 
[,qualified-reference 
[IN(area-variable)]] •.. ; 

where "qualified-reference" is defined as: 

[po;inter-variable ->] based-variable 

This statement frees the storage asso­
ciated with one or more allocations of one 
or more specified based variables. The 
allocations are identified by the current 
values of the specified pointers. If a 
pointer is omitted, it is assumed to be 

170 

that declare1 with the based variable con­
cerned. 

IN (area-variable) must be specified if 
the allocation was made within an area; 
otherwise, it must be omitted. Areas are 
discussed later in this cha~ter. 

The amount of storage freed depends on 
the attributes of the based variable g 

inclujing the current value cf any adjusta­
ble bound or length specification. The 
programmer is responsible fer ensuring ~hat 
the amount f!:"eeJ. coincides with the amount 
originally allocated. For example: 

DECLARE 1 S BASED (P), 
2 N, 
2 X(M REFER (N»; 

M = 50: 
ALLOCATE S: 
/*X HAS 50 ELEMENTS AND THE VALUE OF N IS 
SET TO 50*/ 

M = 80: /*THIS HAS NO EFF~CT ON 
CURRENT ALLOCATION OF S*/ 
P -> N = 10; 
FREE S; 
/*THIS IS IN ERROR BECAUSE S~ORAGE 

VALENT TO 40 ELEMENTS OF X IS 
UNFREED*/ 

THE 

EQUI­
LEFT 

Based storage allocated in a task cannot 
be freed by a FREE statement in a descen­
dant task, unless it has teen allocated 
within an area belonging to the descendant 
task (that is, an area that was allocated 
in the nescendant task). 

It is an error to attemrt tn free based 
variables that have not been allocated. 

IMPLICIT FREEING 

In certain circumstances, based storage 
is freed without the use of an explicit 
FREE statement, as follows: 

1. Storage that has been allocated by the 
LOCATE statement is freed after the 
variable is written out. 

2. Storage that has been effecti'~ly 
allocated by a READ statement with the 
SET option is freed by the next read 
or close operation on the file. 

3. All storage is freed at the end of the 
task in which it was allocated, unless 
it was allocated within an area 



belonging to another task. (storage 
allocated within an area is freed on 
termination of the task in which the 
area was allocated.) 

AREAS AND OFFSETS 

Based variables can be allocated within 
an area of storage that has been reserved. 
by allocation of an area v'ariable. This 
has the effect of grouping the data items 
together so that t.hey can be easily 
transmitted or assigned as a single unit 
while still retaining the'ir individual 
identities. The items stay in their rela­
ti ve locations, which can bE! identified by 
offsets from a pointer that identifies the 
start of the area. This does not mean that. 
pointers cannot be used within areas; how­
ever, offsets have the advantage of remain­
ing valid during area transmission and. 
assignment. 

Offsets, like pOinters, can be used to 
build chains of data; however, they cannot 
be used directly as based va.riable qualifi­
ers nor can they appear in a SET option .• 
Assignment from pointer to offset implies 
conversion to offset; simila.rly, assignment 
from offset to pointer implies conversion 
to pointer. Hence, an offset variable can 
be given a value by assigning a pOinter 
value to it; and, in order t:o use an offset. 
as a qualifier, its value is assigned to a 
nonbased pointer. 

AREA VARIABLES 

The AREA attribute defines an area of 
storage that is to be res erved for the 
allocation of based variabIE~s. It has the 
following general format: 

AREA [( exprE~ss ion) ] 

The number of bytes of s·torage is speci-' 
fied by the integral value of the expres­
sion, if present; otherwise, an implementa­
tion defined value of 1000 bytes is 
assumed. This value i~3 the size of the 
area. 

The implementation defined maximum size 
of an area is 32,767 bytes. 

The size of an area is the amount of 
storage--el'at is reserved by the area allo-­
cation for the allocation of based varia­
bles. The amount of the reserved storage 
that is actually in use is known as the 

extent of the area; it is defined as the 
amount of storage between the start of the 
reserved area and the end of that unfreed 
allocation which is furthest from the start 
of the area. In addition to the declared 
size, the implementation requires an extra 
16 bytes of control information, giving 
such details as the size. and the length of 
the current extent. These 16 bytes are 
allocated immediately before the start of 
the reserved area, and are added to toe 
area size to obtain the length of the area 
(that is, the actual amount of storage 
needed for the area allocation). The dis­
tinction between area size and length is 
important to the discussion of area 
input/output later in this chapter. 

DECLARE A STATIC AREA(2000), 
B AREA, 
C AREA (N); 

This statement specifies that: 

1. A is a static area variable reserving 
2000 bytes of storage. (The size of 
an area of static storage class, if 
specified, must be specified as an 
unsigned fixed decimal integer con­
stant.) 

2. B is an automatic area variable res­
erving 1000 bytes of storage. 

3. C is an automatic area variable whose 
size depends on the value of N current 
at the time of entry to the block. 

Rules and Restrictions 

The following rules apply to area varia­
bles: 

1. Data of the area type cannot be con­
verted to any other data type; an area 
can be assigned to an area variable 
only. 

2. No operators can be applied to area 
variables. 

3. Only the INITIAL CALL form of the 
INITIAL attribute is allowed with area 
variables. 

4. When an area is allocated, it is 
automatically given the EMPTY state 
(see "The EMPTY Built-in Function" in 
this chapter, for explanation of 
EMPTY) • 

Chap1:er 14: Based Storage and List Processing 171 



OFFSET V~RIABLES 

Declaration of an offset variable must 
be explicit. The OFFSET attribute has the 
following form: 

OFFSET (variable) 

The variable within the parentheses must 
be an unsubscripted level 1 based area 
variable. 

The function of an offset variable is to 
provide a locator value that points to the 
location of a based variable relative to 
the start of a based area. If the contain­
ing area is transmitted or assigned, the 
offsets will still point to the correct 
locations of the components. 

Example: 

DECLARE A AREA BASEDCP), 
o OFFSET (A) , 
X BASEDCQ) i 

This declaration specifies that A is a 
based area variable. that the value of 0 
will point to a location relative to the 
start of :A, and that X is a based variable. 
If X were now allocated within A, the value 
of its pOinter could be assigned to 0 to 
establish the location of X relative to the 
start of A. If A and 0 were written out 
and then read back in again, 0 would still 
point to X relative to . the start of A, 
although the pointer for A itself would 
have been reset. 

gules ~~estrictions 

The following rules apply to offset 
variables: 

1. Offset variables cannot be used to 
qualify a based reference .• 

2. Assignment of an offset value can be 
made only to a locator variable. When 
an offset value is assigned to an 
offset variable} the area variables 
named in the OFFSET attributes are 
ignored. A pointer value can be 
assigned to an offset variable, with 
implicit conversion. 

3. Offs,et variables cannot be operc.:~ds of 
a~y operators except the comparison 
operators and ,=. The value of an 
offset variable can be compared with 
that of any other locator variable, or 
wi"th a locator value returned by any 
function. 

172 

4. Offset variables cannot be transmi tt.ed 
using STREAM input/output. 

5. Offset variables cannot appear in any 
SET option. 

ALLOCATION WITHIN AN AREA 

Based variables are allocated within an 
area by means of an ALLOCATE statement with 
the IN option. This sets a pointer which 
can be converted to offset by assignment to 
an offset variable. For example: 

DECLARE A AREA BASED(V), 
1 B BASEDCP), 

2 0 OFFSET CA), 
2 VALUE, 

Q POINTER; 

ALLOCATE Ai 

ALLOCATE B IN CA)i 

ALLOCATE B IN CA) SET (Q)i 
O=Qi 

The first ALLOCATE statement causes the 
area A to be allocated, reserving 1000 
bytes of storage for allocation of bas'ed 
var iabl es" and sets V. 

The second ALLOCATE statement causes B 
to be allocated within the area V -> A, and 
sets P. 

The third ALLOCATE statement caus.~s 
another allocation of B (different from P 
-> B) to be made within the area V -> A, 
and sets Q. 

The assignment statement causes the 
val ue of Q to be conve rted to off SE:!t 
(relative to the pointer V) and assigned to 
P -> o. Thus, the first allocation of the 
structure B contains an offset value that 
points to the second allocation of B. The 
setting of offset values is discussed 
below. 

SETTING OFFSET VALUES 

An offset variable can be given a value 
J;>Y assignment only., since it cannot appealr 
l.n a SET option, nor is any implicit 
setting possible. In the above eXamplE!, 
p -> 0 was given its value by assignment 
from Q. Note, however, that the referenc:e 



o -> VALUE" for example, would be invalid,. 
since offsets cannot be used as qualifiers. 

~rhe NULLO Built-in Function 

The NULLO built-in func"tion is the off­
set equivalent of the NULL built-in func­
tion as used with pointers. It requires no 
arguments, and returns a null value that 
can be assigned to offset variables only. 

~ote: A null offset value cannot be con­
verted to a null pointer value, nor can a 
null pointer value be converted to a null 
offset value. Therefore. the value of the 
NULLO built-in function cannot be assigned, 
E~ven indirectly,. to a pointer variable; nor 
can the value of the NULL built--in function 
be assigned to an offset variable. For 
example: 

DECLARE 0 OFFSET(A), 
P POINTER; 

P=NULL; 
O=P; 
O=NULLO; 
P=O; 

Th'3 second and fourth assignments in the 
above example would be invalid. They could 
be made valid by inserting IF statements,. 
such as the following: 

IF P=NULL THEN O=NULLO; 
ELSE O=P; 

AREA ASSIGNMENT AND I NPUT/OUTPU'I' 

The value of an area expression can be 
assigned to one or more area variables by 
an assignment statement. Area-to-area 
assignment has the effect of freeing all 
allocations in the target area and then 
assigning the extent of the source area to 
t~he target area, in such a way that all 
allocations in the source area maintain 
their locations relative to each other; 
that is. any gaps left by freeing opera­
tions in the source area are maintained 
during the assignment (such a gap might 
have been left. for example, if the second 
of three contiguous allocations had been 
freed; if the gaps were automatically 
closed up, some offset values might lose 
t,heir meaning). 

If a source area containing no alloca­
tions is assigned to a target area. the 
effect is merely to free all allocations in 
t,he target area. 

A possible use for area assignment is to 
allow for expansion of a list of based 
va~iables beyond the bounds of its original 
area. When an attempt is made to allocate 
a based variable within an area that con­
tains insufficient free storage to accommo­
date it, the AREA condition is raised (see 
below). The on-unit for this condition 
could be to change the value of a pointer 
qualifying the reference to the inadequate 
area, so that it pointed to a different 
area; on return from the on-unit, the 
allocation would be attempted again, within 
the new area. Alternatively, the on-unit 
'could write out the area and reset it to 
EMPTY. 

The EMPTY Built-in Function 

The EMPTY built-in function requires no 
arguments and returns an area of zero size 
and extent. The effect is to free all 
allocations in the target area. 

Example: 

DECLARE A AREA, 
I BASED (P), 
J BASED(Q); 

ALLOCATE I IN(A), J IN (A); 

A=EMPTYi 
/*EQUIVALENT TO: 

FREE I IN (A), J IN (A); */ 

The AREA ON-Condition 

The AREA condition is raised in any of 
t,he following circumstances: 

1. When an attempt is made to allocate a 
based variable within an area that 
contains insufficient free storage for 
the allocation to be made. 

2. When an attempt is made to perform an 
area assignment, and the target area 
contains insufficient storage to acco­
modate the extent of the source area. 

3. When a SIGNAL AREA statement is exe­
cuted. 

The ONCODE built-in function can be used 
to determine whether the condition was 
raised by an allocation. an assignment. or 
a SIGNAL statement. 

Chapter 14: Based Storage and List Processing 173 



On normal return from the on-unit.. the 
action is as follows: 

1. If the condition was raised by an 
allocation, the allocation is re­
attempted. If the on-unit has changed 
the value of a pointer qualifying the 
reference to the inadequate area so 
that it points to another area, the 
allocation is reattempted within the 
new area. Note that if the on-unit 
does not effectively correct the 
fault, a loop may result. 

2. If the condition was raised by an area 
assignment., or by a SIGNAL statement, 
execution continues at the point of 
interrupt. 

If no on-unit is specified, the system 
will comment and raise the ERROR condition. 

The area facility is designed to allow 
easy input and output of complete lists of 
based variables as one unit, to and from 
RECORD files. The control information is 
transmitted with the area. Consequently, 
the record length required is governed by 
the area length (i.e., area size + 16): the 
RECORD condition is raised if the length of 
an area named in the INTO option of a READ 
sta·tement, or in the FROM option of a WRITE 
sta"tement, differs from the relevant record 
length. Note that even though the RECORD 
condition is raised., incorrect control 
information will be transmitted; when an 
area is' written out, it must not be read 
back into an area of different size. 

In the case of READ with SET, the length 
of ·the input area in the buffer is equal to 
the length of the area used to create the 
reco.rd. 

ARE.A AND OFFSET DEFINING 

An offset can be defined on an offset, 
using overlay or correspondence defining. 
In the declarations of the defined offset 
and the base offset, the variables named in 
the two OFFSET atttributes need not be the 
same. 

Similarly, an area can be defined on an 
area, using overlay or correspondence 
defining. The base area must have a size 
equal to that of the defined area. 

174 

COMMUNICATION BETWEEN PROCEDURES 

Similarly to variables of other data 
types~ locator and area variables in one 
procedure can be related to those in anoth­
er procedure by means of argument.s and 
parameters, and the ~eneral rules are as 
described in Chapter 10, "Subroutines and 
Functions." There are necessarily some 
r:estrictions, which will be explained in 
the following discussion; but a gE!neral 
rule is that where it is possible to assign 
the value of one variable to another varia­
lole, it is also possible to relate the two 
variables by an argument and a paramet~er. 

ARGUMENTS AND PARAMETERS 

A locator argument of either pointE!r or 
offset type can be passed to a locator 
parameter only. The parameter can be of 
either type, but if the argument type 
differs from the parameter type" a dummy 
argument is created by the compiler" and a 
change in the value of the parameter will 
not be reflected in the value of the 
original argument. 

Pointer to Pointer 

No conversion is necessary when a poin­
ter argument is passed to a pointer param­
eter; normally" therefore, no dummy argu­
ment is created~ and a change in the value 
of the parameter will be reflected in the 
value of the argument. Note, howeverfl that 
this reflected change could be avoidE~d" if 
necessary" by passing the argument as an 
expression in parentheses: this causes a 
dummy argument to be created. For example: 

PROC1: PROCEDURE; 
DECLARE (P , Q) POINT1!:R; 

CALL PROC2«P).Q); 
PROC2: PROCEDURE(R,S); 

DECLARE (R,S) POINTl!:R; 

END PROC1; 

In this example, a change in the value 
of S will be reflected in the value of Q, 
but; a change in the value of R will have no 
effect on p .• 



Offset to Pointer 

Passing'an offset argument to a pointer 
parameter implies conversion to a dummy 
pointer argument, which is then passed to 
the en1:ry point. The entry must be 
declared with the POINTER attribute in the 
parameter attribute list. For example: 

PROC3: PROCEDURE; 
DECLARE PROC4 ENTRY 
(POINTER) , 

o OFFSET (A) , 
A AREA BASED(P); 

CALL PROC4 (0) ; 
PROC4: PROCEDURE(Q); 

DECLARE Q POINTER; 

END PROC3; 

In 1:his example, the values of P and 0 
are used to obtain the value of the dummy 
pointer argument to be passed to PROC4. 

Offset to Offset 

When an offset argument is passed to an 
offset parameter~ variables named in the 
OFFSET attribute of the offset declarations 
are ignored~ just as they are ignored for 
offset assignment; if they differ, the fact 
that they differ does not imply conversion 
to a dummy argument. For example: 

PROC5: PROCEDURE; 
DECLARE OA OFFSET(A), 

A AREA BASED(P), 
B AREA BASED(Q), ••• 

CALL PROC6(OA); 
PROC6: PROCEDURE(OB); 

DECLARE OB OFFSET( B) , ••• 

END PROCS; 

In this example, OA would be passed 
directly to OB. 

Pointer to Offset 

Passing a pointer argument to an 
parameter implies conversion to 

offset 
a dummy 

offset argument, which is then passed to 
the entry point. The entry must be 
declared with the OFFSET attribute in the 
parameter attribute list., and the two OFF­
SET attribute specifications must name the 
same variable. For example: 

PROC7: PROCEDURE; 
DECLARE PROC8 ENTRY (OFFSET(A», 

P POINTER, 
A AREA BASED(Q); 

CALL PROC8 (P) ; 
PROC8: PROCEDURE(O)i 

DECLARE OOFFSET(A); 

END PROC7; 

In this example, the values of P and Q 
are used to obtain the value of the dummy 
offset argument to be passed to PROC8. 

The variable follo~ing the keyword OFF­
SET is not considered during selection of a 
generic entry point. 

Area to Area 

An area argument can be passed only to 
an area parameter. If the size of the 
argument differs from the size appearing in 
the parameter attribute list of the rele­
vant entry declaration, the argument is 
first assigned to a dummy area argument 
with the size specified in the entry dec­
laration; the dummy argument is then passed 
to the entry point. 

The size of an area 
considered during selection 
entry point. 

RETURNS FROM ENTRY POINTS 

argument is not 
of a generic 

An entry point can return a locator 
value or an area; hence, the PROCEDURE and 
ENTRY statements and the RETURNS attribute 
may specify the POINTER, OFFSET, or AREA 
attributes. 

Locator Returns 

Either type of locator variable can 
appear in a RETURN statement in a procedure 
that returns a locator value. If the 

Chapter 14: Based Storage and List Processing 175 



procedure is to return an offset value but 
the RETURN statement specifies a pointer, 
there is implicit conversion to offset, and 
vice versa. For example: 

PROCA: PROCEDURE POINTER; 
DECLARE A AREA BASEDCP), 

o OFFSET (A) ; 

RETURN (0); 
END PROCAi 

The values of 0 and P are used to obtain 
the pointer value to be returned. 

PROC3: PROCEDURE OFFSET(B); 
DECLARE B AREA BASED(Q), 

R POINTER; 

RETURN CR); 
END PROCB; 

The values of Q and R are used to obtain 
the offset value to be returned. Note that 
the OFFSET attribute is specified in the 
PROCEDURE statement complete with the name 
of the relevant area variable; the keyword 
OFFSET alone is not sufficient. 

Similarly, a locator value returned by a 
function may undergo implicit conversion. 
For example: 

DECLARE 0 ENTRY RETURNSCOFFSET(A», 
A AREA BASED(P), 
Q POINTER; 

Q=O; 

The value of P and the value returned by 
o are used to obtain the pointer value to 
be assigned to Q. 

Area Returns 

If a return statement identifies an area 
that has an extent different from that 
specifi.ed in the relevant PROCEDURE or 
ENTRY statement, assignment is made to a 
dummy area with the correct extent, thus 
effectively performing a conversion. 

VARIABLE LENGTH PARAMETER LISTS 

In PL/I, a procedure can have only a 
fixed number of parameters, all of which 

176 

must be specified. However, by passing an 
array of pointers as a single argument, it 
is possible to simulate a variable length 
parameter list" since the array can have 
adjustable bounds. 

The following procedure sorts a variable 
number of based character-string variables 
according to their values in relation to 
the collating sequence. The pointers 
qualifying these based variables are passed 
as an array argument to the procedure. 

Assume that the calling procedure con­
tains an array of pointers, KEYPOINTS, with 
one dimension, which is named as an argu­
ment in the CALL statement, and whose 
elements each point to a based character­
string variable. 

SORT: PROCEDURECP); 
DECLARE 

P C*) POINTER, 
CH,L) FIXED BINARY, 
LISTEL BASED (POINTER1) 
CHARACTER (60) " 
POINTER2 POINTER; 

H=HBOUND(P,l); 
L=LBOUND(P"l) ; 
/*THE HBOUND AND LBOUND BUILT-IN 
FUNCTIONS RETURN THE UPPER AND 
LOWER BOUNDS OF THE SPECIFIED 
DIMENSION (IN THIS CASE" THE FIRST 
AND ONLY DIMENSION). THESE VALUES 
ARE USED IN SETTING THE CONTROL 
VARIABLES OF THE FOLLOWING 
DO-GROUPS SO THAT THE NUMBER OF 
ITERATIONS IS CORRECT FOR THE 
NUMBER OF PARAMETERS*/ 

Ii: DO I=L TO H-l; 
POINTER1=P(I); 

END Ii; 
END SORT; 

/*THE VARIABLE LISTEL NOW HAS A 
VALUE*/ 

DO J=I+l TO H; 
POINTER2=P(J) ; 
/*THIS IS NECESSARY" SINCE T;:iE 
IMPLEMENTATION DOES NOT 
SUPPORT SUBSCRIPTED POINTER 
QUALIFIERS*/ 

IF LISTEL /*IMPLICITLY QUALIFIED 
BY POINTER1*/ 

>POINTER2->LISTEL 
THEN DO; 

/*REORDER ARRAY ELEMENTS*/ 
PCI)=P(J); 
P(J)=POINTERli 
POINTER1=P (I) ; 

After execution of this procedure, the 
elements of KEYPOINTS wi 11 have be.~n 
rearranged so that the first element points 



to the based variable with the lowest value 
according to the collating sequence, the 
second element points to the based variable 
with the next lowest value, and so on. 
Thus, the based variables will have been 
logically sorted without changing the phy­
sical order of the data. 

EXAMPLES OF LIST PROCESSING TECHNIQUE 

The following examples illustrate the 
use of based storage, locator variables, 
and areas, for list processing and 
input/output. 

[ 

Head 

Pointer 

1 

ITEM 2 ~ 1-:-' ITEM 1 

Backwards I I I I E~ackwards 
Pointer 1-----'----, Pointer (NULL) 

Forwards 

Pointer 

Data 2 

Forwards 
L..-___ --j Pointe r 

Data I 

Figure 14-1. Example of Two-Directional Chain 

Example 1 

This procedure builds a two-directional 
chain through items that are allocated in 
the calling procedure and identified in 
turn by passing a pointer parameter. Each 
item consists of an allocation of a basic 
str.ucture that contains two pointers and a 
data value (in this case., a character 
string). One pointer identifies the 
preceding item, and the other identifies 
the following item. The ends 0f the chain 
are recognized by a null value for a 
contained pointer (for example., the back­
war.ds pointer in the first item is null). 
The locations of the ends of the chain are 
identified by a head pointer and a tail 
pointer. Figure 14-1 shows a diagrammatic 
representation of the chain. 

Tail 

Pointer 

.--_I_T_EM 3~ ~ ITEM, 

L..-__ -I Backwards I L __ ~ Backwards 

Pointer ___ J I--Po_i_nt_e_r ----; 

Forwards Forwards 

Pointe Pointer (NULL) 

Data 3 Data n 

Chapter 14: Based Storage and List Processing 177 



I*EXAMPLE 1*1 
BUILD_CHAIN: PROCEDURE(ELEMPTR): 

DECLARE 
1 ELEMENT BASED(ELEMPTR), 

2 BACK CHAIN POINTER, 
2 FWD CHAIN POINTER, 
2 DATA CHARACTER(SO), 

ELEMPTR POINTER, 
(HEAD, TAIL) POINTER STATIC EXTERNAL; 

/*ASSUME THAT HEAD AND TAIL ARE 
INITIALLY ASSIGNED THE VALUE OF THE 
NULL BUILT-IN FUNCTION IN THE PROCEDURE 
THAT CALLS BUILD~CHAIN*I 

IF HEAD=NULL 
THEN I*FIRST ELEMENT*I 

HEAD=ELEMPTR; I*SET HEAD POINTER*I 

ELSE I*NOT FIRST ELEMENT*I 
TAIL->FWD_CHAIN=ELEMPTR; 
I*UPDATE ~~D CHAIN*; 

BACK_CHAIN=TAIL; 
/*UPDATE BACK CHAIN*; 

TAIL=ELEMPTR; ;*UPDATE TAIL POINTER*I 

FWD CHAIN=NULL; ;*SET END INDICATOR OF 
I<'WD - CHAIN* 1 
END BUILD_CHAIN; 

Note that the parameter ELEMPTR may 
identify a nonbased structure, provided 
that this structure has the same structur­
ing and attributes as ELEMENT. 

This procedure deletes an item from the 
chain created by the procedure in example 
1. 'I'he item to be deleted is identified by 
a poi.nter parameter. 

1* EXAMPLE 2 *1 
AL'I'ER_CHAIN: PROCEDURE (ELEMPTR) ; 

DECLARE 
1 ELEMENT BASED(ELEMPTR), 

2 BACK CHAIN POINTER, 
2 FWD CHAIN POINTER, 
2 DATA CHARACTER(SO), 

ELEMPTR POINTER, 
(HEAD, TAIL) POINTER STATIC EXTERNAL., 
(PRED, SUCC) POINTER STATIC; 

I*SET POINTERS TO PREDECESSOR AND 
SUCCESSOR OF ELEMENT BEING DELETED. 
PRED AND SUCC ARE USED BECAUSE 
BACK CHAIN AND FWD CHAIN, BEING BASED, 
CANNOT BE USED AS QUALIFIERS*I 

PRED=BACK CHAIN; 
SUCC=FWD_CHAIN: 

I*UPDATE FORWARD CHAIN*I 
IF PRED=NULL 

178 

THEN HEAD=SUCC; I*DELETE HEAD*I 
ELSE PRED->FWD_CHAIN=SUCC; 

I*UPDATE BACKWARD CHAIN*; 
IF SUCC=NULL 

THEN TAIL=PRED: I*DELETE TAIL*I 
ELSE SUCC->BACK_CHAIN=PREDi 

END ALTER_CHAIN; 

Example 3 

This procedure builds a sequential list 
through several allocations of an area 
variable. Within each area allocation, the 
procedure builds a chain of structure allo­
cations, each of which contains an offset 
identifying the following item in the 
chain, a character string value~ and a 
value (passed from the calling procedure) 
indicating the length of the string. The 
location of the first item in the chain is 
indicated by an offset attached to the 
area. This offset is part of a structure 
containing the first offset and the area; 
consequently, the area is a level 2 varia­
ble. Since a level 2 variable cannot be 
named in the OFFSET attribute, a dummy 
level 1 area variable is effectively over­
laid on the level 2 area n and this dummy is 
named in the OFFSET attributes. 

The procedure sets pointers to the start 
of the area and to each item in the area. 
These pointers are external, and are there­
fore known to the calling procedure. 

Each area allocation is in output buffer 
space, and when filled, is written onto a 
data set, using locate-mode output. This 
output process is controlled by an on-unit 
for. the AREA condition. The items in the 
area are chained by offsets to ensure that 
the chain is not invalidated by 
input/output operations on the list. It is 
assumed that the output file is opened and 
closed by the calling procedure. 

/*EXAMPLE 3*1 
BUILD_LIST: PROCEDURE(N); 

DECLARE 
N FIXED BINARY, 
1 LIST BASED(LISTPTR), 

2 FIRST OFFSET(DUMMY), 
2 BODY AREA, 

1 ELEM BASED(ELEMPTR). 
2 CHAIN OFFSET(DUMMY), 
2 STRING, 

3 LENGTH FIXED BINARY, 
3 DATA CHARACTER(N REFER 
(LENGTH», 

(ELEMPTR, LISTPTR) POINTER STATIC 
EXTERNAL, ;*THESE POINTERS ARE 
INITIALIZED TO NULL BY THE CALLING 
PROCEDURE*I 
LFILE FILE RECORD SEQUENTIAL 
EXTERNAL, 
LASTELEM POINTER STATIC, 
DUMMY AREA BASED(DPTR); 



ON AREA 
BEGIN; /*ALLOCATE OUTPUT BUFFER 
SPACE*/ 

LOCATE LIST FILE(LFILE) SET 
(LISTPTR) ; 
DPTR=ADDR(BODY); 
LASTELEM=NULL; /*INDICATES NEW 
AREA*/ 
END; 

IF LISTPTR=NULL 
THEN SIGNAL AREA; /*CREATE FIRST AREA*/ 
ALLOCATE ELEM IN (BODY); /*ELEMPTR IS 
SET AUTOMATICALLY*/ 
IF LASTELEM=NULL /*SET FORt-~ARD CHAIN*/ 

THEN FIRST=ELEMPTR; /*FIHST ELEMENT 
OF AREA*/ 
ELSE LASTELEM- >CHAIN=ELEf\~PTR; /*OTHER 
ELEMENTS*/ 

CHAIN=NULLO; /*SET END-OF-CHAIN 
INDICATOR*/ 
LASTELEM=ELEMPTR; /*SAVE POINTER TO NEW 
ELEMENT*/ 

END BUILD_LIST; 

Note that LFILE in examples 3 and 4 
should have a record length of 1020 to 
accommodate the records creatE~d by alloca­
tions of the structure LIST. This is made 
up of 1000 bytes (default size for an area) 
plus 16 bytes of area control information, 
plus 4 bytes fot the offset variable FIRST. 

Example 4 

This procedure sequentially retrieves 
the list items created by the procedure in 
example 3. The procedure sets a pointer to 
the next i,tem in the list, or if the item 

has been retrieved~ sets the pointer to 
nUll. 

/*EXAMPLE 4*/ 
GET ELEMENT: PROCEDURE; 
/*ASSUME THE SAME DECLARATIONS AS IN 
EXAMPLE 3, AND ASSUME THAT LISTPTR IS 
I'NITIALIZED TO NULL BY THE CALLING 
PROCEDURE*/ 

ON ENDFILE(LFILE) 
'BEGIN; 

ELEMPTR=NULL; /*ALL ELEMENTS 
RETRIEVED*/ 
CLOSE FILE(LFILE); 
GO TO EXIT: 

END; 

IF LISTPTR=NULL /*FIRST ELEMENT TEST*/ 
THEN DO; 

OPEN FILE(LFILE); 
GO TO READ_AREA: 

END; 

IF LASTELEM->CHAIN=NULLO /*END-OF-AREA 
TEST*/ 

THEN READ_AREA: /*READ RECORD INTO 
BUFFER*/ 

DO; 
READ FILE(LFILE) SET (LISTPTR): 
DPTR=ADDR(BODY); 
ELEMPTR=FIRST: /*SET PTR TO FIRST 
ELEMENT*/ 
END; 

ELSE ELEMPTR=LASTELEM->CHAIN; /*SET 
POINTER TO FOLLOWING ELEMENT*/ 

LASTELEM=ELEMPTR: /*SAVE POINTER TO NEW 
ELEMENT*/ 

EXIT: END GET_ELEMENT; 

Chapter 14: Based Storage and List Processing 179 



CHAP~rER 15: MULTITASKING 

The use of a computing system to execute 
a number of operations concurrently is 
broadly termed multiprogramming. The PL/I 
programmer can make use of the multiprog­
ramming capability of the system by means 
of the multitasking facilities described in 
this chapter. 

A PL/I program is a set of one or more 
procedures, each of which consists of a set 
of PL/I statements. The execution of these 
statements constitutes one or more tasks, 
each of which can be identified ~a 
different task name. A task is dynamic; it 
exists only while the program is being 
executed. This distinction between the 
program and its execution is essential to 
the discussion of multitasking. One set of 
statements could be executed several times 
in different tasks. 

When the multitasking facilities are not 
used w the execution of a program consti­
tutes a single task, with a single flow of 
control; when a procedure invokes another 
procedure, control is passed to the invoked 
procedure, and execution of the invoking 
procedure is suspended until the invoked 
procedure passes control back to it. This 
serial type of operation is said to be 
synchronops; when the programmer is con­
cerned only with synchronous operations, 
the distinction between program and task is 
relatively unimportant. 

With multitasking, the invoking proce­
dure does not relinquish control to the 
invoked procedure. Instead, an additional 
flow of control is established..., so that 
both procedures can be executed (in effect) 
concurrently. This process is known as 
attaching a task. The attached task is a 
subtask of the attaching task. Any task 
can attach a number of subtasks. The task 
that has control at the outset is called 
the major task. This parallel type of 
operation is said to be asynchronous. 

The diagram shown in Figure 15-1 illus­
trates the difference between synchronous 
and asynchronous operations. The arrowed 
lines represent the control flows. Proce­
dures A and B are executed synchronously; C 
and D are executed asynchronously. 

When several procedures are executed as 
asychronous tasks, individual statements 

180 

are not necessarily executed simultaneously 
by different tasks; whether t.his occurs 
depends on the state and resources of the 
system. Hence, at any given time" it may 
be necessary for the system to select its 
next action from a number of different 
tasks. Each task has a priority value 
associated with it, which governs this 
selection process. The prograrrmer can con­
trol the priority of the task. within 
limi ts, if he wishes to do so; otherwise" 
the priority value is set automaticalil'. 

A:PROCj .. CALL B; 
~ND~; 

1 
B: PROC; .. END; 

C:PROC; ---...... ~ CALL D TASK; ----I...... END C ; 

! 
D: PROC; ---..... ~ ENDj 

Figure 15-1. Synchronous and Asynchrcmous 
Operation 

It may be that one task is to run 
independently of other concurrent tasks for 
some time, but then become dependent on 
some other task (for example, one task may 
require the result of another task before 
it can be completed). To allow for this~ 
provision has been made for one task to 
awai t the completion of an operation at~ any 
stage of another task before carrying on. 
This process is known as task §Ynchroniza­
tion. Information about the state of an 
operation can be held by an event variclble" 
to which an event name refers. By speci­
fying an event name in a WAIT statement" 
the programmer can cause the task to wait 
for completion of the associated operation 
before proceeding. 



The prograrmner can apt? ly th e EVENT 
option to tasks and certain input/output 
operations, in which case the value of th~~ 
event variable is set automatically as a 
resul t of the operation concerned; or hE~ 
can set the value explicitly. 

The EVENT option allows an input/outpu1: 
operation to proceed asynchronously with 
the task that initiated it; at any time 
subsequent to the ini1:iation of the 
input/output operation~ the task can await 
its completion. For example, a task can 
display a message to the operator and, 
instead of waiting for a reply, can immedi-' 
ately proceed. pausing lat:er to deal with 
the reply. 

In general, the rules a.ssociated with 
the synchronous invocation of procedures: 
apply equally to the asynchronous attach­
ment of tasks. For example, on-units 
established prior to attachment of a sub­
task are inherited by the subtask, just as 
if the initial block of the subtask had 
been synchronously invoked. However, asyn­
chronous operation introduces some extra 
considerations, such as the fact that a 
number of concurrent tasks can independent­
ly refer to one variable. This necessi­
tates some extra rules, which are described 
in this chapter. 

Multitasking also requires some extra 
rules and provisions for input/output. For 
example, without special provision, there 
would be nothing to prevent one task from 
operating on a record in a DIRECT UPDATE 
file while another task was operating on 
the same record; to cope with this, the 
EXCLUSIVE file attribute is provided. 

Tasks can be terminated in a number of 
different ways. Normal termination occurs 
when control for the task r,eaches a RETURN 
or END statement. The EXIT :statement spec­
ifies abnormal termination o:E the task and 
its subtasks, while 'the STOP statement 
specifies abnormal termination of the major 
task (even if STOP is executed in a 
subtask) • When a task is tf~rminated" any 
of its subtasks that are still active are 
abnormally terminated. 

Mul ti tasking may allow thf~ central proc­
essing unit and input/output channels to be 
used more efficiently, by reducing the 
amount of waiting time. It does not neces­
sarily follow that an asynchronous program 
will be more efficient than an equivalent 
synchronous program (although it may be 
easier to write). It depends on the amount 
of overlap possible between operations with 
varying amounts of input/output; if the 
overlap is slight, multitasking could be 
the less efficient method, bE~cause of the 
increased system overheads. 

CREATION OF TASKS 

The programmer specifies the creation of 
an individual task by using one or more of 
the multitasking options with a CALL state­
ment. Once a procedure has been activated 
by execution of such a CALL statement, all 
blocks synchroncusly activated as a result 
of its execution become part of the created 
task, and all tasks attached as a result of 
its execution become subtasks of the creat­
ed task. The created task itself is a 
subtask of the task executing the CALL 
statement. All programmer-created tasks 
are subtasks of the major task. 

THE CALL STATEMENT 

The CALL statement for asynchronous 
operation has the same form as that for 
synchronous operation, except for the addi­
tion of one (or any combination) of the 
multitasking options, TASK, EVENT, or 
PRIORITY. These options" in addition to 
their individual meanings (listed below), 
all specify that the invoked procedure is 
to be executed concurrently witb the invok­
ing procedure. 

The CALL statement for asynchronous 
operation can specify arguments to be 
passed to the invoked procedure, just as it 
could if the operation were to be synchro­
nous. 

The TASK Option 

The TASK option has the following for­
mat: 

TASK [(element-task-name)] 

The task name can be subscripted and/or 
qualified,. without the task name, the 
option merely specifies asynchronous opera­
tion. If the task is to have a name, the 
option must appear complete with the task 
name, which is thus contextually declared 
to have the TASK attribute, unless an 
explicit declaration exists. This is the 
only way in which a task can acquire a 
name. (Explicit declaration of a task 
variable does not associate the task name 
with any task.) The name can be used to 
control the priority of the task at some 
other point, by means of the PRIORITY 
pseudo-variable and built-in function. The 
task name has no other use to the PL/I 
programmer. 

Chapter 15: Multitasking 181 



The EVENT Option 

The EVffi~T option has the following for­
mat: 

EVENT (element-event-name) 

The event name can be subscripted and/or 
qualified. When this option is used, the 
event name is contextually declared to have 
the EVENT attribute (unless an explicit 
declaration exists) and is associated with 
the completion of the task created by the 
CALL statement. Another task can then be 
made to wait for completion of this task by 
specifying the event name in a WAIT state­
ment of the other task. 

An event variable has two separate 
values: a completion value that indicates 
whether or not the event is complete., and a 
status value that indicates whether the 
event has been abnormally completed. The 
comple·tion value is a single bit, and the 
status value is a fixed binary number of 
default precision «15,0) for the F 
compiler). When the CALL statement is 
executE~d, the completion val ue of the event 
variable is set to '0' B (for "incompl ete" ) 
and the status value to zero (for "not 
abnormally completed"). On termination of 
the created task, the completion value is 
set to 'l~B, and, in the case of abnormal 
1:ermination, the status value is set to 1 
<if it is still zero). 

The EVENT option can also be specified 
on the READ, WRITE, REWRITE, and DELETE 
statements, and on the DISPLAY statement 
wi th ·the REPLY option (see Chapter 8, 
"Input and output"). In these cases, it 
allows othE~r processing to continue while 
the input/output operation is being execut­
ed. 

The PRIORITY Option 

When a number of tasks simultaneously 
require attention, a choice has to be made 
by the system. Under the operating system., 
this choice is based on the relati ve impor­
tance of the various tasks: a task that has 
a higher priority value than the others 
will receive attention first. Note that 
tasks other than those executing the user's 
program may require attention from the 
system, and may have a higher priority than 
any of the user's tasks. 

The PRIORITY option has the following 
format: 

PRIORITY (expression) 

182 

If this option aI?pear~ in the CALL statE~­
ment, the expressl.on 1.S evaluated to a 
binary integer !!!, of precision (n, 0)., wheJce 
~ is implementation-defined (15 for the F 
Compiler) • The priority of the creab~d 
task is then made m relative to the task 
executing the CALL statement. With the F 
Compiler the lowest absolute priority PO:3-
sible is 0; the highest absolute priority 
possible is 234. (See "Priority of Tasks," 
in this chapter.) 

If the option does not appear, the 
priority of the attached task is equated to 
that of the task variable named in the TASK 
option., if any, or else equated to the 
priority of the attaching task. 

1. CALL PROCA TASK(Tl); 

2. CALL PROCA TASK(T2) EVENT(ET2)i 

3. CALL PROCA TASK (T3) EVENT (ET3) 
PRIORITY(-2); 

4. CALL PROCA PRIORITY(l) ; 

The CALL statements in the above exam­
ples create four different tasks that exe­
cute one procedure, PROCA. In example 3, 
the subtask T3 has a lower priority than 
the attaching task, while in example 4, the 
unnamed subtask has a higher priority than 
the attaching task. 

Priority of Tasks 

A priority specified in a PL/I source 
program is a relative value; the actual 
value depends on factors outside the source 
program. 

Under the IBM System/360 Operating Sys­
tem, the priority associated with each job 
step is provided by the programmer, using 
the PRTY parameter in the JOB statement. 
This priority can have any number from 0 
through 14: the higher the number, t.he 
higher the priority. The priority of 1:.he 
major task of the PL/I program when it is 
first entered is given by 

Priority=(16*(job step priority»+10 

This is the maximum priority for the p:co­
gram; that is, the highest priority that 
any task of the PL/I program can have. If 
an attempt is made to create a subtask with 
a higher priority than the maximum priori­
ty, the subtask will be executed at ·the 
maximum priority. Priority can be reduced 
to zero, but not below (a priority of l.ess 
than zero will be treated as zero 



priority). A task can change only its own 
priority or that of its immediate subtasks. 

These conventions must be interpreted 
carefully when the PRIORITY built-in fUnc­
tion or pseudo-variable is used. The 
effect of the statement 

PRIORITY(T)=N; 

is to set the priority of the task T equal 
to the priority of the current task plu~ 
the integral value of the expression N,.. If 
the priority thus calculated would be high­
er than the maximum priority or less than 
zero, the implementation ensures that the 
priority is set to the maximum, or zero. 
respectively. 

The PRIORITY built-in function returns 
the relative priority of the named task 
(that is, the difference between the actual 
priority of the named task and the actual 
priority of the current task). consider a 
task, Tl" that attaches a subtask" T2, that 
itself attaches a subtask" T3. If task T2 
executes the sequence of statements 

PRIORITY(T3)=3; 
X=PRIORITY(T3); 

X will not necessarily have the value 3 .. 
If, for example, task T2 had an actual 
priority of 24, and the maximum priority 
were 26" then execution of the first state­
ment would result in task T3 having a 
priority of 26" not 27. Relative to task 
T2, task T3 would have a priority of 2; 
hence, after execution of t.he second state­
ment, X would have a val ue of 2. 

Between execution of the! two statements" 
control could pass to task Tl,; which could 
change the priority of task T2, in which 
case the value of X would depend on the new 
priori"ty. For example" given the sam.e 
original priorities as before" task T3 
would have a priority of 26 after execution 
of the first statement. If the priority of 
task T2 were now chang€!d to 20 by its 
attaching task.. Till executi.on of the second 
statement would result. in X having a valu.e 
of 6. 

COORDINATION AND SYNCHF,ONI2;A.TION OF TASKS 

The rules for scope of names apply t.O 
blocks in the same way whet~her or not they 
are invoked as. or by, subt~asks; thus, dat.a 
and files can be shared bE!tween asynchron­
ously executing tasks. Hence, a hig'h 
degree of cooperation is poss ible between 
tasks, but this necessitatE!s some coordina­
tion. certain additional rules are intro­
duced to deal with sharing of data and 

files between tasks, and the WAIT statement 
is provided to allow task synchronization. 

SHARING DATA BETWEEN TASKS 

It is the programmer's reponsibility to 
ensure that two references to the same 
variable cannot be in effect at one 
instant. He can do so by including an 
appropriate WAIT statement at a suitable 
point in his source program to force tem­
porary synchronization of the tasks 
involved. Subject to this qualification, 
and the normal rules of scope, the follow­
ing additional rules apply: 

1. static variables can be referred to in 
any task in which they are known. 

2.. Regardless of task boundaries, an 
automatic variable can be referred to 
in any block in which it is known, to 
which it is passed as an argument" or 
in which it is referred to using a 
valid locator variable. 

3. Controlled variables can be referred 
to in any task in which they are 
known. However, not all al10cations 
are known in each task. When a task 
is initiated, only the latest alloca­
tion, if any, of each controlled vari­
able is known to the attached task. 
Both tasks may refer to this alloca­
tion. Subsequent allocations in the 
attached task are known only within 
the attached task; subsequent alloca­
tions within the attaching task are 
known only within the attaching task. 
A task can free only its own alloca­
tions; an attempt to free allocations 
made by another task will have no 
effect. No allocations of the con­
trolled variable need exist at the 
time of attaching.. It is not permis­
sible for a task to free a controlled 
allocation shared with a subtask if 
the subtask will later refer to the 
allocation. When a task is terminat­
ed. all allocations of controlled 
storage made within that task are 
freed. 

4. Based variables allocated within an 
area are freed when the area is freed; 
unless contained in an area allocated 
by another task. all based variable 
allocations (including areas) are 
freed on termination of the task that 
allocated them. 

5. Any allocation of any variable of any 
storage class can be referred to in 
any task by means of an appropriate 
based variable reference. The pro-

Chapter 15: Multitasking 183 



grammer must ensure that the required 
variable has been allocated at the 
time of reference. 

SHARING FILES BETWEEN TASKS 

A file is shared between a task and its 
subtask if the file is open at the time the 
subtask is attached. The rules concerning 
such shared files are given below, first as 
applied to the subtask. and then as applied 
to the attaching task. 

1. If a subtask shares a file with its 
att:aching task, the s ubtask must not 
close the file. A subtask must not 
access a shared file after its attach­
ing task has closed the file" even if 
the attaching task reopens the file 
beforehand. 

2. If a task shares a file with one of 
its subtasks, it may close the shared 
file, provided that the subtask will 
make no subsequent attempt to access 
the file. 

If a file name is known to a task and 
its subtask, and the associated file was 

not open when the subtask was attached, 
then the file is not shared; the effect is 
as if the task and its subtask were separ­
ate tasks to which the file name were 
known. That is, each task may separately 
open. access, and close the file. This 
type of operation is guaranteed only for 
files that are DIRECT in both tasks. Note 
that if one task opens a file, no other 
task can provide the corresponding close 
operation. 

It is possible for two or more tasks to 
operate simultaneously on the same record 
in a DIRECT UPDATE file; this can be 
avoided by use of the EXCLUSIVE file attri­
bute. 

The EXCLUSIVE Attribute 

When access to a record is restricted to 
one task. the record is said to be locked 
by that task. The EXCLUSIVE attribute; 
which can be specified for DIRECT UPDATE 
files only" provides a temporary locking 
mechanism to prevent one task from inter­
fering with an operation by another task. 
Table 15-1 shows the effects of various 
operations on an EXCLUSIVE file. 

Table 15-1. Effect of Operations on EXCLUSIVE Files 
r-----------------T---------------------------------------------------------------------" 
I Att.empted 1 Current State of Addressed Record I 

I ~----------------------T----------------------T-----------------------~ I Operation I Unlocked I Locked by this task ILocked by another task I 
~-----------------+----------------------+----------------------+-----------------------,1 
I READ NOLOCK 1 Proceed I Proceed 1 Wait for unlock 1 
~-----------------+----------------------+----------------------+-----------------------i 
I READ 11. Lock record I Proceed 1 Wait for unlock I 
I 12. Proceed I I I 
.-----------------+----------------------+----------------------+-----------------------i 
I DELETE/REWRITE 11. Lock record 11. Proceed 1 Wait for unlock I 
I 12. Proceed 12. Unlock~ record I I 
I 13. Unlock~ record I I I 
.-----------------+----------------------+----------------------+-----------------------1 I UNLOCK I No effect I Unlock record I No effect I 
~----_------------+----------------------~------------__________ L _______________________ ·I 
1 CLOSE FILE I Unlock all locked records, and proceed with closing operation I 

~-----------------+---------------------------------------------------------------------·1 I Terminate Task IUnlock all records locked by task. Close file, if opened in this taskl 
~_---------------J.------------------------------------------------------________________ 1 
I ~The unlocking occurs at the end of the operation, on normal return from any on-units I 
1 entered because of the operation (that is, at the corresponding WAIT statement when I 
1 the EVENT option has been specified). If an abnormal return is made from such ani 
lon-unit" it is the programmer's responsibility to ensure that the record is unlocked. I 
I If the EVENT option has been specified with a READ statement .. the operation is not ,I 
1 completed until the corresponding WAIT statement is reached; in the meantime~ no I 
I attempt to delete or rewrite the record should be made. II L ______________________________________________________________________________________ JI 

184 



THE WAIT STATEMENT 

The WAIT statement has the following 
format: 

WAIT (event-name [,event-namel ••• ) 
[(element-expression)]; 

:Full details of the WAIT statement are 
given in Part II~ Section J, "Statements"; 
·the following is a shorter description, 
providing background to the present discus­
sion. 

The WAIT statement specifies that the 
·task executing it will go into a waiting 
state (that is., execution of the WAIT 
statement will be extended) until such time 
as some or all of the named ~:;vents have 
been completed. An event is complete when 
its completion value is 'lIB. Note that 
the WAIT statement must specify event 
~, not task names. 

The number of events to be awaited is 
qiven by the integral value of 1:he expres­
sion" if present; otherwise all the named 
E:;vents have to be complete before the task 
can c<;mtinue. 

An event variable named in 1:.he list may 
be associated with an input/ou1:.put opera­
tion that has been initiated by the task 
E:;xecuting ·the WAIT statement. In this 
case, execution of the WAIT s1:atement has 
1::.he following effect: 

1. 

2,. 

If transmission ends 
normally" the event 
complete. 

(or has ended) 
variable is set 

If the transmission ends (or has 
ended) requiring input/out:put condi­
tions ·to be raised, the evemt variable 
is set abnormal (i.e., its status 
value is set to 1) and all the 
required conditions are raised. The 
event variable is set complete on 
return from the last on-'unit. The 
order in which conditions are raised 
does not depend on the orde~r in which 
the event names appear in t~he list. 

If an abnormal return is made from an 
on-uni t entered from the WAIT operation" 
the associated event variable is set com­
plete" the WAIT operation is 'terminated" 
and control for the task pa.sses to the 
point specified by the abnormal return. 

Example 

Pl: PROCEDURE; 

CALL P2 EVENT(EP2); 
CALL P3 EVENT(EP3); 
WAIT (EP2, EP3) (1); 

'END P1; 

In this example, the task executing P1 will 
proceed until it reaches the WAIT state­
Inent; it will then await the completion of 
either the task executing P2~ or that 
executing P3, before continuing. 

'!'ESTING AND SETTING EVENT VARIABLES 

The two values, completion and status., 
of an event variable can be retrieved by 
the built-in functions COMPLETION and STA­
TUS. 

The COMPLETION function returns the cur­
rent completion value of the event variable 
named in the argument. This value is ~O'B 
if the event is incomplete, or 'l'B if the 
event is complete. 

The STATUS function returns the current 
status value of the event variable named in 
t:he argument. This value is nonzero if the 
event variable has been set abnormal, or 0 
if it is normal. 

These two built-in functions can also be 
used as pseudo-variables; thus, either of 
the two values of an event variable can be 
set independently. A,1ternatively, it is 
possible to assign the composite va.lue of 
one event variable to another by specifying 
the event variables in an assignment state­
ment. Thus, the setting of an event varia­
ble can be controlled by the programmer. 
By t,his means, he can mark the stages of a 
task; and, by using a WAIT statement in one 
task and an event assignment (from the 
COMPLETION built-in function or another 
event variable) in another task, he can 
synchronize any stage of one task with any 
stage of another. 

The programmer should not attempt to 
assign a completion value to an event 
variable currently associated with an 
entire task or with an input/output event. 
An input/output event is never complete 
until the associated WAIT statement is 
executed. 

Chapter 15: Multitasking 185 



other ways in which an event variable 
can be set have already been discussed 
(such as specifying the event name in the 
EVENT option of a CALL statement). Full 
details of event variables will be found 
under "The EVENT Attribute" in Part II, 
Section I, "Attributes." See also "The 
EVENT Option," under IIRecord-Oriented 
Transmission," in Chapter 8, "Input and 
Output." 

When tasks are being synchronized, the 
following points should be kept in mind: 

1. Under the operating system, an event 
must not be waited for by two or more 
different tasks. 

2. With the F Compiler, an input/output 
event can be awaited only by the task 
that initiated it. 

3. The following example shows one way in 
Which two tasks, Tl and T2, could 
enter an infinite waiting state: 

Task T2 (Event E2) 

COMPLETION(EV)='O'B; 

WAI'I' (E2); 
WAIT (EV); 

COMPLETION(EV)='l'B; 
RETURN; 

THE DELAY STATEMENT 

The DELAY statement (see Part II, Sec­
tion J, "Statements") allows a task to wait 
for a specified period, without reference 
to an event variable. 

~ERMINATION OF TASKS 

A task is terminated by the occurrence 
of one of the following: 

1. Control for the task reaches a RETURN 
or END statement for the initial pro­
cedure of the task. 

2. Control for the task reaches an EXIT 
statement. 

3. Control for the task, or for any other 
task, reaches a STOP statement. 

186 

4. The block in which the task was 
attached is terminated (either normal­
ly or abnormally). 

5. The attaching task itself is terminat­
ed. 

Termination is normal only if item Cl) of 
the above list applies. In all other 
cases, termination is abnormal. 

To avoid unintentional abnormal termina­
tion of a subtask, an attaching task should 
always wait for completion of the suhtask 
before the task itself is allowed to be 
ter.minated. 

When a task is terminated, the foll,:>wing 
actions are performed: 

1. All input/output events that have been 
initiated in the task and are not yet 
complete are set complete, and their 
status values are set to 1; the 
results of the input/output operations 
are not defined. 

2. All files that have been opened 
the task and have not yet been 
are closed; all input/output 
tions are disabled while this 
is taking place. 

during 
closed 
condi­
action 

3. All allocations of controlled varia­
bles made by the task are freed. 

4. All allocations of based variables 
made by the task are freed~ except 
those it has allocated within an area 
allocated by another task (these are 
freed when the area is freed). 

5. All active blocks (including all 
active subtasks) in the task are ter­
minated,. 

6. If the EVENT option was specified when 
the task was attached, the completion 
value of the associated event variable 
is set to 'l'B. If the status value 
is still zero~ and termination is 
abnormal, the status value is set to 
1. Note, however, that termination of 
a subtask that has active subtasks has 
no effect on the completion values of 
event variables associated with these 
active subtasks. 

7. All records locked by the task are 
unlocked. 

Not~: If a task is terminated while it is 
ass1gning a value to a variable, the value 
of the variable is undefined after termina­
tion. Similarly, if a task is t~rminated 
while it is creating or updating an OUTPUT 
or UPDATE file, the effect on the associat­
ed data set is undefined after termination. 



It is the responsibility of the programmer 
to ensure that assignment and transmission 
are properly completed before termination 
of the task performing these operations. 

PROGRA~1MING! EXAMPLE 

This example shows an application of 
multitasking to a banking system. The 
program is divided into a batch section and 
a real-time section. Each section consti­
tutes a subtask of the major task: each 
subtask has other subtasks attached to it 
that perform the various data processing 
routines necessary in each section. The 
use of several subtasks increases the pro­
gram efficiency by permitting overlap 
between the input/output operations and the 
operations performed by the centr~l proc­
essing unit. 

The batch section of the program proc­
esses batches of cards that contain account 
information (such as cheques cashed, depos­
it.s made, or loan accoun·t details) and, 
after a certain number of transactions, 
produces a statement. 

The real-time section of the program 
provides a means of communication between 
itself and the operator, using the DISPLAY 
:statement with the REPLY option. This 
facility permits the user to issue commands 
to the program through the operator's con­
sole. ThesE' commands can: 

1. Cause management or credit informa­
tion, bank statements, or similar 
information to be made immediately 
available. 

2. Initiate or terminate processing. 
Thus the user can initiate the proc­
essing of card batches, terminate a 
section of processing, terminate the 
entire program, or reply to a call for 
clarification of mispunched data. 

The functions of the various tasks that 
make up the program, and their relationship 
to each other, are shown in Figure 15-2. 
Suggested codi~g for the ONLINE and PROCESS 
procedures is given below. These proce­
dures are internal to the BANKER procedure. 
as are all the procedures in the program in 
this case. If they had been external 
procedures, the PROCEDURE statements would 
have needed the OPTIONS (TASK) option. 

Chapter 15: Multitasking 137 



ONLINE: PROCEDURE; 

START: 

X: 

XL(l): 

XL(2}: 

XL (~)} : 

188 

DECLARE COMMAND CHARACTER(30) VARYING, 
COHTYPE(8) CHARACTER (30) VARYING, 
COUNT(8) FIXED BINARY INITIAL «8)0), 
ID CHARACTER (72) VARYING, 
XL(8) LABEL, 
ENDBEVT EVENT EXTERNAL; 

COMTYPE(l) 'CREDIT'; 
COMTYPE(2) 'STATEMENT'; 
COMTYPE(3) 'INFORMATION'; 
COMTYPE(4) 'CALL BATCH'; 
COMTYPE(S} 'END BATCH'; 

COMTYPE(S} = 'END PROGRAM'; 

DISPLAY ('NEXT COMMAND') REPLY (COMMAND); 
/*TASK IS IN WAITING STATE UNTIL REPLY IS RECEIVED*/ 
DO I = 1 TO 8; 

IF COMMAND = COHTYPE (I) 
THEN GO TO XL(I}; 

END; 
DISPLAY ('UNRECOGNIZABLE COMMAND, REPEAT') 

REPLY (COMMAND); 
GO 'TO X; 

DISPLAY (VACCOUNT ID') REPLY (ID); 
COUNT (1) = COUNT(l) + 1; 
CALL CREDIT (ID) PRIORITY (-1); /*ATTACH CREDIT TASK*/ 
GO TO START; 

COMPLETION (ENDBEVT) = 'l'B; 
/*SETS EVENT COMPLETE IN BATCH. BATCH 
WILL TER~lINATE WHEN ALL CARDS READ IN*/ 
GO TO START; 

END ONLINE; 



PROCESS: PROCEDURE: 
DECLARE ANS CHARACTER (30) VARYING, 

(READEVT, ENDEVT, TEVREAD, 
TEVUPDT, TEVRED) EVENT EXTERNAL; 

WS: WAIT (READEVT, ENDBEv.r) (1); 
IF COMPLETION(READEVT)='l'B THEN GO TO READIN; 
WAIT (TEVREAD, TEVUPD~r, TEVRED) (3): 

EXS: EXIT; 
I*IF 'END BATCH' COMMAND WAIT FOR ASSOCIATED 
TASKS BEFORE BATCH IS TERMINATED*I 

READIN: COMPLETION (READEVT) == '0' Bi 
CALL READER TASK (PR1) PRIORITY (-1) EVENT (TEVREAD); 
CALL UPDATE TASK (PR2)1 PRIORITY (-2) EVENT (TEVUPDT): 
CALL RED TASK (PR4) PRIORITY (-3) EVENT (TEVRED); 
WAIT (TEVREAD, TE'VUPDr:r, TEVRED) (3); 
DISPLAY ('CARDS PROCESSED') REPLY (ANS): 
IF ANS 'WAIT' THEN GO TO WS; I*WAIT FOR COMMAND*I 
IF ANS = 'READ' THEN GO TO READIN; I*PROCESS NEXT BATCH*I 

END PROCESS: 

Chapter 15: Multitasking 189 



Major task PRIORITY = P 
r---------------------------------, r--------------·----·-, 
I BANKER: P:R.OC OPTIONSOJIAIN. TASK): I I CREDIT: PROC<X): , 
I Funillon: I r-> I What is X' s cH~di t I 
1Initialization, e.g., open master, Subtask CONTROL PRIORITY = P-l I I rating? I 
Ifiles. I r------------------------------------, I l ___________________ J 

IAttach on-line control task: ~---->IONLINE: PROC: I 
I CALL ONLINE TASK(CONTROL) I IFunction: I 
I PRIORITY (-1) EVENT (TEVCTRL): I I DISPLAY (' Next command') I r--------------·-----, 
IWAIT r(fot: command or CONTROL 1<--, IREPLY (command) I I I STATEMENT: PROC(Y); I 
Itermination): I IAttach task according to command, or~-+->IPrint statement. fori 
I If command, attach subtask I Isatisfy a WAIT statement in a diff- I I IY's account. I 
1 BATCH, then return to WAIT ~-, I erent task by completing its event I I l ______________ . _____ J 

I If termination, end program I I Ivariable. The same procedure can be I I 
l _________________________________ J I lattached several times as different I I 

r-------------------J I tasks. I I r--------------·-----, 
I IPriorities should be in the range I I IMANIFO: PROC: I 
V I (P-3) to (P-lO). I ~-> I Extract management I 

Subtask BATCH PRIORITY = P-2 l----------------T-------------------J I I information. I r---·------------------------------, I I L ______________ • _____ J 

I PROCESS: PROC: I V I 
I I r--------------, I 
I I!illction: I I WAIT satisfiEd I I r--------------·-----, 
I Initialization of card processing I l------T-------J I I CREDIT: PROC(Z): I 
I routines. I ~------------------J ~-> I What is Z' s crl=di t I 
IWAIT1 (for 'Read' or 'End batch' I < __ J , I rating? I I commands) ., I l ______________ . _____ J 

ICALL (processing tasks). ~---, I 
IWAIT2 (for cards to be processed) I I I 
]DISPLAY ('Cards processed. any I I V 
I more?' ) • I I Other 
1 REPLY (' No more-. 'Read', or I I tasks 
I 'Wai·t· ) : I I 
) If 'No more': terminate BATCH. I I 
I If 'Read': return to CALL. I I 
I If 'WaiL': return to WAITl. I I l _________________________________ J I 

r------------------------~----------T-------------------------------------, 
V V V 

Subtask PRl PRIORITY = P-1l Subtask PR2 PRIORITY = P-12 Subtask PR4 PRIORITY = P-13 
r----------------------------, 
I READER: PROC; I 
I Function: I 
IRead cards into array (which I 
Imust have at least thr'ge I 
Irows). When one row is I 
Ifilled. test for completion I 
lof processing of next row byl 
Isubtask PR2 before con- I 
I tinning to read. I l ___ . _________________________ J 

r--------------------------------, 
I UPDATE: PROC: I 
I Function: I 
IProcess array information: check I 
Ithat each row is full before I 
Iprocessin~. I 
IUpdate master files. transaction I 
I files. I 
IWhen statement 'page' is full. I 
lattach task to print statement. I 
ITransfer information on a 'RED' I 
laccount to a 'RED' array for I 
Iprocessing by 'RED' procedure. I 
l--------------T-----------------J 

Subtask PR3 

I 
V 

PRIORITY = P-l5 
r--------------------------------, 
I STATEMENT: PROC(Account ID): I 
I Function: I 
IPrint statement for the account I 
I identified. I ~ ________________________________ J 

Figure 15-2. Flow Diagram for Programming Example of Multitasking 

190 

r-----------------------·-----, 
IRED: PROC; I 
I Function: I 
ITreatment of 'RED' accounts. I 
IIf necessary attach task I 
Ifor treatment of 'VERY RED' I 
I accounts. I 
l ___________ ~----------.-----J 

I 
V 

Subtask PR5 PRIORITY = P-14 
r-----------------------·-----, 
IVERYRED: PROC: I 
I Function: I 
I Print letter for accoun~t I 
I owner. and owner's name for I 
Ibranch manager. I l _______________________ . _____ J 



CHAPTER 16: A PL/I PROGRAM 

C71A3: PROCEDURE OPTIONS (MAIN): 01 
DECLARE 1 CARDIN" 02 

2 CODE CHARACTER (1), 03 
2 ITEM CHARACTER (8) " 04 
2 QTY PICTURE ~ZZZ9'. 05 
2 REST CHARACTER (67): 06 

/'* INSERT DECLARATION FOR STOCK FILE AND STOCK RECORD */ 07 
"INCLUDE F71SF"F71SR: 08 

DECLARE LOSS FIXED DECIMAL (10,2): 09 
DECLARE PAGE_NO FIXED DECIMAL INITIAL (0): 10 

/'* SET UP HEADING AND PAGE CONTROL */ 11 
OPEN FILE (EXCP) PRINT PAGESIZE (50); 12 
ON ENDPAGE (EXCP) BEGIN; 13 

PAGE NO = PAGE NO + 1; 14 
PUT FILE (EXCP) PAGE LINE(3) 15 

EDIT ('. PAGE' ., PAGE NO,,' EXCEPTIONAL ADJUSTMENTS') 16 
(X(10),A(4).i(5),X(20),A(25»; 17 

PUT FILE (EXCP) LINE (6) 18 
EDIT (" ITEM NOli.,' DESCRIPTION' If' VALUE' , 'TYPE' ) 19 

(COL(10) ,lUl0) ,COL(25) ,A(12) ,COL(54) r 2 A(10»; 20 
END: 21 

/'* PRINT HEADINGS FOR FIRS~~ PAGE */ 22 
SIGNAL ENDPAGE (EXCP); 23 

/* SET UP ERROR CONTROL */ 24 
ON ERROR BEGIN; 25 

/* TEST FOR KEY OR CONVERSION ERROR OR SIGNALLED ERROR */ 26 
IF ONCODE>49&ONCODE<5810NCODE>599&ONCODE<63010NCODE=9 27 
THEN DO: 28 

WRITE FILE (ERRORS) FROM (CARDIN): 29 
GO TO NEWCARD; 30 
END; 31 

/* IF NOT KEY OR CONVERSION ERROR THEN DISPLAY INPUT AND END JOB*/ 32 
DISPLAY (CODE I I ITEM I IQTYI IONCODE) ; 33 
END: 34 

/* SET UP NORMAL TERMINATION CONTROL */ 35 
ON ENDFILE(INFILE) GO TO TERM; 36 

/* MAIN UPDATING LOOP */ 37 
NEWCARD: READ INTO (CARDIN) FILE (INFILE); 38 

READ FILE (STOCK) IN~ro (STREC) KEY (ITEM): 39 
IF CODE ='A' THEN 40 

/'* ADJUSTMENTS TO STOCK LEVEL */ 41 
DO: 42 

LOSS = (SQTY-Q~rY) '* SPRICE ; 43 
IF LOSS>1000 THEN CALL EXCPT i(LOSS,' S·, ) : 44 
SQTY = QTY; 45 
REWRITE FILE (STOCK) FROM (STREC) KEY (ITEM): 46 
GO TO NEWCARD: 47 

END: 48 
IF CODE ,='D' THEN SIGNAL ERROR: /* ILLEGAL CODE */ 49 

/* DELETIONS */ 50 
LOSS = SQTY '* SPRICE: 51 
IF LOSS>1000 THEN CA]:'L EXCPT (LOSS, 110' ) : 52 
DELETE FILE (STOCK) ]{EY (ITEM): 53 
GO TO NEWCARD: 54 

EXCPT: PROCEDURE (L"TYPE): 55 
DECLARE L FIXED DECIl1AL (10,2), 56 

TYPE CHARACTER (1): 57 
PUT FILE(EXCP) SKIP 58 

EDIT (ITEM,SDESC':rL,TYPE) 59 
(COL(10),A(8),COL(25).A(25).F(12,2).X(3),A(1»; 60 

END EXCPT; 61 
/* NORMAL TERMINATION */ 62 

TERM: PUT FILE(EXCP) SKIP(2) ][,IST('END OF JOB'): 63 
END C71A3; 64 

Chapter 16: A PL/I Program 191 



'l?his example illustrates the use of PL/I 
for some common operations. The program 
reads cards and tests a card code that 
specifies either adjustment to stock levels 
or deletions of stock items from the file. 
In either caseR if the transaction involves 
a decrease in stock value of more than 
$1,000, a subroutine is called to print a 
line of an exception report. An ON state­
ment~ establishes an on-unit to control the 
page headings. An ERROR on-unit is used to 
check for unmatched keys and conversion 
errors; these errors cause the input card 
to be copied into an error file, and a new 
input card to be read. Other errors cause 
the input card to be displayed to the 
operator and the job terminated. 

The pattern of indention illustrates the 
free format allowed by PL/I. An F Compiler 
opti.on allows a programmer to specify the 
deli.miting of the margins for scanning 
source statements (default for System/360 
implementations specifies that columns 2 
1:hrough 72 are to be scanned). So long as 
the specified margins are used, statements 
may begin or end at any place. Statements 
may be continued from card to card without 
any continuation notation, as are DECLARE 
stat.ements and PUT statements in this exam­
ple. Even constants can be continued from 
card to card if the last character on the 
first card is in the rightmost specified 
column and the first character on the next 
card is in the leftmost specified column. 
The card sequence numbers, as shown in the 
example, can be punched in columns outside 
the specified area, for example, with the 
default option" in columns 73 through 80. 

The PROCEDURE statement in card 1 names 
the procedure; the MAIN option is an 
implementation-defined option which defines 
the entry point for the program (which may 
consist of more than one external 
procedure) when it is executed. 

The DECLARE statement in cards 2 through 
6 describes the input transaction card. 
The input transaction card has a one­
characte.r code punched in column 1, an item 
number punched in columns 2 through 9, and 
a four-digit quantity right adjusted in 
columns 10 through 13. The remainder of 
the card is declared, but not used. 

Card 7 inserts a comment into the 
program. comments may appear freely 
throughout a program. They do not affect 
execution; they merely provide documenta­
tion. As can be noted here~ and in other 
comments inserted (cards 11, 22, 24, etc.), 
comments are delimited by the character 
pairs /* and */. 

The %INCLUDE statement in card 8 is a 
preprocessor statement. This is indicated 
by the percent sign that is the first 

192 

character of the statement keyword. This 
statement causes the compile-time prepro­
cessor to obtain, from an installation 
standard library, declarations and other 
program text, including the DECLARE state­
ments that declare the file STOCK and the 
structure STREC, which describes records in 
the file. These declarations are identifi­
ed by the names F71SF and F71SR. Assume 
that the file declaration specifies a 
direct-access file whose records can be 
located by use of keys and that the struc­
ture declaration includes the following 
fields: 

SQTY FIXED DECIMAL (5) 
SDESC CHARACTER (25) 
SPRICE FIXED DECIMAL (7,2) 

The declaration in card 9 specifies that 
LOSS is a fixed-point decimal number (with 
a total of 10 digits and a sign) which will 
be treated as having 2 fractional digits. 
In system/360 implementations, this field 
will be stored in packed decimal. 

PAGE_NO is given the attributes FIXED 
and DECIMAL. Note that since no precision 
is specified, PAGE_NO is given default 
precision, which is 5 digits. The INITIAL 
attribute sets the value of PAGE NO to zero 
each time the procedure is entered. 

The first statement executed is the OPEN 
statement in card 12. This statement adds 
the attribute PRINT to any other attributes 
that may have been specified in a DD 
statement with the ddname EXCP. When the 
file is opened, the page size is fixed at 
50; that is, an interrupt will occur if an 
attempt is made to space or write past line 
50. This OPEN statement causes contextual 
declaration of the file EXCP. Note that 
the READ statement in card 38 causes impli­
cit opening, as well as contextual declara­
tion, of the file INFILE. 

The ON ENDPAGE statement in card 13 
associates the on-unit, the begin block in 
cards 13 through 21, with any ENDPAGE 
interrupt for file EXCP. The effect of 
executing the ON statement is to associate 
an action with an interrupt~ not to cause 
the action to be performed. In this case, 
the next statement executed is the SIGNAL 
statement in card 23. which simulates an 
interrupt and causes the begin block to be 
executed. 

The begin block starting in card 13 
increments PAGE NO so that the first page 
is numbered 1. The first PUT statement in 
the block (cards 15, 16, 17) star.ts a. new 
page and then sets the current line to 3. 
The page heading is printed on the third 
line. The action of the data list and 
format list is as follows: 



Space ten columns; assign the constant 
'PAGE' to a four-character field; con­
vert the value of PAGE NO to an inteqer 
and place it, right=adjusted, in- a 
five-character field; space 20 columns 
along the line; assign the constant 
'EXCEPTIONAL ADJUSTMENTS' to a 25-char­
acter field which starts in column 40. 

The second PUT statement (cards 18" 19" 
20) prints the column headings. In this 
statement, the LINE option specifies that 
printing is to begin on the sixth line; 
then the COL format item is used to posi­
tion the fields, so that the first heading 
starts i.n column 10, the second heading in 
column 25, the third headin<g in column 54. 
The fourth heading follo'i,01S immediately 
after the third, but since the third field 
is specified as 10 characters in width, 
there will be five spaces between the E of 
VALUE and the T of TYPE. 

The END statement then causes return of 
control to the point following the inter­
rupt, which in the first execution of the 
on-unit is the ON statement in card 25. 

The ON ERROR statement specifies the 
action to be performed for any execution­
time error detected by thE~ PL/I error­
handl ing mechan ism. ~rhese errors are not 
necessarily limited to those for which ON 
conditions are specified in the language; 
for example, there could be ERROR 
interrupts for errors in mathematical rou­
tines such as SQRT and EXP. 

When a detectable error occurs, whatever 
its cause, the BEGIN block will be executed 
as the on-unit. The first statement tests 
the value of ONCODE to see if it belongs to 
a particular class of errors. The ONCODE 
function, which can be used only in an 
on-unit, permits the programmer to deter­
mine the cause of the interrupt. Since ON­
codes are implementation-dE~f ined , it is 
possible for an implementation to allow the 
programmer to make a finE!r distinction 
between causes of an error than the lan­
guage alone can give. It also alloW's the 
programmer to determine errors not defined 
by ON conditions. In the calse of a KEY 
interrupt, for example, ei.ght different 
causes can be identified. There are 30 
different codes for CONVERSION interrupts. 
The IF statement tests for KEY errors by 
checking the ONCODE to see! if it lies in 
the range 50 to 57. Similarly, the range 
600 to 629 is tested for conv'ersion errors" 
and the ONCODE value 9 is tested to deter­
mine if the interrupt was caused by a 
SIGNAL statement. 

If the ONCODE indicates that the error 
is due to a key or conversion error, or if 
it was signalled, the DO group in cards 28 

through 31 is executed, 
transferred out of the 
statement labeled NEWCARD. 

and control 
on-unit to 

is 
the 

If the error is not one of those listed 
above, a message is displayed to the opera­
tor. Although only a single express10n 1S 
allowed in a DISPLAY statement, it is 
possible to display the contents of several 
fields by concatenating them into a single 
character string. 

Unless control is specifically trans­
ferred out of the ERROR on-unit when it is 
completed (in this case, when the END 
statement is executed) and the ERROR condi­
tion is raised in a major task" the FINISH 
condition is raised and, subsequently, the 
major task is terminated. (Standard system 
action for the FINISH condition in the 
absence of an on-unit is for no action to 
be taken; that iS I execution of the inter­
rupted statement is resumed.) If the ERROR 
condition is raised in any other task, that 
task is terminated. Since no ON FINISH 
statement is included in this program, 
standard system action will be taken if the 
FINISH condition is raised. 

The ON statement in card 36 establishes 
normal termination., that is, the action to 
be taken when the last item has been read 
from INFILE. It specifies that when the 
ENDFILE condition is raised for the file., a 
message is to be printed out (card 63). 
The END statement in card 64 then causes 
termination of execution. 

The main loop of the program starts with 
the statement labeled NEWCARD in card 38. 
This READ statement specifies that a record 
is to be copied from the input file INFILE 
into the 80-character structure CARDIN. 

The next READ statement (card 39) uses 
the value of ITEM (secured by the preceding 
READ operation) as a key to identify the 
record to be copied from the STOCK file 
into the structure STREC (whose declaration 
was incorporated into the program by the 
%INCLUDE statement). A key is always con­
sidered to be a character string whose 
length is determined by the system (from 
the KEYLEN subparameter of the DCB paramet­
er in the DO statement defining that data 
set). In this example~ ITEM is declared as 
a character string., so no conversion need 
be performed. 

The IF statement (card 40) compares the 
correct value of CODE with the constant 
'A'. If they are equal, the whole of the 
DO group in cards 42 to 48 is executed. 
This group computes the value of LOSS and, 
if it is greater than 1000, calls a subrou­
tine EXCPT. This subroutine has two param­
eters, and the CALL statement must specifr 

Chapter 16: A PL/I Program 193 



two arguments with exactly the same attri­
butes as the parameters. In this case, the 
second argt~ent is a one-character constant 
that matches the parameter TYPE in the 
procedure. Note that an incorrectly writ­
ten constant, for example, , A' (with an 
additional blank), would be an error. 

Whether or not LOSS is greater than 
1000, the field SQTY is altered, the record 
is rewritten, and control is returned to 
NEWCARD to repeat the loop. Note that the 
REWRITE statement is used in rewriting the 
record; the WRITE statement would attempt 
to create a new record with the same key, 
and would cause an error. If CODE is not 
'A', the next IF statement (card 49) com­
pares the value of CODE with 'D' (the only 
other valid co~e). If the code is invalid 
(if CODE is not 'D ' ), the SIGNAL statement 
causes the ERROR on-unit to be executed. 
The system sets the ONCODE to 9, which is 
tested for in the ERROR on-unit to deter­
mine the type of error. 

If the code is 'D', the remaining state-

ments are executed. LOSS is computed, a.nd 
if it is greater than 1000, the EXC'PT 
subroutine is called. After return from 
the subroutine, or immediately if LOSS is 
not greater than 1000, the record is delE!t­
ed and control is returned to NEWCARD. 

The subroutine EXCPT prints a line of 
the exception report. This subroutine is 
nested in the main procedure, so it can 
access any of the variables declared in the 
outer procedure. In this case the only 
names declared in the inner procedure are 
the parameters. Parameter names are always 
treated as if they were declared within the 
procedure in which they are specified. If 
they are to have any attributes other than 
the usual default attributes, they must be 
declared explicitly. 

The SKIP option on the PUT statemEmt 
causes spacing to a new 1 ine before t:he 
EDIT list is printed. ~he EDIT list uses 
COL format items to line up the data fields 
under the headings described in the ENDPAGE 
on-unit. 



PART II 



Throughout this publication, wherever a 
PL/I statement -- or some other combination 
of elements -- is discussed, the manner of 
writing that statement or phrase is illus­
trated with a uniform system of notation. 

This notation is not a part of PL/I; it 
is a standardized notation that may be used 
to describe the syntax -- or construction 

of any programming language.. It pro­
vides ,a brief but precise explanation of 
the general patterns that the language 
permits. It does not describe the meanigg 
of the language elements, merely their 
structure; that is, it indicates the order 
:in which the elements may (or must) appear, 
the punctuation that is required. and the 
options that are allowed. 

The following rules explain the use of 
this notation for any programming language; 
only the examples apply specifically to 
FL/I: 

1. A notation variable is the name of a 
general class of elements in the pro­
gramming language. A notation varia­
ble must consist of: 

a. Lower-case le'tters., decimal 
digits, and hyphens and must begin 
with a letter. 

b. A combination of low4=r-case and 
upper-case letters. There must be 
one portion in all lower-case let­
ters and one portion in all upper­
case letters, and the two portions 
must be separated by a hyphen. 

All such variables ~sed are defined in 
the manual either syntactically, using 
this notation~ or are defined 
semantically. 

Examples: 

a. 

h. 

Co. 

digit. This denotes the occur­
rence of a digit, which may be 0 
through 9 inclusive. 

file-name. This denotes the 
occurrence of the nota-tion varia­
ble named file name. An explana­
tion of file name is given else­
where in the manual. 

Do-statement. This denotes the 
occurrence of a DO sta-tement. The 
upper-case letters are used to 
indicate a language keyword. 

SECTION A: SYNTAX NOTATION 

2. A notation constant denotes the liter­
al--occurrence--or-the characters rep­
resented. A notation constant con­
sists either of all capital letters or 
of a special character. 

3. 

Example: 

DECI~ARE identifier FIXED; 

This denotes the literal occurrence of 
the word DECLARE followed by the nota­
tion variable "identifier~" which is 
defined elsewhere, followed by the 
literal occurrence of the word FIXED 
followed by the literal occurrence of 
the semicolon (i). 

The term "syntactic unit." which is 
used in subsequent rules, is defined 
as one of the following: 

a. A single notation variable or 
notation constant. 

b. Any collection of notation varia­
bles, notation constants~ syntax­
language symbols. and keywords 
surrounded by braces or brackets. 

4. Braces {} are used to denote grouping 
of more than one element into a syn­
tactic unit. 

5. 

6. 

Example: 

identifier {
FIXED} 

FLOAT 

The vertical stacking of syntactic 
units indicates that a choice is to be 
made. The above example indicates 
that the variable "identifier" must be 
followed by the literal occurrence of 
either the word FIXED or the word 
FLOAT. 

The vertical stroke I indicates that a 
choice is to be made. 

Example: 

identifier {FIXEDIFLOAT} 

This has exactly the same rreaning as 
the above example. Both methods are 
used in this manual to display alter­
natives. 

Square brackets 
Anything enclosed 

denote options. 
in brackets may 

section A: Syntax Notation 197 



7. 

198 

appear one time or may not appear at 
all. Brackets can serve the addition­
al purpose of delimiting a syntactic 
unit. 

Example: 

CHARACTER (length) [VARYING] 

This denotes the literal occurrence of 
the word CHARACTER followed by the 
variable "length" enclosed in paren­
theses and optionally followed by the 
literal occurrence of the word VARY­
ING. If, in rule 4, the two alterna­
tives also were optional, the vertical 
stacking would be within brackets, and 
there would be no need for braces. 

Three dots ••• denote the occurrence 
of the immediately preceding syntactic 
unit one or more times in succession,. 

8. 

Example: 

[digit] 

The variable "digit" mayor may not 
occur since it is surrounded by brack­
ets. If it does occur, it may be 
repeated one or more times. 

Underlininq 
ment in the 
when there 
element and 
guage. 

Example: 

is used to denote an ele­
language being described 
is conflict between this 

one in the syntax lan-

operand {&Il} operand 

This denotes that the two occurrences 
of the variable "operand" are sepa­
rated by either an "and" (&) or an 
"or" <I). The constant I is under­
lined in order to distinguish the "or" 
symbol in the PL/I language from the 
"or" symbols in the syntax language. 



SECTION B: CHARACTER SETS WITH EBCDIC AND CARD-PUNCH CODES 

60-CHARACTER SET Character Card-Punch 8-Bit Code 
L 11="3----- 1101 0011 
M 11-4 1101 0100 
N 11-5 1101 0101 

!~haracter Card-Punch 8-'Bit Code 0 11-6 1101 0110 
blank no punches 01.00 0000 P 11-7 1101 0111 

12-8-3 0100 1011 Q 11-8 1101 1000 
< 12-8-4 0100 1100 R 11-9 1101 1001 
( 12-8-5 0100 1101 S 0-2 1110 0010 
+ 12-8-6 0100 1110 T 0-3 1110 0011 
I 12-8-7 01.00 1111 U 0-4 1110 0100 
& 12 0101 0000 V 0-5 1110 0101 
$ 11-8-3 0101 1011 W 0-6 1110 0110 
* 11-8-4 0101 1100 X 0-7 1110 0111 
) 11-8-5 01.01 1101 y 0-8 1110 1000 

11-8-6 0101 1110 Z 0-9 1110 1001 , 11-8-7 01.01 1111 0 0 1111 0000 
11 0110 0000 1 1 1111 0001 

/ 0-1 01.10 0001 2 2 1111 0010 
fI 0-8-3 0110 1011 3' 3 1111 0011 
% 0-8-4 0110 1100 4 4 1111 0100 

0-8-5 01.10 1101 5 5 1111 0101 
> 0-8-6 0110 1110 6 6 1111 0110 
? 0-8-1 01.10 1111 7 7 1111 0111 

8-2 0111 1010 8 8 1111 1000 
# 8-3 01.11 1011 9 9 1111 1001 
@ 8-4 0111 1100 

8-5 0111 1101 
= 8-6 0111 1110 
A 12-1 1100 0001 fomposite 
B 12-2 11.00 0010 Symbols Card-Punch 
C 12-3 1100 0011 <= 12-8-4, 8-6 
D 12-4 11.00 0100 II 12-8-7, 12-8-7 
E 12-5 1100 0101 *!* 11-8-4, 11-8-4 
F 12-6 11.00 0110 ,< 11-8-1, 12-8-4 
G 12-7 11.00 0111 ,> 11-8-7. 0-8-6 
H 12-8 1100 1000 ,= 11-8-7, 8-6 
I 12-9 1100 1001 >= 0-8- 6, 8-6 
J 11-1 1101 0001 /* 0-1. 11-8-4 
K 11-2 11.01 0010 */ 11-8-4, 0-1 

-> 11" 0-8-6 

Section B: Character Sets With EBCDIC and Card-Punch Codes 199 



48-CHARACTER SET 

~racter 
blank 

+ 
$ 
:t 

) 

/ 
'II 

• 

A 
B 
C 
D 
E 
F 
G 
H 
I 
J 
K 
I ... 
M 
N 
o 
p 

~l 
R 

Card-Punch 
no punches 
12"'8-3 
12-8-5 
12-8-6 
11-8-3 
11-8-4 
11-8-5 
11 
0-1 
0-8-3 
8-5 
8-6 
12-1 
12-2 
12-3 
12-4 
12-5 
12-6 
12-7 
12-8 
12-9 
11-1 
11-2 
11-3 
11-4 
11-5 
11-6 
11-7 
11-8 
11-9 
0-2 
0-3 
0-4 
0-5 
0-6 
0-7 
0-8 
0-9 
o 

s 
T 
U 
V 
W 
X 
Y 
Z 
a 
1 
2 
3 

1 
2 
3 

200 

8-Bit Code 
0100 0000 
0100 1011 
0100 1101 
0100 1110 
0101 1011 
0101 1100 
0101 1101 
0110 0000 
0110 0001 
0110 1011 
0111 1101 
0111 1110 
1100 0001 
1100 0010 
1100 0011 
1100 0100 
1100 0101 
1100 0110 
1100 0111 
il00 1000 
1100 1001 
1101 0001 
1101 0010 
1101 0011 
1101 0100 
1101 0101 
1101 0110 
1101 0111 
1101 1000 
1101 1001 
1110 0010 
1110 0011 
1110 0100 
1110 0101 
1110 0110 
1110 0111 
1110 1000 
1110 1001 
1111 0000 
1111 0001 
1111 0010 
1111 0011 

Character 
4 
5 
6 
7 
8 
9 

Composite 
Symbols 

LE 
CAT 

** NL 
NG 
NE 
// 
, . 
AND 
GE 
GT 
LT 
NOT 
OR 

*/ 
I PT 

Card-Punch 
4 
5 
6 
7 
8 
9 

Card Punch 
12-8-3" 12-8-3 
11-3, 12-5 
12-3, 12-1, 0-3 
11-8-4. 11-8-4 
11-5, 11-3 
11-5, 12-7 
11-5, 12-5 
0-1, 0-1 
0-8-3, 12-8-3 
12-1" 11-5, 12-4 
12-7, 12-5 
12-7, 0-3 
11-3. 0-3 
11-5, 11-6, 0-3 
11-6., 11-9 
0-1, 11-8-4 
11-8-4, 0-1 
11-7" 0-3 

8-Bit Code 
1111, 0100 
1111 0101 
1111 0110 
1111 0111 
1111 1000 
1111 1001 

60-Character 
Set 
Equivalent 

<= 
II 
** ,< 
,> 
,= 
% 
; 
& 
>= 
> 
< , 
I 
/* 
*/ 
-> 

Note: When using the 48-character set .. , the 
following rules should be observed: 

1. The two periods that replace the colon 
must be immediately preceded by a 
blank if the preceding character is a 
period. 

2. The two slashes that replace the per­
cent symbol must be immediately 
preceded by a blank if the preceding 
character is an asterisk, or immedi­
ately followed by a blank if the 
following character is an asterisk. 

3. The sequence "comma period" represents 
a semicolon except when it occurs in a 
comment or character string, or when 
it is immediately followed by a digit. 



Keyword 
ABNORMAL 
ABS{x) 
%ACTIVA'I'E 
ADD(x,y,p[,q]) 
ADDR(x) 
ALIGNED 
ALL(x) 
ALLOCATE 
ALLOCATION (x) 
ANY(x) 
AREA 
AREA [(size)] 
AT AN (x [ , y] ) 
ATAND(x[,y]) 
ATANH (x) 
AUTOMATIC 
BACKWARDS 
BASED (pointer-variable) 
BEGIN 
BINARY 
BINARY(x[,p[,q]]) 
BIT (length) 
BIT(expression[,size]) 
BOOL (x,y,w) 
BUFFERED 
BUFFERS (n) 
BUILTIN 
BY 
BY NAME 
CALL entry-name 
CEIL(x) 
CHAR(expression[,size]) 
CHARACTER (length) 
CHECK (name-list) 
CLOSE 
COBOL 
COLUMN(w) 
COMPLETION (event-name) 
COMPLEX 
COMPLEX (a, b) 
CONDITION (name) 
CONJG (x) 
CONSECUTIVE 
CONI'ROLLED 
CONVERSION 
COPY 
COS(x) 
COsD (x) 
COSH(x) 
COUNT (file-name) 
CTLASA 
CTL360 
DATA 
DATAFIELD 
DATE 
%DEACTIVATE 
DECIMAL 
D ECI MAL (x [ , p ( , q] ] ) 
DECLARE 
%DECLARE 
DEFINED 
DELAY(n) 
DELETE 
DIM(x,n) 

Abbreviation 
ABNL 

%ACT 

AUTO 

BIN 
BIN(x[,p[,q]]) 

CHAR (length) 

COL (w) 

CPLX 
CPLX(a,b) 

CT'L 
CONV 

%DEACT 
DEC 
DEC(x[,p£,q]]) 
DCL 
%DCL 
DEF 

SECTION C: KEYWORDS AND KEYWORD ABBREVIATIONS 

Use of Keyword 
attribute 
built-in function 
preprocessor statement 
built-in function 
built-in function 
attribute 
built-in function 
statement 
built-in function 
built-in function 
condition 
attribute 
built-in function 
built-in function 
built-in function 
attribute 
attribute, option of OPEN statement 
attribute 
statement 
attribute 
built-in function 
attribute 
built-in function 
built-in function 
attribute 
option of ENVIRONMENT attribute 
attribute 
clause of DO statement 
option of the assignment statement 
statement or option of INITIAL attribute 
built-in function 
built-in function 
attribute 
condition 
statement 
option of ENVIRONMENr attribute 
format item 
built-in function, pseudo-variable 
data attribute 
buil t- in fUnct ion" pseudo-var iable 
condition 
built-in function 
option of ENVIRONMENT attribute 
attribute 
condition 
option of GET statement 
built-in function 
built-in function 
built-in function 
built-in function 
option of ENVIRONMENT attribute 
option of ENVIRONMENT attribute 
STREAM I/O transmission mode 
built-in function 
built-in function 
preprocessor statement 
attribute 
built-in function 
statement 
preprocessor statement 
attribute 
statement 
statement 
built-in function 

section C: Keywords and Keyword Abbreviations 201 



;Keyword 
DIRECT 
DISPLAY 
DIVIDE(x,y,p[.q]) 
DO 
%DO 
EDIT 
ELSE 
%ELSE 
EMPI'Y 
END 
%END 
ENDFILECfile-name) 
ENDPAGE(file-name) 
ENTRY 
ENVIRONMENT 
ERF(x) 
ERFC (x) 
ERROR 
EVENT 

EXCLUSIVE 
EXIT 
EXP(x) 

Abbreviation 

ENV 

EXTERNAL EXT 
F(block-size[.record-size]) 
FILE 
FILE (f ile-name) 

FINISH 
FIXED 
FIXED(x(,p[,q]]) 
FIXEDOVERFLOW 
FLOAT 
FLOAT ( x [ , p] ) 
FLOOR (x) 
FORMA']~ (format-list) 
FREE 
FROM 
GENERIC 

I GENKEY 
GET 

FOFL 

GO TO GOTO 
%GO TO % GOTO 
HBOUND(X,h) 
HIGH (i) 

IF 
'KIF 
IGNORE(n) 
IMAG (x) 

IN 
%INCLUDE 
INDEX (string,config) 
INDEXAREA [(index-area-size)] 
INDEXED 
INITIAL INIT 
INPUT 
INTERNAL I NT 
INTO (variable) 
IRREDUCIBI.E IRRED 
KEY(file-name) 
KEY(x) 

KEYED 
KEYFROM(x) 
KEYTO (var iable) 
LABEL 

202 

Use of Keyword 
attribute 
statement 
built-in function 
statement 
preprocessor statement 
STREAM I/O transmission mode 
clause of IF statement 
clause of %IF statement 
built-in function 
statement 
preprocessor statement 
condition 
condition 
attribute or statement 
attribute 
built-in function 
built-in function 
condition 
option of CALL, READ, WRITE, REWRITE, and 

DELETE statements, attribute 
attribute 
statement 
built-in function 
attribute 
option of ENVIRONMENT attribute 
attribute 
option of GET and PUT statements, 

specification of RECORD I/O statements 
condition 
attribute 
built-in function 
condition 
attribute 
built-in function 
built-in function 
statement 
statement 
option of WRITE or REWRITE statements 
attribute 
option of ENVIRONMENT attribute 
statement 
statement 
preprocessor statement 
built-in function 
built-in function 
statement 
preprocessor statement 
option of READ statement 
built-in function, pseudo-variable 
option of ALLOCATE and FREE statements 
preprocessor statement 
built-in function 
option of ENVIRONMENT attribute 
option of ENVIRONMENT attribute 
attribute 
attribute, option of the OPEN statement 
attribute 
option of READ statement 
attribute 
condition 
option of READ, DELETE, and REWRITE 

statements 
attribute, option of OPEN statement 
option of WRITE statement 
option of READ statement 
attribute 



Keyword 
IEOOTH (string) 
LBOUND (x, n) 
LEAVE 
LIKE 
LINE(w) 
LINENO(file-name) 
LINESIZE 
LIST 
LOCATE 
LOG (x) 
LOG2(x) 
LOG10 (x) 
LOW(i) 
MAIN 
MAX(x1 ,X2 ••. xn) 
MIN (X1 ,X2 ••• xn) 
MOD(X1,X2) 
MULTIPLY(x1,x2 ,p[,q]) 
NAME (file-name) 
NOCHECK 

NOCONVERSION 

NOFIXEDOVERFLOW 

NOLOCK 
NOOVERFLOW 

NOSIZE 

NOSTRINGRANGE 

NOSUBSCRIPTRANGE 

NOUNDERFLOW 

NOWRITE 
NOZERODIVIDE 

NORMAL 
NULL 
NULLO 
OFFSET (area-name) 
ON 
GNCH.AR 
ONCOUNT 
ONCODE 
ONFILE 
GNKEY 
ONLOC 
ONSOURCE 
OPEN 
OPTIONS (list) 
OUTPUT 
OVERFLOW 
PACKED 
PAGE 
PAGESIZE (w) 
PICTURE 
POINTER 
POLY(a,x) 
POSITION(i) 
PRECISION(x,p[,q]) 
PRINT 
PRIORITY (x) 
PRIORITY(task-name)] 
PROCEDURE 

Abbreviation 

NOCONV 

NOFOFL 

N(X>FL 

NOSTRG 

NOSUBRG 

NOUFL 

NOZDIV 

OFL 

PIC 
PTR 

POS (i) 
PREC (x, p[,q]) 

PROC 

Use of Keyword 
built-in function 
built-in function 
option of ENVIRONMENT attribute 
attribute 
format item, option of PUT statement 
built-in function 
option of OPEN statement 
STREAM I/O transmission mode 
statement 
built-in function 
built-in function 
built-in function 
built-in function 
option of PROCEDURE statement 
built-in function 
built-in function 
built-in function 
built-in function 
condition 
condition prefix identifier 

(disables CHECK) 
condition prefix identifier 

(disables CONVERSION) 
condition prefix identifier 

(disables FIXEDOVERFLOW) 
option of READ statement 
condition prefix identifier 

(disables OVERFLOW) 
condition prefix identifier 

(disables SIZE) 
condition prefix identifier 

(disables STRINGRANGE) 
condition prefix identifier 

(disables SUBSCRIPTRANGE) 
condition prefix identifier 

(disables UNDERFLOW) 
option of ENVIRONMENT attribute 
condition prefix identifier 

(disables ZERODIVIDE) 
attribute 
built-in function 
built-in function 
attribute 
statement 
built-in function~ pseudo-variable 
built-in function 
built-in function 
built-in function 
built-in function 
built-in function 
built-in function, pseudo-variable 
statement 
option of PROCEDURE statement 
attribute, option of the OPEN statement 
condition 
attribute 
format item, option of PUT statement 
option of the OPEN statement 
attribute 
attribute 
built-in function 
attribute 
built-in function 
attribute, option of OPEN statement 
option of CALL statement 
built-in function, pseudo-variable 
statement 

Section C: Keywords and Keyword Abbreviations 203 



Ke~g 
%PROCEDURE 
PROD (x) 
PUT 
READ 
REAL 
FEAL (x) 

RECORD 
RECURSIVE 
REDUCIBLE 
REENTRANT 
REFER 
REGION.1\L· (1 i 21 3) 
HE PEAT (string, i) 
REPLY (c) 
RETURN 
RETURNS 
REVERT 
REWIND 
REWRITE 
ROUND (x,n) 
SEQUENTIAL 
SET(pointer-variable) 

SETS 
SIGN (x) 
SIGNAL 
SIN (x) 

SIND (x) 
SINH (x) 

SIZE 
SKIP [ (x) ] 

SNAP 
SQRT(x) 
STATIC 
STATUS (event-name) 
STOP 
STREAM 
STRING (x) 

STRINGRANGE 
STRING (string-name 
iSUB 
SUBSCRIPTRANGE 
SUBSTR(string,i[,j]) 
SUM(x) 
SYSIN 
SYSPRINT 
SYSTEM 
TAN(x) 
TAND (x) 

TANH (x) 

TASK 
TASK[(task-name)] 
THEN 
%THEN 
TIME 
TO 
TITLE (x) 
TRANSMIT 
TRUNC(x) 
U (max--block-size) 
UNALIGNED 
UNBUFr."ERED 
UNDEFINEDFILE(file-name) 
UNDERr."LOW 
UNLOCK 

204 

Abbreviation 
~PROC 

RED 

STRG 

SUBRG 

UNAL 

UNDF (f ile-name) 
UFL 

Use of Keyword 
preprocessor statement 
built-in function 
statement 
statement 
attribute 
built-in function, pseudo-variable 
attribute, option of OPEN,statement 
option of PROCEDURE statement 
attribute 
option of PROCEDURE statement 
option of BASED attribute 
option of ENVIRONMENT attribute 
built-in function 
option of DISPLAY statement 
statement 
attribute 
statement 
option of ENVIRONMENT attribute 
statement 
built-in function 
attribute 
option of ALLOCATE, LOCATE, and 

READ statements 
attribute 
built-in function 
statement 
built-in function 
built-in function 
built-in function 
condition 
format item, option of GET and 

PUT statements 
option of ON statement 
built-in function 
attribute 
built-in function, pseudo-variable 
statement 
attribute, option of OPEN statement 
built-in function 
condition 
option of GET and PUT statements 
dummy variable of DEFINED attribute 
condition 
built-in function, pseudo-variable 
built-in function 
name of standard system input file 
name of standard system output file 
option of the ON statement 
built-in function 
built-in function 
built-in function 
attribute, option of PROCEDURE statemen't 
option of CALL statement 
clause of IF statement 
cluase of %IF statement 
built-in function 
clause of DO statement 
option of OPEN statement 
condition 
built-in function 
option of ENVIRONMENT attribute 
attribute 
attribute, option of OPEN statement 
condition 
condition 
statement 



Keyword Abbreviation Use of Keyword 
UNSPEC(x) 
UPDATE 
USES 
Vhnax-block-size [.,max-rec:ord-size]) 
VARYING VAR 
VBSCmax-block-size £', max-record-size]) 
VS Cmax-block-size [, max-record-size]) 
WAIT 
WHILE 
WRITE 
2ERODIVIDE ZDIV 

built-in function, pseudo-variable 
attribute, option of OPEN statement 
attribute 
option of ENVIRONMENT attribute 
attribute 
option of ENVIRONMENT attribute 
option of ENVIRONMENT attribute 
statement 
clause of DO statement 
statement 
condition 

Section C: Keywords and Keyword Abbreviations 205 



SECTION D: PICTURE SPECIFICATION aIARACTERS 

Picture specification characters appear 
in either the PICTURE attribute or the P 
format item for edit-directed input and 
output. In either case.. an individual 
character has the eame meaning.. A discus­
sion of the concepts of picture specifi­
cations appears in Part Ii, Chapter 9, 
"Editing and String Handling." 

Picture characters are used to describe 
the attributes of the associated data item, 
whether it is the value of a variable or a 
data item to be transmitted between the 
program and external storage. 

A picture specification always describes 
a character representation that is either a 
character-string data item or a numeric 
character data item. A character-string 
pictur~d item is one that can consist of 
alphabetic characters, decimal digits, and 
other special characters. A numeric char­
acteE~ctured item is one in which the 
data itself can consist only of decimal 
digits" a decimal point and., optionally" a 
plus or minus sign. other characters gen­
erally associated with arithmetic data., 
such as currency symbols, can also be 
specified., but they are not a part of the 
arithmetic value of the numeric character 
variable" although the characters are 
stored with the digits and are considered 
to be part of the character-string value of 
the variable. 

Arithmetic data assigned to a numeric 
chara.cter variable is converted to charac­
ter representation. Editing" such as zero 
suppression and the insertion of other 
characters, can be specified for a numeric 
character data item. Editing cannot be 
specified for pictured character-string 
data~ 

Data assign:d to a variable declared 
with a numer~c picture specification (or 
data to be written with a numeric picture 
format item) must be either internal coded 
arithmetic data or data that can be con­
verted to coded arithmetic.. ThUS" assigned 
data can contain only digits and" optional­
ly., a decimal pOint and a sign.. It should 
not contain any other character, even 
though that character (for example., a cur­
rency symbol) is specified in the picture 
specification and is to be inserted into 
the data as part of its character-string 
value: if it does" the CONVERSION condition 
is raised. 

Numeric character data to be read 
the P format item must conform 

206 

using 
to the 

specification contained in the P fOJcrnat 
item, including editing characters. If the 
indicated character does not appear in the 
input stream, the CONVERSION condition is 
raised. 

Data assigned to a variable declared 
with a character-string picture specifi­
cation (or data to be written Wiel a 
character-string picture format it.em) 
should conform, character by character (or 
be convertible., character by character) to 
the picture specification: if it does not" 
the CONVERSION condition is raised. 

Figures in this section illustrate how 
different picture specifications affect the 
representation of values when assigned ·to a 
pictured variable or when printed using the 
P format item. Each figure shows the 
original value of the data, the attrib'lltes 
of the variable from which it is assiqned 
(or written), the picture specification, 
and the character-string value of the 
numeric character or pictured charac·ter­
string variable. 

PICTURE CHARACTERS FOR CHARACTER-STRING 
DATA 

Only three picture 
used in character-string 
cations: 

characters ca:n be 
picture spec if i-

x specifies that the associated position 
can contain any character whose internal 
bit configuration can be recognized by 
the computer in use. 

A specifies that the associated position 
can contain any alphabetic character or 
a blank character. 

9 specifies that the associated position 
can contain any decimal digit or a blank 
character. 

No insertion characters can be specified. 
At least one A or X must appear. 

Figure D-1 gives examples of character­
string picture specifications. In the 
figure, the letter b indicates a blank 
character. Note that assignments are left­
adjusted.. and any necessary padding with 
blanks is on the right. 



r------------------T--------------------T------------------------T----------------------, I Source I Source Data I Picture I Character-string I 
I Attributes I (in constant form) I Specification I Value1. I 
~------------------+--------------------+------------------------+----------------------~ 

CHARACTER (5) I '9B/2L' I XXXXX 9B/2L 
I I 

CHARACTER ( 5) I " 9 B/ 2L ' I XXX 9B/ 
I I 

CHARACTER ( 5) I ' 9 B/ 2L' I XXXXXXX 9B/2Lbb 
I I 

CHARACTER (5) I 'ABCDE' I AAAAA ABC DE 
I I 

CHARACTER (5) J • ABCDE ' I AAAAAA ABCDEb 
I I 

CHARACTER(5) I 'ABCDE' I AAA ABC 
I I 

CHARACTER (5) I '12.134' I 99X99 12/34 
I I 

CHARACTER (5) I 'L26.1' I A99X9 L26.1 
~------------------~---------.-----------~------------------------~----------------------~ 
I1.A variable declared with a character-strinlg picture specification has a character-I 
I string value only. I L _______________________________________________________________________________________ J 

Figure D-·l. Pictured Characte:r-String Examples 

PICTURE CHARACTERS FOR NUMERIC CHARACTER 
DATA 

Numeric character data must represent 
numeric values; therefore" the associated 
picture specification cannot contain the 
characters X or A,. The pict1.1re characters 
for numeric character data can specify 
detailed editing of the data. 

A numeric character var:iable can be 
considered to have two different kinds of 
value, depending upon its use. They are 
(1) its arithmetic value and (2) its 
character-string value .. 

The arithmetic value :is -the value 
expressed by the decimal digits of the data 
item, the assumed location of a decimal 
point, and possibly a sign.. ";['he arithmetic 
value of a numeric characb~r variable is 
used whenever the variable appears in an 
expression that, results in a coded arith­
metic value or whenever the variable is 
assigned to a coded arithmetic. numeric 
character, or bit-string variable. In such 
cases, the arithmetic value of the numeric 
character variable i s convertE~d to internal 
coded arithmetic representation. 

The character-string valuE~ is the value 
expressed by the decimal digi·t:.s of the data 
item, as well as all of the editing and 
insertion characters appearing in the pic­
ture specification. The character-string 
value does not, however. include the 
assumed location of a decimal point, as 
speci.fied by the picture character V. The 
character-string value of a numeric charac­
ter variable is used whenever the variable 
appears in a character-string expression 

operation or in an assignment to a 
character-string variable., whenever the 
data is printed using list-directed or 
data-directed output. or whenever a ref­
erence is made to a character-string varia­
ble that is defined on the numeric charac­
ter variable. In such cases. no data 
conversion is necessary. 

The picture characters for numeric char­
acter specifications may be grouped into 
the following categories: 

• Digit and Decimal-Point Specifiers 

• Zero Suppression Characters 

• Insertion characters 

• Signs and Currency Symbol 

• Credit, Debi t " and overpunched Signs 

• Exponent Specifiers 

• Scaling Factor 

• Sterling Pictures 

The picture characters in these groups 
may be used in various combinations. Con­
sequently., a numeric character specifi­
cation can consist of two or more parts 
such as a sign specification, an integer 
subfieldw a fractional subfield and, for 
floating-point, an exponent field. A 
sterling picture specification contains 
separate fields for pounds, shillings, and 
pence; the pence field can have an integer 
sUbfield and a fractional subfield. 

section D: Picture Specification Characters 206.1 



A major requirement of the picture 
specification for numeric character data is 
that each field must contain a 1:: least one 
picture character that specifies a digit 
posi tion. This picture charac1::er. however. 
need not be the digit character 9. Other 
picture characters. such as the zero 
suppression characters (Z or* or Y). also 
specify digit positions. At least one of 
these characters must be used to define a 
numeric character specification. 

DIGIT AND DECIMAL-POINT SPECIFIERS 

The picture characters 9 and V are used 
in the simplest form of numeric character 
specifications that represent fixed-point 
decimal values. 

Figure 0-2 gives examples of numeric 
character specifications. 

9 specifies that the associated position 
in the data item is to contain a decimal 
digit. 

V specifies that a decimal point is 
assumed at this position in the asso­
ciated data item. However. it does not 
specify that an actual decimal point. is 
to be inserted. The integer and frac­
tional parts of the assigned value are 

aligned on the V character; therefore. 
an assigned value may be truncated or 
extended with zero digits at either end. 
(Note that if significant digits are 
truncated on the left, the result is 
undefined and a SIZE interrupt will 
occur, if SIZE is enabled.) If no V 
character appears in the picture speci­
fication of a fixed-point decimal value 
(or in the first field of a picture 
specification of a floating-point deci­
mal value),. a V is assumed at the right 
end of the field specification. This 
can .cause the assigned value to be 
truncated. if necessarYI to an integer. 
The V character cannot appear more than 
once in a picture specification. The V 
is considered to be a subfield delimiter 
in the picture specification; that is, 
the portion preceding the V and the 
portion following it (if any) are each a 
subfield of the specification. 

ZERO SUPPRESSION CHARACTERS 

The zero suppression picture characters 
specify conditional digit positions in the 
character-string value and may cause lead­
ing zeros to be replaced by asterisks or 
blanks and nonleading zeros to be replaced 
by blanks. Leading zeros are those that 
occur in the leftmost digit positions of 

r------------------T--------------------T------------------------T----------------------, 
~ Source I Source Data I Picture I Character-String 1 
1 Attributes 1 (in constant form) 1 Specification 1 Value1 I 
.------------------+--------------------+------------------------+----------------------~ 

FIXED (5) 1234!5 99999 12345 

FIXED (5) 12345 99999V 12345 

FIXED(5) 12345 999V99 34500 2 

FIXED(5) 12345 V99999 00000 2 

FIXED(7} 1234567 99999 34567 2 

FIXED(3) 123 99999 00123 

FIXED(5.2) 123.45 999V99 12345 

FIXED (7.,2) 12345,.67 9V9 56 2 

FIXED(5,2) 123.45 99999 00123 
~-_----------------~----------.----------~------------____________ L ______________________ ~ 

11 The arithmetic value is the value expressed by the digits and the actual or assumed 1 
1 location of the V in the specification. 1 
12 In this case" PL/I does not define the result since significant digits have beenl 
1 truncated on the left. The result shown, however, is that given for System/3601 
, implementations. I L _______________________________________________________________________________________ J 

Figure 0-2. Pictured Numeric Character Examples 

Section 0: Picture Specification Characters 207 



fixed-point numbers or in the leftmost 
digit positions of the two parts of 
floating-point numbers, that are to the 
left of the assumed position of a decimal 
point", and that are not preceded by any of 
the digits 1 through 9,.. The leftmost 
nonzero digit in a number and all digits, 
zeros or not, to the right of it represent 
significant digits. Note that a floating­
point number can also have a leading zero 
in the exponent field. 

Figure D-3 gives examples of the use of 
zero suppression characters. In the 
figure, the letter b indicates a blank 
character. 

Z specifies a conditional digit position 
and causes a leading zero in the asso­
ciated data position to be replaced by a 
blank character. When the associated 
data position does not contain a leading 
zero, the digit in the position is not 
replaced by a blank character. The 
picture character Z cannot appear in the 
sa.me subfield as the picture character 
*, nor can it appear to the right of a 

drifting picture character or any of the 
picture characters 9, T, I. or R in a 
field .. 

* specifies a conditional digit position 
and is used the way the picture charac­
ter Z is used, except that leading zeros 
are replaced by asterisks. The picture 
character * cannot appear with the pic­
ture character Z in the same subfield, 
nor can it appear to the right of a 
drifting picture character or any of the 
picture characters 9, T. I, or R in a 
field. 

Y specifies a conditional digit position 
and causes a zero digit. leading or 
nonleading, in the associated position 
to be replaced by a blank character. 
When the associated position does not 
contain a zero digit. the digit in the 
position is not replaced by a blank 
character. 

Note: If one of the picture characters Z 
or * appears to the right of the picture 
character V, then all fractional digit 

r------------------T--------------------T------------------------T----------------------, 
I Source I Source Data I Picture I Character-String I 
I Attributes I (in constant form) I Specification I Value1. J 

~------------------+--------------------+------------------------+-------------------·---1 
FIXED(5) 12345 ZZZ99 12345 

FIXED(S) 00100 ZZZ99 l::bl00 

FIXED(5) 00000 ZZZ99 bbbOO 

FIXED(5) 00100 ZZZZZ bbl00 

FIXED(5) 00000 ZZZZZ bbbbb 

FIXED (5,,2) 123.45 ZZZ99 bb123 

}' I XED ( 5 , 2 ) 001.23 ZZZV99 bb123 

FIXED( 5) 12345 ZZZV99 34500 2 

FIXED(5) 00000 ZZZVZZ l::l::l::bb 

FIXED(5) 00100 ***** **100 

FIXED(5) 00000 ***** ***** 

FIXED(5,2) 000.01 ***v** ***01 

I FIXED(5) 00100 YYYYY bblbb 
I 
I FIXED(5) 10203 9Y9Y9 lb2b3 
~ ____ --------------L-------------------- ________________________ L ______________________ ~ 
I1.The arithmetic value is the value expressed by the digits and the actual or assumed I 
I location of the V in the specification. I 
12 In this case, PL/I does not define the result since Significant digits have beenl 
I truncated on the left. The result shown, however, is that given for system/3601 
I implementations. I l _________________________________________________________________________ ~ _____________ J 

Figure D-3. Examples of Zero Suppression 

208 



positions in the specification~ as well as 
all integer digit positions, must employ 
the Z or * picture character, respectively. 
When all digit positions to the right of 
the picture character V contain zero 
suppression picture characters, fractional 
zeros of the value are suppressed only if 
all positions in the fractional part con­
tain zeros and all integer positions have 
been suppressed. The entire character­
string value of the data item will then 
consist of blanks or asterisks. No digits 
in the fractional part are replaced by 
blanks or asterisks if the fractional part 
contains any significant digit. 

INSERTION CHARACTERS 

The picture characters comma (,,) " point 
(.), slash (/), and blank (B) are insertion 
characters; they cause the specified 
character to be inserted into the associat­
~::!d position of the numeric character data. 
~rhey do not indicate digit positions, but 
are inserted between digits. Each does~ 
however~ actually represent a character 
position in the character-string value, 
~~hether or not the character is suppressed. 
~rhe comma, point., and slash are conditional 
insertion characters; within a string of 
zero suppression characters, they, too" may 
be suppressed. The blank (B) is an uncond­
itional insertion character; it always 
specifies that a blank is to appear in the 
associated position. 

1'fote: Insertion characters arE~ applicable 
only to the character-string value.' They 
specify nothing about the arithmetic value 
of the data item. 

Figure D-4 gives examples of the use of 
insertion characters. In the figure v the 
letter b indicates a blank character. 

causes a comma to be inserted into the 
associated position of the numeric char­
acter data when no zero suppression 
occurs. If zero suppression does occur, 
the comma is inserted only when an 
unsuppressed digit appears to the left 
of the comma position, or when a V 
appears immediately to the left of it 
and the fractional part contains any 

significant digits. 1 In all other cases 
where zero suppression occurs, one of 
three possible characters is inserted in 
place of the comma. The choice of 
character to replace the comma depends 
upon the first picture character that 
both precedes the comma position and 
specifies a digit position: 

• If this character position is an 
asterisk, the comma position is 
assigned an asterisk. 

• I~ this character position is a 
drifting sign or a drifting currency 
symbol (discussed later), the drift­
ing string is assumed to include the 
comma position, which is assigned the 
drifting character. 

• If this character position is not an 
asterisk or a drifting character, the 
comma position is assigned a blank 
character. 

is used the same way the comma picture 
character is used, except that a point 
(.) is assigned to the associated posi­
tion. This character never causes point 
alignment in the picture specifications 
of a fixed-point decimal number and is 
not a part of the arithmetic value of 
the data item. That function is served 
solely by the picture character V. 
Unless the V actually appears, it is 
assumed to be to the right of the 
rightmost digit position in the field, 
ang point alignment is handled accord­
ingly. even if the point insertion char­
acter appears elsewhere. The point (or 
the comma or slash) can be used in 
conjunction with the V to cause inser­
tion of the point (or comma or slash) in 
the position that. delimits the end of 
the integer portion and the beginning of 
the fractional portion of a fixed-point 
(or floating-point) number, as might be 
desired in printing, since the V does 
not cause printing of a point. The 
point must immediately precede or 
immediately follow the V.. If the point 
precedes th€ v, it will be inserted onlY 
if a significant digit appears to the 
left of the v, even if all fractional 
digits are significant. If the point 
immediately follows the v, it will be 
suppressed if all digits to the right of 
the V are suppressed, but it will appear 
if there are any fractional digits 
(along with any intervening zeros). 

1In the special case of a conditional 
insertion character that is preceded either 
by nothing or only by characters that do 
not specify digit positions, the condi­
tional position will always contain the 
conditional insertion character .. 

Section D: Picture Specification Characters 209 



r------------------T--------------------T------------------------T----------------------, 
) Source I Source Data J Picture I Character-String 1 
I Attributes I (in constant form) I Specification I Value1 I 
.------------------+--------------------+------------------------+----------------------i 
I FIXE:D(4) 1234 9,999 I 1,234 
I I 
I FIXED(6,2) 1234.56 9,999V.99 I 1,234.56 
I I 
I FIXED(4,2) 12.34 ZZ.VZZ I 12.34 
I J 
I FIXED(4,2) 00.03 ZZ.VZZ I bbb03 
I ) 
I FIXED(4,2) 00.03 ZZV.ZZ bb.03 
I 
I FIXED(4,2) 12.34 ZZV.ZZ 12.34 
1 

FIXED(4,2) 00.00 ZZV. ZZ bbbbb 

FIXED(9,2) 1234567,.89 9,999,999.V99 1,234,567.89 

FIXED(7,2) 12345.67 **,999V.99 12,345 .. 67 

FIXED(7,2) 00123.45 **,999V.99 ***123 .. 45 

FIXED(9,2) 1234567.89 9.999.999V,99 1.234.567,89 

FIXED(6) 123456 99/99/99 12/34/56 

FIXED(6) 123456 99.9/99.9 12.3/45 .• 6 

FIXED(6) 001234 ZZ/ZZ/ZZ bbb12/34 

FIXED(6) 1 000012 ZZ/ZZ/ZZ bbbbbb12 
I 

FIXED(6) I 000000 ZZ/ZZ/ZZ bbbbbbbb 
I 

FIXED(6) I 000000 **/**/** ******** , 
FIXED(6) I 123456 99B99B99 12b34b56 

I 
FIXED(3) I 123 9BB9BB9 1bb2bb3 

I 
FIXED (2) I 12 9BB/9BB 1bb/2l::b 

~--____ ------------~--------------------~-------------___________ L _____________________ _ 

J1The arithmetic value is the value expressed by the digits and the actual or aS~iumedl 
, location of the V in the specification. I L _______________________________________________________________________________________ J 

Figure D-4. Examples of Insertion Characters 

/ is used the same way the comma picture 
character is used, except that a slash 
(/) is inserted in the associated posi­
tion. 

B specifies that a blank character always 
be inserted into the associated position 
of the character-string value of the 
numeric character data. 

SIGNS AND CURRENCY SYMBOL 

The picture characters S, +. and 
specify signs in numeric character data. 
The picture character $ specifies a curren-

210 

cy symbol in the character-string value of 
numeric character data. 

These picture characters may be used in 
either a static or a drifting manner. A 
drifting character is similar to a zero 
suppression character in that it can cause 
zero suppression. However, the character 
specified by the drifting string is Gllways 
inserted in the position specified b1' the 
end of the drifting string or in the 
position immediately to the left of the 
first significant digit. 

The static use of these characters spec­
ifies that a sign, a currency symbol, or a 
blank always appears in the associated 
position. The drifting use specifies that 



leading zeros are to be suppressed. In 
this case, the rightmost suppressed posi­
tion associated with the picture character 
will contain a sign, a blank, or a currency 
symbol. 

A drifting character is specified by 
multiple use of that character in a picture 
field. Thus, if a field contains one 
currency symbol ($), it is interpreted as 
static; if it contains more than one, it is 
interpreted as drifting. The drifting 
character must be specified in each digit 
position through which it may drift. 

Drifting characters must appear in 
strings. A string is a sequence of the 
same drifting character. optionally con­
taining a V and one of the insertion 
characters comma, point, slash" or B. Any 
of the insertion characters slash, comma, 
point, or B following the last drifting 
symbol of the string is considered part of 
the drifting string. However, a following 

V terminates the drifting string and is not 
part of it. A field of a picture specifi­
cation can contain only one drifting 
string. A drifting string cannot be 
preceded by a digit position. The picture 
characters * and Z cannot appear to the 
right of a drifting string in a field. 

Figure D-5 gives examples of the use of 
drifting picture characters. In the fig­
ure. the letter b indicates a blank charac­
ter. 

The position in the data associated with 
the characters slash, comma, point, and B 
appearing in a string of drifting charac­
ters will contain one of the following: 

• slash, comma, point, 
significant digit has 
left 

or blank if a 
appeared to the 

r------------------T--------------------T------------------------y----------------------, I Source I Source Data I Picture I Character-String I 
I Attributes I (in constant form) I specification ] Value1 I 
~------------------+--------------------+------------------------+----------------------~ 

FIXED(5,2) 123.45 $999V.99 $123.45 I 
I 

FIXED(5,2) 001.23 $ZZZV.99 $bb1.23 I 
I 

FIXED(5,2) 000.00 $ZZZV.ZZ $bbbbbb I 
I 

FIXED (1) 0 $$$.$$ bbbbb$ I 
I 

FIXED (5, 2) 123.45 $$$9V.99 $123.45 J 

FIXED(5,2) 001.23 $$$9V.99 bb$1.23 

FIXED(5,2) 012.00 99$ 12$ 

FIXED (2) 12 $$$,999 bbb$012 

FIXED(4) 1234 $$$,999 b$1,234 

FIXED(5,2) 123.45 S999V.99 +123.45 

FIXED(5,2) -123.45 S999V .. 99 -123.45 

FIXED(5T 2) -123.45 +999V.99 b123 .. 45 I 
I 

FIXED(5,2) 123.45 -999V.99 b123.45 I 
I 

FIXED(5,2) 123.45 999V.99S 123.45+ J 
J 

FIXED (5 . .,2) 001 .. 23 ++B+9V .. 99 bbb+1.23 I 
I 

FIXED(5.,2) 001.23 ---9V .. 99 bbb1.23 I 
J 

I FIXED(5,2) -001.23 SSS9V.99 I bb-1.23 I 
.------------------~--------------------~------------------------~----------------------~ 11 The arithmetic value is the value expressed by the digits and the actual or assumedJ 
I location of the V in the specification. I L _______________________________________________________________________________________ J 

Figure D-5. Examples of Drifting Picture Characters 

section D: Picture specification Characters 211 



• the drifting symbol. if the next posi­
tion to the right contains the leftmost 
significant digit of the field 

• blank, if the leftmost significant digit 
of the field is more than one position 
to the right 

If a drifting string contains the drift­
ing character n times, then the string is 
associated with n-l conditional digit posi­
tions. The position associated with the 
leftmost drifting character can contain 
only the drifting character or blank, never 
a digit. If a drifting string is specified 
for a field, the other potentially drifting 
characters can appear only once in the 
field~ i.e., the other character represents 
a static sign or currency symbol. 

If a drifting string contains a V within 
itw the V delimits the preceding portion as 
a subfield u and all digit positions of the 
subfield following the V must also be part 
of the drifting string that commences the 
second subfield. 

Only one type of sign character can 
appear in each field. An S. +, or - used 
as a static character can appear to the 
left of all digits in the mantissa and 
exponent fields of a floating-point speci­
fication, and either to the right or left 
of all digit positions of a fixed-point 
specification. 

In the case in which all digit positions 
after the V contain drifting characters, 
suppression in the subfield will occur only 
if all of the integer and fractional digits 
are zero. The resulting edited data item 
will then be all blanks, except for the 
rightmost digit position, which will con­
tain the drifting character. If there are 
any significant fractional digits, the 
entire fractional portion will appear 
unsuppressed. 

$ specifies the currency symbol. If this 
character appears more than once, it is 
a drifting character~ otherwise it is a 
static character. The static character 
specifies that the character is to be 
placed in the associated position. The 
static character must appear either to 
the left of all digit positions in a 
field of a specification or to the right 
of all digit positions in a specifi­
cation. See details above for the 
drifting use of the character. 

s specifies the plus sign character (+) if 
the data value is ~O, otherwise it 
specifies the minus sign character (-). 
The character may be drifting or static. 
The rules are identical to those for the 
currency symbol. 

212 

+ specifies the plus sign character (+) if 
the data value is ~O, otherwise it 
specifies a blank. The character may be 
drifting or static. The rules are iden­
tical to those for the currency symbOl • 

specifies the .minus sign character (-) 
if the data value is <0, otherwise it 
specifies a blank. The character may be 
drifting or static. The rules are iden­
tical to those for the currency symbOl. 

CREDIT, DEBIT, AND OVERPUNCHED SIGNS 

The character pairs CR (credit) and DB 
(debit) specify the signs of real numeric 
character data items and usually appear in 
business report forms. 

Any of the picture characters T~ I, or R 
specifies an overpunched sign in the asso­
ciated digit position of numeric character 
data. An overpunched sign is a 12-punch 
(for plus) or an ii-punch (for minus) 
punched into the same column as a digit. 
It indicates the sign of the arithmetic 
data item. Only one overpunched sign can 
appear in a specification for a fixed-point 
number. A floating-point specification can 
contain two, one in the mantissa field and 
one in the exponent field. The overpunch 
character can, however, be specified for 
any digit position within a field. The 
overpunched number then will appear in the 
specified digit position. 

Note: When an overpunch character occurs 
in a P format item for edit-directed input, 
the corresponding character in the input 
stream may contain an overpunched sign. 

Figure D-6 gives examples of the CR, DB~ 
and overpunch characters. In the figure. 
the letter b indicates a blank character. 

CR specifies that the associated positions 
will contain the letters CR if the 
value of the data is less than zero. 
Otherwise, the positions will contain 
two blanks. The characters CR can 
appear only to the right of all digit 
positions of a field. 

DB is used the same way that CR is used 
except that the letters DB appear in 
the associated positions. 

T specifies that the associated position. 
on input, will contain a digit over­
punched with the sign of the data. It 
also specifies that an overpunch is to 
be indicated in the character-string 
value. 



r------------------T--------------------T------------------------T----------------------, 
I Source I Source Data I Picture I Character-String I 
J Attributes I (in constant form) I Specification I Value1 I 

}------------------+--------------------+------------------------+----------------------~ 
I FIXED(3) -123 I $Z.99CR $l.23CR 
I I 
I FIXED(4.2) 12.34 l $ZZV.99CR $12.34bb 
I I 
I FIXED(4~2) -12.34) $ZZV.99DB $12.34DB 
I ) 
I FIXED(4.2) 12.34 I $ZZV.99DB $12.34bb 
) I 
I FIXED(4) 1021 I 999I 102A 
I ) 
I FIXED(4) -1021 I Z99R 102J 
I ] 
1 FIXED(4) 1021 I 99T9 10B1 
.------------------~--------------------~------------------------~----------------------~ 
11 The arithmetic value is the value expressed by the digits and the actual or assumed) 
I location of the V in the specification. I l _______________________________________________________________________________________ J 

Figure D-6. Examples of CR, DB, T, I, and R Picture Characters 

I 

R 

specifies that the associated position. 
on input. will contain a digit over­
punched with + if the value is 20; 
otherwise. it will contain the digit 
with no overpunching.. It alro spec­
ifies that an overpunch is to be indi­
cat ed in the character- string val ue if 
the data value is 20 .. 

specifies that the associated positionl 
on inputl will contain a digit over­
punched with - if the value is <0; 
otherwisel it will contain the digit 
with no overpunching. It also spec­
ifies that an overpunch is to be indi­
cated in the character-string value if 
the data value is <0. 

Note: The pict.ure characters CR, DB,. T, I. 
and R cannot be used with any other sign 
characters in the same field. 

EXPONENT SPECIFIERS 

The picture characters K and E delimit 
t.he exponent field of a numeric character 
specification that describes floating-point 
decimal numbers. The exponent field is 
a.lways the last field of a numeric charac­
ter floating-point picture specification. 
The picture characters K and E cannot 
a.ppear in the same specification. 

Ir------·------------, --------------------j -----------------------j ----------------------, 
I Source I Source'Data I Picture I Character-String I 

I Attributes I (in constant form) I Specification I Value1 I 
.------------------+--------------------+------------------------+----------------------~ 
I FLOAT (5) .12345E06 I V.99999E99 I .12345E06 
~ I] 
I FLOAT(5) .12345E-06 I V.99999ES99 ) .12345E-06 
I I I 
) FLOAT(5) .12345E+06) V.99999KS99 ) .12345+06 
I I II 
1 FLOAT(S) -123.45E+12 I S999V.99ES99 I -123.45E+12 
~ t I 
I FLOAT (5) 001.23E-01 I SSS9.V99ESS9 1 +123.00Eb-3 
I I I 
I FLOAT (5) 001..23E+04 I ZZZV.99KS99 ) 123.00+02 
I I I 
I FLOAT (5) 001..23E+04 I SZ99V.99ES99 I +123.00E+02 
I I I 
I FLOAT(S) 001.23E+04 I SSSSV.99E-99 I +123.00Eb02 
~------------------~--------------------~------------------------~----------------------~ 
11 The arithmetic value is the value expressed by the mantissa, multiplied by 10 to thel 
i power indicated in the exponent field. I l _______________________________________________________________________________________ J 

Figure D-7. Examples of Floating-Point Picture Specifications 

Section D: Picture Specification Characters 213 



Figure 0-7 gives examples of the use of 
exponent delimiters. In the figure. the 
letter b indicates a blank character. 

K 

E 

specif'ies that the exponent field 
appears to the right of the associated 
position. It does not specify a char­
acter in the numeric character data 
item. 

specifies that the associated position 
contains the letter E. which indicates 
the start of the exponent field. 

The value of the exponent is adjusted in 
the character-string value so that the 
first significant digit of the first field 
(the mantissa) appears in the position 
associated with the first digit specifier 
of the specification (even if it is a zero 
suppression character). 

SCALING FACTOR 

The picture character F specifies a 
scaling factor for fixed-point decimal num­
bers., It appears at the right end of the 
picture specification and is used in the 
following format: 

F ([+1-] decimal-integer-constant) 

F specifies that the optionally signed 
decimal integer constant enclosed in 
parentheses is the scaling factor. The 
scaling factor specifies that the deci­
mal point in the arithmetic value of 
the variable is that number of places 
to the right (if the scaling factor is 
positive) or to the left (if negative) 
of its assumed position in the 
character-string value. 

For System/360 implementations. the 
scaling factor cannot specify a fixed­
point number that contains more than 15 
digits. 

Figure 0-8 shows examples of the use of 
the scaling factor picture character. 

STERLING PICTURES 

The following picture characters are 
used in picture specifications for sterling 
data: 

8 

7 

6 

P 

G 

H 

M 

specifies the position of a shilling 
digit in BSI single-character 
representation. Ten shillings is rep­
resented by a 12-punch (&) and eleven 
through nineteen shillings are rep­
resented by the characters A through I. 
respectively. 

specifies the position of a pence 
digit in BSI single-character represen­
tation. Ten pence is represented by a 
12-punch (&) and eleven pence is rep­
resented by an ii-punch (-). 

specifies the position of a pence digit 
in IBM single-character representation. 
Ten pence is represented by an ii-punch 
(-) and eleven pence is represenbed by 
a 12-punch (&). 

specifies that the associated position 
contains the pence character D. 

specifies the start of a sterling pic­
ture. It does not specify a character 
in the numeric character data item. 

specifies that the associated position 
contains the shilling character S. 

specifies the start of a field. It 
does not specify a character in the 
numeric character data item. 

r--·----------------T--------------------T------------------------T-----------------------, 
1 Source I Source Data I Picture J Character-String I 
I Attributes I (in constant form) I specification I Value1 I 
.------------------+--------------------+------------------------+-----------------------~ I FIXED(4.0) I 1200 I 99F(2) ] 12 I 
I I I I I 
I FIXED(7,0) I -1234500 I S999V99F(4) I -12345 I 
I I I I I 
I FI XED ( 5. 5) I. 00012 I 99 F ( - 5 ) I 12 I 
I I I I I 
I FIXED(6.6) I .012345 I 999V99F(-4) I 12345 I 
.------------------~--------------------~------------------------L----------------------i 
11 The arithmetic value is the same as the character-string value" multiplied by 10 tol 
I the power of the scaling factor. I l __ . _____________________________________________________________________________________ J 

Figure D-8. Examples of Scaling Factor Picture Characters 

214 



Figure D-9 gives examples of the use of 
sterling picture specifications. 

sterling data items are considered to be 
real fixed-point decimal data. When 
involved in arithmetic operation.s, they are 
converted to a value representing fixed­
point pence. sterling pictures have the 
general form: 

PICTURE 

'G [editing-character-l] 

M pounds-field 

M (separator-l] 
shillings-field 

M [separator-2] .0. 
pence-field 

[editing-character-2] 

"Editing character 1" can be one or more 
of the following static picture characters: 

$ + S 

The "pounds field" can contain the 
following picture characters: 

Z Y * 9 T I R , $ + - s 

The last four characters ($ + S) must 
be drifting characters. The comma can be 
used as an insertion character. 

"Separator 1" can be one or more of the 
following picture characters: 

/ B 

The "shillings field" can be: 

{99 I YY I ZZ I Y9 \ Z9 I YZ I 8} 

One of the nines can be replaced by T# I, 
or R, if no other sign indicator appears in 
any of the fields of the specification. 

"Separator 2" can be one or more of the 
picture characters: 

/ B H 

The "pence field" takes the form: 

{99\YY\ZZ\Y9\7\Z9\YZ)6} 

[[VIV.I.V] 91 Z\Y] ••• 

One of the nines can be replaced by T, I, 
or R, if no other sign indicator appears in 
any of the fields of the specification. 

"Editing character 2" can be one or more 
of the static picture characters $, +, 
or S and o~e or more of B, P, CR, or DB. A 
sign character or CR or DB can appear only 
if no other sign indicator appears in any 
of the fields of the specification. 

The pounds, shillings, and pen~e fields 
must each contain at least o~e dig~t posi­
tion. 

Zero suppression in stE;rling pi.~tures is 
performed on the total data item, not 
separately on each of the pounds, shill~ 
ings, and pence fields. The Z picture 
character is not allowed to the right of a 
6, 7, 8, or 9 picture character in a 
sterling specification. In sterling pic­
tures, the field separator characters slash 
(/), point (.), B, and H are never sup­
pressed. 

r-----~------------T--------------------T------------------------T----------------------, 
J Source \ Source Data 1 Picture ] Character-String ] 
\ Attributes 1 (in constant form) \ Specific~tion \ Value1 \ 
.------------------+--------------------+------------------------+----------------------1 I FIXEO(4) I 0534 I GMZ9M,.8M.99V.9CR I b2.4.06.0bb \ 
I 1 I I I 
I FIXEO(4) I 0019 1 GMZZM.ZZM.ZZP I bb.bl.070 I 
~------------------~--------------------~------------------------~----------------------~ 
\1The arithmetic value of a num€!ric character variable declared with a sterling picturel 
\ specification is its value €:xpressed as a valid sterling fixed-point constant, whichl 
I for arithmetic operations is always converted to its value expressed in pence. I L _______________________________________________________________________________________ J 

Figure 0-9. Examples of Sterling Picture specifications 

Section 0: Picture Specification Characters 215 



SECTION E: EDIT-DIRECTED FORMAT ITEMS 

This section describes each of the edit­
diretted format items that can appear in 
the format list of a GET or PUT statement. 

Tbere are three categories of format 
I items: data format items, control format 
item~, and the remote format item. 

In this section" the three categories 
are :discussed separately and the format 
item~ are listed under each category. The 
rema~nder of the section contains detailed 
discussions of each of the format items, 
with the discussions appearing in 
alphabetic order. 

DATA FORMAT ITEMS 

A data format item describes the exter­
nal ~ormat of a single data item. 

For input, the data in the stream is 
cons~dered to be a continuous string of 
characters; all blanks are treated as char­
acte~s in the stream, as are quotation 
marks. Each data format item in a GET 
statement specifies the number of charac­
ters 'to be obtained from the stream and 
desc~ibes the way those characters are to 
be ~nterpreted. Strings should not be 
enclqsed in quotation marks, nor should the 
lett~r B be used to identify bit strings. 
If the characters in the stream cannot be 
inte~pr~ted in the manner specified, the 
CONVERSION condition is raised. 

For output, the data in the stream takes 
the f;orm specified by the format list. 
Each data format item in a PUT statement 
specifies the width of a field into which 
the 'associated data item in character form 
is to be placed and describes the format 
tha't the value is to take. Enclosing 
quota:tion marks are not inserted, nor is 
the l:etter B to identify bit strings. 

Le:a,ding blanks are not inserted automat­
ically to separate data items in the output 
strea~. String data is left-adjusted in 
the field, whose width is specified. 
Ari"thlnetic data is right-adjusted. Because 
of "th~ rules for conversion of arithmetic 
data to character type, which can cause up 
to three leading blanks to be inserted (in 
addition to any blanks that replace leading 
zeros~, there generally will be at least 
one blank preceding an arithmetic item in 
the converted field. Leading blanks will 
not appear in the stream, however, unless 

216 

the specified field width allows for them. 
Truncation~ due to inadequate field-width 
specification is on the left for arithmetic 
items, on the right for string items. 

Note that the value of binary data both 
on input and output is always represented 
in decimal form for edit-directed transmis­
sion. 

Following is a list of data format 
items: 

Fixed-point F(specification) 
format item 

l"loa ting-point 
format item 

Complex format 
item 

Picture format 
item 

Bit-string 
format item 

Character-string 
format item 

E(specification) 

C(specification) 

P'picture-specification' 

B(specification) 

A(specification) 

CONTROL FORMAT ITEMS 

The control format items specify the 
layout of the data set associated 11'li th a 
file. The following is a list of control 
format items: 

Paging format 
item 

Line skipping 
format item 

Line position 
format item 

Column position 

Spacing 
format item 

PAGE 

SKIP [(specification) ] 

LINE (specification) 

COLUMN (specification) 

XCspecification) 

A control format item has 
unless it is encountered before 
list is exhausted. 

no E~ffect 
the data 

The PAGE and LINE format items apply 
only to output and only to files with the 



PRINT attribute. The SKIP and COLUMN ,for­
mat items apply to both input and output. 

The PAGE, SKIP" and LINE format items 
have the same effect as the corresponding 
options of the PUT statement (and of the 
GET statement, in the case of SKIP), except 
that the format items take effect only when 
they are encountered in the format list" 
while the options take effect before any 
data is transmitted. 

The COLUMN format item positions the 
file to the specified charac·ter position in 
the current line. 

The spacing format item specifies rela­
tive horizontal spacing. On input, it 
specifies a number of characters in the 
stream to be skipped over and. ignored; on 
output, it specifies a numher of blanks to 
be inserted into the stream. 

REMOTE FORMAT ITEM 

The remote format item specifies the 
label of a FORMAT statement that contains a 
format list which is to be taken to replace 
the remote format item. 

The remote format item is: 

R (statement-Iabel-designator) 

The "statement label d~es igna tor" is a 
label constant or an element label varia­
ble. 

USE OF FORMAT ITEMS 

The "specification" that is listed above 
for all but the picture, P}\GE" and remote 
format items can contain one or more 
expressions. such expressions can be spec­
ified as decimal integer constants" as 
Element variables, or as ,other element 
expressions. The value assiqned to a vari­
able during an input operation can be used 
in an expression in a format item that is 
associated with a later data item. ~n 
expression is evaluated and converted to an 
integer each time the format. item is used. 

ALPHABETIC LIST OF FORMAT ITEMS 

TheA Format Item 

The A format item is: 

A [(f ield-width) ] 

The character-string format item des­
cribes the external representation of a 
string of characters. 

General rules: 

1. The "field width" is an expression 
that is evaluated and converted to an 
integer each time the format item is 
used,. It specifies the number of 
character positions in the data stream 
that contain (or will contain) the 
string. 

2.. On input, the specified number of 
characters is obtained from the data 
stream and assigned, with any neces­
sary conversion. truncation. or pad­
ding, to the associated element in the 
data list.. The field width is always 
required on input~ and if it has a 
value less than or equal to zero, a 
null string is assumed. If quotation 
marks appear in the stream, they are 
treated as characters in the string. 

3. On output" the associated element in 
the data list is converted, if neces­
sary~ to a string of characters and is 
truncated or extended with blanks on 
the right to the specified field width 
before being placed into the data 
stream~ If the field width is less 
than or equal to zero, the format item 
and its associated element in the data 
list are skipped, and no characters 
are placed into the data stream. 
Enclosing quotation marks are never 
inserted. If the field width is not 
specified, it is assumed to be equal 
to the character-string length of the 
element named in the data list (after 
conversion" if necessary, according to 
the rules given in Section F, "Problem 
Data Conversion"). 

The B Format Item 

The B format item is: 

B [(field-width)] 

The bit-string format item describes the 
external representation of a bit string. 
Each bit is represented by the character 0 
or 1. 

Section E: Edit-Directed Format Items 217 



General rules: 

1. The "field width" is an expression 
that is evaluated and converted to an 
integer each time the format item is 
used. It specifies the number of 
data-stream character positions that 
contain (or will contain) the bit 
strinsr· 

2. On input, the character representation 
of the bit string may occur anywhere 
within the specified field. Blanks# 
which may appear before and after the 
bit string in the field, are ignored. 
Any necessary conversion occurs when 
the bit string is assigned to the 
associated element in the data list. 
The field width is always required on 
inp.ut, and if it is less than or equal 
to zero, a null string is assumed. 
Any character other than 0 or 1 in the 
strinsr, including embedde1 blanks, 
quotation marks, or the letter B, will 
raise the CONVERSION condition. 

3. On output, the character representa­
tion of the bit string ~s left­
adjusted in the specified field" and 
necessary truncation or extension with 
blanks occurs on the right. Any 
neoessary conversion to bit-string is 
performed. No quotation marks are 
inserted, nor is the identifying let­
ter B. The field width need not be 
specified when the associated element 
in the data list is a bit string; in 
this case, the current length of the 
associated string is used, and the 
data item completely fills the field. 
The field width is always required if 
the data-list item is arithmetic or 
pictured. If the field width is less 
than or equal to zero, the format item 
and its associated element in the data 
list are skipped, and no characters 
are placed into the data stream. 

The C Format Item 

The C format item is: 

C(real-format-item[,real-format-item]) 

The complex format item describes the 
external representation of a complex data 
item. 

General rules: 

1. Eaoh "real format item" is specified 
by one of the F, E, or P format items. 
The: P format item mu..st describe fixed­
point or floating-point numeric 
character data; it cannot describe 
ste,rling or character-string data. 

218 

2. On input, the complex format it~em 
describes the real and imaginary pal~ts 
of the complex data item within ad:;a­
cent fields in the data stream. If 
the second real format item is omit­
ted, it is assumed to be the same as 
the first. The letter I will cause 
the CONVERSION condition to be raisE~d. 

3. On output, the real format items dE~s­
cribe the forms of the real and imclg­
inary parts of the complex data i 1:em 
in the data stream. If the second 
real format item is omitted, it is 
assumed to be the same as the first. 
The letter I is never appended to 1~he 
imaginary part. If the second rE~al 
format item (or the first, if only one 
appears) is an F or E item, 1:he 
internal sign will be printed only if 
the value of the imaginary part is 
less than zero. If the real format 
item is a P item, the sign will be 
printed only if the S or or + 
picture character is specified. If 
the I is to be appended, it must be 
specified as a separate data item in 
the data list, immediately following 
the variable that specifies the com­
plex item. The I", then, must havE~ a 
corresponding format item (either A or 
P) • 

The COLUMN Format Item 

The COLUMN format item is: 

COLUMN (character-position) 

The col umn position format item pmd­
tions the file to a specified charac1:er 
position within the line. It can be used 
with either input or output files. 

General rules: 

1. The "character position" can be speci­
fied by an expression, which is evalu­
ated and converted to an integer each 
time the format item is used. 

2. The file is positioned to the speci­
fied character posi ton in the currE~nt 
line. On input, intervening character 
positions are ignored; on output, they 
are filled with blanks. If the file 
is already positioned after the speci­
fied character positon, the curnmt 
line is completed and a new line is 
started; the format item is then 
applied to the new line. 

3. If the specified character position 
lies beyond the rightmost charac1:er 
position of the current line, or if 



the value of the expression for the 
character position is less than one, 
then the character position is assumed 
to be one. 

Note: The rightmost character position 
is determined as follows: 

a. For output files, it is determined 
by the line size; 

b. For input files, the F compiler 
uses the length of the current 
logical record to determine the 
line size and, hence, the right­
most character pesi·tion. In the 
cas~ of V-format records, this 
line size is equal to the logical 
record length minu.§. the number of 
bytes containing control informa­
tion. 

4. The COLUMN format item has no effect 
unless it is encount.ered before the 
data list is exhausted. 

The E Format Item 

The E format item is: 

ECfield-width,number-of-fractional-digits 
[,number-of-significant-digits]) 

The floating-point format item describes 
the ext.ernal representation of decimal 
arithmetic data in floating-point format. 

General rules: 

1. The "field width," "number of frac­
tional digits," and "number of signi­
ficant digits" can be represented by 
expressions, which are evaluated and 
converted to integers 1i11hen the format 
i tern is used. 

"Field width" specifies the total num­
ber of characters in the field. 

"Number of 
ifies the 
mantissa 
point. 

fractional digits" 
number of digits 

that follow the 

spec­
in the 

decimal 

"Nu.mber of significant digits" spec­
ifies the number of digits that must 
appear in the mantissa. 

2. On input, the data item in the data 
stream is the character representation 
of an optionally signed decimal 
floating-point or fixed--point constant 
located anywhere within the specified 
field. If the data item is a fixed­
point number., an exponent of zero is 
assumed. 

The external form of a floating-point 
number is: 

[+1-] mantissa[{[E]{+I-}}exponen~ 
E [+1-] J 

The mantissa must be.a decimal fixed­
point constant. 

a. The number can appear anywhere 
within the specified field; blanks 
may appear before and after the 
number in the field and are 
ignored. If the entire field is 
blank, the CONVERSION condition is 
raised. When no decimal point 
appears, the expression for the 
number of fractional digits spec­
ifies the number of character 
positions in the mantissa to the 
right of the assumed decimal 
point. If a decimal point does 
appear in the number, it overrides 
the specification of 'the number of 
the fractional digits. 

The value expressed by "field 
width" includes trailing blanks, 
the exponent position, the posi­
tions for the optional plus or 
minus signs, the position for the 
optional letter E, and the posi­
tion for the optional decimal 
point in the mantissa. 

b. The exponent is a decimal integer 
constant. Whenever the exponent 
and preceding sign or letter E are 
omitted# a zero exponent is 
assumed. 

3. On output, the internal data is con­
verted to floating-point, and the 
external data item in the specified 
field has the following general form: 

[-] {s-d digits}. {d digits} 
E {+I-} exponent 

In this form, s represents the number 
of significant digits, and d rep­
resents the number of fractional 
digits.. The val ue is rounded if nec­
essary. 

a. The exponent is a two-digit deci­
mal integer constant, which may be 
two zeros. The exponent is auto­
matically adjusted so that the 
leading digit of the mantissa is 
nonzero. When the value is zero, 
zero suppression is applied to all 
digit positions (except the first) 
to the left of the decimal point. 
All other digit positions contain 
zero. 

Section E: Edit-Directed Format Items 219 



b. If the above form of the number 
does not fill the specifi~d field 
on output, the number 1S right­
adjusted and extended on the left 
with blanks. If the number of 
significant digits is not 
specified. it is taken to be 1 
plus the number of fractional 
digits. For System/360 implemen­
tations, the field width for non­
negative values of the data item 
must be greater than or equal to 5 
plus the number of significant 
digi ts.. For negat ive values of 
the data item, the field width 
must be greater than or equal to 6 
plus the number of significant 
digits.. However, if the number of 
fractional digits is zero, the 
decimal point is not written, and 
the above figures for the field 
width are reduced by 1. 

c. The rounding of internal data is 
as follows: if truncation causes a 
digit to be lost from the right, 
and this digit is greater than or 
equal to 5, then 1 is added to the 
digit to the left of the truncated 
digit,. 

d. If the field width is such that 
significant digits or the sign is 
lost, the SIZE condition is 
raised. 

The F Format Item 

The F format item is: 

F(field-width(,number-of-fractional-digits 
[, scaling- factor]] ) 

The fixed-point format item describes 
the external representation of a decimal 
arithmetic data item in fixed-point format. 

General rules: 

1. The "field width," "number of frac­
tional digits," and "scaling factor" 
can be represented by element expres­
siQns~ which are evaluated and con­
verted to integers when the format 
item is used. 

2. On input, the data item in the data 
stream is the character representation 
of an optionally signed decimal fixed­

located anywhere within 
field. Blgnks may 

and afte~ the number 1K" 
~~~~~~~--~~~~~o~red. If the 

is inter-

220

The number of fractional digits, if
not specified, is assumed to be Zel~O.

If no scaling factor is specified and
no decimal point appears in the fieJLd,
the expression for the number of frac­
tional digits specifies the number of
digits in the field to the right of
the assumed decimal pOint. If a deci­
mal point actually does appear"' in ('ne"
data, it overrides the expression for
the number of fractional digits.

If a scaling factor is specified# it
effectively multiplies the value of
the data item in the data stream by 10
raised to the integral value (E) of
the scaling factor. Thus, if E is
positive, the number is treated as
though the decimal point appeared 2
places to the right of its given
position. If E is negative., the num­
ber is treated as though the decimal
point appeared 2 places to the left of
its given position. The given posi­
tion of the decimal point is that
indicated either by an actual point,
if it appears, or by the expression
f or the n umber of f ra cti ona I digi 1:s ,
in the absence of an actual point.

3. On output, the internal data is con­
verted, if necessary, to fixed-point;
the external data is the charac1:er
representation of a decimal fixed­
point number, rounded if necessaJ::Y,
and right-adjusted in the specified
field.

If only the field width is specified
in the format item, only the inteqer
portion of the number is written; no
decimal point appears.

If both the field width and number of
fractional digits are specified, but
the scale factor is not, both 1the
integer and fractional portions of the
number are written. If the value (~)
of the number of fractional digits 1S
greater than zero, a decimal point is
inserted before the rightmost ~
digits. Trailing zeros are supplied
when the number of fractional digits
is less than d (the value d must be
less than the field width). Suppr~~s­
sion of leading zeros is applied to
all digit positions (except the firBt)
to the left of the decimal point.

The rounding of internal data is as
follows: if truncation causes a digit
to be lost from the right, and this
digit is greater than or equal to 5,
then 1 is added to the digit to 1the
left of the truncated digit.

The integer value C~} of the scaling
factor effectively multiplies the
value of the associated element in the
data list by 10 raised to the power of
E, before it is edited into its exter­
nal character representation. When
the number of fractional digits is
zero, only the integer portion of the
number is used.

On output, if the value of the fixed­
point number is less than zero, a
minus sign is prefixed to the external
character representation; if it i q
greater than or equal to zero~ no sign
appears. Therefore~ for negative
values of the fixed-point number, the
field width specification must include
a count of both the sign and the
decimal point.

If the field width is such that signi­
ficant digits or the sign is lost, the
SIZE condition is raised.

The LINE Format Item

The LINE format item is:

LINE Cline-number)

The line position format~ item specifies
the particular line on a pagre of a PRINT
file upon which the next dat~a item is to be
printed.

General rules:

1. The "line number" can be represented
by an expression~ which is evaluated
and converted to an integer each time
the format item is us eel.

2. The LINE format item specifies that~
blank lines are to be inserted so that
the next line will be the specified
line of the current page.

3. If the specified line has already been
passed on the. current page, or if the
specified line is bE~yond the limits
set by the PAGESIZE opt~ion of the OPEN
statement Cor by default), the ENDPAGE
condition is raised.

4. If" line number" is less than or equal
to zero, it is assumed to be one.

5. The LINE format item has no effect~
unless it is encountered before the
data list is exhausted.

The P Format Item

The P format item is:

P 'picture-specification'

The picture format item describes the
external representation of numeric charac­
ter data and of character-string data.

The "picture specification" is discussed
in detail in section D, "Picture Specifi­
cation Characters" and in the discussion of
the PICTURE a ttribute in Section I,'
"Attributes."

On input, the picture specification des­
cribes the form of the data item expected
in the data stream and, in the case of a
numeric character string, how its arithmet­
ic value is to be interpreted. Note that
the picture specification should accurately
describe the data in the input stream,
including characters represented by editing
characters. If the indicated character
does not appear in the stream, the CONVER­
SION condition is raised.

On output, the value of the associated
element in the data list is edited to the
form specified by the picture specification
before it is written into the data stream.

The PAGE format item is:

PAGE

The pagi~g format item specifies that a
new page 1S to be established. It can be
used only with PRINT files.

General rules:

1,. The establishment of a new page
implies that the next printing is to
be on line one.

2. The PAGE format item has no effect
unless it is encountered before the
data list is exhausted.

The R Format Item

The R format item is:

R Cstatement-label-designator)

The remote format item allows format
items in a FORMAT statement to replace the
remote format item.

section E: Edit-Directed Format Items 221

General rules:

1. The "statement label designator" is a
label constant or an element label
variable that has as its value the
statement label of a FORMAT statement.
The FORMAT statement includes a format
list that is taken to replace the
format item.

2. The R format item and the specified
FORMAT statement must be internal to
the same block. (If the procedure is
executed recursively, they must be in
the same invocation.)

3. There can be no recursion within a
FORMAT statement. That is, a remote
FORMAT statement cannot contain an R
format item that names itself as a
stat,ement label des igna tor, nor can it
name another' remote FORMAT statement
that, will lead to the naming of the
original FORMAT statement. Avoidance
of recursion can be assured if the
FORMAT statement referred to by a
remote format item does not itself
cont:ain a further remote format item.

4. Any conditions enabled for the GET or
PUT statement must also be enabled for
the remote FORMAT statement(s) that
are referred to.

5. If the GET or PUT statement is the
single statement of an on-unit, it
cannot contain a remote format item.

The SKIP format item is:

SKIP'[(relative-posi tion-of-next-line)]

The line skipping format item specifies
that a new line is to be defined as the
current line.

General rules:

1. The "relative position of next line"
can be specified by an element expres­
sion, which is eval uated and converted
to an integer each time the format
item is used. It must be greater than
zero for non-PRINT files. If it is
not, or if it is omitted, 1 is
assumed.

2. The new line is the specified number
of lines beyond the present line.

222

3. If the value of the relative position
is greater than one, then on inpu1:,
one or more lines will be ignored; on
output, one or more blank lines will
be inserted.

4. The value of the relative position may
be less than or equal to zero for
PRINT files only; the effect is that
of a carriage return without line
spacing. Characters previously writ­
ten may be overprinted.

5. If the SKIP format item is not speci­
fied at the end of a line, then SKIP
(1) is assumed.. that is, single spac­
ing.

6. For PRINT files, if the specified
relative position is beyond the limit
set by the PAGESIZE option of the OPEN
statement (or the default)" the END­
PAGE condition is raised.

7. The SKIP format item has no effect
unless it is encountered before the
data list is exhausted.

The X Format Item

The X format item is:

X (field-width)

The spacing format item controls the
relative spacing of data items in the data
stream. It is not limited to PRINT files.

General rules:

1.

2.

The "field width" can be representE!d
by an expression, which is eval uatE!d
and converted to an integer each time
the format item is used. The integer
specifies the number of blanks before
the next field of the data stream,
relative to the current position in
the stream.

On input,
characters
stream and
program.

the specified number of
is spaced over in the dat.a
not transmitted to the

3. On output, the specified number of
blank characters are inserted into the
stream.

4. If the field width is less than zero,
it is assumed to be zero.

5. The spacing format item has no effect
unless it is encountered before the
data list is exhausted.

This section lists the rules for arith­
metic conversion and for conversion of
problem data types. Each type conversion
is listed under a separate heading. In
addition to the text, twelve tables appear:

• Tables F-l through F-4 show the data
type of the result of an operation
involving two operands of possibly dif­
fering types. Note that although the
tables are for two operands, these
operands could thems~lves be the result
of other operations: any expression
involving a number of infix operators
will be eventually reduc,ed, during
evaluation, to a single infix operation
with two operands. Note also that the
result is the result of the expression
only. and may be converted on subse­
quent assignment.

• Table F-5 states the rules for comput­
ing the precision of the result of an
arithmetic conversion.

• Table F-6 states the rules for comput­
ing the length of the result of an
a~ithmetic to character-string conver­
sion.

• Table F-7 states "the rules for comput­
ing the length of the result of an
arithmetic to bit-string conversion.

• Table F-8 can be used to find the
ceiling (CEIL) of any value between 1
and 15 when that value is multiplied by
3.32 or it can be used to find the
ceiling <CEIL) of any value between 1
and 56 when that value is divided by
3.32.

• Tables F-9 through F-12 illustrate con­
version in arithmetic expression opera­
tions, and they give attributes of the
results based upon the operator speci­
fied and the attributes of the two
operands.

ARITHMETIC CONVERSION

The rules for arithmetic conversion
specify the way in which a value is trans­
formed from one arithmetic representation
to another. It can be that, as a result of
the transformation, the value will change.
For example, the number .2~ wh~ch can be
exactly represented as a decimal fixed-

SECTION F: PROBLEM DATA CONVERSION

point number6 cannot be exactly represented
in binary. The magnitude of such changes
in value depends upon the precisions of the
target and source. In expression
evaluation, the precision of the target is
derived from the precision of the source.
In order to estimate and to understand the
errors that can occur~ the precision rules
must be understood; and since the rules
also leave some latitude for the implemen­
tation. it is helpful to have some know­
ledge of the way in which conversions are
implemented.

Floating-Point Conversion

In System/360 implementations, both
decimal and binary floating-point numbers
are maintained in the internal hexadecimal
form used in System/360. If the specified
precision is more than 6 decimal digits, or
21 binary digits, the number is maintained
in long floating-point form (14 hexadecimal
digits with a hexadecimal exponent). If
the precision is 6 decimal digits or less,
or 21 binary digits or less" the number is
maintained in short floating-point form (6
hexadecimal digits and a hexadecimal
exponent) •

No actual conversions between binary and
decimal are performed on floating-point
data. The only precision changes are from
long to short, which is done by truncation,
and from short to long, which is done by
extending with zeros. The declared preci­
sion of floating-point data and the base,
however, do affect the calculation of tar­
get attributes, as well as the attributes
of intermediate forms that are determined
from the source.

,Mode Convers ion

If a complex value is converted to a
real value, the result is the real part of
the complex value.

If a real value is converted to a
complex value, the result is a complex
value that has the value of the real source
as the real part and zero as the imaginary
part.

Section F: Problem Data Conversion 223

Precision Conversion

Precision conversion occurs if the spec­
ified target precision is different from
the source precision. In particular, there
always is a precision change when the
source and target are of different bases.
It is also possible that there is an actual
change in precision when converting from
floating-point to fixed-point, because of
the way in which floating-point numbers are
repre$ented. Precision changes are per­
formed by truncation or by padding with
zeros. Floating-point numbers are convert­
ed from short precision to long precision
by extending with zeros on the righto and
from long precision to short precision by
truncation on the right.

Fixed-point numbers maintain decimal or
binary point alignment and may be truncated
on the left or right, or extended with
zeros on the left or right.

No indication is given of loss of signi­
ficant digits on the right. Loss of digits
on the left can be checked for if the SIZE
condition is enabled. In System/360
implementations, binary fixed-point numbers
are stored in words of 31 bits, whatever
the declared width. Decimal numbers are
always stored as an odd number of digits,
since they are maintained in system/360
packed decimal format, with the rightmost
four bits of the rightmost byte expressing
the sign ..

Base Conversion

Changes in base will usually affect only
the vallue of noninteger fixed-point num­
bers. Some decimal fractions cannot be
expresped exactly in binary, and some
errors' will then occur due to truncation.
Some binary fractions will also require
more diecimal digits for exact representa­
tion than are automatically generated by
the conversion rules, and this may also
cause errors resulting from truncation.

Since the range of binary fixed-point
numbers is smaller than the range of deci­
mal fixed-point numbers, it is possible for
significant digits to be lost on the left
in conversion from decimal to binary. This
will raise the SIZE condition, but an
interrupt will not occur unless the condi­
tion is explicitly enabled by a SIZE pre­
fix.

The natural notation for constants is
decimal and, therefore, most constants are
written in decimal. The precision of a

224

constant is derived from the way in which
it is written. Care should therefore be
taken when writing noninteger constants
that will be converted to fixed-point
binary.

The following .examples illustrate how
the representation of a decimal constant
(.1) is converted when used in an arithmet­
ic expression (such as A+.l)$ Target
attributes are derived from the attributes
of A, the operator, and the attributes of
the constant, which are, in this case,
DECIMAL FIXED (1,1).

Attributes of A:
Value:
Target:
Final Value:

Attributes of A:
Value:
Target:
Final Value:

FIXED BIN(10,2)
.1
FIXED BIN(5,4)
.0625

FLOAT BIN(50)
.1
FLOAT BIN(4)
.1>value> .. 0625

Coded lrithmetic to Numeric Character

Coded arithmetic data being convertl=d to
numeric character is converted, if neces­
sary, to a decimal value whose scale and
precision are determined by the PICTURE
attribute of the numeric character item.

Numeric Character to Coded Arithmetic

Numeric character data being convE~rted
to coded arithmetic is first interpreted as
a decimal item of the scale and precision
determined by the corresponding PICTURE
attribute. This item is then converted to
the base# scale, and precision of the coded
arithmetic target.

DATA TYPE CONVERSION

Character-String to Arithmetic

The source string must represent a valid
arithmetic constant or complex expression.
The constant may optionally be signed, and
may be surrounded by blanks, but cannot
contain blanks between the sign and the
value of the constant, or between the end
of the real part and the sign of the
imaginary part in a complex expression.

The permitted forms are:

[+I-larithmetic-constant

[+I-lreal-constant{+I-limaginary-constant

A null string gives the value zero .•

The constant will itself have the attri­
butes of base, scale, mode" and precision~
It will be converted to conform with the
attributes of the target.

Even when converting from character
string to numeric character field, the
source must still contain a constant which
is valid according to thE~ rules for con­
stants in PL/I source programs. The value
of this constant is then converted and
edited to the picture representation.

The following example will therefore
result in a conversion error:

DeL A PICTURE '$$$9V.99':

A='$17.9S' ;

The currency symbol makes the character­
string constant invalid for conversion to
the arithmetic value of the numeric
charact.er variable, even though its
character-string value contains a currency
symbol.

Correct examples are:

A='17.95';

A=17.9S;

either of which would result in A having
the character-string value b$17.95.

For conversion from character string to
arithmetic, the attributes assumed for the
target are those attributes that would have
been assumed if a fixed-point decimal inte­
ger of precision (lS~O) had appeared in
place of the string. (The precision given
is that. for the F' Compiler.)

Arithmetic. to Character-Str:~

The arithmetic value is converted to a
decimal arithmetic constant. The constant
is inserted in an in'termedia te character
string whose length is derived from the
attr ibutes of the source (see Table F-6,
"Lengths of Converted Character strings") ..
Except for the base and precision, the
attributes of the constant are the same as
the att.ributes of the sourc.~.

In the case of the conversion of expres­
sion results, the intermediate string is
ass igned to the target string., and may be
truncated or padded with zeros on the
right.

Since the rules of arithmetic to
character-string conversion are also used
for list-directed and data-directed output,
and for evaluating keys (even for REGIONAL
files) this type of conversion will be
found in most programs., and should be
thoroughly understood.

Numeric Character to Character-String

Real numeric character fields are treat­
ed as character strings and assigned to the
target string from left to right according
to the rules for character-string assign­
ment.

The real and imaginary parts of complex
numeric character fields are concatenated,
and the resulting string is assigned to the
target. No character, including I or
blank" is inserted between or following the
two parts.

Fixed-Point to Character-String

A binary fixed-point source is first
converted to decimal" and the decimal pre­
cision is derived from the precision of the
binary source (see Table F-5., "Precision
for Arithmetic Conversions").

A decimal fixed-point source with preci­
sion (p,q) is converted to character-string
representation as follows:

1. If p>=q>=O (that is, if the assumed
decimal point lies within the field of
the internal representation) then:

• The constant is right adjusted in a
field of width p+3.

• Leading zeros are replaced by
blanks., except for a single zero
that immediately precedes the deci­
mal point of a fractional number.

• If the value is negative, a minus
sign precedes the first significant
digit (or the zero before the point
of a fractional number). Positive
values are unsigned.

• Unless the source is an integer,
the constant has q fractional
digits. If the source is an inte­
ger~ there is no decimal point.

2. If q is negative or greater than p., a
scaling factor is appended to the

Section F: Problem Data Conversion 225

r-----------------------T--------------T-------------------T--------------T--------------l
I Source I Source I Intermediate I Target I I
\ Attributes I Value I String I Attributes I Result I
~-----------------------+--------------+-------------------+--------------+--------------~

FIXED DEC(5,0) I 2497 I 'bbbb2497' CHAR(10) 'bbbb2497bb'
I I

FIXED DEC(5,0) I 2497 I 'bbbb2497' CHAR(5) 'bbbb2'
I \

FIXED DEC(4,1) I -121.7 \ 'b-121.7' CHAR(7) 'b-121.7'
I

FIXED D:&;(4,,5) I .01217 'b1217F-5' CHAR(7) 'b1217F-'
I

FIXED DEC(4.,·-3) I -3279000 '-3279F+3' CHAR(8) '-3279F+3'
I

FIXED DEC(3,3) I -.567 '-0.567' CHAR(6) '-0.567'
I

FIXED BIN(15,0) I 4095 'bbbbb4095· CHAR(8) 'bbbbb409'
I

FIXED BIN(3,3) 1.375 'bbO.3' CHAR(4) 'bbO.'
I

FIXED BIN(15,-15) I -65536 'b-65536F+5' CHAR(10) 'b-65536F+5· ______ . ________________ ~ ______________ ~ ___________________ ~ ______________ L _____________ _

Figure F-1. Examples of Conversion from Fixed-Point to Character-String

right of the constant. The constant
itself is of the same form as an
integer. The scaling factor has the
form:

F{+I-}nnn

where {+\-}nnn has the value -q.

The number of digits in the scaling
factor is just sufficient to contain
the value of q without leading zeros.

'The length of the intermediate string is:

226

p+3+k

where k is the number of digits neces­
sary to represent the value of q (not
including a sign or the letter F).
For example, . given:

DCL A FIXED(4,-3),
C CHAR (10) ;
A=1234.0E3;
C=A;

The intermediate string generated in
converting A would be:

b1234F+3

which, when assigned to C, would give:

b1234F+3bb

Other examples are shown in Figure F-1.

Floating-Point to Character-String

If the source is binary, its binary
precision is converted to the equivalent
decimal precision (see Table F-5~
"Precision for Arithmetic Conversions").

The decimal source with prec1s1on p is
converted as if it were transmitted by an E
format item of the form E(w,d,s) where:

w, the length of the intermediate
string., is p+6 (for the F Compiler)

d, the number of fractional digits, is
p-1

s, the number of significant digits,
is p

For the F Compiler., an E format itE!m
generates a floating-point decimal constant
with a signed two-digit exponent. (See
Part II, Section E" "Edit-Directed Format
Items.")

The following examples illustrate the
intermediate string generated for a
floating-point to character-string conver­
sion:

Source Attributes: FLOAT DEC(6)
Source Value: 173Sx10 5

Intermediate String: b1.73S00E+08

Source Attributes: FLOAT BIN(20)
Source Value: -91882x10 a
Intermediate String: -9.182200E+06

Source Attributes: FLOAT DEC(S)
Source Value: -.0016632
Intermediate String: -1.6632E-03

complex to Character-string

The intermediate string that is generat­
ed contains a complex expression. Its
length is 1 plus twice thE~ length of the
character string generated by a real source
with corresponding attributes. The inter­
mediate string consists of two concatenated
strings. The left-hand, or real" part
consists of a string generatE~d exactly as
for a real source. The right-hand, or
imag inary" part is always signed" and it
has an I appended. The st~ring length of
the imaginary part is one cha.racter longer
than the real part (to allow for the I).
The resulting string is a ccrnplex expres­
sion, with a sign but no blanks between its
elements.

The following examples illustrate the
intermediate string that re!sults from a
complex to character-string conversion:

Source:
Value:
Result:

Source:
Value:
Result:

COMPLEX DEC FLOA,T (5)
17.3+1.5I
bl.7300E+Ol+1.5000E+00I

COMPLEX DEC FIXED (4" 3)
0.133+0.007I
bbbO.133+0.007I

Character-String to Bit-String

The character 1 in the source string
becomes the bit 1 in the target string,.
The character 0 in the source string
becomes the bit 0 in the target string.
Any character other than 0 and 1 in the
source string will raise the CONVERSION
condition. A null character string becomes
a null bit string,.

If the source string is longer than the
target, excess characters on the right are
ignored (so that excess characters other
than 0 or 1 will not raise ·the CONVERSION
condition). If the target is longer than
the source" the target is padded on the
right with zeros.

Bit-stri!!9 to Character-Strin(I

The bit 0 becomes the character 0" and
the bit 1 becomes the charact.er 1,. A null
bit string becomes a null character string,.
The generated character string, which has
the same length as the source bit string"
is assigned to the target.

If the source bit string is shorter than
the target character string, the remainder
of the target is padded with blanks.

The following are examples of bit-string
to character-string conversion:

Source Value:
Target Attributes:
Result:

Source Value:
Target Attributes:
Result:

Source Value:
Target Attributes:
Result: I

Source Value:
Target Attributes:
Resul t:

'1011'B
CHAR (4)

"1011 '

"10101'B
CHAR(10) VAR

'10101'

'10101'B
CHAR(10)

'10101bbbbb'

, 0001'B
CHAR (1)

.. 0'

The CONVERSION condition cannot be
raised on conversion from bit to character:
however. a character string created by
conversion from a bit string can cause a
conversion error when reconverted if blanks
have been inserted.

Arithmetic to Bit-String

The absolute arithmetic value is first
converted to a binary integer, whose preci­
sion is the same as the length of the
bit-string target as given in Table F-7.
This integer, without a sign, is then
treated as a bit string. This intermediate
string is then assigned to the target.

Examples are shown in Figure F-2.

Bit-String to Arithmetic

For the F compiler" the effect is as if
the bit string were interpreted as an
unsigned binary integer of maximum preci­
sion (56.0)~ If the string is longer than
56 bits" bits on the left are ignored: the
SIZE condition will be raised if nonzero
bits are lost" provided that SIZE is ena­
bled. Note that truncation is on the left,
not on the right. The null string gives
the value zero: otherwise, the result of a
bit-string to arithmetic conversion is
always positive.

Section F: Problem Data Conversion 227

r----------------------T--------------T-------------------T--------------T---------------,
I Source I Source I Intermediate I Target I I
I Attributes I Value I String I Attributes I Result I
~-----------------------+--------------+-------------------+--------------+------------.. -~

FIXED BIN(10) 15 'OOOOOOli1i'B I BIT(10) 'OOOOOOl11i u B
I

FIXED BIN(l) 1 'l'B I BIT(1} 'l'B
I

FIXED DEC(l} 1 'OOOl'B I BIT(l) 'O'B
I

FIXED BIN(3} -3 'Oll'B \ BIT(3} '011'B
I

FIXED BIN(4.2} 1..25 'Ol'B \ BIT(2) 'Ol'B
\

FIXED DEC(2.1) 1.1 'OOOl'B \ BIT(4} 'OOOl'B
\

FLOAT BIN(4) 1.25 'OOOl'B \ BIT(S) '00010'B L ______________________ ~ ______________ ~ __________________ ~ ______________ ~ ____________ • __

Figure F-2. Examples of Conversion From Arithmetic to Bit-String

Table F-1. D~ta Type of Result of Bit-String Operation
r-----------------T-----------------T-----------------T----------------T----------------,
IOPERAND TYPES ICODED ARITHMETIC INUMERIC CHARACTERICHARACTER STRINGIBIT STRING I
~-----------------+-----------------+-----------------+----------------+----------------~
ICODED ARITHMETIC IBit string \Bit string IBit string IBit string I
~---------,--------+-----------------+-----------------+----------------+--------------,--~
INUMERIC CHA~ACTERIBit string IBit string IBit string IBit string I
~-----------------+-----------------+-----------------+----------------+----------------~
ICHARACTER STRI~G IBit string IBit string IBit string IBit string I
~-----------------+-----------------+-----------------+----------------+----------------~
\BIT STRING \Bit string IBit string IBit string \Bit string I L _________________ L _________________ ~ _________________ ~ ________________ L ________________ J

Table F-2. Data Type of Result of Concatenation Operation
r------------------T-----------------T-----------------T----------------T----------------,
IOPERA~m TYPES ICODED ARITHMETIC INUMERIC CHARACTER I CHARACTER STRINGIBIT STRING I
~-----.------------+-----------------+-----------------+----------------+----------------~
ICODED ARITHMETIC \Character string ICharacter string ICharacter stringlCharacter string I
~-----.------------+-----------------+-----------------+----------------+----------------~
INUMERIC CHARACTERICharacter string ICharacter string \Character string\Character string I
~-----------------+-----------------+-----------------+----------------+----------------~
ICHARACTER STRING ICharacter string ICharacter string ICharacter stringlCharacter string I
~------------------+-----------------+-----------------+----------------+----------------~
IBIT STRING ICharacter string \Character string ICharacter stringlBit string I L _________________ ~ _________________ L _________________ ~ ________________ ~ ________________ J

Table F-3a. Data Type of Result of comparison Operation
r------------------T-----------------T-----------------T----------------T----------------,
IOPERAND TYPES ICODED ARITHMETIC INUMERIC CHARACTER I CHARACTER STRINGIBIT STRING I
~------------------+-----------------+-----------------+----------------+----------------~
ICODED ARITHMETIC \Bit string \Bit string IBit string IBit string I
~------------------+-----------------+-----------------+----------------+-----------------~
I NUMERIC CHARACTERIBit string IBit string \Bit string \Bit string I
~---------.--------+-----------------+-----------------+----------------+----------------~
ICHARACTER STRING IBit string \Bit string \Bit string IBit string I
~-----------------+-----------------+-----------------+----------------+--------------.--~
IBIT STRING IBit string IBit string IBit string IBit string I
~----_------------L-----------------L-----------------~ ________________ ~ ________________ ~
\ Note;. Alt.hough the final result of a comparison operation is always a bit string of I
Ilength 1, the type of comparison (algebraic" character, or bit) depends on the data I
Itype of t.he intermeidate operands after conversion" which are shown in Table F-3b. I L ___ J

228

.Table F-3b. Data Type of Intermediate Operands of Comparison Operation
r-----------------T-----------------T-----------------T----------------T----------------,
IOPERAND TYPES ICODED ARITHMETIC INUMERIC CHARACTER I CHARACTER STRING\BIT STRING \
I (before I I I I I
~ conversion) I I I I I
~-----------------f------------------f-----------------f----------------f----------------i
ICODED ARITHMETIC Icoded arithm1etic Icoded arithmetic Icoded arithmetic I Coded arithmetic I
.-----------------f------------------f-----------------f----------------+----------------i
INUMERIC CHARACTERlcoded arithmetic ICoded arithmetic Icoded arithmeticlcoded arithmetic I
~-~---------------+------------------+-----------------+----------------+----------------~
~ CHARACTER STRING I Coded arithmetic I Coded ari-thmetic I Character string 1 Character string I
.-----------------+------------------+-----------------+----------------+----------------i
IBIT STRING ICoded arithmletic Icoded arithmetic ICharacter stringlBit string I L _________________ ~ _________________ ~ _________________ ~ ___________ ---__ ~ ________________ J

.Table F-4. Data Type of Result of Arithmetic Operation
r-----------------T-----------------T-----------------T----------------T----------------,
IOPERAND TYPES ICODED ARITHMETIC INUMERIC CHARACTERICHARACTER STRINGIBIT STRING I
f-----------------+-----------------+-----------------+----~-----------+----------------~
ICODED ARITHMETIC ICoded arithmetic Icoded arithmetic ICoded arithmetic1coded arithmetic \
.-----------------+---------~-------+-----------------+----------------+----------------i
INUMERIC CHARACTERICoded arithmlstic Icoded arithmetic Icoded arithmeticlcoded arithmetic I
.-----------------f------------------+-----------------+----------------+----------------i
ICHARACTER STRING Icoded arithm1etic Icoded arithmetic ICoded arithmeticlcoded arithmetic I
~-----------------+-----------------+-----------------+----------------+----------------i
IBIT STRING Icoded arithm49tic ICoded arithmetic Icoded arithmeticlCoded arithmetic I L _________________ ~ _________________ ~ _________________ ~ ________________ ~ ________________ J

.'rable F-5. Precision for Arithmetic Conversions
r-----------------------T----------------------------T-----------------------------------,
ISource Attributes I Target Attributes I Target Precision I
.-----~-----------------+---------------------------+-----------------------------------i
DECIMAL FIXED(p,q) DECIMAL FLOAT P

DECIMAL FIXED(p.q) BINARY FIXED 1+p*3.32,q*3.32 (see note 3)

DECIMAL FIXED (p" q) BINARY FLOAT p*3.32

DECIMAL FLOAT(p) BINARY FLOAT p*3.32

BINARY FIXED(p,q) BINARY FLOAT P

BINARY FIXED(p,q) DECIMAL FIXED 1+p/3.32.q/3.32 (see note 4)

BINARY FIXED(p,q) DECIMAL FLOAT p/3.32

BINARY FLOAT(p) DECIMAL FLOAT p/3,.32
~-----------------------~----------------------------~-----------------------------------i
INotes:
I 1. In the cases of p*3.32 and p/3.32, the CEIL of the result is taken; the value
J taken is an integer that is equal to or greater than the result.

2. Target precision never can exceed the implementation-defined maximums, which are
1.5 for FIXED DECIMAL, 31 for FIXED BINARY, 16 for FLOAT DECIMAL, and 53 for FLOAT
BINARY.

3. When g is negative, the following formula applies:

(MIN(CEIL(p*3.32)+1,31).CEIL(ABS(q)*3.32)*SIGN(q»

4. When g is negative. -the following formula applies:

(CEIL(p/3.32)+1.CEIL(ABS(q)/3.32*SIGN(q» L __ ---------__________________________________ J

section F: Problem Data Conversion 229

.Table F-·6. Lengths of converted Character Strings (Arithmetic To Character-String)
r-----------------------T---------------------------T-------------------------------.----,
I Source Attributes I Conditions I Target Length I

.--------~--------------+---------------------------+-----------------------------------i
lDEClMAL FIXED(p.q) I If p>=q>=O I p+3 I
I I I I
I I If q>p I p+3+k I
I I or I (where k = number of decimal I
I , q negative I digits to express scale I
I I I factor) !
I I I I
IDEClMAL FLOAT{p> I I p+6 I
I I I I
,Numeric character data I I Same as source I
~-----------------------~---------------------------~-----------------------------------i
lNote: Binary data is converted to decimal before conversion to character-string. ,
L====_~---------__ . ____ J

.Table F-7. Lengths of Converted Bit Strings (Arithmetic to Bit-String)
r-----------------------T---,
ISource Attributes 1 Target Length ,
~-----------------------+---i
IDEClMAL FIXED(p.q) , (p-q>*3.32 I
I I I
I DECIMAL FLOAT(p) I p*3.32 I
I I ,
)BINARY FIXED(p,q) I p-q I
I I I
IBINARY FLOAT(p) I p I
~---.--------------------~---i
I Not.es: I
I 1. In the cases of p*3.32 and (p-q)*3.32, the CEIL of the result is taken. 1
I I
I 2. If q is greater than or equal to p, the result is a null string. I l ___ J

.Table F-8. Ceiling Values
r---'--T-------------T-------T-------------,
I I I I I
I x I CEIL(x*3.32) I y I CEIL(y/3.32) I

I I I I J

~-----+-------------+-------+-------------~
I ~
I I
I 1 4 1-3 1 I

2 7 4-6 2 I
3 10 7-9 3 I
4 14 10-13 4 I
5 17 14-16 5 J
6 20 17-19 6
7 24 20-23 7
8 21 24-26 8
9 30 27-29 9

10 34 30-33 10
11 31 34-36 11
12 40 37-39 12
13 44 40-43 13
14 41 44-46 14
15 50 47-49 15

50-53 16
54-56 17

_____ ~ _____________ ~ _______ ~ _____________ J

230

TABLE OF CEILING VALUES

Table F-8 is intended to aid the pro­
grammer in computing the ceiling values
used to determine precisions and lengths in
conversions. It gives the ceiling for the
result of a multiplication by 3.32 of any
value (x) between 1 and 15. It also gives
the ceiling for the result of a division by
3.32 of any value (y) between 1 and 56.

TABLES FOR RESULTS OF ARITHMETIC OPERA'TIONS

Tables F-9 through F-12 give the attri­
butes of the results of arithmetic opera­
tions, based on the operator specified and
the attributes of the two operands. In
these tables, the target precisions (i.e.,
the precisions of the converted operands)
can never exceed the implementation-defined
maximums, which" for System/360 implementa­
tions, are: 15 for FIXED DECIMAL, 31 for
FIXED BINARY, 16 for FLOAT DECIMAL, and. 53
for FLOAT BINARY.

.Table F-9. Attributes of Result in Addition and Subtraction Operations
r---, I First Operand ,
~--------------------·T-----------------T--------------------T-----------------~
)DECIMAL FIXED(P1,q1) 'DECIMAL FLOAT (P1) 'BINARY FIXED(P1,q1) IBINARY FLOAT(P1) ,

r-T-------+--------------------·+-----------------+--------------------+-----------------i
ISIDECIMALIDECIMAL FIXED(p,q) IDECIMAL FLOAT(p) 'BINARY FIXED(p,q) IBINARY FLOAT(p) 1
elFIXED Ip=1+MAX(P1-q1,P2-q2)lp=MAX(P1,P2) Ip=1+MAX(p1-q1,r-s) Jp=MAX(P1,r) 1
cl (P2,q2)' +MAX(q1,q2) 1 I +MAX(q1'S) ,where: I
o~)q=MAX(q1,q2) 1 Iq=MAX(q1'S) I r=P2*3.32 I
nl I I Iwhere: , I
d~ I I I r=1+P2*3.32 I I

I I I 1 S=q2 * 3.32 I I
O~-------+--------------------+-----------------+--------------------+-----------------i
pIDECIMAL~DECIMAL FLOAT(p) IDECIMAL FLOAT(p) 'BINARY FLOAT(p) IBINARY FLOAT(p) I
e~FLOAT !p=MAX(P1,P2) Ip=MAX(P1,P2)]p=MAX(P1,r) ~p=MAXCp1tr) I
rl (P2) I I Iwhere: Iwhere: ,
a~ I I J r=P2*3. 32 ~ r=P2*3.32 I
nl I I I I I
d.-------+-------~------------t-----------------+--------------------t-----------------i

IBINARY IBINARY FIXED(p,q) IBINARY FLOATCp) IBINARY FIXED(p,q) IBINARY FLOAT(p) I
IFIXED Ip=1+MAX(r-s,P2-q2) Ip=MAX(r,P2) Ip=1+MAXCp1-q1,P2-q2)lp=MAX(p1,P2) I
I (P2,q2) ~ +MAX(s,q2) Iwhere: I +MAX(q1,q2) I I
J Iq=MAX{s,q2) ,r=P1*3.32 Iq=MAX(q1,q2) l I
I I where: I , I I
.~ I r= 1 + P1 * 3. 32 I J I l
, I S=q1 * 3.32 I I I l
~-------+--------------------t-----------------+·--------------------+-----------------i
IBINARY IBINARY FLOAT(p) 'BINARY FLOAT(p) I BINARY FLOAT(p) IBINARY FLOAT(p) J
IFLOAT Ip=MAXCr,P2) Ip=MAX(r,P2) Ip=MAX{P1RP2) I p=MAX(P1,P2) ,
, (P2) Iwhere: Iwhere: I I I
~ I r=P1*3.32 I r=P1*3.32 I I I _~ _______ ~ ____________________ ~ _________________ ~ ____________________ L _________________ J

.Table F-10. Attributes of Result in Multiplication Operations
r--------------------·---,
I First Operand 1

~--------------------·T-----------------T--------------------T-----------------~
IDECIMAL FIXED(P1,q1) 'DECIMAL FLOAT(P1)]BINARY FIXED(P1Dq1) ~BINARY FLOATCP1) ,

r-T-------+--------------------t-----------------+--------------------t-----------------i
SIDECIMALIDECIMAL FIXED(PRq) IDECIMAL FLOAT'(p) IBINARY FIXED(p,q) IBINARY FLOAT(p) 1
elFIXED Ip=p~+p2+1 Ip=MAX(P1,P2) Ip=p1+r+1 Ip=MAX(p1"r) 1
CI(P2,q2)lq=q1+q2 1 Iq=q1+S ~where: I
01 I 1 Iwhere: I r=P2*3.32 I
nl I 1 1 r=1+P2*3.32 I 1
d I I 1 1 S=q2 *3.32 I I
~-------+--------------------+-----------------t--------------------t-----------------~ o I DECIMAL 1 DECIMAL FLOAT(p) IDECIMAL FLOAT(p) IBINARY FLOAT(p) IBINARY FLOAT(p) 1

pi FLOAT Ip=MAX(P1,P2) Ip=MAX(P1,P2) Ip=MAX(P1,r) Ip=MAX(P1,r) 1
el (P2) 1 1 Iwhere: Iwhere: I
rl I 1 1 r=P2*3.32 I r=P2*3.32 I
al I I) I 1
n~-------+--------------------+-----------------t--------------------+----~------------~
dlBINARY IBINARY FIXED(p.q) IBINARY FLOAT(p) lBINARY FIXED(p"q) IBINARY FLOAT(p) I

1 FIXED Ip=r+p2+1 Ip=MAX(r,P2) Ip=P1+P2+ 1 Ip=MAX(P1,P2) 1
I (P2.q2»)q=S+q2 Iwhere: iq=q1+q2 I I
I Iwhere: I r=P1 *3.32 1 I I
I I r=1+P1*3.32 I I I I
I I S=q1 * 3.32 I I I I
.-------+--------------------+-----------------t--------------------t-----------------~
IBINARY IBINARY FLOAT(p) IBINARY FLOATCp) IBINARY FLOAT(p) IBINARY FLOATCp) 1
I FLOAT Ip=MAX(r,P2) Ip=MAX(r,P2) Ip=MAX(P1,P2) Ip=MAXCp~·'P2) I
!(P2) Iwhere: Iwhere: I I I

I I ,r=P1*3.32 1 r=P1*3.32 I I I L_~ _______ ~ ____________________ ~ _________________ ~ ____________________ L _________________ J

section F: Problem Data Conversion 231

.Table F-ll. Attributes of Result in Division Operations
r---,
I First Operand I
~--------------------T-----------------T--------------------T------------------~
IDECIMAL FIXED (Pj., q.1'> I DECIMAL FLOAT (P.t.> I BINARY FIXED(pj.,qj.) !BINARY FLOAT(pj.) I

r-T--------t--------------------t-----------------t--------------------t-----------------~
SIDECIMALIDECIMAL FIXED(p,q) IDECIMAL FLOAT{p) IBINARY FIXED(p,q) IBINARY FLOAT(p) I
elFIXED tp=15 Ip=MAX(pj.,P2) Ip=31 ~p=MAX(pj.,r) I
cl (P2,q2)lq=15-«pj.-qj.)+q2) I 1q=31-«p.t.-q.t.)+s) Iwhere: I
01 I I Iwhere: I r=P2*3.32 I
n I I I I S=q2 * 3. 32 I I
dill I I I
~-------t--------------------t-----------------t--------------------t-----------------~

0) DECIMAL I DECIMAL FLOAT(p) IDECIMAL FLOAT(p)]BINARY FLOAT(p) ~BINARY FLOAT(p) I
p] FLOAT I p=MAX (P.t., P2) I p=MAX (P.t., P2) I p=MAX (Pj., r) I p=MAX (Pj., r) I
e I (P2) I I I where: I where: I
r 1 I I I r= P 2 * 3 • 32 I r=p 2 * 3. 32 I
a] I I I I I
n~-------t--------------------t-----------------t--------------------t-----------------i
dlBINARY IBINARY FIXED(p) IBINARY FLOAT(p) IBINARY FIXED(p,q) IBINARY FLOAT(p) I

i J FIXED 1 p=31 I p=MAX (r, P2) I p=31 I p=MAX (Pj., P2) I
I I (P2,Q2)lq=31-«r-s)+q2) Iwhere: Iq=31-«pj.-qj.)+q2) I I
I I Iwhere: I r=pj.*3.32 I I I
I J I r=1+p.t.*3.32 I I I I
I I I s=qj. * 3 • 32 I I I I
I J-------t--------------------t-----------------t--------------------t-----------------~
I !BINARY IBINARY FLOAT(p) IBINARY FLOAT(p) IBINARY FLOAT(p) IBINARY FLOAT(p) I
I JIi'LOAT I p=MAX (r, P2) I p=MAX (r, P2) I p=MAX (Pj., P2) I p=MAX (Pj., P2) I
I I (P2) Iwhere: Iwhere: I I I
I I I r=pj.*3.32 I r=pj.*3.32 I I I L_~ _______ ~ ____________________ ~ _________________ ~ ____________________ ~ _________________ J

.Table F-12. Attributes of Result in Exponentiation Operations
r--------------------T---------------------T-------------------------------------,
I I Second Operand I J
I First Operand I (Exponent) I Target Attributes of Result I
~--------------------t---------------------t--------------------------------.----~

Case (1) I FIXED DECIMAL (Pj.,qj.) I Unsigned integer IFIXED DECIMAL(p,q) [provided p~15] I
I Iconstant with value nl p=(pj.+l)*n-l I
I I I q=qj.*n I
~--------------------t---------------------t--------------------------------.----~

Case (2) I FIXED BINARY(pj.,qj.) IUnsigned integer IFIXED BINARY(p,q) [provided p~31] I
I Iconstant with value nl p=(pj.+l)*n-l ~

I I I q=qj.*n I
~--------------------t---------------------t--------------------------------·----i

Case (3)IFIXED DECIMAL(p.t.,q.t.) I FIXED DECIMAL(P2,q2) IFLOAT DECIMAL(p) [unless case (1) I
lor lor I or (7) is applicable]!
IFLOAT DECIMAL(p.t.) IFLOAT DECIMAL(P2) I p=MAX(pj.,P2) I I
~--------------------t---------------------t--------------------------------.----~

CasE~ (4) I FIXED BINARY(P.t.eqj.) !FIXED DECIMAL(P2,q2)]FLOAT BINARY(p) [unless case (2) I
lor lor I or (7) is applicalble] I
IFLOAT BINARY(p.t.) IFLOAT DECIMAL(P2) I p=MAX(pj.,CEIL(3.32*p2»]
~--------------------t---------------------t--------------------------------.----i

CasE~ (S)IFIXED DECIMAL {P.t., qj.) I FIXED BINARY(P2,q2) IFLOAT BINARY(p) [unless case (1) I
lor lor I or (7) is applicolble] I
IFLOAT DECIMAL(p.t.) IFLOAT BINARY(P2) I p=MAX(CEIL(3.32*pj.),P2) J

~--------------------t---------------------+--------------------------------·----i
(6) I FIXED BINARY(p.t..qj.) IFIXED BINARY(P2,q2) IFLOAT BINARY(p) [unless case (2) I

lor lor I or (7) is applicable] I
IFLOAT BINARY(pj.) IFLOAT BINARY(P2) I p=MAX(p.t.,P2) I
~--------------------t---------------------t--------------------------------.----~ I Case (7) I FLOAT DECIMAL{p.t.) IFIXED DECIMAL(p2'O) I FLOAT (P.t.) [with base of first I
lor lor I operand] I
IFLOAT BINARY(pj.) IFIXED BINARY(P2,O) I I l ____________________ ~ _____________________ ~ ____________________________________ J

232

Form C28-8201-1, Page Revised by TNL N33-6008, 5/1/68

SECTJON G: BUILT-IN FUNCTIONS AND PSEUDO-VARIABLES

All of the built-in functions and
pseudo-variables that are available to the
PL/I programmer are given in this section.
The general organization of this section is
as follows:

1. computational Built-in Functions

a. String-handling built-in functions

b. Arithmetic built-in functions

c. Mathematical built-in functions

d. Array manipulation built-in func­
tions

2. Condition Built-in Functions

3. Based storage Built-in Functions

4. Multitasking Built-in Functions

5. Miscellaneous Built-in Functions

6. Pseudo-Variables

The computational built-in functions,
shown above, provide string handling,
arithmetic operations (addition, division,
etc.), mathematical operations (trig­
onometric functions, square root, etc.),
and array manipulation. The~ computational
built-in functions are:

st ri nQ2!..C! ndl ing:
BIT
BOOL
CHAR
HIGH
INDEX
LENGTH

Arithmetic:
ABS
ADD
BINARY
CEIL
COMPLEX
CONJG
DECIMAL
DIVIDE
FIXED
FLOAT
FLOOR

LOW
REPEAT
STRING
SUBSTR
UNSPEC

I MAG
MAX
MIN
MOD
MULTIPLY
PRECISION
REAL
ROUND
SIGN
TRUNe

Mathematical:
ATAN
ATAND
ATANH
COS
COSD
COSH
ERF
ERFC
EXP
LOG

Array Manipulation:
ALL
ANY
DIM
HBOUND

LOG10
LOG2
SIN
SIND
SINH
SQRT
TAN
TAND
TANH

LBOU~1b
POLY
PROD
SUM

The condition built-in functions allow
the PL/I programmer to invEstigate inter­
ru?ts arising from enabled ON-conditions.
The condition built-in functions are:

DATAFIELD
ON CHAR
ONCODE
ONCOUNT

ONFILE
ONKEY
ONLOC
ONSOURCE

The based storage built-in functions are
designed to facilitate list processing and
the use o~ based storage. They mainly
return special values which can be assigned
to locator and area variatles. The based
storage built-in functions are:

ADDR
EMPTY

NULL
NULLO

The multitasking built-in functions
allow the programmer to investigate the
current state of a task cr asynchronous
input/output operation, or the current
priority of a task. The multitasking
built-in functions are:

COMPLETION
PRIORITY
STATUS

The miscellaneous built-in functions
perform various duties; for example, one
function provides the current date, another
provides a count of data items transmitted
during a STREAM input/output operation,
while another provides an indication of
whether or not a controlled variable is in
an allocated state. The miscellaneous
built-in functions are:

ALLOCATION
COUNT
DATE

LINENO
TIME

Section G: ~uilt-In Functions and Pseudo-Variables 233

The section on pseudo-variables gives a
snort discussion for each of the PL/I·
pseudo-variables. A more complete descrip­
tion can be found in the discussion of the
corresponding built-in function. The
pseudo-variables are:

COMPLETION
COMPLEX
I~.AG

ONCHAR
ON SOURCE

PRIORITY
REAL
STATUS
SUBSTR
UNSPEC

All of the built-in functions and
pseudo-variables are presented in alphabet­
ical order under their proper headings.

COMPUTATIONAL BUILT-IN FUNCTIONS

S'IRING HANDLING BUILT-IN FUNCTIONS

The functions described in this section
may be used for manipulating strings.
Unless it is specifically stated otherwise,

'any argument can be an element expression
or an array expression. If an argument is
an array, the value returned by the built­
in function is an array with bounds
identical to that argument (the function
having been performed for each element of
the array). For those functions where two
or more array arguments are allowed, the
arguments must have identical bounds. An
argument that is specified as "string" can
be an expression of any data type" but if
it is arithmetic, it is converted to bit­
string (if binary base) or character-string
(if decimal base) before the function is
invoked.

All conversions ,mentioned in this
section are made according to the rules for
the conversion of expression operands as
specified in Section F, "Problem Data Con­
version. "

BIT S~fill~uilt-in Function

Definition: BIT converts a given value to
a bit string and returns the result to the
point of invocation. This function allows
the programmer to control the size of the
result of a bit-string conversion.

BefereB~ BIT (expression [, size])

,A'rguments: The argument "expression" rep­
resents the quantity to be converted to a
bit string. The argument nsize,n when

234

specified, must be a decimal integer con­
stant giving the length of the result. If
"sizen is not specified, it is determined
~ccording to the type conversion rules
given in Section F, "Problem Data ConveJe'­
sion. .. If" express ion" is an array expres­
sion, "size" applies to each element of the
array.

Result: The value returned by this func­
tion is "expression" converted to a bit
string. The length cf this bit string is
determined by the integral value of "size,,"
as described above.

BOOL String Built-in Functicn

Definition: BOOL produces a bit string
whose bit representation is a result of a
given boolean ;peration on two given bit
strings.

Reference: BOOL (x,y,w)

Arquments: Arguments "x" and "y" are the
two bit strings upon which the boolean
operation specified by "w n is to be per­
formed. If "x" and ny .. are not bit
strings, they are converted to bit strings.
If "x" and "y" differ in length, the
shorter string ,is extended with zeros on
the right to match the length of the longer
string,.

Argument "w" represents the boolean
operation. It is a bit string of length 4
and is defined as n 1 n2 n3 n , where each n
is either 0 or 1. There are 16 possible
bit combinations and thus 16 possible boo­
lean opera tions. As for "x" and "y," "'fl"

is converted to a bit string <of length 4)
before the function is invoked, if neces­
sary.

If more than one argument is an array,
the arrays must have identical bounds.
Note that if only "w" is an array, the
returned value is an array with identical
bounds, each element of which is the result
of the corresponding b colean operation per­
formed on "x" and "y."

Result: The value returned by this func­
tion is a bit string, ~, whose length is
equal to the longer of "xn and "y." Each
bit of ~ is determined by the boolean
operation on the corresponding bits of "x"
and "y" as follows: the ith bit of z is set
to the value of n1, n2, n3, or n depending
on the combination of the ith bits of "x"
and n y .. as shown in the following boolean
table:

r-------------T-------------·,,-------------,
I xi I yi I I z i I
~-------------+------------++------------~
I I " I I 0 I 0 II nj. I
.-------------+-------------++------------i
I I " I I 0 I 1 II n2 I
~-------------+-------------++------------i
I I 11 I
I 1 I 0 II n3 I
d-------------+------------++------------i
I I " I I 1 I 1 II n I L _____________ L _____________ ~L ______ ~ _____ J

Example: In the following assignment
stat,ement, assume that U and ID have been
declared as bit strings, XXX is the string
'011'B~ YYY is the string ~110'B~ and the
boolean operator is '0110'B:

U=IDIIBOOL (XXX, YYY, '0110'):

Further, assume that Z represents the value
returned to the point at which BOOL is
invoked (that is, Z is a bit string of
length 3 that is to be concatenated with
ID), then the boolean table for this invo­
cation of BOOL can be defined as:

r-------------T-------------~T------------,
I Xxxi I YYYi II Zi I
.-------------+-------------++------------i
I I " I I 0 I 0 II 0 I
.-------------+-------------++------------i
I I I I I
I 0 I 1 II 1 I
.-------------+-------------++------------i
I I II I
I 1 I 0 II 1 I
.-------------+-------------++------------i
I I II I
I 1 I 1 II 0 I L _____________ ~ _____________ ~~ ____________ J

which is interpreted as follows:

Whenever the ith bits of XXX and YYY are
o and 0, respectively, the ith bit of Z
is 0; whenever the ith bits of XXX and
YYY are 0 and 1, respectively, the ith
bit of Z is 1# and so on.

Thus, since the first bits of XXX and YYY
are 0 and 1, respectively, the first bit of
Z is 1; since the second bits of XXX and
YYY are 1 and 1" respectively, the second
bit of Z is 0; and since the third bits of
XXX and YYY are 1 and 0, respectively, the
third bit of Z is 1. Therefore, the value
returned to the point of inv~=ation is the
bit string '101'B.

CHAR String Built-in Function

Definition: CHAR converts a given value to
aCharacter string and returns the result
to the point of invocation. This function
allows the programmer to control the size
of the result of a character-string conver­
sion.

Ref~~~~ce: CHAR (expression[, size])

Arguments: The argument "expression" rep­
resents the quantity to be converted to a
character string. The argument "size,,"
when specified, must be a decimal integer
constant giving the length of the result.
If "siz e" is not specifi ed, it is deter­
mined according to the type conversion on
rules given in Section F" "Problem Data
Conversion." If "expression" is an array
expression, "size" applies to each element
of the array.

Result: The value returned by this func­
tion is "expression" converted ,to a charac­
ter string. The length of this character
string is determined by "size," as des­
cribed above.

HIGH String Built-in Function

Definition: HIGH forms a character string
of a given length from the highest charac­
ter in the collating sequence; that is,
each character in the constructed string is
the highest character in the collating
sequence .•

Referen~ HIGH (i)

Arg~nt: The argument, "i," must be a
decimal integer constant specifying the
length of the string that is to be formed.

~ult~ The value returned by this func­
tion 1.S a character string of length "i;"
each character in the string is the highest
character in the collating sequence. For
System/360 implementations, this character
is stored as hexadecimal FF.

INDEX String Built-in Function

Definition: INDEX searches a specified
string for a specified bit or character
~tring configuration. If the configuration
~s found" the starting location of that
configuration within the string is returned
to the point of invocation.

Reference: INDEX (string, config)

section G: Built-In Functions and pseudo-Variables 235

~rguments: Two arguments must be speci­
fied. The first argument, "string," rep­
resents thE! string to be searched; the
second argument, "config," represents the
hit or character string configuration for
which "string" is to be searched. If
neither argument is a bit string, or if
only one argument is a bit string, both
arguments are converted to character
strings. If both arguments are bit-string,
no con'V'e'rsion is performed.

If both arguments are arrays, the arrays
must have identical bounds.

Resul t~_ The value returned by this func­
,tion is a binary integer of default preci­
sion. This binary integer is either:

1. The location in "string" at which
"config" has been found. If more than
one "config" exists in "string," the
location of the first one found (in a
left-b)-right sense) will be returned.

2. The value 0, if "config" does not
exist within "string" or if either of
the arguments has a length of zero.

Examp!~: If ASTRING is a character string
containing:

'912NAMEA,l,FIRST,2,SECOND'

then the statement:

I = INDEX(ASTRING,' 1, ") ;

will return a binary value of ten to the
point of invocation. This binary value
represents the location of the configu­
ration '1,' within ASTRING. However, if
the statement had been:

I INDEX (ASTRING,'1 ');

then a binary value of two would be
returned to the point of invocation. This
value is the location of the first '1'
appearing within ASTRING.

LENGTH Stri~ Built-in Function

Defin~tion..,;_ LENGTH finds the string length
of a given value and returns it to the
point of invocation.

Reference: LENGTH (string)

Argument: The argument, "string," rep­
resents a character string or a bit string
whose length is to be found. The argument
need not represent a string; if it does
not, it is converted before the function is
invoked to a character string (if the

236

argument is DECIMAL) or a bit string (if
the argument is BINARY).

Result: The value returned by this fUI1lc­
tion is a fixed binary integer of default
precision giving the current length of
"string." If "string" is an array expres­
sion, an array of identical bounds is
returned.

Ex~!!!2!g.!. If XYZ is a varying-length chclr­
acter string whose maximum length is 30,
but whose current length is 25, then t:he
statement:

I = LENGTH(SUBSTR(XYZ,4»;

will assign a binary value of 22 to I.

LOW string Built-in Function

Definition: LOW forms a character string
of specified length from the lowest charac­
ter in the collating sequence; i.e., each
character of the formed string will be the
lowest character in the collating sequence.

Argument: The argument, "in must be an
unsigned decimal integer constant speci­
fying the length of the string being
formed.

Result: The value returned by this func­
tion is a character string of length "i";
each character in the string is the lowest
character in the collating sequence. For
Systeml360 implementations, this character
is stored as hexadecimal 00.

REPEAT string Built-in Function

Definition: REPEAT takes a given string
value and forms a new string consisting of
the given string value concatenated with
itself a specified number of times.

R~ference: REPEAT (string,i)

Arguments: The argument "string" rep­
resents a character string or bit string
from which the new string will be formed.
The argument need not represent a string,
however; if an argument other than a bit
string or character string is specified" it
is converted, before the function is
invoked, to a bit or character string.

The argument "i" must be an optionally
signed decimal integer constant. It rep­
resents the number of times that "string"
is to be concatenated with itself.

If "string" is an array ~expression, the
value of "i" is applied to each element.

Result: The value returned by this func­
tion is "string" concatenated with 'itself
"i" times. In other words" the returned
value will be a string containing (i+l)
occurrences of the value "st:ring." If "i"
is less than or equal to zerc)" the returned
value is identical to the argument (i.e.,
the converted argument, if the original
argument was not a string).

Example: If BSTR is a bit string contain­
ing '101'B, the statement

A = REPEAT(BSTR,6);

will cause the following value to be
returned to the point of invocation:

'101101101101101101101'8

STRING String Built-in Function

Definition: STRING concatenates all the
elements in an aggregate "rariable into a
single string element.

Reference: STRING(x)

Argument: The argument,,,, "x," is an ele­
ment, ,array" or structure variable, com­
posed either entirely of character strings
and/or numeric character da1:a'l or entirely
of bit strings. If "x" is an element
variable, the value returned is identical
to the value of the variable.

Result: The value returned by this func­
tion is an element bit string or character
string" the concatenation of all the ele­
ments in "x." If "x" contains one or more
varying strings, the result is a varying
string.

SUBSTR String Built-in Function

Definition: SUBSTR extracts a substring of
user-defined length from a given string and
returns the substring to the point of
invocation. (SUBSTR can also be used as a
pseudo-variable.)

Reference: SUBSTR ' (string" i [, j])

Arquments: The argument "string" rep­
resents the string from which a substring
will be extracted. If this argument is not
a string, it will be converted to a string.
Argument "in represents the s:tarting point
of the substring and "j" represents the

length of the substring. Arguments "i" and
"j" must be integers or expressions that
can be converted to integers.

If more than one argument is an array,
the arrays must have identical bounds.

Assuming that the length of "string" is
~" arguments "i" and "j" must satisfy the
following conditions:

1. j must be less than or equal to k and
greater than or equal to o.

2. i must be less than or equal to k and
greater than or equal to 1.

3,. The value of i+j-l must be less than
or equal to k ..

ThUS, the substring, as specified by "i"
and "j" must lie within "string."

If "j" is not specified, it is assumed
to be equal to the value of k-i+1. In
other words, it is assumed to be the length
of the remainder of "string," beginning at
the ith position in "string."

When these conditions are not satisfied,
the SUBSTR reference causes the STRINGRANGE
condition to be raised, if it is enabled.
If STRINGRANGE is not enabled, the result
of the erroneous reference is undefined.

Result: The value returned by this func­
tion is a varying-length string whose cur­
rent length is defined as follows:

1. If j=O, the returned value is the null
string.

2. If j is greater than 0, the returned
value is that substring beginning at
the ith character or bit of the first
argument and extending j characters or
bits.

3. If j is not specified" the returned
value is that substring beginning at
the !th character or bit and extending
to the end of "string."

Example: If AAA is a character string of
length 30" the statement:

ITEM = SUBSTR(AAA, 7, 14);

will cause a 14-character substring to be
extracted from AAA, starting at the seventh
character of AAA. The extracted string is
then returned to the point of invocation,
after which it is aSSigned to ITEM.

section G: Built-In Functions and Pseudo-Variables 237

UNSPE~ String Built-in Function

Defini·tion: UNSPEC returns a bit string
that is the internal coded representation
of a given value. (UNSPEC can also be used
as a pseudo-variable.)

~efere~~.!.. UNSPEC (x)

Argument: The argument, "x." may be an
arithmetic or string constant., variable, or
expression, or an area. pointer" or offset
"variable., whose internal coded representa­
·tion is to be found.

Result: The value returned by this func­
tion is the internal coded representation
of "x." This representation is in bit­
string form. The length of this string
depends upon the attributes of "x," and is
defined by System/360 implementations as
follows:

1. If "x" is FIXED BINARY of precision
(p,q)~ the length is 32.

2.

3.

4.

If "x" is FIXED DECIMAL
(p,q) , the length is
8*FLOOR CCp+2)/2).

of precision
defined as

If "x'" is FLOAT BINARY of precision p,
the length is

a.. 32, if p is less than or equal to
21.

b. 64, if p is greater than 21.

If "x'" is FLOAT DECIMAL of precision
p., the length is

a .• 32, if P is less than or equal to
6.

h. 64, if p is greater than 6.

5. If "x" is a character-string of length
n or a numeric character data item
whose character-string value is of
length n., the length is 8 *n.

6. If "x" is a bit-string of length n"
t~he length is n.

7. If "x" is complex" the length is twice
t~hat of the corresponding real value.

8. If "x" is a pOinter, the length is 32.

9. If "x" is an offset, the length is 32.

10. If "x" is an area of size n, the
length is 8*Cn+16).

238

ARITHMETIC BUILT-IN FUNCTIONS

All values returned by arithmetic built­
in functions are in coded arithmetic form.
The arguments of these functions should
also be in that form. If an argument is
not coded arithmetic, then, before i:he
function is invoked, it is converted to
coded arithmetic: according to the rules
stated in Section F, "Problem Delta
Conversion." Note, therefore, that in i:he
function descr iptions below" a ref erence to
an argument always mean s the converi:ed
argument" if conversion was necessary.

In some function descriptions, 1:.he
phrase "converted to the highE~st
characteristics n is us ed; this means that
the rules for mixed characteristics are
followed (these rules are stated in 1:.he
section "Data Conversion in Arithme1:.ic
Operations" in Part I, Chapter 4,
"Expressions .• ")

In general, an argument of an arithme1:.ic
built-in function may be an element or
array expression. If an argument is an
array, the value returned by the buil t-- in
function is an array of the same dimension
and bounds as the argument (the function
having been performed once for each elem~:mt
of the array). Thus., for example, if an
array argument is passed to the absolute
value function ABS., the returned value is
an array., each element of which is 1the
absol ute value of the corresponding elem4:!nt
in the argument array.

Unless it is specifically stated other­
wise:

1. The mode of an argument may be real or
complex.

2. The base, scale., mode" and precision
of the returned value are determined
according to the rules for the conV4:!r­
sion of expression operands as gi'\7en
in Section F, "Problem Data ConVl9r­
sion,. "

In many of these built- in functions" "the
symbol !! (is used. This symbol represents
the maximum\ precision that a value lnay
have. It is defined" for Systeml360
implementations" as follows:

N is 15 for FIXED DECIMAL values

16 for FLOAT DECIMAL values

31 for FIXED BINARY values

53 for FLOAT BINARY values

The precl..sl..on of decimal and binary
floating-point items should be noted when

using the built-in functions ADD, BINARY,
DECIMAL, DIVIDE, FLOAT, MULTIPLY, and PRE­
CISION. For decimal floating-point items:
if the precision is less than or equal to
(6), short floating-point form is used; if
the precision is greater than (6), long
floatin9-point form is used. For binary
floatinsr-point items: if the precision is
less than or equal to (21), short floating­
point form is used; if the precision is
greater than (21), long floating-point form
is used.

ABS Arithmetic Built-in Func·tion

Definition: ABS finds the absolute value
~a given quantity and re·turns it to the
point of invocation.

Argument: The quantity whose absolute
value is to be found is given by "x."

Result: The value returned by this
function is the absolute value of "x." If
"x" is real, the result is the positive
value of "x": if "x" is complex, the result
is the positive square root of the sum of
squares of the real and imaginary parts of
"x." The mode of the result is real, while
the base, scale, and precision are the same
as those of "x," with one exception: if "x"
is a complex fixed-point value of precision
(p,q), the precision of the result is:

(MINCN,p+1),q)

section G: Built-In Functions and Pseudo-Variables 238.1

PDD Arithmetic Built-in Function

Definition:
values and
invocation.
grammer to
result of an

ADD finds the sum of two given
returns it to the point of
This function allows the pro­
control the precision of the
add operation.

Reference: ADD (X n Y6P[,q])

Arguments: Arguments "x" and "y" represent
the values to be added. Arguments "p" and
"q" must be decimal integer constants spec­
ifying the precision of the result; "q" may
be signed. If the scale of the result is
fixed-point, both "p" and "q" must be
spec~fied; if the scale of the result is
floating-point, only "p" must be specified.
In either case" "p" must not exceed ~.

Result: The value returned by this func­
tion is the sum of "x" and "y." The
precision of the result is determined by
"p" and "q"; this precision is maintained
throughout the execution of the function.

BINARY Arithmetic ~uilt-in Function

Definition: BINARY converts a given value
to binary base and returns the converted
value to the point of invocation. This
function allows the programmter to control
the precision of the result of a binary
conversion.

Reference:, BINARY (x[~p[,q]])

Arguments: The first argument, "x," rep­
resents the value to be converted to binary
base. Arguments "p" and "q," when speci­
fied, must be decimal integer constants
g~v~ng the precision of the binary result;
"q" may be signed. The precision of a
fixed-point result is (p,q); the precision
of a floating-point result is (p). If both
"p" and "q" are omitted, the precision of
the result is determined according to the
rules given for base conversion in Section

I FI1 "Problem Data Conversion." Note that
"q" must be omitted for floating-point
arguments.

Result: The value returned by this func­
tion is the binary equivalent of "x." The
scale and mode of this value are the same
as those of "x." The precision is given by
"p" and "q."

CEIL Arithmetic Built-in Function

Definition: CEIL determines the smallest
integer that is greater than or equal to a
given real value and returns that integer
to the point of invocation.

Reference: CEIL (x)

Argument: The argument" "x," must not be
complex.

Result: The value returned by this func­
tion is the smallest integer that is great­
er than or equal to "x." The base n scale,
mode n and precision are the same as those
of "x," with one exception: if "x" is a
fixed-point value of precision (p,q), the
precision of the result is defined as:

(MIN(N n MAX(p-q+l,l»,O)

COMPLEX Arithmetic Built-in Function

Definition: COMPLEX forms a complex number
from two given real values and returns it
to the point of invocation. (COMPLEX can
also be used as a pseudo-variable.)

Reference: COMPLEX (x,y)

Arguments: Arguments "x" and "y" must both
be real; "x" represents the real part of
the complex number to be formed and "y"
represents the imaginary part.

Result: The value returned by this func­
tion is the complex number that has been
formed from "x" and "y."

CONJG Arithmetic Built-in Function

Definition: CONJG finds the conjugate of a
complex value and returns it to the point
of invocation. (The conjugate of a complex
number is the complex number with the sign
of the imaginary part reversed.)

Reference: CONJG (x)

Argument: The argument" "x," is the value
whose conjugate is to be found; it must be
complex.

Result: The value returned by this func­
tion is the conjugate of "x." The base,
scale, mode, and precision of the conjugate
are the same as those of the argument.

Section G: Built-In Functions and Pseudo-Variables 239

[ECIMAL Arithmetic Built-in Function ,

Definition: DECIMAL converts a given value
to decima~base and returns the converted
value to the point of invocation. This
function allows the programmer to control
the precision of the result of a decimal
conversion.

Eili-rence.l. DECIMAL (x[,p[,q]])

Arguments: The first argument, "x," rep­
resents the value to be converted to deci­
mal base. Arguments "p" and "q," when
specified, must be decimal integer con­
stants giving the precision of the decimal
result; "q" may be signed. The precision
of a fixed-point result is (p,q); the
precision of a floating-point result is
(p). If both "p" and "q" are omitted,
however, the precision of the result is
determined according to the rules given for I base conversion in Section F, "Problem Data
Conversion." Note that "q" must be omitted
for float.ing-point arguments.

Result: The value returned by this func­
tion-:is the decimal equivalent of the
argument "x"; its precision is given by "p"
and "q."

DIVIDE Arithmetic Built-in Function

Definition: DIVIDE divides a given value
by anotfier given value and returns the
quotient to the point of invocation. This
func1:ion allows the programmer to control
the precision of the result of a divide
operation.

Reference~ DIVIDE (x,y,p[,q])

Arguments~ The argument, "x," is the divi­
dend and argument nyu is the divisor.
Arguments "p" and "q" ("q" is optional and
may be signed) must be decimal integer
constants specifying the precision of the
result. If the result is a fixed-point
value, "p" and "q" must both be specified;
if i:he result is a floating-point value,
only "p" must be specified. In either
case, "p" must not exceed .!:!.

Result: The value returned by this func­
tion-1s the quotient resulting from the
division of "x" by "y." The precision of
the result is determined by "p" and "q" as
described above: this precision is main­
tained throughout the execution of the
function.

240

FIXED Arithmetic Built-in Function

Definition: FIXED converts a given value
to fixed-point scale and returns the con­
verted value to the pOint of invocai:ion.
This function allows the programmer to
control the precision of the result of a
fixed-point conversion.

Reference: FIXED (x[,p[,q]])

Argument: The first argument, "x,," rep­
resents the value to be converted to fixed­
point scale. Arguments "p" and "q," when
specified, must be decimal integer
constants ("q" can be signed) givin9 the
precision of the result, (p,q)~ For
System/360 implementations, if "p" and "q"
are omitted, "p" is assumed to be 1~. for
binary "x" and 5 for decimal "x"; "qW is
assumed to be O.

Result: The value returned by this func­
tion is the fixed-point equivalent of the
argument "x"; its precision is (p,q) ..

FLOAT Arithmetic Built-in Function

Definition: FLOAT converts a given value
to floating-point scale and returns the
converted value to the point of invocat:ion.
This function allows the programmer to
control the precision of the result of a
floating-point conversion.

Reference: FLOAT (x[,p])

Arguments: The first argument.g "x.,," rep­
resents the value to be converted to
floating-point scale. The second argument,
"p," when specified, must be a decimal
integer constant giving the precision of
the result. For System/360 implementa­
tions, if "p" is omitted, it is assumed t.O
be 21 for binary "x" and 6 for decimal "x."

Result: The value returned by this func­
tion is the floating-point equivalent of
"x"; its precision is "p."

FLOOR Arithmetic Built-in Function

Definition: FLOOR determines the largest
integer that does not exceed a given value
and returns that integer to the point of
invocation.

Reference: FLOOR (x)

Argument: The argument". "x," must not be
complex.

Result: The value returned by this func­
tion is the largest integer that does not
exceed "x." The base" scale., mode" and
precision of this value are the same as
those of "x, " with one excep·tion: if "x" is
a fixed-point value of precision (p,q) " the
precision of the result is:

(MIN (N, MAX (p-q+1, 1)), 0)

IMAG Arithmetic Built-in Function

Definition: IMAG extracts the imaginary
part of a given complex number and returns
it to the point of invocation. (IMAG can
also be used as a pseudo-variable.)

Reference: IMAG (x)

Argument: The argument, "x," is the com­
plex value whose imaginary part is to be~
extracted.

Result: The value returnE~d by this func-·
tion is the imaginary part of "x." The!
base, scale, and precision of the imaginary
part a.re unchanged. The mode of the
returned value is real~

MAX Arithmetic Built-in Function

Definition: MAX extracts the highest-­
valued expression from a qiven set of two
or more expressions and returns that value
to the point of invocation.

Arguments: Two or more arguments must be
given. The arguments must not be complex ..

Result: The value returnl~d by MAX is the
value of the maximum-valued argument. The
returned value is converbed to conform to
the highest characteristics of all the
arguments that were specified. If the
arguments are fixed-point ~~lues and have
precisions:

then the precision of the result is as
follows:

(MIN(N,MAX(p1-q1~···,Pn-qn)+
MAXCq1, ••• ,qn»,MAX(q1, ••• qn»

MIN Arithmetic Built-in Function

Definition: MIN extracts the lowest-valued
expression from a given set of two or more
expressions and returns that value to the
point of invocation.

Reference: MIN (X1., X2" ••• , xn)

Arquments: Two or more arguments must be
given. The arguments must not be complex.

the
The
to

the
the

have

Re~ult: The value returned by MIN is
value of the lowest-valued argument.
returned value is converted to conform
the highest characteristics of all
arguments that were specified. If
arguments are fixed-point values and
precisions:

then the precision of the result is as
follows:

(MIN (N, MAX (p1.. -q1..' •••. , Pn-q n) +
MAX (q 1..., ••• qn)) , MAX (q 1.., ••• , q n))

MOD Arithmetic Built-in Function

Definition: MOD extracts the remainder
resulting from the division of one real
quantity by another and returns it to the
point of invocation.

Arguments: Two arguments must be given.
They must not be complex. Before the
function is invoked. the base and scale of
each argument are converted according to
the rules for the conversion of expression
operands, as given in section F., "Problem
Data Conversion."

Result: The value returned by MOD is the
positive remainder resulting from the divi­
sion of "X1" by "x2 ." If the result is in
floating-point scale" its precision is the
higher of the precisions of the arguments;
if the result is in fixed-point scale, its
precision is defined as follows:

where (P1..,q1..) and (P2,Q2> are the precision
of "X1" and "X2," respectively.

section G: Built-In Functions and Pseudo-Variables 241

MULTIPLY Arithmetic Built-in Function

Definition~ MULTIPLY finds the product of
two given values and returns it to the
point of, invocation. This function allows
the p:rogrammer to control the precision of
,the result of a multiplication operation.

Reference: MULTIPLY (X1."X2, p£.,q])

Arguments: Arguments "X1." and "X2" rep­
resent the values to be multiplied. Argu­
ments '''pH and "gil ("q" is optional and may
be signed) are decimal integer constants
specifying the precision of the result. If
the result is a f ixed-poin t va lue, Up" and
"g" must both be specified; if the result
is a floating-point value, only Up" must be
specified. In either case, lip" must not
exceed N.

Result~ The value returned by this fUnc­
tion [s the product of "X1." and "x 2 ." The
precis~on of the result is as specified;
this precision is maintained throughout the
execution of the function.

~REG1~~ON_Arithmetic Built-in Function

Definition: PRECISION converts a given
value to a specified precision and returns
the converted value to the point of invoca­
tion.

Reference:_ PRECISION (x"p[,q])

Arguments: The first argument" "x," rep­
resents the value to be converted to the
specified precision. Arguments "p" and "g"
("q" is optional and may be signed) are
decimal integer constants specifying the
precision of the result. If "x" is a
fixed-point value" Up" and "q" must be
specified; if "x" is a floating-point
value, only Up" must be specified.

Result: The value returned by this func­
tion is the value of "x" converted to the
specified precision. The base, scale, and
mode of the returned value are the same as
those of "x."

REAL Arithmetic Built-in Function

Definition: REAL extracts the real part of
a given oomplex value and returns it to the
point of invocation. (REAL can also be
used as a pseudo-variable.)

Reference: REAL (x)

242

Argument: The argument" "x.." must be a
complex expression.

Result: The value returned by this func­
tion is the real part of the complex value
represented by "x. " The base" scale" cmd
precision of the real part are unchanged.

ROUND Arithmetic Built-in Function

Definition: ROUND rounds a given value at
a specified digit and returns the rounded
value to the point of invocation.

Reference: ROUND (expression,n)

Arguments: The first argument,
"expression,," is an element or array rep­
resenting the value (or values, in the case
of an array expression) to be rounded; the
second argument, Un," is a signed or
unsigned decimal integer constant speci­
fying the digit at which the value of
"expression" is to be rounded. If "n" is
positive~ rounding occurs at the nth digit
to the right of the decimal (or- binary)
point in the value of "expression"; if "n"
is zero" rounding occurs at the first digit
to the left of the decimal (or binary)
point in the value of "expression"; if Un"
is negative~ rounding occurs at the nth+l
digit to the left of the decimal- (or
binary) point in the value of "expression."
Note that the decimal (or binary) point is
assumed to be at the left for floatinog­
point values.

Result.!. For fixed-point values" ROUND
returns the value of "expression" round ,ed
at the Uth digit to the right of the
decimal (or binary) point for positive Un",
or at the first digit to the left of the
decimal (or binary) point for zero WIn""~ or
at the gth+l digit to the left of the
decimal (or binary) paint for negative "n."
Thus~ when Un" is negati ve" the return.~d
value is an integer.

If "expression" is a floating-point
expression, the second argument is ignored,
and the rightmost bit in the internal
floating-point representation of the
expression's value is set to 1 if it is O.
If the rightmost bit is 1" it is lej:t
unchanged,.

If "expression" is
returned value is the same
fied.

a string, the
string unrnodi-

The base, scale~
returned value are
"expression".

and mode of the
those of the value of

The precision of the returned value for
floating-point expressions is that of
"expression"; the precision of the returned
value for fixed-point e:Kpressions is
(MIN(p+1,N),q) .• The extra digit (p+1) of
the returned value for fixed·-point expres­
sions is to allow for those cases in which

rounding would give a result that could not
be expressed in "p" digits, for example,
ROUND(9.999,2) would result in 10.000.

Note that the rounding of a negative
quantity results in the rounding of the
absolute value of that quantity.

section G: Built-In Functions and Pseudo-Variables 2q2.1

~HGN Arithmetic Built-in Function

Definition: SIGN determines whether a
value is positive" negative, or zero, and
it returns an indication to the point of
invocation.

Feference: SIGN (x)

~r9ument: The argument, "x," must not be
complex.

Result: This function returns a real
fixed-point binary value of default preci­
sion according to the following rules:

1. If the argument is greater than o~ the
returned value is 1.

2. If the argument is equal t.o zero, the
returned value is o.

3. If the argument is less than zero" the
returned value is -1.

TRUNC Arithmetic Built-in Function

Definition: TRUNC truncates a given value
t.o an integer as follows: first., it deter­
mines whether a given value is positive,
negative, or equal to zero. If the value
is negative, TRUNC returns the smallest
integer that is greater than that value; if
the value is positive or equal to zero,
TRUNC returns the largest integer that does
not exceed that value.

Reference:

Argument:
complex.

TRUNC (x)

The argument, "x," must not be

Result: If "x" is less than zero, the
value returned by TRUNC is CEIL(x). If "x"
is greater than or equal to zero, the value
returned by TRUNC is FLOOR(x). In either
case, the base, scale, and mode of the
result are the same as those of "x." If

."x" is a floating-point value, the preci­
sion remains the same. If "x" is a fixed­
point value of precision (p,q), the
precision of the result is:

MATHEMATICAL BUILT-IN'FUNCTIONS

All arguments to the mathematical built­
in functions should be in coded arithmetic
form and in floating-point scale. Any
argument that does not conform to this rule

is converted to coded arithmetic and
floating-point before the function is
invoked" according to the rules stated in

I Section F" "Problem Data Conversion."
Note, therefore, that in the function des­
criptions below, a reference to an argument
always means the converted argument, if
conversion was necessary.

In general,. an argument to a mathemati­
cal built-in function may be an element or
array expression. If an argument is an
array, the value returned by the built-in
function is an array of the same dimension
and bounds as the argument (the function
having been performed once for each element
of the array). Thus, for example, an array
t~o the cosine function COS results in an
array, each element of which is the cosine
of the corresponding element in the argu­
ment array.

Unless it is specifically stated other­
wise, an argument may be real or complex.
Figures G-1 and G-2 at the end of this
section provide a quick reference for those
mathematical functions that accept either
real or complex arguments and those that
accept only real arguments.

All of the mathematical puilt-in func­
tions return coded arithmetic floating­
point values. The mode, base, and
precision of these values are always the
same as those of the arguments.

ATAN Mathematical Built-in Function

Definition:
given value
expressed in
invocation.

ATAN finds the arctangent of a
and returns the result
radians" to the point of

Reference: ATAN (x["y])

Arguments: The argument, "x," must always
be specified; the argument "y" is optional.
If "y" is omitted, "x" represents the value
whose arctangent is to be found; in such a
case, "x" may be real or complex" but if it
is complex, it must not be equal to ±1i.

If "y" is specified~ then the value
whose arctangent is to be found is taken to
be the expression x/y. In this case, both
"x" and "y" must be real" and both cannot
be equal to 0 at the same time.

Result: When "x" alone is specified, the
value returned by ATAN depends on the mode
of "x." If "x" is real, the returned value
is the arctangent of "x," expressed in
radians, where:

-pi/2<ATAN(x) <pi/2

Section G: Built-In Functions and Pseudo-Variables 243

If "x" is complex, the arctangent
is multiple-valued, and hence
principal value can be returned.
cipal value of ATAN for a complex
"x" is defined as follows:

-i*ATANH(i*x)

function
only the
The prin­

argument

If both "x" and nyu are specified, the
possible values returned by this function
are defined as follows:

1. If y>O, the value is arctangent (x/y)
in radians.

2. If x>O and y=O, the value is (pi/2)
radians.

3. If x~O and y<O, the value is (pi+
arctangent (x/y» radians.

4. If x<O and y=O, the value is (-pi/2)
radians.

5. If x<O and y<O, the value is (-pi+
arctangent (x/y» radians.

ATAND Mathematical Built-in Function

Definition: ATAND finds the arctangent of
a given real value and returns the result,
expressed in degrees, to the point of
invocation.

Argumen~~ Arguments "x" and nyu ("y" may
be omitted) must be real values. If nyu is
omitt.ed, "x" represents the value whose
arctangent is to be found. If nyu is
specified, the value whose arctangent is to
be found is represented by the expression
x/y; in this case, both "x" and nyu cannot
be equal to 0 at the same time.

Result: If nyu is not specified, the value
returned by this function is simply the
arctangent of "X,," expressed in degrees,
where:

-9 o <ATAND (x) <90

If "y" is specified, the value returned
by this function is ATAN (x,y), except that
the value is expressed in degrees and not
in radians (see "ATAN Mathematical Built-in
Function" in this section); that is, the
returned value is defined as:

ATAND(x,y) = (180/pi)*ATAN(x,y)

244

AT NH Mathematical Built-in Function

Definition: ATANH finds the inverse hyper­
bolic tangent of a given value and returns
the result to the point of invocation.

Reference: ATANH (x)

rgument: The value whose inverse hyper­
bolic tangent is to be found is represented
by "x •. " If "x" is real, the absolute value
of "x" must not be greater than or equal to
1; that is, for real "x," it is an error if
ABS(x)~l. If "x" is complex, it must not
be equal to ±1.

Result: If "x" is real, the value returned
by this function is the inverse hyperbolic
~angent of "x." For complex "x,," the
~nverse hyperbolic tangent is defined as
follows:

(LOG«1+x)/(l-x»)/2

COS Mathematical Built-in Function

Definition: COS finds the cosine of a
given value, which is expressed in radians,
and returns the result to the point of
invocation.

Reference: COS (x)

Argument: The value whose cosine is to be
found is given by "x"; this value can be
real or complex and must be expressed in
radians.

Result: The value returned by this func­
tion is the cosine of "x." For complex
argument "x," the cosine of "x" is defined
below, where x = y~+iY2:

COSO Mathematical Built-in Function

Definition: COSD finds the
given real value, which is
degrees, and returns the
point of invocation.

Reference: COSD (x)

cosine of a
expressed in

result to the

Argument: The value whose cosine is to be
found is given by "x"; this value must be
real and must be expressed in degrees.

Result: The value returned by this func­
tion is the cosine of "x."

£OSH Mathematical B~ilt-in Function

tefinition: COSH finds the hyperbolic
cosine of a given value and returns the
result to the point of invocation.

geference: COSH (x)

~rqument: The value whose hyperbolic
cosine is to be found is given by "x."

Result: The value returned by this func­
lion is the hyperbolic cosine of "x." For
complex argument "x," the hyperbolic cosine
of nx" is defined below, where x = y~+iY2:

l~F Mathematical Built-in Function

Definition: ERF finds the error function
of a given real value and returns it to the
point of invocation.

Reference: ERF (x)

hrgument: The value for which the error
function is to be found is repr:'esented by
"xn; this value must be real.

Result: The value returned by this func­
tion is defined as follows:

ERF(x)== _2_ r t2
vII tI e- dt

ERFC Mathematical Built-in Funct.ion

Definition: ERFC finds the complement of
the error function (ERF) for a given real
value and returns the result to the point
of invocation.

Reference: ERFC (x)

~rsument: The argument, nx,n represents
t.he value whose error function complement
is to be found; nx" must be real.

Result: The value returned by this fUnc­
tion is defined as follows:

ERFC(x) = l-ERF(x)

~XP Mathematical Built-in Function

Definition: EXP raises e (the base of the
natural logarithm system) to a given power
a.nd returns the result to the: point of
i.nvocation.

Reference: EXP (x)

Arqument: The argument, "x,n specifies the
power to which ~ is to be raised.

Result: The value returned by this func­
tion is ~ raised to the power of "x.n

LOG Mathematical Built-in Function

Definition: LOG finds the natural logar­
i.thm (i .• e., base e) of a given value and
returns it to the point of invocation.

Reference: LOG (x)

Argument: The argument, "x," is the value
whose natural logarithm is to be found. If
"x" is real, it must not be less than or
equal to 0; if nxn is complex, it must not
be equal to O+Oi.

Result: The value returned by this func­
tion is the natural logarithm of "x."
However. if nx" is complex, the function is
multiple-valued; hence. only the principal
value can be returned. The principal value
has the form w = u±i*v, where y lies in the
range:

-pi<v::;;pi

LOG10 Mathematical Built-in Function

Definition: LOG10 finds the common logar­
ithm (i .• e., base 10) of a given real value
and returns it to the point of invocation.

Reference: LOG10 (x)

Argument: The argument, "x,n represents
t.he value whose common logarithm is to be
found; this value must be real and it must
not be less than or equal to o.

R.esult: The value returned by this func­
tion is the common logarithm of nx ."

LOG2 Mathematical Built-in Function

Definition: LOG2 finds the binary (i.e.,
base 2) logarithm of a given real value and
r:'eturns it to the point of invocation.

R.eference: LOG2 (x)

Argument: The argument, nx,n is the value
whose binary logarithm is to be found; it
must be real and it must not be less than
or equal to o.

Section G: Built-In Functions and Pseudo-Variables 245

Result: The value returned to this func­
tionis the binary logarithm of "x."

SIN Mathematical Built-in Function

Qgfinition: SIN finds the sine of a given
value'. which is expressed in radians, and
returns it to the point of invocation.

Reference: SIN (x)

Argument~ The argument, "x," is the value
whose s~ne is to be found; it must be
expressed in radians.

~ult: The value returned by
tioD is the sine of "x."
argument u'x," the sine of "x"
belowi, where x = Y1. +i*Y2:

this func­
For complex
is defined

SINP Mathematical Built-in Function

Definition: SIND finds the sine of a given
rea~alue, which is expressed in degrees,
and returns the result to the point of
invocation.

Ref~~e: SIND (x)

Argument~ The argument, "x," is the value
whose sine is to be found; "x" must be real
and it must be expressed in degrees.

Result: The value returned by this func­
tion-rs the sine of "x."

§~~! Mathematical Built-in Function

Definition: SINH finds the hyperbolic sine
of~-a gi~ value and returns the result to
·the point of invocation.

Ref~e: SINH (x)

Arg~~ The argument, "x," is the value
whose hyperbolic sine is to be found.

Result: The value returned by this func­
·timl is the hyperbolic sine of "x." For
complex argument "x," the hyperbolic sine
of "x" is defined below, where x = Y1.+i*Y2:

246

SQRT Mathematical Built-in Function

Definition: SQRT finds the square root of
a given value and returns it to the point
of invocation.

Reference: SQRT (x)

Argument: The argument, "x," is the value
whose square root is to be found. If "x"
is real, it must not be less than O.

Result: If "x" is real, the value returned
by this function is the positive square
root of "x." If "x" is comple~, the square
root function is multiple-valued; hence,
only the principal value can be returned to
the user. The principal value has the form
w = u±i*v, where either u>O, or u=O and
v~O.

TAN Mathematical Built-in Function

Definition: TAN finds the tangent of a
given value, which is expressed in radians 6

and returns it to the point of invocation.

Reference: TAN {x}

Argument: The argument, "x," reprE~sents
the value whose tangent is to be found; "'x"
must be expressed in radians.

Result: The value returned by this func­
tion is the tangent of "x."

TAND Mathematical Built-in Functions

Definition: TAND finds the
given real value which is
degree~, and returns the
point of invocation.

Reference: TAND (x)

tangent: of a
expressE~d in

resul t t:o the

Argument: The argument" "x, " reprE!Sents
the value whose tangent is to be found; "'x"
must be expressed in degrees.

Result: The value returned by this func­
tion is the tangent of "x."

TANH Mathematical Built-in Function

Definition: TANH finds the hyperbolic tan­
gent of a given value and returnfi the
result to the point of invocation.

Reference: TANH (x)

Argument: The argument, "x," represents
the value whose hyperbolic 'tangent is to be
found.

Result: The value returned by this func­
tion is the hyperbolic tangent of "x."

Summary of Mathematical Functions

Figure G-1 summarizes the mathematical
built-in functions. In using it, the read­
er should be aware of the following:

1.

2.

3.

A complex argument,
defined as x = Ya+i*Y2.

"x, " is

The value returned by each function is
always in floating-point.

The error conditions are those defined

by the PL/I Language. Additional
error conditions detected by the F­
compiler are described in the
publication IBM System/360 Operating
§ystem, PL/I Subroutine Library, Com­
~ional Subroutines, Form C28-6590.

4. All arguments must be coded arithmetic
and floating-point scale, or such that
they can be converted to coded arith­
metic and floating-point.

ARRAY MANIPUL~TION BUILT-IN FUNCTIONS

The built-in functions described here
may be used for the manipulation of arrays.
All of these functions require array argu­
ments (which may be expressions) and return
single element values. Note that since
these functions return element values, a
function reference to any of them is con­
sidered an element expression.

r------------------T-------------------T---------------------T--------------------------,
I Function Reference I Argument Type I Value Returned I Error Conditions I
~------------------t-------------------t---------------------+--------------------------~
I ATAN (x) I r €~al I arctan (x) in radians I I
I I 1-(pi/2)<ATAN{x)<pi/2 I I
I ~-------------------t---------------------t--------------------------~
I I complex l-i*ATANH(i*x) I x = ±li I
~------------------t------->------------t---------------------t--------------------------~
I ATAN(x,y) I both real Isee function I error if I
I I Idescription I x=O and y=O I
~------------------t-------,------------t---------------------t--------------------------~
I ATAND(x) I real larctan(x) in deqrees I I
I I 1-90<ATAND{x)<90 I I
~------------------t-------------------t---------------------t--------------------------~
I ATAND(x,y) I both real Isee function I error if I
I I I description I x=O and y=O I
~------------------t-------------------t---------------------t--------------------------~
I ATANH (x) I rea 1 I arctanh (x) I ABS (x) ~1 I
I ~-------------------t---------------------t--------------------------~
I I complex I{LOG({l+x)/(1-x»)/2 I x = ±1 I
~------------------t-------------------t---------------------t--------------------------i
I COS(x) I real I cosine ex) I - I
I x in radians ~-------·------------t---------------------t--------------------------~
I I cc~plex Icos(Ya>*cosh(Y2) I I
I I l-i*sin(Ya)*sinh(Y2) I I
~------------------t-------·------------t---------------------t--------------------------~
I COSD (x) I rE~al I cosine (x) I I
I ~ in degrees I I I I
~------------------t-------·------------t---------------------t--------------------------~
I COSH (x) I real I cosh(x) I I
I ~-------------------t---------------------t--------------------------i
I I complex Icosh{Ya)*COS(Y2) I I
I I l+i*sinh(Ya)*sin(Y2) I I
~------------------t-------------------t---------------------t--------------------------~
I I I :2 fX -t2 I I
I ER F (x) I r E~a 1 I v' n 0 edt I I
L __________________ L ___________________ ~ ______________ -------~--------------------______ J

Figure G-1. Mathematical Built-In Functions

section G: Built-In Functions and Pseudo-Variables 247

r------------------T-------------------T---------------------T--------------------------,
I Function Reference I Argument Type I Value Returned I Error Conditions I
~------------------+-------------------+--------------------- +--------------------------.~
I ERFC(x) I real 11 - ERF(x) I I
~------------------+-------------------+---------------------+--------------------------.~
I I I x I I
I E XP(x) I real I e I I
I ~-------------------+---------------------+--------------------------~
I I I x I I
I I complex Ie I I
~------------------+-------------------+---------------------+--------------------------~
I LOG(x) I real Ilog (x) I x:=':; 0 I
I ~-------------------+---------------------+--------------------------.~
I I complex Ilog (x) = w I x=o I
I I Iwhere w = u±i*v I I
I I land -pi<v~pi I 1
~------------------+-------------------+---------------------+--------------------------~
I LOG10 1(x) I real Ilog1 (x) I x:=.:; 0 I
~------------------+-------------------+---------------------+--------------------------~
I LOG2 (x) I real I log,;! (x) I x~O I
~------------------+-------------------+---------------------+--------------------.------~
I SIN(x) I real Isin(x) I - I
I ~ in radians ~-------------------+---------------------+--------------------------~
I I complex Isin(Y1)*cosh(Y2) I I
I I l+i*cos(Y1)*sinh(Y2) I I
~-------------------+-------------------+---------------------+--------------------------~
I SIND(x) I real Isin(x) I I
I ~ in degrees I I I I
~------------------+-------------------+---------------------+--------------------------~
I SINH(x) I real ISinh(x) I I
I ~-------------------+---------------------+--------------------------~
I I complex Isinh(Y1)*cos(Ya) 1 1
I I I + i *c as h (y 1) * sin (y 2) I I
~------------------+-------------------+---------------------+--------------------------~
I SQRT (x) I real Iv'x I x<O I
I ~-------------------+---------------------+--------------------------~
I I complex Iv'x = w I - I
I I I wh er e w = u± i * v 1 I
I I land either u>O, or I 1
I I lu=O and v~O I I
~-------------------+-------------------+---------------------+--------------------------~
I TAN(x} I real I tangent (x) 1 I
I x in radians ~-------------------+---------------------+--------------------------~
1 I complex 1 tangent (x) ~ 1
~-------------------+-------------------+---------------------+--------------------------~
1 TAND(x) 1 real Itangentex) I 1
I ~ in degrees I I I I
~------------------+-------------------+---------------------+--------------------------~
I TANIHx) 1 real Itanh (x) 1 I
I ~-------------------+---------------------+--------------------------~
I I complex 1 tanh (x) 1 I L __________________ ~ ___________________ ~ _____________________ ~ __________________________ J

.Figure G-l. Mathematical Built-In Functions (continued)

•
ALL Arr~.Manipulation Function

Definition: ALL tests all bits of a given
hi t-string array and returns the result, in
the form of an element bit-string, to the
point of invocation. The element bit­
string indicates whether or not the
corresponding bits of given array elements
are all ones.

Reference: ALL (x)

248

Arg~ment: The argument, "x," is an array
of bit strings. If the elements are not
bit strings, they are converted to bit
strings .•

Result: The value returned by this func­
tion is a bit string whose length is equal
to the length of the longest element in "x"
and whose bit values are determined by the
following rule:

If the ith bits of all of the elements
in "x" exIst and are 1., then the ith bit
of the result is 1; otherwise, the ith
bit of the result is o. -

ANY Array Manipulation Function

Definition: ANY tests the bits of a given
bit-string array and returns the result, in
the form of an element bit-string., to the
point of invocation. The element bit­
string indicates whether or not at least
one of the corresponding bits of the given
array elements is set to 1.

Reference: ANY (x)

Argument: The argument, "X.," is an array
of bit strings. If the elements are not
bit strings, they are convert1ed to bit
s"trings.

Result: The value returned by this func­
tion is a bit string whose length is equal
to the length of the longes't element in "x"
and whose bit values are determined by the
following rule:

If the ith bit of any element in "x"
exists and is 1, then the ith bit of the
result is 1; otherwise, the ith bit of
the result is O.

DIM Array Manipulation Function

DE~fini tion: DIM finds the current extent
for a specified dimension of a given array
and returns it to the point of invocation.

Reference: DIM (x,n)

Arguments: The argument "x" is the array
to be investigated; Un" is the dimension of
"X.," the "extent of which is to be found.
If "n" is not a binary integer, it is
converted to a binary integer of default
precision. It is an error if "x" has less
than "n" dimensions, if Un" is less than or
equal to 0, or if "x" is not: currently
allocated.

Result: The value returned by t:his func­
tfOrlis a binary integer of def aul t preci­
sion', giving the current extent of the nth
dimension of "x. II

HBOUND Arr~anipulation Function

Definition: HBOUND finds the current upper
bound for a specified dimension of a given
array and returns it to the point of
invocation.

Reference: HBOUND (x,n)

Arguments: The argument "x" is the array
to be investigated; nn" is the dimension of
"x" for which the upper bound is to be
found. If "n" is not a binary integer., it
is converted to a binary integer of default
precision. It is an error if "x" has less
than "nil dimensions, if "n" is less than or
equal to 0, or if "x" is not currently
allocated.

Result: The value returned by this func­
tion is a binary integer of default preci­
sion giving the current upper bound for the
nth dimension of "x."

LBOUND Array Manipulation Function

Definition: LBOUND finds the current lower
bound for a specified dimension of a given
array and returns it to the point of
invocation.

Reference: LBOUND (x.,n)

Arguments: The argument "x" is the array
to be investigated; Un" is the dimension of
"x" for which the lower bound is to be
found. If "n" is not a binary integer., it
is converted to a binary integer of default
precision. It is an error if "x" has less
than lin" dimensions., if Un" is less than or
equal to 0., or if "x" is not currently
allocated.

Result: The value returned by this func­
tion is a binary integer of default preci­
sion giving the current lower bound of the
nth dimension of "x."

POLY Array Manipulation Function

Definition: POLY forms a polynomial from
two given arguments and returns the result
of the evaluation of that polynomial to the
point of invocation.

Reference: POLY (a.x)

Arguments: Arguments
one-dimension arrays
defined as follows:

"a" and "x"
(vectors).

must be
They are

Section G:' Built-In Functions and Pseudo-Variables 249

aCm:n)

xCp:q)

where Cm:n) and (p:q) represent the
of "a" and "x," respectively.

bounds

Result: The value returned by this func­
tion-is' defined as:

n-m
a(m)+ I: (aCm+j) *

j=l

j-l
11 xCp+i»
i=O

If (q-p)<Cn-m-l), then x{p+i)=xCq) for
Cp+i»q. If m=n, then the result is aCm).

If "x" is an element variable, it is
interpreted as an array of one element,
i.e~, xCl)6 and the result is then:

n-m
1: a Cm+j) *x** j
J=O

~~Array Manipulation Function

Definition: PROD finds the product of all
of- the--eiements of a given array and
returns that product to the point of invo­
cation.

Re~erence: PROD (x)

Argument: The argument, "x," should be an
array of coded arithmetic floating-point
elements. If it is not, each element is
converted to coded arithmetic and floating­
point before being multiplied with the
previous' product.

Result: The value returned by this
fUnction is the product of all of the
elements in "x." The scale of the result
is floating-point, while the base, mode,
and precision are those of the converted
elements of "x."

SUM Array Ma~ipulation Function

De~~on: SUM finds the sum of all of
the elements of a given array and returns
that sum to the point of invocation.

Reference: SUM Cx)

Argument: The argument, "x," should be an
array of coded arithmetic floating-point
elements. If it is not, each element is
converted to coded arithmetic and floating­
point before being summed with the previous
to·tal.

250

Result: The value
function is the sum of
in "x." The scale
floating~point, while
precision are those of
ments of the argument.

returned by this
all of the elements
of the result is

the base, mode, and
the converted ele-

CONDITION BUILT-IN FUNCTIONS

The condition built-in functions allow
the PL/I programmer to investigate inter­
rupts that arise from enabled ON­
conditions. None of these functions
requires arguments. Each condition built­
in function returns the value described
only when executed in an on-unit: (or a
block activated directly or indirectly by
an on-unit) that is entered as a result of
an interrupt caused by one of the ON­
conditions for which the function can be
used. Such an on-unit can be one specific
to the condition, or it can be for the
ERROR or FINISH condition when these
conditions are raised as standard system
action. If a condition built.-in function
is used out of context, the value returned
is as described for each function.

The on-units in which each function can
be used are given in the function defini­
tion.

DATAFIELD Condition Built-in FunctioI!

Definition: Whenever the NAME condition is
raised, DATAFIELD may be used to E~xtract
the contents of the data field that caused
the condition to be raised. It can be used
only in an on-unit for the NAME condition
or in an ERROR or FINISH condition raised
as a result of standard system action for
the NAME condition.

Reference: DATAFIELD

Result: The value returned by this func­
tion is a varying-length character string
giving the contents of the data field that
caused the NAME condition to be raised.
The maximum length of this string is
defined by the F Compiler as 25~). If
DATAFIELD is used out of context, a null
string is returned.

ONCHAR Condition Built-in Function

Definition: Whenever the CONVERSION condi­
tion is raised, ONCHAR may be used to
extract the character the caused that con-

Form C28-8201-1, Page Revised by TNL N33-600B, 5)1/68

dition to be raised. It can be used only
in an on-unit for the CONVERSION condition
or in an on-unit for an ERROR or FINISH
condition raised as standard system action
for the CONVERSION condition. (ONCHAR can
also be used as a pseudo-variable.)

Reference: ONCHAR

Result: The value returned by this fUnc­
tion is a character string of length 1,
containing the character that caused the
CONVERSION condition to be raised. This
character can be modified in the on-unit by
the use of the ONCHAR or ONSOURCE pseudo­
variables. If ONCHAR is used out of
context, a blank is returned.

ONCODE Condition Built-in Function

Qefiniti~Ql ONCODE can be used in any
on-unit to determine the type of interrupt
that caused the on-unit,to become active.

Reference: ONCODE

Result: ONCODE returns a binary integer of
defa ult precision. This" cod(~" defines the
type of interrupt that causted the entry
into the currently active on-unit. The
codes for the F compiler are given in
section H, "ON-Conditions." If ONCODE is
used out of context, a value of 4 is
returned.

ONCOUNT Condition Built-In FW1ction

Definition: ONCOUNT can bE~ used in any
on-unit entered due to the abnormal comple­
tion of an input/output event to determine
the number of interrupts (including the
current one) that remain to be handled when
a multiple interrupt has resulted from that
abnormal completion. (Multiple interrupts
are discussed in section H, "ON­
Conditions.")

Refer~nce~ ONCOUNT

Result: ONCOUNT returns a binary value of
default precision. If ONcoumr is used in
an on-unit entered as part of a multiple
interrupt, this value specifiE~s the corres­
ponding number of equivalent single inter­
rupts (including the current one) that
remai.n to be handled; if ONCOUNT is used in
any other case the returned value is zero.

ONFILE Condition Built-in Function

Definition: ONFILE determines the name of
the file for which an input/output or
CONVERSION condition was raised and returns
that name to the point of invocation. This
function can be used in the on-unit for any
input/output or CONVERSION condition: it
also can be used in an on-unit for an ERROR
or FINISH condition raised as standard
system action for an input/output or CON­
VERSION condition.

Result: The value returned by this func­
tion is a varying-length character string,
of 31-character maximum length, consisting
of the name of the file for which an
input/output or CONVERSION condition was
raised. In the case of a CONVERSION condi­
tion, if that condition is not associated
with a file, the returned value is the null
string.

ONKEY Condition Built-in Function

Definition: ONKEY, extracts the value of
the key for the record that caused an
input/output condition to te raised. This
function can be used in the en-unit for an
input/output condition or a CONVERSION con­
dition; it can also be used in an on-unit
for an ERROR or FINISH condition raised as
standard system action for cne of the above
conditions.

Reference: ONKEY

Result: The value returned by this func­
tion is a varying-length character string
giving the value of the key for the record
that caused an input/output condition to be
raised. If the interrupt is not associated
with a keyed record, the returned value is
the null string.

ONLOC Condition Built-in Function

Definition: Whenever an ON-condition is
raised., ONLOC may be used in the on-unit
for that condition to determine the entry
point to the procedure in which that condi­
tion was raised. ONLOC may ce used in any
on-unit.

Reference: ONLOC

Result: The value returned by this func­
tion is a varying-length character string
giving the name of the entry point to the

Section G: .Buil t-In Functions and Pseudo-Variables 251

Form C28-8201-1, Page Revised by TNL N33-60.o8, 5/1/68

procedure in which the ON-condition was
raised ... If ONLOC is used out of context, a
null string is returned.

ONSOURCE: Condition Built-in Function

Definition: Whenever the CONVERSION condi­
tion I~aisedr ONSOURCE may be used to
extract the contents of the field that was
being p~ocessed when the condition was
raised~ , This function can be used in the
on-unit for a CONVERSION condition or in an
on-unit for an ERROR or FINISH condition
raised as standard system action for a
CONVERSION condition. (ONSOURCE can also
be used as a pseudo-variable.)

gefere~~~ ONSOURCE

Result: The value returned by this func­
tion is a varying-length character string
(maximum: length is 255 for the F Compiler)
giving the contents of the field being
processep when CONVERSION was raised. This
string may be modified in the on-unit by
use o:E the ONCHAR or ONSOURCE pseudo­
variable. If ONSOURCE is used out of
context, a null string is returned.

BASED ~TORAGE BUILT-IN FUNCTIONS

The based storage built-in functions
generall~ return special values to program
control variables concerned in the use of
based storage and list processing. Only
ADDR reqUires an argument.

ADDR B~sed Storage Built-in Function

DefinitiOn: ADDR finds the location at
which a given variable has been allocated
and returns a pointer value to the point of
invocation. The pointer value identifies
the location at which the variable has been
allocated.

Argument:: The argument, "x," is the
variable; whose location is to be found. It
can be any variable that represents ~n
element,: an array, a structure, an area, an
elemen't of an array, a minor structure, or
an eleme~t of a structure. It can be of
any data, type and storage class. For the F
Compiler, the variable should not be a
bit-st:rihg variable forming part of an
unaligned array or structure.

252

Result: ADDR returns a pointer value idE!n­
tifying the location at which "x" has bE!en
allocated. If "x" is a parameter, the
returned value identifies the corresponding
argument (dummy or otherwise). If "x" is a
based variable, the returned value is dE!t­
ermined from the pointer variable declared
with "x"; if this pointer variable has not
been set, the value returned by AD DR is
undefined. If "x" is an unallocated con­
trolled variable, a null pointer value is
returned.

EMPTY Based Storage Built-in Function

Definition: EMPTY clears an area of stor­
age defined by an area varial:le, by eff€~c­
tively freeing all the alloGations con­
tained within the area. The area can then
be used for a new set of allccations.

Reference: EMPTY

Arguments: None

Result: EMPTY returns an area
size, containing no allocations,
point of invocation. When this
assigned to an area variable,
allocations contained within the
freed.

of ZE~ro

to i:he
value is
all i:he
area are

Note: The value of the EMPTY built--in
function is automatically assigned to all
area variables when they are allocated.

NULL Based Storage Built-in Function

Definition: NULL re·turns a null poin1:er
value (that is, a pointer value that cannot
identify any allocation> so as to indicate
that a pointer variable does not currently
identify an allocation.

Reference: NULL

Arguments: None

Result: The value returned by thiS func­
tion is a null pointer value. This value
cannot be converted to offset type.

NULLO Based Storage Built-in Function

Definition: NULLO returns a null offset
value (that is, an offset value that cannot

identify any relative location of a based
variable allocation) so as to indicate that
an offset variable does not currently iden­
tify an allocation.

Reference: NULLO

Arguments: None

Result: The value returned by this func­
tion is a null offset value. This value
cannot be converted to pointer type.

MULTITASKING BUILT-IN FUNCTIONS

The multitasking built-in functions are
used during multitasking and during asyn­
chronous input/output operations. They
allow the programmer to investigate the
relative priority of a task or the current
state of execution of a task or asynchron-­
ous input/output operation. They all
require arguments.

COMPLETION Multitasking Built-in Function

Defini tion: COMPLETION detE~rmines the com-­
pletion value of a given event variable,.
(COMPLETION can also be used as a pseudo­
variable.)

Reference: COMPLETION (event-name)

Argument: The argument, "~~vent-nameti, can
te an event element or an event array. It
represents the event (or events) whose
complet~ion value is to be dE~termined. The
event can be associated wi1:h completion of
a task, or with completion of an
input/output operation, or it can be user-­
defined. It can be active or inactive. 1\n
array argument causes an array value to be
returned.

Result:. The value returned by this
function is '0' B if the e',ent is incom­
plete, 'liB if the event is complete.

PRIORITY Multitaskin~ilt--in Function

Defini tion: PRIORITY detel::-mines the rela­
tive priority of a given task.. (PRIORITY
can also be used as a pseudo-variable.)

Reference: PRIORITY (task-name)

Argument: The argument, "t:ask-name," rep­
resents the task whose relative priority is
to be determined.

Result: The value returned by this task is
a fixed binary value of precision (n,O),
where ~ is implementation-defined (15, for
·the F Compiler). The value is the priority
value of the named task, relative to the
priority of the task evaluating the func­
tion.. No interrupt can occur during evalu­
ation of P~IORITY.

ST~TUS_Multitasking Built-in Function

Definition: STATUS determines the status
value of a given event variable. (STATUS
can also be used as a pseudo-variable.)

Refe~~gce~ STATUS (event-name)

Argume!!t: The argument, "event-name", can
be an event element or an event array. It
represents the event (or events) whose
status value is to be determined. The
event can be associated with completion of
a task, or with completion of an
input/output operation, or it can be user­
defined. It can be active or inactive. An
array argument causes an array value to be
returned.

Result: The value returned by this
function is a fixed binary value of default
preclslon «15,0) for the F Compiler). It
is zero if the event is normal, or nonzero
if abnormal.

MISCELLANEOUS BUILT-IN FUNCTIONS

The functions described in this section
have little in common with each other and
with the other categorie~ of built-in func­
tions. Some require arguments and others
do not. Those that do not require argu­
ments will be so identified.

ALLOCATION Built-in Function

Definition: ALLOCATION determines whether
or not storage is allocated for a given
controlled variable and returns an
appropriate indication to the point of
invocation.

Reference: ALLOCATION (x)

Argument: The argument, "x," must be an
unsubscripted array name, a major structure
name, or an element variable name, and it
must have the CONTROLLED attribute.

Section G: Built-In Functions and Pseudo-Variables 253

Result: The value returned by this func­
tion is defined as follows: if storage has
been allocated for "x," the returned value
is 'l'B (provided that the allocation is
known -to the task executing the function):
if storag~ has not been allocated "for "x,"
the returned value is 'O'B.

COUNT Built-in Function

Definit!2l!.-!. COUNT determines the number of
data item!s that were transmitted during the
last GET' or PUT operation on a given file
and returns the result to the point of
invocation.

Reference: COUNT (file-name)

Argument: The argument, "file name," rep­
resents the file to be investigated. This
file must. have the STREAM attribute.

Besult: The value returned by this func­
tion is a binary fixed-point integer of
default precision specifying the number of
element data items that were transmitted
during the last GET or PUT operation on
"file name." Note that if an on-unit or
procedure is entered during a GET or PUT
operation, and within that on-unit or pro­
cedure a GET or PUT is executed for the
same file, the value of COUNT is reset for
the new operation and is not restored when
the original GET or PUT is continued.

DATE Built-in Function

Definitidn: DATE returns the current date
to the paint of invocation.

Reference: DATE

Arguments: None

Result: The value returned by this func­
tion is" a character string of length six,
in the form YY!!lIDdd, where:

yy is the current year

mm is the current mon th

dd is the current day

Example: If the current date is February
29, 1968, execution of the statement

x = DATE:

254

will cause the character string '680229' to
be returned to the point of invocation.

LINENO Built-in Function

Definition: LINENO finds the current line
number for a file having the PRINT attri­
bute and returns that number to the point
of invocation.

RefereQce: LINENO (file-name)

Argument: The
be the name of
attribute.

argument, "file name," must
a file having the PRINT

Result: The value returned by this func­
tion is a binary fixed-point integer of
default prec1s10n specifying the current
line number of "file name."

TIME Built-in Function

Definition: TIME returns the current time
to-the point of invocation.

Reference: TIME

Argumg~ts: None

Result: The value returned by this func­
tion is a character string of length nine,
in the form hhmmssttt, where:

hh is the current hour of the day

!!!~ is the number of minutes

ss is the number of seconds

:!::t!: is the number of milliseconds in
machine-dependent increments

Ex~mple.!.. If the current time is 4 P.M., 23
minutes, 19 seconds, and 80 milliseconds, a
reference to the TIME function, for some
computers., will return the character string
'162319080' to the point of invocation.

PSEUDO-VARIABLES

In general, pseudo-variables are certain
built-in functions that can appear wherevter
other variables can appear in order -to

receive values. In short, they are built­
in functions used as receiving fields. For
example, a pseudo-variable may appear on
·the left of the equal sign in an assignment
or DO statement; it may appear in the data
list of a GET statement; it may appear as
·the string name in the STRING option of a
PUT statement.

Since all pseudo-variables have built-in
function counterparts, only a short
description of each pseudo-variable is
given here; the discussion of the corres­
ponding built-in function should be con­
sulted for the details. Note that pseudo­
variables cannot be nested; for example,
the following statement is invalid: -

UNSPEC(SUBSTRCA,1,2»='00'13;

~OMPLETION Pseudo-variable

!~eference: COMPLETION (event-name)

~~escription: The named event variable must
be inactive and is as described for the
COMPLETION built-in function. The value
received by this pseudo-variable is a bit­
string of length 1. This valuE~ sets the

I completion value of the event variable. A
value. of 'O'B specifies that the event
associated with the "event variable" is
incomplete; a value of '1'13 specifies that

I
t.he event is complete. No interrupt can
take place during assignment to the pseudo­
variable.

COMPLEX Pseudo-variable

~eference: COMPLEX (a,b)

Qescription: Only complex values can be
assigned to this pseudo-variable. The real
part of the complex value is assigned to
the variable "a"; the imaginary part is
assigned to the variable "b." If either
"a" and "b" is an array, both must be
arrays of identical bounds.

!MAG Pseudo-variable

geference: IMAG (c)

gescription: Real or complex values may be
assigned to this pseudo-variable!. The real
value or the real part of the complex value
is assigned to the imaginary part of the
complex variable "c,," which may be an
element variable or an array variable.

ONCBAR Pseudo-variable

~eference: ONCBAR

Description: ONCHAR can be used in the
on-unit for a CONVERSION condition or in
the on-unit for an ERROR or FINISH
condition raised as standard system action
for a CONVERSION condition; it can also be
used in a block directly or indirectly
activated by such an on-unit. If ONCHAR is
used in some other context, it is an error.

The expression being assigned to ONCHAR
is evaluated, converted to a character
string of length 1, and assigned to the
character that caused the error. The new
character will displace the current value
of the ONCHAR built-in function, and will
be used when the conversion is re­
attempted, upon the resumption of execution
at the point of interrupt.

9NSOURCE Pseudo-variable

~eference: ON SOURCE

pescription: ONSOURCE can be used in the
on-unit for a CONVERSION condition or in an
on-unit for an ERROR or FINISH condition
raised as standard system action for a
CONVERSION condition; it can also be used
in a block directly or indirectly activated
by such an on-unit. If ONSOURCE is used in
some other context, it is an error.

The expression being assigned to
ONSOURCE is evaluated, converted to a char­
acter string, and assigned to the string
that caused the CONVERSION condition to be
raised. The string will be padded with
blanks, if necessary, to match the length
of the string that caused the error. This
new string displaces the current value of
the ONSOURCE built-in function and will be
used when the conversion is re-attempted,
upon the resumption of execution at the
point of interrupt.

PRIORITY pseudo-variable

Reference: PRIORITY [(task-name)]

Description: The "task-name" is as des­
cribed for the PRIORITY built-in function"
but need not be specified. The value
received by this pseudo-variable is a
fixed-po~nt binary value of precision
(n,O), where n is implementation-defined
(15~ for the- F Compiler). The priority
v'alue of the named task variable is adjust­
ed so that it becomes !l relative to the

Section G: Built-In Functions and Pseudo-Variables 255

priority that the current task had prior to
the assignment. If an active task is
associated with the named task variable,
its priority is given the same value as the
task variable.

If "task-name" is not specified, the
task variable associated with the current
task (if there is such a variable) is
implied, and the priority of this variable
is mOdified: hence, the priority of the
current task is modified.

No interrupt can occur during assignment
to the PRIORITY pseudo-variable.

The operating system allows a task to
change only its own priority or that of any
of its immediate subtasks.

REAL Pseudo-variable

Reference: REAL (c)

Des~ription: Real or complex values may be
assighed to this pseudo-variable. The real
value or the real part of the complex value
is assigned to the real part of the complex
variable "c," which may be an element
variable or an array variable.

STATUS Pseudo-variable

Reference: STATUS (event-name)

Description: The named event variable can
be active or inactive, and is as described

256

for the STATUS built-in function. The
value received by this pseudo-variablE~ is a
fixed point binary value of default preci­
sion «15,0) for the F Compiler). No
interrupt can occur during assignmE~nt to
the pseudo-variable.

SUBSTR Pseudo-variable

Reference: SUBSTR (string,i[,j])

Description: The value being assignE~d to
SUBSTR is assigned to the substring of the
character- or bit-string variable "stI~ing,"
as defined for the built-in function
SUBSTR. If "string" is an array. i and/or
j may be arrays, in which case they must
have identical bounds. The remainder of
"string" remains unchanged.

UNSPEC Pseudo-variable

Reference: UNSPEC (v)

Description: The letter "v" represents an
element or array variable of arithmetic or
string type. The value being assigned to
UNSPEC is evaluated. converted to a bit
string (the length of which is a function
of the characteristics of "v" see the
UNSPEC built-in function) # and then
assigned to "v," without conversion to the
type of "v." If "v" is a string of varying
length, its length after the assignment
will be the same as that of the bit string
assigned to it.

INTRODUCTION

The ON-conditions are those exceptional
conditions that can be specified in PL/I by
means of an ON statement. If a condition
is enabled, the occurrence of the condition
will result in an interrupt. The inter­
rupt, in turn" will result in the execution
of the current action specification for
that condition. I f an ON statement for
that condition is not in effect, the cur­
rent action specification is the standard
system action for that condition. If an ON
statement for that condition is in effect,
the current action specification is either
SYSTEM, in which case the standard system
action for that condition is taken. or an
on-unit, in which case the programmer has
supplied his own action to be taken for
that condition.

If a condition is not ena.bled (i.e .. , if
it is disabled)" and ·the condition occurs,.,
an interrupt will not take place" and
errors may result.

Some conditions are a.lways enabled
unless they have been explicitly disabled
by condition prefixes; othE~rs are always
disabled unless they have been explicitly
enabled by condition prefixes; and still
others are always enabled and cannot be
disabled.

Those conditions that arE~ always enabled
unless they have been explicitly disabled
by condition prefixes are:

CONVERSION

FIXEDOVERFLOW

OVERFLOW

UNDERFLOW

ZERODIVIDE

Each of the above conditions can be disa­
bled by a condition prefix specifying the
condition name preceded by NO without
intervening blanks. Thus, one of the fol­
lowing names in a condition prefix will
disable the respective condition:

SECTION H: ON-CONDITIONS

NOCONVERSION

NOFIXEDOVERFLOW

NOOVERFLOW

NOUNDERFLOW

NOZERODIVIDE

Such a condition prefix renders the corres­
ponding condition disabled throughout the
scope of the prefix; the condition remains
enabled outside this scope. (Scope of a
condition prefix is discussed in Part I,
Chapter 11, "Exceptional Condition Handling
and Program Checkout.")

conversely, those conditions that are
always disabled unless they have been ena­
bled by a condition prefix are:

SIZE

SUBSCRIPTRANGE

STRINGRANGE

CHECK

The appearance of one of these four in a
condition prefix renders the condition ena­
bled throughout the scope of the prefix;
the condition remains disabled outside this
scope. Further, a condition prefix speci­
fying NOSIZE, NOSUBSCRIPTRANGE, NOSTRING­
RANGE, or NOCHECK will disable the corres­
ponding condition throughout the scope of
that prefix ..

All other conditions are always enabled
and remain so for the duration of the
program. These conditions are:

AREA

CONDITION

END FILE

ENDPAGE

ERROR

FINISH

KEY

NAME

Section H: ON Conditions 257

RECORD

TRANSMIT

UNDEFINEDFILE

condition Codes (ON-Codes)

The ONCODE built-in function may be used
by the programmer in anyon-unit to deter­
mine the nature of the error or condition
that caused entry into that on-unit. The
codes corresponding to the conditions and
errors checked for by the F Compiler are
given bE~low:

code

o

3
4
9

10
20
21

22

23

24

40
41
42
50
51
52
53
54
55
56

57

70
80
81
82

83

84

85

90
300
310
320
330
340

258

~ondition/Error

FINISH (normal termination, or sig-
naled by STOP or EXIT)

Source program error
ONCODE function used out of context
ERROR (signaled)
NAME
RECORD (signaled)
RECORD (record variable smaller than

record size)
RECORD (record variable larger than

record size)
RECORD (attempt to write zero length

record)
RECORD (zero length record has beerl

read)
TRANSMIT (signaled)
TRANSMIT (output)
'TRANSMIT (input)
.KEY (signaled)
KEY (keyed record not found)
KEY (attempt to add duplicate key)
KEY (key sequence error)
KEY (key conversion error)
KEY (key specification error)
KEY (keyed relative recordltrack

outside data set limit)
KEY (no space available to add keyed

record)
ENDFILE
UNDEFINEDFILE (signaled)
UNDEFINEDFILE (attribute conflict)
UNDEFINEDFILE (access method not

supported)
UNDEFINED FILE

specified)
UNDEFINEDFILE

opened, no DD
UNDEFINEDFlLE

REGIONAL data
END PAGE
OVERFLOW
FIXEDOVERFLOW
ZERODIVIDE
UNDERFLOW
SIZE (normal)

(blocksize not

cannot be (file
card)
(error
set)

initializing

341
350
360

361
362
500
510
511
520
600
601
602
603
604

605

606
607

608

609
610

611

612

613

614

615

616

617

618
619

620

621

622

623

624

625

626

627

628

629

1000
1001
1002
1003

SIZE (1/0)
STRINGRANGE
AREA (raised
allocation)

by based variable

AREA (raised by area assignment)
AREA (s ignaled)
CONDITION
CHECK (LABEL)
CHECK (variable)
SUBSCRIPTRANGE
CONVERSION (internal) (signaled)
CONVERSION (1/0)
CONVERSION (transmit)
CONVERSION (error in F-format input)
CONVERSION (error in F-format input)

(1/0)
CONVERSION (error in F-format input)

(transmit)
CONVERSION (error in E-format input.)
CONVERSION (error in E-format input)

(1/0)
CONVERSION (error in E-format input)

(transmit)
CONVERSION (error in B-format input.)
CONVERSION (error in B-format input.)

(1/0)
CONVERSION (error in B-format input.)

(transmit)
CONVERSION (character-string

arithmetic)
CONVERSION (character-string

arithmetic) (1/0)
CONVERSION (character-string

arithmetic) (transmit)
CONVERSICN (character-string

bit-string)
CONVERSION (character-string

bit-string) (1/0)
CONVERSION (character-string

bit-string) (transmit)

t;o

t:o

t:o

t;o

1::0

1::0

CONVERSION (character to picture)
CONVERSION (character to picturE:)

(1/0)
CONVERSION (character to picture)

(P-format

(P-format
(1/0)

(P-format
(transmit)

(P-format

(transmit)
CONVERSION

decimal)
CONVERSION

decimal)
CONVERSION

decimal)
CONVERSION

character)
CONVERSION

character)
CONVERSION

character)
CONVERSION

sterling)

(P-format
(1/0)

(P-format
(transmit)
(P-format

CONVERSION (P-format
sterling) (I/O)

CONVERSION (P-format

input

input

input

input

input

input

input

input

input
sterling) (transmit)

Attempt to read output file
Attempt to write input file
GET/PUT string length error
Unacceptable output transmission

error

1004
1005

1006

1007

1008

1009
1010
1011
1012
1013

1014
1015
1016

1017
1018

1500
1501
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

2000
2001
3000
3001
3002
3003
3004
3005

Print option on non-PRINT file
Message length for DISPLAY state-­

ments is zero
Illegal array data item for data­

directed input
REWRITE not immedia1:ely preceded by

READ
GET STRING unrecognizable datcl

name
Unsupported file operation
File type not support:ed
Inexplicable I/O error
outstanding read for update exists
No completed read exists

incorrect NCP val UE!

Too many incomplete I/O operations
Event variable alreadv in use
Implicit open failu~es cannot

proceed
Attempt to rewrite out of sequence
ERROR condition raised when end of
file encountered unexpectedly in.
list-directed or data-directed
input, or when field width in format
list of edi t-::1i rected input woul d
take scan beyond end of file.
Short SQRT error
Long SQRT error
Short LOG error
J:'ong LOG error
Short SIN error
Long SIN error
Short TA~ error
Long TAN error
Short. ARCTAN error
Long ARCTAN error
Short SIT\1Herror
Long SINH error
Short ARCTANH error
Long ARCTANH error
Invalid exponent in short float

integer exponentiation
Invalid exponent in long float inte­

ger exponentiation
Invalid exponent in short float gen­

eral exponentiation
Invalid exponent in long float gen­

eral exponentiation
Invali d exponen·t in complex short

float integer expon~~ntiation
Invalid exponent in complex long

float integer exponentiation
Invalid exponent in complex short

float general exponE~ntiation
Invalid exponent in complex long

float general exponentiation
Invalid argument in short float com­

plex ARCTAN or ARCTI~NH
Invalid argument in long float com-

plex ARCTAN or ARCT1~NH
Unacceptable DELAY statement
Unacceptable TIME sta t:ement
E-format conversion error
F-format conversion error
A-format conversion error
B·-format conversion error
A-format input error
B-format input error

3006
3798

3799

3800
3801

3900

3901
3902
3903

3904

3905

3906

3907
3908

8091
8092
8093
8094
8095
8096
8097
9000

9001
9002

9003

Picture character-string error
ONSOURCE or ONCHAR pseudo-variables

used out of context
Improper return from CONVERSION on­

unit
Structure length ~ 16**6 bytes
Virtual origin of array ~ 16**6 or

~-16**6
Attempt to wait on inactive and

incomplete event
Task variable already active
Event already being waited for
Wait on more than 255 incomplete
events
Active event variable as argument to
COMPLETION pseudo-variable
Invalid task variable as argument to
PRIORITY pseudo-variable
Event variable active in assignment
statement
Event variable already active
Attempt to wait for I/O event in
wrong t.ask
Invalid operation
Privileged operation
EXECUTE statement executed
Protection violation
Addressing interruption
Specification interruption
Data interruption
Too many active on-units and entry

parameter procedures
No invocation count
Invalid free storage (main

procedure)
Invalid free VDA

Multiple Interrupts

A multiple interrupt can occur only for
an input/output operation that has been
associated with an event variable. It
occurs during the execution of the WAIT
statement naming that event variable, if
the event has been completed abnormally
(i.e., if one or more conditions occurred
during the operation). since conditions
for an input/output event are raised at the
execlltion of the WAIT for that event, the
interrupts for these conditions also occur
at this time. It is possible for more than
one interrupt to occur for an input/output
event. The aggregate of interrupts for an
input/output event is called a multiple
interrupt.

When an input/output event is completed
abnormally, the order in which the
conditions are raised, and therefore, the
order in which the interrupts for these
conditions occur, is implementation­
defined. If the on-unit for such a condi­
tion ends abnormally, then all unprocessed
conditions (i.e., remaining interrupts of
the multiple interrupt) are ignored; if an

'Section H: ON Conditions 259

on-unit ends normally, the next condition
is processed. If an on-unit has not been
established for such a condition or if
SYSTEM is in effect, the next condition
outstanding will be processed only if the
standard system action is to comment and
continue; if the standard system action is
otherwise, all remaining interrupts in the
multiple interrupt will be ignored.

Note: If the UNDEFINEDFILE condition is
raised by an attempt at implicit opening,
caused by a statement associated with an
event variable, the condition is raised
immediat~ly, and the interrupt will occur
even befOre the WAIT statement is executed.

This section presents each condition in
its logical grouping, and in alphabetical
order within that grouping. In general,
the following information is given for each
condi tion:

1. General format -- given only when it
consists of more than the condition
name.

2. 2~scription -- a discussion of the
condition, including the circumstances
under which the condition can be
raised. Note that an enabled condi­
tion can always be raised by a SIGN~L
statement; this fact is not included
in the descriptions.

3. Result -- the result of the operation
'that caused the condition to occur.
This applies when the condition is
disabled as well as when it is ena­
bled. In some cases, the result is
not defined; that is, it cannot be
predicted. This is stated wherever
applicable.

4. Standard system action -- the action
taXen by the system when an interrupt
occurs and the programmer has not
specified an on-unit to handle that
interrupt.

5. §tqtu~ an indication of the
enabled/disabled status of the con1i­
t~ion at the start of the program, and
how the condition may be disabled (if
possible) or enabled.

6. ~Iol;:"mal return -'- the pOint to which
control is returned as a result of the
normal termination of the on-unit. A
GO TO statement that transfers control
out of an on-unit is an abnormal
on-unit termination. Note that if a

260

condi tion has been raised by the SIG­
NAL statement, the normal return is
always to the statement immediately
following SIGNAL.

The conditions are grouped as follows:

1. £Q!!!Qutational conditions -- those con.­
ditions associated with data handling,
expression evaluation, and comput.a,­
tion. They are:

AREA
CONVERSION
FIXEDOVERFLOW
OVERFLOW
SIZE
UNDERFLOW
ZERODIVIDE

2. Lnput/output conditions -- those con­
ditions associated with data transmis­
sion. They are:

ENDFILE
ENDPAGE
KEY
NAME
RECORD
TRANSMIT
UNDEFINEDFILE

3. ~!:ogram-checkout conditions -- those
conditions that facilitate the debug­
ging of a program. They are:

CHECK
SUBSCRIPTRA.NGE
STRINGRANGE

4. §ystem action conditions -- those con­
ditions that provide facilities to
extend the standard system action that
is taken after the occurrence of a
condition or at the completion of a
program. They are:

ERROR
FINISH

5. E!ogrammer-named condition -- the CON­
DITION condition.

COMPUTATIONAL CONDITIONS

The AREA Condition

De~~ription: The AREA condition is raised
in either of the following circumstances:

1. When an attempt is made to allocate a
based variable within an area that
contains insufficient free storage for
the allocation to be made.

2. When an attempt is made to perform an
area assignment, and the target area
contains insuff icient. storage to
accommodate the allocations in the
source area.

Resul t: If the condition occurs as the!
resul t of an attempted allocation, the!
allocation has no effect; if the condition
occurs as a result of an area assignment,
the contents of the target area are unde­
fined.

Standard System Action: In the absence of
an on-uni t, the system print.s a message and
raises the ERROR condition.

Normal Return: On normal r€!turn from the
on-unit, the action is as follows:

1. If the condition was: raised by an
allocation, the allocation is re­
attempted. If the on-unit has changed
the value of a pointer qualifying the
reference to the ina.dequate area so
that it points to anot.her area, the
allocation is reattempted within the
new area.

2. If the condition was ra.ised by an area
assignment, or by a SIGNAL statement,
execution continues at the point of
in·terrupt,.

The CONVERSION Condition

Description: The CONVERSION condition
occurs whenever an illegall conversion is
attempted on character-string data. This
attempt ma.y be made internally or during an
input/output operation. For example, the
condition occurs when a character other
than 0 or 1 exists in a character string
being converted to a bit string; other
examples are when a charact~er str ing being
converted to a numeric character field
contains characters not permitted by the
PICTURE specification, or when a string
being converted to coded arithmetic data
does not contain the charact~er representa-·
tion of an arithmetic constant.

All conversions of character-string data
are carried out character-by-character in a
left-to-right sequence and the condition
occurs for each invalid character. When an
invalid character is encount~ered, an inter­
rupt occurs (provided, of course, that~
CONVERSION has not been disabled) and the
current action specification for the condi­
tion is executed. If 1:he action specifi-·
cation is an on-unit, the invalid character
can be corrected within tha unit by using
the ONSOURCE or ONCHAR pseudo-variables.
On return from the on-unit, the conversion

of the string is retried from the begin­
ning. For the F Compiler, if the illegal
character has not been corrected. a message
is printed and the ERROR condition is
raised.

Result: When CONVERSION occurs, the con­
tents of the entire result field are unde­
fined.

Standard System Action: In the absence of
an on-unit, the system prints a message and
raises the ERROR condition.

Status: CONVERSION is enable1 throughout
the program, except within the scope of a
condition prefix specifying NOCONVERSION.

Normal Return: Upon the normal termination
of the on-unit for this condition, control
returns to the beginning of the string and
the conversion is retriea.

The FIXEDOVERFLOW Condition

Description: The FIXEDOVERFLOW condition
occurs when the length of the result of a
fixed-point arithmetic operation exceeds ~.
For System/360 implementations, N is 15 for
decimal fixed-point values and 31 for
binary fixed-point values.

Result: The result of the invalid fixed­
point operation is undefined.

Standard System Action: In the absence of
an on-unit, the system prints a message and
raises the ERROR condition.

Status: FIXEDOVERFLOW is enabled through­
out the programl except within the scope of
a condition prefix that specifies
NOFIXEDOVERFLOW.

Normal Return: Upon normal termination of
the on-unit for this condition, control
returns to the point immediately following
the point of interrupt.

The OVERFLOW Condition

Description: The OVERFLOW condition occurs
when the magnitude of a floating-point
number exceeds the permitted maximum. (For
System/360 implementations, the magnitude
of a floating-point number or intermediate
result must not be greater than approxi­
mately 1075 or 2252.)

Result: The value of such an illegal
floating-point number is undefined.

Section H: ON Conditions 261

Standa~ystem Action: In the absence of
an on-unit, the system prints a message and
raises the ERROR condition.

Status~ OVERFLOW is enabled throughout the
program, except within the scope of a
condition prefix specifying NOOVERFLOW.

Normal Return: Upon normal termination of
the on-unit for this condition, control
returns to the point immediately following
the point of interrupt.

Th~ SIZE Condition

Description:. The SIZE condition occurs
only when high-order (i.e., leftmost) non­
zero binary or decimal digits are lost in
an assignment to a variable or a temporary
or in an input/output operation. This loss
may result from a conversion involving
different data types, different bases, dif­
ferent scales, or different precisions.

The SIZE condition differs from the
FIXEDOVERFLOW condition in an important
sense, i.e., FIXEDOVERFLOW occurs when the
size of a calculated fixed-point value
exceeds N (the maximum allowed), whereas
SIZE i8- raised when the size of the value
being assigned to a data item exceeds the
declared (or default> size of the data
item. SIZE can be raised on assignment of
a valuE'~ regardless of whether or not FIXED­
OVERFLOW was raised in the calculation of
that value.

The declared size is not necessarily the
actual precision with'llhich the item is
held in storage 1 however, the limit for
SIZE is the declared or default size, not
the actual size in storage. For example,
with the F Compiler, a fixed binary item of
precision (20) will occupy a fullword in
storage, but SIZE is raised if a value
whose size exceeds FIXED BINARY(20) is
assigned to it ..

Besult~_ The contents of the
receiving the wrong-sized value
fined.

data item
are unde-

§tandaI~....§ystem Action: In the absence of
an on-un1t, the system prints a message and
raises the ERROR condition.

status~_ SIZE is disabled within the scope
of a NOSIZE condition prefix and elsewhere
throughout the program, except within the
scope of a condition prefix specifying
SIZE.

Normal Return: Upon nornel termination of
the on-unit for this condition, control
returns to the point immediately following
the point of interrupt.

262

The UNDERFLOW Condition

Description: The UNDERFLOW condition
occurs when the magnitude of a floating­
point number is smaller than the permitt,ed
minimum. (For System/360 implementations,
the magnitude of a floating-point value may
not be less than approximately 10- 78 or
2- 260.)

UNDERFLOW does not occur when
numbers are subtracted (often
significance error).

equlal
called

Note that, for the
expression X**(-Y) (where
by taking the reciprocal
the OVERFLOW condition
instead of the UNDERFLOW

F Compiler, the
Y>O) is evaluated
of X**Y1 hence,
may be raised

condition.

Result: The invalid floating-point value
is set -to O.

Standard System Action: In the absence of
an on-unit, the system prints a message and
continues execution from the point at which
the interrupt occurred.

St~~us~ UNDERFLOW is enabled throughout
the program, except within the scope of a
condition prefix specifying NOUNDERFLOW.

Normal Return: Upon norma'l termination of
the on-unit for this condition, control
returns to the point imme1iately following
the point of interrupt.

The __ ZERODIVIDE Condition

Description: The ZERODIVIDE condition
occurs when an attempt is made to divide by
zero. This condition is raised for fixed­
point and floating-point di vis ion.

Result: The result of a division by zero
is undefined.

Standard System Action: In the absence of
an on-unit, the system prints a message and
raises the ERROR condition.

Status: ZERODIVIDE is enabled throughout
the program, except within the scope of a
condition prefix specifying NOZERODIVIDE.

Normal Return: Upon normal termination of
the on-unit for this condition, control
returns to the point immediately following
the point of interrupt.

INPUT/OUTPUT CONDITIONS

The input/output conditions are always
enabled and cannot appear. in condition
prefixes; they can be specified only in ON"
SIGNAL~ and REVERT statements.

The ENDFILE Condition

General Format: ENDFILE (file-name)

rescription: The ENDFILE condition can be
raised during a GET or READ operation; it
is caused by an attempt to read past the
file delimiter of the file named in the GET
or READ statement. It applies only to
SEQUENTIAL files.

If the file is not closed after ENDFILE
occurs, then any subsequent GET or RE~D
statement for that file immediately raises
the ENDFILE condition again.

If ENDFILE is raised by an input/output
stat.ement using the EVEN~r option, the
interrupt does not take place until the
execution of a subsequent WAIT statement
for that. event in 1:he same procedure.

standard System Ac1:ion: In the absence of
an on-unit, the system prints a message and
raises t,he ERROR condition.

stat us: The END FILE condi t.ion is always
enabled; it cannot be disabl~:!d.

Normal Return: Upon the normal termination
of t.he o:n-uni t for the condi it.ion, execution
continues with the statement immediately
following the GET or READ statement that
caused the ENDFILE (or" if END FILE was
raised by a READ wi th th«~ EVENT option.,
control passes back to ·the HAlT statement
from which the on-unit was invoked).

~he ENDPAGE Condition

General Format: ENDPAGE (file-name)

The "file name" must bE~ the name of a
file having the PRINT attribute.

Description: The ENDPAGE condition is
raised when a PUT statement results in an
attempt to start a new line beyond the
limit specified for the current page. This
limit can be specified by the PAGESIZE
option in an OPEN statement; if PAGESIZE
has not been specified, a default limit of
60 applies for the F Compiler. The attempt
to exceed the limit. may be made during data

transmission (including associated format
items, if the PUT statement is
edit-directed) " by the LINE option., or by
the SKIP option. ENDPAGE can also be
raised by a LINE option or LINE format item
that specified a line number less than the
current line number.

When ENDPAGE is raised, the current line
number is one greater than that specified
by the PAGESIZE option (or 61, if the
default applies) so that it is possible to
continue writing on the same page. The
on-unit may start a new page by execution
of a PAGE option or a PAGE format item,
which sets the current line to 1.

ENDPAGE is raised only once per page.
If the on-unit does not start a new page"
the current line number may increase inde­
finitely. If a subsequent LINE option or
LINE format item specifies a line number
that is less than the current line number,
ENDPAGE is not raised, but a new page is
started with the current line set to 1.

If ENDPAGE is raised during data trans­
mission, then, on return from the on-unit,
the data is written on the current line,
which may have been changed by the on-unit.
If ENDPAGE results from a LINE or SKIP
option, then, on return from the on-unit,
the action specified by LINE or SKIP is
ignored.

Standard System Action: In the absence of
an on-unit, the system starts a new page.
If the condition is signalled, execution is
unaffected and continues with the statement
following the SIGNAL statement.

Status: ENDPAG$ is always enabled; it can­
not-be-disabled.

Normal Return: Upon the normal completion
of the on-unit for this condition, execu­
tion of the PUT statement continues in the
manner described above.

The KEY Condition

General Format: KEY (file-name)

Description: The KEY condition can be
raised only during operations on keyed
records. It is raised in any of the
following cases:

1. The keyed record cannot be found.

2,. An attempt is made to add a duplicate
key.

3. The key is out of sequence.

section H: ON Conditions 263

4. An error occurred in the conversion of
the key.

5. The key has not been specified cor­
rectly.

6. No space is available to add the keyed
record.

If KEY
statement
interrupt
tion of a
that event

is raised by an input/output
using the EVENT option, the
does not occur until the execu­
subsequent WAIT sta.tement for
in the same procedure.

The condition is not raised for a LOCATE
statement until actual transmission is
attemp-ted (that is. immediately before exe­
cution of the next WRITE or LOCATE state­
ment for the file. or immediately before
the file is closed); until the error is
correc'ted, the record cannot be transmi t­
ted, nor can any further operation take
place :for the file.

Standa~['d system Action: In the absence of
an on-unit, the system prints a message and
raises the ERROR condition,.

Status: KEY is always enabled; it cannot
be disabled.

~ormal Return: Upon the normal completion
of the on--uni t for this condition, control
passes to the statement immediately follow­
ing the statement that caused KEY to be
raised (or, if KEY was raised by an
input/output statement with the EVENT
option, control passes back to the WAIT
statement from which the on-unit was
invoked).

The NAME Condition

General Format: NAME (file-name)

Descriptio~~ The NAME condition can be
raised only during a data-directed GET
statement. It can be raised either when an
identifier in the input stream does not
have a counterpart in the data list of the
GET statement or when the GET statement has
no data list and an identifier that is not
known in the block is encountered in the
stream.

NAME is raised at the time the unmatched
identifier is encountered in the stream.

The programmer may retrieve the data
field (i.e4, the identifier and its value)
containing the unmatched identifier by
using the built-in function DATAFIELD in
the on-unit ..

264

standard System Action: In the absence of
an on-unit, the system ignores the incor­
rect data field" prints a message, and
continues the execution of the GET stat,e­
mente

Status: NAME is always enabled; it cannot
be ,disabled.

Normal Return: Upon the normal completion
of the on-unit for this condition, t~he
execution of the GET statement continues
with the next identifier in the stream.

The RECORD Condition

General Format: RECORD (filename)

Description: The RECORD condition can be
raised only during a READ, WRITE, or HE­
WRITE operation. It is raised by any of
the following:

1. The size of the record is greater than
the size of the variable.

2. The size of the record is less than
the size of the variable.

3. A record of zero length has been read.

4. An attempt is made to write a record
of zero length.

If the size of the record is grea1:er
than the size of the variable, the eXCE~SS
data in the record is lost on input and is
unpredictable on output. If the size of
the record is less than the size of 1:he
variable, the excess data in the variable
is not transmitted on output and is
unal tered on input. (Thus, if a ZE~ro
length record is read, the variable con­
tains the same data that it contained
before the read operation.) If an attempt
is made to write a record of zero length,
the attempt is aborted, and, in effect, 1:he
statement'- is ignored.

If RECORD is raised during transmission
of an area, the area control field will
contain incorrect information

If RECORD is raised by an input/output
statement using the EVENT option, 1:.he
interrupt does not occur until the execu­
tion of a subsequent WAIT statement for
that event in the same procedure.

standard System Action: In the absence of
an on-unit, the system prints a message and
raises the ERROR condition.

status: RECORD is always enabled; it can­
not be disabled.

Normal Return: Upon normal completion of
the on-unit, execution con"tinues with the
statement immediately following the one for
which RECORD occurred (or if RECORD was
raised by an input/output statement with an
EVENT option, control returns to the WAIT
statement from which thle on-unit was
invoked) •

The TRANSMIT Condition

General Format: TRANSMIT (file-name)

DescriEtion: The TRANSMIT condition can be
raised during any input/output operation.
It is raised by a permanent transmission
error and~ as a result any data transmit-

section H: ON Conditions 264.1

ted is potentially incorrect. During
input, the condition is raised after
assignment of the potentially incorrect
data item or record. During output, the
condition is raised after the transmission
of the potentially incorrect data item or
record has been attempted.

If TRANSMIT is raised by an input/output
statement using the EVENT option, the
interrupt does not take place until the
execution of a subsequent WAIT statement
for that event in the same procedure.

Standard System Action: In the absence of
an on-unit n the system prints a message and
raises the ERROR condition.

Status: TRANSMIT is always enabled;
cannot be disabled.

it

Normal Return: Upon the normal completion
of the on-unit o processing continues with
the next data item for STREAM input/output,
or the next statement for RECORD
input/output (or if TRANSMIT was raised by
an input/output statement with an EVENT
option, control returns to the WAIT state­
ment from which the on-unit was invoked).

The UNDEFINEDFILE Condition

General Format: UNDEFINEDFILE (file-name)

Description: The UNDEFINEDFILE condition
is raised whenever an attempt to open a
file is unsuccessful. If the attempt is
made by means of an OPEN statement that
specifies more than one file name, attempts
to open all other files in that statement
will be made before the condition is
raised. If the condition is raised for
more than one file in the same OPEN state­
ment, on-units will be executed according
to the order of appearance (taken from left
to right) of the file names in that OPEN
statement.

If the condition is raised by an impli­
cit file opening in an input/output state­
ment without the EVENT option, then, upon
normal return from the on-unit, processing
continues with the remainder of the inter­
rupted input/output statement. If the file
was not opened in the on-unit, then the
statement cannot be continued and the ERROR
condition is raised.

If the condition is raised by an impli­
cit file opening in an input/output state­
ment having an EVENT option 6 then the
interrupt occurs before the event variable
is initialized. In other words u the event
variable retains its previous value and
remains inactive. On normal return from

the on-unit, the event variable is initial­
ized, that is, it is made active and its
completion value is set to 'O'B (provided
the file has been opened in the on-unit).
Processing then continues with the remain­
der of the interrupted statementQ However,
if the file has not been opened in the
on-unit, the event variable remains unini­
tialized, the statement cannot be contin­
ued, and the ERROR condition is raised.

For the F Compiler, some cases for which
the UNDEFINEDFILE condition is raised are
as follows:

1. A conflict in attributes exists.

2. The blocksize has not been specified.

3. There is no recognizable DD statewent
for the file.

Standard ~st~~£ti2g~ In the absence of
an on-unit, the system prints a message and
raises the ERROB condition.

Status: UNDEFINEDFILE is always enabled;
it cannot be disabled.

Normal Return: Upon the normal completion
of the final on-unit, control is given to
the statement immediately following the
statement that caused the condition to be
raised (see "Description" for action in the
case of an implicit opening).

PROGRAM-CHECKOUT CONDITIONS

The CHECK Condition

General Format: CHECK (name-list)

The "name list" is one or more names
separated by commas; a name may be a
qualified name. Each name must be one of
-the following:

1. An entry name

2. A statement label constant

3. An unsubscripted name representing an
element, an array, or a structure

The names appearing in a CHECK
refer to the names known within the
to which the prefix is attached.
cannot be a parameter or a variable

Ithe DEFINED or BASED atrributes.

prefix
block

A name
having

DescriQtion: The CHECK condition is raised
only within the scope of a CHECK condition
prefix. such a condition prefix may be
prefixed only to a PROCEDURE or BEGIN

section H: ON Conditions 265

statement. The CHECK condition is enabled
separately for each name in the list of the
CHECK prefix. For example, the prefix
CHECK (A,B,C) is equivalent to CHECK (A):
CHECK (E): CHECK (C). Hence, the action
specification can be controlled separately
for ea.ch name. The REVERT statement can be
used to change the action specification for
one O;r more names in the list. Also, a
NOCHECK prefix can be used to disable the
CHECK condition for a specific name (like
CHECK, NOCHECK can appear only as a prefix
to a PROCEDURE or BEGIN statement).

If the name of a structure or array of
structures appears in the name list follow­
ing CHECK, such a list is equivalent to one
that contains, in the order in which they
were declared, the elements of that struc­
ture or array of structures. For example,
if P is defined:

DECLARE 1 P, 2 Q, 2 R, 2 S;

then:

CHECK (P)

is equivalent to:

CHECK (Q,RgS)

The CHECK condition is raised within the
scope of a CHECK prefix in any of the
following cases:

1. If a name in the CHECK prefix is a
statement label constant, the condi­
tion is raised and the interrupt
occurs prior to the execution of the
statement to which the label is pre­
fixed. If the label is prefixed to a
DECLARE or FORMAT statement, the con­
dition is not raised.

2. If a name in the CHECK prefix is a
variable (as specified in item 3 of
the general format above), the condi­
tion is raised whenever the value of
the variable, or a generation of any
~~~t of the variable, is changed by 
any statement within the scope of the 
prefix. 

266 

Specifically, if the identifier ID 
represents the variable, the condition 
is raised in the following cases: 

a. ID appears on the left-hand side 
of an assignment statement. (This 
applies to BY NAME assignment even 
if the name mentioned does not 
appear in the final expansion of 
the statement.) 

b. ID is set as a result of a pseudo­
variable appearing on the left-

c. 

d. 

hand side of an assignlTlent 
statement. 

ID appears as the control variable 
of a DO-group or a repetitive 
specification in a data list (or 
it is set as a result of a pseudo­
variable appearing as the control 
variable of a DO-group or a 
repetitive specification in a oata 
list). 

ID appears in the data list of an 
edit-directed or list-directed GET 
statement. 

e. ID is altered by data-dir'?cted 
input. 

f. ID appears in the REPLY option of 
a DISPLAY statement. 

g. ID appears in the STRING option of 
a PUT statement. 

h. ID is passed as an argument to a 
programmer-defined procedure, no 
intermediate argument is created, 
and the procedure terminates with 
a RETURN or END. 

i. ID appears in the KEYTO or INTO 
option of a READ statement. Note 
that if the READ statement has an 
EVENT option, the CHECK condition 
will not be raised. 

j. ID is a pointer variable and 
appears in a SET option. 

Note that in a, b, d, and e above, if 
ID is a structure, the CHECK condition 
is raised each time an element of that 
structure is given a value, but the 
interrupt for each condition does not 
occur until after the statement that 
caused the condition to be raised has 
been executed completely. 

The condition is not raised under any of 
the following circumstances: 

a. If the value of a variable defined 
on ID or on part of ID changes in 
any of the ways described above. 

b. If the parameter that represents 
the argument ID changes value. 

c. If ID appears in a GO TO or RETURN 
statement or any statement that 
involves the execution of a GO TO 
or RETURN statement. 

d. If ID is set by the INITIAL"attri­
bute. 

Note that in all of the above con-



texts" 10 can appear in subscripted or 
qualified form. Note also that ID 
need not appear in the name list of a 
CHECK prefix; it only need represent a 
structure or element contained by" or 
containing, a name in the list. 

The interrupt for a CHECK condition 
occurs after the statement that caused 
the condi ti on to be ra is ed has been 
executed. (Note that an IF statement: 
is considered executed just prior to 
the execution of thE~ THEN or ELSE 
clause.) If the statement is a DO 
statement, the interrupt occurs each 
time control proceeds sequentially to 
the statement following the DO state-· 
mente If the DO specifies repetitivE~ 
execution. the interrupt occurs each 
time the control variable changes 
value. 

Only a data-directed GET statement or 
a DO statement Gan ca.use a condition 
to be raised more than once for the 
same appearance of the same name. If 
a statement causes a CHECK con1ition 
to be raised for sev'eral names, the 
conditions will be raised in the left­
to-right order of appearance of the 
names. 

3. If a name in the CHECK prefix is an 
entry name, the condition is raised 
and the interrupt occurs prior to each 
invocation of the entry point, 
corresponding to the entry name. The' 
condition is raised only if the entry 
point is invoked by the entry name 
given in the prefix. 

Result: When CHECK is raised, there is no 
effect on the statement. being executed. 

Standard System Action: In the absence of 
an on-unit, if the name in the name list is 
a statement-label constant, a statement­
label variable" a task name, an event name, 
an area variable, a locator variable, or an 
entry name, then for the F Compiler" only 
the name is printed on SYSPRINT; in all 
other cases, the name and its new value are 
printed on SYSPRINT in the format of data­
directed output. 

Note: Standard system action for the CHECK 
condition requires access to the variable; 
consequently, if SIGNAL CHECK is given for 
an unallocated variable, an error will 
result, as it would if the variable were 
accessed by an on-unit. 

Status: CHECK is disabled by default and 
within the scope of a NOCHECK con1ition 
prefix. It is enabled only within the 
scope of a CHECK prefix. 

Normal Return: Upon the normal completion 
of the on-unit for the CHECK condition, 
execution continues immediately following 
the point at which the interrupt occurred. 

The SUBSCRIPTRANGE Condition 

Description: SUBSCRIPTRANGE can be raised 
whenever a subscript is evaluated and found 
to lie outside its specified bounds. If 
more than one subscript is associated with 
an identifier# e.g., A(I,J#K}, 
SUBSCRIPTRANGE is raised after each erro­
neous subscript has been checked. Thus, if 
both I and J in the above example were in 
error, SUBSCRIPTRANGE would be raised after 
I was evaluated and again after J was 
evaluated. 

Result: When SUBSCRIPTRANGE has been 
raised, the value of the illegal subscript 
is undefined, and, hence, the reference is 
also undefined. 

Standard System Action: +n the absence of 
an on-unit# the system prints a message and 
raises the ERROR condition. 

Status: SUBSCRIPTRANGE is disabled by 
default and within the scope of a 
NOSUBSCRIPTRANGE con1ition prefix. It is 
enabled only within the scope of a SUB­
SCRIPTRANGE condition prefix~ 

Normal Return: Upon the normal completion 
of the on-unit for this condition, execu­
tion continues immediately following the 
point at which the condition occurred. 

The STRINGRANGE Condition 

Definition: The STRINGRANGE condition is 
raised whenever the lengths of the argu­
ments to a SUBSTR reference fail to comply 
with the rules described for the SUBSTR 
built-in function. It is raised for each 
such reference. 

Standard System Action: Execution contin­
ues as described for normal return. 

Sta~~ STRINGRANGE is disabled by default 
and within the scope of a NOSTRINGRANGE 
condition prefix. It is enabled only with­
in the scope of a STRINGRANGE condition 
prefix. 

Normal Return: On normal return from the 
on-unit~ execution continues with a revised 
SUBSTR reference whose value is defined as 
follows: 

Section H: ON Conditions 267 



Assuming that the length of the source 
string (after execution of the on-unit, if 
specified) is k, the starting point is i, 
and the length of the substring is j; 

1. If i is greater than k the value is 
the null string. 

2. If i is less than or equal to k, the 
value is that substring beginning at 
the mth character or bit of the source 
string and extending ~ characters or 
bits, where!!! and ~ are defined by: 

m=:MAX ( i , 1 ) 

n=:MAX (0, MIN (j+MIN (i, 1) -1, k-m+l» 
[if j is specified] 

k-m+l 
[if j is not specified] 

This means that the new arguments are 
forced within the limits. 

The values of i and j are established 
before entry to the on-unit; they are not 
reevaluated on return from the on-unit .. 

§YSTE~_ACTION CONDITIONS 

pescription: The ERROR condition is raised 
under the following circumstances: 

1. As a result of the standard system 
action for an ON-condition for which 
that action is to "print "an error 
message and raise the ERROR condition" 

2. As a result of an error (for which 
there is no ON-condition) occurring 
during program execution 

3. As a result of a SIGNAL ERROR state­
ment 

~3tanda£d System Action: For the F Compil­
er, if the condition is raised in the major 
task, the FINISH condition is raised" and 
subsequently the major task is terminated. 
If the condition is raised in any other 
1:.ask, that task is terminated. 

Status: ERROR is always enabled; it cannot 
be disabled. 

~ormal Return: Upon the normal completion 
of the on-unit, the standard system action 
is taken. 

268 

The FINISH Condition 

Description: The FINISH condition is 
raised during execution of a statement 
which would cause the termination of the 
major task of a PL/I program., that is, by a 
STOP statement in any task" or an EXIT 
statement in the major task, or a RETURN or 
END statement in the initial external pro­
cedure of the major task. The condition is 
also raised by SIGNAL FINISH in any task, 
and as part of the standard system action 
for the ERROR condition. The interrupt 
occurs in the task in which the statement 
is executed, and anyon-unit specified for 
the condition is executed as part of that 
task,. An abnormal return from the on-unit 
will avoid any subsequent task termination 
processes and permit the inTerrupted task 
to continue. 

Standard System Action: In the absence of 
an on-unit, no action is taken; that is, 
execution of the interrupted statement is 
resumed .• 

Status: FINISH is always enabled; it can­
not be disabled. 

Normal Return: Upon the normal completion 
of the on-unit" execution of the interrupt­
ed statement is resumed. 

PROGRAMMER-NAMED CONDITION 

The CONDITION Condition 

General Format: CONDITION (identifier) 

The "identifier" must be specified by 
the programmer. The appearance of an iden­
tifier with CONDITION in an ON, SIGNAL, or 
REVERT statement constitutes a contextual 
declaration for it; the identifier is given 
the EXTERNAL attribute. 

Description: CONDITION is raised by a SIG­
NAL statement that specifies the appropri­
ate identifier. The identifier specified 
in the SIGNAL statement determines which 
CONDITION condition is to be raised. 

Standard System Action: In the absence of 
an on-unit for this condition, the syst~em 
prints a message and continues with the 
statement following SIGNAL. 

Status: CONDITION is always enabled; it 
cannot be disabled. 

Normal Return: Upon the normal completion 
of the on-unit, execution continues with 
the statement following the SIGNAL stat~e­
ment that caused the interrupt. 



A name appearing in a PL/I program may· 
have one of many different meanings. It 
may, for example, be a varia.ble referring 
to arithmetic data items; it. may be a file 
name; it may be a variable re!ferring to a 
character string, or it may be a statement 
label or a variable referring to a state-
ment label. . 

Properties, or characteristics, of the 
values a name represents (for example, 
arithmetic characteristics of data items 
represented by an arithmetic variable) and 
other properties of the name itself (such 
as scope, storage class, etc.) together 
make up the set of attributes that can be 
associated with a name. 

The attributes enable the compiler to 
assign a unique meaning to the ident.if ier 
specified in a DECLARE statement. For 
example, if the variable is an arithmetic 
data variable, the base, scale, mode, and 
precision attributei must be associated 
with the name. Associated attributes are 
those specified in a DECLARE statement or 
assumed by default. 

This section discusses the different 
attributes. The attributes are grouped by 
function and then detailed discussions fol­
low, in alphabetic order, showing the 
rules, defaults, and format for each attri­
bute. 

SPECIFIC~TION OF ATTRIBUTES 

Attributes specified in DlE:CLARE state­
ments are separated by blanks. Except for 
the diroension, length, and precision attri­
bute specifications, they may appear in any 
order. The dimension attribute specifi­
cation must immediately follow the array 
name; the length and precision attribute 
specifications must follow one of their 
associated attributes. A cornna must follow 
the last attribute specification for a 
particular name (or the name itself if no 
~ttributes are specified with it) " unless 
it is the last name in the DECLARE state­
ment, in which case the semicolon is used. 

SECTION I: ATTRIBUTES 

FACTORING OF ATTRIBUTES 

Attributes common to several names can 
be factored in a declaraticn to elirr.inate 
repeated specification of the same attri­
bute for many identifiers. Factoring is 
achieved by enclosing the names 1n paren­
theses, and following this ty the set of 
attributes which apply. All factored 
attributes must apply to all of the names. 
No factored attribute can be cverridden for 
any of the names, but any name within the 
list may be given other attributes so long 
as there is no conflict with the factored 
attributes. Factoring of attributes is 
permitted only in the DECLARE statement, 
but not within an ENTRY attribute declara­
tion. The dimension attritute may be fac­
tored. The precision and length attributes 
can be factored only in conjunction with an 
associated keyword attritute. Factoring 
can be nested as shown in the fourth 
example below. 

Names within the parenthesized list are 
separated by commas. 

Note: structure level. numbers can also be 
factored, but a factored level number must 
precede the parenthesized list .• 

DECLARE (A,B,C,D) BINARY FIXED (31); 

DECLARE (E DECIMAL(6,S) 
F CHARACTER(10» STATIC; 

DECLARE 1 A, 2{B,C,D) 
FIXED (is), 

(3 ,2) BINARY 
... , 

DECLARE «A,B) FIXED(10), C FLOAT(S» 
EXTERNAL; 

DA'rA ATTRIBUTES 

PROBLEM DATA 

Attributes for problem data are used to 
describe arithmetic and string variables. 
Arithmetic variables have attributes that 
specify the base, scale, mode, and preci­
sion of the data items. String variables 
have attributes that specify whether the 
variable represents character strings or 
bit strings and that specify the length to 
be maintained. The arithmetic data attri­
butes are: 

Section I: Attributes 269 



Fonn C28-8201-1, Page Revised by TNL N33-6008, 5/1/68 

BINARY \ DECIMAL 

FIXED I FLOAT 

REAL\COMPLEX 

(precision) 

PIC'rURE 

The string data attributes are: 

BITICHARACTER 

(length) 

VARYING 

PICTURE 

Other attributes can also be declared 
for data variables. The INITIAL attribute 
specifies the initial value to be given to 
the variable. The DEFINED attribute speci­
fies that the data item is to occupy the 
same storage area as that assigned to other 
data. The ALIGNED and UNALIGNED attributes 
specify the positioning of data elements in 
storage. The storage class and scope­
attributes also apply to data. 

other attributes apply only to data 
aggregates. For array variables, the 
dimension attribute specifies the number of 
dimensions and the bounds of an array. The 
LIKE attribute specifies that the structure 
variable being declared is to have the same 
structuring as the structure of the name 
following the attribute LIKE. 

PROGRAM CONTROL DATA 

Attributes for program control data 
specify that the associated name is to be 
used by the programmer to control the 
execution of this program. The LABEL, 
TASK, EVENT, POINTER, OFFSET, and AREA 
attributes specify program control data. 

EN~Y NAME ATTRIBUTES 

~rhe entry name attributes identify the 
name bei.ng declared as an entry name and 
describe features of that entry point. For 
exampie, the attribute BUILTIN specifies 
that the reference to the associated name 
within the scope of the declaration is 
interpreted as a reference to the built-in 
function or pseudo-variable of the same 
name. The entry name attributes are: 

270 

ENTRY 

RETURNS 

GENERIC 

BUILTIN 

FILE DESCRIPTION ATTRIBUTES 

The file description attributes esta­
blish an identifier as a file name and 
describe characteristics for that file, 
e.g., how the data of the file is to be 
transmitted, whether records of a file are 
to be buffered. If the same file name is 
declared in more than one external proce­
dure, the declarations must not conflict, 
unless one is declared with the INTERNAL 
attribute. 

The file description attributes are: 

FILE 

STREAM \ RECORD 

INPUT \ OUTPUT I UPDATE 

PRINT 

SEQUENTIAL I DIRECT 

BUFFERED I UNBUFFERED 

BACKWARDS 

ENVIRONMENT (option-list) 

KEYED 

EXCLUSIVE 

Note that file description attributes, 
except for the ENVIRONMEN'I attributE~, can 
be specified as options in the option list 
of the OPEN statement. 

SCOPE ATTRIBUTES 

The scope attributes are used to specify 
whether or not a name may be known in 
another external procedure. The scope 
attributes are EXTERNAL and INTERNAL. 

All external declarations for the same 
identifier in a program are linked as 
declarations of the same name. The scope 
of this name is the union of the scopes of 
all the external declarations for this 
identifier. 



In all of the external declarations for 
the same identif ier" the attributes 
declared must be consistent" since ,the 
declarations all involve a single name. 
For example" it would be an error if the 
identifier ID were declared as an EXTERNAL 
file name in one block and as an EXTERNAL 
entry name in another block in the same 
program. 

The INTERNAL attribute specifies that 
the declared name cannot be known in any 
other block except those contained in the 
block in which the declaration is made,. 

The same identifier may be declared with 
the INTERNAL attribute in more than one 
block wi thout regard to whe'ther the attri­
butes given in one block are consistent 
with the attributes given in another block, 
since the compiler regards such declara­
tions as referring to different names. 

For a discussion of the scope of names, 
see Part I, Chapter 7, "Recognition of 
Names. " 

STORAGE CLASS ATTRIBUTES 

The storage class attributes are used to. 
specify the type of storag'e for a data 
variable. The storage class attributes 
are: 

STATIC 

AUTOMATIC 

CONTROLLED 

BASED 

ALPHABETIC LIST OF ATTRIBUTE:S 

Following are detailed descriptions of 
the attributes", listed in alphabetic order. 
Alternative attributes are discussed 
together, with the discussion listed in the 
alphabetic location of the clttribute whose 
name is the lowest in alphabetic order. P.. 
cross-reference to the combi.ned discussion 
appears wherever an alternative appears in 
the alphabetic listingo 

ABNORMAL and NORMAL 

These attributes cause no action in the 
current version of the F compiler: they are 

accepted by the compiler but they have no 
effect. 

ALIGNED and UNALIGNED (Data Attributes) 

The ALIGNED and UNALIGNED attributes 
specify the positioning of data elements in 
storage. to influence speed of access or 
storage economy respectively,. They may be 
specified for element" array, or structure 
variables. 

ALIGNED in system/360 implementations 
specifies that the data element is to be 
aligned on the s~orage boundary correspond­
ing to its data type requirement. 

UNALIGNED in System/360 implementations 
specifies that the data element is to be 
stored contiguously with the data element 
preceding it, and that a word or doubleword 
item is to be mapped on the 'next available 
byte boundary in a similar manner to char­
acter strings of length 4 or 8. 

General format: 

ALIGNED I UNALIGNED 

General rules: 

1. Although they are essentially element 
data attributes. ALIGNED and UNALIGNED 
can be applied to any' array or struc­
ture. This is equivalent to applying 
the attribute to all contained ele­
ments that are not explicitly declared 
with the ALIGNED or UNALIGNED attri­
bute. 

2. Application of either attribute to a 
contained array or structure overrides 
an ALIGNED or UNALIGNED attribute that 
otherwise would apply to elements of 
the contained aggregate by having been 
specified for the containing struc­
ture. 

3. The LIKE attribute is expanded before 
the ALIGNED and UNALIGNED attributes 
are applied to the contained elements 
of the LIKE structure variable. The 
only ALIGNED and UNALIGNED attributes 
that are carried over from the LIKE 
structure variable (i.e.. A in the 
example below) are those explicitly 
specified for substructures and ele­
ments of the structure variable. 

Example: 

DECLARE 1 A ALIGNED" 
2 B, /* ALIGNED FROM A */ 
2 C UNALIGNED, 

3 D: /* UNALIGNED FROM C */ 

Section I: Attributes 271 



DECLARE 1 X UNALIGNED LIKE A: 

DECLARE 1 Y LIKE A: 

The second declare statement is equi­
valent to: 

DECLARE 1 X UNALIGNED, 
2 B, /* UNALIGNED FROM X */ 
2 C UNALIGNED, 

3 Di /* UNALIGNED FROM C */ 

The third declare statement is equi­
valent to: 

DECLARE 1 Y, 
2 B, /* ALIGNED BY DEFAULT */ 
2 C UNALIGNED, 

3 Di /* UNALIGNED FROM C */ 

4. For overlay defining involving bit­
and character-class data (see Figure 
I-i), both the defined item and the 
overlaid part of the base item must be 
unaligned. For all other types of 
defining, equivalent items must be 
either both ALIGNED or both UNALIGNED. 

5. The ALIGNED and UNALIGNED attributes 
of an argument in a procedure invoca­
tion must match the attributes of the 
corresponding parameter. If these 
at~tributes of the original argument do 
not match those of the corresponding 
parameter in an ENTRY attribute dec­
laration, a dummy argument is created" 
with the attributes specified in the 
ENTRY attribute declaration, and the 
original argument is assigned to it. 

6. If a based variable is used to refer 
to a generation of another variable, 
the ALIGNED and UNALIGNED attributes 
of both variables must agree. 

7. Default assumptions for ALIGNED and 
UNALIGNED are applied on an element 
basis. 

8. POINTER, OFFSET, LABEL, EVENT and AREA 
cannot be unaligned. 

Assumpt.ions: 

1. Defqults are applied at element level. 
The default for bit-string data~ 
character-string data, and numeric 
character data is UNALIGNED; for all 
other types of data, the default is 
ALIGNED. 

2. For all operators and built-in func­
tions, the default for ALIGNED or 
UNALIGNED is applicable to the ele­
ments of the result. 

3. Constants take the default for ALIGNED 
or UNALIGNED. 

272 

AREA (Program Control Data Attribute) 

The AREA attribute defines storage that, 
on allocation, is to be reserved for the 
allocation of based variables. Storage 
thus reserved can be allocated to and freed 
from based variables by naming the area 
variable in the IN option of the ALLOCATE 
and FREE statements. Storage that has been 
freed can be subsequently reallocated to a 
based variable. 

General format: 

AREA [(size)] 

General rules: 

1. The area size for areas that are not 
of static storage class is given by an 
expression whose integral value speci­
fies the number of units of storage to 
be reserved. The unit for System/360 
implementations is the byte. 

2. The size for areas of static storage 
class must be specified as a constant; 
for the F Compiler, it must be a 
decimal integer constant. 

3. Data of the area type cannot be con­
verted to any other type; an area can 
be assigned to an area variable only. 

4. No operators can be applied to area 
variables. 

5. Only the INITIAL CALL form of the 
INITIAL attribute is allowed with area 
variables. 

6. An area variable cannot be unaligned. 

Assumptions: 

1. If the size specification is omitted, 
a default value is assumed. For the F 
Compiler, this is 1000. 

2. An area variable can be contextually 
declared by its appearance in an OFF­
SET attribute or an IN option. Nob~, 
however, that all contextually 
declared area variables are given the 
AUTOMATIC attribute. The F Compil-=r 
implementation requires that the vari­
able named in the OFFSET attribute 
must be based; if a nonbased area 
variable is named, the offset variable 
will be changed to a pointer variabl,=. 
Hence, unless the variable named in 
the OFFSET attribute is explicitly 
declared, OFFSET effectively becomes 
POINTER, and a severe error occurs. 



AUTOMATIC, STATIC, CONTROLLED and BASED 
(Storage Class Attributes) 

The storage class attributes are used to 
specify the type of storage allocation to 
be used for data variables. 

AUTOMATIC specifies that storage is to 
be allocated upon each entry to the block 
to which the storage declaration is inter­
nal. The storage is released upon exit 
from the block. If the block is a proce­
dUre that is invoked recursively, the pre­
viously allocated storage is "pushed down" 
upon entry; the latest allocation of stor­
age is "popped up" upon termination of each 
generation of the recursive procedure (for 
a discussion of push-down and pop-up stack-­
ing, see Part I, Chapter 6, "Blocks, Flow 
of Control, and Storage Allocation"). 

STATIC specifies that storage is to be 
allocated when the program is loaded and is 
not to be released until program execution 
has been completed. _.r 

CONTROLLED spec if ies tha-t full control 
will be maintained by the programmer over 
the allocation and freeing of storage by 
means of the ALLOCATE and FREE statements. 
Multiple allocations of the same controlled 
variable, without intervening freeing, will 
cause stacking of generations of the varia­
ble. 

BASED, like CONTROLLED, specifies that 
full control over storage allocation and 
freeing will be maintained by the program-­
mer, but by various methods that are des·­
cribed in Chapter 14, "Based storage and 
List Processing." Multiple allocations are 
not stacked but are available at any time: 
each can be identified by the value of a 
pointer variable. 

General format: 

STATIC I AUTOMATIC I 
CONTROLLED I BASED (pointer-variable) 

General rules: 

1. Automatic and based variables can have 
internal scope only. static and con-­
trolled variables may have either 
internal or external scope. 

2. Storage class attributes cannot be 
specified for entry names, file names., 
members of structures, or DEFINED data 
items. 

3. STATIC and AUTOMATIC a1:tributes canno1: 
be specified for paramE~ters. 

4. Variables declared with adjustable 
lengths and dimensions cannot have the 
STATIC attribute. 

5. For a structure variable, a storage 
class attribute can be given only for 
the major structure name. The attri­
bute then applies to all elements of 
the structure or to the entire array 
of structures. If the attribute CON­
TROLLED or BASED is given to a struc­
ture, only the major structure and not 
the elements can be allocated and 
freed. 

6. The following rules govern the use of 
based variables: 

a. The pointer variable named in the 
BASED attribute must be a non­
based, unsubscripted, element 
pointer variable. This applies to 
explicit pointer qualifiers also. 

b. Whenever a pointer value is needed 
to complete a based variable ref­
erence, and none is explicitly 
specified, the pointer variable 
named in the relevant BASED attri­
bute is used. 

c. Based variables cannot have the 
INITIAL attribute. Based label 
arrays cannot be initialized by 
subscripted label prefixes. 

d. When reference is made to a based 
variable, the data attributes 
assumed are those of the based 
variable, while the qualifying 
pointer variable identifies the 
location of data. 

e. A based variable can be used to 
identify and describe existing 
data; to obtain storage by means 
of the ALLOCATE statement; or to 
obtain storage in an output buffer 
by means of the LOCATE statement. 

f. The relative locations of based 
variables allocated within an area 
can be identified by the values of 
offset variables, but these must 
be assigned to pointer variables 
for the purpose of explicit quali­
fication. 

g. The EXTERNAL attribute cannot 
appear with a based variable dec­
laration, but a based variable 
reference can be qualified by an 
external pointer variable. 

h. A based structure can be declared 
to contain only one adjustable 
bound or length specification. 
See "The REFER Option, n in Chapter 

Section I: Attributes 273 



14, "Based storage and List Proc­
essing .. " 

i. Based variables cannot be trans-
mitted using data-directed 
input/output. 

j. The VARYING attribute cannot be 
applied to based variables. 

Assumptions: 

1. If no storage class attribute is spec­
ified and the scope is internal, AUTO­
MATIC is assumed. 

2. If no storage class attribute is spec­
ifie'd and the scope is external, STA­
TIC is assumed. 

3. If neither the storage class nor the 
scope attribute is specified, AUTOMAT­
IC is assumed. 

4. A pointer variable can be contextually 
declared by its appearance in the 
BASED attribute. 

BACKWARDS U'ile Description At tribute} 

The BACKWARDS attribute specifies that 
the records of a SEQUENTIAL INPUT file on 
magnetic tape are to be accessed in reverse 
order, i. e,. , from the last record to the 
first record. 

General format: 

BACKWARDS 

General rules: 

1. The BACKWARDS attribute applies to 
RECORD files only; that is, it con­
flicts with the STREAM attribute. It 
implies RECORD and SEQUENTIAL. 

2. The BACKWARDS attribute applies to 
tape files only. 

~ASE~§tor~lass Attibute} 

See AUTOMATIC. 

274 

BINARY and DECIMAL (Arithmetic Data 
Attributes) 

The BINARY and DECIMAL attributes speci­
fy the base of the data items represented 
by an arithmetic variable as either binal~y 
or decimal. 

General format: 

BINARY I DECIMAL 

General rule: 

The BINARY or DECIMAL attribute cannot 
be specified with the PICTURE attribute. 

Assumptions: 

Undeclared identifiers (or identifiers 
declared only with one or more of the 
dimensions, UNALIGNED, ALIGNED, scope, and 
storage class attributes) are assumed to be 
arithmetic variables with assigned attri­
butes depending upon the initial letteJ::-. 
For identifiers beginning with any letter I 
through N, the default attributes are RID~L 
FIXED BINARY (15,0). For identifiers 
beginning with any other alphabetic charac­
ter, the default attributes are REAL FL01~T 
DECIMAL (6). If FIXED or FLOAT and/or RE1~L 
or COMPLEX are declared, then DECIMAL is 
assumed. The default precisions are those 
defined for System/360 implementations. 

BIT and CHARACTER (String Attributes) 

The BIT and CHARACTER attributes are 
used to specify string variables. The BIT 
attribute specifies a bit string. The 
CHARACTER attribute specifies a charact.~r 
str ing,. The length attribute for the 
string must also be specified. 

General format: 

BIT 
(length) [VARYING] 

CHARACTER 

General rules: 

1. The length attribute specifies the 
length of a fixed-length string or the 
maximum length of a varying-lengt.h 
string. 

2. The VARYING attribute specifies tha.t 
the variable is to represent varyinq­
length strings, in which case leng,th 
specifies the maximum length. The 
current length at any time is the 
length of the current value. For the 



F Compiler, the length of an 
uninitialized varying-length string is 
set to zero. VARYING may appear any­
where in the declaration of the 
string, and it may be factored. VARY­
ING cannot be applied to based varia­
blE~s . 

3. The length attribute must immediately 
follow the CHARACTER or BIT attribute 
at the same factoring level with or 
without intervening blanks. 

4. The length attribute may be specified 
by an expression or an asterisk. 

If the length specification is an 
expression, it is converted to an 
int~eger when storage is allocated for 
the variable. 

The asterisk notation can be used for 
the length attribute specification to 
indicate that the length is specified 
elsewhl='re. For param1eters or CON­
TROLLED variables, the length can be 
taken from a previous allocation or, 
for CONTROLLED variables, it can be 
specifie::'l in a subsequent ALLOCATE 
statement. 

Only one adjustable string length 
specification can appear in the dec­
lar'ation of a based l3truct ure. See 
"The REFER Option", in Chapter 14. 

5. If a string has the STATIC attribute, 
the length attribute must be a decimal 
integer constant. 

6. The BIT, CHARACTER, and VARYING attri­
butes cannot be specified with the 
PICTURE attribute. 

7. The PICTURE attribute can be used 

instead of CHARACTER to declare a 
fixed-length character-string variable 
(see the PICTURE attribute). 

8. All of the string attributes must be 
declared explicitly unless the PICTURE 
attribute is used. There are no 
defaults for string data. 

BUFFERED and UNBUFFERED (File DescriEtion 
Attrib~tes) 

The BUFFERED attribute specifies that 
during transmission to and from external 
storage each record of a SEQUENTIAL RECORD 
file must pass through intermediate storage 
buffers. 

The UNBUFFERED attribute specifies that 
such records need not pass through buffers. 
It does not, however, specify that they 
must not. For the F Compiler, hidden 
buffers will, in fact, be used if INDEXED 
or REGIONAL (2) or (3) is specified in the 
ENVIRONMENT attribute or if the records are 
variable-length. 

General format: 

BUFFERED I UNBUFFERED 

General rule: 

The BUFFERED and UNBUFFERED attributes 
can be specified for SEQUENTIAL RECORD 
files only. 

Assumption: 

Default is BUFFERED. 

Section I: Attributes 274.1 



!~UILTIN (Entry Attribute) 

The BUILTIN attribute specifi.es that any 
reference to the associated name! within the 
scope of the declaration is to be inter­
preted as a reference to the built-in 
function or pseudo-variable of the same 
name. 

General format: 

BUILTIN 

General rules: 

1. BUILTIN is used to refer to a built-in 
function or pseudo-variable in a block 
that is contained in another block in 
which the same identifier has been 
declared to have another meaning. 

2. If the BUILTIN attribute is declared 

3 .. 

for an entry nameD the entry name 
have no other attributes. 

The BUILTIN attribute 
declared for parameters. 

cannot 

CHARACTER (String Attribute) 

See BIT. 

OMPLEX and REAL (Arithmetic Dat.~ 
A"ttributes) 

can 

be 

The COMPLEX and REAL attribut4~s are used 
to specify the mode of an arithm-etic varia­
ble. REAL specifies that the data items 
represented by the variable are to be real 
numbers. COMPLEX specifies that the data 
i terns represented by the variabl4~ are to be 
complex numbers, that is, each data item is 
a pair: the first member is a real number 
and the second member an imaginary number. 

General format: 

REALI COMPLEX 

General rule: 

If a numeric character variable is to 
represent complex values, thE~ COMPLEX 
attribute must be specif ied wi 1:.h the PIC­
TURE attribute. The COMPLEX at1:ribute is 
the only other arithmetic or string data 
attribute that can be specified with the 
P][CTURE attribute. 

Jllssumption: 

Default is REAL. 

CONTROLLED (Storage Class Attribute) 

See AUTOMATIC. 

DECIMAL" (Arithmetic Data Attribute) 

See BINARY. 

DEFINED (Data Attribute) 

The DEFINED attribute specifies that the 
variable bein~ declared is to represent 
part or all of the same storage as that 
assigned to other data. The DEFINED attri­
bute can be declared for element, array, or 
struc"ture variables. 

General format: 

DEFINED base-identifier 
{[subscript-list] I [POSITION 

(decimal-integer-constant)]} 

The "base identifier" is an unsubscripted" 
optionally qualified variable whose storage 
is also to be represented by the variable 
being declared. The "subs~ript list" is a 
specification used to determine the portion 
of a base identifier array that the cur­
rently declared variable will represent. 
POSITION is discussed under the rules for 
overlay defining. 

Rules for defining: 

1. The INITIAL, storage class" and scope 
attributes cannot be specified for the 
defined item. The defined item wust 
be a level 1 variable and it cannot be 
a parameter. The VARYING attribute 
must not be specified for either the 
defined item or the base identifier. 
It should be noted that although the 
base can have the EXTERNAL attributeD 
the defined item always has the INTER­
NAL attr1bute and cannot be declared 
w1th any scope attribute. If the base 
is external, its name will be known in 
all blocks in which it is declared 
external, but the name of the defined 
item will not. However, the value of 
the defined item will be changed if 
the value of the base item is changed 
in any block. 

section I: Attributes 275 



2. The base identifier must always be 
known within the block in which the 
defined item is declared. The base 
identifier cannot have the DEFINED 
attribute. It can represent a minor 
structure. The current F Compiler 
does not allow the base identifier to 
be controlled or based. 

'rhere are two types of defining, corres­
pondence defining and overlay defining. If 
iSUB ~ariables are involved, or if both the 
defined item and base identifier are arrays 
with the same number of dimensions and the 
POSITION attribute is not specified, cor­
~~ondence defining is in effect. In all 
other. cases, overlay defining is in effect. 

In correspondence defining, the elements 
of the base identifier and the elements of 
the defined item must have the same attri­
butes~ The lengths need not be the same; 
however, the length of the defined item 

Imust not be greater than the length of the 
base item. The current F Compiler does not 
allow correspondence defining for arrays of 
structures. 

~~Q9ndence Defining 

When correspondence defining has been 
specified~ a reference to an element of the 
defined item is interpreted as a reference 
to the corresponding element of the base 
identifier. A reference to the defined 
array is interpreted as a reference to the 
aggregate of all of the base elements that 
correspond to some element of the defined 
array. 

If there is no subscript list following 
the base identifier, then the correspon­
dence is dire'ct. In such a case, the 
arrays must have the same number of dimen­
sions, and a reference to an element of the 
defined item would be interpreted as a 
reference to an element of the base with 
the same subscripts. 

If a subscript list follows the base 
ident;ifier in the DEFINED attribute speci­
fication, each subscript can be an expres­
sion and each expression may contain ref­
erenc:es to the dummy variables indicated by 
iSUB. 

In the dummy variable iSUB, i is a 
decimal integer constant in the range 1 to 
n, where n is the number of dimensions of 
the defined item. Thus, lSUB represents 
subscripts of the first dimension of the 
defined array" 2SUB represents the second 
dimension of the defined array, and so 
forth. The subscript list following the 
name of the base array in the DEFINED 

276 

attribute specification must contain the 
same number of subscript expressions as 
there are dimensions of the base array. 

At least one reference to iSUB must 
appear in the subscript list. An array 
defined by using iSUB variables in the 
subscript list cannot be passed as an 
argument. The base array can be passed" 
and an equivalent array can be defined on 
the corresponding parameter. 

The base element corresponding to a 
defined element is obtained by replacing 
each iSUB in the subscript list by the 
integer value of the ith subscript of the 
defined element. 

The bounds of a defined array must be 
within the bounds of the base array. 

Overlay Defining 

Overlay defining specifies that the 
defined item is to occupy part or all of 
the storage allocated to the base. In this 
way, changes to the value of either varia­
ble may be reflected in the value of the 
other. Overlay defining is permitted 
between the items shown in Figure 1-1., 

Rules for overlay defining: 

1. For bit and character class data, the 
POSITION attribute may be specified 
for the defined item. If POSITION is 
specified, the DEFINED attribute must 
also be specified. POSITION need not 
necessarily follow the appearance of 
DEFINED; it may precede it in the same 
declaration, if so desired. The gen­
eral format of the POSITION attribute 
is as follows: 

POSITION (decimal-integer-constant) 

This specifies the position, in rela­
tion to the start of the base, at 
which the defined item is to begin. 
If this attribute is omitted, POSITION 
(1) is assumed; that is, the dE~fined 
item is to begin at the first position 
of the base. 

2. For bit and character class data, the 
extent of the defined item must not be 
larger than the extent of the base. 
Extent is calculated by summing the 
lengths of the parts of the data, 
including all individual elements of 
arrays, and, in the case of the 
defined item, adding n - 1 (where n is 
the position in relation to the start 
of the base). 



r---------------------------------------------------------------------------------------, 
IDefined Item Base Identifier I 
~--------------------------.-------------------------------------------------------------~ 
IA coded arithmetic element An unsubscripted coded arithmetic element variable I 
I variable of the same base, scale, mode, and precision I 
I r 
IAn element label variable An unsubscripted element label variable 
I 
IAn element event variable An unsubscripted element event variable 
I 
IAn element task variable An unsubscripted element task variable 
I 
I An element pointer variablE~ An unsubscripted element pointer variable 
I 
IAn element offset variable An unsubscripted element offset variable 

An element area variable 

A bit class1 variable 

A character class 2 variable 

A structure 

An unsubscripted element area variable 

Bit class 1 data that is neither a cross section of ani 
array nor an array within an array of structures I 

Character class 2 data that is neither a 
of an array nor an array within 
structures 

I 
cross sectionl 

an array ofl 
I 
I 

An identical structure whose makeup is such that I 
matching pairs of items from the structures arel 
valid examples for overlay defining of coded arith-I 
metic., label, task, event, area, offset, and poin-/ 
ter element variables. The elements can also bel 
strings or numeric character data items of matchingl 
lengthB. I 

~---------------------------------------------------------------------------------------i 
11The bit class consists of: I 
I a. Fixed-length bit strings I 
I b. Packed structures consisting of items ~ or ~ I 
I c. Packed arrays consisting of items ~ or Q I 
I I 
12The character class consisits of: I 
I a. Numeric character data I 
I b. Fixed-length character strings I 
I c. Packed structures consisting of item$ ~, Q, or ~ I 
I d. Packed arrays consisting of items ~, ~, or £ I L ________________________________________________________________________________________ J 

Figure I-l. Permissible Items for Overlay Defining 

Order of Evaluation 

Evaluation proceeds as follows: 

1. Expressions specified in all attri­
butes of the defined item (other than 
the DEFINED attribute) are evaluated 
on entry to the declaring block. 

2. subscripts in the subscript list fol­
lowing the base identifiler are evalu­
ated when a reference to the defined 
item is made. 

Examples of Defining 

1. DECLARE A(20,20), B(10) 
DEFINED A(2*lSUB, 2*lSUB); 

2. 

In this example of correspondence 
defining, B is a vector consisting of 
every even element in the diagonal of 
the array A. In other words, B(l) 
corresponds to A(2,2), B(2' corres­
ponds to A(4,4}, etc. 

DECLARE 1 P, 2 Q CHARACTER (10), 
2 R CHARACTER (100), 

PSTRINGl CHARACTER (110) 
DEFINED Pi 

In this example 
PSTRINGl is a 
represents the 
two character 
are elements of 
that P has the 
default. 

of overlay defining, 
character string that 

concatenation of the 
strings Q and R, which 
the structure P. Note 

PACKED attribute by 

Section I: Attributes 211 



3. DECLARE LIST CHARACTER (40), 
ALIST CHARACTER (10) DEFINFD LIST, 
BLIST CHARACTER (20) 

DEFINED LIST POSITION (2i), 
CLIST CHARACTER (10) 

DEFINED LIST POSITION (11); 

In this example of overlay defining, 
ALIST refers to the first ten charac­
ters of LIST, BLIST refers to the 
twenty-first through fortieth charac­
·te:rs of LIST, and CLIST refers to the 
eleventh through twentieth characters 
of LIS,]'. 

4. DECLARf: 1 A., 
2 B FIXED, 
2 C FLOAT, 

1 X DEFINED A, 
2 Y fIXED, 
2 Z FLOAT; 

In this example of overlay defining, Y 
refers to Band Z refers to c. 

Note:_ Although the language rules specify 
that the attributes (except for length) of 
the ~efined item must exactly match the 
attributes of the base item, the F Compiler 
allows a programmer to make an exception to 
this rule, under certain circumstances. 

If attributes declared for the defined 
item diffE~r from those of the base iden­
tifier, the compiler notes this with a 
messag,e at the ERROR level. If, however, 
the error code of the EXECUTE job control 
statement of the following step is high 
enough, linkage editing and execution of 
the compile~ procedure can continue. For 
example: 

DECLARE A FIXED BINARY( 31) , 
B BIT (32) DEFINED A; 

Compilation of this DECLARE statement woulr'l 
cause an error message to be issued by the 
compiler. However, execution of the pro­
gram co~ld be successful, and arithmetic 
operations performed upon A would result in 
the change of value of the bit-string 
variable B. 

The dimension attribute specifies the 
number of dimensions of an array and the 
bounds of each dimension. The dimension 
attribute either specifies the bounds 
(either the upper bound or the upper and 
lower bounds) or indicates, by use of an 
asterisk, that the actual bounds for the 
array are to be taken from elsewhere. 

278 

General format: 

(bound [,bound] ••• ) 

where "bound" is: 

{[lower-bound:] upper-bound}l* 

and "upper-bound" and "lower-bound" are 
element expressions. 

General rules: 

1. The number of bounds specifications 
indicates the number of dimensions in 
the array unless the variable being 
declared is contained in an array of 
structures, in ~hich case it inherits 
dimensions from the containing strUG­
ture. 

2. The bounds specification indicates the 
bounds as follows: 

3. 

4. 

5. 

a. If only the upper bound is given, 
the lower bound is assumed to be 
1. 

b. The lower bound must be less than 
or equal to the upper bound. 

c. If asterisk notation is used, an 
asterisk must be used for each 
bounds specification of the array. 
An asterisk specifies that the 
actual bounds are to be specified 
in an ALLOCATE statement, if t.he 
variable is CONTROLLED, or in a 
declaration of an associated argu­
ment, if the variable is a simple 
parameter. Thus, the asterisk 
notation can be used only for 
parameters and CONTROLLED varia­
bles. 

Bounds that are expressions are evalu­
ated and converted to integer data -­
for System/360 implementations, 
BINARY(15) -- when storage is allocat­
ed for the array. For dummy arguments 
that are arrays, the bounds are deter­
mined at invocation of the block con­
taining the ENTRY attribute. For sim­
ple parameters l bounds can be only 
optionally signed decimal integer con­
stants or asterisks. 

The bounds of arrays 
must be optionally 
integer constants. 

declared 
signed 

ST1~TIC 

decimal 

The dimension attribute must immedi­
ately follow the array name (or the 
parenthesized list of names, if i"t is 
being factored). Intervening blanks 
are optional. 



6. If the asterisk notation is used to 
declare dimensions of an array of 
structures, all dimension declarations 
within the major structure must also 
be asterisks. 

7. Only one adjustable array bound speci­
fication can appear in the declaration 
of a based structure. Sele "The REFER 
Option" in Chapter 14~ 

DIRECT and SEQUENTIAL (File Description 
Attributes) 

The DIRECT and SEQUENTIAl. attributes 
specify the manner in which th~~ records of 
a RECORD file are to be accessed. SEQUEN­
TIAL specifies that the records are to be 
accessed according. to th.~ir logical 
sequence in the data set. DIRECT specifies 
that the records of the file are to be 
accessed by use of a key,. Bach record of a 
direct file must. therefore, have a key 
associated with it. Either of these attri­
butes impl ies the RECORD attribute ,. 

Note that SEQUENTIAL and DIRECT specify 
only the current usage of the file; they do 
not specify physical properties of the data 
set associated with the file. A SEQUENTI~L 
file may actually have keys recorded with 
the data. Most DIRECT files are created as 
SEQUENTIAL files. 

General format: 

SEQUENTIAL I DIRECT 

General rules: 

1. DIRECT files must also halve the KEYED 
attribute which is implied by DIRECT. 
SEQUENTIAL files mayor may not have 
the KEYED attribute. 

2. The DIRECT and SEQUENTI~IJ attributes 
cannot be specified wit~h the STRE~M 
attribute. 

Assumptions: 

1. Default 
files. 

is SEQUENTIAL for RECORD 

2. If a file is implicitly opened by an 
UNLOCK statement, DIRECT is assumed. 

ENTRY Attribute 

The ENTRY attribute specifies that the 
identifier being declared is an entry name. 

It also is used to describe the attributes 
of parameters of the entry point. 

General format: 

ENTRY [(parameter-attribute-list 
[,parameter-attribute-list] ••• )] 

Each "parameter attribute list" describes 
the attributes of a single parameter; the 
parameter name is not listed, but if the 
parameter is a structure,. the level number 
must precede the attributes for each level. 
If a parameter is an array, the dimension 
attribute must be the first specified for 
that parameter; otherwise, attributes may 
appear in any order. Parameter attribute 
lists must appear in the same order as the 
associated parameters. If the attribute of 
any parameter need not be described, the 
absence of the corresponding parameter 
attribute list must be indicated by a 
comma. 

General rules: 

1. The ENTRY attribute with associated 
parameter attribute lists must be 
declared for any entry name that is 
invoked within the block if the attri­
butes of any argument of the invoca­
tion differ from the attributes of the 
associated parameter. This specifies 
that the compiler is to create the 
necessary dummy arguments. 

2. The ENTRY attribute must be specified 
for any entry name that is declared 
elsewhere and not recognized as such 
within the block if any reference is 
made to that entry name (such as in an 
argument list) unless, within the 
block: 

a. The entry name appears in a CALL' 
statement or a function reference 
with an argument list, either of 
which constitutes a contextual 
declaration of the ENTRY attri­
bute, or 

b. The entry name is declared to have 
any of the attributes REDUCIBLE, 
IRREDUCIBLE., SETS, USES, BUILTIN, 
and RETURNS, all of which (except 
BUILTIN) imply ENTRY. The ENTRY 
attribute cannot be specified for 
a name that-Is given the BUILTIN 
or GENERIC attributes. 

3. The ENTRY attribute must be specified 
or implied for an entry name that is a 
parameter. 

4. Expressions used for length or bounds 
in an ENTRY attribute specification 
for non-CONTROLLED parameters are 
evaluated upon entry to the block to 

Section I: Attributes 279 



Form C28-8201-1, Page Revised by TNL N33-6011, 1/31/69 

which the declaration of the ENTRY 
attribute is internal. 

5. Factoring of attributes is not permit­
ted within parameter attribute lists 
of an ENTRY attribute specification. 

6. The ENTRY attribute must appear for 
each entry name in a GENERIC attribute 
specification. 

7. The ENTRY attribute can be declared 
for an internal entry name only within 
the block to which the name is inter­
nal. 

Assumptions: 

The ENTRY attribute can be assumed eith­
er contextually or by implication, as des­
cribE~d in rule 2. The appearance of a name 
as a label prefix of either a PROCEDURE 
statement or an ENTRY statement constitutes 
an explicit declaration of that identifier 
as an entry name. No defaults are applied 
for parameters unless attributes and/or 
level numbers are specified. If only a 
level number and/or the dimension attribute 
is specified for a parameter" FLOAT, DECI­
MAL, and REAL are assumed. 

ENVIRONMENT (File Description Attribute) 

The ENVIRONMENT attribute is an 
implementation-defined attribute that 
specifies various file characteristics that 
are not part of the PL/I language. 

General format: 

ENVIRONMENT (option-list) 

Each option in the "option list" is sepa­
rated. by one or more blanks. The option 
list is defined individually for each 
implementation of PLiI. For the F compil­
er, it is as follows: 

[record-format] [BUFFERS (n)] 
[data-set-organization] 
[volume-disposition] [carriage-control] 
[COBOL] [data-management-optimizationl 
[key-classification] 

The options may appear in any order. 

General rules: 

1. The ENVIRONMENT attribute must be 
included in a DECLARE statement. It 
cannot be specified as an option of an 
OPEN statement. 

2. The "record format" describes the for-

280 

mat of the records to be written or 
retrieved. The record format specifi­
cation is as follows: 

FCblock-size[~record-size]) 
VCmax-block-size [:,max-record-size]) 
V{SIBS} Cmax-block-size 

[.max-record-size]) 
U{max-block-size) 

F{block-size[~record-size]) specifies 
fixed-length records with the block 
size stated in bytes. If the record 
size is specified Calso in number of 
bytes) " it indicates that records are 
blocked, that is. that each physical 
record contains more than one logical 
record. In such cases, the block size 
must be a simple multiple of the 
record size. If the record size is 
not specified. then logical record 
size is the same as physical re'cord 
size. 

V(max-block-size[.max-record-size]) 
specifies variable-length records that 
can be contained within the stated 
maximum block size. One record is 
allotted to each block unless the 
maximum record size is stated, in 
which case the records are blocked, 
i. e. I' more than one record may be put 
into a block depending on the space 
available within the block. 

V{S I BS} (max-block-size L,max-re!cord 
-size]) specifies variable-lemgth 
records that may exceed the maximum 
block size.. If a record exceeds maxi.­
mum block size, the excess part is 
placed in the next block or blocks. 
When VS is specified, there is never 
more than one record or segment of a 
record in one block. When VBS is 
specified, the records are blocked so 
that a block may contain one or more 
records or segments of a record. 
stating the maximum record size in the 
VS format or in the VBS format does 
not affect blocking. 

Four bytes of control information per 
block, pI us four bytes per 10~Jical 
record or segment of logical record, 
are included automatically by the sys­
tem for variable-length records. 
These control bytes must be included 
in the count of maximum block size and 
maximum record size,. 

U(max-block-size) specifies records of 
undefined length up to the maximum 
stated. No control information is 
included, since records are not 
blocked, and logical record si.~e is 
the same as physical record size. 



Neither record size nor block size can 
exceed 32.760 bytes. 

3. The BUFFERS(n) option specifies the 
number of buffers to be allocated for 
the data set; this number (n), which 
is specified by a decimal integer 
constant, must not exceed 255. Ft')r 
BUFFERED files, one or two buffers are 
automatically allocat.ed., depending on 
the access method. unless a greater 
number is indicated in the BUFFERS{n) 
option. For UNBUFFERED files that 
require hidden buffers, one buffer is 
automatically allocated. If not spec­
ified in the ENVIRONMENT option, the 
buffer count can be specified in the 
BUFNO subparameter of the associated 
DD statement. 

4. The "data set organization" describes 
some physical characteristics of the 
data set and how records are to be 
written or retrieved. Data set organ­
ization is specified by one of the 
following: 

CONSECUTIVE 

INDEXED 

REGIONAL{l) 

REGIONAL(2) 

REGIONAL ( 3) 

CONSECUTIVE describes a data set con-' 
sisting of unkeyed records that are to 
be written or retrieved in a physical-' 
ly sequential order. This organiza­
tion is assumed if none is specified,. 
Note the difference between CONSECU­
TIVE and SEQUENTIAL. CONSECUTIVE spe­
cifies physical characteristics of the 
data set~ SEQUENTIAL has no such con­
notation. A file declared SEQUENTI~L 
can have any of the five data set 
organization options. 

INDEXED describes an indexed sequen­
tial data set that consists of keyed 
records, anyone of which can be 
located by means of several levels of 
indexes. 

REGIONAL (1) describes a data set that 
consists of records wi,thout recorded 
keys but which can be located by means 
of a source key that specifies a 
relative record position within the 
data set. 

REGIONAL (2) describes a data set that 
consists of records ,d th recorded 
keys. A source key specifies the 
relative record and the recorded key. 
A search for the record with the 

specified recorded key starts at the 
beginning of the track on which the 
relative record resides. 

REGIONAL (3) describes a data set that 
consists of records with recorded 
keys. ~ source key specifies the 
relative track and the recorded key. 
The search is made the same as with 
REGIONAL (2) except that the search 
for the record with the specified 
recorded key is to begin at the rela­
tive track indicated. 

5. The "volume-disposition" specifies the 
action to be taken when the end of a 
magnetic tape volume is reached during 
access to a data set or when a data 
set on a magnetic tape volume is 
closed normally or abnormally. Volume 
disposition is specified by one of the 
following ENVIRONMENT attribute 
options: 

LEAVE 

REWIND 

LEAVE specifies that no repositioning 
of the volume is to take place if the 
end of the volume has been reached. 
The channel can then be freed. If a 
data set is closed normally or abnor­
mally, LEAVE specifies that the tape 
is to be positioned at the end of the 
data set or at the beginning of the 
data set if a BACKWARDS file is being 
used. If the data set continues on 
another volume, the tape is positioned 
at the end of the current volume or at 
the beginning if a BACKWARDS file is 
being used. The channel remains busy 
during the positioning operation. 

REWIND allows the end-of-volume or 
data-set-closure tape action to be 
controlled by the DISP field of the 
associated DD statement. If 
DISP=(status,DELETE) is specified in 
the DD statement, the tape is rewound 
but not unloaded. If 
DISP={status,KEEPICATLGIUNCATLG) is 
specified, the tape is rewound and 
unloaded. If DISP=(status,PASS) is 
specified, the tape is wound on to the 
end of the data set, unless a BACK­
W~RDS file is being used, in which 
case the tape is repositioned at the 
beginning of the data set. When 
DISP=(status,PASS) is specified, the 
channel is kept busy when positioning; 
in the other two cases the channel is 
freed when positioning. 

section I: Attributes 281 



6. 

1. 

8. 

282 

The "carriage control" specifies that 
the first character of a record is to 
be interpreted as a carriage control 
character. The carriage control 
opt.ions are: 

CTI,ASA, which speci fies that the first 
character of a record is to be inter­
preted as an ASA standard carriage 
con·trol character, and 

CTL360, which specifies that the first 
character of a record is to be inter­
preted as an IBM System/360 machine 
code carriage control character. 

The COBOL option specifies that the 
file will contain structures napped 
according to the COBOL (F) algorithm. 
This type of file can be used only 
with READ INTO and WRITE FROM state­
ments. 

The "data management optimization" 
increases program efficiency, in cer­
tain circumstances, when DIRECT 
INDEXED data sets are to be accessed. 
'rhe data management optimization 
options are: 

INDEXAREA [ (index-area- size)] 

NOWRITE 

INDEXAREA [( index-area-s ize) ] improves 
the input/output speed of a DIRECT 
INPUT or DIRECT UPDATE file with 
INDEXED data set organization, hy hav­
ing the highest level of in1ex placed 
in main storage. The "index area 
size," when specified, must be a deci­
mal integer constant whose value lies 
within the range zero through 32,161. 
If an index area size is not speci­
fied, the highest level index is moved 
unconditionally into main storage. If 
an index area size is specified, the 
highest level index is held in main 
storage, provided that its size does 
not exceed that specified. If the 
specified size is less than zero or 
greater than 32*761, the compiler 
issues a warning message and ignores 
the parameter of the option. 

NOWRITE can be specified only for 
DIRECT UPDATE files with INDEXED data 
set organization. It informs the com­
piler that no records are to be added­
t~() the data set and that data manage­
mEmt modules concerned solely with 
adding records are not required; it 
thus allows the size of the compiled 
program to be reduced. 

The Rkey classification" option GENKEY 
(generic key), applies only to INDEXED 
data sets. It enables the programmer 

to classify keys recorded in a data 
set and to use a SEQUENTIAL KEYED 
INPUT or SEQUENTIAL KEYED UPDATE file 
to access records according to their 
key classes. 

A generic key is a character string 
that identifies a class of keys: all 
keys that begin with the string are 
members of that class. For example, 
the recorded keys 'ABCD', 'ABCE', an.d 
'ABDF' are all members of the classes 
identified by the generic keys 'A' and 
'AB', and the first two are also 
members of the class 'ABC'; and the 
three recorded keys can be considered 
to be unique members of the classe's 
'~BCD', 'ABCE'. and 'ABDF', respec­
tively. 

The GENKEY option allows the program­
mer to start sequential reading or 
updating of an INDEXED data set from 
the first non-dummy record that has a 
key in a particular class; the class 
is identified by the inclusion of i t:s 
generic key in the KEY option of a 
READ statement. Subsequent records 
can be read by READ statements without 
the KEY option. No indication is 
gi ven whe!1 the end of a key class is 
reached. 

If the data set contains no records 
with keys in the specified class, or 
if all the records with keys in the 
specified class are dummy records, the 
KEY condition is raised and the dat.a 
set is positioned to read the first 
record. 

The GENKEY option affects the execu­
tion of a READ statement that suppli,es 
a source key shorter than the key 
length specified in the KEYLEN subpar­
ameter of the DD statement tha.t 
def ines the data set. GENKEY ca us'es 
the key to be interpreted as a generic 
key, and the data set is positioned to 
the first non-dummy record in the data 
set whose key begins with the source 
key. If GENKEY is not specified, a 
short source key is padded on the 
right with blanks to the specified key 
length, and the data set is positioned 
to the record that has this padded 
key(if such a record exists). 

The use of the GENKEY option does not 
affect the result of supplying a 
source key whose length is greater 
than or equal to the specified key 
length. The source key, truncated on 
the right if necessary, identifies a 
specific record (whose key can be 
considered to be the only member of 
its class). 



Assumptions: 

CONSECUTIVE data set organization is 
assumed unless stated otherwise. Tape 
reels are rewound unless the LEAVE option 
is specified. If the BUFFERS(n) option is 
not specified, two buffers are allocated 
for BUFFERED files, and lOne is allocated 
for UNBUFFERED files that require hidden 
buffers. 

EVENT (Program Control Data Attribute) 

The EVENT attribute specifies that the 
associated identifier is used as an event 
name. Event names are used to investigate 
the current state of tasks lOr of asynchron·­
ous input/output operations. They can also 
be used as program switches. 

General format: 

EVENT 

General rules: 

1. An identifier may be explicitly 
declared with the EVENT attribute in a 
DECLARE statement.. It may be contex­
tually declared by its appearance in 
an EVENT option of a CALL statement, 
in a WAIT statement, in a DISPLAY 
statement, or in various input/output 
statements (see Chapter 8, "Input and 
Output," and Chapter 15, 
"Multitasking.") 

2. Event names may also have the follow­
ing attributes: 

Dimension 

Scope (the default is INTERNAL) 

Storage class 
AUTOMATIC) 

(the default 

DEFINED (event names may only 
defined on other event names) 

is 

be 

3. An event variable has two separate 
values: 

a~ A single bit which reflects the 
completion value of the variable. 
'l'B indicates complete, 'O'B 
indicates incomplete. 

b. A fixed-point value of default 
precision «15,0) for the F 
Compiler) which reflects the sta­
tus value of the variable. A zero 
value indicates normal, nonzero 
indicates abnormal status. 

The values of the event variable can 
be separately returned by use of the 
COMPLETION and STATUS built-in func­
tions. The COMPLETION function 
returns a bit-string value correspond­
ing to the completion value of the 
variable; STATUS returns a fixed 
binary value corresponding to the sta-
·tus value. 

Assignment of one event variable to 
another causes both the completion and 
status values to be assigned. Conver­
sion between event variables and any 
other data type is not possible. 

4. Event variables may be elements of an 
array. Arrays containing event varia­
bles may take part in assignment, 
provided that this would not require 
conversion to or from event data. 

5. The values of the event variable can 
be set by one of the following means: 

6. 

a. Use of 
variable, 
value. 

the 
to 

COMPLETION pseudo­
set the completion 

b. Use of the STATUS pseudo-variable, 
to set the status value. 

c.. Event variable assignment. 

d. By a statement with the EVENT 
option. 

e. By a WAIT statement for an event 
variable associated with an 
input/output event. 

f. By the termination of a task with 
which the event variable is 
associated. 

g. By closing a file on which an 
input/output operation with an 
event option is in progress. 

On allocation of an event variable~ 
its status and completion values are 
undefined. 

7. An event variable may be associated 
with an event, that is, a task or an 
input/output operation, by means of 
the EVENT option on a statement. The 
variable remains associated with the 
event until the event is completed. 
For a task the event is completed when 
the task is termina ted. because of a 
RETURN, END or EXIT; for an 
input/output event, the event is com­
pleted during the execution of the 
WAIT for the associated event. During 
this period the event variable is said 
to be active. It is an error to 
associate an active event variable 

section I: Attributes 283 



wi"th another event, or to modify the 
completion value of an active event 
variable by event variable assignment 
or by use of the COMPLETION pseudo­
variable. 

8. It 
is an error to assign to an active event 
variable (including an event variable in an 
array, structure, or area) by means of an 
input/output statement. 

9. On execution of a CALL statement with 
the EVENT option, the event variable, 
if inactive, is set to zero status 
value and to imcomplete. The sequence 
of these two assignments is 
uninterruptable, and is completed 
before control passes to the named 
entry point. On termination of the 
task initiated by the CALL statement, 
the event variable is set complete and 
is no longer active. If the task 
termination is not due to RETURN or 
END in t.he task, then theevent varia­
ble status is set to 1, unless it is 
already nonzero. The sequence of the 
two assignments to the event variable 
values is uninterruptable. 

10. On execution of an input/output 
statement with the EVENT option, the 
event variable~ if inactive, is set to 
zero status value and to incomplete. 
The sequence of these two assignments 
is uninterruptable and is completed 
before any transmission is initaited 
but after any action associated with 
an implicit opening is completed. An 
input/output event variable will not 
be set complete until either the ter­
mination of the task that initiated 
the event or the execution, by that 
task, of a WAIT statement naming the 
associated event variable. The WAIT 
opE~ration delays execution of this 
task until any transmission associated 
wi1:h the event is terminated. If no 
input/output conditions are to be 
raised for the operation, the event 
variable is set complete and is no 
longer active. If any input/output 
conditions are to be raised" the event 
variable is set to have a status value 
of 1 and the relevant conditions are 
raised. On normal return from the 
last on-unit entered as a result of 
these conditions" or on abnormal 
return from one of the on-units. the 
event variable is set complete and is 
no longer active. 

111. Event variables cannot be unaligned. 

284 

EXCLUSIVE (File Description Attribute) 

The EXCLUSIVE attribute specifies thcLt 
records in a DIRECT UPDATE file may be 
locked by an accessing task to prevent 
other tasks from interfering with an opera­
tion. The section entitled "The EXCLUSIVE 
Attribute" " in Chapter 15" "Multi tasking, " 
contains a table showing the effects of 
various operations on EXCLUSIVE files and 
the records contained in them. 

General format: 

EXCLUSIVE 

General rules: 

1. The EXCLUSIVE attribute can be appliE!d 
to RECORD KEYED DIRECT UPDATE files 
only. 

2. A READ statement referring to a record 
in an EXCLUSIVE file has the effect of 
locking that record, unless the RE~D 
statement has the NOLOCK option, or 
unless the record has already be€!n 
locked by another task; in the latt€!r 
case, the task executing the REA.D 
statement will wait until the record 
is unlocked before proceeding. 

3. A DELETE or REWRITE statement refer­
ring to a locked record will automat.­
ically unlock the record at the end of 
the DELETE or REWRITE operation; if 
the record has been locked by another 
task, the task executing the DELETE or 
REWRITE statement will wait until the 
record is unlocked. While a DELETE or 
REWRITE operation is taking place, the 
record is always locked. 

4. Automatic unlocking takes place at the 
end of the operation, on normal return 
from anyon-units entered because of 
the operation (that is, at the corres­
ponding WAIT statement when the EVENT 
option has been specified). 

5. A locked record can be explicitly 
unlocked by the task that locked it, 
by means of the UNLOCK statement. 

6.. Closing an EXCLUSIVE file unlocks all 
the records in the file. 

7. When a task is terminated., all records 
locked by that task are unlocked. 



Assumpt.i ons: 

1. If a file is implicitly opened by the 
UNLOCK statement., it is given the 
EXCLUSIVE attribu·te. 

2. EXCLUSIVE implies 
DIRECT, and UPDATE. 

RECORD, KEYED, 

EXTERNAL and INTERNAL (Scop~~ A.ttributes) 

The EXTERNAL and INTERNA.L attributes 
specify the scope of a name. INTERNA.L 
specifies that the name ~in be known only 
in the declaring block and its contained 
blocks. EXTERNA.L specifies that the name 
may be known in other blocks containing an 
external declaration of the same name. 

General format: 

EXTERNAL \ INTERNAL 

Assumpt.ions: 

INTERNAL is assumed for entry names of 
internal procedures and for variables with 
any storage class. EXTERNAL is assumed for 
file names and entry names of external 
procedures. Programmer-defined condition 
names are assumed to be EXTERNAL. 

FILE (File Description Attr:ibute) 

The FILE attribute specifies t.hat the 
identifier being declared is a file name. 

General format: 

FILE 

Assumptions: 

The FILE attribute can be implied by any 
of the other file descript:ion attributes. 
In addition, an identifier may be contex­
tually declared with the FILE attribute 
through its appearance in the FILE option 
of any input/output statement, or in an ON 
statement for any input/output condition. 

FIXED and FLOAT (Arithmetic Data 
Attributes) 

The FIXED and FLOAT attributes specify 
the scale of the arithmetic variable being 
declared. FIXED specifies that the varia­
ble is to represent fixed-p~int data items. 

FLOAT specifies that the variable is to 
represent floating-point data items. 

General format: 

FIXED \ FLOAT 

General rule: 

The FIXED and FLOAT attributes cannot be 
specified with the PICTURE attribute. 

Assumptions: 

Undeclared identifiers (or identifiers 
declared only with one or more of the 
dimension, PACKED., ALIGNED, scope, and 
storage class attributes) are assumed to be 
arithmetic variables with assigned attri­
butes depending upon the initial letter. 
For identifiers beginning with any letter I 
through N, the default attributes are REAL 
FIXED BINARY (15,O). For identifiers 
beginning with any other alphabetic charac­
ter, the default attributes are REAL FLOAT 
DECIMAL (6). If BINARY or DECIMAL and/or 
REAL or COMPLEX are specified, FLOAT is 
assumed. The default precisions are those 
defined for System/360 implementations. 

FLOAT (Arithmetic Data Attribute) 

See FIXED. 

GENERIC (Entry Name Attribute) 

The GENERIC attribute is used to define 
a name as a family of entry names, each of 
which is referred to by the name being 
declared. When the generic name is 
referred to, the proper entry name is 
selected, based upon the arguments speci­
fied for the generic name in the procedure 
reference. 

General format: 

GENERIC (entry-name-declaration 
[,entry-name-declarationJ ••• ) 

General rules: 

1. No other attributes can be specified 
for the name being given the GENERIC 
attribute. 

2. Each "entry name declaration" follow­
ing the GENERIC attribute corresponds 
to one member of the family. and has 
the form: 

entry-name attribute-list 

section I: Attributes 285 



3. The "attribute list" of each entry 
name declaration specifies attributes 
of the entry name. It must include 
the EWfRY attribute. It may optional­
ly have USES" SETS, REDUCIBLE" IRREDU­
CIBLE, INTERNAL, EXTERNAL, and RETURNS 
attributes. No entry name declaration 
can have the GENERIC attribute, nor 
can it have the BUILTIN attribute. 

4. Each entry name declaration must spec­
ify attributes or level numbers for 
each parameter. An ENTRY declaration 
within a GENERIC declaration is exact­
ly the same as any other ENTRY dec­
laration. Therefore, no other entry 
attribute declaration for the same 
identifier can appear in the same 
bloc'.k if the entry name appears in a 
GENERIC attribute specification. 

5. When a generic name is referred to" 
the attributes of the arguments must 
match exactly the list following the 
entry name declaration of one and only 
one member of the family. The ref­
erence is then interpreted as a ref­
erence to that member. Thus, the 
selection of a particular entry name 
is based upon the arguments of the 
reference to the generic name. Note 
that no conversion is done for argu­
ments passed to generic functions. 
Consequently, the precision of a con­
stant or any other expression must 
match the precision of a parameter. 

6. The selection of a particular entry 
name is first based on the number of 
arguments in the reference to the 
name~ The following attributes are 
then considered in choice of generic 
members: 

286 

Base 

Scale 

Mode 

Precision 

PICTURE 

LABEL (but not label list) 

Number of 
bounds) 

dimensions (but not 

CHARACTER (but not length) 

BIT (but not length) 

VARYING 

ENTRY (but not parameter descrip­
tion or other attributes of entry 
names) 

FILE (but no other FILE attributes) 

ALIGNED 

PACKED 

AREA (but not size) 

OFFSET (but not specified ar.~a 
variable) 

POINTER 

TASK 

EVENT 

7. Generic entry names (as opposed 1:'0 

references) may be specified as argu­
ments to non-generic procedures if the 
invoked entry name is explicitJLy 
declared with the ENTRY attributE~. 
This ENTRY attribute must specify that 
the appropriate parameter is an entry 
name and must specify" by means of a 
further ENTRY attribute, the attri­
butes of all its par~meters. This 
enables a choice to be made of which 
family member is to be passed. 

INITIAL (Data Attribute) 

The INITIAL attribute has two form:::;. 
The first specifies an initial constant 
yalue to be assigned to a data item whE!n 
storage is allocated to it. The second 
form specifies that" through the CAI,L 
option, a procedure is to be invoked t~o 
perform initialization at allocation. 

General format: 

1. INITIAL (item [',item] •• ,.) 

2.. INITIAL CALL entry-name 
[argument-list] 

General rule: 

The INITIAL attribute cannot be given 
for entry names, file names, defined data, 
structures, parameters" or based variables. 

Rules for form 1: 

1. In this discussion, the term 
"constant" denotes one of the follow­
ing: 

[+ 1-] ar i thmet ic-constant 



character-string-constant 

bit-string-constant 

[+I-Jreal-constant{+\-}imaginary­
constant 

2. Only one constant valu,e can be speci­
fied for an element variable; more 
than one can be specified for an array 
variable. A structure variable can be 
initialized only by separate initiali­
zation of its elementary names, wheth­
er they are element or array varia­
bles. 

3. constant values specified for an array 
are assigned to successive elements of 
the array in row-major order (final 
subscript varying most rapidly). 

4. If too many constant values are speci­
fied for an array, excess ones are 
ignored; if not enough are specified, 
the remainder of the array is not 
initialized. 

5. Each item in the list can be a con­
stant~ an asterisk denoting no ini­
tialization for a particular element, 
or an iteration specification. 

6. The iteration specification has one of 
the following general forms: 

(iteration-factor) constant 

(iteration-factor) (item[,item] ••. ) 

(iteration-factor) * 
The "iteration factor" specifies the 
number of times the constant, or item 
list, is to be repeated in the ini­
tialization of elements of an array. 
If a constant follows the iteration 
factor, then the specified number of 
elements are to be initialized with 
that value. If a list of items fol­
lows the iteration factor, then the 
list is to be repeated the specified 
number of times, with each item ini­
tializing an element of the array. If 
an asterisk follows the iteration fac­
tor, then the specified number of 
elements are to be skipped in the 
initialization operation. 

7. The iteration factor can be an element 
expression, except for STATIC data, in 
which case it must be an unsigned 
decimal integer constant. When stor­
age is allocated for the array, the 
expression is evaluated to give an 
integer that specifies the number of 
iterations. 

8. A negative or zero iteration factor 
causes no initialization. 

9. For initialization of a string array, 
if only one parenthesized element 
expression preceaes the string initial 
value, the expression is interpreted 
to be a string repetition factor for 
the string; that is, it is interpreted 
as a part of the specification of the 
value for a single element of the 
array. Consequently, for an expres­
sion to cause initialization of more 
than one element of a string array, 
both the string repetition factor and 
the iteration factor must be explicit­
ly stated, even if the string repeti­
tion factor is (1). For example, 
consider the following: 

«2) 'A') is equivalent to ('AA') 
(for a single element) 

«2) (1) 'A') is equivalent to 
(41 A', • A') (for two elements) 

10. Iterations may be nested. 

11. Label constants given as initial 
val ues for label variables must be 
known within the block in which the 
label variable declarations occur. 
STATIC label variables cannot have the 
INITIAL attribute. 

12. An alternate method of initialization 
is available for elements of arrays of 
non-STATIC statement label variables: 
an element of a label array can appear 
as a statement prefix, provided that 
all subscripts are optionally signed 
decimal integer constants. The effect 
of this appearance is the initializa­
tion of that array element to a value 
that is a constructed label constant 
for the statement prefixed with the 
subscripted reference. This statement 
must be internal to the block contain­
ing the declaration of the array. 
Only one form of initialization can be 
used for a given label array. If 
CHECK is specified for a label array 
and the elements of the label array 
are initialized by a label prefix, the 
CHECK condition is not raised at ini­
tialization. 

13. For the F Compiler, character-string 
or bit-string data having the STATIC 
attribute cannot be initialized with 
complex values. 

14 This form of the INITIAL attribute 
cannot be used in the declaration of 
locator or area variables. 

section I: Attributes 287 



Rules for form 2: 

1. The "entry name" and "argument list" 
passed must satisfy the condition 
stated for prologues as discussed in 
Part I, Chapter 6. "Blocks and Flow of 
Control." 

2. Form 2 cannot be used to initialize 
STATIC data. 

Examples: 

a., DECLARE SWITCH BIT (1) 
INITIAL ('l'B); 

b.. DECLARE MAXVALUE INITIAL (99), 
MINVALUE INITIAL (-99); 

c.. DECLARE A (100,10) INITIAL 
«920)0, (20) «3)5,9»; 

d.. DECLARE TABLE (20,20) INITIAL 
CALL INITIALIZE (X,Y); 

e~ DECLARE 1 A(8), 
2 B INITIAL (0), 
2 C INITIAL «8)0); 

f., DECLARE Z (3) LABEL; 

Z(l): IF X Y THEN GO TO EXIT; 

Z(2): A A + B + C * Di 

Z(3): A A + 10; 

GO TO Z(I); 

EXIT: RETURN; 

I Example c results in the following: each 
of the first 920 elements of A is set to 0, 
the next 80 elements consist of 20 repeti­
tions of the sequence 5,5,5,9. 

In Example d, INITIALIZE is the name of 
a procedure that sets the initial values of 
elemen,ts in TABLE. X and Yare arguments 
passed to INITIALIZE. 

I 
In Example e, Band C inherit a dimen­

sion of (8) but, whereas only the first 
element of B is initialized. all the ele­
ments of C are initialized. 

288 

In the last example, transfer is made to 
a particular element of the array Z by 
giving I a value of 1"2,, or 3. 

!~~!:!~OUTPUT, and UPDATE ('File Description 
Attributes) 

The INPUT, OUTPUT" and UPDATE attributes 
indicate the function of the file. INPUT 
specifies that data is to be transmi tt.ed 
from external storage to the program. OU~­
PUT specifies that data is to be transmit­
ted from the program to external storage. 
UPDATE specifies that the data can be 
transmitted in either direction; that is, 
the file is both an input and an output 
file. 

General format: 

INPUT I OUTPUT I UPDATE 

General rules: 

1. A file with the INPUT attribute cannot 
have the PRINT attribute. 

2. A file with the OUTPUT attribute can­
not have the BACKWARDS attribute. 

3. A file with the UPDATE attribute ca.n­
not have the STREAM, BACKWARDS, or 
PRINT attributes. A declaration of 
UPDATE for a SEQUENTIAL file indicat.es 
the update-in-place mode. To aCCE!SS 
such a file, the sequence of state­
ments must be READ, then REWRITE. 

Assumptions: 

Default is 
implies OUTPUT. 
implies UPDATE. 

INPUT. The PRINT attribute 
The EXCLUSIVE attribute 

The following assumptions are made wben 
a file is implicitly opened by an 
input/output statement: 

WRITE. PUT OUTPUT 

READ, GET INPUT 

DELETE, REWRITE, UNLOCK UPDATE 

INTERNAL <scope Attribute) 

See EXTERNAL. 



IRREDUCIBLE and REDUCIBLE 

These attributes cause no, action in the 
current version of the F' Compiler other 
than to imply the ENTRY attribute. 

KEYED (File Description Attribute) 

The KEYED attribute specifies that the 
options KEY, KEYTO, and KEYFROM may be used 
to access records in the file. These 
options indicate that keys are involved in 
accessing the records in the file. 

General format: 

KEYED 

General rules: 

1. A KEYED file cannot have the attri­
butes STREAM or PRINT. 

2. The KEYED attribute can be specified 
for RECORD files only, and must be 
associated with direct access devices. 

3. The KEYED attribute must be specified 
for every file with which any of the 
opt.ions KEY., KEYTO, and KEYFROM is 
used. It need not be specified if 
none of the options are to be used" 
even though the corresponding data set 
may actually contain recorded keys. 

Assumption: 

The DIRECT and EXCLUSIVE 
imply KEYED. 

attributes 

LABEL (Program Control Data Attribute) 

The LABEL attribute specifies that the 
identifier being declared is a label varia­
ble and is to have statement labels as 
values. To aid in optimization of the 
object program. the attribute specification 
may also include the values that the name 
can have during execution of the program. 

General format: 

LABEL [(statement-label-constant 
[', statement-label-constant] .... )] 

General rules: 

1. If a list of statement label constants 
is given, the variable can have as 
values only members of the list. The 
label constants in the list must be 
known in the block containing the 
declaration. 

2. If the variable is a parameter" its 
value can be any statement label vari­
able or constant passed as an argu­
ment. If the argument is a label 
variable~ the value of the label par­
ameter can be any value permitted for 
the label variable that is passed. 

3. An entry name cannot be a value of a 
label variable. 

4. The parenthesized list of statement 
label constants can be used in a LABEL 
attribute specification· £or a label 
array. A subscripted label specifying 
an element of a label array can appear 
as a statement label prefix, if the 
label variable is not STATIC, but it 
cannot appear in' an END statement 
after the keyword END. For further 
information., see general rule 12 in 
the discussion of the INITIAL attri­
bute. 

5. The INITIAL attribute cannot be speci­
fied for STATIC label variables. 

6. Labels cannot be unaligned. 

Length (String Attribute) 

See BIT. 

LIKE (Structure Attribute) 

The LIKE attribute specifies that the 
name being declared is a structure variable 
with the same structuring as that for the 
name following the attribute keyword LIKE. 
Substructure names" elementary names, and 
a·ttributes for substructure names and elem­
entary names are to be identical. 

General format: 

LIKE structure-variable 

section I: Attributes 289 



General rules: 

1. The "structure variable" can be a 
major structure name or a minor struc­
ture name. It can be a qualified 
name" but it cannot be subscr ipted. 

2. The "structure variable" must be known 
in the block containing the LIKE 
attribute specification. The struc­
tur~ names in all LIKE attributes are 
assQciated with declared structures 
before any LIKE attributes are expand­
eds For example: 

DECLARE 1 A, 2 C, 3 E" 3 F, 
1 D~ 2 C, 3 G, 3 H; 

BEGIN; 
DECLARE 1 A LIKE D, 1 B LIKE A.C; 

END; 

These declarations result in the fol-
lowing: 

1 A LIKE D is expanded to give: 

1 A, 2 C, 3 G, 3 H 

1 B LIKE A.C is expanded to give: 

1 B, 3 E." 3 F 

3. Neither the "structure variable" nor 
any of its substructures can be 
declared with the LIKE attribute, nor 
may the "structure variable" have been 
completed by the LIKE attribute. 

4. Neither additional substructures nor 
elementary names can be added to the 
created structure; any level number 
that immediately follows the 
"structure variable" in the LIKE 
attribute specification in a DECLARE 
statement must be algebraically equal 
to or less than the level number of 
the name declared with the LIKE attri­
bute. 

5. A1:tributes of the "structure variable" 
itself do not carryover to the creat­
ed structure.. For example" storage 
class attributes do not carryover. 
If the "structure variable" following 
the keyword LIKE repres ents an array 
of structures." its dimension attribute 
is not carried over. Attributes of 
substructure names and elementary 
names, however, are carried over; con­
tained dimension and length attributes 
are recomputed. An exception is that 
this does not apply to the INITIAL 

290 

attribute for any elements of a lab4al 
array that has been initialized by 
prefixing to a statement. 

6. If a direct application of the des­
cription to the structure declar1ed 
LIKE would cause an incorrect continu­
ity of level numbers (for example, if 
a minor structure at level 3 were 
declared LIKE a major structure at 
level 1) the level numbers are modi­
fied by a constant before application. 

7.. The LIKE attribute is expanded before 
the ALIGNED and UNALIGNED attribubes 
are applied to the contained elemen'ts 
of a structure. 

NORMAL 

See ABNORMAL. 

OFFSET and POINTER (Program Control Data 
Attributes) 

The OFFSET and POINTER attributes des­
cribe locator variables. A pointer varia­
ble can be used in a based variable ref­
erence to identify a particular allocation 
of the based variable. Offset variables 
identify a location relative to the start 
of an area; pointer variables identify any 
location, including those within areas. 

General format: 

POINTER I OFFSET (area-variable) 

General rules: 

1. A pointer variable can be explicitly 
declared in a DECLARE statement, or it 
can be contextually declared by its 
appearance as a pointer qualifier, by 
its appearance in a BASED attribute, 
or by its appearance in a SET option. 

2. An offset variable must be explicitly 
declared. 

3. The value of a pointer variable can be 
set in any of the following ways: 

a. With the SET option of a READ 
statement; 

b. By a LOCATE statement; 

c. By an ALLOCATE statement; 

d. By assignment of the value of 
another locator variable" or a 



locator value returned by a user-' 
defined function; 

e. By ass~gnment of an ADDR or NULL 
built-in function value. 

4. The value of an offset variable can be 
set only by assignment of the value of 
another locator variable or the valuE! 
of the NULLO built-in function. 

5. Locator variables cannot be operands 
of any operators other than the 
comparison operators = and ,=. 

6. Locator data cannot be converted to 
any other data type, but pointer can 
be converted to offset, ana viCE! 
versa. 

7. 

8. 

9. 

A locator value can be assigned only 
to a locator variable. When an offset. 
value is assigned to an offset varia-· 
ble, the area variables named in the 
OFE."SET attributes are i.gnored. 

Locator data cannot be transmitted 
using STREAM input/output .• 

Only the INITIAL CAI.L form 
INITIAL attribute is allowed in 
tor declarations. 

of the 
loca-

10. Offset variables cannot be used to 
qualify a based reference. 

11. For the F Compiler, thE! area variable 
named in an OFFSET at~tr ibute must bE~ 
of based storage class. 

Pointer variables and offset 
cannot be unaligned. 

Assumption: 

variables 

The variable named in the OFFSET attri­
bute is contextually declared to have the 
AREA attribute, but its storage class will 
be automatic; hence, it will not conform to 
general rule 11, above. For the F compil-' 
er, therefore, an offset declaration with­
out an accompanying explicit. area declara­
tion will result in an error. (See also 
"AREA (Program Control Data Attribute)," in 
this section.) 

OUTPUT (File Description Att.ribute) 

See INPUT. 

PICTURE (Data Attribute) 

The PICTURE attribute is used to define 
the internal and external formats of 
character-string and numeric character data 
and to specify the editing of data. Numer­
ic character data is data having an arith­
metic value but stored internally in char­
acter form. Numeric character data must be 
converted to coded arithmetic before arith­
metic operations can be performed. 

The picture characters are described in 
section D, "Picture Specification Charac­
ters." 

General format: 

PICTURE 

~character-picture-specification' 

'numeric-picture-specification' 

A "picture specification_" either· character 
or numeric, is composed of a string of 
picture characters enclosed in single quo­
tation marks. An individual picture char­
acter may be preceded by a repetition 
factor, which is a decimal integer con­
stant" n" enclosed in parentheses, to indi­
cate repetition of the character n times. 
If n is zero, the character is Ignored. 
Picture characters are considered to be 
grouped into fields., some of which contain 
subfiel.9~. 

General rules: 

1. The "character picture specification" 
is used to describe a character-string 
data item. Three characters may be 
used: A, indicating that the associat­
ed position in the data item may 
contain any alphabetic character or a 
blank; X~ indicating that the asso­
ciated post ion may contain any charac~ 
ter; and 9., indicating that the asso­
ciated position may contain any deci­
mal digit or a blank. A character 
picture specification must include at 
least one A or X. Each character 
picture specification is a single 
field with no contained subfields. 

Example: 

DECLARE ORDER# PICTURE 
'AA(3)9X99X(4)9 f

; 

This declaration specifies that values 
of o.RDER# are to be character strings 
of length 13. The string consists of 
two letters .. three digits, any charac­
ter, two digits, any character, and 
four digits. For example, the charac-

Section I: Attributes 290.1 



ter string :'G 42-63-0024· would fit 
this description. 

Editing and suppression characters are 
not allowed in character picture 
specifications. Each picture specifi­
cation character must represent an 
actual character in the data item. 

2. The "numeric picture specification" is 
used to describe a character item that 
represents either an arithmetic value 
or a character-string value, depending 
upon its use. A numeric .picture 
speciification can consist of one or 
more fields, some of which can be 
divided into subfields. A single 
field is used to describe a fixed­
point number or the mantissa of a 
floating-point number. Either may be 
divided into two subfields" one 
describing the integer port ion" the 
other describing the fractional por­
tion. For floating-point numbers, a 
second field is required to describe 
the exponent; it cannot be divided 
into subfields. A second field may 
optionally be used with fixed-point 
numbers to indicate a scaling factor. 
Four basic picture characters can be 
used in a numeric picture specifi­
cation: 

9 indicating any decimal digit 

290.2 

v indicating the assumed location ,of 
a decimal point. It does not spec­
ify an actual character in the 
character-string value of the da'ta 
item. The V also indicates the e:nd 
of a subfield of a picture specifi­
cation. 

K indicating" for floating-point da'ta 
items, that the exponent should be 
assumed to begin at the positil::>n 
associated with the picture charac­
ter following the K. It does n,ot 
specify an actual character in the 
character-string value of the da"ta 
item, either an E or a sign. The K 
delimits the two fields of the 
specification. 

E indicating" for floating-point da'ta 
items, that the associated position 
will contain the letter E to indi­
cate the beginning of the exponen't. 
TheE also delimits the two field:5. 

In addition to these charactersw zero 
suppression characters, editing cha:c­
acters" and sign characters may be 
included in a numeric picture specifi­
cation to indicate editing. Editing 
characters a're not a part of the 
ari thmetic value of a numeric charac­
ter data item" but they are a part of 



its character-string value. Repeti­
tion factors are allowed in numeric 
picture specifications. 

3. A numeric character data item can have 
only a decimal base. Its scale and 
precision are specified by the picture 
characters. The PICTURE attribute 
cannot be specified in combination 
with base. scale, or precision attri­
butes. If the mode of the numeric 
character data is COMPLEX, however II 
the COMPLEX attribute must be expli­
citly stated. 

4. The following paragraphs indicate the 
combinations of picture characters for 
different arithmetic data :formats. 

a. Real decimal fixed-point items are 
described in the follmdng general 
form: 

PICTURE • [9] ••• [V] [9] ••• 
[F([+I-] integer)]' 

The optional field of the picture 
specification. beginning with the 
letter F together with a parenthe­
sized. optionally signed decimal 
integer constant. is a scaling 
factor that indicates the location 
of an assumed decimal point if 
that location is outside the 
actual data item. ~rhe scaling 
factor has an effect. similar to 
the exponent of a floating-point 
number; it indicates that the 
assumed decimal point is "integer" 
places to the right (or left, if 
negative) of the position other­
wise indicated. 

s~gn, editing, and zero suppres­
S10n picture characters can be 
included in a fixed-point specifi­
cation. The V cannot appear more 
than once in a spE~cification, 
although it may be used in combi­
nation with the decimal point (.) 
or comma (,) editing characters, 
which cause insertion of a period 
or comma. If no V is included, 
the decimal point is assumed to be 
to the right of the rightmost 
digit. Only one sign indication 
can be included in the first field 
(the actual sign of thE~ integer in 
a scaling factor is allowed 
additionally). The specification 
must include at least one digit 
position. 

Example: 

DECLARE A PICTURE '999V99'; 

This specification describes 
numeric character items of five 
digits, two of which are assumed 
to be fractional digits. 

b. Real decimal floating-point items 
are described by the following 
general form: 

PICTURE 
'[9] ••• [V] [9] ••• {EIKl9[9JV 

Both the mantissa field and the 
exponent field must each contain 
at least one digit position. The 
exponent field can contain no more 
than two digits, since system/360 
implementations allow only two 
digits in the exponent field of a 
decimal floating-point number. If 
arithmetic data items are to be 
assigned to the described varia­
ble, the exponent field must con­
tain both of the allowed digit 
specification characters, or the 
second digit of the exponent field 
will be lost and the SIZE condi­
tion will be raised. 

Sign, editing, and zero suppres­
sion picture characters can be 
included in a floating-point 
specification. One sign indica­
tion is allowed for each field. 
Only one V is allowed, and it can 
appear in the first field only. 
As with fixed-point specifi­
cations, the V may appear in com­
bination with the decimal pOint 
editing character (as .V or V.). 

c. Complex numeric character data is 
described using the general form: 

PICTURE 'real-picture' COMPLEX 

The "real picture" is a specifi­
cation for either a decimal fixed­
point or a decimal floating-point 
data item. The single picture 
specification describes both parts 
of a complex number. 

5. The precision of a numeric character 
variable is dependent upon the number 
of digit positions, actual and 
conditional. Digit positions can be 
specified by the following characters: 

Section I: Attributes 291 



9 which is an actual digit character 

z 

* which are conditional digit charac­
ters specifying zero suppression 

y 

: I which are digit characters speci­
fying an overpunch 

R 

~ I which are conditional digit drift­
+ ing characters 

Each but the first conditional digit 
drifting character in a drifting 
string specifies a digit position. A 
conditional digit drifting character 
used alone does not specify a digit 
position. 

Precision of a fixed-point variable is 
(p,q>, where E is the number of digit 
positions in the picture specification 
and g is the number of digit positions 
following V. Precision of a floating­
point variable is (p>, where E is the 
number of digit positions preceding 
the E or K. Indicated static editing 
characters or insertion characters do 
not participate in the specification 
of precision~ but they must be counted 
in the number of characters if the 
data item is written as output or 
assigned internally to a character 
string. 

6. A variable representing sterling data 
items can be specified by using a 
numeric picture specification that 
Consists of three fields, one each for 
pounds, shillings, and pence. The 
pence field may be divided into two 
subfields. Data so described is 
stored in character format as three 
contiguous numbers corresponding to 
each of the three fields. If any 
arithmetic operations are specified 
for the variable, its value is con­
verted to coded fixed-point decimal 
representing the value in pence. 
Sterling picture specifications have 
the following form: 

292 

PICTURE 

'G [editing-character-il ••• 

M pounds-field 

M [separator-il ••• 
shillings-field 

M [separator-2l ••• 
pence-field 

[editing-character-2l ••• • 

Picture specification characters, 
editing characters, and separators can 
be used in any of these fields and are 
discussed in Section D, "Picture 
Specification Characters." 

The precision (p,q> of a sterling 
numeric character data item is defined 
as follows: 

q = number of fractional digits in 
the pence field 

p 3+q+(number of digit positions. 
actual and conditional, in the 
pounds field> 

POINTER (Program Control Data Attribute> 

See OFFSET. 

POSITION (Data Attribute) 

See DEFINED. 

Precision (Arithmetic Data Attribute) 

The precision attribute is used to spec­
ify the minimum number of significant 
digits to be maintained for the values of 
the data items. and to specify the scale 
factor (the assumed position of the binary 
or decimal point). The precision attribute 
applies to both binary and decimal data. 

General format: 

(number-of-digits [,scale-factorl) 

The "number of digits" is an un~;igned 
decimal integer constant and "scale factor" 
is an optionally signed decimal integer 
constant. The precision attribute specifi­
cation is often represented, for brevity, 



as (p,q), where.Q represents the "number of 
digits" and g represents the "scale 
factor"n 

General rules: 

1,. The precision attribute must immedi­
ately follow, wi th or wi·thout inter­
vening blanks, the scale (FIXED or 
FLOAT) , base (DECIMAL or BINARY)., or 
mode (REAL or COMPLEX) a·ttribute at 
the same factoring level. 

2~ The number of digits specifies the 
number of digits to be main.tained for 
data items assigned to the variable. 
The scale factor specifies the number 
of fractional digits. No point is 
actually present: its location is 
assumed. 

3. The scale factor can be specified for 
fixed-point variables only; the number 
of digits is specified for both fixed­
point and floating-point variables. 

4.. When the scale is FIXED and no scale 
factor is specified, it is assumed to 
be zero; that is, the variable is to 
represent integers. 

5. The scale factor can be negative, and 
it can be larger than the number of 
digits. A negative scale factor (-q) 
always specifies integers, with the 
point assumed to be located g places 
to the right of the rightmost actual 
digit. A positive scale factor (q) 
that is larger than the number of 
digits always specifies a fraction, 
with the point assumed to be located g 
places to the left of the rightmost 
actual digit. In either case" 
intervening zeros are assumed, but 
they are not stored; only the speci­
fied number of digits are actually 
stored. 

6. The precls10n attribute cannot be 
specified in combination with the PIC­
TURE attribute. 

7.. The maximum number of digits allowed 
for System/360 implementations is 15 
for decimal fixed-point data, 31 for 
binary fixed-point data, 16 for deci­
mal floating-point data, and 53 for 
binary floating-point data. 

Assumptions: 

The defaults for System/360 implementa­
tions are as follows: 

(5,0) for DECIMAL FIXED 
(15,O) for BINARY FIXED 
(6) for DECIMAL FLOAT 
(21) for BINARY FLOAT 

?RINT (File Description Attribute) 

The PRINT attribute specifies that the 
data of the file is ultimately to be 

I 
printed. The PAGE and LINE options of the 
PUT statement and the PAGESIZE option of 
the OPEN statement can be used only with 
files having the PRINT attribute. These 
options are described in section J, 
ftlStatements." 

General format: 

PRINT 

General rules: 

1. The PRINT attribute implies the OUTPUT 
and STREAM attributes. 

2. The PRINT attribute conflicts with the 
RECORD attribute. (Howevern through 
the use of the DD statement# RECORD 
files can be associated with the prin­
ter. ) 

3. The PRINT attribute causes the initial 
data byte within each record to be 
reserved for ASA printer control char­
acters. These control characters are 
set by the PAGE, SKIP, or LINE format 
items or options. 

Assumption: 

If no FILE or STRING specification 
appears in a PUT statement, the standard 
output file SYSPRINT is assumed. 

REAL (Arithmetic Data Attribute) 

See COMPLEX. 

RECORD and STREAM (File Description 
Attributes) 

The RECORD and STREAM attributes specify 
the kind of data transmission to be used 
for the file. STREAM indicates that the 
data of the file is considered to be a 
continuous stream of data items, in charac­
ter form, to be assigned from the stream to 
variables, or from expressions into the 

section I: Attributes 293 



stream. RECORD indicates that the file 
consists of a collection of physically 
separate records, each of which consists of 
one or more data items in any form. Each 
record is transmitted as an entity to or 
from a variable. 

General format: 

RECORD I STREAM 

General rules: 

i. A file with the STREAM attribute can 
be specified only in the OPEN, CLOSE, 
GET, and PUT statements. 

2. A file with the RECORD attribute can 
be specified only in the OPEN, CLOSE n 
READ, WRITE, REWRITE, UNLOCK, and 
DELETE statements. 

3. A file with the STREAM attribute can­
not have any of the following attri­
butes: UPDATE, DIRECT, SEQUENTIAL, 
BACKWARDS, BUFFERED, UNBUFFERED, 
EXCLUSIVE n and KEYED, any of which 
implies RECORD. 

4~ A file with the RECORD attribute can­
not have the PRINT attribute. 

Assumptions: 

Default is STREAM. 
citly opened by a 

I UNLOCK, or DELETE 
assumed. 

Bee IRREDUCIBLE. 

If a file is impli­
READ, WRITE, REWRITE" 

statement, RECORD is 

RET~RNS (Entry Name Attribute) 

The RETURNS attribute may be specified 
in a DECLARE statement for an entry name 
that is used in a function reference within 
the scope of the declaration. It is used 
to describe the attributes of the function 
value returned when that entry name is 
invoked as a function. 

General format: 

294 

RETURNS (attribute ••• ) 

It is used in the following manner: 

DECLARE entry-name 
[ENTRY-attribute-specification] 
RETURNS (attribute ••• ); 

General rules: 

1. The "ENTRY attribute specification" 
consists of the keyword ENTRY with or 
without associated parameter attribute 
lists. If parameter attribute lists 
are not required, the keyword EN'I'RY is 
optional, since the RETURNS attribute 
implies the ENTRY attribute. 

2. The attributes in the parenthesized 
list following the keyword RETURNS are 
separated by blanks. They must agree 
with the attributes specified in the 
PROCEDURE or ENTRY statement to which 
the entry name is prefixed. If the 
attributes of the actual value 
returned do not agree with those 
declared with the RETURNS attribute, 
no conversion will be performed. 

4. 

Only arithmetic, 
AREA, and PICTURE 
specified. 

string, locator" 
attributes can be 

Length attribute specifications are 
evaluated on entry to the block con­
taining the RETURNS attribute specifi­
cation. 

5. Unless default attributes for the 
entry name apply, any invocation. of a 
function must appear within the scope 
of a RETURNS attribute declaration for 
the entry name. For an internal func­
tion, the RETURNS attribute can be 
specified only in a DECLARE statement 
that is internal to the same block as 
the function procedure. 

Assumptions: 

If the RETURNS attribute is not speci­
fied within the scope of a function. ref­
erence, the defaul ts assumed for- the 
returned value are FIXED BINARY (15,0) if 
the entry name begins with any of the 
letters I through N; otherwise, the 
defaults are FLOAT DECIMAL (6). De-fault 
precisions are those defined for System/360 
implementations. 

SEQUENTIAL (File Description Attribute·) 

See DIRECT. 

SETS and USES 

These attributes cause no action in the 
current version of the F Compiler other 
than to imply the ENTRY attribute. 



Form C28-8201-1, Page Revised by TNT. N33-6008, 5/1/68 

STATIC (Storage Class A·ttribute) 

See AUTOMATIC. 

STREAM (File Description Attribute) 

See RECORD. 

TASK (Program Control Data A1:tribute) 

The TASK attribute describes a variable 
that may be used as a task name, to test or 
control the relative priority of a task. 

General format: 

TASK 

General rules: 

1. An identifier can be explicitly 
declared with the TASK attribute in a 
DECLARE statement, or it can be con­
textually declared by i.ts appearance 
in a TASK option of a CALL statement. 

2. Task variables can also have the fol­
lowing attributes: 

a. Di.mension 

b. Scope (the defa ul t is INTE~.NAL) 

c. Storage class 
AUTOMATIC) 

(the default is 

d. DEFINED (task variables may only 
be defined on other task names) 

3. A task variable can be used in the 
following contexts only: 

a. In the TASK option of a CALL 
statement 

b. As an argument of the PRIORITY 
pseudo-variable or built-in func­
tion 

c. As an argument in a CALL statement 
or function reference 

d. As a parameter in a PROCEDURE or 
ENTRY statement or in the paramet-' 
er attribute list of an ENTRY 
attribute 

e. In an ALLOCATE or FREE statement 

4. A task variable may be associated with 
the priority of a task by including 
the task name in the TASK option of a 
CALL statement. A task variable is 
said to be active if its associated 
task is active. A task variable must 
be in an allocated state when it is 
associated with a task and must not be 
freed while it is active. An active 
task variable cannot be associated 
with another task. 

5. A task variable contains a single 
value, a priority value. This value 
is a fixed-point binary value of pre­
cision (n,O), where n is 
implementation-defined (15, for-the F 
compiler). This value can be tested 
and adjusted by means of the PRIORITY 
built-in function and pseudo-variable. 
The built-in function returns the 
priority of the task argument relative 
to the priority of the task executing 
the function. Similarly, the pseudo­
variable permits assignment, to the 
named task variable, cf a priority 
relative to the priority of the task 
executing the assignment. 

6. Structures, arrays, or areas 
containing task variatlps cannot take 
part in assignment or input/output 
operations. 

7. Task data cannot be converted to any 
other data type. 

8. A task variable cannot be passed as an 
argument if this would require creq­
tion of a dummy argument. 

UNALIGNED (Data Attribute) 

See ALIGNED. 

UNBUFFERED (File Description Attribute) 

See BUFFERED. 

UPDATE (File Description Attribute) 

See INPUT. 

See SETS. 

VARYING (String Attribute) 

See BIT. 

Section I: Attributes 295 



This section p~esents the PL/I state­
rrents in alphabetical or~er. (The prepro­
cessor statements are alphabetically 
arranged at the end of this section.) ~ost 
statemFnts are accompanip~ by the following 
informat.icn: 

~ . 

2. 

function a short ~escription of the 
mearii!19 and 'Jse of the statement 

Gent3'ral format 
statement 

the syntax of the 

J. Syntax rules ~- rules of syntax that 
aTe not reflecte1 in the general for­
mat 

4. General rules -- rules governing the 
use of the statement and its meaning 
in a PL/I 9rogram 

Tbe ALJOCATE statement 

I?unction: 

The ALLOCATE statement causes storage to 
be allocated for specified controlled or 
based data. 

General format: 

Option 1: 

ALLOCATE [level] identifier 
[dimension] [attribute] ••• 
[,[level] identifier [dimension] 
[attribute] ••• ] ••• : 

Option 2: 

ALLOCATE based-variable-identifier 
tSET (pointer-variable)] 
[IN (area-variable)] 
[, based-variable- identifier 
[SET (pointer-variable)] 
[IN {area-variable)]] ••. : 

Syntax ruIE!s: 

1. Based variables and controlled varia­
bles may both be s peci fi ej as iden­
tifiers in the same ALLOCATE state­
ment. 

SyntaiX rules 2 through 7 apply only to 
Option 1: 

2. "Level" indicates a level number. The 
first identifier appearing after the 

296 

keyword ALLOCATE must to. a level 1 
i~entifier. 

3. Each identifier must reFresent data of 
the controlled storage class or be an 
element of a controlleJ major struc­
tUre. 

4. "Dimension" indicates a dimension 
attribute. "Attribute" indicates a 
BIT, CHA~ACTER, or I~I1I~~ attribute. 

5. A dimension attribute, if pres~nt, 
must specify the same !lumber of dimen­
sions as that declared fer the asso­
ciated identifier. 

6. The attribute 3IT Ray a~~ear only with 
a BIT i1entifier; CHARACTER may appear 
only with a CHAR~CTER identifier. 

7. A structure element narne, other than 
the major structure ~3ne, may appear 
only if the relative structuring of 
the entire structure a[fears as in the 
CECLA"RE statement for t!:at structure. 

syntax rules 8 a~d 

Option 2: 

8. The based variable 
ALLOCATE statement 

9 drply o~ly to 

aPfearing in the 
rray be an element 

variable, an a~ray, or a major struc­
ture. When it is a rrajcr structure, 
only the major structure name is sfec­
if ied. 

9. The SET clause, if prese~t, may appear 
precejing or following tile IN clam::e. 

General rules: 

Rules 1 through 6 apply only to Option 1: 

1. When Option 1 is u:.3ed, an ALLOC]\TE 
statement for an identifier for which 
storage was allccated and not frE'ed 
causes storage for the identifier to 
be "pushed down" or stacked. This 
pushing clown crea tes a r,2W genera.t.ion 
of data for the identifier. when 
storage for this identifier is freed, 
using the FREE staterr.ent, storage is 
"popped up" or removed from the stack. 

2 •. Bounds for arrays an1 lengths of 
strings are fixed at the execution of 
an ALLOCA.TE statement. 

a. If a bound or length is expl ici1:ly 
specified in an ALLOCATE state­
ment, that bound or length OVE~r-



rides any bound or len9th given in 
the DECLARE statement. 

b. If a bound or length is specified 
by an asterisk in an ALLOCATE 
statement, that bound or length is 
taken from the most recent alloca­
tion. If the variable has not 
been previously allocated, the 
bound or length is undefined. 

c. Either the ALLOCATE st:atement or 
the DECLARE statement must specify 
any necessary dimension size, or 
length attributes for an identifi­
er. Any expression taken from the 
DECLARE statement is evaluated at 
the point of allocation using the 
condi tion enabling of t~he ALLOCATE 
statement, although thE! names are 
interpreted in the environment of 
the DECLARE statement. 

d. If, in either an ALLOCATE or a 
DECLARE statement. bounds, 
lengths, or area S1zes are spec1-
fied by expressions that contain 
references to the variable being 
allocated,. the expression are 
evaluated using the value of the 
most recent generation of the 
variable. 

3. Upon allocation of an identifier, ini­
tial values are assigned to it if the 
identifier has an INITIAL attribute in 
either the ALLOCATE statement or 
DECLARE statement. Expressions or a 
CALL option in the INITIA,L attribute 
are executed at the point of alloca­
tion, using the condition enabling of 
the ALLOCATE statement, although the 
names are interpreted in the environ­
ment of the declaration. If an INI­
TIAL attribute appears in both DECLARE 
and ALLOCATE statements. the INITIAL 
attribute in the ALLOCATE statement is 
used. If initialization involves ref­
erence to the variable being allocat-' 
ed, the reference will be to the new 
generation of the variable. 

4. To determine whether or not storage 
has been allocated for an identifier 
the built-in function ALLOCATION may 
be used. 

5. A parameter that is declared CON­
TROLLED may be specified in an ALLO­
CATE statement. 

6. Any evaluations performed at the time 
the ALLOCATE statement is executed 
(e.g. n evaluation of expressions in an 
INITIAL attribute) must not be inter­
dependent; they cannot depend on each 
other at the same time. 

Rules 7 through 15 apply only to 
Option 2: 

7. 

8. 

9. 

When Option 2 is used, storage 
"pushed down" or stacked. 
case, reference may be made 
generation of a based variable 
a pointer variable. 

is not 
In this 
to any 
through 

The SET clause indicates the pointer 
variable that is to receive' the value 
identifying the allocation. The SET 
clause need not name the pointer vari­
able declared with the based variable. 
If the SET clause is omitted, the 
pointer that was declared with the 
based variable is set. 

If the IN clause appears in the ALLO­
CATE statement n storage will be allo­
cated in the named area, for the based 
variable. If sufficient storage does 
not exist within this area, the AREA 
condition will be raised. 

10. The amount ~f storage allocated for a 
based variable depends on its attri­
butes, and on its dimensions and 
length specifications if these are 
applicable at the time of allocation. 
These attributes are determined from 
the declaration of the based variable. 
and additional attributes may not be 
specified in the ALLOCATE statement. 
A based structure may contain one 
adjustable array bound or string 
length, whose value is taken, on allo­
cation, from the current value of a 
variable outside the structure (see 
"The REFER Option"n in Chapter 14/7 
"Based Storage and List Processing.") 
Note that the asterisk notation for 
bounds and length is not permitted for 
based variables. 

11. If the area variable is an array, the 
subscripts must be specified with the 
area variable. 

12. A based variable transferred as an 
argument to a procedure cannot appear 
in an ALLOCATE statement in the called 
procedure. 

Examples: 

1. The following examples illustrate the 
use of the ALLOCATE statement for a 
controlled identifier: 

DECLARE A(N1 B N2) CONTROLLED 

Nl, N2 = 10; 
ALLOCATE A; 

ALLOCATE A 
(Kl,K2) ; 

The bounds are 10 and 
10 

The bounds are Kl and 
K2 which override Nl 
and N2. 

Section J: Statements 297 



Nl = Nl + 1: 
ALLOCATE A: The bounds are 11 and 

10. 
ALLOCATE A The bounds are 11 and 

(*,*) : 10. 
ALLOCATE A The bounds are Jl and 

(Jl, J2); J2. 

2~ The following example illustrates the 
use of the ALLOCATE statement when the 
DECLARE statement contains asterisks 
for the length of a controlled bit 
string B: 

DECLARE B BIT (*) VARYING CONTROLLED ; 

ALLOCATE B 
BIT (*): 

Invalid; violates rule 
2b. 

ALLOCATE Bi Invalid; violates rule 
2b. 

ALLOCATE B 
BIT (N): 

The maximum length is 
N. 

ALLOCATE B CHAR­
ACTER (4); 

ALLOCATE B 

Invalid: violates syn­
tax rule 5. 

The maximum length is 
8. BIT (8); 

3. The following example illustrates the 
use of the built-in function ALLOCA­
TION and of the INITIAL attribute for 
a controlled variable in an ALLOCATE 
statement: 

DECLARE A(N,N) 
«N*N)O); 

CONTROLLED INITIAL 

IF 1 ALLOCATION (A) THEN ALLOCATE A 
INITIAL (1. (N-l) «N)O,l»; 

ALLOCATE A; 

4~ The following example illustrates 
three uses of Option 2 of the ALLOCATE 
statement for based identifiers. 

298 

DECLARE VALUE BASED (P), 
RATES BASED (Q) 

1 GROUP BASED (R), 
2 DIM FIXED BINARY, 
2 VALUES (N REFER (DIM», 

TABLE AREA BASED (S), 
N FIXED BINARY, 
T POINTER; 

a. ALLOCATE VALUE SET (P); 
Allocates storage for the based 
variable VALUE and sets the poin­
ter variable P to identify the 
particular allocation. 

b. ALLOCATE GROUP SET (R); 
Allocates storage for the struc­
ture GROUP, and sets the pointer 
variable R to identify the parti-

cular allocation. The current 
value of N is used to determine 
the bound of VALUES, and this 
value is assigned to DIM. 

c. ALLOCATE RATES SET (T) IN TA.BLE; 
Allocates storage within the area 
S-> TABLE for the variable RATES. 
The pointer variable T is set to 
identify the location within TABLE 
at which RATES is allocated. 

The Assignment Statement 

Function: 

The assignment statement is used to 
evaluate an expression and to assign its 
value to one or more target variables; the 
target variables may be element, array, or 
structure variables. The target variables 
may be indicated by pseudo-variables. 

General formats: 

The assignment statement has 3 general 
format options. They are given in Figure 
J-l. 

Syntax rules: 

1. In Option 2, each target variable must 
be an array. If the right-hand side 
contains arrays of structures, then 
all target variables must be arrays of 
structures. The BY NAME option may be 
given only when the right-hand side 
contains at least one structure. 

2. In Option 3, each target variable must 
be a structure. 

General rules: 

1. Aggregate aSSignments (Options 2 and 
3) are expanded into a series of 
element assignments according to rules 
5 through 8. 

2. An element assignment is performed as 
follows: 

a. Subscripts of the target varia­
bles, and the second and third 
arguments of SUBSTR pseudo­
variable references, are evaluated 
from left to right. 

b. The expression on the right-hand 
side is then evaluated. 

c. For each target variable (in left 
to right order), the expression is 
converted to the characteristics 
of the target variable according 



r-----------------------------·---------------·------------------------------------------, 
~ 
IOption 1 (Element Assignment) 
I : I element-variable I r. element~-variable ] 
~ pseudo-variable l, pseudo-'variable 
I 
IOption 2 (Array Assignment) 
I 
I 
I 
I 
I 

'array-variable I 

'pseudo-variable [

, array-v'ariable ] 

,pseudo-variable 

= element-expression; 

j
structure-expression [,BY NAME]l 
array-expression [,BY NAME] ; 
element-expression 

IOption 3 (structure Assignment) : I structure-expression [, BY NAME] I 
I structure-variable [,structure-variable] ••• = ; 
I element-expression L ______________________________ , _______________ , ____ .... _____________________________________ J 

Figure J-l. General Formats of the Assignment statement 

to rules for data conversion 
(except that whenever a. conversion 
of arithmetic base is involved, 
the value is converted directly to 
the precision of the target 
variable). The converted value is 
then assigned to the target 
variable. 

3. The following rules apply to string 
element assignment: 

a. The assignment is performed from 
left to right, starting with the 
leftmost position~ 

b. If the target variable is a fixed­
length string, the expression 
value is truncated on the right if 
it is too long or padded on the 
right (with blanks for character 
stringo zeros for bit strings) if 
the value is too short. (Note 
that a string pseudo-variable is 
considered to be a fixed-length 
string). The resulting value is 
assigned to the target. 

c. If the target is a VARYING string 
and the value of the expression is 
longer than the maximum length 
declared for the variable, the 
value is truncated on the right. 
The target string obtains a 
current length equal to its maxi­
mum length. If the value of the 
expression is not longer than the 
maximum length, the value is 
assigned; the target string 
obtains a current length equal to 
the length of the value. 

4. The following rules apply to other 
element assignments: 

a. If the target is an area variable, 
the expression must be an area 
variable or function. The AREA 
condition will be raised by this 
assignment if the size of the 
target area is insufficient for 
the current extent of the area 
being assigned. 

b. If the target is a pointer varia­
ble, the expression can only be a 
pointer (or offset) variable or a 
pointer (or offset> function ref­
erence. If the expression is of 
offset typeD its value is convert­
ed to pointer. 

c. If the target is an offset varia­
ble, the expression can only be an 
offset (or pointer) variable or an 
offset (or pointer) function ref­
erence. If the expression is of 
pointer type, its value is con­
verted to offset. 

d. If the target is a label variable, 
the expression can only be a label 
variable or label constant. Envi­
ronmental information (i.e., 
information that identifies the 
invocation of the block) is always 
assigned to the label variable. 

e. If the target is an event varia­
blew the expression can only be an 
event variable. The aSSignment is 
uninterruptable u and it involves 
both the completion and status 
values. An event variable does 
not become active when it has an 
active event variable assigned to 
it. It is an error to assign to 
an active event variable. 

Section J: statements 299 



f. -If the target is a STATUS pseudo­
variable, a value can be assigned 
whether or not the event variable 
is active. It is an error to 
assign to a COMPLETION pseudo­
variable i£ the named event 
variable is active. 

5. The first target variable in an aggre­
gate assignment is known as the master 
variable. If the master variable is 
an array, then an array expansion 
(Rule 6) is performed; otherwise, a 
structure expansion (Rules 7 and 8) is 
performed. The CHECK condition for 
assignment to a target variable is not 
raised during the assignment; it is 
raised (when suitably enabled) after 
the assignment is complete. such 
CHECK conditions are raised in the 
written order of the enabled identifi­
ers. In the case of BY NAME assign­
ment, the CHECK condition for the 
target variable is raised regardless 
of whether any value is assigned to an 
item. The label prefix of the origi­
nal statement is applied to a null 
statement preceding the other generat­
ed statements. 

6. In Option 2, all array operands must 
have the same number of dimensions and 
identical bounds. The array assign­
ment is expanded into a loop of the 
form: 

LABEL: DO jl LBOUND(master-variable,l) TO 
HBOUND(master-variable,l); 

300 

DO j2 LBOUND(master-variable,2) TO 
HBOUND(master-variable,2); 

DO jn = LBOUND(master-variable,n) TO 
HBOUND(master-variable,n); 

generated assignment statement 

END LABEL; 

In this expansion, n is the number 
of dimensions of the master variable 
that are to participate in the assign­
ment. In the generated assignment 
statement n all array operands are 
fully subscripted, using (from left to 
right) the dummy variables jl to jn. 
If an array operand appears with no 
subscripts, it will only have the 
subscripts jl to jn; if cross-section 
notation is used, the asterisks are 
replaced by jl to jn. If the original 
assignment statement (which may have 
been generated by Rule 7 or Rule 8) 
has a condition prefix, the generated 
assignment statement is given this 

condition prefix. If the original 
assignment statement (which may have 
been generated by Rule 8) has a BY 
NAME option, the generated assignment 
statement is given a BY NAME option. 
If the generated assignment statement 
is a structure assignment, it is 
expanded as given below. 

7. In option 3, where the BY NAME option 
is not specified, the following rules 
apply: 

a. None of the operands can be 
arrays, although they may be 
structures that contain arrays. 

b. All of the structure operands must 
have the same number n k, of 
immediately contained items.-

c. The assignment statement (which 
may have been generated by Rule 6) 
is replaced by ~ generated as.sign­
ment statements. The ith generat­
ed assignment statement is d€~rived 
from the original assignment 
statement by replacing each struc­
ture operand by its !th cont.ained 
item; such generated assignment 
statements may require further 
expansion according to Rule 6 or 
Rule 7. All generated assignment 
statements are given the condition 
prefix of the original statement. 

8. In Option 3, where the BY NAME option 
is given, the structure assignment, 
which may have been generated by Rule 
6, is expanded according to steps (a) 
through (d) below. None of the oper­
ands can be arrays. 

a. The first item immediately con­
tained in the master variable is 
considered. 

b. If each structure operand and tar­
get variable has an immediately 
contained item with the same iden­
tifier, an assignment statement is 
generated as follows: the state­
ment is derived by replacinq each 
structure operand and target vari­
able with its immediately con­
tained item that has this iden­
tifier. If any structure contains 
no such identifier, no statement 
is generated. If the generated 
assignment is a structUJce or 
array-of-structures assignment, BY 
NAME is appended. The first gen­
erated assignment is given the 
label prefix of the original 
assignment statement; all generat­
ed assignment statements are given 
the condition prefix of the origi­
nal assignment statement. 



c. Step b is repeated for each of the 
items immediately cont~ained in the 
master variable. The assignments 
are generated in the order of the 
items contained in the master 
variable. 

d. Steps a through c may generate 
further array and structure 
assignments. These a.re expanded 
according to Rules 6 through 8. 

Examples: 

1. Suppose that the following 
structures have been decla.red. 

1 ONE 
2 PART1 

3 RED 
3 WHITE 
3 BLUE 

2 PART2 
3 GREEN 
3 YELLOW 
3 ORANGE(3) 

2 PART3 
3 BLACK 
3 WHITE 

1 TWO 
2 PART1 

3 RED 
3 GREEN 
3 WHITE 

2 PART2 
3 BLUE 
3 YELLOW 
3 ORANGE(3) 

1 THREE 
3 PART1 

5 BLACK 
5 WHITE 
5 RED 

3 PART2 
5 YELLOW 
5 WHITE 
5 ORANGE(3) 
5 PURPLE 

three 

consider the following assignment: 

ONE =: TWO - 2 * THREE, BY NAME; 

By Rule 8 this generates: 

ONE.PART1 = TWO.PART1 - 2 * 
THREE.PART1, BY NAME; 

ONE.PART2 = TWO.PART2 - 2 * 
THREE.PART2, BY NAME; 

Applying Rule 8 again, these state­
ments are replaced by: 

ONE.PART1.RED = TWO.PART1.RED 
- 2 * THREE.PART1.RED; 

ONE. PART1. WHITE = TWO. PAR~r1. WHITE 
- 2 * THREE.PART1.WHITEi 

ONE.PART2.YELLOW = TWO.PART2.YELLOW 
- 2 * THREE. PART 2 • YELLOlrJ; 

ONE. PART2.0RANGE = TWO.PART2,.ORANGE 
- 2 * THREE.PART2.0RANGE; 

The final assignment is expanded 
according to Rule 6. 

2. The following example illustrates 
array assignment COption 2): 

3. 

Given the array A 

and the array B 

2 
3 
1 
4 

1 
7 
3 
6 

4 
6 
7 
8 

5 
8 
4 
3 

Consider the assignment statement: 

A CA+B)**2-AC1,1); 

After execution, A has 
7 

93 
9 

93 

the value 
74 

189 
114 
114 

Note that the new value for AC1,1), 
which is 7, is used in evaluating the 
expression for all other elements. 

The following example 
string assignment: 

Given: 

illustrates 

A is a fixed-length string whose 
value is 'XZ/BQ'. 

B is a varying-length string of 
maximum length 8 whose value is 
'MAFY' . 

C is a fixed-length string of 
length 3. 

D is a varying-length string of 
maximum length 5. 

Then in the statement: 

C=A, the value of C is 'XZ/'. 
C='X', the value of C is 'Xbb'. 
D=B, the value of D is 'MAFY'. 
D=SUBSTRCA,2,3) I ISUBSTRCA"2,3), 

the value of D is 'Z/BZ/'. 
SUBSTR(A,2,4)=B" the value of A is 

'XMAFY' • 
SUBSTRCB,2,2)='R', the value of B 

is 'MRbY'. 
SUBSTR(B,2)='R'g the value of B is 

II MRbb' • 

section J: Statements 301 



The BEGIN Statement 

Function: 

The BEGIN statement heads and identifies 
a begin block. 

GenE~ral format: 

BEGIN; 

Syntax rule: 

A label of a BEGIN statement may be 
subscripted w but such a label cannot appear 
after an END statement. 

General rule: 

A BEGIN statement is used in conjunction 
with an END statement to delimit a begin 
block. A complete discussion of begin 
blocks can be found in Part Iw Chapter 6 w 
"Blocks, Flow of Control, and Storage Allo­
cation. " 

The CALL Statement 

Function: 

~['he CALL statement invokes a procedure 
and causes control to be transferred to a 
specified entry point of the procedure. 

General format: 

CALL entry-name 

[(argument [,argument] ••• )] 

[TASK [(scalar-task-name)]] 
[EVENT (scalar-event-name)] 
[PRIORITY (expression)]; 

Syntax rules: 

1. The entry name, which can be a generic 
name w represents the entry point of 
the procedure invoked. 

2. An argument cannot be a condition 
name. 

3. The TASK w EVENT w and PRIORITY options 
can appear in any order. 

General rules: 

l." The TASKw EVENT, and PRIORITY options w 
when used alone or in any combination w 
specify that the invoked and invoking 
procedures are to be executed asyn-

302 

chronously. Note that if either the 
EVENT option or the PRIORITY option, 
or bothw are used without the TASK 
optionw the created task will have no 
name. (See Part Iw Chapter 15, 
"Multitasking.") 

2. When the TASK option is used, the task 
name, if given, is associated with the 
task created by the CALL. Reference 
to this name enables the priority of 
the task to be controlled at some 
other point by the use of the PRIORITY 
pseudo-variable and built-in function. 

3. When the EVENT option is used w the 
event name is associated with the 
completion of the task created by the 
CALL statement. Another task can. then 
wait for completion of this created 
task by specifying the event name in a 
WAIT statement. 

Upon execution of the CALL state­
ment, the event variable is made 
active, and the completion value is 
set to 'O'B and the status value to o. 
Upon termination of the created task, 
the completion value is set to 'l'B 
and, unless the task has been termi­
nated by a RETURN or END statement, 
the status is set to 1 if still zero. 

4. If the PRIORITY option is used., the 
expression in the PRIORITY option is 
evaluated to an integer m. of an 
implementation-defined precision 
(15,0). The priority of the named 
task is then made m relative t.o the 
task in which the CALL is execute:d. 

If a CALL statement with the EVENT 
or TASK option does not have, the 
PRIORITY option, the priority of the 
invoked task is made equal to that of 
the task variable in the TASK option, 
if there is one, or else made equal to 
the priority of the invoking task. 

5. Expressions in these options, as. well 
as any argument expressions, are 
evaluated in the task in which the 
call is executed. This includes exe­
cution of anyon-units entered as the 
result of the evaluations. 

6. The environment of the invoked proce­
dure is established after evaluation 
of the expressions named in Rule 5, 
and before the procedure is invoked. 

7. See Part I, Chapter 10, "Subroutines 
and Functions" for detailed descrip­
tions of the interaction of arguments 
with the parameters that represent 
these arguments in the invoked proce­
dure. 



Examples: 

1. CALL CRITICAL_PATH (A,B*C,D); 

CRITICAL PATH: 
GAMMA} ; 

PROCEDURE! (ALPHA, BETA" 

Examples: 

1. CLOSE FILE (MASTER); 

The file, MASTER, is closed, and the 
facilities allocated to it are 
released. 

2. CLOSE FILE (TABLEA), FILE (TABLEB); 

The two files, TABLEA and TABLEB are 
END; closed in the same way as MASTER, in 

the preceding example. 

2. CALL PAYROLL (NAME, DATE, HRRATE); 

3. CALL PRINT (A,B) TASK (T2) EVENT (ET2) 
PRIORITY (-2); 

The CLOSE statement 

Function: 

The CLOSE statement dissociates the 
named file from the data set with which it 
was associated by opening in the current 
t.ask. 

General format: 

CLOSE FILE (file-name) [, FILE 
(file-name}] ••• ; 

General rules: 

1. The FILE (filename) option specifies 
which file is to be closed. It must 
appear once. Several files can be 
closed by one CLOSE statement. 

2. A closed file can be reopened. 

3. closing an unopened fille, or an 
already closed file, has no effect. 

4. The CLOSE statement canno·t be used to 
close a file in a task dif:Eerent from 
the one that opened the file. 

5. If a file is not closed by a CLOSE 
statement, it is automatically closed 
at the completion of the task in which 
it was opened. 

6.. All input/output events that have not 
been completed before the file is 
closed are set complete, with a status 
value of 1. 

7. A CLOSE statement unlocks all records 
in the file previously locked in the 
task in which the CLOSE appears. 

The DECLARE Statement 

Function: 

The DECLARE statement is the principal 
method for explicitly declaring attributes 
of names. 

General format: 

DECLARE 
[level] identifier[attribute] ••• 
[, [level] identifier[attribute] ••• ] ••• ; 

Syntax rules: 

1. Any number of identifiers may be 
declared in one DECLARE statement. 

2. "Level" is a nonzero unsigned decimal 
integer constant. If a level number 
is not specified, level 1 is assumed 
for all element and array variables. 
Level 1 must be specified for all 
major structure names. A blank space 
must separate a level number from the 
identifier following it. 

3. In general, attributes must immediate­
ly follow the identifier to which they 
apply as shown in the general format. 
However, attributes can be factored 
{see "Factoring o:E Attributes" in Sec­
tion I, "Attributes"}. 

General rules: 

1. A particular level 1 identifier can be 
specified in only one DECLARE state­
ment within a particular block. All 
attributes given explicitly for that 
identifier must be declared together 
in that DECLARE statement. (Note, 
however, that identifiers having the 
FILE attribute may be given attributes 
in an OPEN statement as well. See 
"The OPEN Statement" in this section 
and in Part I~ Chapter 8, "Input and 
Output," for further information.) 

Section J: Statements 303 



20 Attributes of external names, in sep­
arate blocks and compilations, must be 
consistent. 

3. Labels may be prefixed to DECLARE 
statements (however, such labels are 
treated as comments and, hence, have 
no meaning). Condition prefixes can­
not be attached to a DECLARE state­
ment. 

The ~y Statement 

:r"unction: 

']~he DELAY statement causes the execution 
of a task to be suspended for a specified 
period of time. 

General format: 

DELAY (element-expression); 

General rule: 

Execution of the DELAY statement causes 
the element expression to be evaluated and 
converted to an integer n; execution is 
then suspended for n milliseconds. 

Example: 

DELAY (10); 

This statement causes execution of the 
task to be suspended for ten milliseconds. 

The DELETE Statement 

Function: 

The DELETE statement deletes a record 
from an UPDATE file. 

General format: 

DELETE FILE (file-name) 
[KEY(expression») 
[EVENT(event-variable»); 

General rules: 

1.0 The options may appear in any order. 

2. The FILE (filename) option specifies 
the UPDATE file; it must be specified. 

3. The KEY option must be specified if 
the file is a DIRECT UPDATE file; it 
cannot be specified otherwise. The 

304 

expression is converted to a character 
string and determines which record is 
to be deleted. 

4. If the file is a SEQUENTIAL UPDATE 
file, the record to be deleted is the 
last record that was read; the data 
set organization must be INDEXED. 

5. The EVENT option allows processing to 
continue while a record is being 
deleted. 

When control reaches a DELETE state­
ment containing this option, the 
"event variable" is made active (that 
is, it cannot be associated with 
another event) and is given the com­
pletion value 'O'B, provided that the 
UNDEFINEDFILE condition is not raised 
by an implicit file opening (see 
nNote" below). The event variable 
remains active and retains its 'O'B 
completion value until control reaches 
a WAIT statement specifying that event 
variable. At this time, either of the 
following can occur: 

a. If the DELETE statement has been 
executed successfully and neither 
of the conditions TRANSMIT or KEY 
has been raised as a result of the 
DELETE~ the event variable is set 
complete, given the completion 
value 'l'B, and the event variable 
is made inactive, that is, can be 
associated with another event .• 

b. If the DELETE statement. has 
resulted in the raising of TRANS­
MIT or KEY" the interrupt for each 
of these conditions does not occur 
until the WAIT is encountered. At 
such time, the corresponding on­
units (if any) are entered in the 
order in which the condition~; were 
raised. After a return from the 
final on-unit, or if one of the 
on-units is terminated by a GO TO 
statement, the event variable is 
given the completion value 'liB 
and is made inactive. 

Note: If the DELETE statement caUSE~S an 
implicit file opening that results in the 
ral.sl.ng of UNDEFINEDFILE, the on-unit 
associated with this condition is entered 
immediately and the event variable remains 
unchanged; that iSq the event variable 
remains inactive and retains the same value 
it had when the DELETE was encountered. If 
the on-unit does not correct the condition, 
then, upon normal return from the on·-unit, 
the ERROR condition is raised; if the 
condition is corrected in the on-unit •. that 
is, if the file is opened successfully" 
then, upon normal return from the on·-unit, 
the event variable is set to 'O'B, it is 



Form C28-8201-1, Page Revised by TNL N33-6011, 1/31/69 

made active, and execution of the DELE'TE 
statement continues. 

6. The DELETE statement unlocks a record 
only if that record had been locked in 
the same task in which the DELETE 
appears. 

7. The DELETE statement can cause impli­
cit opening of a file. 

Example: 

DELETE FILE(ALPHA) KEY (DKEY); 

This statement causes thE! record iden­
tified by DKEY to be deleted from the data 
set associated with the file ALPHA. If the 
record was previously locked in the same 
task, it is unlocked. 

The DISPLAY statement 

Function: 

The DISPLAY statement causes a message 
to be displayed to the machine: operator. A 
response may be requested. 

General format: 

option 1. 

DISPLAY (element-expression); 

option 2. 

DISPLAY (element-expression) 
REPLY (character-variable) 
[EVENT (event-variable)]; 

General rules: 

1. Execution of the DISPLAY statement 
causes the element expression to be 
evaluated and., where necessary, con.,. 
verted to a varying character string 
of implementation-defined maximum 
length (126 characters for the F 
compiler). This characte.r string is 
the message to be displayed. 

2. In Option 2, the character variable 
rece1ves a string that is a message to 
be supplied by the operator. For the 
F Compiler, the message cannot exceed 
126 characters. 

3. In Option 2, if the EVENT option is 
not specified, execution of the pro­
gram is suspended until the operator's 
message is received.. In option 1, 
execution continues uninterrupted .• 

4. If the EVENT (event-variable) option 
is given, execution will not wait for 
the reply to be completed before con­
tinuing with subsequent statements. 
The completion part of the event vari­
able will be given the value 'O'B 
until the reply is completed., when it 
will be given the value 'l'B. The 
reply is considered complete only 
after the execution of a WAIT state­
ment naming the event. 

Example: 

DISPLAY ('END OF JOB'); 

This statement causes the message "END 
OF JOB" to be displayed. 

The DO Statement 

Function: 

The DO statement heads a DO-group and 
can also be used to specify repetitive 
execution of the statements within the 
group. 

General formats: 

The three format types for the DO state­
ment are shown in Figure J-2. 

Syntax rules: 

1. In all three types" the DO statement 
is used in conjunction with the END 
statement to delimit a DO-group. Only 
Type 1 does not provide for the repet­
itive execution of the statements 
within the group. 

2. In Type 3" the variable or pseudo­
variable must represent a single 
element; "variable" may be subscripted 
and/or qualified,. Real arithmetic 
variables are generally used, but 
label, string, and complex variables 
are allowed., provided that the expan­
sions given in the general rules below 
result in valid PL/I programs. Note, 
however., that if "variable" is a label 
variable, each "specification" must 
have the following form: 

{ 

element-Iabel-variable} 

label-constant 

[WHILE (expression)] 

3. Each expression in a specification 
must be an element expression. 

section J: Statements 305 



r----------------------------------------------------------------------------------------, 
I ~ 
I i 
I Type 1.. DO ; ~ 

I I 
I~~ DO WHILE (element-expression); I 
I I 
I I pseudo-variable I I 
I~~ 00 =specification[.specificationl .... ; I 
I variable ~ 

I II 
I where "specification" has the form: I 
I I 
I LTO expression2 [BY exp ression31

J 
I 

I expression1 [WHILE (expression4) 1 I 
I BY expression3 [TO expression21 I L ____________________________________________________________________________________ . ___ J 

Figure J-2. General Format of the DO Sta.tement 

4. If nBY expression3" is omitted from a 
"specification." and if "TO 
expres-
sion2" is included. "expressi 
on3" is assumed to be 1. 

5. If "TO expression2" is omitted from a 
"specification., " repetitive execution 
continues until it is terminated by 
the WHILE clause or by some statement 
within the group. 

6. If both "TO expression2" and "BY 
expression3" are omitted from a speci­
fication~ it implies a single execu­
tion of the group, with the contro 1 
variable having the value of 
"expressionl",. If "WHILE expression4" 
is included" this single execution 
will not take place unless 
"expression4" is true. 

General rules: 

1. In Type 1" the DO statement only 
delimits the start of a DO-group; it 
does not provide for repetitive execu­
·tion. 

2. In Type 2, the DO statement delimits 
·the start of a DO-group and provides 
for repetitive execution as defined by 
t.he following: 

306 

LABEL: DO WHILE (expression); 
statement-l 

NEXT: 

statement-n 
END; 
statement /*S~TEMENT 

FOLLOWING THE DO GROUP*/ 

The above is exactly equivalent to the 
following expansion: 

LABEL: IF (expression) THEN; ELSE 
GO TO NEXT; 

NEXT: 

statement-l 

statement-n 
GO TO LABEL; 
statement /*STATEMENT 

FOLLOWING THE DO GROUP:t</ 

3. In Type 3, the DO statement delimits 
the start of a DO-group and provides 
for controlled repetitive execution as 
defined by the following: 

LABEL: DO variable (a 1 •••• ,an)= 
expression1 
TO expression2 

BY expression3 
WHILE (expre§sj~uJ)i 
statement-1 

statement-m 
LABELl: END; 
NEXT: statement 

This is exactly equivalent to the 
following expansion: 

tempn=ani 
e1=expression1 i 
e2=expression2; 
e3=expression3 i 
v=el; 



LABEL2: IF (e3>=0)&(v>e2) I 
(e3<0)&(v<e2) 
THEN GO TO NEXT: 

IF (~iP,essi0n.~) THEN: 
ELSE GO TO NEX'r: 

statement-l 

statement-m 
LABELl: v=v+e3: 

GO TO LABEL 2 : 
NEXT: statement 

In the above expansion, a1.,' •• '. , an are 
expressions that may appear as sub­
scripts of the control variable; 
temp1.' ••• tempn are complIer-created 
work areas" with the attributes BINARY 
FIXED (15) " to which the expression 
values are assigned; y is equivalent 
to "variable" with the associated 
"temp" subscripts: "el" " .. e2, " and 
"e3" are compiler-created work areas 
having the attributes of "expres­
sionl," "expression2~" and "expres­
sion3," respectively. In the simplest 
cases, there are no subscripts (i.e., 
n=O) and the first statement in the 
expansion is therefore el=4~xpressionl. 

Additional rules for -the above expan­
sion follow: 

a. The above expansion only shows the 
result of one "specification. n If 
the DO statement contains more 
than one "specification~" the 
statement labeled NEXT is the 
first statement in thE~ expansion 
for the next "specification." The 
second expansion is analogous to 
the first expansion in every res­
pect. Thus, if a second 
nspecification" appeared in the DO 
statement, the second expansion 
would look like this: 

NEXT: temp1.=a1.i 

tempn=ani 
e5=expression~) : 

v=e5: 

LABEL3: IF '... THEN GO TO NEXT1: 
IF (expressionS) THEN: 

ELSE GO TO NEXT1: 
statement-l 

statement-m 
LABEL4: v=v+e7: 

GO TO LABEL3; 
NEXT1: statement 

Note that statements 1 through ill are 
not actually duplicated in the pro­
gram. 

b. If the WHILE clause is omitted, 
the IF statement immediately 
preceding statement-l in the 
expansion is omitted. 

c. If "TO expression2" is omitted, 
the statement ne 2=expression2" and 
the IF statement identified by 
LABEL2 are omitted. 

d. If both "TO expression2 n and "BY 
expression3" are omitted, all 
statements involving e2 and e3, as 
well as the statement GO TO 
LABEL2, are omitted. 

4. The WHILE clause in Types 2 and 3 
specifies that before each Lepetition 
of statement execution, the associated 
element expression is evaluated, and, 
if necessary, converted to a bit 
string. If any bit in the resulting 
string is 1, the statements of the 
DO-group are executed. If all bits 
are 0, then, for Type 2, execution of 
the DO-group is terminated, while for 
Type 3. only the execution associated 
with the "specification" containing 
the WHILE clause is terminated: repet­
itive execution for the next 
"specification," if one exists, then 
begins. 

5. In a "specification," "expressionl" 
represents the initial value of the 
control variable (i.e., "variable" or 
"pseudo-variable"): "expression3" rep­
resents the increment to be added to 
the control variable after each execu­
tion of the statements in the group: 
expression2 represents the terminating 
value of the control variable. Execu­
tion of the statements in a DO-group 
terminates for a "specificationn as 
soon as the value of the control 
variable is outside the range defined 
by "expressionl" and "expression2." 
When execution for the last 
"specification" is terminated, con­
trol, in general, passes to the state­
ment following the DO-group,. 

Section J: Statements 307 



6. Control may transfer into a DO-group 
from outside the DO-group only if the 
DO-group is delimited by the DO state­
ment in Type 1; that is, only if 
repetitive execution is not specified. 
Consequently, repetitive DO-groups 
cannot contain ENTRY statements. 

1. The effect of allocating or freeing 
the control variable within the 00-
group is undefined. 

The_END statement 

Function: 

'rhe END statement terminates blocks and 
groups. 

General format: 

END [label]; 

Syn-tax rules: 

If "label" is specified, it cannot be an 
element of a label array; that is, it 
cannot be subscripted. 

General rules: 

1. If a label follows END, the statement 
terminates the unterminated group or 
block headed by the nearest preceding 
DO, BEGIN, or PROCEDURE statement 
having that label. It also terminates 
any unterminated groups or blocks phy­
sically within that group or block. 

2. If a label does not follow END, the 
statement terminates that group or 
block headed by the nearest preceding 
DO, BEGIN, or PROCEDURE statement for 
which there is no corresponding END 
statement. 

3. If control reaches an END statement 
for a procedure. it is treated as a 
RETURN statement. 

The_ENTRY statement 

Function: 

'rhe ENTRY statement specifies a secon­
dary entry point of a procedure. 

General format: 

308 

entry-name: [entry-name:] ••• 
ENTRY [(parameter [,parameter] ••• )] 

[attribute] ••• ; 

Syntax rules: 

1. The only attributes that may be speci­
fied with an ENTRY statement are the 
arithmetic 6 string, POINTER, OFFSET, 
AREA, and PICTURE attributes. The 
attributes specified determine the 
characteristics of the value returned 
by the procedure when it is invoked as 
a function at this entry point. 

2. A condition prefix cannot be specified 
for an ENTRY statement. 

General rules: 

1. The relationship established between 
the parameters of a secondary entry 
point and the arguments passed to that 
entry point is exactly the same as 
that established for primary entry 
point parameters and arguments. See 
Part I, Chapter 10, "Subroutines and 
Functions," for a complete discussion 
of this subject. 

2. As stated in syntax rule 1, the attri­
butes specified with an ENTRY Htate­
ment determine the characteristics of 
the value returned by the procedure 
when it is invoked as a function at 
this entry point. The value being 
returned by the procedure (i.e., the 
value of the expression in a HETURN 
statement) is converted, if neceHsary, 
to correspond to the specified attri­
butes. If the attributes are not 
specified at the entry point, default 
attributes are applied, according to 
the first letter of the entry name 
used to invoke the entry point .• 

3. I f an ENTRY statement has morE~ than 
one label, each label is interpreted 
as though it were a single entry name 
for a separate ENTRY statement having 
the same parameter list and explicit 
attribute specification. For example, 
consider the statement: 

A: I: ENTRY; 

This statement is effecti vely thE~ same 
as: 

A: ENTRY; 

I: ENTRY; 

Since the attributes of the re-turned 
value are not explicitly stated, the 
characteristics of the value returned 
by the procedure will depend on ~1heth­
er the entry point has been invoked as 
A or I. 



4. The ENTRY statement must be internal 
to the procedure for which it defines 
a secondary entry point. It may not 
be internal to any block contained in 
this procedure; nor may it be within a 
DO-group that specifies repetitive 
execution. 

The EXIT statement 

Function: 

The EXIT statement causes immediate ter­
mination of the task that contains the 
statement and all tasks attached by this 
task. If the EXIT statement is executed in 
a major task, it is equivalent to a STOP 
sta·tement. 

General format: 

EXIT; 

General rule: 

If executed in a major task, EXIT causes: 
the FINISH condition to be raised in that. 
task. On normal return from the FINISH 
on-uni t., the task executing the statement, 
and all of its descendant ta.sks are termi-· 
nated. The completion values of the event~ 
variables associated with these tasks are 
set to 'l'B, and their sta.tus values to 1. 
(unless. they are already non-zero). 

The FORMAT Statement 

Function: 

The FORMAT statement specifies a format 
list that can be used by edit~directec1 
transmission statements to control the for-­
mat of the data being transmitted. 

General format: 

label: [label:]... FORMA']? (format-list); 

Syntax rules: 

1. The "format list" mus1:: be specified 
according to the rulee; governing for­
mat list specifications with edit-­
directed transmission as described in 
Part I, Chapter 8,,, "Input and output." 

2. At least one "label" mllst be specified 
f or a FORMAT statement., One of the 
labels (or a label variable having the 
value of one of thE:! labels) is the 

statement label designator appearing 
in a remote format item. None of the 
labels can be specified in a GO TO 
statement. 

General rules: 

1. A GET or PUT statement may include a 
remote format item, R, in the format 
list of an edit-directed data 
specification. That portion of the 
format list represented by R must be 
supplied by a FORMAT statement iden­
tified by the statement label speci­
fied with R. 

2. The remote format item and the FORMAT 
statement must be internal to the same 
block. 

3. If a condition prefix is associated 
wi th a FORMAT sta temen t" it must be 
identical to the condition prefix 
associated with the G.ET or PUT state­
ment referring to that FORMAT state­
ment. 

4. When a FORMAT statement is encountered 
in normal sequential flow, control 
passes around it, and the CHECK condi­
tion will not be raised for a state­
ment label attached to it. 

The FREE statement 

Function: 

The FREE statement causes the storage 
allocated for specified based or controlled 
variables to be freed. For controlled 
variables., the next most recent allocation 
i.n the task is made available, and subse­
quent references in the task to the iden­
tifier refer to that allocation. 

General formats: 

Option 1 

FREE controlled-variable 
[,controlled-variable] ••• ; 

Option 2 

FREE [pointer-qualifier ->] 
based-variable[IN(area-variable)] 
[, [pointer-qualifier- >] 
based-variable 
[IN(area-variable)]] ••• ; 

Syntax rules: 

1. In Option 1, the "controlled variable" 
is an element., array, or major struc-· 
ture of the controlled storage class. 

section J: Statements 309 



2. In Option 2, the "based variable" must 
be an unsubscripted, level-one based 
variable. 

3. The forms of Option 1 and Option 2 can 
be combined in the same FREE state­
ment. 

General rules: 

1. Controlled storage allocated in a task 
cannot be freed by a descendant task. 

2. If a specified nonbased identifier has 
no allocated storage at the time the 
FREE statement is executed, it is an 
error. 

Rules 3 through 6 apply only to Option 2. 

3. If the based variable is not qualified 
by pointer qualification, the pointer 
declared with the based variable will 
be used to identify the generation of 
data occupying the portion of storage 
to be freed. 

4. The amount of storage freed depends 
uf~n the attributes of the based vari­
able, including bounds and/or lengths 
at the time the storage is freed, if 
applicable. The user is responsible 
for determining that this amount coin­
cides with the amount allocated. If 
the variable has not been allocated, 
the ,results are unpredictable. 

5. A based variable can be used to free 
storage only if that storage has been 
allocated for a based variable having 
iderttical data attributes, including 
values of bounds" lengths, and area 
size expressions. 

6. The ,IN option must be specified if the 
storage to be freed has been allocated 
using the IN option, and it must have 
been allocated in the area specified 
in the FREE statement. The IN option 
cannot appear in the FREE statement in 
any other circumstances. Note that 
area assignment causes allocation of 
based storage in the target area; such 
alldcations can be freed by the IN 
option naming the target area. 

Examples: 

1. FREE X,Y,Z; 

2. The ,following excerpt from a procedure 
illustrates the FREE statement in con­
junc;tion with an ALLOCATE statement: 

310 

DECLARE A(100) INITIAL «100)0) 
CONTROLLED I' C (100), X (100) ; 

ALLOCATE A; 

C=A; 

FREE A; 

X=SIN(C**2 + X/Y); 

3. In the example below, it is' assumed 
the declarations specified in Example 
4 of the ALLOCATE statement apply. 

FREE VALUE; 

Frees that portion of storage which is 
occupied by the allocation of VALUE 
identified by pointer P. 

FREE V->GROUP; 

Frees that portion of storage which is 
occupied by the allocation of GROUP 
identified by pointer V. The value 
V->DIM is used to determine the bound 
of VALUES. 

The GET Statement 

Function: 

The GET statement is a STREAM transmi:3-
sion statement that can be used in ei thler 
of the following ways: 

1. It can cause the assignment of da'ta 
from an external source (that is, fr()m 
a data set) to one or more interna.l 
receiving fields (that is, to one or 
more variables). 

2. It can cause the assignment of da1~ 
from an internal source (that is, frc:>m 
a character-string variable) to one or 
more internal receiving fields (tha.t 
is" to one or more variables). 

General format: 

GET option-list; 



Following 
list" : 

is the format of "option 

FILE (filename) I STRING(character­
string-name) ] 

data-specification [COPY] 
[SKIP[(expression)]] 

General rules: 

1. If neither the FILE (filename) option 
nor the STRING(character-string-name) 
option appears, the file option 
FILE(SYSIN) is assumed. 

2. One data specification must appear 
,unless the SKIP option is specified. 

3. 

4, .. 

5 .. 

6. 

7. 

8 ... 

The options may appear in any order. 

The filename refers 
has been associated, 
the data set which 
values. It must be 
file. 

to a file which 
by opening, with 
is to provide the 

a S'TREAM INPUT 

The "character-string name" refers to 
the character string that is to pro­
vide the data to be assigned to the 
data list. This name may be a ref­
erence to a built-in function. Each 
GET operation using this option always 
begins at the beginning of the speci­
fied string. If the number of charac­
ters in this string is less than the 
total number of characters specified 
by the data specification" the ERROR 
condition is raised. 

When the STRING option is used under 
data-directed transmission, the ERROR 
condition is raised if an identifier 
within the string does not have a 
match within the data specification. 

The data specification is ;as described 
in Part I, Chapter 8, "Input and 
Output,. " 

If the FILE (filename) option refers 
to a file that is not open in the 
current task" the file is implicitly 
opened in the task for stream output 
transmission. 

9. The COPY option, which may onl~ b$. 
used with.t.he FILE (filename) optl0n 17 

specifies that the sourerdata, as 
read, is to be written, wi"thout alter­
ation, on the standard installation 
print file. 

10. The SKIP option causes a new current 
line to be defined for the data set. 
The expression, if present~ is con­
verted to an integer w, which must be 
greater than zero. - If not, the F 
Compiler substitutes a value of 1. 

The data set is positioned at the 
start of the wth line relative to the 
current line: If the expression is 
omitted, SKIP(l) is assumed. The SKIP 
option is always executed before any 
data is transmitted. 

Examples: 

Specifies the list-directed transmis­
sion of the values to be assigned to 
A, Band C from the file SYSIN. 

2. GET FILE (BETA) EDIT (X, Y, Z) (A(5), 
F ( 5, 2 ), A ( 10) ) ; 

Specifies the edit-directed transmis­
sion of the values assigned to X, Y 
and Z from file BETA. 

~he GO TO Statement 

:Function: 

The GO TO statement causes control to be 
·transferred to the statement identified by 
the specified label. 

General format: 

~GO TOt {label-constant; l 
tGOTO f element-Iabel-variable;f 

General rules: 

1. If an "element label variable" is 
specified, the value of the label 
variable determines the statement to 
which control is transferred. Since 
the label variable may have different 
values at each execution of the GO TO 
statement, control may not always pass 
to the same statement. 

2. A GO TO statement cannot pass control 
to an inactive block. 

3. A GO TO statement cannot transfer 
control from outside a DO-group to a 
statement inside the DO-group if the 
DO-group specifies repetitive execu­
tion, unless the GO TO terminates a 
procedure or on-unit invoked from 
within the DO-group. 

4. If a GO TO statement transfers control 
from within a block to a point not 
contained within that block 17 the block 
is terminated, Also. if the transfer 
point is contained in a block that did 
not directly activate the block being 

Section J: Statements 311 



terminated, all intervening blocks in 
the activation sequence are also ter­
minated (see Part I. Chapter 6, 
~Blocks, Flow of Control, and storage 
Allocation," for examples and 
details). When one or more blocks are 
terminated by a GO TO statement, con­
ditions are reinstated and automatic 
variables are freed just as if the 
blocks had terminatd in the usual 
fashion. 

5. When a GO TO statement transfers con­
trol out of a procedure that has been 
invoked as a function, the evaluation 
of the expression that contained the 
corresponding function reference is 
discontinued. 

The IF statement 

Function: 

The IF statement tests the value of a 
specified expression and controls the flow 
of execution according to the result of 
that 1test. 

General format: 

IF element-expression 
THEN unit-l 
[ELSE unit-2] 

Syntax rules: 

1. Each unit is either a single statement 
(except DO, END, PROCEDURE, BEGIN, 
DECLARE, FORMAT" or ENTRY) if a DO": 
group, or a begin block. 

2. The IF statement itself is not termi­
nated by a semicolon; however, each 
~unit" specified must be terminated by 
a semicolon. 

3. Each "unit" may be labeled and may 
have condition prefixes. 

General rules: 

1. 

312 

The element expression is evaluated 
and, if necessary. converted to a bit 
string. When the ELSE clause (that 
is, ELSE and its following "unit") is 
specified, the following occurs: 

If any bit in the string is 1, 
"unit-l" is executed, and control 
then passes to the statement fol­
lowing the IF statement. If all 
bits in the string have the value 
0, "unit-l" is skipped and "unit-2" 
is executed, after which control 
passes to the next statement. 

2. 

When the ELSE clause is not specified, 
the following occurs: 

If any bit in the string is 1, 
"unit-l" is executed, and control 
then passes to the statement fol­
lowing the IF statement. If all 
bits are 0, "unit-l" is not execut­
ed and control passes to the next 
statement. 

;Each "unit" may 
that specify a 
(e.g., GO TO); 
sequence of the IF 
overriden. 

contain statements 
transfer of control 
hence, the normal 

statement may be 

IF statements may be nested; that is" 
either "unit", or both, may itself be 
an IF statement. Since each ELSE 
clause is always associated with the 
innermost unmatched IF in the same 
block or DO-group, an ELSE with a null 
statement may be required to specify a 
desired sequence of control. 

The LOCATE Statement 

Function: 

The LOCATE Statement, which applies to 
BUFFERED OUTPUT files, causes allocation of 
a based variable in a buffer; it may also 
cause transmission of a previously allocat­
ed based variable. 

General format: 

LOCATE variable; 

FILE(filename) [SET(pointer-variable)] 
[KEYFROM(expression)] 

Syntax rules: 

1. The options may appear in any order. 

2. The "variable" must be an unsubscript­
ed level 1 based variable. 

General rules: 

1. The 
the 

FILE (filename) 
file involved. 

appear. 

option specifies 
This option must 

2. Execution of a LOCATE statement causes 
the specified based variable to be 
allocated in the buffer. Components 
of the based variable that have been 
specified in REFER options.are ini­
tialized. A pointer value is assigned 
to the pointer variable named in the 
SET option or, if the SET option is 



3. 

4. 

omitted, to the pointer variable spec­
ified in the declaration of the based 
variable. The pointer value identifi­
es the record in the buffer. After 
execution of the LOCATE statement, 
values may be assigned to the based 
variable for subsequent ·transmission 
to the file, which will Q(:~cur immedi­
ately before the next LOC1~TE. WRITE" 
or CLOSE operation on the file, at 
which time the record is freed. 

If the KEYFROM(expression) option 
appears, the val~e of the expression 
is converted to a character string and 
is used as the key of the record when 
it is subsequently written. 

If the FILE(filename} option refers to 
an unopened file, the file is opened 
automatically; the effect i.s as if the 
LOCATE statement were preceded by an 
OPEN statement referring to the file. 

Example: 

LOCATE ALPHA SET (REC_POINT) 
(BETA) ; 

FILE 

The based variable ALPHA is allocated 
in a buffer and REC POINT is set to 
identify ALPHA in the buffer. Values 
may subsequently be assigned to ALPHA 
and the record will be written in the 
data set associated with file BETA 
when a subsequent LOCATE or WRITE 
statement is executed for file BETA or 
if BETA is closed, either explicitly 
or implicitly. 

The Null Statement 

Function: 

The null statement causes no action and 
does not modify sequential statement execu­
tion. If the label of a null statement is 
enabled for the CHECK condition, CHECK is 
raised whenever control reaches the null 
s·tatement. 

General format: 

[label: ] • ' •• ; 

The ON Statement 

Function: 

The ON statement specifies what action 
is to be taken (programmer-defined or 
standard system action) when an interrupt 

results from the occurrence of the speci­
fied exceptional condition. 

General format: 

ON condition [SNAP] {SYSTEM; lon-unit} 

Syntax rules: 

1. 

2. 

The condition may 
described in 
Conditions". 

be any 
section 

of 
H, 

those 
"ON-

The "on-unit" represents a programmer­
defined action to be taken when an 
interrupt results from the occurrence 
of the specified "condition". It can 
be either a single unlabeled simple 
statement or an unlabeled begin block. 
If it is an unlabeled simple 
statement, it can be any simple state­
ment except BEGIN, DO~ END~ RETURN, 
FORMAT, PROCEDURE, or DECLARE. If the 
on-unit is an unlabeled begin block, 
any statement can be used freely with­
in that block, with one exception: A 
RETURN statement can appear only with­
in a procedure nested within the begin 
block. 

3. Since the "on-unit" itself requires a 
semicolon, no semicolon is shown for 
the "on-unit" in the general format. 
However, the word SYSTEM must be fol­
lowed by a semicolon. 

General rules: 

1. 'rhe ON statement determines how an 
interrupt occurring for the specified 
condition is to be handled. Whether 
the interrupt is handled in a standard 
system fashion or by a programmer­
supplied method is determined by the 
action specification in the ON 
statement, as follows: 

a. If the action specification is 
SYSTEM" the standard system action 
is taken. The standard system 
action is not the same for every 
condition, although for most con­
ditions the system simply prints a 
message and raises the ERROR con­
dition. The standard system 
action for each condition is given 
in section H, "ON-Conditions." 
(Note that the standard system 
action is always taken if an 
interrupt occurs and no ON state­
ment for the condition is in 
effect. ) 

b. If the action specification is an 
"on-unit," the programmer has sup­
plied his own interrupt-handling 
action, namely, the action defined 
by the statement(s) in the on-unit 

Section J: Statements 313 



2. 

itself. The on-unit is not exe­
cuted when the ON statement is 
executed; it is executed only when 
an interrupt results from the 
occurrence of the specified condi­
tion (or if the interrupt results 
from the condition being signaled 
by a SIGNAL statement). 

The action specification (i.e., 
"on-unit" or SYSTEM) established by 
executing an ON statement in a given 
block remains in effect throughout 
that block and throughout all blocks J 
in any activation sequence initiated 
by that block, unless it is overridden 
by the execution of another ON state-

a. The conditions AREA, OVERFLOW, 
FIXEDOVERFLOW, UNDERFLOW, Z]~RODI­

VIDE, CONVERSION, all of the 
input/output conditions, and the 
conditions CONDITION, FINISH, and 
ERROR are enabled by default. 

b. The conditions SIZE, STRINGRANGE, 
SUBSCRIPTRANGE, and CHEC:K are 
disabled by default. 

·c. The enabling and disabling of 
OVERFLOW, FIXEDOVERFLOW, UNDER­
FLOW, ZERODIVIDE, CONVERSION, 
SIZE, STRINGRANGE, SUBSCRIPTRANGE, 
and CHECK can be controlled by 
condition prefixes. 

ment or a REVERT statement, as fol- 5. If on-unit is a single statement, it 
cannot refer to a remote format speci­
fication. 

lows: 

a. If a later ON statement specifies 
the same condition as a prior ON 
statement and this later ON state­
ment is executed in a block that 
lies within the activation 
sequence initiated by the block 
containing the prior ON statement, 
the action specification of the 
prior ON statement is temporarily 
suspended, or stacked. It can be 
restored either by the execution 
of a REVERT statement, or by the 
termination of the block contain­
ing the later ON statement. 

b. If the later ON statement and the 
prior ON statement are internal to 
the same invocation of the same 
block. the effect of the prior ON 
statement is completely nullified. 

3. An on-unit is always treated by the 
compiler as a procedure internal to 
the block in which it appears. 
(Conceptually. it is enclosed in PRO­
CEDURE and END statements.) Any names 
used in an on-unit do not belong to 
the invocation of the procedure or 
block in which the interrupt occurred 
(and~ hence~ effectively, the proce­
dure or block in which the on-unit is 
executed) but, rather, to the environ­
ment of the invocation of the proce­
dure or block in which the ON state­
ment for that on-unit was executed. 
(Remember that an ON statement is 
executed as it is encountered in 
statement flow; whereas. the action 
specification for that ON statement is 
executed only when the associated 
interrupt occurs.) 

'L A condition raised during execution 
results in an interrupt if and only if 
the condition is enabled at the point 
where it is raised. 

314 

6. If SNAP is specified, then when the 
given condition occurs and the inter­
rupt results, a calling trace is list­
ed; that is. a trace of all of the 
procedures active at the time the 
interrupt resulted is printed on SYS­
PRINT. 

The OPEN Statement 

Function: 

The OPEN statement opens a file by 
associating a file name with a data set. 
It also can complete the specification of 
attributes for the file. if a complete set 
of attributes has not been declared for the 
file being opened. 

General format: 

OPEN FILE (file-name) [options-group] 
[~FILE{file-name)[options-group]] ••• ; 

where "options group" is as follows; 

[DIRECT! SEQUENTIAL] 
[BUFFERED I UNBUFFERED] 
[STREAM I RECORD] 
[INPUTIOUTPUTIUPDATE] 
[KEYED] [EXCLUSIVE] 
[BACKWARDS] 
[TITLE (element-expression)] 
[PRINT] 
[LINESIZE(element-expression)] 
[PAGESIZE{element-expression)] 

Syntax rules: 

1. The INPUT, OUTPUT. UPDATE., STREAM 
RECORD, DIRECT, SEQUENTIAL" BUFFERED, 
UNBUFFERED, KE'lED., EXCLUSIVE, BACK-



WARDS, and PRINT options specify 
attributes that augment t:he attributes 
specified in the file declaration; for 
rules governing which of these attri­
butes can be applied t:ogether, see 
Part I, Chapter 8, "Input: and output," 
and the corresponding attributes in 
section I, "Attributes." 

2. The options in an "option group" and 
the FILE option for a fi.le may appear 
in any order. 

3. The "file name" is the name of the 
file that is to be associated with a 
data set. Several files can be opened 
by one OPEN statement. 

General rules: 

1. The opening of an already open file 
does not affect the file if the second 
opening takes place in the same task 
or an attached task. In such cases" 
any expressions in the "options_group" 
are evaluated, but they are not used. 

2. If the TITLE option is specified, the 
"element expression" is converted to a 
character string, if necessary, the 
first eight characters of which iden­
tify the data set (the ddname) to be 
associated with the file. If this 
option does not appear, the first 
eight characters of the file name 
(padded or truncated) are _taken to be 
the ddname. Note that this is not the 
same truncation as that for external 
names. If the file name is a paramet­
er, the identifier of the original 
argument passed to the parameter, 
rather than the identifier of the 
oarameter itself, is used as the iden­
t.ification. 

3. The LINESIZE option can be specified 
only for a STREAM OUTPUT file. The 
expression is evaluated, converted to 
an integer, and used as the length of 
a line during subsequent operations on 
the file. New lines may be started by 
use of the printing and control format 
items or by options in a GET or PUT 
statement. If an attempt is made to 
position a file past the end of a line 
before explicit action to start a new 
line is taken, a new line is automat­
ically started, and the file is posi­
tioned to the start of this new line. 
If no LINESIZE is given for a PRINT 
file, an implementation-defined 
default is supplied. For the F Com­
piler, this is 120 characters. 

The LINESIZE option cannot be spec­
ified for an INPUT file. The line 
size taken into consideration whenever 
a SKIP option appears in a GET state-

ment is the line size that was used to 
create the data set, if any; other­
wise, the line size is taken to be the 
current length of the logical record 
(minus control bytes, for V-format 
records) • 

4. The PAGESIZE option can be specified 
only for a file having the STREAM and 
PRINT attributes. The element expres­
sion, is evaluated and converted to an 
integer" which represents the maximum 
number of lines to a page. During 
subsequent transmission to the PRINT 
file, a new page may be started by use 
of the PAGE format item or by the PAGE 
option in the PUT statement. If a 
page becomes filled and more data 
remains to be printed before action to 
start a new page is taken, the ENDPAGE 
condition is raised. For the F Com­
piler, if PAGESIZE is not specified, 
the default is 60 lines per page. 

The PROCEDURE Statement 

Function: 

The PROCEDURE statement has the follow­
ing functions: 

• It heads a procedure. 

• It defines the primary entry point to 
the procedure. 

• It specifies the parameters, if any, 
for the primary entry point. 

• It may specify certain special charac­
teristics that a procedure can have. 

• It may specify the attributes of the 
value that is returned by the procedure 
if it is invoke1 as a function at its 
primary entry point. 

General format: 

entry-name: [entry-name:] ••. 
PROCEDURE[(parameter[,parameter] ••• )] 
(OPTIONS (option-list)] 
[RECURSIVE] [data-attributes]; 

Syntax rules: 

1. ~he "data attributes" represent the 
attributes of the value returned by 
the procedure when it is invoked as a 
function at its primary entry pOint. 
Only arithmetic, string, pointer, off­
set, AREA, and PICTPRE attributes are 
allowed. 

Section J: statements 315 



Form C28-8201-1, Page Revised by TNL N33-6011, 1/31/69 

2. OPTIONS and RECURSIVE are special pro­
cedure specifications that the user 
can specify. They and the "data 
attributes" may appear in any order 
and are separated by blanks. 

3. The "option list" of OPTIONS specifies 
one or more additional implementation­
defined options. For the F Compiler, 
the "option list" may contain the MAIN 
and TASK options., separated by commas. 
MAIN specifies that the procedure is 
the initial procedure, to be invoked 
by the operating system as the first 
step in the execution of the PL/I 
program; TASK specifies that the mul­
titasking facilities are to be used. 

General rules: 

1. When the procedure is invoked., a rela­
tionship is established between the 
arguments passed to the procedure and 
the parameters that represent those 
arguments in the invoked procedure. 
This topic is discussed in Part I, 
Chapter 10, "Subroutines and Func­
tions." 

2. For the F Compiler" OPTIONS may be 
specified only for an external proce­
dure, and at least one external proce­
dure must have the OPTIONS (MAIN) 
designation: if more than one is so 
designated, the operating syste~ will 
invoke the one that appears first., 
physically. (If multitasking is to be 
used., the external procedure must also 
have the keyword TASK in the OPTIONS 
attribute.) OPTIONS applies to all of 
the entry points (both primary and 
secondary) that the procedure for 
which it has been declared might have. 

3. RECURSIVE must be specified if the 
procedure might be invoked recursive­
ly; that is, if it might be re­
activated while it is still active. 
If specified, it applies to all of the 
entry points (primary and secondary) 
that the procedure might have. It 
applies only to the procedure for 
which it is declared. 

4. The "data attributes" specify the 
attributes of the value returned by 
the procedure when it is invoked as a 
function at its primary entry point. 
The value specified in the RETURN 
statement of the invoked procedure is 
converted to conform with these attri­
butes before it is returned to the 
invoking procedure. 

316 

If "data attributes" are not speci­
fied, default attributes are supplied. 
In such a case., the name of the entry 
point (the entry name by which the 
procedure has been invoked) is used to 
determine the default base, precision, 
and scale. (Since the entry point can 
have several entry names, the default 
base, precision, and scale can differ 
according to the entry name.) 

5. If a 'PROCEDURE statement has more than 
one entry name, the first name can be 
considered as the only label of the 
statement; each subsequent entry name 
can be considered as a separate ENTRY 
statement having an identical paramet­
er list and the same data attributes 
as specified in the PROCEDURE state­
ment. For example, the statement: 

A: I: PROCEDURE BINARY FIXED: 

is effectively the same as: 

A: PROCEDURE BINARY FIXED; 

I: ENTRY BINARY FIXED; 

The PUT Statement 

Function: 

The PUT statement is a STREAM transmis­
sion statement that can be used in either 
of the following ways: 

1. It can cause the values in one or more 
internal storage locations to be 
transmitted to a data set on an exter­
nal medium. 

2. It can cause the values in one or more 
internal storage locations to be 
assigned to an internal receiving 
field (represented by a character­
string variable). 

General format: 

PUT[ FILE (file-name) ] 
. STRING (character-string-variable) 
[data-specification] 

[

PAGE [LINE(element-expression)] ] 
SKIP [(element-expression)] ; 
LINE(element-expression) 

Syntax rules: 

1. If neither the FILE nor STRING option 
appears, the specification FILE 
(SYSPRINT) is assumed. If such a PUT 
statement lies within the scope of a 
declaration of the identifier 
SYSPRINT, SYSPRINT must have been 



declared as FILE STREAM OUTPUT. If 
the PUT statement does not lie within 
the scope of a declaration of SYS­
PRINT, SYSPRINT is the standard system 
output. file. 

2. The FILE option specifies ·transmission 
to a data set on an external medium. 
The file name in this option is the 
name of the file that has been asso­
ciated (by implicit or explicit 
opening) with the data set that is to 
receive the va~ues. This file must 
have the OUTPUT and STREAM attributes. 

3. The STRING option specifies transmis­
sion from internal s·toragE~ locations 
(represented by variables or expres­
sions in the "data specification") to 
a character string (represented by the 
"character-string variable"). The 
"character-string variable" can be a 
string pseudo-variable. 

4. The "data specification" option is as 
described in Part I, Chapter 8# "Input 
and Output." 

5. The PAGE, SKIP, and LINE options 
cannot appear with the STRING option. 

6. The options may appear in any order; 
at least one must appear. 

General rules: 

1. If the FILE option is specified, and 
the "file name" refers to an unopened 
file, the file is opened implicitly as 
an OUTPUT file. 

2. 

I 3. 

If the STRING option is specified, the 
PUT operation begins assigning values 
to the beginning of the st~ring (that 
is, at the left-most character 
position), after appropriate conver­
sions have been performed. Blanks and 
delimiters are inserted as usual. If 
the string is not long enough to 
accomodate the data, the ERROR condi­
tion is raised. 

The PAGE and LINE options can be 
specified for PRINT files only... All 
of the options take effect before 
transmission of any values defined by 
the data specification# if given. Of 
the three, only PAGE and LINE may 
appear in the same PUT statement" in 
which case, the PAGE option is applied 
first. 

4. The PAGE option causes a new current 
page to be defined within the data 
set. If a data specification is pre­
sent, the transmission of values 
occurs after the definition of the new 
page. The page remains current until 

the execution of a PUT statement with 
the PAGE option, until a PAGE format 
item is encountered, or until an END­
PAGE interrupt results in the 
definition of a new page. A new 
current page implies line one. 

5. The SKIP option causes a new current 
line to be defined for the data set. 
The expression, if present, is con­
verted to an integer ~, which for 
non-PRINT files must be greater than 
zero. The data set is positioned at 
the start of the wth line relative to 
the current line. -If the' expression 
is omitted, SKIP(l) is assumed. 

For PRINT files ~ may be less than or 
equal to zero: in this case, the 
effect is that of a carriage return 
with the same current line.. If less 
than ~ lines remain on the current 
page when a SKIP(w) is issued, ENDPAGE 
is raised. 

6. The LINE option causes a new current 
line to be defined for the data set. 
The expression is converted to an 
integer ~. The LINE option specifies 
that blank lines are to be inserted so 
that the next line will be the wth 
line of the current page. If at least 
~ lines have already been written on 
the current page or if ~ exceeds the 
limits set by the PAGESIZE option of 
the OPEN statement, the ENDPAGE condi­
tion is raised. If w is less than or 
equal to zero~ it ii assumed to be 1. 

If the FILE(filename) option refers to 
a file that is not open in the current 
task~ the file is opened implicitly in 
this task for stream output. 

Examples: 

1. 

2. 

PUT DATA (A,B,C): 

Specifies the data-directed transmis­
sion of the values A, Band C to the 
file SYSPRINT .. 

PUT FILE (LIST) EDIT (X,Y,Z) 
PAGE; 

(A(10» 

Specifies that a new page is to be 
defined for the print file LIST. The 
values of X~ Y and Z are placed 
starting in the first printing posi­
·tion of the new page. Each of the 
values will use the A(10) format item. 

Section J: Statements 317 



The_REAp Statement 

Function: 

The READ statement causes a record to be 
transmitted from a RECORD INPUT or RECORD 
UPDATE file to a variable or buffer. 

General format: 

READ option-list; 

Following is the format of 
list": 

"option 

FILE (filename) 

U
NTO (variable) j 

SET (pointer-variable) 
IGNORE (expression) 

tEY (expression) J 
KEYTO 

(character-string-variable) 
[EVENT (event-variable)] 

[NOLOCK] 

General rules: 

i. The options may appear in any order. 

2. The FILE (filename) option specifies 
the file from which the record is to 
be read. This option must appear. If 
the file specified is not open in the 
current task. it is opened. 

3. The INTO(variable) option specifies an 
unsubscripted level 1 variable into 
which the record is to be read. It 
cannot be a parameter. nor can it have 
the DEFINED attribute. 

4. The KEY and KEYTO options can be 
specified for KEYED files only. 

5. The KEY option must appear if the file 
has the DIRECT attribute. The 
"element expression" is converted to a 
character string that represents a 
key. It is this key that determines 
which record will be read. 

The KEY option may also appear for 
files having the SEQUENTIAL and KEYED 
attributes. In such cases. the file 
is positioned to the record having the 
specified key. Thereafter. records 
may be read sequentially from that 
point on by using READ statements 
without the KEY option. For 
System/360 implementations, the data 
set must have the INDEXED organiza­
tion. 

6. The KEYTO option can be given only if 
the file has the SEQUENTIAL and KEYED 

318 

attributes. It specifies that the key 
of the record being read is to be 
assigned to the "character-string 
variable" according to the rulE~s for 
character-string assignment. If pro­
per assignment cannot be made, the KEY 
condition is raised. For the F Com­
piler, the value assigned is as fol­
lows: 

·a. For REGIONAL (1), the eight char­
acter regional number, padded or 
truncated on the left to the 
declared length of the character­
string variable 

b. For REGIONAL (2) and REGIONAl. (3), 
the recorded key withou"t the 
regional number, padded or trun­
cated on the right to the declared 
length of the character-string 
variable 

c. For. INDEXED, the recorded key, 
padded or truncated on the right 
to the declared length of the 
character-string variable 

The KEY condition will not be raised 
for such padding or truncation. 

Note: The KEYTO option cannot specify 
a variable declared with a numeric 
picture specification. 

7. The EVENT option allows processing to 
continue while a record is being read 
or ignored. This option cannot be 
specified for a SEQUENTIAL BUFFERED 
file. 

When control reaches a READ statement 
containing this option, the "event 
variable" is made active (that is~ it 
cannot be associated with another 
event) and is given the completion 
value 'O'B, provided that the UNDEFI­
NEDFILE condition is not raised by an 
implicit file opening (see "Note" 
below). The event variable remains 
active and retains its 'O'B completion 
value until control reaches a WAIT 
statement specifying that event varia­
ble. At this time, either of the 
following can occur: 

a. If the READ statement has been 
executed successfully and none of 
the conditions ENDFILE. TRANSMIT, 
KEY or RECORD has been raised as a 
result of the READ, the event 
variable is set complete (given 
the completion value 'l'B), and 
the event variable is made inac­
tive, that is, it can be associat­
ed with another event. 



b. If the READ statement has resulted 
in the raising of ENDFILE, TRANS­
MIT, KEY, or RECORD, the· interrupt 
for each of these conditions does 
not occur until the WAIT is 
encountered. At such time, the 
corresponding on-units (if any) 
are entered in the ord~r in which 
the conditions were raised. After 
a return from the final on-unit., 
or if one of the on-units is 
terminated by a GO TO statement, 
the event variable is given the 
completion value 'l'B and is made 
inactive. 

Note: If the READ statement causes an 
implicit file opening that results in 
the raising of UNDEFINEDFILE, the on­
unit associated with this condition is 
entered immediately and the event 
variable remains unchanged; that is, 
the event variable remains inactive 
and retains the same value it had when 
the READ was encountered. If the 
on-unit does not correct the condi­
tion, then, upon normal return from 
the on-unit, the ERROR condition is 
raised; if the condition is corrected 
in the on-unit, tha't is, if the file 
is opened successfully, then, upon 
normal return from the on-unit, the 
event variable is set to 'O'B" it is 
made active, and execution of the READ 
statement continues. 

8. Any READ statement refeJ:ring to an 
EXCLUSIVE file will cause the record 
to be locked unless 'the NOLOCK option 
is specified. A locked record cannot 
be read, deleted, or rewritten by any 
other task until it is unlocked. Any 
attempt to read, delete, rewrite, or 
unlock a record locked by another task 
results in a wait. Subsequent unlock­
ing can be accomplished by the locking 
task through the execut:.ion of an 
UNLOCK, REWRITE, or DELETE statement 
that specifies the same key~ by a 
CLOSE statement, or by completion of 
task in which the record was locked. 

Note that a record is considered 
locked only for tasks other than the 
task that actually locks it; in other 
words, a locked record can always be 
read by the task that locked it and 
still remain locked as far as other 
tasks are concerned (unless, of 
course, the record h~s been explicitly 
unlocked by one of the above methods). 

9~ The SET option specifies that the 
record is to be read into a buffer and 
that a pointer value is to be assigned 
to the named locator variable. The 
pointer value identifies the record in 
the buffer. If the locator variable 

is an offset variable, the pointer 
value is implicitly converted. 

10. The IGNORE option may be specified for 
SEQUENTIAL INPUT and SEQUENTIAL UPDATE 
files. The expression in the IGNORE 
option is evaluated and converted to 
an integer. If the value, n, is 
greater than zero, n records are 
ignored; a subsequent READ statement 
for the file will access the (n+l)th 
record. A READ statement without an 
INTO, SET, or IGNORE option is equi­
valent to a READ with an IGNORE(l). 

11. A keyed file being accessed sequen­
tially may be positioned by issuing a 
READ statement with the KEY option. 
The specified key will be used to 
identify the record required. 
Thereafter, records may be read 
sequentially from that point by use of 
READ statements without the KEY 
option. This applies to INPUT and 
UPDATE files. 

For BUFFERED SEQUENTIAL files, two 
positioning statements can be used, 
with the following formats: 

READ FILE (filename) 
INTO (variable) 
KEY (expression); 

READ FILE (filename) 
SET (pointer-variable) 
KEY (expression); 

For UNBUFFERED SEQUENTIAL files, 
only the first form shown immediately 
above can be used, and it may be 
specified with the EVENT option. 

Examples: 

1.. READ FILE (ALPHA) SET (REC_IDENT); 

The next record from the data set 
associated with ALPHA is made availa­
ble and the pointer variable REC_IDENT 
is set to identify the record in the 
buffer. 

2. READ FILE (BETA) KEY (VALUE) INTO 
(WORK); 

The record identified by the key VALUE 
is transmitted from the data set asso­
ciated with BETA into the variable 
WORK. 

section J: Statements 319 



The RETURN Statement 

Function: 

The RETURN statement terminates execu­
tion of the procedure that contains the 
RETURN statement. If the procedure has not 
been invoked as a task, the RETURN state­
ment returns control to the invoking proce­
dure. The RETURN statement may also return 
a value. 

General format: 

option 1. 

RETURN; 

Option 2. 

RETURN (expression); 

General rules: 

1. Only the RETURN statement in Option 1 
can be used to terminate procedures 
not invoked as function procedures; 
control is returned to the point logi­
cally following the invocation. 

option 1 represents the only form 
of the RETURN statement that can be 
used to terminate a procedure initiat­
ed as a task. If the RETURN statement 
terminates the major task, the FINISH 
condition is raised prior to the exe­
cution of any termination processes. 
If the RETURN statement terminates any 
other task, the completion value of 
the associated event variable <if any) 
is set to IlIB, and the status value 
is left unchanged. 

2D The RETURN statement in Option 2 is 
used to terminate a procedure invoked 
as a function procedure only. Control 
is returned to the point of invoca­
tion, and the value returned to the 
function reference is the value of the 
expression specified converted to con­
form to the attributes declared for 
the invoked entry point. These attri­
butes may be explicitly specified at 
the entry point; they are otherwise 
implied by the initial letter of the 
entry name through which the procedure 
is invoked. 

3. If control reaches an END statement 
corresponding to the end of a proce­
dU1~e, this .END stateme.nt".".t§-ll~~~j:.~~ 

,-~ ___ ~~~URa statement (of the Option 1 
form) for the procedure. 

320 

Example: 

A: PROCEDURE (X,Y) FIXED; 
DECLARE <X,Y) FLOAT; 

RETURN <X**2+Y**2); 
END; 

B: PROCEDURE; 
DECLARE A ENTRY RETURNS (FIXED); 

R A(P"Q)i 

ENDi 

In the assignment statement (R=A(P.Q);), 
procedure B invokes procedure A as a func­
tion. Procedure B specifies that thE~ sca­
lar expression in the RETURN statement is 
to be evaluated; since X and Yare 
floating-point variables and the PROCEDURE 
statement specifies that the value returned 
is to be fixed point, the value of the 
expression is converted to fixed point, and 
this value is returned to B. 

The REVERT Statement 

Function: 

The REVERT statement nullifies the 
effect of the current action specification 
for the specified condition only if the 
current action specification is the result 
of an ON statement executed within the same 
invocation of the block in which the REVERT 
statement is executed. When this is true, 
the action specification that was in effect 
for the specified condition when the.block 
containing the REVERT statement was invoked 
is re-established and once again takes 
effect. 

General format: 

REVERT condition; 

Syntax rule: 

The "condition" 
cribed in Section H, 

is any of those des­
"ON-Conditions." 



General rule: 

The execution of a REVERT s·ta:tement has 
the effect described above only if (1) an 
ON statement, specifying the same condition 
and internal to the same block," was execut­
ed after the block was activated and (2) 
the execution of no other similar REVERT 
statement has intervened. I:E either of 
these two conditions is not me·t, the REVERT 
statement is treated as a null statement. 

The REWRIT'E statement 

Function: 

The REWRITE statemen't can be used only 
for update files. It replaces an existing 
record in a data set. 

General format: 

REWRITE FILE (file-name) 
[FROM (variable) ] 
[KEY (element-expression)] 
[EVENT (event-variable)] 

Syntax rules: 

1. The FILE specification, which includes 
the file name, and 'the options may be 
specified in any order. 

2. The file name is the name of the file 
containing the record to be rewritten. 
The file must have the UPDATE attri­
bute. 

3. The "variable" in the FRON option must 
be an unsubscripted level 1 variable 
(that is~ a variable not contained in 
an array or structure). It cannot 
have the DEFINED attribute and it 
cannot be a parameter. It represents 
the record that will replace the 
existing record in the specified file. 

General rules: 

1. If the file whose name appears in the 
FILE specification has not been 
opened, it is opened implicitly with 
the attributes RECORD and UPDATE. 

2. The KEY option must appear if the file 
has the DIRECT attribute; it cannot 
appear otherwise. The element­
expression is converted to a character 
string. This character string is the 
source key that determines which 
record is to be rewritten. For 
INDEXED SEQUENTIAL files in System/360 
implementations, the key must be the 
same as the one it replaces. 

3. The FROM option must be specified for 
UPDATE files having either the DIRECT 
attribute or both the SEQUENTIAL and 
UNBUFFERED attributes. A REWRITE 
statement in which the FROM option has 
not been specified has the following 
effect: if the last record was read by 
a READ statement with the INTO option, 
REWRITE without FROM has no effect on 
the record in the data set; if the 
last record was read by a READ state­
ment with the SET option, the record 
will be updated by whatever assign­
ments were made in the buffer iden­
tified by the pointer variable in the 
SET option. 

4. The EVENT option allows processing to 
continue while a record is being re­
written. This option cannot be speci­
fied for a SEQUENTIAL BUFFERED file. 

When control reaches a REWRITE state­
ment containing this option, the event 
variable is made active (that is, it 
cannot be associated with another 
event) and is given the completion 
value 'O'B, provided that the UNDEFI­
NEDFILE condition is not raised by an 
implicit file opening (see "Note" 
below). The event variable remains 
active and retains its 'O'B completion 
value until control reaches a WAIT 
statement specifying that event varia­
ble. At this time, either of the 
following can occur: 

a. If the REWRITE statement has been 
executed successfully and none of 
the conditions TRANSMIT. KEY, or 
RECORD has been raised as a result 
of the REWRITE, the event variable 
is set complete (given the comple­
tion value 'l'B), and the event 
variable is made inactive (that 
is, it can be associated with 
another event). 

b. If the REWRITE statement has 
resulted in the raising of TRANS­
MIT, KEY, or RECORD, the interrupt 
for each of these conditions does 
not occur until the WAIT is 
encountered. At such time, the 
corresponding on-units (if any) 
are entered in the order in which 
the conditions were raised. After 
a return from the final on-unit, 
or if one of the on-units is 
terminated by a GO TO statement, 
the event variable is given the 
completion value 'l'B and is made 
inactive. 

Note: If the REWRITE statement causes 
an--implicit file opening that results 
in the raising of UNDEFINEDFILE, the 
on-unit associated with this condition 

Section J: Statements 321 



5 .. 

is entered immediately and the event 
variable remains unchanged, that is, 
the event variable remains inactive 
and retains the same value it had when 
the REWRITE was encountered. If the 
on-Unit does not correct the condi­
tion, then, upon normal return from 
the on-unit, the ERROR condition is 
raised; if the condition is corrected 
in the on-unit, that is, if the file 
is opened successfully, then, upon 
normal return from the on-unit, the 
event variable is set to 'O'B, it is 
madE! active, and execution of the 
REWRITE statement continues. 

If the record rewritten is one 
was locked in the same task, 
becomes unlocked. 

that 
it 

The ~IGNAL statement 

Function: 

The SIGNAL statement simulates the occu­
rence of an interrupt. It may be used to 
test the current action specification for 
the associated condition. 

General format: 

SIGNAL condition; 

Syntax rule: 

The "condition" is 
described in section H, 

anyone of those 
"ON-Conditions." 

Generai rules: 

1. When a SIGNAL statement is executed, 
it is as if the specified condition 
has actually occurred. Sequential 
execution is interrupted and control 
is transferred to the current on-unit 
for the specified condition. After 
the on-unit has been executed, control 
normally returns to the statement 
immediately following the SIGNAL 
stat.ement. 

2. The on-condition CONDITION can cause 
an interrupt only as a result of its 
specification in a SIGNAL statement. 

3. If the specified condition is disa­
bled, no interrupt occurs, and the 
SIGNAL statement becomes equivalent to 
a null statement. 

4. If there is no current on-unit for the 
specified condition, then the standard 
system action for the condition is 
performed. 

322 

The STOP Statement 

Function: 

The STOP statement causes immediate ter­
mination of the major task and all sub­
tasks 

General format: 

STOP; 

General rule: 

Prior to any termination activity the 
FINISH condition is raised in the task in 
which the STOP is executed. On normal 
return from the FINISH on-unit, all tasks 
in the program are terminated. 

The UNLOCK Statement 

Function: 

The UNLOCK statement makes the specified 
locked record available to other tasks for 
operations on the record. 

General format: 

UNLOCK option-list; 

Following 
list": 

is the format of 

FILE{filename) KEY (expression) 

General rules: 

1. The options may appear in 
order. 

"option 

either 

2. The FILE (filename) option specifies 
the file involved, which must have the 
attributes UPDATE, DIRECT, and 
EXCLUSIVE. 

3. In the KEY (expression) option, the 
"expression" is converted to a charac­
ter string and determines which record 
is unlocked. 

4. A record can be unlocked only by the 
task which locked it. 



The WAIT statement 

Function: 

The execution of a WAIT statement within 
an activation of a block retains control 
for that activation of that block within 
the WAIT statement until certain specified 
events have completed. 

General format: 

WAIT (event-name C, event-name] .... ) 
[(element-expression)]; 

General rules: 

1. Control for a given block activation 
remains within this statement until" 
at possibly separate times during the 
execution of the statement, the condi­
tion 

COMPLETION (event-name) = 'l'B 

has been satisfied, for some or all of 
the event names in the list. 

2. If the optional expression does not 
appear, all the event n.ames in the 
list must satisfy the above condition 
before control returns to the next 
stat.ement in this task following the 
WAIT. 

3. If the optional expression appears, 
the expression is evaluated when the 
WAIT statement is execu1:.ed and con­
verted to an integer. This integer 
specifies the number of events in the 
list that must satisfy 1:.he above con­
dition before control for the block 
passes to the statement following the 
WAIT. Of course, if an on-unit 
entered due to the WAIT is terminated 
abnormally, control might not pass to 
the statement following 1:he WAIT. 

If the value of the E~xpression is 
zero or negative, the vlAIT statement 
is treated as a null s1:atement. If 
the value of the expres3ion is greater 
than the number, n, of E~vent names in 
the list, the value is taken to be n. 
If the statement refers to an array 
event name, then each of the array 
elements contributes to t:he count. 

4. If the event variable named in the 
list has been associated with a task 
in its attaching CALL st:atement, then 
the condition in Rule 1( \<I7i1l be satis­
fied on termination of that task. 

5. If the event variable named in the 

list is associated with an 
input/output operation initiated in 
the same task as the WAIT~ the condi­
tion in Rule 1 will be satisfied when 
the input/output operation is complet­
ed,. The execution of the WAIT is a 
necessary part of the completion of an 
input/output operation. If prior to, 
or during, the WAIT all transmission 
associated with the input/output oper­
ation is terminated., then the WAIT 
performs the following action: If the 
transmission has finished without 
requiring any input/output conditions 
to be raised., the event variable is 
set complete (i.e.~ COMPLETION (event 
name) = 'l'B). If the transmission 
has been terminated but has required 
conditions to be raised# the event 
variable is set abnormal (i.e., 
STATUS(event name) = 1) and all the 
required ON conditions are raised. On 
return from the last on-unit, the 
event variable is set complete. 

6~ The order in which ON conditions for 
different input/output events are 
raised is not dependent on the order 
of appearance of the event names in 
the list. If an ON condition for one 
event is raised~ then all other condi­
tions for that event are raised before 
the WAIT is terminated or before any 
other input/output conditions are 
raised unless an abnormal return is 
made from one of the on-units thus 
entered. The raising of ON conditions 
for one event implies nothing about 
the completion or termination of 
transmission of other events in the 
list. 

7. If an abnormal retu~n is made from any 
on-unit entered from a WAIT" the asso­
ciated event variable is set complete, 
the execution of the WAIT is terminat­
ed" and control passes to the point 
specified by the abnormal return. 

8. If some of the event names in the WAIT 
list are associated with input/output 
operations and have not been set com­
plete before the WAIT is terminated 
(either because enough events have 
been completed or due to an abnormal 
return), then these incomplete events 
will not be set complete until the 
execution of another WAIT referring to 
these events in this same task. 

Section J: Statements 323 



Example: 

PI: PROCEDURE~ 

CALL P2 EVENT(EP2)~ 

WAIT(EP2); 

END: 

~rhe CALL statement, when executed., 
attaches a task whose completion sta­
t.us is associated with the event name 
1!:P2. When the WAIT statement is 
encountered, the execution of the task 
is suspended until the value of 
1!:VENT(EP2) is'l'B, i.e." until the 
attached task is completed. 

Function: 

The WRITE statement is a RECORD trans­
mission statement that transfers a record 
from a variable in internal storage to an 
OUTPUT or UPDATE file,. 

General format: 

WRITE FILE (file-name) FROM (variable) 
[KEYFROM(element-expression) ] 
[EVENT(event-variable}]: 

Syntax rules: 

1. The E'ILE and FROM specifications and 
the KEYFROM and EVENT options may 
appear in any order. 

2. 'rhe "file name" specifies the file in 
T.-lhich the record is to be written. 
'rhis file must be a RECORD file that 
has either the OUTPUT attribute or the 
DIRECT and UPDATE attributes. 

3. The "variable" in the FROM specifi­
cation must be an unsubscripted level 
1 variable (i.e., a variable not con­
tained in an array or structure). It 
cannot have the DEFINED attribute and 
it caTh~ot be a parameter. It contains 
the record to be written. 

General rules: 

1. If the file is not open., it is opened 
implicitly with the attributes RECORD 

324 

and OUTPUT (unless UPDATE has been 
declared). 

2. If the KEYFROM option is specified, 
the "element expression" is converted 
to a character string. This character 
string is the source key that speci­
fies the relative location in the data 
set where the record is written. For 
REGIONAL (2), REGIONAL (3), and 
INDEXED data sets" with the F Compiler 
KEYFROM also specifies a recorded key 
whose length is determined by the 
KEYLEN subparameter. 

3. The EVENT option allows processing to 
continue while a record is being writ­
ten. This option cannot be specified 
for a SEQUENTIAL BUFFERED file. 

when control reaches a WRITE statement 
containing this option, the "event 
variable" is made active (that is., it 
cannot be associated with anot.her 
event) and is given the complet~ion 
value 'O'B, provided that the UNDE:FI­
NEDFILE condition is not raised by an 
implicit file opening (see "Note" 
below) • The event variable rema.ins 
acti ve and retains its '0' B complet~ion 
value until control reaches a VirAIT 
statement specifying that event varia­
ble. At this time" either of the 
following can occur: 

a. If the WRITE statement has been 
executed successfully and none of 
the conditions TRANSMIT, KEY" or 
RECORD has been raised as a result 
of the WRITE, the event variable 
is set complete (given the comple­
tion value 'l'B)~ and the event 
variable is made inactive" t:hat 
is, it can be associated 'Y7i th 
another event. 

b. If the WRITE statement has result­
ed in the ra~s~ng of TRANS~UT, 
KEY, or RECORD~ the interrupt for 
each of these conditions does not 
occur until the WAIT is encoun­
tered. At such ti me" the corres­
ponding on-units (if any) are 
entered in the order in which the 
conditions were raised. After a 
return from the final on-uni t., or 
if one of the on-units is tel::-mi­
nated by a GO TO statement, the 
event variable is given the Gom­
pletion value ('l'B) and is made 
inactive. 

Note: If the WRITE statement causes an 
implicit file opening that results in 
the raising of UNDEFINEDFILE, the on­
unit associated with this condition is 
entered imrnedia tely and the e'i7ent 
variable remains unchanged; that is, 



the event variable remains inactive 
and retains the same value it had when 
the WRITE was encountered. If the 
on-unit does not correct the condi­
tion, then, upon normal return from 
the on-unit, the ERROR condition is 
raised; if the condition is corrected 
in the on-unit, that is, if the file 
is opened successfully, then upon nor­
mal return from the on-unit, the event 
variable is set to 'O'B, it is made 
active, and execution of the WRITE 
statement continues. 

PREPROCESSOR STATEMENTS 

All of the state,ments thait can be exe­
cuted at the preprocessor stage are pre­
sented alphabetically in 'this section. 

The %ACTIVATE Statement 

Function: 

The appearance of an identifier in a 
%ACTIVATE statement makes it active and 
eligible for replacement; that is, any 
subsequent encounter of that identifier in 
a nonpreprocessor statement, while the 
identifier is active, will initiate 
replacement activity. 

General format: 

% [label:]. '. • ACTIVATE id~entifier 
[,identifier] •.• ; 

Syntax rules: 

1. Each identifier must be either a prep­
rocessor variable or a preprocessor 
procedure name. 

2. A %ACTIVATE statement cannot appear 
within a preprocessor procedure. 

General rules: 

1. An identifier cannot be activated ini­
tially by a %ACTIVATE statement; the 
appearance of that identifier in a 
%DECLARE statement serves that pur­
pose. An identifier can be activated 
by a %ACTIVATE statement ()nly after it 
has been deactivated by a %DEACTIVATE 
statement. 

2. When an identifier is active (and has 
been given a value -- if it is a 
preprocessor variable) allY encounter 
of that identifier within a nonprepro-

cessor statement will initiate 
replacement activity in all cases 
except when the identifier appears 
within a comment or within single 
quotes. 

Example: 

If the source program contains the fol­
lowing sequence of statements: 

% DECLARE I FIXED, T CHARACTER; 

% DEACTIVATE I; 

% I 15; 

% T 'A(I)' ; 

S I*T*3; 

% I = 1+5; 

% ACTIVATE I; 

% DEACTIVATE T; 

R = I*T*2; 

then the preprocessed text generated by the 
above would be as follows (replacement 
blanks are not shown): 

S I*A(I>*3; 

R 20*T*2; 

The % Assignment Statement 

Function: 

The % assignment statement is 
evaluate preprocessor expressions 
assign the result to a preprocessor 
ble. 

General format: 

used to 
and to 
varia-

%[label:l ••• preprocessor-variable = 
preprocessor-expression; 

General rule: 

When the value assigned to a preproces­
sor variable is a character string, this 
character string should not contain a prep­
rocessor statement, nor should it contain 
unmatched comment or string delimiters. 

Section J: Statements 325 



The %DEACTIVATE Statement 

Funct~ion: 

The ap~earance of an identifier in a 
%DEACTIVATE statement makes it inactive and 
ineligible for replacement; that is, any 
subsequent encounter of that identifier in 
a nonpreprocessor statement will not ini­
tiate any replacement activity (unless, of 
course, the identifier has been reactivated 
in the interim). 

General format: 

%[label:] ••• DEACTIVATE identifier 
[,identifier] ••• ; 

Syntax rules: 

1. Each "identifier" must 
preprocessor variable, 
built-in function, or a 
procedure name. 

be either a 
the SUBSTR 

preprocessor 

2. A %DEACTIVATE statement cannot appear 
within a preprocessor procedure. 

General rule: 

The deactivation of an identifier does 
not strip it of its value, nor does it 
prevent it from receiving new values in 
subsequent preprocessor statements. Deac­
tivation simply prevents any replacement 
for a particular identifier from taking 
place. 

The %DECLARE Statement 

Function: 

The %DECLARE statement establishes an 
identifier as a preprocessor variable or a 
preprocessor procedure name and also serves 
to activate that identifier. An identifier 
must appear in a %DECLARE statement before 
it can be used as a variable or a procedure 
name in any other preprocessor statement. 

General format: 

The general format is shown in Figure 
J-3. 

Syntax rules: 

1. CHARACTER or FIXED must be specified 
if the "identifier" is a preprocessor 
variable; an entry declaration must be 
specified if the "identifier" is a 
preprocessor procedure name. 

2. Only the attributes shown in the above 
format can be specified in a %DECLARE 
statement. 

3. 

4. 

Factoring of attributes is allowed as 
for nonpreprocessor DECLARE state­
ments. 

Any label attached to a %DECLARE 
statement is ignored by the scan. 

General rules: 

1. No length 'can be specified with the 
CHARACTER attribute. If CHARACTER is 
specified, it is assumed that the 
associated identifier represents a 
varying-length character string that 
has no maximum length. 

2. A preprocessor declaration is not 
known until it has been encountered by 
the scan. If a reference to a prepro­
cessor variable or procedure is 
encountered in a preprocessor state­
ment before the declaration for that 
variable or procedure has been 
scanned, then the reference is in 
error. 

3. The scope of all preprocessor varia­
bles, procedure names, and labels is 
the entire source program scanned by 
the preprocessor, not including any 
preprocessor procedures that redeclare 
such identifiers. The scope o:E a 
declaration in a preprocessor proce­
dure is limited to that procedure. 

r------------------------------------------------------------------------------------.---, 
1%[label:l ••• DECLARE identifier {FIXEDICHARACTERlentry-declaration} 
I 
I 
I 

[,identifier {FIXEDICHARACI'ERlentry-declaration}l ••• ; 

Iwhere the format of "entry declaration" is: 
I 
I 
I 

ENTRY[([CHARACTERIFIXED] 
[, [CHARACTERIFIXED]] ••• )] 

I RETURNS (CHARACTER I FIXED) ~ L _______________________________________________________________________________________ J 

Figure J-3. General Format of the %DECLARE Statement 

326 



4. An entry declaration must be specified 
for each preprocessor procedure in the 
source program. The ENTRY attribute 
specifies the number (and attributes, 
if desired) of the parameters of the 
procedure: the RETURNS attribute spe­
cifies the attribute of the value 
returned by that procedure. 

The ENTRY attribute in the entry dec­
laration must account for every param­
eter specified in the % PROCEDURE 
statement of the preprocessor proce­
dure. If the procedure has no param­
eters, ENTRY must be specified without 
the parenthesized list following; if 
the procedure has one parameter, ENTRY 
followed by empty closed 
parentheses -- ENTRY () -- will suf­
fice; if the procedure has more than 
one parameter. the place of each addi­
tionalparameter must be kept by a 
comma. Thus, ENTRY (, ,F'IXED) speci­
fies three parameters, the third of 
which has the attribute FIXED; the 
preprocessor~akes no assumptions 
about the attributes of the first two. 

The RETURNS attribute specifies the 
attribute of the value to be returned 
by the preprocessor procedure to the 
pOint of invocation. If, in fact, the 
attribute of the value does not agree 
with the attribute specified by 
RETURNS, no conversion is performed 
and errors may result. 

See "Preprocessor Procedures" in Part 
I, Chapter 12, "Compile-Time Facili­
ties," for a discussion of the above 
attributes, as well as a discussion of 
the association of arguments and par­
ameters at the time of invocation. 

5. After a %DECLARE statement has been 
executed; it is replaced by a null 
s'tatement so that any subsequent scan­
ning through the statement has no 
effect. 

The IDO Statement 

Function: 

The %DO statement is used in conjunction 
with a %END statement to delimit a prepro­
cessor DO-group. It cannot be used in any 
other way. 

General format: 

% [label:] .... DO [i=ml [BTOy m2 [BY m3~]; 
m3 [TO m2~ 

Syntax rule: 

The "in represents a preprocessor varia­
ble, and "ml," "m2," and "m3" are prepro­
cessor expressions. 

General rule: 

The expansion of a preprocessor DO-group 
is the same as the expansion for a corres­
ponding nonpreprocessor DO-group and Hi," 
"ml," "m2," and "m3" have the same meaning 
that the corresponding expressions in a 
nonpreproGessor DO-group have. 

See "Preprocessor DO-Groups" in Part I, 
Chapter 12, "Compile-Time Facilities," for 
a discussion and an example of its use. 

The %END Statement 

Function: 

The %END statement is used in conjunc­
tion with %DO or %PROCEDURE statements to 
delimit preprocessor DO-groups or prepro­
cessor procedures. 

General format: 

% [label:] ••• END [label]: 

Syntax rule: 

The label following END must be a label 
of a %PROCEDURE or %DO statement. Multiple 
closure is permitted. 

The %GO TO Statement 

Function: 

The %GO TO statement causes the prepro­
cessor to continue its scan at the speci­
fied label. 

General format: 

% [label:] .... {GO TOIGOTO} label; 

General rules: 

1. The label following the keyword GO TO 
determines the point to which the scan 
will be transferred. It must be a 
label of a preprocessor statement. 
although it cannot be the label of a 
preprocessor procedure. 

section J: Statements 327 



2. 

3. 

A preprocessor GO TO statement appear­
ing within a preprocessor procedure 
cannot transfer control to a point 
outside of that procedure. In other 
words, the label following GO TO must 
be contained within the procedure. 

See "The %INCLUDE Statement" for a 
restriction regarding the use of %GO 
TO with included text. 

Function: 

The %IF statement can control the flow 
of the scan according to the value of a 
preprocessor expression. 

General format: 

%[label:l ••• IF preprocessor-expression 

%THEN preprocessor-clause-l 

[%ELSE preprocessor-clause-21 

Syntax rule: 

A preprocessor clause is any single 
preprocessor statement other than %DECLARE, 
%PROCEPURE., %END, or %DO (percent symbol 
included) or a preprocessor DO-group 
(percent symbols included). Otherwise, the 
syntax is the same as that for non­
preprocessor IF statements. 

General rules: 

1. The preprocessor expression is 
evaluated and converted to a bit 
string (if the conversion cannot be 
made, it is an error). If any bit in 
the string has the value 1, clause-l 
is executed and clause-2, if present, 
is ignored; if all bits are 0, 
clause-l is ignored and clause-2, if 
present, is executed. In either case, 
the scan resumes immediately following 
the IF statement, unless, of course, a 
%GO TO in one of the clauses causes 
the scan to resume elsewhere. 

2. %IF statements can be nested according 
to the rules for nesting nonpreproces­
sor IF statements. 

328 

The %INCLUDE Statement 

Function: 

The % INCLUDE statement is used ·to 
include (incorporate) strings of external 
text into the source program being scanned. 
This included text can contribute to the 
preprocessed text being formed. 

General format: 

The %INCLUDE statement is defined as 
follows for the F Compiler: 

%[label:l ••• INCLUDE 

I ddname-l (member-name-l> I 
member-name-l \ 

[

, ddname- 2 (member-name- 2 ~ 

,member-name-2 J 
Syntax rules: 

. ' .. , 

1. Each "ddname" and "member name" pair 
identifies the external text to be 
incorporated into the source program. 
This external text must be a membf~r of 
a partitioned data set. 

2. A "ddname" specifies the ddname occur­
ring in the name field of the 
appropriate DD statement. Its asso­
ciated "member name" specifies the 
name of the data set member to be 
incorporated. If "ddname n is omitted, 
SYSLIB is assumed, and the SYSLIB DD 
statement is required. 

3. A %INCLUDE statement cannot be us~=d in 
a preprocessor procedure. 

General rules: 

1. Included text can contain nonprepro­
cessor and/or preprocessor statemE~nts. 

2. The included text is scanned, in 
sequence, in the same manner as the 
source program; that is, preprocE~ssor 
statements are executed and replace­
ments are made where required. 

3. %INCLUDE statements can be nested.. In 
other words, included text also can 
contain %INCLUDE statements. A %GO TO 
statement in included text can trans­
fer control to a point in the source 
program or in any included text at an 
outer level of nesting, but the rev­
erse is not permitted. An. analogous 
situation exists for nested DO-groups 
that specify iterative execution: con­
trol can be transferred from an inner 



group to an outer, containing group~ 
but not from an outer group into an 
inner, contained group. 

4. Preprocessor statements in included 
text must be complete. It is not 
permissible, for example, to have half 
of a %IF statement in included text 
and half in the other part of the 
source program. 

Example: 

If the source program contained the 
following sequence of statements: 

%DECLARE (FILENAME1, FILENA1~E2) 

CHARACTER; 

% FILENAMEl 'MASTER' ; 

% FILENAME2 'NEWFILE' ; 

% INCLUDE DCLS; 

and if the SYSLIB member nam~~ DCLS con­
tained: 

DECLARE (FILENAME1, FILENAME2) 
FILE RECORD INPUT 
DIRECT KEYED; 

then the following would be inserted into 
the preprocessed text: 

DECLARE (MASTER, NEWFILE) 
FILE RECORD INPUT 
DIRECT KEYED; 

Note that this is a way in which a 
central library of file declarations can be 
used, with each user supplying his own 
names for the files being declared. 

The % Null Statement 

Function: 

The % null statement can be used to 
provide transfer targets for %GO TO state­
ments. It is also useful for balancing 
EI.SE clauses in nested %IF statements. 

General format: 

% [label:] ••• ; 

The %PROCEDURE Statement 

Function: 

The %PROCEDURE statement is used in 
conjunction with a %END statement to delim­
it a preprocessor procedure. such a prep­
rocessor procedure is an internal function 
procedure that can be executed only at the 
preprocessor stage. 

General format: 

% label: [label:] ••• PROCEDURE 
[(identifier [, identifier] ••• )] 
{CHARACTERIFIXED}; 

Syntax rules: 

1. Each "identifier" is a parameter of 
the function procedure. 

2. One of the attributes CHARACTER or 
FIXED must be specified to indicate 
the type of value returned by the 
function procedure. There can be no 
default. 

General rules: 

1. The only statements and groups that 
can be used within a preprocessor 
procedure are: 

a. the preprocessor assignment state-
ment 

b. the preprocessor DECLARE statement 

c. the preprocessor DO-group 

d. the preprocessor GO TO statement 

e. the preprocessor IF statement 

f. the preprocessor null statement 

g. the preprocessor RETURN statement 

All of these statements and the DO­
group must adhere to the syntax and 
general rules given for them in this 
sectiong with one exception; all 
percent symbols must be omitted. 

2. A GO TO statement appearing in a 
preprocessor procedure cannot transfer 
control to a point outside of that 
procedure. 

3. As implied by general rule 1" prepro­
cessor procedures cannot be nested. 

4. A preprocessor procedure can be 
invoked by a function reference in a 
preprocessor statement, or, if the 

Section J: Statements 329 



function procedure name is active, by 
the encounter of that name in a non­
preprocessor statement. 

Function: 

The preprocessor RETURN statement can be 
used only in a preprocessor procedure and, 
therefore, can have no leading %. It 
returns a value as well as control back to 
the ~oint from which the preprocessor pro­
cedute was invoked. 

330 

General format: 

[label:] ••• RETURN 
(preprocessor-expression); 

General rule: 

The value of the preprocessor expression 
is converted to the attribute specified in 
the %PROCEDURE statement before it is 
passed back to the point of invocation. If 
the point of invocation is in a nonprepro­
cessor statement, replacement activity can 
be performed on the returned value after 
that value has replaced the procedure ref­
erence. 



This section provides definitions for 
most of the terms used in this publication. 

access: the act that encompasses the ref­
erence -to and retrieval of data. 

action specification: in an ON statement, 
the on"-unit or the single keyword SYSTEM, 
either of which specifies the action to be 
taken whenever an interrupt results from 
raising of the named condition. 

activation: institution of execution of a 
block. A procedure block is activated when 
it is invoked at any of its entry points; a 
begin block is activated when it is encoun­
tered in normal sequential flow. 

active: 

1. the state in which a block is said to 
be after activation and before termi­
nation. 

2. the state in which a preprocessor 
variable or preprocessor procedure 1S 
said to be when its value can replace 
the corresponding identifier in source 
program text. 

3. the state in which an event variable 
is said to be as a result of its 
appearance in the EVENT option of an 
executed RECORD input/output state­
ment. An event variable remains 
active, and, hence, cannot be asso­
ciated with any other input/output 
operation, until a WAIT statement nam­
ing that event variable has been exe­
cuted. 

~dditive attributes: file attributes for 
which there are no defaults and which, if 
required, must always be stated explicitly. 

address: a specific storage location at 
which a data item can be stored. 

adjustable (bounds and lengths): bounds or 
lengths that may be different for different 
allocations of the associated variable. 
Adjustable bounds and lengths are specified 
as variables, expressions, or asterisks, 
which are evaluated separately at each 
allocation. They cannot be used for STATIC 
data. 

allocated variable: a variable with which 
storage has ~een associated. 

allocation: the 
with a variable. 

association of storage 

SECTION K: DEFINITIONS OF TERI-1S 

alphabetic character: any of the charac­
ters A through Z and the alphabetic exten­
ders #, $, and @. 

alphameric character: an alphabetic char­
acter or a digit. 

alternative attributes: attributes that 
may be chosen from groups of two or more 
alternatives. If none is specified, a 
default is assumed. 

I 
area: a block of storage defined by an 
area variable and reserved, on allocation, 
for the allocation of based variables. 

arithmetic conversion: the transformation 
of a value from one arithmetic representa­
tion to another arithmetic representation. 

argument: an expression, file name, state­
ment label constant or variable, mathemati­
cal built-in function name, or entry name 
passed to an invoked procedure as part of 
the procedure reference. 

a:r-ithmetic data: data that has the charac­
teristics of base, scale. mode, and preci­
sion. It includes coded arithmetic data 
and numeric character data. 

arithmetic operators: any of the prefix 
operators, + and -, or the infix operators 
+, -~ *, /, and **. 

array: a named, ordered collection of data 
elements, all of which have identical 
attributes. An array has dimensions, and 
elements that are identified by subscripts. 
An array can also be an ordered collection 
of identical structures. 

array of structures: an ordered collection 
of structures formed by giving the dimen­
sion attribute to the name of a structure. 

assignment: giving a value to a variable. 

asynchronous: describes either the overlap 
of an input/output operation with the exe­
cution of statements, or the concurrent 
execution of procedures, using multiple 
flows of control. 

attachment of a task: the invocation of a 
procedure that is to be executed asynchron­
ously with the invoking procedure. 

attribute: a descriptive property asso­
ciated with a name or expression to des­
cribe a characteristic of data items, of a 

Section K: Definitions of Terms 331 



file, or of an entry point the name may 
represent. 

au~omatic stor~~ storage that is allo­
cated at the activation of a block and 
released at the termination of that block. 

~~the number system in terms of which 
an arithmetic value is represented. In 
PL/I, the base is binary or decimal. 

based s~orage: storage whose allocation 
and release is controlled by the program­
mer, with immediate access to all unfreed 
allocations. 

begin_!2lockl. a collection of statements 
headed by a BEGIN statement and ended by an 
END statement that delimits the scope of 
names and, in general, is activated by 
normal sequential statement flow. It con­
trols the allocation and freeing of auto­
matic storage declared in that block. 

binary"!' the nQmber system based on the 
value 2. 

bi.!:_~_ a binary digi"t, either 0 or 1. 

~it~ __ st~ing: a string composed of zero or 
more bits. 

Qi~~§~r!~~ operators: the operators 
,(not), &(and), and I(or). 

b~~ck~ a begin block or a procedure block. 

Q9~~d~ the upper and lower limits of an 
array dimension. 

buffer: an intermediate area, used in 
input/output operations, into which a 
record is read during input and from which 
a record is written during output. 

built-in function: one of the PL/I-defined 
functions. 

~a~l: the invocation of a subroutine by 
mean$ of the CALL statement or the CALL 
option of the INITIAL attribute. 

chc~~~tring.,!. A string composed of 
zero or more characters from the data 
character set. 

coded arithmetic data: arithmetic data 
whe>se--characteristics are g~v~n by the 
base, scale, mode, and prec1s10n attri­
bu1::es. 'I'he types for System/360 are packed 
decimal, binary full words, and hexadecimal 
floating-point. 

con~entl. a string of characters, used for 
documentation, which is preceded by /* and 
terminated by */ and which is treated as a 
blank. 

332 

comparison operators: the operators ,< < 
<=,= >= > ,> 

compile time,: in general, the time during 
which a source program is translated into 
an object module. In PL/I, it is the time 
during which a source program can be 
altered (preprocessed), if desired, and 
then translated into an object program. 

compiler: a translator that converts a 
source program into an object module. It 
consists of two stages, a preprocessor and 
a processor. 

complex data: arithmetic data consisting 
of a real part and an imaginary part. 

compound statement: a statement that con­
tains other statements. IF and ON are the 
only compound statements. 

concatenation: the operation that connects 
two strings in the order indicated, thus 
forming one string whose length is equal to 
the sum of the lengths of the two strings. 
It is specified by the operator II. 

condition name: a language keyword that 
represents an exceptional condition that 
might arise during execution of a program. 

condition prefix: a parenthesized list of 
one or more condition names prefixed to a 
statement by a colon. It determines wheth­
er or not the program is to be interrupted 
if one of the specified conditions occurs 
within the scope of the prefix. Condition 
names within the list are separated by 
commas. 

constant: an arithmetic or string data 
item that does not have a name; a statement 
label. 

contained in: all of the text of a block 
except any entry names of that block. (A 
label of a BEGIN statement is not contained 
in the begin block defined by that state­
ment. ) 

contextual declaration: the association of 
attributes with an identifier according to 
the context in which the identifier 
appears. 

controlled storage: storage whose alloca­
tion and release is controlled by the 

I programmer, with immediate access to the 
latest allocation only. 

conversion: the transformation of a value 
from one representation to another. 

cross section of an array: every element 
represented by the extent of at least one 
dimension of an array. An asterisk in the 
place of a subscript in an array reference 



indicates the 
dimension. 

entire ext:ent of 

data: representation of infonnation or 
value'. 

that 

of 

data character set: all of those charac­
ters whose bit configuration is recognized 
by the computer in use. 

data-directed transmission: the type of 
STREAM input and output in which self­
identifying data of the type. variable-name 
= value, is transmitted. 

data item: a single 1.mit of data; it is 
synonymous with "element~n 

data list: a list of expressions used in a 
ETREAM input/output specification that 
represent storage areas to which data items 
are to be assigned during input or from 
which data items are to be obtained on 
output. (On input., the list may contain 
only variables.) 

data set: a collection of dat~a external to 
the program. 

data specification: the portion of a 
stream-oriented data transmiss: ion statement 
that specifies the mode of transmission 
(DATA, LIST" or EDIT) and includes the data 
list and, for edit-directed "transmission" 
the format list. 

deactivated: the state in which a prepro­
cessor variable is said to be when its 
value cannot rep~ace the corresponding 
identifier in source program t.ext. 

decimal: the number system based on the 
value 10. 

declaration: the association of attributes 
with an identifier explicitly., contextual­
ly, or implicitly. 

default: the alternative assumed when an 
identifier has not been decla.red to have 
one of two or more alternative attributes. 

delimiter: any valid special character or 
combination of special characters used to 
separate identifiers and constants, or 
statements from one another. 

dimensionality: the number of bounds 
specifications associated with an array. 

disabled: the state in which the occur­
rence of a particular condition will not 
result in a program interrupt. 

DO-group: a sequence of statements headed 
by a DO statement and closed by its corres­
ponding END statement .• 

dummy argument: a compiler-assigned varia­
ble for an argument that has no programmer­
assigned name or whose attributes do not 
agree with those declared with the ENTRY 
attribute for the corresponding parameter. 

edit-directed transmission: that type of 
STREAM transmission for which both a data 
list and a format list are specified .• 

element: a single data item as opposed to 
a collection of data items., such as a 
structure or an array. (Sometimes called a 
"scalar item. ") 

element variable: a variable that can 
represent only a single value at anyone 
point in time. 

enabled: that state in which the occur­
rence of a particular condition will result 
in a program interrupt. 

entry name: a label of a PROCEDURE or 
ENTRY statement. 

entry point: a point in a procedure at 
which it may be invoked by reference to the 
entry name. (See primary entry point and 
secondary entry point.) 

epilogue: those processes which occur at 
the termination of a block." 

event: an identifiable point in the execu­
tionof a program. 

event name: the identifier used to refer 
to an event variable. 

event variable: a variable associated with 
an event; its value shows whether an event 
is complete and the status of the comple­
tion .• 

exceptional condition: an occurrence, 
which can cause a program interrupt, of an 
unexpected situation, such as an overflow 
error, or an occurrence of an expected 
situation~ such as an end of file, that 
occurs at an unpredictable time. 

explicit declaration: the assignment of 
attributes to an identifier by means of the 
DECLARE statement" the appearance of the 
identifier as a label, or the appearance of 
the identifier in a parameter list. 

exponent Cof floating-point constant): a 
decimal integer constant specifying the 
power to which the base of the floating­
point number is to be raised .. 

expression: the representation of a value; 
examples are variables and constants 
appear1ng alone or in combination with 
operators~ and function references. The 
term "expression" refers to an element 

section K: Definitions of Terms 333 



expression, an array expression, 
structure expression. 

or a 

external declaration: an explicit or con­
textual declaration of the EXTERNAL attri­
bute for an identifier. such an identifier 
is known in all other blocks for which such 
a declarat-ion exists. 

external name: an identifier which has the 
EXTERNAL attribute. 

exte~!!alJ>l='ocedu!:~l. a procedure that is 
not contained in any other procedure. 

field (in the data stream): that portion 
of the dat:a stream whose width. in number 
of characters, is defined by a single data 
or spacing format item. 

f ield __ (_o_f_~_picture speci fication) : a 
character-string picture specification or 
that port:ion (or all) of a numeric charac­
ter picture specification that describes a 
fixed-point number. If more than one field 
appears in a single specification" they are 
divided by the F scaling-factor character 
for f ixed-'point data, the K or E exponent 
character for floating-point data" or the M 
field-separator for sterling data. 

file: a symbolic representation, within a 
program, of a data set. 

file ~ame~ a symbolic name used within a 
program to refer to a data set. 

format item: a specification used in edit­
directed -transmission to describe the 
representation of a data item in the stream 
or to control the format of a printed page. 

format list: a list of format items 
required for an-edit-directed data specifi­
cation. 

func~ion~ a procedure that is invoked by 
the appearance of one of its entry names in 
a function reference. 

function reference: the appearance of an 
entry name in an expression, usually in 
conj unction with an argument 1 ist. 

generation (of a block): a particular 
activation of a block. 

Qeneration (of data): a particular alloca­
tion-of controlled or automatic storage. 

generiC k~ a character string that iden­
tifiesa class of keys: all keys that begin 
with the string are members of that class. 
For example. the recorded keys 'ABCD' I' 
'ABCE', and 'ABDF' are all members of the 
classes identified by the generic keys 'A' 
and 'AB', and the first two are also 
members o:E the class • ABC': and the three 

334 

I
recorded keys can be considered to be 
unique members of the classes 'ABCD', 
"ABCE',. and 'ABDF',. respectively. 

~neric name: the name of a family of 
entry names. A reference to the namE! is 
replaced by the entry name whose entry 
attribute matches the attributes of the 
argument list. 

group: a DO-group. 

identifier: a string of alphameric and 
break characters, not contained in a com­
ment or constant. preceded and followed by 
a delimiter and whose initial character is 
alphabetic. 

imaginary number: a number' whose fac1:ors 
include the square root of -1. 

implicit declaration: association of 
attributes with an identifier used as a 
variable without having been explicitly or 
contextually declared; default attributes 
apply, depending upon the initial letter of 
the identifier. 

inactive block: a procedure or begin block 
that has not been activated or that- has 
been terminated. 

inactive event variable: an event variable 
that is not currently associated with an 
event. 

infix operator: an operator that defines 
an operation between two operands. 

initial procedure: an external procedure 
whose PROCEDURE statement has the OPTIONS 
(MAIN) attribute,. Every PL/I program must 
have an initial procedure. It is invoked 
automatically as the first step in the 
execution of a program. 

input/output: the transfer of data bet'i'leen 
an external medium and internal storage. 

interleaving of subscripts: a subscript 
notation used with subscripted qualified 
names that allows one or more of the 
required subscripts to immediately follow 
any of the component names. 

internal block: a block that is contained 
wi thin another block,. 

internal name: an identifier that has the 
INTERNAL attribute. 

internal procedure: a procedure that is 
contained in another block. 

internal to: all of the text contained in 
a block except that text contained in 
another block. Thus the text of an inter­
nal block (except for its entry names) is 



not internal to the 
Note: An entry name of 
contained in that block. 

containing 
a block 

block. 
is not 

interrupt: the suspension ()f normal pro­
~ram activities as the result of the occur­
rence of an enabled condition. 

invoke: to activate a procedure at one of 
its entry points; to enter an on-unit. 

invoked procedure: a procedure 
been acti vated at one of i ts E~ntry 

that has 
points. 

invoking block: a block containing 
statement that activates another block. 

a 

iteration factor: an expression that spe­
cifies: 

1. the number of consecutivE! elements of 
an array that are to be initialized 
with a given constant. 

2. the number of times a given format 
item or list of format items is to be 
used in succession in a format list. 

key'!" see sour£~~ and recorded key. 

I 

key class: a set of keys that begin ~ith a 
common character string; this character 
string is the generic key for the class. 

keyword: an identifier that is part of the 
language and which, when used in the proper 
context, has a specific meaning to the 
compi.ler. 

known: a term that is used to indicate the 
scope of an identifier. For example" an 
identifier is always known in the block in 
which it has been declared. 

label constant: synonymous wi·th statement 
label. 

label prefix: an unparenthesi:zed identifi­
er prefixed to a statement by a colon. 

leading zeros: zeros that have no signifi­
cance in the value of an arithmetic number; 
all zeros to the left of the first signifi­
cant digit C1through 9) of a number. 

level number: an unsigned decimal integer 
constant specifying the hierachy of a name 
in a structure. It appears to the left of 
the name and is separated from it by a 
blank. 

level-one variable: a major structure 
name; any unsubscripted data variable not 
contained within a structure. 

list-directed transmission: t;he type of 
STREAM transmission in which datq. in the 

stream appears as 
blanks or commas. 

constants separated by 

lis~rocessing: the use of based varia­
bles and locator variables to build chains 
or lists of data. 

locator variable: a variable whose value 
identifies an allocation of a based varia­
ble in storage. Pointer variables and 
offset variables are the two types of 
locator variables. 

~jor structure: a structure whose name is 
declared with level number 1. 

major task: the task that has control at 
the outset of execution of a. program .• 

minor structure: a structure whose name is 
declared with a level number greater than 
1. 

mode: real or complex designation for an 
arithmetic value. 

multiple declaration: two or more declara­
tions of the same identifier internal to 
the same block without different qualifica­
tions, or two or more EXTERNAL declarations 
of the same identifier as different names 
within a single program. 

multiprogramming: the use of a computing 
system to execute a number of instructions 
concurrently. 

multitasking: the PL/I facility that 
allows the programmer to make use of the 
multiprogramming capability of a system. 

name: an 
declared. 

identifier that has been 

1. the occurrence of a block within 
another block. 

2. the occurrence of a group within 
another group. 

3 .• the occurrence of an I F statement in a 
THEN clause or an ELSE clause. 

4. the occurrence of a function reference 
as an argument of another function 
reference. 

null locator value: a special locator 
value that cannot identify any location in 
storage; it gives a positive indication 
that. a locator variabl e does not currently 
identify any allocation of a based varia­
ble. 

null string: a string data item of zero 
length. 

section K: Definitions of Terms 335 



numeric character data: arithmetic data 
described by a picture that is stored in 
character form. It has both an arithmetic 
value and a character-string value. The 
picture must not contain either an A or an 
X picture specification character. 

offset variable: a locator variable whose 
value identifies a location in storage" 
relative to the start of an area. 

~it: the action to be executed upon 
the occurl~ence of the ON-condition named in 
the containing ON statement. 

operator: a symbol specifying an operation 
to be performed. See arithmetic operators, 
bit-strinq operators, comparison operators, 
and concatenation. 

optio!U. a specification in a statement 
that may be used by the programmer to 
influence the execution of the statement. 

packed decimal: the 
representation of a 
data item. 

Systeml360 
fix ed-point 

internal 
decimal 

Earameter~ a name in an invoked procedure 
that is used to represent an argument 
passed to that procedure. 

parameter-attribute list: a description in 
an ENTRY attribute specification that lists 
attributes of parameters of the named entry 
point. This enables dummy arguments to be 
createQ correctly. 

picture: a character-by-character specifi­
cation describing. the composition and 
attributes of numeric character and 
character-string data. It allows editing. 

point of invocation: the point in the 
invoking block at which the procedure ref­
erence to the invoked procedure appears. 

pOinter variable: 
value identifies 
storage. 

a locator variable whose 
an absolute location in 

prec:i sioru. 
ic variable 
of digit:s 
variables, 
decimal (or 

the value range of an arithmet­
expressed as the total number 
allowed and, for fixed-point 
the assumed location of the 
bina~y) point. 

pret ix.: a label or a parenthesized list of 
condition names connected by a colon to the 
beginning of a statement. 

pref ix operator: .an operator that pre­
cedes, and is associated with, a single 
operand. The prefix operators are , + -

preprocessed text: the output from the 
first stage of compile-time activity. This 
output is a sequence of characters that is 

336 

altered source program text and which 
serves as input to the processor stagE! in 
which the actual compilation is performed. 

preprocessor: the first of the two compil­
er stages. At this stage the source pro­
gram is examined for preprocessor stclte­
ments which are then executed, resultin9 in 
the alteration of the source program tE~xt. 

~eprocessor statements: special state­
ments appearing in the source program 1:hat 
specify how the source program text is to 
be altered; they are identified by a l.~d­
ing percent sign and are executed as they 
are encountered by the preprocessor (1::hey 
appear without the percent sign in prepro ... 
cessor procedures). 

primary entry point: the entry point named 
in the PROCEDURE statement. 

priority: the value that determines whleth­
er a task will take precedence over another 
task,. 

problem data: string or arithmetic a.a ta 
that is processed by a PL/I program. 

procedure: a block of statements# headed 
by a PROCEDURE statement and ended by an 
END statement, that defines a program 
region and delimits the scope of names and 
that is activated by a reference to its 
name. It controls allocation and freeing 
of automatic storage declared in that 
block. 

procedure reference: a function or subrou­
tine reference .• 

processor: the second of the two compiler 
stages,. The stage at which the prepro­
cessed text is compiled into an object 
module. 

program: a set of one or more extE!rnal 
procedures, one of which must have the 
OPTIONS (MAIN) attribute in its PROCHDURE 
statement,. 

program control data: data used in a PL/I 
program to affect the execution of the 
program. Program control data consists of 
the following types: label, event" 1:ask, 
pointerw offset~ and area. 

prOlogue: those processes that occur at 
the activation of a block. 

pseudo-variable: one of the built-in :Eunc­
tion names that can be used as a receiving 
field. 

pushed-down stack: a stack of allocat.ions 
to which new allocations are added. and 
removed from the top on a last-in, first­
out basis. 



qualified name: a sequence of names of 
structure members connected b~r periods" to 
uniquely identify a component of a 
structure. Any of the name~s may be sub-
scripted. 

receiving field: any field to which a 
value may be assigned. 

~d: the unit of transmission 
RECORD input or output operat~ion; in 
internal form of a level-one vrariable. 

in a 
the 

recorded key: a character st.ring recorded 
in a direct-access volume to identify the 
data record that immediately follows. 

recursion: the reactivation of a procedure 
while-it is already active. 

repetition factor: a parenthesized 
unsigned decimal integer const.ant preceding 
a string configuration as a shorthand rep­
resentation of a string constant. The 
repetition factor specifies the number of 
occurrences that make up the actual con­
stant. In picture specifications, the 
repetition factor specifies repetition of a 
single picture character. 

repetitive specification: an element of a 
data list that specifies controlled itera­
tion to transmit a list of data items, 
generally used in conjunction with arrays. 

returned value: the value returned by a 
function procedure to the point of invoca­
tion. 

scale: fixed- or floating-point represen­
tation of an arithmetic value. 

scope (of a condition prefix): the range 
of a program throughout which a condition 
prefix applies. 

scope (of a name): 
throughout which 
interpretation. 

the range of a program 
a name has a particular 

secondary entry point: 
defined by a label of an 
within a procedure. 

an entry point 
ENTRY statement 

source key: a character string referred to 
in a RECORD transmission statement that 
identifies a particular record within a 
direct-access data set. The source key may 
or may not also contain, as its first part. 
a substring to be compared with, or written 
as, a recorded k~y to positively identify 
the record. Note: The source key can be 
identical to the recorded key. 

source program: the program that serves as 
input to the compiler,. The source program 
may contain preprocessor statements. 

standard file: a file assumed by the com-
piler in the absence of a FILE or STRING 
option in a GET or PUT statement (the 
standard files are: SYSIN for input, SYS-
PRINT for output). 

statement: a basic element of a PL/I pro­
gram that is used to delimit a portion of 
the program, to describe data used in the 
program" or to specify action to be taken. 

statement label: an identifying name pre­
fixed to any statement other than a PROCE­
DURE or ENTRY statement. 

statement label variable: a variable 
declared with the LABEL attribute and thus 
able to assume as its value a statement 
label. 

static storage: storage that is allocated 
before execution of the program begins and 
that remains allocated for the duration of 
the program. 

st!.~l data being transferred from or to 
an external medium represented as a con­
tinuous string of data items in character 
form. 

string: a connected sequence of characters 
or bits that is treated as a single data 
item. 

structu~ a hierarchical set of names 
that refers to an aggregate of data items 
that mayor may not have different attri­
butes. 

subfield: the integer description portion 
or the fraction description portion of a 
pic·ture specification field that describes 
a noninteger fixed-point data item. The 
subfields are divided by the picture char­
acter '\l,. 

subroutine: a procedure that is invoked by 
a CALL statement or a CALL option. A 
subroutine cannot return a value to the 
invoking block, but it can alter the value 
of variables that are known within the 
invoking block. 

subscript: an element expression 
fying a location within a dimension 
array. A subscript can also be an 
isk" in which case it specifies the 
extent of the dimension. 

speci­
of an 
aster­
entire 

sub-task: a task that is attached by anoth­
er task; any task attached by this subtask 
is a subtask of both tasks. 

synchronous: describes serial execution of 
a program. using a single flow of control. 

task: the execution of one or more proce­
dures. 

Section K: Definitions of Terms 337 



task name: the identifier used to refer to 
a task variable. 

task variable: a variable whose value 
gives the relative priority of a task. 

termination of block: cessation of execu­
tion of a block, and the return of control 
to the activating block by means of a 
RETURN or END statement, or the transfer of 
control to the activating block or some 
other ac"ti ve block by means of a GO TO 
statement. A return of control to the 
operating system via a RETURN or END state-

338 

ment in the initial procedure or a STOP or 
EXIT statement in any block results in the 
termination of the program. See epi1o(~. 

termination of task: conclusion of the 
flow of control for a task. 

variable: a name that represents da.ta. 
Its attributes remain constant, but it can 
represent different values at diffe:rent 
times. Variables fall into three cateqor­
ies: element, array, and structure va:r-ia­
b1es. Variables may be subscripted an1/or 
qualified. 



% Assignment statement 325, 15~),161 
% Null statement 329,156,161 
%ACTIVATE statement 325,155-158,161 
%DEACTIVATE statement 326,155 1, 156,158,161 
%DECLARE.statement 326,155-158,161 
%DO statement 327,160,161 
%END statement 327,157,161 
%GO TO statement 327,156,161 

in included text 328 
%IF statement 328"161 

nesting of 162 
%INCLUDE statement 328,21,160,,161,192,193 
%PROCEDURE statement 329,157,158,161 

A format item 217,144,182 
A picture character 205,32,34,128,290 
Abbreviations of keywords 201 
ABNORMAL attribute 271 
Abnormal termination 70,77,78,309,322 

of on-units 148,78,260 
of procedures 78 
of program 78 
of task 186 

Access file attributes 91 
Action specification 148,257,313 

nullification of 149,320 
on-unit 148,313 
SYSTEM 148,313 

Activation 
of blocks 75 
of preprocessor entry names 155,157,325 
of preprocessor variables 155,157,325 
of SUBSTR at compile-time 1.60 

Active 
event variable 265,323 
preprocessor entry name 158 
preprocessor variable 158,325 

Active procedures, list of 148 
ADD built-in function 239 
Addition operation 48 

attributes of result of 231 
Additive attributes 90,92 
ADDR built-in function 252,169 
Aggregates 21,37 

arrays 37 
arrays of structures 40 
structures 39 

Algebraic comparison 50 
ALIGNED attribute 271,42,132,163,270 

effect on storage 164 
ALL built-in function 248 
ALLOCA'rE statement 

296,20,43,71,72,79,143,144,272 
use with based variables 169 

Allocation 
determination of 253 
dynamic 78 
of based storage 168,165 
of buffers 99 
of controlled storage 296 

within area 172 
of storage 78,20,71-73 
static 78,79 

ALLOCATION built-in function 253,298 
Allocation of storage 165 
Alphabetic characters 23 

in picture specifications 128 
Alphabetic extenders 85,96 

Alphameric characters 23 
Alternative attributes 90,91 
Ambiguous references 88,40 
"and" operation 49 
"and" symbol 49 
ANY built-in function 249 
Area arguments 175 
Area assignment 173 
AREA attribute 272,84,171 
AREA condition 260,173 
Area data 171,37 

input/output of 174 
Area parameters 175 
Area returns from entry points 176 
Area variables 165 

contextual declaration of 84 
defining 174 
examples of use 178 

Argument list 134,141 
Arguments 134,71,379 

array 143,144 
area 175 
constants as 140 
controlled 143 
default attributes for 136 
dummy 145 
entry name 141,145 
expressions as 140,144 
file name 145 
function references as 140 
in CALL statement 302 
in function reference 136 
label 145,135,137 

INDEX 

of arithmetic built-in functions 238 
offset 145,175 
of mathematical built-in functions 243 
of preprocessor functions 158 
of string built-in functions 234 
parentheses used with 140 
pointer 145,174,175 
string 145,143 
structure 145 

Arguments and parameters 
preprocessor 158 
relationship of 140 
types of 144 

Arithmetic built-in functions 238,233 
arguments of 238 
values returned by 238 

Arithmetic conversion 223,46,60 
base in 224,59 
mode in 223,46,59 
preclslon in 229,59,60 
scale in 229,59 
target attributes in 59 

Arithmetic data 28 
attributes for 269 
comparison of 50 
defaults for 274,284 

Arithmetic operations 46 
conversion in 47 
results of 231,47 
truncation in 48 

Arithmetic operators 24 
in preprocessor expressions 157 

Arithmetic to bit-string conversion 
227,46,230 

examples of 228 
Index 339 



length of result 230 
Arithmetic to character-string conversion 

225,45,230 
examples of 226 
length of result 230 

Arithmetic value of numeric character data 
206,128~290 

Array 37,21,270 
cross sections of 39 
dimensions of 37,278 
of structures 40 

Array arguments 145 
Array assignment 298 
Array bounds 37,278~296 

asterisks for 278,296 
expressions for 163 

based variables 167 
Array expressions 44,53. 

in array assignment 298 
data conversion in 54 
operands of 53 
with element operands 53 
with infix operators 53 
with prefix operators 53 

Array manipulation built-in functions 
247,233 

values returned by 247 
Array operations, results of 53 
Array parameters 145 
Array variables 37,108,270 
Arrow(pointer-qualifier) 166 
Assignment 

area 173 
array 298 
bit-string 35,125,299 
by assignment statement 298,125 
by input-output 126 
BY NAME 298,54,55 
by STRING option 126 
character-string 34,299 
CHECK condition raised for 266 
conversion by 46,125 
element 298 
label 299 
multiple 66,298 
pointer 169 
structure 298 

Assignment statement 298,26,46,66 
evaluation of 298 
for computation and assignment 66 
for conversion and editing 125,66 
for internal data movement 66 
preprocessor 325 
types of 299 

Asterisk notation 87 
for bounds specifications 278,296 
for controlled parameters 143 
for length specifications 274,296 
for simple parameters 143 
for subscripts 39 
in ALLOCATE statement 296 
in INITIAL attributes 285 

Asterisk picture characters (*) 208 
Asynchronous operation 180 
ATAN built-in function 243 
ATANDbuilt-in function 244 
ATANH built-in function 244 
Attaching of tasks 181,180 

340 

Attributes 269,20 
additive 90,92 
alphabetic listing of 271 
alternative 90,91 
buffering 91 
contextual declaration of 84,87 
default 85,90 

(also see default) 
entry name 71 
explicit declaration of 303,83,87 
factorinq of 269,303 
file 90-
implicit declaration of 85,87 
in ALLOCATE statement 296 
in DECLARE statements 303 
in ENTRY statement 308 
in PROCEDURE statement 315 
listing of 20,87 
merging of 93 
of result in arithmetic operations 

231,232 
of source in conversions 57,58,231.232 
of target in conversions 58,231,232 
scope 283 
specification of 269 
storage class 272,143 
target (see target attributes) 

AUTOMATIC attribute 272,72,79 
Automatic storage 79,20,72,79 
Automatic variables 43 

initialization of 43 
shared between tasks 183 

B format item 217,114,216 
B picture character 209 6 130 
BACKWARDS attribute 273,92,94,100,123 w270 
BACKWARDS option 314 
Base 28,47 

attributes for 273 
binary 28 
decimal 28 
in arithmetic conversion 59 
in exponentiation 59 
of arithmetic data 273 
of arithmetic targets 59 
of numeric character data 290 

Base conversion 224,46,47 
Based 

storage 1~5,20,80 

allocation of 168 
allocation of, within area 172 
freeing of 170,186 
freeing of, within area 173,186 
overlaying of 169 

BASED attribute 272,165 
REFER option 167 

Based storage built-in functions 252 
Based variables 166,165 

examples of use 177 
input/output 168 
shared between tasks 183 

Base identifier of DEFINED attribute 275 
Begin block 73,15,27,72,87,302 

as on-unit 148,72 
compared with DO-group 163 
END statement for 77,308 
termination of 77 

BEGIN statement 302,27,72,83 



CHECK prefix to 150,265 
condition prefixes to 147 

BINARY attribute 273,30,31,87,270 
Binary base 28,30,31,273 
BINARY built-in function 239 
Binary data 

fixed-point 30 
floating-point 31 

Binary full word 30 
Binary logarithm 245 
BIT attribute 274,35,270 

in ALLOCATE statement 296 
BIT built-in function 234,132 
Bit-class data 277 
Bit-string comparison 50 
Bit-string data 35 

assignment of 35,298 
attributes for 35 
comparison of 50 
concatenation of 51 
constants 35,109 
conversion of 38,234 
manipulation of 131 
variables 34 

Bit-string format item (B) 217,114,216 
Bit-string operations 49 

conversion in 50 
result of 50 

Bit-string operators 24 
Bit-string targets 61,234 
Bit-string to arithmetic conversion 227,47 
Bit-string to character-string conversion 

227,45,58 
Blank picture character (B) 209,130 
Blanks 25 

extension with 125 
in constants 224 
in data-directed transmission 106 
in keys 101,102 
in list-directed transmission 106,109 
in numeric character data 209 
in. picture specifications 128 
in preprocessor conversions 157 
in preprocessor replacement 155 
in structare declarations 40 
use of 25 

BLKSIZE subparameter 98 
Block size 98,281 
Block structure 15 
Blocking of records 89,281,98,118 
Blocks 71,19,27,73 

activation of 75 
begin 72,15,27,73,77 
invocation of 75 
multiple closure of 74 
nested 74,78 
procedure 73,15,27 
record 89 
termination of 77 

BOOL built-in function 234,133 
Boolean operation 234,133 
Bounds 37,249,278 

asterisk notation for 143 
expressions for 143 
in ALLOCATE statement 296 
lower 37 
of array parameters 143 
upper 37 

Branch (also see GO TO statement) 
conditional 67 
unconditional 67 

BSI pence characters 214 
BSI shilling characters 214 
BUFFERED attribute 

274,90,91,94,120,122,270 
BUFFERED option 314 
Buffering attributes 91 
Buffers 91,118,124 

allocation of 99 
'hidden 92,274 

BUFFERS option 281,98 
BUFNO subparameter 99,281 
Built-in functions 233,56,138,275 

arithmetic 238,233 
array manipulation 247,233 
as argurr.ents 145 
based storage 252 
computational 234,233 
condition 250,150,233 
mathematical 243,233 
miscellaneous 253,233 
multitasking 253 
string-handling 234,132,233 
values returned by 138 

BUILTIN attribute 275,138,139,270 
BY clause 108,306 
BY NAME option 299,54,55,57,67,298-301 

in arra~ assignment 298,299 
in structure assignment 55,299,300 

C format item 218,114,216 
CALL option 285,42,75,84,135 
CALL statement 

302,69,71,75,84,86,87,134,135,279 
multitasking 181 

Calling trace 314 
Capacity record 103 
Card punch codes 

for 48-character set 200 
for 60-character set 199 

Carriage control 104 
CEIL built-in function 239,230 
ceiling values 230 
Chaining technique 177 
CHAR built-in function 235,132 
CHARACTER attribute 274,34,270 

in %DECLARE statement 155,326 
in %PROCEDURE statement 159,329 
in ALLOCATE statement 296 

Character sets 199,23 
Character-class data 277 
Character-string comparison 50 
Character-string data 34 

as keys 99,100,102,103 
assignment of 34,298 
attributes for 34,274 
comparison of 50 
concatenation of 51 
constants 24,34 0 109 
conversion of 224,234 
defined on numeric character data 129 
picture specification for 205,127,290 
variables 34,274 

Character-string format item (A) 
217 v 114,216 

Character-string targets 61,225 

Index 341 



Character-string to arithmetic conversion 
224,415 

Character-string to bit-string convtrsion 
221,45 

Character-string value of numeric character 
data 206,128,290 

Characters 
alphabetic 23 
alphameric 23 
special 23 

CHECK condition 265,10,150,151,251 
for data-directed input 150 
interrupt for 150 
raised for null statement 313 
standard system action for 150,261 

CHECK condition prefix (see CHECK prefix) 
CHECK prefix 151 

names in 150~265 
to BEGIN statement 150 
to PROCEDURE statement 150 

Classes 
of statements 64 
of storage 19,20,211 

Clauses 
BY 108,306 
ELSE 68,312 
THEN 68,312 
TO 108,306 
WHILE 69,108,306 

CLOSE statement 303,65,66,92,96 
Closing of files 96,66,92,186,303 

multiple 96,303 
Clo$ure, multiple 14 
COBOL option 105,280 
Coded arithmeric data 

compared with numeric character data 
164 

conversion to character-string 225,131 
conversion to numeric character 224 
int:ernal form of 30 

Codes for ON-conditions (see condition 
codes) 

Collating sequence 
highest character in 132,235 
lowest character in 133,236 

Collections of data 
arrays 21,31 
arrays of structures 31 
structures 40 

COLUMN format item 218,116,216 
Comma picture character (,) 209,130 
Commas 

in data-directed transmission 106 
in list-directed transmission 106,109 
in parameter attribute lists 140 

Commenrts 25 
contents 'of 25 
delimiter 25 
in processor statements 161 

Common logarithm 245 
Comparison 

342 

of arithmetic data 50 
of bit-string data 50 
of character-string data 50 
of complex operands 51 
ope;rations 50 

priority of types in 50 
result of 50 

operators 50.24 
Comparison key 102 
Compile-time operations 
COMPLETION built-in function 253,185 
COMPLETION pseudo-variable 185 
Completion of event 186 
Completion value 182 
Completion value of event variable 

253,255,265 
COMPLEX attribute 215,29,32,210 

with PICTURE attribute 215,291 
COMPLEX built-in function 239 
Complex data 29,32,215 

attributes for 32,215 
comparison of 51 
internal form of 32 
picture specification for 291 

COMPLEX format item (C) 218,114,216 
Complex numeric character data 291 

conversion of 225 
COMPLEX pseudo-variable 255 
Complex to character-string conversion 221 
Complex value 

conjugate pf 239 
imaginary part of 241 
real part of 242 

Composite symbols 
in 48-character set 200 
in 60-character set 199 

Compound statements 26 
Computational built-in functions 233 

arithmetic 238 
array manipulation 247 
mathematical 243 
string-handling 234 

Computational conditions 260 
Computational statements 64 
Concatenation 

of bit-string data 51 
of character-string data 51 
operations 46,51 

operands of 51 
results of 51 

Concepts of data conversion 51 
Condition built-in functions 250,150,233 
Condition codes 258,150,251 
CONDITION condition 268,149,257 

with SIGNAL statement 322 
Condition name 257,26,70,84,141 

use of NO with 147 
Condition prefix 257,22,26,147,314 

effect on nested blocks 148 
scope of 147,257 

Conditional branch 68 
Conditional digit position 208 
Conditional insertion characters 209 
Conditions 257,70,147 

codes for 258,150,251 
computational 260 
disabled 257,314 
enabled 257,314 
exceptional 147,22 
input/output 262,260 
program checkout 265,260 
programmer-named 268 
raised in conversions 62 
system action 260 

CONJG built-in function 239 



Conjugate of complex value 239 
CONSECUTIVE option 99,280 

compared with SEQUENTIAL attribute 
100,280 

CONSECUTIVE organization 99,280 
devices permitted for 99 

Constants 28 
arithmetic 29 
attributes of 28 
bit-string 35,109 
blanks in 224 
character-string 34,25,109 
label 35 
sterling 30 

Contained in, meaning of 83 
Contextual declaration 84 

of areas 84 
of built-in function identifiers 84,139 
of entry names 84,141,279 
of event names 84,281 
of file names 84 
of pOinters 84 
of programmer-named condition 84,268 
of task names 84 
scope of 85 

Control 
flow of 13,67 
return of 

from a procedure 11 
from an on-unit 11,260 

Control fOl:mat items 116,113,114 
examples of 116 

Control statements 61 
for inpu.t/output 66 

Control variable in DO statemen't 68,306 
Controlled 

arguments 143 
parameters 143 
storage 19,20 

allocation of 296 
freeing of 309,186 
stacking of 19 

variables 19,43,72 
bounds and lengths for 296 
shared between tasks 183 

CONTROLLED attribute 212,12,19,,143,253 
Conversion 51,20,223,261 

arithmetic 61,223 
base in 59,224 
mode in 41,59,223 
precision in 59,60,224 
scale in 59,223 
target attributes in 58 

arithmetic to bit-string 227,61 
arithmetic to character-strina 225,61 
assignment statement for 46,66 
base 41,59,224 
bit-string to arithmetic 227,62 
bit-string to character-string 

227,58,125 
character-string to arithmetic 224,62 
character-string to bit-string 

221,58,62 
coded arithmetic to character-string 

225,132 
coded arithmetic to numeric character 

224 
complex to character-string 221 

conditions raised in 62 
efficiency of 163 
in arithmetic operations 41 
in array expressions 54 
in bit-string operations 50 
in comparison operations 50 
in exponentiation operations 41 
in preprocessor expressions 151 
intermediate results in 58 
numeric character to coded arithmetic 

224,131 
offset to pointer 46 
pointer to offset 46 
type 224 

CONVERSION condition 261,62,144,255 
for character-string to arithmetic 45 
for character-string to bit-string 221 
in assignment to picture 128 u 129,205 
in B-format input 218 
in E-format input 219 
in STREAM input 216 
null on-unit for 149 
ONCHAR used for 250 
ONSOURCE used for 252 

Coordination of tasks 183 
COpy option 111,311 
Correspondence defining 215,216 
COS built-in function 244 
COSD built-in function 244 
COSH built-in function 245 
COUNT built-in function 254 
CR picture characters 215 
Creation of tasks 181 
Credit picture characters (CR) 212 
Cross sections of arrays 39 
CTLASA option 105,280 
CTL360 option 105,280 
Currency symbol picture character ($) 

210,130 

Data 
area 171,37 
arithmetic 28 

comparison of 50 
conversion of 225,58,59 

attributes of (also see attributes) 
269,87 

bit-string 35 
comparison of 50 
concatenation of 51 
conversion of 58 
operations with 49 

character-string 34 
comparison of 50 
concatenation of 51 
conversion of 224,58 

collections of 21,37 
conversion of 51,45,54,223,261 
editing of 290 
event 36 
format items 216,112,114 

examples of 115,116 
label 35 
locator 36 
movement of 66 
offset 112,36,111 
pointer 36 
problem 28,45 

Index 343 



program control 35,46 
sh~ring between tasks 183 
string 33 
ta~k 36 
typ'es of 19,28 

Data ~nterchange 105,98 
DATA keyword 110,117,126 
Data list 106,89,105 

element of 107 
Data management 97 
Data movement statements 66 
Data ~et 89,117,119,123 

association with file 94 
organization of 99,98,280 

:CONSECUTIVE 99,280 
:default for 99,280 
INDEXED 100,119,123,280 
:REGIONAL 101,119,280 
REGIONAL (1) 102,10~,119,280 
REGIONAL (2) 102-104,119,280 
'REGIONAL (3) 103,102,120,280 

positioning of 98,99 
Data s,ets 

COB,OL-generated 105 
Data ~pecification 106,109,126 

da~a-directed 110 
ed~t-directed 112 
lis!t-directed 109 

Data transmission 89 
(also: see input/output) 

Data-directed transmission 105 
da~a specification for 110 
inp,ut 111 

~HECK condition for 265,150 
output 111 

;compared with input 111 
DATAFIELD built-in function 250 

with NAME condition 264 
DATE built-in function 254 
DB pic~ure characters 212 
DCB pa~ameter 98-100,103,104 
DD sta~ement 94,98-100,119,120,281 
ddname: 94,95 

in ;%INCLUDE statement 328 
len~th of 94 

Deacti~ation 155,326 
(als~ see termination) 

of preprocessor entry names 158 
of preprocessor variables 157 

Debi·t picture characters (DB) 212 
Debugg~ng 149,70,265 
Debugg~ng file 148 
Decima~, packed 30 
DECIMAt attribute 273,29,270 
Decima~ base 28 
DECIMAL built-in function 240 
Decimaa. data 

fixbd-point 29,291 
flobting-point 31,291 

Decima~ point picture character (V) 
207,,129 

Declar6.tions 83 
contextual 84 

scope of 85 
explicit 83 

scope of 84 
imp~icit 85 

scope of 85 

344 

multiple 88 
scope of 83-85 

DECLARE statement 303,64,83,124,269 
attributes in 64 
condition prefix to 148 
default rules for 64 
preprocessor 326,155 

Default 20,86 
attributes assumed by 29,85,90,269 
conditions disabled by 257,151,314 
conditons enabled by 257,151,314 
for arithmetic data 274,284 
for attributes of value returned by 
function 137 

for file attributes 91 
for preprocessor variables 156 
rules based on first letter of 
identifier 85 

rules for DECLARE statement 64 
DEFINED attribute 275,41,270 

evaluation of 277 
Defined item 275-277 
Defining 

correspondence 276 
overlay 276 

DELAY statement 304 
DELETE statement 304,65 6 93,117,122,123 
Descriptive statements 64 
Device independence 98 
Digit specifier picture characters 207,291 
Digits 23 
DIM built-in function 249 
Dimension 37,278 

bounds of 37,249,278 
extent of 37,249 
maximum number of 38 

Dimension attribute 278,37 
in ALLOCATE statement 296 

DIRECT attribute 
278,90,91,93,100,103,118,120,122,123 

DIRECT option 313 
Direct-access storage devices 101 
Disabled conditions 147.257,314 

compared to null on-unit 149 
DISPLAY statement 304,66,266 
DIVIDE built-in function 240 
Division operations 48 

attributes of result of 232 
fixed-point 49 
remainder of 241 

Division operator 49 
in preprocessor expressions 157 

DO keyword in repetitive specification 108 
DO statement 305,27,68,72 

condition prefix to 147 
iterative 68 
noniterative 69 
preprocessor 327 
types of 305 

DO-group 72,27,69,305 
compared with begin block 163 
preprocessor 160,327 
transfer of control into 308,311 

DO-loop (see DO-group) 
Drifting picture characters 210,211 
Drifting string 210,211 
dsname 94 
DSNAME parameter 95 



DSORG subparameter 100 
Dummy arguments 140,142,145,174,175,279 

when created 140 
Dummy records 103 
Dump, obtained by CHECK prefix 150 
Dynamic storage allocation 78,20 

E format item 219,114,216 
E picture character 213.290 
EBCDIC codes 

for 48-character set 200 
for 60-character set 199 

EDIT keyword 112,117,126 
Edit-directed transmission 105,106,126 

data specification for 112 
format items for 216,114-117 
FORMAT statement for 309 
input 113 
output 113 

Editing 125,67,290 
by assignment 125,66 
by PICTURE attribute 127,164 
of numeric character data 205 

Efficient performance 163 
Element 

and array operations 53 
and structure operations 55 
assignment 298 
expression 44,247 

in array assignment 299 
in IF statement 68,312 

of a data list 108 
of a structure 39 
variable 37 

ELSE clause 
in IF statement 68,51,312 
in %IF statement 162,328 

EMPTY built-in function 252,173 
Enabled condition 147,148,257,260,314 
END statement 308,27,69,71,73,77,78,83,186 

for begin block termination 77 
for ,procedure termination 77,135 
multiple closure by 7L~ 
preprocessor 327 

ENDFILE condition 262,121,151,257,319 
ENDPAGE condition 263,96,222,257,315,317 
ENTRY attribute 279,71,84,134,137-143,270 

compared with ENTRY statement 71 
contextual declaration of 279 
implied 137,141,279 
in %DECLARE statement 158,327 
in generic entry name declaration 284 

Entry name 75,137,141,279,294,308 
as argument 141,145 
attributes for 270 
contextual declaration of 84,141,279 
explicit declaration of 315,,140 
in CALL statement 302 
parameters 143,145 
preprocessor entry names 158 

Entry point 134,251 
primary 75,315 
secondary 75,308 

ENTRY statement 308,75,134,137 
compared with ENTRY att.ribut.e 71 
condition prefix to 148 
label of 83,141 
parameters of 308 

ENVIRONMENT attribute 280,92,93 0 98 0 124,270 
options of 98,280 

Epilogues 81 
ERF built-in function 245 
ERFC built-in function 245 
ERROR condition 

268,78,147-149,250-252,255,257 
raised by GET statement 311 
raised by PUT statement 317 
results in program termination 78 
use with ONCODE 151 

Established action 147,149 
EVENT attribute 281,37,84,182,270 

contextual declaration of 281 
Event data 36 
Event name 182,180,36,281 

<also see event variable} 
EVENT option 182,121,84,262,264,281 

in DELETE statement 304 
in READ statement 318 
in REWRITE statement 321 
in WRITE statement 324 

Event variable 121,180,182,259 
active 265,322 
completion value of 253 0 182,254,264 
inactive 265,322 
status value of 182 
testing and setting of 185 

Exception control statements 70,64 
Exceptional conditions 147,21,257,313 
EXCLUSIVE attribute 283,92,123,185 
EXIT statement 309,67,69,77,135,181,186 
EXP built-in function 245 
Explicit declaration 83,84 0 87,139,140 

by DECLARE statement 303 
scope of 84 

Explicit opening 93 
Exponent 

in picture specification 213,290 
of floating-point data 28 

Exponent field 213 
Exponent specifier picture characters 213 
Exponentiation operations 49,47 

attributes of result in 232 
base in 59 
conversion in 47 
mode in 59 
precision in 59 
scale in 59 

Expressions 44,20 
array 44,53,54 

operands of 53 
as subscripts 38 
attributes of result of 20,52 
element 44 
evaluation of 51 
for array bounds 163.167,278 
for controlled parameters 143 
for string lengths 163,167,274 
function reference operands 56 
ih format item$ 117 
in RETURN statement 136 
operands of 56 
operational 44 
preprocessor 157,325 
structure 54,44 

operands of 54 
use of parentheses in 52 

Index 345 



Extension of source key 101 
Extent 

in overlay defining 276 
of area 171 
of dimension 37,249 

EXTERNAL attribute 
283,78,86-88,90-92,96,134,270 

External declaration 270 
External names 25,86 

length of 25,86 
External procedure 74,15,83,84,87 
External storage 89 
External text, compile-time incoporation 
of 160,329 

F format item 220,114,216 
F picture character 214 
F-format (fixed-length) records 

98,101,103,208 
Factor 

iteration 43 
repetition 43 

Factoring of attributes 269,303 
in %DECLARE statement 326 
nesting in 269 

Field 
in a picture specification 206,290 
width 216 

Fil,e 90 
association with data set 94,66,303,314 
attributes for 90,270 
cl,osing of 92,66,186,303 
contextual declaration of 84 
naiffie of (see file name) 
opening of 92,66,192,314 
shared between tasks 184 
standard 97,104 

FILE attribute 283,84,90,270 
File declarations, examples of 124 
File name 90,118,270,281 

ar.guments 145 
length of 94 
parameters 145 

FII.Eoption 118,65,84,117,123 
of GET statement 310 
of PUT statement 316 

FILE specification 303 
of DELETE statement 304 
of READ statement 318 
of REWRITE statement 321 
of WRITE statement 324 

FINISH condition 
268i78,250,251,254,257,322 

FIXED attribute 284,29,30,87,192,270 
in %DECLARE statement 326 
in %PROCEDURE statement 159,329 
with preprocessor variables 156 

FIXED built-in function 240 
Fixed-length records (F-format) 98,280 
Fixed-point data 29 

346 

assignment of 29 
attributes for 29,281 
binary 30 
constants 29,30 
conversion of 225,226 
decimal 29 
division operations with 49 
picture specification for 206,290 

sterling 30 
variables 29,30 

Fixed-point format item (F) 220,114, ~~16 
Fixed-point scale 28 
FIXEDOVERFLOW condition 261,61,257 

compared with SIZE condition 261 
FLOAT attribute 284,31,270 
FLOAT built-in function 240 
Floating-point data 31 

attributes of 31,281 
binary 31 
constants 31 
conversion of 223,226 
decimal 31 
long form of 31,223 
picture specification for 213,290 
short form of 31,223 
variables 31 

Floating-point format item (E) 219,114,216 
Floating-point scale 28 
FLOOR built-in function 240 
Flow of control 73,67 
Flow trace 150 
Format, record 98 
Format items 216,106,112 

alphabetic list of 217 
control 116,112,114 
data 216,112,114 
remote 217,112,114 
spacing 217 
summary of 117 

Format list 114,186,216,217 
in FORMAT statement 309 

FORMAT statement 309 
Fractional digits 

in E format item 219 
in F format item 220 

Fractional subfields 207 
Free format 23 
FREE statement 

309,20,72,79,143,144,272,296 
Freeing of based storage 170,186 

within areas 173,186 
Freeing of controlled storage 13,186,309 
FROM option 119,123,230 
FROM specification 324 
Full word, binary 30 
Function 136,56,71,134,233 

arguments of 136 
built-in 233,56,138 
name of 139 
preprocessor 329 
references (see function references) 
termination of 136 
value returned by 136,137,320 
without arguments 137 

Function file attributes 91 
Function references 
136,56,69,71,75,84,137,138,279,294 

preprocessor 157,158 

G sterling picture character 214 
Generation 

of data 296 
of variable 272 
stack of generations 143 

GENERIC attribute 284,145,270 
Generic name 145,284 



Generic reference 145 
GET statement 

310,65,89,93.96,104-106,109-111,116-118, 
126,151,216,265 

as i~put/output statement 65 
for internal data movement 66 
NAME condition raised by 2ll4" 
with standard input file 97 
with STRING option 67,127 

GO TO statement 311,67,77,88,266 
for begin block termination 77 
for procedure termination 18,135,136 
in on-unit 148 
label variable in 67 

H sterling picture character 214 
HBOUND built-in function 249 
Hidden buffers 92,274 
Hierarchy of names 39 
HIGH built-in function 235,132 
High-order digits, loss of 48 

(also see SIZE condition> 

I picture character 213 
IBM pence characters 214 
Identical structuring, meaning of 54 
Identifiers 25,83 

built-in function 139 
compile-time replacement of 155 
length of 25 
reserved 138 

IF statement 312,26,50,53,54,67,193 
condition prefix to 147 
element expression in 68,31:2 
nested 68 
preprocessor 328 

IGNORE option 119,124,318 
Ignoring of records 124 
IMAG built-in function 241 
IMAG pseudo-variable 255 
Imaginary number 275 
Imaginary part of complex value 227~240 
Imple~entation information 16 
Implication, file attributes derived by 
90;91 

Implicit declaration 85,87 
scope of 85 

Implici"t freeing of based storage 170 
Implicit open1ng 

93,121,192,259,304,309,316,318,321,324 
UNDEFINEDFILE raised in 265 

Implied attributes 90,93 
IN option 169,172 
Inactive 

event variable 265,322 
identifier 325 

Included text 160,161,329 
effect on preprocessor scan 160 
preprocessor procedures in 161 

Independence 
device 98 
machine 15~19,21 

INDEX built-in function 235,132 
INDEXED 

data set 100,98.118-120,123 
sequential access of 100 

option 98,280 
Infix operations 45,47 

results of 47 
Infix operators 47 

array expressions with 53 
structure expressions with 55 

INITIAL attribute 
285,42,75,135,192,267,270 

for label variables 286 
in ALLOCATE statement 297 

Initial procedure 76,268 
(also see main procedure> 

Initialization 42,286 
~f automatic variables 43 
of controlled variables 43,298 
of label arrays 286 
of static variables 43,79 

Input 21,89 
standard system file for 97 

INPUT attribute 
287,90-93,100,103,117,121,122,270 

INPUT option 314 
Input/output 

conditions 262,147,251,260 
event 259,323 
locate-mode 165,178 
of based variables 168 
record-oriented 89,21,104,123 

statements for 118,65,121 
statements 65 
stream-oriented 89,21,105 

conversion in 126 
data-directed 110,65,105 
edit-directed 112,65,105,126 
list-directed 109,65,105 
statements for 117,65 

Insertion picture charactets 209,129,210 
Integer subfield 207 
Interleaved subscripts 41,111,112 
Intermediate results 58 
Intermediate string 226 
Internal 

coded arithmetic form 30,31 
data movement 66 
procedure 74 

INTERNAL attribute 283,86,87,90-92,270 
Internal to, meaning of 83 
Interrupt 22,70,147,257,313 

established action for 149 
investigation of 250 
multiple 259 
simulation of 71.192,321 
synchronous 121 

INTO option 118,123,267 
Invocation 

CALL statement for 302 
procedure 75 

as task 181 
preprocessor procedure 157,158 

Invoked procedure 76 
return of control from 77 

IRREDUCIBLE attribute 286 
iSUB variables 41,275,276 
Iteration factor 43 

compared with repetition factor 43 
in format list 114 
in INITIAL attribute 43~285 

Iterative execution 305 
{also see repetitive execution> 

Index 347 



K picture character 213,290 
KEY condition 263,100,120,193,257 
KEY option 119~92,99,103,287,318 

in DELETE statement 304 
in READ statement 318 
in REWRITE statement 321 

KEYED attribute 287,90-93,99,100,119,270 
KEYED option 314 
KEYr'RQM option 120,92,99,123,287,322 
KEYLEN subparameter 99,103,119,120,193,322 
Keys 92,100,118,123,193,257,263,278,287 

comparison 102 
conversion of 62 
in READ statement 318 
length of 62 
recorded 99,100-103,120,123,280,287 
source 99-100,118,280 

KEYTO option 121,92~99,267,287,317 
Keyword statements 26 
Keywords 201,25,83 

abbreviations for 201 
alphabetic list of 201 

Label 
argument 145,135,136 
assignment 298,301 
constants 35 
data 35 
of preprocessor statement 161 
parameter 137 
prefix 26 
statement label 83 
variable 287 

in GO TO statement 67 
initialization of 286 

LABEL attribute 287,270 
Layout of pages 96 
LBOUND built-in function 249 
Leading blanks in the stream 216 
Leading zeros 130,157,208 
LEAVE option 99,98,280 
Length 34 

in arithmetic to bit-string conversion 
230 

in arithmetic to character-string 
conversion 230 

maximum for strings 34,35 
minimum for strings 34_35 
of area 171 
of bit-string targets 61 
of character-string targets 61 
of ddname 94 
of external names 25,86 
of' fields 

in data-directed output 112 
in list-directed output 109 

of file names 94 
of identifiers 25 
of keys 62 
of record blocks 98 
of recorded key 120 
of string parameters 143 
of strings 132 
specified in ALLOCATE statement 296 

Length attribute 274,34,270 
LENGTH built-in function 236,34,132 
Level numbers 39,42 

factoring of 269 

348 

for structure parameters 145 
in DECLARE statement 303 
in LIKE attribute specification 288 

Level-l variables 117,303 
in READ statement 318 
in REWRITE statement 321 
in WRITE statement 324 

LIKE attribute 288,42,270 
LIMCT sUbparameter 103,104 
LINE format item 221,115,216,262 
LINE option 317,117,193 6 262 
Line position format item (see LINE format 

item) 
Line skipping format item (see SKIP format 

item) 
LINENO built-in function 254 
LINESIZE option 96,93,219 

default for 315 
LIST keyword 109,117,126 
List-directed data specification 109 
List-directed output 109 
List-directed transmission 105 

form of data 109 
input format 109 
output fDrmat 109 

List processing 165 
examples of technique 177 

Locate mode input/output 165 
example of use 178 

LOCATE statement 312,65,118,168 
pointer setting by 168 

Locator arguments and parameters 174 
Locator conversion 46 
Locator data 36 
Locator returns from entry points 1 7~) 
Locator variables 165 
Locking records 184,123 

(also see EXCLUSIVE attribute) 
LOG built-in function 245 
Logarithms 245 
Logical records 89,91,98 
LOG10 built-in function 245 
LOG2 built-in function 245 
Long floating-point form 31 
LOW built-in function 236,133 
Lower bound 37,249,278 
LRECL subparameter 98 

M sterling picture character 214 
Machine independence 15,19,21 
Magnetic tape 92 
MAIN option 316 
Main procedure 70,76,194 
Major structure name 39,42 
Major task 180,181 
Mantissa 214,219 

in picture specification 290 
Mathematical built-in functions 243 

arguments of 243 
error conditions for 247 
summary of 247 
values returned by 243 

MAX built-in function 241 
Maximum length 

allowed for bit-string data 35 
allowed for character-string data 34 
allowed for picture specification 35 
of identifiers 25 



Maximum number of binary digits 30 
Maximum number of decimal digits 29 
Maximum precisions 293,31 0 228,238 
Merging of attributes 93 

attributes implied by 94 
MIN built-in function 241 
Minor structure name 39,42 
Minus sign picture character (-) 210 
Miscell~neous built-in functions 253,233 
MOD built-in function 241 
Mode 29 

complex 32 
conversion of 47,223 
in arithmetic conversion 46~59 
in exponentiation 59 
of arithmetic targets 59 
of arithmetic variables 275 
of numeric character data 291 
real 29 

Modes of stream transmission 65,104 
Modularity 15,19 
Multiple assignment 66 
Multiple closing of files 96 
Multiple closure 74 

by %END statement 327 
by END statement 74 
of blocks 74 
of DO-groups 74 
of preprocessor DO-groups 160 

Multiple declarations 88 
Multiple interrupts 259,251 
Multiple opening of files 93 
Multiplication 48 

attributes of the result of 231 
MULTIPLY built-in function 242 
Multiprogramming 180,19 
Multitasking 180,19 

options 181 
programming example 187 

Multitasking built-in functions 253 
NAME condition 264,110,250,257,311 
Name list of CHECK condition 265 
Names 25,83 

attributes for 269,19,20 
condition names 26,70,84 
entry names 75 
event names 180 
external names 25,86 
file names 118 
generic names 145 
hierarchy of 39 
in CHECK condition prefix 150 
major structure names 39,42 
minor structure nawes 39,42 
procedure names 73 
qualification of 88 
qualified names 40,107 

subscripted 41 
scope of 83~27,281 
structure names 39,42 
subscripted names 38,110 
unique names 88 

Natural logarithm 245 
Nested blocks 74,88 

transfer into 88 
Nested IF statements 68 
Nested repetitive specifications 107 
Nesting 19 

effect of condition prefix with 148 
of %IF statements 161,327 
of %INCLUDE statememts 328 
of blocks 74,88 
of factored attributes 269 
of preprocessor DO-groups 160 

NO with condition names 26 0 147 
NOCHECK 257 
NOCONVERSION 257 
NOFIXEDOVERFLOW 257 
NOLOCK option 92 
Noniterative DO statements 69 
NOOVERFLO~v 257 
NORMAL attribute 271 
Normal return 261 
Normal termination 70,77,78 

of on-unit 260 
of procedure 77 
of program 77 
of task 186 

Normalized hexadecimal floating-point 
NOSIZE 257 
NOSUBSCRIPTRANGE 257 
"not" operation 
"not" symbol 49 
NOUNDERFLOW 257 
NOZERODIVIDE 257 

49 

NULL built-in function 252,170 
Null ELSE clause in %IF statement 162 
Null offset value 173,252 
Null on-unit 148 

compared to disabled condition 149 
for CONVERSION condition 149 

Null pointer value 170,252 
Null statement 313,26 

as on-unit 148 
Null string 

conversion to arithmetic 225 

31 

result in arithmetic to bit-string 230 
NULLO built-in function 252,173 
Numeric character data 32,288 

arithmetic value of 291 
character-string value of 290 
compared with coded arithmetic data 164 
conversion in aritl~etic operations 164 
conversion to character-string 225 
conversion to coded arithmetic 131,225 
editing of 129 
format 32 
picture characters for 206 
picture specification for 128 
signs in 210 

Numeric character picture specifications 
206 

examples of 207 
Numeric character variables 

arithmetic value of 205,128,206 
assignment to 128 
character-string value of 205,128,206 
point alignment in 128 

Numeric picture specifications 32 

Object program 154 
Offset arguments 175,145 
OFFSET attribute 289,172 
Offset data 172,36,171 
Offset parameters 175 
Offset returns from entry points 176 

Index 349 



Offset to pointer conversion 46 
Offset variables 165 

de~ining 114 
examples of use 118 
null values of 113,252 
se~ting value of 112 

ON statement 313,26,10,84,151,192,257,320 
condition prefix to 141 
purpose of 148 
scope of 149 
SNAP option of 148 

On-codes (see condition codes) 
ON-conditions 257,149,250 

example of use ~f 151 
On-unit 148,96,97,120,192,250,251,213 

begin block as 72,148 
behaves like procedure 148 
GO TO statement in 148 
null statement as i48 
return of control from 148,71,260 
simple statements as 148 

ONCHAR built-in function 250,255 
ONCHAR pseudo~variable 

255,84,139,250,253,260 
ONCODE built-in function 251,151,193,258 
ONCOUNT built-in function 251 
ONFILE built-in function 251 
ONKEY built-in function 251 
ONLOC built-in function 251 
ONSOURCE built-in function 252,255 
ONSOURCE pseudo-variable 

255,84,139,250,253,260 
OPEN statement 314,90-92,94,96,192,264,270 

as a descriptive statement 64 
as an input/output control statement 66 
format of 93 
options of 314 

Opening files 92,66,192,314 
explicit openings 93 
implicit openings 93,120,192 
multiple openings 93 

Operands 44 
complex 51 
element 

array expressions with 53 
structure expressions with 55 

function reference 56 
of array expressions 53 
of bit-string operations 49 
of comparison operations 50 
of concatenation operations 51 
of expressions 56 
of preprocessor expressions 157 
of structure expressions 54 

Operational expressions 44 
data conversion in 45 

Operations 

350 

arithmetic 46 
results of 47 
truncation in 47 

array 54 
bit-string 45 

conversion in 50 
combinations of 51 
comparison 46 
concatenation 46,53 

operands of 51 
results of 51 

element 53,55 
four classes of 46 
infix 45 
prefix 45 
structure 54,55 

Operators 
arithmetic 24 
bit-string 24 
comparison 24 
concatenation 51 
infix 45 

array expressions with 53 
structure expressions with 55 

prefix 45 
array expressions with 53 
structure expressions with 55 

priority of 52 
string 24 

OPTCD subparameter 100 
Options (see options by individual names) 
OPTIONS option 315 
OPTIONS (MAIN) specification 76,,27 
"or" operation 49 
"or" symbol 49 
Order of evaluation of expressions 52 
Organization of data sets 98 
Output 21,89 

(also see input/output> 
OUTPUT attribute 287,90-93,96,123,272 
Output files 111,118,123 

standard system output file 97 
OUTPUT option 314 
OVERFLOW condition 261,26,61,257 
Overlay defining 211 

PACKED attribute for 132 
Overlaying using based variables 169 
Overpunched sign picture characters 212 

P format item 221,121,205,216 
P sterling picture character 214 
PACKED atrribute 271,42,163,270 

effect on storage 163 
for bit-string handling 131 

Packed decimal format 30 
Padding of keys 318 
PAGE format item 221,115,216 
Page layout 96 
PAGE option 317,117 
PAGESIZE option 96,93,221,222,262 

default for 263,315 
Paging format item (PAGE) 221,216 
Parameter attribute lists 140,142,145 J 279 

commas used in 140 
Parameter lists 134,83,135,137 

variable length 176 
Parameters 134,87,193,279 

area 175 
array 145 
attributes of 134,135 
bounds and lengths of 143 
controlled 143 
default attributes for 280,136 
element 145 
entry name 145 
explicit declaration of 137 
file name 145 
in %PROCEDURE statement 329 
in DD statement 



DCB 98-101,103 
DSNAME 95 

label 137 
offset 175,145 
of preprocessor procedures 158,330 
of primary entry point 315 
of secondary entry point 308 
pointer 174,145,175 
simple 143,278 
storage allocation for 143 
string 145 
structure 145 

Parentheses 
use with arguments 140 

52 use with expressions 
Pence character specifier 
Pence digit specifiers (7 
Pence field 215,207,292 
Percent symbol 24 

(P) 214 
and 8) 214 

used with preprocessor statements 154 
Physical record 89 
PICTURE attribute 290,32,34,127,205,269 

with COMPLEX attribute 275 
Picture characters 205,32,127,164 

for character-string data 205 
for numeric character data 206 

Pictu~e format item (p) 221 
Picture specification 290 

for character-string data 205,127 
for editing 127 
for numeric character data 206,32,128 

PL/I program example 191 
Plus sign picture character (+) 210 
Point alignment in numeric character data 
128-130,207,209 

Pointer arguments 174,145,175 
Pointer assignment 169 
POINTER attribute 289,84 
Pointer data 36 
Pointer parameters 174,175 
Pointer qualification 166 
Pointe~ returns from entry points 176 
Pointer to offset conversion 46 
pointer variables 165,166 

contextual. declaration of 84 
defining 167 
examples of use 177 
null value of 170,252 
setting value of 168 

Point insertion picture character (.) 209 
compared with V picture character 209 

Point of invocation 76 
POLY built-in function 249 
"popped-up" environment 180 
"Popped-up" stack 272,296 
"Popped-up" storage 79 
POSITION attribute 276,40,275 
Positioning of data sets 97 
Positioning of records 123 
Pounds field 215,206,292 
Precision 29-31,47 

attribute 292,276 
and length specifications 60 
conversion of 47,223,241 
default 293,29 
default for preprocessor variables 156 
evaluation in conversions 59 
in arithmetic conversion 60 

in exponentiation 59 
maximum 293,59,228,238 
of nl~eric character data 290 
of source 224 
of sterling data 292 
of subscripts 39 
of target 223~59,60 

PRECISION built-in function 242 
Prefix list 147 
Prefix operations 45,47 

results of 47 
Prefix operators 47 

array expressions with 53 
structure expressions with 54 

Prefixes 26 
condition 257,21,26 
label 26 

Preprocessed text 154,157 
Preprocessor 21 

DO-groups 160,327 
iteration in 160 
multiple closure of 160 
nesting of 160 

expressions 157 
arithmetic operators in 157 
evaluation of 159,325 
in %IF statement 328 
in RETURN statement 159,330 
operands of 157 

function reference 158 
functions 

arguments of 158 
examples of 159 
parameters of 159 
replacement value 159 
value returned by 159,330 

input to 154 
output from 154 
procedure name 157,329 

establishment of 326 
in included text 160 
invocation of 157 
scope of 326 

scan 154 
control of sequence of 160,326 

stage 154 
statements 325,154,161 

abbreviation of keywords 201 
comments in 161 
labels of 161 

variable 155,325,326 
activation of 157 
attributes of 156 
deactivation of 157 
default attributes for 156 
default precision for 155 
establishment of 156,326 
scope of 156,326 
value of 156 

Primary entry point 75,315 
parameters of 315 

PRINT attribute 
293,92,96,97,111,191,192,217,263,270 

options and statements used with 
293,294 

PRINT files 106,116 
column positioning 218 
format items for 117 

Index 351 



line positioning 221 
page layout 96 

PRINT option 314 
Print~ng format items 216,116 
Priority 

of operators 52 
of tasks 182,180 
of types in comparison operations 50 

PRIORITY built-in function 253,181,183 
PRIORITY option 182,181 
PRIORITY pseudo-variable 255 
Problem data 28,45 

attributes for 269 
Procedure 73,19,27 

asynchronously executed 180 
communication between procedures 71 
END statement for 308 
external 74,83,85,87 
function 136,71 
i.n~tial 76,268 
internal 74 
invocation of 302,71 
main 76,70,194 
nesting of procedures 134 
preprocessor 157 
subroutine 135 

Procedure block (see procedure) 
Procedure name 73 
Procedure reference 75 
PROCEDURE statement 

315,27,71,73,75,80,83,134 0 137,139,192 
condition prefix to 147 

CHECK condition prefix 265,150 
label of 83,141 

Procedure termination 77 
ProceSsor stage 154 
PROD built-in function 250 
Program 

calling 76,78 
debugging 260 
entry point of 192 
testing of 150 

Program blocks 89 
Program checkout 147,150 
Program checkout conditions 265,147 
Program control data 28,35,45 

attributes for 27U 
Program interrupt 26,71 
Program structure statements 64,71 
Program termination 78 
Programmer-named conditon 268,260 
Prologues 81,163 

activities performed by 81 
pseudo-variables 254,56,107,234,275 
"pushed-down" environment 79 
"pushed-down" stack 79,272,296 
"pushed-down" storage 296,79 
PUT statement 

316,65,89,93,96,105,115,117,126,192,193, 
216,266 

ENDPAGE condition raised by 263 
for internal data movement 66 
with standard files 96 
with STRING option 67 

Qualification by pointer 166 
(also see based storage) 

Qualified names 40,107,111 

352 

in LIKE attribute 288 
subscripted 40 

Quotation marks in stream 216 

R format item 221,116,217,309 
R picture character 213 
READ statement 

317,65,90,93,101,105,118,120,123,152,193 
pointer setting by 168 
purpose of 65 

REAL attribute 275,29,270 
REAL built-in function 242 
Real mode 29 
Real number 275 
Real part of complex number 227 
REAL pseudo-variable 256 
Receiving field 132,255 
RECFM subparameter 98 
RECORD attribute 293,90 w91,93,270 
Record blocks 89 
RECORD condition 264,121,258 

raised by READ statement 318 
raised by REWRITE statement 321 
raised by WRITE statement 324 

Record format 98 
options 281 

RECORD option 314 
Record positioning 123 
Record size 98 

logical 281 
physical 281 
RECORD condition raised by 264 

Record-oriented transmission 
117,21,65,89,105 

attributes for 90 
characteristics of 65 
conversion in 126 
statements 117 

format 121 
options of 118 
summary of 121 

Recorde::l keys 
99-103,120-124,280,288,318,324 

length of 120 
Records 21 

addition of 101,104 
blocked 89,118 
capacity 103 
deletion of 101,104 
dummy 103 
F-format 102,104,281 
format of 281 
locking and unlocking of 184,123 

(also see EXCLUSIVE attribute) 
logical 89,91,98 
physical 89,91 
relative 102 
replacement of 101,104 
retrieval of 101,104 
self-defining 167 
U-format lD3,2Bl 
unblocked 89,281 
unlocking of 186 
V-format 103,281 

Recursion 80 
effect on storage allocation 81,272 
effect on storage class 81,272 
in remote format items 221 



RECURSIVE option 315,80 
Recursive procedure 80 
REDUCIBLE attribute 287 
REENTRANT option 316 
REFER option 167 
References 

ambiguous 88,40 
function 136,56,71,84 
subroutine 135 

Region specification 102 
REGIONAL data set organization 102,99,119 
REGIONAL data sets 120 

devices for 101 
direct access of 102 
sequential access of 102 

REGIONAL(l) data set organization 
102,119,123 

REGIONAL (1) option 280 
REGIONAL (2) data set organization 

102,119,123 
search for key 103 

REGIONAL (2) option 280 
REGIONAL(3) data set organization 

102,119,123 
search for key 103 

REGIONAL (3) OPTION 280 
Regions 101 
Relative record 102 
Relative structuring 145 
Relative track 102 
Relative track number 103 
Remote format item (R) 221,114.,309 
REPEAT built-in function 236,133 
Repetition factor 32,34,35 

compared with iteration factor 43 
in bit-string constants 35 
in character-string constants 34 
in character-string picture 
specifications 34 

in INITIAL attribute 286 
in numeric character picture 
spepifications 32,291 

in preprocessor expressions 157 
Repetitive execution 305,68 
Repetitiv~ specification 107 

in data lists 107 
in DO-groups 107 
nested 107 

Replacement 325 
by preprocessor function value 159 
of identifers 155 

Replacement value 155,156 
REPLY option 305,66,266 
Reserved identifier 25,83 
Results 

attributes of 52 
intermediate 58 
of arithmetic operations 47 
of array operations 53 
of bit-string operations 50 
of comparison operations 50 
of concatenation operations 51 
of element operations 53 
of structure operations 55 

Return of control from 
function 136 
invoked procedure 77 
on-unit 148,78 

subroutine 135 
RETURN statement 

320,67,69,71,77,78,137,267 
expression in 136 
for function termination 136 
for subroutine termination 136 
preprocessor 330,157~161 

expression in 159 
Returned value 320 

attributes of 137,308,316 
cqnversion of 137 

. for preprocessor function 159 
default attributes for 294 
of arithmetic built-in function 238 
of array manipulation built-in function 

247 
of mathematical built-in function 243 
of preprocessor function 159 
of preprocessor procedure 327 
of string-handling built-in function 

234 
RETURNS attribute 294,137-139,270 

in %DECLARE statement 326,158,159 
REVERT statement 320,70,84,149,151,265,314 
REWRITE statement 

321,65,90,93,100,104,117,120,123,194 
purpose of 65 

RKP subparameter 100,101,119 
ROUND built-in function 242 
Row-major order 109 

S picture character 212,210 
Scalar expression 44 
Scalar variable 37 
Scale 47 

conversion of 47 
fixed-point 28 
floating-point 28 
in arithmetic conversion 46,58 
in exponentiation 59 
of a numeric character data item 291 
of arithmetic targets 59 

Scale factor 
in arithmetic conversions 293 
in precision attribute 292 
negative 293,228 

Scaling factor 115 
in F format item 220 
in picture specification 291 

Scaling factor picture character (F) 214 
Scan by preprocessor 154 
Scope 84,134 

attributes for 282,270 
of a condition prefix 257,147 
of a declaration 83 

contextual 84 
explicit 84 
implicit 85 

of a name 269,27,83,281 
of a preprocessor variable 326,156 
of an ON statement 149 

Secondary entry point 75,76,308 
parameters of 308 

self-defining data 167 
Semicolon 

as statement delimiter 106 
in data-directed transmission 106,110 

SEQUENTIAL attribute 

Index 353 



279,90-93,99,103,117,120,123,270 
compared with CONSECUTIVE option 99,280 

SEQUENTIAL option 314 
SET option 119,168,169 
Setting of event variables 185 
SETS attribute 294 
Sharing data between tasks 183 
Sharing files between tasks 184 
Shilling digit specifier (8) 214 
Shillings field 215,206,292 
Short floating-point form 31 
Sign, determination of 243 
SIGN built-in function 243 
Sign picture characters 210,290 

drifting use of 210 
static use of 210 

SIGNAL statement 
322,70,84,149,151,192,193,260,314 

Significant digits 
in E format item 219 
loss of 224 

(also see SIZE condition) 
Simple parameters 143,278 

bounds and lengths for 143 
Simple statement 26 

as on-unit 148 
Simulation of an interrupt 71 
SIN built-in function 246 
SIND built-in function 246 
SINH built-in function 246 
SIZE condition 

262,27,29,30,61,147,151,207,257,291 
compared with FIXEDOVERFLOW condition 
in base conversion 224 
in E format output 219 
in F format output 220 
in precision conversion 225 

Size of area 171 
SKIP format item 222,137,216 
SKIP option 317,117,194,262 
Skipp~ng of records 119,123 
Slash picture character (I) 209,130 
SNAP option 314,148 
Source data item 57 

precision of 224 
Source keys 99-102,139,280,321 

extension of 101,119 
summary of 119 
truncation of 101,119 

Source program 154 
Spacing format item (X) 222,115,217 
Special characters 23 

functions of 24 
Specification in DO statement 305 
SQRT built-in function 246 
Stacks 272,296 
Stacking of controlled storage 79 
Standard files 97,104 

GET statement with 97 
PUT statement with 97 
system output (SYSIN) 97,309,311 
system output (SYSPRINT) 

97,117,132,293,311,316 
Standard system action 148,70,257 

for CHECK condition 150 
Sta"tement label constants 

354 

CHECK condition raised for 265 
in LABEL attribute 287 

Statement label deSignators 217,221,309 
Statement label variable 35 
Statement labels 26,83 
Statements 296 

classes of 64 
compound 26 
DD (see DD statement) 
keyword 26 
null 26 
preprocessor 325,161 
simple 26 

Static allocation 78 
STATIC attribute 272,97,103,142,271 
Static picture characters 210 
Static storage class 78 
Static variables 43 w72,79,80,88 

allocation of 79 
initialization of 42,79 
shared between tasks 183 

STATUS built-in function 253,185 
STATUS pseudo-variable 256 
Status value 182 
Sterling fixed-point data 30 

precision of 292 
Sterling picture specifications 

214,206,292 
examples of 215 

STOP statement 322,67,69,77,79,135,181,186 
Storage 

allocation of (see storage allocation) 
classes of (see storage classes) 
external 89 
for varying-length strings 163 
freeing of 272 
"popped-up" 79 
"pushed-down" 79 

Storage allocation 
78,19,20,70,72,73,168,272 

attributes for 272 
dynamic 20 
effect of recursion on 80 
for parameters 143 
sharing between tasks 183 

Storage classes 20,78 
attributes for 79,71 0 142,271 
automatic 20,71,72 
based 165,20,80 
controlled 20,72,296 
static 20,72 

Storage devices, direct-access 101 
Stream 216 
STREAM attribute 293,90-96,270 
STREAM option 314 
Stream-oriented transmission 

105,21,65,89,253 
attributes for 90 
characteristics of 65 
conversion in 126 
statements 65 

summary of 117 
uses for 65 

String arguments 145 
String assignment 298 
String data 28,33 

attributes for 274,270 
length of (see string length) 

String-handling built-in functions 234,233 
arguments of 234 



String length 125 
determination of 236 
expressions for 163 

based variables 167 
varying 236,237 

String operators 24 
STRING option 126,65,67,151,267 

in GET statement 67,309 
in PUT statement 67,316 

String parameters 145 
STRINGRANGE condition 267,151 

(also see SUBSTR built-in function) 
String to arithmetic conversion 58 
String 

fixed-length 274 
varying-length 118,274 

Structure, block 15 
S'tructure arguments 145 
Structure assignment 298 

by NAME assignment 298,55 
S'tructure declarations, blanks used with 

39 
S'tructure expressions 44,54 

evaluation of 54 
in structure assignment 298 
infix operators with 55 
operands of 54 
prefix operators with 55 
with an element operand 55 

Structure names 
major 39,42 
minor 39,42 

Structure operations 55 
Structure parameters 145 
Structure variables 104,287,289 

in LIKE attribute specification 270 
Structures 21,39 

arrays of 40 
COBOL 105 

Structuring 288 
identical 54 
relative 145 
the LIKE attribute 42 

Subfield delimiter 207 
Subfields 'in a picture specificat:ion 

206,290 
Subparameters 

BUFNO 99,281 
BLKSIZE 98 
DSORG 100 
KEYLEN 100-103,120 
LIMCT 104 
LRECL 98 
OPTeD 100 
RECFM 98 
RKP 100,119 

Subroutine 135,193 
abnormal termination of 135 
invocation of 135 
normal return from 135 
normal termination of 135 

Subroutine reference 135 
Subscripted names 38,110 
Subs.cripted qualified names '40 
SUBSCRIPTRANGE condition 

267,150,151,153,257,267 
Subscripts 38 

asterisks as 39 

checking of 150 
evaluation of 267 
expressions as 39 
in arguments 145 
interleaved 41,111,112 
in'ternal form of 38 
precision of 3? 

SUBSTR built-in funct~on 237,56,132,150 
in preprocessor expressions 157 
use at compile time 160 

SUBSTR pseudo-variable 256,150 
in assignment statement 301 

Substring 132 
extraction of 237 

Subtask 180,181 
Subtraction 48 

attributes of result of 231 
SUM built-in function 250 
Synchronization of tasks 183 
Synchronous interrupts 121 
Synchronous operation 

compared with asynchronous operation 
180 

Syntactic unit 197 
Syntax notation 197 
SYSIN 97,104,309 
SYSLIB 329 
SYSPRINT 
97,90,104,117,134,151,267,293,311,316 

as debugging file 148 
System action 151 
System action conditions 268,260 
SYSTEM action specification 70,148,257,313 

T picture character 212 
Tab positions 106,109 
TAN built-in function 246 
TAND built-in function 246 
TANH built-in function 246 
Target. attributes 57 

as derived from operators 58 
determination of 57 
for type conversion 58 
in arithrneticconversion 58 
in arithmetic to string conversion 58 
in bit to character conversion 58 
in character to bit conversion 58 
in string to arithmetic conversion 58 

Targets 58 
base of arithmetic targets 59 
length of bit-string targets 61 
length of character-string targets 61 
mode of arithmetic targets 59 
precision of arithmetic targets 60,223 
scale of arithmetic targets 59 

Task 180 
coordination 183 
creation of 181 
name 181 
priority of 182,180 
synchronization 183,180 
termination 186 

TASK attribute 295,36,84,181 
Task data 36 
Task name 180 
TASK option 181 
Task variables 181 

contextual declaration of 84 

Index 355 



Temporary 
in conversions 57 
in DO statement evaluation 306 

Termination 75,77 
abnormal 70,186,308 
normal 70,186,313 
of begin blocks 77 
of function 136 
of on-unit 148.,78,260 
of procedure 77 
of subroutine 135 
of task 186 

Testing event variables 185 
Testing of program 150 
THEN clause 

in %IF statement 328,162 
in IF statement 312,50 w67 

TIME built-in function 254 
TITLE option 315,93,94 
TO clause 306,108 
Track number, relative 103 
Tracks, relative 102 
Transfer of control by GO TO statement 311 
TRANSMIT condition 264,120,257 

raised by DELETE statement 304 
raised by READ statement 318 
raised by REWRITE statement 321 
raised by WRITE statement 324 

TRUNC built-in function 243 
Truncation 48,216,242 

in arithmetic operations 48 
in string assignment 125 
of keys 318 
of source key 101 

Type 47 
Type conversion 47,62,223,224 

arithmetic to bit-string 61 
arithmetic to character-string 61 
bit-string to arithmetic 62 
bit-string to character-string 62 
character-string to arithmetic 61 
character-string to bit-string 62 
target attributes for 58 

Types of comparison 50 

U-format records 98,103,280 
Unblocked records 89,117 
Unblocking 98 
UNBUFFERED attribute 274,90,93,119,120,270 
UNBUFFERED option 314 
Unconditional branch 67 
Unconditional insertion characters 209 
Undefined format records (see U-format 
records) 

UNDEFINEDFILE condition 265,93,94,120,257 
raised by implicit file opening 

260,304,318,321,324 
UNDERFLOW condition 262,257 
UNLOCK statement 322,66,123 
Unlocking records 184,123.186 

(also see EXCLUSIVE attribute) 
UNSPEC built-in function 237,133 
UNSPEC pseudo-variable 256 

in assignment statement 298 
UPDATE attribute 

287,90,91,100,103,104,117,120,123,270 
UPDATE option 314 
Upper bound 37,249,278 

356 

Usage file attributes 91 
Use of expressions 44 
Use of parentheses 52 
USES attribute 294 

v picture character 207n32~128,290 
compared with point picture character 

Variables 28 
array 37,107 
automatic 43 
control 68 
controlled 43,72,80 
element 37,107 
event 260 
iSUB 41 
label 68 
pseudo-variables 56 
scalar 37 
statement-label 35 
static 43,72,79,80 
structure 39,107 

VARYING attribute 
274,34,35,51,125,132,156,270 

with bit-strings 35 
with character-strings 34 

VARYING strings 217 
storage for 163 

Varying-length records (see V-format 
records) 

Volume 89 

WAIT statement 
323,84,120,180,182,183,185,259,262,264,304 

WHILE clause 306,68,108 
WRITE statement 

324,65,90,93,100,104,117,119,120,123,194 
purpose of 65 

X format item 222,115,217 
X picture character 205,32,34,127,290 

Y picture character 208 

Z picture character 208 8 130 
Zero suppression 208,134 

examples of 208 
in data-directed transmission 106 
in E format output 219 
in ~dit-directed transmission 115 
in F format output 220 
in list-directed transmission 106 
in numeric character data 130 
in sterling pictures 215 
picture characters for 207 

ZERODIVIDE condition 262,257 
Zeros, extension with 125 
Zoned decimal format 33 

48-character set 23,200 
card-punch codes for 200 
EBCDIC codes for 199 

6 sterling picture character 214 
60-character set 23,83 

card-punch codes 199 
EBCDIC codes for 199 

7 sterling picture character 214 
8 sterling picture character 214 
9 picture character 207,32,34,128,205,290 



Technical Newsletter File Number S360-29 

Re: Form No. C28-8201-1 

This Newsletter No. N33-600 8 

Date May 1, 1968 

Previous Newsletter Nos. 

IBM SYSTEM/360 
PL/I REFERENCE MANUAL, 

This Technical New'sletter provides replace.ment pages for IBM 
System/360, PL/I Reference Manuat, Form C28-8201-1. Pages to be 
inserted and removed are listed below. 

Pages to be 
Inserted 

41,42,42.1 
97-100 
103-105,105.1,106 
131-134 
163,164 
169,170 
201-204,204.1 
233,234 
237,237.1,238 
251,252 
269-274,274.1 
277-284,284.1 
289,290 
295,296 

Pages to be 
Removed 

41,42 
97-"100 
103-106 
131-134 
163,164 
169,170 
201-204 
233,234 
237,238 
251,252 
269-274 
277-284 
289,290 
295,296 

A change to the text is indicated by a vertical line to the 
left of the change. 

The specifications contained in this Technical Newsletter 
correspond to Release 16 of IBM System/360 Operating System. 
Significant changes or additions will be reported in subsequent 
revisions or technical newsletters. 

Summary of Amendments 

Information has beE~n added about the STRING built-in function; 
the UNALIGNED attribu1:ei and the INDEXAREA, NOWRITE, and REWIND 
options of the ENVIRONMENT attribute. 

Note: Please file this co~er letter at the back of the manual to 
provide a record of changes. 

~~i(~1 

IBM United Kingdom LaboratorIes Ltd., Programming Publications, Hursley Park, Winche.rter, Hampshire, England. 

PRINTED IN U. S.A. 

None 



Technical Newsletter File Number S360-29 

Re: Form No. C28-8201-1 

This Newsletter No. N33-6009,..-

Date November 21, 1968 

Previous Newsletter Nos. N33-6008 .".", 

IBM SYSTEM/360 
PL/I REFERENCE MANUAL 

This Technical Newsletter, a part of Release 17, of IBM 
System/360 Operating System, provides replacement pages for the 
PL/I Reference Manual, Form C28-8201-1. These replacement pages 
remain in effect for subsequent releases unless specifically 
altered. Pages to be inserted and/or removed are listed below. 

Cover, preface 
15,16 
29,30 
33,34 
34.1 (added) 
43,44 
51 ,52 
52.1 (added) 
65,66 
69,70 
77,78 
81,82 
85,86 
97-102 
102.1 (added) 
105 
105.1 (removed and not replaced) 
106 
106.1,106.2(added) 
115,116 
139,140 
143-148 
1 4 8 • 1 (added) 
155,156 
156. 1 (added) 
165-168 
168.1 (added) 
171,172 
175,176 
181-184 
193,194 
201-206 
206.1 (added) 
217-222 
225-228 
235-238 
238.1 (added) 
241,242 

IBM United Kingdom Laboratories Ltd., Programming Publications, Hunley Park, Winchester, Hampshire, England. 

N33-6009 (C28-8201-1) Page 1 of 3 
PRINTED IN u. S.A. 



242. 1 (added) 
247,248 
253,254 
257-264 
264.1 (added) 
267,268 
271-274.1 
277-290 
290.1,290.2(added) 
305,306 
309,310 
315,316 
323,324 
333-338 

A change to the text or a small change to an illustration is 
indicated by a vertical line to the left of the change; a changed 
or added illustration is denoted by the symbol • to the left of 
,the caption. 

:Summary of Amendments 

Information on the following items has been added: 

Initialization of arrays of structures 

Distinction between recursive and reentrant procedures 

Variable-length records and their formats (V, VS, and VBS) 

Key classification (GENKEY) 

Standard system action for the ERROR condition 

Numeric character data and the P format item 

Precision of floating-point items 

Condition code 1018 

Maximum length of DISPLAY character strings 

Termination of task 

The descriptions of the following items have been clarified or 
expanded: 

Concatenation of VARYING strings 

Rounding of E and F format items 

Parameter attribute lists without the ENTRY attribute 

Varying-length string arguments and parameters 

N33-6009 (C28-8201-1) Page 2 of 3 



REFER option 

ROUND built-in function 

SIZE condition 

ENDPAGE standard system action 

There are, in addition to these amendments, some editorial 
changes to make this publication consistent with the reclassifi­
cation to Restricted Distribution of the IBM System/360 PL/I 
Language Specifications, formerly Form C28-6571-4. 

Note: Please file this cover letter at the back of the manual to 
provide a record of changes. 

N33-6009 (C28-8201-1) Page 3 of 3 



Technical Newsletter File Number 

Re: Form No. 

This Newsletter No. 

S360-29 

C28-8201-1 

N33-6011 

Date January 31, 1969 

IBM SYSTEM/360 
PL/I REFERENCE MANUAL 

Previous Newsletter Nos. N33-6008 
N33-6009 

This Technical Newsletter, an amendment to the 
publication issued with Release 17 of IBM System/360 Operating 
System, provides replacement pages for the PLII Reference 
Manual, C2 8- 82 01-1 • These replacemE~n t pages remain in effect 
for subsequent releases unless specifically altered. Pages to 
be inserted and removed are listed below. 

279,280 

305,306 

315,316 

Changes in the text are indicated by a vertical line 
to the left of the change. 

Summary of Amendments 

Brackets and braces, omitted on the original pages, have 
been inserted. 

IB M United Kingdom Ldboratorie.r Ltd., Programmin~~ Publications, Hursley P{Jrk, Winche.rter, Hampshire, England. 

PRINTED IN U.S.A. 



READER'S COMMENT FORM 

IBM System/360 
PL/I Reference Manual Form No. C28-820l-l 

How did you use this publication? 

As a reference source [J 

As a class-room text [J 

As a self-study text [J 

Based on your own experience, rate this publication: 

As a reference source-Very Good D Good D Fair D Poor D Very Poor 0 
As a text-Very Good D Good D Fair D Poor D Very Poor D 

What is your occupation? 

We would appreciate your specific comments; please give page and line references where appropriate. If 
you wish a reply, be sure to include your name and address . 

• Thank. you for your cooperation. No postage necessary if mailed in U.S.A. 



C!:2A-8201-1 

YOUR COMMENTS PLEASE .... 

This SRL bulletin is one of a series which serves as reference sources for systems analysts, programmers 
and operators of IBM systems. Your answers to the questions on the back of this form, together with your 
comments, will help us produce better publications for your use. Each reply will be carefully reviewed by 
the persons responsible for writing and publishing this material. All comments and suggestions become 
the property of IBM. 

Please note: requests for copies of publications and for assistance in utilizing your IBM system should be 
directed to your IBl\1 representative or to the IBM sales office serving your locality. 

fold fold ........................................................................................................................ . . 

Attention: Department 813 

BUSINESS REPLY MAIL 
NO POSTAGE NECESSARY I.F MAILED IN THE UNITED STATES 

POSTAGE WILL BE PAID BY ... 

IBM CORPORATION 

112 EAST POST ROAD, 
WHITE PLAINS, N.Y. 10601. 

FIRST CLASS 
PERMIT NO. 1359 

WHITE PLAINS. N.Y. 

..................................................................................................................... , .. : 
fold 

International Business Machines Corporation 
Data Processing Division 
112 East Post Road, White Plains, N. Y. 10601 
[USAOnlyj 

IBM World Trade Corporation 
821 United Nations Plaza, New York, New York 10017 
[International] 

fold 



C28-8201-1 

International Business Machines Corporation 
Data Processing Division 
112 East fost Road, White Plains, N.Y.1060l 
[USA Only] 

IBM World Trade Corporation 
821 Unit~d Nations Plaza, New York, New York 10017 
I International] 


	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034.0
	034.1
	035
	036
	037
	038
	039
	040
	041
	042.0
	042.1
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052.0
	052.1
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102.0
	102.1
	103
	104
	105
	106.0
	106.1
	106.2
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147.0
	148.0
	148.1
	149
	150
	151
	152
	153
	154
	155
	156.0
	156.1
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168.1
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206.0
	206.1
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238.0
	238.1
	239
	240
	241
	242.0
	242.1
	243
	244
	245
	246
	247
	248
	249
	250
	251
	252
	253
	254
	255
	256
	257
	258
	259
	260
	261
	262
	263
	264.0
	264.1
	265
	266
	267
	268
	269
	270
	271
	272
	273
	274.0
	274.1
	275
	276
	277
	278
	279
	280
	281
	282
	283
	284
	285
	286
	287
	288
	289
	290.0
	290.1
	290.2
	291
	292
	293
	294
	295
	296
	297
	298
	299
	300
	301
	302
	303
	304
	305
	306
	307
	308
	309
	310
	311
	312
	313
	314
	315
	316
	317
	318
	319
	320
	321
	322
	323
	324
	325
	326
	327
	328
	329
	330
	331
	332
	333
	334
	335
	336
	337
	338
	339
	340
	341
	342
	343
	344
	345
	346
	347
	348
	349
	350
	351
	352
	353
	354
	355
	356
	_1
	_2
	_3
	_4
	_5
	replyA
	replyB
	xBack

