
====-- -= --- --- ==: --------
Application Program

Y20-0345-0

System/360 Problem Language Analyzer (PLAN) (DDS/OS:

(36DA-CX-26X, 36DA-CX-27X)

Volume I - Flowchart Narratives

System Manual

This manual contains detailed information in the form
of flowchart narratives for the DOS/360 PLAN and OS/360
PLAN systems. With this, the user should gain a better
understanding of the logic of the system.

RESTRICTED DISTRIBUTION

First Edition (July 1969)

Significant changes or additions to the specifications contained in this publication
will be reported in subsequent revisions or Technical Newsletters.

This edition applies to Version 1, Modification Level 0, of Systcm/360 Problem
Language Analyzer (PLAN) (DOS/OS) (360A-CX-26X, 360A-CX-27 X) and to all
subsequent versions and modifications until otherwise indicated in new editions
or Technical Newsletters.

Changes are continually made to the specifications herein. Therefore, before using
this publication, consult the latest System/360 SRL Newsletter (N20-0360) for
the editions that are applicable and current.

RESTRICTED DISTRJBUTION: This publication and the program to which it
applies are provided to IBM customers to meet their equipment capabilities and
application needs. Distribution is limited to such customers and requires the
approval of local IBM management.

Address comments concerning the contents of this publication to: IBM Corporation,
Technical Publications Department, 112 East Post Road, White Plains, N.Y. 10601.

15 JULY 1969

INTRODUCTION • • • 5

SYSTEM OVERVIEW 6

PLAN SYSTEM INITIALIZATION 8
OS/360 PLAN Initialization 8
DOS/360 PLAN Initialization • .• .• • 9
OS Program Loader • • • • • - • • • 9

Sequential File Processing • • • • • . 11
PLAN SORT Facility • • • - • • 11
PLAN SORT • • • • • • • • • • .• • • 11
OS Control Blocks • • • • • • • • • • • 13
DOS CONTROL BLOCKS • • • • • • • • 15
DIRECT Access Files • 16

Checkpoint Processing 16
DYNAMIC File Processing • • • • • • 16

File Layout DYNAMIC Drives •••••• 16

FILE RECORD LAYOUT • • • • • • • • • • • 18
PFILE Layout • • • • • • • • • • • • • • 18

PFPWVTAB (Phrase-Verb Validity Table) 19
PSYMT 1,2,3,4 (Symbol Tables) . 19
PFPAVTB (Phrase Availability Table) • 20
PFPETAB (Phrase Entry Table) • • • 20
Table 1 (Phrase Name) • • • • • • 21
Table 2 (Constant Initialization Data
Values) • • • • ~ • • • • • • • • 21
Table 3 (Symbol Table) • • • • • • 22
Table 4 (Program List) • • • • • • 23
Table 5 (Data Check Entries) • • • 23
Table 6 (Phrase-Defined Expressions) • 24
Table 1 (User-Exit List) ••••••• 24
Table 8 (Verb Program List) • • • • • 25

PLAN DYNAMIC File Control Block • 25
PLAN PERMANENT .File Control Blocks • • • 25

SYSTEM/360 PLAN FLOWCHART NARRATIVES • • 26
BREAK • • • .. •
$$BDFJD (DOS)
$BDFJDO (DOS)
$$BDFJI (DOS)
$$BDFJSO (DOS) •

• 26
• • • • • • • 26

• • 26
• • 26

26
DFJCGET • • • • • • • • • • • • • • • 27
DFJCNTRL (DOS)
DFJCRDIR (OS)
DFJCSET • • • •
DFJDIOCS (DOS) • •
DFJDLOAD, DFJSLOAD (DOS)
DFJDSLL • • • •
DFJDUMP (OS) • • • • • •
DFJFMAIN COOS)
DFJGMAIN
DFJISET • • • • • • • •
DFJLLIST (OS)
DFJLODER (OS)
DFJMPSCB (DOS) •
DFJPCDMP •
DFJPDIAG
DFJPEDMP • • • • •
DFJPERRS • • • • • •
DFJPFDMP
DFJPFIN

FLOWCHART NARRATIVES

• 27
• 27
• 27

• • 28
• • 29

• • • • • • 29
• • • • • 30

• 30
• • • • • • • 30

• 30
• 30
• 31
• 35

• • • • • 3 5
• 37

37
. 37

• • • • • 40
• 41

PROBLEM LANGUAGE ANALYZER (PLAN)

DFJPFOUT, DFJPEOUT •
DFJPHRAS • • • • •
DFJPIDMP • • • .• •
DFJPIIN
DFJPIOCS ••
DFJPIOUT ••
DFJPLAN (OS)

SYSTEM MANUAL

CONTENTS

• 41
• • • • • • 42

• 54
• 55
• 55
• 55

• • 55
• 61 DFJPLAN COOS) • • • • •

DFJPLENG • • • • • • • • • • 65
DFJPLITL • • .• • • 65

• 66
·• • • • • • • • • 6 8

DFJPMERG, DFJGMERG •
DFJPSCAN • • • • .• •
DFJPSRTA, DFJGSRTA •
DFJPSRTB, DFJGSRTB •
DFJPSTSV • • • • • •
DFJPTDMP • • • • • • • • •
DFJPTDPl • • • • • • •
DFJPTDP2 •

• 87
• 89
• 90

• • • • • • 92
• 95
• 96

DFJPTDP3 •• • 97
• • • • • • • • • • 9 8 DFJPTDP5 ••

DFJPTDP6 ••
DFJREN (OS)
DFJRETN COOS)

• • • • • • • • • • • 99

DFJSCHB
DFJSCHN
DFJSIOCS COOS)
DFJTRACE (DOS)
DFJTRACE (OS)
ERL ST
ERR ET
EWRIT
FIND ••
GMERG/PMERG
GSORT/PSORT

• • • • • • .100
••••• 100

.100

.101
• • • • • .101

• • • • • • .102
.102

•• 102
•• 102

.103

.103

.106
••••• 106

NOSER, !USER, GUSER, EUSER .106
INPUT ••••••• 107
roes <Dos>• _ • . .101
IOCS (OS) • • • • • • • • .107
LCHEX (OS) .107
LCHEX (DOS) • • • • .108
LEX • • • • • .108
LIST ••
LIS TB
LISTZ
LNCHX
LNRET
LNRET
LOCAL
LOCAL
LREPT

(OS) • • • •
(DOS)
(OS) •
COOS)

LRET • • ••
LSAV, LRLD •
NDEF ••
PAIN ••
PBFTR
PBTST

.108

.109

.109

.109
• • • • • • • • • .109

.109
•••••• 109

.109

.110
• • • • .110

.110

.110

.110
•••••• 110

.111
PBUSY, PDBFA, PDBFB, PDBFC, PDBFD,
PDBFE, PSBFA, PSBFB, PSBFC, PSBFD,
PSBFE •••••••••.•••••. 111
PCAF, PCAI, PCEA, PCFA, PCIA • • .111
PCCTL • • • • • • • • • .111
PCOMP • • • • • • • • • • • • • .111

PROBLEM LANGUAGE ANALYZER (PLAN)

SYSTEM MANUAL 15 JULY 1969

PEOF • • • • • • • • • .112 PPACK ull5
PENDF (DOS) • 11. 2 PPAGL • • • • "115
PENDF (OS) • • •••• 112 PRGIO • • • • • • • • • • "115
PEOUT. PFOUT. PFIN, PIOUT. PIIN .112 PUNPK u115
PFSPC • • • • • ••••• 112 PUSH • • ••••••••.• 115
PHIN • • • •••••• 113 RWDATA . • • • • • • • 116
PHOUT • • • • .113 STVAL • • • .. . • • • • • • • • • 116
PHTOE • • • • .114 TRUE • • • • • • • • • • • • • .. 116
PIOC • • • • •••• 114 XACES • • • • 116
PLINP • • • • • •••••• 115 XBIT • • • • • • .117
PLOUT • • • • • •••• 115 XPRNT • • • • • • • • • .117

XTRAC .. 117

FLOWCHl\RT NARRATIVES

15 JULY 1969

The Problem Language Analyzer (PLAN) is
designed to allow implementation of desir­
able user-oriented (problem-oriented) lan­
guages by providing a common language pro­
cessor. Previously, problem-oriented lan­
guages have required independent language
processors that were in themselves major
implementation tasks. Even though highly
desirable, problem-oriented languages were
implemented only for major applications.
Reimplementation on new equipment has made
long-term costs even higher.

The PLAN system through the common proces­
sor allows input to a job to be composed of
several dissimilar problem-oriented lan­
guage jobs, all operating in a homogeneous
environment. It also allows easy modifica­
tion and expansion of existing applica­
tions. The PLAN concept of implementation
of logic modules makes complete machine
independence of logic modules more easily
attainable.

Logic module loading is accomplished dynam­
ically at execution time as defined by the
current job description. This means that
logic modules are loaded only as required
and that existing logic modules do not
require modification to incorporate new
processing capabilities. Multiple versions
of the PLAN system for the IBM 1130 System,
the IBM System/360 using the Disk Operating

PROBLEM LANGUAGE ANALYZER (PLAN)

SYSTEM MANUAL

INTRODUCTION

System, and the IBM System/360 using the
Operating System allow logic modules writ­
ten in·machine independent ASA FORTRAN IV
to be executed on either computer system.
T.he job is described in problem-oriented
terms on the most accessible system in a
language compatible to all systems.

In general, implementation of a problem­
solving system operating within a PLAN
environment involves the several tasks as
defined below:

1. Definition of the problem-oriented lan­
guage. This definition is processed by
PLAN to create the language dictionary.

2. Programming of logic modul·es Cif exist­
ent logic modules do not suffice) to
support the problem solution functions
(note that this does not encompass prob­
lems of language processing; these are
handled by PLAN).

3. Generation of problem-oriented language
statements to describe the particular
unique problem to be solved.

Many utility routines are provided with
PLAN to make writing of logic modules
easier and faster, and to provide a logic
module that provides a more powerful and
more efficient problem solution.

INTRODUCTION 5

PROBLEM LANGUAGE ANALYZER (PLAN)

SYSTEM MANUAL

SYSTEM OVERVIEW

The following diagram shows the overall
logic of the PLAN Monitor.

The system is driven by the program pop-up
list. This list and each entry is eight
EBCDIC characters naming a program module
that can be found in the PLAN program
library. There are two modules in the PLAN
system that are loaded without using the
pop-up list. These are:

DFJPSCAN - The command processor and lan­
guage interpreter which is loaded whenev­
er th pop-up list is empty.

DFJPERRS - The system error processor
which is loaded if the monitor obtains
control and an error has occurred.

All other modules loaded by PLAN are loaded
because their names were encountered in the
pop-up list.

The three entries shown represent the load­
er interface subroutines LEX. LOCAL and
LRET.

LEX causes a transfer of control to the
next module in the pop-up list. The
calling module may be overlayed.

LOCAL causes a transfer of control to the
next module in the pop-up list to be
executed as a subprogram of the caller.
The calling program may not be overlayed.

LRET causes control to be returned to the
caller. If the module was called as a

6 OVERVIEW

15 JULY 1969

LOCAL, control is returned to the calling
module. Otherwise, control is given to
the PLAN loader.

Refering to the diagram, initial entry to
PLAN causes DFJPSCAN to be loaded to pro­
cess a command. DFJPSCAN initializes BLANK
COMMON and places a list of names in the
pop-up list and then calls LRET.

On LRET, the loader checks for a return
from a LOCAL module. If so, it returns
control to the calling module.

The loader control then checks for any
errors and loads DFJPERRS to process them.

The next name is extracted from the pop-up
list and if nonzero, that program is loaded
and entered for execution. This processing
continues until the list is zero and then
DFJPSCAN is reloaded and the cycle repeats
itself.

DFJPSCAN will terminate PLAN processing
when an end-of-file occurs in the command
input stream. It does this by LEX to the
PLAN module DFJRETN which returns control
to the OS or DOS supervisor.

On a LOCAL entry to the loader, the test to
call DFJPERRS is not executed because the
calling module may not be overlayed.

On LRET from a LOCAL control is transferred
directly to the calling module.

15 JULY 1969

PLAN SYSTEM GENERAL LOGIC

LEX LOCAL

INDICATE
LOCAL
MODE

PUT
'NAME'
IN POP-UP
LIST

DFJPERRS

OUTPUT
ERROR
MESSAGES

LEX
(0)

LRET

LOAD
NEXT PGM
IN POP-UP
LIST

PROBLEM LANGUAGE ANALYZER (PLAN)

RETURN
TO
CALLING
MODULE

PUT
'DFJPERRS'
IN POP-UP
LIST

PUT
'DFJPSCAN'
IN POP-UP
LIST

DFJPSCAN

READ
NEXT
COMMAND

INITIALIZE
COMMON
AND
POP-UP LIST

LRET

SYSTEM MANUAL

LEX --n
(DFJREl::_jj

OVERVIEW 7

PROBLEM LANGUl\GE ANALYZER (PLAN)

SYSTEM r.'!.ANUAL

PLAN SYSTEM INITIALIZATION

OS/360 PLAN INITIALIZATION

The general function of the OS
initialization is to a) process PARMS
the EXEC control card, b) allocate the
program COMMON area, c) load resident
modules, d) validate JCL and open
sets.

PLAN
from
PLAN
PLAN
data

The following items detail the sequence of
events that occur during PLAN initial­
ization for OS:

1. The registers are saved and a save area
is establisheda

2. The system type MVT or PCP/MFT is
determined. This is done by inspecting
the CVT. If the system is MVT, an
indicator is set for use by the core
management routine.

3. A GETMAIN for 408 bytes is issued to
allocate the program pop-up list. The
list is cleared and a pointer to the
beginning and the end of the list is
saved in the PLAN COMMON area.

4. The EXEC control
processed.

card PARMS are

5. The PLAN program COMMON area is allo­
cated. This area must be contiguous
and begin at the start of the partition
or region. The PLAN mainline 'DFJPLAN'
is exactly 12,288 bytes in length to
insure that it is loaded at the begin­
ning of the region on MVT systems.
Refer to the following diagram showing
the program COMMON area allocation. A
vc GETMAIN is issued and an address B
and a length Ll is returned. The
default value for L2 is calculated as
C12K+L1) *2/3. If the PGAR PARM was
specified the value for it is used.
The length L3 is found from L1+12K-L2.
The address c or the top of the PLAN
program area is equal to A+L2. A
FREEMAIN is then issued using the
address c and a length L3. This
releases the unused core.

8 SYSTEM INITIALIZATION

15 JULY 1969

TOP ..:::.. - I~ ~\

FREE
L3 STORAGE

111 - c -- r----

p
G
A
R

:::.

PLAN
PROGRAM
AREA

1-----------

PLAN
MAINLINE

I I'

L.2

+-- B
lt

A--

6. The PLAN modules DFJLODER and DFJTRACE
are loaded into the partition. This
causes the first significant differ1'.:!nce
in the region layout between PCP/MFT
and MVT systsms. On MVT, loading the
modules causes creation of a block of
core in subpool 252. On PCP/MFT sys­
tems, the modules are loaded as high as
possible in the partition.

7. Data sets defined by the PLINP, PLOUT
and PLSEQ DD cards are opened. If a
PLINP or PLOUT DD card are missing, an
ABEND user code 100 occurs. The sub­
routines 'TSRCHA' and 'TSRCHBw are used
to search the TIOT and read the JFCB if
an equivalent DD name is found. The
subroutine 'OPENSEQ' builds a DCB from
a skeleton, merges fields from JFCB to
the DCB, validates the device type,
allocates the buffers, blanks the first
buffer, and opens the data set. A
TCLOSE macro is issued for all PLSEQ
data sets so that the first access may
be either READ or WRITE.

8. The PLANLIB PDS is opened.

L1

V'

15 JULY 1969

9. The PLSYSTAB data set (the phrase dic­
tionary) is opened. If the file is
new, it is formatted and then initial­
ized. The key thing in this is that
the ADD PHRASE phrase is written onto
the PFINPUTA record of the file and a
switch is set so that the module
DFJPHRAS is the first program called in
order to actually add this phrase to
the dictionary. The phrase dictionary
file is assigned a permanent drive
number of zero and a logical file
number of 255 so that the phrase table
dump routine can use the subroutine
GDATA and RDATA to access this file.

10. The managed area save file PLMANFIL and
the checkpoint file PLCHKPT are opened
if present.

11. PLAN PERMANENT drive data sets
(PLFSnyyy) are opened if present.

12. PLAN DYNAMIC drive data sets (PLANDRVn)
are opened and formatted if new. If
the file is old it is validated.

Note that the subroutine DSCHK does a
physical open on all direct access file.
If disposition is old the DSCB is read from
VTOC and validated. If the file is new, it
is formatted with the value of FALSE.
'7FFFFFFF'

13. A BLDL macro is issued to ensure that
the modules DFJPSCAN, DFJPERRS, and
DFJRETN are in the PLANLIB PDS. These
modules must be present or the PLAN
system will loop.

14. The program area is cleared and either
DFJPSCAN or DFJPHRAS is loaded to begin
PLAN execution.

DOS/360 PLAN INITIALIZATION

The following items detail the sequence of
events for DOS PLAN initialization.

1. The address of the top of the partition
and saved.

2. PLAN run control cards are read and
processed.

3. The FORTRAN I/O area is allocated.
This is done by using the PLAN subrou­
tine DFJGMAIN which will allocate core
from the top of the partition down.

4. The PLAN transient routine $$BDFJI is
called to set the address of the FOR­
TRAN I/O area into the DOS COMREG area.
This is necessary because the FORTRAN
I/O package uses the address of the end

PROBLEM LANGUAGE ANALYZER (PLAN)

SYSTEM MANUAL

of the phase for a work area for its
buffers.

5. If a user work area was specified it is
allocated.

6. The resident PLAN subroutines DFJDIOCS,
DFJSIOCS, and DFJCNTRL are moved to the
top of the partition.

7. The PLAN system CCB control blocks are
created and moved to the top of the
partition.

8. The pop-up program list is allocated
and cleared .•

9. The core-image library control block is
opened.

10. If an·alternate library is specified,
its control block is created and
opened.

12. The PLAN module DFJIOCBS is loaded into
the partition.

13. If apy *ASGN cards
their specifications
the existing control
module DFJIOCBS.

were processed,
are merged with
blocks in the

14. If a TRACE is required the subroutine
DFJTRACE is moved to the top of the
partition.

15. A check is made to ensure that the
modules DFJPSCAN, DJFPERRS, and
DFJPHRAS are in the core-image library.

16. The ·PLAN system files DFJPCHK, DFJPDTA,
and DFJPFILE are opened using the PLAN
transient routine $$BDFJDO.

17. DFJPFILE <the phrase dictionary> is
validated. If it is new, the program
DFJPHRAS is put into the pop-up list.

18. Tran sf er is to the loader to begin
execution.

OS PROGRAM LOADER

The PLAN system must allow modules not
linkedited together to communicate with
each other through BLANK COMMON. For this
reason the LOAD, LINK, XCTL, or ATTACH
macros cannot be used to load modules to be
executed under the PLAN system.

Figure 1 shows the layout of a program
segment in the PLAN program area.

SYSTEM INITIALIZATION 9

PROBLEM LANGUAGE ANALYZER (PLAN)

SYSTEM MANUAL

r---------,
I I

1 I ENTAB I
I I
~---------~
I I
I PGM I

2 I AREA I
I I
·---------~
I I

3 I PCB I
I I
~---------~

4 I UAB I
·---------~
I I

5 I LSA I
I I
~---------~

6 I LCB I
l-------~-J

Figure 1. PLAN program area layout

1. The entry table contains the name and
entrypoint for every CSECT in the pro­
gram area.

2. Program area contains the module itself
with the BLANK COMMON CSECT extracted.

3. The program control block contains the
name, entrypoint, and other information
about the program.

4. The unresolved adcon block is only
created when an unresolved external
reference is found in the program area.

5. The LOCAL save area is used to save the
program status if CALL LOCAL is used.

6. The level control block describes the
length of the entire segment.

The OS program loader replaces the OS fetch
facility. It is divided into two sections
1) Loader Control which is located in the
PLAN mainline, 2) Module Loader which is a
section of the module 'DFJLODER'.

The module loader performs the following:

1. Relocation of the BLANK COMMON CSECT
2. Builds the ENTAB
3. Loads TXT records
4. Relocation of adcons
5. creates a PCB

The Loader control performs the following:

1. Program area maintenance
2. Free storage management
3. In-core program search
4. Bank loading control
5. Final linkedit and processing of unre­

solved adcons

10 SYSTEM INITIALIZATION

15 JULY 1969

6. Local processing control
7. Creation of LSA and LCB

The first step in loading a module is to
determine if it is already in the program
area. This is done by searching the PCB
chain. If the module is in core, it is
entered without any further processing.
When the module is not found, program area
maintenance is performed by adjusting the
LCB and PCB chains to release inactive
segments. If required, free storage man­
agement is performed at this time. The
loader is then called.

The first step for the loader is to locate
the module in the PLAN library data set.
If an in-core directory is available it is
searched for the module name. If the name
is not found, a BLDL macro is issued to
locate the module. The ESD (external-entry
symbol table) records are read and pro­
cessed. From these the entrypoint table
CENTAB) is built, the location and length
of BLANK COMMON is determined, and the
names of all external references are rec­
orded in a table (ERTABl).

The TXT records which contain the relocat­
able code for the module are then read. It
is at this point that the BLANK COMMON
CSECT is deleted from the module. All
CSECTs originating above BLANK COMMON are
relocated downward by the length of BLANK
COMMON. The RLD records (Relocatable Aclcon
Dictionary> are read and the adcons in the
program area are relocated. If an adcon
refers to BLANK COMMON it is relocated to
point to PLAN BLANK COMMON. If an unre­
solved external reference CV-TYPE adcon) is
found, its name is determined from the
external reference name table CERTABl) and
then entrypoint tables (ENTAB) for modules
already in core and the JOBPAC entrypoint
table are searched. If an equivalent name
is found, the external reference is
resolved. If the adcon cannot be resolved
an entry in the unresolved adcon table
CERTAB2> is made. After the module has
been loaded the PCB is completed and con­
trol is returned to the mainline where the
unresolved adcons are processed.

For each external reference still unre­
solved, a 24-byte control block (URABLK)1 is
built and the adcon is resolved to this
block which has the format:

0 L
4 BAL
8 DC
16 DC

15,16(0,15)
15,URAENT-PLANC0,15)
C18'NAME'
V(PLAN)

This code causes execution-time reference
to the adcon to branch to the PLAN mainline
where it is processed as a 'LOCAL'.

15 JULY 1969

The final action in the loading process is
to create a LOCAL SAVE AREA and a LEVEL
CONTROL block.

SEQUENTIAL FILE PROCESSING

subroutine DFJSIOCS processes
requests for all sequential

OS. It is located in the module
For DOS it is loaded at the top

partition by the initialization

The PLAN
read/write
files for
DFJLODER.
of the
routine.

For OS the files are opened at initial­
ization time using the standard OPEN macro
and the BSAM access method is used for
processing.

For DOS the files are opened when the first
read/write request is executed by the tran­
sient module $$BDFJSO and the EXCP access
method is used for processing. Basically
the opening of the file consists of con­
structing a control block that DFJSIOCS
uses to process physical records. The
conversion routines (PAIN, PAOUT, etc) lo­
cate the buffer address and length from the
control block and cause only transmission
to/from the buffer.

PLAN SORT FACILITY

The PLAN subroutines PSORT, PMERG, GSORT,
and GMERG provide the program interface to
the PLAN SORT/MERGE modules. These are:

1. DFJPSRTA and DFJGSRTA which are block
sorting routines for DYNAMIC and PER­
MANENT files respectively.

2. DFJPSRTB and DFJGSRTB which are in-place
merge routines which may be used if a
SORT cannot be completed by the block
sort modules.

3. DFJPMERG and DFJGMERG are the
DYNAMIC and PERMANENT file merge.

PLAN

The only differences between DFJPXXXX and
DFJGXXXX modules is that DFJPSRTA,
DFJPSRTB, and DFJPMERG use the READ/WRITE
subroutines and DFJGSRTA, DFJGSRTB, and
DFJGMERG use the RDATA/WDATA subroutines.

PLAN SORT

The PLAN SORT is invoked by the subroutines
PSORT/GSQRT issuing a CALL LCHEX (6,
'DFJXSRTA, DFJXSRTB,*'). NOTE that the x
in both DFJXSRTA, DFJXSRTB correspond to
either a P or G.

DFJXSTRA is the first load of
validates the sort control

the SORT,
field, and

PROBLEM LANGUAGE ANALYZER (PLAN)

SYSTEM MANUAL

does the block sort. It creates a work
area in the mainline which contains the
following:

WORD 1-2
WORD 3
WORD 4

WORD 5

WORD 6
WORD 1

WORD 8

WORD 9
WORD 10

Word 11

ID block of file to be sorted
Record length in bytes
Number of words in the Record
sort Area
Number of records in the Record
Sort Area
Address of list of RSA pointers
Address of a save area for 1
logical record
Address of the last record in the
Record Sort Area
Address of the Record Sort Area
Address of the Sort Control
Fields
Sequence break KDIS

The block Sort module allocates available
core for the sort to two areas.

1. The Sort record area where the actual
record will be read/written.

2. A list of pointers to each logical
record in the sort record area.

After reading the block of records into the
RSA, the LIST is initialized as shown in
Figure 2. Then the SORT routine uses a
binary chop search to order the list of
pointers rather than the records. In the
example, the list of pointers would change
as shown at completion of the internal
sort. The records themselves are rear­
ranged into the order shown in the list.
The process is repeated until each block in
the file has been sorted. A check for a
sequence break across blocks is made and if
none occurs, the sort is complete at the
end of the block sort. In this case, the
pop-up list pointer is updated to bypass
the loading of the merge module.

SYSTEM INITIALIZATION 11

PROBLEM LANGUAGE ANALYZER (PLAN)

SYSTEM MANUAL

LIST RSA

r------, r-----,
I 8 I

RSA6 RSA6 ~-----~
I 4 I

RSA5 RSA5 l-----~
I 9 I

RSA4 RSA4 ~--·---~
I 1 I

RSA3 RSA3 l-----~
I 16 I

RSA2 RSA2 ~-----~
I 5 I

RSAl RS Al
l _____ J

r------,
RSA2

RSA4

RSA6

RSAl

RSA5

RSA3

Figure 2.

12 SYSTEM INITIALIZATION

15 JULY 1969

The in-place merge is performed by the
module DFJXSRTB. The managed array save
file is used as a work file. The general
technique is to locate two sequence breaks
and peform a descending merge. When a
sequence break is found, the out-of­
sequence block is copied to the work file
to create space for the output of the
merge. Then the work file and the in­
sequence block are read backwards and a
descending merge performed. The output of
the merge is written backwards starting at
the end of the out-of-sequence block.

15 JULY 1969

OS CONTROL BLOCKS

ENTAB ENTRY
r-------------1

o I I
4 I ENAME I

~-------------~
8 I EP ADDR I

~-------T----~
12 I LEINO I I

t_ ______ _____ J

0-7
8-11
12

ENAME
EPADDR
LEI ND

Entrypoint name
Entrypoint address
Last entry indicator

X'80' Last entry
x•oo• Not last entry

The ENTAB is created by the program loader
and appended to the end of every module
loaded. Each entry contains the name and
entrypoint for a CSECT in the module. This
table is used when processing unresolved
adcons.

NAME/PCB

r-------------1
o I I
4 I MNAME I

~------T------~
8 I LEVELi ENTABI

~------..l------~
12 I LCOM I

·-------------~
16 I EPADDR I

·-------------~
20 I PCBCHN 1

L-------------J
0-7 MN AME Program name
8 LEVEL Segment level assigned to

module
9-11 ENTAB Address of the entry table

12-15 LCOM Length of BLANK COMMON CSECT
for this module

16-19 EPADDR Module· entry point
20-23 PCBCHN Pointer to next active PCB,

zeroes if last PCB

The NAME control block is resident in the
PLAN mainline. It is used as a work area
by the program loader and is the skeleton
used to construct the PCB which is appended
to the beginning of every module loaded.

ERTABl

r-------------1
0 I I
4 I CNAME I

·-------T-----~
8 I ESDNUMI I

l-------..l-----~
12 I CHAIN I t_ ____________ J

PROBLEM LANGUAGE ANALYZER (PLAN)

SYSTEM MANUAL

0-7 CNAME Name of external reference
8-9 ESDNUM ESD number assigned by link­

age editor to this external
reference

12-15 CHAIN Pointer to next ERTABl, zero
if last

An ERTABl control block is created by the
program loader when a Type 2 ESD entry is
processed. This table is used to identify
the name of an external reference when an
unresolved adcon is found during RLD
processing.

ERTAB2

r---------------1
o I I
4 I CNAME I

~------T--------~
8 I LADC I ADCADDRI

~------..l--------~
12 I CHAIN I

L---------------J
0-7 CNAME

8 LADC
9-11 ADCADDR

12-15 CHAIN

Name of external reference
Length in bytes of adcon
Core address of adcon
Pointer to the next ERTAB2,
zero if last

An ERTAB2 control block is created by the
program loader during RLD processing when
an adcon is found that cannot be resolved.
These control blocks are processed by the
final cleanup linkedit in the PLAN
mainline.

LOCAL SAVE AREA

r---------,
0-631 LOCREGS I

0
64
68

72
76
80

84

~---------~
641 LPARMAD I

~---------~
681 LPICADR I

~---------~
721 LCURPCB I

~---------~
761 LCURTOP I

~---------~
801 LCURBTM I

~---------~
841 LOCCHNS I

·---------~
881 LCURLEV I

L---------J
LOCREGS Register save area
LPARMAD Callers argument list address
LPICADR Address of caller's pica

element
LC UR PCB Address of the current PCB
LCURTOP Top of managed free storage
LCURBTM Bottom Of managed free

LOCCHNS
stora9e
Address of next LOCAL save

SYSTEM INITIALIZATION 13

PROBLEM LANGUAGE ANALYZER (PLAN)

SYSTEM MANUAL

area
88 LCURLEV Current execution level

A LOCAL save area is part of a level
control block but is only used when the

15 JULY 1969

A DAFB is created at initialization time
for all direct access files defined by
PLSYSTAB, PLMANFIL, PLCHKPT, PLAND:RVx,
PLFSYnnn DD cards.

LOCAL facility is invoked. SFB

LCB

r---------------,
0-3 I CHAINADR I

·------T--------~
4-7 I LEVELi UNUSED I

·------.L---------~
8-99 I LSA I L._ ______________ J

0 CHAINADR Address of next LCB zero if
last

4 LEVEL Level number assigned to
this segment

8 LSA LOCAL SAVE area

An LCB (Level Control Block) is created
whenever a new segment is loaded or a CAI.L
LOCAL occurs and a LSA is not available.

DAFB
r------------------------------1

0-103 I DCB I
·------------------------------1

104-107 1 CHAINADR I
l------T-----T--------T--------1

108-111 ISTATUSI ILGDRVNUMILGFILNUMI
·------.L-----.L--------.L--------~

112-115 1 DECBCHN I
~------------T--------T--------~

116-119 I NDECBS I INRECTRK I
·----·--------.L--------.L--------~

120 I FILWLGTH I
l----·--------------------------1

124 I FILRLGTH I
l----·--------------------------J

0-103 DCB
104 CHAINADR

108 DTATUS BYTE

110 LGDRVNUM
111 LGFILNUM
112 DECBCHN

116 NDECBS
116 NDECBS

119 NRECTRK

120 FILWLGTH
124 FILRLGTH

A standard BDAM DCB
A pointer to the next
control block in the
chain, zero if last.
X'80' Look ahead file
type
X'40' Record used
indicator
X'04' Write operation
X'02' Locate mode
Logical drive code
Logical file number
A pointer to the chain
of DECB's attached to
this file.
Number of DEC FILE.
Number of DECB's for
this file.
Number of record/track
for this file.
Number of words in file
Number of records in
file

14 SYSTEM INITIALIZATION

r----------------·--------1
0-95 I DCB I

~------·------------------~
96-99 I CURREC I

~------T--------T--------1
100-103 IPCCHARICALLTYPEIRECSIZE I

~------.L--------.L--------~
104-107 I CHAINADR I

~------T--------T--------1
108-111 f STATUSISTATUSA IFILENUM I

~------.L--------+--------~
112-115 ILINECNT IPAGELGTHI

~---------------.L--------~
116-119 I NEXTREC I

~------------------------~
120-123 I EOBADDR I

~------------------------~
124-127 I CURRDECB I

~------------------------~
128-131 I NEXTDECB I l ________________________ J

0-95 DCB Standard BSAM DCB
96 CURREC A pointer to the current

record
100 PCCHAR ASA carriage control

character for next output
record

101 CALLTYPE X'80' PLOUT CALL
X'20' PLINP CALL

102 RECSIZE Logical record size
104 CHAINADR Pointer to next SFB, zero if

last
108 STATUS Status byte

X'80' PLOUT occurred
X'20' PLINP occurred
X'lO' Carriage control
allowed
X'08' Physical EOF occurred
X' 04' Logical EOF occurrE~d

109 STATUSA Status byte
X'80' PLOUT device
X'20' PLINP device
X'02 Double buffering used
X'Ol Prime required

110 FILENUM File ID number 1-255
112 LINECNT Current line counter for

files with RECFM FA, FBA
114 PAGELGTH Number of lines per page
116 NEXTREC Address of next available

record area
120 EOBADDR Address of end of the cur­

rent block
124 CURRDECB Address of the current DECB
128 NEXTDECB Address of the next avail­

able DECB

A SFB is created at initialization time for
all data sets defined by PLINP, PLOUT and
PLSEQ DD cards.

15 JULY 1969

DOS CONTROL BLOCKS

DAFB DOS

0-3

4-7

8-11

12-15

16-19

20-23

0
2
4

5

6
7

8
12
16
20

r----------T---------1
1DBLKSI 1 DLUNIT 1
~----T-----f----T----~
1DCYL1DHEAD1DNETIDNTCI
·----.J. _____ .J. ____ .J. ____ ~

1 FILRLGTH 1
·--------------------~
1 FILWLGTH I
·-------T------------~
1DFILNUMI 1
~-------.l.------------~
I DCHAIN I
L--------------------J

DBLKSI
DLUNIT
DCYL

DHEAD

DNRT
DNTC

FILRLGTH
FILWLGTH
DFILNUM
DC HAIN

Physical record length
DOS logical unit assignment
starting cylinder number of
the extent
Starting head number of the
extent
Number of records per track
Number of tracks per
cylinder
Number of records in file
Number of words in file
Drive code and file number
Address of next DAFB

The DAFB is built by the direct access open
routine $$BDFJDO and is used by the subrou­
tine DFJDIOCS to process all direct access
files.

DOS SFB

r------T-------T--------------1
0-3 1 CTRLOP I 1 SL UNIT 1

~------f-------f-------T------~
4-7 I ICALLSAVIMODESETIPCCHARI 1------.J. _______ .J. ________ t ______ ~

8-15 ' DATA ccw I
·------T-------T---------------~

16-19 ISTATUSISTATUSAIRECSIZE I
~------.l.-------.l.---------------~

20-23 1 CURREC I
·--------------T---------------~

24-27 1BLKSIZE IRECLGTH I
1--------------+--------------~

28-31 IPAGELGTH ILINECNT I
·---------------L-------·-------~

32-35 I NEXTREC I
~----------------------·-------~

36-39 I EOBADDR I
·----------------------~------~

40-43 I CURRBRF I
~----------------------·-------~

44-47 I NEXTBUF I
L-----------------------------J

0 CTRLOP A control ccw used for car­
riage control

2 SLUNIT
5 CALLSAV

DOS logical unit assignment
Call type indicator

PROBLEM LANGUAGE ANALYZER (PLAN)

SYSTEM MANUAL

8 DATACCW
16 STATUS

X'Ol' FLOUT call
X'02' PLINP call
R/W CCW
Status byte
X'80' Device is a printer
X'40' Device is a card reader
X'20' Device is a tape
X'10' Device is a 1052

17 STATUSA

X'08' Physical EOF occurred
X'04' Logical EOF occurred
X'02' PLINP call occurred
X0 01' PLOUT call occurred
status bytes

18 RECSIZE
20 CURREC

24 BLKSIZE
26 RECLGTH
28 PAGELGTH
30 LINECNT
32 NEXTREC

36 EOBADDR

40 CURRBUF
44 NEXTBUF

X'80' WAIT required on device
X'40' Prime required on
buffers
X0 20' Stacker select required
X'lO' Carriage control
suppressed
x•os• carriage control
allowed
X1

' 04 • Double buffering used
X'02' PLINP device
X1

' 01' PLOUT device
Logical record length
Address of current record
area
Physical block size
Physical record length
Number of lines per page
current line counter
Address of next available
record area
Address of end of current
block
Address of current block
Address of next available
block

This SFB is created by the sequential file
open routine $$BDFJSO and is used by the
subroutine DFJSIOCS to process sequential
files.

r------T----T-------1
0-3 IMLUNITIMNODIMSTATUSI

~------+----.l.-------~
4-7 IMBLKSIIMLRECL I

0
2

3

4
6

l------.J. ____________ J

ML UNIT
MNOD

MSTATUS

MBLKSI
MLRECL

DOS logical unit assignment
PLAN device code of rile
number
Status byte
x~40' DYNAMIC drive file
Xt'20' PERMANENT drive file
X'lO' Sequential file
X'08' ASA carriage control
required
X0 04' Double buffering
required
x•o2• Open indicator
Xu01' End of type indicator

Physical record length
Logical record length

SYSTEM INITIALIZATION 15

PROBLEM LANGUAGE ANALYZER {PLAN)

SYSTEM MANUAL

The IOCB control blocks are assembled into
the module DFJIOCBS and may be altered by
PLAN run control cards at initialization
time.

DIRECT ACCESS FILES

On OS PLAN the BDAM access method is used
to process direct access files. Files are
opened by the initialization routine using
the standard OS OPEN macro. The subroutine
DFJDIOCS is a section of the PLAN module
DFJLODER.

On DOS PLAN the
process direct
opened by the
$$BDFJDO. The
placed in core
routine.

EXCP macro is used to
access files. Files are

PLAN transient module
subroutine DFJDIOCS is

by the initialization

The subroutine DFJDIOCS processes read/
write requests. It will handle both 'lo­
cate' and 'move' mode operations. A file
is treated as a byte-addressable string of
characters. This facilitates processing
for the word addressing used by the PLAN
file support subroutines. 'Move' mode
requests may address a file on a byte
boundary. 'Locate' mode may only use rec­
ord addressing.

On OS and DOS the file layout and proces­
sing of the phrase dictionary and the
managed area save file are identical. The
checkpoint files have different formats.

CHECKPOINT PROCESSING

An OS checkpoint record is a 256-byte
header followed by the active program area.
The header is in the following format.

0-63
64-67
68-91
92-95

96-99

100-103
104-107
108-115
116-119

120
128-256
256--

Register save area
Length of the program area
Name control block
Word displacement of previous
checkpoint
Word displacement of current
checkpoint
Address of the program area
Address of the current PCB
Managed free storage limits
Address of the chain of LOCAL
save areas
Current execution level
Bootstrap program
Program area

The LCHEX subroutine writes the checkpoint.
On a checkpoint reload, the header is read
into a work area and then control is
transferred to the bootstrap to reload the
program area and restore the system status.

16 SYSTEM INITIALIZATION

15 JULY 1969

On DOS each module is written out separate­
ly and contains a 20-byte header as
follows:

0-7
B-11

12-15
16-19

Module name
Module origin address
Module end address
Address of LCHEX restore E.P.

The LCHEX subroutine contains the register
save area and other work areas to save the
system status. The LCHEX subroutine will
only write out the module it is linkedited
with. On a checkpoint reload, the header
is read and the module reloaded and then
control is returned to the LCHEX subroutine
to restore the system status.

DYNAMIC FILE PROCESSING

A PLAN DYNAMIC drive contains formatted
records of 600 bytes. The formatting must
be done by the initialization routine for
OS and the program DFJINIT for DOS. The
record layout for both systems is
identical.

A DYNAMIC drive is logically split into
segments of 10 records each. Three control
records are kept in the file to control
allocation of space within the drive. Two
of these records C 0, 1) are VTOC records
which contain pointers to all existing
LOGICAL files within the drive. The third
record (2) is the availability record which
contains pointers to the free segmEmts
within the drive. When a file is opEmed
{FIND) the required number of segments are
extracted from the availability record and
a FDR {File Description Record) is created
for the file. This is always the first
record in the file and contains pointers to
the segments allocated to the file. A
pointer to the FDR is kept in the VTOC
records. On a READ or WRITE the FDR is
used to locate the physical records to be
read. When a file is released the space
recorded in the FDR is returned to the
availability record and the FDR and its
pointer in the VTOC record are destroyed.

FILE LAYOUT DYNAMIC DRIVES

RECORD 0 VTOC RECORD

I I I I I I
ISIP1IP2IP3IP41

I I I I I I I
IF1IF21F31•1•1F1271

I
IDI

I I I I I I I I I I I I I I I L __ J.. __ .,L __ J.. __ J.. __ J.. __ J.. __ .,L __ .,L __ J.._J.._..L ____ ..L __ ..L_. __ J

0 4 8 12 16 20 24 28 32 528 540

15 JULY 1969

RECORD 1

1 I I
I 1F128JF1291• ••• IF2551
L ____ .J. ____ .J. ____ .J. ________ i ____ J

0 20 528

s

P1-P4

F1-F255

ID

This field contains the count of
the total number of available
segments in the drive.

Contains the number of segments
allocated at priority 1 to
priority 4 respectively.

Contains a pointer to the first
record of LOGICAL files 1-255
respectively. This field con­
tains zero if the file does not
exist. The pointer is in the
following format.

Byte 0 File priority

Byte 1-3 Relative record number
of the FDR for the
file.

Is a four-byte ID field used to
validate the file.

RECORD 2 AVAILABILITY RECORD

The availability record contains pointers
to all the free space in the file. These
are a string of pointers to the free
extents within the drive.

I I 1
JS11E1JS2JE21 • I • I • I • JSNJENI
L __ .J. __ .J. __ .J. __ i ___ i ___ i ___ i ___ i __ .J. ___ J

0 2 4 6 8 10 12

Sl-SN

El-EN

PROBLEM LANGUAGE ANALYZER (PLAN)

SYSTEM MANUAL

Is the starting segment number of
a free extent

Is the ending segment number of a
free extent

A high-order bit in the Sl field indicates
the end of the string.

FDR File Description Record

The FDR record is the first record of every
logical file

I I I I I I I I I I I I I I
IPIRIWIS1IE1IS21E21S3IE3l•l•ISNIENI
L-i_i_i __ i __ i--i--i--i--i-i_i __ i __ J

0 1 4 8 10 12 14 16 18 20

p

R

w

Sl-SN

El-EN

Is the file priority

Is the relative record number of
this record

Is the number of words in the
file

The starting segment number of an
extent allocated to this file

The ending segment number of an
extent allocated to this file.

SYSTEM INITIALIZATION 17

PROBLEM LANGUAGE ANALYZER (PLAN)

SYSTEM MANUAL

FILE RECORD LAYOUT

PFILE LAYOUT

The PLAN language definition file (PFILE)
is generated and maintained by the DFJPHRAS
logic module and is utilized by PLAN (load­
er) and DFJPSCAN for temporary system save
areas. PFILE is required to be present
before a PLAN execution is permitted.

15 JULY 1969

PFILE is defined as a logical file contain­
ing a minimum of 14 (17 on the 1130) and a
maximum of 268 (271 on the 1130) records,,
Records in PFILE are fixed in length at 512
bytes on System/360. On the 1130 each
record is 320 (16-bit) words in length.
The following table lists the contents of
PFILE.

r--·----,
ITEM SIZE IN RECORD
NAME RECORDS DISPLACEMENT DESCRIPTION

PFLDRSV 5 0 Error stack area

PFSYMT4 1 5 Level 4 symbol table save area (128 words)

PFINPUTB 1 6 Card image residual save area (20 words)

PFSYMT3 1 7 Level 3 symbol table save area (128 words)

PFPWVTAB 1 8 Phrase-verb validity table (512 bytes)

PFSYMT2 1 9 Level 2 symbol table save area (128 words)

PFINPUTA 1 10 Current statement image save area (114 words)

PFSYMT1 1 11 Level 1 symbol table save area (128 words)

PFPAVTB 1 12 Phrase entry availability table C 512 bytes)

IPFPETAB 1-255 13 Phrase entry table
L-----------------·---·---

•rhe following section describes the func­
tions of each of the areas listed in the
above table of contents:

PLFDRSV On OS and DOS PLAN systems the
area is used as a temporary stack
area for diagnostics awaiting
processing by the system error
module when a stacked mode of
operation is indicated.

PFSYMT4 This area is used to store the
level 4 symbol table. The symbol
table must be saved for use in
initializing the symbol table of
a blank-level command following a
level 4 command.

PFINPUTB The image of the card, to the
right of the semicolon terminat­
ing a command, is saved in this
area for processing as the start
of the following command. CHexa-

18 FILE LAYOUT

decimal 00 indicates the end of
the image.)

PFSYMT3 This area is used to store the
level 3 symbol table. The symbol
table must be saved for us:e in
initializing the symbol tablE! of
a blank-level command following a
level 3 command or the symbol
table for a level 4 command fol­
lowing this level 3 command
without intervening commands of
level 3 or higher.

PFPWVTAB This table is used as an expe­
dient to determining phrase
validity. There are 256 entries
corresponding to the 256 possible
phrase check sums. A zero entry
indicates no valid phrase has the
check sum; a nonzero entry is a
pointer to the phrase entry
table.

15 JULY 1969

PFSYMT2 This area is used to store the
level 2 symbol table for use in
initializing the symbol table of
a blank-level command following a
level 2 command or the symbol
table of a level 3 command fol­
lowing this level 2 command
without an intervening command of
level 2 or level 1.

PFINPUTA This area is used to store the
length and the EBCDIC image of
the current phrase. DFJPSCAN
places the command in this area
for access by DFJPHRAS. The sub­
routine INPUT reads the statement
image from this area and places
it in memory.

PFSYMT1

PFPAVTB

PFPETAB

This area is used to store the
level 1 symbol table for use in
initializing the symbol table for
a blank-level command following
this level 1 command or the sym­
bol table for a level 2 command
following this level 1 command
without an intervening level 1
command.

There is one entry in this table
for each record in the phrase
entry table. The entry provides
information as to the available
room within each record for the
addition of new phrase
definitions.

This portion of the PFILE con­
tains the language description
elements. Each command is
entered with header information
followed by up to seven tables of
phrase definition data. The
length of this section is vari­
able up to a maximum of 255
records. a function of the number
of commands that must be added
into the language dictionary.

The following section describes the detail
layout of the variable (maintained) por­
tions of PFILE. Those portions that are
merely temporary storage areas are not
described.

PFPWVTAB (PHRASE-VERB VALIDITY TABLE)

This section has 256 entries corresponding
to the 256 possible phrase check sums. The
word check sum of each word in the phrase
is calculated as:

KSUM
Ll

L2

L1*4 + L2*2 + L3
First letter in EBCDIC in low­
order eight bits
Second letter in EDCDIC in low­
order eight bits

PROBLEM LANGUAGE ANALYZER (PLAN)

SYSTEM MANUAL

L3 Third letter in EBCDIC in low­
order eight bits

Only the low-order eight bits of the word
check sum are saved. The phrase check sum
is formed by the "exclusive or" of succeed­
ing word check sums.. The following example
illustrates the calculation of the phrase
check sum for the phrase "DUMP PLAN":

Word Check sum

D 11
u 01
M 00

101

p 11
L 01
A 00

101

OUM
PLA

Calculations

0001 0000
1100 1000
1101 0100
1010 1100

0101 1100
1010 0110
1100 0001
1100 0011

1010 1100
1100 0011
0110 1111

310
1C8
0D4
5AC

35C
1A6
0C1
5C3

AC

C3

AC
C3
6F

The 256 entr.ies accessed by the phrase
check sum have the following format. Each
entry contains 16 bits. The term "record/
64" in the following discussions means 64
bits on System/360 and 80 bits on the 1130
System. This grouping is one sixty-fourth
of a disk record.

I I
Contents IVI A I B I

L-...l-----------...l---------J
Bit 0 1 2 7 8 15

v Verb control
0 if no verb phrase has this check sum
1 if a verb phrase has this check sum

A The number of records/64 from the
beginning of the sector indicated by B
to the first phrase entry in the chain.

B Those bits contain the relative sector
address (1-255) of the first phrase
entry in the chain of phrases with
equal check sums. The field is zero if
no valid phrase has this check sum.

PSYMT 1.2,3,4 (SYMBOL TABLES)

This section is made up of 255 bytes of
information, including 126 (16-bit> words
containing the symbol table entries. The
format of the table is shown in the follow­
ing chart:

I I I I I
Contents IOIRILIOI E I L-...l-...l.-...L-...L _____________ J

Byte 0 1 2 3 4 255

R The relative byte ($-bit) address of
the first table entry. The tables are

FILE LAYOUT 19

PROBLEM LANGUAGE ANALYZER (PLAN}

SYSTEM MANUAL

L

E

built from left to right. The right­
most entry wraps around to the left
end. The last (rightmost} value
entered is preceded to the right by a
zero entry.

The level of the symbol table is indi­
cated as the level minus one. Thus,
the indicator occupies the second and
third bits and ranges from 0-3.

Each symbol is entered in compressed
form from the phrase. The table is
initialized from the symbol table of
the next higher level. The format of
the compressed symbol is shown in the
chart below. The symbol allows expedi­
tious detection of undefined symbols.
Note that the symbol table entry is the
same as 1 and 2 of Table 3.

I
contents !Letter 11Letter 21Letter 310 I

L-------..L--------..l-------..l---·J
Bit 0 4 5 9 10 14 15

The letters are
bits through
compression:

compressed into
the following

LETTER
A-I
J-R
s-z
blank

COMPRESSED CODE
1-9

11-19
22-29

0

five
code

PFPAVTB (PHRASE AVAILABILITY TABLE}

This section of PFILE contains a maximum of
256 entries corresponding to the number of
records in PFPETAB. Each entry is a ha1f­
word (16 bits}. The entry format is shown
in the following table:

I
Entry I B I L I L_ _______ ..L, __________ J

Bit 0 7 8 15

B

L

The number of records/64 to the begin­
ning of the first phrase entry or
available space entry in the sector.
The value of 7FFF (hexadecimal) indi­
cates that the entire sector is avail­
able; 8000 (hexadecimal) indicates the
end of the table.

The number of records/64 in the largest
contiguous, available block that begins
in this sector. This entry is used as
a test for the possible addition of the
current phrase into this sector.

20 FILE LAYOUT

15 JUI.Y 1969

PFPETAB (PHRASE ENTRY TABLE)

The available space entries and the phrase
entries in the phrase entry table are
packed across sector boundaries. The: first
records/64 of the phrase entry table: must
be initialized when PLAN is invoked. If it
is not, the ADD PHRASE command is set and
PHRAS is loaded to add it to PFILE. The
format of the PFILE header is shown below
in hexadecimal.

I I
p F I I L E I •

100011 D7 I C6 I C9 I D3 I cs I 4B I
L----..l-----..l-----..l-----..L-----..l-----..L-~--J
0-15 16-23 24-31 32-39 40-47 48-55 56-63

Note that bits 16 to 63 contain the l!:BCDIC
representation of PFILE. On the 1130 Sys­
tem, bits 64-79 are included but unus.~.

The first word (32 bits) of each phraue Cor
available space> entry provides data cts to
the size of the entry and pointers to the
next item in the chain. The format o:E this
portion of the entry is provided below:

I I I I I
ITI L 1x10001 s I VI z I SA I
L-..L.---..L.-..L.---..l----..l--..L.--------..L.------J

T

L

x

v

z

0 1 3 4 5 7 8 15 16 17 23 24 31

This bit determines whether this is a
phrase entry or an available-space
entry.
O Phrase entry
1 = Available space (The following

fields, except s, are meaningless
if this is an available-.space
entry.>

These bits Cin a phrase
the level of the phrase
the following table:
000 Level 1
001 Level 2
010 Level 3
011 Level 4
100 Blank level

entry> d1efine
accordinq· to

The presence of this bit indicates a
level zero phrase.

These eight bits define the number
<<128) of records/64 in this entry. No
phrase may result in an entry of great­
er than 128 records/64. The appropri­
ate diagnostic is issued if such an
attempt is made.

This bit Cin a phrase entry> defines
whether the phrase is a verb or an
object phrase ..
O = Object phrase
1 = Verb phrase
This six-bit <<64) field defines the
number of records/64 <within the sec-

15 JULY 1969

tor) that precede the first word of the
chained-to (phrase with equal check
sums) entry. This entry and the fol­
lowing entry allow direct access of the
chained phrase ..

SA This eight-bit field (<256) defines the
sector address, relative to the first
record of the phrase entry table minus
one word, of the first word of the next
chained-to phrase. This field is zero
if this phrase is the last of a chain.

Note that all phrases of equal check sum
(as defined under phrase-verb validity
table> make up the links of the phrase
chain.

Following the phrase entry header, as
defined above, are up to eight tables.
Each table is ended with 80xx (hexadec­
imal)" where xx is the number of 16-bit
half-words in the following table. The
last table is terminated with 7FFF
(hexadecimal).. Trailing tables of zero
length are not required,, nor is the table
length indication (8000) entered.

TABLE 1 (PHRASE NAME)

One word (32 bits) is required for each
word in the phrase name. There is a
maximum of five double-words usedo Letters
are coded in EBCDIC code.

I
ILetter 11Letter 21Letter 3ICNot Used> I l ________ .,L _______ __L. ________ .,L ___________ J

0 7 8 15 16 23 24 31

Note that the next table
table (7FFF) indicator
next half-word.

C80xx> or last
is placed in the

TABLE 2 (CONSTANT INITIALIZATION DATA
VALUES)

This table contains all constant (default
or initialization) values. There are four
formats for this entry that depend upon the
format of the phrase definition. In the
following table definitions, the example
phrase entry is given, followed in order by
the general form of t~e table entry, the
description of the table, and the table
entry representing the example phrase
entry. Note that there is one entry
required for each literal character count
plus one for each succeeding group of four
literal characters.

1. Constant Value: IC35)10,

PROBLEM LANGUAGE ANALYZER (PLAN)

SYSTEM MANUAL

I I I
10101 s 1 v I L-.L-.L ____ .L _____ J

s

v

0 1 2 15 16 47

This 14-bit (<16,384) field defines the
subscript relative to the beginning of
the switch area .•

This 32-bit field defines the initiali­
zation value as defined in the phrase
entry.

I I I I
10101210 10 10 10 10 10 10 10 IA I
L-.L-.L-..L--.L--.L--.L--.L--..L--.L--.L--.L--J
0 4 8 12 16 20 24 28 32 36 40 44

2. Symbolic Subscript: I(M)DATA3,

I I I
111 c I 01 s I v I
L-..L-----~.L--..L-------..1.---------J
0 1 15 16 17 31 32 63

c Thi$ 15-bit field contains the com­
pressed data name in symbol table code
that is to be initialized. The symbol
is stored in the same compressed code
as defined for the symbol table
entries.

s

v

This 15-bit field contains
script relative to the data
which the initialization
stored.

the sub­
name into
value is

This 32-bit field defines the initiali­
zation value as defined in the phrase
entry.

I I I I I
I 91 o I 31 71 0001 I 00000003 I
L-..L-..L-..L--..L--------..1.------------J
0 4 8 12 16 28 32 63

3. Implied DO: IC30,36,2)15, •••

I I I
10111 s I D I I I v I L-.L-.L ______ .L _______ .,L _______ .,L _____ J

s

D

I

0 1 2 15 16 31 32 47 48 79

This 14-bit C<16,384) field contains
the subscript associated with the data
value relative to the beginning of the
switch area.

This 16-bit field contains the
displacement (range) for the implied
DO. The value must be a multiple of
field I. This value is computed from
the first two specified implied DO
parameters.

This 16-bit field contains the incre­
ment for the implied DO.

FILE LAYOUT 21

PROBLEM LANGUAGE ANALYZER (PLAN)

SYSTEM MANUAL

v This 32-bit field contains the initial­
ization value as defined in the phrase
entry.

I I I I I
14101218 I 0006 10002 10000000Ft
L-i-i_i--i-----------i-----i--------J
0 4 8 12 16 31 32 47 48 79

4. Symbolic Subscript and Implied DO:
(M+2., 10, 2) NAMEl, •••

I I I
111 cs I 11 D I I I v I L_i _______...._ _____ i-----i-----J
0 1 15 16 17 31 32 47 48 79

cs This field contains the compressed data
name of the starting position to be
initialized. The symbol is stored in
the same compressed code as defined for
symbol table entries .•

v

D

I

I I

This 32-bit field contains the initial­
ization value defined in the phrase
entry.

This 16-bit <<65,536) field contains
the displacement from the first posi­
tion to be initialized to the final
position to be initialized.

This 16-bit field contains
ment between succeeding
initialized.

the incre­
values to be

IBI C2EI 800AI 0002 I 00000001 I
L-i----i-----i--------i----------J
0 16 32 48 79

TABLE 3 (SYMBOL TABLE)

1. Symbol with
Scale Value:

Constant Subscript
P+2(15)ABC •••

I

and

I s I 01 E I II p I GI SUB I l ______...._ ____ i __ i _____ i __ i _________ J

s

E

I

0 14 15 16-17 18 19-21 22 23 31

This 15-bit field contains the com­
pressed data name to be defined. The
format is as defined above for symbol
tables.

This field defines the user-exit number
to be associated with this symbol.
00 No exit
01 User exit 1
10 User exit 2
11 User exit 3

This field defines the mode for the
variable.

22 FILE LAYOUT

p

G

0
1

Real Cf loating-point)
Integer (fixed-point)

15 JULY 1969

This three-bit C<8) field contains the
scale factor to be associated with this
symbol.

This one-bit field determines the sign
of the scale factor.
O Positive
1 = Negative

SUB This nine-bit C<512) field contains the
subscript of the value to be entered in
the symbol table relative to the first
position of the communication array.

I I I I
1018181 61 01 81 01 F I
l-i-i-i--i--i--i--i-----J

0 4 8 12 16 20 24 28 31

2. symbol with Constant Subscript and No
P-value: IU2 C25)VALUE •••

I
I s I 1 I E I I I SUB I
l------i·----i-------i----i---------J

s

E

I

0 14 15 16 17 18 19 31

This 15-bit field contains the com­
pressed data name in the mode indicated
for symbol table entries.

This two-bit field defines the user­
exit number to be associated with this
data name.

This one-bit field determines the mode
of storage.
O = Real (floating-point)
1 = Integer (fixed-point)

SUB This 13-bit (<8192) field contains the
subscript associated with the data name
relative to the switch area~

I I I I I
ICl8151 Bl Al 01 11 9 I
l-i-i-i--i--i--i--i _______ J

0 5 8 12 16 20 24 28 31

3. Symbols with
CM+ 2-N) ABC .••

Symbolic Subscript:

·rhe symbolic subscript is indicated by
setting SUB to zero. The subscript dE~fin­
ing expression is then appended to the
symbol table entry in EBCDIC code with a
prefixed left parenthesis and a terminating
comma.
I
I 08860000 I 4DD44EF260D56B I 1l __________ i __________________ J

0 32 87

15 JULY 1969

TABLE 4 (PROGRAM LIST)

The program list table is made up of one
entry per program in the list.

1. Program Name: M0798, •••

2 .•

I
I 8-CHARACTER EBCDIC NAME I
I (RIGHT-PADDED WITH BLANKS) I
L---------------------------J
0 63

I I I I I I I I I I t I I I I I I
IDl4IFIOIFl71Fl91Fl81410141014IOI
L-.J_.J_.J_i_i_i_i_i_i_i_i_i_i_i_i_J

0 16 17 31 32 60

Checkpoint Return (asterisk)

I
I 5C40404040404040 I
L-------------------J

0 64

3. Left Parenthesis (EBCDIC)

I
I 4D40404040404040 I
l-------------------J

0 64

4. Right Parenthesis (EBCDIC)

I
I 5D40404040404040 I
l-------------------J

0 64

TABLE 5 (DATA CHECK ENTRIES)

1. Test, Abort, Generate PLAN Literal:
(5)*······

I I I
101 * I SUB I CTL I l_i ___ i __________ i _________ J

0 1 2 3 15 16 31

* This two-bit field contains the condi-
ti on code.
00 *
01 *R
10 *T
11 *F

SUB This 13-bit (<8,192) field contains the
subscript relative to the switch area
of the PLAN word to be tested.

CTL If this field is nonzero, there is a
suffix section, as defined under 4 and
5, starting at field "F".

PROBLEM LANGUAGE ANALYZER (PLAN)

SYSTEM MANUAL

I
I o I o I o I 5 I
l----i----i ____ i _______ J

0 4 8 12 15

2. Test, Abort, Generate PLAN Literal;
Symbolic subscript: (M)NAME*R, •••

I I I
101 * I -o- I 01 SYM I CTL I
L_i _____ i ________ i--i-----------i _________ J

0 1 2 3 15 16 17 31 32 47

* (See above>

SYM This 15-bit field contains
pressed data name in the
defined for symbol tables.

CTL (See above>

I

the com­
f orma t as

I 21 01 01 0131Cl21EI L----i ____ i ____ i _____ i ___ i ___ i ___ i ___ J

0 4 8 12 16 20 24 28

3. Same conditions as above:
Same as previous example,, plus: ,*F

I I I
101 * I -o- I 11 SYM I SUB I CTL I L_i ___ i ______ i __ i _______ i _______ i _______ J

0 1 2 3 15 16 17 31 32 47 48 63

* (See above>

SYM (See above>

CTL (See above)

SUB This 15-bit <<32,768) field contains
the subscript rel~tive to the data name
that is to be checked.

I I I I I
1610101 01 Bl Cl 21 El 01 01 01 21
L-i-i-i--i--i--i--i--i--i--i-_i __ J

0 4 8 12 16 20 24 28 32 36 40 44

Note: In the following examples the for­
mats defined in 1, 2, or 3 above remain the
same as a function of conditions except for
bit 0 and the last 15-bit field. Bit O
will indicate whether the literal to be
processed is implicit Cl) or explicit (0).
The last 15-bit field will contain function
information for the literal processing.

4~ Process Implicit Literal:)*TZC9)

Note: z in the above example is a user­
given function code and will be reflected
in the F field below according to the
following table.

If z A (Abort} then F
= c (Continue}

00
01

FILE LAYOUT 23

PROBLEM LANGUAGE ANALYZER (PLAN)

SYSTEM MANUAL

P (Phrase)
= b (List)

11
10

I I I
111 SAME AS 1, 2 OR 3 I F I SUB I
t_i_ _________ ---------1----L-----J

0 1

F See above table.

SUB This 14-bit <<16,384) field contains
the subscript relative to the start of
the communication array that contains
the literal to be processed.

5. Process Explicit Literal:
()*TZ'LITERAL'

I I I
101 SAME AS 1, 2 OR 3 I F I L I Q I
L-i----------·----------1----1------L------J
0 1 n O 1 15 16 n

F Sarne as example 4.

L This 14-bit field contains the length
of the literal in 16-bit words.

Q This variable-length field contains the
literal in EBCDIC packed format.

TABLE 6 (PHRASE-DEFINED EXPRESSIONS)

This table is made up of two sections. The
following three examples define the format
of the possible first-section entries:

1. Value with Scale
A=A*. 017453, •••

I I I

Factor: P+3 (7)

I 1 0 I I I p IGI s I T I
l-------1-----1-------.L-.L ________ .L ________ J

0 1 2 3 5 6 7 15 16 n

I This field designates the storage mode
of the data value.
0 = Real (floating-point)
1 = Integer (fixed-point)

P This three-bit C<8) field designates
the scale factor to be applied to the
result of the expression before
storage.

G This bit designates the sign of the
scale factor.
0 Positive
1 = Negative

S This nine-bit C<512) field contains the
subscript associated with the data
value relative to the first position of
the communication array.

T This variable-length field contains the
text of the phrase-defined expression

24 FILE LAYOUT

15 JULY 1969

terminated with a comma. The text is
compressed to eliminate meaningless
blanks and characters.

I I I
18CI071 c11 7EI c11 sci 4BI FOi F1 ••• I
l---L---L----L----L----L----L----L----1--------J
0 8 16 24 32 40 48 S6 64

2. Values without Scale Factors: I(12)
I=I*12 ••.

I I
I 11 III s I T I l----.L-.L ________ .L _________ J

0 1 2 3 15 16 n

I See above.

s This 13-bit <<8,192) field contains the
subscript of the data value relative to
the start of the systems switch ariea.

'T See above.

I
I EOI 161 7EI C91 7EI C91 SCI F11 F21
l----L----L----L----L----L----1----L----L---J
0 8 16 24 32 40 48 56 64

3. Value with Symbolic subscript: Cm+S)
A,: CB>O)

I
I oo I s I 01 c I T I
L-----L---------L---L----------1--------J

s

c

0 1 2 15 16 17 31 32 n

This 14-bit <<16,384) field contains
the subscript relative to the data name
into which the result of the expression
evaluation is stored.

This 15-bit field contains the com­
pressed data name in the symbol table
code.

rr See above~

i I I
ijoo1021 041 001 7AI 4DI c21 6EI FOi SDI
l---L---L----L----L----L----L----1----L----L---J
0 8 16 24 32 40 48 56 64 72

The second portion of this table contains
the expression area in compact literal form
(excess blanks and characters eliminated).
This portion of the table is introcluced
with a dollar sign ($).

TABLE 7 (USER-EXIT LIST)

This table is in a format identical to
Table 4 and contains the program list
defined following the keyword EXIT. The
table, when present~ always contains three
entries.

15 JULY 1969

TABLE 8 (VERB PROGRAM LIST)

This table is in a format identical to
Table 4 and contains the program list
defined following the term VERB at phrase
definition time.

PLAN DYNAMIC FILE CONTROL BLOCK

The following charts provide the content of
the PLAN DYNAMIC file control blocks. Note
that because of the integer word size
differences (16-bit versus 32-bit), the
1130 PLAN system has a different format
from that of the System/360 OS or DOS PLAN.
The table given below provides the format
for the System/360 OS-DOS PLAN.

ID(l) ID(2)
I l
I 0 I TTR I D I N I s I
L----..1.--------i-------i-------~---------J
0 1 20 23 24 31 32 63

TTR This 19-bit field contains the TTR
of the FDR for this file.

D

N

This three-bit (<8) field contains
the logical drive code for this
file.

This 8-bit <<256) field contains the
file identification number. This
field is originally set by the user
before issuance of the CALL FIND.
All other fields within ID(l) are
set as a result of CALL FIND or CALL
WRITE operations.

s

PROBLEM LANGUAGE ANALYZER (PLAN)

SYSTEM MANUAL

This 32-bit field contains the cur­
rent size of the file in words.

PLAN PERMANENT FILE CONTROL BLOCKS

This section defines the format of the
PERMANENT (GDATA, RDATA, WDATA) file con­
trol blocks. The file ID number is set by
the user before issuing the CALL GDATA.
All other fields are defined as a result of
the CALL GDATA and are modified by CALL
RDATA. Note that because of the integer
word size differences (16-bit versus 32-
bit), the 1130 PLAN system has a different
format from that of the System/360 OS or
DOS PLAN. The table given below provides
the format for the System/360 OS/DOS PLAN.

System/360 OS-DOS PLAN

ID(l)'

I
ID(2)

I
I 00 I 7F I D I N I s I
L----------~------i-------~-------i _______ J

D

N

s

0 7 8 15 16 23 24 31 32 63

This eight-bit (<8) field indicates
the logical drive code as 0-7.

This eight-bit C<64) field contains
the number of the file .•

This 32-bit field contains the size
of the file in 32-bit words.

FILE LAYOUT 25

PROBLEM LANGUAGE ANALYZER (PLAN)

SYSTEM MANUAL

SYSTEM/360 PLAN FLOWCHART NARRATIVES

The following flowchart narratives are
intended to provide additional detailed
information about the logic of the com­
ponents of the PROBLEM Language Analyzer
system. The labels used in the narratives
are the same labels as are displayed above
the upper left corner of the blocks on the
component flowcharts and represent the
identification field of the program source
statements containing the represented
logic. Additional useful information is
given at the beginning of each identifiable
program item.

BREAK

The BREAK subroutine may be called to
separate four bytes of any FORTRAN word
into the right-justified byte of a four­
word integer FORTRAN array.

BRE250

BRE270

BRE280

BRE340

The registers are saved and the
argument list is accessed.

The FROM word address is
accessed.

The word is divided into four
bytes which are placed in the
user-specified array.

The registers are restored and
processing is terminated by
return to the calling program to
the next executable statement.

$$BDFJD (DOS)

This is a DOS transient area routine which
is invoked by the PLAN loader on a phrase
abort error if the DUMP option is selected
at initialization time.

$BA330

$BA510-
$BA810

$BA890-
$BA1250

$BA1270-
$BA1310

The base register is set and the
argument for the dump are
accessed.

The dump header line is
structed and printed.

Thirty-two characters are
matted into hexadecimal
printed.

con-

for­
and

A test is made to check if the
last line printed was at the end
of the partition. If yes,

26 FLOWCHART NARRATIVES

$BA1430-
$BA1470

15 JULY 1969

transfer is to $BAl430.
Otherwise, a test is made to
suppress like lines and transfer
is to $BA1250 to suppress and to
$BA890 to print the next lin1e.

The dump trailer is printei and
control returned to the call•~r.

$BDFJDO (DOS)

This is a DOS transient area routine which
performs initialization functions foJC all
direct access files processed by PLAN.

$BD390

$BD450

$BD690

$BD770

$BD850

$BD910

$BD1070-
$BD2050

The callers argument list
accessed.

is

Adcons within this routim~ are
relocated.

The volume label on the disk unit
is read to locate the VTOC.

The VTOC is searched for the
specified file name.

The count portion of the first
track and record in the file is
read to determine the block Bize .•

The subroutine DFJGMAIN is called
to obtain core for a file control
block.

The control block is comp:Leted
and contains the DOS logical
unit, the starting cylinder num­
ber, the number of records per
track, the number of records in
the file, and the number of words
in the file.

$$BDFJI (DOS)

This is a DOS transient area routine which
alter the COMREG area phase address and
program address. These addresses are used
by the FORTRAN I/O package to locate buff er
areas.

~?$BDFJSO (DOS}

This is a DOS transient area routine which
performs initialization functions for all
sequential files processed by PLAN.

15 JULY 1969

$BS450

$BS670-
$BS1330

$BS1570~

$BS2910

DFJCGET

Adcons in
relocated.

this module are

The subroutine DFJGMAIN is called
to get core for the control block
and the buffers. If core is
available. the control block is
initializ?d and the first buffer
area is set to blanks.

The device type is validated. It
must be a reader, printer, punch,
or magnetic tape. The control
block is completed and control is
returned to the caller.

This subroutine controls transmission from
and to the buffer. character-by-character
for the PLAN sequential conversion
routines.

CGE390

CGE470

CGE550

CGE650

CGE710

CGE750

A test is made to see if the
field has been exhausted. If
not, transfer is to CGE470;
oth?rwise a pointer to a NULL
character is set and control is
returned to the caller.

The field
updated.

width counter is

A test is made to see if the
current character is outside the
record area. If yes, control is
returned to the caller.

The character position indicator
is incremented.

A test is made to check if the
character position pointer is
outside the range of the field or
the record. If valid, transfer
is to CGE750, otherwise. control
is returned to the call1er.

A pointer to the actual buff er
character is set and then control
is returned to the caller.

DFJCNTRL COOS)

This module co.ntrols the issuing of STXIT
macros by the DOS PLAN system, and also
provides the linkage to the TRACE routine.

CNT470

CNT490

A standard STXIT macro is issued.

If any other type of STXIT is
requested~ it is issued.

CNT370

PROBLEM LANGUAGE ANALYZER (PLAN)

SYSTEM MANUAL

A test is made to see if the
TRACE facility has been invoked.
If yes, this module e~its to the
DFJTRACF. module; otherwise, con­
trol is returned to the caller.

DF.J:CRDIR (OS)

The DFJCRDIR subroutine provides for estab­
lishment of an in-core program directory to
be utilized by PLAN to provide more effi­
cient program loading.

DCD150

DCD250

DCD280

DCD400

DCD420

DCD560

DCD630

DCD850

DCD920

DCD940

DCD1040

DCD1150

DCD1280

DFJCSET

Registers are saved according to
standard OS conventions. A base
register is set.

If there is not a current direc­
tory transfer is to DCD400.

The current program directory is
freed.

The name list is initiated.

The CREATE CORE DIRECTORY phrase
is read.

The list of program names is
built..

The program name list is sorted.

A BLDL macro is issued for the
program list.

If the BLDL macro is executed
properly, transfer is to DCD1040.

A count is made of the BLDL's
which are in valid form.

A GETMAIN is issued for the
required core to contain the pro­
gram directory.

The BLDL entries that are valid
are moved to the directory.

A pointer is set to the top of
free storage. The subroutine is
terminated by return to the
caller.

This subroutine is a conversion interface
routine for the PLAN subroutines PFOUT,
PFIN, PIOUT, PIIN, and PEOUT.

CSE1200 The base registers are set
including the base register for
the conversion routine and the
conversion buff er control routine
DFJCGET.

FLOWCHART NARRATIVES 27

PROBLEM LANGUAGE ANALYZER (PLAN}

SYSTEM MANUAL

CSE1700

CSE2400

CSE2700

The NOD argument is validated.
If the NOD argument is valid,
transfer is to CSE2400;
otherwise, control is returned to
the caller.

The buff er arguments are set into
the DFJCGET routine for use by
the conversion routines. These
include the buff er address, the
record length, and the address of
the caller's save area.

Exit from this routine is direct­
ly to the called conversion
routine.

DFJDIOCS mos}

This module handles all the direct access
I/O requests for the DOS PLAN system. It
handles requests in both the 'locate• and
'move' mode. All direct access files are
processed as a byte-addressable string of
characters. 'Move' mode requests may
address any byte in the file. 'Locate'
mode requests may only use record
addressing.

DI0650

DI0690

OI0810

OI01010

OI01130

0101290

0101490

If this is not a write locate
call, transfer is ti OI0810.

The write request switch is set
on for the last buffer read and
control is returned to the
caller.

The caller's registers are saved
and the user's argument registers
including the displacement count
and array address registers are
updated.

If this is a call to quiesce all
I/O, transfer is to DI03550.

If this is not an overlay wait
call, transfer is to OI01290.
Otherwise, the subroutine WAIT is
called to issued a check on the
last I/O operation and transfer
is to OI03390 to return control
to the caller.

The I/O arguments are calculated
from the user displacement count.
This is done to see if a record
read had to be done in order to
mask in if the user displacement
is not on the record boundary.

A request is made to see if the
requested record is already in a
buffer. If not, transfer is to
OI01770.

28 FLOWCHART NARRATIVES

DIOl 770

DI01870

DI02270

0102390

DI02430

DI02470

DI02510

DI02550

DI02590

DI02710

DI02850

DI03090

DI03190

DI03230

DI03270

15 JULY 1969

If this is a 'locate' mode call~
transfer is to OI02270.

This is a generalized routine
that moves data to or from the
user array. At completion of the
move, transfer is to OI03270 ..

The address of the current buff er
is set in the user save area so
that it will be returned to him
in register 1 and transfer is to
DI03390 to return to the caller.

A test is made to see if the
displacement argument is :~ero.
If not, transfer is to OI02990.

If this is a write operation,
transfer is to DI02850.

A test is made
count argument
record length.
is to OI02590.

to see if the
is equal to the

If yes, transfer

A test is made to see if a
physical record will fit in the
buffer. If not, transfer is to
DI02590.

If this is not an overlap call,
transfer is to OI02990o

If this is not a 'move• mode
call, transfer is to DI02990;
otherwise a read operation is
initiated and the subroutine OOIO
is called to start a read on the
requested record.

If this is an overlap call,
transfer is to OI03270,
otherwise; the subroutine WAIT is
called to issue a check on the
last I/O operation and transfer
is to OI03270.

A write operation indicator is
set. If the count argument
equals the record length, trans­
fer is to OI02650.

The subroutine SBUFREAO is called
to read the record into the
buffer.

If this is an overlay and locate
call, transfer is OI02270.

A wait is issued on the last I/O
operation and transfer is to
DI01770.

A test is made to see if the
count argument has been sattis­
fied. If not, transfer is to
DI01290 to continue processing;

15 JULY 1969

OI03550-
0I03830

0103870

0103950

0103950

0103990

0104050

0104690

OI04810

otherwise, control is returned to
the caller.

This routine quiesces all I/O for
the buffers. It checks if there
has been a write request on ei­
ther one of the buffers and if it
has, the buffer is forced out.

This is the SBUF READ subroutine.
A read operation is set and the
physical I/O arguments are calcu­
lated, that is, the record
number.

This is the DOIO subroutine.

A test is made to see if the
requested record is in the file.
If it is not, control is returned
to the caller.

A wait is issued on the last I/O
operation.

The ccw string for this I/O re­
quest is constructed.

The subrouti~e CCBSTART in
PLAN mainline is called
execute the I/O operation
control is returned to
caller.

the
to

and
the

This is the WAIT subroutine. A
test is made to see if the last
I/O operation was on the
requested record. If not, con­
trol is returned to the caller.
Otherwise, the subroutine CCWWAIT
in the PLAN mainline is called to
issue a wait on the I/O operation
associated with the user record.
Control is then returned to the
caller.

OFJOLOAD, DFJSLOAD (DOS)

This subroutine is used to fetch a relocat­
able module to the highest address avail­
able in the PLAN partition. The subroutine
OFJGMAIN is ised to allocate memory for the
module.

SL0290

SL0350

SL0510

If this is a call to DFJOLOAO,
transfer is to SL0590.

A search is made of the PSCB
table to check if the program is
already in core. If not, trans­
fer is to SL0590.

The entrypoint of the program is
placed in GPR1 and control is
returned to the caller.

SL0610

SL0630

SL0810

SL0890

SL0910

SL01370

SL01410

SL01450

OFJOSLL

PROBLEM LANGUAGE ANALYZER (PLAN)

SYSTEM MANUAL

The subroutine DIRLOOKU in the
loader is called to search the
DOS core image library directory
for the named program .•

If the name was not found in the
directory, transfer is to
SL01450.

The subroutine DFJGMAIN is called
to allocate core for the named
module.

If core is not available, trans­
fer is to SL01450.

The PCB chain in
include the PCB for
to be loaded.

updated to
the program

The subroutine
loader is called
program .•

DLOAOP in
to load

the
the

The users registers are restored
and control is returned to the
caller. The entrypoint of the
loaded program is placed in GPRl.

GPRl is reset to indicate a fail­
ure to load and transfer is to
SL01410.

This routine manipulates a pseudo accumula­
tor used by the floating-point conversion
routines, DF.JPFOUT, DFJPEOUT, and OFJPFIN.

OSL630

DSL650

DSL690

DSL950

DSL1250

DSL1330

The entry counter for the shift
left routine is stepped.

A test is made to see if the
accumulator is full, and if yes,
control is returned to the
caller.

The accumulator is shifted left
one position.

A test is made again to see if
the accumulator is full, if not,
control is returned to the call­
er. Otherwise, the entry counter
for the shift left routine is
saved and then control is
returned to the caller.

This is the entry to shift the
accumulator right. Pointers to
the significant portion of the
accumulators and the shift counts
are set.

A search is made to
first significant
accumulator.

locate the
digit in the

FLOWCHART NARRATIVES 29

PROBLEM LANGUAGE ANALYZER (PLAN)

SYSTEM MANUAL

DSL1530

DSL1750

The accumulator is shifted right
one position.

A test is made to see if the
shift is complete. This test is
on the shift count register. If
nonzero, transfer is to DSL1330
to contlnue the shift, otherwise,
control is returned to th~
caller.

DFJDUMP COS)

This module is 'linked to' by the OS PLAN
execution routine when a phrase abort
occurs.

DUM1900

DUM3000

DUM3600

DUM5900

DUM7100

DUM9000

DUM11000

DUM11500

The callers registers are saved
and a base register set.

The dump heading line is printed.

The failure ID line consisting of
the error address, the current
PCB, and execution level is
printed.

The user's registers at abort
time are printed.

The COMMON array is printed.

The active program area is
printed.

The dump trailer is printed.

Control is returned to the
caller.

DFJFMAIN (DOS)

This subroutine returns core to the queue
which describes free core in the partition.

FMA270

FMA350

FMA590

FMA830

The length of the request is
rounded to double-word length.

The free queue element chain is
searched to locate the element to
be used to receive the core to be
released.

The free queue element chain is
updated to reflect the addition
of the core area.

A test is made to see if the core
released was above and adjacent
to the PSCB table. If it was
exit from this routine is to the
subroutine DFJMPSCB to move the
PSCB table. Otherwise, control
is returned to the caller.

30 FLOWCHART NARRATIVES

15 JULY 1969

DFJGMAIN

This subroutine allocates free core to the
caller. The subroutine DFJMPSCB is called
to move the PSCB table if required.

GMN270-
GMN570

GMN630

GMN710

GMN750

GMN950

GMN970-
GMN1050

DFJISET

A search is made of the free! area
chain to see if an area
enough is available. If
transfer is to GMN750.

large
not,

The free area chain is updated.

A return code and the address of
the free area is set in GPRl and
control is returned to the
caller.

A test is made to see if space is
available in the program area.
If not, transfer is to GMN710
indicating no core found.

The subroutine DFJMPSCB is called
to move the PSCB table.

A test is made to see if any
inactive programs in the program
area were overlaid. If yes, the
PSCB for these programs are
marked as such and transfer is to
GMN710.

This is the conversion interface routine
for the core-to-core conversion routines,,
PCAI, PCAF, PCIA and PCFA .•

ISEllOO

ISE1600

ISE2200

The field width is calculated
based on the mode of the subrou­
tine called and the user's width
arguments.

The buff er arguments are set into
the DFJCGET routines for the con­
version routines. These include
the address of the buff er and the
length of the buffer, plus the
address of the caller's save
area.

Exit from this routine is direct­
ly to the conversion routine .•

DFJLLIST (OS)

The DFJLLIST module provides for processing
of the program load list.

DLL140 Registers are saved according to
standard OS convention. Base
register is set.

15 JULY 1969

DLL230

DLL280

DLL350

DLL470

DLL530

DLL560

DLL580

DLL600

DLL670

DLL710

DLL780

DLL990

DLL1110

DLL1200

DLL1300

If a list is not found to be
present transfer is to DLL470.

Current modules are deleted from
the list.

A FREEMAIN macro is issued for
that core occupied by the current
list.

The CREATE LOAD LIST phrase is
read.

SCAN is initiated to search out a
left parent hes is,.

If the current end of the phrase
has not been processed transfer
is to DLL670.

The load list pointer is reset.

A pointer is set to the top of
free storage. Subroutine is ter­
minated by return to the user.

The current list entry is zero
and transfer is to DLL580.

A list of names from the phrase
is built.

The list of names is sorted.

A BLDL macro is issued to process
the required names. If the BLDL
macro is executed properly trans­
fer is to DLL1200.

The list of names is optimized to
exclude items which were not pro­
cessed properly by the BLDL
macro.

The named modules are loaded.

The load list table is set to
indicate the modules that have
been loaded into memory. Trans­
fer is to DLL600.

DFJLODER (OS)

The DFJLOADER module contains the CORECLER,
DIOCS,. SIOCS, and LOADER subroutines.
CORECLR is the core management routine and
controls the managed free storage area.
DIOCS is the direct access IOCS routine for
the PLAN system and processes READ/WRITE
requests of all system files, DYNAMIC
drives, and PERMANENT files. SIOCS is the
sequential IOCS for the PLAN system and
processes READ/WRITE requests for all
sequentially organized files. LOADER per­
forms part of the DYNAMIC linkedit and
loads modules into the PLAN program area.

PROBLEM LANGUAGE ANALYZER (PLAN)

SYSTEM MANUAL

CORECLER The CORECLER routine manages the
free storage area by closing open
data sets, deleting loaded pro­
grams, and issuing FREEMAINs on
storage obtained by problem pro­
grams. Upon entry to this rou­
tine, register 12 must contain
the address of PLAN and the two
buckets in the mainline CURTOP,
CURBTM must contain the limits of
core to be managed.

DL0790

DL0890

DL0930

DL01030

DL01110

DL01190

DL01270

DL01450

DL01490

DL01630

DL01710

DL01830

DL01930

DL02110

DL02170

If the system is currently using
the managed free storage array,
transfer is to DL0890, otherwise,
control is returned to the
caller.

OPEN data sets are closed.
DADD chain is located.

The

If the last DADD has been pro­
cessed, transfer is to DL01450.

If DEB is in the release area,
transfer is to DL01270.

If the DCB is in the release
area, transfer is to DL01270.

If the DCB is in the program area
that may be released, transfer is
to DL01270; otherwise, transfer
is to DL0930.

The DCB is located and closed and
transfer is to DL0930.

Loaded programs are deleted and
the load list is located.

If the end of the load list has
been reached, transfer is to
DL01830.

If the module is in the
area, transfer is to
otherwise, transfer
DL01490.

release
DL01710;
is to

The module is deleted and trans­
fer is to DL01490.

Free storage is released. If
this is an MVT system, transfer
is to DL02110.

All of core is obtained. The
area to be released is freed and
control is returned to the
caller.

The system is set in the supervi­
sor via the subroutine STATESW.

The SPQE chain is located.

FLOWCHART NARRATIVES 31

PROBLEM LANGUAGE ANALYZER (PLAN)

SYSTEM MANUAI ..

DL02210

DL02310

DL02370

DL02760

DL02750

DL02770

DL02790

DL03030

DL03070

DIOCS

DL03690

DL03850

DL03890

DL04230

DL04330

DL04350

The next DQE is accessed.

If this is the last DQE on this
chain, transfer is to DL03030.

A test is made to see if
block described by this
should be released. If
transfer is to DL02220.

the
DQE

not,

If this is a system subpool,
transfer is to DL02770.

The system is set into the prob­
lem state by the subroutine
RESETN.

The block of core described by
DQU is freed.

If this block was a system sub­
pool, transfer is to DL02170:
otherwise, transfer is to
DL02110 ..

If this is not the last SPQE on
the chain, transfer is to
DL02170 .•

The system is reset to the prob­
lem state by the subroutine
RESETN and control is returned to
the caller.

The DIOCS subroutine is a direct
access IOCS for PLAN. It uses
BTAM to process all read/write
requests. On entry to this rou­
tine, register 3 must contain the
address of the DCB control block.
Register 4 must contain a rela­
tive record displacement in
bytes. Register 5 must contain
the relative physical record
number in the file. Register 6
must contain the caller's count
in bytes. Register 7 contains
the caller's array. Register 12
must point to PLAN.

The registers are saved and the
base is set.

If the buffers have been primed,
transfer is to DL04230.

Buffer areas are primed.

If this is not a 'locate' mode
call, transfer is to DL04910.

The subroutine RINCS is called to
search the in-core buffers to
determine if the requested record
is already in core.

If the requested record is not in
core, transfer is to DL04710.

32 FLOWCHART NARRATIVES

DL04370

DL04430

DL04470

DL04550

DL04710

DL04750

DL04790

DL04910

DL05030

DL05130

DL05150

DL05170

DL05270

DL06030

DL06070

DL06110

DL06250

DL06310

DL06330

15 JULY 1969

The subroutine WAITCHK is called
to issue a WAIT, if required, on
the record area.

If this is not a WRITE
transfer is to DL04550.

request,

The subroutine WRITE is call·ed to
force the buffer to be written
out.

The registers
control is
caller.

are restored
returned to

and
the

If this is a WRITE operation,,
transfer is to DL04550.

The subroutine GETBUF is c.alled
to obtain a buffer area.

The subroutine READ is called to
read the requested record into
the buff er and transfer is
DL04370.

If the user count is zero,
transfer is to DL04550.

A test is made to see if the
users array can be used, if not,
transfer is to DL05150.

The record-used indicator is set
for the buffer.

The subroutine RINCS is call1ed to
see if the next requested record
is in core.

If the record is not in core,
transfer is to DL06490.

Data is moved either to, or from,
the user array .•

If this is not a WRITE operation,
transfer is to DL06110.

The WRITE request indicator is
set on for this buffer.

If the record-used indicator is
not on, transfer is to DL04550.

If look-ahead is not required for
this file, transfer is to
DL06930.

If the WRITE request
for this buffer is
transfer is to DL06370.

indicator
not on,

The record is forced out and
transfer is to DL06930.

15 JULY 1969

DL06370

DL06490

DL06510

DL06570

DL06590

DL06690

DL06790

DL06810

DL06890

DL06930

GETBUF

DL07050

DL07090

DL07150

DL07190

DL07250

DL07270

DL07470

DL07590

The subroutine READ is called to
read the look-ahead record and
transfer is to DL05270.

The subroutine GETBUF is called
to locate a buff er area.

If the record-used indicator is
on. transfer is to DL06690.

The subroutine READ is called to
read the record into the buffer.

The subroutine WAITCHK is called
to issue a WAIT for the I/O on
that buffer and transfer is to
DL05270.

A register is set so that the
return from the I/O will be to
DL06790. If this is a WRITE
operation. transfer is to
DL07590; otherwise, transfer is
to DL07470.

The subroutine WAITCHK is called
to issue a WAIT on the buffer.

The status of the buff er is
updated.

The user counts and array address
are updated.

The record number is set and
transfer is to DL04910.

The subroutine GETBUF locates an
available buffer from the buff er
chain..

The buffer chain is located.

If the buff er is not
transfer is to DL07910.

busy,

If this is not the last buffer in
the chain, transfer is to
DL07090.

If there is not a WRITE request
on the buff er, transfer is to
DL07910.

If this is not the last buffer in
the chain, transfer is to
DL07190.

A WRITE on the buff er is forced
and transfer is to DL07910.

This is the entrypoint for the
READ subroutine. READ and BUSY
status are set for the buff er and
transfer is to DL07630.

This is the entrypoint for the
WRITE subroutine. WRITE status

DL07630

DL07710

DL07910

DL08090

DL08150

SIOCS

DL08950

DL09070

DL09190

DL09230

DL09330

DL09730

PROBLEM LANGUAGE ANALYZER (PLAN)

SYSTEM MANUAL

and NOT BUSY are set for the
buffer.

If the requested record number is
in the extent, transfer is to
DL07710; otherwise, control is
returned to the caller.

The'I/O operation is executed and
control is returned to the
caller.

This is the entrypoint for the
WAITCHK subroutine. A check
macro is issued and control is
returned to the caller.

This is the entrypoint for the
RINCS subroutine. The call buf­
fers are searched for the
requested record number.

If an equal record number is
found in core, a zero condition
code is set and returned to the
caller; otherwise, a nonzero con­
dition code is returned to the
caller .•

The SIOCS subroutine processes
PLINP and PLOUT calls to the
system. On entry to this rou­
tine, register 1 must contain the
address of the callers argument
list, reqister 12 must contain
the add~ess of PLAN and register
3 must contain the address of the
PCB control block.

This is the end-of-file exit for
SIOCS. The TRUE end-of-file
indicator is set in the control
block and exit is through the
COMRET entry in CICEN.

This is the normal entry to
SIOCS. The NOD argument is vali­
dated by calling the subroutine
SRCHIOC and CICEN. If the NOD is
valid, transfer is to DL09190;
otherwise, control is returned to
the caller through COMRET.

The logical end-of-file indicator
is reset.

If the file has previously been
accessed, transfer is to DL09730.

The internal open on the file is
performed. This includes ini­
tializing the record area poin­
ters and the prime indicator.

A test is made to see if the
status of the file is the same.
If it is not, transfer is to
DL08950.

FLOWCHART NARRATIVES 33

PROBLEM LANGUAGE ANALYZER (PLAN)

SYSTEM MANUAL

DL09790 A test on the device is made to
see if it is capable of perform­
ing the requested function. If
it is not, transfer is to
DL08950.

DL09890 If the true end-of-file indicator
has been previously set 'on',
transfer is to DL08950.

DL09930 If this is a PLINP call, transfer
is to DL010970.

DL09970 If RECFM equals FA or FBA,
transfer is to DL010090; other­
wise, transfer is to DL010970.

DL010090 If the carrige control character
is not equal to 1 transfer is to
DL010370.

DL010130 The line counter is reset and
transfer is to DL010770.

DL010370 The line counter is stepped.

DL010650 If the line counter is not equal
to zero, transfer is to DL010770.

DL010690 The logical end-of-file indicator
is turned 'on' •

DL010770 The carriage control character is
set as the first character of the
record.

DL010970 If a buffer is not available,
transfer is to DL011810.

DL011030 The buffer pointers are updated.

DL011090 If this is not a PLINP call,
transfer is to DL011330.

DL011190 If this is not a URENO record,
transfer is to DL011670.

DL011230 The logical end-of-file indicator
is set and transfer is to
DL011670 ..

DL011330 The buffer area is blank.

DL011670 The current buff er address is set
in the control block and exit :Ls
to the COMRET entry in CIOEN.

DL011810 The next record is read or writ­
ten. If an end-of-file occurs,
transfer is to DL08950.

DL012210

LOADER

The current record area pointers
are set and transfer is to
DL010970.

The LOADER subroutine is the PLAN
program loader. On entry to this
program, register 12 must contain

34 FLOWCHART NARRATIVES

15 JULY 1969

the address of PLAN. The name of
the program to be loaded must be
stored in the first eight bytes
of the name control block. This
subroutine performs the
following:

1. The BLANK COMMON control sec­
tion is eliminated from a
module by relocating all
CSECTs which originate a.hove
BLANK COMMON downward by the
length of BLANK COMMON.

2. All adcons within the module
are relocated. Those that
reference BLANK COMMON are
relocated to PLAN COMMON.

3. If a load is successful, pro­
gram control block (PCB) is
completed and control is
returned to the caller. An
error during loading causes a
phrase abort and exit into the
ERRABORT entry in the DFJPLAN
mainline. The BSAM access
method is used to load the
program..

DL014440 The control blocks including the
name control block and the COMMON
control block are initialized.

DL014570 The subroutine LLSRCH is called
to check the load list which
contains names of modules loaded
into the partition to see if this
program name is in that list. If
it is, transfer is to DL018210.

DL014470 A search is made of the in-core
directory. If the name is found
in the directory, transfer is to
DL015290.

DL015110 A BLDL is issued on the PLANLIB
PDS for the module name.

DL015290 The module attributes are
checked.

DL015450 A FIND is issued on the first
record of the module.

DL015610 A read is issued for a ESTRLD or
CTL record. Exit from this rou­
tine is on the register PROCESS
which points to either the EST
processing routine or the RLD
processing routine.

DL015750 This is the ESD
tine. If the
ESD record,
DL017230.

processing rou­
record is not an

transfer is to

DL015910 If this CSECT refers to BLANK
COMMON, transfer is to DL016970.

15 JULY 1969

DL016090 If the NOLINK option was speci­
fied., transfer is to DL016590.

DL016130 If the ESD type is not an SD or
LD transfer is to DL016730.

DL016330 An entry is made in the ENTAB
table for this module.

DL016590 If this is not the last ESD entry
for this record transfer is to
DL015910; otherwise, transfer is
to DL015610.

DL016730 An ERTAB1 entry is created for
and the external reference

transfer is to DL016590.

DL016970 The origin and the length of
COMMON CSE CT was saved
transfer is to DL016590.

the
and

DL017230 The length of ~LAN COMMON is set.
This will be the longer of the
values set in Switch Word 9 or
the length of the longest COMMON
CSECT required by any program in
the PLAN program area.

DL018210 Core is obtained for the program
itself.

DL018490 If the program module was named
as an entry point in the loaded
program list, transfer is to
DL019170.

DL018570 If the NOLINK PARM was specified
transfer is to DL018890.

DL018670 The entrypoint
entries for this
relocated.

in the ENTAB
module are

DL018890 A FIND is issued for the first
text record of the module.

DL018990 The first text record is read
into the program area.

DL019010 If more than one text record is
in this module transfer is to
DL015610.

DL019110 A check is issued on the last
text record read.

DL019170 The module entrypoint is set in
the name control block.

DL019250 The program control block (PCB)
is completed from the main con­
trol block and control is
returned to the caller.

DL019490 A check is issued on the last
text record read.

PROBLEM LANGUAGE ANALYZER (PLAN)

SYSTEM tJl.ANUAL

DL019510 If this is not a CTL record
transfer is to DL019670.

DL019550 A read is issued for the next
text record.

DL019570 If this is not an RLD record,
transfer is to DL022670.

DL019670 Pointers to the RLD information
in the record are set.

DL019810 The adcon is located and moved to
a work area.

DL020510 If the adcon was resolved by the
linkage editor, transfer is to
DL022110.

DL020610 If the NOLINK PARM was specified,
transfer is to DL022490.

DL020750 If the adcon can be resolved,
transfer is to DL022110.

DL021810 An ERTAB2 entry is built and
transfer is to DL022490.

DL022110 If the adcon reference is COMMON,
transfer is to DL022790.

DL022310 The adcon is relocated.

DL022490 If this is not the last RLD entry
in this record, transfer is to
DL019810.

DL022670 If this is an EOS or EOM record,
transfer is to DL019110; other­
wise, transfer is to DL015610.

DL022790 The adcon is relocated to point
to PLAN COMMON and transfer is to
DL022490.

DFJMPSCB COOS)

This subr.outine is called by DFJGMAIN and
DFJFMAIN. It moves the PSCB table if it
exists.

MPS230

MPS410

DFJPCDMP

The system pointer to the top and
bottom of the free core in the
partition are updated.

The PSCB table is moved to its
new location and control is
returned to the caller.

The DFJPCDMP module is entered as a result
of the DUMP, DUMP MANAGED and DUMP NON­
MANAGED command. The module requires the
use of ERASABLE COMMON.

FLOWCHART NARRATIVES 35

PROBLEM LANGUAGE ANALYZER (PLAN)

SYSTEM MANUAL

PCD260

PCD270

PCD290

PCD310

PCD330

PCD350

PCD360

PCD380

PCD470

PCDSOO

PCD520

PCD540

PCD560

PCD580

PCD600

PCD620

The size of the managed array is
picked up from Switch Word 10.

The total size of the communica­
tion array, that is the managed
array and the nonmanaged array,
is calculated as the size of
common as contained in Switch
Word 9 minus the 640-word size of
the combined PLAN loader and PLAN
switch words.

The device to be used for the
printing of the dump is picked up
from the 12th word of ERASABLE
COMMON.

Double buffer set B is assigned
to the output device.

The printer is skipped to a new
page.

The heading for the switch word
listing is set to the print area.

The printer is spaced twice.

The contents of the switch words
are set to the print area in
hexadecimal form. Eight words
are set on the first line and
seven words on the second line.
The contents of the switch words
are printed.

The printer is spaced two lines.

The first position of ERASABLE
COMMON is tested to see if the
managed array is to be dumped. A
negative value indicates that the
managed array only is to be
dumped. A zero value indicates
that both managed and nonmanaged
arrays are to be dumped, whereas
a positive value indicates that
only the nonmanaged array should
be dumped.

The heading for the managed array
is set to print.

The number of words contained in
the managed array is set to
print.

The heading is printed.

The printer is double spaced.

A check for a no managed array is
made. If there is no managed
array transfer is to PCD880.

A DO loop is initialized to dump
eight words of the nonmanaged
array per line.

36 FLOWCHART NARRATIVES

PCD640

PCD660

PCD680

PCD690

PCD700

PCD710

PCD720

PCD740

PCD760

PCD790

PCD810

PCD820

PCD830

PCD850

PCD880

PCD900

PCD920

15 JULY 1969

If this the first line of the
managed array dump, transfe~r is
to PCD680.

A check is made to determine if
this line is equal to the pre­
viously printed line. If it is,
transfer is to PCD840.

A pointer is set to the current
managed array position that is to
be dumped.

The print position control is set
to print position 1.

The PHTOE subroutine is called in
to convert the hexadecimal repre­
sentation of the word to EBCDIC.

The PAOUT subroutine is called in
to set the first four characters
to print.

The PAOUT subroutine is called a
second time to set the second
four characters to print with a
blank space between the previous­
ly printed four characters.

If we are at the managed array
transfer is to PCD810.

The print position indicator and
the managed array indicator are
incremented to the next group to
be processed.

If the entire line has not been
set to print transfer is to
PCD700.

The PIOUT subroutine is called to
set the decimal representation of
the managed array subscript to
print.

The line is printed.

A test is made to determine if
the entire managed array has been
printed. If it is not, transfer
is to PCD640.

The printer is spaced five lines.

A test of the first postion of
ERASABLE COMMON is made to deter­
mine if the nonmanaged array is
to be dumped. If it is, transfer
is to PCD920.

The PCDMP module is terminated by
a CALL LRET.

The nonmanaged array header is
set to the printer.

15 JULY 1969

PCD950

PCD960

PCD990

PCD1010

PCD1030

PCD1040

PCD1060

PCD1080

PCD1100

PCD1120

PCD1140

PCD1170

PCD1200

PCD1220

PCD1240

The size in FORTRAN words of the
nonmanaged array is set to print
area.

The nonmanaged array header is
printed.

The printer is double spaced.

A test is made to determine if
there is a NULL nonmanaged array.
If there is transfer is to
PCD900.

The start of the nonmanaged array
is calculated as 640 words plus
the length of the managed array.

A DO loop is initialized with a
limit equal to the number of
words in the nonmanaged array and
an index equal to eight words are
to be dumped on one line,.

A test is made to determine 'if
this is the first line of the
nonmanaged array to be printed.
If it is, transfer is to PCD1100.

A test is made to determine if
this line is equal to the pre­
viously printed line. If it is,
transfer is to PCD1270.

The print position indicator is
initialized to the beginning of
the print line and the array
indicator is set to the current
position to be printed.

The PHTOE subroutine is called to
convert the current nonmanaged
array position from hexadecimal
to EBCDIC.

The PAOUT subroutins is called to
set the two groups of four
characters to the print area.

A test is made to determine if
the last position of the non­
managed array has been set to the
print area. If it has transfer
is to PCD1240.

The print position indicated in
the nonmanaged array indicator
are incremented to the next posi­
tion to be processed.

If eight array words are not
currently in the print buff er
transfer is to PCD1120.

The PIOUT subroutine is called in
to convert the nonmanaged array
subscript in decimal form to the
print area.

PCD1250

PCD1270

PCD1290

DFJPDIAG

PROBLEM LANGUAGE ANALYZER (PLAN)

SYSTEM MANUAL

The line is printed.

A test is made to determine if
the entire array has been
printed. If it is not the loop
is incremented and transfer is to
PCD1060.

The printer is skipped two lines.
Transfer is to PCD900.

The DFJPDIAG module processes the informa­
tion put into erasable COMMON by the SET
LITERAL command. The information contained
in the erasable COMMON at the time the
module is entered is the file number, the
file name, the drive code, the literal
number, the number of characters in the
literal message, and the literal text.

PDI210

PDI230

PDI240

PDI260

PDI280

DFJPEDMP

The file number is picked up
from the erasable COMMON and
put into the permanent file
control block.

The index to the drive code
in the erasable COMMON is
set with a GDATA call.

The GDATA subroutine is
called to open the permanent
file that contains the lit­
eral text.

The PHOUT subroutine is
called to write the literal
information to the listeral
file.

The PDIAG module is ter­
minated by a call to LRET.

This utility module is invoked by the
standard command DUMP ERRORS.

PED55

DFJPERRS

The subroutine ERLST is called to
cause the error queue file to be
dumped.

This module is the error processing module
of the OS PLAN system.

PER160

PER290

The registers are saved according
to standard OS conventions.

If the error indicator is on
transfer is to PER3180.

FLOWCHART NARRATIVES 37

PROBLEM LANGUAGE ANALYZER (PLAN)

SYSTEM MANUAL

PER310

PER320

PER340

PER360

PER380

PER450

PER480

PER500

PER520

PER530

PER550

PER580

PER690

PER760

PER770

PER770

PER790

PER880

The error indicator is turned on.

The error stack pointers within
PFILE are reset.

If this entry into PERRS is for
the function of error listing
transfer is to PER380.

If the error processing is to be
performed by a user-defined error
processing module transfer is to
PER580.

If the specified diagnostic
device is valid transfer is to
PER480.

The diagnostic device is set
equal to the standard PLAN output
device.

If any errors have been encoun­
tered transfer is to PER920.

If this entry into PERRS was not
for the function of doing error
listing transfer is to PER530.

The FLUSHQUE subroutine is called
to clean out the PLAN file con­
taining the diagnostic messages.

The internal counters and point­
ers are res et.

Registers are restored according
to standard OS conventions. The
module is terminated by return to
the caller.

If switch word 8, that is, the
pointer to erasable COMMON is not
valid transfer is to PER380.

If a pointer to erasable COMMON
is not available transfer is to
PER380.

The READSTAK subroutine is called
to read the error stack into
memory.

If there are any errors still to
be processe, processin

If there are any errors still to
be processed, processing con­
tinues, otherwise transfer is to
PER530.

The error array is built in eras­
able COMMON.

The user error module is brought
into memory as a PLAN local and
transfer is to PER760.

38 FLOWCHART NARRATIVES

PER920

PER950

PER970

PER980

PER1000

PER1030

PER1050

PER1060

PER1070

PER1080

PER1090

PER1110

PER1130

PER1160

PER1190

PER1220

PER1230

15 JULY 1969

If the number of error messages
to be queued is positive proc,ess­
ing continues; otherwise transfer
is to PER1050.

If the logical drive 0 does not
exist transfer is to PER1060.

The GETSIZ subroutine is called
to determine the count of qu•:!ued
error messages.

If this entry into PERRS is for
the purpose of listing erJrors
transfer is to PER1050.

If the error message count is
less than the number of error
messages to be queued transfer is
to PER1050.

The output is set to drive 0 and
transfer is to PER1070.

The FLUSHQUE subroutine is called
to process the messages from log­
ical drive O.

The output device is set equal to
the diagnostic device and trans­
fer is to PER1070.

The READSTKA subroutine is called
to read the PLAN error stack.

If there are no error messages
remaining to be processed trans­
fer is to PER530.

The PRTERR subroutine is called
to print the error messages and
transfer is to PER1070.

This is the
logic that
error queue.

entrypoint
processes

for
the

the
PLAN

The GETSIZ subroutine is cal.led
to determine the count of the
number of PLAN error messages to
be processed.

If the count of messages to be
processed is equal to zero tra.ns­
fer is to PER1240.

The error message is read.

The output parameters are set.

The OUTM subroutine is called to
generate the appropriate out.put
for the PLAN diagnostic.

If there are more messages to be
processed transfer is to PER1160.

15 JULY 1969

PER1240

PER1270

GETSIZ

PER1320

PER1340

PER1380

PER1410

The RELES subroutine is called to
release logical file 255 on log­
ical drive 0.

The error message file indicator
is reset. The PERRS module is
terminated.

This is the entry point for the
GETSIZ subroutine that determines
the number of error messages
within the PLAN file.

If logical drive 0 exists trans­
fer is to PER1540. Otherwise,,
processing is terminated and a
return to the next executable
statement is initiated.

The FIND subroutine is called to
do an open of logical file 255 on
logical drive O.

The number of error messages con­
tained in the file is calculated
from the file size.

The GETSIZ subroutine is ter­
minated with a return to the next
callable statement.

READSTKA This subroutine reads the PLAN
error stack.

PER1440

PER1490

PER1670

PER1790

PER1810

PER1870

PER1890

PER1910

If there are error messages
remaining to be processed from
the error stack transfer is to
PER1490. Otherwise, the subrou­
tine is terminated by return to
the next executable statement.

The next error message is read
from the PLAN error stack.

The short-form portion of the
user error array is built.

If the long-form error array is
required, processing continues,
otherwise, transfer is to
PER1870.

The phrase is read into memory.

If a literal has been supplied
with the error message transfer
is to PER2060.

If the error message being proc­
essed is not a PLAN system error
transfer is to PER2000.

The required literal is accessed
from the liter tablE~. If the
literal is found in the table
transfer is to PER2050. Other­
wise, the space normally occupied

PER2030

PER2050

PER2060

PRTERR

PER2110

PER2140

PER2150

PER2220

PER2430

PER2650

OUTM

PER2730

PER2750

PER2800

PER2850

PER2860

PER2880

PER2910

PROBLEM LANGUAGE ANALYZER (PLAN)

SYSTEM MANUAL

by the literal of the diagnostic
is replaced with an asterisk.

The error module subroutine READ­
STKA is terminated.

The correct literal is moved to
the user array.

The literal indicator is set and
transfer is to PER2030.

This subroutine prints the error
messages ..

If the sequence number associated
with the current phrase is the
same as the sequence number asso­
ciated with the phrase with the
last diagnostic transfer is to
PER2430.

The new sequence number is saved.

If the user array is to be built
in short form transfer is to
PER2430.

The current
printed.

PLAN phrase is

The error message line is set to
the print area.

The OUTM subroutine is called to
output the print line and the
subroutine is terminated.

This subroutine is called to gen­
erate the output of the error
message.

If the output is not to be placed
on logical drive O, file 255
transfer is to PERI800~

The message is written to logical
file 255 on logical drive

If an end-of-file has not been
processed on the diagnosticdevice
transfer is to PER280,.

The skip count is set to one.

If a carriage control character
is not required transfer is to
PER2920.

The PCCTL subroutine is called to
effect the necessary carriage
control.

The carriage control character is
reset.

FLOWCHART NARRATIVES 39

PROBLEM LANGUAGE ANALYZER (PLAN)

SYSTEM MANUAL

PER2920 The PAOUT subroutine is called to
transmit the user error array in
the print buffer.

PER2950 The PLOUT subroutine is called to
print the diagnostic line. The
subroutine is terminated by
return to the caller.

ERRINPER This subroutine is called when an
error is found or processing
within the error module.

PER3180 A diagnostic message is generated
to indicate that error processing
cannot continue.

PER3240 The necessary internal indicators
are reset.

PER3260

DFJPFDMP

The phrase
set. Ther
terminated
DFJPLAN.

abort
error

by

indicator
processing
transfer

is
is
to

This module is used by the standard PLAN
commands DUMP PERMANENT and DUMP DYNAMIC to
dump GDATA and FIND type files to the PLAN
output device. Information about the file
to be dumped is placed in ERASABLE COMMON
by the appropriate command as follows:

Word 1
Word 2

Word 3
Word 4
Word 5
Word 6-12
Word 13-15
Word 16

File number
Second word of file control
block
File dump start address

= File dump end address
= Logical drive of file

Header 'Length Drive File'
= File name (PLAN Literal Form)

File type switch
0 - PERMANENT file
1 - DYNAMIC file

Halts: None.
Error Conditions: None.
subroutines:

Monitor: FLDX1, FSTOX, and SUBSC
PLAN: PDBFA, PLOUT, PAOUT, PIOUT, GDATA,
FIND, RDATA, READ, PCOMP, PHTOE, PEOF,
PCCTL1, and LRET

Switches: Word 16 of ERASABLE COMMON is 0
for a PERMANENT file dump and 1 for a
DYNAMIC file dump.

PFDMP­
PFD 250

PFD270

The output device number
requested by the command is
picked up from the 16th word of
ERASABLE COMMON.

The record size is set to O, the
first line switch tested at
PFD820 is turned on and the numb­
er of equal lines counter used at
PFD1230 is set to O.

40 FLOWCHART NARRATIVES

PFD320-
PFD330

PFD370

P:FD400-
PFD460

P:FD475-
PFD480

PFD500-
PFD520

PFD540-
PFD570

PJFD590

PJl!'D610-
PFD690

PFD711-
PFD720

PFD730

PFD750-
PFD790

PFD820-
PFD840

15 JULY 1969

The printer is spaced f:ive lines.

The number of characters in the
file name is picked up from the
13th word of ERASABLE COMMON to
be used in the PAOUT call at
PFD420.

The header for the dump is
created and placed in the pri:r1ter
output buffer.

If this is a DUMP PERMANENT com­
mand, GDATA is called to open the
file. Otherwise, FIND is called.

If the command did not specify
the last word of the file to be
dumped, then the length of the
dump is set to the total :file
size found in ID(2}.

The length of the file to be
dumped is placed in the printer
output buffer, the header record
is printed, and a blank lin•e is
printed to ·~ffect a double space.

If the file did not exist or the
length specified to dump is 0,
transfer is to PFD1140.

The number of words left to be
dumped is divided by 160 to
determine if 160-word record can
be read. If not, the partial
record size is calculated. If
there is nothing to be rc~ad,
transfer is to PFD1140.

RDATA is called for a PERMANENT
file or READ is called for a
DYNAMIC file.

The loop initiated here will
process the number of lines (S­
word records) just read in.

If this is the last record to be
read from the file, then the
number of words to be printed in
the last line is calculated.

If this is the first line to be
printed from this record, line
count is set to 0 and transfer is
to PFD890. Otherwise,., PCOMP is
called to compare this line with
the line saved at PFD890, and if

15 JULY 1969

PFD890

PFD930

PFD1030

PFD1050-
PFD1080

PFD1100

PFD1120-
PFD1180

PFD1230-
PFD124 0

DFJPFIN

they are equal, transfer is to
PFD1230.

This print line is saved for the
compare in PFD870.

The print line is converted to
hexadecimal printout form and
placed in the printer output
buffer.

The file location of the first
word in the print line is moved
to the print buff er in the left
hand column position.

The line is printed and if this
was the last line on the page,
PCCTL is called so that the next
call to PLO UT will skip to the
beginning of the new page.

If all the lines in this record
have not been processed, transfer
is to PFD750 to continue the
loop.

If the dump request has been
fulfilled, the printer is spaced
five lines and control is
returned to the resident loader.

The number of equal lines is
incremented and if this is the
first equal line found, transfer
is to PFD1050.

This subroutine converts an A4 format field
into a floating-point FORTRAN word.

FIA1150

FIA1650

FIA1690

FIA1890

The user arguments are accessed,
the field width is calculated,
and the buff er pointer and pseudo
accumulator is initialized.

Leading blanks are eliminated and
the sign is collected,. This is
done by the subroutine PSCAN.

Digits to the left of the decimal
point are collected and placed in
the pseudo accumulator.

When a nonnumeric digit is found,
a test is made to see if it is a
decimal point. If not, transfer
is to FIA2090. If it is, a test
is made to see if this is the
second decimal point. If it is
not, the count of the digits
above the decimal point are saved
and transfer is to FIA1690 to

FIA2090

FIA2170

FIA2490

FIA2910

FIA3210

FIA3750

PROBLEM LANGUAGE ANALYZER (PLAN)

SYSTEM MANUAL

continue collection of digits
below the decimal point. If this
is a second decimal point, trans­
fer is to FIA2090.

A test is made to see if the
symbol E is present in the input
stream. If it is not, transfer
is to FIA2170. Otherwise, the
pointer is stepped past the E and
the E-value sign is collected.

The E-value itself is collected.

The collected integers are posi­
tioned in the pseudo accumulator
based on the E-value and the
actual decimal point if one was
present. If a decimal point was
not present, the input arguments
are used to determine the posi­
tion of the decimal point.

The exponent is calculated from
the position of the mantissa in
the pseudo accumulator.

The mantissa is normalized in the
pseudo accumulator.

The results are stored in the
user array and exit is made to
the caller.

DFJPFOUT, DFJPEOUT

This subroutine converts a floating-point
word into A4 format in either E or F mode.

FOA1230

FOA1290

FOA1690

FOA2210

FOA2410

This is the entrypoint
PEOUT. The E-format
set.

for DFJ­
swi tch is

The user arguments are accessed.
A test is made to see if any
characters are to be outputted.
If not, return is given to the
caller. The field width and
dec.imal width of the output field
are calculated and a pseudo accu­
mulator is cleared and
initialized .•

The mantissa is placed into the
pseudo accumulator. The charac­
teristic is used to determine the
accumulator positions used.

The mantissa is shifted right ir
the pseudo accumulator until thE
digit appears above the decimaJ
point. The decimal point i~
located at position 11 in thE
23-position pseudo accumulator.

If this is a call to PEOUT or thE
E-format switch was set by thE

FLOWCHART NARRATIVES 4'.

PROBLEM LANGUAGE ANALYZER (PLAN)

SYSTEM MANUAL

FOA2510

FOA2870

FOA3480

FOA3570

FOA3650

FOA3710

FOA3810

FOA3850

FOA4070

FOA4170

FOA4210

FOA4250

FOA4370

FOA4490

FOA4730

PFOUT routine because of insuff i­
cient space, transfer is to
FOA4730.

The rounding factor is computed.
This is based on the number of
digits to the right of the deci­
mal point.

The rounding factor which has
been calculated is added to the
mantissa.

A test is made to see if there is
enough room in the output field
for the requested format. If
not, transfer is to FOA1230 to
set the E-format switch and try
and output the number in E for­
mat. otherwise, transfer is to
FOA3570.

A test is made to check if lead­
ing blanks are required. If not,
transfer is to FOA3710.

Leading blanks are placed in the
output field.

If the input f loating ... point num·­
ber was negative, a minus sign is
outputted.

A leading zero is outputted if
required. This can be caused i:f
the rounded value is less than 1.

Characters to the left of the
decimal point are outputted.

Characters to the right of thf~
decimal point are outputted.

If this is not E format, transfer
is to FOA4630.

An EBCDIC E is outputted.

The E-value is calculated.

The sign
outputted.

of the E-value is

The E-value itself is outputted
and control is returned to the
caller.

A test to see if there is enough
room in the output field for E
format. If yes, transfer is to
FOA5290; otherwise, a test is
made to check if th·~re is enough
room for normal format. If yes,
transfer is to FOA5290. Other­
wise, the output field is filled
with asterisks and control is
returned to the caller.

42 FLOWCHART NARRATIVES

15 JULY :1969

DFJPHRAS

This module provides maintenance capability
for a language dictionary CPFILE). It will
add, alter or delete a phrase from the
dictionary. Logical and syntax verifica­
tion is performed before each phrase is
stored. The system error module CDFJPERRS)
is called to log any required diagnostics.
This program is specified in the proqram
list for the standard PLAN commands ADD
PHRASE, ALTER PHRASE and DELETE PHRASE.

PHR38

PHR70

PHR82

PHR84

PHR86

PHR88-
PHR104

PHR110

PHR112

PHR116

PHR118

PHR120-
PHR128

The base registers are set and
various constants, switches, and
table areas are initialized.

The operation ADD, ALTER, or
DELETE is determined from the
value found in ERASABLE CONMON
(1). The appropriate indicators
are set in the switch 'PHRASW'.

The subroutine COMPRESS is cal.led
to read the phrase image from the
PFINPUTA record of the phrase
dictionary file .•

A CAP subscript pointer register
is initialized to point to the
beginning of the managed array.

The subscript register is incre­
mented to the next CAP position.

A test is made for a valid end to
the phrase name. This must be a
comma or a semicolon. If an
invalid character is found, an
error message is issued and the
scan continues until a comma or a
semicolon is found. If a comma
is found, a transfer is to
PHRllO. If a semicolon, transfer
is to PHR148.

The subroutine ADVSUP is called
to slide over the comma in the
input stream.

A test is made to check if a
dollar sign has been encountered
in the input stream. If the
current character is a dollar
sign, transfer is to PHR548 which
is the formula collE~ct
subroutine.

The subroutine ALPHAC is called
to collect the symbols and CAP
pointer for the phrase entry.

The subroutine CONSTANT is called
to collect any default values.

A test is made to see if an error

15 JULY 1969

PHR130

PHR132

PHR134

PHR138-
PHR144

PHR148

PHR150

LITERALT

PHR168

PHR180

PHR180-
PHR208

PHR212

occurred in collecting an Implied
Do subscript. If an error
occurred, an error message is
issued.

The subroutine LITERAL'l~ is called
to collect any literals that may
be present in the phrase entry.

The subroutine CHKENTRY is called
to collect check entries, if
present.

The subroutine EXPRESSC is called
to collect phrase-defined
expressions.

A test is made to see if a
literal was found in the phrase
entry. If a literal was found,
the subscript pointer is set to
the end of the literal and the
transfer is to PHR88.

The subroutine STRING is called
to collect the table together and
build the phrase entry.

A test is made to see if any
errors occurred in the phrase
scan. If no errors occurred,
transfer is to the routine TUPD­
ATE to enter the phrase in the
phrase dictionary. Otherwise,
exit is to the PLAN loader.

The LITERALT subroutine tests for
and collects phrase-defined
literals.

The next character in the input
stream is checked to see if it is
a literal delimiter. These are
', @, and" If the character is
not a delimiter, return is to the
caller.

The literal delimiter is saved in
order to locate the end of the
literal.

The length of the literal is
determined by scanning the input
stream for a delimiter that is
the same as the saved delimiter.
A test is also made to see if
there is a semicolon in the lit­
eral or the length of the literal
is zero. In either case, an
error message is issued and
return is made to the caller.

The word count of the literal is
collected.

PHR222

PHR224

PHR228

PHR230-
PHR24 0

PHR244

PHR248

PHR260

CONSTANT

PHR276-
PHR294

PHR298

PHR300

PHR302

PHR306

PROBLEM LANGUAGE ANALYZER {PLAN}

SYSTEM MANUAL

An indicator is set so that on
return to the caller, the sub­
script register may be incre­
mented to the end of the literal.

If the literal delimiter was a
double quote indicating that the
count is not required in this
literal, transfer is to PHR232.

The subroutine WSYML is called to
write a full word of the literal
into Table 2.

The CAP subscript register is
incremented and the next four
bytes of the literal are
collected. If this is not the
last four bytes of the literal,
transfer is to PHR228 to write
the word into the table .•

A test is made to see if the last
word of the literal contains any
residual characters.

The last word is padded with
blanks if required.

The end subscript of the literal
is stored and the current sub­
script pointer is restored and
return is made to the caller.

A CONSTANT subroutine collects
single logical values and numeric
values both integer and REAL.

A test is made to see if a sign
is present in the input stream.
If it is not, transfer is to
PHR298; otherwise, an indicator
is set and the subroutine ADVSUP
is called to increment the input
pointer past the sign.

The subroutine COLNUMT is called
to collect any numeric constant
if present.

If a valid constant was
collected, exit is from this sub­
routine to the WSYM subroutine
which will store the word in the
phrase entry in Table 2 and then
return to the caller.

A test for a uniary sign or a
single logical value, plus or
minus, is made. If a sign was
present, transfer is to PHR306.
Otherwise, return is made to the
caller.

The logical value TRUE or FALSE
depending on the sign, is set and

FLOWCHART NARRATIVES 43

PROBLEM LANGUAGE ANALYZER (PLAN)

SYSTEM MANUAL

exit is from this routine to
WSYML subroutine to store
value into Table 2.

the
the

EXPRESSC The EXPRESSC subroutine scans and

PHR336

PHR340

PHR348

PHR350

PHR354

PHR356

PHR360

PHR378

PHR402

PHR414

PHR420

PHR444

PHR452-
PHR454

PHR458-
PHR460

PHR462

collects all phrase-defined
expressions.

If the input character is an
equal or a pound sign, transfer
is to PHR348.

If the input character is a colon
indicating a LOGICAL expression,
transfer is to PHR452; otherwise,
return is made to the caller.

The subroutine DARITHX is called
to scan the arithmetic
expression.

A test is made to check if this
is a conditional expression and
if yes, transfer is to PHR488.

A pointer is set to the expres­
sion entry in Table 6.

A test is
subroutine
EXPCNTRL
collects and
area. If
PHR414.

made to check if this
is called from the
subroutine which
scans the formula

yes, transfer is to

The subscript is validated and if
good transfer is to PHR378;
otherwise an error is issued.

The symbol
collected.

table entry is

The subscript and the compressed
symbol are placed in Table 6.

The length of the expression is
calculated.

The expression is moved to Table
6.

Return is made to the caller.

If the next character in the
input stream is a dollar sign
indicating a formula number,
transfer is to PHR492.

The subroutine DLOGICAL is called
to scan the logical expression.

A test is made to see if this
expression is in the TRUE leg and
if yes, transfer is to PHR488.

44 FLOWCHART NARRATIVES

PHR468

PHR470

PHR472-
PHR474

PHR478

PHR488

PHR492-
PHR494

PHR496

PHR496-
PHR514

PHR524-
PHR534

EXPCNTRL

PHR552

PHR556-
PHR558

15 JULY 1969

If the next character
input stream is not a
mark indicating a TRUE
expression, transfer
PHR354.

in the
question

leg of an
is to

The conditional switch is
inverted indicating that we are
processing a TRUE leg.

If the next character in the
input stream is a dollar :sign
indicating a formula number,
transfer is to PHR490.

If the next character is an equal
or pound sign indicating an
arithmetic expression, transfer
is to PHR348. If the character
is a colon, transfer is PHRl'~52.
If none of these, an error mes­
sage is issued and transfer is to
PHR444 to return to the calleJC:.

If the next character is not an
exclamation mark which denotes a
FALSE leg, transfer is to PHR354.
Otherwise, transfer is to PHH470
to process the FALSE leg.

The subroutine INTEGRI is called
to collect an expression number.

A test is made to see if this
subroutine was called from the
EXPCNTRL subroutine which pro­
cesses the formula area. If it
was not, an error message was
issued and transfer is to PHR350.

The expression number is vali­
dated, and if incorrect, an e:r:ror
message is issued and transfer is
to PHR350.

This expression number is placed
in the expression number table
and an indicator is set to show
that this number was referenced.
Transfer is to PHR350.

The EXPCNTRL subroutine is the
formula expression area collect
routine.

If the next character in the
input stream is not a dollar sign
indicating the formula number,
transfer is to PHR598.

The subroutine INTEGER is called
to collect the expression number.

15 JULY 1969

PHR560

PHR564

PHR576

PHR598

PHR600

PHR602

PHR606-
PHR616

PHR620-
PHR622

PHR630

PHR634

PHR642

If the expression number is zero,
transfer is to PHR552 and this
number is ignored.

If the expression number is
greater than 1024, transfer is to
PHR552 and this number is
ignored.

The formula number table is
accessed and if this is a
multiply-defined number, an error
message is issued and transfer is
to PHR552.

The subroutine DALPHA is called
to slide over the left hand sym­
bol of the expression.

If a valid alphabetic symbol was
not found, transfer is to PHR620.

If the next character in the
input stream is not a comma indi­
cating the end of the expression,
transfer is to PHR644.
Otherwise, the subroutine ADVPUL
is called to slide over the comma
and transfer is to PHR552.

If the next character in the
input stream is a comma indicat­
ing the end of the expression,
transfer is to PHR546. If the
next character is a semicolon
indicating the end of the phrase,
transfer is to PHR656. If neith­
er, an error message is issued
and the input pointer is incre­
mented to the next character .•
This routine continues to slide
until a comma or a semicolon is
found ..

If the next character in the
input stream is not a left paren­
thesis indicating a subscript
expression, transfer is to
PHR644.

Subroutine
collect
expression.

DARI TH
the

is called to
subscripted

If the expression ends with a
right parenthesis, transfer is to
PHR642. Otherwise, an error mes­
sage is issued and transfer is to
PHR608 to slide to the end of the
expression.

The subroutine ADVPUL
to slide over
parenthesis.

is
the

called
right

PHR644

PHR648

PHR652

PHR656-
PHR696

COMPRESS

PHR710

PHR722

PHR732

PHR738

PHR798

PHR806

PHR810

DLOGICAL

PHR832

PROBLEM LANGUAGE ANALYZER (PLAN)

SYSTEM MANUAL

subroutine EXPRESSC is called to
collect the expression and put it
in Table 6.

If the next character in the
input stream is a comma, indicat­
ing the end of the expression,
but not the end of the phrase,
transfer is to PHR546.

If the next character in the
input stream is not a semicolon,
transfer is to PHR606 to issue an
error message and continue the
processing.

The formula number table is
scanned and error messages are
issued for all referenced and
undefined formula numbers., and
defined and unreferenced numbers.
Exit from this routine is to
PHR148.

The COMPRESS routine reads the
phrase image from PFINPUTA record
of the phrase dictionary, com­
presses the phrase name, and
collects the checksum .•

The
read
disk.

subroutine READ is called to
the input statement from

Subroutine ADVSUP is called to
slide over the command.

A test is made to see if the
command ends with a colon. If
not, transfer is to PHR810 to
issue an error message.

The phrase name is collected and
the checksum is computed.

A test is made to see that the
phrase name is terminated proper­
ly with either a comma or a
semicolon. If not, transfer is
to PHR810 to issue an error
message.

A test is made to see if any name
at all was collected and if yes,
exit is to the caller.

An error message is issued and
transfer is to ABORTEND to ter­
minate the processing of this
phrase.

The subroutine DLOGICAL
a diagnostic scan on
expressions.

performs
logical

The ADVPUL subroutine is called
to slide over any NOT symbol.

FLOWCHART NARRATIVES 45

PROBLEM LANGUAGE ANALYZER (PLAN)

SYSTEM MANUAL

PHR838

PHR848

PHR850 -
PHR856

PHR860

PHR868

PHR872

PHR888

PHR892

PHR896

PHR900

PHR904

PHR910

PHR916

The next character in the input
stream is not an EBCDIC left
parenthesis indicating an expres­
sion, transfer is to PHR910.

The subroutine ADVSUP is called
to slide over the left
parenthesis.

If the next
input stream
parenthes, an
generated and
PHR904.

character in
is a BCD

the
left

error message is
transfer is to

The next character in the input
stream is not a left paren trans­
fer is to PHR868. Otherwise, the
arithmetic parenthesis count is
incremented and transfer is to
PHR848.

If a semicolon is found in the
input stream indicating the end
of the phrase, transfer is to
PHR904 to try a logical scan.

If the input stream character is
a relational operator, <. >, -,
or # sign, transfer is to PHR900.

If the input stream character is
not an EBCDIC right parenthesis,
transfer is to PHR848 to continue
the scan.

If the arithmetic parenthesis
count is zero indicating that an
equivalent left parenthesis has
not been found, transfer is to
PHR904.

The arithmetic parenthesis count­
er is decremented and transfer is
to PHR848.

If the arithmetic parenthesis
counter is zero transfer is to
PHR9~6 to process a relational
expression.

The input pointer is restored to
the start of the expression and
the logical parenthesis counter
is incremented and transfer is to
PHR832 to begin processing anoth­
er expression.

The subroutine DALPHA is called
to test for and slide over an
alphabetic symbol if present. If
an alphabetic symbol is not pres­
ent, transfer is to PHR952.

A test is made for left parenthe­
sis in the input stream indicat-

46 FLOWCHART NARRATIVES

PHR920

PHR922-
PHR930

PHR932

PHR940

PHR944-
PHR958

DR ELA TS

PHR996-
PHR998

PHR1000

PH:R10022

PHR10034

PHR10036

15 JULY 1969

ing a subscript expression.
not, transfer is to PHR932.

If

The subroutine
to slide over
expression.

DARITH is called
the subscript

The next character in the input
stream is checked to ensure that
it is a right parenthesis and a
proper end to the subscript
expression. If it is, transfer
is to PHR930 and the subroutine
ADVPUL is called to slide over
the right parenthesis.
Otherwise, an error messagE~ is
issued and transfer is to PHR958.

If the next character
input stream is the
operator OR/AND, transfer
PHR832.

in the
logical
is to

If the logical parenthesis count­
er is zero, which indicates that
we are not within an inner set of
parentheses, transfer is to
PHR958.

If the next character in the
input stream is an EBCDIC right
parenthesis, the logical paren­
thesis counter is incremented and
transfer is to PHR930.
Otherwise, an error message is
issued. The input pointer is set
to the end of the expression and
control is returned to the
caller.

This is the relational expression
evaluation routine,.

The current input stream charac­
ter is saved and the subroutine
ADVPUL is called to slide over
the operator.

If the input stream character is
a literal delimiter ("), transfer
is to PHR1004.

A check is made to see if a sign
is present. If it is not, trans­
fer is to PHR1058.

The subroutine ADVPUL is called
to slide over the sign.

The next input character is
checked to see if it is a right
parenthesis. If it is not,
transfer is to PHR1058.

15 JULY 1969

PHR1004

PHR1006

PHR1008

PHR1014

PHR1018

PHR1020

PHR1024

PHR1026

PHR1030

PHR1038

PHR1040

PHR1044

At this point we have determined
that we have a single logical
value as the right side of a
relational expression. The input
pointer is restored to the begin­
ning of the expression.

The subroutine ADVPUL is called
to slide over the input operator.

The subroutine DALPHA is called
to test for and slide over the
alphabetic symbol. If the alpha­
betic symbol is not present,
transfer is to PHR1072.

The next character is checked to
see if it is a left parenthesis
and if not, transfer is to
PHR1026,.

The subroutine
to slide over
expression.

DARITH is called
the subscript

A check is made for a proper end
to the expression. The next
character in the input stream
must be an EBCDIC right parenthe­
sis. If not, transfer is to
PHR1072.

The subroutine
to slide over
parenthesis.

ADVPUL is called
the right

A check is made to see that the
input stream character is the
same as the operator that was
saved on entry to this routine.
This ensures that the scan has
returned to the correct position
in the input stream. If these
characters are not equal, trans­
fer is to PHR1072.

A check is made to see if the
input character is an equal or a
pound sign which are the only
·valid operators for a single log­
ical value relational. If not,
transfer is to PHR1072 to issue
an error.

Subroutine ADVPUL is called to
slide over the operator.

The input stream character is
checked to see if it is a double
quote. If it is not, transfer is
to PHR1054.

The literal is scanned and
checked to see if it contains a
semicolon. If it does, transfer
is to PHR1072.

PHR1054

PHR1058-
PHR1066

PHR1068

PHR1072

PHR1076

PHR1080

PHR1090

DARI TH

PHR1130

PHR1134

PHR1146

PHR1148

PHR1156

PHR1160

PROBLEM LANGUAGE ANALYZER (PLAN)

SYSTEM MANUAL

The subroutine ADVPUL is called
to slide over the literal delim­
iter and transfer is to PHR1068.

The subroutine DARITH is called
to evaluate both sides of the
expression. A test is also made
to see that the input operator is
the same as the one saved on
entry to this routine in order to
ensure that the input stream
pointer is back in the correct
place.

A check for a closing parenthesis
is made. If yes, transfer is to
PHR1090.

An error message is issued.

If this is not a
transfer is to
check is made by
input character
quote.

literal compare
PHR1090. This

comparing the
with a double

The literal is scanned for a
semicolon. If the semicolon is
found, transfer is to PHR932.

The input stream is stepped to
the end of the expression and
transfer is to PHR932.

The subroutine DARITH performs a
diagnostic scan on arithmetic
expressions.

The subroutine ADVPUL
to slide over the
operator.

is called
arithmetic

A test is made to see if the next
character in the input stream is
a sign. If it is not, transfer
is to PHR1148.

The subroutine ADVPUL is called
to slide over the sign.

A check is made to see if a left
parenthesis is present in the
input stream indicating a sub­
script expression. If the paren­
thesis is present, transfer is to
PHR1178.

The subroutine DALPHA is called
to test for and slide over a
symbol if present. If the symbol
is present, transfer is to
PHR1170.

The subroutine COLNUMT is called
to test for and collect a numeric
constant, if present. If it is
present transfer is to PHR1194;

FLOWCHART NARRATIVES 47

PROBLEM LANGUAGE ANALYZER (PLAN)

SYSTEM MANUAL

PHR1170

PHR1178

PHR1182

PHR1194

PHR1214

DARITHX

PHR1222

PHR1224

PHR1236

PHR1238

PHR1256

otherwise, an error message is
issued and control is returned to
the caller.

A test is made on the input
character to see if it is a left
parenthesis. If it is not,
tr an sf er is to PHR1194.

The parenthesis counter is incre­
mented and transfer is to
PHR1130.

If we are processing an inner
nest, a test is made for a right
parenthesis. If a right paren­
thesis is not present in the
input stream, transfer is to
PHR1164 where an error message is
issued and control is returned to
the caller. If the parenthesis
is present, the parentheses
counter is decremented and the
subroutine ADVSUP is called to
slide over the parenthesis.

If an arithmetic operator is
present in the input stream,
transfer is to PHR1146.

If the parentheses counter is not
zero indicating that we are in an
inner nest, transfer is to
PHR1182, otherwise control is
returned. to the caller.

The subroutine
the diagnostic
expressions.

DARITHX performs
scan on logical

The subroutine ADVPUL is called
to slide over the equal sign.

A test is made to see if a sign
is present in the input stream.
If it is not, transfer is to
PHR1256.

The subroutine ADVPUL is called
to slide over the sign.

The input stream is checked for
either a left parenthesis, an
alpha symbol, or a numeric con­
stant. If any of these are pres­
ent transfer is to PHR1130 to
process an arithmetic expression.
If none of these are present,
return is made to the caller.

If the input stream character is
not a literal delimiter, that is,
a , @, or ", transfer is to
PHR1130 to process the arithmetic
expression.

48 FLOWCHART NARRATIVES

PHR1270

PHR1276-
PHR1280

PHR1288

PHR1292

DAL PH A

PHR1308

PHR1316

PHR1320

PHR1328

PHR1338

PHR1340

PHR1350

PHR1352

PHR1364

ALPHAT

PHR1372

15 JULY 1969

The literal is scanned for a
semicolon. If a semicolon is
found, transfer is to PHR1288.

The length of the literal is
checked. If it is not zero,
transfer is to PHR1292 where
return is made to the caller.

An error message is issued.

Return is made to the caller.

The subroutine
and slides
symbols.

DALPHA tests for
over alphabetic

The subroutine ALPHAT is called
to see if the first character is
alphabetic. If yes, transfer is
to PHR1316; otherwise, return is
made to the caller.

The first character of the symbol
is saved so that it can later be
checked to see if this symbol is
a single E.

If this is not a
operand, that is, an S'
transfer is to PHR1338.

subscript
operand,

The input stream pointer stepped
over the subscript operand.

The count of the characters in
the symbol is collectedft

A test is made to see if the
symbol is over three characbers,
and if not, transfer is to
PHR1352.

The subroutine PULADV is used to
pull down and suppress extra
characters in the symbol.

A test is made to see if the
symbol is a single E. If not,
transfer is to PHR1314 wher(~ a
return is made to the caller.

An error message is issued and
transfer is to PHR1438, the
PULADV subroutine to suppress any
blanks following the symbol.

The ALPHAT tests a character for
alphabetic.

A test is made to see if a
character is alpha or nonalpha.
If it is alpha, transfer is to
PHR1396; otherwise, return is
made to the caller.

15 JULY 1969

PHR1396

PHR1412-
PHR1460

VER BY

PHR1486

PHR1488

PHR1500

PHR1504

PHR1508

PROGRAM

PHR1524

PLEVEL

PHR1548

PHR1550

PHR1562

PHR1568

The alpha-found exit is set and
return is made to the caller.

The subroutines ADVSUP, SUPADV,
ADVPUL, and PULADV are used to
control the scanning of the input
stream so that blanks may be
suppressed. The subroutine
PULADV steps the input pointer to
the next significant character in
the input stream and then moves
the entire remainder of the input
stream down over the blanks.

This subroutine processes
'VERB' keyword.

the

An indicator is set in the phrase
entry to show that this is a verb
phrase.

A test for a program list delim­
iter is made. If the next
character in the input stream is
not a comma or a semicolon,
transfer is to PHR1522.

A test for a valid end to the
keyword entry is made. If the
keyword ends with a comma, trans­
fer is to the ADVSUP routine to
slide over the comma.

If the keyword is ended with a
semicolon, transfer is to PHR112.

An error message is issued and
transfer is to PHR112.

This routine processes the 'PRO­
GRAM' keyword.

If the character in the input
stream is a program list delim­
iter, that is, a quote, a comma,
or a double quote, transfer is to
the subroutine COLPLIST to
collect the program list. If not
an error message is issued and
transfer is to PHR112.

This routine processes
'LEVEL' keyword.

the

The subroutine INTEGER! is called
to collect the level number.

The level number is tested for
validity, and if proper, transfer
is to PHR1568.

An error message is issued and a
phrase level is set to blank.

The level of the previous phrase
is cleared.

PHR1572

EXIT

PHR1578

PHR1592

PHR1596

PHR1600

PHR1604

PHR1606

PHR1618

CHKENTRY

PHR1634

PHR1638

PHR1640

PHR1646

PHR1656

PHR1660

PROBLEM LANGUAGE ANALYZER (PLAN)

SYSTEM MANUAL

The new level is placed into the
phrase entry and transfer is to
PHR1500.

This routine processes
keyword entry.

The user-exit program

the

list
collected and placed in Table
This is done by linking N to
program collect routine.

A test is made on the number
names in the user exit list.

EXIT

is
7.

the

of
If

not higher than three, tr an sf er
is to PHR1612.

An error message is issued and
transfer is to PHR112.

A test is made to see if user­
exit names were omitted, and if
not, transfer is to PHR1606.

The standard PSCAN user-exit
names are used. These are EXITl,
EXIT2, and EXIT3.

A test is made to see that all of
the user-exit names in Table 7
are alphabetic. If any name is
found not to be alphabetic,
transfer is to PHR1596 to issue
an error message.

If this is not the last entry in
Table 7, transfer is to PHR1600;
otherwise, transfer is to
PHR1500.

This routine
collects all
entries.

tests for
phrase

and
check

If the next character in the
input stream is not an asterisk,
return is made to the caller.

The subroutine ADVSUP is called
to slide over the asterisk.

The current subscript or pointer
to the CAP is placed in Table 5.

The subscript
valid, transfer
otherwise, an
issued.

is validated. If
is to PHR1556,

error message is

A test is made to see if this is
an execution-defined symbol. If
it is not, transfer is to
PHR1662.

The subscript in Table 5 is set
to zero.

FLOWCHART NARRATIVES 49

PROBLEM LANGUAGE ANALYZER (PLAN)

SYSTEM MANUAL

PHR1662

PHR1712

PHR1724

PHR1732-
PHR1736

PHR1738

PHR1744

PHR1762

PHR1768

PHR1772

PHR1782

PHR1784

PHR1792

PHR1802

PHR1804

PHR1812

The check entry type R, T, or F,
and the function code A, C, and P
are placed into Table 7.

A test is made to see if a
literal is present in the check
entry, and if yes, transfer is to
PHR1736.

A test is made to see if the next
character in the input stream is
a left parenthesis indicating a
COMMON subscript. If it is not,
transfer is to PHR1738.

An indicator is set to show that
a COMMON subscript is present.

A test is made to see if an
execution-defined symbol is being
used. If not, transfer is to
PHR1762.

The compress symbol and the sub­
script are placed in Table 5.

A test is made to see if either a
literal or a subscript was pres­
ent. If not, transfer is
PHR1792.

If a literal is not present,
transfer is to PHR1802.

A test is made on the function
code to see if a program list is
present. If not, transfer is to
PHR1824.

The subroutine COLPLIST is called
to collect the program list.

If the length of the program list
was zero, transfer is to PHR1872.

The function code was tested to
see if it is a pushed phrase. If
it is not, transfer is to
PHR1872, otherwise an error mes­
sage is issued and transfer is to
PHR1634 to process another check
entry if present.

The subroutine INTEGER is called
to collect the COMMON subscript.

A test is made on the next
character in the input stream to
see that it is a right parenthe­
sis. If not, transfer is to
PHR1796 to issue an error
message.

The subroutine
to slide over
parenthesis.

ADVSUP is called
the right

50 FLOWCHART NARRATIVES

PHR1814

PHR1826

PHR1840

PHR1824

PHR1850

PHR1872

PHR1876

PHR1878

15 JULY 1969

The COMMON subscript is V'ali­
dated. If the value is zero, or
too large, transfer is to PHR1796
to issue an error message;
otherwise, transfer is to
PHR1872.

The literal is scanned to see if
it contains a semicolon. If it
does, transfer is to PHR1796.

The subroutine ADVSUP is called
to slide over the ending quote.

The length of the literal is
tested for zero, and if it is,
transfer is to PHR1792 to issue
an error message.

The literal is moved to Table 5.

The length of the literal is
placed into Table 5.

The function code is placed into
Table 5.

The end of the check entry in
Table 5 is located and its
address is saved. Transfer is to
PHR1634 to process the next check
entry.

COLPLIST The COLPLIST subroutine coll·ects
program lists for the ph:rase
check entries and user exit.

PHR1904 The subroutine ADVSUP is called
to slide over the program list
delimiter.

PHR1910 The subroutine ALPHAT is called
to see if the first character of
the name is alphabetic. If yes,
transfer is to PHR1932 to collect
the program name.

PHR1914 A test is made to see if this is
an empty name in the middle of a
bank load, that is, two succes­
sive commas after a left paren­
thesis. If this is the case,
transfer is to PHR2012 to issue
an error message.

PHR1922

PHR1932

PHR1940

If this is not a bank load, a
zero entry is created and trans­
fer is to PHR1948 to put the
entry into the table.

The program name is collected.

If the name is not eight charac­
ters or less, an error message is
issued and transfer is to
PHR1954.

15 JULY 1969

PHR1948

PHR1954

PHR1958

PHR1962

PHR1966

PHR1970

PHR1974

PHR1976

PHR1978

PHR1980

PHR1982

PHR1990-
PHR1994

PHR1998

PHR2004

The subroutine PGMNEXT is called
to put the program name in the
appropriate table.

The next character in the input
stream is checked to see if it is
a comma indicating that another
program name is in the list. If
this is so, transfer is to
PHR1904.

A check is made to see
next character in the
stream is the program list
iter. If yes, transfer
PHR2004.

if the
input

delim­
is to

If the program name is an
asterisk indicating a checkpoint
return, transfer is to PHR1976.

If the program name is left
parenthesis indicating the start
of a bank of names processing
continues, otherwise, transfer is
to PHR1990.

If a left parenthesis. transfer
is to PHR2014 .•

The left parenthesis found switch
is inverted.

The character, either an asterisk
or a left or right parenthesis,
is placed in the program name
entry.

The subroutine PGMNEXT is called
to place the entry in the appro­
priate table.

The subroutine ADVSUP is called
to slide over the character.

If the next character is alpha­
betic or numeric indicating a
program name, transfer is to
PHR1904 to collect the next name.
Otherwise. transfer is to PHR1954
to test for the end of list.

If the next character in the
input stream is a right parenthe­
sis, the left parenthesis found
indicator is reset and transfer
is to PHR1976, otherwisE~ an error
message is issued.

A test is made to see if a
semicolon is in the program list.
If not, transfer is to PHR1904 to
process the next name on the
list.

The input pointer is restored to
the semicolon.

PHR2007

PHR2012

PGMNEXT

PHR2034

PHR2038

PHR2042

WSYM

PHR2056

PHR2074

PHR2078

WSYML

PHR2102

PRH2114

PHR2118

PHR2132

PROBLEM LANGUAGE ANALYZER (PLAN)

SYSTEM MANUAL

The left paren found switch is
tested to see if it is on indi­
cating unbalanced parentheses.
If it is off, return is made to
the caller; otherwise, transfer
is to PHR2012.

The left parenthesis found switch
is reset and the error message is
issued. Transfer is to PHR1980
to test the next name in the
list.

This subroutine moves a program
name to the appropriate table and
updates the table pointer.

A test is made to see if the
table will overrun by making this
entry. If it will, transfer is
to PHR2042 to return to the
caller.

The program name is moved to the
table and the table pointer is
updated.

Return is made to the caller.

The WSYM subroutine formats a
fixed or REAL value so that it
may be placed into Table 2.

A constant is scaled by the P­
val ue factor.

If a test is made to check if the
constant is a fixed-point number.
If not, transfer is to WSYML.

A fixed-point
adjusted.

value is half

This subroutine creates a Table 2
entry which contains the symbol,
if present, the subscript, and
the default value.

The subscript is adjusted. If
this is a long-form subscript
indicating it does not reference
the switch words, a constant of
15 is added to the switch words
so that it is a true reference of
the managed array.

A test is made to check if an
execution-defined symbol is being
processed. If not, transfer is
to PHR2138.

The compressed symbol is placed
into Table 2.

A test is made to see if the
subscript is an Implied Do, if
yes, transfer is to PHR2140.

FLOWCHART NARRATIVES 51

PROBLEM IANGUAGE ANALYZER (PLAN)

SYSTEM MANUAL

PHR2138

PHRI140

PHR2144

PHR2152

PHR2156

ALPHAC

PHR2232

PHR2248

PHR2254

PHR2258

PHR2264

PHR2272

PHR2276

PHR2296

PHR2304

The subscript is placed in Table
2.

The constant value is placed into
the table.

A test is made to
subscript is valid.
tr an sf er is to

see if the
If it is,

PHR2152,
otherwise, an error message is
generated and exit is made to the
caller.

A test is made to see if the
subscript was an Implied Do. If
not, return is made to the
caller.

The Implied Do parameters are
placed in a table and exit is
made to the caller.

the ALPHAC subroutine collects
keywords, symbols, and symbol
table entries.

If the input contains a subscript
indicated by a left parenthesis,
transfer is to PHR2304.

The subroutine ALPHAT is called
to check the next character in
the input for alphabetic.

If not alphabetic, return is made
to the caller. The next charac­
ter in the input stream is tested
to see if it is the delimiter.
If it is not, transfer is to
PHR2264.

The subroutine INTEGER! is called
to collect the user-exit number.

The mode of the constant is
determined. If the next charac-
ter in the input stream is an I,
the integer mode switch is
and the subroutine ADV SUP
called to slide over the

A test is made to see
P-value is present.
transfer is to PHR2296.

The P-value is collected.

'I' •

if
If

set
is

the
not,

The next character in the input
stream is tested to see if it is
a left parenthesis indicating a
subscript or an Implied Do. If
it is not, transfer is to
PHR2570.

The P-value is validated and if
in range, transfer is to PHR2316.
Otherwis·~ an error message is
generated.

52 FLOWCHART NARRATIVES

PHR2316

PHR2342

PHR2315-
PHR2424

PHR2430

PHR2438

PHR2460

PHR2464

PHR2474

PHR2476

PHR2496

PHR2544

15 JULY 1969

The phrase entry indicators are
set based on the mode, the sub­
script, and the P-value if
present.

The user-exit number is tE!Sted,
if present, to see if it is
valid. If it is less than four,
transfer is to PHR.2350;
otherwise, an error messag·e is
generated.

The input stream is scanned to
determine if an integer subscript
is present. If it is, a subrou­
tine INTEGER! is called to
collect the subscript. The value
of the subscript is then vali­
dated and if within range, trans­
fer is to PHR2464. Otherwise, an
error message is generated and
transfer is to PHR2464.

The subroutine DARITH
to diagnose the
expression.

is called
subscript

A test is made to see if there is
a valid end to the expression,
that is, a right parenthesis in
in the input stream. If yes,
transfer is to PHR2460, otherwise
an error message is generated and
a check is made to see if a
semicolon has been found in the
input stream. If not, transfer
is to PHR2430 to continue the
diagnostic scan of the arithnetic
expression. Otherwise, transfer
is to ABORTEND to cease phrase
processing.

The limits of the expression in
the input stream are saved.
These will be used later to move
the expression to the appropriate
table.

A test is made to see if an
Implied Do is being processed.
If not, transfer is to PHR2542.

The subroutine INTEGER is called
to get the ending and the incre­
ment subscripts.

Both subscripts are validated and
if either is invalid, transfE:!r is
to PHR2544 to issue an E:!rror
message.

The Implied Do parameters are
placed into the symbol entry and
transfer is to PHR2542.

An error message is issued and a
test for semicolon is made. If a

15 JULY 1969

PHR2542

PHR2552

PHR2558

PHR2562

PHR2570

PHR2588

PHR2596

PHR2602

PHR2628

PHR2634

PHR2666

PHR2670

PHR2680

PHR2698

PHR2702

semicolon is found,
to ABO RTE ND to
processing.

transfer is
cease phrase

A test is made to see that there
is a valid end to the expression.
This is a right parenthesis. If
not, transfer is to PHR2544 to
issue an error message.

The subroutine ALPHAT is called
to see if a symbol is present in
the input stream. If it is,
transfer is to PHR2596.

A test is made to see if a symbol
is required. If not, return is
made to the caller.

An error message is issued and
return is made to the caller.

The symbol that has just been
located is checked against the
keyword table. If a match is
found, exit is through the sub­
routine DALPHA which will slide
over the symbol and transfer to
the correct processing routine.

A test is made to see if a symbol
is allowed. If yes, processing
continues at PHR2596; otherwise,
an error message is generated.

A symbol is collected.

A test is
symbol is
If it is.,
generated.

made to see if the
a single character E.

an error message is

The subroutine
to slide past
symbol ..

SUPADV is called
the end of the

The first three characters of the
symbol are compressed.

The compressed symbol is placed
in the symbol entry.

A symbol entry is placed in Table
3.

A test for valid symbol subscript
is made. If the subscript is
valid, processing continues at
PHR2698, otherwise, an error mes­
sage is issued.

A test is made to see if any
expressions were collected. If
not, transfer is to PHR2566 to
return to the caller.

The expression that was collected
is moved to Table 3 and transfer

STRING

PHR2746

PHR2762

PHR2774

PHR2782

PHR2804

PHR2816

COLNUMT

PHR2864

PHR2920

PHR2962

PHR2972

PHR3028

PHR3038

INTEGER

PHR3082

PHR3084

PROBLEM LANGUAGE ANALYZER (PLAN)

is to PHR2566 to
caller.

SYSTEM MANUAL

return to the

The STRING subroutine pulls all
of the tables that were created
together and creates the phrase
entry.

Pointers are set to the tables
and the phrase entry.

The length of the current table
is computed.

The table is moved to the phrase
entry.

If the table was over 255 half­
words an error message is issued.

If this is not the last table,
transfer is to PHR2762 to con­
tinue processing.

The size of the phrase entry is
computed and if less than 1024
half-words, return is made to the
caller. Otherwise, an error mes­
sage is issued and then return is
made to the caller.

This subroutine collects
values.

REAL

The interger value of the numeric
is collected.

The integer value is floated or
converted to floating-point form.

A test is made to see if any
integers were collected. If not,
return is made to the caller.

A check is made to see if E-value
is present. If not, transfer is
to PHR3056 to return to the
caller.

The E-value is collected and
validated. If the E-value is
valid, transfer is to PHR3038,
otherwise, an error is generated
and transfer is to PHR3056 to
return to the caller.

The constant is
P-value. Return
caller.

scaled by the
is made to the

This subroutine collects integer
values.

The subroutine ADVSUP is called
to.slide to the delimiter.

The integer value is collected.

FLOWCHART NARRATIVES 53

PROBLEM LANGUAGE ANALYZER (PLAN)

SYSTEM MANUAL

PHR3106

WRITE,
READ

ERROR

TUPDATE

PHR3272

PHR3346-
PHR3350

PHR3358

PHR3368-
PHR3374

PHR3384-
PHR3422

Return is made to the caller.

The READ and WRITE subroutines
provide proper interface to the
PLAN DISK IOCS subroutine to pro­
cess the phrase dictionary file .•
The registers that are used in
phrase are saved and then the
proper I/O parameters are set for
the disk I/O routines. The prop­
er routine READ or WRITE is
called. On return from the DISK
I/O routine, the phrase registers
are restor~d and return is made
to the caller.

The ERROR subroutine provides
standard interface for processing
phrase errors. An error indica­
tor is turned on and may be
tested just before the phrase
update is made. If the ECODE has
not been provided, it is computed
from the cursor. The error num­
ber and the ECODE are set and the
error is logged by calling the
WRITERR subroutine in the PLAN
loader.

This routine performs the main­
tenance of adding or deleting
phrases from PFILE.

PFILE is searched for a phrase of
the same name as the one to be
added or deleted. Note that for
two phrases to be equal, their
names must be equal and they must
both be verbs or object phrases.

If the phrase already exists and
this is an ADD PHRASE operation,
an error is given to indicate the
phrase already exists.

If the phrase was found and this
is a DELETE operation, the phrase
is marked as available space and
transfer is to PHR3574.

If this is a DELETE PHRASE, an
error is given to indicate that
the phrase to delete cannot be
found. If it is the delete part
of an ALTER PHRASE, transfer is
to PHRASOUT without giving the
error. If this is an ADD PHRASE
or the add section of an ALTER
PHRASE, transfer is to PHR3384~

This code searches the availabil­
ity table for a space large
enough to hold the phrase to be

54 FLOWCHART NARRATIVES

PHR3442-
PHR3530

PHR3574-
PHR3732

PHR3738-
PHR3792

DFJPIDMP

15 JULY 1969

added. If no space large enough
is found, an error is given.

This code will read five records
from PFILE and search those rec­
ords for the best fit for the
current phrase to be added.

This code will combine and chain
together free spaces in the five
records that are currently in
core. It also updates the avail­
ability table to indicate the
largest space available in each
record.

If this is an ADD PHRASE, the
last phrase in the chain, or the
PWV table is now queued to indi­
cate that the new phrase exists.
If this is a DELETE PHRASE, then
the chain pointer in the previous
phrase or the PWV table is queued
to indicate that this phrase is
now deleted.

The DFJPIDMP module is entered only as a
result of its name being placed on the
pop-up list. The module provides a dump of
the last command processed by the PSCAN
module. The command is currently in EBCDIC
image in PFINPUTA section of PFILE, that
is, the PLAN file dictionary. The message
is printed on the devices indicated in the
first position of erasable COMMON. There­
fore, switch word 8 must be set to point to
erasable COMMON.

PID190

PID210

PID230

PID250

PID270

The device on which the command
is to be listed is picked up from
the first position of erasable
COMMON.

The single buffer set A is
assigned to the device.

The INPUT subroutine is called to
read the image of the last phrase
into memory. Erasable COMMON is
not used as an input area.

The number of characters i:n the
phrase image is set to the print
are by a call to PIOUT.

The number of characters i:n the
phrase image is used to calculatE~
an account of the number of words
that are to be set to the print
area.

15 JULY 1969

PID290

PID310

PID330

PID350

PID370

PID390

PID410

PID430

PID450

PID470

PID490

DFJPIIN

The position at which the phrase
image will be placed in the print
area is set to position 8.

The pointer is initialized at the
second word of the input area.
The first word contains the
character count of the phrase
image.

The PEOUT subroutine is called to
convert four characters of the
phrase image to the print area.

The pointer is incremented to the
next word of the input area.

A test is made to see if all
characters of the phrase image
have been set to the output area.
If they have transfer is to
PID430.

The print position indicator is
incremented by four.

A test is made to see if the
print line is currently full. If
it is not transfer is to PID330.

The line is printed.

The print position indicator is
reset to print position B.

A test is made to see if the
entire command has been printed.
If it is not, transfer is to
PID330.

The PIDMP routine is terminated
by a CALL LRET.

This subroutine converts an A4 format field
into a FORTRAN integer word.

IIA1050

IIA1310

IIA1430

IIA1670

IIA1790

The user arguments are accessed.

Leading blanks in the field are
skipped.

If a sign is present, it is
collected. If a negative sign
was present, an indicator was set
that causes the resulting number
to be set negative for the user.

The buff er pointer is slid past
blanks after the sign if any are
present.

The integer field is collected
and accumulated.

IIA2410

DFJPIOCS

PROBLEM LANGUAGE ANALYZER (PLAN)

SYSTEM MANUAL

The result is stored in the user
array and control is returned to
the caller.

This utility routine is invoked by the
standard PLAN commands INPUT and OUTPUT.
It uses the PLAN subroutine roes to switch
the PLAN input/output devices.

The1subroutine IOCS is called to switch the
PLAN devices. The subroutine LRET is
called to return control to the loader.

DFJPIOUT

IOA1090

IOA1750

IOA2050

The user arguments are accessed.

The user word is converted to
EBCDIC notation.

The EBCDIC characters are moved
to the output field. Control is
returned to the caller.

DFJPLAN COS)

DFJPLAN is the mainline executive for the
OS PLAN system. It resides in the first
640 words of blank COMMON. It is always
located at the beginning of the partition
or region.

PLA1930

APPROUT

PLA2250

PLA2350

PLA2370

PLA2390

PLA2410

PLA2450

Return is to the caller via an
LPSW instruction.

This is the start I/O appendix
subroutine which switches the
PLAN system into the supervisor
state. It is entered from the
IOS supervisor.

The PLAN RB is located.

The WAIT gate set by the STATESW
is opened.

The PSW is saved from the RB.

The PSW is altered so that on
return from IOS the system will
be in the supervisor state.

The old SVC PSW is checked to see
if it is the same as the PLAN RB
PSW. If yes, transfer is to
PLA2450; if not, control is
returned to the I/O supervisor to
abort the I/O operation.

The old SVC PSW is saved.

FLOWCHART NARRATIVES 55

PROBLEM LANGUAGE ANALYZER (PLAN)

SYSTEM MANUAL

PLA2490

STATE SW

PLA2650

PLA2670

RESETM

PLA2890

RETURN

PLA6470

PLA6570

PLA6630

CLEANUP

PLA8210

PLA8310

PLA8450

PLA8690

URE NT

The SVC PSW is altered so that on
return from IOS the system will
be in the supervisor state. Con­
trol is returned to the I/O
supervisor to abort the I/O
operation.

This subroutine executes the EXCP
that causes the start I/O append­
age to be entered.

A WAIT gate is set. This gate is
necessary in case the EXCP re­
quest is queued on the channel.

The EXCP is issued when the WAIT
gate is turned off by the start
I/O appendage control is returned
to the caller in the supervisor
mode.

This subroutine switches the sys­
tem back to the problem state.

The caller's address is stored in
the saved PSW.

This entrypoint
return for all
Entry occurs here
of a CALL LRET
RE'rURN statement.

is the normal
PLAN modules.

from execution
of a FORTRAN

The PLAN base is restored.

If this is not a local return
transfer is to PLA9830.

The execution level. the caller's
regs, and the caller pica element
are restored and control is
returned to the calling module.

This subroutine manages the PLAN
program area.

The last level control block
above the current execution level
is located.

The new top of the program area
is set.

The PCB change is truncated if
necessary.

DYNAMIC
purged

file
if any

program area.
subroutine is
subroutine
DFJLODER.

FD records are
are present in the

Exit from this
to the CORCLEAN

in the module

This point is entered on
execution-time reference to an
unresolved external reference.

56 FLOWCHART NARRATIVES

PLA8870

PLA8910

PLA8950

LOCAL

PLA9270

PLA9330

PLA9430

PLA9470

PLA9490

NEXTLOAD

PLA9830

PLA9970

PLA10070

PLA10190

PLA10250

15 JULY 1969

The caller's registers are saved.

If this is a CALL LRET, tra.nsfer
is to PLA6470.

The name of the external
reference is placed in the pop-up
program list.

This entrypoint is enteredl from
the LOCAL subroutine.

The current execution leve~l is
incremented.

A local control block is located.
The LCB is located adjacent to
and above a level control block.

If any LCB's are left, the
transfer is to PLA9490.

An indicator is set to force a
new segment level.

The caller's registers
status, etc. are saved
local control block.

system
in the

PLAN is entered here to load the
next program.

A SPIE macro is issued.

If this is a local call, transfer
is PLA10190.

If any errors have occurred, that
is, if there are any errors on
the stack in the phrase dic­
tionary, transfer is to PLA11550.

If there is not an
the pop-up list
checkpoint recall~
PLA10370.

asterisk in
indicating a
transfer is

The current execution level is
reset and transfer is to PIJ~8 590.

PLA10370 The pop-up list is updated.

PLA10470 If there is a right parenthesis
in the pop-up list transfer is to
PLA10190 and this entry in the
list is ignored.

PLA10570 If there is not a left panmthe­
sis ·in the list, the transfer is
to PLA10730.

PLA10610 A left parenthesis has been found
in the pop-up list to indicate
the start of a bank loading
operation so the BANKA indicator
is set on to indicate this.
Transfer is to PLA10190.

15 JULY 1969

PLA10730 If this is a checkpoint recall
transfer is to PLA14750.

PLA10910 If the pop-up list contains a
zero, transfer is to PLA16030.

PLA10950 A temporary pointer to the pop-up
list is set and saved and will be
used as a bank load list pointer.

PLA11130

PLA11350

If the program is not in core
transfer is to PLA11550. This is
determined by searching the PCB
chain.

If bank loading is not in prog­
ress transfer is to PLA11730.

PLA11450 If the program is located below
the segment which is equal to the
current execution level, transfer
is to PLA11730.

PLA11550 If the clean switch is not on,
transfer is to PLA11690. The
clean switch controls program
area cleanup and free storage
management. It is only performed
once for every call to the
loader.

PLA11590 The clean switch is reset, that
is, the branch is turned on.

PLA11670 The subroutine CLEANUP is called
to perform program area and free
storage maintenance.

PLA11690 The subroutine LOADER is called
in the module DFJLODER to load
the names module.

PLA11730 If bank loading is in progress,
transfer is to PLA11970.

PLA11830 The address of the PCB for the
program just loaded is saved.

PLA11850 If the bank load start indicator
is not on transfer is to
PLA12150.

PLA11890 A bank load in progress indicator
is turned on.

PLA11970 If the next entry in the pop-up
list is a right parenthesis
transfer is to PLA12150.

PLA12030 If the next entry in the pop-up
list is not an asterisk transfer
is to PLA10730.

PLA12150 This is the beginning of the
final linkedit of unresolved
external references. If we are
at the end of the ERTAB2 or it

PLA12310

PLA12350

PLA12470

PROBLEM LANGUAGE ANALYZER (PLAN)

SYSTEM MANUAL

does not exist, transfer is to
PLA13710.

If the adcon has already been
resolved in a previous pass
transfer is to PLA13610.

If this is not a bank load
transfer is to PLA13030.

The ENTAB's for programs in this
segment are searched for a name
equivalent to the external
reference. If a hit is not made
transfer is to PLA13030.

PLA12930 The entrypoint is extracted from
the ENTAB and transfer is
PLA13230.

PLA13030 Program area core is obtained for
an unresolved adcon control
block.

PLA13110 The unresolved adcon block is
constructed including the name of
the adcon plus a V type adcon
pointing to PLAN COMMON.

PLA13230 The adcon is resolved to point to
either the unresolved adcon block
or the address found in the ENTAB
entry.

PLA13350 The ERTAB2 entry for this exter­
nal reference is flagged to indi­
cate that this adcon has been
resolved.

PLA13430 If this is the last ERTAB2 entry,
transfer is to PLA13610.

PLA13490 If the name of the external
reference is the same transfer is
to PLA13230: otherwise, transfer
is to PLA13430. This is a pass
over the ERTAB2 entries to di­
solve all external references to
the same name to the same unre­
solved adcon block.

PLA13610 The pointer to the ERTAB2 entries
is stepped to the next entry and
transfer is to PLA12150.

PLA13710 The subroutine FRERT is called to
release the ERTAB2 table.

PLA13830 If a new segment level has not
been created transfer is to
PLA14130. A new segment is
always created when either a pro­
gram module is loaded or the
local execution level goes beyond
the number of segment levels cur­
rently in core.

FLOWCHART NARRATIVES 57

PROBLEM LANGUAGE ANALYZER (PLAN)

SYSTEM MANUAL

PLA13870 A new level control block includ­
ing a local save area is created.

PLA14130 The TRACE routine is called if
TRACE was invoked.

PLA14230 If this is not a LOCAL call
transfer is to PLA14470.

PLA14290 The execution level is incre­
mented if necessary. This is
done if a CALL LOCAL is executed
which references a program that
resides in a segment level which
is more than greater than the
current execution level.

PLA14470 The argument register is set for
the called program.

PLA14550 All loader switches are reset.

PLA14610 Exit from PLAN to enter the pro-
gram for execution.

CHPTIN This subroutine reloads a PLAN
checkpoint.

PLA14750 The subroutine PLANLOPF is called
to reset the system pointers and
status.

PLA14790 If a checkpoint does not exist
transfer is to PLA10190.

PLA14850 The checkpoint note pointers CUR­
RNOTE and PREVNOTE are updated.

PLA14910 A read operation is set with a
checkpoint bootstrap routine.

SCHPTR This routine reads and writes the
checkpoint bootstrap. It is
called as a subroutine from the
LCHEX subroutine.

PLA15030 Any DYNAMIC file FD records in
the program area are purged.

PLA15090 The argument for DIOCS are set.

PLA15250 Exit is to DIOCS to read or write
the checkpoint. The return from
DIOCS is set to enter the boot­
strap itself.

ERRABORT This is the entrypoint to PLAN on
a phrase abort.

PLA15730 The subroutine WRITERR is called
to log the error onto the phrase
dictionary.

PLA15810 The phrase abort indicator is set
for PSCAN.

ERLSTENT This is the entry to PLAN from
the ERLST subroutine.

58 FLOWCHART NARRATIVES

15 JULY 1969

PLA15890 DFJPERRS, the error processing
module, is selected f o:r
execution.

PLA15910 The pop-up list is cleared and
transfer is to PLA16250.

PLANLOPZ Enter here when the pop-up list
goes to zero.

PLA16030 The pop-up list is cleared.

PLA16070 DFJPSTSV is selected for
execution.

PLA16090 If Switch Word 2 indicates that
saved statements are being pro­
cessed transfer is to PLA16250.

PLANLOOP This is the entrypoint to PLAN to
invoke the next command.

PLA16170 DFJPSCAN, the interpreter, is
selected for execution.

PLA16250 The system status is reset. This
includes clearing any check­
points, resetting the ·LOCAL
chain, and resetting the pointers
for managed free storage.

PLA16330 The exit from the PLANLOPF sub­
routine is set.

PLA16410

PLA16550

PLA16570

PLA16790

PLA16890

PLA17130

PLA17230

If the program is in core trans­
fer is to PLA16570. Thi:s is
determined by searching the PCB
chain.

This is the entrypoint for the
PLANLOPF subroutine and the name
control block is cleared.

The system status is reset
including the address of the save
area, the ERTAB2 if it existB, is
released, current execution-level
is reset to zero, and any loader
indicators are reset. Exit from
PLANLOPF is either to the check­
point recall routine or back to
the loader.

This is
WRITE RR
message

the entrypoint for the
subroutine. The f~rror
is built in a work area.

The error message is written onto
the phrase dictionary.

The error stack pointers are
updated and control is returned
to the caller.

This is the FRERT subroutine.
The ERTAB2 is released by use of
the FREEMAIN macro and control is
returned to the caller.

15 JULY 1969

SPIENT This is the entry to PLAN on the
program interruption which is
controlled by the PLANSYP macro.

PLA18070 Error message is built from the
PSW.

PLA18530 The SPIE return for OS is set and
control is returned to the OS
supervisor.

PLA20130 The PLAN program area is cleared.

PLA20390 If the data set defined by the
PLSYSTAB DD card is old, transfer
is to PLA16170.

PLA20430 DFJPHRAS. the phrase dictionary
maintenance routine is selected
for execution to add the phrase
'ADD PHRASE' to the dictionary
and transfer is to PLA16250.

PLANINIT

PLA21070

This is the initial
for the PLAN system.

entrypoint

The registers are saved. bases
are set in a save area.. and
pointers are set.

PLA21370 A determination is made if this
is an MVT system. It is made by
inspecting the CVT. If this is
not an MVT system transfer is to
PLA21470.

PLA21430 A PLAN indicator is set to show
that this is a MVT system.

PLA21470 The address of the TCB and TIOT
are saved for use during PLAN
execution.

PLA21650 The program pop-up list is allo­
cated and cleared and pointers to
the end of the list and the
current entry are saved in the
PLAN COMMON area.

PLA21870 A special I/O save area. used by
DIOCS is allocated.. This save
area eliminates the need for a
save area in PLAN subroutine.

PLA22030 The EXEC
collected.

card PARMS are

PLA22290 If a PARM is not valid, transfer
is to PLA23850.

PLA22430 The PARM is processed and trans­
fer is to PLA24770.

PLA23850 An invalid PARM message is typed
and transfer is to PLA33630.

PLA24770 The program COMMON area is allo­
cated. This is done by using the

PROBLEM LANGUAGE ANALYZER (PLAN)

SYSTEM MANUAL

GETMAIN and FREEMAIN macros. The
length of the COMMON area is
either the specification in the
PGAR PARM field or 66 per cent of
the partition or region size.

PLA25650 The module DFJLODER is loaded
into the partitjon.

PLA25790 The module DFJTRACE is loaded
into the partition if TRACE was
invoked.

PLA26130 The subroutine TSRCHA is called
to search the TIOT for the PLINP
DD card.

PLA26310 If there was not a hit in the
TIOT, transfer is to PLAN26910.

PLA26330

PLA26350

The subroutine OPENSEQ is called
to open the PLINP data set.

If the PLINP data set is not open
correctly transfer is to
PLA26910.

PLA26450 The subroutine TSRCHA is called
to search the TIOT for the PLOUT
DD card.

PLA26510 If there is not a hit in the TIOT
transfer is to PLA26910.

PLA26530 The subroutine OPENSEQ is called
to open the PLOUT data set.

PLA26550 If the PLOUT data set did not
open correctly transfer is to
PLA26910.

PLA26650 The subroutine TSRCHA is called
to search the TIOT for PLSEQ DD
cards.

PLA26730 If a hit is not found in the TIOT
transfer is to PLA27050.

PLA26750 The subroutine OPENSEQ is called
to open the PLSEQ data set.

PLA26770 If the PLSEQ
open correctly
PLA26650.

data set did not
transfer is to

PLA26810 A TCLOSE macro is issued on the
data set so that the first
reference may be either READ or
WRITE, then transfer to PLA26730.

PLA26910 An exit from PLAN is made via an
ABEND 100.

PLA27050 The subroutine TSRCHA is called
to search the TIOT fo the PIANLIB
DD card.

FLOWCHART NARRATIVES 59

PROBLEM LANGUAGE ANALYZER (PLAN)

SYSTEM MANUAL

PLA27110 If a hit was made in the TIOT
search transfer is to PLA27210.

PLA27130 The subroutine DOERR is called to
log an error message and transfer
is to PLA27710.

PLA27210 The PLANLIB DCB is opened.

PLA27710 The subroutine TSRCHA is called
to search the TIOT for the PLSYS­
TAB DD card.

PLA27770 If a hit is made in a TIOT search
transfer is to PLA27870.

PLA27790 The subroutine DOERR is called to
log an error message and transfer
is to PLA29050.

PLA27870 The subroutine DSCHK is called to
check the data set specifications
and open the PLSYSTAB data set.

PLA27910 If the data set did not open
correctly transfer is to
PLA29050.

PLA28190 The data set defined in PLSYSTAB
DD card is old transfer is to
PLA29050.

PLA28390 The phrase dictionary is
initialized.

PLA29050 The DCB for the SIO appendage
routine is opened.

PLA29310 The PLMANFIL data set is opened
if present.

PLA29650 The PLCHKPT data set is opened if
present.

PLA29950 Any PERMANENT file data sets
'PLFSYnnn' are opened if present.

PLA30630 Any DYNAMIC drive 'PLANDRVn' are
opened if present.

PLA32210 A BLDL is issued for the module
names DFJPSCAN, DFJPERRS and
DFJRETN to ensure that these
modules are locatable in the PLAN
library PDS. If they are trans­
fer is to PLA32790.

PLA32510 The subroutine DOERR is called to
log an error message and transfer
is to PLA33570.

PLA32790 If the NFS PARM is not present
transfer is to PLA33390.

PLA32870 The nonmanaged free storage array
is allocated by using GETMAIN and
FREEMAIN. A pointer to the non­
managed free storage internal

60 FLOWCHART NARRATIVES

15 JULY 1969

free queue chain is maintained in
the PLAN COMMON area.

PLA33390 An initial SPIE macro is issued.

PLA33530 If no errors have occurred during
initialization transfer is to
PLA18470.

PLA33390 Control is returned to the OS
supervisor.

PLA33770 This is the entrypoint for the
OPENSEQ subroutine. A GETMAIN is
issued and a DCB is created from
a skeleton.

PLA34090 The JFCB
performed.

to DCB merge is

PLA34890 If the unit for the data set is a
disk or a tape transfer is to
PLA35690.

PLA35070 If the unit is not a card reader
control is returned to the caller
and an error indication is given.

PLA35690 The open parameter field is set
for the device type.

PLA36310 The file is opened.

PLA36450 The control block, for the DCB is
completed.

PLA36990 The first buffer area is clE~ared
and control is returned to the
caller.

PLA37870 This is the entrypoint for the
TSRCHA subroutine. The TIO'l~ is
searched for the DD name in the
argument.

PLA37910 If a hit is made transfer is to
PLA38050; otherwise, control is
returned to the caller, with an
indication that no hit was found
in TIOT.

PLA38050 The JFCB for the DD name speci­
fied is read into core and con­
trol is returned to the callE~r.

PLA39110 This is the entrypoint for the
DSCHK subroutine. If the dispo­
sition on file is new transfer is
to PLA41170. This is determined
from the JFCB.

PLA39410 The DSCB is read from the VTOC
using the obtain macroe

PLA39550 The DSCB is validated.

PLA39930 The format switch is reset and
transfer is to PLA41810.

15 JULY 1969

PLA41170 The allocation of the data set is
validated. The DSORG specif ica­
tions must be physically
sequential.

PLA41710 The format switch is set.

PLA41810 The buffers for the data set are
allocated by using the GETMAIN
macro.

PLA41870 The control block associated with
the data set is completed.

PLA42270

PLA42&10

PLA43330

PLA43610

PLA43790

DFJPLAN

If the format switch is not on
transfer is to PLA43330.

The data set is formatted
the QSAM access method.
values used are the FORTRAN
FALSE or X'7FFFFFFF'.

using
The

word

Control
caller.

is returned to the

This is the entrypoint for the
DOERR subroutine. The error mes­
sage requested is printed on
PLOUT data set.

An abort indicator is set and
control is returned to the
caller.

(DOS)

DFJPLAN is the resident loader and mainline
control routine. It resides in the first
2560 bytes of COMMON.

ERRABORT This is the phrase abort entry to
the loader. It is entered by all
subroutines when an error is
detected.

PLA3370

PLA3450

PLA3470

PLA6530

PLA3630

The error number and the ECODE
are set.

The phrase abort indicator is set
for DFJPSCAN.

If the DUMP option was selected
via a PLAN run control card. The
transient DUMP routine $$BDFJD is
invoked to take a partition dump.

The system status is reset
including the pop-up list, any
checkpoints that are in effect,
and if any module that had been
previously loaded contained FIND/
READ/WRITE, the FIND/READ/WRITE
buffers are purged.

The module DFJPERRS, the error
processor, is selected for execu­
tion and transfer is to PLA8930.

DUMPLIN

PLA3870

PLA3890

PLA3970

PROBLEM LANGUAGE ANALYZER (PLAN)

SYSTEM MANUAL

This entry is used by various
PLAN modules to print a line on
the current PLAN output device.

The callers registers are saved.

The address of the current output
device buff er is located.

The record area is moved to the
output buffer.

PLA4110 The SIOCS routine is called to
write the line on the output
device and control is returned to
the caller.

CCBSTART This routine is entered by DIOCS
and SIOCS to cause execution of
an I/O operation.

PLA3430 A switch indicating a start I/O
is set and transfer is to
PLA4510.

CCBWAIT This entry is used by SIOCS and
DIOCS to force a wait on the last
I/O operation.

PLA4510

PLA4590

PLA4690

PLA4890

PLA5150

A scan of the system CCB's is
made for a CCB that was asso-
ciated with the file control
block which is the same as the
callers.

If a CCB is found that is asso­
ciated with the caller's FCB,
transfer is to PLA4890. Other­
wise, a test is made to see if
the start I/O switch is on and if
not, control is returned to the
caller.

A scan is made for a free CCB,
and if one is found, transfer is
to PLA4890. Otherwise, a wait is
issued for the last CCB in the
string.

A test to check if an error
occurred on the last I/O opera­
tion for this CCB. If no error
occurred, transfer is to PLA5310.
Otherwise, the error status is
set in the caller's file control
block. A test is made to see if
a dump is in progress and if yes,
transfer is to PLA5310 to ignore
the error.

A test is made to see if errors
are allowed by the caller's file
control block. If yes, the
transfer is to PLA5310; other­
wise, transfer is to PLA3450 to
cause a phrase abort.

FLOWCHART NARRATIVES 61

PROBLEM LANGUAGE ANALYZER (PLAN)

SYSTEM MANUAL

PLA5310

PLA5410

SRCHIOC

PLA5670-
PLA6130

DLOADP

PLA6830

DIRLOOKU

PLA6690

CLOCAL

PLA8150

I SEARCH

A test is made to see if this is
a start I/O operation and if not,
control is returned to the
caller.

The start I/O switch is reset and
the EXCP is issued and then con­
trol is returned to the caller.

This entry in the loader is used
by all of the conversion control
routines to validate the NOD
argument for sequential files.

This routine searches the sequen­
tial file chain of control blocks
to see of a NOD equivalent to the
caller's is available. If yes,
the address of the control block
is returned in register 3. A
test is also made to see if a
file is available and not open.
If the file is not open, the PLAN
transient open routine $$BDFJSO
is called to do an open on the
file and then control is returned
to the caller.

This entry is used to load a
program into core. The PCB must
previously have been loaded with
the disk address of the program
plus its origin and end point.

The I/O argument registers are
set and the READ routine is
called to load the program into
core. control is returned to the
caller from the DIOCS subroutine.

This entry is used to search the
DOS core image directory for a
program name.

The directory records are read
and searched for the program
name. If a hit is not found,
control is returned to the call­
er. If the name is found in the
directory, the CCHR or disk
address o·Z the program is calcu­
lated, and control is returned to
the caller.

This entry
subroutine
chain.

The LOCAL
control is
caller.

is
to

used by the LRET
clear the LOCAL

chain is cleared and
returned to the

This entry is used by various
routines in the PLAN system to
locate the next entry in the PSCB
table or the LOCAL chain.

62 FLOWCHART NARRATIVES

PLA8390

PLA8450

PLA8590

PLANLOPZ

PLA8810

PLA8830

PLA8850

PLA8870

PLA8910

PLA8930

PLA9030

PLA9310

PLA9470

PLA9550

PLA9590

PLA9610

15 JULY 1969

A test is made to see if the PSCB
table is present. If not, trans­
fer is to PLA8590.

The next PSCB
and control is
caller.

table is located
returned to the

The next entry in the LOCAL chain
is located and control is
returned to the caller~

This entry is used whenever the
pop-up list has gone to zero or
by subroutines that want to clear
the pop-up list and continm~ to
cause execution of DFJPSCAN.

The pop-up list is cleared.

If a checkpoint is in effect. the
NOD pointing to the current
checkpoint is reset.

The module DFJPSTSV is selected
for execution in case we are
processing the statement SAVE.

If we are processing SAVE state­
ments transfer is to PLA8930 ..

The PLAN interpreter, DFJPSCAN,
is selected for loading.

The subroutine CLOCAL is called
to reset any local processing in
progress and transfer is to
PLA9590.

The right parenthesis is floated
up in the pop-up list and tl'.."ans­
fer is to PLA9470. This routine
is used whenever a failun~ to
load a program that is in the
middle of a bank list OJ'.." an
asterisk in the bank list is
encountered.

If the next name in the pop-up
list is not a right parenthesis,
transfer is to PLA9550.

The bank load switches are reset
indicating the end of a bank
load.

The bank
saved.

load list pointeic- is

The name of the program to be
loaded is moved to the name con­
trol block.

A test is made to see if the name
is a numeric zero. If Y'~s, a
branch is to PLA8810 to clear the
pop-up list and load PSCAN.

15 JULY 1969

PLA9650 A test to check if the name is an
asterisk, which is the check
point recall, is mad=.. If yes,
transfer is to PLA13850 to reload
the checkpoint.

PLA9770 A search is made of the programs
already in core and if the pro­
gram is not in core,, transfer is
to PLA10250.

PLA9930 If we are in the process of bank
loading, transfer is to PLA9310
to get the next program name from
the pop-up list.

PLA9990 The subroutine WCHECK is called
to see if any programs in core
have to be checkpointed. Trans­
fer is to PLA10370.

PLA10070 A test is made to see if we are
bank loading. If yes, transfer
is to PLA9030, otherwise, trans­
fer is to PLA3450 to cause a
phrase abort.

PLA10250 The subroutine DIRLOOKU is called
to search the core-image direc­
tory for the program name. If a
hit is not made, transfer is to
PLA10070.

PLA10370 A test is made to see if the
program will overrun the parti­
tion. If yes, transfer is to
PLA10070.

PLA10530

PLA10590

PLA10790

PLA11130

A test is made to see if
program will overlay the
table. If yes, transfer is
PLA11530.

the
PSCB

to

A test is made to see if the
program will overlay the COMMON
area. If yes, transfer is to
PLA10070.

A search is made of all the
programs in core and any program
that will be overlayed by the
program about to be loaded are
marked as such.

A test is made to check if the
area required for the program is
free. If yes, transfer is to
PLA11910.

PLA11450 A test is made to check if there
is room to create a new PSCB. If
not, transfer is· to PLA11530,
otherwise, transfer is to
PLA11910.

PLA11530 A test is made to check if we are
bank loading. If yes, transfer
is to PLA9030 to float the paren-

PROBLEM LANGUAGE ANALYZER (PLAN)

SYSTEM MANUAL

thesis in the pop-up list and
stop the bank loading.

WCHECK This routine is entered any time
a program in core may be over­
laid. It will check to see if
any programs have to be
checkpointed.

PLA11610 A search is made of all programs
in core to see if they must be
checkpointede If not, transfer
PLA11910, otherwise, exit is to
the LCHEX subroutine in each
module that is to be
checkpointed.

PLA11910 A test is made to see if any
program in core will be overlaid.
If not, transfer is PLA12070.

PLA11990 The subroutine WCHECK is called
to checkpoint the program that is
about to be overlaid.

PLA12070 The PSCB table is extended from
the PCB in the loader.

PLA12230 The subroutine DLOADP is called
to load the program.

PLA12250 If we are in a process of bank
loading, transfer is to PLA9310.

PLA12290 The PARM's for the program to be
called are set.

PLA12470

PLA12550

RETURN

PLA12650

PLA12730

PLA12750

If the TRACE option was selected
at initialization time, the TRACE
routine is called.

Exit is from the DFJPLAN mainline
to the program to be executed.

This entrypoint is the normal
return from all programs executed
under the PLAN monitor.

The PLAN base register is
restored.

The subroutine CMCLOPTB is called
to check if any loader errors had
occurred.

The LOCAL return is traced if
required.

PLA12890 A test is made to see if any
execution errors have occurred
while the last program was in
control. If not, transfer is to
PLA13070.

PLA12930 If the last module loaded was a
LOCAL, transfer is to PLA13070.

FLOWCHART NARRATIVES 63

PROBLEM LANGUAGE ANALYZER (PLAN)

SYSTEM MANUAL

PLA12970

PLA13070

PLA13150

PLA13190

PLA13230

PLA13270

CMCLOPTB

PLA13390

PLA13550

CHKPIN

PLA13850

PLA13290

PLA13930

PLA14050

PLA14090

IN I TI LP

The module DFJPERRS. the error
processor, is selected for execu­
tion and transfer is to PLA8930
to load the module.

The pop-up list is updated.

If the next name in the list is a
right parenthesis, transfer is to
PLA13070 to ignore it.

If the next name in the list is
not a left parenthesis, transfer
is to PLA13270.

The bank load indicators are
turned on and transfer is to
PLA13070 to get the next name in
the list.

The bank load list pointer is
saved and transfer is to PLA9550
to set the name of the program to
be loaded.

This subroutine checks to see if
any loader error had occurred
during execution of the last
module.

file FD DYNAMIC
purged
area.

if any are
records are

in the core

A test is made to see if an
invalid overlay occurred of ei­
ther COMMON or a LOCAL caller in
a program area. If yes. transfer
is to PLA3450 to cause a phrase
abort. Otherwise, control is
returned to the caller.

This routine r~loads the
checkpoint.

A test is made to see if we are
bank loading and if yes, transfer
is to PLA9030.

The subroutine CLOCAL is called
to clear any LOCAL processing in
progress.

A test is made to see if any
programs have been checkpointed.
If not, transfer is to PLA3450 to
cause a phrase abort.

The checkpoint return is invoked
if TRACE is invoked •.

The module is reloaded and trans­
fer is to PLA10370.

This is the initial entry point
to PLAN from the DOS supervisor.

64 FLOWCHART NARRATIVES

PLA15650

PLA16050

PLA16510

PLA16610

PLA17290

PLA17350

PLA17450

PLA17490

PLA17610

PLA17830

PLA18410

PLA18590

PLA18910

PLA19130

15 JULY 1969

Base registers are set and a save
area is established.

Pointers pertaining to the size
of the partition are set in the
PLAN COMMON area.

A test is made to see if an •ASGN
PLAN control card was read. If
not, transfer is to PLA17290.

The ASGN table pointers for the
appropriate control card type: are
updated.

The next card is read.

A test is made to see if an
end-of-file or an error occUtrred
during the read. If not transfer
is to PLA17490 ..

The card save indicator is reset
so that the last card read will
not be passed to PSCAN for pro-
cessing and transfer is: to
PLA22570.

A test is made to see if the card
just read contains an asterisk in
column 1. If it does not, it is
not a PLAN run control carol and
transfer is to PLA22570.

The card just read is listed on
the output device designate!d by
the SYSLST ASGN card.

A test is made to see if this is
a valid run control card. If
not, transfer is to PLA16510 to
read the next card; otherwise,
exit is to the control card pro­
cessing routines ..

The alternate library control
card is processed.. This includes
determining the DOS system LOGIC­
AL unit assignment for the
alternate library.

The reserve core card is pro­
cessed. This includes determin­
ing the length of the area
required for the FORTRAN I/O area
and user work area.

The input control card is pro­
cessed. This routine determines
the NOD of the PLAN input dE~Vice
to be used.

The output control card is pro­
cessed.. This card determines the
output NOD to be used for PLAN
output.

15 JULY 1969

PLA19370 The max I/O card is processed.

PLA19570

This card determines the number
of CCB's that will be used for
PLAN I/O.

The option control card is
cessed. This includes the
ting of LIST, NOLIST,
NODUMP, PHRASE, an.'.l
options.

pro­
s et­

DUMP,
TRACE

PLA20090 The ASGN card is processed. This
includes building tables for the
designated type of file. These
tables are processed later by the
PARM processing routine.

PLA22570-
PLA22890 The FORTRAN I/O and the user work

area, if any, are allocated.
This is done by using the subrou­
tine DFJGMAIN which allocates
core from the top of the parti­
tion. Pointers are saved from
both of these areas in the PLAN
COMMON area.

PLA23010 PLAN system modules are moved to
the top of core. These modules
include DFJSIOCS, DFJDIOCS, and
DFJCNTRL. The subroutine
DFJGMAIN is used to obtain core
for these modules.

PLA23590 The system CCB's are created.
core is allocated using the
DFJGMAIN subroutine.

PLA23850 The program pop-up list is allo­
cated and cleared and pointers to
the current entry and the end of
the list are stored in PLAN
COMMON.

PLA24050 The core image library is opened.

PLA24150-
PLA24190 If an alternate library was spec­

ified in a control card~ it is
open.

PLA24470 The module DFJIOCBS which con­
tains the PLAN I/O assignments is
loaded by the module DFJDLOAD.

PLA24710 If any ASGN control cards were
read, a merge is performed with
the control blocks currently
existing in the module DFJIOCBS.

PLA25710 The module DFJTRACE is moved to
the top of core if the TRACE
option was invoked by the option
control card.

PLA26030 A test is made to see if PSCAN,
PHRAS, and PERRS are in the core-

PROBLEM LANGUAGE ANALYZER (PLAN)

SYSTEM MANUAL

image library. If not, transfer
is to PLA30770.

PLA26390 All PLAN system files including
the phrase dictionary, the check­
point file, and the managed area
file are opened.

PLA26770 A check is made to see that
DFJPFILE, which is the is the
phrase dictionary is formatted
correctly. If not, transfer is
to PLA30770.

PLA27010 If DFJPFILE is new, the program
DFJPHRAS is selected for initial
execution to bootstrap the ADD
PHRASE phrase into the
dictionary.

PLA27190 A test is made to see if a PLAN
command was read while attempting
to read PLAN control cards. If
not., transfer is to PLA13390 to
begin execution.

PLA27230 The command card is listed on the
current output device and the
command is saved in the PFINPUTB
record of DFJPFILE and transfer
is to PLA13390 to begin
execution.

PLA30770 An error message is typed on the
console indicating that PLAN
execution is inhibited and an
end-of-job macro is executed
returning control to the DOS
supervisor.

DFJPLENG

This utility routine is invoked by the
standard PLAN command SET PAGE LENGTH. It
uses the PLAN subroutine PLENG to set the
number of lines per page for an output
device.

PLI110 The subroutine PLENG is called to
alter the page length for the
device. The subroutine LRET is
called to return control to the
loader.

PLE130 Control is returned to the caller
via the LRET subroutine.

DFJPLITL

This module is used in conjunction with the
LIST LITERAL command to provide a listing
of all literals stored in a PLAN literal
file. The first six positions in the
communication array are required for the
storage of data from the SET LITERAL com­
mand for use by this module. The communi-

FLOWCHART NARRATIVES 65

PROBLEM LANGUAGE ANALYZER (PLAN)

SYSTEM MANUAL

cation array is also used as an input/
output area and a work area so that no data
may be carried through execution of the
LIST LITERAL command. The LIST LITERAL
command is a Level 1 phrase which will
automatically cause initialization of the
managed communication array.

Halts: None
Errors: None
Subroutines: GDATA, RDATA,
PCCTL·, PLO UT: NDEF, LRET,
PEOF, SUBSC

PDBFA, PAOU'I',
PDUMP, PIOUT,

PLI220

PLI240

PLI260

PLI280

PLI300

PLI320

PLI340

PLI360

PLI390

PLI400

PLI410

PLI430

PLI450

The file number specified in the
first position of the communica­
tion array is set to the file
control block.

The logical drive code index is
set to the fifth position of the
communication array.

GDATA is called to open the lit­
eral file.

The header of the literal file is
read into memory at the 20th
position of the communication
array.

The highest literal number cur­
rently in the literal file is
picked up from the file header.

PDBFA is called
PLAN I/O and to
double buff er for
operation.

to initialize
establish a
the listing

PAOUT is called to set the dump
heading to print.

The dump heading is printed fol­
lowing a skip to a new page.

An index is set to the next
literal to be extracted.

If there are no more literals to
be extracted, transfer is to
PLI500.

A pointer is set to the literal
index in the literal dictionary.

An RDATA call is issued to read
the literal index into memory.

A check is made to see if the
literal exists. The literal
exists only if the index is a
REAL value. The REAL value
represents a displacement in the
file at which the literal text
must be found. If the literal
does exist transfer is to PLI540.

66 FLOWCHART NARRATIVES

PLI470

PLI480

PLI500

PLI520

PLI540

PLI550

PLI590

PLI610

PLI630

Pl~I670

PI .. I710

PLI720

PLI730

15 JULY '.L969

The index is incremented to the
next literal number.

If there are more literals to
process transfer is to PLI410.

The printer is skipped to a new
page.

An exit from the module is made
via a CALL LRET.

The literal header is read into
memory by a call to RDATA.

A check is made to determine~ if
the just read into memory matches
the literal number that is
searched for.. If the litE!ral
number does not match, a pro9ram
error is indicated. If a match
is found, transfer is to PLI~i90.
Otherwise, a dump of the input
area is produced and transfer is
to PLI500.

The number of characters in tbe
literal is extracted from the
literal header.

The literal number and the number
of characters in the literal is
set to print.

The literal text is read from the
file.

The literal text is set to print.

If the logical end-of-file switch
for the printer is not on, trans­
fer is to PLI730.

The printer is skipped to channel
one.

The literal number, number of
characters, and literal text is
printed. Transfer is to PLI'-170 ..

DFJPMERG, DFJGMERG

DFJPMERG and DFJGMERG are the routines that
merge PLAN DYNAMIC PERMANENT files respec­
tively. They are invoked through the LCHEX
subroutine by the subroutines PMERG and
GMERG. The merge is a standard two-·way
mE~rge. Any out-of-sequence condition on
either of the input files will cause a
phrase abort. ID(2) of the file control
block is updated to reflect the size of the
merged file. The file control blocks of
the input files are unchanged. The only
difference between DFJPMERG and DFJGMERG is
that the DYNAMIC file merge routine uses
the FIND/READ/WRITE subroutines and the

15 JULY 1969

PERMANENT file merge routine uses the
RDATA/WDATA subroutine.

MER890

MER2290

MER2430

MER2750

MER3010

MER3050

MER3070

MER3110

MER3130

MER3220

MER3250

MER3710

MER3750

MER3850

MER3870

The ID blocks for the two files
to be merged are moved from the
sort work area into two working
ID blocks. The location of ERAS­
ABLE COMMON is determined and the
address of the merge control
field is set in the working
storage area. The merge control
fields are validated.

The amount of available core for
merging is calculated. On OS,
this will be all of available
core outside of the MERGE program
area. On BOS, this will be a
fixed buffer area within the pro­
gram area.

The addresses of the merge area
are set and pointers to the
beginning and end of both input
areas are set.

ID(2) for
rounded to
length.

both
the

input
nearest

files is
record

The input record area for both
files are primed. This is done
by calling the subroutines GETA
and GETB.

The address of the current A area
record is set as a winner.

If flushing A area records,
transfer is to MER3250v

The address of the B area record
is set as a winner.

If flushing B area records.,
transfer is to MER3250~

The subroutine SORTZ is called to
compare the A area and the B area
records.

The winning record is moved to
the output area.

If the output area is not full,
transfer is to MER3850~

The subroutine FLUSHOAR is called
to perform a WRITE on the output
area.

A link register is set so that
the return from either the GETA
or GETB routine is to MER3050.

If the A area record was the
winner, transfer is to MER4310.

MER3990

MER4050

MER4310

MER4390

MER4710

MER4930

MER5150

MER5190

MER5290

MER5330

MER5510

MER5730

MER5770

MER5870

PROBLEM LANGUAGE ANALYZER (PLAN)

SYSTEM MANUAL

If the B area is empty, transfer
is to MER5290.

The pointer to the current B area
record is updated and return is
made to MER3050.

If the A area is empty, transfer
is to MER4710.

The address of the current A area
record is updated and return is
made to MER3050.

If an end-of-file has occurred on
the A file transfer is to
MER5150.

The address of the current record
and the end of the A Area is set.
Transfer is to MER4390.

If flushing A area records,
transfer is to MER5870.

The flush switch is set for the B
area. Transfer is to MER3050.

If an end-of-file has occurred on
the B file, transfer is to
MER5730.

The next B file block is read.

Pointers to the current B area
record and the end of the B area
are set. Transfer is to MER4050.

If flushing B area records,
transfer is to MER5870.

The flush switch is set for.the A
area records and transfer is to
MER3050.

The end-of-job switch is set and
transfer is to MER5950.

FLUSHOAR The FLUSHOAR subroutine writes
the output area.

MER5950 The current output area is writ­
ten on the output file. If the
end-of-job switch is not on,
transfer is to MER6190.

MER6150

MER6190

SORTZ

The merge has been completed and
exit is to the next load entry in
DFJPLAN mainline.

control is
caller.

returned to the

The SORTZ subroutine is used to
compare two records. The results
of the sort are set in the
register WINNER.

FLOWCHART NARRATIVES 67

PROBLEM LANGUAGE ANALYZER (PLAN)

SYSTEM MANUAL

MER6690

MER6770

MER6910

MER6930

MER6970

MER6990

MER7010

MER7030

MER7090

MER7130

DFJPSCAN

The merge control fields are
located from the working area
bucket in the mainline.

The merge field is located.

The fields are compared. This is
done by branching to an appropri­
ate compare routine for the type
of sort field. Return is to
MER6930 if the compare is equal.

If this
control
MER6770.

is not
field

the last sort
transfer is to

Return is to here if an unequal
compare is found by the compare
routine. The A area record is
assumed to be the WINNER.

If the records were equal, con­
trol is returned to the caller.

If the A record was high, trans­
fer was to MER7090.

If this is an ascending merge,
control is returned to the caller:
with A as the winning record.

If this is a descending merge,
control is returned to the caller
with A as the winning record.

The B area record is set as a
WINNER and control is returned to
the caller.

DFJPSCAN is the central language processor
and interpreter for the PLAN system. It is
brought into core and given control by the
PLAN loader whenever there are no program
names in the pop-up list. It may also be
given control by CALL LEX as is the case
when the subroutine PUSH is executed within
the user's module.

DFJPSCAN's order of execution is:

1. The next command to be interpreted is
accessed.

2. A PFILE dictionary lookup is done to
access the appropriate object and verb
phrases for this command. The object
phrase is brought into core and a
pointer to each of the verb phrases
saved in a table.

3. Level management is performed according
to the level of the previous phrase and
the level of the current object phrase.
That is, the managed array is defined

68 FLOWCHART NARRATIVES

15 JULY 1969

is set to FALSE, saved, restored, or
left untouched.

4. The symbols from the object ph:rase
(Table 3) are added to the appropriate
level symbol table. Starting with the
rightmost verb in the command the :sym­
bols from each verb phrase are also
added to the symbol table.

5. The initialization values (Table 2)
from the object phrase are placed in
the communication array. Starting with
the rightmost verb, the initialization
values from each verb phrase in the
command are also placed in the communi­
cation array.

6. The input stream from the end of the
command to the semicolon is scanned.
This scan is done in sequential OJrder
and includes any data values given,
user exits, and expressions.

7. The phrase-defined expressions (Table
6) program lists (Table 4), and check
entries (Table 5) are processed in that
order from the object phrase.

8. Starting with the rightmost verb phrase
in the command, Step 7 above is
repeated for each verb.

Halts: None
Errors: All PLAN errors produced directly
by PSCAN are in the range from 200 to .299.

Subroutines: LCHEX,
E"RRAT, ERROR, PLINP,
PIOUT, PLOUT

LIST,
PAIN,

LRET,
PEOF,

ERJRET,
PAOUT,

DFJPSCAN

PSC040

PSC070-
PSC074

PSC084-
PSC096

This is the entrypoint to the
PSCAN module.

The current status of all reqis­
ters is saved and then set up for
PSCAN execution.

The special exit from the CH~rEST
routine is set so that the f :irst
call to CHTEST will result in a
branch to INITGCHR to process the
first record of the command. The
first character in the input
stream is initialized to hex 00.

If the repeat switch has lbeen
turned on as a result of a call
to LREPT or PUSH, or because of a
phrase being pushed from a check
entry. The current command to be
processed is read from PFIN:f?UTA
in PFILE. If the last record of
the previous command contained
res~dual characters following the

15 JULY 1969

PSC098-
PSC110

PSC112-
PSC126

PSC142-
PSC154

PSC156-
PSC180

PSC184-
PSC198

PSC202-
PSC220

PSC224-
PSC228

PSC230

PSC234

PSC238-
PSC254

semicolon, that residual record
is read is read from PFINPUTB.

All of PSCAN's internal switches
are turned off.. The switch in
the error routine is set to per­
form a call to ERRAT on any
errors given and the phrase
checksum table is read in from
PFILE.

The first character of the com­
mand is checked for numeric. If
it is, the statement save switch
checked at PSC1452 is turned on
and the input pointer is advanced
over the statement number.

This code initializes switches
and pointers used within BSCAN.

This code will collect one word
(3 characters) from the command,
compute its checksum. and place
it in the phrase name collect
area.

This code will pad out a phrase
word with blanks if required.

This code uses the checksum for
that part of the phrase name
collected to this point as a
pointer into the checksum table.
If the checksum table entry indi­
cates that there are verbs in
this phrase chain, the verb
encountered switch is turned on
and the phrase chain pointer is
saved for use at PSC296.

If the current character is not
blank, the last word is padded
with blanks if necessary before
checking for a double quote mark.

If the current character is not a
double quote transfer is to
PSC338 to terminate the collec­
tion of the command name.

If the verb encountered switch is
on, transfer is to PSC292 to
search the current phrase chain
for a verb by the same name as
that part of the command
collected to this point~

The input pointer is set to the
communication array and the spe-

PSC260-
PSC286

PSC292-
PSC324

PSC328-
PSC336

PSC338-
PSC346

PSC348-
PSC360

PSC362-
PSC370

PHRGOT

PSC386-
PSC390

PSC394-
PSC414

PSC418

PROBLEM LANGUAGE ANALYZER (PLAN)

SYSTEM MANUAL

cial exit from CHTEST is set so
that the call to that routine at
PSC156 will transfer control to
PSC260.

This code will take three charac­
ters from one 32-bit word in the
communication array to be used as
the next word in the command
name.

This code searches the phrase
chain for a verb of an equal
name. If the verb is found, the
verb program list (Table 8) is
moved to the pop-up list.

If over eight verbs are processed
an error is given and the collec­
tion of the command name is
continued .•

The verb encountered switch is
turned off and the checksum of
the command name is used to pick
up the checksum table entry for
the object phrase.

If the command name began with a
comma or a semicolon, the pointer
to the previous object phrase
saved during the last execution
of PSCAN at PHRGOT is used to
access the object phrase.

If the object phrase was found,
the no-compare switch is turned
on for the GETPHENT routine and
transfer is to PHRGOT. Other­
wise, an error is given and
transfer is to ABORTERR to ter­
minate PSCAN execution.

This routine contains all the
logic pertinent to phrase level
processing. The pointer to the
current object phrase is saved in
the loader.

The symbol table write complete
switch is turned on and the sym­
bol table is initialized.

This code checks to see that the
requisite of level 0 and level 1
command have been met.

The levels of the current and the
previous command are combined and
used as indicators in the level

FLOWCHART NARRATIVES 69

PROBLEM LANGUAGE ANALYZER (PLAN)

SYSTEM MANUAL

PSC438-
PSC462

PSC472

PSC476

PSC496-
PSC610

PSC612-
PSC614

PSC616-
PSC618

PSC620

PSC632-
PSC6322

PSC6324-
PSC6462

management of the managed array
and the symbol table.

This code is the level error
recovery logic. In other words,
if the error recovery switch is
on in the loader, it will be
turned off if the level of the
current command is equal or high­
er than the last.

The appropriate level symbol
table is read from PFILE so that
the symbols from this command can
be added to it.

The level shift bits discussed in
the introduction are turned on
for the FIND/READ/WRITE
subroutine.

If the current command is Level
2, 3, or 4, the managed array, if
defined, is saved or restored.

The level of where to start sav­
ing the symbol table in PFILE is
set and the subroutine SYMTBGET
is called to add the symbol
tables from this command to the
current symbol table.

The symbol table write complete
switch is turned off if the cur­
rent command is a Level 0 or
utility level. It is turned on
for all other level commands.
This means that the symbol table
for Level O or utility commands
is not saved on disk and cannot
be referenced by other commands.
SYMTBPUT is called to initiate
saving of the current symbol
table.

DATAGET is called to place any
initialization values for this
command into the communication
array.

If the current command is utility
level the utility level switch is
turned on in the loader and
transfer is to PSC612.

This code is executed only on
Level 0 commands. The error
queue file, if defined, is
dumped, the Level 0 encountered
switch is turned on in the load­
er, the command sequence number
is reset to zero, the 15 PLAN

70 FLOWCHART NARRATIVES

PSC650-
PSC696

DUMPERRS

INPUTRD

PSC724-
PSC742

PSC744

PSC754-
PSC782

15 JULY 1969

switch words are set to system
default values, and a pointer to
the maximum size of COMMON is set
for this PLAN job.

This code is executed on Level 1
commands. The error queue file
is dumped and the symbol table
write level is set so that the
current symlx;>l table will be
saved four times. If the current
command is Level 1 Cnot Level 0),
the Level 1 found switch is
turned on. The Level 1 shift
switch for FIND/READ/WRITE is
turned on and the managed array,
if defined, is set to FALSE.

This subroutine will dump the
error queue file if there is any
significant information in it.
The repeat switch is saved,
turned on, and restored so that
if the checkpoint to PERRS is not
successful, PSCAN will repeat the
current command. That is, if
there is no checkpoint file.

This subroutine is called whenev­
er a null (hex OO> is found in
the input scan area indicating
that another record should be
read from the current PLAN input
device.

The pointer to the current input
character is saved and the input
stream is scanned looking for a
NULL or semicolon. If a semi­
colon is found, the input pointer
is restored and control is
returned to the caller.

If this is the first call to this
routine during this execution of
PSCAN, transfer is to PSC808 to
start reading the first record
and immediately return control to
the caller.

This code checks for either log­
ical or physical end-of-file on
the current PLAN input device.
On logical end-of-file transfer
is to PSC1499 to produce an error
diagnostic and terminate the cur­
rent execution of PSCAN. On
physical end-of-file the error
queue file, if any, is dumped and
the current execution of PIAN is
terminated by scheduling the
module DFJRETN which will return
control to the OS/DOS supervisor.

15 JULY 1969

PSC788-
PSC7905

PSC792-
PSC808

PSC812-
PSC822

PSC826-
PSC832

PSC836-
PSC848

INITGCHR

PSC854-
PSC862

PSC866-
PSC878

PSC884-
PSC916

The next 80-character record is
transferred to the input scan
area and if the LIST option is on
that SO-character record it is
printed on the current PLAN out­
put device.

If the record just brought in is
all blank. a NULL is placed at
the beginnlng of the record which
has the effect of ignoring blank
cards. Otherwise. the ID field
(columns 76-80) are saved and a
NULL is placed at column 76.

The current record is searched
for either a NULL or semicolon.
If a NULL is found,, a call to
PLINP is issued to start reading
the next record.

The number of characters in this
record is added to the total
character count, and if not over
450, control is returned to the
caller.

This code will initiate a loop
which will read records from the
input stream until either physic­
al end-of-file or semicolon is
read. An error is given and the
current execution of PSCAN is
aborted.

This routine does special proces­
sing on the first record of a
command. It is accessed only via
the special exit from CHTEST and
returns to CHTEST after
execution.

The input area is scanned to find
the first nonblank character.
The remainder of the input area
is then moved down to the begin­
ning to cover the leading blanks.

The input area is scanned until a
NULL or semicolon is found and
the initial character count of
the first record is set.

This code will make sure that
there is at least one nonblank
character in the input area.
Leading blanks are again sup­
pressed in the case where the
first record is read from the
current PLAN input device.

PSC920

SYMTBGET

PSC936-
PSC942

PSC944

PSC946

PSC954-
PSC958

PSC960-
PSC962

PROBLEM LANGUAGE ANALYZER (PLAN)

SYSTEM MANUAL

The input pointer is set to the
beginning of the input area and
transfer is to PSC4724 to return
control to CHTEST.

This subroutine is called from
the PHRGOT routine to process the
symbol table for the current com­
mand. The symbol table (Table 6)
from the object phrase is first
added to the in-core symbol
table. A symbol table from each
verb phrase in the command is
then added starting with the
rightmost verb. As each symbol
is added a search of the in-core
symbol table is performed to
check for a duplicate definition.
If a duplicate is found, the
current definition replaces the
old. If the CAP reference for
any symbol is found to be symbol­
ic, the expression is evaluated
to resolve the CAP pointer before
placing the symbol in the symbol
table.

A call to the DISKWAIT subroutine
is issued to make sure the cur­
rent symbol table is in core. If
the level of the current object
phrase is not blank, then its
level is placed in the symbol
table header.

A pointer is initialized to the
first available space in the sym­
bol table.

The execution-defined symbol sub­
script switch is turned on. This
switch is used by the expression
evaluation routines under error
conditions to determine which
error should be given.

A disk wait is issued to make
sure the current phrase is in
core and SRCHCT is called to
search for Table 3 in the phrase.
If there are no symbols in this
phrase, transfer is to PSC1190.

The initial symbol not collected
switch tested at PSC1086 is
turned off. Note that this is
done on each phrase of the com­
mand so that the eventual implied
symbol will be the leftmost sym­
bol in the leftmost verb phrase.
If the current symbol does not
have a symbolic CAP pointer,
transfer is to PSC1082.

FLOWCHART NARRATIVES 71

PROBLEM LANGUAGE ANALYZER (PLAN)

SYSTEM MANUAL

PSC980-
PSC990

PSC994-
PSC1000

PSC1002-
PSC1012

PSC1014- -
PSC1024

PSC1042-
PSC1046

PSC1062-
PSC1082

PSC1084-
PSC1098

PSC1102-
PSC1126

PSC1186-
PSC1190

PSC1194-
PSC1200

The input pointer is set to point
to the beginning of the symbolic
subscript expression and is eval­
uated to ARITHEXP.

If a logical value was found in
tbe evaluation of the expression
the result is set to zero to
force an error at PSC1018.

The input pointers saved at
PSC980 is restored and a disk
wait is issued if the current
symbol table is being read back
into core.

The result of the expression is
converted to fixed point and if
the result is not positive, an
error is given and the CAP polnt­
er for the current implied symbol
saved at PSC1098 or at entry to
PSCAN is used as the cap pointer
for this symbol.

If the subscript is not less than
16,384 or 512 with P-value, an
error is given.

The subscript is combined with
the symbol to make a symbol table
entry, and the Table 3 pointer is
incremented over the subscript
expression. The symbol table
entry is then made.

The symbol table pointer is
incremented to the next available
space and if the initial implied
symbol not collected switch is
off, and the current symbol is
not in reference to the switch
words it is saved as the initial
implied symbol.

The symbol table is searched
a duplicate definition of
current symbol. If found,
old definition is deleted.

for
the
the

If all the symbols for this
phrase have been processed, the
symbol subscript switch turned on
at PSC946 is turned off.

If the current command contains
verb phrases, the next verb to
the left is read in and transfer

72 FLOWCHART NARRATIVES

PSC1214-
PSC1240

DATAGET

PSC1258-
PSC1264

PSC1268

PSC1274-
PSC1288

PSC1290-
PSC129 8

PSC1308-
PSC1328

PSC1332-
PSC1360

BALG

15 JULY 1969

is to PSC944 to process its sym­
bols, otherwise, control is
returned to the caller.

This code is used as a common
exit from both SYMTBGET and DATA­
GET. It issues a call to GET­
PHENT to read the object phrase
back into core and returns con­
trol to the caller.

This subroutine is called from
the PHRGOT routine to place
initialization values (Table 2)
from the current command into the
communication array. The order
of processing with respect. to
verb phrases is the same as that
for SYMTBGET.

A disk wait is issued to make
sure that the current phrase is
in core and SRCHT is called to
search for Table 2 in the current
phrase. If there are no initia­
lization values for this phrase
transfer is to PSC1290.

The pointers are initialized for
the loop through Table 2 initia­
lization values.

This code will loop until all the
initialization values for the
current phrase are processed. If
an execution-defined CAP pointer
is encountered or an Implied Do,
an appropriate branch is taken.

If there are no verbs in the
current command, control is
returned to the caller; other­
wise, the next verb to the left
is read in and transfer is to
PSC1258 to process its initiali­
zation values.

This code performs a symbol table
lookup to find the CAP pointer
for the current initialization
value. This is done in the case
where the CAP pointer was symbol­
ic at phrase-definition time,.

This code processes Implied Do
subscripts. It will place the
initialization value in the com­
munication array the specified
number of times.

This routine
PHRGOT. It

is executed after
completes the scan

15 JULY 1969

PSC1380

PSC1382

PSC1384

PSC1386-
PSC1418

CHOVR

PSC1434-
PSC1438

PSC1450

PSC1452-
PSC1456

PSC1459

PSC1460-
PSC1463

PSC1466-
PSC1472

and evaluation of the current
command.

If the first character after the
command name is not a colon,
DATAIN is called to scan the
input stream from the command
name to the semicolon.

The EBCDIC image of the current
command is saved in PFINPUTA of
PFILE.

A disk wait
sure that
in core.

is issued to make
the current phrase is

This code processes phrase­
defined expressions (Table 6),
program lists, (Table 4), and
check entries (Table 5) first
from the object phrase and then
from verb phrases starting with
the rightmost verb.

This routine is always executed
to terminate the execution of
PSCAN. It performs final house­
keeping and sets indicators
necessary for intermodule com­
munication. If the phrase skip
switch was turned on at PSC456
transfer is to PSC1466.

If the current command is not
blank or utility level, its level
is saved in the resident loader.

SYMTBLOP is called to ensure that
the current symbol table is saved
on disk.

If the statement saved switch is
turned on at PSC122, then PSTSV
is placed in the pop-up as the
first program to be executed to
save the current command in the
statement save file.

If a phrase was pushed from a
check entry, transfer is to
PSC040 to reenter PSCAN and eval­
uate that command.

If the phrase skip or phrase
error switch is on, the program
pop-up list is cleared before
returning control to the resident
loader.

If this command is to be skipped
due to level error recovery and
there are no errors in the cur-

PSC1499-
PSC1501

PSC1502

SYMPTLOP

PSC1508-
PSC1510

PSC1516-
PSC1518

SRCHCT

PSC1592-
PSC1594

PSC1604-
PSC1618

ERROR

PSC1668

PROBLEM LANGUAGE ANALYZER (PLAN)

SYSTEM MANUAL

rent command, then the phrase
skipped error is given for trans­
fer to PSC1450.

This error abort processing is
used in those cases where con­
tinuation of the scan is impos­
sible. Entry at PSC1499 will
place a semicolon at the end of
the last record to ensure that no
more records are read.

The pointer to the current object
phrase saved in the resident
loader by PHRGOT is cleared to
prevent repeating of the current
command.

This subroutine when executed
will ensure that all levels of
the current symbol table are
saved in PFILE.

SYMTBPUT is called to write the
next level symbol table in PFILE.
If the symbol table write com­
plete switch is not on, transfer
is to PSC1516: otherwise, control
is returned to the caller.

A special entry is taken into the
GSYM routine to ensure that the
current symbol table is in core
and transfer is to PSC1508.

This subroutine will search the
phrase entry currently in core
for a specific table by number.
It will return to the caller a
pointer to the beginning of the
table and its length. If the
table does not exist, the length
will be zero.

A pointer is incremented over the
phrase name to point to the first
table.

This code will loop chaining from
table to table until the table
requested is found or the end of
the phrase.

This subroutine is called to pro­
cess any errors encountered dur­
ing PSCAN execution.

If the GO TO search switch is on,
the error is ignored. Note that
during a GO TO search, the input
stream is being scanned but not
processed.

FLOWCHART NARRATIVES 73

PROBLEM LANGUAGE ANALYZER (PLAN)

SYSTEM MANUAL

PSC1672-
PSC1676

PSC1678-
PSC1682

PSC1690-
PSC1694

PSC1696-
PSC1702

PSC1710-
PSC1722

ED UMP

PSC1726

PSC1730-
PSC1732

GETPGM

PSC1748...;
PSC1750

PSC1754-
PSC1766

Unless this is a continue type
message being produced from a
check entry, the error found
switch is turned on to indicate
an error was found in the current
command.

200 is added to the error number
and the high-order bit is turned
on to indicate to DFJPERRS that
this is a system error.

The symbol table save operation
if not finished is completed and
the input image if not already
saved to PFILE.

If an ECODE has not been supplied
by the caller, an input cursor is
computed and used as the ECODE.

A call to ERRAT or ERRET is made
to process the error and control
is returned to the caller.

If errors have been queued to
file 255 on LOGICAL drive O, this
subroutine will perform a check­
point to DFJPERRS to dump file
255 to the current PLAN output
device.

If the queue file valid switch
has not been turned on by either
EWRIT or DFJPERRS, control is
returned to the caller.

This code in effect performs a
call to ERLST with DFJPERRS
returning control PSC1736.

This subroutine will transfer
program names from a phrase entry
to the pop-up list in the resi­
dent loader. It gets as a param­
eter the number of the table
within the phrase and the program
list to be processed.

SRCHCT is called to search for
the appropriate program list
table. If the table does not
exist, control is returned to the
caller.

The table length is converted to
32-bit words as the first param­
eter in the CALL LIST and LIST is
called to move the program list.

74 FLOWCHART NARRATIVES

GETPHENT

PSC1780

PSC1786-
PSC1796

PSC1810-
PSC1816

PSC1818-
PSC1828

PSC1830-
PSC1834

PSC1852-
PSC1858

PSC1860-
PSC1876

GETPH4

15 JULY 1969

This subroutine is called to
access a phrase from PFILE. The
parameter passed to it is either
a direct pointer to the phrase or
a pointer to the first phrase in
a chain of phrases in an E!qual
checksum. This pointer is of the
form xxyy where yy is the rela­
tive record in the phrase E!ntry
area of PFILE, and xx is the
displacement into that recordl to
the beginning of the phrase.

The pointer to the next phrase in
the chain is taken from the cur­
rent phrase header.

The pointer to the next record in
PFILE containing the next phrase
in the chain is extracted. If
this pointer is zero, it indi­
cates the end of the phrase chain
and control is returned to the
caller.

The record containing at least
the beginning of the next phrase
in the chain is read into core.

If this is a phrase search opera­
tion, the record just read is
checked to make sure that it
contains at least the phrase
name. If not, GETPH4 is called
to read in the rest of the phrase
entry.

The phrase just read is checked
against the compare phrase and if
they are not both verbs or object
phrases and their names equal,
transfer is to PSC1780 to access
the next phrase in the chain.

GETPH4 is called to start reading
in the rest of the phrase. The
phrase found exit is set and
control is returned to the
caller.

This code will loop reading as
many records as necessary from
PFILE in order to bring the whole
phrase entry into core.

This subroutine is called by
GETPH to read in the remainder of
the phrase if any. Note that
phrases may be up to 512 16-bit
words long and therefore may
occupy up to three records in
PFILE..

15 JULY 1969

PSC1872-
PSC1874

PESTCHKE

PSC1894-
PSC1896

PSC1910

PSC1920-
PSC1921

PSC1924-
PSC1928

PSC1932-
PSC1946

PSC1952-
PSC1974

PSC1982-
PSC1990

PSC1994

PSC1998-
PSC2008

If the whole phrase is already in
core, control is returned to the
caller. Otherwise, the number of
words left to read are calculated
and transfer is to PSC1868.

This routine is called to evalu­
ate the check entries associated
with the phrase currently in
core.

SRCHCT is called to search for
Table 5 in the current phrase.
If Table 5 does not exist, con­
trol is returned to the caller.

If the current entry has
execution-defined symbolic
transfer is to PSC2070e

an
CAP,

The CAP pointer is converted to a
COMMON location and checked
against the current size of COM­
MON. If the subscript is outside
of COMMON, an error is given and
transfer is PSC1932 to access the
next check entry in the table.

If the value in COMMON is not
FALSE, transfer is to PSC1986 for
further checking. Otherwise, if
this is not an *F entry transfer
is to PSC1994 to process the
action called for.

This code increments to the next
entry in the table and checks for
the end of the table. When the
end of the table is found, con­
trol is returned to the caller.

This code will be executed when a
check entry fails and a literal
diagnostic is called for.

This code
COMMON
requested
takes the
branch.

checks the value in
against the value

by the check entry and
appropriate processing

If there is no additional infor­
mation with this check entry,
such as a literal or program
list, transfer is to PSC1952 to
produce PLAN diagnostics 220
through 223.

The pointer is set to the literal
within the check entry or to

PSC2010

PSC2014-
PSC2020

PSC2044-
PSC2050

PSC2052-
PSC2064

PSC2070-
PSC2100

SYMTBPUT

PSC2114

PSC2118

PSC2128

PROBLEM LANGUAGE ANALYZER (PLAN)

SYSTEM MANUAL

COMMON whichever was defined at
phrase-definition time. If a
subscript is indicated, the sub­
script is checked to see that it
is within COMMON. If not, an
error is given and transfer is to
PSC1932 to get the next table
entry.

If this is a literal diagnostic
request, transfer is to PSC1952.

If this is a program list entry,
the called for program list is
moved to the resident loader.

If the statement save switch is
on, indicating that the current
command is to be saved in the
statement saved file, it is
turned off. A diagnostic is
given indicating that pushed
phrases from a check entry and an
implicit statement save are
incompatible.

The pushed phrase is saved in
PFINPUTA of PFILE and the repeat
switch is turned on to cause
execution of that command.

This code performs a symbol table
lookup on those checkentries per­
formed on a symbolic CAP pointer.

This subroutine is called to save
the current symbol table in
PFILE. Note that if the current
command is a Level 1, the symbol
table is saved four times. If
Level 2 it is saved three times
etc. The saving of the symbol
table is processed so that it
goes on concurrently with execu­
tion wherever possible. If this
routine determines that execution
time would be impaired by
initiating a disk operation it
will act as a no-op.

If the symbol table write com­
plete switch is on, control is
returned to the caller.

The special exit from CHTEST is
set with the address of PSC2166.
This will result in a call to
CHTEST possibly initiating anoth­
er symbol table save if
warranted.

If the current symbol table to be
saved is not in core, control is
returned to the caller.

FLOWCHART NARRATIVES 75

PROBLEM LANGUAGE ANALYZER (PLAN)

SYSTEM MANUAL

PSC2136-
PSC2148

PSC2166

RSYM

PSC2268-
PSC2270

PSC2272

PSC2276-
PSC2286

PSC2290-
PSC2294

PSC2306-
PSC2316

PSC2320-
PSC2324

WSYM

PSC2340-
PSC2352

PSC2354

The symbol table is written to
the appropriate save area of
PFILE. If this is the Level 4
symbol table, the symbol table
write complete switch is turned
on and the special exit from
CHTEST is turned off.

CHTEST will pass control to here
as a result of the special exit
set at PSC2118. A call to SYMTB­
PUT is executed and control i.s
returned to CHTEST.

This routine is called to read
and unformat values from the com­
munication array.

GSYM is called to lookup the
current symbol in the symbol
table. The RSYM/WSYM TRUE and
FALSE switches are turned off.

If the subscript for the symbol
is outside of COMMON, an error is
given and control is returned to
the caller.

The value is read from COMMON and
checked for TRUE or FALSE. If
yes, the appropriate RSYM switch
is turned on.

If this value was last written as
fixed-point, it is converted back
to floating-point.

If the value was adjusted by a
P-value when written to COMMON,
it is now divided by the same
P-value.

If the value read was TRUE or
FALSE, the appropriate switch is
turned on and control is returned
to the caller.

This routine is called to format
and write values to the communi-·
cation array.

If the WSYM TRUE or FALSE switch
is on, the appropriate value is
placed in the output bucket and
the WSYM literal switch is turned
on to suppress formatting.

GSYM is
current
table.

called to
symbol in

lookup the
the symbol

76 FLOWCHART NARRATIVES

PSC2356-
PSC2364

PSC2368

PSC2372

PSC2376-
PSC2380

PSC2382-
PSC2386

PSC2410-
PSC2414

USYM

PSC2428

PSC2430-
PSC2438

PSC2442-
PSC2448

PSC2450-
PSC2456

PSC2466-
PSC2468

15 JULY 1969

If PSCAN is currently in a GO TO
search or in the FALSE leg of a
TRUE expression, or the TRUE leg
of a FALSE expression, control is
returned to the caller without
writing the value to COMMON.

If the subscript is not in COM­
MON, an error is given and con­
trol is returned to the caller.

If the WSYM literal switch is on,
transfer is to PSC2410 to ~mp­
press formatting.

If the current symbol has a. P­
value, the value to be written to
COMMON is multiplied by it.

If the current symbol is fixed­
point the value is adjusted by a
plus or minus 0.5 and converted
to fixed-point.

The value is written to COM.MON,
the RSYM and the WSYM switches
are turned off and control is
returned to the caller.

This subroutine is called during
the scan of the input stream to
test for a user-exit associated
with the current symbol.

The no user-exit processed switch
is set.

GSYM is called to look up the
current symbol. The relative
subscript is restored by decre­
menting it by one. The symbol
table entry is checked for a user
exit. If there is none, control
is returned to the caller.

If PSCAN is currently in a GO TO
search, the inhibit switch (ISW)
is turned on so that the user
exit will not store values into
COMMON..

The name of the user exit program
is accessed for the call at
PSC24685 and the current COMMON
location is calculated and put in
!SUBS for the NOSER subroutine ..

A check is made to make sure the
symbol table and the current com­
mand are saved on disk in case

15 JULY 1969

PSC24685

PSC2480-
PSC2496

PSC2504-
PSC2516

LUSYM

PSC2526-
PSC2542

GSYM

PSC2552

PSC2554

PSC2560-
PSC2566

PSC2592-
psc2598

PSC2602-
PSC2624

the user exit program does not
return successfully.

The user-exit program is called
as a LOCAL.

The error parameters returned by
the user exit in the call to
EUSER, if any, are processed.

PSCAN's pointer to COMMON is
updated to reflect the last loca­
tion used by the user exit pro­
gram and control is returned to
the caller.

This subroutine is used by DATA­
GET and TESTCHKE to lookup
execution-defined symbol
subscripts.

A special entry is taken into the
GSYM routine to look up the com­
pressed symbol. The COMMON loca­
tion is converted to a subscript
and control is returned to the
caller.

This routine performs symbol
table look up for the symbol
found in the symbol bucket or
compressed symbol bucket. It
searches the current and higher­
level symbol tables if necessary.

The P-value switch set at PSC2662
is turned off.

If the symbol bucket contains
blanks, it indicates a second
lookup on the same symbol and
transfer is to PSC2628.

If the compressed symbol bucket
is not zero, it indicates the
symbol is already in compressed
form. Otherwise, three charac­
ters are taken from the symbol
bucket and compressed.

A disk wait is issued to make
sure the current symbol table is
in core and the current symbol
table in the core switch is
turned on.

This code will search the
table currently in core
either the symbol is found
end of the table. If the
is found, the complete
table entry is saved.

symbol
until

or the
symbol
symbol

PSC2628-
PSC2640

PSC2642-
PSC2670

PSC2672-
PSC2684

PSC2686

PSC2692-
PSC2710

PSC2718-
PSC2726

PSC2730-
PSC2736

MSMOVE

PSC2758-
PSC2778

SUP ADV

PSC2812

ADV SUP

PROBLEM LANGUAGE ANALYZER (PLAN)

SYSTEM MANUAL

If a higher-level symbol table
was read in at PSC2724, this code
will bring the current symbol
table back into core.

If the symbol table entry has a
P-value, the P-value is converted
to a factor of ten and the sub­
script is made relative to the
beginning of the managed array
instead of the switch words.

The subscript is converted to a
COMMON location. The relative
subscript is incremented for the
next call to GSYM. The symbol
bucket is set to blanks and con­
trol is returned to the caller.

If the symbol table currently in
core is Level 1, transfer is to
PSC2730 to give an error.

If this symbol table look up is
the result of an execution­
defined symbol subscript, the
current partially created symbol
table is saved on disk before the
next-higher table is brought in.

The next-higher level symbol
table is read into core and
transfer is to PSC2592 to con­
tinue the search.

The undefined symbol error is
given and the initial implied
symbol is given in its place.

This subroutine will move
variable-length character records
between core locations. The
three paramaters passed to it are
FROM, TO, and KOUNT.

The number of bytes requested is
moved and control is returned to
the caller.

This routine will slide over
blanks in the input stream start­
ing with the current character.

The input pointer is backed up to
point to the previous character
and transfer is to PSC2818.

This subroutine will suppress
blanks in the input stream start­
ing with the next character.

FLOWCHART NARRATIVES 77

PROBLEM LANGUAGE ANALYZER (PLAN)

SYSTEM MANUAL

PSC2818-
PSC28 22

PSC2826-
PSC2830

DATAIN

PSC2844-
PSC2846

PSC2848

PSC2852-
PSC2860

PSC2862-
PSC2866

PSC2870-
PSC2872

PSC287lJ­
PSC2876

PSC2878-
PSC2880

PSC2882-
PSC2888

This code will loop until a non­
blank character is found.

The condition code which indi­
cates whether the current
character is alpha, numeric, or
special character is restored and
control is returned to the
caller.

This routine functions as the
control section for scanning the
input stream data and the end of
the command name to the
semicolon.

The error code is set to zero and
the first character after the
command name is accessed.

If the current character is a
semicolon, control is returned to
the caller.

If the command name did not end
with a comma, colon, or semi­
colon, an error is given and the
input pointer is decremented to
the previous character.

The number of GO TO loops is set
to a maximum of 1000, the rela·­
tive subscript set to 1, and the
input pointer is saved.

The symbol bucket is set to
blanks and the initial symbol
information set up. This is done
so that if the first item found
in the input stream is a data
value with no symbol, that data
value will go in the location
assigned in the first symbol in
the command.

The next nonblank character in
the input stream is accessed and
the subroutine CENTEST is called
to check for a dollar sign
expression number.

Any possible blanks in the input
stream are slid over and a check
is made for an alphabetic
character. If not, transfer is
to PSC299LI.

The Implied Do valid switch
tested by the COLSYM routine is

78 FLOWCHART NARRATIVES

PSC2892-
PSC2910

PSC2912-
PSC2935

PSC2936-
PSC2950

PSC2956-
PSC2966

PSC2968-
PSC2974

PSC2976-
PSC2978

PSC2982-
PSC2990

PS2994-
PSC3010

15 JULY 1969

turned on and COLSYM is called to
collect the alphabetic symbol.
The Implied Do valid switch is
then inverted. Note that if
COLSYM finds an Implied Do, it
turns this switch off. The sym­
bol found switch tested at
PSC2986 is turned on.

This code will check for lite~ral
data values., an expression to be
evaluated, or a user-exit pro9ram
associated with this symbol. If
any of these are found, transfer
is to PSC2960.

This code collects and moves
normal data values to COMMON.
The values may be either logical,
signed, or unsigned nume?ric
values. If no data value is
found, following the symbol then
a logical TRUE is assumed.

This code moves the data values
to COMMON. If an Implied Do was
found by COLSYM, the value is
placed in COMMON the correct
number of times .•

If an Implied Do subscript was
not followed by a single-valued
constant, the appropriate error
is given. Note that an Implied
Do subscript cannot be followed
by a literal or expression and it
must not have a user-exit program
associated with the symbol.

The symbol yes switch is turned
off and a check is made for a
comma. If not, the input pointer
is decremented before transfer­
ring to PSC2874.

When a numeric constant is found,
the WSYM TRUE and FALSE switches
are turned off and the numeric
constant is placed in the output
bucket.

If no numeric constant is fouind,
and the symbol yes switch is off
indicating that no symbol was
found after the last comma, an
invalid character error is given.

A check is made for a comma o:r a
semicolon. If a comma is found,
the relative subscript is incre-

15 JULY 1969

mented by one and transfer is to
~SC2874. On a semicolon, the GO
TO search switch is turned off
and control is returned to the
caller.

LITERALT This routine tests for and pro­
cesses literal data values from
the current input stream.

PSC3022-
PSC3032

PSC3034

PSC3040-
PSC3050

PSC3056-
PSC3064

PSC3066-
PSC3070

PSC3074-
PSC3098

COLSYM

PSC3114-
PSC3134

If the current character in the
input stream is not a double
quote, single quote, or comm er-
cial at sign, control is returned
to the caller through the no
literal found exit.

The beginning
for testing
input pointer
la ti on of
PSC3060.

quote sign is saved
at PSC3042. The
is saved for calcu­
the literal count

This code will loop accessing
successive characters until ei­
ther a quote sign equal to the
beginning quote, or a semicolon
is found. If a semicolon is
found before the end quote, an
error diagnostic is gi·ven.

The literal count of the number
of characters is calculated. If
this count is zero, an error
diagnostic is given.

If this is a double quote liter­
al. Transfer is to PSC3080 to
bypass placing of the character
count in COMMON •.

This code will loop moving four
characters of the literal at a
time into successive positions of
COMMON until the literal count is
exhausted. If the literal count
is not a multiple of four, the
last word moved is padded with
blanks.

This routine will collect symbols
from the current input stream.
These symbols may be optionally
preceded by an S' and/or sub­
scripted. The current character
in the input stream is assumed to
be alphabetic on entry.

Up to three alphabetic characters
are collected and placed in the
symbol bucket. If the second
character is nonalphabetic,

PSC3136-
PSC3138

PSC3140-
PSC3158

PSC3162-·
PSC3182

PSC3186-
PSC3202

PSC3206-
PSC3214

PSC3218-
PSC3222

PSC3224-
PSC3236

PSC3240-
PSC3248

PROBLEM LANGUAGE ANALYZER (PLAN)

SYSTEM MANUAL

transfer is to PSC3240 to test
for a possible s• formation. If
the symbol is less than three
characters, blanks are supplied.
If more than three characters,
the remaining characters are
ignored.

The s• valid switch is turned off
and the relative subscript is set
to one.

If the first character after the
symbol is not an EBC or BCD left
parenthesis, control is returned
to the caller. Otherwise, the
recursive operator is set to an
EBC or BCD right parenthesis
respectively. The symbol bucket
is saved in the recursive accumu­
lator and the recursive routine
ARITHEXP is called to evaluate
the subscript expression.

If the expression ended with a
comma and the Implied Do valid
switch is on,, then ARITHEXP is
called to evaluate the second
expression. The result of the
expression if positive, is con­
verted to fixed point and used as
the upper limit of the implied
do.

If the upper limit expression was
ended with a comma, then ARITHEXP
is called to evaluate the expres­
sion defining the implied do
increment. Note, if no comma was
found, a default increment of one
is supplied.

The Implied Do switch is turned
off.

An error is given to indicate
invalid format., logical value, or
negative value in a subscript
expression and the initial sub­
script is forced to a value of 1.

The initial subscript is con­
verted to fixed-point and checked
for positive value. If yes, the
input pointer is advanced over
the right parenthesis and control
is returned to the caller.

In the case
character of

where the second
the symbol is not

FLOWCHART NARRATIVES 79

PROBLEM LANGUAGE ANALYZER (PLAN)

SYSTEM MANUAL

PSC3252-
PSC3254

PSC3256-
PSC3260

COLNUMT

PSC3274-
PSC3284

PSC3286-
PSC3308

PSC3312-
PSC3320

PSC3330-
PSC3350

PSC3354-
PSC3358

PSC3360-
PSC3366

PSC3370-
PSC3372

alphabetic, this code checks for
the possibility of an s• forma­
tion. If not, transfer is to
PSC3130.

The s• formation found switch is
turned on and the input pointer
is incremented over the quote
sign.

The first character after the s•
is checked for alphabetic. If
yes, transfer is to PSC3114,
oth·~rwise., the symbol bucket is
set to blanks and the initial
implied symbol is supplied.

This routine is called to check
for and collect numeric data in
floating-point form. It will
convert a variable length numeric
field to a 32-bit floating-point
constant.

Pointers and switches are
initialized before starting the
collection of numeric data.

This code will loop collecting
numeric characters until either
nine numerics have been
collected, or a non-numeric
character is found.

The count of the number of digits
collected to this point is saved
and the current number of charac­
ters is converted to
floating-point.

The old result is adjusted and
the new number of digits just
collected is added in. If there
are still digits to be collected,
transfer is to PSC3286.

If the numeric field was preceded
by a minus sign, the result is
complimented.

If no numerics have been
collected to this point, the no
numeric exit is set and control
is returned to the caller.

If the next character after the
numeric field is not an E, blanks
are suppressed and control is
returned to the caller.

80 FLOWCHART NARRATIVES

PSC3374-
PSC3380

PSC3384-
PSC3398

PSC3400-
PSC3422

PSC3424-
PSC3442

PEXPEVALT

PSC3454-
PSC3464

PSC3472

PSC3476-
PSC3484

PSC3486

PSC3488-
PSC3506

PSC3508

PSC3512-
PSC3518

15 JULY 1969

If the character after the E is
alphabetic, the input pointer is
decremented and control is
returned to the caller.

This code checks for a plus or a
minus sign preceding the exponent
field. If a minus sign is found,
the negative exponent switch is
turned on.

This code collects and validaLtes
the exponent field. Note, that
if the exponent is more than two
digits long, an error is given
and control is returned to the
caller.

The mantissa is adjusted by the
exponent field. Blanks are sup­
pressed and control is returned
to the caller .•

This routine is called to test
for and evaluate arithmetic and
logical expressions. It func­
tions as a control section during
the evaluation.

If the current character is not a
colon, pound sign, or equal sign,,
the expression not found exit is
set and control is returned. to
the caller.

The contents of the symbol bucket
and the current relative sub­
script are saved.

If this routine was called during
evaluation of phrase-defined
expressions, the ECODE is incre­
mented to indicate a new
expression.

EXPEVAL is called to do the actu­
al expression evaluation.

If this was a LOGICAI. expression
followed by a question mark, this
code will evaluate the TRUE leg
of the expression.

If this is a LOGICAI, expression
and also has a FALSE: leg, trans­
fer is to PSC3572.

The symbol bucket saved at
PSC3472 is restored and if this
is a LOGICAL expression, the WSYM

15 JULY 1969

PSC3522

PSC3526

PSC3530-
PSC3534

PSC3536-
PSC3540

PSC3550-
PSC3566

PSC3572-
PSC3580

PSC3582-
PSC358 8

EXPEVAL

PSC3598-
PSC3600

PSC3602-
PSC3608

switches are set to give a logic­
al TRUE or FALSE as an answer.

If this is a LOGICAL expression,
that contained a GO TO and either
the TRUE or FALSE leg of the
expression, transfer is to CENTLU
to initiate the GO TO search.

If the right hand operand to the
expression was a literal, trans­
fer is to PSC3536 to bypass writ­
ing the results to COMMON.

The result of the expression is
placed in the output bucket, the
subscript saved at PSC3472 is
restored,, and the value is writ­
ten to COMMON.

The conditional expression and
conditional expression TRUE
switches are turned off and a
check is made to see that the
expression ended with a comma or
a semicolon. If yes, control is
returned to the caller.

An error is given indicating an
invalid end to an expression and
an attempt is made to finish the
scan of the expression.

The results of the TRUE leg of
the expression are saved and the
FALSE leg is evaluated.

The final result to the expres­
sion is set from either the TRUE
or the FALSE leg according to the
result of the base leg
expression.

This routine is called by the
EXPEVALT routine to evaluate sec­
tions of expressions.

The saved code bucket is cleared
and the current input stream
character is placed in the type
box. The type box is used to
indicate the type of expression
being evaluated.

If the current character is a
colon the next nonblank character
is a dollar sign. Transfer is to
PSC3598 to change the type box to
a dollar sign.

PSC3612-
PSC3626

PSC3630-
PSC3636

PSC3642

PSC3650-
PSC3656

PSC3660-
PSC3664

PSC3668-
PSC3682

PSC3684-
PSC3688

PSC3690

PSC3696

CENTLU

PSC3702

PSC3706

PSC3712

PSC3716-
PSC3722

PROBLEM LANGUAGE ANALYZER (PLAN)

SYSTEM MANUAL

The input pointer is decremented
and the recursive routine LOGICAL
is called to evaluate the LOGICAL
expression.

On a : $ formation,, the formula
number is collected and placed in
the output register as a result
of the expression. This number
is later used by CENTLU to initi­
ate the GO TO search.

If the current character is not a
pound or equal sign transfer is
to PSC3690 to give an error.

The symbol bucket and subscript,
saved at PSC3472 are restored and
a test is made for a literal
operand. If a literal was found,
transfer is to PSC3696.

The arithmetic
evaluated.

expression is

If a logical operand was found
during the evaluation of the
arithmetic expression, the type
box is changed to a colon to
indicate a LOGICAL expression and
a result is set to TRUE or FALSE
accordingly.

The result of the expression is
saved and control is returned to
the caller.

An error is given to indicate
invalid format and transfer is to
PSC3684.

The type box is set to indicate
the literal operand and transfer
is to PSC3684.

This routine will initiate a GO
TO search.

If a GO TO search is already in
progress, transfer is to PSC3536.

If this is the TURE leg of a
FALSE expression, transfer is to
PSC3536.

If the formula number for the GO
TO is zero, transfer is PSC3536
to ignore the go to.

The GO TO search switch is turned
on. The formula number is saved

FLOWCHART NARRATIVES 81

PROBLEM LANGUAGE ANALYZER (PLAN)

SYSTEM MANUAL

PSC3726-
PSC3728

CENTEST

PSC3744-
PSC3760

LOGO PF

PSC3762-
PSC3770

INTEGER

PSC3784

INTEGER1

PSC3786-
PSC3804

PSC3806-
PSC3808

for test by the CENTEST routine,
the input pointer saved at
PSC2866 is restored, the symbol
bucket is set to blanks, and the
initial implied symbol is set up.

If over 1000 GO TO search's have
been executed, an error is given
and transfer is to PSC3006 to
return control to the caller of
DATAIN.

This routine tests for dollar
sign formula numbers.

If the current character is not a
dollar sign, control is returned
to the caller. Otherwise, the
formula number is collected and
if it is equal to the formula
number being searched for in a GO
TO search, the GO TO search
switch is turned off.

This routine will test for a
logical value found in an arith­
metic expression.

If the LOGICAL result switch is
on as a result of finding a
logical value in an arithmetic
expression, the WSYM FALSE switch
is turned on and the logical
value switch is turned off.

This subroutine is called to test
for and convert a field of EBCDIC
numeric characters to an integer
value starting with the next non­
blank character in the input
stream.

The input pointer is advanced to
the next nonblank character and
transfer is to PSC3786.

This entry to the INTEGER routine
will start collecting numeric
data with the current character.

This loop will collect numeric
digits until a nonnumeric
character is found.

SUPADV is called
any blanks in
and control is
caller.

to slide over
the input stream

returned to the

EVALUATE This routine is called to evalu­
ate phrase-defined expressions
(Table 6). These expressions are
in two different forms. The

82 FLOWCHART NARRATIVES

PSC3822-
PSC3824

PSC3826-
PSC3834

PSC3840

PSC3842

PSC3846

PSC3852

PSC3856

PSC3866-
PSC3872

PSC3874-
PSC3898

15 JULY 1969

first type are those associated
with a CAP pointer at phrase­
def ini ti on time ancl are of the
form (N)A=B+C. This type Of
expression is in taibular form and
is evaluated by this routine ..
The second type of expression is
the dollar sign formula area. If
any of this type of expression is
found, control is passed to the
DATAIN routine to evaluate these
expressions in the same manner as
those found in the input stream.

If there are no pnrase-def ined
expressions for the phrase cur­
rently in core, control is
returned to the caller.

The first byte after Table 6 is
saved and a semicolon put in its
place. The phrase-defined
expression switch is turned on.

The current status of the :input
pointer is saved and the pointer
is set to point to Table 6.
Note: this means that routines
such as CHTEST and ADVSUP, etc
will now fetch characters from
Table 6 instead of the normal
input stream.

If bits O and 1 of the first word
are zero, the CAP associated with
the expression at definition time
was of the form CM+6) and trans­
fer is to PSC3856.

If bit 0 is off and bit 1 is on,
transfer is to PSC3950 to start
the scan of the formula area ..

In the case of the symbol table
entry, a relative subscript of 1
is created in the previous word
of the table and th4e input point­
er is decremented to point to it.

The next two words :Erom Table 6
are put in a save lbucket and the
input pointer is incremented to
point to the :Eirst EBCDIC
character in the expression.

If the first character is not a
colon, the input pointer is
incremented over the equal or
pound sign and thE~ literal test
switch is turned on.

This code sets up the inf orma.tion
needed by the GSYM routine. If
the CAP pointer is execution-

15 JULY 1969

PSC3900-
PSC3902

PSC3904-
PSC3914

PSC3918

PSC3922-
PSC3926

PSC3930

PSC3934-
PSC3944

PSC3950

PSC3958-
PSC3964

PSC3966-
PSC3970

definedD that is, CM+6), the sym­
bol bucket is set to 0 and the
compressed symbol bucket will be
set from the second word of the
Table 6 entry. GSYM will then
obtain the information for the
symbol table entry bucket by
doing a symbol table lookup.
Otherwise, the symbol bucket is
set to blank to suppress symbol
table lookup and the symbol table
entry bucket is created from the
information in Table 6.

A test is made for a literal
operand. If found, transfer is
to PSC3918.

The arithmetic expression is
evaluated and the result is writ­
ten to COMMON.

If this is a LOGICAL expression,
a test is made for the existence
of a FALSE leg. If yes, transfer
is to PSC3856.

The conditional expression and
conditional expression TRUE
switches are turned off and the
input pointer is incremented over
the comma. If all Table 6
expressions have not yet been
processed, transfer is to
PSC3842.

The LOGICAL expression is
evaluated.

If the LOGICAL expression was not
followed by a TRUE leg, the prop­
er result is set and transfer is
to PSC3914.

The expression number error code
is saved, the GO TO count is
initialized to 1000, and the exit
address from DATAIN routine is
set to return control to PSC3972.
Control is then passed to the
DATAIN routine for evaluation of
the dollar sign formula area.

The conditional expression switch
is turned on and the conditional
expression TRUE switch is turned
on if the base leg was 'rRUE.

The input pointer is incremented
over the question or exclamation
mark. The conditional expression
TRUE switch is inverted and

PSC3972-
PSC3984

LOGICALT

PSC3998

PSC4002-
PSC4004

PSC4012

PSC4016-
PSC4020

PSC4024-
PSC4036

PSC4040-
PSC4046

LOGICAL

PSC4054-
PSC4056

PSC4058-
PSC4060

PROBLEM LANGUAGE ANALYZER (PLAN)

tr an sf er
ate the

SYSTEM MANUAL

is to PSC3866 to evalu­
TRUE or FALSE leg

expression.

DATAIN will return control to
here for cleanup processing
before control is returned to the
caller of EVALUATE. The condi­
tional expression, conditional
expression TRUE, and phrase­
defined expression switches are
turned off. The first byte after
Table 6 saved at PSC3826 is
restored, the input pointer saved
at PSC3840 is restored, and con­
trol is returned to the caller.

This routine will perform a pre­
scan of a LOGICAL expression in
search of a relational operator.

The current status of the input
pointer is saved and the paren­
theses counter is set to zero.

The next character in the input
stream is accessed and checked
for a comma or semicolon. If
yes, transfer is to PSC4050.

If the current character is a BCD
left paren, an error is given.

If the character is an EBCDIC
left parenthesis, the parentheses
counter is incremented and trans­
fer is to PSC4002 to get the next
character.

If a relational operator is
found, transfer is to PSC4124.

If the character is a right
parenthesis, the parentheses
counter is decremented and if not
O, transfer is to PSC4002.
Otherwise, the input pointer
saved at PSC3998 is restored and
the LOGICAL routine is entered.

This routine controls the evalua­
tion of a logical expression at
the first level of hierarchy.

The result is set to a default of
FALSE and saved in the recursive
accumulator.

The next character in the input
stream is accessed and the HIER2L
is called to evaluate the logical

FLOWCHART NARRATIVES 83

PROBLEM LANGUAGE ANALYZER (PLAN)

SYSTEM MANUAL

PSC4064-
PSC4068

PSC4070

PSC4076

HIER2L

PSC4084

PSC4088-
PSC4092

PSC4096

PSC4100-
PSC4110

PSC4112-
PSCll116

PSC4124

expression at the second level of
hierarchy.

If the result returned by HIER2L
is TRUE it is left alone, othe!r­
wise, the result is set from the
recursive accumulator.

If the current character is an OR
sign, transfer is to PSC4056 to
evaluate the next part of the
expression, otherwise, control is
returned to the caller.

An error is given to indicate
that BCD characters are not
allowed in a logical expression
and transfer is to PSC4024.

This routine evaluates logical
expressions at the second level
of hierarchy, that is, logical
operands separated by 'and'
signs. If the routine is entered
at PSC4124 it will evaluate a
logical relational expression.

The recursive accumulator is set
to TRUE and the input pointer
decremented to the previous
character.

The next nonblank character in
the input stream is accessed and
an EBC NOT sign exclusive ORed to
the recursive operator. Note
that the recursive operator is
zero on entry to this routine.
If the current operator is a NOT
sign, transfer is to PSC4088 to
slide over the NOT sign and get
the next character.

RETRIEVAL is called to evaluate
the logical operand.

If the operand was preceded by an
odd number of NOT signs, result
is inverted. If the result is
FALSE it is left alone, otherwise
it is set from the recursive
accumulator.

If the current character is an
AND sign, the operator is set to
zero. The current result is
saved in the recursive accumula­
tor and transfer is to PSC4088.
Otherwise, control is returned to
the caller.

If the paren counter is not zero,
transfer is to PSCll050 to evalu-

84 FLOWCHART NARRATIVES

PSC4128-
PSC4132

PSC4134-
PSC4150

1?SC4154

PSC4160

PSC4162-
PSC4172

PSC4176-
PSC4196

PSC4200

PSC4204-
PSC4220

PSC4228-
PSC4236

PSC4240-
PSC4254

15 JULY 1969

ate this expression as a normal
logical.

The current charactier is savE~d as
a relational oper.ator and the
next nonblank character is
accessed. The logical relational
switch is turned off.

This code checks for an expres­
s ion of the form CA==+>.

The input poinb~r saved at
PSC3998 is restored.

If this is a logical or literal
relational of the form CA=-+·> or
CA="BCE" > transfer is to PSC~·240.

The arithmetic operands on each
side of the relational operator
are evaluated.

The result is set to a default of
FALSE. If a logical value was
found in the evaluation of the
arithmetic operand, transfer is
to PSC4194. If thE~ operator was
a less than or greater than sign,
the appropriate branch is taken.
Otherwise, the results are com­
pared and if equal,. the return
result is set to TFlUE, otherwise
it is set to FALSE.

An error is given to indicate
invalid format in a relational
expression and transfer is to
PSC4654.

An error is given to indicate
invalid format in a literal rela­
tional expression. The result is
set to FALSE and if this is a
logical relational of the form
CA=+) control is returned to the
caller. Otherwise, a loop is
initiated to slide over the right
hand literal operand.

This code compares the left and
right hand operands and sets the
result to TRUE or FALSE according
to whether the operator wa:s a
less than or greater than sign.

This code collects the left-hand
operand of a literal or logical
relational expression. Note that
the left-hand operand must bi~ an
alphabetic symbol and the op•~ra-

15 JULY 1969

PSC4262

PSC4264-
PSC4268

PSC4272-
PSC4296

PSC4300-
PSC4320

TRITHEXP

tor must be an equal or pound
sign. -~

The next character after the
operator is now saved as the
operator.

The value for the left hand
operand is read from COMMON and
the result is set to a default of
TRUE. If this is a logical rela­
tional, transfer is to PSC4300.

This code compares character by
character between the left and
right-hand operands. If a non­
equal character is found, the
result is set to FALSE.

This code will set the result to
TRUE or FALSE according to wheth­
er the current operator is a plus
or a minus sign respectively.

This entry into ARITHEXP will
allow for the detection of a
stand-alone plus or minus sign as
an operand.

ARITHEXP This recursive routine evaluates
arithmetic expressions at the
first level of hierarchy and
leaves the floating-point value
of the expression in the result
register.

PSC4336-
PSC4338

PSC4340-
PSC4356

PSC4360-
PSC4368

PSC4380-
PSC4390

The next nonblank character is
accessed and the result is set
with a default of zero.

If the current character is not a
plus or a minus sign and the
operator is not zero indicating
that this is not the first
operand evaluation, control is
returned to the caller. Other­
wise, the operator is set to a
default of a plus sign and trans­
fer is to PSC4394.

The plus or minus sign is saved
as the operator and if the next
character is alpha, numeric, a
left parenthesis, or a period,
transfer is to PSC4394.

If the single logical operand
switch is on, the WSYM TRUE or
FALSE switch is turned on and
control is returned to the
caller.

PSC4394-
PSC4396

PSC4398-
PSC4410

HIER2A

PSC4418-
PSC4420

PSC4424-
PSC4426

PSC4432-
PSC4450

RETRIVA,

PROBLEM LANGUAGE ANALYZER (PLAN)

SYSTEM MANUAL

The current result is saved in
the recursive accumulator, a
single logical switch is turned
off, and HIER2A is called to
evaluate the operand at the
second level of hierarchy.

The result returned by HIER2A is
added to or subtracted from the
recursive accumulator.

This routine controls the evalua­
tion .of arithmetic expressions at
the second level of hierarchy.

Blanks are suppressed and RETRIE­
VAL is called to retrieve the
arithmetic operand.

If the current character is not a
multiply or a divide sign, con­
trol is returned to the caller.

The next operand is collected and
the result is adjusted by it
according to whether the operator
is a slash or an asterisk..

RETRIEVL These recursive routines collect
single-valued operands. That is,
symbols, numeric constants, or
parenthesized expressions.

PSC4468-
PSC4470

PSC4472-
PSC4492

PSC4500-
PSC4506

PSC4512-
PSC4518

PSC4524-
PSC4560

If a numeric
control is
caller.

field is
returned

found,
to the

If the current character is a
left parentheses, ARITHEXP is
called to evaluate the arithmetic
operand.

On entry to collect a logical
operand if the current character
is a left parenthesis LOGICALT is
called to evaluate the logical
operand.

If the current character is not
alphabetic, an error is given to
indicate invalid format in an
expression and control is
returned to the caller.

This code will collect the alpha­
betic symbol optionally preceded
by an S' and will either read the

FLOWCHART NARRATIVES 85

PROBLEM LANGUAGE ANALYZER (PLAN)

SYSTEM MANUAL

PSC4574-
PSC4~84

PSC4588-
PSC4592

RCALL,
RRETURN

PSC4610-
PSC4616

PSC4620-
PSC4624

PSC4638-
PSC4650

PSC4652-
PSC4654

EX PER

appropriate value from COMMON at
PSC4534 or compute the result
from the subscript at
PSC4538-PSC4560.

If the operator is
right parenthesis,
result is given.

an EBCDIC
a logical

If a logical value was found in
the evaluation of an arithmetic
operand, the logical value switch
is turned on.

This subroutine performs linkage
to and from recursive subrou­
tines. It performs a recursive
call to the subroutine indicated
by the parameter following the
BAL to RCALL. It saves the
return address, the current
recursive operator, and the
recursive accumulator. Entry to
the routine at the label RRETURN
performs the return linkage. It
restores the current operator,
the recursive accumulator, and
branches to the return address.
The recursive call save area has
room for 64 entries.

If the save area is full, trans­
fer is to PSC4652 to give an
error.

The parameters are saved, the
save area pointers are incre­
mented, and control is passed to
the requested recursive
subroutine.

The save area pointer is decre­
mented, the information saved at
PSC4620 is restored, and control
is returned to the last caller of
RCALL.

An error is given to indicate
that the expression was too com­
plicated to evaluate. The save
pointer is reset to the beginning
of the save area and transfer is
to PSC4644.

This subroutine performs an error
number computation and call to
the ERROR routine for COMMON
errors found in input strE:!am
expressions, phrase-defined
expressions, and execution-
defined sym~l subscript expres-

86 FLOWCHART NARRATIVES

PSC4668-
PSC4678

PSC4680-
PSC4700

CHTEST

PSC4718-
PSC4722

PSC4724-
PSC4730

PSC4736

DISKWRD

DISKWT,
DISKRD

UGCHAR

MAC HK

15 JULY 1969

sions. It also performs a scan
to the next comma or semicolon in
the current input stream if the
'TO COMMA' switch is on.

The error number is increm~:!nted
by one if this is an execution­
defined symbol subscript. It is
incremented by two for a phrase­
def ined expression. For an input
stream expression, it is left
alone.

The error diagnostic is given and
if the 'TO COMMA' switch is on,
the input stream pointeJr is
incremented until the next c::::omma
or semicolon is found .•

This is the character fetch rou­
tine called to fetch and test the
next character in the cUJrrent
input stream.

If the special exit is not on,
transfer is to PSC4724. If the
switch is nonzero, it contains
the address of the routine to be
given control. The routine i;Jiven
control must return to PSC4724.

The next character in the .input
stream is tested for NULL
(HexOO). If a NULL is fou~d, a
subroutine INEUTRD is called to
read the next record from the
current PLAN input device.

The condition code is set to
indicate whether the cucrent
character is alphabetic, numeric,
or special character.

Since the disk read and write
routines do not return control
until the information is in ieore 111

this is a dummy wait routine.

These two routines will read and
write information to the disk.

This entry into PSCAN is us,ed by
the GUSER subroutine from within
a user-exit program~ It will
fetch the next character from the
input stream and return control
to GUSER.

This routine is used by PHRGOT on
a Level 1 phrase to check the
size of the managed array before
setting it to FALSE. If the size
of the managed array is larger

15 JULY 1969

than the total size of COMMON, an
error is given.

COMCHK This subroutine will check to see
whether a subscript is within
COMMON. If not, an error is
given before returning control to
the caller. Note that this sub­
routine is actually called any
time a question block is shown in
the flowchart which says 'Is sub­
script within COMMON'.

SETTOPCM This routine is used by PHRGOT to
set a pointer to the top of the
currently-defined COMMON.

INPUTSAV This subroutine will save the
EBCDIC image of the current com­
mand being executed and PFINPUTA
of PFILE. It will also save the
residual of the last record fol­
lowing the semicolon in PFINPUTB
of PFILE.

PSC50614 If the input command is already
been saved, control is returned
to the caller.

PSC50616-
PSC50618 The input saved switch checked at

PSC50614 is turned on and the
command sequence number in the
resident loader is incremented.

INPUTSVA

PSC50632

PSC50636-

This entry to this routine is
used by TESTCHKE to push a com­
mand from a check entry.

If entry
INPUTSVA,
PSC50764.

to this routine was at
transfer is to

PSC50640 If this is a repeated command,
the repeat switch in the resident
loader is turned off. Otherwise,
transfer is to PSC50730 to save
the current command.

PSC50648-
PSC50714 If this is not a check entry push

and the phrase print option is
on, the current command is
printed on the current PLAN out­
put device before returning con­
trol to the caller.

PSC50730-
PSC50762 This code will check for a resid­

ual record following a semicolon
in the command. If a residual is
found it is written to PFINPUTB
of PFILE. Otherwise, the input
on disk switch checked at PSC092
is inverted.

PROBLEM LANGUAGE ANALYZER (PLAN)

SYSTEM MANUAL

PSC50764 The current command is written to
PFINPUTA and transfer is to
PSC50648.

DFJPSRTA, DFJGSRTA

DJFPSRTA and DFJGSRTA are the the block
sort routines for the PLAN DYNAMIC file and
PERMANENT file respectively. They are the
first of two loads and may be required to
accomplish the sort. This modules reads a
core load from the file, sorts it and
returns it to the file. This process
continues until end-of-file. As each is
written out, a sequence check is made
against the preceding block. If no
sequence check has occurred when end-of­
file is encountered the name of the in­
place merge module is expected from the
pop-up list. This module is invoked
through the LCHEX subroutine by the subrou­
tines PSORT and GSORT. The technique used
for sorting is to create an ordered string
of record pointers using a binary chart
search on the existing string. After the
record pointers have been ordered, the
records themselves are rearranged to their
proper place in core and the block is
written out. The only difference between
these modules is that DFJPSRTA uses the
READ/WRITE subroutines and DFJGSRTA uses
the RDATA/WDATA subroutines.

RTA1130

RTA1370

RTA2570

RTA2630

RTA2970

RTA3030

RTA3170

RTA3370

ERASABLE COMMON
the address of the
fields is saved.

is located and
SORT control

The SORT
validated.

control fields are

The amount of available core is
calculated. On OS this will be
all of the available program area
outside of this module. On DOS,
it is a fixed buffer within this
module.

The SORT area pointers are calcu­
lated and initialized.

IDC2) of the file control block
is rounded to the nearest record
length.

If there are less than two rec­
ords in the file, transfer is to
RTA3430.

The last record save area is
cleared to ensure that the
sequence check on the first block
is correct.

If an end-of-file has not
occurred, transfer is to RTA3830.

FLOWCHART NARRATIVES 87

PROBLEM LANGUAGE ANALYZER (PLAN)

SYSTEM MANUAL

RTA3430

RTA3550

RTA3650

RTA3670

RTA3830

RTA4030

RTA4210

RTA4350

RTA4470

RTA4550

RTA4570

RTA4610

RTA4630

RTA4770

RTA5470

RTA5790

RTA5970

If no sequence breaks have
occurred during the block sort,
transfer is to RTA3670.

The sort record area pointers are
reset for the merge.

Exit is to the next load entry in
DFJPLAN to call the MERGE module.

Exit is to the next load entry in
DFJPLAN but the pop-up list is
updated so that the merge is
skipped.

A block
the file.

of records is read from

The number of records in the sort
area is calculated.

The SRA list is initialized.
This is a list of pointers to
each record in the sort area.

If only one record is in the sort
area, transfer is to RTA6190.

The initial SRA list string is
created. This is done by sorting
the first two records in the sort
area and possibly exchanging the
first two pointers in the list ..

The list pointer is set to the
end of the string.

If the list pointer is at the end
of the SRA list, transfer is to
RTA5790.

The subroutine SORT is called to
sort the next two records pointed
at by the LIST pointer.

If the records are in sequence
transfer is to RTA4550.

The current SRA list string
search using a binary sea1rch
method to locate the insert point
for the out-of-sequence record
pointer.

The pointer to the out-of­
sequence record is inserted into
the string and transfer is to
RTA4550.

The SRA list is searched and all
pointers to records that are out
of place are flagged.

All out-of-place records are
exchanged to their correct place
in core.

88 FLOWCHART NARRATIVES

RTA6190

RTA6250

RTA6270

RTA6330

RTA6410

RTA6590

SORT

RTA7350

RTA7430

RTA7550

RTA7590

RTA7630

RTA7650

RTA7670

RTA7690

RTA7750

RTA7790

15 JULY 1969

The subroutine SORT is called to
check the last high record int the
previous block against the! low
record in this block.

If a sequence break has not
occurred, transfer is to RTA6410.

If this is not the first sequence
break, transfer is t.o RTA6410.

The sequence break JKDIS is saved.

The last record in this block is
saved in the last record ~;aved
area.

The block
the file
RTA3370.

is
and

written back onto
transfer is to

The SORT subroutim~ compareH two
records and returns the results
of the compare i:n the register
WINNER.

The address of the .l\ and B rec­
ords is determined.

The field
record of
determined.

displacement in
the SORT field

the
is

The fields are compared. Th:i.s is
done by calling an approp:riate
compare routine for the typ•~ of
sort involved. Return is to
RTA7590 if the fields are e1ual ..

If this is not the last control
field transfer is to RTA7430.

This is the return point if the
compare routines find an unequal ..
The address of the A area r•ecord
is set to be the WINNER.

If the records were not equal,
transfer is RTA7670; other~ise,
control is returned to the caller
with the A record as the WINNER ..

If the A record was high transfer
is to RTA7750.

If this is not an ascending sort
transfer is to R'I'A7790; other­
wise, control is returned with
the A record as a WINNER.

If this is not a de~scending sort
transfer is to RTA7790; OTHER­
WISE, THE A areat record is
returned as the WINNER.

The B area record is set as the
WINNER and control is returned to
the caller .•

15 JULY 1969

DFJPSRTB. DFJGSRTB

DFJPSRTB and DFJGSRTB are the in-place
merge routines for the DYNAMIC file and
PERMANENT file sort respectively. They are
the second of two loads and may be required
to accomplish the sort. These modules are
only loaded if DFJPSRTA or DFJGSRTA find a
sequence break. A merge is done by relo­
cating the out-of-sequence block to the
managed area file and then performing a
descending merge.. The difference between
the two modules is that DFJPSRTA uses the
READ/WRITE subroutines while DFJGSRTA uses
the RDATA/WDATA subroutines.

RTB1010

RTB1450

RTB1850

RTB2270

RTB2530

RTB3030

RTB3090

RTB3170

RTB3230

RTB3310

RTB3410

RTB3490

RTB3650

RTB3950

The size of the
available on the
file is calculated.

working
managed

area
area

The merge area pointers are cal­
culated and initialized~

The next out-of-sequence block is
located. This is done by reading
two records which bridge two
blocks in the file and comparing
them for a sequence break.

The merge pointers are
initialized.

The count for the READ operation
is determined. This may be less
than a full block depending on
the size of the work area avail­
able in the managed area file.

If an end-of-file has not
occurred on the file transfer is
to RTB3170.

The merge switch is set to force
the beginning of the merge at the
end of the READ of this block.

If there is room in the managed
area file transfer is to RTB3410.

The size of the managed area file
work area is used for a count to
read the file.

The merge switch
force the merge to
this read.

is set on to
the end of

A block is read from the file.

A check is made for an out-of­
sequence record. If this occurs,
transfer is to RTB4310.

The block is written onto the
managed area file.

If the merge switch is on. trans­
fer is to RTB4450. The last

RTB4230

RTB4310

RTB4450

RTB4470

RTB4670

RTB4770

RTB4830

RTB4950

RTB5250

RTB5290

RTB5450

RTB5470

RTB5570

RTB5690

RTB5730

RTB5770

RTB5910

RTB5950

RTB6090

RTB6150

PROBLEM LANGUAGE ANALYZER (PLAN)

SYSTEM MANUAL

record in the block is saved to
perform a sequence check on the
next block.

A check is made to see if the
merge can start because the last
record of the block just read is
higher than the last record of
the blocks that were in sequence
in the file. RTB2530 to read the
next block from the file.

The KDIS for the
record is saved
cycle.

The MERGE switch is

The working area
are initialized.

The merge areas are

The next
located.

output

sequence break
for the next

reset.

file pointers

primed.

buff er is

If the output area is not full
transfer is to RTB5290.

The output area is rewritten onto
the file.

If the end-of-merge switch is on,
transfer is to RTB1850.

If the B area is being flushed
transfer is to RTB5570.

The subroutine SORTZ is called to
compare the A and B records.

If the A record was in sequence,
transfer is to RTB5690.

The B area record is set as a
WINNER. Transfer is to RTB5730.

The A area record is set as a
WINNER.

The winning record is moved to
the output area.

If the B record was the
transfer is to RTB6750.

WINNER,

If the A record area is empty,
transfer is to RTB6090.

The A area record pointer is
updated. Transfer is to RTB4770.

If an end-of-file has not
occurred on the PLAN file, trans­
fer is to RTB6270.

If the B area is being flushed,
transfer is to RTB6230.

FLOWCHART NARRATIVES 89

PROBLEM LANGUAGE ANALYZER (PLAN}

SYSTEM MANUAL

RTB6190

RTB6230

RTB6270

RTB6490

RTB6630

RTB6750

RTB6790

RTB6930

RTB6970

RTB7270

RTB7330

SORT

RTB8170

RTB8250

RTB8390

RTB8410

RTB8450

RTB8470

RTB8490

The flush switch is set for the B
area and transfer is to RTB4770.

The end-of-merge switch is set
and transfer is to RTB4950.

The KDIS and KOUNT for the next A
area block are calculated.

The A area pointers a.re
initialized.

The next A area block is read and
transfer is to RTB5910.

If the B area is empty, transfer
is to RTB6930.

The B area
updated and
RTB4770.

record pointer is
transfer is to

If an end-of-file has occurred on
the working area file, transfer
is to RTB6230.

The KDIS and KOUNT for
working area file
calculated.

the next
block are

The B record area pointers are
reset.

The next block is read from the
working area file and transfer .is
to RTB6750.

The SORTZ subroutine is used to
compare two records. The result
is returned by branching to ei­
ther caller plus zero or caller
plus 4.

The sort control
located.

fields are

The next sort field is located.

The fields are compared. This is
done by calling an appropriate
compare routine for the type of
sort involved. Return is to
RTB8410 if the fields are equal.

If this is not the last field,
transfer is to RTB8250.

The A area record is set as a
WINNER.

If the records were not equal,
transfer is to RTB8490: other­
wise, control is returned to the
caller with the A record as the
winner.

If the A record was high transfer
is to RTB8570 .•

90 FLOWCHART NARRATIVES

15 JULY 1969

RTB8570 If this is not a descending sort,
transfer is to R'l'B8610; other­
wise, control is returned to the
caller with the A record as the
winner.

RTB8610 The B area record is set as the
winner and control is returned to
the caller.

DFJPSTSV

'I'his module provides the statement save
facility of PLAN. It is loade!d for execu­
tion under any of the following conditions:

1. The standard PLAN command SAVE has been
given to read and save numbered com­
mands in the input stream.

2. Scheduled by PSCAN to save! a numbered
command found in the input stream.

3. Scheduled by the resident loader when
PLAN Switch Word 2 contains the number
of a command to be retrieved for
execution.

Halts: None

Error conditions:
duced directly by
range of 170-179.

PLAN diaqnostics pro­
this module are in the

Subroutines:
Monitor: USBSC
PLAN: GTVAL, PFSPC, FIND, READ, NDEF,
TRUE, FALSE, WRITE, PSTSl 1, PUSH, INIPUT,
PUNPK, PPACK, LRET, PSBFB, PLINP, PEOF,
PAIN

Switches:
PLAN Switch Word 1 - Used for saving
ID(l) (file number> of the save statement
file.
PLAN Switch Word 2 - Contains the number
of the last statement to be executed.
PLAN Switch Word 3 - Contains the number
of the last statement to be executed plus
drive code, times 2048.

PSTSV­
PST520

PST540-
PST560

PST590-
PST750

If Switch Word 2 doE~s not contain
a statement number, transfer is
to PST1440 to perform the ex:pli­
ci t of implicit savE~.

The file number is picked up from
PLAN SWi tch Word 1 and FINDI. is
called to open the file.

If the file is less than 28 words
long or the first word of the
file is not a logical TRUE, the

15 JULY 1969

PST770-
PST810

PST840-
PST890

PST895-
PST910

PST930-
PST1050

PST1070-
PST1090

PST1110-
PST114 0

PST1170

PST1190

PST1200-
PST1250

28-word header is created and
written back to the file.

ID(2) of the file control block
is set to the file size indicated
in the file header. On an execu­
tion request transfer is to
PST930, otherwis~, transfer is to
PST1500 or PST2630 for implicit
or explicit save respectively.

Switch Words 1 and 3 are cleared
to suppress further execution of
save statements. The file number
is used as an .error code and the
error number is set to 171 to
indicate an invalid saved state­
ment file.

switch Word 2 is cleared to sup­
press SAVE statement execution
and PSTl is called to process the
error and return control to the
resident loader.

This code chains through the 26-
word control blocks until the
control block containing the
searched for statement number is
found. If there is no control
block for this statement, error
172 is given to indicate the
statement does not exist.

If the statement does exist, the
first word is read into core.

If the statement is not where it
should be in the file, error 173
is given to indicate that the
file has been destroyed or
overwritten.

If Switch Word 3 indicates there
is another statement to be
executed, transfer is to PST1260
to find the next higher statement
in the file less than Switch Word
3.

Switch Word 2
indicate the
been executed.

is set to O to
last statement has

The full statement is read into
core, the current statement save
file number is saved in PLAN
Switch Word 1 and PUSH is called
to pass the command and control
to PSCAN.

PST1260-
PST1400

PST1440-
PST1480

PST1500-
PST1610

PST1630-
PST1670

PST1700-
PST2100

PST2170-
PST2420

PST2450-
PST2480

PST2500

PROBLEM LANGUAGE ANALYZER (PLAN)

SYSTEM MANUAL

This loop searches the file for
the next statement to be
executed. This is done so that
Switch Word 2 will point to the
next statement on exit from
PSTSV. If no statement is found
with a number less than that
found in Switch Word 3, then
Switch Wo~d 2 is cleared to indi­
cate that all statements have
been processed.

On an implicit or explicit save,
this code is used to open the
file.

On an implicit save, this code is
used to access the phrase image
from PFINPUTA in PFILE. The
statement number is collected
from the beginning of the command
and the numeric characters are
replaced with blanks. This is
done so that later execution of
the command from the file will
not cause PSCAN to execute anoth­
er implicit save.

This code searches
see if a statement
the same number.

the file to
exists with

This code will delete the current
statement from the file and up­
date the file to reflect the
deletion. In other words, all of
the information in the file
beyond the statement deleted is
moved down over the deleted
statement. The control block
chain pointers and individual
statement pointers in each con­
trol block are updated to reflect
the shift.

This code chains through the con­
trol blocks until the control
block for the statement to be
added is found. If new control
blocks are needed, they are
created and chained together.

The pointer to the statement
being added is placed in the
control block and the block is
written to the file.

The statement to be added is
written to the file.

FLOWCHART NARRATIVES 91

PROBLEM LANGUAGE ANALYZER (PLAN)

SYSTEM MANUAL

PST2540-
PST2560

PST2590

PST2630-
PST3035

PST2630-
PST2670

PST2680

PST2700-
PST2710

PST2730-
PST2740

PST2770-
PST2810

PST2840-
PST2860

PST2900

PST2920

PST2950

PST2990-
PST3035

The second word of the file head­
er is updated to indicate the
next avalable space in the file
and the file number is saved in
PLAN Switch Word 1.

If this is an implicit save, LRET
is called to return control to
the resident loader.

This code will read a statement
from the input stream.

PSBFB is called to set up the
input buffer for the current PLAN
input device. The statement
number is initialized to 0 and
the pointer is initialized to the
first character in the statement.

The number collect switch is
turned on to indicate collection
of a statement number is legal.

PLINP is called to read a record
from the current PLAN input
device. If logical or physical
end-of-file was found, control is
returned to the resident loader.

The next character in the state­
ment is read.

If the number collect switch is
on and this is a numeric charac­
ter, it is added to the statement
number.

The number collect switch is
turned off and the number of
characters in the statement is
incremented by 1.

If the semicolon at the end of
the statement has been found,
transfer is to PST2970.

If all 75 characters have been
processed, transfer is to PST2700
to read t:1e next record.

If the character is not a
or numeric, transfer
PST2840 to turn off the
collect switch.

bla.nk
is to
number

If this was a non-numbered state­
ment, PUSH is called to pass the
statement and control to PSCAN.

92 FLOWCHART NARRATIVES

PST3080-
PST3270

DFJPTDMP

15 JULY 1969

This code chains through the con­
trol blocks until the control
block containing the statement
number to be added is found. If
new control blocks are nee!ded,
they are created and chztined
together.

The DFJPTDMP module is the utility module
to provide a tabular listing of the PLAN
phrases that exist in PFILE, that is, the
PLAN file dictionary. This module requires
use of all of a 840-word communiczttion
array. No data may be carried over through
use of this module. It must be called by
the DUMP PHRASES command which in turn
invokes execution of the CONTINUE DUMP
PHRASES command. These commands set up
extensive literal information, constant
data, and control parameters. The DFJPTDMP
module is the mainline for the phrase table
dump. It calls several subroutine modules.
The dump is structured in this manner
because of its use on both System/1130 and
System/360. On the 1130 system, the entire
core image module is too large for an SK
memory. Therefore, the subroutines that
dump some of the tables are loaded as
monitor system locals when running in an BK
environment. When running in a 16 or 32K
<:mvironment, the modules are not localed
and therefore, throughput is improved. The
system, although written in FORTRAN, is
written to dump the phrase table on both
the 1130 System and the System/360 by a
technique that makes the difference in
construction of the dictionaries on those
two systems invisible. The extent of the
dump produced is controlled by the phrase
with a parameter called LEVEL. If LEVEL is
zero or one, only the header of the phrase
is printed. The maximum value for LEVEL is
six. Any value of six or greater produces
an entire tabulated listing of the phrases.
A value in between zero and six produces a
dump of the internal tables up to and
including the table number equal to the
LEVEL number, that is, if the LEVEL level
is four, the internal dictionary entry
tables 1, 2, 3, and 4 will be dumped. The
PBTST routine is used extensively in the
dump to do bit extractions which then
allows the dump activity to be programmed
in the FORTRAN language.

PTD770 The internal PFILE record size is
set as either 64 bits or 80 bits.
This choice of internal bit size
structre makes the difference in
the record size on the System/360
and 1130 invisible. Since a
record on the 1130 system is one
sector, that is 320 words., the
record is ivided into 64ths

15 JULY 1969

PTD830

PTD850

PTD880

PTD900

PTD920

PTDlOOO

PTD1020

PTD1040

PTD1060

PTD1080

PTDllOO

yielding an 80 bit internal reco­
rd size. System/360 yields a
record size of 64 bits. This
detern.ina ti on is based upon a
value set by the DUMP PHRASES
command. The value is the
machine type on which the dump is
being run,, that is, 1130 or 360.
If the system type is not in the
command a completely garbage dump
can be anticipated.

The GDATA subroutine is called to
open the PFILE. As file number
255, the drive code is picked up
as the parameter supplied by the
DUMP PHRASES command.

The XACES subroutine is called to
read the phrase validity table.
The XACES subroutine masks the
backward construction of the 1130
PFILE by converting the sector
number into the proper GDATA dis­
placement for the appropriate
system upon which the dump is
being produced.

A single buff er set A is assigned
to the output device.

The printer is skipped to a new
page.

A loop is initialized for the 256
checksums.

The synonym indicators are reset.
The synonym indicators are words
that contain the displacement and
sector number which contain the
next phrase of equal checksum in
the phrase chain. If the indica­
tors are zero no phrase of equal
checksum remains in the chain.
The synonym indicators are
printed at the right-hand side of
the phrase table dump.

A check is made in the validity
table to determine if there is a
phrase with this check sum. If
there is not, transfer is to
PTD2850.

The sector
the start
determined.

number that includes
of the phrase is

The check sum heading line is set
up.

The check sum number is set to
the print buffer.

The internal record displacement
to the start of the phrase is
calculated. Since a phrase must

PTD1180

PTD1200

PTD1230

PTD1240

PTD1250

PTD1320

PTD1330

PTD1350

PTD1370

PTD1390

PTD1410

PTD1440

PTD1510

PTD1540

PTD1550

PROBLEM LANGUAGE ANALYZER (PLAN)

SYSTEM MANUAL

by definition be included within
two sectors, two sectors are
always read.

The DFJPTDPl subroutine is called
to produce a heading line for the
phrase. The heading line
includes such things as the
phrase type~ the phrase name, and
level, and also includes the
synonym indicator bits. The
DFJPTDPl subroutine is called as
a PLAN LOCAL.

If the phrase table dump is run­
ning under level 0 or 1 transfer
is to PTD2850.

A double space is set up for the
printer.

The internal bit index is incre­
mented by 16.

A determination is made to see if
there are additional internal
tables in this phrase entry. If
there are not transfer is to
PTD2850.

The XTRAC subroutine is called to
extract the 8-bit table length.

If this is a null table transfer
is to PTD1370.

The DFJPTDP2 subroutine is called
to dump the initialization values
The DFJPTDP2 subroutine is called
as a monitor system LOCAL on the
8K version of the 1130 phrase
table dump.

The XTRAC subroutine is called to
extract the 8-bit table control
code.

If this is the end of this phrase
entry transfer is to PTD2850.

A check is made to determine that
this a header for a new internal
phrase table entry. If it is not
transfer is to PTD2750.

If we are running at
transfer is to PTD28508.

level 2

The XTRAC subroutine is called to
extract the 8-bit table length.

If this is a null table transfer
is to PTD1570.

The DFJPTDP3 subroutine is called
to dump the symbol table. The
DFJPTDP3 subroutine is called as
a PLAN LOCAL.

FLOWCHART NARRATIVES 93

PROBLEM LANGUAGE ANALYZER (PLAN)

SYSTEM MANUAL

PTD1570

PTD1600

PTD1620

PTD1640

PTD1660

PTD1720

PTD1750

PTD1770

PTD1780

PTD1790

PTD1810

PTD1830

PTD1850

PTD1870

PTD1890

PTD1920

PTD1930

PTD1940

The XTRAC subroutine is called to
extract the 8-bit table control
code.

If we are running at level 3
transfer is to PTD2850.

The internal switch is set to
indicate that the program list to
be dumped are those programs
associated with the phrase entry
keyword program.

A test is made to determine if
there additional internal tables
in this phrase entry. If there
is not transfer is to PTD2850.

A test is made to determine if
this is a valid header for an
internal phrase entry table. If
it is not transfer is to PTD2750.

The XTRAC subroutine is called to
extract the 8-bit table length
control indicator.

A test is made to determine if
this is a null table. If it is
transfer is to PTD1960.

The header line for the internal
table 4 is set to print.

The table 4 header is printed.

The XTRAC subroutine is called to
extract the first bit of the
program entry.

If the bit is on the entry is
determined to be alphabetic and
transfer is to PTD1890.

A 32-bit binary field
extracted by a call to the
subroutine. If the 32-bit
is all zeros transfer
PTD1890.

is
XTRAC
field

is to

The numeric zero program number
is set to print.

The bit index is incremented by
64. Transfer is to PTD1940.

The EXTRAC subroutine is called
to extract a 64-bit program name
entry.

The bit index is incremented by
64.

The program name is set to print
by a call to PAOUT.

A program name or number
printed.

is

94 FLOWCHART NARRATIVES

PTD1950

PTD1960

PTD1980

PT2000

PTD2060

PTD2080

PTD2100

PTD2140

PTD2160

PTD2200

PTD2260

PTD2280

PTD2300

PTD2320

15 JULY 1969

A check is made to determine if
this internal table is entirely
processed. If it is not transfer
is to PTD1490.

If the program list which we just
processed was associated with the
phrase keyword PROGRAM, proces­
sing will continue at PTDl980.
If it is associated with the
keyword EXIT transfer is to
PTD2650. If it is associated
with the keyword VERB transfer is
to PTD2680.

The XTRAC subroutine is called to
extract the 8-bit table control
code for table 5.

A test is made to determine if
there are additional internal
tables in this phrase entry. If
there are not transfer is to
PTD2850.

A check is made to determine if
the indicator is a valid indica­
tor for a new internal table. If
it is not transfer is to PTD2750.

The XTRAC subroutine is called to
extract the 8-bit table length.

A test is made to determine if we
are running at DBUG level 4. If
we are transfer is to PTD2850.

A test is made to determine if
there are check entries for this
phrase. If there are not trans­
fer is to PTD2260.

Table 5 header is set to print.

A test is made to determine if
all check entries have been pro­
cessed. If they have transfer is
to PTD2260. otherwise, the
DFJPTDPS subroutine is callerl to
dump the check entries.

The XTRAC subroutine is called to
extract the 8-bit table control
code.

A test is made to see if this is
the end of the phrase entry, that
is, a test for 7FFF. If it is
transfer is to PTD2850.

A test is made to determine that
this is a valid new table indica­
tor. If it is not transfer is to
PTD2750.

The XTRAC subroutine is called to
extract the 8-bit table length
code.

15 JULY 1969

PTD2340

PTD2390

PTD2410

PTD2490

PTD2470

PTD2490

PTD2510

PTD2530

PTD2550

PTD2600

PTD2610

PTD2630

PTD2650

PTD2680

PTD2750

PTD2810

A test is made to determine if we
are running at DBUG level 5. If
we are transfer is to PTD2850.

A test is made to determine if
there are expressions associated
with this phrase. If there are
not transfer is to PTD2480.

The DFJPTDP6 subroutine is called
to dump the phrase associated
expressions,. DFJPTDP6 is called
as a PLAN LOCAL.

The internal switch is set to
indicate that the program list to
be dumped is associated with the
keyword EXIT.

The XTRAC subroutine is called to
extract the 8-bit table control
code.

A test is made to determine if
the control code is 7FFF in the
phrase indicator. If it is
transfer is to PTD2850.

A test is made to determine if
the control code is a valid new
table indicator. If it is not
transfer is to PTD2750.

The XTRAC subroutine is called to
extract the 8-bit table length
code.

A test is made to determine if we
are running at DBUG evel 5. If
we are transfer is to PTD2850.

A test is made to determine if
the program list to be dumped is
associated with the phrase key­
word EXIT. If it is not transfer
is to PTD2630.

The EXIT list header is set to
print and transfer is to PTD1790.

A VERB list head is set to print.
Transfer is to PTD1790.

The internal switch is set to
indicate that the program list to
be dumped is associated with VERB
and transfer is to PTD2470.

The printer is skipped one line.

The contents of the switch words
is dumped in hexadecimal
notation.

A DFJPTDMP module is terminated
by a CALL LRET.

PTD2820

PTD2850

PTD2870

PTD2890

DFJPTDPl

PROBLEM LANGUAGE ANALYZER (PLAN)

The synonym
accessed and
PTD1160.

SYSTEM MANUAL

indicators are
transfer is to

A test is made of the synonym
indicators. If the synonym indi­
cators are zero, there is no
additional synonym phrase. If
there is a synonym transfer is to
PTD2820.

If all 250 check sums have been
processed transfer is to PTD2890.
Otherwise, the loop is incre­
mented to the next check sum and
transfer is to PTDlOOO.

The end of the phrase table dump
message is set to the print area
and printed. Transfer is to
PTD2810.

The DFJPTDPl module is a special purpose
module that is used only by the phrase
table dump. It is of absolutely no func­
tion in any other context DFJPTDPl produces
the dump of the phrase header information
as controlled in the header information for
each phrase entry. Four indicators JSECT,
L4, LS, and NBUCK which are used commonly
by the mainline DFJPTDMP and this subrou­
tine are passed in the call list for
DFJPTDPl. Additional information common to
both the mainline and the subroutine are
passed through COMMON.

PT1760

PT1780

PT1830

PT1840

PT1850

PT1870

PT1890

PT1900

A printer double space is set up.

The literal mask for the header
line is set to the print area.

The XTRAC subroutine is called to
extract the 1-bit level zero
indicator.

If this is a level zero phrase
transfer is to PT1890.

The XTRAC is called to extract
the 3-bit level indicator.

If this is a blank level phrase
transfer is to PT1920. Other­
wise, transfer is to PT1900.

The level indicator is set to a
negative one. The negative 1
value is established to allow
entry into the COMMON processing
that is utilized for all other
level indicator processing.

The level code
phrase entry . is
one.

defined in
decremented

the
by

FLOWCHART NARRATIVES 95

PROBLEM LANGUAGE ANALYZER (PLAN)

SYSTEM MANUAL

PT1920

PT1940

PT1960

PT11020

PT11040

PT11060

PT11090

PT11100

PT11120

PT11130

PT11150

PT11160

PT11180

PT11220

The XTRAC subroutine is called to
extract the 8-bit phrase size
indicator.

The phrase entry size is set to
the output area. The entry size
is the number of internal PFILE
records, that is the number of
80-bit or 64-bit records in PFILE
on the 1130 PLAN system or
System/360 PLAN system
respectively.

The GDATA displacement of the
phrase entry is set to output.
This value is printed to allow
easier finding by the reader and
by the user if looking at a
straight dump of PFILE.

The XTRAC subroutine is called to
extract the 1-bit phrase type.
Phrase types are either object or
verb.

A test is made to determine if
this is an object phrase. If it
is transfer is to PT11090A

VERB is set to the print line to
override the object designation
as established in the phrase
mask.

The XTRAC subroutine is called to
extract the 6-bit displacement to
a chained phrase. This displace­
ment is what is called synonym
indicators in the flowchart of
the phrase table dump routine.

A dusplacement to the synonym
phrase is set to the print area.

XTRAC is called
8-bit relative
synonym phrase.

to extract the
sector of the

The relative sector of the
synonym phrase is set to the
print area.

A pointer is set to the beginning
of the phrase name in the phrase
entry table.

The print position indicator
set to print position 17
output of the phrase name.

is
for

XTRAC is called
three-character
entry.

to extract a
phrase name

A three-name indicator is set to
the print area.

96 FLOWCHART NARRATIVES

15 JULY 1969

PT11230 The print position indicator is
indicated by four and the inter­
nal bit pointer is set to the
next phrase entry location.

PT11290 A test is made to determine if
the next portion of the phrase
entry table contains another word
of the phrase name or the start
of internal table 2. If there is
another word in the phrase name
transfer is to PT11180.

PT11340 The phrase entry header lirn~ is
printed. A return to the main­
line is executed.

DFJPTDP2

This module is a single function module
used in conjunction with the phrase table
dump module. It has no other function in
any other context. Data required for this
subroutine and by the mainline is pa.ssed
through COMMON. There are no calling
parameters.

PT2750

PT2790

PT2800

PT2830

PT2850

PT2900

PT2910

PT2940

PT2970

PT21000

PT21010

The table 2 header
printed.

line is

The XTRAC subroutine is called to
extract the 1-bit £ormat
indicator.

If the subscript for this ini­
tialization value is an expres­
sion transfer is to PT2940.

XTRAC is called to extract the
14-bit constant subscript.

The constant subscript is set to
the print area.

XTRAC is called to extract
1-bit format indicator.

the

If this initialization value is
associated with an implied DO
transfer is to PT21160. Other­
wise, transfer is to PT21280.

XTRAC is called to extract the
15-bit name associated with this
symbolic subscript.

The name
area.

is set to the print

XTRAC is called to extract the
1-bit indicator that indicates
whether or not this is an implied
DO.

If this is an implied DO transfer
is to PT21160.

15 JULY 1969

PT21030

PT21050

PT21110

PT21160

PT21200

PT21220

PT21230

PT21250

PT21280

PT21290

PT21320

PT21340

PT21360

DFJPTDP3

XTRAC is called to extract the
15-bit subscript.

The subscript is set to print.

The bit pointer is incremented by
64 and transfer is to PT21340.

XTRAC is called to extract the
15-bit implied DO displacement.

XTRAC is called to extract the
16-bit implied DO increment.

The increment is set to print.

XTRAC is called to extract the
32-bit initialization value.

The bit index is incremented by
32.

The 32-bit initialization value
is extracted.

The initialization value is set
to print.

The bit index is incremented by
48.

The table 2 line is printed.

A test is made to determine if
table 2 is completely processed.
If it is not transfer is PT22790;
otherwise, a return to the main­
line is executed.

This module is a single function module
used exclusively with the phrase table
dump. It has no use in any other connota­
tion. All parameters required by this
subroutine and by the mainline are passed
through COMMON.

PT3760

PT3790

PT3820

PT3850

PT3870

PT3880

The table 3 header is set to the
print area and is printed.

XTRAC is called to extract the
15-bit data name.

The name is set to print.

The bit index is incremented by
15.

XTRAC is called to extract
2-bit user exit number.

the

If there is not a user exit
associated with this data name
transfer is to PT3920.

PT3900

PT3920

PT3940

PT31030

PT31040

PT31060

PT31080

PT31140

PT31170

PT31180

PT31200

PT31210

PT31220

PT31250

PT31320

PT31330

PT31350

PT31370

PT31390

PT31420

PT31430

PROBLEM LANGUAGE ANALYZER (PLAN)

SYSTEM MANUAL

The number of the user exit is
set to the print area.

XTRAC is called to
format indicator.
indicator is a 1 bit
of the variable
otherwise, it will
indicating REAL.

extract the
The format

if the mode
is integer;

be a 0 bit

The format indicator either an R
or an I is set to the print area.

XTRAC is called to extract the
1-bit scale factor indicator.

If there is not a scale factor
transfer is to PT31200.

XTRAC is called to extract the
3-bit scale factor.

XTRAC is called to extract the
1-bit scale factor sign .•

XTRAC is called to extract the
9-bit subscript.

The bit index is incremented by
179.

If the subscript is zero transfer
is to PT31320; otherwise, trans­
fer is to PT31290.

XTRAC is called to extract the
13-bit subscript.

The bit index is incremented by
17.

If the subscript is zero transfer
is to PT31320.

The subscript is set to the print
area and transfer is to PT31500.

The print position pointer is set
to position 46.

The bit index is incremented by
eight.

XTRAC is called to extract the
8-bit expression character.

If the character is a
transfer is to PT31460.

comma

The expression character is set
to the print area.

The print
incremented
position.

position
to the

pointer is
next print

The bit index is incremented by
eight and transfer is to PT31350.

FLOWCHART NARRATIVES 97

PROBLEM LANGUAGE ANALYZER (PLAN)

SYSTEM MANUAL

PT31460

PT31500

PT31520

DFJPTDP5

The bit index is incremented to
round out to the end of a full
word.

The expression line is printed.

If all expressions have been pro­
cessed for this phrase, an exit
is made from this routin~; other­
wise, transfer is to PT3790.

This module is a special purpose module
used only in conjunction with the phrase
table dump module. It produces the dump of
the internal check entry table.

PT5760

PT5770

PT5790

PT5970

PT5990

PT51010

PT51080

PT51090

PT51110

PT51120

PT51130

PT51160

PT51180

PT51210

PT51240

A test is made to determine if
the entire table has been pro­
cessed. If it is transfer is to
PT51960.

XTRAC is called to extract a
2-bit test type, that is, to
determine whether the test is for
TRUE, FALSE, REAL or NOT FALSE.

The test type is set to print.

XTRAC is called to extract a
13-bit subscript.

XTRAC is called to to extract the
1-bit suffix indicator. This
indicator determines whether
there is an additional suffix
record in internal table 5.

The subscript is set to the print
area.

The bit index is incremented by
16.

XTRAC is called to extract the
13-bit suffix indicator.

If there is not a suffix record
transfer is to PT51410.

The bit index is incremented by
16.

This check entry line is printed
and transfer is to PT5760.

XTRAC is called to extract the
1-bit format indicator.

XTRAC is called to extract the
15-bit symbol.

The symbol is set to print.

The bit index is incremented by
16 ..

98 FLOWCHART NARRATIVES

PT51260

PT51270

PT51280

PT51290

PT51320

PT51350

PT51370

PT51380

PT51410

PT51430

PT51520

PT51530

PT51550

PT51570

PT51580

PT51590

PT51610

PT51620

PT51630

PT51640

PT51660

PT51670

15 JULY 1969

A test is
there is a
If there
PT51320.

made to determine if
relative subscript.
is transfer is to

The subscript is set equal to 1.

The subscript is set to print.

The bit index is incremented by
13 and transfer is to PT51090.

Plus sign is set to output.

XTRAC is called to
16-bit subscript.
PT51090.

extract the
Transfer is to

The subscript is set to the print
area.

The bit index is incremented by
32. DICK: is transfer to
PT51090 required?????

XTRAC is called to extract the
2-bit suffix type indicator.
This determines whether the suf­
fix is a program list, a literal,
a subscript~ or a push phrase.

The action code, that is an A, c,
P or a blank, is set to print.

XTRAC is called to extract the
14-bit subscript.

If there is not a suffix record
transfer is to PT51570.

The subscript is set to print.

The suffix switch is reset.

The bit index is incremented by
16.

If there is not a suffix record
transfer is to PT51160.

If the action list is a program
list transfer is to PT51750.

The number of characters in the
action list is determined.

The print position indicator is
set to 34.

XTRAC is called to extract two
characters from the action list.

The two characters are set to the
print area.

The bit index is incremented by
16.

15 JULY 1969

PT51680

PT51690

PT51710

PT51750

PT51770

PT51800

PT51820

PT51830

PT51850

PT51860

PT51870

PT51900

PT51930

PT51940

PT51960

DFJPTDP6

The print position pointer is
incremented by 2.

If a full line of print has not
been set up transfer is to
PT51720.

The current line is printed.

If the action list is entirely
processed transfer is to PT5760.

A test is made to determine if
the program is a name. If it is
transfer is to PT51900.

XTRAC
32-bit
list.

is called
entry from

to extract a
the program

If the extracted number is not a
zero transfer is to PT51900.

The program number 0 is set to
print.

The action
incremented .•

list pointer is

The bit index is incremented by
32.

The check entry line is printed.

XTRAC is called to extract the
8-character name.

The program name is set to the
print area.

The action list pointer is incre­
mented. Transfer is to PT51870.

Exit from DPDP5 is to the next
sequence instruction in the
phrase table dump program.

This module is a special purpose module
used only in conjunction with the phrase
table dump module. It has no other func­
tion. All data required by the mainline
and by this subroutine are passed through
COMMON.

PT6750

PT6760

PT6780

An internal
indicate the
the program.

switch is set to
initial entry into

XTRAC is called to extract eight
bits.

A test is made to determine if
the character just extracted is a
dollar sign. If it is the begin­
ning of the expression area is

PT6800

PT6850

PT6870

PT6900

PT6920

PT6940

PT6960

PT61010

PT61030

PT61050

PT61160

PT61180

PT61200

PT61220

PT61240

PT61270

PT61290

PT61310

PT61330

PROBLEM LANGUAGE ANALYZER (PLAN)

SYSTEM MANUAL

indicated
PT61710.

and transfer is to

A test is made to determine if
this is the initial entry. If it
is not transfer is to PT6900.

The initial
turned off.

entry switch is

The table 6 header line is set to
the print area and printed.

A test is made to determine if
this variable has a symbolic sub­
script. If it does transfer is
to PT61510~ If this variable
does not have a scale factor
transfer is to PT61420. If the
indicator is invalid transfer is
to PT61930.

XTRAC is called to extract the
3-bit scale factor.

XTRAC is called to extract the
1-bit sign indicator.

The signed scale factor is set to
print.

XTRAC is called to extract the
9-bit subscript.

The subscript is set to print.

XTRAC is called to extract the
1-bit mode indicator that is set
to the print area.

The bit index is incremented by
16.

The print position pointer is set
to postion 32.

XTRAC is called to extract an
2-bit EBCDIC character.

If the character is a comma
transfer is to PT61370.

The extracted character is set to
print.

Print position indicator is
incremented by 1.

If a full line of print is not
set up transfer is to PT61340.

The line
printed.

of expression is

The print position indicator is
reset to position 34 allowing for
an indentation of two spaces of
continue lines.

FLOWCHART NARRATIVES 99

PROBLEM LANGUAGE ANALYZER (PLAN)

SYSTEM MANUAL

PT61340

PT61370

PT61380

PT61390

PT61420

The
8.

bit index is incremented by
Transfer is to PT61200.

The bit index is incremented by
8.

The expression line is printed.

If the entire table has been
processed transfer is to PT61930.
Otherwise, transfer is to PT6760.

XTRAC is called to extract the
13-bit subscript and the sub­
script is set to print. Transfer
is to PT61030.

The following processing is for expressions
with symbolic subscripts.

PT61510

PT61590

PT61610

PT61630

PT61670

The 15-bit associated sym­
bolic name is extracted and
set to print.

XTRAC is called to extract
the 14-bit relative
subscript.

If it is relative 1 transfer
is to PT61670.

The relative subscript and a
plus sign are set to the
print area.

The bit index is incremented
by 32. Transfer is to
PT61180.

The following narrative describes proces­
sing of the dollar sign expressionarea.

PT61710

PT61740

PT61770

PT61790

PT61810

PT61820

PT61830

PT61850

The dollar sign formula area
header is set to the print
area and printed.

XTRAC is called to extract
the 2-bit EBCDIC character.

The bit index is incremented
by 8.

A check is made to determine
if the extracted character
is a comma. If it is trans­
fer is to PT61750.

The extracted character is
set to the print area.

If the current line is not
full transfer is to PT61740.

A line full indicator is
set.

The expression
printed.

line is

100 FLOWCHART NARRATIVES

PT61870

PT61900

PT61920

15 JULY 1969

If a line complete indicator
is set transfer is to
PT61920.

The character index is r•eset
to print position 12.

If there are more expres­
sions to be processed tra.ns­
f er is to PT61740; other­
wise, this subroutine
returns control to the call­
ing phrase table dump module
at the call statement +1.

DFJREN (OS)

Tnis module insures that all direct access
records that are currently in core buffers
are written out on their respective files.
It also closes the sequential files.

R'rN270

R'rN310

R'rN410-
RTN510

The subroutine FLUSH is called to
purge any DYNAMIC file recordB.

The subroutine FLUSH is called to
purge any PERMANENT file records.

The sequential files are closed
and control is returned to thE~ OS
supervisor.

DFJRETN mos>

This module insures that the buffers in
DFJDIOCS are flushed.

DRE290

DRE450

Dli'JSCHB

A call is made to DFJDIOCS to
insure that all buffers are
quiesced.

An EOJ macro is issued to return
control to the DOS supervisor.

This subroutine searches the PERMANENT file
control chain for an open file control
block. If an equal is found, the address
is returned in GPR3.

SCB270

SCB330

SCB370

GPR3 is set to point out the file
control block chain.

A test is made to see if this
control block was the last in the
chain. If yes, control is
returned to the caller indicating
an error.

A test is made to see if this
control block is for the
requested file. If yes, the
address is returned to the caller

15 JULY 1969

DFJSCHN

in GPR3. Otherwise.
control block in the
located and transfer
SCB330.

the next
chain is
is to

This subroutine searches the PERMANENT file
drive chain. If an equal drive is found.
the address of the control block is
returned in GPR3.

SCN290

SCN370

SCN490

The search argument in GPR4 is
set in a work area for the search
and the PERMANENT file drive
chain is located.

A test is made to see
the requested drive.
transfer is to SCN490;
control is returned to
+4.

if this is
If not,

otherwise.
the caller

A test is made to see if this is
the last control block in the
chain. If yes, control is
returned to the caller +O to
indicate no equal drive. Other­
wise, the pointer to the drive
table is stepped and transfer is
to SCN370.

DFJSIOCS (DOS)

This is the sequential file IOCS routine
for DOS PLAN. It handles all the I/O for
card readers. card punches, printers and
magnetic tapes. This routine uses the
subroutines CCBSTART and CCBWAIT along with
SRCHIOC and COMRET in the PLAN loader.

SI0570

SI0710

SI01010

SI01070

SI01130

The TRUE end-of-file indicator is
set in the status byte of the
control block and control is
returned to the caller through
the COMRET exit in the PLAN
loader.

The NOD argument is validated by
calling the subroutine SRCHIOC in
the PLAN loader. If a NOD is
invalid, control is returned to
the caller through the COMRET
subroutine in the loader.

A test is made to see if the
device is capable of satisfying
the request. If not. transfer is
to SI0570.

A test is made to see if the file
is open. If not, transfer is to
SI02930.

A test is made to see if the file
is in the same status. That is,

SI01170

SI01210

SI01250

SI01370

SI01930

SI02130

SI02190

SI02310

SI02350

SI02510

SI02790

SI02930

SI03430

SI03510

SI03630

SI03770

PROBLEM LANGUAGE ANALYZER (PLAN)

SYSTEM MANUAL

if the call type PLINP or PLOUT
is the same as previous calls.
If not, transfer is to SI0570.

A test is made to see if a
physical end-of-file has occurred
on the file. If yes, transfer
SI0570.

A test is made to see if carriage
control is required. If not,
transfer is to SI02130.

If this is a PLINP call, transfer
is to SI01930.

Line count maintenance is
performed.

Carriage control character is set
in the buffer. This character is
set as a result of calling PCCTL.

A check is made to see if the
next buff er is available. If
not, transfer is to SI03430.

The buffer address is updated.

If this is a PLOUT call, transfer
is to SI02510.

If the current card in the buff er
is a /*, //, or URENO card,
transfer is to SI0570. Other­
wise, transfer is to SI02790.

The buffer area is blank.

The new buffer pointer is set in
the control block and exit is to
the caller through the COMRET
subroutine in the loader.

The file is opened. This
includes setting the CCW count
for the data ccw and initializing
the buffer pointers. Transfer is
to SI01210.

If a wait is required on the last
I/O operation, it is issued.

If the carriage control CCW
operation is set to a no-op.

A test is made to see if the
device is a tape. If it is not,
transfer is to SI03770; other­
wise, the carriage control CCW
operation code is set to a valid
mode set character and transfer
is to SI04950.

If the device is not a 1052,
transfer is to SI04390.

FLOWCHART NARRATIVES 101

PROBLEM LANGUAGE ANALYZER {PLAN)

SYSTEM f."'..ANUAL

SI03850

SI04070

SI04150

SI04390

SI04510

SI04730

SI04950

SI04990

SI05010

SI05110

If this is a PLOUT call, transfer
is to SI04150.

The buff er area is cleared and
the CCW count is set and transfer
is to SI04950.

The blanks are backscanned off
the buff er so that the CCW may be
reduced accordingly and transfer
is to SI04090.

A test is made to see if
control is required. If
data address of the data
stepped past the carriage
character in the buffer.

carriage
yes, the

ccw is
control

If this is not a card device
transfer is to SI04730. Other­
wise, a check is made to see if a
stacker select is required. If
yes, the control ccw op code is
set for the appropriate stack
select command and transfer is to
SI04950.

A test is made to see if carriage
control is required. If yes, the
carriage control ccw operation
code is set accordingly.

The data CCW is completed. The
address of the buff er and the ccw
count are stored.

The subroutine CCBSTART in the
loader is called to execute the
I/O operation.

If this file is not double buff·­
ered, a wait is issued. If it is
double buffered, transfer is to
SI05110.

The buffer pointers for the cur­
rent record area are swapped and
transfer is to SI02190.

DFJTRACE (DOS)

This routine provides a tracing capability
for the DOS PLAN system.

DTR190

DTR210

DTR290

DTR410

The skeleton message is moved to
the print area.

If this is a LOCAL
local trailer is
print area.

return, thE~

moved to the

If this is a checkpoint returnw
the checkpoint trailer is moved
to the print area.

The TRACE entries are
This includes the

completed~
origin, the

102 FLOWCHART NARRATIVES

o·rR790

D~rR1110

15 JULY 1969

end, and the entrypoint of the
programs involved.

A GET time
the time is
message.

macro is issued and
placed in the

The TRACE
control is
caller9

line is printed and
returned to the

DFJTRACE (OS)

This module is loaded at initialization
time if the PARM TRACE is specified in the
EXEC JCL control card.

DTR270

DTR310

D'l'R830

D'I'R890

ERL ST

The address of the current output
buffer is located.

The trace time is built dependling
on the type of call which can be
a phrase abort, checkpoint
reload, or a module to be
entered.

The registers are saved and the
return from SIOCS is set.

Exit is to the SIOCS routine~ to
print the line.

The ERLST subroutine is the error list
module of the PLAN error processing module.

ERL390

ERL410

ERRET

The location of blank COMMON is
accessed.

The error list indicator is
turned on within the loader. The
subroutine is terminated by
transfer to the DFJPLAN module.

The following narratives describe the logic
of the ERROR, ERREX, ERRET, and ERRAT
subroutines.

ERR1310

ERR1410

ERR2110

ERR2130

The registers are saved according
to standard convention.

The error message is assembled
within the work area.

The error message is placed in
the error stack.

If the call was to the E~ROR
subroutine the module is tier­
rnina ted with a transfer to
DFJPLAN.

15 JULY 1969

ERR2170

ERR2270

ERR2450

ERR2710

ERR2810

ERR2950

ERR3130

ERR3170

ERR3210

ERR3230

ERR3330

ERR3530

EWRIT

If the immediate mode of error
processing is in effect transfer
is to ERR2430.

If the error stack is found
to be full transfer is
ERR3130 .•

not
to

A save area is set and transfer
is to ERR3330. (DOS)

If a user-exit module is to be
invoked to process the er·ror mes­
sage transfer is to ERR3330.
(OS)

If there is not room
memory for the PERRS
transfer is to ERR3330.

within
module

The ~ocal subroutine call is
initiated to invoke execution of
the PERRS module. Transfer is to
ERR900. (OS)

If this call is to the ERREX
module processing is terminated
by transfer to DFJPLAN.

If this call is to
subroutine processing
otherwise, transfer
ERR3230.

the ERRAT
continues,

is to

The abort indicator is turned on.

The registers are restored and
processing is terminated by a
return to the caller.

PERRS is called via LCHEX.

The save area is released and
transfer is to ERR3130.

The EWRIT subroutine provides a listing of
errors contained in the PLAN error file.
The PLAN error file is DYNAMIC file 255
within DYNAMIC drive o.

EWR610

EWR830

EWR930

EWR950

Registers are saved according to
standard PLAN conventions.

If drive O has been defined for
this PLAN run processing con­
tinues, otherwise, transfer is to
EWR1490.

The FIND subroutine is called to
open logical file 255 on logical
drive 0 ..

If the file was not successfully
opened transfer is to EWR550.

EWR1050

EWR1390

EWR1410

EWR1490

FIND

PROBLEM LANGUAGE ANALYZER (PLAN)

SYSTEM MANUAL

The appropriate record to
printed is assembled.

be

The record
255.

The error
turned on.

is

file

written to file

indicator is

The registers are restored. The
subroutine is terminated by
return to the caller at the next
executable statement.

This logic describes
FIND/READ/WRITE/RELES
subroutines comprise
processing.

processing
subroutines.
the OS PLAN

of the
These
file

FIN3050

FIN3170

FIN3310

FIN3410

FIN3470

FIN3590

FIN3850

FIN4450

FIN4850

RELESR

FIN5050

FIN5070

FIN5090

The registers are saved according
to standard OS conventions. Base
registers are set.

The appropriate call type is set.

If this is not a READ or WRITE
entry transfer is to FIN3590.

If the file control block is not
open, exit is to the ERRABORT
entry in DFJPLAN.

The drive code is extracted from
the ID block.

If the drive code is invalid
transfer is to FIN19730.

DOS processing to locate the con­
trol block for the associated
drive.

OS processing to locate control
block for the associated drive.
If the search fails, transfer is
to FIN19730.

Linkage into the processing rou­
tine is executed.

FIN5030, the NSQZ argument is
saved.

If the amount of words to remain
in the file is zero or negative
transfer is to FIN5090.

An indicator is set to indicate
that this release operation is
for a partial release.

The RELESF subroutine is entered
to release this file and transfer
is to FIN7370.

FLOWCHART NARRATIVES 103

PROBLEM LANGUAGE ANALYZER (PLAN)

SYSTEM MANUAL

FINDR

FIN5510

FIN5830

FIN5910

FIN5970

FIN6010

FIN6090

FIN6170

FIN6370

FIN6390

FIN6410

FIN6650

FIN6930

FIN6970

FIN7070

FIN7090

FIN7150

FIN7250

FIN7370

FIN7430

This is the entry point for the
FIND subroutine. If this find
does not indicate a change in
level transfer is to FIN5910.

The priority for the
operation is set.

release

The PRIREL subroutine is called
to release all files up to the
level of this file.

The file number is set.

The number of words to be allo­
cated to the file is saved.

If the priority of the files is
found not to be valid transfer is
to FIN19730.

If the priority of the file is
not zero transfer is to FIN1580.

The priority
to the level
phrase.

of the file is set
of the current

The VTOC record is read.

If the file is a new file trans­
fer is to FIN6930.

The FD record for this file is
read.

the file control block is markE~d
as open and transfer is to
FIN7430.

If this is a FINDL call, transfer
is to FIN7370.

The NALLO parameter, that is, the
number of words to be allo.:ated
to this file is converted to the
number of segments.

The return linkage is saved.

The table of contents record for
this drive is read into memory.

If there is space for this file
transfer is to FIN7850.

If there are files that can be
released to provide more space
for the file transfer is to
FIN7650 ..

The file control block is marked
as closed.

IDC2> of the file control block
is set.

104 FLOWCHART NARRATIVES

FIN7510

FIN7650

FIN7250

FIN7850

FIN8230

FIN8290

FIN8430

FIN8410

FIN8510

FIN8530

FIN8610

FIN8810

FIN8890

FIN8930

FIN9030

FIN9070

FIN9430

FIN9470

FIN9590

FIN9630

15 JULY 1969

Return is made to the caller.

The priority for the release
operation is set.

The PRIREL subroutine is called
to release the files by priority.

The return from the allocatioll'l is
set. Transfer is to FIN15510.

The necessary arguments are
accessed from the call list.

If KDIS and KOUNT are not valid
transfer is to FIN19730.

If this is a read operation
transfer is to FIN8530.

If KDIS and KOUNT result ill'l a
displacement outside the current
value specified in the second
word of the file control block
processing continues, otherwise,
transfer is to FIN8530.

The new value representing KDIS
plus KOUNT is set into the second
word of the file control block.

If KDIS plus KOUNT is greater
than the second word of the :Eile
control block transfer is to
FIN7370 •

KDIS and KOUNT are converted ito a
value in bytes.

The FDRTTR is retrieved from the
coding within the first word
within the file control block.

If the TTR is not valid transfer
is to FINl 9730 .•

The FD record is read.

If the required data is not
within the current file size pro­
cessing continues; otherwise,
transfer is to FIN9810.

If this is a read operation
transfer is to FIN7370.

If the required record is not
within the current file alloca­
tion transfer is to FIN3180.

The new file size is set and
transfer is to FIN2710.

The required allocation in words
is set.

The number of words to be allo­
cated is converted to segments.

15 JULY 1969

FIN9650

FIN9670

FIN9690

FIN9810

The volume table of
record is read.

contents

The priority of this allocation
is set.

The ALLOC subroutine is called to
allocate the required space for
this file. Transfer is to
FIN8810.

The LOGICAL record number cur­
rently required is calculated.

FIN10030 The segment number containing the
LOGICAL record is calculated.

FIN10190 The actual segment is located.

FIN10410 The required record is located.

FIN10510 The number of bytes remaining in
the allocation is calculated.

FIN10830 If the user count is greater than
the number of bytes remaining
processing continues, otherwise,,
transfer is to FIN10930.

FIN10870 The remaining byte count is used.

FIN10930 The values of KDIS and KOUNT are
updated.

FIN11010 The necessary read or write is
initiated.

FIN3940

PR I REL

If the user specified count is
not zero transfer is to FIN7510;
otherwise, transfer is to
FIN8810 ..

This subroutine performs a
priority release operation.

FIN11250 The return linkage is saved.

FIN11270

FIN11410

The return linkage from the RELES
subroutine is set.

The SCAN subroutine is called to
release any file numbered from 1
to 127.

FIN11450 The SCAN subroutine is called to
release any file numbered from
128 to 255.

FIN11490 If the REL ES priority is not
equal to four transfer is to
FIN11530. Otherwise, the PRIREL
subroutine is terminated.

FIN11530 The RELES priority is incremented
and transfer is to FIN11410.

SCAN

PROBLEM LANGUAGE ANALYZER (PLAN)

SYSTEM MANUAL

The volume table of contents
record for the current file is
read.

FIN11670 A search is initiated for a file
at the RELES priority.

FIN11750 If a file is found transfer is to
FIN11950. Otherwise the subrou­
tine is terminated by return to
the user.

RELESF This subroutine is entered to
release a file.

FIN11950 The volume table of contents
record is read.

FIN11970 If the file is found not to exist
transfer is to FIN15352.

FIN12070 The FD record is read.

FIN12090 If this is not a partial release
transfer is to FIN13190.

FIN12210 If the NSQZ argument is not less
than the current file size trans­
fer is to FIN12270.

FIN12250 The new file size is established.

FIN12270 The NSQZ argument is converted to
segments.

FIN12390 A pointer is set to the first
segment to be released.

FIN12430 If this is not a NSQZ or an
allocation function transfer is
to FIN12650,.

FIN12470 The partial release indicator is
reset.

FIN12650 The FD record is updated.

FIN13190 The availability record is read.

FIN13390

FIN14490

The segment which was
released is recorded in
availability record.

The availability record
optimized.

FIN14990 The availability record
rewritten to the file.

FIN15030 The allocation counts
updated.

just
the

is

is

are

FIN15050 If this is a partial release
transfer is to FIN15170.

FIN15090 The file directory ID is
destroyed.

FLOWCHART NARRATIVES 105

PROBLEM LANGUAGE ANALYZER (PLAN)

SYSTEM MANUAL

FIN15170 The file directory record
written.

is

FIN15190

FIN15230

If this is
operation
FIN15352.

a partial
transfer

The volume table of
record is updated.

release
is to

contents

FIN15352 The subroutine is terminated by
return to the caller.

FIN15510 The volume table of contents
record is read. record is read.

FIN15530 If the file is found to exist
transfer is to FIN16990.

FIN15590 The new file directory skeleton
is built.

FIN15730 The availability record for the
file is read.

FIN15750 The space for the file is located
from the availability record.

FIN15770 The availability
updated.

record is

FIN15790

FIN16750

FIN16790

FIN16990

The availability count is
updated.

If this is a partial allocation
transfer is to FIN15170.

The ID for the
block is created.
FIN15170.

file directory
Transfer is to

The FD record is read.

FIN17010 The partial allocation indicator
is set. Transfer is to FIN15730.

FIN19730 ECODE and ENUMP are set.
FIND subroutine is terminated
transfer to DFJPLAN.

The
by

GMERG/PMERG

These subroutines invoke the DYNAMIC file
and PERMANENT file merge facility.

XME610

XME730-
XME950

The caller's registers are saved
and a base register is set.

The ID blocks of the merge files
and the output files are tested.
If any of the files are not opE~n,
transfer is to XME1170 to avoid
the merge. Otherwise, the ID
blocks are moved to a save area
in the mainline.

106 FLOWCHART NARRATIVES

XME1030

XME1090

XME1170

15 JULY 1969

The LCHEX subroutine is used to
invoke the module DFJGMERG or
DFJPMERG to perform the merge.

The caller's ID block for the
output file is updated to reflect
the size of the merge files and
return is made to the caller.

The appropriate error number and
ECODE are set and exit is to
ERRABORT in the mainline to force
a phrase abort.

GSORT/PSORT

These subroutines invoke the PERMANENT file
and DYNAMIC file sort facility.

XS0470

XS0610

XS0650

XS0710

XS0830

The caller's registers are saved
and a base register is set.

If the ID block of the file to be
sorted is not open, transfer is
to XS0830.

The ID block is moved to a save
area in the mainline.

The LCHEX subroutine is used to
invoke the SORT modules DFJ*SRTA
and DFJ*SRTB. On return from the
LCHEX routine, control is
returned to the caller.

The appropriate error :number and
ECODE is set and exit i:s to
ERRABORT in the mainline to force
a phrase abort.

NUSER, IUSER, GUSER, EUSER

These subroutines are the user-exit ill'lter­
face subroutines for DFJPSCAN, the PLAN
interpreter.

NUS1550

NUS1590

NUS1630

NUS1650

This is the GUSER call
sing. The addresses
character access routine
next character bucket in
are located.

proces­
of the~

and the
DFJ:l?SCAN

If the next character is a comma
or a semicolon, transfer is to
NUS1850.

The next character is moved to
the user's array word.

The access routine in DFJPSCi\N is
called to get the next character
in the input stream and transfer
is to NUS1850 .•

15 JULY 1969

NUS1730

NUS1810

NUS1850

NUS1910

NUS2050

NUS2090

NUS2130

NUS2370

INPUT

This is the NUSER processing. If
this is not the first call to
NUSER, transfer is to NUS1910.

!SUBS and ISW which are located
in PSCAN are moved to the user
word arrays .•

Exit is to the calling program.

The CAP pointer for the user
!SUBS argument is incremented.

The user's !SUBS is tested and if
invalid, transfer is to NUS1810.

The ISW arguments are set to a
positive value and transfer is to
NUS1810.

This is the EUSER processing.
The Nl, N2, and literal are moved
to DFJPSCAN for processing on
return.

Exit is to RETURN in DFJPLAN
which simulates a CALL LRET from
the user-exit module. Note that
there no !USER processing~ it is
a no-op.

The INPUT subroutine retrieves the image of
the current PLAN statement and places it in
the user-specified array in memory.

INP730

INP1070

INP1210

INP1590

INP1830

INP2110

INP2150

Registers are saved according
the standard OS conventions.
base register is set.

to
The

PFINPUTA record of the PLAN lan­
guage dictionary is read into
memory.

The end of the PLAN statement is
located.

The calculation is
number of blanks
inserted beyond the
PLAN statement.

made
that

end

of the
must be
of the

The statement is moved to the
user-specified array.

If blank characters are not
required at the end of the state­
ment transfer is to INP2310.

Positions within the user array
to the right of the semicolon of
the PLAN statement are set to
blank.

INP2310

roes coos>

PROBLEM LANGUAGE ANALYZER (PLAN)

SYSTEM MANUAL

Registers are restored. Subrou­
tine is terminated by return to
the caller.

This subroutine allows reassignment of the
standard PLAN input and output devices.

IOCU70

IOC590

IOC610

IOC630

IOC670

roes cos>

The caller's registers are saved
and the base registers are set.

The INPUT argument is validated
using the subroutine SRCH. If
the argument is invalid, transfer
is to IOC630.

The current input device code is
set to the caller's argument.

The LIST argument is validated
using the subroutine SRCH.. If
the argument is invalid, control
is returned to the caller.

The current output device code is
set to the caller's argument and
control is returned to the
caller .•

The IOCS subroutine allows the PLAN
and output device specifications
altered during execution~

input
to be

IOC470

IOC590

IOC610

IOC890

IOC950

LCHEX COS)

Registers are saved according
standard OS conventions.
base register is set.

to
The

If the device code specified by
the input argument is not valid,
transfer is to IOC890.

A pointer to the new current
input device is set.

If the list argument is found to
be valid transfer is to IOC950.
Otherwise the subroutine is ter­
minated by return to the caller.

The output device specification
is altered to the user-specified
device. Subroutine is terminated
by return to the caller.

This subroutine allows exit to a module
that overlays the calling module. The
system status and the program area are
saved on the checkpoint file.

FLOWCHART NARRATIVES 107

PROBLEM LANGUAGE ANALYZER (PLAN)

SYSTEM MANUAL

LCH990

LCH1190

LCH1390-
LCH1590

LCH1710

LCH1950

LCH2090

The LIST subroutine is called to
manipulate the pop-up list.

The checkpoint control record is
built in a work area in the
mainline.

A test is made to see if a
checkpoint file exists and if
there is enough room to write the
checkpoint. If yes. transfer is
to LCH1710; otherwise an error
number of 110 is set and exit is
to 'ERRABORT' in the mainline to
cause a phrase abort.

The checkpoint control record is
written on the file.

The active program area is writ­
ten on the checkpoint file.

The system status is updated and
exit is to PLANLOPF in the main­
line to load the next program in
the pop-up list.

LCHEX COOS)

This subroutine causes the modules named in
the argument list to be invoked through the
PLAN checkpoint facility.

LCH690

LCH870-
LCH1190

LCH1430-
LCH1650

LCH1970-
LCH2230

LCH2530-
LCH3430

The callers registers are saved
and a test is made to see if this
subroutine is in the calling
module. If not, exit is to
ERLINK in the loader to force a
phrase abort.

The PSCB for this module is saved
and a test is made to see if
there is enough room in the
checkpoint file for this module.
If not, exit is to ERLINK in the
loader to cause a phrase abort~

If a PSCB does not exist for this
module, the module is written on
the checkpoint file immediately.
Otherwise~ the PSCB is marked as
requiring a checkpoint and exit
is to the LEX subroutine to up­
date the pop-up list.

This routine is used to write
this module on the checkpoint
file when the loader determines
that the module will be overlaid.

This routine is entered from the
loader when an asterisk is found

108 FLOWCHART NARRATIVES

LEX

15 JULY 1969

in the pop-up list. It restores
the program area to the condition
at the time of the CALL LCHE:x and
returns control to the ca.lling
module.

The LEX subroutine provides transfer to the
resident PLAN loader with manipulation of
the program pop-up list.

LEX610

LEX670

LIST

The LIST subroutine is called to
do the necessary manipulation of
the program pop-up list.

A pointer is set to blank COMMON.
The subroutine is terminated by
transfer to DFJPLAN.

The LIST subroutine is called to manipulate
the pop-up program list.

LIS730

LIS940

LIS1035

LIS1095

LISll 75

LIS1890

LIS1910

LIS2020

LIS2430

:LIS2450

LIS2472

LIS2532

LIS2536

The registers are saved according
to conventions.

If the user count is zero trans­
fer is to LIS2450.

The user count is rounded to an
even integer.

If this is a negative
transfer is to LIS2532.

call.,

Pointers are set to the user
array and the pop-up list. If
the user entry is zero transfer
is to LIS2472.

If the pop-up list has not over­
flowed transfer is to LIS2020.

Exit is to DFJPLAN for phrase
abort.

The entry is moved to the pop-up
list. If not, the last tmtry
transfer is to LIS1890~

The pop-up list pointers are
updated.

Control
caller.

is returned to the

The pop-up list is reset and
transfer is to LIS2020.

A pop-up list entry is movE~d to
the users array.

If the list entry was
transfer is to LIS2430.

~~ero,

15 JULY 1969

LIS2544

LISTB

If the user count is not zero
transfer is to LIS2532w other­
wise, transfer is to LIS2430.

The LISTB subroutine is entered to add one
program to the bottom of the pop-up list.

LIB530

LIB770

LIB890

LIB990

LIB1030

LIBlllO

LIB1290

LIB1310

LISTZ

Registers are saved according to
standard OS conventions. Base
registers are set.

A pointer is set to the end of
the pop-up list.

If addition of one program will
not cause pop-up list overflow
transfer is to LIB1030.

The LISTB subroutine is ter­
minated by transfer to DFJPLAN.

The list pointer is updated
reflect the new entry to
added .•

to
be

The current pop-up list entries
are shifted by one.

The new name is added to the
bottom of the list.

Registers are restored and
subroutine is terminated
transfer to DFJPLAN.

the
by

This subroutine resets the pop-up list. It
performs the same function as a CALL LIST
(1,0).

LSZ1800

LNCHX

The pop-up
control is
caller.

list is reset
returned to

and
the

This subroutine resets the status of the
checkpoint file.

LNX1800 The note pointer to the check­
point file is reset to zero and
control is returned to the
caller.

LNRET (OS)

The LNRET subroutine is called to terminate
the return chain of LOCAL list processing .•

LNR410 Registers are saved according to
standard PLAN conventionq

LNR450

LNR490

LNR510

LNR650

PROBLEM LANGUAGE ANALYZER (PLAN)

SYSTEM MANUAL

A pointer is set to BLANK COMMON.

The execution level indicator is
reset to zero.

The LOCAL chain is cleared.

Registers are restored and
subroutine is terminated
return to the calling module
the next executable statement.

the
by
at

LNRET (DOS)

This subroutine cancels any LOCAL proces­
sing. The caller of this module becomes
the mainline program.

LNR410

LOCAL COS)

The subroutine CLOCAL in the
loader is called to clear the
LOCAL chain and control is
returned to the caller.

The LOCAL subroutine provides multiple
level LOCAL's, that is, the ability to call
a LOCAL from a LOCAL for the PLAN system.

LOC710

LOC750

LOC810

LOC850

Registers are saved according to
standard PLAN conventions .•

The LIST subroutine is called to
manipulate the pop-up program
list.

A pointer is set to blank COMMON.

A register is set to point to the
parameter list. The subroutine
is terminated by transfer to the
DFJPLAN module .•

LOCAL (DOS)

This subroutine causes the program named in
the argument list or the next program in
the pop-up list to be loaded and executed
as a subprogram.

LOC730

LOC890

LOC1050

The subroutine LIST is called to
process the N and L arguments.

A test is made to see if the
LOCAL subroutine itself is within
the calling module. If not, exit
is to ERLINK in the loader to
force a phrase abort.

The address of the callers argu­
ment list is saved in the loader
to be passed to the called
program.

FLOWCHART NARRATIVES 109

PROBLEM LANGUAGE ANALYZER (PLAN)

SYSTEM MANUAL

LOC1250

LOC1690

LOC2270

LREPT

The PCB for this module is marked
as a LOCAL caller. This prevents
reuse of this copy of the module
until control is returned from
the LOCAL module. Exit is to
NEXTLOAD in the pop-up list to
load the subprogram.

This is a special entry to write
the module in the checkpoint
file.

Return from the called program is
to here. The system status is
updated and return is made to the
caller of this subroutine.

The LREPT subroutine is called to repeat
execution of the current phrase.

REP430

REP470

LRET

A pointer is set to BLANK COMMON.

The repeat indicator is turned on
within the resident loader indi­
cating that the current phrase
should be repeated. This indica­
tor is interrogated by PSCAN.
The subroutine is terminated by
transfer to DFJPLAN .•

The LRET subroutine provides linkage to the
resident PLAN loader with no manipulation
of the program pop-up list.

LRT450 A pointer is set to BLANK COMMON.

LSAV, LRLD

The subroutine is terminated by
transfer to DFJPLAN.

The LSAV and LRLD subroutines are provided
only for the function of providing compati­
bility to the 1130 PLAN system.

LSA290

NDEF

Error codes are set to indicate
an invalid call. Subroutine is
terminated by transfer to
DFJPLAN.

The NDEF subroutine provides the user with
the ability to test any PLAN word for a
content of a logical TRUE logical FALSE or
REAL.

NDE790 If the current contents of the
user-specified word is not logi­
cal TRUE transfer is to NDE270.

110 FLOWCHART NARRATIVES

NDE810

NDE890

NDE930

NDE1010

PAIN

15 JULY 1969

The subroutine is terminated with
a value of logical TRUE.

If the content of the user­
specified word is not a logical
FALSE transfer is to NDE330 ..

The subroutine is terminated with
an indicator set to logical
FALSE.

The subroutine is terminated with
an indicator set to a value of
REAL.

The PAIN and PAOUT subroutines are the A
format input and output subroutines of the
OS PLAN I/O package.

PAI1410

PAI1930

PAI2070

PAI2270

PAI2390

PAI2692

PBFTR

The registers are saved according
to standard conventions. The
base register is initiated.

If the device code specifiE~d is
valid transfer is to PAJC2070;
otherwise, the subroutine is ter­
minated by return to the caller.

If the arguments in the call list
are valid transfer is to PAI2270;
otherwise, the subroutine is ter­
minated by return to the caller.

A pointer is set to the beginning
and the end of the buff er.

A pointer is set to the data to
be moved.

The data is moved between the
system buffer and the user­
specif ied array. The subroutine
is terminated by return to the
user.

The PBFTR subroutine provides for a trans­
fer for the entire contents of one buffer
to a second buffer.

PBF670

PBF710

PBF810

If the first specified device is
valid transfer is to PBF710;
otherwise~ the subroutine is ter­
minated by return to the user.

A pointer is set to the buff er
associated with the first de~vice.

If the second specified device is
valid transfer is to PBF870;
otherwise the subroutine is ter­
minated by return to the Colller.

15 JULY 1969

PBF870

PBF1010

PBTST

A pointer is set to the buff er
associated with the second speci­
fied device,.

The contents of buff er one are
transferred to buffer two. Sub­
routine is terminated by return
to the user.

The PBTST subroutine is the bit manipula~
tion extract under mask and test under mask
logical routine of the OS PLAN I/O package.

TST1130

TST1230

TST1290

TST1330

TST1350

TST1370

TST1470

TST1670

TST1710

TST1890

TST1910

TST1950

TST1990

TST2090

TST2270

TST2290

Registers are saved according to
standard conventions.

The user-specified NWRD is set to
zero.

If the OP code specified is zero
transfer is to TST2270.

The result is initiated to all
1-bits.

If the OP code specified is nega­
tive transfer is to TST2270.

If the OP code specified is not
valid transfer is to TST2290.

The test mask is assembled
on the bits specified
tested.

based
to be

If the operation code specified
is less than four transfer is to
TST209Q,.

A bit test is performed.

A result of the bit test is
placed in the end skip argument.

If the operation code specified
is 1,2,3,5,6,7,9,10, or 11 trans­
fer is to TST2090.

If the operation code specified
is a 4 or an 8 transfer is to
TST2290.

The bits corresponding to the
NBIT argument are accessed.
Transfer is to TST2290.

The required result to be placed
in NWRD are accumulated.

The argument is set to the user­
specif ied NWRD.

The registers are restored. Sub­
routine is terminated by return
to the caller.

PROBLEM LANGUAGE ANALYZER (PLAN)

SYSTEM MANUAL

PBUSY, PDBFA, PDBFB, PDBFC, PDBFD, PDBFE,
PSBFA, PSBFB, PSBFC, PSBFD, PSBFE

These routines are provided on the DOS and
OS PLAN systems only for 1130 compatibili­
ty. They are no-ops and consist only of a
single instruction which is a return on
register 14.

PCAF, PCAI, PCEA, PCFA, PCIA

These are the core-to-core conversion rou­
tines They are interface routines into the
actual conversion routines.

900

1000

1100

1200

PCCTL

The caller's registers are saved.

The entrypoints for the setup and
conversion routines are set.

Register 2 is set to indicate the
mode of the conversion routine,
INTEGER or REAL .•

Exit is to the setup routine
DFJISET.

The PCCTL subroutine is the device function
control routine of the OS PLAN I/O package.
It provides for such functions as carriage
control~ and stacker select.

PCC810

PCC950

PCC1030

PCC1090

PCOMP

PC0250

PC0350

PC0360

If the device code specified is
valid transfer is to PCC290.
Otherwise the subroutine is ter­
minated by return to the caller.

If the arguments specified in the
call list are valid transfer is
to PCC1090.

The arguments are set to default
values.

The carriage control character is
set for the next operation. Sub­
routine is terminated by return
to the caller.

Registers are saved according to
the standard conventions.

The result is set to indicate
that the first array was found to
be low.

The registers are returned. Sub­
routine is terminated by return
to the caller.

FLOWCHART NARRATIVES 111

PROBLEM LANGUAGE ANALYZER (PLAN)

SYSTEM MANUAL

PEOF

This is a function subroutine that tests a
device for an occurrence of a logical or
physical end-of-file. FP register 0 is
used to return the result.

PE0830

PE0950

PE0990

PE01030

PE01050

PF01090

FP register O is reset to indic­
ate a physical end-of-file
condition.

The subroutine SRCHIOC is called
to validate the NOD argument. If
NOD is invalid, control is
returned to the caller.

The status of the file specified
by the NOD argument is tested.
If a physical EOF condition has
occurred, control is returned to
the caller.

FP register 0 is set to
value to indicate
condition.

positive
no EOF

The file status is tested for a
logical end-of-file status and if
not present, control is returned
to the caller.

FP register O is set to a nega­
tive value indicating a logical
end-of-file condition and control
is returned to the caller.

PENDF (DOS)

This subroutine closes a sequential file.
If the unit is a magnetic tape, and end-of­
file mark is written and the file is
rewound.

PEN490-
PEN730

PEN770

PEN910

PEN1150

PENDF (OS)

The sequential file control block
chain is searched to determine if
the file exists and is open. If
not, control is returned to the
caller.

If the device is not a tape unit,
transfer is to PEN1150.

If the file was in output status,
a tape mark is written. The tape
is rewound to the load point.

The subroutine DFJFMAIN is called
to release the core for the file
control block and buffers. Exit
is to the caller.

This routine closes a sequential file. '!'he
data set is repositioned to the first

112 FLOWCHART NARRATIVES

record.

PEN430

PEN510

PEN550-
PEN850

PEN950-
PEN1330

PEN1350

15 JULY 1969

The subroutine SRCHIOC is called
to validate the NOD argument. If
it is invalid, control is
returned to the caller.

If the
control
caller.

file has not been used.,
is returned to the

If the file is in output st~tus,
the buffers are flushed if
necessary.

The file status and buffer point­
ers are initialized and the first
buffer is set to blanks.

A TCLOSE macro is issued to repo­
sition the data set to the bt~gin­
ning of the file and control is
returned to the caller.

PEOUT, PFOUT, PFIN, PIOUT, PIIN

'These are the PLAN sequential conversion
subroutines. These are actually routines
which just interface into the actual con­
version routines.

900

1600

1700

PFSPC

The caller's registers are saved.

The conversion
setup routine
set.

routine and the
entrypoints are

Exit from this routine is to the
setup routine DFJCSECT~

'rhe PFSPC subroutine provides a linkage to
allow the user to determine the amount of
file space available on a DYNAMIC drivE~ at
any priority.

PFS630

PFS690

PFS770

PFS1930

PFS1450

The caller argument list is
accessed.

The return parameter is initiated
to zero.

If the specified drive is imralid
transfer is to PFS1930a

If a priority is specified trans­
fer is to PFS1530.

The level of the current phrase
is accessed in a set as the
priority for which the search is
to be initiated.

15 JULY 1969

PFS1530

PFS1770

PFS1870

PFS1930

PFS1970

PHIN

The volume table of contents
record is read.

If any level change is indicated
transfer is to PFS1970.

A determination is
space available at
priority.

made of the
the required

The determined amount of space is
set to the user argument. The
subroutine is terminated by
return to the caller.

A determination is made of the
available space of the highest of
the two priorities encountered at
the level change. Transfer is to
PFS1870 .•

This subroutine retrieves EBCDIC literals
from the literal file as established by the
PHOUT subroutine or by the PDIAG module as
initiated by the SET LITERAL command.
Calling parameters to this subroutine are a
pointer to the file control block, the
literal number that is to be extracted, and
the location in memory at which the literal
is to be placed. The literal location in
the user's array will be a positive literal
count if execution of this sub:routine is
successful. If the location is a fixed­
point zero the file control block was found
to be invalid or not opened when the
subroutine was called. If the position is
a minus one,, the header of the indicated
file was found not to be valid for a
literal file. If the position is a minus
two,, the requested literal number was high­
er than the greatest literal number con­
tained in the file. If the value is a
minus three,, the literal number was not
found to be in the file ..

PHI190

PHI210

PHI230

PHI250

PHI320

A test is made to determine if
the file is properly opened.. If
it is transfer is to PHI250.

The error return is set to zero.

Control is returned to the pro­
gram at call +1.

A test is made to determine if a
literal file is properly initial­
ized. If it is transfer is to
PHI230. Otherwise, the error
return is set to a minus one and
transfer is to PHI230.

a test is made to determine if
the number of the requested lit­
eral is larger than the highest­
numbered literal contained in the

PHI340

PHI370

PHI380

PHI410

PHI430

PHI460

PHI480

PHO UT

PROBLEM LANGUAGE ANALYZER (PLAN)

SYSTEM MANUAL

file. If it is not, transfer is
to PHI370.

The error return is set to a -2
and transferred to PHI230.

The literal index record is
into memory .•

read

A test is made to determine if
the literal is in file. If it is
transfer is to PHI430.

The error return is set to -3 and
transfer is to PHI230.

The literal length indicator is
read into memory.

The length of the literal record
is calculated from the number of
characters in the literal.

The literal is read into memory
into the user's array and trans­
fer is to PHI230.

This subroutine is used to store literals
in the standard PLAN literal file. The
subroutine is required by the PDIAG module,.
The PDIAG module is initiated as a result
of the SET LITERAL command. Calling param­
eters of the PHOUT subroutine are a pointer
to the open file control block, the number
of the literal that is to be added to the
literal file, and the location in memory
that contains the PLAN literal text of the
literal to be added to the file. The
format of the literal file is as follows:

The first thru word of the file contains
a logical FALSE that is,, 7FFFFFFF.

The second word of the file contains the
number of PLAN words within the file.

The third word of the file indicates the
highest number of any literal contained
in the file.

The fourth word of the file indicates the
number of FORTRAN words that have been
used from the end of the file toward the
beginning of the file for storage of
literal information. Each literal is
stored as the literal number, the literal
character count followed by the literal
text.

PH0210

PH0230

A test is made to determine if if
the file is properly opened. If
it is transfer is to PH0270.

The literal count in the users
array is set to zero.

FLOWCHART NARRATIVES 113

PROBLEM LANGUAGE ANALYZER (PLAN)

SYSTEM MANUAL

PH0250

PH0270

PH0300

PH0320

PH0390

PH0520

PH0540

PH0580

PH0600

PH0640

PH0660

PH0690

PH0720

PH0740

PH0760

PH0800

Control is returned to the user
at call + 1.

A four-word file header is read
into file memory.

A test is made to determine if
the first word is FALSE. If it
is transfer is to PH0720.

A four-word file header block is
initialized and written to the
literal file.

The remainder of the file is set
to logical FALSE.

A test is made to determine if
this is a delete operation. A
literal delete operation may be
as a result of entry of an equal
number literal or may be indi­
cated by a negative or zero .•
literal count. If this is a
delete operation transfer is to
PH0250.

A test is made to determine if
there already exists in this file
a literal with the same number.
If there is transfer is to
PH0740.

The displacement at which this
literal will be stored is written
in the literal displacement
table.

The literal and literal number
are written to the file.

The space used indicator in the
file header is updated.

If required,, the indicator in the
header is updated to reflect the
new highest literal number.

A four-word header is rewritten
to the literal file.

A test is made to determine if
this a literal delete.. If it is
not transfer is to PH0540.

If the literal to be deleted is
greater than the highest-numbered
literal currently in the file,
transfer is to PH0250.

The displacement to the literal
to be deleted is read and then is
set to logical FALSE.

The literal count of the literal
to be extraced from the file is
written into memory.

114 FLOWCHART NARRATIVES

PH0820

PH0840

PH0860

PH0980

PH01090

PHTOE

15 JULY 1969

The literal count is converted to
record size,.

The total record size of the
literal to be deleted is used to
adjust the space used indicator.

The displacement table for all
literals that are to be pushed
down as a result of the delete is
updated to reflect the size of
the literal that is to be
deleted.

All literals which were beyond
the literal to be deleted are
pushed down to fill up the unused
spac~.

The literal file header is
updated and is rewritten to the
literal file.. A test is made to
determine if this is an ADD lit­
eral. If it is transfer is to
PH0580; otherwise, transfer is to
PH0250.

The PHTOE subroutine converts hexadecimal
notation to EBCDIC representation so that
it may be printed by PLAN I/O package.

PHT550

PHT630

PHT810

PHT870

PHT890

PIOC

Registers are saved according to
standard conventions.

The PLAN word is con·verted to
eight bytes •

The TO and FROM pointers are
incremented .•

If the last input word has not
been processed transfer is to
PHT630.

Registers are restored. :Sub­
routine is terminated by return
to the caller .•

This is a function subroutine which tiests
the availability of a device.

PI0690

PI0710

PI0750

F. P. register 0 is set to zero
to indicate the requested unit is
not available.

The subroutine SRCBIOC is called
to validate the NOD argument. If
invalid, control is returned to
the caller.

FP register 0 is set to a posi­
tive value to indicate that the

15 JULY 1969

PL I NP

requested unit is free and con­
trol is returned to the caller.

The PLINP subroutine is the input routine
of the OS I/O package.

PLI410

PLI430

PLO UT

The call type is set to indicate
a PLINP call.

The DFJSIOCS subroutine is
located. The subroutine is ter­
minated by transfer to DFJSIOCS.

The PLOUT subroutine is the output routine
of the OS PLAN I/O package.

PL0410

PL0430

PPACK

The call type is set to indicate
a PLOUT call.

Linkage to the DFJSIOCS module is
set. The subroutine is ter­
minated by transfer to DFJSIOCS.

The PPACK subroutine allows a user to pack
a right-adjusted byte of any PLAN word into
any byte position of a character array.

PPA610

PPA650

PPA710

PPA730

PPAGL

The registers are saved according
to standard conventions. The
argument list is accessed.

The address of the word into
which the byte is to be packed is
accessed.

The required byte is transmitted
to the TO array.

The registers are restored. The
subroutine is terminated by
return to the caller at the next
executable statement.

The PPAGL subroutine is used to set the
page length for the PLAN I/O package .•

PGL490

PGL570

If the specified device code is
valid transfer is to PGL570.
Otherwise, the subroutine is ter­
minated by return to the caller.

If the user-specified argument is
valid transfer is to PGL630:
otherwise processing is ter­
minated by return to the caller.

PGL630

PRGIO

PROBLEM LANGUAGE ANALYZER (PIAN}

SYSTEM MANUAL

The logical page length is set
equal to the new specified value.
The subroutine is terminated by
return to the user.

The PRGIO subroutine is a common subroutine
to perform the functions required of the
PARGO and PARGI subroutines.

RG0230

RG0310

RG0460

RG0540

PUNPK

Registers are saved according to
standard OS conventions. The
argument list is accessed.

A pointer to the location within
the communication array is set.

The array is moved to or from
common as required by the call.

The registers are restored. The
PRGIO subroutine is terminated by
return to the caller at the next
executable statement.

The PUNPK subroutine may be called to
extract any byte of a character array and
to place it right-justified into any other
FORTRAN word.

PUN610

PUN630

PUN730

PUN7.SO

PUSH

The registers are saved according
to standard conventions. The
argument list is accessed .•

The address of the array from
which the byte is to be extracted
is accessed .•

The byte is moved from the array
to the receiving word.

The registers are restored
processing is terminated
return to the caller at the
executable statement.

and
by

next

The PUSH subroutine a·11ows the user to
force execution of a command that exists in
memory in EBCDIC format.

PUS510

PUS570

PUS690

Base registers are set
to standard OS
conventions.

The appropriate I/O
are set up.

according
standard

parameters

The count of the number of chara­
cters within the EBCDIC literal
are verified.

FLOWCHART NARRATIVES 115

PROBLEM LANGUAGE ANALYZER (PLAN)

SYSTEM MANUAL

PUS790

PUS870

PUS890

PUS910

RWDATA

A semicolon is inserted at the
end of the literal.

The literal text is written to
the PFINPUTA record of PFILE, the
language dictionary of PLAN.

The repeat phrase indicator. is
set for the interpreter DFJPSCAN.

If any DYNAMIC drive FD records
are in the program area they are
purged. The subroutine is ter­
minated by a transfer to DFJPLAN.

The RWDATA subroutine
logic for the RDATA,
WDAT1 subroutines .•

is the
WDATA,

processing
RDAT1, and

RDA930

RDA1210

RDA1730

RDA1970

RDA2010

RDA2050

RDA2070

RDA2650

RDA2670

RDA2770

STVAL

The registers are saved according
to standard conventions.

If any of the call parameters are
found to be invalid transfer is
to RDA2770.

The displacement within the file
is calculated.

If this call is a read call
transfer is to RDA2070.

If the indicated displacement is
greater than the second word of
the file control block processing
continues. Otherwise, processing
continues to RDA2070.

The second!word of the file con­
trol block is updated to the new
value.

If the indicated displacement is
greater than the current file
size processing continues: other­
wise, transfer is to RDA2770.

The appropriate read/write param­
eters are calculated.

A read or write operation is
initiated to transmit the
required data. The subroutine is
terminated by return to the user.

The necessary error number is set
and the subroutine is is ter­
minated by transfer to the ERRA­
BORT subroutine.

The STVAL and GTVAL are array transmission
subroutines.

116 FLOWCHART NARRATIVES

STV670

STV770

STV870

STV1070

~rRUE

15 JULY 1969

Registers are saved accordin9 to
standard PLAN conventions. The
argument list is accessed.

The TO array and FROM array
addressed in KOUNT are set.

The array is transferred.

The registers are restored and
the subroutine is terminatet:l by
return to the caller at the next
executable statement.

The TRUE and FALSE subroutines set the
specified user word to the value assoic:ated
with logical TRUE or logical FALSE.

TRU750

TRU770

TRU790

TRU810

XACES

The registers are saved according
to standard conventions.

The argument list is accessedl.

The specified user word is SE!t to
the value of logical TRUE
(8000000) or logical :E'ALSE
(7FFFFFF).

The registers are restoredl and
return is to the caller at the
next executable statement.

'l~his subroutine is a special purpose P'FILE
sector read subroutine that is used e:x:cl u­
si vely with a phrase table dump module. It
has not function in any other use. The
calling parameters are the relative P'FILE
sector numbers to be read into memory and
the communication array subscript into
which the sector is to be read.

XAC160

XAC180

XAC210

XAC230

XAC250

XAC270

A test is made to determine if
the file control block is proper.
If it is transfer is to XAC210.

File nwnber 255 is
file control block .•
to XAC230.

set to the
Transfe·r is

A test is made to determine· if
the file is open. If it is
transfer is to XAC250.

GDATA is called to open PFILE:.

A test is made
this dump is
1130. If it is
XAC320.

to determine if
being made on the
transfer is to

The PFILE displacement is set
equal to 128 FORTRAN words multi-

15 JULY 1969

XAC290

XAC320

XAC340

XAC360

XBIT

plied by the relative . sector
minus 1.

The number of words to be read by
RDATA is set as 128 FORTRAN
words. Tran sf er is to XAC360.

The PFILE read displaceme:it is
set equal to the file size in
FORTRAN words minus 160 multi-
plied by the relative sector
number.

The number of FORTRAN words to be
read is set equal to 160.

RDATA is called to read the sec­
tor into the communication array.
This subroutine returns control
to the mainline program at the
calling statement +1 .•

This subroutine is a special purpose sub­
routine used only with the phrase table
dump. Its function is to adjust the
internal bit pointer and the count of the
internal phrase entry table size. The only
calling parameter is the increment/
decrement that is to be used in the
required adjustment.

XBI90

XBilOO

XPRNT

The count of the number of bits
still to be processed in this
internal table is decremented by
the amount of the calling
parameter.

The internal bit pointer is
incremented by the amount of the
calling parameter. Control is
returned to the calling program
at call +1.

This subroutine is a special purpose sub­
routine used only with the phrase table
dump. Its function is to test the end-of­
f ile indicator to skip to a new page if
required and to print the existin9 line .•

XPR100 A test is made of the physical
end-of-file indicator. If a
physical EOF has not been pro­
cessed transfer is to XPR140.

XPR120

XPR140

XTRAC

PROBLEM LANGUAGE ANALYZER (PLAN)

SYSTEM MANUAL

A skip to
initiated.

a new

The current print
printed and control is
to the user at call +1.

page is

buff er is
returned

This subroutine extracts a bit field from a
PFILE entry as it exists in a communication
array. The calling parameters are the bit
number, the number of bits to be extracted,
and the PLAN word that is to receive the
extracted field. If the routine is to be
executed on the 1130, a field of 16 bits or
less is placed into the left two bits of a
FORTRAN word. If the field width is great­
er than 16 when the subroutine is executed
on an 1130 system or if the execution is on
a System/360 the field extracted is right­
justified in the 32-bit FORTRAN word.

XTR140

XTR160

XTR180

XTR200

XTR220

XTR340

A pointer is set to the input
read area.

The FORTRAN word that is to
receive the extracted field is
cleared by call to PBTST.

Calculations are made to deter­
mine the bit position, the rela­
tive record number for the start
of the field.

The internal record number is
adjusted if the bit position
indicated is greater than the
size Of an internal record.

The appropriate FORTRAN word
within the communication array is
located.

The desired field is extracted by
calls to PBTST. Consecutive bits
within the field are tested one
at a time. If the bit is found
to be on a subsequent call to
PBTST places the bit in the
receiving field. Subroutine
execution is terminated by a
return to the calling program at
the calling statement +1.

FLOWCHART NARRATIVES 117

Y20-0345-0

International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, N. Y. 10601
(USA Only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(International)

