
======- -= - --- ------------ ---- - ------===;::r- - -- ------ - .. - Application Program GH20-0596-l

System/360 Problem Language Analyzer (PLAN) (OS)

Operations Manual

Program Number 360A-CX-27X

This manual is intended to assist users in the
implementation and execution of PLAN jobs using
OS/360. It includes specifications pertinent to
only the System/360 OS version of PLAN. Sections
of special interest pertain to debugging, diagnos
tics, and abnormal termination. This manual
should be read before attempting any computer
operations.

Second Edition (January 1970)

This edition is a major revision obsoleting H20-0596-0.

This edition applies to Version 1, Modification Level 1 of System/360 Problem Language Analyzer
(PLAN) (OS) (360A-CX-27X) and to all subsequent versions and modifications until otherwise
indicated in new editions or Technical Newsletters.

Changes are continually made to the specifications herein. Therefore, before using this publication,
consult the latest System/360 SRL Newsletter (GN20-0360) for the editions that are applicable and
current.

Copies of this and other IBM publications can be obtained through IBM branch offices.

A form has been provjded at the back of this publication for readers' comments. If this form has
been removed, address comments to: IBM Corporation, Technical Publications Department,
112 East Post Road, White Plains, N. Y. 10601

© Copyright International Business Machines Corporation 1969, 1970

..

INTRODUCTION • • • • .. • •
General • • • • • • • • •
PLAN System Description • • • • •

5
5
5
6
6

PLAN System Requirements • • • • • •
Generating the Executable Programs •

Explanation of Compile and Link-Edit
Steps • • • • • • • • • • • • 7

8
8
8
9

Adding Phrases to the Dictionary
ADD PHRASE Step Explanation • • • • •

Executing a PLAN Job .• • • • •
PLAN Job Step Explanation • • • •

OS PLAN Processing •
JOB Statement • • • • •
EXEC Statement •
PARM Fields
JOBLIB DD Statement
Required DD Statements •
Optional DD Cards

• 10
• • • • • 10

• 10
• • 10

• • .. • • 10
11

• • 12
• • • • • 14

• • • • • • 14
Data Set Consideration • •
Sequential File Support
Dynamic File Support (OS
Permanent File Support •

PLAN) • • 16
• • • • • 16

Use of Formatted Data Sets .• • • .• • • 16

SYSTEM/360 OS PLAN SPECIFICATIONS • • • 18
Rules for Writing Modules in Languages
Other Than FORTRAN • 18
Language Examples • • • • • 18

FORTRAN • • 19
COBOL • • • • • • • • • • 20
PL/I • • • • • • • • .• • 22
Assembly Language • • • • • 24

PLAN Core Management • • • • • • 26
PLAN BLANK COMMON Area • • • • • 26
Program Area • • • • • • .• • • 27
OS FREE STORAGE AREA • • • • • 27
PLAN System Area .• • • • • • • 2 8
PLAN Initialization • • 28

Program Loader • • • .• • • • • .• • 2 8
Execution-Time Linkage Editing • • 31
use of the LINKPAC and RAM Areas • • 31
Use of In-core Directory • • • • • • 32
overlay Processing • • • • • • • • 32
Return Linkage • • .. • • • • 35
Parameter Passing • • .• • • 36
PLAN System Checkpoint .• • • • 36
User-Exit Programming • .. • • • 36
IOCS Device Parameters • ... • • • 36
Programming Restrictions • • .. .• • • 36
Permanent File SORT/MERGE • • 36
Estimating Storage Requirements • 37

Standard PLAN Commands •
ADD PHRASE • • • •
DELETE PHRASE
ALTER PHRASE •
PLAN JOB •••
SET LITERAL
LIST LITERALS
Communication Array Dumps
FILE DUMPS • • • • • • • •
STATEMENT SAVE Commands
Phrase Table Dump

CONTENTS

• 38
38

• 38
• • 38

• 38
• • 41

• 42
• 42

Error Listing • • • • • • • • •
Page Length Definition • • • • • • •
Special Purpose OS Phrases

• 43
44
46
48

• 48
48

PROGRAM DEBUGGING AND ABEND DUMPS • • • 50
PLAN TRACE Facility .• • • • • • • • • • 50
ABEND Dumps • • • • • • • • • • .• • • • 5 0

Locating the BLANK COMMON Array • 50
Locating Modules in the Program Area • 50
Table Of Pointers in PLAN COMMON • 51

• 52 PLAN SYSTEM DIAGNOSITC MESSAGES
PLAN Error Processing • • • • • •
Specifying Error Processing Mode •
Standard Error Processing • • • •
Post-Listing of Errors • • •
User-Error Exit Processing •
Phrase Diagnostics • • • • •
Execution-Time Diagnostics •

• • • 52

PSCAN Diagnostics
OS Only Diagnostics • • • •

PREPARATORY SYSTEMS PROCEDURES
Generating a PLAN System • • •

• 53
• 54
• 54
• 54
• 55

57
60
65

• 61
• 67

OPTIONAL MACHINE-READABLE MATERIAL • 70

APPENDIX A: RUNNING THE SAMPLE PROBLEM • 72
Explanation of Sample Problem • • • • • 72

APPENDIX B: LISTING OF STANDARD PHRASE
FILE •. • • • • • • • ., • • • • • 76

APPENDIX C: MEMBER LISTING OF
PLAN.MODLIB . , 77

APPENDIX D: MEMBER LISTING OF
PLAN.SUBLIB . .• 78

APPENDIX E: MEMBER LISTING OF
PLAN.MACLIB .• .• . .• 79

,,

The Problem Language Analyzer (PLAN) under
OS/360 provides the user with an efficient
means of implementing and using problem
oriented languages. This manual is
intended to assist users in the implementa
tion and execution of PLAN jobs using
OS/360.

This manual contains sections that provide
the user with the following:

1. Examples of PLAN job processing

2. Descriptions of the diagnostic messages
produced during execution of a PLAN job

3. Descriptions and explanations for the
preparation of programs to be executed
under PLAN that are written in lan
guages other than FORTRAN

The user of this manual should be familiar
with the following publications:

Problem Language Analyzer (PLAN) Program
Description Manual (H20-0594)

IBM System/360 Operating System: Job
Control Language (C28-6539)

IBM System/360 Operating System: Linkage
Editor (C28-6538)

IBM System/360 Operating System: FORTRAN
IV Language (C28-6515)

The user should also be familiar with one
of the following:

OS/360 FORTRAN IV (E) Programmer's Guide
(C28-6603)

OS/360 FORTRAN IV (G) Programmer's Guide
(C28-6639)

OS/360 FORTRAN IV (H) Programmer's Guide
(C28-6602)

GENERAL

The IBM Operating System/360 consists of a
control program and processing programs.
The control program supervises the execu
tion of all processing programsv such as
the PLAN system monitor. Therefore, to
execute a PLAN job, the user must first
communicate with the operating system and
the medium of communication between the
user and the operating system is JOB CON
TROL language.

INTRODUCTION

To the operating system, a, JOB consists of
executing one or more job steps. In order
to execute any job under OS/360, the user
must first describe to the system the
required job steps and the data sets to be
processed by those steps. He defines a job
to the operating system by using a JOB
statement. A job step is defined by using
an EXEC statement, and a data set is
defined by using a DD statement.

The PLAN system is similar to OS/360 in
that it supervises the execution of other
problem program modules, and must have
available a description of its job require
ments before it can execute a PLAN job.
The medium of communication with the PLAN
system is through PLAN phrases and
commands.

A PLAN phrase is a definition of a PLAN job
step. Each such definition normally con
tains <1> a list of problem programs to be
executed, and <2> a list of input parame-
ters and/or constants. ·

A PLAN command is a statement that causes
the PLAN system to invoke or execute a
certain phrase description.

PLAN SYSTEM DESCRIPTION

The PLAN system monitor has three main
elements: (1) the interpreter, (2) the
executor, and (3) the phrase dictionary.
Figure 1 is a logical schematic of the PLAN
system.

PLAN
INPUT

BLANK
COMMON

PLAN
INTERPRETER

PLAN
MONITOR

PROGRAM PROBLEM
INPUT PROGRAM

Figure 1. PLAN system

PROGRAM
LIST

PROGRAM
OUTPUT

INTRODUCTION 5

Input data is read by an interpreter.
Based on a PLAN job definition in the
phrase dictionary, a list of programs to be
executed and a blank common area are
prepared.

The executor then loads and executes the
programs named in the program list.. When
the program list is exhausted, the executor
returns control to the interpreter and the
cycle repeats itself.

PLAN SYSTEM REQUIREMENTS

In order to execute a job, the PLAN system
must have availabl.e the facilities listed
below:

1. An input device from which PLAN com
mands can be accepted

2. An output device through which PLAN may
communicate with the user

3. A phrase dictionary that contains the
PLAN job definitions

STEP 1

FORTRAN
SOURCE

FORTRAN
OBJECT

STEP 2

PHR: •••

STEP 3

DIRECT
ACCESS
OUTPUT

PHRASE
PLAN

Figure 2. Necessary steps for PLAN execution

6 INTRODUCTION

4. A library of executable programs

To provide these things to PLAN, the user
must execute a three-step process: <t>
generate the required programs for the job,
(2 > define the job requirements by aid.ding
phrases to the PLAN phrase dictionary, and
(3) execute the necessary PLAN commands to
run the job. Figure 2 is a logical :3che··
matic of this process.

GENERATING THE EXECUTABLE PROGRAMS

In order to generate executable PLAN
modules, the user must process, his FOJltTRAN
source code through two OS job steps. The
first is the compile step in which an OS
FORTRAN compiler produces an object deck
from the source deck. The second is the
link-edit processing step which comrerts
the object module into an executable load
module. Sample 1 illustrates a job stream
to create an executable module named M0107.

LOAD
--~~~~~--MODULE

PUNCHED
OUTPUT

LIBRARY

DICTIONARY

,.

//FORTRAN JOB 84803, "JOE E. JONES',.MSGLEVEL=1
//COMP EXEC l'GM=IEJFAAAO,PARM='ADJUST,NAME=M0107'

00010
00020
00030
00040
00050
00060
00070
00080
00090
00100
00110
00120
00130
00140
00150
00160
00170
00180
00190
00200
00210
00220
00230
00240
00250
00260

//SYSPRINT DD SYSOUT=A
/ /SYSUT1 DD UNIT=SYSDA, SPACE= (en.,, (2, 1))
//SYSUT2 DD UNIT=SYSDA, SPACE= <en~, (2,, 1))
//SYSLIN DD DSNAME=,LOADSET, UNIT==SYSSQ, SPACE= (400, (200, 50)) , X
// DISP=(NEW,PASS)
//SYSIN DD •

COMMON L (625), LS (15) , MA (255) , NMA (255)
•
•

FORTRAN SOURCE STATEMENTS
•
•

/•
//LINK EXEC PGM=IEWL,PARM=(LIST,LET),COND=(4,LT,COMP)
//SYSPRINT DD SYSOUT=A
//SYSLMOD DD DSNAME=MYLIB,UNIT=2311,VOLUME=SER=MY2311,DISP=OLD
//SYSLIB DD DSNAME=SYSl.FORTLIB,DISP=OLD
// DD DSNAME=PLAN.SUBLIB,UNIT=2311,VOLUME=SER=PLANPK,DISP=OLD
//SYSUT1 DD uNIT=SYSDA, SPACE= (CYL,, (2, 1))
//SYSLIN DD DSNAME=,LOADSET,DISP.=(OLD,DELETE)
// DD •

NAME M0107(R)
/•

Sample 1. Job stream to create M0107

EXPLANATION OF COMPILE AND LINK-EDIT STEPS

card 00010 is a valid job card.

card 00020 is the execute card required to
execute the OS FORTRAN E compiler. The
program to be executed is IEJFAAAO. The
PARM operand indicates that the ADJUST
option is to be used and the NAME of the
output object· module is M0107.

card 00030 is a DD card specifying the data
set for printed output from the compiler.

cards 00040 and 00050 are DD cards specify
ing utility work data sets for the FORTRAN
E compiler.

cards 00060 and 00070 are DD cards specify
ing the data set to receive the output
object module.

card 00080 is a DD card specifying the data
set that contains the source card input.
In this case, it is the input stream.

cards 00090 through 00150 are the FORTRAN
source cards.

card 00160 is an OS job-step delimiter.

At the completion of this job step, the
FORTRAN E cumpiler will have produced an
object deck on the data set named 'LOADSET
and a program listing on the output device
named as the CLASS A WRITER.

Card 00170 is an execute card for the
link-edit step. The program to be executed
is IEWL, the OS link-editor. The COND
field specifies that the link-edit step is
not to be run if the compile step fails.

Card 00180 is a DD card specifying a data
set for printed output from the
link-editor.

Card 00190 is the DD card specifying a
partitioned data set to receive the output
load module.

Cards 00200 and 00210 are DD cards specify
ing the subroutine libraries to be used to
resolve subroutine calls in the source
program. SYSl.FORTLIB is the standard OS
FORTRAN subroutine library, and PLAN.SUBLIB
contains the PLAN subroutines.

Card 0220 is a DD card specifying a utility
work data set for the link editor.

Cards 00230 and 00240 are DD cards specify
ing the input data set for the link-editor.
<Note: This same data set was used for the
output of an object moduJ_e in the compile
step.) The input data set is concatenated
with the input stream which contains link
edi t control cards.

Card 00250 is
specifying the
module.

the link-edit control card
name of the output load

INTRODUCTION 7

card 00260 is an OS job-step delimiter.

At the completion of this step, the data
set MYLIB will contain the executable load
module M0107.

The user should ref er to the appropriate
FORTRAN progra111ner's guide for other
examples of usage of FORTRAN compilers and
link-edit facilities of the operating
system.

ADDING PHRASES TO THE DICTIONARY

PLAN job requirements are defined in the
PLAN phrase dictionary. This diction.ary is
a data set on a direct access device.
Before executing any PLAN jobs, the user
must define this data set and ad.d h.is
phrases to the dictionary. Sample 2 illus
trates a job stream to create the dic
tionary data sets and to add a phrase.

//PLANINIT JOB 84803, 'JOE E. JONES' ,MSGLEVEL==l 00010
00020
00030
00040
00050
00060
00070
00080
00090

//STEP EXEC PGM=DFJPLAN
//PLOUT100 DD SYSOUT=A
//PLANLIB DD DSNAME=PLAN.MODLIB,VOLUME=SER=PLANPK,UNIT=2311,DISP=OLD
//PLSYSTAB DD DSNAME=PFILE,UNIT=2311,VOLUME=SER=MY2311,
// DISP=(NEW,KEEP),SPACE=(CYL,(5))
//PLINP001 DD *
ADD PHRASE: PLAN JOB,PRO'M0107',LEVEL 1,I(l) RUNTYPE O;
/*

Sample 2. Job stream creating dictionary data sets and adding a phrase

ADD PHRASE STEP EXPLANATION

Card 00010 is a valid job card.

card 00020 is the execute card. The pro
gram to be executed is DFJPLAN, the PLAN
system monitor.

card 00030 is a DD card defining the PLAN
output device to be a SYSOUT writer class
A.

Card 00040 is a DD card defining the PLAN
library PDS, which is a data set called
PLAN.MODLIB. PLAN obtains all executable
modules from this library.

cards 00050 and 00060 are the DD cards
defining the PLAN system dictionary data
set. The disposition of <NEW,KEEP) speci
fies that the data set is to be formatted
by the PLAN system and retained for use in
subsequent PLAN executions.

//PLANJOB JOB 84803,'JOE E. JONES'~MSGLEVEL=l
//PLAN EXEC PGM=DFJPLAN,PARM='TRACE'

Card 00070 is a DD card defining the PLAN
input stream.

Card 00080 is the ADD PHRASE card shown
adding the phrase PLAN JOB.

Card 00090 is the OS job-step delimit4er.

At the conclusion of this job step, PLAN
will have created a phrase dictionar~{ data
set with the name PFILE on a 2311 with the
serial number MY2311. The phrase PLl\N JOB
will be added to this dictionary for use by
subsequent PLAN executions.

EXECUTING A PLAN JOB

After the user has generated the required
modules and entered his phrases into the
PLAN phrase dictionary he may executE! his
PLAN job. Sample 3 illustrates a ~job
stream for job execution. \

//PLSYSTAB DD DSNAME=PFILE,UNIT=2311,VOLUME=SER=MY2311,DISP=OLD
//PLANLIB DD DSNAME=PLAN.MODLIB,UNIT=2311,VOLUME=SER=PLANPK,,DISP=OLD

00010
00020
00030
00040
00050
00060
00070
00080
00090

// DD DSNAME=MYLIB,UNIT=2311,VOLUME=SER=MY2311,DISP=OLD
//PLOUT100 DD SYSOUT=A
//PLINPOOl DD *

PLAN JOB,RUNTYPE = 3;
/•

sample 3. Job execution

8 INTRODUCTION

PLAN JOB STEP EXPLANATION

card 00010 is a valid job card.

card 00020 is the execute card for the PLAN
step. The program is DFJPLAN. the PLAN
system monitor. The PARM 'TRACE' invokes
the PLAN tracing facility.

Card 00030 is the DD card defining the PLAN
system phrase dictionary data sets. <~:
This same data set was used when the phrase
PLAN JOB was added to the dictionary in
Sample 2.)

cards 00040
defining the
(Note: MYLIB,
mO'dUre M0107,
PLAN.MODLIB which
load modules.)

and 00050 are the DD cards
PLAN load module library.
which contains the user

is concatenated to
contains' the PLAN system

card 00060 is the DD card specifying a data
set for PLAN printed output.

card 00070 is the DD card specifying a data
set for PLAN iriput.

Card 00080 is the PLAN command that invokes
PLAN JOB, which was added to the
dictionary.

card 00090 is an OS job-step delimiter.

While executing this job step, the PLAN
sys~~m monitor Erea~ches the PLAN phrase
dictionary in the data set PFILE for the
phrase PLANJOB. Finding it initializes a
blank common area based on the input param
eters in the PLAN command. Then the pro
gram M0107 is loaded from the library MYLIB
and entered for execution.

IN'l'RODUCTION 9

OS PLAR_PROCESSING

To execute the PLAN system under OS/360,
the user must prepare t~e necessary JCL
(Job Control Language) statements. These
are (1) a JOB statement, ·(2 > an EXECUTE
statement,, (3) DD statements, as required,
and (4) an OS standard delimiter. Figure 3
shows the PLAN DDNAME function and dev:ice
requirements.
r-------T-~-------------T--------------1
IDDNAME IFUNCTION 1DEVICE I
·------+------------+-----------·-i 1-------+-------------+---------·-i
IPLSYSTABIPLAN WORK AREA l*INTERMEDIATE I
I I AND PHRASE I STORAGE I
I I DICTIONARY 1 I
·--------+--------------+----------i
I PLANLIB I PDS CONTAINING I *INTERMEDIATE I
I f LOAD MODULES I STORAGE I
I I TO; BE EXECUTED I I
1--------+---------------+-----------~
f PLINPxxxlINITIAL PLAN l*CARD READER I
I I INPUT I •MAG!raTIC I
I I I TAPE I
I I t•INTERMEDIATE I
I I I STORAGE I
·-------f-----------------+--------------i
IPLOUTxxxlINITIAL PLAN l*PRINTER I
I I OUTPUT I *CARD PUNCH I
I I l*MAGNETIC I
I I I TAPE I
I I t•INTERMEDIATE I
I I I STORAGE I
1--------+----------------+--------------i
IPLMANFILf MANAGED ARRAY l*INTERMEDIATE I
I I SAVE FILE I STORAGE I
·--------f----------------+--------------i f PLCHKPT ICHECKPOINT l*INTERMEDIATE I
I I FILE I STORAGE I
1--------f-------~-------+---------------i
IPLANDRVxlPLAN DYNAMIC l*INTERMEDIATE I
I I DRIVE I STORAGE I
1--------+---------------+---------------i
f PLFSynnnf USER PERMANENT f *INTERMEDIATE I
I I DATA SETS I STORAGE I
·-----+--·----------+----------f
f PLSEQxxxf SEQUENTIAL f *CARD READER I
I fINPUT OR OUTPUT t•TAPE I
I I I *PRINTER I
I I I •CARD PUNCH t L-----.L-.------------.L----------··
Figure 3.
requirements

JOB STATEMENT

PLAN DD NAME and device

A valid JOB card must be supplied. Instal
lation standards where the job is run
determine the required JOB card parameters.

10 OS PLAN PROCESSING

EXEC STATEMENT

The name of the PLAN
DFJPLAN; the operands
must be DFJPLAN.

PARM FIELDS

system moni to:C' is
of the PGM keyword

There are five valid operands of the PARM
keyword: PGAR, NFS, TRACE, NOLIST., and
PHRAS.

PGAR specifies the length of the PLAN
PROGRAM COMMON ar~a. It is coded as PGAR=
nnn, where nnn specifies the number of
contiguous 1024-byte blocks to be rese1~ved.
If this operand is omitted, the size of the
PLAN PROGRAM COMMON area is 66 percent Of
the region or partition.

NFS specifies the length of the nonmanaged
OS free storage area. It is codE!d as
NFS=nnn, where nnn is the number of conltig
uous 1024-byte blocks to be reserved. If
this operand is omitted, the size of the
nonmanaged free storage area is zero.

'!'RACE specifies that the name and e:ntry
point of all programs loaded and entered
for execution be listed on the PLAN ou.tput
device. <see "PLAN Trace Facility".>

NOLIST specifies that the normal 80-80 list
of the PLAN input stream be suppressed.

PHRAS specifies that all commands executed
by the PLAN system be listed on the PLAN
output device.

The following examples show valid uses of
the PARM keyword:

/ /STP EXEC PGM=DFJPLAN, PARM='' TRACE'

//STP EXEC PGM=DFJPLAN,PARM='PGAR=60, X
// NFS=20'

//STP EXEC PGM=DFJPLAN,PARM='TRACE,NOLIST'

,J'OBLIB DD STATEMENT

This is an optional DD statement. OS,1360
PLAN requires the following modules tc> be
available to begin execution: (1) DFJPlC.AN,
(2) DFJLODER, {3) DFJTRACE.

If these modules are not in SYSl.LINKLIH or
the LINK.AC-RAM area, the user must pro.,ride
a suitable JOBLIB DD statement 1:.hat
describes a PDS that does contain them.

REQUIRED DD STATEMENTS

The DD statements listed below are required
for PLAN execution. If any are missing,
execution of PLAN is suppressed.

PLSYSTAB

This DD statement defines the PLAN PFILE
data set that contains the system tables
and the phrase dictionary. If the disposi-.
tion is NEW, this file is formatted and the
phrase 'ADD PHRASE' is added to the dic
tionary. The following examples show PLSY
STAB DD statements:

//PLSYSTAB DD DSNAME=PFILE,UNIT=2311, X
// VOLUME=SER=MY2311,DISP=OLD

//PLSYSTAB DD DSNAME=PFILEA,DISP=OLD

//PLSYSTAB DD DSNAME=PFILEB,UNIT=2311, X
// VOLUME=SER=MY2311, X
// DISP=(NEW,KEEP), X
// SPACE=(CYL,(2))

The first example shows the use of a data
set named PFILE that already exists on a
2311, serial number MY2311. This data set
is to be retained at the end of the PLAN
execution.

The second example shows the use of cata
loged data sets named PFILEA.

The third example shows the creation of a
data set named PFILEB on a 2311, serial
number MY2311. Two cylinders on the pack
will be allocated, and the data set is to
be retained _at the end of the PLAN execu
tion. Since the disposition is NEW, the
file will be formatted by the PLAN system.
It is the user's responsibility to add the
standard PLAN commands to his dictionary.
(Note: For new data sets the allocation
must be at least 14 records. The maximum
required allocation is 268 records~ The
block size for PLSYSTAB is 512.l

PLINPxxx

This DD statement defines a sequential PLAN
input data set to be read using the PLAN
unit record subroutines. The xxx is a
three-digit number equivalent to the NOD
parameter in the subroutine call parameter
list. The PLINPxxx DD statement will be
used as the initial PLAN- input device.
Only one PLINPxxx DD card is allowed per
PLAN job step. The following examples show
PLINPxxx DD statements:

//PLINP001 DD *
//PLINP006 DD DSNAME=MYFILE,UNIT=2311, X
// VOLUME=SER=MY2311,DISP=OLD, X
// DCB=(RECFM=FB,LRECL=80, X
// BLKSIZE=400)

The first example shows the use of the
system input stream for PLAN input. The
records will be 80 characters unblocked.

The second example shows a data set named
MYFILE on _a 2311, serial number MY2311,
that will be used to honor PLINP calls with
a NOD parameter of six. The records are 80
characters long and blocked five. (Note:
If a PLINPxxx DD card is not found, a user
ABEND code of 100 results.)

PLOUTxxx

This DD card defines the sequential PLAN
output file written using the PLAN unit
record subroutines. The xxx is a three
digit number equivalent to the NOD parame
ter in the subroutine call parameter list.
The PLOUTxxx DD statement will be used as
the initial output device. Only one
PLOUTxxx DD statement is allowed per PLAN
job step. The following examples show the
PLOUTxxx DD statements:

//PLOUT100 DD SYSOUT=A

//PLOUT103
//
//
//
//

DD DSNAME=MYFILE,UNIT=2311, X
VOLUME=SER=MY23~1, X
SPACE=(CYL,(10 11 5), X
DISP=(,KEEP),DCB=(RECFM=FBA,X
LRECL=121,BLKSIZE=605)

//PLOUT107 DD UNIT=SYSCP

The first example shows the use of the
system output stream for PLAN output. The
record format assumed is 133 characters,
unblocked, with the first character of the
record used for carriage control. This
device will be used whenever a PLOUT call
is made with NOD variable= (100). The
PLAN subroutine PCCTL can be used for
carriage control.

The second example shows the use of a 2311
for PLAN output. The records are blocked
five, and the data set MYFILE is to be
retained at the end of the PLAN execution.

The third example shows the use of a card
punch for PLAN output. The record size is
80 characters. <Note: If no PLOUTxxx DD
card is found, PLAN will ABEND with the
user code of 100.)

PLANLIB

This DD statement defines the PLAN library
PDS, and should contain the load modules
the user wishes to execute. In addition,
this library must contain the modules
DFJPSCAN, DFJRETN, and DFJPERRS, or PLAN
execution is suppressed.

The following example shows a PLANLIB DD
statement ref erring to a data set named

OS PLAN PROCESSING 11

,

PLAN.MODLIB that resides on a 2311. serial
number PLANPK:

//PLANLIB DD DSNAME=PLA~.MODLIB,DISP=OLD, X
// VOLUME~SER=PLANPK,UNIT=2311

(Note: The PLANLIB DD statement may con
tain concatenated data sets.>

OPTIONAL DD CARDS

The following DD statements are optional
and are used only if the job step requires
them.

PLMANFIL

This DD statement defines a direct access
data set that will be used to save and
restore the managed COMMON array. PLAN
uses this data set whenever a level 2, 3.
or 4 command is processed, and the length
of the managed array is not zero. This
data set is required if the PLAN sort
facility is used. If this DD card is not
present and an attempt is made to either
read or write the managed array a phrase
abort condition occurs.

The following example shows the use of a
temporary data set that will reside on any
available direct access device. This data
set will exist only while the PLAN job step
is in execution.

//PLMANFIL DD UNIT=SYSDA.SPACE=<CYL.(2))

PLCHKPT

This DD statement defines a direct access
data set that will be used to contain PLAN
checkpoints. This data set is used by PLAN
when a CALL LCBEX is executed. Note that
in some cases the error routines (ERROR,
~RRAT, ERREX. ERRET) do use LCHEX. If this
data set is not present when a CALL LCHEX
is executed, a phrase abort condition
occurs.

The following example shows the use of a
2301 for checkpoint. The checkpoint file
will be written using 5000-byte records.

//PLCHKPT DD UNIT=2301, VOLUME=SER=MY2301,, X
// SPACE=(CYL,(2)), X
// DCB= (BLKSIZE=5000)_

PLANDRVx

This DD statement defines a direct access
data set that will be used for the PLAN
DYNAMIC files. The x is a single digit and
refers to drives 0 through 7. This DD card
is required if the user needs DYNAMIC PLAN
files. PLAN DYNAMIC drive 0 is required if
error message queueing is used. The fol
lowing are examples of PLANDRVx DD

12 OS PLAN PROCESSING

statements:

//PLANDRVO DD DSNAME=PLANDRVA,UNIT=2311, X
// VOLUME=SER=MY2311, Difff=OLD

//PLANDRV7 DD DSNAME=PLANDRVB,UNIT=231:1, X
// VOLUME=SER=MY2311, X
// SPACE=(CYL, (10)) ,DISP=(,JKEEP)

The first example shows the use o:E an
existing data set named PLANDRVA as D~~AMIC
drive O. This data set must previc:>nsly
have been used as a PLAN DYNAMIC drive.

The second example shows the use of a data
set named PLANDRVB as PLAN DYNAMIC dri 'ire 7.
The data set will be formatted by the PLAN
system and will be retained after the PLAN
execution.

PLFSynnn

This DD statement defines the direct access
data set associated with GDATA, RDATA 1, and
WDATA call statements. Y is a single digit
equivalent to the NDR parameter in the
GDATA call. The nnn is a three-digit
number equivalent to the file numbe1~ in
ID C 1> • This DD card is requir~d H the
user needs RWDATA type files. The follow-·
ing examples show PLFSYnnn DD statements:

//PLFS0007 DD DSNAME=PERMFIL, UNIT=2311,, x
// VOLUME=SER=MY2311, DISP=Ol~D

//PLFS7043 DD DSNAME=NEWFILE, UNIT=2311,, x
// VOLUME=SER=MY2311, x
// SPACE=(TRK,(20))8 x
// DCB=(BLKSIZE=1024)

The first example shows the use c>f an
existing data set named PERMFIL. This data
set will be accessed on the GDATA call when
ID(l) = 7 and NDR = o.

The second example shows the use of a
data set named NEWFILE. This data set
be formatted with 1024-byte records.
data set will be accessed on the GDATA
when ID(l) = 43 and NDR = 7.

PLSEQxxx

new
will
This
call

This DD statement defines a sequential PLAN
input/output data set to be read or wri.tten
using the PLAN unit record subroutines.
The xxx is a three-digit number equivallent
to the NOD parameter in the subroutine call
parameter list. The user may have as many
PLSEQxxx cards as required. The follo>wing

f

examples show PLSEQxxx DD statements:

//PLSEQOOS
//
//
//
//
//

DD UNIT=(2400-2),LABEL=(,NL),
VOLUME=SET=TAPE,DISP=OLD,
DSNAME=INPUT.MASTER,
DCB=(TRTCH=ET,DEN=2,
LRECL=80,BLKSIZE=400,
RECFM=FB)

x
x
x
x
x

//PLSEQ007 DD UNIT=SYSDA,SPACE=CCYL,(2)), X
// DCB=(RECFM=F,BLKSIZE=512)

The first example shows the
seven-track tape for program

use of a
input. It

contains 80 character records with a block
ing factor of five. Note the name INPUT.
MASTER indicates this data set is to be
used for input only. This data set will be
referenced when a CALL PLINP(5) is
executed.

The second example shows the use of direct
access for intermediate work files. This
data set could be used for both input and
output. It would be referenced by either a
CALL PLINP(7) or a CALL PLOUT(7).

OS PLAN PROCESSING 13

DATA SET CONSIDERATION

PLINPxxx/PLOUTxxx/PLSEQxxx

The data sets defined by these DD state
ments are used for sequential input and
output by the PLAN system qs well as the
user modules. The xxx in the DD name is a
three-digit number equivalent to the NOD
parameter in CALL PLINP and in CALL PLOUT.

The PLAN system module DFJPSCAN. which
processes the PLAN commands. uses one of
these data sets. In DFJPSCAN. the· PLINP
calls use a NOD parameter of CO> which
specifies the current PLAN input device.
The PLOUT calls use a NOD parameter of
(100) that specifies the current PLAN out
put device. The user may vary these
devices during execution by using the PLAN
subroutine IOCS. The PLINPxxx DD statement
is used as the initial PLAN input device.
and PLOUTxxx is used as the initial output
device. The xxx suffix cannot be dupli
cated on PLINP. PLOUT. or PLSEQ statements.

The default for PLINP and PLSEQ data sets
is SO-character unblocked records. This is
comparable to a DCB parameter of DCB=
(LRECL=80.RECFM=F;BUFN0=2>. The user may
specify. in his DD card. any valid BSAM DCB
parameter for input devices. This data set
may reside on a card reader. magnetic tape,
or direct access device.

The default for PLOUT data sets is 133
character unblocked records, with the first
character being used for standard ASA car
riage control characters and the remaining
132 characters used as data. This is
equivalent to a DCB parameter of DCB=
(LRECL=133.RECFM=FA.BUFN0=2). The user may
specify any valid BSAM DCB parameter for an
output device. This data set may reside on
a printer~ card punch. magnetic tape. or
direct access device. (Note: The BUFNO
parameter specifies the number of buffers
to use for reading or writing the data
sets.) The default value is two. The user
may conserve some core by specifying BUFNO

1. However, this will degrade perform
ance. There is no significant performance
improvement in specifying a value greater
than two in the BUFNO subparameter. If
using a card reader or punch. and stacker
selection is used via the PCCTL subroutine,
BUFNO = 1 must be specified in the DCB
parameter.

If any data set named in a PLINP. PLOUT or
PLSEQ DD card resides on a tape or direct
access device. it may be used for both
input and output. The PLAN subroutine
'PENDF' allows the user to reverse the
status of a sequential data set. The PLAN
system normally opens data sets of this
type with a parameter of INOUT to allow

14 DATA SET

both reading and writing on the data set.
When using file-protected tapes, a sp~cial
situation occurs. The operating system
data management routines require that the
file-protect ring be present on any tape
that could be written on. To process a
f ile...:protected tape, the user must sp•~cify
a DSNAME parameter of which the first five
litters must be INPUT. Example:

DSNAME=INPUT
DSNAME=INPUT.MASTER

When a DSNAME of this type is found,, the
PLAN system will open this data set on the
tape for input only.

SEQUENTIAL FILE SUPPORT

The following steps outline the manm~r in
which certain special conditions are
handled on the OS/360 version of the PLAN
I/O subroutines (PLINP/PLOUT/PEOF/PCCTJ:.).

Two subroutines are provided under OS PLAN
that allow specification of page length and
status switching (CLOSE) for PLINP/PLOUT
data sets.

CALL PPAGLCNOD,N) is a subroutine useCl to
specify the number of lines to be used as
the page length for those data sets con
taining printed output. If N is O, a
default of 60 is used. The maximum value
of N is 32,767.

A call to PPAGL sets the current line count
to the page length specified. It also
forces the next carriage control operation
to be a skip to 1, unless overridden by an
intervening call to PCCTL.

CALL PENDFCNOD) is a subroutine that
used to close a sequential data set.
data set is in output status, an
written after the last record. Both
.and PLOUT data sets are repositioned
beginning of this data set.

maty be
If a

EOF is
:PLINP

to the

1. Maximum record size for any input/
output record is 32,760 characters.

2. Records may be blocked within the
limits of the specified device. 'I'run
cated records are accepted if the
character count is a multiple·of the
logical record length.

3. A PLINP/PLOUT call to an invalid dE!Vice
<missing DD card) is ignored.

q. The DCB RECFM parameter must be F, FA,
FB, or FBA.

5. If the device is a printer, the DCB
RECFM parameter must be FA.

6. In order to effect carriage control,
that is, for PCCTL to be functional,
the DCB RECFM parameter must be FA or
FB!\.

7. The following
functions:

items define PCCTL

a. If the device is a reader, PCCTL
will control stacker selection.
DCB=(RECFM=F, BUFN0=1) must be used.

b. If the device is a punch, RECFM must
be FA for PCCTL to control stacker
selection.

c. If RECFM is FA or FBA, PCCTL will
cause the correct ASA control
character to be inserted as the
first character of the record.

H. The following items are specifications
for the PEOF routine.

a. Logical EOF is set when:
(1) A "URENO" is read by CAT .. L PLINP.

The logical EOF will be reset by
the next CALL PLINP to the data
set.

(2) The line count is zero for out
put data sets (CALL PLOUT) using
RECFM FA or FBA.

b. Physical EOF is set when:
(1) EOF is read by a CALL PLINP,
(2) a call PLINP is issued to a

device not capable of input,
(3) a CALL PLOUT is issued to a

device not capable of output,
(4) A CALL PI.OUT is issued to a data

set in input status (A CALL
PLINP had previously been
issued).

(5) A CALL PLINP is issued to a data
set in output status (A CALL
PLOUT had previously been
issued).

9. The following specifications pertain to
the carriage tape simulation functions
on an output device (CALL PCCTL):

a. The maximum page length is 32,767
lines.

b. Default page length is 60 lines.
c. If RECFM is FA or FBA, a line count

is maintained and an automatic eject
(skip to carriage channel 1) is set
when the line count reaches zero.

d. The maintenance of the line count is
suspended when a PCCTL CALL is
issued for a skip to channels 2-12.

e. Maintenance of the line count is
resumed when a CALL PCCTL is issued
for a skip to channel 1.

A PLAN utility program (DFJPLENG) allows
the user to set. the page length to be used
on an output file that is to contain data
to be printed. This utility must be
invoked by the standard PLAN command.

SET PAGE LENGTlit HOD xxx, PGL yyyyy;

where xxx is a number up to three digits
equivalent to the NOD argwnent for the
subroutines PLINP and PI.OUT, and yyyyy is a
number up to five digits to be used as the
page length for the specified NOD.

PLSYSTAB

This data set is the PLAN system phrase
dictionary and work data set. Its format
i.s fixed-length records of 512 characters.
PLSYSTAB must contain at least 14 records.
The maximum record requirement is 268 rec
ords.. If the data set defined in this card
has a disposition of OLD, it must have been
previously used for a PLAN phrase dic
tionary. This data set must reside on a
direct access device.

PLMANFIL

This data set is used as a save area for
the managed COMMON array whenever the com
mands being processed by PLAN are level 2,
3, or 4 and the length of the managed area
is not o. The size of this data set is
dependent on the number of command levels
the PLAN job is using and the length of the
managed array. This data set is also used
as working storage by the DYNAMIC file and
PERMANENT file sort facility. The size of
this file affects the performances of the
sort. The sort facility requires space for
at least one logical record; however, any
additional space will be used to optimize
the sort.

The default block size for this data set is
512 characters. The user may specify a DCB
BLKSIZE parameter of any value up to the
limits of the device on which the data set
resides.. If disposition is NEW, this data
set is formatted by PLAN. If disposition
is OLD, this data set must have been
created by QSAM or BSAM. This data set
must reside on a direct access device.

PLC HK PT

This data set is used by PLAN to write and
read PLAN checkpoints. The size of this
data set is dependent on the size of the
programs being executed and the number of
levels of checkpoints to be taken by the
job.

The default block size for this data set is
512 characters. The user may specify a DCB
BLKSIZE paramater of any value up to the
l.imits of the device on which the data set
resides. If disposition is NEW, this data
set is formatted by PLAN. If disposition
is OLD, the data set must have been created
by QSAM or BSAM. This data set must reside
on a direct access device.

DATA SET 15

PLANDRVx

The data sets defined by these DD state
ments are PLAN DYNAMIC drives. The x is a
single digit number from O to 7 that
denotes the drive number. The size of the
data set depends on the number and size of
the DYNAMIC files that will be processed on
the DYNAMIC drive. These data sets have a
fixed format of 600-character records.
This may not be varied by the user. The
minimum size for these data sets is 20
records. These data sets must reside on a
direct access device. If disposition is
NEW. PLAN will format these data sets. If
disposition is OLD, these data sets must
have been used previously as a PLAN DYNAMIC
drive.

DYNAMIC FILE SUPPORT (OS PLAN)

The NALLO parameter provided with CALL FIND
is used to optimize space allocation. The
basic unit of allocation for an OS PLAN
file is 1350 FORTRAN words.

Each logical file can contain up to 147
discontiguous allocations. Thus, if normal
allocation is allowed as the file is writ
ten, the maximum file size is restricted to
220,500 FORTRAN words. If the NALLO
parameter of the CALL FIND subroutine is
utilized, the maximum file size is 49,150,
350 FORTRAN words.

Each DYNAMIC drive may contain a maximum of
149 di~contiguous free areas. This means
that in cases of extreme discontiguous
allocation, a file may be destroyed.

To approximate the physical space to be
allocated for the PLAN DYNAMIC drive, the
following formula may be used:

NT=((NW+1349)/1350•10•NF+10)/RT

where: NT
NW
NF
RT

PLFSynnn

number of tracks
= average file l~ngth in words
= number of files
= number of 600-byte records

per track

The data sets defined by these DD state
ments are those generated outside of PLAN
by BSAM or QSAM. They are processed with
the PLAN subroutines GDATA, RDATA, and
WDATA. They must reside on a direct access
device. Y in the DD name is a one-digit
number from O to 7 and is equivalent to the
NDR parameter in the GDATA call arguments.
The nnn is a three-digit number from·1 to
255 equivalent to the value in ID(1). If
disposition is OLD, the existing data set
specifications will.be used. If disposi
tion is, NEW, the user may specify the

16 DATA SET

RECFM, LRECL, and the BLKSIZE DCB subpara
meter. The default block size for these
data sets is 512 characters.

PERMANENT FILE SUPPORT

The OS version of PLAN provides support for
files established outside of PLAN with the
following characteristics:

1. File contains fixed-length records.

2. File may be organized as a sequential
or direct access file.

3. No secondary allocation is provided.

4. Track overflow feature may not be used.

5. No keys are allowed.

6. There may be no control characters.

1. The file may contain no
records.

truncated

'fhe logical drive number (NOR) and. the
logical file number (ID(l> > must be equiva
lenced to the data set name. The DDNAME
•PLFSynnn" will establish a name/number
equivalence between PLFSynnn and NDR/IDi(l),
where y corresponds to NDR and may range
from 0-7, and nnn corresponds to ID(l) and
may range from 1-255.

USE OF FORMATTED DATA SETS

The data sets named in the PLMANFIL,
PLFSynnn, PLCHKPT, PLANDRVx, and PLSYSTAB
DD statements must be formatted for
successful PLAN execution,.

The format for PLSYSTAB and PLANDRVx is
fixed, and these data sets must be for
matted by the PLAN initialization routine.
This is done when a DISP <NEW, XXXX) is found
in the DD statements. If DISP=NEW is
specified on either of these data sets and
the PLAN system issues the message DJi'J999
•E• PLAN EXECUTION INHIBITED or thE! job
terminates abnormally before PLAN initiali
zation is complete, these data sets may not
be formatted correctly for subsequent use
with a DISP=OLD parameter. In this situa
tion the user should SCRATCH the data set
and rerun the job with DISP=NEW.

The formats for data sets named in the
PLMANFIL, PLCBKPT 11 and PLFSYnnn DD state
ments are flexible. Any record si:~e is
allowable up to the device limits. The
data sets will be formatted by the PLAN
initialization routine if DISP=NEW is spec
ified. They may, however, be formattei by
any program using the BSAM or QSAM access
method.

since data set formatting requires that the
entire data set be written, a significant
reduction in the time required for PLAN
initialization can be obtained by using
preformatted data sets CDISP=OLD) for these
DD names.

DATA SET 17~

RULES FOR WRITING MODULES IN LAN~UAGES
OTHER THAN FoRTRAN

Other languages may be used to generate
modules suitable for loading and execution
under the PLAN system provided they adhere
to the following conventions:

LINKAGE REGISTERS

REGISTER
NUMBER NAME FUNCTION

O PARAMETER Return answer value for

13

15

]_

Return function subroutines.

SAVEAREA
Register

RETURN
Register

ENTRY
Register

ARGUMENT
LIST Reg.

Address of the area in
the calling program
where the called pro
gram may store the con
tents of the general
registers.
The address in the
calling program to
which control is to be
returned after comple
tion of the called
program.
Address of the entry
point of the called
program. This register
may also be used by the
called routine to
return condition codes.
Address of the argument
list passed to the
called program.

No other general register may be used to
pass any parameter to or from a called
program.

Each entry in an argument list must be four
bytes long and must be aligned on a full
word boundary. The first byte of each
entry should contain zero. The last three
bytes should contain the address of an
argument. The first byte of the last entry
in the argument list should have the high
order bit set to '1'.

SAVE_ AREA~

Any module invoked as a LOCAL under PLAN is
presented with a standard 18 word save
area. If a module issues any loader sub
routine calls, the contents of this save
area may be changed with the following
exceptions:

1-8 MODULE CONSTRUCTION

Word 4. The contents of GPR14 (RUTURN)
on entry to the called program.

Word 7. The contents of GPR1 (addrE!SS of
the argument list> on entry to the called
program.

Although the contents of the save area
presented to a LOCAL module may be changed,
the PLAN system ensures that, on 1~eturn
from a LOCAL module, the register!> are
restored correctly before returning to the
calling program.

BLANK COMMON DECLARATION

If a blank COMMON control section is pre
sent in a program, it must be at least 640
32-bit words long.

For those languages that cannot generate a
blank COMMON control section, the name
PLANBCOM will be accepted as an aliai; for
blank COMMON. Modules that use this alias
may not have an actual control s•~ction
named PLANBCOM.

The following examples illustratin.9 the
rules defined previously show the same
problem written in FORTRAN, COBOL, PL/I,
and Assembly Language. The problem is to
determine the volume of a box gi v1en the
three dimensions. The dimensions, the
volume, and a title read from a card .are to
be printed. If one or more of the dimen
sions is missing, an error message is to be
printed.

The phrase used for this problem is:

ALTER PHRASE: SAMPLE LANGUAGE PROBLEM,
I (1) DIMENSION-,-,,- I (4)FORTRAN··•
F'FORSAM', (5)COBOL-*F'COBSAM', (6)PLI
*F'PLISAM', (7)ASM-*F'ASMSAM';

The phrase puts the dimensions as integers
in the PLAN communication array positions
1, 2, and 3. These locations are initia
lized to the value FALSE so that the
modules may ensure that all dimensions have
been specified. The logical variables FOR
TRAN, COBO!,., PLI, and ASM are u.sed to
determine which of the modules are to be
used.

ALTER PHRASE: SAMPLE LANGUAGE PROBLEM,I(1)DIMENSION-,-,-,
(4)FORTRAN-•F'FORSAM'',(5)COBOL-•F'COBSAM',(6)PLI-•F'PLISAM',

(7)ASMB-*F'ASMSAM';
PLAN JOB; LON;

SAM LAN PRO, DIM1,2,3,FORTRAN;
*******************FORTRAN OK************************DIMENSIONS

VOLUME

SAM LAN PRO, DIM 1w2,FORTRAN;
*******************FORTRAN DIM(3) UNDEFINED**********DIMENSIONS
SAM LAN PR01, Dito1 1,, 2,, 3 , COB;
*******************COBOL OK**************************DIMENSIONS

VOLUME

SAM LAN PRO, DIM 1,,3,COB;
*******************COBOL DIM (2) UNDEFINED***********DIMENSIONS
SAM LAN PRO,, DIM 1, 21, 3, PLI;
*******************PL/I OK***************************DIMENSIONS

VOLUME

SAM LAN PRO, DIM(2)2,3,PLI;
*******************PL/I DIM (1) UNDEFINED************DIMENSIONS
SAM LAN PRO, DIMl, 2,, 3,, ASMB;
*******************ASSMBLY LANG OK*******************DIMENSIONS

VOLUME

SAM LAN PRO,DIMl., 2,ASMB;
****************•**ASSEMBLY LANG DIM(3) UNDEFINED****DIMENSIONS
SAM LAN PRO, DIM2 , 3,, 4, FORTRAN, COBOL,, PLI 1 ASM;
****************** ASM ******************************DIMENSIONS

VOLUME
•••••••••••••••••• PL/I *****************************DIMENSIONS

VOLUME
•••••••••••••••••• COBOL ****************************DIMENSIONS

VOLUME
•••••••••••••••••• FORTRAN ·····~··················· DIMENSIONS

VOLUME

1
6

1

1
6

2 3

2 *UNDEF*

2 3

1 *UNDEF* 3

1 2
6

UNDEF

1
6

1

2
24

2
24

2
24

2
24

2

2

2

3

3

3

3

3

3

3

*UNDEF•

4

4

4

4

FORTRAN

The following FORTRAN module is written as
a subroutine. This eliminates the FORTRAN

error handling subroutines and allows PLAN
to intercept program check errors. PLAN
can then abort the phrase where required
rather than aborting the whole job step.

MODULE CONSTRUCTION 19

SUBROUTINE FORSAE
INTEGER DIM (3)
DIMENSION HDGS (8)
COMMON L(625).LS(15),M(510)
EQUIVALENCE.(DIM(l).M(l))
DATA HOGS /I DIME I • I NSIO I • I NS' • I VOLO I • I ME I , I I , I •UNO'' , ,, EF•. /

C READ HEADING FROM PLAN INPUT DEVICE
CALL PLINP (0)

C TRANSFER HEADING TO PT...AN OUTPUT LINE
CALL PBFTR <0.100)

C MOVE 'DIMENSIONS' TO PLAN OUTPUT LINE
CALL PAOUT (1001, 54 .12, HOGS (1))
NERR = 0
DO 10 I=l,3

C CHECK DIMENSION
IF (NDEF(DIM(I))) 1,, 1, 2

C MOVE '*tlNDEF•' TO PLAN OUTPUT LINE,
C IF A DIMENSION IS NOT SPECIFIED
1 CALL PAOUT (100 '• 59 +I• 8 , 7 • HOGS (7))

NERR = NERR + 1
GO TO 10

C MOVE DIMENSION TO PLAN OUTPUT LINE
2 CALL PIOUT <100 • 59+ I* 8, 7, DIM (I))
10 CONTINUE
C PRINT THE LINE

CALL PLOUT (100)
C RETURN TO PLAN. IF ANY ERRORS HAVE BEEN FOUND

IF (NERR) 11.11,99
C PRINT THE VOLUME
11 CALL PAOUT C100.54,12,HDGS(4))

CALL PIOUT (100,67,7,DIM(1)*DIM(2)*DIM(3))
CALL PLOUT (100)

C RETURN TO PLAN
99 CALL LRET

GO TO 99
END

COBOL

The following COBOL module illustrates
three points which must be observed in
using this language. Examples of these
points are indicated in the module listing.

1. Locating PLAN COMMON. The module is
written as a subroutine with one para
meter. PLAN will pass it to the
address of the switch words in COMMON.
An ENTRY card must be supplied to the
link editor with the name used in the
COBOL ENTRY statement (ENTRY COBSAME
for this example>.

2. Parameters passed to PLAN subroutines.
Integer parameters must occupy a 32-bit
word, that is, PICTURE S9(9)
COMPUTATIONAL.

3. Function subroutines. Since COBOL does
not support f Wlction subroutines. they
must be CALLed with an additional para
meter. This parameter will receive the
functional value. It is a 32-bit
integer for the function NDEF, and a

20 MODULE CONSTRUCTION

32-bit floating-point number
(COMPUTATIONAL-1) for PEOF, PCOMP, and
PIOC. The absolute value returned by
the function may vary from one execu
tion to the next. It will be negative,
zero, or positive, depending on the
condition being tested in the function ..
Example: CALL 'PCOMP' USING A, B, N,
PVAL.

PVAL is the extra parameter usei for
returning the functional value. It
will be negative if A is less than B,
zero if A is equal to B, and positive
if A is greater than B. These cc)ndi~·
tions correspond to the statement num
bers 1, 2, ,and 3 in the Program
Description Manual explanation of the
function. Note also that an array must
be in a contiguous core area. Example:

02 C OCCURS 10 TIMES
03 A COMPUTATIONAL-1.
03 D COMPUTATIONAL-1.

A cannot be used as an array to be passed
to PLAN.

IDENT~FICATION DIYISION.
PROGRAM-ID. 'COBSAM'.
DATA DIVISION.
WORKING STORAGE SECTION.
01 FILLER COMPUTATIONAL.

02 NID
02 NOD
02 HOG-PP
02 HDG-FW
02 DATA-PP
02 DATA-FW
02 I
02 NERR
02 VOLUME
02 J

01 HOGS.

PICTURE
PICTURE
PICTURE
PICUTRE
PICTURE
PICTURE
PICTURE
PICTURE
PICTURE
PICTURE

S9(9)
S9(9)
S9(9)
S9(9)
S9(9)
S9(9)
S9(9)
S9(9)
S9(9)
S9(9)

VALUE
VALUE
VALUE
VALUE
VALUE
VALUE

02 DIM-HOG PICTURE X(12) VALUE 'DIME~SIONS'.
02 VOL-HOG PICTURE X(12) VALUE 'VOLUME'.
02 UNO-HOG PICTURE X(08) VALUE '*UNDEF*'·

LINKAGE SECTION.
01 COMN COMPUTATIONAL.
~ 02 LS OCCURS 15 TIMES PICTURE S9 (9) •

o.
100.
54.
12.
67.
7.

~ 02 DIM PICTURE S9(9l OCCURS 3 TIMES.
PROCEDURE DIVISION.

0-
ENTER LINKAGE.

1 ENTRY 'COBSAME' USING COMN.
ENTER COBOL.

NOTE READ HEADING FROM PLAN INPUT DEVICE.
ENTER LINKAGE.
CALL 'PLINP' USING NID.
ENTER COBOL.

NOTE TRANSFER HEADING TO PLAN OUTPUT LINE.
ENTER LINKAGE.
CALL 'PBFTR' USING NID, NOD.
ENTER COBOL.

NOTE MOVE 'DIMENSIONS' TO PLAN OUTPUT LINE.
ENTER LINKAGE.
CALL 'PAOUT' USING NOD, HOG-PP, HDG-FW, DIM-HOG.
ENTER COBOL.

NOTE CHECK AND PRINT DIMENSIONS.
MOVE ZERO TO NERR.
PERFORM DIM-CHECK VARYING I FROM 1 BY 1 UNTIL

I IS GREATER THAN 3.

NOTE PRINT THE FIRST LINE.
ENTER LINKAGE.
CALL 'PLOUT' USING NOD.
ENTER COBOL.

NOTE GO TO RETURN TO PLAN, IF ANY DIMENSION
ERRORS HAVE BEEN DETECTED.

IF NERR IS GREATER THAN ZERO GO TO CALL-LRET.

NOTE PRINT THE VOLUME.
COMPUTE VOLUME= DIM (1) *DIM (2) *DIM (3).
ENTER LINKAGE.
CALL 'PAOUT' USING NOD, HOG-PP, HDG-FW, VOL-HOG.
ENTER COBOL.
SUBTRACT 24 FROM DATA-PP.
ENTER LINKAGE.
CALL 'PIOUT' USING NOD, DATA-PP, DATA-FW, VOLUME.
ENTER COBOL.
ENTER LINKAGE.
CALL 'PLOUT' USING NOQ.
ENTER COBOL.

NOTE RETURN TO PLAN.

MODULE CONSTRUCTION 21

f~J\T,J,- f_.QET ~
ENTER LINKAGE ...
CAT,T, 'J.RF.T' ~
!•':T•fi'F,~ C'OBQl .•

NOTE CRFX~K ffTMRNS TON ..
DIM-CHECK SF.CTION.

ENTER LINKAGE.
7,)--' -Ill- CALL 'NDEF' USING DIM (I), ,T_,,

RNTER COBOI ...
u·· .T IS POSITIVE GO 'T'O nT....,.-0¥ -

NOTE MOVE '*HNllF.F*' 'T'O l>T,?\"1 OUTPII"f';; IF A
DIMENSION T~ NO'T' SP~~CTPIED.

DIM-ERR.
EN'l'ER LINKAGE.
CAI,L 'PAOUT' USING NOD.., 0~'1"1\--Pl\, D.AT1\-F'W, UND-HDG.
ENTER COROL.
ADD l TO NERR.
GO ·ro DIM-UPDATE ..

IHM-OK.
ENTgR LINKAGE.
CALI, 'PIOUT' USTNr:; NOTL T1A'f'~-~·DD rv1r!'l'.-F'~:!,, DTM (I).
ENTER COROT.,~

DI.M-UPDATE.
AUD R TO DATA-PP.

PL/T:

'I'he following PL/I module illustrates +-nri.
points which must be observed in usinq
PL/I.. Examples of the first four poi ntc:
are indicated in the module listinq.

1~ Environment. The outside procedure must
have OPTIONS (MAIN) specified. This
permits the module to properly initial
ize the pseudo register vector,, Thie
means that program checks a.re handled
by the PL/I error routine which !TI··'lY
cause the job step to be aborted~ ON
statements may be used to abort th.e
phrase and return to PLAN, if desired.~
Note that a program check in some PI .. AN
subroutines may cause unpredict-_;\lhle
results, since these subroutines use
the register (register 1.2) whi<".h PTJT

assumes is pointing to th<-' psPndo
register vector. The register is, of
course, restored before 1'."e"tnrning to
the PL/I module.

2. Parameters passed to PLAN sobrouti nf:>s. -
Integer and floating-point pa.rameters
must be 32-bit words <FIXED BINlUH
(31) • FLOA'l? DECIMAI. (6 l 'J nr l'T0!'1':'.'
BINARY (21.)). They must be =!ligned on
;) full word houndary. CharactPr ~'"~

:2.2 MODULE CONSTRUCTION

Ld t st-.rin.qs, arrays. and structures
1·~~-,u~iP rt don@ VP-ctor to be creatE!d.
This dope vector describes the data and
specifies its location. PL/I passes
the address of the dope vector inste!ad
af the address of the data. In the
~~~~ of ~hararter s~rings it is neces
~ary to declare a base~ variable whose 
pointer contains the address of the 
character string. In the example, 
HDG ARRAY is based on HOG ADDR which 
points to HDGS. Then HDG=ARRAY(l) is 
used as a parameter when DIM HOG is 
.tntended. Note that in. FORTRAN-HOG AR
RAY and HDG ARRAYCl) 1re equivale:n.t 
when used as a parameter; in PL/I thiey 
are not. The latter form must be us•~d 
t-rhen passing array"3 to PLAN 
subroutines. 

3. Function subroutines. NDEF returns 
FIXED BINARY (31). PEtJ?, PIOC, PCOMP 
return FLOAT DECIMA , (6) or FLOJ~T 
BINARY Pll (32-bit floating-point 
Iorm> .. 

The absolute value :i:eturned may vary 
from one execution to the next. It 
will be negative, zero, or positive 
depending on the condition being 
•"~t~~~ ~h~t i.s, 



IF NDEF(ARG)<O THEN ARG IS FALSE 
IF NDEF (ARG)=O THEN ARG IS TRUE 
IF NDEF (ARG)>O THEN ARG IS REAL (Not 
TRUE or FALSE) 

These correspond to statement numbers 
1, 2, and 3 in the Program Description 
Manual explanation of NDEF. 

4. Locating PLAN COMMON. The assembler 
subroutine PLCOM may be used to set a 
pointer variable to point to the switch 
words in PLAN COMMON. In the example 
module, COMN is a structure based on 
COMN ADDR which is set by PLCOM. COMN 
contains the 15 switch words, LS, as 
32-bit integers, and the communication 
array. 

In the example, only the first three 
words of the communication array are 
used to supply the dimensions of the 
box. They are in the form of 32-bit 
integers. 

5. Link-editing. The PL/I module must be 
fully link-edited to put the pseudo 
register vector together properly and 
determine its length which must be 
known upon entry to the PL/I module. 
Therefore, the PLAN loader link edit 
feature cannot be used for PL/I 
LOCAL's. 

6. PL/I Multitasking. Only the following 
PLAN subroutines are re-entrant: 

NDEF 
PARGI, PARGO 
PBTST 
PCOMP 
PHTOE 
PPACK, PUNPK, BREAK 
STVAL, GTVAL 
TRUE, FALSE 

PI.ISAM: PROCEDURE OPTIONS (MAINl1------<:Z) 

(PAOUT, PIOUT) ENTRY (FIXED BINARY (31), FIXED BINARY (31)~ 
FIXED BINARY (31), FIXED BINARY (31)); - \.::._) 
1 COMN BASED (COMN ADDR), 

DCL 

DCL 
2 LS (15) FIXED BINARY (31) I ______fJf\ 
2 DIM (3) FIXED BINARY (31); -- \::::_) 
1 HOGS STATIC, DCL 

DCL 
DCL 

2 DIM HOG CHAR (12) INITIAL ('DIMENSIONS'), 
2 VOL-HOG CHAR (12) INITIAL ('VOLUME'), 
2 UND-HDG CHAR (8) INiTIAL ('*UNDEF*'), 
2 NID-FIXED BINARY (31) INITIAL (0), 
2 NOD FIXED BINARY (31) INITIAL (100); 
HOG ARRAY (8) BASED (HOG ADDR) FIXED BINARY (31); 
NDEF RETURNS (FIXED BINARY(31)); 

/* LOCATEC~ 
CALL PLCOM (COMN_ADDR); \:!_) 

/* READ HEADING AND TRANSFER TO PLAN OUTPUT LINE */ 
CALL PLINP (NID); CALL PBFTR (NID,NOD); 
HDG_ADDR ADDR (HOGS); 

/* MOVE 'DIMENSIONS' TO PLAN OUTPUT LINE*/ 
(NOD, 54,12,HDG ARRAY(l)); 

/* HOG ARRAY(f) MUST BE USED INSTEAD OF DIM HOG */ 
/* SINCE PL/I DOES NOT PASS THE ADDRESS OF */ 
/* CHARACTER STRINGS. INSTEAD, IT PASSES THE */ 
/* ADDRESS OF A DOPE VECTOR WHICH DESCRIBES */ 
/* THE LINE. */ 

NERR=O; 
DIM_CHECK: DO I=l TO 3; 

/* CHECK THE DIMENSION */ ~ 
IF NDEF(DIM(I)) > 0 THEN GO TO DIM_OK;~ 

/* MOVE I *UNDEF* I TO THE PLAN OUTPUT LINE, •/ 
/* IF THE DIMENSION IS UNDEFINED. */ 

DIM ERR: CALL PAOUT (NOD,59+I•8,7vHDG ARRAY(7)); 
NERR=NERR+l; -
GO TO DIM_UPDATE; 

MODULE CONSTRUCTION 23 



/* MOVE THE DIMENSION TO THE PLAN OUTPUT LINE */ 
DIM_OK: CALL PIOUT (NOD,59+!*8,7,DIM(!)); 
DIM_ UPDATE: END; 

/* PRINT THE FIRST LINE */ 

CALL PI.OUT (NOD); 

/* GO TO RETURN TO PLAN, IF ANY OF THE 
/* DIMENSIONS ARE UNDEPINED 

*/ 
*/ 

IF NERR > 0 THEN GO TO CALL __ LRET; 

/* PRINT THE VOLUME 
CALL PAOUT (NOD,54,12,HDG ARRAY(4)); 

*/ 

CALL PIOUT (NOD,67,7,DIM(l)*DIM(2)*DIM(3)); 
CALL PLOUT (NOD); 

/ * RETURN TO PLAN 
CALL LRET: CALL LRET; 

-END PLISAM; 

LOR 
LS 
PLCOM 

COM 
OS 
OS 
CSECT 
USING 
L 
MVC 
BR 
END 

625F 
15F 

•,15 
1, 0 (1) 

0 ( 4, 1> , =A (LS) 
14 

ASSEMBLY LANGUAGE 

The following listing illustrates methods 
of interfacing to the PLAN system and 
locating and using BLANK COMMON in assembly 
language. 

on entry to every module loaded by PLAN,, 
the GP registers are set as follows: 

15 Entry point of the module 
14 Return address in the PLAN loader 

which will simulate a .CALL LRET 
13 Address of a standard 18 word save 

area 
12 Address of BLANK COMMON 

1 Address of a parameter list. If the 
module is not a PLAN LOCAL or no 
parameters are passed by the calling 
modulew a standard parameter pointing 
to the switch words is passed. 

There are three methods of locating COMMON 
in assembly language modules. 

1. The address of a parameter list point
ing to the switch words is passed in 
GPR1. 

2. The address of COMMON is passed in 
GPR12. 

3. A COMMON control section COM operation 
code may be declared in the assembly 
which describes BLANK COMMON. 

24 MODULE CONSTRUCTION 

*/ 

In cases 1 and 2 a DSECT may be described 
and the registers used for direct addres
sing. This is shown in the listing. In 
case 3, adcons referencing the names 
described in the COM control section JT1.:.1' be 
used to reference any or all the items in 
COMMON. For example: 

I. REG12,=V(COMMON) 
USING COMMON,REG12 
• 
• 
• 

COM 

COMMON DS 625F 
LS DS 15 
DIM1 DS F 
DIM2 DS F 
DIM3 DS F 

The second point illustrated by the example 
module is the difference in linkage and 
save area conventions. In the example 
module, the registers are not saved nor is 
a save area provided. This is allowable 
since the save area passed by PLAN may be 
used. The subroutine LRET will return 
control to PLAN correctly. Modules written 
using the standard OS conventions will 
function correctly. 



PRINT ON,NOGEN 
* ASSEMBLY LANGUAGE MODULE FOR PLAN SYSTEM 
ASMSAM CSECT 
DOCNTR EQU 3 
SUBSCRPI' EQU 4 
LINPTR EQU 5 
DIMPl'R EQU 6 
NERR EQU 1 

LR 11,15 
USING ASMSAM,11 
USING COMMON,12 

SET OUR BASE 

* PLAN PASSES THE ADDRESS OF COMMON IN GPR12 
* IT IS NOT NECESSARY TO SAVE REGISTERS OR ESTABLISH A SAVE AREA 

CALL PLINP,FO,VL READ A CARD 
CALL PBFTR,(FO,F100),VL TRANSFER TO OUTPUT BUFFER 
CALL PAOUT,(F100,F54,F12,HDGS1),VL PUT "DIMENSION" IN LINE 
XR NERR,NERR RESET ERROR INDICATOR 

* CHECK FOR PRESENCE OF ALL 3 FACTORS 
LA OOCNTR,3 3 TIMES THRU 
XR SUBSCRIPT,SUBSCRIPT SET SUBSCRIPT TO 1 
LA LINPTR,67 INITIALIZE POSITION POINTER 
LA DIMPTR,DIM1 POINT AT ARG IN COMMON 

DO LOOP ST LINPTR,LINPOS SET LINE POSITION 
LA DIMPTR,DIM1(SUBSCRPT) LOCATE AND SET 
ST DIMPTR,NDEFARG ARGUMENT ADDRESS 
OI NDEFARG,X'80' INDICATE LAST ARG 
LA 1,NDEFARG POINT AT IT 
CALL NDEF AND TEST IT 
LTR 0,0 CHECK ANSWER REG 
BH DIMOUT BR IF ARG OK 
CALL PAOUT,(F100,LINPOS,F7,HDGS7),VJ. PRINT 'UNDEF' 
BCT NERR,CONTINUE SET ERROR INDICATOR 

DI MO UT LA 1,DIMOUTL POINT AT ARG LIST 
CALL PIOUT AND OUTPUT FACTOR 

CONTINUE LA SUBSCRPT,4(0,SUBSCRPT) STEP TO NEXT ARG 
LA LINPTR,8(0,LINPTR) STEP LINE POSITION 
BCT DOCNTR,DOLOOP TEST AND DECR LOOP COUNTER 
CALL PLOUT,,F100, VL PRINT LINE 
LTR NERR,NERR ANY ERROR 
BM RETURN BR IF YES 

* CALCULATE VOLUME AND PRINT IT 
LM ·o,1,DIM1 
MR 0,0 
M O,O 
ORG *-2 
DC S<DIM3) 

GET FIRST TWO FACTOR 
ONE * TWO 
* THREE 

ST 1;VOLUME SET ANSWER 
CALL PAOUT,(F100,F54,F12,HDGS4),VL PUT 'VOLUME' IN 
CALL PIOUT,(F100,F67,F7,VOLUME),VL OUTPUT VALUE 
CALL PLOUT,F100,VL PRINT LINE 

* RETURN TO PLAN 
RETURN CALL LRET 
FO DC F'O' 
F7 DC F'7' 
F12 DC F'12' 
F54 DC F'54' 
F67 DC F'67' 
F100 DC F'100' 
HDGS1 DC CL12'DIMENSIONS' 
HDGS4 DC CL12'VOLUME' 
HDGS7 DC CL7'•UNDEF*' 
* VARIABLES 
VOLUME DC 
LINPOS DC 
* PARAMETER 
DIMOUTL DC 

DC 
DC 

A(O) 
A(O) 

LISTS 
A(F100) 
A(LINPOS) 
A(F7) 

MODULE CONSTRUCTION 25 



NDEFARG DC A(O) 
* DESCRIPTION OF COMMON AREA 
COMMON DSECT 
LOADER OS 625F 

OS 15F 
DI Ml DS 1F 
DIM2 DS 1F 
DIM3 DS lF 

END 

SWITCH WORDS 
MANAGED ARRAY (1) 
MANAGED ARRAY (2) 
MANAGED ARRAY (3) 

PLAN CORE MANAGEMENT 

Once the PLAN system is initiated it main
tains control over the entire region or 
partition. 

The PLAN system divides a partition into 
five major areas: 

1. PLAN BLANK COMMON 

2. PLAN PROGRAM AREA 

3. NON-MANAGED OS FREE STORAGE 

4. MANAGED FREE STORAGE 

5. PLAN SYSTEM AREA 

The user should be aware of the function of 
these areas and the manner in which PLAN 
controls each. 

Figure 4 illustrates the PLAN system allo
cation of main storage within a partition 
or region. 

26 MODULE CONSTRUCTION 

r----------------1-TOP OF PARTITION 
I PLAN SYSTEM I 
I AREA I 
~---------------1 
I MANAGED OS I 
I FREE STORAGE I 
1- -1 
I NONMANAGED OS I 
I FREE STORAGE I 
~--T-------------~ 

I I 
I PROGRAM I 
I AREA I 
I I 
I I 
I I 
I I 

I ................ , 
I 
I ................ , 

I I 
PLAN I I 
BLANK I I 
COMMON I I 

I I 
I I 
I I 
I I 

L-------------i--J 
Figure 4. Main storage allocation 

PLAN BLANK COMMON AREA 

J?LAN BLANK COMMON always resides at the 
beginning of the partition or region. It 
is variable in length but must be at least 
fi40 words long. PLAN BLANK COMMON is used 
as a communication area by all program 
modules loaded by the PLAN system. 

When loading modules, the PLAN loader 
deletes the BLANK COMMON control section 
from the module and relocates all program 
references to BLANK COMMON to point to the 
PIAN BLANK COMMON area. The first 2560 
bytes (640 FORTRAN words) of this area are 
reserved for PLAN system use and must not 
be altered by any user program. Theref·ore, 
the COMMON statement in every program must 
specify a dummy array of 640 words to 
ensure protection of this area. For 
example: 



COMMON L(640), J(10), K(20), ••• 

Any alteration of that part of PLAN BLANK 
COMMON reserved for PLAN system use will 
probably cause abnormal termination of the 
PLAN job step. 

The length of the PLAN BLANK COMMON area 
may be altered whenever a new module is 
loaded into the program area. It will be 
as long as required by any resident load 
module but never shorter than the length 
specified as a data variable in loader 
Switch Word 9. (See Problem Language Ana
lyzer (PLAN) Program Description Manual 
(820-0594) for an exact description of the 
PLAN Switch Words.) Regardless of the 
requirements of currently resident modules 
and the contents of Switch Word 9, the 
length of PLAN COMMON may not be less than 
640 words (2560 bytes>. 

PROGRAM AREA 

The PLAN PROGRAM area is located above the 
BLANK COMMON area. The BLANK COMMON area 
and PROGRAM area are one contiguous core 
area extending from the bottom of the 
partition to some variable point in the 
partition. 

For a program to be loaded, core is allo
cated from the top of the PROGRAM area 
towards the BLANK COMMON area. This means 
that as programs are loaded the end of the 
PROGRAM area extends itself towards the top 
of BLANK COMMON. The area between the top 
of BLANK COMMON and the end of the PROGRAM 
area is always considered available for 
program loading and although addressable by 
the user, the contents of this area is not 
protected by the PLAN system. 

OS FREE STORAGE AREA 

Programs executed under OS/360 have the 
ability to request dynamic allocation and 
deallocation of core areas outside the 
absolute program area. This facility is 
provided in OS by use of the GETMAIN and 
FREEMAIN macros. Programs loaded by the 
PLAN loader must have the same facility 
available to them. The free storage area 
in a PLAN partition is used to honor 
GETMAIN requests from problem programs. 

There are two requirements in this area: 

1. Requests for temporary space to be used 
only by the requesting module 

2. Requests for permanent space that can 
be used to pass arrays, data sets, 
etc., across load module boundaries 

For this reason PLAN splits the free 
storage area into two sections (1) the 
managed area, and (2) the nonmanaged area. 
These two areas are treated as indi.vidual 
subpools of free storage and PLAN facili
ties are provided to set the length of each 
of these areas and dynamically switch 
between using either of them. 

The PLAN system maintains several pointers 
concerned with the MANAGED FREE STORAGE 
area. Whenever a program segment is 
released, the PLAN system uses these poin
ters to perform the following maintenance: 

1. DELETE modules that the segment loaded 
via the LOAD macro. 

2. Close data sets that were left open by 
the segment. 

3. Use the FREEMAIN macro to release all 
core obtained by the segment's use of 
the GETMAIN macro. 

Management of the core resources require 
that supervisor state coding be used for 
MVT to release subpools 251 and 252. 

The subroutines DFJUMC and DFJUNC also 
employ supervisor state code and all three 
systems to op~imize the blanking and 
unblanking of the MANAGED AND NONMANAGED 
FREE STORAGE area. 

The supervisor state is entered through use 
of an SIO appendage routine which alters 
the current PSW for the PLAN job. 

The user must be aware of the implications 
of the above maintenance procedures. 
Programs that reside in lower-level 
(higher-segments) that are called as LOCALs 
may issue the GETMAIN macro only for tem
porary use. Whenever a segment is 
released, all areas in MANAGED FREE STORAGE 
obtained by the GETMAIN macro are released. 
This includes both the segment and all 
modules or subroutines called as LOCALs by 
the segment. 

The NONMANAGED FREE STORAGE area is 
declared by the NFS operand of the PARM 
keyword in the EXEC job control card. 

If a NONMANAGED FREE STORAGE area is 
declared, it is the user's responsibility 
to maintain this area. 

Two subroutines are provided to allow the 
user to control the area of OS FREE STORAGE 
that is used to honor GETMAIN requests. 

CALL DFJUMC sets the system status so that 
the managed area of OS FREE STORAGE is used 
for GETMAINs. 

MODULE CONSTRUCTION 27 



CALL DFJUNC sets the system status so that 
the nonmanaged area of OS FREE STORAGE is 
used for GETMAINs. 

PLAN SYSTEM AREA 

This area of the partition is reserved at 
initialization time for PLAN system use. 
It contains the control blocks and arrays, 
and PLkN system subprograms that will be 
required for the entire execution of the 
PLAN system. 

PLAN INITIALIZATION 

The following discusses the partition/ 
region initialization under PCP-MFT/MV':r. 
When PLAN is initially entered, the 
partition/region is as shown below: 

PCP-MFT 
r---------, 
ITIOT I 
~---------i 
f SAVE AREA IE 
·-----------i 
I I 
I I 
I I 
I I 
I I 
1- - - - - IC 
I I 
I I 
I I 
I I ·---------iB 
I I 
IPLAN I 
IMAINLINE I 
I IA 
L-.___ _______ J 

LEGEND 
N = E-B 
M = B+N-C 

MVT 
r---------1 
I I 2K SP252 
~---------i 
ISAVE AREA I 
r----------t 
I I 
I I 2K SPO 
·-----------t 
I I 
I I 
I- - - - - I 
I I 
I I 
I I 
I I r---------i B 
I I 
IPLAN I 
f MAINLINE f12K SP251 
I IA 
L---------J 

The PLAN PROGRAM/COMMON area must be 
defined contiguously. Therefore, the core 
allocation for this area must be defined 
first. This is accomplished by issuing a 
GETMAIN macro for all of memory followed by 
a FREEMAIN macro of all memory not required 
for PLAN/COMMON. 

Upon entry to PLAN, the issuance of a 
GETMAIN VC for between ~ bytes and 16 
million bytes will return the address B 
<see preceding chart) and the length N. 
The address c (end of program area> can be 
calculated as 1024*L+A where L is the value 
specified for the PGAR parameter in the 
EXEC DFJPLAN control card. With the value 
for c and M, a FREEMAIN macro is issued and 
allocation of the program area is complete .. 

28 MODULE CONSTRUCTION 

The PLAN system area is then created. The 
required PLAN modules are loaded via the 
I~OAD MACRO. In PCP-MFT, these modules are 
loaded at the highest possible core 
address. In MVT, a new 4K block of SP251 
is created above and adjacent to the pro
gram area. The data sets are opened next. 
Access methods, I/O areas, DCBS, etc., are 
allocated from the top of free storage. 
Additional allocations to SP252 may be 
required for access methods on MVT. 

If the NFS parameter has been specified, a 
NONMANAGED free storage area is allocated 
using a technique similar to that used to 
allocate the PROGRAM/COMMON area.. Th•~re
fore, after PLAN initialization memory is 
as shown in the following diagram: 

PC:P-MFT 
r--------------, 
I I 
ITIOT I 

·--------------i 
ISAVE AREA I 
··--------------i 
IPLAN MODULES I 
~--------------i 
!ACCESS METHODS! 
I 1/0 AREAS f B 

·------------i 
I I 
I I 
I I 
I I 
f I 
I I 
I I 
I IA 
·---------------i 
I I 
I PROGRAM I 
fAREA I 
·--------------i 
I I 
IPLAN I 
I MAINLINE I 
L-·-------------J 
N==B-A 

PROGRAM LOADER 

MVT 
r--------, 
f ACCESS I 
!METHODS I 2K SP252 
·---------i 
!SAVE AREAi 

·---------i 
II/O AREA l2K SPO 

·--------~ 
I ACCESS I 
!METHODS I 2K SP252 
·-------i 

BII/O AREASf 2K SPO 
·--------i 
I I 
I I 

Al I ··---------i 
IPLAN I 
f MODULES I 4K SP251 

·--------~ I I 
f PROGRAM I 
f AREA lnK SPO 
·--------i 
I I 
f PLAN I 
fMAINLINE f 12K SP251 
L--------J 

Since the BLANK COMMON control section must 
be deleted from all load modules and 
references to this CSECT relocated to PLAN 
COMMON, the PLAN system cannot use the 
OS/360 FETCH facility. In effect. the PI.AN 
program loader, replaces the OS/3 6 O FE~rcH 
facility. 

The following restrictions apply to modules 
that are loaded th the PLAN loader: 

1. Use Of XCTL is prohibited in PI.AN 
modules. The use of LINK is allowe~d. 



Any program that is w1inkedw to by a 
module loaded by the PLAN loader may 
use the XCTL, LINK or ATTACH macros but 
may not use any PLAN subrouti:ne that 
includes a blank COMMON specification. 
The linked-to program may also be in 
overlay mode. 

2. The woverlay structurew 
ported in PLAN modules, 
defined in 1. 

is not sup
except as 

3. Load modules may not be in overlay or 
scatter mode or contain TESTRAN symbol 
cards. 

4. Load modules must be marked as execut
able by the link editor. 

In addition to loading programs, the PLAN 
program loader provides the user with the 
following capabilities: 

1. Load time link editing 

2. Access to the RAM, LINKPAC, and JOBPAC 
areas without use of the LOAD macro 

3. Automatic management of the program 
area which eliminates the need for 
using the LINK, LOAD and DELETE macros 

4. Use of an in-core PDS directory for 
frequently loaded modules to improve 
loader performance 

Figure 5 is a simplified logic diagram of 
the PLAN program loader. 

MODULE CONSTRUCTION 29 



ENTER 
PROGRAM 

LDR005 

ISSUE 
BLDL TO 
LOCATE 
MODULE 

YES 

LDR006 

LDR007 

LDR008 

LDR009 

LDR010 

Figure 5. Program Loader 

30 MODULE CONSTRUCTION 

START ) 

NO 

RELEASE 
INACTIVE 
MODULES 

READ 'ESD' 
RECORD 4 
CREATE ENT 
TABLE 

DELETE 
BLANK COMMO 
CSECT 

ALTER LGTH 
OF PLAN 
BLANK COM 
IF NECESSARY 

READ TEXT 
RECORDS TO 
PROG AREA 

READ RLD 
RECORDS 

LDR014 

RELOCATE 
TO PT TO 
PLAN COM 

..---------. 

LDR015 

LDR018 

RELOCATE 
ADCON 

SEARCH ENT 
TABLE, RAM 
LINKPAC 
AREA 

YES RESOLVE 
>-------".... ADCON TO 

RESOLVE 
ADCON TO 
PLAN LOR 

ENTRY PT 



The first step in loading a module is to 
determine if it is already in the program 
area. If it is, the program is entered 
without any further processing. If the 
module is not in the program area, inactive 
modules currently in the program area are 
released and the space occupied by them 
reclaimed. This procedure is transparent 
to the user and keeps the maximum amount of 
space available for program loading. 

The next step in the loading process is to 
locate the load module in the PLAN library 
data set. If an in-core directory is 
available, it is searched for the module 
name. If the name is not found, a BLDL 
macro is issued to locate the load module. 
Af ~er locating the load module the ESD 
records (External-Entry Symbol Table) are 
read. From these records, an entry-point 
table is built for the module being loaded. 
This table may be used to resolve ADCONS 
when subsequent modules are loaded. Then 
the BLANK COMMON CSECT is located and 
deleted from the module and the length of 
PLAN BLANK COMMON is altered if necessary. 
The TXT records which contain the relocat
able code for the module are then read into 
the program area. The RLD records (Relo
catable Adcon Dictionary> are read and the 
adcons in the load modules are relocated. 
If an adcon refers to BLANK COMMON it is 
relocated to point to PLAN BLANK COMMON. 
All ADCONS referencing points within the 
load module are relocated. If an unre
solved external reference CV-type ADCON) is 
found, all entrypoint tables for modules 
already in core, the JOBPAC area and final
ly the LINKPAC or RAM area are searched. 
If an equivalent entry point is found in 
any of these, the external reference is 
·resolved to this entry point. This gives 
direct access to the JOBPAC and LINKPAC 
areas to FORTRAN programs without the need 
for programming assembly lapguage linkage 
subroutines. If the external reference 
cannot be resolved to an entry point in 
core, it is resolved to point to the PLAN 
loader in such a way that an execution time 
reference to the ADCON causes the named 
program to be loaded and entered as a PLAN 
LOCAL. 

EXECUTION-TIME LINKAGE EDITING 

Because the PLAN loader has full control of 
the region or partition, it can resolve 
references between load modules that were 
not link-edited together before execution. 

While loading a module, all unresolved 
ADCONS pointing to entries in in-core seg
ments will be resolved. ADCONS that cannot 
be resolved directly are resolved indirect
ly through the PLAN loader, which will 
treat a reference to an unresolved ADCON as 
a CALL LOCAL. 

Unresolved branch type Cv> ADCONS that are 
resolved to the PLAN loader are restricted 
in that execution time references to the 
ADCON must be direct for example: 

L 15,=V(NAME) 
BALR 14,15 

Offset referencing as shown below will not 
function correctly and will probably cause 
termination of the PLAN JOB step. In other 
words, IBCOM= cannot be called as a LOCAL. 

L 15,=VCNAME) 
BAL 14, rHO, 15) 

The two sets of coding shown below are 
equivalent and correct. The V-CON for 
SUBRTN in set 2 may be unresolved following 
link-editing. 

SETl 
~AL*4 NAME(2)/'SUBRTN'/ 

• 
• 
• 

CALL LOCAL(2,NAME,ARG1,ARG2,ARG3) 
• 
• 
• 

END 

• 
• 
• 

CALL SUBRTN CARGl, ARG2, ARG3) 
• 
• 
• 

END 

USE OF THE LINKPAC AND RAM AREAS 

A PLAN utility program 
gives the PLAN system 
referencing the LINKPAC 
provided. This utility 
the PLAN command: 

(DFJLLIST), that 
the capability of 

or RAM area, is 
must be invoked by 

CREATE LOADER ENTRIES: (NAMEl, ••• ) ; 

where NAMEl, ••• is a load module name that 
is to be loaded into the partition via the 
LOAD macro and be made available as entry 
points for the execution of any loader 
call. This allows programs in the LINKPAC 
or RAM areas to be objects of a CALL LOCAL. 
The names specified in the LIST must be in 
the JOBLIB PDS. To add this phrase to the 
dictionary, the following PLAN command must 
be executed: 

ADD PHRASE: CREATE LOADER ENTRIES, PRO 
'DFJLLIST'; 

MODULE CONSTRUCTION 31 



The maximum number of names in the list 
75. Use of this command destroys 
entries defined by previous use of 
command. 

is 
any 
the 

Programs that reference blank COMMON may 
not be operands of this command. 

USE OF IN-CORE DIRECTORY 

A PLAN utility program (DFJCRDIR) allows 
the user to build an in-core PDS directory 
of names of frequently loaded modules. 
This utility must be invoked by the P:LAN 
command: 

CREATE CORE DIRECTORY: CNAMEl, ••• ); 

NAMEl,... is a load module name that is 
placed in the in-core PDS directory to 
decrease load time for those modules. The 
names in the list must be entries in the 
PLANLIB PDS. 

Use of this command will replace 
vious directory. The maximum 
entries is 75 names. 

the pre
n umber of 

This facility is added to the PLAN language 
dictionary CPFILE) by executing the follow
ing command: 

ADD PHRASE: CREATE CORE DIRECTOH.Y, 
PROGRAM 'DFJCRDIR'; 

OVERLAY PROCESSING 

Although the PLAN program loader does not 
allow program modules to be in overlay 
mode, the PLAN system provides a flexible 
overlay processing capability. 

In the simplest forms of processing, 
programs may succeed one another in the 
program area as their names are found in 
the pop-up list. Many applications, howev
er, require that functionally dependent 
programs reside in core concurrently. This 
implies that preplanning must go into deve
loping a TREE STRUCTURE of overlays. 

One of the principle features of the PLAN 
system is that load modules sharing core do 
not have to be link-edited together. 
Because of this, overlay processing under 
PLAN is possible without preplanning an 
entire overlay tree structure, and in fact, 

32 OVERLAY 

the user may dynamically alter his tree 
structure at execution time on the basis of 
the amount of main storage and other system 
resources available. 

The PLAN subroutines LOCAL and LEX provide 
the user with a means of constructing and 
executing a tree structure of almost any 
complexity. 

The LOCAL subroutine function is similar to 
the OS LINK macro. If a copy of a m~dule 
is already available in the program area, 
it is used. If a copy is not availabh~, a 
new program segment is loaded and is subor
dinate to the caller. 

The LEX subroutine performs a function 
equivalent to the OS XCTL macro in that the 
calling module may be overlayed by the 
called module. 

In order to use an overlay proceBsing 
technique under PLAN the user should be 
familiar with the controls that the PLAN 
system exercises over problem programs .. 

Several terms are defined below that are 
used in describing PLAN program execution 
control. 

A SEGMENT is one or more modules brought 
into the program area by a single program 
load request. A segment is loaded only 
when a request is made for a module that is 
not in the program area. When parenthE~tic
al grouping is used in the pop-up list, a 
segment may consist of more than dne! 
module; the first module named in the 9roup 
is considered the initial entrypoi~: for 
the segment. As each segment is loaded, it 
is assigned a hierarchial level· number. 
The level used in the maintenance of the 
program area. 

A LOCAL is defined as any module or program 
invoked by the PLAN LOCAL facility. This 
facility is used whenever the LOCAL subrou
tine is called or an unresolved external 
ADCON is referenced in a problem progratm. 

EXECUTION LEVEL is defined as the depth of 
subprograms that have been executed (the 
CALL LOCALS that have been executed without 
associated returns>. 

The following def in es how PLAN controls: the 
loading of segments and management of the 
program area. 



--, r--
1 < I 
I A I 
I B I 
I c 1 
I > 1 
1 o I 
L---J 

(A) 

r-------T-, 
IMODULE Al I 
I- - - - I I 
IMODULE Bl ·-SEGMENT 1 
I- - - - I I 
IMODULE Cl I 
·--------t-J 

L--------J 
(B) 

r--------T-1 
IMODULE Al I 
f- -. - - I I 
IMODULE Bl ·-SEGMENT 1 
I- - - - I I 
)MODULE Cl I 
·--------+-J 
1 •--t 
IMODULE DI I 
)- - - - 1 ·-SEGMENT 2 
IMODULE El I 

I ·-J ·--------+-1 
IMODULE GI ·-SEGMENT 3 
t--------+-J 
I I 
I I 
I I L--------J. 

(E) 

Figure 6. Pop-up list 

r--------T-1 
IMODULE Al I 
I- - - - I I 
IMODULE B) ·--SEGMENT 1 
I- - - - I I 
)MODULE Ct I 
·--------+-J 
I . ·-, 
IMODULE DI I 
,_ - - _, I f--SEGMENT 2 
)MODULE' El I 
·---~:..~-t-J 
I I 

- I I 
I I 
I I 
I I 
I I 
I I 
L--------J 

(C) 

r--------~1 

IMODULE Al I 
I- - - - I I 
)MODULE Bl ·--SEGMENT 1 
I- - - - I I 
IMODULE Cl I 
f-------t-J 
I •--t 
)MODULE DI I 
1- - - - I ·--SEGMENT 2 
)MODULE El I 
I t--J 
t--------+-1 
IMODULE HI f--SEGMENT 3 
·--------t-J 
I I 
I I 
I I 
L--------J 
(F) 

r-------T-1 
IMODULE Al I 
1- - - - I I 
IMODULE Bl ·--SEGMENT 1 
I- - - - I I 
IMODULE Cl I 
t--------t-J 
I •-1 IMODULE DI I 
,_ - - - I ·--SEGMENT 2 
)MODULE El I 
·--------t-J 
I •-1 
IMODULE Fl t--SEGMENT 5 

I ·-J t---------t 
I I 
I I 
I I 
L--------J 

(0) 

r--------T-1 
IMODULE Al I 
I- - - .Jc I I 
IMODULE Bl ·--SEGMENT 1 
I- - - - I I 
)MODULE Cl I 
·-------t-J 
I •--t 
IMODULE II ·-SEGMENT 2 

I ·-J ·--------{ 
I I 
I I 
I I 
I I 
I I 
I I 
I I 
L-------J 

(G) 

Assume that upon entry to the PLAN execu- defines that program A is to be entered and 
tion monitor. the pop-up list is as shown executed. 
in Figure 6A. The list defines three 
program modules named A. a. and c that are 
to be loaded as one logical segment and 

OVERLAY 33 



The program loader is called. Upon return 
the program area appears as shown in Figure 
6B. 

Program A is entered. Execution level is 
set to one. Program A issues a CALL LOCAL 
transferring the names D and E in parenthe
sis to the pop-up list. 

Program D is not in core so the loader 
inspects the program area to see if any 
inactive program segments can be released. 
All program segments assigned a level less 
than or equal to the current execution 
level must be retained when a CALL LOCAL is 
issued. Segment one in the program area is 
.retained because execution level is one. 

PLAN loads programs D and E as a segment 
and assigns it a level of two. The program 
area is as shown in Figure 6C. Program D 
is entered and the execution level is 
incremented because of the CALL I.<X:AL and 
is now two. 

Program D now issues a CALL LOCAL to 
program E. Since E is already in core, a 
program load is not required and E is 
entered. The execution level is incre-
mented to three because of the CALL LOCAL. 
Program E calls LOCAL to program c. 

Program c is already in core in segment one 
so it is entered. The execution level is 
set to four. 

Program c calls LOCAL to program F. F is 
not in core so a segment must be loaded. 
The loader determines if any program seg
ments can be released. Execution level is 
at four. Therefore, segment level one and 
two must be retained. Program F is loaded 
as a segment and assigned a level of five. 
The program area is as shown in Figqre 6D. 
The level assigned to a segment on a CALL 
LOCAL is always one higher than the current 
execution level. This prevents releasing a 
segment which may be active in tbe local 
chain. In sequences of CALL LOCALS issued 
requesting residual modules, the execution 
level is incremented but no loading is 
required. Adjacent segments are not neces
sarily assigned sequential level numbers 
(shown by the level assigned to program F}. 

Program F is entered. The execution level 
is set to five. F returns to c. The 
execution level is decremented to four. C 
returns to E. The execution level is set 
to three. E returns to D. The execution 
level is set to two. 

Program D now issues a CALL LOCAL to G. 
Program G is not in core. The loader 
determines if any segments can be released. 
Execution level is at two. Therefore, all 
segments assigned a level higher than this 

34 OVERLAY 

can be released. 
five> is released. 

Program F Cin se9ment 

Program G is loaded and assigned a leve~l of 
three. The program area appears as s:hown 
in Figure 6E. Note that program G: has 
overlayed program F. The execution level 
is set to three. G is entered. Program G 
issues a CALI. LEX to program H. 

on a CALL LEX, all segments that are 
assigned a level equal ~o or higher than 
the current execution level must be 
released. In this case, segment three 
(contains the calling program> is released. 

Program H is loaded and is assigned a level 
E!qual to the current execution level. The 
execution level remains the same because of 
the CALL LEX. The program area is as shown 
in Figure 6F. Program H returns to D. The 
execution level is decremented to two. 

Program D returns to A. The execution 
level is set to one. Program A issues a 
CALL LOCAL to program I. I is not in core 
so the loader releases inactive segments. 
Execution level is at one so segments two 
and three can be released. 

Program I is loaded and is assigned a 
segment level of two. The program area is 
as shown in Figure 6G. I is entered and 
the execution level is set to two. Pro9ram 
I issues a CALL LOCAL to program B. 

Program B is in core in segment one and. is 
entered. The execution level is set to 
three. B returns to I. The execution 
level is set to two. I returns to A. The 
execution level is set to one. 

Program A now zeros the pop-up list and 
returns. Since a return was executed from 
execution level one and since the pop-up 
list is zero, the PLAN system will init:Late 
processing of the next command. 

The preceding description of the PLAN load
er is not intended as a practical example 
of using an overlay structure under Pl.AN. 
The description does illustrate that the 
LOCAL and LEX subroutines facilities pro
vide the FORTRAN programmer with a dynamic 
control of the program area. 

The significant differences between the 
LOCAL and LEX subroutines facilities and 
the OS LINK and XCTL macros are: 

1. Communication between the caller and 
the called modules may be through blank 
COMMON as well as by parameter list. 

2. Called programs may use subroutines or 
modules in the calling segment without 
passing external names as arguments. 



3. Program modules may be used 
recursively. 

4. A LOCAL may be cancelled by a higher 
priority program by using LNRET. 

The bank loading facility (parenthetical 
grouping of names in the pop-up list) 
allows the user to include, in any segment, 
commonly used programs used as subprograms 
by the structure developed below the seg
ment. This conserves core and loading 
time. This facility also allows the user 
to optimize the use of the program area at 
execution time based on its length. 

The user is provided with special arguments 
that, when encountered in the pop-up list, 
indicate the limits of the functionally 
dependent modules. The left parenthesis 
indicates the start of a string of module 
names for which the user desires coexistent 
residence. The right parenthesis indicates 
the end of the string. Figure 7 represents 
the pop-up list containing a list of 
programs. Programs M0716 through M0725 are 
to be grouped in memory concurrently. 

-----, r----
l M0712 I 
IM07561 
I < I 
IM07161 
IM07961 
IM07321 
IM07251 
I > I 
IM07491 
I o I 
L----J 

Figure 7. Loader pop-up list 

The systems programmer in 
scheduling control, that 
may coexist within the 
recognize and/or account 
conditions: 

determining the 
is, which modules 
partition, must 

for the following 

1. If more modules are grouped (bounded in 
the pop-up list with parentheses> than 
can coexist, those modules that will 
not fit are not loaded concurrently. 

2. If space can be found, all parentheti
cally grouped modules are loaded into 
the partition with the entry to the 
program named following the left 
parenthesis. 

3. Loading of a module results only if the 
module does not already exist in 
memory. 

4. If the left/right parenthesis is 
encountered when entering data into the 
pop-up list without a corresponding 

right/left parenthesis, 
parenthesis is ignored. 
parenthetically grouped 
be added to the pop-up 
single loader subroutine 

the unmatched 
Therefore, 

programs must 
list with -a 

call. 

5. If the left or right parenthesis is to 
be inserted in the pop-up list~ it must 
be left-justified in two FORTRAN words 

6. Program lists, verb lists, and check
entry program lists include the paren
the~ical groupings in literal form, 
Example: 

• •• ,PROGRAMS 'M0713, (M0726, M0733, 
M0792), M0796', ••• 

1. The combination of the parenthetical 
program grouping and the use of command 
input of program lists gives the user 
the power to add segments <modules> to 
his root structure at execution time. 

8. If all programs indicated in the coex
istent grouping cannot be loaded 
because of insufficient partition size, 
the right parenthesis is floated for
ward in the pop-up list to include 
those programs for which coexistent 
loading was accomplished. 

The original right parenthesis is 
deleted and a right parenthesis is 
regenerated in the pop-up list at a 
position that indicates the last pro
gram which was successfully loaded. 

9. A call with a negative value of N is 
required to interrogate the pop-up list 
for successful loading of the coexist
ent programs. 

10. Parenthetical grouping is 
but ignored on the 1130 
PLAN. 

acceptable 
version of 

11. The left and right parentheses and all 
programs associated with the indicated 
coexistent grouping must be added to 
the pop~up list with a single call to 
the PLAN loader subroutines, or both 
parentheses must be included in a 
PHRASE-defined program list. 

12. All program lists to be inserted into 
or to be extracted from the pop-up list 
must begin on a full-word boundary. 

RETURN LINKAGE 

The FORTRAN RETURN statement functions 
exactly like the CALL LRET PLAN loader 
call. Register 14 is . used to cause a 
return from the mainline (logic module> to 
the PLAN loader. PLAN modules that contain 
CALL LNRET or that are reentered at a 

OVERLAY 35 



primary entry may not exit via RETURN. 
FORTRAN subroutines which modify variables 
passed to them as arguments must use the 
FORTRAN return statement. 

CALL EXIT should be used to terminate a 
module to assure that buffers have been 
purged and data sets closed when FORTRAN 
<non-PLAN) I/O is incorporated within a 
module. 

PARAMETER PASSING 

If the arguments in a parameter list are 
external names, the called program and 
calling program must be compiled by the 
same level FORTRAN compiler. 

PLAN SYSTEM CHECKPOINT 

The following regulations govern execution 
and control of the checkpoint facility 
within the OS version of PLAN (CALL LCHEX): 

1. Checkpoints can be reloaded only within 
the limits of the phrase from which 
they were written. This means that any 
checkpoint that has not been reloaded 
when the end of the phrase is encoun
tered -- that is, when the pop-up list 
is found to be empty -- is destroyed. 
No warning message is issued. 

2. If the checkpoint return<•> is.encoun
tered while in local mode, the local 
processing is terminated and the check
point is reloaded. 

3. Any input/output error while reading or 
writing the checkpoint data set results 
in a phrase abort and PLAN level error 
recovery is initi~ted. This action is 
also true when insufficient space is 
available in the checkpoint data set. 

4. The user may specify, in the DCB BLOCK
SIZE parameter of the PLCHKPT DD card, 
the record size (in bytes> to be used 
when writing checkpoints. If no block
size is specified, a blocksize of 512 
is assumed. 

5. There is no logical restriction on the 
number or level of checkpoints that a 
user may execute. A physical limit 
based on the size of the checkpoint 
data set may produce a real limit or 
error condition as outlined in 2 above. 

6. Checkpoint restarts are executed in a 
reverse order from which they are writ
ten, that is, last in-first out. 

7. After a checkpoint is taken, the status 
of all data sets, except system data 
sets <those data sets processed by CALL 

36 OVERLAY 

PLINP, CALL PLOUT, CALL GDATA, and CALL 
FIND>, must not be altered until the 
checkpoint is restarted. This is a 
user responsibility and no ch1~ck is 
made by PLAN to prevent such an altera
tion. If a data set status is altered 
while a checkpoint is in effect., the 
results are unpredictable. 

8. COMMON is not protected between the 
time that a checkpoint is taken and the 
restart is loaded. It is the~ user 
responsibility to save and reload those 
parts of COMMON that might be destroyed 
and that must be present for continued 
execution of the checkpointed module. 

9. Floating-point 
restored when 
restarted. 

USER-EXIT PROGRAMMING 

registers are 
a checkpoint 

not 
is 

The DFJPSCAN user-exit programs must be 
written to expect the standard /360 FORTRAN 
subroutine linkage conventions. 

roes DEVICE PARAMETERS 

Under System/360 OS PLAN, INPUT and LIST 
correspond to units defined as DD names 
defined in the JCL for the PLAN job. The 
value specified for INPUT or LIST, corre
sponds to the device specified as the PLAN 
input device PLINPnnn in the job descrip
tion deck. Unit nnn specified for LIST, 
corresponds to the device specified as the 
PLAN output device PLOUTnnn. 

PROGRAMMING RESTRICTIONS 

The following System/360 FORTRAN statement 
should not be used because of its detri
mental effect on the execution of PLAN. 
Alternate facilities are listed for the 
statement. To avoid overriding the PLAN 
processor or endangering another user's 
job, should not be executed. 

CALL DUMP This statement creates a pre
mature end to the PLAN 4~xecu
tion. Therefore, the CALL 
PDUMP, followed by a CALL 
LRET should be used. 

PERMANENT FILE SORT/MERGE 

CALL GSORT (ID) and CALL GMERG (ID I ~JD I KD) 
provide the identical ·function fOJ~ PER
MANENT files as provided by CALL PSOR~~ and 
CALL PMERG do ·for DYNAMIC files. 



ESTIMATING STORAGE REQUIREMENTS 

In order to determine the size of the 
partition or region required to run a PLAN 
job. the user must know (1) the length of 
the PROGRAM/COMMON area. (2) the amount of 
storage required to honor GETMAINs. and (3) 
the amount of storage required for the PLAN 
system area. 

The length of the PROGRAM/COMMON and OS 
FREE STORAGE areas is largely determined by 
the size of the program modules to be 
loaded by the PLAN system and the amount of 
storage obtained by GETMAINs in the problem 
programs. 

The PROGRAM/COMMON area must be at least 
19,500 bytes long to accommodate the PLAN 
module DFJPSCAN, (the system interpreter). 
If the user employs DFJPSCAN user exits, 
additional storage equal to the length of 
the user-exit modules is required. 

Once in execution, the PLAN system issues 
GETMAINs in two areas as follows: 

1. The program loader requires 16 bytes 
for every entry point in a module being 
loaded and 16 bytes for every unre
solved ADCON in the module. 

2. The error processing subroutines 
require 72 bytes for every call where a 
checkpoint is required. 

The PLAN system uses the FREEMAIN macro to 
release all storage obtained when the 
storage is no longer needed. A minimum 
OS/FREE STORAGE area of 2oqa bytes is 
suggested. 

The length of the PLAN system area varies, 
depending on the PARM options selected in 
the EXEC statement and the number of DD 
cards defined. The table below shows the 
PLAN system area storage requirements. 

FUNCTION LENGTH IN BYTES 

PLAN TABLES 552 

PLAN SYSTEM MODULES 
DFJLODER 3200 

TRACE OPTIONS 
DFJTRACE q24 

DATA SET REQUIREMENTS 
PLANLIB 264 
PLINPxxx 136+(# BUFFERS*(BLKSIZE+84)) 
PLOUTxxx 136+(# BUFFERS*(BLKSIZE+84)) 
PLSEQxxx 136+(# BUFFERS*(BLKSIZE+84)) 
PLMANFIL 128+(# BUFFERS*(BLKSIZE+168)) 
PLCHKPT 128+(# BUFFERS*(BLKSIZE+168)) 
PLFSynnn 128+(# BUFFERS*(BLKSIZE+168}} 
PLSYSTAB 128+(# BUFFERS*(680}} 
PLANDRVx 128+(# BUFFERS*(768}) 

OS/360 ACCESS 
IGG019AV 
IGG019BA 
IGG019BB 
IGG019BC 
IGG019CC 
IGG019CE 
IGG019CF 
IGG019CH 
IGG019CI 
IGG019CK 
IGG019CL 
IGG019KA 
IGG019KE 
IGG019KK 
IGG019KU 
IGG019LI 

METHODS 
88 

384 
104 
248 

80 
128 
240 
128 
136 

96 
80 

1360 
288 
176 
456 
232 

(ESTIMATE) 

The access method subroutines and the PLAN 
modules DFJLODER and DFJTRACE are reenter
able, and may be placed in the RAM or 
LINKPAC area. 

If the user employs the PLAN utility 
phrases CREATE CORE DIRECTORY or CREATE 
LOADER ENTRIES, additional storage is 
required in the PLAN system area. 

For a core directory, the storage require
ment is (8-36N), where N is the number of 
names in the operand of the CREATE CORE 
DIRECTORY phrase. 

For a loader entry list, the storage 
requirement is (8-(12N>+A), where N is the 
number of names in the CREATE LOADER ENTRY 
phrase, and A is the amount of storage 
required to load any of the named modules 
into the partitions that are not in the RAM 
or LINKPAC areas. 

OVERLAY 37 



STANDARD PLAN COMMANDS 

This section discusses the statements dis
tributed as a standard part of the PLAN 
system. The only command that is a pro
grammed portion of PLAN is ADD PHRASE. All 
other commands must be added to the system 
through use of ADD PHRASE. This section 
provides a discussion of the facility pro
vided by a set of these phrases that are 
entered into the language definition dic
tionary (PFILE or DFJPFIL) as a part of the 
PLAN system generation. Spacing within the 
phrase definitions may not accurately 
represent that of distributed commands. 

ADD PHRASE 

This command 
definition 
initialized. 

is added 
dictionary 

to the 
when 

language 
it is 

ADD PHRASE: ADD PHRAS, (1)0, LEVELO, I(-
13)1, PROGRAM 'DFJPHRAS'; 

ADD PHRASE may be altered to list all added 
phrases by adding DFJPIDMP to the program 
list. 

DELETE PHRASE 

JELETE PHRASE provides 
remove commands from the 
tion dictionary. 

38 STANDARD COMMANDS 

the ability to 
language defini-

ALTER PHRASE: DELETE PHRASE, (1)-1, 
LEVELO, IC-13)1, PROGRAM'DFJPHRAS'; 

DELETE PHRASE may be altered to list all 
deleted commands by adding DFJPIDMP to the 
program list. 

ALTER PHRASE 

ALTER PHRASE provides the ability to delete 
an existing version of a phrase and n~place 
it with a new copy. 

ADD PHRASE: ALTER PHRASE, !(1)-l~LEVELO, 
I(-13)1,PROGRAM 'DFJPHRAS,DFJPHRAS'; 

ALTER PHRASE may be altered to list all 
altered commands by adding DFJPIDMP to the 
program list. 

PLAN JOB 

ALTER PHRASE: PLAN JOB, LEVEL O, I(-1) 
FILE, SAVED, TO, LISTS, LB, LC, LD, ERASE, 
COMMON, MANAGED, NERM, DEVICE, I(l)SHORT-, 
LONG-, STACK-, IMMEDIATE-, DRIVEO, DFI-, 
PFI-,C-11)UMOD, I(-13)FORMO, $0 FORM:(LONG) 
?=FORM+l, FORM: (IMM) ?=FORM+2 FORM: (DFI) ?= 
FORM+ 4 , FORM: ( PFI) ?=FORM+ 8, TO=TO+IDRIVE 
•2048; 



r~------------------------T---------T-------T------T-------T---------T-----------------1 I PLAN JOB I I I IDEFAULTI CHECKINGI I 
I FUNCTION I NAME I CAP I MODE I VALUES I RULES I EXPRESSIONS I 
·------------------.:..._------+---------+-------+------+-------+---------+-----------------i 
I SAVED STATEMENT FILE I FILE I (-1) I I l**NOTE I I I 
~-------------------------+-----~--+-------+------+-------+---------+-----------------~ 
I INITIAL SAVED STATEMENT I SAVED I (-2) I I I I I I 
·--------------------------+---------+-------+------+-------+---------+-----------------i I END SAVED STATEMENT I TO I (-3) I I I I I =TO+DRI•2048 I 
·--------------------------+---------+-------+------+-------+---------+-----------------~ 
I DATA LIST A POINTER I LISTS I (-4) I I I I I I 
·--------------------------+---------+-------+------+-------+-·--------+-----------------i 
I DATA LIST B POINTER I LB I (-5) I I I I I I 
·---~--------------------+---------+-------+------+-------+---------+-----------------~ 
I DATA LIST c POINTER I LC I (-6) I I I I I I 
·-·------.------------------+---------+-------+------+-------+---------+----------------i 
I PATA LIST D POINTER I LD I (-7) I I I I I I 
·--------------------------+------·---+-------+-----+-------+---------+-----------------~ 
I ERASABLE COMMON POINTER I ERASE I ( - 8) I I I I I I 
·-------------------------+--------+-------+------+-------+---------+-----------------i 
I SIZE OF COMMON I COMMON I (-9) I I I I I I 

·---------~---------------+---------+-------+------+-------+---------+-----------------~ I SIZE OF MANAGED ARRAY I MANAGED I (-10) I I I I I I 
·-------------------------+---------+-------+------+-------+---------+-----------------i 
I ERROR FILE QUEUE COUNT I NERM I (-11) I I I I I I 

·-------------------------+---------+-------+------+-------+---------+-----------------~ 
I DIAGNOSTIC DEVICE I DEVICE I (-12) I I I I I I 
·--------------------------+------·---+-------+------+-------+---------+-----------------i 
I DIAGNOSTIC MODULE(•NOTE) I UMOD I (-11) I LI I I I I 
·--------------------------+------·---+-------+------+-------+---------+-----------------~ 
I DIAGNOSTIC FORMAT I FORM I (-13) I I 10 I I :(LON)?=FORM+l I 
I I I I I I I : <IMM> ?=FORM+2 I 
I I I I I I I : <DFI> ?=FORM+ 4 I 
I I I I I I I : ( PFI) ?=FORM+ 8 I 
·--------------------------+---------+-------+------+-------+---------+-----------------i 
I SHORT FORM INDICATOR I SHORT I ( 1) I LOG I FALSE I I I 
·--------------------------+---------+-------+------+-------+---------+-----------------i 
I LONG FORM INDICATOR I LONG I ( 2) I LOG I FALSE I I I 
·--------------------------+---------+-------+------+-------+---------+-----------------~ 
I STACKED ERROR INDICATOR I STACK I ( 3) I LOG I FALSE I I I 
·--------------------------+---------+-------+------+-------+---------+-----------------i I IMMEDIATE ERROR IND. I IMM I (4) I LOG IFALSE I I I 
·--------------------------+---------+-------+------+-------+---------+-----------------i I SAVED STATEMENT DRIVE I DRIVE I (5) I I 10 I 1. I 
·--------------------------+---------+-------+------+-------+---------+---------------··--~ 
I DYNAMIC FILE ERROR IND. I DFI I (6) I LOG IFALSE I I I 
·--------------------------+---------+-------+------+-------+---------+-----------------i 
I PERMANENT FILE I I I I I I I 
I ERROR INDICATOR I PFI I ( 7) I LOG I FALSE I I I l __________________________ i _________ i _______ i ______ i _______ i _________ i--------------~--J 

•NOTE: •uMoo• and •NERM• are mutually exclusive and may not be used together. 
••NOTE: Default values are not provided because the 15 PLAN switch words are automatical

ly reset as a result of the execution of any Level 0 command. 

PLAN JOB provides initialization functions 
for any PLAN run. This command. or one 
that provides the functions of this com
mand, should be the first command processed 
when PLAN is invoked. The command meets 
the requirement that a level 0 phrase be 
the first phrase processed and sets the 
parameters controlled by the system switch 
words. system accounting functions may be 
conveniently facilitated by adding the name 
of an accounting module as a program list 
to this command. A sample of the command 
at execution time is: 

PLAN JOB, MANAGED 200, ERASABLE 240, 
COMMON 900, LISTS 30 1 60,, 200, 209, SAVED 20 
TO 30 FILE 3, DRIVE 2 SHORT, STACKED, 
DEV.ICE 102; 

The above example illustrates: 

1~ The setting of the managed array to a 
size of 200 PLAN words. 

2. The establishing of the beginning of 
erasable COMMON at CAP 240. 

STANDARD COMMANDS 39 



3. The defining of the total size of 
COMMON to 900 PLAN words. 

4. The defining of four CAP indices 
(30,60, 200,209) used in referencing a 
maximum of four data lists. 

5. The execution of statements 20 to 30 in 
file 3, drive 2. 

6. The designating of the short form of 
diagnostic. 

7. The specification of the indicator to 
cause error stacking (STACKED). 

8. The designation of the device upon 
which error messages are to be printed 
CDEVICE 102). 

The following 
table above> 
JOB options: 

parameter discussions Csee 
give a breakdown of the PIAN 

1. SAVED STATEMENT FILE. This parameter 
defines the DYNAMIC file number Cl-255) 
from which a saved statement is to b~ 
executed as the next statement. The 
parameter will not be used if the next 
PLAN command is to be read from the 
standard PLAN input device. 

2. INITIAL SAVED STATEMENT. If the next 
PLAN statement is to come from a saved 
statement file, this parameter defines 
the number of the first statement that 
will be executed. If this parameter is 
specified, the FILE, DRIVE, and TO 
parameters should also be specified. 

3. END SAVED STATEMENT... If saved PLAN 
statements are to be executed next, 
this parameter defines the highest
numbered saved statement that will be 
executed. 

4. DATA LIST POINTER. This parameter is 
used to define the CAP indices for up 
to the maximum of four possible data 
lists. These data lists may be 
referenced by PSCAN for storing data, 
by PARGO and PARGI for transmitti.ng 
data, and by user program modules. 

5. LB. This parameter provides a direct 
pointer to the second of the data lists 
defined above .. 

6. LC. This parameter provides a direct 
pointer to the third of the data lists 
defined above .. 

7. LO. This parameter provides a direct 
pointer to the fourth of the data lists 
defined above. 

8. ERASABLE 
def in es 

COMMON. This 
the communication 

40 STANDARD COMMANDS 

parameter 
array sub-

script that is to be treated as the 
beginning of erasable COMMON. Eraf;able 
COMMON extends from the CAP position 
identified to the end of the commwiica
tion array. This parameter n·11st be set 
to some positive value within the range 
of the communication array in order for 
many of the standard PLAN commands to 
execute. This switch word is rese!t to 
490 each time a level 0 command is 
encountered. 

9. SIZE OF COMMON. This parameter defines 
the total size of COMMON (including 
communication array, switch words, and 
resident loader>. 

10. SIZE OF MANAGED ARRAY. This parameter 
d.efines the number of PLAN words that 
are to be managed according tCt the 
level structure of the commands to be 
processed. If this value is set to a 
positive integer and statements hav'e a 
level assignment the managed array save 
file must be present for the saving of 
data. 

11. ERROR FILE QUEUE COUNT. If error d.iag
nostics are to be written onto logrical 
file 255 of logical drive 0 instea.d of 
directly to an output device, then this 
parameter will specify the maximum 
number of messages that are tci be 
allowed on the file before the messages 
are to be written to the diagnostic 
device. 

12. DIAGNOSTIC MODULE. This parameter is 
used to specify the name of a user
wri tten module that is to process error 
conditions rather than using the normal 
system processing. Note that this 
option precludes the error queue option 
and is in lieu of writing the diagnos
tics onto the diagnostic device. 

13. DIAGNOSTIC DEVICE. If a diagnostic 
module is not specified, this parameter 
specifies the sequential file device 
code upon which the diagnostics are to 
be printed. This switch word is reset 
to 100 each time a Level O command is 
encountered. 

14. DIAGNOSTIC FORMAT. This parameter 
should not be referenced by a user. It 
is set as a result of use of items 15, 
16, 17, 18, 20 and 21. 

15. SHORT. The word "SHORT" is specified 
if the short-form option is desired. 
Short-form diagnostics mean that the 
phrase being processed when the error 
is detected is not listed with the 
error. 

16. LONG. This parameter is used to set 
the long-form diagnostic indicator. 



Long-form diagnostics include the 
EBCDIC image of the phrase which caused 
the error, along with the diagnostic 
message. 

17. STACK. This parameter sets the indica
tor to cause error stacking. In this 
mode of processing, errors are written 
to the output device only when the 
error module is scheduled by the PLAN 
loader or when the stack overflows. If 
the stack overflows, the checkpoint 
facility must be used to allow schedul
ing of the error module. 

18. IMMEDIATE. This parameter sets the 
indicator to cause diagnostics to be 
written to the output device one-by-one 
as they are ·encountered. The check
point file and checkpoint ,programming 
must be available to function in the 
IMMEDIATE mode. 

19. SAVED STATEMENT DRIVE. This parameter 
specifies the PLAN DYNAMIC Drive number 
that will be Used when the SAVE state
ments are processed. 

20. DYNAMIC FILE ERROR INDICATOR. This 
parameter determines the PLAN system 
error procedures when an error is 

detected by the DYNAMIC FILE support 
subroutines. 

21. PERMANENT FILE ERROR INDICAToR. This 
parameter determines the PLAN system 
error procedures when an error is 
detected by the PERMANENT FILE support 
subroutines. 

SET LITERAL 

SET LITERAL is the command used to define 
standard literals for storage into a GDATA 
type file. The literals are maintained in 
a manner that makes them accessible to the 
subroutine PHIN. 

SET LIT, NAME'PLITF', NUMBERn, 'LITERAL', 
FILEj, DRIVEm; 

ADD PHRASE: SET LITERAL, PROGRAM'DFJP
DIAG', I(-8)M, I(M)FILE254, I(M+l) NAMEO, 
I(M+4)DRIVEO, I(M+5)NUMBER-*RA' UNDEFINED 
LITERAL NUMBER', I(M+6)LITERALO, (M+l)TEST
*TA'UNDEFINED FILE NAME': 
(NAME>O>&CNAME<9); 

r--------------------------T----~·--T-------T------T-------T---------T--~-------------1 I SET LITERAL I I I I DEFAULT I CHECKING I I 
I FUNCTION I NAME I CAP I MODE I VALUES 'I RULES I EXPRESSIO~S I 
1--------------------------+---------+-------+------+-------+--~------+-----------------i 
I ERASABLE COMMON I I I I I I I 
I POINTER I M I -8 I I I I I I 
1--------------------------+---------+-------+------+-------+---------+-----------------i 
I LITERAL FILE NUMBER I FILE I M I I I 254 I I I 
·--------------------------+-------·-~+-------+------+-------+---------+-----------------~ 
I LITERAL FILE NAME I NAME I M+l I I I 0 I I I 
}--------------------------+---~--+-------+------+-------+-~-------+-----------------i 
I LITERAL FILE I I I I I I I 
I DRIVE I DRIVE I M+ q I I I 0 I I I 
t-----------------------~--+---~--+-------+------+-------+---------+-----------------i 
I LITERAL NUMBER I NUMBER I M+ 5 I I I FALSE I *RA I I 
·--------------------------+-------·--+-------+------+-------+---------+-----------------~ I LITERAL TEXT I LITERAL I M+6 I I I 0 I I I 
1--------------------------+---------+-------+------+-------+---------+-----------------~ I TEST FILE NAME I TEST I M+l I I FALSE I *TA I : (NAME>O> & I 
I I I I I I I ( NAME<9) I 
'--------------------------i--~-------i _______ i _____ _i _______ i _________ i _________________ J 

1. ERASABLE COMMON POINTER. This parame
ter points to the position within the 
communication array defined as erasable 
COMMON. This parameter <switch word 8) 
is normally set with the PLAN JOB 
command. 

2. LITERAL FILE NUMBER. This parameter 
defines a number to be used to process 
the GDATA type literal file. 

3. LITERAL FILE NAME. This parameter 
defines the name of the GDATA file in 
which literal processing occurs. Note 
that this parameter must be given. 
Otherwise, the check entry defined 
under "test file name" will fail and 
the phrase will not be executed. 

ii. LITERAL FILE DRIVE. Thi~ parameter 
defines the PERMANENT drive on which 
literal file is located. Failure to 
provide this parameter results.in the 

STANDARD COMMANDS 41 



assumption that the file is on PER
MANENT drive zero. 

5. LITERAL NUMBER. This parameter defines 
the identification number for the lit
eral to be processed. Note that fail
ure to supply a literal number will 
result in a phrase abort error 
diagnostic. 

6. LITERAL TEXT. This parameter provides 
the literal text for the literal to be 
added to the file. If this parameter 
is not provided (literal length zero>, 
the existing literal of the same number 
is removed f:C"om the file. 

1. TEST FILE NAME. <see "Literal File 
Name" above>. 

LIST LITERALS 

LIST LITERALS is a command that produces a 
listing of all literals maintained in a 
specified literal fil~. 

ADD PHRASE: LIST LITERALS, LEVEL 1, PRO
GRAM' DFJPLITL' , I ( 1) 254, NAME-* A' LITERAL 
FILE NAME NOT DEFINED', l(5)DRIVEO, NODlOO, 
(35)"NUMBER LENGTH TEXT OF PLAN LITERJU."; 

r------------------------T--------T--------·T-----T-------T---------T------------·----1 
I LIST LITERAL I I I I DEFAULT I CHECKING I I 
I FUNCTION I NAME I CAP I MODE I VALUES I RULES I EXPRESSIONS I 
}-----------------------+-------+-------··-----+-------+--------+-------------·----·i 
I LITERAL FILE NUMBER I FILE I 1 I I 1254 I I I 
·--------------------------+---------+-------+------+-------+---------+-----------------i 
I LITERAL FILE NAME I NAME I 2 I I I FALSE I *A I I 
~-------------------------+---------+-------+------+-------+---------+-----------------i 
I LITERAL FILE I I I I I I I 
I DRIVE. I DRIVE I 5 I I I 0 I I I 
·--------------------------+-------+-------+------+-------+---------+-----------------i I LITERAL OUTPUT DEVICE I NOD I 6 I I 1100 I I I ._ _________________________ i _________ i _______ i ______ i_ ______ i _________ i _________________ J 

1. LITERAL FILE NUMBER. This parameter 
defines a number to be used to process 
the GDATA type literal file. 

2. LITERAL FILE NAME. This parameter 
defines the name of the GDATA file in 
which literal processing occurs. Note 
that this parameter must be given. 
Otherwise, the check-entry defined 
under "test file name" will fail and 
the phrase will not be executed. 

3. LITERAL FILE DRIVE. This parameter 
defines the PERMANENT drive on which 
literal file is located. Failure to 
provide this parameter results in the 
assumption that the file is on PER
MANENT drive zero. 

4. LITERAL OUTPUT DEVICE. This parameter 
defines the output device that is to 
be used to list the literals. The 
standard parameter results in the use 
of the current PLAN output device. 

COMMUNICATION ARRAY DUMPS 

DUMP COMMON is a conmand that produces a 
hexadecimal printout of the conmunication 
array. Identical print lines are 
suppressed. 

42 STANDARD COMMANDS 

DUMP MANAGED is a command that produlces a 
hexadecimal printout of the managed po1rtion 
of the communication array. Idellltical 
print lines are suppressed. 

DUMP NONMANAGED is a command that produces 
a hexadecimal printout of the nonmanaged 
portion of the communication array. Iden
tical print lines are suppressed. 

DUMP SWITCHES is a connnand that produces a 
hexadecimal printout of the PLAN switch 
words. 

Note carefully that these are blank-level 
phrases. Any attempt to use them following 
a PLAN phrase abort error will result in 
the phrase being skipped. 

ALTER PHRASE: DUMP SWITCHES., I(-8)M, HM) 
NNN-2, (M+ll)A"SWITCHES" I "LENGTH" I I(M+15), 
NODlOO, PROGRAM'DFJPCDMP'; 

ALTER PHRASE: DUMP COMMON, I(-8)M, I(M) 
NNNO, 'MANAGED ARRAY', 'NONMANAGED ARRAY'-, 
"SWITCHES", "LENGTH", 
ICM+15)NOD100, PROGRAM'DFJPCDMP'; 

ALTER PHRASE: DUMP MANAGED, 
NNN1, • MANAGED ARRAY' I 

"LENGTH", I(M+15)NOD100, 
I DFJPCDMP I ; 

I(-8)M, I(M) 
•swITCHES", 

PROGRAM 

ALTER PHRASE: DUMP NONMANAGED, I(··8)M, 
ARRAY' I I(M)NNN-1, (M+6)B'NONMANAGED 



•swITCHEs•, .LENGTH·, I(M+14)NOD100, PRO
GRAM 'DFJPCDMP'; 

,--------------------------T---------T-------T------T-------T---------T-----------------1 
1 DUMP ' I I I DEFAULT' CHECKING I I 
I FUNCTION I NAME I CAP I MODE I VALUES I RULES I EXPRESSIONS I 
·--------------------------+---------+-------+---~--+-------+---------+-----------------~ 
I ERASABLE COMMON I I I I I I I 
I DEFINITION I M ' - 8 I I I I I I 
·--------------------------+---------+--------+------+-------+---------+-----------------~ 
I FUNCTION SWITCH I NNN I M I I ' I I I 
I DUMP COMMON I ' I I 0 I I I 
I DUMP SWITCHES I ' I 1-2 I I I 
I DUMP MANAGED ' I I 1-1 I I I 
I DUMP NONMANAGED I ' I I +1 I I I 
·--------------------------+---------t-------+------+-------+---------+-----------------~ 
I OUTPUT DEVICE I NOD I M+15 I I 1100 I I I 
L--------------------------i-------·--i-------i------i-------i---------i-----------------J 
1. ERASABLE COMMON DEFINITION. This para

meter, a pointer to that portion of the 
communication array to be used as eras
able COMMON, is normally set by the 
PLAN JOB command. 

2. FUNCTION SWITCH. The appropriate value 
within the word (0, -2, 1, -1> distin
guishes between DUMP, DUMP SWITCHES, 
DUMP MANAGED, and DUMP NONMANAGED func
tions, respectively. 

3. OUTPUT DEVICE. This parameter defines 
the sequential device code to be used 
for output. 

FILE DUMPS 

ALTER PHRASE: DUMP DYNAMIC, I(-8)M, l(M) 
FILE255, l(M+2)START0, I(M+3)ENDO, I(M+4) 
DRIVEO, (M+5)A•DRIVE FILE LENGTH", (M+12) 
NAME' 'I(M+15)NOD100, 1, PROGRAM 
I DFJPFDMP. ~ 

ALTER PHRASE: DUMP PERMANENT, I(-8)M, l(M) 
FILE 255, I(M+2)STARTO, I(M+3)ENDO, I(M+4) 
DRIVEO, (M+5)A"DRIVE FILE LENGTH•, (M+12) 
NAME' , I(M+15)NOD100, O, 
PROGRAM'DFJPFDMP'; 

DUMP DYNAMIC is a command that produces a 
hexadecimal printout of the PLAN DYNAMIC 
file. Identical print lines are 
suppressed. 

DUMP PERMANENT is a command that produces a 
hexadecimal "printout of a PLAN PERMANENT 
file. Identical print lines are 
suppressed. 

The limits of the dump are defined by the 
START and END operands. If these are 
omitted, the entire file is dumped. 

Note carefully that these phrases are blank 
level, and will therefore be skipped if 
PLAN level recovery is invoked as a result 
of an error in a nonblank-level phrase. 

STANDARD COMMANDS 43 



r------------------------T---------T-------1------T-------T---------T------------·-----1 
I DUMP PERMANENT I I I I DEFAULT I CHECKING I I 
I FUNCTION I NAME I CAP I MODE I VALUES I RULES I EXPRESSIONS I 
1--------------------------+---------+-------·+-----+-------+---------+------------·-----i 
I ERASABLE COMMON I I I I I I I 
I INDEX I M I -8 I I I I I I 
·------------------------+--------+-------·+-----+-------+---------+------------·-----·i 
I FILE NUMBER I FILE I M I I 1255 I I I 
·-------------------------+--------+-------+------+-------+---------+------------·-----i 
I START OF DUMP I START I M+2 I I 10 1 I I 
·--------------------------+--------+-------·+-----+-------+---------+------------·-----i 
I END OF DUMP I END I M+ 3 I I I 0 I I I 
·-------------------------+---------+-·------+------+-------+---------+------------·-----i 
I DRIVE I DRIVE I M+4 I I I 0 I I I 
1--------------------------+--------+-·------·+-----+-------+---------+------------·----i 
I FILE NAME I NAME I M+12 I LI I :BLANK I I I 
·--------------------------+---------+-·------·+------+-------+---------+-----------------i 
I OUTPUT DEVICE I NOD I M+15 I I 1100 I I I 
·-------------------------+-------+-·------·+-----+-------+---------+-----------------·i 
I DUMP TYPE SWITCH I I M+16 I I 10,1 I I I 
L----------·---------------.1.---------.1.-------.1.------.1.-------.1.--------.1.------------·-----J 

1. ERASABLE COMMON INDEX. This index 
defines the location within the com
munication array known as ERASABLE COM
MON. The index is normally set by the 
PLAN JOB command. 

2. FILE NUMBER. This parameter defines 
the file number of the file that is to 
be dumped. 

3. START OF DUMP. This parameter defines 
the number of the PLAN word within the 
file at which the file dump is to 
start. 

4. END OF DUMP. This parameter defines 
the number of the last PLAN word within 
the file that is to be dumped. If the 
parameter is not given (parameter is 
set to zero), the full length of the 
file will be dumped. 

5. DRIVE. This parameter defines the PLAN 
DYNAMIC or PERMANENT drive number on 
which the file to be dumped is located. 

6. FILE NAME. This parameter defines the 
name of the file to be dumped. 

7. OUTPUT DEVICE. Thi-s parameter dE~f ines 
the sequential device code that will be 
used for output. 

8. DUMP TYPE SWITCH. This parameter deter
mines whether a DYNAMIC or a PERMANENT 
file is to be dumped. 

STATEMENT SAVE COMMANDS 

ALTER PHRASE: SAVE, I(-l)SW, -1, H-B)M, 
I(M)FILE O, I<M+UDRI-1, $0 SW:(FIJ~O)?= 
FIL, SW(3): <DRI>-1) & <DRI<5) ?=DRI*20trn; 

SAVE is a command to allow saving of the 
PLAN statements that follow the SAVE com
mand on a PLAN logical file. Each f;tate
ment to be saved must be prefixed with a 
statement number. Saving of statements is 
terminated by (1) a SEND command, (2) any 
command that does not have a statement 
number, or (3) another SAVE command. 

r----------------·----------~--------T--------·T-----T-------T---------T-------------·----1 

I SAVE 1 I I I DEFAqLT I CHECKING I I 
I FUNCTION I NAME I CAP I MODE I VALUES I RULES I EXPRESSIONS I 
·------------------------+--------+-------+-----+-------+---------+----------------i 
I I sw I -1 I I I I I I 
·-----------------------+-------+--------··------+-------+---------+----------------i 
I I I -2 I I 1-1 I I I 
·-----------------------+--------+--------··-----+-------+--------+-------------·----i 
I ERASABLE COMMON POINTER I M I -· 8 I I I I I I 
.-----------------------+--------+--·-----·•-----+-------+----'"'."----+-----------------·f 
I DYNAMIC FILE I FILE I M I I I 0 I I I 
I ------------------+--------+--------+-----+-------+---------+------------·----·i 
I DYNAMIC DRIVE I DRIVE I M+l I I 1-1 I •NOTE I I 
L------------·-----------.1.------.1.---------1------.1.-------.1.---------.1.---------------J 

•NOTE: $0SW: (FIL>O) ?=FIL. SW(3): <DRI>-1> & <DRI<S) ?=DRI•2048 

44 STANDARD COMMANDS 



1. DYNAMIC FILE. This parameter defines 
the number of the PLAN DYNAMIC file on 
which the following statements are to 
be saved. If the parameter is omitted, 
the current file number in Switch Word 
1 will be used. 

2. DYNAMIC DRIVE. This parameter defines 
the number of the DYNAMIC drive on 
which the following PLAN statements are 
to be saved. If this parameter is 
omitted, the current value in Switch 
Word 3 divided by 2048 will be used as 
the DYNAMIC drive indicator. 

ALTER PHRASE: SEND; 

SEND is a command used to terminate the 
saving of a series of PLAN statements. 

ALTER PHRASE: EXECUTE, I(-l)SW,O, I(-8)M, 
I(M)FROMO, I(M+l)TO O, I(M+2)FILE O, I(M+3) 
DRIVE-1, (M) F*TA'' INVALID STATEMENT NUMBER 
OR DRIVE; $0SW:(FIL>O>?=FIL, DRI:(DRI<O)?= 
SW(J)/2048-.5!:$5, DRI:(DRI<O)?=O, $5FR01 (( 
DRI>-1>&<DRI<5))?=+, SW(3):(TO>O>?=DRI* 
2048+TO!=DRI*2048, SW(2):(FRO>O)?=FRO 
FRO: (SW( 2»0); 

r--------------------------T-----·---T--·-----T-----T-------T---------T----------------1 
I EXECUTE I I I I DEFAULT I CHECKING I I 
I FUNCTION I NAME I CAP I MODE I VALUES I RULES I EXPRESSIONS I 
1--------------------------+---------+-------+------+------+---------+-----------------~ 
i 1 SW ' -1 I I I I I I 
·--------------------------+---------+-------+------+-------+---------+-----------------~ 
I I M I -8 ·I I I I I I 
·--------------------------+---------+---~---+------+--~----+---------+-----------------~ 
I FIRST COMMAND TO EXECUTE I FROM I M I I I 0 I •NOTE 1 I I 
·-----------------------.--+-----·----+-------+------+-------+---------+----------------~ 
I LAST COMMAND EXECUTED t TO I M+l I I I 0 I I I 
·-------------------------+---------+-------+------+-------+---------+----------------~ I STATEMENT FILE NUMBER I FILE I M+ 2 I I I 0 I I I 
r-------------------------+---------+-------+------+-------+---------+-----------------~ 
I STATEMENT DRIVE NUMBER I M+3 I I 1 -1 I I I I 
·----------------~--------+---------+-------+------+-------+---------+-----------------~ 
I PARAMETER CALCULATIONS I I I I I I •NOTE 2 I 
L--------------------------i---------i-------i------i-------i---------i-----------------J 
*NOTE 1: *TA'INVALID STATEMENT NUMBER OF DRIVE' 

*NOTE 2: $0SW:(FIL>O)?=FIL, 
DRI:(DRI<O)?=SW(J)/2048-.5!:$5, 
ORI: (DRI<O) =O, 
$5FRO: 1 C (DRI>-1) & (DRI<5)) ?=+, 
SW(3):(T0>0)?=DRI*2048+TO!=DRI*2048, 
SWC2): CFRO>O)?=FRO, 
FRO: (SW( 2)>0) 

1. ERASABLE COMMON POINTER. This param
eter defines the location within the 
communication array of ERASABLE COMMON. 
The pointer is normally set by the PLAN 
JOB command. 

2. DYNAMIC DRIVE. This parameter defines 
the PLAN DYNAMIC drive number that is 
to be used to process SAVED statements. 
If this parameter is omitted, the cur
rent drive specified by Switch Word 3 
divided by 2048 will be used. 

3. DYNAMIC FILE. This parameter defines 
the PLAN DYNAMIC file number that is to 
be used to process SAVED statements .• 
If this parameter is omitted, the cur
rent save file specified by Switch Word 
1 will be used. 

~. FIRST SAVED. This parameter defines 
the number of the first SAVED statement 

to be executed. If this statement 
cannot be located, an error message 
(PSTSV-DFJ172) will be produced. 

5. LAST SAVED. This parameter defines the 
highest-numbered SAVED statement to be 
executed. Execution continues from the 
first SAVED statement identified 
through continually higher-numbered 
statements to the statement identified 
with this parameter. If this parameter 
is omitted, only the statement indi
cated by Switch Word 2 will be 
executed. 

r-----------------------1 
ISAVE, FILE 2, DRIVE 3; I 
16 A; I 
19 B; I 
118 C; I 
ISEND; I 
L-----------------------J 

STANDARD COMMANDS 45 



In the above example, when the SAVE command 
is encountered, all the numbered statements 
that follow <6, 9, 18) will be stored in 
the PLAN DYNAMIC file 2 on drive 3. This 
is known as explicit saving because the 
statements are stored for execution at a 
later time, and not executed now. (See 
EXECUTE Command, discussed above>. 
Implicit saving, is utilized where state
ment storage and execution are accomplished 
as the statements are read. 

It is important to note that execution of 
the SAVED statements will occur by state
ment numeric sequence, not by position 
within the input SAVE stream. For example, 
if a statement number 15 was placed after. 
statement 18 in the stream, it would still 
be executed ahead of 18 if at a later time 
an EXECUTE command was encountered utiliz
ing the parameters FROM 9 and TO 18. 

PHRASE TABLE DUMP 

ALTER PHRASE: DUMP PHRASES, I(500) SYS
TEM1130, I(501)NOD100, I(503)LEVEL1, 
LEVELl, (200)"CHECKSUM", "PHRASE NAME", 
"LEVEL TYPE-OBJECT", "ENTRY SIZE", 
"VERB", "SUBSCRIPT NAME VALUE RANGE INDEX", 
"EXIT PROGRAM LIST", "SYMBOL EXIT FORMAT 
SCALE SUBSCRIPT EXPRESSION", "PROGRAM 
LIST", "TEST LOCATION ACTION", "LITERAL 

LIST" ,SUBSCRIPT, "LOCATION MODE FA,CTOR 
EXPRESSION", (510)-•TP'CON OUM PHR 
I(504)DRI0'; 

ADD PHRASE: CON DUMP PHRA.SES, 
(281)"INTERPRETIVE EXPRESSIONS", "VERB 
PROGRAMS", END OF PHRASE TABLE DUMP", 
PROGRAM'DFJPTDMP', (505)"DFJPFILE", 
1(835) NAM "DFJPTDP1DFJPTDP2DFJPTDP3DFJPTDP5 
DFJPTDP6•; 

DUMP PHRASES is a command that produces a 
tabulation of the phrases that exist within 
PFILE. 

CON DUMP PHRASES is a CONTINUTATION OF THE 
DUMP PHRASES command and should not be 
invoked by itself. 

ALTER PHRASE: INPUT, I(-8)M, I(M)NODl,O, 
LEVELl, PROGRAM'DFJPIOCS'; 

ALTER PHRASE: OUTPUT,I(-8)M, I(M)O, 
I<M+l>NOD101, LEVELl, PROGRAM 'DFJPIOCS'; 

The module DFJPTDMP produces the phrase 
dump. It requires XACES, XTRAC, XPRNT, and 
XBIT, which are called as subroutines. 
DFJPTDPl, DFJPTDP2, DFJPTDP3, DFJPTDP5, and 
DFJPTDP6 are also required. They are are 
loaded as PLAN system local modules on OS 
PLAN. These modules are special purpose 
programs that have no use in any other 
environment. 

r------------·-------------T--------T-------T------T-------T---------T-------------·---1 
I DUMP PHRASES I I I I DEFAULT I CHECKING I I 
I FUNCTION I NAME I CAP I MODE I VALUES I RULES I EXPRESSIONS I 
·--------------------------+--------+-------+------+-~----+---------+--------------·~-i I SYSTEM DESIGNATION I SYSTEM I 500 I I 1360 I I I 
.--------------------------+---------+-------+------+-------+---------+--------------·---~ I OUTPUT DEVICE I DEVICE I 501 I I 1100 I I I 
·-----------·--------------+---------+--------+------+-------+--------+------------·---i I PRINTOUT LEVEL I LEVEL I 503 I I 11 I I I 
L--------------------------..L--------.L-------..L-·-----..L-------.L---------..L--------------·---J 

1. SYSTEM DESIGNATION. This paramet•er 
defines the system for which the PFILE 
(PLAN language dictionary) is being 
dumped. The phrase for the appropriate 
system contains the necessary standard 
value so that the us-er should never be 
required to specify this parameter. 

2. OUTPUT DEVICE. This parameter defines 
the sequential device code to be used 
for output. 

3. PRINTOUT LEVEL. This parameter defines 
the complexity of the phrase listing to 

46 STANDARD COMMANDS 

be produced. Each higher level im::or
porates all items of the lower levc~ls. 

The i terns listed below represent infoJrma
tion that is produced at the various pr:int
out levels. Figure 8 shows sample lines 
from the dump. Enclosed items are explana
tory notes about the sample output lines. 
It is strongly recommended that the reader 
make a deligent attempt to correlate the 
phrases as defined in this section with the 
listing produced with the DUMP PHR, LJWEL 
6; command through use of Figure 8. 



CHECKSUM 1 

PHRASE NAME LIST LIT LEVEL TYPE-OBJECT ENTRY SIZE 0 0 

SUBSCRIPT 
-1 

SUBSCRIPT 
1 
1 

A(l),, B(l) 

etc. 

SYMBOL 
M 
A 
B 

i = 
TEST 

rn T 
F 

* 

0,1,2,3, 
4, or b 

NAME 

NAME 
A 

SYMBOLIC 
SUBSCRIPT 

VERB OR 
OBJECT 

VALUE 
00018000 

~00 

~J 

EXIT FORMAT SCALE 
I 
I 
R 
I 

USER 
EXIT 
NO. ~ 
PROGRAM LIST 

PH RAS 
PHUDT 
PHUDT 

SCALE 
FACTOR 

NO. OF 
RECORD/64 

ADDRESS OF PHRASE ENTRY 
IN DUMP PRODUCED BY 
DUMP PERMANENT 

IF THESE INDICATORS 
ARE NONZERO THEY 
GIVE THE RECORD AND 
DISPLACEMENT OF THE 
NEXT PHRASE OF EQUAL 
CHECKSUM 

RANGE INDEX 
36 3 

RANGE INDEX 

SUBSCRIPT EXPRESSION 
-8 

~ 
M 
M+7 
M+15 

SYMBOLIC 
CAP 

LOCATION 
NU 

ACTION 

m 
LITERAL, LIST, OR SUBSCRIPT 
UNDEFINED LITERAL NUMBER 

ABSOLUTE 
OR 

SYMBOLIC 

Figure 8. Phrase table dump explanation 

STANDARD COMMANDS 47 



LEVEL ITEM LISTED 
o;r-- Phrase name 

Phrase level 
Type (object or verb) 
Number of internal records (80-
bit on 1130, 64-bit on System/ 
360) required for phrase 
PFILE ADD~ESS of phrase entry 
Chained phrase indicator (0 O 
means no chained phrase) 
Checksum of phrase 

2 Initialization (Default values) 
Subscript 
Name 
Value 
Range 
Index 

3 Symbol Table 
Symbol 
User-exit number 
Format 
Scale factor 
subscript 
Subscript expression 

4 Program lists 
5 Check entries 

Test 
Location 
Action 
Literal, list, or subscript 

6 Expressions 
Data area 
Formula area 

ERROR LISTING 

A.LTER PHRASE: DUMP ERRORS, PRO'DFJPEDMP'; 

DUMP ERRORS is a command that causes all 
diagnostics in the error queue file to be 
listed on the PLAN diagnostic device. 

PAGE LENGTH DEFINITION 

A.LTER PHRASE: SET PAGE LENGTH, I(-·8)M, 
I(M) PGL60, I(M+l>NODlOO, PROGRAM' DFJPLE:NG'; 

SET PAGE LENGTH is a blank-level command 
that allows the user to specify the number 
of printed lines per page on a sequential 
device that is to contain printed output. 

r--------------------------T---------T-------T'------T-------T---------T--------------·---1 
I SET PAGE LENGTH I I I I DEFAULT I CHECKING I I 
I FUNCTION I NAME I CAP I MODE I VALUES I RULES I EXPRESSION I 
~--------------------------+---------+-------+------+-------+---------+--------------·---~ 
I ERASABLE COMMON POINTER I M I (·-8) I I I I I I 
~--------------------------+---------+-------+------+-------+---------+--------------·---~ 
I PAGE LENGTH I PGL I (M) I I I 60 I I I 
~--------------------------+---------+-------+------+-------+---------+--------------·---~ 
I OUTPUT DEVICE I NOD I (M+l) I I 1100 I I I 
L--------------------------i--~------i-------i------i-------4---------4--------------·---J 

1. PAGE LENGTH. This parameter defines the 
number of lines to be printed on a page 
before a logical EOF is generated and 
an automatic eject (skip to 1> is 
effected. 

2. OUTPUT DEVICE. This parameter defines 
the sequential device code with which 
the PAGE LENGTH operand is to be 
associated. 

ALTER PHRASE: INPUT, I<-B)M, ICM)NODl,,O, 
LEVEL 1, PROGRAM'DFJPIOCS'; 

INPUT is a command that may be issued to 
change the device that is assigned as the 
standard PLAN input device. 

1. NOD. This parameter defines the number 
of the device that is to be used for 

48 STANDARD COMMANDS 

PLAN input. 
changed. 

The output device is not 

ALTER PHRASE: OUTPUT, I(-B)M, I(M)AO, ICM+ 
l)NOD101, LEVEL1, PROGRAM'DFJPIOCS'; 

OUTPUT is a command that may be used to 
change the device that is assigned as the 
standard PLAN output device. 

1. NOD. This parameter defines the number 
of the device that is to be used for 
PLAN output. The input device is not 
changed. 

SPECIAL PURPOSE OS PHRASES 

ALTER PHRASE: CREATE 
PROGRAM'DFJLLIST'; 

LOADER ENTHIES, 



CREATE LOADER ENTRIES is a command that 
gives OS PLAN the capability of referencing 
the RAM or LINKPAC areas. 

The general format of this command is: 

CREATE LOADER ENTRIES: (NAME1, •••• ); 

where NAME1,... is a load module name that 
is to be loaded into the partition via the 
LOAD macro and be made available as entry 
points for the execution of any loader 
call. This allows programs in the LINKPAC 
or RAM areas to be objects of a CALL LOCAL. 
The names specified in the LIST must be in 
the JOBLIB PDS. 

The maximum number of names in the list is 
75. Use of this command destroys any 
entries defined by previous use of the 
command. 

Programs that reference blank COMMON may 
not be operands of this command. 

ALTER PHRASE: CREATE CORE DIRECTORY, PRO
GRAM 'DFJCRDIR' ; 

CREATE CORE DIRECTORY 
allows the user to 
.directory of names of 
modules. 

is a command that 
build an in-core PDS 

frequently loaded 

CREATE CORE DIRECTORY: (NAME1, ••• ); 

NAMEl,... is a load module name that is 
placed in the in-core PDS directory to 
decrease load time for those modules. The 
names in the list must be entries in the 
PLANLIB PDS. 

Use of this command will replace the pre
vious directory. The maximum number of 
entries is 75 names. 

STANDARD.COMMANDS 49 



PROGRAM DEBUGGING AND ABEND DUMPS 

This section is intended to assist the 
programmer in diagnosing unusual conditions 
and/or program errors that may cause either 
the PLAN system to terminate a phrase 
execution or the operating system to ABEND. 

PLAN TRACE FACILITY 

If the PARM 'TRACE' is included in the EXEC 
statement, the PLAN system will print on 
the output device a trace listing of all 
modules that are entered for execution. 
The printed line has the following format: 

NAME=xxxxxxxx PCB=xxxxxx EP=xxxxxx EL=xxx 
RL=xxx 

where: 

is the program name of the module 
about to be entered. 

is an address pointing to the pro
gram control block for the module 
being loaded. 

is the module entry point address. 

is a number specifying the execution 
level at which the module will be 
executed. 

RL is the segment number in which the 
module was loaded. 

The TRACE facility can be very helpful in 
showing logical program problems because it 
will produce a sequential listing of the 
programs that were executed. If an ABEND 
occurs, the name of the program last 
printed is generally the module that caused 
the termination. 

ABEND DUMPS 

Although the PLAN system attempts to pre
vent ABENDS, there are certain errors that 
PLAN cannot control. These errors will 
cause abnormal termination of the JOB step. 
In this event. the programmer will have to 
use the ABEND dump provided by OS·in ord.er 
to determine the trouble. 

To interpret an ABEND dump of a PLAN job, 
the following information is of importance 
to the programmer: 

1. Start of BLANK COMMON 
2. Start of the managed COMMON array 
3. Start of the nonmanaged COMMON array 

50 PROGRAM FAILURE 

4. Total current length of BLANK COMMON 
5. PLAN switch words 
6. Location, entry points, and lengths of 

programs currently resident in the PRO
GRAM AREA 

"1. Origin of the OS FREE STORAGE areas 
a. Name of the program currently in 

execution 

In interpreting an OS/360 ABEND dump, the 
user will find the following publica.tion 
very helpful: 

IBM System/360 Operating System Proqram
mer' s Guide to Debugging (C28-6670> 

LOCATING THE BLANK COMMON ARRAY 

The BLANK COMMON array always starts at the 
beginning of the PLAN system partition. To 
locate this array, the user should find the 
address of the DFJPLAN problem program 
area. This will be found in the front 
portion of the ABEND dump. This is the 
starting core address of the PLAN system 
monitor and the address of the BLANK COMMON 
array. It is the reference point from 
which all other elements in the PLAN parti
tion can be located. 

LOCATING MODULES IN THE PROGRAM AREA 

Figure 9 is a diagr~m of the use of the 
program area by PLAN to load a program. 

r---------, 
I ENTAB I 
~---------~ 
I I 
I I 
I PROGRAM I 
I I 
I I 
r--------~ 
I PCB I 
L---------J 

ENTRY POINT TABLE 

PROGRAM TEXT 

PROGRAM 
CONTROL BLOCK 

Figure 9. Use of the program area to load 
a program 

Every program that is loaded by PLAN is 
preceded by an ENTAB which contains a 
listing of every CSECT name in the module 
and its actual core address. The format of 
an entry in this table is as follo~s: 



BYTE . -----------, 
0-7 ICSECT NAME I 

~------------i 
8-11 ICORE ADDRESSI 

1------------i 
12-15 ILAST ENT INDI 

L------------J 
The PCB (Program Control Block) appended to 
the beginning of the program by the PLAN 
loader performs the same function as a PRB 
(Program Request Block) does for os. It 
contains information that PLAN requires to 
maintain the program area. Its format is 
as follows: 

0-7 

8-11 

r--------------------, 
I MODULE NAME I 
1----T------------,--i 
I SEG.f I 
I # IENTAB ADDR I 
·-----.l.------------,--i 

12-15 I LENGTH OF COMMON I 
1------------------,--i 

16-19 I MODULE ENTRY POINT I 
·------------------,--i 

20-24 I NEXT PCB ADDR I 
L-----------------·--J 

To locate any module in the program area, 
the user should find the start of the PCB 
chain, which is located at COMMON +14 hex 
and trace through the PCB chain. The last 
PCB has zeroes in the chain address. The 
address of the PCB for the current module 
in execution is located at COMMON +24. 

When processing LOCAL's, the PLAN system 
saves the status of the calling program in 
a LOCAL control block. Its format is as 
follows: 

SYTE 
0-63 

64-67 

68-71 

72-75 

76-83 

84-87 

88-93 

93-95 

r------------------------·-------, 
I GPR SAVE AREA I 
I STORED 14-13 I 
·-------------------------------i 
I CALLERS PARM ADDRESS I 
1-----------------------·-------i 
I CALLER PICA ELEMENT I 
·------------------------·-------i 
I CALLERS PCB ADDRESS I 
1------------------------------i 
I MANAGED FREE I 
I STORAGE POINTERS I 
1-----------------------·-------i 
I LOCAL CHAIN POINTER I 
·------------------------·-------1 
I CURRENT EXECUTION LEVEL I 
1-----------------------·-------i 
I FILLER I 
L-----------------------·-------J 

To locate any LOCAL save area, find the 
start of the LCB chain at COMMON + Ole • 

TABLE OF POINTERS IN PLAN COMMON 

LOCATION 

COMMON + 150 

COMMON + OA4 

COMMON + 160 

COMMON + 168 

COMMON + 198 

COMMON + 19C 

COMMON + 024 

COMMON + 000 

COMMON + 014 

COMMON + 9C4 
COMMON + AOO 
COMMON + 035 
COMMON + 030 

COMMON + OF8 

Address of the PLAN system 
area 
Address of the managed OS 
FREE STORAGE area 
Address of the top of the 
PROGRAM AREA and the start of 
the nonmanaged os FREE 
STORAGE area, if any 
Address of the top of BLANK 
COMMON 
Address of current entry in 
the program pop-up list 
Address of the end of the 
program pop-up list 
Address of the PCB for the 
module currently in execution 
Name of the last program 
loaded 
Address of the last PCB in 
the PCB chain 
PLAN Switch Words 
Managed COMMON array 
current execution level 
Address of the chain of LOCAL 
save areas 
Address of the PLAN system 
save area 

COMMON + lBO Columns 76-80 of the last 
command processed 

PROGRAM FAILURE 51 



PLAN SYSTEM DIAGNOSITC MESSAGES 

This section contains a discussion of the 
control of diagnostic processing and lists 
diagnostic messages generated by various 
PLAN components through linkage to the 
error processor module "DFJPERRS". The 
format of PLAN system diagnostics is shown 
below: 

DFJOOO 001-100 TEXT 
101-200 TEXT 
201-300 TEXT 
301-400 TEXT 
401-450 TEXT 

cccnnn *~* mmmmm SEQ=yyy ID=ccccc 
PG=xxxxxxxx DIAGNOSTIC 

The segments of the diagnostic message 
underlined in the above example are vari
able. Functions defined by the variable 
data are: 

CCC 

This field of up to five lines 
contains the current input 
statement. It is printed only 
if the long-form diagnostic is 
requested. Character posi
tions are printed to the left 
of the text. 

This three-character field is 
DFJ if the diagnostic is 
generated by PLAN and *** if 
generated by the user. 

This three-digit number is the 
error number assigned by the 
call to the error routines as 
calling parameter Nl. In PLAN 
error diagnostics. this number 
is merely a diagnostic modifi
er (index>. 

This character specifies the 
action taken following genera
tion of the literal. 

R 

c 

E 

indicates that execution 
of the current command is 
terminated. PLAN error 
recovery is initiated. 

indicates that the follow
ing generation of the 
diagnostic. the execution 
of the current command is 
terminated. 

indicates that the current 
execution of PLAN is 
terminated. 

52 DIAGNOSTICS 

SEQ=yyy 

O indicates a pause for 
operator intervention. 

This is a five-digit modifier 
(ECODE) that provides addi
tional information about. the 
error. This parameter is pro
vided as N2 in the call to the 
PLAN error subroutines. 

This field provides the state
ment sequence of this PLAN 
statement relative to the 
beginning of the PLAN job 
stack. 

ID=ccccc This five-character field pro
vides the identification field 
<cc. 76-80) of the last card 
of the current PLAN statement. 

PG=xxxxxxxx This field provides the name 
of the program in execution at 
the time the call to the error 
routine is iss~ed. 

DIAGNOSTIC This field contains the liter
al text of the diagnostic mes
sage and is limited to 76 
characters. 

PLAN ERROR PROCESSING 

Since the P~AN system is a monitor which 
supervises the execution of other problem 
programs, it must have the ability to 
detect abnormal conditions. 

There are four types of errors the PLAN 
system can detect and these are: 

• Phrase Definition Errors 
• command Errors 
• Execution Errors 
• User-Defined Errors 

l. Phrase definition errors are detected 
by the PLAN system module "DFJPH~S" 
when a phrase is being entered into the 
PLAN language dictionary. 

2. Command erro~s are detected by the PLAN 
system module "DFJPSCAN" while proces
sing commands. 

3. Execution errors are detected by the 
PLAN system mainline while a problem 
program is in execution. 

4. User-defined errors are the result of a 
programmed call to one of the error 



subroutines 
ERRAT). 

(ERROR, ERRET, ERREX, 

Each type of error discussed is detected by 
a different module and at a different point 
in time. The technique used to produce a 
diagnostic in this environment may be 
described as follows: When an error is 
detected by any component of the system, 
the type of error is recorded and a genera
lized diagnostic processing module is 
called to produce the required error mes
sage. The PLAN system module that produces 
diagnostic messages is DFJPERRS. 

The PLAN system offers the user several 
options in processing errors. Several 
terms are defined below that are used in 
describing these options. 

SHORT FORM. The 
produced without 
caused it. 

diagnostic message is 
printing the phrase that 

LONG FORM. 
diagnostic 
message. 

The phrase that caused the 
is printed with the diagnostic 

IMMEDIATE MODE. The error processing 
module .. DFJPERRS" is invoked at the time 
the error occurs, even if a checkpoint is 
required. 

STACKED MODE. A condensed version of the 
error is recorded in the error message 
stack which will be processed the next time 
•DFJPERRS" is invoked by the system .. 

ERROR MSG STACK. 
reserved exclusively 
in a condensed form. 
the ability to delay 
processor "DFJPERRS" 
is available. 

An area on PFILE is 
for recording errors 

This gives the system 
calling the diagnostic 
until the program area 

ERROR MSG QUEUE. DYNAMIC file 255 on PLAN 
DYNAMIC drive 0 is reserved as a queue area 
for diagnostic messages. This gives th~ 
system the ability to post-list diagnostic 
messages by writing the messages on the 
file as they occur and then dumping the 
file on command. 

USER-ERROR EXIT. The PLAN system has the 
ability to call a user-error processing 
module in the cases where the normal PLAN 
mode of diagnostic presentation is not 
appropriate for the application. 

SPECIFYING ERROR PROCESSING MODE 

The mode of error processing by the PLAN 
system is controlled by the PLAN Switch 
Words 11, 12, and 13. These switch words 
can be set by any PLAN command. The 
standard error processing mode is as 
follows: 

1. Errors are stacked. 

2. 

3. 

4. 

5. 

6. 

7. 

Error message format is short. 

No error messages are queued for 
post-listing. 

No user-error processing 
will be called. 

IIK>dule 

Messages are printed on the stand
ard PLAN output device. 

Errors detected by the PLAN DYNAMIC 
file routines cause a phrase abort. 

Errors detected by the PLAN PER
MANENT file routines cause a phrase 
abort. 

Switch Words 11-13 are normally set by the 
following operands of the PLAN JOB command: 

1. NERM 
2. DEVICE 
3. UMOD 
4. SHORT 
5. LONG 
6. STACK 
7. IMM 
8. DFI 
9. PFI 

NERM specifies the number of error messages 
to be written on the error message queue 
file before they are dumped on the error 
message device. 

DEVICE specifies the sequential file device 
code (NOD argument for PLINP/PLOUT subrou
tines> to which the diagnostic messages are 
to be written. 

UMOD specifies the EBCDIC name of a user
error processing module to be called by the 
error processor "DFJPERRS" when an error is 
processed. 

SHORT specifies that the SHORT form of the 
diagnostic is to be used when an error 
message. is produced. 

LONG specifies that the LONG form of the 
diagnostic message be used when an error 
message is produced. 

STACK specifies that the system is to 
optimize error message processing by using 
the error message stack in PFILE to record 
messages until "DFJPERRS" can be called 
without a checkpoint. 

IMM specifies that "DFJPERRs• is to be 
invoked at the time the error occurs. 

DFI specifies that a phrase abort condition 
is not to occur on certain error conditions 

DIAGNOSTICS 53 



detected by 
subroutines. 

the DYNAMIC file support 

PFI specifies tbat a phrase abort condition 
is not to occu1 on certain error conditions 
detected by the PERMANENT file support 
subroutines. 

If both SHORT and LONG are specified, the 
LONG-form option is used. If both STACK 
and IMM are specified, the IMMEDIATE option 
is used. 

Use of the operands PFI and DFI requires 
the application program to process the 
error conditions that would normally abort 
the PLAN statement. If these operands are 
specified and the required programming is 
not present, unpredictable results can 
occur. What generally takes place is the 
following: When the error is detected, the 
file control block is closed, and on the 
next reference to the ·file, an error mes
sage indicating an unopened file control 
block is issued. This masks the real 
reason for the error condition. 

STANDARD ERROR PROCESSING 

Normally, the PLAN system will process 
errors at SHORT form and in a stacked mode. 
The reason for using this technique is that 
the size of the PLAN error processing 
module is such that if the program area is 
not free, a checkpoint is required to load 
and execute DFJPERRS. Delaying the call to 
DFJPERRS until the program area is free 
eliminates the need for a checkpoint and so 
improves performance. The error message 
stack has a finite limit on the number of 
messages it can contain, and in cases where 
the stack overflows, a checkpoint is forced 
and DFJPERRS empties the stack. 

POST-LISTING OF ERRORS 

Some applications may require that e1~ror 
messages be suppressed until end of job. 
An example of this is a compiler. such as 
FORTRAN or COBOL, where the error messages 
are listed at the end of the compilation. 
The PLAN system provides this facility to 
the user as a standard option. In order to 
use this facility the PLAN system must have 
available PLAN DYNAMIC drive o. DYNAMIC 
file 255 is used as an error message queue 
file. To invoke this facility the user 
must specify a value in system Switch Word 
11. 

The value in this switch word is used by 
the error processor •DFJPERRs• to determine 
the number of error messages to write on 
the error message queue file (drive O, file 
255) before dumping the file on an output 
device. 

54 DIAGNOSTICS 

The message records on this file are writ
ten as 21-word or 124-character re·cords. 
The first word of the record is an integer 
from -3 to +12, and is used as an argument 
for the PCCTL subroutine to effect carriage 
control for the data line that is contained 
in words 1-24 <characters 4-123). The data 
portion must be alphameric data in the A4 
format. The data area of records produced 
by DFJPERRS contains the PLAN system diag
nostic message text. The user may write 
records directly to this file from an 
application program by using the PLAN sub 
routine EWRIT. 

The PLAN error message queue file is dumped 
on the diagnostic device under the follow
ing conditions: 

1. The number of diagnostics messages 
added to the queue file exceeds 
NERM. 

2. The subroutine ERLST is called. 

3. The end of PLAN input U•> is read 
by DFJPSCAN. 

4. A level 0 phrase is processed .. 

5. A level 1 phrase is processed .. 

USER-ERROR EXIT PROCESSING 

If a user module name is specified in 
system Switch Words 11 and 12, by spE?cify
ing UMOD'NAME', the PLAN error processor 
DFJPERRS creates an arry DFJPERRS creates 
an array in 'erasable COMMON' that 
describes the error and then invokE~s the 
named module through the PLAN 'LOCAL' faci
lity. This array is in the following 
format: 

BYTE CONTENTS 
0-7 Program name issuing diag-

nostic call 
8-11 Error number (Nl from error 

subroutine call) 
12-15 Error code (N2 from error 

subroutine call) 
16-20 ID from cc. 76-80 

21 hexadecimal FF=system E!rror, 
O=user error 

22 hexadecimal FF=a.bort, 
O=continue 

23 (unused> 
24-27 Sequence 
28-31 Length of literal in 

characters 
32-107 Literal text 

108-111 Character count of phrase 
112-561 Phrase text 

A program written as a user-error processor 
may not use the following PLAN subroutines 
ERROR, ERRAT, ERREX, ERRAT, ERLST, LREPT, 



LCHEX, LREPT and PUSH. Any error detected 
while a user-error processing module is in 

7 control causes cessation of all ·error 
processing. 

The UMOD and the NERM or DEVICE specif ica
tions are mutually exclusive. Therefore, 
the automatic PLAN facility for post
listing of errors is not available, if a 
user~error processing module is used. The 
same effect may be produced, however, by 
using the subroutine EWRIT to create an 
error message queue file. A dump of the 
file may be forced by using the LIST 
subroutines to place the name wDFJPEDMPw 
into the pop-up list. This module will 
force a dump of the error message queue 
file and will also terminate the current 
statement. 

PHRASE DIAGNOSTICS 

The following group of diagnostics is 
generated from errors detected by DF'JPHRAS 
(the ADD PHRASE processor). ECODE (m) for 
all diagnostics generated by DFJPHRAS is a 
pointer to the position at which the error 
condition was detected, except as otherwise 
noted. Position one is the first character 
of the command. The format of the descrip
tions of the diagnostics is: 

•DIAGNOSTIC NUMBER(n), ACTION CODE, 
DIAGNOSTIC • 
REASON 

• 21 *C* PHRASE TO DELETE CANNOT BE F'OUND • 
A phrase that is to be deleted is not 
currently in PFILE. This can result from 
a DELETE PHRASE or an ALTER PHRASE. If 
it results from an ALTER PHRASE, the ADD 
PHRASE aspect of the command is not 
suppressed. 

• 22 *R* NO ROOM TO ADD PHRASE • 
There is no contiguous vacant area in 
PFILE large enough to allow the current 
phrase to be added. PFILE must be reor
ganized, reestablished, or expanded. 

Usually., some space can be gained by 
reorganizing the file without changing 
its size. This is accomplished by delet
ing the phrases and then re-adding them. 

Additional space may be provided by 
enlarging PFILE if it is currently small
er than the maximum size. PFILE must be 
at least 14 records and not more than 268 
records in length. This will also 
require that the phrases for the system 
be re-added 

• 23 *R* PHRASE ALREADY DEFINED • 
An attempt to add a phrase that 
exists in PFILE has been made. 

already 
If the 

phrase to be added is a replacement for 
the existing phrase, the existing phrase 
must be deleted before the new phrase can 
be added. 

• 24 *R* INVALID FORMAT IN PROGRAM LIST • 
A program list defined with the ADD 
(ALTER> PHRASE is found to contain inval
id syntax. This can result from an 
unrecognizable numeric or special 
character. 

• 25 *R* INVALID FORMAT IN USER-EXIT PRO
GRAM LIST • 
This error may result from: 
a. A program name not starting with an 

alphabetic character 
b. More than three programs in the list 

(Note that errors in the user-exit pro
gram list may also be diagnosed as error 
number 24.) 

• 26 *R* KEYWORD ENTRY NOT TERMINATED BY 
COMMA OR SEMICOLON • 
A keyword (symbol table entry, PROGRAM, 
VERB, EXIT, or LEVEL) has been collected, 
but the keyword and associated data was 
not terminated with a comma or semicolon. 

• 27 *R* LEVEL NUMBER GREATER THAN 4 • 
The number collected following the speci
fication word LEVEL is greater than 4. 

• 28 *R* NO SYMBOL DEFINED AFTER EXECUTION
DEFINED SYMBOL SUBSCRIPT EXPRESSION • 
A symbolic subscript expression requires 
a symbol (name> to be defined. The 
required symbol has not been found. 

• 29 *R* CONSTANT SUBSCRIPT ZERO OR LESS 
THAN -15 • 
A constant subscript has been encountered 
that does not describe a valid location 
in the system switch words or communica
tion array. 

• 30 *R* IMPLIED DO SUBSCRIPT NOT FOLLOWED 
BY SINGLE-VALUED CONSTANT • 
The value following an implied DO 
subscript was not found to be a single
valued constant, that is, numeric, +, or 

This error can result from an implied 
DO subscript followed by: 

a. A literal default, that is, wABCw 
b. No default value 

• 31 *R* SYMBOL SUBSCRIPT GREATER THAN 8176 
OR 511 WITH P-VALUE • 
A constant subscript that defines a sym
bol exceeds the maximum allowable value 
of 8176 without scale values CP values> 
or 511 after scale values. 

• 32 *R* EXECUTION-DEFINED SYMBOL FOLLOWED 
BY IMPLIED SYMBOL • 
A symbol that is implied follows a symbol 

DIAGNOSTICS 55 



associated with. a 
defined) subscript. 
implied symbol 
subscript. 

symbolic <execution
There may not be an 
after a symbolic 

• 33 *R* PHRASE DEFINITION INVALID • 
A phrase is not defined properly, that is 
the phrase name is syntactically incor
rect. This can be caused by: 

a. Failure to end the phrase definition 
with a comma. 

b. Use of nonalphabetic characters within 
the phrase definition. 

• 3li *R* SUBSCRIPT FOR DATA VALUE GREATER 
THAN 16,368 • 
A communication array subscript greater 
than 16,368 has been encountered. 

• 35 *R* INVALID CHARACTER • 
The ECODE pointer indicates a character 
that is invalid in a phrase definition. 
This error can result from an error 
within the phrase further to the left 
that was undetectable at that phase of 
the scan. 

• 36 *R* BCD LEFT PARENTHESIS IN LOGICAL 
EXPRESSION • 
All characters in a logical expression 
must be punched in the EBCDIC code. 

• 37 *R* USER-EXIT NUMBER GREATER THAN 3 • 
User exits must be 1, 2, or 3. 

• 38 *R* FORMULA NUMBER USED BEFORE FORMULA 
BLOCK • 
A conditional exit includes a formula 
number, but a $n introducing the expres
sion area has not been encountered. 

• 39 *R* FORMULA NUMBER ZERO OR GRf~ATER 

THAN 102li • 
The valid range for formula numbers is 
from O to 1024 in a phrase definition. 

• 40 *R* UNDEFINED FORMULA NUMBER IN FORMU
LA AREA • 
A transfer type formula has been encoun
tered that references a nonexistent for
mula number. Ecode is set to the formula 
number found to be in error. 

• 41 *R* MULTIPLE DEFINITION OF FORMULA 
NUMBER IN FORMULA AREA • 
More than one formula is identified with 
the same number within this phrase. 

• 42 *R* INVALID FORMAT IN FORMULA AREA • 
Formula numbers must be followed by: 
a. Another formula number 
b. Expression 
c. Symbol 
d. Semicolon 
e. comma 

56 DIAGNOSTICS 

• 43 *R* P-VALUE GREATER THAN 7 • 
A scale factor greater than plus SE~ven or 
less than minus seven has been 
encountered. 

• 44 *R* KEYWORD 'PROGRAMS' NOT FOLLOWED BY 
PROGRAM LIST • 
A program specification has been proc
essed, but a program list is missing. 
This can result from the next significant 
character not being a quotation mark. 

• 45 *R* INVALID FORMAT IN REL1~TIONAL 
EXPRESSION • 
A syntax error has been processE~d in a 
relational expression. Possible reasons 
for this error are: 
a. Unbalanced parentheses 
b. A semicolon invalid within <not at end 

of> an expression 

• 46*R* PROGRAM NAME CONTAINS TOO MANY 
CHARACTERS • 
The maximum allowable length for ct pro
gram name is eight characters. 

• 47 *R* SEMICOLON IN LITERAL OR EMPTY 
LITERAL • 
A semicolon is an invalid literal 
character. This diagnostic may result 
from failure to include the tE!rminal 
quotation mark of a literal. The phrase 
terminating semicolon may then appE~ar to 
be within the literal. A zero-·length 
literal is invalid. 

• 48 *R* INVALID FORMAT IN SYMBOLIC 
SUBSCRIPT EXPRESSION • 
The indicated position contains a 
character that forms an invalid context 
for a subscript <arithmetic) expression. 
These conditions include: 
a. Adjacent arithmetic operators 
b. Unmatched parenthesis 
c. Invalid characters 
d. Expression does not end with comma 

• 49 *R* USER EXITS NOT ALLOWED ON NEGATIVE 
SUBSCRIPTS • 
An attempt has been made to define a user 
exit to store data in the switch area. 

• 50 *R* INVALID FORMAT IN LOGIC.P~L OR 
ARITHMETIC EXPRESSION • 
ECODE points to a character that may not 
be contained in the context of a logical 
or arithmetic expression. These condi
tions include: 
a. Adjacent arithmetic operators 
b. unmatched parenthesis 
c. Invalid characters 
d. Expression does not end with con~a 

• 51 *R* INVALID FORMAT IN SUBSCRIPT 
EXPRESSION • 
The indicated position contains a 
character that forms an invalid context 
for a subscript (arithmetic> expression. 



These conditions include: 
a. Adjacent arithmetic operators 
b. Unmatched parenthesis 
c. Invalid characters 
d. Expressic~ does not end with comma 

• 52 *R* EXPRESSION SUBSCRIPT GREATER THAN 
8176 OR 511 WITH P~VALUE • 
The symbolic subscript that is associated 
with a phrase-defined expression is 
greater than 8176 (if a scale factor is 
not defined) or greater than 511 (if a 
scale factor is defined). 

• 58 *R* NUMBER OUTSIDE ALLOWABLE FLOATING
POINT RANGE • 
A number has been given that cannot be 
represented in the f loating-poi.nt repre
sentation of the PLAN system. 

• 64 *R* PHRASE ENTRY TOO LARGE • 
The total phrase size is greater than 
1024 bytes and will not be added. or one 
of the eight internal phrase tables is 
longer than 512 bytes. ECODE is either 
the total size of the phrase or the PFILE 
internal table number that is too large. 

• 65 *R* ILLEGAL SYMBOL - CANNOT BE 'E' • 
A data name has been defined to be E. E 
is not allowed because of syntactical 
confusion with the exponential indicator 
E. 

• 66 *R* INVALID FORMAT IN IMPLIED DO 
SUBSCRIPT e 
A syntactical error has been encountered. 
Reasons for this diagnostic may be: 
a. The increment (I 3 ) is negative. 
b. The limit (I 2 ) is negative. 
c. The limit divided by the increment is 

not a whole number. 
d. <I 2 > pr CI 3 > is not a numeric 

constant. 

• 68 *R* LEG OF CONDITIONAL EXPRESSION NOT 
EXPRESSION OR FORMULA NUMBER • 

The TRUE action leg or FALSE action leg 
of a conditional expression is not an 
expression (example: ?=B*100) or a for
mula number (example: ?$5>. 

• 70 *R* CHECK-ENTRY SUBSCRIPT GREATER THAN 
8176 • 
The constant subscript that is associated 
with a check entry is greater than 8176. 

• 71 *R* INVALID 
LITERAL • 

FORMAT IN 

A check entry 
format when 
exercised: 

must be in the 
the literal 

*A'LITERAL' 
*C'LITERAL' 
*RC(SUBSCRIPT) 

CHECK-ENTRY 

following 
option is 

The following condition may have been 
detected: 
a. LITERAL in improper format 
b. Quotation marks unmatched 
c. A subscript greater than 16,383 

• 72 *R* UNBALANCED PARENTHESIS IN PROGRAM 
LIST • 
An unequal number of left and right 
parentheses have been found in a program 
list. 

• 80 *C* UNREFERENCED FORMULA NUMBER IN 
FORMULA AREA **UPDATE NOT SUPPRESSED** • 
The formula area has been found to con
tain a formula number that is not 
referenced in another expression. ECODE: 
Formula number that is unreferenced. 

EXECUTION-TIME DIAGNOSTICS 

The following errors are detected during 
execution of logic modules operating within 
the PLAN environment. All 100 series 
errors result in a PLAN "Phrase Abort" and 
subsequent level error recovery. The for
mat of the definitions for this section is: 

• NUMBER *ACTION CODE* DIAGNOSTIC • 
PROGRAM INDICATED 
ECODE MEANING 
REASON FOR ERROR 

• 101 *R* PROGRAM 
LIBRARY • 

NAMED NOT 

Program: Program name not found 
ECODE: Unused. 

IN PLAN 

Reason: The named program was not found 
in the search of the PLAN 
library PDS. 

• 102 *R* INVALID 
ENCOUNTERED • 

COMMON DEFINITION 

Program: Program name. 
ECODE: Unused. 
Reason: The length of COMMON for the 

named program is less than 640 
FORTRAN (32-bit) words. 

• 103 *R* PROGRAM TOO LARGE FOR AVAILABLE 
MEMORY • 
Program: Program name. 
ECODE: Unused. 
Reason: The size of the name program 

exceeds the size of the avail
able area for program loading. 

• 104 *R* PROGRAM NAME IN INVALID FORMAT • 
Progra~: '••••••••' <Unpredictable> 
ECODE: Unused. 
Reason: An invalid program name has 

been found in the pop-up list. 

• 105 *R* PROGRAM FORMAT INVALID • 
~rogram: Program name. 
ECODE: Unused. 

DIAGNOSTICS 57 



Reason: The named program is in over
lay, scatter mode or contains 
TESTRAN symbol cards on OS 
PLAN. 

• 110 *R* CHECKPOINT PROCESSING INVALID • 
Program: Last program entered. 
ECODE: Unused. 
Reason: a. An • was encountered in the 

pop-up list without a check
point being in effect. 

b. A checkpoint call when ei
ther there is no checkpoint 
file or insufficient room to 
write the complete 
checkpoint. 

• 111 *R* OVER 50 NAMES IN POP-UP LIST • 
Program: Last program entered. 
ECODE: Unused. 
Reason: An attempt to place more than 

50 names in the pop-up list has 
been made. 

• 112 *R* LOCAL PROCESSING INVALID • 
Program: Program issuing CALL LOCAL. 
ECODE: Unused. 
Reason: a. There is not room to load 

The program called as a 
LOCAL. 

• 113 *R* LSAV OR LRLD PROCESSING INVALID • 
Program: Program issuing loader call. 
ECODE: Unused~ 
Reason: on System/360 all calls to LSAV 

or LRIJ) are invalid. 

Note: In all 120-130 series diagnostics 
ID(l) is set to a closed status. Any 
further attempt to read or write to the 
file without reopening the file will result 
in a phrase abort, and PLAN level error 
recovery will be invoked. 

• 120 *R* UNOPENED FILE CONTROL BLOCK ON 
CALL READ/WRITE • 
Program: Last program entered. 
ECODE: File number. 
Reason: ID(l) in the file control block 

is in a closed status. 

• 122 *R* INVALID DRIVE CODE OR FILE CON
TROL BLOCK ON CALL FIND/RELES • 

Program: Last entered. 
ECODE: Unpredictable. 
Reason: a. File number is zero. 

b. Drive code is negative or 
greater than 7. 

• 123 *R* INVALID FILE CONTROL BLOCK ON 
CALL READ/WRITE • 
Program: Last program entered. 
ECODE: Unpredictable. 
Reason: a. ID(l) has been altered. 

b. The file specified by ID(l) 
has been released because of 

58 DIAGNOSTICS 

an allocation request for a 
higher-priority file. 

c. The file specified by ID(l) 
was automatically rele.ased 
because a phrase of higher 
priority than the file was 
processed. This can apply 
only to ID control blocks 
that reside in COMMON 
through phrase boundaries. 

• 124 *R* INVALID KDIS/KOUNT ON CALL 
READ/WRITE • 
Program: Last program entered. 
ECODE: File number. 
Reason: KDIS or KOUNT is negative or 

KDIS+KOUNT exceeds maximum file 
size. 

• 125 *R* DYNAMIC DRIVE NOT MOUNTED • 
Program: Last entered. 
ECODE: File number. 
Reason: A DYNAMIC drive required by a 

CALL FIND/READ/WRITE/RELES is 
not available to the system .. 

• 126 *R* INSUFFICIENT SPACE FOR ALLOCA'lrION 
ON CALL FIND/WRITE • 
Program: Last entered. 
ECODE: File number. 
Reason: a. On a CALL FIND insufficient 

space is available to satis
fy the NALLO argument. 

b. On a CALL WRITE insufficient 
space is available for 
secondary allocation. 

• 130 *R* UNOPENED FILE CONTROL BLOCK ON 
CALL RDATA/WDATA • 
Program: Last program entered. 
ECODE: File number. 
Reason: IDCU in the file control block 

was not initialized. 

• 132 *R* INVALID DRIVE CODE OR FILE CON
TROL BLOCK ON CALL GDATA • 

Program: Last entered. 
ECODE: Unpredictable. 
Reason: a. File number is zero. 

b. Drive code is negative or 
greater than 7. 

c. File name is not in P'LAN 
library ... 

• 133 *R* INVALID FILE CONTROL BLOCK ON 
CALL RDATA/WDATA • 
Program: Last program entered. 
ECODE: Unpredictable. 
Reason: IDCl> has been altered 

• 134 *R* INVALID KDIS/KOUNT ON CALL 
RDATA/WDATA • 
Program: Last program entered. 
ECODE: File number. 
Reason: KDIS or KOUNT is negative or 



,,. 

KDIS + KOUNT exceeds maximum 
file size. 

• 135 *R* PERMANENT DRIVE NOT FOUND • 
Program: Last program entered. 
ECODE: File number. 
Reason: The PERMANENT drive is not 

defined on a PLFSYnn DD card. 

• 140 *R* INVALID RECORD LENGTH ON CALL 
PSOR'l'/PMERG • 
Program: DFJPSRTA/DFJPMERG 
ECODE: File number. 
Reason: Word 1 of the sort control list 

is minus or greater than 512. 

• 141 *R* INVALID SORT CONTROL FIELD COUNT 
ON- CALL PSORT/PMERG • 
Program: DFJPSRTA/DFJPMERG 
ECODE: File number. 
Reason: The number of sort fields is 

specified as negative, zero, or 
greater than 99 or extends 
byeond the end of COMMON. 

• 142 *R* INVALID SORT CONTROL FIELD ON 
CALL PSORT/PMERG • 
Program: DFJPSRTA/DFJPMERG 
ECODE: File number. 
Reason: a. Word 1 of the sort control 

field is out of range (-6 to 
+6). 

b. Boundary alignment of dis
placement is invalid for 
type of sort. 

c. The sort field extends 
beyond the length of the 
record. 

d. The number of element speci
fied is not a positive 
integer. 

• 143 *R* INSUFFICIENT FILE SPACE TO 
EXECUTE PMERG FUNCTION • 
Program: DFJPMERG 
ECODE: Merge file number. 
Reason: The required space for the out

put file of the merge is not 
available. 

• 144 *R* INSUFFICIENT WORK AREA IN MANAGED 
AREA FILE FOR PSORT FUNCTION • 
Program: DFJPSRTA 
ECODE: File number. 
Reason: Self-explanatory 

• 145 *R* MERGE FILE OUT OF SEQUENCE ON 
CALL PMERG • 
Program: DFJPMERG 
ECODE: File number. 
Reason: Self-explanatory. 

• 146 *R* UNOPENED FILE CONTROL BLOCK ON 
CALL PSORT/PMERG • 
Program: Program calling PSORT/PMERG 
ECODE: File number. 
Reason: The file control block speci-

f ied is found not to be proper
ly opened. 

• 147 *R* FILE TO SORT DOES NOT EXIST • 
Program: DFJPSRTA 
ECODE: File number. 
Reason: Specified file cannot be found 

on the drive specified in the 
file control block. 

• 150 *R* INVALID RECORD LENGTH ON CALL 
GSORT/GMERG • 
Program: DFJGSRTA/DFJGMERG 
ECODE: Record length. 
Reason: Word 3 of the sort control list 

is minus or greater than 512. 

• 151 *R* INVALID SORT CONTROL FIELD COUNT 
ON CALL GSORT/GMERG • 
Program: DFJGSRTA/DFJGMERG 
ECODE: Sort field count. 
Reason: The number of sort fields is 

specified as negative, zero, or 
greater than 98. 

• 152 *R* INVALID SORT CONTROL FIELD ON 
CALL GSORT/GMERG • 
Program: DFJGSRTA/DFJGMERG 
ECODE: Sort control field sequence. 
Reason: a. Word 1 of t!1e sort control 

field is out of range (-6 to 
+6). 

b. Boundary aligment of dis
placement is invalid for 
type of sort. 

c. The sort 
beyond the 
record. 

field extends 
length of the 

d. The number of elements spec
ified is not a positive 
integer. 

• 153 *R* INSUFFICIENT FILE SPACE TO 
EXECUTE GMERG FUNCTION • 
Program: DFJGMERG 
ECODE: Merge file number. 
Reason: The required space for the 

merged file is not available. 

• 154 *R* INSUFFICIENT WORK AREA IN MANAGED 
AREA SAVE FILE FOR GSORT FUNCTION • 
Program: DFJGSRTA 
ECODE: File number. 
Reason: Self-explanatory. 

• 155 *R* MERGE FILE OUT OF SEQUENCE ON 
GMERG • 
Program: DFJGMERG 
ECODE: File number. 
Reason: Self-explanatory.· 

• 156 *R* UNOPENED FILE CONTROL BLOCK ON 
CALL GSORT/GMERG • 
Program: Program calling GSORG/GMERG. 
ECODE: File number. 

DIAGNOSTICS 59 



Reason: The file control block spec
ified is found not to be prop
erly opened. 

• 171 *R* INVALID SAVED STATEMENT EXECUTION 
FILE • 
Program: 
ECODE:: 
Reason: 

DFJPSTSV 
File number. 
The header of the 
file is found not to 
for a statement save 

indicated 
be valid 

file. 

• 172 *R* STATEMENT TO EXECUTE NOT IN SAVE 
FILE • 
Program: DFJPSTSV 
ECODE: The number of the statement to 

be executed from the save file. 
Reason: A statement has been indicated 

for retrieval from the state
ment save file but cannot be 
found. 

• 173 *R* PROGRAM ERROR IN SAVED STATEMENT 
RETRIEVAL • 
Program: DFJPSTSV 
ECODE: The invalid value causing the 

Reason: 
error. 
The saved statement file has 
been destroyed or overwritten. 

• 180 *R* INVALID LITERAL FILE • 
Program: DFJPDIAG or DFJPLITL 
ECODE: The file number. 
Reason: A file defined for literal 

processing cannot properly be 
opened by GDATA. 

PSCAN DIAGNOSTICS 

The following diagnostics are generated as 
a result of errors detected by PSCAN while 
processing the phrases and language def ini
tion file CPFILE). Format of the diag
nostic descriptions is the same as that for 
the ones in the preceding section. 

• 201 *R* PHRASE SKIPPED • 
ECODE: Unused. 
Reason: DFJPSCAN has caused the state

ment to be bypassed because of 
an error in a preceding command 
upon which this command is 
dependent. 

Action: The next command is processed. 

• 210 *R* LEVEL 0 PHRASE NOT ENCOUNTERED • 
ECODE: Cursor. 
Reason: A level O phrase was not 

encountered following the 
invoking of PLAN. 

Action: Statements are skipped until a 
level 0 phrase is encountered. 

• 220 *R* LEVEL 1 PHRASE NOT ENCOUNTERED • 
ECODE: cursor. 
Reason: The first recognizable command 

60 DIAGNOSTICS 

Action: 

in a job stack depends logical
ly on a statement that was not 
found. The preceding 
statement<s> may have result~d 
in a code 221 diagnostic. 
Statements are skipped until a 
level 1 phrase is encountered. 
recog-nized 

• 221 *R* UNDEFINED PHRASE • 
ECODE: Cursor. 
Reason: The command cannot be recog

nized in total or in part ai:; a 
phrase defined in the systems 
dictionary. The statement scan 
is abandoned. 

Action: The scan of this command is 
terminated. 

• 222 *R* STATEMENT OVER 450 CHARACTERS • 
ECODE: Cursor. 
Reason: A semicolon may be mispunc::hed 

Action: 

• 223 *R* 
ECODE: 

Reason: 

Action: 

• 224 *R* 
ECODE: 

Reason: 

Action: 

• 225 *R* 
ECODE: 

Reason: 

Action: 

• 226 *R* 
ECODE: 

Reason: 

Action: 

• 227 *R* 
STREAM • 
ECODE: 

Reason: 

or missing. 
Statement scan is terminated. 

PLAN WORD FALSE • 
A subscript indicating the par
ticular communication array 
location that was tested for 
not FALSE,, 
The tested location was found 
to be FALSE. 
Level error recovery and skip
ping is initiated 

PLAN WORD NOT REAL • 
A subscript indicating the c:om
munica tion array location that 
was found to be TRUE or FA I.SE. 
A word required to be real is 
TRUE or FALSE. 
Level error recovery and skip
ping is initiated. 

PLAN WORD NOT TRUE • 
A subscript indicating the com
munication array location that 
was found to be FALSE or RE:AL. 
A word required to be TRUE is 
FALSE or REAL. 
Level error recovery and skip
ping is initiated. 

PLAN WORD NOT FALSE • 
A subscript representing the 
communication array that is 
found to be TRUE or REAL. 
A word required to be FALSE is 
found to be TRUE or REAL. 
Level error recovery and skip
ping is initiated. 

UNDEFINED SYMBOL IN 

A cursor pointing to the end of 
the symbol in question. 
A symbolic· data name has been 
misspelled, or a comma was 



Action: 

omitted after the command in a 
statement. No symbol table 
entry can be found for the word 
in this statement or in any 
statement upon which this 
statement is dependent. Fai
lure to terminate a command 
with a semicolon results in the 
next command being interpreted 
as data for the command that 
precedes it. 
The command is not executed, 
but the scan is completed. 

• 228 *R* UNDEFINED SYMBOL IN EXECUTION
DEFINED SYMBOL EXPRESSION • 
ECODE: The sequence number of the 

expression in the phrase 
definition. 

Reason: A symbolic subscript expression 
contain$ an undefined symbol. 

Action: The scan is completed and the 
level error recovE~ry is 
initiated. 

• 229 *R* UNDEFINED SYMBOL IN PHRASE
DEFINED EXPRESSION • 
ECODE: The sequence number of the 

expression in the phrase 
def initl.on. 

Reason: A symbol used in a phrase
defined expression is found to 
be undefined. 

Action: The scan is completed and the 

• 230 *R* 
ECODE: 

Reason: 

Action: 

• 231 *R* 
ECODE: 

Reason: 

Action: 

level error recovery is 
initiated. 

OVER 8 VERBS IN INPUT STATEMENT • 
A pointer to the end of the 
ninth verb. 
A command may not contain more 
than eight verb phrases and an 
object phrase. 
Statement scan is terminated. 

DITTO WORD IN COMMON NOT ALPHA • 
A pointer to the communication 
array word that is to be sub
stituted in a command for a 
ditto mark. 
Using the ditto character in a 
command depends on the def ini
tion of the preceding command. 
The word that is to be substi
tuted is not alphabetic. 
The scan is terminated and 
level error recovery is 
initiated. 

• 232 *R* EXECUTION-DEFINED SYMBOL 
SUBSCRIPT NOT POSITIVE • 
ECODE: The sequence of the subscript 

expression within the phrase 
definition. 

Reason: Evaluation of a symbolic 
subscript within the phrase 
definition has yielded a nega
tive or zero result indicating 

\Action: 

an invalid communication array 
location. 
The scan is completed and level 
error recovery is initiated. 

• 233 *R* EXECUTION-DEFINED SYMBOL 
SUBSCRIPT GREATER THAN 8176 OR 511 WITH 
P-VALUE • 
ECODE: A number indicating the 

Reason: 

Action: 

sequence 
subscript 
definition. 

of the symbolic 
in the phrase 

The symbolic subscript expres
sion, when evaluated, is found 
to be too large. 
The scan is completed and the 
level error recovery is 
initiated. 

• 234 *R* INSUFFICIENT ROOM IN MANAGED 
ARRAY SAVE FILE • 
ECODE: Number of additional words 

needed in PDATA file. 
Reason: The file specified for saving 

the managed communication array 
is too small to allow saving of 
the context of the current 
managed array. 

Action: The scan is completed and the 

• 235 *R* 
LARGE • 
ECODE: 

Reason: 

Action: 

• 236 *R* 
OUTSIDE 
ECODE: 
Reason: 

Action: 

• 237 *R* 
OUTSIDE 
ECODE: 
Reason: 

Action: 

• 239 *R* 
DEFINED 
ECODE: 
Reason: 

level error recovery is 
initiated. 

MANAGED ARRAY DEFINITION TOO 

The number of words in excess 
of the allowable size. 
A communication array has been 
specified that cannot be accom
modated by the current 
partition/machine size. 
The array is not saved or 
restored by PLAN data manage
ment, and the array is not 
initialized to FALSE at level 1 
phrase time. 

INITIALIZATION VALUE SUBSCRIPT 
OF COMMON • 

Value of subscript. 
The CAP index for a default 
value is outside the current 
communication array. 
The value is not stored. 

DATA PLACEMENT FROM INPUT STREAM 
OF COMMON • 

Input cursor. 
The CAP index of an input value 
is outside the current communi
cation array specification. 
The value is not written to the 
communication array. 

DATA PLACEMENT FROM PHRASE
EXPRESSION OUTSIDE OF COMMON • 

Expression number. 
The CAP inde.x for storage of 
the results of an expression 

DIAGNOSTICS 61 



Action: 

evaluation is outside the cur
rent communication array 
specification. 
The value is not written to the 
communication array. 

• 240 *R* FIRST CHARACTER IN INPUT STREAM 
AFTER PHRASE NOT COMMA, COLON, OR 
SEMICOLON • 
ECODE: A cursor to the unexpected 

character. 
Reason: The character required to 

start/terminate data collection 
was not encountered. 

Action: The scan is completed and the 
level error recovery is 
initiated. 

• 241 *R* UNRECOGNIZABLE CHARACTER IN INPUT 
STREAM • 
ECODE: 

Reason: 

Action: 

A cursor to the unrecognizable 
character. 
A character cannot be interro
gated in this context. It may 
have resulted from an illegal 
multi punch. 
The scan is completed and the 
level error recovery is 
initiated. 

• 242 *R* SEMICOLON 
LITERAL • 

IN LITERAL OR EMPTY 

ECODE: 

Reason: 

Action: 

A cursor pointing to the inval
id semicolon. 
Either the literal closure 
character is missing or a semi
colon is present within the 
literal. 
The scan is completed and level 
error recovery is initiated. 

• 243 *R* NUMBER OUTSIDE ALLOWABLE 
FLOATING-POINT RANGE • 
ECODE: A cursor to the end of the 

off ending constant. 
Reason: A number larger than can be 

contained in a floating-point 
number has been encountered. 

Action: The scan i·s completed and level 
error recovery is initiated. 

• 244 *R* IMPLIED DO NOT FOLLOWED BY SINGLE 
VALUED CONSTANT • 
ECODE: 

Reason: 

Action: 

A pointer to the position proc
essed when the error was 
detected. 
A single logical or numeric 
value does not follow an 
implied DO definition. 
The scan is completed and level 
error recovery is initiated. 

• 245 *R* OVER 
EXECUTED e 

1000 EXPRESSION GO-TO'S 

ECODE: A number indicating the 
sequence of the expression 
found to be in error or input 
cursor. 

62 DIAGNOSTICS 

Reason: 

Action: 

Only 1000 formula GO-TO's are 
allowed within any phrase. 
This limit has been exceeded. 
The scan is completed and level 
error recovery is initiated. 

• 246 *R* CHECK-ENTRY SUBSCRIPT OUTSIDE OF 
COMMON • 
ECODE: 
Action: 

Reason: 

subscript value. 
The indicated communication 
array location is not cht:?cked. 
The CAP index requiring t:?xecu
tion of a check is outside the 
current communication array 
specification. 

• 247 *R* DATA RETRIEVAL OUTSIDE OF COMMON 
Program: PSCAN 
ECODE: A cursor to the input stream 

subscript. 
Reason: An attempt has been made to 

access data outside the current 
communication array. 

·Action: A 1.0 is supplied for arithmet
ic calculations and 0.0 for 
relational calculations. The 
scan is completed and level 
recovery is initiated. 

• 248 *R* DATA RETRIEVAL OUTSIDE OF COMMON 
IN EXECUTION-DEFINED SYMBOL EXPRESSION • 
ECODE: The expression number. 
Reason: An attempt has been ma.de to 

access data outside the culrrent 
coRIIllunication array. 

Action: A 1. 0 is supplied for arithmet
ic calculations and 0.0 for 
relational calculations. The 
scan is completed and level 
recovery is initiated. 

• 249 *R* DATA RETRIEVAL OUTSIDE OF COMMON 
IN PHRASE-DEFINED EXPRESSION • 
ECODE: 
Reason: 

Action: 

The expression number. 
An attempt has been made to 
access data from a location 
outside the current communica
tion array specification. 
A 1.0 is supplied for arithmet
ic calculations and 0.0 for 
relational calculations. The 
scan is completed and level 
recovery is initiated. 

• 255 *R* STATEMENT SAVE INVALID, PHRASE 
PUSHED FROM CHECK-ENTRY • 
ECODE: CAP location being checked. 
Reason: Implicit statement savinq· may 

not be combined with c:::heck 
entry pushed phrases. 

Action: The statement is not saved,; the 
PLAN error recovery is 
initiated, but the phras•~ is 
pushed. 

• 263 *R* INVALID FORMAT IN INPUT S~rREAM 
EXPRESSION • 
ECO DE: A cursor to the of fending 



Reason: 

Action: 

position. 
An input stream expression is 
found to contain improper syn
tax. , Reasons for this diag
nostic may be: 
a. Adjacent arithmetic oper

ators 
b. Operators following paren

thesis 
c. Parenthesis following oper-

ators· 
d. Invalid characters 
The scan is completed and level 
error recovery is initiated. 

• 264 *R* INVALID FORMAT IN EXECUTION
DEFINED SYMBOL EXPRESSION • 
ECODE: A number indicating the 

sequence of the expression in 

Reason: 

Action: 

error. 
A syntax error has been 
detected in the symbolic sub
script defined at ADD PHRASE 
time. Reasons for this diag
nostic may be: 
a. Adjacent arithmetic oper

ators 
b. Operators following paren

thesis 
c. Parenthesis following oper-

ators 
d. Invalid characters 
The scan is completed and level 
error recovery is initiated. 

• 265 *R* INVALID FORMAT IN PHRASE-DEFINED 
EXPRESSION • 
ECODE: A number indicating the 

sequence of the expression in 

Reason: 

Action: 

error. 
A syntax error has been 
detected in the phrase defini
tion of an expression. Reasons 
for this diagnostic may be: 
a. Adjacent arithmetic oper

ators 
b. Operators following paren

thesis 
c. Parenthesis following oper-

ators 
d. Invalid characters 
The scan is completed and level 
error recovery is initiated. 

• 266 *R* BCD LEFT PARENTHESIS USED IN 
INPUT STREAM LOGICAL EXPRESSION • 
ECODE: A pointer to the erroneous 

parenthesis. 
Reason: All logical expressions must be 

punched in EBCDIC code. 
Action: The scan is completed and level 

error recovery is initiated. 

• 268 *R* BCD LEFT PARENTHESIS USED IN 
PHRASE-DEFINED LOGICAL EXPRESSION • 
ECODE: A number indicating the 

sequence number of the expres
sion in error. 

Reason: 

Action: 

Logical expressions must be 
punched in EBCDIC code. 
The scan is completed and level 
error recovery is initiated. 

• 269 *R INPUT STREAM EXPRESSION TOO COM
PLICATED TO BE ANALYZED • 
ECODE: A pointer to the position at 

which error was detected. 
Reason: Too many levels of parenthesis 

have been encountered. 
Action: The scan is completed and level 

error recovery is initiated. 

• 270 *R* EXECUTION-DEFINED SYMBOL EXPRES
SION TOO COMPLICATED TO BE ANALYZED • 
ECODE: A number indicating the 

sequence of the expression 
found to be in error. 

Reason: Too many levels of parenthesis 
have been encountered. 

Action: The scan is completed and level 
error recovery is initiated. 

• 271 *R* PHRASE-DEFINED EXPRESSION TOO 
COMPLICATED TO BE ANALYZED • 
ECODE: A number indicating the 

sequence of the expression 
found to be in error. 

Reason: Too many levels of parenthesis 
have been encountered. 

Action: The scan is completed and level 
error recovery is initiated. 

• 272 *R* 
LITERAL 
ECODE: 

Reason: 

Action: 

• 274 *R* 
LITERAL 
ECODE: 

Reason: 

Action: 

INVALID FORMAT IN INPUT STREAM 
~ELATIONAL EXPRESSION • 

A pointer to the character 
processed when the error was 
discovered. 
A syntax error in an alphabetic 
relational expression. This 
diagnostic may result from 
expressions of the nature: 

a. S="A" 
b. A>"B" 
c. B<"C" 

The scan is completed and level 
error recovery is initiated. 

INVALID FORMAT IN PHRASE-DEFINED 
RELATIONAL EXPRESSION • 

A number indicating the 
sequence of the expression 
causing the error. 
A syntax error in a phrase
def ined relational. This diag
nostic may result from expres
sions of the nature: 

a. 5="A" 
b. A>"B" 
c. B<"C" 

The scan is completed and level 
error recovery is initiated. 

• 275 *R* INVALID FORMAT IN INPUT STREAM 
SUBSCRIPT EXPRESSION • 
ECODE: A pointer to the character 

processed when error was 

DIAGNOSTICS 63 



Reason: 

Action: 

• 276 *R* 
DEFINED 
ECODE: 

Reason: 

Action: 

detected. 
A syntax error in a symbolic 
subscript or a subscript 
expression evaluation yields a 
negative result. Reasons for 
this diagnostic may be: 
a. Result of subscript expres

sion is not positive. 
b. A logical value was encoun

tered during the evaluation 
c. An Implied Do was encoun

tered in the evaluation of a 
subscript expression. 

The scan is completed and level 
error recovery is initiated. 

INVALID FORMAT 
SYMBOL SUBSCRIPT 

A pointer to 
processed when 
detected. 

IN EXECUTION
EXPRESSION • 
the character 
the error was 

A syntax 
expression. 

error in symbol 

The scan is completed and l·evel 
error recovery is initiated. 

• 277 *R* INVALID FORMAT IN PHRASE-DEFINED 
SUBSCRIPT EXPRESSION • 
ECODE: A number indicating the 

sequence of the expression 
found to be in error. 

Reason: 
Action: 

A syntax error. 
The scan is completed and level 
error recovery is initiated. 

• 278 *R* UNBALANCED PARENTHESES IN INPUT 
STREAM EXPRESSION • 
ECODE: A pointer to the position at 

which the error was detected. 
Reason: An unequal number of right and 

left parentheses are found in 
an expression. 

Action: The scan is completed and level 
error recovery is initiated. 

• 279 *R* UNBALANCED PARENTHESES IN 
EXECUTION-DEFINED SYMBOL EXPRESSION • 
ECODE: A pointer to the position at 

which the error was detected. 
Reason: An unequal number of left and 

right parentheses are found in 
an expression. 

Action: The scan is completed and level 
error recovery is initiated~ 

• 280 *R* UNBALANCED PARENTHESES IN PHRASE
DEFINED EXPRESSION • 
ECODE: A number indicating the 

sequence of the expression 
found to be in error. 

Reason: An unequal number of left and 
right parentheses have been 
found, or a right parenthesis 
has been found with no preced
ing matched left parenthesis. 

Action: The scan is completed and level 
error recovery is initiatedm 

64 DIAGNOSTICS 

• 281 *R* INVALID FORMAT IN INPUT STREAM 
CONDITIONAL EXPRESSION • 
ECODE: A pointer to the position at 

which the error was detected. 
Reason: A syntax error. Reasons for 

this diagnostic may be: 
a ? or ! not followed by #,, 

=, : , or $ 
Action: The scan is completed and levE~l 

error recovery is initiabed. 

• 283 *R* INVALID FORMAT IN PHRASE-DEFINED 
CONDITIONAL EXPRESSION • 
ECODE: A number indicating the 

sequence of the expression 
found to be in error. 

Reason: A syntax error. Reasoins for 
this diagnostic may be: 
a ? or ! not followed by #, 

=, : , or $ 
Action: The scan is completed and level 

error recovery is initiatied. 

• 284 *R* INVALID FORMAT IN INPUT STREAM 
RELATIONAL EXPRESSION • 
ECODE: A pointer to the position at 

which the error was detected. 
Reason: A snytax error. Reasons for 

this diagnostic may be: 
a. Unbalanced parenthesis 
b. Invalid characters 

Action: The scan is completed and level 
error revovery is ini tiab~d. 

• 286 *R* INVALID FORMAT IN PHRASE-DEFINED 
RELATIONAL EXPRESSION • 
ECODE: 

Reason: 

Action: 

A number giving the sequence of 
the expression found to be in 
error. 
A syntax error. ReasonB for 
this diagnostic may be: 
a. Unbalanced parenthesis 
b. Invalid characters 
The scan is completed and level 
error recovery is initiatE~d. 

• 287 *R* INVALID END TO AN INPUT STREAM 
EXPRESSION • 
ECODE: Input cursor. 
Reason: ,An expression must end with a 

semicolon or comma. 
Action: The scan is completed and level 

error recovery is ini tiatE~d. 

• 289 *R* !NVALID END TO A PHRASE-DEFINED 
EXPRESSION • 
ECODE: Sequence number of the expres

sion in error. 
Reason: An 'expression must end with a 

semicolon or comma. 
Action: The scan is completed and level 

error recovery is initiatE~d. 

• 290 *R* LOGICAL EOF ENCOUNTERED IN 
INPUT • 

PSCAN 

ECODE: 
Reason: 

Undefined. 
A logical EOF has been set by a 
PSCAN CALL PLINP operation. 



Action: 

• 299 *R or 
ECODE: 

Reason: 

Action: 

The scan is completed and level 
error recovery is initiated. 

C* ******************** • 
A pointer to the communication 
array upon which an unsuccess
ful test was made. 
The text for this diagnostic is 
normally user-defined text from 
a phrase-defined check entry. 
If the asterisks are provided, 
an error has been detected in 
the defined literal. 
The phrase is terminated. 

OS ONLY DIAGNOSTICS 

The following messages are generated from 
the DD card edit performed by OS/360 PLAN. 
The message form is DDNAME, TEXT. 

• 901 *E* XXXXXXXX NOT FOUND IN THE PLANLIB 
PDS • 
Program: PLAN 
Reason: The named module could not be 

loaded by the PLAN system. The 
modules are DFJPERRS, DFJPSCAN, 
or DFJRETN 

Action: PLAN execution is inhibited. 

• 902 *E* DDNAME, DOES NOT SPECIFY A DIRECT 
ACCESS DEVICE • 
Program: PLAN 
Reason: The unit parameter of the spec

ified DD card is incorrect. 
Action: PLAN execution is inhibited. 

• 903 *E* DDNAME, DATA SET DOES NOT EXIST • 
Program: PLAN 
Reason: The data set named in the DD 

card does not exist on the 
specified volume. 

Action: PLAN execution is inhibited. 

• 904 *E* DDNAME, INVALID BLKSIZE 
SPECIFICATION • 
Program: PLAN 
Reason: The specified BLKSIZE parameter 

is either too large for ·the 
unit specified or not a mul
tiple of LRECL. 

Action: PLAN execution is inhibited. 

• 905 *E* DDNAME, INVALID DSCB 
SPECIFICATIONS • 
Program: PLAN 
Reason: The data set named in the spec

ified DD card: 
a. Has a partitioned data set 

format 
b. Has RECFM other than F or FB 
c. contains keys 
d. was never closed 

Action: PLAN execution is inhibited. 

• 906 *E* DDNAME, INVALID SPACE 
ALLOCATION • 
Program: PLAN 
Reason: The space parameter in the 

named DD card does not specify 
TRK or CYL allocations. 

Action: PLAN execution is inhibited. 

• 907 *E* DDNAME, I/O ERROR WHILE 
FORMATTING • 
Program: PLAN 
Reason: Input/Output error. 
Action: PLAN execution is inhibited. 

• 908 *E* DDNAME, IS AN INVALID PLAN DD 
CARD • 
Program: PLAN 
Reason: The numeric specification on a 

PLINPxxx, PLOUTxxx, PLANDRVx, 
or PLFSxxxx DD card is invalid. 

Action: PLAN execution is inhibited. 

• 909 *E* DDNAME, DATA SET INITIALIZED 
INCORRECTLY • 
Program: PLAN 
Reason: A PLANDRVx, PLSYSTAB, or PLNUM

TAB was specified with DISP= 
OLD, and is not formatted 
correctly. 

Action: PLAN execution is inhibited. 

• 910 *E* DDNAME, INSUFFICIENT FILE SIZE • 
Program: PLAN 
Reason: PLSYSTAB or PLANDRVx is not 

allocated sufficient space for 
correct execution. 

Action: PLAN excution is inhibited. 

• 911 *E* DDNAME, NOT DEFINED IN A DD 
CARD • 
Program: PLAN 
Reason: PLSYSTAB or PLANLIB DD cards 

are missing. 
Action: PLAN execution is inhibited. 

The following messages are 
OS/360 PLAN during the 
phase. 

generated. from 
initialization 

• 922 *E* XXXXXXX PARAMETER OR OPERAND IS
INVALID • 
Program: PLAN 
Reason: The named parameter in the EXEC 

control card is invalid. 
Action: PLAN execution is inhibited. 

•NOTE: This message is printed 
on the system console device. 

• 940 *R* DDNAME I/O ERROR • 
Program: Current program in control. 
Action: Phrase abort. 

• 941 *R* XXXXXXXXXXXXXXXX • 
Program: Current program in control. 
Reason: A program interrupt has 

DIAGNOSTICS 65 



Action: 

occurred in a problem program. 
The diagnostic message is the 
program interrupt PSW. 
PLAN level error recovery is 
initiated. 

• 942 *R* INSUFFICIENT PROGRAM AREA FOR 
PLAN FUNCTION • 
Program: PLAN 
Reason: The area allocated for the pro

gram area is too small. 
Action: Phrase abort. 

• 999 *E* PLAN EXECUTION INHIBITED • 
Program: PLAN 
Reason: This action results if any of 

the error conditions listed 
occur. 

Action: PLAN execution is inhibited. 

PLAN will ABEND during PLAN initialization 
with the following user codes: 

66 DIAGNOSTICS 

• ABEND USER CODE 100 • 
Program: PLAN 
Reason: Missing or invalid PLINP/'PLOUT 

DD card. 
Action: PLAN execution is inhibited. 

• ABEND USER CODE 101 • 
Program: PLAN 
Reason: Unable to load one of the? f al

lowing PLAN modules: DFJIODER, 
DFJTRACE 

Action: PLAN execution is inhibited. 

• ABEND USER CODE 102 • 
Program: PLAN 
Reason: No DD card supplied. 
Action: PLAN execution is inhibited. 

• ABEND USER CODE 103 • 
Program: PLAN 
Reason: Insufficient core storag·e to 

initialize PLAN. 
Action: PLAN execution is inhibited. 



GENERATING A PLAN SYSTEM 

To generate a PLAN system the user must 
invoke the proper OS utility to load the 
four data sets from the supplied tape. The 
'IEHMOVE' utility must be used- to move 
PLAN.MODLIB and PLAN.SUBLIB (File sequence 
3 and 4) to a direct access device. The 
'IEBPTPCH' utility may be used to print or 
punch the sample problem (File sequence 1) 
and the standard phrases {File sequence 2). 

The example below of Step 1 shows the use 
of IEHMOVE to load the two data sets 
(PLAN. MODLIB and PLAN .• SUBLIB) from a mag
netic tape (800 bpi> onto a 2311 disk 
volume. The 2311 is assumed to have enough 
space available to support the two data 
sets. 

The SYSUTl DD statement 
device that is to contain 
IEHMOVE work data sets. 

defines the 
the required 

STEP 1 Retrieving the Libraries 
//MOVE JOB 84803,'JOE E. JONES',MSGLEVEL=1 
//STEP EXEC PGM=IEHMOVE 
//SYSPRINT DD SYSOUT=A 

PREPARATORY SYSTEMS PROCEDURES 

The DOB DD statement defines the receiv
ing volume. 

The TAPE DD statement defines the source 
volume. 

The SYSIN DD statement defines the IEH
MOVE control card input data set. 

The MOVE statements cause the IEHMOVE 
program to move the unloaded data sets 
onto the receiving volume. see publica
tion OS/360 Utilities (C28-6586) for 
further descriptions and examples of the 
use Of the IEHMOVE utility. 

The user should prepare JCL similar to the 
example shown but tailored to his individu
al installation requirements and then run 
the job step to move the data sets. 

//SYSUTl DD UNIT=2311,VOLUME=SER=XXXXXX,DISP=OLD 
//DOB DD UNIT=2311,VOLUME=SER=NEWPAC,DISP=OLD 
//TAPE DD UNIT=2400,VOLUME=SER==PDT,LABEL=C3,NL) ,DISP=(OLD,PASS) I x 
II DSNAME=TAPE,DCB=CRECFM=FB,LRECL=80,BLKSIZE=800) 
//SYSIN DD * 

COPY PDS=PLAN.MODLIB,T0=2311=NEWPAC,FROM=2400=CPDT,3),FROMDD=TAPE 
COPY PDS=PLAN.SUBLIB,T0=2311=NEWPAC,FROM=2400=(PDT,4),FROMDD=TAPE 

I* 

PREPARATORY PROCEDURES 67 



After successful execution of the 
the data set name PLAN.MODLIB 
entered into the system catalog 
CSYSCTLG). Below is a sample job 
do this: 

move step 
should be 
data set 
stream to 

//CATLG 
// 
//ODA 
//SYSPRINT 
//SYSIN 

JOB 84803,'JOE E. JONES',MSGLEVEL=l 
EXEC PGM=IEHPROGM 
DD UNIT=2311,VOLUME=SER=111111,DISP=OLD 
DD SYSOUT=A 
DD * 

CATLG DSNAME=PLAN.MODLIB,VOL=2311=NEWPAC 
/* 

For those systems using MVT the PLAN module 
IGG019WY is an EXCP appendage routine that 
must be in SYSl.SVCLIB for successful PLAN 
execution. The job stream listed below is 
required to place this module into the SVC 
library. It is assumed that PLAN.MODLIB is 
catalogued. 

//LINK 
//STEP 
//SYSUT1 
//SYSPRINT 
//SYSLIB 
//SYSMOD 
//SYSLIN 

/* 

INCLUDE 
ENTRY 
NAME 

JOB 
EXEC 
DD 
DD 
DD 
DD 
DD 

84803,'JOE E.JONES',MSGLEVEL=1 
PGM=IEWL,PARM='NCAL,LIST,RENT,LET' 
UNIT=SYSDA,SPACE=CCYL,(1,1)) 
SYSOUT=A 
DSNAME=PLAN.MODLIB,DISP=OLD 
DSNAME=SYS1.SVCLIB,DISP=OLD 

* SYSLIB(IGG019WY) 
IGG019WY 
IGG019WY(R) 

To add the standard PLAN commands to a PLAN 
phrase dictionary the user must execute a 
PLAN job. The standard PLAN commands are 
contained in file sequence 2 on the distri
bution tape. Below is a job stream to add 
the commands to a phrase dictionary: 

//ADDPHR JOB 
//JOBLIB DD 
//STEP EXEC 
//PLSYSTAB DD 
// 
//PLOUT100 DD 
//PLINP001 DD 
// 
//PLANLIB DD 
/* 

84803,'JOE E. JONES' MSGLEVEL=l 
DSNAME=PLAN.MODLIB,DISP=OLD 
PGM=DFJPLAN 
DSNAME=DFJPFIL,UNIT=2311,VOLUME=SER=NEWPAC, 
DISP=CNEW,CATLG),SPACE=(CYL,(5)) 
SY SO UT= A 
UNIT=2400,VOLUME=SER=PDT,DISP=COLD,PASS),LABEL=C2,NL), 
DSNAME=INPUT.PHRASES,DCB=CRECFM=F,LRECL=80,BLKSIZE=80) 
DSNAME=PLAN.MODLIB,DISP=OLD 

x 

x 

The JOBLIB DD statement 
library containing the 
modules. 

specifies the 
PLAN system 

required for successful execution of the 
sample problem. 

The PLSYSTAB DD statement defines a 
set that will be a PLAN phrase 
tionary. The name DFJPFIL is used 
any other name is suitable. The 
parameter specifies CATLG. This 

68 PREPARATORY PROCEDURES 

data 
dic
but 

DISP 
is 

The PLOUTlOO DD statement specifies: a 
data set for printed output from the PLAN 
system. 

The PLINP001 DD statement 
input data set for the PLAN 

defines the 
system. In 



this case it is file number 2 on the 
distribution tape. 

The PLANLIB DD statement defines the 
library PDS the PLAN system will use to 
load and execute modules. 

//PUNCH JOB 84803,'JOE E. JONES~,MSGLEVEL=l 
//STEP EXEC PBM=IEBPTPCH 
//SYSPRINT DD SYSOUT=A 

If the user wishes to get the standard PLAN 
commands into cards the following job step 
should be run: 

//SYSUT1 DD UNIT=2400,VOLUME=SER=PDT,DISP=(OLD,PASS),LABEL=C2,NL), X 
// DSNAME~INPUT.PHRASES,DCB=CRECFM=F,tRECL=80,BLKSIZE=80) 
//SYSUT2 DD UNIT=SYSCP 
//SYSIN DD * 

PUNCH TYPORG=PS 

The user may now run the sample problem. 
Refer to Appendix A in this manual. 

PREPARATORY PROCEDURES 69 



OPTIONAL MACHINE-READABLE MATERIAL 

This section provides an 
optional program package. 
lied is an unlabeled tape 
data sets as listed below: 

FILE SEQUENCE 1 

index to the 
The tape supp

containing two 

This data set, named PLAN.SRCLIB, is an 
unloaded version of a PDS. It was 
created by the OS utility IEHMOVE and 
contains the PLAN system source decks for 
both the PLAN system routines and the 
PLAN subroutine library. The direct 
access space required for this data set 
is approximately 650-1316 tracks. see 
Appendices C and D for a listing and 
description of the modules in this data 
set. The characteristics of this data 
set when moved to a direct access device 
will be RECORD LENGTH=80, BLOCK SIZE=400. 

FILE SEQUENCE 2 

This data set, named PLAN.MACLIB, is an 
unloaded version of a PDS. It was 

//MOVE JOB 84803,'JOE E. JONES',MSGLEVEL=l 
//STEP EXEC PGM=IEHMOVE 
//SYSPRINT DD SYSOUT=A 

created by the OS utility IEHMOVE and 
contains the macro definitions necessary 
to assemble any PLAN system component. 

The direct access space required for this 
data set is approximately 15-1316 tracks. 
See Appendix E for a listing and descrip
tion of the members in this data set. 
The characteristics of this data set when 
moved to a direct access device will be 
RECORD LENGTH=80, BLOCK SIZE=3360. 

The user must move the data sets PLAN. 
SRCLIB and PLAN.MACLIB to direct access 
devices using the OS utility !EH.MOVE. 
The following is an example of a job 
stream to load these data sets to direct 
access devices. 

//SYSUT1 DD UNIT=2311,VOLU~E=SER=XXXXXX,DISP=OLD 

//DDB DD UNIT=2311,VOLUME=SER=NEWPAC,DISP=OLD 
//TAPE DD UNIT=2400,VOLUME=SER=PDT,LABEL=(,NL),DISP=(OLD,PASS), X 
// DSNAME=TAPE, DCB= CRECFM=FB, LRECL=80, BLKSIZE=800) 
//SYSIN DD * 

COPY PDS=PLAN.SRCLIB,T0=231l=NEWPAC,FROM=2400=(PDT,l),FROMDD=TAPE 
COPY PDS=PLAN.~ACLIB,T0=231l=NEWPAC,FROM=2400=(PDT,2),FROMDD=TAPE 

/* 

The user may then print or punch any member 
of these data sets or he may assemble any 
module in the system using these data sets 
directly. Below is a sample job stream 
using these data sets directly. It is 
assumed that PLAN.SRCLIB and PLAN.MACLIB 
are catalogued data sets. 

//ASMB 
//STEP 
//SYSPRINT 
//SYSUTl 
//SYSUT2 
//SYSUT3 
//SYSI.IB 
// 
//SYSPUNCH 
//SYSIN 
/• 

JOB 
EXEC 
DD 
DD 
DD 
DD 
DD 
DD 
DD 
DD 

84800,'JOE E. JONES',MSGLEVEL=l 
PGM=IEUASM 
SYSOUT=A 
UNIT=SYSDA,SPACE=CCYL,C2,1)) 
UNIT=SYSDA,SPACE=(CYL,C2,1)) 
UNIT=SYSDA,SPACE=(CYL,(2,1)) 
DSNAME=SYSl. MACLIB, DISP==OLD 
DSNAME=PLAN.MACLIB,DISP=OLD 

UNIT=SYSCP 
DSNAME=PLAN.SRCLIBCPLOUT),DISP=OLD 

70 PREPARATORY PROCEDURES 



NOTE: The assembler requires that conca
tenated data sets for SYSLIB have the same 
attributes. 

PREPARATORY PROCEDURES 71 



APPENDIX A: RUNNING THE SAMPLE PROBLEM 

The first file on the distribution tape 
contains the PLAN commands to execute the 
sample problem. 

Before running the sample problem. insure 
that the following items have been done: 

1. Check the 
MOVE step. 
messages. 

output from the PLAN system 
There should be no error 

84803.'JOE E. JONES'.MSGLEVEL=l 
DSNi\ME=PLAN.MOOLIB.DISP=OLD 
PGM=DFJPLAN 
DSNAME=DFJPFIL,DISP=OLD 

2. The standard PLAN phrases must be added 
to the dictionary file. 

To run the sample problem the user should 
prepare the following JCL and run it as an 
OS job step. It is assumed that the data 
sets PLAN.MODLIB and DFJPFIL are cataloged. 

//SAMPLE JOB 
//JOBLIB DD 
//STEP EXEC 
//PLSYSTAB DD 
//PLOUT100 DD 
//PLINP001 DD 
// 
//PLANLIB DD 
/* 

SY SO UT= A 
UNIT=2400,VOLUME=SER=PDT,DISP=(OLD,PASS),LABEL=(,NL), 
DSNAME=INPUT.SAMPLE.DCB=(RECFM=F,LRECL=80,BLKSIZE=80) 
DSNAME=PLAN.MODLIB,DISP=OLD 

x 

EXPLANATION OF SAMPLE PROBLEM 

'i'he output of the sample problem as shown 
in this manual reflects the results of a 
PLAN system generation that includes 
initialization of a language definition 
dictionary file named DFJPFIL and the addi
tion of the supplied standard phrases to 
the dictionary. 

Card SMPOl is a PLAN JOB command which sets 
the length of the managed array to 510 
words, specifies that an array beginning at 
word 200 ot the managed array may be used 
for ERASABLE COMMON, and specifies that 
long-form diagnostics are to be produced in 
the event of an error. 

This card accomplishes PLAN job initializa
tion functions and satisfies the require
ment that a level 0 command be the first 
command processed. 

Card SMP02 contains the PLAN command LON 
and DUMP. The LON command is simply a 
dummy level 1 command that satisfies the 
requirement that a level 1 command immedi
ately follow a level 0 command. 

Note in the output listing (Figure :D, 
cards SMPOl and SMP02 are listed 80-80. 
The OS PLAN system normally lists all input 
commands. The DUMP command on card SMP02~ 
which dumps the Switch Words, managed array 
and nonmanaged array. produces the output 
shown in Figure 3. 

Noting the Switch Words the user can see 
that they contain the following: 

72 SAMPLE PROBLEM 

SWITCH WORD DECIMAL HEX 
8 200 Cii 
9 1150 47E 

10 510 lFE 
12 100 6L• 
13 1 l 

These values were placed in the Switch 
Words by the PLAN JOB command. 

Card SMP03 is a DUMP PHRASES command which 
prints out the contents of the PLAN phrase 
dictionary. This card is listed in Figure 
3. The output from this command is shown 
in Figure 4. 

Card SMP04 is an ADD PHRASE command that 
will add the phrase SAMPLE TEST. This 
phrase shows an example of using a check 
entry test to produce a diagnostic message. 

Card SMP05 is the SAMPLE TEST conm1and. 
Cards SMP04 and SMP05 are shown listed in 
Figure 5. 

:Figure 6 shows the result of the Sl1.MPLE 
TEST command. A long-form diagnostic: is 
produced by the PLAN module DFJPSCAN and is 
the literal that was specified in the 
phrase SAMPLE TEST. 

Card SMP06 is a DELETE PHRASE command tOt 
:remove the phrase SAMPLE TEST from the 
dictionary. 

When the PLAN command interpreter DFJPSCAN 
reads the end-of-file it returns control to 
the OS supervisor. 



-------~----------------~-------~-------------------------------------------~--------PLAN JOB, ERASABLE200,, MANAGED510 •LONG; 
LON;DUMP COMMON; 
DUMP PHRASES• LEVELl.; 
ADD PHRASE:SAMPLE TEST,(l)+•FC'PLAN SYSTEM IS OPERATIONAL',LEVEL1; 
SAMPLE TEST; 

SMP01 
SMP02 
SMP03 
SMP04 
SMP05 
SMP06 DELETE PHRASE:SAMPLE TEST; 

Figure 1. Sample Problem Listing 

PLAN JOB,, ERASABLE20 0 • MANAGED510 •LONG; 
LON;DUMP COMMON; 

Figure 2. Sample Problem Output - 'Step. 2 

SMP01 
SMP02 

----------------------------------·-------------------------------------------------------SWITCHES 
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 OOC8 
0000 047E 0000 01FE 0000 0000 0000 0064 0000 0001 0000 0000 0000 0000 

MANAGED ARRAY LENGTH 510 

1 7FFF FFFF 7FFF FFFF 7FFF FFFF 7FFF FFFF 7FFF FFFF 7FFF FFFF 7FFF FFFF 7FFF FFFF 

193 7FFF FFFF 7FFF FFFF 7FFF FFFF 7FFF FFFF 7E_'FF FFFF 7FFF FFFF 7FFF FFFF 0000 0000 
201 0000 OOOD D4C1 D5C1 C7C5 C440 C1D9 D9C1 E840 4040 0000 0010 D5D6 D5D4 C1D5 C1C7 
209 C5C4 40C1 0909 C1E8 E2E6 C9E3 C3C8 C5E2 D3C5 D5C7 E3C8 4040 0000 0064(7FFF FFFF 
217 7FFF FFFF 7FFF FFFF 7Ff'F FF.FF 7FFF FFFF 7FFF FFFF 7FFF FFFF 7FFF FFFF 7FFF FFFF 

505 7FFF FFFF 7FFF FFFF 7FFF FFFF 7FFF FFFF 7FFF FFFF 7FFF FFFF 

NONMANAGED ARRAY LENGTH 0 

DUMP PHRASES,LEVEL1; SMP03 

Figure 3. Sample Problem Output - Step 3 

-----------------------------------------------------------------~------~---------------
CHECKSUM 1 

PHRASE NAME LIS LIT LEVEL 1 TYPE-OBJECT ENTRY SIZE 20 2110 0 0 

CHECKSUM 3 
PHRASE NAME OUT LEVEL 1 TYPE-OBJECT ENTRY SIZE 8 2346 0 0 

CHECKSUM 11 
PHRASE NAME DUM MAN LEVEL TYPE-OBJECT ENTRY SIZE 22 1920 0 0 

CHECKSUM 19 
PHRASE NAME OUM PER LEVEL TYPE-OBJECT ENTRY SIZE 28 1764 0 0 

CHECKSUM 25 
PHRASE NAME DUM DYN LEVEL TYPE-OBJECT ENTRY SIZE 28 1820 0 0 

CHECKSUM 32 
PHRASE NAME DUM COM LEVEL TYPE-OBJECT ENTRY SIZE 22 1876 0 0 

CHECKSUM 51 
PHRASE NAME DUM ERR LEVEL TYPE-OBJECT ENTRY SIZE 4 2380 0 0 

SAMPLE P,ROBLEM 73 



CHECKSUM 52 
PHRASE NAME SET LIT LEVEL TYPE·-OBJECT ENTRY SIZE 18 2074 0 0 

CHECKSUM 72 
PHRASE NAME ALT PHR LEVEL 0 TYPE·· OBJECT ENTRY SIZE 6 1676 0 0 

CHECKSUM 105 
PHRASE NAME OUM PHR LEVEL 1 TYPE-OBJECT ENTRY SIZE 65 2150 42 6 
PHRASE NAME CRE COR DIR LEVEL TYPE-· OBJECT ENTRY SIZE 4 2388 0 0 

CHECKSUM 113 
PHRASE NAME PLA JOB LEVEL 0 TYPE-· OBJECT ENTRY SIZE 31 1698 0 0 

CHECKSUM 121 
PHRASE NAME OUM NON LEVEL TYPE-OBJEC'r ENTRY SIZE 18 1964 0 0 

CHECKSUM 149 
PHRASE NAME AOD PHR LEVEL 0 TYPE-OBJEC~r ENTRY SIZE 5 1666 0 0 

CHECKSUM :t.55, 
PHRASE NAME CRE LOA ENT LEVEL TYPE-OBJECT ENTRY SIZE 4 2396 0 0 

CHECKSUM 165 
PHRASE NAME INP LEVEL 1 TYPE-OBJECT ENTRY SIZE 7 2332 0 0 

CHECKSUM 167 
PHRASE NAME EXE LEVEL TYPE-OBJECT ENTRY SIZE 12 2050 0 0 

CHECKSUM 168 
PHRASE NAME DEL PHR LEVEL 0 TYPE-OBJECT ENTRY SIZE 5 1688 0 0 

CHECKSUM 177 
PHRASE NAME OUM SWI LEVEL TYPE-OBJECT ENTRY SIZE 14 2000 0 0 

CHECKSUM 205 
PHRASE NAME LON LEVEL 1 TYPE-OBJECT ENTRY SIZE 2 1760 0 0 

CHECKSUM 228 
PHRASE NAME CON OUM PHR LEVEL TYPE-OBJECT ENTRY SIZE 26 2280 0 0 

CHECKSUM 231 
PHRASE! NAME SEN LEVEL TYPE-OBJECT ENTRY SIZE 2 2046 0 0 

CHECKSUM 239 
PHRASE NAME SAV LEVEL TYPE-OBJECT ENTRY SIZE 9 2028 0 0 

CHECKSUM 251 
PHRASE NAME SET PAG LEN LEVEL TYPE-OBJECT ENTRY SIZE 9 2362 0 0 

END OF PHRASE TAB:LE DUMP 

Figure 4. Sample Problem Output - Step ii 

-----------------------------------------------------------------------------------------
-----------------------------~----------------<-------------------------------------------~ 

ADD PHRASE:SAMPLE TEST.(l)+•FC'PLAN SYSTEM IS OPERATIONAL',LEVEL1; SMP04 
SAMPLE TEST: SMP05 

Figure 5. Sample Problem Output - Step 5 

-----------------------------~-------------------------------------------------------·----

74 SAMPLE PROBLEM 



DFJOOl 001-100 SAMPLE TEST; 
DFJ299 C 00001 SEQ=002 ID=SMPOS PGM=DFJPSCAN PLAN SYSTEM IS OPERATIONAL 
DELETE PHRASE:SAMPLE TEST; 

Figure 6. Sample Problem Output - Step 6 

SMP06 

-----------------------------------4------------------------------------------------------

SAMPLE PROBLEM 75 



APPENDIX B: LIS'l'ING OF STANDARD PHRASE FILE 

ADD PHRASE: ALTER PHRASE,I(l)-1,IC-13)1,PRO'DFJPHRAS,DFJPHRAS',LEVELO; ALPHl 
ALTER PHRASE: ALTER PHRASE,I(l)-1,IC-13)1,PRO'DFJPHRAS,DFJPHRAS',LEVELO; ALPHl 
ALTER PHRASE: DEI.ETE PHRASE,I(l)-1,I(-13)1,PRO'DFJPHRAS',LEVELO; DEPHl 
ALTER PHRASE:PLAN JOB,LEVELO,IC-l)FILE,SAVED,TO,LISTS,LB,LC,LD,ERASE, PLJOl 
COMMON,MANAGED,NERM,DEVICE,I(l)SHORT-,LONG-,STACK-,IMMEDIATE-,DRIVEO, PLJ02 
DFI-,PFI-,(-ll)UMOD,IC-13)FORMO, PLJ03 
$0FORM:(LONG)?=FORM+l,FORM: (IMM)?=FORM+2,FORM:(DFI)?=FORM+4,FORM:(PFI) PLJ04 
?=FORM+8,TO=TO+DRIVE*2048; PLJ05 
ALTER PHRASE:LON,LEVELl; LONOl 
ALTER PHRASE:DUMP PERMANENT,IC-8)M,I(M)FILE255,ICM+2)START0,I(M+3)ENDO, DUPMl 
I(M+4)DRIVEO, (~+5)A'DRIVE FILE LENGTH",CM+12)NAME' DUPM2 
I(M+15)NOD100,0,PROGRAM'DFJPFDMP'; DUPM3 
ALTER PHRASE:DUMP DYNAMIC ,I(-8)M,I(M)FILE255,ICM+2)START0,I(M+3)ENDO, DUPL1 
I(M+4)DRIVEO, (~+5)A"DRIVE FILE LENGTH",(M+l2)NAME' DUPL2 
I(M+l5)NOD100,1,PROGRAM'DFJPFDMP'; DUPL3 
ALTER PHRASE:DU~P COMMON,I(-8)M,ICM)NNNO,'MANAGED ARRAY','NONMANAGED ARRAY'DUMP1 
,•swITCHES","LENGTH",I(M+15)NOD100,PRO'DFJPCDMP'; DUMP2 
ALTER PHRASE:DUMP MANAGED,I(-8)M,I(M)NNN-1,'MANAGED ARRAY', DUMMl 
'NONMANAGED ARRAY',"SWITCHES","LENGTH",I(M+15)NOD100,PRO'DFJPCDMP'; DUMM2 
ALTER PHRASE:DUf.'lP NONMANAGED,I(-8)M,ICM)NNN1,CM+6)B'NONMANAGED ARRAY', DUMNl 
"SWITCHES","LENGTH",I(M+l5)NOD100,PRO'DFJPCDMP'; DUMN2 
ALTER PHRASE:DU~P SWITCHES,I(-8)M,I(M)NNN-2,CM+11)A"SWITCHES", DUMSl 
•LENGTH•,I(M+15)NOD100,PROGRAM'DFJPCDMP'; DUMS2 
ALTER PHRASE:SAVE,I(-l)SW,-1,I(-8)M,I(M)FILE0,I(M+1)DRI-1, SAVEl 

$0SW:(FIL>O)?=FIL, SW(3):(DRI>-1)&(DRI<5)?=DRI*2048; SAVE2 
ALTER PHRASE:SEND; SENDl 
ALTER PHRASE: EXECUTE, I(-l)SW,O, IC-B>M, I(M)FROM O, ~CM+l)TO O, EXECl 

I(M+2)FILE 0, I(M+3)DRIVE -1, (M)F*TA'INVALID STATEMENT NUMBER OR DRIVE',EXEC2 
$0 SW:(FIL>O)=FIL, DRI:CDRI<O>?=SW(3)/2028-.5 !:$5, DRI:(DRI<O)?=O, EXEC3 
$5 FRO:,CCDRI>-l)&(DRI<5)) ?=+, SW(3):(TO>O) ?=DRI*2048+TO !=DRI*2048, EXEC4 
SW(2):(FRO>O)?=FRO, FRO:(SW(2)>0l; EXECS 
ALTER PHRASE:SET LITERAL,PROG'DFJPDIAG',I(-8)M,I(M)FILE254,I(M+l)NAMEO, SETLl 
I(M+4)DRIVEO,ICM+5)NUMBER-*RA'UNDEFINED LITERAL NUMBER',I(M+6)LITERALO; SETL2 
ALTER PHRASE:LIST LITERALS,LEVEL1,PROGRAM'DFJPLITL',I(l)FILE254,NAME-*A LISLl 
'LITERAL FILE NAME NOT DEFINED',I(5)DRIVEO,NOD100,(35) LISL2 
"NUMBER LENGTH TEXT OF PLAN LITERAL"; LISL3 
ALTER PHRASE:DU~P PHRASES,I(500)SYS360 ,I(50l)NOD100,I(503)LEVEL1,LEVEL1, DUPHl 

C200)"CHECKSUM","PHRASE NAME","LEVEL TYPE-OBJECT", DUPH2 
"ENTRY SIZE","VERB","SUBSCRIPT NAME VALUE RANGE INDEX","EXIT PROGRAM DUPH3 

LIST ","SYMBOL EXIT FORMAT SCALE SUBSCRIPT EXPRESSIODUPH4 
N•,"PROGRAM LIST","TEST LOCATION ACTION","LITERAL, LIST, OR SUBSCRIPT Y"DUPH5 
,•LOCATION MODE FACTOR EXPRESSION",(510)-*TP'CON OUM PHR',IC504)DRIO; DUPH6 
ALTER PHRASE:CONTINUE DUMP PHRASES, (28l)"INTERPRETIVE EXPRESSIONS", CDPHl 
•VERB PROGRAMS","END OF PHRASE TABLE DUMP",PROGRAM'DFJPTDMP', CDPH2 
(505) "DFJPFIL", (835 )NAM"DFJPTDP1DFJPTDP2DFJPTDP3DFJPTDP5DFJPrrDP6"; CDPH3 
ALTER PHRAS: INPUT,I(-8)M,I(M)NOD1,0,LEVEL1,PROGRAM'DFJPIOCS'; INPUl 
ALTER PHRAS:OUTPUT,I(-8)M,I(M)A0,I(M+l)NOD101,LEVEL1,PROGRAM'DFJPIOCS'; OUTPl 
ALTER PHRAS:SET PAGE LENGTH,I(-8)M,I(M)PGL60,I(M+l)NOD100,PRO'DFJPLENG'; SEPAl 
ALTER PHRAS:DUMP ERRORS,PROGRAM'DFJPEDMP'; DUERl 
ALTER PHRASE: CREATE CORE DIRECTORY, PROGRAM' DFJCRDIR'; CRCOl 
ALTER PHRASE: CREATE LOADER ENTRIES, PROGRAM'DFJLLIST'; CRLOl 

76 STANDARD COMMANDS 



APPENDIX C: MEMBER LISTING OF PLAN.MODLIB 

NAME LENGTH FUNCTION 

DFJCRDIR 1BF8 CORE DIRECTORY BUILD 
DFJGMERG 1090 PERMANENT FILE MERGE 
DFJGSRTA 1108 PERMANENT FILE SORT 
DFJGSRTB 1108 PERMANENT FILE SORT 
DFJLLIST lCSO JOBPAC AREA BUILD 
DFJLODER 0CA8 PROGRAM LOADER, s:rocs, DIOCS 
DFJPCDMP 1018 COMMUNICATION ARRAY DUMP 
DFJPDIAG lFOO LITERAL FILE PROCESSOR 
DFJPEDMP 12B8 ERROR FILE DUMP 
DFJPERRS 3A08 ERROR PROCESSOR 
DFJPFDMP 2068 FILE DUMP UTILITY 
DFJPHRAS 4390 PHRASE PROCESSOR 
DFJPIDMP 18CO PHRASE LIST 
DFJPIOCS 13C8 UTILITY MODULE 
DFJPLAN 3000 MAINLINE EXECUTIVE 
DFJPLENG OFCO UTILITY MODULE 
DFJPLITL lBlO LITERAL FILE PROCESSOR 
DFJPMERG lAAO DYNAMIC FILE MERGE 
DFJPSCAN 4318 COMMAND INTERPRETER 
DFJPSRTA 1B18 DYNAMIC FILE SORT 
DFJPSRTB 1B18 DYNAMIC FILE SORT 
DFJPSTSV 3270 STATEMENT SAVE 
DFJPTDMP 2ECO PHRASE TABLE DUMP 
DFJPTDPl 23F8 PHRASE TABLE DUMP 
DFJPTDP2 24FO PHRASE TABLE DUMP 
DFJPTDP3 24F8 PHRASE TABLE DUMP 
DFJPTDPS 2730 PHRASE TABLE DUMP 
DFJPTDP6 2610 PHRASE TABLE DUMP 
DFJRETN OOE8 EOJ PROCESSOR 
DFJTRACE 0180 TRACE FACILITY 
IGG019WY 0040 SIO APPENDAGE 

PLAN.MODLIB 77 



APPENDIX D: ME~BER LISTING OF PLAN.SUBLIB 

NAME LENGTH FUNCTION NAME LENGTH FUNCTION 

BREAK 0028 CHARACTER MANIPULATION 
CI OEN 0080 INTERNAL CONTROL PDBFE 0008 SEQUENTIAL FILE .SUPPORT 
CIOEP 0080 INTERNAL CONTROL PENDF OOEO SEQUENTIAL FILE :SUPPORT 
DFJCGET 0058 INTERNAL CONTROL PEOF 0050 SEQUENTIAL FILE .SUPPORT 
DFJDSLL 0110 INTERNAL CONTROL PEOUT 0058 SEQUENTIAL FILE SUPPORT 
DFJPEOUT *DFJPFOUT INTERNAL CONTROL PFIN 0058 SEQUENTIAL FILE SUPPORT 
DFJPFIN OlCO INTERNAL CONTROL PFNDl *FIND DYNAMIC FILE SUPPORT 
DFJPFOUT 02AO INTERNAL CONTROL PFOUT 0058 SEQUENTIAL FILE .SUPPORT 
DFJPIIN ooco INTERNAL CONTROL PFSPC OOC8 DYNAMIC FILE SUPPORT 
DFJPIOUT OOB8 INTERNAL CONTROL PHIN 02C8 LITERAL PROCESSING 
DFJUMC *DFJUNC FREE STORAGE CONTROL PHO UT 08C8 LITERAL PROCESSING 
DFJUNC 0248 FREE STORAGE CONTROL PHTOE 0048 CHARACTER MANIPULATION 
ERLST 0010 ERROR FILE DUMP PIDMP 0118 SPECIAL PSCAN SUBROUTIN 
ERRAT *ERRET ERROR INTERFACE PIIN 0058 SEQUENTIAL FILE .SUPPORT 
ERRET 0178 ERROR INTERFACE PIOC 0040 SEQUENTIAL FILE SUPPORT 
ERREX *ERRET ERROR INTERFACE PI OUT 0058 SEQUENTIAL FILE .SUPPORT 
ERROR *ERRE'I ERROR INTERFACE PLINP 0020 SEQUENTIAL FILE :SUPPORT 
EUSER *NU SER USER EXIT PLO UT 0020 SEQUENTIAL FILE SUPPORT 
EWRIT 0188 ERROR FILE PROCESSING PMERG OOE8 DYNAMIC FILE SUPPORT 
FALSE *TRUE LOGICAL TEST PPACK 0020 CHARACTER MANIPULATION 
FIND BAS DYNAMIC FILE SUPPORT PPAGL 0038 SEQUENTIAL FILE SUPPORT 
FINDL *FIND DYNAMIC FILE SUPPORT PREDl *FIND DYNAMIC FILE SUPPORT 
GDATA OOBO PERMANENT FILE SUPPORT PRELl *FIND DYNAMIC FILE SUPPORT 
GDATl *GD AT A PERMANENT FILE SUPPORT PSBFA 0008 SEQUENTIAL FILE SUPPORT 
GMERG OOE8 PERMANENT FILE SUPPORT PSBFB 0008 SEQUENTIAL FILE :SUPPORT 
GSORT ooco PERMANENT FILE SUPPORT PSBFC 0008 SEQUENTIAL FILE :SUPPORT 
GT VAL *STVAL ARRAY TRANSMISSION PSBFD 0008 SEQUENTIAL FILE :SUPPORT 
GUSER *NU SER USER EXIT PSBFE 0008 SEQUENTIAL FILE :SUPPORT 
INPUT OOAO PHRASE PROCESSING PS ORT ooco DYNAMIC FILE SUPPORT 
roes 0048 INPUT/OUTPUT CONTROL PUN PK 0020 CHARACTER .MANIPU:LATION 
I USER *NUSER USER EXIT PUSH 0058 PHRASE PROCESSING 
LC HEX 0088 LOA.DER INTERFACE PWRTl *FIND DYNAMIC FILE SUPPORT 
,_,EX 0018 LOADER INTERFACE RDA TA 0118 PERMANENT FILE SUPPORT 
LIST OOB8 LOADER INTERFACE RDA Tl *RDATA PERMANENT FILE Si(JPPORT 
LIS TB 0050 LOADER INTERFACE READ *FIND DYNAMIC FILE· SUPPORT 
LNRET 0020 LOADER INTERFACE REL ES *FIND DYNAMIC FILE SUPPORT 
LOCAL 0030 LOADER INTERFACE STVAL 0058 ARRAY TRANSMISSION 
LREPT 0010 LOADER INTERFACE TRUE 0020 LOGICAL TEST 
LRET 0010 LOADER INTERFACE WDATA *RDATA PERMANENT FILE SUPPORT 
LRLD *LSAV LOADER INTERFACE WDATl *RDATA PERMANENT FILE Si(JPPORT 
LSAV 0018 LOADER INTERFACE WRITE *FIND DYNAMIC FILE SUPPORT 
NDEF 0038 LOGICAL TEST XACES 01F8 PHRASE TABLE DUMP 
NUS ER 0108 USER EXIT XBIT OOD8 PHRASE TABLE DUMP 
PAIN 0098 SEQUENTIAL FILE SUPPORT XPRNT 0100 PHRASE TABLE DUMP 
PAOUT *PAIN SEQUENTIAL FILE SUPPORT XTRAC 02FO PHRASE TABLE DUMI? 
PARGI *PARGO ARRAY TRANSMISSION 
PARGO 0078 ARRAY TRANSMISSION 
PBFTR 0070 SEQUENTIAL FILE SUPPORT 
PBTST OOBO BIT MANIPULATION 
PBUSY 0008 SEQUENTIAL FILE SUPPORT 
PCCTL 0060 SEQUENTIAL FILE SUPPORT 
PCOMP 0050 LOGICAL TEST 
P.DBFA 0008 SEQUENTIAL FILE SUPPORT 
PDBFB 0008 SEQUENTIAL FILE SUPPORT 
PDBFC 0008 SEQUENTIAL FILE SUPPORT 
PDBFD 0008 SEQUENTIAL FILE SUPPORT 

78 PLAN.SUBLIB 



APPENDIX E: MEMBER .. LISTING OF PLAN. MACLIB 

NAME ~ FUNCTION 

CENTR 16 ENTRY MACRO 
DFJID 11 TITLE GENERA~ION 
DPLAN 248 LOADER DEFINITION MACRO 
EPLAN 20 LOADER DEFINITION MACRO 
RPLAN 12 REGISTER EQUATE 

PLAN.MACLIB 79 



GH20-0596-1 

YOUR COMMENTS PLEASE ••• 

Your comments on the other side of this form will help us improve future editions of this pub
lication. Each reply will be carefully reviewed by the persons responsible for writing and pub
lishing this material. 

Please note that requests for copies of publications and for assistance in utilizing your IBM 

system should be directed to your IBM representative or the IBM branch office serving your 
locality. 

fold fold 

I e •••••••• e ••••• e e. e •• e e •••• e • e e. e e • e. e e • e e e e e e e e e e e e e e e e e • e e • e e e e e e e e e e e e e e e • e e e • e e e e e e e e e e e e e • 9 e e e e e e e e e e ., e e e e e e e e • 

~t 

Attention: Technical Publications 

BUSINESS REPLY MAIL 
NO POSTAGE NECESSARY IF MAii.ED IN THE UNITED STATES 

POSTAGE WILL &E PAID BY ... 

IBM Corporation 

112 East Post Road 

White Plains, N. Y. ·10601 

FIRST CLASS 

PERMIT NO. 1359 

WHITE PLAINS, N. Y. 

• tn 
·~ • O'I 
• 0 . ~ 
• t""' 

: ~ 

·o 
~ 

. 0 
• 't:S 

~ 
: E-. 
• 0 • ::s . "' 
: ~ 

I 
.................................................................................................................... : g 

( : ~ 

fold fold ~ 
: [ 
. s· 
: ~ 

~ 

?> 
. 0 . = . ~,) 

: 2; 
• CJI 

'° 'f' -



APPENDIX E: MEMBER.LISTING OF PLAN.MACLIB 

NAME ~ FUNCTION 

CENTR 16 ENTRY MACRO 
DFJID 11 TITLE GENERA'i'ION 
DPLAN 248 LOADER DEFINITION MACRO 
EPLAN 20 LOADER DEFINITION MACRO 
RPLAN 12 REGISTER EQUATE 

PLAN.MACLIB 79 



International Business Machines Corporation 
Data Processing Division 
112 East Post Road, White Plains, N. Y. 10601 
(USA Only) 

IBM World Trade Corporation 
821 United Nations Plaza, New York, New York 10017 
(International) 




