
=====::.=. .= - -- ---- ---- ---------=::::;:w - ':' =
;;;;;; ·- Application Program

Problem Language Analyzer (PLAN)

Program Description Manual

Program Nos.1130-C:X-25X, 360A-C:X-26X, 360A-C:X-27X

This system provides users with an efficient means of
implementing and using meaningful user~oriented
(problem-oriented) languages. This manual is intended
to provide rules for use of the system and technical
specifications defining the scope of applicability. It
is intended to serve as a user's and an implementer's
reference.

GH20-0594-l

IBM PROBLEM LANGUAGE ANALYZER (PLAN)

PROGRAM DESCRIPTION MANUAL

PREFACE

This manual is divided according to a
three-level dependency. The subdivisions
are noted in a three-part ascending decimal
number (Example: 1.2.3). A change in the
first decimal portion represents a change
in major topic; a change in the second
decimal portion represents the intermediate
level; a change in the third decimal por
tion represents the minor level.

In addition to prefixing the headings, the
decimal numbers are found within the table
of contents. on the quick-reference line on
the bottom of each page, in the index to
show usage of terms, and within the.body of
the manual to show cross-references. The
quick-reference line depicts the last major

Second Edition (November 1969)

This edition is a major revision obsoleting H20-0S94-0.

15 SEPTEMBER '.L969

heading at the top of a page and does not
necessarily reflect the last minor or
intermediate level change ..

Insight into the use of this manual may be
gained by first reading Problem Lanq'llage
Analyzer <PLAN) Users' Introduction
(820-0626).

This manual includes:

Introduction to Basic PLAN Features
Use of PLAN for Problem Solving
PLAN System Support for Application
Designers
Programming support in PLAN

This edition applies to Version 1, Modification Levell, of the program product
Problem Language Analyzer (PLAN) (1130-CX-2SX, 360A-CX-26X, 360A-CX-27X)
and to all subsequent versions and modifications until otherwise indicated in new
editions or Technical Newsletters.

Changes are continually made to the information herein. Therefore, before using
this publication, consult the latest 1130 and Systemf360 SRL Newsletters (N20-1130,
N20-0360) for the editions that are applicable and current.

Copies of this and other IBM publications can be obtained through IBM branch
offices.

A form has been provided at the back of this publication for readers' comments.
If this form has been removed, address comments to: IBM Corporation, Technical
Publications Department, 112 East Post Road, White Plains, N. Y. 10601.

© Copyright International Business Machines Corporation 1969

15 SEPTEMBER 1969

PREFACE

1 .. 0.0 INTRODUCTION 7

2 .. 0.0 SYSTEM OVERVIEW
2.10. O The PLAN Function • • .• • • ,. • •
2. 20 .• 0 Personnel 'Requirements

8
8
8

2.25.0 PLAN Operating Environment
2 .. 30. 0 Implementation Procedures ,.
2 .• 40. O Memory Organization • !• • •

2 .• 50 .• 0 General Functional PLAN
Organization • • • • • • • • • • •

2.50.10 DYNAMIC Job supervision
2.50.20 Problem-Oriented Language

9
9

• 10

• 12
• 12

Processing .. • • • ,. .• • • .• ,. .• • 16
2.50.30 Diagnostic Supervision • • 17
2 .. 50.40 Input/Output Control ••••• 18
2 .• 50. 50 Utility Function Control • 19

3 .• O .• 0 GENERAL DESCRIPTION OF PLAN
MODULES • • • • • ,. • .• • • • • • • 21
3.1.0 Resident PLAN System •
3. 2. 0 Command Analyzer ,. • •
3,. 3. O Language Definition Analyzer •
3.4.0 System Error Processor
3. 5. 0 PLAN Utilities ,. '• .• • '• •

• 21
• 21

• • 21
• 21
• 22

4 .. 0.0 DETAIL DESCRIPTION OF PLAN INPUT • 23
4 .. 1.0 PLAN Language Terminology • 24

4.1.1 word •••••• , 24
4.1.2 Phrase 24
4.1. 3 Object Phrase and Verb Phrase .• 24
4 .. 1. 4 Command • • ,. .• .• • • • • 24
4.1. 5 Statement .• .• • • • • .• • • 24
4.1.6 Data • • • • • • • • •••• 25
4 .. 1.7 Data Name (dan) ••••• 25
4 .• 1. 8 constant Cnuv> ,. • • • • 25
4.1.9 Literals Cslv> • • • 25
4.1.10 Arithmetic Operands Caop) ••• 26
4.1.11 Arithmetic Expressions Caex> • 26
4 .• 1.12 Logical Operand Clop> • • • 27
4.1.13 Logical Expression Clex> • 27

4. 2. 0 PLAN Language Use • .• ,. • • 29
4.2.1 Data Name Cdan> ••••• 29
4. 2. 2 Symbol Tables .• • • • • 30
.4 .• 2. 3 Data Value <sdv. sl v> ,. • • 30
4,. 2. 4 Expressions • 31
4,. 2. 5 Subscripts • ,. .• .• • • • • • • • 32
4. 2. 6 Formula Numbers • 3 2

4.3.0 PLAN Language Definition • 34
4 .. 3.1 Phrase Name ,. • • • • • 34
4 .• 3. 2 Phrase-Defined Data • 35
4 .• 3. 3 Level of Phrase • • • • • 35
4.3.4 Program List • • • • • • 37
4.3.5 Verb Designation and Program
List • • • • • • • • • • • • • • • • • 38
4.3.6 Communication Array Position •• 40
4.3.7 CAP Defined as a Constant ••• 40
4.3.8 CAP Defined as an Implied Do •• 40
4.3.9 CAP Defined as an Arithmetic
Operand • • • • • • • • • • • • • • • 41

IBM PROBLEM LANGUAGE ANALYZER (PLAN)

PROGRAM DESCRIPTION MANUAL

CONTENTS

4.3.10 CAP Defined as an Arithmetic
Operand and an Implied Do
4.3.11 Data Name ••.•

• 41
.• • • • 42

• 42 4.3.12 Default Values
4.3.13 Scale Factors •••
4.3.14 Mode •••••
4.3.15 Checking Rules

• • • • • • 43

4.3.16 Expressions to Evaluate
4.3.17 conditional Evaluation
4.3.18 user-Exit Programs
4.3.19 Exits ••••
4.3.20 Formula Area

• • • 43
• 43
• 46
• 47
• 47
• 49

• • 49
4.3.21 Switch Words • • • • • • 51
4.3.22 Switch Words 4-7 as Data
Pointers • • • • • • • • • • • .. • .• • 53
4.3.23 Statement Save ••• 54
4.3.24 Implied Data Element
Definition • • • • • • • • • • • 55
4.3.25 PSCAN Execution Sequence • 56
4.3.26 Multiple Data Element
Definitions • • • • • • • • • • • • • 58

4.4.0 Review of Language Definition •• 60
4.5.0 Standard PLAN Commands • • • 64

4 • 5 .1 ADD PHRASE • .• • • • • • 6 4
4.5.2 Alter Phrase • • •••••• 64
4.5.3 Delete Phrase • 64
4.5.4 PLAN Job •••••••••••• 64
4.5.5 Set Literal ••• 67
4.5.6 List Literal •••• 68
4.5.7 Communication Array Dumps ••• 68
4.5.8 File Dumps • • • • • • • • • 69
4 .• 5.9 statement Save Commands • 70
4.5.10 Phrase Table Dump • • • • 72
4.5.11 Error Listing ••••••••• 74
4.5.12 IOCS Control on 1130 ••••• 74
4.5.13 Page Length Definition
(OS/DOS only> • • - • • • • • • • 75
4.5.14 Special Purpose OS Phrases •• 76

5.0.0 PLAN Subroutine Support ••• 77
5.1.0 PLAN Loader subroutines • 77
5.2.0 PLAN I/O Control • • • • 77
5.3.0 PLAN Error Processing • 77
5.4.0 Permanent File Support •••••• 78
5.5.0 DYNAMIC File Support • • •• 78
5.6.0 Command Retrieval and Execution • 78
5.7.0 Logical FUnctions • • • • • 78
5. 8 • 0 SORT/MERGE Control • • • • • • 7 8
5.9.0 Sequential File Control • 79
5.10.0 Array and Data Manipulation ••• 79
5.11.0 PLAN Subroutine Use • • • • • 81

5.11.1 Program Linkage Routines • 81
5.11.2 DYNAMIC File Support • 83
5.11.3 PERMANENT File Support • 87
5.11.4 One-Word Integer Support • 88
5.11.5 Utility Subroutines •••••• 89
5.11.6 Error Interface Subroutines •• 91
5 .11. 7 SORT/MERGE • • • • • • • • • • 9 3
5.11.8 SORT/MERGE Key Definition ••• 95
5.11.9 PLAN Sequential I/O Routines • 95
5.11.10 Array Manipulation •••••• 102

IBM PROBLEM LANGUAGE ANALYZER (PLAN)

PROGRAM DESCRIPI'ION MANUAL

5.11.11 Bit, Byte and Character
Processing • • • ,. • • • • • .103

6.0.0 PROGRAMMING CONVENTIONS •• ,. •• 106
6.1.0 COMMON Layout •••••••••• 106

7,. O. 0 PLAN SYSTEM CASE STUDY •
7 .• 1. 0 Problem Def ini ti on .•
7.2.0 Language Definition
7. 3. 0 Programming • • • .•
7.4.0 Alternate Solution •

8.0.0 APPENDIX A: 1130 PLAN
SPECIFICATIONS • • • ,.
8.1.0 User Exits •••
8.2.0 Communication Array

.108

.108
•• 108
• .111

• •••• 112

.114

.114

Specifications • • • • • • • .115
8.3.0 Programming Restrictions • .115
8.4.0 Overlay Structure .115
8.5.0 IOCS Device Parameters •••••• 115
8. 6. 0 Dynamic File Support • ,. • .116
8. 7 .. 0 PERMANENT File Suppor·t •••••• 117
8.8.0 Extended Precision Support •• 117
8.9.0 Expanded Loader Functions .118
8.10.0 System File Definitions • .118

9.0.0 APPENDIX B: SYSTEM/360 DOS PLAN
SPECIFICATIONS • • • • • • • •••• 119
9.1.0 DOS/360 PLAN System ••••• 119
9.2.0 COMMON Control 0 • • • •••• 119
9.3.0 Program Area Control •• 119
9.4.0 User-Exit Programming .120
9.5.0 Communication Array Specification 120
9.6.0 Programming Restrictions • • .120
9 .• 7. 0 Core Management .• .120
9 .• 8. O Return Linkage • • • • • • .121
9. 9 .• 0 overlay Structure .121
9.10.0 PLAN System Checkpoint .122
9.11.0 Dynamic File Support 123
9.12.0 Permanent.File Support ••••• 123
9.13 .. 0 IOCS Device Parameters .••• 123
9 .• 14. 0 Sequential File Support .123
9.15.0 PERMANENT File SORT/MERGE .124

10.0.0 APPENDIX C: SYSTEM/360 OS PLAN
SPECIFICATIONS • • • .• • • • • • • .125
10.1.0 OS/360 PLAN System <Loader> ••• 125
10.2.0 COMMON Control ••••••••• 125
10.3.0 Program Area Control .126
10 .• 4. 0 OS Free Storage Control • • .126
10.5.0 Program Use of Free Storage .126
10.6.0 Program Area Management • • .126
10.7.0 Return Linkage • • • • • • .129
10.8.0 Execution-Time Linkage Editing .129
10.9.0 Use of the LINKPAC and RAM Areas 130
10.10.0 Use of In-core Directory •••• 130
10.11.0 Parameter Passing ••••• 130
10.12.0 Overlay Structure .130
10 .. 13.0 PLAN System Checkpoint • • .131
10.14.0 User-Exit Programming ••••• 132
10.15.0 Communication Array
Specification ••••••••••••• 132
10.16.0 PERMANENT File Support .132
10.17.0 DYNAMIC File Support (OS PLAN) .132
10.18.0 IOCS Device Parameters • .132
10.19.0 Sequential File support .133

15 SEPTEMBER 1969

10.20.0 Programming Restrictions •••• 133
10.21.0 Permanent File SORT/MERGE .134

11.0.0 APPENDIX D: SYNTAX OF THE PLAN
LANGUAGE • • • • • • • • • • • • •
1.1.1. O Language Definition Syntax
1.1.2.0 Language Use Syntax ••

12.0.0 APPENDIX E: PLAN SYSTEM FILES

.135

.135
• .136

LAYOUT • • • • • • • • • • • • • .138
1.2.1.0 PFILE Layout • • .• • • • .138

12.1.1 PFPWVTAB (Phrase-Verb Validity
Table) •••••••••••••••• 139
12.1.2 PSYMT 1,2,3,4 (Symbol Tables) .140
12.1.3 PFPAVTB (Phrase Availability
Table> • • • • • • • • • •••• 140
12.1.4 PFPETAB (Phrase Entry Table) .140
12.1.5 Table 1 <Phrase Name> .141
12.1.6 Table 2 (Constant
Initialization Data Values>
12.1.7 Table 3 (Symbol Table>
12.1.8 Table 4 (Program List>
12.1.9 Table 5 (Data Check Entries>
12.1.10 Table 6 <Phrase-Defined

•• 141
.142

•• 143
.143

Expressions) ••••••••••••• 144
12.1.11 Table 7 (User-Exit List) ••• 145
12.1.12 Table 8 (Verb Program List)" .145

1.2.2.0 PLAN File Control Blocks .145

13.0.0 APPENDIX F: PLAN SYSTEM
DIAGNOSTIC PROCESSING • • • • • •• 147
13.1.0 PLAN Error Processing • • •• 147
13.2.0 Specifying Error Processing Mode 148
1.3.3 .. 0 Standard Error Processing •••• 149
1.3.4.0 Post Listing of Errors ... 149
13.5.0 User-Error Exit Processing .149
13.6.0 PHRAS Diagnostics •••••••• 150
13.7.0 Execution-Time Diagnostics .152
13.8.0 PSCAN Diagnostics •••••••• 156
13.9.0 1130 Only Diagnostics .161
13.10.0 DOS Only Diagnostics • .161
13.11.0 OS Only Diagnostics •• 161

14.0.0 APPENDIX G: COMPATIBILITY
CONSIDERATIONS • • • • • • • .163

15.0.0 APPENDIX H: SUMMARY OF SYSTEM
LIMITS ••••••••••••••••• 164

16.0.0 APPENDIX I: PLAN CHARACTER SET .165

17.0.0 APPENDIX J: SYSTEM REQUIREMENTS .166
.166

•••• 166
Machine Configurations •

IBM 1130 PLAN
System/360 DOS PLAN
System/360 OS PLAN • • • • • •
All Versions of PLAN •

Programming System Requirements

•• 166
.166

• .166
.166

18.0.0 APPENDIX K: FUNCTIONAL ANALYSIS
DIAGRAMS • • • • • • • • • • • • .167

19.0.0 APPENDIX L: COMMUNICATION ARRAY
LAYOUT CHART • • • .179

50.0.0 GLOSSARY .181

99.0.0 INDEX •• • .183

15 SEPTEMBER 1969

Figure 1. Necessary steps for PLAN
execution • • • • ,. • ,. • • .• • ,.. • 10
Figure 2. IBM 1130 organization under
PLAN • .• '• ,. • • • • .• .• • • • • ,,. • 11
Figure 3. IBM DOS/360 partition
organization under PLAN • .. ,. ,. • 11
Figure 4. IBM OS/360 partition organiza-
tion under PLAN • • ,. .• • • • .• • 11
Figure 5 .• Logic of PLAN control .• 15
Figure 6,. Summary of check entry
processing • • • •
Figure 7. summary of check entry
actions • • • • • •
Figure 8. Schematic of the indirect
data pointer • • • • .• ,. ,.
Figure 9. symbol tables save and
restore logic • • .• • ,. ,. • ..
Figure 10. Phrase table dump
explanation ,. • • • .• • • • ,.
Figure 11,. Sort control fields
Figure 12,. Terminology for sample

• 44

• 44

• 53

58

• 73
• 94

problem • • ,. • • ,. .• ,. • • .108
Figure 13. Expression logic .• • ,., ,. .. .110

IBM PROBLEM LANGUAGE ANALYZER (PLAN)

PROGRAM DESCRIPTION MANUAL

FIGURES

Figure 14. DOS PLAN storage
utilization • • • • • • ,. •
Figure 15. Loader pop-up list
Figure 16. DOS overlay structure
Figure 17. OS PLAN storage, utilization
Figure 18. Loader pop-up l'ist ••••
Figure 19. Initial entry to loader ••
Figure 19(a). contents of program area
Figure 20. Caller released from list •
Figure 20(a). A bank load from call

.119

.120

.122
125

• 126
• 128
128

• 128

local •••••••••• ~ •••••• 128
Figure 21. No change to load list .128
Figure 21(a). Module called is already
in core • • • • • • .. ••••••• 128
Figure 21(b). CALL LOCAL transfers
control ,. • ,. • • .• ,. • ,., • • • .• • • .128
Figure 22·. Control passes to a new
segment • '• • .• • • • • • ,. •
Figure 22Ca>. contents of segments
Figure 23. New segment replaces
released segment • • .• • • • •
Figure 24. OS overlay structure
Figure 25. PLAN execution-time
statement syntax ,. • • • • • • .•

.129

.129

.129
•• 131

.137

15 SEPTEMBER 1969

The Problem Language Analyzer (PLAN) is
designed to allow implementation of desir
able user-oriented (problem-oriented) lan
guages by providing a common language
processor. Previously, problem-oriented
languages have required independent lan
guage processors that were in themselves
major implementation tasks. Even though
highly desirable, problem-oriented lan
guages were implemented only for major
applications. Reimplementation on new
equipment has made long-term costs even
higher.

The PLAN system through a common language
processor allows input to a job to be
composed of several dissimilar problem
oriented languages, all operating in a
homogeneous environment. It also allows
easy modification and expansion of existing
applications and problem-oriented lan
guages. The PLAN concept of implementation
makes complete machine independence of
logic modules more easily attainable.

Logic module loading is accomplished dynam
ically at execution time as defined by the
current job description. Logic modules are
loaded only as required and existing logic
modules do not require modification to

IBM PROBLEM LANGUAGE ANALYZER (PLAN)

PROGRAM DESCRIPTION MANUAL

1.0.0 INTRODUCTION

incorporate new processing copabilities.
Multiple implementation of the PLAN system
for the IBM 1130 using Disk Monitor, Ver
sion II and the IBM System/360 using DOS/
360 or OS/360, allow logic modules written
in machine-independent ASA BASIC FORTRAN IV
to be executed on either computer system.
A job is described in problem-oriented
terms in a language compatible with all
systems.

In general, implementation of a problem
solving system operating within a PLAN
environment involves several tasks as
defined below:

1. Definition of the problem-oriented lan
guage. This definition is processed by
PLAN to create a languag.e dictionary.

2. Programming of logic modules (if exist
ent logic modules do not suffice> to
support the problem solution functions
<note that this does not encompass prob
lems of language processing; these are
handled by PLAN>.

3. Generation of problem-oriented language
statements to describe the particular
problem to be solved.

INTRODUCTION (1.0.0) 7

IBM PROBLEM LANGUAGE ANALYZER (PLAN)

PROGRAM DESCRIPTION MANUAL

2 .• 0. 0 SYSTEM OVERVIEW

2.10.0 THE PLAN FUNCTION

The Problem Language Analyzer (PLAN) is an
application development tool that is
designed to assist application developers
in the implementation of problem solving
systems by reducing development cost and
reducing the time and effort of the imple
mentation and maintenance cycle.

An introduction to the
PLAN system may be
Language Analyzer
Description Manual
recommended that it
continuing.

objectives of the
found in the Problem

(PLAN) Application
(820-0490). It is

be read before

PLAN, itself, does not provide the solution
to a user's application problem. Its prime
function is to assist the user in solving
his problems by providing the support to
meet the following objectives.

• PLAN is designed to provide for con
tinuity of application effort across
(1) applications. (2) machine systems,
(3) operating systems, and (4) user
boundaries. The concept of implement
ing a particular application system for
a particular user utilizing a particu
lar operating system on a particular
computing system is not considered to
be a valid constraint in the PLAN
environment.

• PLAN is designed to allow paced, incre
mental, orderly growth of problem solv
ing systems by providing open-ended
growth ability, thereby reducing the
cost of application development.

• PLAN is designed to provide a genera
lized, interactive user-oriented lan
guage facility in which the vocabulary
of the language is user definable. In
the PLAN environment, batch processing
is treated as a special case of inter
active processing in which a nonre
sponse by the user is predetermined.
The user may switch between batch and
interactive as conditions dictate and
systems allow with no loss of operating
efficiency as long as the available
configuration provides a supported
interactive device.

• PLAN is designed to reduce the regimen
tation required of a user in communi
cating the description of a problem to
a computer. This is accomplished by
providing a problem defining <note
carefully that we did not say probl~

8 SYSTEM OVERVIEW (2.0.0)

15 SEPTEMBE~ 1969

solving> language facility that is com
prised of only those terms and data
that the user chooses to use for the
problem description. A mode of problem
description is thus provided that does
not require the learning of new conven
tions in transferring to new applica
tions on new systems.

2.20.0 PERSONNEL REQUIREMENTS

Each installation can have an open-e~nded
vocabulary of commands, descriptive
phrases, data symbols and implied standard
data values. This allows the users of the
system to submit problems, using a simpli
fied version <subset> of the vocabulary· of
the department or industry.

PLAN includes the programs required. to
establish a local language dictionary and
to interpret input statements using local
dictionary entries. No additional prog·ram
ming is required to define or interpret
PLAN user-oriented language statements.

Individuals representing three functional
groups contribute to application deve·lop
ment under PLAN.

The System Analyst provides for input
definition, data standards, input editing
and validation, and program moQ.ule sequenc
ing through language definition. The func
tion of the system analyst in his role as
system designer is significantly more
important with the PLAN concept of problem
solving if modularity and reuse of modules
is to be assured, since many times
reusability cannot be appropriately mea
sured at the programmer and user level.

'l'he Programmer provides functional logic
modules that should be segmented for maxi
mum flexibility. The PLAN conventions sup
port this flexibility by eliminating· the
need for data definition statements, pro
gram names, and data constants in the
source code. The programming of algorithms
is considerably simplified.

The User combines the efforts of systems
analysts and programmers at execution time
by describing a real problem with its data.
These statements and the language def ini
tion determine the sequence of logic
modules to be executed in each case.

15 SEPTEMBER 1969

2.25.0 PLAN OPERATING ENVIRONMENT

Application programming can grow in a
planned, orderly manner without reworking
previously completed segments each time a
new capability is added. To add new capa
bilities to any system simply requires (1)
that commandCsl be added to a language
dictionary that define the new capability
and C2> that the logic modules Cif new ones
are required) be added to a program
library. Thus. the well-defined portions
of any application can be made functional
while the less precisely defined portions
are defined and developed.

The PLAN processor provides for processing
of intermixed user-oriented language state
ments that logically define a problem to be
solved. The free-form statements are
executed immediately as each is read.
Therefore, subsequent statements may be
entered on the basis of results from the
current.statement, if the statements are
entered on a console device. In concept,
the PLAN processor is the only mainline
program executed. It has the potential for
controlling processing by the loading and
interpretation of commands and the loading
of logic modules defined to be executed as
a result of processing the commands.

The conventional approach, when given a
problem for which there is no available
program, is to write a new mainline program
linking available subroutines to suit the
new problem.

PLAN allows existing logic modules to be
linked without new source code, simply
following the execution sequence implied by
the user's input statements <problem
description). There is no compilation of
the problem description. The logic modules
implied by the problem description are
linked dynamically during execution. Only
those program modules actualiy required for
execution are loaded. The logic modules to
be executed under PLAN should be single
functioned; they must obey certain coding
conventions; and they must be stored in a
system library.

The application logic modules
machine independent by using

are made
ASA BASIC

IBM PROBLEM LANGUAGE ANALYZER (PLAN)

PROGRAM DESCRIPTION MANUAL

FORTRAN IV language statements that include
CALLS to standardized (PLAN) subroutines
for linkage, direct access file processing,
sequential input/output, utility functions,
and to provide compatibility for functions
that vary between IBM systems. Any pro
gramming language can be used, with poten
tial loss of machine-independence, if the
FORTRAN coding and linkage conventions are
maintained.

2.30.0 IMPLEMENTATION PROCEDURES

An illustration of the general concepts
involved in operating the PLAN system is
found in Figure 1. Before this can be
considered, the following facilities must
be present:

1. An input device from which PLAN com
mands can be accepted .•

2. An output device through which PLAN may
communicate with the user.

3. A phrase dictionary that contains PLAN
job definitions.

4. A library of executable programs.

To provide these facilities to PLAN, a
three-step process, illustrated by Figure
1, must be executed. These steps are:

1. Generate the required programs for the
job by compiling/assembling the appro
priate source language.

2. Define the job requirements by adding
phrases to a PLAN phrase dictionary.
The PLAN phrase is a definition of a
PLAN job. It consists of a list of
problem programs to be executed and a
list of input p~rameters and/or
constants.

3. Execute the necessary PLAN commands to
run the job. A PLAN command is a
statement that causes the PLAN system
to invoke or execute a certain phrase
description.

SYSTEM OVERVIEW (2.0.0) 9

IBM PROBLEM IANGUAGE ANALYZER (PLAN)

PROGRAM DESCRIPTION MANUAL

STEP 1

SOURCE
PROGRAM

(~cT
~RAM

STEP 2

D PHR: ...
DD PHR: •• 1----..c

STEP 3

ATA
OMMAND, ...

DIRECT
ACCESS
INPUT/
OUTPUT

LINK
EDITOR
OR DISK
UTILITY

Figure 1. Necessary steps for PLAN execution

2.40.0 MEMORY ORGANIZATION

During PIAN processing, that is, throughout
the full cycle in which PLAN is in control,
the computer memory· is divided into eight
distinct areas. These areas and the func
tions of the areas are defined below:

1. System area. This area is that portion
of memory required for hardware use
<in-core registers, I/O areas, etc.>
and for operating system/monitor use.
The size of the area is variable for
each system.

2. PLAN loader area. This area is that
portion of memory permanently occupied
by the PLAN loader. The PLAN loader
controls program loading and command
<phrase) processing. This array, the
first one in blank COMMON, is 625
32-bit words in length .•

3. System Switch Words. This is an area
of switch words used for control of
PLAN and for communication between PLAN

10 SYSTEM OVERVIEW (2.0.0)

15 SEPTEMBER 1969

LOAD
MODULE

>-------~ LIBRARYi-----......

DICTIONARY

and problem logic modules. This area
is 15 32-bit words in length.

4. Managed data array. This is an array
protected from overlay by PLAN modUtles,
residing in blank COMMON, managed by
PLAN according to a user-defined level
structure. The managed array may' be
defined to a size <maximum of 32,767>
desired by the user and within the
capacity of the computer system.

5. Nonmanaged data array. The nonman.aged
array is defined as that portion of
blank COMMON not included in the PLAN
loader area, the system switch area., or
the managed data array that is pro
tected from overlay by the PLAN sy'stem
modules. The combined size of the
managed and nonmanaged array is limited
to a maximum that is variable on each
computer system configuration. The
nonmanaged array can be used for any
working storage requirement or trans
mittal of data between logic moatules
where a level structure is not
required.

15 SEPTEMBER 1969

Note that the name •communication
array• is used to describe the combined
managed and nonmanaged data array.

6. PLAN system area. In some implementa
tions of PLAN. additional space is
required for residence of code to sup
port various functions. The size of
this area is variable. This area is
required by System/360 OS and DOS PLAN.
Specification of the core si,ze required
may be found in the respective Opera
tions Manual.

7. Application program area. This area is
that portion of memory remaining, intQ
which PLAN loads the application logic
modules. The size of this area is
variable; it is a function o:f the other
five areas and the computer/partition
size.

8. FORTRAN I/O work area. This area is
required on DOS PLAN only and only if
FORTRAN I/O is utilized. Its size is
defined by the user at PLAN execution
time but must be a minimum of 512 bytes
if FORTRAN I/O is used.

.------------------------------------T-T-1
IPLAN LOADER AREA 1Cf81
I (625 32-BIT WORDS) 101 I
1-------------------------------------iMIKI
IPLAN SWITCH WORDS IMI I
I (15 32-BIT WORDS) IOIMI
~----------------------------------i NI I I
IMANAGED I INI
I (VARIABLE) I III
~----------- COMMUNICATION I f Ml
f NONMANAGED ARRAY I f U1
I (VARIABLE) 1 IM
~-----------------------------~----i-i
I
APPLICATION PROGRAM AREA
(PLAN MODULE LOAD AREA)
(VARIABLE)

~-------------------------------------i
f RESIDENT 1130 MONITOR I
1<510 MACHINE WORDS) I
l-~-------------------------------------i-
Figure 2. IBM 1130 organization under PLAN

IBM PROBLEM LANGUAGE ANALYZER (PLAN)

PROGRAM DESCRIPTION MANUAL

r---------------------------------------T-1
!FORTRAN I/O WORK AREA I
~---------------------------------------i
IPLAN SYSTEM AREA I
~--------------------------------------i
I I
I I
I I
I I
!APPLICATION PROGRAM AREA I
I I
I 12
I I 4
I I
I IK
~---------------~--------------------~-i
INONMANAGED I I
I (VARIABLE) I IMI
~------------ COMMUNICATION ICIII
I MANAGED ARRAY IOINI
I (VARIABLE) IMIII
1--------~----------------------------IMIMI
f PLAN SWITCH WORDS IOIUI
I (15 32-BIT WORDS) INIMI
1-------------------------------------1 I I
f PLAN LOADER AREA I I I
I (625 32-bit WORDS) I I I
~-----------------------------------i-i-i
IDOS SUPERVISOR I
l-------~---------------------------------J
Figure 3. IBM DOS/360 partition organiza
tion under PLAN

,---------------------------------------T-1
I 131
IPLAN SYSTEM AREA 121
~----·-----------------------------------i I
IFREE STORAGE FOR GETMAIN IKI
~---------------------------------------i I

I I
I I
I I
I I
I I
I I
I I
I I

APPLICATION PROGRAM AREA IMI
III
INI

~------------------------------------~-ill
INONMANAGED ICIMI
I (VARIABLE) 101u1
~------------ COMMUNICATION IMIMI
I MANAGED ARRAY IM I I
I (VARIABLE) I 01 I
~-------------------------------------iNI I
IPLAN SWITCH WORDS I I I
I (15 32-BIT WORDS) I I I
~------------------------------------i I I
IPLAN LOADER AREA I I I
I (625 32-BIT WORDS) I I I
l------------------------~------------i_i_J

Figure 4. IBM OS/360 partition organiza
tion under PLAN

SYST·EM OVERVIEW (2. 0. 0) 11

IBM PROBLEM LANGUAGE ANALYZER (PLAN)

PROGRAM DESCRIPTION MANUAL

2.50.0 GENERAL FUNCTIONAL PLAN ORGANIZATION

The PLAN system can be described in terms
of five functional areas. These five areas
are discussed below in terms of the general
requirement for the function and the capa
bility provided by PLAN in the area. The
areas are:

• Dynamic Job Supervision
• User-oriented Language Processing
• Diagnostic supervision
• Input/Output Control
• Utility Function Control

The reader is reminded, while reading the
following sections, to keep in mind that
PLAN is a system for problem solving made
up of many pieces. A small percentage of
the features discussed can be split out of
the PLAN environment and used independently
of PLAN. On the other hand, most of the
facilities of PLAN need be used only to the
degree required by the user. This system
overview should allow .the user to determine
which features of PLAN he is interested in
and therefore serve as a guide in directing
his reading of the remainder of this
manual.

2 .• 50.10 DYNAMIC JOB SUPERVISION

The supposition for years has been that a
programmer or system analyst could prede
termine all desired capabilities at the
outset of planning an application system
and therefore preplan all the required
system logic paths. Unfortunately, this
rarely proves to be the case.

How many times, following tedious months of
planning and implementation. during the
celebration of a system finally working has
the question wwhat would it take to ••• w
been asked? All too frequently, the answer
is •restructurew. Would it not then be
desirable to have a less rigorous structure
for application systems?

As application areas expand and new prob
lems are tackled, it becomes apparent that
total and complete problem solving struc
tures cannot be provided. In a bank, for
example: we don't know what type of trans
action will be next, nor do we know that a
new type of transaction will not be
invented tomorrow.

In information management, we don't know
the next question to be asked <nor, for
that matter, can we dare assume that we
have presupposed all the questions that may
be postulated). In engineering, we would
be great indeed if we could predetermine
and plan for all combinations of problem
parameters and design criteria.

12 SYSTEM OVERVIEW (2.0.0)

15 SEPTEMBER 1969

Hence, the PLAN DYNAMIC loader and job
supervisor. When a user decides to operate
under the PLAN system, the PLAN loader is
scheduled as a normal monitor/operating
system job and control is passed to it.

Control must be returned to it at the
terminatiOilOf each user's program module
as long as execution in the PLAN environ
ment is desired. This is the first
requirement for running in the PLAN
environment. Providing an exit for user's
modules to the PLAN loader is one of two
requirements that a user must fulfill to
run under PLAN. Additional information on
this function is provided at a later point
in this overview.

The PLAN loader is made up of two major
components, <1> the program loader, and (2)
the execution sequencer (hereafter called
the pop-up list>. The PLAN loader must
remain resident throughout the entire PLAN
run and is therefore placed in the first
2560 bytes of BLANK COMMON. Protection of
the PLAN loader by definition of the
required COMMON is the second of the two
requirements a user must satisfy to run
under PLAN.

The pop-up list is a programmed mechanism
for processing program names that is quite
analogous to the tray unloader at a company
cafeteria. When a name is removed from the
list, a new one pops up until the list is
empty. When a name is added to the list,
the existing names are pushed down until
the list is full. Names can also be
inserted at the bottom of the list.

What does all of this have to do with job
supervision? The pop-up list is USE!d to
indicate the sequence of programs to
execute. The top name in the list if:; the
next program to load. The user may at any
time add names to the list or delete names
from the list. Thus, an exchange of con
trol exists in the PLAN environment. The
PLAN loader picks the top name from the
pop-up list, the program loader places it
in memory and transfers control to the
program. The program executes (and modi
fies the pop-up list if required) and
returns control to the PLAN loader. The
cycle is repeated until the list is empty.

~rhe user is given the option of interfacing
with the loader from his modules in several
ways. In the following list, wmodify"
should be interpreted to mean wis given the
facility of adding to or extracting from".
The options are:

• Terminate the module and return to the!
PLAN loader

• Modify the pop-up list
• Modify the pop-up list, terminate the

module, and return to the PLAN loader

15 SEPTEMBER 1969

• Modify the pop-up list, save the status
of the module currently in execution
for future restart, terminate the
module. and return to the PLAN loader

• Modify the pop-up list and return to
the PLAN loader to invoke a coexistent,
dependent module

How do the names get into the pop-up list
originally? What happens when the pop-up
list is empty? The PLAN loader interprets
an empty list as a special signal to load
the language interpreter to read a new
user-oriented language CUOL) statement from
the PLAN input stream. CA discussion of
language processing is contained in the
next section.) Thus, one user-oriented
language statement is required to initiate
PLAN processing.

The system analyst or language definer may
include a program list with the definition
of any statement. The program list is the
definition of those programs to be executed
whenever the particular statement is
encountered. The language interpreter upon
encountering the statement, retrieves the
program list and places it in the pop-up
list. Thus, the UOL statements may define
the sequence of execution. Since a new
statement is not read until the pop-up list
is empty,, the system allows the user to
examine the output resulting from one
statement before entering the next. Thus,
we find that PLAN provides for interactive
processing. If the current PLAN input
device is batch oriented (for example, a
card reader), batch processing takes place.

To illustrate the UOL statement - pop-up
list relationship, assume that the program
list defined for the statement FUNCTION is
'PROGA, PROGB, PROGC'. As a result of the
language interpreter reading the FUNCTION
statement. the following sequence of execu
tions would result:,

• PROGA
• PLAN Loader
• PROGB
• PLAN Loader

,e PROGC
• PLAN Loader
• PLAN Language Interpreter (to read new

UOL statement>

This was an elementary discussion of dynam
ic program loading and sequencing and does
not cover many of the powerful options open
to the user. It should be carefully noted
that in the above example, PROGA, PROGB,
and PROGC have full facility for modifying
the pop-up list and thereby altering the
execution sequence. For example, if PROGB
were a graphic application module, a light
pen detect in PROGB could have caused it to
cancel PROGC or to schedule PROGD. The
PLAN supervisor gives the user and his

IBM PROBLEM LANGUAGE ANALYZER (PLAN)

PROGRAM DESCRIPTION MANUAL

program the control at all times to modify
the sequence of execution to meed the ever
changing problem solving environment.

Figure 5 illustrates the logic of program
control through the PLAN pop-up list. It
consists of six parts. Part 1 illustrates
the system status at the time PIAN is
invoked. PLAN is loaded by the monitor or
operating system from the system program
library. The pop-up list is initialized to
a zero (marked as empty). As a function of
initialization, PLAN determines if the lan
guage definition dictionary is initialized.
This dictionary is a direct access file
defined as PFILE on 1130 PLAN and DFJPFIL
on System/360 DOS and OS PLAN. It is
referred to in this document as wPFILE".
Then, any time the pop-up list is found to
be empty, PSCAN (the command reader and
scanner> is placed in the pop-up list and
is subsequently loaded into the program
area. This sequence, as shown in Part 2,
illustrates that the PLAN loader accesses
PSCAN from the system program library.

Part 3 illustrates processing with PSCAN in
control. A new command is read by PSCAN
from the current PLAN input device. The
meaning of the command is retrieved from
the dictionary CPFILE). T:P,e definition may
result in initialization values and data
values being placed in the communication
array. Program names may be placed into
the pop-up list as a result of command
definition. PSCAN returns control to the
PLAN loader. When the pop-up list is not
empty, processing continues as in Part 4.

Part 4 illustrates processing by PLAN when
the pop-up list has an entry Cin this case
program name A). PLAN takes the top entry
from the pop-up list and loads the desig
nated program from the program library into
the program area. Once loaded into the
program area, the module name is deleted
from the top of the pop-up list. For
example purposes only,, to display the flow
of events, A has been allowed to appear at
the top of the list even though it has
already been loaded into the program area.
This is important to note, because in
reality, A would have been deleted from the
top of the pop-up list.. Control transfers
from PLAN to the loaded program, and pro
cessing continues as defined in Part 6.

Part 5 illustrates processing after PLAN
has transferred control to the program
defined at the top of the pop-up list and
now in the program area. Program A during
execution may access information stored in
the communication array and store informa
tion into the array for future use. It
may, through the use of the PLAN loader
subroutines, modify the module names in the
pop-up list. When it has completed execu
tion, it must return contr~l to the PLAN

SYSTEM OVERVIEW C2.0.0) 13

IBM PROBLEM LANGUAGE ANALYZER (PLAN)

PROGRAM DESCRIPTION MANUAL

loader. Processing then continues as
defined in Part 2 or Part 4.

The new command processor PHRAS is in
control in Part 6. The command image (if
an ADD PHRASE) is p:rocessed and converted
to internal text and placed into the system
dictionary (PFILE). The DELETE or ALTER
PHRASE results in the deletion of the coded
old definition of the command. At the
termination of processing, control is again
transferred to the PLAN loader and the
procedure is repeated as defined in Parts 2
and 3.

commands need be defined to the system only
once. They may be altered (deleted and

14 SYSTEM OVERVIEW (2.0.0)

15 SEPTEMBER 1969

re-added> or deleted at any time. After a
command has been added to a language
definition dictionary (maintained on disk),
it may be executed in any sequence that is
logically acceptable at any time within a
PLAN command stack.

The principles of dynamic program loading
through use of the PLAN loader and pop-up
list, as defined in Figure 5, should be
clearly understood. Following the figure
step-by-step again at this time may prove
to be a worthwhile investment in terms of
understanding material that follows in this
manual.

15 SEPTEMBER 1969

r----------1
r--------i LIBRARY I

(1) IINVOKE PLAN I I
r----+--------, ·---------i
I Y I I I
I PLAN --, r-- I I DICTIONARY I
ILDR 101 I I I
I L_J I L----------J

IBM PROBLEM LANGUAGE ANALYZER (PLAN)

PROGRAM DESCRIPTION MANUAL

·----------i (2) LIST IS EMPTY (3) PSCAN IN
I COMMUNICATIONS I r-------------, r----------,
IARRAY cc.A.> I ILDR I r----------1 ILDR I
r--r---------i I PSCAN ----, I ·----+-------, I
I PROGRAM I I -1 I r--1 I I --, I r--1
IAREA CP.A. > I I ITI I I I IYI I
L-----------J I 101 I I I I 101 I

I L-J I IDICTIONARYI I L-J I
r----------·--i I I •------------i
I I I --+----+• I
IC.A. I I I I C.A. I
I I r---------i I I
I I r--iLIBRARY I •-----------i ,.-------1 ·----------·--i I I I I -..+----i COMMAND I
IP.A. I I L---------J I P.A. I L-------J
IPSCAN -f--J I PSCAN -+-,
I I r--+-. II
L-----------·--J L---------J t

I r------------------------, I
IIF (4) IIF LIST NOT EMPTY

r---t-------1
I LDR I --, ,- I
I t IAI I

r-+~ 101 I
I ' LJ I
I •--------i
I I I r--------,
I I C.A. I IDICTIONARYI
I •-----------i r--------i
I I P.A. I I I
I I CONTROL I LOAD I LIBRARY I
L-i -4-t------+-- I

f ADD,
I ALTER,
IOR
I DELETE
PHRASE

I A I L--------J r-----------J
L------------J IIF LIST EMPTY

PROGRAM NAME
IN LIST

I
r-+----,

< 5> I I
r---+---+-f--1
I I ..L I I
I f I
I LDR --, r-- I

r-i I I I
I I 10 I I
I I LJ I
I I I
I •------------i
I IC.A. I
I I A I
I •-------+----i
I I I -+-
I IP.A. I I
I I CONTROL I I
L-f+-A' I L__. ___________ J

PROGRAM
IN CONTROL

Figure 5. Logic of PLAN control

(6)
r-------+-------1
I ' I I r-PBRASI
ILDR --1Yr-- I
I I I I

I 01 I
I L_J I I
I Ii I

r----------1 •---------+-+---i r---1
IDICTIONARYI f C.A. I I I IADDI
I •+--+- I I •+--i PHR I ·---------i r---------+-+---i L---J
I I I I I I
I I IP.A. I I I
I LIBRARY I I PHRAS 1 I I
L----------J IAT END ' I I

L------------J
NEW
COMMAND

SYSTEM OVERVIEW (2.0.0) 15

IBM PROBLEM LANGUAGE ANALYZER (PLAN)

PROGRAM DESCRIPTION MANUAL

2.50.20 PROBLEM-ORIENTED LANGUAGE
PROCESSING

Problem-oriented languages have been avail
able since the time of our earliest comput
ing systems. The meaning of problem
oriented languages is that the user com
municated a problem's descritpion to a
computer in terms normally associated with
the problem and built into the input inter
preter by the program designer. The terms
and data are not necessarily those normally
employed by the particular user. In PLAN,
we will talk about user-oriented languages
instead of problem-oriented languages
because at all times the language def ini
tion is fully accessible to the user. The
terms, symbolic names, and data values may
be modified to terms familiar and accept
able to the user. With problem-oriented
languages as defined above, changing the
vocabulary required programming changes in
the language processor.

The PLAN language processor contains only
~ programmed language statement. The
statement, ADD PHRASE, is a bootstrap that
allows the user to define a language that
is meaningful to him. Just as importantly
the language definition is always fully
accessible to him for modification as the
prpblem definition requirements change.
The concept of a subsystem with a fixed
language vocabulary is erased in favor of a
system in which the language is made up of
statements of a user's choosing and can be
dynamically expanded and modified. The
language can thus be truly user-oriented.

The users communication of a problem
description to the computer with PLAN
statements is in the following form:

15 SEPTEMBER 1969

Statement Name, Data Area;

The user's UOL is comprised of sevE~ral
statements; each added to the PLAN system
by means of the ADD PHRASE statement.

The ADD PHRASE may include definitions of:

• Statement name
• Associated program list
• Data dependency level
• Allowable data names
• Default data values
• Data mode indicators
• Data scaling information
• Definition of special conversion

processing
• Arithmetic expressions defining values
• Logical expressions defining values
• Logical and arithmetic tests
• Actions if the tests fail
• Logical and arithmetic formulas

Let's now make another pass through the
preceding list in another form. The fol
lowing narrative represents information
that a user might provide to the system
analyst in defining a user-oriented lan
guage statement. Bullets to the left of
the narrative are meant to correspond to
the sequence of items presented above. The
statement definition as it would be d1~ve
loped as a result of the narrative is
included in boxes under each narrative
section. New entries resulting at •~ach
step are underlined.

• I would like to define a language statement "DESIGN SOMETHING"

.----------------------------,
IADD PHRASE: DESIGN SOMETHING, I ._ ___________________________ J

•This statement must result in the computing of •••

.--,
IADD PHRASE: DESIGN SOMETHING, PROGRAM 'INPUT,CALC', I
'-------~---~--------------------------------------J

• Data to be defined with the statement will be identified with the names MINIMUM,
MAXIMUM,, DELTA,, XVAR, MODULUS, ANGLE, YVAR, and TEST.

r---------·-------------------------------·-----------------,
IADD PHRASE: DESIGN SOMETHING, PROGRAM 'INPUT,CALC', I
f MINIMUM, MAXIMUM, DELTA, XVAR, MODULUS, ANGLE, YVAR, TEST, I
'---------·-------------------------------·------------------J

• The most frequently encountered values for the variables are O, 10E6, 100, O, 1, 90,
O, and NONE respectively. Test has no predefined value.

16 SYSTEM OVERVIEW C2.0.0)

IBM PROBLEM LANGUAGE ANALYZER (PLAN)

15 SEPTEMBER 1969 PROGRAM DESCRIPTION MANUAL

.--,
tADD PHRASE: DESIGN SOMETHING. PROGRAM ·'INPUT, CALC', MINIMUM .Q. I
IMAXIMUM 10E6, DELTA 100. XVAR .Q. MODULUS !,, ANGLE 90, YVAR .Q, TEST,. I ._ ___ J

• All variables listed above may take on decimal values

r-----------------------------1
INo change to above definitiont ._ ____________________________ J

• MODULUS should be scaled by a value of 106

r-----------------1
' • • • P+6 .MOD 1, I .__ _______________ J

• ANGLE will be a value in degrees and should be converted to radians.

r----------------------------·-----1
t~·· ANGLE 90=ANGLE*.0174532965, ••• I
'---------------------------·-----J

• TEST should be set to LOGICAL TRUE if ANGLE is between zero and 90 degrees; otherwise
to LOGICAL FALSE.

r--1 I.· •• TEST: (ANGLE>O) & (ANGLE<l. 5707965), I
'---------------------------·---------------J

• If TEST is FALSE, an alternate program is to be loaded to process the nonf irst
quadrant angle. If the minimum value is greater than the maximum value, an error
message should be issued and processing terminated.

r---1
, ••• TEST *T'APROG':(ANGLE>O)&(ANGLE<l.5707965), I
l*FA'MINIMUM GREATER THAN MAXIMUM':(MINIMUM>MAXIMUM) I ._ __ J

It should be noted in conclusion of
section that the system analyst would
vide additional data beyond that shown
direct result of the narrative.
material has been added below to make
example complete.

this
pro
a s a
This
the

ADD PHRASE:DESIGN SOMETHING, PROGRAM
'INPUT. CALC'• (M)MINIMUM 0, (M+l)
MAXIMUM 10E6. (M+2)DELTA100, (M+3')XVAR
O, P+6(M+4)MODULUS 1,(M+5)ANGLE90=
ANGLE*.017452965. I(M+6)N=N+l, (M+7)
YVAR o. (M+8)TEST*TA'APROG':(ANGLE>O> &
(ANGLE<l.5707965). (M+9) X*FA'MINIMUM
GREATER THA-N~~ MAXIMUM':
(MINIMUM>MAXIMUM);

The user would not be involved the complex
ities of the command as shown above. His
use of the command would resemble that
shown below.

DESIGN SOMETHING,, MAXIMUM1000. XVAR SO .•
ANGLE 75;

2.50.30 DIAGNOSTIC SUPERVISION

Success of any system is highly dependent
upon facilities provided by the system for
isolating and indicating user's errors
explicitly enough to allow the source of
the errors to be corrected. In this sense,
an efficient diagnostic supervisor is one
of the most important attributes of a
system.

The PLAN system is highly diagnostic. In
addition to fixed diagnostic text that
defines the reason for an error, a d~ag
nostic modifier is provided that gives
variable data to assist in pinpointing the
error.

The user is allowed several degrees of
flexibility in processing diagnostics. The
following modes of diagnostic output may be
selected:

• IMMEDIATE The diagnostic is printed
when detected. The program detecting
the error is check-pointed <saved for
future restart> to allow the PLAN diag-

SYSTEM OVERVIEW (2.0.0) 17

IBM PROBLEM LANGUAGE ANALYZER (PLAN)

PROGRAM DESCRIPTION MANUAL

nostic supervisor
message.

to generate the

• STACKED The diagnostic Cs> are printed
whenever the PLAN loader determines
that the PLAN diagnostic supervisor can
be scheduled without a requirement for
check-pointing an existing module.

• QUEUED The diagnostic is written in a
diagnostic file as indicated by the
immediate/stacked selection. The file
is subsequently written on the diag
nostic device at the appropriate PLAN
job break or when the user reque~sts
such action. Thus, the user has full
facility for preventing the intermingl
ing of diagnostics and normal program
output.

The user is also given an interface at
modest cost to allow him to interface into
the diagnostic supervisor. This interface
provides a user the full benefit of IMMEDI
ATE, STACKED, or QUEUED processing for
generating his diagnostics. On the 1130
system, the cost of the IOCS to produce a
printed diagnostic if no other printed
output is required by the module is
approximately 1200-1500 words depending on
format and devices. The core required to
interface to the PLAN diagnostic supervisor
is approximately 500 words. Corresponding
benefits are obtained under DOS/360 and
OS/360.

The third aspect of diagnostic processing
of importance to the user is found in the
error output processing. Many users have
special output processing requirements.
Format changes may be desired or a device
not supported as the PLAN diagnostic device
(for example, a 2260) may be the most
appropriate output unit. Therefore, the
user is provided an error option and data
interface that allows him to execute his
own error output processing module.

In conclusion, all of the options we have
outlined for processing system and user
diagnostics are available to the user for
dynamic selection. He is not forced to
made a decision on mode (except where he
must provide his own code for output pro
cessing) at compile time or even at job
schedule time if he does not want to. Such
decisions may be made dynamically.

2 .. 50.40 INPUT/OUTPUT CONTROL

Input/output is a crucial element of virtu
ally every data processing job, even those
requiring complex mathematical solutions.
It is in this area that the universal
languages such as FORTRAN tend to differ
among operating systems and machines and
where widely varying degrees of flexibility

18 SYSTEM OVERVIEW (2.0.0)

15 SEPTEMBER 1969

and dynamic availability are found between
different programming systems.

The language processing function of PLAN
significantly reduces the input processing
associated with problem definition. The
diagnostic supervisor normally handles the
output processing required for diagnostics ..
Even then, bulk data must be read, results
must be transmitted to appropriate output
devices, and intermediate data must be read
from and written in files. To fulfill
these functions, the following three sub
routine sets have been provided in PLAN:

• sequential I/O control
• DYNAMIC File Control
• PERMANENT File Control

The sequential I/O routines process the
unit record <reaqers,, printers, punches,,
tapes, disks, etc.> in a continuous manner
without the ability of random access. The
primary objectives of this package are:

• To provide cross-system I/O
compatibility

• To provide dynamic device selection
• To provide dynamic formatting selection
• To provide buffered and overlapped I/O
• To provide record reread
• To provide modular I/O programming

The above points can be better understood
by examination of the following description
of requirements and of present modes of
operation.

• It is essential that device codes and
unit control information be required in
a form that does not require reprogram
ming, relinkediting~ or recore-imaging
when shifting configurations.

• The need for dynamic device selection
can be understood by examining a pro
blem commonly encountered in the IBM
1130 FORTRAN environment. Assune a
user wishes to be able to switch
printed output between the 1132 Printer
and 1403 Printer and in cases of system
malfunction switch the output to the
console typewriter. There exists three
alternatives, none of which are totally
acceptable. (1) Programs can be r,ecom-~
piled with a new *IOCS statement each
time a device change is required. (2)
The device codes can be set in COMMON
at execution initialization to s,elect
the appropriate device routine from the
three that were compiled. Thi:s is
obviously wasteful of core that typic
ally is an already scarce commodity
whenever I/O is required. (3) The
*EQUAT function can be used at core
image time to substitute devices.
Severe short comings are soon i~oted
here, especially when trying to substi-~

15 SEPTEMBER 1969

tute a 1442-5 Punch and 2501 Reader for
a 1442-6 Reader/Punch. A punch cannot
be substituted for a printer even
though only 80 characters of output are
required. The programmer should not
make decisions relative to the assign
ment of devices to functions. This
function should be left to the discre
tion of the user or operator to allow
for DYNAMIC adjustment to conditions.

• This is required in order to read a
card in FORTRAN and format it as a
master record if there is an x-punch in
column 80 and as a detail record if
there is no x-punch.

• The buffering,, overlapping. and treat
ment of such special indicators as
logical end-of-file should be treated
uniformly on all systems and should be
available to all users.

• The case of the x-punch as defined
above is a special case of required
(partial) reread.

• Only I/O and
required should
user modules.

conversion routines
be included with the

The DYNAMIC file I/O routines communicate
only with direct access I/O devices. It
allows a user to define a logical drive
<working storage on an 1130 drive or a Data
Set on System/360) which is then dynamical
ly allocated and deallocated to as many as
255 LOGICAL files. There may be up to 5
LOGICAL drives on the 1130 and up to 8 on
System/360.

Space for a LOGICAL file is allocated only
when the program logic defines a require
ment. Space is incrementally allocated.
As a result, the disk space used by an
application is only slightly greater than
the sum of the data requirements as con
trasted to the sum of the maximum poten
tially required by each file under conven
tional systems. In addition, great flexi
bility is provided to applications since no
arbitrary constraint need be applied at
compile time by a programmer estimating the
maximum file size required.

Access to the file is totally random.
Files are not addressed by any normal form
of disk addressing. Rather, they are
addressed by logical file number, by a
relative displacement within the file, and
by the size of the block to be transferred
to/from the file. Thus~ treatment of data
is much like asking for a block of words
from an out of core array. An attempt to
read from outside the true file size causes
the file to be closed. A write outside the
current true file size causes an additional
allocation of space. It should be noted

IBM PROBLEM LANGUAGE ANALYZER (PLAN)

PROGRAM DESCRIPTION MANUAL

that in addition to removing a compile time
requirement for file space allocation, the
requirement for record size definition is
eliminated. The sequence and block size
used for writing a file has no bearing on
what may or may not be read.

It's worthwhile noting at this point that
the 1130 Version of this package is imple
mented in such a way that access to the
disk is made only when destruction of the
buffered data is imminent instead of each
time the user issues a write. This can
eliminate several disk accesses and there
fore substantially improve performance.

An efficient logical, fixed-point,
floating-point, or alphameric (in any com
bination) sort/merge in mixed ascending/
descending sequence is privided for the
DYNAMIC files defined above. The sort/
merge is entered by a simple CALL from a
user's module. It is basically an in-place
sort (totally in-place on the 1130) so the
disk requirement is minimized. Since the
sort/merge is callable~ a file can con
veniently be sorted into numerous required
sequences all within a single user's
module. In System/360, this precludes sev
eral entries to a job scheduler.

The PERMANENT file I/O routines are analo
gous to the DYNAMIC file I/O routines
except that no allocation is provided. The
allocations and files are defined outside
of PLAN but are as fully discretely
addressable as are DYNAMIC files.

All of the I/O support discussed in this
section has the single basic objective of
providing the user with efficient, compat
ible, I/O processing where options ineffi
cient or impossible to define at compile
time are given at execution time
(dynamically) •

2.50.50 UTILITY FUNCTION CONl'ROL

Every system has a block called weverything
else" when an attempt is made to develop a
system organization chart. PLAN is called
wThe Application Programmer's Tool Bag".
The weverything elsew box in PLAN is an
assortment of tools that can be generally
defined as utility functions. Many func
tions required when developing an ap
plication in the PLAN environment are com
mon to many applications. These have been
included in PLAN because they decrease the
time and cost and increase the ease of
producing application solutions.

These functions fall into the five general
categories of:

• Development Aids
• Sub-word Manipulation

SYSTEM OVERVIEW (2.0.0) 19

IBM PROBLEM LANGUAGE ANALYZER (PLAN)

PROGRAM DESCRIPTION MANUAL

• Array and Table Maintenance
• Data Conversion
• Logical Value Testing and Assignment

The ability to examine data is a require
ment in the testing and execution of any
system. PLAN provides the facility for
dumping from internal data arrays and
DYNAMIC or PERMANENT files and for dumping
his current user-oriented language
statements.

Significant alphameric processing can be
accomplished with high level languages if
they have the ability to extract. mask in,
or test at the character level. Similarly,,
program enhancement, performance improve
ments, and core savings can result from an
ability to test, set, and extract bits and
to execute test under mask operations.
PLAN provides these functions to the PLAN
user.

PLAN provides an efficient means for
transferring strings or arrays of in-core
data. Often, there is a large amount of
alphameric and tabular data required in
many applications. For example. many sys
tems will have an array of diagnostic
messages that may be given. ·Maintenance of
this data in core memory requires an unjus-

20 SYSTEM OVERVIEW (2.0.0)

15 SEPTEMBEU 1969

tifiable overhead. Thus,, there develops a
requirement for a maintenance and retrieval
system for such data. The PLAN support in
this area provides purely random procE~ssing
of such data. This support utilizes the
PERMANENT file routines for disk access.
The user, by following a few simple conven
tions, can use these subroutines to main
tain any data that must be accessed by
arrays.

The PLAN system in its user-oriented lan
guage facility provides extensive numeric
and alphameric data control. In addition,
PLAN provides extensive LOGICAL value test
ing and evaluation. Because suppo1~t for
LOGICAL values is not universally available
to users with all programming systems 11 PLAN
provides the necessary LOGICAL procE~ssing
subroutines.

This system overview has not attempted to
delve into the intracacies of PLAN USE~ and
function. Neither has it covered all of
the facilities provided in PLAN. Careful
understanding of the conceptual why, what,
and how presented here will allow intelli
gent decisions to be made relative to what
additional segments of this manual must be
read and what portion of PLAN will be used.

15 SEPTEMBER 1969

This section defines PLAN program com
ponents. It provides a general description
of ·the functions and purposes of the pro
gram modules that are required to make the
PLAN function operate.

No PLAN module, other than PLAN.. should
have execution initiated in a manner other
than by appearing as a program name in the
PLAN pop-up list. Any attempt to do so
will result in program failure. All of
these module names are prefixed with DFJ on
DOS and OS PLAN.

3.1.0 RESIDENT PLAN SYSTEM

PLAN PLAN is the ~ •mainline• program
for an entire series of modules
executed to solve a problem or
series of problems. PLAN executes
all program loading functions and
is therefore referred to as the
•1oader•. It is the program that
handles initialization for a PLAN
execution and remains in control,
either directly or indirectly,
until control is returned to the
monitor or the operating system for
a non-PLAN job.

It sets up the PLAN system Switch
words and collects the information
necessary to communicate with other
PLAN systems modules. If the 'lan
guage dictionary (PFILE) has not
been initialized, it creates the
necessary tables and calls in PHRAS
to add the command ADD PHRASE.

If the language definition file is
defined and has been initialized.,
PLAN execution is started. If the
command analyzer (PSCAN) or the
error-processing module (PERRS) is
not in the library, PLAN execution
is inhibited and control returns to
monitor or the operating system.

3.2.0 COMMAND ANALYZER

PS CAN This module of PLAN is the command
collector and analyzer. The com
mand is read from the command input
device. PSCAN saves and restores
the managed communication array in
the managed array save file as
required by the phrase level
definition. It initializes the

IBM PROBLEM LANGUAGE ANALYZER (PLAN)

PROGRAM DESCRIPTION MANUAL

3.0.0 GENERAL DESCRIPTION OF PLAN MODULES

MANAGED communication array to
logical FALSE each time a level 1
command is processed.

PSCAN collects input data values
and stores them in the communica
tion array. The programs defined
by the command definition are added
to the pop-up list. Command
defined expressions are evaluated.
Checking of any required values is
performed and if there are no
errors, control is returned to PLAN
<loader> to load and execute the
first program named in the pop-up
list. If errors are detected, the
system error routine (PERRS) is
called to generate the appropriate
diagnostics.

PSCAN is not directly specified by
the user for loading. It is loaded
by PLAN, whenever no program names
appear in the pop-up list.

3.3.0 LANGUAGE DEFINITION ANALYZER

PHRAS This module deletes from or adds to
a language dictionary (PFILE>, pro
blem language command definitions.
Standard values are converted to
the appropriate mode (floating
point or fixed-point) and program
name lists are stored. Extensive
logical and syntax verification is
performed before each phrase is
stored. The system error module
(PERRS) is called to log any
required diagnostics. In cases
where core size limitations prevail
(as on the SK 1130 System>, PHUDT,
representing the second half of
PHRAS, is loaded as an overlay.
PHRAS is loaded by PLAN in an
·identical manner with any user
module. It is specified in the
program list of the ADD PHRASE,
ALTER PHRASE, and DELETE PHRASE
commands.

3.4.0 SYSTEM ERROR PROCESSOR

PER RS This module is the system error
processing module and is loaded to
produce an appropriate diagnostic
whenever control is returned to the
loader and errors have been

MODULES (3.0.0) 21

IBM PROBLEM LANGUAGE ANALYZER (PLAN)

PROGRAM DESCRIPTION MANUAL

detected or as required by user
definition of error processing.

PERRS is loaded by PLAN as a result
of any call to the error subrou
tines (ERROR, ERREX, ERRET, ERRAT,
ERLST).

3.5.0 PLAN UTILITIES

GMRGA,
GMRGB

GSRTA,
GSRTB

PCDMP

PD I AG

PEDMP

PFDMP

PF IND

COS/DOS only> These modules perform
the merging of PLAN PERMANENT
files. Their names are placed in
the pop-up list as a result of a
call to GMERG.

COS/DOS only> These modules perform·
the sorting of PLAN PERMANENT
files. Their names are placed in
the pop-up list as a result of a
call to GSORT.

This module provides a dump of the
PLAN Switch Words and communication
array as specified by the system
switch Words. This module is
executed as a result of processing
a DUMP COMMON, DUMP SWITCHES, DUMP
MANAGED, or DUMP NONMANAGED
command.

This module maintains user
specif ied literal strings in a disk
file. This module is executed as a
result of processing a SET LITERAL
command.

This module produces a dump of the
error messages recorded in the
error message queue file.. This
module is executed as a result of
processing a DUMP ERRORS command.

This module provides a dump of PLAN
DYNAMIC files and PLAN PERMANENT
files. It is executed as a result
of processing a DUMP DYNAMIC com
mand or the DUMP PERMANENT command.

(1130 only> This module is
initialization processor for
DYNAMIC file find, release,
automatic release functions.

the
the
and

Pack

22 MODULES (3.0.0)

PIDMP

15 SEPTEMBEB: 1969

initialization and drive verif ica
tion functions are performed where
required.

This module provides a dump of: the
phrase currently being executed.
This module is executed only if
user action causes its name to
appear in the pop-up list.

PIOCS This module uses the PLAN suIDrou
tine IOCS to change PLAN s:ystem
parameters through the use of com
mands. It allows the use?r to
switch command input and PLAN out·
put to new devices in the midd1e of
a job stream.

PLENG COS/DOS only> This module varies
the number of printed lines per
page on an output device. The
module is executed as a result of
processing a SET PAGE L,ENGTH
command.

PLITL This module produces a listing of
all literals maintained in a PLAN
literal file by the module PDIAG.
The LIST LITERAL command utilizes
this module.

PMRGA This module performs the merging of
PLAN DYNAMIC files. Its name is
placed in the pop-up list as a
result of a call to PMERG.

PSRTA,
PSRTB These modules perform the sorting

of PLAN DYNAMIC files. Their names
are placed in the pop-up list as a
result of a call to PSORT.

PSTSV This module saves statements when
required. It is called in by PSCAN
or PLAN (the loader> whenever a
statement is to be saved for subse
quent execution or the SAVE or
EXECUTE command ,is processed.

PTDMP This module produces a listing in a
tabulated format of the phrases
defined (added by PHRAS) in the
PLAN language definition file
CPFILE). It is executed as a
result of processing a DUMP PHRASES
command.

15 SEPTEMBER 1969

The following sections define in detail the
features. options, and restrictions asso
ciated with the use of the PLAN user
oriented languages. The section is broken
into the nine segments listed below:

1. PLAN Language Terminology
This section describes the terminology
that is used throughout this manual in
description of the PLAN system. It
should be read and understood before
attempting to study subsequent sec
tions. The Glossary of this manual may
also be helpful in attaining this
understanding.

2. PLAN Language Use

3.

This section describes the use of a
language defined under PLAN.

PLAN Language Definition
This section defines the
writing a problem-oriented
under PLAN and describes the
capabilities.

rules for
language

attainable

4. Language Definition Tutorial
This section provides assistance to the
system analyst-designer in the form of
a question-and-answer tutorial on the
generation of language definition
statements.

5. Standard PLAN Commands
This section describes the commands
that are released with every PLAN sys
tem because of their general utility.

6. PLAN Subroutine Support
This section provides a brief descrip
tion of subroutines available within
PLAN.

1. PLAN Subroutine Use
This section provides a description of
the PLAN loader subroutines,. PLAN
dynamic file support, PLAN error proc
essing subroutines, PLAN permanent file
support, PLAN sequential file support,
and general utility routines. calling
sequences and examples are provided.

8. Programming conventions
This section describes the conventions

IBM PROBLEM LANGUAGE ANALYZER (PLAN)

PROGRAM DESCRIPTION MANUAL

4.0.0 DETAIL DESCRIPTION OF PLAN INPUT

that a program must respect in order to
run as a module under PLAN.

9. PLAN System Case Study
This section takes the statement of a
simple problem and carries the logic of
solution under PLAN through two levels
of sophistication.

The sections above describe the details of
the PLAN system as generally applicable to
all implementations of PLAN. Details
relating to restrictions of a specific
implementation or a specific option are
listed in the appendices of this manual as
listed below:

1. Appendix A: 1130 PLAN
Specifications

2. Appendix B: system/360 DOS PLAN
Specifications

3. Appendix C: System/360 OS PLAN
Specifications

4. Appendix D: Syntactical Organiza-
tion of the PLAN Language

s. Appendix E: PLAN Systems File
Layout

6. Appendix F: PLAN System Diagnostic
Messages

1. Appendix G: Compatibility
Considerations

8. Appendix H: Summary of System
Limits

9. Appendix I: PLAN Character Set

10. Appendix J: System Requirements

11. Appendix K: Functional Analysis
Diagrams

12. Appendix L: Communication Array
Layout Chart

13. Glossary

DETAIL INPUT (4.0.0) 23

IBM PROBLEM LANGUAGE ANALYZER (PLAN)

PROGRAM DESCRIPTION MANUAL

4.1.0 PLAN LANGUAGE TERMINOLOGY

This section provides a general introduc
tion to the terminology associated with a
PLAN user-oriented language.

Defining a user-oriented language statement
(command) is a one-time operation <except,
of course. when the command requires modi
fication). This command definition is
cataloged into a language definition dic
tionary (PFILE) that is maintained on a
direct access device. This definition may
then be immediately used to effect a pro
blem's solution.

control of the problem solution and com
munication between PLAN (command analysis)
and the application logic module is pro
vided by the pop-up list and the communica
t~ on array. The pop-up list is used to
stack the list of logic module names for
execution. The communication array allows
for storage of arithmetic, logical, and
literal data for transmission between PLAN
and the system programmer's logic modules.

In the discussions that follow, definitions
of terms will be presented for the termino
logy associated with PLAN. A thorough
understanding of these elements is required
in the implementation of valid and effec
tive PLAN statements.

4.1.1 WORD

A word is a sequence of one or more
alphabetic characters, without embedded
blanks. Only the first three characters of
the word are considered significant. Wo:rds
of less than three characters are consid
ered to be padded with blanks. Examples of
valid forms of words are given below:

A, ABLE, ARROW,, ARRAY

Effective form Cb indicates blank padding)
of these words is:

Abb, ABL, ARR, ARR

Note that PLAN treats the last two words as
being identical.

4. 1. 2 PHRASE

A phrase is a fixed sequence of one to five
words separated by blanks. The user
oriented problem description language is
built from phrases, data, and procedural
information associated with each phrase.
The following are examples of valid
phrases:

24 TERMINOLOGY (4.1.0)

15 SEPTEMBER 1969

DESIGN TORSION SPRING
GRAPHIC REPORT GENERATOR
EVALUATE STEEL FRAME BUILDING
GRAPH

4.1.3 OBJECT PHRASE AND VERB PHRASE

An OBJECT phrase is an independent phrase
defined at ADD PHRASE time. A VERB phrase
is a dependent phrase (defined at ADD
PHRASE time> that is used as a pJ:efix
modifier to an OBJECT phrase and may not be
used alone as a phrase. The first part of
any phrase may not be a VERB phrase.. If
"LITTLE RED WAGON" is defined as an OBJEC'l~
phrase, it prohibits "LITTLE", or "LITTLE
RED" from being defined as VERB phrases.
ftLITTLE RED WAGON" may,, however, be both a
VERB and an OBJECT <nonverb) phrase. Its
syntax determines its use. If it f:•tood
alone, "LITTLE RED WAGON" would be intE~rro
gated as an OBJECT Cnonverb) phrase.
However. "LITTLE RED WAGON TRAIN" ~muld
result in "LITTLE RED WAGON" being inter
preted as a verb phrase. A more detailed
explanation of VERB phrases and their use
can be found in section 4 .• 3. 5. The follow
ing are examples of VERB phrases:

DEFINE
REPEAT EXECUTION
ADD
EXPLAIN
ALTER
DELETE

4.1.4 COMMAND

A command is a sequence of one or more
phrases that implies a task. All but the
last <rightmost> phrase of a command must
be VERB phrases. A command always contains
an OBJECT Cnonverb) phrase and may con.tain
up to eight VERB phrases. The first of the
command examples shown below is an OBJECT
phrase; the second contains a VERB and
OBJECT phrase using phrases given in. the
above examples:

DESIGN TORSION SPRING
EXPLAIN DESIGN TORSION SPRING

4.1.5 STATEMENT

A statement is a command, optionally fol
lowed by data. It may contain a maximum of
450 characters. It must be terminated with
a semicolon <:>. A PLAN input record is 80
characters in length. The statement is
entered in record positions 1-75.
continuation of text is automatic from
position 75 of one record to position one

15 SEPTEMBER 1969

of the following record. A new statement
may start immediately following the ter
minating semicolon of the previous command.
A record containing 80 blank characters is
ignored.

PLAN. upon processing a statement, loads
logic modules that are associated with the
phrases making up the statement. Thus, the
sequence of statements implies the series
of module executions that must be executed
to complete a problem solution process.

If a statement has a blank command the
preceding command is implied. Note care
fully that only the object portion Cnon
verb) Of the phrase is repeated. Example:

SCALE, SNl • LOS 5; • SN 2 • LOS 6; LABEL,,
LTX' ABC';

The command SCALE utilizing the numeric
data values 1 for data name SN and 5 for
data name LOS is executed f irst11 followed
by the second execution of SCALE (implied)
which will use the values of 2 and 6 for SN
and LOS respectively. LABEL will then be
execu~ed last using the literal data value
'ABC' for data name LTX .•

The comma is always required to separate
the command and the data even when the
command is blank. If there is no data. the
only punctuation required is the statement
terminating semicolon. Example:

SCALE;

4.1.6 DATA

Data is the set of symbols and values
following the command in a statement. Data
may be identified by name, and is logical,,
arithmetic. or literal. If data is
unnamed, the value is stored in the posi
tion immediately following the previously
stored data value. Data values follow data
names and are not separated from the data
names by delimiters (except optionally by
blanks).

A data element definition is organized as
follows:

F

s

N

t F I s I N I v I
L---J_--i---L~-1

contains the format control, <user-exit
control. mode control. and scale
factor)

contains the communication array sub
script (CAP)

contains the data name

IBM PROBLEM LANGUAGE ANALYZER (PLAN)

PROGRAM DESCRIPTION MANUAL

V contains the initialization values,
check entries, and phrase-defined
expressions

Examples of the three data types are:

DEF 7, SN3
WORD 1

' X', LTX' ABC'
HAVE-, SWITCH+

Arithmetic
Literal
Logical

Data values are normally floating-point
binary, but fixed-point binary or EBCDIC
literals may be specified. Two values are
reserved for logical value representation.
They are:

Logical FALSE = 7FFFFFFF (hexadecimal)

Logical TRUE = 80000000 (hexadecimal)

4.1.7 DATA NAME (DAN)

A data name is a word that symbolizes the
value· of a particular storage location. If
defined at phrase-definition time, it may
be singly subscripted at phrase-execution
time to reference a logically related
value. All data names are assumed to refer
to the first position of an array.
Therefore, using data name "XYZ" is the
equivalent of saying XYZ(l), where the
subscript 1 is assumed. In the example
SCALE,, C20)SN 2,,5,, 7.,9,, the value 9 may be
referenced as SN(4).

The single character E may not be used as a
data name because of possible conflict with
E notation in numbers.

care should be exercised to avoid the
selection of data names containing the
first three characters identical to those
in other data names.

4.1.8 CONSTANT CNUV)

A constant is a signed or unsigned fixed
point (integer> or floating-point Creal)
decimal number. Constants may contain
exponential modifiers but may not contain
embedded blanks. Examples of valid con
stants are:

1, 1., -1, +2.5, 3.14E-1

Two special
recognized:

logical

+ (logical TRUE)
- (logical FALSE)

4.1.9 LITERALS CSLV)

constants are

Literals consist of any alphameric data
(except a semicolon) bounded in the input

TERMINOLOGY (4.1.0) 25

IBM PROBLEM LANGUAGE ANALYZER (PLAN)

PROGRAM DESCRIPTION MANUAL

stream by single quotation marks (or the a
sign) or by double quotation marks. The
double quote symbol is a unique EBCDIC
character with no implication of two single
quotes. Examples:

'ABC'
"1234"
0>69LLll

The number of words in storage occupied by
a particular literal is determined by a~
plying the following formula, where M is
the number of literal characters and J is
the maximum number of literal characters
that may be stored in one ASA floating
point word:

1 + (M+J-1) / J (for single quotes)

(M+J-1) / J (for double quotes>

There are two ways of storing literal data.
The particular method employed is deter
mined by the type of boundaries set around
the data. If single quote marks <or the a
sign) are used, the total of the number of
characters making up the literal is stored
in the first word of the array (position
indicated by the data name or CAP index,
see 4.3.6). When double quotes bound the
data, the character count is omitted. In
the following examples, assume a computer
system in which four characters can be
stored per 32-bit word.

'ABCDEFGHI'

The above literal would be stored in four
32-bit words:

r-r----T----T----1
l9IABCDIEFGHIIbbbl
L-.L.-.--1----i---J

Cbbb represents blank padding)

Should the example be written "ABCDEFGHI"
the literal would be stored in three 32-bit
words:

1---T----T-·--1
IABCDIEFGHIIbbbl L_ __ i ____ i ____ J

Literals bounded with single quotes <or a
signs) are hereafter called PLAN literals.
The quote mark ending a literal must be
identical to the quote mark beginning a
literal. Any other quote mark is assumed
to be a literal text character.

4.1.10 ARITHMETIC OPERANDS (AOP)

An arithmetic operand consists of terms and
operators. The terms may be data names or
constants. The operators are +, -, •, /,
in their usual sense. Parentheses are used

26 TERMINOLOGY (4.1.0)

15 SEPTEMBER 1969

to show the order of evaluation. The
hierarchy of evaluation is * and / followed
by + and -. Processing order is left-to
right. Mixed mode terms are allowed in an
arithmetic operand. Evaluation of an
arithmetic operand is done in floating
point mode (and rounded before storing if
required because of truncation).

,.---------------------------------------,
!ARITHMETIC OPERAND Caop) I
~--..
1£-dan} £-nuv} I
1£ } indicates that enclosed items may I
I be entered more than once I
I arithmetic operator I
ldan data name I
lnuv constant I
~---------------------------------------..
I I
I B+3-(C+2•D) I
L----------------------------------,---J

In special cases an arithmetic operand may
be a literal or a logical constant: In
these cases the operand may contain •only
the literal or logical constant.

r----------------------------------·---,
I SPECIAL ARITHMETIC OPERAND (saop) I
~------------------------------------·---.,
I "SLV" I
I 'SLV' I
I asLva I
I + I
I I
I SLV literal I
I + designation for TRUE I
I designation for FALSE I
~------------------------------------·---..
I "LITERAL DATA-" I
I ' LITERAL PLUS CHAR. CT'' I
L--------------------------------------·---J

4.1.11 ARITHMETIC EXPRESSIONS (AEX)

An arithmetic expression is introduced with
an equal sign <=> and consists of an
arithmetic operand. An arithmetic exp:res
s ion implies the storing of data. Arith
metic expressions are evaluated in
floating-point mode. The result is stc:>red
in the mode indicated for the data name
associated with the CAP in which the result
is to be stored. Results are rounded if
the storage mode is fixed-point. If any
operand of an arithmetic expression has the
value of logical TRUE or logical FALSE, the
result of the expression evaluation is
FALSE.

15 SEPTEMBER 1969

r----------------------------·----------,
IARITHMETIC EXPRESSION Caex) I
f---------------------------------------i
I aop {-aopl I
I - arithmetic operator I
I {} indicates that enclosed items may I
I be entered more than once I
~---------------------------------------i
I = 5•A-3•CB-12) I
L--J
The following example illustrates use of a
phrase definition to convert input data
values from degrees CA> to radians CB>. If
no value is given at execution time for A,
B will be set to a logical FALSE because of
the standard value of FALSE in A. Example:

••• A-~ ••• B=A•.017453296, •••

If a special arithmetic operand <literal or
logical constant> is used in an arithmetic
expression, it may be the only operand in
the expression. The following example
shows the use of literals and logical
constants in arithmetic expressions:

A=+ CA is True)
A=- CA is False>
A="B" (A is Bbbb)
A=@Ba (A is 1,Bbbb)
A='B' CA is 1,Bbbb)

r---,
ISPECIAL ARITHMETIC EXPRESSIONS Csaex) I
·---i
I = saop I
~-----~----------------------------------i
I = "STANDARD DATA" I
I = 'STANDARD DATA' I
I = asTANDARD DATAa I
I + I
I = I
'------------------------------~--------J

4.1.12 LOGICAL OPERAND (LOP}

A logical operand may be a data name or a
relational operation.

A relational operation consists of one of
the relational operators •greater than"
<>> ,. "less than• <<> • or •equal to" <=>
preceded and followed by an arithmetic
operand. A logical value of TRUE or FALSE
in either arithmetic operand forces the
result of the evaluation Qf a relational
operation to be FALSE. A relational
operand must be enclosed in parenthesis.

IBM PROBLEM LANGUAGE ANALYZER (PLAN)

PROGRAM DESCRIPTION MANUAL

r---1
I LOGICAL OPERAND Clop) I
~---i

dan
(aop t aop>
Cdan="slv">
(dan=+>
Cdan=->

dan
aop
t
slv

data name
arithmetic operand
relational operator
literal value

+ designation for logical TRUE
designation for logical FALSE

~---i
I A I
I (B+5>A-D) I
I (C="ABC") I
I CD=+) I
I CF=-> I
L---J
A special relational logical operand is
provided for testing literals. The rela
tional operator is an equal sign, preceded
by a single data name that may be sub
scripted, followed by a test mask. The
double quote marks (card code 7-8) enclose
the test mask. The underline character
(card code 0-8-5) is used to indicate
characters which are not to be tested. The
following example illustrates a logical
operand. to test the first character of the
literal stored at DATA for a P in the first
position, an N in the third character, and
an L in the fifth character. The literal
mask may contain any number of characters.

(DATA= "P_N_L"),

Note that testing includes only the number
of characters in the mask, so "P_N_" is
equivalent to "P_N".

A logical operand may
logical TRUE (DATA=+) or
(DATA=-).

also test for a
a logical FALSE

All characters in a logical operand must be
entered in the EBCDIC code. Logical
operands are tested for FALSE C7FFFFFFF
Hexadecimal). If they are not FALSE, they
are treated as TRUE. Therefore, any numer
ic value occurring in a logical value is
treated as TRUE.

4.1.13 LOGICAL EXPRESSION (LEX)

A logical expression contains logical
operands and operators. Logical operands
have a value of either TRUE or FALSE, while
logical operators are defined as "AND" Ci),
"OR" <1>, and "NOT" <1 >. All of the
characters must be of the EBCDIC character
set. The TRUE or FALSE result of the
evaluation of a logical expression is

TERMINOLOGY (4.1.0) 27

IBM PROBLEM LANGUAGE ANALYZER (PLAN)

PROGRAM DESCRIPTION MANUAL

obtained from evaluation in the order
•NoT•. •oR•. "AND". Parentheses are em
ployed to indicate the sequence of evalu
ation and also to enclose subscripts. The
examples below illustrate the above points:

(B>l> I (B<O> is a logical expressio:n
that produces a result of TRUE if B is
greater than 1. or less than 0.

A & B & 1 c is a logical expression
that produces a result of TRUE if A and
B are TRUE and c is FALSE. The follow
ing example illustrates a logical
expression defined to test data fo:r
logical TRUE, logical FALSE• or a nu
meric value greater than 10.000.
Example:

(DATA=+) I (DATA=-> I (DA'l'A>1E4)

r---------------·---------------------·1
ILOGICAL EXPRESSION (lex> I
~---------------·-----------------------··
I :lop{•lopl I
I lop logical .operand I
I • logical operat6r I
I {} indicates that enclosed items mayl
I be defined more than once I
1--------------------------------------·f
I :AIB&(C>lO)f (D="XYZ">&,<X=+) I
L--------------------------------------J

15 SEPTEMBER 1969

The following example illustrates the log
ical command structure, order of evalu
ation. and results obtained. In the
example, "OPEN" represents a data item
containing a logical TRUE and "CLOSE"
represents a data item containing a logical
FALSE:

A:,,OPEN & ,0PENl1CLOSE & OPEN, pro
duces the result of TRUE in A.

LOGICAL COMMAND STRUCTURE A: ,,TRUE & iTRUE I ,FALSE & TRUE

NOTS <1> EVALUATED

ANDS (&) EVALUATED

OR <I> EVALUATED

28 TERMINOLOGY (4.1.0)

A: ,FALSE & FALSE

A: TRUE & FALSE

A: FALSE

A: TRUE

TRUE & TRUE

TRUE & TRUE

TRUE

15 SEPTEMBER 1969

4.2.0 PLAN LANGUAGE USE

This section explains the use of a user
oriented PLAN language.

Languages,, defined under PLAN, may be used
immediately after the statements have been
added to the language dictionary. The
following descriptions and examples
illustrate the requirements for using a
language. The general format of a PLAN
def ined language statement is:

COMMAND, DATA;

The command is an object phrase (previously
defined by ADD PHRASE) and from zero to
eight prefixed verb phrases. The command
is always terminated with a comma, except
when the DATA section is not present. In
this case, the semicolon is the only ter
minator. Examples of valid commands are
given below:

THIS VERB PHRASE MODIFIES THIS OBJECT
PHRASE, ••• ;

GRAPHIC REPORT GENERATOR;

MACRO, ••• ;

FORTRAN PROGRAM, ••• ;

DESIGN TORSION SPRING, ••• ;

Omission of the command signifies that the
previous command is to be usedo However,
the terminator must be present. Note care
fully that the verb portion of the phrase
is not repeated. In the first example
above, if THIS VERB PHRASE MODIFIES is
assumed to be defined as a verb phrase.,
processing THIS VERB PHRASE MODIFIES THIS
OBJECT PHRASE;,; would effectively result
in the following execution:

THIS VERB PHRASE MODIFIES THIS OBJECT
PHRASE;

THIS OBJECT PHRASE;

The following example specifies three
executions of the SCALE command:

SCALE, SNl;, SN2;, SN3;

A feature is provided to allow a user to
substitute a ditto mark for a word in a
command and thus eliminate redundant entry
of words in a command.

Use of ditto marks in a command causes
PSCAN to pick up a word of the communica
tion array at phrase execution time and
place it in the area occupied by the
dittos. This can be useful as a shortcut
in saving writing time if a series of
phrases has a particular word within the

IBM PROBLEM LANGUAGE ANALYZER (PLAN)

PROGRAM DESCRIPTION MANUAL

phrase that distinguishes that group from
any similar but different group.

The first word of the communication array
will contain the first three letters of the
word in the phrase for which the ditto mark
option is to be exercised. The three
character EBCDIC representation of the
words to be substituted will be left
justified in the communication array word.
The remaining fourth character in the word
will always contain a blank. Example:

ADD PHRASE: GEAR, (l)"GEA", ••• ;
GEAR;

At phrase execution time CAP1 will look
like:

r---T---T---T---1
I G I E I A I b I L---i ___ i ___ i ___ J

Note: The b represents a blank. The nth
word of the communication array is assumed
to contain the left-justified EBCDIC repre
sentation of the word to be substituted for
by the nth ditto mark in the command.

In the following example, the input phrase
can be shortened to one word, followed by a
ditto mark if the letters GEA are in the
first communication array position. The
ADD PHRASE statement in the example is
included solely to illustrate how use of
this feature may be tied into language
definition. For example:

ADD PHRASE: GEAR, (1) "GEA",, •••
GEAR;
DEFINE", ••• ;
DESIGN", ••• ;
ANALYZE ", ••• ;
PLOT", ••• ;

(Equivalent to DEF GEA,)
(Equivalent to DES GEA,)
(Equivalent to ANA GEA,)
(Equivalent to PLO GEA,)

The data section of a PLAN statement is
free-form and requires commas and/or blanks
only where required for clarity. The semi
colon <;> terminates the data section and
the statement.

The data section describes and defines data
elements that are to be initialized, con
verted, scaled, evaluated, and stored in
the communication array for access by logic
modules associated with the command.
Commas must not separate information about
a single data item, for example, data name
and data value. They may be used to
separate different data items.

4.2.1 DATA NAME (DAN)

A data name within a command may be any
data name defined by .the ADD PHRASE for
this command or for any preceding command
that has been executed and upon which this

USE (4.2.0) 29

IBM PROBLEM LANGUAGE ANALYZER (PLAN)

PROGRAM DESCRIPTION MANUAL

command is
Example:

dependent (higher

ADD PHRASE: ••• , (30) NO, •••

level>.

The data name N is associated with communi
cation array position 30.

4.2.2 SYMBOL TABLES

A symbol table of data names associated
with a phrase is maintained for each of
thefour possible levels (statement depen
dencies> of PLAN phrases <see •Level of
Phrase•, 4.3.3 for further definition>.
The symbol table for level 1 is cleared as
each level 1 phrase is encountered. As a
lower-level phrase is encountered, the sym
bol table for that level is initialized
from the symbol table of the next-higher
level~ The level 2 symbol table is
initialized to the contents of the level 1
symbol table: level 3 to the contents. of
level 2: and level 4 to the contents of
level 3. Each symbol table may contain up
to 126 symbols. These symbol tables are
constructed at command execution time. The
maximum number of symbols that may be
contained in any ADD PHRASE is governed by
the 255 16-bit words that may be contained
in Table 3 of the phrase entry table (see
Appendix E7 12.0.0).

Data names from the dictionary entry for
the current phrase are added left-to-right
to the initialized symbol table. The sym
bol table is constructed in a wraparound
fashion so that if the symbol table over
flows <over 126 symbols accumulate>, the
first symbols in the current symbol table
are the first symbols to be destroyed. In
constructing the symbol table, identical
data names <created by higher-level
phrases) are deleted from the table, leav
ing only the most currently defined value
for each symbol. Overflow of the symbol
table most commonly happens when processing
many blank-level commands. An undefined
symbol initiates a search for the symbol in
all higher-level symbol tables. If the
phrase level is documented to the user, he
may use this information to eliminate
redundant entry of data.

Data names defined in a higher-level
(lower-numbered> phrase upon which a lower
level phrase is dependent may be used in
the lower-level phrase. In the following
example, the data name A defined in the
phrase ABC is used at execution time in the
dependent phrase DEF.

ADD PHRASE! ABC. (5)A, LEVEL1:
ADD PHRASE: DEF, LEVEL 2:
ABC:
DEF, AlO:

30 USE (4.2.0)

15 SEPTEMBER 1969

4.2.3 DATA VALUE (SDV,,SLV)

There are three types of data valUtes:
numeric, literal, and logical. When they
are specifically assigned to a data na.me,
they are positioned to the right of that
name and may be separated by blanks from
the name, but not by commas or any other
punctuation, except as shown below for
literals.

Numeric data values are fields <constants),
with or without a decimal point, that may
be preceded with a sign and/or followeat by
an exponential indicator. They may not
contain embedded blanks. The data name
associated with the value has no impli.ca
tions as to the type of mode Creal or
integer> in which the data value is
entered. Examples:

LOOK 717
SEEK 8.65E-3
BIG 2
GEAR +33

A literal data value is made up of a
literal positioned to the right of a dlata
name. Like numeric data values, they are
stored in the word associated with the dla ta
name in a left-justified manner. In the
examples below assume that four characters
can be stored per 32-bit word (b represents
a blank character>.

r----T----1
MAIN • AAA' I 31AAAbl

~----+----~
TOT •MESSAGE" IMESSIAGEbl

L----.l.----J

A logical data value is a value of logical
TRUE (+) or logical FALSE (-) that is
associated with a particular storage posi
tion or data name.

The examples SWITCH+ and TEST- represent
logical data values assigned to data na.mes
SWITCH and TEST.

A data value in a statement overrides any
phrase-defined (ADD PHRASE) initialization
value (see •Default Values•, 4.3.12).

Use of a data name without including a diata
value at command execution time sets the
location associated with the data name to
TRUE, and should be avoided unless provided
for by specified language and prog·ram
module option. The following example wciuld
set the location associated with XGS to
TRUE:

GRAPH, XGS:

Several rules may be followed in reducing
the amount of information required to
define data. These rules are:

15 SEPTEMBER 1969

If no data name is given for a data value,
succeeding data values are stored in adja
cently higher communication array positions
(see •communication Array Position•, 4.3.6)
in the same mode,, converted by the same
user exit, and with the same scale factors
as defined for the last given data name.
In the following example, if XGS is assumed
to be defined for communication array posi
tion 6 1 and is to be stored in floating
point, the results of the example would
leave a floating-point 11 in array positipn
6 and a floating-point 8.5 in array posi
tion 7.

xGs11.a.s.

If the data value given., for which no data
name is provided, is the first value fol
lowing the phrase name, the data name and
storage mode assumed is that of the first
data name defined for the current phrase
and the data value will be stored in the
associated CAP. If the first-defined
reference is in the PLAN switch words, then
the next definition is assumed. If there
is no definition. the first position of the
communication array is assumed. (Note that
full understanding of the following example
requires study of the section "PLAN Lan
guage Definition•, 4.3.0.) Example:

ADD PHRASE: ONE, (20)A, (30)B ••• ;
ONE,,10;

Stores 10 in location 20

ADD PHRASE: '!WO, (-8) ECO, (40) B ••• ;
TWO, 10;

Stores 10 in location 40

ADD PHRASE: ABC, (5)XYZ5,
I (7) 2;
ABC, 5 1 6 1 PQR3;

(23) PQR10,,

Execution of this example would leave a
floating-point 5 in array position 5, a
floating-point 6 in array position 6, a
floating-point 3 in array position 23 and a
fixed-point 2 in array position 7~

4.2.4 EXPRESSIONS

PLAN statements may include expressions at
execution time as well as at phrase defini
tion (ADD PHRASE) time Csee •PLAN Language
Definition• 4.3.0). Expressions are either
arithmetic or logical. Arithmetic expres
sions are introduced with an equal sign
<=>; logical expressions are introduced
with a colon. An expression mm;t be ter
minated with a comma or the phrase
terminating semicolon. Operands that are
not constants must be in the current symbol
table at the time the expression is eval
uated. Examples:

IBM PROBLEM LANGUAGE ANALYZER (PLAN)

PROGRAM DESCRIPTION MANUAL

A5,AC2) = A*.017452965
B6, C=B*39.37+F

The above arithmetic expressions represent
entries in execution-time statements. They
are valid only if the variable operands,
CA,B,F), are in the symbol table when the
expression is evaluated.

D: (A,B) I CC&D)
K: (A + 3> F)
R: (DATA=+)

The above three logical expressions (they
are introduced by a colon) may be found in
an execution-time statement. In the first
example, D will contain a logical value of
TRUE (+) if either (A,B) are both TRUE or
CC&D> are both TRUE. Otherwise,, it will be
set to logical FALSE <->. K will be
logically TRUE if the value of A+3 is
greater than the value of F. However, K
will be set to logical FALSE C-> if the
value of either F or A is logical (TRUE or
FALSE>, or -if the value of Fis equal to or
greater th~n the value of A+3. R will
receive a value of logical TRUE if DATA
contains a logical TRUE; otherwise, R will
be set to logical FALSE <->~ The following
examples further illustrate the use of the
previously mentioned rules:

1.

2.

ADD PHRASE: SITE, 13, (6)ABC7,
(23)PQR;
SITE;
At execution time CAP 1 contains a
value of 13.

ADD PHRASE: SITE;
SITE, 13;
Execution of this example results in a
floating-point 13 being placed into CAP
1.

3. ADD PHRASE: SITE,, 13, (-6)ABC,
(23)PQR6;
SITE,. 5;
Execution of this example results in a
floating-point value of 13 being placed
into CAP 1 and a floating-point 5
placed into CAP 23.

4. ADD PHRASE: SITE,, 13, (-6)ABC;
SITE, 5;
Execution of this example results in a
floating-point 5 being placed into CAP
1, overriding the phrase defined 13,
because the switch word <-6) is not
eligible to receive the value of 5.
The encountering of the 5 at exE!Cution
time generated a search of the symbol
table created by the ADD PHRASE state
ment. If no symbols are present
<switch words are excluded>, the 5 is
placed in CAP 1.

USE (4. 2 .. 0) 31

IBM PROBLEM LANGUAGE ANALYZER (PLAN)

PROGRAM DESCRIPTION MANUAL

4.2.5 SUBSCRIPTS

Each data name definition is assumed to be
the name corresponding with the first posi
tion of an array. Thus, using data name
wAacw is the equivalent of saying ABCCl>,
where the subscript one is assumed.

Any relative communication array position
may be referenced by using the appropriate
subscript. In the following example, XGS
is a data name assigned to communication
array position 5, and YGS is a data name
assigned to communication array position 6. ·
Each line of the example illustrates the
correct means of entering values of XGS and
YGS. The storage mode is assumed to be
ident1cal for both XGS and YGS. Example:

XGS50,, YGS60
XGS 50,YGS 60
XGS 50 YGS 60
XGS 50 XGS(2)60
XGS 50,60
XGS 50 60

Arrays may be initialized to a single
numeric data value at execution time by use
of a three-parameter subscript.

The general format of this subscript is:

DAN(I,,J,K)V

where:
I is the initial subscript
J is the last subscript
K is the increment to the subscript
v is the initial numeric value to be

used

In the following example, assume A has been
defined as equivalent to communication
array position 72. The example indicates
that every other position between communi
cation array 75 and 81 is set to zero.

In the above example, a particular area of
storage is to be initialized with a value
of zero CO>, which is the number outside
and to the right of the parentheses. This
area is defined using two displacement
values Climits) from the reference point A.
These specific boundaries are indicated by
the first two numbers within the paren
theses (4 and 10), with the first repr·e
senting the lower limit and the second the
upper. Since A was assigned to position
72, the positions 75 to 81 (or AC4> to
A(10)) signify the designated area. The
third and last number within the paren
theses (2), is the interval at which the
initialization value CO> is to be assigned.
Hence, after the example is executed, the
positions 75, 77, 79, and 81 will contain
the value O. care must be taken to ensure

32 USE (4.2.0)

15 SEPTEMBER 1969

that the difference between the middle
number and the first number (10-4) is
evenly divisible by the third number or a
diagnostic will result.

4.2.6 FORMULA NUMBERS

Formula numbers may be assigned to data
items defined at execution time (expres
sions, data assignment, formulas). (See
also "Formula Area", 4.3.20.)

Formula numbers are introduced with a dol
lar sign <$> and are a numeric field in the
range of 1 to 32,767. Formula numbers may
precede any data item. Formula numbers
allow branching and looping within the data
section of a statement input. Formula
numbers may be assigned to any allowable
data item. In addition, the following
special type data item entries are asso
ciated with formula numbers.

Syntax :$n,
Meaning Formula number n is to be executed

next (functions like a FORTRAN GO
TO).

Syntax
Meaning

Syntax
Meaning

$n;
Formula number
number to allow
of the command;
implied .•

is a dummy formula
transfer to the end

no execution is

:(expression> ?$n !$m,
Either the TRUE (?) or FALSE (!)
leg (or both) of a conditional
expression may be replaced with an
expression number. The formula
number (n or m> becomes a "branch
to" indicator.

The following illustrates use of formula
numbers in the control of execution-time
data definitions. Example:

TEST, BOA1$1B=B+1, A2:(B=2)?$2,
$1,$2;

A3:

would be executed with the following
steps:

BO assignment statement B=O

Al assignment statement A=l

$1 assignment of formula #1 to
the expression B=B+l

B=B+l after the first execution of
formula #1, B will have a
value of 1 (1=0+1)

A2 assignment statement A=2

:CB=2>?$2, this conditional expression
will cause a branch to for-

15 SEPTEMBER 1969

A3

:$1

B=B+l

mula #2 ($2> if B has a
value of 2, however; now B
has a value of 1.

assignment statement A=3

go to formula #1 CB=B+1)

formula #1 is executed giv
ing B a value of 2 (2=1+1)

IBM PROBLEM LANGUAGE ANALYZER (PLAN)

A2

:(B=2)?$2

$2;

PROGRAM DESCRIPTION MANUAL

assignment statement A=2

a branch to formula # 2 will
be executed as the condition
being tested CB=2> is TRUE.

formula #2 is a dummy end of
this command.

USE (4. 2. 0) 33

IBM PROBLEM LANGUAGE ANALYZER (PLAN)

PROGRAM DESCRIPTION MANUAL

4.3.0 PLAN LANGUAGE DEFINITION

This section explains the procedures for
defining a PLAN language statement.

Language definition provides the phrase
name, phrase-defined data,, and other con
trol information required to direct the
execution of a logical segment of a task.
A language, once defined (in PFILE by
PHRAS) remains permanently defined until
altered or deleted by processing an ALTER
PHRASE or DELETE PHRASE command. The fol
lowing discussion treats each possible ele
ment of a language statement and :its
implied effect on the use of and generation
of problem solution logic modules. A PLAN
problem-oriented language is defined by
phrases: the newly loaded system has the
capability only of adding phrases through
the use of the basic system command ADD
PHRASE. As soon as new commands are added,
they may be included in the PLAN input
stream for execution, as defined in the
preceding section. The general format for
adding phrases is:

ADD PHRASE: PHRASE
DEFINED DATA;

NAME, PHRASE-

A defined phrase may be deleted from the
language dictionary by the use of the
DELETE PHRASE command. If the phrase to be
deleted is a VERB phrase, the specification
word VERB must be used. Format of the
command is as defined for ADD PHRASE,,
except that there is no phrase-defined
data. Example:

DELETE PHRASE: THIS PHRASE:
DELETE PHRASE: THAT PHRASE, VERB;

The ALTER PHRASE command is a combination
of a DELETE PHRASE followed by an ADD
PHRASE. Partial modification of a phrase
in PFILE is not implied. Therefore, the
ALTER PHRASE must follow the exact format
of the ADD PHRASE. Example:

ALTER PHRASE: PHRASE NAME, NEW PHRASE-
DEFINED DATA;

In the above example PHRASE NAME specifies
both the name of the phrase to be deleted
and the name of the new phrase to be added.

34 DEFINITION (4.3.0)

15 SEPTEMBER 1969

If the ALTER PHRASE is used for a nonexist-~
ent phrase, a diagnostic will be produced
indicating that the phrase to be deleted
cannot be found but the phrase to be added
will be successfully entered into the lan
guage dictionary.

Note that phrase definition commands are
always followed with a colon and the phrase
is terminated with a semicolon. Any state
ment encountered by PSCAN that ha:s thE~
command followed by a colon is not proc···
essed beyond the colon. If the phrase is
interpreted to be ADD PHRASE, ALTER PHRASEN
or DELETE PHRASE, the program name PHR~S is
placed in the pop-up loader to be executed
next. BCD or EBCDIC character coding may
be used where multiple coding conventions
exist, except where otherwise specified.

4.3.1 PHRASE NAME

Phrase names follow the previously listed
rules under "PLAN Language Terminol1ogy" N

4.1.0. Important points for naming phcases
are:

1. They may contain from one to five
words.

2. words are truncated after three
alphabetic characters. Care should
be exercised in using words of more
than three characters to .avoid
creation of undesired synonyms with
other words.

3. Words must contain only alphabetic
characters.

4. The phrase name is terminated with
a comma (if phrase-defined data
does not exist,, the comma may be
omitted).

5. Words of less than three charaieters
are assumed to contain blank pad
ding to three characters.

6. The same sequence of words us·ed in
a VERB phrase name may not be used
as the first part of any iother
phrase name.

15 SEPTEMBER 1969

4.3.2 PHRASE-DEFINED DATA

The following general categories are speci
fied as phrase-defined data:

1. Level of phrase

2. Program list

3. Verb designation and program list

4. Data elements
a. Data name
b. Default values
c. Scale factors
d. Mode
e. Communication array position
f. Checking rules
g. Expressions to evaluate

5. statement-saving specifications

6. User-exit programs

7. Exit

8. Formula area

4.3.3 LEVEL OF PHRASE

The input interpreter has the ability to
work with up to four levels of statement
dependence. This permits convenient, con
cise input because data entered at a higher
level is made automatically available at a
lower level. PLAN also effects correct
data context during error recovery and
input validation. Execution errors need
result only in an abort of that portion of
the job affected by the invalid data,.
Definition of a problem solution may often
be defined in logical, indented outline
form. Example:

I. JOB NAME

A. Major Activity

1. Intermediate Activity 1

a. Detail

b. Detail

2. Intermediate Activity 2

a. Detail

B. Major Activity

II. JOB NAME

IBM PROBLEM LANGUAGE ANALYZER (PLAN)

PROGRAM DESCRIPTION MANUAL

The PLAN commands may have a level assign
ment corresponding to this outline. State
ments at level 1 CI, II, etc.> are com
pletely independent of all other state
ments. Level 2 CA, B,, etc.>, level 3 Cl,
2), and level 4 Ca,b,,etc. > statements are
dependent upon the accumulation of informa
tion provided by the preceding statement of
each higher ·Clower-numbered) level.

The PLAN level structure processor saves
and forwards data (managed array> from each
statement to its logical successors. The
logical sanctity of the managed array is
preserved by PLAN through saving, and
restoring, the proper data context.

commands, that have no assigned level, are
executed at the level of the previously
executed command.

An error in a commandw at any level, of the
severity to demand cessation of processing
when operating with a level concept, need
cause only skipping of affected commands.
Thus, an error at any level results in
skipping of commands only until a command
of equal or high~r level is encountered.
The managed data array is then initial"ized
to represent the proper level of data. All
blank-level commands following a command in
error are skipped except when the error
~ommand is blank-level. In that case, only
the blank-level command in error is
aborted.

A level O command must be the first command
processed when entering the PLAN system.
ADD PHRASE, ALTER PHRASE,, DELETE PHRASE,
and PLAN JOB are system level <level O>
commands.

A level 0 command causes all system default
options to be set. System options Csee
"Switch Words",, 4.3.21> may also be set to
the user's specifications. The standard
PLAN command "PLAN JOB:" is recommended as
a level O command. A level 0 command must
always be followed by a level 1 command or
another level 0 command. A level 0 command
may be introduced at any position within a
PLAN job stack to reset the system standard
options.

The managed array, the size of which is
indicated in Switch word 10, is set to the
value of logical FALSE C7FFFFFFF) whenever
a level 1 phrase is encountered.

If a value is specified
LEVEL, it must be O,
Example:

for the keyword
1 ~ 2 ,, 3 , or 4 •

ADD PHRASE: SOME PHRAS, LEVELl, !• •• ,

Level 2, 3, and 4 commands are each depen
dent on the preceding higher-level Clower
numbered) command.

DEFINITION (4.3.0) 35

IBM PROBLEM LANGUAGE ANALYZER (PLAN)

PROGRAM DESCRIPTION MANUAL

The level indicator is placed in the phrase
dictionary (PFILE) to indicate the logical
position of this phrase in a sequence of
dependent statements. if no level is
assigned. the level is considered to be
blank. Blank-level phrases are processed
as continuations of the last phrase without
forcing a level test. A level test, fol
lowing the rules indicated below, is forced
whenever a phrase is processed that has a
level designation. Two basic functions are
fulfilled by the level test. If an error
occurs in a phrase, recovery can be made at
a point in processing where dependent data
is not in error, that is, at a phrase of
equal or higher level. Secondly, the
managed communication array can be saved
and restored so that it always includes
data of only those phrases upon which this
phrase depends. If the managed array
length (Switch Word 10} is set to zero,, the
data management function is bypassed, but
error control processing will still be
effected.

In all discussions, references to the level
of the preceding phrase should be inter
preted to mean "the preceding phrase with
an explicit level indication". Thus,
blank-level phrases are significant only to
the degree that they are implicitly
assigned the level of the preceding phra.se.
The following rules govern the saving and
restoring of the managed communication
array:

1. The communication array is copied onto
disk if a level 1, 2, or 3 phrase has
just been executed and a phrase of
lower level has been accepted from the
current input device. The communica
tion array resulting from the execution
of a level 4 command is never saved
because there are no lower-level com
mands. In other words, an error in a
level 4 command causes the communica
tion array to be restored at the level
3 status. Note that there must be a
user-defined file (PDATA on 1130 PLAN
and PLMANFIL on System/360 PLAN) if the
communication array is to be saved.
The appropriate Operations Manual con
tains the necessary instructions for
defining this file.

2. Upon reading a phrase of equal or
higher-level as compared with the level
of the phrase just executed, the
managed communication array is restored
from the disk save area which is asso
ciated with the level that is one
greater than the level just read.
Assume we have just finished processing
a level 3 command and have just read a
new level 3 command. The cominunication
array would be restored to the status
as of the last level 2 command. The
last level 2 command was the one that

36 DEFINITION (4.3.0)

15 SEPTEMBER 1969

had generated data results used by the
old level 3 command. It is now pos
sible for the new level 3 command to
use the same level 2 data. The reader
should be able to see how the PLAN
level structure facilitates interactive
processing.

3. The data from previous equal or lower
level (higher-numbered) phrase!:; can
never be seen in the managed commlmica
tion array.

4. If the new level is 1 there is no
restore from level O, nor is there ever
a save of level O.

The following example illustrates the rules
stated above. Five phrase definitions were
entered into PFILE by the ADD PHRASE com
mands below:

ADD PHRASE:
ADD PHRASE:
ADD PHRASE:
ADD PHRASE:
ADD PHRASE:

A, LEV ly l(l)SO,TO,UO,VO,WO;
B, LEVEL 2;
C, LEVEL 3;
D, LEVEL 4;
E;

The status of the communication array is
shown as it would exist followin9 the
execution of the commands listed in the
table. These commands are issued in the
order listed. Note: The hyphens sho~m in
the table indicate that when an error
occurs, the user cannot rely on the fact
that previously stored data is still avail
able. Execution of the first command CA;)
causes the first five words of the conununi
cation array to be set to zero.

15 SEPTEMBER 1969

r-------------------------------------1 I CONTENTS OFI
~-----------------------T--T~-T-T-~
JCOMMAND I SJTJUIVIWI
·--------------------------+--+-+-+-+-~
JA; <level 1) I 0101010101
I I I I I I I
·-------------------------+--+-+-+-+-~
JB,Sl; <level 2 I 1101010101
I after level 1) I I I 1 I I
·--------------------------+--+-+-+-+-~
JC~T2; (level 3 after I 1121010101
I level 2 > I l I I I I
.--~----------------------+--+-+-+-+-~
JD,U3; (level 4 after I 1121310101
I level 3> I I I I I I
·-----------------------+--+-+-+-+-~
fE,V4; (blank level after I 1121314101
I level 4> I I l I I I
·---------------------------+--+-+-+-+-~
IC,,W5; <level 3 after I 11OJ010151
I blank <4> I 1 I I I I
.-------------------------+--+-+-+-+-~
JD,,U6; <level 4 after I 11OJ61OJ51
I level 3 > I I I I 1 I
.--------------------------+--+-+-+-+-~
IA~W7; <level 1) I 0101010171
~-------------------------+--+-+-+-+-~
JB,U8; <level 2 after I 0101810171
I level 1 > I I I I I I
.---------------------------+--+-+-+-+-~
JC.,,S3,X5; (X is error> 1 -1-1-1-1-1
~--------------------------+--+-+-+-+-~
JD.SS; (in error recovery> I -1-1-1-1-1
1---------------------------+--+-+-+-+-~
JE,S7; (blank level I -J-1-1-1-1
I in error recovery> I I I I I I
·---------------------------+--+-+-+-+-~
fB.,,510; (level 2 recovers> 110101010171
~---------------------------+--+-+-+-+-~
IA; (level 1) I OJOIOIOIOI
.--------------------------+--+-+-+-+-~
JD.,,S5; (level 4 after 1) I 5101010101
~---------------------------+--+-+-+-+-i
JB,U2; (level 2 after 4) I 0101210101 ._ ___________________________ i __ i_..1.-..L-..L-J

When errors that result in a phrase abort
are encountered, error indicators are set
to inhibit execution of any phrase until a
phrase of equal or higher level is encoun
tered. All phrases are, however., checked
for proper syntax, and if errors are found,
PLAN diagnostics are generated.

Data names defined in a phrase are avail
able to phrases of lower level. Thus, a
data name defined in level 1 may be used by
a dependent level 2, level 3, level 4, or
blank-level phrase without redefinition.
Any new definition in a phrase supersedes
an identical data name defined in a higher
level phrase. Therefore, the same data
name may be used in every phrase. A new
data name table is initialized only when a
level 1 phrase is encountered. For a
discussion of symbol tables under level
control see 4.3.25 and Figure 9.

IBM PROBLEM LANGUAGE ANALYZER (PLAN)

PROGRAM DESCRIPTION MANUAL

4.3.4 PROGRAM LIST

A program list may be associated with a
particular phrase. This list is added to
the pop-up list before the program list
associated with check entries. The keyword
PROGRAMS introduces a PLAN literal contain
ing the program names to be placed in the
pop-up list. The pop-up list is loaded so
that the first program named will be
executed first. If a program list is not
specified for a phrase, the pop-up list is
not changed when the phrase is encountered .•
A new command will be processed immediately
and PSCAN will not require reloading.

In the following example,, programs entitled
"M0730", "M0745", and "M0737" are to be
executed in that order when the phrase
"NAME" is processed.

ADD PHR: NAME, PRO' M0730, M0745.,
M0737' ••• ;

Three EBCDIC special characters are also
recognized as valid entries in the program
list.. These EBCDIC characters must be
left-justified in a PLAN double-word (64
bits> if they are to be added to the pop-up
load list through user programming. If,
however, they are to be added to the pop-up
load list through use of the specification
word PROGRAMS' ••• •, PLAN will ensure that
these special characters are inserted
correctly. These entries are:

* indicates a return to a checkpointed
program <see "LCHEX" under "Program
Linkage Routines",, 5. 11.1 > •
indicates the start of coexistent pro
gram grouping
indicates the end of coexistent program
grouping

See Appendix B (DOS), "Core Management",
9.7.0 and Appendix c cos>, 10.6.0 for more
information on coexistent program grouping.
Note that this feature is not functional on
1130 PLAN.

The following example illustrates a portion
of a program a user might write to estab
lish the first of the above special charac
ters <*> as a program name in the pop-up
load list.

DIMENSION A(2)
DATA A/'* ','bbbb'/
•
•
•
CALL LISTC2,A)

"LIST" is called to move'the contents of
the double-word array to the pop-up list.

The following is a summary of the require
ments for program list construction:

DEFINITION (4.3.0) 37

IBM PROBLEM LANGUAGE ANALYZER (PLAN)

PROGRAM DESCRIPTION MANUAL

1. A program name must begin with an
alphabetic character. Subsequent
characters in the name may be either
alphabetic or numeric. No special
characters are allowed within a program
name. A program name may be as long as
eight characters for System/360 PLAN
users and as long as five characters
for 1130 PLAN users.

2. The three EBCDIC characters
asterisk, left parenthesis, and right
parenthesis are exceptions to the
rules stated above,. These three
characters are considered valid program
names.

3. The asterisks, left parenthesis, and
right parenthesis need not be
delineated with commas.

4. Unmatched
included.

right parentheses may be

5. Consecutive commas indicate that the
program items to the left in this list
are to replace all items currently in
the list. For example "PRO 'A., B,,, '"
will eliminate all list entries and
place A and B into the list.

The following example illustrates an ADD
PHRASE with a valid program list and shows
the contents of the pop-up list after the
command NAME is executed.

ADD PHRASE: NAME, PRO' A, B* (.D,, E,, F) ,, , ' ••• ;

--, ..---
1 A I
I B .1

I * I
I < I
I D I
I E I
I F I
I > I
I o I
L----J

The consecutive commas in the program list
cause the program names contained within
the quote marks to completely replace
existing program names in the pop-up list.
In the example above, program A is executed
first, a.nd its name is removed from the
pop-up list. After A is executed, B is
loaded into core and executed. Suppose
that during B's execution a checkpoint is
taken, (B is saved on disk> and two new
programs,, X and Y, are placed' at the top of
the pop-up load list.

38 DEFINITION (4.3.0)

--, r---
1 x I
I Y I
I * I
I < I
I D I
I E I
I F I
I > I
I o I
L-----J

15 SEPTEMBER 1969

r-----,
I B I
L-----J

Since X is at the top of the pop-up list,
it is loaded into core and executed,. and
its name is removed from the pop-up list.
Y is then similarly treated. The next
program name in the pop-up list is *· This
special program name causes a return to a
checkpointed program. B is reloaded into
core and B's execution continues at the
next executable instruction. after the
checkpoint instructions. The * is rE~moved
from the pop-up list. When B is completed,,
the left parenthesis "(" is encounterErl in
the pop-up load list. This special program
name signals PLAN that the subsequent pro
gram names, until a right parenthesis ")"
is encountered in the pop-up list, ctre to
be simultaneously core-resident. PLAN will
load D, E, and F into core and remove their
names and the left parenthesis " < '' and
right parenthesis ")" from the pop-up list.
When D, E, and F have concluded their
processing, a zero will be encounterErl in
the pop-up list. This indicates thc:tt the
pop-up list is empty and that PLAN must
load PSCAN to read the next command and
analyze it.

4.3.5 VERB DESIGNATION AND PROGRAM LIST

The specification word VERB is usErl to
define a phrase that is not a complete
command. The VERB phrase is used to change
or modify the meaning of an OBJECT (non
verb> phrase.

A VERB phrase may have two types of program
lists • One is associated with the kE!yword
VERB and the other with the keyword PRO
GRAM. They will subsequently be referred
to as VERB lists and PROGRAM lists.

A command may consist of only one OBJECT
phrase but may contain up to eight VERB
phrases as prefixes to the OBJECT phrase
providing a maximum of 45 words in a
command Ca phrase is 1-5 words). (See
"PLAN Language Terminology", 4.1.0.) A
DELETE PHRASE of a VERB phrase must contain
the specification word VERB.

The pop-up list at the end of processing a
command containing VERB phrases will con
tain (listed in top-to-bottom order) pro
gram lists defined in the phrases in the
order listed below:

15 SEPTEMBER 19 .69

-, r--

Check entry programs from leftmost
VERB phrase (*C'LIST' ~ 4. 3 .• 15)

Program list from leftmost VERB
phrase (PROGRAM'A,,B.,C' ,4.3.4)

Check entry programs from rightmost
VERB phrase (*C'LIST' ,, 4. 3.15)

Program list from rightmost VERB
phrase (PROGRAM'A,,B,C' ,4.3.4)

Check entry programs from OBJECTI
phrase <•C'LIST',4.3.15) I

I
Program list from OBJECT phrasel
(PROGRAM'A,B,C',4.3.4) I

I
Verb designated program list f roml
rightmost verb phrase (VERB' A,, B,, C', I
4.3.5> I

I
I
I
I
I
I
I

Verb program list from leftmost VERBI
phrase (VERB'A,,B,C' ,4 .• 3.5) I

I
Existing program list (in the easel
of a CALL LREPT) I

'---------------------------·------J

The following example illustrates defini
tion of an OBJECT phrase and a VERB phrase.
The phrases are then used as a command and
the resultant program list is shown:

(OBJECT PHRASE)

ADD PHRASE: DATA, (5)A-*R'PROGA', +,
PROGRAMS 'PROGB' ;

(VERB PHRASE)

ADD PHRASE: EXPLAIN, (5)A, B,, (255)*
T'PROGC' I VERB'PROGD' I PROGRAMS'PROGE';

(COMMAND)

EXPLAIN DATA, A,, B5;

The resultant pop-up list contains the
following programs:

IBM PROBLEM LANGUAGE ANALYZER (PLAN)

PROGRAM DESCRIPTION MANUAL

--, r--
1 PROGCI (in list only if communication
I I array (255) is not TRUE)
I I
IPROGEI
I I
IPROGAI <in list because data was not
I I given for A)
I I
IPROGBI
I I
IPROGDI
L----J

Additional information on the sequence of
execution is given under npscAN Execution
Sequence", 4 .• 3.25.

The following example illustrates use of a
VERB phrase to modify standard data for an
OBJECT phrase. Assume an OBJECT phra.se
(MOTOR VEHICLE DATA) is designed to intro
duce da~a for a series of motor vehicle
calculations. One of th.e data items is the
minimum driving age (MDAL. The country
wide standard is set at 16. Assume the
standard for New York to be 18. A VERB
phrase (NEW YORK) is defined to modify
MOTOR VEHICLE DATA to a minimum driving age
of 18. Obviously, this simple example
could be extended across many data items
with many modification options. Example:

ADD PHRASE: MOTOR VEHICLE DATA, I(l)
MDA16, PROG'MVCAL', ••• ;

ADD PHRASE: NEW YORK, VERB,
I (1)MDA18 I., •• ;

If the command ftNEW YORK MOTOR VEHICLE
DATA;" is executed, the minimum driving age
<18) for New York would override the
country-wide standard (16) and be used in
the motor vehicle calculations by the pro
gram • MVCAL' •

Phrase defined data as ·defined in the
following sections is written in the fol
lowing format:

r-T-T_T_T_T_T_T_1
IUIIIPISINIVIEIXI
L-i-i_....._i_i_i_i-J

u is the user-exit specification (4.3.18)

I is the mode indicator <4.3.14)

P is the scale factor (4.3.13)

s is the communication array position
(4.3.6 - 4.3.10)

DEFINITION (4.3.0) 39

IBM PROBLEM LANGUAGE ANALYZER (PLAN)

PROGRAM DESCRIPTION MANUAL

N is the data name (4.3.11)

v is the default value (4.3.12)

E is the checking (check entry> specifica
tion (4.3.15)

X are the expressions to evaluate (4.3u16
- 4.3.17)

4.3.6 COMMUNICATION ARRAY POSITION

Definition of a data item is not complete
unless it lncludes a definition of where
the data item is to be stored. Data items
are stored in a COMMON array known as the
•communication array• <see •General
Description• 2.0.0). A single 32-bit word
within this array is referred to as a
•communication array position" (CAP). The
definition of a CAP is required to provide
communication between the input processor
(PSCAN) and the system analyst (and pro
grammer). Since the CAP definition repre
sents a displacement relative to the begin
ning of the communication array, the term
subscript is sometimes used interchangeab
lywith the term CAP. However, in the
strictest sense, these terms are different
from each other.

The CAP may be defined in any of four
different ways. It may be defined as a
CONSTANT, an IMPLIED DO, an ARITHMETIC
OPERAND or the combination Of an ARITHMETIC
OPERAND and an IMPLIED DO.

4.3.7 CAP DEFINED AS A CONSTANT

A CAP defined as a constant takes the form
<n>, where n is an integer constant in the
range 1 to 16,368.. The CAP has a limit of
8176 if a data name is associated with the
CAP. For exampled (33) specifies that the
33rd word in the communication array is
desired, for some purpose,, for an asso
ciated data item. The reader will recall
that the System switch words immediately
precede the communication array. It is
possible, by defining a CAP as a negative
integer constant in the range -1 to -15, to
reference those COMMON switch indicators
<see •switch Words•, 4.3.22).

32-BIT
WORDS

r----T----, r-----T---T---, .-------,
I I I I I I I I I
I I I•• I I I , .. I I
I I I I I I I I I L ____ i ____ J L~ __ _i ___ i ___ J L~------J

(-1) (-2) (-15) (1) (2) (16,368)
System Switch Words Communication Array

40 DEFINITION (4.3.0)

15 SEPTEMBER 1969

4 ,. 3. 8 CAP DEFINED AS AN IMPLIED DO

The definition of a CAP may designate a
range within the communication arra~r. A
range plus an increment within the ranqe is
indicated in a manner similar to the FOR
TRAN DO LOOP. The following example iJLlus-·
trates a CAP defined as an Implied Do.
Reference to the communication array starts
at position 17, with subsequent referEmces
at every third word (20, 23, 26 •••), ending
at position 38.

<17,38,3)

The general form of the CAP defined as an
implied DO is (I1 , I 2 , I 3)1 where:

I 1 is the first referenced commw1ica-·
tion array position,

I 2 is the last referenced communication
array position, a.nd

I 3 is the increment used to reference
subsequent CAPs within the 1:ange
specified by I 1 and I 2 •

Three rules must not be violated when
defining a CAP as an Implied Do:

(1) I 2 must not be negative.
<2> The range divided by the incrE~ment

must equal a whole number.
(3) A single-valued logical or numeric

constant <nuv,+,,-> must follow
definition of a CAP defined as an
implied DO. ·

Failure to comply with these three 1:ules
will cause a PLAN system diagnostic to be
issued, and the phrase in question will not
be added to the dictionary (PFILE). The
reader may wish to verify that our example
<17, 38, 3) does not violate our three
rules, and as such is acceptable as et CAP
defined as an Implied Do. Since 1 1 and I 2
represent displacements relativ~ to the
same core location (the beginning of the
communication array),, the range can be
determined by merely subtracting 1 1 from
I 2 • Hence, the range in the above example
is 21. The range (21) divided by the
increment (3) results in a whole number
(7). Thus, rule (2) is satisfied. Rule
<1> is satisfied by inspection.

Although I 2 may not be negative, a negattive
integer is allowed for I 1 • Defining I 1 as
a negative integer gives the user the
ability to reference the System Switch
Words as part of the range of the Implied
Do. An example of a valid CAP definition
which references the System Switch Words
and functions as an Implied Do is (-1.,22,
3). However, since I 1 and I 2 are not
relative to the same core location, a
slight problem arises in determining the
range of the Do. This problem is resolved
by adding 15 to I 2 , thus making I 2 relaL ti ve

15 SEPTEMBER 1969

to the beginning of the System switch
Words. I 1 is then treated as a positive
integer. Since C-1) really means Switch
Word 1, testing I 1 as a positive integer
causes I 1 to become relative to the begin
ning of the system Switch Words. The
reader should verify that the range in the
example C-1,22,3) is 36.

One last point worth noting about defining
a CAP as an Implied Do is that I 3 (the
increment) may be omitted. If such is the
case, the increment is assumed to be 1. In
the example C3,27) the first referenced CAP
is 3, subsequent references are 4," 5, 6., 7,
etc., through the last referenced CAP, 27.

4 .• 3. 9 CAP DEFINED AS AN ARITHMETIC OPERAND

A CAP may be defined as an Arithmetic
Operand. Arithmetic Operands, as described
under "PLAN Language Terminology•" are com
posed of data names and constants connected
by the operators *• /, + and -. An example
of a CAP defined as an Arithmetic Operand
is CM + 2 - N). The discussion on •Data
Names•, 4.3.11, states that a CAP defined
as an Arithmetic Operand (symbolic CAP)
requires an associated data name. Since
the effective value Cthe actual displace
ment from the beginning of the communica
tion array) of a symbolic CAP is not
determined until execution of the phrase
which contains the symbolic CAP, and since
all data items require an associated core
storage location, the data name becomes the
•handle" by which the data item is known.
Thus, our example as given is not complete
and must be rewritten to read., for example,
CM + 2 - N)ABC. It is important to note
that M and N are previously defined data
names with associated positions in the
communication array.

Suppose the two commands listed below were
executed in the order shown.

(1) ADD PHRASE: SYMBOLIC CAP EXAMPLE,
I(5)M~ I(6)N, (M+2-N)ABC-;

(2) SYMBOLIC CAP EXAMPLE• M30, N25;

Execution of command Cl) places the phrase
•sYMBOLIC CAP EXAMPLE" into the language
dictionary (PFILE). This phrase specifies
that CAPs 5 and 6,, known as M and N
respectively, should contain integer values
and that the symbolic CAP (M+2~N>, known as
ABC, should contain logical FALSE (if no
override is specified) as the initializa
tion value. Execution of command (2) first
causes the values 30 and 25 to be stored as
integers in CAPs 5 and 6. Then the symbol
ic CAP (M+2-N) is evaluated. The expres
sion is evaluated using the current con
tents of the CAPs specified by the symbols
within the expression. Thus, the symbolic

IBM PROBLEM LANGUAGE ANALYZER (PLAN)

PROGRAM DESCRIPTION MANUAL

CAP in this case is evaluated as (30+2-25).
Since no override was specified in command
(2) for ABC, CAP 7 will be set to logical
FALSE.

It is possible to direct the PLAN system to
evaluate a symbolic CAP by using the actual
displacements of the data names in the
expression rather than their associated
contents~ This method of evaluation is
specified by prefixing the data names
involved with S'. If in command (1) above
we had written (S'M+2-S'N)ABC- instead of
CM+2-N>ABC-, regardless of the values spec
ified for Mand N by command C2>, CAP 1,
known as ABC, would be set to logical
FALSE. The symbolic CAP (S'M+2-S'N) is
evaluated using the CAPs (or displacements>
of M and N, which are, respectively, 5 and
6. Thus, the symbolic CAP in this case is
evaluated a~ (5+2-6). It is important to
note that as a phrase is being processed,
data names are added to the symbol table
<see •PLAN Language Use•, 4.2.3) from left-
to-right and the execution-defined symbolic
CAPs are evaluated in sequence. This means
that the identity of a data name may change
during symbol table creation. Example:

ADD PHRASE: TEST., (1) A,
(S'A)C, (14)A;

CS'A+2)A,

would yield the following symbol table:

(3)C, (14)A

CAPs defined as Arithmetic Operands at
language definition time (ADD PHRASE) must
result in an effective value of less than
512 if a scale factor is defined; other
wise, less than 8,176.

Note: All defined limits (such as less than
512, less than 8176) will be more
clearly understood by study of the
organization of the Phrase Entry
Table in Appendix E,, 12 .1. 4.

4.3.10 CAP DEFINED AS AN ARITHMETIC OPERAND
AND AN IMPLIED DO

An example of a CAP defined as the combina
tion of an Arithmetic Operand and an
Implied Do is CM+2,10,2)NAME1. As in the
case of a symbolic CAP, a data name is
required. In this example,, the data name
is NAME. The above example is evaluated in
the following manner:

1. The first parameter, I 1 , is evaluated
at execution time by obtaining the
current contents of the data name M and
adding the constant 2 to that value.
The result of the evaluation specifies
a CAP which will be known as NAME and
will be the first referenced CAP of the
Implied Do.

DEFINITION (4.3.0) 41

IBM PROBLEM IANGUAGE ANALYZER (PLAN)

PROGRAM DESCRIPTION MANUAL

2. The second parameter, Ia, is a
displacement from the result obtained
by evaluating I 1 • When this
displacement is added to that result,
the last CAP to be referenced by the
Implied Do becomes known.

3. I 3 is the increment.

Note that I 2 and I 3 must be
constants ..

integer

Assume that the current content of the CAP
known as M is 30. Then I 1 would be
evaluated as 32 and Ia would become 42.
Since in our example, I 3 is 2 and a default
value of 1 is defined for the Implied Do,
CAPs 32, 34,, 36,, 38, 40, and 42 would be
initialized with the value 1. Since a CAP
defined as the combination of an Arithmetic
Operand and an Implied Do reduces to an
Implied Do (at execution time>. it is not
possible for PLAN to determine the range at
ADD PHRASE time. To ensure that the rule,
range divided by increment must equal a
whole number, is not violated, the user
must define Ia and I 3 as constants, where
Ia is an integer multiple of I 3 •

4.3.11 DATA NAME

The data name allows the definition of data
to be processed with the phrase in terms
familiar to the problem definer. For
example, suppose the problem definer were
interested in calculating the electromotive
force or voltage across a wire of given
resistance at varying currents, he could
define the data names as V, I, and R, where
v = I x R (Ohm's :Law). However, if the
data names chosen were VOLTS,, CURRENT, and
RESISTANCE, the data items these names
represent might perhaps become more
meaningful to the problem definer. A
single data name may be associated with
only a communication array position
(hereafter identified as CAP) or a Switch
Word. Remember, the term "communication
array• refers to both the managed and
nonmanaged data arrays, and the term
•switch word" refers to one of 15 32-bit
words that comprise the System Switch
Words. A data name must be present if a
symbolic CAP is used (see •comrnunication
Array Position", 4.3.6). A data name may
be changed at any time by the user to one
more meaningful to him without causing a
change to the problem-oriented logic
modules. If a data name change is desired,
the user must consult the system analyst so
that the system analyst may reflect the
data name change in a dictionary (PFILE).
Data names as defined in the preceding
definitions follow the restrictions listed
below:

42 DEFINITION (4.3.0)

15 SEPTEMBER 1969

1.. A data name must be one WORD (a
sequence of one or more alphabetic
characters with no embedded blanks).

2. A data name must not be the single
letter E.

3. A data name must not contain numerics
or special characters.

4. Since PLAN truncates WORDS to three
characters or pads out WORDS with
blanks to three characters, care must
be taken when choosing data names to
ensure that duplication of data n.ames
does not occur within the same phrase.

5. The data name must immediately follow
the definition of the CAP.

The following example illustrates def ini
tion of the data element with the data :name
VALUE (effective PLAN data name VAL) b) be
associated with CAP 33. This means that
when the data name VALUE is encountered in
a problem description stream, any data
associated with it will be stored in posi
tion 33 of the communication array.

(33)VALUE

4.3.12 DEFAULT VALUES

A default value, defined in a phrase i:s a
value that is used to initialize an asso
ciated CAP when that phrase in PFILE is
executed. The default value may he a
literal, a logical constant, or a nurn1eric
constant, and must immediately follow the
data name. If a data name is not defined,
the default value must immediately follow
the CAP definition. For a review o:f a
literal, a logical constant, and a nurn•eric
constant, see "PLAN Language Terminoloqy",
4.1.0. The following two commands c«1use
the phrases A and B, which specify dif
ferent default values for the same CAP, to
be entered into the language dictionary
(PFILE):

ADD PHRASE: A,(20)"ABC";

ADD PHRASE: B,(20)VALUE70;

suppose now, after the two commands above·
have been executed,, the three commands
listed below are executed in the mrder
shown.

(1) A;
(2) B;
(3) B,VALUE-;

Execution of the command in step Cl> W()Uld
cause CAP 20 to be initialized with the
default value •ABC" <core representation
ABCb>. Execution of the command in step

15 SEPTEMBER 1969

(2) would cause CAP 20, known as VALUE, to
be initialized with the default value 70.
Execution of the command in step (3) would
cause CAP 20, known as VALUE, to be set to
logical FALSE. Step (3) is an example of
how the problem definer may override a
default value. Steps (1) and <2> illus
trate that PLAN supplies the standard data
value (default value) whenever commands
fail to specify an override. Of course, if
no default value was defined for a CAP at
ADD PHRASE time, and no value is specified
for the CAP at phrase execution time, PLAN
would have nothing to supply as the stand
ard data value. In that case. the CAP
would contain residual data stored from the
previous command in the input stream. The
•default value• option should prove useful
to the PLAN user as a means of reducing
execution-time problem definition.

4.3.13 SCALE FACTORS

Input data may be scaled by a specified
power of 10 in the range of plus/minus 7.
scaling is indicated by a P±n indicator,,
where n is in the range of 1-7~ A plus
sign indicates movement of the decimal
point to the right; a minus sign indicates
movement to the left. The scaling indica
tor must immediately precede the CAP indi
cator. In the following example,., the value
associated with the identification VALUE is
to be scaled from feet to hundreds of feet.
The value is stored in the communication
array position 33. A default (initializa
tion> value of five defines a standard data
value of 500. Scale factors may not be
used with CAP indicators that reference the
System switch Words, that is, CAPs that
have negative subscript indicators. Scal
ing will be provided to either the default
value or the given data value. Example:

P+2(33)VALUE 5

4.3.14 MODE

The normal storage mode of PLAN is real
(floating-point). Literal data automati
cally overrides this standard~ The user
may designate integer (fixed-point) storage
mode by prefixing an I to the scale factor,
or to the CAP if no scale factor exists.

In the following example, a fixed-point 5
is associated as a standard value with

IBM PROBLEM LANGUAGE ANALYZER (PLAN)

PROGRAM DESCRIPTION MANUAL

communication area 33 .• and is assigned the
data name VALUE. Example:

I(33)VALUE5

The following example illustrates the
.sequence of operations when a scale factor
and mode are defined. Example:

IP+2(20)NAME4.1 is interpreted in the
following manner:

• Scale by a factor of 100 (410.-4.1)
• Integer conversion (410-410.)
• communication array(20)=410

4.3.15 CHECKING RULES

Checking of values in the communication
array may be achieved during command proc
essing (PSCAN execution> immediately before
transfer to PLAN for the loading and execu
tion of the first problem program module.
The rules to be followed in performing the
checks at command processing (problem
sol ution> time are defined in the phrase
and are known as a check entry.

A check entry contains the following two
parts:

(1) Definition of a test to be performed
<2> Definition of an action to be taken if

the test fails

The definition of the check entry is writ
ten in the relative location within an
element's description normally used for the
standard data value, or it immediately
follows the standard data value. The
result of the test may be used to terminate
processing of the command,, to alter the
sequence of programs to be executed, or to
generate a diagnostic message. The general
form of a check entry definition is:

(N) TEST ACTION

The N is the CAP (in the range of -15 to
+8176). TEST indicates the condition to be
tested, and ACTION controls the action to
be taken if the defined test fails. If the
defined test passes, the ACTION is ignored.
The conditions that can be tested and the
ACTIONS that may be specified are shown in
Figure 6.

DEFINITION (4.3.0J 43

IBM PROBLEM LANGUAGE ANALYZER (PLAN)

PROGRAM DESCRIPTION MANUAL 15 SEPTEMBER 1969

r-------------T---1 I l~fioo I
~-------------+----T------T-------r-------~----·---T---T----T----T------~
ITEST I None I 'LIST' IC'DIAG' IA'DIAG' IP'PHRAS' I (N) IC(N) IACN) IPCN) I
~-------------+----+------+-------+-------+----~--t---t----+----+------~
I* <NoT FALSE>ll,4 13,6 13,5 11,s 12,3,7 13,913,8 11,0 12,3,101
~-------------+----+------+-------+-------+--------+---+----+----+------~
l*T (TRUE) 11,,4 p,6 13,5 11,s p,3,7 13,913,8 11,8 12,,3,101
~------------+~--+------+-------+-------+----~--+---+----+----+------~
I *F (FALSE) 11, 4 13 , 6 13, 5 t 1, 5 I 2 1 3 r 7 13 r 9 I 3 r 8 11 r 8 I 2 ,, 3 r 10 I
~------------+----+------+-------+-------+----~--+---+----+----+------~
l*R (REAL) 11,4 13,6 13,s 11,5 12,,3,7 13,913,8 11,,8 12,3.101
'--------------.L-----L------.1.-------.1.-------,.L--------.1.---.1.----.1.---.-.1.------J
*NOTE: See Figure 7 for an explanation of the numbers in this figure.

Figure 6. SUimnary of check entry processing

r------T----------------------------------1
I I I
ICODE !SYSTEM ACTION TAKEN I
~-----+----------------------------------f

1 tAbort the command. PLAN level I

2

3

4

5

6

7

8

9

terror recovery is initiated. I
I 1
ILast pushed command is the only
lcommand executed.
t
IThe processing of the current
tcommand is continued.
t
tPLAN diagnostic 223-226 is
tgenerated.
I
tThe user ~iagnostic •QIAG• is
tgenerated.
I
tThe program list defined by LIST
tis added to the pop-up list.
t
IThe command •peRAs• is executed
tnext. The pop-up list is not
I modified.
t
IThe user diagnostic contained in
IPLAN literal form at position •n•
lof the communication array is
I generated.
I
IThe program list located at
tposition •n• of the communication
larray is added to the pop-up
t list.
t

1 10 IThe command existing in PLAN lit-
1 teral form at position •n• of the
I tcommunication array is executed
I tnext. The pop-up list is not
t t modified. f
L.----L--------------------------------·1
Figure 7. Summary of check entry actions

Actions are controlled by the phrase con
text text CACTI ON) that follows the condi·
tion TEST. For example, check entry
*TC'DIAG' specifies a test for TRUE <•T}

44 DEFINITION (4.3.0)

where action is to be taken according to
the ACTION (C'DIAG') if the value tested is
FALSE or REAL. The system action taken is
specified by the two numbers indicated by
the coordinates *T and C'DIAG~, in this
case 3 and 5. The numerical codes in
Figure 6 are defined in Figure 7. Note:
Logical TRUE in hexadecimal is 80000000.
Logical FALSE in hexadecimal is 7FFFFFFF.
Any other value is REAL.

The ACTIONS that may be defined are
described below. The codes shown in Figure
6 that correspond to these actions are
indicated within parentheses following each
action heading.

Abort Phrase (None>
If, when the tested condition is not
met, this phrase and following phrases
are to be skipped until a phrase of
equal or higher level is encountered
(see •LEVEL•), no action indicator is
required. A PLAN diagnostic logs the
check entry failure and shows the word
that was tested when the test failed
<see execution error codes 223-226 in
Appendix F, 13.0.0>.

Modify Pop-up List ('LIST' or (N))
A string of program names may be added
to the pop-up list if the tested condi
tion is not met. The program names are
included as a literal string, for
example, 'M1111, M2222., M3333'. This
literal string corresponds to the
option 'LIST'. An alternate method for
adding program names to the pop-up list
makes use of the option (N). The
option (N) is the subscript of the
communication array location that con
tains the count of the number of words
in the adjacent list. The progra~_list
in the communication array must~be in
EBCDIC representation. Each program
name must occupy two PLAN words. The
CAP position referenced by the check
entry, for example,, •T (10 > , may have
been established with the following ADD

15 SEPTEMBER 1969

PHRASE entry. The list must be pre
ceded with the integer count of the
number of PLAN words to be added to the
list. Example:

I (10) 4, "PROGA", "PROGB" •.••

PLAN error recovery is not initiated.
Additional information on the formation
of program lists is given under "Pro
gram List". If any errors are found in
the command or if the command is to be
skipped as a result of level error
recovery procedures, the programs will
not be executed.

Use of the option to modify the pop-up
list is a technique often used to call
an error module if the expected amount
of data is not given by the user. Data
tests give either the results TRUE or
FALSE, based on the logical value of
the data word to be tested. If the
result of the test is TRUE, the action
option is not performed. If the result
of the test is FALSE, the action indi
cated by the option is executed. An
example of how this technique may be
implemented follows:

ADD PHRASE: DATA, (5)A-*'PROGA' •••

The check entry *'PROGA' tests CAP 5
for NOT FALSE. The test will fail if
CAP 5 contains FALSE. Since a default
value of FALSE is specified for CAP 5,
the test will fail for all instances
where no data is submitted to override
the default value. If no data is
submitted (the test fails), PROGA is
added to the pop-up list and executed.
It is assumed that PROGA is an error
module.

The program added to the pop-up list.,
as a result of check entry action, is
placed in the list afte.r programs in
the phrase program list (see "Program
List", 4.3.4), and will therefore be
executed first. If no action entry is
specified (abort option>, PLAN
generates an error diagnostic for any
FALSE result and returns, after all
tests have been performed, to PSCAN for
processing the next phrase.

Generate Diagnostic and Abort Phrase
(A'DIAG' or A(N))
PLAN level error recovery is initiated
following generation of a diagnostic
when the condition is not met. The
action indicator is either the constant
subscript (A(N) option> of a location
within the communication array that
contains the count for the adjacent
literal, or the literal itself
(A'DIAG'). PLAN error recovery proce
dures are initiated to skip all phrases

IBM PROBLEM LANGUAGE ANALYZER (PLAN)

PROGRAM DESCRIPTION MANUAL

until a phrase of equal or higher level
is encountered (see "Level of Phrase",
4.3.3").

Generate Diagnostic and Continue Phrase
(C'DIAG' or C(N))
The execution of the current phrase is
continued following generation of a
diagnostic CA PLAN literal or the con
stant subscript of a location within
the communication array that contains
the literal) when the condition is not
met.

Invoke Execution of a New Command
(P'PHRAS' or P(N))
The new command is scheduled for execu
tion. The command image is given as a
PLAN literal, or as the subscript of
the communication array location con
taining the literal. The terminating
semicolon is not included in the liter
al, but a blank must be provided to
allow its insertion. This action must
not be used in a command that is to be
implicitly saved <see "Statement Save",
4.3.22). More than one command may be
"pushed" from a check entry because the
scan of the command is continued.
However, only the last one "pushed"
(the rightmost check entry in the left
most verb) will be executed. If any
abort message is produced by the cur
rent command or if the current command
is to be skipped as a part of level
error recovery processing, the "pushed"
command will not be executed.

The following examples illustrate the use
of check entries.

1. <2>* writes a PLAN error message and
aborts the phrase if the value of (2)
is FALSE. *• the test for NOT FALSE,
fails on FALSE only.

2. C2>*T writes a PLAN error message and
aborts the phrase if the value of (2)
is NOT TRUE. *T., the test for TRUE I

fails on FALSE or REAL (NOT TRUE).

3. C2)*F writes a PLAN error message and
aborts the phrase if the value of (2)
is NOT FALSE. *F; the test for FALSE,
fails on TRUE or REAL, (NOT FALSE).

.4. (2)*R writes a PLAN error message and
aborts the phrase if the value of C2>
is not REAL. *R, the test for REAL,
fails on TRUE or FALSE (NOT REAL).

5. C2> * 41 P222,P345,P98,P35' inserts the
program names P222,, P345, P98 and P35
into the pop-up list., if the value of
(2) is FALSE <NOT TRUE or REAL).
Consecutive commas within the list eli
minate all currently existing names
from the pop-up list (see "Program

DEFINITION (4.3.0) 45

IBM PROBLEM LANGUAGE ANALYZER (PLAN)

PROGRAM DESCRIPTION MANUAL

6.

7 .•

List•. 4.3.4). Processing .of the cur
rent phrase continues.

(2)*A'DATA
diagnostic,
aborts the
is FALSE.

VALUE MISSING' writes a
DATA VALUE MISSING, and
phrase if the value of <2>

(2)•C'ONE INCH RADIUS ASSUMED' writes a
diagnostic. "ONE INCH RADIUS ASSUMED".
and continues processing if the value
of (2) is FALSE.

8. (2)*P'DUMP ' invokes execution of the
command DUMP if the contents of (2) are
found to be FALSE. The scan of the
current command is continued. Note
that implicit saving of statements is
inhibited by failure of this test.

9. (2)*(30) If the test fails, add the
program list whose length is contained
in CAP 30 to the pop-up list, and
continue processing the current phrase.
The data at location 30 must be in the
following general form:

where: n is the number of PLAN
(32-bit> words that follow
and must be added to the
pop-up list. A value of 2
times the number of program
names must be specified for
n.

NAME1,... is a program name
to be added to the pop-up
list and must be given in
two 32-bit words and must
include trailing blanks.

Note that the format of the array
to be processed is identical to
that required for processing by the
PLAN loader subroutines Csee CALL
LIST/LEX/LOCAL/LREPT under "Program
Linkage Routines", 5.11.1).

10. (2)•CC30) If the test fails, write a
diagnostic and continue processing.
CAP 30 contains the character count of
the PLAN literal that is to make up the
diagnostic text.

11. (2)•AC30) If the test fails, write a
diagnostic and abort the phrase. CAP
30 contains the character count of the
PLAN literal that is to make up the
diagnostic text.

12. (2)*P(30) If the test fails, invoke
execution of the command that is found
in literal form minus the semicolon at
CAP 31. The character count is found
at location 30. The literal count must
include a blank at the end of the text

46 DEFINITION (4.3.0)

15 SEPTEMBER 1969

to allow for insertion of the semico
lon. Note that implicit saving of
statements is inhibited by failure of
this test.

A phrase may be continued automatically by
forcing the last check entry in a command
to fail and thus invoke execution of the
phrase continuation. Example:

ADD PHRASE: NAME, ••• (1)-*TP'CON NAME ';

ADD PHRASE: CON NAME,, ••• ;

Using this method, the formula area (see
"Formula Area",, 4. 3. 20) may not be spl~t
between commands if backward branching is
required. Neither will data generated by
the CONTINUE command be tested by check
entries in the first command. Pop-up list
(program> entries effected by the first
command remain and will be executed follow
ing entries placed in the list by the
CONTINUE command.

Combinations of logical expressions <see
"Logical Operand", 4.1.11) and logical
tests <see "Expressions", 4.1.12) may be
used to change the implication of a phrase
to suit the specific requirements of input
data. The following example illustrates
the use of checking to modify the program
list for those cases where the value of
ANGLE is less than .01.

••• (2)ANGLE*R, (3)TEST
*F'P204,,':(ANGLE<.01), •••

In the above example, ANGLE is the data
name assigned to CAP 2. A check entry is
specified to ascertain that a value for
ANGLE is given (REAL., not FALSE, or not
TRUE). TEST, assigned to CAP 3, is set to
TRUE if the value of ANGLE is less than
.01; otherwise, it is set to FALSE. If
TEST is found to be FALSE, no further
action follows. If TEST is not FALSE,
program name P204 is added to the pop-up
list. The consecutive commas indicate that
existing names in the pop-up list are to be
eliminated.

4.3.16 EXPRESSIONS TO EVALUATE

Arithmetic and logical expressions may be
defined to generate data values as arith
metic or logical results of other data
values. Arithmetic expressions are intro
duced with the equal sign; logical expres
sions are introduced with a colon. In the
examples of valid expressions given below,
included blanks are optional:

(5) A=A*.017453,
(5) =B*lOO,
(5) B:(A>5) & CA<10),
<5> a & Cl 1 D,

15 SEPTEMBER 1969

Warning: If a data name for a CAP., which
contains logical TRUE or FALSE, appears in
an arithmetic expression, the resultant
evaluation of the arithmetic expression
will be logical FALSE. Assume the CAPs
known as B,. c. and D contain the values 4.
+(TRUE) and 3.3. respectively. In the
example. (1) A=B•C-D. CAP (1). known as A,.
would be set to logical FALSE because c
contains a logical value (logical TRUE).

Standard data values (default values> and
arithmetic or logical expressions may both
be defined for a CAP. For example. (5)
A-=A•.0174532965. defines CAP 5 to be
initialized as logical FALSE if no data is
submitted for A at execution time. Should
data be submitted for A at execution time.
the result of evaluating the arithmetic
expression A•.0174532965 would be placed in
CAP 5. The arithmetic expression above is
one which converts degrees to radians.

4.3.17 CONDITIONAL EVALUATION

A data value may be conditionally generated
on the basis of the evaluation of a logical
expression. The arithmetic or logical
expression which generates the data value,
if the TRUE condition is found for the
conditional logical expression, is preceded
with a question mark (?). In the following
example. NAME, defined for CAP 15, is set
equal to AAA if the logical value of LLL is
TRUE.

Example:
<15) NAME: LLL? AAA.

A second expression to generate a data
value. preceded by an exclamation mark (!),
may be defined for evaluation if the condi
tional logical expression, when evaluated,,
is found to be FALSE. The TRUE option must
be present if the FALSE option is to be
used.

In the following example. DATA. assigned to
CAP 5. is set equal to A multiplied by B,.
if it is TRUE that c is less than 50. If~
however. c is not less than 50 (~so>. the
expression following the FALSE indicator
(!) is evaluated. This expression will
set CAP 5 to logical TRUE if both D and F
are TRUE. Otherwise,, CAP 5 will be set to
logical FALSE.

Example:
(5)DATA: (C<50)?=A*B !:D&F.

The data names A. B .• c, n. and F must
defined in the current symbol table.

be

IBM PROBLEM LANGUAGE ANALYZER (PLAN)

PROGRAM DESCRIPTION MANUAL

4.3.18 USER-EXIT PROGRAMS

User exits from PSCAN are provided to give
additional conversion facilities of user
defined data. Examples of these could be
feet to inches,. extended precision, or
fractional constants. Up to three dif
ferent user-exit routines may be defined
for any given PLAN phrase. When a user
exit is required in a phrase, those data
items that require user-exit processing are
specially indicated.

When PSCAN encounters a data name that has
an associated user-exit definition, the
appropriate user-exit program will be
called. Special subroutines are provided
for scanning the input stream and placing
the converted values in the PLAN communica
tion array. These subroutines are IUSER,
NOSER. GUSER, and EUSER. They are dis
cussed later in this section. User-exit
programs may not be used to store data into
the Switch Words. All user-exit programs
must terminate execution by a CALL EUSER.
User-exit programs on the 1130 may not call
LOCAL Csee "PLAN Subroutine Use". 5.11.0).

During phrase
phrase-defined

definition time. standard
data is written as follows:

IP±nCCAP) data name

Phrase-defined data that is to be processed
by a user-exit program is written as
follows:

Um IP±nCCAP) data name

u indicates that user-exit processing is
required. The m represents one of three
possible user-exit programs, associated
with this phrase, to be executed and is
expressed as 1.. 2. or 3. Note that if
user-exit programs are to be specified, the
keyword EXIT may be used to specify the
names of the three user-exit programs. If
the keyword EXIT is not used, the standard
default names EXITl. EXIT2 and EXIT3 are
automatically invoked (see "Exits",
4.3.19).

The definers I, P, and n are not available
to the user-exit routine nor do they scale
or alter format of the user-collected
value. They are used by PSCAN when an
expression is detected after a user-exit
symbol. For instance, if the value asso
ciated with a user-exit symbol indicates
the mode to be integer, and the data name
is subsequently encountered in an expres
sion, the data value will be treattm. as
integer for purposes of the evaluation.

The user-exit program is entered during
command scan time (PSCAN execution> when a
data name with a user-exit definition is
detected and the next significant character

DEFIN~TION (4.3.0) 47

IBM PROBLEM LANGUAGE ANALYZER {PLAN)

PROGRAM DESCRIPTION MANUAL

does not indicate an expression or literals
to follow ..

PSCAN will not relinquish control to the
user-exit routine if the first recognizable
nonblank character following the data name
that is associated with the user exit is
found to be an equal sign <=>, a quote ('),
an at sign <a>, a double quote (•), a pound
sign (#, BCD = sign), a colon (:'), a comma
(, > ., a left parenthesis CC>, or a semicolon
(;) .
PSCAN will not honor further calls to the
character fetch routine <see •cALL GUSER•>
after a comma <,> or a semicolon C;> has
been processed.. Either of these characters
results in the return of a binary zero by
the fetch routine to the calling routine.
The user should then return control to
PSCAN with no further character fetch
requests ..

It is the user's responsibility to index
the communication array pointer when
required.. The user-exit program must alter
the communication array pointer Csee •cALL
NUSER• below> by an amount equal to the
number of PLAN words (32-bit) stored,

Four subroutine calls are provided for
exclusive use within user-exit programs:

CALL IUSER must be issued before any
other user-exit program subroutine is
called.. It provides linkage to PSCAN and
on 1130 PLAN sets index register 1 to the
LIBF subroutine linkage block as defined
in Appendix A, 8 .. 0.0.

CALL GUSERCICHAR) accesses the next PSCAN
input stream character and places it in
ICHAR as an 8-bit EBCDIC character right
justified within the integer word ICHAR.
The first CALL GUSER(ICHAR) issued fol
lowing each entry into a user-exit pro
gram is the first nonblank character
following the data name that caused the
user-exit program to be invoked. A zero
is returned if a comma or semicolon is
encountered. Further GUSER calls should
not then be issued without relinquishing
control to PSCAN (see •cALL EUSER"
below>.

CALL NUSER(ISUB,ISW) places the current
CAP in ISUB the first time it is call·ed
from each execution of a user-exit
module. ISW is set to zero if it is
permissible to store data values. If ISW
is positive, the user-exit program must
not store values in the communication
array but must complete all other user
exit functions. The value will be posi
tive if the subscript specified is too
large or if a user-exit program is pro
cessed while executing a •go to• in the
formula area evaluation. The second and

48 DEFINITION (4.3.0)

15 SEPTEMBER 1969

each succeeding CALL NUSER issued during
each execution of a user-exit program
causes the CAP to be incremented by one.
Thus NUSER should be called n+l times if
n 32-bit values are stored by a
user-exit.

CALL EUSERCN1,N2,LIT) returns control to
PSCAN. User-exit programs must exit via
this call. If N1 is zero, no error is
indicated. If N1 is positive,, the param
eters of this call are used as error
parameters to call ERRAT. (See "PLAN
Error Processing• , 5 .• 3. 0. >

The examples listed below show data that
could be processed with user-exit program
ming. Examples:

ADD PHRASE: NAME, U1(5)ABC ••• ;

1. NAME, ABC NODE FROM TO, ••• ;

2. NAME, ABC 7'4" a•5•, ;

3. NAME, ABC 7-4, 2-1, ••• ;

4. NAME, ABC LINE/DX4 DY7, ... ,
The data in example 3 could be degrees
minutes or anything else the user wishes.
The hyphen is used merely as a delineator.

Note that example 3 above results in two
calls to the user-exit routine. The first
call terminates CPSCAN returns a zero indi
cator and does not honor further calls to
GUSER> when the first comma is encountered.
The CAP points to ABCCl> .. When the comma
is encountered., ICHAR is set to zero by
C~L GUSER. CALL NOSER should then be
called for the second time to increment CAP
to the next value CABCC2>>. Then, since no
data name is given for the next data item
(2-1,>, the same formatting rules (mode,
user exit, scale factors> are used as for
the preceding input value.. <See •Data
Value•, 4.2.1.) A user-exit program is
never entered unless the appropriate data
name is encountered in the input command
data stream.

The following example would
one call to the user exit.
following the comma would be
as a DATA NAME:

NAME, ABC AlB, AlC, •••

process only
The letter A
interrogated

'l'he command shown above has the following
implications when executed by normal PLAN
PSCAN processing.

NAME
-A-

B
A
c

VALUE
-1--

TRUE
1
TRUE

15 SEPTEMBER 1969

The statement scan may at times be required
to pass over symbols and data that normally
require user-exit conversion. This will
happen during transfer of control over
user-exit-associated data names when eval
uating execution-defined expressions. An
indicator ISW <see "CALL NOSER"> is zero if
the user-exit program is to s-tore values,
and nonzero if values are not to be stored.
In ·either case, the user-exit routine must
CALL GUSER until a zero-value is returned
in ICHAR, or an error may result from· PSCAN
causing a phrase abort.

The following user-exit routine, written
with 1130 FORTRAN control · cards, illus
trates a FORTRAN user-exit program to con
vert input in the form of feet-inches
(3'11") into a value in inches. A portion
of the ADD PHRASE and execution-time phrase
are also shown.

ADD PHRASE: FOOT INCH, EXIT' EXIT1., FINCH,,
EXIT3', U2IC12)FIN, ••• ;

FOOT INCH, FIN 1' 3• ·~ 12'' 3• ,, 4 I,, 9•., ••• ;

// JOB
// DUP
*DELETE FINCH
// FOR
*LIST ALL

c
c
c

c

c

c

c
1

c

c
5

c
10

c
15

c

c
20
22

c
23

c
24

COMMON L(625) ;,LSC15), KA(510) ,., PA(2196)

SEE APPENDIX A FOR SPECIFICATION OF
PA (PROGRAM AREA PROTECTION)
INITIALIZE USER EXIT LINKAGE
CALL IUSER
INITIALIZE SUM OF INCHES
NSUM = 0
NTEMP = 0
SET MODE SELECTION
MODE = 0
IS STORE VALID
CALL NOSER (ISUB., ISW)
FETCH CHARACTER
CALL GUSER(ICHAR)
HAS SCAN BEEN TERMINATED
IF CICHAR) 25, 25, 5
IS IT SINGLE QUOTE
IF (!CHAR -125) 20,10,35
IS A SINGLE QUOTE ACCEPTABLE
IF (MODE -1>15, 30., 30
CONVERT FEET TO INCHES
NTEMP = NSUM * 12
NSUM = 0
S.ET MODE SWITCH
MODE = 2
GO TO 1
INVALID CHARACTER INCREMENT SUBSCRIPT
KERR = 101 ,
CALL NOSER CISUB,ISW)
KCHAR = !CHAR
SCAN OUT TO END OF FIELD
CALL GUSER (!CHAR)
IF (ICHAR)24,24,23
SET ERROR CODE - GIVE CHARACTER CODE
CALL EUSER (KERR, KCHARw 0)

IBM PROBLEM LANGUAGE ANALYZER (PLAN)

PROGRAM DESCRIPTION MANUAL

C INCREMENT SUBSCRIPT, STORE VALUE, AND
C EXIT

25 IF(ISW)27~26,27
26 KA (ISUB) = NSUM + NTEMP

CALL NOSER (ISUB,ISW)
27 CALL EUSER C0,0,0)

C INVALID FORMAT - FOOT MARK INVALID
30 KERR = 102

GO TO 22
C IS CHARACTER INCH INDICATOR

35 IF CICHAR...:.127) 20,, 40, 60
C IS INCH MARK VALID

40 IF CMODE-2) 50,, 50, 55
C ERROR 103

45 KERR = 103
GO TO 22

C SET OTHER CHARACTERS INVALID
50 MODE = 3

GO TO 1
C INVALID CHARACTER FOLLOWING INCH MARK

55 KERR = 104
GO TO 22

C IS CHARACTER ACCEPTABLE
60 IF (MODE -3) 65,,55,,45

C ACCUMULATE SUM IF NUMERIC
65 IF CICHAR -240) 20,, 75, 70
70 IF CICHAR -249) 75,75,20
75 NSUM = NSUM*10 + ICHAR-240

// DUP

GO TO 1
END

*STORECI WS UA FINCH

4.3.19 EXITS

The keyword EXIT introduces a three name
program list specifying the names of the
modules to be executed as user-exit pro
grams 1, 2, and 3,, respectively. The
following example illustrates definition of
PROGA for user exit 1, PROGB for user exit
2 and PROGC for user exit 3. Example:

EXIT 'PROGA, PROGB, PROGC', •••

If user-exit programs are specified for
data item conversion and the keyword EXIT
is not used to provide a routine name, the
default program names EXITl, EXIT2, and
EXIT3 are used.

The 1130 PLAN system provides a program
named EXITl that converts data to extended
precision. If the user were to program,
compile, and catalog his two most common
data conversion requirements wider the
names EXIT2 and EXIT3,, the need to express
the keyword EXIT and user-exit program
names would be held to a minimum.

4.3.20 FORMULA AREA

When present, the formula area follows all
other phrase-defined data and keyword
entries <level, data items, program lists,
etc.>. The formula area is a special

DEFINITION (4.3.0) 49

IBM PROBLEM LANGUAGE ANALYZER (PLAN)

PROGRAM DESCRIPTION MANUAL

adaptation of the function provided by
formula numbers during language use time.
The formula area is introduced with a
dollar sign <$> and is terminated with the
phrase-terminating semicolon (;). The for
mula area is comprised of any number of
formulas within the limits of the maximum
phrase length. Formulas are separated with
commas. Each formula may be labeled with
one or more formula numbers. A formula
number is a dollar sign <$> followed by an
integer number in the range of 0 to 1024.
The formulas following a conditional eval
uation may be formula numbers that indicate
the formula number to which control is to
be transferred if the condition is satis
fied. They may also be expressions as
defined under "Conditional Evaluation",
4 .• 3 .1 7. Evaluation proceeds ·left-to-right
within the formula area. Formula number
zero may not be referenced in another
formula.

The differences between the ADD
formula area and execution-time
number usage are outlined below:

1. Allowable syntax organization

PHRASE
formula

a. ADD PHRASE: The formula area must
be the last area in the defined
phrase, that is, data item defini
tions must not follow the first
occurrence of a formula number.

b. Execution time: Data assignment
not requiring expression evaluation
(D57.5) may be intermixed with for
mula numbers and expressions as
shown in the following example:

EXECUTE, $5 A=B+C, D57. 5, F= (A/C),
$2=B*C, •• e;

2. Unreferenced formula numbers

a. ADD PHRASE: Unreferenced formula
numbers are indicated by diagnos
tics (see Appendix F, 13.0 .• 0).

b. Execution time: Unreferenced for
mula numbers are not detected.

3. Formula number limits
a. ADD PHRASE: 1-1024 (Numbers great.er

than 1024 or equal to 0 are ignored
but are invalid as references.)

b. Execution time: 1-32,767

4. Valid expression number suffixes

a. ADD PHRASE: Formula numbers must be
followed by another formula number,
by a data name, by an expression,
or a comma or semicolon.

b. Execution time: No restrictions.

50 DEFINITION (4.3.0)

15 SEPTEMBER 1969

5. Undefined formula numbers

a. ADD PHRASE: Undefined formula num
bers are indicated by diagnostics
(see Appendix F, 13.0.0).

b. Execution time: Undefined formula
numbers are not detected. A bi~ an ch
to an undefined formula numbE~r is
treated like a branch to the semi-·
colon. A branch to formula number
O is not executed (acts like a
NOP).

•rhe following types of statements may be in
the ADD PHRASE formula area. Each may be
prefixed with a formula number. The data.
name in each case is optional.

l. Arithmetic evaluation

2.

data name = arithmetic expression,
Example: A=B•1oo+c

Logical evaluation
data name: logical expression,
Example: A:BIC&1 D

.3. conditional evaluation
data name: logical expression ? =
arithmetic expression or: l~rical
expression !=arithmetic expression or:
logical expression
Example: A:CB<100) & CB>0>?=20!=0,

X: (CA=->&<B=+>?:A&B! :AIB,.

4. Conditional branch
data name: logical expression ?$n!$m,
Example: : CA>5) ?$3 ! $4,

5. Unconditional branch
:$n,
Example: :$3,

6. Mixed conditional
data name: logical expression ?
expression !$n,
data name: logical expres;sion
?$n!expression
Examples: A:CB="ABCD")?=lOOO !$5,

B: (A=+)?$1 !:BIC,

Statements of the type defined in 4, 5, or
6 above may result in transfer of control.
A maximum of 1000 branches is permittedl for
the execution of any phrase. This prevents
the programming of endless loops.

The following example illustrates USE! of
the formula area in the addition of a
phrase. Reference should be made to "'Log
ical Operand" and "Logical Expression:" in
the section "PLAN Language Terminology",
LJ .1. 0 • The example produces the count of
the number of literal values given at
phrase execution time with the data name
"NAMES". The number of literals will be
accumulated at N Cnonmanaged array 1), and

15 SEPTEMBER 1969

the CAP of the word following the last
literal will be given at s.

ADD PHRASE: TEST, I(-9)8192, M, I(M+1)NO,
I(M+2)S1, CM+3,97)NAMES-'DEFAULT', $0:
(NAMES(S)=+)?$2!$4, $1N=N+1, S=S+(NAMES(S)
+7)/4-.5, $4:,NAMES(S)?$2!$1, $2:

The following explanation of the above
example is treated step-by-step as executed
at phrase-execution time:

TEST, gives the name of the phrase to
add to the language dictionary (TES)
IC-9)8192, sets the size of COMMON to
8192 words <switch Word 9)
~. sets the label M equivalent to
Switch Word 10. It is assumed that
Switch Word 10 is set at execution time
by a. level 0 command to the size of the
managed array.
ICM+l)NO, assigns the label N to the
first position of the nonmanaged array
and sets the default value for the
location to zero. It is assumed that
Switch Word 10, the size of the managed
array,, has been set by a previous
phrase.
ICM+2)S1, assigns the label S to the
second position of COMMON beyond the
managed area and sets a default value
of 1.
(M+3,97)NAMES-'DEFAULT', sets the label
NAMES equivalent to the third position
of the nonmanaged array. The third to
the hundredth position of the non
managed array is initialized to FALSE.
The literal DEFAULT is set to the
third, fourth., and fifth position of
the nonmanaged array (see section "Mul
tiple Data Element Definitions•,
4.3.26).
$0:CNAMES(S)=+)?$2!$4, introduces the
formula area C$0) and sets the number
of the first formula to zero. If
NAMES(S) is TRUE, transfer is to
expression 2: otherwise. transfer is to
4. This tests for the use of NAMES
without a given literal. (Note that
formula number zero may not be
referenced.)
$1N=N+1, adds one to the counter <count
of literals) that was initialized to
zero, located in the first position of
the nonmanaged area.
S=S+CNAMES(S)+7)/4-.5, calculates the
position of the word that contains the
next literal character count.
$4: 1 NAMES(S)?$2!$1, causes a transfer
to formula 2 if NAMES(S) is FALSE;
otherwise, transfer is to formula 1.
~ indicates the end of processing.

Check entries defined in a phrase are
evaluated following execution of phrase
defined formulas. Thus, check entries may
be used to test for the validity of tests
performed within the formula area.

IBM PROBLEM LANGUAGE ANALYZER (PLAN)

PROGRAM DESCRIPTION MANUAL

4.3.21 SWITCH WORDS

A block of 15 switches is a portion of the
standard PLAN permanent residence section.
The 15 switches are located in COMMON
between the 625 32-bit word PLAN loader
area and the communication array. The
format of the COMMON Switch Words is:

1

2

3

4-7

8

9

10

The first word of the DYNAMIC file
control block CIDCl>> of the file
currently in use for statement sav
ing. The word may indicate either
an open or a closed DYNAMIC file
<see •Dynamic Fi le Support• ,
5.5.0).

Contains the statement number of
the saved statement that is to be
executed next. If this parameter
is zero, processing is in the norm
al manner (processing from PLAN
input device) .•

Contains the statement number of
the last saved statement to be
executed. Note that if Switch Word
2 contains a zero,, Switch Word 3
and switch Word 1 may be used for
any desired user system function.

These switches are for
sive use of the
modules. Recommended
these switches as data
outlined below.

the exclu
application

usage of
pointers is

contains the subscript of the first
word of a block of the communica
tion array that may be treated as
•erasable COMMON". The function of
•erasable COMMON" is to provide an
area of command and module
independent memory that may be used
by utility commands/routines and by
user modules with the knowledge
that they are not destroying system
data required for continued
execution.

The length of "erasable COMMON" is
assumed to be the number of words
to the end of COM~ON. Thus, no
length specification is required.

Contains the maximum size (in PLAN
32-bit words) of COMMON for the
phrase being processed. This
allows the user to · manage COMMON.
It is the sum of the requirement
for the loader, system switch area,
managed array, and any additional
nonmanaged COMMON. The minimum
allowable value for this switch is
640.

Contains the
to be managed

number of PLAN words
by the PLAN level

DEFINITION (4.3.0) 51

IBM PROBLEM LANGUAGE ANALYZER (PLAN)

PROGRAM DESCRIPTION MANUAL

11-12

management, as the managed commu:ni
cation array.

Setting this value to zero allows
the use of the level error recovery
facility of PLAN without initiating
the disk access operations involved
in the communication array data
management.

(Switch Words 11-12 may define one
of two functions as defined below.>

Contains the name of the user
wri tten module that is to process
error conditions, instead of the
normal PL.AN error processing proce
dures. User error modules may not
call PLAN error subroutines (ERROR/
ERREX/ERRAT/ERRET, 5.11.6). PERRS
will exit to the user error module
via the checkpoint facility on each
error on the 1130 version of PLAN.
on S/360 PLAN, the named module is
loaded as a LOCAL to process the
error condition.

An array in the following format is created
in erasable COMMON.

11

12

BYTE
0-7

8-11

12-15

16-20
21

22

23
24-27
28-31

32-107
108-111
112-561

CONTENTS
Program name causing diag
nostic call
Error number (Nl from error
subroutine call)
Error code (N2 from error
subroutine call)
ID from cc. 76-80
hexadecimal FF = system
error,, 0 = user error
hexadecimal FF = abort, O =
continue
(Unused>
Sequence
Length of literal in
characters
Diagnostic literal
Literal count of phrase
Phrase text

If Switch Word 11 is zero or a
positive number,, it indicates the
count of the number of diagnostic
messages that are to be written
onto DYNAMIC file 255 of drive 0
<error message queue file) before
they are written on the device
defined in switch Word 12 or as a
result of CALL ERLST. This option
is not available if the diagnostics
are processed by a user-written
module. If this word is zero or
one, diagnostics are written
directly to the output device spec
ified in switch Word 12.

contains the device code <see CALL
IOCS, 5.11.5) for the device on

52 DEFINITION C4o3.0)

13

14
15

15 SEPTEMBER 1969

which diagnostics
written.

are to be

Contains switches governing the
mode of error processing. The low
order four bits of the integer
portion of this switch word govern
PLAN error processing.

BINARY
BIT
VALUE

1 OFF

ON

2 OFF

ON

4 OFF

ON

Short form ,error
messages
Long form ,error
messages

Stacked ·error
processing
Immediate •error
processing

Dynamic file •error
abort
Dynamic file •error
continue

8 OFF Permanent
abort

file terror

ON Permanent file
continue

terror

CSee "PLAN System Diagnostic ll?roc
essing", 13.0.0)

<Reserved>
User Functions

The switch words are initialized when PLAN
processes any level 0 phrase. The settings
assigned at that time are:

SWITCH
1
2

3
4
5
6
7
8
9

10
11
12
13
14
15

INITIALIZATION VALUE
0 (saved statement file)
0 (saved statements not being

executed}
O (last statement saved)
0 (data list pointer one}
O (data list pointer two>
0 (data list pointer three}
O {data list pointer four>

490 (erasable COMMON)
1150 (625+15+510) number of

32-bit words in COMMON
0 <managed array size)
O (error processing controD

100 (standard PLAN output device>
O <error processing mode)
O <reserved>

(not initialized)

The switch words should be set by the first
command processed when PLAN is invokE~d to
reflect the desired operating environment
:E or this run. A suggested command for this
function is "PLAN JOB;" <see "Standard PLAN
Commands", 4.5.0>.

15 SEPTEMBER 1969

Note that any attempt to use the standard
PLAN utility commands DUMP COMMON, DUMP
SWITCHES. DUMP MANAGED, DUMP NONMANAGED,,
DUMP DYNAMIC, DUMP PERMANENT, DUMP PHRASES.,
and others will not be honored if Switch
Word 8 is not set to a valid <positive>
erasable COMMON pointer.

The switch words are referenced in the same
ma,nner as the managed communication array,,
except that the subscript is negative in
the range of -1 to -15. The :following
example illustrates the FORTRAN definition
of a 350-word communication array, where M
is the managed array and N is the non
managed array:

COMMON L(625), LS(15}, M(200}, N(150}

4.3.22 SWITCH WORDS 4-7 AS DATA POINTERS

Serious consideration should be given to
the use of the switch.words as data list
pointers. Logic modules written to expect
data strings in predefined positions of the
communication array may be useless when an
attempt is made to process another data set
which for some reason requires a different
starting CAP.

The use of the switch word data list
pointer concept allows processing of data
no matter where it occurs. It also allows
a user to shift his data bank location more
freely without impact to application
programming.

The following example illustrates use of
Switch Word 4 as a data list pointer:

In the phrase definition "ADD PHRASE:
NAME.I(-4}M, (M,200}AO ••• :" M is the

IBM PROBLEM LANGUAGE ANALYZER (PLAN}

PROGRAM DESCRIPTION MANUAL

direct pointer to the first data item
of the data list. Thus, CAP names of
M, M+l, M+2, etc,., define successive
values within the A data list. The
user logic module need not concern
itself with where the data array will
actually be located because of this
ability to reference the data symboli
cally. As a matter of fact, the pro
blem definer, at execution time, may
change the location of the data list at
will without requiring the programmer
to change the logic module. All that
is required of the problem definer is
that he issue a command which gives a
value to M. An example of such a
command follows:

NAME, Ml:

Switch Word 4, known as M, would receive
the value 1. This value would be the
starting CAP for the 200-word array known
as A. Since no override is specified for
the default value zero, communication array
locations 1, 2,, 3, •.•• , through 200, would
be set to zero.

Switch Words 4-7 are available to pe used
as data pointers allowing a maximum of four
arrays to be directly referenced at any one
time.. However,, it is possible to process
more than four arrays at any one time.
This can be done in an indirect manner. If
one or more of the Switch Words 4-7 point
to CAPs which are not the start of the data
arrays, but rather are the start of a list
of CAPs which point to the data arrays, it
is possible to define as many arrays as is
required by the user <within the limits of
core>. This principle is illustrated in
Figure 8.

r- - - - - r--,.--,--,.--, - - r--T---T·--T--T--T __________________ T _____________ T ______ ,

ICONI'ENTS 125f 01 01 01 13011301E T Cl l<-----A ARRAY---->l<---B ARRAY--->I ETC. I
L- - - - -L--i--L--.L--J- -L-~i---i·--i--i--i------------------i--------~------i------J
CAPS -4 -5 -6 -7 25 26 27 28 29 30 130

Figure 8. Schematic of the indirect data pointer

Programs that allow for maximum interchan
geability of data ma¥ be provided if a
convention using switch Word (3+N} for data
list N is adopted, where N is in the range
of 1-4. If a value of N greater than 4 is
required. the switch words should be used
as indirect pointers as defined above.

Use of the data list pointer concept
(Switch Words 4-7> is made easy by the two
subroutines PARGO and PARGI. PARGO pro
vides for transfer of data lists from a
user array to the communication array loca
tion pointed to by an indicated switch
word. PARGI provides for transfer of data
from the communication array to a user
array.

DEFINITION (4.3.0) 53

IBM PROBLEM LANGUAGE ANALYZER (PLAN)

PROGRAM DESCRIPTION MANUAL

The following example shows use of the
PARGO routine in transferring array F, i.n a
module, to communication array location 20.
Example:

COMMON L(625), LS(15), M(255)
LS(4)=20
CALL PARG0(4,F)

In the above example,, if F (1) contained a
10,, then communication array position 20
would be set to 10 and F(2) through FCll)
would be transferred to communication array
positions 21 through 30.

If the origin arrays are also in the
communication array (COMMON), more effi
cient execution can be gained by coding the
COMMON references with symbolic subscripts
to avoid physical movement of data. For
example, if the task of the module is to
add up the data list, it can be coded:

In the module creating the array:
LS(4)=INDEX

In the module summing the array:
DIMENSION FILE(•••
COMMON L(625),LS(15),M(•••
EQUIVALENCE (FILE(l),M(l))
K=LS(4)
LGTH=M(K)
IJ=K+l
I2=K+LGTH-1
SUM=O.
DO 2 I=IJ,I2

2 SUM=SUM + FILE(!)
•
•
•

4.3.23 STATEMENT SAVE

Any PLAN statement or group of PLAN state
ments,, that define a procedure, can be
saved in a PLAN DYNAMIC file for later
execution. Identification of saved state
ments is by statement number and through
use of the PLAN switch words. statement
numbers, in the range of 1 to 32,767, are
prefixed to any PLAN statement that is to
be saved. Thus, the PLAN statement takes
on the general format shown in the follow
ing example:

N COMMAND, DATA: N COMMAND, DATA: .•••

In the example, N, when present, is the
statement number. Note that it is a dis
tinct advantage functionally to keep N as
small as possible.

Statements are saved either implicitly or
explicitly. The standard PLAN command SAVE
starts the saving in the designated PLAN
DYNAMIC file of the commands that follow.
Saving operations are terminated when Cl) a

54 DEFINITION (4.3.0)

15 SEPTEMBER 1969

new SAVE command, (2) a SEND (Save End)
command, or (3) an unnumbered command is
encountered. Statements saved explicitly
are not executed during the saving opera
tion. Every statement to be saved mm;t be
numbered. The following example illus
trates the use of the SAVE command for
saving statements that describe a
procedure.

SAVE, FILE 45, DRIVE 1:
5 COMMAND;
6 COMMAND:
7 COMMAND;

SEND:

The SEND command has no parameters.

The SAVE
parameters:

command has the f ollowinig

FILE This data item defines the PLAN
DYNAMIC file that is to be ased
for saving the commands. If the
value is not provided, the cur·
rent file number in switch Word 1
will be used. The file does not
need to be open <see "DYNAMIC
File support", 5.5.0>.

DRIVE This data value defines the PLAN
DYNAMIC Drive on which the state·
ment save file is located. If
the value is not provided, the
current value in Switch Word 3
divided by 2048 will be used as
the dynamic drive indicator •

Numbered PLAN statements that are not
explicitly saved are automatically saved
(implicit> but are also executed. ADD
PHRASE, ALTER PHRASE, and DELETE PHRASE
commands may not be implicitly saved.
Statements saved implicitly are stored in
the file indicated by PLAN Switch word 1
Csee "Switch Words", 4. 3 .• 21>. If a state···
ment number is the same as a statement
already on that file,, the new statement
replaces the old statement. Any error
found by PSCAN while scanning a statement
to be saved implicitly will inhibit the
saving of the statement. If no pre·vious
file has been designated, file 254 is used
on drive O. Note that the rules stated
under "DYNAMIC File support", 5.11.0, con
trol also the release of statement save
files. Thus, a permanent statement save
file may not be defined on DYNAMIC Drbre Q,.,
The failure of a check-entry with a "P"
action code C•P•PHRASE') prevents implicit
saving of the PLAN statement.

Saved PLAN statements may be executt~d at
any time through entry of an EXECUTE com-·
mand delineating the limits of the

15 SEPTEMBER 1969

statements to be executed. These limits
are maintained in the PLAN switch words;,
and may be program-altered at any time .•
Execution always proceeds to the next
higher-numbered statement that is in the
save file regardless of the order in which
the statements were added to the save file.
An example of the EXECUTE command is given
below:

EXECUTE, FROM 5 TO 10* FILE 45, DRIVE
1;

The EXECUTE command has the
parameters:

following

FROM This data item defines the lowest
numbered saved statement to be
executed as a result of processing
this command. If the number is not
in the file, an error diagnostic
(DFJ172) will be given.

TO This data item defines the highest
saved statement that may be executed
as a result of this EXECUTE command.

FILE This data item defines the number of
the DYNAMIC file that contains the
saved statements to be executed. If
this parameter is not specified, the
current file number in Switch Word 1
will be used.

DRIVE This data defines the DYNAMIC drive
number that contains the saved state
ment If the value is not provided,
the current value in Switch Word 3
divided by 2048 will be used as the
DYNAMIC drive indicator.

Execution of saved statements may also be
controlled by any command or logic module .•
A saved statement is executed any time the
PLAN loader is entered and (1) the pop-up
list is found to be empty, and <2> system
Switch Word 2 is not zero.

Therefore, any logic module or any command
that properly sets system Switch Words 1,
2, and 3 may control <start~ stop, or
modify order> saved statement execution.

The following commands illustrate the use
of saved statements for looping within a
command string. The first commands are the
ADD PHRASE commands to define the control
ling statements. Note that statements 1-7
adjust the sequence of execution.

IBM PROBLEM LANGUAGE ANALYZER (PIAN)

PROGRAM DESCRIPTION MANUAL

ADD PHRASE: GO, IC-2)TO;
ADD PHRASE: IF, I(l)TEST,
TEST?=TEST(2);
ADD .PHRASE: DO,, (5)LIT, IC3)A5,
SAVE;
1 DO, ~THIS' ••• ;
2 DO, 'THAT' ••• ;
3 GO, T07;
4 DO, 'SOMETHING' ,,AO.- •• ;
5
6
1 IF, :CA>4),4;
EXECUTE, FROM 1 TO 7;
NEXT PHRAS, ••• ;

(-2):

... ,

The EXECUTE statement in the above example
results in the following statement
executions.

STATEMENT
NUMBER CAP DATA NAME SET TO

1 3- A 5
5 LIT 4,, 'THIS'

2 3 A 5
5 LIT 4, 'THAT'

3 -2 TO 7
1 1 TEST +(TRUE)

2 TEST(2) 4
-2 TO 4

4 3 A 5
5 LIT 9,'SOME','THIN',G'

<3 <A <O
5 • • •
6 • • •
7 1 TEST -(FALSE)

Execution continues with 'NEXT PHRAS'.

In the above example, execution of state
ment 3 causes control to pass to statement
7 by setting the PLAN Switch Word 2 to the
statement number of the next statement to
be executed. Statement 1 tests the first
position of the communication array for
presence of a logical TRUE. If found to be
TRUE, the contents of th~ second position
of the communication array are moved to
Switch Word 2 to indicate the next state
ment to be executed. Thus, a loop can be
established and statements executed under
program control.

4.3.24 IMPLIED DATA ELEMENT DEFINITION

Phrase data element definitions may be
implicitly defined as successor elements to
previously defined data elements. An
implied data element definition may not
follow a data element definition including
a symbolic subscript. A data element
definition is organized as follows:

I F I s I N I v I
L---i---L---L---J

DEFINITION (4.3.0) 55

IBM PROBLEM LANGUAGE ANALYZER, (PLAN)

PROGRAM DESCRIPTION MANUAL

F

s

N

contains the format control,, <user-e:Kit
control, mode control, and scale
factor)

contains the conununication array sub
script (CAP)

contains the data name

v contains the initialization values,
check entries,, and phrase-defined
expressions

The s and N sections may be implied as long
as the sections to the left of the section
to be implied are not included. A comma
within the comnand indicates a new data
element definition; therefore~ any follow
ing data values are implicitly defined.
The CAP of the implied data element defini
tion is one greater than the previous CAP.

Implicit definition of s leads to a value
of the next communication array position.
Example:

IP+2(10)A5, B7 ••••

The above example would assign the standard
value of 7, scaled by 100, in the integer
mode,, to the data name B at CAP 11. In the
following example, B is assigned to CAP 13
and is stored in floating-point mode.
Example:

(10) A' LITERAL' ,, B7, •••

In the previous examples the data name B
was also optional. The location equivalent
to B in the two examples could be
referenced in an execution-time statement
by A(2) and A(4), respectively.

Additional implicit definitions are given
in the examples below:

(10)A5, 'LITERAL' •••
(10)A, = A*lOO, •••
(10)A, :AIB •• ,.
(10)A, *TA 'POSITION 11 BAD' •••
<10, 20)A, B32 , .••

If the implied value is the first item to
be defined in the phrase, CAP 1 is assumed.

Implicit definition also applies to the
formula area. Execution of the following
commands would yield a value of 1 in CAP
10,, 4 in 11,, and a logical TRUE in 12.
Example:

ADD PHRASE:
:(A=4)?=+;
TEST,,Al;

TEST,

56 DEFINITION (4.3.0)

C10)A $0=A+3,

15 SEPTEMBER 1969

4.3.25 PSCAN EXECUTION SEQUENCE

This section describes the sequence of
operations during interpretation and proc
essing of an execution-time statement.

1. Phrase entry. The phrase definition is
is retrieved from PFILE. The managed
array is initialized, saved, and
restored according to the rules defined
by the level indicated for the phraseQ

2.

3.

VERB phrases.. Program names are .added
to the pop-up list as the VERB phrases
are encountered in a left-to-:right
manner. The lists processed at this
time are those associated with the
keyword VERB.

Symbol table initialization. The sym-·
bol table is initialized according to
the level of the phrase. Data :names
from this phrase are then added b) the
symbol table in a left-to-right . c)rder
as defined in the ADD PHRASE (fu:rther
information is described in the discus
sion of Table 3 of the phrase •entry
table in Appendix E, 12.0.0J. Data
names from VERB phrases follow data
names from the OBJECT phrase with the
data names from the leftmost VERB
phrase entered last. Symbol table con
struction is illustrated in Figure 9.

The symbol table construction ef f ec:t is
illustrated in the following example:

ADD PHRASE:
(3)B1, O;
ADD PHRASE:
ADD PHRASE:
ONE;

ONE, LEVEL 1, (2)A, (l)A,

THR, (2)B, (4)C;
TWO, C, VERB, (3)C;

TWO THR, Cl, B2, A3;

The communication array will contain
the following data after the above
execution. Underlined letters rc~pre
sent the final symbol table entrieB.

CAP
1

2
3
4

CONTENTS
3
2
1
0

SYMBOL TABLE ENTRI~?
~ c

A ,!!
B £

c _____________ __._>

TIME

Note that the final
symbol table definition of each data
name is underlined-. Entries not under
lined are subsequently overridden.

The first command
issued is "ONE;". Therefore, l,SCAN
first analyzes that PFILE phrase entry.
Since ONE is a level 1 command, cl new
symbol table is started. The :t:irst
data item encountered as PSCAN scans

15 SEPTEMBER 1969

the phrase entry from left to right is
A. A is entered into the symbol table
as the data name for CAP 2. The next
data item encountered is also named A.
The CAP specified for A this time is 1.
The previous reference of A is eli
minated from the symbol table,, and the
new reference for A is recorded in the
symbol table. The data name A now
refers to CAP 1. The next data item
encountered is named B. B's definition
causes an entry to be made in the
symbol table that specifies that CAP 3
is to have an associated default value
of 1. The last data item encountered
in this phrase is the value O. Since
no CAP is explicitly defined for this
value, PSCAN assigns this value to the
next available CAP. Therefore., CAP 4
is assigned the value 0.

The following diagram
represents the results of the steps
described above.

CAP CONTENTS
1

2
3 1
q 0

SYMBOL TABLE ENTRIES
~

A
B

If the reader uses the method of analy
sis outlined above in accordance with
the rules for symbol table initializa
tion, the diagram that shows the final
symbol table entries should become
apparent. Hint: Analyze the OBJECT
phrase "THR" before the VERB phrase
"TWO"•

IJ. Data initialization. Default values
defined in the ADD PHRASE are stored in
the communication array. Default
values from VERB phrases Cright-to
left) are processed following proc
essing of default values from the
OBJECT phrase.

5. Input analysis. Execution-time data is
converted and moved to the communica
tion array. This phase includes all
data defined in the input stream as
analyzed in the left-to-right order.

6. Phrase-defined expressions. All
expressions defined in the ADD PHRASE
including the formula area, are eval
uated. The formula area for each
phrase is evaluated following data item
expressions.

7. Program list. Program lists are added
to the pop-up list.

8. Check entries. All check entry tests
are performed in a left-to-right order
and the appropriate specified action is
executed. If there are VERB .phrases

IBM PROBLEM LANGUAGE ANALYZER (PLAN)

PROGRAM DESCRIPTION MANUAL

Csee "Verb Designation and Program
List", 4.3.5), steps 6 through 8 are
repeated in a right-to-left manner.

The following example illustrates the
contents of the communication array
following expression execution of
phra~e-defined and execution-defined
expressions: An execution-defined
expression is defined as any expression
contained in the execution-time input
stream.

ADD PHRASE: ONE, LEVEL 1, A, BO, =O,
=6, $0 B(3)=9;
ONE, $1A5:CB=1>?$9, A4, B=l, 5, 7,:$1;

CONTENTS ACCORDING
CAP ~ TO PSCAN SEQUENCE
1 A 5 4 5

2 B 0 1
3 5 0
q 7 6 9

PSCAN execution for the above example
occurs in the sequence listed below:

1. Default values defined in the ADD
PHRASE are stored in the communica
tion array. This causes B,, which is
assigned CAP 2, to be set with a
default value of zero.

2. Execution-time data as defined in
the command "ONE" is converted and
moved to the communication array.
The first data name encountered,
scanning left to right, is A.

A has been given the data value 5.
Hence, CAP 1 (from previous A
definition) will be given the value
5. Next,, PSCAN encounters the log
ical expression ":CB=1)?$9". Since
B at this point in time contains a
zero, the branch to formula number 9
is not taken. PSCAN, next, sets
A(CAP 1) to 4, B(CAP 2) to 1, and
CAP 3 and CAP 4 to·5 and 7, respec
tively. The next data item encoun
tered, ":$1", causes an uncondition
al branch back to formula number 1.
Once again ACCAP 1) is set to 5.
The logical expression ":CB=1)?$9"
this time, however, is TRUE Csince
the arithmetic expression B=l was
.executed above>, .and a branch is
taken to formula number 9. But,
since formula number 9 has not been
defined in this command, a branch is
taken to the semicolon Csee "Formula
Area•, 4. 3. 2 0 > ,, and PSCAN execution
continues as described in 3.

3. Expressions defined in the ADD
PHRASE, including those in the for
mula area, are evaluated. The eval
uation of the expressions in the

DEFINITION (4.3.0) 57

IBM PROBLEM LANGUAGE ANALYZER (PLAN)

PROGRAM DESCRIPTION MANUAL

formula area follows the evaluatl.on
of the data element expressions.
Since CAP 2(B) was just tested, the
PSCAN CAP pointer now moves over to
CAP 3 and the value zero is stored.
PSCAN then sets CAP 4 to 6.

WHAT
IS LEVEL

OF THIS
PHRASE?

I
I
,I

EXECUTE I

15 SEPTEMBER 1969

Finally, the formula "$0B<3)=9"' is
evaluated. Evaluation causes a 9 to
be placed in B < 3) • Since B <:U is
CAP 2 and B(2) is CAP 3, then B(3)
is CAP 4. Hence,, a 9 is storE~d in
CAP 4.

PHRASE I r----------,
I I START NEW I

~ SYMBOL TABLE I LEVEL 1 f SYMBOL I
I SAVE AREAS ~------------------------..i TABLE r·---1
I I L----------J
I I
I I
I I

r---i----1 r------------1 I LEVEL 2 r----------1

I ILEVEL 1 I ~---+--------------------------~
I I OR BLANK-----TJiiiol #1 I I OR BLANK I
I IAFTER 1 I I I I AFTER LEVEL 1 I
I I I •------------~ I I
I WRITE I LEVEL 2 ·~ I I LEVEL 3 I
I SYMBOL I OR BLANK----i·f~ ~----+--------------------------~
ITABLE IAFTER 2 11 I #2 I I OR BLANK I
I TO DISK I 11 I I I AFTER LEVEL 2 I READ IN
ISAVE I II ·------------~ I !SYMBOL
IAREA(S) ILEVEL 3 ,.~ I I LEVEL 4 ITABLE
I AS SHOWN I OR BLANK H~ ~----+---------------------------~AS SHOWN
I I AFTER 3 ---Tff"'4 #3 I I OR BLANK I
I I I I I I I I AFTER LEVEL 3 I
I I I I I ~----------~ I I
I I II L~ I I I
I ILEVEL 4 f L-~ ~---i--------------------------..i
I I OR BLANK L--.. #4 I BLANK I
I IAFTER 4 ------.-f I AFTER LEVEL 4 I
L---i----J L------------J L----T,-----J "' .-----------,

I I ADD SYMBOLS I I
L--------------------------------~ FROM THIS ------------------------J

I PHRASE I
I ~-----------------------------------
L-----------J

Figure 9. Symbol tables save and restore logic

4.3.26 MULTIPLE DATA ELEMENT DEFINITIONS

Multiple data elements may be defined and
referenced to the same communication array
definition. This is possible because the
PSCAN CAP pointer does not normally incre
ment to the next CAP until the comma that
signals the end of a data element's defini
tion is encountered. The general format of
a command with the additional organization
requirements that must be followed in using

58 DEFINITION (4.3.0)

multiple definitions is shown in the fol
lowing schematic:

F

I F I s I N I c I L I E I x I
L---i---i---i---i---i ___ i ___ J

contains any format indicators <user
exi t control, mode control, and scale
factor>

15 SEPTEMBER 1969

s

N

c

L

E

is the communication array subscript
(CAP)

contains the data name

contains the default numeric or logical
data values. It is this section only
of the data element definition that may
be propagated through an array by a CAP
defined as an Implied Do.

contains
values

the default literal data

contains the check entry information

x contains the phrase-defined expressions

The following example illustrates a sample
entry defined to set an array containing
100 values to FALSE. to set a standard
literal to the first five array positions.
and to test for the proper use of the data
name and corresponding literal. In other
words. the following example has been
creab.!d to ensure that if the data name
ARRAY is specified in a command. its asso
ciated expected literal is also present.
If the associated literal is omitted, error
messages are issued. Example:

ADD PHRASE: SAMPLE. (25.124)ARRAY
'STANDARD DATA' *A'NO DATA' *RA'NAME
ONLY''••.•.

In the above
sequence of
PSCAN:

example. the following
events takes place within

1.

2.

A logical FALSE (7FFFFFFF) is set to
communication array positions 25 to
124. Note that ARRAY is entered into
the symbol table equivalent. to CAP 25
and that the PSCAN CAP pointer rests at
CAP 25.

wSTANDARD DATAn is
through ARRAY(5).
set to ARRAY(l).

set into ARRAY(2)
The literal count is

Since the PSCAN CAP

IBM PROBLEM LANGUAGE ANALYZER (PLAN)

PROGRAM DESCRIPTION MANUAL

pointer rests at CAP 25 and since a
single quote literal definition
requires a character count to be
stored, the count is stored in CAP 25
(ARRAy(l)). The literal itself is
stored in CAPs 26-29 (ARRAY(2) through
ARRAY(5)) as STAN,DARD,bDAT and Abbb,
respectively. The literal character
count is 13, which does not include the
padded blanks in CAP 29 but does
include all other blanks (CAP 28) which
may be part of the literal itself.
Note: The PSC.AN CAP pointer still sits
at CAP 25 since the data item terminat
ing comma has not been encountered.

3. A check entry is made on CAP 25 for not
FALSE. If the value is found to be
FALSE, the diagnostic "NO DATA" is
generated and execution of this phrase
is terminated. The location could be
FALSE only if entered as a data value,
for example. ARRAY-, since initializa
tion places a standard literal in the
location.

4. A second check entry is made on
ARRAY(l) for real. Since FALSE has
previously been checked. this is
essentially a test for TRUE, although
FALSE would also cause failure of this
check. If found to be TRUE <or FALSE),
the diagnostic "NAME ONLY" is generated
and execution of this phrase is
terminated. A TRUE valuP can result
from a user entering the following
command:

SAMPLE, ARRAY, ••• :

If a data name is defined and no
associated value is specified. a logi
cal TRUE is placed in the CAP repre
sented by the data name. Since the
sample ADD PHRASE contains check
entries which test for this type of
error. no harm is done. The phrase is
terminated with a mes~age and the user
reenters the corrected command.

DEFINITION (4.3.0) 59

IBM PROBLEM LANGUAGE ANALYZER CPLAN)

PROGRAM DESCRIPTION MANUAL

4.4.0 REVIEW OF LANGUAGE DEFINITION

This section is a self-teaching introduc
tion to language definition under PLAN. It
does not cover every possible option.
Reference will be required to other parts
of the manual for in-depth explanation and
understanding of the questions asked.

The material is presented as a series of
numbered questions. Following the question
is either a "yes" CY> or a "no"CN> ent:C"y
indicating an action to be taken according
to the answer selected. If only one answer
follows the question and it is not the
selected answer, this indicates that the
next question is to be processed. Material
in the answer section that is underlined
indicates entries to be made in generating
the ADD PHRASE. Transfers to other num
bered questions are preceded with the numb
er sign (#). AG instead of, or following,
a Y or N entry indicates a transfer to the
indicated question number. The following
example illustrates the organization of
this section. The first step is initiated
with the question "Is today Tuesday?". If
the answer is "yes", the "Y" option :is
executed. This tells the user to enter
•TUESDAY" into the command. If the answer
is •no•, the "N" option is executed and the
user enters the day of the week into the
command in literal form. Processing con
tinues at step Al. The G C"GO TO") could
have been eliminated since exe~ution of the
next entry is always implicit. Example:

#27.
Y.
N.

#Al.

Y.

N.

#A2.

Y.
N.

#A3.

Y.
N.

Is today TUesday?
'TUESDAY' G. #Al
'LITERAL' (Enter day of week for
literal> G. #Al

Is there a new phrase to
the system?
ADD PHRASE: NAME., (NAME
five words. Only the
characters of each word
ered significant.>
G. #Zl

be added to

is one to
first three

are consid-

Are there programs to be executed
each time this phrase is executed?
PROGRAM'NAMEl
G. #A4

Are there additional program names to
be added?
,NAMEn G. #A3
' --L

#A4. Is this phrase one of a series of
dependent phrases?

Y. LEVEL
N. G. #A6

#AS. Is this the independent phrase of the
dependency group?

60 REVIEW (4.4.0)

Y.
N.

#A6.

Y.
N.

#A7.

Y.
N.

#AS.

Y.
N.

#A9.

Y.
N.

15 SEPTEMBER 1969

h
!!L (n=2,3,,4 indicating increasing
levels of dependency>

Is this phrase to be used as a
modifier to another phrase?
VERB
G. #A9

Are there
after the
the object
'PROGA
G. #A9

programs to be executed
programs associated with
(nonverb) phrase?

Are there additional programs for the
verb list?
,PROGN G.#A8.
' -L

Are there to be data items that
require special user-written programs
to convert the data?
EXIT
G. #Bl

#AlO. Is the program to be executed with
user exit 1 named EXITl, user exit 2
named EXIT2, and user exit 3 n.amed
EXIT3?

Y.
N.

.L
• PROG1, PROG 2 , PROG3 .• ,, (• PROG1' 2, 3' are
the names of the programs to be
associated with the respective user
exit.>

#Bl. Are there data items to be defined
for this phrase?

Y. G. #B2
N. G. #Cl

#B2.

Y.

#B3.

Y.

#B4.

Y.
N.

#BS.
Y.
N.

Is the data for this data item to be
converted using one of the three
user-exit programs associated 1~ith
this phrase?
Un Cn=l,2 or 3)

Is the data item to be stored in the
integer mode?
!

Is the data item to be scaled before
it is stored (multiplied by :some
power of 10)?
~
G. #B6

Is the power of 10 greater than z,ero?
+n Cn ranges from 1-7>
-n Cn ranges from 1-7)

#B6. Is the data item to be stored in the
system switch words?

Y. C-n> Cn ranges from 1 to 15)
N. G. #B36

#B7. Does the data item require identifi
cation so that it may be identified

15 SEPTEMBER 1969

at execution time?
Y. NAME (NAME is any combination of 1-3

alphabetic characters. If more than
three characters are provided,, they
are ignored. >

#B8. Is there to be a standard (default>
value provided for the data item?

N. G. #B13

#B9. Is the standard data value to be
logical?

Y. #B11

#B10. Is the standard data value to be
literal?

Y. G. #B12
N. nnn (nnn is a numeric field contain

ing an optional sign, decimal point
and exponential modifier.) G.#B13.

#B11. Is the logical value to be FALSE?
Y. - G. #B13
N. ~ G. #B13

#B12. Is the count of the
characters to be
the literal text?

Y. 'LITERAL TEXT'
N. •LITERAL TEXT•

number of literal
stored along with

#B13. Is the data item to be checked for
status (TRUE, FALSE., REAL, NOT
FALSE)?

N. G. #B27
Y. *

#B14. Must the location. be REAL for the
test to pass?

Y. B G. #B18

#B15. Must the condition be TRUE for the
test to pass?

Y. ! G. #B18

#B16. Must the condition be FALSE for the
test to pass?

Y. !: G. #B18

#B17. Must the condition be TRUE or REAL
for the test to pass?

Y. G. #B18
N. Proceed and define a new data item

that is set by evaluation of a logi
cal expression defining the condi
tions to be set.. Then define a check
on the new data item. G. #B27.

#B18. Is PLAN to give a standard PLAN
system literal if the test fails?

Y. G. #B26

#B19. Is the program list to be modified if
the test fails?

Y. G. #B25

#B20. If the test fails,, is a user-supplied
diagnostic to be written followed by

IBM PROBLEM LANGUAGE ANALYZER (PLAN)

PROGRAM DESCRIPTION MANUAL

continuation of processing?
Y • .£ G. #B24

#B21. Is a user-supplied diagnostic to be
written if the test fails followed by
initiation of the PLAN error recovery
scheme?

Y. ~ G. #B24

#B22. Is a new phrase to be invoked if the
test fails?

Y. p
N. Please tell .PLAN development what you

would like to do if the test fails.

#B23. Is the text of the new phrase to be
given in the phrase; not provided as
text in the communication array?

Y. 'PHRASE TEXT • (terminal blank in
text required)

N. (CAP) (CAP is the location within the
COiiiiminication array that contains the
PLAN literal of the phase to be
invoked. A space is provided at the
end for insertion of the
semicolon.> G. #B26

#B24. Is the diagnostic text to be given in
the phrase: not provided in the com
munication array?

Y. 'DIAGNOSTIC TEXT'
N. (CAP> (CAP is the communication array

location that contains the character
coµnt for the PLAN literal that is
the diagnostic text.> G. #B26

#B25. Is the program list to be given
within ·the phrase: not provided in
the communication array?

Y. 'PROGA,PROGB, ••• ' .
N. (CAP) (CAP is the communication array

position that contains the character
count of the literal text for the
list of programs to be added to the
pop-up list if the test fails.>

#B26. Is there an additional test to be
made against this data item ·<communi
cation array) location?

Y. G. #B13

#B27. Is this data item to be set as the
result of evaluation of an equation?

N. G. #C1

#B28. Is the equation arithmetic: not
logical?

Y. =EXPRESSION (Expression may contain
matched parentheses to indicate the
order of evaluation: the arithmetic
operators +, , •, /: arithmetic
constants: symbolic operands that are
symbols in the symbol table f~r this
phrase.> G. #B35

N. -

#B29. Is this operand in the expression a
relational expression <contains =,, >,

REVIEW (4. 4. 0) 61

IBM PROBLEM LANGUAGE ANALYZER (PLAN)

PROGRAM DESCRIPTION MANUAL

• or <>?
y. .!.
N. OPERAND G. #B34 (The operand may be

any name in the current system symbol
table.>

#B30. Is the left side of the relational an
expression?

Y. EXPRESSION
N. SYMBOL or CONSTANT

#B31. RELATIONAL OPERATOR (>, -, =)

#B32. Is the right side of the relational
an expression?

Y. EXPRESSION
N. SYMBOL or CONSTANT

#B33. l.

#B34. Is there to be another operand in the
expression?

Y. logical operator G. #B29

#B35. Is there to be another expression
defined for this data item?

Y. G. #B28
N. L G. #Cl

#B36. Is the data item to be assigned to a
specific communication array
location?

Y. <n> <n ranges from 1 to the limit of
the communication array.> G. #B7

N. .!.

#B37. Is this operand of the symbolic
storage assignment a constant?

Y. constant G. #B39

#B38. Is the symbolic operand to represent
the location of the symbol: not the
contents of the symbol?

Y. S'symbol
N. symbol

#B39. Is there another operand in the syn~
bolic designation?

Y. arithmetic operator G. #B37
N. l G. #B7

#Cl. Are there more data items to be
defined?

N. G. #Dl

#C2. Is the new data item to be assigned
to the next-higher communication
array location, and is the format
(mode, user-exit control, and scale
factor} identical to the data i te?m
just defined?

Y. G. #B27
N. G. #B2

#Dl. Are there additional tests to be made
or values to be set by expression
evaluation that require looping or
branching within the expressions?

62 REVIEW (4 .• 4.0)

15 SEPTEMBER 1.969

N. G. #El
Y. ~

#02. Will this formula require transfer
to/from elsewhere in -the formula
area?

Y. ~ <n is in the range of 1 to 1,024.)

#03. Is this element used to assign a data
value to a data item or to execute a
conditional branch?

Y. NAME (any valid name within the cur
rent symbol table)

N. G. #021

#04. Is the data item to be set as a
result of a logical formula, not an
arithmetic formula?

y.
N. ~G. #020

#05. Is this operand to be a relational
expression?

N. NAME G. #010
Y. !"

#05.1 Is the relational expression a test
for logical TRUE?

Y. NAME=+) G. #010

#06. Is the relational expression a test
for logical FALSE?

Y. NAME=-) G. #010

#07.

Y.

Is the relational expression a test
against an EBCDIC character mask?
NAME "MASK") (MASK contains only
the characters to be tested.> G.
#010

#08. Is the left side of the relational an
expression; not a simple name?

Y. ARITHMETIC EXPRESSION
N. NAME

#09. Is the relational operator
<?

Y. relational operator>
N. What else is desired?

>, or

#010. Is there to be another operand in
this expression?

Y. logical operator (not,, and, or) G .•
#05

#011. Is the data item
condition of the
cal expression?

Y. 1
N. L G.. #Dl5

to be set as a
result of the logi-

#012. If the logical expression is TRUE, is
the data item to be set equal to the
result of a logical expression?

Y. :logical expression G. #D15

15 SEPTEMBER 1969

#D13. If the logical expression is TRUE, is
the data item to be set equal to the
result of an arithmetic expression?

Y. = arithmetic expression G. :lf:D15

#D14. If the logical expression is TRUE, is
processing to continue at a different
formula number?

Y. ~ Cn is any other formula number
defined in this phrase formula area.>

#D15. Is processing to continue at the next
formula without change to the value
of the data item if the result of the
logical expression is FALSE?

Y. G. #D19
N. l

#D16. If the result of the logical expres
sion is FALSE,, is the data item .to be
set equal to the result of a logical
expression?

Y. :logical expression G. #D19

#D17. If the logical expression is FALSE.,
is the data item to be set equal to
the result of an arithmetic
expression?

Y. =arithmetic expression G. #D19

IBM PROBLEM LANGUAGE ANALYZER (PLAN)

PROGRAM DESCRIPTION MANUAL

#018. If the result of the logical expres
sion is FALSE, is processing to con
tinue at other than the next formula?

Y. ~ Cn is any valid formula number>

#D19. Are there more formulas required?
Y. .L G. #Dl
N. G.#El

#D20. Is the evaluation to be as a result
of an arithmetic expression Care more
operands required)?

Y. Operator operand G. #D21
N. G. #D19

#D21. Is the element to be a branching type
element?

Y. :$n G. #D19 Cn is the number of the
next formula to execute.)

N. G. #Dl

#EL

#Z1.

1.. G. #Al

Now, go back to the
"Language Definition",
"Language Use", 4.2.0.

sections on
4.3.0 and

REVIEW (4.4.0) 63

IBM PROBLEM LANGUAGE ANALYZER (PLAN)

PROGRAM DESCRIPTION MANUAL

4.5.0 STANDARD PLAN COMMANDS

This section discusses the statements dis
tributed as a standard part of the PL.~N
system. The only command that is a pro
grammed portion of PLAN is ADD PHRASE. All
other commands roust be added to the system
through use of ADD PHRASE. This section
provides a discussion of the facility pro
vided by a set of these phrases that are
entered into the language definition dic
tionary (PFILE or DFJPFIL) as a part of the
PLAN system generation. On System/360 DOS
and OS PLAN, program names are prefix,ed
with the characters •DFJ•. The standard
phrases shown represent standards for 1130
PLAN. On System/360 ~here may be minor
variations. These variations may be not·ed·
in the phrase listings in the appropriate
Operations Manual. Spacing within literals
in the phrase definitions may not accurate
ly represent that of the distribution
commands.

4 .. 5.1 ADD PHRASE

This command
definition
initialized.

is added
dictionary

to the
when

language
it is

ADD PHRASE: ADD PltRAS, (1) 0, LEVELO, I (-
13) 1,, PROGRAM 'PHRAS, PHUDT':

ADD PHRASE may be altered to list all added
phrases by adding PIDMP to the progr.am
list.

4.5.2 ALTER PHRASE

ALTER PHRASE provides the ability to delete
an existing version of a phrase and replace

64 STD. COMMANDS (4.5.0)

15 SEPTEMBER 1969

it with a new copy. (For use, see •PLAN
I.anguage Definition•,, 4. 3. 0 >

ADD PHRASE: ALTER PHRASE, I(l)-1,LEVELO,
IC-13)1,PROGRAM 'PHRAS, PBUDT, PHUDT';

ALTER PHRASE may
altered commands by
program list.

4.5.3 DELETE PHRASE

be altered to list all
adding PIDMP to the

DELETE PHRASE provides the ability to
remove commands from the language def ini
tion dictionary. (For use, see •PLAN Lan
guage Definition•, 4.3.0.)

ALTER PHRASE: DELETE PHRASE, (1)-1,
LEVELO, I(-13)1, PROGRAM'PHRAS,PHUDT';

DELETE PHRASE may
deleted commands by
program list.

4.5.4 PLAN JOB

be altered to list all
adding PIDMP to the

ALTER PHRASE: PLAN JOB, LEVEL O, I(-1)
FILE, SAVED, TO,, LISTS, LB, LC, LD, ERASE,
COMMON, MANAGED, NERM, DEVICE, I(l)SHORT-,
LONG-, STACK-, IMMEDIATE-, DRIVEO, DFI-,
PFI-,(-11)UMOD, IC-13)FORMO, $0 FORM:(LONG)
?=FORM+1, FORM: (IMM) ?=FORM+2, FORM: CDFI> ?=
FORM+4, FORM: CPFI> ?=FORM+8,, TO=TO+DRIVE
•2048;

IBM PROBLEM LANGUAGE ANALYZER (PLAN)

15 SEPTEMBER 1969 PROGRAM DESCRIPTION MANUAL

.--------------------------T---------T-------T------T-------T---------T-----------------1 I PLAN JOB I I I IDEFAULTI CHECKING! I
I FUNCTION I NAME I CAP I MODE I VALUES I RULES I EXPRESSIONS I
1--------------------------+---------+-------+------+-------+---------+-----------------i
I SAVED STATEMENT FILE I FILE I (-1) I I I **NOTE I I I
~--------------------------+---------+-------+------+-------+---------+-----------------i
I INITIAL SAVED STATEMENT I SAVED I (-2) I I I I I I
1--------------------------+---------+-------+------+-------+---------+-----------------i
I END SAVED STATEMENT I TO I (-3) I I f I I =TO+D~I*2048 I
~--------------------------+---------+-------+------+-------+---------+-----------------i
I DATA LIST A POINTER I LISTS I C-4) I I I I I I
1--------------------------+---------+-------+------+-------+---------+-----------------i
I DATA LIST B POINTER I LB I (-5) I I I I I I
1--------------------------+---------+-------+------+-------+---------+-----------------i
I DATA LIST c POINTER ' LC I (-6) I I I I I I
~--------------------------+---------+-------+------+-------+---------+-----------------i
I DATA LIST D POINTER ' LD ' (-7) I I I I I I
~-------------------------+-------~-+-------+------+-------+---------+-----------------i
I .ERASABLE COMMON POINTER I ERASE I (-8) ' I I I I I
1--------------------------+---------+-------+------+-------+---------+-----------------i
I SIZE OF COMMON ' COMMON ' (-9) I I I I I I
~------------------------+---------+-------+------+-------+---------+-----------------i
I SIZE OF MANAGED ARRAY ' MANAGED ' (-10) I I I I I I
~--------------------------+---------+-------+------+-------+---------+-----------------i
I ERROR FILE QUEUE COUNT ' NERM ' (-11) I I I ' I I
~-------------------------+---------+-------+------+-------+---------+-----------------i
I DIAGNOSTIC MODULE(*NOTE) I UMOD I (-11) I LIT t I I I
1--------------------------+---------+-------+------+-------+---------+-----------------i
I DIAGNOSTIC DEVICE I DEVICE ' (-12) I I I I I I
~-------------------------+---------+-------+------+-------+---------+-----------------i
I DIAGNOSTIC FORMAT I FORM I (-13) I I 10 I I :(LON)?=FORM+l I
I I ' I I I I : (IMM) ?=FORM+ 2 I
I I I I I I I :(DFI)?=FORM+4 I
I I ' I I I I :(PFI)?=FORM+8 I
~-------------------------+---------+-------+------+-------+---------+-----------------i
I SHORT FORM INDICATOR 1 SHORT I (1) I LOG I FALSE I I I
1--------------------------+---------+-------+------+-------+---------+-----------------i
I LONG FORM INDICATOR ' LONG ' (2) I LOG I FALSE I I I
~ -------------------+------·---+-------+------+-------+---------+-----------------i
I STACKED ERROR INDICATOR I STACK I (3) I LOG I FALSE I I I
1--------------------------+---------+-------+------+-------+---------+-----------------i
I IMMEDIATE ERROR IND. ' IMM ' (4) I LOG IFALSE I ~ I
~--------------------------+---------+-------+------+-------+---------+-----------------i
' SAVED STATEMENT DRIVE I DRIVE I (5) I I I 0 I I I
1--------------------------+---------+-------+------+-------+---------+-----------------i I DYNAMI..C FILE ERROR IND. I DFI I (6) I LOG IFALSE I I I
~--------------------------+------·---+-------+------+-------+---------+-~---------------i
' PERMANENT FILE ' ' I I I I 1 I ERROR INDICATOR I PFI I (1) I LOG I FALSE I I I L-. __________________ i ______ , ___ i _______ i ______ i _______ i _________ i _________________ J

•NOTE: •UMoD• and "NERM• a~e mutually exclusi:ve and may not be used together.
**NOTE: Default values are not provided because the 15 PLAN switch words are automatical

ly reset as a result of the execution of any level 0 command.

PLAN JOB provides initialization ·functions
for any PLAN run. This command, or one
that provides the functions of this com
mand,, should be the first command processed
when PLAN is invoked. The command meets
the requirement that a level 0 phrase be
the first phrase processed and sets the
parameters controlled by the system switch
words. System accounting functions may be
conveniently facilitated by adding the name
of an accounting module as a program list
to this command. A sample of the command
at execution time is:

PLAN JOB, MANAGED 200, ERASABLE 240,
COMMON 900, LISTS 30,~0,200,209, SAVED 20
TO 30 FILE 3, DRIVE 2 SHORT, STACKED,
DEVICE 102;

The above example illustrates:

1. The setting of the managed array to a
size of 200 PLAN words.

2. The establishing of the beginning of
erasable COMMON at CAP 240.

STD. COMMANDS (4.5.0) 65

IBM PROBLEM LANGUAGE ANALYZER (PLAN)

PROGRAM DESCRIPTION MANUAL

3. The defining of the total size of
COMMON to 900 32-bit words.

4. The defining of four CAP indices (30,
60, 200, 209) used in referencing a
maximum of four data lists.

5. The designating of the short form of
diagnostic.

6. The specification of the indicator to
cause error stacking (STACKED).

7. The designation of the device upon
which error messages are to be printed
(DEVICE 102).

The following
table above>
JOB options:

parameter discussions (see
give a breakdown of the PLAN

1. SAVED STATEMENT FILE. This parameter
defines the DYNAMIC file number (1-2~i5)
from which the next PLAN statement (a
saved statement> is to be executed.
The para.meter will not be used if the
next PLAN command is not a saved
statement.

2. INITIAL SAVED STATEMENT. If the next
PLAN statement is to come from a saved
statement file., this parameter defines
the number of the first statement that
will be executed. If this parameter is
specified, the FILE., DRIVE.. and TO
parameters should also be specified.

3. END SAVED STATEMENT. If saved PLAN
statements are to be executed next,
this parameter defines the highest
numbered saved statement that will be
executed.

4. DATA LIST POINTER. This ,parameter is
used to define the CAP indices for up
to the maximum of four possible data
lists. These data lists may be
referenced by PSCAN for storing data .•
by PARGO and PARGI for transmitting
data, dnd by user program modules.

5. LB. This parameter provides a direct
pointer to the second of the data lists
defined above.

6. LC. This parameter pro~ides a direct
pointer to the third of the data lists
defined above.

7. LD. This parameter provides a direct
pointer to the fourth of the data lists
defined above.

8. ERASABLE COMMON. This parameter
defines the communication array posi
tion (CAP) that is to be treated as the
beginning of erasable COMMON. Erasable
COMMON extends from the CAP positi.on

66 STD. COMMANDS (4.5.0)

15 SEPTEMBER 1969

identified to the end of the communica
tion array.. This parameter must bE~ set.
to some positive value within the range
of the communication array in order for
many of the standard PLAN commands to
execute. The switch word is reset to
490 each time a level 0 command is
encountered.

9. SIZE OF COMMON. This parameter defines
the total size of COMMON (including
communication array,, switch words,. and.
resident loader>.

10. SIZE OF MANAGED ARRAY. This paramete:c·
defines the number of PLAN words that
are to be managed according to the
level structure of the commands to be
processed. If this value is set to a
positive integer and statements have a.
level assignment1, the managed array
save file must be present for the
saving of data.

11. ERROR FILE QUEUE COUNT. If error diag
nostics are to be written onto 109ical
file 255 of logical drive 0 instead of
directly to an output device, then this
parameter will specify the ma>dmum
number of messages that are to be
allowed on the file before the messages
are to be written to the diagnostic
device.

12. DIAGNOSTIC MODULE. This parametE~r is
used to specify the name of a user
wri tten module that is to process error
conditions rather than using the normal
system processing. Note that this
option precludes the error queue option
and is in lieu of writing the dia9nos
tics onto the diagnostic device.

:L3. DIAGNOSTIC 'DEVICE. If a diagnostic
module is not specified, this parameter
specifies the sequential file dE~vice
code <see "CALL IOCS"• 5.11.5) upon
which the diagnostics are to be
printed. This switch word is resE~t to
100 each time a Level 0 commancl is
encountered.

14. DIAGNOSTIC FORMAT. This parameter
should not be referenced by a user. It
is set as a result of use of items 15,
16, 17, 18, 20, and 21 <see "PLAN
System Diagnostic Processing", 13.3.0).

15. SHORT. The word "SHORT" is specified
if the short-form option is desired.
Short-form diagnostics mean that the
phrase being processed when the E~rror
is detected is not listed with the
err.or. (See "PLAN System Diagnc>stic
Processing",, 13.0.0.>

16. LONG. This parameter is used to set
the long-form diagnostic indiccltor.

15 SEPTEMBER 1969

Long-form diagnostics include the
EBCDIC image of the phrase which caused
the error, along with the diagnostic
message (see "PLAN System Diagnostic
Processing", 13.0.0).

17. STACK. This parameter sets the indica
tor to cause error stacking. In this
mode of processing, errors are written
to the output device only when the
error module is scheduled by the PLAN
loader or when the stack overflows. If
the stack overflows, the checkpoint
facility must be used to allow sched
uling of the error module. (See "PLAN
System Diagnostic Processing", 13.0.0.)

18. IMMEDIATE. This parameter sets the
indicator to cause diagnostics to be
written to the output device one-by-one
as they are encountered. The check
point file and checkpoint programming
must be available to function in the
IMMEDIATE mode. (See "PLAN System
Diagnostic Processing", 13.0.0.)

19. SAVED STATEMENT DRIVE. This parameter
specifies the PLAN DYNAMIC drive number
that will be used when the SAVE state
ments are processed.

20. DYNAMIC FILE ERROR
parameter determines

INDICATOR. This
the PLAN system

IBM PROBLEM LANGUAGE ANALYZER (PLAN)

PROGRAM DESCRIPTION MANUAL

error procedures
detected by the
subroutines.

when an error is
DYNAMIC FILE support

21. PERMANENT FILE ERROR INDICATOR. This
parameter determines the PLAN system
error procedures when an error is
detected by the PERMANENT FILE support
subroutines Csee "PLAN System Diag
nostic Processing", 13. o .• O>.

4.5.5 SET LITERAL

SET LITERAL is the command used to define
standard literals or tables for storage
into a GDATA type file. Tlle literals are
maintained in a manner that makes them
accessible to the subroutine PHIN.

SET LIT, NAME•PLITF'•, NUMBERn, •LITERAL',
FILEj, DRIVEm;

ADD PHRASE: SET LITERAL, PROGRAM'PDIAG',
IC-8)M, ICM)FILE254, I(M+l} NAMEO, ICM+4)
DRIVEO, ICM+5)NUMBER-*RA' UNDEFINED LITERAL
NUMBER•, ICM+6)LITERALO,, (M+l>TEST-*
TA' UNDEFINED FILE NAME':
CNAME>O>&CNAME<9);

r--------------------------T---------T-------T------T-------T---------T-----------------1
I SET LITERAL I I I I DEFAULT I CHECKING I I
I FUNCTION I NAME I CAP I MODE I VALUES I RULES I EXPRESSIONS I
~--------------------------+-------·--+-------+------+-------+---------+-----------------~
I ERASABLE COMMON I I I I I I I
I POINTER I M I -8 I I I I I I
~------------------~-------+---------+-------+------+-------+---------+-----------------~
I LITERAL FILE NUMBER I FILE I M I I I 254 I I I
1--------------------------+-------·--+-------+------+-------+---------+-----------------~
I LITERAL FILE NAME I NAME I M+l I I I 0 I I I
~-------------~------------+---------+-------+------+-------+---------+-----------------~
I LITERAL FILE I I I I I I I
I DRIVE I DRIVE I M+4 I I I 0 I I I
~-------------~----------+-----~--+-------+------+-------+---------+-----------------~
I LITERAL NUMBER I NUMBER I M+5 I I IFALSE I *RA I I
~--------------------------+---------+-------+------+-------+---------+-----------------~ I LITERAL TEXT OR TABLE I LITERAL I M+6 I I I 0 I I I
~--------------------------+---------+-------+------+-------+---------+-----------------~
I TEST FILE NAME I TEST I M+l I I FALSE I *TA I : CNAME>O> & I
I I I I I I I CNAME<9> I
L--------------------------i---------i-------i------i-------i---------i-----------------J
1. ERASABLE COMMON POINTER.. This param

eter points to the position within the
communication array defined as erasable
COMMON. This parameter (Switch Word 8)
is normally set with the PLAN JOB
command.

2. LITERAL FILE NUMBER. This parameter
defines a number to be used to process
the GDATA type literal file. The

parameter should be defined only in
situations where 254 would cause con
flict with other processing on 1130
PLAN.

3. LITERAL FILE NAME. This parameter
defines the name of the GDATA file in
which literal processing occurs. Note
that this parameter must be given.
Otherwise., the check entry defined

STD. COMMANDS (4.5.0) 67

IBM PROBLEM LANGUAGE ANALYZER (PLAN)

PROGRAM DESCRIPTION MANUAL

under "test file name" will fail and
the phrase will not be executed.

q_ LITERAL FILE DRIVE. This parameter
defines the PERMANENT drive on which
literal file is located. Failure to
provide this parameter results in the
assumption that the file is on PER
MANENT drive zero.

5. LITERAL NUMBER. This parameter defines
the identification number for the lit
eral to be processed. Note that fail
ure to supply a literal number will
result in a phrase abort error diag
nostic. If the number is the same as
an existing literal., the existing lit
eral is removed from the file prior to
adding the new literal.

6. LITERAL TEXT. This parameter provides
the literal text for the literal to be
added to the file. If this parameter
is not provided Clitera1 length zero>
the existing literal of the same number
is removed from the file. Note that
tables can be maintained by this com
mand and by the PHIN/PHOUT subroutines
if the following convention is followed
in setting up the data:

15 SEPTEMBER 1969

r---T---T----T----T---r---T---,.----1
I N I K I W1 I Wa 1 • I • I • I Wn I l--L---L----L----L---L---L---L----J

where:

N Table or literal number
K Count of bytes in table or 1 i ter·

al character count
W1 First 32-bit word in table or

first four literal characters
Wn Last 32-bit word in table

7. TEST FILE NAME.
Name" above>.

4.5.6 LIST LITERAL

LIST LITERALS is a command that prodUlces .a
listing of all literals maintained in a
specified literal file.

ADD PHRASE: LIST LITERALS, LEVEL 1, PRO
GRAM' PLITL', I(l)FILE254, NAME-*A'LITERAL
FILE NAME NOT DEFINED', I(5)DRIVEO, NODlOO,
(35) "NUMBER LENGTH TEXT OF PLAN LITERA.L";

1----------·------------T---------T-------T-----T-------T---------T-----------------·1
I LIST LITERAL I I I I DEFAULT I CHECKING I I
I FUNCTION I NAME I CAP I MODE IVALUES I RULES I EXPRESSIONS I
1----------------------+---------+-------+------+-------+---------+----------------.. ,
I LITERAL FILE NUMBER I FILE I 1 I I 1254 I I I
l-------------------------+--------+-------+------+-------+---------+-------------·----i
I LITERAL FILE NAME I NAME I 2 I I I FALSE· I *A I I
1--------------------------+--------+-------+------+-------+---------+-----------------i
I LITERAL FILE I I I I I I I
I DRIVE I DRIVE I 5 I I I 0 I I I
~ ------------------+-~-------+-------+------+-------+---------+-----------------i
I LITERAL OUTPUT DEVICE I NOD I 6 I I 1100 I I I L-------------------------L---------i _______ i ______ .J._ ______ i _________ i _____________ . ____ J

1. LITERAL FILE NUMBER. This parameter
defines a number to be used to process
the GDATA type literal file. The
parameter should be defined only in
situations where 254 would cause con
flict with other proces~ing on 1130
PLAN.

2. LITERAL FILE NAME. This parameter
defines the name of the GDATA file in
which literal processing occurs. Note
that this parameter must be given.
Otherwise, the check entry defined
under •test file name" will fail and
the phrase will not be executed .•

3. LITERAL FILE DRIVE. This parameter
defines the PERMANENT drive on which
literal file is located. Failure to
provide this parameter results in the

68 STD. COMMANDS (4.5.0)

assumption that the file is on PER
MANENT drive zero.

4. LITERAL OUTPUT DEVICE. This para.meter
defines the output device that is to be
used to list the literals. The stand·
a rd parameter results in the use of the
current PLAN output device.

4.5.7 COMMUNICATION ARRAY DUMPS

DUMP COMMON is a command that produces a
hexadecimal printout of the comm\1rtication
array. Identical print lines are
suppressed.

DUMP MANAGED is a command that prodUlces .a
hexadecimal printout of the managed po1rtion

15 SEPTEMBER 1969

of the communication array.
print lines are suppressed.

Identical

DUMP NONMANAGED is a command that produces
a hexadecimal printout of the norunanaged
portion of the communication array.
Identical print lines are suppressed.

DUMP SWITCHES is a command that produces a
hexadecimal printout of the PLAN switch
words.

Note carefully that these are blank-level
phrases. Any attempt to use them following
a PLAN phrase abort error will result in
the phrase being skipped.

IBM PROBLEM LANGUAGE ANALYZER CPLAN>

PROGRAM DESCRIPTION MANUAL

ALTER PHRASE: DUMP SWITCHES,, I(-8)M, ICM)
NNN-2,, (M+ll>A"SWITCHES", "LENGTH", I (M+15)
NODlOO, PROGRAM'PCDMP';

ALTER PHRASE: DUMP COMMON, I(-8)M, I(M)
NNNO, I MANAGED ARRA y·• ,, I NONMANAGED ARRA y. ,
"SWITCHES", "LENGTH",
I CM+15)NOD100, PROGRAM''PCDMP';

ALTER PHRASE: DUMP MANAGED, I(-8)M, I(M)
NNNl, 'MANAGED ARRAY', "SWITCHES",,
"LENGTH", I(M+15)NOD100, PROGRAM 'PCDMP';

ALTER PHRASE: DUMP NONMANAGED, I(-8)M,
I (M.)NNN-1, (M+6)B'NONMANAGED ARRAY' I

"SWITCHES", "LENGTH", I(M+14)NOD100, PRO
GRAM ' PCDMP' ;

.--------------------------T-------·--T-------T------T-------T---------T-----------------1
I DUMP I I I IDEFAULTI CHECKINGI I
I FUNCTION I NAME I CAP I MODE IVALUES I RULES I EXPRESSIONS I
1--------------------------+-------·--+-------+------+-------+---------+-----------------~
I ERASABLE COMMON I I I I I I I
I DEFINITION I M I -8 I I I I I I
·--------------------------+----------+-------+------+-------+---------+-----------------~
I FUNCTION SWITCH I NNN I M I I I I I I
I DUMP COMMON I I I I 0 I I I
I DUMP SWITCHES 1 I I 1-2 I I I
I DUMP MANAGED I I I 1-1 I I I
I DUMP NONMANAGED I I I I +1 I I I
1--------------------------+---------+-------+------f-------+---------+-----------------~
I OUTPUT DEVICE I NOD I M+15 I I 1100 I I I
l------------------------~-i __________ i _______ i ______ .J._ ______ i _________ i _________________ J

1. ERASABLE COMMON DEFINITIONu This
parameter, a pointer to that portion of
the communication array to be used as
erasable COMMON, is normally set by the
PLAN JOB command.

2. FUNCTION SWITCH. The appropriate value
within the word CO, -2,, 1, -1> distin
guishes between DUMP, DUMP SWITCHES,
DUMP MANAGED, and DUMP NONMANAGED func
tions, respectively.

3. OUTPUT DEVICE. This parameter defines
the sequential device co~e to be used
for output.

4.5.8 FILE DUMPS

ALTER PHRASE: DUMP DYNAMIC, I(-8)M, ICM)
FILE255, I(M+2)STARTO, I(M+3)ENDO~ I(M+4)
DRIVEO, (M+S)A"DRIVE FILE LENGTH•~ (M+12)
NAME' 'I(M+15)NOD100, 1, PROGRAM
'PFDMP';

ALTER PHRASE: DUMP PERMANENT, I(-8)M, I(M)
FILE 255, I(M+2)STARTO, I(M+3)ENDO, I(M+4)
DRIVEO, (M+5)A"DRIVE FILE LENGTH", (M+12)
NAME' , I(M+15)NOD100, O,
PROGRAM'PFDMP';

DUMP DYNAMIC is a command that produces a
hexadecimal printout of the PLAN DYNAMIC
file. Identical print lines are
suppressed.

DUMP PERMANENT is a command that produces a
hexadecimal printout of a PLAN PERMANENT
file. Identical print lines are
suppressed.

The limits of the dump are defined by the
START and END operands. If these are
omitted, the entire file is dumped.

Note carefully that these phrases are blank
level, and will therefore be skipped if
PLAN level recovery is invoked as the
result of an error in a nonblank-level
phrase.

STD. COMMANDS (4.5.0) 69

IBM PROBLEM LANGUAGE ANALYZER (PLAN)

PROGRAM DESCRIPTION MANUAL 15 SEPTEMBER 1969

r----------------------T---------T--·-----T-----T-------T--------T-------------·----·1
I DUMP PERMANENT I I I I DEFAULT I CHECKING I I
I FUNCTION I NAME I CAP I MODE I VALUES I RULES I EXPRESSIONS I
1------------------------+-------+-------+-----+-------+---------+-------------·-----I
I ERASABLE COMMON I I I I I I I
I INDEX I M I -8 I I I I I I
~-----------------------+--------+-------+-----+-------+---------+------------------!
I FILE NUMBER I FILE I M I I 1255 I I I
1-------------------------+---------+-------+------+-------+---------+-----------------i
I START OF DUMP I START I M+2 I I 10 I I I
1-------------------------+---------+-------+-----+-------+---------+-------------·-----I
I END OF DUMP I END I M+ 3 I I I 0 I I I
1-------------------------+---------+-------+------+-------+---------+-----------------i
I DRIVE I DRIVE I M+4 I I 10 I I I
1-------------------------+--------+-------+-----+-------+---------+-----------------·i
I FILE NAME I NAME I M+12 I LIT f BLANK I I I
~--------------------------+---------+-------+------+-------+---------+-----------------i
I OUTPUT DEVICE I NOD I M+15 I I f 100 I I I
~-------------------+-------+-------+------+-------+---------+-------------·----·i
I DUMP TYPE SWITCH I I M+16 I I I 0,1 I I I
L-------------------------i--------i-------i------i-------i---------i-------------·----J

1. ERASABLE COMMON INDEX. This index
defines the location within the com
munication array known as ERASABLE COM
MON. The index is normally set by the
PLAN JOB command.

2. FILE NUMBER. This parameter defines
the file number of the file that is to
be dumped.

3. START OF DUMP. This parameter defines
the number of the PLAN word within the
file at which the file dump is to
start.

4. END OF DUMP. This parameter defines
the number of the last PLAN word within
the file that is to be dumped. If the
parameter is not given (parameter is
set to zero>, the full length of the
file will be dumped.

5. DRIVE. This parameter defines the PLAN
DYNAMIC or PERMANENT drive number on
which the file to be dumped is located.

6. FILE NAME. This parameter define!S the
name of the file to be dumped.

7. OUTPUT DEVICE. This parameter de!fine:s
the sequential device code that will be
used for output.

8. DUMP TYPE SWITCH. This· pararnete:r
determines whether a DYNAMIC or a PER
MANENT file is to be dumped.

4.5.9 STATEMENT SAVE COMMANDS

ALTER PHRASE: SAVR,I (-1) SWi,-1, I (-8) M~, I (M)
FILEO,I<M+l>DRI-1, $0 SW: (FIL>O) ?·=FIL,
SW(3):(DRI>-1)&(DRI<5)?=DRI*2048;

SAVE is a command to allow saving of the
PLAN statements that follow the SAVE com
mand on a PLAN logical file. Each state
ment to be saved must be prefixed with a
statement number. Saving of statements is
terminated by <1> a SEND command, (2) any
command that does not have a statement
number, or (3) another SAVE command.

r----------------------T--------T-------T------T-------T---------T-----------------·1
I SAVE I I I I DEFAULT I CHECKING I I
I FUNCTION I NAME I CAP I MODE f VALUES I RULES I EXPRESSIONS I
1--------------------------+---------+-------+------+-------+---------+-----------------1
I I SW I -1 I I I I I I
~---------------------------+---------+-------+------+-------+---------+-----------------i
I I I -2 I I 1-1 I I I
~------------------------+---------+--·-----+------+-------+---------+~·----------------1
I ERASABLE COMMON POINTER I M I - 8 I I I I I I
1--------------------------+---------+-------+------+-------+---------+------~---------i
I DYNAMIC FILE I FILE I M I I I 0 I I I
~------------------------+--------+-------+------+-------+---------+-------------·----·I
I DYNAMIC DRIVE I DRIVE I M+l I I 1-1 I I *NOTE I
l-----------------------i----·----.l.--------..L------i-------i---------.1.-----------------.U
*NOTE: $0SW:(FIL>O)?=FIL,SW(3):(DRI>-l)&(DRI<5)?=DRI*2048

70 STD. COMMANDS (4.5.0)

15 SEPTEMBER 1969

1. DYNAMIC FILE. This parameter defines
the number of the PLAN DYNAMIC file on
which the following statements are to
be saved. If this parameter is
omitted. the current file number in
switch word 1 will be used.

2. DYNAMIC DRIVE. This parameter defines
the number of the DYNAMIC drive on
which the following PLAN statements are
to be saved. If this parameter is
omitted. the current file number in
Switch Word 3 divided by 2048 will be
used as the DYNAMIC drive indicator.

ALTER PHRASE: SEND~

IBM PROBLEM LANGUAGE ANALYZER tPLANJ

PROGRAM DESCRIPTION MANUAL

SEND is a command used to terminate the
saving of a series of PLAN statements.

ALTER PHRASE: EXECUTE, I(-1)SW,O, I(-8)M,
I(M)FROM O, I(M+1>TO O, I(M+2)FILE O, I<M+
J.)DRIVE -1, (M) F*TA' INVALID STATEMENT NUMBER
OR DRIVE', $0 SW:CFIL>O)?=FIL. DRI:(DRI<O)
?=SW(J)/2048-.5 ! :$5,, DRI: <DRI<O) ?=O, $5
FRO:, ((DRI>-1)&(DRI<5)) ?=+, SW(3):(TO>O)
?=DRI*2048+TO !=DRI*2048, SW(2):(FRO>O>?=
FRO, FRO:(SW(2)>0);

EXECUTE is a command to initiate execution
of commands saved in the specified state
ment save file.

r--------------------------T---------T-------T------T-------T---------T-----------------1 I EXECUTE I I I I DEFAULT I CHECKING I I
I FUNCTION I NAME I CAP I MODE I VALUES I RULES I EXPRESSIONS I
·--------------------------+---------+-------+------+-------+---------+-----------------~
I I sw I -1 I I I I I I
1--------------------------+---------+-------+-~----+-------+---------+-----------------~
I I M I -a I I I I I I
·--------------------------+---------+-------+------+-------+---------+-----------------~
I FIRST COMMAND TO EXECUTE I FROM I M I I I 0 I *NOTEl I I
1--------------------------+----~---+-------+------+-------+---------+-----------------~
I LAST COMMAND EXECUTED I TO I M+1 I I I 0 I I I
·--------------------------+---------+-------+------+-------+---------+-----------------~
I STATEMENT FILE NUMBER I FILE I M+2 I I I 0 I I I
1--------------------------+---------+-------+------+-------+---------+-----------------~
I STATEMENT DRIVE NUMBER I DRIVE I M+3 I I 1-1 I I I
·--------------------------+---------+-------+------+-------+---------+-----------------~
I PARAMETER CALCULATION I I I I I I *NOTE2 I
L-------------~------------L---------i-------i------i-------L---------i-----------------J

*NOTE1 *TA'INVALID STATEMENT NUMBER OF DRIVE'

*NOTE2 $0SW:(FIL>O)?=FIL,
DRI:CDRI<O)?=SW(3)/2048-.5!:$5,
DRI: (DRI <O) ?=O •
$5FRO:,((DRI>-1)&(DRI<5))?==+,
SW(3):(T0>0)?=DRI*2048+TO!=DRI*2048,
SW(2):(FRO>O)?=FRO,
FRO: (SW(2) >O)

1. ERASABLE COMMON POINTER. This param
eter defines the location within the
communication array of ERASABLE COMMON.
The pointer is normally set by the PLAN
JOB command.

2. DYNAMIC DRIVE. This parameter defines
the PLAN DYNAMIC drive number that is
to be used to process SAVED statements.
If this parameter is omitted, the cur
rent drive specified by Switch Word 3
divided by 2048 will be used.

3. DYNAMIC FILE. This parameter defines
the PLAN DYNAMIC file number that is to
be used to process SAVED -statements.
If this parameter is omitted~ the cur
rent save file specified by Switch Word
1 will be used. I

4. FIRST SAVED. This parameter defines
the number of the lowest-numbered SAVED
statement to be executed. If this
statement cannot be located, a PLAN
diagnostic (DFJ172) will be produced.

5. LAST SAVED. This parameter defines the
highest-numbered SAVED statement to be
executed. Execution continues from the
first SAVED statement identified
through continually higher-numbered
statements to the statement identified
with this parameter. If this parameter
is omitted, only the statemen~- indi
cated by switch Word 2 will be
executed.

STD. COMMANDS (4.5.0) 71

PROGRAM DESCRIPTION MANUAL

r------------·------1
ISAVE. FILE 2~ DRIVE 3; I
16 A: I
19 B; I
118 C; I
ISEND; I
L--------------------J
In the above example. when the SAVE command
is encountered. all the numbered statements
that follow <6. 9 .• 1~> will be stored in
the PLAN DYNAMIC :file 2 on drive 3. This
is known as explicit saving because the
statements are stored for execution at a
later time,, and not executed now. <Bee
•EXECUTE• command. discussed above.>
Implicit saving,, is utilized where state
ment storage and execution are accomplished
as the statements are read.

It is important to note that execution of
the SAVED statements will occur by state
ment numeric sequence,, not by position
within the input SAVE stream. For example,
if a statement number 15 was placed after
statement 18 in the stream, it would still
be executed ahead of 18 if at a later time
an EXECUTE command was encountered utiliz
ing the parameters FROM 9 and TO 18.

4.5.10 PHRASE TABLE DUMP

ALTER PHRASE: DUMP PHRASES,, I(500) SYS
TEM1130. I (50l>NOD100,, I (503)LEVEI.1,
LEVELl,, (200) •cHECKsUM•, ·PHRASE NAME•,.

15 SEPTEMBER 1969

•LEVEL TYPE-OBJECT",,, "ENTRY SIZE•,
•VERB", "SUBSCRIPT NAME VALUE RANGE INDEX•,
"EXIT PROGRAM LIST",, "SYMBOL EXIT FORMAT
oCALE SUBSCRIPT EXPRESSION", •PROGRAM
LIST", •TEST LOCATION ACTION",, •LITEJRAL ~
LIST", SUBSCRIPT, "LOCATION MODE Fi\CTOR
EXPRESSION", (510)-•TP'CON DUM PHR
IC504)DRI0';

(1130 STANDARD PHRASE)
ALTER PHRASE: CON DUMP PHR1\SES,
(281)"INTERPRETIVE EXPRESSIONS", "VERB
PROGRAMS•, END OF PHRASE TABLE DUMP".,
PROGRAM'PTDMP'., (505)"PFILE";

DUMP PHRASES is a command that produc::es a
tabulation of the phrases that exist within
PFILE.

CONTINUE DUMP PHRASES is the continuation
of the DUMP PHRASES command and should not
be invoked by itself.

The module PTDMP produces the phrase dump.
It requires XACES, XTRAC,, XPRNT, and >CBIT,
which are called as subroutines. Pl~DPl,
PTDP2, PTDP3., PTDP5" and PTDP6 are also
required. They are called as monitor
locals on 1130 PLAN and are loaded as PLAN
system local modules on OS and DOS PLAN.
These modules are special purpose pro9rams
that have no use in any other environment.

r-------------------------T--------T-------T------T-------T---------T--------------·---1
I DUMP PHRASES I I 1 I DEFAULT I CHECKING I I
I FUNCTION I ~AME I CAP I MODE I VALUES I RULES I EXPRESSIONS I
·-------------------------+-+----+---·----+------+-------+---------+-------------·---~
I I I I 11130, I I I
I SYSTEM DESIGNATION I SYSTEM I 500 I I 1360 I I I
·-------------------+--------+---·----+-------+------+---------+------------·---~
I OUTPUT DEVICE I DEVICE t 501 I I 1100 I I I
~-------------------------+--------+-------+----+-------+--------+--------------·---i
I PRINTOUT LEVEL I LEVEL ~ 503 I I 11 I I I l __ ;_ ___________________ ,L ______ ,L ___ . ____ ,L _____ ,L _______ J. _________ ,L _____________ , ___ J

1. SYSTEM DESIGNATION. This parameter
defines the. system for which the PFILE
(PLAN language dictionary) is being
dumped. The phrase for the appropriate
system contains the necessary standard
value so that the user should never be
required to specify this parameter.

2. OUTPUT DEVICE. This parameter def in es
the sequential device code to be used
for output.

3. PRINTOUT LEVEL. This parameter defines
the complexity of the phrase listing to

72 STD. COMMANDS (4.5.0)

be produced. Each higher level incor
porates all items of the lower lev·els.

The items listed below represent informa
tion that is produced at the various print
out levels. Figure 10 shows sample lines
from the dump. Enclosed items are explana
tory notes about the sample output lines.
It is strongly recommended that the reader
make a diligent attempt to correlate the
phrases as defined in this section with the
listing produced with the DUMP PHR, LEVEL
6; command through use of Figure 10.

.LD.l"'J rnV.D.La.1:11."J .LlnL.,.~V~~.&;I ~L .. ~ , ,a.u ,

15 SEPTEMBER 1969 PROGRAM DESCRIPTION MANUAL

CHECKSUM 1

(see Appendix E, PFPWVTAB Phrase Verb Validity Table>

PHRASE NAME LIST LIT LEVEL

SUBSCRIPT
-1

SUBSCRIPT
1
1

A(l), B(l)

etc.

SYMBOL
M
A
B

_r
~

0,1,,2,3,
4, or b

NAME

NAME
A
B

SYMBOLIC
SUBSCRIPT

VALUE
00018000
00100000

32-BIT
VALUE

EXIT

•
FORMAT

I
SCALE

I
R

USER
EXIT
NO. d
PROGRAM LIST

PH RAS
PBUDT
PHUDT

SCALE
FACTOR

RANGE INDEX
36

VALUES FROM
IMPLIED DO

RANGE INDEX

SUBSCRIPT
--a

IF THESE INDICATORS
ARE NONZERO THEY
GIVE THE RECORD AND
DISPLACEMENT OF THE
NEXT PHRASE OF EQUAL
CHECKSUM.

EXPRESSION

M
M+7
M+15

SYMBOLIC
CAP

TEST

Ob
LOCATION

M
ACTION

~
LITERAL, LIST, OR SUBSCRIPT
UNDEFINED LITERAL NUMBER

T
F

*

ABSOLUTE
OR

SYMBOLIC

Figure 10. Phrase table dump explanation

STD. COMMANDS (4.5.0) 73

IBM PROBLEM IANGUAGE ANALYZER (PLAN)

PROGRAM DESCRIPTION MANUAL

LEVEL ITEM LISTED
O";r-- Phrase name

Phrase level
Type <object or verb)
Number of internal records (80-
bit on 1130., 64-bit on System/
360) required for phrase
PFILE ADDRESS of phrase entry
Chained phrase indicator (0 0
means no chained phrase>
Checksum of phrase

2 Initialization (Default values)
subscript

3

4
5

6

Name
Value
Range
Index
Symbol Table
Symbol
User-exit number
Format
Scale factor
Subscript
Subscript expression
Program lists
Check entries
Test
Location
Action
Literal, list, or subscript
Expressions
Data area
Formula area

15 SEPTEMBER 1969

4.5.11 ERROR LISTING

ALTER PHRASE: DUMP ERRORS, PRO' PEDMP' ;

DUMP ERRORS is a command that cause1; all
diagnostics in the error queue file to be
listed on the PLAN diagnostic device.

4.5.12 IOCS CONTROL ON 1130

ALTER PHRASE: IOCS,, LEVELO, PRO'PIOCS·',
I(l>INPUT1131, LIST1131, I(-8)1, $0INJ?UT: (
INPUT=1131> ?=3, INPUT: (INPUT=250U ?=2,
INPUT: UNPUT=1442) ?=1,, LIST: (LIST=1131) ?=
103, LIST: (LIST=1403) ?=102, LIST: (l~IST=
1132) ?=101, INPUT: (INPUT=l) I <INPUT=2) I
<INPUT=3) ?=INPUT!=O, LIST: (LIST=10U I
(LIST=102) I (LIST=103)?=LIST!=100;

r-------------------------T-------T------T------T------r---------T--------------·---1 I roes I I I I DEFAULT I CHECKING I I
I FUNCTION I NAME I CAP I MODE I VALUES I RULES I EXPRESSIONS I
~-----------------------+-------+-------+------+-------+---------+------------·---i
1 ERASABLE coMMoN POINTER 1 1 -0 1 r 1 1 1 1 r
~------------------+------+---·----+----+-------+---------+-----------·---t
I PLAN INPUT DEVICE I INPUT I 1 I I 11131 I I I
~----------------------+--------+-------+-------+-------+---------+-------------·---i
I PLAN OUTPUT DEVICE I LIST I 2 I I 11131 I I I
l-----------------------.1.------.L-------.l.-------.l.------.l.---------.l.------------·---J

IOCS is a level 0 command on 1130 PLAN that
allows the PLAN input and output devices to
be altered.

1. INPUT. This parameter must specify the
input unit that is to be used for input
of the following PLAN commands. Valid
arguments are 2501.1, 1442, and 1131.

2. LIST. This parameter must·specify the
output unit that is to be used for

74 STD. COMMANDS (4 .• 5. 0)

output
Valid
1131.

of following PLAN diagnostics.
arguments are 1132,, 1403, or

ALTER PHRASE: CARD1, I(-8)M, I(M)INPUTO,
I(M+l>LIST100, PROGRAM'PIOCS', $0INP: (INP=
2501)?=2, INP:(INP=1442)?=1, LIS:(LIS=1403)
?=102,LIS:(LIS=1132)?=101, INP:(INP=l>I
(INP=2)?INP!=O, LIS:(LIS=101)1
CLIS=102)?=LIS!=100;

IBM PROBLEM LANGUAGE ANALYZER (PLAN)

15 SEPTEMBER 1969 PROGRAM DESCRIPTION MANUAL

r--------------------------T---------T-------T------T-------T---------T-----------------1
I CARD I 1 I I DEFAULT I CHECKING I I
I FUNCTION I NAME I CAP I MODE I VALUES I RULES I EXPRESSIONS I
·--------------------------+---------+-------+------+-------+---------+-----------------i
I ERASABLE COMMON POINTER I M I - 8 I I I I I I
1--------------------------+-----·----+-------+------+-------+---------+-----------------~
I PLAN INPUT DEVICE I INPUT I M I I I 0 I I I
~-------------------------+---------+-------+------+-------+---------+-----------------i
I PLAN OUTPUT DEVICE I LIST I M+l I I 1100 I I I l __________________________ i _____ . ____ i _______ i ______ i _______ i _________ i _________________ J

C~D is a blank-level command on 1130 PLAN
that allows changing input to either card
reader and/or output to either line
printer.

1. INPUT. This parameter must specify the
card reader from which the next PLAN
input is to be read. Valid arguments
are 2501 or 1442.

2. LIST. This parameter must specify the
pointer on which the next PLAN diag
nostic is to be printed. Valid argu
ments are 1403 or 1132.

ALTER PHRASE: TYPE, IC-8)M, ICM)N3, 103,
PROGRAM'PIOCS';

r--------------------------T----~---T-------T-----'-T-------T---------T-----------------1
I TYPE I I I I DEFAULT I CHECKING I I
I FUNCTION I NAME I CAP I MODE I VALUES I RULES I EXPRESSIONS I
~--------------------------+---------+-------+------+--~----+---------+-----------------i
I ERASABLE COMMON POINTER I M I - 8 I I I I I I
1--------------------------+---------+-------+------+-------+---------+-----------------~
I PLAN INPUT DEVICE I N I M I I I 3 I I I
·-----------------------~--+---------+-------+------+-------+---------+-----------------i
I PLAN OUTPUT DEVICE I I M+l I I I 103 I I I t_ _________________________ i _________ i _______ i ______ i _______ i _________ i _________________ J

TYPE is a blank-level command on 1130 PLAN
that sets the console typewriter/printer as
the input/output device from/to which the
next PLAN input/output is to be
read/written.

ALTER PHRASE: LON, LEVEL 1;

LON is a level 1 command that has no
function other than to fulfill the require
ment that a level 1 command be processed.

4.5.13 PAGE LENGTH DEFINITION (OS/DOS ONLY)

ALTER PHRASE: SET PAGE LENGTH,, I(-8)M,
I(M)PGL60, ICM+1)NOD100, PROGRAM'DFJPLENG';

SET PAGE LENGTH is a blank-level command
that allows the user to specify the number
of printed lines per page on a sequential
device that is to contain printed output.

r--------------------------r---------T-------T------T-------T---------T-----------------1
I SET PAGE LENGTH I I I I DEFAULT I CHECKING I I
I FUNCTION I NAME I CAP I MODE I VALUES I RULES I EXPRESSION I
~------~-------------------+---------+-------+------+-------+---------+-----------------~
I ERASABLE COMMON POINTER I M I -8 I I I I I I
~--------~-----------------+---------+-------+------+-------+---------+-----------------i
I PAGE LENGTH I PGL I M I I I 60 I I I
·--------------------------+---------+-------+------+-------+---------+-----------------~
I OUTPUT DEVICE I NOD I M+l I I 1100 I I I l __________________________ i _________ i_ ______ i ______ i _______ i _________ i _________________ J

1. PAGE LENGTH. This parameter defines
the number of lines to be printed on a
page before a logical EOF is generated
and an automatic eject (skip to 1) is
effected.

2. OUTPUT DEVICE. This parameter defines
the sequential device code with which

the PAGE LENGTH operand is to be
associated.

ALTER PHRASE: INPUT, I(-8)M, I(M)NODl,O,
LEVEL 1, PROGRAM'DFJPIOCS';

STD. COMMANDS (4.5.0) 75

IBM PROBLEM LANGUAGE ANALYZER (PLAN)

PROGRAM DESCRIPTION MANUAL

INPUT is a command that may be issued to
change the device that is assigned as the
standard PLAN input device.

1. NOD. This parameter defines the number
of the device that is to be used for
PLAN input. The output device is not
changed.

ALTER PHRASE : OUTPUT,, I (- 8) M, I (M) A 0,
I(M+1)NOD101, LEVELl, PROGRAM'DFJPIOCS';

OUTPUT is a command that may be used to
change the device that is assigned as the
standard PLAN output device.

1. NOD. This parameter defines the number
of the device that is to be used for
PLAN output. The input device is not
changed.

4.5.14 SPECIAL PURPOSE OS PHRASES

ALTER PHRASE: CREATE
PROGRAM'DFJLLIST';

LOADER ENTRIES,

CREATE LOADER ENTRIES is a command th.at
gives OS PLAN the capability of referencing
the RAM or LINKPAC areas.

The general format of this command is:

CREATE LOADER ENTRIES: (NAME1, •.•••) ;

where NAMEl,, • • • is a load module name that
is to be loaded into the partition via the

76 STD •. COMMANDS (4. 5. 0)

15 SEPTEMBER 1969

LOAD macro and be made available as entry
points for the execution of any loader
call. This allows programs in the LINKPAC
or RAM ar~as to be objects of a CALL LOCAL.
The names specified in the LIST must be in
the JOBLIB PDS or LINKLIB PDS.

The maximum number of names in the list is
75. Use of this command destroys any
entries defined by previous use of the
command.

Programs that reference blank COMMON ~
not be operands of this command.

ALTER PHRASE: CREATE CORE DIRECTORY,, PRO
GRAM 'DFJCRDIR';

CREATE CORE DIRECTORY
allows the user to
directory of names of
modules.

is a command that
build an in-core PDS

frequently loaded

CREATE CORE DIRECTORY: (NAME1, •••);

NAME1,... is a load module name that is
placed in the in-core PDS directory to
decrease load time for those modules. The
names in the list must be entries in the
PLANLIB PDS.

Use of this command will replace the pre
vious directory. The maximum number of
entries is 75 names.

15 SEPTEMBER 1969

This section describes the functions of the
various PLAN subroutines that are available
for use by the application progranuner.

Sections 5.1.0 through 5.10.0 list the
subroutines and their specifications. Sec
tions 5.11.0 through 5.11.11 provide the
details of usage.

5 .. 1.0 PLAN LOADER SUBROUTINES

LC BEX

LEX

LIST

LISTB

LNRET

LOCAL

LREPT

This subroutine allows a user to
modify the PLAN pop-up list. The
current program in execution is
saved for future reentry at the
next executable statement when an
asterisk <•> is found in the pop-up
list.

This subroutine allows a user to
modify the PLAN pop-up list.
Transfer to PLAN then occurs to
load the first <top) program
defined in the pop-up list.

This subroutine allows a user to
modify the PLAN pop-up list. Proc
essing continues at the next
execu~able statement in the calling
program.

This subroutine allows a user to
add a program name to the bottom of
the PLAN pop-up list. Processing
continues at the next executable
statement in the calling program.

This subroutine breaks the chain of
returns normally followed within
PLAN LOCAL processing.

This subroutine allows a user to
modify the PLAN pop-up list. The
top program in the pop-up list is
loaded and control passes to the
program. The program must coexist
in memory with the calling module
because the calling module will be
reentered at a later time. The
program is not loaded if already in
core. Note that the calling module
remains in core with the called
module; this is true of a nest of
locals as well.

This subroutine
execution of
processed.

allows the re
the last command

LRET

IBM PROBLEM LANGUAGE ANALYZER (PLAN)

PROGRAM DESCRIPTION MANUAL

5.0.0 PLAN SUBROUTINE SUPPORT

This subroutine is the normal exit
from a logic module. It does not
modify the PLAN pop-up list. It
exits to PLAN to load and transfer
to the top program in the pop-up
load list. If the pop-up list is
empty and saved statements are not
being executed, a new command is
processed. If the program execut
ing a CALL LRET was called by a
CALL LOCAL, control is returned to
the next executable statement after
the CALL LOCAL.

5.2.0 PLAN I/O CONTROL

IOCS This subroutine allows redefinition
of the PLAN system parameters. The
command input device and diagnostic
print device may be shifted among
supported I/O devices.

5.3.0 PLAN ERROR PROCESSING

The following six subroutines allow appli~
cation logic modules to generate and proc
ess diagnostic messages through the use of
the PLAN sy~tem error processing module
(PERRS). The format of the diagnostic
produced is identical to that produced by
PLAN. The diagnostic literal is
user-supplied.

ERL ST

ERRAT

ERRET

ERREX

This subroutine causes all diagnos
tics that are in the PLAN error
queue file to be printed on the
PLAN system diagnostic device.
Processing of the current phrase
(including programs in pop-up list>
is terminated. This subroutine
provides the capability required
for post-list error processing.

This subroutine interface to the
PLAN error module PERRS returns to
the next executable statement in
the calling program. PLAN will
load any remaining programs in the
pop-up list.. However, the next
time that PSCAN is entered, PLAN
level error recovery is initiated.

Processing continues at ~ne next
executable statement following the
call to the subroutine.

This subroutine
PLAN error module
return to the

interface to the
PERRS does not

calling program.

SUBROUTINES (5.0.0) 77

IBM PROBLEM LANGUAGE ANALYZER (PLAN)

PROGRAM DESCRIPTION MANUAL

ERROR

EWRIT

PLAN is entered to load any remain
ing programs in the pop-up list.

Processing does not return to the
calling module and the PLAN level
error recovery is initiated.

This subroutine allows the user to
write messages into the PLAN error
file (file 255, DYNAMIC drive Ol in
a format acceptable for processing
by CALL ERLST.

5.4.0 PERMANENT FILE SUPPORT

GDATA,
GDATl These subroutines perform the file

open function for PERMANENT fixed
size files established outside of
PLAN. The call places file loca
tion pointers in the user-defim~d
file control block.

RDATA,
RDATl These subroutines provide for

transfer of information from a
PERMANENT file location on disk to
memory. Records may contain any
variable number of 32-bit or 16-bit
words.

WDATA,
WDATl These subroutines provide for

transfer of information from memory
to a PERMANENT file location.
Records may contain any desired
number of words. The file is
addressed by the number of words
displacement from the beginning of
the file.

5.5.0 DYNAMIC FILE SUPPORT

FIND,
FINDL,
PFNDl These subroutines perform the open

function for DYNAMIC files. DYNAM
IC files are established when
needed (they may be permanent> as
defined by execution-time logic.
Disk space is assigned to the file
in modular segments as required by
the file. Transfer is by groups of
any desired number of 32-bit or
16-bit words to or from any desired
displacement within the file. PLAN
DYNAMIC files may be assigned to
any of eight (five on the 1130)
drives. Priority may be assigned
to a DYNAMIC file to allow orderly
release of files if ,insufficient
file space is available.

78 SUBROUTINES (5.0.0)

15 SEPTEMBER 1969

PFSPC This subroutine provides the facil
ity to request verification of the
availability of a block of sto.rage
for assignment to a DYNAMIC fil·e at
a designated priority.

RELES,
PREL1 These subroutines release space

held by a DYNAMIC file to the pool
of available disk space. R:e:LES
performs the opposite function of
the FIND routine.

READ,
PRED1 These subroutines transfer data

from a DYNAMIC file to memory.

WRITE,
PWRTl These subroutines transfer info:r:ma

tion from memory to a DYNAMIC f :ile.
Space is automatically allocated. if
a write requires more space than
the current file contains.

5.6.0 COMMAND RETRIEVAL AND EXECUTION

INPUT

PUSH

This subroutine transfers the
EBCDIC representation of the last
command processed and the length of
the command in characters :into
memory to allow processing or
printing of the command.

This subroutine provides the abili
ty to execute commands from memory.

5.7.0 LOGICAL FUNCTIONS

FALSE

NDEF

TRUE

This subroutine sets
memory to the value
FALSE.

a word in
of log:Lcal

This function subroutine allows
testing of any location for the
PLAN logical functions FALSE, TUUE,
or REAL <nonlogical> .•

This subroutine sets
memory to the value
TRUE.

a word in
of logical

5.8.0 SORT/MERGE CONTROL

GMERG

GS ORT

<OS/DOS only) This subroutine per
forms the initialization functions
for the PLAN system module
DFJGMRGA. The module issuing the
CALL GMERG is reentered when the
merge is completed.

COS/DOS only> This subroutine per
forms the initialization functions

15 SEPTEMBER 1969

PS ORT

PMERG

for the PLAN system modules
DFJGSRTA and DFJGSRTB. The module
issuing the CALL GSORT is reentered
when the sort is complete.

This subroutine performs the
initialization functions for the
PLAN system module PSRTA. It
causes the managed array to be
saved and results in a checkpoint
(CALL LCHEX) exit. The module
issuing the CALL PSORT is reentered
when the sort is completedo

This subroutine performs initiali
zation functions for the PLAN sys
tem module PMRGA. The module issu
ing the CALL PMERG is reentered
when the merge is completed.

5.9.0 SEQUENTIAL FILE CONTROL

PLINP

PLO UT

PIOC

PBUSY

PSBFA,
PSBFB,
PSBFC,
PSBFD,
PSBFE

PDBFA,
PDBFB,
PDBFC,.
PDBFD,
PDBFE

PBFTR

PEOF

This subroutine provides the input
processing for overlapped, buffered
transfer from a PLAN-supported
input device to the system buffer.

This subroutine provides the output
processing for buffered, overlapped
transfer from the system buffer to
a PLAN-supported output device.

This function subroutine allows a
user to test a device status for
busy.

This subroutine tests all PLAN
devices controlled by PLINP and
PLOUT. PBUSY returns only when
none are found to be busy.

These subroutines provide single
buf f ering assignment (for 1130
PLAN) for devices specified for use
by the PLINP and PLOUT routines.

These subroutines provide double
buffering assignment (for 1130
PLAN) for devices specified for use
by the PLINP and PLOUT routines.

This subroutine allows direct
transfer between PLAN buffers,
facilitating input followed by out
put of the same data where inter
vening formatting and/or processing
is not required.

This function subroutine allows
testing of end-of-file conditions
generated as a result of CALL PLINP
or CALL PLOUT.

PCCTL

IBM PROBLEM LANGUAGE ANALYZER (PLAN)

PROGRAM DESCRIPTION MANUAL

This subroutine provides device
control functions such as carriage
skipping and spacing and stacker
selection .•

PAIN, These subroutines provide for
PAOUT transfer from/to the PLAN system

buffers to/from user-designated
storage with variable literal (A)
format control.

PIIN, These subroutines provide for
PIOUT transfer from/to the PLAN system

buffers to/from user-designated
storage with integer <I> format
control.

PFIN, These subroutines provide for
PFOUT transfer from/to the PLAN system

buffers to/from user-designated
storage with floating-point (F)
format control.

PEOUT This subroutine provides for
transfer of data from user
des ignated storage to the appropri
ate PLAN system buffer in exponen
tial floating-point (E) format.

5.10.0 ARRAY AND DATA MANIPULATION

PHIN

PHO UT

PARGO

PAR GI

GTVAL,
ST VAL

BREAK

PPACK

This subroutine provides for
transfer of literal data to memory.
The literal file is maintained on
disk by the module PDIAG through
control of the PLAN command SET
LITERAL.

T~is subroutine transfers literal
data to a file from memory. PDIAG
requires this subroutine.

This subroutine provides transfer
of data from a user ~rray to the
PLAN communication array.

This subroutine provides the abili
ty to move data lists from the PLAN
communication array to a user
array.

These subroutines allow easy,
efficient transmission of arrays to
and from any location in storage.

This subroutine spreads the four
bytes of a 32-bit word into the
low-order position <rightmost eight
bits> of four words of an integer
array.

This subroutine masks the low-order
byte of an integer word into any
byte position of a 32-bit character
array .•

SUBROUTINES (5.0.0) 79

IBM PROBLEM LANGUAGE ANALYZER (PLAN)

PROGRAM DESCRIPTION MANUAL

PUNPK

PCOMP

This subroutine moves any byte
position of a character array into
the low-order byte position of an
integer word. The high-order bits
are set to zero.

This function subroutine performs a
logical comparison of one 32-bit
array with a second array and sets
the floating-point FORTRAN function
indicator ..

8 0 SUBROUTINES (5 .• 0. 0)

PHTOE

PBTST

This subroutine
mal arrays to
EBCDIC array
twice as many
decimal array .•

15 SEPTEMBER 1969

converts hexadeci
EBCDIC arrays. The
produced occupies

words as the hexa-·

This subroutine allows for the
testing or setting of any bit or
bits C0-31) within a 32-bit uord.
It also provides a test or extract
under mask.

15 SEPTEMBER 1969

5.11.0 PLAN SUBROUTINE USE

This section provides a detailed descrip
tion of calling sequences and performance
characteristics of PLAN system subroutines.
The calling sequences are shown as FORTRAN
statements. Use of the subroutines by
modules programmed in other languages <sym
bolic and assembler) must be programmed
according to the FORTRAN conventions. Spe
cific differences in the action/use of
these routines between various versions of
PLAN are documented in the appendices of
this manual.

5.11.1 PROGRAM LINKAGE ROUTINES

r---1 I LOADER SUBROUTINES I
1---~ I CALL LIST(N,L) I
I CALL LISTB(2,,L) I
I CALL LEX(N,L) I
I CALL LCHEX(N,L) I
I CALL LOCAL(N,L) I
I CALLL~T I
I CALL LNRET I
I CALL LREPT I
I I
I N the count of 32-bit words to movel
I L the user list array I
1--------------------------------~-------~ I CALL LIST (1,0) I
I CALL LEX (6,,ARRAY(6)) I
L---------------------------------~------J
The subroutines defined below allow a user
to communicate with the PLAN loader and
manipulate the pop-up list. Each subrou
tine in this group is named with an initial
•L• to indicate its special relationship
with the PLAN loader. Every PLAN logic
module normally exits to the PLAN loader
through one of these subroutines.

The linkage CALL LRET returns directly to
the PLAN loader without modification to the
pop-up list. If the pop-up list is not
empty, the program named at the top of the
list will be executed next. If the pop-up
list is empty (0), PSCAN is loaded to
process a new command. Exit from a module
via CALL LRET provides a set of modules
whose linkage sequence is governed by the
problem description.

For creating special compile-time con
trolled linkages, other loader subroutines
are useful. In the following examples,

N is the number of program identification
words (32-bit words) to be moved to/
from the pop-up list.. A program name
occupies two 32-bit words. Thus, a
list of three program names requires
that N be defined as 6. N may be an

IBM PROBLEM LANGUAGE ANALYZER (PLAN)

PROGRAM DESCRIPTION MANUAL

integer constant, or a subscripted or
nonsubscripted integer variable.

L is the location of
problem program
array> that holds
moved.

the
<or
the

array in the
communication
words to be

Positive values of N cause movement from
array L to the pop-up list. Negative
values of N cause movement from the pop-up
list to array L and remove the moved items
from the pop-up list. If the absolute
value of N when N is negative is greater
than the number of 32-bit words in the
list, a numeric zero is transmitted to
array L following the last item in the
list. Zero as a value of N causes no
movement. If values are moved LCl> becomes
the top of the pop-up list. Additions push
the old list down to position CN+l) of the
pop-up list. Deletions pull the value at
CN+l> up to the top.

When N is positive,, the input array is
scanned from end-to-start, accessing and
placing in the pop-up list a 64-bit word at
a time.

If a numeric zero is encountered in bits
0-31 of the 64-bit word containing a pro
gram name, the pop-up list is cleared. If
the absolute value of N is odd, it is
incremented by one.

To avoid reprogramming,, parameters N and L
snould be symbolic, equivalenced to com
munication array locations. An argument
list of < 1,, 0) in the following calls
destroys the current contents of the pop-up
list whereas < o,, 0) leaves it unchanged.

Functions of the subroutine calls are:

CALL LIST(N,L) manipulates the pop-up
list and returns to the next statement
following the call.

CALL LISTB(2,,L) places a single program
name at the bottom of the pop-up list and
returns to the next statement following
the call. Note that 2 will always be the
value of N for the LISTB subroutine.

CALL LEX(N.,L) manipulates the load list
and then loads and branches to the next
program in the pop-up list~

CALL LCHEXCN,L) manipulates the pop-up
list, saves the current program for later
reentry, then exits to the loader.
COMMON is not affected. No test i"S made
to protect the PLAN communication array
from overlay by the next module, so the
module issuing the CALL LCHEX may have to
save and restore parts of COMMON if the
checkpoint load will overlay it. The
saved program is reentered at the next

SUBROUTINE USE (5.11.0) 81

IBM PROBLEM LANGUAGE ANALYZER (PLAN)

PROGRAM DESCRIPTION MANUAL

instruction following the CALL LCHEX
CN,, L) when a left-justified asterisk is
found in the pop-up list. A checkpoint
may not be carried beyond phrase boun
daries. In other words, if an asterisk
has not been encountered in the pop-up
list before the list is emptied CPSCAN is
reloaded) a PLAN phrase ;abort (level
error recovery> is initiated.

CALL LOCAL(N,L) manipulates the pop-up
list, then loads and enters the next
program in the pop-up list. The address
of the instruction following the CALL
LOCAL CN,L) is saved for a return from
the LOCAL program when a CALL LRET is
issued. Both the local program and the
calling program will coexist in memory at
the same time. Additional information on
the use of local programs is contained in
the appendices of this manual.

CALL LRET is the normal exit from a logic
module. It does not modify the pop-up
list. It exits to PLAN to load the
program named at the top of the pop-up
list. If the list is empty and saved
statements are not being executed, a new
command is processed. If the prog:ram
executing a CALL LRET was called by a
CALL LOCAL, control is returned to the
calling program at the next executable
statement following the CALL LOCAL.

CALL LNRET specifies that a· normal return
(CALL LRET) is not anticipated. CALL
LNRET provides a means of canceling all
'LOCAL' processing in progress. CALL
LNRET informs PLAN that the calling
module will not return to the module that
called it. A CALL LRET issued by a
module after a CALL LNRET causes a return
to the PLAN loader. Any OS/360 module
containing a CALL LNRET may not be ter
minated with a RETURN statement.

CALL LREPT repeats processing of the
current command. The pop-up list is not
cleared by execution of CALL LREPT, but
the repeated command is processed before
the programs are loaded.

The following example (shown with IBM 1130
control cards) illustrates commands and
programming that will perform the following
functions:

82 SUBROUTINE USE (5.11.0)

15 SEPTEMBER 1969

Step 1 represents the 1130 System FORTRAN
compilation of program "M0725".

Step 2 is the loading of the compiled
module into core image <residing on disk).
PLAN can only retrieve modules stored in
core image.

Step 3 is the execution of the PLAN system,
where program "M0725" is loaded and
executed first. Program "M0788" is
executed out of line by the calling of the
LCHEX (CALL LCHEXC4,PLIST)), which allows
the user to modify the pop-up list. The
current program in execution CM0725) is
saved for future reentry at the next
executable statement when an asterisk is
found in the pop-up list. After M0725 is
reentered, a call of subroutine LEX is
encountered which will manipulate the pop
up list and then load and execute to the
next program named in the pop-up list. The
pop-up list will then be loaded with the
program names PROGA, PROGB, PROGC, and
PROGD, with PROGA residing on top.

STE Pl
// JOB
// FOR

DIMENSION PLIST(4)
COMMON L(625), LS(15), M(255)
EQUIVALENCE (N,,M (20)) , (ABCD, M (21))
DATA PLIST/. M07 8. ,, '8 I , • * .• /

CALL LCHEX (4,PLIST)

STEP2

CALL LEX (N,ABCD)
END

// DUP
*STORECI WS UA M0725

STEP3
// XEQ PLAN

ADD PHRASE: LOAD PROGRAM,
PRO'M0725';

I(20)NO,

LOAD PROGRAM,
"PROGD";

N8 "PROGA" "PROGB" "PJROGC 111

(REMAINING PLAN INPUT)

15 SEPTEMBER 1969

5.11.2 DYNAMIC FILE SUPPORT

r---------------------------------------,
IDYNAMIC FILE ROUTINES I
1---------------------------------------·1
1 CALL FIND no .• NPRI, NALLO, NDR> 1
I CALL FINDL(ID, O, o,, NOR) I
ICALL READ(ID,KDIS,,KOUNT,KORE) I
CALL WRITE(ID,KDIS,KOUNT,KORE) I
CALL RELES(ID,O,,NSQZ,,NDR) I

ID
NPRI
NALLO
NOR

KDIS
KOUNT
KORE

File control block
File priority C0,1,2,,3,,4)
Initial allocation requirement
DYNAMIC drive code C0-7 or 0-4
the 1130)
File displacement
Words (32-bit) to transfer
User array

I
I
I
J
I
I
I
I
I

NSQZ Words not to be released I
~--~
I
IC
I
I
IC
I
IC
I
IC
I

WRITE ARRAY 1-700 AND CHECK
DIMENSION NA (100) ,, ID (2)
COMMON L(625) ,,LS (15) ,CA(510)
SET FILE CONTROL BLOCK
ID(1)=27
OPEN FILE
CALL FIND CID, 2., 700, 3)
INITIALIZE ARRAY
DO 5 I=l,100

I
IC

5 NA(I)=I

I
I
IC
I
I 15
I 10
IC
I
I
I
IC
I
IC
I 20
I 25
IC
I
IC
I
I
I
I

WRITE 7-100 WORD RECORDS
DO 10 I=1,7
CALL WRITE CID, ID (2) , 100., NA)
UPDATE ARRAY BY 100
DO 15 J=l,100
NA(J)=NA(J)+100
CONTINUE
READ BACK 100 WORD GROUPS
DO 25 I=l,7
CALL READ <ID, (I-1) *100,, 100, NA)
DO 25 J=l,100
CHECK FOR VALID NUMBER
IF(NA(J)-(J+(I-1>*100)) 20 .• 25,20
ER~OR
PAUSE 7
CONTINUE
RELEASE TO'l'AL FILE
CALL RELES CID., O, 0,, 3)
RETURN TO PLAN
CALL LRET

•
•
• l----------------------------·--------J

The subroutines defined below provide the
DYNAMIC support for processing variable
length, discretely addressable disk data
sets. All parameters associated with for
mation of the data sets are definable at
execution time rather than at compile time.
Each word in the file is discretely
addressable. This allows disk to be
treated as an out-of-core array.

IBM PROBLEM LANGUAGE ANALYZER (PLAN)

PROGRAM DESCRIPTION MANUAL

The physical location of a data set is made
available during execution by the following
FORTRAN <or equivalent> call:

CALL FIND(ID,NPRI,NALLO,NDR)

The parameters of the call have the follow
ing meanings:

·ID identifies the first of a two-word file
control block. Each data set (file> has a
separate file control block. If the file
control block is in COMMON (communication
array>, one CALL FIND can satisfy a series
of programs and result in a saving of disk
access time. If the file control block is
not in COMMON, each program must issue its
own CALL FIND for the file. The value
stored in ID(l) by the calling program must
be an integer from 1 to 255. This is the
DYNAMIC file number. DYNAMIC file number
255 on DYNAMIC drive O is used by PLAN for
error message processing. DYNAMIC files
201 to 255 on DYNAMIC drive O are reserved
for PLAN utilities. The remaining numbers
(1-200) can be used to uniquely identify
user's DYNAMIC files. After the CALL FIND
has been executed, ID(l) contains a coded
pointer to the beginning of the data set,
and IDC2> contains the current file length.
ID(2) contains a zero if this is a newly
established file.

DYNAMIC files are not expected to
more than one DYNAMIC drive. The
mer· may create a sequence of
crossing DYNAMIC file boundaries,
that more than one DYNAMIC
available.

reside on
program

data sets
assuming

drive is

FIND treats ID(1) modulo 256. This means
that a FIND issued to a file control block,
that shows an open or closed condition,
will result in the true length of the
DYNAMIC (current status) being placed in
ID(2). The remaining parameters for CALL
FIND are used only at the time a new
DYNAMIC file is opened but they must always
be present.

NPRI assigns a retention priority to the
DYNAMIC file. Zero sets the priority equal
to the level of the command currently being
processed. Priority 1 indicates that the
DYNAMIC files cannot be automatically
released by the system. Priorities 2, 3,
and 4 are successively inferior levels of
temporary data and are automatically
released whenever a command of higher level
(lower-numbered) is processed.

A DYNAMIC file retains the priority defined
in the initial CALL FIND and is unchanged
regardless of the specification in subse
quent CALL FIND's, until released (CALL
RELES).

SUBROUTINE USE (5.11.2) 83

IBM PROBLEM LANGUAGE ANALYZER (PLAN)

PROGRAM DESCRIPTION MANUAL

PLAN will automatically release lower
priori ty files to create space for higher
priority files if insufficient space is
available for the required higher-priority
file. If a file is automatically· released,
the file control blocks opened for that
file are not marked as closed .•

NALLO, when given as a value other than 0,
is used to optimize file space allocation.
Normally, space is allocated to a file
incrementally, only as needed. It is more
advantageous to allocate space for an
entire DYNAMIC file at one time if the
requirement is known. NALLO provides an
estimate of the expected file size and is
used to calculate the number of words in
the initial allocation according to the
following formula:

NWA = ((NALL0-1) /NSA+1> * NSA

where NWA is the number of 32-bit words
actually allocated. NSA is the number of
PLAN words in a standard unit allocation
(see Appendix A, B, or c for discussions of
this parameter) .

If the initial allocation request is for
1000 32-bit words and the standard unit
allocation is NSA=628, then 1256 words
would actually be allocated.

NALLO is ignored if the file already
exists. NALLO has no effect on the value
of the current file size maintained in
ID(2). NALLO is ignored in incremental
allocations. Each additional allocation
includes only one standard unit allocation.

NOR defines the DYNAMIC drive on which the
DYNAMIC file is to reside. The parameter
may range from 0 to 7, except as limited by
the hardware configuration. This parameter
specifies a logical drive in the 1130
system and is limited to the range of 0-4.
In the 1130, digits to the left of the
units digit in the indicator are used :Eor
verification of pack label identification
as defined in Appendix A (8.6.0) of this
manual.

The FINDL subroutine provides a check :for
the current existence of a file. Space is
not allocated for the file if it does not
exist. If the file does exist, the file is
opened and the current true file size is
placed in ID(2). If the file does not
exist, the file is not opened and ID(2) is
set to zero. If an error is found (for
example, the drive code is invalid), the
file is not opened and ID(2) is set to an
error code as defined for DYNAMIC files
near the end of this section. In all
cases, control is returned to the calling
program.

84 SUBROUTINE USE (5-11.2)

15 SEPTEMBER 1969

The RELES subroutine releases space hE~ld by
a PLAN dynamic file to the pool of avail
able disk space. RELES performs the oppo
site function of the FIND subroutine.

CALL RELES (ID,O,NSQZ,NDR)

The CALL RELES parameters ID and NDFt have
the same meaning as defined for the CALL
FIND. Use of this call prevents the tmnec
essary accumulation of temporary data.
Obsolete files that are not released may
degrade performance by forcing long s:eeks.

If NSQZ is zero, the file control block is
closed and ID(2) is not altered. NSQZ
provides for partially releasing space
allocated to a DYNAMIC file, that is, the
first NSQZ words of the file are reta.ined.
In actuality, if NSQZ is other than O, the
file control block is not closed. The
current file length indicators are updated
when necessary and disk space is released
to the available pool whenever compl:ete
allocation units are found to be free.. The
true file size is set to the value of NSQZ
if it is greater than NSQZ. On drives
other than O, priority 1 files are released
only by action (CALL RELES) of the program
mer (logic module). All files on DYNAMIC
drive 0 are released when a level 1 command
is processed. Therefore, permanent DYNAMIC
files may not reside on DYNAMIC drive 0.

On DYNAMIC drive O, all DYNAMIC files
(including priority 1 files) are released
automatically when a level 1 PLAN statement
is processed. Logical files of priorities
2, 3, and 4 on other DYNAMIC drives are
automatically released when a higher-level
phrase is processed, but priority 1 files
must be released by CALL RELES.

Automatic release of files with a priority
less than 1 is accomplished whenever a
command with a higher level <lower-
numbered) than the file priority is proc·
essed. Thus, a level 1 command results in
release of all files with a priority of 2e
3, or 4; level 2 commands result in release
of files with a priority of 3 and 4; level
3 commands result in release of files with
a priority of 4. Open file control blocks
are not closed. A further attempt to
process a released file results in a phrase
abort and PLAN error x-ecovery is ini ti•ated ..
The automatic release function is also
invoked if the DYNAMIC drive is filled and
a request for space for a higher-priority
file is generated from the WRITE
subroutine.

·The CALL RELES function should be the last.
file function executed for any file whose
control block is not in COMMON and whose
data has no future use.

15 SEPTEMBER 1969

Transfer of data from memory to the DYNAMIC
file is accomplished with a CALL WRITE.
Transfer from the DYNAMIC file is accomp
lished with CALL READ .•

CALL READ CID,KDIS,KOUNT,ARRAY)
CALL WRITE (ID, KDIS, KOUNT, ARRAY)-

ID is the first word of the file control
block as defined for the CALL FIND. A
coded pointer to the DYNAMIC file is set in
ID (1 > by the FIND routine.. The user must
not alter this word. For the READ/WRITE to
be successfully executed the file control
block must sho~ a properly opened file
CIDC1>>256).

KDIS is the number of 32-bit words beyond
the beginning of the file at/to which
transfer is to take place. The KDIS value
for the first word in the file is zero.
Therefore,, the value for KDIS is always
CN-1), where N represents the number of the
first word to transfer.

KOUNT is the number of 32-bit words to be
transferred with this READ/WRITE operation.
On a CALL WRITE, ID(2) will be set to KDIS
+ KOUNT if KDIS + KOUNT is greater than the
current ID(2). This action will also cause
the true file size (as maintained in the
file on disk) to be updated if this WRITE
is causing an expansion to the true file
size. This update may be eliminated by the
user if he writes a word to the end of the
desired file at the beginning of the file
write sequence.

ARRAY is the location in the user's program
or in the communication array into which
the data. is to be read or from which the
data will be written. Data transfer starts
at ARRAYCU and continues through ARRAY
CKOUNT). Transfer continues from KDIS
through KDIS + KOUNT - 1 on disk.

The FIND and WRITE subroutines maintain an
updated coUI)t of the length of the file in
PLAN words. An end-of-file CEOF) will be
detected on CALL READ if KDIS + KOUNT is
greater than ID(2) <second word of the file
control block) or greater than the true
file size. The condition is indicated by
setting IDC1) to the file number CIDCU
<256). The following FORTRAN statement
provides a test for the condition:

IF (ID(l)-256) 1,1,2

Statement 1 is executed if the file is
closed as defined above. Statement 2 is
executed if a successful READ operation
occurs.

The preclosing of files CEOF) can also
occur on CALL WRITE. The WRITE routine
causes physical storage to be incrementally
assigned to the DYNAMIC file as needed

IBM PROBLEM LANGUAGE ANALYZER (PLAN)

PROGRAM DESCRIPTION MANUAL

during execution. If storage cannot be
allocated to provide the required file
space, even by releasing a lower-priority
file, an end-of-file (EOF) is detected on
WRITE.

Any EOF condition detected is indicated by
setting IDC1> to its original value, in
effect, closing the file.. If an attempt is
made to read or write a closed file, the
READ/WRITE routine will generate an EOF
diagnostic, terminate processing of the
current statement, initiate level error
recovery, and load PSCAN to process the
next PLAN statement. The test listed above
can be used to prevent an unplanned
termination.

If a CALL FIND is subsequently executed on
a file control block that has been closed
because of EOF detection,, the file will be
reopened and the current available length
of the file will be placed in IDC2>. If
the EOF condition resulted from a CALL
WRITE, the subsequent CALL FIND results in
a file length indication equal to that
which existed before the CALL WRITE that
precipitated the EOF condition.

r~~-------------------------------------1
ITEST DYNAMIC FILE SPACE AVAILABILITY I
~---~
I I
I CALL PFSPC (0, NPRI , NALLO,, NDR) I
I I
I O Indicates a reserved parameter I
I NPRI Priority at which space I
I is desired I
I NALLO Location for available space I
I indicator I
I NDR DYNAMIC drive on which space is I
I desired I
~--~
C SET PRIORITY

NPRI=4
C FIND SPACE AT THIS PRIORITY

1 CALL PFSPC (0,NPRI,,KT,2)
C IS 2950 WORD AVAILABLE

IF CKT-2950) 5~5,15
C SET TO HIGHER PRIORITY

5 NPRI=NPRI-1
C ARE ALL PRIORITIES CHECKED

IF CNPRI) 10,10,1
C EXIT AND TERMINATE COMMAND

10 CALL LEX (1,0)
C OPEN 2950 WORD FILE AT LOW PRIORITY

15 ID(1)=2
CALL FIND CID,NPRI,,2950,2)

•
•
•

L--~---~--------------------------------

A test may be made at any time to determine
the space available for a DYNAMIC file at
any given priority. If the space available
is greater than the maximum size of a PLAN
file, the result is set to the maximum

SUBROUTINE USE (5.11.2) 85

IBM PROBLEM LANGUAGE ANALYZER (PLAN)

PROGRAM DESCRIPTION MANUAL

sizeof a DYNAMIC file. The test is accom
plished with a call to the PFSPC
subroutine.

CALL PFSPCCO,NPRI,NALLO,NDR)

NPRI defines the priority of the file on
DYNAMIC drive NOR for which the available
space is desired. If NPRI is 4, NALLO is
set equal to the total number of 32-bit
words Cup to a maximum file size) currently
unassigned to any PLAN file. If NPRI is 1,,
2, or 3, NALLO is set equal to the unas
signed file space plus any space currently
assigned to any lower-prior;ity files. If
NPRI is O, the level of the c~rrent command
will be assumed, and processing continues
as outlined above. A zero will be placed
in NALLO if any error is detected by PFSPC.

PLAN procedures for DYNAMIC file errors .are
invoked on the basis of the DYNAMIC FILE
ERROR INDICATOR (see "PLAN JOB" 4.5.4).

The following exceptional conditions can be
detected by the DYNAMIC file subroutines.

O. An ID argument specifying an
unopened file control block on CALL
READ or CALL WRITE.

1. KDIS + KOUNT greater than ID(2) or
true file size on CALL READ,.

2. An invalid NOR or ID argument on
CALL FIND or RELES.

3. An invalid ID argument on CALL READ
or WRITE.

4. Invalid KDIS or KOUNT argument on
CALL READ or WRITE.

5. DYNAMIC drive not available.

6. Insufficient space for allocation
on CALL FIND or WRITE .•

7. Reserved.

8. (1130 only) Pack ID not equal on
validity check.

9. (1130 only) PFIND not in PLAN
library.

If the DFI indicator in the PLAN JOB
command is used, conditions 1-9 in the
above list result in closing the file
control block and a negative number is
stored in ID(2). The negative number is an
integer (the absolute value of which is
shown in the above list) that, when added
to 120, corresponds to a diagnostic number
that is produced as a result of the error
when in the immed;iate mode.

86 SUBROUTINE USE (5.11.2)

15 SEPTEMBEn 1969

condition 0 when encountered always results
in a PLAN phrase abort following generation
of PLAN diagnostic DFJ120.

The example shown below illustrates logic
of a check that should be programmed fol
lowing each CALL WRITE if optional mode of
operation is selected in which the DYNAMIC
FILE ERROR INDICATOR is on.

EQUIVALENCE<ID2,,Ib(2))
C WRITE A RECORD

CALL WRITE CID,,KDIS,,KOUNT,ARRAY)
C DID WRITE CLOSE THE FILE

IF (ID-256) 3,3,30
C SELECT ERROR TYPE - IS EOF ON

3 IF CID2) 5~35,35
5 KD2=-ID2

GO TO (10,15,20,25~30),KD2
C LOGICAL END OF FILE

10 CONTINUE
•
•
•

15 INVALID FIND/RELES PROCESSING
•
•
•

C INVALID READ/WRITE ERROR PROCESSING
20 CONTINUE

•
•
•

C NEGATIVE KDIS/KOUNT ERROR PROCESSING
25 CONTINUE

•
•
•

C (1130 ONLY) DYNAMIC DRIVE AVAILABLE
30 CONTINUE

•
•
•

C EOF PROCESSING
35 CONTINUE

r.rhe above files are referred to as PLAN
DYNAMIC files. The following points sum
marize the characteristics of these files:

1. A DYNAMIC file is established only
when program logic determines the
file is required.

2. A DYNAMIC file is assigned physical
disk space in modular blocks only
when the space is required.

3. Every position (32-bit word) within
the DYNAMIC file is discretely
addressable. This allows disk to
be treated as an extension of
memory.

15 SEPTEMBER 1969

5.11.3 PERMANENT FILE SUPPORT

r--------------------------------------1
IPERMANENT FILE ROUTINES I
1------------------------------·--------t
ICALL GDATA (ID,NAME,LR,NDR) t
JCALL RDATA (ID,KDIS~KOUNT,KORE) I
I CALL WDATA CID ,KDIS, KOUNT, KORE·> I
I I
I ID File control block I
I NAME File name (EBCDIC) I
I LR Physical record length in bytes I
I NDR PERMANENT drive number I
I KDIS Record displacement in file I
I KOUNT Record length 1·
I KORE User array I
1--t
I I
I DIMENSION ID(2),A(2),W(100) I
I COMMON L(625),LS(15)~.. I
I EQUIVALENCE CID (2) ,, ID2) I
I DATA A/'NAME','F'/ I
JC FILE NUMBER 1
I ID(1l=1
IC OPEN FILE
I CALL GDATACID,,A,I,0)
IC ZERO ARRAY
I DO 5 I=l,100
I s wen =O.
IC READ 1ST· WORD
I CALL RDATA (ID~0,1,W)
IC IS WORD ZERO
I IF(W(1))~,25,8
IC WRITE FILE WORDS TO ZERO
I 8 KT=100
I 9 W(l)=O.
I DO 20 I=1,ID2,100
IC IS PARTIAL WRITE RQD
I IF (ID(2)-I+1-KT) 10,15,15
I 10 KT=ID(2) -I+1
I 15 CALL WDATA(ID,,I-1,,KT,W)
I 20 CONTINUE
I 25 CONTINUE
I •
I •
I •.
L--------------------------------·--------

A second type of direct access file support
is provided by PLAN subroutines. This
class of support is designed for files
established outside of PLAN. The file is
fixed-size and is permanent in terms of the
ability to establish or release the file as
a result of program logic within a PLAN
module. Characteristics of these files and
the procedures for establishing them are
closely dependent upon the monitor or
operating system in control. More specific
restrictions or capabilities are outlined
in the appendices of this manual.

The subroutines to provide this support are
listed below. The subroutine arguments are
the same as defined above for the PLAN
DYNAMIC files,. The calling sequence is:

IBM PROBLEM LANGUAGE ANALYZER (PLAN)

PROGRAM DESCRIPTION MANUAL

CALL GDATA (ID,NAME,LR,NDR)

CALL GDATA performs functions for the
PERMANENT file that CALL FIND does for the
DYNAMIC file, except that no disk space is
allocated.

The parameters of the calls listed above
have the following meaning:

ID is the first word of the two-word file
control block. Each file to be referenced
must have its own file control block. If
the file control block is in COMMON (the
communication array>, one CALL GDATA can
satisfy a series of programs and result in
a saving of disk access time. If the file
control block is not in COMMON, each pro
gram must issue its own CALL GDATA for the
file. The value stored in ID(l) by the
calling program must be an integer from
1-255. This is the PERMANENT file number.
After the CALL GDATA has been executed,
IDC1> contains a coded pointer to the data
set, and ID(2) contains the file length in
PLAN words.

NAME, is an eight-character (64-bit> file
name left-justified and padded with blanks.
On the 1130, only the first five characters
are significant. On DOS, only the first
seven characters are significant. NAME is
unused under OS/360 PLAN but must be pro
vided by JCL (see OS Problem Language
Analyzer (PLAN) Operations Manual H20-
0596). If the length of the file name is
less than eight characters the remaining
characters must be padded with blanks.
Additional information on procedures for
this action is contained in the appropriate
appendix under "PERMANENT File Support".

An automatic equivalence between NAME and
the file number in ID(l) is implied, and no
further equivalencing is required, except
as defined in Appendices B and c. The file
number must be specified in ID(l) even
though the file is identified by name.
Example:

DIMENSION NAME (2) ,, ID (2)
DATA NAME/'DATA','F'/
ID(1>=25
CALL GDATA (ID, NAME,, LR, 0)

The above defines PERMANENT file 25, which
is named DATAF on PERMANENT drive 0 if

LR contains the physical length in bytes as
a fixed-point integer after CALL GDATA has
been executed. On 1130 PLAN this value is
a constant 640 (320 1130 words).

The file size determined when GDATA is
called represents the total file size: not
just the portion that has been written.
Therefore, the user should implement a
convention (for example, storing the true

SUBROUTINE USE (5.11.3) 87

IBM PROBLEM LANGUAGE ANALYZER (PLAN)

PROGRAM DESCRIPTION MANUAL

file size in the first word of the file)
for maintaining the true file size if it is
necessary at any time to determine how much
data has been written within the ext.:mt
limits of the file.

NDR contains the number of the PERMANENT
drive on which the file exists. and may
range from 0-7.

CALL RDATA CID.KDIS,KOUNT,ARRAY)
CALL WDATA CID,. KDI S, KOUNT •ARRAY)

KDIS is the number of 32-bit words beyond
the beginning of the file a~/to which
transfer is to take place. The KDIS value
for the first word in the file is ze1:0.
Thereforew the value for KDIS is always
CN-1>. where N represents the sequence
within the file of the first word to be
transferred.

KOUNT ~s the number of 32-bit words to be
transferred with this RDATA/WDATA ope:r·a
tion. On a CALL WRITE ID(2) will be set
equal to KDIS + KOUNT if KDIS + KOUNT is
greater than the current IDC2>. Any
attempt to issue a RDATA/WDATA outside the
true file size will result in the file
control block being marked as closed.

ARRAY is the user's data array to/from
which data is to be transferred from/to the
file.

PLAN procedures for PERMANENT file errors
are invoked on the basis of the PERMANENT
FILE ERROR INDI.CATOR (see "PLAN JOB"
4.5.4).

The following exceptional conditions can be
detected by the PERMANENT file support
subroutines.

1. An invalid NDR or ID argllment on
CALL GDATA.

2. An invalid file ID argument on CALL
RDATA or WDATA.

3. Negative KDIS or KOUNT arguments on
CALL RDATA or WDATA.

4. An ID argument specifying an
unopened file control block on CALL
RDATA or WDATA.

5. KDIS + KOUNT greater than ID(2) Of
the file control block or the actu
al file size.

In the normal mode of operation. cases 1
through 4 are considered phrase abort con
ditions and cause a diagnostic message to
be issued and PLAN level recovery proce
dures invoked.

88 SUBROUTINE USE (5 .• 11. 3)

15 SEPTEMBER 1969

case 5 is considered a normal program •:!vent
(EOF), and the only action ever taken :is to
mark the file control block as clc)sed.
ID(l) is reset to the file number to mark
the file as closed.

If the PERMANENT file error indicatoir in
Switch Word 13 is on, cases 1 through 3
cause a value of -1 to -3. respectivel~r. to
be placed in ID(2) of the file control
block, and ID(l) is reset to the file
number <the file control block is markE~d as
closed).

case 4 always causes a
condition.

phrase

5.11.4 ONE-WORD INTEGER SUPPORT

abort

r---------------------------------------1
116-BIT FILE SUPPORT I
~------------------------------------·---i
I CALL PFND1 (ID I NPRI I NALLO,, NDR)
~CALL PREDH ID,KDIS,KOUNT.,ARRAY)
~CALL PWRT1CID,KDIS,KOUNT.ARRAY)
! CALL f>RELl (ID, 0 , NSQZ .• NDR)
CALL GDATl(ID,NAME,LR,NDR)
CALL RDATl (ID,KDIS,KOUNT,,ARRAY)
CALL WDATl(ID,KDIS,KOUNT.ARRAY)

ID Two-word file control block
that must be located on an ev·en
boundary

NPRI File priority
NALLO Initial allocation requirement
NOR Logical drive number
KDIS Displacement within the file
KOUNT Number of words to transfer
ARRAY User's data array
NSQZ Number of words to not release
NAME File name
LR Record length in bytes

~--i
I
I Samples of use of these commands can be
!drawn from the blocks "DYNAMIC File
1support" and "PERMANENT File support"
lif the following name substitutions are
I made:
I
I FIND to PFND1
I READ to PRED1
I WRITE to PWRT1
I RELES to PREL1
I GDATA to GDATl
I RDATA to RDAT1
I WDATA to WDATl
L------------------------------------·---
The one-word C16-bi t> integer option o:f
FORTRAN and other nonstandard storag•e
options are supported by PLAN direct
access file routines. Subroutinei;
PRED1, RDAT1, PWRT1, WDATl, PFNDl,
PREL1, and GDAT1 function with one-worci
integer data in a manner identical tc)
READ, RDATA, WRITE, WDATA11 . FIND, RELF.S,,

15 SEPTEMBER 1969

and GDATA with ASA standard (32-bit)
intege~. The values of KDIS and KOUNT
are given as 16-bit word counts. The
file length count (ID(2)) is maintained
as a 16-bit word count. conversions for
odd-word counts and odd boundaries in
one-word integer arrays are automatic.
Note that the maximum actual file size
that may be processed with one-wora
integer support is one-half the number
of machine words that are attainable
with the 32-bit support.

The file control block is organized in
the same manner as defined for the
·DYNAMIC File Support• and ·PERMANENT
File Support• and must be on an even
word boundary. The equivalences between
standard ASA and one-word integer sup
port are shown in the following diagram:

STANDARD ASA
.---------------,.---------------, I ID(l) I ID(2) I
L---------------i---------------J
ONE-WORD SUPPORT ON 1130
.-------T-------,.-------T-------1 I ID(2) I ID(l) I ID(4) I ID(3) I L _______ ..._ _____ _i, _______ i _______ J

ONE-WORD SUPPORT ON System/360
r-------,.-------,.------~T-------,
I ID(l) I ID(2) I ID(3) I ID(4) I L _..._ _____ _i, _______ ..._ ______ J

IBM PROBLEM LANGUAGE ANALYZER lPLANJ

PROGRAM DESCRIPTION MANUAL

5.11.5 UTILITY SUBROUTINES

r---1
I LOGICAL TEST FACILITY I
1---~ I IF (NDEF(ARG)) 1, 2,, 3 I
I CALL TRUE(ARG) I
I CALL FALSE(ARG) I
I I
I ARG User word I
I 1 FALSE exit I
I 2 TRUE exit I
I 3 REAL exit I
~---i I DIMENSION A(3)
IC SET A(3) REAL
I A(3) = 0
IC SET A(2) TRUE
I CALL TRUE (A(2))
IC SET A(1) FALSE
I CALL FALSE (A)
C TEST, FALSE, TRUE, REAL

DO 6 I=l,3
IF (NDEF(A(I))) l,, 2.,, 3

1 J=l
GO TO 4

2 J=2
GO TO 4

3 J=3
4 IFU-J) 5.,6,5

C TEST ERROR
5 PAUSE 5
6 CONTINUE

•
•

L---
NDEF(ARG) is an arithmetic function that
allows testing of any location for the PLAN
logical functions TRUE,, FALSE, or REAL.
Example:

IF(NDEF(ARG)) 1,2,3

1. Statement 1 will be executed next
if ARG is FALSE (7FFFFFFF
Hexadecimal) ..

2. Statement 2 will be executed next
if ARG is TRUE (80000000
Hexadecimal> •

3. Statement 3 will be executed next
if ARG is anything else.

The value of ARG is unchanged by execution
of the NDEF function.

CALL TRUE(ARG) is a subroutine that sets
ARG to the value of logical TRUE.

CALL FALSE(ARG> is a subroutine that sets
ARG to the value of logical FALSE.

SUBROUTINE USE (5.11.3) 89

IBM PROBLEM LANGUAGE ANALYZER (PLAN)

PROGRAM DESCRIPTION MANUAL

r------------------------------------·-1
ICURRENT COMMAND RETRIEVAL I
~----------------------------------·-i

I I
ICALL INPUTCN.ARRAY) I
IN Size of user array in 32-bit words!
f ARRAY Array in which to store command I
I image I
r--------------------------------------i

DIMENSION A(114).IA(1)
COMMON LC625),LS{15)
EQUIVALENCE (A(1) ., IA(l), IAl)
CALL PSBFAC100)

•
•
•

C READ PHRASE
CALL INPUT (114,A)

C PRINT PHRASE IMAGE
NWDS = (IA1+7) /4
DO 10 I=2,NWDS.30
CALL PAOUT(100,, 1.120.A(I))

10 CALL PLOUT(100)
L---
CALL INPUT(N.ARRAY) is a subroutine that
writes into memory the EBCDIC representa
tion of the last PLAN command processed and
the length of the command in characters to
allow interrogation or printing of the.
command.

ARRAY is the name of the array that will
contain the image in A4 format at the end
of execution of the input subroutine. N is
the length of ARRAY in 32-bit words. ARRAY
(1) is set to the total number of charac
ters (fixed-point) in the statement. The
number of characters placed in memory
equals the length of the statement unless
the statement is greater than 4* CN-U
characters. The maximum number of charac
ters to be read is 4*CN-1). Any unused
positions in the array are set to blank but
are not counted.

. ------------------------------------,
I COMMAND EXECUTION FROM MEMORY I
~--------------------------------------·i

I I
I CALL PUSH(LITL) I
I LITL PLAN literal representing the I
I command to execute I
r------------·------------------------·i
I I
I ADD PHRASE: ••• (27)'DUMP. I
I • I
I • I
I • I
I CALL PUSH(CA(27)) I
L---------------------------------------·J

CALL PUSH(LITL) allows a user to call for
execution of a command from within a user
wri tten program module.. LITL is a pointer
to the character count of a PLAN literal.

90 SUBROUTINE USE (5.11.3)

15 SEPTEMBER 1969

The literal is a PLAN statement minm; the
semicolon with at least one blank following
to provide space for insertion of the
semicolon. The PUSH subroutine replaces
the blank with a semicolon and linku to
PSCAN to execute the phrase. The module
:issuing the CALL PUSH is not reentE~red.
The pop-up list is not cleared.

r-----------------------------------·---,
ILITERAL FILE MAINTENANCE I
~-------------------------------------·---i
ICALL PHINCID~I,A) I
f CALL PHOUT(ID,I,A) I
I I
I ID GDATA open file control block I
I I Literal identification number I
I A Array containing PLAN literal I
~-------------------------------------·---i

ADD PHRASE: LITERAL, (5)'TEST PHIN AND
PHOUT';
LITERAL;

•
•
•

DIMENSION A(20)11 FNAME(2) ,ID(2)
COMMON LC625),LS(15),CAC510)
DATA FNAME/'FNAM','E'/

•
•
•

ID(1) = 5
CALL GDATA(NFCB, FNAME1, KT, 2)

C WRITE LITERAL TO FILE
CALL PHOUT (ID,,12,CA(5))

r. RETRIEVE LITERAL
CALL PHIN (ID,12,A)

C FIND WORDS IN LITERAL
KT = (CA(5)+3)/4

C COMPARE IN-OUT LITERAL
DO 5 I=l,KT
IF CCACI+5) -ACI+1)) 4,, 5, 4

4 PAUSE
5 CONTINUE

•
•
•

L---
CALL PHINCID, I1,A> is a subroutine that
retrieves a PLAN literal or table from. a
PLAN PERMANENT file and places it in
memory, starting at location A. Literal
number I in the file defined by the open
GDATA file control block ID is a PLAN
literal whose length in characters (bytes)
is placed in A< 1) • The text of the litE~ral
is placed in A(2) to A(2+CN-1>/4), wherE~ n
is the length placed in A< 1) • Literal e1 or
tables retrieved by PHIN must have been
written using PHOUT or the SET LITE:RAL
command.

Following execution of the CALL PHIN, 1H1)
will contain an integer value as defined: in
the table shown below:

15 SEPTEMBER 1969

INTEGER
IN A(1) MEANING

+N The number of characters in the
literal.

0 The file control block ID was
found not to be open.

-1 The file is not a valid literal
file.

-2 The requested literal number is
greater than any literal contained
in the file.

-3 The requested literal number is
not contained within the literal
file.

CALL PHOUT (ID., I, A) is a subroutine that
adds PLAN literals or tables to a PLAN
PERMANENT file. The literal number is I
and the character count (bytes) followed by
the literal (table) is located in memory at
location A. The file to which the literal
is to be added is defined by the open GDATA
file control block located at ID. The SET
LITERAL command invokes execution of the
PDIAG module, which in turn calls PHOUT.

.------------------------------·---------,
IMODIFY STANDARD PLAN DEVICES I
~---~----------------------------------~
ICALL IOCS (INPUT,LIST) I
I I
I INPUT Device number for standa:rd PLAN I
I input device I
I LIST Device number for standard PLAN I
I output device I
~-------------------------------·---------~
I I
IC MODIFY INPUT DEVICE I
I CALL IOCS(3,0) I
IC MODIFY OUTPUT DEVICE I
I CALL IOCS (0,102) I
JC MODIFY INPUT AND OUTPtn' DEVICE I
I CALL IOCS (2,101) I
L---J
CALL IOCS (INPUT,LIST) is a subroutine that
allows a logic module to alter the PLAN
statement input device and diagnostic list
device. All parameters are in the fixed
point mode. A value of zero for either
parameter does not alter the existing
value. Note valid device parameters for
each PLAN system are listed in the appro
priate appendix. A value of O for NOD for
the sequential I/O routine specifies the
PLAN input device, and 100 specifies the
current PLAN output device.

IBM PROBLEM LANGUAGE ANALYZER (PLAN)

PROGRAM DESCRIPTION MANUAL

5.11.6 ERROR INTERFACE SUBROUTINES

r--1
!GENERATE DIAGNOSTIC MESSAGE I
~---~
I CALL ERROR(N1,N2,LIT) I
I CALL ERREX(N1,N2,LIT) I
I CALL ERRET (Nl,, N2 I LIT) I
I CALL ERRAT(Nl,,N2,LIT) I
I I
I N1 Error number I
I N2 Error code I
'I LIT PLAN literal containing I
I diagnostic text I
~---~
I I
IADD PHRASE: TEST, (25)'TEST DIAGNOSTIC';!
ITEST; I
I • I
I • I
I • I
I COMMON L(625),LS(15),M(100) I
IC TERMINATE PHRASE AND MODULE I
I CALL ERROR {123,N,MC25)) I
IC TERMINATE MODULE I
I CALL ERREX (M,, 27, 0) I
IC GENERATE DIAGNOSTIC AND RETURN I
I CALL ERRET (1, 2 ,, M (2 5)) I
IC TERMINATE PHRASE BUT NOT MODULE I
I CALL ERRAT (105,, 0, 0) I
L---J
CALL ERROR/ERREX/ERRET/ERRATCN1,N2,LIT) are
subroutines that access the system error
processor to produce error diagnostics. In
each call, N1 and N2 are user-selected
identification numbers that may be used for
diagnostic messages.. LIT is the word con
taining the character count of a PLAN
literal that is to make up the diagnostic
message. The literal text in PLAN literal
format is found in LIT(2) to LIT(n), where
n equals the character count minus one
divided by four plus two.

The ERROR subroutine aborts the current
PLAN statement (initiates PLAN level error
recovery);

ERREX returns to the PLAN loader to execute
the next program in the pop-up list;

ERRET returns to the next statement in the
calling program;

ERRAT returns to the next statement in the
calling program, processes the remaining
programs in the pop-up list, and effects
PLAN level error recovery the next time
that the pop-up list is found empty. Note
that a phrase abort means PLAN level error
recovery procedures are initiated. These
calls, when necessary, save the calling
module, load the error processing module,
and restore the calling module if saved.
The calling module, therefore, does not
need the output device routine and so is

SUBROUTINE USE (5.11.3) 91

IBM PROBLEM LANGUAGE ANALYZER (PLAN)

PROGRAM DESCRIPTION MANUAL

more economical of memory utilization than
inline error coding.

on the 1130, if COMMON in the calling
module is larger than the maximum protected
by PLAN, the programmer must use a PLAN
file to save and restore the additional
COMMON if error processing is in the imme
diate mode,, if a user error module is
required to process the diagnostics, or if
the diagnostics will cause a:n overflow of
the PLAN error stack. (Note that overflow
of the PLAN error stack is unpredictable to
the programmer.>

Line 1 of the diagnostic locates the error
and identifies it with the programmer's
catalog codes Nl and N2. Underlined por
tions of the message are variable. The
literal text of the last command processed
precedes all diagnostics resulting from the
phrase if the long-form diagnostic is
selected <see "Switch Words", 4.3.21).

The format and meaning of the diagnostic
produced by the routines defined above a:re
as follows:

DFJOOO 001-100 TEXT
101-199 TEXT
201-299 TEXT
301-399 TEXT
401-450 TEXT

CCCnnn ·~· !!!!!!!!!ID!!! SEQ=~ ID=£££££
PG=xxxxxxxx DIAGNOSTIC

The underlined segments of the diagnostic
message are variable.

TEXT this field of up
contains the current
It is printed only if
diagnostic is printed.
tions are printed to
text.

to five lines
PLAN statement.
the long-form

Character posi
the left of the

CCC is component code indicating wheth
er the error was generated by PLAN
(CCC=DFJ) or by the user <~ce=•••>.

!!!!!! is the three-position .error number
provided as Nl in the call to the PLAN
error subroutines. For PLAN errors
(DFJ>. nnn is in the range of 1-99 for
PHRAS errors; 101-199 for execution
errors; 201-299 for PSCAN errors; 701-
799 for 1130 PLAN errors; 801-899 for
DOS PLAN errors; 901-999 for OS PLAN
ERRORS.

~ is an action code. E indicates an
exit from PLAN; R indicates a PLAN
level error recovery; c indicates con
tinued processing; O indicates a pause
for operator intervention.

92 SUBROUTINE USE (5.11.3)

15 SEPTEMBER 1969

mmmmm is the error code provided ats N2
in the call to the PLAN E!rror·
subroutines.

SEQ=yyy is the three-position sequtence
of the PLAN statement currently being
processed relative to the first state
ment processed following the last level
O command.

ID=£££££ provides the five-character
contents from the identification field
of the last PLAN input record processed
before the diagnostic routine call.

PG=xxxxxxxx is the name of the module
that issued the call to the PLAN error
subroutines.

DIAGNOSTIC is the text of the literal
indicated by LIT in the diagnostic
routine call. If LIT is zero (literal
character count> in the calling
sequence, no literal message will be
written, and the field is filled with
asterisks. The literal message is
limited to 76 characters.

r--------·----------------------------------1
ILIST ERROR FILE I
~------------------------------------·---~
ICALL ERLST I
L-------------------------------------·---J
CALL ERLST is a subroutine that may be
called to force a dump of the error mesl:>age
queue file (DYNAMIC file 255, drive 0).
Processing of the current statement is
terminated and control is passed to PSCAN
to process the next input record. ~rhis
subroutine supports the technique of post-
1.isting diagnostics. The PLAN error mes
sage queue file is automatically dumped
when a level 0 or level 1 phrase is
encountered or when a /* input statement is
processed.

r--1
!WRITE DIAGNOSTIC TO PLAN ERROR FILE I
~---~
ICALL EWRIT(NCTL,ARRAY) I
I I
I NCTL Associated carriage control I
I function I
I ARRAY User array containing the I
I diagnostic I
~---------------------------------------·--~
IADD PHRASE:TEST,(25)'SAMPLE DIAGNOSTIC'; I
ITEST; I
I • I
I • I
I • I
I COMMON L(625),,LS(15) ,CA(510) I
I CALL EWRIT (l,,CA(25)) I
L~---------------------------------------J

CALL EWRITCNCTL,ARRAY) is a subroutine that
allows a user to enter diagnostics into the

15 SEPTEMBER 1969

PLAN error message queue file (file 255,
drive 0) in a format that may be processed
by ERLST. Any diagnostic written to the
file will be automatically purged as
defined under CALL ERLST. NCTL in the
calling sequence defines the carriage con
trol functions to be associated with this
diagnostic and has the same meaning as
defined for CALL PCCTL. Array is a pointer
to the first word (character count) of the
PLAN literal that contains the diagnostic
text. The maximum number of characters in
the literal is 120.

5.11.7 SORT/MERGE

.-----------------------------·--------,
ISORTING AND MERGING I
.---------------------------------------~
ICALL PSORT(ID) I
ICALL PMERG(IO,JD,KD) I
I I
I ID File control block of SORT file or I
I MERGE output file I
I JD file control block of first I
I merge file I
I KO file control block of second I
I MERGE file I
1--------------------------~----------~
I
I COMMON LC625),LS(15),CA(510),,KAC1)
I DIMENSION JD (2) ,,KO (2), ID (2)
I EQUIVALENCE (KA(l),(A(l))
IC FIND ERASABLE COMMON
I NEC = LS(8)
I IO(l) = 1
I JOCl> = 21
I KD(U = 34
IC SET UP SORT CONTROL FIELDS
IC RECORD SIZE
I KA(NEC) = 25
IC SORT/FIELDS/RECORD
I KA (NEC+l) = 1
IC FIRST SORT KEY
I KA(NEC+2) = 3
I KA(NEC+3) = 12
I KA(NEC+4) = 1
I CALL FIND (ID,0,,0,1)
I CALL FIND (KO,, o,, o, 0)
I CALL FIND (JD, 0,, 0, 1)
I CALL PSORT (ID)
I CALL PSORT (KO)
I CALL PMERG (JD,ID,KD)
L--------------------------·-------J

IBM PROBLEM LANGUAGE ANALYZER (PLAN)

PROGRAM DESCRIPTION MANUAL

CALL PSORT(ID) is a subroutine that
initializes and calls in the PLAN DYNAMIC
FILE SORT facility. ID is a pointer to the
first word of the open file control block
of the file to be sorted. The file to be
sorted is replaced by the sorted file.
IDC2) must reflect the file size to be
sorted. If the entire file is to be
sorted, the CALL FIND automatically satis
fies this requirement. However, if only a
portion of the file is to be sorted or
merged, ID(2) must be modified to reflect
the intent. COMMON outside of that defined.
by Switch word 9 may be destroyed.

CALL PMERG(ID.,JD,KD) is a subroutine that
invokes the DYNAMIC file MERGE facility.
ID is a pointer to the first word of the
open file control block for the file that
is to receive the merged file. JD and KO
are pointers to the file control blocks of
the DYNAMIC files to be merged. JD(2) and
KDC2) must reflect the file sizes to be
merged.

PSORT/PMERG results in the overlay by the
PLAN loader checkpoint facility (CALL
LCHEX) of the module issuing the call with
PSRTA/PMRGA. Use of these functions
requires uniform-length logical records
written by the DYNAMIC file routine WRITE.
sort/merge keys may be located at random
within the record. They may be binary.,
alphameric, or numeric (integer or
floating-point>. The sorted file replaces
the original file on disk. The merge phase
creates a file from any two existing files.
Parameters that control sorting and merging
must be stored by the calling program in
the first positions of ERASABLE COMMON as
defined by Switch Word 8.

SUBROUTINE USE (5.11.3) 93

IBM PROBLEM LANGUAGE ANALYZER (PLAN)

PROGRAM DESCRIPTION MANUAL 15 SEPTEMBER 1969

r-------------------T---------------T---------------------T------------------------·---1
I I ASCENDING/ I I I
I I DESCENDING I DISPLACEMENT I I
I I & I =RELATIVE I I
I TYPE OF SORT I MODE I BYTE I LENGTH I
~------------------+----------------+-------------------+------------------------·---~
I I I I # OF CONTIGUOUS I
I ALPHAMERIC I ± 1 I 0 , 1 , 2 , • • • I ELEMENTS I
~--------------------+----------------+--------------------+------------------------·---i
I ASA STANDARD I I I # OF CONTIGUOUS I
I INTEGER I :!: 2 I 0,, LJ,, 8, • • • I ELEMENTS I
~--------------------+----------------+--------------------+-----------------------·---i
I 32-BIT I I I # OF CONTIGUOUS I
I FLOATING-POINT I :!: 3 I 0, LJ, 8,, • • • I ELEMENTS I
~-------------------+---------------+--------------------+-----------------------·---i
I 32-BIT I I I 32-BIT I
I LOGICAL BINARY I ± 4 I 0, 4, 8, .• • • I EXTRACTION MASK I
~-------------------+---------------+---------------------+------------------------·---i
I 16-BIT I I I # OF CONTIGUOUS I
I INTEGER I ± 5 I 0,2,4, ••• I ELEMENTS I
~-----------------+---------------+---------------------+------------------------·---i
I LONG-PRECISION I I I # OF CONTIGUOUS I
I (SYSTEM/360 ONLY) I :!: 6 I O, 8.,16, • • • I ELEMENTS I
l-------------------..L--------------..L-----------.---------..L------------------------·---J
Figure 11. Sort control fields

Figure 11 illustrates the sort control
fields and their meanings. The types of
sorts and merges that may be invoked are:

Alphameric. Any sort field definition
may define a sort key of from 1 to 256
consecutive EBCDIC characters to be
sorted. The field must not extend beyond
the end of the logical record.

ASA Standard Integer. Each sort field
definition may define a sort key of from
1 to 512 consecutive ASA fixed-point
integer numbers to be sorted. The field
must not extend beyond the end of the
logical record.

Floating-Point.
floating-point
those defined
integer.

Specifications for the
sort are identical to

above for ASA standard

Logical Binary. Each sort field defini
tion defines a 32-bit word that is to be
matched against the extractio~ mask (AND)
and then sorted in logical sequence.

Half-Word or one-word Integer. Each sort
field definition may define from 1 to
1024 16-bit consecutive binary integers
to be sorted. The field must not extend
beyond the end of the logical record.
Since the record length is a definition
of 32-bit words, it is not possible to
sort the file as a contiguous series of
16-bit integers.

Long-Precision <system/360 only). Each
sort field definition may define from 1
to 256 64-bit consecutive long-precision,

94 SUBROUTINE USE (5.11.3)

floating-point binary numbers. The field
must not extend beyond the end of the
logical record.

The ascending/descending mode indicator is
a bina~ integer that is positive if the
sort field is .to be sorted into ascending
sequence and is negative if a descending
sort is indicated. The absolute value of
the integer indicates the type of sort as
shown.

The displacement is an integer value that
is a relative byte displacement from the
beginning of the record to the leftmost
byte of the sort field.

The length field defines the number of
consecutive elements to be sorted except
for the logical sort. For logical sorts
the field is a mask that is combined by a
logical AND with the word to be sorted.

The first word of erasable COMMON must
contain the logical record length in 32-bit
words. It must be a positive integer not
greater than 512.

'I'he second word contains the number of
three-word sort control groups (M) and must
be a positive integer in the range 99>M<(L/
3-2), where L is the length of ERASABLE
COMMON.

Words 3,6,9 ••• contain the mode indicators
as shown in Figure 11, column 2.

Words 4., 7, 10 contain the displacement of
the first element in the sort field.

15 SEPTEMBER 1969

Words 5, 8, 11... contain the count of
consecutive elements or the extraction mask
as defined in the length column in Figure
11.

The following example shows the status of
erasable COMMON required to effect an
ascending sort on a file with a record
length of 20 words. The sort is floating
point on word 5 within word 12 <major
field).

ERASABLE
COMMON

1
2

3
4
5

6
7
8

Exception
follows:

CONTENT
20

2

3
44

1

3
16

1

Record length
Number of sort keys per
record

First three-word group
<major field key
indicators)

Second three-word group
(minor field key
indicators)

conditions are handled as

1. When the CALL PSORT /PMERG is executed,,
and an indicated file is found to be
closed,, PLAN level error recovery
(phrase abort) is initiated.

2. A merge file found to be unsorted
results in a phrase abort.

3. If the length of the file divided by
the specified record length is not an
integral value, the short record is
undi'sturbed.

4. If an error is found in the sort/merge
de~inition in erasable COMMON, a phrase
abort is initiated.

5. On PMERG insufficient space to complete
the merge will result in a phrase abort
condition.

5 .• 11.8 SORT/MERGE KEY DEFINITION

The diagrams below indicate how disk data
set displacement varies for different sort/
merge keys rather than the logic of core
array storage. Array position corresponds
to in-core subscript of record when read
from disk.

Displacement Keys for ASA Integer Data and
ASA Floating-point Data

r----T---T----r---T----T---1
ARRAY POSITION II (1)' II (2)' II (3) I I

t----i---+----.L---+----i---1
KEY I 0 I 4 ' 8 I

l--------i---------1--------J

IBM PROBLEM LANGUAGE ANALYZER (PLAN)

PROGRAM DESCRIPTION MANUAL

Displacement Keys for 16-Bit Integer Data
r----T----T----T----T----T----1

ARRAY POS. II(1)II(2)IIC3>1I(4)1IC5)1IC6)1
~----+----+----+----+----+----~

KEY I 0 I 2 I 4 I 6 I 8 I 10 I l----L----L----L----i ____ i ____ J
Displacement Keys for EBCDIC
Information

(Literal>

r-T-T-T-T-r_T_T_T_T_T--T--1
ARRAY POS. IAILIPIHIAINIUIMIEIRII IC I

~-+-+-+-+-+-+-+-+-+-+--+--~
KEY 101112131415161718191101111

l-L-L-L-L-L-L-L-.L-L-L--L--J

Displacement Keys for Binary SORT

ARRAY POSITION

KEY

r------T-------T-----1
132-BITIFORTRANIWORDSI
~------+-------+-----~
I o I 4 I a I
l------.L-------L---~_J

5.11.9 PLAN SEQUENTIAL I/O ROUTINES

The following subroutines provide over
lapped, buffered I/O capability from a
module via subroutine calls. Total compa
tibility between all systems supported by
PLAN is provided. Reread capability is
also provided within the framework of FOR
TRAN, as well as variable input/output
formatting capability .•

This set of routines is broken into the
following general classifications:

1. Buffer Assignment (1130 only)

2. Input/Output

3. General Control

4. Format Control

r---1
!BUFFER ASSIGNMENT I
~---~

CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL

PSBFACNOD)
PSBFB(NOD)
PSBFCCNOD)
PSBFD(NOD)
PSBFE(NOD)
PDBFA(NOD)
PDBFBCNOD)
PDBFC(NOD)
PDBFDCNOD)
PDBFE(NOD)

NOD PLAN device code definition

I
~

The buffer assignment routines provide
single or double buffer assignment for each
device used within a module. Each device
to be used within the module must be
specified as an argument of a buff er

SUBROUTINE USE (5.11.3) 95

IBM PROBLEM LANGUAGE ANALYZER (PLAN)

PROGRAM DESCRIPTION MANUAL

assignment routine. Two different devices
should not be associated with a particular
buffe~ set, that is. each subroutine should
be called only once within any module. The
buffer assignment routines are not required
(they will execute as a no-op> in System/
360 OS and DOS PLAN.

CALL PSBFA(NOD), CALL PSBFB(NOD), CALL
PSBFC(NOD>. CALL PSBFD(NOD>. and PSBFE(NOD)
are five calls that allow five single
buffer sets to be assigned to input/output
devices (NOD). NOD defines the device to
be associated with a particular buffer set.
The allowable values are the same as those
defined for CALL IOCS.

CALL PDBFA(NOD), CALL PDBFB(NOD), CALL
PDBFC(NOD>. CALL PDBFD(NOD), and CALL
PDBFE(NOD) are five calls that allow fiv~
double-buffer sets to be assigned to input/
output devices (NOD). Use of double-buffer
sets allows automatic overlapped input/
output operations. NOD defines the device
to be associated with a particular buffer
set. The allowable values are the same as
thos.e defined for INPUT and LIST under CALL
IOCS.

r--------·-----------------------·-1
IREAD/WRITE SEQUENTIAL FILES I

1---------------------------------------i
ICALL PLINP(NOD) I
ICALL PLOUT(NOD) I
I I
I NOD PLAN device assignment I

1---------------------------------------i
I
IC
I
I
I
I
IC
I
I
I

READ AND LIST A FILE
CALL PSBF.A<100)
CALL PDBFA(O)

5 CALL PLINP(O)
CALL PLOUT(100)
TEST FOR END OF FILE

•
•
•

IC IF NOT END-OF-FILE
I GO TO 5
'-----------------~-----------------------

The input/output routines provide for
transfer of information from/to device NOD
to/from a buffer as defined in the call to
the buffer assignment routine. A pointer
is set to the buffer to allow conununication
with the format control routines. When
double buffering is specified,, automatic
overlapped transfer is initiated where
possible. These routines wait until pre
viously initiated I/O on the current buffer
is complete.

CALL PLINP(NOD) is a subroutine call to
transfer a record from the device NOD to
the buffer set associated with NOD.
overlapped, look-ahead reading is initiated
where possible. NOD may be any device

96 SUBROUTINE USE (5.11.3)

15 SEPTEMBER 1969

specified for INPUT under CALL IOCS. l~osi
tions outside the range of the buff er are
considered to be blank. An invalid NOD
causes the call to function as a NOP.

CALL PLOUT(NOD) is a subroutine call to
transfer a record from the buffer set
associated with device NOD to device NOD.
overlapped operation is initiated when
possible.. NOD may be any device specified
for LIST under CALL IOCS. Positions out
side the range of the buff er are lost. The
buffer is automatically cleared before for
matting begins. An invalid NOD specifica
tion causes the CALL to function as a NOP.

.-------------------------------------·---,
ITEST DEVICE STATUS I

1--------------------------------------·---i IIF(PIOC(NOD))l,2,3 I
I I
I NOD PLAN device designation I
I 1 Exit for busy I
I 2 Exit for invalid device I
I 3 Normal exit I
1------------------------------------·---i

c

c

c
IC
IC
~
I
~c
I
~
~
II
~
!C
~

CALL PSBFA (101)
CALL PSBFB(102)
CALL PDBFA(l)
CALL PDBFB(2)

1 DO 25 I=l,2
IS DEVICE VALID AND NOT BUSY

2 IF (PIOC(I)) 2,,30,5

5
10

CHECK OUTPUT DEVICE
IF (PIOC(I+100)) 5~30,10
CALL PLINP(I)
TRANSFER INPUT BUFFER TO OUTPUT
BUFFER (SEE TRANSFER BUFFER
CONTENTS)
CALL PBFTR CI,I+100)
CALL PLOUT (I+100)
TEST END OF FILE

•
•
•

25 CONTINUE
GO TO 1
INVALID DEVICE

30 PAUSE 30
l------------------------------------·---

The busy status of any device may be tE!Sted
with the following function test:

IF (PI OC <NOD)) 1 , 2 , 3

statement number 1 is executed if the
device specified by NOD is busy. State?ment
number 2 is executed if NOD is an in~·alid
device specification. Statement numbE!r 3
is executed if the device specified b:y' NOD
is not busy.

15 SEPTEMBER 1969

r------------------------------·-------1
IQUIESCE I/O I
r---------------------------------------i
I CALL PBUSY I
1---i
I • I
I • I
I • I
IC WAIT UNTIL ALL I/O IS COMPLETE I
I CALL PBUSY I
I • I
I • I
I • I
'--------------------------------~-------J

CALL PBUSY is a subroutine that returns
control to the calling program only when
all devices controlled by CALL PI.INP and
CALL PLOUT are found to be not busy. This
call need not be issued before terminating
any module in which CALL PLINP or CALL
PLOUT are issued because the PLAN loader
performs the function. However, any
instructions to an operator requiring a
change in a device status should be pre
ceded by a call to PBUSY.

r---1
ITRANSFER BUFFER CONTENTS I
1----------------------------------·-------i
ICALL PBFTR(NODF,NODT) I
I I
I NODF PLAN device code of "fromw bufferl
I NODT PLAN device code of "to" buff er I
1------------------------------------i
I (See "Test Device Status" for example) I
'---J

CALL PBFTR(NODF,NODT) is a subroutine that
results in the transfer of data from the
buffer associated with NODF to the buff er
associated with NODT. The shortest buffer
controls the transfer termination.

The following general control routines pro
vide miscellaneous control functions asso
ciated with a particular device (NOD).

IBM PROBLEM LANGUAGE ANALYZER (PLAN)

PROGRAM DESCRIPTION MANUAL

r---1
IDEVICE CONTROL I
1--i
ICALL PCCTL(NOD,KTL) I
I I
I NOD PLAN d.evice assignment I
I KTL Control function code I
~---~
I
I
I
I
IC
I
IC
I
I
IC

•
•
•

DOUBLE-SPACE LISTING
CALL PCCTL (100,,-2)
IS PAGE RESTORE REQUIRED
IF (PEOF(100)) 5,5,10

5 CALL PCCTL (100,,1)
PRINT

I 10 CALL PLOUT(100)
I •
I •
I •
L---

CALL PCCTL(NOD 0 KTL) is a subroutine call
that defines a control procedure, to be
executed in conjunction with the next
input/output operation on device NOD as a
result Of CALL PLOUT(NOD) or CALL PLINP(
NOD>. Allowable values of KTL are shown in
the following table. The call will be
ignored if NOD is a device on which the
function may not be executed.

Note carefully that the most recent call to
PCCTL prevails. For example, a request for
a double-space following a request for a
page skip without an intervening call to
PLOUT will result in a missed page skip. A
page skip request when the carriage is at
channel 1 will result in a skip to a new
page.

N
I-12

0

-1

-2
-3
13
14

FUnction
Skip paper to channel N
Suppress space before printing <note
that suppress space results in no
carriage return on the 1130 Console
typewriter or 1050 on the DOS
System>
Single-space before printing <note
that this is automatic)
Double-space before printing
Triple-space before printing
Select stacker 1
Select stacker 2

SUBROUTINE'USE (5.11.3) 97

IBM PROBLEM LANGUAGE ANALYZER (PLAN)

PROGRAM DFSCRIPTION MANUAL

r-----------·------------------------·--1
I I
ITEST END-OF-FILE STATUS I
~-------------------------------·--~
IIF (PEOF(NOQ)) 1,2,3 I
I I
I NOD PLAN device code definition I
I 1 Logical EOF on exit I
I 2 Physical EOF or invalid device 1
I code exit I
f 3 Normal exit I
~---------------------------~------------~
1see •Device Control" for example I
L----------·------------------------·--J

The physic.al end-of-file indicator is
turned on by reading or punching the last
card. The condition may be' detected by
testing the indicator with the function
test PEOF. The logical end-of-file indica
tor is turned on by reading a record with
URENO in positions 1-5 or by sensing chan
nel 12 on the printer. Channel 12 is
simulated on OS and DOS PLAN by a l:ine
counter. The record containing the logical
end-of-file may be accessed by the conv·er
sion routines if desired. The logical EOF
indicator remains on for only one cycle.

The end-of-file test is a function test as
shown below. Statement 1 is executed if
the logical end-of-file indicator is "on";
statement 2 is executed if the physical
end-of-file indicator is "on• or an invalid
device is tested; statement number 3 is
executed if neither end-of-file indicator
is •on•.

IF (PEOF (NOD)) 1,, 2, 3

NOD is the device on ~hich the input/output
operation was executed that might have set
the end-of-file indicator. Note that when
the physical end-of-file indicator is
turned •on• the device cannot be accessed
until PLAN is rescheduled Ca new execution
of PLAN is initiated).

The procedures below are followed by PLAN
(PSCAN) when end-of-file conditions or spe
cial input records are processed.

CONDITION
LOGICAL EOF
(URENO)

PHYSICAL EOF

/*

//

ACTION
Initiate a phrase abort with
the appropriate diagnosticN

Return to monitor after com
pletion of processing of the
current command.

Return directly to monitoru

Return control to monitor. A
diagnostic is issued and the
record is not processed by
monitor.

98 SUBROUTINE USE (5.11.3)

15 SEPTEMBER 19 6 1~

r---··1
IDATA CONVERSION ROUTINES I
~---------------------------------------·t
ICALL PIIN(NOD,I,NW,ARRAY) I
CALL PIOUT(NOD.,,J,NW,,ARRAY) I
CALL PAIN<NOD, I,,NW,ARRAY) I
CALL PAOUT(NOD.,J ,NW.,ARRAY) I
CALL PFINCNOD,I,NW,ARRAY) I
CALL PFOUT{NOD.,J ,NW,,ARRAY) 1
CALL PEOUT(NOD.,J ,NW,,ARRAY) I

NOD
I

J

PLAN device specification
Input record position from
to extract field
Output record position into
the field is to be stored
Number of characters in the
or field width and decimal
position indicator

I
I

which I
I

which I
I

field~

~
~

ARRAY User array ~

~------------------------------------·-----1

c

c

c

c

c

c

c

c

c

c

c

LIST SEQUENCE ERRORS IN CARD DECK
COMMON LC625), LS(15), M(510),

1K(8), KK(8),A(2)
DATAA/' ERRO' , ''ORS' /
OPEN BUFFER
CALL PDBFA(O)
CALL PSBFA(100)
NERR = 0
CLEAR OLD SEQUENCE
DO 5 I=l,8

5 K(I) = 0
6 CALL PLINP(O)

GET NEW SEQUENCE
DO 10 I=l.,8

10 CALL PAIN<0,72+I,1,,KK(I))
CHECK SEQUENCE

DO 15 I=L,8
IF (K(I)-KK(I)) 19~15,35

15 CONTINUE
EQUAL ERROR
GO TO 35
TEST END-OF-FILE

19 IF (PEOF(O)) 20,,20,25
SAVE OLD SEQUENCE

25 DO 30 I=l,8
30 K(I) = KK(I)

GO TO 6
GENERATE COUNT OF ERRORS

20 CALL PIOUT(100,1,5~NERR)
CALL PAOUT(100,, 6,, 7 ,A)
CALL PLOUT(100)
EXIT MODULE
CALL LRET
ERROR IN SEQUENCE

35 CALL PBFTR(0,100)
CALL PLOUT(100)
NERR = NERR+l
GO TO 19
END

~
I
~
I
i
I
I
I
I
I
I
I
I
II

II
11

L---J
The format control routines provide fox:·
transfer and format conversion of data
from/to the system buffer associated with
the device to/from user-specified memory.
The names of routines that transfer data.

15 SEPTEMBER 1969

from the system buffer are suffixed with
the characters "IN•. The names of routines
that transfer data to the system buff er are
suffixed with the characters "OUT". The
second character of the subroutine name
specifies the format conversion type.

ROUTINE
PIIN
PFIN
PAIN

PIO UT

PF OUT

PEOUT

PA OUT

CONVERSION
Integer input conversion
Floating-point input conversion
Hollerith CA-format) named input
conversion
Integer output conversion
fixed-point numbers
Decimal output conversion
floating-point numbers
rounding

Of

of
with

Exponential output conversion of
floating-point numbers with
rounding
Output conversion of named Hol
lerith data

The input conversion routines have the
following arguments in the call list:

CALL PXIN (NOD.,I, NW, ARRAY)

Argument Function

NOD

I

NW

ARRAY

The input device Csee 5.11.5) on
which the data to be converted was
read as the last record.

The relative position within the
record of the first ·character of
the field to be converted.

The number of positions within the
record to be converted, starting
at I. In PFIN, the tens and
hundreds positions define the
field width. The units position
defines the number of decimal
position~ in the data field. An
included decimal point or explicit
exponent overrides the units posi
tion specification.

The 32-bit word that is to receive
the converted data value.

The output conversion routines have the
following arguments in the call list:

CALL PXOUT CNOD,,J, NW,ARRAY)

Argument Function

NOD The output device (see CALL IOCS
under "Utility Subroutines", 5.11.
5) on which the converted data
record is to be written on the
next output record.

J The relative position within the
output buffer at which the first

NW

ARRAY

IBM PROBLEM LANGUAGE ANALYZER (PLAN)

PROGRAM DESCRIPTION MANUAL

position of the converted data is
to be stored.

The number of positions to be
occupied by the converted data
field, starting at J. Data con
verted by PIOUT, PFOUT, and PEOUT
is right-justified. Leading zeros
are suppressed. In PFOUT, and
PEOUT the tens and hundreds posi
tions define the field width. The
units position defines the number
of decimal positions. If pos
sible, the exponential format is
used when the field width is too
small to allow the decimal format.

The location in memory from which
the data to be converted is to be
taken.

The following rules for
indicate action taken by
conversion routines under
conditions:

these routines
the PLAN I/O
various data

Routine Conversion Rules
PIIN 1. Leading blanks to and following

PFIN

the sign are ignored.
2. Signs may be +,, -, or &.
3. Digits are collected after the

first numeric until the speci
fied field is processed or a
nonnumeric character is
processed.

4. A fixed-point zero is the result
of processing no numerics.

5. All numbers are treated modulo
(the maximum positive or maximum
negative fixed-point number).

6. Example:
b-b156 = -156
1-56 = 1
bbb.b = 0

1. Leading blanks to the left of
the sign or within an exponent
field are ignored.

2. other blanks are treated as
zero.

3. Input collection is stopped when
a second decimal is processed.

4. Exponents may be represented and
preceded by E~ hy leading
blanks, and a sign, or by a
sign ..

5. The collection is stopped by a
nonblank, nonnumeric following
the exponent.

6. Numbers too small to be repre
sented are set to zero.

7. Numbers too large to be repre
sented are set to FALSE.

8. Example:
bb+5b.b6 = 50.06
7bbb+b5 = 700000000
-.7E3 = -700
1.Elbb=10

SUBROUTINE USE (5.11.3) 99

IBM PROBLEM LANGUAGE ANALYZER (PLAN)

PROGRAM DESCRIPTION MANUAL

PAIN

PIO UT

PFOUT

PEOUT

PAO UT

1. Characters are collected and
placed in successive array words
:in A4 format.

2. The unused portion of the last
word is not disturbed.

1. Leading zeros are suppressed.
2. The sign, if minus,, is placed

adjacent to the leftmost digit.
3. Truncation is from the left with

the sign being truncated first.

1. Leading zeros to the left of the
decimal point are suppressed.

2. No position is required for the
sign unless it is negative. Any
minus sign is placed to the left
of the most significant digit or.
the decimal point if there are
no digits left of the decimal
point.

3. Truncation from the right is
automatic.

4. Truncation from the left results
in a call to PEOUT.

5. If CW-D-S-M-1) is less than
zero, the call is treated as a
call to PEOUT.
W number of output positions
D number of digits to right of

decimal
B = number of significant digits

left of decimal point
M 1 if the number is negative

and 0 if the number is
positive

1. No sign position is required
unles~ the sign is negative.

2. Positive exponents are in the
:form:

E±nn
3. If CW-D-M-S) is equal to or lesd

than 0 when D=O, then D is set
equal to W-M-6. If this D is
negative, the output field is
set to asterisks.

1. Characters are transferred from
successive array words that are
assumed to be in A4 format.

The following example illustrates the
sample program to read and list cards and
accumulate the total of the data punched in
columns 21-27 of the data cards. The data
deck is terminated with a card punched
UREND (logical EOF) in cc. 1-5.

100 SUBROUTINE USE (5.11.3)

5

15

10

20

CALL PDBFA(l)
CALL PDBFBC101)
SUM = O.
CALL PCCTL (101,1)
CALL PLINP(l)

15 SEPTEMBER 1969

IF (PEOF(l)) 20w20,15
CALL PFINCl,21,, 70,A)
SUM = SUM+A
CALL PBFTR(l,101)
CALL PLOUT (101)
IF CPEOFC101))5,5,10
CALL PCCTLC101,1)
GO TO 5
CONTINUE

END

•
•

Note that a buff er may be used for both
output conversion routines and input con
version routines. This allows a user to
utilize the facilities of the conversion
routines for converting internal data.

The following example illustrates a program
that reads a deck of cards, and .adds a
three-character identification field and
five-position sequence field before repro
ducing the deck on the system card punch
and listing it on the system printer. The
starting sequence number, increment, and
identification field are read at the start
of each deck.

c
c

c

c

c

c
10

c

c
c

c
c

c
15

c
20

c

c

c

c

COMMON L(625) ,, LS (15) ,,M (510)
ASSIGN BUFFER FOR CONTROL INFO~~TION
INPUT
CALL PSBFA (3)
ASSIGN PUNCH FILE BUFFER
CALL PDBFBC104)
ASSIGN PRINT FILE BUFFER
CALL PSBFB(l02)
ASSIGN READ FILE BUFFER
CALL PDBFA(2)
READ CONTROL INFORMATION
CALL PLINP(3)
CONVERT ID FIELD FROM POSITIONS 1-3
CALL PAIN(3,1,3,A)
CONVERT STARTING SEQUENCE NUMBEH.
POSITIONS 5-9
CALL PIIN(3,5,5,I)
CONVERT SEQUENCE INCREMENT FROM
POSITIONS 10-14
CALL PIINC3 ,10., 5 ,INC)
EJECT TO NEW PAGE
CALL PCCTL(l02,1)
READ CARD
CALL PLINP(2)
MOVE RECORD To PUNCH - PRINT BUJ~FER
CALL PBFTRC2,104)
CALL PBFTRC2,102)
MOVE IDENT TO OUTPUT
CALL PAOUT (102., 73, 3.,A)
CALL PAOUTC104,, 73, 3..,A)
MOVE SEQUENCE TO OUTPUT
CALL PIOUTC102, 76,, 5w I)
CALL PIOUTC104,, 76,5,,I)
FILL LEADING ZEROS

15 SEPTEMBER 1969

DO 23 K=76,79
CALL PAIN (102,, K,, 1, KK)
CALL PUNPK (KK,,KK,1)
IF (KK-64) 21.,21,24

21 CALL PAOUT(102,,K, 1, 240)
23 CALL PAOUT(104,K,1,240)

c WAS EOF PROCESSED ON READ
24 IF (PEOF(2))10,30,25

c PUNCH CARD
25 CALL PLOUT(104)

c PRINT
CALL PLOUT(102)

c INCREMENT SEQUENCE
I=I+INC

c IS THIS LAST LINE ON PAGE
IFCPEOF(102))15v15,20

c RETURN TO PLAN ON PHYSICAL EOF
30 CALL LRET

GO TO 30
END

If NOD equals zero for any function asso
ciated with inputv the current PLAN input
device is used. Use of 100 for any func
tion associated with output results in use
of the current PLAN output device <see
5 .. 11. 5).

The following example illustrates the trun
cation procedures of PIOUT. A FORTRAN
program is shown followed by the output
attained:

IBM PROBLEM LANGUAGE ANALYZER (PLAN)

PROGRAM DESCRIPTION MANUAL

DATAVl/' A='/ I V2/' B=' /,VJ/• c='' /, V4/'D=' /,
V5/'E='/,V6/'F='/
DATAV7 /' G=·' /I V8/' H=' /, V9/' I='/ I VA/'J=' /
CALL PSBFAC12)
CALL PAOUT(102, 01,, 2, VU
CALL PIOUTC102, 03, 8,,-32767)
CALL PAOUTC102,11,2,V2)
CALL PIOUTC102,13,7, 32767)
CALL PAOUTC102,, 20, 2, V3)
CALL PIOUT(102,22,6,-32767)
CALL PAOUTC102,28,,2,V4)
CALL PIOUT(102,30"5' 32767)
CALL PAOUT(102, 35,, 2, VS)
CALL PIOUTC102,37,5,-32767)
CALL PLOUTC102)
CALL PAOUTC102,42.6 2,V6)
CALL PIOUTC102,44.,,4, 32767)
CALL PAOUT(102,48.,2,V7)
CALL PIOUT(102,50"3' 32767)
CALL PAOUT(102,53v2,V8)
CALL PIOUTC102,55,,,2, 32767)
CALL PAOUTC102,57.,2,V9)
CALL PIOUT (102, 59" 1, .32767)
CALL PAOUT (102 1 60" 2, VA)
CALL PIOUTC102,62.,59,,0)
CALL PLOUT(102)

1 CALL LRET
GO TO 1
END

A= -32767B= 32767C=-32767D=32767E=32767
F=2767G=767H=67I=7J=

SUBROUTINE USE (5.11.3) 101

IBM PROBLEM LANGUAGE ANALYZER (PLAN)

PROGRAM DESCRIPTION MANUAL

5.11.10 ARRAY MANIPULATION

.----------------------------------·---,
IARRAY MANIPULATION I
..-----------------------------------·---"'
ICALL PARGO(LS,ARRAY)
ICALL PARGI(LS,ARRAY)
ICALL GTVAL(ARRAY,KOUNT,DATA,NSUB)
ICALL STVAL(ARRAY,KOUNT,DATA,NSUB)
I
I LS Switch word containing pointer
I ARRAY User data array
I KOUNT Words to transfer
I (TO array for GTV~L)
I (The FROM array for STVAL)
I DATA User data array
I (The :FROM array for GTVAL)
I (The TO array for STVAL)
I NSUB Data array initial subscript
~--1
I
c

IC
I
I
I
IC
I
c

MOVE ARRAY C-A-D-B-A
COMMON L(625) .,LS(15) ,NA(10),,NB(10),
NC (10), ND (10)
DO 5 I=l,10
NACI>=O
NBCI>=10
NCCI>=20

5 ND(I)=30
LS{4)=21
NC(1)=9

10
15

CALL PARG0(4,NA)
TRANSFER A TO D
CALL GTVAL <ND., 10., NA, 1)
LS(4)=11
CALL PARGI(4,ND)
TRANSFER B TO A
CALL STVAL (NB., 10,, NA, 1)
ARRAYS SHOULD BE EQUAL
DO 25 I=l,31,10
IF (NA(I)-9)10,15,10
CALL ERROR (111,NA(l),0)
KK=I+l
KKK=KK+B
DO 25 K=KK,KKK
IF(NA(K)-20) 20.25,20

20 CALL ERRET(112,NA(K),0)
25 CONTINUE

CALL LRET
GO TO 25

L--------------~-----------------------J

subroutines PARGO and PARGI provide a
mechanism for easy manipulation of data
through system switch Words 4-7.

Arrays to be transmitted by PARGO and PARGI
must be in the following PLAN array format.

r---T----·--~-----T-----~------1

I FIXED-I I I I I
f POINT I I I I I
I COUNT I I I I I
I OF I I I I I
fDATA llST 12ND I)LAST I
fVALUESIELEMENTIELEMENTI IELEMENTI L_ _____ i _______ .J.._ _____ i _____ i ______ J

102 SUBROUTINE USE (5.11.10)

15 SEPTEMBER 1969

If the resulting "TO" array address is
lower in COMMON than the communication
array, the call is ignored,. No diagnostic
is issued.

CALL PARGO(LS,ARRAY) moves a data array
from ARRAY to the PLAN communication array
pointed to by PLAN Switch Word LS. Array
<1> is assumed to contain the nwnber of
words "M" that are to be transferred from
Array(2) to ArrayCM+l). The count is
transferred to the position indicated in
Switch Word LS. The data list is trans
ferred to the following positions.

CALL PARGICLS,ARRAY) moves a data list from
the PLAN communication array (pointed to by
PLAN Switch Word LS) to ARRAY. The first
position of ARRAY receives the i1nteger
count of the number of data values. The
remainder of the array contains th•e data
list.

The following example shows use of the
PARGO routine in transferring array F ,, in a
module, to communication array location 20.
Example:

COMMON L(625) I LS(15),, M(255)
LS(4)=20
CALL PARGOC4,F)

In the above example, if FCl> contained a
10, then communication array position 20
would be set to 10 and F(2) through FC11)
would be transferred to communication array
positions 21 through 30.

The following routines allow easy, effi
cient transmission of arrays or parts of
arrays to and from any location in stc•rage.
Note carefully that arrays to be processed
must start on 32-bit boundaries.

CALL STVAL(A,,N,,B,I)) moves N 32-bit words
from ACl> through A(N) to B(I) th~ough
BCI+N-1>.

CALL GTVAL {A., N, B, I) moves N 3 2-bi t words
B(I} through BCI+N-1) to A(l) through A(N).

15 SEPTEMBER 1969

5.11.11 BIT, BYTE AND CHARACTER PROCESSING

.------------------------------------,
ICOMPARE LOGICAL ARRAY I
r---------------------------·--------i
I IF (PCOMP (A,, B,, N)) 1., 2 .. 3 I
I I
I A User's first data array I
I B User's second data array I
I N Number of words to compare I
I 1 A less than B exit I
I 2 A equals B exit I
I 3 A great.er than B exit I
~------------------------·--------i

I I
IC 1130 FLOATING-POINT USED IN EXAMPLE I
I I
I DIMENSION A(5),,B(5) I
I COMMON L (6 2 5) ,, LS (15) IM (2 5 5) I
I DATA A/'ABCD'/, B/'BCDE'/ 1
I DO 10 J=l,5 I
I A(J)=J I
I 10 B(J) = J I
I IF (PCOMP(A,B,5)) 90,20,90 1
I 20 A(3) =2.
IC COMPARE HEX 40000082 WITH 6000008.J
I IF (PCOMP(A,B.5)) 30,80,80
I 30 A(3)=40.
IC COMPARE HEX 50000086 WITH 60000083
I IF (PCOMP (A, a,, 5)) 4 o,, 80 I 80
I 40 IF(PCOMPCB,A, 5)) 70,, 70, 50
I 50 CALL LRET
IC BRANCH HIGH ERROR
I 70 PAUSE 70
I GO TO 50
IC BRANCH LOW ERROR
I 80 PAUSE 80
I GO TO 50
IC BRANCH EQUAL ERROR
I 90 PAUSE 90
I GO TO 50
I END
L---------------------------------------J
Two 32-bit arrays may be logically compared
through use of the PCOMP function. The
following example illustrates the FORTRAN
statement necessary to compare five words
(32-bit logical) of array A to five words
of array B:

IF(PCOMP(A,,B, 5)) 1, 2, 3

Statement number 1 is executed if the first
word of array A that is not equal to the
corresponding word of array B is less than
the word in array B.. Statement number 2 is
executed if the entire array A is equal to
array B. Statement number 3 is executed if
the first unequal word of array A is
greater than the corresponding word of
array B. care should be taken when compar
ing numeric arrays to note the logical
order of bits ..

IBM PROBLEM LANGUAGE ANALYZER (PLAN)

PROGRAM DESCRIPTION MANUAL

r--------------------------------------1
IHEXADECIMAL TO EBCDIC I
~---------------------------------------i
I CALL PHTOE(A,,B,N) I
I I
I A Hexadecimal array I
I B EBCDIC converted array I
I N Number of words in array A I
~---i

C LIST SWITCH WORDS
COMMON L(625),LS(15),M(510)
DIMENSION WC30)
CALL PSBFA(100)
CALL PHTOE (LS, W,, 15)
DO i°O I=l ,15
CALL PAOUT<100,, 1o•I-9-I/11•100, a,

1W(2*I-1>)
IF (I-10) 10,5,10

5 CALL PLOUT(100)
10 CONTINUE

CALL PLOUT(100)
•
•
•

L--J
CALL PHTOE(A,B,N) is a subroutine call that
converts a hexadecimal array A to an EBCDIC
array B in A4 format. N words from array A
a~e converted to 2*N words in ~rray B.
PHTOE allows any data to be dumped as a
hexadecimal listing. The following example
shows array A and array B (hexadecimal
representation> following the call to
PHTOE:

Array A: 60000082C1C2C3C4
Array B: F6FOFOFOFOFOF8F2C3F1C3F2C3F3C3F4

SUBROUTINE USE (5.11.10) 103

IBM PROBLEM LANGUAGE ANALYZER (PLAN)

PROGRAM DESCRIPTION MANUAL

.---------·---------------------------,
ILOGICAL TEST FUNCTIONS I
l------------·-----------------------------1
I CALL PBTST <NOP, NWORD., NBIT, NSKIP) I
I I
I NOP Operation to perform I
I NWORD word upon which test is to be I
I made I
I NBIT Bit to test or test mask I
I NSKIP Test result indicator I
~--------------------------------------1
I
IC
I
IC
I
I
IC
IC
I
I

CLEAR WORD
CALL PBTST(O,A,0,NSKIP)
TURN EVERY OTHER BIT ON
DO 5 I=l,31,2

5 CALL PBTST(l,A,I,NSKIP)
SET MASK TO EXTRACT ALL BUT BITS
7-15 FROM WORD
CALL PBTST(-l"B,, O, NSKIP)
DO 10 I=7,15

I 10
IC

CALL PBTST(3,B,I,NSKIP)
EXTRACT

I
IC
IC
c

CALL PBTST (12,, A,, B, NSK IP)
BITS 1,3,5,17,19,21~23,25,27,29,
AND 31 SHOULD BE ON
LIST BITS ON AND TURN THEM OFF
CALL PSBFA(100)
DO 15 I=l,32
CALL PBTST (7,, B, I-1, NSKIP)
IF (NSKIP)12,15,12

12 CALL PIOUT(l00,1,,5,I-1)
CALL PLOUT (100)

15 CONTINUE
•
•
•

CALL PBTST(NOP,NWORD,NBIT,NSKIP> is a sub
routine call to provide manipulative and
testing functions for any of the 32-bits of
the 32-bit word NWORD. The bit specified
by NBIT is in the range of 0-31. NOP
specifies the setting, resetting, or test
ing operation to be executed. If a test
operation is defined and all bits in the
test mask match or the specified bit is on,
NSKIP is set to one; if no bits in the test
mask match or the specified bit is off,,
NSKIP is set to zero; if only part of the
bits match; NSKIP is set to minus one. If
NOP specifies a test under mask operation,
NBIT is the test mask rather than a bit
position. If NOP specifies an extract
under mask,, NBIT is the PLAN word that is
to receive the extracted field and that
contains the extraction mask. The follow
ing table lists the valid operation codes:

OP CODES
-1

0
1
2

3
4

FUNCTION
Turn all bits •on•
Set all bits •off•
Set the specified bit •on• (1)
Invert the specified bit; if 1 set
to O, if 0 set to 1
Set the specified bit "off" <O>
Test the specified bit

104 SUBROUTINE USE (5.11.10)

15 SEPTEMBER 19 6 1~

5 Test the specified bit and set it
"on•

6 ·Test the specified bit and invert
7 Test the specified bit and set it

•off•
B Test·the bits corresponding to the

specified mask
9 Test the bits corresponding to the

test mask and set them •on•
10 Test bits corresponding to the

test mask and invert them
11 Test the bits corresponding tio the

test mask and set them •off•
12 Test and extract the bits corre

sponding to the bits in the test
mask

The following table illustrates the func-·
tions of various calls to PBTST and :shows
values before and after execution:

NOP
-1

0
1
2
2
3
3
4
4
5
5
6
6
7
7
8
8
9
9

10
10
11
11
12

12

NW ORD
BEFORE NBIT NSK IP
7FFFFFFF
7FFFFFFF
7FFFFFFF 0
7FFFFFFF 1
7FFFFFFF 0
7FFFFFFF 1
7FFFFFFF 0
7FFFFFFF 1 1
7FFFFFFF 0 0
7FFFFFFF 1 1
7FFFFFFF 0 0
7FFFFFFF 1 1
7FFFFFFF 0 0
7FFFFFFF 1 1
7FFFFFFF 0 0
7FFFFFFF FOOOOOOO 0
7FFFFFFF 70000000 1
7FFFFFFF FOOOOOOO 0
7FFFFFFF 70000000 1
7FFFFFFF FOOOOOOO 0
7FFFFFFF 70000000 1
7FFFFFFF FOOOOOOO -1
4FFFFFFF 70000000 1
7FFFFFFF FOOOOOOO 1
NBIT after 70000000
7FFFFFFF 70000000 1
NBIT after 70000000

NWORD
AFTER
FFFFFF:rF
00000000
FFFFFF:rF
3FFFFFlPF
FFFFFFlli'F
3FFFFF1PF
7FFFFFl?F
7FFFFFl?F
7FFFFFlli'F
7FFFFF1?F
FFFFFFlli'F
3FFFFFJ?F
FFFFFFFF
3FFFFFl?F
7FFFFF1~F
7FFFFFl?F
7FFFFFJ~F
FFFFFFJ?F
7FFFFFl?F
8FFFFF1i'F
OFFFFFPF
OFFFFFJi'F
OFFFFFPF
7FFFFF.PF

7FFFFF.PF

15 SEPTEMBER 1969

r--------------------------------~-------,
IBYTE MANIPULATION I
1---~
I CALL PPACKU,A,N) I
I CALL PUNPK(I,,A,N) I
ICALL BREAKCA,J) I
I I
I A Word containing four bytes I
I I Integer word witn one I
I right-justified byte I
I N Byte position indicator I
I J Four-word integer array I
1--------------------------------,-------~
I I
IC REVERSE ORDER OF FOUR BYTES J
I DATA A/'ABCD'/ I
I DIMENSION N(4) I
I CALL BREAKCA,N) I
I DO 5 I=1,4 I
I 5 CALL PPACK(N(I),A,5-I) I
IC GET 2ND BYTE AND TEST FOR 'C' I
I CALL PUNPKCN,A,2) I
I IF (N(l)-195) 10,15,10 I
IC ERROR I
I 10 PAUSE 10 I
I 15 CONTINUE I
I • I
I • I
I • I
L-------------------------------~--------J
CALL PPACKCI,A,N) is a subroutine that
masks the rightmost eight bits of the
integer I into the byte position of array A
specified by N. Other bytes within A are
unchanged.

The following example illustrates a call to
PPACK to place the letter B (decimal equiv-

IBM PROBLEM LANGUAGE ANALYZER (PLAN)

PROGRAM DESCRIPTION MANUAL

alent is 194) into bits 0-7 of the word at
A. Example:

CALL PPACKC194,A,1)

CALL PUNPK(I,,A,N) is a subroutine that
inserts the byte specified by N in array A
into the rightmost byte of the integer word
I. Bits to the left of the inserted byte
in I are cleared.

CALL BREAKCA,J) is a subroutine that
spreads the four bytes of word A into the
low-order byte of the four-word integer
array J. High-order bits in array J are
set to zero. This subroutine call is
useful in separating alphameric data in A4
format into a form that allows ready test
ing within FORTRAN. The following FORTRAN
statements test a literal string and indi
cate the position of the first comma
encountered. The string is assumed to be
stored in array A. The location of the
comma will be stored in J1.

DIMENSION I(4),A(•••
J=l

5 Jl=J/4+1
CALL BREAK(A(Jl},I)

15 Jl=J-(J-1)/4*4
IF(I(Jl)-107) 20,25~20

20 J::!:J+l
IF(Jl-4) 15,5,15

25 CONTINUE

SUBROUTINE USE (5.11.10) 105

IBM PROBLEM LANGUAGE ANALYZER (PLAN)

PROGRAM DESCRIPTION MANUAL

6.0.0 PROGRAMMING CONVENTIONS

This section provides a guide to, and the
regulations for, writing PLAN logic
modules. A PLAN logic module is a piece of
program code that has been singly compiled
or assembled and stored/link-edited into
the program library. The application
(problem-solver> programmer follows the
regulations for w:ri ting and storing a norm
al mainline program but observes the stan
dards of PLAN as discussed beiow.

There are specific functions that should
not be used since they are detrimental 1(or
fatal) to the successful PLAN execution.
These functions vary between different sys
tems and are specifically detailed in the
appropriate appendix of this manual. In
general, any function that gives control to
the monitor or operating system must not be
used when PLAN has control. Where func
tions are specifically restricted because
of adverse performance, an equal or more
powerful function is provided by a PLAN
subroutine or function. Linkage conven
tions compatible with those of FORTRAN are
used in all versions of PLAN.

6.1.0 COMMON LAYOUT

The common statement in. any program must
protect PLAN by providing the proper COMMON
layout. The items listed below are the
items (some optional) included in COMMON.
Sizes are stated in 32-bit words.

Item:
Size:
Function:

Item:
Size:
Function:

Item:
Size:
Function:

Loader
625 (Required)
This portion of the loader area
(in COMMON) contains the PI..AN
loader and must remain in memory
thro~ghout an entire PLAN execu
tion <until PLAN returns control
to the monitor or operating
system),.

System switch Words
15 (Required)
A communication control area
required for controlling PLAN but
accessible to the user for modi
fication by program or command.

Managed Array
variable (Optional)
This array Cin COMMON) is that
portion of the communication
array that is to be managed
according to the PLAN level con
cept. Communication between the
application program and problem
describing command~ is through

106 CONVENTIONS (6.0.0)

Item:
Size:
Function:

.Item:
Size:
Frmction:

15 SEPTEMBER 1969

the communication array <managed
and nonmanaged) ,. The size o:E the
managed array is described to the
PLAN system at language def ini
tion time Csee "Switch Words">:
however, if undefined, it is
assumed to have a length of 0
words.

Nonmanaged Array
variable (Optional>
This array Cin COMMON) plus the
previously described managed
array constitute the commw1ica-"
tion array, that is, the area
used for communication of data
input via PLAN commands to the
application logic modules and
between various logic modules.
This portion of the communication
array, however, is not managed
according to PLAN level des:Lgna
tions. This array may also be
described as that portion of COM
MON -- not included in the loader
area, system switch words 1, or
managed array -- that will not be
overlaid by any PLAN S)fStem
module, such as the statE~ment.
scan module CPSCAN). The sb;e of
this array may be variable and
depends on (1) the size of the
managed array, and C 2 > the S)fStem
configuration on which this run
is executed. On 1130 PLAN the
minimum size of COMMON protE~cted
from overlay by PLAN modulE~s is
510 words. Execution of ADD
PHRASE commands may overlay some
of the communication array. (See
the appropriate appendix for spe-·
cif ic communication array size
specifications.>

User COMMON (1130 PLAN only)
variable (Optional)
This portion of COMMON may con
tain any desired user arrays
required for transfer of data
between logic modules. Certain
PLAN system functions Clogic
modules> may, however,, OVE!rlay
this portion of COMMON. 'l~hese
functions are:

Module
PS CAN

PERRS

Used When
A new PLAN statE!ment
must be processed.
A system error diag
nostic must be
generated by the PLAN
diagnostic processor.

IBM PROBLEM LANGUAGE ANALYZER (PLAN)

15 SEPTEMBER 1969 PROGRAM DESCRIPTION MANUAL

PSRTA The PLAN
facilities
required.

PMRGA The PLAN
facilities

file sort
are

file merge
are

required.
PHRAS A new command is to be

entered into the lan
guage dictionary.

CONVENTIONS (6.0.0) 107

IBM PROBLEM LANGUAGE ANALYZER (PLAN)

PROGRAM DESCRIPTION MANUAL

1 .• 0. 0 PLAN SYSTEM CASE STUDY

This section shows the programming, lan
guage definition, and language use involved
in an application system designed to gener
ate solutions to a problem. All the facil
iti~s of PLAN are not_ illustrated. The
section serves to illustrate proper forma
tion of PLAN modules and PLAN commands.

7.1.0 PROBLEM DEFINITION

The problem to be solved in this case study
development will be defined in increasing
degrees of complexity. An initial problem
definition is solved through all involved
steps, including the FORTRAN programs
required. Additional requirements are then
added to the problem definition., and the
steps to attain the new solution are added.

The following geometric equivalences may be
derived from the elements defined in Figure
12.

TAN e = BEVEL
SLOPE2 = BASE2 + RISE2
SIN e RISE/SLOPE
COS e = BASE/SLOPE

Figure 12 illustrates the terminology used
in various aspects of this case study.

RISE

BASE

Figure 12. Terminology for sample problem

The problem to be solved in this case study
is defined belowa Two solutions to the
problem are provided. The problem to be
solved is:

1. Solve a right triangle when any two of
the five values (BASE, RISE~ SLOPE,
BEVEL, ANGLE) are given. Note that
BEVEL and ANGLE may not be the given
two values since they are mutually
exclusive. Assume that values will be
given in decimal. Results should be
rounded. suggested logic modules might
be (1) CALCULATION, (2) PRINT, and (3)
CSERR.

108 CASE STUDY (7.0.0)

15 SEPTEMBER 1969

Provide a facility for validating data
to ensure that two-out-of-five values
are given. The errors that could occur
are underspecification and overspec:ifi
cation. Note also that specification
of ANGLE and BEVEL is a special cas•~ of
underspecification. This testing may
be accomplished with either logical
testing within a phrase or a sepa:cate
logical testing module.

7.2.0 LANGUAGE DEFINITION

The following list is an itemization of the
functions to be performed through problem
o.ri en ted language statements. These ar•~ as
follows:

1. The system <communication array) must
be initialized,, that is, a lev1~l 1
command must be defined.

2. Data items must be named to allow input
of any desired value.

3. Literal information must be defined for
heading printouts.

The following section provides the el~•:mts
of the phrase definition and a brief
description of the function achieved:

ELEMENT: ADD PHRASE: TRIANGLE SOLUTION,
FUNCTION: The command TRIANGLE SOLUTION is

defined, and will be recognized
as the dictionary entry pointer
to the following context
definition.

ELEMENT: LEVEL 1,
FUNCTION: The phrase TRIANGLE SOLU~rION

does not depend on any other
phrase or data. The entire
managed communication array i.s
to be initialized to logical
FALSE when the phrase is
encountered.

ELEMENTS: (10) BASE I (7 3) RISE I (7 6) SLOPE.
(79)ANGLE, (82)BEVEL,

FUNCTION: The possible input values (BJ\SE,
RISE, SLOPE, ANGLE, BEVEL) are
named and assigned positions
within the communication an:ay.

ELEMENT: (20)TEST+*T'.,'*T P'CSERR ',
FUNCTION: Position 20 of the communication

array is assigned the name TJ~ST.
A logical TRUE is defined as an
initialization value. A test is
defined to check for the pres-

15 SEPTEMBER 1969

ence of logical TRUE. If the
location is not found to contain
logical TRUE, the phrase named
CSERR is entered into the PLAN
input stream and is executed .•
Note that check-entries are not
evaluated until all expressions
have been evaluated <see "PSCAN
Execution Sequence•, 4.3.25).

ELEMENT: PROGRAMS 'CALC',
FUNCTION: Program CALC is to be placed in

the pop-up list whenever the
command TRI SOL is encountered.

ELEMENTS: I (21)N0,J1,, I (9) KO,
FUNCTION: Three counters are defined and

initialized for use i:n the for
mula evaluations defined below.

ELEMENTS: I(-8)M, (M)A'DUM '•
FUNCTION: A literal is set that is used to

cause execution of the DUMP com
mand whenever a program error is
detected (see •standard PLAN
Commands"., 4 .• 5 .• O>.

ELEMENTS: $4:1BASE(J)?$6, N=N+1~ $6 J=J+3,
:(J=16)?$7!$4, $7:(N=2)?$9,
$8TEST=-, :$20, $9: (BAS<0)?$11,
: (RIS<O> ?$12, : (SLO<O) ?$13, : (

IBM PROBLEM LANGUAGE ANALYZER (PLAN)

PROGRAM DESCRIPTION MANUAL

ANG<O) ?$14, : (BEV<O> ?$15 I : (

ANG>90)?$16, ;(ANG) i (BEV)?$
17 ! $20 I : $20,, $11K=1, : $8 '$12
K=2, :$8, $13K=3, :$8, $14 K=4,
:$8, $15 K=5, :$8, $16K=6, :$8,
$17K=7, :$8, $20;

FUNCTION: The formula area is utilized to
test the possible data values
for FALSE. If the value is not
FALSE,, a count (N) is made.
After all five possible data
values have been tested, a test
is made to determine if two
non-FALSE data values exist. If
the number of non-FALSE values
is not two, TEST is set to
FALSE. A test is also made to
assure that the two given values
are not ANGLE and BEVEL. Note
that a value of FALSE in TEST
causes the check-entry defined
above to fail and thereby place
CSERR in the pop-up list. A
negative value for RISE, BASE,
ANGLE, BEVEL, or SLOPE or an
angle greater than 90 results in
TEST being set to FALSE.

Figure 13 illustrates the logic
of the expressions defined in
the preceding element.

CASE STUDY (7.0.0) 109

IBM PROBLEM LANGUAGE ANALYZER (PLAN)

PROGRAM DESCRIPTION MANUAL

NO

$6
J=J+3

$11
K=l

$15
K=5

NO

Figure 13. Expression logic

110 CASE STUDY (7.0.0)

N=N+l

$12
K=2

$16
K=6

$13
K=3

$17
K=7

15 SEPTEMBER 1969

$14
K=4

$20

NO

15 SEPTEMBER 1969

The segments of the phrase defined above
are combined here in their entirety but
condensed to a minimal representation.
Spaces in the following example must be
eliminated to prevent exceeding the 450-
character statement length limit.

ADD PHR: TRI SOL, LEVl,, (7 0) BAS,, (7 3) RIS,
C76)SLO, (79)ANG, (82)BEV, (20)TEST+*T' ,, , ',
*TP'CSERR'' ,PRO'CALC' ,I (21)NO, Jl, I (9)K0,
I(-8)M, (M)A'DUM COM ', $4:1aAS(J) ?$6.,
N=N+l, $6J=J+3,: (J=16)?$7!$4, $7: (N=2)?$
9,, $8TES=-, :$20, $9:'<BAS<0>?$11,: (RIS<O> ?$
12, : (SLO<O> ?$13, : (ANG<O) ?$14, : (BEV<O) ?$
15, : (ANG>90) ?$16, : (ANG) & (BEVH$17 ! $20,
: $20, $11K=1, : $8,, $12 K=2, : $8, $13K=3,,
:$8, $14 K=4, :$8, $15 K=5, :$8, $16K=6,
:$8~ $17K=7~ :$8, $20;

An additional phrase is added to the system
to provide control for printing of results.

PHRASE: ADD PHRASE: ANSWER,, (30)BASE-,,
RISE-, SLOPE-, .ANGLE-,, BEVEL-,
(38)ALL-, (40)'BASE =•, (45)
'RISE =' ,, (50) 'SLOPE =', (55)
'ANG LE =' , (6 0) ' BEVEL =' , I (3 9)
NS, PROGRAM'PRINT';

FUNCTION: This phrase allows a user to
request results by entering a
request for answers and indicat
ing the items to be printed. An
entry of ALL indicates that all
five values are to be printed.
The alphameric constants are
provided as phrase-defined
literals. The PRINT program is
to be placed into the pop-up
list each time the ANSWER phrase
is encountered.

7. 3 .• 0 PROGRAMMING

This section provides the code for the
FORTRAN modules CALC, PRINT, and CSERR.

C THE NAME OF THIS PROGRAM IS CALC
C IT PROVIDES TRIANGLE SOLUTIONS
C DEFINE PLAN PROTECTION COMMON

COMMON L(625), LS(15), M(255)
EQUIVALENCE(BASE,M(10)),(RISE,M(11))

1,, (SLOPE,M(12)), (PBEVE.,M(82)),,
2 (PBASE, M (7 0)) , (PRISE, M (73)) ,
3(PSLOP, M<76)), (PANGL, MC79)),
4 (ANGLE, M(l 3)), (BEVEL, M (14)), CMX,
5LS(8)),

BASE = PBASE
RISE = PRISE
SLOPE = PSLOP
ANGLE = PANGL
BEVEL = PBEVE

C DETERMINE WHICH VALUES ARE GIVEN
K2=-1

C SET LOOP TO CHECK FIVE VALUES
DO 5 I=10,14

C IS VALUE FALSE
IF (NDEF(M(I))) 5,, 5, 10

IBM PROBLEM LANGUAGE ANALYZER (PLAN)

PROGRAM DESCRIPTION MANUAL

C SEE "NDEF" UNDER "PLAN SUBROUTINE
C USE"
C CONTINUE LOOP

5 CONTINUE
C IF LOOP FALLS THROUGH TRI SOL COMMAND
C HAS ERROR
C RETRIEVE DUMP LITERAL AND EXECUTE AS
C COMMAND
C LITERAL PLACED IN ERASABLE COMMON
C EXECUTE COMMAND TO DUMP
C COMMUNICATION ARRAY

6 CALL PUSH(M(MX))
C IS THIS FIRST DEFINED VALUE FOUND

10 IF (K2) 15,20,20
C SET TO SECOND INDEX

15 K2=0
C SAVE FIRST VALUE INDEX

Kl = I-9
C IS INDEX VALID

IF (Kl-4) 5,6,6
C SAVE SECOND VALUE INDEX

20 K2 = I-9
C SELECT ON FIRST VALUE

GO TO (25,, 30 I 35) ,Kl
C BASE IS KNOWN
C SELECT ON SECOND VALUE

25 GO TO (6, 40, 60., 65, 75) ,K2
C RISE IS KNOWN

30 GO TO (6,6,80,85,95),K2
C SLOPE IS KNOWN

35 GO TO (6,6,,6,100,110) ,K2
C BASE AND RISE ARE KNOWN - CALCUIATE
C OTHERS

40 SLOPE = SQRT (BASE*BASE+RISE*RISE)
45 BEVEL = RISE/BASE

Nl = 1
GO TO 130

C RETURN TO PLAN LOADER
55 CALL LRET

C BASE AND SLOPE ARE KNOWN
60 RISE = SQRT (SLOPE*SLOPE - BASE*BASE)

GO TO 45
C BASE AND ANGLE ARE KNOWN

65 Nl = 1
GO TO 120

70 SLOPE = BASE/COS(TEMP)
RISE = SQRT (SLOPE*SLOPE - BASE*BASE)
GO TO 55

C BASE AND BEVEL ARE KNOWN
75 Nl = 2

GO TO 130
C RISE AND SLOPE ARE KNOWN

80 BASE = SQRT (SLOPE*SLOPE-RISE*RISE)
GO TO 45

C RISE AND ANGLE ARE KNOWN
85 Nl = 3

GO TO 120
90 SLOPE = RISE/SINCTEMP)

GO TO 80
C RISE AND BEVEL ARE KNOWN

95 Nl = 4
GO TO 130

C SLOPE AND ANGLE ARE KNOWN
100 Nl = -5

GO TO 120
105 RISE = SLOPE * SIN(TEMP)

BASE = SLOPE * COS (TEMP)
GO TO 55

CASE STUDY (7.0.0) 111

IBM PROBLEM LANGUAGE ANALYZER (PLAN)

PROGRAM DESCRIPTION MANUAL

C SLOPE AND BEVEL ARE KNOWN
110 Nl = 6

GO TO 130
120 TEMP = ANGLE*.0174532965

GO TO (125~70,125,90,125,105),Nl
125 BEVEL = SIN(TEMP)/COS(TEMP}

GO TO (70,, 70., 90, 90,, 105, 105),, N1
130 ANGLE = ATAN(BEVEL)*57.2958

GO TO (55,120,95,120,105,120).,Nl
END

C THE NAME OF THE PROGRAM IS PRINT
C IT PRINTS THE RESULTS OF TRIANGLE
C SOLUTIONS

COMMON L(625), LS(15), M(255)
EQUIVALENCE (N,M(39)) ., (NS,M(38))

C SET OUTPUT DEVICE BUFFER
CALL PSBFA(100)

C SET i.OOP TO PROCESS FIVE VALUES
DO 15 I = 1,N

C ARE ALL VALUES TO BE PRINTED
IF (NDEF(NS)) 5,10,5

C IS THIS VALUE TO BE PRINTED
5 IF (NDEF(M(I+29)))15,10,15

C PLACE.DATA NAME IN BUFFER
10 CALL PAOUT (100,5,M(5*I+35},

1M(5*I+36))
C PLACE VALUE IN BUFFER

CALL PFOUT (100,6+M(5*I+35), 83,
1M<I+9))

C WRITE FROM BUFFER
CALL PLOUT (100)

15 CONTINUE
20 CALL LRET

C SINCE A FORTRAN PROGRAM CANNOT END
C WITH A CALL TO A SUBROUTINE, THE

· C FOLLOWING DUMMY INSTRUCTION IS
C INSERTED TO SATISFY THE FORTRAN
C COMPILER

GO TO 20
END

The command CSERR is executed if error
conditions are found while executing the
TRIANGLE SOLUTION command. The function of
this command is to set up literal informa
tion for logging of errors.

ADD PHRASE: CSERR1 PROGRAM'CSERR' ., (1) 'IS
'IN ERROR', (25)'SPECIFICATION ERROR',
IC1UNOD100, (40) 0 BASE ', C45}'RISE ', C50)
(55)'ANGLE', (60)'BEVEL';

The module to process the error indicators
is given below:

C THE NAME OF THIS PROGRAM IS CSERR
C IT LISTS ERRORS IN TRIANGLE SOLUTION
C DEFINITIONS
C DEFINE PLAN COMMON

COMMON LC625), LSC15), MC255}
EQUIVALENCE (K,MC9}),(NOD,MC11))

C ESTABLISH BUFFER FOR PLAN DIAGNOSTIC
C DEVICE

CALL PSBFACNOD)
C FIND THE ERROR

LDX = K+l

112 CASE STUDY (7.0.0)

15 SEPTEMBER 1969

GO TO (5,25,35,40,45,47,45,50), I.DX
C OTHER THAN TWO VARIABLES SPECIFIE:D
C IN TRI SOL COMMAND
C INVALID.DEFINITION LITERAL

5 CALL PAOUT(NOD,1,M,M(2))
CALL PLOOT(NOD}

C LIST THOSE VARIABLES DEFINED
DO 15 I = 70,82,,3

C IS ELEMENT DESCRIBED
IF CNDEF(M{I)))15,10,10

C LIST ITEM
10 IDX = CI-67) / 3 * 5 + 36

CALL PAOUT(NOD,5,5,M(IDX))
CALL PLO UT <NOD}

15 CONTINUE
C RETURN TO PLAN

20 CALL LRET
C BASE IS IN ERROR

25 CALL PAOUT (NOD., 1, 5, M (41>)
30 CALL PAOUT moo .• 7,, M,, M (2))
32 CALL PLOUT(NOD}

GO TO 20
C RISE IS IN ERROR

35 CALL PAOUT CNOD,L,5,M(46})
GO TO 30

C SLOPE IS IN ERROR
40 CALL PAOUT(NOD,1, 5,,M(51)))

GO TO 30
C ANGLE IS IN ERROR

45 CALL PAOUT CNOD .. 1,,5.,M(56)}
GO TO 30

C BEVEL IS IN ERROR
47 CALL PAOUT(NOD,1*5,M(61})

GO TO 30
C BEVEL ANGLE IS INVALID DEFINITIOM

50 CALL PAOUT <NOD.,1,5,,M(56))
CALL PAOUT (NOD., 7, 5,M(61))
CALL PAOUT (NOD..,13,,2,M(2))
CALL PAOUT (NOD.,16,M(25) ,M(26))
GO TO 32
END

7.4.0 ALTERNATE SOLUTION

The module CSERR and command CSERR czm be
eliminated altogether by making use of the
check-entry facility through an expcmded
version of the TRI SOL command. Spaces
shown in the following example may neE~d to
be removed to keep the phrase from exc:eed
ing 450 characters.

ALT PHR:TRI SOL, LEV1,(70)BAS,(73)RIS,
C76)SLO, (79)ANG,C82)BEV,(20)-:CBAS<Ol?=+,
-:CRIS<O>?=+, -:(SLO<O)?=+, -:(ANG<O>?=+,
-: (BEV<O>?=+, -: (ANG>90)?=+, -: (ANG==-> I
CBEV=-)?=-!=+, TEST, IC8)J1,NO, -*P'CON TRI
SOL', $4:BAS(J)?$5!$6, $5N=N+1, $6J==J+l,
:CJ=16)?$7!$4, $7TES:(N=2)?$8!=-, $8;

ALT PBR: CON TRI SOL., (2 0} *FA' BASE NEGA
TIVE', *FA'RISE NEGATIVE', *FA'SLOPE
NEGATIVE' ,*FA'ANGLE NEGATIVE', •FA'BEVEL
NEGATIVE'', *FA' ANGLE GREATER THAN 90'',
*FA'ANGLE AND BEVEL .MAY NOT BOTH BE

15 SEPTEMBER 1969

DEFINED•, *FA' INVALID PARAMETER SPECIFICA
TION' PR0 9 CALC':

IBM PROBLEM LANGUAGE ANALYZER (PLAN)

PROGRAM DESCRIPTION MANUAL

CASE STUDY (7.0.0) 113

IBM PROBLEM LANGUAGE ANALYZER (PLAN)

PROGRAM DESCRIPTION MANUAL

8.0.0 APPENDIX A: 1130 PLAN SPECIFICATIONS

This appendix contains additional informa
tion about the specifications and use of
the PLAN system on the IBM 1130 Data
Processing System. Included is information
of additional PLAN features that allow a
user to make better use of features unique
to the 1130. Note that use of these
features may create code that is dependent
upon running within the 1130 version of
PLAN. Specific references to compatibility
considerations are provided in Appendix J
(18. o. 0).

8 .. 1.0 USER EXITS

User-exit routines for 1130 PLAN must have
a COMMON statement defined carefully
according to the formulas shown below:

If 8K PSCAN is used:

NFW = (CORE-1500)/2

If 16K PSCAN is used:

NFW = (CORE-2000)/2

Where:

NFW is the total number of 32-bit words
that must be specified in the COMMON
statement.

CORE is the machine size (8192, 16., 384, or
32,768) specified by monitor <core
parameter in monitor load) at the t.ime
the user module is core-imaged.

Index register 1 provides a pointer to a
communication block that may be used by the
user-exit program,, provided that the p:ro
gram is written in the assembly language.

Displacement Contents of Word(s) Addressed

0-23 These locations contain link
ages to subroutines that may
be useful in the user-exit
routine. They are used by a
linkage of the type:

BSI Xl N
DC ARG

N is the displacement defined
in this table. Each link;:tge
is followed by additional
information as shown below.
ARG in the examples is the
address of the parameter

114 1130 PLAN (8.0.0}

0

3

6

9

12

15

18

21

15 SEPTEMBER 1969

required for the appropriate
subroutine.

These words provide linkage
to the floating-point load
(FLO) routine.

These words provide linkage
to the floating-point store
CFSTO) routine ..

These words provide linkage
to the floating-point add
(FADD) routine.

These words provide linkage
to the floating-point sub··
tract (FSUB) routine.

These words provide linkage~
to the floating-point multi
ply CFMPY) routine.

These words provide linkage
to the floating-point divide
CFDIV) routine.

These words provide linkage
to the floating-point to
integer conversion routine
(IFIX). The floating-point
number is assumed to be in
the floating-point accumula··
tor. The result is placed in
the accumulator. The DC fol-·
lowing the BSI is replaced
with a NOP for this linkage.,.

These words provide linkage
to the integer to floating-·
point conversion routine
(FLOAT).. The integer is
assumed to be in the ac,cumu
lator. The result is placed
in the floating-point ac,cumu
lator. The DC during the BSI
is replaced with a NOP for
this linkage.

The subroutines described above are further
defined in the manual IBM Subroutin~
Library CC26-5929).

Index register 3 must point at the transfer
vector of the user-exit routine when a CALL
IUSER is issued. The register will auto
matically be pointed to the PSCAN transfer
vector (floating accumulator> followinig any
linkage on index register 1,, as outlined
above.

15 SEPTEMBER 1969

8.2.0 COMMUNICATION ARRAY SPECIFICATIONS

COMMON has a maximum allowable size that is
a function of the machine size and the
maximum size PLAN module. The maximum size
communication array for 1130 PLAN using the
SK version of PSCAN and PERRS is computed
from the following formula:

NWDS = (KORE -(8192-1020.)) /2

The commands "ADD PHRASE:"~ "ALTER
PHRASE:", and "DELETE PHRASE:" will cause.
overlay of the communic·ation array. The
16K versions of PSCAN and PERRS allow
protection of a communication array as
defined by the formula shown below, where
KORE is the machine size of a 16K or 32K
system.

NWDS=(KORE-13056)/2-640

NWDS is the number of 32-bit words that may
be contained in the communication array.

KORE is the number of 1130 machine words in
the object machine. Simplified, the formu
la becomes:

NWDS = KORE/2-6528

8.3.0 PROGRAMMING RESTRICTIONS

The following 1130 FORTRAN statements
should not be used because of their detri
mental effect on the execution o:f PLAN.
Alternate facilities are listed :for each
option.

To avoid overriding the PLAN processor or
endangering another user's joh, the follow
ing 1130 FORTRAN statements should not be
executed.

CALL EXIT

STOP

CALL LINK

DEFINE FILE,,
READ(a'b)
WRITE(a'b)

This subroutine call creates
a premature return to mon
i to~. A CALL LRET should be
used instead to return con
trol to PLAN. CALL :LEX(l, 0)
will return control to PLAN
and clear the pop-up list.

This statement has the same
effect as CALL EXIT when
processing is restarted.

The PLAN loader subroutines
(LRET, LEX, LIST) must
replace this call to allow
PLAN to remain in control.

The PLAN file routines (FIND
READ-WRITE or GDATA-RDATA
WDATA) provide for discretely
addressable,, execution-time
definable files, and should
be used instead of these

IBM PROBLEM LANGUAGE ANALYZER (PLAN)

PROGRAM DESCRIPTION MANUAL

statements. Any function
disturbing the contents of
working storage may not be
intermixed with the execution
of PLAN dynamic file rou
tines. If these files
reference only files defined
in the FIXED AREA, they may
coexist with PLAN file proc
essing routines.

8 .• 4 .O OVERLAY STRUCTURE

The CALL LOCAL provides one level of pro
gram overlay under 1130 PLAN.

The local program is core-imaged and stored
by name. in the 1130 program library the
same as any other PLAN module. The program
must be core-imaged to a fixed address that
does not jeopardize the calling program.
The f 0·11owing approach may be used to
generate the LOCAL modules:

1. Write FORTRAN module that is to be
called as a PLAN LOCAL where ddddd
represents the decimal address of the
beginning of the executable code. This
address must allow for 30 words above
the end of the program issuing the CALL
LOCAL.

// JOB
// FOR
*LIST ALL
*ORIGIN ddddd

COMMON L.(625) ,LS(15) ,M(510)
C TEXT OF PROGRAM FOLLOWS

•
•
•
RETURN
END

// DUP
*DELETE
*STORE WS

2. Execute PLAN.

NAMEA
UA NAMEA

Note that the variable parameter list pro
vided in System/360 OS/DOS PLAN is not
supportable by 1130 PLAN.

Each module issuing a CALL LOCAL must allow
for a 42-word (16-bit> block at the end of
the load <transfer vector> for the saving
of the necessary control information.

8 .• 5 • 0 IOCS DEVICE PARAMETERS

Under 1130 PLAN, the IOCS subroutine and
sequential file subroutines parameters are
the standard device codes shown below:

1130 PLAN (8.0.0) 115

IBM PROBLEM LANGUAGE ANALYZER (PLAN)

PROGRAM DESCRIPTION MANUAL

PLINP PLO UT
INPUT LIST MEANING

0 Current PLAN input device
100 current PLAN output device

1 1442 card Reader
101 1132 Printer

2 2501 card Reader
102 1403 Printer

3 1131 Console Keyboard
103 Console Printer

104 1442 Punch

A value of 0 for NOD for the sequential I/O
routine specifies the PLAN input device and
100 specifies the current output device~

IOCS is a level 0 command on 1130 PLAN that
allows the PLAN input and output devices to
be altered.

The general format of the command is:

roes,. INPUT n, LIST m:

a. INPUT. This parameter must specify
the input unit that is to be used for
input of following PLAN commands.
Valid arguments are 2501. 1442, and
1131.

b. LIST. This parameter must specify the
output unit that is to be used for
output of following PLAN diagnostics.
Valid arguments are 1132, 1403. 1442.
or 1131.

CARD is a blank-level command on 1130 PLAN
that allows changing input to either card
reader and/or output to either line
printer.

The general format of the command is:

CARD. INPUT n. LIST m:

a. INPUT. This parameter must specify
the card reader from which the next
PLAN input is to be read. Va.lid
arguments are 2501 or 1442.

b. LIST. This parameter must specify
the printer ~n which the next PLAN
diagnostic is to be printed. Va.lid
arguments are 1403 or 1132.

TYPE is a blank-level command on 1130 PLAN
that sets the console typewriter/printer as
the input/output device from/to which the
next PLAN input/output is to be read/
written. (See •PLAN Standard Phrases•,
li. 5. o,. for a detailed description of this
command.>

116 1130 PLAN (8.0.0)

15 SEPTEMB~R 1969

8.6.0 DYNAMIC FILE SUPPORT

The positions of the NDR parameter to the
left of the decimal units position are
treated as a communication array pointer.
The contents (16-bit) of the indicated
communication array are tested against the
cartridge identification provided by the
DCIP (disk pack initialization) routine at
monitor generation time. If the cartridge
is not found, an error is given~

The basic unit of allocation for 1130 PLAN
files is four sectors. This provides
storage for 628 32-bit '«>rds.
Specification in
parameter may
allocation.

The 1130 PLAN
changing as
specifications:

the CALL FIND of a NALLO
override the f our-Bector

file routines allow pack
defined by the following

1. A cartridge change is not allowc~ on
logical drive 0.

2. The user must assure that packs to be
dismounted do not contain any required
program or PLAN file.

3. The cartridge change may be effected by
the following subroutine call:

CALL PLNUPCMPKID,NDR,MCODE,MLDR)

MPKID This parameter contains the :IL6-bit
cartridge identification mask, in
the range 0001-7FFF (hexadecimal>,
that is used to check the validity
of the mounted cartridge.

NOR This parameter defines the logical
drive number in the range of 0-4.
This field may also contain a value
of 100 to specify that the pack is
to be mounted on the first available
drive. The resulting drive code is
returned in the MLDR parameter.

MCODE This parameter is the return code as
follows:
1. Pack successfully mounted
2. Invalid pack ID or drive code
3. current pack cannot be dismounted
li. Requested pack is already mounted

on another logical drive. The
drive number is returned in the
MLDR parameter.

5. Operator decided not to mouriLt the
pack (see •pack Changing Instruc
tions• in the 1130 operaltions
Manual).

6. Invalid sequence of logical
drives, for example, lc1gical
drive 3 is requested, but lc1gical
drive 1 and 2 are not mounterl.

7. No available logical dri VE!. If

15 SEPTEMBER 1969

NOR equals 100, all available
drives are already mounted.

MLDR This parameter
code if the
successfully.

contains
pack is

the drive
mounted

Note that any monitor <SUP,, DUP, FOR, or
ASM) function that uses working storage on
a pack on which PLAN files reside may
result in destruction of those PLAN files.

8.7.0 PERMANENT FILE SUPPORT

The file that is processed by GDATA-RDATA
WDATA is initially established out.side of
1130 PLAN. One means of establishing a
file is illustrated in the example shown
below. Additional information may be found
in IBM 1130 Disk Monitor System, Version 2,
System Introduction (C26-3709).

// DUP
*STOREDATA WS UA FILE nnnn

FILE specifies the identification of the
file by which it is stored (and subsequent
ly identified in the GDATA call), and nnnn
defines the number of sectors that are to
be assigned to the file. This allocation
is never changed by PLAN.

8.8.0 EXTENDED PRECISION SUPPORT

The following set of subroutines provides
support for extended precision floating
point in the form of conversion subrou
tines. PLAN floating-point functions sup
port only standard floating-point. Care
must be exercised if the control card
*EXTENDED PRECISION is used to adjust com
munication array references to adjust for
the 48-bit word size. It is recommended
that *ONE WORD INTEGERS be used and that
COMMON be defined as integer arrays with
twice the normal word count.

using this
PLAN loader

625 32-bit
Word COMMON
words.

Special care must be taken when
support to assure that the
COMMON specification equals
words and that the Switch
specifications equal 15 32-bit

CALL PEXTP (FROM, TO, COUNT) converts a
standard precision floating-point array
starting at FROM, to an extended precision
floating-point array, starting at TO. The
number of values converted is specified by
COUNT. The result is in the following
form:

IBM PROBLEM LANGUAGE ANALYZER (PLAN)

PROGRAM DESCRIPTION MANUAL

I I I I I I
IUNUSEDICHARACTERISTICISIMANTISSAIMANTISSAI L------i--------------i-i ________ i ________ J
0 7 8 15 16 17 31 0 15

S=Sign of Mantissa

CALL PENRM (FROM,TO,COUNT) converts an
extended precision floating-point ~r:ay
starting at FROM,, to a standard precision
floating-point array, starting at TO. The
number of values converted is specified by
COUNT. The result is in the following
form:

I I I I
I S IMANTISSAIMANTISSAICHARACTERISTICI
L---i--------L--------i--------------J

0 1 15 16 23 24 31

S=Sign of Mantissa

CALL PEPCK (FROM,TO,COUNT) packs an
extended precision floating-point array as
stored by the PLAN user exit in location
FROM into array TO in the standard 1130
FORTRAN array format. COUNT is the number
of variables to convert.

CALL PEUPK (FROM,,TO,COUNT) expands a stand
ard 1130 extended precision array (occupy
ing three words per variable) at location
FROM into a PLAN user exit extended preci
sion array (occupying four words per vari
able> at location TO. COUNT is the number
of words to convert.

CALL PIPCK (FROM, TO,, COUNT) packs integer
data in array FROM stored in PLAN input
form to array TO. Array TO is in one-word
integer form. COUNT is the number of
integers transferred. Formats of FROM and
TO are given below:

FROM

TO

I I I I I
IINTEGERIUNUSEDIINTEGERf UNUSEDI
L-------L------L-------L------J
0 15 16 31 0 15 16 31

I I I I I
IINTEGERIINTEGERIINTEGERIINTEGERI
L-------L-------i-------L-------J
0 15 16 31 0 15 16 31

CALL PIUPK(FROM,TO,COUNT)
ard one-word integer array
input format. The formats
TO arrays are exchanged
above example.

expands a stand
to standard PLAN
of the FROM and
as shown in the

PLAN USER EXIT 1 "CEXITl) is u.tilized
through a routine that will allow collec
tion and conversion of input data in
extended precision.

The resultant
communication

numbers
array on

are placed in the
even-word bound-

1130 PLAN (8.0.0) 117

IBM PROBLEM LANGUAGE ANALYZER (PLAN)

PROGRAM DESCRIPTION MANUAL

aries, starting at the location specified
in the phrase definition. The extended
precision number is stored in two adjacent
normal precision 32-bit word locations.
The format of the result is:

I I I I
I UNUSED I c I s I MANTISSA I MANTISSA I UNUSED I
L ______ _____ --L-..l--------..1-------..L----·--J
0 7 8 15 16 17 31 0 15 16 31

C=Characteristic of Number
S=Sign of Mantissa

8.9.0 EXPANDED LOADER FUNCTIONS

Two subroutines are provided to allow tem
porary use of the loader overlay area for
temporary data storage.

CALL LSAV saves the current status of the
loader area, including the switch area (540
FORTRAN words), exclusive of the bootstrap
area. CALL LSAV must be issued before data
is stored in t~loader area. Control
returns to the next statement after CALL
LSAV.

CALL LRLD must be used to restore the saved
status ofthe loader before any other call
to a PLAN loader function, after a CALL
LSAV has been issued. Control returns to
the next instruction after CALL LRLD. PLAN
loader functions include CALL ERRET,, CALL
ERRAT, CALL ERROR., CALL ERREX, CALL GDATA,
CALL RDATA. CALL WDATA, CALL INPUT, CALL
PHIN, CALL PUSH, CALL PH OUT, CALL GDAT1,
CALL WDATl, CALL RDATl, and all routines
prefixed with an L.

8.10.0 SYSTEM FILE DEFINITIONS

Two optional
They are PDATA

files are used by 1130 PLAN.
and PCHPT. This section

118 1130 PLAN (8.0.0)

15 SEPTEMBER 1969

defines the method of computinq the
required file size in sectors.

File: PDATA
Required if: Level 2, level 3, or le·11el 4

phrases are used and switch
word 10 is nonzero (data is to
be managed by levels> or CAI.L
PSORT or CALL PMERG f unc::tions
are used.

Size Rqd: CM+159)/160•3, where M is the
size of the managed array as
defined by Switch Word 10.

File:
Required if:

Size Rqd:

In addition, CL+159:1/160,
where L is the size of the
communication array {words
must be provided) if PSORT/
PMERG are used.

PCHPT
CALL LCHEX is used, if abnorm
ally large numbers of E~rrors
result in an overflow e>f the
error stack, if the IMMI©IATE
option for error processing is
used, if a user module is used
to process errors or if PSORT
and PMERG are used. Although
PLAN will operate in many
environments without a check
point file,, it is recommended
that the system .contain room
for at least one checkpoint
level.
DB•16/320, where DB is the sum
total of disk bytes userl by
the programs (those to be
checkpointed simul taneciusly>
when they were stored i.n the
program library.

IBM PROBLEM LANGUAGE ANALYZER (PLAN)

15 SEPTEMBER 1969 PROGRAM DESCRIPl'ION MANUAL

9.0.0 APPENDIX B: SYSTEM/360 DOS PLAN SPECIFICATIONS

This appendix contains additional informa
tion about the specifications and use of
the PLAN system on the IBM System/360 under
the Disk Operating System. Included is
information of. PLAN features that allow a
user to make better use of features unique
to the Disk Operating System. Note that
use of these features may create code that
is dependent upon running within the
system/360 DOS version of PLAN. Specific
references to compatibility considerations
are provided in Appendix J (18.0.0).

9.1.0 DOS/360 PLAN SYSTEM

The DOS PLAN system is initiated as a
DOS/360 job step. Once in execution it
assumes the responsibility of load:ing other .
problem program load modules within the
partition. PLAN must be run in the back
ground partition.

r----------------1--TOP OF PARTITION
I FORTRAN I
I I/O AREA I
1---~------------i
I USER I
I WORK AREA I
1----------------i
I I
I PLAN SYSTEM I
I WORK AREA I
I I
·~--------------~
I I
I PROGRAM I
1 AREA I
I I
·-------------~-~
I I
I COMMON I
I I
1----------------~
I I
I PLAN I
I SYSTEM I
I I
'----------------J

Figure 14. DOS PLAN storage utilization

The PLAN system is a part of blank COMMON.
It is 2560 bytes long (640 32-bit words).
Every module loaded by PLAN must have a
blank COMMON control section and must pro
tect. this area with a dummy array at the
beginning of COMMON.

The program area starts at the top of blank
COMMON and extends upward to the PLAN
system work area. All modules loaded by

PLAN must be link-edited so that they fall
entirely-in this area.

The PLAN system work area contains PLAN
tables and I/O buffers required to perform
all PLAN I/O operations. The size of this
area is variable, ranging upward from a
minimum of approximately 3500 bytes.

The user work area is an array declared at
PLAN initialization time. Its address, if
present, is passed to every module loaded
by PLAN. The default length of this area
is zero.

The FORTRAN I/O area is an array declared
at PLAN initialization time. This array is
used by the FORTRAN I/O package for I/O
areas, etc. This area must contain at
least 512 bytes if FORTRAN I/O is used.
The default length of this area is zero.

9.2.0 COMMON CONTROL

COMMON is managed and referenced in DOS
PLAN according to the following procedures.

1. The PLAN subroutines reference COMMON
through a blank COMMON control section
of 640 words.

2. The length of COMMON may be altered
whenever a mainline (NON-LOCAL) module
is loaded. PLAN Switch Word 9 controls
the minimum length of COMMON. All
modules loaded by PLAN must have a
COMMON control section at least as long
as the value specified in Switch Word,
9.

9.3.0 PROGRAM AREA CONTROL

All modules loaded by PLAN must meet the
following requirements:

1. A COMMON control section at least as
long as the value currently in Switch
Word 9.

2. The module must be link-edited so that
it falls entirely within the program
area.

3. Modules to be loaded as LOCALs must be
link-edited so they do not overlay the
calling module.

DOS PLAN (9.0.0) 119

IBM PROBLEM LANGUAGE ANALYZER (PLAN)

PROGRAM DESCRIPTION MANUAL

9.4.0 USER-EXIT PROGRAMMING

The PSCAN user-exit program must be written
to expect the standard System/360 FORT'RAN
subroutine linkage conventions.

The user-exit program must be link-edited
so that its origin is above the end of the
PLAN module DFJPSCAN.

9 .• 5. 0 COMMUNICATION ARRAY SPECIFICATION

The size of COMMON protected from overlay
by PLAN modules is 640 32-bit words plus
the amount added to the origin of PLAN
system modules at the time they are link
edi ted (See "Generating a Tailored PLAN
System" in the DOS PLAN Operations Manual>.
Data will not be stored by PSCAN into the
communication array beyond the smaller of
(1) the origin of PSCAN or (2) the value
cont~ined in Switch Word 9. PSCAN will
give an error diagnostic and abort if an
attempt is made to store beyond these
limits.

9.6.0 PROGRAMMING RESTRICTIONS

The following System/360 FORTRAN statements
should not be used because of their detri
mental effect on the execution of PLAN.
Alternate facilities are listed for each
option.

CALL EXIT

STOP

CALL DUMP

This subroutine call creates
a premature return to the DOS
supervisor. A CALL LRET
should be used instead to
return control to PLAN. CALL
LISTCl,0) will return control
to PLAN and clear the pop--up
list.

This statement has the same
effect as CALL EXIT when
processing is restarted.

This statement creates a pre
mature end to the PLAN execu
tion. Therefore, the CALL
PDUMP, followed by a CALL
LRET, should be used.

Any PLAN module that issues a CJ.\LL LNRET
must exit by a PLAN loader call Cmay not
use a RETURN statement).

9 .• 7. 0 CORE MANAGEMENT

The PLAN loader provides management of core
assignment to allow coexistence of
independently written, functionally depen
dent pieces of code.

120 DOS PLAN (9.0.0)

15 SEPTEMBER 1969

The user is provided with special argt~ents
that, when encountered in the pop-up list,
indicate the limits of the functionally
dependent modules. The left parenthesis
indicates the start of a string of module
names for which the user desires coexi.stent
residence. The right parenthesis indi.cates
the end of the string.. Figure 15 repre
sents the pop-up list containing a li.st of
programs. Programs M0716 through M072:5 are
to be grouped in memory concurrently.

-----, r----
l M 0712 I
IM07561
I < I
IM07161
IM07961
IM07321
IM07251
I > I
IM07491
I o I
L-----J

Figure 15. LOader pop-up list

The systems programmer in
scheduling control, that
may coexist within the
recognize and/or account
conditions:

determining the
is,, which modules
partition, must

for the following

1. If more modules are grouped C bound1ed in
the pop-up list with parentheses) than
can coexist., those modules that will
not fit are not loaded concurrently.

2. If space can be
cally grouped
the partition.
first program
parenthesis.

found,, all parentheti
modules are loaded into
Entry is made to the
named after the left

3. Loading of a module results only ijE the
module does not already exist in
memory.

4. If the left/right parenthesi~> is
encountered when entering data into the
pop-up list without a corresponding
right/left parenthesis, the unmatched
parenthesis is ignored. Therei:ore,
parenthetically grouped programs must
be added to the pop-up list with a
single loader subroutine call.

5. If the left or right parenthesis is to
be inserted in the pop-up list, it must.
be left-justified in two FORTRA~ words.

6. Program lists, verb lists, and check
entry program lists include the patren
thetical groupings in literal form.
Example:

15 SEPTEMBER 1969

.... '•PROGRAMS 'M0713 I (M0726, M0733,
M0792), M0796~~-·~

7. The combination of the parenthetical
program grouping and the use of command
input of program lists gives the user
the power to add segments <modules> to
his root structure at execution time.

8. If all programs indicated in the coex
istent grouping cannot be loaded
because of conflicting core residence
requirements (programs should be link
edi ted so they do not overlay each
other) the right parenthesis i.s floated
forward in the list to include those
programs for which coexistent loading
was accomplished.

The original right parenthesis is
deleted and a right parenthesis is
regenerated in the pop-up list ~t a
position that indicates the last pro
gram which was successfully loaded.

9. A negative call to the program linkage
routines <value of N is negative> is
required to interrogate the pop-up list
for successful loading of the coexis
tent programs.

10. Parenthetical grouping is
but ignored on the 1130
PLAN.

acceptable
version of

11. All program lists to be inserted into
or to be extracted from the pop-up list
must begin on a full-word boundary.

9.8.0 RETURN LINKAGE

The FORTRAN RETURN statement
exactly like the CALL LRET
call. Register 14 is used

functions
PLAN loader

to cause a

IBM PROBLEM LANGUAGE ANALYZER (PLAN)

PROGRAM DESCRIPTION MANUAL

return from the logic module to the PLAN
loader. PLAN modules that contain CALL
LNRET may not exit via RETURN. FORTRAN
subroutines which modify variables passed
to them as arguments must use the FORTRAN
RETURN statement.

9.9.0 OVERLAY STRUCTURE

The System/360 DOS PLAN System provides a
local overlay structure that provides the
mechanism for common usage of multiple
purpose control sections. This type of
processing is typified by an application in
which the mainline serves only to provide
linkage to logic segments that perform
specific functions, and provides the basic
hardware routines.

The following logic module is considered
appropriate for an application of the type
listed above. It is assumed in the example
that a command would initially load the
example module and define the local tasks
to be completed by entries in the pop-up
list..

EXTERNAL ARGl,, ARG2, •••
1 CALL LOCAL (0,, 0 ,ARG1 ,ARG2 I ••• ,ARGN)

GO TO 1
END

The local module would then be written in
the following form:

SUBROUTINE NAME
CALL ARG1 (X,, y I z)
CALL ARG2(P,Q,R)

RETURN

DOS PLAN (9.0.0) 121

IBM PROBLEM LANGUAGE ANALYZER (PLAN)

PROGRAM DESCRIPTION MANUAL

1 R

I
I
v

15 SEPTEMBER 1969

r-------·----------------1 ----, r---
1 I R I
I 1 CALL LOCAL(O,O,A,B) I x I
I GO TO 1 I z J

.---------+---> SUBROUTINE A I y I
I .---+-----RETURN I 0 I
I I I r-> SUBROUTINE B L ___ J

I I I I RETURN I INITIAL
I I I I I LOAD LIST
I I I I I
I I I I I
I I I I I
I I L---f------T---+--------
1 I I I I
I I I I I
I I I I I

r-f-----+-------+--T-·-.L----~----------1
I I I I I I I
I I I I I I I

2 XI I I 3 ZI I I 4 y I
r---L-f-----+--, r--f--.L-·-----+--1 r-----.L---------,
I I I I I I • I I I • I
I I I I I I • I I I • I
I CALL A <J I I ICALI. B < J f I CALL LIST (2,A) I

OVERLAY I • I I • I I • I
AREA I • I I • I I • I

I CALL LRET I I CALI. LRET I I CALL LRET I
L------------J L-------·---------J L---------------J

Figure 16. DOS overlay structure

Return from the LOCAL inunediately loads the
next module indicated in the pop-up list
until the list is found to be empty. At
that time, control is given to PSCAN for
processing a new conunand. The logic module
shown in the above example would incorpor
ate all multiple-use subroutines required
by the local modules.

The use of CALL LOCAL in a source program
suggests detailed knowledge of an installa
tion's core storage boundaries. There must
be room enough for all load modules that
are implied by any sequence of CALL LOCALs
without intervening RETURNS. Since core
use is an installation variable, it is not
good practice to use CALL LOCAL in general
purpose modules. This call is designed for
root modules containing shared subroutines
to use in invoking a hierarchical overlay
scheme. ·

A program module that has issued CALL
LOCALs and has not regained control may not
be the object of another CALL LOCAL.

9.10.0 PLAN SYSTEM CHECKPOINT

The following regulations govern execution
and control of the checkpoint facility
within the OS version of PLAN (CALL LCHEX):

122 DOS PLAN (9.0.0)

1. Checkpoints can be reloaded only wi.thin
the limits of the phrase from which
they were written. This means that any
checkpoint that has not been reloaded
when the end of the phrase is encoun
tered that is, when the po1p-up
loader is found to be empty is
destroyed. No warning message is
issued.

2. If the checkpoint return <*> is encoun
tered while in local mode, the local
processing is terminated and the check
point is reloaded .•

3. Any input/output error while reading or
writing the checkpoint data set results
in a phrase abort, and PLAN level error
recovery is initiated. This action is
also true when insufficient space is
available in the checkpoint data set.

4. The DOS checkpoint facility has a
unique feature that enables the PLAN
subroutine LCHEX to function in a man
ner similar to the LOCAL facility.
This is accomplished by not actu.ally
writing a checkpoint when requested but
instead marking all modules in the
program area as ready to be check
pointed. Any time a program that is
marked as such is about to be overl;ayed
by the loading of another program, the

15 SEPTEMBER 1969

physical write to the checkpoint file
takes place. This allows the user to
take advantage of additional core
without reprogramming modules that use
LCHEX by relink-editing the modules
called by LCHEX.

5. There is no logical restriction on the
number or level of checkpoints that a
user may execute. A physical limit
based on the size of the checkpoint
data set may produce a real limit or
error condition as outlined in 3 above.

IBM PROBLEM LANGUAGE ANALYZER (PLAN)

PROGRAM DESCRIPTION MANUAL

9.12.0 .PERMANENT FILE SUPPORT

The DOS version of PLAN provides support
for files established outside of PLAN with
the following characteristics:

1. Files are limited to one extent.

2. Files must be organized as a sequential
or direct access file.

3. Physical records are fixed length.

4. Track overflow feature may not be used.

6. Checkpoint restarts are executed in a 5.
reverse order from which they are writ-

There may be no truncated records.

ten. that is. last in-first out. 6. There may be no keys.

1. After a checkpoint is taken. the status
of 'all data sets except system data
sets (those data sets processed by CALL
PLINP. CALL PLOUT. CALL GDATA. and CALL
FIND) must not be altered until the
checkpoint is restarted. This is a
user responsibility and no check is
made by PLAN to prevent such an altera
tion. If a data set status is altered
while a checkpoint is in effect, the
results are unpredictable.

8. COMMON is not protected between the
time that a checkpoint is taken and the
restart is loaded. It is the user's
responsibility to save and reload those
parts of COMMON that might be destroyed
and that must be present for continued
execution of the checkpointed module.

9. Floating-point
restored when
restarted.

registers are
a checkpoint

9.11.0 DYNAMIC FILE SUPPORT

not
is

The NALLO parameter provided with CALL FIND
is used to optimize space allocation. The
basic unit of allocation for an DOS PLAN
file is 1350 32-bit words.

The positions of the NDR parameter other
than the units position are not interro
gated by DOS PLAN. Each logical file can
contain up to 147 discontiguous alloca
tions. Thus. if normal allocation is
allowed as the file is written. the maximum
file size is restricted to 220.500 32-bit
words. If the NALLO parameter o:f the CALL
FIND subroutine is utilized, the maximum
file size is 49,150.350 32-bit words.

Each logical drive may contain a maximum of
149 discontiguous free areas. This means
that in cases. of extreme discontiguous
allocation a file may be destroyed.

1. There may be

8. The extent
boundaries.

no control characters.

must be on cylinder

9. The entire extent must contain for
matted records.

The file is initially established by a
user-written routine using an access
method. The RDATA/WDATA subroutines read
the file to establish the format (record
size> for the file.

9.13.0 IOCS DEVICE PARAMETERS

Under System/360 DOS PLAN, INPUT and LIST
correspond to sequential devices defined at
PLAN initialization time. see the DOS
Problem Language Analyzer (PLAN) Operations
Manual CH20-0597) for additional informa
tion on the definition of PLAN data sets.

9.14.0 SEQUENTIAL FILE SUPPORT

The following steps outline the manner in
which certain special conditions are
handled on the DOS/360 version of the
sequential I/O subroutines (PLINP/PLOUT/
PEOF/PCCTL).

Two subroutines are provided under DOS PLAN
that allow specification of page length and
status switching (CLOSE) for PLINP/PLOUT
data sets.

CALL PPAGL(NOD,N) is a subroutine used to
specify the number of lines to be used as
the page length for those data sets con
taining printed output.

A call to PPAGL sets the current line count
to the page length specified. It also
forces the next carriage control operation
to be a skip to 1 unless overridden by an
intervening call to PCCTL. If N is O, a

DOS PLAN (9.0.0) 123

IBM PROBLEM LANGUAGE ANALYZER (PLAN)

PROGRAM DESCRIPTION MANUAL

default of 60 is used. The maximum value
of N is 32.767.

CALL PENDF(NOD) is a subroutine that may be
used to close a sequential data set. If a
data set is in output status, an EOF is
written after the last record. Both PLINP
and PLOUT data sets are repositioned to the
beginning of the data set.

1. Maximum record size for any input/
output record is 32,760 characters.

2. Records may be blocked within the phys
ical limits of the specified device.

3. A PLINP/PLOUT call to an invalid device
is ignored.

4. In order to effect carriage control,
that is,, for PCCTL to be functional,
the CCTRL option must be specified for
the data set at PLAN initialization
time (see "PLAN System Initialization"
in the DOS PLAN Operations Manual).

5. The following items are specifications
for the PEOF routine:

a. Logical EOF is set when:
(1) A "URENO" is read by CALL PLINP.

The logical EOF will be reset by
the next CALL PLINP to the data
set.

(2) The line count is zero for out
put data sets (CALL PLOUT> using
the CCTRL option.

b. Physical EOF is set when:
(1) PHYSICAL EOF is read by a CALL

PLINP.
(2) A CALL PLINP is

device not capable
(3) A CALL PLOUT is

device not capable
c. A CALL PLOUT' is issued

124 DOS PLAN (9.0.0)

issued to a
of input.

issued to a
of output.
to a data S·et

15 SEPTEMBER 1969

in input status (a CALL PLINP had
previously been issued).

d. A CALL PLINP is issued to a data set
in output status Ca CALL PLOUT' had
previously been issued).

6. The following specifications pertain to
the carriage tape simulation functions
on an output device (CALL PCCTL):

a. The maximum page length is 32,767
lines.

b. Default page length is 60 lines.
c. If the CCTRL option is specified, a

line count is maintained and an
automatic eject (skip to carriage
channel 1) is set when the line
count reaches zero.

d. Maintenance of the line count is
suspended when a CALL PCCTL is
issued for a skip to channels 2-12.

e. Maintenance of the line count is
resumed when a CALL PCCTL is issued
for a skip to channel 1.

allows
used
data

be

A PLAN utility program, DFJPLENG,
the user to set the page length to be
on an output file that is to contain
to be printed. This utility must
invoked by the standard PLAN command.

SET PAGE LENGTH, NOD xxx,, PGL yyyyy;

where xxx is a number up to three digits
equivalent to the NOD argument for the
subroutines PLINP and PLOUT, and yyyyy is a
number up to five digits to be used as the
page length for the specified NOD.

9.15.0 PERMANENT FILE SORT/MERGE

CALL GSORT(ID) and CALL GMERG(ID,JD,KD)
provide the identical functions for PER
MANENT files as CALL PSORT and CALL PMERG·
do for DYNAMIC files.

IBM PROBLEM LANGUAGE ANALYZER (PLAN)

15 SEPTEMBER 1969 PROGRAM DESCRIPTION MANUAL

10.0.0 APPENDIX C: SYSTEM/360 OS PLAN SPECIFICATIONS

This appendix contains additional informa
tion about the specifications and use of
the PLAN system on the IBM System/360 under
the Operating System. Included is informa
tion of PLAN features that allow a user to
make better use of features unique to the
operating system. Note that use of these
features may create code that is dependent
upon running within the system/360 OS ver
sion of PLAN. Specific references to
compatibility considerations are provided
in Appendix J (18.0.0).

10.1.0 OS/360 PLAN SYSTEM (LOADER)

The PLAN system is ·initiated
job step. once in execution
responsibility of loading
program load modules within
or region.

by an OS/360
it assumes the
other problem
the partition

Figure 17 illustrates the PLAN system use
of main storage.

r----------------1--TOP OF PARTITION
I PLAN SYSTEM I
I WORK AREA I
1----------------~
I I
' MANAGED I
I FREE STORAGE I
1----------------~
I I
I NONMANAGED I
I FREE STORAGE I
I I
1----------------~
I I
I PROGRAM I
I AREA 1·
I I
1----------------~
I I
I I
I COMMON I
I I
I I
1- -1
I I
' PLAN I
I SYSTEM I
1 I
L----------------J

Figure 17. OS PLAN storage utilization

The PLAN system is a part of blank COMMON.
It is 640 32-bit words long. Every load
module that contains a blank COMMON control
section must protect this area with a dummy
array at the beginning of COMMON.

The total PROGRAM/COMMON area is under
control of the PLAN system. Within this
area, load modules are located as high as
possible. The size of COMMON is variable.
It begins at the bottom of the partition
and extends towards the programs loaded at
that time. The default length of the
PROGRAM/COMMON area is 66 per cent of the
partition/region size.

The Managed and Nonmanaged Free Storage
areas are used to honor GETMAIN requests
from problem programs. By default the size
of the Nonmanaged Free Storage area is
zero.

The PLAN system work area contains PLAN
tables and I/O buffers required to perform
all PLAN I/O operations. This area ranges
upward from 3K bytes, depending upon: Ca>
use of the RAM and LINKPAC areas for
reentrant modules and access methods, and
Cb) the number of optional data sets used
by the PLAN job.

The length of the PROGRAM/COMMON area and
the nonmanaged free storage area may be
varied by the user at execution time
through EXEC card parameters.

10.2.0 COMMON CONTROL

COMMON is managed and referenced in System/
360 OS PLAN according to the following
procedures:

1. The PLAN loader subroutines reference
COMMON through a ·BLANK COMMON. control
section of 2560 bytes.

2. The PLAN loader, when loading modules,
deletes the •Blank Common• control sec
tion from the module and modifies
"Blank Common• references to point to
PLAN COMMON.

3. The length of COMMON may be altered
whenever a new load module is brought
into core. It will be as long as
required by any resident load module
and never shorter than the length spec
ified as a data variable in the loader
Switch Word 9.

4. For those languages that cannot gener
ate a BLANK COMMON CSECT, a virtual
type ADCON referencing the name •PLANB
coM• will be resolved to point to PLAN
COMMON. The load module containing

OS PLAN (10.0.0) 125

IBM PROBLEM LANGUAGE ANALYZER (PLAN)

PROGRAM DESCRIPTION MANUAL

these references must not contain an
actual CSECT named PLANBCOM.

10.3.0 PROGRAM AREA CONTROL

one or more load modules that are brought
into core by a single loader entry form one
program segment.

The PLAN system manages the program area by
segment level. When PLAN is requested to
load a module not in core. all segments in
memory. assigned a segment level greater
than the segment level of the module issu
ing the loader call. are released. This
allows overlay processing but does not
require overlay definition and link
editing.

10.4.0 OS FREE STORAGE CONTROL

The PLAN system maintains several pointers
concerned with the MANAGED FREE STORAGE
area. Whenever a program segment is
released. the system uses these pointers to
perform the following maintenance:

1. DELETE modules that the segment loaded
via the LOAD macro.

2. Close data sets that were left open by
the segment.

3. Use the FREEMAIN macro to release all
core obtained by the segment's use of
the GETMAIN macro.

The user must be aware of the implications
of the above maintenance procedures.
Programs that reside in lower-level
<higher-segments) that are called as LOCALs
may issue the GETMAIN macro only for tem
porary use. Whenever a segment is
released. all areas in MANAGED FREE STORAGE
obtained by the GETMAIN macro are released.
This includes both the segment and all
modules or subroutines called as LOCALS by
the segment.

If a NONMANAGED FREE STORAGE area is
declared. it is the user's responsibility
to maintain this area .•

The use of managed or nonmanaged FREE
STORAGE is controlled by a PLAN system
indicator that may be dynamically
controlled by the user through use of the
PLAN utility modules DFJUMC and DFJUNC.
Invoking module DFJUMC informs the PLAN
system that managed free storage is to be
used to honor GETMAIN macro requestsi
DFJUNC causes PLAN to effect the use of
nonmanaged free storage to honor GETMAIN
requests. Either of these routines may be
invoked as a subroutine, by a CALL LOCAL.

126 OS PLAN (10.0.0)

15 SEPTEMBER :L969

or as a PROGRAM entry associated with a
phrase.

10.5.0 PROGRAM USE OF FREE STORAGE

Two subroutines are provided to allow the
user to control the area of OS FREE STOUAGE
that is used to honor GETMAIN requests.

CALL DFJUMC sets the system status to
indicate that the managed area of OS l~REE
STORAGE is used for GETMAINs.

CALL DFJUNC sets the system status so that
the nonmanaged area of OS FREE STORAGg is
used for GETMAINs.

10.6.0 PROGRAM AREA MANAGEMENT

The PLAN loader provides management of core
assignment to allow coexistence of
independently wri tten1 functionally depEmd
ent pieces of code.

The user is provided with special argunumts
that, when encountered in the pop-up list,
indicate the limits of the fwictionally
dependent modules. The left parenthesis
indicates the start of a string of module
names for which the user desires coexistent
residence. The right parenthesis indicates
the end of the string. Figure 18 repre
sents the pop-up list containing a list of
programs. Programs M0716 through M0725 are
to be grouped in memory concurrently.

-----, r----
l M 0712 I
IM07561
I < I
IM07161
IM07961
IM0732)
IM07251
I > I
IM07491
I o I
L-----J

Figure 18. Loader pop-up list

The systems programmer in determining the
scheduling control, that is, which modules
may coexist within the partition, must
recognize and/or account for the following
conditions:

1. If more modules are grouped (bounded in
the pop-up list with parentheses) than
can coexist, those modules that \Ifill
not fit are not loaded concurrently.

15 SEPI'EMBER 1969

2. If space can be found, all parentheti
cally grouped modules are loaded into
the partition with the entry to the
program named following the left
parenthesis.

3. Loading of a module results only if the
module does not already exist in ·
memory.

4. If the left/right parenthesis is
encountered when entering data into the
pop-up list without a corresponding
right/left parenthesis, the unmatched·
parenthesis is ignored. Therefore,,
parenthetically grouped programs must
be added to the pop-up list with a
single loader subroutine call.

5. If the left or right parenthesis is to
be inserted in the pop-up listw it must
be ~left-justified in two 32-bit words .•

6. Program lists, verb lists, and check
entry program lists include the paren
thetical groupings in literal form.
Example:

...... PROGRAMS • M0713 I

M0792), M0796',4••
(M0726, M0733,

1. The combination of the parenthetical
program grouping.and the use o:E command
input of program li.sts gives the user
the ability to add segments (modules>
to his root structure at execution
time.

8. If all programs indicated in the
coexistent grouping cannot be loaded
because of insufficient partition size,
the ~ight parenthesis is floated for
ward in the pop-up list to include
those programs for which coexistent
loading was accomplished.

The 'original . right parenthesis is
deleted and a right parenthesis is
regenerated ii) the pop-up list at a
position that indicates the last pro
gram which was successfully loaded. ·

9. A call with a negative value of N is
required to interrogate the pop-up list·
for successful loading of the coexist
ent programs.

10. Parenthetical grouping is acceptable
but ignored on the 1130 ve:rsion of
PLAN.

11. The left and right parentheses and all
programs associated with the indicated
coexistent grouping must be added to
the pop-up list with a single call to
the PLAN loader subroutines, or both
parentheses must be included in a
phrase-defined program list.

IBM PROBLEM LANGUAGE ANALYZER (PLAN)

PROGRAM DESCRIPTION MANUAL

12. All program lists to be inserted into
or to be extracted from the pop-up list
must begin on a full-word boundary.

13. Use of XCTL is prohibited in PLAN
modules. The use of LINK or ATTACHED
is allowed. Any program that is
"linked" to by a module loaded by the
PLAN loader may use the XCTL, LINK, or
ATTACH macros. The linked-to program
may also be in overlay mode.

14. The •overlay structure• is ·not sup
ported in PLAN modules, except as
defined in 13.

15. Modules loaded by PLAN may
overlay or scatter mode
TESTRAN symbol cards.

not be in
or -contain

16. Load· modules must be marked as execut
able by the link editor.

Load modules may simply succeed one another
serially in the program area, occupying a
minimum amount of core; or they may reside
in core together in a manner similar to
that supported by the OS/360 overlay
supervisor.

The principal feature of PLAN loading is
that load modules sharing core do not have
to be link-edited together. One or more
load modules that are brought into core by
a single loader entry form one segment.

If a CALL LOCAL is issued during execution
of a program within a segment, the loader
does not release the calling segment. It
attempts to load the new segment into the
program area. This process may continue
through several levels, as long as core is
available. Failure to load a module that
must be immediately entered will generate a
PLAN diagnostic and allow the next PLAN
statement to be. ·executed. Failure to load
a module that does not have t,o be entered
immediately causes the left-hand parenthe
sis to be moved as indicated in step 8
above and execution continues.

CALL LOCAL .does not immediately free
storage; but the space used by inactive
segments will be reclaimed if needed by the
loader. Thus, modules that CALL one anoth
er in a loop can share core and execute
with maximum efficiency, if they all fit
wit~in the available region.

The loader keeps track of RETURNS, CALLs
outside of a load module, and CALL LOCALS
to allow proper release and acquisition of
space for load modules. The term "execu
tion level" is defined as the number of
CALL LOCALS that have not been canceled by
RETURNs. The segment level is the "depth"
of segments within the program area.

OS PLAN (10.0.0) 127

IBM PROBLEM LANGUAGE ANALYZER (PLAN)

PROGRAM DESCRIPTION MANUAL

If names are parenthesized in the pop-up
list. all load modules named inside the
parentheses are treated as one segment.

The following narrative discusses the
method used by OS PLAN for program area
control and management.

Initial entry to the loader <Figure 19)
finds the pop-up lists as shown. Paren
theses call for three modules to form one
segment. Program area now appears as shown
in Figure 19(a). Module A is entered. The
execution level is 1. <no CALL LOCALs yet>.
During its run. A issues a CALL LOCAL .•
transferring the names D and E in paren
theses to the pop-up list as shown in
Figure 20. Note that the name of A was
removed from the pop-up list when it was
loaded. Execution is at level 2. <A C1l1.LL
LOCAL was issued.)

--, r--
1 (A I
I I
I B I
I I
I C) I
I o I
L----J

1--------T--1
I MODULE A I I
I - - - - -I I
I MODULE B I I--> SEGMEN'l' 1
I - - - - -I I
I MODULE c I '
~---------t-J
I I
I I
I - - - - -1
I COMMON I t_ ________ J

Figure 19. Initial entry to loader
Figure 19 (a). co.ntents of program area

Dis now at the top of the pop-up list but
not in core. Since D was accessed by CALL
LOCAL. it will be loaded as an additional
segment in core. Parentheses define E in
the same segment. Core now looks like
Figure 19(a). control passes to D at its
entry point. D issues a CALL LOCAL without
changing the pop-up list.

--, r--
1 <o I
I E) I
I B I
I C) I
I o I L_ ___ J

r--------1
I I
I SEGMENT 1 I
I I
~--------~-,
I D I I
I - - - - - I ·--> SEGMEN'I' 2
I E I I
•--------- rJ
I I
I * * * * * I
I I
I COMMON I
I I
L---------J

Figure 20. Caller released from list
Figure 20 (a). A bank load from call loca.l

The load list <Figure 21) now has E at its
top. E is in core. No new loading is

128 OS PLAN (10.0.0)

15 SEPTEMBER 1969

:cequired. The segment level remains 2 1. but
execution is now at level 3. E issuE~s a
CALL LOCAL, adding C to the pop-up list.
control passes to c (in core already at
segment level 1 > • Execution is at levEd 4.
Figure 21<a>.

Asswne c RETURNS.
which is reentered.
E also RETURNS.
which is reentered.

It was called fre>m E,
Execution level -· 3.

It was called fre>m D,
Execution level = 2.

D now issues a new CALL LOCAL, adding :P to
the pop-up list (Figure 21<b) >. F if; not.
in core. so it becomes segment level 3.
Core appears as in Figure 22. Control
passes to F. Execution level = 3.

·--, r-- r-----, --, r-·
I E) I r--1 A I I F I
I I I I I I I
I B I I I B I I B I
I I 1 I I I I I
I C) I I I c I<--, I C) I
t 0 I I ~-----~ I I 0 I
L----J l- I I I L----J

r--1 D I I
2 I I I I

L->I ·---J
I E I
L-----J

Figure 21. No change to load list
Figure 21<a>. Module called is already in
core
Figure 21(b). CALL LOCAL transfers control

15 SEPTEMBER 1969

,----------,
I I
I SEGMENT 1 I
I I . ~
I I
I SEGMENT 2 I
I I
r---------~
I SEGMENT 3 I
I I
I I
1---------~
I I
I I
I I
r----------~
I I
I COMMON I
I I
L----------J

r----,
I A I
1- - -1
1 B I
1- - -1
I c 1---,
~----~ I

,--1 D I I
I 1- - -1 I
I - - -1 I
I I E l<--J
I ~---~
L-->I F I

r---~
I I
I I
I I
I I
I I
I I
L----J

Figure 22. Control passes to a new segment
Figure 22Ca). Contents of segments

Program F RETURNS. D is reentered. Execu
tion level = 2. D RETURNS to A. Execution
level = 1.

A issues CALL LOCAL, adding F to the pop-up
list, F is in core, so it is entered.
Execution level = 2.

F RETURNS. A receives control.
level = 1.

Execution

A issues a CALL LOCAL, adding H to the
pop-up list. R is not in core. Control is
in segment 1 and execution level is 1, so
higher segments are released. Core now
looks like Figure 23. control goes to R.
Execution level = 2.

r-----1
I A I
I - -I
I B I
I -I
I c I
·------~
I R I
·------~
I I
I * * * *I
I I
I COMMON I
L------J

Figure 23.
segment

New segment replaces released

H issues a CALL LEX, adding E to the pop-up
list. E is loaded and overlays H. (The
reader should justify this statement.> E
returns and A issues a CALL LOCAL without
adding to the pop-up list. B will be
entered in segment 1. B returns to A,

IBM PROBLEM LANGUAGE ANALYZER (PLAN)

PROGRAM DESCRIPTION MANUAL

which again issues a CALL LOCAL with no
change to the pop-up list. c will be
entered. After a return from c, if the
loader is entered again without adding to
the pop-up list, the list will be empty.

When loading from an empty pop-up, the PLAN
module DFJPSCAN is loaded by default, to
obtain the user'' s input. CA zero in the
pop-up list appears to be the end of the
list; so any program can return to the
input reader by loading the name 0.)

10.7 • .0 RETURN LINKAGE

The FORTRAN RETURN statement functions
exactly like the CALL LRET PLAN loader
call. Register 14 is used to cause a
return from the mainline (logic module> to
the PLAN loader. PLAN modules that contain
CALL LNRET or that are reentered at a
primary entry may not exit via RETURN.
FORTRAN subroutines which modify variables
passed to them as arguments must use the
FORTRAN RETURN statement.

CALL EXIT should be used to terminate a
module to assure that buffers have been
purged and data sets closed when non-PLAN
I/O is incorporated within a module.

10.8.0 EXECUTION-TIME LINKAGE EDITING

Because the PLAN loader has full control of
the region or partition, it can resolve
references between load modules that were
not link-edited together before execution.

While loading a module, all unresolved
ADCONS pointing to entries in in-core seg
ments will be resolved.

External subroutine references that are not
resolved at link-edit time are effectively
treated as CALL LOCALS by the PLAN system
at execution time.

The restrictions on subroutines called in
this manner are:

a. Standard linkage conventions must be
used

b. FUnction subroutines may return ans
wers only in FPRO or GPRO

The two sets of coding shown below are
equivalent and correct. The v-con for
SUBRTN in set 2 may be unresolved following
link-editing.

OS PLAN (10.0.0) 129

IBM PROBLEM LANGUAGE ANALYZER (PLAN)

PROGRAM DESCRIPTION MANUAL

SETl
REAL*4 NAME(2)/'SUBRTN'/

•
•
•

CALL LOCAL (2, NAME., ARG1 1 ARG2, ARG3)
END

•
•
•

CALL SUBRTN (ARG1, ARG2, ARG3)
•
•
•

END

Unresolved branch type Cv> ADCONS that are
t,o be resolved by the PLAN load at execu
tion time are restricted. References to
the ADCON must be direct. For example:

L 15,=V(NAME)
BALR 14,15

Off set referencing as shown below will not
function correctly and will probably cause
termination of the PLAN JOB step. In other
words, IBCOM= cannot be called as a LOCAL.

L 15,=V(NAME)
BAL 14,NC0,15)

10.9.0 USE OF THE LINRPAC AND RAM AREAS

A PLAN utility program
gives the PLAN system
referencing the LINRPAC
provided. This utility
the PLAN command:

(DFJLLIST), that
the capability of

or RAM area, is
must be invoked by

CREATE LOADER ENTRIES: CNAMEl, •••):

where NAME!,.... is a load module name that
is to be loaded into the partition via the
LOAD macro and be made available as entry
points for the execution of any loader
call. This allows programs in the LINKPAC
or RAM areas to be objects of a CALL LOCAL.
The names specified in the LIST must be in
the JOBLIB PDS. TO add this phrase to the
dictionary, the following PLAN command must
be executed:

ADD PHRASE: CREATE LOADER ENTRIES, PRO
'DFJLLIST':

The maximum number of names in the list
75. Use of this command destroys
entries defined by previous use of
command.

is
any
the

Proqrams that reference blank COMMON I!@:Y
not be operands of this command.

130 OS PLAN (10.0.0)

15 SEPTEMBEFt 1969

10.10.0 USE OF IN-CORE DIRECTORY

A PLAN utility program CDFJCRDIR) atllows
the user to build an in-core PDS dirE~tory
of names of frequently loaded mocilules •
This utility must be invoked by thE! PLAN
command:

CREATE CORE DIRECTORY: CNAMEl, •••):

NAMEl, ••• is a load module name that is
placed in the in-core PDS directory to
decrease load time for those modules. The
names in the list must be entries in the
Pl..ANLIB PDS •

Use of this command will replace
vious directory. The maximum
entries is 75 names.

the pre·
number of

This facility is added to the PLAN lan.guage
dictionary CPFILE) by executing the follow
ing command:

ADD PHRASE: CREATE CORE DIRECTORY,
PROGRAM 'DFJCRDIR'' :

10.11.0 PARAMETER PASSING

If the arguments in a parameter list are
external names, the called program and
calling program must be compiled by the
same level FORTRAN compiler.

10.12.0 OVERLAY STRUCTURE

The system/360 OS PLAN system provid1es a
local overlay structure that provide:s the
mechanism for common usage of multiple
purpose control sections. This t~~e of
processing is typified by an application in
which the mainline serves only to prc::>vide
linkage to logic segments that perform
specific functions, and provides the lbasic
hardware routines.

The following logic module is considered
appropriate for an application of the type
listed above. It is assumed in the example
that a command would initially load the
example module and define the first local
task to be completed by entries in the load
list.

EXTERNAL ARGl ,ARG2,, ARGN
1 CALL LOCALCO,O,,ARG1.,ARG2, ••• .,ARGIO

GO TO 1
END

The local module would then be wri tt•:?n in
the following form:

IBM PROBLEM LANGUAGE ANALYZER (PLAN)

15 SEPTEMBER 1969 PROGRAM DESCRIPTION MANUAL

SUBROUTINE NAME (ARG1, ARG2, .••• ARGN)
CALL ARG1CX,Y,Z)

processing CEOF) before issuance of the
call or must not allow the called module to
use the file. It is not true of PLAN
DYNAMIC, PERMANENT, and SEQUENTIAL file
support.

CALL ARG2(P,Q,R)

RETURN

Return from the LOCAL immediately loads the
next module indicated in the pop-up loader
until the loader is found to be empty. At
that time control is given to PSCAN for
processing a new command. The logic module
shown in the above example would incorpor
ate all multiple-use subroutines required
by the local modules.

The use of CALL LOCAL in a source program
suggests detailed knowledge of an installa
tion• s core storage boundaries. There must
be room enough for all load modUles that
are implied by any sequence of CALL LOCALs
without intervening RETURNS. Since core
use is an installation variable, it is not
good practice to use CALL LOCAL in general
purpose modules. This call is designed for
root modules containing· shared subroutines
to use in invoking a hierarchical overlay
scheme. An example is shown below.

Note that the module issuing the CALL LOCAL
or CALL LCHEX must complete non-PLAN file

1 R v
r---------------------, ----, r----
1 I I R I
I 1 CALL LOCAL CO, 0, A, B) I I X I
I GO TO 1 I I z 1

r----------+---> SUBROUTINE A I I Y I
I .---+-----RETURN I I 0 I
I I I 1 > SUBROUTINE B I L---J
I I I I RETURNI I INITIAL
I I I I I I LOAD LIST
I I I I I I
I I I I I I
I I I I I I
I ' ~-+-----T---+----------J
I I 1 I I
I I I I I
I I I I I

rf-----f------·-t-T--.l.---f-------------1
I I I I I I I
I I I I I I I

2 XI I I 3 ZI I I 4 y I
r-.l.-f-----+--, r-·-f--.l.------+--, r-----.l.----------,
I l I I I I • I I I • I
I I I I I I • I I I • I
I CALL A <J 1 ' I CALL B < J I I CALL LIST (2.,A) I

OVERLAY I • ' 1 • I I • I
AREA ' • I I • I I • I

I CALL LRET I I CALL LRET I I CALL LRET I L-------------l t._: ______________ J L----------------JI
Figure 24. OS overlay structure

10.13.0 PLAN SYSTEM CHECKPOINT

The following regulations govern execution
and control of the checkpoint facility
within the OS version of PLAN (CALL LCHEX):

1. Checkpoints can be reloaded only within
the limits of the phrase from which
they were written. This means that any
checkpoint that has not been reloaded
when the end of the phrase is encoun
tered -- that is,, when the pop-up list

is found to be empty -- is destroyed.
No warning message is issued.

2. If the checkpoint return (*) is encoun
tered while in local mode, the local
processing is terminated and the check
point is reloaded.

3. Any input/output error while reading or
writing the checkpoint data set results
in a phrase abort and PLAN level error
recovery is initiated. This action is

OS PLAN (10.0.0) 131

IBM PROBLEM LANGUAGE ANALYZER (PLAN)

PROGRAM DESCRIPTION MANUAL

also true when insufficient space is
available in the checkpoint data set.

4. The user may specify, in the DCB BLOCK
SIZE parameter of the PLCHKPT DD card,
the record size (in bytes) to be used
when writing checkpoints. If no block
size is specified, a blocksize of 512
is assumed.

5.

6.

There is no logical restriction on the
number or level of checkpoints that a
user may execute. A physical limit
based on the size of the checkpoint
data set may produce a real limit or
error condition as outlined in 2 above.

Checkpoint restarts are executed in a
reverse order from which they are writ
ten, that is~ last in-first out.

7. After a checkpoint is taken, the status
of all data sets,, except system data
sets (those data sets processed by CALL
PLINP, CALL PLOUT, CALL GDATA, and CALL
FIND),, must not be altered until the
checkpoint is restarted. This is a
user responsibility and no check is
made by PLAN to prevent such an altera
tion. If a data set status is altered
while a checkpoint is in effect, the
results are unpredictable.

8. COMMON is not protected between the
time that a checkpoint is taken and the
restart is loaded. It is the user
responsibility to save and reload those
parts of COMMON that might be destroyed
and that must be present for continued
execution of the checkpointed module.

9. Floating-point
restored when
restarted.

registers are
a checkpoint

not
is

10. The length of the PLAN PROGRAM/COMMON
area must not be altered during the
time a checkpoint is in e.ffect.

10.14.0 USER-EXIT PROGRAMMING

The PSCAN user-exit program must be written
to expect the standard System/360 FORTRAN
subroutine linkage conventions.

10.15.0 COMMUNICATION ARRAY SPECIFICATION

The size of COMMON that is protected from
overlay by PLAN system modules is the
greater of (1) the size of PSCAN COMMON as
defined at assembly time, or (2) the con
tents of Switch Word 9. PSCAN will give an
error diagnostic and abort if an attempt is
made to store values beyond these limits.

132 OS PLAN (10.0.0)

15 SEPTEMBER 1969

10.16.0 PERMANENT FILE SUPPORT

The os version of PLAN provides support for
files established outside of PLAN with the
following characteristics:

1. File contains fixed length record:s.

2. File may be organized as a sequential
or direct access file,.

3.

4.

5.

6.

7.

No secondary allocation is provid1ed..

Track overflow feature may not be used.

No keys are allowed.

There may be no control characters,.

The file may contain no truncated
records.

The logical drive number CNDR) and the
logical file number CID(l)) must be equiva
lenced to the data set name. The DDNAME
"PLFSynnn" will establish a name/number
equivalence between PLFSynnn and NDR/JCD(l),
where y corresponds to NDR and may ran9e
from 0-7, and nnn corresponds to ID C 1)I and
may range from 1-255.

10 .17. 0 DYNAMIC FILE SUPPORT (OS PLAN)~

The NALLO parameter provided with CALI~ FIND
is used to optimize space allocation.. The
basic unit of allocation for an OS PLAN
file is 1350 words.

The positions of the NDR parameter othe·r
than the units position are not interro
gated by OS PLAN. Each logical file can
contain up to 147 discontiguous al.loca
tions. Thus, if normal allocation is
allowed as the file is written, the matximum
file size is restricted to 220,500 32-bit
words. If the NALLO parameter of the CALL
FIND subroutine is utilized,, the matximum
file size is 49,150,350 32-bit words.

Each logical drive may contain a maximum of
149 discontiguous free areas. This means
that in cases of extreme discontiguous
allocation a file may be destroyed.

10.18.0 IOCS DEVICE PARAMETERS

Under System/360 OS PLAN, INPUT and. LIS'T
correspond to units defined as DD names
defined in the JCL for the PLAN job. The
value specified for INPUT or LIST, corre·
sponds to the device specified as the~ PLAN
input device PLINPnnn in the job descrip
tion deck. Unit nnn specified for LIST,
corresponds to the device specified as the
PLAN output device PLOUTnnn.

15 SEPTEMBER 1969

10-19.0 SEQUENTIAL FILE SUPPORT

The following steps outline the manner in
which certain special conditions are
handled on the OS/360 version ot the
SEQUENTIAL I/O subroutines (PLINP/PLOUT/
PEOF /PCCTL) •

Two subroutines are provided under·os PLAN
that allow specification of page length and
status switching (CLOSE) for PLINP/PLOUT
data sets.

CALL PPAGLCNOD,N) is a subroutine used to
specify the number of lines to be used as
the page length for those data sets con
taining printed output. If N is O, a
default of 60 is used. The maximum value
of N is 32,767.

A call to PPAGL sets the current line count
to the page length specified. It also
forces the next carriage control operation
to be a skip to 1 unless overridden by an
intervening call to PCCTL.

CALL PENDF(NOD) is a subroutine that may be
used to close a sequential data set. If a
data set is in output status~ an EOF is
written after the last record. Both PLINP
and PLOUT data sets are repositioned to the
beginning of this data set.

1. Maximum record size for any input/
output record is 32,760 characters.

2. Records may be blocked within the
limits of the facility for processing
on the specified device. Truncated
records are accepted if the character
count is a multiple of the logical
record length.

3. A PLINP/PLOUT call to an invalid device
(missing DD card) is ignored.

4. In order to effect carriage control,
that is, f.or PCCTL to be functional,,
the DCB RECFM parameter must bE~ FA or
FBA.

5. The DCB RECFM parameter must be F, FA,,
FB, or FBA.

6. If the device is a printer, the DCB
RECFM parameter must be FA.

1. The following
functions:

items define PCCTL

a. If the device is a reader, PCCTL
will control stacker selection.
DCB=(RECFM=F,-BUFNO=l) must be used.

b. If the device is a punch, RECFM must
be FA for PCCTL to control stacker
selection.

c. If RECFM is FA or FBA, PCCTL will
cause the correct ASA control

PROGRAM DESCRIPTION MANUAL

character to be inserted as the
first character of the record.

8. The following items are specifications
for the PEOF routine:

a. (1) Logical EOF is set when a
"URENO" is read by CALL PLINP.
The logical EOF will be reset by
the next CALL PLINP to the data
set.

<2> The line count is zero for out
put data sets (CALL PLOUT) using
RECFM FA or FBA.

b. Physical EOF is set when:
(1) EOF is read by a CALL PLINP.
(2) A call PLINP is issued to a

device not capable of input.
(3) A CALL PLOUT is issued to a

device not capable of output.
(4) A CALL PLOUT is issued to a data

set in input status Ca CALL
PLINP had previously been
issued>.

(5) A CALL PLINP is issued to a data
set in output status Ca CALL
PLOUT had previously been
issued).

9. The following specifications pertain to
the carriage tape simulation functions
on an output device (CALL PCCTL):

a. The maximum page length is 32,767
lines.

b. Default page length is 60 lines.
c. If RECFM is FA or FBA, a line count

is maintained and an automatic eject
<skip to carriage channel 1) is set
when the line count reaches zero.

d. Maintenance of the line cowit is
suspended when a PCCTL CALL is
issued for a skip to channels 2-12.

e. Maintenance of the line count is
resumed when a CALL PCCTL is issued
for a skip to channel 1.

A PLAN utility program (DFJPLENG) allows
the user to set the page length to be used
on an output file that is to contain data
to be printed. This utility must be
invoked by the standard PLAN command.

SET PAGE LENGTH, NOD xxx, PGL yyyyy;

where xxx is a number up to three digits
equivalent to the NOD argument for the
subroutines PLINP and PLOUT and yyyyy is a
number up to five digits to be used as the
page length for the specified NOD.

10.20.0 PROGRAMMING RESTRICTIONS

The following System/360 FORTRAN statement
should not be used because of its detri
mental effect on the execution of PLAN.
Alternate facilities are listed for each

OS PLAN (10.0.0) 133

IBM PROBLEM LANGUAGE ANALYZER (PLAN)

PROGRAM DESCRIPTION MANUAL

option. To avoid overriding the PLAN pro
cessor or endangering another user's job,
the statement should not be executed.

CALL DUMP This statement creates a pre
mature end to the PLAN execu
tion. Therefore, the CALL
PDUMP. followed by a CALL
LRET, should be used.

134 OS PLAN (10.0.0)

15 SEPTEMBER 1969

10.21.0 PERMANENT FILE SORT/MERGE

CALL GSORT(ID) and CALL GMERG<ID,,JD,KD)
provide the identical function fo:r PER
MANENT files as provided by CALL PSOR'T and
CALL PMERG do for DYNAMIC files.

IBM PROBLEM LANGUAGE ANALYZER (PLAN)

15 SEPTEMBER 1969 PROGRAM DESCRIPTION MANUAL

11.0.0 APPENDIX D: SYNTAX OF THE PLAN LANGUAGE

This appendix shows the optional and
required elements of a PLAN statement. The
first section shows the requirements for
language def ini ti on and the. secoml section
shows the syntax of language use. Capita
lized entries, left parenthesis, and right
parenthesis are standard (nonvariable)
items. Lowercase entries are replaced with
variable information. Items in brackets
are optional items. This material is pre
sented in outline form to allow successive
ly more detailed presentations of various
items and options. Items enclosed in
braces may be entered more than once.

Figure 25 is a graphic representation of
the syntactical organization of the PLAN
language.

11 .• 1. 0 LANGUAGE DEFINITION SYNTAX

I. ADD PHR: nameC,definitionl;
A. name is one to five words
B. definition

1. (LEVEL n,l
2. (PROGRAM'program list',]
3. (VERB C 'program list' l • l
4. (EXIT 'program list',]
5. (data definition,]

The following abbreviations are used in the
syntactical entries:

= arithmetic expression
= arithmetic ope~and
= communication array position
~ check entry definition
= data name

aex
aop
c~p

chk
dan
qav = execution-defined data value <numer-

I
lex
lop

ic, logical, literal>
= mode (!=integer)
= logical expression
= logical operand

nuv =
prl =
P±n =
saop=
sdv =

numeric value
program list
scale factor
special arithmetic operand
standard data value

slv
Um

$n
•
t

logical>
= standard literal value
= user exit
= arithmetic operator

formula number
logical operator

= relat.ional operator

C <cap) sdv, l

((cap)dan, l

(numeric,

C <cap) dan sdv, l

CI (cap> dan, l

CI (cap> sdv, l

CI<cap)dan sdv~l

CP±n(cap) sdv, l

CP±n(cap)dan,l

CP±n<cap)dan sdv,J

CI P±n <cap> sdv, J

CI P±n(cap)dan,J

CI P±n<cap)dan sdv,l

CUm(cap)dan,J

(Um(cap)dan sdv,, 1

(Um I <cap> dan, 1

Cum I<cap)dan sdv,J

(Um P±n<cap)dan,J

Cum P±n<cap)dan sdv,J

(Um I P±n(cap>, 1

Cum I P±n(cap)dan sdv,l

C (aex> dan, J

((aex> dan sdv, 1

CI<aex)dan,J

CI(aex) dan sdv, 1

P±n(aex)dan,1

P±n<aex)dan sdv,J

C I P±n<aex)dan~J

(I P±n<aex>dan sdv,J

(Um (aex) dan, J

CUm(aex> dan sdv, J

Cum I (aex)dan,, 1

Cum I(aex)dan sdv,1

[Um P±n<aex)dan,J

SYNTAX (11. 0 .• 0) 135

PROGRAM DESCRIPTION MANUAL

[Um P±n(aex)dan sdv,l

[Um I P±nCaex>dan,l

[Um I P±n(aex)dan sdv,l

[UM][I][P±nl<cap) Cdanl Csdvl
C {lex} l [{aex} l

Cslvl C {chk}]

The following entries show valid syntacti
cal entries for the phrase-defined formula
area. Abbreviations used are defined
above. Note that none of the preceding ADD
PHRASE entries may follow any of the
entries below.

C$n1 Cdanl=aex,

C$n1 Cdanl: lex,

C$nl Cdanl: Clex> C?=aexl,

C$nl Cdanl: (lex) [?:lex],,

C$nl ldanl: <lex) [?$n],,

C$n1 Cdanl: (lex>C?=aex!=aex],

C$nl Cdan]: Clex)[?:lex!:lexl,

C$nl Cdanl: Clex)[?=aex!:lexl,

C$nl Cdan]: Clex)[?:lex!=aexl,

C$nl [danl: Clex) [?$n ! =aexl,

C$nl Cdan]: <lex) [?$n ! : lex],

C$n1 Cdan1: <lex) [?=aex ! $ml.

C$nl Cdanl: Clex) C?:lex!$ml.

C$n1:$n,

The following entry is the valid form for
arithmetic operands:

dan {-dan} £-nuv}

The following entries are valid forms :t:or
special arithmetic operands:

+

"LITERAL"
'LITERAL'
OlLITERALCil

The following entries are the valid forms
for arithmetic expressions Caex> in phrase
entries~ Braces define the acceptability
of multiple entry of the enclosed items.

136 SYNTAX (11.0.0)

15 SEPTEMBElt 19 6 9

=aop £-aopl

=saop

The following entries are valid forms for
logical operands Clop> in phrase entries
<execution or ADD PHRASE):

dan{•dan}

Caextaex>

Cdan=+>

(dan=-..)

Logical expressions (lex> may be written in
the following valid form:

lop{•loplC?:lop{•lop}]
lop {•lop}[?:lop{•lop}!:lop{•lop},1
lop{•loplC?=aex]
lop{•lopll?:lop{•lopl!=aex]
lop{•lop}C?=aex!:lop{•lop}]

Note that there are other combinatio:ns of
the elements shown above. In addition 1w

parentheses may be used within logicals to
show order of evaluation.

11.2.0 LANGUAGE USE SYNTAX

General format of execution-time
statements is shown below:

I. Command, data section:
, data section:
command:

A. Command
phrase
{verb phrase} 8 phrase

B. data section
C J dav C l C, l
C ldan C l C, 1
C ldan [1 dav C l [, l
C$n1C Jdan[J=C JaexC 1
C $n 1 C 1 dan C l : []lex C 1
[$nl [] = [l aex []
C$n1C1 :[Hex[1
C 1 dan [1 < aex) ! l L, l
C$n1 [1 dan [1 Caex> [ldav
C$n1 C l C$ l danC l<aex>

'PLAN

[] [.]
[] =[]

aex[l
C$nl C
[,]

dan C l Caex> C l :I l lex C

15 SEPTEMBER 1969 PROGRAM DESCRIPTION MANUAL

STATEMENT
I
I

.---------i---------,
COMMAND DATA

I I
r--------L--------1 L--1

VERB OBJECT I
I (MAX 8) I (MAX 1) I
I I r---------,

PHRASES.... PHRASES... NAMES VALUES
I I
I I r---i----, I

WORDl ••• WORDS WORDS
I

.--i---T-------1
ALPHA t BETA.... I

3 I 3
BLANK I

r---·--------------~------------T----

1 I 1
CONSTANTS LITERALS FORMULAS

I I I
I 'LIT' I

r----.l.---..., "LIT" r---i-------,
REAL LOGICAL @LIT@ ARITBMITIC LOGICAL

INTEGER TRUE EXPRESSIONS EXPRESSIONS
FLT. PT. FALSE =

I
I r---------i--,

OPERANDS OPERATORS

1
I r-i---------,

OPERANDS OPERATORS

Figure 25. PLAN execution-time statement syntax

SYNTAX (11.0.0) 137

IBM PROBLEM LANGUAGE ANALYZER (PLAN)

PROGRAM DESCRIPTION MANUAL

12.0.0 APPENDIX E: PLAN SYSTEM FILES LAYOUT

12.1.0 PFILE LAYOUT

The PLAN lanquage definition file CPFILE)
is generated and maintained by the PHRAS
logic module and is utilized by PLAN <load
er) and PSCAN for temporary system save
areas. PFILE is required to be present
before a PLAN execution is permitted.

15 SEPTEMBER 1969

PFILE is defined as a logical file contain
ing a minimum of 14 (17 on the 1130) and a
maximum of 268 (205 on the 1130) recclrds •.
Records in PFILE are fixed in length at 512
bytes on System/360. On the 1130 each
record is 320 C16-b~t> words in length.
The following table lists the contents of
PFILE.

r-------------·--------------------·-----·---------------------------------------1
I
IITEM SIZE IN RECORD
INAME RECORDS DISPLACEMENT DESCRIPTION
I
IPFLDRSV 5 O Loader save and error stack area
I
IPFSYMT4 1 5 Level 4 symbol table save area C128 words)
I
IPFINPUTB 1 6 card image residual save area C20 words>
I
IPFSYMT3 1 7 Level 3 symbol table save area C128 words)
I
IPFPWVTAB 1 8 Phrase-verb validity table (512 bytes>
I
IPFSYMT2 1 9 Level 2 symbol table save area <128 words)
I
IPFINPUTA 1 10 current statement image save area C114 word.s)
I
f PFSYMTl 1 11 Level 1 symbol table save area C128 words)
I
IPFPAVTB 1 12 Phrase entry availability table (512 bytes)
I
IPFPSASV * PSCAN save area
I
IPFPETAB 1-255 13 or 16 Phrase entry table
I
I •NOTE: This area is used in 1130 PLAN for saving portions of the PSCAN module. It
I consists of 3 sectors on the 1130 but is not present under OS or DOS PLAN.
L---1
The following section describes the func
tions of each of the areas listed in the
above table of contents:

PFLDRSV This area is used for temporary
storage of the 1130 PLAN loader.
The use of this area is initiated
by:

1. CALL LSAV

2. CALL PSORT

3.. CALL PMERG

on all PLAN systems the area is
used as a temporary stack area
for diagnostics awaiting proces-

138 FILE LAYOUT (12.0.0)

PFSYMT4

sing by the system error module
when a stacked mode of operation
is indicated.

This area is used to store the
level 4 symbol table. The sy1mbol
table must be saved for usie in
initializing the symbol table of
a blank-level command followii!'lg a
level 4 command.

PFINPUTB The image of the card, to the
right of the semicolon terminat
ing a command1, is saved in this
area for processing as the start
of the following command. CH•!xa
decimal 00 indicates the end of
the image.>

15 SEPTEMBER 1969

PFSYMT3 This area is used to store the
level 3 symbol table. The symbol
table must be saved for use in
initializing the symbol table of
a blank-level command following a
level 3 command or the symbol
table for a level 4 command fol
lowing this level 3 comwand
without intervening commands of
level 3 or higher.

PFPWV'l'AB This table is used as an expe
dient to determining phrase
validity. There are 256 entries
corresponding to the 256 possible
phrase check sums. A zero entry
indicates no valid phrase has the
check sum; a nonzero entry is a
pointer to the phrase entry
table.

PFSYMT2 This area is used to store the
level 2 symbol table for use· in
initializing the symbol table of
a blank-level command following a
level 2 command or the symbol
table of a level 3 command fol
lowing this level 2 command
without an intervening command of
level 2 or level 1.

PFINPUTA This area is used to store the
length and the EBCDIC image of
the current phrase. PSCAN places
the command in this area for
access by PHRAS. The subroutine
INPUT reads the statement image
from this area and places it in
memory.

PFSYMTl

PFPAVTB

PFPETAB

This area is used to store the
level 1 symbol table for use in
initializing the symbol table for
a blank~level command following
this level 1 command or the sym
bol table for a level 2 command
following this level 1 command
without an intervening level 1
command.

There is one entry in this table
for each record in the phrase
entry table. The entry provides
information as to the available
room within each record for the
addition of new phrase
definitions.

This portion of the PFILE con
tains the language description
elements. Each command is
entered with header information
followed by up to seven tables of
phrase definition data. The
length of this section is vari
able up to a maximum of 255
re.cords. a function of the number

IBM PROBLEM LANGUAGE ANALYZER (PLAN)

PROGRAM DESCRIPTION MANUAL

of commands that must be added
into the language dictionary.

The following section describes the detail
layout of the variable (maintained) por
tions of PFILE. Those portions that are
merely temporary storage areas are not
described.

12.1.1 PFPWVTAB (PHRASE-VERB VALIDITY
TABLE)

This section has 256 entries corresponding
to the 256 possible phrase check sums. The
word check sum of each word in the phrase
is calculated as:

KSUM = L1*4 + L2*2 + L3
Ll = First letter in EBCDIC in low-

order eight bits
L2 = Second letter in EBCDIC in low-

order eight bits
L3 Third letter in EBCDIC in low-

order eight bits

Only the low-order eight bits of the word
check sum are saved. The phrase check sum
is formed by the wexclusive orft of succeed
ing word check sums. The following example
illustrates the calculation of the phrase
check sum for the phrase wDUMP PLANw:

Word Check Sum

D 11
u 01
M 00

101

p 11
L 01
A 00

101

OUM
PLA

Calculations

0001 0000
1100 1000
1101 0100
1010 1100

0101 1100
1010 0110
1100 0001
1100 0011

1010 1100
1100 0011
0110 1111

310
1C8
004
SAC

35C
1A6
OC1
5C3

AC

C3

AC
C3
6F

The 256 entries accessed by the phrase
check sum have the following format. Each
entry contains 16 bits. The term wrecord/
64ft in the following discussions means 64
bits on System/360 and 80 bits on the 1130
System. This grouping is one sixty-fourth
of a disk record.

I I I
Contents IVI A I B I

L-i-----------i---------J
Bit 0 1 2 7 8 15

V Verb Control
0 if no verb phrase has this check sum
1 if a verb phrase has this check sum

FILE LAYOUT (12.0.0) 139

IBM PROBLEM LANGUAGE ANALYZER (PLAN)

PROGRAM DESCRIPTION MANUAL

A The number of records/64 from the
beginning of the sector indicated by B
to the first phrase entry in the chain.

B Those bits contain the relative sector
address (1-255) of the first phrase
entry in the chain of phrases with
equal check sums. The field is zero if
no valid phrase has this check sum.

12.1.2 PSYMT 1,2,3,4 (SYMBOL TABLES)

This section is made up of 255 bytes of
information,, including 126 (16-bit) words
containing the symbol table entries. The
format of the table is shown in the follow
ing chart:

I I I I I
Contents IOIRILIOI E I L.i_i_.J._.J._ ____________ J

Byte 0 1 2 3 4 255

R The relative byte (8-bitl address of
the first table entry. The tables are
built from left to right. The right
most entry wraps around to the left
end. The last (rightmost) value
entered is preceded to the right by a
zero entry.

L The level of the symbol table is indi
cated as the level minus one. Thus,,
the indicator occupies the second and
third bits and ranges from 0-3.

E Each symbol is entered in compressed
form from the phrase. The table is
initialized from the symbol table of
the next higher level. The format of
the compressed symbol is shown in the
chart below. The symbol allows expedi
tious detection of undefined symbols.
Note that the symbol table entry is the
same as 1 and 2 of Table 3.

I
contents ILetter 11Letter 21Letter 310 I

L-------_i ________ i ________ i ___ J

Bit 0 4 5 9 10 14 15

The letters are compressed into five
bits through the following code
compression:

LETTER
A-I
J-R
s-z
blank

COMPRESSED CODE
1-9

11-19
22·-29

0

12.1.3 PFPAVTB (PHRASE AVAILABILITY TABLE)

This section of PFILE contains a maximum of
256 entries corresponding to the number of
records in PFPETAB. Each entry is a half-

140 FILE LAYOUT (12.0.0)

15 SEPTEMBER 1969

word C16 bits>. The entry format is shown
in the following table:

I
Entry I B I L I

L---------i-----------J
Bit 0 7 8 15

B The number of records/64 to the be~gin
ning of the first phrase entry or
available space entry in the sector.
The value of 7FFF (hexadecimal) indi
cates that the entire sector is avail
able; 8000 (hexadecimal) indicates the
end of the table.

I. The number of records/64 in the largest
contiguous, available block that begins
in this sector. This entry is used as
a test for the possible addition of the
current phrase into this sector.

1.2.1.4 PFPETAB (PHRASE ENTRY TABLE)

'I'he available space entries and the phrase
entries in the phrase entry table are
packed across sector boundaries. The first
records/64 of the phrase entry table must
be initialized when PLAN is invoked. If it
is not, the ADD PHRASE command is set and
PHRAS is loaded to add it to PFILE. The
format of the PFILE header is shown below
:i,.n hexadecimal.

I I
p F II L EI•

100011 D7 I C6 I C9 I D3 I C5 I 4B I
L----..1.-----i-----L-----L-----L-----L-----J
0-15 16-23 24-31 32-39 40-47 48-55 56-63

Note that bits 16 to 63 contain the EBCDIC
representation of PFILE. On the 1130 Sys
tem, bits 64-79 are included but unused.

The first word C32 bits> of each phrase Cor
available space) entry provides data as to
the size of the entry and pointers to the
next item in the chain. The format of this
portion of the entry is provided below:

I I I I I
ITI L 1x10001 s I VI z I SA I L-L---i-i ___ i ____ i __ i ________ i ______ J

T

L

0 1 3 4 5 7 s 15 16 17 23 24 31

This bit determines whether this is a
phrase entry or an available-space
entry.
0 = Phrase entry
1 = Available space CThe following

fields, except s., are meaningless
if this is an available-space
entry.>

These bits Cin a phrase entry) define
the level of the phrase according to
the following table:

15 SEPTEMBER 1969

x

s

v

z

000 Level 1
001 Level 2
010 Level 3
011 Level 4
100 Blank level

The presence of this bit indicates a
level zero phrase.

These eight bits define the number
(<128) of records/64 in this entry. No
phrase may result in an entry of great
er than 128 records/64. The appropri
ate diagnostic is issued i.f such an
attempt is made.

This bit Cin a phrase entry) defines
whether the phrase is a verb or an
object phrase.
0 = Object phrase
1 = Verb phrase
This six-bit (<64) field defines the
number of records/64 (within the sec
tor) that precede the first word of the
chained-to (phrase with equal check
sums) entry. This entry and the fol
lowing entry allow direct access of the
chained phrase.

SA This eight-bit field <<256) defines the
sector address. relative to the first
record of the phrase entry table minus
one word, of the first word of the next
chained-to phrase. This field is zero
if this phrase is the last of a chain.

Note that all phrases of equal check sum
Cas defined under phrase-verb validity
table) make up the links of the phrase
chain.

Following the phrase entry header. as
defined above, are up to eight tables.
Each table is ended with 80xx (hexadecim
al),, where xx is the number of 16-bit
half-words in the following table. The
last table is terminated with 7FFF (hexade
cimal). Trailing tables of zero length are
not required, nor is the table length
indication (8000) entered.

12.1.5 TABLE 1 (PHRASE NAME)

one word (32 bits) is required for each
word in the phrase name. There is a
maximum of five double-words used. Letters
are coded in EBCDIC code.

I I I
ILetter llLetter 21Letter 31CNot Used) I
L--------i-----~-L--------.1.----~----J
0 7 8 15 16 23 24 31

Note that the next
table C7FFF) indicator
next half-word .•

table C80xx) or last
is placed in the

IBM PROBLEM LANGUAGE ANALYZER (PLAN)

PROGRAM DESCRIPTION MANUAL

12.1.6 TABLE 2 (CONSTANT INITIALIZATION
DATA VALUES)

This table contains all constant (default
or initialization) values. There are four
formats for this entry that depend upon the
format of the phrase definition. In the
following table definitions, the example
phrase entry is given,, followed in order by
the general form of the table entry, the
description of the table,, and the table
entry representing the example phrase
entry. Note that there is one entry
required for each literal character count
plus one for each succeeding group of four
literal characters.

1.. Constant Value: IC35)10,,

I I I
10101 s I v I
L--L--L----.1.-----J
0 1 2 15 16 47

s This 14-bit <<16,384) field defines the
subscript relative to the beginning of
the switch area.

V This 32-bit field defines the initiali
zation value as defined in the phrase
entry.

I I I I
1010121D 10 10 10 10 10 10 10 IA I
L-J.--L-i--.1.--.1.--.1.--.1.--.1.--.1.--.1.--.1.--J
0 4 8 12 16 20 24 28 32 36 40 44

2. Symbolic Subscript: I(M)DATA3,

I I
111 c I 01 s 1 v I L-J. ______ i __ J. _______ J. _________ J

0 1 15 16 17 31 32 63

c This 15-bit field contains the com
pressed data name in symbol table code
that is to be initialized. The symbol
is stored in the same compressed code
as defined for the symbol table
entries.

s This 15-bit field contains the sub
script relative to the data name into
which the initialization value is
stored.

V This 32-bit field defines the initiali
zation value as defined in the phrase
entry.

I I I I I
1910131 11 0001 I 00000003 I
L-L-.1.-i--i--------.1.------------J
0 4 8 12 16 28 32 63

3. Implied DO: IC30,36,,2)15, •••

FILE LAYOUT (12.0.0) 141

IBM PROBLEM LANGUAGE ANALYZER (PLAN)

PROGRAM DESCRIPTION MANUAL

I I I I
10111 s I D I I 1 v 1
L-..l-.L------..l----~.L-------..1-----J

s

D

I

v

0 1 2 15 16 31 32 47 48 79

This 14-bit C<16, 384) field contains
the subscript associated with the data
value relative to the beginning of the
switch area.

This 16-bit field contains the
displacement (range> for the implied
DO. The value must be a multiple of
field I. This value is computed from
the first two specified implied DO
parameters.

This 16-bit field contains the incre
ment for the implied DO.

This 32-bit field contains the initial
ization value as defined in the phrase
entry.

I I I 1 I
14101218 I 0006 I 0002 I OOOOOOOFf
L I I I -.L----·-----.L _____ .L _______ J

0 4 8 12 16 31 32 47 48 79

4. Symbolic Subscript and Implied
(M+2.10,, 2) NAME1, •.••

DO:

I I I
111 cs I 11 D I I I v I
L--1------1---1-----J. _____ .L _____ J

0 1 15 16 17 31 32 47 48 79

cs This field contains the
name of the starting
initialized. The symbol
the same compressed code
symbol table entries.

compressed data
position to be
is stored in
as defined for

v

D

I

This 32-bit field contains the initial
ization value defined in the phrase
entry.

This 16-bit C<65, 536) field contains
the displacement from the first posi
tion to be~ initialized to the final
position to be initialized.

This 16-bit field contains the incre~
ment between succeeding values to be
initialized.

I I I
IBI C2EI 800AI 0002 I 00000001 I
L--1-----1-----.l---·---1-------J

0 16 32 48 79

12.1.7 TABLE 3 (SYMBOL TABLE)

1.. Symbol with Constant Subscript and
Scale Value: P+2(15)ABC •••

142 FILE LAYOUT (12.0.0)

15 SEPTEMBER l969

I
I s 1 01 E I II p I GI SUB I
L~---1--.L-----.L--~-----.L--.L---------J

s

E

I

p

G

0 14 15 16-17 18 19-21 22 23 31

This 15-bit field contains the com
pressed data name to be defined. The
format is as defined above for symbol
tables.

This field defines the user-exit number
to be associated with this symbol.
00 = No exit
01 User exit 1
10 = User exit 2
11 = User exit 3

This field defines the mode for the
variable.
O = Real (floating-point)
1 = Integer (fixed-point>

This three-bit <<8> field contains the
scale factor to be associated with this
symbol.

This one-bit field determines the sign
of the scale factor.
O Positive
1 = Negative

SUB This nine-bit «512) field contains the
subscript of the value to be entered in
the symbol table relative to the first
position of the communication array ..

I I I I I I I I
1018181 61 01 81 01 F I
L-.L-.L-.L--.L--.L--.L--.L-----J
0 4 8 12 16 20 24 28 31

2. Symbol with Constant Subscript and No
P~value: IU2 (25)VALUE •••

I
I s I 1 I E I I I SUB I
L------.L----..1-------.L----.L---------J

s

E

I

0 14 15 16 17 18 19 31

This 15-bit field contains the com
pressed data name in the mode indicated
for symbol table entries.

This two-bit field defines the uf;er
exit number to be associated with this
data name.

This one-bit field determines the mode
of storage.
O = Real (floating-point>
1 = Integer (fixed-point>

SUB This 13-bit <<8192) field contains the
subscript associated with the data name
relative to the switch area.

15 SEPTEMBER 1969

I I I I
ICf 8151 Bl Al 01 11 9 I
L-1.--L-L--~--L--J._-L-------J

0 5 8 12 16 20 24 28 31

3. Symbols with Symbolic
(M+2-N) ABC •••

subscript:

The symbolic subscript is indicated by
setting SUB to zero. The subscript def in
ing expression is then appended to the
symbol table entry in EBCDIC code with a
prefixed left parenthesis and a terminating
comma.
I
I 08860000 1 4DD44EF260D56B 1 L_ _________ ..._ _________________ J

0 32 87

12.1.8 TABLE 4 (PROGRAM LIST)

The program list table is made up of one
entry per program in the list.

1. Program Name: M0798, •••

I
I 8-CHARACTER E.BCDIC NAME I
I (RIGHT-PADDED WITH BLANKS> I

L---------------------------J
0 63

I I I I I I I I I I I I I 1 I 1 I
ID14IFIOIFl71Fl91Fl81410141014101
L-~..1-l-J._.L-L-L-.L-.L-.L-.L-.L-.L-.L-.L.-J

0 16 17 31 32 60

2. Checkpoint Return (asterisk)

I
I 5~40404040404040 I
L-------------------J

0 64

3. Left Parenthesis (EBCDIC)

I
I 4D40404040404040 I
L-------------------J

0 64

4. Right Parenthesis (EBCDIC)

I
1 5D40404040404040 I
L-------------------J
0 64

12.1.9 TABLE 5 (DATA CHECK ENTRIES)

1. Test, Abort, Generate PLAN Literal:
CS>*w•••

IBM PROBLEM LANGUAGE ANALYZER (PLAN)

PROGRAM DESCRIPTION MANUAL

I I
101 • I SUB I CTL I
L-.L---.L----------.L---------J
0 1 2 3 15 16 31

* This two-bit field contains the condi-
tion code.
00 = *
01 = *R
10 = *T
11 = *F

SUB This 13-bit <<8192) field contains the
subscript relative to the switch area
of the PLAN word to be tested.

CTL If this field is nonzero, there is a
suffix section, as defined under 4 and
5, starting at field "F".

I
I o I o I o I 5 I
L----.L----.L----.L-------J
0 4 8 12 15

2. Test, Abort, Generate PLAN Literal;
Symbolic Subscript: (M)NAME•R, •••

I I I I
101 * I -o- I 01 SYM I CTL I
L-L-----.L--------.L--.L-----------.L---------J
0 1 2 3 15 16 17 31 32 47

* <see above>

SYM This 15-bit field contains the com
pressed data name in the format as
defined for symbol tables.

CTL (See above)

I
I 21 01 01 013ICl21EI
L----.L----.L---.-.L-----.L---.L---.L---.L---J
0 4 8 12 16 20 24 28

3. Same conditions as above:
Same as previous example,, plus: , •F

I I I
101 * I -o- I 11 SYM I SUB I CTL I
L-L---.L------.L--.L-------.L-------.L-------J

0 1 2 3 15 16 17 31 32 47 48 63

• <See above>

SYM <See above>

CTL <See above)

SUB This 15-bit <<32,768) field contains
the subscript relative to the data name
that is to be checked .•

FILE LAYOUT (12.0.0) 143

IBM PROBLEM LANGUAGE ANALYZER (PLAN)

PROGRAM DESCRIPTION MANUAL

I I I I I
1610101 01 Bt Cl 21 El 01 Of 01 21
L-i--'--'---'--i--..1.--L--i--..L--i--l __ J
0 4 8 12 16 20 24 28 32 36 40 44

Note: In the following examples the for
mats defined in 1, 2.. or 3 above remain t.he
same as a function of conditions except for
bit 0 and the last 15-bit field~ Bit 0
will indicate whether the literal to be
processed is implicit (1) or explicit (0).
The last 15-bit field will contain function
information for the literal processing.

4. Process Implicit Literal:) *TZ (9)

Note: z in the above example is a user
given function code and will be reflected
in the F field below according to the
following table.

If Z = A (Abort) then F = 00
C (Continue) = 01
P (Phrase) = 11

= b (List) = 10

I I I
111 SAME AS 1, 2 OR 3 I F I SUB I
L--'--------------~----L---i ____ J

0 1

F see above table.

SUB This 14-bit C<16,384) field contains
the subscript relative to the start of
the communication array that contains
the literal to be processed.

5. Process Explicit Literal:
()*TZ'LITERAL'

I I I
101 SAME AS 1, 2 OR 3 I F I L I Q I
L--'--------------~---i ___ i _____ i___ ___ J

F

L

Q

0 1 n 0 1 15 16 n

Same as example 4.

This 14-bit f ieid contains the length
of the literal in 16-bit ·words.

This variable-length field contains the
literal in EBCDIC packed format.

12.1.10 TABLE 6 (PHRASE-DEFINED
EXPRESSIONS)

This table is made up of two sections. The
followinq three examples define the format
of the possible first-section entries:

1. Value with Scale
A=A•.017453 •••

144 FILE LAYOUT (12.0.0)

Factor: P+3 (7)

15 SEPTEMBER 1969

I I I
I 1 0 I I I p IGI s I T I L------i ____ i _______ i_i ________ i _____ ,_J

o 1 2 3 5 6 7 15 16 n

I This field designates the storage mode
of the data value.
O = Real (floating-point)
1 = Integer (fixed-point)

P This three-bit «a> field designlates
the scale factor to be applied to the
result of the expression be~fore
storage.

G This bit designates the sign of the
scale factor.
O = Positive
1 = Negative

s This nine-bit (<512) field contains. the
subscript associated with the data
value relative to the first positio>n of
the communication array.

T This variable-length field contains the
text of the phrase-defined expression
terminated with a comma. The text is
compressed to eliminate meaning·less
blanks and characters.

I
1ac1011 c11 7Ef c11 sci 4BI FOi Fl... I t __ i__i ___ i ___ i ___ i ___ i ___ i ___ i ________ J

0 8 16 24 32 40 48 56 64

2. Values without Scale Factors: I (12)
I=I*12 •••

I I I
I 11 III s I T I , _____ i_i ________ i _________ J

0 1 2 3 15 16 n

I See above.

s This 13-bit <<8,192) field contains the
subscript of the data value relative to
the start of the systems switch area.

T See above.

I
I EOI 161 7EI C91 7EI C91 5CI Fll F21 l, __ i ___ i ___ i ___ i ___ i __ i ___ ,L __ i ___ J

0 8 16 24 32 40 48 56 64

3. Value with Symbolic subscript: Cm+5)
A,: O)

I
I oo I s I o I c I T I L----i--------i-i _________ i_ _______ J

s

0 1 2 15 16 17 31 32 n

This 14-bit «16., 384) field contains
the subscript relative to the data name

15 SEPTEMBER 1969

c

into which the result of the expression
evaluation is stored.

This 15-bit field contains the com
pressed data name in the symbol table
code.

T See above.

I
1001021 041 001 7AI 4DI C21 6EI FOi 5DI
L--.l.--.l.~-i~_i __ -1. ___ i ___ i __ _i ___ i ___ J

0 8 16 24 32 40 48 56 64 72

The second portion of this table contains
the expression area in compact literal form
<excess blanks and characters eliminated).
This portion of the table is introduced
with a dollar sign <$>.

12.1.11 TABLE 7 (USER-EXIT LIST)

This table is in a format identical to
Table 4 and contains the program list
defined following the keyword EXIT. The
table, when present, always contains three
entri1..!s.

12 .. 1.12 TABLE 8 (VERB PROGRAM LIST)

This table is in a format identical to
Table 4 and contains the program list
defined following the term VERB at phrase
definition time.

12.2.0 PLAN FILE CONTROL BLOCKS

The following charts provide the content of
the PLAN DYNAMIC file control blocks. Note
that because of the integer word size
differences (16-bit versus 32-bit), the
1130 PLAN system has a different format
from that of the Systern/360 OS or DOS PLAN.
The table given below provides the format
for the System/360 OS/DOS PLAN.

ID(l) ID(2)
I I
I 0 I TTR 1 D I N I s I
L-----'--------i-------i-------i---------J
0 1 20 23 24 31 32 63

TTR

D

This 19-bit field contains the TTR
of the FDR for this file.

This three-bit C<8) field contains
the logical drive code for this
file.

N This 8-bit (<256) field contains the
file identification number. This
field is originally set by the user
before issuance of the CALL FIND.
All other fields within ID(l) are

s

IBM PROBLEM LANGUAGE ANALYZER (PLAN)

PROGRAM DESCRIPTION MANUAL

set as a result of CALL FIND or CALL
WRITE operations.

This 32-bit field contains the cur
rent size of the file in words.

The following chart defines the 1130 DYNAM
IC file control block:

IDC1)
I

IDC2)
I

10 R I p I N I D I F I s I A I c I L-----i--_i ____ i_ ____ i_ ____ i _____ i ___ i_ __ J

R
p

N
D
F

s
A

c

0 4 5 7 8 15 16 19 20 31 32 47 48 56

<reserved>
This three-bit field contains the
file priority.
<see above>
(see above>
This twelve-bit (<640) field con
tains the physical address of the
first record in the last extent
accessed.
<see above>
This eight-bit C<SO) field contains
the relative allocated segment num
ber of the first segment of the last
extent accessed.
This eight-bit C<50) field contains
the number of contiguous segments in
the current extent.

The following charts define the format of
the PERMANENT (GDATA, RDATA, WDATA) file
control blocks. The file ID number is set
by the user before issuing the CALL GDATA.
All other fields are defined as a result of
the CALL GDATA and are modified by CALL
RDATA.

System/360 OS/DOS PLAN

ID(1) ID(2)
I I
I 00 I 7F I D I N I s I
L--------~i ______ i _______ i _______ i _______ J

0 7 8 15 16 23 24 31 32 63

D This eight-bit C<8> field indicates
the logical drive code as 0-7.

N

s

This eight-bit C<64) field contains
the number of the file.

This 32-bit field contains the size
of the file in 32-bit words.

FILE LAYOUT (12.0.0) 145

IBM PROBLEM LANGUAGE ANALYZER (PLAN)

PROGRAM DESCRIPTION MANUAL

IBM 1130 PLAN

ID(1) ID(2)
I I I I
I I IDISK I l<NOT
17FCHEx> I N 1111.oR IADDRESSI s I USED> I ._ ______ ..J.._ ___ ..J.._i_~ __ i _______ i _____ i ______ J

0 7 8 15 16 17 20 21 31 32 46 47 63

LOR This four-bit field contains the
logical drive code.

146 FILE LAYOUT (12.0.0)

15 SEPTEMBER 1969

IBM PROBLEM LANGUAGE ANALYZER (PLAN)

15 SEPTEMBER 1969 PROGRAM DESCRIPTION MANUAL

13.0.0 APPENDIX F: PLAN SYSTEM DIAGNOSTIC PROCESSING

This appendix contains a discussion of the
control of diagnostic processing and lists
diagnostic messages generated by various
PLAN components through linkage to the
error processor PERRS. The format of PLAN
system diagnostics is shown below:

DFJOOO 001-100 TEXT
101-200 TEXT
201-300 TEXT
301-400 TEXT
401-450 TEXT

cccnnn *~* !!!!!!!!!!!!!!! SEQ=yyy ID=.£££££
PG=xxxxxxxx DIAGNOSTIC

The segments of the diagnostic message
underlined in the above example are vari
able. Functions defined by the variable
data are:

A

This field of up to five lines
contains the current input
statement. It is printed only
if the long-form diagnostic is
requested (see "Switch Words",
4.3.22). Character positions
are printed to the left of the
text.

This three-character field is
DFJ if the diagnostic is
generated by PLAN and *** if
generated by the user.

This three-digit number is the
error number assigned by the
call to the error routines as
calling parameter N1. In PLAN
error diagnostics, this number
is merely a diagnostic modif i
er (index).

This character specifies the
action taken following genera
tion of the literal.

R

c

E

indicates that execution
of the current command is
terminated. PLAN error
recovery is initiated.

indicates that following
generation of the diag
nostic~ the execution of
the current command is
continued.

indicates that the current
execution of PLAN is
terminated.

SEQ=yn

ID=ccccc

O indicates a pause for
operator intervention.

This is a five-digit modifier
(ECODE) that provides addi
tional information about the
error. This parameter is pro
vided as N2 in the call to the
PLAN error subroutines.

This field provides
ment sequence of
statement relative
beginning of the
stack.

the state
this PLAN

to the
PLAN job

This five-character field pro
vides the identification field
(cc. 76-80) of the last card
of the current PLAN statement.

PG=xxxxxxxx This field provides the name
of the program in execution at
the time the call to the error
routine is issued.

DIAGNOSTIC This field contains the liter
al text of the diagnostic mes
s age and is limited. to 76
characters.

13.1.0 PLAN ERROR PROCESSING

Since the PLAN system is a monitor which
supervises the execution of other problem
programs, it must have the ability to
detect abnormal conditions.

There are four types of errors the PLAN
system can detect and these are:

• Phrase Definition Errors

• command Errors

• Execution Errors

• User-Defined Errors

1. Phrase definition errors are detected
by the PLAN system module "PHRAS" when
a phrase is being entered into the PLAN
language dictionary.

2. Command errors are detected by the PLAN
system module "PSCAN" while processing
commands.

DIAGNOSTICS (13.0.0) 147

IBM PROBLEM LANGUAGE ANALYZER (PLAN)

PROGRAM DESCRIPTION MANUAL

3. Execution errors are detected by the
PLAN system mainline while a problem
program is in execution.

4. User-defined errors are the result of a
programmed call to one of the error
subroutines (ERROR, ERRET, ERREX,
ERRAT).

Each type of error discussed is detected by
a different module and at a different point
in time. The technique used to produce a
diagnostic in this environment may be
described as follows: When an error is
detected by any component of the system,
the type of error is recorded and a genera
lized diagnostic processing module is
called to produce the required error mes
sage. The PLAN system module that produces·
diagnostic messages is "PERRS".

The PLAN system offers the user
options in processing errors.
terms are defined below that are
describing these options •.

several
Several

used in

SHORT FORM. The diagnostic
produced without printing the
caused it.

LONG FORM. The phrase
diagnostic is printed with
message.

that
the

message is
phrase that

caused the
diagnostic

IMMEDIATE MODE. The error processing
module •PERRS" is invoked at the time the
error occurs. even if a checkpoint is
required.

STACKED MODE. A condensed version of the
error is recorded in the error message
stack which will be processed the next time
•PERRs• is invoked by the system.

ERROR MSG STACK. An area on PFILE is
reserved exclusively for recording errors
in a condensed form. This gives the system
the ability to delay calling the diagnostic
processor "PERRS" until the program area is
available.

ERROR MSG QUEUE. DYNAMIC file 255 on PLAN
DYNAMIC drive O is reserved as a queue area
for diagnostic messages. This gives the
system the ability to post-list diagnostic
messages by writing the messages on the
file as they occur and then dumping the
file on command.

USER-ERROR EXIT. The PLAN system has the
ability to call a user-error processing
module in the cases where the normal PLAN
mode of diagnostic presentation is not
appropriate for the application.

148 DIAGNOSTICS (13.0.0)

15 SEPTEMBEFt 19 6 9

13.2.0 SPECIFYING ERROR PROCESSING MODE

The mode of error processing by the~ PLAN
system is controlled by the PLAN Switch
Words 11, 12, and 13. These switch words
can be set by any PLAN command. The
standard error processing mode is as
follows:

1. Errors are stacked.

2. Error message format is short.

3. No error messages are queueat for
post-listing.

4. No user-error processing module
will be called.

5. Messages are printed on the stand
ard PLAN output device.

6. Errors detected by the PLAN DYNAMIC
file routines cause a phrase abort.

7. Errors detected by the PLAN! PER
MANENT file routines cause a phrase
abort.

Switch words 11-13 are normally set by the
following operands of the PLAN JOB command:

1. NERM
2. DEVICE
3. UMOD
4. SHORT
5. LONG
6. STACK
7. IMM
8. DFI
9. PFI

NERM specifies the number of error messages
to be written on the error message queue
file before they are dumped on the error
message device.

DEVICE specifies the sequential file device
code (NOD argument for PLINP/PLOUT subrou·
tines) to which the diagnostic messages are
to be written.

UMOD specifies the EBCDIC name of a user·
error processing module to be called by the
error processor "PERRS" when an error is
processed.

SHORT specifies that the SHORT form of the
diagnostic is to be used when an error
message is produced.

LONG specifies that the LONG form of the
diagnostic message be used when an ,error
message is produced.

STACK specifies that the system i:s to
optimize error message processing by using
the error message stack in PFILE to record

15 SEPTEMBER 1969

messages until "PERRS" can be called
without a checkpoint.

IMM specifies that "PERRS" is to be invoked
at the time the error occurs.

DFI specifies that a phrase abort condition
is not to occur on certain error conditions
detected by the DYNAMIC file support sub
routines routines (see "DYNAMIC File Rou
tines", 5.11.0).

PFI specifies that a phrase abort condition
is not to occur on certain error conditions
detected by the PERMANENT file support
subroutines <see "PERMANENT File Routines",,
5.11.3).

If both SHORT and LONG are specified, the
LONG-form option is used. If both STACK
and IMM are specified,, the IMMEDIATE option
is used.

Use of the operands PFI and DFI requires
the application program to process the
error conditions that would normally abort
the PLAN statement. If these operands are
specified and the required programming is
not present, unpredictable results can
occur. What generally takes place is the
following: When the error is detected the
file control block is closed, and on the
next reference to the file, an error mes
sage indicating an unopened file control
block is issued. This masks the real
reason for the error condition.

13.3.0- STANDARD ERROR PROCESSING

Normally, the PLAN system will process
errors at SHORT form and in a stacked mode.
The reason for using this technique is that
the si~e of the PLAN error processing
module is such that if the program area is
not free. a checkpoint is required to load
and execute "PERRS". Delaying the call to
"PERRS" until the program area is free
eliminates the need for a checkpoint and so
improves performance. The error message
stack has a finite limit on the number of
messages it can contain, and in cases where
the stack overflows, a checkpoint is forced
and "PERRS" empties the stack.

13.4.0 POST LISTING OF ERRORS

Some applications may require that error
messages be suppressed until end of job.
An example of this is a compiler, such as
FORTRAN or COBOL, where the error messages
are listed at the end of the compilation.
The PLAN system provides this facility to
the user as a standard option. In order to
use this facility the PLAN system must have
available PLAN DYNAMIC drive o. DYNAMIC
file 255 is used as an error message queue

IBM PROBLEM LANGUAGE ANALYZER (PLAN)

PROGRAM DESCRIPTION MANUAL

file~ To invoke this facility the user
must specify a value in system Switch Word
11.

The value in this switch word is used by
the error processor "PERRS" to determine
the number of error messages to write on
the error message queue file (drive 0, file
255) before dumping the file on an output
device.

The message records on this file are writ
ten as 21-word or 124-character records.
The first word of the record is an integer
from -3 to +12, and is used as an argument
for the PCCTL subroutine to effect carriage
control for the data line that is contained
in words 1-24 (characters 4-123). The data
portion must be alphameric data in the A4
format. The data area of records produced
by "PERRS" contains the PLAN system diag
nostic message text. The user may write
records directly to this file from an
application program by using the PLAN sub
routine EWRIT Csee "Error Interface Subrou
tines", 5.11.6).

The PLAN error message queue file is dumped
on the diagnostic device under the follow
ing conditions:

1. The number of diagnostics messages
added to the queue file exceeds
NERM.

2. The subroutine ERLST is called.

3. The end of PLAN input (/*) is read
by PSCAN.

4. A level 0 phrase is processed.

5. A level 1 phrase is processed.

13.5.0 USER-ERROR EXIT PROCESSING

If a user module name is specified in
system Switch Words 11 and 12, by specify
ing UMOD'NAME', the PLAN error processor
PERRS creates an array in ERASABLE COMMON
that describes the error and then invokes
the named module through the PLAN LOCAL
facility. This array is in the following
format:

DIAGNOSTICS (13.0.0) 149

IBM PROBLEM LANGUAGE ANALYZER (PLAN)

PROGRAM DESCRIPTION MANUAL

8-11

12-15

16-20
21

22

23
24-27
28-31

32-107
108-111
112-561

CONTENTS
Program name issuing diag
nostic call
Error number (Nl from error
subroutine call>
Error code CN2 from error
subroutine call)
ID from cc. 76-80
hexadecimal FF=system error,
O=user error
hexadecimal FF= abort,
O=continue
(unused)
Sequence
Length of literal in
characters
Literal text
Character count of phrase!
Phrase text

A program written as a user-error processor
may not use the following PLAN subroutines
ERROR, ERRAT, ERREX, ERRAT, ERLST,, LREPT 1

LCHEX' LREPT' and PUSH. Any error dete·cted
while a user-error processing module is in
control causes cessation of all error
processing.

The UMOD and the NERM or DEVICE specif i.ca
tions are mutually exclusive. Therefore,
the automatic PLAN facility for post
listing of errors (as described in 13.2.0)
is not available, if a user-error proces
sing module is used. The same effect may
be produced, however, by using the subrou
tine EWRIT to create an error message queue
file. A dump of the file may be forced by
using the LIST subroutines to place the
name PEDMP into the pop-up list. This
module will force a dump of the error
message queue file and will also terminate
the current statement.

13.6.0 PHRAS DIAGNOSTICS

The following diagnostics are generated
from errors detected by PHRAS (the ADD
PHRASE processor). ECODE Cm> for all diag
nostics generated by PHRAS is a pointer to
the position at which the error condition
was detected, except as otherwise noted.
Position one is the first character of the
command. The format of the descriptions of
the diagnostics is:

• DIAGNOSTIC NUMBER(n), ACTION CODE,
DIAGNOSTIC •
REASON

• 21 *C* PHRASE TO DELETE CANNOT BE FOUN:O •
A phrase that is to be deleted is not
currently in PFILE. This can result from
a DELETE PHRASE or an ALTER PHRASE. If
it results from an ALTER PHRASE, the ADD
PHRASE aspect of the command is not
suppressed ..

150 DIAGNOSTICS (13 .• 0. 0)

15 SEPTEMBEU 1969

• 22 *R* NO ROOM TO ADD PHRASE •
There is no contiguous vacant ar«:?a i..n
PFILE large enough to allow the current
phrase to be added. PFILE must be reor
ganized, reestablished,, or expanded ..

Usually, some space can be gained by
reorganizing the file without changing
its size. This is accomplished by delet
ing the phrases and then re-adding them.

Additional phrases may be provided :for by
enlarging PFILE if it is currently 8mall
er than the maximum size. PFILE mm;t be
at least 14 sectors (17 sectors on 1130
PLAN) and not more than 268 (205 on 1130
PLAN) sectors in length. This will also
require that the phrases for the 8ystem
be re-added

• 23 *R*- PHRASE ALREADY DEFINED •
An attempt to add a phrase that already
exists in PFILE has been made. If'. the
phrase to be added is a replacement for
the existing phrase,, the existing phrase
must be deleted (DELETE PHRASE or ALTER
PHRASE, see 4.5.1 and 4 .. 5.3) before! the
new phrase can be added.

• 24 *R* INVALID FORMAT IN PROGRAM LIST •
A program list defined with the! ADD
(ALTER) PHRASE is found to contain inval
id syntax. This can result from an
unrecognizable numeric or special
character

• 25 *R* INVALID FORMAT IN USER-EXIT PRO
GRAM LIST •
This error may result from:
a. A program name not starting wi.th a:n

alphabetic character
b More than three programs in the list

(Note that errors in the user-exit pro
gram list may also be diagnosed as erro:r
number 24.)

• 2 6 *R* KEYWORD ENTRY NOT TERMINATE:D BY
COMMA OR SEMICOLON •
A keyword <symbol table entry, PROG,,
VERB, EXIT, or LEVEL) has been collected,
but the keyword and associated data wa:s
not terminated with a comma or semicolon.

• 27 *R* LEVEL NUMBER GREATER THAN 4 •
The number collected following the speci·
f ica tion word LEVEL is greater than 4.

• 28 *R* NO SYMBOL DEFINED AFTER EXECUTION··
DEFINED SYMBOL SUBSCRIPT EXPRESSION •
A symbolic subscript expression requires
a symbol (name> to be defined. The
required symbol has not been found.

• 29 *R* CONSTANT SUBSCRIPT ZERO OR LESS
THAN -15 •
A constant subscript has been encountered
that does not d~scribe a valid location

15 SEPTEMBER 1969

in the system switch words or communica
tion array.

• 30 *R* IMPLIED DO SUBSCRIPT NOT FOLLOWED
BY SINGLE-VALUED CONSTANT •
The value following an implied DO sub
script was not found to be a single
val ued constant, that is,. numeric, +, or

This error can result from an implied
DO subscript followed by:

a. A literal default, that is, "ABC"
b. No default value

• 31 *R* SYMBOL SUBSCRIPT GREATER THAN 8176
OR 511 WITH P-VALUE •
A constant subscript that defines a sym
bol exceeds the maximum allowable value
of 8176 without scale values CP values>
or 511 with scale values.

• 32 *R* EXECUTION-DEFINED SYMBOL FOLLOWED
BY IMPLIED SYMBOL •
A symbol that is implied follows a symbol
associated with a symbolic <execution
defined) subscript. There may not be an
implied symbol after a symbolic
subscript.

• 33 *R* PHRASE DEFINITION INVALID •
A phrase is not defined properly, that is
the phrase name is syntactically incor
rect. This can be caused by:

a. Failure to end the phrase definition
with a comma

b. Use of nonalphabetic characters within
the phrase definition

• 34 *R* SUBSCRIPT FOR DATA VALUE GREATER
THAN 1611 368 •
A communication array subscript 9'reater
than 16w368 has been encountered.

• ·35 *R* INVALID CHARACTER •
The ECODE pointer indicates a character
that is invalid in a phrase definition.
This error can result from an error
within the phrase further to the left
that was undetectable at that phase of
the scan.

• 36 *R* BCD LEFT PARENTHESIS IN LOGICAL
EXPRESSION •
All characters in a logical expression
must be punched in the EBCDIC code.

• 37 *R* USER-EXIT NUMBER GREATER THAN 3 •
User exits must be 1. 2,, or 3.

• 38 *R* FORMULA NUMBER USED BEFORE FORMULA
AREA •
A conditional exit includes a formula
number, but a $n introducing the expres
sion area has not been encountered.

• 39 *R* FORMULA NUMBER ZERO OR GREATER
THAN 1024 •

IBM PROBLEM LANGUAGE ANALYZER (PLAN)

PROGRAM DESCRIPTION MANUAL

The ·valid range for formula numbers is
from 0 to 1024 in a phrase definition.

• 40 *R* UNDEFINED FORMULA NUMBER IN FORMU
LA AREA •
A transfer type formula has been encoun
tered that references a nonexistent for
mula number. ECODE is set to the formula
number found to be in error.

• 41 *R* MULTIPLE DEFINITION OF FORMULA
NUMBER IN FORMULA AREA •
More than one formula is identified with
the same number within this phrase.

• 42 *R* INVALID FORMAT IN FORMULA AREA •
Formula numbers must be followed by:
a. Another formula number
b. Expression
c. Symbol
d. Semicolon
e. Comma

• 43 *R* P-VALUE GREATER THAN 1 •
A scale factor greater than plus seven or
less than minus seven has been
encountered.

• 44 *R* KEYWORD 'PROGRAMS' NOT FOLLOWED BY
PROGRAM LIST •
A program specification has been encoun
tered, but a program list is missing.
This can result from the next significant
character not being a quotation mark,
double quote, or commercial at sign.

• 45 *R* INVALID FORMAT IN RELATIONAL
EXPRESSION •
A syntax error has been encountered in a
relational expression. Possible reasons
for this error are:
a. Unbalanced parentheses
b. A semicolon invalid within (not at end

of) an expression

• 46 *R* PROGRAM NAME CONTAINS TOO MANY
CHARACTERS •
The maximum allowable length for a pro
gram name is eight characters on System/
360 or five characters on the 1130.

• 47 *R* SEMICOLON IN LITERAL OR EMPTY
LITERAL •
A semicolon is an invalid literal
character. This diagnostic may result
from failure to include the terminal
quotation mark of a literal. The phrase
terminating semicolon may then appear to
be within the literal. A zero-length
literal is invalid.

• 48 *R* INVALID FORMAT IN SYMBOLIC SUB
SCRIPT EXPRESSION •
The indicated position contains a
character that forms an invalid context
for a subscript <arithmetic> expression.
These conditions include:
a. Adjacent arithmetic operators

DIAGNOSTICS (13.0.0) 151

IBM PROBLEM LANGUAGE ANALYZER (PLAN)

PROGRAM DESCRIPTION MANUAL

b. Unmatched parenthesis
c. Invalid characters
d. Expression does not end with comma

• 49 *R* USER EXITS NOT ALLOWED ON NEGATIVE
SUBSCRIPTS •
An attempt has been made to define a user
exit to store data in the switch area.

• 50 *R* INVALID FORMAT IN LOGICAL OR
ARITHMETIC EXPRESSION •
ECODE points to a character that may not
be contained in the context of a logical
or arithmetic expression. These condi
tions include:
a. Adjacent arithmetic operators
b. Unmatched parenthesis
c. Invalid characters
d. Expression does not end with comma

• 51 *R* INVALID FORMAT IN SUBSCRIPT
EXPRESSION •
The indicated position contains a
character that forms an invalid context
for a subscript (arithmetic) expression ..
These conditions include:
a. Adjacent arithmetic operators
b. Unmatched parenthesis
c. Invalid characters
d. Expression does not end with comma

• 52 *R* EXPRESSION SUBSCRIPT GREATER THAN
8176 OR 511 WITH P-VALUE •
The symbolic subscript that is associated
with a phrase-defined expression is
greater than 8176 Cif a scale factor is
not defined) or greater than 511 Ci:f a
scale factor is defined).

• 58 *R* NUMBER OUTSIDE ALLOWABLE FLOATING
POINT RANGE •
A number has been given that cannot be
represented in the floating-point repre
sentation of the PLAN system. The maxi
mum limit is 2127 and the minimum limit
is 2-12e on the 1130. On system/360 the
maximum limit is 1663 and the minimum
limit is 16-63.

• 64 *R* PHRASE ENTRY TOO LARGE •
The total phrase size is greater than
1024 bytes and will not be added, or one
of the eight internal phrase tables is
longer than 512 bytes. ECODE is either
the total size of the phrase or the PFILE
internal table number (see 12.1.5 to
12.1.12) that is too large.

• 65 *R* ILLEGAL SYMBOL - CANNOT BE 'E' ~
A data name has been defined to be E. E
is not allowed because of syntactical
confusion with the exponential indicator
E.

• 66 *R* INVALID FORMAT IN IMPLIED DO
SUBSCRIPT •
A syntactical error has been encountered.
Reasons for this diagnostic may be:

152 DIAGNOSTICS (13.0.0)

15 SEPTEMBEFt 19 6 9

a. The increment (I3) is negative.
b. The limit <Ia> is negative.
c. The limit divided by the incremE~t is

not a whole number.
d. CI2> or (I3) is not a nt1meric

constant.

• 68 *R* LEG OF CONDITIONAL EXPRESSION NOT
EXPRESSION OR FORMULA NUMBER •

The TRUE action leg or FALSE action. leg
of a conditional expression is not an
expression <example: ?=B•100) or a for
mula number {example: ?$5).

• 70 *R* CHECK-ENTRY SUBSCRIPT GREATEB. THAN
8176 •
The constant subscript that is associated
with a check entry is greater than 8176.

• 71 *R* INVALID FORMAT IN CHECK-ENTRY
LITERAL •
A check entry must be in the following
format when the literal option is
exercised:

*A'LITERAL'
*C'LITERAL'
*RC(SUBSCRIPT)

The following COP.Qition may have been
detected:
a. A semicolon within the literal
b. Quotation marks unmatched
c. A subscript greater than 16,383

• 72 *R* UNBALANCED PARENTHESIS IN
LIST •
An unequal number of left and
parentheses have been found in a
list.

PROGRAM

:eight
program

• 80 *C* UNREFERENCED FORMULA NUMBER IN
FORMULA AREA **UPDATE NOT SUPPRESSED** •
The formula area has been found to con
tain a formula number that is not
referenced in another expression. E!CODE
defines the formula number that is
unreferenced.

:13. 7. 0 EXECUTION-TIME DIAGNOSTICS

The following errors are detected durin9
execution of logic modules operating within
the PLAN environment. All 100 SE~ries
errors result in a PLAN "Phrase Abort" and
subsequent level error recovery. The for
mat of the definitions for this section is:

1
• NUMBER *ACTION CODE* DIAGNOSTIC •

PROGRAM INDICATED
ECODE MEANING
REASON FOR ERROR

~ 101 *R* PROGRAM
LIBRARY •

NAMED NOT IN PLAN

15 SEPTEMBER 1969

Program: Program name not found
ECODE: Unused.
Reason: The named program was not in

the search of the PLAN library

• 102 *R* INVALID
ENCOUNTERED •

COMMON DEFINITION

Program:
ECODE:
Reason:

Program name.
Unused.
The length of
named program is
FORTRAN (32-bit)

COMMON for the
less than 640
words.

• 103 *R* ~ROGRAM TOO LARGE FOR AVAILABLE
MEMORY •
Program: Program name.
ECODE: Unused.
Reason: a. The size of the named

program exceeds the size of
the available area for pro
gram loading.

b. This message may be given by
PSCAN if a program to be
loaded as a user-·exit pro
gram would overlay PSCAN
(1130 only>.

• 104 *R* PROGRAM NAME IN INVALID FORMAT •
Program: '••••••••' (Unpredictable>
ECODE: Unused~
Reason: An invalid program name has

been found in the pop-·up list.

• 105 *R* PROGRAM FORMAT INVALID •
Program: Program name.
ECODE: Unused.
Reason: The named program is in over

lay, scatter mode or contains
TESTRAN symbol cards on OS PLAN
or is not in core image format
on 1130 PLAN.

• 110 *R* CHECKPOINT PROCESSING INVALID •
Program: Last program entered.
ECODE: Unused.
Reason: a. An • encountered without a

checkpoint being in effect.
b. A checkpoint call when ei

ther there is no checkpoint
file or insufficient room to
write the complete
checkpoint.

c. A program to be check
pointed has been overlaid by
COMMON (DOS only).

·d. LCHEX subroutine is not in
the calling module mos
only).

• 111 *R* OVER 50 NAMES IN POP-UP LIST •
Program: Last program entered .•
ECODE: Unused.
Reason: An attempt to place more than

50 names in the pop-up list has
been made.

• 112 *R* LOCAL PROCESSING INVALID •
Program: Program issuing CALL LOCAL.

IBM PROBLEM LANGUAGE ANALYZER (PLAN)

ECODE:
Reason:

PROGRAM DESCRIPTION MANUAL

Unused.
a. There is not room to load

the program called as a
LOCAL .•

b. LOCAL caller overlaid by
program named (DOS only>.

c. LOCAL caller overlaid by
COMMON (DOS only).

d. LOCAL subroutine not in the
calling module (DOS only).

e. LO.CAL caller is itself a
PLAN LOCAL (1130 only).

• 113 *R* LSAV OR LRLD PROCESSING INVALID •
Program: Program issuing loader call.
ECOPE: Unused.
Reason: A second CALL LSAV has been

processed without an interven
ing CALL LRLD or a call to a
loader function has been proc
es$ ed without the loader in
memory. On System/360 all
calls to LSAV or LRLD are
invalid.

Note: In all 120-130 series diagnostics
ID<l> is set to a closed status. Any
further attempt to read or write to the
file without reopening the file will result
in a phrase abort, and PLAN level error
recovery will be invoked.

• 120 *R* UNOPENED FILE CONTROL BLOCK ON
CALL READ/WRITE •
Program: Last program entered.
ECODE: File number.
Reason: ID(l) in the file control block

is in a closed status.

• 122 *R* INVALID DRIVE CODE OR FILE CON
TROL BLOCK ON CALL FIND/RELES •

Program: Last entered.
ECODE: Unpredictable.
Reason: a. File number is zero.

b. Drive code is negative or
greater than 7 (DOS/OS) or
great'er than 4 (1130).

• 123 *R* INVALID FILE CONTROL BLOCK ON
CALL READ/WRITE •
Program: Last program entered.
ECODE: Unpredictable.
Reason: a. ID(l) has been altered.

b. The file specified by ID(l)
has been released because of
an allocation request for a
higher-priority file.

c. The file specified by ID(l)
was automatically released
because a phrase of higher
priority than the file was
processed. This can apply
only to ID control blocks
that reside in COMMON
through phrase boundaries.

d. The file control block for
PFNDl support may not have

DIAGNOSTICS (13.0.Q). 153

IBM PROBLEM IANGUAGE ANALYZER (PLAN)

PROGRAM DESCRIPTION MANUAL

been located on an even word
boundary.

• 124 *R* INVALID KDIS/KOUNT ON CALL
READ/WRITE •
Program: Last program entered.
ECODE: File number.
Reason: KDIS or KOONT is negative of

KDIS+KOUNT exceeds maximum file
size (32.767 on 1130).

• 125 *R* DYNAMIC DRIVE NOT MOUNTED •
Program: Last entered.
ECODE: File number.
Reason: A DYNAMIC drive required by a

CALL FIND/READ/wRITE/RELES is
not available to the system.

• 126 *R* INSUFFICIENT SPACE FOR ALLOCATION
ON CALL FIND/WRITE •
Program: Last entered.
ECODE: File number .•
Reason: a. On a CALL FIND insufficient

space is available to satis
fy the NALLO argument.

b. On a CALL WRITE insufficient
space is available for
secondary allocation.

• 128 *R* PACK ID NOT EQUAL ON VALIDITY
CHECK •
Program:
ECODE:
Reason:

Last entered.
File number .•
(1130 only) A
verification
test failure.

request for pack
has resulted in. a

• 129 *R* PFIND NOT IN PIAN LIBRARY •
Program: Last program entered.
ECODE: File number.
Reason: PFIND was not found at PLAN

initialization time, and a sub
sequent call to FIND, READ,
WRITE, FINDL, PFSPC, or RELES
has been processed (on 1130
PIAN only).

• 130 *R* UNOPENED FILE CONTROL BLOCK ON
CALL RDATA/WDATA •
Program: Last program entered.
ECODE: File number.
Reason: ID(l) in the file control block

was not initialized.

• 132 *R* INVALID DRIVE CODE OR FILE CON
TROL BLOCK ON CALL GDATA •

Program: Last entered.
ECODE: Unpredictable.
Reason: a. File number is zero.

b. Drive code is negative or
greater than 7 (DOS/OS) or
greater than 4 <1130).

c. File name is not in PLAN
library.

• 133 *R* INVALID FILE CONTROL BLOCK ON
CALL RDATA/WDATA •

154 DIAGNOSTICS (13.0.0)

15 SEPTEMBER 1969

Program: Last program entered.
ECODE: Unpredictable.
Reason: ID(l) has been altered

• 134 *R* INVALID KDIS/KOUNT ON CALL
RDATA/WDATA •
Program: Last program entered9
ECODE: File number.
Reason: KDIS or KOUNT is negati ~;re or

KDIS + KOUNT exceeds the maxi
mum file size (32,767 on 1l30).

• 135 *R* PERMANENT DRIVE NOT FOUND •
Program: Last program entered.
ECODE: File number.
Reason: The DYNAMIC drive is not

defined or cannot be found on
this system.

• 14 0 •R * INVALID RECORD LENGTH ON CALI,
PSORT/PMERG •
Program: PSRTA
ECODE: File number.
Reason: Word 1 of the sort control list

is minus or greater than 51.2.

tt 141 *R*
ON CALL
Program:
ECODE:
Reason:

INVALID SORT CONTROL FIELD COUNT
PSORT/PMERG •

PSRTA
File number.
The number of sort f ieldls is
specified as negative,,, zerc1, or
greater than 99 or ext.ends
beyond the end of COMMON.

• 142 *R* INVALID SORT CONTROL FIELD ON
CALL PSORT/PMERG •
Program: PSRTA
ECODE: File number.
Reason: a. Word 1 of the sort control

field is out of range (-6 to
+6).

b. Boundary alignment of
displacement is invalid for
type of sort.

c. The sort field extends
beyond the length of the
record.

d. The number of element speci
fied is not a positive
integer .•

• 143 *R* INSUFFICIENT FILE SPACE TO
EXECUTE PMERG FUNCTION •
Program: PMRGA
ECODE: Merge file number.
Reason: The required space for the 1out

put file of the merge is not
available .•

• 144 *R* INSUFFICIENT WORK AREA IN MAN.l\GED
AREA FILE FOR PSORT FUNCTION •
Program: Program calling PSORT.
ECODE: File number.
Reason: Self-explanatory

15 SEPTEMBER 1969

Note: This can also result from a call to
PMERG on 1130.

• 145 *R* MERGE FILE OUT OF SEQUENCE ON
CALL PMERG •
Program: PMRGA
ECODE: File number.
Reason: Self-explanatory.

• 146 *R* UNOPENED FILE CONTROL BLOCK ON
CALL PSORT/PMERG •
Program: Program calling PSORT/PMERG
ECODE: File number.
Reason: The file control block speci

fied is found not to be proper
ly opened.

• 147 *R* FILE TO SORT DOES NOT EXIST •
Program: PSRTA
ECODE: File num.
Reason: Specified file cannot be found

on the drive specified in the
file control block.

• 148 *R* DRIVE
AVAILABLE •
Program: PSRTA

CONTAINING

ECODE: File number.

NOT

Reason: The drive specified by the file
control block is not available
(1130 only).

• 150 *R* INVALID RECORD LENGTH ON CALL
GSORT/GMERG •
Program: Last entered.
ECODE: Record length.
Reason: Word 3 of the sort control list

is minus or greater than 512
(System/360 only).

• 151 *R* INVALID SORT CONTROL FIELD COUNT
ON CALL GSORT/GMERG •
Program: Last program entered.
ECODE: Sort field count.
Reason: The number of sort fields is

specified as negativeir zero,, or
greater than 98 (System/360
only).

• 152 *R* INVALID SORT CONTROL FIELD ON
CALL GSORT/GMERG •
Program: Last program entered.
ECODE: Sort control field sequence.
Reason: a. word 1 of the sort

control
field is out of range C-6 to
+6) Csystem/360 only>.

b. Boundary aligment of
displacement is invalid for
type of sort.

c. The sort field extends
beyond the length of the
record.

d. The number of elements spec
ified is not a positive
integer.

IBM PROBLEM LANGUAGE ANALYZER (PLAN)

PROGRAM DESCRIPTION MANUAL

• 153 *R* INSUFFICIENT FILE SPACE TO
EXECUTE GMERG FUNCTION •
Program: Last program entered.
ECODE: Merge file number.
Reason: The required space for the

merged file is not available
Csystem/360 only).

• 154 *R* INSUFFICIENT WORK AREA IN MANAGED
AREA SAVE FILE FOR GSORT FUNCTION •
Program: Program detecting the error.
ECODE: File. number.
Reason: Self-explanatory Csystem/360

only>.

• 155 *R* MERGE FILE OUT OF SEQUENCE ON
GMERG •
Program:
ECODE:
Reason:

Program detecting the error
File number.
Self-explanatory
only).

(System/360

• 156 *R* UNOPENED FILE CONTROL BLOCK ON
CALL GSORT/GMERG •
Program: Program calling GSORG/GMERG
ECODE: File number.
Reason: The file control block spec

ified is found not to be prop
erly opened CSystem/360 only).

• 171 *R* INVALID SAVED STATEMENT EXECUTION
FILE •
Program:
ECODE:
Reason:

PSTSV
File number.
The header of the
file is found not to
for a statement save

indicated
be valid

file .•

• 172 *R* STATEMENT
FILE •

TO EXECUTE NOT IN SAVE

Program:
ECODE:

Reason:

PSTSV
The number of the statement to
be executed from the save file.
A statement has been indicated
for retrieval from the state
ment save file but cannot be
found.

• 173 *R* PROGRAM ERROR IN SAVED STATEMENT
RETRIEVAL •
Program: PSTSV
ECODE: The invalid value causing the

Reason:
error.
The saved statement file has
been destroyed or overwritten.

• 180 *R* INVALID LITERAL FILE •
Program: PDIAG or PLITL
ECODE: The file number.
Reason: A file defined for literal

processing cannot properly be
opened by GDATA,.

DIAGNOSTICS (13.0.0) 155

IBM PROBLEM LANGUAGE ANALYZER (PLAN)

PROGRAM DESCRIPTION MANUAL

13.8.0 PSCAN DIAGNOSTICS

The following diagnostics are generated as
a result of errors detected by PSCAN while
processing the ph:rases and language defini
tion file (PFILE).

• 201 *R* PHRASE SKIPPED •
ECODE: Unused.
Reason: PSCAN has caused the statement to

be bypassed because of an error
in a preceding command upon which
this command is dependent ..

Action: The next command is processed.

~ 210 *R* LEVEL 0 PHRASE NOT ENCOUNTERED •
ECODE: cursor.
Reason: A level O phrase was not

encountered following the
invoking of PLAN.

Action: Statements are skipped until a
level 0 phrase is encountered.

• 220 *R* LEVEL 1 PHRASE NOT ENCOUNTERED •
ECODE: cursor
Reason: The first recognizable command

i.n a job stack depends logical
ly on a statement that was not
found. The preceding
statement(s) may have resulted
in a code 221 diagnostic.

Action: Statements are skipped until a
level 1 phrase is encountered.

• 221 *R* UNDEFINED PHRASE •
ECODE: cursor.
Rea$on: The connnand cannot be recog

nized in total or in part as a
phrase defined in the systems
dictionary. The statement scan
is abandoned.

Actions The scan of this command is
terminated.

• 222 *R* STATEMENT OVER 450 CHARACTERS •
ECODE: cursor.
Reason: A semicolon may be mispunched

Action:

• 223 *R*
ECODE:

Reason:

Action:

or missing.
Statement scan is terminated.
only that portion of the com
mand read as the last record is
printed as command text when
1ong-form diagnostics are used.
The position will be identified
as positions 001-100.

PLAN WORD FALSE •
A subscript indicating the par
ticular communication array
location that was tested for
not FALSE.
The tested location was found
to be FALSE.
Level error recovery and skip
ping is initiated.

156 DIAGNOSTICS (:13. O. 0)

15 SEPTEMBER 1969

• 224 *R* PLAN WORD NOT REAL •
ECODE: A subscript indicating the com-

munication array location that
was found to be TRUE or ~~LSEG

Reason: A word required to be rea.l is
TRUE or FALSE ..

Action: Level error recovery and skip-·
ping is initiated.

• 225 *R* PLAN WORD NOT TRUE •
ECODE: A subscript indicating the com

munication array location that
was found to be FALSE or REAL.

Reason: A word required to be TRUE is
FALSE or REAL,.

Action:

• 226 *R*
ECODE:

Reason:

Action:

• 227 *R*
STREAM •
ECODE:

Reason:

Action:

Level error recovery and Bkip
ping is initiated.

PLAN WORD NOT FALSE •
A subscript representing the
communication array that is
found to be TRUE or REAL.
A word required to be FALSE is
found to be TRUE or REAL.
Level error recovery and skip
ping is initiated.

UNDEFINED SYMBOL IN INPU'I'

A cursor pointing to the end of
the symbol in question.
A symbolic data name has been
misspelled, or a comma was
omitted after the command in a
statement. No symbol table
entry can be found for the word
in this statement or in any
statement upon which this
statement is dependent.
Failure to terminate a command
with a semicolon results in the
next command being interpz:·eted
as data for the command that
precedes it.
The command is not exec\Jlted,
but the scan is completed.

• 228 *R* UNDEFINED SYMBOL IN EXEClJI'ION
DEFINED SYMBOL EXPRESSION •
ECODE: The sequence number of the

expression in the phrase
definition.

Reason: A symbolic subscript expression
contains an undefined symbol.

Action: The scan is completed and the

• 229 *R*
DEFINED
ECODE:

Reason:

Action:

level error recovery is
initiated.

UNDEFINED SYMBOL IN PHRASE
EXPRESSION •

The sequence number of the
expression in the phrase
definition.
A symbol used in a phrase
def ined expression is found to
be undefined.
The scan is completed and the

15 SEPTEMBER 1969

• 230 *R*
ECODE:

Reason:

Action:

• 231 *R*
ECODE:

Reason:

Action:

level error
initiated.

recovery is

OVER 8 VERBS IN INPUT STATEMENT •
A pointer to the end of the
ninth verb.
A command may not contain more
than eight verb phrases and an
object phrase ..
Statement scan is terminated.

DITTO WORD IN COMMON NOT ALPHA •
A pointer to the conununication
array word that is to be sub
stituted in a command for a
ditto mark.
Using the ditto character in a
command depends on the defini
tion of the preceding command.
The word that is to be substi
tuted is not alphabetic,.
The scan is terminated and
level error recovery is
initiated.

• 232 *R* EXECUTION-DEFINED
SCRIPT NOT POSITIVE •

SYMBOL SUB-

ECODE:

Reason:

Action:

The sequence of the subscript
expression within the phrase
definition ..
Evaluation of a symbolic sub
script within the phrase
definition has yielded a nega
tive or zero result indicating
an invalid communication array
location.
The scan is completed and level
error recovery is initiated.

• 233 *R* EXECUTION-DEFINED
SCRIPT GREATER THAN 8176

SYMBOL
OR 511

SUB
WITH

P-VALUE •
ECODE:

Reason:

Action:

A number indicating the
sequence of the symbolic sub
script in the phrase
definition.
The symbolic subscript: expres
sion, when evaluated, is found
to be too large.
The scan is completed and the
level error recovery is
initiated.

• 234 *R* INSUFFICIENT ROOM IN
ARRAY SAVE FILE •

MANAGED

ECODE:

Reason:

Action:

Number of additional words
needed in PDATA file.
The file specified for saving
the managed communication array
is too small to allow saving of
the context of the current
managed array.
The scan is completed and the
level error recovery is
initiated.

• 235 *R* MANAGED ARRAY DEFINITION TOO
LARGE •

IBM PROBLEM LANGUAGE ANALYZER (PLAN)

ECODE:

Reason:

Action:

PROGRAM DESCRIPTION MANUAL

The number of words in excess
of the allowable size.
A communication array has been
specified that cannot be accom
modated by the current
partition/machine size.
The array is not saved or
restored by PLAN data manage
ment, and the array is not
initialized to FALSE at level 1
phrase time.

• 236 *R* INITIALIZATION VALUE SUBSCRIPT
OUTSIDE OF COMMON •
ECODE: Value of subscript.
Reason:. The CAP index for a default

value is outside the current
communication array.

Action: The value is not stored.

• 237 *R* DATA PLACEMENT FROM INPUT STREAM
OUTSIDE OF COMMON •
ECODE: Input cursor.
Reason: The CAP index of an input value

is outside the current communi
cation array specification.

Action: The value is not written to the
communication array.

• 239 *R*
DEFINED
ECODE:
Reason:

Action:

DATA PLACEMENT FROM PBRASE
EXPRESSION OUTSIDE OF COMMON •

Expression. number.
The CAP index for storage of
the results of an expression
evaluation is outside the cur
rent communication array
specification ..
The value is not written to the
communication array.

• 240 *R* FIRST CHARACTER IN INPUT STREAM
AFTER PHRASE NOT COMMA I COLON I OR
SEMICOLON •
ECODE: A cursor to the unexpected

character .•
Reason: The character requi~ed to

start/terminate data collection
was not encountered.

Action: The scan is completed and the
level error recovery is
initiated.

• 241 *R* UNRECOGNIZABLE CHARACTER IN INPUT
STREAM •
ECODE:

Reason:

Action:

A cursor to the unrecognizable
character.
A character cannot be interro
gated in this context. It may
have resulted from an illegal
multipunch.
The scan is completed and the
level error recovery is
initiated.

• 242 *R* SEMICOLON IN LITERAL OR EMPTY
LITERAL •
ECODE: A cursor pointing to the inval

id semicolon.

DIAGNOSTICS C13.0.0) 157

IBM PROBLEM LANGUAGE ANALYZER (PLAN)

PROGRAM DESCRIPTION MANUAL

Reason:

Action:

Either the literal closure
character is missing or a semi
colon is present within the
literal.
The scan is completed and level
error recovery is initiated.

• 243 *R* NUMBER OUTSIDE ALLOWABLE
FLOATING-POINT RANGE •
ECODE: A cursor to the end of the

offending constant.
Reason: A number larger than can be

contained in a floating-point
number has been encountered ..
Note that the limit is
.17014117E39 on the 1130.

Action: The scan is completed and level
error recovery is initiated.

• 244 *R* IMPLIED DO NOT FOLLOWED BY SINGLE
VALUED CONSTANT •
ECODE: A pointer to the position proc

essed when the error was
detected.

Reason: A single logical or numeric
value does not follow an
implied DO definition.

Action: The scan is completed and lev·el
error recovery is initiated.

• 245 *R* OVER
EXECUTED •

1000 EXPRESSION GO-TO'S

ECODE:

Reason:

Action:

A number indicating the
sequence of the expression
found to be in error or input
cursor.
Only 1000 formula GO-TO's are
allowed within any phrase.
Thls l~it~s ~~e~~~d.
The scan is completed and level
error recovery is initiated.

• 246 *R* CHECK-ENTRY SUBSCRIPT OUTSIDE OF
COMMON •
ECODE:
Action:

Reason:

Subscript value.
The indicated communication
array location is not checked.
The CAP index requiring execu
tion of a check is outside the
current communication array
specification.

• 247 *R* DATA RETRIEVAL OUTSIDE OF COMMON
Program: PSCAN
ECODE: A cursor to the input stream

subscript.
Reason: An attempt has been made to

access data outside the current
communication array.

Action:· A 1.0 is supplied for arithmet
ic calculations and 0.0 for
relational calculations. The
scan is completed and level
recovery is initiated.

• 248 *R* DATA RETRIEVAL OUTSIDE OF COMMON
IN EXECUTION-DEFINED SYMBOL EXPRESSION •
ECODE: The expression number.

158 DIAGNOSTICS (13.0.0)

Reason:

Action:

15 SEPTEMBER 1969

An attempt has been made to
access data outside the current
communication array.
A 1.0 is supplied for arithmet
ic calculations and 0.0 for
relational calculations. The
scan is completed and level
recovery is initiated.

11 249 *R* DATA RETRIEVAL OUTSIDE OF COMMON
IN PHRASE-DEFINED EXPRESSION •
ECODE: The expression number.
Reason: An attempt has been made! to

access data from a location out
side the current communica. tion
array specification.

Action: A 1.0 is supplied for arithmetic
calculations and 0.0 for rela
tional calculations. The sca.n is
completed and level recoivery
initiated.

• 255 *R* STATEMENT SAVE INVALID, PHRASE
PUSHED FROM CHECK-ENTRY •
ECODE: CAP location being checked.
Reason: Implicit statement saving may

not be combined with check
entry pushed phrases.

Action: The statement is not saved; the
PLAN error recovery is
initiated,, but the phrase is
pushed.

• 263 *R* INVALID FORMAT IN INPUT S'I'REAM
EXPRESSION •
ECODE: A cursor to the offending

position.
Reason: An input stream expression. is

found to contain improper syn
tax. Reasons for this d.iag
nostic may be:
a. Arithmetic operators without

an intervening constant or
data name.

b. An arithmetic or logical
operator immediately follow
ing a parenthesis.

c. An arithmetic or logical
operator immediately fol
lowed by a right
parenthesis.

d. Invalid characters.
Action: The scan is completed and level

error recovery is initiated.

• 264 *R*
DEFINED
ECODE:

Reason:

INVALID FORMAT IN EXECUTION
SYMBOL EXPRESSION •

A number indicating the
sequence of the expression in
error.
A syntax error has been
detected in the symbolic sub
script defined at ADD PHRASE
time. Reasons for this diag
nostic may be:
a. Arithmetic operators without

an intervening constant or
data name .•

15 SEPTEMBER 1969

Action:

b. An arithmetic or logical
operator immediately follow
ing a parenthesis.

c. An arithmetic or logical
operator immediately fol
lowed by a right
parenthesis.

d. Invalid characters.
The scan is completed and level
error recovery is initiated.

• 265 *R* INVALID FORMAT IN PHRASE-DEFINED
EXPRESSION •
ECODE: A number indicating the

sequence of the expression in
error.

Reason: A syntax error has been
detected in the phrase defini
tion of an expression. Reasons
for this diagnostic may be:
a. Arithmetic operators without

an intervening constant or
data name.

b. An arithmetic or logical
operator immediately follow
ing a parenthesis.

c. An arithmetic or logical
operator immediately fol
lowed by a right
parenthesis.

d. Invalid characters.
Action: The scan is completed and level

error recovery is initiated.

• 266 *R* BCD LEFT PARENTHESIS USED IN
INPUT STREAM LOGICAL EXPRESSION •
ECODE~ A pointer to the erroneous

parenthesis .•
Reason: All logical expressions must be

punched in EBCDIC code.
Action: The scan is completed and level

error recovery is initiated.

• 268 *R* BCD LEFT PARENTHESIS USED IN
PHRASE-DEFINED LOGICAL EXPRESSION •
ECODE:

Reason:

Action:

A number indicating the
sequence number of the expres
sion in error.
Logical· expressions must be
punched in EBCDIC code.
The scan is completed and level
error recovery is initiated.

• 269 *R INPUT STREAM EXPRESSION TOO COM
PLICATED TO BE ANALYZED •
ECODE: A pointer to the position at

which error was detected.
Reason: Too many levels of parenthesis

have been encountered.
Action: The scan is completed and level

error recovery is initiated.

• 270 *R* EXECUTION-DEFINED SYMBOL EXPRES
SION TOO COMPLICATED TO BE ANALYZED •
ECODE: A number indicating the

sequence of the expression
found to be in error.

Reason: Too many levels of parenthesis

IBM PROBLEM LANGUAGE ANALYZER (PLAN)

Action:

PROGRAM DESCRIPTION MANUAL

have been encountered .•
The scan is completed and level
error recovery is initiated.

• 271 *R* PHRASE-DEFINED EXPRESSION TOO
COMPLICATED TO BE ANALYZED •
ECODE:

Reason:

Action:

• 272 *R*
LITERAL
ECODE:

Reason:

Action:

• 274 *R*
LITERAL
ECODE:

Reason:

Action:

A number indicating the
sequence of the expression
found to be in error.
Too many levels of parenthesis
have been encountered.
The scan is completed and level
error recovery is initiated.

INVALID FORMAT IN INPUT STREAM
RELATIONAL EXPRESSION •

A pointer to the character
processed when the error was
discovered.
A syntax error in an alphabetic
relational expression. This
diagnostic may result from
expressions of the nature:

a. 5="A"
b. A>"B"
c. B<"C"

The scan is completed and level
error recovery is initiated.

INVALID FORMAT IN PHRASE-DEFINED
RELATIONAL EXPRESSION •

A number indicating the
sequence of the expression
causing the error.
A syntax error in a phrase
def ined relational. This diag
nostic may result from expres~
sions of the nature:

a. 5=·"A"
b .. A>"B"
c. B<"C"

The scan is completed and level
error recovery is initiated.

• 275 *R* INVALID FORMAT IN INPUT STREAM
SUBSCRIPT EXPRESSION •
ECODE: A pointer to the character

Reason:

Action:

processed when error was
detected.
A syntax error in a symbolic
subscript or a subscript
expression evaluation yields a
negative result. Reasons for
this diagnostic may be:
a. Result of subscript expres

sion is not positive.
b. A logical value was encoun

tered during the evaluation
c. An Implied Do was encoun

tered in the evaluation of a
subscript expression.

The scan is completed and level
error recovery is initiated.

• 276 *R* INVALID FORMAT IN EXECt11'ION
DEFINED SYMBOL SUBSCRIPT EXPRESSION •
ECODE: A pointer to the character

processed when the error was

DIAGNOSTICS (13.0.0) 159

IBM PROBLEM LANGUAGE ANALYZER (PLAN)

PROGRAM DESCRIPTION MANUAL

Reason:

Action:

detected.
A syntax error in symbol
expression.
The scan is completed and le·vel
error recovery is initiated.

• 277 *R* INVALID FORMAT IN PHRASE-DEFINED
SUBSCRIPT EXPRESSION •
ECODE: A number indicating the

sequence of the expression
found to be in error.

Reason: A syntax error.
Action: The scan is completed and level

error recovery is initiated.

• 278 *R* UNBALANCED PARENTHESES IN INPUT
STREAM EXPRESSION •
ECODE: A pointer to the position at

which the error was detected.
Reason: An unequal number of right and

left parentheses are found in
an expression.

Action: The scan is completed and lev·el
error recovery is initiated.

• 279 *R* UNBALANCED PARENTHESES IN
EXECUTION-DEFINED SYMBOL EXPRESSION •
ECODE: A pointer to the position at

which the error was detected.
Reason: An unequal number of left and

right parentheses are found in
an expression.

Action: The scan is completed and level
error recovery is initiated.

• 280 *R* UNBALANCED PARENTHESES IN PHRASE
DEFINED EXPRESSION •
ECODE: A number indicating the

sequence of the expression
found to be in error.

Reason: An unequal number of left and
right parentheses have been
found, or a right parenthesis
has been found with no preced
ing matched left parenthesis.

Action: The scan is completed and level
error recovery is initiated.

• 281 *R* INVALID FORMAT IN INPUT STRE.AM
CONDITIONAL EXPRESSION •
ECODE: A pointer to the position at

which the error was detected.
Reason: A syntax error. Reasons for

this diagnostic may be:
a ? or ! not followed by =JI:,,

=, :, or$
Action: The scan is completed and level

error recovery is initiated.

• 283 *R* INVALID FORMAT IN PHRASE-DEFINED
CONDITIONAL EXPRESSION •
ECODE: A number indicating the

sequence of the expression
found to be in error.

Reason: A syntax error. Reasons fc:>r
this diagnostic may be:
a ? or ! not followed by #,

=., : , or $

160 DIAGNOSTICS (13.0.0)

Action:

15 SEPTEMBER 1969

The scan is completed and level
error recovery is initiated.

• 2 84 *R* INVALID FORMAT IN INPUT S'l~REAM
RELATIONAL EXPRESSION •
ECO DE: A pointer to the position at

which the error was detectE~d.
Reason: A snytax error. Reasons for

this diagnostic may be:
a. Unbalanced parenthesis
b. Invalid characters

Action: The scan is completed and level
error revovery is initiatedl.

o 286 *R* INVALID FORMAT IN PHRASE-DEE'INED
RELATIONAL EXPRESSION •
ECODE:

Reason:

Action:

A number giving the sequence of
the expression found to be in
error.
A syntax error. Reasons for
this diagnostic may be:
a. Unbalanced parenthesis
b. Invalid characters
The scan is completed and level
error recovery is initiated .•

• 2 87 *R* INVALID END TO AN INPUT ST'REAM
EXPRESSION •
ECODE: Input cursor.
Reason: An expression must end with a

semicolon or comma.
Action: The scan is completed and level

error recovery is initiated.

• 289 *R* INVALID END TO A PBRASE-DEF'INED
EXPRESSION •
ECODE: Sequence number of the expres

sion in error.
Reason: An expression must end with a

semicolon or comma.
Action: The scan is completed and level

error recovery is initiated.

• 290 *R* LOGICAL EOF ENCOUNTERED IN PSCAN
INPUT •
ECODE:
Reason:

Action:

• 291 *R*
ECODE:
Reason:

Action:

Undefined .•
A logical EOF has been set by a
PSCAN CALL PLINP operation.
The scan is completed and level
error recovery is initiated.

INVALID END OF PLAN JOB •
Undefined ..
<1130 only> A monitor control
record has been processed. The
record will not be processed by
1130- monitor.
Monitor continues processin9 at
the next record.

• 299 *R or c• ******************** •
ECODE: A pointer to the communication

array upon which an unsucc,ess
ful test was made.

Reason: The text for this diagnostic:: is
normally user-defined text :from
a phrase-defined check entry.
If the asterisks are provided,

15 SEPTEMBER 1969

an error has been detected in
the defined literal.

Action: The phrase is terminated.

13.9.0 1130 ONLY DIAGNOSTICS

The following messages are generated from
1130 PLAN d1lring the initialization phase.

• 700 *C* PFILE FOUND ON PACK xxxx •
Program: PLAN
ECODE: None produced.
Reason: This message is produced every

time that PLAN is executed; it
lists the cartridge identif ica
tion of the pack on which the
language dictionary was found.

Action: Processing continues.

• 701 *E* XXXXX NOT FOUND IN LET OR FLET •
Program: PLAN
Reason: xxxxx <which may be PSCAN,

PERRS, PFILE., or PDQZO) is not
in the library.

• 702 *E* PFILE IS TOO SMALL •

Program: PLAN
Reason: The PLAN dictionary is too

small. It must contain a mini
mum of 17 sectors on 1130 PLAN
or 14 sectors on os or DOS
PLAN.

Action: PLAN execution is inhibited.

• 703 *C* PFILE INITIALIZED ON PACK XXXX •
Program: PLAN
Reason: The PLAN dictionary was found

to be uninitialized and has
been initialized.

Action: Normal processing continues.

• 725 •o• MOUNT PACK xxxx ON LOG DR n PHY
DR 0,1,2,3,4 •
Reason: A request has been made for a

disk cartridge that is not
available. <see •pack Changing
Procedures• under •DYNAMIC File
support•, 8.6.0.>

• 799 *E*
Program:
Reason:

Action:

PLAN EXECUTION INHIBITED •
PLAN
Given after message 702 or when
PSCAN, PERRS, PFILE or PDQZO
are not in LET/FLET.
PLAN execution is inhibited.

13.10.0 DOS ONLY DIAGNOSTICS

The following messages are produced by DOS
PLAN.

IBM PROBLEM LANGUAGE ANALYZER (PLAN)

PROGRAM DESCRIPTION MANUAL

• 820 *E* DFJPFIL MISSING OR FORMATTED
INCORRECTLY •

Reason: Language file is incorrectly
defined.

Action: PLAN execution is inhibited.

• 821 *E* XXXXXXXX NOT FOUND IN CORE IMAGE
LIBRARY •

Reason:

Action:

DFJPSCAN,, DFJPHRAS, or DFJPERRS
not found in program library .•
PLAN execution is inhibited.

• 822 *E* XXXXXXXX IS AN INVALID PLAN RUN
CONTROL CARD •

Reason: The xxxxxxxx field represents
the first eight characters of
the invalid control card.

Action: PLAN execution is inhibited.

• 890 *R* UNCORRECTABLE INPUT/OUTPUT
ERROR •

Program:
ECODE:
Action:

Last entered.
DOS logical unit.
current statement execution is
aborted and level error recov
ery is invoked.

• 899 *E* PLAN EXECUTION INHIBITED •
Reason: Provided by the preceding

diagnostic.
Action: PLAN execution is inhibited.

13.11.0 OS ONLY DIAGNOSTICS

The following messages are generated from
the DD card edit performed by OS/360 PLAN.
The message form is DDNAME, TEXT.

• 901 *E* XXXXXXXX NOT FOUND IN THE PLANLIB
PDS •

Program:
Reason:

Action:

PLAN
The named module could not be
loaded by the PLAN system. The
modules are DFJPERRS, DFJPSCAN,
or DFJRETN.
PLAN execution is inhibited.

• 902 *E* DDNAME, DOES NOT SPECIFY A DIRECT
ACCESS DEVICE •

Program: PLAN
Reason: The unit parameter of the spec

ified DD card is incorrect.
Action: PLAN execution is inhibited.

• 903 *E*
Program:
Reason:

Action:

DDNAME, DATA SET DOES NOT EXIST •
PLAN
The data set named in the DD
card does not exist on the
specified volume.
PLAN execution is inhibited.

• 904 *E* DDNAME,
SPECIFICATION •

INVALID BLKSIZE

DIAGNOSTICS (13.0.0) 161

IBM PROBLEM LANGUAGE ANALYZER (PLAN)

PROGRAM DESCRIPTION MANUAL

Program:
Reason:

Action:

PLAN
The specified BLKSIZE parameter
is either too large for the
unit specified or not a mul
tiple of LRECL·.
PLAN execution is inhibited.

• 905 *E* DDNAME, INVALID DSCB
SPECIFICATIONS •

Program: PLAN
Reason: The data set named in the spec

ified DD card:
a. Has a partitioned data set

format
b. Has RECFM other than F or FB
c. contains keys
d. was never closed

Action: PLAN execution is inhibited.

• 906 *E* DDNAME, INVALID SPACE
ALLOCATION •

Program: PLAN
Reason: The space parameter in the

named DD card does not specify
TRK or CYL allocations.

Action: PLAN execution is inhibited.

• 907 *E* DDNAME, I/O ERROR WHILE
FORMATTING •

Program: PLAN
Reason: Input/Output error.
Action: PLAN execution is inhibited.

• 908 *E* DDNAME, IS AN INVALID PLAN DD
CARD •

Program:
Reason:

Action:

PLAN
The numeric specification on. a
PLINPxxx, PLOUTxxx,, PLANFILx,,
or PLFSxxxx DD card is invalid.
PLAN execution is inhibited.

• 909 *E* DDNAME, DATA SET INITIALIZED
INCORRECTLY •

Program: PLAN
Reason: A PLANFILX, PLSYSTAB, or PLNUM

TAB was specified with DISP=
OLD, and is not formatted
correctly.

Action: PLAN execution is inhibited.

• 910 *E* DDNAME, INSUFFICIENT FILE SIZE •
Program: PLAN
Reason: PLSYSTAB or PLANFILX is not

allocated sufficient space for
correct execution.

Action: PLAN excution is inhibited.

• 911 *E* DDNAME,
CARD •

NOT DEFINED IN A DD

Program:
Reason:

Action:

PLAN
PLANFILO., PLSYSTAB, or PLANLIB
DD cards are missing.
PLAN execution is inhibited.

162 DIAGNOSTICS (13.0.0)

15 SEPTEMBEFt 1969

The following messages are generated from
OS/360 PLAN during the initiali2:ation
phase.

• 922 *E* XXXXXXX PARAMETER OR OPERJ.!~ND IS
INVALID •

Program:
Reason:

Action:

PLAN
The named parameter in thE! EXEC
control card is invalid.
PLAN execution is inhibitE!d.

• 940 *R* DDNAME I/O ERROR •
Program: current program in control.
Action: Phrase abort.

• 941 *R*
Program:
Reason:

Action:

xxxxxxxxxxxxxxxx •
current program in control.
A program interrupt occurI'ed in
a problem program. The diag
nostic message is the pI'ogram
interrupt.
PLAN level error recovei:y is
initiated.

• 942 *R* INSUFFICIENT PROGRAM AR~, FO:R
PLAN FUNCTION •

Program: PLAN
Reason: The area ·allocated for the! pro·

gram area is too small.
Action: Phrase abort.

• 999 *E*
Program:
Reason:

Action:

PLAN EXECUTION INHIBITED •
PLAN
This action results if any of
the above 900-series erro1.· con
ditions listed occur.
PLAN execution is inhibited.

PLAN will ABEND during PLAN ini tiali2:ation
with the following user codes:

• ABEND USER CODE 100 •
Program: PLAN
Reason: Missing or invalid PLINP/'PLOUT

DD card.
Action: PLAN execution is inhibited.

• ABEND USER CODE 101 •
Program: PLAN
Reason: Unable to load one of the~ fol

lowing PLAN modules: DFJIODER,
DFJTRACE

Action: PLAN execution is inhibited.

• ABEND USER CODE 102 •
Program: PLAN
Reason: No DD card supplied.
Action: PLAN execution is inhibited.

• ABEND USER CODE 103 •
Program: PLAN
Reason: Insufficient core storage to

initialize PLAN.
Action: PLAN execution is inhibited.

IBM PROBLEM LANGUAGE ANALYZER (PLAN)

15 SEPTEMBER 1969 PROGRAM DESCRIPTION MANUAL

14.0.0 APPENDIX G: COMPATIBILITY CONSIDERATIONS

The main body of this manual defines a
specification for a PLAN system that
operates compatibly across the 1130, DOS,
and OS versions (except as specifically
noted). Special support provided in each
of these systems is detailed in Appendices
A, B and c.

compatibility across all three versions of
PLAN is provided as long as the compatible
PLAN specifications are adhered to and as
long as program modules are written in a
language for which a compiler is provided
on· ·all three monitor/operating systems.
The only language meeting such a require
ment is ASA BASIC FORTRAN IV. Statements
included in BASIC FORTRAN are detailed
below:

ASSIGNMENT STATEMENTS
Variable = arithmetic expression

FORMAT STATEMENT
Statement-number FORMAT
specification)
(Note: Because of difference
ter specification, cpre shou,ld
cised here if compatibility is
PLAN Sequential I/O should be
here for this type of support.>

CONTROL STATEMENTS

(format-

in parame
be exer
requi red.

examined

CALL subroutine-name
C (argument C, argument], ••• > l
CONTINUE
DO statement-nUlnber control-variable
initial-value, test-value (~increment]
END
GO TO statement-number
GO TO (statement-number, statement-number
C ,, statement-number] • , •• >variable
IF Carithmetic-expresion> statement
number, statement-number,,
statement-number
PAUSE Cone-to-four decimal digits]
RETURN
STOP Cone-to-four decimal digits]

(Note: The appendices contain specific

restrictions on the use of the STOP
statement.)

READ (data-set-number,, format-statement
number> ClistJ
(Note: See comment under FORMAT and
special comment in Appendix A.>

WRITE (data-set-number, format-statement
number) Clistl
(Note: See comment under READ.>

DEFINE FILE data-set-number (number-of
records, maximum-record-size, U,
associated-variable)
Cdata-set-number •• J •••

(Note: See comment under READ.>
FIND (data-set-number• relative-position)

(Note: See comment under READ.>
READ (data-set-number• relative-position>
ClistJ

(Note: See comment above under READ.)
W~ITE (data-set-number' relative-
position> Clistl

SPECIFICATION STATEMENTS
COMMON name [,name]
COMMON array-declarator
C,array-declar.atorl
DIMENSION array-declarator
[,array-declarator]
EQUIVALENCE (name [,name] •• ·•)
CCnameC,nameJ •••)J •••
EXTERNAL subprogram-name
[,subprogram-name]
INTEGER name C,nameJ
REAL name C , name]

SUBPROGRAM STATEMENTS
FUNCTION function-name (argument
C ,argument]>
function-name C argument L, argument] ••• > =
arithmetic-expression
INTEGER FUNCTION function-name
REAL FUNCTION function-name
SUBROUTINE subprogram-name CC argument
C,argumentJ •••)J

CONSTANT AND VARIABLE TYPES
INTEGER
REAL

COMPATIBILITY (14.0.0) 163

IBM PROBLEM LANGUAGE ANALYZER (PLAN)

PROGRAM DESCRIPTION MANUAL

15.0.0 APPENDIX H: SUMMARY OF SYSTEM LIMITS

This appendix provides a summary of limits
and restrictions defined throughout this
manual. The material is duplicated here
merely as a convenient reference for the
reader.

1. Maximum number of names in pop-up list:
50

2. Maximum PLAN statement length:
450 characters including semicolon
<excluding all leading blanks)

3. Maximum number of symbols in an ADD
PHRASE:
255

4. Allowable formula numbers:

a. ADD PHRASE: 0-1024
b. Input stream 0-32,767

5. Maximum formula execution branches:
1000

6. Maximum communication array size
a. 32,767 except on

(1) 8K 1130 with 8K PSCAN/PERRS:
510

(2) 16K 1130 with 8K PSCAN/PERRS:
4606

(3) 32K 1130 with 8K PSCAN/PERRS:
12,798

(4) 16K 1130 with 16K PSCAN/PERRS:
1024

(5) 32K 1130 with 16K PSCAN/PERRS:
9216

164 SUMMARY (15.0.0)

15 SEPTEMBER. 19 6 9

1. Maximum recognized alphabetic charac
ters in word:
3

8. Maximum words in a phrase:
5

9. Maximum phrases in a statement:
45 words = 1 object phrase + 8 verb
phrases

10. Maximum CAP index in ADD PHRASE:
16,368

11. Maximum CAP value resulting from eval·
uation of ADD PHRASE expression:
a. 8176
b. 512 if a scale factor is defined

12. Maximum range of Implied Do:
65,368

13. Maximum CAP index for implicit checJc
entry literal:
16,384

14. Maximum DYNAMIC/PERMANENT logical
drives:
a. 5 on 1130
b. 8 on OS/DOS

15. Allowable DYNAMIC/PERMANENT file num
bers per logical drive: 1-255

15 SEPTEMBER 1969

The following chart defines the characters
that are required for PLAN language defini
tion. Characters not shown in this chart
may be entered as a character within liter
al text.

.---------T---------r-----------.-------1
ICHARACTERICARO COOEIHEXAOECIMALIOECIMALI
~---------f---------+-----------+-·------i

blank 40 64

<
(
+

I
i

$

*)

,
/

>
?

a

•

12-8-3 4B 75
12-8-4 4C 76
12-8-S 4D 77
12-8-6 4E 78
12-8-7 4F 79
12 so 80
11-8-2 5A 90
11-8-3 SB 91
11-8-4 5C 92
11-8-5 so 93
11-8-6 5E 94
11-8-7 5F 95
11 60 96
0-1 61 97
0-8-3 6B 107
0-8-4 6C 108
0-8-5 60 109
0-8-6 6E 110
0-8-7 6F 111
8-2 7A 122
8-3 7B 123
8-4 7C 124
8-5 7D 125
8-6 7E 126
8-7 7F 127

--~----i---------~-----------.1.-------

IBM PROBLEM LANGUAGE ANALYZER (PLAN)

PROGRAM DESCRIPTION MANUAL

16.0.0 APPENDIX I: PLAN CHARACTER SET

r---------T---------T-----------T-------1
ICHARACTERICARD COOEIHEXAOECIMALIOECIMALI
~--------+---------+-----------+-------i

A 12-1 Cl 193
B 12-2 C2 194
C 12-3 C3 195
0 12-4 C4 196
E 12~5 CS 197
F 12-6 C6 198
G 12-7 C7 199
H 12-a ca 200
I 12-9 C9 201
J 11-1 01 209
K 11-2 02 210
L 11-3 03 211
M 11-4 04 212
N 11-5 D5 213
0 11-6 06 214
p 11-7 D7 215
Q 11-8 DB 216
R 11-9 D9 217
S 0-2 E2 226
T 0-3 E3 227
U 0-4 E4 228
V 0-S ES 229
W 0-6 E6 230
X 0-7 E7 231
Y 0-8 E8 232
Z 0-9 E9 233
0 0 FO 240
1 1 Fl 241
2 2 F2 242
3 3 F3 243
4 4 F4 244
5 5 F5 24S
6 6 F6 246
7 7 F7 247
8 8 F8 248
9 9 F9 249 _________ i _________ i ___________ i ______ _

CHARACTER SET (16.0.0) 165

IBM PROBLEM LANGUAGE ANALYZER (PLAN)

PROGRAM DESCRIPTION MANUAL

17.0.0 APPENDIX J: SYSTEM REQUIREMENTS

MACHINE CONFIGURATIONS

IBM 1130 PLAN

Minimum requirement for PLAN operation
1131 central Processing Unit Model 2B

2501 Card Reader Model Al or A2
#3630 (1130/2501 coupling>
#8042 Attachment
#3054 Expansion Adapter

AND
1442 Card Punch Model 5

#4449 Attachment

OR

1442 Card Read Punch Model 6 or 7
#4454 Attachment

Optional Support
1131 Central Processing Unit Models 2C,

2D, 3B, 3C, or 3D

1132 Printer
#3616
#3854 Expansion Adapter

1403 Printer Model 6 or 7
#44i4 or #4425 Attachment
#1865 Channel Multiplexor

2310 Disk Storage Model Bl or B2 (one or
two>
#3201, #3202, #3203, #3204 disk
control

1133 Mul·tiplex Control Enclosure
(required for 1403 or 2310)
#1865 Multiplexor
#7490 Storage Access Channel

SYSTEM/360 DOS PLAN

Central Processing Unit
2025, 2030, 2040, 2050, 2065~ or 2075
(32K bytes or larger>.. <An BK supervi
sor is assumed.)

Floating-Point Arithmetic
One I/O Channel (either multiplexor or
selector)
One Card Reader (1442, 2501, 2520, or
2540)

(one 2400 series tape drive may be

166 SYSTEM RQMTS (17 .• O. 0)

15 SEPTEMBER 1969

substituted)
One Card Read Punch (1442, 2520, or :2540)

Cone 2400 series tape drive may bE~
substituted)

One Printer C1403, 1404, 1443)
(one 2400 series tape drive may be
substituted)

One 1052 Printer-Keyboard
one 2311 Disk Storage Drive
One 2841 Storage Control

SYSTEM/360 OS PLAN

Central Processing Unit
2030~ 2040, 2050, 2065, or 2075 that
provides a problem partition of 32K
bytes or larger for PCP-MFT and a
region of 4 4K bytes or larger for MVT.

Floating-Point Arithmetic
One Console
Any direct access device and control unit
supported by OS/360 with a storage capac-·
ity equal to or greater than one 2311
Disk Storage Drive (in addition to that
required by System/360)
One or more input devices supportE?d by
QSAM
One or more output devices supported by
QSAM

ALL VERSIONS OF PLAN

The availability of an 029 printi~g key
punch will prove to be an asset in the
preparation of PLAN language statements.

PROGRAMMING SYSTEM REQUIREMENTS

PLAN operates under three IBM monitor or
operating systems. It is written primarily
in Assembly Language. Some Utility func
tions are programmed in BASIC FORTRAN IV.

IBM 1130 PLAN operates under the 1130 Disk
Monitor System, Version 2.

System/360 DOS PLAN operates under the IBM
System/360 Disk Operating system.

System/360 OS PLAN operates under the~ IBM
Operating System/360 using the MVT, PCP, or
MFT options.

IBM PROBLEM LANGUAGE ANALYZER (PLAN)

1-5 SEPTEMBER 1969 PROGRAM DESCRIPTION MANUAL

18.0.0 APPENDIX K: FUNCTIONAL ANALYSIS DIAGRAMS

The charts in this section represent the
hierarchial structure of the PLAN system
components. The first charts represent the
functional areas and the subfunctional
areas as described in the systems overview .•
subsequent charts define the system com-

ponents within the functional areas. The
number on the lower line of the .program
component blocks define the major section
where the function and use of the component
is described.

ANALYSIS DIAGRAMS 167

IBM PROBLEM LANGUAGE ANALYZER (PLAN)

PROGRAM DESCRIPTION MANUAL 15 SEPTEMBER. 1969

SPECIFICATION TREE 1 .--------·-------,
I PROBLEM I
I LANGUAGE I
I ANALYZER I
I (PLAN) I
IOS-DOS/360, 1130i
L-------T-·-------J

I
r-----------------T-----------------L------------------T----------------1
I I I I

r-------L--------, r-----.L--------1 r--·------·-------1 r-------.L-------, r------.L-------1
I DYNAMIC I IUSER- 1 1 I I I 1 I
I JOB I I ORIENTED I I DIAGNOSTIC I I INPUT/ I I AUXILLIARY I
1 SUPERVISION & 1 ' LANGUAGE I I I I OUTPUT I I I
I SEQUENCING I I PROCESSING I I SUPERVISION I I CONTROL I I FUNCTIONS I
I I I I 1 I I I I I
~---------------J ~---------------J ·--·-------------J ~---------------J ~--------------·J
I I I I I
I r--------------1 I r------------1 I r-------------, I r-------------1 I r------------,
I 1 I I I I I I I I STANDARD
I I I I I I I I I IPLAN I
I I EXECUTION I I LANGUAGE I I DIAGNOSTIC I I SEQUENTIAL I I COMMANDS & I
~--1 r-1 r-1 GENERATOR & ~--1 FILE I ~--1 SUPPOR'.I'ING~
I I SUPERVISOR I I COMPILER I I CON'I'ROLLER I I SUBROUTINES I I I MODULES ~
I I SEE TREE 2 I I ISEE TREE q I I f SEE TREE 6 I I f SEE TREE 7 I I fSEE TREE 10 II
I L------------J I L-------------J I L-------------J I L-------------J I L--------·-----11
I 1 I I I
I r-------------1 I r------------1 I r------·-------1 I r-------------, I r--------·----,
I I I I I I I I USER I I I I I I ARRAY II
I I EXECUTION I I I LANGUAGE f I I DIAGNOSTIC I I I PERMANENT I I I & TABLE I
L--1 SEQUENCE I L--1 I ~--1 INPUT I •--1 FILE I •--1 PROCESSOR I

I CONTROLLER I I INTERPRETER I 1 I INTERFACE I I I SUBROUTINESI I I ROUTINES ~
I SEE TREE 3 I ISEE TREE 5 I I fSEE TREE 6 I I ISEE TREE 8 I I ISEE TREE 11 I
L ______________ J L-------------J I L.-------------J I L--------------J I L--------·----J

168 ANALYSIS DIAGRAMS

I I I
I r·------------, I r-------------1 .I r--------·----"11
I I USER I I I I I I LOGICAL ~
I I DIAGNOSTIC I I I DYNAMIC I f I VALUE I
L--1 OUTPUT I L--f FILE I ~--1 TESTING !

I INTERFACE I I SUBROUTINES I I J SUBROUTINES II
f SEE TREE 6 I ISEE TREE 9 I I ISEE TREE 12 I
L--------------J L------------J I L--------·----J~

I
I r--------·----11
I IDATA I
r-1 CONVERSION I
I I SUBROUTINES I
I I SEE TREE 12 I
I L-------·----J
I
I r--------·----,
I I BIT, BYTJ!!:, & I
I ICHARACTER I
L--1 MANIPULA~rION I

f SUBROUTINES ~
I SEE TREE 12 I
L--------··---J

IBM PROBLEM LANGUAGE ANALYZER (PLAN)

15 SEPTEMBER 1969 PROGRAM DESCRIPTION MANUAL

PSECIFICATION TREE 2 r----------------1
I I
I EXECUTION I
I SUPERVISOR I
I I
L-------T--------J

I
r-----------------T-----------------+-----------------1
I I I I
I r------i--------1 r------i--------, r------i--------1
I I I I I I I
I ISPECIAL S/360 I ISPECIAL S/360 I ISPECIAL S/360 I
I I OS/DOS SUPPORTI I OS SUPPORT I I DOS SUPPORT I
I I I I I I I
I ~--------------·-J ·---------------J ~---------------J

I I I I
I I I ~-----------------1
I I I I I

r-------i--------1 I r------------·-1 I r------------1 I r-------------1 I r-----------1
I I I I I I IDFJCRDIR I I 1$$BDFJD I I I I
I I ·-~ I ~-.. IN-CORE I ~-i TRANSIENT I 1-i DFJIOBD I
I I I ICENTR-ENTRY I I I DIRECTORY I I I DUMP I I I DESCRIPTIONI
I PLAN - DFJPLAN I I I MACRO I I I BUILD I I I ROUTINE I I I ROUTINE I
L _______________ J I L----------~J I (_____________ J I L-------------J I L------------J

I I I I
I r-----------·-1 I r-----------·--1 I r-------------T-1 r-------------1
I I I I I I I I $$BDFJDO I J I I
·-~ 1 ~-i I ~-i TRANSIENT I 1-i DFJIOBE I
I IDPLAN LOADER I 1 IDFJLLIST I I I DIRECT- I I I FILE I
I I EQUIVALENCE I I I JOBPAC AREA I I I ACCESS I I I DESCRIPTION!
I L---------·---J 1 L-------------J I L-------------J I L------------J
I I I I
I r-----------·-1 I r-------------, I r-------------1 I r...,.----------1
1 I I I I I I I $$BDFJI I I I I
I I I I I I I I TRANSIENT I I I I
1--f EPLAN LOADER I I-~ DFJLODER I •--f INITIAL- I ~-i DFJSYCOM . I
I I EQUIVALENCE I I I PROGRAM I I I IZATION I I I PLAN COMMON!
I I MACRO I I I LOADER I I I ROUTINE I I I DECLARATION I
I L------------·-J I L-------------J I L-------------J I L------------J
I I I I
I r-------------1 I r-------------, I r-------------1 I r-~----------1
I I I I I I I I I I I DFJCB I/O I
1-i RPLAN I L--f DFJUNC/DFJUMC I L--f $ $BDFJSO I L--f CONTROL I
I I REGISTER I I FREE STORAGEI I SEQUENTIAL I I BLOCK I
I I EQUATE MACROI I CONTROL I I FILE OPEN I I EQUIVALENCEI
I L-------------J L-------------J L-------------J L------~-----J

I
I r-------------,
I IDFJRETN I
L-~ EXECUTION I

I TERMINATIONI
I PROCESSINGI

L------------.1

ANALYSIS DIAGRAMS 169

IBM PROBLEM LANGUAGE ANALYZER (PLAN)

PROGRAM DESCRIPTION MANUAL 15 SEPTEMBER 1969

SPECIFICATION TREE 3 r----------·------,
I I
I EXECUTION I
I SEQUENCE I
I CONTROLLER I
L-------T------J

I
r--------------T--------------t--·-------------~-----------------1
I I I I I

r- .L----·---, r------.1.------, r---·---.L--·----1 r------.L--------1 r------.L-------1
I I I I I OVERLAY I I I I I
I MODULE I I POP-UP LIST I I STRUCTURE I I COMMAND I I SPECIAL I
I TERMINATION I I MANIPULATION I I CONTROL I I MANIPULATION I I 1130 I
I ROUTINES I I ROUTINES I I ROUTINES I I ROUTINES ., I ROUTINES I
·---------------J 1--------------J ~-------------~ ~---------------' ·--------------J
I I I I I
I r-------------, I r------------, I r-·------------, I r-------------1 I r------------1
I I LRET- I I I LIST- ' I I LOCAL- LOAD I I I LREPT- REPEAT I I I LSAV- I
I-... TERMINATE I ·-~ MANIPULATE I ~-i DEPENDENT I ~-iPREVIOUS I 1-i SAVE PIAN I
I I MODULE I I I LIST I I I MODULE I I I COMMAND I I I LOADER .1
I L--------·---J I L------------J I L------------J I L-------------J I L-----------J
I I I I I
I r~----------, I r-------------1 I r-------------1 I r-------------1 I r------------,
I I I I I I 1 I LNRET- I I I I I I LRLD- I
L--t LCBEX- I I-~ LEX- I L-i 'TERMINATE I L-i PUSH- I L-~ RESTORE I

I CHECKPOINT I I I LOAD ' I I DEPENDENCY I I INSERT NEW I I PLAN I
I AND EXIT I I I EXECUTE I I CHAIN l I COMMAND I I LOAOER I
L-----------J I L------------J L-·------------J L-------------J L------------J

I
I ,-----------,
I f LISTB- I
.._ .. INSERT NAME I

I AT LIST I
I BOTTOM I
L-----------J

170 ANALYSIS DIAGRAMS

IBM PROBLEM LANGUAGE ANALYZER (PLAN)

15 SEPTEMBER 1969 PROGRAM DESCRIPTION MANUAL

SPECIFICATION TREE 4 r----------------1
I I
I LANGUAGE I
I COMPILER I
I I
L-------T--------J

I
r--------------------~--------------+-----------------------------------1
I I I

r-------i--------1 r-------~--------1 r-------i-------1
I I IPHUDT- I I I
IPHRAS-DFJPHRAS I I 11,30 LANGUAGE I I LANGUAGE I
I LANGUAGE I I DICTIONARY I I DICTIONARY I
I COMPILER I I UPDATER I I DUMP I
L----------------J L----------------J L-------y-------J

I
r------------------y------J
I I
I r--------------1 I ...-------------1 I ·IPTDP1-DFJPTDP11 I IXACES- I
~-i COMMAND f ri SECTOR I
I I HEADING I I I READ I
I I DUMP I I I ROUTINE I
I L--------------J I L------------J
I I
I r--------------1 I r------------1
I IPTDP2-DFJPTDP21 I IXBIT- I
~-i INI'i'IALIZATIONI ~-i COUNTER I
I I VALUE I I I CONTROL I
I I DUMP I I I ROUTINE I
I L--------------J I L------------J
I I
I r--------------1 I r------------1 I IPTDP3-DFJPTDP31 I IXPRNT- I
~-i SYMBOL ri PRINT I
I I TABLE I I CONTROL I
I I DUMP I I I ROUTINE I
,. L--------------J I L------------J
I I
I r--------------1 1 r------------1
I IPTDP5-DFJPTDP51 1 IXTRAC- I •-i CHECK L-i BIT I
I I ENTRY I EXTRACTION I
I I DUMP I I ROUTINE I I L--------------J L ____________ J

I r--------------1
I I I
L-iPTDP6-DFJPTDP6J

I EXPRESSIONS I
I DUMP I
L--------------J

ANALYSIS DIAGRAMS 171

IBM PROBLEM LANGUAGE ANALYZER (PLAN)

PROGRAM DESCRIPTION MANUAL

SPECIFICATION TREE 5 r---------·-------1
I I
I LANGUAGE I
I INTERPRETER I
I I
L-------T-·-------J

I

15 SEPTEMBER 1969

r-----------------T-----------------f-----------------T-----------------1
I I I I I
I I I r------.L--------1 r-------L---·---1
I I I I I I I
I I I IUSER I !SPECIAL lBO I
I I I I EXIT I I USER EXI-T I
I I I I ROUTINES I I ROUTINES I
I I I ~--------------J ~-----------·---J
I I I I I

r---..1.------, r-----..l.------1 r------L--------1 I r-------------1 I r---------··---1
I 1 I PSCNB- I I I I I I I I EXITl - '
IPSCAN-DFJPSCAN~ I 1130 SCAN I IPSTSV-DFJPSTSVI ~-iIUSER- I 1-f CONVERT I
I SCAN I I ROUTINE-1130 I I STATEMENT I I I INITIALIZE I I I EXTENDBD I
I ROUTINE ' I PART 2 I I SA VE I I I USER EXIT I I I PRECISION I
L-------------J L--------------J L-------·-------J I L------------J I L--------·---J

172 ANALYSIS DIAGRAMS

I I
I r------------1 I r---------·---,
I IEUSER- I I IDUSER- I
}-i EXIT FROM I L-f DUMMY I
I I USER EXIT I I LIBF I
I I I I ROUTIHE I
I L------------J ·L--------·--J
I
I r-------------,
I IGUSER- I
~-i EXTRACT I
I I INPUT I
I I CHARACTER I
I L-------------J
I
I r-------------1
I INUSER- I
l-i ACCESS & I

I INCREMENT I
I CAP POINTER!
L------------J

IBM PROBLEM LANGUAGE ANALYZER (PLAN)

15 SEPTEMBER 1969 PROGRAM DESCRIPTION MANUAL

SPECIFICATION TREE 6 r----------------1
I I
1DIAGNOSTIC I
I SUPERVISOR I
L-------T--------J

I
r---------------------------------+-----------------------------------1 I I I

r------L-------1 r-------..L-------1 r-------.L-------1 1 DIAGNOSTIC I I USER I I USER I
I GENERATOR I I DIAGNOSTIC I I DIAGNOSTIC I
I ANO I I INPUT I I OUTPUT I
I CONTROLLER I I INTERFACE I I INTERFACE I
·----------------J ~----------------J ·---------------J
I I I
I r--------------1 I r--------------1 I r-------------1
I I I I I ERROR- I I I EWRIT- I
L-~PERRS-DFJPERRSI ~i ISSUE I •-1 QUEUE I

I DIAGNOSTIC I I I DIAGNOSTIC I I 1 FILE I
I MODULE 1 I I & ABORT I I I ACCESS I
L--------------J I L--------------J I L-------------J

I I
I r-------------1 I r-----------1 1 IERRET- I I IERLST- I
I-~ ISSUE I ~-i QUEUE I
I I DIAGNOSTIC I I I FILE I
I I ' RETURN I I I LI ST I
I L--------------J I L-------------J
I I
I r--------------1 I r-------------1
I IERREX- I I IERASABLE I
1-i ISSUE I L-i COMMON I
I I DIAGNOSTIC I I DIAGNOSTIC I
I I ' EXIT I I TRANSCRIPT I
I L--------------J L---------J
I
I r--------------1
I IERRAT- I
L-i ISSUE I

1 DIAGNOSTIC I
I W/DELAY ABORTI
L-------------J

ANALYSIS DIAGRAMS 173

IBM PROBLEM LANGUAGE ANALYZER :(PLAN)

PROGRAM DESCRIPTION MANUAL 15 SEPTEMBER 1969

SPECIFICATION TREE 7 .----------------1
I I
I SEQUENTIAL I
I FILE I
I SUBROUTINES I
L----·---T--------J

I
r-----------------T-----------------t-----------------------------------1
I I I I

r------.L-------, r-----J.-------, r------.L--------, r-------.L----·---1
I I t I I I I I
I INPUT I IOUTPUT I IDEVICE ' I 11130 SPECIAI. I
I CONVERSION I I CONVERSION I I DATA I I FUNCTION I
I ROUTINES I I ROUTINES I I CONTROL I I ROUTINES I
~----------------J r------------J ~---------------J L-----------·---J
I I ~-----------------1
I I I I
I ,------------, I ,------------, I r-------------1 I r-------------,
I IPAIN- I I IPAOUT- I I IPLINP/PLOUT I I I I
~-~A TO A I •-1A TO A I ~-~TRANSFER DATAI ~-~S/360 I
I I INPUT I I I OUTPUT I I I TO/FROM I I I SPECIAL I
I I CONVERSION I I I CONVERSIONI I I BUFFER I I I FUNCTIONS I
I L----------·----J I L-------------J I L------------J I L-------------.!I
I I I f
I ,-------------, I r-------------1 I r------------1 I r-------------,
I IPIIN- I I 1PIOUT- I I IPBUSY-PIOC I I IPENDF I
·-~ A TO I I ·-~ I TO A I ~-~ TEST DEVICE t ~-~ CLOSE I
I I INPUT I I I OUTPUT I 1 I READY/BUSY I I I SEQUENTIAL I
I I CONVERSION I I I CONVERSION 1 I I STATUS I I I DATA SET I
I L-------------J I L------------J I L-------·-----J I L-------------J
I 1 I I
I ,-------------, I r-------------, I r-------------, I r-------------,
I IPFIN- I ' IPFOUT- I I IPBFTR I I IPPAGL I
I.-~ A TO F I ~~ F TO A I ~-~ TRANSFER t ~-~ DEFINE I

I INPUT I I I OUTPUT I I I BETWEEN I I I PAGE t
I CONVERSION I I I CONVERSION 1 1 1 BUFFERS I I I 'LENGTH I .. ______________ J I L------------J I L-------·------J I L------------J

I I I
I r-------... --.... , I r·------------1 I r-------------,
I IPEOUT- 1 I f PCCTL I I IDFJPLENG I
L~ F TO A(E) I ~-~ DEVICE I L--(SET I

I OUTPUT I I I CONTROL I I PAGE I
I CONVERSIONI I I FUNCTIONS I I LENGTH I L------------J I L-.-----------J l, _____________ J

I
I r-·------------1
I IPEOF I
L-~ TEXT I

I END-OF-FILEI
I STATUS I
L-·------------J

174 ANALYSIS DIAGRAMS

15 SEPTEMBER 1969

SPECIFICATION TREE 8

r---------------,
' ' 116-BIT I
1 ROUTINES I
I I
L-------T-------J

I
I
I
I r--------------1
I IGDAT1- 1 ·--------+ OPEN 16-BIT I
I I PERMANENT I
I I FILE 1
I L--------------'
I
I r-------------1 I I RDAT1- 1
·---------. READ 16-BIT I
I I PERMANENT '
' I FILE I I L ______________ J

I
I r--------------,
·I IWDAT1- I L--------. wRITE 16-BIT I

I PERMANENT '
I FILE i
L--------------J

IBM PROBLEM LANGUAGE ANALYZER (PIAN)

r----------------,
I I
f PERMANENT I
I FILE I
I SUBROUTINES I
L-------T--------J

I
r-------L--------1
I I
)32-BIT I
I ROUTINES I
I I
L-------T--------J

I
r-------J
I
I r--------------,
I f GD~TA- I
•-i OPEN 32-BIT I
I I PERMANENT I
I I FlLE I
f L--------------J
I
I r--------------,
' IRDATA- I
.;_.. READ 3I-.BIT I
I 1 PERMANENT I
I I FILE I
I L--------------J
I
I r----------..----,
I IWDATA- I
L-i WRITE 32-BIT I

1 · PERMANENT I
I FILE I
L----.---------J

PROGRAM DESCRIPTION MANUAL

r---------------1
I I
I SORT/MERGE I
I ROUTINES I
I I
L-------T-------J

I
I
I

r------------~-, I
IGSORT- I I
I CHECKPOINT ·--------i

' LOAD SORT I I
1· MODULE I I
l--------------J I

I
r--------------, I
IGMERG- I .I
f CHECKPOINT .--------i

' LOAD MERGEi I
I MODULE I I
L--------------' I

I
r--------------1 I
IDFJGSRTA- I I
I SORT ·l--------i
I PERMANENT I I
I FILES I. I
l--------------' I

I
r--------------, I
IDFJGSRTB- I I
I SORT ~--------i
I PERMANENT I I
I FILES I I
L--------------J I

I
r--------------1 I
IDFJGMERG- I I
I MERGE TWO ~--------J
I PERMANENT I
I FILES I
L--------------J

ANALYSIS DIAGRAMS 175

IBM PROBLEM LANGUAGE ANALYZER (PLAN)

PROGRAM DESCRIPTION MANUAL 15 SEPTEMBER 1969

SPECIFICATION TREE 9 .----------------1
I I
I DYNAMIC I
I FILE I
I SUBROUTINES I
L-------T--------J

I
,--------~------T-----~---------+----------------T-----------------1
I I I I I

r-------.l.--------1 I r------~--------1 I .------i-------1
I I I I I I I I
116-BIT I 1 132-BIT I I I I
I DYNAMIC I I I DYNAMIC I I f SORT/MERGE I
I ROUTINES I I I ROUTINES I I I ROUTINES I
•------------·---J I •---------·-----J I •--------------J
I I I I I
I .-------------1 r-----~--------1 I .-------·------1 r-----i--------1 I r-----------1
I I I I I I I DFJINIT- I I I
I IPFNDl- JDFJIOCBS- I I IFIND- I FILE I I IPSORT- I
I IOPEN OR I FILE I I I ALLOCATE I INITIAL- I I I CHECKPOINT I
·-~ ALLOCATE I ASSIGNMENT I •-i FILE I IZATION I ·-~ AND LOAD I
I I FILE SPACE I I ROUTINE I I I SPACE I I ROUTINE I I I SORT MODULE I
I L--------·---J L--------------J I L-------------J L--------------J I L------------J
I I I
I r--------·---1 I r-----------1 I r------------1
I I I I I I I I PMERG- I
I IPREDl- I I IFINDL- I I I CHECKPOINT I
.-~ TRANSFER I •-i EXISTENT I •-i AND LOAD I
I I DATA TO 1 I I FILE OPEN I I I MERGE I
I I MEMORY I I I CONDITIONALLY I I I MODULES I
I L-------------J I L-------·------J I L------------J
I I I
I .-------------1 r-------------1 I .-------------, r--------------1 I r------------1
I IPWRTl- I IPFSPC- I I IREAD- I I I I IDFJPSRTA- I
.-~ TRANSFER 1 I DETERMINE •-+-i TRANSF'ER I f PSRTA- •-t-i S/360 I
I I DATA TO I UNALLOCATED I 1 I DATA TO I I 1130 SORT I I I SORT I
I I FILE I I SPACE I I I MEMORY I I MODULE I I I MODULE 1 I
I L-------------J L--------------J ' L-------------J L--------------~ I L------------J
I I I
I .--------------1 .-------------1 I .-·------------, r--------------1 I r------------1
I IPRELl- I IPFIND- I I IWRITE- I I I I IDFJPSRTB- I
L-~ DEALLOCATE I I 1130 •-+-i TRANSFER I IPMRGA- •-+-i S/360 I

I FILE I I FUNCTIONAL I 1 I DATA TO I I 1130 MERGE I I I SORT I
I SPACE I I OVERLAYS I I I FILE I I MODULE I I I MODULE 2 I
L--------------J L--------------J I L-------------J L--------------J I L------------J

I I
I r-·----------1 I .r-----------1
I I RELES- I I I DFJPMERG- I
Li :DEALLOCATE I L-i S/360 I

I FILE I I MERGE I
I SPACE I I MODULE I
L-------·------J L---------___ J

176 ANALYSIS DIAGRAMS

IBM PROBLEM LANGUAGE ANALYZER (PLAN)

15 SEPTEMBER 1969 PROGRAM DESCRIPTION MANUAL

SPECIFICATION TREE 10 r---------------1
ISTANDARD PLAN I
I COMMANDS ' I
I SUPPORTING I
I MODULES I
L-------T--------J

I
1--------------T-----------------f-----;_----------~----------------1
I I I I I
I I I I 1-----.1.------1
I I I I I UTILITY I
I I I I I DUMP I
I I I I I ROUTINES I
I I I I ~-------------J
I I I I I

r-----.1.-------1 r-----.1.--------1 1----.1.--------1 r-----.1.--------1 I r-----------1
I I I I I I I I I I PCDMP- I
IINPUT- I IPIOCS-DFJPIOCSI IIOCS- I IDFJTR-DFJTRACEI I IDFJPCDMP I
I ACCESS I I SET I/O I I SET . I/O I I DYNAMIC I 1-i DUMP I
I COMMAND I I UNITS I I UNITS I I TRACE I I I COMMUNICA- I
I IMAGE I I MODULE I I SUBROUTINE I I I I I TION ARRAY I
l--------------J L--------------J L--------------J L-----T--------J I L------------J

r-----L--------1 I r------------1 I I I IPEDMP- I
IDFJLM- I I I DFJPEDMP I
I SET 1130 I 1--t DUMP ERRORI
I DUMP I I I QUEUE I
I LIMITS I I I FILE I
L--------------J I L------------J

SPECIFICATION TREE 11 1---------------1
IARRAY ' I
I TABLE I
I PROCESSOR I
I ROUTINES I
L-------T--------J

I
r------------------T-----------~---~------.1.----------1
I I I I
I 1--.----------1 I r------------, I 1------------1 I r-------------,
I I I I IPARGO- 1 I IPHIN- I I IPDIAG- I
·-~GTVAL- I ·-~ DATA OUT OF I •--f TABLES FROM I •-i TABLE FILE I
I I GET I I I COMMUNICATION I I I FILE TO I I I MAINTENANCE I
I I VALUES I I I ARRAY I I I MEMORY I I I MODULE I
I L--------------J I L--------------J I L-------------J I L-------------l
I I I I
I r-------------1 I r-------------1 I r-------------1 I r-------------1
I I I I IPARGI- I I f PHOUT- I I IPLITL- I
L-~ STVAL- I L-~ DATA INTO I L-~ TABLES FROM I L-i LIST I

I STORE I ICOMMUNICATIONI I MEMORY TO I I TABLE I
I VALUES I I ARRAY I I FILE I I FILE J
L--------·-----J L--------------J L-----------J L------------.11

I
I ,-----------1
I IPFDMP- I
I I DFJPFDMP I
1-i DUMP FILES I
I I PERMANENT 'I
I I DYNAMIC I
I L------------J
I
I r-----------1
I IPIDMP- I
I I DFJPIDMP I
L-i LIST I

I PREVIOUS I
I COMMAND I
L------------J

ANALYSIS DIAGRAMS 177

IBM PROBLEM LANGUAGE ANALYZER CPLAN>

PROGRAM DESCRIPTION MANUAL 15 SEPTEMBER 1969

SPECIFICATION TREE 12 r----------------1
I I
JAUXILLIARY I
I FUNCTIONS I
I I L---·----T _____ J

I r---------------------------·----+-----------------------------------1
I I f -------'--------, ,-------'---------1 r-------L-------11 f I I I I BIT, BYTE, & I

I LOGICAL I I DATA I I CHARACTER I
• 1 ,..,...,.n""n~Tn1', I I M:A."1T'Pl1T.:A.'T'TON I

IBM PROBLEM LANGUAGE ANALYZER (PLAN)

PROGRAM DESCRIPTION MANUAL 15 SEPTEMBER 1969

COMMUNICATION ARRAY LAYOUT FQR: DATE:
1---------T-·-------,.-------...,.------·--T-·-------T---------T----------T------·---1
I DATA NAME I DATA NAME I DATA NAME 1 DATA NAME I DATA NAME I DATA NAME I DATA NAME I DATA N1lME I
• 1 ----f-----.----f----T----f----T------f-·--~----+----T----f----T-----f----T-··----t
ICAP IMODE ICAP IMODE ICAP IMODE ICAP IMODE ICAP IMODE ICAP IMODE ICAP IMODE ICAP IM<>DE I
t----+-----+---+-----+----+-----+----+-----+----+-----+----+-----+----+-----+----+--·---i
I DEFAULT I DEFAULT I DEFAULT I DEFAULT I DEFAULT I DEFAULT I DEFAULT I DEFAUm I
.---------+-------+--------+-------·---+-·--------+----------+----------+--------·---..
r--------+--------+---------+---------+-·--------+-------+----------+-------·----t
I I I I I l I I I
t----T-----f----.-----f----T----f----T-----f----T-----f----.-----f---T-----f----T-·---i
I I I I I I t I I I I I I I I I I
• -+-·-..J..----+-----'-----+---.l.----f--.1.-.----+---J.-----+----.L-----+----J.--.----t
I I I I I I I I I
t---------+--------+----------+----------+----------+----------+----------+-------·---i
·-------+-·------+----------+-------·---+----------+----------+---------+-------·---~
I I I I I I I I I
• ---f-·--.----f----,-----f---T--·---f---~----f----T-----f---T-----f---T-·----t
I I I I I I I I I I I I I I I I I
t----L-----+-----L-----+----.l.-----+----.l.----+----.l.-----+----.l.-----+----.1.----+----.I.-·---~
I I 1 I I I I I I
.-------+---------+----------+----------+----------+----------+----------+-------·---..
r--------+--------+--------+-----·---+---------+----------+----------+-------·----i
I I I I I I I I I
r-~-----f----.----f----T----f----T-----f-·--T-----f----T-----f----T-----f---T--·---i
I I I I I I I I I I I I I I I I I
~- ---+---..J..-----+----.l.-----+----J.-----+-----'------+----J.-----+----J.-----+----.1.-·---i
I I I I I I I I I
t----------f--------+---------+----------+--.;...-------+---~------+----------+-------·---i
·-------+---.....;..---+----------+-------·---+----------+---------+---------+-------·---i
I I I f I I I I I
r T ---f----.---f---__.-----f----T--·---+----~----+----T-----f----T-----f----T--·----t
I 1 I I I I I I I I I I I I I I I
1----L-----+-----L----+----.l.-----+----.l.-----+----.l.-----+----.l.----+----..L-----+----.l.--·---i
I I I 1 I I I I I
r ---+-------+--------+---------+~-------+----------+---------+---.;...---·---..
.----------+--------+---------+-------·--+---------+----------+---------+-------·---..
I I I I I I I I I
t----T-----f----.----f----T----f----T--·---+----T-----f----.-----f----T-----f----T--·----f
I I I I I I I I I I ' I I I I I I
• I --+--..J..----+----.l.-----+----J.--·---+-·----'-----+----J.-----+----..L----+----.l.--·----t
I I I I I I I I I
t-----~----+--------+---------+-------·---+----------+---------+----------+-------·---i
I --+---------+----------+-------·---+-----------+----------+----------+------·---i
I I I I I I I I I
·--~--f---~----f----T-----f----T--·---f----~----f----T-----f----T-----f----T--·----t
I I I I I I I I I I I I I I I I I
t----L-----+-----L---+----J.----+--.;...-..L-----+----.l.-.----+----..1.-----+-----'------+----.l.--.---i
I I I I I I I I I
I ---+-------+------: --+---------+----------+----------+---------+-------·---i
r---------+--------+----------+-------·---+--------+---------+----------+-------·----t
I I I 1 I I I I I
L __________ l_ _ ___ l I I I I I 1

15 SEPTEMBER 1969

The following definitions reflect context
and usage within this manual and in other
manuals related to the PLAN system.

Abort. An action resulting from detection
by PLAN of an error. The current PLAN
module is terminated, all programs in the
pop-up list are skipped, and processing
starts at the next equal- or higher-level
command.

Arguments. A list indicating data that is
to be made available to a new operation.

~· ~n abbreviation for communication
array position. It represents the sub
script to which a data name is
equivalenced.

Check Entry. A definition within a phrase
definition of tests to be made and actions
to be made as a result of the test on data
in the communication array.

Command. The phrase and modifying verbs
indicating the indexed dictionary procedure
to be followed.

FORTRAN or Assembler statement COMMON. A
(source or
variables and
be placed in
protected from
operations.

control) that specifies
variable arrays that are to
an area of core storage

overlay by program-loading

communication array. An array of data
residing in COMMON used for transmittal of
data from module to module and from the
PLAN language interpreter to modules.

Constants. Data with a fixed numeric,
logical, or alphmeric value.

~· Input to
operation.

or output from an

Dictionary. An indexed data file contain
ing the condensed syntactical text of a
language. Indexed file of user's language.

Dimension. A FORTRAN source statement that
defines the size of a data array for which
storage is to be allocated.

DUMP COMMON. A PLAN command to print the
contents of the communication array.

DUMP MANAGED.
the managed
array.

A PLAN command to print only
portion of the communication

IBM PROBLEM LANGUAGE ANALYZER (PLAN)

PROGRAM DESCRIPTION MANUAL

50.0.0 GLOSSARY

DUMP NONMANAGED. A PLAN command to print
only the nonmanaged portion of the cormnuni
cation array.

DUMP PERMANENT. ~ PLAN command to print
the contents of a PLAN PERMANENT file.

DUMP DYNAMIC.. A PLAN command to print the
contents Of a PLAN DYNAMIC file.

DUMP SWITCHES. A PLAN command to print the
contents of the 15 PLAN switch words.

Elements. The syntactical portion of a
statement required to define a data item.

EQUIVALENCE. A· FORTRAN source statement
that specifies variable names and array
names that are to be set equal to ±he same
location in memory. This statement affects
only addressing: it does not effect any
data transfer.

Evaluate. Determine a result on the
of a series of procedural steps
performed on data.

basis
to be

Extended precision. The size of a FORTRAN
variable word greater than that defined by
ASA standard FORTRAN.

FORMAT. A FORTRAN statement used to
describe the physical organization of an
input or output record. FORMAT is also
used to describe the syntactical organiza
tion of data.

Interpreter. A program(s) that examines a
language syntax and links to a series of
programmed steps to effect a task solution
without generating specific computer code
for the task.

IOCS. A PLAN statement to allow the chang
ing of input and output devices.

Language. A
stream that
processor.

syntactically
is input to

correct text
a particular

Loader. A computer program with the capa
bility of retrieving a module from the
program library and placinq it in core
storage in a form ready for execution .•

Managed array. A portion of the communica
tion array whose data content is maintained
according to a language associated level
(dependence> structure.

Module.
ciated

A mainline program and its asso
subroutines stored in the program

50.0.0 GLOSSARY 181

IBM PROBLEM LANGUAGE ANALYZER (PLAN)

PROGRAM DESCRIPTION MANUAL

library in a form appropriate for execution
within PLAN.

Nonmanaqed array. The portion of the com
munication array not in the managed array.

Operands. The data upon which operations
are to be performed.

Operator.
indicating
multiply>

An arithmetic or logical symbol
an operation (add. and. or.

that is to be performed on data.

Pack. The process of placing an EBCDIC
character into a PLAN (32-bit> word.

Phrase. The name assigned to a language
statement that becomes the identifiable
dictionary index.

PLAN level error recovery. An action
resulting from detection by PLAN of an
error. The current PLAN module is ter
minated. all programs in the pop-up list
are skipped. and processing starts at the
next equal- or higher-level co~nd.

Program. A group of FORTRAN or Assembly
language source statements processed as one
compilation or assembly.

Program list. Program names or program
numbers maintained in a push-down. pop-up
list where the top of the list always
indicates the next program to be loaded.

182 50.0.0 GLOSSARY

15 SEPTEMBER 1969

Scan. The process of examining statement
syntax to determine correctness and
meaning.

Standard precision. The standard size of a
FORTRAN variable word defined by ASA stand
ard FORTRAN.

Statement. An entity input to a processor
consisting of the alphameric text.

Store. The process of placing a program
into the program library or data into a
core storage facility.

switch Words. A group of 15 32-bit words
that provide communication of control
information between PLAN and user modules
and between user modules.

Unpack. The process of extracting EBCDIC
characters from a PLAN word.

URENO. A logical end-of-file indicator for
PLAN data files.

variables. Data with changing numeric,
logical. or alphameric values.

Verb. A phrase that modifies the meaning
and syntax of another phrase.

IBM PROBLEM LANGUAGE ANALYZER (PLAN)

15 SEPTEMBER 1969 PROGRAM DESCRIPTION MANUAL

99.0.0 INDEX

Items in this index are arranged alphabet
ically. Ent~ies include module names, sub
routine names, phrase names, PLAN terms,
and language definer characters. Numeric
references define the section in which
pertinent explanations or examples of use

may be found. The exact page of the
reference may be found by locating the
section reference number in the table of
contents. Primary references are
underlined.

ADD PHRASE

ALTER PHRASE
arithmetic

BREA~
CAP index

CARD
checking

command

communication array

conditional
constant
data

data names

data values
default values
DELETE PHRASE

DUMP COMMON
DUMP DYNAMIC
DUMP ERRORS
DUMP MANAGED
DUMP NONMANAGED
DUMP PERMANENT
DUMP PHRASES
DUMP SWITCHES
erasable COMMON
ERLST
ERRAT
ERRET
ERREX
ERROR
EUSER
EWRIT
EXECUTE
EXIT1
expressions

FALSE

FIND

formula numbers
GDATA

GDAT1

3. 3. 0. 4. 2. 0, 4. 2 .1, 4. 2. 2, 4. 2. 3,, 4 .. 2. 4, 4. 3. 0,
4 .. 3.3, 4.3.12, 4.4.0, 4.5.3
3.3.0, 4.3.0~ 4.5.2 .
4.1.6, li":T:"lO; 4.1.11, 4.1.12, 4.3.3, 4.3.8, 4.3.10,
4.3.16, 4.4.0
5.11.0, 5 .• 11.11
4.1.9, 4.2.2, 4.2.4, 4.3.3, 4.3.6, 4.3.7, 4.3.8,
4.3.9, 4.3.10, 4.3.12, 4.3.15, 4:3:1"6,, 4.3.24, 4.4.0
4.5.12, 8.5.0
4.3.15, 4.3.20, 4.3.23, 4.3.24, 4.3.25, 4 .. 3.26, 4.4.0,
12.1 .• 9
4.1.4, 4.1.5, 4.1.6, 4.2.0, 4.2.1, 4.3.0, 4.3.3, 4.3.5
4.4.0
3.2.0, 4.1.0, 4.2.0, 4.~.4, 4.3.3~ 4.3.6, 4.3.11
4.3.21, 4.3.23, 4.5.4, 4.5.7, 6.1.0~ 8.2.0, 9.2.0,
9.5.0 10.2.0, 10.15.0
4.3.17;, 4.4.0
4.1.8, 4.4.0~ 12.1.6
4 .1 • 5 , 4 • 1. 6 r 4 • 2 • 0 , 4 • 3 • 2 1 ·4 • 3 • 1 9 1 4 • 3 ~ 2 5 1 4 •' 3 • 2 6 ,
4.4 .. 0 --
4.1.6, 4.1.1, 4.2.2, 4.2.4, 4.3.9, 4.3~~o. 4.3.18,
4.3.24, 4.3.26;-"'ii:4.o
4 .1.'6 I 4 • 2 • 3 I 4 • 2 • 5 I 4 • 4 • 0
ii":'3':12,,4.J:"24, 4.3.25, 4.3.26, 4.4.0, 12.1.6
3.3.0, 4.3.0, 4~3.3 4.3.5, 4.3.15, •.3.19, 4.~.2.
9.7 .• 0, ---
3.5.0, 4.3.21, 4.5.7
3 • 5. 0. 4 • 3 • 21,, 4 • 5. 9
3. 5 .• 0, 4 .• 5 .11
3.5.0, 4 .• 3.21, 4.5.7
3 • 5. 0. 4. 3. 3,, 4 • 3. 21, 4. 5. 7
3.5.0, 4~3.21, 4.5.8
3.5.o., 4.3.21, ~o
3.5.0, 4.3.21, 4.5.7
4.3.21, 4.5.7, 4.5.8, 4.5.9
3.4.0, 4.3.21, 5 .• 3.0, 5.11.6
3.4.o, 4 .. 3;10, 4.3.21, 5.3.o, 5.11.6, 8.9.o, 13.1.0
3.4.0, 4.3.21, 5.3.0, 5.11.6, 5.11.9, 8.9.0, 13.1.0
3.4 .. 0~ 4.3.21, 5.3.0, 5.11.6, 8.9.0, 13.1.0
3.4.0. 4.3.21, 5.3.0, 5.11.6, 5.11.9~ 8.9.0, 13.1.0
4.3.18
5.3.0, 5.11.6
3.5.0, 4.3.23, 4.5.9
4.3.19, 8.8.0
4.1.10, ii"':"'i':11, 4.2.4, 4.3.15, 4.3.16,, 4 .• 3.17 4.3.20,
4.3.24, 4.3.25, 4 .. 3.26, 4.4~0, 12.1.10
4.1.6, 4.1.12, 4.1.13, 4.2.3, 4.3.3, 4.3.15, 4.3.16,
5.7.o, 5.11.5
5.5.0, 5.11.2, 8.3.0, 8.6.0, 9.3.0, 10.13,0, 10.17.0,
12.2.0
4.2.6, 4.3.20, 4.4.0
4 .. 5 • s , 5 • 4 • o , 5 .• 1 i. 3 , a • 3 • o , e • 1 • o , 8 • 9. o , 9. 4 • o ,
9.10.0 10.13.0, 10.16.0, 12.3.0, 14.0.6
4.5.6, 5.4.0, 5.11.4, 8.9.0

INDEX (99.0.0) "183

IBM PROBLEM LANGUAGE ANALYZER (PLAN)

PROGRAM DESCRIPTION MANUAL 15 SEPTEMBER 1969

GMRGA
GMERG
GSORT
GSRTA
GSRTB
GTVAL
GUS ER
INPUT
IOCS

I USER
LC HEX

level
LEX
LIST
LISTB
LIST LITERAL
literal
LNRET
LOCAL

logical
LREPT
LRET

LRLD
LSAV
managed comnnmication
array

mode
modules
NDEF
numeric
NU SER
OBJECT
PAIN
PAOUT
PARGI
PARGO
PBFTR
PBTST
PBUSY
PCCTL
PCDMP
PCOMP
PDBFA
PDBFB
PDBFC
PDBFD
PDBFE
POI AG
PED MP
PENDF
PEN RM
PEOF
PE OUT
PEPCK
PERRS

PEXTP
PEUPK
PFDMP
PFILE

PFIN
PFIND
PFND1

184 INDEX (99. O .• 0)

3.5.o. 9.15.o, 10.21.0, 13.7.o
3.5.0, 9.15.0, 10.21.0, 13.7.0
3.5.0~ 9.15.0, 10.21.0, 13.7.0
3.5.0, 9.15.0, 10.21.0, 13.7~0
3.5.0, 9.15.0, 10.21.0, 13.7.·0
5.10 •. 0. s.1i.10
4.3.18
4.5.13, 5.6.0, 5.11.5, 8.9.0
3 • 5 • 0, 4 • 3 • 21, 4 • 5 • 4 , 4 • 5 • 12, 5. 2 • 0, 5. 11. 5 , 8. 5. 0,
9. 5. O;, 10 .18. 0
4.3.18
4.3.4. 5.1.0, 5.8.0, 5.11.1# 8.9.0, 9.10.0, 10.12.0,
10.13.0
3.2~0, 4.2.1, 4.2.3, 4.3.3, 4.3.19, 4.4.0
4.3.15. 5.t.o, 5.1i.1:5:1i.2, 8.3.o,, 8.9 .• o
4.3.14. 4.3.15, 5.1.0, 5.11.1, 8.3.0, 8.9.0, 9.6.0
5.LO, 5.11.1., 8 .• 9.0
3.5.0, 4.5.6
4.1.6, 4.1.9, 4.2.3, •i.4.0
5.1.0, s:rr:-1., 8 .• 9.0
4.3.15. 5.1.0, 5.11.1, 0~4.0, 8.9.o. 9.3.0, 9.9.o,
10.4.-0, 10.6.0 10.12.0
4.1~6, 4.1.7~ 4.1.12, 4.2.3, 4.3.15, 4.3.17, 4.4.0
4 .. 3.5J 4.3.15, 5.1.0, .5.11.1
5.1.0, s.11.1, 5.11.2u 5.11.8~ 5.11.9w 5.11.10, 7.3.0,
6.3.0, 8.9.0, 9.6.0, 9.8.0, 10.7.0
8 .9.0., 14 .o .o
8 • 9 • o:., 1 q • 0 • 0

2.5.o. 3.2.0, 4.3.3, 4.3.21, 4.3.25, 4.5.4, 6.1.0
ii:'3.14., ll.3.18, 4.3.24, 4.3.26, 4.4.0., 12.1.7
4 .1.5'
5.:1.0~ 5.11.5, 7.3.0
4 • 2 • 3.. 4 • 2 • 6
ii:'3.10
4.1.4, 4 .• 3.5
5. 9. 0., 5 .11. 9
5.9.0, 5.11.9, 7.3.0
4.3.22, 5.10.0, s.11.10
4.3.22~ s.10.0, 5.11.10
5.9.(), 5.11.9
5.10.0, 5.11.11
5. 9 ~ o.. 5 .11. 9
5.9.0, 5.11.8, 9.10.0, 10.19.0
3.5.0, 4.5.7
5 .10 .'O, 5 .11.11
5.9.0, 5.11.9
5.9.0, 5.11.9
5.9.0, 5.11.9
5.9.0, 5.11.9
5 • 9. 0, 5 .11. 9
3.5.0, 4.5.5
3.5.0, 4.5.11
9.14.0, 10.19.0
8.8.0
5.9.0, 5.11.9, 9.10.0, 10.19.0
5.9.Q, 5 .• 11.9
5.8.0
3.1.0. 3.2.0, 3.3.0, 3.4.0, 4.3.21, 4.5.4, 5.3.0,
8 .. 9.0, 6.1.0 13 .. 0.0, 14.0:0-
8.8.0
8.8.0
'3.'5:0, 4.5.8
3.1.0, 3 .• 3.0, 3.5.0, 4.1.0, 4.3.0., 4.3.3, 4.3.8,
4.3.11, 12.1.0
5.9.0, 5.11.9
3.5.0
5.5.0, 5.11.4

15 SEPTEMBER 1969

PFOUT
PFSPC
PHIN
PH RAS

phrase
PHO UT
PHTOE
PHUDT
PIDMP
PIIN
PIOC
PIOCS
PIO UT
PIPCK
PIUPK
PLAN
PLAN JOB
PLENG
PLINP
PLNUP
PLO UT

PLITL
PMERG
PMRGA
pop-up list

PPACK
PPAGL
PRED1
PRELl
program
PSBFA
PSBFA
PSBFB
PSBFC
PSBFD
PSBFE
PS CAN

PSORT
PSRTA
PSRTB
PSTSV
PTDMP
PUNPK
PUSH
PWRTl
RDA TA

RDA Tl
relational
READ
RE LES
SAVE
saved statement
scale factors
SEND
SET LITERAL
SET PAGE LENGTH
statement
ST VAL
subscript

switch words

symbol tables

IBM PROBLEM LANGUAGE ANALYZER (PLAN)

PROGRAM DESCRIPTION MANUAL

5.9.0* 5.11.9~ 7.3.0
5.5.0~ 5.11.2~ 8.6.0, 9.3.0
3.5.o. 4.5.5 5.10.0, 5.11.s, 8.9.o
3 .1,. 0 ' 3 • 3 • 0 , 3 • 5 • 0 • 4 • 3 • 0 , 4 • 5 • 1 • 4 .• 5 • 2 ,, 4 • 5 • 3 '
6.1.0, 13.6.0
4.1.21 4.1.3, 4.1.4, 4.3.1, 4.3.5
5.10.0, 5.11.5, 8.9.0
5.10.0, 5.11.11
3.3.0, 4.5.11 4.5.2, 4.5.3
3.5.0, 4.5.1, 4.5.2, 4.5.3
5 .. 9. 0. 5 .11. 9
5.9.0·, 5.11.9
3.5.0, 4,.5.12
5.9.0, 5.11.91 5.11.11
8.8.0
8.8.0
3.1.0, 3.3.0, 3.5.0, 4.5.4, 13.0.0
4.3.3, 4.3.21, 4.3.23, 4.5.4
3.5.0, 4.5.13, 10.19.0 ~~-
5.9.01 5.11.9, 5.11.11, 9.10.0, 10.13.0,
8.6.0 10.19.0
5.9.0, 5.11.9, 5.11.11, 7.3.0, 9.10.0, 10.13.0~
10.19.0
3.5.0, 4.5.6~ 5.8.0
3.5.0, 5.8.0, 5.11.7, 13.0.0
3.5.0, 5.11.7, 6.1.0
2 • 7 • 0 • 3 • 2 • 0 , 3 • 5 • 0 , 4 • 1. 0 , 4 • 3 • 4 ,, 4 • 3 • 5 ' 4 • 3 • 15 ,,
4.3.19, 5.3.0, 9.7.0, 10.6.0,
5.10.0, 5.11.11
9.14.0, 10.19.0
5. 5. 0. 5 .11. 4
5.5.0, 5.11.4
4.3.4, 4.3.25, 4.4.0, 9.7.0, 12.1.B
5.9.0, 5.11.9., 5.11.11, 7.3.0
5.9.0, 5.11.9, 5.11.11, 7.3.0
5.9.0, 5.11.9
5.9.0, 5.11.9
5.9.0,, 5.11.9
5.9.0, 5.11.9
3.1.01 3.2.0, 3.5.0, 4.3.4, 4.3.6, 4.3.18, 4.3.25~
6.1.0 13.0.0, 14.0.0
3.5.0, 5.8.0, 5.11.7, 8.10.0 13.0.0
3.5.0, 5.8.0, 5.11.7, 6.1.0
3.5.0
3.5.0, 4.5.9, 13.0.0
3 • 5. 0. 4 • 5 • 10
5 .• 10.0, 5.1i.11
5.6~0, 5.11~5, 8.9.0
5.5.0, 5.11.4
5.4.0, 5.11.3, 8.3.0, 8.7.0, 8.9.0, 9.4.0, 9.11.0
10.16.0, 12.3.0
5.11.0, 5.11.4, 8.9.0
4.1.12, 4.4.0
5.5.0, 5.11.2, 8.3.0, 8.6.0, 9.3.0, 10.17.0
5.5.0, 5.11.2, 8.6.0, 9.3.0
4.3.23, 4.5.10
4.3.21, 4.3.23, 4.5.4, 4.5.9
4.3.9, 4.3.13, 4.3.18, 4.3.24, 4.3.26, 4.4.0~ 12.1.7
4.3.23, 4.5.9
3.5.0, 4.5.5
3.5.0, 4.5.13
4.1.5, 4.1.6, 4.3.3, 4.4.0
5.10.0, 5.11.10
4.1.7, 4.2.5, 4.3.6, 4.3.7, 4.3.8, 4.3.9, 4.3.10,
4.4.0
2.5.0, 3.1.0, 4.3.3, 4.3.7, 4.3.22, 4.5.4, 5.11.7,
6.1.0
4.3.3, 4.3.25, 12.1.1

INDEX (99.0.0) 185

GH20-0594-1

IBM PROBLEM LANGUAGE ANALYZER (PLAN)

PROGRAM DESCRIPTION MANUAL 15 SEPTEMBER 1969

test mask
TRUE

TYPE
URENO
user exit

VERB
VERB PHRASE
WDATA

WDAT1
word
WRITE
A
b (blank}
c
E
F
I
p

R
s
T
u
O (Zero>
& (and}
* (asterisk}

(BCD equal)
Gl (BCD quote}

(colon>

, (comma}

$ (dollar sign}
" (double quote}

(equal}

<exclamation point}
> (greater than}
(Cleft paren}

< Cless than}
- (minus>

, <not}
I <or}
• {period}
+ (plus}

? (question mark}
• (quote}
} (right paren}

(semicolon}
/ (slash}

(underline)

International Business Machines Corporation
Data Processing Division

4.1.12, 4.4.0
4.1.6, 4.1.12, 4.1.13, 4.2.3, 4.3.15, 4.3.16~ 4.3.25,
4.3.26 5 .. 11.5
4 .5.12. 8,.5 .o
5.11.9
4.3.18, 4.3.19, 4.3.24, 4.4.0, 0.1.0. 9.4.o, 10.14.0,
12 .1.11
4.3.5, 4.3.25, 12.1.12
4.1.3, 4.1.4
5.4.0, 5.11.3, 8.3.0, 8.7.0, 8.9.0, 9.4.0, 10.16.0,
12.3.0
5.4.0, 5.11.4, 8.9.0
4.1.0, 4.1.2, 4.1.7, 4.1.9, 4.3.1, 4.3.5, 4.3.11
5.5.0, ,5.11.2, 8.3.0, 8.6.0, 9.3.0, 10.17 .• 0
4 .• 3 .15
4.1.1~ 4.1.6~ 4.1.8, 4.2.0, 4.2.3
4.3.15
4.1.7, 4.1.12, 4.2.2, 4.3.11,
'4':3:1's
4.3.14, 4 .. 3.18
4.3.13, 4.3.15, 4.3.18
4.3.15
4.3.9
'4':3:1'5
4.3.18
4.3.4
4.1.13, 4.2.2, 4.2.4, 4.3.20
4.1.10, 4.2.4, 4.3.4, 4.3.9, 4.3.15, 4.3.16! 4.3.20,
9.10.0
4.3.1, 4.3.18
4.1.9, 4.1.10, 4.1.11, 4.3.18
4.1.12, 4.2.0, 4.2.4, 4.2.6, 4.3.0, 4.3.16, 4.3.7,
4.3.18, 4.3.20
4.1.5, 4.2.0, 4~2.2, 4.2.4, 4.2.6, 4.3.1, 4.3.4 4.3.5,
4.3.16, 4.3.18, 4.3.20
4.2.6, 4.3.20
4.1.9. 4.1.10, 4.1.11, 4.1.12, 4.2.0, 4.3.18~
4.1.10, 4.1.11, 4.1.12, 4.2.4, 4.2.6~ 4.3.16, 4.3.18~
4.3.20
4.2.6, 4.3.11, 4.3.20
4.1.12, 4.1.13, 4.2.4, 4.3.16, 4.3.20
4.1.11. 4.1.13, 4.2.0, 4.2.4, 4.3.4, 4.3.5, 4.3.15,
4.3.16, 4.3.20~ 9.7.0~ 10.6.0
4.1.12, 4.1.13, 4.2.4, 4.3.16, 4.3.2
4.1.10, 4.1,11, 4.2.2, 4.2.4, 4.3.9~ 4.3.13, 4.3.16,
4.3.18, 4.3.20
4.1.13, 4.2.4, 4.3.20
4.1.13~ 4.2.4, 4.3.20
4 .• 2 .2
4.1.10. 4.2.3, 4.2.4, 4.3.9, 4.3.13, 4.3.16, 4.3.18~
4.3.20
4.2.6, 4.3.17, 4.3.20
4.1.9, 4.1.10~ 4.2.2, 4.3.9, 4.3.15, 4.3.18
4.1.13, 4.1.11~ 4.2.0, 4.2.4, 4.3.4, 4.3.5, 4.3.15,
4.3.16, 4.3.20, 9.7.0, 10.6.0
4.1.5, 4.2.0, 4.2.4, 4.2.6, 4.3.18, 4.3.19, 4.3.20
4.1.10, 4.2.4, 4.3.9, 4.3.16, 4.3.20
4 .1.12

112 East Post Road, White Plains, N. Y. 10601
(USA Only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(International)

READER'S COMMENT FORM

Problem Language Analyzer (PLAN)

Program Description Manual

GH20-0594-1

Please comment on the usefulness and readability of this publication, suggest additions and
deletions, and list specific errors and omissions (give page numbers). All comments and sugges
tions become the property of IBM. If you wish a reply, be sure to include your name and address.

COMMENTS

fold fold

fold fold

• Thank you for your cooperation. No postage necessary if mailed in the U.S.A.
FOLD ON TWO LINES, STAPLE AND MAIL.

GH20-0594-1

YOUR COMMENTS PLEASE . ••

Your comments on the other side of this form will help us improve future editions of this pub
lication. Each reply will be carefully reviewed by the persons responsible for writing and pub
lishing this material.

Please note that requests for copies of publications and for assistance in utilizing your IBM

system should be directed to your IBM representative or the IBM branch office serving your
locality.

fold fold
... " .. .

Attention: Technical Publications

BUSINESS REPLY MAIL
NO POSTAGE NECESSARY IF MAILED IN THE UNITED STATES

POSTAGE WILL BE PAID BY ...

IBM Corporation

112 East Post 'Road

White Plains, 1\1. Y. 10601

FIRST CLASS J
PERMIT NO. 1359

WHITE PLAINS, N. Y.

I 11eeel11eee1111 I I I I I•• I lld Ill I 1111IIII1111 I• I I I I• I• II I• I I' I I II 'l I I I I I I I I I I I I I I I I I I Ill I I I I I I I I 11111I1111I11111 lllt•lllll I
1

fold

®

International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, N.Y. 10601
[USA Only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New.York 10017
[International]

fold

IBM PROBLEM LANGUAGE ANALYZER (PLAN)

15 SEPTEMBER 1969 PROGRAM DESCRIPTION MANUAL

SPECIFICATION TREE 10 r--------------1
ISTANDARD PLAN I
I COMMANDS ' I
I SUPPORTING I
I MODULES I
L-------T--------J

I
r----------------T-----------------f--------~-------~-----------------1
I I I I I
I I I I r------.L------,
I I I I I UTILITY I
I I I I I DUMP I
I I I I I ROUTINES I
I I I I ~------------J
I I I I I

r-----.L-------, r-----.L-------·-1 r-----.L--------1 r-----.L--------1 I r----------1
I I I I I I I I I I PCDMP- I
IINPUT- I IPIOCS-DFJPIOCSI IIOCS- I IDFJTR-DFJTRACEI I IDFJPCDMP I
I ACCESS I I SET I/O I I SET I/O I I DYNAMIC I 1--t DUMP I
I COMMAND I I UNITS I I UNITS I I TRACE I I ICOMMUNICA- I
I IMAGE I I MODULE I I SUBROUTINE I I I I I TION ARRAY I
t. _____________ J L------------·-J L-----------J L-----T ________ J I L-----------J

r-----L--------1 I r------------,
I I I IPEDMP- I
IDFJLM- I I I DFJPEDMP I
I SET 1130 I 1-i DUMP ERRORI
I DUMP I I I QUEUE I
I LIMITS I I I FILE I
L--------------J I L------------J

SPECIFICATION TREE 11 r----------------1
I.ARRAY ' I
I TABLE I
I PROCESSOR I
I ROUTINES I
L-------.T-------J

I
r-----------------7-----------~---T------.L---------1
I I I I
I r-------------1 I r-----------·-1 I r-------------1 I r-------------1
I I I I IPARGO- 1 I IPHIN- I I IPDIAG- I
•--tGTVAL- I •--t DATA OUT OF I ·-~ TABLES FROM I •-i TABLE FILE I
I I GET I I I COMMUNICATION I I I FILE TO I I I MAINTENANCE I
I I VALUES I I I ARRAY I I I MEMORY I I I MODULE I
I L--------------J I L-------------J I L------------J I L-------------.:1
I I I I
I r-------------, I r-------------1 I r-------------1 I r-------------1
I I I I IPARGI- I I IPHOUT- I I IPLITL- I
L--tSTVAL- I L--t DATA INTO I L-i TABLES FROM I L-i LIST I

I STORE I ICOMMUNICATIONI I MEMORY TO I I TABLE I
I VALUES I 1 ARRAY 1 I FILE I I FILE J
L--------·-----J L-------------J ~------------J L------------.11

I
I r------------,
I IPFDMP- I
I I DFJPFDMP I
1-i DUMP FILES I
I I PERMANENT & I
I I DYNAMIC I
I L-----------J
I
I r-----------,
I IPIDMP- I
I I DFJPIDMP I
L-i LIST I

I PREVIOUS I
I COMMAND I
L------------J

ANALYSIS DIAGRAMS 177

PROGRAM DESCRIPTION MANUAL 15 SEPTEMBER 1969

SPECIFICATION TREE 12 r---·-------------,
I I
,.AUXILLIARY I
I FUNCTIONS I
I I
L---·----T-·-----J

1 r--------------------------·----t-·----------------------------------i
I I f r-----..L-------, r---·----.L..·-------, r------.L-------1

I I I I I BIT, BYTE, i I
I LOGICAL I I DATA I I CHARACTER ~
I VALUE I I CONVERSION I I MANIPULATION I
I TESTING I I ROUTINES I I SUBROUTINES ~
·----------------J ·---------------J L-------T------·~
I I I
I r-------------, I r-·------·-------1 r---------------1 I
I I FALSE- I I I P.ENRM-1130 I I I I
·-~ SET I •-i EXTENDED I IBREAK- ·--------i
I I LOGICAL I I I PRECISION I 1 SEGMENT I I
I I FALSE I I I NORMALIZE I I BYTES I I
I L-------------J I L-·------·------J L---------------J I
I I I
I r---------·----, I r-·------·-------, r---------------1 I
I ITRUE- I I IPEXTP-1130 I IPBTST- I I
ri SET I ·-~ EXTENDED I I TEST g SET r-------i
I I LOGICAL I I I PRECISION I I BITS, TEST I I
I I TRUE I I I CONVERSION I I UNDER MASK I I
I L--------------J I L-------------J L---------------J 1
I I I
I r-------------, I r-·-------------1 r---------------1 l
I INDEF- I I IPEPCK-1130 I IPCOMP- I I
L-i TEST FOR f •-i EXTENDED I I LOGICAL ·-------i

I TRUE,, FALSE I I I PRECISION I I ARRAY I I
I OR REAL I I I PACK I I COMPARE I I
L-------------J I l-------·-------J L---------------J I

I I r-------------1 I r------·------1 r--------------1 I
I 11 IPEUPK-1130 I I I I
I PHTOE- 11 1 EXTENDED I I PPACK- I I
I HEXADECIMAL •t-~ PRECISION I I BYTE ~--------i
t TO EBCDIC 11 I UNPACK I I PACK I I
L--------'."'" _____ J I L-------·-------J L---------------J I

1 I r-----------1 I r-------·------1 r---------------1 I
IPIPCK-1130 II IPIUPK-1130 I IPUNPK- I I
I INTEGER ·L-~ !~EGER I I BYTE ·--------J
I PACK I I EXPAND I I EXTRACT I
L------------J L-------·-------J L---------------J

178 SPECIFICATION DIAGRAMS (18.0.0)

IBM PROBLEM LANGUAGE ANALYZER (PLAN)

15 SEPTEMBER 1969 PROGRAM DESCRIPTION MANUAL

19.0.0 APPENDIX L: COMMUNICATION ARRAY LAYOUT CHART

The chart in this section may be copied and
used for planning the utilization of the
communication array layout.

ARRAY CHART (19.0.0) 179

IBM PROBLEM IANGUAGE ANALYZER (PLAN)

PROGRAM DESCRIPTION MANUAL 15 SEPTEMBER 1969

COMMUNICATION ARRAY LAYOUT FOR: DATE:
r----------T--------T------~----··--T-------T---------T----------T----------1
IDATA NAME IDATA NAME IDATA NAME IDATA NAME IDATA NAME IDATA NAME IDATA NAME IDATA Nl\ME I
•--,.-----f----~----f----T----f----T-·----f---~----f----T-----f----T-----f----T-·----..
ICAP IMODE ICAP IMODE ICAP IMODE ICAP IMODE ICAP IMODE ICAP IMODE ICAP IMODE ICAP IMODE I
·---+-----+----+----+----+-----+----+-----+-·---+-----+----+-----+----+-----+----+-·----~
I DEFAULT I DEFAULT I DEFAUL'f I DEFAUL~l' I DEFAULT I DEFAULT I DEFAULT I DEFAUm' I
r--------+-------+--------+------·----+---------+----------+----------+------·-----t
r---------+----------+----------+---------+---------+--~-----+----------+------·----i
I I I I I l I I I
1----T-----f---~----f----~---·-f----T--·---f----T-----f----T-----f----T-----f----T-----i
I I I I I I t I I I I I I I I I I • _ ___..._ ____ +---i-----+----.L-----+----.L-----+----..L----+----.L-----+----.1.-----+----.L-.. ---i
I I I I I I I I 1,
1----------+--------+----------+-----------+-·---------+----------+---------+------·----i
·-------+---------+----------+-----------+----------+----------+---------+------·----~
I I I I I I I I I
• --f---~----f---~----f---~-··---f---~----f----T-----f---T-----f--T-·---i
I I I I I I I I I I I I I I I I I
r---..L-----+----i-----+----.L-----+----.1.------+----i-----+----.L-----+----.L-----+----.L-----~
I I 1 I I I I I I
r------+-------+----------+-----------+--------+----------+----------+-----------i
r--------+--------+--------+--------+---------+----------+---------+-----------i
I I I I I I I I I
r--~-----f---~-----f----T-----f----T-----f----T-----f----T-----f----T-----f----T-·---i
I I I I I I I I I I I I I I I I I
~- I ---+---i----+----L-----+----.L------+----..L-----+----.L-----+----.L----+----.1.------i
I I I I I I I I I
r----------+----------+----------+----------+--~-------+----------+----------+----------i
·------+--------+------~---+-----------+-·--------+--------+---------+----------i
I I I . f I I I I I
·--~---f---~----f----,.-----+---~-----f-·---~----f----T-----f----T-----f----T-··---i
I I I I I I I I I I I I I I I I I
1----i-----+----i-----+----..L-----+----.L-----+-,---.L-----+----.L-----+----.L-----+----.L-----i
I I I I I I I I I ·- --+--------+-----~--+---------+..:.·-------+----------+---------+---.;.. _______ ..
r---------+--------+---------+-------·--+--------+----------+----------+-----------i
I I I I I I I I I
r----T-----f----T-----f----T-----f----T-----f----T-----f----T-----f----T-----f----T-·---i
I I I I I I I I I I ' I t I I I I
• I --+---i----+----.L-----f---.1.------+----..l.-----+----.l.-----+----.L-----+----.L-·•----t
I I I I I I I I I
r-----·----+--------+----------+----------t----------+----------+----------+-----------i
·---------+----------+----------+-------·---+----------+----------+----------+----------i
I I I I I I I I I
·---~--+---~----f----T-----f----T--·---f-,---~----f----T-----f----T-----f----T-··----t
I I I I I I I I I I I I I I I I I
r---..L-----+----i-----+----..1.-.:..---+--.;..-.L-----+-·---.L----+----.l.-----+----..L-----+----..L------i
I I I I I I I I I
I ---+-------+---------+-------·--+-,--------+----------+----------+------··---i
r---------+---------+----------+---------+----------+----------+----------+-------·----t
I I I 1 I I I I I
r----T-----f---~-----f----T-----f----T-----f----y-----f----T-----f----T-----f----T-··---i
I I I I I I I I I I I I I I I I I
• ----+---.1.----+----.L-----+----i-----+----..L-----+----.L-----+----.L-----+----.L-------t
I I I I I I I I I
1-------+--------+----------+-------·---+-·--------+----------+----------+-------·---i
r---------+--------+----------+-------·---+-·---------+----------+----------+------·---i
I I I I I I I I I
r--~-----+---~-----f----T-----f---~-----f----T-----f----T-----f----T-----f----T--·---i
I I I I I I I I I I I I I I I I I
r-..L-----+----.1.----+----.L-----+----.L--.---+----...._----+----.L-----+----.L-----+----.L--·---i
I I I I I I I I I L------.1.-·------..L---------.L-------•--.L-.-------.L----------.L----------.L-------·---J

180 ARRAY CHART (19.0.0)

