

Systems

GC30-2024-3

OS/MFT and OS/MVT
TeAM Programmer's Guide
Program No. 360S-CQ-548

OS Release 21.0

Fourth Edition (July 1972)

This publication is a major revision of, and obsoletes, GC30-2024-2 and Technical Newsletter
GN30-2573; it provides function support of OS Release 21.0 (Component Release 4 of TCAM),
and maintenance support of TCAM in OS Release 21.0 until otherwise indicated in new editions
or Technical Newsletters. Changes appearing in this edition are listed in the Summary of
Amendments following the Preface. Changes are made periodically to the information herein;
before using this publication with IBM systems or equipment, refer to the latest SRL Newsletter
for editions that are applicable and current.

Requests for copies of IBM publications should be made to your IBM representative or to the
IBM branch office serving you locality.

This manual has been prepared by the IBM Systems Development Division, Publications
Center, Department EOI, P.O. Box 12275, Research Triangle Park. North Carolina 27709. A
form for reader's comments is provided at the back of this publication. If the form has been
moved, comments may be sent to the above address. Comments become the property of IBM.

© Copyright International Business Machines Corporation 1972

Preface

The first section of this book, How to Use This Book defines the audience for
which this programmer's guide is intended, explains how the book is organized,
and suggests how the reader might best familiarize himself with its contents. The
chart below lists alphabetically the key words that are used throughout the book
to refer to other publications; accompanying the key words are the corresponding
title and order number to which the key words refer.

Key Words Used in
This Publication

Assembler
Language

Checkpoint/Restart
Planning Guide

Data Management
Services

Job Control
Language

Messages and Codes

Operator's Guide

TCAM User's
Guide

Principles of
Operation

Programmer's Guide
to Debugging

Title

IBM System/360 Operating System
Assembler Language

IBM System/360 Operating System
Advanced Checkpoint/Restart

IBM System/360 Operating System
Data Management Services

'IBM System/360 Operating System
JCL User's Reference

IBM System/360 Operating System
Messages and Codes

IBM System/360 Operating System
Operator's Reference Manual

OS TCAM User's Guide

IBM System/360 Operating System
Principles of Operation

IBM System/360 Operating System
Programmer's Guide to Debugging

Order No.

GC28-6514

GC28-6708

GC26-3746

GC28-6704

GC28-6631

GC28-6691

GC30-2025

GA22-6821

GC28-6670

iii

Supervisor and Data IBM System/360 Operating System GC26-3794
Management Macro Data Management Macro Instructions
Instructions

Supervisor Services IB M System/360 Operating System GC28-6646
Supervisor Services and Macros

System Generation IBM System/360 Operating System GC28-6554
System Generation

TeAM Concepts and OS TCAM Concepts and Facilities GC30-2022
Facilities

TCAM Level 4 TCAM Level 4 Component Release GC30-IOO7
Component Release Guide
Guide

TCAM PLM OS/MFT and OS/MVT TCAM Logic GY30-2029

TSO Command IBM System/360 Operating System GC28-6732
Language TSO Command Language Reference

TSO Guide IBM System/360 Operating System GC28-6698
TSO Guide

Utilities IBM System/360 Operating System GC28-6586
Utilities

iv

Summary of Amendments

This revised edition incorporates the following programming information that
applies to OS Release 21.0 (Component Release 4 of OS/MFT and OS/MVT
TCAM):

• 2790 Data Communications System support.
• 3270 Information Display System support.
• 3670 Brokerage Terminal support.
• 7770 enhancements.
• BSC 1, BSC2, BSC3 device types.
• Disk error handling.
• General Poll for 2260 and 3270.
• Reverse Interrupt (RVI) support.
• TOTE II On-Line Test facility (OLT).
• TSO/TCAM Mixed Environment and 3270 support.
• Macros changed:

DATETIME MSGFORM SETEOM
ERRORMSG MSGTYPE TERMINAL
FORWARD ORIGIN TPROCESS
GET POINT TTABLE
INTRO PUT UNLOCK
INVLIST QACYION WRITE
LOCK QCOPY
LOCOPT SCREEN

• New macros:
COMMBUF QRESET

MHGET SLOWPOLL
MHPUT TYPETABL

• New operator commands:
GENPOLOFF GENPOLON

Also included are minor corrections and format changes throughout the publica­
tion that apply to maintenance support of OS/MFT and OS/MVT TCAM in OS
Release 21.0. The previous edition of this manual, GC30-2024-2, incorporated
the following information that applies to OS Release 20.7 (Component Release 2
of OS/MFT and OS/MVT TCAM):

• Defining logical messages (see Handling Logical Messages).
• Concentrating and deconcentrating messages (see Appendix J).
• Recovering from text errors in multiblock messages (see Mid-Batch Recovery).
• Editing data across buffer boundaries (see the MSGEDIT functional MH

macro).
• Removing line-control characters on a count basis from incoming messages and

permitting variable-length reblocking of records for outgoing messages (see the
MSGFORM functional MH macro).

• Retrying to dial a switched station (see the RETRY functional MH macro).
• Determining how many complete messages are queued for the application

program (see the MCOUNT application program macro).
• Recording date and time that messages are received at the application program

(see the TPDATE application program macro).
• Including the IBM 3735 Programmable Buffered Terminal in a TCAM net­

work.
• Including the Attention Interrupt feature for the IBM 1050 and 2741 terminals.

v

How to Use This Book

Writing the Message Control Program .
What the Message Control Program is
Functions of the MCP
User Tasks in Writing the MCP

Defining Terminal-and Line-Control Areas
Terminology
Line Control
Establishing Contact

Invitation
Constructing the Invitation List

INVLIST Macro Instruction
Nonswitched Point-to-Point or Multipoint Lines to Stations Using
Polling Characters .
Switched Lines To Terminals Using Polling Characters
Switched Lines to Stations Using ID Sequences
Switched or Nonswitched Contention Lines to Terminals Not
Assigned ID Sequences
Output-Only Lines to Stations Having no ID Sequences Assigned
to Them

Selection
Constructing the Terminal Table

TT ABLE Macro Instruction .
OPTION Macro Instruction .
TERMINAL Macro Instruction

Coding the TERMINAL Macro for a Component
Coding the TERMINAL Macro for a Line

TLIST Macro Instruction ...
TPROCESS Macro Instruction .
LOG TYPE Macro Instruction ..

Maintaining Orderly Message Flow
Message Priority and Queuing . .
Transmission Priority

Transmission Priority for Nonswitched Polled Stations
Transmission Priority for Nonswitched Polled Stations Using
TCAM's Buffering Feature
Transmission Priority for Nonswitched Contention Stations
Transmission Priority for Switched Stations

Calls between the Computer and a Switched Station
The System Interval

Defining Buffers ...
Structure of a Buffer .
The Buffer-Unit Pool
Buffer Definition Checklist
Design Considerations

Size of Buffers .
Number of Units ..
Size of Units
Dynamic and Static Buffer Allocation
Initial and Maximum Number of Buffers per Line
Other Buffer Design Considerations

Defining the MCP Data Sets
Line Group Data Sets

Characteristics of a Line Group
Creating a Line Group Data Set

Line Group DCB Macro Instruction
DD Statements for a Line Group

Message Queues Data Sets
Disk Queuing

Contents

3
3
3
4

5
5
5
9
9

10
II

14
15
15

17

17
18
18
20
21
25
37
38
43
45
51
52
52
55
55

57
58
58
59
61

63
63
65
69
70
71
72
72
73
74
75

77
77
77
77
79
86
88
88

vii

viii

Advantages and Disavantages of Disk Queuing
Specifying Channel Program Blocks

How to Determine if too Many CPBs were Specified on the
CPB= Operand of the INTRO Macro Instruction
How to Determine if too few CPBs were Specified on the
CPB= Operand of the INTRO Macro Instruction

Preformatting DASD Message Queues Data Sets
Using Multiple Arm Support
Reusable Disk Queues ..
Nonreusable Disk Queues .

Main-Storage Queuing
Specifying One or More Queuing Methods

Message Queues DCB Macro Instruction
DO Statements for Message Queues Data Sets

Checkpoint Data Set
Checkpoint DCB Macro Instruction
DD Statement for the Checkpoint Data Set

Log Data Sets .,.
User ABEND Exits

Activating and Deactivating the Message Control Program
Starting and Restarting TCAM .
Initialization and Activation

INTRO Macro Instruction
OPEN Macro Instruction
READY Macro Instruction

Deactivation
Types of Closedown
Deactivating a TCAM System Without Application Program
Deactivating a TCAM System With Application Programs
CLOSE Macro Instruction

Sample MCP Activation and Deactivation Section

Designing the Message Handler .
Message Format

The Message Header . .
Functions Performed by MH Subgroups

Selecting Message-Handler Functions
MH Functions and Macros Defining the Functions

Message Editing
Validity Checking
Message Routing
Record Keeping
Error Handling .
System Control .
Function Modification
Delimiting Functions .

Order of Macro Specification
The Scan Pointer . . .

Handling Logical Messages .
Logical Message Formats

Blocking Incoming Messages
Deblocking Incoming Messages

Converting Incoming Data to Logical Messages
Logical Message Flow Within the System
Message Headers for Logical Messages
Coding Considerations for Logical Message Use

Message Flow through a Message Handler
Message Flow within an MH Group . . .
Multiple-Buffer Header Handling

Variable Processing within a Message Handler
Conditional Execution of Message Handler Functional Macros
User Code in a Message Handler

General Requirements and Restrictions
Multiple-Buffer Header Considerations
Including an Open Subroutine
Including a Closed Subroutine

89
89

91

91
92
92
93
96
96
99

.102

.104
· 104
.105
· 106
.107
· 108

· 111
· III
· III
· 113
.127
· 130
.131
· 131
.132
.132
.134
.134

· 137
· 137
· 138
· 140
· 145
· 145
· 145
· 146
.146
· 147
.147
.148
· 149
· 149
· 149
· 149
· 152
· 153
· 153
· 154
· 154
· 155
· 158
.160
· 165
· 166
· 169
· 172
· 173
· 175
· 175
· 175
· 176
· 177

Using LOCOPT to Locate an Option Field
Using SETSCAN to Locate a Header Field
Using MSGTYPE to Locate a Header Field
Using the PARM Parameter of the EXEC Job Control Statement
Message-Handler Macro Return Codes

Message Translation
Using TCAM's Hold/Release Facility to Protect Outgoing Messages from
Loss

Coding the Message Handler for an Application Program
Design Steps
Delimiter Macro Instructions

STARTMH
INBLOCK
INHDR
INBUF
INMSG
INEND
OUTHDR
OUTBUF
OUTMSG
OUTEND

Functional Macro Instructions
CANCELMG
CHECKPT .
CODE
COMMBUF
COUNTER.
CUTOFF ..
DATETIME
ERRORMSG
FORWARD
HOLD
INITIATE
LOCK ..
LOCOPT
LOG
MHGET
MHPUT.
MSGEDIT
MSGFORM
MSGGEN
MSGLIMIT
MSGTYPE
ORIGIN
PATH ...
PRIORITY
REDIRECT.
RETRY ...
SCREEN ..
SEQUENCE
SETEOF .
SETEOM ..
SETSCAN .
SLOWPOLL
TERRSET
TYPETABL
UNLOCK ..

Putting the MCP Together
Arranging the Sections of the MCP
Assembling, Link-editing, and Executing the Message Control Program

Assembling an MCP
Link-editing an MCP
Executing an MCP .

Sample MCPs
Message Switching Between Terminal Types

.179

.179
· 179
· 182
· 182
· 186

· 189
· 189
.190
· 191
· 193
· 199
.200
.201
.202
.203
.204
.205
.206
.207
.209
.210
.212
.213
.217
.219
.221
.223
.225
.229
.234
.238
.241
.244
.245
.247
.249
.252
.266
.269
.273
.275
.280
.282
.286
.290
.292
.293
.297
.299
.301
.304
.309
.311
.313
.314

· 317
.317
· 318
· 318
· 318
· 318
.320
.321

ix

x

Inquiry and Response
File Updating with Checkpoint Coordination

Writing TCAM-Compatible Application Programs . . .
Message Flow to an Application Program
Overview of the MCP/ Application-Program Interface
Defining the Components of the Interface

Defining the Application Program Data Sets and the Process
Control Block

Input DCB Macro Instruction
Output DCB Macro Instruction
DO Statements for the Input and Output Data Sets
PCB Macro Instruction

Defining Buffers for the Application Program
Defining Application-Program Buffers
Application-Program Buffer Design Considerations

Activating and Deactivating the Application-Program Interface
OPEN Macro Instruction for the Application Program " .
CLOSE Macro Instruction for the Application Program .
MCPCLOSE Macro Instruction

Transfering Data Between an MCP and an Application Program
Defining the Application-Program Work Area

Static Work-Area Definition
Dynamic Work-Area Definition
Moving Data Between Input and Output Work Area
Defining Optional Fields in the Work Area

Specifying Application-Program Work Units
Work-Unit Formats
Work-Unit Types
Signaling End of File and End of Message

Coding TCAM's Data Transfer Macros .
GET Macro Instruction (QSAM only) .
PUT Macro Instruction (QSAM only) .
READ Macro Instruction (BSAM only)
WRITE Macro Instruction (BSAM only)
CHECK Macro Instruction (BSAM only)
MCOUNT Macro
TPDA TE Macro
Multiple-Wait Capability .

Application-Program Error Exits
Input to the SYNAD Routine
SYNADAF

Network Control Facilities .. .
TCOPY Macro Instruction
ICOPY Macro Instruction
QCOPY Macro Instruction
TCHNG Macro Instruction
ICHNG Macro Instruction .
MRELEASE Macro Instruction

TCAM's Message Retrieval Facility
POINT Macro Instruction ..

TCAM's Inquiry/Response Facilities
Line Lock
Terminal Lock

TCAM's Queue Reset Facility
QRESET Macro Instruction

TCAM/SAM Compatibility
Coordinating TCAM Checkpoints of the MCP with OS Checkpoints of the
Application Programs

Using the CKREQ Macro Instruction for Coordination
Using the DCB Exit for Coordination
Coordinating MCP and Application-Program Restarts

Using TCAM Service Facilities
Operator Control

Initialization for Operator Control
General Format of Operator Commands

.328
· 339

· 353
· 355
· 356
· 358

· 358
· 361
.367
.370
.372
.374
.374
· 375
.377
.378
.380
.381
.382
.383
.383
.383
.384
.384
.387
.388
.390
.394
· 395
.396
.398
.400
.403
.406
.409
.410
.411
· 412
.413
.414
.415
.417
.420
.424
.426
.428
.431
.432
.433
.435
.435
.439
.440
.443
.445

.446

.446

.449

.450

.453

.453

.453

.453

Specifying Operator Commands
Entering Operator Commands from an Application Program
Incorrect Messages
Operator Commands
Checkpointing Operator Commands

Disk Error Handling
TCAM I/O Error-Recovery Procedures

Mid-Batch Recovery .
Recovery on Input
Recovery on Output

TCAM I/O Error-Recording Facility
Kinds of TCAM I/O Error Records
Intensive-Mode Error Recording
Operator Awareness Message "
Gaining Access to Error Records

Network Reconfiguration
By Operator Commands
By Application Program Macros

TCAM Checkpoint/Restart Facility .
How the TCAM Checkpoint Facility Works
How to Get the TCAM Checkpoint Facility
Types of TCAM Restart

Using TCAM's Message Logging Facility
Uses of Message Logging
How Message Logging Works .. .
How to Set Up a Message Logging Facility

Debugging Aids
Cross-Reference Table
TCAM Line I/O Interrupt Trace Table
Dispatcher Subtask Trace Table
Buffer Trace
Writing Line Trace, STCB Trace, and Buffers to a Disk Data Set
COMEDIT Printing Utility
Message Queues Data Set Dump

On-Line Test Function
Advantages of TOTE .
Devices Supported ..
System Requirements

Main-Storage Requirements
Coding Requirements
TOTE Requirements

Hardware Requirements
Scheduling and Loading Unit Tests
Prompting
Asynchronous Test Handling ..

OS/SYSGEN Requirements
JCL Requirements for TOTE/OL Ts

System Preparation
Machine and De.vice Requirements

Control Units and Terminal Types Supported
Multiprocessing System

System Generation Considerations
PreformaUing DASD Message Queues Data Sets

Appendix A: TCAM Macro Formats

Appendix B: Message Error Record

Appendix C: How to Make Transient Checkpoint and Operator Control
Modules Resident

Appendix D: Internal and Transmission Code Charts

Appendix E: Running QT AM Application Programs under TCAM

Appendix F: Summary of Operator Commands Classified by Operation .

.456

.458

.458

.459

.490

.491

.491

.493

.494

.494

.495

.495

.496

.497

.498

.498

.498

.498

.499

.502

.509

.512

.514

.514
· 515
· 515
.517
.518
.519
.521
· 523
.523
.526
.528
.530
· 531
· 532
.532
· 533
.533
.534
.534
.534
· 535
· 535
.536
· 537

.539

.539

.539

.539

.540

.543

.545

.547

· 551

· 555

· 585

.587

xi

xii

Appendix G: Device-Dependent Considerations

Appendix H: Conserving Main Storage

Appendix I: Macro Instructions for Time-Sharing Support

Appendix J: Concentrating and Deconcentrating Messages.

Glossary .

Index ..

.589

.625

.627

.653

.685

.695

Figure I.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure II.
Figure 12.
Figure 13.

Figure 14.

Figure 15.
Figure 16.

Figure 17.

Figure 18.

Figure 19.
Figure 20.

Figure 21.
Figure 22.

Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.

Figure 30.

Figure 31.
Figure 32.

Figure 33.
Figure 34.

Figure 35.
Figure 36.

Figure 37.
Figure 38.
Figure 39.
Figure 40.
Figure 41.

Figure 42.
Figure 43.
Figure 44.

Deciding Whether a TERMINAL Macro Should
be Coded for a Switched Line
Two Buffers Assigned to a Line Group; KEYLEN=60
and BUFSIZE=120
Unit Allocation when Main-Storage Queuing (with or
without Backup on Disk) is Specified
Unit Allocation when Disk-Only Queuing is
Specified
706-byte Data Movement Resulting from Size
Disparity between Input and Output Buffers
Relative Record Numbers of Disk Message Queues
Data Set Assigned Across Three Volumes
Reorganizing a Reusable Data Set
Sample MCP Activation and Deactivation Section
Sample Format for an Incoming Message
Sample Format for an Outgoing Message
Message Handler Subgroups and Macros
Scan Pointer Movement
Flow of Logical Message Formed by Blocking
Two Physical Transmissions
Flow of Logical Message Formed by Deblocking
A Physical Transmission
Message Flow for a Switched Message
Message Flow for a Message that is Processed by
an Application Program
Flow of a Two-Segment Message with a Single-Buffer
Header through an MH
Flow of a Two-Segment Message with a Multiple-Buffer
Header through an MH
Activation of a Closed. User-Written Subroutine
Deletion of Data from a Message Segment. followed by
Contraction of the Segment; KEYLEN=60 and BUFSIZE= 120
Example of Using the MSGTYPE Macro Instruction ..
Example of Using the PATH Macro Instruction to Vary
MH Processing
Example of Using the PRIORITY Macro Instruction
Example of Inserting Line Addres~
Sample Message-Switching Program (5 parts)
Sample Inquiry/Response Program (9parts)
Sample Checkpoint Coordination Program (II parts)
Interface between the Application Program and the"MCP
Relative Positions of Optional Fields in the Work
Area
Effect of a Work-Un it's Type and Format on the Way
in which TCAM Determines its Size
Example of Multiple-Wait Capability
Terminal Table DSECT for Single. Line. and Group
Entries
Sample Invitation List Containing Three Entries ..
Example of Using the CKREQ Macro Instruction for
Checkpoint Coordination
Operator Commands Classified by Areas Affected .
Equations for Determining the Size of the Checkpoint
Data Set (2 parts) .
Information Flow for Message Logging
Coding Requirements for Using TCAM Debugging Aids
Device Configurations Supported by TCAM (3 parts)
Sample JCL for IEDQXA Utility
Example of Using the IEBUPDTE Utility (prior to IPL)
for Placing a List in SYS1.PARMLIB
TCAM Internal and Device Codes (4 parts)
IBM S/360 Internal Code (EBCDIC)
USASCII Code

Figures

40

64

67

67

76

90
93

135
· 138
.140
.144

151

156

158
· 165

.166

· 168

.170
· 178

.264

.278

.285

.289

.296

.323

.330

.341
· 357

.387

.394

.412

.417

.421

.448

.492

.511

.516
· 531
.540
.543

.552

.561

.569

.570

xiii

xiv

Figure 45.
Figure 46.
Figure 47.
Figure 48.
Figure 49.

Figure 50.
Figure 51.

Figure 52.
Figure 53.

Figure 54.
Figure 55.
Figure 56.
Figure 57.
Figure 58.
Figure 59.

Figure 60.

Hexadecimal Equivalents for 6-bit Transcode
Line Code for IBM 1030 Data Collection System .. .
Line Code for IBM 1050 Data Communication System
Line Code for IBM 1060 Data Communication System
Line Codes for IBM 2260 (Remote)/2265 Display Complexes
and IBM 1053 Printer (2 parts)
Line Code for IBM 2740 Communication Terminal
Hexadecimal Equivalents for IBM 2741 (BCD) Communication
Terminal
Line Code (EBCD) for IBM 2741 Communication Terminal
Line Code (Correspondence) for IBM 2741 Communication

.571

.572

.573

.574

. 575

.577

.578

.579

Terminal . 580
Line Code for AT & T 83B3 and WU 1 f5A Terminals 581
Line Codes for AT & T TWX Terminals 582
Line Code for IBM World Trade Telegraph IT A2 583
Line Code for IBM World Trade Telegraph ZSC3 . 584
IBM 50 MDI Control Codes617
Required, Optional, and Invalid Features for TSO
Terminals
Message Flow for Incoming Concentrated Message

.634

.663

CANCELMG-210
CHECK-406
CHECKPT-212
CKREQ-446
CLOSE

Application Program-380
MCP-134

CODE-213
COMMBUF-217
COUNTER-219
CTBFORM-672
CUTOFF-22I
DATETIME-223
DCB

Checkpoint-I 05
Input-361
Line Group-79
Log-107
Message Queues-I02
Output-367

ERRORMSG-225
FORWARD-229
GET-396
HOLD-234
ICHNG-428
ICOPY-420
INBLOCK-199
INBUF-201
INEND-203
INHDR-200
INITIATE-238
INMSG-202
INTRO-I13
INVLIST-II
LOCK-241
LOCOPT-244
LOG-245
LOGTYPE-51
MCOUNT-409
MCPCLOSE-381
MHGET-247
MHPUT-249
MRELEASE-431
MSGEDIT-252
MSGFORM-266
MSGGEN-269

ACTV ATED-459
ACTVBOTH-460
AUTOSTOP-461
AUTOSTRT -462
CPRIOPCL-463
DATOPFLD-464
DEBUG-465
DPRIOPCL-467
DSECOPCL-467
ENTERING-468
ERRECORD-469
GENPOLOFF-471
GENPOLON-472
GOTRACE-472
INACTVTD-473
INTERVAL-474
INTRCEPT-474

Macro Directory

Operator Command Directory

MSGLIMIT-273
MSGTYPE-275
OPEN

Application Program-378
MCP-127

OPTION-21
ORIGIN-280
OUTBUF-205
OUTEND-207
OUTHDR-204
OUTMSG-206
PATH-282
PCB-372
POINT-433
PRIORITY-286
PUT-398
QACTION-667
QCOPY-424
QRESET-443
QSTART-585
READ-400
READY-130
REDIRECT -290
RETRY-292
SCREEN-293
SEQUENCE-297
SETEOF-299
SETEOM-301
SETSCAN-304
SLOWPOLL-309
STARTMH-193
TCHNG-426
TCOPY-417
TERMINAL-25
TERRSET -311
TGOTO-665
TLIST-43
TPDATE-41O
TPEDlT-613
TPROCESS-45
TTABLE-20
TYPET ABL-313
UNLOCK-314
WRITE-403

LNST A TUS-47 5
NOENTRNG-476
NOTRACE-477
NOTRAFIC-478
OPTFIELD-480
POLLDLAY-481
QST ATUS-482
RESMXMIT -483
RLNST ATN-484
ST ARTLINE-484
ST A TDlSP-485
STOPLINE-486
STSTATUS-487
SUSPXMIT -488
SYSCLOSE-489
SYSINTVL-490

xv

How To Use This Book

This book is a reference manual and coding guide for the system programmer who
must construct or modify a TCAM Message Control Program, or an application
programmer who must write a TCAM-compatible application program. Familiari­
ty with the overall concepts and structure of TCAM is assumed; a good way to
achieve this familiarity is to read the TCAM Concepts and Facilities publication.

The first seven chapters of the book are concerned with tasks you will encounter
in constructing a TCAM Message Control Program (MCP), such as defining
buffers, defining data sets, activating and deactivating an MCP, and actually
putting an MCP together. The eighth chapter tells how to make your application
programs compatible with a TCAM MCP. Following this is a chapter telling how
to use auxiliary services provided by TCAM, such as the checkpoint/ restart
facility, the operator control capability, and the on-line test function. The final
chapter contains information that might be useful in planning and setting up an
actual teleprocessing system incorporating TCAM-including TCAM's machine
and device requirements, a list of stations supported by TCAM, system-generation
considerations specific to TCAM, and directions for pre formatting TCAM data
sets residing on disk.

Several appendixes containing special, helpful information for the system program­
mer are located in the back of this publication. They include macro instruction
formats, transmission-code charts, and aids for conversion from QT AM to
TCAM. Of particular interest to the system programmer is the appendix on
device-dependent considerations, which should be read before an.MCP is coded.
Throughout this publication, wherever a particular device dependency would
appear, a reference is made to this appendix instead of listing the individual
consideration. Appendix I contains macro descriptions and coding considerations
for the system programmer who incorporates the Time Sharing Option (TSO) in
his system; it is intended primarily for the programmer who designs his own TSO
message-handling facilities rather than use an IBM-supplied message-handling
routine for TSO applications. Appendix J contains macro descriptions and coding
considerations for the system programmer who incorporates a message concen­
trating device in his teleprocessing network.

As a first step in familiarizing yourself with this book, look over the table of
contents. This book is organized around user tasks, rather than around macros. In
defining buffers or terminal- and line-control areas, you must code operands of
several macros. If the book were organized around the macros, you would have to
look at each operand of each macro to determine which operands pertained to
buffer definition, which to terminal- and line-control-area definition, which to
incorporating a checkpoint facility, etc. Because the book is organized around
tasks, rather than macros, you are saved much of this work. For example, the
chapter Defining Buffers contains a checklist of those TCAM macro operands
having to do with buffer definition. One of the macros mentioned in this checklist
happens to be located in the chapter Activating and Deactivating the Message
Control Program, another is in the chapter Defining the MCP Data Sets, a
third in the chapter Defining Terminal and Line Control Areas. By discussing
together those operands having to do with buffers in a section titled Defining
Buffers, the book saves you the trouble of ha\:,ing to locate these operands your­
self when you design and specify your buffers.

How to Use This Book 1

In addition, the task-oriented organization facilitates retrieval of information: to
locate information on TCAM's reusable disk queuing scheme you need only relate
reusable disk queuing to the task of defining the MCP data sets and look in the
table of contents under the chapter-heading Defining the MCP Data Sets.
Similarly, to locate information on TCAM's checkpoint facility, you need only
remember that this is a service facility and look under the chapter-heading Using
TCAM Service Facilities. Of course, this method of retrieving information by
relating it to tasks will work only if you are aware of the tasks we discuss. Each
chapter heading shown in the table of contents is the name of one such task.

References to other books appear in this publication in a shortened form; their
complete titles and order numbers appear in a table in the Preface.

2 OS/MFT and OS/MVT TeAM Programmer's Guide

Writing the Message Control Program

What the Message Control Program Is

Functions of the MCP

The Message Control Program (MCP) is a set of routines that identify the telepro­
cessing network to the IBM System/360 operating system, establish line control
required for the various kinds of stations and modes of connection, and control
the handling and routing of messages in accordance with the user's requirements.
Every teleprocessing system operated under TCAM requires one MCP.

The MCP serves as an intermediary between the remote stations, and between a
remote station and an application program. Device-dependent input/output
operations are performed by TCAM routines in the MCP, based on station and
line configurations of the system as specified in the operands of TCAM macro
instructions in the MCP.

An MCP is coded using a group of TCAM macro instructions. Coding require­
ments and restrictions for a TCAM macro are identical to those for any other
assembler language macro instruction. Assembler language conventions for
coding continuations, comments, symbols, and the length, number, and format of
operands apply to all TCAM macros.

Depending on the requirements of the user, the TCAM MCP might perform any
of the following specific functions:

• Enable and disable communication lines.
• Invite terminals to transmit messages.
• Receive messages from terminals.
• Dynamically assign buffers to incoming messages.
• Handle messages on the basis of user-specified priorities.
• Perform message-editing functions for incoming messages. Among such

functions are the following: translating from the transmission-code to
EBCDIC code; deleting line-control characters; inserting time-received and
date-received information in the message header; recording the message on a
secondary storage medium (logging); inserting or removing user-specified data
in the header; maintaining a count of the number of messages received from
each station.

• Determine the appropriate destination queue for a message and route the
message to that queue.

• Queue the message on the appropriate destination queue.
• Place response messages generated by application programs on queues for

subsequent transmission.
• Retrieve messages from destination queues and prepare them for transmission

to stations.
• Perform message-editing functions for outgoing messages. Among such

functions are the following: placing time-sent and date-sent information in the
message header; placing an output sequence number in the header; inserting or
removing user-specified data in the header; logging the outgoing message on a
secondary storage device; maintaining a count of the number of message's sent
to each terminal; inserting line-control characters; translating the message from
EBCDIC code to the appropriate transmission code.

Writing the Message Control Program 3

• Take periodic checkpoints of the system.
• Provide operator-to-system communications through system control terminals.

• Initiate corrective action when an error or unusual condition is detected.
• Cancel incoming messages containing errors.
• Reroute messages with erroneous header information to a special queue.
• Transmit error messages.

User Tasks in Writing the MCP
As a system programmer concerned with writing a Message Control Program, you
will be confronted with five basic tasks:

1. Defining the various terminal and line control areas used by the MCP;
2. Defining the buffers used by the MCP for handling, queuing, and transferring

message segments;
3. Defining the data sets referred to by the MCP;
4. Activating and deactivating the MCP data sets;
5. Defining the Message Handlers, the sets of routines that examine and process

control information in message headers, prepare message segments for forward­
ing to their destination, and route messages to their proper destinations.

In the next five chapters, we shall consider each of these tasks in detail.

4 OS/MFT and OS/MVT TeAM Programmer's Guide

Terminology

Line Control

Defining Terminal and Line Control Areas

In constructing the Message Control Program, the user must provide control
information that identifies the remote stations, specifies their characteristics to the
system, and tells how they are to be handled by TCAM. This chapter describes
how this information is specified.

In the following discussion, the word computer refers to the central computer in
the TCAM system; this is the computer that contains the Message Control
Program. Remote terminals, as well as remote computers, are referred to as
stations.

A nonswitched line (also known as a leased or dedicated line) is one over which
connections between the computer and remote stations are continuously estab­
lished. A switched line (also known as a dial line) is one over which a direct
physical connection between the computer and a remote station must be estab­
lished by dialing for data transmission to occur.

A point-la-point line connects a single remote station to the computer. Switched
lines are considered to be point-to-point. A multipoint line connects two or more
stations to the computer. For lines to Binary Synchronous Communications
(BSC) stations, a line to one station is considered to be multipoint if multipoint
BSC data-link control is used on the line.

A contention line is one over which the computer and a station may vie for use of
the line. Either the computer or a station may "seize" the line, thereby preventing
its use by another device on the line until after the device that gained control of
the line has transmitted its messages and relinquished control. All TCAM­
supported stations not assigned polling or addressing characters, except BSC dial
lines, are considered to be contention stations. A non-contention line is one for
which the computer, using certain user-specified information, determines which
station is permitted to enter or accept messages at any particular time.

The computer sends a message to a station and receives a message from a station;
sending and receiving are functions of the computer.

A station enters a message to be transmitted to the computer and accepls a
message transmitted to it from the computer; entering and accepting are functions
of a station.

Just as a computing system, with its variety of peripheral input/output equipment,
requires some means to coordinate the functioning of the various parts, the variety
of I/O equipment comprising a teleprocessing system requires a discipline to
effectively manage the flow of message traffic. A significant difference should be
noted, however. In a conventional computing system, the various I/O devices are
at the service of the programmer; the requirements of his program and the charac­
teristics of the data to be processed largely determine which input and output
devices are to be activated and when. Moreover, the I/O devices are within reach
of the computer operator; he can intervene when a device malfunctions to correct
the condition or to assign a different device. In a teleprocessing system, on the
other hand, the central computer receives data at random from remote stations,

Defining Terminal and Line Control Areas 5

and the operator at the central computer cannot exercise any direct control over
remote stations. He cannot, for example, correct a malfunctioning device at a
remote station.

A further distinction between a computing system and a teleprocessing system lies
in the handling of errors in data. With current techniques for transmitting data
over long distances, errors can be introduced into message data by unavoidable
transient line conditions, such as crosstalk and lightning strikes. Transmission
errors occur much less often in a computing system. A discipline for a telepro­
cessing system must detect transmission errors and, when possible, correct them
(as by retransmitting the message containing the errors). If the error cannot be
recovered from, its occurrence must be indicated to the user program so that
appropriate action can be taken.

The scheme of operating procedures and signals by which a teleprocessing system
is managed is called line control (for binary synchronous communications, the
term data-link control is often used). A line control scheme must consider the
functional characteristics and capabilities of the equipment and communication
lines comprising the system, as well as the operational requirements of the system.
Some specific factors that line control must consider are: How is contact to be
established between a sending and a receiving station? How is a message to be
directed to a specific station on a multistation line? What if two stations try to
send at the same time? What should be done if a station fails to respond to a
message?

Line control can be classified in two ways. The first way is by the transmission
technique (start-stop or BSC) used for the line under consideration. A set of
control characters and rules for their use is associated with each of these tech­
niques to effect the needed functions. Some of the control characters are used for
both start-stop and BSC transmission, while others are peculiar to one or the other
of the transmission techniques. For a discussion of these transmission techniques,
see the TCAM Concepts and Facilities publication.

The second way in which line control can be classified is by the communication
line configuration with which it is used. For example, line control for a switched
line differs from that for a nonswitched line in the way in which initial contact is
made.

While a given line-control scheme is identified in terms of transmission technique
and line configuration, differences may arise in the stations to be controlled and
by the presence or absence of certain features in the stations. For example, a
given line-control scheme may include the control characters needed to indicate a
transmission error and to request automatic retransmission, but some station
equipment using that line-control scheme may not be capable of error checking or
automatic retransmission. Generally speaking, all stations connected to a given
line must be designed to use the same line-control scheme, and where a certain
capability is provided by some stations but not by others, the capability cannot be
used.

It is not necessary for the TCAM programmer to specify the line-control scheme
to be used for a given line; this information is provided implicitly at system
generation time, at assembly time in the DCB macro instruction for the line group
of which the given line is a member, and in the TERMINAL macro instructions
for the stations on the line. The programmer must, however, have a general
understanding of line-control concepts to correctly structure that portion of his

6 OS/MFT and OS/MVT TeAM Programmer's Guide

program involved in message transmission, and to decide intelligently how to deal
with line-control characters in his message.

For start-stop stations, the line-control characters recognized by TCAM are EOA
and EOB. For BSC stations, the line-control characters recognized by TCAM are
STX, ETB, and ETX. TCAM removes all of these line-control characters except
the EOT from incoming messages if the LC = operand of the STAR TMH macro is
coded LC=OUT, and leaves them in incoming messages if the LC= operand is
coded LC=IN (except that line-control characters are always removed from
incoming messages in transparent mode). TCAM inserts line-control characters
into outgoing messages if the MSGFORM macro is coded in the outheader
subgroup of the Message Handler (MH) handling the outgoing message.

If the station that enters the message and the stations that are to accept it are
either all similar start-stop or all BSC, and if the user does not wish to change the
size of physical blocks of data in the message (if the message is divided into such
blocks by EOB or ETB line-control characters), then line-control characters may
be left in the message. If the originating and destination stations use different line
codes, then the CODE macro must be issued at appropriate places in the MH so
that TCAM can translate the message from the line code for the originating
station to EBCDIC, then to the line code for the destination station. TCAM's
translation tables are set up so that line-control characters for an originating
station using one line code are translated into satisfactory characters in the line
code for the destination station, provided that both the originating and the desti­
nation stations are either similar start-stop or BSC devices.

If incoming data is being blocked to form logical messages, the LC=OUT operand
of STARTMH should be specified to remove line-control characters, and the
MSGEDIT functional MH macro should be used to remove EOT characters
included in the message.

Line control may be left in a message that is processed by a TCAM application
program; of course, the user code in the application program will have to take
account of line-control characters if they are left in the message.

For a message sent between a start-stop and a BSC station, whether directly or
through an application program, the conversion of line-control characters by
TCAM's translation tables is less likely to be satisfactory. Figure 40 in Appendix
D is a chart showing the line-code equivalents of EBCDIC graphic and control
characters for each station supported by TCAM. This chart may be used to
determine the character to which TCAM's translation tables will translate an
incoming character. For example, an incoming ETB character from a BSC station
using EBCDIC line code, if left in the message, will be translated to an EOB
character if TCAM's 1050 translation table is used to translate the message from
EBCDIC to 1050 line code. (The translation table to be used by TCAM is
specified by means of the TRANS= operand of the line group DCB macro, while
the CODE macro causes translation to be performed and may be used to override
the translation table specified in the DCB.)

If the user switching messages between stations having different line codes is
satisfied with the equivalent characters provided by TCAM's translation tables,
and if he is satisfied with the size of the physical blocks (if any) in his message, he
may leave line-control characters in his message; otherwise, he should remove
line-control characters from the incoming message by specifying LC=OUT in his
STAR TMH macro, and insert appropriate line-control characters in his outgoing

Defining Terminal and Line Control Areas 7

message by coding a MSGFORM macro in the outgoing group of the Message
Handler handling the message.

Operands of MSGFORM permit the user to specify fixed outgoing blocking
factors, some of which may be overridden on a terminal-by-terminal basis. They
also permit him to specify variable-length blocking for outgoing messages. The
user specifies the number of subblocks for each block and the character that
delimits each subblock. The user who wishes to specify physical blocks of data
that differ in length within the same message may do so by inserting the appropri­
ate line-control characters in his outgoing message by coding the MSGEDIT
macro.

TCAM does not consider the ITB control character in BSC to be a line-control
character and does not remove it from incoming messages when LC=OUT is
coded in the STARTMH macro. The user may delete ITB characters by coding
the MSGFORM macro in the inblock subgroup. The MSGEDIT macro may be
used to remove and insert ITB characters, and the BLOCK= operand of the
MSGFORM macro may be used to specify a fixed interval at which ITB charac­
ters are to be inserted by TCAM into outgoing messages.

For BSC stations, another transmission variable involves the treatment of line­
control characters in a message. BSC messages may be transmitted in transparent
mode or in nontransparent mode.

The transparent mode is a type of BSC transmission in which message segments
may include certain normally restricted data-link control characters, which are
transmitted as ordinary data and not as functional control characters; the only
functional data-link control characters transmitted when a message is in trans par- ;1

ent mode are those preceded by a DLE data-link character. Transparent mode is ~
useful in transmitting messages containing binary data, fixed- and floating-point
data, packed decimal digits, source programs, and object programs, because with
such messages the binary structure of a character may be the same as that for a
data-link control character.

When a message in transparent mode arrives at the computer, TCAM automatical­
ly removes the two initial line-control characters and all functional ETB and ETX
control characters. All DLE STX sequences are also removed, except those
immediately following an ITB. These characters are removed whether or not
LC=OUT is coded in the STARTMH macro. If the user wishes to remove the
ITB, DLE, STX sequence, he may specify a MSGFORM macro in the inblock
subgroup of his Message Handler. If the user wishes to place a message in trans­
parent mode before sending it to a BSC station, he issues a MSGFORM macro
specifying SENDTRP= YES in the outheader subgroup handling messages for that
station.

In nontransparent mode, all line-control characters are treated as such, and line
control is handled as it is for start-stop stations.

In deciding whether to remove and insert line-control characters, and whether
messages to BSC stations are to be in transparent mode, the TCAM programmer
is concerned with line control at the character level. On a more general basis, he
must make decisions regarding those line-control functions used by TCAM to
establish contact between the computer and remote stations, and those functions
used to maintain an orderly flow of message traffic. The rest of this chapter
contains information to help him make and implement these decisions.

8 OS/MFT and OS/MVT TeAM Programmer's Guide

Establishing Contact

Invitation

With TCAM, contact for the purpose of message transmission may be established
in several ways, depending upon the line configuration and the stations involved.
Contact is always established under the control of the central computer, which
performs (in the channel) a number of "set-up" or preparatory operations, which
are followed by either a Read or a Write operation on the line (except when the
set-up operations determine that the remote station is not free to enter or accept
data, in which case no message transmission occurs).

In this publication, when contact is established for the purpose of receiving data
from a station, the process is called invitation; when contact precedes the sending
of data to a station, the process of establishing contact is called selection. Selec­
tion is performed when the central computer has a message to send to a station;
invitation is performed to give a station the opportunity to enter a message if it
has one ready (in some cases of invitation, the station initiates contact with the
computer to enter a message and the computer completes the invitation process).

There are two forms of invitation: contention (with or without identification
sequence exchange) and polling.

In a TCAM system either the computer or a station on a point-to-point conten­
tion line can "bid" for use of the line so that it can send a message to another
device. In some configurations, it is possible for both the computer and the
station to simultaneously bid for the line; when this happens, the computer and
the station are said to contend with each other (hence the name contention line).

For contention stations, invitation by TCAM means that TCAM gives the station
an opportunity to enter data, that is, TCAM "listens" on the line for a signal from
the station indicating that the station wishes to enter a message.

The alternative to contention involves having the central computer periodically
examine each active entry in an invitation list (discussed below) of remote stations
and invite each station to enter any input messages it has ready. Each station in
the list has a unique identifier, usually consisting of one or two characters that
cause that station, and no other, to respond. The process of contacting each
remote station in this manner is called polling, and the station identifiers are
called polling characters. Often, the first polling character identifies the station
and the second identifies a particular component of the station.

For polled nonswitched lines, TeAM commences invitation by polling the first
station listed in the invitation list for the line. (If the line is point-to-point, the
first will be the only station on it, and the invitation list for the line need contain
only one entry.) TCAM uses polling characters unique to each station to deter­
mine, station by station, whether there is a message to send. If a response is
negative, or if there is no response (that is, if the station is down), the polling
characters for the next station listed are sent; this process is repeated until a
station responds positively by entering a message. When there is no response, a
timeout will occur on the read response to polling. TCAM error recovery (ERP)
modules will gain control to retry the polling operation. This time-out is consid­
ered a temporary error, and TCAM will retry until either a response is received or
a STOPLINE is performed. To prevent system degradation due to high ERP
activity TCAM should not be started on a line for which a terminal will fail to

Defining Terminal and Line Control Areas 9

respond. Such a station is permitted to enter any messages it may have ready for
the computer and may be sent any messages that are queued for it (see
Transmission Priority in this chapter for a discussion of when sending to a station
may occur relative to receiving). After all messages are entered, the computer
interrogates the next station in the invitation list. After all the active stations in
an invitation list for a given polled line have been invited to enter a message, a
delay (equal to the number of seconds specified in the INTVL= operand of the
DCB macro for the line group) may be observed to allow for sending before
polling is restarted at the beginning of the list; if this operand is omitted, no delay
occurs. The polling interval reduces unproductive polling on lines that are not used
continually.

For nonswitched polled lines, the computer initiates contact with the stations.
However, for switched lines the station may initiate the contact by successfully
dialing the computer. The polling function in this case consists only of sending the
polling characters to the station that initiates the contact. The station responds by
entering one or more messages. The computer sends the polling characters after
each message is received.

It is possible for the computer to dial some types of polled stations on switched
lines. The user may specify computer-initiated contact by coding certain operands
of the TERMINAL macro, discussed below. In this case, the polling characters
for the station are sent once contact has been established and all messages queued
for the station have been transmitted.

Constructing the Invitation List
A TCAM system maintains control of invitation by having an invitation list,
created by an INVLIST macro instruction, for each line.

10 OS/MFT and OS/MVT TeAM Programmer's Guide

i

"

symbol

INVLIST

The INVLIST macro

• generates the invitation list for a line;
• specifies active and inactive invitation list entries;
• is required f~r each line in the system (though the same INVLIST macro may

be sufficient for more than one output-only line);
• is specified following the macros defining the terminal table.
• indicates whether TCAM is the master or slave in a contention situation on a

BSC device.

One INVLIST macro must be issued for each line in the system. with the excep­
tion of output-only lines to stations that do not use invitation sequences; a single
INVLIST macro is sufficient for all such output-only lines. The names of all
INVLIST macros for the lines in a line group must be specified. by ascending
relative line number. in the INVLIST= operand of the DCB macro for the line
group.

For each station on a line. the INVLIST macro creates an invitation list entry that
contains the invitation characters for the station (the polling characters for polled
stations. or the identification sequence assigned to TWX and switched BSC
stations using such a sequence). See Appendix G. Device-Dependent
Considerations. for particular invitation list specifications for the:

• 2260 Display Stations. both local and remote;
• 2740 Communications Terminal with the Station Control or Station Control

and Checking feature;
• BSC terminals;
• 2740 Communications Terminal with the Transmit Control or Transmit Con-

trol and Checking feature;
• TWX terminals;
• 7770 Audio Response Unit. Model 3.

No invitation characters are present in entries for contention terminals not
assigned identification sequences.

INVLIST has the following format:

Name Operation Operands

symbol INVLIST ORDER=(entry •...)[.EOT=hexchars]
[,CPUID=addr] l.MASTER= YES]

NO -

Function: Specifies the name of the macro and of the invitation list for the line.
Default: None. This name must be specified.
Format: Must conform to the rules for assembler language symbols (see the
symbol entry in the Glossary).
Notes: This name must be the same as the name specified by the INVLIST=
operand of the DCB macro for the line group containing this line.

Defining Terminal and Line Control Areas 11

ORDER= (entry, ...)

EOT =hex chars

CPUID=addr

Function: Specifies the invitation list entries for the line.
Default: None. For all output-only lines to stations having no ID sequence
assigned to them, specification optional. For all other cases, this operand must be
specified.
Format: The exact manner in which each entry is coded is described below. A
maximum of 200 entries may be coded.
Notes: For polled lines, there must be at least one entry for each station that can
enter messages on the line. Entries are specified in the order in which the stations
are to be invited to send messages.

Function: Specifies the EOT line-control character for the stations on this line.
Default: None. For lines to multipoint BSC stations, this operand must be
specified. For all other cases, this operand must not be specified.
Format: A single hexadecimal character, unframed, in the transmission-code
representation.
Notes: Appropriate EOT characters are as follows:

• for EBCDIC: 37
• for ASCII: 04
• for 6-bit Transcode: IE

Example:
For a line to multipoint BSC stations using ASCII as their transmission-code, this
operand would be coded as follows:

EOT=04

where 04 is the ASCII transmission-code representation of the EOT control
character, in hexadecimal notation.

Function: Specifies the name of a field containing the ID sequence assigned to the
computer.
Default: None. For switched lines to stations using ID sequences, when the
computer is expected to exchange ID sequences with stations on the line when
calls are made, this operand must be specified. For all other cases, specification
optional.
Format: Must conform to the rules for assembler language symbols.
Notes: The field named by addr should consist of a length byte, specifying in
binary form the number of characters in the computer ID sequence, followed by
the ID sequence itself in line code. For more information on ID sequences, see
Switched Line to Stations Using ID Sequences below. This operand also
specifies the invitation message for audio terminals.

Example:
For a switched line to stations using ID sequences and EBCDIC line code, this
operand might be coded as follows:

CPUID=CPUNAME

Somewhere within the same area of addressability in the MCP the following field
might be defined:

CPUNAME DC X'04'
DC X' D5D6D3C 1 '

12 OS/MFT and OS/MVT TeAM Programmer's Guide

MASTER= ~ ~~ ~

Here, X'04' is the hexadecimal number of bytes in the rest of the field, while
X'D5D6D3Cl' is the EBCDIC character sequence NOLA in hexadecimal nota­
tion.

Function: Specifies whether TCAM assumes the role of master or slave in point­
to-point, nonswitched contention situations. See Appendix G. Device-Dependent
Considerations for Binary Synchronous Communication (BSC) Terminals.
Default: NO
Format: MASTER=YES or MASTER=NO
Notes: MASTER= YES indicates that TCAM will continue to bid for the line in a
contention situation until the contention is resolved. MASTER=NO indicates
that TCAM will discontinue bidding for the line in a contention situation. This is
normal operation for point-to-point, nonswitched, contention stations as de­
scribed in TCAM Send and Receive Operations on a ESC Line in Appendix
G.

Each entry specified as a suboperand of the ORDER= operand consists of a
station or line name, an indicator that determines whether the station represented
by the entry is initially capable of entering messages, and a sequence of invitation
characters. This sequence of invitation characters is limited to 46 alphameric
symbols (23 hexadecimal bytes).

The station name must be the name of the TERMINAL macro for the station
being entered in the list.

The indicators to distinquish active from inactive entries are as follows:

+ indicates that the station represented by the entry is initially activated for
entering messages.

indicates that the station represented by the entry is not initially activated
for entering messages.

Entries may be both activated or deactivated for entering, accepting, or both
entering and accepting, by means of various operator commands or by an ICHNG
macro issued in an application program. When polling is used as the method of
invitation, only stations that are activated for entering are polled.

Following the indicator in an entry are the invitation characters for the station.
These will be either polling characters or an identification sequence. Invitation
characters are generally assigned to a station when it is installed. For information
on whether a particular station can be assigned identification or polling characters,
consult the component description SRL for that type of station. Invitation
characters are specified in transmission-code representations converted to hexade­
cimal notation. (For conversion tables, see Appendix D.) Each group of invita­
tion characters in a list must be of the same length.

An invitation list entry might be coded as follows:

NYC+E40D

Here NYC is the name of an IBM 1050 terminal in New York City, + indicates
that this entry is active for entering messages, and E40D is the IBM 1050

Defining Terminal and Line Control Areas 13

transmission-code representation of the polling characters B6 in hexadecimal
notation.

Because one operand of a macro is limited to 255 characters, TCAM provides a
facility to specify additional INVLIST entries if necessary. A comma placed as
the last character of the last entry field; that is,

INVLIST ORDER=(entry,entry, ... entry,)

indicates a continuation of the macro. The next source statement would then be
coded

INVLIST ORDER=(entry, entry, ...)

There is no limit (other than the maximum of 200 entries that may be specified)
on the number of continuation statements used.

The exact manner in which the INVLIST macro is coded depends upon the line
configuration and upon station features. The following paragraphs describe the
possible ways in which INVLIST may be coded.

Nonswitched point-to-point or multipoint lines to stations using polling characters
Issue one INVLIST macro for each such line, and code at least one entry for each
station (active and inactive) on the line. Each entry sQould include the terminal
name, the active or inactive entry indicator, and the polling characters assigned to
the terminal. If a terminal is to be polled more than once in one pass through the
invitation list, specify more than one entry for this terminal-the terminal will be
polled once for each active entry specified. To poll a specific component oJ a
terminal, specify the second polling character, which identifies that component.

Example 1:
The following INVLIST macro creates the required invitation list for a non­
switched multipoint line having three IBM 1050s as terminals.

LISTl INVLIST ORDER=(NYC+E40D,BOS+E20D,NYC+E40D,
PHI-E715)

TCAM uses the invitation list created by this macro to poll the IBM 1050 termi­
nals located in New York City (NYC), Boston (BOS), and (again) New York
City, in that order. The New York City terminal is polled twice as often as the
Boston terminal. The Philadelphia terminal (PHI) is inactive until activated by the
operator control facility or by an ICHNG macro issued in an application program.
E40D, E20D, and E715 are the IBM 1050 transmission-code representations of
the polling characters B6, A6, and CO, respectively, in hexadecimal notation. +
means the terminal is initially active; - means the terminal is initially inactive.

Example 2:
The following INVLIST macro creates the invitation list for a nonswitched
multipoint line having one BSC IBM 2780 and one BSC IBM 1130, using the
Auto Poll hardware feature.

LIST2

14 OS/MFT and OS/MVT TeAM Programmer's Guide

INVLIST ORDER=(BAL+C2F62D,DET+32C42D),
EOT=37

TCAM uses the invitation list created by this macro to auto poll an IBM 2780
located in Baltimore (BAL) and an IBM 1130 located in Detroit (DET), in that
order. The transmission-code for the terminals being autopolled is EBCDIC; the
C2F6 and C4 are the hexadecimal-notation form of the EBCDIC representation
of the polling characters B6 and D, respectively. The 2D ending each entry is the
hexadecimal-notation form of the EBCDIC representation of the ENQ line­
control character, which must be included with all BSC polling sequences. The 32
in the Detroit entry is the hexadecimal-notation form of the EBCDIC SYN
character, used to pad the DET polling sequence to the length of the BAL se­
quence. The EOT= operand presents the hexadecimal form of the EBCDIC EOT
character; it must follow all entries in an INVLIST macro for autopolled terminals
using EBCDIC transmission code.

Switched lines to terminals using polling characters
Issue one INVLIST macro for each such line. Polling characters for all polled
terminals assigned to a switched line (by means of each terminal's TERMINAL
macro, described below) must be identical. Since all terminals assigned to the
same line have the same polling characters, it is necessary to code only one
representative entry as the operand of the INVLIST macro for a line; this entry
names anyone of the terminals assigned to the line, and gives the polling charac­
ters for all terminals assigned to the line. A + should be coded for each entry. If
a TERMINAL macro with the operand UTERM= YES is issued for the line, code
the name of that TERMINAL macro, rather than the name of a terminal, in the
representative entry.

Example:
The following INVLIST macro creates the invitation list for a switched line having
three polled IBM 1050 terminals (NYC, BOS, and PHI) assigned to it.

LIST3 INVLIST ORDER=(NYC+E40D)

Whenever one of the three terminals calls in (or is called), TCAM uses the polling
characters represented in hexadecimal notation by E40D to invite it to enter a
message. E40D is the IBM 1050 transmission-code representation of the polling
characters B6, in hexadecimal notation.

Note that only one of the three terminals is used to create the entry in the invita­
tion list. If this entry were inactive (that is, if - rather than + were coded), none
of the three terminals assigned to the line could enter messages.

Switched lines to stations using ID sequences
Issue one INVLIST macro for each such line. Code one entry for each ID se­
quence assigned to one or more stations on the line, and code the CPUID=
operand if the computer is assigned an ID sequence. Each ID sequence is entered
in its transmission-code representation, converted to hexadecimal notation. No
framing characters or quotes are used. A + should be coded for each entry.

If each station assigned to a switched line has its own unique ID sequence, then
one entry is coded for each station. Each entry consists of the station name, the
active or inactive entry indicator, and the ID sequence assigned to the station.
(See Example 1 below.)

If two or more stations assigned to a switched line share the same ID sequence,
then one entry is coded for each different ID sequence assigned to a station or
stations on the line. If a TERMINAL macro specifying UTERM= YES is issued

Defining Terminal and Line Control Areas 15

for the line, then each entry consists of the name of the TERMINAL macro, the
active/inactive entry indicator, and an ID sequence. If no such TERMINAL
macro is issued, then each entry consists of the name of a representative station
using the ID sequence mentioned in this entry, the active/inactive entry indicator,
and an ID sequence. (See Example 2 below. For guidance on when to code a
TERMINAL macro using UTERM= YES, see the discussion of the TERMINAL
macro.)

If a switched station calls in and enters an ID sequence, TCAM uses the ID
sequence to establish the origin of messages entered by the station. If a switched
station (one that is assigned a non-unique ID sequence and that is represented by
an invitation-list entry specifying the name of a TERMINAL macro coded for a
line) calls in and fails to identify itself by means of an origin field in a message
header, the station will not receive any messages during the call because TCAM
does not know whose messages to send unless there are messages queued for the
line. If a switched station (one that is assigned a non-unique ID sequence and that
is represented by an invitation-list entry specifying the name of a representative
station using the ID sequence) calls in and fails to identify itself by an origin field
in a message header, during the call the station receives those messages queued for
the station named in the invitation-list entry, even if the calling station and the
station named in the invitation-list entry are two different stations.

If a switched station calls in and enters an ID sequence, TCAM searches for the
ID sequence in the invitation list associated with the line over which the station
called in. If the ID sequence is not found in an entry in the invitation list for this
line, TCAM conducts a search of the invitation lists for any lines in this line group
that have a higher relative line number than that assigned to the line over which
the station called in. TCAM searches these invitation lists according to ascending
relative line number until either the ID sequence is found in a list or the invitation
list for the highest-numbered line in the line group has been searched. If the ID
sequence is found, TCAM assumes that the station associated with that ID
sequence in the invitation list is the calling station, and maintains the connection.
If the ID sequence is not found, TCAM breaks the connection with the calling
station, thereby freeing the line.

Example 1:
The following INVLlST macro creates the invitation list for a switched line having
three IBM 2770 terminals (named NYC, BOS, PHI) assigned to it. Each of these
terminals is assigned a unique ID sequence; that for NYC is AA, that for BOS is
BB, while that for PHI is CC. PHI is not to be initially eligible for entering data.
The computer is assigned the ID sequence POKI. The stations use EBCDIC line
code.

LIST4 INVLIST ORDER=(NYC+C1Cl,BOS+C2C2,PHI-C3C3),
CPUID=IDFIELD

Here CtCl, C2C2, and C3C3 are the EBCDIC transmission-code representa­
tions of the ID sequences AA, BB, and CC, respectively, in hexadecimal notation.
Somewhere within the same area of addressability in the MCP the following field
is defined:

IDFIELD

16 OS/MFT and OS/MVT TeAM Programmer's Guide

DC
DC

X'04'
X'D7D6D2Fl '

Here, 04 is the hexadecimal length of the rest of the field. D7D6D2Fl is the
EBCDIC representation of the ID sequence POKl, in hexadecimal notation.

Example 2:
The following INVLIST macro creates the invitation list for a switched line having
six IBM 1130 stations assigned to it. Three of these stations are assigned the ID
sequence BATCHl, while the remaining three are assigned the ID sequence
BATCH2. The computer is assigned the ID sequence RAL. The stations use
EBCDIC transmission code. A TERMINAL macro with UTERM= YES speci­
fied, named RELLN3, has been issued for this line.

LISTS INVLIST ORDER=(RELLN3+C2C1E3C3C8Fl,
RELLN3+C2C1E3C3C8F2),
CPUID=IDADDR

Here, C2CIE3C3C8Fl and C2CIE3C3C8F2 are the EBCDIC transmission­
code representations of the ID sequences BATCHI and BATCH2, respectively, in
hexadecimal notation. Elsewhere in the MCP the following field is defined:

IDADDR DC
DC

X'03'
X'D9C1D3'

Here, 03 is the hexadecimal length of the rest of the field. D9CID3 is the
EBCDIC transmission-code representation of the ID sequence RAL, in hexadeci­
mal notation.

Switched or nonswitched contention lines to terminals not assigned ID sequences
If only one station is assigned to the line, include the station name and the active
or inactive indicator in the entry portion of the macro. If more than one station is
assigned to the line, include the name of a representative station and the active or
inactive indicator in the entry portion of the macro. For IBM 2740 Basic and IBM
2780 stations for which equal priority is specified in the line group DCB macro,
include the station name and the active or inactive indicator in the entry portion of
the macro.

Example:
The following INVLIST macro creates the invitation list for a nonswitched line to
an IBM 2740 Basic terminal in New York City (NYC).

LIST6 INVLIST ORDER=(NYC+)

Output-only lines to stations having no ID sequences assigned to them
Issue one INVLIST macro to serve all such lines; the name of this macro should
be specified in the INVLIST= operand of the DCB macro for each output-only
line group. No operand is coded for this INVLIST macro. (Stations having ID
sequences assigned to them must appear as entries in the INVLIST macro for their
line, regardless of whether or not the line is output-only.)

Example:
The following INVLIST macro creates the invitation list for all output-only lines
to stations having no ID sequences assigned to them.

LIST7 INVLIST

Defining Terminal and Line Control Areas 17

Selection
Selection is the process by which contact is established between the computer and
a station for the purpose of transmitting data from the computer to the station.

As is the case with invitation, there are basically two forms of selection. One of
these is used with contention stations (which mayor may not be equipped with a
feature permitting identification sequence exchange), the other involves transmis­
sion by the computer of addressing characters (similar to polling characters) to a
station preparatory to sending the station a message. Response to the transmis­
sion of these characters indicates whether the terminal can accept the message.

The contention form of selection is similar to the contention form of invitation,
described above. When the computer has a message to send to a contention
station, it waits until the line is free of traffic and then seizes it; once it has control
of the line, the computer merely sends the message to the terminal.

When addressing characters are used in selection, the selection process is closely
related to the polling form of invitation, described above. That is, the flow of
messages to and from a station is controlled by the computer according to an
orderly scheme. The nature of this scheme is discussed in the section
Maintaining Orderly Message Flow. Addressing characters are defined in the
TERMINAL macro.

Constructing the Terminal Table
In selecting a station or application program, TeAM uses information provided by
TeAM macros at assembly time and stored in control areas. The control areas
used in selection all depend upon the terminal table. The terminal table consists
of blocks of information about each station and application program; each such
block is called a terminal entry.

There are eight types of terminal entries:

• A single entry in the terminal table defines a single station. A single entry is
created by a TERMINAL macro; one such entry must be created for each
station in the system that is not defined by a group or line entry (see below).

• A group entry represents a group of terminals on a line that have a group
addressing feature (whereby all terminals on a multipoint line recognize ad­
dressing characters, but only one of the terminals responds); specification of a
single set of addressing characters results in simultaneous transmission of a
message to all terminals in the group. If a terminal that is a member of a group
is also to be addressed individually, or is to be polled, it must be represented by
a single entry as well. A group entry is defined by a TERMINAL macro and is
for output only.

• A component entry defines a component of a station that may be addressed
individually-forexample, a card reader or a printer on an IBM 1050 station. If
more than one component of a station may be addressed individually, a compo­
nent entry may be required for each. A component entry is defined by a
TERMINAL macro.

• A line entry defines a switched line that is used for input or input/output
operations. The line entry is used to supply device characteristics for stations
that call in on a switched line before they identify themselves (by the origin
field in a message header, as checked by an ORIGIN macro in the Message
Handler), and for stations that call in and never identify themselves. The entry
is defined by a TERMINAL macro specifying UTERM= YES.

• A distribution list entry contains a list of pointers to single, group, cascade, or

18 as/MFT and as/MVT TeAM Programmer's Guide

process entries. When a message or FORWARD macro contains the list name
as its destination code, TCAM sends the message by separate transmissions to
all stations indicated by the list. Each station on the list must have a corre­
sponding single or group entry in the terminal table. A distribution list entry is
defined by a TLIST macro.

• A cascade list entry contains a list of pointers to single, group, or process
entries. When a message or FORWARD macro contains the list name as its
destination code, the message is queued to be sent to that single valid station or
opened process entry in the list that has the least number of messages queued
for it. A valid station is one that is capable of accepting a message, and that is
on a line for which the line group data set has been opened. If more than one
valid station has the smallest number of messages queued, the message is
queued for the first in the list. If no station is valid or if all queues are of the
same length, the message is queued for the first station in the list. A cascade
entry is defined by a TLIST macro.

• A process entry represents an application program. One process entry must be
defined for each queue to which an application program can issue a GET or
READ and at least one must be defined for all PUTs or WRITEs from the same
application program. One open input or output DCB in the application pro­
gram is associated with each process entry. A process entry is defined by a
TPROCESS macro.

• A logtype entry represents a queue of complete messages for a logging medium.
A logtype entry is defined by a LOGTYPE macro.

The size, structure, and contents of the terminal table depend upon information
provided by the user through the TTABLE, OPTION, TERMINAL, TLIST,
TPROCESS, and LOGTYPE macro instructions. These macros are described in
this chapter.

Macro instructions defining the terminal table are coded as a group. For an
example of a coding sequence for a terminal table, see the chapter Putting the
MCP Together.

Defining Terminal and Line Control Areas 19

TTABLE

symbol

LAST=name

MAXLEN=integer

OLTERM=n

The TT ABLE macro

• defines the start of a terminal table;
• names the last entry in the table;
• is required as the first macro defining the terminal table;
• is issued only once.

An operand of TT ABLE specifies the name of the last macro issued in the section
of code defining the terminal table; thus, TT ABLE defines the beginning and end
of the terminal table coding section. The TT ABLE macro must be followed
immediately by the macros defining the terminal table.

TT ABLE has the following format:

Name Operation Operands

[symbol] TTABLE LAST =name[,MAXLEN =integer]
[,OLTERM=n]

Function: Specifies the name of the macro and the name of
the terminal name table (an internal table associated with the terminal table).
Default: None. Specification optional.
Format: Must conform to the rules for assembler language symbols (see the
symbol entry in the Glossary).

Function: Specifies the name of the last entry in the terminal table (that is, the
name of the last TERMINAL, TLIST, or TPROCESS macro coded).
Default: None. This operand must be specified.
Format: Must conform to the rules for assembler language symbols.

Function: Specifies the number of characters in the name of the terminal table.
Default: None. Specification optional.
Format: An unframed decimal integer.
Maximum: 8
Notes: If this operand is omitted, the length of the last entry in the list is as­
sumed. The operand is not necessary if the lengths of all terminal table entry
names are the same, or if the last entry is the longest.

Function: Specifies the number of dummy terminal name table entries to be
allocated when using TOTE. See the description of TOTE in the section Using
TeAM Service Facilities.
Default: OLTERM=O. If zero dummy entries are allocated to TOTE, no remote
station can be the control terminal or the alternate printer.
Format: An unframed decimal integer.
Maximum: 255

20 OS/MFT and OS/MVT TeAM Programmer's Guide

OPTION

The OPTION macro

• permits space to be reserved for an option field related to a station, component,
line, or application program;

• must be specified before any TERMINAL, TLIST, or TPROCESS macros;
• is optional among the macros defining the terminal table.

OPTION macros are issued as a group; in conjunction with the OPDAT A=
operands of the TERMINAL and TPROCESS macros they define the option
table, a storage area containing option fields related to individual stations, compo­
nents, lines, or application programs. Access to the option fields is gained by
certain Message Handler routines that need source- or destination-related storage
in order to perform their functions. Among the MH macros that invoke routines
to gain access to the option fields are the following: STARTMH,INHDR,
INBUF, INMSG, OUTHDR, OUTBUF, OUTMSG, COUNTER, ERRORMSG,
FORWARD, LOCOPT, MSGLIMIT, PATH, and REDIRECT. To gain some
insight into the function of option fields, the reader should turn to the individual
discussions of these macros in the chapter Designing a Message Handler.
User-written routines can also gain access to information in an option field.

Taken together, the OPTION macros issued by a user define a complete set of
option fields; all or part of this set may be assigned to a particular station, compo­
nent, line, or application program by coding the OPDA T A= operand of the
TERMINAL or TPROCESS macro (see the example below). An OPTION macro
merely gives an option field a name and describes the type and length of the field
in assembler language format; an area of storage is neither initialIzed nor actually
allocated for the field unless the field is specified for a particular station, compo­
nent, line, or application program by means of the OPDATA= operand of the
TERMINAL or TPROCESS macro. Up to 254 option fields, each of which may
be as large as 255 bytes, may be defined in an MCP by OPTION macros. All or
any part of the set of option fields may be allocated to each station, component,
line, or application program represented by a terminal-table entry. For the set of
option fields for a particular entry in the terminal table, the last option field must
be within 254 bytes of the first.

A new area of storage having the name and attributes specified by the OPTION
macro defining an option field is assigned to each station, component, line, or
application program whose TERMINAL or TPROCESS macro initializes that
field. Each TERMINAL or TPROCESS macro may initialize a field differently;
hence different stations, components, lines, or application programs may be
assigned option fields having identical names and attributes, but different con­
tents. This feature allows the user to tailor the functions of a macro gaining access
to an option field to meet the needs of a particular station, component, line, or
application program. For example, the COUNTER macro maintains a count of
messages or message segments received from or sent to a station. This counter j s
located in an option field for that station. If the OPTION macro for this field is
named COUNT, and if the COUNTER macro names COUNT as the field in
which the counter should be maintained, then a separate counter will be main­
tained for each station that uses the OPDAT A= operand of the TERMINAL
macro to initialize COUNT.

A macro coded in an inheader, inbuffer, or inmessage subgroup handling messages
entered by stations on a line gains access to the specified option field for the

Defining Terminal and Line Control Areas 21

opfldname

typelength

station that entered the message being processed. (If the originating station is
unknown because it called in on a switched line and failed to identify itself, access
to specified option field for the line entry associated with this line is gained.) A
macro coded in an outheader, outbuffer, or outmessage subgroup handling
messages destined for stations on a line gains access to the specified option field
for the station that is to accept the message being processed. A macro coded in an
outheader, outbuffer, or outmessage subgroup handling messages destined for an
application program, gains access to the specified option field associated with the
process queue to which the GET or READ macro that is moving this message to
the application program is directed. A macro coded in an inheader, inbuffer, or
inmessage subgroup handling messages being received from an application pro­
gram gains access to the specified option field for the process entry associated
with the DCB named in the PUT or WRITE macro.

OPTION has the following format:

Name Operation Operand

opfldname OPTION typelength

Function: Specifies the name of the option field.
Default: None. This name must be specified.
Format: Must conform to the rules for assembler language symbols (see the
symbol entry in the Glossary).

Function: Specifies the type and length of the option field.
Default: None. This operand must be specified.
Format: Standard assembler language format (for example, H, CL8, AL3). All
assembler language codes may be used. However, B, C, P, X, and Z must be
coded with a length attribute (for example, CLS, BL4). Duplication factors are
not allowed; that is, ABC OPTION 3DLS is an invalid macro.
Notes: When the option field is used in conjunction with the FORWARD,
ERRORMSG, or REDIRECT macro, a character string of length n must be
specified, where n is the length in bytes of the data in the OPDATA= operand of
the TERMINAL or TPROCESS macros that initialize the fields.

If used with counter, typelength should be specified as H, since this macro requires
a halfword field on a halfword boundary.

If used with INBUF, INHDR, INMSG, OUTBUF, OUTHDR, OUTMSG, PATH,
or MSGLIMIT macros, typelength should specify a one-byte field (for example,
FLI, ALl). No boundary alignment is required.

If used with STARTMH, typelength will specify a one- or four-byte field, depend­
ing upon which STARTMH operand names the option field.

Points to remember:

• OPTION macros, if used, must be issued as a group and must immediately
follow the TT ABLE macro.

• The order in which OPTION macros are arranged determines the order in
which initialization data must be specified in the OPDATA= operand of the

22 OS/MFT and OS/MVT TeAM Programmer's Guide

TERMINAL or TPROCESS macro. If a field specified by an OPTION macro
is not to be defined for a particular station, component, line, or application
program, then a comma should be coded in place of the data for this field in the
OPDATA= operand (but trailing commas should not be coded).

• OPTION macros should be arranged so as to prevent waste of storage space in
the option table. For example, if three OPTION macros are coded

AA OPTION FLl
AB OPTION CL4
AC OPTION H

the halfword specification for the AC field causes the assembler to perform
boundary alignment. Since the AC field may not already be on a halfword
boundary, one byte of storage area in the option table may be wasted for each
terminal for which these option fields are defined. To conserve storage space,
the above macros should be coded as follows:

AC OPTION H
AA OPTION FLl
AB OPTION CL4

If four OPTION macros are coded

BA OPTION F
BB OPTION CLl
BC OPTION H
BD OPTION CLl

two bytes of storage area in the option table will be wasted for each station
after the first for which these option fields are defined. To conserve storage
space, the macros should be coded:

BA OPTION F
BC OPTION H
BB OPTION CLl
BD OPTION CLl

• In coding an OPTION macro, the user must specify the type and length of the
option field to be generated. This information is contained in the discussion of
the individual macro that gains access to the option field.

Example:
In the following example, the TT ABLE macro defines the beginning and end of
the terminal table section of the Message Control Program. The OPTION mac­
ros, which are a part of this section of code, define fields in the option table that
are used by the COUNTER, MSGLIMIT, REDIRECT, ERRORMSG, and PATH
macros.

TTABLE LAST=PROC
COUNT OPTION H
MSGLMT OPTION FLl
REDRECT OPTION CL3
ERRMSG OPTION CL4
PATHSW OPTION FLl

TT ABLE defines PROC as the name of the last entry in the terminal table. The
OPTION macros define an II-byte optional area for entries in the terminal table.
The optional area consists of five fields:

Defining Terminal and Line Control Areas 23

• COUNT defines a halfword for decimal data to be used by the COUNTER
macro.

• MSGLMT defines one byte for decimal data to be used by the MSGLIMIT
macro.

• REDRECT defines a character string consisting of three bytes naming the
terminal; this data is used by the REDIRECT macro.

• ERRMSG defines a character string consisting of a four-byte terminal name;
this data is used by the ERRORMSG macro.

• P A THSW defines one byte for eight binary path switches to be tested by
various delimiter macros.

If the OPDA T A= operand of a TERMINAL macro were coded

OPDATA=(O,O,NYC,PITT,3)

an II-byte storage area would be set aside in the option table for use by MH
macros in handling messages to and from that terminal. The COUNT and
MSGLMT fields would initially contain 0, the REDRECT field would contain
NYC, the ERRMSG field would contain PITT, and the PATHSW field would
contain 3.

If the OPDATA= operand of another TERMINAL macro were coded

OPDATA=("NYC,PITT)

a 7 -byte storage area would be set aside in the option table for use by MH macros
in handling messages to and from that terminal. Only the REDRECT and
ERRMSG fields would be created.

Note that for an option field to be created for any particular terminal, two condi­
tions must be satisfied:

1. An OPTION macro defining the field must be issued.
2. The field must be initialized in the OPDATA= operand of the TERMINAL

macro for that terminal. If a comma is coded in place of a field in the
OPDATA= operand, no space is set aside for that field. If the OPDATA=
operand of a TERMINAL macro is omitted, no option fields are set aside for
that terminal.

24 OS/MFT and OS/MVT TeAM Programmer's Guide

'~

TERMINAL

The TERMINAL macro

• creates a single, group, or line entry in the terminal table;
• specifies the type of queuing to be used (that is, queuing by line or queuing by

terminal)";
• specifies the addressing characters to be used in addressing a station;
• specifies when the computer is to initiate contact with switched stations;
• specifies how often the computer is to initiate contact with switched stations;
• designates secondary operator control stations;
• specifies initial data for the option table;
• specifies an alternate destination for messages sent to the station for which this

TERMINAL macro is issued;
• overrides the buffer size specified by the BUFSIZE= operand of the line group

DCB, for output only;
• specifies blocking factors to be used for inserting control characters in outgoing

messages destined for this station, when a MSGFORM macro is executed in an
outheader subgroup handling such messages;

• is required for each single or group station or line entry in the TCAM system.

The TERMINAL macro causes an EBCDIC name of a station or line, and infor­
mation associated with the station or line, to be included as an entry in the termi­
nal table. If a single station or component is involved, TERMINAL produces a
single entry in the terminal table. If a group of stations having the group address­
ing feature is involved, TERMINAL produces a group entry. If a line is involved,
TERMINAL produces a line entry.

One TERMINAL macro should be coded for:

1. Each station (whether switched or nonswitched) that can accept messages, and
for some terminals that can only enter messages (see Coding the TERMINAL
Macro for a Line below).

2. Each group of nonswitched terminals equipped with the group addressing
feature. Terminals can only accept messages under the group addressing
feature; they cannot enter messages. Each terminal in the group that can also
enter messages, or that can be addressed separately, must also be represented
by a single entry.

3. Each switched line to stations that do not uniquely identify themselves after
calling the computer.

For guidelines on coding the TERMINAL macro for a line and for a component,
see the next two sections of this chapter.

TERMINAL macros for stations on a line must be issued together, and the groups
of TERMINAL macros for each line in a line group must be in ascending relative
line sequence.

When TERMINAL macros are issued for the individual components of a station,
the macros for the components must immediately follow that for the station.

Defining Terminal and Line Control Areas 25

See Appendix G. Device-Devendent Considerations, for particular specifications
for the

• 1030 Station;
• 2260 Display Station (remote);
• 2740 with Station Control or Station Control and Checking feature;
• 2740 with the Transmit Control or Transmit Control and Checking feature;
• 2740 Basic Terminal;
• 2740 Model 2 Communications Terminal;
• 2741 Communication Terminal;
• 2770 Data Communications System;
• 2790 Data Communications System;
• IBM 3270 Information Display System
• IBM 3670 Brokerage Communication System
• IBM 3780 Data Communication Terminal
• BSC stations;
• AT & T 83B3 stations.

TERMINAL has the following format:

Name Operation Operands

symbol TERMINAL QBY={~}
,DCB=dcbname
,RLN=integer
,TERM=type
,QUEUES=form
['DIALNO={CharS r

NONE
[,ADDR=chars]
[,LEVEL= (integer , ...)]
[,CLOCK=time]
[,CINTVL=integer]
[,BUFSIZE = integer]
[,ALTDEST=entry]
[,BFDELAY = integer]
[,NTBLKSZ= (blocksize,subblocksize)]
[,TBLKSZ=integer]
[,OPDATA=(data, ...)]
[,RETRY =integer]

[,LMD={~~S~

LMB={~~~
[,SECTERM= {~~SP

[,FEATURE= {ATTN J
NO ATTN

[,COMP= {~~S} 1
[,UTERM= fYES}]

tNO

26 OS/MFT and OS/MVT TeAM Programmer's Guide

symbol

QBY= {~}

DCB=dcbname

RLN=integer

Function: Specifies
Default: None. This name must be specified.
Format: Must conform to the rules for assembler language symbols (see the
symbol entry in the Glossary).
Notes: This name can appear in an origin or destination field of a message
header. SYSCON may not be used.

If more than one TERMINAL macro is specified for the same buffered station (by
coding two TERMINAL macros, with different names, for the same station),
message segments may become intermixed during sending or receiving operations.
Furthermore, a text segment may be treated as a header segment. For these
reasons, coding more than one TERMINAL macro for the same buffered station
is not a recommended procedure, unless tlie TERMINAL macros are coded for
components rather than for the station itself.

Function: Specifies the type of message queuing
Default: None. This operand must be specified.
Format: Tor L.
Notes: T specifies that outgoing messages are to be queued by station; that is, all
messages for a given station on a line are sent in priority order before any mes­
sages for other stations on that line are sent (except for 2770 stations for which
BFDELA Y = is coded; messages are sent to these stations a buffer at a time). T
should be specified for switched stations, and must be specified for stations using
TCAM's buffered-terminal support or for a TCAM terminal that includes logical
messages. For a more complete discussion of queuing by station, see Maintaining
Orderly Message Flow in this chapter. L specifies that outgoing messages are to
be queued by line; messages for all stations on the line are sent on a first-ended
first-out basis within priority groups. If L is specified for stations on a switched
line, when contact is made with a station on that line, all messages on the queue
are sent to that station, regardless of what station they are intended for. For a
more complete discussion of queuing by line, see Maintaining Orderly Message
Flow in this chapter. This operand is ignored if the TERMINAL macro is coded
for a component or for a line (that is, the UTERM= operand of the TERMINAL
macro must either be omitted or must specify NO).

Function: Specifies the name of the data control block for the line group in which
the station is included.
Default: None. This operand must be specified.
Format: Must conform to the rules for assembler language symbols.

Function: Specifies the relative line number, within the line group, of the access
line over which the computer and the station communicate.
Default: None. This operand must be specified.
Format: An unframed decimal integer.
Maximum: 255
Notes: For a discussion of how relative line numbers are assigned, see DD
Statements for a Line Group. For a switched station on a line for which no
TERMINAL macro coded for a line is issued and for which no message priority is
used, any access line in the group may be specified. When the computer calls a

Defining Terminal and Line Control Areas 27

\
TERM=type

QUEUES=form

station assigned to a switched line, it attempts to make the call using the line
whose relative line number is specified. If that line is unavailable, the line whose
relative line number is greater than that specified by integer is examined; this
process is repeated until a free line is found or until all lines in the group that have
relative line numbers higher than the integer specified for this station have been
examined. If all higher-numbered lines in the line group are unavailable, the
station is not dialed at this time. Dialing is postponed until a suitable line is
available.

If message priority is used for switched lines for which no TERMINAL macro
coded for a line is issued, this operand should be coded RLN = 1.

Function: Specifies the terminal type.
Default: None. This operand must be specified.
Format: This operand may be replaced by any of the following values. 1030,
1050, 1060, 226L (2260 Local), 226R (2260 Remote), 226C (2260 Control),
2265, 274A (nonswitched Basic 2740 Model l), 274B (switched 2740 Modell),
274C (nonswitched 2740 Modell with Station Control), 274D (nonswitched
2740 Modell with Station Control and Checking), 274E (switched 2740 Modell
with Transmit Control and Checking), 274F (nonswitched 2740 Modell with
Checking), 274G (switched 2740 Modell with Checking), 274H (switched 2740
Modell with Transmit Control), 2741 (2740 Model 2 with Checking), 274J
(2740 Model 2 without Checking), 2741, 2760, 277A (polled 2770), 277B
(non-polled 2770), 278A (polled 2780), 278B (non-polled 2780), 373A (polled
3735), 373B (non-polled 3735), 7770, l13A (polled 1130), l13B (non-polled
1130), 202A (polled Model 20), 202B (non-polled Model 20), 83B3, l15A
(Western Union Plan l15A outstations on a nonswitched network), 3335 (AT & T
33/35 Dial), WTTY (World Trade telegraph terminals), S36B (non-polled (j
System/360). 327C (3270 Remote Control), 327L (3270 Local), 327R (Remote ~
Clustered), 327S (3270 Standalone Remote), 367A (Polled 3670), 367C
(Broadcast 3670), BSCl, BSC2, BSC3.

BSC1, BSC2, and BSC3 are convenient ways of specifying a category of termi­
nals. BSC1 represents point-to-point, nonswitched terminals (113B, 180B, 202B,
373B, S03B, S36B). BSC2 represents point-to-point switched terminals (same
devices as BSCl). BSC3 represents multipoint terminals (113A, 180A, 202A,
2972 (2970 Terminal), 363A (3670 Terminal), 367 A, S03A, S36A (S/360).
Notes: The TERM= operand can be written either of two ways.

TERM=202A or TERM=BSC3

Function: Specifies
where the message queues are to be
maintained.
Default: None. This operand must be specified.
Format: DR, DN, MO, MN, or MR.
Notes: For a discussion of this topic, see Message Queues Data Sets.

If queuing is by terminal, this operand must be specified for all TERMINAL
macros for a station on the line. If queuing is by line, this operand must be
specified for the first TERMINAL macro coded for a station on the line, but may
be omitted for subsequent TERMINAL macros for stations on the line.

28 OS/MFT and OS/MVT TeAM Programmer's Guide

D1ALNO= {chars }
NONE

ADDR=chars

DR specifies reusable disk queues.
DN specifies nonreusable disk queues.
MO specifies main-storage-only queues.
MR specifies main-storage queues with backup on reusable disk.
MN specifies main-storage queues with backup on nonreusable disk.

If MO is specified, the distribution list, multiple routing, and REDIRECT facilities
should be used with care, since one extra buffer is required to accommodate every
destination other than the original destination.

If the form of data set specified by this operand does not correspond to a related
message queues data set specified in the DCB, TCAM terminates abnormally.

If MO, MR, or MN is specified, the MSUNITS= operand of the INTRO macro
must specify a nonzero integer; otherwise, the TERMINAL macro does not
assemble properly and an MNOTE is generated.

Function: Specifies the telephone number of the station.
Default: None. Specification optional.
Format: chars or NONE. chars is a decimal field with no framing characters.
Notes: This operand tells TCAM whether a station is on a switched or a non­
switched line, and it must be specified for switched stations. chars is the tele­
phone number of the station.

DIALNO=chars must be specified if the CINTVL= operand of this macro is
specified. DIALNO=NONE specifies that this station is on a switched line, but
the computer may not initiate calls to it. DIALNO=NONE must be specified if
the transmission control unit for the line over which contact is to be established
with the station does not have the Auto Call feature and should be specified if
Inward W A TS lines are to be used to best advantage. The user also must specify
all optional features (for instance, Auto Call and Auto Answer) at system genera­
tion time for lines or their related terminals.

If this operand is omitted, the station for which this TERMINAL macro is coded
is assumed to be on a nons witched line.

Function: Specifies the addressing characters for the station, or specifies the
end-to-end control sequence for switched or nonswitched point-to-point 2770 or
2780 stations.
Default: None. Specification optional.
Format: Unframed hexadecimal equivalent of the appropriate transmission-code
representation.
Notes: Addressing characters are used by the central computer to inform a
station that the computer wishes to send it a message. For information on the
addressing characters for a specific station, see the hardware manual for that
station.

If a station is assigned an ID sequence rather than addressing characters, this
operand is not coded; the ID sequence is entered in the invitation list (see the
discussion of the INVLIST macro).

Defining Terminal and Line Control Areas 29

LEVEL= (integer, ...)

CLOCK=time

CINTVL=integer

This operand must also specify the end-to-end control sequence for a point-to­
point 2770 or 2780 station. For information on the end-to-end control sequence,
see the appropriate hardware manual. The end-to-end control sequence is speci­
fied by writing the equivalent of the appropriate transmission-code representation,
and must be immediately preceded by the STX line-control character and immedi­
ately followed by the ETB line-control character.

Function: Specifies the permissible priority levels that may be used in the header
of a message destined for this station.
Default: None. Specification optional.
Format: Unframed decimal integer.
Maximum: 255
Notes: The levels must be specified in increasing order. For instance, if the
messages being sent to a certain station can have priorities of 1, 9, or 11, the
LEVEL= operand for this station would be coded LEVEL=(1,9,11). If queuing
is by line rather than by terminal, the priority levels specified in the first
TERMINAL macro coded for a station on the line will apply to all stations on that
line; in this case, the LEVEL= operand of subsequent TERMINAL macros for
the same line is ignored.

For more information on message priority, see the discussion of the PRIORITY
macro and Message Priority and QueUing in this chapter.

Function: Specifies the time of day that the computer should initiate contact with
a switched station.
Default: None. Specification optional.
Format: Two decimal integers for the hours, immediately followed by two
decimal integers for the minutes. Framing characters may not be specified.
Maximum: 2359 (that is, 23 for the first field, 59 for the second).
Notes: If this operand is specified, CINTVL= must be omitted and DIALNO=
must specify the dial digits to be used. If CLOCK= and CINTVL= are both
omitted, the computer does not periodically initiate contact with this switched
station. When CLOCK= is specified, the only time that the switched station will
be sent messages is when the computer initiates contact with it (at the time of day
specified by this operand). If the station calls in at any time other than that
specified by this operand, it may enter messages but will not be sent any messages
by the computer (except that a station locked to an application program will get its
lock responses). This operand is used to take advantage of low toll times. If there
are no messages queued for the station at the appropriate time, TCAM will dial
the station and invite it to enter messages.

Function: Specifies the number of seconds following which the computer should
initiate contact with a switched station, if neither the station nor the computer
called the other during this period.
Default: None. Specification optional.
Format: Unframed decimal integer.
Maximum: 65535
Notes: The interval is restarted at the termination of each call from the station,
or when the computer calls the station to send its messages. If CINTVL= is
specified, DIALNO= must also be specified, and CLOCK= must be omitted.
The first interval starts when the line group data set for this line is opened. This ~
operand can be used to take advantage of Outward W A TS.

30 OS/MFT and OS/MVT TCAM Programmer's Guide

BUFSIZE=integer

AL TDEST = entry

BFDELA Y =integer

Function: Specifies the buffer size, in bytes, for outgoing messages destined for
this station, and overrides the BUFSIZE= operand of the line group DCB macro.
Default: None. Specification optional.
Format: Unframed decimal integer greater than 35.
Maximum: 65535
Notes: If this operand is omitted, the buffer size specified in the line group DCB is
used.

Function: Specifies the alternate destination to which a message on a reusable
disk queue is sent at the time the zone containing the message is serviced for
reuse.
Default: None. Specification optional.
Format: Must conform to the rules for assembler language symbols, and specify
the name of any single, group, or process entry in the terminal table capable of
accepting messages. Framing characters must not be specified.
Notes: See Reusable Disk Queues for a description of servicing for reuse. When
the destination queue defined by a TERMINAL macro is reorganized, unsent
messages on the queue are placed on the destination queue specified by the
ALTDEST= operand. ALTDEST= may specify the original destination as well
as any other valid destination. If the ALTDEST= operand is omitted, messages in
a reusable disk queue may be written over and lost to the system with no error
indication being made. This operand is ignored unless either QUEUES=DR or
QUEUES=MR is specified in this TERMINAL macro.

Function: Specifies the number of seconds of delay to be used before another
message block is sent to a buffered station (to avoid sending another message
block while the hardware buffer is still emptying the previous block of data).
Default: None. Specification optional.
Format: Unframed decimal integer.
Maximum: 65535
Notes: integer should specify the average time needed to empty the hardware
buffer. This may be computed from the number of characters in the hardware
buffer and the rate at which characters are transferred from the buffer to the
terminal component.

This operand must be coded for IBM 2740 Model 2 and multipoint IBM 2770
stations and must not be coded for any other station. For information on
TCAM's buffering feature, see Transmission Priority for Nonswitched Polled
Stations Using TeAM's Buffering Feature in this chapter.

The BFDELA Y = operand must either be included in all TERMINAL macros for
stations on the same line, or omitted from all TERMINAL macros for stations on
the line. When this operand is coded, queuing by station and send priority should
also be specified. If stations using a buffer delay are intermixed with nonbuffered
stations on the same line (this can be done because BSC stations are compatible),
BFDELA Y =0 should be specified in the TERMINAL macros for the non buffered
stations. The BFDELA Y = operand should not be specified for start-stop or BSC
stations on switched or point-to-point lines.

Defining Terminal and Line Control Areas 31

NTBLKSZ=(b1ocksize, subblocksize)

Function: Specifies blocking factors for outgoing messages in nontransparent
mode directed to this station.
Default: None. Specification optional.
Format: Unframed decimal integer.
Maximum: For blocksize, 65535. For subblocksize , 255.
Notes: blocksize is the number of bytes in each block of data in nontransparent
mode for messages directed to this station, when the MSGFORM macro is coded
in the outheader subgroup handling these messages.

blocksize is used when LC=OUT is specified in the STARTMH macro to indicate
where EOB or ETB line-control characters are to be inserted in outgoing mes­
sages. If a block size of 100 were specified, an EOB or ETB would be inserted
after every 100 characters in the message, provided that the message were handled
by an outheader subgroup that contains a MSGFORM macro. The value specified
here may be overridden by coding the BLOCK= operand of the MSGFORM
macro; if the blocksize sub operand is omitted from the TERMINAL macro,
MSGFORM may still be used to specify the blocking factor. The character
inserted is not considered part of the block.

subblocksize is the number of bytes in each subblock of data in nontransparent
mode for messages directed to this BSC station. It is used when LC=OUT is
specified in the STAR TMH macro to indicate where ITB line-control characters
are to be inserted in outgoing messages. If a subblock size of 100 were coded, an
ITB would be inserted after every 100 characters in the message, provided that
the message were handled by an outheader subgroup that includes a MSGFORM
macro. The value specified here may be overridden by coding the SUBBLOCK=
operand of the MSGFORM macro; if the subblocksize suboperand is omitted i~
from the TERMINAL macro, MSGFORM may still be used to specify the number
of bytes per subblock. The ITB inserted is not considered part of the block.

32 OS/MFT and OS/MVT TeAM Programmer's Guide

TBLKSZ=integer

OPDATA=(data, ...)

Function: Specifies the number of bytes in each block of data for outgoing
messages in transparent mode.
Default: None. Specification optional.
Format: Unframed decimal integer.
Maximum: 65535
Notes: The appropriate line-control sequence is transmitted after each number of
bytes of data specified by integer, provided that the MSGFORM macro is coded
in the outheader subgroup handling this message, and provided that
SENDTRP= YES is coded in MSGFORM. The value specified here may be
overridden by coding the BLOCK= operand of the MSGFORM macro. If the
TBLKSZ= operand is omitted from the TERMINAL macro, MSGFORM may
still be used to specify the blocking factor for outgoing messages in transparent
mode.

Function: Specifies the actual data to be inserted in the set of option fields
assigned to this station (see the discussion of the OPTION macro), and also
specifies which option fields are not to be created for this station.
Default: None. Specification optional.
Format: The maximum length and type of data specified for each option field
must correspond to the length and type specified by the OPTION macro that
defines the field, and the order in which the data for each field is specified must
correspond to the order in which the OPTION macros are specified. Framing
characters are not used.

Defining Terminal and Line Control Areas 33

Notes: When specifying option fields for a particular station, the user may omit
the last several option fields defined by OPTION macros by merely closing the
parenthesis after the data for the last field he wishes to define. A comma is used
to:

1. Delimit the data for each field;
2. Indicate that no data is specified for the first or an intermediate field defined by

an OPTION macro;'
3. Indicate that the OPDATA operand is to be continued (if specified immediately

preceding the right parenthesis-see note below).

The user must specify either data and a comma, or a comma alone for the first and
each intermediate field (except the last) that is specified by an OPTION macro
(with one exception-see the note below). A comma alone is coded if a field
other than the last is not to be defined for this station. If the last field is not to be
defined, no data is coded for the field and the comma is also omitted. Framing
characters (X or C and quotes) are not coded.

Example:
Assume that four OPTION macros have been coded. If the user wants to specify
all four fields for a particular station, line, or application program, he would code
the OPDAT A= operand of the TERMINAL or TPROCESS macro as follows:

,OPDATA=(fieldl,field2,field3,field4)

where field] , field2 , field3 , and field4 represent the actual initial data to be
inserted into each of the four option fields. If only field] and field4 are to be
implemented for this station, line, or application program, the user would code

,OPDATA=(fieldl",field4)

If only field] , field2 , and field3 are to be implemented, the user would code

,OPDATA=(fieldl,field2,field3)

If only field] is to be implemented, the user would code

, OPDATA=(field 1)

Because one operand of a macro is limited to 255 characters, TCAM provides a
facility to specify additional OPDATA= parameters if necessary. A comma
placed as the last character of the OPDAT A= operand-that is,

,OPDATA=(data,data, ... data,)

indicates a continuation of the OPDAT A= operand. The next source statement
would then be coded

symbol TERMINALOPDATA=(data, ...)

where symbol is the name specified on the TERMINAL macro that specified the
continuation.

There is no limit (other than the number of option fields defined) on the number
of continuation statements that may be used.

34 OS/MFT and OS/MVT TeAM Programmer's Guide

RETRY=integer
Function: Specifies the maximum number of times the CPU is to retry dialing a
switched station.
Default: None. Specification optional.
Format: Unframed decimal integer greater than zero.
Maximum: 255
Notes: This operand is required if the RETRY macro is specified in the inmessage
subgroup. This TERMINAL macro also must specify the DIALNO= operand and
either the CLOCK= or the CINTVL= operand.

A HOLD macro with bit 26 specified in the mask should be coded in the outmes­
sage subgroup so that no messages will be lost if the retry count is reached without
the CPU having initiated contact with the switched station. However, if the
CLOCK= operand is specified, the user must assure that messages are released
before the specified time expires again in order for them to be sent to the station
when the time does expire.

Function: Specifies whether individual logical messages entered by this station
may be included in mUltiple physical transmissions.
Default: LMD=NO
Format: YES or NO
Notes: YES indicates that any individual logical message entered by this station
may be in more than one transmission sequence (that is, if part of a logical
message is entered in a transmission sequence, the remainder of the message may
be included in the station's next transmission sequence-two or more transmission
sequences may be used to enter this message). This allows an i~coming logical
message to be larger than the physical limitations imposed by the source station.
No intervening data may be included between the beginning and the end of the
logical message. YES must be coded if this station is a 2715.

If this operand is omitted, or if NO is specified, logical messages entered by this
station must be entered in their entirety in a single transmission sequence.

Logical messages are discussed in Handling Logical Messages in the chapter
Defining the Message Handler.

Function: Specifies whether mid-batch recovery is to be performed when a
permanent text error is encountered in a multiblock message to or from a station.
Default: MB=NO
Format: YES or NO.
Notes: YES indicates that mid-batch recovery is to be performed. If NO is
specified, or if this operand is omitted, an entire message is canceled when a text
error is encountered.

Defining Terminal and Line Control Areas 35

FEATURE={ATTN }
NOATTN

SECTERM= {~~S }

COMP= {~~S}

For incoming operations, the STARTMH macro must specify STOP=YES, and
the inmessage subgroup must contain a CANCELMG macro that specifies
LEVEL = BLK.

For outgoing operations, also include the LEVEL=BLK operand on the HOLD
macro and the QBY=T operand on the TERMINAL macro.

MB= YES is the default for both switched and buffered stations; the MB=
operand need not be specified for a switched or buffered station. Queuing by
terminal is required for mid-batch recovery on both input and output operations.

Function: Allows for the disposition of CPU transmission interrupted by IBM
1050 and IBM 2741 terminals.
Default: FEATURE=NOATTN Specification of this operand is optional.
Format: ATTN or NOATTN.
Notes: ATTN or NOATTN may be specified for both the IBM 1050 and the IBM
2741 terminals equipped with an attention key. If ATTN or NOATTN is speci­
fied for a terminal other than a 1050 or 2741, the entry is ignored.

ATTN specifies that the station receiving data from the CPU can interrupt the
CPU during the transmission. The user can provide for the disposition of the
interrupted message by using functional macros in his MH. If this entry is omit­
ted, and if the attention key is active for this station, interrupted CPU transmis­
sions are handled as errors with no recovery for the interrupted message.

Function: Specifies whether this station may be considered a secondary operator
control station.
Default: SECTERM=NO
Format: YES or NO.
Notes: If YES is specified, operator commands will be recognized, acted upon,
and the appropriate response returned to the station. The station for which
SECTERM= YES is specified must be on a nonswitched line and must be able to
both enter and accept messages. If a station other than the system console is to be
the primary operator control station, SECTERM= YES must be specified for that
station's TERMINAL macro.

Function: Specifies whether or not this TERMINAL macro is being used to define
a component of a station defined by another TERMINAL macro.
Default: COMP=NO
Format: YES or NO.
Notes: If this operand is coded COMP= YES, then the TERMINAL macro is for
a component. If the operand is omitted or COMP=NO is coded, then the macro
is not for a component.

For guidelines on coding this operand, see Coding the TERMINAL Macro for
a Component in this chapter. 4

36 OS/MFT and OS/MVT TeAM Programmer's Guide

Function: Specifies whether or not this TERMINAL macro is being used to define
a line entry in the terminal table.
Default: UTERM=NO
Format: YES or NO.
Notes: If this operand is coded UTERM= YES, then the TERMINAL macro is
for a line. If the operand is omitted, or if UTERM=NO is coded, then the
TERMINAL macro is either for a station or a component-if coded for a station,
this TERMINAL macro also must specify the QBY= operand.

For information on coding this operand, see Coding the TERMINAL Macro
for a Line in this chapter.

Coding the TERMINAL Macro for a Component
If the COMP= operand of a TERMINAL macro is coded COMP= YES, then the
TERMINAL macro is one defining a component of a station defined by another
TERMINAL macro. A TERMINAL macro need be issued for a component only
if messages may be directed to more than one component of a station by means of
appropriate addressing characters. If addressing characters are not used, a
TERMINAL macro for a component is unnecessary. If a message can be sent to
only one component of a terminal assigned addressing characters, that component
may be specified by coding the appropriate addressing characters in the ADDR=
operand of the TERMINAL macro for the terminal. For an IBM 1050 terminal
assigned addressing characters, for example, the second addressing character
identifies the component that is to receive the message. If only one component is
to receive messages, that component's selection character may be entered as the
second addressing character in the ADDR= operand of the TERMINAL macro
for the terminal, and no TERMINAL macro need be issued for the component. If
more than one component of a station is to be specifically addressed by means of
addressing characters, then one or more component TERMINAL macros must be
issued; these should immediately follow the TERMINAL macro for the station to
which the components belong.

The following operands of the TERMINAL macro are meaningful if the macro is
issued for a component:

ADDR=chars

specifies the addressing characters for this component.

ALTDEST = entry

specifies the alternate destination to which a message on a reusable disk queue is
sent at the time the zone containing the message is serviced for reuse (see
Reusable Disk Queues for a description of this servicing). Any terminal, compo­
nent, or process entry for a device capable of accepting messages may be speci­
fied. If the operand is omitted, messages in a reusable disk queue may be written
over and lost to the system with no error indication being made.

Defining Terminal and Line Control Areas 37

SECTERM= l ~~S ~

Specifies whether replies to operator commands entered at this station are to be
sent to this component. If so, this component must be represented in the invita­
tion list for this line. If the station is polled, the operator command must have
been entered in response to polling characters associated in the invitation list with
an entry having the same name as the name of this terminal entry. (However, the
two entries having the same name need not refer to the same device-the polling
characters could poll a card reader, for example, while the addressing characters
might address a printer).

NTBLKSZ= (blocksize,subblocksize)

specifies blocking factors for outgoing messages in nontransparent mode directed
to this station. blocksize and subblocksize have the same meanings as those
described above in the discussion of the TERMINAL macro for a station.

TBLKSZ = integer

specifies the number of bytes in each block of data for outgoing messages in
transparent mode directed to this component. This operand is similar to the
TBLKSZ= operand for the TERMINAL macro for a station, described above,
and may be overridden by coding the BLOCK= operand of the MSGFORM
macro, and specifying SENDTRP= YES in MSGFORM.

BUFSIZE=integer

overrides the buffer size specified by the BUFSIZE= operand of the line group
DCB macro, but only for buffers containing outgoing messages destined for this
component. If this operand is omitted, the buffer size specified in the line group
DCB macro is used.

OPDATA=(data, ...)

specifies the actual data to be inserted in the set of option fields assigned to this
component (see the discussion of the OPTION macro), and also specifies which
option fields are not to be created for this component. The description of the
OPDATA= operand of the TERMINAL macro for a station also applies to the
OPDAT A= operand of the TERMINAL macro for a component.

COMP=l~~Sl

specifies whether this TERMINAL macro is for a component. COMP= YES
indicates that this TERMINAL macro is for a component.

Coding the TERMINAL Macro for a Line
A TERMINAL macro whose UTERM= operand is coded UTERM=YES causes
information to be included in the terminal table for a line to switched stations that
do not uniquely identify themselves when calling the computer.

As a general rule, a switched line should have its own TERMINAL macro if any
stations that do not always uniquely identify themselves call the computer on that
line. If all stations calling in on a switched line always uniquely identify them-

38 OS/MFT and OS/MVT TeAM Programmer's Guide

selves, no TERMINAL macro is required for that line. The following considera­
tions apply when deciding whether a particular switched line requires its own
TERMINAL macro (see also Figure 1, which summarizes these considerations).

1. A TCAM audio line (that is, a line connected to an IBM 7770 Audio Response
Unit, Model 3) requires its own TERMINAL macro.

2. A switched line to BSC stations that are all assigned unique ID sequences does
not require its own TERMINAL macro. For such a line, the user should enter
each station's name and ID sequence, and the CPU ID sequence, in the appro­
priate operands of the INVLIST macro for the line (see the discussion of the
INVLIST macro).

3. If none of the stations on a line ever dial the computer, the line needs no
TERMINAL macro. Terminal names and invitation characters are coded in the
INVLIST macro (see the discussion of the INYLIST macro).

4. For a switched line to stations other than those described in (2) and (3) above,
code a TERMINAL macro specifying UTERM= YES unless all messages
entered by stations on the line have origin fields in their message header and
are processed by a Message Handler subgroup containing an ORIGIN macro
(see the discussion of the ORIGIN macro). For lines to stations that enter only
messages having origin fields, see (5). When a TERMINAL macro is coded for
a line, the name of the macro is entered together with the invitation characters
for stations on the line in the appropriate operand of the INVLIST macro for
the line (see the discussion of the INVLIST macro).

5. For a switched line to stations other than those described in (2) and (3), if all
messages entered on the line have valid origin fields in their message headers
and are processed by a Message Handler subgroup containing an ORIGIN
macro, then a TERMINAL macro may be specified for that line at the option
of the user. If the TERMINAL macro is specified, the user must enter its name
as part of the entry operand of the INVLIST macro for the line; otherwise the
name of a TERMINAL macro for a station on the line is entered as part of the
INVLIST entry. In either case, one INVLIST entry is coded for each series of
invitation characters used by a station on the line (see the discussion of the
INVLIST macro).

In order to decide whether to code a TERMINAL macro for a line under Case 5,
the user must first understand the function of the ORIGIN macro and the origin
field of the message header (discussed in the chapter Designing the Message
Handler) and must also understand the function of the OPTION macro (discussed
in the present chapter). Then he should consider the following paragraphs.

The TERMINAL macro has an optional OPDATA= operand. If a TERMINAL
macro is coded for a switched line, when a station on that line dials the computer,
access is gained to the option fields associated with the line entry, and these fields
are possibly modified by Message Handler macros until an ORIGIN macro is
encountered in the Message Handler. In addition, messages may be routed to the
line entry; any station calling in will receive these messages until it is identified by
an origin field checked by an ORIGIN macro.

The ORIGIN macro establishes the identity of the calling station; once identity
has been established, the option fields associated with the terminal entry for the
station calling in are made available and possibly modified by Message Handler
macros, and messages queued for the station are sent to it in the manner described
in the section Transmission Priority in Defining Terminal and Line Control
Areas.

Defining Terminal and Line Control Areas 39

Start

Yes

Yes

No

Notes: I. Do you wish to send messages
ta unknown stations on the line?

2. Do you wish to update any option
fields on a line basis?

No

Yes

Yes Code Terminal
Macro For

Line

Do Not Code
Terminal

Macro For Line

Figure I. Determining whether a TERMINAL Macro Should Be Coded for a Switched Line

Thus, if a user assigns no option fields to the stations on a switched line, or if he
does assign option fields but issues his ORIGIN macro in the Message Handler
subsections handling incoming messages before he issues any macros that modify
option fields, he is safe in omitting the TERMINAL macro for that line (but he
may code the macro if he wishes to direct messages to any station calling in on the
line). Otherwise, a TERMINAL macro specifying UTERM= YES should be
coded for the line. All TERMINAL macros for lines in a line group must be
arranged according to ascending relative line number. The TERMINAL macro
for a particular line must immediately precede all TERMINAL macros for stations
on that line.

Example:
The TERMINAL macros for three switched lines in a line group, where each line
has three terminals associated with it, would be arranged in the following order:

• TERMINAL macro for relative line 1 (UTERM= YES)
• TERMINAL macro for a terminal on line 1
• TERMINAL macro for a second terminal on line 1
• TERMINAL macro for a third terminal on line 1
• TERMINAL macro for relative line 2 (UTERM= YES)
• TERMINAL macro for a terminal on line 2
• TERMINAL macro for a second terminal on line 2
• TERMINAL macro for a third terminal on line 2
• TERMINAL macro for relative line 3 (UTERM= YES)
• TERMINAL macro for a terminal on line 3
• TERMINAL macro for a second terminal on line 3
• TERMINAL macro for a third terminal on line 3

40 OS/MFT and OS/MVT TCAM Programmer's Guide

It may be that some lines in a line group have TERMINAL macros coded for them
and others do not. In this case, arrange the TERMINAL macros for the stations
on the lines in groups according to ascending relative line number, and place each
TERMINAL macro for a line immediately in front of the group of TERMINAL
macros for stations on that line.

Example:
The TERMINAL macros for three switched lines in a line group, where each line
has two terminals associated with it, and line 2 has no TERMINAL macro coded
for it, would be arranged in the following order:

• TERMINAL macro for relative line I (UTERM=YES)
• TERMINAL macro for a terminal on line 1
• TERMINAL macro for another terminal on line 1
• TERMINAL macro for a terminal on line 2
• TERMINAL macro for another terminal on line 2
• TERMINAL macro for relative line 3 (UTERM= YES)
• TERMINAL macro for a terminal on line 3
• TERMINAL macro for another terminal on line 3

The following operands of the TERMINAL macro are relevant when the macro is
specified for a line:

DCB=dcbname
RLN=integer
QUEUES=form
TERM=type
BUFSIZE=integer
ADDR=chars
OPDATA=data

UTERM= {~~S}

The DCB=, RLN=, and TERM= operands are the same as those given above for
a TERMINAL macro for a station.

For station-initiated calls that require a response, the ADDR= operand is coded
only when the calling station does not identify itself by an origin field in a message
header. A call from such a station would either:

(a) cause the originating station to accept messages directed to the line entry,
(b) cause a response message to be sent back to the originating station by a

MSGGEN macro in the Message Handler, or
(c) place the originating station in lock mode (see the description of the LOCK

macro) to await a response message from an application program.

The ADDR= operand of the TERMINAL macro for a station must be coded if
any messages are to be queued for that station. If the ADDR= operand of the
TERMINAL macro for a line is coded, all stations on the line must have identical
addressing characters.

The OPDA T A= operand specifies the data to be inserted in the set of option
fields assigned to this line. The operand is coded in the same way as the
OPDAT A= operand of a TERMINAL macro for a station.

The QUEUES= operand is required, whether or not any messages are to be
directed to the line entry as a destination.

Defining Terminal and Line Control Areas 41

When a station on this line dials the computer, access is gained to the option fields
assigned to the line and the fields are modified by Message Handler macros until
an ORIGIN macro in the Message Handler establishes the identity of the calling
station. Once identity is established, the option fields assigned to the station
calling in are updated by macros following the ORIGIN macro in the Message
Handler. When the computer calls a station, only the option fields assigned to the
station may be updated.

The BUFSIZE= operand is optional and, if used here, overrides the BUFSIZE=
operand of the line group DeB macro for messages directed to the line entry as a
destination.

The UTERM= operand, when coded UTERM= YES specifies that this
TERMINAL macro is for a line. If the operand is omitted or coded
UTERM=NO, this TERMINAL macro is not for a line.

42 OS/MFT and OS/MVT TeAM Programmer's Guide

symbol

LIST = (entry ,entry, •.•)

TLIST

The TLIST macro

• defines a cascade list entry or distribution list entry in the terminal table;
• is optional among macros defining the terminal table.

The TLIST macro causes the name of a list of single, group, or process entries in
the terminal table, together with information about the entries in the list, to be
included as an entry in the terminal table.

A distribution or cascade list consists of the names of single, group, or process
entries in the terminal table. One TLIST macro must be specified for each list to
be created. Stations cannot enter messages using either a distribution or a cascade
list.

When a message contains the name of a distribution list as a destination code,
TCAM sends the message by separate transmissions to each station or application
program indicated by an entry in the list. Each entry in the list must have a
corresponding single, group, or process entry in the terminal table. When a
message contains the name of a cascade list as a destination code, TCAM places
the message on the destination queue for that valid destination in the list that has
the fewest messages waiting to be sent to it. If several destinations have the same
number of messages, the message is queued for the first such destination listed.

The TLIST macro provides the initial contents for all fields in the list entry.

Name Operation Operands

symbol TLIST TYPE= {~}LIST=(entry,entry, ...)

Function: Specifies the name of the list.
Default: None. This name is required.
Format: Must conform to the rules for assembler language symbols (see the
symbol entry in the Glossary).

Function: Specifies whether the list is a distribution or a cascade list.
Default: None. This operand is required.
Format: D or C.
Notes: C specifies a cascade list. D specifies a distribution list.

Function: Specifies the actual entries in the distribution list or cascade list being
created.
Default: None. This operand is required.
Format: Each entry is the name of a single, group, process, or cascade list entry
in the terminal table. If TYPE=D, at least two entries must be specified. If
TYPE=C, only one entry is required.
Notes: The name of a distribution list entry in the terminal table may not be

Defining Terminal and Line Control Areas 43

specified as an entry in a distribution list. If the list being created is a distribution
list, it may contain the name of one or more cascade list entries. If it is a cascade
list, it may not contain the name of a cascade list entry.

Because of the limitation of 255 characters in a macro operand, a facility is
provided to specify additional TLIST entries if necessary. A comma placed as the
last character of the entries operand indicates a continuation of the list. The next
source statement would then be coded:

symbol TLIST LIST=(entry, ...)

where symbol is the TLIST name as specified on the previous TLIST macro that
indicated the continuation. There is a limit of 32767 entries in a distribution or
cascade list.

44 OS/MFT and OS/MVT TeAM Programmer's Guide

c

~I ,

TPROCESS

The TPROCESS macro

• serves as part of the interface between the MCP and an application program;
• creates a terminal table entry for a queue associated with an application pro-

gram;
• is optional among macros defining the terminal table.

The TPROCESS macro causes the name of a queue for an application program
and associated information to be included as an entry in the terminal table. The
entry produced is a process entry.

One TPROCESS macro must be included for each destination queue to which an
application program can direct a GET or READ macro, and at least one must be
included for each process entry to which a PUT or WRITE macro may be
directed.

An operand of the TPROCESS macro specifies the name of a process control
block (PCB), which is used to establish communication between a Message
Handler and application programs. (The PCB is created by coding a PCB macro.)

Another operand of TPROCESS enables the user to specify one alternate destina­
tion to which the message may be sent in certain circumstances.

The user may specify that checkpointing of the application program is to be
synchronized with that of the Message Control Program. Synchronization of OS
with TCAM checkpoints is discussed in the chapter Writing TCAM-Compatible
Application Programs.

The user also specifies the initial contents of the option fields for the process entry
in the terminal table.

The TPROCESS macro helps connect an application program to the Message
Control Program. The GET and PUT or READ and WRITE macros issued in an
application program each specify the name of a data control block created by a
DCB macro issued in the application program. The DCB macro specifies (by its
DDNAME= operand) a DD card. The QNAME= parameter of the DD card
names a process entry. The pcbname operand of the TPROCESS macro creating
this entry specifies a process control block. The MH= operand of the PCB macro
creating the process control block specifies the Message Handler that handles
messages directed to and received from the application program.

Defining Terminal and Line Control Areas 45

procname

PCB=pcbname

QUEUES=form

TPROCESS has the following format:

Name Operation Operands

procname TPROCESS PCB=pcbname[,QUEUES=form]
[,ALTDEST=entry]

[,CKPTSYN= {~~S~

[,DATE1~~ P
[,SECTERM= ~~~S~]
[,RECDEL=delimiter]
[,LEVEL= (integer, ...)]
[,OPDATA=(data, ...)]

['QBACK1~~~]

Function: Specifies the name of the process entry in the terminal table.
Default: None. This name is required.
Format: Must conform to the rules for assembler language symbols (see the
symbol entry in the Glossary).
Notes: The name must be specified and must be the same as that entered in the
QNAME=parameter of the DD statement associated with the DCB macro for an
application program.

Function: Specifies the name of the process control block that defines buffers,
etc., to handle messages queued to this process entry.
Default: None. This operand is required.
Format: Must conform to the rules for assembler language symbols.
Notes: The process control block is created by a PCB macro. All TPROCESS
macros issued for the same application program must have the same PCB.

Function: Specifies where the message queues containing messages for the applica­
tion program are to be maintained (for GET/READ operations only).
Default: None. Specification optional.
Format: DR, DN, MO, MR, or MN.
Notes: DR specifies reusable disk queues. DN specifies nonreusable disk queues.
MO specifies main-storage-only queues. MR specifies main-storage queues with
reusable disk backup. MN specifies main-storage queues with backup on nonreus­
able disk. If the form of data set specified by this operand does not correspond to
a related message queues data set defined by a DeB macro, the TCAM system
terminates abnormally. By omitting the QUEUES= operand, the user specifies
that this process entry is for PUTs or WRITEs from an application program (that
is, do not code the QUEUES= operand for PUT /WRITE operations).

If MO, MR, or MN is specified, the MSUNITS= operand of the INTRO macro
must specify a nonzero integer; otherwise, the TPROCESS macro does not
assemble properly and an MNOTE is generated.

46 OS/MFT and OS/MVT TeAM Programmer's Guide

AL TDEST =entry

CKPTSYN= {~~S}

DATE={~~S}

Function: If this process entry is for GETs or READs issued by an application
program, this operand specifies the alternate destination to be sent when the zone
containing the message is being serviced for reuse. If this process entry is for
PUTs or WRITEs from an application program, this operand specifies the destina­
tion to which replies to operator commands issued by the application program are
sent.
Default: None. Specification optional.
Format: The name of any single, group, or process entry in the terminal table.
Notes: The entry specified may be the one created by the TPROCESS macro,
preventing the message from being discarded from a reusable queue. If this
operand is omitted for a GET or READ process entry, the message may be
overlaid in a reusable queue and lost to the system. The operand is ignored unless
QUEUES=DR or QUEUES=MR is specified for the TPROCESS macro.

For a PUT or WRITE entry, the destination may be a station named by a
TERMINAL macro, or it may be an application program represented by a
TPROCESS macro.

Function: Specifies whether the destination queue to which the application
program directs its GETs or READs is to be purged of serviced messages at
restart.
Default: CKPTSYN=NO
Format: YES or NO.
Notes: CKPTSYN = YES specifies that no purging of the queue is to be per­
formed. If an OS checkpoint of the application program is used in synchroniza­
tion with the TCAM checkpoint, CKPTSYN = YES should be specified. If this
operand is omitted, the queue is scanned and updated at restart. When synchroni­
zation is not specified, operation following restart with scan resumes with the first
unserviced message for the queue (a message is considered serviced when a GET
or READ is issued for the next message from the queue and that next message is
placed on the queue). The first unserviced message is determined in the scan of
the message queue done at restart time. When not using synchronization with an
OS checkpoint, it is necessary to check for one duplicate message upon restart
(that is, the message being processed when failure occurred).

For more information on TCAM's checkpoint facility, see the chapter Using
TCAM Service Facilities. Coordination of OS and TCAM checkpoints is dis­
cussed in the chapter Writing TeAM-Compatible Application Programs.

Function: Specifies whether the date and time of each message received for the
process entry are to be recorded.
Default: NO
Format: YES or NO
Notes: When a message is received for the application program, TCAM records
the date and time. When the application program issues a GET or a READ
macro, TCAM places the recorded date/time and the source of the message in the
area specified by the DTSAREA= operand of the TPDATE macro.

Defining Terminal and Line Control Areas 47

SECTERM=~ ~~S ~

RECDEL=delimiter

LEVEL=(integer, ...)

OPDAT A=(data, .•.)

Function: Specifies whether the application program may be considered a sec­
ondary operator control station (so that operator commands may be sent to
TCAM from the application program by using a PUT or WRITE macro).
Default: SECTERM=NO
Format: YES or NO.
Notes: This operand i.s meaningful only if this process entry is associated with a
PUT or WRITE macro, and is ignored if coded for a process entry associated with
a GET or READ macro. If this PUT /WRITE process entry is to be the primary
operator control station, SECTERM= YES must be specified for the entry.

Function: For a process entry associated with a GET or READ macro this
operand specifies a one-byte, nonzero hexadecimal value used to delimit a record
for the application program. For a process entry associated with a PUT or
WRITE macro, this operand specifies a value to be inserted at the end of each
variable-length record returned from an application program by means of a PUT
or WRITE macro specifying the DCB associated (by coding the QNAME=
operand of its DD card) with the process entry.
Default: None. Specification optional.
Format: A single, unframed hexadecimal character.
Notes: This character may be inserted periodically into a TCAM buffer by coding
a MSGEDIT macro with DAT A=DELIMIT for a process entry associated with a
GET or READ. If the RECFM= operand on the input DCB macro specified by a
GET or READ macro in the application program specifies V, VB, or U, and if the
OPTCD= operand does not have the U suboperand coded in it, the application
program GET or READ considers this character to be a record delimiter. The
delimiter specified by RECDEL= may be included by the user in the incoming
message, or may be inserted by means of a MSGEDIT macro.

For a process entry associated with a PUT or WRITE macro, TCAM automatical­
ly inserts the value at the end of each variable-length record. For other than
variable-length records, this operand is meaningless.

Function: Specifies the permissible priority levels that may be used in the header
of a message enqueued on this process queue.
Default: None. Specification optional.
Format: Each integer is a decimal integer. The integer, ... values must be speci­
fied in ascending order.
Maximum: 255
Notes: If this operand is omitted, all messages sent to the application program by
this process entry are assumed to have zero priority. If the messages being sent to
the application program through this process entry can have, for example, priori­
ties of 1, 9, or 11, the LEVEL= operand would be coded LEVEL= (1,9,11).

For more information on message priority, see the discussion of the PRIORITY
macro and Message Priority in this chapter.

Function: Specifies the actual data to be inserted in the set of option fields
assigned to this process entry (see the discussion of the OPTION macro), and also
specifies which option fields are not to be created for this process entry.
Default: None. Specification optional.

48 OS/MFT and OS/MVT TeAM Programmer's Guide

Format: The maximum length and type of data specified for each option field
must correspond to the length and type specified by the OPTION macro that
defines the field. The order in which the OPTION macros are specified must
correspond to the values of data specified in this operand.
Notes: A comma is used to:

1. Delimit the data for each field;
2. Indicate that no data is specified for the first or an intermediate field defined by

an OPTION macro;
3. Indicate that the OPDATA= operand is to be continued (if included immedi-

ately preceding the right par~nthesis-see below).

The user must specify either data and a comma, or a comma alone for the first and
each intermediate field (except the last) that is specified by an OPTION macro
(with one exception-see the note below). A comma alone is coded if a field
other than the last is not to be defined for this line. If the last field is not to be
defined, no data is coded for the field and the comma is also omitted. Framing
characters (X or C and quotes) are not coded.

When specifying option fields for a particular process entry, the user may omit the
last several option fields defined by OPTION macros by merely closing the
parentheses after the data for the final field he wishes to define.

Example:
Assume that four OPTION macros have been coded. If the user wants to specify
all four fields for a particular station, line, or application program, he would code
the OPDATA= operand of the TERMINAL or TPROCESS macro:

,OPDATA=(fieldl, field2, field3, field4)

where fieldl , field2 , field3 , and field4 represent the actual initial data to be
inserted into each of the four option fields. If only fieldl and field4 are to be
implemented for this station, line, or application program, the user would code

,OPDATA=(fieldl",field4)

If only fieldl ,field2 , and field3 are to be implemented, the user would code

,OPDATA=(fieldl,field2,field3)

If only fieldl is to be implemented, the user would code

,OPDATA=(fieldl)

A message processed by an application program and then sent to a destination
station must be handled by two sets of incoming and two sets of outgoing MH
subgroups. Macros issued in the incoming subgroups handling messages from a
station update the option fields assigned to that station. Macros issued in the
outgoing subgroups handling messages for the application program update the
option fields assigned to the process entry associated with the GET or READ
macro that obtains the messages for processing. Macros issued in the incoming
subgroups handling messages from an application program update the option
fields assigned to the process entry associated with the PUT or WRITE macro that
returns messages from the application program to the MCP. Macros issued in
outgoing subgroups handling messages being sent to a destination station update
the option fields assigned to that station. (For a description of which Message

Defining Terminal and Line Control Areas 49

QBACK= {~~S }

Handler subgroups are required when there is an application program, see
Message Flow through a Message Handler in the chapter Designing a Mes-
sage Handler. For a discussion of the interface between the MCP and the applica­
tion program see the introduction to Writing TCAM-Compatible Application
Programs .)

Because the operand field of a macro is limited to 255 characters, TCAM provides
a facility to specify additional OPDATA= parameters if necessary. A comma
placed as the last character of the OPDAT A= operand-that is,

,OPDATA=(data,data, ... data,)

indicates a continuation of the OPDAT A= operand. The next source statement
would then be coded

symbol TPROCESS OPDATA=(data, ...)

where symbol is the process entry name as specified on the TPROCESS macro
that specified the continuation. There is no limit (other than the number of option
fields defined) on the number of continuation statements used.

Function: Specifies whether the application program may issue the QRESET
macro.
Default: NO
Format: QBACK= YES or QBACK=NO
Notes: QBACK= YES causes the Queue Reset Executor module to be loaded into
the MCP region and the allocation of a 258 byte work area in the MCP region. i\~

For information about TCAM's QRESET facility see Writing TCAM Compati-
ble Application Programs.

50 OS/MFT and OS/MVT TCAM Programmer's Guide

typename

dcbname

BUFSIZE=size

QUEUES=form

LOGTYPE

The LOG TYPE macro

• initializes TeAM's logging facility;
• may not be omitted if TeAM's logging facility is to be used for logging com­

plete messages, and is unnecessary if segments are logged;
• if coded, must be specified among the macros defining the terminal table and

must not be the last such macro.

The LOGTYPE macro initializes TeAM's logging facility by specifying:

1. The name of the data control block for the log data set,
2. The buffer size used to handle messages to be logged,
3. The location of the data set (on disk or in main storage).

TCAM's logging facility is discussed in Using TeAM Service Facilities. The
description of the LOG macro contains information on when LOGTYPE should
be specified.

A LOGTYPE macro must not be coded as the last macro defining the terminal
table. No more than one LOGTYPE macro should be coded for a log data set.

Name Operation Operands

typename LOGTYPE dcbname, BUFSIZE=size
,QUEUES = form

Function: Specifies the name of the LOGTYPE macro and is the same
as the typename operand of a LOG macro.
Default: None. This name is required.
Format: Must conform to the rules for assembler language symbols (see the
symbol entry in the Glossary).

Function: Specifies the name of the data control block for the log data set.
Default: None. This operand is required.
Format: Must conform to the rules for assembler language symbols.
Notes: This name must be the same as the name of the DCB macro specifying the
log data set.

Function: Specifies the size of the buffers to be used to handle messages destined
for the logging medium.
Default: None. This operand is required.
Format: Unframed decimal integer greater than 35.
Maximum: 65535

Function: Specifies where the messages are to be queued while awaiting transfer
to the logging medium.
Default: None. This operand is required.
Format: DR, DN, MO, MR, or MN.

Defining Terminal and Line Control Areas 51

Notes: DR specifies reusable disk queues.

DN specifies nonreusable disk queues.
MO specifies main-storage-only queues.
MR specifies main-storage queues with reusable disk backup.
MN specifies main-storage queues with backup on nonreusable disk.

If MR or DR is specified, the original destination is automatically designated as
the alternate destination for zone reorganization (see Reusable Disk Queues in
the chapter Defining the MCP Data Sets). Unlike the TERMINAL and
TPROCESS macros, there is no ALTDEST= operand for the LOGTYPE macro.

Maintaining Orderly Message Flow

Message Priority and Queuing

Thus far, this chapter has described how to define control areas needed by TCAM
for line control, and how contact is established for the purposes of invitation and
selection. This section describes how TCAM maintains an orderly message flow
between the central computer and remote stations.

Among the factors influencing the flow of messages within a TCAM system are
message priority and queuing, transmission priority, and whether incoming logical
messages are being handled. Message priority refers to the order in which
messages are sent over a line or to an application program. Priorities are assigned
to individual messages by the user through his use of a priority field in the message
header, a PRIORITY macro, and the type of queuing specified by the QBY =
operand of the TERMINAL macro. Transmission priority refers to the relative
order in which messages are sent to and received from a station or stations on a
line. The transmission priority (send, equal, or receive) for a nonswitched station
is specified by the CPRI= operand of the line group DCB macro. For switched A

stations, CPRI=S (indicating send priority) must always be specified. If logical I~
messages are being used, see Handling Logical Messages in the chapter
Designing the Message Handler.

These are not the only factors influencing TCAM message flow; two others are
the manner in which calls are made between the computer and a switched station,
and the system interval. The remainder of this chapter is devoted to discussions of
all of these factors.

To determine how to assign priorities to messages in a TCAM system, see the
descriptions of the PRIORITY macro and of the LEVEL= operand of the
TERMINAL and TPROCESS macros. In this section, we shall be concerned with
a practical description of what message priority means in a TCAM system.

This order depends upon three variables:

• whether queuing is by line or by terminal;
• the relative order in which the messages are received at the destination queue;
• what priorities the messages are assigned.

Messages whose destinations are stations may be queued by destination terminal
or by destination line. The user specifies the type of queuing he wants by the
QBY = operand of the TERMINAL macro. When outgoing messages are queued
by line, one message queue is created for a line, and messages destined for all
stations on the line are placed on this queue. (The incoming group of a Message
Handler generally determines the destination of a message by a FORWARD
macro.) Messages are taken off the queue and sent to stations on the line on a

52 OS/MFT and OS/MVT TeAM Programmer's Guide

first-ended first-out (FEFO) basis within priority groups. That is, messages on
the queue that have a high message priority (as specified in the message header or
assigned by a PRIORITY macro) are sent before messages having a low priority.
When messages have the same priority, the one whose final segment arrived at the
queue first will be sent out first, and the others will be sent out in the order in
which their final segments arrived at the queue. (An example of queuing by line is
given below.)

Advantages of Queuing by Line
• Queuing by line permits transmission of messages by priority on a line basis to

stations on a multipoint nonswitched line; that is, all messages of a given
priority on the queue are transmitted before any messages of a lower priority,
whether or not the higher-priority messages are destined for two different
stations on the line.

• Queuing by line takes less storage space than queuing by terminal. If queuing is
by line rather than by terminal, at least 65 bytes are saved for each station after
the first on a line, plus about 28 bytes per station after the first for each priority
level specified beyond one.

Disadvantages of Queuing by Line
• Queuing by line results in switching between stations on the line rather than

maintaining connection with a station.

When outgoing messages are queued by terminal, one message queue is created
for each station on a line. All messages queued for a given station are sent before
any messages queued for other stations on the line. Messages on a queue are sent
to a station on first-ended first-out (FEFO) basis within priority groups. The first
message on a queue is the message whose last segment arrived at the queue before
the last segment of any other message arrived at the queue. High-priority mes­
sages are sent before low-priority messages; when two messages on a queue have
equal priority, the one whose final segment arrived at the queue earliest is sent
first. For a multipoint line, the relative order in which queues of messages are
transmitted is also determined on a FEFO basis; the queue containing the message
whose incoming transmission over the line was completed first will be sent before
any other queue for a station on that line.

Queuing by terminal must be specified for switcht::d stations and for buffered
terminals. If switched stations were queued by line, a station that called in would
receive not only its messages, but those for all other stations in the line group as
well.

Messages destined for an application program are placed on a queue for that
program and are removed from it as if they were messages queued by terminal;
that is, they too are sent to the application program on a FEFO basis within
priority groups.

Advantages of Queuing by Terminal
• Queuing by terminal permits transmission of messages by priority on a station­

by-station basis. All messages in a given queue for a station on a line are
transmitted before any messages in other queues for the remaining stations on
the line are transmitted, whether or not the other queues contain messages
having priorities higher than those for the messages being transmitted. Thus,
messages for the same station are sent as a group.

Defining Terminal and Line Control Areas 53

Disadvantages of Queuing by Terminal
• Queuing by terminal takes more storage space than does queuing by line.

The orders of sending described above are disrupted when a message segment for
which the INITIATE macro has been executed arrives at a destination queue; such
a segment is treated as if it were a completed message having the highest priority
on the queue, and it is sent before any other message on that queue is sent. In
addition, no message on the queue may be sent until all segments of the message
for which INITIATE was executed have arrived at the queue and been sent to
their destination. (See the description of the INITIATE macro.)

Examples:
A multipoint nonswitched line on which are located the following three terminals
(each name given corresponds to the symbol field of the TERMINAL macro
defining that terminal): NYC, BOS, RAL. Nine messages arrive from various
remote stations, or perhaps from an application program; these messages are to be
routed to the three terminals on this line. Messages 1 through 9 are completely
enqueued on a destination queue in the following temporal order:

1 for NYC
2 for NYC
3 for BOS
4 forRAL
5 for RAL
6 for BOS
7 for NYC
8 forRAL
9 forRAL

Assume first that queuing is by line, and that all messages have the same message
priority. In this case, the messages are sent out in the same order that they were
enqueued on the destination queue for the line: 1,2,3,4,5,6,7,8,9.

Now, assume that queuing is by terminal and that all nine messages have the same
message priority. In this case, the messages are queued

• 1, 2, 7 for NYC
• 3,6 for BOS
• 4, 5, 8, 9 for Ral

and are sent out: 1,2,7,3,6,4,5,8,9.

Next, assume that messages 1,5, and 9 have a message priority of 10; that mes­
sages 2,4, and 7 have a message priority of 30; and that messages 3,6, and 8 have
a message priority of 60.

The messages will be queued by line or by terminal (depending upon which is
specified in the TERMINAL macros) as if they all had the same priority. The
order in which they are sent, however, differs from the case in which all messages
have the same priority.

If queuing is by line, the messages are sent in the order 3,6,8,2,4, 7, 1,5,9.

If queuing is by terminal, the messages are sent in the order 2,7, 1,3,6,8,4,5,9.

54 OS/MFT and OS/MVT TeAM Programmer's Guide

Transmission Priority

Note the following points:

• When messages for stations on a multipoint line are queued by terminal, the
order in which the groups of messages queued for the individual stations on the
line are transmitted depends on when the last segment of the first message on
each individual queue arrives at the queue. In the above example the last
segment of the first message on the queue for NYC arrived at its queue before
the last segment of the first message on the queue for BOS arrived at its queue,
and the last segment of the first message on the queue for BOS arrived at its
queue before the last segment of the first message arrived on the queue for
RAL. Therefore, all messages queued for NYC are transmitted before any
message queued for BOS is transmitted, and all messages queued for BOS are
transmitted before any message queued for RAL is transmitted.

• When messages for stations on a multipoint line are queued by terminal, the
order in which the messages queued for an individual station are transmitted is
determined by two rules:

1. All messages having a high message priority are transmitted before any
message having a low message priority is transmitted.

2. When messages have equal message priorities, the message whose final
segment arrived at the queue first is sent first, the message whose final
segment arrived at the queue second is sent second, etc.

When these two rules are in effect, messages are said to be sent out on a
first-ended-first-out (FEFO) basis within priority groups.

Messages for stations on point-to-point lines, whether switched or non­
switched, are also transmitted on a FEFO basis within priority groups.
(Remember that switched lines are considered to be point-to-point, and that
queuing by terminal should always be specified for switched lines.)

Transmission priority refers to the relative order in which messages are sent to and
received from the stations on a line. Transmission priority is specified on a line
group basis by the CPRI= operand of the line group DCB macro.

Transmission priority has a different meaning for each of the following four
configurations of stations:

1. Polled stations (unbuffered) on a nonswitched point-to-point or multipoint
line;

2. Buffered polled stations on a nonswitched multipoint line;
3. Contention stations on a nonswitched point-to-point line;
4. Stations on a switched line.

TCAM considers a buffered station to be one for which the BFDELA Y = ope­
rand of the TERMINAL macro is coded. A special scheme for transmitting
outgoing messages is implemented for such a station (see the description of the
BFDELA Y = operand of TERMINAL). A station may be defined as buffered
using the BFDELA Y = operand even though no delay is ever taken.

Transmission Priority for Nonswitched PoUed Stations
For such stations, the user may specify that sending has priority over receiving (by
coding CPRI=S in the line group DCB macro), that receiving has priority over
sending (CPRI=R), or that sending and receiving have equal priority (CRPI=E).
The meaning of these priorities depends upon whether the line is being polled
under the control of the TCAM program polling scheme, or under the control of
the Auto Poll hardware feature.

Defining Terminal and Line Control Areas 55

TeAM Program Poll: When this scheme is used, TeAM polls all stations
designated as active in the invitation list for an active line. In polling, TeAM
begins with the first active station in the list, and invites it to enter a message by
sending its polling characters. If the station has a message to enter, it responds by
entering the message, following which TeAM polls it again.

If receiving has priority over sending, the cycle of polling and entering is repeated
until the first station has no more messages to enter. When TeAM receives a
negative response to polling from the first active station in the list, it proceeds to
the second active station in the list, and polls it. TeAM continues to poll the
second station until the station indicates that it has no more messages to enter;
TeAM then polls the third station. TeAM proceeds through the list in this
fashion until a negative response to polling is received from the last station in the
list. At this time, TeAM observes the invitation delay specified by the INTVL=
operand of the line group DeB macro, or by a POLLDLA Y operator command.
During the invitation delay, outgoing messages are sent to stations on the line in
the order described in Message Priority and Queuing. (If the computer has no
messages to send to stations on the line at this time, the invitation delay is ob­
served nevertheless.) Outgoing messages are sent until the delay expires or the
destination queues for stations on the line are empty. Upon expiration of the
delay, outgoing message transmission ends after the current message is sent,
regardless of whether any messages remain queued. As soon as outgoing message
transmission ceases, polling and incoming message transmission resume, and the
cycle is repeated. It is important to note that if no invitation delay is specified,
outgoing message transmission does not occur. If an invitation delay is specified,
it must be long enough to accommodate the expected density of outgoing message
traffic; too short a delay causes outgoing messages to accumulate on the destina­
tion queues for lines or stations in a line group.

If receiving and sending have equal priority, polling and incoming message traffic
proceed without interruption until the end of the invitation list is reached. Then
any outgoing messages are sent to stations on the line in the order described in the
Message Priority and Queuing section. Once outgoing transmission begins, it
continues until all messages queued for stations on the line have been sent,
regardless of whether the user has specified an invitation delay. When all mes­
sages for stations on the line have been sent, polling and incoming message traffic
resume. Note that, in contrast to the case where receiving has priority over
sending, outgoing message transmission occurs whether or not an invitation delay
is specified and regardless of the specified length of the delay.

If sending has priority over receiving, any outgoing messages are sent to a station:

1. Each time a negative response to polling is received from a station;
2. Each time an EOT is received from a station, indicating that a complete mes-

sage has been received;
3. Each time the end of the invitation list is reached.

Outgoing messages are sent in the order described in the Message Priority and
Queuing section. Once outgoing message transmission begins, it continues until
all messages queued for stations on the line have been sent. Note that when
sending has priority over receiving, outgoing transmission can occur after each
station is polled, rather than only after a complete polling pass.

Auto Poll: For lines polled under the control of the Auto Poll hardware feature,
the scheme given above is slightly modified.

56 OS/MFT and OS/MVT TeAM Programmer's Guide

(

If receiving has priority over sending, messages are sent to stations on the line
during the invitation delay. However, if no messages have been queued for
stations on the line by the time the end of the invitation list is reached, no invita­
tion delay is observed.

If receiving and sending have equal priority, there is no difference between
autopolled and other polled lines.

If sending has priority over receiving, outgoing messages are sent over auto polled
lines:

1. Each time an EOT is received from a station, indicating that a complete mes­
sage has been received;

2. Each time the end of the invitation list is reached.

Transmission Priority for Nonswitched PoUed Stations Using TeAM's Buffering
Feature
The IBM 2740 Model 2 contains a hardware buffer (and a message to the 2740
Model 2 must fit within this buffer); the IBM 2770 on a multipoint line contains
two hardware buffers. Messages to these stations fill the buffers at line speed. A
message is read from the buffer to the terminal output device at the speed of the
output device. This improves line utilization, since the line is occupied with
individual stations for short periods of time. If a buffered station is addressed
before the buffer has emptied, a negative response is returned and the station
must be selected again later. A message to be entered from a buffered station is
first entered into the buffer from the input component (at the speed of the input
device). When the buffer is filled or the message is entered, the message is trans­
mitted to the CPU at line speed the next time the station is polled.

TCAM sends to an IBM 2740 Model 2 a message at a time and to an IBM 2770
until its buffer space is filled. The 2740 Model 2 accepts messages; thus, a block
of data to the 2740 Model 2 must be equivalent to a whole message. To prevent
TCAM from trying to send a message to a 2740 Model 2 while the hardware
buffer is still emptying the previous message and thus wasting time on the line,
TCAM allows the user to specify (in the BFDELA Y = operand of the
TERMINAL macro) the number of seconds to delay before sending each message
after the first to a 2740 Model 2. The time specified should be the average time
needed to empty the hardware buffer (the BFDELA Y = operand must be speci­
fied for the IBM 2770 also; see BSC device-dependent considerations in the
section titled Sending Operations in Appendix G). While this interval is in
effect, TCAM can be sending messages to other stations on the line, thereby
utilizing the line more efficiently.

Thus, when BFDELA Y = is specified for the 2740 Model 2 on a multipoint line,
messages are sent to stations on the line on a message-by-message basis: the first
message is sent; if there are messages queued for other stations on the line, they
are sent; subsequent messages are sent as stations become available. For the 2740
Model 2 to become eligible to accept another message, the time interval specified
by the BFDELA Y = operand of its TERMINAL macro must have elapsed. For
information on how to determine the correct interval and restrictions on coding
BFDELAY=, see the description of this operand in the TERMINAL macro.

When a STOPLINE operator command, a QT AM STOPLN macro, a SYSCLOSE
operator command, or an MCPCLOSE macro specifying a quick closedown is
executed, transmission on a line to stations using TCAM's buffered-terminal
support is not stopped until all messages being sent to stations on the line at the

Defining Terminal and Line Control Areas 57

time the command or macro is executed have been completely sent and all inter­
vals specified by the BFDELA Y = operand of the TERMINAL macros for
stations on the line have been observed.

For TCAM's buffering feature to work properly for the IBM 2740 Model 2,
queuing by terminal and either equal or send priority must be specified in the
TERMINAL and line group DCB macros.

Transmission Priority for Nonswitched Contention Stations
The following can be nonswitched contention stations: the IBM 2740 Basic, the
IBM 2780, the IBM 2770, World Trade (WTTA) terminals, and the IBM
System/360, System/360 Model 20, and 1130 Computing System. For non­
switched contention stations, either equal or send priority may be specified. The
way in which equal priority works is device-dependent, and is explained in
Appendix G.

Send priority is similar for all these types of stations. If send priority is specified,
messages may be entered at the station whenever the line is idle. Whenever a
message is queued for sending, TCAM checks to see whether a message is being
entered by the station; if so, the computer waits until an EOT control character is
received and then sends all messages queued for the station. If no message is
being entered, the computer sends all queued messages immediately after check­
ing. After sending all messages, the computer is ready to receive messages from
the station. The invitation list for the line may consist of a dummy entry (see the
description of the INVLIST macro).

For equal priority for the devices listed above, see Appendix G: Device­
Dependent Considerations.

When a BSC device is in contention with the CPU, TCAM defers to the BSC
device for control of the line. However, when a start-stop device has a message to
enter, and it is in contention with the CPU, the start-stop device loses that mes­
sage (a Message Handler that includes the SEQUENCE macro can indicate when
a message is lost to the system).

Transmission Priority for Switched Stations
For switched stations on a start-stop line, CPRI=S mustbe specified in the line
group DCB macro. For BSC switched stations, CPRI=S or E may be specified.

The relative order in which messages are sent to and received from a station on a
switched line depends upon whether or not the station is a BSC station.

When a non-BSC station calls the computer, once the connection is established,
the station begins to enter any messages it may have ready for the computer.
Before it can accept messages, the station calling in must identify itself to the
computer by an origin field, verified by an ORIGIN macro, in a message header.
If the station does not identify itself, upon receiving a negative response to
invitation, the computer sends the station any messages queued for the line entry
for this line. If no messages are queued for the line entry, or if there is no line
entry, the computer breaks the line connection upon receiving a negative response
to invitation, thereby making the line available for other calls. Once the station
identifies itself, it is eligible to accept messages. If any messages were queued for
the station at the time it identified itself, the station accepts these messages as
soon as possible; no further messages may be entered at the station until the
queued messages are sent. Messages are sent by the computer according to the

58 OS/MFT and OS/MVT TeAM Programmer's Guide

priority scheme outlined in the section Message Priority and Queuing. If the
destination queue for the station was empty at the time the station identified itself,
or once the queue becomes empty during this call, subsequent messages are sent
to the station as soon as possible after they are placed on the destination queue.
That is, whenever a message is completely enqueued on the previously empty
destination queue during this call, TCAM checks to see whether a message is
being entered by the station; if so, the computer waits until the message has been
completely received, and then sends all messages queued for the station. After
sending all messages, the computer invites the station to enter messages. When
the last incoming message is received and no further messages appear on the
destination queue for the station, the computer breaks the line connection, making
the line available for new calls.

When the computer calls a non-BSC station, the computer sends all messages
queued for the station before the station enters any messages (except that when
the time specified in either the CLOCK= or the CINTVL= operand of the
TERMINAL macro expires, TCAM invites the station to enter messages before it
sends messages queued for the station). Messages are sent by the computer
according to the priority scheme described in the section Message Priority and
Queuing Once all queued messages have been sent, or if the queue was empty, the
station begins entering any messages it may have ready. If a message is enqueued
for the station after the station begins entering messages, TCAM sends the
message as soon as the message currently being received from the station has
finished, as described above. When the station indicates that it has no more
messages to enter, and no further messages appear on the destination queue,
TCAM breaks the line connection, rendering the line available for new calls.

See Appendix G. Device-Dependent Considerations for the transmission priority
for:

• 2740 Communications Terminal on a switched line;
• Switched BSC stations;
• Switched TWX stations.

Calls Between the Computer and a Switched Station
On a line group basis, the order in which messages on a switched line are sent and
received depends upon whether the computer dials a station or a station dials the
computer, and upon when calls are made.

In a TCAM system, a station may call the CPU on a line in its own line group that
has a relative line number equal to or greater than the line to which the calling
station is assigned. When a station dials the computer, the response may be either
manual, or automatic if it is equipped with the Auto Answer feature.

If these requirements are satisfied, and if the line is not currently connected to
another station, a connection is established each time the station dials the number
associated with the line. If the line is connected to another station when a station
dials its number, the dialing station receives a busy signal and must try again later.
Once contact is successfully established between station and computer, message
transmission occurs according to the scheme described in the section
Transmission Priority for Switched Stations.

If the computer is equipped with the Auto Call feature, it may dial switched
stations. For the computer to dial a switched station the station's telephone
number must be entered in the DIALNO= operand of its TERMINAL macro
(and the computer must be equipped with the Auto Call feature). If CLOCK= is

Defining Terminal and Line Control Areas 59

coded for the TERMINAL macro, the computer dials the station only at the time
specified by CLOCK=, and this is the only time at which the station may receive
messages from the computer. If CLOCK= is specified, the station is invited to
enter messages before TCAM sends messages queued for the station.

If CLOCK= is not coded, an attempt is made to call the station whenever a
message is completely received and enqueued in the previously empty destination
queue for that station. (A destination queue is considered to be "empty" when it
contains no completely received, but as yet un sent, messages.)

If the CINTVL= operand of the TERMINAL macro provides an interval, and the
station does not call in and is not called during this time, TCAM calls the station
at the end of the interval. (When the station calls in or is called during the speci­
fied interval, the interval begins again.) When the time specified by CINTVL=
expires, the station is invited to enter messages before TCAM sends those mes­
sages queued for the station. If the specified interval has not expired, TCAM
sends all messages queued for the station before the station is invited to enter its
messages.

When the first message arrives at the previously empty destination queue for a
station (if CLOCK= is not coded), or the time specified by CLOCK= or
CINTVL= is reached, the computer attempts to dial the station over the line
specified by the RLN = operand of the TERMINAL macro for the station. If this
line is currently being used by another station, the computer attempts to place the
call over the line whose relative line number is one greater than that specified for
this station. If this line is also being used by another station, the computer checks
the line whose relative line number is one higher than that for the line just
checked; this procedure is repeated until an available line is found, or until the line /~
having the highest relative line number in this line group is checked and found to ~
be in use. If the line with the highest relative line number in the group is in use,
the call is delayed until a line becomes available, at which time it is sent. If more
than one waiting call is eligible to be made over a line that has just become
available, TCAM decides which call to make according to a priority scheme
described below. Once the connection between computer and station is estab-
lished, transmission occurs in accordance with the scheme described in the section
Transmission Priority for Switched Stations.

TeAM's calling scheme is designed to take advantage of AT & T's Wide Area
Telephone Service (WATS). If WATS is used, care should be taken to arrange the
lines in a switched line group to take full advantage of the TCAM calling scheme.
Lines should be arranged according to increasing area of W A TS coverage, with
the line covering the smallest area being assigned relative line #1, and the line
covering the largest area being assigned the highest relative line number in the
group. (The way in which lines in a line group are assigned relative line numbers
is described in DD Statements for a Line Group in the chapter Defining the
MCP Data Sets.) It is most economical for stations to be assigned to lines whose
W ATS coverage extend to their area and no farther; in no event should stations be
assigned to a line whose coverage does not extend to their location.

When a call cannot be made because all available lines in the line group are busy,
TCAM queues the request and defers the call until a suitable line is available. If a
line becomes available, and if there is more than one call that could be made over
the line according to the rules described above, TCAM determines which station (
will be called first by applying the following principles:

60 OS/MFT and OS/MVT TeAM Programmer's Guide

The System Interval

1. A station whose destination queue contains one or more messages having
nonzero message priorities is called before a station whose destination queue
contains only messages to which no message priority was assigned (that is,
messages having zero priority). A station whose destination queue contains no
complete messages is treated like a station whose queue contains only zero­
priority messages (see 3 below).

2. A station having a high-priority message on its destination queue is called
before a station having low-priority messages on its destination queue. If the
highest-priority messages on the queues for two eligible stations are equal in
priority (and if this priority is not zero), the time at which the last segments of
the high-priority messages were enqueued determines which station is called;
the station whose destination queue received the last segment of its highest­
priority message first is called first.

3. Among stations having only zero-priority messages on their destination queues,
TCAM calls the station whose relative line number is equal to, or closest to but
lower than, the relative line number of the available line. Among stations
having only zero-priority messages on their destination quel!~S and having the
same relative line number, TCAM calls the eligible station whose queue was
first to receive a complete message.

4. Among stations whose queues contain no complete messages, TCAM calls the
eligible station for which the call has been deferred the longest (this principle is
applicable only for stations whose TERMINAL macro specifies CLOCK= or
CINTVL=).

Note that a strict WATS priority scheme for deferred calls is observed only among
stations whose destination queues contain only messages having zero priority. If
relative line #6 becomes available and calls have been deferred for a station
assigned to relative line #1 and for a station assigned to relative line #6, and if the
queue for the station assigned to relative line #1 contains the highest-priority
message, this station will be called before the other, even though it would be more
economical from a W ATS standpoint to call the station assigned to relative line
#6. (See Principle #2 above.) If the queues for both stations contain only zero­
priority messages, a W ATS priority scheme will be applied, and the station
assigned to relative line #6 will be called first. (See Principle #3 above.)

If the computer dials a station and gets a busy signal, it is tr~ated as an error
condition. The station's number will be dialed twice more; if no connection is
established in three attempts, TeAM sets the selection error bit in the message
error record, and the message is lost unless a REDIRECT or HOLD macro is
executed for it in the outmessage subgroup. (The text error bit in the message
error record may also be turned on-see the description of this bit in Appendix
B.)

Once the connection between the computer and a switched station is established,
transmission occurs according to the scheme described in the section
Transmission Priority for Switched Stations.

Message flow is vitally affected by the system interval, a period of time specified
by the INTV AL= operand'of the INTRO macro. The INTERVAL operator
command tells TCAM to begin the system interval. When this message is re­
ceived, each leased line to polled stations is "frozen" that is, receiving and sending
of messages cease on it) at the start of its current polling pass. When all leased
lines are inactive, the system interval commences. Lines to switched stations and
local lines are left active; stations on such lines may still enter and accept mes­
sages. A SYSINTVL operator command may be entered to change the duration

Defining Terminal and Line Control Areas 61

of the system interval. If this message is entered while a system interval is in
effect, it does not change the duration of the current interval, but changes subse­
quent intervals.

The system interval is used to minimize unproductive polling, to minimize CPU
meter time, and to synchronize polling on the polled lines in the system. In
general, if there is no traffic on any line in the TCAM system, the OS supervisor is
given control to dispatch the next concurrent job.

62 OS/MFT and OS/MVT TeAM Programmer's Guide

c

Structure of a Buffer

Defining Buffers

Messages entering a TCAM network are read into buffers, which are user-defined
areas of main storage used for handling, queuing, and transferring message
segments between all lines and queuing media, and between queuing media and
application-program work areas. (A message segment is that portion of a message
contained in one buffer.) A buffer has two parts, one containing control informa­
tion (the buffer prefix) and the other containing all or part of the message.
Buffers must be at least 35 bytes, and may be no larger than 65535 bytes.

To provide the best dynamic buffering capability and use of main storage, the
TCAM network has one buffer unit pool containing buffer units of one size.
Buffer units are the basic building blocks from which buffers are constructed.

The size of a unit is specified by the KEYLEN = operand of the INTRO macro of
an MCP, and the number of units in the pool is equal to the sum of the numbers
specified by the LNUNITS= and MSUNITS= operands of INTRO. For internal
management purposes, 12 bytes are added by TCAM to the user-specified unit
size. Thus, if a user specifies a unit size of 60 bytes (KEYLEN=60), the size of
the unit becomes 72. The user should not concern himself with the extra 12 bytes
when defining buffers.

IUhe sum of the number of bytes specified by the KEYLEN = operand plus 12
bytes is not evenly divisible by eight, TCAM adds enough bytes to each unit to
make its tQtallength divisible by eight. This is done so that units that are contigu­
ous in main storage always start on a doubleword boundary.

The size of a buffer for a line group is specified by the BUrSIZE= operand of the
DCB macro defining the line group data set for that group. Each line group may
use buffers that differ in size from those assigned to other line groups.

By coding the BUFSIZE= operand of the TERMINAL macro, the user may
override the buffer size specified in the line group DCB macro on a station-by­
station basis, for outgoing messages only.

By linking an appropriate number of units, TCAM constructs buffers containing a
number of bytes at least as great as that specified by the BUFSIZE= operand of
the DCB macro for a given line group. (The 12 bytes added to each unit by
TCAM should not be considered in defining BUFSIZE=; the user should consid­
er only the number of bytes he specified in the KEYLEN = operand of the INTRO
macro.) For example, if the user specified KEYLEN=60 in the INTRO macro and
BUFSIZE= 120 in a line group DCB, TCAM links together two units in building
buffers for that line group. If, however, KEYLEN=60 and BUFSIZE= 100 is
coded, TCAM will still link two units, but the last 20 bytes of the second unit
cannot be used, and main-storage space is wasted. If KEYLEN =60 and
BUFSIZE=40 is specified, the last 20 bytes of the first (and only) unit assigned
are wasted.

There are two types of logical buffers, header buffers and text buffers. A header
buffer is a buffer that contains all or any part of a message header. A text buffer
contains message text only.

Defining Buffers 63

12 Bytes
Buffer Unit
Control

r

12 Bytes

A buffer prefix is a control area contained within each physical buffer of the
system. The user must allow room for the buffer prefix in defining buffers.
TCAM fills in the buffer prefix area with buffer control information.

If only one buffer is used to contain a message, the buffer prefix occupies the first
30 bytes of the buffer. If more than one buffer is used to contain a message, a
30-byte buffer prefix occupies the beginning of the first buffer, and a 23-byte
buffer prefix occupies the beginning of each subsequent buffer assigned to the
message.

Thus, there are two kinds of control areas associated with buffers. The 12-byte
control area associated with each buffer unit is assigned automatically by TCAM
and need be of no concern to the user when defining buffers. The 30-byte
(header) or 23-byte (text) buffer prefix ass!gned to each buffer is of concern to
the user, who must allow for this area in defining the size of his units. Each unit
must be large enough to contain the larger prefix plus five bytes (35 bytes) and
may be no larger than 255 bytes. Obviously, the second and subsequent buffers
will contain more bytes of actual message than will the first buffer, since their
prefixes are seven bytes shorter than that of the first buffer.

Figure 2 shows how two buffers assigned to a line group would look if the user
specified KEYLEN = 60 and BUFSIZE= 120.

30 Bytes 30 Bytes
First Buffer Message Header Unit J
Prefix Area and Text

Buffer #1

60 Bytes
Buffer Unit Message Header Unit 2
Control and Text

12 Bytes 23 Bytes 37 Bytes
Buffer Unit Subsequent Buffer Message Header Unit 1
Control Prefix Area and Text

Buffer #2

12 Bytes 60 Bytes
Buffer Unit Message Header Unit 2

Contf91 and Text

Figure 2. Two Buffers Assigned to a Line Group; KEYLEN=60 and BUFSIZE=120

64 OS/MFT and OS/MVT TeAM Programmer's Guide

c

The Buffer Unit Pool

Notice that each buffer is composed of two units linked together, and that the two
buffers are also linked together. Each unit is 72 bytes long (the 60 bytes specified
by KEYLEN= plus a 12-byte unit control area added by TCAM). In defining
BUFSIZE for the line group, only the 60 bytes specified by the user were consid­
ered.

Remember that

• a buffer is composed of one or more buffer units;
• each buffer unit must be at least 35 bytes (not counting the 12-byte control

area added by TCAM) and may be no larger than 255 bytes (not counting the
unit control area);

• each buffer must be at least 35 bytes (minimal size of one unit) and may be no
larger than 65535 bytes.

One buffer unit pool is defined for the Message Control Program. This single
pool contains a number of buffer units equal to the sum of the numbers specified
by the LNUNITS= and MSUNITS= operands of the INTRO macro. The total
number of units in the unit pool must not exceed 65535.

When message traffic is in progress, a unit in the unit pool may be in anyone of
three states:

1. If a main-storage message-queues data set is specified, some units are
assigned to main-storage message queues;

2. Some units are linked to form buffers assigned to line or application pro­
grams to handle data transfer;

3. Some units are assigned to an available-unit queue, where t'hey remain until
linked to form a buffer or until assigned to a message queue.

Figures 3 and 4 show allocation of the units in a unit pool. Figure 3 illustrates
how units are allocated when the user specifies main-storage message queuing
with or without backup on reusable or nonreusable disk (see Defining the MCP
Data Sets for a discussion of main-storage message queuing).

The first block in Figure 3 depicts the unit pool just after storage has been allocat­
ed for it, when main-storage queuing is specified. The pool consists of a number
of units equal to the sum of the LNUNITS= and MSUNITS= operands of
INTRO. Each unit has a length equal to the number of bytes specified by the
KEYLEN= operand of INTRO, plus 12 bytes. All units are assigned to the
available-unit queue.

The second block in Figure 3 shows how the pool looks just before selection and
invitation begin. A certain number of units have been linked to form buffers,
which are assigned to line groups and application programs to handle initial send
and receive operations (the number of buffers assigned is specified for line groups
by the BUFIN= and BUFOUT= keyword operands of the line group DCB macro,
and for application programs by the BUFIN= and BUFOUT= operands of the
PCB macro). All other units are still in the available-unit queue.

The third block in Figure 3 illustrates the situation when normal message traffic is
in progress. Some units are in line and application-program buffers; others are in
main-storage message queues; the remainder are in the available buffer queue.
The arrows represent the normal limits in size of the fraction of the unit pool that
can be assigned to line and application-program buffers or to main-storage
message queues after selection or invitation has begun. The number of units

Defining Buffers 65

assigned to main-storage message queues may never exceed the number specified
by the MSUNITS= operand of INTRO. The number of units assigned to line and
application-program buffers will not ordinarily exceed the number specified by the
LNUNITS= operand of INTRO. However, under exceptional conditions (for
example, when main-storage queuing with backup on disk is specified, and there is
a peak period of line activity with low main-storage queue activity and high disk
activity), the number of units assigned to line and application-program buffers
may exceed the number specified by LNUNITS=, if the number of units required
is available in the available-unit queue.
Figure 4 illustrates how units are allocated when the user has specified disk
queuing only for his message queues data set.

The first block in Figure 4 depicts the unit pool just after storage has been allo­
cated for it. The pool consists of a number of units equal to that specified by the
LNUNITS= operand of INTRO. All units are assigned to the available-unit
queue.

The second block in Figure 4 shows how the pool looks just before selection or
invitation commences. A certain number of units have been linked to form
buffers, which are assigned to line groups and application programs to handle
sending and receiving operations. All other units are on the available-unit queue.

The third block in Figure 4 illustrates the situation when normal message traffic is
in progress. Each unit in the pool is either assigned to a line or application­
program buffer or assigned to the available-unit queue. The arrows illustrate the
limit in size of the fraction of the unit pool that may be assigned to line buffers
after selection or invitation has begun. All units on the available-unit queue may
be assigned to line buffers.

Buffers are not always available to be assigned to lines; for example, when TCAM
does a Read operation for a data set residing on disk, a buffer is reserved to hold
the record read from the disk.

Buffers assigned to TCAM application programs differ from those assigned to the
MCP in the way in which they are defined and in the manner in which they are
allocated. For additional information on such buffers, see Defining Buffers for
the Application Program in the chapter Writing TCAM-Compatible Application
Programs.

66 OS/MFT and OS/MVT TeAM Programmer's Guide

c

Initially:

Assigned by
LNUNITS=

Assigned by
MSUNITS=

Just Before Selection
or Invitation:

Normal
I!:s!ff.i.s. :

Assigned by
LNUNITS=

Assigned by
MSUNITS=

Assigned by
LNUNITS=

Assigned by
MSUNITS=

Unit Pool

Unit Pool

Unit Pool

Available -Unit
Queue

Units in Line Buffers

Available-Unit Queue

Units in Line Buffers

Available-Unit Queue

Units in Ntain-Storage
Message Queue

Figure 3. Unit Allocation when Main-Storage Queuing (with or without Backup on Disk) is

Specified

Initially:

Just Before Selection
or Invitation:

Assigned by
LNUNITS=

Unit Pool
f"r------~, .,

)

~'------"""'''

Unit Pool
f" ----~)

Avai lab Ie-Unit
Queue

Units in Line Buffers

Assigned by
LNUNITS=

,'--____ } Ava Hable-Un;, Gueu.

Assigned by
LNUNITS=

Unit Pool

____ ... __L. __ .j

Figure 4. Unit Allocation when Disk-Only Queuing is Specified

Units in Line Buffers

Available-Unit Queue

Defining Buffers 67

(

Buffer Definition Checklist

Macro

INTRO

Line Group
DCB

Operand

A checklist of the TCAM macro operands directly involved in MCP buffer
definition follows. (A similar checklist for defining application-program buffers is
contained in the chapter Writing TCAM-Compatible Application Programs.) The
macros to which the operands belong are described in detail elsewhere in this
publication. The user should first scan the checklist to give himself a general idea
of what is involved in defining TCAM buffers, and then read the next section,
which contains guidelines for coding many of these operands. Finally, the check­
list may be used during actual buffer definition to assure that all applicable
operands are coded. For information on m~ximum and minimum values and
defaults, see the operand description for the. associated macro.

Description of Function and Comments

KEYLEN = integer Specifies the length in bytes of a buffer unit. The unit as it exists in
the unit pool is equal in length to the number of bytes specified by
KEYLEN= plus a 12-byte control area added by TCAM. TCAM
begins each unit on a doubleword boundary. In order to conserve
main storage, the following formula can be used as a guideline in
determining a value for KEYLEN = :

LNUNITS=integer

! BUFSIZE = integer J

[BUFIN =integer]

[BUFOUT=integer]

[BUFMAX=integer]

KEYLEN=8x-12

where x is any integer between 6 and 35, inclusive. A buffer unit
must be large enough to accommodate the larger of:

(a) a header prefix (30 bytes) plus the maximum number of reserve
characters specified for the first buffer by the RESERVE=
operand of any line group DCB macro or PCB macro plus 5
bytes, or

(b) a text prefix (23 bytes) plus the maximum number of reserve
bytes specified for buffers other than the first by the
RESERVE= operand of any line group DCB macro or PCB
macro plus 5 bytes.

Specifies the number of buffer units in the unit pool that may build
line buffers and buffers to handle application-program traffic. The
sum of LNUNITS= plus MSUNITS= must not exceed 65535.

Specifies the size of buffers to be used for all lines in this line group.
The size specified here may be overridden on a station basis for
outgoing messages by means of the BUFSIZE= operand of the
TERMINAL macro. The maximum number of units per buffer is
255.

Specifies the number of buffers assigned initially for receiving
operations for each line in the line group.

Specifies the number of buffers to be assigned initially for sending
operations for each line in the line group.

Specifies the maximum number of buffers allocated to a line at one
time. If this operand is omitted, the larger of BUFIN = and
BUFOUT= is assumed.

Defining Buffers 69

Macro

TERMINAL

LOGTYPE

Operand

[PCI=<{N,N1)
R,R
X,X
A,A

[RESERVE=
(integerl,
[integer2])]

[BUFSIZE=integer]

BUFSIZE=integer

Description of Function and Comments

Specifies whether and how program-controlled interruptions (PCI)
are to be used for control of dynamic buffer allocation and
de allocation . For the meaning of the operands, see the discussion
of program-controlled interruptions in Dynamic and Static Buffer
Allocation in this chapter.

integer 1 specifies the number of bytes to be reserved in the first
buffer of each incoming message for inserting data by the
DATETIME and SEQUENCE macros. data by the DATETIME
and SEQUENCE macros. integer2 optionally specifies the number
of bytes to be reserved in all buffers, except the first, for inserting
characters by the DA TETIME macro. See the descriptions of these
macros, and the discussion of this operand in the description of the
line group DCB macro.

Overrides the buffer size specified by the BUFSIZE= operand of
the line group DCB macro, but only for buffers containing outgoing
messages destined for this station.

Specifies the size of the buffers to handle messages destined for the
logging medium when logging of messages is specified by a LOG
macro.

Design Considerations
Management of data buffers for incoming and outgoing messages is an important
factor in running a TCAM system at optimal efficiency. There are several factors
that a system programmer must consider in weighing the trade-off of time and
main storage.

1. The user must specify enough buffer units to assure no loss or undue delay of
data.

2. The user must select the size of the buffer units and buffers to accommodate
his message.

3. The user must decide whether to use the program-controlled interruption (PCl)
feature for control of dynamic buffer allocation and deallocation.

4. The user must determine the number of buffers to be assigned initially to each
line in a line group for sending and receiving operations, and the maximum
number of buffers to be assigned to each line.

The following lists may aid the system programmer in dealing with the first two of
these factors; the other factors are discussed in turn below.

70 OS/MFT and OS/MVT TeAM Programmer's Guide

«

Size of Buffers
Relative Advantages of Larger vs. Smaller Buffers

Parameter

larger buffers
(more units per buffer)

smaller buffers
(fewer units per buffer)

Advantages

1. Fewer buffers required for a message;
consequently overhead required by
TCAM to manipulate buffers is de­
creased.

2. When dynamic allocation of buffers is
used, the possibility of losing data be­
cause of a delayed PCl is decreased.

3. Number of PCls required (if PCl is
specified) is decreased.

4. Better use is made of the disk access
method employed by TeAM
(multiple-arm support) because there
is a larger number of contiguous re­
cords than there would otherwise be.

5. There are fewer queuing operations
per quantity of data; this results in a
saving of time.

1. Units in smaller buffers tend to be
returned to the available-unit queue
more rapidly than units in larger buf­
fers/ (since it takes less time to empty
and fill a smaller than a larger buffer).
Since units in smaller buffers are
available for reuse sooner than equiv­
alent units in larger buffers, a smaller
unit pool is possible when smaller
buffers are used.

2. When smaller buffers are used.
TeAM's work load is broken into
smaller pieces; this results in a more
equitable allocation of processing time
among message segments in main
storage.

Defining Bliffer~ 71

Number 0/ Units
Relative Advantages of Having Many vs Few Units in the Pool

Parameter

more units in system

fewer units in system

Siz.e 0/ Units

Advantages

1. Likelihood of losing message data
coming in over a line is decreased.

2. Outgoing messages are less likely to
be delayed as a result of waiting for a
buffer.

1. Main storage is utilized more effi­
ciently. Since the number of units in
the free unit pool is not excessive,
main storage is saved.

Relative Advantages of Larger and Smaller Units

larger units

smaller units

72 OS/MFT and OS/MVT TeAM Programmer's Guide

-~~--~~~ ----~-- ~---

1. Disk space is used more efficiently,
since there are fewer interrecord gaps.

2. Proportion of area available for text
to area containing management in­
formation is relatively large.

3. Since more data is transmitted per
CCW on line and disk, channel activi­
ty is relatively light; ~his results in a
saving of channel fetch time and CPU
time.

4. Fewer channel program blocks
(CPBs) are needed for transferring
the same amount of data to and from
disk; this results in a saving of storage
space and time (since there is less
queuing of CPBs).

1. Duplicate headers (used for multiple
routing of messages) take up little
room.

2. User can specify a large range of
buffer sizes without wasting space in
main storage and on disk.

3. Allocation of buffers can be more
dynamicwith smaller units, since
smaller units are passed around the
TCAM system more rapidly than larg­
er units.

(

Dynamic and Static Buffer Allocation
When the PCI= operand of the DCB for a line group is coded to permit program­
controlled interruptions, a PCI may occur during the filling of the first and each
subsequent buffer assigned to a line group. When this interruption is received,
control is given to a TCAM PCI routine.

If PCI=A is coded, when the first interruption occurs, a number of buffers equal
to the difference between the maximum number assigned to a line group (specified
by the BUFMAX= operand of the DeB) and the number initially assigned to the
line group (specified by the BUFIN = operand of the line group DCB for a
receiving operation and by the BUFOUT= operand for a sending operation) is
assigned as soon as possible to the line group. On subsequent PCls, the buffer
immediately preceding the one being filled or emptied is deallocated (for a sending
operation, the buffer units are returned to the available-unit queue; for a receiving
operation, the buffer is sent to the Message Handler for that line group) and a
new buffer is requested to keep the number of buffers assigned to the line group
equal to that specified by BUFMAX=.

When PCI=R is coded, the previous buffer is deallocated when the second and
subsequent PCls occur, but no requests are made for additional buffers. If
program-controlled interruptions are not permitted (PCI=N), or if only dealloca­
tion is specified (PCI=R), then the number of buffers assigned initially must be
sufficient to handle the entire transmission.

If PCI=N is specified, no de allocation of buffers occurs until an EOB, ETB, or
ETX control character is received; if the message contains no such characters, no
de allocation occurs until the transmission is completed.

If PCI=X is specified, after a buffer is filled (receive operations) or emptied (send
operations) a PCI occurs while filling or emptying the next buffer. The first
buffer is not deallocated but a new one is allocated. Buffer deallocation occurs at
the end of transmission, or when an EOB/ETB control character is sent, if
STARTMH specifies EOB/ETB checking.

Advantages:

• When PCI=A is coded, fewer buffers need be assigned initially to a line since
dynamic allocation brings the number of buffers assigned up to the value
specified by BUFMAX= and maintains this number if possible .

• When PCI=A is coded and a negative response to invitation occurs, only the
number of buffers assigned initially, rather than the maximum number assigned
to the line, have been fruitlessly allocated.

Defining Buffers 73

• When PCI= is specified as A or R, buffers are continuously being deallocated;
the free-unit pool is therefore continuously being replenished and a smaller unit
pool is required.

• When PCI= specifies A or R, a message is moved one buffer at a time; there-
fore, fewer CPBs are required.

Disadvantages:

• Dynamic allocation and de allocation of buffers takes processing time.
• When reusable disk queues are used, records written to disk by the PCI inter­

rupt are not serviced until the entire message is queued. If the length of time
required to enter a message is excessive, or if reusability servicing is very
frequent, records may be overlaid. If this occurs, TCAM will terminate abnor­
mally with a system code of 045 and with a return code of 02 or 03 in register
15.

Note: In order for dynamic allocation to work properly for BSC lines, the
BUFMAX= operand of the line group DCB macro must specify a value that
is at least two greater than that specified by the larger of either the
BUFIN= or the BUFOUT= operand of the line group DCB macro.

For start-stop lines using dynamic allocation, a specification of BUFIN =2,
BUFMAX=2 may cause inefficient dynamic allocation.

Initial and Maximum Number of Buffers per Line
The number of buffers that should be assigned initially to each line in the line
group (by the BUFIN= and BUFOUT= operands of the line group DCB macro)
depends upon the following factors:

• terminal type;
• terminal speed;
• line speed;
• whether dynamic allocation of buffers is specified.

The number of buffers to 'be assigned initially varies directly with the speed of the
line and the terminal; the faster the data is transmitted, the higher the initial
assignment should be.

The maximum number of buffers assigned to a line in the group (by the
BUFMAX= operand of the line group DCB macro) also depends upon the line
and terminal speed. For a system using dynamic allocation of buffers, allowance
should be made for the fact that program-controlled interruptions might not be
accepted by the CPU in time for buffer replenishment to be effective for any
particular buffer. For high-speed BSC lines, dynamic allocation may not be
totally effective; that is, there may not be a one-to-one correspondence of re­
placement buffers to replaced buffers. If this happens consistently, incoming data
may be lost and bit 6 turned on in the message error record. The higher the line
speed, the greater the disparity may become. When dynamic allocation is not used
by the system, BUFMAX= is ignored.

The buffers assigned to each line in a line group by the BUFIN = operand of the
line group DCB macro and the buffers assigned to each line by the BUFOUT=
operand of the line group DCB macro are never assigned to the same line at the
same time. The buffers specified by BUFIN= are assigned to a line just before a
station is invited by TCAM to enter a message; the buffers specified by
BUFOUT= are assigned immediately before a station on the line is selected to _
receive a message. Hence, when the user is deciding how many units to define to

74 OS/MFT and OS/MVT TeAM Programmer's Guide

handle initial line operations, he need consider only the larger of the values
specified by BUFOUT = and BUFIN = for each line in a line group, and not the
sum of the two values.

Other Buffer Design Considerations
• If the buffer size (as specified by the BUFSIZE= operand of the line group

DCB, TERMINAL, LOGTYPE, or PCB macro, or the BUFL= operand of the
input or output DCB) is not a multiple of the effective unit size (as specified by
the KEYLEN= operand of the INTRO macro), buffer space is wasted. For
example, if the INTRO macro specifies KEYLEN =36 and the DCB macro for
a line group specifies BUFSIZE=100, 108 bytes (that is, 36 X 3) are assigned
to the buffer, but only 100 bytes are available for prefix and message data.
Thus, 8 bytes are wasted for each such buffer.

• If disk queuing is used, try to ensure that the buffer size specified by the source
of a message is equal to the buffer size specified by the destination. The source
of a message may be either a station or an application program. If it is a
station, that station's line group DCB macro determines the buffer size of
messages that it may enter; if it is an application program, a PCB macro deter­
mines buffer size. The destination for a message also may be either a station or
an application program. Buffer size for an accepting station is determined
either by that station's line group DCB macro or a TERMINAL macro (if the
buffer size is specified on the TERMINAL macro, this value overrides the value
specified on the line group DCB). A PCB macro determines buffer size for an
application program that is the destination for a message. When the buffer
sizes specified for the origin and the destination of a message are different, data
movement occurs because of the necessity of adding or deleting prefixes when
the message is placed in the buffers for the destination. (The message is
queued on disk with its old prefixes; when it is removed from a queue and
placed in buffers of a different size, prefixes must be added or removed and
message data must consequently be shifted.) Movement of data takes time.
Figure 5 illustrates a situation in which 706 bytes of a 1076-byte message must
be moved because of a difference in origin and destination buffer size.

• TCAM does not consider a message that has been sent to an application
program to be "serviced" until the succeeding GET is completed; therefore,
buffers are not released until the succeeding GET is completed and extra
buffers must be allocated to compensate for those not released yet.

Buffering and queuing are closely related concepts; the discussions of main­
storage and disk queuing in the chapter Defining Data Sets should be read in
conjunction with the present chapter.

Defining Buffers 75

30 bytes 70 bytes

30 bytes 70 bytes

,---"---v " DATA
'\

I
HEADER I PREFIX

DATA

DATA

DATA
No Data Movement
for these Units

DATA

DATA

DATA

DATA
23 bytes 77 bytes

~ " Data Movement:
\

DATA 77 bytes

DATA
23 bytes

DATA 77 bytes

DATA
23 bytes

DATA 77 bytes

DATA
23 bytes

DATA 77 bytes

23 bytes 77 bytes
DATA

~
1\

'\

54 bytes
.4

DATA
\,~

DATA
46 bytes

DATA 54 bytes

DATA
46 bytes

DATA 54 bytes

DATA
52 byres 48 bytes

DATA EMPTY 6 bytes

EMPTY

Relevant Macro Operands

MACRO OPERAND

INTRO KEYLEN=100

Line Group DCB
BUFSIZE=400 for Incoming Line

Line Group DCB BUFSIZE=1200,
for Outgoing Line BUFOUT=l

message length=1076 bytes.

Figure 5. 706-Byte Data Movement Resulting from Size Disparity between Input and Output Buffers

c

76 OS/MFT and OS/MVT TeAM Programmer's Guide

Line Group- Data Sets

Defining the MCP Data Sets

The Message Control Program may refer to four types of data sets. Two are
required for every MCP:

o The line group data set and
o The message queues data set.

The two optional data sets are:

o The checkpoint data set, if the checkpoint facility is desired;
o The log data set, if the logging function is desired.

Log data sets are not TCAM data sets; they are discussed briefly below. Other
data sets are needed if there are any application programs; these data sets are
described in the chapter dealing with TCAM support for application programs.

With one exception (a message queues data set in main storage with no disk
backup), TCAM data sets are defined by DCB macro instructions. The total
number of TCAM MCP data sets may not exceed 255.

A line group data set consists of the lines in a line group over which messages are
transmitted to and from the central processing unit. The user must specify one
line group DCB macro instruction for each line group in the system.

Characteristics of a Line Group
A line group may consist of from one to 255 lines. (The size of a line group is also
limited by the fact that the INVLIST= operand of the line group DCB macro can
be no longer than 255 characters, including commas; thus, if each of 255 lines has
an invitation list associated with it, the lines cannot all be accommodated within
the same line group.) All lines in the group must have the following common
characteristics:

o Either all lines in the group are switched or all are nonswitched.
o Either all lines in the group use start-stop transmission or all use binary syn­

chronous transmission.
o All lines are associated with stations having the same device characteristics.
o All lines are preassigned the same number of buffers to handle the initial

segments of incoming messages.
o All lines use the same invitation delay.
o All lines use the same Message Handler.
o No line in the group is a member of another group.
o All lines in the group are associated with the same type of transmission control

unit.

Creating a Line Group Data Set
A line group data set is defined by a line group DCB macro instruction, which
creates a data control block for the line group. Parameters based on the keyword
operands specified in the macro are included in the data control block.

Operands of the line group DCB macro enable one to specify functions concerned
with buffering (BUFOUT, BUFIN, BUFSIZE, BUFMAX, PCI), polling (INTVL,
CPRI, INVLIST), and message translation (TRANS) on a line-group basis. These
operands are described in detail in the next section. Various aspects of polling
and translation are discussed in the chapter Defining Terminal and Line
Control Areas, while the chapter Defining Buffers includes a discussion of how
to code the DCB operands concerned with buffering.

Defining the MCP Data Sets 77

«

Iinedcb

keyword operands

Line Group DCB Macro

The line group DeB macro

• defines a line group data set;
• must be issued for each line group in the TeAM system;
• identifies the Message Handler for the lines in this line group;
• identifies the invitation lists assigned to the lines in this group;
• specifies the invitation delay;
• indicates transmission priority for stations on lines in this group;
• specifies the number of buffers assigned initially to lines in this group for

sending and receiving operations;
• specifies when buffers servicing lines in this group are to be allocated and

deallocated;
• specifies the buffer size for buffers servicing lines in this group;
• specifies the maximum number of buffers assigned to a line at one time;
• specifies the number of bytes to be reserved for insertion of certain data into

buffers;
• specifies the translation tables to be used for incoming and outgoing messages.

The line group DeB macro defines a data control block for a line group data set.
Parameters based on the keyword operands specified in the macro are included in
the data control block. One line group DeB macro must be issued for each line
group in the TeAM system. The macro generates no executable code.

The line group DeB macro has the following format:

Name Operation Operands

linedcb DeB keyword operands

Function: Specifies the name for the macro instruction and also for the data
control block generated by the expansion of the macro.
Default: None. This name is required.
Format: Must conform to the rules for assembler language symbols (see the
symbol entry in the Glossary).

Function: Are the operands that can be specified. They are described below.
Notes: The operands may be specified in any order and are separated by commas
with no intervening blanks. When a parameter can be provided by an alternate
source, a symbol appears in the Alternate Source description for the operand
associated with that parameter. When there is not an alternate source (that is, the
parameter must be specified by the operand), the alternate source descriptor
states None. The symbols have the following meanings:

Symbol

DO

Explanation

The value of the operand can be provided at execution time by the
data definition (DO) card for the data set. If a value is provided
by a DO statement, the macro operand must be either omitted or

Defining the MCP Data Sets 79

DSORG=TX

MACRF=(G,P)

INTVL= {;teger}

coded with a zero value (if the operand is omitted, a zero value is
supplied by TCAM).

OE The value of the operand can be provided by the problem program
any time up to and including the data control block exit at open
time.

PP The value of the operand can be provided by the user's problem
program any time before the data control block exit at open time.

If DD is specified, OE or PP may also be used. If OE is specified, PP may also be
used. For information on providing parameters by DD, see the section DD
Statements for a Line Group. For information on providing parameters by OE
or PP, see Modifying the Data Control Block in the OS Data Management
Services publication.

The formats of macro illustrations, the symbols used in them, and rules for the
interpretation of operand descriptions are all provided in Appendix A .

Alternate Source: None.
Function: Identifies the data set organization as that for a line group.
Default: None. This operand is required.
Format: DSORG=TX

Alternate Source: None.
Function: Specifies that access to the line group is gained with GET and PUT
macro instructions.
Default: None. This operand is required.
Format: MACRF=(G,P)

Alternate Source: PP, OE, DD.
Function: Specifies the numer of seconds of intentional delay between passes
through an invitation list).
Default: INTVL=O
Format: Unframed decimal integer.
Maximum: 255
Notes: After all the stations in an invitation list for a given line have been invited
to enter a message, a delay, equal to the number of seconds specified in this
operand, occurs before invitation is restarted at the beginning of the list. Invita­
tion delay is discussed in Transmission Priority in the chapter Defining Terminal
and Line Control Areas. For switched lines, INTVL=O should be specified.

If tone generation is required for World Trade terminals, INTVL= 1 should be
coded.

80 OS/MFT and OS/MVT TeAM Programmer's Guide

(

DDNAME=ddname

EXLST = address

BUFIN = {~teger }

Alternate Source: PP, OE, DD.
Function: Specifies the relative transmission priority assigned to the lines in this
line group.
Default: None. This operand is required.
Format: R, E, or S.
Notes: R specifies that CPU receiving has priority over CPU sending. E specifies
that receiving and sending have equal priority. S specifies that sending has
priority over receiving. See Transmission Priority in the chapter Defining
Terminal and Line Control Areas for a discussion of the effect of transmission
priority on sending messages.

Alternate Source: PP.
Function: Specifies the name that appears in the DD statement associated with
the data control block.
Default: None. This operand is required.
Format: Must conform to the rules for assembler language symbols.

Alternate Source: PP.
Function: Specifies the address of the problem program exit list.
Default: None. Specification optional.

i Format: Must conform to the rules for assembler language symbols.
Notes: This list must be provided if data control block or user ABEND exits are
required, and must start on a fullword boundary. The format and contents of the
list, and linkage conventions to be followed when using it, are shown in the OS
Data Management Services publication. User ABEND exits are described in the
last section of this chapter. The DCB exit is also described in Data Management
Services.

Alternate Source: PP, OE, DD.
Function: Specifies the number of buffers assigned initially for receiving opera­
tions for each line in the line group.
Default: BUFIN = 1. This default is supplied at open time, rather than at assem­
bly time.
Format: Unframed nonzero decimal integer.
Maximum: 15
Notes: These buffers are assigned just before a station is permitted to enter a
message. BUFIN=, BUFOUT=, and BUFMAX= must all be specified from the
same source. For more information on initial assignments of buffers, see the
chapter Defining Buffers.

Defining the MCP Data Sets 81

BUFMAX={ ~teger}

BUFSIZE=integer

INVLIST =(Iistname

[, l ~ t],[~ ~ ~]" ...)

Alternate Source: PP, OE, DO.
Function: Specifies the number of buffers assigned initially for sending opera­
tions on each line in the line group.
Default: BUFOUT=2. This default is supplied at open time, rather than at
assembly time.
Format: An unframed decimal integer greater than 1.
Maximum: 15
Notes: BUFIN=, BUFOUT=, and BUFMAX= must all be specified from the
same source.

Alternate Source: PP, OE, DO.
Function: Specifies the maximum number of buffers used for data transfer.
Alternate Source: PP, OE, DO.
Function: Specifies the maximum number of buffers used for data transfer for
each line in this line group.
Default: BUFMAX=2. This default is supplied at open time, rather than at
assembly time.
Format: Unframed decimal integer greater than 1.
Maximum: 15
Notes: Must be no less than the larger of the numbers specified by BUFIN= and
BUFOUT=. BUFIN=, BUFOUT=, and BUFMAX= must all be specified from
the same source.

Alternate Sourve: PP, OE, DO.
Function: Specifies the buffer size in bytes used for all lines in this line group.
Default: None. Specification optional.
Format: Unframed decimal integer greater than 35.
Maximum: 65535
Notes: The size specified here may be overridden on a station basis for outgoing
messages by the BUFSIZE= operand of the TERMINAL macro. If the buffer
size is not an even multiple of the buffer unit size specified by the KEYLEN =
operand of the INTRO macro, storage space is wasted. The maximum number of
units per buffer is 255.

Alternate Source: None.
Function: Specifies the names of the invitation lists for the lines in the line group.
Default: None. This operand is required.
Format: Each listname is the name specified for the INVLIST macro defining
the list for that line. Listnames are specified according to the ascending relative
line numbers of the lines in the group. The maximum total length of the data
coded for this operand is 255 bytes. A and B are coded as shown.
Notes: For information on relative line numbers, see DD Statements for a (
Line Group in this chapter.

82 OS/MFT and OS/MVT TeAM Programmer's Guide

MH=mhname

There must be one invitation list name for each line in the line group. If a line is
used for output only, a dummy invitation list name with no entries is specified.
Any number of output-only lines may refer to the same name. No list other than a
dummy invitation list may be named by more than one line. For information on
invitation lists, see the Invitation section in Defining Terminal and Line
Control Areas.

The two sets of AlB suboperands are meaningful only for lines attached to a
channel through an IBM 2701 Transmission Control Unit, in which case:

The first A specifies that communications are to be through the 2701 Data
Adapter Unit's Dual Communication Interface A.

The first B specifies that communications are to be through the 2701's Dual
Communication Interface B. This parameter is not coded if this feature is not
present on the 2701.

The second A specifies that transmission will be in Code A for the 2701 Data
Adapter Unit Dual Code Feature.

The second B specifies that transmission will be in Code B for the 2701 Dual
Code Feature. This parameter is not coded if this feature is not present on the
2701.

A is the default value for both sets of suboperands.

If either or both of the AlB suboperands are omitted, the commas that precede
them must still be coded. For example, if the names of the invitation lists for the
lines in this line group are LISTl, LIST2, and LIST3, and if the AlB suboperands
are to be omitted from this operand, the operand might be coded as follows:

,INVLIST=(LIST1",LIST2",LIST3)

Alternate source: None.
Function: Specifies the name of the Message Handler for the line group repre­
sented by this DCB macro.
Default: None. This operand is required.
Format: Must conform to the rules for assembler language symbols, and must be
the same as the name specified in the name field of a STARTMH macro.

Alternate Source: PP, OE, DD.
Function: Specifies if and how a program-controlled interruption (PCI) is to be
used for control of buffer allocation and deallocation.
Default: (PCI=A, A). This default is supplied at open time, rather than at
assembly time.
Format: Framing parentheses required. N, R, X, and A coded as shown.
Notes: The suboperands apply to receiving and sending operations, respectively.
N specifies that no PCls are taken during filling (on receive operations) or empty­
ing (on send operations) of buffers. Once data in a buffer has undergone EOB

Defining the MCP Data Sets 83

checking, the buffer is deallocated (except that the current buffer is not deallocat­
ed if there is room in it for a portion of the next block).

R specifies that after the first buffer is filled (on receive operations) or emptied
(on send operations), a PCI occurs during the filling or emptying of each succeed­
ing buffer. The finished buffer is deallocated, but no new buffer is allocated to
take its place.

X specifies that after a buffer is filled (on receive operations) or emptied (on send
operations), a PCI occurs during the filling or emptying of the next buffer. The
first buffer is not deallocated, but a new buffer is allocated. Buffer de allocation
occurs at the end of transmission, or when an EOB/ETB control character is sent,
if EOB/ETB checking is specified in the STARTMH macro.

PCI=X (or N) must be used if the TCAM network defines logical messages, and
if the SETEOM macro specifies PROCESS= YES, to ensure that logical messages
are not deblocked until block checking is performed; otherwise, a logical message
containing an error could be routed to its destination. Logical messages are
discussed in Handling Logical Messages in the chapter Designing the Message
Handler. The SETEOM macro is discussed in Functional Macro Instructions.

A specifies that after the first buffer is filled (on receive operations) or emptied
(on send operations), a PCI occurs during the filling or emptying of the next
buffer. The first buffer is deallocated, and another buffer is allocated in place of
it. The program-controlled interruption is more thoroughly described in the
chapter Defining Buffers.

Alternate Source: PP, OE, DD.
Function: integer! specifies the number of bytes reserved in the first unit of a
buffer receiving the first incoming segment of each message entered on a line in
this line group. The reserved bytes are for insertion of characters by the
DATETIME and SEQUENCE macros. integer! may be specified as one less
than the required number of reserved bytes if LC=OUT is specified on the
STARTMH macro and the terminal in use has EOA line-control characters.
(TCAM's use of LC=OUT results in the conversion of EOA line-control charac­
ters to reserve characters which, in effect, gives the user one more reserve charac­
ter than is specified on the line group DCB macro.) integer2 specifies the number
of bytes reserved in the first unit of all buffers, except the first, for insertion of
characters by the DATE TIME macro.
Default: RESERVE=(O,O)
Format: Unframed decimal integers.
Maximum: For each, 255.
Notes: integer2 is relevant only in a multiple-buffer header situation when
DATE TIME is to insert data in a portion of the header that is not in the first
buffer (see the description of DATETIME for an example of executing
DATETIME on a portion of the header not located in the first segment).

Data may be inserted in either an incoming or an outgoing message header, but
space must be reserved in the incoming header. On the outgoing side, reserved
space is retained for the first buffer only; thus, a DATETIME or SEQUENCE
macro, if specified in an outheader subgroup, must operate on the first segment of (

84 OS/MFT and OS/MVT TeAM Programmer's Guide

TRANS=table

~\

the message. No space need be reserved for data inserted by means of a
MSGEDIT macro.

The Scan Pointer section of the chapter Designing a Message Handler de­
scribes how TCAM handles reserve bytes.

Each integer must be at least three less than the value specified in the KEYLEN =
operand of the INTRO macro, minus the header or text prefix size Each buffer
containing header data should be large enough to accommodate the segment itself
plus any data that may be inserted by DATETIME and SEQUENCE macros. If a
buffer containing header data does not have a sufficient number of bytes reserved
in it to accommodate data inserted by a DATETIME or SEQUENCE macro, the·
macro does not execute, and control is passed to the next instruction in the MH.
Unused reserve bytes are removed from an outgoing message segment when it is
sent to its destination.

Alternate Source: PP,OE.
Function: Specifies the translation table for this line group.
Default: TRANS=EBCD. This default is supplied at open time rather than at
assembly time.
Format: Either the name of a user-defined table conforming to the rules for
assembler language symbols, or one of the following four-byte symbols:

1030
1050
105F
1060
2260
2265
2740
274F
BC41
EB41
CR41
ITA2
ZSC3
TTYA
TTYB
TTYC
6BIT
ASCI

EBCD

1030 transmission code
1050 transmission code
Folded 1050 transmission code
1060 transmission code
2260 remote transmission code
2265 transmission code
2740 transmission code
Folded 2740 transmission code
2741 BCD code
2741 EBCDIC code
2741 correspondence code
World Trade terminals transmission code
World Trade terminals transmission code
83B3, 115A transmission code
33/35 parity transmission code
33/35 non-parity transmission code
2780 6-bit transmission code
2780, 3270, 3670, 3735, 360 CPUs, Model 20 ASCII tranmission
code
2770, 2790, 3270, 3670, 3780, 1130, 2260 Local, 2780, 360 CPUs,
Model 20 EBCDIC transmission code.

Notes: Specification of a user-defined table is described in Message Translation
in the chapter Designing the Message Handler

Translation is from transmission code to EBCDIC for incoming messages and
from EBCDIC to transmission code for outgoing messages. For incoming transla­
tion to occur, a CODE macro must be executed in the incoming group handling
the message. For outgoing translation to occur, CODE must be executed in the
outgoing group handling the message. If this operand is omitted, no translation is

Defining the.MCP Data Sets 8S

SCT=table

performed. TRANS=ASCI must be specified for USASCII 3270 terminals
whether or not data is to be translated.

The table specified for translation can be changed for messages from a particular
line or station by the CODE macro and by the use of path switches.
TRANS=EBCD should be coded for lines to stations using EBCDIC line code, if
any of the stations may enter operator commands (TCAM uses the CODE macro
to check for operator commands).

For more information on the symbols, and on translation in the TCAM system,
see Message Translation and the description of the CODE macro in the chapter
Designing a Message Handler.

Alternate Source: None.
Function: Specifies the name of the special characters table (SCT) used for this
line group.
Default: The table specified for the TRANS= operand is assumed for the SCT=
operand if this operand is omitted.
Format: One of the four-byte codes permissible for the TRANS= operand.
Notes: If a user-specified table is coded for the TRANS= operand, the SCT=
operand must be coded. The SCT is an internal TCAM table containing certain
device-specific, line-control characters needed by TCAM whether or not line­
control characters are left in incoming messages. TCAM makes no provision for
the user to specify his own special characters table. The contents and layout of
the SCT are described in the TeAM PLM.

DD Statements for a Line Group Q
At least one DD statement must be issued for each line group data set. Either of
two schemes may be followed in issuing DD statements for line groups.

1. If at system generation time a UNITNAME macro is issued to specify the lines
in a line group and to assign to them a single name, then a single DD statement
may be issued for this line group at MCP execution time. This DD statement
would have the format

//ddname DD UNIT=(name,n)

where ddname is the name specified by the DDNAME= operand of the DCB
macro for the line group, name is the name assigned to this group of lines by
the NAME= operand of the UNITNAME macro, and n is the number of lines
to be allocated from among the lines whose hardware addresses are coded in
the UNIT= operand of UNITNAME.

Example:
At system generation time, the following UNITNAME macro was issued to
define a group of lines:

UN I TNAME UNIT=(021,022,024,025)
NAME=GROUPONE

(The four numbers in the UNIT= operand are the hardware addresses of four
lines, and are assigned to the lines by IODEVICE macros at system generation
time.) At execution time for the Message Control Program, the following DD (
statement might be issued for this line group:

86 OS/MFT and OS/MVT TeAM Programmer's Guide

Iiddname DD UNIT=(GROUPONE,4)

In this case, the line group data set would consist of the four lines defined by
the UNITNAME macro. Relative line numbers are assigned to the lines in the
same order as they appear in the UNIT = operand of the UNITNAME macro.
If the UNIT parameter of the DD statement were coded
UNIT = (GROUPONE,2), the line group data set would consist of only the first
two lines specified in the UNIT = operand of the UNITN AME macro.

2. A DD statement may be issued for each line in a line group; these DD state­
ments are concatenated as follows (assume that the line group consists of three
lines):

Iiddname
II
II

DD UNIT=address
DD UNIT=address
DD UNIT=address

where ddname is the name specified by the DDNAME= operand of the DCB
macro for the line group, and address is the hardware address of the line, as
assigned at system generation time by an IODEVICE macro. Note that DD
statements for all lines in a line group are listed under a single ddname. When
this scheme is used, the order in which the DD statements for a line group are
arranged determines the relative line numbers specified in TERMINAL macros;
that is, the first line specified is relative line number one, the second line
specified is relative line number two, etc. (see the discussion of the TERMI­
NAL macro in the chapter Defining Terminal and Line Control Areas.

Note: The type of stations on lines in the line group for which the DD
statement is issued must be the same as the type specified by the IODEVICE
macro that defines the line at system generation time. Be sure that the line
you specify in the UNIT= parameter of your DD statement can handle the
stations assigned to that line by TERMINAL macros. Otherwise, the data
set will not open.

Certain of the line group DCB macro operands may be omitted from the DCB
macro and be specified at MCP program execution time by coding them as
subparameters in the DCB parameter of the first DO statement for a line group.
The way in which the DCB parameter would be coded to specify anyone of these
DCB macro operands is:

DCB=(BUFIN=integer,BUFOUT=integer,BUFMAX=integer)
DCB=(INTVL=integer)

DCB=(CPRI=~i~)
DCB=(RESERVE=(integer [, integer 1))

DCB=(PCI=(~ f ~ , ~ f r)
DCB=(BUFSIZE=integer)

These subparameters are described in the discussion of the line group DCB macro.
More than one DCB operand may be specified in this manner. Note that the
BUFIN=, BUFOUT=, and BUFMAX= values must be specified from the same
source.

If the above DCB operands are still zero after OPEN, the following defaults are
used:

Defining the Mep Data Sets 87

BUFIN=l
BUFOUT=2
BUFMAX=2
CPRI=S
RESERVE=O
PCI=(N,N)
BUFSIZE=value of KEYLEN= on INTRO

Example:
The following DD statements define a line group consisting of three lines. The
PCI= operand was not specified in the line group DCB macro, but is being
specified at program execution time on the DD statement.

Iiddname
II
II

DD
DD
DD

UNIT=024,DCB=(PCI=(R,R))
UNIT=022
UNIT=025

In this example, the line whose address is 024 is assigned relative line number 1,
the line whose address is 022 is assigned relative line number 2, and the line whose
address is 025 is assigned relative line number 3.

Message Queues Data Sets

Disk Queuing

In a TCAM system, messages entered by remote stations are queued by destina­
tion. A destination may be a station on a line or an application program. Because
each incoming message is placed on a queue for its destination rather than being
sent to the destination immediately, overlap of line usage in I/O operations is
possible. Messages having a common destination may be received simultaneously
from more than one source; the destination itself may also be entering or accept­
ing a message.

Destination queues for each destination (line, terminal, or application program)
and a queue for each logging medium used (for message logging) are located in
one or more message queues data sets, which may reside either in main storage or
on a direct-access storage device. Messages may be queued

• on reusable disk;
• on nonreusable disk;
• in main storage only;
• in main storage with backup on reusable disk;
• in main storage with backup on nonreusable disk.

Although there are five queuing techniques, no more than three message queues
data sets ever need to be defined; one on reusable disk, one on nonreusable disk,
and one in main storage.

In the following discussion we shall first explain each of the five message queuing
techniques, giving their relative advantages and disadvantages, and then describe
how each may be implemented.

Messages may be queued by destination line or by destination terminal; this topic
is discussed in the Message Priority and Queuing section of the Defining
Terminal and Line Control Areas chapter.

TCAM supports secondary-storage message queuing on the IBM 2311 Disk
Storage Drive, the IBM 2314 Direct Access Storage Facility, and the IBM 3330 (' .
Disk Drive.

88 OS/MFT and OS/MVT TeAM Programmer's Guide

The objective of TCAM's secondary-storage queuing scheme is to optimize
channel and disk performance. Rotational delay time is minimized by using
sequential disk records wherever possible. The user may specify more than one
DASD volume for a data set; if he does, TCAM assigns relative record addresses
across volumes, so that the next relative record address after that of the last
record on a track is on another volume. Figure 6 illustrates this relative-record
addressing scheme, which facilitates efficient multiple-arm support. TCAM's
multiple-arm support (described below) permits overlap of seek time on multiple
volumes and overlap of channel operations on mUltiple channels. Seek time is
further optimized by minimizing disk arm movement.

Advantages and Disadvantages of Disk Queuing
Locating destination queues in a message queues qata set residing on a disk rather
than in a data set residing in main storage with no disk backup results in certain
advantages:

1. Locating queues on disk rather than in main storage results in more main
storage being available to the user.

2. With disk queuing, messages being sent to a station that temporarily inoperative
may be intercepted by a HOLD macro issued in the Message Handler, and sent
out at a later time. The interception facility is not available for destinations
whose queues are located in a main-storage data set having no disk backup.

3. By issuing a POINT macro in conjunction with a GET or READ macro in an
application program, the user may retrieve from its destination queue the
original copy of a message that has already been successfully transmitted to a
destination station or sent to an application program. This retrieval capability
(discussed in the Message Retrieval section of the chapter Writing TCAM­
Compatible Application Programs) might be used to permit a message that was
successfully sent to a terminal but lost at the terminal (due, perhaps, to a tape
breakage) to be retransmitted. Messages cannot be retrieved from main­
storage queues.

4. When disk queuing is used, it is possible to take advantage of the TCAM
checkpoint/restart facility, which is described in the chapter Using TCAM
Service Facilities. Main-storage queues cannot be checkpointed; unless disk
backup is provided, the data in such queues is lost when the TCAM system
closesdown or fails.

Locating message queues in a data set on disk rather than in a main-storage data
set also has certain disadvantages:

1. Disk queuing is slower than main-storage queuing; that is, a message that is
queued on disk takes longer to reach its destination than a message that is
queued in main storage, all other things being equal.

2. Disk queuing ties up disk space and disk channels that otherwise could be used
by other jobs (for example, by a batch-processing job) in a computing system
not dedicated to TCAM.

Main-storage queuing with disk backup (discussed below) preserves most of the
advantages of disk queuing while achieving a faster response time than disk
queuing alone. To obtain main-storage queuing with disk backup, the user must
define at least two message queues data sets-one residing in main storage, the
other on reusable or nonreusable disk.

Specifying Channel Program Blocks
Channel program blocks (CPBs) are used to transfer data between buffers and
direct-access secondary-storage devices. A CPB consists of 72 bytes of control
information plus a work area the size of one buffer unit. One CPB is involved
whenever the contents of a buffer unit are written on disk or read from disk.

Defining the MCP Data Sets 89

Cylinder

0

1

Track

0

1

2

3

4

5

6

7

8

9

0

1

/
/

/

/
/

/

Volume 1

o
12

1
13

Relative

, / , / , / , / , /

'/

Volume 2

,

Relative
Record Numbers Record Numbers

0 1 2 3 4 5 6

12 13 14 15 16 17 18

24 27 28

36 39 40

48 51 52

60 63 64

72 75 76

84 87 88

96 99 100

108 111 112

120 123 124

132 •••

, , , ,

7

19

31

43

55

67

79

91

103

115

127

, /
/

/
/

/

Volume 3

Relative
Record Numbers

8 9 10

20 21 22

32

44

56

68

80

92

104

116

128

, , , , ,

11

23

35

47

59

71

83

95

107

119

131

Figure 6. Relative Record Numbers of Disk Message Queues Data Set Assigned Across Three Volumes

CPBs that are not being used currently are queued in a free pool. When a CPB is
to be used in writing data onto disk, TCAM "swaps" the CPB with a full buffer
unit (the contents of which are to be written onto the disk); that is, the CPB work
area is assigned to the available-unit queue, and a full buffer unit is assigned to the
CPB to replace the work area. This swapping of units is accomplished by chang­
ing addresses internally; no movement of data occurs.

When the CPB has been used in reading from disk, its full work area is swapped
with an empty unit; that is, the CPB work area is assigned to the outgoing group
of the Message Handler for the destination and is replaced by a unit from the
available-unit queue. Thus, the unit pool always has the same number of units,
even though they are not necessarily the same units that were originally in the
pool. The number of work areas assigned to the CPB is also constant, although
some of the work areas were once buffer units. This swapping feature saves time,
because data need not be moved from the CPB unit into the buffer unit.

Note: Swapping does not occur for units involved in a data transfer result-
ing from disparity in size between origin buffers and destination buffers (for C
a discussion of such data transfer, see Other Blliler Design COlUideratiolU in
the Designing Bllilers chapter). In this case, data is moved from the CPB
unit to an empty unit.

90 OS/MFT and OS/MVT TeAM Programmer's Guide

The number of CPBs in a TCAM system is specified by the CPB= operand of the
INTRO macro. The number that should be specified must be determined experi­
mentally and depends upon the message traffic during the peak period of activity
in the TCAM system. The following formula may be used to determine initially
how many CPRs to specify in a system:

(2(BU)+ l)m +r
60

where r is 1 if reusable disk and 0 otherwise, m is the average number of mes­
sages transmitted per minute during peak periods of activity, B is the number of
buffers per message, and U is the number of units per buffer. The maximum
number of CPBs that TCAM can use at anyone time can be determined by
adding the number of units per buffer for every destination QCB in the system
(destination QCBs are generated when TERMINAL and TPROCESS macro
instructions define stations and application programs to which messages may be
directed). There is not much likelihood that TCAM will need this maximum
number of CPBs.

Although the minimum CPBs that may be specified is one, it is strongly recom­
mended that the number of CPBs specified be equal to the maximum number of
buffer units per buffer in the system, so that an entire buffer can be dispatched
with a minimum number of operations. Specification of too few CPBs results in
poor disk performance; messages are delayed while TeAM waits for CPBs to
become available. Specification of too many CPBs results in waste of main
storage; each CPB is 72 bytes plus the length of a buffer unit.

How to determine if too many CPBs were specified on the CPB= operand of the
INTRO macro instruction:
The type of queuing used by the CPB free pool is LIFO (last-in first-out), so that
any unused CPBs at the bottom of the queue remain in the state they were in at
TCAM initialization time (all zeros).

The IEDFCPB field of the A VT points to the first entry in the CPB free pool; the
thirteenth word of each CPB points to the next lower CPB entry on the queue.
Consequently, a dump can be taken before the MCP is closed down, and by
tracing the CPBs until one is found in the dump whose first few words are zeros,
the user can determine if too many CPBs were specified. For instance, if 50
CPBs were specified, and the first several words of CPB number 22 in the chain
contained all zeros, then 29 of the 50 CPBs were not used. If the next execution
of this same TCAM MCP incorporates the same technique of buffer allocation
and is likely to be under the same line and traffic conditions, specifying 25 CPBs
should be adequate.

How to Determine if too few CPBs were specified on the CPB= operand of the
INTRO macro instruction:
If, as a result of tracing CPBs in the dump discussed above, no CPBs are found
whose first few words are zeros, one of two conclusions can be drawn:

1. The exact number of CPBs required to avoid poor disk performance was
specified(that is, all the CPBs were being used simultaneously on at least one
occasion during the execution of this MCP, so that there was no delay in
message traffic to or from disk).

2. More likely, not enough CPBs were specified so that on one or more occasions,

Defining the Mep Data Sets 91

TCAM had to wait until a CPB was available before it could place a message
on (or remove it from) disk.

The user should increase the number of CPBs the next time he executes this
TCAM MCP under the same line and traffic conditions, unless he is changing
from static to dynamic buffer allocation (if buffer allocation is static, there should
be enough CPBs specified to handle a message). He can then determine, by the
technique described in the previous section, whether the increased number of
CPBs is too many (or, if the CPB at the bottom of the CPB free pool still does not
contain all zeros, then specify an even larger number of CPBs the next time this
MCP executes).

Preformatting DASD Message Queues Data Sets

Using Multiple-Arm Support

Before the Message Control Program is started, TCAM expects message queues
data sets on both reusable and nonreusable disk to be totally preformatted by the
IEDQXA utility described in the chapter System Preparation. The records, into
which each disk queue is segmented, should have the same length as that specified
by the KEYLEN = operand of the INTRO macro. The name of the disk message
queues data set is originally specified on the IEDQDAT A DD statement for the
IEDQXA program. The data set may be cataloged when the IEDQXA job is run.

Message queues data sets located on disk should be preformatted before each cold
restart of the MCP.

Disk efficiency can be increased by spreading the disk message queues data set
over several volumes (up to 16 volumes per disk data set). At initialization time,
this is indicated by listing several volumes on the IEDQDA T A DD card for the
IEDQXA utility. Each volume so indicated is initialized to contain one contiguous if,

extent of the data set. Each volume also contains identical amounts of record .. ~
space for the disk message queues.

At TCAM open time, the old disk message queues data set is recognized as
existing on 'several volumes. OPEN builds an input/ output block (lOB) for each
extent, permitting TCAM to issue several EXCP instructions, one per
input/output block or extent. When the I/O Supervisor has several EXCP
instructions to act upon, disk performance is improved by overlapping seek times
on the various devices; that is, one drive can be seeking a cylinder while another
drive is actively transferring data. Even better performance can be obtained by
having the various volumes mounted on drives supported by different channels.
This permits simultaneous search/read-write activity on more than one volume.

Records are not assigned sequentially from beginning to end of the data set
(although it was initially created sequentially). The record assignment algorithm
uses the records of the first track, first cylinder, first extent, in a sequential
manner. At the end of that track, instead of progressing to the next track of that
same cylinder, records are assigned from the first track, first cylinder, of the
second volume. Only one track of each volume is used before going to a new
track on the next volume. This permits I/O requests to be made from more than
just one volume, thus gaining the advantages of multiple EXCPs on several
channels. The algorithm continues assigning the first track to new volumes until all
volumes have used one track. Record assignment returns to the first volume,
second track, first cylinder. Again, a new volume is used each time the end of a
track is reached. This cycle repeats until the first cylinder of all volumes is
assigned. Then the second cylinder is similarly assigned and so on until the entire (
data set is filled.

92 OS/MFT and OS/MVT TeAM Programmer's Guide

Reusable Disk Queues

This procedure is used for both reusable and nonreusable disk message queues.

When reusable disk queuing is used, multiple-arm support increases the likelihood
that one arm will be reading while another is writing, thus improving the efficiency
of the system. However, this advantage may be offset by the need to construct an
extra lOB and DEB extent for each volume, thereby increasing the amount of
main storage required for the TCAM program.

A reusable message queues data set can often handle the same amount of message
traffic as a nonreusable message queues data set while occupying less disk space.
A message queues data set located on reusable disk never runs out of disk space
under normal conditions, and the TCAM system need never be closed down to
replenish disk space for such a data set. In addition, when reusable disk queuing is
used, messages for an inoperative terminal need not be trapped in the data set
until the terminal is fixed, but may be sent to an alternate destination (specified by
the ALTDEST= operand of a TERMINAL macro), which might be another
terminal in close physical proximity to the first. This capability of automatically
sending a message to an alternate destination is available only to the user of
reusable disk queuing. A similar capability is provided by specifying a cascade list
as a destination (see the description of the cascade list in Constructing the
Terminal Table in the chapter Defining Terminal and Line Control Areas).

A reusable data set requires periodic reorganization. TCAM's method of reor­
ganizing the reusable data set is illustrated in Figure 7.

The data set as a whole (whether on one volume or 16) is divided into four equal
zones (shown in Figure 7 as Zones A, B, C, and D). Messages are read into the
four zones sequentially. By the time Zone D is full, Zone A has been prepared for
reuse, and a cycle of use and reuse of the data set has been initiated.

Figure 7 shows a "loadpoint" located half-way through each zone. Assume that
the data set has been in use for some time; Zones A and B contain messages
received relatively recently. When the loadpoint for Zone C is reached, a TCAM
reorganization routine is automatically activated. This routine checks Zone A for
messages that have not yet been sent or canceled. Such messages are placed on

Send to alternate destination

D A

c B

Write "dummy" canceled messages

Figure 7. Reorganizing a Reusable Data Set

Defining the MCP Data Sets 93

the queue for the alternate destination specified by the ALTDEST= operand of
the TERMINAL or TPROCESS macro for the original destination or on the
queue for the original destination in the case of the LOGTYPE macro (these
macros and their functions are described in the chapter Defining Terminal and
Line Control Areas). The alternate destination specified in ALTDEST= may be
the original destination. If the alternate destination queue is located in the
message queues data set currently being reorganized, the unserviced message is
written in Zone C. If any destination QCBs have assigned next header records in
Zone B, a canceled header is written in this location, thus updating next header
positions to the current zone. This prevents a new message from being sent to its
alternate destination because its header is too far back (by definition, this is an old
message). By the time that the end of Zone D is reached, Zone A is ready for
reuse; all unserviced, uncanceled messages that were in Zone A have been copied
into Zone C (if the queue for the alternate destination is located in this data set)
or copied into another data set. When Zone A is reached, its contents are overlaid
with incoming messages. The cycle is repeated as each of the four loadpoints is
reached.

When a zone is reorganized and the unserviced messages for a particular destina­
tion located in that zone are requeued for their alternate destination, they are
assigned a message priority equal to or less than their original priority as specified
for the alternate destination and are placed in its FEFO queue. For instance, if
the original destination message had a priority of 8, and the available priority
levels for the alternate destination are 9, 7, 5, and 0-, the message will be requeued
with a priority level of 7. If the alternate also had a priority level of 8, the original
message will be requeued at the same priority level. Messages are sent in the
FEFO sending order usually in effect for messages having the same priority on a
destination queue (see the discussion of message priority and queuing in the .~

chapter Defining Terminal and Line Control Areas). Whether or not this :~
modified message priority and sending scheme for requeued messages turns out to
be an asset or a liability to the reusable disk user depends upon his application.

Note: When messages are moved in a zone reorganization, sequential order­
ing is not maintained.

The advantages of reusable disk queuing have already been mentioned. When the
reorganization scheme just outlined is considered, certain disadvantages become
evident:

1. The disk activity required during data-set reorganization may result in longer
response times than would occur if nonreusable disk were used. Each message
that is requeued must be read into main storage and rewritten in a message
queues data set, and each dummy canceled message must be written from main
storage into the data set on reusable disk. The longer that messages remain
enqueued on the disk before being sent, the more likely it becomes that they
will have to be reread and rewritten. Messages are more likely to linger in a
reusable disk queue: when the transmission priority for the nons witched line to
their destination is equal or receive rather than send (see the discussion of
transmission priority in the chapter Defining Terminal and Line Control
Areas); when many stations are assigned to the same line; when traffic to a
destination is heavy; when not enough CPBs are specified; when the destina­
tion station is a start-stop rather than a BSC terminal; when the destination is
an application program whose data sets are not open; and when a destination
station on an Inward W ATS line calls the computer infrequently. Terminal (
reliability is also a factor. If messages for a station must be intercepted by an !

operator command or by a HOLD macro because the station is inoperative,

94 OS/MFT and OS/MVT TeAM Programmer's Guide

response time will lengthen as the number of intercepted messages increases;
this effect is compounded if the queue for the alternate destination specified for
an intercepted station is also located in the reusable disk data set.

2. TCAM's capability of retrieving messages that have already been sent (as
described in the Message Retrieval section of the chapter Writing TCAM­
Compatible Application Programs) is limited when reusable disk queuing is
used, because the original copy of a transmitted message is eventually overlaid
by another incoming message.

A serious problem may arise if a data set on reusable disk becomes full, that is, if
TCAM's reusability routine is called to service a new zone, but has not yet
completed servicing the previous zone. If there are more messages to be sent to
alternate destinations than the reusability routine can handle, active disk records
may be overlaid; when this happens, a logical read error occurs and TCAM
terminates abnormally with a system ABEND code of 045 and with a code of 02
or 03 in register 15.

Heavy usage of reusable disk may be the result of either a sudden surge of incom­
ing traffic for this queue type, or an accumulation of a large number of messages
that must be routed to alternate destinations because their primary destinations
are unable to accept them.

In an attempt to prevent the need for abnormal closedown, TCAM requests
cessation of incoming traffic, permitting send operations to have temporary
priority to clear the data set of unsent messages. When the overlay danger is past,
normal receive operations are resumed. If the temporary halt of receive opera­
tions cannot prevent overlay of active records, the ABEND is issued.

To reduce the frequency of this slowdown, the following steps may be taken:

a. Format a larger reusable disk data set. As a rule of thumb, the data set should
be at least large enough so that the longest message to that data set will span
less than a fourth of the disk (less than one of the four zones). Otherwise, the
internal TCAM zone reorganization routine may be unable to transmit unsent
messages to their alternate destinations (because a zone for the abnormally
long message has been overlaid, resulting in loss of header information needed
to send this message to its alternate destination).

b. Spread reusable disk data sets over several volumes (and ideally over several
channels), thereby facilitating more rapid servicing of the zones by TCAM's
reusability routine.

c. If it is likely that a station will be intercepted or otherwise unable to receive for
an appreciable percentage of the time, do not locate the destination queue for
that station on reusable disk.

d. To avoid trapping unsendable messages queued for a defective station, do not
specify a station as its own alternate destination.

e. To avoid accumulating messages queued to switched stations, exercise care in
the specification of the DIALNO= and CLOCK= operands on the
TERMINAL macro. By coding DIALNO=NONE, you prohibit the CPU from
initiating a call to send messages to this station. The CLOCK= operand
restricts the CPU to a single call every 24 hours.

f. Consider the number of priority levels specified in the TERMINAL macro for
each destination queue. Each priority level requires one record for the next
header being sent to that destination. Thus, the more priorities that are as­
signed, the larger the reusable disk needs to be. The number of priorities in the
system should be less than one-eighth the total number of records on the disk.
To determine the number of priorities, the following formula can be used:

Defining the MCP Data Sets 95

Nonreusable Disk Queues

Main-Storage Queuing

T ~ 8(x + y)

where T is the total number of records on the disk, x is the total number of
TERMINAL, TPROCESS, and LOGTYPE macros coded in the terminal table,
and y is the number of levels specified in every LEVEL= operand for every
TERMINAL macro defined.

g. Receive priority with too short an interval can cause messages to accumulate
and create additional overhead.

h. Finally, remember that the busier the lines, the larger the reusable disk data set
should be; turnaround time for message transmission is adversely affected if the
data set is not large enough for high-density message traffic.

When using initiate mode or program-controlled interrqption for input, be aware
of the possibility that the first segment of a very long message can be overlaid
before the last segment is received.

For a TCAM MCP that must run continuously for an extended period of time
with fairly heavy message traffic, the user would have to allocate more disk space
if he used nonreusable queuing than he would if he used reusable queuing. In
addition, a TCAM system using nonreusable disk queues must be closed down
from time to time as the available space in the data set is exhausted. One great
advantage that nonreusable disk queues have when compared with reusable disk
queues is that system overhead is cut down during extended periods of high
message traffic when nonreusable disk queuing is specified, because the data-set
reorganization described above for reusable disk queues is not performed for
nonreusable disk queues. Nonreusable disk queuing is attractive for applications
in which many messages will remain enqueued for a long period of time before
being sent; general criteria for estimating this likelihood are given above in the
discussion of reusable disk queues.

When a certain percentage of the records in a message queues data set on non­
reusable disk has been used, a flush closedown (defined in the chapter Activating
and Deactivating the Message Control Program) is initiated by TCAM. The
threshold percentage is specified by the THRESH= operand of the message
queues DCB macro (described below) and should be based on a consideration of
the maximum number of message units that will result from messages entered at
stations and the number of units on the disk data set. If the data set fills before
closedown is finished and wraparound of the nonreusable disk overlays the first
record, the TCAM MCP will terminate abnormally with a system code of 045 and
a value of 01 in register 15. Following the flush closedown, the data set must be
reformatted (using the IEDQXA utility described in the chapter System
Preparation), and the system may be restarted by means of a cold restart.

The main-storage message queues data set (if specified) is created at the time the
INTRO macro is executed, when an area of main storage is allocated to the
buffer-unit pool. The data set resides in the buffer-unit pool, which is described
in the chapter Defining Buffers. Buffer units containing data directed to a
destination queue in the main-storage data set are assigned directly to the appro­
priate queue. Upon removal from the queue, the units are available for reuse. No
data is moved Iwhen units are placed on the queue; however, when the message is
to be sent to its destination, it is copied from the enqueued units containing it into

I'

lid

a buffer. The original copy is held in the queue until the message has been (
transmitted and any macros in the outmessage subgroup handling it have been

96 OS/MFT and OS/MVT TeAM Programmer's Guide

given an opportunity to check the message error record for the message; this is
done so that the message header may be retrieved from the queue, if necessary.

Because data in main storage is obtained and manipulated more rapidly than data
stored on disk, during periods of high message traffic, messages directed to
destinations whose whose queues are located in main storage will be received
much more rapidly than would be the case if the queues for these destinations
were located on disk. Because allocation and de allocation of units for the main­
storage data set is dynamic, the data set is essentially "reusable."

When a message queues data set is located in main storage without disk backup,
sufficient main storage must be allocated to the data set to handle peak message
traffic. The MSUNITS= operand of the INTRO macro specifies the maximum
number of units that can be assigned at anyone time to the main-storage message
queues data set. If buffer units containing part of an incoming message are
inserted into the destination queue, causing the· number specified by MSUNITS=
to be exceeded, bit 16 is turned on in all message error records in the system. The
first unit of the buffer is placed in the queue; all the other units of the buffer are
lost. If this was not the last buffer in the message, any error-handling macros
(coded in the inmessage subgroup of the Message Handler for this line group) that
test bit 16 of the message error record are activated. For example, the user might
code a MSGGEN or ERRORMSG macro to advise the terminal operator or an
application program that message segments are being lost because of a lack of
available main-storage units. The operator or application program could then
slow down incoming message traffic using appropriate operator commands or
network control macros until sufficient main-storage units are available. If the
segment rejected was the last segment, the entire message (except for the first
unit) is lost; in this case the user may test bit 16 of the message error record when
another message is handled by this or another Message Handler.

The first unit of a message that is lost because of a lack of main-storage units is
always enqueued in its proper destination queue. When this unit is processed by
the outgoing group of the Message Handler for the destination station, bit 16 of
the message error record for this message is turned on. In his outmessage sub­
group, the user may code error-handling macros to test bit 16. For example, he
might code an ERRORMSG macro that would return the unit to the originating
station together with a request that this message be retransmitted.

In the event that there is not even enough main-storage space available to permit
the first unit of a message to be enqueued (that is, if enqueuing the unit would
cause the value specified in the MSUNITS= operand to be exceeded), TeAM
nevertheless enqueues the unit. In addition, TeAM refuses to accept any more
incoming messages (these messages are not lost) until the number of units in the
main-storage data set falls to or below the level specified by the MSMIN=
operand of the INTRO macro.

TeAM's only criterion in determining whether units are available for main­
storage queuing is the number specified by the MSUNITS= operand of the
INTRO macro. It is up to the user to specify a satisfactory number of main­
storage units for his system. If he does not, and if no disk backup is provided,
throughput will suffer because fewer incoming messages will be accepted, and
some message segments may be lost.

TeAM provides the user of main-storage queues with a means of informing
himself when the main-storage data set is in danger of running out of units. In the

Defining the MCP Data Sets 97

MSMAX= operand of the INTRO macro, the user may specify a percentage of
his main-storage data set units (that is, a percentage of the number specified in the
MSUNITS= operand of INTRO); when this percentage of units is enqueued, bit 9
of all message error records in the system is set. The user may code a MSGGEN
or ERRORMSG macro in his Message Handlers to check this bit and inform the
operator or an application program to slow down invitation until a suitable
number of enqueued messages have been sent to their destinations. Since mes­
sages for inactive application programs are maintained on main-storage queues,
the user may also activate the application program and allow those enqueued
messages to be sent. The MSMIN = operand of INTRO also specifies a percent­
age of the total number of units available for main-storage queuing. When the
percentage of units enqueued in the main-storage data set falls below that speci­
fied by MSMIN =, bit 8 is set on in all message error records in the system. The
user may code a MSGGEN or an ERRORMSG macro in his Message Handlers to
test this bit and inform the operator or an application program that there is no
longer a shortage of main-storage units, so that normal invitation may be resumed.

When the percentage of enqueued units falls below that specified by MSMAX=,
bit 9 is turned off in all message error records. When the percentage of enqueued
units rises above that specified by MSMIN =, bit 8 is turned off in all message
error records.

TCAM also permits the user (who has one or more destinations using main­
storage-only queuing) to inform himself when a certain number of messages are
queued for output to a specific destination. See the description of the THRESH=
operand of the FORWARD macro for a more complete description of this facility.

Neither the intercept function (see the description of the HOLD macro) nor the
retrieve capability (see the description of the POINT macro) can be used for
messages queued in main-storage-only queues. The ERRORMSG and
REDIRECT macros provide limited retrieval capability when certain errors (such
as transmission errors, as detected by the EOB checking facility provided by the
STARTMH macro) occur.

A message queues data set located in main storage without disk backup cannot be
checkpointed; if the TCAM system closes down or fails, all data in the data set is
lost.

Instead of specifying a main-storage message queues data set with no disk backup,
the user may specify a main-storage data set having backup on reusable or non­
reusable disk. Main-storage queuing with disk backup combines advantages of
disk and main-storage queuing, and avoids certain of the problems associated with
the other queuing methods. Data directed to a main-storage queue with disk
backup is never lost because of unavailability of main-storage units, and TCAM
will accept messages when the main-storage data set is full. TCAM's message­
interception and message-retrieval functions may be utilized, and closedown and
restart of the system without loss of data is possible. Response time is better than
with disk queuing, because most outgoing messages do not have to be read from
disk.

When main-storage queuing with disk backup is used, TCAM copies each unit
arriving at a main-storage queue onto disk. Copying involves a movement of all
data in the unit and a writing operation. When the number of units specified in (
the MSUNITS= operand of the INTRO macro is enqueued in main storage (when
the main-storage queues will accept no more units), data is not lost as it is whe..n

98 OS/MFT and OS/MVT TeAM Programmer's Guide

main-storage-only queuing is specified; instead, the contents of incoming units are
written directly onto disk. No bit in the message error record is set when main­
storage units are exhausted, and invitation is not suspended. The user may code
the MSMAX= operand of the INTRa macro to warn him that the number of
units enqueued in main storage is approaching the maximum permitted, and he
may use the MSMIN= operand of INTRa to inform him when the number of
units enqueued in main storage has fallen to a safe level.

Outgoing messages are sent from the main-storage queue when they are on this
queue; otherwise they are brought in from disk and sent. When a message is sent
out from main storage, its copy on disk is marked serviced.

The TCAM intercept function (using the HOLD macro) and retrieve function
(using the POINT macro) may be implemented when main-storage queuing with
disk backup is used (where access is to the disk queues).

Main-storage queuing with backup on disk uses more main storage than disk
queuing and results in a longer response time than would be the case if main­
storage queuing with no disk backup were specified (because each message 'must
be completely copied onto disk before it can be sent to its destination). Yet this
method of queuing combines many of the attractive features of the other methods,
and for many applications it provides an acceptable compromise between the
speed of main-storage-only queuing and the reliability of disk queuing.

Specifying One or More Queuing Methods
The user may specify up to three message queues data sets for his TCAM system.
One of these· resides in main storage, another on reusable disk, while a third is
located on nonreusable disk. Taken singly or in combination, these three possible
data sets provide the five queuing methods discussed. For main-storage-only
queuing, a main-storage data set is needed. Reusable and nonreusable disk
queuing each require a data set. If the user wishes to implement main-storage
queuing with reusable disk backup, he must define two data sets-one in main
storage and the other on reusable disk. Two data sets are also required to support
main-storage queuing with backup on nonreusable disk.

A TCAM system having two message queues data sets, one in main-storage and
one on reusable disk, will support three types of queuing: main-storage-only
queuing, reusable disk queuing, and main-storage queuing with backup on reus­
able disk. The type of queuing used for a particular message in this system
depends upon the message's destination. The QUEUES= operand of the
TERMINAL or TPROCESS macro defining a remote station or an application
program specifies the type of queuing for messages destined for that station or
application program. In the system being considered, messages sent to a terminal
whose TERMINAL macro specified QUEUES=MO would be queued in main
storage only. Messages sent to a terminal whose TERMINAL macro specified
QUEUES=DR would be queued on the reusable disk only. Messages sent to a
terminal whose TERMINAL macro specified QUEUES=MR would be placed on
a queue in main storage if possible, and would also be placed on a queue in the
reusable disk data set. Such messages would be retrieved and sent from the
main-storage queue, if possible, or from the disk queue.

The number of data sets that must be defined depends upon the type of queuing
desired, which in turn depends upon the application. As an example, consider a
savings bank inquiry application in which short incoming messages (consisting
perhaps of an account number, a transaction amount, and a transaction code) are

Defining"the Mep Data Sets 99

sent to an application program, and long response messages are returned by the
application program. The TCAM user with such an application might wish to use
main-storage-only queuing for the inquiry messages (since they are short), and
disk queuing for the response messages (since they are long). In this way, he
could take advantage of the speed of main-storage-only queuing for his short
input messages without giving up the main storage required if main-storage
queuing were used for his long response messages. To implement his queuing
scheme, this user would have to define two data sets-one in main storage, and
one on disk.

Checklists follow for specifying the three types of message queues data sets
supported by TCAM. are discussed elsewhere in this publication. Note that no
DD statement or DCB macro is required in defining a main-storage message
queues data set, but that both a DD statement and a DCB macro must be issued in
defining a message queues data set on either reusable or nonreusable disk. The
DCB macro for a message queues data set on disk and the DD statement for such
a data set are described in the next two sections.

Checklist for Main-Storage Data Set
Macro
DD Card

INTRO

INTRO

INTRO

INTRO

TERMINAL
or

TPROCESS

Operand

MSUNITS=integer

MSMAX=integer

MSMIN =integer

DISK= {NO}
YES

100 OS/MFT and OS/MVT TeAM Programmer's Guide

Comments

Specifies the maximum number of main-storage buffer units that
may be used for queuing.

integer is a percentage of the number of units specified in the
MSUNITS= operand; when this percentage of units is enqueued
in the main-storage message queues data set, a bit is set in each
message error record in the system to warn the user that his data
set is nearly full.

When the percentage of the number of units specified by the
MSUNITS= operand falls below that specified by MSMIN=, a
bit is set in every message error record in the system. This
operand may be used to inform the user that his main-storage
message queues data set is no longer crowded.

Specify NO if no message queues data set is to be provided on
disk.Specify YES if the system will have a message queues data
set on disk.

Code MO for each station or application program with queues
to be located in main storage only; code MR if backup is to be
provided on reusable disk; code MN if backup is to be provided
on nonreusable disk.

(

Checklist for Reusable Disk Data Set
Macro or
DD Card

DD
Statement

Message
Queues
DCB

INTRO

INTRO

TERMINAL
or
TPROCESS

Operand

DISK=YES

CPB=integer

QUEUES= {~~}

Comments

One needed; see DD Statements for Message Queues Data
Sets.

One needed; see next section.

Specifies the nonzero number of channel program blocks to be
provided for transfer of data between buffers and the disk; see
Specifying Channel Program Blocks in this chapter.

Code DR for each station or application program with queues to
be maintained on reusable disk only; code MR for queues to be
maintained in main storage with reusable disk backup.

Checklist for Nonreusable Disk Data Set
Macro or
DD Card

DD
Statement

Message
Queues
DCB

INTRO

INTRO

TERMINAL
or
TPROCESS

Operand

DISK=YES

CPB=integer

QUEUES = {~~ }

Comments

One needed; see DD Statements for Message Queues Data
Sets.

One needed; see next section.

Specifies the nonzero number of channel program blocks to be
provided for transferring data between buffers and disk; see
Specifying Channel Program Blocks in this chapter.

Code DN for each station or
application program with queues to be maintained on nonreusa­
ble disk only; code MN for each station with queues to be main­
tained in main storage with nonreusable disk backup.

Defining the Mep Data Sets 101

Message Queues DCB Macro

diskdcb

keyword operands

The message queues DeB macro

• defines a message queues data set residing on reusable or nonreusable disk;
• specifies the location of the data set;
• specifies the percentage of records in a nonreusable disk data set to be filled

before a flush closedown is initiated;
• is not issued for a message queues data set residing in main storage.

The message queues DeB macro defines a data control block for a message
queues data set. Parameters based on the keyword operands specified in the
macro are included in the data control block. One message queues DeB macro is
required for a message queues data set residing on reusable disk, and one is
required for such a data set residing on nonreusable disk. The macro generates no
executable code.

The message queues DeB macro has the following format:

Name Operation Operands

diskdcb DeB keyword operands

Function: Specifies the name of the macro instruction and the name of the data
control block generated by the expansion of the macro.
Default: None. This name is required.1
Format: Must conform to the rules for assembler language symbols (see the '<I

symbol entry in the Glossary).

Function: Specifies the operands that can be used.
Format: The operands may be specified in any order and are separated by
commas with no intervening blanks.
Notes: The operands for the message queues DeB macro instruction are described
below.

When a parameter can be provided by an alternate source, a symbol appears in the
alternate source entry for the operand. When there is no alternate source (that is,
the parameter must be specified by the operand), the alternate source entry states
None. The symbols have the following meanings:

Symbol Explanation

DD The value of the operand can be provided at execution time by the data
definition(DD) card for the data set.

OE The value of the operand can be provided by the problem program any
time up to and including the data control block exit at open time.

PP The value of the operand can be provided by the user's problem
program any time before the data control block exit at open time. c

102 OS/MFT and OS/MVT TeAM Programmer's Guide

DSORG=TQ

MACRF=(G,P)

\ DDNAME=ddname

EXLST =name of list

If DD is specified, OE or PP may also be used. OE is specified, PP may also be
used. For information on providing parameters by DD, see DD Statement for
Message Queues Data Sets. For information providing parameters by DD and
OE, see Modifying the Data Control Block in the OS publication Data Man­
agement Services. The section Processing Program Description, in the same
publication, describes the data control block exit that can be taken when OE is
specified.

The formats of macro illustrations, the symbols used in them, and rules for the
interpretation of operand descriptions are all provided in Appendix A .

Alternate Source: None.
Function: Specifies that the data set organization is that for the message queues
or checkpoint data set.
Default: None. This operand is required.
Format: DSORG=TQ

Alternate Source: None.
Function: Specifies that access to the data set is gained with GET and PUT
macro instructions.
Default: None. This operand is required.
Format: MACRF=(G,P)

Alternate Source: PP.
Function: Specifies the name that appears in the DD statement associated with
the data control block.
Default: None. This operand is required.
Format: Must conform to the rules for assembler language symbols.

Alternate Source: DD, PP, OE.
Function: Specifies the location of the data set.
Default: None. This operand is required.
Format: Lor R.
Notes: L specifies that the data set is to be on nonreusable disk. R specifies that
the data set is to be on reusable disk.

Alternate Source: PP.
Function: Specifies the address of the problem program exit list.
Default: None. Specification optional.
Format: Must conform to the rules for assembler language symbols.
Notes: This operand is required if user label, data control block, user ABEND, or
block count exits are required. The list must start on a fullword boundary. Its
format and contents are shown in Data Management Services. The user ABEND
exit is discussed in the last section of this chapter.

Defining the Mep Data Sets 103

THRESH =integer

Alternate Source: DD, OE, PP.
Function: Specifies the percentage of the nonreusable disk message queue
records to be used before a flush closedown of the system is initiated.
Default: For reusable disk queues, specification optional. For nonreusable disk
queues, 95.
Format: Unframed decimal integer.
Maximum: 100
Notes: This operand is meaningful for nonreusable disk queues only.

DD Statements for Message Queues Data Sets

Checkpoint Data Set

One DD statement is needed for each disk message queues data set. The format
of this DD statement is as follows:

//ddname DD DSNAME=anyname,DISP=OLD

where ddname is the name specified by the DDNAME= operand of the DCB
macro for this data set, and anyname is the name of the data set as specified by
the DSNAME= operand of the IEDQDATA DD card for the IEDQXA utility
used to preformat disk message queues. If the data set is not cataloged, the
UNIT= and VOLUME= operands must be included in the DD statement for the
disk message queues data set.

The OPTCD= and THRESH= operands of the message queues DCB macro may
be omitted from the DCB macro and specified at execution time by coding the
DCB parameter of the DD statement for the message queues data set; that is:

DCB=(OPTCD= {~}

or
OCB=(THRESH=n)
Both operands may be specified by coding

OCB= (OPTCO={Lt ,THRESH=n)
RJ

These operands are explained in the preceding section.

No DD statement is issued to define a message queues data set in main storage.

The TCAM checkpoint facility makes records of the MCP environment from
which restart can be made in case of closedown or system failure. This facility is
described in the section Using TeAM Service Facilities.

The checkpoint data set consists of checkpoint records that are maintained and
stored on a direct-access storage device. A DCB macro instruction must be issued
to define the data control block for the checkpoint data set if the checkpoint
facility is to be used. The DD statement associated with the new checkpoint data
set must allot space for these records on the direct-access device used. The
direct-access device may be either an IBM 2311 Disk Storage Drive, an IBM 2314
Direct Access Storage Facility, or an IBM 3330 Disk Drive.

104 OS/MFT and OS/MVT TeAM Programmer's Guide

(

chkptdcb

keyword operands

DSORG=TQ

)

Checkpoint DCB Macro

The checkpoint DeB macro

• defines a checkpoint data set residing on a direct-access storage device.

The checkpoint DeB macro has the following format:

Name Operation Operands

chkptdcb DeB keyword operands

Function: Specifies the name of the macro instruction and the name of the data
control block generated by the expansion of the macro.
Default: None. This name is required.
Format: Must conform to the rules for assembler language symbols (see the
symbol entry in the Glossary).

Function: Specifies the operands that can be used.
Format: The operands may be specified in any order and are separated by com­
mas with no intervening blanks.
Notes: The operands for the DeB for the data set are described below.

When a parameter can be provided by an alternate source, a symbol appears in the
alternate source entry for the operand. When there is no alternate source (that is,
the parameter must be specified by the operand), the alternate source entry
specifies None. The symbols have the following meanings: following meanings:

Symbol Explanation

DO The value of the operand can be omitted from the DeB macro and
provided at execution time by the data definition (DO) card for the
data set.

PP The value of the operand can be provided by the user's problem
program any time before the data control block exit at open time.

OE The value of the operand can be provided by the problem program any
time up to and including the data control block exit at open time. The
formats of macro illustrations, the symbols used in them, and rules for
the interpretation of operand descriptions are all provided in Appendix
A.

Alternate Source: None.
Function: Specifies that the data set organization is for the message queues or
checkpoint data set.
Default: None. This operand is required.
Format: DSORG=TQ

Defining the MCP Data Sets 105

MACRF =(G,P)

DDNAME=ddname

OPTCD=C

EXLST =address

BLKSIZE=number

Alternate Source: None.
Function: Specifies that access to the data set is gained with GET and PUT
macro instructions.
Default: None. This operand is required.
Format: MACRF=(G,P)

Alternate Source: PP.
Function: Specifies the name that appears in the DO statement associated with
the data control block.
Default: None. This operand is required.
Format: Must conform to the rules for assembler language symbols.

Alternate Source: PP, OE, DO.
Function: Specifies that the data set is for checkpoint records.
Default: None. This operand is required.
Format: OPTCD=C

Alternate Source: PP.
Function: Specifies the address of the problem program exit list.
Default: None. Specification optional.
Format: Must conform to the rules for assembler language symbols.
Notes: This list must be provided if user label, data control block, or user ABEND .~

exits are required; it must start on a fullword boundary. The format and contents I,
of the list are shown in the Data Management Services publication. The user
ABEND exit is discussed in the last section of this chapter.

Alternate Source: DO
Function: Specifies the size in bytes of the environment checkpoint records on
disk.
Default: 300
Format: Unframed decimal integer.
Minimum: 300
Maximum: 3520
Notes: If a number less than 300 or greater than 3520 is specified, 300 or 3520
respectively is used, and a message notifying the programmer is generated on the
system output device. A larger record size may use disk space more efficiently,
but the work area would take up more main storage. These two factors must be
taken into account to arrive at the best BLKSIZE for a given application.

DD Statement for the Checkpoint Data Set
One DD statement must be issued for the checkpoint data set. If DISP=NEW is
coded, this statement must allocate space on DASD for all records in the check­
point data set. A formula for allocating sufficient space is given in How to Get
the TCAM Checkpoint Facility in the chapter Using TCAM Service Facilities.
The DISP= parameter must be coded DISP=OLD for a warm restart and may be
coded either DISP=OLD or DISP=NEW for a cold restart. If DISP=NEW is
coded, STARTUP=CY is assumed for the INTRO macro instruction (or

106 OS/MFT and OS/MVT TeAM Programmer's Guide

(

Log Data Sets

)

STARTUP=CIY, if I coded in the STARTUP= operand), regardless of what is
coded for ST ARTUP= at assembly time or at WTOR response time. (The
disposition parameter of DISP= also may be coded.) Any incremental quantity
requested on the SPACE= parameter is ignored.

The OPTCD= operand of the checkpoint DCB macro may be specified at execu­
tion time by coding the DCB parameter of the DD statement for the checkpoint
data set as DCB=(OPTCD=C).

A typical DD card used for initial allocation is:

IITPCHKPNT
II
II
II

DD DSNAME=CPDS,UNIT=2311,
VOLUME=SER=llllll,
SPACE=(TRK, (3)),
DISP=(NEW,CATLG)

*
*
*

Note: The step containing the DISP=(NEW,CATLG) operand must terminate
normally for the deal/ocation routine to perform the catalog function. If
such a step is halted by SYSTEM RESET or Master Check, the catalog is
not updated. The next use of the data set, with DISP=OLD coded, must
either supply the UNIT= and VOL=SER= operands, or the name must have
been entered into the catalog using the CA TLG command of the
IEHPROGM system utility.

A typical DO card used for the same (cataloged) checkpoint data set after initial
allocation is:

IITPCHKPNTDD DSNAME=CPDS,DISP=OLD

The data set does not have to be cataloged. If it is not cataloged, the data set is
allocated by specifying DISP=(NEW,KEEP), and subsequent uses of the data set
must contain the UNIT= and VOL=SER= keyword operands to provide the
information that would otherwise be in the catalog.

Note: There is no utility job to format a checkpoint data set. It is format­
ted by OPEN at each cold restart.

A log data set consists of messages or message segments placed on a secondary
storage device for accounting purposes. TCAM's support of the logging function
is described in the Using TCAM Service Facilities chapter and in the descrip­
tions of the LOG and LOGTYPE macros. The TCAM logging facility is optional.

One log data set should be defined for each secondary storage device on which
messages or message segments may be logged. A log data set is defined by a
BSAM DCB macro that is issued with the DCBs defining the line group data sets.
the message queues data sets, and the checkpoint data set. The BSAM DCB
macro is described in the Supervisor and Data Management Macro Instructions
publication.

Defining the Mep Data Sets 107

In the BSAM DCB macro for a log data set, the user should code the following
operands:

Operands Comments

DSORG=PS
MACRF=W
DDNAME=symbol
BLKSIZE=keylen

RECFM=F
NCP=integer

Replace keylen with the value specified
in the KEYLEN= operand of the INTRO
macro.

Replace integer with the maximum number
of buffer units that may appear in a
buffer.

The SYNAD=address operand of the BSAM DCB macro, where address is the
name of a user-specified, error-analysis routine to be given control when an
uncorrectable I/O error is detected, should also be coded. The error routine must
conform to the standards set forth in the discussion of this operand in the
Supervisor and Data Management Macro Instructions publication. Upon return
from the error-analysis routine, the log function continues as if no error had been
encountered. All indications of the I/O error must be removed from the DCB,
(that is, reset the first two bits of the IFLGS field of the data control block to
zeros-see the EXCP macro instruction in the System Programmer's Guide); if an
I/O error is still indicated the MCP will terminate abnormally when the next
WRITE is issued. The format of the BSAM DCB is described in the System
Control Blocks publication. If this operand is not specified, the MCP terminates
abnormally when a permanent 1/ 0 error occurs during the logging operation. The
UNIT= parameter of the DD statement associated with each log DCB macro
should specify the address of the appropriate secondary storage device. /f,

User ABEND Exits
The DCB macros for the line group data sets and for the message queues data sets
permit specification of a user-written routine to be given control if an OPEN
macro fails to open the data set for which the DCB macro is coded. The user
routine is specified by coding a special entry in the problem-program exit list
named in the EXLST= operand of the appropriate DCB macro. (The format and
contents of the problem-program exit list are shown in Data Management
Services.) The special entry, called the user ABEND entry, consists of a one-byte
code of X'OE' followed by the three-byte address of the user routine.

If the OPEN macro for a particular data set fails to execute properly, and if a user
ABEND entry is included in the EXLST= operand of the DCB macro for the data
set, the user routine is given control. The user routine should save and restore
registers. When control is passed to the user routine, the general registers contain
the following information:

108 OS/MFT and OS/MVT TeAM Programmer's Guide

:,",

(

Register

o
1
2-13
14
15

Contents

Error code
Options available to the user ABEND routine
Contents before execution of the OPEN macro
Return address (must not be altered by the exit routine)
Address of user-routine entry point

The error code, which occupies the right-hand byte of register 0 (the other three
bytes are set to 0) tells the user the reason why the OPEN failed. Possible error
codes and brief explanations are described in the publication TCAM Level 4
Component Release Guide.

The error code is also included in a message directed to the system console when
the OPEN fails. This message, which is sent even when no user ABEND routine
is specified, has the following format:

IED008I TCAM OPEN ERROR xxx-y IN DCB dcbname descriptor

Here, xxx-y is the code referred to in the list of error codes. dcbname is the name
of the DCB macro for the data set that could not be opened properly. descriptor
is a single word describing the type of error. This message is discussed in the
TCAM Level 4 Component Release Guide document.

The following instructions may be coded in the user ABEND routine to return
control to TCAM:

L 13,4(13)
RETURN (14,12),T,RC=(15)

If an OPEN macro fails to execute properly and no user ABEND exit is provided,
TCAM issues an ABEND macro to terminate the MCP task.

Before control is passed to the user ABEND routine, TCAM sets the bits in the
right-hand byte of register 1 to indicate to the ABEND routine what courses of
action it may take. The code in register 1 indicates possible user options; the
TCAM Open routines are set up to work properly if any of the courses of action
indicated by the code in register 1 are taken. It is recommended that the user
ABEND routine restrict its activities to the options indicated in register 1. Possi­
ble user ABEND alternatives and the codes associated with them are shown
below.

Code in
Register 1

X'03'

Permissible User Options

1. You can abnormally terminate the MCP job-either by
issuing an ABEND macro in your subroutine, or by placing
a return code of X'02' or higher in the right-hand byte of
register 15 and returning control to TCAM.

2. You can tell the TCAM Open routine to make no further
attempt to open this data set, but to pass control to the next
instruction in the MCP. This is done by placing a return
code of X'OO' in the right-hand byte of register 15 and re­
turning control to TCAM. In this case, your MCP will run
with restricted capabilities, since it will not be able to use
this data set.

Defining the MCP Data Sets 109

X'07' 1. Same as Option 1 for X'03' code.
2. Same as Option 2 for X'03' code.
3. In activating the lines in a line group data set, a TeAM

Open routine has found a line on which there are stations
incompatible with those found on a previous line within the
same line group. (See Characteristics of a Line Group in
the chapter Defining the MCP Data Sets for the common
characteristics that stations and lines in the same line group
must have.) When such a line is found, TCAM stops activat­
ing lines in the line group. By placing a return code of X'OI'
in the right-hand byte of register 15 and returning control to
TCAM, you direct the Open routi!le to open a modified line
group data set consisting of only those lines that had been
activated when the line having incompatible stations was
encountered. In this case, messages directed to stations or
lines that were not activated will be enqueued in a message
queues data set, but will never be sent to these stations.

If the user specifies a return code of X'O l' in register 15 and the option code
passed to him in register 1 was X'03', TCAM immediately takes the ABEND exit
again; unless the user routine has code providing for this possibility, a loop will
result.

For more information on the DCB exit list and how it is specified, see Data
Management Services.

110 OS/MFT and OS/MVT TeAM Programmer's Guide

(

Activating and Deactivating the Message Control Program

This chapter describes how to start and restart the TCAM Message Control
Program, how to initialize and activate the TCAM data sets, and how to close
down the TCAM MCP.

Starting and Restarting TCAM
The Message Control Program is assembled, link-edited, and executed like any
other problem program running under an as system. Sample Job Control Lan­
guage for assembling, link-editing, and executing the MCP is given in the chapter
Putting the MCP Together.

The TCAM MCP may be started or restarted by placing the job control state­
ments for the EXECUTE step in the card reader and activating an as
Reader/Interpreter (by a START command issued at the system console) to read
the JCL into the system. Another way to start or restart the MCP is to issue a
ST ART command naming a cataloged procedure that causes the MCP to be
executed. The chapter on putting the MCP together contains sample code and job
control statements for implementing both types of start-up. The various types of
restart available to the TCAM user are described in the TCAM
Checkpoint/ Restart Facility section of the chapter Using TCAM Service
Facilities.

Initialization and Activation
The INTRa, OPEN, and READY macros are issued as a group; together they
constitute the data-set initialization and activation section of the Message Control
Program. This section must precede the Message Handler sections of the MCP
(see the chapter Putting the Message Control Program Together). When the
INTRa, OPEN, and READY macros have been executed, the TCAM system is
ready to handle message traffic.

As the first macro executed in the Message Control Program, INTRa expects to
get control from as job management. INTRa establishes standard entry linkage
with job management, chains save areas, provides addressability, and saves the
start parameter list pointer. To insert user-written code (which must not contain
any TCAM macros) before INTRa, the Message Control Program (that is, the
code beginning with INTRa) should be called as a subroutine of the inserted user
code; register 15 should contain the address of INTRa, register 14 the address to
which the MCP returns upon termination of TCAM, register 13 the address of a
standard I8-word save area, and register 1 the start parameter list pointer as
originally passed in register 1 from job management.

If the user desires to refer to the PARM field of the EXEC job control statement,
he may either use the register 1 pointer as passed by job management (before
INTRO execution) to find the PARM field; or (after INTRa execution) this same
value (in register 1) is stored by INTRa in a local constant area, a fullword tagged
IEDSPLPT.

The INTRa macro also creates the address vector table (which is the primary
control block of the TCAM system) wherein many system variables are defined.
When INTRa is executed, it optionally provides for dynamic redefinition of many
of these system variables by interpreting the operator's response to a WTOR
message. Once the system variables are defined in the address vector table,

Activating and Deactivating the Message Control Program III

INTRO continues with system initialization, creating buffers and trace tables, and
formatting control blocks.

The OPEN macro completes the initialization and activation of the TCAM data
sets. The TCAM data sets that must be activated in the MCP by OPEN macros
are those for the message queues, the line groups, the message logs, and check­
point.

Each data set that is used by the MCP can be opened by a separate OPEN macro,
or all data sets of the same type (for example, all line group data sets) can be
opened with one OPEN. If used, the message queues data sets must be opened
first, and the checkpoint data set must be opened next. Opening a line group data
set causes all lines in the line group to be prepared for operation; the lines option­
ally may be prepared for message transmission at this time, or activation may be
deferred until later (the line is opened idle and later started by the ST ART LINE
operator command).

The READY macro must be the last instruction in the initialization and activation
section of the MCP. When READY has executed, the system is prepared to
handle message traffic. The expansion of this macro causes a branch to the
internal routine that supports the MCP, where receipt of the first message is
awaited. When the first message is received (either from a terminal or an applica­
tion program), control is transferred to the MH section of the MCP for handling
the message.

Once the MH sections are initially entered after the execution of the READY
macro, execution of user-specified code in the MCP is restricted to the Message
Handlers; that is, the MH sections are continually reentered to handle messages i~
entering and leaving the computer as long as the MCP is active. Accordingly, any \~
user code must either be within or be branched to from a Message Handler. User
code cannot branch between Message Handlers. (See the User Code in a
Message Handler section of the chapter Designing the Message Handler.)

For a sample MCP initialization and activation routine, see the last section of this
chapter.

In addition to initial start-up of the TCAM system, as described above, TCAM
provides for three types of restart following system closedown or failure. These
are discussed in Restart of the chapter Using TCAM Service Facilities.

112 OS/MFT and OS/MVT TeAM Programmer's Guide

(

INTRO

The INTRO macro

• creates the address vector table (the primary control block in the TCAM
system);

• performs the bulk of TCAM system initialization;
• establishes addressability and entry linkages for the Message Control Program;
• specifies the name of the Message Control Program;
• specifies the number of channel program blocks to be provided for transferring

data between buffer units and queues maintained on disk;
• specifies the maximum number of command input blocks that may be used at

anyone time to contain operator commands entered at the system console;
• identifies the primary operator control terminal;
• specifies a character string used to identify operator commands;
• specifies the size of buffer units;
• specifies the maximum number of units that may be assigned to a main-storage

message queues data set;
• provides the user with a means of determining when his main-storage message

queues data set is nearly full, and when this condition of impending fullness has
abated;

• identifies the station or application program to which messages having an
invalid destination are to be forwarded;

• specifies which user registers are to be saved when in-line user code is located
in an inheader or outheader subgroup that may handle multiple-buffer headers;

• specifies the length of the system interval;
• specifies the interval between environment checkpoints;
• specifies the number of environment checkpoint records to be retained at any

one time;
• provides system optimization by specifying that unnec~ssary options are to be

omitted;
• specifies the type of restart to be performed following system closedown or

failure;
• specifies a password that must be coded in certain application-program macros

that affect operation of ,the MCP;
• provides for inclusion of various debugging facilities;
• specifies whether a special operator awareness message is to be displayed at the

primary operator control station whenever a station fails to respond to polling,
• specifies the number of concurrent broadcast requests, the number of common

data areas, and the size of each data area.

TCAM relies upon the INTRO macro to supply information for defining and
initializing a variety of TCAM functions. The operands of INTRO provide
information concerning data-set definition (DISK=, CPB=, MSUNITS=,
MSMAX=, MSMIN=), buffer definition (KEYLEN=, LNUNITS=), the opera­
tor control facility (CIB=, PRIMARY = , CONTROL=), the Message Handlers
(DLQ=, USEREG=), line control (INTVAL=), the TCAM checkpoint/restart
facility (CPINTVL=, CPRCDSo:::, STARTUP=, RESTART=, CKREQS=),
system optimization (CPB=, DISK=, FEATURE = , LINETYP=), network
configuration (PASSWD=), debugging aids (TRACE=, TREXIT=, DTRACE=,
CROSSRF=, TOPMSG=, COMWRTE=), and the on-line test facility
(OLTEST=). Sections devoted to each of the above topics are located elsewhere
in this publication. The user may read the description of the INTRO macro for
general information before he is familiar with the TCAM functions to which the
operands refer, but he should not attempt to code INTRO operands until he has

Activating and Deactivating tl"Je Message Control Program 113

read the discussion of the particular function he wishes performed. In general, the
following operand descriptions will refer the reader to the discussions of the
functions of the operands.

TCAM provides the user with the ability to replace, at INTRO execution time,
values specified at assembly time by certain operands of the INTRO macro, and to
provide values for INTRO operands that were omitted at assembly time.

At the time INTRO is executed, it may cause the following WTOR message to
appear on the system console:

nnIED002A SPECIFY TCAM PARAMETERS

This WTOR message is issued only if at least one of the following operands is
omitted from the INTRO macro: STARTUP=, KEYLEN=, LNUNITS=, and (if
DISK=YES is coded in INTRO) CPB=. If these operands are all coded in the
INTRO macro, no WTOR message is issued at execution time.

If the WTOR message IED002 is displayed, its first appearance is preceded by
another message:

IED001I TCAM JOB job name, stepname, procstepname
ADDRESS OF AVT xxxxxxxx.

This AVT address may be used by the operator to display (or modify, according to
the system programmer's instructions) areas of the Message Control Program
during the WAIT for the WTOR reply.

After the TCAM system issues the WTOR message, it waits for a user response to
be entered at the system console. The user has two options in responding: he
may either enter response keywords (as shown in the "response keyword" line in
the list of INTRO operands), or he may enter INTRO operand names (as shown
in the header line in the list of operands) together with appropriate values. Sev­
eral keywords or operands, separated by commas or vertical bars (I) may be
coded in one response. Responses may be entered in upper- or lowercase letters.
They will be translated into uppercase automatically. Each response is limited to
41 characters. After a response has been entered, TCAM re-issues the WTOR
message and continues to issue it after each response is entered until the user
indicates, by coding U at the end of a response, that he has nothing more to
specify. If the user codes U and has not yet specified values for STARTUP = ,
KEYLEN=, LNUNITS=, or (if DISK=YES is specified in INTRO) CPB= either
in the INTRO macro or in a response to the WTOR message, TCAM prompts him
with the following message:

nn IED004A REQUIRED PARAMETER MISSING. SPECIFY operand

where operand is the name of the missing INTRO operand.

An error in specifying a response keyword or operand (such as an invalid response
keyword, an invalid operand, or an invalid value with a response keyword) causes
an error message to be printed at the console. The operator may respecify the
response keyword or operand when he receives such a message. An error in one
response keyword or operand prevents interpretation of any keywords in the same
response to the right of the keyword in error. A response keyword or operand (

114 OS/MFT and OS/MVT TCAM Programmer's Guide

symbol

keyword operands

PROGID=characters

may be coded more than once in the sequence of WTOR responses; the last value
specified applies.

Example:
The following WTOR messages and responses occur at INTRO execution time for
a user who has omitted the STARTUP= and LNUNITS= operands from his
INTRO macro. The user specifies LNUNITS=, MSMIN=, MSMAX=,
CPRCDS=, and CONTROL=, but forgets to specify STARTUP= (a required
operand) and is prompted for this operand.

message: 00 IED002A SPECIFY TCAM PARAMETERS

response: r 00, 'B=2, MsMIN=80 X=95, E=5'

message: 00 IED002A SPECIFY TCAM PARAMETERS

response: r 00, 'CONTROL=OPcONT, U'

message: 00 IED004A REQUIRED PARAMETER' MISSING. SPECIFY STARTUP=

response: 00,' s=c, u'

Note: If no response keyword is shown for a particular operand, the value
for that operand may not be specified at INTRO execution time.

INTRO has the following format:

Name Operation Operands

[symbol] INTRO keyword operands

Function: Specifies the name of the macro.
Default: None. Specification optional.
Format: Must conform to the rules for assembler language symbols (see the
symbol entry in the Glossary).

Function: Specifies the operands that can be used.
Format: The operands may be specified in any order according to assembler
language conventions.
Notes: The operands for the INTRO macro are described in the following list.
This list also shows the one-character response keywords that may be substituted
for the operand names in responses to the WTOR message SPECIFY TCAM
PARAMETERS sent to the system master console at INTRO execution time.

Response Keyword: None.
Function: Specifies the name of the Message Control Program.
Default: None. Specification optional.
Format: One to 230 unframed characters with no embedded blanks or commas.
Notes: TCAM inserts this name in a DC C' characters' field located in the MCP.
In a dump, this name appears in the EBCDIC field at the right of each page of the
listing and identifies the beginning of executable code for the MCP. If this
operand is omitted, no name is assigned to the MCP.

Activating and Deactivating the Message Control Program 115

DlSK={NO}
YES

CPB= {teger}

CIB= {~teger}

Response Keyword: None.
Function: Specifies whether any of the message queues data sets defined for this
MCP are located on a direct-access secondary storage device.
Default: DISK= YES
Format: YES or NO.
Notes: DISK= YES is coded if any of the message queues data sets are located on
disk. DISK=NO is coded if no message queues data sets are located on disk. For
further information, see Message Queues Data Sets in the chapter Defining
Data Sets.

Response Keyword: D=
Function: Specifies the number of channel program blocks to be provided for
transferring data between buffer units and message queues maintained on disk.
Default: CPB=O
Format: Unframed decimal integer.
Maximum: 65535
Notes: One CPB is involved in transferring the data from one unit to disk, or in
filling one unit with data from disk. See Specification of Channel Program
B locks in the chapter Defining Data Sets.

If DISK=NO is coded, this operand is ignored by INTRa, and both CPB= and
D= are invalid responses at INTRa execution time.

Response Keyword: C=
Function: Specifies the maximum number of command input blocks (ICBs) that
can be utilized at anyone time in the TCAM system.
Default: CIB=2
Format: Unframed decimal integer.
Maximum: 255
Notes: CIBs are buffer-like areas used to contain operator commands entered at
the system console. Space for them is allocated dynamically when needed, and the
main-storage space assigned to a CIB is freed once the operator command con­
tained within the CIB has been processed. Only one CIB need be specified for
operator commands entered from the system console. However, more than one
eIB should be specified if the user anticipates processing simultaneously more
than one operator command entered from the console. If an attempt is made to
enter an operator command from the system console when the maximum number
of CIBs are present already in the system (because that many operator commands
from the system console are now being processed), the message being entered is
rejected by TCAM.

COMMBUF =(integerl, integer2, integer3)

Response Keyword: None.
Function: Specifies the number of concurrent broadcast requests, the number of
common data areas, and the size of each data area for 3670 terminals that receive
broadcast messages.
Default: None. Specification optional.

116 OS/MFT and OS/MVT TeAM Programmer's Guide

(

PRIMARY = {termname}
SYSCON

CONTROL= { ;!haracters }

KEYLEN=integer

Format: Unframed decimal integer greater than zero.
Maximum: 65535 for each integer.
Notes: integer] specifies the total number of concurrent broadcast requests. This
number should equal the maximum number of lines that could concurrently have
outstanding COMMBUF requests, multiplied by the number of unfulfilled
COMMBUF requests permitted on a line (see the COMMBUF macro descrip­
tion). integer2 specifies the total number of data areas to be generated. integed
specifies the size of each data area; the data area size must include a 6 byte work
area required at the COMMBUF macro and must be a multiple of four. In the
inheader or inbuffer subgroups, the COMMBUF macro should be issued naming a
TLIST macro and specifying the maximum number of broadcast operations that
may be scheduled on a line at any given time.

Response Keyword: P=
Function: Specifies the name of the station or application program to be used as
the primary operator control station.
Default: PRIMARY=SYSCON
Format: termname or SYSCON. termname is the name of a station or applica­
tion program (defined by a TERMINAL or TPROCESS macro). If a station
name is specified, the station not be on a switched line, and it must be able to
enter and to accept messages.
Notes: SYSCON is the name of the system console. The functions of the primary
operator control station are given in The Operator Control Facility section of
Using TCAM Service Facilities.

If termname is changed by a CPRIOPCL operator command, execution of a warm
or continuation restart causes the value that was specified in the macro to be
overridden by the value specified by the last CPRIOPCL command executed
before closedown or failure.

Response Keyword: L=
Function: Specifies the character string used to identify each operator command
as such to TCAM.
Default: CONTROL=O
Format: One to eight unframed characters with no embedded commas or blanks.
Notes: CONTROL=O indicates that no character string is being specified; it is
valid only if all operator commands are to be entered at the system console.

Response Keyword: K=
Function: Specifies the size of a buffer unit.
Default: None. This operand is required.
Format: An unframed decimal integer greater than 34.
Maximum: 255
Notes: Guidelines for coding this operand are given in the chapter Defining
Buffers. This chapter should be thoroughly understood before KEYLEN = is
specified. If disk queuing is used, integer must be identical to unitsize as specified
in the DCB=(KEYLEN=unitsize) parameter of the IEDQDATA DD statement
for the IEDQXA utility program used to preformat the disk queues.

Activating and Deactivating the Message Control Program 117

UNITSZ=integer

LNUNITS=integer

MSUNITS= {~teger}

A buffer must be large enough to accommodate the larger of:

a. a header prefix (30 bytes) plus the maximum number of reserve characters
specified for the first buffer by the RESERVE= operand of any line group
DCB macro or PCB macro, plus three bytes, or

b. a text prefix (23 bytes) plus the maximum number of reserve bytes specified for
buffers other than the first by the RESERVE= operand of any line group DCB
macro or PCB macro, plus three bytes.

Response Keyword: K=
Function: Specifies the size of a buffer unit.
Default: None. If KEYLEN = is specified, this operand must be omitted. If
KEYLEN = is not specified, this operand is required.
Format: An unframed decimal integer greater than 34.
Maximum: 255
Notes: This operand is an alternate spelling of the KEYLEN= operand. Either
form, but not both, may be specified.

Response Keyword: B=
Function: Specifies the number of buffer units that may be used in building
buffers to contain incoming and outgoing message segments.
Default: None. This operand is required.
Format: Unframed decimal integer greater than zero.
Maximum: 65535
Notes: Guidelines for coding this operand are given in the chapter Defining
Buffers.

Response Keyword: M=
Function: Specifies the maximum number of buffer units that may be assigned to
the main-storage message queues data set at anyone time.
Default: MSUNITS=O
Format: Unframed decimal integer.
Maximum: 65535
Notes: Guidelines for coding this operand are given in the discussion of main­
storage message queues data sets in the chapter Defining the MCP Data Sets.

This value is added to that specified for LNUNITS= to determine the total
number of units in the buffer-unit pool.

If MSUNITS=O is specified or assumed, the expression M= may not be entered in
the WTOR response at INTRO execution time. Therefore, if a main-storage
message queues data set is desired, MSUNITS= must be coded with a nonzero
integer, even if the value specified is to be overridden at INTRO execution time
by an M= expression.

Either MSUNITS= must be nonzero or DISK= YES must be coded.

118 OS/MFT and OS/MVT TeAM Programmer's Guide

(

MSMAX= {~n~eger}

MSMIN= {~~eger}

DLQ= {;ntry }

Response Keyword: X=
Function: Specifies the percentage of the number of units (specified by the
MSUNITS= operand) to be enqueued on a main-storage message queues data set
before a warning is provided that the data set is nearly full.
Default: MSMAX= 70
Format: An unframed decimal integer greater than zero.
Maximum: 100
Notes: When this percentage of units is enqueued, bit 6 is set in each message
error record in the system. This operand is discussed in greater detail in the
section on main-storage message queues data sets in the chapter Defining the
MCP Data Sets.

Response Keyword: Y =
Function: Specifies the percentage of the number of units enqueued on a message
queues data set (specified by the MSUNITS= operand) below which a bit is set in
every message error record in the system.
Default: MSMIN=50
Format: An unframed decimal integer.
Maximum: 99
Notes: The operand may be used to inform the user that his message queues data
set is no longer crowded. The value specified for MSMIN= must be less than that
specified for MSMAX=, otherwise, the INTRO macro does not execute. Values
specified for MSMIN= (or MSMAX=) at INTRO execution time by means of a
WTOR response are checked against the current value of MSMAX= (or
MSMIN =) if specified, to ensure that this rule is not broken. If the rule is broken,
the value specified in the WTOR response is rejected and an error message is sent
to the system master console informing the operator of this fact. The operator
may then respecify the value. As an example, if MSMIN=95 and MSMAX=99
are coded in the INTRO macro, at INTRO execution time the user should not
code

00, 'MSMAX=90,MSMIN=85,

as a WTOR response, because the WTOR response is read from left to right and
the new MSMAX value will be compared with the old MSMIN value and be
re jected. If however, the user codes

00, 'MSMIN=85, MSMAX=90'

these values will be accepted since the new MSMIN value is less than the old
MSMAX value, and the new MSMAX value is greater than the new MSMIN
value, with which it is compared.

Response Keyword: Q=
Function: Specifies the name of the dead-letter queue to which messages with
invalid destinations are sent.
Default: DLQ=O

Activating and Deactivating the Message Control Program 119

INTV AL= {~teger}

CPINTVL={integer}
1800

Format: entry is the name of a station or application program as defined by a
TERMINAL or TPROCESS macro. DLQ=O specifies that no dead-letter queue
is to be used.
Notes: Dead-letter messages are messages having invalid destinations as deter­
mined by a FORWARD macro. If a user-specified routine is coded for the
EXIT= operand of the FORWARD macro, messages with invalid destinations
may have the destination corrected. If both the DLQ= operand of INTRO and
the EXIT= operand of FORWARD are omitted, dead-letter messages are overlaid
and lost.

Response Keyword: None.
Function: Specifies the number of registers to be saved when in-line user code is
located in an inheader or outheader subgroup that may handle multiple-buffer
headers.
Default: USEREG=O
Format: An unframed decimal integer.
Maximum: 10
Notes: For guidelines on specifying this operand, see the section User Code in
a Message Handler. USEREG= specifies sequential registers, beginning with
register 2. For instance, if USEREG=4 is coded, registers 2, 3, 4, and 5 are
saved.

Response Keyword: 1=
Function: Specifies the number of seconds in the system interval.
Default: INTV AL=O
Format: An unframed decimal integer.
Maximum: 65535
Note's: The system interval is described in Maintaining Orderly Message Flow in
the chapter Defining Terminal and Line Control Areas.

Unless a nonzero integer is specIfied either in the operand or in the response to a
WTOR message at INTRO execution time, no system interval is possible for the
MCP.

Response Keyword: V =
Function: Specifies the maximum number of seconds between environment
checkpoints when the TCAM checkpoint/restart facility is used.
Default: CPINTVL= 1800
Format: An unframed decimal integer greater than 29.
Maximum: 65535
Notes: See the section TCAM Checkpoint/Restart Facility of the chapter
TCAM Service Facilities for further information on this operand.

120 OS/MFT and OS/MVT TeAM Programmer's Guide

(

CPRCDS= { ~teger }

Response Keyword: E=
Function: Specifies the number of environment checkpoint records to be retained
in the checkpoint data set at anyone time.
Default: CPRCDS=2
Format: An unframed decimal integer greater than 1.
Maximum: 75
Notes: The most recent records are the ones retained. For example, if
CPRCDS=2 is specified, the most recent two environment checkpoints are kept in
the checkpoint data set. When a new environment checkpoint is taken, its record
overlays the oldest environment checkpoint record then being held in the data set.
If an attempt is made to increase or decrease integer during a warm or continua­
tion restart, the smaller value prevails. Guidelines for coding this operand are
included in the discussion of the rCAM checkpoint/restart facility in the chapter
Using TCAM Service Facilities.

Response Keyword: S=
Function: Specifies the type of start-up to be performed following closedown of
the Message Control Program or system failure.
Default: None. This operand is required.
Format: C, CI, CY, CYI, W, WI, WY, or WYI.
Notes: The types of restart are defined in the discussion of the TCAM
checkpoint/restart facility in the chapter Using TCAM Service Facilities.

The values may be specified in any order. For instance, IC is just as valid anti
produces the same results as CI.

C specifies that a cold restart is to be performed following a normal quick close or
flush close, and that continuation restart (including scanning of the message
queues) is to be performed following system failure.

CY specifies that a cold restart is to be performed following a quick close, a flush
close, or a system failure.

W specifies that a warm restart is to be performed following a normal quick close
or flush close, and that a continuation restart is to be performed following system
failure. The continuation restart will include full scanning of the message queues.

WY specifies that a warm restart is to be performed following a quick or flush
close, and that a continuation restart is to be performed following system failure.
The cpntinuation restart will not include scanning of the message queues. I
specifies that the status of each invitation list is to be included in the checkpoint
record. If I is not coded, invitation lists are not checkpointed. The status infor­
mation recorded is as follows:

1. whether the list is active or inactive,
2. whether the list is autopolled or program polled.

The specification of I prevails from one cold restart to the next. Attempts to
change this specification during a warm or continuation restart are ignored.

Activating and Deactivating the Message Control Program 121

CKREQS= {~teger }

RESTART = {~teger }

PASSWRD= {Qharacters}

Response Keyword: R=
Function: Specifies the maximum number of destination queues in use at any
time for application programs that include a CKREQ macro.
Default: CKREQS=O
Format: An unframed decimal integer.
Maximum: 255
Notes: This operand specifies the number of checkpoint request records to be set
up in a checkpoint data set.

If an attempt is made to increase or to decrease integer during a warm or continu­
ation restart, the smaller value prevails.

Response Keyword: N =
Function: Specifies which environment checkpoint record the TCAM restart
facility should use in attempting to reconstruct the MCP environment as it existed
at the time of closedown or failure.
Default: RESTART=O
Format: An unframed decimal integer.
Maximum: 255
Notes: For more information on the use of this operand, see the section discussing
the checkpoint/restart facility in the chapter Using TeAM Service Facilities.

If 0 is specified, the latest environment checkpoint record is used; if 1 is specified,
the next to the latest record is used, etc.

Although the maximum that may be specified is 255, the value entered must be
less than the number of environment checkpoint records kept, as specified by the
CPRCDS= operand. A scan is performed at restart if scanning is specified in the
STARTUP= operand. If RESTART=O is specified, or the operand is omitted and
the latest environment checkpoint record cannot be used (due, perhaps, to a disk
I/O error), TCAM automatically goes back to the latest usable record and uses it.

If the message queues data set is on reusable disk and the integer specified causes
TCAM to attempt to restructure the environment from a checkpoint record that
was taken before serviced messages in certain queues were overlaid, it is unlikely
that a warm restart or a continuation restart will be successful.

This value should not be changed during a warm or continuation restart.

Response Keyword: W =
Function: Specifies a character string that must be entered in an MRELEASE,
MCPCLOSE, TCHNG, or ICHNG macro issued in an application program.
Default: PASSWRD=O
Format: One to eight unframed characters with no embedded blanks or commas.
Notes: If this operand is coded, none of the above macros are executed unless
they have the correct password. A macro with an incorrect password or no
password is ignored. PASSWRD=O indicates that no password is being specified.

122 OS/MFT and OS/MVT TeAM Programmer's Guide

I

\~

(

CROSSRF= {~teger}

TRACE= { ~teger }

TREXIT =symbol

The user will be unable to find the password as specified here in a storage dump;
an internal TCAM routine scrambles the password at INTRO execution time.

Response Keyword: F =
Function: Specifies the number of entries in the cross-reference table.
Default: CROSSRF=O
Format: An unframed decimal integer.
Maximum: 65535
Notes: The cross-reference table is a debugging aid. Each entry contains either a
name or an address of an internal TCAM control block associated with a line. If a
cross-reference table is to be used, CROSSRF = should specify the maximum
number of TCAM lines that are open simultaneously.

This facility is described in the Debugging Aids section of the chapter Using
TCAM Service Facilities.

Response Keyword: T =
Function: Specifies the number of entries in the TCAM input/output trace table.
Default: TRACE=O
Format: An unframed decimal integer.
Maximum: 65535
Notes: This table provides a sequential record of the I/O interruptions occurring
on a specified line and is described in greater detail in Debugging Aids in the
chapter Using TCAM Service Facilities.

Response Keyword: None.
Function: Specifies the entry point of a user-written routine to be given control
when all entries in the TCAM I/O trace table have been used.
Default: None. Specification optional.
Format: Must conform to the rules for assembler language symbols.

Activating and Deactivating the Message Control Program 123

DTRACE= {~teger }

OL TEST = { itn;eger }

COMWRTE= {~~S}

Notes: The routine is passed the address of the I/O trace table in register O.
Nothing is returned by the routine. There is no special restriction on what may be
done with the table in the routine (that is, the information might be transferred to
an external device such as the printer). The COMWRITE feature can also be
used to provide a copy of the I/O trace table. This operand cannot be specified if
TRACE=O.

The entries are reusable and may be updated while the exit routine is processing
them, since they are updated by code that is disabled to interrupts.

Response Keyword: A=
Function: Specifies the number of entries in the TCAM dispatcher trace table.
Default: DTRACE=O
Format: An unframed decimal integer.
Maximum: 65535
Notes: The dispatcher trace table is a debugging aid that keeps a sequential record
of subtasks activated by the TCAM dispatcher. This table is disscussed in Using
TCAM Service Facilities. One entry is created for each subtask activated; when
the end of the table is reached, the table is wrapped and new entries overlay the
oldest entries.

Response Keyword: 0=
Function: Specifies the number of 1024-byte blocks of main storage to be used i~

for on-line test procedures. !ij
Default: OLTEST= 12
Format: The unframed decimal integer 0, or an unframed decimal integer greater
than 11.
Maximum: 255
Notes: For information on coding this operand, see On-Line Test Function in the
chapter Using TCAM Service Facilities. If the on-line test capability is not
needed, OLTEST=O should be coded. If the operand is omitted, 12K of main
storage is reserved for OLT.

Response Keyword: G=
Function: Specifies that COMWRITE (Service Aid Writer Task) is to be at­
tached to the TCAM MCP.
Default: COMWRTE=NO
Format: YES or NO.
Notes: If COMWRTE= YES is specified, a COMWRITE DD card describing a
sequential data set must be included in the job control cards for the execution of
the TCAM MCP. Omission of the DD card causes abnormal termination of
COMWRITE, and the COMWRITE function is not available. Other than the loss
of the function, the TCAM MCP is not affected.

(

124 OS/MFT and OS/MVT TeAM Programmer's Guide

WTTONE= {;teger}

TOPMSG= {NO }
YES

LlNETYP= {BISe }
STSP
MINI
BOTH

FEATURE=(j NODlALt ,
1 DIAL 5
1 N0274tt '
12741 5
j NOTIMER t)
1 TIMER \

Response Keyword: None.
Function: Specifies the duration of the "mark" character for the World Trade users
whose BSC lines require a "line tone."
Default: WTTONE=O
Format: An unframed decimal integer.
Maximum: 450
Notes: Restricted to use in World Trade countries. This operand specifies the
number of characters that constitute the tone.

Response Keyword: H=
Function: Specifies whether the operator awareness message IEA0001 is to be
displayed at the primary operator control station when a polled station fails to
respond to polling.
Default: TOPMSG=YES
Notes: The message is described in the section TCAM I/O Error-Recording
Facilities in the chapter Using TCAM Service Facilities.

If YES is specified, the message is displayed each time a station fails to respond to
polling during a pass through the invitation list (because, for instance, the station
is inoperative).

Response Keyword: None.
Function: Specifies the type of lines used in the TCAM system.
Default: LINETYP=BOTH
Format: ElSC, STSP, MINI, or BOTH.
Notes: ElSC is specified if all lines in the system are BSC lines only. STSP is
specified if all lines are start-stop only. MINI is specified if all lines in the system
are IBM 1050 terminals on leased lines. BOTH is specified if all types of lines are
supported.

Response Keyword: None.
Function: Specifies additional features to be supported in the TCAM system.
Default: FEATURE=(DIAL,2741,TIMER)
Format: NO DIAL or DIAL, N02741 or 2741, and NOTIMER or TIMER.
Framing parentheses must be coded. If a suboperand other than the last is
omitted due to default, a comma must be coded to indicate that it is missing.
Notes: DIAL is specified if dial lines are used. If 2741 terminals are supported,
2741 should be coded. The TIMER sub operand should be specified if any of the
following features are included in the system:

Activating and Deactivating the Message Control Program 125

checkpoint
any interval
dial-out options
main-storage queuing
reusable disk queuing.

If NOTIMER is specified but a function requiring the timer is used, TCAM
terminates abnormally with a system ABEND code of 045 and a value of 06 in
register 15.

Note: Following the INTRO macro the user should include a section of code
that tests the return code in register J 5 to determine whether I NTRO has
executed correctly. If register J 5 contains anything other than zero after
execution of INTRO. it is unlikely that the MCP will work satisfactorily.
(See the sample activation and deactivation section of the MCP at the end of
this chapter for a section of user code that checks the INTRO return code
and branches to an ABEND macro if the return code is anything other than
zero.)

If a nonzero code is to be returned by the INTRO routine, TCAM displays the
message

IE0065I TeAM INITIALIZATION ERROR xxxx

where xxxx is the decimal equivalent of the value returned in register 15; the
values that may be returned are:

Code Meaning

4 TCAM is already in the system.
S There is insufficient main storage for generating one of the following:

a. buffer-unit pool-refer to the LNUNITS= and MSUNITS=oper-
ands.

b. CPB free pool-refer to the CPB= operand.
c. subtask trace table-refer to the DTRACE= operand.
d. line I/O trace table-refer to the TRACE= operand.
e. cross-reference table-refer to the CROSSRF= operand.

12 There is insufficient main storage for generating a temporary work table
used by TCAM to sort the termname table (see the TCAM PLM for a
discussion of the termname table).

16 Terminal definition error. An invalid value was specified on the
ALTDEST= operand of either the TERMINAL or the TPROCESS
macro.

20 The primary operator control station is invalid. Either no such terminal
entry exists, or SECTERM= YES is not specified for the terminal named
on the PRIMARY= operand of the INTRO macro.

126 OS/MFT and OS/MVT TeAM Programmer's Guide

(

)

OPEN

The OPEN macro

• completes initialization and activation of data sets belonging to the Message
Control Program;

• is required for each MCP data set represented by a DCB macro; and for log
data sets (if present),

• specifies whether activation of lines represented by line group data sets is to be
immediate or deferred.

OPEN is used to complete initialization and activation of MCP data sets, and to
provide an interface with the BSAM routines handling the logging function for
TCAM. Each MCP data set required for execution (with the exception of a
message queues data set in main storage) must be activated in the Message
Control Program by an OPEN macro. Log data sets, if present, are also activated
by an OPEN macro issued in the MCP. Each MCP data set may be activated by a
separate OPEN macro, or all data sets of the same type (for example, all line
group data sets, or all message queues data sets) may be activated as a group by a
single OPEN. If message queues data sets residing on disk are present, they must
be opened first. The checkpoint data set, if present, must be opened next.

Instead of a standard OPEN macro, the user may code a list and an execute form
of the macro, which would be used in conjunction with each other; for general
information on the list and the execute form of a macro, including a discussion of
the' advantages of using these forms, see the OS publication Supervisor Services.

When an OPEN macro tries and fails to properly open a TCAM data set, an error
message is sent to the system console. This error message, which specifies the
data set that could not be satisfactorily opened and tells why it could not be
opened, is described in the section User ABEND Exits of the chapter Defining
the MCP Data Sets. In addition to sending the error message, TCAM allows the
us.er to specify a user-written subroutine that receives control when an OPEN
macro fails to execute properly. This capability is described in the User ABEND
Exits section. If the user fails to provide this subroutine, TCAM issues an
ABEND macro for the MCP program when an OPEN fails to execute properly.

When an OPEN macro is executed for a line group data set, TCAM issues com­
mands to prepare each line for message traffic. If TCAM does not receive an
indication that the commands have successfully executed within 28 seconds from
the time they were issued, the line is considered to be temporarily unavailable, and
the following message is written at the system console:

IED079I ENDING STATUS NOT RECEIVED FROM
LINE nnn--LINE UNAVAILABLE

The unavailable·line may subsequently be started by the STARTLINE operator
command. Unavailability of one line does not affect preparation for message
traffic over other lines in the line group.

The operand field of the OPEN macro consists of one or more groups of position­
al operands, followed by a single keyword operand. Each group of positional
operands consists of the name of the data control block for the data set being
opened (the name of the block is the same as the name of the DCB macro that
created it) and some optional information about that data set. A comma is coded

Activating and Deactivating the M!!ssage Control Program 127

symbol

dcbname

{
OUTPUT}
INOUT
INPUT

between groups. The optional keyword operand at the end permits the list and the
execute form of the macro to be specified.

OPEN has the following format:

Name Operation Operands

[symbol] OPEN (debnam.,[10 UTPUT r ,IDLE]) J, ...)
INOUT
INPUT

L{MF=L }]
MF = (E,listname)

Function: Specifies the name of the macro.
Default: None. Specification optional.
Format: Must conform to the rules for assembler language symbols (see the
symbol entry in the Glossary).
Notes: If MF=L is specified, this macro name must also be provided. It becomes
the name of the parameter list generated by the macro.

Function: Specifies the name of a data control block identical with the name
specified in the symbol field of the DCB macro for the data set being opened.
Default: None. This operand is required.
Format: Must conform to the rules for assembler language symbols.
Notes: Register notation may also be used, in which case the specified register (2 ."t
through 12) should contain the address of the data control block for the data set '~
being opened.

Function: Specifies the type of data set with respect to the direction in which
message traffic may flow.
Default: INPUT
Format: OUTPUT, INOUT, or INPUT.
Notes: OUTPUT specifies an output data set; it must be specified for a log data
set. The operand may be coded for a line group data set if none of the lines are to
stations that can enter data; in this case, the INVLIST= operand of the line group
DCB macro must refer to an invitation list having no entries (see the description
of the INVLIST macro).

INOUT specifies a data set that can be used for both input and output. INOUT
must be specified for a DASD message queues data set or a checkpoint data set,
and should be specified for a line group data set if any of the lines are to stations
that both enter and accept data. INPUT specifies an input data set. This operand
may be specified if none of the lines are to stations that can accept data.

(

128 OS/MFT and OS/MVT TeAM Programmer's Guide

IDLE

MF=~L t
I(E,listname) ~

)

Function: Specifies whether the lines are to be activated when OPEN is executed.
Default: None. Specification optional.
Format: IDLE
Notes: This operand is meaningful only for a line group data set. If IDLE is
coded, the line group data set is initialized at OPEN execution time, but the lines
are not activated. That is, no invitation or selection is performed for stations on
this line. Such lines may be activated individually by a ST ARTLINE operator
command. If IDLE is omitted, all1ines in the line group are automatically activat­
ed when the OPEN macro is executed. For nonswitched lines to stations having
polling characters, polling of stations having active entries in the invitation lists for
the lines begins after OPEN is executed, provided that INPUT or INOUT is also
specified.

A station assigned to a switched line that is idle may not call in on that line, but
may call in on any active line in its line group to enter messages. Such a station
will not receive any messages queued for it until the line it is on is activated by the
ST ARTLINE operator command.

If neither IN OUT, INPUT, OUTPUT, nor IDLE is specified for a particular data
set, and a subsequent data control block address is specified in the sub list, two
commas must appear between the two specified data control block names.

Function: Specifies whether the OPEN macro is to generate a parameter list only
or is to generate executable code.
Default: None. Specification optional.
Format: listname specifies the name of an OPEN macro specifying MF=L.
Notes: MF=L causes creation of a parameter list based on the OPEN operands.
No executable code is generated. The user must specify this form of the OPEN
among his program constants. The parameters in the list are not used until the
program issues an OPEN or CLOSE macro with an MF = (E,listname) operand
that refers to the list. The name specified in the name field of the OPEN macro
becomes the name assigned to the parameter list. MF = (E,listname) causes
execution of the OPEN routine using the macro having the MF=L operand
specified. Parameters specified through a macro having MF=(E,listname) operand
override corresponding parameters in the list.

Example:
The following OPEN macros open:

1. Two DASD message queues data sets named (as assigned by their DCB mac­
ros) DISKREUS and DISKNON;

2. A checkpoint data set named TPCHK;
3. A line group data set named GROUPONE, and another line group data set

named GROUPTWO that is to be opened idle;
4. A log data set named MSGLOG.

OPENDISK
OPENCKPT
OPENLINE
OPENLOG

OPEN
OPEN
OPEN
OPEN

(DISKREUS,(INOUT),DISKNON,(INOUT»
(TPCHK, (INOUT))
(GROUPONE,(INOUT),GROUPTWO,(INOUT,IDLE»
(MSGLOG,(OUTPUT»

Note that the message queues data sets are opened first and that the checkpoint
data set is opened next.

Activating and Deactivating the Message Control Program 129

READY

The READY macro

• completes initialization and activation of the MCP;
• permits "Good Morning" and "Restart in Progress" messages to be specified;
• must be issued between the OPEN macros and the CLOSE macros in the

activation and deactivation section of the MCP.

The READY macro completes initialization and activation of the Message Control
Program; once READY has executed, the TCAM system is prepared for message
traffic. One READY macro is specified per MCP, and is located between the
OPEN macros and the CLOSE macros in the activation and deactivation section
of the MCP.

Two optional operands of READY provide the addresses of user-written routines
that may build "Good Morning" or "Restart in Progress" messages or that might
alter option fields and other control areas to reflect the fact that a restart has
occurred. The exit for the "Good Morning" message is taken for the initial
start-up of the MCP and for each cold restart; the exit for the "Restart in
Progress" message is taken for a warm or a continuation restart (for a discussion
of the various types of TCAM start-up, see TCAM Checkpoint/Restart Facility
in Using TCAM Service Facilities).

When initial start-up or a restart occurs, the appropriate routine is given control
for each station defined by a TERMINAL macro, provided that the line group
data set containing the line on which the station is located has been opened by an
OPEN macro. The user routine should save and restore registers. When control if:
passes to the user routine, register 1 contains the address of a two-word parameter \~
list. The first word in the list contains the address of the terminal table entry for
the station to which the message generated by the user is to be sent; the second
word contains the address of the option fields for the destination station. The user
routine may use this information to build a message tailored to this particular
station, and may also alter fields in the terminal table entry and the option fields
fOT the station to reflect the fact that a restart has occurred (for a warm start or
continuation restart, the data in the terminal table entries and the contents of the
option fields before closedown or failure are preserved by the checkpoint facility).

The user routine returns to the MCP, in register 15, the address of a message to be
sent to the station. An all-zero address indicates that no message is to be sent to
this station. At the specified address is a one-byte field indicating, in binary form,
one more than the number of bytes of data in the message, followed by the text of
the message. The maximum length of the message is 255 bytes. If queuing is by
terminal, TCAM places the message at the head of the queue for the destination
station so that it is the first message sent to that station following start-up or
restart. The message is handled by the outgoing group of the Message Handler for
the destination, and is transmitted like any other message. Since the message is
handled by an MH group, it must have a header similar in format to the headers of
messages usually handled by the group. The user must construct this header in his
exit routine and include it as the first part of his message.

If queuing is by line, the good morning or restart messages for the stations on a
line will be placed at the head of the destination queue for that line, and will be (
sent before any other messages on that queue.

130 OS/MFT and OS/MVT TeAM Programmer's Guide

symbol

GMMSG=routine

RSMSG=routine

Deactivation

Types of Closedown

READY has the following format:

Name Operation Operands

[symbol] READY [GMMSG=routine][,RSMSG=routine]

Function: Specifies the name of the macro.
Default: None. Specification optional.
Format: Must conform to the rules for assembler language symbols (see the
symbol entry in the Glossary).

Function: Specifies the name of a user-written, closed subroutine that builds
good morning messages on each line.
Default: None. Specification optional.
Format: Must conform to the rules for assembler language symbols.
Notes: If this operand is coded, the routine is given control at the initial start-up
and at each cold restart.

Function: Specifies the name of a user-written, closed subroutine that builds
restart messages.
Default: None. Specification optional.
Format: Must conform to the rules for assembler language symbols.
Notes: If this operand is coded, the routine is given control at a warm restart or a
continuation restart.

The routines are coded and assembled as part of the MCP in the same manner as
the Message Handlers. Their exact location is not important since they are called
as closed subroutines. See User Code in a Message Handler in the chapter
Designing the Message Handler for the correct linkages.

Orderly deactivation of the TCAM system involves a number of steps. Incoming
and outgoing message traffic must be stopped, and if the status of the system is to
be preserved, a checkpoint record must be made. Data sets for any application
program using TCAM be closed. Finally, the MCP data sets must be closed and
control returned to the OS Supervisor.

Closedown of a TCAM system may be initiated either by a SYSCLOSE operator
command or by an MCPCLOSE macro issued in an application program. These
two means of initiating closedown are described in the next two sections. Both
the operator command and the macro have an operand that specifies whether a
flush closedown or a quick closedown is to be effected. A flush closedown may
also be initiated internally when the nonreusable disk threshold is reached.

A flush closedown is one in which incoming message traffic on each line ceases
after the message being received at the time closedown is ordered has been
completed (the line is not repolled or re-enabled). As soon as incoming message
traffic on each line ceases, any eligible outgoing messages that have been queued
for stations on that line are sent. (An eligible message is a message to a station or
application program that is not intercepted; see the description of the HOLD

Activating and Deactivating the Message Control Program 131

macro.) In this manner, incoming message traffic declines to nothing, while
outgoing message traffic continues until all eligible messages have been sent. An
environment checkpoint record is taken after all eligible outgoing messages have
been sent. This record preserves the status of the MCP and also records the
locations on disk of outgoing messages that could not be sent because their
destinations were intercepted; after restart, these messages are sent once their
destinations are eligible to receive them. This form of termination is known as a
flush closedown because unsent messages are flushed from the message queues.

When a quick closedown is ordered, message traffic stops on each line as soon as
transmission of any message currently being sent or received on the line has been
completed. Queues of messages to be sent are not flushed but their status is
preserved by an environment checkpoint record, and they are sent to their appro­
priate destinations after restart. (See the discussion of the TCAM
checkpoint/restart facility in the chapter Using TCAM Service Facilities.)

Deactivating a TCAM System without Application Programs
If there are no application programs in the TCAM system, a SYSCLOSE operator
command entered at an operator control station deactivates the system. The
SYSCLOSE command is discussed in the operator control section of the chapter
Using TCAM Service Facilities.

The SYSCLOSE command specifies either a quick or a flush closedown. When
the command is executed, traffic is suspended on each line, as described above.

When all message traffic and TCAM disk operations are complete, control returns
to the first instruction following the READY macro in the Message Control
Program. This instruction must begin a user-written routine (or branch to a
routine) that deactivates the Message Control Program. This MCP deactivation
routine must issue CLOSE macro instructions for each open data set in the
Message Control Program.

The last TCAM data sets to be closed must be the checkpoint and then the DASD
message queues data sets. This is important, because closing these data sets
deactivates the telecommunications system. After the message queues data sets
have been closed, no further references can be made to queues, control blocks, the
terminal table, invitation lists, etc. The deactivation routine should end with a
RETURN macro to end the message control job. (For a sample MCP deactiva­
tion routine, see the last section of this chapter.)

Deactivating a TCAM System With Application Programs
When the TCAM system includes application programs, closed own may be
effected by an MCPCLOSE macro issued as part of a termination routine in an
application program. A recommended procedure is to enter a special closedown
message at a station; this message would be directed to each active application
program in the system (by specifying the names of the appropriate process entries
in the terminal table as destinations). Each application program might contain a
user-written termination routine that would be activated when the message was
received. The termination routine might perform the following steps:

1. Close any open application-program data sets;
2. Issue an MCPCLOSE macro;
3. Issue a system RETURN macro in order to end the application program job.

The user may code the SETEOF macro to execute on his closedown message.
When the application program receives the message on which SETEOF has

132 OS/MFT and OS/MVT TeAM Programmer's Guide

«

executed, it branches to the address specified by the EODAD= operand of the
input DCB macro when the next GET or CHECK macro is issued; at this address
the user may have his closedown routine.

When multiple application programs are being closed, an MCPCLOSE macro may
be issued in each; the MCPCLOSE macro issued first is the only one to execute.

The MCPCLOSE macro checks to see whether an MCPCLOSE macro has
already been issued; if so, the macro does not execute, but places a return code of
X'OO' in register 15. The first MCPCLOSE macro issued causes all message
traffic on TCAM lines to cease, as described above in the discussion of the types
of closedown. An operand of MCPCLOSE specifies either a quick or a flush
closedown. After all message traffic has ceased, the Message Control Program
checks for open application-program data sets; when all such data sets are closed,
control passes to the instruction following the READY macro in the MCP. This
instruction begins a user-written routine (or branches to a routine) that issues
CLOSE macros for each data set opened in the MCP and ends with a system
RETURN macro. A sample routine is given in the last section of this chapter.

Instead of using an MCPCLOSE macro, the user may utilize the SYSCLOSE
operator command to close a TCAM system having application programs. If any
application program data sets are open at the time message traffic ceases, an error
message is directed to the system console; the error message lists the open data
sets for that application program. If more than one application program has open
data sets, the message for the second application program will not be sent to the
console until all data sets for the first program are closed. When these data sets
are closed, the system is deactivated.

SYSCLOSE and MCPCLOSE will also allow the user to close all open application
program DCBs by forcing the GET/READ routine to take the EODAD exit for
each open input DCB. This is done only if the user codes the STOP= operand
and the EODAD= operand on the input DCB. The error message is still issued
because the user EODAD= operand may not point to a closed routine.

Note: When issuing the READ macro without issuing the CHECK macro,
at least one message must be read before the EODAD exit is taken.

Activating and Deactivating the Message Control Program 133

CLOSE

symbol

(dcbname" ...)

The CLOSE macro

• is issued in the Message Control Program to deactivate any log data set, line
group data set, checkpoint data set, and DASD message queues data set that is
open in the MCP;

• must appear following the READY macro or be branched to from instructions
following READY.

CLOSE has the following format:

Name Operation Operands

[symbol] CLOSE (dcbname" ...)

Function: Specifies the name of the macro.
Default: None. Specification optional.
Format: Must conform to the rules for assembler language symbols (see the
symbol entry in the Glossary).

Function: Specifies the names of the data control blocks for the data sets being
closed.
Default: None. This operand is required.
Format: Each debname must conform to the rules for assembler language sym­
bols and must correspond to the name specified on the DCB macro for the data
set being closed.
Notes: Register notation may be used, in which case the address~s of the data
control blocks must previously have been loaded into the general registers speci­
fied.

All MCP data sets of the same type (for example, all line group data sets or all
message queues data sets) can be closed with one CLOSE macro by including the
names of their data control blocks as operands. If more than one dcbname is
coded in a CLOSE macro, the names are separated by double commas.

If present, the last TCAM data sets to be closed must be the checkpoint and then
the DASD message queues data sets.

Sample MCP Activation and Deactivation Section
The code in Figure 8 represents an activation and deactivation section as it might
appear in an MCP. The section consists of an INTRO macro, some user code that
tests whether INTRO worked correctly and causes termination of the MCP if
INTRO did not execute properly, OPEN macros, a READY macro, and CLOSE
macros. The TCAM macros in this section should appear in the order shown.

Since the CPB= operand of the INTRO macro is omitted (and DISK= YES is
coded), the TCAM system will issue a WTOR message at INTRO execution time;
in his response to this message, the user may specify a value for CPB= and
override or supply values for many other INTRO operands.

134 OS/MFT and OS/MVT TeAM Programmer's Guide

(

~\
~:

TCAMINIT INTRO PROGID=MCPONE,
DISK=YES,
CONTROL=OPID,
KEYLEN=48,
LNUNITS=20,
DLQ=NYC,
USEREG=10,
CPINTVL=1000,
STARTUP=W,
CKREQS=2,
PASSWRD=VALIDMSG,
CROSSRF=10
OLTEST=10

*
NOEXEC

*

LTR 15,15
BZ OPENDISK

ABEND 1 23 , DUMP

PROGRAM IDENTIFICATION *
USING DISK *
FOR OPERATOR COMMANDS *
UNIT LENGTH *
NUMBER OF UNITS *
DEAD-LETTER QUEUE *
REGISTERS TO BE SAVED *
CHECKPOINT INTERVAl, *
WARM RESTART *
CHECKPOINT REQUESTS *
PASSWORD FOR APPLICATIONS *
CROSS-REFERENCE ENTRIES *
ON-LINE TESTS
TEST IF INTRO WORKED
IF SO OPEN DATA SETS

IF NOT TERMINATE WITH DUMP

OPEN DISK OPEN
TM
BNO

(DISKREUS,(INOUT),DISKNON,(INOUT)) OPEN DISK DATA SETS

*

*
CPENCKPT

*
OPENLINE

*

*
OPEN LOG

*
ALLSWELL

*
FINISHUP

DISKREUS+48,16 TEST IF OPENS WORKED
NOEXEC NO-TERMINATE

TM DISKNON+48,16
BNO NOEXEC

OPEN
TM
BNO

(TPCHK, (INOUT))
TPCHK+48,16
NOEXEC

OPEN CHECKPOINT DATA SET

OPEN
TM
BNO

(GROUPONE,(INOUT),GROUPTWO,(INOUT,IDLE)) OPEN LINES
GROUPONE+48,16
NOEXEC

TM GROUPTWO+48,16
BNO NOEXEC

OPEN (MSGLOG,(OUTPUT))

TM MSGLOG+48,16
BNO NOEXEC

READY GMMSG=RTNA,RSMSG=RTNB

CLOSE (GROUPONE"GROUPTWO)
CLOSE (MSGLOG)
CLOSE (TPCHK)
CLOSE (DISKREUS"DISKNON)
L 13,4(13)
RETURN (14,12)"T

OPEN MESSAGE LOGGING DATA
SET

BEGIN EXECUTION

CLOSE LINE GROUP DATA SETS
CLOSE LOG DATA SET
CLOSE CHECKPOINT DATA SET
CLOSE DISK DATA SETS
PREPARE TO RETURN
RETURN CONTROL TO OS
SUPERVISOR

Figure 8. Sample MCP Activation and Deactivation Section

The section of user code following the INTRO macro is optional, but the user
should test the return code in register 15 to determine whether INTRO has
executed correctly. If register 15 contains anything other than zero after execu­
tion of INTRO, the chances are that the MCP will not work properly.

The OPEN macro in Figure 8 is the same as that used as an example in the
previous section. The DASD message queues data sets are opened first, and the
checkpoint data set is opened next. (Neither of these data sets is required, but if
present they should be opened in the order shown.)

Activating and Deactivating the Message Control Program 135

A user-written subroutine may be utilized to perform error checking and correc­
tion when a TCAM data set fails to open. The EXLST= operand of the DCB
macro for the data set may be coded so that control passes to the user's subroutine
whenever the data set fails to open. (For more information on the EXLST=
operand, see the descriptions of the DCB macros for the various TCAM data
sets.) In this example, the flags set by the OPEN macro are tested for successful
completion. Open flags are at an offset of 48 beyond each DCB macro and are set
to 16 if the data set is opened correctly. If the open flags are not equal to 16, the
abnormal exit is taken.

The READY macro is the last macro of the activation section. RTNA is the name
of a user-written, closed subroutine that will be activated for the initial start-up
and each cold restart; RTNB is given control for warm and continuation restarts.
Both routines are entered once for each station represented by an entry in the
terminal table and located on a line whose line group data set has been opened.

The first CLOSE macro begins the deactivation section. This CLOSE will not be
executed until all data sets in TCAM application programs have been closed down
and until all tines have been closed to traffic by means of a SYSCLOSE operator
command or an MCPCLOSE macro issued in an application program. The first
CLOSE is given control by TCAM once line traffic has ceased. Notice that the
DASD message queues data set is closed last, immediately after the checkpoint
data set; this practice should be followed when these two data sets are present.

The instructions following CLOSE return control to the OS Supervisor.

136 OS/MFT and OS/MVT TeAM Programmer's Guide

Message Format

Designing the Message Handler

The heart of a Message Control Program consists of the Message Handlers, the
sets of routines that operate upon messages being received from or sent to remote
stations or application programs. A Message Handler is defined by a sequence of
TCAM macro instructions and is constructed to handle messages for a particular
line group or for several line groups that have similar characteristics.

A Message Handler (MH) defines macro-introduced routines that:

1. Examine and process control information in message headers;
2. Perform necessary functions in preparing message segments for forwarding to

theirdestinations, which may be stations or application programs.

There are two kinds of macro instructions that may be included in a Message
Handler: functional and delimiter macro instructions. The functional macros
perform the specific operations required for messages directed to the Message
Handler. Delimiter macros classify and identify sequences of functional macro
instructions and direct control to the appropriate sequence {some delimiter macros
have limited functional capabilities).

Designing a Message Handler consists of selecting certain TCAM macro instruc­
tions described in this chapter and writing them in a particular sequence, accord­
ing to the requirements of the application and the characteristics of the lines. It is
important to consider the type of station and the type of line in use, the processing
requirements of different types of messages, and the format of the message
headers to be handled.

Before discussing the Message Handler and its parts, we shall briefly consider the
format of the TCAM message and its message header.

A message may consist of two parts, the header and text. The header contains
control information for the message, such as:

• one or more destination codes,
• the code name for the originating station,
• the number of the message relative to previous messages received from that

station(input sequence number),
• a message-type indicator,
• various other fields containing control indicators.

The text of a message consists of information of concern to the party ultimately
receiving the message, either a station or an application program.

Depending on the application, messages may consist of a header only, text only, or
header and text. A header-only message may utilize a message-type indicator to
route the message to an application program and, possibly, obtain a standard
response. If all messages go to only one application program, such as a file-update
program, the header may be omitted.

The determination of what part of the message is the header and what part is text
is up to the user.

Depending on the type of work unit with which he is dealing, the user must specify
appropriate characters for control purposes. The types of work units are:

Designing the Message Handler 137

The Message Header

• A block is that portion of a message terminated by an EOB or ETB control
character, or, if this is the last block in the message, by an ETX or EOT control
character. A subblock is that portion of a BSC message terminated by an ITB.

• A segment is that portion of a message contained in a single buffer. The size of
the buffer is specified by the user for each line group and application program.

• A record for an application program is, most often, that portion of a message
terminated by a format character (ESC, NL, TAB, CR, or LF), or a message
portion terminated by a character specified by the data operand of the
MSGEDIT macro (see the description of this macro).

• A physical message is a unit of data terminated by an EOT or ETX control
character, or, if the CONV= operand of the STARTMH macro is coded
CONY = YES, by an ETB or EOB control character (see the description of the
ST ARTMH macro).

• A logical message is a unit of data defined by the user (see the description of
the SETEOM functional macro). If the user does not define logical messages
for his network, TCAM assumes that a logical message is equivalent to a
physical message.

Operating on the fields of the message header is the primary function of Message
Handlers in the Message Control Program. The length and format of the header
and the information it contains depend solely on the requirements of the applica­
tion and the user's preferences. The length may be a few characters or many
characters. A header may occupy more than one buffer. However, the entire
header of a message must be contained within the first block of the message.
EOBs may not be embedded within a header.

The format of the message header dictates the arrangement of the appropriate
Message Handler macros. The control characters used and the sequence of fields
within the header must be predetermined so that the Message Control Program
can be properly coded.

Destination codes in the message header identify the stations or application
programs to which the message is to be routed. The message-type indicator can
identify a header that is to be processed in a special manner. By coding certain
macro instructions, the user can insert in the header such data as the date and time
it is sent, and the output sequence number.

There are many possible variations for the format of a message header. The
sample formats shown in Figures 9 and 10 are included simply for illustrative
purposes.

The format shown in Figure 9 could be used in a message switching application.
This figure shows how an incoming message might look just before it comes into
main storage.
In this example, the EBCDIC blank character (here denoted by the symbol b)
serves as a delimiter for each header field. This is not always the case, however;

Text
} J

Figure 9. Sample Format for an Incoming Message

138 OS/MFT and OS/MVT TeAM Programmer's Guide

some MH macros operating on the header do not look for field delimiters, but
consider a certain number of characters or a certain sequence of characters to be a
header field. To determine what constitutes a header field for any particular
macro, the user should consult the description of that macro in the section
Functional Macro Instructions.

Byte 0 contains a machine end-of-address (EOA) character inserted by the
station. When the message is transmitted, this character signals the end of ma­
chine control characters (such as addressing characters and the machine EOA
itself, which are not recorded) and the beginning of data characters. Depending
upon how the LC= operand of the STARTMH macro of the Message Handler is
coded, TCAM may remove the machine-control characters and the machine EOA
before placing the message in main storage. The 192 in bytes 1 through 3 is the
input sequence number. Bytes 5 through 7 contain the code for the terminal that
originated the message. Bytes 9 through 11 and 13 through 15 contain destination
codes specifying the stations to which the message is to be sent. In this example,
the semicolon in byte 17 has been designated by the user as the program EOA
character. Since some of the messages in this application contain multiple destina­
tion codes, the destination delimiter character must follow the last destination
code (for more on the program EOA character, see the description of the
FORW ARD macro). Byte 19 contains a character specifying the priority of the
message. The remaining portion of the message is text and is followed by the
EaT character (which must be inserted by the station operator to indicate the end
of the message).

If LC=OUT is coded in the STARTMH macro, all control characters (induding
the machine EO A) are deleted after the message is placed in buffers; the buffers
must be large enough to accommodate these characters. If the user wishes to
insert time-received, date-received, and output-sequence information into his
message header, he must code the RESERVE= operand of the line group DCB
macro to specify the number of bytes to be reserved in -his input buffer. (The user
may also insert data into his message by the MSGEDIT macro; no buffer space
need by reserved for data inserted by MSGEDIT.)

Figure 10 shows how the message would look when transmitted to a destination
station. In this example, the Message Control Program inserted time-received and
date-received information in the header. The time-received information in bytes
26 through 33 indicates that the message was received at 11 hours, 30 minutes,
and 45 seconds on the date specified in bytes 19 through 24, which is November
5, 1969. Insertion of this information moved the priority data to byte 35. The
message is then queued by priority on the message queue for the destination
station. When the message reentered main storage before transmission to the
destination stations, the Message Control Program placed a blank followed by the
output sequence number in bytes 36 through 40 of the header. TCAM sends a
series of control characters (ending with the machine EOA) before sending the
message to its destination; TCAM supplies an EaT character when the
MSGFORM macro is coded.

Designing the Message Handler 139

26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

Figure 10. Sample Format for an Outgoing Message

A Message Handler is divided into two main groups of macro instructions, the
incoming group and the outgoing group. The incoming group handles all messages
that arrive at the Message Control Program; these messages may originate from
any of the lines, line groups, or application programs that are assigned to have
their messages operated on by the Message Handler. The outgoing group handles
messages being sent from the Message Control Program to any of the lines, line
groups, or application programs.

Each of the two groups of a Message Handler may be divided into subgroups. The
incoming group may have the following subgroups:

• inbiock subgroups, which process all incoming message segments;
• inheader subgroups, which handle only those incoming message segments that

include all or part of a message header;
• inbuffer subgroups, which process all incoming message segments; and /1
• inmessage subgroups, which are executed after a complete message has arrived ,~

at the CPU.

The outgoing group has three possible subgroups:

• outheader subgroups, which handle only those outgoing message segments that
include all or part of a message header;

• outbuffer subgroups, which process all outgoing message segments, and
• outmessage subgroups, which are executed after a complete message has been

sent.

Functions Performed by MH Subgroups
The following presents an overview of MH organization and describes typical
functions performed in each type of subgroup. The words in parentheses are the
names of the MH macros that perform the functions described.

Macro or Subgroup

STARTMH

Inblock Subgroup

140 OS/MFT and OS/MVT TeAM Programmer's Guide

Function

Determines whether this is an incoming or an outgoing
message, and routes it to the appropriate MH group.

Operates on each incoming segment:

• Determines whether the message should be translat­
ed to EBCDIC (CODE)

• Counts incoming messages or message segments
(COUNTER)

Inheader Subgroup

Inbuffer Subgroup

Inmessage Subgroup

Outheader Subgroup

)

• Edits header fields and text across buffer bounda­
ries (MSGEDIT, MSGFORM)

• Constructs logical messages

Operates on an incoming message header:

• Determines whether the message should be translat­
ed to EBCDIC (CODE)

• Determines the message origin and destination
(ORIGIN, FORWARD)

• Checks the incoming sequence number
(SEQUENCE)

• Determines the message priority
(PRIORITY)

• Edits header fields (MSGEDIT)
• Moves data to be broadcast into a common data

area and schedules a broadcast operation
(COMMBUF)

Operates on each segment of an incoming message:

• Counts incoming message segments
(COUNTER)

• Edits text (MSGEDIT)
• Checks the length of incoming messages and

terminates reception for messages that are too long
(CUTOFF)

• Moves data to be broadcast into a common data
area and schedules a broadcast operation
(COMMBUF)

Specifies actions to be taken after the entire message
has been received:

• Logs the message (LOG)
• Cancels the message or the last block of the mes­

sage (CANCELMG)

• Returns error messages to the originating station
(ERRORMSG, MSGGEN)

• Retries to contact a switched station (RETRY)

Operates on an outgoing message header:

• Inserts the date and time into the outgoing header
(DATETIME)

• Assigns an outgoing sequence number to the
message and inserting it in the header
(SEQUENCE)

• Edits header fields (MSGEDIT)
• Determines whether the message should be translat­

ed to line code (CODE)

Designing the Message Handler 141

Out buffer Subgroup

Outmessage Subgroup

• Determines whether line-control characters should
be inserted into the outgoing message
(MSGFORM)

Operates on each segment of an outgoing message:

• Counts outgoing message segments
(COUNTER)

• Edits text (MSGEDIT)

Specifies actions to be taken after the entire message
has been sent:

• Logs the message (LOG)
• Sends an error message to the destination station

(ERRORMSG, MSGGEN)
• Intercepts messages to the destination station

(because, perhaps, the station is inoperative)
(HOLD)

More than one subgroup of a particular kind may be included within a group to
accommodate variations in handling that may be required by various kinds of
messages (see Variable Processing within a Message Handler in this chapter).

Delimiter macros identify the beginning and end of different MH groups and
subgroups. The ST ARTMH macro identifies the beginning of an MH.
INBLOCK, INHDR, INBUF, and INMSG respectively identify the beginning of If

the inblock, inheader, inbuffer, and inmessage subgroups of the incoming group. ~
INEND identifies the end of the incoming group. OUTHDR, OUTBUF, and
OUTMSG respectively identify the beginnings of the outheader, out buffer, and
outmessage subgroups of the outgoing group, while OUTEND identifies the end
of this group. The delimiter macros are discussed in detail later in this chapter.

A minimum Message Handler consists of a STARTMH macro and either an
incoming group or an outgoing group (either group may be omitted, as when the
incoming group is omitted for an output-only line). If the outgoing group is
omitted, the OUTEND macro must be coded to preserve address ability. The
incoming group must precede the outgoing group if both are included in an MH.

The following rules govern the arrangement of subgroups within a group:

1. If there is an incoming group not handling logical messages or editing data
across buffer boundaries, an inheader subgroup is required as the first sub­
group. If logical messages are being handled by this incoming subgroup, or if
data is to be edited across buffer boundaries (MSGEDIT,MSGFORM), an
inblock subgroup must precede the inheader subgroup. An inblock subgroup
may be followed by another inblock subgroup or an inheader subgroup. All
other subgroups of the incoming groups are optional.

2. The first inheader subgroup in an incoming group may be followed by any
combination of inheader and inbuffer subgroups.

3. Inmessage subgroups, if present, must be the last subgroups in the incoming
group.

4. Any of the three types of subgroups for the outgoing group may appear as the (
first subgroup in the group. However, if an outmessage subgroup is the first ..
subgroup, no outheader or out buffer subgroup may appear in the group.

142 OS/MFT and OS/MVT TeAM Programmer's Guide

5. Outheader and outbuffer subgroups may appear in the outgoing group in any
order (that is, either subgroup may appear first and each may be specified more
than once).

6. Outmessage subgroups, if present, must be the last subgroups in the outgoing
group.

The sample Message Handlers in this chapter illustrate some of the ways in which
subgroups may be arranged.

The presence or absence of particular groups and subgroups within a given
Message Handler depends upon the requirements of the user. Figure 11 summa­
rizes the MH macros that may appear within a given subgroup. The user should
familiarize himself with the functions of the macros shown in Figure 11 and decide
which of these functions to incorporate into his Message Handler. His choice of
functions will determine which subgroups will be present in his MH. For example,
if he decides he needs the function provided by the CANCELMG macro in his
MH, then he will require an inmessage subgroup. Some macros (CODE,
COUNTER, LOG, for example) may appear in more than one kind of subgroup,
but their functions vary according to the kind of subgroup in which they appear.

Designing the Message Handler 143

CODE MSGFORM
COUNTER MSGLIMIT
LOG PATH

Inblock LOCOPT SETEOM
Subgroup MSGEDIT TERRSET

CHECKPT MSGEDIT
CODE MSGLIMIT
COMMBUF MSGTYPE
COUNTER ORIGIN

Inheader DATETIME PATH
Subgroup FORWARD PRIORITY

HOLD QACTION
INITIATE SEQUENCE
LOCK SETSCAN
LOCOPT TERRSET
LOG TGOTO
MHGET TYPETABL
MHPUT UNLOCK

CHECKPT MHGET
CODE MHPUT
COMMBUF MSGEDIT
COUNTER PATH

Inbuffer CUTOFF TERRSET
Subgroup LOCOPT TGOTO

LOG

CANCELMG MSGGEN
CHECKPT REDIRECT

Inmessage ERRORMSG RETRY
Subgroup HOLD SLOWPOLL

LOG

CHECKPT MSGTYPE
CODE PATH
COUNTER SCREEN
DATETIME SETEOF
LOCOPT

Outheader LOG SETSCAN
Subgroup MSGEDIT SEQUENCE

MSGFORM TERRSET
MSGLIMIT TYPETABL

CHECKPT LOG
CODE MSGEDIT

Outbuffer COUNTER PATH
Subgroup CTBFORM TERRSET

LOCOPT

CHECKPT LOG
Outmessage ERRORMSG MSGGEN
Subgroup HOLD REDIRECT (

Figure 11. Message Handler Subgroups and Macros

144 OS/MFT and OS/MVT TeAM Programmer's Guide

Selecting Message-Handler Functions
Functional macro instructions perform the specific operations required for mes­
sage segments being handled by the various subgroups of a Message Handler.
Message segments are directed to the appropriate subgroup by the delimiter
macros; the functional macros of the subgroup are then executed in the order in
which they are specified within the subgroup. Functions provided by an MH
include:

• Message editing (insertion of date, time, and sequence number, insertion or
removal of characters or character strings).

• Validity checking (verification of source and destination codes and of sequence
numbers in incoming message headers).

• Routing messages to various destinations or alternate destinations, possibly by
priority.

• Maintaining counts and logs for message traffic on a line.
• Error checking and handling (checking for errors in transmission and taking

corrective action).
• System control (interrogating or modifying activity on a system, line, or station

basis, or specifying properties or limitations for messages).
• Function selection (permitting dynamic selection of the functions to be per­

formed on messages).

MH Functions and Macros Defining the Functions

Message Editing

The table below shows the various macros used to specify these functions. A
brief description of the Message Handler functions provided by TCAM is given
here. A complete description of these functions is found in the discussions of the
individual macros in the Functional Macro Instructions section of this chapter.

MH Functions Macros Defining the Functions

Message Editing CODE, DATETIME, MSGEDIT, MSGFORM,
SEQUENCE, SETEOM

Validity Checking FORWARD, ORIGIN, SEQUENCE

Routing COMMBUF, FORWARD, INITIATE, MHGET,
MHPUT, MSGGEN, PRIORITY, REDIRECT

Record Keeping CHECKPT, COUNTER, LOG

Error Handling CANCELMG, CUTOFF, ERRORMSG, HOLD,
MSGGEN, REDIRECT, RETRY, SLOWPOLL,
TERRSET

System Control CUTOFF, HOLD, INITIATE, LOCK, LOCOPT,
SCREEN, SETEOF, MSGLIMIT, UNLOCK

Function Selection MSGTYPE, PATH, SETSCAN

Six TCAM macro instructions-CODE, DATETIME, SEQUENCE, SETEOM,
MSGEDIT, and MSGFORM-provide editing facilities.

Designing the Message Handler 145

Validity Checking

Message Routing

CODE, when specified in the inheader or in buffer subgroup, translates the data in
the buffer from the line code to EBCDIC, using a specified translation table.
When specified in the outheader or outbuffer subgroup, translation is from
EBCDIC to the line code.

DA TETIME inserts the date and the time at which the message is received by (or
sent by) the MCP in the header.

SEQUENCE, when specified in an outheader subgroup, inserts an output
sequence number in the messages that are sent to a destination.

MSGEDIT inserts or deletes a character or character string in the message.

MSGFORM, when specified in an outheader subgroup, inserts blocking characters
into outgoing messages, thereby dividing the messages into logical blocks of data.
When specified in an inblock subgroup, characters are deleted at a user-specified
interval.

SETEOM defines the extent of a logical message.

Three TCAM macro instructions-FORWARD, ORIGIN, and
SEQUENCE-check the validity of fields in the message header.

FORWARD verifies that the station codes specified as destinations in the message
header are valid destinations in the system.

ORIGIN determines the station that entered a message by checking the origin
field in the message header for the symbolic name of the station. The origin field
is designated, during the design of the header and the Message Handler to contain
the name of the originating station.

SEQUENCE verifies that the input sequence number included in the message
header by the station operator is valid; that is, that the number is one greater than
the sequence number of the previous message from that station. To perform this
function, SEQUENCE is included in an inheader subgroup.

Six TCAM macro instructions-COMMBUF, FORWARD, INITIATE,
MSGGEN, PRIORITY, and REDIRECT-route messages to a particular destina­
tion.

COMMBUF routes broadcast messages to the destinations specified in the
indicated TLIST macro.

FORWARD routes messages to the destinations specified in the message headers
or to the destinations specified by the FORWARD macro.

INITIATE routes segments of messages to their destination as soon as they are
received, without waiting for the whole message to arrive.

MSGGEN generates a special response message and routes it immediately to
either the originating or the destination station. The response message bypasses
normal message handling, queuing, logging, and buffering functions.

146 OS/MFT and OS/MVT TeAM Programmer's Guide

I(

Record Keeping

Error Handling

)

PRIORITY routes messages to their destinations according to priority levels
specified either in the message header or by the PRIORITY macro.

REDIRECT queues a message for an additional or alternate destination under
certain error conditions, or unconditionally.

Two TCAM macro instructions-COUNTER and LOG-keep records of the
flow of messages in the system.

COUNTER keeps a count of incoming or outgoing message segments or complete
messages, depending on the subgroup in which the macro is issued.

LOG places copies of segments or messages passing through the system on a
sequential medium, such as magnetic tape.

Nine TCAM macro instructions-CANCELMG, CUTOFF, ERRORMSG,
HOLD, MSGGEN, REDIRECT, SLOWPOLL, TERRSET and UNLOCK when
used in a message subgroup provide for error detection and handling. These
macro instructions test for error conditions arising during transmission and
handling of the message and take action accordingly. The nine macros are used in
conjunction with a message error record, which is assigned to each message as it is
handled. The meaning of each of the bits in the message error record is explained
in Appendix B. Some error-handling macros (CUTOFF, TERRSET) set bits in
the message error record; the rest test the bits in the message error record.

A five-byte bit configuration (called a mask) is specified in some error-handling
macros. When the macro is executed, the mask is compared to the message error
record assigned to the message. If a 1 is detected in any bit position of both the
mask and the message error record, the functions specified by the macro are
performed. A 0 is specified in a mask bit position when the error condition
represented by the corresponding position in the message error record is to be
ignored. (An operand of the error-handling macro may specify that the macro is to
be executed only if all bits specified in the mask are on in the message error
record.)

The function specified by an error-handling macro may also be performed uncon­
ditionally (that is, for all messages or message blocks, independent of the setting
of the message error record) by either specifying a mask consisting entirely of
zeros or not specifying a mask at all.

The requirements of the application must be analyzed to determine which errors
or conditions must be detected, and which can reasonably be ignored without
degrading the performance of the system. The seven error-handling macro
instructions provide varying methods by which corrective or control functions can
be initiated when an error has been detected.

CANCELMG cancels a message or a block if a specified error has occurred.

CUTOFF checks for incoming buffers filled with identical characters (an indica­
tion of station malfunction). In such a case, the appropriate bit is set in the
message error record. CUTOFF also specifies the maximum number of characters
allowed in a message; if the maximum is exceeded, reception is terminated and an
error bit is set.

Designing the Message Handler 147

System Control

ERRORMSG and MSGGEN send a specified message if a specified error has
occurred.

SLOWPOLL suspends further polling on a given line when errors specified by the
error mask occur.

TERRSET sets a bit in the message error record to indicate, at the discretion of
the user, that a user-defined error has occurred.

HOLD suppresses the sending of messages to a station when an error specified by
the mask has been detected; it is usually used to withold transmission to a inopera­
tive station.

UNLOCK removes a station from extended lock mode and optionally disables a
switched connection if a specified error has occurred.

REDIRECT sends a message to an additional or an alternate destination if a
specified error has been detected. This function normally handles messages that
cannot be sent to their intended destinations.

RETRY tries again to contact a switched station.

The FORWARD, ORIGIN, and SEQUENCE macro instructions set bits in the
message error record when they detect an invalid destination, origin, and sequence
number, ,respectively.

Nine TCAM macro instructions-CUTOFF, HOLD, INITIATE, LOCK, .i
LOCOPT, MSGLIMIT, SCREEN, SETEOF, and UNLOCK-modify the tele- ... ~
communications system or provide dynamic control over the functions of the
system.

CUTOEF terminates transmission of an excessively long message.

HOLD stops transmission of messages to a station known to be inoperative or
unattended for a period of time making transmission undesirable.

INITIATE sends message segments to their first destination before the entire
message has been received and enqueued.

LOCK maintains the connection between a station and an application program for
the duration of a message and its response. This facility is used for fastest re­
sponse during inquiry applications.

LOCOPT provides ac:cess to fields of the option table, permitting examination and
modification of the contents of the fields.

MSGLIMIT limits the number of messages sent to or received from a station
during a single transmission sequence.

SCREEN modifies the WRITE operation for terminals with display screens.

SETEOF indicates an end-of-file message for an application program.

UNLOCK removes a station from the LOCK condition.
(

148 OS/MFT and OS/MVT TeAM Programmer's Guide

Function Modification

Delimiting Functions

Three TCAM macro instructions-MSGTYPE, PATH, and SETS CAN-permit
modification of the functions of the Message Handler. The first two macros
provide for variations in processing by the MH for different types of messages.
SETSCAN permits modification of the scan pointer setting (discussed below) to
allow processing of a field in the header in some order other than the normal
sequential order.

The STARTMH delimiter macro provides end-of-block checking for hardware
and logical errors, and takes appropriate user-specified action when such errors
are detected. These errors cause bits to be set in the message error record.
ST ARTMH also provides for the automatic deletion of certain line-control
characters, so that the user need not concern himself with them. Of the remaining
delimiters, INBLOCK, INHDR, INBUF, INMSG, OUTHDR, OUTBUF, and
OUTMSG provide path-switching facilities. Only the IN END and OUTEND
delimiter macros have no functional capabilities.

Order of Macro Specification

The Scan Pointer

Functional macros relating to an entire message segment (that is, MSGEDIT,
LOG) may appear at any point within the subgroup in which they are used. The
MSGFORM, MSGEDIT, and SETEOM functional macros should be specified in
the inblock subgroup to process data across buffer boundaries. Macros relating to
specific header fields (that is, ORIGIN, DATETIME) should appear in the same
order within the inheader or outheader subgroup as the header fields appear
within the header. In planning a format for message headers, the user may
arrange the various header fields in any desired order within the header; the
corresponding macros that act on those fields must be placed within the subgroup
in the same order. These order-dependent macros involve either:

• inserting a new field in the message header (for example, DATETIME),
• making a decision at some point during header processing (for example,

MSGTYPE), or
• using a TCAM scanning routine to determine the contents of a specific field

(for example, ORIGIN).

The order in which macros are issued to act on specific header fields is important
since a pointer (known as the scan pointer), refers to the proper field when each
macro gains control to act on that field.

In handling a buffer, TCAM maintains a pointer at the current field in the
message header. Some macro instructions use this pointer to locate the field on
which they act and automatically move the pointer to the next field before passing
control to the next macro. The user must be aware of the positioning of the scan
pointer as he designs his Message Handler.

There are basically two types of TCAM macro instructions that move the scan
pointer automatically, without intervention by the user. Examples can be found in
Figure 12.

1. Certain macros (for example, SETSCAN, FORWARD) move the scan pointer
until a user-specified character string is found. After these macros have com­
pleted execution, the scan pointer is positioned on the last character acted

Designing the Message Handler 149

upon. In this case, it is assumed that the next character string is the field to be
looked at by the next field-dependent macro in the Message Handler.

2. Other macro instructions move the scan pointer a certain number of characters.
There are three ways this number is determined.
a. With certain macros (FORWARD, ORIGIN, SETSCAN), the user may

specify explicitly a number of non blank characters to be considered as the
next field. When execution of a macro is complete, the scan pointer is
positioned on the last character that satisfies the count.

Example:
FORWARD DEST=3. If a destination field in a header reads NYt)C, the
scan pointer points to the C.

b. Some macro instructions may be concerned with fields of varying length,
such as FORWARD and ORIGIN. The scan pointer is moved past any
blanks that might precede the field. The field is then scanned for a blank
delimiter. When such a macro is completed, the scan pointer points to the
character immediately preceding the blank delimiter that designates the end
of the field.

c. Some macros are concerned with fields whose length is specified implicitly
by coding the contents of the field in the macro itself. SETSCAN may
search for a field with contents that match those specified in the macro; the
position of the scan pointer after the macro executes is described in the
discussion of the macro. The INITIATE, LOCK, MSGTYPE, PATH,
PRIORITY, SCREEN, SETEOF, and UNLOCK macros have an optional
con chars operand; when this operand is specified, the scan pointer is moved
past any blanks preceding the next field in the message, and the contents of
the field are compared with the conchars string. If the field and the conchars
string match, the scan pointer points to the last character of the field; other-
wise, it is returned to the position it occupied before the comparison was i~

made.

(

150 OS/MFT and OS/MVT TeAM Programmer's Guide

Before DATETIME is issued:

.... ~----------Message Header -------------~

Buffer
Prefix

After DATETIME is issued:

7B 15 N Y W LAW

Position of Scan Pointer is at:

@ When the segment comes into the buffer.

@ After STARTMH and INHDR have been issued.

@ After SETSCAN X'15' has been issued.

@ After ORIGIN has been issued.

@ After FORWARD has been issued.

Message
Text

Buffer
Prefix 7B 15 N Y W LAW 6 9 • 0 3 7 W 2 . 4 5

Message
Text

Figure 12. Scan Pointer Movement

The DATETIME macro causes the header contents to be shifted 16 spaces
left to make room for the date and time. These are inserted and the
Scan Pointer is positioned at CD .

When a message segment is received for processing in an incoming group of an
MH, the space reserved for expansion by the RESERVE= operand of the line
group DeB macro is moved to the front of the segment and the scan pointer is
positioned at the last reserved byte. If no reserve bytes were specified, the scan
pointer points to the last byte of the buffer prefix. The buffer is then examined
for the presence of a machine EOA sequence. If such a sequence is found, the
scan pointer is moved to the last byte of the sequence. However, the polling
character used when the Auto Poll feature is active is not considered part of the
machine EOA sequence.

For an incoming message, the scan pointer is not necessarily at the end of the
header when the inheader subgroup finishes executing. The header may have

Designing the Message Handler 151

additional fields that are to be operated upon by an outheader subgroup when the
message is removed from its destination queue. In this case, when the message is
removed from the queue, STARTMH and OUTHDR reposition the scan pointer ,~
to the last remaining reserve byte or, if there are no more unused reserve bytes, to
the last byte of the prefix. If the user wishes to use an outheader subgroup to
process the remaining fields of his header, he may use the SETS CAN macro to
reset the scan pointer to the last byte of the last field processed by the inheader
subgroup.

Macro instructions in an MH should be placed in the same order within a sub­
group as the fields of the header on which they act. The scan pointer controls
access to these fields, progressing across the header from left to right as the
various macro instructions are executed. The user ma.y employ the scan pointer
(using the SETS CAN macro) in his own routines to perform additional header
analysis. However, he must take the responsibility of positioning the scan pointer
to its proper position before executing the next TCAM macro.

Handling Logical Messages
Message transmission as discussed in other sections of this book defines each
transmission from a station as a message. This may not correspond, however to
the user's concept of a message. Some stations accumulate data in buffers before
it is transmitted and permit no more than one buffer's worth in a transmission.
Thus, if a user's message is longer than the buffer size, his message requires two or
more transmissions. What the user sees in this instance as one message is seen by
TCAM as several. Alternatively, some stations permit many units of data, such as
cards, to be batched and sent as a single transmission. TCAM takes this to be one
message, whereas to the user it may be many.

Logical message definition enables TCAM to process messages on a logical basis
as defined by the user independently of any physical boundaries imposed by the
associated transmissions. When the user defines his messages as logical, TCAM
performs either a blocking or a deblocking operation and then processes and
queues the resulting data as a single message. For instance, when a single trans­
mission contains several logical messages, TCAM deblocks the messages and
independently processes and queues each.

The concepts of TCAM design discussed in other sections of this book are not
modified for handling logical messages; that is, messages received from stations
are still processed through a Message Handler and queued in destination queues
from which they are sent to an application program or another station. The
execution of inheader, inmessage, inbuffer, outheader, outmessage, and outbuffer
subgroups remain the same. The inblock subgroup processes logical messages in
the incoming group. The INBLOCK delimiter macro instruction identifies the
beginning of an inblock subgroup.

The SETEOM macro instruction, executed in the inblock subgroup, deblocks and
blocks incoming data to form logical messages according to user specifications.
The inblock subgroup is specified after the STARTMH delimiter macro and
before the inheader subgroup. The inblock subgroup and the INBLOCK macro
instruction are described in Structure of the Message Handler and Delimiter
Macro Instructions, respectively.

See Mid-Batch Recovery in the section TeAM I/O Error-recovery Procedures (
for a discussion of treating permanent I/O errors detected in incoming and
outgoing multiblock messages.

152 OS/MFT and OS/MVTTCAM Programmer's Guide

Logical Message Formats

Blocking Incoming Messages

The types of logical messages that may be included in a TCAM system depend
upon the characteristics of the physical transmissions involved. These characteris­
tics determine whether incoming messages are blocked or deblocked to form
logical messages to be handled by the MCP.

For instance, some devices may impose a physical limit on the size of a transmis­
sion, such as the IBM 2740 Model 2 Communication Terminal that transmits data
equivalent to the size of its buffer, and input from a card reader that also may
require fixed-length messages. Other devices may not impose such physical
limitations, such as the IBM 1060 Data Communication System, and a 2780 Data
Transmission Terminal that features multiple-record transmissions. Examples of
logical messages formed from both kinds of these devices follow. In the examples,
a physical transmission refers to the amount of data entered on a line during an
entire transmission sequence (from the first byte of data in a message to the
end-of-transmission character).

Incoming messages can be blocked to construct logical messages to be handled by
the inblock subgroup. No incoming transmission will contain all the data that is to
constitute the final logical message.

In blocking two incoming physical transmissions to construct a single logical
message, the user may specify that TCAM truncate any data appearing after the
end of the logical data (after the EOM indicator) in the second physical transmis­
sion; this is accomplished by specifying PROCESS=NO on the SETEOM macro
in the MH handling these physical transmissions.

Example:
Constructing a logical message by blocking two physical transmissions. Input is
from an IBM 2740 Model 2, where the size of the logical message is greater than
the terminal buffer size. For this type of message, the user specifies that only one
logical message is to be processed (resulting in truncation of any data in the
second buffer following the end of the logical message).

~T E
o

E
o

M T

L Log;~1 -~" --~-----"~-Irr,,-~-~~-~~-'$-j ______ Truncated

In the example above, blocking is done on incoming data from a device that
imposes a physical limit on the amount of data that may be entered for a single
transmission sequence. The next example illustrates blocking a series of incoming
logical blocks of data to construct a single larger logical message. The incoming
logical blocks of data are all included in a single physical transmission. This
procedure requires that the SETEOM macro specify PROCESS=NO.

Example:
Constructing a logical message by blocking multiple logical messages. Input is
from an IBM 1060 Data Communication System where incoming logical messages
are blocked according to the location of a user-specified character (EOM indica-

Designing the Message Handler 153

Deblocking Incoming Messages

tor) that delimits the end of the last logical block to be included in the logical
message being constructed. Incoming logical messages are referred to as blocks.

E
o

1st Block B E

~ 2nd Block ~ E E
00

l ~
_ ~B
I"---------------Logical Message _I

Deblocking always occurs on incoming data that consists of variable-length logical
blocks of data separated by EOM indicators. The last EOM indicator in the last
logical block of data is followed by an EOT line control character (the
EOM/EOT sequence indicates to TCAM that this is the end of the physical
transmission). Each imbedded logical block of data in a given physical transmis­
sion may contain a header and may be extracted for processing and routing to a
particular destination queue. The boundaries of each logical block are determined
when the buffer containing a block passes through the input MH and is processed
by the SETEOM macro instruction. Discussions in other parts of this book on
length and format of messages apply also for deblocked logical messages.

Exampie:
Extracting logical messages by deblocking logical blocks of data in a physical
transmission. Input is variable records from an IBM 2780 Data Transmission
Terminal. Each variable input record on a card is delimited by a character that
signifies EOM (end of logical message).

I_ Physical Transmission .1
~ ~ ~ ~ ~
~ M MT • \ A 1\ I"---y---J V V v

1st 2nd 3rd 4th
Logical Logical Logical Logical
Message Message Message Message

If part of a physical transmission has been received from a station, output to that
station is not sent until the EOM/EOT sequence is received from the station
indicating the end of the physical transmission.

Converting Incoming Data to Logical Messages
Conversion of incoming data in a physical transmission to logical message is
achieved by using the SETEOM macro instruction in the inblock subgroup of an
MH handling incoming messages. The SETEOM macro instruction is discussed in
Functional Macro Instructions.

The user specifies on the SETEOM macro which delimiter character or which
length of data, or both, determine the limits of a logical message. When both are
specified, the first condition met determines the end of a logical message. The
SETEOM macro also permits the user to remove EOM characters from incoming ,(
logical messages.

154 OS/MFT and OS/MVT TeAM Programmer's Guide

When TCAM detects an EOM condition in an incoming transmission, it needs to
know how to handle the data, if any, following the EOM indicator. The SETEOM
macro indicates to TCAM whether it is to discard any remaining portion or to
process it as the first buffer of another message. Subsequent buffers begin
processing at the INBLOCK delimiter macro instruction.

Execution of SETEOM may force an EOM condition; for instance, if the input to
an MH is cards containing variable-length records (such as 2780 batch input), and
the last card in the hopper ends in the middle of a message, TCAM assumes an
EOM condition and the last card is the end of the message. Another instance of
forcing an EOM condition is the occurrence of a permanent transmission error
before TCAM detects the user-specified EOM. In this case an EOM is forced for
the last buffer successfully transmitted. In a dial network, for instance, if an
operator hangs up before an entire logical message is entered (or if a disconnec­
tion is caused by some other means), TCAM forces an EOM condition for the
message being entered. In either of these cases of forced EOM, the logical
message is processed through the MH.

TCAM, however, does not always assume an EOM condition. For inst'lnce, if
input is from a 2740 Model 2 and the message is directed to an MH that is to
construct a single logical message from two or more physical transmissions
(PROCESS=NO is specified on the SETEOM macro), the input message must
contain an EOM character in the second (or a subsequent) buffer. Otherwise, the
2740 Model 2 cannot accept further output from the CPU (TCAM is still waiting
for the user-specified character that designates the end of the logical message).

The user may not issue successive SETEOM macros in the same Message Handler
in order to process nested logical messages. That is, if a SETEOM macro is used
to extract a logical message (message A) from a series of logical messages entered
during one physical transmission, another SETEOM macro cannot be issued to
find further logical messages embedded within message A...

The buffer trace facility, provided by the TRACE= and COMWRTE= operands
of the INTRO macro instruction, provides a dump of deblocked logical messages.

Logical Message Flow Within the System
Message flow in a TCAM system remains the same for logical messages as for
physical messages (message flow for physical messages is discussed in Message
Flow Through a Message Handler in this chapter). Incoming data is processed
through an MH where it is converted into logical messages by the SETEOM
macro. The logical messages are then routed to their destination queues independ­
ently of any incoming physi~al message boundaries. Figures 13 and 14 show
examples of message flow within the system when logical messages are being
handled.

In Figure 13, message flow is shown for a logical message that is constructed from
two physical transmissions (SETEOM specifies PROCESS=NO, resulting in
truncation of data following the EOM character). The EOM character is con­
tained in the second physical transmission.
1. The station T responds to polling and enters data for the first physical trans­

mission to the CPU. This first physical transmission fills the buffers that are
allocated and deallocated according to the program-controlled interruption
option selected for the station (see the PCI= operand of the line group DCB
macro instruction).

Designing the Message Handler 155

L
,~ ______________________ ~A~ __________________ ~E

Logical Message L_He_ad_e_r ____________ Te_xt __ E Text '0'--:"-" E
Physical Transmissions I 0 ,------------ M' "0 i.

\ T \ IT ~

Legend: Pl,P2
L
EOT
EOM

T

Pl

INBLOCK

SETEOM

INHDR

INBUF

INMSG

INEND

STARTMH LMD=YES

PROCESS=NO

Outgoing Subgroups

physica I transmissions

logical message
end of physical transmission
end of logical message
portion to be dropped
terminal

P2

Figure 13. Flow of Logical Message Formed by Blocking Two Physical Transmissions

Destination
Queue

2. All buffers of the first transmission are processed through the inblock sub­
group, and the SETEOM macro instruction is executed for them.

3. The first transmission does not contain an EOM character. The buffers pass
through the remainder of the MH and are queued to their destination, but
TCAM considers the logical message to be incomplete; that is, the last buffer
of this transmission is not processed as the last buffer of the logical message.
However, the line is reactivated.

4. The line is now available for any station that has data to enter, including
station T, which is polled first. If station T is not ready to enter data for the
second transmission, another station is polled. (TCAM line scheduling is the
same as for a TCAM system that is not handling logical messages.)

5. When the second transmission from terminal T arrives at the CPU, its buffers
are passed to the MH in the same manner as the first transmission.

6. These buffers are processed by the SETEOM macro; they proceed through
the remainder of the MH and are queued until the EOM condition is satisfied.
One difference in MH processing of logical messages is that the second
transmission is not a new message, but the continuation of the logical mes- ,.
sage. Therefore, the first buffer of the second transmission is not processed ~

as a header buffer, but as a text buffer.

156 OS/MFT and OS/MVT TeAM Programmer's Guide

7. When TCAM detects the EOM, the remaining po.rtio.n (if any) o.f the current
buffer is truncated. The buffer co.ntaining the EOM character is pro.cessed by
the rest o.f the MH as the last buffer o.f the message.

8. After TCAM detects the EOM indicato.r, subsequent buffers o.f the same
transmissio.nare truncated also.. They are returned to. the buffer po.o.l witho.ut
being pro.cessed by the MH and witho.ut being queued.

9. The inmessage subgroup is executed fo.r the lo.gical message when its last
buffer has been handled. This inmessage pro.cessing, performed fo.r the
buffer co.ntaining the EOM, is delayed until blo.ck checking is perfo.rmed fo.r
the blo.ck co.ntaining the EOM.

10. The line is then reactivated and the lo.gical message is ready to be sent to. its
destinatio.n (either an applicatio.n pro.gram o.r a statio.n).

In Figure 14, message flo.w is sho.wn fo.r lo.gical messages fo.rmed by extracting two.
lo.gical messages entered in a single physical transmissio.n (such input might co.me
from an IBM 1060 Data Co.mmunicatio.n System o.r an IBM 2780 Data Transmis­
sio.n Terminal).

The EOM character appears as part o.f the jnput stream at the end o.f each lo.gical
message; the last EOM is fo.llo.wed by EOT. (The SETEOM macro specifies
PROCESS= YES, resulting in successive lo.gical messages being handled by the
inco.ming MH until an EOM is fo.llo.wed by an EOT.)
1. Statio.n K respo.nds to. po.lling and enters its variable-length messages in a single

transmissio.n sequence. The message fills.the buffers, which are allo.cated and
deallo.cated according to. the program-co.ntrolled interruptio.n o.ptio.n selected
(see the PCI= o.perand o.f the line gro.up DCB macro.). This example requires a
value o.f N o.r X for the PCI= o.perand.

2. All buffers co.ntaining any data o.f the first lo.gical message are processed in the
inblo.ck subgro.up where they are examined by the SETEOM macro..

3. The first buffer of the entire incoming transmissio.n is pro.cessed through an
inheader subgroup as the header buffer fo.r the first lo.gical message.

4. TCAM detects the EOM character that delimits the first lo.gical message and
gets a new buffer in o.rder to. separate the first lo.gical message and any remain­
ing po.rtio.n o.f the EOM buffer. This remainder beco.mes the header buffer fo.r
the seco.nd lo.gical message and is assigned to. the MH where pro.cessing begins
at the beginning o.f the inblo.ck subgro.up.

5. The buffer co.ntaining the EOM character that ends the first lo.gical message is
the last buffer o.f the first lo.gical message; it proceeds thro.ugh the MH and
causes the inmessage subgro.up to execute. Macro.s in the inmessage subgro.up
that are executed fo.r the first lo.gical message also. handle erro.r co.nditio.ns fo.r
all the input data since blo.ck checking is perfo.rmed befo.re pro.cessing later
po.rtio.ns o.f the first lo.gical message.

6. The first lo.gical message is ready to. be sent to. its destinatio.n.
7. Processing o.f the seco.nd lo.gical message is do.ne just as it was fo.r the first.

Designing the Message Handler 157

E E
L1 0 L2 0

; Header Text 'M' Header Text M
Logical Messages II I
Physical Transmission , IE

\ '0
P T

STARTMH LMD=YES

r+INBLOCK·---,
: SETEOM PROCESS=YES L _________ _

INHDR

INBUF
Destination
Queue

INMSG

INEND

Outgoing Subgroups

Legend: P physical transmission
L 1, L2 logical messages
EOT end of physical transmission
EOM end of logical message

Figure 14. Flow of Logical Message Formed by Deblocking a Physical Transmission

Message Headers for Logical Messages.
In a TeAM network that does not define logical messages (see the SETEOM
macro), a header begins each physical transmission. This concept is modified
when the SETEOM macro is coded to define logical messages, so that a header
begins each logical message. Thus, if a logical message is constructed from two
incoming physical transmissions (such as blocking two physical transmissions from
a 2740 Model 2), only one header is processed for the logical message.

E
o

~-
l'M ~ l2nd ~

Physical _I Physical T
Transmission -! Transmission..f

1"'1 .. _-- Logical ----i .. ~1
Message

158 OS/MFT and OS/MVT TeAM Programmer's Guide

~

(

"

"

In this example, the SETEOM macro specifies PROCESS=NO. The first buffer
of the second physical transmission is processed as a continuation of the logical
message, that is, as a text buffer.

If the user application is such that the size of the messages being entered coincides
with the limit imposed by the input device (such as buffered terminals and some
card readers), blocking is not required; thus, the number of headers needed is the
same for both physical transmissions and logical messages.

E E
o 0

~~ L I
E

1st 0
Logical T
Message~

I . 1st ..j
r-- Physical

TransmiJ;sion

I
E

2nd o
Logical T
Message -----i

2nd
Physical
Transmission

~

In this example, the SETEOM macro specifies PROCESS=NO. A physical
transmission is equivalent to a logical message, and the same number of headers is
required for physical transmissions as for logical messages.

The preceding examples consider header requirements for entering individual
logical messages, where one or more physical transmissions are required.
Suppose/, however, that a network includes devices such as the IBM 1060 Data
Communication System and the IBM 2780 Data Transmission Terminal (with the
multiple record transmission feature), where a single physical transmission com­
prises many logical blocks of data (batch input), each to be treated as a message.

In a network where the user does not define logical messages, batch input requires
a single header. However, by defining logical messages with the SETEOM macro,
each incoming, imbedded logical block of data is a message, and each block
requires a header.

,E
o

E
o

E
o

M M M -l i
1st . 2nd. 3rd T
Logical Logical Logical;-1
Message Message Message

I. Physical .. I
Transmission

In this example, if the user does not define logical messages for his system, his
batch input requires only one header, and TCAM processes all the data in the
physical transmission on the basis of the single header (that is, TCAM treats the
input as a single message). However, if user requirements dictate that the data in
this batch input can best serve the purpose by including logical messages, then
each imbedded logical block must start with a header for TCAM to initiate header
processing for each logical message (thus, TCAM can treat each incoming logical
block of data as a message, and multiple destinations can be defined for the batch

Designing the Message Handler 159

input from a station). The SETEOM macro must specify PROCESS= YES in
order for TCAM to process the individual logical messages described in this
example.

CtNli", Co"siderations lor Logical Message Use

Area of
Code

Defining
data sets

Defining
stations

Macro

line
group DCB

TERMINAL

This section considers the coding requirements for the user who defines logical
messages for his TCAM network. The table below lists the macros and only those
operands that need to be considered for defining data sets and stations; it also lists
some delimiter and functional MH macros that need to be considered. The table
lists only those macros and operands concerning logical messages. Other sections
of the book contain complete descriptions of these and other macro instructions
(see the Macro Directory in the front of this book).

Of the macro instructions listed below, only the SETEOM functional macro is
limited to use with logical message handling. The remaining macro instructions
may be used in handling physical transmissions in a TeAM system that does not
define logical messages; of these, however, some operands are restricted to use
with logical message (PCI=X on the line group DCB macro, LMD= on the
TERMINAL macro, and LMD= on the STARTMH macro).

Operand Remarks

X specifies that after a buffer
is filled (receive operations)
or emptied (send operations), a
PCI occurs during the filling
or emptying of the next buffer.
The first buffer is not deallo­
cated, but a new buffer is allo­
cated. Buffer de allocation
occurs at the end of transmis-
sion, or when an EOB/ETB control
character is sent, if EOB/ETB
checking is specified in the
ST ARTMH macro.

PCI=N or X must be specified if
the SETEOM macro specifies
PROCESS= YES, in order to ensure
that logical messages are not
deblocked until block checking
is performed. Otherwise, a
logical message containing an
error could be routed to its
destination.

This operand specifies whether
logical messages are to be
transmitted either to or from
this station. LMD= YES must be
coded.

Provides mid-batch recovery on
input and output operations on

160 OS/MFT and OS/MVT TeAM Programmer's Guide

(

Designing
Message
Handlers

STARTMH

INBLOCK

LMD={~~S}

PATH = (opfield,
switch)

logical messages in a TCAM network.
Requires that LMD= YES be specified
on this TERMINAL macro for any station
entering or accepting logical messages
and for which mid-batch recovery is
desired. LMD= YES must be specified on the
STARTMH macro of the MH handling logical
messages (for incoming operations,
LEVEL=BLK must be specified on the
CANCELMG macro in the inmessage
subgroup; for outgoing operations,
LEVEL=BLK must be specified on the HOLD
macro in the outmessage subgroup).

Note: If stations specifying
either LMD=YES or MB=YES are
defined on the same line with
stations (other than concentrators,
see Defining the Network in
Appendix J thaI do not specify
either of these two operands, the
first TERMINAL macro used to define
stations on this line must be for a
non-concentrating terminal not
specifying either of these two
operands.

This operand specifies whether
logical messages are to be
handled by this MH. LMD=YES
must be coded.

Delimits the beginning of an
inblock subgroup and is required
if this MH:

• includes a SETEOM macro for
handling logical messages, or

• includes a MSGEDIT macro for
handling character strings that
cross buffer boundaries, or

• includes a MSGFORM macro for
deleting multiple character
strings on a count basis.

The inblock subgroup must
precede the inheader subgroup,
Functional macros that may
be coded in this subgroup are CODE,
COUNTER, LOG, LOCOP, MSGEDIT,
MSGFORM, MSGLIMIT, PATH, SETEOM, and
TERRSET. If coded before the
SETEOM macro they execute for all
the data in the physical transmission;

Designing the Message Handler 161

if coded after SETEOM, they execute
individually for logical messages.

CANCELMG LEVEL = {BLK } Specifies mid-batch recovery for errors
MSG detected in incoming multi block

messages. If mid-batch recovery is
required, LEVEL=BLK must be specified in
the inmessage subgroup (specify only
once; CANCELMG must be the first functional
macro in the subgroup).

CODE lableDamer Translates data in the buffer
NONE being handled and tests for operator
(register) commands. The following considerations

apply for logical messages that are extracted by
deblocking data in an incoming physical
transmission.

• When coded before the SETEOM macro, all data
related to this transmission is translated. Logical
messages are to be checked for operator control
characters,another CODE macro must be coded
in the inheader subgroup (and it must specify
NONE).

• When coded after the SETEOM macro,
functions the same as for physical transmissions
(translates,but must be coded in the inheader .4

subgroup to check for operator control charac- ~

ters).

COUNTER opfield Counts either logical message
segments or physical message segments,
depending on its position relative
to the SETEOM macro and whether
the PROCESS= operand of SETEOM
specifies YES or NO.

When SETEOM specifies PROCESS=NO,
all resulting logical messages are
counted.

When SETEOM specifies PROCESS= YES,
the position of COUNTER relative to
SETEOM determines what is counted.
IF COUNTER is coded before SETEOM,
the count reflects all the buffers
forwarded to the MH in the transmission
sequence. If coded after SETEOM,
the count reflects each buffer of each
resulting logical message.

HOLD LEVEL= [MSG] If this operand is omitted or if
(BLK it specifies MSG, the HOLD macro

provides the same function as

162 OS/MFT and OS/MVT TeAM Programmer's Guide

LOCK

MSGFORM

MSGLIMIT

SETEOM ENDCHAR= fchars 1
LopfieldJ

for physical messages (see the
description of the HOLD macro in
Functional Macro Instructions).

LEVEL=BLK specifies mid-batch
recovery for errors detected in
outgoing multiblock messages to
a switched station. If mid-batch
recovery is required, LEVEL=BLK
must be specified in the outmessage
subgroup (specify only once; HOLD
must be the first functional macro
in the subgroup).

Requires that PROCESS=NO be
coded on the SETEOM macro. Used
only for a logical message con-
structed by blocking 'two or more
incoming physical messages. Provides
the same functions as for physical
messages, except on a logical message
basis. Lock is achieved after EOM
character is detected (implying that
multiple physical transmissions may have
been received). See the description
of the LOCK macro in Functional
Macro Instructions.

Removes line control characters (on a
count basis) from incoming messages.
MSGFORM must be coded in the inblock
subgroup before any other macro that
might cause data movement.

Provides the same function as
for physical messages. The count
for MSGLIMIT is updated for each
physical transmission sequence.

This macro, restricted to use in
the inblock subgroup, controls
the amount of data in logical
messages, determines what is
done with data following EOM,
and permits removal of EOM char­
acters.

The ENDCHAR= operand specifies
the character or character
string used to delimit the mes-
sage. This operand is required
if the LENGTH= operand is not
coded (otherwise, it is optional).

Designing the Message Handler 163

LENGTH =
(S integer l,opfield2)
1 opfieldl f

REMOVE= {~~S}

164 as/MFT and as/MVT TeAM Programmer's Guide

chars specifies one to eight
nonblank characters in either
character (C' 'or CLn' ') or
hexadecimal (X' , or XLn' ')
format

opfield is the name of a field
defined by an OPTION macro containing
the character or character string.
The first byte of the option field
contains the length of the delimiter,
followed by the delimiter.

Specifies the length of the mes­
sage. Must be specified if the
ENDCHAR= operand is not coded;
otherwise, this operand is
optional. integer specifies
a decimal integer that may be
up to 65535.

opfieldl is the name of a halfword
defined by an OPTION macro con­
taining the length of the message.

opfield2 is a halfword option
field set to zero (counts bytes
already received).

Determines whether any incoming
data following EOM is processed
or discarded.

YES causes data following the
EOM to be processed in the same
manner as the previous data.

NO causes processing for the
first logical message only.

Removes EOM characters from
buffers containing logical mes­
sages (or partial logical mes­
sages).

YES causes EOM characters to be
removed from incoming buffers
containing parts of one or more
logical messages.

NO causes EOM characters to remain
in the buffer in which they appear.

(

Message Flow Through A Message Handler
Figures 15 and 16 illustrate the overall flow of a message through Message
Handlers written for two representative TCAM applications. After briefly
considering the overall flow, the path of a message within a single incoming or
outgoing group is described. If logical messages are being handled, see Logical
Message Flow Within the System in the preceding section.

Figure 15 illustrates the flow through a single MH of a message to be switched
from one station to another that requires no processing by an application program.
The incoming message is routed by STARTMH to the incoming group of the MH
assigned to the line (by the MH= operand of the DCB macro for the line group in
which the line is included). After being processed by the incoming group, the
message is placed on the destination queue for the station to which the message is
to be routed. This queue may be on a direct-access storage device, or it may be in
main storage. TCAM obtains messages from the destination queue on a first­
ended first-out basis within priority groups. ST ARTMH then routes the message
from the destination queue to the outgoing group of the MH assigned to the line
on which the destination station is located. After being handled by the outgoing
group, the message is transmitted to the destination station.

Message
entered at
remote
station

Ir

Incoming
Group of MH
for line group

Destination
queue

Figure 15. Message Flow for a Switched Message

Message
accepted at
destination

Outgoing
Group of MH
for I ine group

Figure 16 illustrates the more complicated message flow for a message that is
received, routed to an application program, and then transmitted to a destination
station. The message is processed first by the incoming group of the MH handling
messages for this line, then placed on the destination queue for the application
program (this queue is created by a TPROCESS macro). The outgoing group
created especially for the application program and assigned to it by the MH=
operand of a PCB macro processes the message when it is removed from the
destination queue; the message is then placed on the read-ahead queue, a special
queue to which access is gained by GET or READ macros issued in the applica­
tion program. After being processed by the application program, the message is
returned to a process queue by PUT or WRITE macros and is handled by the
incoming group of the MH assigned to the application program by the MH=
operand of the PCB macro for that application program. The message is routed
by this incoming group to the destination queue for the station that is to accept
the message. It is then handled by the outgoing group of the MH assigned to the
line and transmitted to the destination station.

Designing the Message Handler 165

Message
entered at
remote
station

L

I ncom,ing
Group of MH
for line group

Destination
queue for
application
program

In Figure 16, two incoming and two outgoing groups are used in handling the
message. One incoming and one outgoing group are assigned to the line, and one I,.
of each group is assigned to the application program. The user might provide ~

these groups by designing one MH for his line and another for his application
program; or he might design a single MH and assign it to both the line and the
application program. This single MH would have some subgroups that would be
executed only for messages coming in from or going to a station on the line, and
other subgroups that would be executed only for messages being sent to or
received from an application program. For a description of how this selective
execution is accomplished, see Variable Processing within a Message Handler in
this chapter.

Outgoing

t-----~ Group of MH
for appl ication
program

Read-ahead
queue

Incoming
Group of MH
for application
program

Application
program

Message
accepted
at destination
station

l
Outgoing
Group of MH
for line group

Desti nati on
queue for
accepting
station

,4

"'"

Figure 16. Message Flow for a Message that is Processed by an Application Program

For a more thorough description of the flow of a message through a TeAM
system, see Message Flow within the System in the TCAM Concepts and
Facilities publication.

Message now within an MH Group (
That portion of a message contained within one main-storage buffer is called a .
message segment. When a message segment arrives for processing by a Message

166 OS/MFT and OS/MVT TeAM Programmer's Guide

Handler, STARTMH determines whether the segment is part of an incoming or
outgoing message and routes it to the incoming or outgoing group, as appropriate.
ST ARTMH also determines whether the segment contains part of a multiple­
buffer header. A multiple-buffer header is a message header that occupies more
than one buffer. Message segments containing part of a multiple-buffer header go
through the inheader and outheader subgroups in a special manner, described
below.

The flow through an MH assigned to a line group of a message that does not have
a multiple-buffer header is illustrated in Figure 17. After a segment has been
routed to an incoming or outgoing group, the INHDR or OUTHDR macro deter­
mines whether this is the first segment of a message, or a segment other than the
first. Only the first segment of a message not having a multiple-buffer header is
routed to the inheader or outheader subgroup (if present). All segments
(including the first) are normally processed/ by the inbuffer or outbuffer sub­
groups present in the group handling the message. The macros in the inheader,
outheader, inbuffer, and outbuffer subgroups are executed on a segment-by­
segment basis, while those in the inmessage and outmessage subgroups are not
executed until the entire message has been handled by the other subgroups. The
inmessage subgroup is executed when the last message segment reaches the
inmessage delimiter. The outmessage subgroup is not executed until after the
entire message has been transmitted to the destination station or sent to the
application program.

In Figure 17 there are only three subgroups per group, and it is assumed that all
the subgroups are involved in handling the message. Since some subgroups are
optional, a group may have fewer than three subgroups, but a group may also have
many more than three subgroups by including more than one subgroup of a given
type. Moreover, not all subgroups included in a group need be involved when the
group handles a particular message; TeAM provides selective execution of
subgroups according to the setting of a path switch. This variable-processing
capability is discussed later in this chapter.

Designing the Message Handler 167

STARTMH

Inheader
or

Outheader
Subgroup

Inbuffer
or

Out buffer
Subgroup

Inmessage I
or ~MSG or OUTMS~ _

Outmessage I
Subgroup * I
INEND

or
OUTEND

STARTMH

Inheader I
or ~~..£!:.. ~THDR _

Outheader I
Subgroup I
Inbuffer

or
Outbuffer
Subgroup

Inmessage or
Outmessage
Subgroup·

INEND
or

OUTEND

* Note: Functional macros in the Outmessage Subgroup are not executed
unti I after the entire message has been sent.

Figure 17. Flow of a Two-Segment Message with a Single-Buffer Header through an MH

168 OS/MFT and OS/MVT TeAM Programmer's Guide

HEADER TEXT I
First message segment

1
Destination queue
or remote station

I.

~

TEXT I
Subsequent message segment

Destination queue
or remote station

Multiple-Buffer Header Handling
Figure 18 illustrates the flow through an MH assigned to a line group of a two­
segment message having a multiple-buffer header. The main difference between
this type of flow and that described above for a message not having a multiple­
buffer header is the way in which the inheader and outheader subgroups are
executed.

The first segment of a message having a multiple-buffer header consists entirely of
header information. This first segment does not go through the entire inheader or
outheader subgroup. Once the. last field in this segment has been processed by
field-dependent instructions in the inheader or outheader subgroup (once the scan
pointer has advanced to the end of the buffer), TCAM saves the address of the
next (unexecuted) inheader or outheader instruction and also saves the contents
of all registers specified by the USEREG= operand of the INTRO macro. The
first segment continues through the inheader or outheader subgroup, but only
those macros that do not depend on the location of the scan pointer or upon
certain data being in the buffer are executed for it. Among such macros are
CHECKPT, CODE, COUNTER, LOCOPT, LOG, MSGFORM, MSGLIMIT,
and TERRSET. The INITIATE, LOCK, MSGTYPE, PATH, SCREEN,
SETEOF, and UNLOCK macros execute if the conchars operand is not coded for
them. The FORWARD macro executes if the destination is specified in the macro,
rather than in the message header. The PRIORITY macro executes if the priority
level is specified in the macro and no conchars operand is coded.

Designing the Message Handler 169

*

STARTMH

Inheader
or

Outheader I
Subgroup I

Inbuffer
or

Outbuffer
Subgroup

Inmessage I
or I!.t!MSG or OUTM~ __

Outmessage I
Subgroup * I
INEND

or
OUTEND

STARTMH

Inheader
or

Outheader
Subgroup

Inbuffer
or

Outbuffer
Subgroup

Inmessage
or

Outmessage
Subgroup *

INEND
or

OUTEND

Note. FunctIonal macros 10 the Outmessoge Subgroup are
not executed until after the entire message has been
sent.

Figure 18. Flow of a Two-Segment Message with a Multiple-buffer Header through an MH

170 OS/MFT and OS/MVT TeAM Programmer's Guide

HeADER I
.1

First message segment]"I

'~

1
Destination queue
or remote station

HeADER I TEXT I
Next message segment

Destination queue
or remote station

(

In Figure 18, a dotted flow line through the inheader/outheader section indicates
that the scan pointer has reached the end of the first header segment, and only
those macros listed above are being executed for it.

When the second segment is ready for handling, STARTMH routes it directly to
the inheader or outheader instruction whose address was saved, rather than to the
INHDR or OUTHDR macro at the beginning of the subgroup. (At this time,
TCAM also restores the contents of the registers specified by the USEREG=
operand of the INTRO macro.)

If the CODE, FORWARD, PRIORITY, or INITIATE macros are issued in an
inheader subgroup handling multiple-buffer header segments, these macros must
be specified early enough in the subgroup so that they act upon the first message
segment. This also applies to PATH macros issued in an inheader or outheader
subgroup, if all segments of the message are to be handled alike.

Note: Figure 18 contains only one of each kind of subgroup. For messages
with multiple-buffer headers, the use of multiple inheader or outheader
subgroups is severely restricted; all such subgroups must begin processing on
the first message segment. In addition, if part of a multiple-buffer header is
to be processed by an inheader subgroup and the rest is to be processed by
an outheader subgroup, both subgroups must begin execution on the first
message segment.

The execution of an inheader or outheader subgroup can begin only on the first
segment of a message. This is because the INHDR or OUTHDR macro for a
particular inheader or outheader subgroup causes all message segments except the
first to bypass the subgroup. One inheader or outheader subgroup can handle a
multiple-buffer header because the INHDR or OUTHDR macr~ does not get the
opportunity to check segments other than the first (due to the way in which
multiple-buffer headers are handled). If a second inheader or outheader subgroup
is coded to begin execution midway through the second segment, it will never
execute; its INHDR or OUTHDR macro will route incoming segments directly to
the next delimiter.

Note: If an out buffer subgroup precedes an outheader subgroup that process­
es more than one segment of a message having a multiple-buffer header, the
outbuffer subgroup is executed for the first segment only.

Multiple-Buffer Header Processing Across Buffers

Macro N/A

CHECKPT X

CODE (Note 2)

COUNTER X

DATETIME X

FORWARD

INITIATE

Will Will Not
Cross
Buffers

(Note 3)

Cross
Buffers

DEST in message

Conditional
(Note 1)

X

Designing the Message Handler 171

Macro N/A

Will Will Not
Cross
Buffers

Cross
Buffers

Conditional
(Note 1)

LOCK X

LOCOPT X

LOG X

MSGEDIT X

MSGFORM X

MSGLIMIT X

MSGTYPE X

ORIGIN (Note 4)

PATH X

PRIORITY (Note 5)

SCREEN X

SEQUENCE output only

SETEOF

SETS CAN

TERRSET X

UNLOCK

chars

input only

integer
POINT=BACK
chars,RETURN =

X

X

Note 1: Will cross if conchors is not specified, or if entire character string
is in a subsequent buffer.

Note 2: Except that an operator command must be complete in a single
buffer.

Note 3: Will cross if destination is in the macro or an option field and
the macro is executed for the first buffer.

Note 4: Will cross but origin may not be known on dial lines for first
buffer.

Note 5: Will cross if conchors is not specified and priority level is in macro.

Variable Processing Within a Message Han~ler
The path of a message through a Message Handler may be varied dynamically
using the PATH and MSGTYPE macro instructions. By permitting different
operations upon different types of messages directed to the same Message Han-
dler, these macros enhance the versatility of the Message Handler. By judiciously (
using PATH and MSGTYPE macros, the user can design one Message Handler
that will handle messages having a variety of header formats and that will perform

172 OS/MFT and OS/MVT TeAM Programmer's Guide

different operations upon different types of messages, even when these different
types are transmitted over the same line. Indeed, the user may in some cases be
able to design a single Message Handler capable of processing all the messages
that can be generated in a large TCAM-based telecommunications system per­
forming a wide range of tasks.

The path of a message through a Message Handler may be varied in two ways.
One of these involves the use of control characters in the message header, and the
other involves the setting of switches, based on the control characters, that
determine whether a given subgroup is to be executed for the message.

These switches, called path switches, are one-byte fields in the option table. The
switches are initialized by an operand of the TERMINAL or TPROCESS macro
and may subsequently be modified by a PATH macro or by a combination of
OPTFIELD and DATOPFLD operator commands. An operand of a delimiter
macro may specify that certain bits of a path switch are to be tested. If any of the
specified bits are on, the subgroup introduced by the delimiter is executed; if none
of the specified bits are on, control passes to the next subgroup. If a delimiter
macro does not specify a path switch to be tested, its subgroup is executed uncon­
ditionally. Different delimiters may test different sets of path switches. For an
example of the use of path switches and the PATH macro to control the routing of
messages from subgroup to subgroup, see the discussion of the PATH macro.

By specifying, changing, and testing path switches, the user can determine which
of the subgroups in an MH group are to be executed for a particular message. To
control the path of a message within an inheader or outheader subgroup, the user
may employ the MSGTYPE macro. The MSGTYPE macro compares a character
or character string in the message header with a character or character string
specified by a MSGTYPE operand. If the two characters or character strings
match, the instructions between this MSGTYPE macro and the next MSGTYPE
macro in the subgroup are executed (if this is the last MSG TYPE macro in the
subgroup, all the remaining instructions in the subgroup are executed) and control
is then passed to the next delimiter macro. If the two characters or character
strings do not match, the instructions associated with this MSGTYPE macro are
not executed, and control passes to the next MSGTYPE macro in this subgroup
(or to the next delimiter, if this was the last MSGTYPE macro in the subgroup).
A new comparison is made by each MSGTYPE macro to which control is passed.
For an example of the use of the MSGTYPE macro to vary processing within a
subgroup, see the description of the MSGTYPE macro.

The PATH macro controls the routing of a message among subgroups. The
MSGTYPE macro controls the path of a message within an inheader or outheader
subgroup.

Conditional Execution of Message Handler Functional Macros
Several MH functional macro instructions may request conditional execution
dependent upon the existence of a control field in the message. These macros are
INITIATE, LOCK, MSGTYPE, PATH, PRIORITY, SCREEN, SETEOF, and
UNLOCK, with the optional operand con chars. conchars may consist of from
one to eight nonblank characters and may be specified in unframed character
format or with framing C' , or CLn' , characters, or in hexadecimal format with
framing X' , or XLn' 'characters.

These conditional characters specified in the macro are compared with the field in
the message at the current location of the scan pointer. If the fields are identical,

Designing the Message Handler 173

the macro will be executed and the scan pointer will be advanced to the last
character of the field. If the characters do not match, the scan pointer is not
moved and the macro is not executed. If two or more macros in the same sub­
group specify control character strings that are identical to a certain point but
differ in length, and if there is any possibility that the same field in the message
header will be checked for both strings, then these macros should be arranged
according to decreasing length of their character strings. For example, if the user
codes

INITIATE 1
LOCK 12

in his inheader subgroup, both macros will execute if the field in the message
header contains 112. However, if the field contains 12, only the INITIATE macro
will execute.

If the conditional characters are framed with CLn' , or XLn' , framing characters,
n should agree with the actual count of characters. If n specifies a value greater
than the actual count, it is possible that the macro may never be executed. For
example, if a character string AB is defined as CL3'AB', the field is automatically
padded to the right with a blank. If the BLANK= operand specifies
BLANK= YES (or BLANK=X'40' or BLANK=C' '), a matching field can never
be found. BLANK= YES states that blanks are not to be considered part of the
character string when found in the header, but in this case the string used to
determine execution contains a blank.

In the case of multiple-buffer headers, the control characters must all be in the
same buffer. The control characters may be entirely contained within the buffer.
in which the scan pointer is located when the comparison is begun, or they may be '~
entirely contained within a subsequent buffer. They may not, however, be split
between buffers.

If the sequence

MSGTYPE ABC
MSGTYPE AB
MSGTYPE A

is coded by the user, and if the characters being checked are AB and these are the
last two bytes in the buffer, the first MSGTYPE executes just as if three charac­
ters were found but the compare was unequal. That is, the code following the first
MSGTYPE is not executed and control passes to the second MSGTYPE macro.
Execution of the second MSGTYPE finds two bytes, detects an equal compare,
and passes control to the code following the second MSGTYPE. Note in this
example that, even if a C is the next character beyond the AB in the message, the
first MSGTYPE does not find the string because it is split between buffers.

If the string ABC is the next string in the message and is located entirely within
the next buffer, execution of the first MSGTYPE detects that no characters
remain in the current buffer. Processing of buffer fields in this buffer is deferred,
(including the subsequent MSGTYPE processing). When the next buffer is
passed to the Message Handler, execution of the first MSGTYPE resumes at the
start of data in this next buffer and, because the string ABC is found, control
passes to the code following the first MSGTYPE macro.

174 OS/MFT and OS/MVT TeAM Programmer's Guide

(

It is likely that the first result, where the string is split between buffers, is not the
result desired by the user. To avoid such a result, either limit the header to a
single buffer or avoid strings that are partially identical.

User Code In A Message Handler
The user may insert serially reusable assembler or macro-language code in a
Message Handler to supplement the facilities provided by TCAM. User-written
code can be included as either an open or closed subroutine.

There are several reasons why the user might include such a subroutine. There
may be no MH macro to process particular information he wishes included in his
message headers. He may wish to expand the scope of an MH macro (for exam­
ple, to correct an invalid destination field detected by the FORWARD macro).
Or, he may wish to process a header field in a manner entirely different from that
in which the MH macro handles fields of this type, for example, inserting a date
having a format different from the one used by the DA TETIME macro.

General Requirements and Restrictions
The following requirements and restrictions apply to both open and closed user­
written subroutines that supplement the functions provided by TCAM macros in a
Message Handler.

1. All such subroutines must be serially reusable.
2. No executable code should be included within an inmessage or outmessage

subgroup, or between such subgroups.
3. Branching from one Message Handler to another is not permitted.
4. System macros that issue an SVC should be avoided, unless the user is fully

aware of the implications of using such macros in the TCAM system.
S. If the user provides a field or work area (as for the ERRORMSG, MSGGEN,

and MSGEDIT macros), the field must be addressable by the MH. Such a field
is addressable if placed after the OUTEND macro. If only one base register is
used to establish addressability for the MH, the field must also be within 4096
bytes of the STARTMH macro in order to be addressable.

6. Nothing should be done that relinquishes control.
7. TCAM macros cannot be used in a closed subroutine.

Multiple-Buller Header Considerations
When the MH is handling messages having multiple-buffer headers, user code
within the inheader and outheader subgr()ups should test register 15 for a negative
return code before executing any open user subroutine or branching to a closed
user subroutine, if the user subroutine to be executed depends upon certain data
being in the buffer or upon the location of the scan pointer. A negative return
code indicates that the previous TCAM macro needed the next buffer but it was
not available (for an understanding of how this situation could arise, see
Multiple-Buffer Header Handling in this chapter). If a negative return code is
detected, a branch should be made around a user subroutine that depends upon
the presence of certain data in the header, or upon the scan pointer; such a
subroutine is eventually executed on header fields in a subsequent message
segment.

The USEREG= operand of the INTRO macro specifies the number of registers to
be saved between header segments when user code is executed in an inheader or
outheader subgroup that may handle multiple-buffer headers. The registers saved
are sequentially ordered, beginning with general register 2. When the scan pointer
comes to the end of a message segment and there is still code to be executed in the

Designing the Message Handler 175

inheader or outheader subgroup processing the segment. TCAM saves the address
of the next (unexecuted) inheader or outheader instruction and also saves the
contents of the registers specified by USEREG=. The segment continues through ~

the subgroup, but macros that depend upon the location of the scan pointer or ~
upon specific data being present in header fields do not execute for the segment.
When the second segment is ready for handling. the ST ARTMH macro routes it
directly to the inheader or outheader instruction whose address was saved. and
restores the contents of the saved registers. (See Multiple-Buffer Header
Handling for more information on this topic.) Only the contents of those user
registers specified by USEREG= are saved and restored.

Use of the USEREG= operand increases the size of the MCP. This operand
should be coded only when an inheader or outheader subgroup that contains user
code can expect to handle messages having multiple-buffer headers. with the user
subroutine extending across buffers.

The user can determine the number of extra bytes of main storage that coding
USEREG= will require by applying the following formula:

S=4R(L+T)

where

S is the number of extra bytes added to the MCP.

R is the number of registers to be saved between buffers. as specified in the
USEREG= operand of the INTRO macro.

L is the number of lines in the system on which are located stations whose
TERMINAL macros omit the BFDELA Y = operand.

T is the number of stations whose TERMINAL macros specify the
BFDELA Y =operand.

Under certain error conditions. TCAM sends buffers that contain no data through
the MH to execute the proper inmessage or outmessage subgroup. These buffers
should be handled accordingly by any user code that depends upon data being in
the buffer or upon the location of the scan pointer. See Using SETSCAN to
Locate a Header Field for specific considerations.

Including an Open Subroutine
A user-written open subroutine consisting of one or more assembler language or
system macro instructions may be included in-line in the inheader. inbuffer.
outheader, and outbuffer subgroups of a Message Handler. TCAM macros may
be included in an open subroutine. All registers except register 12 and 13 are
immediately available for use in such a subroutine. If register 13 is used in the
subroutine, its original contents must be saved and restored by the user. Register
12 should not be changed by user code, since it is the base register. If more than
one base register is used, the other base registers must also be preserved.

When a user-written open subroutine is coded in an inheader or outheader sub­
group that can handle messages having multiple-buffer headers, the contents of
user registers will be lost if the header fields being processed by the user routine
extend across more than one buffer. (To see why this is so. consider carefully the ~
Multiple-Buffer Header Handling in this chapter.) The user may specify that the

176 OS/MFT and OS/MVT TCAM Programmer's Guide

contents of his registers be preserved in this case by suitably coding the
USEREG= operand of the INTRO macro. When this operand is coded. the
contents of the user's registers are saved when the scan pointer reaches the end of
the first segment of a message having a multiple-buffer header, and are restored to
the user routine when the second segment arrives at the inheader or outheader
subgroup.

rncluding a Closed Subroutine
A user-written closed subroutine may be included as a control section in the Mep.
Access may be gained to such a subroutine by any Message Handler in the Mep.
or as a result of an exit being taken that is specified by an INTRO. ST ARTMH.
DeB. READY, ERRORMSG, or FORWARD macro. A closed subroutine
cannot contain TeAM macros except MHGET and MHPUT. When activating a
closed subroutine. the user must provide his o~n linkages; he should save and
restore the invoking Message Handler's registers. Figure 19 illustrates the flow of
control between an MH and a user-written closed subroutine. and presents the
recommended linkages.

Designing the Message Handler 177

MHI

• • •
(Data Set initialization macros)

• •
STARTMH

•
•

(Other MH macros)

•
•
CALL USERRTN::-

,.. (Next MH Macro)

t
I
I
I
I
I
I
I
I
I
I

•
•

(USERRTN calls no other subroutine)
USERRTN CSECT

I
USING * 15 , .
SAVE (14,12)

I •
I (User Code)

I •

I
<RETURN (14,12), T

END

L (USERRTN calls another subroutine)
- - - - f-- USERRTN CSECT

USING

SAVEl
SKIP

B
DC
SAVE
ST
LA
ST
LR
DROP
USING

•
(User Code)

•

*,15
SKIP
18F '0'
(14,12)
13,SAVE1+4
12, SAVEl
12,8(13)
13,12
15
SAVEl, 13

L_-----------
L 13,4(13)

-<RETURN (14,12), T

END

Figure 19. Activation of a Closed. User-Written Subroutine

178 OS/MFT and OS/MVT TeAM Programmer's Guide

c

,Using LOCOPT To Locate An Option Field
The LOCOPT macro enables the user to obtain the address of any option field
assigned to a particular station. The address of the desired field is placed in a
user-specified register. A user-written routine may then examine and modify the
contents of the option field.

Using SETSCAN to Locate a Header Field
The SETSCAN macro may be used to locate a portion of the message header for
subsequent examination or processing by a user-written subroutine (but see
Restriction #5 in the section General Requirements and Restrictions.) For a
detailed description of the capabilities of SETSCAN, see the discussion of the
macro.

Note: Error buffers that contain no data should be handled accordingly by
user code that depends upon data being in the buffer or upon the position of
the scan pointer. If using the SETSCAN macro to locate a field for pro-
cessing by user code, the user should recognize a buffer with no data by
testing for a return code of X'Fe' in register 15. If the return code X'Fe' is
in register 15. the user code that depends upon data being in the buffer or
upon the position of the scan pointer should be bypassed.

Two capabilities of SETSCAN are of particular interest with respect to user code:

• By coding MOVE=RETURN, the user may employ SETSCAN to locate a
designated character string in the header and to place the absolute main-storage
address of the last character of the string in a specified register, to be used by
user code. When MOVE=RETURN is specified, the scan pointer is not
actually moved, so the user need not worry about repositioning it. If this
capability is to be utilized effectively, the character string to be examined must
be located entirely within a single buffer unit, because buffer units are not
usually contiguous in main storage; consequently a long character string may be
split between two units in different locations in main storage. If the character
string to be processed is divided between two buffer units, and the user knows
where in the string the division occurs, he may treat the segments as separate
character strings, issue a SETSCAN macro specifying MOVE=RETURN to
find the address of each, and process each independently .

• SETS CAN may be used to determine the main-storage address of the header
byte to which the scan pointer is currently pointing. This is done by specifying
MOVE=RETURN and coding 0 as the integer operand. If the user codes

SETSCAN O,MOVE=RETURN

the address of the current location of the scan pointer is returned in register 15.

Using MSGTYPE To Locate A Header Field
User-written code may be included in inheader and outheader subgroups to
interrogate and modify a field in a buffer of a message, and to interrogate but not
modify a field that spans more than one buffer of a message header.

The next field in a buffer, the one immediately following the scan pointer, can be
obtained from the buffer by using a MSGTYPE macro that deliberately fails as
follows:

Designing the Message Handler 179

SPLIT

*
LOOP

*

*

MVI
LA

CNOP
MSGTYPE
MSGTYPE
CLI
BE

SR

IC

BCTR
EX

MSGTYPE C ' XXXXXXXX '
MSGTYPE

Access to fields up to eight bytes in length can be gained by this method. the ~

number of characters in the MSGTYPE operand is the length of the field. In this ~
example, an eight-byte field is to be' located. Care should be taken not to specify
as the MSGTYPE operand any string that could be found in the header. If a
matching string is found, the scan pointer is adjusted to point to its last byte.

If the string sought extends across buffers, it cannot be modified. This can be
determined by examining the contents of the second byte of the A VT parameter
area IEDPARM, addressable throughout the MCP. If this byte is less than the
requested length, the field spans buffers. The byte at IEDPARM+ 1 is maintained
in hexadecimal format.

If the field does not span buffers, it may be modified by the use of the MSGEDIT
macro. Insertions before the string, removal of the string, or removal and replace­
ment of the string may be performed by coding an appropriate MSGEDIT macro
with the AT operand specified as SCAN (see the discussion of the MSGEDIT
macro in this chapter). Insertion after the string may be performed by coding a
SETSCAN macro with a count equal to the length of the string, followed by the
desired MSGEDIT macro. It is recommended that a MSGEDIT macro specifying
the string itself as the AT operand not be used, since all occurrences of the string
found, not merely the first one, will cause the MSGEDIT function to be per­
formed.

The following procedure allows the examination of a field that begins in one
buffer and ends in a subsequent buffer (not necessarily the next buffer). It makes
use of two parameters returned by the MSGTYPE function:

1. The characters found, whether matching or not, and whether as many as
requested or not, are placed in the A VT work area IEDDOUBL;

2. The count of characters found is placed in the second byte of the A VT parame­
ter area IEDPARM.

The procedure may be varied depending on the length of the field to be examined.
This example assumes the maximum, an eight-byte field.

COUNT,S
RWORK,WORK

0,4
C'XXXXXXXX'

IEDPARM+1,D
NEXT

SET INITIAL LENGTH DESIRED
POINT TO FIRST BYTE
OF WORK AREA

TEST IF ANY BYTES FOUND
BRANCH IF NOT TO AWAIT
NEXT BFR

The operand of the MSGTYPE macro should specify the same number of characters
as in the string desired, and the operand should be such that a match cannot be
found. Because no match is found, the MSGTYPE macro branches to the next
delimiter. Therefore, a delimiter must be specified as a branch address. In this case,
MSGTYPE is used.

REGA,REGA

REGA,COUNT

REGA,O
REGA,MOVE

CLEAR REGISTER FOR
INSERT
PICK UP DESIRED
COUNT DECREMENT
FOR EXECUTE
MOVE BYTES FOUND
TO WORKAREA

180 OS/MFT and OS/MVT TeAM Programmer's Guide

LA

*

CLC

*
BE

*

SR

IC

*
AR

*

SR

*
STC

*
STC

SCAN SETS CAN

~
B

*
MOVE MVC
WORK DS
COUNT EQU

*
FOUND DS

REGA, 1 (REGA) RESTORE TRUE
DESIRED COUNT

These instructions move the characters found to the work area. The MVC
instruction (MOVE) is executed by the EX instruction so that the target
address of the MVC can be modified.

COUNT,IEDPARM+l ARE ALL DESIRED
BYTES FOUND

FOUND BRANCH IF YES

The count field will be higher if not all the bytes are found.

REGB,REGB CLEAR REGISTER
FOR INSERT

REGB,IEDPARM+l PICK UP NUMBER
OF BYTES FOUND

RWORK,REGB ADJUST WORK AREA
ADDRESS

The address register for the work area now points to the next byte to be
fllled, which will come from a subsequent buffer.

REGA,REGB COMPUTE HOW
MANY MORE
BYTES NEEDED

REGA,COUNT AND RESET
LENGTH FIELD

REGA,SCAN+7 MODIFY SETSCAN
0 PARAMETER LIST
LOOP GO GET REMAINING

BYTES

O(O,RWORK),IEDDOUBL EXECUTED MOVE
CL8 INSTRUCTION
LOOP+ll

OH EXAMINE FIELD IN
WORK

The SETSCAN function moves the scan pointer to point to the last byte in the
buffer. The skip length is adjusted to the proper number by modifying the parame­
ter list.

When the MSGTYPE function is executed again, the scan pointer is moved
beyond the end of data in the buffer. The test following MSGTYPE must branch
back to the next required buffer processing. Because of the setting of the scan
pointer, that processing will not be performed on this buffer.

When the next buffer is passed to the Message Handler, execution of the
MSGTYPE function will be started again. At this time. the remaining bytes
desired will usually be obtained.

Note, however. that if the next buffer does not contain enough bytes to complete
the count desired-if. for example, it contained only blanks-the buffer following
it would be examined. That is, the field desired may actually be split over many
buffers, and the procedure will still continue.

Designing the Message Handler 181

Using the PARM Parameter of the EXEC Job Control Statement
The user may wish to pass information to his user code by means of the P ARM
parameter of the EXEC job control statement (this capability is described in the
as publication Job Control Language. If the PARM= operand is specified,
when control is passed to TC AM regi<;ter ! contains the address of a fu!!word, the
low-order three bytes of which contain the address of a two-byte length field
immediately followed by the data specified in the PARM parameter. INTRa
stores the contents of register 1 in a fullword on a fullword boundary, from which
it may be retrieved by user code. The name of the fullword is IEDSPLPT. The
address in register I is then overlaid.

Message-Handler Macro Return Codes
During execution, certain MH macros cause a return code to be placed in a
general register, usually register 15. The table below lists those TCAM macros
whose return codes may be checked by user code in a Message Handler. The
return code occupies the low-order byte in the register indicated; the rest of the
register usually contains all zeros. Return codes of X'FC' are negative return
codes; the high-order three bytes of the register contain binary ones. Some
macros also return an address in a register; the locations and nature of such
addresses are also indicated in the following table.

Macro Register

COMMBUf 15
15

15

15

COUNTER 15
15

CTBFORM 15

15

15

15

15
15
15

182 OS/MFT and OS/MVT TeAM Programmer's Guide

Return
Code

X'OQ'
X'04'

X'OX'

X'OC'

X'OO'
X'FF'

X'04'

X'OX'

X'OC'

X'10'

X'14'
X'I8'
X'IC'

Meaning

Good return
Data area too small; macro did not
execute. (The data area
size specified in the COMMBUF=
operand of the INTRa macro is
too small).
MAXDEEP value exceeded.
(register 1 will contain the
number of times MAXDEEP was
exceeded).
LIST = operand specified
a name which was not
a TLIST entry.

Good return
Option field not found

Separator character insertion
requested; none defined.
Insertion of opfield data
requested; option field not
found.
Combination of X'04' and
X'OX'.
Insertion of device id requested;
device id not defined.
Combination of X'04' and X'IO'.
Combination of X'OX' and X'l 0'.
Combination of X'04', X'OX',
and X'lO' (

15 X'20' Requested insertion of device
id and option field; not done
(out of units).

DATETIME 15 X'OO' Good return
15 X'04' Insufficient reserve characters

FORWARD 15 X'OO' Good return
15 X'04' Invalid destination

LOCK 15 X'OO' Good return
15 X'04' Destination not specified
15 X'08' Destination not a process entry

LOCOPT
a) if return 15 Address Good return
requested in of
R15 option

field.
15 X'OO' Option field not found

b) if return 15 X'OO'
requested USEREG Address Good return
in user- of
specified option
register field.
(USEREG) 15 X'04'

, USEREG Un- Option field not found ,
changed

LOG 15 X'OO' Good return
15 X'04' DCB or LOGTYPE entry named

in macro not found

MHGET 15 X'OO· MHGET successful; no errors.
15 X'04' Data moved; work area too

small; data truncated.
15 X'08' TCAM not in system.
15 X'OC' Empty buffer; no user processing

permitted.

MHPUT 15 X'OO' MHPUT successful.
15 X'04' MHPUT could not allocate enough

units; data is truncated.
This return code is also
set when the number of
units per buffer has
reached maximum.

15 X'08' TCAM not in the system.
15 X'10' Length of work area not initialized.
15 X'OC' Reserves specified are too large;

data was moved.
~ ,

Designing the Message Handler 183

Return
Macro Register Code Meaning

MSGEDIT 15 X'OO' Good return
15 X'04' No units available

MSGLIMIT 15 X'OO' Good return
15 X'04' Option field not found

ORIGIN 15 X'OO' Good return. The ORIGIN macro
executed successfully.

15 X'04' Invalid origin. The FORM= operand
was specified and the source
terminal was not valid.

15 X'08' The FORM= operand was specified,
but the source terminal is not
in the concentrator network.

15 X'OC' The FORM= operand was specified,
but the origin specified in the
message is not a valid name or ID
for a terminal attached to the
concentrator entering data (the
first terminal entry following
the entry for the concentrator
is assumed to be the origin).

QACTION 15 X'08' No buffers available.

.~

SCREEN 15 X'OO' Function not done. \~
(2260) 15 Function Good return

Byte
15 X'04' Invalid operation for 2260

SCREEN 15 X'OO' Function done.
(3270) 15 X'04' Invalid operation for 3270.

15 X'08' Invalid buffer data stream.
15 X'OC' Command code not found or

invalid use of EAU, WDC, or
WRE.

SEQUENCE
a) macro 15 X'OO' Good return
issued in 15 X'04' Sequence number in message high
inheader 15 X'08' Sequence number in message low
subgroup 15 X'OC' Originating station unknown
b) macro 15 X'OO' Good return
issued in 15 X'04' Insufficient reserve characters
outheader
subgroup

SETEOM 15 X'04' EOM delimiter used
15 X'08' Delimited by user-specified length
15 X'OC' Delimited by EOM and user-

specified length

C

184 OS/MFT and OS/MVT TeAM Programmer's Guide

Return
Macro Register Code Meaning

SETSCAN
at) locate 15 Address Good return
specified of last
character character
string in string.
and return 15 X'OO' Specified character string not
address in found in this buffer
R15 15 X'FC' Scan pointer beyond end of buffer.

a2) locate 15 X'OO' Good return
specified
character USEREG Address
string of last
and return character
address in string
in user- 15 X'04' Specified character string
specified USEREG Un- not found in this buffer
register changed
(USEREG) 15 X'FC' Scan pointer beyond end of buffer.

USEREG Un-
changed)

bt) skip 15 Address Good return
n characters of
and return character

~'I address skipped to ,
in R15 15 X'OO' n greater than the number of

characters remaining in this buffer

b2) skip 15 X'OO'
n characters USEREG Address Good return
and return of
address character
in skipped
user- to
specified 15 X'04' n greater than the number of
register USEREG Un- characters remaining in this
(USEREG) changed buffer

c) skip 15 X'OO' Good return
n characters 15 X'04' n greater than the number of
backward characters preceding the scan

pointer in this buffer

d) locate 15 Address Good return
scan pointer of scan
address pointer

15 X'FC' Scan pointer beyond end of buffer.

TGOTO 15 X'04' The terminal that entered this
message either is not attached to a
concentrator, or is attached but the

Designing the Message Handler 185

Message Translation

15 X'OS'

15 X'OC'

station's TERMINAL macro does
specify LMD=YES or MB=YES. Pro­
cessing continued in the inmessage
subgroup of the first MH.

The TGOTO macro specified that the
name of the second MH for the
terminal entering the message was
in an option field, but the option
field was not initialized by the
OPDA T A= operand of the station's
TERMINAL macro.
The address of the second MH,
specified either in the TGOTO
macro or in an option field,
is not a valid MH address.

Note: All macros give an error return code if a zero-length buffer
(see Glossary) is passed through the message handlf!r.

TCAM provides a facility for translating incoming messages from line code into
EBCDIC and for translating outgoing messages from EBCDIC to line code.
Translation is specified by issuing a CODE macro in the incoming and outgoing
groups of an MH.

The user who does any appreciable amount of header analysis, or whose system
includes stations using different line codes, will probably want to use TCAM's
translation facility. Incoming translation must be specified for lines over which
operator commands may be entered, since the CODE macro is used by TCAM to
check for such messages (see the discussion of the CODE macro for a way of
selectively translating operator commands while leaving other messages entered
on the same line untranslated).

Translation is not required in a message-switching application for which little or
no header analysis is required, provided that the originating and destination
stations are of the same type. The careful user may be able to avoid translating in
other situations. The operands of most MH macros may be specified in hexadeci­
mal format. By using the tables and information located in Appendix G, the user
may enter in his MH macro operands the hexadecimal representation of header
fields that are in line code and thereby avoid having to translate. The user seeking
to avoid translation should remember that the names entered in the terminal table
(that is, the names given to the TERMINAL, TLIST, TPROCESS and LOGTYPE
macros) must be specified in EBCDIC characters; no hexadecimal capability is
provided for specifying these names.

The user may avoid translation of messages handled by a particular incoming or
outgoing group of a Message Handler by omitting the CODE macro from that
group. The user may avoid translation of messages received from or sent to the
lines in a certain line group by coding a CODE macro having no operand and by
specifying TRANS=EBCD in the line group DCB macro for the line group.

Translation is usually accomplished by using tables provided by TCAM, although ("
the user may provide his own translation tables if he wishes. The user providing
his own tables should format the individual 256-byte tables as described in the

186 OS/MFT and OS/MVT TeAM Programmer's Guide

example illustrating the use of the TRANS LA TE instruction in the OS publication
Principles of Operation. A user-defined translation table should consist of a
full word on a fullword boundary, followed by a 256-byte table for translating
from line code to EBCDIC, which is followed in turn by a 256-byte table for
translating from EBCDIC to line code. The initial word should contain the
address of the first byte of the second table. The control section containing the
user-written translation table must be included at link edit time for the MCP.

Translation tables are provided for all stations supported by TCAM. The names
of these tables are given in the following list. When one of these names. or the
name of a user-specified table, is coded as part of the TRANS= operand of the
line group DCB macro, incoming messages for thi!i line group are translated from
the specified line code to EBCDIC; outgoing messages are translated from
EBCDIC to the line code, when CODE macros are executed in the incoming and
outgoing groups of the MH for the line group. The table specified by the DCB
operand can be changed for messages to or from a particular line, station. or
application program by entering a different table name in the tablename operand
of the CODE macro and by using MSGTYPE macros or path switches to cause
different CODE macros to be executed for different messages (see Variable
Processing within a Message Handler in this chapter).

All of the characters in the character sets of each of the types of station supported
by TCAM can be represented within the computer. However, some characters
valid for one type of station may not be valid for another type, and some charac­
ters valid for a station may have no EBCDIC equivalents. The way in which
TCAM handles these problems is described in the sections NoneQuivalent
Characters and Substitutions in Appendix D. Internal and Transmission code
Charts.

See Appendix G. Device-Dependent Considerations. for specific information
about the character sets for the:

• 1050 Data Communication System;
• 2260 Display System;
• 2740 Communications Terminal;
• TWX stations;
• WTT A terminals.

Names of Code Translation Tables Provided by TCAM
Table Name Type of Conversion

1030

1050

105F

1060

2260

2265

2740

1030 code to EBCDIC and back

1050 code to EBCDIC and back

1050 code to EBCDIC and back;
converts incoming lowercase
letters to uppercase

1060 code to EBCDIC and back

2260 code to EBCDIC and back

2265 code to EBCDIC and back

2740 code to EBCDIC and back

Terminal

IBM 1030

IBM 1050

IBM 1050

IBM 1060

IBM 2260

IBM 2265

IBM 2740

Designing the Message Handler 187

Table Name Type of Conversion Terminal

274F 2740 code to EBCDIC and back; IBM 2740 ~ converts incoming lowercase
letters to uppercase

BC41 2741 BCD to EBCDIC and back IBM 2741

EB41 2741 EBCDIC to EBCDIC and back IBM 2741

CR41 2741 Correspondence Code to EBCDIC IBM 2741
and back

ITA2 5-level International Telegraph WTTA
Alphabet No.2 to EBCDIC and back

ZSC3 5-level Figure Protected Code WTTA
ZSC3 to EBCDIC and back

TTYA 5-level (Baudot) code to EBCDIC AT&T
and back 83B3,

WU 1I5A

TTYB 8-level TWX code to EBCDIC and back AT&T
33/35
TWX
(parity)

,,1
TTYC 8-level TWX code to EBCDIC and back AT&T '~

33/35
TWX
(non-
parity)

6BIT 6-bit Transcode to EBCDIC and back IBM 2780

ASCI ASCII to EBCDIC and back IBM 2770,
2780,3270.
3670,3735,
S/360, Model 20

EBCD No translation; coded for stations IBM 1130,
using EBCDIC transmission code, 2770.2780.
and when no translation is 2790,3270.
desired. 3670,3735,

3780, S/360,
Model 20

c

188 OS/MFT and OS/MVT TeAM Programmer's Guide

Using TCAM's Hold/Release Facility to Protect Outgoing Messages from Loss
TeAM can temporarily suspend transmission of outgoing messages to a station.
Transmission may be suspended either for a specified period of time or until the
user chooses to resume outgoing traffic. Messages may be held either by the
HOLD macro or by the operator command SUSPXMIT. and released by the
RESMXMIT operator command. by the MRELEASE macro issued in an applica­
tion program. or automatically at the expiration of the time interval specified by
the HOLD macro.

HOLD maybe used to defer transmission of messages that should not be sent
immediately because of error conditions at the destination station (the destination
is the station for the message being processed by the outmessage subgroup when
HOLD executes). If the macro is not used. messages that cannot be transmitted
because the destination is temporarily out of order are treated as if they have been
transmitted. even though they do not reach their destinations.

Once HOLD executes in an outmessage subgroup. no messages are sent to the
destination station either until the interval specified as an operand of the macro
expires. or until a RESMXMIT operator command or an MRELEASE application
program macro is issued. Accumulated messages can be released by RESMXMIT
or MRELEASE even though the specified time interval has not elapsed.

HOLD can be either unconditional or conditional based upon the setting of the
message error record. HOLD until a release is issued can be used if a station
unexpectedly fails. The error situation might be detected by a HOLD macro
based on the message error record. The interval format can be used if a station in
the system is scheduled for maintenance for a specific period of time. In this case.
an unconditional HOLD with the INTVL= operand might be used.

The HOLD macro cannot be executed for a station supported by main-storage­
only queues or for a station whose line is not open or has been opened idle. The
operator command SUSPXMIT. which also causes an intercept. cannot be used
unless a HOLD macro has been coded somewhere in the Message Handlers. If
the operator control hold facility alone is required. the HOLD macro coded in an
MH can specify an impossible combination of errors in the mask associated with
the message error record. This will ensure that the macro is never executed and
will provide the operator control capability.

In addition to its function of protecting outgoing messages from loss. HOLD also
may be used to achieve an inquiry/response capability. which is discussed in
TCAM's Inquiry/Response Facilities in the section Writing TCAM-Compatible
Application Programs.

Coding the Message Handler for an Application Program
The user may code a special Message Handler for his application program. or he
may include subgroups for his application program in an MH assigned to a line
group. In the latter case. he must use variable routing through the MH. as dis­
cussed in this chapter, to ensure that the application-program-related subgroups
are executed only for messages being sent to or received from an application
program. The PCB macro for an application program specifies the MH that
handles messages to or from that application program.

Designing the Message Handler 189

Design Steps

Do not code an outmessage subgroup in an MH handling messages destined for an
application program; functional macros that appear in such a subgroup do not
execute. An OUTMSG delimiter macro is not necessary since the OUTEND ~
macro provides any required TCAM functions in the absence of OUTMSG.

If any messages are to be entered by the application program an incoming group is
required. The incoming group must contain a FORWARD macro.

The following MH functional macros should not be coded in subgroups handling
messages being sent to or received from an application program: CUTOFF,
LOCK, UNLOCK, MSGFORM, MSGGEN, MSGLIMIT, INITIATE, and
SCREEN.

The design of a Message Handler and related control areas is complex because of
the large number of functions available in TCAM and the variety of requirements
of different installations. The following general outline suggests a possible
approach.

1. Define the requirements of the application. Are messages to contain both
header and text segments? Is an application program involved? How many
characters will be in a normal message and in the longest message? Optimum
buffer size depends on this.

2. Refer to the table of MH functions and macros defining the functions in a
previous section of this chapter and the related text to determine which func­
tional macro instructions might be used in the application. Study the detailed
descriptions of these macros. Tentatively select those macros that provide the
desired functions.

3. Design the message header, if applicable. Are the following fields
necessary--origin, date, time, destination (single or multiple), priority? Should
the field be entered by the terminal operator or inserted by the Message Han­
dler? What should the program EOA characters be?

4. Start from a minimum Message Handler (required delimiter macros) and add
the macros necessary to process the header.

5. Determine what validity checking is required and add the appropriate macro
instructions.

6. Determine what error conditions need to be tested for and handled.
7. Determine what supplementary functions are desired-logging, initiate han-

dling, message limit, etc.
8. Assemble the completed MCP and take a look at it before linkage editing.

No attempt should be made to write a Message Control Program in one step. A
program should first be written, assembled, and tested that provides a very few of
the desired functions. Other functions may be added as familiarity with the
TCAM facilities grows and as the simpler programs are run successfully. For
example, in a message switching application, a first program might include only
the delimiter macros and the ORIGIN, SEQUENCE, CODE, and FORWARD
functions. A second step might add the block checking function of the
STARTMH macro, DATETIME, and some ERRORMSG functions. A third step
might add multiple destinations, message counting and logging, and additional
error handling. A final step could add the MSGTYPE or PATH functions to
handle different message types.

The order in which macro instructions are specified requires thoughtful planning. (
It is important that some macro instructions be specified early enough in a sub­
group so that they act on the first header buffer; these macro instructions are

190 OS/MFT and OS/MVT TeAM Programmer's Guide

CODE, FORWARD, PRIORITY, and INITIATE (and PATH if all segments of
the message are to be handled alike). In determining the relative placement of
macros within the subgroup, the use of the scan pointer must be understood.
(Note the sample Message Control Programs in the chapter Putting the Me P
Together .)

Delimiter Macro Instructions
Delimiter macro instructions identify the beginning or the end of various groups
and subgroups of a Message Handler. They also provide initialization
(addressability) and control functions within an MH. In the table below are the
various groups and subgroups and the delimiter macro instructions that control
their execution.

The ST ARTMH macro identifies the beginning of an MH and must be the first
instruction in every MH. TCAM provides initialization by setting up base regis­
ters and addresses for an MH at this point. ST ARTMH code determines whether
the message being processed is incoming or outgoing and directs the segment to
the incoming or outgoing group accordingly. STARTMH handles end-of-block
checking, if specified.

ST ARTMH is the only delimiter macro that is always required. If the MH is to
handle incoming messages, the INHDR, INEND, and OUTEND delimiter macros
are required. If the MH is to handle outgoing messages, the OUTEND macro is
required. Each of the remaining delimiters is required only if the user chooses to
include in the MH the functional macros associated with that delimiter.

If an incoming group is present, an inheader subgroup (or an inblock subgroup
followed by an inheader subgroup) must be the first subgroup. An outheader
subgroup may be specified before or after an outbuffer subgroup (if both are
present). INEND and OUTEND identify the ends of the incoming and outgoing
groups respectively.

If an MCP contains more than one MH, a L TORG instruction (described in the
OS publication Assembler Language) should be coded immediately after the last
delimiter macro (INEND or OUTEND) of each MH if in-line user code includes
literals.

Designing the Message Handler 191

MH Groups, Subgroups, and Delimiter Macro Instructions

Message Handler

Group Subgroup Delimiter Macro

STARTMH

INBLOCK INBLOCK
SUBGROUP

INHEADER INHDR

INCOMING
SUBGROUP

GROUP
INBUFFER INBUF
SUBGROUP

INMESSAGE INMSG
SUBGROUP

INEND

OUTHEADER OUTHDR
SUBGROUP

OUTGOING OUTBUFFER OUTBUF
GROUP SUBGROUP

OUTMESSAGE OUTMSG
SUBGROUP

OUTEND

192 OS/MFT and OS/MVT TeAM Programmer's Guide

STARTMH

The STARTMH macro

• establishes addressability for an MH;
• directs messages to an incoming or outgoing group, as appropriate;
• specifies whether logical messages are defined;
• specifies whether line-control characters are to be left in messages;
• checks for occurrence of hardware errors during message transmission;
• handles user-detected logical errors;
• specifies whether tete-a-tete interaction may occur between the computer and a

station;
• specifies whether end-of-block completion handling is to be used;
• is required as the first macro in every MH.

STARTMH is required and must be the first macro instruction of every MH. This
macro causes EOB checking to be performed. If a recoverable error is detected
and no part of the block has been sent through the MH, retries are performed for
receive operations (regardless of what ST ARTMH operands may specify). How­
ever, if part of the block has been sent through the MH when a recoverable error
is detected, EOB checking requires that the STOP=, CONT=, CONV=, or
LOGICAL= operand be specified. Basically, this checking consists of determin­
ing whenever an EOB, ETB, ETX, or EOT control character is received, whether
certain types of transmission and user-specified logical errors have occurred; if so,
the message is disposed of according to certain operands specified in STARTMH.

For an incoming message, EOB checking occurs before a buffer containing an
EOB is processed by the MH. If a hardware error is detected and retry is possible,
a retry operation is performed (see the Glossary for a definition of retry). No
message handling occurs until the block is received again. If retry is not possible
(because, for instance, the retry count is exhausted), either the error is ignored
and the channel program is restarted to receive the next block, or transmission is
terminated and the buffer continues through the MH, which processes it as the
last buffer of the message.

A buffer containing an incoming message segment is passed to the appropriate
subgroup after EOB checking (if any), and when it is full. Depending upon how
the user has coded the PCI= operand of the line group DCB macro, and upon
whether or not his incoming message contains EOB, ETB, or ETX control charac­
ters, the buffer may be deallocated and passed to the appropriate MH subgroup
soon after it is filled, or it may not be passed to the appropriate subgroup until
transmission has ceased on the line; the latter case assumes there were no control
characters in the incoming message. (See Dynamic and Static Buffer Allocation
in the chapter Defining Buffers). A full buffer is deallocated whenever a
program-controlled interruption occurs; if PCI=N is specified, deallocation occurs
when an EOB, ETB, or ETX control character is received (if there are no such
characters, de allocation of buffers occurs after the transmission is completed).

For outgoing messages, EOB checking (if specified) is performed after each block
is transmitted. No check is made for logical errors. The transmission of a particu­
lar block is deemed successful if the receiving terminal acknowledges that it has
successfully received the block. Transmission errors detected by the terminal
result in retries. Once the retry count is exhausted, transmission is either termi­
nated or allowed to continue, as for incoming messages. After transmission has

Designing the Message Handler 193

mhname

terminated, control passes to the outmessage subgroup, whose macros may then
check the message error record for the message and take appropriate action.

See Appendix G. Device-Dependent Considerations, for specific coding informa­
tion concerning the 1030 Data Collection System, the 1060 Data Communication
System, the 2770 Data Communication System, and the 2780 Data Transmission
Terminal.

If the user specifies dynamic buffer deallocation by the PCI= operand of the line
group DCB macro, and if the block size for his incoming messages is greater than
his buffer size for incoming messages, segments containing transmission errors
may be processed by the inheader and in~uffer subgroups of the MH before the
EOB-checking routine detects the errors. In this case, when the EOB-checking
routine detects the errors, segments in this block that have been enqueued are
dequeued or ignored, and the input sequence number is decremented if it was
incremented by a canceled segment. Dequeuing and sequence-number adjustment
are done automatically by TCAM. However, any option fields that were updated
on the basis of data in the canceled segments remain updated, and if the canceled
segments were logged they remain on the logging medium.

When the INITIATE macro is executed in the inheader subgroup handling an
incoming message, EOB checking is performed for that message, but there are no
retries on the receive side (TCAM assumes an EOT condition when an error is
detected on the receive side).

Name Operation Operand

mhname STARTMH LC= ~~UT~
[toP} t s }]

CONT = (opfield,switch)

[CONY -{ ~g~ield,switCh)}]
[LOGICAL- VOPfield) (J

(opfield 1 ,switch,opfield2)

rREG-1 ~teger (J
[LMD_ rES }]

~6field,SWitch)

Function: Name of the macro and of the Message Handler.
Default: None. This name must be specified.
Format: Must conform to the rules for assembler language symbols (see the C
symbol entry in the Glossary).

194 OS/MFT and OS/MVT TeAM Programmer's Guide

LC= {IN }
OUT

STOP= {YES }
(opfield.switch)

Notes: Must be the same as mhname specified in the MH= operand of the DCB
for the line group that uses this Message Handler.

Function: Specifies whether line-control characters in a start-stop message or in a
BSC message in nontransparent mode are to be removed.
Default: None. This operand must be specified.
Format: IN or OUT.
Notes: OUT causes TCAM to remove EOA and EOB line-control characters
from incoming messages entered at a start-stop station. and to remove STX. ETX.
SOH. and ETB line-control characters from incoming messages entered at a BSC
station. EOT line-control characters are not removed when OUT is specified.
EOB and ETB line-control characters are not removed when CONY = YES is
specified, regardless of how LC= is coded. Line-control characters are not
removed until after the message segment is in a buffer; therefore, the buffer must
be large enough to accomodate line control.

The ITB control character is not considered by TCAM to be a line-control
character and is not removed when OUT is specified.

IN causes the line control to remain in incoming messages (unless such messages
are in transparent mode. in which case "'real" line-control characters are removed
regardless of how this operand is coded).

Function: When a message block is found to be in error, this operand
(conditionally) specifies that once the retry count is exhausted, transmission of
this message is to be terminated. The error may be a hardware error or may be a
user-detected logical error if the LOGICAL= operand is also specified.
Default: None. Specification optional.
Format: YES or (opfield,switch). opjield must conform to the rules for assem­
bler language symbols, and must be the name of a one-byte option field defined
by an OPTION macro. switch may be either decimal or hexadecimal. If hexade­
cimal format is used, framing X' , characters must be specified.
Maximum: 255 or a one-byte hexadecimal field for switch.
Notes: YES specifies that transmission is to be terminated unconditionally.
(opfield.switch) specifies that transmission is to be terminated if any of the bits on
in the switch are also on in the option field.

When transmission is terminated because of an error detected by EOB checking,
that portion of the message that has been received (or sent) continues through the
incoming (or outgoing) group of the MH, where it is treated as if it were a com­
plete message. The user may issue certain error-handling macros in the inmessage
(or outmessage) subgroup of the MH that test bit 25 of the message error record
and dispose of the message according to his specifications if bit 25 (which indi­
cates that an error occurred during transmission of data) is on. If this operand is
omitted, end-of-block checking is not done.

Designing the Message Handler 195

CONT= ~ YES t
1 (opfield,switch) ~

CONV= ~ YES l t ~~ield,switCh) ~

Function: When a message block is found to be in error, this operand
(conditionally) specifies that once the retry count is exhausted, transmission of
this message is to be continued.
Default: None. Specification optional.
Format: YES or (opfield,switch). opfield must conform to the rules for assem­
bler language symbols, and must be the name of a one-byte option field defined
by an OPTION macro. switch may be either decimal or hexadecimal. If hexade­
cimal format is used, framing X' , characters must be specified.
Maximum: 255 or a one-byte hexadecimal field for switch.
Notes: YES specifies that transmission is to continue unconditionally.
(opfield,switch) specifies that transmission is to continue if any of the bits on in
the switch are also on in the option field.

When an error occurs, a bit in the message error record is set on. Message seg­
ments are sent to the appropriate MH group as if no EOB error had been found.
If this operand is omitted, end-of-block checking is not done.

Function: Specifies whether EOB completion handling is to be used for the
station, and (in conjunction with a LOCK macro) whether tete-a-tete interaction
is in effect for the station.
Default: CONV=NO
Format: YES or NO or (opfield,switch). opfield must conform to the rules for :,.
assembler language symbols, and must be the name of a one-byte option field
defined by an OPTION macro. switch may be either deCimal or hexadecimal. If
hexadecimal format is used, framing X' , characters must be specified.
Maximum: 255 or a one-byte hexadecimal field for switch.
Notes: YES specifies that tete-a-tete interaction is to be used unconditionally,
and that a logical block of data being entered by a station is to be treated by
TCAM as if it were a complete message.

NO specifies that tete-a-tete interaction and EOB-completion handling are not to
be used.

(opfield,switch) specifies that tete-a-tete interaction and EOB-completion handling
are to be used if any of the bits on in the switch are also on in the option field. If
the path-switch setting is to be changed for this message, the first buffer must not
contain an EOB if a change in EOB-completion handling is desired for this
message. If an EOB appears in the first buffer of this message, the next message
will be the first message affected by the change.

If the CONV= operand is specified, STOP= or CONT= must also be specified.
If LMD= is coded with the (op!ield,switch) option, CONV='can not use the
(opfield,switch) option. For an explanation of tete·a·tete interaction, see
TCAM's Inquiry/Response Facilities in Writing TCAM·Compatible Application
Programs.

c

196 OS/MFT and OS/MVT TeAM Programmer's Guide

LOGICAL= {(OPfield) }
(opfield 1,switch,opfield2)

Function: Specifies whether a user-written routine is to be given control
(conditionally) to test for logical errors (such as formatting errors in a card or an
inquiry addressed to the wrong application program) in incoming messages on a
block-by-block basis.
Default: None. Specification optional.
Format: (opfield) or (opfieldl ,switch,op/ield2). opfieldl and opfield2 must
conform to the rules for assembler language symbols, and must be the names of
option fields defined by OPTION macros. switch may be either decimal or
hexadecimal. If hexadecimal format is used, framing X' , characters must be
specified.
Maximum: 255 or a one-byte hexadecimal field for switch.
Notes: (opfield) specifies that a user-written routine is to be given control uncon­
ditionally. opfield refers to a four-byte option field, the high-order byte of which
indicates that an error has been found. The low-order three bytes are the address
of the routine to be given control. (opfield l.switch,opfield2) specifies that the
user-written routine specified in opfield 1 is to be given control conditionally if
any of the bits on in switch are also on in the one-byte opfield2 .

If this operand is specified, STOP= or CONT = must also be specified. The user
may initialize the routine name, option field by coding a V-type address constant
naming his routine as part of the OPDAT A= operand of the TERMINAL or
TPROCESS macro. Upon return from the user routine, ST ARTMH examines the
high-order byte of the field. If the byte is not zero and if the STOP= operand
specifies that transmission is to be terminated, transmission is terminated. If the
byte is zero, or if the CONT= operand is in effect, operations are restarted on the
line. If the byte is X'04' and the STOP= operand does not specify that transmis­
sion be terminated, TCAM will send a Reverse Interrupt (RVI) control sequence
on a BSC line instead of the positive reply to the previous text block. (For
additional information on RVI see the publication General Information-Binary
Synchronous Communications, GA27-3004.) This capability allows the user to
interrupt the receipt of blocks from terminals on a BSC line and to send a high­
priority message over that line. The user codes LOGICAL=(opfield) on the
STARTMH macro. The routine pointed to by the low-order, three bytes of the
option field will execute an instruction that will set the high-order byte of the
option field to X'04', if the user desires this capability.

The user routine must save and restore registers 2 through 12, and must not alter
the contents of register 13 and 14. On entry to the user routine the following
registers contain:

Register I-address of the four-byte option field containing the one-byte error
indicator followed by the address of the user routine.

Register 4-address of the LCB (line control block), an internal TCAM control
area described in the TCAM PLM.

Register 6-address of the last buffer in the block of the data (the buffer con­
taining the EOB); this is the only buffer in this block that may be tested for
logical errors by the user routine.

Register 8-address of the SCB (station control block), an internal TCAM
control area described in the TCAM PLM.

Designing the Message Handler 197

BREG= { teger}

LMD={YES }
~~field, switch)

Register 13- address of a TCAM save area; must not be altered.

Register 14-return address for the calling routine; must not be altered.

Register IS-address of the entry point for the user routine.

Function: Specifies the number of base registers desired for this MH.
Default: BREG= 1
Format: An unframed decimal integer between 1 and 11.
Maximum: 11
Notes: One base register is required for each 4096 bytes in the MH. Assignment
begins with register 12 and works back to O. If BREG=3 is coded, for instance,
registers 12, 11 and 10 are assigned as the base registers for the first three 4096-
byte blocks of this Message Handler.

Function: Specifies whether this MH is to handle logical messages.
Default: LMD=NO
Format: YES NO or (opfield,switch). opfteld must conform to the rules for
assembler language symbols, and must be the name of a one-byte option field
defined by an OPTION macro. switch may be either decimal or hexadecimal. If
hexadecimal format is used, framing X' , characters must be specified.
Maximum: 255 or a one-byte hexadecimal field for switch.
Notes: YES specifies that this MH is to be used solely for handling logical mes­
sages. If NO is specified, or if this operand is omitted, this MH is to handle each
physical transmission as a message (without defining logical messages with the
SETEOM macro). (opfield,switch) specifies that tete-a-tete interaction and
EOB-completion handling are to be used if any of the bits on in the switch are
also on in the option field. If the path-switch setting is to be changed for this
message, the first buffer must not contain an EOB if a change in EOB-completion
handling is desired for this message. If an EOB appears in the first buffer of this
message, the next message will be the first message affected by the change.
LMD= YES must be coded if this MH contains a SETEOM macro instruction. If
CONY = is coded with the (opfield,switch) option, LMD= cannot be coded with
the (opfield,switch) option. Logical messages are discussed in Handling Logical
Messages in the chapter DeSigning the Message Handler.

198 OS/MFT and OS/MVT TeAM Programmer's Guide

r(
"

~ymbol

PATH = (opfield,switch)

INBLOCK

The INBLOCK macro

• identifies the beginning of an inblock subgroup,
• is required if logical messages are to be handled by this MH, or if the

MSGFORM macro is used on input, or if a character string specified on
MSGEDIT may cross buffer boundaries,

• if present, must precede the inheader subgroup.

The INBLOCK macro, when used, must be the first macro following ST ARTMH.
Otherwise, the INHDR delimiter macro must be the first instruction following
STARTMH.

The inblock subgroup may contain one, and only one, SETEOM functional macro.
Other functional macros that may be included in this subgroup are listed below.
Their positions relative to SETEOM determine whether they operate on all data in
an entire incoming transmission sequence, or whether they operate on one or more
blocked or deblocked logical messages; any of the following functional macros
that are issued before the SETEOM macro act on all the incoming data in a
physical transmission sequence, and any issued after SETEOM act on one or more
of the resulting logical messages.

• CODE
• COUNTER
• LOG
• LOCOPT
• MSGEDIT
• MSGFORM
• MSGLIMIT
• PATH
• SETEOM
• TERRSET

Name Operation Operand

[symbol] INBLOCK [P A TH = (opfield,switch)]

Function: Name of the macro.
Default: None. Specification optional.
Format: Must conform to the rules for assembler language symbols (see the
symbol entry in the Glossary).

Function: Specifies conditional execution of this macro.
Default: None. Specification optional.
Format: (opfield,switch). opfield must conform to the rules for assembler lan­
guage symbols, and must be the name of a one-byte option field defined by an
OPTION macro. switch may be either decimal or hexadecimal. If hexadecimal
format is used, framing X' , charac:ters must be specifieo.

Maximum: 255 or a one-byte hexadecimal field for switch.

Notes: If this operand is not specified, the subgroup is executed unconditionally.

Designing the Message Handler 199

INHDR

symbol

PATH=(opfield,switch)

The INHDR macro

• identifies the beginning of an inheader subgroup;
• tests a path switch to allow alternative courses of action;
• is required as the first macro of any incoming group if the INBLOCK macro is

not specified.

INHDR identifies the beginning of an inheader subgroup, in which the functional
macros are concerned onJy with incoming header segments. If the inblock sub­
group is not required, an inheader subgroup must be the first subgroup in the
incoming group. If MSGFORM on input is specified, or if MSGEDIT is used
across buffer boundaries, or if incoming logical messages are being handled by this
MH, an in block subgroup must be the first subgroup in the incoming group. Text
segments are passed to the first inbuffer subgroup.

INHDR determines whether an incoming message segment is a header or text
segment (the first segment of any message is always considered to be'a header
segment). If it is a text segment or a canceled message, the segment is passed to
the next subgroup; if it is a header segment, the inheader subgroup is executed.

If the PATH= operand of INHDR is coded, INHDR examines a one-byte path
switch in a field of the option table. If any of the bits specified by INHDR are on
in the path switch, this subgroup is executed. If none of the bits are on, control is
directed to the next subgroup. If INHDR does not specify an operand, this
subgroup is executed unconditionally. For a more complete description of the
path switch and its function, see Variable Processing within a Message Handler

(~
in this chapter. ~

Name Operation Operand

[symbol] INHDR [PATH = (opfield,switch)]

Function: Name of the macro.
Default: None. Specification optional.
Format: Must conform to the rules for assembler language symbols (see the
symbol entry in the Glossary).

Function: Specifies conditional execution of this macro.
Default: None. Specification optional.
Format: (opfield,switch). opfield must conform to the rules for assembler
language symbols, and must be the name of a one-byte option field defined by an
OPTION macro. switch may be either decimal or hexadecimal. If hexadecimal
format is used, framing X' , characters must be specified.
Maximum: 255 or a one-byte hexadecimal field for switch.
Notes: If this operand is not specified, the subgroup is executed unconditionally.

c

200 OS/MFT and OS/MVT TeAM Programmer's Guide

,>ymbol

fpATH=(opfield,switch)

The INBUF macro

• identifies a subgroup that handles incoming message buffers;
• tests a path switch to allow alternative courses of action;
• is optional in the incoming group.

INBUF identifies the beginning of an inbuffer subgroup, which contains instruc­
tions concerned with both header and text portions of incoming messages.

INBUF

If the PA TH= operand of INBUF is coded, INBUF examines a path switch in a
field of the option table. If any of the bits specified by INBUF are on in the path
switch, this subgroup is executed. If none of the bits specified by INBUF are on
in the path switch, processing goes to the next subgroup. If INBUF does not
specify an operand, this subgroup is executed unconditionally.

Name Operation Operand

[symbol] INBUF [P A TH = (opfield,switch)]

Function: Name of the macro.
Default: None. Specification optional.
Format: Must conform to the rules for assembler language symbols (see the
symbol entry in the Glossary).

Function: Specifies conditional execution of this macro and its su bgroup.
Notes: For details concerning this operand, see the description of the INHDR
macro.

Designing the Message Handler 201

INMSG

~ymbol

PA TH =(opfield,switch)

The INMSG macro

• identifies the beginning of an inmessage subgroup;
• tests a path switch to allow alternative courses of action;
• is required as the first macro in an inmessage subgroup;
• is optional in the incoming group.

INMSG identifies the beginning of an inmessage subgroup. The functional
macros associated with this subgroup are executed after an entire message or
block has entered the system. Inmessage subgroups are specified after other
subgroups in the incoming group. No user-written code should be included in an
inmessage subgroup, or between such subgroups.

If the PATH= operand of INMSG is coded, INMSG examines a path switch in a
field of the option table. If any of the bits specified by INMSG are on in the path
switch, this subgroup is executed. If none of the bits specified by INMSG are on,
processing branches to the next subgroup. If INMSG does not specify an oper­
and, this subgroup is executed unconditionally. Only one inmessage subgroup per
message can be executed.

INMSG causes empty buffer units at the end of a buffer processed by this Mes­
sage Handler to be deallocated before the contents of the buffer are queued for a
destination. Deallocated units are returned to the available unit queue. When the
inmessage subgroup is not included in a Message Handler, this deallocation
function is performed by the INEND macro.

Name Operation Operand

[symbol] INMSG [PA TH= (opfield,switch)]

Function: Name of the macro.
Default: None. Specification optional.
Format: Must conform to the rules for assembler language symbols (see the
symbol entry in the Glossary).

Function: Specifies conditional execution of this macro and its subgroup.
Notes: For details concerning this operand, see the description of the INHDR
macro.

~

202 OS/MFT and OS/MVT TeAM Programmer's Guide

ymbol

INEND

The INEND macro

• identifies the end of the incoming group of an MH;
• is required as the last macro of any incoming group.

INEND identifies the end of the instruction sequence that processes incoming
messages. One and only one INEND macro is required for each MH with an
incoming group, and it must be the last macro in the incoming group. No operand
is required.

Name Operation Operand

[symbol] INEND (no operands)

Function: Name of the macro.
Default: None. Specification optional.
Format: Must conform to the rules for assembler language symbols (see the
symbol entry in the Glossary).

There are no operands for this macro.

Designing the Message Handler 203

OUTHDR

symbol

PATH=(opfield,switch)

The OUTHDR macro

• identifies the beginning of an outheader subgroup;
• tests a path switch to allow alternative courses of action;
• is optional in an outgoing group.

OUTHDR identifies the beginning of an outheader subgroup, which is concerned
only with the header portions of outgoing messages and, if included, may be either
before or after an outbuffer subgroup in the outgoing group.

An outgoing segment is tested to see whether it is a header or a text segment. The
outheader subgroup is executed only on a header segment; it is bypassed if the
segment contains text only.

If the PATH= operand of OUTHDR is coded, OUTHDR examines a path switch
in a field of the option table. If any of the bits specified by OUTHDR are on in
the path switch, this subgroup is executed. If none of the bits are on, control
passes to the next subgroup. If OUTHDR does not specify an operand, this
subgroup is executed unconditionally.

Name Operation

[symbol] aUTHDR

Function: Name of the macro.
Default: None. Specification optional.

Operand

[PA TH= (opfield,switch)]

Format: Must conform to the rules for assembler language symbols (see the
symbol entry in the Glossary).

Function: Specifies conditional execution of this macro and its subgroup.
Notes: For details concerning this operand, see the description of the INHDR
macro.

204 OS/MFT and OS/MVT TeAM Programmer's Guide

iymbol

PATH = (opfield,switch)

OUTBUF

The OUTBUF macro

• identifies a subgroup that handles outgoing message buffers;
• tests a switch to allow alternative courses of action;
• is optional in an outgoing group.

OUTBUF identifies the beginning of an outbuffer subgroup that contains instruc~
tions concerned with both header and text portions of outgoing messages. If
induded, an outbuffer subgroup may be located either before or after an out~
header subgroup in the outgoing group.

If the PATH= operand of OUTBUF is coded, OUTBUF examines a path switch
in a field of the option table. If any of the bits speci(ied by OUTBUF are on in
the path switch, this subgroup is executed. If none of the bits specified by
OUTBUF are on, control passes to the next subgroup. If OUTBUF does not
specify an operand, this subgroup is executed unconditionally.

Name Operation Operand

[symbol] OUTBUF [P A TH = (opfield,switch)]

Function: Name of the macro.
Default: None. Specification optional.
Format: Must conform to the rules for assembler language symbols (see the
symbol entry in the Glossary).

Function: Specifies conditional execution of this macro and its subgroup.
Notes: For details concerning this operand, see the description of the INHDR
macro.

Designing the Message Handler 205

OUTMSG

symbol

PATH =(opfield,~witch),

The OUTMSG macro

• identifies the beginning of an outmessage subgroup of an MH;
• tests a path switch to allow alternative courses of action;
• is required as the first macro in an outmessage subgroup;
• is optional in an outgoing group.

OUTMSG identifies the beginning of an outmessage subgroup, which is executed
only after an entire block or message has been sent. Outmessage subgroups are
specified after other subgroups in the outgoing group.

If the PATH = operand of OUTMSG is coded, OUTMSG examines a path switch
in a field of the option table. If any of the bits specified by OUTMSG are on in
the path switch, this subgroup is executed. If none of the bits specified by
OUTMSG are on, control passes to the next subgroup. If OUTMSG does not
specify an operand, this subgroup is executed unconditionally. Only one
OUTMSG subgroup per message can be executed.

OUTMSG causes empty units at the end of buffers handled by this outgoing group
to be deallocated and returned to the available unit queue. If an out message
subgroup is not coded, this de allocation function is performed by OUTEND.

Name Operation Operand

[symbol] OUTMSG [PATH=(opfield,switch)]

Function: Name of the macro.
Default: None. Specification optional.
Format: Must conform to the rules for assembler language symbols (see the
symbol entry in the Glossary).

Function: Specifies conditional execution of this macro and its subgroup.
Notes: For details concerning this operand, see the description of the INHDR
macro.

206 OS/MFT and OS/MVT TeAM Programmer's Guide

~ymbol

OUTEND

The OUTEND macro

• identifies the end of any outgoing group;
• is required as the last macro in any outgoing group.

OUTEND identifies the end of the instruction sequence that processes outgoing
messages. One OUTEND macro is required for each outgoing group; it must be
the last macro in the group. No operands are required.

Name Operation Operand

[symbol] OUTEND (no operands)

Function: Name of the macro.
Default: None. Specification optional.
Format: Must conform to the rules for assembler language symbols (see the
symbol entry in the Glossary).

There are no operands for this macro.

Designing the Message Handler 207

Functional Macro Instructions
This section describes the functions provided by the MH macro instructions. The
discussion of each macro begins with a capsule summary of its functions. The
functions of the macro are then described in detail, with a discussion of related
topics necessary to an understanding of these functions.

The coding of the macro is then described, using a boxed illustration. The formats
of the macro illustrations and the symbols used are shown in Appendix A .
General rules for interpretation of the operand descriptions are also provided in
Appendix A , to which the reader should refer.

Designing the Message Handler 209

CANCELMG

symbol

mask

The CANCELMG macro

• cancels messages either unconditionally or when certain errors occur (or, if
mid-batch recovery is specified on this macro, permits the user to continue
entering data when TCAM detects an error);

• is optional in an inmessage subgroup (and is permitted in no other subgroup);
• if specified, must be the first functional macro executed in the subgroup.

For messages other than multi block messages, CANCELMG causes immediate
cancellation of an entire message if any errors specified by the error mask operand
are also set in the message error record (see Appendix B for a description of the
message error record). A canceled message is not sent to any of its destinations.

The ERRORMSG or MSGGEN macro may be used to notify the terminal opera­
tor of the error, or the REDIRECT macro may be used to send the message that is
in error to a selected destination.

For a multiblock message, CANCELMG stops processing the message from the
point that an error is detected. Once the terminal operator resumes input (starting
with the block immediately after the last entire block successfully entered), the
remainder of the multiblock message is processed by this MH.

Note: CANCELMG should not be executed for a message if an INITIATE
macro has been executed for that message.

If the CANCELMG macro is executed in the inmessage subgroup for a lock mode
message, the lock is not broken and the terminal will be repolled.

Name Operation Operands

[symbol] CANCELMG [maskU,CONNECT= {~~D}] [,LEVEL={BLK }1
MSG

Function: Name of the macro.
Default: None. Specification optional.
Format: Must conform to the rules for assembler language symbols (see the
symbol entry in the Glossary).

Function: Specifies the five-byte bit configuration used to test the message error
record for the message (the message error record is described in Appendix B).
Default: None. Specification optional.
Format: Decimal or hexadecimal. If hexadecimal format is used, framing charac­
ters must be specified. If X' , is used, leading zeros must be coded. If XL5' , is
used, leading zeros may be omitted.
Maximum: 16777215 or a hexadecimal field five bytes in length.
Notes: If the LEVEL= operand is not specified, and this operand either specifies
an all-zero mask or is omitted, CANCELMG executes unconditionally.

210 OS/MFT and OS/MVT TeAM Programmer's Guide

CONNECT = ~ ~:D ~

LEVEL= ~ BLK t
1MSG f

Function: Specifies the type of logical connection to be made between the mask and
the message error record.
Default: CONNECT=OR
Format: AND or OR.
Notes: AND specifies that the macro is to be executed only if all of the bits
specified by mask are on in the message error record.

OR specifies that the macro is to be executed if any bit specified by mask is on in
the message error record.

Function: Specifies mid-batch recovery for errors detected in multiblock messages.
Default: LEVEL=MSG. If mid-batch recovery is desired for incoming multi­
block messages, this operand is required.
Format: BLK or MSG.
Notes: When this operand is specified and TCAM detects a permanent error after
the first block of an incoming multiblock message, TCAM queues all error-free
data up to the error (but not including the error) before it resumes receiving
operations for the line. The station operator can then correctly reenter that
portion of the message beginning with the data following the last successfully
transmitted block. See mid-batch recovery elsewhere in this publication.

If multiple CANCELMG macros are issued in the same inmessage subgroup, only
the first may specify LEVEL=BLK, and there may be no other macros issued
between CANCELMG macros.

If an error mask is specified when LEVEL=BLK is specified, the CONNECT=
operand must specify OR.

Example 1:
CANCELMG X' 0000080100' ,CONNECT=AND

specifies that the message is to be canceled only if bits 20 and 31 of the message
error record are both on.

Example 2:
CANCELMG 524544, CONNECT=OR

specifies that the message is to be canceled if either bit 20 or bit 31 of the message
error record is on.

Designing the Message Handler 211

CHECKPT

~ymbol

The CHECKPT macro

• causes an incident checkpoint record to be taken of the option fields for the
originating or destination station or application program;

• may be coded in any subgroup of the Message Handler except the inblock
subgroup.

When coded in an inheader, inbuffer, or inmessage subgroup, the CHECKPT
macro causes an incident checkpoint record to be made of the option fields
assigned to the originating station or application program. This checkpoint record
is taken after the entire incoming group has executed and the message has been
enqueued, so that the option fields reflect the fact that a message has been
processed by the incoming group.

When coded in an outheader, outbuffer, or outmessage subgroup, CHECKPT
causes an incident checkpoint record to be taken of the option fields assigned to
the destination station or application program. This checkpoint record is taken
after the entire outgoing group has been executed and the message has been sent.
The option fields reflect the fact that a message has been sent by the outgoing
group.

If a message segment goes through any subgroup in which a CHECKPT macro is
executed, an incident checkpoint record is made after that message has been
completely handled by the appropriate MH group. Only one record per message
is made, even if more than one CHECKPT macro is coded in the group. If no
CHECKPT record is coded in a group, no incident checkpoint record is made 4

h h I h (~ w en t e message eaves t e group. ~

For more information on TCAM's checkpoint facility, see the chapter Using
TeAM Service Facilities.

CHECKPT has the following format:

Name Operation Operands

[symbol] CHECKPT (no operands)

Function: Name of the macro.
Default: None. Specification optional.
Format: Must conform to the rules for assembler language symbols (see the
symbol entry in the Glossary).

The CHECKPT macro has no operands.

(

212 OS/MFT and OS/MVT TeAM Programmer's Guide

~\
i

CODE

The CODE macro

• translates the data in the buffer being handled;
• tests for operator commands;
• is optional in the inblock, inheader, inbuffer, outheader, and outbuffer sub-

groups (and not permitted in any other subgroups);
• may be issued at any point in the subgroup.

CODE causes the message segment being handled to be translated. If specified in
an inblock, inheader, or inbuffer subgroup, translation is from line code to
EBCDIC; if specified in an outheader or outbuffer subgroup, translation is from
EBCDIC to the line code. Translation should not be performed in the Message
Handler for an application program because both the Message Handler and the
application program work on EBCDIC data. CODE may be issued with no
translation if operator control is desired in the application program. The line code
to be used is specified by the TRANS= operand of the DCB macro or by an
operand of the CODE macro (which overrides the table specified in the DCB
macro).

If CODE is included in a subgroup, and any segments of a message are processed
by that subgroup, the entire message is translated (special considerations for
logical messages are discussed following the example below). Macros issued
before CODE in the incoming group act on message characters that are in line
code, while macros issued following CODE act on message characters that are in
EBCDIC. The converse is true for the outgoing group. If CODE is not included
in the incoming group, incoming messages are not translated; if CODE is not
included in the outgoing group, outgoing messages are not translated.

Once a message has been translated by a CODE macro executed in a subgroup of
an incoming or outgoing group, care should be taken that no segment of it is
routed through another subgroup when the second subgroup also contains a
CODE macro. The second CODE macro would "translate" the message into
gibberish.

The CODE macro permits flexibility of handling of buffers with respect to
translation by overriding the translation table specified for the line group.

CODE tests for operator commands and transfers control accordingly. If operator
commands may be entered by any station on a line, then a CODE macro should
be issued in the inheader subgroup of the MH handling incoming messages on that
line. If the LC= operand of the STARTMH macro is coded LC=OUT (that is, if
line-control characters are to be automatically stripped from incoming messages),
then CODE should be the first functional macro issued in either the inblock or the
inheader subgroup for a line on which operator commands may be entered. If
STARTMH is coded LC=IN (if line-control characters are not to be removed
from incoming messages by TCAM), then a SETSCAN macro should be issued
immediately before CODE. The SETSCAN macro should move the scan pointer
to the last of the initial line-control characters.

The user may wish to enter one or more characters in front of the character string
that identifies his operator command. This is permissible as long as the user sets
his scan pointer to the non blank character immediately preceding the operator
control character string before issuing CODE.

Designing the Message Handler 213

The CODE macro must be issued in either the inblock or the inheader subgroup
handling messages from a station, if operator commands may be entered by that
station. However, the user may not wish to translate other messages entered at the
station. One way to avoid having to translate every message follows (assume that
line code is removed from incoming messages).

Code a special inheader subgroup as the first subgroup of the incoming group; this
special subgroup may consist of a MSGTYPE macro followed by a CODE macro.
The MSGTYPE macro examines the first field in each incoming message in line
code and executes only if this field consists of some specific character-for
instance A. Enter A before the identification sequence of each operator com­
mand. If the first character of a message is A, the CODE macro will execute, and
the message will be translated-otherwise, control will be passed to the next
delimiter, which may be another inheader subgroup designed to handle messages
other than operator commands in line code.

Example:
The following code might be used to check for operator commands entered at a
1050 station, and to cause each incoming message to be translated only if it is art
operator command. It is assumed that line code is removed from incoming
messages and that the operator at the station enters an A immediately in front of
the identification sequence for an operator command.

OCMH STARTMH LC=OUT,STOP=YES

OCCIlK INHDR
MSGTYPE X'E2'
CODE

NONOC INHDR
INBUF
INMSG
INEND

An incoming message enters the first inheader subgroup. If A (which is X'E2' in
1050 line code) is the first character in the message, CODE is executed. If this is
an operator command, the CODE macro causes it to be handled as such, and it
never reaches the second inheader subgroup. A message that does not begin with
A is not translated and is passed to the second inheader subgroup, which contains
macros that handle ordinary (not operator control) messages.

The CODE macro instruction provides the same functions for logical messages
(translation and checking for operator commands) as those described above.
However, the following special considerations apply to the CODE macro when it
is used in the inblock subgroup handling incoming messages to be deblocked into
multiple logical messages. Logical messages formed by blocking incoming physi­
cal transmissions require no special considerations. Logical messages are dis­
cussed in Handling Logical Messages in this chapter.

214 OS/MFT and OS/MYT TeAM Programmer's Guide

,
i .,.

«

symbol

~ tablename ~
NONE
(register)

The format of an incoming physical transmission that is to be deblocked is

E
o

E
o

E
o

E
o

~14~-----------------------P--------------------------~~
where P is all the data in the entire physical transmission and Ll-L3 are the logical
messages that will result from deblocking P.

When the CODE macro is issued in the inblock subgroup before the SETEOM
functional macro, all the incoming data (P) is translated. If logical messages Ll,
L2, and L3 are to be checked to determine if they are operator commands, the
inheader subgroup of this incoming group must contain another CODE macro
specifying NONE.

When issued after the SETEOM macro, CODE functions in the same manner as
described in the section preceding the example above, except that the CODE
macro cannot be used to check for operator commands.

CODE has the following format:

Name Operation Operands

[symbol] CODE rblename}I
NONE.
(register)

Function: Name of the macro.
Default: None. Specification optional.
Format: Must conform to the rules for assembler language symbols (see the
symbol entry in the Glossary.)

Function: Specifies the type of translation to be done.
Default: None. Specification optional.
Format: tablename, (register) or NONE. tablename must either be one of the
names permitted for the TRANS= operand of the DCB macro or the name of a
user-defined table that conforms to the rules for assembler language symbols.
(register) must specify a decimal integer between 2 and 11.
Notes: If this operand is omitted, the table used for translation is that specified by
the TRANS= operand of the DCB macro.

If NONE is specified, the message is not translated. None can be used to check
for operator commands when the station transmits in EBCDIC.

Designing the Message Handler 215

If (register) is specified, the register must previously have been loaded with the
address of the table to be used. A user-defined translation table must consist of a
fullword on a fullword boundary, followed by a 256-byte table for translating 1
from line code into EBCDIC, followed by a 256-byte table for translating from
EBCDIC into line code. The first word must contain the address of the first byte
of the second table. The high-order byte of the first word must be zero.

216 OS/MFT and OS/Mvr TeAM Programmer's Guide

symbol

LlST=name

MAXDEEP=integer

COMMBUF

The COMMBUF macro

• is optional in the inheader and in buffer subgroups of an MCP that supports
3670 terminals equipped to receive broadcast messages;

• routes broadcast messages to the destinations specified in the indicated TLIST
macro.

COMMBUF has the following format:

Name Operation Operand

[symbol] COMMBUF LIST =name,MAXDEEP=integer

Function: Name of the macro.
Default: None. Specification optional.
Format: Must conform to the rules for assembler language symbols (see the
symbol entry in the Glossary).

Function: Specifies the name of a TLIST macro that should contain the names of
the broadcast terminals (TERM=367C on the TERMINAL macro).
Format: Must conform to the rules for assembler language symbols.

Function: Specifies the maximum number of broadcast operations that may be
scheduled for a line at anyone time.
Default: None. This operand must be specified.
Format: Unframed decimal integer greater than zero.
Maximum: 65535
Notes: The COMMBUF macro moves the data in the current buffer into one of
the data areas specified at INTRO time. Therefore, any MH macros following
COMMBUF will have no effect on the data sent by the common buffer facility. If
the length of the data to be moved is greater than the size of a data area, the
macro will not execute, and a return code will be given in register 15 (see return
codes).

Designing the Message Handler 217

The common buffer facility allows data entering the input MH to be sent without
being queued. There is no outgoing message handling capability for this data.
The data in the current buffer will be moved to the next available data area, and a ~
broadcast operation will be scheduled for each of the lines whose broadcast
terminals are named in the TLIST macro if the MAXDEEP= value has not been
exceeded and if the line is active. If the MAXDEEP= value has been exceeded,
the data in the current buffer is not moved and is not broadcast.

Framing line control characters (STX, ETX) must be supplied by the user and
there should not be any embedded ETBs.

COMMBUF will return the following codes in register 15:

00 Good return

04 Data area too small; macro did not execute (the data area size specified
in the COMMBUF= operand of the INTRO macro was too small).

08 MAXDEEP value exceeded (register 1 will contain the number of
times MAXDEEP was exceeded).

OC LIST- operand specified a name that was not a TLIST entry.

218 OS/MFT and OS/MVT TeAM Programmer's Guide

c

COUNTER

The COUNTER macro

• maintains a count of complete messages or of message segments received from
or sent to a station;

• is optional in inblock, inheader, inbuffer, outheader, and outbuffer subgroups.

COUNTER enables the user to maintain four types of count. The position of the
COUNTER macro within an MH determines which type of count is maintained.
COUNTER may appear:

• in the inblock subgroup to count incoming physical message segments arriving
at this MH, or incoming logical message segments for each originating station;

• in the inheader subgroup to count incoming messages for each originating
station;

• in the inbuffer subgroup to count incoming message segments for each originat­
ing station;

• in the outheader subgroup to count outgoing messages for each destination
station;

• in the outbuffer subgroup to count outgoing message segments for each destina­
tion station.

Anyone or more of the counts may be maintained by including COUNTER in the
appropriate subgroups; within each subgroup, it may appear at any point.

For each COUNTER macro, the user must define, by an OPTION macro, a
halfword option field for the appropriate station or component. This provides
space for maintaining the counters.

The use of COUNTER is optional. If it is used in either an inheader or or an
inbuffer subgroup for switched stations that do not have unique ID sequences, and
if a calling station that enters a message is not identified by an ORIGIN macro
before COUNTER is executed, the option field associated with the related line
entry in the terminal table will be referred to.

Note: The count may not be exact since recalled messages (from
ERRORMSG, for instance) and messages from buffered stations will be
counted twice.

If the MH includes the SETEOM macro, the number of times the COUNTER
macro executes depends on the PROCESS= operand of SETEOM and on the
position of the COUNTER macro relative to the SETEOM macro.

If the SETEOM macro specifies PROCESS= NO, the COUNTER macro always
adds one to the counter for each resulting blocked logical message.

If the SETEOM macro specifies PROCESS= YES, and if the COUNTER macro
appears before SETEOM, one is added to the counter to reflect each buffer in the
entire incoming transmission sequence; however, if COUNTER appears after
SETEOM (that is, after the data is deblocked), each buffer of each resulting
logical message causes a counter to be updated by one. In the latter situation, if a
counter is associated with each station that is eligible to enter messages to this
MH, a count is maintained for incoming logical messages on a station basis.

Logical messages are discussed in Handling Logical Messages in this chapter.

Designing the Message Handler 219

symbol

opfield

Name Operation Operands

[symbol] COUNTER opfield

Function: Name of the macro.
Default: None. Specification optional.
Format: Must conform to the rules for assembler language symbols (see the
symbol entry in the Glossary).

Function: Specifies the name of the halfword option field in which the count is to
be maintained for the station or component.
Default: None. This operand must be specified.
Format: Must conform to the rules for assembler language symbols and must be
the name of a halfword option field defined by an OPTION macro.
Notes: The field contains a binary count up to a maximum of 65535. When the
maximum count has been reached, the count is reset to zero for the next message
or segment counted.

The user may gain access to the field at any time to determine or reset the count
(by operator commands or by user code including the LOCOPT macro). The
count is initially set using the OPDATA= operand of the TERMINAL or
TPROCESS macro.

If the option field is not found. COUNTER does not execute and control passes to
the next MH instruction. A return code of X'FF' in the low-order byte of register
15 indicates that COUNTER did not execute.

220 OS/MFT and OS/MVT TeAM Programmer's Guide

(

symbol

integer

CUTOFF

The CUTOFF macro

• specifies the maximum allowable length of incoming messages;
• checks for incoming buffers filled with identical characters;
• is optional in the inbuffer subgroup (and not permitted in any other subgroup);
• is usually issued before a related ERRORMSG macro.

CUTOFF specifies the maximum number of characters allowed in an incoming
message. If the maximum number is reached, reception of data is terminated as
soon as those buffers already assigned to the line have been filled, an error flag is
set in bit 7 of the message error record for the message (see Appendix B).
CUTOFF also turns on bit 7 of the message error record if the input buffer is
filled with identical characters (usually an indication of station malfunction).

An ERRORMSG macro may be used in the same incoming message handler as the
CUTOFF macro to test bit 7 of the message error record and to notify ~he
terminal operator that reception of the message has been terminated. The opera­
tor can determine if the allowed number of characters was exceeded; otherwise a
station malfunction is indicated. After the CUTOFF macro has executed,
processing continues through the inbuffer subgroup.

Name Operation Operands

[symbol} CUTOFF integer

Function: Name of the macro.
Default: None. Specification optional.
Format: Must conform to the rules for assembler language symbols (see the
symbol entry in the Glossary).

Function: Specifies the maximum number of characters allowed for each message.
Default: None. This operand must be specified.
Format: Decimal or hexadecimal. If hexadecimal format is used, framing X' , or
XLn' , characters must be specified.
Maximum: 65535 or a hexadecimal field of two bytes.

Example:
CUTOFF 400

specifies that reception of the message is to be terminated after 400 characters
have been entered.

CUTOFF does not provide a precise limit to the number of characters in an
incoming message (because TCAM continues to read until the buffers currently
assigned have been filled). The inmessage subgroup is not executed until the line
operation has terminated. When the CUTOFF condition is encountered, a Write
Break is issued for the Telegraph Adapter I. For IBM Adapter III Modell, a
2848 Read Skip with 2848 Break is issued. For all other devices, a Read Skip is
issued when the CUTOFF condition is encountered.

Note: Once the CUTOFF condition is encountered, the CUTOFF macro
must be executed for each subsequent buffer of the message.

Designing the Message Handler 221

.• ~

(

symbol

DATETIME

The DATETIME macro

• inserts the date, the time, or both in an incoming or outgoing message header;
• is optional in inheader and outheader subgroups (and not permitted in any

other subgroup);

The DATETIME macro causes insertion of the date, the time, or both the date
and the time into the header of an incoming or outgoing message. (If both are
specified, the date is inserted first.) Seven characters are inserted for the date, if
specified: a blank, the last two digits of the yea" a period, and the three-digit day
number. Nine characters are inserted for the time, if specified: a blank, two digits
for the hour, a period, two digits for the minute, a period, and two digits for the
second. If no operand is coded, both the date and the time are provided (the
operands specify which is to be omitted).

Space in the header for these insertions, seven characters for the date and nine
characters for the time, must be reserved by the RESERVE= operand of the DCB
macro for the communication line or by the RESERVE= operand of the PCB
macro for the application program, if the insertions are desired. After
DATETIME has executed, the scan pointer is positioned at the last inserted
character.

When the DATETIME macro is coded in an outgoing subgroup, the macro may
operate upon the first message segment only. This is because TCAM does not
maintain reserve bytes for any segment of an outgoing message except the first
(see the description of the RESERVE= operand of the DCB macro).

To avoid having to specify a large first buffer, the user who wishes to insert both
the date- and time-received and the date- and time-sent in the same message
header may design his header so that it occupies two buffers. He could then insert
the incoming date and time in that portion of the header contained in the second
buffer, and the outgoing date and time in that portion of the header contained in
the first buffer.

The characters inserted by DATETIME are in EBCDIC code. Therefore, the
DATETIME macro should not be issued before a CODE macro in an inheader
subgroup, or after a CODE macro in an outheader subgroup.

Name Operation

[symbol] DATETIME

Function: Name of the macro.
Default: None. Specification optional.

Operands

[DATE={NO }][,TIME={NO 1
YES YES -- --

Format: Must conform to the rules for assembler language symbols (see the
symbol entry in the Glossary.)

Designing the Message Handler 223

DATE= j NO t
1VES \

TIME= j NO t
1VES\

Function: Specifies whether the date is to be inserted in a message header.
Default: DATE=YES
Format: YES or NO.
Notes: YES specifies that the date is to be inserted in the message header. NO
specifies that the date is to be omitted from the header.

Function: Specifies whether the time is to be inserted in a message header.
Default: TIME=YES
Format: YES or NO.
Notes: YES specifies that the time is to be inserted in the message header. NO
specifies that the time is to be omitted from the header.

If no operand is coded, both the date and the time are inserted in the message
header.

The time inserted is the time at which this DATETIME macro is executed.
TCAM determines this by examining the system timer.

If insufficient buffer space is available (too few reserve characters), the
DATE TIME macro does not execute and a X'04' return code is set in register 15.

Example:
The message

NYC 0039 * (message text) EaT

is entered at the NYC terminal (NYC is the origin, 0039 the input sequence
number). If the header buffer is being processed at 9:45:50 p.m. on ·February 6,
1970 and if the SEQUENCE macro is followed by DATETIME DATE=NO, the
time is inserted in the header, which becomes:

NYC 0039 21 .45.50 * (message text) EaT

If the SEQUENCE macro is followed by DATETIME, the header becomes:

NYC 0039 70.037 21 .45.50 * (message text) EaT

224 OS/MFT and OS/MVT TeAM Programmer's Guide

(

~\
~ ..

ERRORMSG

The ERRORMSG macro

• sends an error message when an error occurs;
• is optional in an inmessage or outmessage subgroup of an MH (and not permit-

ted in any other subgroup);
• may be used more than once in a subgroup.

ERRORMSG sends an error message specified by the user to a designated station
when errors indicated by the error mask have occurred. The bits specified by the
error mask operand are compared with the setting of the bits in the message error
record for this message; if specified bits in the message error record are on, the
error message is sent. The message may be sent unconditionally by specifying an
all-zero mask, or by omitting the mask.

The message sent to the station includes the text written by the user preceded by
the header of the message in error, which is recalled from the message queue. The
error message, once formatted, is placed on the destination queue for the station
selected to receive the message, and is handled by the outgoing group of the MH
for that queue. Therefore, unless a MSGTYPE or PATH macro is used to distin­
guish between different message types, the format of the header of the message in
error must be compatible with the macros executed in the outgoing group handling
messages routed to the station selected to receive the error message. If the
MSGTYPE macro is used for this purpose, the formats of the respective headers
may differ after the message-type character.

The outgoing group that handles the error message for the destination station may
have an outmessage subgroup containing ERRORMSG and REDIRECT macros.
TCAM causes these macros to NOP; that is, TCAM does not generate subsequent
error messages based on an error condition related to the original error message
(thus preventing a "snowball" effect of error messages); and TCAM does not
permit the error message to be redirected to an alternate destination.

If the MSGFORM macro is not coded in the outheader subgroup of the MH
handling messages for the destination station, the user must ensure that satisfacto­
ry line-control characters (such as EOT) are included in his error message.

The user may prefer to use the MSGGEN function if the message header is not
required as a part of the error message. The user is notified of the error sooner if
he uses MSGGEN than ERRORMSG, but ERRORMSG returns the header of the
message in error, while MSGGEN does not. If it is necessary to send an error
message for input errors when no data has been transferred, the MSGGEN macro
must be used because the ERRORMSG macro requires a header.

If cancellation of an erroneous message is required, the CANCELMG macro must
have been issued before the ERRORMSG macro. ERRORMSG may appear in
inmessage and outmessage subgroups and can appear more than once in either
subgroup.

Since the header of the message in error is recalled from the destination queue, it
is not possible to use ERRORMSG coded DEST=DESTIN when the destination
of the message in error is not known to TCAM. If a message having an invalid
destination field is entered, and the destination is not corrected by the user-exit of
the FORWARD macro, and if no dead-letter queue is specified by the INTRO

Designing the Message Handler 225

symbol

mask

CONNECT=~~~D~

DEST = {destination name}
opfield
ORIGIN
DESTIN

macro, then ERRORMSG cannot be used in conjunction with that message,
because the message header is not on a destination queue (consequently, TCAM
cannot get a copy of the header by recalling it from a destination queue). ~

Name Operation Operands

[symbol] ERRORMSG [mask][,CONNECT = ~~~Dp
[,DEST= r'lination namT opfield

ORIGIN
DESTIN

,DATA= lmessage ~
fieldname

[,EXIT=name of routine]

Function: Name of the macro.
Default: None. Specification optional.
Format: Must conform to the rules for assembler language symbols (see the
symbol entry in the Glossary).

Function: Specifies the five-byte bit configuration used to test the message error
record for the message (the message error record is described in Appendi:JiJ)
Default: None. Specification optional.
Format: Decimal or hexadecimal. If hexadecimal format is used, framing charac- ~
ters must be specified. If X' , is used, leading zeros must be coded. If XL5' , is
used, leading zeros may be omitted.
Maximum: 16777215 or a hexadecimal field of five bytes.
Notes: Omitting this operand or specifying an all-zero mask causes uncondition­
al execution.

Function: Specifies the type of logical connection to be made between the mask and
the message error record.
Default: CONNECT=OR
Format: AND or OR.
Notes: AND specifies that the macro is to be executed only if all of the bits
specified by mask are on in the message error record.

OR specifies that the macro is to be executed if any bit specified by mask is on in
the message error record.

Function: Specifies the destination for the error message.
Default: In an inmessage subgroup, DEST=ORIGIN. C
In an outmessage subgroup, DEST=DESTIN.
Format: destination name, opfield, ORIGIN or DESTIN. destination name is the

226 OS/MFT and OS/MVT TCAM Programmer's Guide

DATA= ~ message t
I fieldname ~

EXIT =name of routine

name of a single or a process entry in the terminal table and must be enclosed in
framing C' ' or CLn' , characters.

opfield is the name of an option field defined by an OPTION macro, conforming
to the rules for assembler language symbols, which contains the name of a single
or process entry in the terminal table. It must not be specified with framing
characters. opfield is a field from two to nine bytes, with the first byte containing
the decimal length of the rest of the field.

ORIGIN specifies that the error message is to be sent to the station from which
the message originated. This operand may be specified in either an inmessage or
outmessage subgroup. If the originating station is not known (because it called in
on a switched line and did not identify itself) the message is sent to the dead-letter
queue if one is specified, otherwise it is lost.

DESTIN specifies that the error message is to be sent to the destination station
specified in the header of the message in error. This operand may be specified in
either an inmessage or outmessage subgroup.

Notes: If an invalid destination is specified, or if DESTIN is specified in an
inmessage subgroup for which no FORWARD macro has been issued previously,
the message is sent to the dead-letter queue if one has been specified by the
DLQ= operand of the INTRO macro. If no dead-letter queue is specified, the
message is overlaid and lost.

A distribution list or a PUT process entry must not be specified as the destination
of an error message.

Function: Specifies the error message.
Default: None. This operand must be specified.
Format: message or fieldname. message is the actual error message to be sent
and must be specified within framing C' 'or CLn' 'characters. fieldname is the
name of a location containing in its first byte a binary count of the number of
characters in the message, followed by the message itself. The error message is a
maximum length of 255 characters. This is exclusive of the binary count in the
fieldname format.
Notes: If an error message is longer than a single buffer unit, one additional
buffer unit is obtained and as much of the remainder of the message as will fit is
placed in it. If the entire message will not fit into these two units, the remainder is
truncated on the right.

Function: Specifies the name of a user-written routine that alters error message
processing. This exit may be used to alter the text of the error message before
incorporating the text into a header buffer.
Default: None. Specification optional.
Format: Must conform to the rules for assembler language symbols.
Notes: If the user provides an exit routine for ERRORMSG, TCAM automati­
cally saves and restores registers for this routine. The user need not save registers
and may change the contents of registers 2 through 12; however, the contents of
register 13 and 14 should not be altered by the user routine. When the routine
receives control, register 1 contains the address of the header buffer and register 5

Designing the Message Handler 227

contains the address of the error-message text. Register 14 contains the return
address for the calling routine. Register 15 contains the address of the entry point
for the user routine. TeAM expects no return code from the user routine. The
routine should return control to TeAM by a BR 14 instruction.

When ERRORMSG is executed, only the first buffer of the message in error is
retrieved from the destination queue (if the header occupies more than one buffer,
that portion of the header extending beyond the first buffer is not retrieved). The
actual error message is placed in that portion of the first header buffer that
contains message text; the error message overlays the text. If the first buffer is
entirely filled with header information, or does not contain enough space after the
header to hold the entire error message, TeAM automatically assigns one extra
unit to the buffer to hold as much as possible of the remainder of the message. If
the entire message will not fit, the remainder is truncated on the right.

The message is inserted in the header beginning at the current location of the scan
pointer. If an ERRORMSG macro is issued in the inmessage subgroup, but there
is additional header information that could be recognized by the outheader
subgroup, the message will overlay this data, which will be lost for outgoing
processing. If data has been inserted or removed during inbuffer or outbuffer
processing, the data in the buffer will be moved either to the right or the left while
the scan pointer remains fixed. Thus, when the error message is inserted at the
scan pointer, data that is logically part of the header may be lost, or data beyond
the header may be included as part of the header information returned with the
message.

228 OS/MFT and OS/MVT TeAM Programmer's Guide

FORWARD

The FORWARD macro

• queues messages for one or more specified destinations;
• sets a bit in the message error record when a specified number of queued

messages is exceeded for a destination using main-storage-only queuing;
• is required in each inheader subgroup of the MH for every station and applica-

tion program that can enter messages directed to a specific destination.

FORWARD allows scanning of the destination code field in the header of each
incoming message and compares the field with the names of the terminal table
entries. If the destination code is valid (a matching entry is found in the terminal
table), FORWARD queues the message for the specified destination or destina­
tions. If an invalid destination code (that is, ont; not appearing in the terminal
table) is detected, control passes to the user routine specified by the EXIT =
operand of FORWARD. If no user exit is specified, the message is queued for the
station or application program specified by the DLQ= operand of the INTRO
macro. If no station or application program is specified by DLQ=, and no user
exit is provided, messages with invalid destination codes are overlaid and lost.

Messages may be routed to one or more destinations:

1. To the single destination specified in the message header or named by an
operand of the FORWARD macro.

2. To the distribution list specified in the message header or named by an operand
of the FORWARD macro.

3. To the cascade list specified in the message header or named by an operand of
the FORWARD macro.

4. To the multiple destinations specified in the message header. The destination
codes may be of equal length or of varying lengths. In the case of multiple
destinations, an operand specifies the end-of-address character or characters
included after the last destination code in the header of each incoming message.

5. To the group entry in the terminal table specified in the message header or in
an operand of the FORWARD macro.

When multiple destinations are specified, only the first is checked for validity at
execution of the FORWARD macro. The secondary destinations are checked for
validity only after the entire message has been received. The first invalid destina­
tion will be routed to the station specified by the DLQ= operand of the INTRO
macro otherwise it will be lost; any other invalid destinations will be ignored.

If multiple destinations are specified in the message header, or if a distribution list
is specified, once the incoming group has finished processing the message, copies
are made and routed to the destination queue for each destination specified in the
header or distribution list.

A FORWARD macro must be included in each inheader subgroup handling
messages destined for stations or application programs; otherwise the incoming
group of the MH does not know where to route the message.

If DEST=(number) or DEST=** is specified, the CODE macro must be executed
before FORWARD, unless the line code is EBCDIC.

Designing the Message Handler 229

symbol

destname
opfield
(number)
PUT
**
ORIGIN
REG(number)

If DEST=ORIGIN is specified, the ORIGIN macro must be executed before the
FORWARD macro for messages from switched terminals that do not have a line
entry.

Note: Care must be taken in entering a character string in a destination
field to ensure that it matches a terminal table entry. A character string
entered in lower-case characters from an IBM 2770 station, for example,
will not match a terminal table entry name that is in uppercase characters.

FORWARD has the following format:

Name Operation Operands

[symbol] FORWARD [DEST=t destname I]
opfield

I (number)
** > - (PUT

t ORIGIN I
REG (number)

[,EOA=characters]
[,EXIT = name]
[,THRESH=nn]

Function: Name of the macro.
Default: None. Specification optional.
Format: Must conform to the rules for assembler language symbols (see the
symbol entry in the Glossary).

Function: Specifies the destination for the message.
Default: DEST=**
Format: destname, opfield, (number), PUT**, ORIGIN, or REG(number).
destname is the name of a single, group, distribution list, cascade list, or process
entry in the terminal table and must be specified with framing C' , , CLn' " X' " or
XLn' 'characters. op/ield is the name of a field defined by an OPTION macro
containing the name of an entry in the terminal table. Framing characters must
not be used. (number) is the number of characters in each of a list of one or more
destinations. PUT is specified when the destinations of messages entered by an
application program are placed by the user in an application program work area.
** specifies that there are one or more destination names of variable length in the
message header. ORIGIN indicates that the message is to be returned to the
originating station. REG (number) specifies the register containing the address of
a work area that contains the name of the destination.
Maximum: number can he a decimal field with a maximurn value of 8.
Notes: op/ield refers to an option field that is 1 to 8 bytes. If the destination ~
name is shorter than the length of the option field, the name must be padded to ~

the right with blanks to fill the field.

230 OS/MFf and OS/MVT TeAM Programmer's Guide

EOA = characters

EXIT=name

If (number) is specified, the destination names in the message header must all be
the same length. Delimiting and embedded blanks are ignored. If this operand is
specified and there is more than one destination, the EOA= operand must also be
specified.

If * * is specified, delimiting blanks must be used between destination names in the
header, but there may not be any embedded blanks. If this operand is specified
and there is more than one destination in the message, the EOA= operand must
also be specified.

DEST=PUT should be specifi~d in the inheader subgroups of the MH assigned to
an application program when the MH is to handle messages coming from an
application program that has OPTCD= W coded in its output DCB macro, if the
user wishes the message to go to the destination specified in the work area. For
more information on specifying the destination of a message in the application
program, see the discussion of the OPTCD= operand of the output DCB macro.
Use of this operand is restricted to the case just described.

If an invalid destination is specified, control passes to the user routine specified by
the EXIT= operand. If no user exit is specified, the message is queued for the
station specified by the DLQ= operand of the INTRO macro. If no station is
specified by DLQ= and no user exit is provided, messages with invalid destination
codes are overlaid and lost.

If REG (number) is specified, register 2 through 12 may be used. The register must
contain the addtess of a field that has the following format:

byte 0 = length of the destination name.
byte 1 - n = destination name with the same characteristics and format as
destname when DEST = destname.

Function: Specifies the character or character string used after the last station
name of a mutiple destination to delimit the destination field of the header.
Default: None. With DEST= coded destname, opfield, or PUT, specification
optional. With DEST= coded (number) or ** and multiple destinations in the
message, this operand is required.
Format: One to eight nonblank characters specified in character or hexadecimal
format. If character format is specified, the field may be unframed or framed with
C' , or CLn' 'characters. If hexadecimal format is specified, the field must be
framed with X' , or XLn' 'characters. n must be the actual length of the charac­
ters.
Notes: If this operand is specified and DEST= is coded destname, opfield or
PUT, the operand is ignored.

Function: Specifies the name of a user-written exit routine that is given control
when an invalid destination is detected.
Default: None. Specification optional.
Format: Must conform to the rules for assembler language symbols.
Notes: The routine may correct the destination, provide another destination, or
indicate that the message is not to be processed for a destination. If an invalid
destination is provided by the user exit routine, the message is forwarded to the
dead-letter queue if one is specified by the DLQ= operand of the INTRO macro.
Otherwi!;>e it is overlaid and lost.

Designing the Message Handler 231

THRESH=DD

If the user provides an exit routine for FORWARD, TCAM automatically saves
and restores registers for this routine. The user routine need not save registers
and may change the contents of registers 2 through 12. However, the contents of
register 13 and 14 should not be altered. When the user routine receives control,
register 1 contains the address of the header buffer. Register 14 contains the
return address for the calling routine. Register 15 contains the address of the
entry point for the user routine.

TCAM expects the user routine to place one of two items in register 15 before
returning control:

• A return code of all zeros in register 15 means that the user routine was unable
toprovide a satisfactory destination for this message. In this case, the message
is forwarded to the dead-letter queue or is not processed for any destination if
no dead-letter queue is provided.

• Register 15 may contain the main-storage address of a field set up by the user
and consisting of a length byte followed by the name of a valid single, group,
distribution list, cascade list, or process entry in the terminal table. The length
byte must contain in binary form the number of bytes in the rest of the field.
TCAM assumes that the specified name is the destination of the message. The
field must be padded to the right with blanks to the length of the longest entry.

The user routine should return control to TCAM by a BR 14 instruction.

This operand is ignored when DEST=PUT is specified.

Function: Sets a bit in the message error record indicating that a user-specified
number of messages have been queued for a destination that uses main-storage­
only queuing.
Default: None. Specification optional.
Format: Decimal or hexadecimal. If hexadecimal format is used, framing X' , or
XL2' , characters must be specified.
Maximum: 65535
Notes: nn is a user-specified number that indicates the maximum number of
messages expected to be queued at anyone time under normal traffic conditions
for a destination that uses main-storage-only queuing. This operand causes
TeAM to queue a message and set bit six in the message error record when the
number of messages queued exceeds nn .

If the destination is an application program, this operand permits the user to delay
activation of an application program until a certain number of messages are
queued for that destination. This operand can be used also as an aid in controlling
the efficient use of system r~sources when one or more destinations use main­
storage-only queuing. For instance, to prevent main storage being tied up with
unsent messages, the user might provide a warning of an excessive number of
messages queued for a particular destination; he could then issue a conditional
macro in his inmessage subgroup such as CANCElMG, REDIRECT,
ERRORMSG, and MSGGEN. If there are multiple destinations, the REDIRECT,
ERRORMSG, and MSGGEN macros are effective only if the number specified by
nn is exceeded for the first destination.

In order for this function to be provided for a destination, the destination station's
entry in the terminal table must not specify either a cascade list entry or a distri­
bution list entry (that is, do not code a TLIST macro in the terminal table for this
destination station).

232 OS/MFT and OS/MVT TeAM Programmer's Guide

In the case of multiple-buffer headers, a destination must be determined for the
first header buffer. This can be ensured in one of two ways as the first header and
the subgroup are designed:

1. If the destination is specified by the DEST= operand, the FORWARD macro
must occur sufficiently early in the subgroup that it acts upon the first header
buffer.

2. If the destinations are specified in the header rather than by the DEST=
operand, the first destination must be completely contained within the first
buffer. For buffered terminals, the first destination must appear in the first
hardware buffer or the first MCP buffer, whichever is smaller.

If the second condition is not met, TCAM assumes that an invalid destination has
been specified and branches to the user exit, if provided. If no user exit is provid­
ed, or if the first condition is not met, the message is routed to the dead-letter
queue, or is overlaid and lost, if no dead-letter queue is provided.

Designing the Message Handler 233

HOLD

The HOLD macro

• suspends transmission to a station;
• is optional in the inheader, inmessage, and outmessage subgroups.

HOLD suspends transmission of output messages to a station either for a time
interval or until tJ'te messages are released by a RESMXMIT operator command or
by an MRELEASE macro issued in an application program (except that resump­
tion is automatic if this MH is handling logical messages). HOLD may be request­
ed unconditionally by specifying an error mask of zero or by omitting the mask,
or conditionally, in which case the error mask specified in the first operand is
compared to the message error record assigned to the message; if specified errors
are detected, transmission is suspended. A station that cannot accept messages
because of the effect of a HOLD macro is said to be intercepted. For a discussion
of holding, see the section TCAM's Hold/Release Facility.

When issued in the outmessage subgroup of an MH handling logical messages, the
HOLD macro permits the user to transmit a buffer containing an error as soon as
it is detected. If a transmission interval is specified by HOLD, resumption of
transmission begins with the block in error (the error block is transmitted
twice-once when the error is detected, and once when transmission resumes). If
an interval is not specified, transmission resumes immediately, and the error block
is transmitted twice.

An inquiry/response facility is provided by the HOLD/MRELEASE macro
combination (see TCAM's Inquiry/Response Capabilities in the section Writing d
TCAM-Compatible Application Programs). The HOLD macro, when issued in "
the inheader subgroup of a Message Handler, suspends transmission of outgoing
messages to the station entering the message until an MRELEASE macro in an
application program releases the station.

By using the macros in combination with TCAM's message priority capability, it is
possible to ensure that after the intercepted station enters an inquiry the next
message received by it will be the response from an application program to that
inquiry.

If specified in an inheader subgroup, HOLD will supply a return code in register
15 that can be checked by the next instruction in the MCP. The return codes are:

X'OO'

X'04'

X'08'

X'OC'

X'10'

Sucessful execution.

Destination queue is located in main storage with no disk
backup.

Station is already held.

Station cannot be held because it is a process entry, cascade
or distribution list, etc.

Invalid terminal entry address returned by terminal entry
,address fmder routine.

A station whose destination queue is located in main storage with no disk backup
may not be intercepted; the HOLD macro is ignored in this case.

234 OS/MFT and OS/MVT TeAM Programmer's Guide

symbol

mask

RELEASE

In the inheader subgroup, suspension of transmission begins with the message that
causes the HOLD macro to execute. Otherwise, suspension begins with the
message following the one that causes the HOLD macro to execute (since the
outmessage subgroup does not execute until after the message has been sent).
However, when the station is released, the message that caused HOLD to execute
is retranmitted, unless HOLD was executed in the inheader subgroup and the
message was routed to another station.

If an initiate mode message is sent to a held terminal, the message will revert to
standard transmission (rather than initiate transmission). However, it will be
queued on the highest-priority queue and be transmitted normally thereafter.

If the HOLD macro is executed in the outmessage subgroup for a lock response,
the lock is not broken, the terminal is not held, and the message will be retransmit­
ted immediately (that is, it will be sent twice). This can result in an infinite loop if
the condition for the HOLD is permanent and the line or terminal is inoperative.
If a terminal is held by an operator command while in lock mode, or if lock is
initiated while the terminal is held, all lock responses will be sent as if the terminal
were not held. No other messages will be sent, however, until the terminal is
released.

Name Operation Operands

[symbol] HOLD [mask][,RELEASE][,INTVL=integer]
[,CONNECT= ~AND] [,LEVEL= ~BLK ~]

Function: Name of the macro.
Default: None. Specification optional.

OR MSG - --

Format: Must conform to the rules for assembler language symbols (see the
symbol entry in the Glossary).

Function: Specifies the five-byte bit configuration used to test the message error
record for the message (the message error record is described in Appendix B).
Default: None. Specification optional.
Format: Decimal or hexadecimal. If hexadecimal format is used, framing charac­
ters must be specified. If X' 'is used, leading zeros must be coded. If XL5' 'is
used, leading zeros may be omitted.
Maximum: 16777215 or a hexadecimal field of five bytes.
Notes: Omitting the operand or specifying an all-zero mask causes unconditional
execution (unless LEVEL=BLK is specified, which causes conditional execution;
LEVEL=BLK causes a mask to be generated and the text and selection bits to be
set in the message error record).

If queuing is by line and a nonzero mask is specified, the mask must include the
test for the "terminal inoperative" bit of the message error record.

Function: Specifies that transmission to the station is to be suspended until either
a RESMXMIT operator command is issued for the station, or until an
MRELEASE macro is issued for the station in an application program.
Default: See Notes

Designing the Message Handler 235

INTVL=integer

LEVEL= ~ BLK t
~MSG5

Format: RELEASE
Notes: Do not code this operand if this MH handles logical messages (TCAM
automatically resumes transmission). If logical messages are not being handled by
this MH, and if this operand is omitted and INTVL= is also omitted, RELEASE is
assumed; if both RELEASE and INTVL= are coded, RELEASE prevails.
RELEASE should not be specified if LEVEL=BLK is specified.

Function: Specifies the number of seconds that transmission to the station is to be
suspended.
Default: None. Specification optional.
Format: Positive integer, either decimal or hexadecimal. If hexadecimal format is
used, framing X' , or XLn' , characters must be specified.
Maximum: 65535 or a hexadecimal field of two bytes.
Notes: At the end of the specified period, transmission to the station is automati­
cally resumed. If this operand is omitted and this MH handles physical transmis­
sions, RELEASE is assumed. If both RELEASE and INTVL= are coded,
RELEASE prevails. If this MH handles logical messages, TCAM automatically
resumes transmission after the specified time interval; if this operand is omitted,
resumption is automatic.

The INTVL= operand may not be coded if the HOLD macro is to be executed in
the inheader subgroup. It is ignored for nons witched and buffered stations during
mid-batch recovery operations.

Function: Specifies the type of logical connection to be made between the mask and
the message error record.
Default: CONNECT=OR
Format: AND or OR.
Notes: AND specifies that the macro is to be executed only if all of the bits
specified by mask are on in the message error record.

OR specifies that the macro is to be executed if any bit specified by mask is on in
the message error record.

The TCAM checkpoint/restart facility permits restart of a TCAM system after
system closedown or failure. If the system fails or is closed down while the station
is intercepted, when the system is restarted by a warm start or a continuation
restart (defined in the discussion of the checkpoint/restart facility) the intercep­
tion will still be in effect, but the INTVL= operand will no longer apply; transmis­
sion will be suspended until a RESMXMIT operator command or MRELEASE
macro causes transmission to be resumed.

Function: Causes a message containing an error to be retransmitted.
Default: LEVEL=MSG
Format: BLK or MSG.
~"'otes: This operand is required in any subgroup for which mid-batch recovery is
desired (see Mid-Batch Recovery in the chapter Using TeAM Service
Facilities). Use of this operand requires that MB= YES be specified on the source (
station's TERMINAL macro if the source is a nonswitched station (need not be

236 OS/MFT and OS/MVT TeAM Programmer's Guide

specified for switched or buffered stations). In an inmessage subgroup, if the
MB= operand is omitted or if it specifies NO, TCAM cancels the entire incoming
message. Queuing by terminal is required (see the QBY= operand of the
TERMINAL macro instruction).

Mid-batch recovery on output requires that LEVEL=BLK be specified, and the
HOLD macro specifying this operand must be the first macro in the outmessage
subgroup (LEVEL=BLK may be specified only once in the subgroup). Multiple
HOLD macros may be coded in the same outmessage subgroup, but other macros
may not be coded between HOLD macros. If an error mask is specified when
LEVEL=BLK is coded, the CONNECT=OR operand must be specified. The
LEVEL=BLK does not apply to a station entering or accepting messages in lock
mode.

Designing the Message Handler 237

INITIATE

The INITIATE macro

• sends message segments to their destination as soon as possible after they are
received at the destination queue;

• is optional in an inheader subgroup of an MH.

The INITIATE macro sends the segments of a message from a destination queue
to their destination as soon as possible after they are placed on the queue. Usual­
ly, segments are not sent to the destination until the complete message has been
placed on the queue. Messages sent by segment are transmitted in initiate mode.
(For information on when messages destined for stations on the same line are sent
out relative to each other, see Message Priority and Queuing in the chapter
Defining Terminal and Line Control Areas.) The destination may be either a
station represented by a single or group entry in the terminal table, or an applica­
tion program represented by a process entry in the terminal table. This function
may be performed conditionally, based on the appearance of a specified character
in the message header, or it may be performed unconditionally.

When the first segment of a message processed by INITIATE arrives on a destina­
tion queue, it is treated as if it were a complete message having the highest priority
on the queue. If the destination queue was created by a TERMINAL macro, as
soon as a line to the destination station is available, TCAM begins sending that
portion of the message that has arrived at the destination queue. No other mes­
sage may be sent on the line until this entire message has been transmitted. If the
destination queue was created by a TPROCESS macro, then each message
segment is sent to the application program as soon as possible after it is enqueued. .11

If a message is sent to a station for which messages are being held (see the de-
scription of the HOLD macro), the message reverts to normal transmission mode
rather than remaining in initiate mode. The message is queued on the highest-
priority queue and is transmitted to its destination after the station is released for
accepting messages. Once the station is released from its hold condition, TCAM
resumes transmitting message segments to the destination using the initiate mode
as described above.

The function provided by the INITIATE macro might be used as an early notifica­
tion to a destination station that a very long message is being received by the
computer, handled, and routed to that destination.

If a message has mUltiple destination codes specified in the header, the initiate
function is performed only for the first destination. Sending to the remaining
destinations will occur only after the complete message has been placed on the
destination queue. The initiate function has no effect on a message originated by
a buffered station or whose destination is a buffered station (TCAM uses normal
queuing techniques).

If static de allocation of buffers is specified (that is, if the PCI= operand of the
line group DCB macro is coded PCI=N and the incoming message contains no
EOB or ETB control characters), INITIATE gives the message a priority higher
than that of any other message on the destination queue.

i~

Messages being sent using initiate mode must fit in the buffers initially allocated (
by the BUFOUT= operand of the line group DCB macro when the PCI= operand

238 OS/MFT and OS/MVT TeAM Programmer's Guide

symbol

conchars

BLANK={~~ }
YES

specifies N or R. If the message can not fit in these buffers, the last byte that does
fit is considered to be the last byte of the message.

Name Operation Operands

[symbol] INITIATE [conchars[,BLANK- {~~r r
YES

Function: Name of the macro.
Default: None. Specification optional.
Format: Must conform to the rules for assembler language symbols (see the
symbol entry in the Glossary).

Function: Specifies the character or character string that, if found in the header as
the next nonblank field to be acted upon, causes execution of the function.
Default: None. Specification optional.
Format: One to eight nonblank characters in character or hexadecimal format. If
character format is used, the string may be unframed or framed with C' , or CLn' ,
characters. If hexadecimal format is used, the string must be framed with X' , or
XLn' , characters.
Notes: If this operand is omitted, the initiate function is performed unconditional­
ly. If the next field in the header does not match this operand, the function is not
performed.

Function: Specifies whether an EBCDIC blank or another character is to be ignored
when encountered in the character string in the message header being compared to
the string specified by the conchars operand, or whether blanks are to be part of
the header string when encountered in it. If EBCDIC blanks are to be counted as
part of the header string, this operand also specifies whether some other hexadeci­
mal character is to be ignored when encountered in the header string.
Default: BLANK= YES
Format: YES, NO, or char. char is a single character that may be specified in
either character or hexadecimal format. If character format is specified, it may be
unframed or framed with C' , or CL I' 'characters. If hexadecimal format is
specified, it must be framed with X' , or XLI' , characters.
Notes: This operand is meaningless unless the conchars operand is also specified.

YES specifies that the EBCDIC blank character (X'40') is to be ignored by this
macro whenever it is encountered in the header character string being checked
against the control character string specified by the conchars operand. For
example, if BLANK = YES is coded and an eight-byte field in the header is being
checked by this macro, a blank appearing in the fifth byte of the field will be
ignored and the sixth through ninth bytes will be considered to be the last four
bytes of the field (assuming that no blanks are coded in the sixth through ninth
bytes).

Designing the Message Handler 239

NO specifies that the EBCDIC blank character is to be treated like any other
character when it is encountered by this macro in the header string being com­
pared to the string specified by conchars .

char specifies that the single character replacing char is to be ignored by this
macro whenever it is encountered in the header string being compared to the
string specified by the con chars operand. That is, the macro automatically skips
over the character without performing a comparison and goes on to check the next
character in the header. If BLANK = char is coded and char is not the EBCDIC
blank character, the EBCDIC blank is not ignored by this macro when it is
encountered in the header string, but is compared to the character in the corre­
sponding space in the conchars string, like any other character.

Example:
INITIATE C' &'

causes the INITIATE function to be executed whenever the & character appears
as the next nonblank character in the message header.

In the case of multisegment headers the initiate function must apply to the first
segment of the message. This is ensured by designing the message header so that
the control characters appear in the first segment.

240 OS/MFT and OS/MVT TeAM Programmer's Guide

symbol

{ EXTEND}
MESSAGE

LOCK

The LOCK macro

• connects one station on a line to an application program to await the response
to an inquiry message entered by the station;

• holds the connection for a single message or for an extended period;
• is optional in an inheader subgroup (and not permitted in any other);
• is required for audio terminals.
• is suggested for a 3735 attached to a switched line.

LOCK keeps the connection between a station and an application program, as
specified in a message header or by a FORWARD macro, for a period of time not
less than the duration of a message and its response. A station connected in this
manner is said to be in lock mode. The application program to which a station is
locked depends upon the destination specified either in the header or by a
FORWARD macro. If the destination is not an application program, the station
is not placed in lock mode.

LOCK does not execute if the station that entered the message being handled is a
buffered station whose TERMINAL macro specified a buffer delay (by the
BFDELA Y = operand). In this case, a return code of X'00000004' is passed in
register 15 by TCAM's lock routine.

The use of this macro with logical messages is restricted to an incoming logical
message formed by blocking two or more incoming physical transmissions (see
Handling Logical Messages in this chapter).

For a description of the lock function, see TCAM's Inquiry/Response Facilities
in the chapter Writing TCAM-Compatible Application Programs.

LOCK has the following format:

Name Operation Operands

[symbol] LOCK {EXTEND} [,conchars [,BLANK1 YES fl
MESSAGE NO

char

Function: Name of the macro.
Default: None. Specification optional.
Format: Must conform to the rules for assembler language symbols (see the
symbol entry in the Glossary).

Function: Specifies the type of lock mode required.
Default: MESSAGE
Format: EXTEND or MESSAGE.
Notes: EXTEND specifies that the station transmitting the message is to be
placed in lock mode until it has no more messages to transmit or until an
UNLOCK macro is executed.

Designing the Message Handler 241

conchars

BLANK=~ ~~s t
I char \

MESSAGE specifies that the station transmitting the message is to be placed in
lock mode for the duration of the message and its response, and that the line is to
be freed once the response has been sent.

Function: Specifies the character or character string that, if found in the header as
the next nonblank field, causes execution of the function.
Default: None. Specification optional.
Format: One to eight nonblank characters in character or hexadecimal format. If
character format is used, the string may be unframed or framed with C' , or CLn' ,
characters. If hexadecimal format is used, the string must be framed with X' , or
XLn' , characters.
Notes: If this operand is omitted, the lock function is. performed unconditionally.
If the next field in the header does not match this operand, the function is not
performed.

For a station in extended lock mode, control characters are meaningful only for
the header of the message being processed at the time the station is placed in lock
mode. The LOCK macro does not examine headers for control characters in
messages entered by a station already in extended lock mode.

Function: Indicates whether EBCDIC blank characters are to be ignored when
encountered in the character string in the message header that is being compared
to the string specified by the con chars operand, or whether blanks are to be part
of the header string when encountered in it. If EBCDIC blanks are to be counted
as part of the header string, this operand also specifies whether some other
hexadecimal character is to be ignored when encountered in the header string.
Default: BLANK=YES
Format: YES, NO, or char. char is a single character that may be specified in
either character or hexadecimal format. If character format is specified, it may be
unframed or framed with C' , or CLI' 'characters. If hexadecimal format is
specified, it must be framed with X' , or XLI' , characters.
Notes: This operand is ignored unless the con chars operand is also specified. YES
specifies that the EBCDIC blank character (X'40') is to be ignored by this macro
whenever it is encountered in the header character string being checked against
the control character string specified by the con chars operand. For example, if
BLANK = YES and an eight-byte field in the header is being checked by this
macro, a blank appearing in the fifth byte of the field will be ignored and the sixth
through ninth bytes will be considered to be the last four bytes of the field
(assuming that no blanks are coded in the sixth through ninth bytes).

NO specifies that the EBCDIC blank character is to be treated like any other
character when it is encountered by this macro in the header string being com­
pared to the string specified by conchars.

char specifies that the single character replacing char is to be ignored by this
macro whenever it is encountered in the header string being compared to the
string specified by the conchars operand. That is, the macro automatically skips
over the character without performing a comparison and goes on to check the next
character in the header. If BLANK=char is coded and char is not the EBCDIC
blank character, the EBCDIC blank is not ignored by this macro when it is

242 OS/MFT and OS/MVT TeAM Programmer's Guide

ie

encountered in the header string, but is compared to the character in the corre­
sponding space in the conchars string, like any other character.

Note: For a station in extended lock mode, control characters are meaning­
ful only in the header of the message being processed at the time that the
station is placed in lock mode. The LOCK macro does not examine the
headers for control characters in messages entered by a station already in
extended lock mode.

Designing the Message Handler 243

LOCOPT

symbol

opfield

~ (register) t
1 (15) 5

The LOCOPT macro

• provides access to fields in the option table;
• is optional in inblock, inheader, inbuffer, outheader, and out buffer subgroups

(and not permitteo in any other).

LOCOPT enables the user to obtain the address of any option field for the
appropriate terminal table entry. The address of the desired field or a not-found
indicator is placed in a user-specified register. A user-written routine may then
examine and modify the contents of the option field. If specified in the incoming
group, LOCOPT locates option fields for the originating station; if specified in the
outgoing group, LOCOPT locates option fields for the destination station. If
specified in an MH handling messages to or from an application program,
LOCOPT locates the option fields in the process entry for the queue to which the
GET or READ is directed (if LOCOPT is issued in the outgoing group), or the
fields in the process entry for the queue to which the PUT or WRITE is directed
(if LOCOPT is issued in the incoming group). LOCOPT may be used only for
option fields for stations or application programs using the MH in which
LOCOPT is issued.

Name Operation Operands

[symbol] LOCOPT opfield, {(register)}
(15)

Function: Name of the macro.
Default: None. Specification optional.
Format: Must conform to the rules for assembler language symbols (see the
symbol entry in the Glossary).

Function: Specifies the name of the option field whose address is d~sired.
Default: None. This operand must be specified.
Format: Must be the name of an option field as defined by an OPTION macro.
Notes: If the option field is not found, LOCOPT does not execute, a X'04' return
code is set in register 15, and the specified register will contain a X'FF'. If the
default register 15 is used and the option field address cannot be located,
register 15 will contain a fullword of zeros on return.

Function: Specifies the register into which the address of the desired option field is
to be placed.
Default: (15)
Format: A decimal register 2 through 11, or 15, enclosed in parentheses.

244 OS/MFT and OS/MVT TeAM Programmer's Guide

.. ~

LOG

The LOG macro

• enables the user to log complete messages or message segments;
• is optional in any subgroup of an MH.

LOG enables the user to maintain a record of incoming or outgoing message
traffic on a sequential medium. Message segments or full messages, as determined
by the placement of LOG macros in an MH, are placed on an output device. If
logging is for both message segments and complete messages in the same MCP, a
data control block must be provided for each function. The various types of logs,
and the corresponding MH subgroups in which LOG appears are:

1. Either entire incoming physical transmissions, individual logical messages, or
portions of individual logical messages (inblock),

2. Incoming header segments only (inheader),
3. All incoming segments (inbuffer),
4. Complete incoming messages (inmessage),
5. Outgoing header segments only (outheader),
6. All outgoing segments (outbuffer),
7. Complete outgoing messages (outmessage).

When LOG is specified in an inblock subgroup, its position relative to the
SETEOM macro determines what is logged. If LOG appears before SETEOM,
TCAM logs the entire incoming physical transmission by segment. If LOG
appears after SETEOM, either individual logical messages or portions of individu­
allogical messages are logged, depending on whether deblocking or blocking
operations are being performed. For deblocking operations, individual logical
messages are logged (requires that PROCESS= YES be specified on SETEOM).
For blocking operations, portions of individual logical messages are logged
(requires that PROCESS=NO be specified on SETEOM).

When LOG is specified in an inbuffer or outbuffer subgroup, segments are logged
in the sequence in which they are handled by the Message Handler. In this case,
segments of different multisegment messages handled at about the same time are
likely to be intermixed on the logging medium. When segments are logged, their
buffer prefixes are logged with them. The 12-byte control area connected with
each buffer unit is not logged.

LOG may appear at any point in an MH subgroup in which it is used. However,
the results of any alteration of segments or messages by macros preceding LOG in
the subgroup will appear in the log. For example, if LOG is preceded by
DATETIME, a logged header segment will contain the date or time, as specified in
DATETIME, depending on the location of the date and time in a multisegment
message.

LOG may be specified in any subgroup of an MH and may be used more than
once in a subgroup if desired. The message log may be maintained on any avail­
able output medium. The user must supply, define, and open the message log data
sets. For each log data set used to record complete messages, a logtype entry in
the terminal table must be defined by a LOGTYPE macro (this is not necessary if
only segments are logged). For information on specifying the message log data
set, see the chapter Defining the MCP Data Sets.

Designing the Message Handler 245

symbol

dcbname
typename

When logging segments after a FORWARD macro with multiple destinations, the
last character of the first destination is overlaid with an unprintable character.
This byte will be restored at the inmessage subgroup and thus will appear if
messages are logged.

Name Operation Operands

[symbol] LOG ~ dcbname ~
type name

Function: Name of the macro.
Default: None. Specification optional.
Format: Must conform to the rules for assembler language symbols (see the
symbol entry in the Glossary).

Function: Specifies the name of the data control block or the logtype entry used
for logging.
Default: None. This operand must be specified.
Format: dcbname or typename. dcbname is the name of the data control block
for the message log data set and is used if the macro is specified in the inheader,
inbuffer, outheader or outbuffer subgroup. typename is the name of a logtype
entry in the terminal table and is used if the macro is specified in the inmessage or
outmessage subgroup.
Notes: If dcbname is specified and does not match the name of a valid data i"

control block, or if typename is specified and does not match the name of a ~

logtype entry in the terminal table, the LOG macro does not execute, and a return
code of X'04' is set in the low-order byte of register 15.

246 OS/MFT and OS/MVT TeAM Programmer's Guide

~

MHGET

The MHGET macro

• transfers the contents of the current buffer into a user specified work area or;
• gives the user the address of the data in the current buffer.

MHGET may be issued in the inheader or inbuffer subgroup of an MH or in
serially reusable, user-written open or closed subroutines called in those sub­
groups. The work area is a part of the MH or the called subroutine and should not
be confused with an application program work area. MHGET does not affect or
depend on any functional macros used in the MH or subroutine. Therefore, any
order of functional macros and MHGET will work. MHGET may be specified
either to return the address of the first data character in the buffer or to move the
entire data contents of the buffer into a user-specified work area. The amount of
data moved will be the entire message or as much of the message as will fit into
the user-specified work area. The MHGET macro will move data from multiple
buffers into the work area consecutively, if the length of the data previously
moved in is left in the DATLEN field of the work area prefix. If the work area is
to contain only the data from a single buffer, the DATLEN field should be zeroed
by the user before issuing the MHGET macro.

The format of the work area is:

WKLEN DATLEN PRFSTAT UNRES DATA

0 1 2 3 4 5 6-n

Bytes Field Description
Name

0-1 WKLEN User-supplied data length of the work area (does
not include the six-byte work area prefix length).

2-3 DATLEN Length of data moved, supplied by MHGET on return
to the user. The user must zero this field before
issuing a single-buffer MHGET or the first MHGET
of a series of multiple-buffer MHGETs. For the
second and subsequent MHGETs, when moving the data
from multiple buffers consecutively into a single
work area, this field must contain the data length
put there by the previous MHGET.

4 PRFSTAT The status byte from the buffer prefix indicating:

X'OO' Header lost
X'OI' Text lost
X'02' Header not lost
X'03' Text (not header) not lost
X'08' Duplicate header

5 UNRES The number of unused reserve characters.

6-n Data The first to nth data characters in the buffer.

Designing the Message Handler 247

symbol

WORK={(register)}
name

REG={(register)}
name

MHGET will supply the following return codes in register 15

00 MHGET successful- no errors

04 Data moved; work area too small; data truncated

08 TeAM not in system

OC Empty buffer-no user processing permitted

MHGET has the following format:

Name Operation Operands

[symbol] MHGET rORK~ {::::e,}~ [,RESERVES~ {~S }l
REG= {(register)} -

name

Function: Specifies the name of the macro.
Default: None. Specification optional.
Format: Must conform to the rules for assembler language symbols (see the
symbol entry in the Glossary).

Function: Points to the user-supplied work area.
Default: None. (register) or name must be specified.
Format: (register) may be the actual register number. name is the name of a
work area or may be an equated name of a register. Registers 2 through 12 may
be used.

Function: Returns the address of the first data character in the buffer in the
specified register. The specified register is the lower of a pair of consecutive
registers. The next higher register will contain the following:

byte 0 Zero

byte 1 Buffer status (PRFST A T1)

bytes 2 - 3 Length of the data in the buffer

Default: None. Must be specified if WORK= operand is not specified.
Format: (register) may be the actual register number.
name may be an equated name of a register. Registers 2 through 11 may be used.

Function: Move unused reserve spaces into the work area in f(ont of the data. The
number unused will be put into the UNRES field of the work area header.
Default: No.
Format: RESERVES=YES or RESERVES=NO.

248 OS/MFT and OS/MVT TeAM Programmer's Guide

(

MHPUT

The MHPUT macro

• transfers the contents of a user-specified work area into the current buffer;
• resets the scan pointer to the beginning of data in the buffer.

MHPUT may be issued in the inheader or inbuffer subgroup of an MH or in
serially reusable, user-written open or closed subroutines called in those sub­
groups. MHPUT will transfer whatever is in the user-specified work area into the
current buffer leaving room for the unused DCB or user-specified reserve charac­
ters. Up to 65,535 (X'FFFF') characters may be written, and the routine will set
up the maximum number of units per buffer to contain the data. Care should be
taken that data in the header that subsequent functional macros will need is not
destroyed or overlaid by execution of the MHPUT macro. Since MHPUT sets the
scan pointer to the beginning of data in the buffer, before issuing a macro that
uses the scan pointer, the user should be certain that the scan pointer is properly
set for that macro. If these precautions are observed, MHPUT does not affect or
depend on any functional macros, any order of functional macros, and MHPUT
will work. IfPCI=A and EOB checking are used in conjunction with
MHGET and an input data error occurs, it is possible that some of the data may
be processed before it is known to be bad. If MHPUT is also unused, it is possible
that data processed prior to EOB checking may be destoryed by the error recovery
procedures. These two conditions will be avoided if PCI=X is coded and mid-batch
recovery is not used.

Note: The MH prefix of MHGET and MHPUT specifies that the macros
are to be used in a message handler as opposed to GET and PUT macros
for an application program. The function of MHGET is to transfer the
contents of the cu"ent buffer into a user specified work area. The function
of MHPUT is to transfer the contents of a user specified work area into the
cu"ent buffer. The implication is that these macros may be used to perform
intermediate operations on messages before they are passed on to an applica­
tion program or to an output destination buffer. The flow might be

MHGET MHGET

process or process

MHPUT FORWARD

The format of the work area is:

Unused

0 1

Bytes

0-1

DATLEN

2

Field
Name

3

Reserved Data

4 5 6-n

Description

Unused and unchanged by MHPUT

Designing the Message Handler 249

symbol

WORK ""J<register)}
1 name

2-3 DATLEN

4-5

6-n Data

Length of the user-supplied data starting at the
first position of the data field of the work area.
Maximum data length can be 65,535 (X'FFFF').

Reserved

User data to be written (MHPUT).

MHPUT will supply the following return codes in register 15:

00 MHPUT successful

04 MHPUT could not allocate enough units; data is truncated.
This return code is also set when the number of units per
buffer has reached the maximum.

08 TeAM not in the system

10 Length of work area not initialized.

MHPUT has the following format:

Name Operation Operands

[symbol] MHPUT WORK={<register)}[,RESERVE=vaIUe]
name

Function: Specifies the name of the macro.
Default: None. Specification optional.
Format: Must conform to the rules for assembler language symbols (see the
symbol entry in the Glossary).

Function: Provides the name or address of the user's work area.
Default: None. (register) or name must be specified.
Format: (register) may be the actual register number. name is the name of a work
area or may be the equated name of a register. Registers 2 through 12 may be
used.

250 OS/MFT and OS/MVT TeAM Programmer's Guide

(

RESERVE=value

Function: Allows the user to specify the reserve count.
Default: None. Specification optional.
Format: Unframed decimal integers.
Maximum: 221
Notes: When this operand is not specified, MHPUT begins transferring the data
into the header buffer starting at the first position following the unused DCB
reserves. This operand allows the user to override that specification. If
RESERVE=O is specified, MHPUT begins moving data into the buffer beginning
at the first byte after the buffer prefix. If RESERVE = 1 is specified, MHPUT
begins moving data into the second byte after the prefix, etc. If the user reserves
specified are greater than the maximum allowable in the DCB, the maximum
allowable is used instead of what was specified by this operand and the return
code X'OC' is placed in register 15.

Designing the Message Handler 2S 1

MSGEDIT

The MSGEDIT macro

• inserts specified characters at specified locations in a message;
• deletes specified characters from a message;
• replaces deleted characters with other characters, or contracts remaining data

to fill the gap caused by deletion;
• dynamically allocates buffer units to contain data inserted in message segments;
• is optional in inblock, inheader, inbuffer, outheader, and outbuffer subgroups,

and may not be coded in any other subgroup.

The MSGEDIT macro allows the user to edit incoming and outgoing messages in a
Message Handler. Each editing operation performed by MSGEDIT falls into one
of two categories: it is either an insertion or a removal.

An insert operation is one in which specified charaCters are inserted at a specified
point in a message, with no characters being deleted in the operation. The oper­
ands of MSGEDIT allow characters to be inserted

• at a single point in a message;
• at a specified offset from the beginning of each message segment;
• whenever a certain character string appears in a message;
• after every n bytes of message data, where n is a number specified by the user.

The inserted data may consist of a single character, or a character string, including
a string of identical characters. If the MSGEDIT macro is issued in an inheader or
outheader subgroup, the insert operation is performed only for a single segment of
a message. This is usually the first segment, but may be a subsequent segment if
the message has a multiple-buffer header and the MSGEDIT macro is issued in a ~
portion of the subgroup that is processing header fields in the second or subse-
quent segments. (The manner in which inheader and outheader subgroups are
executed for multiple-buffer headers is described in the chapter Designing the
Message Handler.) If the MSGEDIT macro is issued in an in buffer or outbuffer
subgroup, the insert operation is performed for each segment in the message. The
insert function might be used to add a new destination name to the destination
field in a message header, or to insert idle characters into a message destined for a
printer that requires such characters to prevent "printing on the fly" during ~
carriage-return operation. For other uses, see the examples below. If the insert
function is for a character string that may cross buffer boundaries, MSGEDIT
should be coded in the inblock subgroup.

A remove operation is one in which a specified character string is removed from a
message. The user may specify that the character string be replaced with another
character string, or that the remaining data be contracted to fill the gap left by the
deleted data. The user may remove

• a single character string;
• a specified character string whenever it appears;
• a specified number of bytes of data whenever a certain character string ap-

pears;
• the data located in a specified section of a buffer.

In any of the above cases, the user may replace the deleted data with other data,
or he may specify that data following the deleted data in a message segment be
moved left to fill the gap left by the deleted data. If a substituted character string ~

is longer or shorter than the deleted character string, TeAM automatically spreads ~

252 OS/MFT and OS/MVT TeAM Programmer's Guide

or contracts the data remaining in the buffer to "fit" the new string; buffer units
are allocated as needed to accommodate the new data. If MSGEDIT is coded in
an inheader or outheader subgroup, data is removed from only a single header
segment of a message. If MSGEDIT is coded in an inbuffer or outbuffer sub­
group, data is removed from all message segments. The remove function might be
used to delete a destination from the destination field in the message header, to
substitute one destination name for another in the header, to remove unnecessary
data from at). outward-bound message, or to replace a specified character with a
logical-record delimiter that is recognized by application-program GET macros.

If the buffer containing a message segment is not long enough to accommodate
additional data inserted by a MSGEDIT macro, more buffer units are automatical­
ly added to the buffer. Because of internal requirements, for insert operations
MSGEDIT automatically allocates a minimum of one buffer unit before execution.
This unit, whether it eventually contains data or not, remains with the buffer.
This fact should be considered when determining the unit count for the MCP.
The effect of this automatic unit allocation can be diminished by the use of the
multiple-operand feature of the MSGEDIT macro. Empty units at the end of a
buffer are automatically deallocated when the buffer is passed to an INMSG or
OUTMSG macro; deallocated units are returned to the available-unit queue.

If the remove function is for a character string that may cross buffer boundaries,
MSGEDIT should be coded in the inblock subgroup.

Up to 31 separate insert and remove operations may be specified by issuing a
single MSGEDIT macro having up to 31 groups of positional operands. Since any
operation that can be performed with multiple groups of operands also can be
performed with a single group, then only one group of operands is allowed in the
same MSGEDIT macro. Assembler language restrictions on the length of a macro
operand apply.

The MSGEDIT macro operand field consists of from one to 31 groups of four
operands each and a single keyword operand that is coded as the last operand of
the macro. Each group of positional operands is enclosed in parentheses, and
each specifies a single insert or remove operation (which may, however, entail
multiple insertions or deletions). If the user wishes to perform many insert or
remove operations on his messages, he may either code a single MSGEDIT macro
having many groups, or he may code several MSGEDIT macros, each performing
one or two insert or remove operations.

A single MSGEDIT macro with five groups executes more rapidly than would five
MSGEDIT macros, each having one of the groups. However, certain restrictions
that apply to a MSGEDIT macro having several groups are not applicable when
several MSGEDIT macros having one group each are used instead (these restric­
tions are discussed below in the description of the MSGEDIT operands). Thus,
the decision of whether to code one MSGEDIT macro or whether to code several
depends on which is more important-speed of execution or flexibility.

Each group contains an AT operand, which specifies where, in a buffer, an insert
or remove operation is to begin. The order in which operations are performed
depends upon the relative locations of the character strings specified by the AT
operand in each group. The function specified by the group whose AT operand
appears first in a particular message segment is performed first for that segment,
the function specified by the group whose AT operand appears second is per­
formed second, etc.

Designing the Message Handler 253

When multiple groups of positional operands are coded for a MSGEDIT macro,
rather than multiple MSGEDIT macros each with a single group, data inserted by
one operation is not considered to be part of the message segment when another
operation is being performed. For example, if one group caused a B character to
be inserted after every A character in the message, and another group of the same
MSGEDIT macro specified that a C character be inserted after every B character
in the message, no C character would be inserted after a B character that had itself
been inserted as a result of an A character having been encountered in the mes­
sage segment by the MSGEDIT macro.

Insertion or removal of data using a MSGEDIT macro always results in a move­
ment of data in the buffer. Even when a MSGEDIT macro specifies only a single
remove operation and the replacement string is equal in length to the character
string being replaced, movement of data occurs (though in this case the result of
the data movement would be that the replacement string would be moved into the
space originally occupied by the deleted string). As a rule, when a MSGEDIT
macro operates on any data in a buffer, all of the data between the characters
affected by the first insert or remove operation and the end of the buffer is shifted
once by MVC instructions issued internally by TCAM.

When coded in an inblock subgroup, the MSGEDIT macro can be used to remove
or replace a character string that extends across message segments and buffer
boundaries. See the description of the inblock subgroup in Structure of the
Message Handler.

The MSGEDIT macro has certain limitations:

1. When issued in an inheader or outheader subgroup, MSGEDIT acts only upon
one header segment of messages having multiple-buffer headers. The segment "'l

acted upon is the one being processed by the inheader or outheader subgroup at
the time MSGEDIT is executed. Moreover, a MSGEDIT macro issued in an
inheader or outheader subgroup assumes that the header occupies the entire
segment being operated upon. Thus, if a MSGEDIT macro in an inheader
subgroup.,specifies that NYC is to replace BOS whenever the latter character
string occurs in the header, and if the header ends midway through the first
message segment, BOS will be replaced if it appears in the second half of the
segment, even though it is outside of the header.

2. Any character string in an operand specified in character format rather than as
hexadecimal data cannot include a comma or a right parenthesis. If the charac­
ter field requires the use of these characters, the field must be specified in
hexadecimal format.

3. The user must beware of performing message editing functions that either add
or remove data to the left of the scan pointer while he is performing sequential
processing of header fields. Because the scan pointer is positioned at a particu­
lar physical location in the buffer, rather than at a particular character, addition
of data to the left of the scan pointer results in the shifting of the original scan
pointer to the left. The following example illustrates the possible problem
resulting from improper placement of a MSGEDIT macro in the Message
Handler:

SETSCAN C' X '
ORIGIN 5
MSGEDIT((I,C'INSERT',l))
FORWARDDEST=5,EOA=*

254 OS/MFT and OS/MVT TCAM Programmer's Guide

After the SETSCAN and the ORIGIN macros are executed, the buffer might look
like this:

prefix X TERM A TERMB TERMC * message data

~
scan pointer

After the MSGEDIT macro executes, the buffer looks like this:

prefix INSERT X TERMA TERMB TERMC * message , .
scan pomter

When the FORWARD macro executes, the origin (TERMA) will be considered to
be the first destination (TERMB.) To avoid such problems, the user may follow
these two guidelines:

1. Perform as many of the functions of MSGEDIT as possible in an INBUF or
OUTBUF subgroup rather than in INHDR or OUTHDR.

2. Perform all functions of MSGEDIT that affect header fields either before all
sequential processing of header fields begins, or after all sequential processing
of header fields has been completed. Examples are:

a. MSGEDIT ((I, C' INSERT' ,1))

SETSCAN C' X'

ORIGIN 5

FORWARDDEST=5,EOA=*

b. SETSCAN C' X'

ORIGIN 5

FORWARDDEST=5,EOA=*
MSGEDIT((I,C'INSERT',l))

MSGEDIT moves the scan pointer backwards for the user for one special case.
This is a remove (or replace) function specifying the scan pointer itself as the TO
operand. Examples of this are:

MSGEDIT ((R, ,25, SCAN))

MSGEDIT ((R, C' INSERT ',25, SCAN))

In these examples, if the remove or replace function results in the deletion of more
bytes than exist between the scan pointer and the end of data in the buffer after
the macro executed, the scan pointer would, if not adjusted, erroneously point
beyond the end of the data in the buffer and prevent any subsequent sequential
processing. Therefore, in these cases, the scan pointer is moved backward a
distance equal to:

a. the length of the data removed,or
b. the length of data removed less the length of data inserted.

The user is cautioned that he may have to read the following description several
times before he understands how to code the macro. Several examples follow the
macro description.

MSGEDIT has the following format:

Name Operation Operands

[symbol] MSGEDIT «groupl).(group2) •...) [,BLANK- fO r
char
YES

Designing the Message Handler 255

symbol

«group 1) .(group2))

function operand

{~IA][T] }

Function: Specifies the name of the macro.
Default: None. Specification optional.
Format: Must conform to the rules for assembler language symbols (see the
symbol entry in the Glossary).

Function: Each group specifies a single insert or remove function.
Default: None. At least one group must be specified.
Format: Each group contains (function.data.AT.TO) operands. They must be
provided in the order shown. enclosed in parentheses. and separated from each
other by a comma.
Maximum: A maximum of 31 groups may be coded.
Notes: Because of the complexity of the macro. the operands are explained
individually below.

The structure of each group of positional operands is as follows:

Function operand Data operand AT operand TO operand

~~[A][T] ~
- - r- -

, characters , ~h~actern j' characters
(hexform,n) offset offset

(integer ,optfield)
DELIMIT SCAN SCAN
CONTRACT (count)

..... - .10) -

, ...

Function: Specifies whether an insert or remove function is to be performed and.
if a remove function, whether the characters delimiting the beginning and the end
of removal are themselves to be removed.
Default: None. This operand must be specified.
Format: I. R, RA, RT. RAT, or RTA.
Notes: I specifies that an insertion function is to be performed. The data specified
in the data operand is the data inserted in the message.

R specifies that a remove function is to be performed; any data specified by the
AT operand and the TO operand is to be removed from the message and replaced
with the data specified by the data operand. If no data is specified by the AT
operand or by the TO operand MSGEDIT removes one byte of data beginning at
the location currently designated by the scan pointer. If no data is specified by
the data operand, data that remains in a buffer after deletion is contracted to fill
the space left by the removed data.

A specifies that removal is to begin with the first character of the character string
specified in the AT operand; in this case, if replacement data is specified in the
data operand, the first byte of replacement data is inserted in the space occupied
originally by the first byte of the character string specified by the AT operand. If
A is omitted, removal and replacement begin with the character immediately

256 OS/MFT and OS/MVT TeAM Programmer's Guide

data operand

[
characters]
(hexform,n)
DELIMIT
CONTRACT

following the last character in the string specified in the AT operand. If A is
coded in a group, a character string should be coded as the AT operand; other­
wise, MSGEDIT removes one byte of data beginning at the location currently
designated by the scan pointer and proceeds to the next group, if any, to accom­
plish the next insert or remove function.

T specifies that removal is to end with the last character of the string specified in
the TO operand; if T is not coded, the character immediately preceding the first
character of the string specified by the TO operand is the last character removed.
If T is coded in a group, a character string should be specified as the TO operand;
otherwise, MSGEDIT removes one byte of data beginning at the location current­
ly designated by the scan pointer and proceeds to the next group, if any, to
accomplish the next insert or remove function.

Function: If this is an insert function, specifies the data to be inserted in the mes­
sage. If this is a remove function, specifies either the data to replace the charac­
ters removed from the message or specifies that the data remaining in a buffer
after deletion is to be contracted to fill the space originally occupied by the
deleted data.
Default: CONTRACT
Format: characters, (hexform,n), DELIMIT, or CONTRACT. characters may be
one to eight nonblank characters in character or hexadecimal format. If character
format is used, framing C' , or CLn' , characters must be used. If hexadecimal
format is used, framing X' , or XLn' , characters must be specified.

(hexform,n) must be coded within parentheses. hexform is a single character in
hexadecimal or character format surrounded by framing X' 'or C' 'characters. n
is a decimal integer and must not be framed.
Maximum: n may be a maximum of one buffer unit.
Notes: characters in an insert operation specifies the character string to be
inserted into the message. In a remove operation, characters specifies the charac­
ter string that is to replace the deleted data. If messages are to be translated,
inserted characters should be in EBCDIC; if they are not to be translated, inserted
characters should be in terminal transmission code.

(hexform,n) specifies that the single character represented by hexform is to be
inserted the number of times indicated by n. The inserted characters will be
contiguous; if this is a remove operation, they will replace the deleted data. This
operand may be used to insert idle characters in outgoing messages.

DELIMIT is valid only if the function operand specifies a remove function.
DELIMIT specifies that the character in the RECDEL= operand of the
TPROCESS macro whose name is entered as the destination of this message is to
replace the character string delimited by the AT and TO operands. This character
is recognized by the application program's GET macro as the delimiter of a
variable-length record. The MSGEDIT macro in which this operand is coded is
usually located in the outbuffer subgroup of the MH for the application program
or in the inbuffer subgroup for the line over which the message is received. If
MSGEDIT is located in an inheader subgroup, only a single header segment is
scanned for the character to be replaced. The destination queue must be identi-

Designing the Message Handler 257

AT operand

[
characters J
offset
(integer,opfield)
SCAN

fied by means of a FORWARD macro before the MSGEDIT macro is issued. If
the destination of this message is not an application program, the MSGEDIT
group containing DELIMIT does not execute.

CONTRACT is valid only if the function operand specifies a remove function.
CONTRACT specifies that after the appropriate data has been deleted from a
message segment, succeeding characters in the buffer are to be moved to overlay
deleted characters. If contraction results in one or more empty units at the end of
the buffer, these are released when the segment leaves the incoming or outgoing
group of the MH.

If the function operand specifies an insert function and if CONTRACT is coded
(or if the data operand is omitted), this MSGEDIT macro does not execute, and
control passes to the next instruction in the MH.

Function: If an insert function is being performed, specifies the location at which
the insertion is to be made. If a remove function is being performed, specifies the
location of the beginning of the string to be removed.
Default: SCAN
Format: characters, offset, (integer,opfield), or SCAN.

characters specifies one to eight nonblank characters in either character or hexade­
cimal format. If character format is used, the string must be framed with C' , or
CLn' 'characters. If hexadecimal format is used, the string must be framed with
X' , or XLn' 'characters. offset is a decimal integer specified without framing
characters.

(integer,opfield) must be coded within framing parentheses. integer may be
specified either in decimal or hexadecimal format. If hexadecimal format is used,
the value must be coded within framing X' , or XLn' 'characters. opfield is the
name of a halfword option field defined by an OPTION macro.
Maximum: For offset, 65535. For integer, 65535, or a hexadecimal field of two
bytes.
Notes: If this is an insert function, characters specifies a string immediately
following which the data specified in the data operand is to be inserted. If the
MSGEDIT macro is included in an inheader or outheader subgroup, the specified
data is inserted each time this string is encountered in the message header. If the
MSGEDIT macro is issued in an inbuffer or out buffer subgroup, the specified data
is inserted each time this string is encountered anywhere in the message.

If this is a remove function, characters specifies a string that delimits the begin­
ning of the data to be removed. If the A sub operand of the function operand is
included, removal begins with the first character of this string; if A is not included,
removal begins with the character immediately following the last character of this
string. If A is coded in the function operand and the TO operand is coded (0) or is
omitted, only the string specified in the AT operand is removed. If the MSGEDIT
macro is included in an inheader or outheader subgroup, removal occurs each time
the character string is encountered in the message header. If the macro is issued in 14,

an inbuffer or outbuffer subgroup, removal occurs each time the character string is ~

encountered in the message.

258 OS/MFT and OS/MVT TCAM Programmer's Guide

UT~;~:;:~Jd offset
SCAN
(count)
0)

If characters is coded, either characters or (count) should be specified as the TO
operand. If SCAN is specified as the TO operand, TCAM assumes a count of zero
has been specified for TO. If an offset is specified for the TO operand, TCAM
assumes that the offset is a count.

If characters is coded, the entire string must be located within a single buffer. If
more than one group of operands is included in this macro, the AT operand for
each group must be specified as characters, and each character string specified as
an AT operand must begin with a different character.

If this is an insert function, offset specifies the number of bytes beyond the buffer
prefix immediately following which the first character specified in the data oper­
and is to be inserted. If this is a remove function, offset specifies the number of
bytes beyond the prefix immediately following which deletion of data is to begin.

If the MSGEDIT macro is specified in an inheader or outheader subgroup, offset
applies to a single header segment only, and insertion or deletion of data occurs
only once. If the macro is coded in an inbuffer or outbuffer subgroup, data is
inserted or deleted at the specified offset in every segment of the message. If this
is an insert operation and an offset of 2 is specified, the first character inserted
will immediately follow the contents of the second byte beyond the buffer prefix.
If this is a remove function and an offset of 2 is specified, the first byte whose
contents are removed from a segment will be the third byte beyond the buffer
prefix.

(integer,opfield) specifies that the data coded for the data operand is to be inserted
after every number of bytes specified by integer. If integer is 20, for instance, the
data specified in the data operand is inserted after every 20 bytes of message. An
integer greater than 1 may not be specified if the source station (when MSGEDIT
appears in the inbuffer or inblock subgroup) or the destination station (when
MSGEDIT appears in an outbuffer subgroup) uses the block checking feature for
a message. When insertion does occur, however, it occurs in both the header and
text. opfield is the name of an option field assigned to the origin (if MSGEDIT is
coded in the incoming group) or to the destination (if MSGEDIT is coded in the
outgoing group). The option field must be initialized by the OPDATA= operand
of the TERMINAL or TPROCESS macro (it may be set to a halfword of zero).
(integer,opfield) coded as the AT operand has the following restrictions:

• I must be coded as the function operand;
• this MSGEDIT macro may be coded in an inbuffer or outbuffer subgroup only;
• only one group of positional operands may be specified;
• characters or (hexform,n) must be specified for the data operand.

SCAN specifies that insertion or deletion is to begin with the character immedi­
ately following the byte to which the scan pointer is currently pointing (see the
description of the scan pointer in Designing the Message Handler). This oper­
and may be specified only when the macro is issued in an inheader or outheader
subgroup.

Function: For remove functions only, specifies the end of the character string to
be deleted.

Designing the Message Handler 259

Default: (0)
Format: characters, offset, SCAN, (count) or (0). characters specifies a one- to
eight-byte field in either character or hexadecimal format. If character format is
used, framing C' , or CLn' , characters must be specified. If hexadecimal format is
used, framing X' , or XLn' 'characters must be specified. offset specifies a
decimal integer coded without framing characters. (count) must be coded within
its framing parentheses and is a decimal integer specified without framing charac­
ters.
Maximum: Both offset and (count) have a maximum value of 65535.
Notes: characters indicates the location of the last character to be deleted. If the
T suboperand of the function operand is coded, deletion ends with the last charac­
ter of the string specified here; otherwise, deletion ends with the character imme­
diately preceding the first character of the string. The entire string must be
located in the buffer that contains the delimiter specified by the AT operand, since
deletion must begin and end in the same buffer. If both the AT and the TO
operand specify character strings, TCAM assumes that the first byte of the TO
string is to the right of the last byte of the AT string.

offset specifies an offset from the beginning of the data in a message segment; this
offset defines the end of the string to be deleted in this operation. If the offset is
20, for instance, the character occupying the twentieth byte from the beginning of
data in the buffer is the last character deleted. The offset must specify a byte that
is in the same buffer as, and either in the same position as or to the right of the
first byte of data removed (as specified by the AT operand); each deletion must
begin and end in the same buffer. If the offset specified by the TO operand is
identical with the offset specified by the AT operand, the single character located
at this offset is removed. If the offset is beyond the end of the buffer, data will be (~
deleted to the end of the buffer. \.

If this MSGEDIT macro is specified in an inheader or outheader subgroup, offset
applies to a single header segment only and deletion occurs only once. If the
macro is coded in an inbuffer or outbuffer subgroup, data is deleted from each
segment.

SCAN specifies that the character indicated by the current position of the scan
pointer is to be the last character deleted in this remove operation. This operand
may be coded only in a MSGEDIT macro issued in an inheader or outheader
subgroup. If SCAN is coded for both the AT and the TO operand, and R is
specified in the function operand, the single character located at the current
position of the scan pointer is deleted.

(count) and its default value (0) specify the number of bytes of data to be deleted,
starting with the byte immediately following the AT operand. If the AT delimiter
is a character string and if A is coded in the function operand, the amount of data
removed is equal to the sum of the number of characters in the AT delimiter string
plus the number of bytes specified by (count). If the integer specified by (count)
is greater than the number of bytes between the AT delimiter and the end of the
buffer, all characters between the AT delimiter and the end of the buffer are
deleted. A count of zero indicates that no data is to be deleted (except for the
characters in the AT delimiter if A is coded in the function operand); if the TO
operand is omitted, a count of 0 is assumed. If A is coded in the function operand
and a string is coded in the AT operand, the string is removed each time it is (
encountered if (0) is coded or if no TO operand is specified.

260 OS/MFT and OS/MVT TeAM Programmer's Guide

Function: This operand specifies whether EBCDIC blank characters are to be
ignored when encountered in searching the message for a field, or whether blanks
are to be considered part of the field when encountered. If EBCDIC blanks are to
be counted when found, this operand also specifies whether some other hexadeci­
mal character is to be ignored when encountered in searching the message for a
field.
Default: BLANK= YES
Format: YES, NO, or char. char is a single character that may be specified in
either character or hexadecimal format. If character format is specified, it may be
unframed or framed with C' ' or CLI' 'characters. If hexadecimal format is
specified, it must be framed with X' , or XL I' , characters.
Notes: YES specifies that the EBCDIC blank character (X'40') is to be ignored
by this macro whenever it is encountered in a message. For example, if
BLANK= YES is coded and an eight-byte field is being acted upon by this macro,
a blank appearing in the fifth will be ignored and the sixth through ninth bytes will
be considered to be the last four bytes of the field (assuming that no blanks are
coded in the sixth through ninth bytes).

NO specifies that the EBCDIC blank character is to be treated like any other
character when it is encountered by this macro in the message.

char specifies that the single character replacing char is to be ignored by this
macro whenever it is encountered in the header. That is, the macro automatically
skips over the character without checking it. If BLANK=char is coded and char
is not the EBCDIC blank, the EBCDIC blank is treated like any other character.

With one exception (when both the AT and the TO operands are coded as or with
SCAN), the first byte of a string of data to be removed, as determined by the AT
operand, must be to the left of, or in the same position as, the last byte of the
string of data to be removed, as determined by the TO operand. See the following
examples.

The first character in a character string to be deleted, as specified by the AT
operand, must not be to the right of the last character of the character string, as
specified by the TO operand. If both operands specify the same byte, that byte
only is removed. As an example, consider the following initial portion of a buffer,
with the scan pointer located at D:

6-
beginning SCAN
of data PTR

A MSGEDIT macro coded

MSGEDIT ((R, CL3 I BOS I, SCAN,4))

data- %,

would result in the character D being replaced with the string BOS in the buffer.

A MSGEDIT macro coded

Designing the Message Handler 261

MSGEDIT ((R,CL3'BOS' ,CLl 'D' ,CL3'RAL'))

would result in BOS inserted after D; this macro says to remove the character
between D and R and replace it with BOS. Since there is no character between D
and R, none is removed, but BOS is still inserted.

Examples 1:
MSGEDIT is a complex macro, capable of performing many functions. In this
section, some of the more common functions of MSGEDIT are discussed and
illustrated with examples.

Insertion of a single character string after a specified field in a header buffer: The
following MSGEDIT macro might be coded in an inheader subgroup to add the
destination RAL to the list of destinations specified in the message header.
Assume that the last destination specified in the header is NYC, and that
DEST=(3) is coded in the FORWARD macro.

EDITl MSGEDIT ((I,CL3'RAL' ,CL3'NYC'))

Note that only the function, data, and AT operands are coded for this macro; the
TO operand must not be coded for an insert operation.

Example 2:
Insertion of a character string after every 50 bytes of message data: The following
MSGEDIT macro might be coded in the outbuffer subgroup of a Message Handler
assigned to,an application program to cause the EBCDIC Z character (specified as
a record delimiter by the RECDEL= operand of the TPROCESS macro creating
the process entry specified as the destination of the message) to be inserted after (~

every 50 bytes of message data. '~

EDIT2 MSGEDIT ((I, C' Z' , (50, EDITOPT)))

Note that no TO operand is coded and that only one group is specified.
EDITOPT is the name of a halfword option field created by an OPTION macro
and initialized with zeros by the OPDAT A= operand of the TPROCESS macro
creating the process entry specified as the destination of this message.

Example 3:
Replacement of one character string in a message with another character string:
The following MSGEDIT macro is coded in the inheader subgroup; it causes the
character string BOS to be replaced with the character string OMAHA wherever
the former string appears in the first segment of the message (remember, however,
that the entire character string BOS must occur in the segment in order for
MSGEDIT to operate on it). If a buffer is not long enough to accommodate the
longer character string, TCAM will automatically allocate extra units to the buffer
as needed.

EDIT3 MSGEDIT ((RA, CL5' OMAHA' ,CL3' BOS'))

Note that no TO operand is coded. The A in the function operand specifies 'that
the AT character string is to be deleted and that the 0 in OMAHA is to be
positioned at the location occupied by the B in BOS. If the TO operand had been
coded BOS, all data in the segment between the first BOS and a second BOS
would be deleted. If the segment contained no second BOS, the remove operation i(

262 OS/MFT and OS/MVT TCAM Programmer's Guide

would not take place; the macro would not execute, and control would pass to the
next macro.

Example 4:
Insertion and replacement: A single MSGEDIT macro might be issued in an
inheader subgroup to accomplish the two editing functions described above. This
macro would cause RAL to be inserted after each NYC in the first segment, and
would also cause BOS to be replaced with OMAHA each time BOS appeared in
the first segment.

EDIT4 MSGEDIT ((I, CL3 'RAL' , CL3 'NYC'),
(RA,CLS'OMAHA',CL3'BOS'))

Example 5:
Deletion and contraction: The following MSGEDIT macro might be issued in the
inheader or outheader subgroup. It causes the ten bytes immediately following the
current position of the scan pointer to be deleted; all data following the deleted
ten bytes in the first message segment is shifted to the left ten spaces to fill in the
space occupied by the deleted data. The shift may result in an empty unit at the
end of this buffer; empty units are dynamically deallocated and returned to the
available unit queue when the buffer leaves the MH group.

EDITS MSGEDIT ((R, , , (10)))

Note that the data and AT operands were not coded, since their default values are
CONTRACT and SCAN, respectively. Figure 20 illustrates how a single buffer
containing an entire message might look before and after this macro was executed.
Assume that the units are 64 bytes long, that the buffer consists of two units, and
that the second unit contains only six bytes of data before the MSGEDIT macro is
executed. Assume also that all of the ten bytes immediately following the position
of the scan pointer contain meaningful data (none of the bytes contain blanks).
Notice that after the deletion was made, all data following the deleted characters
was moved ten bytes to the left; as a result the second unit contains no meaningful
data after the remove operation.

Example 6:
Insertion of idle characters: The following macro, when coded in an inbuffer or
outbuffer subgroup, causes 13 EBCDIC idle characters (X' 17') to be inserted
whenever a period is encountered in a message.

EDIT6 MSGEDIT ((I, (X' 17' ,13) , CL 1 ' . '))

Example 7:
Insertion of a record delimiter: The following macro, when coded in an inbuffer
or outbuffer subgroup, causes the logical record delimiter X to be substituted for
the character D wherever the latter character appears in a message. The X
delimiting character, which would be coded in the RECDEL= operand of a
TPROCESS macro, is considered by a GET command issued by an application
program to be the delimiter of a logical record.

EDIT7 MSGEDIT ((RA,DELIMIT,CL1'D'))

Example 8:
Miscellaneous examples: The following MSGEDIT macro, when coded in an
inbuffer or outbuffer subgroup, causes the character string OUT and the ten

Designing the Message Handler 263

Buffer before 10-byte deletion of data:

Unit #

12 byte
Control area _t---- 30 byte prefix ---......I 14 bytes of data

'--__ ~ 12 byte
control area

• Scan Pointer

t---------54 "empty" bytes -----------+01

Buffer after deletion and contraction of data:

Unit'l

12 byte
I- control area

30 byte prefi x N y C B 0 S i-- 14 bytes data _ 3 5 , * * * I-- 4 empty bytes_

• Scan Pointer
Unit '2

12 byte
60 "empty" bytes con tro I a rea

FIgure 20. Deletion of Data from a Message Segment followed by Contraction of the Segment; KEYLEN=60 and BUFSIZE= 120

characters immediately following OUT to be removed from a message segment
wherever OUT appears in a segment. Data following the 13 deleted characters is
moved to the left to fill the gap caused by the deletion. EBCDIC blanks are
counted as characters in this example.

EDIT8 MSGEDIT ((RA, CONTRACT, CL3' OUT' , (10))), BLANK=NO

The following MSGEDIT macro, when coded in an inbuffer or out buffer subgroup
causes the data between every R character and E character to be replaced with the
character string EPLAC. If the data being deleted occupies less space than the
replacement string, the data in the buffer is automatically spread out to make
room for the insertion, and another buffer unit is added to the buffer if necessary.
If the data being deleted occupies more space than the replacement string, data to
the right of the replacement string is automatically moved to the left to fill the gap.

EDIT9MSGEDIT ((R,CLS'EPLAC' ,eL1 'R' ,CL1 'E'))

The following MSGEDIT macro, coded in an inbuffer or outbuffer subgroup,
causes the characters occupying the tenth through twentieth bytes of each buffer
to be deleted, and the remaining data to be shifted left to fill the gap caused by
deletion.

EDIT10 MSGEDIT ((R, ,9,20))

The following MSGEDIT macro, coded in an inheader or outheader subgroup,
causes the character occupying the byte to which the scan pointer is currently
pointing to be removed; subsequent data in the segment is shifted one byte left to
fill the gap. Note the defaults.

264 OS/MFT and OS/MVT TCAM Programmer's Guide

EDIT11 MSGEDIT ((R, , , SCAN))

The following MSGEDIT macro, coded in an outbuffer subgroup, causes three
EBCDIC SYN control symbols (X'32') to be inserted in each segment, beginning
at the thirty-first byte.

EDIT12 MSGEDIT ((I, (X' 32' ,3),31))

The following MSGEDIT macro, coded in an inblock, inbuffer, or outbuffer
subgroup, causes the EBCDIC blank character (X'40') to be replaced by 13
EBCDIC idle characters (X'I?') wherever a blank occurs (BLANK=NO must be
specified for this operation). In addition, the character string DOLLARS is
replaced with the character $ wherever it appears, and two blanks are inserted
after each period in the message.

EDIT13 MSGEDIT ((RA, (XL 1 ' 1 7 ' , 1 3) , CL l' '),
(RA, CL 1 ' ; , $, ,CL 7 ' DOLLARS'),
(I, CL2' ',CL 1 ' . ')) ,BLANK=NO

*
*

When multiple operations are performed by a single MSGEDIT macro, the data
inserted by insert operations is not considered when remove operations are
performed. The macro should be in an inblock subgroup if the character string
'DOLLARS' can extend across buffer boundaries. Thus in the above example, the
two blanks inserted after each period would not be replaced by 13 idle characters
each.

Designing the Message Handler 265

MSGFORM

The MSGFORM macro

• puts line-control characters into outgoing messages;
• removes line-control characters (on a count basis) from incoming messages;
• permits specification and overriding of blocking factors for outgoing messages;
• permits variable-length reblocking of records for outgoing messages;
• indicates whether an outgoing message is to be transmitted in transparent or

non-transparent mode;
• may be specified in the inblock and outheader subgroups.

The MSGFORM macro is optional; it may be included in inblock and outheader
subgroups only. When coded in an inblock subgroup, MSGFORM must appear
before any other macro that might cause data movement. The MSGFORM macro
should be coded in the outheader subgroup of a Message Handler assigned to a
line group, and should not be in the outheader subgroup of the MH for an appli­
cation program. The MSGFORM macro permits the user to divide his outgoing
messages into logical blocks of data based on a maximum size or a maximum
number of sub blocks per block. The user specifies blocking factors in the oper­
ands of the TERMINAL or MSGFORM macro; the blocking factors specified in
MSGFORM override those specified in TERMINAL. In addition, the blocking
factor may be defined as a number of variable-length subblocks. If MSGFORM
specifies blocking factors, TCAM inserts appropriate blocking control characters
into outgoing messages at the beginning and end of each message and at the
locations indicated by the TERMINAL or MSGFORM operands. If blocking
factors are not specified in either the MSGFORM or the TERMINAL macro, the
EOT line-control character is the only one inserted in messages for start/stop
terminals, and no line-control characters are inserted in messages to BSC termi- (~
nals. No buffer space need be reserved for the characters inserted by
MSGFORM. MSGFORM inserts EOA, ETX, and EOT characters where needed.
These and the blocking characters are not inserted at the time MSGFORM is
executed; rather, the characters are inserted after all executable macros in the
outgoing group have been executed. When the blocking factor is at a maximum
number of subblocks per block, the subblock delimiters must be in the data before
MSGFORM executes. For IBM 2260 (Remote), IBM 2265, and BSC stations,
STX characters are also inserted. For more information on the line-control
scheme utilized by TCAM, see Defining Terminal and Line Control Areas.

MSGFORM has the following format:

Name Operation Operands

[symbol] MSGFORM [BLOCK=integer] [,SUBBLCK=integer]
[.COUNT=integer[[,SENDTRJ': {YEs.PAD } 1

YES,NOPAD
!ill.

[,ENOCHAR=subblock delimiter]

c
266 OS/MFT and OS/MVT TeAM Programmer's Guide

symbol

BLOCK =integer

SUBBLCK=integer

SENDTRP= ~ YES, PAD ~
YES, NOPAD
NO

Function: Name of the macro.
Default: None. Specification optional.
Format: Must conform to the rules for assembler language symbols (see the
symbol entry in the Glossary).

Function: Specifies the number of bytes in each subblock of data for incoming
and in each block of data for outgoing messages in transparent or non-transparent
mode.
Default: None. Specification optional.
Format: Decimal or hexadecimal. If hexadecimal format is used, framing X' , or
XLn' , characters must be specified.
Maximum: 65535 or a hexadecimal field of two bytes.
Notes: If this operand is not specified for output, the value used is that specified
by the blocksize suboperand of the NTBLKSZ= operand of the TERMINAL
macro, or by the TBLKSZ= operand of the TERMINAL macro for the destina­
tion station.

When data is to be sent in transparent mode, the number of buffers assigned for
BUFOUT must be large enough to contain an ETB block. The value is specified
in the BLOCK= operand of the MSGFORM macro or the TBLKSZ= operand of
the TERMINAL macro.

When both the BLOCK= and the ENDCHAR= operands are coded in the
inblock subgroup of an MH assigned to a line group, the other operands of the
MSGFORM macro cannot be coded.

On input, TCAM inserts an EOB or an ETB line-control character after each
number of bytes specified by integer.

Function: Specifies the number of bytes per ITB character for outgoing messages
in non-transparent mode to BSC stations.
Default: None. Specification optional.
Format: Decimal or hexadecimal. If hexadecimal format is used, framing X' , or
XLI' , characters must be specified.
Maximum: 255 or a one-byte hexadecimal field.
Notes: If this operand is not specified, the value used is that specified by the
subblocksize suboperand of the NTBLKSZ= operand of the TERMINAL macro
for the destination station.

TCAM inserts an ITB control character after each number of bytes specified by
integer.

Function: Specifies whether this message is to be sent out in transparent mode.
Default: NO
Format: YES

YES, PAD
YES, NOPAD
NO

Notes: YES should not be coded unless the message is being sent to a BSC

Designing the Message Handler 267

ENDCHAR=subblock delimiter

COUNT =integer

station. PAD is a default of YES and indicates that padding with blanks will be
done to short blocks of data. SENDTRP can be coded YES or YES, PAD. YES,
NOPAD specifies that no padding is to be done in transparent mode. NO speci­
fies that the message is sent out in non-transparent mode. Padding or no padding
applies only to the last block of the message.

Function: Specifies the characters that terminate a subblock for outgoing mes­
sages. Specifies the characters to be deleted from incoming messages.
Default: None. Specification optional.
Format: Character or hexadecimal. XLn" or CLn' , must be coded as framing
characters.
Maximum: 8 bytes.
Notes: Subblock delimiters, when required, must be in the output data before
blocking is performed.

When the ENDCHAR= and the BLOCK= operands are both coded in the
in block subgroup of an MH assigned to a line group, the other operands of the
MSGFORM macro cannot be coded.

When both the ENDCHAR= and the COUNT= operands are coded in the
outheader subgroup of an MH assigned to a line group, the other operands of the
MSGFORM macro cannot be coded.

Since MSGFORM is coded in the outheader subgroup, but is the last macro to
execute in the outgoing group, the user should code the ENDCHAR string in line
code.

Function: Specifies the maximum number of subblock delimiters in the variable­
length blocks of data to be constructed for output operations.
Default: None. Specification optional.
Format: Decimal or hexadecimal. If hexadecimal format is used, framing X' ,
characters must be specified.
Maximum: 255 or a one-byte hexadecimal field.
Notes: When both the ENDCHAR= and the COUNT= operands are coded in
the outheader subgroup of an MH assigned to a line group, the other operands of
the MSGFORM macro cannot be coded.

268 OS/MFT and OS/MVT TeAM Programmer's Guide

symbol

mask

MSGGEN

The MSGGEN macro

• generates an unqueued message;
• is optional in inmessage and outmessage subgroups;
• may be issued more than once in a subgroup.

MSGGEN generates a message if the errors specified by the error mask operand
match the bits set in the message error record (see Appendix B for a description
of the message error record). If a zero mask is specified, the message is generated
unconditionally. The generated message bypasses all normal functions, such as
MH processing, queuing, logging, and buffer requesting. The MSGGEN macro
informs the user of an error more rapidly than does the ERRORMSG macro, but
does not return the header of the message in error, as the latter macro does.

If MSGGEN is specified in an inmessage subgroup, the generated message, as
specified by an operand, is sent to the originating station; if specified in an
outmessage subgroup, the message is sent to the destination station. MSGGEN
may be specified more than once within a subgroup.

This macro may be used to generate a message based on an error condition
detected in a logical message formed by deblocking an incoming physical message.
Its use requires that the inblock subgroup's SETEOM macro specify
PROCESS= YES. Logical messages are discussed in Handling Logical Messages
in this chapter.

Name Operation Operands

[symbol] MSGGEN [mask], ~ message ~
fieldname

[,CONNECT = {~~D}]

[,CODE=1~~ename p

Function: Name of the macro.
Default: None. Specification optional.
Format: Must conform to the rules for assembler language symbols (see the
symbol entry in the Glossary).

Function: Specifies the five-byte bit configuration used to test the message error
record for the message (see the description of the message error record in
Appendix B).
Default: None. Specification optional.
Format: Decimal or hexadecimal. If hexadecimal format is used, framing charac­
ters must be specified. If X' , is used, leading zeros must be coded. If XL5' , is
used, leading zeros may be omitted.
Maximum: 16777215 or a hexadecimal field of five bytes.
Notes: Omitting the operand or an all-zero mask causes unconditional execution.

Designing the Message Handler 269

Smessage {
tfieldname5

CODE= { ~~ename }

Function: Specifies the message or the location of the message to be sent to the
originating or destination station, depending on whether MSGGEN is issued in an
inmessage or outmessage subgroup, respectively.
Default: None. This operand must be specified.
Format: message or fieldname. message is the actual message to be sent, and has
a maximum length of 24 bytes. It must be framed, either by C' " CLn' " X' " or
XLn' , framing characters. fieldname is the symbolic name of the field containing
the message. It must not be specified with framing characters.
Notes: The message may be specified in EBCDIC and translated as specified by
the CODE= operand, or it may be specified in line code if no translation is to
occur.

The field referred to by fieldname must have as its first byte the hexadecimal
count equal to the number of bytes in the rest of the field. The maximum number
of bytes in the message portion of the field is 24.

All line-control characters, including the EOT, must be coded by the user in his
message, with the following exceptions:

• TCAM provides the EOA line-control characters for the IBM 1030, IBM 1050,
IBM 1060, IBM 2740, lISA and 83B3 stations.

• TCAM provides an EOT character for BSC stations.
• The user should not insert block-checking characters (EOB) in MSGGEN

messages directed to a start-stop station.

If the user inadvertently inserts block-checking characters (for instance, EOB) in
MSGGEN messages directed to a start-stop station, no checking occurs. For BSC i\~

stations, the presence of block-checking characters will cause checks to be made.
Messages sent out by MSGGEN are never transmitted in transparent mode.

Function: Specifies the type of logical connection to be made between the mask and
the message error record.
Default: CONNECT=OR
Format: AND or OR.
Notes: AND specifies that the macro is to be executed only if all of the bits
specified by mask are on in the message error record. OR specifies that the
macro is to be executed if any bit specified by mask is on in the message error
record.

Function: Specifies the type of translation for the generated message.
Default: None. Specification optional.
Format: tablename or NO.
Notes: tablename is specified as described for the TRANS= operand of the line
group DCB macro. Register notation may not be used. The user may devise and
specify his own translation table as described for the CODE macro.

NO specifies that the message is not to be translated. If this operand is omitted,
the message is translated using the translation table specified in the line group

270 OS/MFT and OS/MVT TeAM Programmer's Guide

DCB for the line. If this operand is omitted and no translation table is specified in
the line group DCB macro, no translation occurs.

A message generated by MSGGEN may not be directed to a distribution list or to
an application program when specified in an inmessage subgroup.

Note: A premature disconnection on a switched line will prevent the message
from being returned to the originating station; the message will be lost.

Designing the Message Handler 271

(

symbol

MSGLIMIT

The MSGLIMIT macro

• limits the number of messages to or from a station during a single transmission
sequence;

• is effective only when used with a nonswitched line;
• is ineffective for buffered stations;
• is optional in the inblock, inheader, and outheader subgroups of an MH.
• is ineffective in the outheader subgroup if send priority is specified in the DeB

macro.

MSGLIMIT limits the number of messages that can be transmitted to or accepted
from a single station on a nons witched line following a positive response to
invitation or selection. If coded in an inblock subgroup, MSGLIMIT limits
physical transmission sequences initiated by a station. If coded in an inheader
subgroup, MSGLIMIT limits the number of messages entered by a station or
application program during a single transmission sequence; if coded in an out­
header subgroup, MSGLIMIT limits the number of messages sent to a station or
application program during a single transmission sequence. For instance, for
stations that are polled, MSGLIMIT in the inheader subgroup causes the current
station to cease to be polled once the specified maximum number of messages is
reached; the next entry is then polled. If no limit is set for polled stations, each
station is polled until it has no more messages to enter (negative response).

MSGLIMIT has no effect when used with a switched line or with buffered stations
on a nonswitched line. The MSGLIMIT macro is optional in inheader and out­
header subgroups. Its use is suggested for IBM 2260 and 2265 terminals; the
outheader subgroup for these terminals should include a MSGLIMIT macro
specifying a limit of one message in inquiry applications (in order to ensure that a
response message is not erased before it can be read). For a description of the use
of MSGLIMIT with a contention terminal, see Transmission Priority for Non­
switched Contention Stations in the chapter Terminal and Line Control Area
Definition.

If a MSGTYPE macro or user code is used to cause MSGLIMIT to be executed
only for certain types of messages, only those subsequent messages examined by
the same MSGLIMIT macro will be counted when the limit for a station is being
determined. If send priority is specified, the MSGLIMIT macro will have no
effect. When the limit is reached the send priority condition will cause more
output (if ready) to be sent to the terminal. The send priority will make the effect
of the MSGLIMIT macro transparent to the user.

Name Operation Operands

[symbol] MSGLIMIT { integer}
opfield

Function: Name of the macro.
Default: None. Specification optional.
Format: Must conform to the rules for assembler language symbols (see the
symbol entry in the Glossary).

Designing the Message Handler 273

{ integer}
opfield

Function: Specifies the number of messages or the location of the number of
messages that the user wishes to transmit to or receive from each terminal on the
line.
Default: None. This operand must be specified.
Format: integer or opfield. integer may be specified either in decimal or hexade­
cimal format. If hexadecimal format is specified, framing X' , or XLn' , characters
must be coded. opfield must be the same as the name of a one-byte option field
defined by an OPTION macro.
Maximum: For integer, 2550r a one-byte hexadecimal field.
Notes: If integer is specified, all stations processed by1:his MH are limited to the
same MSGLIMIT value. If opfield is specified, the option field contains the limit
of consecutive message transmissions that is allowed to or from a station. Use of
this operand allows the message limit specification to be different for each station.
If the option field cannot be found, MSGLIMIT does not execute, and a return
code of X'04' is set in the low-order byte of register 15.

274 OS/MFT and OS/MVT TeAM Programmer's Guide

(

symbol

conchars

MSGTYPE

The MSG TYPE macro

• controls the path of a header through an MH;
• is optional in inheader and outheader subgroups (and not permitted in any

other subgroup);
• may be used more than once in a subgroup.

MSGTYPE enables the user to categorize incoming or outgoing messages into two
or more message types, each of which he processes in a different manner.

Use of MSGTYPE is optional. Any number of MSGTYPE macros may be issued
within a subgroup, provided that they all examine the same position in the buffer
for the message-type characters. Only one field in a header per inheader or
outheader subgroup may contain message-type characters, and only one sequence
of code beginning with a MSGTYPE macro is executed in an inheader or out­
header subgroup for anyone incoming or outgoing message. MSGTYPE may be
used only within inheader and outheader subgroups.

The use of MSGTYPE is discussed in the Variable Processing within a Message
Handler section of this chapter.

MSGTYPE has the following format:

Name Operation Operands

[symbol] MSGTYPE
~ 'on~'~ ~ [BLANKfS r

TABLE=name,EXIT=name' NO
char

Function: Name of the macro.
Default: None. Specification optional.
Format: Must conform to the rules for assembler language symbols (see the
symbol entry in the Glossary).

Function: Specifies the character or character string to be compared with the
message type field in the message header.
Default: None. Specification optional. The conchars operand cannot be used
when the T ABLE= and EXIT = operands are used.
Format: One to eight non blank characters or hexadecimal format. If character
format is used, the string may be unframed or framed with C' , or CLn' , charac­
ters. If hexadecimal format is used, the string must be framed with X' 'or XLn' ,
characters.
Notes: When using the conchars operand, the next nonblank character or charac­
ter string in the header buffer (after the current setting of the scan pointer) is
compared with a character or character string specified by conchars. If the
conchars field matches the field in the header buffer, all instructions between this
MSGTYPE macro and the next MSGTYPE macro (or the next delimiter, if there
is not another MSGTYPE macro) are executed. The next MSGTYPE macro is
not executed, and a branch is made to the next subgroup. If the conchars field

Designing the Message Handler 275

TABLE=name

EXIT=name

BLANK= ~ ~~s (
I char \

does not match the field in the header buffer, the scan pointer is reset to its
position before the comparison, and control passes to the next MSGTYPE macro
in the current subgroup, or, if this is the last MSGTYPE macro in the subgroup, to
the next MH subgroup.

If the MSGTYPE macro has no operands, the group of instructions that immedi­
ately follow this MSGTYPE macro will process the message header not processed
by a preceding MSGTYPE macro with a conchars operand. A MSGTYPE macro
with no operands may be used only at the last of a series of MSGTYPE macros
with conchars operands.

If MSGTYPE macros are used with and without operands, either some message­
type field should always be specified, or care should be taken, if the field is
omitted, that the next field cannot match any of the strings specified by the
conchars or TABLE= operands in the series of MSGTYPE macros.

Function: Provides the name of the first of a series of one or more TYPET ABL
macros. See the description of the TYPET ABL macro.
Default: None. Specification optional. The conchars operand cannot be used
when the TABLE= and EXIT= operands are used.
Format: Must conform to the rules for assembler language symbols.
Notes: When using the T ABLE= operand, the next nonblank character in a
header buffer (after the current setting of the scan pointer) is compared with a
table of message-type characters generated by one or more TYPET ABL macros,
and the address of the next subgroup is placed in register 2. If a match is found,
the scan pointer is moved one position to the right, and a branch is taken to the
address in the table for that message type. When user processing of the message is
completed, the user can branch to the next subgroup (BR 2) or to another address
within the current subgroup. If no match is found in the table, the scan pointer is
not moved, and a branch is taken to the address specified by the EXIT= operand.

Since one execution of a MSGTYPE macro (using the T.A.BLE= operand) exam­
ines one character in the message-type field of a header buffer, multiple characters
can be included in the message-type field, and multiple MSGTYPE macros can be
issued to examine these characters.

Function: Provides the address to which this MSGTYPE macro will branch if the
message-type character in the header buffer does not match any entry in the table
pointed to by the T ABLE= operand of this MSGTYPE macro.
Default: None. Specification required when the T ABLE= operand is specified.
Invalid when the conchars operand is specified.
Format: Must conform to the rules for assembler language.
Notes: name is the symbolic address to which this MSGTYPE macro will branch
on an unequal comparison.

Function: Specifies whether EBCDIC blank characters are to be ignored when
encountered in the character string in the message header being compared to the
string specified by the conchars operand, or whether blanks are to be considered 4"

as part of the header string when encountered in it. If EBCDIC blanks are to be "
counted as part of the header string, this operand also specifies whether some

276 OS/MFT and OS/MVT TeAM Programmer's Guide

~

other hexadecimal character is to be ignored when encountered in the header
string.
Default: BLANK= YES
Format: YES, NO, or char. char is a single character that may be specified in
either character or hexdecimal format. If character format is specified, it may be
unframed or framed with C' , or CLI' 'characters. If hexadecimal format is
specified, it must be framed with X' 'or XLI' , characters.
Notes: This operand is meaningless unless the conchars operand is also specified.
YES specifies that the EBCDIC blank character (X'40') is to be ignored by this
macro whenever it is encountered in the header character string being checked
against the control character string specified by the conchars operand. For
example, if BLANK= YES is coded and an eight-byte field in the header is being
checked by this macro, a blank appearing in the fifth byte of the field will be
ignored, and the sixth through ninth bytes will be considered to be the last four
bytes of the field (assuming that no blanks are coded in the sixth through ninth
bytes).

NO specifies that the EBCDIC blank character is to be treated like any other
character when it is encountered by this macro in the header string being corp.­
pared to the string specified by conchars.

char specifies that the single character replacing char is to be ignored by this
macro whenever it is encountered in the header string being compared to the
string specified by the conchars operand. That is, the macro automatically skips
over the character without performing a comparision and goes on to check the
next character in the header. If BLANK=char is coded and char is not the
EBCDIC blank character, the EBCDIC blank is not ignored by this macro when it
is encountere4 in the header string, but is compared to the character in the corre­
sponding space in the conchars string, like any other character.

Note: The use of char is invalid when using the TABLE= operand.

Example:
The 'beginning of an MH using MSGTYPE is shown in Figure 21. Type A mes­
sages are processed and forwarded to terminal NYC, type B to terminal BIX, and
all others to an application program.

MHA STARTMH LC=OUT LC= must be coded
for STARTMH

INHDR Delimiter

SEQUENCE Macro instructions
ORIGIN executed for all
DATETIME header segments

COUNTER FIELD Count incoming
segment

MSGTYPE C'A' Test for Type A
messages

Macro instructions
executed for all Type
A messages

FORWARD DEST=CL3'NYC'

Designing the Message Handler 277

MSGTYPE

FORWARD
MMSGTYPE
FORWARD

INMSG
etc.

C'B'

DEST=CL3'BIX'

Test for Type B
messages

Macro instructions
executed for all Type
B messages

DEST=CL8'PROCESSQ'Macro instruction
executed for all other
message types

Delimiter

Figure 21. Example of Using MSGTYPE Macro Instruction

Additional examples:

1. Message-type field of the header buffer is AC.

MSGTYPE TABLE=MAIN,EXIT=NF

A MSGTYPE TABLE=ATYPE,EXIT=NF

C user code

BR 2

NF user code

BR 2

MAIN TYPETABL A,ROUTINE=A

ATYPE TYPETABL C,ROUTINE=C

2. Series of MSGTYPE macros using conchars operands followed by a
MSGTYPE macro using T ABLE= operand.

MTA MSGTYPE C'ATYPE'

user code

MTB MSGTYPE C'BYTYPE'

user code

MTl MSGTYPE TABLE=TABLE1,EXIT=EXITl

If the header message has a message type of A TYPE or BTYPE, the user code
following the MSGTYPE macro named MTA or MTB will be executed, and a
branch will be taken to the next MH subgroup. If the message type is not
ATYPE or BTYPE, the scan pointer is reset to its position before the compari­
son, and the MSGTYPE macro named MTI will execute as shown in additional

278 OS/MFT and OS/MVT TeAM Programmer's Guide

(

example 1.

3. MTA

MTB

MT1

MSGTYPE C'ATYPE'

user code

MSGTYPE

user code

MSGTYPE TABLE=TABLE1,EXIT=EXIT1

If the message type is A TYPE, the MT A user code is executed, and a branch is
taken to the next MH subgroup. If it is not A TYPE, the scan pointer is reset to
its position before the comparison, the MTB user code is executed, and a
branch is taken to the next MH subgroup.

To get to MT1, the user would have to branch there from either the MTA user
code or the MTB user code. If a branch to MT1 is taken from MTA, the scan
pointer will be situated at the last position of the message-type field. If a
branch to MT1 is taken from MTB, the scan pointer will be situated at its
position before the comparison.

Designing the Message Handler 279

ORIGIN

The ORIGIN macro

• checks the validity of the origin field in a message header;
• sets a bit in the message error record for the message if the origin field is

invalid;
• permits identification of a switched station calling the computer;
• is optional in the inheader subgroup and is not permitted in any other subgroup.

The function of the ORIGIN macro depends upon the kind of connection made
with the station. For nonswitched stations, ORIGIN verifies that the origin field
in the header contains the symbolic name of the station that was invited to send
the message (that is, the origin field is compared with the name of the terminal
table entry for the station that was contacted). If the names are not the same, an
error flag is set in bit 1 of the message error record for the message.

For switched stations, ORIGIN both checks the validity of the origin field in the
header and identifies the calling station to TCAM. Unless the calling station is a
BSC station that transmits a unique ID sequence upon successfully calling the
computer, TCAM does not know what station is on the line until an ORIGIN
macro is issued in the MH. Once an ORIGIN macro is issued, TCAM compares
the name in the origin field of the message header with the terminal table entries
for the stations assigned to lines in the line group to which the line connecting the
calling station to the computer is assigned. If a match is found, TCAM assumes
that the station named in the origin field is the calling station. If no match is
found, an error flag is set in bit 1 of the message error record for the message.

~

~ Inheader subgroups for switched lines to stations that do not have unique ID ..
sequences and that may call the computer and enter messages should include an
ORIGIN macro, as this is the only means TCAM has of identifying the calling
station in this situation.

An inheader subgroup that handles messages entered only by BSC stations having
unique ID sequence requires no ORIGIN macro. When an ORIGIN macro is
included in the inheader subgroup that processes header segments entered by such
a station, the name in the origin field, if valid, takes precedence over the name
associated with the ID sequence in the invitation list; that is, TCAM assumes that
the station named in the origin field is the station that entered the message.

For switched stations assigned to a line for which a TERMINAL macro coded
UTERM= YES has been issued, the position of ORIGIN in the inheader sub­
groups determines whether the option fields assigned to the line or those assigned
to the station will be updated by MH macros when a station calls the computer.
Inheader macros executed before ORIGIN refer to option fields assigned to the
line by a TERMINAL macro coded for the line, while macros executed after
ORIGIN refer to option fields assigned to the station by a TERMINAL macro
coded for that station. (For a more detailed discussion of the relationship be­
tween the ORIGIN macro and the TERMJNAL macro coded for a line, see
Coding the Terminal Macro for a Line in Defining Terminal and Line
Control Areas.)

If ORIGIN is used with a message having a multiple-buffer header and entered (
from a station on a switched line, ORIGIN must be executed for the first header
buffer in order to effectively identify the station.

280 OS/MfT and OS/MVT TeAM Programmer's Guide

symbol

[integer]
X'FF'

A CODE macro must be issued before ORIGIN (unless the line code is
EBCDIC).

Care must be taken in entering a character string in an origin field in the message
header to ensure that it matches a terminal table entry. A character string entered
in lowercase characters from an IBM 2770 station, for example, will not match a
terminal table entry name that is in uppercase characters. See additional use for
the ORIGIN macro in Appendix J, Concentrating and Deconcentrating Messages.

The ORIGIN macro has the following format:

Name Operation Operands

[symbol] ORIGIN [integer]
X'FF'

Function: Name of the macro.
Default: None. Specification optional.
Format: Must conform to the rules for assembler language symbol (see the symbol
entry in the Glossary).

Function: Specifies the number of characters in the origin field of a message
header.
Default: X'FF'
Format: Decimal or hexadecimal. If hexadecimal format is specified, framing X' ,
or XLI' , characters must be used.
Maximum: 8
Notes: If integer is specified, that many characters are considered to be the origin
field. Embedded blanks are ignored.

X'FF' indicates that the origin field is of variable length. The origin field is
considered to end at the next blank.

Note: If an ORIGIN macro determines that the source of a message on a
nonswitched line is invalid, a return code of X'04' is set.

Designing the Message Handler 281

PATH

symbol

switch

The PATH macro

• alters a path-switch byte, thereby permitting dynamic variation of the path of a
message through an MH;

• is optional in inblock, inheader, inbuffer, outheader, and outbuffer subgroups
(and not permitted in any other subgroup).

One-byte option fields are used to maintain switches known as path switches.
These switches are located in option fields defined by OPTION macros. The
switches must be set initially by the OPDAT A= operand of the TERMINAL or
TPROCESS macro (if the option fields are not initialized, the PATH macro
provides a return code of X'OO'). The setting of path switches is examined by
each delimiter macro as the message reaches the subgroup it controls (the user
specifies by the PATH operand of each delimiter which path-switch bits are to be
examined). More than one option field may be specified for each station; each
path-switch byte so defined consists of eight binary switches.

If any of the binary switches tested by a delimiter is on, the subgroup controlled
by that delimiter is executed; if none of the binary switches tested is on, control
passes to the next delimiter.

The user may specify a character string (consisting of one to eight nonblank
characters). If this character string appears in the header of a message, the PATH
macro with that character string sets one or more specified path switches. If no
character string is specified, the switches are set unconditionally.

/,i

PATH may specify any number between zero and 255, inclusive. The switches (~
remain set until reset by a PATH macro specifying the same option field, until
modified by user code and LOCOPT, or until modified by a DATOPFLD opera-
tor command.

The use of PATH is discussed in the Variable Processing within a Message
Handler section of this chapter.

Name Operation Operands

[symbol] PATH switch,opneld [, conchars[, BLANK= {~S?

char

Function: Name of the macro.
Default: None. Specification optional.
Format: Must conform to the rules for assembler language symbols (see the
symbol entry in the Glossary).

Function: Specifies the path switch setting to be made for the byte residing in the
option field named by the opfield operand.
Default: None. This operand must be specified.
Format: Decimal or hexadecimal. If hexadecimal format is specified, framing X' ,

282 OS/MFT and OS/MVT TeAM Programmer's Guide

opfield

conchars

BLANK= 1 ~~r ~
VES\

or XL l' , characters must be used.
Maximum: 255 or a one-byte hexadecimal field.
Notes: If 0 is specified, all eight path switches are turned off. If 255 (or X'FF') is
specified, all switches are turned on.

Function: Specifies the path-switch byte to be operated upon.
Default: None. This operand must be specified.
Format: The name of a one-byte field in the option table as defined by an
OPTION macro.
Notes: If the option field cannot be found, the path-switch byte is not operated
upon, and a return code of X'OO' is set in the low-order byte of register 15.

If PATH is coded in the incoming group of an MH for a line group, the specified
option field for the station entering the message is operated upon. If PATH is
coded in the outgoing group of a line MH, the specified option field for the
destination station is operated upon. If PATH is coded in the outgoing group of
an MH assigned to an application program, the option field associated with the
process queue to which the GET macro is directed is operated upon. If the macro
is coded in the incoming group of an MH assigned to an application program, the
option field for the process entry associated with the DCB named in the PUT
macro is operated upon.

Function: Specifies the character or character string that, if found in the header as
the next non blank field, causes execution of the function.
Default: None. Specification optional.
Format: One to eight non blank characters in character or hexadecimal format. If
character format is used, the string may be unframed or framed with C' ' or CLn' ,
characters. If hexadecimal format is used, the string must be framed with X' , or
XLn' , characters.
Notes: This operand should be coded only in PATH macro issued in an inheader
or outheader subgroup.

If this operand is omitted, the PATH function is performed unconditionally. If the
next field in the header does not match this operand, the function is not per­
formed.

Function: Specifies whether EBCDIC blank characters are to be ignored when
encountered in the character string in the message header being compared to the
string specified by the con chars operand, or whether blanks are to be part of the
header string when encountered in it. If EBCDIC blanks are to be counted as part
of the header string, this operand also specifies whether some other hexadecimal
character is to be ignored when encountered in the header string.
Default: BLANK= YES
Format: YES or NO or char. char is a single character that may be specified in
either character or hexadecimal format. If character format is specified, it may be
unframed or framed with C' , or CLl' , characters. If hexadecimal format is
specified, it must be framed with X' , or XL l' , characters.
Notes: This operand is meaningless unless the conchars operand is also specified.
YES specifies that the EBCDIC blank character (X'40') is to be ignored by this
macro whenever it is encountered in the header character string being checked

Designing the Message Handler 283

against the control character string specified by the conchars operand. For
example, if BLANK= YES is coded and an eight-byte field in the header is being
checked by this macro, a blank appearing in the fifth byte of the field will be
ignored and the sixth through ninth bytes will be considered to be the last four
bytes of the field (assuming that no blanks are coded in the sixth through ninth
bytes).

NO specifies that the EBCDIC blank character is to be treated like any other
character when it is encountered by this macro in the header string being com­
pared to the string specified by con chars .

char specifies that the single character replacing char is to be ignored by this
macro whenever it is encountered in the header string being compared to the
string specified by the conchars operand. That is, the macro automatically skips
over the character without performing a comparison and goes on to check the next
character in the header. If BLANK=char is coded and char is not the EBCDIC
blank character, the EBCDIC blank is not ignored by this macro when it is
encountered in the header string, but is compared to the character in the corre­
sponding space in the conchars string, like any other character.

Example:
Figure 22 shows the outline of an inmessage group of an MH. Messages with A,
B, or C in an appropriate field are routed through the incoming group by PATH
macro instructions. The switch settings enable the user to select appropriate
inbuffer and inmessage subgroups. Message type A passes through the first
in buffer subgroup and the second inmessage subgroup, etc.

Note: In the case of multiple-buffer headers, the entire control-character
field must appear in the first header segment.

284 OS/MFT and OS/MVT TeAM Programmer's Guide

(

Name Operation Operands Comment

VARY PATH STARTMH LC=QUT Inheader subgroup executed
INHDR for all messages.

•
•
•

PATH 4,SWITCH,C'A' Sets switch for type A
messages (not executed for
others.)

•
•
•

PATH 2,SWITCH,C'B' Sets switch for type B
messages.

PATH l,SWITCH,C'C' Sets switch for type C
messages.

•
•
•

INBUF 4,SWITCH This inbuffer subgroup is
executed if switch is 4.

•
•
•

INBUF PATH=(SWITCH,4) This inbuffer subgroup is
executed if switch is 2.

•
•
•

INBUF PATH=(SWITCH,2) This inbuffer subgroup is
executed if switch is 1 •

•
•
•

INMSG PATH=(SWITCH,3) This inmessage subgroup is
executed if switch is 1 or 2.

•
•
•

INMSG PATH=(SWITCH,4) This inmessage subgroup is
executed if switch is 4.

•
•
•

INEND

Figure 22. Example of Using the PATH Macro Instruction to Vary MH Processing

Designing the Message Handler 285

PRIORITY

The PRIORITY macro

• specifies priority handling for messages;
• is optional in an inheader subgroup of the MH;
• may be used more than once in the subgroup.

PRIORITY provides handling of outgoing messages according to priority levels.
The priority level may be entered in the message header by the user, or it may be
specified by an operand of the PRIORITY macro. The permissible priority levels
for each station or application program are specified in the TERMINAL or
TPROCESS macro for that destination. If queuing by line rather than queuing by
terminal is specified, the first TERMINAL macro for the line contains the permis­
sible priority levels for all stations on the line. If subsequent TERMINAL macros
for the same line specify priority levels, they are ignored. If a message priority is
requested that is not permitted, the message is assumed to have the next lower
permissible priority. The PRIORITY macro must be specified within the subgroup
in the same relative order as the header field on which it acts.

Absence of the PRIORITY macro causes a priority level of zero to be assigned to
the messages.

For more information on message priority, see Message Priority and Queuing in
Defining Terminal and Line Control Areas.

TCAM converts the decimal priority levels specified by the LEVEL= operand of
the TERMINAL or TPROCESS macro to their one-byte hexadecimal equivalents.
If the priority is specified in a message header, it may occupy a one-byte field and
should provide the hexadecimal equivalent of a decimal priority level specified by
the LEVEL= operand of the TERMINAL or TPROCESS macro. For example, if
PRIORITY is executed after a CODE macro (that is, the message segment has
been translated from line code to EBCDIC), and if messages entered by a particu­
lar station may be assigned priorities of 1, 2, A, B, or C on output, the LEVEL=
operand of the TERMINAL macro for that station should be coded
LEVEL=(193, 194, 195,241,242). Here, 193 is the decimal representation of
the hexadecimal equivalent of the EBCDIC character A; 241 is the decimal
representation of the hexadecimal equivalent of the EBCDIC character 1, etc. In
this case, a message with a line-code character 1 assigned as its priority would be
higher in priority than a message assigned a line-code character A, B, or C.

On the other hand, if PRIORITY is executed before a CODE macro, and if the
messages are being entered by a 1050 station and may be sent with priorities of 1,
2, A, B, or C, the LEVEL= operand of the TERMINAL macro should be coded
LEVEL=(2, 4, 226, 228, 231); here 2 is the decimal representation of the
hexadecimal equivalent of the 1050 line-code character 1; 226 is the decimal
representation of the hexadecimal equivalent of the 1050 line-code character A,
etc. In this case, a message . with a line-code character A assigned as its priority
would be higher in priority than a message assigned a line-code character 1 or 2.

286 OS/MFT and OS/MVT TeAM Programmer's Guide

(

symbol

integer

conchars

BLANK= ~ ~~s ~

i char ~

Name Operation Operands

[symbol] PRIORITY [integer][,conchars[,BLANK= t S
}

]]

~~r

Function: Name of the macro.
Default: None. Specification optional.
Format: Must conform to the rules for assembler language symbols (see the
symbol entry in the Glossary).

Function: Specifies the priority level to be assigned to this message.
Default: None. Specification optional.
Format: Unframed decimal integer.
Maximum: 255
Notes: If this operand is omitted, TCAM assumes that the priority level is con­
tained in the next nonblank byte following the current setting of the scan pointer.
If the priority level is not one that the TERMINAL or TPROCESS macro speci­
fies as permissible, the next lower permissible priority is assumed.

Function: Specifies the character or character string that, if included in the
message header, causes execution of the PRIORITY macro specifying that string.
Default: None. Specification optional.
Format: One to eight nonblank characters in character or hexadecimal format. If
character format is used, the string may be unframed or framed with C' , or CLn' ,
characters. If hexadecimal format is used, the string must be framed with X' 'or
XLn' , characters.
Notes: If this operand is omitted, PRIORITY is specified unconditionally. If the
control characters do not match, the PRIORITY macro does not execute and
control passes to the next instruction.

If this operand is specified, but the integer operand is omitted:

• The message priority is assumed to be contained in the message header as the
next nonblank character following control characters.

• A comma must precede the conchars operand.

Function: Specifies whether EBCDIC blank characters are to be ignored when
encountered in the character string in the message header being compared to the
string specified by the con chars operand, or whether blanks are to be part of the
header string when encountered in it. If EBCDIC blanks are to be counted as part
of the header string, this operand also specifies whether some other hexadecimal
character is to be ignored when encountered in the header string.
Default: BLANK = YES
Format: YES, NO, or char. char is a single character that may be specified in
either character or hexadecimal format. If character format is specified, it may be
unframed or framed with C' 'or CLI' 'characters. If hexadecimal format is
specified, it must be framed with X' , or XLI' , characters.

Designing the Message Handler 287

Notes: This operand is meaningless unless the conchars operand is also specified.

YES specifies that the EBCDIC blank character (X'40') is to be ignored by this
macro whenever it is encountered in the header character string being checked
against the control character string specified by the conchars operand. For
example, if BLANK= YES is coded and an eight-byte field in the header is being
checked by this macro, a blank appearing in the fifth byte of the field will be
ignored and the sixth through ninth bytes will be considered to be the last four
bytes of the field (assuming that no blanks are coded in the sixth through ninth
bytes).

NO specifies that the EBCDIC blank character is to b~ treated like any other
character when it is encountered by this macro in the ~ader string being com­
pared to the string specified by con chars .

char specifies that the single character replacing char is to be ignored by this
macro whenver it is encountered in the header string being compared to the string
specified by the conchars operand. That is, the macro automatically skips over
the character without performing a comparison and goes on to check the next
character in the header. If BLANK=char is coded and char is not the EBCDIC
blank character, the EBCDIC blank is not ignored by this macro when it is
encountered in the header string, but is compared to the character in the corre­
sponding space in the con chars string, like any other character.

If the integer and conchars operands are omitted, the priority is assumed to be in
the message header, in the next nonblank character following the current setting
of the scan pointer.

In the case of multiple-buffer headers, the priority, if desired, must be determined
for the first header segment to pass through the inheader subgroup. This can be
ensured in one of two ways:

1. The priority field in the header, if used, must be in the first header segment
(and for messages from buffered terminals, in the first hardware buffer if the
hardware buffer is smaller than the MCP buffers), or

2. The integer operand must be specified to provide the priority, and any control
characters used to execute the PRIORITY macro must be in the first buffer
(and for messages from buffered terminals, in the first hardware buffer, if the
hardware buffer is smaller than the MCP buffers).

Example:
The following examples show the various ways message priority may be specified.
It is assumed that the LEVEL= operand of the TERMINAL macro for the
destination station is coded LEVEL=(241, 243, 245, 247).

288 OS/MFT and OS/MVT TeAM Programmer's Guide

c

PRIORITY Macro Header Fields Priority given message
in EBCDIC (decimal notation)

PRIORITY 5 5
PRIORITY 6 5
PRIORITY 241 3 5
PRIORITY 241 , PRI PRI 241
PRIORITY ,PRI PRI3 243
PRIORITY ,PRI PRO PriorityofOisassigned

(themacroisnotexecuted)

Figure 23. Example of Using the PRIORITY Macro Instruction

Designing the Message Handler 289

REDIRECT

symbol

mask

The REDIRECT macro

• queues a message for an additional destination;
• is optional in an inmessage or outmessage subgroup of an MH;
• may be specified more than once within a subgroup.

REDIRECT queues a message for a destination in addition to the destinations
specified by the FORWARD macro, when errors specified by the mask operand
are detected. The bits specified by the error mask operand are compared with the
setting of the bits in the message error record for the message. If specified bits in
the message error record are on, the REDIRECT macro is executed; otherwise,
the REDIRECT macro is not executed.

The REDIRECT macro may not be used for redirecting messages being transmit­
ted in initiate mode (see the INITIATE macro), or for redirecting error messages
(see the ERRORMSG macro).

The additional destination specified may be any single, group, process, or cascade
list entry in the terminal table. A distribution list cannot be specified as the
additional destination.

REDIRECT may be used to route unsent messages to an application program, to
return them to the originating station, or to send them to the alternate destination
when the intended destination is inoperative.

If REDIRECT is specified, it must appear in an inmessage or outmessage sub­
group of an MH.

Name Operation Operands

[symbol] REDIRECT [maSk][,CONNECT={~=D}]

[,DEST - te,tnamer
opfield
ORIGIN

Function: Name of the macro.
Default: None. Specification optional.
Format: Must conform to the rules for assembler language symbols (see the
symbol entry in the Glossary).

Function: Specifies the five-byte bit configuration used to test the message error
record for the message (the message error record is described in Appendix B).
Default: None. Specification optional.
Format: Decimal or hexadecimal. If hexadecimal format is used, framing charac­
ters must be specified. If X' , is used, leading zeros must be coded. If XLS' , is

290 OS/MFT and OS/MVT TeAM Programmer's Guide

(

DEST=~ destname~
opfield
ORIGIN

used, leading zeros may be omitted.

Maximum: 16777215 or a hexadecimal field of five bytes.
Notes: Omitting the operand or an all-zero mask causes unconditional execution.

Function: Specifies the type of logical connection to be made between the mask and
the message error record.
Default: CONNECT=OR
Format: AND or OR.
Notes: AND specifies that the macro is to be executed only if all of the bits
specified by mask are on in the message error record.

OR specifies that the macro is to be executed if any bit specified by mask is on in
the message error record.

Function: Specifies the additional destination.
Default: DEST=ORIGIN
Format: destname, opfield, or ORIGIN. destname may be up to eight bytes in
length and is the name of any single, group, or cascade list entry in the terminal
table. It must be specified within framing C' " CLn' " X' 'or XLn' 'characters.
opfield is the unframed name of an option field defined by an OPTION macro,
and cannot be named ORIGIN.
Notes: If an invalid destination is specified, REDIRECT does not execute.

opfield refers to an option field up to eight bytes, containing the name of the
destination. The additional destination is the station

• specified in the option field assigned to the originating station or application
program, if 1) REDIRECT is used in an inmessage subgroup and 2) if the
originating station is not a switched station that called the computer to enter
the message but did not identify itself by means of a unique ID sequence or by
a valid origin field checked by an ORIGIN macro;

• specified in the option,field assigned to this line by a TERMINAL macro coded
for a line if the originating station is a switched station that called the computer
to enter this message, but did not uniquely identify itself;

• specified in the option field assigned to the destination station or application
program if REDIRECT is used in an outmessage subgroup.

ORIGIN specifies that the message in error is to be sent to the station from which
it originated (in addition to the destinations specified in the message header).

If this operand is omitted or if DEST=ORIGIN is specified, and the originating
station is a switched station that has called the computer to enter the message, the
station must identify itself by a unique ID sequence or by a valid origin field as
checked by an ORIGIN macro. Otherwise TCAM is unable to identify the station
of origin and cannot route the message to it.

Designing the Message Handler 291

RETRY

symbol

INTVL=integer

The RETRY macro

• tries again to initiate contact with a switched station;
• is optional in the inmessage subgroup.

Name Operation Operand

[symbol] RETRY INTVL=integer

Function: Name of the macro.
Default: None. Specification optional.
Format: Must conform to the rules for assembler language symbols (see the
symbol entry in the Glossary).

Function: Specifies the number of seconds following which the computer is to try
again to initiate contact with a switched station.
Default: None. Specification required.
Format: Unframed decimal integer greater than zero.
Maximum: 65535

If the RETRY macro is specified, the RETRY= operand of the TERMINAL
macro also must be specified. The TERMINAL macro also must specify the
DIALNO= operand and either the CLOCK= or the CINTVL= operand.

For more information, see the RETRY = operand of the TERMINAL macro.

292 OS/MFT and OS/MVT TeAM Programmer's Guide

(

)

SCREEN

The SCREEN macro

• modifies the Write operation for terminals with display screens;
• is optional in outheader subgroups of Message Handlers for terminals with

display screens.

SCREEN may be used in an outheader subgroup of an MH to specify the type of
modification to be made to the Write operation for the 2260, the 2265, or 3270.
(See 3270 Information Display System in Appendix G for information on the
SCREEN macro, special for the 3270.) If the user specifies the Write Display
Control (WDC) operation, write operations begin at the position of the display
cursor. Alternatively, the user may specify the Write Erase (WRE) function so
that the screen is erased before the next segment is displayed, and writing begins
at the top of the screen. Or, the user may specify the line on which he wishes to
write, using the Write at Line Address (WLA) function.

If the WLA function is used, the user must specify the line address character
desired as the first character of the header of the message to be written. If
line-control is left in the message, the line-address character should follow any
initial line-control characters. The user may insert the line address in the message
header either by:

• including the necessary assembler language instructions in an MH or in an
application program.

• using the MSGEDIT macro.

The table below gives the appropriate line addresses in EBCDIC for 2260 termi­
nals. The following MSGEDIT macro, executed in an outheader subgroup on the
first segment of a message, would place the line address for line number ten in the
first byte of the header (assuming that the header contains no line control):

LINEADDR MSGEDIT ((I , XL 1 'F9' , 0))

The type of operation (WRE, WLA, WDC, XRE, XLA, XDC) to be performed
for a display terminal is specified initially by the user in the TERMINAL macro
for that terminal. (See the description of the ADDR= operand of the
TERMINAL macros.) When the TERMINAL macro is executed, TeAM sets a
byte in the terminal table entry to indicate the type of Write operation to be
performed for all messages directed to this terminal. The SCREEN macro
changes the type of operation to be performed by modifying this byte (for exam­
ple, from WLA to WRE). However, for remote operations, the change specified
by SCREEN does not take effect until the next message is sent to the terminal; if
WLA was changed by SCREEN to WDC, all messages sent to the terminal after
the current message would have a WDC operation performed for them, but the
current message (that is, the message being processed when SCREEN executes)
would have a WLA operation performed for it. For local operations, the change
specified by SCREEN takes effect for the current operation. See device depend­
ent considerations for 2260 and MH return codes.

When WLA is changed to another Write operation by SCREEN, the user must
still place the line address in the header of the current message, since a WLA
operation will be performed for this message. If the operation-type operand of
SCREEN is omitted, when SCREEN finishes executing, a return code is placed in
register 15 to indicate what the setting of the terminal table byte was before

Designing the Message Handler 293

SCREEN changed it. User code may test the return code; if the code indicates
that a WLA operation was being performed, a MSGEDIT macro may be executed
to insert the line address. Otherwise, the user code may branch around the
MSGEDIT macro (see the example following the macro description).

Line Address Characters for the IBM 2260 Terminal

symbol

lWRE(WLA
woe
XRE
XLA
xoe

Hexadecimal representation Selected line
of EBCDIC line address

FO I
FI 2
F2 3
F3 4
F4 5
F5 6
F6 7
F7 8
F8 9
F9 10
FA 11
FB 12

SCREEN has the following format:

Name Operation Operands

[symbol] SCREEN I WRE j [,COnchars[,BLANK_{YES } 1]

'WLA,~ NO
< WDC > char

'~RE ,
,XLA,
XDC/

Function: Name of the macro.
Default: None. Specification optional.
Format: Must conform to the rules for assembler language symbols (see the
symbol entry in the Glossary).

Function: Specifies the type of write operation for the IBM 2265 (Remote) or the
IBM 2260 (Local or Remote).
Default: None. Specification optional.
Format: WRE, WLA, WDC, XRE, XLA, or XDC.
Notes: WRE specifies a Write Erase operation, the erasure of the screen before the
next segment is displayed.

294 OS/MFT and OS/MVT TeAM Programmer's Guide

(

conchars

BLANK= l~~ l
YES~

WLA specifies a Write at Line Address operation. The user must insert a line
address character as the first character (following any initial line-control charac­
ters, if line control was left in the message) of the message to be written out.

WDC specifies a Write Display Control operation.

XRE specifies Write Erase with keyboard lock.

XLA specifies Write at Line Address with keyboard lock.

XDC specifies Write Display Control with keyboard lock. The keyboard lock
feature causes the keyboard to be locked after the write. It can be used to force
the terminal operator to look at the screen; perhaps for the purpose of reading and
correcting a previously entered message that contained a syntax error. XLA,
XRE, and XDC can only be used if the 2260 or 2265 device is equipped with the
keyboard lock feature.

Function: Specifies the character or character string that, if found in the header as
the next nonblank field, causes execution of the function.
Default: None. Specification optional.
Format: One to eight non blank characters in character or hexadecimal format. If
character format is used, the string may be unframed or framed with C' , or CLn' ,
characters. If hexadecimal format is used, the string must be framed with X' , or
XLn' , characters.
Notes: If this operand is omitted, the SCREEN function is performed uncondi­
tionally. If the next field in the header does not match this operand, the function
is not performed.

A SCREEN macro specifying no WRE, WLA, or WDC operation may be issued
to check the type of write operation in effect for the message being processed
without changing the operation type. See the example below.

If WLA is changed to another Write operation, the user code in the outheader
subgroup needs to know whether to cause a line-address character to be inserted
in the current message. The following codes may be returned by SCREEN in
register 15:

Code Operation

X'AO'
X'BO'
X'EO'

WDC
WLA
WRE

Function: Specifies whether EBCDIC blank characters are to be ignored when
encountered in the character string in the message header being compared to the
string specified by the conchars operand, or whether blanks are to be part of the
header string when encountered in it. If EBCDIC blanks are to be counted as part
of the header string, this operand also specifies whether some other hexadecimal
character is to be ignored when encountered in the header string.
Default: BLANK= YES
Format: YES, NO, or char. char is a single character that may be specified in
either character or hexadecimal format. If character format is specified, it may be

Designing the Message Handler 295

unframed or framed with C' , or CLI' 'characters. If hexadecimal format is
specified, it must be framed with X' , or XL I' , characters.
Notes: This operand is meaningless unless the conchars operand is also specified.

YES specifies that the EBCDIC blank character (X'40') is to be ignored by this
macro whenever it is encountered in the header character string being checked
against the control character string specified by the conchars operand. For
example, if BLANK= YES is coded and an eight-byte field in the header is being
checked by this macro, a blank appearing in the fifth byte of the field will be
ignored and the sixth through ninth bytes will be considered to be the last four
bytes of the field (assuming that no blanks are coded in the sixth through ninth
bytes).

NO specifies that the EBCDIC blank character is to be treated like any other
character when it is encountered by this macro in the header string being com­
pared to the string specified by conchars.

char specifies that the single character replacing char is to be ignored by this
macro whenever it is encountered in the header string being compared to the
string specified by the conchars operand. That is, the macro automatically skips
over the character without performing a comparison and goes on to check the next
character in the header. If BLANK=char is coded and char is not the EBCDIC
blank character, the EBCDIC blank is not ignored by this macro when it is
encountered in the header string, but is compared to the character in the corre­
sponding space in the conchars string, like any other character.

Example:
The following code (in Figure 24) might be issued in an outheader subgroup to 11

determine whether the Write at Line Address (WLA) operation is specified in the :"
appropriate byte in the terminal table entry for the destination station for the
message being processed, and to cause a line address of 1 0 to be placed in the first
byte of the message header of the current message if WLA is specified in the
terminal table entry. SCREEN is executed only for type A messages (as deter-
mined by a field in the message header and the conchars operand of SCREEN).

OUTHDR
SCREEN
LA
CLR
BNE
MSGEDIT

CONTINUE EQU
next
instruction

,A
5,X'BO'
5,15
CONTINUE
((I, XL 1 ' F9 ' ,0))

*

Figure 24. Example of Inserting Line Address

296 OS/MFT and OS/MVT TeAM Programmer's Guide

(

SEQUENCE

The SEQUENCE macro

• checks the input sequence number of an incoming message;
• inserts the output sequence number in an outgoing message;
• is optional in inheader and outheader subgroups on non-audio lines (and may

not be used in any other subgroup);
• should be specified only once in each subgroup.

If specified in an inheader subgroup, SEQUENCE scans the input sequence
number field in the header of each message. If the sequence number is not one
greater than the sequence number of the last message received from the same
station or application program, an error flag is set in bit 3 or 4 of the message
error record assigned to the message (depending on whether the number is high or
low, respectively), and a return code indicating an error is set in register 15.

The header field for the input sequence number may contain up to four characters
of sequence (leading zeros may be omitted from the input sequence number
entered at the station). This field should contain a decimal representation of the
input sequence number, and should be delimited by a blank. For example, if the
sequence number is twelve, the field should consist of a character 1 followed by a
character 2 followed by a delimiting blank. At the time SEQUENCE looks at the
field, the characters should have been translated into EBCDIC by a CODE macro.
The user should reserve five bytes in his header (by the RESERVE= operand of
the line group DCB macro) for insertion of the output sequence number, if used.

TCAM maintains internal counters in the terminal table entry to keep track of the
incoming and outgoing sequence numbers for each station and application pro­
gram. If the SEQUENCE macro is issued in an inheader subgroup, the first
message from a station or application program must contain the same input
sequence number as the input counter for that station or application program.
TCAM initially sets each input counter to 1. The next incoming message after
9999 must be 1. Processing continues after the maximum number is reached.

In general, SEQUENCE in an inheader subgroup causes the input counter to be
incremented for each message having a correct input sequence number in the
header. If, however, a CANCELMG macro causes a message to be canceled, or if
a ST ARTMH macro causes retransmission of a message header segment, the input
sequence number is not incremented. In the latter case, the number is increment­
ed only when the segment is successfully retransmitted.

If specified in an outheader subgroup, SEQUENCE places an output sequence
number in the header of each outgoing message handled by ~he MH. The five­
byte output sequence number (a blank followed by four EBCDIC characters) is
inserted immediately following the byte to which the scan pointer is pointing when
SEQUENCE executes. When the first message is sent to a station or application
program, a 1 is placed in the output counter for that station or application pro­
gram; as each succeeding output message is handled, this sequence number is
incremented by 1 and the resulting number is inserted in the header. (A count is
maintained for each station and for each terminal group where group addressing is
used.) A message in error being routed using a REDIRECT macro retains the
output sequence number placed in it.

Designing the Message Handler 297

symbol

Use of SEQUENCE is optional. If used, it must appear within an inheader or
outheader subgroup. Its position must correspond to the relative position, within
the header, of the sequence-number field.

TCAM increments the input sequence number counter in the terminal table entry
only if a SEQUENCE macro is issued in the inheader subgroup. TCAM incre­
ments the output sequence number counter in the terminal table entry automati­
cally, each time that a message is sent to the station or application program.

If SEQUENCE is included in an inheader subgroup handling header segments
entered by a switched station that calls the computer to enter the segments, and if
the station does not have a unique ID sequence assigned to it, SEQUENCE should
not be executed until after an ORIGIN macro has been executed. In this case,
ORIGIN is needed to identify the calling station so that SEQUENCE can gain
access to the correct input counter.

Name Operation Operands

[symbol] SEQUENCE (no operands)

Function: Specifies the name of the macro.
Default:, None. Specification optional.
Format: Must conform to the rules for assembler language symbols (see the
symbol entry in the Glossary).

There are no operands. Five spaces must be reserved for insertion of an output \.Ij
sequence number; space is reserved by a RESERVE= operand of the line group
DCB macro. If insufficient space is reserved, a SEQUENCE macro coded in an
outheader subgroup is not executed, and a return code of X'04' is set in register
15. For: incoming messages, if the input sequence number in the message header
is low, the return code is X'04', and if the number is high or if there is no valid
decimal number in the header field being examined, the return code is X'08'. If
the source of an incoming message is not known at the time SEQUENCE is
reached in an inheader subgroup, the macro does not execute and a return code of
X'OC' is placed in register 15. In none of these cases is the input sequence
counter in the appropriate terminal table entry incremented.

Continuity of sequence numbers is maintained by the continuation and warm
restart capabilities of the TCAM restart facility.

298 OS/MFT and OS/MVT TeAM Programmer's Guide

symbol

conchars

SETEOF

The SETEOF macro

• sets a bit in the buffer prefix to indicate an EOF message;
• is optional in the outheader subgroup of the MH assigned to an application

program(and should be coded in no other).

The SETEOF macro is used to identify the last message in a data file being
processed by an application program. When the application program receives a
message flagged by SETEOF, the next GET or READ/CHECK it issues after the
complete message has been received will cause control to be passed to the routine
whose address is specified by the EODAD= operand of the application program
input DCB for the destination queue associated with the GET or READ. Thus,
by issuing a SETEOF macro, the user causes the application program to stop
obtaining work units from one or more destination queues and to do whatever is
specified by the routine located at the EODAD address.

The SETEOF macro is issued in the out header subgroup of the outgoing group of
the MH handling messages routed to an application program.

In the case of multiple-buffer headers, SETEOF must be executed for the first
header buffer to be effective.

SETEOF has the following format:

Name Operation Operands

[symbol] SETEOF lCOnChars['BLANKi~S} 11

char

Function: Specifies the name of the macro.
Default: None. Specification optional.
Format: Must conform to the rules for assembler language symbols (see the
symbol entry in the Glossary).

Function: Specifies the character or character string that, if found in the header as
the next nonblank field, causes execution of the function.
Default: None. Specification optional.
Format: One to eight nonblank characters in character or hexadecimal format. If
character format is used, the string may be unframed or framed with C' , or CLn' ,
characters. If hexadecimal format is used, the string must be framed with X' , or
XLn' , characters.
Notes: If this operand is omitted, the SETEOF function is performed uncondition­
ally. If the next field in the header does not match this operand, the function is
not performed.

Designing the Message Handler 299

BLANK= ~ ~~S l
I char ~

Function: Specifies whether EBCDIC blank characters are to be ignored when
encountered in the character string in the message header being compared to the
string specified by the conchars operand, or whether blanks are to be part of the
header string when encountered in it. If EBCDIC blanks are to be counted as part
of the header string, this operand also specifies whether some other hexadecimal
character is to be ignored when encountered in the header string.
Default: BLANK= YES
Format: YES, NO, or char. char is a single character that may be specified in
either character or hexadecimal format. If character format is specified, it may be
unframed or framed with C' , or CLI' , characters. If hexadecimal format is
specified, it must be framed with X' , or XLI' , characters.
Notes: This operand is meaningless unless the con chars operand is also specified.

YES specifies that the EBCDIC blank character (X'40') is to be ignored by this
macro whenever it is encountered in the header character string being checked
against the control character string specified by the con chars operand. For
example, if BLANK= YES and an eight-byte field in the header is being checked
by this macro, a blank appearing in the fifth byte of the field will be ignored and
the sixth through ninth bytes will be considered to be the last four bytes of the
field (assuming that no blanks are coded in the sixtl1 through ninth bytes).

NO specifies that the EBCDIC blank character is to be treated like any other
character when it is encountered by this macro in the header string being com­
pared to the string specified by con chars .

,~

chars specifies that the single character replacing char is to be ignored by this \~

macro whenever it is encountered in the header string being compared to the
string specified by the con chars operand. That is, the macro automatically skips
over the character without performing a comparison and goes on to check the next
character in the header. If BLANK=char and char is not the EBCDIC blank
character, the EBCDIC blank is not ignored by this macro when it is encountered
in the header string, but is compared to the character in the corresponding space
in the con chars string, like any other character.

300 OS/MFT and OS/MVT TeAM Programmer's Guide

(

" v

symbol

ENDCHAR= ~chars t
1opfield~

SETEOM

The SETEOM macro

• allows dynamic control of the amount of data required for a logical message;
• specifies the action to be taken with the data in a buffer following the end of

the message;
• allows removal of delimiting characters (end-of-message indicators);
• is permitted only in the inblock subgroup of an MH;
• may be coded only once in the subgroup.

The SETEOM macro allows the user to dynamically control the amount of data in
any message either by specifying the length or by specifying an end-of-message
(EOM) indicator. This macro causes data in an incoming transmission sequence
to be either blocked or deblocked. If an EOM indicator is found in a buffer, then
two messages may be formed; that is, incoming data is deblocked to form one or
more messages. If an EOM indicator is not found, the transmission being handled
is processed by the incoming MH, and subsequent transmissions are processed in
the same way until an EOM indicator is detected; that is: multiple buffers are
blocked to form a single message. See Handling Logical Messages in this
chapter for a more complete description of how to use the SETEOM macro.

Name Operation Operand

[symbol] SETEOM [ENDCHAR= {chars ~[,EOM=ETB]
lopfield

['LENGTH=tnteger } ,opfield2)]
opfieldl

[,PROCESS={~~Sp[,REMOVE= {~~S}]

Function: Name of the macro.
Default: None. Specification optional
Format: Must conform to the rules for assembler language symbols (see the
symbol entry in the Glossary).

Function: Specifies the character or character string that delimits the message.
Default: None. This operand must be specified if the LENGTH= operand is not
specified. If the LENGTH= operand is specified, this operand is optional.
Format: chars may be from one to eight nonblank characters specified in charac­
ter or hexadecimal format. If character format is specified, the field must be
framed with C' , or CLn' 'characters. If hexadecimal format is specified, the field
must be framed with X' , or XLn' 'characters. n must be the length of the
characters.

opfield is the name of a field defined by an OPTION macro containing the charac­
ter or character string used as an EOM indicator. Th~ first byte of the option field
contains the length of the delimiter, followed by the delimiter.

Designing the Message Handler 301

LENGTH=O integer t ,opfield2)
10pfieldlf

PROCESS= ~ ~~s f

Notes: If both the LENGTH= and the ENDCHAR= operands are specified, the
message delimiter is either the length or the characters, whichever is encountered
first. The ENDCHAR= operand cannot be coded if EOM=ETB is coded. One of
the following return codes is passed in register 15 after this macro executes:

Code

X'00000004'
X'00000008'

X'OOOOOOOC'

X'OOOOOOlO'

X'OOOOOOI4'

Meaning

An EOM indicator delimited this message.
The user-specified length delimited this
message.
An EOM indicator and the user-specified
length delimited this message.

No available buffer units.

Buffer not processed because no option field
was found.

Function: Specifies the number of bytes in the message.
Default: None. Must be specified if the ENDCHAR= operand is not specified.
If the ENDCHAR= operand is specified, this operand is optional.
Format: integer or opfieldl followed by opfield2. integer is a decimal integer
that may be up to 65535. opfieldl is the name of a halfword defined by an
OPTION macro, containing the length, in bytes, of the message. opfield2 is a
haIfword option field initially set to zero and used to maintain a count of the
number of bytes already received.
Maximum: 65535 or a hexadecimal haIfword field.
Notes: If both the LENGTH= and the ENDCHAR= operands are specified, the
message delimiter is either the length or the characters, whichever is encountered
first. The LENGTH= operand cannot be coded if EOM=ETB is coded. One of
the following codes is returned in register 15 after this macro executes:

Code

X'00000004'
X'00000008'

X'OOOOOOOC'

X'OOOOOOlO'

X'OOOOOOI4'

Meaning

An EOM indicator delimited this message.
The user-specified length delimited this
message.
An EOM indicator and the user-specified
length delimited this message.

No available buffer units.

Buffer not processed because no option field
was found.

Function: Specifies whether any data following an EOM indicator is to be processed
or discarded.
Default: PROCESS=NO
Format: YES or NO. YES indicates that the second portion of the data is to be
processed. NO indicates that the second portion is to be discarded; that is, the
original message is truncated.
Notes: When YES is specified, processing of the second portion (which is the first

302 OS/MFT and OS/MVT TeAM Programmer's Guide

(

REMOVE= ~ ~~s f

EOM=ETB

buffer of a new message) begins at the SETEOM macro. When the EOM indica­
tor is encountered, a new buffer is obtained. The remaining portion of the buffer
is moved into the new buffer that becomes a header buffer for the new message
with the scan pointer set to the beginning of the buffer. Thus, this buffer will be
the next buffer to be processed by this MH. The reserve space specified by the
DCB macro is reserved in this new header buffer when it is initialized. All subse­
quent buffers of the new message also begin processing at the SETEOM macro. If
sufficient buffer units are not available to move the remaining portion of the
current buffer, a return code of X'10' is set in register 15.

NO should be used when any remaining portion of the incoming data is to be
discarded. This means that not only the remaining portion of the current buffer is
dropped, but all the subsequent buffers, if any, of the current message are re­
turned to the buffer pool.

Function: Removes EOM characters from buffers containing logical messages (or
partial logical messages).
Default: NO
Format: YES or NO.
Notes: YES causes EOM characters to be removed from incoming buffers con­
taining parts of one or more logical messages.

NO causes EOM characters to remain in the buffer in which they appear. NO
must be specified if EOM=ETB is coded.

Function: Specifies that a logical message is delimited by an ETB (ETX, EOB)
condition.
Default: None. Specification optional.
Format: EOM=ETB
Notes: Must be coded for 2790 support. ENDCHAR= and LENGTH= operands
cannot be coded if this operand is coded. PROCESS= YES and REMOVE=NO
must be coded with this operand. The following code is returned in register 15
after this macro executes:

Code Meaning

X'00000OO4' An EOM indicator delimited this message

Designing the Message Handler 303

SETSCAN

The SETSCAN macro

• explicitly moves the scan pointer forward or backward, or
• returns in a designated register the address of the last character of a specified

character string, or.
• returns in register 15 the current address of the scan pointer;
• is optional in inheader and outheader subgroups (and not permitted in any

other subgroups);
• may be specified more than once in the same subgroup.

The SETSCAN macro explicitly repositions the scan pointer forward or backward
in the buffer, if specified. After the previous macro has executed, the scan pointer
is positioned at the last character of the field acted upon by that macro.
SETS CAN moves the scan pointer a specified number of non blank characters, to
a specified character, or to the last character of a specified character string, so that
one or more fields is skipped. The scan pointer is left at its new position.

Alternatively, the scan pointer is not moved. Instead, either a designated charac­
ter string is located, and the address of the last character of the string is placed in
a specified register, or the current address of the scan pointer is placed in register
15.

Use of SETSCAN is optional in inheader and outheader subgroups, where it may
be used as many times as desired.

When an outgoing message is processed by an outheader subgroup, STARTMH .1

positions the scan pointer to the last reserve character in the buffer, or, if there are .~

no reserve characters, to the last byte of the buffer prefix, or, if there is a machine
EOA sequence, to the last byte of the EOA. If this is not the location of the next
header field to be processed, the user may employ SETSCAN to move the scan
pointer to the byte immediately preceding the next header field to be processed.

For an inheader subgroup that handles messages from stations designated as
operator control terminals, if LC=IN is coded in the STARTMH macro, a
SETSCAN macro shoul() be coded as the first functional macro of the subgroup,
with a CODE macro being the second functional macro (CODE tests for operator
commands). The SETSCAN macro should move the scan pointer past the line
control characters (not including the EOA), leaving it pointing to the byte imme­
diately preceding the first byte of meaningful header data.

(

304 OS/MFT and OS/MVT TeAM Programmer's Guide

symbol

~ ~kipchars l
llnteger ~

SETSCAN has the following format:

Name Operation Operands

[symbol] SETSCAN { ~kiPchars}
mteger

['BLANKt~Sr
char

[,POINT = {BACK }].
FORWARD

[,MOVE= {RETURN?
KEEP

[,RESUL T =rregister)p
(.!1)

Function: Specifies the name of the macro.
Default: None. Specification optional.
Format: Must conform to the rules for assembler language symbols (see the
symbol entry in the Glossary).

Function: Specifies the new location of the scan pointer, either a character string
to be located or a number of characters to be advanced.
Default: None. This operand must be specified.
Format: skipchars or integer. skipchars can be one to eight nonblarik characters
in character or hexadecimal format. If character format is used, the string may be
unframed or framed with C' , or CLn' , characters. If hexadecimal format is used,
the string must be framed with X' , or XLn' , characters. integer is a decimal
integer in decimal format.
Maximum: For integer, 65535.
Notes: skipchars is the character or character string to which the scan pointer is to
be moved when MOVE = KEEP is specified or whose address is to be placed in the
register specified by RESULT=(register) when MOVE = RETURN is specified. If
MOVE = KEEP" is specified, SETSCAN operates across buffers until the string is
found. If MOVE=RETURN is specified, the character string must be located in
the current buffer; otherwise, SETSCAN does not execute and a return code is
set. If register 15 is specified to contain the address of the string and the string is
not found in the buffer, a code of X'OO' is returned in the low-order byte of
register 15. If another register is specified for the address of the string and the
string is not found in this buffer, X'04' is returned in the last byte of register 15
(see the description of MOVE=RETURN beloW). The pointer should not be
moved to a position outside the header. If skipchars is specified, pOINT=BACK
may not be specified.

integer is the number of non blank characters to be skipped. If 0 is specified in
place of integer, TCAM returns the main-storage address to which the scan
pointer is currently pointing. If an attempt is made to set the scan pointer outside

Designing the Message Handler 305

BLANK=~~~S l
1 char ~

POINT = {BACK }
FORWARD

of the current buffer, SETSCAN does not execute and control passes to the next
macro. If integer is coded, MOVE=KEEP is assumed by TCAM, even if
MOVE=RETURN is coded in the macro (unless 0 is coded in place of integer).
If 0 is coded, the MOVE= and RESULT= operands are ignored.

Function: Specifies whether EBCDIC blank characters are to be ignored when
being counted or when encountered in the character string in the message header
being compared to the string specified by the skipchars operand, or whether
blanks are to be counted as characters or as part of the header string when en­
countered in it. If EBCDIC blanks are to be counted as characters or as part of
the header string, this operand also specifi€s whether some other hexadecimal
character is to be ignored when skipping or when encountered in the header
string.
Default: BLANK=YES
Format: YES, NO, or char. char is a single character that may be specified in
either character or hexadecimal format. If character format is specified, it may be
unframed or framed with C' , or CLI' , characters. If hexadecimal format is
specified, it must be framed with X' , or XL I' , characters.
Notes: YES specifies that the EBCDIC blank character (X'40') is to be ignored
by the macro whenever characters are being skipped or whenever it is encountered
in the header character string being checked against the skip character string
specified by the skipchars operand. For example, if BLANK= YES is coded and
an eight-byte field in the header is being checked by this macro, a blank appearing
in the fifth byte of the field will be ignored and the sixth through ninth bytes will
be considered to be the last four bytes of the field (assuming that no blanks are
coded in the sixth through ninth bytes).

NO specifies that the EBCDIC blank character is to be treated like any other
character when characters are being skipped or whenever it is encountered in the
header string being compared to the string specified by skipchars.

chars specifies that the single character replacing char is to be ignored by this
macro whenever characters are being skipped or whenever it is encountered in the
header string being compared to the string specified by the skipchars operand.
That is, the macro automatically skips over the character without counting or
performing a comparison and goes on to check the next character in the header. If
BLANK=char is coded and char is not the EBCDIC blank character, the
EBCDIC blank is not ignored by this macro when it is encountered in the header,
but is counted or compared to the character in the corresponding space in the
skipchars string, like any other character.

Function: Specifies whether the scan pointer is to be moved forward or backward.
Default: POINT = FORWARD
Format: BACK or FORWARD.
Notes: FORWARD specifies that the scan pointer is to be moved forward.
BACK specifies that the scan pointer is to be moved backward. If

.~
I'
\~

POINT=BACK is specified, neither skipchars nor MOVE=RETURN may be (
specified. Also when POINT=BACK is specified, the scan pointer may not be \
moved out of the buffer in which it is located; if integer is greater than the

306 OS/MFT and OS/MVT TeAM Programmer's Guide

MOVE={RETURN}
Y!r

RESULT = {<register>}
<~>

number of characters preceding the scan pointer in the buffer, the macro does not
execute and a code of X'04' is returned in the rightmost byte of register 15.

Function: Specifies whether the scan pointer is to be moved to the designated
position and not returned to its original position before the next macro is issued,
or is to remain stationary with the specified character string being located and the
main-storage address of the last character in the string being returned in a desig­
nated register.
Default: MOVE=KEEP
Format: RETURN or KEEP.
Notes: If integer is replaced by zero, this operand is ignored. If integer is speci­
fied, MOVE=KEEP is assumed by TCAM even if the macro is coded
MOVE=RETURN.

MOVE = RETURN may not be specified if POINT-BACK is specified.

KEEP specifies that the scan pointer is to be moved to the designated character (if
skipchars is coded) or moved the designated number of characters (if integer is
coded); the pointer remains in its new location until the next macro affecting the
scan pointer is issued.

RETURN specifies that the scan pointer is not to be moved. Instead, the speci­
fied character string is located and the main-storage address of the last character
in the string is returned in the register designated by the RESULT = operand.

Function: Specifies the general register into which the main-storage address of the
last character of the designated character string is to be placed once the string is
located.
Default: RESULT=(15)
Format: A general register 2 through 11, or 15, enclosed in parentheses.
Notes: If the desired character string is found, the address of its last character is
placed in the register. If RESULT = (15) is coded and the character string is not
found in this buffer (if skipchars is coded) or if the integer specified would take
the scan pointer out of this buffer (if integer is specified), the macro does not
execute and a code of X'OO' is returned in the rightmost byte of register 15.

If some register other than 15 is specified and the character string is not found in
the buffer, or the integer specified would take the scan pointer out of the buffer,
the macro does not execute and X'04' is returned in the low-order byte of register
15; in this case the contents of the specified register are unchanged.

If integer is replaced by zero, this operand is ignored.

Designing the Message Handler 307

Example 1:

A SETS CAN macro that causes the scan pointer to skip forward over 5 characters
and remain in its new position:

SETSCAN 5,POINT=FORWARD,MOVE=KEEP

Example 2:
A SETS CAN macro that results in no movement by the scan pointer, but causes
the address of the character' =' (located to the right of the pointer) to be placed
in register 2:

SETSCAN C'=' ,POINT=FORWARD,MOVE=RETURN,RESULT=(2)

308 OS/MFT and OS/MVT TeAM Programmer's Guide

symbol

mask

CONNECT={~:D}

SLOWPOLL

The SLOWPOLL macro

• delays further polling when a line error occurs;
• is optional in an inmessage subgroup of an MH, and
• is not permitted in any other subgroup;
• is not permitted in an application program MH;
• may be used more than once in an inmessage subgroup;
• may not be used for switched lines.

SLOWPOLL suspends further polling on a given line when errors specified by the
error mask occur. The bits specified by the error mask operand are compared to
the setting of the bits in the message error record for this message. If specified
bits in the message error record are on, the polling will be suspended. Specifying
an all-zero mask or omitting the mask operand will cause unconditional execution
of the SLOWPOLL macro. Polling will resume after the length of time specified
in the SECONDS= operand.

SLOWPOLL has the following format:

Name Operation Operands

[symbol] SLOWPOLL [mask][,CONNECT ={ AND,['SECONDS={ integerp
OR 60 . - -

Function: Specifies the name of the macro.
Default: None. Specification optional.
Format: Must conform to the rules for assembler language symbols (see the
symbol entry in the Glossary).

Function: Specifies the five-byte bit configuration used to test the message error
record for the message (the message error record is described in Appendix B).
Default: None. Specification optional.
Format: Decimal or hexadecimal. If hexadecimal format is used, framing charac­
ter must be used. If X' 'is used, leading zeros must be coded. If XL5' 'is used,
leading zeros may be omitted.
Maximum: 16777215 or a five-byte, hexadecimal field.
Note: Omitting this operand or specifying an all-zero mask causes unconditional
execution.

Function: Specifies the type of logical connection to be made between the mask and
the message error record.
Default: CONNECT=OR
Format: CONNECT=AND or CONNECT=OR.
Notes: AND specifies that the macro is to be executed only if all the bits specified
in the mask operand are on in the message error record. OR specifies that macro
is to be executed if any bit specified in the mask operand is on in the message
error record.

Designing the Message Handler 309

SECONDS= { ~~eger }

Function: Specifies the length of time, expressed in seconds, during which polling
on the line will be suspended.
Default: SECONDS=60
Format: Decimal integer.
Minimum: 1
Maximum: 65535

310 OS/MFT and OS/MVT TeAM Programmer's Guide

(

symbol

TERRSET

The TERRSET macro

• enables the user to set a bit in the message error record;
• is often issued before a related ERRORMSG macro,
• is optional in inblock, inheader, inbuffer, outheader and outbuffer subgroups.

The TERRSET macro enables the user to set on bit 20 of the message error
record for this message. This may be used to indicate any condition for which the
user wishes to issue an error message. A subsequent ERRORMSG macro may be
issued specifying a mask including the user error bit.

Name Operation Operands

[symbol] TERRSET (no operands)

Function: Specifies the name of the macro.
Default: None. Specification optional.
Format: Must conform to the rules for assembler language symbols (see the
symbol entry in the Glossary).

There are no operands.

Designing the Message Handler 311

c

symbol

con char

ROUTlNE=name

TYPETABL

The TYPET ABL macro

• builds a branch table that can be referred to by the MSGTYPE macro.

A given message-type table named in a MSGTYPE macro is built from one or
more TYPET ABL macros. Each TYPET ABL macro expands into a message-type
character followed by the address to be branched to for that message type. The
first TYPETABL macro of a message-type table should have the name of that
table in the name field. The remaining TYPET ABL macros for that table should
have blank name fields and follow directly behind the TYPET ABL macro having
the table name. Within a group of TYPET ABL macros, each one with a name will
be the beginning of a new table.

TYPET ABLE has the following format:

Name Operation Operands

[symbol] TYPETABL conchar,ROUTINE=name

Function: Names the macro and the message-type table.
Default: None. Specification optional.
Format: Must conform to the rules for assembler language symbols (see the
symbol entry in the Glossary).

Function: The single message-type comparison character ..
Default: None. Specification required.
Format: One nonblank character in character or hexadecimal format. If character
'format is used, the character must be a single unframed character or framed with
C' , or CLn' '. If hexadecimal format is used, the character must be framed with
X" or XLn' '.

Function: Names a user label in the same inheader or outheader subgroup in
which the MSGTYPE macro names the message-type table, This is the label to be
branched to on an equal comparison,
Default: None. Specification required.
Format: Mu~t conform to the rules for assembler language symbols.

Designing the Message Handler 313

UNLOCK

The UNLOCK macro

• removes a station from extended lock mode;
• is optional in an inheader, inmessage, outheader, or outmessage subgroup.

When a LOCK macro is used to lock a station in extended lock mode to an
application program, the UNLOCK macro may be included in the MH to remove
the station from extended lock mode. When coded in an inheader or outheader
subgroup, the con chars operand may be used in conjunction with control charac­
ters in the message header to provide the capability of optional execution of
UNLOCK. When coded in an inmessage or outmessage subgroup, the mask
operand may be used to provide optional execution.

The UNLOCK macro is meaningful only in the inheader subgroup of an MH
handling inquiry or response messages being exchanged by an application program
and a station locked to it by a LOCK macro having EXTEND coded as an oper­
and. When the lock condition is not in effect, the macro is ignored.

When the UNLOCK macro is issued in a inheader subgroup handling inquiry
messages being received from a station in extended lock mode, the message
currently being handled is routed to the destination specified in its header or by a
FORWARD macro (and checked by a FORWARD macro) if UNLOCK is issued
before the FORWARD macro is issued. If UNLOCK is issued after FORWARD,
the message is routed to the application program to which the originating station
was locked.

Ii'«!

The UNLOCK macro may be issued immediately following an unconditional ~
LOCK macro to remove a certain message type from lock mode before the
message is queued. For example,

LOCK EXTEND
UNLOCK A

would place the station in extended lock mode for all except type A messages.
Again,

LOCK MESSAGE
UNLOCKJ

would terminate message lock mode only for type J messages.

When the UNLOCK macro is issued in an outmessage subgroup, an optional
facility may be specified. This is the disable facility. When specified, it causes a
switched connection to be disabled (disconnected) when the unlock is performed.
If the locked station is on a nonswitched line, the disable function has no effect.

For a discussion of the lock mode and its function in a TCAM system, see the
description of the LOCK macro.

UNLOCK has the following format when coded in a header subgroup:

314 OS/MFT and OS/MVT TCAM Programmer's Guide

(

symbol

concbars

BLANK1~~ l
char ~

Name Operation Operands

[symbol] UNLOCK [conchar'[,BLANK= {~S} 11

char

Function: Specifies the name of the macro.
Default: None. Specification optional.
Format: Must conform to the rules for assembler language symbols (see the
symbol entry in the Glossary).

Function: Specifies the character or character string that, if found in the header as
the next nonblank field, causes execution of the function.
Default: None. Specification optional.
Format: One to eight nonblank characters in character or hexadecimal format. If
character format is used, the string may be unframed or framed with C' , or CLn' ,
characters. If hexadecimal format is used the string must be framed with X' , or
XLn' , characters.
Notes: If this operand is omitted, the UNLOCK function is performed uncondi­
tionally. If the next field in the header does not match this operand, the function
is not performed.

Function: Specifies whether EBCDIC blank characters are to be ignored when
encountered in the character string in the message header being compared to the
string specified by the conchars operand, or whether blanks are to be part of the
header string when encountered in it. If EBCDIC blanks are to be counted as
part of the header string, this operand also specifies whether some other hexa­
decimal character is to be ignored when encountered in the header string.
Default: BLANK=YES
Format: YES, NO, or char. char is a single character that may be specified in
either character or hexadecimal format. If character format is specified, it may
be unframed or framed with C' , or CLI' 'characters. If hexadecimal format is
specified, it must be framed with X' , or XLI' , characters.
Notes: This operand is meaningless unless the conchars operand is also specified.

YES specifies that the EBCIDC blank character (X'40') is to be ignored by this
macro whenever it is encountered in the header character string being checked
against the control character string specified by the conchars operand. For
example, if BLANK=YES is coded and an eight-byte field in the header is being
checked by this macro, a blank appearing in the fifth byte of the field will be
ignored and the sixth through ninth bytes will be considered to be the last four
bytes of the field (assuming that no blanks are coded in the sixth through ninth
bytes).

NO specifies that the EBCDIC blank character is to be treated like any other
character when it is encountered by this macro in the header string being
compared to the string specified by con chars.

Designing the Message Handler 315

symbol

mask

CONNECT .. ~OR l
~AND~

D1SABLE= l~~ f

char specifies that the single character replacing char is to be ignored by this
macro whenever it is encountered in the header string being compared to the
string specified by the con chars operand. 1bat is, the macro automatically
skips over the character without performing a comparison and goes on to
check the next character in the header. If BLANK=char is coded and char
is not the EBCDIC blank character, the EBCDIC blank is not ignored by
this macro when it is encountered in the header string, but is compared
to the character in the corresponding space in the conchars string, like any
other character.

UNLOCK specified in an inheader or inmessage subgroup removes the lock
condition for the source terminal. In an outheader or outmessage subgroup
the lock for the destination is removed.

UNLOCK has the following format when coded in an inmessage or out­
message subgroup:

Name Operation Operand

[symbol] UNLOCK [mask][,CONNECT ={ OR}][,D1SABLE= {NO f
AND VES

Function: Specifies the name of the macro.
Default: None. Specification optional.
Format: Must conform to the rules for assembler language symbols.

Function: Specifies the five-byte, bit configuration used to test the
message error record for the message (see message error record in
Appendix B).
Default: None. Specification optional.
Format: Decimal or hexadecimal. If hexadecimal format is used,
framing characters must be specified. If X' , is used, leading zeros
must be coded. If XL5' , is used, leading zeros may be omitted.
Maximum: 16777215 or a five-byte, hexadecimal field.
Note: Omitting the operand, or an all-zero mask, causes uncondi­
tional execution.

Function: Specifies the type of logical connection to be made between the mask and
the message error record.
Default: CONNECT=OR
Format: CONNECT=OR or CONNECT=AND
Notes: AND specifies that the macro is to be executed only if all of the bits
specified by the mask are on in the message error record. OR specifies that the
macro is to be executed if any bit specified by mask is on the message error
record.

Function: Specifies whether or not a switched line is to be disabled.
Default: NO
Format: DISABLE=NO or DISABLE= YES
Notes: NO specifies that the line is not to be disabled. YES specifies that the line
is to be disabled (disconnected).

316 OS/MFT and OS/MVT TeAM Programmer's Guide

(

Putting the MCP Together

This chapter describes what the physical parts of the MCP are, how to arrange
these parts in relation to each other, and how to assemble, link-edit, and execute a
TCAM MCP. In addition, several sample MCPs are presented and explained.

Arranging the Sections of the MCP

Activation and Deactivation

Data Set Definition

Terminal and Line Control Area

Message Handler

An MCP has five sections: the activation and deactivation section (the INTRa,
OPEN, READY, and CLOSE macros and some user code to determine whether
INTRa executed satisfactorily); a data set definition section (the DCB macros
defining the TCAM data sets and, if application programs are to be run in con­
junction with the MCP, one PCB macro for each application program); a terminal
and line control area section (those macros associated with the invitation lists and
the terminal table); a Message Handler section (one or more Message Handlers);
and an optional user routine section (closed, user subroutines called by an MH, as
well as exit routines referred to by the INTRa macro, by DCB macros, and by the
ST AR TMH macro). These sections may be coded in the order just given, or in
any other order, except that the activation and deactivation section must come
first. Each MCP section and locations for coding directions are given below. The
sample program in this chapter conforms to this organization.

The PCB macro defining an application program must be included in the MCP.
This macro is logically similar to a DCB macro and may be included in the data set
definition section, or it may appear in any other section, except between OPTION
macros, among macros defining the terminal table, or within an MH.

The INVLIST macros defining invitation lists must follow the macros defining the
terminal table.

• Initializes, activates, and deactivates the MCP;
• Opens and closes the MCP data sets;
• Described in the chapter Activating and Deactivating the MCP.

• Defines the data sets for the TCAM line groups, message queues, and check­
point and logging facilities;

• Described in the chapter Defining the MCP Data Sets.

• Defines the terminal table for the MCP;
• Defines the option fields associated with the terminal table entries;
• Defines the invitation list for each line;
• Described in the chapter Defining Terminal and Line Control Areas.

• Determines the way in which each incoming and outgoing message is to be
processed;

• Routes each message to its proper destination, if possible;
• Informs the user of errors occurring during message transmission, routing, and

handling;
• Described in the chapter Designing the Message Handler.

Putting the Mep Together 317

User Routine
• Consists of closed, user subroutines that may be entered from an MH, or by an

exit specified by an INTRO, STARTMH, FORWARD, ERRORMSG, or DCB
macro;

• Described in the section Including a Closed Subroutine of the chapter
Designing the Message Handler.

The description of each macro operand specifying an exit tells what TCAM passes
to the routine associated with that exit, and what TCAM expects the exit routine
to return.

Assembling, Link Editing, and Executing the Message Control Program

Assembling an MCP

Link Editing an MCP

Executing an MCP

The assembly, link editing, and execution of a TCAM MCP is similar to the same
steps in any other problem program running under OS. Sample job control
statements are given in this section for these three steps; these statements are
guidelines only.

A typical control-card sequence for assembling a TCAM MCP is:

IIASSEMBLY
IISTEP1
IIASM.SYSIN

MCP Source Deck

JOB
EXEC
DD

MSGLEVEL=1
ASMFC

*

A typical control-card sequence for link-editing an MCP is:

IILINKEDIT JOB MSGLEVEL=1
IISTEP1 EXEC PGM=IEWL,PARM='XREF,LIST,LET',
II REGION=96K
IISYSPRINT DD SYSOUT=A
IISYSUT1 DD UNIT=SYSDA,SPACE=(1024,(200,20))
IISYSLMOD DD DSNAME=SYS1.TCAMLIB,DISP=OLD
IISYSLIB DD DSNAME=SYS1.TELCMLIB,DISP=OLD
IISYSLIN DD *
MCP Object Module

NAME TCAMPROG(R)

In this case, the MCP load module is to be placed in a private library called
SYSl.TCAMLIB that has previously been created by the user.

The SYSLIB DD statement names SYS1.TELCMLIB, a special library area
defined at system generation time. TCAM's resident modules are located in
SYS1.TELCMLm.

The MCP load module resulting from the link-edit may be stored in
SYS I.LINKLIB, or in a private library such as SYS 1. TCAMLIB in the example.

The TCAM MCP is usually executed as the highest-priority task in the highest­
priority partition or region in the system. The TCAM MCP is executed either by
placing the appropriate job control statements in the card reader and using an OS (
Reader/Interpreter to place the job in the system, or by issuing from the console a
START command referring to a cataloged procedure that contains the necessary

318 OS/MFf and OS/MVT TCAM Programmer's Guide

job control statements. (Starting by a START command is discussed below.) The
job control statements needed for the execute step are similar for both cases.

A typical control card sequence for executing an MCP is as follows (in this case,
the MCP has two line group data sets containing three lines each and a message
queues data set residing on disk; no checkpoint or logging facility is included).
The load-module form of the MCP is placed on SYSl.TCAMLIB by the linkage
editor.

IIEXECMCP
IIGOSTEP
IISTEPLIB
11001050
II
II
11002740
II
II
IIOISKOO
IISYSABENO

JOB
EXEC
DO
DO
DO
DO
DO
DO
DO
DO
DO

EXECUTE MCP' , MSGLEVEL= 1
PGM=TCAMPROG,REGION=100K
OSNAME=SYS1.TCAMLIB,OISP=SHR
UNIT=025
UNIT=026
UNIT=027
UNIT=015
UNIT=016
UNIT=017
DSNAME=OISKDS,DISP=OLO
SYSOUT=A

The DISKDD DD statement is for a message queues data set residing on disk;
DISKDD is the name specified in the DDNAME= operand of the DCB macro for
this data set, while DISKDS is the name of the data set as specified by the
DSNAME= operand of the IEDQDAT A DD statement for the IEDQXA utility
used to preformat disk message queues data sets residing on disk.

Information on the DD statements for line group data sets and message queues
data sets is found in the chapter Defining the MCP Data Sets.

The STEPLIB DD statement defines SYSl.TCAMLIB, the private library on
which the MCP was placed by the linkage editor. If the linkage editor had placed
the MCP in SYSl.LINKLIB, no such DD statement would be needed. As an
alternate to the STEPLIB DD statement, a JOBLIB DD statement could define
the private library. The JOBLIB statement would immediately follow the JOB
statement, and would be coded as follows:

IIJOBLIB DO OSNAME=SYS1.TCAMLIB,OISP=SHR

Defining the private library by a STEPLIB DD statement is necessary if the MCP
is running under MVT and is to be started by a START command. A JOBLIB DD
statement may not be included in a cataloged procedure in SYS l.PROCLIB,
while a STEPLIB DD statement may be so included in an MVT system (see the
next section).

Starting the MCP by a Cataloged Procedure: The user may catalog his job control
statements for the execute step by using the IEBUPDTE utility program to place
the statements in SYS 1.PROCLIB. (IEBUPDTE is described in the OS publica­
tion, Utilities.) In order to start or restart his MCP, the user need only issue a
START command from the system console naming his cataloged procedure. (Use
of the START command for this purpose is described in the OS publication,
Operator's Guide.)

In the following example, three procedures are cataloged. The first of these,
named PROCl, causes an MCP, named MCPl and located in SYS1.LINKLIB, to
be started. The second and third procedures, named PROC2 and PROC3, both
cause another MCP, named MCP2 and located in a private library named

Putting the MCP Together 319

SampieMCPs

SYS 1. TCAMLIB, to be started. The difference between PROC2 and PROC3 is
in the line configurations specified; PROC2 contains DD statements for one line
group data set, while PROC3 contains DD statements for two line group data sets. I

In the initialization section of MCP2 the user has coded OPEN macros for both
data sets, and has also coded DCB macros for both data sets. When PROC2 is
used to start MCP2, the OPEN macros for the extra line group data set and the
DCB macro for this data set do not execute since no DD statement is present for
this data set; but control passes to the next instruction in each case, and the MCP
will be started. Thus, by specifying his cataloged procedures the user can choose
between MCPs, or between different line configurations for the same MCP, at
start-up time.

To get MCP2 with two line groups, at start-up time the user would enter

START PROC3 . ID

at the system console (ID is the identification sequence that must be specified by
TCAM Modify commands entered at the system console; see the section
Specifying Operator Commands in Using TCAM Service Facilities).

IISTARTPGM JOB MSGLEVEL=l
II EXEC PGM=IEBUPDTE
IISYSPRINT DD SYSOUT=A
IISYSUTl DD DSNAME=SYS1.PROCLIB,DISP=OLD
IISYSUT2 DD DSNAME=SYS1.PROCLIB,DISP=OLD
IISYSIN DD DATA
.1 ADD NAME=PROC1,LIST=ALL
.1 NUMBER NEW1=10,INCR=20
II EXEC PGM=MCPl
IIDD1050 DD UNIT=015
II DD UNIT=016
II DD UNIT=017
IISYSABEND DD SYSOUT=A
.1 ADD NAME=PROC2,LIST=ALL
.1 NUMBER NEW1=10,INCR=20
II EXEC PGM=MCP2
IISTEPLIB DD DSNAME=SYS1.TCAMLIB,DISP=SHR
IIDD2770 DD UNIT=021
II DD UNIT=022
II DD UNIT=023
IISYSABEND DD SYSOUT=A
.1 ADD NAME=PROC3,LIST=ALL
.1 NUMBER NEW1=10,INCR=20
II EXEC PGM=MCP2
IISTEPLIB DD DSNAME=SYS1.TCAMLIB,DISP=SHR
IjDD1050 DD UNIT=015
II DD UNIT=016
II DO UNIT=017
IIDD2770 DO UNIT=021
II DO UNIT=022
II DD UNIT=023
IISYSABEND DO SYSOUT=A
.1 ENDUP

*

This section presents three sample Message Control Programs (MCPs) together
with associated application programs and JCL statements. The examples consist
of an MCP to switch messages between terminal types, an MCP with an applica-

'Ii

~

320 OS/MFT and OS/MVT TeAM Programmer's Guide

tion program to demonstrate inquiry and response, and an MCP with two applica­
tion programs showing both file updating with checkpoint coordination and
message retrieval.

The programs are designed to run under MVT on a 512K IBM System/360 Model
50. The LKED procedure used in the programs for inquiry/response and file
updating has been modified to link-edit modules to a private library named
SYS1.TCAMLIB rather than to SYS1.LINKLIB, the standard linkage library.

The first two programs run in a single region; the third needs three regions.
Terminal requirements are included in the explanation preceding each MCP. The
application programs provided are guidelines only and therefore do not demon­
strate real processing.

MesStlge Switching Between TermilUll Types
Figure 25 presents an MCP designed to switch messages between IBM 1050 Data
Communication Systems. This MCP assumes two nonswitched 1050s on a
multipoint line and a switched 1050 on another line. The addressing and invita­
tion characters used in the TERMINAL and INVLIST macros, and the unit
addresses on the DD JCL statements are installation-dependent. The values
specified in this sample program are to be used as guidelines only.

The MCP is written to run in two steps. The first step is an assembly creating an
object deck. If the assembly is successful, the second step is a "link edit and go"
using the object deck obtained from the assembly.

In addition to message switching, this sample program permits use of the operator
control facility. Operator commands may be entered either from the system
console or from the 1050 terminal named NYCl.

The format of a message entered in the system depends on whether it is a message
to be switched or an operator command. If it is an operator command it must
begin with the four characters OPID. If it is a message to be switched, its format
is:

leading data X destination = data EOT

Since the translation table is 1050, the destination name and the X must be
entered in uppercase. The message must end with an EOT character. Examples
of messages entered and responses received are:

a. Entered at NYC2, a message to be switched
X CHGO = message data newline EOT

When CHGO calls in, it receives the response
X CHGO = 0001 message data newline EOT

b. Entered at NYC 1, an operator command
OPID D TP,PRITERM newline EOT

Received at NYC1, the response
IED041I PRIMARY=SYSCON

Since all of the required INTRO operands are not specified in the assembly, the
WTOR message

IED002A SPECIFY TCAM PARAMETERS

Putting the MCP Together 321

will be received when the GO step is executed. A minimum response is S=C,U.
Any other INTRO operands with short keyword equivalents may be altered at this
time. Any operands not specified in the assembly but required for this execution ~
(for instance, fewer cross-reference entries, a system interval, or removal of
on-line test) may also be specified as part of the response to the WTOR.

Each section of the sample program is commented to provide an explanation of
the macros used and the operands specified.

322 OS/MFT and OS/MVT TeAM Programmer's Guide

IIASMMSGSW JOB MSGLEVEL=l
II EXEC ASMFC,PARM.ASM='NOLOAD,DECK'
IIASM.SYSIN DD *
MSGSWTCH CSECT

PRINT NOGEN

*
** ACTIVATION AND DEACTIVATION SECTION

*
* THIS SECTION INITIALIZES THIS MESSAGE CONTROL PROGRAM (INTRO MACRO),
* OPENS THE MCP DATA SETS (OPEN MACROS), ACTIVATES THE MCP (READY
* MACRO), CLOSES THE MCP DATA SETS (CLOSE MACROS) AND DEACTIVATES THE
* PROGRAM (RETURN MACRO). SIXTY BUFFER UNITS (LNUNITS + MSUNITS) ARE
* DEFINED, AND THE LENGTH OF EACH BUFFER UNIT IS SET AT 116 BYTES
* (KEYLEN). THE NUMBER OF UNITS PER BUFFER IS DEFINED IN THE DCB MACROS
* IN THE DATA SET DEFTNITION SECTION. THE TYPE OF STARTUP ON INTRO HAS
* BEEN OMITTED FROM THE MACRO TO PERMIT ALTERNATE SPECIFICATION AND
* ADDITION OF OPERANDS AT EXECUTION. TWO LINE GROUPS (CONSISTING
* OF ONE LINE EACH) AND A MESSAGE QUEUES DATA SET ON REUSABLE DISK
* ARE OPENED.

*

TCAMINIT INTRO CPB=2, CHANNEL PROGRAM BLOCKS *

DISK=YES, DISK QUEUING UTILIZED *
PROGID=MESSAGE/SWITCHING, PROGRAM IDENTIFICATION *
LNUNITS=40, UNITS ASSIGNED TO LINES *
MSUNITS=20, UNITS ASSIGNED TO MAIN STORAGE*
KEYLEN=116, SIZE OF BUFFER UNITS *
CROSSRF=2, CROSS REFERENCE--DEBUG AID *
TRACE=10, 1/0 TRACE--DEBUG AID *
DTRACE=100, SUBTASK TRACE--DEBUG AID *
CONTROL=OPID ID SEQUENCE FOR OPERATOR

* COMMANDS
LTR 15,15 TEST IF INTRO EXECUTED
BZ OPENDISK PROPERLY

*
NOEXEC ABEND 123,DUMP IF NOT, ABNORMAL EXIT

*
OPENDISK OPEN

TM
BNO

(DISK, (INOUT))
DISK+48,DCBOFLGS
NOEXEC

OPEN DISK QUEUE BEFORE LINES
OPEN SUCCESSFUL

*
OPENLINE OPEN

TM
BNO

*

*

TM
BNO

ALLSWELL READY

NO - ABEND

(GROUPONE,(INOUT),GROUPTWO,(INOUT)) OPEN LINE GROUPS
GROUPONE+48,DCBOFLGS OPEN SUCCESSFUL
NOEXEC NO - ABEND

GROUPTWO+48,DCBOFLGS
NOEXEC

OPEN SUCCESSFUL
NO '- ABEND

BEGIN PROCESSING
FINISHUP CLOSE (GROUPONE"GROUPTWO)

CLOSE DISK
CLOSE LINE GROUPS BEFORE DISK
CLOSE DISK DATA SET

L 13,4(13)
RETURN (14, 1 2)

Figure 25. Sample Message-Switching Program (Part I of 5)

RETURN CONTROL TO OS
SUPERVISOR

Putting the MCP Together 323

*

* ** DATA SET DEFINITION SECTION

*
* THIS SECTION DEFINES THE DATA SETS FOR THE TCAM LINE GROUPS AND THE
* MESSAGE QUEUES ON DISK. THE DISK MESSAGE QUEUES DATA SET IS DEFINED
* TO BE REUSABLE. BOTH LINE GROUPS ARE IBM 1050 DATA COMMUNICATION
* SYSTEM GROUPS. DYNAMIC BUFFER ALLOCATION IS NOT SPECIFIED FOR
* EITHER GROUP. THEY BOTH USE THE SAME MESSAGE HANDLER (MH). BUFFERS
* ARE BUILT WITH SINGLE BUFFER UNITS (BUFSIZE=116, AS IS KEYLEN ON
* THE INTRO MACRO).

*

DISK DCB DSORG=TQ, ORGANIZATION IS TCAM DISK *

MACRF= (G, P) , REQUIRED OPERAND *
OPTCD=R, DATA SET ON REUSABLE DISK *
DDNAME=DISKDD NAME OF ASSOCIATED DD JCL

* STATEMENT
GROUPONE DCB DSORG=TX, ORGANIZATION IS TCAM LINE *

MACRF= (G, P) , REQUIRED OPERAND *
CPRI=E, SEND/RECEIVE PRIORITY EQUAL *
DDNAME=DDONE, NAME OF DD JCL STATEMENT *
TRANS = 1 050, 1050 TRANSLATION TABLE *
SCT=1050, SPECIAL CHARACTER TABLE *
MH=SWITCHMH, MESSAGE HANDLER FOR LINE *
INVLIST=(LISTONE), INVITATION LIST FOR LINE *
PCI=(N,N), NO DYNAMIC ALLOCATION *
BUFSIZE=116, SIZE OF A BUFFER *
BUFIN=2, INITIAL ASSIGNMENT FOR INPUT *
BUFOUT=4, INITIAL ASSIGNMENT FOR OUTPUT *
BUFMAX=4, MAXIMUM BUFFERS PER LINE *
RESERVE=(21,0,0,0) RESERVED FOR INSERTION OF

* DATA IN MESSAGES
GROUP TWO DCB DSORG=TX, DCB FOR SECOND LINE GROUP *

MACRF=(G,P), *
CPRI=S, SEND HAS PRIORITY OVER RECEIVE*
TRANS=1050, *
SCT=1050, *
DDNAME=DDGRPTWO, *
MH=SWITCHMH, *
INVLIST=(LISTTWO), *
PCI=(N,N), *
BUFSIZE=116, *
BUFIN=2, *
BUFOUT=4, *
BUFMAX=4, *
RESERVE=(21,0,0,0)

Figure 25. Sample Message-Switching Program (Part 2 of 5)

324 OS/MFT and OS/MVT TeAM Programmer's Guide

f~

\~

'. '"

* ** TERMINAL AND LINE CONTROL AREA

* * THIS SECTION DEFINES THE TERMINAL TABLE FOR THE MCP, THE ENTRIES
* IN THE TERMINAL TABLE, AND THE INVITATION LISTS FOR EACH LINE. THE
* TERMINALS NYC1 AND NYC2 ARE ASSOCIATED WITH THE LINE GROUP DEFINED
* BY THE GROUPONE DCB, WHILE CHGO IS THE ONLY LINE IN THE GROUP TWO
* LINE GROUP. QUEUING IS BY TERMINAL FOR EACH TERMINAL, AND USES
* MAIN-STORAGE QUEUING WITH REUSABLE DISK BACKUP. NYC1 IS DEFINED
* AS A SECONDARY OPERATOR CONTROL TERMINAL: THUS NYC1 AND THE SYSTEM
* CONSOLE ARE THE ONLY TERMINALS CAPABLE OF ENTERING OPERATOR
* COMMANDS. SINCE PRIMARY= WAS NOT SPECIFIED ON THE INTRO MACRO,
* THE SYSTEM CONSOLE IS THE PRIMARY OPERATOR CONTROL TERMINAL
* FOR THIS MCP.

*

THE LAST ENTRY IN THE TABLE
NYC1

TTABLE LAST=CHGO
TERMINAL QBY=T,

DCB=GROUPONE,
RLN=1,
TERM=10S0,
QUEUES=MR,
ADDR=6402,
ALTDEST=NYC2,
SECTERM=YES

QUEUING BY TERMINAL *

NYC2

*
CHGO

*
*

TERMINAL QBY=T,
DCB=GROUPONE,
RLN=1,
TERM=10S0,
QUEUES=MR,
ADDR=6202,
ALTDEST=NYC1,
SECTERM=NO

TERMINAL QBY=T,
DCB=GROUPTWO,
RLN=1,
TERM=10S0,
QUEUES=MR,
ADDR=6202,
DIALNO=NONE

UTERM=YES

ASSOCIATED DCB *
RELATIVE LINE NUMBER *
TYPE OF TERMINAL *
MAIN STORAGE, REUSABLE DISK *
ADDRESSING CHARACTERS *
ALTERNATE DESTINATION *
SECONDARY OPERATOR CONTROL
SECOND TERMINAL IN GROUP *

NOT AN OPERATOR CONTROL
TERMINAL

*
*
*
*
*
*

TERMINAL FOR GROUP TWO *

MAY NOT BE CALLED BY THE
CENTRAL PROCESSING UNIT
BOTH ENTRIES ARE ACTIVE

*
*
*
*
*

LISTONE INVLIST ORDER=(NYC1+640B,NYC2+620B) GROUPONE INVITATION LIST
LISTTWO INVLIST ORDER=(CHGO+620B) GROUPTWO INVITATION LIST

Figure 25. Sample Message-Switching Program (Part 3 of 5)

Putting the MCP Together 325

*
** MESSAGE HANDLER SECTION
* * THIS SECTION PROVIDES THE MESSAGE-SWITCHING CAPABILITY OF THE MCP.
* INCOMING MESSAGES ARE TRANSLATED TO EBCDIC AND CHECKED TO SEE IF
* THEY ARE OPERATOR COMMANDS. IF SO THEY ARE PROCESSED BY THE OPERATOR
* CONTROL FUNCTION. IF THEY ARE NOT, THE DATE AND TIME IS INSERTED IN
* THE MESSAGE (USING 16 OF THE 21 BYTES RESERVED BY THE "RESERVE="
* OPERAND IN THE DCB) AND THE MESSAGE IS FORWARDED TO THE DESTINATION
* SPECIFIED IN THE HEADER. OUTGOING MESSAGES ARE SEQUENCED (USING THE
* REMAINING RESERVED CHARACTERS), TRANSLATED BACK TO 1050 LINE CODE
* AND SENT.
*

SWITCHMH STARTMH LC=OUT
* * INCOMING GROUP OF THE MH
*
INGROUP INHDR

CODE ,
SETSCAN X
FORWARD (4)

*
*

INEND
* * OUTGOING GROUP OF THE MH
*
OUTGROUP OUTHDR

SETSCAN
SEQUENCE
CODE
OUT END

*
DCBOFLGS EQU X' 10'

END

Figure 25. Sample Message-Switching Program (Part 4 of 5)

326 i OS/MFT and OS/MVT TeAM Programmer's Guide

REMOVE LINE CONTROL

PROCESS HEADERS ONLY
TRANSLATE TO EBCDIC
SET SCAN POINTER TO AN X
FORWARD TO THE DESTINATION
NAMED IN THE NEXT FOUR BYTES
OF THE MESSAGE
END OF THE INCOMING GROUP

PROCESS HEADERS ONLY
SET SCAN POINTER TO AN
INSERT SEQUENCE NUMBER
TRANSLATE TO 1050 LINE CODE
END OF THE OUTGOING GROUP

(

//LKGMSGSW JOB MSGLEVEL=1,REGION=120K,TYPRUN=HOLD
//S2 EXEC LKEDG
//LKED.SYSLIB DD DSN=SYS1.TCAMLIB,DISP=SHR
//LKED.SYSIN DD *

OBJECT DECK HERE

//GO.STEPLIB DD DSN=SYS1.TCAMLIB,DISP=SHR
//GO.DISKDD DD DSNAME=SAMP1,DISP=SHR
//SYSPRINT DD SYSOUT=A
//SYSABEND DD SYSOUT=A
//GO.DDONE DD UNIT=015
//GO.DDGRPTWO DD UNIT=011

Figure 25. Sample Message-Switching Program (Part 5 of 5)

Putting the MCP Together 327

Inquiry and Response
Figure 26 presents an MCP designed to use the conversational capabilities of
TCAM. This MCP locks a terminal to an application program from the time a
message is entered until a response is provided. A sample application program is
also provided, but its functions are limited to recognition of messages. It does not
do any processing.

The MCP assumes two nonswitched IBM 1050 Data Communication Systems on
a multipoint line, and a single switched 1050 on another line. The addressing and
invitation characters used in the TERMINAL and INVLIST macros, and the unit
addresses on the DD JCL statements are installation-dependent. The values
specified in the sample programs are guidelines only.

The programs are written to run in three sieps. The MCP and the application
program are first assembled and object decks are obtained. If there are no
assembly errors, the object decks are link-edited. The final step is the execution
of the MCP, which will attach the application program after the MCP data sets are
open.

The inquiry and response feature has a limiting effect on transmission in the
multipoint line group. If one of the terminals on the line enters a message, the
other is locked out (cannot enter data) until the response has been received by the
originating terminal. The terminal on the other line may enter messages during a
lock on the multipoint line. The message format for the example is:

origin b sequence b = b data b / (16 b) EOT rr1
If the origin and sequence fields are valid, the response is: '.

origin bdatebtimeb sequence b = out-sequenceb data bl

MESSAGE RECEIVED EOT

If the origin field was incorrectly specified, the response is:

ORIGIN FIELD WRONG

If the sequence number was incorrectly specified, the response is:

origin bdateb time b sequence SEQUENCE NUMBER HIGH

or

origin b date btimeb sequence SEQUENCE NUMBER LOW

Since the translation table used is 1050, the origin field must be entered in upper­
case characters.

The MCP includes the operator control facility. Operator commands may be
entered from the system console or from the terminal named NYCl. If an opera­
tor command is entered at NYC 1, it must begin with the four-character identifier
OPID.

r

Since all of the required INTRO operands are not specified in the assembly of the
MCP, a WTOR message

IED002A SPECIFY TCAM PARAMETERS

will be received at the system console when the GO step is executed. The mini­
mum required response is 'S=C,U'. Any other INTRO operands with short

(

328 OS/MFT and OS/MVT TeAM Programmer's Guide

keyword equivalents may be altered, and operands not specified in the assembly
but required for this execution may also be specified as part of the response to the
WTOR.

Each section of the sample MCP and the application program that follows it has
been commented to provide explanation of the macros used and the operands
specified.

Putting the MCP Together 329

IIASMINQ JOB MSGLEVEL=l
II EXEC ASMFC, PARM.ASM= , NOLOAD, DECK ,
IIASM.SYSIN DD *
INQUIRY CSECT

PRINT NOGEN

*
** ACTIVATION AND DEACTIVATION SECTION

* * THIS SECTION INITIALIZES THE MESSAGE CONTROL PROGRAM (INTRO MACRO),
* OPENS THE MCP DATA SETS (OPEN MACRO), ATTACHES THE APPLICATION
* PROGRAM (ATTACH MACRO), ACTIVATES THE MCP (READY MACRO), CLOSES THE
* MCP DATA SETS (CLOSE MACRO), AND DEACTIVATES THE PROGRAM (RETURN
* MACRO). SIXTY BUFFERS (LNUNITS + MSUNITS) ARE DEFINED, AND THE
* LENGTH OF EACH BUFFER UNIT SET AT 116 (KEYLEN). THE NUMBER OF UNITS
* PER BUFFER IS DEFINED IN THE DCB MACROS IN THE DATA SET DEFINITION
* SECTION. THE TYPE OF STARTUP ON INTRO HAS BEEN OMITTED FROM THE
* MACRO TO PERMIT ALTERNATE SPECIFICATION AND ADDITION OF OPERANDS AT
* EXECUTION. TWO LINES ARE OPENED.

*

TCAMINIT

*

*
NOEXEC

*

INTRO DISK=NO,
PROGID=INQUIRY/RESPONSE,
LNUNITS=40,
MSUNITS=20,
KEYLEN=116,
CROSSRF=2,
TRACE=10,
DTRACE=100,
CONTROL=OPID

LTR 15,15
BZ OPENLINE

ABEND 123,DUMP

NO DISK QUEUING *
PROGRAM IDENTIFICATION *
BUFFERS ASSIGNED TO LINES *
BUFFERS ASSIGNED TO MAIN STOR *
SIZE OF BUFFER UNITS *
CROSS-REFERENCE - DEBUG AID *
1/0 TRACE - DEBUG AID *
SUBTASK TRACE - DEBUG AID *
ID SEQUENCE FOR OPERATOR
CONTROL MESSAGES
TEST IF INTRO EXECUTED
PROPERLY

IF NOT, ABNORMAL EXIT

OPENLINE OPEN (GROUPONE,(INOUT),GROUPTWO,(INOUT» OPEN LINE GROUPS
TM GROUPONE+48,DCBOFLGS OPEN SUCCESSFUL
BNO NOEXEC NO - ABEND

*

*

TM
BNO

GROUPTWO+48,DCBOFLGS
NOEXEC

ATTACH EP=INQAP
READY

FINISHUP CLOSE (GROUPONE"GROUPTWO)
L 13,4(13)
RETURN (1 4 , 1 2)

Figure 26. Sample Inquiry/Response Program (Part 1 of 9)

330 OS/MFT and OS/MVT TCAM Programmer's Guide

OPEN SUCCESSFUL
NO - ABEND

ATTACH APPLICATION PROGRAM
BEGIN PROCESSING
CLOSE LINE GROUPS
RETURN CONTROL TO OS
SUPERVISOR

/~
I":

'~

*

* ** DATA SET DEFINITION SECTION

*
* THIS SECTION DEFINES THE DATA SETS FOR THE TCAM LINE GROUPS AND THE
* PROCESS CONTROL INTERFACE. BOTH LINE GROUPS ARE IBM 1050 DATA
* COMMUNICATION SYSTEM GROUPS. DYNAMIC BUFFER ALLOCATION IS NOT
* SPECIFIED FOR EITHER GROUP. THEY BOTH USE THE SAME MESSAGE HANDLER
* (MH). BUFFERS ARE BUILT WITH SINGLE BUFFER UNITS. THE PROCESS
* CONTROL BLOCK REFERS TO A DIFFERENT MH. SINCE THE APPLICATION
* PROGRAM GETS AND PUTS MESSAGES, THE BUFFER SIZE FOR THE PROCESS
* CONTROL BLOCK IS THE SAME AS THAT FOR THE LINES.

*

GROUPONE DCB

*
GROUPTWO DCB

DSORG=TX,
MACRF=(G,P),
CPRI=E,
DDNAME=DDGRPONE,
TRANS=1050,
SCT=1050,
MH=LINEMH,
INVLIST=(LISTONE),
PCI=(N,N),
BUFSIZE=116,
BUFIN=2,
BUFOUT=4,
BUFMAX=4,
RESERVE=(21,0,0,0)

ORGANIZATION IS TCAM LINE
REQUIRED OPERAND
SEND/RECEIVE PRIORITY EQUAL
NAME OF DD JCL STATEMENT
1050 TRANSLATION TABLE
SPECIAL CHARACTERS TABLE
MESSAGE HANDLER FOR LINE
INVITATION LIST FOR LINE
NO DYNAMIC BUFFER ALLOCATION
SIZE OF A BUFFER
INITIAL ASSIGNMENT - INPUT
INITIAL ASSIGNMENT - OUTPUT
MAXIMUM BUFFERS PER LINE
RESERVED FOR INSERTION OF
DATA IN MESSAGES
DCB FOR SECOND LINE GROUP

*
*
*
*
*
*
*
*
*
*
*
*
*

*
*

DSORG=TX,
MACRF=(G,P),
CPRI=S,
DDNAME=DDGRPTWO,
TRANS=1050,
SCT=1050,
MH=LINEMH,
INVLIST=(LISTTWO),
PCI=(N,N),
BUFIN=2,

SEND HAS PRIORITY OVER RECEIVE*

QPROC PCB

BUFOUT=4,
BUFMAX=4,
RESERVE=(21,0,0,0)
MH=APPMH,
BUFSIZE=116,
BUFIN=5,
BUFOUT=5,
RESERVE=(5,0)

Figure 26. Sample Inquiry/Response Program (Part 2 of 9)

PROCESS CONTROL BLOCK

*
*
*
*
*
*
*
*
*

*
*
*
*

Putting the MCP Together 331

* ** TERMINAL AND LINE CONTROL SECTION

* * THIS SECTION DEFINES THE TERMINAL TABLE FOR THE MCP, THE ENTRIES IN
* THE TERMINAL TABLE, AND THE INVITATION LISTS FOR EACH LINE. THE
* TERMINALS NYC1 AND NYC2 ARE ASSOCIATED WITH THE LINE GROUP DEFINED
* BY THE GROUPONE DCB, WHILE CHGO IS THE ONLY LINE IN THE GROUPTWO
* LINE GROUP (THIS IS A SWITCHED LINE, GROUPONE IS NON-SWITCHED).
* QUEUING IS BY TERMINAL FOR EACH TERMINAL, AND USES MAIN-STORAGE ONLY
* QUEUING. NYC1 IS DEFINED AS A SECONDARY OPERATOR CONTROL TERMINAL.
* TWO PROCESS ENTRIES ARE ALSO DEFINED, ONE FOR GET PROCESSING AND
* THE OTHER FOR PUT. QUEUING FOR THE GET PROCESSOR IS MAIN-STORAGE
* ONLY, AND IT IS DEFINED AS ITS OWN ALTERNATE DESTINATION.
* BOTH PROCESS ENTRIES REFER TO THE SAME PROCESS CONTROL BLOCK (PCB).

*

TTABLE LAST=CHGO LAST ENTRY IN THE TABLE
GPRC TPROCESS PCB=QPROC, PCB NAME *

QUEUES=MO, MAIN-STORAGE ONLY QUEUING *
ALTDEST=GPRC ALTERNATE DESTINATION

PPRC TPROCESS PCB=QPROC PUT PROCESS ENTRY
NYC1 TERMINAL QBY=T, QUEUING BY TERMINAL *

DCB=GROUPONE, ASSOCIATED DCB *
RLN=l, RELATIVE LINE NUMBER *
TERM=1050, TYPE OF TERMINAL *
QUEUES=MO, MAIN-STORAGE ONLY QUEUES *
ADDR=6402, ADDRESSING CHARACTERS *
NTBLKSZ=(116), SIZE OF A BLOCK *
SECTERM=YES SECONDARY OPERATOR CONTROL

* TERMINAL
NYC2 TERMINAL QBY=T, SECOND TERMINAL IN GROUPONE *

DCB=GROUPONE, *
RLN=l *
TERM=1050, *
QUEUES=MO, *
ADDR=6202, *
NTBLKSZ=(116), *
ALTDEST=NYC1, ALTERNATE DESTINATION *
SECTERM=NO NOT A SECONDARY OPERATOR

* CONTROL TERMINAL
CHGO TERMINAL QBY=T, TERMINAL FOR GROUPTWO *

DCB=GROUPTWO, *
RLN=l, *
TERM=1050, *
QUEUES=MO, *
ADDR=6202, *
NTBLKSZ=(116), *
DIALNO=NONE MAY NOT BE CALLED BY THE

* CENTRAL PROCESSOR
LISTONE INVLIST ORDER=(NYC1+640B,NYC2+620B) GROUPONE INVITATION LIST
LISTTWO INVLIST ORDER=(CHGO+620B) GROUPTWO INVITATION LIST

Figure 26. Sample Inquiry/Response Program (Part 3 of 9)

332 OS/MFT and OS/MVT TeAM Programmer's Guide

~

~
f'

*
** MESSAGE HANDLER SECTION

*
* THIS SECTION PROVIDES THE MESSAGE HANDLING FUNCTION OF THE MCP.
* IT CONTAINS TWO MHS. THE FIRST RECEIVES INPUT FROM LINES AND
* FORWARDS TO THE GET APPLICATION PROGRAM AFTER ITS ORIGIN AND
* SEQUENCE NUMBER HAVE BEEN VERIFIEB, AND THE DATE AND TIME HAVE BEEN
* INSERTED. THE TERMINAL THAT SENT THE MESSAGE IS LOCKED TO THE
* APPLICATION PROGRAM UNTIL A RESPONSE IS RECEIVED. MESSAGES WITH
* INVALID ORIGIN OR SEQUENCE NUMBER ARE CANCELED, AND AN ERROR
* MESSAGE BUILT. OUTGOING MESSAGES ARE SEQUENCED, AND AN EOB/EOT IS
* INSERTED AT THE END OF THE MESSAGE. THE SECOND MH RECEIVES INPUT
* FROM THE APPLICATION PROGRAM AND FORWARDS IT TO THE DESTINATION
* PROVIDED BY THE APPLICATION PROGRAM.
*

*
* FIRST MESSAGE HANDLER - FOR LINES
*
LINEMH STARTMH LC=OUT,

STOP=YES,
CONV=YES

INHDR
CODE 100

*
ORIGIN 4

*
DATETIME
SEQUENCE
FORWARD DEST=C'GPRC'
LOCK MESSAGE

*
INMSG
CANCELMG X'5800000000'

*

REMOVE LINE CONTROL
STOP ON ERRORS
CONVERSE MODE REQUESTED
TO PROCESS HEADERS
CONVERT TO EBCDIC FROM 1050
LINE CODE
GET FOUR-CHARACTER ORIGIN
FROM MESSAGE
INSERT DATE AND TIME
VERIFY SEQUENCE NUMBER
FORWARD TO GET PROCESSOR
LOCK TERMINAL TO APPLICATION
PROGRAM UNTIL RESPONSE
FULL MESSAGE RECEIVED
CANCEL MESSAGES WITH INVALID
ORIGINS AND SEQUENCE NUMBERS
IF ORIGIN WRONG, SEND
THIS MESSAGE

*
*

*
IF SEQUENCE HIGH, RETURN THIS *
MESSAGE WITH THE HEADER TO ITS*

HIGH' ORIGIN

MSGGEN X'4000000000',
CL18'ORIGIN FIELD WRONG'

ERRORMSG X'1000000000',
DEST=ORIGIN,
DATA=C'SEQUENCE NUMBER

ERRORMSG X'0800000000',
DEST=ORIGIN,
DATA=C'SEQUENCE NUMBER

IF SEQUENCE LOW, RETURN THIS *
MESSAGE WITH THE HEADER TO ITS*

LOW' ORIGIN

*
*

INEND
OUTHDR
SETSCAN C'='
SEQUENCE
CODE ,
MSGFORM
OUT END

END OF INCOMING GROUP
TO PROCESS HEADERS
SET SCAN POINTER TO AN
INSERT SEQUENCE NUMBER
TRANSLATE BACK TO LINE CODE
INSERT EOB/EOT IN MESSAGE
END OF OUTGOING GROUP
THIS MH

* SECOND MESSAGE HANDLER - FOR APPLICATION PROGRAM

*
APPMH STARTMH LC=OUT

INHDR
FORWARD DEST=PUT

Figure 26. Sample Inquiry/Response Program (Part 4 of 9)

REMOVE LINE CONTROL
TO PROCESS HEADERS
TO DESTINATION IN HEADER

Putting the MCP Together 333

*
*

*

INEND
OUTHDR
SETSCAN C'='
SETEOF C'CLOSEAP'

OUT END
DCBOFLGS EQU X'10'

END

Figure 26. Sample Inquiry/Response Program (Part 5 of 9)

334 OS/MFT and OS/MVT TeAM Programmer's Guide

PROVIDED BY PUT APPLICATION
PROGRAM
END OF INCOMING GROUP
PROCESS OUTGOING HEADERS
RESET SCAN POINTER
SET END OF FILE IF CLOSEDOWN
MESSAGE RECEIVED
END OF OUTGOING GROUP

(

IIASMINQAP JOB MSGLEVEL=l
II EXEC ASMFC,PARM.ASM='NOLOAD,DECK'
IIASM.SYSIN DO *
INQAP CSECT

*

PRINT NOGEN

** INITIALIZATION SECTION

* * THIS SECTION DOES THE NECESSARY INITIALIZATION FOR THE PROGRAM.
* IT SAVES REGISTERS, ESTABLISHES ADDRESSABILITY AND SETS THE
* NEW SAVE AREA ADDRESS IN THE STANDARD SAVE AREA REGISTER.

*

*

SAVE (1 4 , 1 2) , , *
LR 12,15
USING INQAP,12
ST 13,SAVE+4
LA 13, SAVE

** ACTIVATION SECTION

*

SAVE REGISTERS
RESET BASE REGISTER
ESTABLISH ADDRESSABILITY
SAVE ADDRESS OF SAVE AREA
NEW SAVE AREA ADDRESS

* THIS SECTION OPENS THE DATA SETS FOR THE PROGRAM.

*

OPEN

'*

EQU *
OPEN DCBIN
OPEN DCBOUT

** PROCESSING SECTION

*

OPEN INPUT DCB
OPEN OUTPUT DCB

* THIS SECTION CONTROLS THE ACCESS, PROCESSING, AND RETURN OF MESSAGES.
* IT ALSO TESTS FOR THE NEED TO CLOSE DOWN THE PROGRAM, AND CLEARS
* WORK AREAS IF NOT.

*

LOOP

LOOP2

*

*

*
PUT

EQU
LA
GET
LA
LA
EQU
CLI
BE

LA
LA
CR
BE

B

EQU
LA
MVC
LA

*
10,GOTMSG
DCBIN,WORK
9,1
2,WORK+8
*
O(2),C'I'
PUT

9,1 (9)
2,1 (2)
2,10
CLOSEM

LOOP2

*
2,1(2)
o (1 6 , 2) , GOTMSG
9,27(9)

Figure 26. Sample Inquiry/Response Program (Part 6 of 9)

GET END OF WORK AREA ADDRESS
GET A MESSAGE
SET LENGTH COUNTER
GET START OF MSG DATA

SEARCH FOR END OF DATA
IF FOUND, COMPLETE PROCESSING

INCREMENT LENGTH
BUMP TO NEXT CHARACTER
END AND NO I
YES - CLOSE DOWN

CONTINUE SEARCH

GET PAST LAST CHARACTER
PUT 'MSG RECEIVED' IN MSG
ADD INSERT LENGTH

Putting the MCP Together 335

*

*

STH
PUT
MVI
MVC
B

9,DCBOUT+82
DCBOUT,WORK
WORK,C' ,
WORK+1(149),WORK
LOOP

** DEACTIVATION SECTION

*

PUT LENGTH IN LRECL FIELD
PUT THE MESSAGE

CLEAR WORK AREA TO BLANKS
GET ANOTHER MESSAGE

* THIS SECTION CLOSES THE DATA SETS FOR THE PROGRAM AND RETURNS TO
* THE OS SUPERVISOR

*

CLOSEM EQU *

CLOSE DCBIN
CLOSE DCBOUT

*

*

L 13, SAVE+4
RETURN (14,12)

** ERROR HANDLING SECTION

*

CLOSE INPUT DCB
CLOSE OUTPUT DCB
RESTORE ADDRESS OF SAVE AREA
RETURN TO OS SUPERVISOR

* THIS SECTION PROVIDES THE ERROR HANDLING FOR UNCORRECTABLE I/O
* ERRORS AND END OF DATA.

*

ERROR EQU *

WTO 'SYNAD ENTERED' UNCORRECTABLE ERROR
B CLOSEM CLOSE DOWN THE PROGRAM

*
END EQU *

WTO 'EODAD ENTERED' END OF DATA INDICATOR
B CLOSEM CLOSE DOWN THE PROGRAM

*

*
** DATA SET DEFINITION SECTION

* * THIS SECTION DEFINES THE DATA SETS USED BY THE PROGRAM.

*

DCBIN DCB DSORG=PS, PHYSICAL SEQUENTIAL

BLKSIZE=124, SIZE OF MESSAGE AND WORK
DDNAME=APPIN, NAME OF DD JCL STATEMENT
SYNAD=ERROR, UNCORRECTABLE ERROR HANDLER
EODAD=END, END OF DATA HANDLER
LRECL=116, SIZE OF LOGICAL RECORD
OPTCD=W, BUILD PREFIX FOR SOURCE
MACRF=GM DCB FOR GET

DCBOUT DCB DSORG=PS,
BLKSIZE=124,
DDNAME=APPOUT,
SYNAD=ERROR,
LRECL=116,
OPTCD=WU,
MACRF=PM DCB FOR PUT

Figure 26. Sample Inquiry/Response Program (Part 7 of 9)

336 OS/MFT and OS/MVT TCAM Programmer's Guide

/'11
.~

*
*
*
*
*
*
*

*
*
*
*
*
*

c

* ** WORK AREA DEFINITION SECTION

* * THIS SECTION DEFINES THE WORK AREAS USED BY THE PROGRAM.
*

SAVE
WORK
GOTMSG

*

DC
DC
DC

END

18F'O'
150C' ,
C'MESSAGE RECEIVED'

Figure 26. Sample Inquiry/Response Program (Part 8 of 9)

PROGRAM SAVE AREA
WORK AREA FOR MESSAGE
MESSAGE PROCESSED INDICATOR

Putting the MCP Together 337

IILKDINQ JOB MSGLEVEL=l
II EXEC LKED
IILKED.SYSLMOD DD DSN=SYS1.TCAMLIB,DISP=OLD
IILKED.SYSIN DD *

OBJECT DECK HERE

NAME INQUIRY(R)
IILKDINQAP JOB MSGLEVEL=l
II EXEC LKED
IILKED.SYSLMOD DD DSN=SYS1.TCAMLIB,DISP=OLD
IILKED. SYSIN DD * .

OBJECT DECK HERE

NAME INQAP(R)
IIGOINQ JOB MSGLEVEL=1,REGION=120K,TYPRUN=HO~D
IIJOBLIB DD DSN=SYS1.TCAMLIB,DISP=SHR
II EXEC PGM=INQUIRY
IIGO.SYSABEND DD SYSOUT=A
IIAPPIN DD QNAME=GPRC
IIAPPOUT DD QNAME=PPRC
IIDDGRPONE DD UNIT=029
IIDDGRPTWO DD UNIT=021

Figure 26. Sample Inquiry/Response Program (Part 9 of 9)

338 OS/MFT and OS/MVT TeAM Programmer's Guide

(

File Updating with Checkpoint Coordination
Figure 27 presents an MCP that demonstrates coordination of checkpointing by
the MCP and an application program. This MCP also can switch messages and
use the operator control facility. Finally, a second application program utilizes the
retrieve capabilities of the POINT macro. Two lines are assumed, one a point-to­
point line with two IBM 1050s, and the other supporting a single nonswitched
IBM 2740. The addressing and invitation characters used in the TERMINAL and
INVLIST macros, and the unit addresses on the DD JCL statements are
installation-dependent. The values specified in the sample program are guidelines
only.

The job is set up to run in three steps. The MCP and both application programs
are first assembled, then object decks from the first step are link-edited. As the
final step, the MCP is executed. The MCP win prompt at the system console
when it is time for the application programs to be started.

The format of the message depends upon the function desired. If it is a message
to be switched, the format on input is:

destination b S b origin b data b EOT

If the origin is correct, the message received at the destination is:

destination b S b origin b data

If the origin is invalid, the message received at the source will be:

ORIGIN FIELD WRONG

If it is a message for the application program that does the file update, the input
format is:

destination b A b sequence b data b / (16 b)EOT

For valid sequence numbers, the message received at the destination is:

out-sequence b destination bAb sequence b date btimeb data

If the sequence number is invalid, the message received at the source is:

SEQUENCE NUMBER HIGH

or

SEQUENCE NUMBER LOW

Messages for the retrieve application program may be formatted either:

destination b / b data b EOT

or

destination b A b sequence b / b data b EOT

where destination is the name of the process entry, and sequence is the sequence
number of the message. The format of data in either of the two above messages:

type

termname I I I sequence
number

I I I
where termname is an eight-byte field that is left adjusted and padded right with
blanks, type is either character I (for input) or character 0 (for output), and
sequence number is a five-byte field containing the sequence number of the
message to be retrieved (in character, right adjusted, and padded left with zeros).

Putting the MCP Together 339

Operator commands entered from NYC 1 or CHGO must begin with the identifier
OPID. Because of the translation tables used, messages entered by NYCl and
NYC2 must specify destination and origin in uppercase, while the same fields
when entered by CHGO may be in either upper or lowercase.

Since all of the required INTRO operands were not specified in the assembly, the
WTOR message

IED002A SPECIFY TCAM PARAMETERS

will be received at the console when the GO step is executed. A minimum re­
sponse must specify some sort of restart with the S= operand. Any other oper­
ands with a short keyword equivalent specified in the assembly may be altered,
and any operands not specified but required for this execution may also be
specified as part of the response to the WTOR.

The MCP and its associated application programs are commented to provide an
explanation of the macros used and the operands specified.

340 ~OS/MFT and OS/MVT TeAM Programmer's Guide

(

IIASMUPDT JOB MSGLEVEL=1
II EXEC ASMFC,PARM.ASM='LOAD,DECK'
IIASM.SYSIN DD *
UPDTCKPT CSECT

PRINT NOGEN

* ** ACTIVATION AND DEACTIVATION SECTION

* * THIS SECTION INITIALIZES THE MESSAGE CONTROL PROGRAM (INTRO MACRO),
* OPENS THE MCP DATA SETS (OPEN MACROS), INDICATES THAT THE
* APPLICATION PROGRAMS MAY BE STARTED (WTO MACRO), ACTIVATES THE
* MCP (READY MACRO), CLOSES THE DATA SETS (CLOSE MACROS) AND
* DEACTIVATES THE PROGRAM (RETURN MACRO). SIXTY BUFFERS (LNUNITS +
* MSUNITS) ARE DEFINED, AND THE LENGTH OF EACH BUFFER UNIT SET AT
* 116 (KEYLEN). THE NUMBER OF UNITS PER BUFFER IS DEFINED IN THE
* DCB MACROS IN THE DATA SET DEFINITION SECTION. THE TYPE OF
* STARTUP ON INTRO HAS BEEN OMITTED FROM THE MACRO TO PERMIT
* ALTERNATE SPECIFICATION AND ADDITION OF OPERANDS AT EXECUTION.
* TWO LINE GROUPS ARE OPENED.

*

TCAMINIT INTRO CPB=2, CHANNEL PROGRAM BLOCKS *

DISK=YES, DISK QUEUING USED *
PROGID=CHECKPOINT/COORDINATION, PROGRAM IDENTIFICATION *
LNUNITS=40, BUFFERS ASSIGNED TO LINES *
MSUNITS=20, BUFFERS ASSIGNED TO MAIN STOR *
KEYLEN=116, SIZE OF BUFFER UNITS *
CPINTVL=1800, CHECKPOINT EVERY 30 MINUTES *
CKREQS=2, CKREQ MACROS IN FILEAP *
CROSSRF=2, CROSS-REFERENCE - DEBUG AID *
TRACE=10, 1/0 TRACE - DEBUG AID *
DTRACE=100, SUBTASK TRACE - DEBUG AID *
CONTROL=OPID ID SEQUENCE FOR OPERATOR

* COMMANDS
LTR 15,15 TEST IF INTRO EXECUTED
BZ OPENDISK IMPROPERLY

*
NOEXEC ABEND 123,DUMP

*
OPENDISK EQU

OPEN
TM
BNO

*

*

OPEN
TM
BNO

*
(DISK, (INOUT))
DISK+48,DCBOFLGS
NOEXEC

(CKPT , (INOUT))
CKPT+48,DCBOFLGS
NOEXEC

ABNORMAL EXIT

OPEN DISK QUEUE FIRST
OPEN SUCCESSFUL
NO - ABEND

OPEN CHECKPOINT QUEUE NEXT
OPEN SUCCESSFUL
NO - AB~ND

OPEN (GROUPONE,(INOUT),GROUPTWO,(INOUT)) OPEN LINE QUEUES

*

*

TM GROUPONE+48,DCBOFLGS OPEN SUCCESSFUL
BNO NOEXEC NO - ABEND

TM
BNO

GROUPTWO+48,DCBOFLGS
NOEXEC

OPEN SUCCESSFUL
NO - ABEND

WTO 'TIME TO START APPLICATION PROGRAMS'
READY BEGIN PROCESSING

Figure 27. Sample Checkpoint Coordination Program (Part 1 of 11)

Putting the MCP Together 341

*

*

*

CLOSE (GROUPONE"GROUPTWO)
CLOSE CKPT
CLOSE DISK
L 13,4(13)
RETURN (14,12)

** DATA SET DEFINITION SECTION

*

CLOSE LINE QUEUES FIRST
CLOSE CHECKPOINT QUEUE NEXT
CLOSE DISK QUEUE LAST
RETURN CONTROL TO OS
SUPERVISOR

* THIS SECTION DEFINES THE DATA SETS FOR THE TCAM DISK QUEUE,
* THE CHECKPOINT QUEUE, AND THE LINE GROUPS AND APPLICATION PROGRAM
* PROCESS CONTROL INTERFACE. ONE LINE GROUP USES TWO IBM 1050 DATA
* COMMUNICATION SYSTEMS AND THE OTHER USES THE IBM 2740
* SYSTEM. DYNAMIC BUFFER ALLOCATION IS NOT SPECIFIED FOR EITHER
* GROUP. BOTH USE THE SAME MESSAGE HANDLER (MH), AND BOTH USE
* BUFFERS BUILT OF SINGLE UNITS. THE PROCESS CONTROL BLOCKS
* REFER TO A DIFFERENT MH. BUFFER SIZE FOR BOTH APPLICATION
* PROGRAMS IS THE SAME AS THAT FOR THE LINE GROUPS.

*

DISK DCB DSORG=TQ, ORGANIZATION IS TCAM DISK

MACRF=(G, P) , REQUIRED OPERAND
OPTCD=R, DATA SET ON REUSABLE DISK
DDNAME=DISKDD NAME OF DO JCL STATEMENT

CKPT DCB DSORG=TQ, CHECKPOINT DATA SET
MACRF= (G , P) ,
OPTCD=C, DATA SET IS CHECKPOINT
DDNAME=CKPTDD

GROUPONE DCB DSORG=TX, ORGANIZATION IS TCAM LINE
MACRF= (G , P) ,
CPRI=E, SEND/RECEIVE PRIORITY EQUAL
DDNAME=DDONE,
TRANS=1050, 1050 TRANSLATION TABLE
SCT=1050, SPECIAL CHARACTERS TABLE
MH=LINEMH, MESSAGE HANDLER FOR LINE
INVLIST=(INVONE), INVITATION LIST FOR LINE
PCI=(N,N), NO DYNAMIC BUFFER ALLOCATION
BUFSIZE=116, SIZE OF A BUFFER
BUFIN=2, INITIAL ASSIGNMENT - INPUT
BUFOUT=4, INITIAL ASSIGNMENT - OUTPUT
BUFMAX=4, MAXIMUM BUFFERS PER LINE
RESERVE=(21,0,0,0) RESERVED FOR INSERTION OF

* DATA IN MESSAGES
GROUP TWO DCB DSORG=TX, DCB FOR SECOND LINE GROUP

MACRF=(G,P),
CPRI=E,

*
*
*

*
*
*

*
*
*
*
*
*
*
*
*
*
*
*
*

*
*
*

TRANS=274F, FOLDED 2740 TRANSLATION TABLE *
SCT=274F, *
DDNAME=DDTWO, *
MH=LINEMH, *
INVLIST=(INVTWO), *
PCI=(N,N), *
BUFSIZE=116, *
BUFIN=2, *
BUFOUT=4, *
BUFMAX=4, *
RESERVE=(21,0,0,0)

Figure 27. Sample ClJ.eckpoint Coordination Program (Part 2 of 11)

342 OS/MFT and OS/MVT TCAM Programmer's Guide

.~

<~

QPROC

RETRV

*

PCB

PCB

MH=APPMH,
BUFSIZE=116,
BUFIN=5,
BUFOUT=5,
RESERVE=(5,O)
MH=APPMH,
BUFSIZE=116,
BUFIN=5,
BUFOUT=5,
RESERVE=(5,O)

** TERMINAL AND LINE CONTROL SECTION

*

FILE PROCESS CONTROL BLOCK

PCB FOR RETRIEVE

* THIS SECTION DEFINES THE TERMINAL TABLE FOR THE MCP, THE ENTRIES
* IN THE TERMINAL TABLE, AND THE INVITATION LISTS FOR EACH LINE.
* IT ALSO DEFINES AN OPTION FIELD TO MAINTAIN A COUNTER OF MESSAGES
* RECEIVED. THE TERMINALS NYC1 AND NYC2 ARE ASSOCIATED WITH THE
* LINE GROUP DEFINED BY THE GROUPONE DCB, WHILE CHGO IS THE ONLY LINE
* IN THE GROUPTWO LINE GROUP. QUEUING IS BY TERMINAL FOR EACH
* TERMINAL, AND MAIN-STORAGE QUEUING WITH REUSABLE DISK BACKUP IS
* USED. NYC1 AND CHGO ARE BOTH DEFINED AS SECONDARY OPERATOR CONTROL
* TERMINALS. FOUR PROCESS ENTRIES ARE ALSO DEFINED, TWO FOR GET AND
* TWO FOR PUT PROCESSING. QUEUING FOR THE GET ENTRIES IS MAIN-
* STORAGE WITH REUSABLE DISK BACKUP.

*

TTABLE LAST=CHGO
COUNTIN OPTION H

LAST ENTRY IN THE TABLE
OPTION FIELD FOR COUNTER

*
*
*
*

*
*
*
*

FILE TPROCESS PCB=QPROC, PCB NAME *
CKPTSYN=YES,
QUEUES=MR,

FOR CHECKPOINTING *

~ ALTDEST=FILE
MAIN-STORAGE, REUSABLE BACKUP *
ALTERNATE DESTINATION

I PUTF TPROCESS PCB=QPROC
GETR TPROCESS PCB=RETRV,

QUEUES=MR,
ALTDEST=GETR

PUTR TPROCESS PCB=RETRV
NYC1 TERMINAL QBY=T,

*

DCB=GROUPONE,
RLN=l,
TERM=1050,
QUEUES=MR,
ADDR=6402,
NTBLKSZ=(116),
OPDATA=O,
SECTERM=YES

NYC2 TERMINAL QBY=T,
DCB=GROUPONE,
RLN=l
TERM=1050,
ADDR=6202,
QUEUES=MR,
OPDATA=O,
NTBLKSZ=(116)

CHGO TERMINAL QBY=T,
DCB=GROUPTWO,
RLN=l,
TERM=274F,
QUEUES=MR,
ADDR=E201,

SECOND PROCESS ENTRY FOR FILEAP
PCB NAME *

*
SECOND PROCESS ENTRY FOR APRET
QUEUING BY TERMINAL *
ASSOCIATED DCB *
RELATIVE LINE NUMBER *
TYPE OF TERMINAL *
QUEUING TYPE *
ADDRESSING CHARACTERS *
SIZE OF A BLOCK *
INITIAL VALUE OF OPTION *
SECONDARY OPERATOR CONTROL
TERMINAL

SECOND TERMINAL IN GROUP *
*
*
*
*
*
*

TERMINAL ON OTHER LINE GROUP *
*
*

NONSWITCHED WITH CHECKING *
*
*

~ ,
Figure 27. Sample Checkpoint Coordination Program (Part 3 of 11)

Putting the MCP Together 343

NTBLKSZ=(l16), *
OPDATA=O, *

INVONE
I NVTWO

* *****
*

SECTERM=YES
INVLIST ORDER=(NYC1+640B,NYC2+620B) GROUPONE INVITATION LIST
INVLIST ORDER=(CHGO+E201,CHGO+E201) GROUP TWO INVITATION LIST

POLL TWICE BEFORE DELAY

** MESSAGE HANDLER SECTION

* * THIS SECTION PROVIDES THE MESSAGE HANDLING FUNCTION OF THE MCP.
* IT CONTAINS TWO MHS. THE FIRST RECEIVES INPUT FROM LINES AND
* FORWARDS TO THE DESTINATION SPECIFIED IN THE MESSAGE, WHICH MAY BE
* EITHER ANOTHER STATION OR AN APPLICATION PROGRAM. MESSAGES ARE
* COUNTED, AND THE DATA INSERTED DEPENDS UPON A MESSAGE-TYPE
* INDICATOR SPECIFIED IN THE MESSAGE. INVALID MESSAGES ARE
* CANCELED AND MESSAGES INDICATING THE ERROR ARE RETURNED TO THE
* ORIGINATING STATION. THE SECOND MESSAGE HANDLER RECEIVES INPUT
* FROM EITHER OF THE APPLICATION PROGRAMS, SEQUENCES THEM AND
* RETURNS THEM TO THE DESTINATION SPECIFIED IN THE WORK AREA BUILT BY
* THE APPLICATION PROGRAM.

* *****
LINEMH STARTMH LC=OUT TAKE OUT LINE CONTROL

INHDR PROCESS INCOMING HEADERS
CHECKPT CHECKPOINT OPTION FIELDS
COUNTER COUNTIN COUNT HEADERS RECEIVED
CODE , TRANSLATE TO EBCDIC
FORWARD DEST=** FORWARD TO DESTINATION NAMED

* IN NEXT FIELD OF MESSAGE
MSGTYPE A TO AN APPLICATION PROGRAM
SEQUENCE YES - SEQUENCE VERIFY IT
DATETIME INSERT DATE AND TIME
MSGTYPE S TO A SWITCHED TERMINAL
ORIGIN , YES - VERIFY ORIGIN
INMSG TO PROCESS COMPLETE MESSAGE
CANCELMG X'5800000000' CANCEL MESSAGES WITH INVALID

* ORIGIN OR SEQUENCE NUMBER
MSGEN X'4000000000', SEND INVALID ORIGIN MESSAGE

CL18'ORIGIN FIELD WRONG' BACK TO WHOEVER SENT IT
MSGEN X'1000000000', SEND SEQUENCE HIGH MESSAGE

CL20'SEQUENCE NUMBER HIGH' TO ITS SOURCE
MSGEN X'0800000000' , SEND SEQUENCE LOW MESSAGE

CL19'SEQUENCE NUMBER LOW' TO ITS SOURCE
INEND END OF INCOMING GROUP
OUTHDR PROCESS OUTGOING HEADERS
MSGFORM INSERT EOB/EOT AT END
CODE CONVERT BACK TO LINE CODE
OUTEND END OF OUTGOING GROUP OF

* THIS MH
APPMH STARTMH LC=OUT REMOVE LINE CONTROL

INHDR PROCESS INCOMING HEADERS

*

*

*

FORWARD DEST=PUT FORWARD TO DESTINATION PROVIDED

* BY APPLICATION PROGRAM
INEND END OF INCOMING GROUP
OUTHDR PROCESS OUTGOING HEADERS
SEQUENCE SEQUENCE OUTGOING MESSAGES
QUTEND END OF OUTGOING GROUP

*
DCBOFLGS EQU X' 10'

END

Figure 27. Sample Checkpoint Coordination Program (Part 4 of 11)

344 OS/MFf and OS/MVT TCAM Programmer's Guide

~ Ii.

c

IIASMAPP1 JOB MSGLEVEL=1
II EXEC ASMFC,PARM.ASM='NOLOAD,DECK'
I IASM. SYSIN DD *
"ILEAP CSECT

PRINT NOGEN
~****
~

** INITIALIZATION SECTION

* * THIS SECTION ESTABLISHES ADDRESSABILITY AFTER SAVING THE CALLER
* REGISTERS. A QSTART MACRO IS THE FIRST STATEMENT IN THE PROGRAM
* BECAUSE IT IS NEEDED IN ORDER TO USE THE CKREQ MACRO.

*

*

QSTART
SAVE (1 4 , 1 2) , , *
LR 12,15
USING FILEAP,12
ST 13,SAVE+4
LA 13,SAVE

** ACTIVATION SECTION

*

FOR CKREQ USAGE
SAVE REGISTERS
SET BASE REGISTER
ESTABLISH ADDRESSABILITY
SAVE ADDRESS OF SAVE AREA
SET NEW SAVE AREA ADDRESS

* THIS SECTION OPENS ALL APPLICABLE DATA SETS. IN THIS EXAMPLE, THE
* ONLY DATA SETS OPENED ARE THE TCAM DCBS. IN A TRUE FILE UPDATING
* PROGRAM, THE DATA SETS FOR THE FILES WOULD ALSO BE OPENED IN THIS
* SECTION.

*

1'*

OPEN DCBIN
OPEN DCBOUT

'** PROCESSING SECTION

*

OPEN INPUT DCB
OPEN OUTPUT DCB

* THIS SECTION DOES THE PROCESSING REQUIRED TO UPDATE FILES, AND TAKE
* THE COORDINATED OS AND TCAM CHECKPOINTS. SINCE THIS IS ONLY AN
* EXAMPLE, NO FILES ARE UPDATED. COMMENTS ARE PROVIDED TO EXPLAIN
* WHERE THE UPDATING AND CHECKPOINTING WOULD BE DONE IN A TRUE FILE
* UPDATING PROGRAM. CHECKPOINTS ARE TAKEN AFTER EVERY 5 UPDATES.

*

LOOP EQU *

LA 2,5 SET A LOOP CONTROL
GET DCBIN,WORK GET A TCAM MESSAGE
LA 5,GOTMSG GET END OF WORK AREA
LA 4,1 SET LCRECL COUNT
LA 3,WORK+8 GET WORK AREA START

LOOP2 EQU *
CLI O(3),C'I' SEARCH FOR END OF DATA
BE PUT FOUND - BUILD RESPONSE

*
LA 3,1 (3) BUMP TO NEXT BYTE
LA 4,1 (4) BUMP LRECL COUNTER
CR 3,5 END OF WORK
BE CLOSEM YES - ERROR

Figure 27. Sample Checkpoint Coordination Program (Part 5 of II)

Putting the MCP Together 345

*
PUT

*

*
OSCKPT

*
*

*
CTEST

*

*

*

*

B
EQU
LA
MVC
LA
STH
PUT

BCT

BCR

CKREQ

EQU
WTOR
XC
WAIT

CLI
BE

XC
MVI
MVC
B

LOOP2

*
3, 1 (3)
O(16,3),GOTMSG
4,27(4)
4,DCBOUT+82
DCBOUT,WORK

2,LOOP

0,0

*
'TIME TO CLOSE REPLY
WECB(4), WECB
ECB=WECB

REP,C'Y'
CLOSEM

REP(8) ,REP
WORK,X'40'
WORK+1(149),WORK
LOOP

** DEACTIVATION SECTION

*

GO LOOK AT NEXT BYTE

GET PAST /
PUT RECEIVED IN MSG
INCREMENT LRECL COUNTER
SET LRECL FIELD
PUT THE MESSAGE BACK TO THE
TCAM QUEUES
DECREMENT AND TEST LOOP CONTROL

THE INSTRUCTIONS NEEDED TO OS
CHECKPOINT THE FILE JUST
UPDATED WOULD BE PLACED HERE
TCAM APPLICATION PROGRAM QUEUE
CHECKPOINT

YES OR NO' ,REP,1,WECB
CLEAR ECB FOR A WAIT
WAIT FOR RESPONSE

REPLY YES
YES - CLOSE DOWN

CLEAR REPLY AREA

CLEAR WORK AREA TO BLANKS
GET ANOTHER MESSAGE

* THIS SECTION DEACTIVATES THE DATA SETS USED BY THE PROGRAM. ANY
* OTHER DATA SETS OPENED IN THE ACTIVATION SECTION WOULD BE CLOSED
* IN THIS SECTION.

*

CLOSEM

*

*

EQU *
CLOSE DCBIN
CLOSE DCBOUT
L 13,SAVE+4
RETURN (14, 1 2)

** ERROR HANDLING SECTION

*

CLOSE INPUT DCB
CLOSE OUTPUT DCB
RESTORE ADDRESS OF SAVE AREA
RETURN TO OS SUPERVISOR

* THIS SECTION PROVIDES THE ERROR HANDLING REQUIRED FOR
* UNCORRECTABLE ERRORS AND THE END-OF-DATA SITUATIONS.

*

ERROR EQU *

WTO 'SYNAD ENTERED' UNCORRECTABLE ERROR
B CLOSEM CLOSE DOWN THE PROGRAM

*
END EQU *

WTO 'EODAD ENTERED' END OF DATA INDICATOR
B CTEST TEST IF CLOSEDOWN WANTED

Figure 27. Sample Checkpoint Coordination Program (Part 6 of II)

346 OS/MFT and OS/MVT TCAM Programmer's Guide

:~

*

*
** CHECKPOINT SECTION

* * THIS SECTION PROVIDES THE CHECKPOINTING AS SPECIFIED IN THE
* EXIT LIST OPERAND OF THE DCB MACROS.

*

EXIT

*
*
*
*

*

*

EQU *
BCR 0,0

CKREQ

** DATA SET DEFINITION SECTION

*

IF OS CHECKPOINTING WERE
NEEDED (PER THE EXLST
OPERAND OF THE DCB MACROS)
THIS WOULD BE A ROUTINE TO DO
THE CHECKPOINTING
THIS COORDINATES WITH THE
TCAM CHECKPOINT

* THIS SECTION PROVIDES ONLY THE TWO TCAM DCBS. ANY OTHER DCBS
* RELATIVE TO A FILE TO BE UPDATED WOULD BE DEFINED IN THIS SECTION.

*

DCBIN DCB

DCBOUT DCB

*

DSORG=PS,
BLKSIZE=124,
DDNAME=APPLIN,
SYNAD=ERROR,
EODAD=END,
EXLST=EXITLIST,
LRECL=116,
OPTCD=W,
MACRF=GM
DSORG=PS,
BLKSIZE=124,
DDNAME=APPLOUT,
SYNAD=ERROR,
EXLST=EXITLIST,
LRECL=116,
OPTCD=WU,
MACRF=PM

** WORK AREA DEFINITION SECTION

PHYSICAL SEQUENTIAL
SIZE OF MESSAGE AND WORK
NAME OF DO JCL STATEMENT
UNCORRECTABLE ERROR HANDLER
END OF DATA HANDLER
OS CHECKPOINT EXIT LIST
SIZE OF LOGICAL RECORD
BUILD PREFIX FOR SOURCE
DCB FOR GET
OUTPUT DCB

DCB FOR PUT

* THIS SECTION DEFINES THE WORK AREAS USED BY THE PROGRAM.

*

SAVE DC 18F'O' SAVE AREA
REP DC 2F'O' REPLY AREA FOR WTOR
WECB DC F'O' ECB FOR WTOR
WORK DC 150C' ,

WORK AREA FOR MESSAGE
GOTMSG DC C'MESSAGE RECEIVED' MESSAGE PROCESSED INDICATOR
EXITLIST DC X'8F' EXIT FOR CHECKPOINT

DC AL3(EXIT) ADDRESS OF CHECKPOINT ROUTINE

*
END

Figure 27. Sample Checkpoint Coordination Program (Part 7 of 11)

*
*
*
*
*
*
*
*

*
*
*
*
*
*
*

Putting the MCP Together 347

IIASMAPP2 JOB MSGLEVEL=l
II EXEC ASMFC,PARM.ASM='NOLOAD,DECK'
IIASM.SYSIN DD *
RETRIEVE CSECT

*

PRINT NOGEN

** INITIALIZATION SECTION

*
* THIS SECTION PROVIDES THE NECESSARY INITIALIZATION FOR THE PROGRAM
* INCLUDING SAVING OF REGISTERS AND ESTABLISHING ADDRESSABILITY.

*

*

SAVE
LR
USING
ST
LA

(14,12),,*
12, 15
RETRIEVE, 12
13,SAVE+4
13,SAVE

** ACTIVATION SECTION

*

SAVE REGISTERS
RESET BASE REGISTER
ESTABLISH ADDRESSABILITY
SAVE ADDRESS OF SAVE AREA
SET NEW SAVE AREA ADDRESS

* THIS SECTION OPENS THE DATA SETS USED IN THE PROGRAM.

*

*

OPEN DCBIN
OPEN DCBOUT

** PROCESSING SECTION

*

OPEN DCB FOR INPUT
OPEN DCB FOR OUTPUT

* THIS SECTION DOES THE PROCESSING NECESSARY TO DETERMINE FROM THE
* INPUT MESSAGE THE MESSAGE TO BE RETRIEVED, RETRIEVES IT AND SENDS
* IT BACK TO THE REQUESTER OF THE ORIGINAL MESSAGE.

*

LOOP1

LOOP2

*

*

*
PROCESS

EQU
LA
GET
LA
EQU
CLI
BE

LA
CR
BE

B

EQU
MVC
MVC
MVC
PACK
XC
CVB

*
10,PTWORK
DCBIN,WORK
2,WORK+8
*
O(2),C'/'
PROCESS

2, 1 (2)
2,10
CLOSEM

LOOP2

*
TERMWORK(8),l(2)
IOWORK(1),9(2)
DOUBLE(5) , 10 (2)
DOUBLE+6 (2) , DOUBLE (5)
DOUBLE(6),DOUBLE
3,DOUBLE

GET END OF WORK AREA ADDRESS
GET REQUESTER MESSAGE
GET START OF MESSAGE

START QF DATA
YES - PICK UP RETRIEVE DATA

BUMP TO NEXT CHARACTER
END AND NO I
YES - CLOSE DOWN

CHECK FOR I

PUT TERMNAME IN POINT WORK
PUT I OR 0 IN POINT WORK
PUT SEQUENCE IN WORK AREA
CONVERT TO PACKED DECIMAL
CLEAR HIGH-ORDER BYTES
CONVERT TO HEXADECIMAL

Figure 27. Sample Checkpoint Coordination Program (Part 8 of 11)

348 OS/MFT and OS/MVT TCAM Programmer's Guide

IILCDUPDT JOB MSGLEVEL=l
II EXEC LKED,PARM. LKED=' LIST, LET,XREF ,
IILKED.SYSLMOD DD DSN=SYS1.TCAMLIB,DISP=OLD
IILKED.SYSIN DD *

OBJECT DECK HERE

NAME UPDTCKPT(R)
IILKDAPPl JOB MSGLEVEL=l
II EXEC LKED
IILKED.SYSLMOD DD DSN=SYS1.TCAMLIB,DISP=OLD
IILKED.SYSIN DD *

OBJECT DECK HERE

NAME FILEAP(R)
IILKDAPP2 JOB MSGLEVEL=l
II EXEC LKED
IILKED.SYSLMOD DD DSN=SYS1.TCAMLIB,DISP=OLD
IILKED.SYSIN DD *

OBJECT DECK HERE

NAME RETRIEVE(R)
IIGOUPDT JOB MSGLEVEL=1,TYPRUN=HOLD,REGION=120K
IIJOBLIB DD DSN=SYS1.TCAMLIB,DISP=SHR
II EXEC. PGM=UPDTCKPT
IISYSABEND DD SYSOUT=A
IIDISKDD DD DSNAME=SAMP1,DISP=SHR
IICKPTDD DD DSNAME=SAMP2,UNIT=2311,VOLUME=SER=TSTAM1,SPACE=(TRK,(3)),
II DISP=(NEW,CATLG)
IIDDONE DD UNIT=015
IIDDTWO DD UNIT=017
IIGOAPPl JOB MSGLEVEL=l,TYPRUN=HOLD
IIJOBLIB DD DSN=SYS1.TCAMLIB,DISP=SHR
II EXEC PGM=FILEAP
IIAPPLIN DD QNAME=FILE
IIAPPLOUT DD QNAME=PUTF
IIGOAPP2 JOB MSGLEVEL=l,TYPRUN=HOLD
IIJOBLIB DD DSN=SYS1.TCAMLIB,DISP=SHR
II EXEC PGM=RETRIEVE
IIAPP2IN DD QNAME=GETR
IIAPP20UT DD QNAME=PUTR

Figure 27. Sample Checkpoint Coordination Program (Part 11 of 11 ~

Putting the MCP Together 351

c

,CDUPDT JOB MSGLEVEL= 1
EXEC LKED,PARM.LKED=' LIST, LET, XREF ,

,KED.SYSLMOD DD DSN=SYS1.TCAMLIB,DISP=OLD
,KED.SYSIN DD *

OBJECT DECK HERE

\ME UPDTCKPT(R)
.KDAPP1 JOB MSGLEVEL=1

EXEC LKED
.KED.SYSLMOD DD DSN=SYS1.TCAMLIB,DISP=OLD
"KED.SYSIN DD *

OBJECT DECK HERE

~E FILEAP(R)
~KDAPP2 JOB MSGLEVEL=1

EXEC LKED
~KED.SYSLMOD DD DSN=SYS1.TCAMLIB,DISP=OLD
['KED.SYSIN DD *

OBJECT DECK HERE

1\ME RETRIEVE(R)
~OUPDT JOB MSGLEVEL=1,TYPRUN=HOLD,REGION=120K
JOBLIB DD DSN=SYS1.TCAMLIB,DISP=SHR

EXEC. PGM=UPDTCKPT
SYSABEND DD SYSOUT=A
DISKDD DD DSNAME=SAMP1,DISP=SHR
CKPTDD DD DSNAME=SAMP2,UNIT=2311,VOLUME=SER=TSTAM1,SPACE=(TRK,(3)),
~ DISP=(NEW,CATLG)
bDONE DD UNIT=015
DDTWO DD UNIT=017
GOAPP1 JOB MSGLEVEL=1,TYPRUN=HOLD
JOBLIB DD DSN=SYS1.TCAMLIB,DISP=SHR

EXEC PGM=FILEAP
APPLIN DD QNAME=FILE
APPLOUT DD QNAME=PUTF
GOAPP2 JOB MSGLEVEL=1,TYPRUN=HOLD
JOBLIB DD DSN=SYS1.TCAMLIB,DISP=SHR

EXEC PGM=RETRIEVE
ApP2IN DD QNAME=GETR
'APP20UT DD QNAME=PUTR

:ure 27. Sample Checkpoint Coordination Program (Part 11 of 11 ~

Putting the MCP Together 351

(

Writing TeAM-Compatible Application Programs;

As described previously, a TCAM message may consist of header and text por­
tions. The header portion is the primary concern of the Message Handler (MH)
sections of the Message Control Program (MCP). If any processing of text
portions of messages is required, it is performed by an application program,
written by the user to suit the needs of his particular application. The main
concern of TCAM with respect to an application program is to pass messages to
the program for processing and later to return the messages to the appropriate
station. (However, there may be no return message, as in the case of a file update
application.) TCAM provides the means of transferring data between the parti­
tions (GET, PUT, READ, WRITE, and CHpCK macros), and provides a unique
scheme for buffer usage for application programs. Application programs run
asynchronously with the MCP, usually in another partition or region, but always
as a separate system task or subtask. The MCP must have higher priority than
any application program, since the MCP must have control after system interrupt
(this becomes extremely important if the user's application program has a program
loop that might cause continued contention with the MCP for control).

TCAM application programs need not be concerned with the st~tion at which a
message originated, or with the transmission code of the line, or with what the
station line control had been. TCAM automatically handles line control in the
Message Control Program. However, if a response message is generated, the
application programmer must consider line-control characters in the response,
unless a MSGFORM macro is coded in the outheader subgroup handling messages
for the destination station. The response message must be in line code unless the
CODE macro is inserted in the outgoing group handling messages for the destina­
tion station.

Messages to be processed are placed in a destination queue by a Message Handler;
a destination queue and its process entry in the terminal table are defined by a
TPROCESS macro. A message from a station (or from an application program)
can be routed to any predefined application program by a FORWARD macro.

The GET or READ macros that obtain messages from the destination queues
transfer the data to a user-specified work area. (The work area and the units of
work placed in it are discussed below.) Once in the work area, the data is ana­
lyzed and processed by the application program. Optionally, a PUT or a WRITE
macro causes a response message to be returned to the Message Control Program
for transmission either to a station (not necessarily the one that originated the
message), to a list of destinations, or to another application program.

TCAM application programs allow the user to define at execution time, by the
QNAME= parameter on the DD card, which of the destination queues specified
in the terminal table is to be linked to the related data set.

TCAM allows the user to run his application programs in a non-teleprocessing
environment for debugging, and then run them under TCAM without reassem­
bling. The user may include such MCP-related, application-program TCAM
macros as TCOPY, ICOPY, QCOPY, TCHNG, ICHNG, MRELEASE, and
MCPCLOSE (all of which are discussed below) in an application program being
debugged in a non-teleprocessing environment, provided that the macro definition
library for the system under which the program is assembled includes the neces-

Writing TCAM-Compatible Application Programs 353

sary macro definitions (as the result of a system generation procedure). When
these macros are encountered at execution time in a system having no MCP, a
return code is generated and control passes to the next instruction; otherwise,
execution of the program is not hindered.

In some applications, the required processing may be such that one destination
queue can handle all the messages, and a single application program having a
single interface with the MCP can perform the processing. If various kinds of
processing are required, there are two means of providing it:

• Each of several application programs may be provided with its own interface
with the MCP, and the destination field in the message header used to route the
message to the appropriate destination queue for the desired program.

• Alternatively, all messages that require processing are routed to the same
application program, where a user-written analysis routine determines the kind
of message received, based upon a user-specified code·in the message. The
messages are transferred by this routine to the appropriate processing routines,
or possibly to a processing program in another partition or region (by a PUT or
WRITE back to the MCP).

When the destination field in the header is used to route messages to the appropri­
ate processing program, the processing needed for the message must be deter­
mined with Message Handler facilities. Messages requiring different processing
can be handled by MSGTYPE or PATH macros (see the descriptions of these
macros).

Application programs transfer data to and from the MCP using GET/PUT
(QSAM) or READ/WRITE/CHECK (BSAM) macro instructions. Support is
provided for fixed-, variable-, and undefined-format work units. When using
TCAM's GET/PUT support, the user may specify move or locate mode, but not
substitute mode.

If the EODAD= operand is specified in the input DCB macro, the SETEOF
macro may be issued in the MCP to indicate the end of a file of data, and the
EODAD exit is taken on the next GET or READ after TCAM moves end-of­
message into the user's work area. On succeeding GETs or READs, normal
processing continues. If EODAD is not specified at end-bf-data, the application
program may stop issuing GETs or READs and issue a CLOSE macro to close the
input DCB. If no SETEOF macro is issued, the GET or READ with CHECK is
not finished until a message arrives on the queue. Time of entry to EODAD is
controlled by the user because of the real-time nature of the process queue for the
application program. The SYNAD exit for logical errors is handled in the same
manner as under BSAM and QSAM. The SYNADAF and SYNADRLS macros
may be used.

Certain other features can also be incorporated into an application program:

• A PUT or WRITE work area prefix can be used to specify the destination to
which a message can be sent.

• A GET or READ work area prefix can be used to receive the name of the
message source.

• The work area contents may be described to TCAM for PUT or WRITE
operations and by TCAM for GET or READ operations as first segment,
intermediate segment, last segment, or single-segment message.

These three options may be included at execution time by a DD card parameter Ie
(DeB=OPTCD=operand), or at assembly time by the appropriate DeB oper-
ands.

354 OS/MFT and OS/MVT TeAM Programmer's Guide

The POINT macro, used in conjuction with a GET or READ macro, enables the
user to retrieve a message from a message-queues data set on disk, when this
message has already been sent to its destination.

TCAM permits an application program to control a teleprocessing network with
the TCOPY, ICOPY, COPY, TCHNG, ICHNG, MRELEASE, and MCPCLOSE
macros. All operator control functions are available from application programs;
operator commands may be transferred to the MCP by PUT/WRITE macros.
Responses to operator commands may be directed to any destination queue
(except a PUT process entry) by the ALTDEST= operand of the PUT process
entry.

Application programs written to run with a QT AM Message Control Program can
be used when conversion is made from QT AM to TCAM. QT AM application
programs being modified to run under TCAM need only be reassembled with a
QST ART macro as the first instruction. During execution, the modified applica­
tion program operates in most respects as it did under QT AM. Appendix E gives
details on how to run QT AM application programs under TCAM.

A TCAM application program is defined as a task containing one or more data
control blocks opened using data definition statements containing the QNAME=
parameter. This general definition applies to SAM-compatible and to QT AM­
compatible application programs prepared to execute in conjunction with a
TeAM Message Control Program. Therefore, TCAM-related macro instructions
issued in an application program execute as specified only if the task in which they
are issued contains an open QNAME data control block.

One exception to this rule exists. The user may issue a PUT or WRITE from an
attached task, provided that the task to which it is attached is, by definition, a
TCAM application program. For example, the attaching task (task A), can open
the necessary data control blocks required to establish the M CP / application
program interface and can issue GETs or READs to a process queue. When the
GET or READ is satisfied, task A analyzes the message and attaches the task
necessary to process the message. By taking advantage of the exception stated
above, the attached task can create and PUT or WRITE a response to the mes­
sage, without a special interface, to return the response to task A for the PUT or
WRITE.

Message Flow to an Application Program
This section describes the flow of a single-segment message between a remote
station and an application program operating under TCAM with QSAM as the
SAM interface. The steps described here are repeated for a multisegment mes­
sage, except that the response message, if any, may be returned by the PUT macro
any time after the first segment is received. This discussion summarizes message
flow as discussed in the TCAM Concepts and Facilities, and adds a detail
unique to application programs, the read-ahead queue.

A message segment enters the MCP and is placed in a buffer. The segment is
handled by the incoming group of the MH for the originating station and is placed
on the destination queue for the application program (called, hereafter, the
process queue).

The segment is then removed from the process queue and handled by the outgoing
group of the MH for the application program. At this point, the message is
queued on the read-ahead queue, an area in main storage related to the proc~ss

Writing TCAM-Compatible Application Programs 355

queue. The read-ahead queue permits overlap of MCP and application-program
processing of messages queued for a particular destination. This queue allows a
message to be removed from a process queue to be processed by the outgoing
group of the MH for the application program at the same time that a message that
was previously on a process queue is being processed by the application program
itself. The application program obtains the message from the read-ahead queue by
GET or READ macro instructions. These macros obtain the messages in sections
of data, called work units, that will fit in an area of the application program
called the work area. The message is placed in the work area for processing; the
size of the work area bears no necessary relationship to the size of the MCP
buffers.

After processing, and assuming there is a response message, the message is
returned to the MCP, where it is placed in buffers. The buffers are handled by the
incoming group of the MH for the application program and are placed on the
appropriate destination queue (which may also be a process queue). After
handling by the outgoing group of the MH for the destination, the response
message is either sent on a line to a remote station or transferred to another
application program.

Overview of the MCP / Application-Program Interface
The TCAM MCP routes messages between an application program and remote
stations. Because an application program depends on the MCP to perform its
input/ output operations, an interface must be established between an application
program and the MCP. TCAM allows this interface to be established from an
application program by:

• definitioQ. of the interface (by the application program input and output DCB
macros and DD statments, and by the PCB and TPROCESS macros in the
MCP);

• initialization and activation of the interface (by the OPEN macro);
• transfer of messages between the application program and the MCP (by GET,

PUT, READ, WRITE, CHECK, and POINT macro instructions);
• deactivation of the interface (by the MCPCLOSE and CLOSE macros).

TCAM also provides buffer facilities specifically designed for the MCP interface.

Unlike the functions performed by the analysis and processing routines of an
application program, these functions are partially or wholly peculiar to TCAM and
the telecommunications environment. Therefore, TCAM provides routines to
accomplish these functions. Linkage to these routines is established by TCAM
and by standard data management macro instructions in an application program.

Information necessary for communication between the MCP and an application
program is provided by a control area defined by a PCB macro issued in the MCP
(note also that the queues for an application program are defined by a
TPROCESS macro in the MCP). No more than one application program can use
a process control block, the control area defined by a PCB macro.

Message transfer from a destination queue to an application program is controlled
by an input data control block (input DCB). An input DCB defines a logical data
set called an input data set, which contains the messages being sent to the applica­
tion program from a single destination queue created by a TPROCESS macro. If
response messages are generated, message transfer from the application program (
to the MH queue is handled by another data control block, the output DCB. An
output DCB defines a logical data set called an output data set, which contains

356 OS/MFT and OS/MVT TeAM Programmer's Guide

messages being returned from the application program to the MCP by one process
entry in the terminal table. (A PUT, GET, READ, or WRITE macro names a
DCB. The DCB macro specifies a DO statement. The QNAME parameter of the
DD statement is coded with the name of a process entry. One data set must be
defined for each process entry designed to receive messages from and send
messages to an application program.) The user must define, open, and close the
logical data sets represented by the DCBs.

A separate process entry must be specified for each input or output DCB in the
application program. A DO statement must be provided for each such DCB. The
format of the DD card is indicated later in this section.

Figure 28 shows how to set up the interface between the MCP and the application
program by coding macro operands. Only those operands that help establish the
interface are shown in the figure.

The GET, PUT, READ, WRITE, PCB, and input and output DCB macros, and
the DD statements for the input and output DCB macros, are discussed in detail
in this chapter. The TPROCESS macro is discussed in the Defining Terminal
and Line Control Areas chapter. The GET and PUT or READ and WRITE macros
issued in an application program each specify the name of a data control block
created by an input or output DCB macro. One input DCB macro must be
coded in the application program for each terminal-table process entry
named in a destination field in a message header or in an operand of the

Writing TCAM-Compatible Application Programs 357

FORWARD macro to direct messages to the application program. A
destination queue is created by TeAM for each such process entry. One output
DeB macro must be coded in the application program for each process entry
to be associated with response messages entered by the application program.

Each input or output DCB macro specifies (in its DDNAME= operand) a DD
statement that must be included as part of the Job Control Language for execu­
tion of the application program. This DD statement has a QNAME= parameter
that specifies the name of a process entry in the terminal table of the MCP. The
TPROCESS macro that creates each process entry has a pcbname operand, which
names a PCB macro. The PCB macro names an MH to handle messages being
sent to or received from the application program by process entries whose
TPROCESS macros name this PCB macro. The PCB macro is similar to the line
group DCB macro in that both specify Message Handlers and other related values.
The MH specified by the line group DCB macro handles messages transmitted
between remote stations and the computer, while the MH specified by the PCB
macro handles messages sent to and received from the application program by the
MCP.

Defining the Components of the Interface
Among the components of the MCP / application program interface are:

• process entries located in the terminal table and referred to by GET/READ
and PUT/WRITE macros;

• data control blocks (and DD statements) for the application-program input and
output data sets;

• the process control block (this block specifies the MH for the application
program);

• buffers to transfer data between the MCP and the application-program work
areas.

Process entries are created by TPROCESS macros (described in the chapter
Defining Terminal and Line Control Areas). The other components of the
interface are described in this section.

De/;n;ng the A.ppl;cation Program Data Sets and the Process Control Block
Two types of logical data sets, called the input data set and the output data set,
must be defined when writing a TCAM application program.

The input data set consists of the data (messages or records) sent to an application
program from a single destination queue created by a TPROCESS macro (process
queue). An input data set is defined by an input DCB macro. One input data set
should be defined for each process queue.

The messages or records in an input data set are transferred from the process
queue to the application program by a GET or READ macro that specifies the
name of the input data set.

An output data set contains the messages or records returned from the application
program to the MCP by a process entry in the terminal table. An output data set
is defined by an output DCB macro. One output data set must be defined for
each process entry designed to receive messages from an application program.

I~

(~

Messages are transferred from the application program to the MCP by a PUT or (
WRITE macro specifying the name of the output data set.

358 OS/MFT and OS/MVT TeAM Programmer's Guide

The line group DCB macro for the MCP names the Message Handler that is to
handle messages sent over any line in the line group for which it is issued. For the
application program, this function is performed by the PCB macro rather than by
the input or output DCB macro. One and only one PCB macro must be coded for
each application program that is to interface with the MCP. This macro is coded
in the MCP rather than in the application program. In addition to assigning an
MH to the application program, the PCB macro specifies the size of the buffers to
be assigned by the MCP to handle messages being sent to and received from that
application program.

The next sections describe the input and output DCB macros, the DD statements
required for these macros, and the PCB macro. Many operands oflhe input and
output DCB macros are concerned with aspects of data transfer and processing
(type of record, type of work area, etc.); these operands should not be coded until
Transferring Data Between an MCP and an Application Program in this
chapter has been read.

Writing TCAM-Compatible Application Programs 359

,~
I"

~

c

dcbname

keyword operands

Input DeB Macro

The input DCB macro

• defines an input data set for an application program;
• must be issued for each process queue to which access is gained by the applica­

tion program with GET or READ macros;
• specifies whether BSAM or QSAM is to be used to transfer messages or records

from the MCP to the application program;
• specifies the length in bytes of the application-program work area to which data

is transferred from the MCP;
• specifies the length in bytes of buffers to be used in the MCP to transfer

messages from the process queue to the application-program interface;
• specifies whether the application program is to handle entire messages or

message portions called logical records;
• specifies the format and characteristics of records in the input data set;
• indicates the address of a routine to be given control when the end of a user­

defined series of data records is reached;
• indicates the address of a routine to be given control when message overflow

occurs.

The input DCB macro allocates main-storage space for a data control block at
assembly time. Parameters based on the operands specified in the macro are
included in the data control block. The macro generates no executable code. One
(and only one) input DCB macro is coded for each process queue to which the
application program may direct a GET or a READ macro. Only one application
program and one GET or READ macro may refer to a process queue at any time.
(The GET or READ specifies the name of the input DCB macro; the DCB macro
names a DD statement; the DD statement names a process entry in the terminal
table.)

The input DCB macro has the following format:

Name Operation Operands

dcbname DCB keyword operands

Function: Specifies the name of the macro instruction and also the name of the
data control block generated by the expansion of the macro.
Default: None. This name is required.
Format: Must conform to the rules for assembler language symbols (see the
symbol entry in the Glossary).

Function: Specifies the operands that can be used.
Format: May be specified in any order, separated by commas with no intervening
blanks.
Notes: The operands are described below.

When a parameter can be provided by an alternate source, an appropriate symbol

Writing TCAM-Compatible Application Programs 361

DSORG=PS

MACRF= lG~~~[T] t
R [PI \

appears below the operand associated with that parameter. When there is no
alternate source (that is, the parameter must be specified by the operand), no
symbol is shown. The symbols have the following meanings:

Symbol Explanation

DD The value of the operand can be omitted from the DeB macro and
provided at execution time by the Data Definition (DD) card for the data
set.

OE The value of the operand can be provided by the problem program any
time up to and including the data control block exit at open time.

PP The value of the operand can be provided by the user's problem program
any time before open time.

If DD is specified, OE or PP may also be used. If OE is specified, PP may also be
used.

For information on how to provide parameters by means of OE or PP, see Data
Management Services. The same publication describes the data control block exit
that can be taken when OE is specified. Information on providing parameters by
DD is given below in the section DD Statements for the Input and Output
Data Sets.

Alternate Source: None.
Function: Specifies that the data control block governs message transfer to and
from a destination queue, and identifies the data set organization as physical
sequential.
Default: None. This operand is required.
Format: DSORG=PS
Notes: This operand achieves TeAM compatibility with QSAM or BSAM.

Alternate Source: None.
Function: Specifies the type of access to the destination queue.
Default: None. This operand is required.
Format: GM, GMT, GL, GLT, R, RP
Notes: G indicates GET (QSAM), R indicates READ in move mode (BSAM).
GET is in move (M) or locate (L) mode.

The optional T permits the POINT macro to be used in conjunction with GET and
is required if POINT is to be used with GET.

The optional P permits the POINT macro to be used in conjunction with READ
and is required if POINT is to be used with READ.

If locate mode (L) is specified for a GET, TeAM obtains a work area by the
GETMAIN macro instruction at OPEN time from the application program main
storage. TeAM returns the address of the work area in register 1 following the
first GET macro and uses this work area for succeeding GETs (see Dynamic (.
Work-Area Definition in this chapter). Locate mode is inconsistent with BSAM.

362 OS/MFT and OS/MVT TeAM Programmer's Guide

DDNAME=\ymbol

BLKSIZE=integer

BUFL=integer

LRECL=integer

RECFM=

Alternate Source: PP.
Function: Specifies the name of the DD statement associated with the data
control block.
Default: None. This operand is required.
Format: Must conform to the rules for assembler language symbols.
Notes: If this operand is omitted, it must be provided by the alternate source.

Alternate Source: DD.
Function: Specifies the size in bytes of the application program work area.
Default: None. This operand is required.
Format: Unframed decimal integer no smaller than the length of a record as
specified by the LRECL= operand.
Maximum: 32760
Notes: If this operand is omitted, it must be provided by the alternate source.

The length of optional fields in the work area must be included in the value
specified for this operand. TCAM uses this field to determine the length of the
work area.

For undefined-format work units, the value specified for BLKSIZE= may be
dynamically overridden on a work-unit-by-work-unit basis by the length operand
of the READ macro.

Alternate Source: None.
Function: Specifies the size in bytes of buffers used in the MCP for messages
coming to the application program associated with this DCB macro.
Default: None. Specification optional.
Format: Unframed decimal integer greater than 35.
Maximum: 65535
Notes: If this operand is omitted, the value specified in the BUFSIZE= operand
of the PCB macro is used.

Alternate Source: DD.
Function: Specifies the number of bytes for a record, plus the length of any
optional fields in the work area.
Default: If RECFM=F, this operand is required. Otherwise, specification
optional.
Format: Unframed decimal integer.
Maximum: 32760
Notes: If RECFM=U is specified, the LRECL= field in the input DCB is
updated after each GET or READ macro with the sum of the number of bytes of
data fetched by that GET or READ, plus the length of any optional fields in the
work area.

Alternate Source: DD.
Function: Specifies the format and characteristics of the work units in this input
data set.
Default: RECFM=U
Format: F, V, VB, or U.

Writing TCAM-Compatible Application Programs 363

OPTCD=(WHUJ[C)

Notes: V specifies that the work units are variable in format. For BSAM and
QSAM, each work unit is prefaced in the work area by a standard SAM four-byte
prefix (all entries in the prefix are in hexadecimal format).

VB specifies that the work units are treated as blocked, although only one work
unit is transferred per GET or READ. The variable-length work unit work area
includes a blocked work area prefix of eight bytes if MACRF =R is specified, and
of four bytes if not.

U specifies undefined-format work units. TCAM, like SAM, provides no prefix.
The length of the work unit is stored by TCAM in the LRECL= field in the input
DCB. TCAM updates the LRECL= field after each GET or READ with the
length of the work unit.

F specifies fixed-length work units. The sum of the length of each work unit
obtained plus the length of any optional fields in the work area is specified by the
user in the LRECL= field of the input DCB and may be updated before each
GET or READ. This option should be used only when the number of bytes of,
data in a message is an exact multiple of the number of bytes specified by the
LRECL= operand. Otherwise, the last portion of the message contains fewer
bytes than the number specified in the LRECL= operand, and the program would
have to be capable of handling this smaller portion of the message.

Alternate Source: DD.
Function: Specifies the optional fields for the work unit.
Default: None. Specification optional.
Format: W,. WO, WC, WUC, U, UC, C.
Notes: W specifies that the name of the source of each message is to be placed in
an eight-byte origin field in the work area. TCAM places the name of the source,
in EBCDIC, in the field, left-adjusted and padded to the right with blanks. If W is
coded but TCAM cannot determine the message source, the field is filled with
eight, cb.aracter blanks.

U specifies that the work unit to be handled is either a message or a message
segment that is not a record. If U is omitted, the work unit is assumed to be a
record.

C specifies that a one-byte field in the work area, called the position field, is to
indicate whether the work unit being handled is the first, an intermediate, or the
last segment of the message and whether a record delimiter has been detected in
the data. If the application-program user specifies OPTCD=C on his DCB
macro, a one-byte position field in the work area is used to describe the work unit.
The control byte is defined as follows:

364 OS/MFT and OS/MVT TeAM Programmer's Guide

(

EODAD=address

SYNAD=address

EXLST = address

)

Position Field

X'Fl'
X'40'
X'F2'
X'F3'

(1)
(blank)
(2)
(3)

Work Area Contents

First portion of message
Intermediate portion of message
Last portion of message
An entire message

In addition, if the user specified RECFM=U (undefined-length work units) or
RECFM=V (variable-length work units), and OPTCD=C or CW, the control
byte may have the following contents:

Position Field

X'FS' (5)
X'F4' (4)
X'F6' (6)
X'FT (7)

Work Area Contents

First portion of message, end-of-record
Intermediate portion of message, end-of-record
Last portion of message, end-of-record
An entire message, end-of-record

The control byte may have one of the four values above only if the record delimi­
ter specified on the TPROCESS macro is the last byte of data in the work unit.

Alternate Source: PP.
Function: Specifies the address of an open or closed subroutine to be given
control after the access method recognizes a user-generated, end-of-file indication
in the header of a message.
Default: None. Specification optional.
Format: Must conform to the rules for assembler language symbols.
Notes: TCAM takes this exit when the next GET or CHECK macro is issued
following complete transfer of the end-of-file message into the work area.

Alternate Source: PP.
Function: Specifies the address of an open or closed subroutine to be given
control if message processing is used, the work unit is larger than the work area,
and OPTCD=C is not specified.
Default: None. Specification optional.
Format: Must conform to the rules for assembler language symbols.
Notes: For more information on the SYNAD exit, see Application Program
Error Exit in this chapter.

Alternate Source: PP.
Function: Specifies the address of the problem-program exit list.
Default: None. Specification optional.
Format: Must conform to the rules for assembler language symbols.
Notes: The list must start on a fullword boundary; its format and contents are
more fully shown in Data Management Services. Each entry is a fullword made
up of a control byte followed by the three-byte address of a user-written routine.

Only two entries in the list (those having control bytes of X'OS' and X'OF') are
meaningful for a TCAM input DCB.

The entry having a control byte of X'OS' is the DCB exit entry, it is explained in
the Data Management Services publication.

Writing TCAM-Compatible Application Programs 365

STOP= 1 QUICK ! FLUSH
BOTH

If the control byte is X'OF', the user-written routine is given control to initiate an
OS checkpoint of the application program (see the section on coordinating OS and
TCAM checkpoints in this chapter).

Upon entry to the routine specified by the exit-list entry, the contents of registers
o and 2 through 13 are the same as they were just before the GET or CHECK
macro was executed. Register 1 contains the address of this input DCB, while
register 14 contains the return address for the application program. The user
routine must save and restore the contents of registers 1 and 14. The contents of
the user-defined save area must not be altered by the exit routine.

Function: Specifies type of MCPCLOSE and SYSCLOSE.
Default: None. Specification optional.
Format: STOP=QUICK; STOP=FLUSH; STOP=BOTH.

QUICK specifies that the EODAD exit of the input DCB macro is to be taken on
a quick close. FLUSH specifies that the EODAD exit is to be taken on a flush
close. BOTH specifies that the EODAD exit is to be taken on either type of
closedown. If the STOP= operand is coded, the EODAD= operand must also be
coded.

Note: This operand is for defining the action to be taken if closedown is issued
while an application program is executing.

366 OS/MFT and OS/MVT TeAM Programmer's Guide

(1

~

(

dcbname

keyword operands

Output DCB Macro

The output DCB macro

• defines an output data set for an application program;
• must be issued for each process entry set up to receive messages or logical

records from an application program;
• specifies whether QSAM or BSAM is to be used to transfer messages or logical

records from the application program to the MCP;
• specifies the format and characteristics of records in the data set;
• specifies the length of the MCP buffers used to receive messages from this

application program;
• specifies the address of a routine to be given control when logical output errors

occur;
• specifies the address of the problem-program exit list.

The output DCB macro has the following format:

Name Operation Operands

dcbname DCB keyword operands

Function: Specifies the name of the macro instruction and the name of the data
control block operated on by the expansion of the macro.
Default: None. This name is required.
Format: Must conform to the rules for assembler language symbols (see the
symbol entry in the Glossary).

Function: Specifies the operands that may be used.
Format: May be specified in any order, separated by blanks with no intervening
commas.
Notes: The operands are described below.

When a parameter can be provided by an alternate source, an appropriate symbol
appears below the operand associated with that parameter. When there is no
alternate source (that is, the parameter must be specified by the operand), no
symbol is shown. The symbols have the following meanings:

Symbol Explanation

DD The value of the operand can be provided at execution time by the Data
Definition (DD) card for the data set.

OE The value of the operand can be provided by the problem program any
time up to and including the data control block exit at open time.

PP The value of the operand can be provided by the user's problem program
any time before open time.

If DD is specified, OE or PP may also be used. If OE is specified, PP may also be
used.

Writing TCAM-Compatible Application Programs 367

DSORG=PS

DDNAME=symbol

MACRF= ~:~ ~~

BLKSIZE=integer

LRECL=integer

For information on how to provide parameters by one of these alternate sources,
see the note following the explanation of DD, OE, and PP in the discussion of the
input DCB macro.

Alternate Source: None.
Function: Specifies that the data control block governs message transfer to or
from an application program, and identifies the data set organization as physical
sequential.
Default: None. This operand is required.
Format: DSORG=PS
Notes: This operand achieves TCAM compatibility with QSAM and BSAM.

Alternate Source: PP.
Function: Specifies the name that appears in the DD statement associated with
the data control block.
Default: None. This operand is required.
Format: Must conform to the rules for assembler language symbols.
Notes: If this operand is omitted, it must be specified from the alternate source.

Alternate Source: None.
Function: Specifies the method by which messages are to be transferred to the
destination queue.
Default: None. This operand is required.
Format: PM, PL or W. ,4

Notes: P specifies that messages are to be transferred by PUT macros. W I.
specifies that messages are to be transferred by WRITE macros.

PUT may be in move (M) or locate (L) mode. WRITE implies move mode.

If locate mode (L) if specified for PUT, TeAM obtains a work area by the
GETMAIN macro instruction when the first PUT is executed. TCAM returns the
address of the work area in register 1 following the first PUT (see Dynamic
Work Area Definition in this chapter).

Alternate Source: DD.
Function: Specifies the size in bytes of the application program work area.
Default: None. If locate mode is not specified, specification optional. Other­
wise, this operand is required.
Format: Unframed decimal integer no smaller than the length of a work unit.
Maximum: 32760
Notes: The length of any optional fields in the work area should be included in
the value specified for this operand. If locate mode is specified by the MACRF=
operand and this operand is omitted, it must be specified by an alternate source.

Alternate Source: DD.
Function: Specifies the sum of the number of bytes in the length of a fixed- or
undefined-length work unit, plus the length of any optional fields in the work area.
Default: If RECFM=F is specified, this operand is required. Otherwise, specifi­
cation optional. (

368 OS/MFT and OS/MVT TeAM Programmer's Guide

OPTCD=[W][U][C]

SYNAD=address

)

Format: Unframed decimal integer.
Maximum: 32760
Notes: If RECFM= U is specified and no work-unit length is specified by the
length operand of the WRITE macro, the contents of the field must be updated
dynamically by the program before a PUT or WRITE macro is issued; user code
must place the number of bytes of data in the work area (including optional fields)
into the LRECL= field of the DCB. This may be done with the aid of the DCBD
macro, described in Supervisor and Data Management Macro Instructions.

If a value is specified by the length operartd of the WRITE macro, this value
overrides the value specified in the LRECL= field for undefined work units.

Alternate Source: DD.
Function: Specifies the type of optional field to be used.
Default: None. Specification optional.
Format: W, WU, WC, WUC, U, UC, C.
Notes: W specifies that the program must place the name of the destination of the
message in an eight-byte destination field in the work area before a PUT or
WRITE macro is executed. If a FORWARD macro with the operand
DEST=PUT is coded in the incoming group of the application-program Message
Handler, the message is routed to the destination specified in this field.

U specifies that the work unit is a message or a portion of a message that is not a
record; if U is omitted, the work unit is assumed to be a record.

C specifies that a one-byte position field in the work area is used to describe the
position of the work unit in the message of which it is a part. The control byte is
defined as follows:

Position
X'FI'
X'40'
X'F2'
X'F3'

Field
(1)
(blank)
(2)
(3)

Alternate Source: PP.

Work Area Contents
First portion of message
Intermediate portion of message
Last portion of message
An entire message

Function: Specifies the address of a routine to be given control when logical
output errors occur.
Default: None. Specification optional.
Format: Must conform to the rules for assembler language symbols.
Notes: For more information on this routine, see Application Program Error
Exit in this chapter.

Writing TCAM-Compatible Application Programs 369

RECFM= \ F l
I ~[BI \

EXLST =addre~~

BUFL=integer

Alternate Source: DD.
Function: Specifies the format of the work units in this output data set.
Default: RECFM= U
Format: F, V, VB, or U.
Notes: V specifies that the work units are variable in length. For BSAM and
QSAM, each work unit is prefaced in the work area by a standard SAM, variable­
length record prefix of four bytes (the contents of which are in hexadecimal
format). The length of the work unit must be provided by setting up the prefix
before issuing a PUT or WRITE macro.

If RECFM=VB, the records are treated as blocked, although only one work unit
is transferred to the MCP per PUT or WRITE macro. The variable-length record
work area includes a blocked work area prefix of eight bytes if MACRF=W is
specified, and four bytes if otherwise.

U specifies undefined-length work units. TCAM, like SAM, provides no prefix.
The sum of the length of the work unit plus the length of any optional fields in the
work area must be placed in the LRECL= field of the DCB before each PUT or
WRITE, unless it is specified by the length operand of the WRITE macro.

F specifies fixed-length work units. Before the PUT or WRITE, the sum of the
length of the work unit plus the length of any optional fields in the work area must
be placed in the LRECL= field of the output DCB.

A'ternate Source: PP.
Function: Specifies the address of the problem-program exit list.
Default: None. Specification optional.
Format: Must conform to the rules for assembler language symbols.
Notes: The description of this operand is the same as that provided above for the
EXLST = operand of the input DCB macro.

Alternate Source: DD.
Function: Specifies the size in bytes of the MCP buffers that are to receive
messages coming from this application program.
Default: None. Specification optional.
Format: Unframed decimal integer greater than 35.
Maximum: 65535
Notes: If this operand is omitted, the value specified in the BUFSIZE= operand
of the PCB macro in the MCP is the value used.

DD Statements for the Input and Output Data Sets
At application-program execution time, one DD statement must be provided for
each DCB. The DD statement has the following format:

//ddname DO QNAME=procname

370 OS/MFT and OS/MVT TeAM Programmer's Guide

(

ddname

procname

Is the symbolic name of the DD statement, and must be the same as the name
specified in the DDNAME= operand of the input or output DCB macro.

Is the name of the process entry in the terminal table to which this entry refers.
This name is assigned by the TPROCESS macro creating the entry. The destina­
tion queue may be changed at execution time by specifying a different value for
the QNAME= parameter.

The following DeB operands may be omitted from the input or output DeB
macro and coded as parameters of the DD statement when the operand's func­
tions are to be provided by an alternate source. These operands are explained in
the discussion of the input and output DeB macros. More than one operand can
be specified in one DCB= parameter; multiple operands should be separated by
commas.

[,DeB=([BLKSIZE=integer] [,LREeL=integer]
[, BUFL=integer]
[,OPTeD=[W] [U] [ell

[, RECFM= ~ U ~])J
v [B]

F

Writing TCAM-Compatible Application Programs 371

PCB Macro

pcbname

MH=mhname

BUFSIZE=integer

The PCB macro

• provides a control block in the MCP to interface with an application program;
• is required for each application program running with the MCP;
• is coded in the MCP, not the application program.

The PCB macro generates a named control block, known as a process control
block (PCB). A process control block provides information needed to communi­
cate between the MCP and an application program. One and only one PCB
macro is required for each active application program, although the user may
assign more than one PCB to a single application program. A PCB may not be
shared by two active application programs since a PCB is an inter-task control
block.

The PCB macro has the following format:

Name Operation Operands

pcbname PCB MH=mhname, BUFSIZE=size
[,BUFIN =~~umberp[,BUFOUT =l~umberp

-
[,RESERVE=(integerl,integer2)]

[,DATE= ~ ~~S ~]

-

Function: Specifies the name of the macro and the name of the process control
block generated by the macro referred to in the TPROCESS macro.
Default: None. This name is required.
Format: Must conform to tile rules for assembler language symbols (see the
symbol entry in the Glossary).

Function: Specifies the symbolic address of the Message Handler for the applica­
tion program represented by this macro.
Default: None. This operand is required.
Format: Must conform to the rules for assembler language symbols and be
identical to the name specified in the name field of a STAR TMH macro in the
Message Handler.

Function: Specifies the size of the buffers to be assigned to handle messages for
the associated application program.
Default: None. This operand is required.
Format: Unframed decimal integer greater than 35.
Maximum: 65535
Notes: This value may be overridden by specifying the BUFL= operand of the
input or output DCB for the application program.

372 OS/MFT and OS/MVT TeAM Programmer's Guide

(

BUFOUT = ~ iumber ~

RESERVE=(integert,integer2)

Function: Specifies the initial number of buffers requested into which the data in
the user's PUT/WRITE work area will be emptied.
Default: BUFIN=2
Format: Unframed decimal integer greater than l.
Maximum: 15
Notes: The optimum number specifies enough buffers to contain the entire work
area.

Function: Specifies the initial number of buffers that may be filled in anticipation of
a GET or READ.
Default: BUFOUT=2
Format: Unframed decimal integer greater than 1.
Maximum: 25
Notes: Used as a read-ahead queue for a process entry.

Function: Specifies the number of bytes to be reserved in buffers.
Default: None. Specification optional.
Format: Unframed decimal integers.
Maximum: 255 for each.
Notes: integerl specifies the number of bytes to be reserved in the buffer receiv­
ing the first incoming segment of each message entered by an application pro­
gram; the space is reserved for insertion of data by DATETIME and SEQUENCE
functional MH macros.

integer2 specifies the number of bytes to be reserved in all buffers, except the first,
for insertion of characters by the DATETIME macro. integer2 is relevant only in
a multiple-buffer header situation when the DATETIME macro is to insert data in
a portion of the header that is not in the first buffer (see the description of the
DATETIME macro for an example of when it might be desirable to execute
DATETIME on a portion of the header not located in the first segment).

Data may be inserted in either an incoming or an outgoing message header, but
space must be reserved in the incoming header. On the outgoing side, reserved
space is retained for the first buffer only; thus, DATETIME and SEQUENCE
macros, if specified in an outheader subgroup, operate only on the first segment of
the message.

No space need be reserved for data inserted by a MSGEDIT functional MH
macro.

The Scan Pointer section of the chapter Designing a Message Handler de­
scribes how TCAM handles reserve bytes. Each buffer containing header data
should be large enough to accommodate the segment itself plus any data that may
be inserted by DATETIME and SEQUENCE macros. If a buffer containing
header data does not have a sufficient number of bytes reserved in it to accommo­
date data inserted by a DATETIME or SEQUENCE macro, the macro does not
execute and control passes to the next instruction in the MH. Unused reserve
bytes are not sent out with an outgoing message segment when it is sent to its
destination.

Writing TCAM-Compatible Application Programs 373

DATE= l~~s f
Function: Specifies whether the date and time of each message received for the
process entry are to be recorded.
Default: DATE=NO
Format: YES or NO.
Notes: When a message is received for the application program, TCAM records
the date and time. When the application program issues a GET or a READ
macro, TCAM places the recorded date/time and the source of the message in the
area specified by the DTSAREA= operand of the TPDATE macro.

This operand requires that the DATE= operand also be specified on the
TPROCESS macro for this process entry.

Defining Buffers for the Application Program
Messages being transferred between the application program work area and the
MCP reside in buffers, as do messages being transferred between the MCP and a
remote station. The buffers for transferring data to and from the application
program are ordinary TCAM buffers, described in Defining Buffers. That
chapter should be read and understood by the programmer responsible for defin­
ing the application-program buffers, as the structural description and most of the
design considerations in that chapter can also be used for application-program
buffers.

Buffers used to transfer data between an application program and an MCP differ
from those assigned to a line in two respects:

• the way in which they are defined;
• the manner in which they are allocated.

The next section describes application-program buffer definition. The following
section describes the allocation scheme for application-program buffers as part of
a discussion of application-program buffer design considerations.

Defining AppHcation-Program Buffers
A buffer-definition checklist for the application-program buffers follows. Guide­
lines for coding many of the operands shown are given in the next section.

Macro Operand

INTRO KEYLEN = integer

PCB BUFSIZE=integer

374 OS/MFT and OS/MVT TeAM Programmer's Guide

Description of Function and Comments

Specifies the bytes in a buffer unit; all buffers in
the TCAM system are constructed of units of
this size. (Considerations for coding this oper-
and are given in the chapter Defining Buffers.)
integer must be between 35 and 255 inclusive.

Specifies the size in bytes of the buffers used to
transfer message segments between the process
queues for the application program and an
application-program work area. May be overridden
for a single input or output data set by the
BUFL= operands of the input or output DCB
macro for that data set. integer must be between
35 and 65535 inclusive.

(

Input
DCB

[BUFOUT :::yntegerp
12.

[BUFIN =~~ntegerp

[BUFL=integer]

Output [BUFL=integer]
DCB

Application-Program Buffer Design Considerations

Specifies the maximum number of
application-program buffers that may be
filled from the destination queue,
processed by the outgoing group of the
application-program MH, and placed on the
read-ahead queue in main storage in anticipation
of a GET or READ macro. integer must be at
least 2 (TCAM uses one buffer internally) and
may be no greater than 25.

Specifies the initial number of buffers to
be allocated to r~ceive data being
transferred by a eUT or WRITE
macro from the application-program work area
to the MCP. integer may be between 2 and 15
inclusive.

Specifies the size in bytes of the buffers
to be used to transfer message segments
from the MCP to the
application program; overrides the value speci­
fied by the BUFSIZE= operand of the PCB mac­
ro. integer must be between 35 and 65535 in­
clusive.

Specifies the size in bytes of the
buffers to be used to transfer message segments
from the application program to the MCP; over­
rides the value specified by the BUFSIZE= oper-
and of the PCB macro. integer must be between
31 and 65535 inclusive.

The user assigns a maximum number of buffers (with the BUFOUT= operand of
the PCB macro) that can be used at one time to handle messages being transferred
from MCP process queues to the application-program work area. These buffers
are used to construct the read-ahead queue. The read-ahead queue is discussed in
Message Flow to an Application Program in this chapter. TCAM constructs
one read-ahead queue for each process queue associated with an opened input
data set.

The maximum capacity of a read-ahead queue is two messages. Buffers are
allocated to this queue dynamically, but the queue never contains more than the
number of buffers needed to handle two messages. If the user specifies (with the
BUFOUT= operand of the PCB macro) a number of buffers less than that needed
to contain two entire messages on the read-ahead queue, less main storage is tied
up by being assigned to the read-ahead queue, but more time is required to
transfer messages to the application program.

The following formula for calculating the BUFOUT= operand of the PCB macro
provides a read-ahead queue always capable of containing two complete mes­
sages; by specifying a queue of this size, the user minimizes delay in transferring
messages to the application program.

I=2X+l

Writing TCAM-Compatible Application Programs 375

Here I represents the integer to be coded for BUFOUT=, and X is the maximum
number of buffers needed to hold one message being transferred to the application
program. The extra buffer represented by 1 is used internally by TCAM.

If main-storage-only queuing is the sole type of queuing used for process queues,
the optimum number of buffers specified by BUFOUT= is reduced; in this case,
one need specify only enough buffers to handle the largest work unit to be sent to
the application program for optimal performance of read-ahead queues.

The BUFIN = operand of the PCB macro specifies the initial number of buffers to
be allocated to receive data being transferred by a PUT or WRITE macro from
the application program to the MCP. (If there is more than one application­
program process entry that may be referred to by PUT or WRITE macros, the
number of buffers specified by BUFIN= is allocated to each.) Buffers assigned to
receive data from the application program are deallocated and sent through the
incoming group of the application-program message handler as they are filled.

If the number of buffers specified by BUFIN = is not sufficient to handle the
entire work unit being transferred, TCAM dynamically allocates additional
buffers. However, such allocation takes time; to optimize performance, a suffi­
cient number of buffers should be assigned initially to handle the entire work unit.

The size of the application-program buffers is specified by the BUFSIZE=
operand of the PCB macro. This size may be overridden for buffers handling data
being transferred to the application program by the BUFL= operand of the input
DCB macro, and for buffers handling data being transferred from the application
program by the BUFL= operand of the output DCB macro.

Buffer size considerations given in the chapter Defining Buffers are relevant to .\101

application-program buffers (considerations in that chapter that deal with
program-controlled interruptions (PCI) are an exception).

Buffers are sent through the incoming group of the application-program MH as
soon as they are filled. If a buffer is not filled when the end of the work unit is
reached, either a time or a space penalty will be incurred, depending upon whether
a position field is present in the work area, and upon whether message- or record-'
processing is specified. (Position fields are discussed in Defining Optional
Fields in the Work Area in this chapter. Message and record processing are
described in Specifying Application-Program Work Units.)

If no position field is present and message processing is specified, the partially
filled buffer is sent through the incoming group of the application program as soon
as the last portion of the work unit has been received. In this case a space penalty
is incurred and main storage is wasted, since the entire buffer is tied up while the
work unit is being processed by the incoming group. If record processing is
specified and there is no position field, a buffer that is larger than the work unit it
contains is not sent through the incoming group immediately, but is held until it is
filled by a subsequent PUT or WRITE (or until the application-program signals
end-of-message by closing the output data set); in this case, a time penalty is
incurred.

If a position field is present and indicates that the current work unit is the last or
only work unit in the message, the buffer containing that work unit is sent through li(.

the incoming group as soon as the work unit is placed in it; if the work unit is
shorter than the buffer, main-storage space is wasted, as explained above. If the

376 OS/MFT and OS/MVT TeAM Programmer's Guide

position field indicates that the current work unit is the first or an intermediate
unit in a multi-unit message, then the buffer is not sent through the incoming
group until it is filled or until the end of the message is encountered; if the work
unit is smaller than the buffer, a time penalty is incurred, as explained above.

When the buffer sizes specified for the origin and the destination of a message are
different, data movement occurs because prefixes must be added or deleted when
the message is placed in the buffers for the destination (this is discussed in the
chapter Defining Buffers). Because data movement takes time, the buffer size
for line buffers handling messages being sent to or from an application program
should be the same as the buffer size for the application-program buffers
wherever possible. By overriding the buffer size specified by the BUFSIZE=
operand of the PCB, the BUFL= operand of the input and output DCB macros
may be used to tailor application-program buffer sizes to buffer sizes for particu­
lar origin or destination stations.

For example, if line buffers for all stations that could enter and accept messages
processed by a particular application program were either 116 bytes or 232 bytes,
the user could define two input and output data sets (each with its own
GET /READ and PUT/WRITE process entries), one for each buffer length. He
could direct all incoming messages for the application program that were entered
by stations using 116-byte buffers to one process queue, and all incoming mes­
sages for the application program that were entered by stations using 232-byte
buffers to the other process queue. If he coded BUFSIZE= 116 in his PCB macro
and BUFL=232 in the input DCB macro for the data set containing messages
placed in 232-byte buffers upon arrival at the computer, no data transfer would be
necessary when the data was read from the destination queue into application­
program buffer.

When transferring responses from the application program, the user would name
the PUT/WRITE process entry for the 116-byte-buffer output data set or for the
232-byte-buffer output data set, depending upon the size of the line buffers for
the destination station. In the output DCB for the 232-byte-buffer output data
set, he would specify BUFL=232. Again, no data transfer would be necessary
when messages were read from the destination queues into the line buffers for the
destination station if this scheme were followed.

Activating and Deactivating the Application-Program Interface
Activation and deactivation of the interface between an application program and
the MCP is handled by OPEN, CLOSE, and MCPCLOSE macro instructions.
The OPEN and CLOSE macros for TCAM-compatible application programs are
used and coded in the same way as OPEN and CLOSE macros coded for applica­
tion programs in a non-teleprocessing environment and are described in the
Supervisor and Data Management Macro Instructions publication. List and
execute forms may be coded for OPEN and CLOSE. The user may code options
for the OPEN and CLOSE macros shown in Supervisor and Data Management
Macro Instructions to run his application program in a non-teleprocessing envi­
ronment for debugging purposes; when the program is run in a TCAM environ­
ment, the option fields are ignored. More than one data set may be opened or
closed with the same application-program OPEN or CLOSE macros. The OPEN,
CLOSE, and MCPCLOSE macros are described in this present section. Deactiva­
tion of the application program is discussed in the chapter Activating and
Deactivating the Message Control Program.

Writing TCAM-Compatible Application Programs 377

OPEN (application program)

symbol

The OPEN macro for the application program

• completes initialization and activation of the input and output data sets for the
application program;

• is required to activate each data set represented by an input or output DCB
macro.

Initialization and activation of the interface to the MCP is accomplished by issuing
one or more OPEN macros to open 'the data sets represented by the input and
output DCB macros.

One input DCB macro must be coded for each process queue for an application
program (that is, each queue for which messages can be obtained by GET or
READ macros). One output DCB macro must be coded for each process entry
that can be referred to by a PUT or WRITE macro when a work unit is being
transferred from the application program to the MCP.

The open routines in TCAM activate the interface between the MCP and the
application programs. No TCAM macro instructions in the application program
may be successfully executed before the DCB for the message queues data set has
been opened in the MCP or after it has been closed (if disk queuing is used), or
before the input and output data sets are opened or after they are closed. After
the message queues data sets on disk and application-program data sets have been
opened, transfer of data to and from the application program can commence.

The operand field of the OPEN macro consists of one or more postitional ope- 11

rands, followed by a single keyword operand. Each positional operand consists of'~
the name of the data control block for the data set being opened (~he name of the
block is the name of the DCB macro that created it). A comma is coded between
names. The optional keyword operand at the end permits the list and the execute
form of'the macro to be specified.

The OPEN macro for the application program has the following format:

Name Operation Operands

[symbol] OPEN (dCbname" ...)[,MF={L }]
(E,listname)

Function: Specifies the name of the macro.
Default: None. If MF=L is coded, this name is required. Otherwise specifica­
tion optional.
Format: Must conform to the rules for assembler language symbols (see the
symbol entry in the Glossary).
Notes: If MF=L is specified, this name becomes the name of the parameter list
generated by this macro.

378 OS/MFT and OS/MVT TeAM Programmer's Guide

(dcbname" ...)

MF= ~ L t
1 (E,listname) ~

Function: Specifies the name of the data control block and is identical to the
name specified in the symbol field of the DCB macro for the data set being
opened.
Default: None. This operand is required.
Format: Must conform to the rules for assembler language symbols.
Notes: Register notation may be used, in which case the specified register (2
through 12) should contain the address of the data control block for the data set
being opened. The specified register number must be enclosed in parentheses. If
more than one dcbname is specified, they must be separated by double commas.

Function: Specifies that a list is to be created, or that a previously created list is
to be opened.
Default: None. Specification optional.
Format: listname must conform to the rules for assembler language symbols.
Notes: MF=L causes creation of a parameter list based on the OPEN operands.
No executable code is generated. The user must specify this form of the OPEN
among his program constants. The parameters in the list are not used until the
problem program issues an OPEN (or CLOSE) macro with an MF=(E,listname)
operand that refers to the list. The name specified in the name field becomes the
name assigned to the parameter list.

MF = (E,listname) causes execution of the OPEN routine, using the parameter list
referred to by listname. This list was created by a macro having the MF =L
operand specified. Parameters specified in a macro having the MF = (E,listname)
operand override corresponding parameters in the list.

Writing TCAM-Compatible Application Programs 379

CLOSE (application program)

symbol

(dcbname" ...)

(MF=SL t
1 (E, listname) \

The CLOSE macro

• is issued in the application program to deactivate any open input or output data
sets.

CLOSE has the following format:

Name Operation Operands

[symbolJ CLOSE (dcbname" ...) [MF={L }J
(E,listname)

Function: Specifies the name of the macro.
Default: None. Specification optional.
Format: Must conform to the rules for assembler language symbols (see the
symbol entry in the Glossary).

Function: Specifies the name of the data control block(s) for the data set(s)
being closed.
Default: None. This operand is required.
Format: Framing parentheses must be coded. Each dcbname must conform to
the rules for assembler language symbols, and must be the same as the name of the
DCB macro creating the control block. 1

Notes: All application-program data sets can be closed with one CLOSE macro ~

by including the names of their data control blocks as operands.

If register notation is used, the register number must be enclosed in parentheses
and addresses of the data control blocks must previously have been loaded into
the registers specified.

If more than one data set is being closed, the names must be separated by double
commas.

Function: Specifies list or execute form of the macro.
Notes: See the OS publication, Supervisor and Data Management Macro

Instructions. for the definition and use of this operand. System ABEND
issues CLOSE macros for all opened DeBs within a task when it abends.

(

380 OS/MFT and OS/MVT TeAM Programmer's Guide

symbol

{ QUICK}
FLUSH

MCPCLOSE

The MCPCLOSE macro

• initiates closedown of the telecommunications system;
• is optional in an application program.

MCPCLOSE may be issued in an application program to initiate system close­
down. At the time MCPCLOSE is issued in a user-written termination routine, all
data sets in the application program should be closed (if MCPCLOSE detects an
open data set in any application program, it issues a WTO message and places the
MCP in a wait state until all data sets are closed). Following successful execution
of MCPCLOSE, control passes to a user-specified routine that deactivates the
MCP. For more information on the use of MCPCLOSE, see Deactivation in the
chapter Activating and Deactivating the Message Control Program.

Only one MCPCLOSE macro is needed to close down the entire system. The
closedown functions of the macro are also available through use of the HALT
operator command.

One of the following codes is returned to the application program in register 15
after the MCPCLOSE macro is issued:

Code

X'OOOOOOOO'
X'OOOOOOOC'
X'OOOOOOI4'

Meaning

The MCPCLOSE macro executed successfully.
TCAM is not in the system.
Either
a) an invalid protection password is specified in the PASSWRD=
operand, or
b) the P ASSWRD= operand is not specified and is needed
because the INTRO macro's PASSWRD= operand specifies a
protection password.

MCPCLOSE has the following format:

Name Operation Operands

[symbol] MCPCLOSE {QUICK }[,PASSWRD=charS]
FLUSH

Function: Specifies the name of the macro instruction.
Default: None. Specification optional.
Format: Must conform to the rules for assembler language symbols (see the
symbol entry in the Glossary).

Function: Specifies the type of closedown required.
Default: FLUSH
Format: QUICK or FLUSH.
Notes: QUICK specifies that message traffic is to cease upon completion of any
message currently in progress. Messages queued for the destinations are not
transmitted.

Writing TCAM-Compatible Application Programs 381

PASSWRD=chars

FLUSH specifies that input message traffic is to cease upon completion of the
message currently in progress. All messages queued for the destinations are then
transmitted.

Function: Specifies the protection password that enables only qualified applica­
tion programs to issue the macro.
Default: None. If the PASSWRD= operand is specified on the INTRO macro in
the MCP, this operand is required. Otherwise, specification optional.
Format: One to eight unframed, non blank characters.
Notes: If the character string specified in this operand does not match that
specified in the INTRO macro, the MCPCLOSE macro is ignored and a X'14'
return code is set in register 15.

Transferring Data Between an MCP and an Application Program
TCAM provides the application-program user with facilities for obtaining mes­
sages from the MCP and for returning response messages to the MCP.

The TCAM application programmer uses data-transfer macros similar to those of
the Queued Sequential Access Method (GET and PUT) or the Basic Sequential
Access Method (READ, WRITE, and CHECK) of OS/360. A TCAM Message
Control Program performs device-dependent input/output operations for the
application program.

Since the macros used by TCAM for transfer of data between an application
program and an MCP are patterned after those of BSAM and QSAM, the TCAM
application programmer is expected to be familiar with these access methods,
which are explained in the Supervisor Services, Data Management Services, and
Supervisor and Data Management Macro Instructions publications.

The amount of data transferred from the MCP to an application program by a
single GET or READ macro, or transferred from an application program to the
MCP by a single PUT or WRITE macro, is called a work unit. The work unit is
processed in an application-program work area. A work unit may be an entire
message, or a portion of a message (which mayor may not be a record). A
message is a unit of data received from or sent to a station and terminated by an
EOT or ETX line-control character, or, if the CONV= operand of the
STARTMH macro is coded CONV=YES, by an ETX or EOB line-control
character. (Line-control characters may be deleted by the MCP, but TCAM
places the length of each message segment in the buffer prefix for that segment,
and can determine the message length by adding the contents of the prefix fields.)

A record is a logical unit of data whose length is defined by operands of the input
or output DCB macro and delimiting characters in the message. In TCAM, each
record is transferred to and from a remote station as part of a message, but the
size of the record need not coincide with the size of the message; one message
may contain many records. After an incoming message is placed on a process
queue for the application program, the user obtains the records in it one at a time,
with one record being passed between the MCP and the application-program for
each GET or READ macro directed to the process queue. Similarly, a record may
be sent to the MCP from a work area whenever a PUT or WRITE macro naming
the work area is issued in the application program.

Just because a work unit is not an entire message does not mean that it is a record.
Message processing or record processing is indicated by the OPTCD= operand of

382 OS/MFT and OS/MVT TeAM Programmer's Guide

.. ~

c

the input and output DCB macros. If message processing is specified, but the
entire message does not fit into the work area, TCAM provides the capability of
processing a portion of the message in the work area, then bringing in the next
portion and processing it, until the entire message has been processed. The
portions of the message processed in this way are not considered to be records,
since message processing rather than record processing was specified. TCAM
handles records and other message portions differently, as shown below in the
discussion of work units and work areas. These differences may be summarized as
follows:

• An incoming record cannot overflow the work area, whereas an incoming
message can.

• An incoming record may be delimited by a delimiting character specified by the
RECDEL= operand of the TPROCESS macro; when message processing is
specified in the input DCB macro, such delimiters are ignored.

• If neither a delimiting character nor end-of-message is encountered in a record
by the time the work area is full, the size of the record is assumed to be the size
of the work area. When message processing is specified, a work-area overflow
condition is assumed to exist if the work area fills before the entire message is
read in; in this case, the user specifies, by an input DCB operand, whether he
wants to process the message piece by piece or go to an error routine.

• If a delimiting character is specified by the RECDEL= operand of the
TPROCESS macro named in a PUT or WRITE macro, TCAM places
the character at the end of each outgoing record. If message processing
is specified, TCAM places no delimiting character at the end of outgoing
messages or pieces of messages.

The next three sections of this chapter discuss in detail the application-program
work-area, work-unit, and data-transfer macros.

Defining the A.pplication-Program Work A.rea

Static Work-Area Definition

Dynamic Work-Area Definition

Work units obtained by a GET or READ macro are transferred from the MCP to
a work area defined by the user when he codes his application program. The
work areas for TCAM-compatible application programs are similar to those for
programs using the Basic or Queued Sequential Access Method.

A work area may be defined in one of two ways. It may be defined at application­
program assembly time by a DC or OS assembler instruction issued in the applica­
tion program. The label of the instruction becomes the name of the work area,
and is coded in the GET, PUT, READ, or WRITE instructions that move data to
and from the work area. The size of the work area must be specified in the
BLKSIZE= operand of the input DCB macro associated with the data set whose
contents are being transferred to or from the work area.

When a work area is defined in this way, move processing mode should be speci­
fied by coding M in the MACRF= operand of the DCB macros referred to by the
data-transfer macros that use the work area. A static work area may be used to
receive data from or send data to more than one input or output data set.

A work area may be defined dynamically at application-program execution time, if
GET or PUT macros are to gain access to it. If the user specifies locate mode by
coding L in the MACRF = operand of his input DCB macro, execution of the first
GET macro referring to the opened data set causes TCAM to dynamically obtain
a work area (by a GETMAIN macro) in the same area of addressability as the

Writing TCAM-Compatible Application Programs 383

application program, and to move a work unit of data into this work area. The
length of the work area is that specified by the BUFSIZE= operand of the input
DCB macro referred to by the GET macro. The address of the work area is
returned in register 1, and is saved by TCAM. The second and subsequent
executions of GET macros referring to the DCB move data into this work area.

If locate mode is specified by coding L in the MACRF= operand of the output
DCB macro, execution of the first PUT macro referring to the opened data set
causes TCAM to dynamically obtain a work area (by a GETMAIN macro) in the
same area of addressability as the application program. The address of this work
area is returned in register 1. This address should be saved by the user and placed
in work-area-address register before each PUT after the first is issued. The length
of this work area is specified by the BLKSIZE= operand of the output DCB
referred to by the PUT macro. The user must move his data into the work area
before executing another PUT referring to this DCB. Execution of subsequent
PUT macros referring to this DCB moves the data from this same work area into
the MCP buffers.

Moving Data between Input and Output Work Areas
In some user applications, a work unit is transferred from the MCP to the applica­
tion program by a GET or READ, processed by the application program, and then
returned to the MCP by a PUT or WRITE. If move mode is specified in the input
and output DCB macros for the input and output data sets through which the
work unit proceeds, then the GET/READ and PUT/WRITE macros may refer to
the same work area; the user need not move his data from an input to an output
work area.

If locate mode is specified in the input or output DCB macro, and move mode is
specified in the DCB macro for the other data set through which the work unit
passes, then the user can still get by with one work area, because TCAM permits
specification of a register containing the address of the work area when GET or
PUT is coded.

If locate mode is specified for both the input and the output DCB macro, then two
work areas will be present, and the work unit must be transferred from one to the
other.

Defining Optional Fields in the Work Area
The following operands of the input and output DCB macros cause TCAM to
create optional fields in the front part of the work area and fill them with data
(input DCB macro) or to examine these fields (output DCB macro):

• OPTCD=W
• OPTCD=C
• RECFM= V[B]

If none of these operands are coded, TCAM starts with the first byte of the work
area when filling or emptying it.

The contents of the optional fields are not moved out of the work area with the
message or record being processed.

Origin and Destination Fields: If W is coded in the OPTCD= operand of the DCB
macro of the input data set for this work unit, eight bytes of the work area are
reserved for the name of the source of the message. When the message comes (
into the work area, TCAM places the EBCDIC name of the source (as specified in .

384 OS/MFT and OS/MVT TeAM Programmer's Guide

the terminal table) into these eight bytes. The name is left-adjusted, and the field
is padded to the right with blanks if the name is shorter than eight bytes.

If TCAM cannot determine the origin of a message, the field is filled in with eight,
character blanks. TCAM usually knows the origin of a message. TCAM does not
know the origin when a switched station with no ID sequence calls in and fails to
identify itself by having a valid origin field in the message header checked by an
ORIGIN macro. If the switched station is assigned an ID sequence that is not
unique, an incorrect name may be placed in the field. (See the discussion of the
ORIGIN macro for more information on switched stations with no ID sequences
or shared ID sequences.)

The eight-byte origin field immediately precedes the work unit in the work area
and follows the other two optional fields, if either or both of the other fields are
present. Figure 29 shows where the origin field goes in the work area.

If W is coded in the OPTCD= operand of the DCB macro of the output data set
for this work unit, when a PUT or WRITE macro is issued to move a work unit
from this work area to the MCP, TeAM looks in an eight-byte field in the work
area for the name of the destination of the message. The name should be in
EBCDIC, left-justified, and padded to the right with blanks if necessary. If a
FORWARD macro with the DEST= operand coded DEST=PUT is executed in
the inheader subgroup of the Message Handler for an application program, the
message is sent to the destination specified in the eight-byte field (see the descrip­
tion of the FORWARD macro).

TCAM assumes that the eight-byte destination field immediately precedes the
work unit in the work area (if W is coded in the OPTCD= operand); Figure 29
shows where TCAM looks for the destination field. Only the work unit, and not
the contents of the destination field, is transferred to the MCP when a PUT or
WRITE macro is executed.

The user with an inquiry-response application may wish to refer to the same work
area with his GET/READ and PUT/WRITE macros. If he codes W in the
OPTCD= operands of his input and output DCB macros, TCAM places the origin
in the eight-byte field when the inquiry message is read into the work area. After
the application program processes the message data (without changing the con­
tents of the eight-byte field), a PUT or WRITE macro is issued; the contents of
the eight-byte field are now assumed to specify the destination. If a FORWARD
macro with the DEST= operand coded DEST=PUT is coded in the inheader
subgroup for the application program, the response message will go back to the·
originating terminal.

Position Field: If C is coded in the OPTCD= operand of an input or output DCB
macro, a one-byte field is reserved in the work area associated with the DCB (if
locate mode is specified in the DCB macro) or named by the GET/READ or
PUT /WRITE macro transferring data to or from an input or output data set. This
position field is useful when messages sent to the application program are larger
than the application-program work area that is to receive them (for example, when
logical records or other message portions, rather than entire messages, are pro-
cessed by the application programs).

If C is specified in the OPTCD= operand of the input DCB macro containing the
work unit to be moved into the work area. TCAM fills in the position field with a

Writing TCAM-Compatible Application Programs 385

code indicating whether this work unit is the first, intermediate, or last portion of
a message, or an entire message.

If C is specified in the OPTCD= operand of the output DCB macro for the work
unit, the application programmer must ensure that the position field contains the
appropriate code to describe his work unit. TCAM checks this field and uses it to
account for message portions being transferred to the MCP. The user must not
interleave segments from different messages. If the operand is omitted from the
output DCB macro, TCAM must make one of two assumptions, depending upon
whether record processing or message processing is specified in the OPTCD=
operand of the output DCB macro (message processing and record processing are
described in the next section).

• If message processing is specified, the end of the work unit is assumed to be the
endof the message-that is, TCAM assumes that one work unit equals one
message.

• If record processing is specified, TCAM assumes that all work units being sent
to the process entry associated with this output DCB, from the time the output
data set is opened until the time it is closed, are part of the same message-that
is, the application program signals end-of-message by issuing a CLOSE macro
after the last work unit in the message is sent to the MCP.

The position field is located in the work area, immediately to the left of the
eight-byte origin or destination field. If no origin or destination field is present,
the position field is located immediately to the left of the first byte of message
data in the work area. Figure 29 shows the location of the position field in the
work area.

SAM Prefix: If V or VB is coded in the RECFM = operand of the input or output
DCB macro, a prefix field is assumed to be present in the work area containing the
message received from or sent to the data set represented by the DCB. This
prefix is useful when TCAM/SAM compatibility-the ability to run application
programs in a non-teleprocessing environment using SAM data sets, and then run
the same program in a TCAM environment without reassembling-is desired (see
TCAM/SAM Compatibility in this chapter). TCAM requires a SAM prefix when
variable-format work units are specified in the output DCB macro (such work
units are discussed in Work-Unit Formats in this chapter).

The SAM prefix, if present, occupies the first four or eight bytes of the work area,
as shown in Figure 29.

If RECFM= V is coded in the input DCB macro, TCAM places a four-byte prefix
into the work area receiving a work unit from the input data set for which the
DCB macro was coded. The first two bytes of the prefix contain the binary sum
of the length of the work unit plus four bytes (the length of the prefix). The
second two bytes of the prefix each contain binary zeros.

If RECFM= VB is coded in the input DCB macro, TCAM places an eight-byte
prefix into the work area receiving a work unit from the input data set for which
the DCB macro was coded, provided MACRF=R was also coded (a four-byte
prefix is provided otherwise). The first two bytes of the prefix contain the binary
sum of the length of the work unit plus eight bytes (the length of the prefix) in
hexadecimal notation. The second two bytes each contain a binary zero. The
third two bytes contain a binary number four less than that contained in the first
two bytes. The final two bytes each contain a binary zero. This eight-byte prefix (' _
is for BSAM compatibility; work units are treated as if they were blocked records,

386 OS/MFT and OS/MVT TeAM Programmer's Guide

)

although only one work unit is transferred for each READ or GET macro execu­
tion.

If RECFM= V is coded in the output DCB macro, TCAM assumes that a four­
byte prefix precedes each work unit being sent to the output data set for which the
DCB macro is coded. This prefix is similar to a standard SAM variable-length
prefix; its contents are described above in the discussion of the SAM prefix for the
input side. It is the application programmer's responsibility to see that the prefix
contains the proper data before a PUT or a WRITE is issued.

If RECFM= VB is coded in the output DCB macro, TCAM assumes that the work
unit being sent to the output data set for which the DCB macro is coded is preced­
ed by an eight-byte prefix (provided that MACRF = W is also specified; a four­
byte prefix is provided otherwise); the layout is the same as that described above
for the eight-byte BSAM-compatible prefix for the input side. This prefix is for
BSAM compatibility; work units are treated as if they were blocked, although only
one work unit is transferred for each WRITE macro. It is the application
programmer's responsibility to see that the prefix contains the proper data before
a WRITE macro is executed.

Specifying Application-Program Work Units
The way in which TCAM decides how long a work unit is and how to handle it
depends upon two factors:

• the format of the work unit (fixed, variable, or undefined);
• the type of work unit (message or record).

The user specifies the format and type of work units his application program is to
process by coding operands of the input and output DCB macros for the applica­
tion program. These operands indicate whether the work unit is a message or a
record, and whether it is always the same length or may vary in length from
message to message or from record to record.

If messages or records sent to an application program may vary in length, user
code in the application program will need to be given length of the work unit
currently being processed. TCAM counts the number of bytes in the incoming
work unit, adds the number of bytes that must be reserved in the work area for
optional fields, and places the total either in a special field in the work area or in a
field in the input DCB (depending upon which field the user specifies in an input
DCB operand). User code may then inspect this field to determine the length of
the work unit being processed.

--:1 1 byte r-r-- 4 bytes' --, ... 11-------- 8 bytes

SAM Prefix

t
Start of
Work Area

Pos.
Field

Origin or Destination Field

Figure 29. Relative Positions of Optional Fields in the Work Area

f
Start of
Work Unit

Writing TCAM-Compatible Application Programs 387

Work-Unit Formats

On the output side of the application program, TCAM must know the length of
messages or records whose lengths may vary, before these work units can be
transferred to the MCP. The application programmer must ensure that the sum of
the work-unit length and the length of any optional fields in the work area has
been placed in a special field in the work area or output DCB before issuing a
PUT or WRITE macro to transfer the work unit.

The next two sections of this chapter discuss the effects of work-unit format and
type upon the way in which TCAM transfers the work unit to and from the
application program. Figure 30, at the end of the second section, summarizes
much of this discussion.

Work units that always have the same length are said to have a fixed format, while
work units that may vary in length may have either a variable format or an unde­
fined format, depending upon the location of the field in which their length is
stored (for incoming work units) or examined (for outgoing work units) by
TCAM.

A fixed-format work unit is one whose length is defined by the number of bytes
coded in the LRECL= operand of the input and output DCB macros. A
variable-format work unit is one whose length (plus the length of any optional
fields in the work area) is stored in the SAM prefix in the work area (see SAM
Prefix in this chapter). An undefined-format work unit is one whose length (plus
the length of any optional fields in the work area) is stored in a field in the input
or output DCB. TCAM counts the number of bytes in the incoming work unit for
both variable- and undefined-format work units-the only difference between the
two types of work units (other than the lengths of their respective prefixes) is the
location of the field where the count is stored by TCAM.

The user specifies the kind of work units his application program expects to accept
by the RECFM= operand of the input DCB macro. If he codes RECFM=F, then
TCAM knows that this application program is set up to process fixed-length work
units and looks for the length of these units in the LRECL field of the input DCB.
If he codes RECFM=V, then TCAM keeps track of the length of each incoming
work unit and stores, in the SAM prefix, the sum of this length plus the length of
any optional fields in the work area If he codes RECFM=U, then TCAM keeps
track of the length of each incoming work unit and stores the sum of this length
plus the length of any optional fields in the work area in the LRECL field in the
input DCB.

For work units being transferred from an application program to the MCP, a
similar setup prevails. The user tells TCAM, by the RECFM= operand of the
output DCB macro, where to look for the length of the work unit being sent back
to the MCP by each PUT or WRITE macro. If the user specified RECFM=F,
TCAM looks for the length of the work unit in the LRECL field of the output
DCB. If the user specifies RECFM= V, TCAM looks for the sum of the length of
the work unit plus the length of any optional fields in the work area in the length
field of the SAM prefix in the work area. If the user specifies RECFM= U,
TCAM looks for the sum of the length of the work unit plus the length of any
optional fields in the work area in the LRECL field of the output DeB if a PUT or
WRITE is being issued. It is up to the user to ensure that the field TCAM exam­
ines contains the correct length; the technique for modifying a DCB field is
described in Data Management Services. If the WRITE macro is used with the (
length operand, the length specified in the WRITE macro is used.

388 OS/MFT and OS/MVT TeAM Programmer's Guide

The tables below summarize the TCAM work-unit formats and illustrate how they
are specified by operands of the input and output DCB macros.

The delimiter mentioned in the discussions of variable and undefined records is
the end of the message when message processing is specified; for record process­
ing, the delimiter may be either the end of the message or a special record­
delimiting character specified in by the RECDEL= operand of the TPROCESS
macro creating the queue used by the GET or READ.

Work-Unit Formats-Input DCB

Format How Specified Significance

Fixed RECFM=F All incoming work units (except possibly the
last in a message) are the same length. When a
GET or READ macro is executed, TCAM at-
tempts to bring in the number of bytes specified
by the LRECL= operand of the input DeB
macro.

Variable RECFM=V[B] Incoming work units vary in length. When a
GET or READ macro is executed, TCAM
brings in data until a delimiter or the end of the
work area is encountered, and then places the
sum of the length of the work unit plus the
length of any optional fields in the work area in
the SAM prefix, which precedes the work unit
in the work area.

Undefined RECFM=U Incoming work units vary in length. When a
GET or READ macro is executed, TCAM
brings in data until a delimiter or the end of the
work area is encountered, and then places in the
LRECL field in the input DCB the sum of the
length of the work unit plus the length of any
optional fields in the work area.

Writing TCAM-Compatible Application Programs 389

Work Unit Types

Work-Unit Formats-Output DCB

Format How Specified Significance

Fixed RECFM=F A PUT or WRITE macro referring to this DCB
moves the number of bytes specified in the
LRECL field of this DCB from the work area
to the MCP. TCAM subtracts the length of any
optional fields from the number specified in the
LRECL field.

Variable RECFM=V[B] When a PUT or WRITE macro referring to this
DCB is executed, TCAM determines the length
of the work unit to be moved by looking in the
SAM prefix preceding the work unit in the work
area (and subtracting the length of any optional
fields in the work area).

Undefined RECFM=U If a PUT macro referring to this DCB is execut-
ed, TCAM determines the length of the work
unit to be moved to the MCP by looking in the
LRECL field of the DCB. If a WRITE macro
with the'S' operand referring to this DCB is
executed, TCAM determines the length of the
work unit to be moved by looking in the
LRECL field of the DCB. (In either case,
TCAM subtracts the length of any optional
fields in the work area from the value found.)
If the WRITE macro with the length operand
referring to this DCB is executed, TCAM uses
the length specified in the WRITE macro as the
length of the work unit to bt; moved.

An application program may be set up to handle messages or records. A work unit
may be a message or a portion of a message; a work unit that is a portion of a
message may be, but need not be, a record.

The terms message and record are defined above, in the section Transferring
Data Between an MCP and an Application Program; differences in the manner
in which TCAM handles records and the manner in which it handles other mes­
sage portions that are not records are also summarized under this heading. The
table at the end of this section gives a more detailed contrast between message
and record processing by TCAM.

The user specifies that he has set up his application program to handle messages
by coding U in the OPTCD= operand of the input DCB macro. If U is not coded,
TCAM assumes that the incoming work unit is a record.

Processing the Message as a Work Unit: If U is coded in the OPTCD= operand of
the input DCB macro, TCAM attempts to read in an entire message when a GET
or a READ macro is executed. If the work area is large enough to accommodate
the entire message, TCAM reads in data up to and including the EOT or ETX
line-control character, unless conversational mode is specified in the ST ARTMH

390 OS/MFT and OS/MVT TeAM Programmer's Guide

macro, in which case TCAM reads in a block of data (that is. that amount of data
delimited by an EOB or ETB character when received by the computer). If
LC=OUT is specified in the ST ARTMH macro associated with the line group
DCB macro, the EOB or ETB line-control character is removed when the message
comes into the incoming group of the MCP. but the EOT or ETX line-control
character is not removed.

If the entire message does not fit into the designated work area. TCAM performs
one of three actions. depending upon how operands of the input DCB macro are
coded.

1. If a position field is specified in the OPTCD= operand, the portion of the
message that did not fit into the work unit is obtained by the next GET or
READ macro executed (the position field is discussed in Optional Fields in
the Work Area in this chapter).

2. If no position field is specified but SYNAD= is coded, TCAM gives control to
the routine specified by SYNAD= (this routine is discussed in
Application-Program Error-Handling Facilities in this chapter).

3. If neither a position field nor a SYNAD exit is specified, TCAM places a return
code of X'00000008' in register 15. This return code indicates an error condi­
tion. and the user should terminate the application program and correct the
error.

If TCAM performs the first of these three actions, the application program may
process the first portion of the message and issue a PUT or WRITE macro to
return it to the MCP before issuing a GET or READ to bring in the rest of the
message.

To determine whether an incoming message fits into the work area, TCAM must
first know what the length of the work area is. For fixed-format messages, TCAM
assumes that the length of the work area is equal to the number of bytes specified
in the LRECL= operand of the input DCB macro. For variable- and undefined­
format messages, TCAM assumes that the work-area length is equal to the
number of bytes specified in the BLKSIZE= operand of the input DCB macro.
When a work-area overflow error occurs, TCAM discards the message that caused
the overflow. If the input data set is closed and then reopened as a result of
work-area overflow, the first message received in the work area following reopen­
ing of the data set is not the message that caused the overflow; this message is
discarded by TCAM.

To prevent work-area overflow. the CUTOFF macro can be coded in the inbuffer
subgroup of the MH; this macro checks the length of incoming messages and
permits cancellation of messages that would be too long for the work area.

If U is specified in the OPTCD= operand of the output DCB macro, TCAM
assumes message processing on the output side. If a position field is specified in
the work area (by coding OPTCD=C in the output DCB macro), TCAM uses this
field to determine whether the work area contains an entire message or only a
portion of a message. If the work area does not contain an entire message, TCAM
treats each piece of data moved from the work area by a PUT or WRITE as part
of the same message, until the contents of the position field indicate that the work
unit currently being processed is the last unit in the message. If no position field is
specified, TCAM assumes that the entire message is located in the work area.

Depending upon the format of the work unit (whether it is fixed, variable, or
undefined), TCAM looks in the SAM prefix or in an output DCB field for the

Writing TCAM-Compatible Application Programs 391

length of the outgoing work unit and sends out the quantity of data specified in
the appropriate field, after allowing for optional fields in the work area. (See
Work-Unit Formats in this chapter for information on the exact location of the
field containing the message length.)

Processing the Record as a Work Unit: If U is not coded in the OPTCD= operand
of the input DCB macro, TCAM treats the incoming work unit as a record, rather
than as a message or a message portion that is not a record.

If the user specifies that the input to his application program is to be fixed-format
records (by coding RECFM=F in the input DCB macro), TCAM assumes that
each incoming record is equal in length to the number of bytes specified in the
LRECL= operand of the input DCB macro (minus the length of any optional
fields in the work area) and moves in this number of bytes each time that a GET
or READ macro is executed for this input data set. The last record in a message
may be shorter than the number of bytes specified by LRECL=, in which case
TCAM brings in the actual number of bytes in this record.

If fixed-format records are designated as the output from an application program
(by coding RECFM=F in the output DCB macro), each time a PUT or WRITE is
executed TCAM transfers to the MCP a record equal in length to the number of
bytes specified in the LRECL= operand of the output DCB macro (after making
allowance for the length of optional fields in the work area).

If the user specifies that the input to his application program is to be variable- or
undefined-length records (by coding V or U, respectively, in his input DCB
macro), TCAM determines the length of incoming records according to the
following principles:

1. If a delimiting character (specified by the RECDEL= operand of the
TPROCESS macro creating the destination queue used by the GET or READ
macro) is encountered while the work area is being filled, TCAM assumes that
the curr~nt record ends with this character. The user may request that delimit­
ing characters be removed from the data by specifying DELETE= YES on the
TPDATE macro.

2. If the end of a message is reached before the work area is filled, TCAM as­
sumes that the last character in the message is also the last character in the
current record.

3. If neither a delimiter nor the end of the message is reached by the time the
work area is filled, TCAM assumes that the length of the record is equal to the
size of the work area (minus the size of any optional fields in the work area).
TCAM determines the size of the work area by looking in the BLKSIZE field
of the input DCB.

When record processing is specified in the DCB macro for the output data set,
TCAM sends out a single record with each PUT or WRITE. The size of the
record is indicated in the SAM prefix for variable-format records, in the LRECL
field of the output DCB, or in the WRITE macro for undefined-format records
transferred by a PUT or WRITE.

The following table and Figure 30 summarize many points discussed in this
section and in the one immediately preceding it.

392 OS/MFT and OS/MVT TeAM Programmer's Guide

(

Differences between Message and Record Processing:

Message Processing

On Input: • When GET /READ is issued,
TCAM brings in data until
either the end of the
message is encountered or
the work area is filled.

• If the work area has been
filled and the end of the
message was not reached,
TCAM either brings in the
rest of the message with
the next GET or READ (if
a position field is present
in the work area), or goes to
the error-handling routine
specified by the SYNAD=
operand of the input DCB
macro.

On Output: • Whenever PUT/WRITE is
executed, TCAM transfers
one work unit of data from
the application-program work
area to the MCP.

• The RECDEL= operand of the
output TPROCESS macro is
ignored.

• If a position field is pre-
sent and indicates an initial or
intermediate segment, TCAM trans­
fers the rest of the message to
the MCP when the next PUT or
WRITE is executed for this out-
put data set. If no position

Record Processing

• When GET /READ is
issued, TCAM brings in
data until 1) the
delimiting character
specified by the
TPROCESS macro referred
to by the GET or READ
is encountered, or 2)
the end of the message
is encountered, or 3)
the work area is filled.
(Delimiting character is
ignored for fixed-format
records.)
• If the work area is
filled, TCAM assumes
that a complete record
has been received.

• Same as for messages
-one work unit (record)
transferred per PUT or
WRITE.

• The delimiting character
specified by the RECDEL=
operand of the output
TPROCESS is placed at the
end of each outgoing
undefined-format record and
each outgoing variable-format
record, except for the last
record of the message.

• If a position field
is present, TCAM con­
siders all records to be
part of the same message
until the position field
indicates that the cur­
ent record is the last

Writing TCAM-Compatible Application Programs 393

field is present, TCAM assumes
that the end of the message coin­
cides with the end of the work
area.

record in the message.
If no position field is
present, execution of
the CLOSE macro for the
output data set signals
the end of the message.

Signaling End of File and End of Message

Input Side
(GET/READ)

Output Side
(PUT/WRITE)

TCAM can signal the application program that the contents of the message
currently being processed by the application program constitute the end of a
logical file of data; after processing the work unit, or units, in this message, the
application program may take an exit to a user-defined, end-of-data subroutine.
Such a subroutine might close the input data set, cause a different type of
application-program activity to begin, issue a GET or READ macro referring to a
different process queue, etc.

The user indicates that the contents of the current message represent the final
portion of a logical file of data by issuing a SETEOF macro in the outheader
subgroup of the application-program Message Handler. SETEOF can be coded to
execute conditionally based on the presence of a specified character string in the
message header. When SETEOF executes, a bit is set in the prefix of the mes-

Work-Unit Type: Record Message

Work-Unit Format: Fixed Variable Undefined Fixed Variable Undefined

LRECL field
of X X

input DCB

BLKSIZE field
of X X X X

input DCB

Work-Unit
Size length field

Determined of X X
By: READ macro

delimiter
specified via X X
TPROCESS macro

end -of-message X X X X X X

field in SAM X X
Work-Unit prefix

Size LRECL field
Stored In: of X X

input DCB

LRECL field
of X X X X

Work-Unit
output DCB

Size length field

Determined of X X

By: WRITE macro

field in SAM
prefix X X

Delimiter Specified via TPROCESS Macro X X
Inserted After Each Record

Figure 30. Effect of Work-Unit Type and Format on the Way in which TCAM Determines its Size

394 OS/MFT and OS/MVT TCAM Programmer's Guide

.. Jj

(

sage, indicating that this is the last message in the file. When a message with this
bit on in the prefix is transferred to the application program by GET or READ
macros, TCAM notes and remembers that this is the last message in the file.
Execution of the first GET or CHECK macro following transfer of the entire
end-of-file message to the application-program work area gives control to the
subroutine specified by EODAD.

Upon entry to the user-specified subroutine, the registers contain the same data as
before execution of the GET or CHECK macro, except that register 15 contains
the address of the exit subroutine.

If the user returns from this subroutine to the subroutine issuing GET or READ
macros, these macros will execute in a normal fashion.

If no SETEOF macro is executed and a GET or READ macro referring to an
empty process queue is issued, the application program enters a wait state until a
message arrives at the process queue for the application program. (If READ was
issued, the wait state begins only when the CHECK macro is executed.)

If the SETEOF macro executes and no EODAD exit is specified, when the next
GET or CHECK macro following transfer of the entire end-of-file message to the
application program is executed, a completion code of X'00000004' is returned by
TCAM in register 15, and control returns to the application program. User code
may check for this return code and take appropriate action.

If record processing is specified (by the absence of U in the OPTCD= operand of
the output DCB macro), the user may indicate that this is the last record in a
message being sent from the application program to the MCP by coding X'F2' in
the position field preceding the record in the work area (see Optional Fields in
the Work Area in this chapter for a description of the position field). If no
position field is defined, the program may signal TCAM that the last record in the
message has been sent by closing the output data set after executing a PUT or
WRITE macro for this last record. (If message processing is specified, and no
position field is provided, TCAM assumes that the work unit being processed
constitutes the entire message.)

Coding TCAM Data Transfer Macros
TCAM provides facilities for obtaining messages from the MCP for processing
and for returning response messages to the MCP. Although the messages are
received from (or sent to) remote stations over communication lines, the program­
mer uses QSAM (GET and PUT) or BSAM (READ, WRITE, and CHECK)
macros for obtaining and sending messages. A TCAM Message Control Program
performs the device-dependent input/output operations for the application
program. The user specifies whether he wishes to use the GET/PUT or
READ/WRITE/CHECK support in the MACRF= operand of the input and
output DCB macro.

Since TCAM GET/PUT and READ/WRITE/CHECK support is similar to that
provided by OS, the TCAM application programmer is expected to be thoroughly
familiar with the OS sequential access method (BSAM or QSAM) whose counter­
part he is coding in the TCAM application program. This requirement implies a
knowledge of the applicable contents of Data Management Services and
Supervisor and Data Management Macro Instructions.

Writing TCAM-Compatible Application Programs 395

GET (QSAM only)

symbol

dcbname

areaname

The GET macro

• obtains work units from the MCP for processing;
• may be coded more than once in an application program.

The GET macro transfers a single work unit from the MCP to an application­
program work area. The size of the work unit transferred depends upon whether
record or message processing is specified by the OPTCD= operand of the input
DCB macro (Specifying Application-Program Work Units in this chapter details
the differences between record and message processing).

If a GET macro follows a POINT macro and the message cannot be retrieved, a
code of X'OC' is returned in register 15. If a GET macro is issued and the
BLKSIZE value is zero, a code of X'lO' is returned in register 15.

If a GET macro is issued after a quick closedown of the MCP has begun, the
EODAD exit is taken.

GET has the following format:

Name Operation Operands

symbol GET dcbname[,areaname]

Function: Specifies the name of the macro instruction.
Default: None. Specification optional.
Format: Must conform to the rules for assembler language symbols (see the
symbol entry in the Glossary).

Function: Specifies the symbolic address of the data control block associated
with the process queue from which the application program is to obtain a work
unit.
Default: None. This operand is required.
Format: Must conform to the rules for assembler language symbols.
Notes: The DD statement for this DCB names a process entry in the terminal
table; the process entry is coded especially to receive messages from the applica­
tion program. See Overview of the MCP/Application-Program Interface in this
chapter.

If register notation is used, the register number (2 through 12) must be enclosed in
parentheses, and the address of the data control block must previously have been
loaded into the register.

Function: Specifies the symbolic address of the user-defined area into which the
work unit is to be placed.
Default: None. If move mode is specified in the MACRF= operand of the input
DCB macro, this operand is required. Otherwise, specification optional.
Format: Must conform to the rules for assembler language symbols.

396 OS/MFT and OS/MVT TeAM Programmer's Guide

Notes: If register notation is used, the specified register number must be enclosed
in parentheses and the address of the work area must previously have been loaded
into the register (1 through 12).

This operand may be omitted if locate mode is specified in the input DCB macro,
in which case TCAM obtains a work area from application-program main storage
by issuing a GETMAIN macro instruction when the input data set is opened.
After the first GET, TCAM returns the address of the work area in register 1.
TCAM uses this same work area until termination.

Writing TCAM-Compatible Application Programs 397

PUT (QSAM only)

dcbname

The PUT macro

• returns work units to the Mep after processing;
• may be specified more than once in an application program.

The PUT macro causes the processed message or message segment to be trans­
ferred from the work area specified to the Mep, where it is processed by the
incoming group of the MH for the application program, and then placed on the
destination queue for a particular destination. This destination may be specified
either in the message header and subsequently checked by a FORWARD macro in
the incoming group handling messages from an application program, or as an
operand of the FORWARD macro, or in a special destination field in the work
area that may be filled in by user code before the PUT is issued (see Defining
Optional Fields in the Work Area in this chapter for a description of the desti­
nation field).

If a PUT is issued and the message queues data set, on reusable disk or in main
storage, that contains the destination queue for the destination of the message is
congested with traffic, the PUT does not execute, a code of X'OOOOOOlO' is
returned in register 15, and control passes to the next instruction; in this case, the
user may test the return code and re-issue the PUT.

If a PUT macro is issued after a quick closedown of the Mep has begun the
operation does not complete, a return code of X'04' is placed in register 15, and
control passes to the next instruction. If the position field contains an invalid
value or a value that is out of sequence with the previous position field, a code of
X'08' is returned in register 15. If the destination name field contains a name that \j

is not a valid entry in the terminal name table, X'OC' is returned in register 15.

PUT has the following format:

Name Operation Operands

[symbol] PUT dcbname[,areaname]

Function: Specifies the name of the macro.
Default: None. Specification optional.
Format: Must conform to the rules for assembler language symbols (see the
symbol entry in the Glossary).

Function: Specifies the symbolic address of the data control block for the output
data set.
Default: None. This operand is required.
Format: Must conform to the rules for assembler language symbols.
Notes: The DD statement for this DeB names a process entry in the terminal
table; the process entry is coded especially to receive messages from the applica­
tion program. See the Overview of the MCP/Application-Program Interface in
this chapter. Do not try to execute a PUT or WRITE macro in an application (
program if there is a PUT or WRITE macro currently executing and indirectly

398 OS/MFT and OS/MVT TeAM Programmer's Guide

areaname

referring to (by the TPROCESS entry) the same process control block (PCB).
This condition could occur if two subtasks of the same application program with a
single PCB tried to execute a PUT or WRITE macro. If for some reason the
TCAM MCP must wait before the first operation can be completely processed,
the second subtask of the same application program could gain control and try to
execute a PUT or WRITE macro. As a rule, the MCP would be forced to wait
only if there was a buffer shortage or if the message being processed was an
operator control message that required a long time to process.

To guard against this condition, TCAM returns an indication. If an attempt is
made to execute a PUT macro, TCAM will return an error indication X'10' in
register 15. For a WRITE macro, the DECB will contain a completion code of
X'5COOOOOO'. Unlike other PUT/WRITE errors, the user is not required to close
down the DCB affected.

If more than one subtask in the same application program includes PUT or
WRITE macros, the possibility of this type of error can be eliminated by use of
the ENQ and DEQ macros. ENQ can be coded before each PUT or WRITE, and
DEQ can be coded after each PUT or WRITE macro. The resource must be a
name that symbolizes the PCB. See the Supervisor and Data Management
Macro Instructions publication.

If register notation is used, the register number specified must be enclosed in
parentheses, and the address of the data control block must have been loaded
previously into a register (1 through 12).

Function: Specifies the symbolic address of the user-defined work area from
which the work unit is to be transferred.
Default: None. If move mode is specified in the MACRF= operand of the
output DCB macro, this operand is required. Otherwise, specification optional.
Format: Must conform to the rules for assembler language symbols.
Notes: If register notation is used, the register number specified must be enclosed
in parentheses and the address of the work area must previously have been loaded
into a register (0, or 2 through 12).

If locate mode is used, this operand should be omitted. In this case, the address of
a work area into which the next work unit is to be placed is returned in register 1
for the first PUT macro referring to this DCB. For more information on locate
mode, see Dynamic Work Area Definition in this chapter.

Writing TCAM-Compatible Application Programs 399

READ (BSAM only)

The READ macro instruction causes a work unit to be moved from the MCP into
a designated area of main storage in the application program. It differs from the
GET macro in that control may be returned before the work unit is retrieved when
READ is used, whereas with GET control is not returned to the application
program until the work unit is in the work area. The READ input operation may
be tested for completion using a CHECK macro instruction; once CHECK is
issued, control is not returned to the application program until the work unit is in
the work area.

An application program containing more than one READ macro should be
designed so that each data event control block (DECB) generated by a READ
macro is associated with one and only one process queue from OPEN to CLOSE
(that is, the decbname and dcbname operands of the READ macro, once speci­
fied, should always be paired; decbname should not be specified with a particular
dcbname in one READ macro and then associated with a different dcbname in
another READ macro). The user may specify only one DECB per process queue.
This technique allows the user to determine the status of any process queue by
merely interrogating the current completion code in the DECB. See the comple­
tion codes in the next section. (The DECB is a system control block; for informa­
tion on the layout of this control block see the System Control Blocks publica­
tion.)

If a READ macro is issued after a quick cIosedown of the MCP has begun, the
EODAD exit is taken.

,"'
Since only one DECB may be specified per process entry, multiple READ macros ',.
directed to the same process queue are not permitted. However, the user may
achieve the effect of issuing multiple READ macros directed to the same process
queue by coding a list and an execute form of the READ macro. This is achieved
by coding one list form of READ and several associated execute form READ
macros, where the list READ and all the execute READ macros specify the same
DECB. This technique does not provide a real multiple-wait facility, but allows
the application programmer to code READ macros that refer to the same DECB
in one or more sections of the same program. The list and the execute forms of
the READ macro are explained in Supervisor and Data Management Macro
Instructions.

A DECB is posted with a X'40000000' when a message is placed on a previously
empty read-ahead queue for a process entry. This implies that a DECB may be
posted any time during the execution of an application program after the first
READ macro is issued following OPEN. This differs from BSAM in that a DECB
becomes eligible for posting only after a READ macro is issued by the user.
Therefore, under TCAM/BSAM, a READ DECB may already be posted com­
plete when the user issues a READ, CHECK, or WAIT macro.

Example:
In the following example, two READ macros of the execute form and one READ
macro of the list form are coded. All three macros specify the same DECB
(named INPUT); the list READ also specifies the appropriate DCB and work
area.

400 OS/MFT and OS/MVT TeAM Programmer's Guide

symbol

decbname

SF

dcbname

READ
CHECK

READ
CHECK

LIST
INAREA
INDCB

User Code

INPUT,SF,MF=(E,LIST)
INPUT

User Code

INPUT,SF,MF=(E,LIST)
INPUT

User Code

Constant Area

READ INPUT,SF,INDCB,INAREA,MF=L
DC SOF'O'
DCB DSORG=PS,MACRF=R,BLKSIZE=200,
OPTCD=WUC,RECFM=V,DDNAME=IN

READ has the following format:

Name Operation Operands

[symbol] READ decbname,SF,
dcbname,areaname,

llength~
'S' [MF=~L 0
- (E,listname)

Function: Specifies the name of the macro.
Default: None. Specification optional.
Format: Must conform to the rules for assembler language symbols (see the
symbol entry in the Glossary).

Function: Specifies the name to be assigned to the data event control block
(DECB) created as part of the macro expansion.
Default: None. This operand is required.
Format: Must conform to the rules for assembler language symbols.

Function: None. Must be coded for proper macro expansion.
Default: None. This operand is required.
Format: SF

Function: Specifies the symbolic address of the data control block associated
with the process queue being used.
Default: None. This operand is required.
Format: Must conform to the rules for assembler language symbols.
Notes: If register notation is used, the address of the data control block must
previously have been loaded into a register (1 through 12), and the register
number must be enclosed in parentheses.

The DO statement for this DCB names a process entry, in the terminal table,
coded especially to receive message from the application program.

*

Writing TCAM·Compatible Application Programs 401

areaname

j length t
1 is' S

MF= {L }
(E,listname)

Function: Specifies the name of the work area into which the work unit is to be
placed.
Default: None. This operand is required.
Format: Must conform to the rules for assembler language symbols.
Notes: If register notation is used, the address of the work area must previously
have been loaded into a register (2 through 12), and the register number must be
enclosed in parentheses.

Function: Specifies the sum of the length of the work unit to be read plus the length
of any optional fields in the work area.
Default: 'S'
Format: length is an unframed decimal integer.
Maximum: 32760 for length.
Notes: This operand is coded only for undefined-format work pnits; it is ignored
for fixed- and variable-format work units.

Note that S is enclosed in single quotes. If'S' is coded, and an undefined-format
work unit is to be processed, the number of bytes to be read is taken from the
LRECL= operand of the input DCB macro; for undefined-format work units, 'S'
is the default.

Function: Specifies the list or execute form of the macro.
Notes: Described in Supervisor and Data Management Macro Instructions.

402 OS/MFT and OS/MVT TeAM Programmer's Guide

,

.<Ii

symbol

decbname

SF

dcbname

WRITE (BSAM only)

The WRITE macro

• returns work units to the MCP after processing;
• may be specified more than once in an application program.

The WRITE macro instruction causes the contents of a work area in the applica­
tion program to be moved to the MCP in the same manner as PUT. Control may
be returned before the block is moved. The output operation may be tested for
completion using a CHECK macro instruction. (See the next section for a
completion code table.)

The destination may be specified either in the message header and subsequently
checked by a FORWARD macro in the incoming group handling messages from
an application program, or by an operand of the FORWARD macro, or in a
special destination field in the work area that may be filled in by user code before
the WRITE is issued (see Defining Optional Fields in the Work Area in this
chapter for a description of the destination field).

If a WRITE macro is issued after a quick closedown of the MCP has begun, the
operation does not complete, and a completion code of X'SE' is placed in the
DECB.

WRITE has the following format:

Name Operation Operands

[symbol] WRITE decbname,SF,
dcbname,areaname,

{ length}
'S'

Function: Specifies the name of the macro.
Default: None. Specification optional.
Format: Must conform to the rules for assembler language symbols (see the
symbol entry in the Glossary).

Function: Specifies the name to be assigned to the DECB created as part of the
macro expansion.
Default: None. This operand is required.
Format: Must conform to the rules for assembler language symbols.

Function: None. This operand must be coded for proper macro expansion.
Default: None. This operand is required.

Function: Specifies the name of the data control block associated with the
destination queue.
Default: None. This operand is required.
Format: Must conform to the rules for assembler language symbols.

Writing TeAM-Compatible Application Programs 403

areaname

~ length t
1 os' ~

Notes: If register notation is used, the specified register number must be enclosed
in parentheses and the address of the data control block must previously have
been loaded into a register (1 through 12). q

Function: Specifies the address of the area from which the work unit will be
moved to the MCP.
Default: None. This operand is required.
Format: Must conform to the rules for assembler language symbols.
Notes: If register notation is used, the specified register number must be enclosed
in parentheses and the address of the work area must previously have been loaded
into a register (2 through 12).

Function: Specifies the sum of the length of the work unit to be transferred to the
MCP plus the length of any optional fields in the work area.
Default: oS'
Format: length is an unframed decimal integer.
Maximum: 32760 for length.
Notes: This operand is meaningful only for undefined-format work units; it is
ignored for fixed- or variable-format work units. Note that S is enclosed in single
quotes. If'S' is specified and and undefined-format work unit is specified, the
number of bytes to be written is taken from the LRECL= parameter of the output
DCB macro.

BSAM/TCAM Completion Codes: After the user has issued a READ or WRITE,
and the TCAM READ or WRITE routine has completed execution, a completion /~

code is placed in the ECB in the DECB associated with the READ or WRITE. ""
The codes are:

Hex Code

7FOOOOOO
70000000

5COOOOOO
5EOOOOOO

58000000
54000000
52000000

50000000

40000000
02000000

01000000

Meaning

Normal completion. (READ and WRITE)
SETEOF macro executed in MCP. The work area does not contain
a work unit. (READ only)
Congested destination message queues data set (WRITE only)
TCAM quick closedown has begun. Request rejected. (WRITE
only)
Work unit sequence error. (WRITE only)
Invalid message destination. (WRITE only)
Work area overflow. (READ only). Also returned if DCB contains
a BLKSIZE value of zero.
READ issued in conjunction with a POINT macro to retrieve a
message; message not found.
Data on read-ahead queue.
End of queue condition (not SETEOF and no data in TCAM MCP
for DCB).
Read-ahead queue empty, but destination queue not empty.

The primary use of these codes is for communication between the READ or
WRITE and CHECK routines (see the next section). If a user prefers to issue a
WAIT macro rather than a CHECK macro, he is responsible for testing the
completion code. A completion code of X'70000000' indicates an end-of-file (
condition and requires CHECK to take the user's EODAD exit. Code

404 OS/MFT and OS/MVT TeAM Programmer's Guide

X'SEOOOOOO' indicates that the WRITE was not effective because a request for
quick close-down is in effect. Code X'SCOOOOOO' indicates that the WRITE was
not effective because the message queues data set for the destination is congested
with traffic and cannot accept the work unit at this time. The user may issue
another WRITE in this case. Codes X'S2000000', X'S4000000', and
X'S8000000' indicate error conditions and require CHECK to take the user's
SYNAD exit. Completion code X'S8000000' indicates that the output DCB
macro associated with the WRITE macro specifies OPTCD=C and that the
work-unit position field specifies the wrong type of work unit-for example, the
position field might indicate that this work unit is the first portion of a message,
but the position field for the previous work unit processed did not indicate that it
was the last portion of a message. Codes X'02000000' and X'OlOOOOOO' indicate
that the process queue has no data on it; when data is placed on the queue, the
code is automatically changed from X'02000000' to X'40000000'. Code
X'40000000' indicates that after a READ macro was issued and the process queue
was found to be empty, some data was placed on the process queue. Another
READ or a CHECK macro should be issued to bring in this data. If SYNAD is
not specified, a return code of X'00000008' is sent to the application program in
register IS.

Neither the wait nor the complete bit in the DECB's ECB is set to I by the two
"empty-queue" completion codes (X'02000000' and X'OIOOOOOO'). This allows
the user to wait on ECBs posted in this manner without first having to set the wait
bit in the ECB to O.

User code may test the ECB before issuing a CHECK macro; if the ECB contains
code X'02000000', the user routine might engage in some other program activity
rather than issue the CHECK macro and enter a wait state.

Writing TCAM-Compatible Application Programs 405

CHECK (BSAM only)

~ymbol

decbname

The CHECK macro instruction causes the application program to be placed in the
wait state, if necessary, until the associated input or output operation (READ or
WRITE) is completed. The input or output operation is then tested for errors. If
no error occurred, control returns to the instruction following the CHECK macro
instruction. If an error occurred, the routine specified by the SYNAD= operand
of the input or output DCB macro is given control. If no error routine is specified
and an error occurred, a return code of X'08' is sent to the user in register 15 after
the CHECK macro.

A CHECK may be issued after each READ and each WRITE in the same order as
the READ or WRITE macro instructions are issued. If data is available at READ
time, it is moved at CHECK time into the work area, and the event control block
(ECB) in the data event control block (DECB) is posted complete with a return
code of X'7FOOOOOO' (the ECB is contained within the first four bytes of the
DECB, on a fullword boundary). If there is no data available and a user­
controlled end of file has not been generated (by the SETEOF macro), the
application program CHECK macro waits for data. When data is available,
CHECK causes data movement; when this has been accomplished, the application
program receives control after the CHECK macro.

A WAIT macro may be issued rather than a CHECK by specifying the DECB
address in the ECB= operand of the WAIT macro; this provides a multiple-wait
capability (see below). The WAIT macro is described in Supervisor and Data
Management Macro Instructions.

CHECK has the following format:

Name Operation Operands

[symbol] CHECK decbname

Function: Specifies the name of the macro.
Default: None. Specification optional.
Format: Must conform to the rules for assembler language symbols (see the
symbol entry in the Glossary).

Function: Specifies the name of the data event control block created by the
associated READ or WRITE macro instruction.
Default: None. This operand is required.
Format: Must conform to the rules for assembler language symbols and must be
the same as the dcbname for the associated READ macro.
Notes: If register notation is used, the specified register number must be enclosed
in parentheses and the address of the DECB must previously have been loaded
into:} general register, 1 through 12.

If the user detects an empty-queue completion code in the DECB and does not
wish to wait implicitly (CHECK) or explicitly (WAIT), he may do some other (
processing. After this processing, the completion code will have been altered if a

406 OS/MFT and OS/MVT TeAM Programmer's Guide

message has been placed on the associated read-ahead queue. The user must issue
either CHECK or another READ to cause the pending READ to complete. This
technique requires one DECB per process queue.

Writing TCAM-Compatible Application Programs 407

,
)

symbol

DCB=~name t
1 (r) 5

MCOUNT

The MCOUNT macro

• returns, in register I, the number of complete messages on the input queue;
• can be issued in an application program before a GET or a READ macro to

determine how many messages are queued for the application program.

The count returned in register 1 is for the queues associated with the DCB=
operand of the MCOUNT macro. If the DCB= operand specifies an outgoing
data control block, register 1 contains a zero.

The user must issue an OPEN macro for a DCB before issuing an MCOUNT
macro referring to that DCB. The MCOUNT macro uses standard register
linkage. Registers 2 through 13 are saved by TCAM. The user must supply the
address of a save area in register 13.

One of the following codes is returned to the application program in register 15
after the MCOUNT macro executes:

Code

X'OOOOOOOO'
X'00000004'
X'OOOOOOOS'

X'OOOOOOOC'

Meaning

The MCOUNT macro ~xecuted successfully
TCAM is not in the system
The specified DCB does not define a
data set for TCAM messages
There is no destination QCB for the entry

MCOUNT has the following format:

Name Operation Operand

[symbol] MCOUNT DCB=tame~
(r)

Function: Specifies the name of the macro.
Default: None. This name is optional.
Format: Must conform to the rules for assembler language symbols (see the
symbol entry in the Glossary).

Function: Specifies an input data control block that defines the message queue for
the application program.
Default: None. This operand is required.
Format: name must conform to the rules for assembler language symbols and
must be the same as the name specified on the DCB macro.
Notes: If register notation is used, r may be any general register, 2 through 12,
that has been loaded with the address of the DCB. The specified register number
must be enclosed in parentheses.

If the DCB= operand specifies an outgoing data control block, a count of zero is
put in register 1.

Writing TeAM-Compatible Application Programs 409

TPDATE

symbol

DCB= ~name t
l(r) ~

RECDLM=l ~~s t

The TPDA TE macro

• allows the user to specify whether TCAM should delete record delimiters from
data going to the application program.

The user must issue an OPEN macro for a DCB before issuing a TPDATE refer­
ring to that DCB. The TPDATE macro uses standard register linkage. Registers
2 through 13 are saved by TCAM. The user must supply the address of a save
area in register 13.

One of the following return codes is passed to the application program in register
15 after the TPDATE macro is issued:

Code Meaning

The TPDATE macro executed successfully.
TCAM is not in the system.

X'OOOOOOOO'
X'00000004'
X'00000008' The specified DCB does not define a data set for TCAM

messages.

TPDA TE has the following format:

Name Operation Operand

[symbol] TPDATE DeB= l name ~ [,RECDI.M= l~~S f]
(r)

[,DTSAREA= 1 area P
(r)

Function: Specifies the name of the macro.
Default: None. Specification optional.

-
[,DELETE= 1 ~~s P

-

Format: Must conform to the rules for the assembler language symbols (see the
entry symbol in the Glossary).

Function: Specifies the·data control block that defines the message queue for the
application program.
Default: None. Specification required.
Format: name must conform to the rules for assembler language and must be the
same as the symbol specified on the DCB macro. If register notation is used r
may be any general register, 2 through 12, that has been loaded with the address
of the DCB. The specified register numbers must be enclosed in parentheses.

Function: Indicates whether the record delimiter specified on the TPROCESS
macro is to be returned in the low-order byte of register 1.
Default: NO (this operand is optional)
Format: YES or NO.
Notes: If no record delimiter was specified, the value in the low-order byte of
register 1 will be X'OO'.

410 OS/MFT and OS/MVT TeAM Programmer's Guide

c

DTSAREA= ~ area t
1 (r) ~

DELETE= ~ ~~s ~

Multiple-Wait Capability

Function: Specifies whether the date, time, and origin of a message obtained by
the application program are to be placed in the 16-byte area specified.
Default: None. This operand is optional.
Format: area must conform to the rules for assembler language symbols (see the
symbol entry in the Glossary). If register notation is used, r may be any general
register 2 through 12. The specified register number must be enclosed in par­
entheses.

The format of area is:

where

yy
DOD
C
HH
MM
SS =
NN

CCCCCCCC

= last two digits of the year (packed decimal)
= day of the year (packed decimal)
= sign character (for unpacking
= hours (packed decimal)

minutes (packed decimal)
seconds (packed decimal)
hundredths of seconds (packed decimal)
source (character)

If the date and time are not available, the date and time fields will contain zeros.
If the source is not available, the source field will default to blanks.
Notes: This operand requires that DATE=YES be specified on both the
lPROCESS and the PCB macros for the application program.

Function: Specifies whether the record delimiter is to be deleted from the record
sent to the application program.
Default: NO. Specification optional.
Format: YES or NO.
Notes: The TPDATE macro must be coded before the GET or READ macros
when record delimiters are to be deleted from data going to the application
program or when the date, time, and source are to be provided.

The user may achieve a multiple-wait capability by issuing more than one READ
macro to more than one process queue and then issuing aWAIT macro. In the list
specified by the ECBLIST = operand of the WAIT macro, the user would place
the addresses of the DECBs associated with the READ macros issued, as well as
any other DECBs associated with the application program. A message satisfying a
pending READ macro would cause a completion code of X'40000000' to be
placed in the associated ECB. After the WAIT macro, one or more CHECK
macros (or perhaps READ macros) should be coded so that the data will be
moved into the user's work area. For information on the WAIT macro, see
Supervisor and Data Management Macro Instructions.

After the DECB address is made available to the MCP at the time of the first
READ operation, the MCP posts (with X'40') that DECB when a message or

Writing TCAM-Compatible Application Programs 411

buffer is enqueued on the previously empty read-ahead queue. This implies that
the DECB may be posted complete after CHECK, but before the next READ.
The user should handle this possibility in case of a multiple wait (the DECB is
always eligible for posting and should never be waited for unless the user is ready
to process another work unit).

Example:
In the following section of code the user issues READ macros specifying DCBs
associated with three process queues (DCBA, DCBB, DCBC), and then issues a
WAIT macro specifying one event and having an ECBLIST= operand pointing to
a list of addresses of the DECBs associated with the READ macros. When a
pending READ macro is satisfied, a completion code of X'40000000' is placed in
the ECB associated with the READ, and the address of the EBC is placed in
register 1. If only one event is specified, the user may issue a CHECK macro
specifying register 1; this macro moves the message satisfying the READ into its
own work area (AREAA if READA was satisfied, AREAB if READB was
satisfied, AREAC if READC was satisfied).

MULWT
READA
READB
READC

LOOP

CHEKIT

DECBLIST

AREAA
AREAB
AREAC
COMP

CSECT
READ
READ
READ
WAIT
LA
L
LA
TM
BNO
CHECK

Processing
Code

DS
DC
DC
DC
DC
DS
DS
DS
EQU

END

Figure 31. Example of Multiple-Wait Capability

DECBA,SF,DCBA,AREAA
DECBB,SF,DCBB,AREAB
DECBC,SF,DCBC,AREAC
1,ECBLIST=DECBLIST
2,DECBLIST
1,0 (,2)
2,4(,2)
O(1), COMP
LOOP
(1)

OF
A(DECBA)
A(DECBB)
XLl '80'
AL3(DECBC)
100F
200F
300F
X'40'

The instruction immediately preceding the last address in the list causes the
high-order bit of the last entry to be turned on; this is an OS requirement.

Application Program Error Exits
The input and output DCB macros for TCAM-compatible application programs
permit the application programmer to specify an exit to be taken when certain
errors occur during transfer of data between the MCP and the application pro­
gram. This is the SYNAD exit, specified in the SYNAD= operand of the DCB
macro.

~
~

The open or closed, user subroutine whose address is specified in the SYNAD= (
operand receives control when certain errors occur. The user subroutine receives
input identical to that provided by QSAM and BSAM for their SYNAD exit (as

412 OS/MFT and OS/MVT TCAM Programmer's Guide

Input to the SYNAD Routine

explained in Supervisor and Data Management Macro Instructions). This
implies that SYNADAF or SYNADRLS macro instructions may be issued in the
SYNAD routine. The next section details the register contents on entry to the
SYNAD routine and the contents of the status indicator field for the SYNAD
routine, while the following section contains information on using the SYNADAF
macro.

The SYNAD routine specified by an input DCB macro is given control if 1)
message-type processing has been specified (by coding U in the OPTCD=
operand). 2) the message to be transferred by the current GET or READ macro is
larger than that portion of the work area available to it, and 3) no position field is
specified for this work area (OPTCD= does not specify C). In his SYNAD
routine, the user must close and reopen this set before issuing another GET or
READ; otherwise, TCAM will not continue to function properly. The routine is
entered after a GET or CHECK macro is issued. If the error condition occurs and
SYNAD is not specified, TCAM returns a completion code of X'00000008' in
register 15 following GET or CHECK. In this case, user code should close the
data set.

The SYNAD routine specified by an output DCB macro is given control when one
of two logical output errors occur:

1. The position field contains a value that is invalid (not X'40', X'Fl', X'F2', or
X'F3') or that indicates that the current position of the message is out of
sequence (for example, the position field indicates that this is the first portion
of the message, but the position field for the previous work unit did not indicate
end-of-message).

2. The destination name in the destination field is not a valid entry in the terminal
table.

For BSAM, this exit is entered only from the CHECK routine. If SYNAD= is not
specified, condition (1) above results in a completion code of X'00000008' in
register 15, while condition (2) results in a code of X'OOOOOOOC'.

Input to SYNAD from TCAM/SAM access method modules is compatible with
SAM. Register contents on entry to the SYNAD routine are as follows:

Register Bits

0 8-31

0
1
4
8-31

2-13 8-31

14 8-31
15 8-31

Meaning

Address of the data event control block (DECB) for BSAM;
address of status indicators for QSAM.
Bit is on for error caused by GET or READ.
Bit is on for error caused by PUT or WRITE.
Bit is on if user specified an invalid destination (PUT or WRITE).
Address of associated data control block (DCB).
Contents before the macro instruction was issued.

Return address.
Address of error analysis routine specified by the SYNAD=
operand of the input DCB.

Word five (5) of the DECB (DECB+ 16) contains the status indicator address for
BSAM support. Status indicators for the SYNAD routine are as follows:

Writing TCAM-Compatible Application Programs 413

SYNADAF

Offset from status
Indicator address Meaning

Byte Bit

+2 0 Command reject (work units out of sequence).
+13 1 Incorrect length (work area overflow).

All other fields in the SAM-compatible status indicator field are unused by
TCAM. Main storage for this block is allocated at OPEN time if the SYNAD=
keyword is coded in the DCB macro instruction or if provision is made by an
alternate source.

If the user issues a SYNADAF macro specifying BSAM or QSAM in his error
analysis routine, he receives the following values in the specified registers:

Register 1 contains the address of a buffer containing a message describing the'
TCAM/SAM error. The message consists of EBCDIC information and is in
the form of a variable length record (see table below).

Register 0 contains a return code of X'OO', right-adjusted.

See Supervisor and Data Management Macro Instructions, for further informa­
tion on the use of SYNADAF and SYNADRLS.

Format of TeAM/SAM SYNADAF Message Buffer

Bytes Contents

0-7 SAM variable (or variable blocked) length prefix

8-49 (character blanks)
50-57 job name
58 , (character comma)
59-66 stepname
67 , (character comma)
68-73 (character blanks)
74 , (character comma)
75-82 ddname (name of DD statement in which QNAME=

parameter is coded)
83 , (character comma)
84-89 macro format (GET, PUT, READ, or WRITE)
90 , (character comma)
91-105 error description (WORKAREA OFLOW, INVALID DEST, or

SEQUENCE ERROR)
106 , (character comma)
107-120 ****************
121 , (character comma)
122-125 TCAM

414 OS/MFT and OS/MVT TeAM Programmer's Guide

~"

Network Control Facilities
TCAM provides facilities for dynamically controlling the telecommunications
network through macro instructions issued in an application program. Three
macros are provided to allow the contents of a control block to be examined:
TCOPY, ICOPY, and QCOPY. Two macros are provided to allow modification
of the contents of a control block: TCHNG and ICHNG. TCAM also provides
the MRELEASE macro, which releases messages queued for an intercepted
station, and the MCPCLOSE macro (discussed in Activation and Deactivation
of the MCP Interface in this chapter), which initiates cIosedown of the Message
Control Program. These macros are described in detail below. The facilities
provided by these macros are also available using the operator commands of the
operator control facility (see each macro description below).

In order to execute, TCOPY, QCOPY, and TCHNG require at least one open
input or output DCB for this application program task.

Application-Program Network-Control Macros

Interrogation Capability

• TCOPY

• ICOPY

• QCOPY

Copy the contents of a designated terminal table entry and its
associated option fields into a work area.
Copy the contents of a specified line's invitation list into a
work area.
Copy the contents of the queue control block (and its related
priority QCBs) associated with a terminal (or process entry)
into a work area.

Modification Capability (Password Protection Optional)

• INTRO

• TCHNG

• ICHNG

• MRELEASE
• MCPCLOSE

PASSWRD= {~harS ~ Defines the password.

Place contents of work area into a terminal table entry and its
associated option fields.
Replace a specified invitation list with the contents of the
work area, or activate or deactivate all entries in the specified
list.
Activate a destination for receipt of messages from the CPU.
Initiate termination of the TCAM message control program.

In addition to these macros, TCAM provides the user with the capability of
defining his application program as a secondary operator control station (by
coding the SECTERM= operand of the TPROCESS macro) and of entering
operator commands from it by means of PUT or WRITE macros. Responses to
these commands are sent to the destination specified by the AL TDEST = operand
of the TPROCESS macro creating the terminal table, process entry associated
with the PUT or WRITE macro. For more information on the use of an applica­
tion program as an operator control station, see Entering Operator Commands
from an Application Program in the chapter Using TCAM Service Facilities.

Protection against unauthorized use of the ICHNG, TCHNG, MRELEASE, and
MCPCLOSE macros is provided by the PASSWRD= operand of these macros.
The password specified must be the same as the password specified by the

Writing TCAM -Compatible Application Programs 415

PASSWRD= operand of the INTRO macro, otherwise, the application program
macro is ignored.

The user might code a special application program designed solely to modify the
teleprocessing system in the event of errors or other unusual conditions. For
example, he might code ERRORMSG or REDIRECT macros in an inmessage
subgroup handling messages coming in over a line group. These macros could test
various bits in the message error record, and when these bits were on, the macros
could direct a special error message, or the message being handled when the error
occurred, to the process queue for the application program. The application
program could fetch error messages by GET or READ macros, analyze them, and
issue operator commands (if it were designated a secondary operator control
station by the TPROCESS macro) or network-control macros to modify the
system in a manner appropriate to the error detected.

The user is required to have at least one open TCAM DCB in the application
program task in which these network-control macros are issued. To insure
reliability, the statname operand of the TCOPY and MRELEASE macros arid the
termname operand of the TCHNG and QCOPY macros should not exceed the
value coded in the MAXLEN= operand of the TT ABLE macro. Since the user is
not required to place the name in an eight-byte field, left-adjusted and padded
with blanks, TCAM cannot check the validity of a name with respect to length.
This may result in finding a match in the termname table that exceeds the
maximum termname length in the MCP.

416 OS/MFT and OS/MVT TeAM Programmer's Guide

(

)

TCOPY

The TCOPY macro

• permits examination of the contents of a terminal table entry and its associated
option fields;

• is optional in a TCAM application program.

TCOPY moves the contents of a designated terminal table entry to a work area,
together with the contents of any option fields that are associated with the entry.
The terminal table entry may be any of the entry types.

Various functions of TCOPY are also provided by the STSTATUS and
OPTFIELD operator commands (see the Operator Commands section in Using
TCAM Service Facilities). Execution of TCOPY alters the contents of registers
14 and 15.

The dummy section (DSECT) describing the single, line, and group, terminal table
entries has the following format:

The length of the TRMOPT field is variable. If no OPTION macros are coded in
the MCP, no space is allocated for the TRMOPNO field, the TRMOPTBL field,
or the TRMOPT field. A variable number of device-characteristics fields follow
the TRMOPT field (if OPTION macros are coded) or the TRMCHCIN field (if
no OPTION macros are coded). The first byte of each device-characteristics field
contains the binary length of the rest of the field; the rest of the field contains the
device-dependent data.

In addition to the contents of the terminal table entry itself, TCOPY moves the
contents of any option fields associated with a terminal table entry into the

TRMSTATE TRMDESTQ

0 +1
I

TRMINSEQ TRMOUTSQ :~ +4 +6

TRMALTD TRMDEVFL :8 +8 +10

TRMSIO ITRMTEMPR'TRMSE~~
+12 +14

TRMCHCIN TRMOPNO TRMom<8
+16 +17 +18 t

TRMOPT
Start of device
characteristics field

+20

Figure 32. Terminal Table DSECT for Single, Line, and Group Entries

Writing TCAM-Compatible Application Programs 417

symbol

stat name

specified work area. The first option field immediately follows the last device­
characteristics field in the work area. A two-byte field named TRMOPTBL,
located at an offset of 18 bytes from the beginning of the terminal table entry,
contains the offset from the beginning of the terminal table entry to the beginning
of the first option field in the user's work area.

The user must ensure that his work area is large enough to accommodate the
largest possible string of data moved into it by TCOPY. (If the work area is not
large enough to accommodate the data, the contents of main storage adjoining the
work area are overlaid and lost.) The user may determine the length of the longest
possible string of data that the TCOPY macro can move into his work area by
looking at the assembly listing for his MCP. Under each TERMINAL, TLIST,
TPROCESS, and LOG TYPE macro expansion are contn)l sections having
TERMINAL ENTRY, OPTION OFFSETS, and DEVICE-DEPENDENT FIELDS in their
comment fields. These CSECTs indicate the length of the terminal table entry,
the option-field offsets, and the device-characteristics fields, respectively. The
user should find the sum of these lengths for each terminal table entry he might
wish to copy using TCOPY, and add to this sum the total length of the option
fields associated with that entry. The work area named in TCOPY should contain
a number of bytes equal to or greater than the largest sum obtained in this way.

One of the following return codes is returned to the application program in
register 15 after the TCOPY macro is issued:

Code Meaning

X'OOOOOOOO' The TCOPY macro executed successfully.
X'00000008' TCAM is not in the system.
X'OOOOOOOC' A TCAM application-program DCB is not open; at least one

input or output DCB must be open in order for this macro to
execute.

X'00000020' An invalid station name is specified in the field of the TCOPY
macro (that is, no such entry exists in the terminal table).

For a complete description of terminal table entries, see the discussion in section
5, Data Area Layouts, in the TCAM PLM.

TCOPY has the following format:

Name Operation Operands

[symbol] TCOPY statname, areaname

Function: Specifies the name of the macro.
Default: None. Specification optional.
Format: Must conform to the rules for assembler language symbols (see the
symbol entry in the Glossary).

Function: Specifies the name of the station whose contents are to be moved to
the work area.

(

\"

Default: None. This operand is required. (..
Format: Must conform to the rules for assembler language symbols and be the
same as the name for the station specified in the MCP terminal table.

418 OS/MFT and OS/MVT TCAM Programmer's Guide

areaname

Notes: If register notation is used, the register must previously have been loaded
with the address of a field containing the entry name. The name must be left­
adjusted and padded with blanks to equal the longest allowable station name.
Permissible registers are 0, 2 through 12, 14, and 15.

Function: Specifies the name of the work area into which the contents of the
terminal table entry and its associated option fields are to be placed.
Default: None. This operand is required.
Format: Must conform to the rules for assembler language symbols.
Notes: If register notation is used, the register must previously have been loaded
with the address of the work area. Framing parentheses must be coded. Permissi­
ble registers are 1 through 12, 14, and 15.

Writing TCAM-Compatible Application Programs 419

ICOPY

The ICOPY macro

• permits examination of the contents of an invitation list;
• is optional in a TCAM application program.

The ICOPY macro moves the contents of a designated invitation list to a work
area. The function of ICOPY is not provided by the operator control facility.
However, the ACTV ATED and ST ATDISP operator commands cause display of
the active and inactive terminals in a list and the status byte of an invitation list,
respectively. Execution of ICOPY alters the contents of registers 14 and 15.

One of the following codes is returned to the application program in register 15
after the ICOPY macro is issued:

Code

X'OOOOOOOO'
X'00000004'

X'00000008'
X'00000020'

Meaning

The ICOPY macro executed successfully.
An invalid relative line number is specified in the rln field of
the ICOPY macro.
TCAM is not in the system.
The name specified is not the name of an opened, TCAM line
group DCB.

For a complete description of the invitation list, see Defining Terminals and
Line Control Areas.

Figure 33 below illustrates the format of an invitation list with three entries.
Individual fields in the invitation list are discussed following the illustration.
Control Information:

Byte Meaning

o Indicates the total number of entries (both active and inactive) in this
invitation list. All zeros in this byte indicates that this invitation list is for
an output-only line (stations on this line cannot enter messages). This
invitation list contains three entries.

Indicates the number of active entries in this invitation list (an active
entry is one that is currently eligible to be polled). This invitation list
contains two active entries.

2 Indicates the number of bytes, including a one-byte index used by TCAM,
in each entry in this list. The sample invitation list in the illustration
above contains entries of three bytes each. The index byte must be the
last byte in each entry.

3 Bits 0 through 5 in byte 3 are control bits used by TeAM (their contents
mustnot be altered). If bit 6 is on, this is an active invitation list (it is
being polled); if it is off, this invitation list is not currently eligible to be
polled. If bit 7 is on, the Auto Poll feature is being used on the line corre­
sponding to this invitation list; if it is off, programmed polling is in effect
(this bit is meaningless if bit 6 if off). Bits 6 and 7 are both on in the
sample invitation list, thus, this list is currently being polled by using the
Auto Poll feature.

420 OS/MFT and OS/MVT TeAM Programmer's Guide

I I I I

X'03' X'02' X'03' CPU identifier

I I 1
Control byte: 0 1 2/3 4~ 5 6 7 8
Information

II I t I
rCA, Ttra; bij

1 1

bit: 0 1 2 3 4 5 6 7

'. I-byte '. I-byte
Active polling

index used
polling

index used
Entries charicters byTCAM charrters by TCAM

-1

8 9 10 11 12 13 14

Delimit'lr E 14 15

Inactive polling I-byte

Entries charrters
.index used
by TCAM

15 16 17

Figure 33. Sample Invitation List Containing Three Entries

4-7 For non-buffered terminals, bytes 4 through 7 contain either all zeros or
the address of a field that identifies the central processing unit into which
TCAM is loaded. For buffered terminals, bytes 4 through 7 indicate the
following:

Byte Meaning

4 A one-byte count of the terminals on this line to which TCAM is current­
ly sending.

5 Contains X'OI' if the line is eligible for Auto Poll.

6 (unused)

7 A one-byte count of the total number of terminals on the line.

The contents of bytes 4 through 7 must never be altered.

Active Entries:

Byte

8-10

Meaning

Bytes 8 through 10 represent the first active entry in this invitation list.
The polling characters for a station (or a component) are contained in the

Writing TCAM-Compatible Application Programs 421

symbol

grpname

two-byte field starting at byte 8; although all the entries in this list use
two-byte fields to contain polling characters, other lengths may be used.
Byte 10 contains an index used by TCAM; this index must not be altered.

11-13 Bytes 11 through 13 represent the second active entry in this sample
invitation list. (The same general discussion of bytes 8-10 also applies
here.)

DeHmiter:

Byte Meaning

14 For an invitation list containing entries for BSC devices, an EOT charac­
ter followed by X'FE' serves as a delimiter to indicate the end of the list
of active entries. For start-stop devices, the delimiter is X'FE' without an
EOT character.

In this sample invitation list, entries are for start-stop devices. Two, active,
three-byte entries precede the delimiter, and byte 0 indicates that there are three
entries; consequently, there is a third entry in this invitation list (and since it
follows the delimiter, it is an inactive entry). The delimiter must not be altered.

Inactive Entry:

Byte Meaning

15-17 Bytes 15 through 17 represent the first inactive entry in this invitation list.
(The same general discussion of bytes 8-10 also applies here, except that
this is an inactive entry.)

ICOPY has the following format:

Name Operation Operands

[symbol] ICOPY grpname ,rln,areaname

Function: Specifies the name of the macro.
Default: None. Specification optional.
Format: Must conform to the rules for assembler language symbols (see the
symbol entry in the Glossary).

Function: Specifies the name of the line group containing the line whose invita­
tion list is to be displayed.
Default: None. This operand is required.
Format: Must conform to the rules for assembler language symbols, and be the
same as that specified in the DDNAME= operand of the DCB macro for the line
group.
Notes: If register notation is used, the register specified must have previously
been loaded with the address of a field containing the grpname. Permissible
registers are 1-12, 14, and 15. Framing parentheses must be coded. The name
must be left-adjusted and padded with blanks to eight characters.

422 OS/MFT and OS/MVT TeAM Programmer's Guide

c

rln

aFeaname

Function: Specifies the relative line number, within the line group, of the line
whose invitation list is to be displayed.
Default: None. This operand is required.
Format: Unframed decimal integer greater than zero.
Maximum: 255
Notes: If register notation is used, the relative line number must previously have
been loaded (in binary form and enclosed in parentheses) in the register designat­
ed. Permissible registers are 0, 2 through 12, 14, and 15.

Function: Specifies the name of the work area into which the designated invita­
tion list is to be moved.
Default: None. This operand is required.
Format: Must conform to the rules for assembler language symbols.
Notes: The number of bytes to be allowed for each entry in the list depends upon
the type of entry in the list.

If register notation is used, the register number specified must be enclosed in
parenthe3es and must contain the address of the work area. Permissible registers
are 2 through 12, 14, and 15.

Writing TCAM-Compatible Application Programs 423

QCOPY

The QCOPY macro

• permits examination of a queue control block;
• is optional in a TCAM application program.

QCOPY causes the contents of both a destination queue control block (QCB) and
its related priority QCBs to be copied into a designated work area. The QCB is an
internal TCAM control block associated with a destination queue. For a complete
description of queue control blocks, see the discussion in Section 5, Data Area
Layouts in the TCAM PLM. A master QCB is 40-bytes and always has associat­
ed with it at least one priority QCB (even if priorities are not specified for this
destination QCB's corresponding station in the station's LEVEL= operand of its
TERMINAL macro). Each priority QCB is 28 bytes; therefore, the formula for
determining the number of bytes needed in the work area in the user's application
program is:

68 + 28n bytes

where n is the number of different priorities specified (for the station whose
associated QCB is being copied) in the station's LEVEL= operand of its
TERMINAL macro.

Part of the function of QCOPY is also provided by the QST ATUS and
RLNST ATN operator commands (see their descriptions in the Operator
Commands section of the chapter Using TCAM Service Facilities).

One of the following return codes is passed to the application program in register \~
15 after the QCOPY macro is issued:

Code

X'OOOOOOOO'
X'00000004'

X'00000008 '
X'OOOOOOOC'

X'00000020'

X'00000080'

Meaning

The QCOPY macro executed successfully.
Invalid terminal table entry type (for example, distribution list
or cascade list is specified in the termname field).
Invalid terminal table entry type (for example, distribution list
A TCAM application program DCB is not open; for this macro
to execute, at least one input or output DCB must be open.
An invalid station name is specified in the termname field of
the QCOPY macro (that is, no such entry exists in the terminal
table).
The iterative process has been completed the number of times
specified by the LIMIT=operand.

QCOPY has the following format:

Name Operation Operands

[symbol] QCOPY termname,areaname [,LIMIT= {integer }]
(register)

424 OS/MFT and OS/MVT TeAM Programmer's Guide

symbol

termname

areaname

LIMIT=J integer }
t (register)

Function: Specifies the name of the macro.
Default: None. Specification optional.
Format: Must conform to the rules for assembler language symbols (see the
symbol entry in the Glossary).

Function: Specifies the name of the terminal table entry whose OCB is to be
displayed, or the name of the last terminal table entry that had its OCB displayed
if using iterative processes and selection criteria. See notes following the LIMIT =
operand.
Default: None. This operand is required.
Format: Must conform to the rules for assembler language symbols and be
identical to the name of the terminal table entry. If using iterative processes and
selection criteria, must be blank. If register notation is used, the specified register
number must be enclosed in parentheses, and the register must contain the address
of a field containing the name of the entry. The name must be left justified and
padded with blanks to the length of the longest allowable station name in the
table.

Function: Specifies the name of the work area into which the contents of the
designated OCB are to be placed.
Default: None. This operand is required.
Format: Must conform to·the rules for assembler language symbols. If register
notation is used the specified register number must be enclosed in parentheses,
and the register must have been loaded previously with the address of the work
area. Permissible registers are 2 through 12.

Function: Indicates that an interactive process and selection criteria are to be
used. The number specified is the minimum number of messages for which the
routine will select a terminal table entry.
Default: None. Specification optional
Format: LIMIT = integer or LIMIT = (register)
Minimum: 1
Maximum: 4095
Notes: If register notation is used a register number may be enclosed in parenthes­
es or a symbol equated to a register number may be enclosed in parentheses.
Registers 2 through 12 may be used. If this operand is not coded, the OCOpy
routine will display the OCB for the designated terminal name. If coded, a
terminal name subsequent to the one specified in operand 1 with at least the limit
number of messages in its queue will be returned in the original terminal name
area and its QCB will be displayed.

OCOpy iterative processes and selection criteria enable the user to display all
OCBs for terminals having some threshold number of messages queued. The
threshold is specified in the LIMIT = operand.

Writing TCAM-Compatible Application Programs 425

TCHNG

~ymbol

The TCHNG macro

• places specified data in a termin~l table entry and its associated option fields;
• is optional in a TCAM application program.

TCHNG causes the contents of a designated work area to replace the contents of
a specified terminal table entry. The TCOPY macro may be used to move the
contents of a terminal table entry to a work' area where the contents are manipu­
lated as desired (see the discussion of the TCOPY macro for a description of a
terminal table entry). The TCHNG macro is then used to move the modified
entry back to the terminal table. Option fields are modified in the same manner
by this macro.

All necessary information for proper execution of TCAM must be placed in the
terminal-table entry in proper form. The contents of option fields may also be
modified by the DATOPFLD operator command (see the Operator Commands
section of this publication).

One of the following return codes is returned to the application program in
register 15 after the TCHNG macro is executed:

Code

X'OOOOOOOO'
X'00000008 '
X'OOOOOOOC'

X'OOOOOOI4'

X'00000020'

Meaning

The TCHNG macro executed successfully.
TCAM is not in the system.
A TCAM application program DCB is not open; at least one
input or output DCB must be open for this macro to execute.
Either a) an invalid protection password is specified as the
PASSWRD= operand of the TCHNG macro; or b) the
PASSWRD= operand is not specified in the TCHNG macro
(and it must be specified because the INTRO macro's
PASSWRD= operand specifies a protection password; code
this operand exactly as it is coded in the INTRO macro).
An invalid station name is specified in the termname field 'Of
the TCHNG macro (that is, no such entry exists in the terminal
table).

TCHNG has the following format:

Name Operation Operands

[symbol] TCHNG termname,areaname [,P ASSWRD= chars]

Function: Specifies the name of the macro.
Default: None. Specification optional.
Format: Must conform to the rules for assembler language symbols (see the
symbol entry in the Glossary).

426 OS/MFT and OS/MVT TeAM Programmer's Guide

c

termname

areaname

PASSWRD=char,

Function: Specifies the name of the terminal table entry whose contents are to be
replaced by the contents of the designated work area.
Default: None. This operand is required.
Format: Must conform to the rules for assembler language symbols and be
identical to the name of the station as specified in the terminal table.
Notes: If register notation is used, the specified register number must be enclosed
in parentheses, and the register must contain the address of a field containing the
name of the terminal table entry, left-adjusted and padded with blanks. The field
must be as long as the longest allowable station name, a maximum of eight charac­
ters. Permissible register are 2 through 12.

Function: Specifies the name of the work area from which the information is to
be moved into the terminal table entry.
Default: None. This operand is required.
Format: Must conform to the rules for assembler language symbols.
Notes: The first byte of the entry receives the first byte of data in the work area,
which must accordingly be the status byte. The work area should be at least as
long as the longest terminal table entry that will be changed.

If register notation is used, the specified register number must be enclosed in
parentheses, and the register must contain the address of the work area. Permissi­
ble registers are 2 through 12.

The new entry must contain, in proper form, all information necessary for success­
ful operation of TeAM. See the description of the terminal table entries in the
chapter Defining Terminal and Line Control Areas.

Function: Specifies the protection password that qtables only qualified applica­
tion programs to issue the macro.
Default: None. If the PASSWRD= operand of the INTRO macro was coded,
this operand is required. Otherwise, specification optional.
Format: One to eight, nonblank characters, unframed.
Notes: If coded, this operand must specify the same characters as were specified
in the INTRO macro.

Writing TCAM-Compatible Application Programs 427

ICHNG

The ICHNG macro

• modifies an invitation list;
• is optional in TCAM application programs.

ICHNG causes the contents of a designated work area to replace the contents of a
specified invitation list, or the stations in the specified list to be activated or
deactivated for entering messages (if they are polled stations). ICOPY macro may
be used to move the contents of an invitation list to a work area where the con­
tents are manipulated as desired. The ICHNG macro may then be used to move
the modified list contents back to the invitation list. For a complete description of
the invitation list, see Establishing Contact in the chapter Defining Terminal
and Line Control Areas in this book. A sample invitation list containing three
entries is presented in the discussion of ICOPY.

If the macro is used to replace the contents of a specified invitation list with the
contents of a work area, all necessary information for proper execution of TCAM
must be placed in the invitation list in proper form. Entries in an invitation list
may also be activated or deactivated by the ENTERING, NOENTRNG,
NOTRAFIC, and ACTVBOTH operator commands. The Auto Poll facility may
be activated or deactivated by the AUTOSTRT and AUTOSTOP operator
commands, respectively (if the autopoll bit is turned on in the UCB). See the
description of these commands in the Operator Commands section of this publi­
cation. Stopping and starting of lines before and after changing the contents of an
invitation list is handled automatically for the TCAM user. Execution of ICHNG
alters the contents 'of registers 14 and 15. ;i!

One of the following codes is returned to the application program in register 15
after the ICHNG macro is issued:

Code

X'OOOOOOOO'
X'OOOOOOOI '
X'00000004'

X'00000008'

X'OOOOOOOC'
X'OOOOOOI4'

X'00000020'

Meaning

The macro executed successfully.
The DCB for the line group specified by grpname is not open.
An invalid name is specified for the grpname operand of the
ICHNG macro.
An invalid relative line number is specified in the rln field of
the ICHNG macro (that is, no such relative number exists for
the group).
TCAM is not in the system.
The PASSWRD= operand is not specified or is specified
incorrectly in the ICHNG macro (and it must be specified
because the INTRO macro's PASSWRD= operand specifies a
protection password; code this operand exactly as it is coded in
the INTRO macro).
The grpname is invalid.

ICHNG has the following format:

428 OS/MFT and OS/MVT TeAM Programmer's Guide

\1jj

(

symbol

grpname

rln

~ areaname ~
ACT
DE ACT

Name Operation Operands

[symbol] ICHNG grpname,rln{ areanam1
ACT
DEACT [,PASSWRD=chars]

Function: Specifies the name of the macro.
Default: None. Specification optional.
Format: Must conform to the rules for assembler language symbols (see the
symbol entry in the Glossary).

Function: Specifies the name of the line group containing the line whose invita­
tion list is to be modified.
Default: None. This operand is required.
Format: Must conform to the rules for assembler language symbols and be
identical to the name specified on the DD statement associated with the line
group.
Notes: If register notation is used, the specified register number must be enclosed
in parentheses, and the address of a field containing the grpname must previously
have been loaded into the general register specified. The name must be left­
adjusted in the field and padded with blanks to equal eight bytes. Permissible
registers are 1 through 12, and 14.

If the DCB for the line group has not been opened, ICHNG is not executed and a
return code of X'OI' is set in register 15.

Function: Specifies the relative line number within the line group of the line
whose invitation list is to be modified.
Default: None. This operand is required.
Format: Unframed decimal integer greater than zero.
Maximum: 255
Notes: If register notation is used, the register number specified must be enclosed
in parentheses, and the register must previously have been loaded with the relative
line number in binary format. Permissible registers are 1 through 12, and 14.

Function: Specifies the type of modification or the modification itself.
Default: None. This operand is required.
Format: areaname, ACT, or DEACT. areaname must conform to the rules for
assembler language symbols.
Notes: areaname specifies the name of the area that contains the new invitation
list. The first byte of the invitation list receives the first byte of the data in the
work area, which accordingly must be the first byte of the invitation list control
word.

ACT causes the activation of all entries in the specified invitation list. DEACT
causes deactivation of all entries in the specified invitation list. No further polling
will occur until the list is reactivated by an ICHNG macro specifying ACT, or an
ENTERING operator command.

Writing TCAM-Compatible Application Programs 429

PASSWRD=chars

Register notation may be used for areaname. If register notation is used, the
specified register number must be enclosed in parentheses, and the address of the
work area must previously have been loaded into the register specified. Permissi­
ble registers are 1 through 12, and 14.

If areaname is specified, the new invitation list must contain, in proper format, all
information necessary for successful operation of TCAM. See the description of
the ICOPY macro for the format of the control word and of an invitation list.

Function: Specifies the protection password that enables only qualified applica­
tion programs to issue the macro.
Default: None. If the PASSWRD= operand of INTRO was coded, this operand
is required. Otherwise, specification optional.
Format: One to eight non blank characters, unframed.
Notes: If coded, this operand must specify the same characters as specified by the
PASSWRD= operand of INTRO. If the characters do not agree, or if INTRO
specified PASSWRD= but this macro does not, ICHNG does not execute.

430 OS/MFT and OS/MVT TeAM Programmer's Guide

symbol

statname

MRELEASE

The MRELEASE macro

• releases messages queued for a destination,
• reactivates a destination made inactive by a HOLD macro or a SUSPXMIT

operator command.

The MRELEASE macro releases messages queued for a station. This macro has
the same effect as the RESMXMIT operator command.

One of the following codes is returned to the application program in register 15
after the MRELEASE macro is issued:

Code Meaning

X'OOOOOOO' The MRELEASE macro executed successfully.
X'OOOOOOI' There is no open DCB in the program.
X'0000004' The MRELEASE macro did not execute because the station is

already receiving its queued messages.
X'OOOOOOC' TCAM is not in the system.
X'0000014' The MRELEASE macro did not execute because either

a) the protection password specified in the PASSWRD= operand
does not match the protection password specified by the
PASSWRD= operand of the INTRO macro, or

b) a protection password is not specified in the PASSWRD=
operand of the MRELEASE macro (and it must be specified
because the INTRO macro's PASSWRD= operand specifies a
protection password). Code the PASSWRD= operand exactly as
it is coded in the INTRO macro.

X'0000018' The MRELEASE macro did not execute because
a) statname is not a single entry in the terminal table,
b) there is no HOLD macro in the system, or
c) the station uses main-storage queues only.

X'0000020' The MRELEASE macro did not execute because an invalid station
is specified in the statname field of the macro.

MRELEASE has the following format:

Name Operation Operands

[symbol] MRELEASE statname [,PASSWRD=chars]

Function: Specifies the name of the macro.
Default: None. Specification optional.
Format: Must conform to the rules for assembler language symbols (see the
symbol entry in the Glossary).

Function: Specifies the name of the station that is now to receive its queued
messages.
Default: None. This operand must be specified.
Format: Must conform to the rules for assembler language symbols and be the

Writing TCAM-Compatible Application Programs 431

PASSWRD= chars

same as the name of the terminal entry.
Notes: If register notation is used, the address of a location containing the name
of the station must be placed in the general register, 2 through 12, that is indicated
in parentheses. The name must be left-adjusted and padded with blanks to the
length of the longest station name.

Function: Specifies the protection password that enables only qualified applica­
tion programs to issue the macro.
Default: None. Specification optional.
Format: One to eight nonblank, unframed characters.
Notes: If the PASSWRD= operand is specified on tq.e INTRO macro in the
MCP, this operand must be specified and must be same as the INTRO value. If
they do not match or if this operand is omitted, but a value is specified for
INTRO, the MRELEASE macro does not execute.

TeAM's Message Retrieval Facility
During the operation of a telecommunications system, it may be necessary to
retrieve a message that has already been placed on a destination queue located in a
message queues data set on any combination of reusable and nonreusable disk.
Messages cannot be retrieved from main-storage-only queues. TCAM uses a
combination of POINT with GET or READ macro instructions to retrieve the
desired message. After the message has been retrieved, user code may process it
as appropriate and direct it to a desired destination. The message may be re­
trieved, whether or not it has already been sent to its destination, provided that
the entire message has been queued on disk at the time that the POINT macro is
executed.

If the application-program work area is too small to contain the entire message,
the next GET or READ macro referring to the same DCB retrieves the rest of the
message if C is specified in the OPTCD= operand of the appropriate input DCB
macro. If C is not specified, the SYNAD= exit is taken. If the user does not want
the application program to retrieve the rest of the message, he may so specify by
issuing a POINT macro whose address operand points to a block containing the
station name followed by a X'40' (see the description of the address operand of
the POINT macro below).

Since an output sequence number is not assigned to a message until it is actually
sent to the destination, no message can be retrieved by output sequence number
until it has been sent.

432 OS/MFT and OS/MVT TeAM Programmer's Guide

I~

c

POINT

The POINT macro

• returns a station identification to the application program.

The POINT macro is used in conjunction with GET or READ to identify a station
by passing, in a register or a field, the station identification and the sequence
number of the message to be retrieved. Registers that may be altered during
execution of the POINT routine are 0, 1, 14, and 15. A multiple retrieval facility
allows the llser to request the return of all information in the queue back-chain.
The user is responsible for examining this information to find the desired message.
The queue-back chain is a time-sequential record of the sending and receiving
message traffic for the terminal or terminals of a specific destination QCB.
TCAM maintains this chain for the message retrieval function of application
programs. A message that has already been sent can be retrieved by source (input)
or by destination (output) sequence number.

The advantage of using multiple retrieval is a reduction in the number of disk
accesses to retrieve more than one message.

To perform multiple retrieval an application program will set up the required input
to the POINT macro (seding the high-order bit in the sequence number field to
trigger the function) and issue the POINT macro followed by a GET or READ
macro for each message. The sequence is:

POINT
READ

POINT
READ

not

POINT
READ

READ
READ

The user does not reinitialize the POINT macro fields for each message.

The following information is moved into the user work area in front of each
retrieved message:

Field

Source offset
Message status
Input sequence number
Output sequence number
Destination offset
Number of reserves

The field definitions are:

Number of bytes

2
1
2
2
2

Writing TCAM-Compatible Application Programs 433

Source offset is the index value into the termname table for the source terminal.

Message status is a byte containing the following information needed by the user.
The TM instruction should be used for testing this byte. Bit combinations not
shown should be ignored by the user.

X'O l' Not the first buffer of a message.

X'02' Not the last buffer of a message.

X'08' Duplicate header.

X'40' Error message is in this buffer.

X'80' Cancel message has been executed.

Input sequence number provides a means of ensuring that messages are received
from a source in the correct order.

Output sequence number is placed in the Header of a message by TeAM that
determines the order in which I!lessages were sent to a destination by the
computer.

Destination offset is a two-byte index to the termname table entry of a destination
or station.

Number of reserves (see the RESERVE= operand of the line group
DCB macro).

One of the following codes is returned to the application program in register 15 '<4

after the POINT macro is issued:

Code

X'OOOOOOOO'
X'00000004 '

X'00000008'

X'OOOOOOOC'

Meaning

The POINT macro executed successfully.
No message having the specified sequence number is queued in
the specified destination queue.
The destination name specified is not a valid entry in the terminal
table.
1) The specified destination queue is not located in a data set

residing on disk.
2) The user tried to specify GET process entry as the message

source (that is, he specified I in conjunction with the name of a
GET process entry).

3) The user tried to specify PUT process entry as the message
destination (that is, he specified a in conjunction with the
name of a PUT process entry).

4) DISK= NO was specified on the INTRa macro instruction.

POINT has the following format:

Name Operation Operands

[symbol] POINT dcbname,address

434 OS/MFT and OS/MVT TeAM Programmer's Guide

~~mbol

dcbname

addre~~

Function: Specifies the name of the macro.
Default: None. Specification optional.
Format: Must conform to the rules for assembler language symbols (see the
symbol entry in the Glossary).

Function: Specifies the name of the data control block in the application program
for the subsequent GET or READ associated with the POINT macro.
Default: None. This operand is required.
Format: Must conform to the rules for assembler language symbols and must
agree with the name of the DCB macro for the associated data control block.
Notes: If register notation is used, the address of the data control block must
previously have been loaded in register 1, or 2 through 12. The register must be
coded within framing parentheses.

Function: Specifies the symbolic address of a field needed for the POINT macro.
Default: None. This operand is required.
Format: Must conform to the rules for assembler language symbols.
Notes: address is the symbolic address of a field containing a block with three
contiguous fields:

1. An eight-byte field containing the station name, left-adjusted and padded with
character blanks (X'40').

2. Either I (X'C9') or output sequence number, respectively. This field contains a
blank (X'40') for retrieval termination.

3. A two-byte binary sequence number, right-adjusted with leading binary zeros.
If register notation is used, the address of this area must previously have been
loaded in a register, 1 through 12. Framing parentheses must be coded.

TeAM'S Inquiry/Response Facilities

Line Lock

TCAM provides two means of achieving inquiry / response interactions between a
station and an application program. One, called line lock, involves establishing a
physical connection between a station and an application program, and maintain­
ing this connection for the duration of the conversational interaction. Line lock,
achieved by a LOCK macro, renders the line unavailable to other stations for the
duration of the conversational interaction.

The other means is called terminal lock. Terminal lock involves establishing a
logical connection between a station and an application program so that the
station receives responses to its inquiries without tying up the line. Terminal lock,
achieved by use of HOLD and MRELEASE macros used in conjunction with
TeAM's message priority scheme, assures the station that the next message it gets
after it enters an inquiry is the response to that inquiry, but does not render the
line unavailable to other stations while the inquiry is being processed. The
terminal lock capability can be used by stations taking advantage of TCAM's
buffered terminal support, whereas the line lock capability cannot.

TCAM can maintain a connection between a station and an application program
for a period of time not less than the duration of the message and its response.
This feature is called lock mode, and is supplemented by a hardware feature
known as conversational mode. In this mode, a station is able to accept a text
response to an inquiry message without having to be selected before receiving the

Writing TCAM-Compatib1e Application Programs 435

response. Lock mode and the conversational feature are complementary functions.
Both shorten the interval between an inquiry and its response.

Lock mode is used for inquiry applications. For fastest response, the station
remains on the line until an application program returns the required information.
While the station is in lock mode, no incoming messages are accepted from any
other station on the line, and no outgoing messages other than the response
message are sent to any station on the line (including the station in lock mode).
Many stations on other lines may be simultaneously locked to the same application
program.

There are two types of lock mode-message lock and extended lock. The desired
function is specified by an operand of the LOCK Message Handler macro instruc­
tion.

If the station is in message lock mode, the connection is maintained while the
entire message is· sent to an application program and until the response message
arrives. The first message from the application program to arrive at the destinatjon
queue for the locked station is assumed to be the response. The line is automati­
cally freed when the response has been sent.

In extended lock mode, the same station is polled again after the response has
Deen sent to it. If the response is positive, the next inquiry message is entered by
the station. If the response is negative, the station is repolled until a positive
respons~ is received. Lock mode is maintained until an UNLOCK macro is issued.

Once a station is .in extended lock mode, all messages entered by it are assumed to
be inquiry messages directed to the application program to which the station is (~

locked. Destinations specified in the headers of messages and checked by a I~
FORWARD macro are overridden when the station is in extendeQ lock mode.
Therefore, once extended lock mode is in effect, the FORWARD macro must be
executed after the UNLOCK macro to be effective.

Message lock is used if a single inquiry will provide all the information required.
For instance, an inventory application might handle inquiries requesting the
quantity of a certain part in stock. Extended lock mode is used if a series of
inquiries must be made, each requiring a response. In a credit application, the
inquiries might ask if a person has an account, await verification, and then request
the credit balance. (Lock mode is not supported for stations using TCAM's
buffered terminal support by specifying the BFDELA Y = operand of their
TERMINAL macros.)

Either form of lock mode may be entered unconditionally or conditionally.
Conditional execution occurs when a message header containing a control charac­
ter or character string is processed by a LOCK macro specifying that character.

The UNLOCK macro is used to remove a station locked to an application program
from extended lock mode. It may also be issued either unconditionally or condi­
tionally depending upon a control field specified by both macro and message
header. When used in an inmessage or outmessage subgroup, the UNLOCK macro
function depends on the occurrence of a specified error, or it may be specified
unconditionally. See the con chars operand of the UNLOCK macro.

If a station locked to an application enters a message and a quick closedown is C
initiated or the line is stopped by operator control, the response is received before

436 OS/MFT and OS/MVT TeAM Programmer's Guide

the station is deactivated. If the application program data set is closed, TCAM
automatically disconnects from lock mode all stations locked to that application
program using the deactivated data set.

The user must issue a valid PUT, CLOSE, or WRITE macro for each lock inquiry
in order for a line to be eligible to be stopped.

The various forms of lock mode are summarized in the following table.

Message Form Extended Form

CONDITIONAL Coded: LOCK Coded: LOCK

MESSAGE, A EXTENDED, B

Locked: When LOCK is Locked: When LOCK is
executed, if A is the executed, if B is the
next character in the next character in the
header of the message header of the message
currently being handled currently being handled
by inheader subgroup. by inheader subgroup.

Unlocked: When response Unlocked: On
has been sent. execution of an

UNLOCK macro.

, Coded: LOCK MESSAGE Coded: LOCK EXTEND

\ Locked: When LOCK is
UNCONDITIONAL 'Locked: When LOCK is

EXECUTION)eXecuted. ~ executed. ,
, Unlocked: When response Unlocked: On
has been sent execution

of an UNLOCK macro.

The conversational mode feature is specified by the CONY = operand of the
ST ARTMH macro. When the computer receives a message from a station using
this feature, instead of sending the normal positive acknowledgment. the computer
sends a response message (from an application program) to the station. The
station interprets this as a positive response. Transmission in this manner saves
two line turnaround sequences.

If conversational mode is specified, a logical block of data being entered by a
station is treated by TCAM as if it were a complete message. That is, an EOB or
ETX line-control character is assumed to be an EOT. Conversational mode may
occur only for receiving and is operative only if the station is placed in lock mode
when the message is processed by the inheader subgroup.

Conversational mode may be specified unconditionally (CONV= YES) or condi­
tionally by the use of an option field. The CONY = operand specifies a bit setting
and a one-byte option field. If any of the bits in the option field are on, conversa­
tional mode will be used for this Message Handler. (If the option field is longer
than one byte, the first byte in the field is the one tested.)

Writing TCAM-Compatible Application Programs 437

If logical messages are handled by the inheader subgroup in which a LOCK macro
appears, only those logical messages formed by blocking two or more incoming
physical transmissions may be processed (and the inblock subgroup's SETEOM
macro must specify PROCESS=NO). Logical messages are discussed in
Handling Logical Messages in this chapter. Line lock is achieved after TCAM
detects the EOM character ending the logical message-thus, several physical
messages may arrive at the CPU before line lock is established. To achieve
conversational mode, specify CONV=YES in the STARTMH macro, and
QBY=T in the TERMINAL macro for the source station.

An example of an MCP and an application program using message lock and
conversational mode is shown in the Sample MCPs section.

There are several coding considerations for the three macro instructions involved
in utilizing TCAM's inquiry/response facility. They are based upon the type of
station being used, the logic of the application program, and the interaction with
other Message Handler macro instructions. These considerations are summarized
here.

LOCK

• Required for audio terminals.
• Is suggested for a 3735 attached to a switched line.
• Cannot be used with any station using TCAM's buffered-terminal support.
• Should not be used if the logic in the application program requires that certain

inquiry messages not be provided a response (when a station sends an inquiry
in lock mode, an application program must send a response to the inquiry
station, otherwise, the line may be lost either to the inquiring station, or to
another station to which the application program may erroneously send the
response).

• Requires the user to specify a destination in the destination field in the work
area, and to code a FORWARD macro having a DEST= operand specifying
DEST=PUT in the incoming group of the MH for the application program.

• If the originating terminal is an IBM 2260 Local terminal, the entire line group
is placed in lock mode. If another 2260 Local in the line group attempts to
enter a message, the read request is recognized and queued for later servicing.
However, the message will not be received from the second 2260 until a
response message has been sent to the originating 2260.

• If a station on a switched line breaks the line connection by hanging up while in
extended lock mode, the line is unavailable for transmission to or from any
stations unless UNLOCK has been specified in the inmessage or outmessage
subgroup with the optional disable function. To render the line available for
further transmission, issue a STOPLINE operator command for the line, and
then issue a STARTLINE operator command to reactivate the line.

• If the CANCELMG macro is executed in the inmessage subgroup for a lock
message, the lock is not broken, and the station will be repolled.

• If the HOLD macro is executed in the out message subgroup for a lock re­
sponse, the lock is not broken, the terminal is not held, and the message will be
retransmitted immediately (that is, it will be sent twice). This can result in an
infinite loo'p if the condition for HOLD is permanent and the line or station is
inoperative.

• If a station is held by an operator command while in lock mode, or if a lock is
initiated while the station is held, all lock responses will be sent as if the station
were not held. No other messages will be sent until the station is released.

• The user must issue a valid PUT, CLOSE, or WRITE macro for each lock
inquiry in oder for a line to be eligible to be stopped.

• No QT AM network-control macro should be issued in an application program

438 OS/MFT and OS/MVT TeAM Programmer's Guide

Terminal Lock

for a line on which is located a station locked to this application program by a
LOCK macro. If this happens, the locked line is lost to the system and the
application program goes into a wait state.

UNLOCK

• When the UNLOCK macro is issued in the inheader subgroup handling inquiry
messages being received from a station in extended lock mode, the message
currently being handled is routed to the destination specified in its header, or
by a FORWARD macro, if UNLOCK is issued before the FORWARD macro
is issued. If UNLOCK is issued after FORWARD, the message is routed to the
application program to which the originating station was locked.

STARTMH

• CONY = YES should be specified if IBM 1030 or IBM 1060 stations are
included on lines handled by this Message Handler, since these lines do not
have the capability of entering an EOT line-control character after their mes­
sages.

• CONV=YES should not be coded if any IBM 2780 station or IBM 2770
station using TCAM's buffered=terminal support, is included on a line handled
by this Message Handler. If CONY = YES is coded in either of these cases,
device hardware assumes an error after a block of data is entered, and retrans-
mits the same block when next invited to enter data.

A conversational facility somewhat different from that described above is provid­
ed by the HOLD/MRELEASE macro combination. When issued in the incoming
group of a Message Handler, HOLD suspends transmission of outgoing messages
to the station entering the message until an MRELEASE macro in an application
program releases the station. The first message sent to the station after
MRELEASE executes is the highest-priority message on the destination queue for
the station. (If more than one message is in the highest-priority group, the one
that was completely enqueued first is sent first.) Thus, by assigning his conversa­
tional responses a higher priority than is assigned to other messages that might be
sent to the station, the use of HOLD and MRELEASE can ensure that the next
message received by a station after it enters an inquiry is the response to that
inquiry.

Unlike the inquiry /response capability provided by the LOCK macro, the
HOLD /MRELEASE capability does not maintain the line connection between a
station and an application program. This means that the line will be available to
other stations while a station awaits a response to its inquiry, but it also means
that if another station is using the line when the response to an inquiry arrives at
the MCP from an application program the response will not be sent until the line
is available.

The user may prefer to use HOLD/MRELEASE rather than LOCK to achieve an
inquiry /response capability in the following situations:

• when his stations make use of TCAM's buffered terminal support (in this case,
the LOCK macro may not be used);

• when he is willing to sacrifice some response time to have his line available to
other stations while a response to an inquiry is being prepared.

HOLD /MRELEASE may also be used to provide a capability similar to that
provided by the extended lock mode of operation described above. Such a
capability might be useful, for example, when a buffered terminal on a multipoint
line requires an inquiry/response operation consisting of multiple pairs of inquir-

Writing TCAM-Compatible Application Programs 439

ies and responses, and when that terminal may be the destination for unsolicited
(for example, switched) messages that must not interrupt the inquiry/response
conversation.

In this situation, the user may multiply define a physical station to TeAM, so that
the same physical station looks like two separate logical stations to TeAM. He
does this by coding two separate TERMINAL macros having different names, and
coding the addressing characters for the physical station in the ADDR= operands
of both TERMINAL macros. In addition, he places an entry for each of the two
logical stations created by the two TERMINAL macros in the ORDER= 'Operand
of the INVLIST macro for the line; each entry specifies the polling characters for
the physical station.

The user would use one of his logical stations as a destination for non­
conversational messages, and the other as the destination for responses to
inquiries. When beginning a series of inquiry/response interactions that he does
not want interrupted by non-conversational traffic, the user could intercept
message traffic for the logical station assigned to handle non-conversational
messages with a HOLD macro, carryon his conversation between an application
program and his physical station using the other logical station, and then release
the non-conversational logical station by executing an MRELEASE macro after
the conversation is over.

In a more general way, multiply defined logical stations all referring to the same
physi9al station might be used to handle different types of output for that station.
For example, the user might want to use a physical station to handle switched
messages and inquiry/response interactions, as described above, and also to print
out two different kinds of report, each of which requires a special form on the
station's printer. By defining a separate logical station for each application and ('<Ii

seeing that all logical stations but one are intercepted with HOLD at any given
time, the user can ensure that his physical station is getting only the kind of output
which the logical station currently not intercepted is defined to handle. When he
wants his physical station to handle a different type of output, the user need only
execute a HOLD macro for the logical station connected with his current applica-
tion, and then issue an MRELEASE macro for the logical station connected with
his new application.

TeAM's Queue Reset Facility
During the operation of a telecommunications system, it may be necessary to
resend messages that have already been transmitted to an output device and
marked serviced. A temporary hardware problem such as a broken printer ribbon
may precipitate such a situation. TeAM provides the facility to allow the user to
request resumption of an output operation at a specified output sequence number.
Only messages that have been placed on a destination queue located in a message
queues data set on any combination of reusable and nonreusable disk can be
resent.

In addition to the requirement that the queue reside on disk, the other restrictions
are:

• there must be no priority level queuing.
• there must be queing by terminal unless the queue being reset represents an

application program.
• the terminal whose queue is being reset cannot be held at the time of the

QRESET request.

440 OS/MFT and OS/MVT TeAM Programmer's Guide

(

)

• if the queue of an application program is being reset, that application program
must be closed.

The user must code an application program that issues the QRESET macro. The
TPROCESS macro for the application program must have specified
QBACK= YES. The user must also provide QRESET with the desired output
sequence number and the name of the output device or the application program
TPROCESS entry whose queue will be reset. The address of a field containing
this information must be passed to QRESET in register 2. The format of the field
is:

Byte

0-7

8-9

Format Contents

Character (left Destination name
adjusted and
padded with blanks)

Hexadecimal Sequence number - maximum
value= decimal 9999 .

The requested queue is searched for the sequence number specified. As the queue
search proceeds backward from the last message queues for the terminal, interven­
ing message headers up to and including the requested one are marked unserviced
on disk. Fields are reset to allow TCAM to resend the messages that have been
successfully processed by QRESET.

Good morning messages are not available to QRESET. Initiate mode and lock
mode messages will not be processed for resending. If the requested sequence
number or any intervening numbers cannot be marked unserviced, the count of
messages that have been successfully processed by QRESET is returned in register
2 and the appropriate return code is provided.

Error conditions that terminate processing the QRESET request are listed in the
discussion of the QRESET macro.

The user should be aware that while the queue is being processed by the Queue
Reset Executor module

• the application program issuing the QRESET will be put in an OS Wait;
• output to the terminal whose queue is being processed is suspended.

There is an important consideration for the user when using the QRESET facility
for an output device whose destination message queue resides on reusable disk.

In searching the message queue for the requested output sequence number, only
header portions of messages are examined. It is possible that an intact header
resides on disk but that its text segment has been overlaid as a result of reusable
disk reorganization. If this situation should exist and if TCAM tries to resend this
message, a logical read error will occur and TCAM will terminate abnormally (see
Reusable Disk Queues in the chapter Defining the MCP Data Sets). If QRESET
fmds that a header lies within a zone that has been or is about to be reorganized,
the QRESET function terminates with the appropriate return code. There will be
no attempt to resend any of the messages that may have been successfully pro-
cessed by QRESET up to this point. If a header unit may be safely retransmitted,
QRESET checks the position of a text or XTRA unit relative to the disk location
of the header unit. If it is determined that the text or XTRA unit is far enough
behind the header to present problems when resending, QRESET does not mark

Writing TCAM-Compatible Application Programs 441

the message unserviced. However, processing of remaining requested messages
continues.

To use QRESET with the least impact on the issuing application program, the
terminal whose queue is being searched, and the overall processing time, it is
recommended that the QRESET facility be used to resend a small number of
messages that have been recently transmitted. Recent would have to be judged in
terms of message traffic on the message queues data set and to the specified
output device.

442 OS/MFT and OS/MVT TeAM Programmer's Guide

(

symbol

dcbname

MAX=integer

QRESET

The QRESET macro

• re-sends messages to an output device whose message queue resides on reusable
or nonreusable disk;

• may alter registers 0, 1, 2, and 15 during the execution of the QRESET func­
tion routines.

QRE~ET has the following format:

Name Operation Operands

[symbol] QRESET dcbname,MAX=integer

Function: Specifies the name of the macro.
Default: None. Specification optional.
Format: Must conform to the rules for assembler language symbols (see the
symbol entry in the Glossary).

Function: Specifies the name of an opened DeB in the application program
issuing the QRESET.
Default: None. This operand is required.
Format: Must conform to the rules for assembler language symbols and must
agree with the name of an opened DeB that is defined in the application program.
Note: If register notation is used, the address of the DeB must have been loaded
previously in one of the registers 3 through 12. The register must be coded within
framing parentheses.

Function: Specifies the maximum number of messages that may be resent from
the destination queue of the output device.
Default: None. This operand is required.
Format: Decimal value greater than zero and less than or equal to 9999.

One of the following codes is returned to the application program in register 15
after QRESET has been issued:

Code Meaning

X'OOOOOOOO' QRESET has executed successfully.

X'00000004' QRESET has been unable to mark unserviced
some of the range of output sequence numbers. Register 2
contains the count of messages successfully processed by
QRESET.

Writing TCAM-Compatible Application Programs 443

Code Meaning

X'00000008' Reusable disk reorganization is in progress. Register 2 contains
the count of messages successfully processed by QRESET prior
to the start of reorganization.

X'OOOOOOOC' The requested output sequence number is invalid for one of the
following reasons:
• higher than the last sequence number received at the specified

output device.
• exceeds QRESET MAX= value.
• is zero.
• is not marked "serviced."

X'OOOOOOlO' QRESET is not allowed from thls application program because
QBACK= YES was not specified on the TPROCESS macro.
QRESET request for an open application program.

X'OOOOOOI4' Either the specified output device or TPROCESS entry name
is invalid or the device is being held.

X'OOOOOOI8' An error condition regarding the type of queuing has been detected
or there are no messages queued for the specified terminal.

X'OOOOOOIC' QRESET function has been prematurely terminated because one
of the headers requested may not be available due to reusable
disk reorganization. Any messages found successfully up to this
point have been marked unsetviced but will not be scheduled to
be re-sent by QRESET.

TCAM/SAM Compatibility
TCAM gives the user the capability of testing his application programs in a
non-teleprocessing environment and then running them in conjunction with a
TCAM MCP. (An example would be exercising the logic of a TCAM application
program by using input from a card reader with output going to a printer.) In
many cases, the user can convert from a non-TP to a TCAM environment merely
by changing the DD statements for his application-program data sets.

If you intend to run a TCAM application program in a non-TP environment, you
should remember the following points:

1. The OPTCD= operand of the DCB macro has incompatible meanings in a
non-TP and a TCAM environment. Therefore, this operand should be omitted
from the DCB macro and specified if needed at execution time by the DCB=
parameter of the DD statement.

2. Test data for the non-TP environment should contain any optional fields that
would be present in the work area if the program were run under TCAM, for
the space in the work area allocated to optional fields to be filled.

3. The POINT macro must not be issued in a non-TCAM environment.
4. When issued in a non-TCAM environment, the TCOPY, ICOPY, QCOPY,

TCHNG, ICHNG, MRELEASE, and MCPCLOSE macros merely place a
return code in register 15 indicating that TCAM is not in the system, and pass
control to the next instruction.

5. The DCB checkpoint exit is ignored in a non-TCAM environment.

Writing TCAM-Compatible Application Programs 445

Coordinating TCAM Checkpoints of the MCP with OS Checkpoints of the Applica­
tion Programs

TCAM checkpoints of the Message Control Program may be coordinated with as
checkpoints of TCAM application programs by CKREQ macros issued in the
application programs. The purpose of coordination is to allow the MCP and each
application program to restart at the same point following system failure. This
section describes how the CKREQ macro is used to ensure coordination between
application program and MCP, and also how a user-specified exit from the input
or output DCB macro for the application program may be used for this purpose.
For more information on the TCAM checkpoint/restart facility, see the chapter
Using TCAM Service Facilities. The as checkpoint facility is described in the
Advanced Checkpoint/Restart Planning Guide.

When external files are updated by the contents of messages sent to an application
program, coordination of the contents of the files, the application-program
environment, and the messages being sent to the application program following a
continuation restart might be achieved by using as checkpoints and the CKREQ
macro, as described below, in conjunction with "flip-flop" files set up to revert
upon restart to their status as of the last as checkpoint.

Another possibility would be to specify CKPTSYN=NO in the TPROCESS
macros for the application program and take an as checkpoint each time that a
file update occurred. If one file update per message were performed and one as
checkpoint per message were taken, upon restart the application program would
have to check for one duplicate message in order to ensure that updating of the
file would resume from the point of interruption.

Note: An OS checkpoint cannot be taken for an application program that is
an attached task. :~

In the following discussions, "system failure" is assumed to involve MCP failure.
If the MCP fails, the application-program data sets are automatically closed; after
the MCP is restarted, the user may restart his application program.

Failure of the application program need not be accompanied by failure of the
MCP. In some applications, the user might wish to close down his MCP following
abnormal termination of an application program, so that both might be restarted
from the same point. See Coordinating MCP and Application-Program Restarts
below for more on this topic.

Using the CKREQ Macro Instruction for Coordination
When a CKREQ macro is executed in an application program, a checkpoint
request record is made in the checkpoint data set for each process queue to which
a GET or READ macro can be directed by the application program. This record
is used to update the MCP environment upon restart. The CKREQ macro causes
sending to the application program after restart to begin with the last message
marked serviced at the time the checkpoint request record was taken, rather than
with the last message marked serviced before MCP closedown or failure.

The CKREQ macro is effective only for queues created by TPROCESS macros
specifying CKPTSYN = YES. When a cOlltinuation restart is performed, normal
scanning of the message queues (as described in the discussion of the TCAM
checkpoint facility in the chapter Using TCAM Service Facilities) does not
occur for message queues created by TPROCESS macros specifying
CKPTSYN = YES. Instead, the message to be sent from the process queue to the
application program following restart is determined by the contents of the last
checkpoint request record made for that queue as the result of execution of a

446 OS/MFT and OS/MVT TeAM Programmer's Guide

~ymbol

CKREQ macro. If CKPTSYN=NO is specified, the first unserviced message in
the highest-priority group of messages on the queue is sent following restart.

When the CKREQ macro is used in an application program with low message
traffic, the record resulting from it may be obsolete compared to the MCP envi­
ronment (for example, it may contain information pertaining to a zone that has
been "wrapped" on a reusable disk). When this happens, messages are lost.

In order for the CKREQ macro to expand, a QSTART macro must be coded as
the first macro of the application program. (The QST ART macro is ordinarily
coded only for QT AM application programs that are to run under TCAM, but is
also coded for ordinary TCAM application programs when the CKREQ macro is
used.)

CKREQ has the following format:

Name Operation Operands

[symbol] CKREQ (no operands)

Function: Specifies the name of the macro.
Default: None. Specification optional.
Format: Must conform to the rules for assembler language symbols (see the
symbol entry in the Glossary).

The CKREQ macro has no operands. Registers that may be altered during
execution of the CKREQ macro are 0,1,14, and 15.

Upon completion, a code is placed in register 15. Possible values are:

X'OOOOOOOO'-checkpoint records(s) written on disk.
X'00000004'-no checkpoint record was written on

disk for this request.

Suggestions for Using CKREQ: When the CKREQ macro is to be used to syn­
chronize TCAM checkpoints of the MCP with as checkpoints of the application
program following system failure, CKPTSYN = YES should be coded for
TPROCESS macros creating process queues to which the application program can
direct a GET or a READ macro. A continuation restart should be specified in the
STARTUP= operand of the INTRa macro.

After processing n messages or records, the user might take an OS checkpoint.
After the as checkpoint is taken, a CKREQ macro might be issued. If this were
done, upon restart the application program environment would be restructured
using the latest as checkpoint, and a maximum of n duplicate messages (that is,
messages already processed by the application program) would be sent.

If both as checkpoints and checkpoint request records are used, CKREQ should
be issued each time an as checkpoint is taken.

Figure 34 illustrates the use of CKREQ.

Writing TCAM-Compatible Application Programs 447

DESTINATION QUEUE FOR
APPLICATION PROGRAM

Environment
14----Checkpoint

Record

Message #1

Message #2

Message #3

Message #4

APPLICATION PROGRAM

GET #1

• process and dispose of msg #1

+
OS CHECKPOINT #1

+
CKREQ MACRO #1

+
GET #2

• process and dispose of msg #2

+ GET #3

+ process and dispose of msg #3

+
OS CHECKPOINT #2

+
CKREQ MACRO #2

+ GET #4

profess and dispose of msg #4

*indicates first message sent to appl ication program from this queue following restart.

Figure 34. Example of U;ing the CKREQ Macro Imtruction for Checkpoint Coordination

A TCAM environment checkpoint record is taken before GET #1 is issued. After
the first message is processed and disposed of by the application program, an OS
checkpoint is taken. Upon return from the checkpoint subroutine, a checkpoint
request record is taken of the status of the destination queue for the application
program. When GET #2 is satisfied, (that is, after the second message has been
moved into the work area) message #1 is marked serviced in the destination
queue. When GET #3 is satisfied, message #2 is marked serviced. After message
#3 is processed by the application program, another OS checkpoint record and
TeAM checkpoint request record are taken. When GET #4 is satisfied, message
#3 is marked serviced.

Assume that system failure (failure of the MCP) occurs during the processing of
message #4. In this case, upon restart the application program would be recon­
structed using OS checkpoint #2, and message #4 (the message pointed to by
CKREQ macro #2) would be the first message sent upon restart. No duplication
messages would be sent to the application program from this queue.

Now, assume that system failure occurs during processing of message #3. In this
case, the application-program environment would be reconstructed using OS
checkpoint #1, and message #2 would be the first message sent upon restart. This

448 OS/MFT and OS/MVT TCAM Programmer's Guide

would be the next unprocessed message with respect to the reconstructed
application-program environment.

Finally, assume that system failure occurs after as checkpoint #2 is taken, but
before CKREQ macro #2 is executed. In this case, the application-program
environment is reconstructed using as checkpoint #2, but the first message sent
upon restart is message #2. Messages #2 and #3 would be duplicate messages
with respect to the reconstructed application-program environment.

Using the DCB Exit for Coordination
The input and output DCB macros for TCAM application programs permit
specification of a user-written routine to take an as checkpoint after each TCAM
environment checkpoint is taken. The user may specify the address of a problem­
program exit list by coding the EXLST = operand of the input or output DCB
macro for the application program. The list must start on a fullword boundary; its
format and contents are discussed in Data Management Services. The user
specifies his OS checkpoint routine by coding an X'OF' as a control-byte in the
exit list and following the control byte with the three-byte address of his as
checkpoint routine. The user routine must save and restore the contents of
registers 1 and 14. He must not store data in the area pointed to by register 13
upon entry to his routine. All registers except 1 and 14 contain what they held
before the macro causing the exit to be taken is executed. In addition to coding
the EXLST= operand of the input or output DCB macro, the user should specify
CKPTSYN = YES in the TPROCESS macro for each process queue to which a
GET Qr READ may be directed.

When the EXL.ST = operand is coded, an indication is made to the application
program each time an environment checkpoint record is made. If the EXLST=
operand is coded in the input DCB macro, the first GET or READ macro issued
by the application program after the environment checkpoint is ,taken passes
control to the user-specified as checkpoint routine. The GET or READ macro
does not perform its function until after control is returned to the application
program by the user routine. If the EXLST = operand is coded in the output DCB
macro, the first PUT or WRITE macro issued by the application program after the
environment checkpoint is taken passes control to the user-specified as check­
point routine. The PUT or WRITE is honored after control is returned to the
application program by the user routine. If as checkpointing is used, a CKREQ
macro should be issued after every as checkpoint.

Upon restart following system failure, message traffic to the application program
resumes with the message in each process queue that was the earliest completed,
unserviced message in the highest-priority group at the time the checkpoint was
taken. Unserviced messages on the queue at the time the environment checkpoint
was taken and all complete messages enqueued between the time the environment
record was taken and the time of system failure are sent to the application pro­
gram upon restart.

By coding the CPINTVL= operand of the INTRa macro, the user may ensure
that environment checkpoints are taken within user-specified time limits.

Ordinarily, the as checkpoint routine cannot be invoked from a DCB exit routine.
When the DCB involved is a TCAM input or output DCB, however, this restric­
tion does not hold.

Writing TCAM-Compatible Application Programs 449

Coordinating MCP and Application-Program Restarts
Information on restarting the MCP after closedown or system failure is contained
in TCAM Checkpoint/Restart Facility in the chapter Using the TCAM Service
Facilities. When restarting an MCP in conjunction with an application program,
the MCP is restarted first. Then the application program is restarted using as
restart facilities.

If the MCP terminates abnormally, any TCAM application programs currently
active are automatically terminated abnormally, providing there is at least one
open line group in the MCP. If the TCAM checkpoint facility is being used, a
continuation restart may be performed for the MCP; the application program may
then be started.

If the application program terminates abnormally and the MCP does not termi­
nate, the user has three courses of action open to him:

1. The user may restart his application-program job without closing down or
terminating the MCP job. In this case, the first message received by the
restarted application program from a particular process queue is that unserviced
message in the highest-priority group for that queue which was completely
received and enqueued before any other message in the highest-priority group
in the queue. Remember that a message is not marked serviced on disk until
the next message to be sent to the application program from the same queue
has been transferred in its entirety to the application program. Message A is
not marked serviced until message B has been transferred to the user's work
area. If an application close is invoked either by the CLOSE macro or by an
abnormal termination, message B is marked serviced if it has been completely
transferred to the application program prior to close time. Therefore, if mes­
sage A is transferred to the application program and is followed immediately by
message B on the same process queue, and if the application program termi­
nates abnormally when half of message B has been transferred to the applica­
tion program, the first message to be transferred to the application program
following its restart (assuming that the MCP continued to function between the
time of application program failure and restart) would be message B. If this
course of action is followed, no synchronization of as checkpoints with the
TCAM MCP is performed. If all of message B is transferred to the application
program and a failure occurs during the processing of message B, message B
will be marked serviced by the close routine activated by the abnormal termina­
tion processing. Message B will not be resent if the application program is
restarted. The message may be reprocessed by using TCAM's message retrieval
facility.

2. Following failure of the application program, the user can close down the
TCAM MCP, then activate the MCP with a warm restart and the application
program by an as restart. In this case, the application program will receive
from each process queue those messages that were on the queue and unserviced
at the time that the last checkpoint request record (or environment record, if no
checkpoint request record was made) was taken for that queue, plus all mes­
sages that were placed on the queue after the last checkpoint request record
was taken.

3. The user may cancel his MCP job. He would then activate the MCP by using a
continuation restart and the application program by an as restart. In this case,
the application program will receive all messages that were on the process
queue and unserviced at the time the last checkpoint request record (or
environment record, if no checkpoint request record was made) was taken, plus

450 OS/MFT and OS/MYT TeAM Programmer's Guide

all messages that were placed on the queue after the last checkpoint request (or
environment) record was taken.

When reusable disk queuing is used, there is an advantage to be gained from
combining the two coordination methods described in this section by issuing both
a CKREQ macro and an OS checkpoint request in the DCB exit routine (see the
chapter Defining Data Sets for a discussion of reusable disk queuing). If an
environment checkpoint is taken due to a zone change over on the reusable-disk
data set, checkpoint request records taken before the data set re-organization are
now out of date, because they do not point to the zone currently being used.
Since the DeB exit routine is given control after each environment checkpoint is
taken, it provides the user with an opportunity to take a fresh checkpoint request
record after each zone changeover. Only one application program and one GET
or READ macro may refer to a process queue at anyone time.

Writing TCAM-Compatible Application Programs 451

(

Operator Control

Using TCAM Service Facilities

TCAM provides the user with a variety of facilities that support a teleprocessing
system. Some of these facilities are specified by the user; others are provided
automatically by TCAM.

The operator control facility enables the user to enter operator commands to
examine or to alter the status of a telecommunications network. Operator com­
mands may be entered from the system console, remote stations, and application
programs; they are supported by either resident or nonresident routines (see
Appendix C). A discussion of operator commands entered at the system console
may be found in the OS publication, Operator's Guide. The concepts and func-
tions of operator commands for TCAM are discussed in TCAM Concepts and
Facilities.

Initialization for Operator Control
The operator control facility is initialized through operands of the INTRO,
TERMINAL, and TPROCESS macros. The INTRO macro specifies the single set
of control characters to identify all operator commands (see the CONTROL=
operand) and the primary operator control station (see the PRIMARY= oper-
and); it also specifies the maximum number of command input blocks that may
be used at anyone time to contain operator commands entered at the system
console (see the CIB= operand). The TERMINAL and TPROCESS macros
associated with the stations selected as operator control stations have operands to
indicate specification as secondary control stations (see the SECTERM= operand
discussions of both macros). A primary operator control station receives the
internally generated, error message, IEAOOOI, indicating that a permanent I/O
error has occurred; it also has the capabilities of a secondary operator control
station. (For a discussion of the IEAOOOI error message and permanent I/O
errors, see TCAM I/O Error-Recording Facility in this chapter.) A secondary
operator control station can send operator commands and can receive related
responses, but not internally generated, error messages (with one t?xception:
when a primary operator control station other than the system console becomes
inoperative, message IEAOOOI is sent to the system console, in this instance a
secondary operator control station, stating that the primary operator control
station is inoperative).

General Format of Operator ComltUlnds
The fields of operator commands are separated by one or more blanks and must
be in the order shown below. Commands entered at the system console do not
include the control chars field and cannot occupy more than one line (for exam­
ple, if a command is entered through a card reader, it may not be more than 80
characters long, and if it is typed in at the system console, it may not be longer
than 126 characters). Commands entered from either a remote station or an
application program must not be longer than a buffer. Required letters (those
shown in uppercase) must be entered in uppercase when an operator command is
entered from either a station or an application program; if the command is entered
at the system console, it may be either uppercase or lewercase. Brackets [] and
braces { } are not coded. Brackets indicate an option; the enclosed item (or one
of the several enclosed items) may be coded. Braces indicate that one of the
several enclosed items must be coded.

control chars operation operand [nextlinelending

Using TeAM Service Facilities 453

control chars

operation

operand

Used only with commands being entered either from a station or from an
application program. Must be a character string (one to eight nonblank characters
conforming to the rules for assembly language symbols) that identifies a command
as an operator command (control characters are not recognized by the system if
issued by the system console). One character string identifies all operator com­
mands that may be entered from a station or an application program and is
specified either at assembly time by the CONTROL= operand of the INTRO
macro or at INTRO execution time by the L= keyword response to the WTOR
message; the character string is stored in the AVT. User-written code in the MCP
can override the CONTROL= operand to change this character string at the
user's discretion (see the section on user code in the chapter Designing the
Message Handler). The control chars field must be specified except when the
operator command is entered at the system console (in which case control chars
must not be specified) and must be followed by one or more blanks. Command
formats, in the Operator Commands section below, do not include the control
chars field; however, each operator command that is entered from stations and
application programs must begin with this character string.

One of the following six operation types must be entered in the operation field by
all sources requesting an operator command. One or more functions that provide
system control are associated with each operation (see Appendix F);

.~~ARY~

.~~ODIFY~

.~~ALT ~

• ~gISPLAY~

.~:OLD~

• ~~ELEASE~
Braces indicate that a choice must be made in the form of the command (for
example, either VARY or V is keyed, not both; the shorter form is provided for
coding efficiency).

Entered by all sources requesting an operator command. This field consists of one
or more operands (illustrated for each message in Operator Commands). These
operands determine which functional operator command is associated with the
operation type specified (see Appendix F). If more than one operand is used,
they are separated by commas without intervening blanks.

The most common operands used by the commands are statname, address,
grpname , and rln.

454 'OS/MFT and OS/MVT TeAM Programmer's Guide

c

statname

address

grpname

rln

[nextline]ending

The name of the station, as specified in that station's TERMINAL macro.

The hardware address of the line, identical to the UNIT= operand of the DD
statement for the line for which this operator command is being entered.

The name of the line group, identical to the DDNAME= operand of the DCB
macro instruction for the line group for which the operator command is being
entered.

The relative line number of the line within the line group.

The first operand of all commands associated with the MODIFY operation has
the following format:

{ ~procname.]id}
Jobname

id is the abbreviation for identifier. The [procname.] id operand is used when
TCAM has been started; it is identical to the procname. identifier field in the
console START command. In an MVT environment, the id suboperand is a name
chosen by the user in the START command for entering operator commands that
are grouped as MODIFY operations, and id alone may be coded (the use of
procname. is optional). In an MFT environment, the id suboperand is replaced
by the partition number.

The jobname operand is used when TCAM is de queued from the input stream
(for example, from a card reader). jobname is replaced by the name of the job to
which the MODIFY operation applies, and is identical to the jobname field in the
job statement for the job being modified by an operator command.

Thus, the TCAM job may be executed either as a normal job through SYSIN, or
as a started procedure by the START command from the system console.

The simultaneous use of both subfields is restricted to stations entering operator
commands (the ending subfield alone is entered when the command is from either
the system console or an application program). nextline is replaced by the
appropriate control characters needed to accomplish either a carriage return or a
new line operation to ensure that TCAM's response message does not print over
the previous line of print. See the IBM component description SRL (for the
device that is used to enter the operator command) to determine the correct
control character for either a carriage return or a new line operation. The nextline
subfield, when used, is followed immediately, without intervening blanks, by the
ending subfield. The [nextline] ending field must be separated from the operand
field by one or more blanks; any invalid characters appearing between the blank
delimiter and the first character of the [next line] ending field are considered
comments and are disregarded by TCAM. ending is the end-of-message signal
and is required by all sources entering an operator command. The signal is EOB
for the system console, EOT for start-stop stations, and ETX/EOT* for BSC
stations. Command formats, in the Operator Commands section below, do not

Using TeAM Service Facilities 455

include the [nextline] ending fields; however, each operator command that is
entered on the line must contain the appropriate code as described for it above.

*If the CONV= operand of the STARTMH macro is specified (causing EOB,
ETB, or ETX line-control characters to be treated like EaT line-control charac­
ters), then either EOB, ETX, or ETB alone is sufficient.

Specifying Operator Commands
The operator commands, together with the functions they perform, are discussed
in a later section. Specification of these commands varies slightly depending upon
whether the command is entered at the system console, or from an application
program or a remote station.

Commands entered at the system console follow the conventions outlined in the
Operator's Guide. Required characters (those shown in uppercase) must be
entered, but can be entered in either uppercase or lowercase, and the console
operator must not enter the control characters field described above.

Commands entered either from an application program or at a remote station must
also enter required characters, and they must be uppercase unless the translation
table used by the CODE macro, which recognizes the command, permits lower­
case data. Furthermore, the control characters field must be the first field entered
for each operator command for TCAM to recognize the operation.

Example 1:
If TCAM has been started and the procname field of the console START com­
mand specifies AQTPROC.QID and the INTRa macro specifies
CONTROL=OPID, the command to change a terminal from secondary to pri-
mary operator control terminal status is:

• From an IBM 1050 terminal

OPIO MOOIFY QIO, OPERATOR=NYC
or

OPIO F QIO, OPERATOR=NYC
or

OPIO MOOIFY AQTPROC. QID, OPERATOR=NYC
or

OPIO F AQTPROC. QIO, OPERATOR=NYC

nextline EaT

next line EaT

nextline EaT

next line EaT

where uppercase characters are coded as shown (see the CPRIOPCL operator
command in a later section, Operator Commands); NYC is the name of the
station to be made primary; nextline is replaced by the appropriate carriage-return
operation for the 1050; and EaT is the ending character to be used with the 1050.

• From an application program

OPID MOOIFY QIO, OPERATOR=NYC EaT
or

OPIO F QIO, OPERATOR=NYC EaT
or

OPIO MOOIFY AQTPROC. QIO, OPERATOR=NYC EaT
or

OPIO F AQTPROC. QIO, OPERATOR=NYC EaT

456 OS/MFT and OS/MVT TeAM Programmer's Guide

c

• From the system console

MOOIFY QIO, OPERATOR=NYC

or
F QIO, OPERATOR=NYC

or
MOOIFXAQTPROC.QIO,OPERATOR=NYC

or
F AQTPROC. QIO, OPERATOR=NYC

Example 2:

EOB

EOB

EOB

EOB

If TCAM is being executed as a normal job through SYSIN with the jobname
being TCAMJOB and the INTRO macro specifying CONTROL=OPID, the
commands of Example 1 become:

• From an IBM 1050 terminal

OPIO MOOIFY TCAMJOB, OPERATOR=NYC

or
OPIO F TCAMJOB, OPERATOR=NYC

• From an application program

OPID MODIFY TCAMJOB, OPERATOR=NYC

or
OPIO F TCAMJOB, OPERATOR=NYC

• From the system console

MODIFY TCAMJOB, OPERATOR=NYC

or
F TCAMJOB, OPERATOR=NYC

nextline EOT

nextline EOT

EOT

EOT

EOB

EOB

Responses to operator commands are placed on the destination queue for the
station that entered the command, and are sent through the outgoing Message
Handler as normal messages. If selective execution is required in the outgoing
groups, the first outheader subgroup can use a MSGTYPE macro to detect
operator responses and a PATH macro to vary the processing path. Since respon­
ses to operator commands always begin with the character string lED, they are
easily detected by macros such as MSGTYPE.

Operator responses are queued with no priority and without any line-control
information. For BSC lines and lines that expect internal blocking, the
MSGFORM macro should be issued to provide the necessary blocking. The
operator responses are placed on the destination queue in EBCDIC and must be
translated to line code.

Assuming that the blocking operands and the translation table are specified in the
DCB macro instruction for the line group of which the station accepting the
operator response is a member, a suggested coding sequence is:

Using TeAM Service Facilities 457

OUTHDR
MSGTYPE C'IED'
MSGFORM
CODE
PATH 1, PATHSW
MSGTYPE ,

OUT END

FOR OUTGOING HEADERS
DETECT OPERATOR RESPONSES
ADD BLOCKING INFORMATION
TRANSLATE TO LINE CODE
SET A PATH SWITCH
HANDLE NON-OPERATOR RESPONSES

Possible responses to commands are included with each command description in
the Operator Commands section. The responses described in Incorrect Messages
(see below) may be returned in addition to one of those described for each
command.

Entering Operator ComltUlnds from an Application Program

Incorrect Messages

An application program may enter operator commands if SECTERM= YES is
coded in the TPROCESS macro that creates the terminal-table process entry
associated with the PUT or WRITE macro that moves messages.

When it wishes to enter a command, the application program moves that com­
mand into its PUT or WRITE work area (the operator command must have the
same format as commands that are entered from stations; the command must
begin with the control characters field).

A PUT or a WRITE macro is issued to move the command from the application
program to the MCP. The inheader subgroup of the incoming group that handles
messages enter~d by the application program must contain a CODE macro if the
program may enter operator commands. One of the functions of CODE is to /~
recognize operator commands (see the description of the CODE macro). Once it '~
is recognized by CODE, the operator command from the application program is
treated like any other operator command.

The response to a command entered from an application program is directed to
the alternate destination specified by the ALTDEST= operand of the TPROCESS
macro that creates the terminal-table process entry associated with the PUT or
WRITE macro causing the operator command to be sent to the MCP. If no
alternate destination is specified, the response is sent to the dead-letter queue. If
no dead-letter queue is provided, the response is lost.

The station operator may cancel a partially entered operator command by entering
the control characters sequence (preceded and followed by one or more blanks)
again after entering the initial control characters. When a command contains a
character string enclosed in quotes, the quotes must.be closed before entering the
second set of control characters to cancel the first operator control command.
At the system console, the CANCEL key is used. There is no response message
for a canceled command.

Incorrectly formatted commands are returned to the operator, using a WTO
response if the system console (or card reader) is being used. The format of the
response message to an invalid command is:

c
458 OS/MFT and OS/MVT TeAM Programmer's Guide

Operator Commands

ACTVATED

IED016ISTATIONstatnameNOTFOUND
or

IEDO 171 LINE ~ grpname, rln t NOT OPEN
1 address \

or
IED018I operation COMMAND INVALID

where statname , address, grpname , and rln are explained in the operand descrip­
tion, and operation is the operation type, as specified in the operation field and
the first operand.

The response IEDOl61 is received if the station name is not in the terminal table.
This can be caused by a misspelled name, or by a name entered in lowercase when
a folded translation table is not used.

IEDOl71 is received if the line is not open, if the OPEN macro specified IDLE, if
the groupname specified has no matching DD statement, or if the relative line
number specified is zero or is higher than any relative line number in the group.

IEDOl81 is received if the format of the command or a field in the command is
incorrect. Possible errors include a required field missing or misspelled, fields in
the wrong order, and numeric fields entered in non-numeric format.

The operator commands appear in alphabetical order; command formats are
discussed in an earlier section. See the discussions of control chars and
[next line] ending in an earlier section, General Format of Operator Commands,
to determine the appropriate control characters that must precede operator
commands that are entered from a station or an application program, and
carriage-return or newline control characters and the end-of-message signal to be
used with each command. Summaries of these command functions are illustrated
in Figure 35 at the end of this section and in Appendix F. Keyword names (for
example, ACTVATED) are assigned to each command for ease of reference only
(these names serve no programming function).

Where statname appears in an operand or a response message, it refers to the
name of a station and must be identical to the name specified for that station's
TERMINAL macro (see the definition of symbol in the discussion of the
TERMINAL macro).

Likewise, grpname refers to a line group when it appears in an operand or a
response message, and it must be identical to the name specified in the
DDNAME= operand of the DCB macro for that line group.

Each response message to an operator command is preceded by a message num­
ber. The Message and Codes publication contains a sequential list of all TCAM
messages, including a more complete discussion of each response to an operator
command.

This command requests a list of all entries in the invitation list for the specified
line that are currently active for entering messages (see also the descriptions of the
INACTVTD operator command and the ICOPY macro instruction for an applica­
tion program).

Using TeAM Service Facilities 459

ACTVBOTH

Format:

Control Characters Operation Operands

control chars ~gISPLAY~ TP,ACT, 19rpname,rln~
address
- - ---

Response:

IEDO 1 7I LINE \grpname, r In lNOT OPEN

,address \
or

IED036I ~grpname,rlntAcTIVE= ~statname, ... l
1address ~ iNONE \

Explanation: An operator command was entered to display the list of active
stations associated with the line named by grpname,rin or address. statname, ...
are the names of the entries that meet this requirement. If there are no active
stations on the line, statname, ... is replaced with NONE.

This command combines the functions of the RESMXMIT and ENTERING
operator commands and activates a nonswitched station for both accepting and
entering messages, or a switched line only for accepting messages.

Format:

Control Characters Operation Operands

control chars ~~ARY~ statname,ONTP ,B

statname is replaced by the name of the station to be activated.
If a station is included more than once in an invitation list, all
the entries for that station are activated.

Response:

IEDO 161 STATION statname NOT FOUND
or

IEDO 191 statname ALREADY STARTED

Explanation: An operator command to start the station named by statname was
entered. The station is already active.

or
IED020I statname STARTED

Explanation: An operator command to start the station named statname was
entered. The station is started, and the message is a confirmation of the action
taken.

or
IED046I LINE FOR statname IS OUTPUT ONLY STATION

460 OS/MFT and OS/MVT TeAM Programmer's Guide

AUTOSTOP

Explanation: An operator command was entered to start a station for entering
and accepting messages. statname is the name of the station to be started. The
command is not processed.

or
IED054I statname RELEASED, SEQ-OUT=integer

Explanation: An operator command has been entered requesting that the station
named by statname be started for entering and accepting messages. An error
occurred when trying to activate statname. The terminal was only released.

or
IED0881 statname ON DIAL LINE-CANNOT BE VARIED

Explanation: Terminals for dial lines are not in the invitation list. These terminals
cannot be activated or deactivated.

or

IED090I statname IS NOT A SINGLE ENTRY

Explanation: An operator command was entered requesting a change involving
the line that the station named by statname is on, but statname is not a single
entry and has no line group, relative line number, or machine address.

or
IED091ILINEFORstatnameNOTOPEN

Explanation: An operator command to start a station is received, but the line is
not open. The requested action is not taken.

or
IED1561 statname ON CONCENTRATOR-CANNOT BE VARIED

Explanation: An operator command was entered to start a station for entering
and accepting messages, but statname is attached to a concentrator and has no
entries in the invitation list. The requested action cannot be performed.

This command switches a line from the automatic polling (Auto Poll) facility to
the programmed polling facility, if the automatic polling bit is on in the UCBTYP
field of the UCB for the line (if this bit is on, the user gets Auto Poll at start-up
time).

Format:

Control Characters Operation Operands

control chars ~~ODIFY~ ~ ~procname.]id ~ ,
Jobname

AUTOPOLL= ~ grpname,rln ,OFF ~
address

Using TCAM Service Facilities 461

AUTOSTRT

Response:

IEDO 171 LINE ~grpname, rlnlNOT OPEN

(address \
or

IED027I AUTOPOLL STOPPED FOR ~grpname, rln l
laddress \

Explanation: A request was made to stop automatic polling on the line named by
grpname,rln or address. This message confirms that automatic polling has been
stopped on this line.

or
IED028I AUTO POLL ALREADY STOPPED FOR~grpname, rln l

laddress \

Explanation: An operator command was entered to stop automatic polling on the
line named by grpname,rln or address. Automatic polling on the line is not in
progress at this time.

or
IED057I{grp name,rln}NOT CAPABLE OF AUTO POLL

address

Explanation: An operator command was entered to stop automatic polling on the
line named by grpname,rln or address, but according to the UCB for the line, the
line is not capable of being polled automatically or is a buffered station that is
temporarily receiving. The command is not executed.

This command changes a line from the programmed polling facility to the auto- .. ~
matic polling (Auto Poll) facility if the automatic polling bit is on in the UCBTYP
field of the UCB for this line.

Format:

Control Characters Operation Operands

control chars ~~ODIFY~ ~ ~procname.]id~,
Jobname

AUTOPOLL= ~ grpname,rln
address

Response:

IED017I LINE ~grpname,rlnl NOT OPEN

I address)
or

IED021 I AUTO POLL STARTED FOR ~grpname,rlnl
1 address \

,ON

Explanation: A request was made to start automatic polling on the line named by
grpname,rln or by address. This message confirms that automatic polling has
been started on this line. ,_

462 OS/MFT and OS/MVT TCAM Programmer's Guide

" I
v'

CPRIOPCL

or
IED022I AUTO POLL ALREADY STARTED FOR {grpnam~, rln}

address

Explanation: A request was made to start automatic polling on the line named by
grpname,rln or by address, but automatic polling is already active for the line.

or
IED057I ~ grpname, rln l NOT CAPABLE OF AUTOPOLL

,address \

Explanation: An operator command was entered to start automatic polling on the
line named by grpname,rin or by address, UCB for the line, the line is not capable
of being polled automatically or is a buffered station that is temporarily receiving.
The command is not executed.

This command requests that either a secondary operator control station or the
system console become the primary operator control station.

Format:

Control Characters Operation Operands

control chars ~~ODIFY~ ~[~rocname.]id ~ ,
Jobname

OPERATOR=~statname ~
SYSCON

statname is the name of a station other than the system console that is to become
the primary operator control station. SYSCON must be coded if the system
console is to become the primary operator control station.

Response:

IEDO 161 STATION statname NOT FOUND
or

IED041 I PRIMARY= ptatnamet
1SYSCON f

Explanation: An operator command has been entered requesting that the station
named by statname or the system console be made the primary operator control
station. This message confirms that the requested ac~ion has been taken.

or
IED042I ~SYSCON tALREADY PRIMARY

1statnamef

Explanation: An operator command has been entered requesting that the station
named by statname or the system console be made the primary operator control
station, but the system status indicates that this is already so.

Using TCAM Service Facilities 463

DATOPFLD

or

IED044I statname NOT ELIGIBLE FOR PRIMARY

Explanation: An operator command was entered requesting that the station
named by statname be made the primary operator control station, but statname is
not eligible to be made primary (that is, it is not defined as a secondary operator
control station).

This command requests that data be inserted in an option field for a station.

Format:

Control Characters Operation Operands

control chars ~~ODIFY~ ~~procname. lid ~'
Jobname

OPT =statname,opfldname,data

statname is the name of the station whose related option field is affected by this
operator command. opfldname is the name of the option field, as specified in its
related OPTION macro, where data is to be inserted. The data may either be
enclosed in C' , or X' , framing characters or it may be unframed. Option fields
defined as character format may only be modified using character format and C' ,
framing characters or hexadecimal format and X' , framing characters. Option
fields not defined as character format may only be modified using hexadecimal
format and X' , framing characters or unframed decimal integers. The largest
decimal integer that can be specified in this command is 2147483647.

The number of characters of data must be no greater than the size of the option
field (if greater, the command is rejected with message IED062I). If the replace­
ment data is shorter in length than the size defined for the field, padding is used
according to assembler language standards. If the format of the data entered by
the command cannot be accepted because of the definition of the format of the
option field, the command is rejected with message IED0561.

All OPTION names are kept in a table with their offset into the offsets field of the
terminal entry; this enables an option field named in an operator command to be
found.

Response:

IED016I STATIONstatnameNOTFOUND

or
IED034I statname HAS NO opfldname OPTION

Explanation: An operator command was entered to modify the contents of the
option field named by opfldname for the station named by statname , but no
option field with this name exists for this station. The command is not executed.

or
IED050I statname OPTION opfldname MODIFIED

464 OS/MFT and OS/MVT TeAM Programmer's Guide

DEBUG

Explanation: An operator command was entered to modify the contents of the
option field named by opfldname associated with the station named by statname.
This message confirms that the requested action is taken.

or
IED056I statname OPTION opfldname DATA FORMAT INVALID

Explanation: An operator command was entered to modify the contents of the
option field named by opfldname associated with the station named by statname ,
but the data format specified in the command differs from the definition of the
option field format.

or
IED062I statname OPTION opfldname CANNOT ACCEPT SPECIFIED DATA

Explanation: An operator command was entered to modify the contents of the
option field named by opfldname associated with the station named by statname ,
but the data to replace the current setting of the option field is greater in length
than the field.

or
IED077I statname OPTION opfldname DATA CHARACTER INVALID

Explanation: An operator command was entered to modify the contents of the
option field named by opfldname associated with the station named by statname ,
but the contents of the modification data do not agree with the framing characters
surrounding the data.

This command activates a TCAM service aid routine that writes the dispatcher
subtask trace table (STCB trace), the I/O interrupt trace table (line trace), or a
trflce of buffer and status information on either tape or disk. If buffers are written
to the tape or disk data set using this command, it must be preceded by a
GOTRACE command that activates a line trace (and the line trace requires that
the TRACE= operand of the,INTRO macro instruction be coded). If the STCB
trace is activated by this command, the DTRACE= operand of INTRO must
specify a positive integer. Use of the DEBUG command requires that
COMWRTE=YES be coded in the INTRO macro instruction.

If either a closedown or a failure of the TCAM system occurs while DEBUG
writing routines are still active, the functions provided by this command are not
activated automatically when TCAM restarts. Reenter the DEBUG command
with its appropriate operands, after TCAM restarts, to continue writing to the
tape or disk data set. See Debugging Ai4s later in this chapter for more details on
these and other diagnostic aids, including information on specifying the tape or
disk data set and the separate utility that formats and prints the data set contents
(the data set may contain various combinations of the STCB trace table, the I/O
interrupt trace table, and buffers and status information).

Using TCAM Service Facilities 465

Format:

Control Characters Operation Operands

control chars ~~ODIFY~ ~~procname.]id~'DEBUG= ~L f'
Jobname D

tDQFEIO} IEDQFE20
IEDQFE30

Either L or D is coded in the DEBUG= keyword operand; L causes the service
aid routine to be loaded and activated, and D causes the service aid to be deacti­
vated and deleted. Either IEDQFElO, IEDQFE20, or IEDQFE30 is coded as
shown. IEDQFEIO either activates (DEBUG=L) or deactivates (DEBUG=D)
the service aid routine that writes the STCB trace table to either magnetic tape or
disk; in order to use this service aid routine, the DTRACE= operand of the
INTRO macro instruction must specify a nonzero value. IEDQFE20 either
activates or deactivates the routine that writes the I/O interrupt trace table; use of
the DEBUG command for writing the I/O interrupt trace table requires that the
TRACE= operand of the INTRO macro instruction specify a nonzero value, and
the GOTRACE operator command must precede the DEBUG command (to
activate the line trace). IEDQFE30 causes either activation or deactivation of the
service aid routine that traces TCAM buffers. See the chapter Debugging Aids
for a description of the utility program to use to get a formatted listing of either
the STCB trace, the line trace, or a buffer trace that is on tape or disk.

Response:

IED099I ROUTINE LOADED

Explanation: The routine that was called by the DEBUG command is loaded and
initialized.

or
IEDl OOI ROUTINE DEACTIVATED

Explanation: The routine designated in the DEBUG command was deactivated
and deleted.

or
IED 101 I RESTART IN PROGRESS

Explanation: The requested operation cannot be processed because TCAM is
being restarted by either a checkpoint warm or a checkpoint cold restart.

or
IEDl 02I INVALID OPERAND

Explanation: The DEBUG command format is incorrect. One or more of the
following operands were in error.

a. A subparameter other than L or D was specified.
b. An invalid routine name was specified. Valid names are: (

466 OS/MFT and OS/MVT TCAM Programmer's Guide

DPRIOPCL

DSECOPCL

IEDQFE10
IEDQFE20
IEDQFE30

or
IED1 031 ROUTINE ALREADY ACTIVE

Explanation: A request has been made to activate a debugging routine that is
already active.

or
IED1 041 ROUTINE NOT ACTIVE

Explanation: A request has been made to deactivate a debugging routine that is
not active.

or
IED1 071 COMWRITE NOT ACTIVE

Explanation: A request has been made to activate a debugging routine that
requires that the COMWRITE routine be active. COMWRITE is not active
(COMWRTE=YES was not specified on INTRO).

or
IED1241 QUEUE HAS BEEN WRAPPED

Explanation: The message queues data set has been wrapped. ~ince the message
queues data set can no longer be formatted reliably, the IEDQXB printing utility
is terminating.

or
IED1251 xxx BYTES NEEDED

This command requests the name of the current primary operator control station.

Format:

Control Characters Operation Operands

control chars ~~ISPLAY~ TP,PRITERM

Response:

IED04 1 I PRlMARY= ~ s ta tname l
ISYSCON \

Explanation: An operator command was entered that requested the display of the
station that is currently the primary operator control station. This response
displays the requested information.

This command requests the names of current secondary operator control stations.

Using TeAM Service Facilities 467

ENTERING

Format:

Control Characters Operation Operands

control chars ~~ISPLAY~ TP,SECTERM

Response:

IED043I SECONDARY=statname, ...

Explanation: An operator command was entered that requested the display of all
stations defined as secondary operator control stations. statname,... are the
names of all stations so defined.

All operator control stations except SYSCON are listed by this command, even if
one of them is designated primary (a primary operator control station by defini­
tion has the capabilities of a secondary operator control station). However, if the
only operator control station is the system console, statname will be replaced by
SYSCON in the response.

This command activates a terminal entry in an invitation list for entering messages
from a nonswitched station that are to be received at the central computer.

Format:

Control Characters Operation Operands

control chars ~~ARY~ statname,ONTP ,E

statname is replaced by the name of the station to be activated. If a station is
included more than once in 'an invitation list, all the entries for that station are
activated for entering messages.

Response:

IED016I STATION statname NOT FOUND

or
rEDO 191 statname ALREADY STARTED

Explanation: An operator command requesting the station named by statname be
activated for entering has been received, The station is already active for enter­
ing.

or
IED020I statname STARTED

Explanation: An operator command requesting that the station named by
statname be activated for entering has been received. This response verifies that
the requested action has been taken.

468 OS/MFT and OS/MVT TeAM Programmer's Guide

c

ERRECORD

or
IED046I LINE FOR statname IS OUTPUT ONLY STATION

Explanation: An operator command requesting that the station named by
statname be activated for entering has been received, but the station is not
capable of entering data. The requested action is not taken.

or
IED088I statname ON DIAL LINE-CANNOT BE VARIED

Explanation: Terminals for dial lines are not in the invitation list. These terminals
cannot be activated or deactivated.

or

IED090I statname IS NOT A SINGLE ENTRY

Explanation: An operator command was entered requesting a change involving
the line that the station named by statname is on, but statname is not a single
entry and has no line group, relative line number, or machine address.

or
IED091ILINEFORstatnameNOTOPEN

Explanation: An operator command to start a station is received, but the line is
not open. The requested action is not taken.

or
IED156I statname ON CONCENTRATOR-CANNOT BE VARIED

Explanation: An operator command was entered to start a station for entering
and accepting messages, but statname is attached to a concentrator and has no
entries in the invitation list. The requested action cannot be performed.

This command causes temporary-error records to be made for recoverable I/O
errors occurring on a specified line or for a specified station. See the discussion of
intensive-mode, error recording in TCAM I/O Error-Recording Facility in this
chapter for more information on the use of the ERRECORD command.

Format:

Control Characters Operation Operands

control chars ~~ODIFY~. ~ ~procname.)idf'
Jobname

INTENSElNE'lgrpname,rln(}
address

TERM,statname

sense, ~~~unt~

Using TeAM Service Facilities 469

grpname,rln , and address, respectively, are replaced by the name of the line group
containing the line, the relative line number of the line within the line group, and
the machine address of the line. statname is replaced by the name of the station
for which failure incidents records are desired. Either LINE, ... or TERM, ... is
coded, not both. (LINE, ... provides intensive-mode, error recording for all the
stations on the specified line; TERM, ... restricts intensive-mode, error recording
to the specified station.) sense is replaced by one of the following:

Type of Intensive
Sense Recording Provided

BO busout check
CR command reject
DC data check
EC equipment check
1M general intensive mode
IR intervention required
LD lost data
M2 leading graphics for 2740 Model 2 terminal
OR overrun
TO time-out
VE unit exception

Eight of the conditions listed (busout check, command reject, data check, equip­
ment check, intervention required, lost data, overrun, time-out) correspond to bits
of the sense byte for the I/O device (which is, in this case, the transmission
control unit being used). When the unit check bit is turned on in the CSW during
an I/O operation, a sense command is issued by TCAM, and the appropriate bits .~

in the sense byte are turned on. The CSW and the sense command are describedi
in Principles of Operation. A detailed discussion of the meaning of each bit in
the sense byte may be found in the component description SRL manual for the
transmission control unit being used.

Unit exception in the list refers to the unit exception bit of the CSW, which is
turned on to indicate the presence of a condition that does not usually occur
during an I/O operation.

When M2 is coded, a temporary-error record is made when an unusual leading
graphic character (indicating a difficulty at the terminal) is received from an IBM
2740 Model 2 terminal, provided that the condition indicated by the character is
recovered from. The use of leading graphic sense characters by the 2740 Model 2
terminal to indicate the terminal status and specific error conditions, is discussed
in the publication IBM 2740 Communication Terminal Models 1 and 2
Component Description, Order No. GA24-3403.

When 1M is coded, a temporary-error recording is made when any of the error
conditions in this list (except for the unusual leading graphics response for the
IBM 2740 Model 2 terminal) occurs and is recovered from.

The count field is replaced by a decimal number from 1 to 15 (depending upon
the number of records desired for the incident type specified in the sense field). If
this field is omitted, a value of 15 is assumed.

470 OS/MFT and OS/MVT TeAM Programmer's Guide

(

GENPOLOFF

Response:

IEDO 16I STATION statname NOT FOUND

or
IEDO 17I LINE {grpname, rln} NOT OPEN

address

or
IEDO~8I {grpname, rln} SENSE COUNT=count,

address

SETTING=sense

statname

Explanation: An operator command is entered requesting that the sense informa­
tion be altered for the line named by grpname,rln, by address, or for the station
named by statname. This response verifies that the requested action has been
taken.

This command causes the invitation characters associated with the gpstatname in
the command to be moved from the active to the inactive side of the invitation list.
This same command will cause all specific poll entries having the same control unit
address as the gpstatname entry to be moved from the inactive to the active side
of the invitation list.

Format:

Control Characters Operation Operands

control chars {~ARY } gpstatname,OFFTP, {: }
gpstatname is replaced by the name of the general poll station to be deactivated.

A general poll station is one defined by TERM=(327C or 226C) in the
TERMINAL macro. See Specific and General Polling for the 3270 Information
Display System in Appendix G.

Note: The B request will not perform a hold.

Response:

IED016ISTATIONgpstatnameNOTFOUND

Explanation: An operator command requesting the station named by gpstatname
to be deactivated has been received and the station does not exist in the MCP.

or
IED144I gpstatname GENERAL POLL STOPPED

Explanation: An operator command requesting the station named by gpstatname
to be deactivated has been received and it is deactivated.

or
IED146I gpstatname GENERAL POLL ALREADY STOPPED

Explanation: An operator command requesting the station named by gpstatname
to be deactivated has been received; the station was already inactive.

Using TeAM Service Facilities 471

GENPOLON

GOTRACE

This command cuases the invitation characters associated with the gpstatname in
the command to be moved from the inactive to the active side of the invitation list.
This same command will cause all specific poll entries having the same control unit
address as the gpstatname entry to be moved from the active to the inactive side
of the invitation list.

Format:

Control Characters Operation Operands

control chars {~ARY }
gpstatname ,ONTP. {: }

gpstatname is replaced by the name of the general poll station to be activated. A
general poll station is one defined byTERM=(327C or 226C) in the TERMI­
NAL macro. See Specific and General Polling for the IBM 3270 Information
Display System in Appendix G.

Note: The B request will not perform a release.

Response:

IED016I STATION gpstatname NOT FOUND

Explanation: An operator command requesting the station named by gpstatname
to be activated has been received but the station does not exist in the MCP.

IED143I gpstatname GENERAL POLL STARTED

Explanation: An operator command requesting the station named by gpstatname
to be activated has been received and it is activated.

or
IED1451 gpstatname GENERAL POLL ALREADY STARTED

Explanation: An operator command requesting the station named by gpstatname
be activated has been received, but it was already active.

This command activates the TCAM I/O interrupt trace facility (line I/O trace)
for a line. Use of this command requires that a positive integer be specified in the
TRACE= operand of the INTRO macro instruction. See the Debugging Aids
section of this chapter for information on the TCAM I/O interrupt trace facility.

Format:

Control Characters Operation Operands

control chars 1~ODIFY~ ~ ~procname.]id~,
Jobname
TRACE= ~grpname'rln ,ON

address

472 OS/MFT and OS/MVT TeAM Programmer's Guide

INACTVTD

The trace is started for the line specified either by grpname,rln or by address.

Response:

IEDO 1 71 LINE~grpname, rln tNOT OPEN

iaddress \
or

IED023I TRACE STARTED FORjgrpname,rlnt

laddress 5

Explanation: An operator command requesting that the I/O trace be started for
the line named by grpname,rln or by address has been entered. This response
confirms that the requested action has been taken.

or
IED024I TRACE ALREADY STARTED FOR~grpname, rln/

hddress \

Explanation: An operator command requesting that the I/O trace be started for
the line named by grpname,rln or by address has been entered, but I/O trace was
already active on the line when the command was received.

or
IED055I I/O TRACE CANNOT BE ALTERED

Explanation: An operator command requesting that the I/O trace be started has
been entered, but the trace facility was not defined for this execution of the
TCAM system.

This command requests a list of the inactive entries in the invitation list for the
specified line (see also the descriptions of the ACTV ATED operator command
and the ICOPY macro instruction for an application program).

Format:

Control Characters Operation Operands

control chars 1D1~LAY~ TP,INACT, ~grpname,rln ~
address

A list of inactive entries is displayed for the invitation list specified either by
grpname,rln or by address.

Response:

IEDO 171 LINE{grpname, rln} NOT OPEN
address

or
IED037I {grpname,rln}INACTIVE= statname, ...

address NONE

Explanation: An operator command has been entered requesting a display of the
names of all stations associated with the line named by grpname,rin or by address
that are currently inactive. The response provides a list of the names of all

Using TeAM Service Facilities 473

INTERVAL

INTRCEPf

inactive stations. If no stations are inactive, NONE replaces statname, ... in the
response.

This command activates the system interval whose value is specified by the
INTV AL= operand of the INTRO macro instruction (if the INTV AL= operand is
not coded, this operator command does not affect the system). For more informa­
tion on the system interval, see System Interval in Defining Terminal and Line
Control Areas.

Format:

Control Characters Operation Operands

control chars ~~ODIFY~ i ~procname.]id~,
Jobname

INTERV AL=SYSTEM

Response:

IEDO 11 I SYSTEM INTERVAL CANNOT BE ALTERED

Explanation: Either a system interval of zero or no system interval at all was
specified in the INTVAL= operand of the INTRO macro or in the response to a
WTOR message at INTRO execution time, and an operator command was entered
to modify the value of the interval.

or
IED045I SYS INTERVAL ALREADY ACTIVE

Explanation: An operator command was entered requesting that the system
interval be activated, but the system interval was already in the process of being
activated.

or
IED093I SET SYSTEM INTERVAL COMMAND ACCEPTED

Explanation: An operator command has entered requesting that the system
interval be activated. This response verifies that the command has been received
and is being acted upon.

This command requests display of all the stations in the system that are intercept­
ed (an intercepted station is one to which transmission has been suspended by a
HOLD macro).

Format:

Control Characters Operation Operands

control chars ~~ISPLAY~ TP,INTER

474 OS/MFT and OS/MVT TeAM Programmer's Guide

(

LNSTATUS

Response:

IED039I NO STATIONS INTERCEPTED

Explanation: An operator command has been entered requesting a display of all
intercepted stations in the TCAM system. There are no stations currently inter­
cepted.

or
IED040I INTERCEPTED STATIONS=statname, .•.

Explanation: An operator command has been entered requesting a display of the
names of all intercepted stations in the TCAM system; statname, ... are the names
of the stations that are currently intercepted.

This command requests display of the status field and the message error record for
the specified line.

Format:

Control Characters Operation Operands

control chars ~~ISPLAY} lP,LINE, ~ grpname,rln~
address

The status field and the message error record are displayed for the line specified
either by grpname,rln or by address.

Possible responses in the LNST A T = field of the response message are:

Response

BS
CM
CR
DL
1M
LF
MS
NR
OC
RC
RV
SD
TB
TR

Meaning

bisync line
line in control mode
continue or reset operation
switched (dial) line
receiving initiate-mode message
line free
msggen/start-up message
negative response to polling
operator control is stopping line
recall being performed
line in receive mode
line in send mode
EOT from a buffered terminal
I/O trace active

If no bits are set in the status field, the response is (NO BITS ON.)

Possible responses in the ERR= field of the response message are given below.
Each response is a mnemonic corresponding to a bit of the message error record.
See Appendix B for an explanation of the error indicated by the mnemonic. If no
bits are set in the message error record, the response is NO BITS ON.

Using TeAM Service Facilities 475

NOENTRNG

ABR - abort-BSC station
CDC - connect/disconnect error
CHR - channel error
CUR - control unit error
CUT - cutoff error
FMT - format error
FWD - forward error
FWD - forward error
HDR - header incomplete
HDW - hardware error
INV - id from station invalid
ISB - insufficient buffers
LER - line error
LST - message lost (overlaid)
MAX - main-storage maximum passed

. MIN - main-storage minimum passed
MNS - message not sent/received
NOP - station inoperative
NTS - TSO not in system
OLT - on-line test not in system
ORG - invalid origin
SEL - selection error
SEL - selection error
SQH - sequence high
SQL - sequence low
TER - terminal error
TXT - text transfer error
UNR - undefined error
UNX - unit exception
USE - user error

For a more complete discussion of these bits and their meanings, see the TCAM
PLM.

Response:

IEDO 1 7I LINE ~ grpname, r in t NOT OPEN
1address f

or
IED032I ~grpname,rintLNSTAT=status, ••• ERR=error, .•.

1 address f

Explanation: An operator command was entered requesting display of the status
field and the message error record for the line named by grpname,rln or by
address. This response displays the requested information.

This command prevents the control program receiving messages from a specific
nonswitched station by deactivating that station's entry in the invitation list. Any
message currently being received is completed.

Format:

Control Characters Operation Operands

control chars ~~ARY~ statname,OFFTP,E

statname is replaced by the name of the nonswitched station to be stopped from
entering messages. If a station is included more than once in an invitation list, all
the entries for the station are deactivated.

Response:

IEDO 161 STATION statname NOT FOUND
or

IED025I statname ALREADY STOPPED

476 OS/MFT and OS/MVT TeAM Programmer's Guide

NOTRACE

Explanation: An operator command has been entered requesting that the station
named by statname be stopped from entering messages. The station is already
stopped from entering.

or
IED026I statname STOPPED

Explanation: An operator command has been entered requesting that the station
named by statname be stopped from entering messages. This response confirms
that the requested action has been taken.

or
IED046I LINE FOR statname IS OUTPUT ONLY STATION

Explanation: An operator command has been entered requesting that the station
named by statname be stopped from entering messages, but the line is defined as
an output only line. The station is not capable of entering messages, and the
requested action is not taken.

or
IED088I statname ON DIAL LINE-CANNOT BE VARIED

Explanation: Terminals for dial lines are not hi the invitation list. These terminals
cannot be activated or deactivated.

or

IED090I statname IS NOT A SINGLE ENTRY

Explanation: An operator command was entered requesting a change involving
the line that the station named by statname is on, but statname is not a single
entry and has no line group, relative line number, or machine address.

or
IED091I LINE FOR statname NOT OPEN

Explanation: An operator command to stop a station is received, but the line is
not open. The requested action is not taken.

or
IED156I statname ON CONCENTRATOR-CANNOT BE VARIED

Explanation: An operator command was entered to start a station for entering
and accepting messages, but statname is attached to a concentrator and has no
entries in the invitation list. The requested action cannot be performed.

This command deactivates the TCAM I/O trace facility for a line (line trace).
The TCAM I/O trace facility is discussed in the Debugging Aids section of this
chapter.

Using TeAM Service Facilities 477

NOTRAFIC

Format:

Control Characters Operation Operands

control chars ~~ODIFY~ ~ ~procname.]id~,
Jobname

TRACE= ~ grpname,rlnf,OFF
address

The trace is stopped for the line specified either by grpname,rln or by address.

Response:

lEDO 171 LINE ~grpname, rlnt NOT OPEN

1address ~
or

lED0291 TRACE STOPPED FOR jgrpname, rlnt
1address f

Explanation: An operator command has been entered requesting that I/O trace
be stopped for the line indicated by grpname,rln or by address. This response
verifies that the requested action has been taken.

or
lED0301 TRACE ALREADY STOPPED FOR jgrpname,rlnt

1address ~

Explanation: An operator command has been entered requesting that I/O trace
be stopped for the line indicated by grpname,rln or by address, but I/O trace is
not currently active for the line.

or
lED0551 I/O TRACE CANNOT BE ALTERED

Explanation: An operator command has been entered requesting that I/O trace
be stopped, but the I/O trace facility is not defined for this execution of the
TeAM system.

This command combines the functions of the SUSPXMIT and NOENTRNG
operator commands and may be used to stop transmission both to and from a
station on a nonswitched line, and to stop transmission to a station on a switched
line.

Format:

Control Characters Operation Operands

control chars ~~ARY~ statname,OFFTP,B

statname is replaced by the name of the station to be stopped from both accepting ,(
and entering messages.

478 OS/MFT and OS/MVT TeAM Programmer's Guide

Response:

IEDO 161 STATION statname NOT FOUND

or
IED025I statname ALREADY STOPPED

Explanation: An operator command requesting that the station named by
statname be deactivated was entered, but the station is already inactive.

or
IED026I statname STOPPED

Explanation: An operator command was entered requesting that the station
named by statname be deactivated. This response confirms that the requested
action has been taken.

or
IED046I LINE FOR statname IS OUTPUT ONLY STATION

Explanation: An operator command was entered requesting that the station
named by statname be deactivated, but the station is not one that is capable of
entering and accepting messages. It may accept messages, but the line with which
the station is associated is defined as an output-only station. The requested action
cannot be taken.

or
IED051 I statname SET FOR HOLD, SEQ-OUT=integer

Explanation: An operator command has been entered requesting that the station
named by statname be stopped from accepting and entering messages. An error
occurred when trying to deactivate statname. The terminal was only held.

or
IED088I statname ON DIAL LINE-CANNOT BE VARIED

Explanation: Terminals for dial lines are not in the invitation list. These terminals
cannot be activated or deactivated.

or
IED090I statname IS NOT A SINGLE ENTRY

Explanation: An operator command was entered requesting a change involving
the line that the station named by statname is on, but statname is not a single
entry and has,no line group, relative line number, or machine address.

or
IED091 I LINE FOR statname NOT OPEN

Explanation: An operator command to stop a station is received, but the line is
not open. The requested action is not taken.

or

IED156I statname ON CONCENTRATOR-CANNOT BE VARIED

Using TCAM Service Facilities 479

OPTFIELD

Explanation: An operator command was entered to start a station for entering
and accepting messages, but statname is attached to a concentrator and has no
entries in the invitation list. The requested action cannot be performed.

This command displays the field that is reserved in an option table by an OPTION
macro instruction issued for a station.

Format:

Control Characters Operation Operands

control chars ~~ISPLAY~ TP,OPTION,statname,opfidname, {~ }

All OPTION names are kept in an option table with their offsets in the offsets
field of the terminal entry; this enables an option field named in an operator
command to be found. statname is replaced with the name of the station whose
associated option field is to be displayed. opfldname is replaced by the name of
the option field in the option table and is identical to the name field of the
OPTION macro instruction that reserved space in the option table for this station. X
is used to display any field in hexadecimal format. C is used to display a character
field in character format. D is used to display a non-character field in decimal
format. The largest value that can be displayed in decimal format is 2147483647.

Leading blanks are not displayed for character fields. Leading zeros are dropped
from the display of decimal and hexadecimal fields; however, a hexadecimal field
whose contents are 0001 will be displayed as 01. If the field cannot be displayed
in the format specified in the command, the command is rejected with message
IEDOI8I.

Example: If the OPTION and TERMINAL macros are coded

EX OPTION H

TRM TERMINAL" ... (OPDATA=20)

the command

D TP,OPTION,TRM,EX,D

will cause 20 to be displayed, while the command

D TP,OPTION,TRM,EX,X

will cause 14 to be displayed. However, the command

D TP,OPTION,TRM,EX,C

will be rejected with message IEDOI8I.

480 OS/MFT and OS/MVT TCAM Programmer's Guide

POLLDLAY

Response:

IED016I STATION statname NOT FOUND

or
IED034I statname HAS NO opfldname OPTION

Explanation: An operator command has been entered requesting the display of
the contents of the option field named by op[ldname for the station named by
statname , but no such option field is defined for that station.

or
IED035I statname OPTION opfldname=entry

Explanation: An operator command has been entered requesting the display of
the contents of the option field named by op[ldname for the station named by
statname. entry is the contents of the field, displayed in the format in which it
was defined.

This command, which is used only for stations on a nonswitched line, requests a
change in the duration of the polling delay specified for the line group in the
corresponding line group DCB macro instruction.

Format:

Control Characters Operation Operands

control chars ~~ODIFY~ ~~procname.]id ~,
Jobname
INTERV AL=POLL,statname,data

statname is replaced by the name of any station in the line group, and data by the
decimal number of seconds (not to exceed 255) to be used for the polling delay.
The length of the polling delay is changed for the entire line group, not just for the
station named in the statname field above.

Response:

IEDO 161 STATION statname NOT FOUND

or
IED048I POLLING DELAY FOR statname=data

Explanation: An operator command has been entered requesting that the value of
the polling delay for the station named by statname and its associated line be
modified to the value specified by data. This reponse confirms that the requested
action has been taken.

or
IED061 I POLLING DELAY FOR statname CANNOT BE ALTERED

Explanation: An operator command has been entered requesting that the value
of the polling delay for the line associated with the station named by statname be
modified, but the line is defined as a dial line and has no polling delay. The
command cannot be executed.

or
IED091 I LINE FOR statname NOT OPEN

Using TCAM Service Facilities 481

QSTATUS

Explanation: An operator command has been entered requesting that the value of
the polling delay for the line associated with the station named by statname be
modified, but the line is not open. The command cannot be executed.

This command requests display of the fields of a queue control block containing
the number of messages queued, the queue status, and the priority levels permitted
for either a line or a station queue.

Format:

Control Characters Operation Operands

control chars ~~ISPLAYf TP,QUEUE,statname

If queuing is by station, statname is replaced by the name of any station for which
the information is desired. If queuing is by line, statname may be the name of any
station on the line for which the information is desired.

In the response message, number specifies the number of messages in the queue.
If the statname operand specifies the name of a TPROCESS entry and the first
message already has been forwarded successfully to the application program, the
number displayed reflects this first message even though TCAM does not yet
consider the message successfully sent; therefore, statname QUEUE
SIZE=number in response IED031I will indicate a number that is one greater
than the actual number of unsent messages.

Possible returns for the status field are:

SNDBUF -sending to a buffered terminal
NONEON -no status bits on
TWELVE-call delay is greater than twelve hours
DELA Y -in the delay queue
BUFFRD -queue for a buffered station
TSOSES -TSO session in progress
RDPRIO -read has priority

Possible returns for the queue type field in the response message are:

DR - reusable disk queue
DN - nonreusable disk queue
MO - main-storage-only queue
MR - main-storage queue with reusable disk backup
MN - main-storage queue with nonreusable disk backup
NO - no queuing used

PRIORITY = integer ... specifies each priority level in the LEVEL= operand of the
TERMINAL macro instruction issued for either the station or the line (see the
discussion of the LEVEL= operand of the TERMINAL macro). A response of
PRIORITY =000 indicates that no priorities were specified in the TERMINAL
macro instruction.

482 OS/MFT and OS/MVT TeAM Programmer's Guide

c

RESMXMIT

Response:

IED016I STATION statname NOT FOUND

or
IED031 I statname QUEUE

SIZE=number,QUEUETyP=type,STATUS=status, ...

PRIORITY=integer, ...

Explanation: An operator command has been entered requesting the display of
queue information for the station named by statname. This response displays the
requested information.

or
IED090I statname IS NOT A SINGLE ENTRY

Explanation: An operator command was entered requesting information about
the line that the station named by statname is on, but statname is not a single
entry and has no line group, relative line number, or machine address.

This command releases intercepted messages queued either for a specified station
or for the line on which the specified station is located.

Format:

Control Characters Operation Operands

control chars ~~ELEASE~ TP=statname

statname is replaced by the name of the station for which the released messsages
are queued (or the name of a station on a line for which the released messages are
queued).

Response:

IEDO 161 STATION statname NOT FOUND

or
IED053I statname ALREADY RELEASED

Explanation: An operator command has been entered requesting the release from
intercept status of the station named by statname, but the station is not currently
intercepted.

IED054IstatnameRELEASED, SEQ-OUT=integer

Explanation: An operator command has been entered requesting the release from
intercept status of the station named by statname. This response confirms that
the requested action has been taken, and provides the output sequence number of
the first message to be released.

or

I ED 147 I gps ta tname COMMAND INVALID FOR GENERAL POLL

Using TeAM Service Facilities 483

RLNSTATN

STARTLINE

Explanation: An operator command has been entered requesting release from
intercept status at a general poll station. This command is invalid and is ignored.

This command requests the relative line number on which a station resides.

Format:

Control Characters Operation Operands

control chars ~gISPLAYf TP ,ADDR,statname

statname is replaced by the name of the station whose relative line number is
sought.

Response:

IED016I STATION statname NOT FOUND
or

IED038I statname IS ON LINE grpname rIn address

Explanation: An operator command was entered requesting information regard­
ing the line with which the station is associated. statname is the name of the
station about which the information is requested, grpname and rln provide the
group name and the relative line number, and address is the hardware address of
the line.

IED090I statname IS NOT A SINGLE ENTRY

Explanation: An operator command was entered requesting information regard­
ing the line that the station named by statname is on, but statname is not a single
entry and has no line group, relative line number, or machine address.

This command causes transmission either to begin to resume on a particular line
(or all the lines) in a line group.

Format:

Control Characters Operation Operands

control chars l~ARY! {(grpname,rln) }ONTP
(grpname,)
address

grpname is the name of the line group and rln the relative line number of the line
within the line group. The rln may also be replaced by ALL. The (grpname,rln)
form of the operand starts transmission on the line indicated; the (grpname , ALL)
or the (grpname,) form starts all the lines in the line group. The framing par-
entheses must be coded if this command is entered at the system. Console address

,r1
I~

starts the line and is the machine address of the line; address consists of three
hexadecimal digits. If polling is used, an invitation list that is active for entering C
messages is a prerequisite for message reception. STARTLINE initiates polling,

484 OS/MFT and OS/MVT TeAM Programmer's Guide

STAmISP

enabling, or preparing of input lines. This command may thus be used to activate
a line or line group that was opened idle.

When more than one DCB is assigned the same VCB, the DeBs must have
individual ddnames, and the VARY commands associated with these lines must
use the (grpname,rln), (grpname ,ALL), or (grpname ,) format of the VARY
command.

Response:

IEDO 171 LINE !grpname, rlntNOT OPEN
1address ~

or
IED019I !grpname ,rln t ALREADY STARTED

1 address ~

Explanation: An operator command has been entered to start the line named by
grpname,rln or by address, or the line group named by grpname (with the
optional rln specified as ALL). The line or line group is already active.

or
IED020I ~grpname , rln t STARTED

1address ~

Explanation: An operator command has been entered to start the line named by
grpname,rln or by address or the line group named by grpname (with the optional
rln specified as ALL). This response confirms that the requested action has been
taken.

IED047I SYSTEM INTERVAL IS ACTIVE

Explanation: An operator command to start a line or line group was entered while
the system interval was active. The command is rejected.

or
IED049I OLT CONTROLS LINE ~grpname, rln t COMMAND REJECTED

1address ~

Explanation: The operator command to start the line named by grpname,rln or
by address has been entered, but the line is currently controlled by the on-line test
facility. The command cannot be executed.

or
IED092I BISYNC ERROR-LINE ~ grpname, rln t CANNOT BE STARTED

1 address ~

Explanation: An operator command to start the line named by grpname,rln or by
address has been entered, but it is a BSC line with an error preventing it being
started.

This command displays whether the Auto Poll feature is being used for a specified
line.

Using TeAM Service Facilities 485

STOPLINE

Format:

Control Characters Operation Operands

control chars ~DISPLAY(TP ,LIST, ~ grpname,rln f
D \ address

The status of the invitation list is displayed for the line specified either by
grpname, rln or by address.

Response:

IEDO 1 7I LINE ~grpname I rlnt NOT OPEN

1address ~
or

IED059I ~grpname I rlnl LIST STATUS= ~AUTOPL t
1address ~ 1NOBITSON~

Explanation: An operator command requesting display of the status of the
invitation list associated with the line named by grpname,rln or by address has
been entered. This response displays the requested information. A response of
NO BI TS ON indicates an invitation list that is polled using programmed polling or a

list associated with a dial line.

This command stops transmission of messages on a line or a line group. The last
operand determines whether transmission stops at the end of the current message
(e) or immediately (I).

Format:

Control Characters Operation Operands

control chars ~~ARY~ { (gqJfiame,rln) } ,OFFTP, l C (
(grpname,) I
address

grpname is replaced by the name of the line group, and rln by the relative line
number of the line within the line group or by ALL (parentheses must be coded as
indicated in the (grpname,rln) or (grpname ,) form of addressing if this command
is entered at the system console). address is replaced by the machine address of
the line. Either e or lis coded as shown (e stops transmission at the end of the
current message, I stops transmission immediately). If either (grpname,rln) or
address is coded, transmission stops on the specified line; if (grpname ,ALL) or
(grpname ,) is coded, transmission stops on the whole line group. When more
than one DeB is assigned the same UeB, the DeBs must have individual
ddnames, and the V AR Y commands associated with these lines must use the
(grpname,rln), (grpname ,ALL), or (grpname ,) format of the VARY command.

If a STOPLINE command is issued for a line that is also entering an operator
command, then that command is not considered to be an operator command and is
sent through the Message Handler. If a STOPLINE command is issued for a line
that has entered an operator command that has not yet been processed, that
command is lost.

486 OS/MFT and OS/MVT TeAM Programmer's Guide

(

STSTATUS

Response:

IED013I STOP REQUEST FOR SELF--VARY COMMAND REJECTED

Explanation: An operator command to stop a line was entered, but the line
specified is that which is associated with the station that entered the command.
The command will not be executed.

or
IEDO 171 LINE ~grpname, rIn l NOT OPEN

1address ~
or

IED025I~grpname,rInlALREADYSTOPPED

1address 5

Explanation: An operator command was entered to stop the line named by
grpname,rln or by address or the line group named by grpname or by grpname,
ALL was entered, but the line is not currently active.

or

IED026I{grp name,rIn}STOPPED
address

Explanation: An operator command to stop the line or line group named was
entered. This response verifies that the requested action was taken.

or
IED047I SYSTEM INTERVAL IS ACTIVE

Explanation: An operator command to stop a line or line group was entered while
the system interval was active. The command is rejected.

or
IED049I OLT CONTROLS LINE j grpname, rIn t COMMAND REJECTED

1 address ~

Explanation: An operator command to stop the line named by grpname,rln or
by address was entered, but the line is currently controlled by the on-line test
facility. The command cannot be executed.

This command displays the station status, the input sequence number of the next
message to be received from the station, the output sequence number of the last
message sent to the station, and the current intensive-mode recording status.

Format:

Control Characters Operation Operands

control chars ~~ISPLAY~ TP ,TERM,statname

statname is replaced by the name of the station for which the status is desired.

Using TeAM Service Facilities 487

SUSPXMIT

Response:

IEDO 171 STATION statname NOT FOUND

or
IED033I statname STATUS=status, ... INTENsEl~~nse count~

IN-SEQ=integer

OUT-SEQ=integer

Explanation: An operator command has been entered requesting display of
information related to the station named by statname. This response displays the
relevant information.

The status field in the station entry is examined, and possible conditions that may
appear in the status, ... field are:

INTCEPT
SCNDARY
SNGLTRM
PROCESS
DISLIST
CASLIST
LINEENT
OPTFLDS

Station is intercepted.
Station is a secondary operator control station.
Station entry is either a single or a group entry.
Station entry is a process entry.
Station entry is a distribution list.
Station entry is a cascade list.
Station entry is a line entry.
Station has option fields defined.

INTENSE=sense count indicates that a specific type (sense) and number
(count) of intensive recording have been specified by the ERRECORD operator
command for failures, where sense and count are the same as that specified in
ERRECORD's operand fields (see ERRECORD for a description of the intensive­
mode recordings that may be made and the restrictions on the number of record­
ings to be made). INTENSE=NO indicates that intensive-mode recordings for
failure incidents have not been requested by the ERRECORD command. integer
in both IN-SEQ and OUT-SEQ refers to input and output sequence numbers,
respectively.

This command suspends transmission to a specified station.

Format:

Control Characters Operation Operands

control chars ~~OLD~ TP=statname

The form that the suspension takes depends upon the form of the first HOLD
macro executed following this command in the Message Handler for the station.
If an interval is specified for HOLD, this command causes a suspension of traffic
for that period of time (the station is said to be intercepted). If the RELEASE
operand is specified in the HOLD macro, suspension is maintained either until
another operator command is issued to release messages queued for the station
(see the RESMXMIT command), or until an MRELEASE macro (or a QTAM
RELEASEM macro) is issued in the application program for the station. If no
HOLD macro is specified in the MH, this command is rejected. statname is I'
replaced by the name of the station to which transmission is to be suspended. "

488 OS/MFT and OS/MVT TeAM Programmer's Guide

SYSCLOSE

Note: An intercepted station may still enter messages-only traffic to the station
is suspended.

Response:

IEDO 161 STATION statname NOT FOUND

or
IEDOSlI statname SET FOR HOLD, SEQ-OUT=integer

Explanation: An operator command has been entered requesting that the station
named by statname be held. This response verifies that the requested action has
been taken, and provides the output sequence number for the first message that is
held.

or
IEDOS2I statname ALREADY SET FOR HOLD

Explanation: An operator command has been entered requesting that the station
named by statname be held, but the station is already held.

or
IED060I statname CANNOT BE HELD

Explanation: An operator command has been entered, requesting that the station
named by statname be held, but the station cannot be held because it is associated
with a main-storage-only queue, it is on a line that is not open or has been opened
dd dummy, or there is no HOLD macro in the system.

or
IED147I gpstatnameCOMMAND INVALID FOR GENERAL POLL

Explanation: An operator command has been entered requesting that a general
poll station be held. This command is invalid and is ignored.

This command initiates either a quick or a flush closedown of the system (for a
discussion of quick and flush closedown, see the Deactivation section of the
chapter Activation and Deactivation of the Message Control Program).

Format:

Control Characters Operation Operands

control chars {~ALT} TP,{QUICK}
FLUSH

Either QUICK or FLUSH is coded as shown (the user must determine whether he
wants a quick or a flush closedown).

Response:

IED063I CLOSEDOWN IN PROGRESS--HALT COMMAND REJECTED

Explanation: An operator command has been entered requesting that the TCAM
system be closed down, but a closedown is already in progress.

Using TeAM Service Facilities 489

SYSINTVL

or
IED157I TCAM SYSTEM DELAY ACTIVE-HALT COMMAND REJECTED

Explanation: A TCAM halt command was issued while TCAM System Delay
was active. This requested action cannot be performed.

This command, changes the duration of the system interval previously specified
in the INTV AL= operand of the INTRO macro (if the INTV AL= operand is
not coded, this operator command does not affect the system).

Format:

Control Characters Operation Operands

control chars ~~ODIFY~ ~ ~procname.]id ,~
Jobname

INTER V AL= SYSTEM,data

For a discussion of the system interval, see The System Interval in Defining
Terminal and Line Control Areas.

data is replaced by the decimal number of seconds to be used for the system
interval (65535 is the maximum number that can be specified).

Response:

IED011I SYSTEM INTERVAL CANNOT BE ALTERED

Explanation: Either a system interval of zero or no system interval at all
was specified in the INTV AL= operand of the INTRO macro or in the
WTOR response at INTRO execution time, and an operator command was
entered to modify the value of the interval. The interval cannot be altered.

IED047I SYS INTERVAL IS data

Explanation: An operator command was entered to change the system interval
to the value specified by data. This command verifies that the action has
been taken.

Check pointing Operator Commands
If the checkpoint DCB has been opened, incident checkpoint records are
written when the following operator commands have been successfully pro­
cessed:

ACTVBOTH
AUTOSTOP
AUTOSTRT
CPRIOPCL
DATOPFLD
ENTERING
ERRECORD
GENPOLOFF
GENPOLON
GOTRACE

NOENTRNG
NOTRACE
NOTRAFIC
POLLDLAY
RESMXMIT
STARTLINE
STOPLINE
SUSPXMIT
SYSINTVL

Display commands and unsuccessful operations are not checkpointed.
Commands affecting the invitation list are checkpointed only if the
STARTUP= operand of the INTRO macro included I.

490 OS/MFT and OS/MVT TeAM Programmer's Guide

(

Disk Error Handling
The disk error handling facility enables TCAM to detect disk input/output
errors and offers descriptive information pertaining to that error.
Whenever a disk input/output error interruption occurs, the appropriate
bits are examined and action is taken accordingly. In the event of
intervention required, control is returned to the system. In case of an
irrecoverable error abnormal termination S045 U008 will be issued.

The following special operator awareness message is sent to the primary
control station when a disk input/output error occurs:

I ED 1 401 TCAM DISK ERROR aa, bbbbbbbb,

cccccccccccccccc, ddd, ee ffffff

aa is the event control block (ECB) completion code in decimal format.
bbbbbbbb is the input/output block (lOB) FLAGSl, FLAGS2, SENSO,
SENSl fields in hexadecimal format.
cccccccccccccccc is the lOB FLAGS3 byte and channel status word (CSW) in
hexadecimal format.
ddd is the unit ID of the unit control block (UCB) in decimal format.
ee is an alphabetic RD or WR denoting that the error occurred during a
read or write operation.
ffffff is the starting address of the channel program in hexadecimal format.

TeAM I/O Error-Recovery Procedures
The TCAM MCP indues a comprehensive set of error-recovery procedures
for dealing with the various types of input lout put errors that may occur in a
telecommunications environment.

Whenever an input/output error interruption occurs, the error-recovery proce­
dures examine the sense bytes for the transmission control unit and the
channel status work (CSW). (The CSW is described in the publication
Principles of Operation, while the sense byte is described in the component
description SRL for the transmission control unit being used.)

If the CSW indicates an error condition, TCAM takes action appropriate to
the type of error.

An irrecoverable error is one which is incapable of being corrected by pro­
gram action (for example, overrun on a write command). For such an error,
TCAM sets the appropriate bit or bits in the message error record, causes
a special operator awareness message to be sent to the primary operator control
station, causes a permanent-error record to be written on disk by TCAM's
1/0 error-recording facility, and may cause the connection between the
computer and the station to be terminated.

The message error record is a five-byte storage area assigned to a message.
The bits of the message error record indicate the presence (when on) or
absence (when off) of specific error conditions, and may be checked by
error-handling macros in the inmessage and out message subgroups of the

Using TCAM Service Facilities 491

AREA TYPE OF KEYWORD SPECIFIC
AFFECTED FUNCTION NAME FUNCTION

System CPRIOPCL Changes primary operator control to another station.

ERRECORD Records recoverable and nonrecoverable failure incidents.
Change

INTERVAL Changes to system transmission interval.

SYSINTVL Changes the duration of the system interval.

Closedown SYSCLOSE Initiates system closedown.

DEBUG Activates a routine that dumps control blocks.

DPRIOPCL Displays the name of the primary operator control station.
Display

DSECOPCL Displays the names of all secondary operator control stations.

INTRCEPT Displays all intercepted stations.

Line Group Change POLLDLAY Changes polling delay for a line group.

Start STARTLINE Starts transmission on a line or a line group.

Stop STOPLINE Stops transmission on a line or a line group.

line Change INTERVAL Changes to system transmission interval.

ACTVATED Displays the names of all active stations on a line.

INACTVTD Displays the names of all inactive stations on a line.

Display LNSTATUS Displays status of a communication line.

QSTATUS Displays status of a message queue.

STATDISP Displays the status byte of on invitation list.

AUTOSTRT Starts Auto Poll on a line.

Start GOTRACE Starts TeAM trace facility on a line.

STARTLINE Starts transmission on a line or a line group.

AUTOSTOP Stops Auto Poll qn a line.

Stop NOT RACE Stops TeAM trace focility on a line.

STOPLINE Stops transmission on a line or a line group.

Station Activate ACTVBOTH Activates a station for both accepting and entering messages.

ENTERING Activates a station for entering messages.

CPRIOPCL Changes primary operator control to another station.
Chonge

DATOPFLD Inserts data in an option field for a station.

ERRECORD Records recoverable and nonrecoverable failure incidents.

GENPOLOFF Deactivates general poll.

GENPOLON Activates general poll.

ACTVATED Displays the names of all octive stations on a line.

DPRIOPCL Displays the name of the primary operator control station.

DSECOPCL Displays the names of all secondary operator control stations.

INACTVTD Displays the names of alf inactive stations on a line.

Display INTRCEPT Displays the names of oil intercepted stations.

OPTFIELD Displays an option field for a station.

QSTATUS Displays the status of a message queue.

RLNSTATN Displays the relative line number of a station.

STATDISP Displays the status byte of on invitation list.

STSTATUS Displays the stat.)s of a station.

Resume RESMXMIT Resumes transmission to a station.

Stop NOENTRNG Stops a station entering after current message is completed9

NOTRAFIC Stops a station accepting and entering ofter current message is completed.

Suspend SUSPXMIT Suspends transmission to a station (HOLD dependent).

Figure 35. Operator Commands Classified by Areas Affected

492 OS/MFT and OS/MVT TCAM Programmer's Guide

Mid-Batch Recovery

Message Handler. These macros perform such functions as generating error
messages, and causing all messages queued for a station to be held on the
queue (because, perhaps, the station is inoperative). The message error record,
which handles text errors as well as I/O errors, is described in Appendix B.

The TeAM I/O Error Recording Facility section of this chapter describes the
permanent error record and the operator awareness message. Both of these yield
information helpful to the user in diagnosing and correcting hardware difficulties
that result in permanent II 0 errors.

The connection with the station may be terminated in one of three ways
following an irrecoverable error. For multipoint polled stations, the computer
polls the next station in the invitation list. For a switched station, the
computer attempts to send the next message queued for the station; if there
are no more messages in the queue, the computer gives the station a chance
to enter data, then hangs up. For nonswitched contention stations, the com­
puter merely resets itself to send or receive the next message.

If the I/O error is not irrecoverable, TCAM's error-recovery procedures
attempt to recover from it, usually by retransmitting the block of data for
which the error occurred (this is called retrying the block). If the station is
in text mode, the block probably will be retried only if at least one of these
four operands, START=, CONT=, CONY=, LOGICAL=, of the
STARTMH macro is coded. If none of these operands is coded, no retries
are likely to be performed, and the error is handled as an irrecoverable
error. (If none of these operands is coded, retries will be performed during
receive operations for text errors if the error recovery procedures have access
to the entire block in error.) If the station is not in text mode, the error­
recovery procedures will retry regardless of what is coded in STARTMH.

Two retries are performed for start-stop stations, while six are performed for
BSC stations. If these retries fail to correct the error, it is treated as an
irrecoverable error, and the actions described above for irrecoverable errors are
taken.

The user can keep track of the number of temporary errors (that is, errorS
that are recovered from as a result of retries) for a specific station by means
of TCAM's I/O error-recording facility, described in TCAM I/O Error­
Recording Facility below.

TCAM allows the user to design his system to recover from permanent text
errors encountered in any block of data following the first block in a multi­
block message (including logical messages-see Handling Logical Messages in
the chapter Designing the Message Handler). This capability of mid-batch
recovery is accomplished for messages to or from a station by specifying that an
erroneous block of text be discarded. In order for mid-batch recovery to apply for
messages to or from a nonswitched station, the station's TERMINAL macro must
specify MB= YES (see the description of the MB= operand on the TERMINAL
macro); this operand need not be specified for switched or buffered stations.

Mid-batch recovery does not apply for:

• messages queued on main-storage-only queues;
• messages being received in initiate mode;

Using TeAM Service Facilities 493

Recovery on Input

Recovery on Output

• permanent errors encountered in the first block of text of a multiblock message
(in this instance, the CANCELMG and HOLD macros apply to the entire
message);

• selection errors encountered while TCAM is performing mid-batch recovery for
the station associated with the selection error (the CANCELMG and HOLD
macros apply to the entire message);

• a "dropped" connection on a switched line (the CANCELMG and HOLD
macros apply to the entire message).

If mid-batch recovery is desired for receiving operations, STOP= YES must be
specified on the ST ARTMH delimiter macro in the incoming MH handling
multiblock messages. After the normal number of retries is exhausted, an incom­
ing block containing a permanent error is discarded by TCAM and undergoes no
further processing once it is detected. This facility requires that the
LEVEL=BLK operand of the CANCELMG macro be coded in the inmessage
subgroup handling the message (see the description of the CANCELMG macro
elsewhere in this publication). Once the block is discarded (it is deleted from a
message segment that has already been queued), TCAM retains the portion of the
multi block message preceding the discarded portion and terminates inmessage
processing. Normal line-scheduling procedures then go into effect; output to the
station is withheld until TCAM completes processing on the affected incoming
multiblock message. (On a switched line, TCAM maintains the connection either
until the message is entered successfully, or until a selection error occurs, or until
the line is ,disconnected due to a line error.)

For nonswitched and non-buffered stations, the MB= operand of the station's
TERMINAL macro must specify YES. If the MB= operand is omitted, or if
MB=NO is specified, TCAM cancels the entire incoming message. If MB=YES
is specified, the CANCELMG macro may be included in the inmes~age subgroup
for testing whether error conditions warrant cancellation of the message. Also,
queuing by terminal is required (see the QBY=T operand of the TERMINAL
macro).

If the end-of-file switch is off for a BSC station, a STX-ENQ sequence may be
received which causes output to the station to be suspended and the text error bit
to be set in the message error record. Output to the station is resumed (and the
text error bit is turned off) when another record is received from the station; refer
to the component description SRL for the BSC device being used to determine
how to resume transmission to TCAM.

For switched and buffered stations, the MB= operand of the TERMINAL macro
need not be coded for mid-batch recovery (recovery is provided automatically by
TCAM).

In order to include mid-batch recovery on output, the user needs to include the
LEVEL=BLK operand on the HOLD macro and, for nonswitched stations, the
MB= operand on the TERMINAL macro.

Just as the input, the output side requires that the TERMINAL macro specify
MB=YES to achieve mid-batch recovery from permanent text errors in messages
to or from a nonswitched station. For switched and buffered stations, mid-batch
recovery need not be specified.

494 OS/MFT and OS/MVT TeAM Programmer's Guide

(

When a permanent transmission error is detected in an outgoing multiblock
message, the buffer containing the error is treated by TeAM as the end of the
message and successfully transmitted.

In order for the accepting station to actually obtain the remainder of the message
starting with the block in error, the outmessage subgroup handling the message
must contain a HOLD macro specifying LEVEL=BLK (see the description of the
HOLD macro). If the HOLD macro also specifies suspension of transmission for
a specified period of time (see the INTVL= operand), the specified delay is
observed before transmission to a nonswitched station is resumed (the INTVL=
operand is ignored for switched and buffered stations during a mid-batch recovery
operation); if the INTVL= operand is omitted, resumption of transmission is
immediate.

Queuing by terminal is required (see the QBY = operand of the TERMINAL
macro instruction).

TeAM I/O Error-Recording Facility
TeAM provides an I/O error-recording facility that creates records on disk when
certain terminal-related I/O errors occur. The TeAM error-recording facility,
which is an extension of the OS/360 outboard recorder (OBR) and statistical data
recorder (SDR) error-recording programs and operates in conjunction with
TeAM's I/O error-recovery procedures, helps to reduce the time that the TeAM
system is inoperative by providing information useful in diagnosing line and
terminal problems.

For each station for which a TERMINAL macro is issued, TeAM maintains (in
the terminal table entry) two counters. One of these is a two-byte counter that
keeps track of the approximate number of Start I/O (SIO) commands issued for
the station or line (SIO commands issued as a result of retrying during TeAM's
I/O error-recovery procedures are not reflected in the total count). The other is a
one-byte counter that contains the number of temporary errors (defined errors
occurring during SIO operations for which retry was successful) that have occur­
red since the last error record was written on disk. If the station for which an SIO
operation is being performed is known, the counters in the terminal table entry for
that station are updated. The counters in a line entry in the terminal table are
updated only if the station, for which the SIO operation is being performed, is not
known; the counters are reset each time their contents are recorded on disk.

Four types of I/O error records may be written on disk: permanent, temporary,
overflow, and end-of-day. These are discussed in order in the next section.

Kinds of TeAM I/O E"or Record
A permanent-error record is written on disk for each permanent I/O error. A
permanent I/O error is either an irrecoverable error (that is, an undefined,
unanticipated I/O error for which TeAM provides no error-recovery procedure),
or an I/O error for which TeAM provides an error-recovery procedure and has
tried several times to correct the error only to fail each time. Each permanent­
error record contains the following information:

• date
• time
• program 10

Using TeAM Service Facilities 495

• station name
• type of record (permanent, temporary, overflow, end-of-day)
• contents of SIO counter for this line or station (count is approximate)

contents of temporary-error counter for this line or station
• first CCW
• failing CCW
• channel/unit address
• CSW
• sense byte data
• device type
• unit status
• channel status

Information on the CCW and CSW may found in the Principles of Operation.
Record fields are discussed in the description of the IFCEREPO program in the
Service Aids publication.

A temporary-error record is made on disk whenever an error occurs that is speci­
fied for a particular line or station in an ERRECORD operator command, provid­
ed that TCAM's error-recovery procedures are successful in recovering from the
error. If TCAM's error-recovery procedures are unsuccessful, a permanent-error
record is made and a special message is sent to the primary operator control
station; the contents of this message are described below. This record contains
the same information as the permanent-error record .. More information on
temporary-error records and their use is contained in the section, Intensive-Mode
Error Recording.

A counter overflow record is made when either the SIO counter or the temporary­
error counter in a particular terminal table entry is about to overflow. This record
consists of:

• date
• time
• program ID
• type of record
• station name
• contents of SIO counter for this station (count is approximate)
• contents of temporary-error counter for this station
• channel/unit address
• device type

Once the record is put on disk, the counters in the terminal table entry are reset.

When a line group data set is closed, an end-of-day record is made for each
station and line in the line group for which there is a terminal table entry. Each
record contains the same information as the counter overflow record. A record is
created only if the temporary-error counter is nonzero.

The section below Gaining Access to I/O Error Records describes how to get
formatted, printed records.

Intensive-Mode Error Recording
A station or line in intensive mode is one for which a temporary-error record is
made each time that a specified error occurs and from which recovery is made. A
station or line is put in intensive mode with an ERRECORD operator command.
In issuing an ERRECORD command, the user may specify one of the particular
types of error checked for by TCAM (time-out, lost data, overrun, data check,

496 OS/MFT and OS/MVT TeAM Programmer's Guide

equipment check, busout, intervention required, command reject, unit exception,
or unusual leading graphic response from an IBM 2740 Model 2 terminal) and
also specifies the number of times (1 to 15) that a temporary-error record is to be
made when the specified error occurs and is recovered from for this line or station.
Alternatively, the user may specify in the ERRECORD command that a
temporary-error recording be made if any of the above errors (except for the
unusual leading graphics response from the 2740 Model 2 terminal) occurs and is
recovered from; in this case he would also specify the number of times a recording
is to be made.

Intensive-mode, error recording may be specified either for a line or for a station.
If a station is specified in the ERRECORD command, temporary-error records are
made when the error specified in the command occurs for that station and from
which recovery is made If a line is specified, a temporary-error record is made
each time the specified error occurs and is recovered from for any station on the
line (that is, all stations on the line are placed in intensive mode).

If a station is placed in intensive mode for one type of error, and an ERRECORD
command specifying a different type of error is then issued for the station, the
type of error specified by the second operator command is the one that causes
temporary-error records to be made after it is issued. An ERRECORD command
for a line overrides those issued previously for stations on the line; that is, if an
ERRECORD command, which specifies that temporary-error records be taken for
data checks occurring for a station named NYC, is followed by an ERRECORD
command that specifies that temporary-error records be taken for time-outs
occurring for any station on the line, after the second command is issued
temporary-error records will no longer be taken for data checks occurring for the
station NYC. If a third ERRECORD command, specifying that temporary-error
records be taken for data checks occurring for NYC, is now issued, a temporary­
error record will be made each time a data check occurs for NYC, and each time a
time-out condition occurs for any other station on the line.

Operator Awareness Message
The following message is sent to the primary operator control station when an I/O
error occurs for which TCAM provides error-recovery procedures, if the error­
recovery procedures are unsuccessful in correcting the error. (This message is in
addition to the permanent-error record that is created on disk when such an error
occurs.)

IEAOOOI I/O ERR,aaa,bb,cccc,ddee,ffgghhhh

aaa
is the line address in hexadecimal format.

bb
is the command code in hexadecimal format as specified in the failing channel
program.

ecce

dd

ee

is the status bytes of the channel status word (CSW), as specified in the
input/ output block (lOB), in hexadecimal format.

is the first sense byte, as specified in the input/output block (lOB), in hexade­
cimal format.

always zero.

Using TeAM Service Facilities 497

II

gg

is the TP Op code as specified in the failing CCW in the channel program for
the last retry attempt (in hexadecimal format).

is the TP Op code of the failing CCW for the first occurrence of the error.

hhhh

For stations on switched lines, if the station is known, hhhh is replaced by the
last four dial digits, if assigned. For stations on nonswitched lines, hhhh is
replaced by polling characters for receiving operations and addressing charac­
ters for sending operations. If the station is on a switched line and is unidenti­
fied to TCAM at the time the error occurred, hhhh is replaced by the polling
characters for stations on this line; if no polling characters are assigned, hhhh
is replaced by zeros. hhhh appears in hexadecimal fofmat.

Gaining Access to Error Records
Permanent-error, temporary-error, counter-overflow, and end-of-day, TCAM,
I/O error records are located in the SYSl.LOGREC data set. The user can gain
access to these records by using the IFCEREPO service aids program; information
on using this program to write TCAM I/O error records may be found in the
Service Aids publication.

Network Reconfiguration

By Operator Commands

By Application Program Macros

Direct control of network reconfiguration during execution is available for the
station operator and the application programmer through operator commands and
application program macros.

Functions provided by operator commands (with the corresponding command
name in parentheses) are:

• starting and stopping transmission on a line or a line group (ST ARTLINE;
STOPLINE);

• starting and stopping automatic polling on a line (AUTOSTRT, AUTOSTOP);
• starting and stopping the TCAM trace facility on a line (GOTRACE;

NOTRACE);
• activating and deactivating a station for accepting and/or entering messages on

a line (ENTERING, ACTVBOTH, NOENTRNG; NOTRAFIC);
• suspending and resuming transmission to a station (SUSPXMIT; RESMXMIT);
• changing primary operator control to another station (CPRIOPCL);
• activating system interval (INTERVAL);
• changing the duration of the system interval (SYSINTVL);
• changing the polling delay for a line group (POLLDLAY);
• inserting data in an option field for a station (DATOPFLD);
• initiating system closedown (SYSCLOSE).

An example of TCAM's flexibility provided by network reconfiguration through
operator commands is changing the status of a defective terminal before perform­
ing a manual, device reconfiguration. See Operator Control in an earlier section
for further information on the use of (and for more detailed descriptions of) these
and other operator commands.

Two macros are provided for changing the contents of control blocks during :(
execution of the application program; TCHNG and ICHNG are used to modify
the contents of a terminal table entry and an invitation list, respectively. Two

498 OS/MFT and OS/MVT TeAM Programmer's Guide

TCHNG

ICHNG

MRELEASE

MCPCLOSE

other macros, MRELEASE and MCPCLOSE, reactivate a destination and initiate
system closedown, respectively.

This macro, in conjunction with TCOPY, moves the contents of a terminal table
entry to a work area (where the contents optionally may be changed), and then
moves the modified entry back to the terminal table. Related option fields may be
modified the same way. Execution of this macro causes an incident checkpoint to
be taken. It includes the station status, sequence numbers, and option fields. At
restart time if the message queues are scanned, the sequence numbers will be
overlaid if larger sequence numbers are encountered in the messsage on the disk
queues.

This macro, in conjunction with ICOPY, moves the contents of a specified
invitation list to a work area (where the contents. of the invitation list optionally
may be changed), and then moves the modified list contents back to the invitation
list. When ICHNG executes, TCAM automatically stops message transmission on
the line so that these changes can be made; when the invitation list contents have
been replaced, TCAM restarts the line. Execution of the macro causes an incident
checkpoint to be taken if I is specified in the STARTUP= operand of the INTRa
macro.

This macro, whose primary function is to release messages queued for a destina­
tion, also reactivates the destination that has been inactivated by a HOLD macro
issued in the MCP. Execution of this macro causes an incident checkpoint to be
taken.

This macro, when executed in a user-written termination routine, intiates close­
down of the telecommunications system. Execution of this macro causes an
environment checkpoint to be taken.

For a more detailed discussion of network reconfiguration using these macros, see
the Network Control Facilities section. See the introductory section of Writing
Application Programs for an overview of the various approaches to incorporating
application programs into a system (the manner in which a systems programmer
designs his system directly affects network reconfiguration during the execution of
his program).

TCAM Checkpoint/Restart Facility
The optional TCAM checkpoint/restart facility allows the TCAM system to be
restarted with minimal loss of message data following closedown or system failure.
TCAM achieves this goal by periodically recording, in a special data set on disk,
information on the status of each station, destination queue, terminal table entry,
and invitation list in the system; when start-up after system closedown or failure
occurs, TCAM uses this information to restore the MCP environment to its
condition before closedown or failure. Upon restart, the terminal table, line,
option table, invitation lists, and internal control blocks associated with stations
and lines are restored to the condition they were in when the last checkpoint
record was taken; outgoing message traffic to each destination resumes with the
highest-priority, unsent message.

Using TeAM Service Facilities 499

Macro

INTRO

Operand

CPINTVL=

CPRCDS=

The TCAM checkpoint/restart facility permits restoration of the MCP environ­
ment upon restart. The OS/360 advanced checkpoint/restart facility (described
in the Advanced Checkpoint/Restart Planning Guide) may be used to perform a
similar service for TCAM application programs. In designing the TCAM facility,
certain features were included which permit TCAM checkpoints of the MCP to be
coordinated with OS checkpoints of TCAM application programs, so that upon
restart the entire TCAM system (MCP plus application programs) can be restored
as nearly as possible to its condition at the time of system closedown or failure.
These features are discussed in the section How to Coordinate TCAM Check­
points of the MCP with OS Checkpoints of the Application Programs of the
chapter Writing TeAM-Compatible Application Programs.

The check list below shows the macro instructions and operands that must be
considered when checkpoint/restart is included in the system.

j integer {
11800 \

~ integer t
.2 ~

Comments

Specifies the maximum number of seconds between
environment. Specify any value between 30 and 65535,
inclusive. If this operand is omitted, CPINTVL= 1800 is as­
sumed.

Specifies the number of environment records to be retained in
the checkpoint data set at anyone time. Specify any value
between 2 and 75, inclusive. If this operand is omitted,
CPRCDS=2 is assumed.

ST ARTUP~ {!: r Specifies the type of restart to be performed following
closedown of the MCP or system failure

C causes a cold restart after a normal quick or flush close, and a
continuation restart (including scanning of message queues)
after system failure.

CY causes a cold restart after either a quick or a flush close, or
after a system failure.

W causes a warm restart after a normal quick or flush close, and
a continuation restart (including scanning of message queues)
aftersystem failure.

WY causes a warm restart after either a quick or a flush close,
and a continuation restart (without scanning the message
queues) after system failure.

I causes the status of each invitation list to be included in the
checkpoint record (indicates whether the list is active, and if
active, whether it is being automatically polled). This value may
be specified only when the invitation list is being checkpointed.

If this operand is omitted, a value must be specified in response «
to the WTOR message issued by INTRO at execution time.

500 OS/MFT and OS/MVT TeAM Programmer's Guide

)

Macro

checkpoint
DCB

OPEN

CHECKPT

Operand

CKREQS=

RESTART= 1 ~teger~

DSORG=TQ

MACRF=(G,P)

[DDNAME= ddname]

[OPTCD=C]

[EXLST = address]

(dcbname,(INOUT))

(none)

Comments

Specifies the maximum decimal number of destination queues in use
at any time for application programs that include a CKREQ macro.
integer is the number of checkpoint request records to be set up in
a checkpoint data set. The maximum that may be specified is 255.
If this operand is omitted, 0 is assumed.

Specifies the environment record used to reconstruct the MCP
environment as it existed at the time of closedown or failure. 0
causes the latest record to be used, 1 causes the next-to-the-Iatest
record to be used, etc. The maximum value that may be specified
is 255; however, the value specified must be less than the number
of environment records kept (see the CPRCDS= operand above).
If this operand is omitted, RESTART=O is assumed.

Identifies the data set organization as that for the message queues
or checkpoint data set. This operand may not be omitted.

Specifies that access to the data set is to be gained with GET
and PUT macro instructions. This operand may not be omitted.

Is the name that appears in the DD statement associated with
the data control block. If this operand is omitted, the value
must be provided by the user's problem program any time be­
fore the data control block exit at open time.

Specifies that the data set is for the checkpoint records. If this
operand is omitted, the value must be provided either by a DD
card, or by the user's problem program any time up to and in­
cluding the data control block exit at open time.

Specifies the address of the problem program exit list. This list
must be provided if user label, data control block, or user
ABEND exits are required. The list must start on a fullword
boundary. The user ABEND exit is discussed in the last section
of the chapter, Defining The MCP Data Sets.

An OPEN macro instruction must be provided in order to open
the checkpoint data set. If this macro instruction is omitted, the
checkpoint/restart facility is not activated.

When coded in an incoming group, causes an incident record to
be made of the status and the option fields assigned to the origi­
nating station or application program; the record is taken after
the entire incoming group has executed.

When coded in an outgoing group, causes an incident record to
be made of the status and the option fields assigned to the desti­
nation station or application program; the record is taken after
the entire outgQing group has executed.

Using TeAM Service Facilities 501

Macro Operand

CKREQ (none)

QSTART (none)

TPROCESS CKPTSYN = YES

input DCB [EXLST = address]

output DCB [EXLST = address]

Comments

Coordinates TCAM checkpoints of the MCP with OS
checkpoints of TCAM application programs. When executed in
an application program, causes a checkpoint request record to
be made in the checkpoint data set for each process queue to
which a GET or READ macro can be directed by the applica­
tion program; these records are used to update the MCP envi­
ronment upon restart. This macro causes a message to be sent
to the application program (after restart) beginning with the last
message sent to the application program when the checkpoint
request record was taken, rather than beginning with the last
message marked serviced. Expansion of the CKREQ macro
requires that a QSTART macro be coded as the first macro in an
application program; CKREQ is effective only for queues creat­
ed by TPROCESS macros specifying CKPTSYN = YES.

Must be the first macro in an application program that includes
a CKREQ macro.

If an OS checkpoint of the application program is used in
synchronization with the TCAM checkpoint, CKPTSYN = YES
must be specified in the TPROCESS macro that corresponds to
the application program. CKPTSYN = YES specifies that the
destination queue to which the application program directs its
GET or READ macros is not to be purged of serviced messages
at restart. If this operand is omitted, the queue is scanned and
updated at restart.

This operand must be specified if a user-written routine is to be
given control to initiate an OS checkpoint of the application
program. address specifies the address of the problem program
exist list; the entry in the list is a fullword consisting of a control
byte (X'OF') followed by the 3-byte address of a user-written
routine that initiates an OS checkpoint.

(The discussion of the EXLST= operand for the input DCB also
applies for the EXLST= operand of the output DCB.)

How the TCA.M Checkpoint Facility Works

Types of Checkpoint Record

Checkpoint records containing the information necessary to reconstruct the MCP
environment upon restart are kept in the checkpoint data set on a DASD. Direc­
tions for defining this data set are contained in the chapter Defining the MCP
Data Sets, while a formula for determining the amount of space to allocate for
this data set is given below (see the section How to Get the TCAM Checkpoint
Facility). The four types of records that may reside in the checkpoint data set are
a control record, two or more environment checkpoint records, a series of incident
checkpoint records, and one or more checkpoint request records.

The control record is used internally by TCAM during restart and requires no user
coding considerations.

502 OS/MFT and OS/MVT TeAM Programmer's Guide

(

Environment checkpoint records are used to record the total MCP environment.
Each environment checkpoint record contains information on the status of each
message queue, terminal, line, and (optionally) invitation list at the time the
record was taken, and also includes the contents of the option fields for each
station.

If the checkpoint/restart facility is specified, environment checkpoint records are
taken automatically at certain points during the execution of the MCP:

• at the beginning of execution (when the READY macro is executed);
• when the area allotted to incident checkpoint records has been filled with data

(see the discussion of incident checkpoint records below);
• if a message queues data set on reusable disk is present, when a zone change­

over occurs (see Reusable Disk Queues in the chapter Defining the MCP
Data Sets);

• during a quick or flush closedown (discussed in the chapter Activating and
Deactivating the Message Control Program);

• after the time interval specified by the CPINTVL= operand of INTRO has
expired.

These automatic checkpoints, along with the automatic incident checkpoints
discussed below, are sufficient to ensure satisfactory restart of the MCP itself
after system closedown or failure. If the user is synchronizing his TCAM check­
points with OS checkpoints of the application program, he may wish to ensure that
a TCAM environment checkpoint be taken once a certain time interval has
elapsed since the last environment checkpoint (see the discussion of the use of the
DCB exit for coordination in How to Coordinate TCAM Checkpoints of the
MCP with OS Checkpoints of the Application Program in the chapter Writing
TCAM-Compatible Application Programs).

This is done by specifying the time interval in the CPINTVL= operand of the
INTRO macro instruction. TCAM keeps track of the amount of time that has
elapsed since the last environment checkpoint; when the amount of time lapsed
equals the time interval specified in INTRO. an environment checkpoint record is
taken.

The user specifies the number of environment checkpoint records he desires to
keep in his checkpoint data set at anyone time by coding the desired number in
the CPRCDS= operand of the INTRO macro instruction. If CPRCDS=3 is
coded, the three most recent environment checkpoint records are kept in the
checkpoint data set. When a new checkpoint record is taken, it overlays the oldest
environment record in the data set. Ordinarily (that is, unless the REST AR T =
operand of the INTRO macro instruction specifies some integer other than 0),
TCAM uses the most recent environment record in the data set to reconstruct the
MCP environment for a restart. If, however, the latest record cannot be used
(due, perhaps to a disk Read or Write error), TCAM informs the user of this fact
by means of a WTO message at the system console and automatically attempts to
use the next most recent record. If that record is also unusable, and if there is
another environment record in the data set, TCAM issues another WTO and
attempts to use that record.

The more environment records there are in the data set, the greater is the likeli­
hood that the environment can be recreated for restart. However, the recreated
environment becomes increasingly inaccurate as earlier and earlier environment
records are used; when environment records earlier than the latest are used,
certain incident checkpoint records that TCAM needs to reconstruct the environ-

Using TeAM Service Facilities 503

ment are likely to be overlaid and therefore inaccessable (see the discussion of the
incident checkpoint below, and also the example at the end of this section).
Another pitfall exists when a message queues data set on reusable disk is present;
if TCAM's restart routine drops back to an environment checkpoint record that
was taken so long ago that the disk containing the data set has been wrapped since
the time the record was taken, successful restart is unlikely, since pointers used by
the TCAM restart routine to scan the message queues will have been destroyed in
this case (scanning is discussed below).

Incident records are used to record single changes in terminal status, line status,
system status, and option fields; these changes occur as a result of execution of
MH macros, certain TCAM-related, application-program macros (TCHNG and
ICHNG), and operator commands. Each change in station status (from active to
inactive or vice versa) is recorded by means of an incident record if ST ARTUP=I
is specified on the INTRO macro instruction at cold restart time. Each change in
a station's option fields caused by a TCHNG macro instruction or a DATOPFLD
operator command is automatically recorded on an incident checkpoint record.
One incident record is made of terminal status, of sequence numbers, and of the
contents of the option fields assigned to the origin or destination station.or
application program each time a message is processed by an incoming or outgoing
Message Handler group containing a CHECKPT macro instruction; this record
reflects changes in the station's option fields caused by p.ocessing of the message
bytheMH.

The user performing an initial start-up or cold restart specifies (in the
STARTUP= operand of the INTRO macro) whether or not he wants his invita­
tion lists to be checkpointed. Whatever the user specifies, with respect to check-
pointing of invitation lists, prevails until another cold restart is performed. If he I~

specifies no checkpointing of invitation lists at initial start-up time, but asks for I~
such checkpointing in his WTOR response at INTRO execution time during a
warm or continuation restart, he gets no invitation-list checkpointing. If the input
or output sequence number currently assigned to a station is less than the maxi-
mum it has had since the last cold restart (because the counter has been changed
by a TCHNG macro, or because the counter has "wrapped" from 9999 to 1),
TCAM uses an algorithm to determine which number is restored during a warm or
continuation restart. TCAM takes the smaller number and subtracts it from the
larger number. If the difference is less than or equal to 5000, the larger number is
restored; otherwise the smaller number is restored. If TCHNG changes the
sequence number upward from that possessed by the last message, the same
algorithm is applied to determine which number is restored. Changes in MCP
status caused by operator commands (for example, from programmed polling to
automatic polling, from one polling interval to another, from an active to an
intercepted station) are recorded by incident checkpoints and reflected in the next
environment record; that is, each operator command (except for INTERVAL and
SYSCLOSE) that varies, modifies, or alters the MCP status causes incident
records. An exception is as follows: if I is not coded in the STARTUP= operand
of the INTRO macro, changes from active to inactive status and vice versa are not
reflected upon start-up; the original station status, as specified in the INVLIST
macro, is reassigned in this case.

Incident records are used to update the information contained in environment
records at restart time unless the STARTUP= operand of the INTRO macro
instruction specifies WY. The TCAM restart routine takes the information
contained in the latest usable environment record (unless an integer other than 0 C
is coded in the RESTART= operand of the INTRO macro instruction) and

504 OS/MFT and OS/MVT TeAM Programmer's Guide

Scanning the Message Queues

updates it with the contents of all incident records taken since the environment
record was taken.

The number of incident records that may be taken depends upon the amount of
space allocated on the disk for the checkpoint data set (allocation is discussed
below). When the checkpoint data set is opened, space is automatically allocated
for the control record, the number of environment checkpoint records specified by
the CPRCDS= operand of the INTRO macro instruction, one incident record,
and the number of checkpoint request records specified by the CKREQS=
operand of INTRO. Any remaining space in the data set is used to set up addition­
al incident checkpoint records. When all the space allocated for incident check­
point records has been filled with records, another environment checkpoint record
is taken automatically. (For further information on incident checkpoints and how
they interact with environment records, see the example at the end of this sec­
tion.)

Checkpoint request records are taken as a result of CKREQ macro instructions
issued in an application program; they record the status of the application
program's message queues, option fields, and sequence-number fields, and are
used in much the same way as incident records to update the environment record
during restart (except that the latest checkpoint request record for each
application-program queue is used to update the environment record even when
the checkpoint request record is older than the environment record). The number
of checkpoint request records set up by the TCAM checkpoint facility is specified
by the CKREQS= operand of the INTRO macro instruction, and should be equal
to the maximum number of process queues that are active at any time for applica­
tion programs that include a CKREQ macro instruction. Each checkpoint request
is associated with a particular process entry. Checkpoint request macro instruc­
tions help synchronize TCAM checkpoints with OS checkpoints of the TCAM
application programs; their use is discussed in the section How to Coordinate
TCAM Checkpoints of the MCP with as Checkpoints of the Application
Program in the chapter Writing TCAM-Compatible Application Programs.

In addition to updating the latest usable environment checkpoint record (or the
record specified in the RESTART= operand of the INTRO macro instruction)
with any incident records taken since the environment record, the TCAM start-up
routine may perform a scan of the message queues in the message queues data set.

A scan of the message queues involves searching the queues from the point at
which the environment record being used for restart was taken to the point of
system failure; already sent messages are passed over, so that after restart occurs,
sending of messages to each destination station or application program represent­
ed by a message queue resumes with the highest-priority, un sent message that was
completely received before system failure. Scanning of the message queues occurs
only when a restart following system failure is being performed, and then only if a
Y is not coded in the ST ARTUP= operand of the INTRO macro instruction.

When a message on a disk message queue has been completely transmitted to a
destination station, or completely transferred by means of either GET or READ
macro instructions to an application-program work area, a TCAM routine sets a
special bit that marks the message on disk as serviced. For a message transmitted
to a station, the service bit is set when acknowledgment is received from the
station that the entire message has been successfully received. For a message sent
to an application program, the service bit is set when TCAM satisfies either a

Using TeAM Service Facilities SOS

GET or a READ macro instruction for the next message in the queue; a message
is not marked serviced until the next message has been entirely moved into the
application-program work area. In performing a scan, the TCAM restart routine
starts with the earliest message placed on the queue (or the earliest message that
has not been overlaid, if the queue is on reusable disk) and goes down the queue
to the point of failure; each message with a service bit on is passed over, while
each complete message with a service bit eff is transmitted according to its
message priority. Messages on the same destination queue and having the same
message priority are sent on a first-ended first-out (FEFO) basis; that is, the first
completely received message that arrived at the queue first is sent first, the second
completely received message is sent second, etc .. (see also the discussion of
message priority in the chapter Defining Terminal and Line Control Areas).

When a scan is performed for a restart following system failure, at most one
message per line to non-buffered stations, or per process queue for an application
program, need be re-sent. If a message was in the proces.s of being sent to a
station or application program at the time failure occurred, that message is re-sent
automatically if a scan is performed. If a message was in the process of being
received from either a station or an application program when failure occurred,
that portion of the message that was received and queued before failure occurred
is not transmitted following restart, but is lost; the message must be re-entered by
the originating station or application program.

When a scan is performed for buffered stations, (that is, stations for which the
BFDELAY= operand of the TERMINAL macro is coded), at most one message
per station, the message that was in the process of being sent or received when
failure occurred, must be retransmitted to make sure no message is lost.

In addition to checking the service bits and eliminating serviced messages from the
queues, TCAM also determines whether each message was completely received at
the time failure occurred; incomplete messages are purged from the queue and are
not sent.

The user may use his restart in progress routine to check the input sequence
number in the terminal table entry for each station at the time of restart; he might
then request, by a restart in progress message, that any message entered after the
message having this sequence number be re-sent. (Since the input sequence
number is not incremented until the entire message has been enqueued, this
method will work as long as a SEQUENCE macro instruction is included in the
inheader subgroup of the MH handling the message.) The restart in progress
routine is described in the discussion of the READY macro instruction in the
chapter Activating and Deactivating the Message Control Program. No restart
in progress facility is available for application programs; suggestions for rendering
such programs relatively insensitive to system failure are contained in the section
on coordinating TeAM and OS checkpoints in chapter Writing TCAM­
Compatible Application Programs.

When no scan is specified for restart following system failure (that is, if WY is
coded in the STARTUP= operand of the INTRO macro instruction), upon restart
those messages that were on the destination queues waiting to be sent at the time
the environment checkpoint being used for restart was taken are sent as if they
had been queued just after restart (that is, in FEFO order, according to priority
groups). Messages that were on a destination queue waiting to be sent at the time
the environment checkpoint was taken (and were subsequently sent before failure ,f
occurred) are re-sent following start-up. Messages that were placed on a queue "

506 OS/MFT and OS/MVT TeAM Programmer's Guide

after the environment checkpoint was taken, and were not sent before failure
occurred, are not sent after restart; these messages are lost. Incomplete messages
are purged from the queues and are not sent. (Incident records are not used so
that option fields will reflect the messages that are on each destination queue as a
result of using the environment checkpoint record.)

If CKPTSYN =,YES is specified in a TPROCESS macro instruction, all completely
received but unsent messages at the time the last checkpoint request record was
made, and all messages completely received between the time the last checkpoint
request record was made and the time of failure, are sent upon restart (unless Y is
coded in the STARTUP= operand of the INTRO macro instruction; see the
description of this operand). See the section on coordinating OS checkpoints with
TCAM checkpoints in the chapter Writing TCAM-Compatible Application
Programs for a discussion of when CKPTSYN = YES would be specified.

Example:
Consider a checkpoint data set that contains space for three environment check­
point records and five incident checkpoint records. After the initial environment
checkpoint macro executes, assume that four incident checkpoint records are
taken. At this point, the condition of the data set can be represented as follows (if
we ignore the control record and any checkpoint request records that may be
present):

Environment checkpoint records 11 I
:=::=;~*==~--r---.

Incident checkpoint records I L.. 1_..LI_l--'-_--'-_-L_....I
Here, a number in the area allotted to an environment record means that the area
has been filled with that record; a number in the area allotted to an incident
record means that the area is filled with an incident record taken after the envi­
ronment record having the corresponding number and before an environment
record having a higher number.

Assume that another incident checkpoint is taken. This causes the area allotted to
incident records to be filled with records taken since the last environment check­
point; as a result, a second environment record is taken in place of the next
incident record. Now, let four more incident checkpoints be taken. These will
overlay the earliest incident checkpoints taken after the first environment check­
point. The data set now has the following appearance (an X over a number means
that the record represented by that number has been overlaid):

Environment checkpoint records

Incident checkpoint records

At this point, the time interval specified in the CPINTVL= operand of the
INTRO macro instruction expires, resulting in an environment checkpoint, which
is followed in turn by three more incident checkpoints. The data set now has the
following appearance:

Using TeAM Service Facilities 507

Environment checkpoint records 11 I 2 3

3 3 2 2 3
Incident checkpoint records)1 ~)(>()(

l()t

A zone changeover now occurs for a message queues data set on reusable disk,
resulting in another environment record, which overlays environment record #1.
Assume that after two more incident records are taken, system failure occurs. At
this point, the checkpoint data set would appear as follows:

Environment checkpoint records I; 1 21 31

Incident checkpoint records 3 3 4 4 3
;(-g :i: :a: ~
% >(>()t

Assume that the STARTUP= operand of the INTRO macro instruction is coded
STARTUP=W, and that the RESTART= operand is omitted. When the restart
after failure is performed, the TCAM restart routine will attempt to reconstruct
the environment using environment record #4 as a base. If record #4 is usable,
the reconstructed MCP environment created through its use is updated with all the
information contained in those incident checkpoint records for which a 4 is
specified.

In updating, the restart routine begins with the earliest #4 incident record, and
proceeds from earlier to later #4 records, continuing to update until all #4 incident
records have been used; at this point, the MCP environment created by means of
environment record #4 is considered to be updated.

After the environment record is updated, all message queues in the system are
scanned as described above. When updating and scanning are completed, message
traffic resumes within one message of the point of failure.

Now, assume that environment record #4 is unusable, due, perhaps, to a disk I/O
error. In this case, the user would be informed by means of a message to the
system console that the latest environment checkpoint is unusable, and environ­
ment record #3 would be used as the basis for restart. Environment record #3 is
updated with all incident records that were taken after it was taken (that is, those
labeled #3 and #4). In updating, the records still containing information related to
incident checkpoint #3 are used first, then the two #4 records are used, starting
with the earlier one; this sequence must be followed in order to ensure that the
updated environment record contains the latest available information.

If, after zone changeover, there were three #4 incident records rather than two,
the earliest #3 record would be overlaid.

If environment record #3 is used as the base, the reconstructed environment
probably will not be entirely accurate. This is because the earliest #3 record in the
incident checkpoint area has been updated for environment record #4; when this
happened, part of the information related to environment record #3 was overlaid.
This overlaid information may have referred to environment record fields different
from those referred to by the data that overlaid it. The overlaid information was
presumably superseded by the information in environment record #4, but since the
information in environment record #4 is inaccessable, the environment record
fields that the overlaid information pertains to may contain information that is out I
of date when restart occurs. Note that this effect is compounded if environment ,

508 OS/MFT and OS/MVT TeAM Programmer's Guide

record #3 is also unusable and record #2 is used as a base. In the present example,
if environment record #2 were also inaccessable, the environment could not be
reconstructed, since there are no more environment records in the data set. In this
case, the system would be started as if no checkpoint records had been taken (that
is, all fields would be initialized to the original values assigned at assembly time),
and the checkpoint facility would not be available to the restarted system. The
user would get a message at the system console informing him that his environ­
ment was not reconstructed, and that his system has no checkpoint facility. To
regain his checkpoint facility in this case, the user might close down his system,
run the IBCDASDI utility program to assign alternates to defective tracks on the
disk containing the checkpoint data set, and then do a cold restart.

How to Get the TCAM Checkpoint Facility
In order to incorporate the TCAM checkpoint facility into his TCAM system, the
user must perform the following steps:

1. Include in his MCP a DCB macro instruction defining the checkpoint data set;
2. Include with his MCP a DD statement that allocates space on a disk for the

checkpoint data set during initial start-up;
3. Include in his MCP an OPEN macro instruction to open the checkpoint data

set.

If the user performs these steps, the TCAM checkpoint facility is included in his
TCAM system, where it operates automatically as described in the previous
section.

The DCB macro instruction and DD statement for the checkpoint data set are
described in the chapter Defining the MCP Data Sets, while the chapter
Activation and Deactivation contains directions for opening the checkpoint data
set.

Space must be allocated on disk for the checkpoint data set if the checkpoint
facility is desired. The user specifies the number of disk tracks he needs in the
SPACE= parameter of the DD statement for the checkpoint data set issued at
initial MCP execution time.

Equations that may be used to determine the number of bytes occupied by the
checkpoint data set appear in Figure 36. The equation to be used depends upon
whether an IBM 2311 Disk Storage Drive, an IBM 2314 Direct-Access Storage
Device, or an IBM 3330 Disk Storage Device is used to contain the data set.
Formulas for converting bytes to tracks appear in the component description
manual for the direct-access device used.

The equations in Figure 36 are a bit complex; as an approximate figure 3 tracks on
disk should be sufficient for checkpointing an MCP for which a total of 6 to 10
TERMINAL and TPROCESS macros are coded.

If insufficient storage is allocated for the checkpoint data set, the user may not get
as much space allocated for incident records as he wants.

For the IBM 2311 Disk Storage Drive the size in bytes of the checkpoint data set
is given by the equation:

S=(61+1.05Lc)+1.26ALe +N(61+1.05L i) + (M+3) (61+1.05Lk)

Using TeAM Service Facilities 509

For the IBM 3330 Disk Storage Device, the number of bytes for a checkpoint data
set is determined by the equation

S= (135 + Lc) + N(135 +L)+ (M +3)(135 + Lk)

For the IBM 2314 Direct Access Storage Device the size in bytes of the check­
point data set is given by the formula

S=(101 + 1. 05 LC> + 1.39ALe +N(101.05L)+(M+3) (101+ 1.05Lk)

For the IBM 3330 Disk Drive the size in bytes of the checkpoint data set is given
by the equation:

510 OS/MFT and OS/MVT TeAM Programmer's Guide

~I

In these equations,

Lc =the length of a control record=30+5A
Le =the length of an environment record=22+B+C+4D+5E+

(21Fl +21F2 + ... +21FE}+(G(HI +H2 + ... +H1 »
Li =the length of an incident record=12+K
Lk =the length of a checkpoint request record= 17 +21F +1

where

A is the value coded in the CPRCDS= operand of the INTRO macro
instruction.

B is the total number of bytes of data located in all option fields assigned to
stations, lines, or application programs.

C is equal to the sum of the number of single entries in the terminal table
plus the number of group entries in the terminal table.

D is equal to the number of single, group, and process entries in the termi­
nal table whose destination queues are maintained on disk.

E is equal to the number of destination queues maintained on disk for
single, group, and process entries in the terminal table.

F is equal to the number of priority levels specified for each destination
(assume one priority level for each destination queue defined by a
TPROCESS macro instruction, and one for each destination queue
defined by a TERMINAL macro instruction haVing no LEVEL= oper-
and).

G is equal to 1 if I is specified in the STARTUP= operand of the INTRO
macro instruction; otherwise, G is equal to O.

H is equal to the length of an invitation list (a formula for determining this
length is given in the discussion of the ICOPY macro instruction).

I is equal to the number of lines having invitation lists (not counting
output-only lines).

J is the length, in bytes, of the maximum number of option fields assigned
to anyone entry in the terminal table.

K is equal to J if J is greater than 32; otherwise K is equal to 32.
M is equal to the value coded for the CKREQS= operand of the INTRO

macro instruction.
N is equal to the number of incident checkpoint records desired (N should

be between 1 and 255).

If Le is less than 300 bytes, it is rounded up to 300 bytes.

Figure 36. Equations for Determining the Size of the Checkpoint Data Set

The Checkpoint routine uses a priority scheme to divide the space allocated for
the checkpoint data set among the various types of checkpoint records. This is to
ensure the most efficient use of the checkpoint facility even if less space is provid­
ed than would be ideal. Using the available space, the checkpoint facility will:

• reserve space for the control record;
• reserve space for two environment records;
• reserve space for one incident record;
• reserve space for the number of checkpoint request records specified in the

CKREQ= operand of the INTRO macro instruction, plus 3 (to allow for disk
errors);

• reserve space for an additional number of environment records sufficient to

Using TCAM Service Facilities 511

Types of TeAM Restart

bring the total number up to that spedfied in the CPRCDS= operand of the
INTRO macro instruction;

• use any remaining space to set up additional incident records.

If there is insufficient space for items one through four, the data is not formatted,
no checkpoint facility is provided, and an awareness message is sent to the system
console. Also, if there is not enough main storage specified to incorporate either
all or a part of the checkpoint/restart facility in the partition or region, the
following awareness message is returned to the system console:

IED009I CHECKPOINT DISK ALLOCATION ERROR--DATA SET NOT OPENED

See the OS publication Messages and Codes for explanations of and responses to
awareness messages.

A restart is any TCAM start-up other than the initial start-up. A restart may, but
need not, involve reconstructing the MCP environment as it existed before system
closedown or failure.

The three types of restart supported by TCAM are the cold restart, the warm
restart, and the continuation restart. These are described below. A cold restart is
similar to the initial start-up in that the previous environment is ignored, while the
other two types of restart both involve use of the TCAM checkpoint facility to
reconstruct the environment as it existed before a quick or flush closedown (in the
case of a warm restart) or system failure (in the case of a continuation restart).

All three types of restart may be initiated by reloading the object deck for the
assembled Message Control Program or by issuing a START command at the
system console. For a warm restart or a continuation restart, the DISP= parame­
ter on the DD statement for the checkpoint data set must be coded DISP=OLD;
for a cold restart, either DISP=OLD or DISP=NEW may be coded. The chapter
Putting the MCP Together describes the Job Control Language and procedures
for restarting the MCP.

A cold restart ignores the previous environment; the system is started as though
for the first time. The message queues are considered new and must be reformat­
ted (by the IEDQXA routine described in Appendix E) before the restart attempt
is made (the checkpoint data set, however, is reformatted automatically). A cold
restart is performed when the DISP= operand of the DD statement associated
with the checkpoint DCB macro is coded DISP=NEW. If the DD statement is
coded DISP=OLD, a cold restart is performed following either a quick or a flush
closedown if the ST ARTUP= operand of the INTRO macro instruction has a C
coded in it, and is also performed following system failure if the ST ARTUP=
operand of INTRO has CY coded in it. Finally, a cold restart is performed when
the TCAM system fails in an attempt to perform a warm or continuation restart
because of faulty checkpoint records; in this case, the user is informed by a
message directed to the system console that a cold restart is being performed. (If
none of the environment records can be read at restart time, the checkpoint data
set is not opened, so that the ensuing restart is essentially a cold restart.)

If the address of a good morning routine is specified in the GMMSG= operand of
the READY macro instruction, this routine is given control immediately following
a cold restart and before the resumption of normal message traffic. This routine,
which is described further in the discussion of the READY macro instruction, may
be used to provide specialized initialization for certain stations and to send a C

512 OS/MFT and OS/MVT TCAM Programmer's Guide

message to each station in the system, informing each that a cold restart has
occurred.

There are two forms of restart that reconstruct the environment as it existed
because closedown or system failure, the continuation restart and the warm
restart. A continuation restart involves reestablishing the MCP environment as it
existed before system failure. ·This is done through use of an environment record,
incident records, and checkpoint request records in the checkpoint data set, as
described above. A continuation restart is performed following system failure if
the DISP= operand of the DD statement for the checkpoint data set is coded
DISP=OLD, provided that CY is not specified in the STARTUP= operand of the
INTRO macro instruction.

During a continuation restart, the message queues may be scanned (as described
in the previous section) to determine the last complete message received and
transmitted before failure. Whether scanning is performed depends upon how the
STARTUP= operand of the INTRO macro instruction is coded (see the descrip­
tion of this operand). If synchronization with OS checkpoints of an application
program is specified for a particular process queue by coding CKPTSYN = YES in
its TPROCESS macro instruction, that queue is scanned during restart. And upon
restart, those complete messages that were marked serviced after the last check­
point request record was made, or that were enqueued after this record was made,
are sent. (If no checkpoint request records were made between the time of
start-up and the time of failure, all messages marked serviced or received since the
last environment checkpoint record was made are sent upon restart.)

For a warm restart following a quick or flush closedown, the MCP environment is
reconstructed as for a continuation restart. Since an environment checkpoint is
taken near the end of a quick or flush closedown, no incident records need be used
to reconstruct the MCP environment during a warm restart. A warm restart is
performed if the DISP= operand of the DD statement for the checkpoint data set
is coded DISP=OLD, provided that a W or WY is coded in the STARTUP=
operand of the INTRO macro instruction and that the restart follows a quick or
flush close (both of which are described in the Deactivation section of the chapter
Activation and Deactivation).

If the address of a restart in progress routine is provided in the RSMSG= oper-
and of the READY macro instruction, this routine is given control immediately
following a warm restart or continuation restart. This routine, which is described
further in the discussion of the READY macro instruction, may be used to gain
access to and to change option fields and information contained in terminal table
entries, and may be used to inform each station that a warm or continuation
restart has occurred. The message might also provide each station with the input
sequence number of the last message received from the station, and request that
all messages entered having higher sequence numbers be re-entered.

Below is a summary of the conditions that must be met in order to obtain each of
the types of restart described in this section. It is assumed that the DISP=
operand of the DD statement associated with the checkpoint DCB macro instruc­
tion is coded DISP=OLD; if DISP=NEW is coded, a cold restart is always
performed.

Using TeAM Service Facilities 513

Type of INTRO Operand Resulting
Termination STARTUP= Restart

Flush closedown WorWY Warm restart
Flush closedown CorCY Cold restart
Quick closedown WorWY Warm restart
Quick closedown CorCY Cold restart
System failure CorW Continuation restart with queue scan
System failure WY Continuation restart with no queue scan
System failure CY Cold restart

The user may wish to specify a warm restart following a flush closedown in order
to avoid the loss of messages that could not be flushed during closedown either
because an application program was closed or because a station was inoperative or
intercepted.

Using TeAM's Message Logging Facility

Uses oj Message Logging

TCAM's message logging facility enables the user to keep a record of the message
traffic handled by an MCP on a sequential data set. The LOG macro instruction
causes either an entire incoming physical transmission (by segment), an individual
message, or a message segment to be recorded on a log data set while the message
is currently being processed by an MCP subgroup.

Message logging can be useful to the programmer of a telecommunications system
in two ways: first, as an integral part of the system, recording messages for
accounting purposes by the user, and second, as a programming aid, helping to
diagnose errors and providing information needed to evaluate system (I
performance. ~

Message Logging as a System Component: In some systems, it may be desirable
for messages to be recorded for accounting purposes, even though the messages
have been successfully dispatched to their destinations. This allows the program­
mer greater flexibility in his accounting procedures. Some uses of a logging
facility might be:

• copying groups of messages sent over a long period of time to a variety of
destinations,

• providing long-term back-up for messages that might be accepted by one or
more destinations but later lost through human error, and

• collecting exceptional cases.

Message logging can provide any of these functions without requiring that an
application program be written.

Message Logging as a Programming Aid: Including a carefully designed message
logging facility in a Message Handler permits the programmer to trace the flow of
messages through a Message Control Program, thus allowing quick diagnosis of
errors while debugging the MCP. By anticipating the need for debugging aids in
the design of his message logging facility, the programmer can provide a useful
diagnostic tool with very little programming effort. Because of its modular design,
the message logging facility can be removed easily, without the necessity of
rewriting any parts of the MCP involved, when the program is free of errors.

By determining the flow patterns of message traffic, a programmer can more
efficiently allocate the resources of a telecommunications system. Message

(

514 OS/MFT and OS/MVT TeAM Programmer's Guide

logging assists the programmer as a data collection facility, providing the informa­
tion needed to make such a determination. When the TCAM MCP first executes,
it can include the code necessary to log information such as time, origin, and
destination for each message, or in cases where traffic is heavy, for certain repre­
sentative messages. The programmer is then able to reallocate resources efficient­
ly, and he can easily remove the message logging facility when it is no longer
needed.

A later section Debugging Aids includes message logging among the various
techniques that might be used to aid in debugging the TCAM environment.

How Message Logging Works
When a LOG macro executes in an MH subgroup, either an entire incoming
physical transmission, a complete message, or a message segment is copied as it
then exists onto a log data set.

If logical messages have been defined for the TCAM system, the position of the
LOG macro in the inblock subgroup determines what is to be logged by segment.
If LOG appears before the SETEOM macro, an entire incoming transmission is
logged. If LOG appears after SETEOM, either an individual logical message or a
portion of a logical message is logged (see the description of the LOG macro).

If logical messages have not been defined for the TCAM system, the operand
coded on the LOG macro and the type of subgroup in which the LOG macro
appears determine what is to be logged-message segment or complete message.
If only a segment is to be logged, an operand of the LOG macro refers directly to
the DCB for the log data set. If an entire message is to be logged, the operand
refers to a LOGTYPE macro that points to the DCB and contains additional
information necessary to log multiple segments. The relationship of the LOG
macro and the various subgroups is discussed in What to Log. Figure 37 shows
the flow of data and control that occurs during the logging'process for message
segments and complete messages.

How to Set Up a Message Logging Facility
This section discusses the elements of a message logging facility in the order in
which the programmer is likely to deal with them while writing an MCP. Com­
plete descriptions of the macro instructions discussed in this section (LOG,
LOGTYPE, PATH, MSGTYPE, and the log DCB macros) may be found else­
where in this publication.

What to Log: The logging facility can handle:

• incoming header segments,
• incoming segments,
• incoming messages,
• out~.oing header segments,
• outgoing segments, and
• outgoing messages.

The amount of data to be logged is determined by the type of subgroup in which
the LOG appears; if it is coded in an in block subgroup, either an entire incoming
transmission or individuallogicall messages (or portions of logical messages) are
logged; if it is coded in an inheader or outheader subgroup, message segments that

Using TeAM Service Facilities 515

Logging Message Segments;

• • • LOG--.... .,.....-

• • •

Message Buffer

Segment

Logging Complete Messages:

Legend:

• • •
LOG ---1----+

---... ~ Cantrol information flow __ I.~ Data flow

Figure 37. Information Flow for Message Logging

Terminal Table

• • •
LOGTYPE

516 OS/MFT and OS/MVT TeAM Programmer's Guide

Log Data Set
DCB

Log Data Set
DCB

Log Data Set
DO

Log Data Set
DO

Debugging Aids

contain message headers are logged. Its occurence in an inbuffer or outbuffer
subgroup causes each segment to be logged. Each complete message is logged
when the LOG macro occurs in an inmessage or outmessage subgroup.

As more data is logged, the logging facility requires more processing time and
main-storage space, and the logged messages occupy more space in the log data
set. Therefore, the message logging facility should be designed to operate on the
smallest units that will supply the information needed. In a message switching
application, simply logging incoming headers may supply all the information that is
needed for a logging application. In more sophisticated applications where the
body of a message is needed, it may be necessary to log complete messages.

The Log Data Set and its DCB: Logged messages and message segments are
maintained on sequential data sets residing on any type of BSAM-supported
device. There may be any number of log data sets for any given MCP. Multiple
log data sets may be found useful where logged messages are differentiated by
some program-discernable characteristic, such as format, destination, or source.
The device upon which a log data set resides must be able to handle the volume of
information expected to be logged at least as fast as the MCP can handle it. This
prevents a backlog of messages from accumulating and being lost as buffer areas
fill and are overwritten with new messages. Some devices that might be used for
logging purposes are tape, disk, and, where traffic is light, printer.

The DCB for a log data set is coded with the rest of the DCBs for the MCP.
Coding details appear in the section Log Data Sets in the chapter Defining
MCP Data Sets. Note that the size of the records is determined by the size of
the buffer units used in the MCP.

The LOGTYPE Macro: The LOGTYPE macro provides the additional informa­
tion needed by a message logging facility when it is to log complete messages (that
is, when a LOG macro appears in an inmessage or outmessage subgroup). Since
messages consist of a series of message segments, buffer and queue areas must be
defined; the BUFSIZE= and QUEUES= operands of the LOGTYPE macro are
used for this purpose. When a LOG TYPE macro is needed, it should appear in
the terminal table section of the MCP. Coding details appear in the section
LOGTYPE in the chapter Defining Terminal and Line Control Areas.

The LOG Macro: When the LOG macro is encountered in an MH sub-
group, the currently processed unit is transferred to the logging medium or to a
queue waiting for such a transfer. The operand of the macro refers either to the
log data set or the LOGTYPE macro associated with this particular LOG macro.
Coding details for the LOG macro are discussed in the section LOG in the
chapter Designing the Message Handler.

Selective Logging: It may be desirable to log only messages that meet certain
criteria, instead of each message handled by a particular MH subgroup. Use of
the PATH and MSGTYPE macros enables the programmer to include decision­
making code in the message logging facility. The chapter Designing the Message
Handler contains discussions of facilities provided by both of these macro instruc­
tions.

During the execution of a TCAM MCP, error messages may be directed to the
system console and to operator control stations. Each TCAM message starts with
an alphameric identifier; an exact definition of the message and any user action

Using TeAM Service Facilities 517

Cross-Reference Table

that may be required is documented in alphameric order in Messages and Codes.

When the MCP partition or region is dumped, the MCP control blocks are format­
ted (described in the TCAM PLM). Among the blocks formatted are the terminal
table, station control blocks, line control blocks, queue control blocks, data
control blocks, process control blocks, and the address vector table.

In addition to normal dumps of the MCP partition or region, TCAM provides
some special aids for debugging the telecommunications network and the MCP.
Two of these have already been described in this chapter; the I/O error-recording
facility, described in the section TCAM I/O Error-Recording Procedures, and
the TCAM logging facility, covered in the section Using TeAM's Message
Logging Facility. A TCAM formatted ABEND dump is taken of the TCAM
MCP partition or region that terminates abnormally; this ABEND dump, which is
in addition to the OS ABEND dump, formats TCAM control areas and attached
subtasks and is discussed in the TCAM User's Guide. Other optional debugging
aids include a cross-reference table of line-related information, located in main
storage, and special dumps of a subtask control block (STCB) trace, line I/O
interrupt trace for a line, for buffers, and for message queues data sets. In addi­
tion, the cross-reference table, STCB trace, and line I/O interrupt trace may
reside in main storage and may be included in a standard dump.

Figure 38 at the end of this section lists coding requirements for using the special
TCAM debugging aids, and the sections below discuss the individual aids. The
Diagnostic Aids section of the TCAM PLM contains several tables that should
be useful in debugging a TCAM system.

The TCAM cross-reference table provides the user with a convenient means of
locating in a standard OS dump certain information associated with each open
line. The cross-reference table is built by TCAM if the user codes a nonzero
integer in the CROSSRF= operand of the INTRO macro instruction.

At INTRO execution time, TCAM allocates 16n+8 contiguous bytes of main
storage (where n is the integer specified in the CROSSRF= operand and 8 bytes
is the length of the control block preceding the first entry) for the cross-reference
table, and places the address of the cross-reference table in the AVT (address
vector table) field labeled IEDCRSRF. Each time a line is opened, the next
available four-word entry in the cross-reference table is filled in for that line.

518 OS/MFT and OS/MVT TeAM Programmer's Guide

The format of the 8-byte control block preceding the first entry is:

Byte

o
+4

Explanation

address of first available entry
address of last entry

The format of each entry in the table is:

Byte

o
+4
+8
+12

Explanation

unit control block name
unit control block address
line control block address
address of a master queue control block for this line

If queuing is by line, there is only one master queue control block assigned to the
line, and its address is placed in the fourth word. If queuing is by terminal, there
is a master queue control block for each station on the line; the fourth word in this
instance is filled in with the address of the queue control block for the station
whose terminal-table entry appears in the terminal table before that of any other
station on the line. (The line control block and the queue control block are
internal TCAM control blocks and are discussed in the TeAM P LM .) If the user
opens more lines than he provides entries for in the cross-reference table, the
table is filled in until the space in it is exhausted; lines opened after space runs out
in the table have no cross-reference entries.

TeAM Line I/O Interrupt Trace Table
The TCAM line I/O interrupt trace table provides a sequential record (referred to
as a line I/O trace) in main-storage of the I/O interrupts occuring on a specified
line. When an I/O interrupt occurs on a line for which a line I/O trace is request­
ed (by the GOTRACE operator command), information about the interrupt,
including the CSW and the CCW, is stored as an entry in the line I/O interrupt
trace table; however, interrupts resulting from retries by TCAM's error-recovery
procedures are not recorded.

The line I/O interrupt trace facility is brought into main storage by specifying a
positive value (from 1 to 65535) in the TRACE= operand of the INTRO macro
instruction; once it is in main storage, it may be activated and deactivated for a
specified line by the GOTRACE and NOTRACE operator commands, respec­
tively.

At INTRO execution time, 32n+16 contiguous bytes of main storage (where n is
the integer specified in the TRACE= operand and 16 bytes is the length of the
control block preceding the first entry) are allocated for the line I/O interrupt
trace table; TCAM places the address of the table in the IEDRACE field of the
A VT. When all the 32-byte entries in the I/O trace table have been filled, the
earliest entries are overlaid as new interrupts occur.

A standard OS dump, described in the Guide to Reading OS Dumps, may be
obtained to determine the kinds of interruptions that occurred during execution of
the MCP.

Using TeAM Service Facilities 519

The format of the 16-byte control block preceding the first entry is:

Byte

o
+4
+8
+12

Explanation

address of current trace entry
address of first trace entry
address of last trace entry
address of middle entry

Each entry in the TCAM I/O interrupt trace -table has the following format:

CSW

o +1

I'

J
Interrupt

Interrupt CCW CCWTP
/ Op Code

+8

C

(

J +8
.,

+13 +14 +16
(,

First
First CCW in Channel Program Chain CCW TP

f Op CODE ~

J + 16
(,

(

, +24

Station Name

+30

+23 +24'

Channel
and Unit
Address

+32

The channel programs used by TCAM may be found in the TeAM PLM. A
teleprocessing operation code (TP Op code) is assigned to each CCW, and may be
found in the sixth byte of each CCW in the table. TP Op codes facilitate a trace
of the channel program execution sequence-they are also described in the
TeAM PLM. A detailed description of the contents Of the sense byte may be
found in the component description SRL publication for the transmission control
unit being used. If the identity of the connected station is not known when the
interrupt occurs, then the channel and unit addresses, in unpacked form, are
placed in the last two bytes of the 32-byte entry.

Writing on a Data Set for Later Printing

The user invokes the I/O trace dump (IEDQFE20) by entering the DEBUG
operator command; this routine requires that COMWRTE= YES be specified on
the INTRO macro instruction.

As soon as TCAM makes half the number of entries in the line I/O interrupt trace
table that was specified on the TRACE= operand of the INTRO macro instruc­
tion, the 1/ 0 trace dump routine passes that portion of the trace table to the
COMWRITE routine to be written on a sequential data set (the requirements of
COMWRITE are explained in the next section below). TCAM makes entries in
the second half of the trace table until that section is filled, at which time the 1/ 0 14
trace dump routine again passes data to COMWRITE. TCAM continues to "

520 OS/MFT and OS/MVT TCAM Programmer's Guide

overlay the line I/O interrupt trace table, and the process outlined above is
repeated.

COMWRITE Requirements and Format

The output data set format is undefined with a maximum block size that is permis­
sible for the particular device. An example of the JCL required to specify that the
output data set (COMWRITE) be on tape is:

IICOMWRITE DD UNIT=2400,DSN=COMWRITE, x
II VOL=SER=xxxxxx,DISP=(,KEEP)

Multiple volumes (either labeled or unlabeled) may be specified; secondary
allocation is not permitted. Once a disk data set is filled, the disk is wrapped with
subsequent entries. Sample JCL for specifying that the output data set be on disk
is:

IICOMWRITE DD
II

UNIT=SYSDA,DSN=COMWRITE,DISP=(,KEEP), X
VOL=SER=xxxxxx,SPACE=(CYL,(S))

The COMWRITE data set is used also when sequentially writing the STCB trace
and buffers (the data set is specified only once); the appropriate operand of the
DEBUG operator command determines whether a line trace, an STCB trace, or
buffers r.re written on the data set (see examples in Writing Line Trace, STCB
Trace. and Buffers to Disk Data Set below). Output from the COMWRITE
data set is printed by a separate task that is discussed below in COMEDIT
Printing Utility.

If too few entries are specified on the TRACE= operand of the INTRO macro
instruction, COMWRITE may become too busy to forward all records to the data
set; such records are lost and the I/O trace dump routine reuses that section of the
table and the count field of the output indicates a missing record. When the
printed output indicates lost records, increase the number of entries on the
TRACE= operand of the INTRO macro to prevent reoccurrence.

Since the blocksize is limited by the type of storage device, care must be taken in
defining the sizes of the various main-storage trace tables to be recorded by
COMWRITE. Since each record is one-half the trace table, no trace table can
exceed twice the maximum blocksize permitted for the COMWRITE external
storage device. This implies the need for tape to record extra large, main-storage
tables since tape supports larger records than disk does.

Dispatcher Subtask Trace Table
The dispatcher subtask trace table is used to keep a sequential record in main
storage of the subtasks activated by the TCAM dispatcher. An entry is placed in
the table by the TCAM dispatcher each time a TCAM subtask is dispatched. The
table is filled on the wraparound principle; that is, when all of the available entries
have been used, the dispatcher places the new entries at the beginning of the table
thus overlaying the earliest entries. The table might be used, for example, to trace
the path of a buffer through the TCAM system. The TCAM dispatcher and
TCAM subtasks are described in detail in the TCAM PLM.

The dispatcher subtask trace table is generated if the user specifies some value
between 1 and 65535 in the DTRACE= operand of the INTRO macro (see note
below), however, at least four entries must be specified if the table is to be written
to a COMWRITE data set. At INTRO execution time, TCAM allocates
(16n+ 16) contiguous bytes of main storage (where n is the integer specified in
the DTRACE= operand) for the table. The table consists of a 16-byte control

Using TeAM Service Facilities 521

block followed by n 16-byte entries. The address of the 16-byte control block is
then stored in a field in the AVT (address vector table) at a displacement of 12
bytes past the label IEDP ARM.

The control block for the dispatcher subtask trace table has the following format:

Byte Explanation

° address of next entry to appear in the table
+4 address of first entry in the table
+ 8 address of last entry in the table
+ 12 size of the table in bytes

Since the first word of this control block contains the address of the next entry in
the table, the last recorded entry is located at this address minus 16.

An entry in the dispatcher subtask trace table has the following format:

o

+4

+8

+12

priority of the
dispatched element

address of the
entry point of the
dispatched subtask

flag byte of the
dispatched QCB

subtask entry
code (MCPL)

+1

+9

+13

address of the [
dispatched element

I +4

+8

address of the n
dispatched QCB

I +12

address of the if!
dispatched STCB

I +16

For a further description of the QCB, the QCB flag byte, the STCB, the subtask
entry code (MCPL) and the priority of the dispatched element, refer to the
TCAM PLM.

The subtask trace, like the line trace, can be written sequentially to a data set
(either magnetic tape or disk) provided the COMWRTE= operand of the INTRO
macro instruction specifies YES. See the DEBUG operator command for a
description of how to activate and deactivate the STCB trace (IEDQFEI0). The
requirements of COMWRITE are discussed earlier in COMWRITE Require­
ments and Format.

The user codes the DTRACE= operand of the INTRO macro to determine the
number of entries to be made in the dispatcher trace table; as soon as TCAM has
m~de halhf the sPhecified numbber of edntries, IEhDQ~E IhO dfetermh ines that bnlew entries ,f
eXIst in t e first alf of the ta Ie an passes t e fust al of t e trace ta e to "
COMWRITE to be written on a sequential data set. TCAM continues, without

522 OS/MFT and OS/MVT TeAM Programmer's Guide

Buller Trace

interruption, filling in the last half of the table with entries. When the second half
is filled, IEDQFEIO passes the second half to COMWRITE to be written. Each
time IEDQFEIO is entered, a counter is incremented and placed in the output
record.

If too few entries are specified on the DTRACE= operand of the INTRO macro
instruction, COMWRITE may become too busy to forward all records to the data
set; such records are lost and IEDQFEIO reuses that section of the table and the
count field of the output indicates a missing record. When the printed output
indicates lost records, increase the number of entries on the DTRACE= operand
of INTRO to prevent reoccurrence.

Since the blocksize is limited by the type of storage device, care must be taken in
defining the sizes of the various main-storage trace tables to be recorded by
COMWRITE. Since each record Is one half the trace table, no trace table can
exceed twice the maximum blocksize permitted for the COMWRITE external
storage device. This implies the need for tape to record extra large, main-storage
tables.

This facility permits TCAM buffer contents and status information to be dumped
to a data set residing either on magnetic tape or on disk. To get this facility, the
user specifies YES on the COMWRTE= operand of the INTRO macro instruction
(causing a routine to be attached to the TCAM partition or region that sequential­
ly writes buffers to tape or disk), and enters the DEBUG operator command to
activate IEDQFE30. The data set to which buffers are written is specified by the
JCL that is discussed above in COMWRITE Requirements and Format. The
buffer trace also requires that a line trace be active on the line whose buffers are
to be dumped (see I/O Interrupt Trace Table, covered earlier in this section, for
a discussion of how to activate the line trace).

The format of the buffer trace on tape or disk is:

,
I

o
'-

J

Buffer
Address

lOB
FLl

+13 +14

lOB
FL3

+4

SCB Error
Flags

ERB
Status

LCB
Status~

+15 +16

Line
Address

+18

Sense
Byte

+12 +13

Buffer Prefix
and Data ~

I ,
+20

o
+96

See a later section, COM EDIT Printing Utility for a discussion of how the
COMEDIT routine can produce a formatted listing of the buffer dump.

Writing Line Trace, STCB Trace, and Bullers to Disk Data Set
The following example of entering GOTRACE, NOTRACE, and DEBUG
operator commands illustrates how debugging information can be written to the
COMWRITE data set for later printing. The general format of the commands and
command responses used in the example may be found in this chapter under the
heading Operator Commands. The numbered paragraphs below denote a se­
quence of operator commands entered at an IBM 1050 Data Communication

Using TeAM Service Facilities 523

System terminal that has been designated as an operator control station. The
lettered entries designate discussions of

A. STCB trace
B.line I/O trace
C. buffer dump

The example assumes that the INTRO macro instruction specifies
COMWRTE= YES, DTRACE=integer, TRACE=integer, and
CONTROL=CTL; the jobname of the TCAM MCP is TEST3; the following DD
statement has been added to the EXEC statement for the TCAM MCP.

IlcOMWRITE DD UNIT=SYSDA,DSN=COMWRITE,DISP=(,KEEP), x
II VOL=SER=456789,SPACE=(CYL,(5))

(specifies that the COMWRITE data set be on disk); and the TCAM job is
dequeued from the input stream and has just started execution.

Example:

1. Nothing has been entered at the IBM 1050 terminal.
A. Entries are being made in the STCB trace table in main storage, and nothing

is being written to the COMWRITE data set.
B. Inactive.
C. Inactive.

2. CTL F TEST3, TRACE=052 ,ON (eat)

A. Entries are still being made in the STCB trace table, and nothing is being
written to the COMWRITE data set.

B. Entries are now being made in the line I/O trace table in main storage for
line 052, and nothing is being written to the COMWRITE data set. Re­
sponse message

IED023I TRACE STARTED FOR 052

is sent to the IBM 1050 indicating that the line I/O trace was started for
line 052 as requested by the GOTRACE command.

C. Inactive
3. CTL F TEST3 ,DEBUG=L, IEDQFE 10 (eat)

A. Entries are still being made in the STCB trace table, and now the STCB
trace table entries are being written to the COMWRITE data set. Response
message

IED099I ROUTINE LOADED

is sent to the IBM 1050 indicating that the STCB trace table entries are
being written to the COMWRITE data set.

B. Entries are still being made in the line I/O trace table for line 052, and
nothing is being written to the COMWRITE data set.

C. Inactive.
4. CTL F TEST3, DEBUG=L, IEDQFE30 (eat)

A. Entries are still being made in the STCB trace table, and STCB trace table
entries are still being written to the COMWRITE data set.

B. Entries are still being made in the line I/O trace table for line 052, and
nothing is being written to the COMWRITE data set.

524 OS/MFT and OS/MVT TCAM Programmer's Guide

/~
i'
\~

C. Since line I/O trace is active for line 052, buffer and status information for
line 052 is now being written to the COMWRITE data set. Response
message

IED099I ROUTINE LOADED

is sent to the IBM 1050 indicating that buffer and status information is
being written to the COMWRITE data set.

5. CTL F TEST3, TRACE=031 , ON (eat)

A. Entries are still being made in the STCB trace table, and STCB trace table
entries are still being written to the COMWRITE data set.

B. Entries are still being made in the line I/O trace table for line 052, entries
are also being made now in the line I/O trace table in main storage for line
031, and nothing is being written to the COMWRITE data set. Response
message

IED023I TRACE STARTED FOR 031

is sent to the IBM 1050 indicating that the line I/O trace was started as
requested by the GOTRACE command.

C. Since line I/O trace is active for lines 052 and 031, buffer and status
information for these lines is being written to the COMWRITE data set.

6. CTL F TEST3 ,DEBUG=L, IEDQFE20 (eat)

A. Entries are still being made in the STCB trace table, and STCB trace table
entries are still being written to the COMWRITE data set.

B. Entries are still being made in the line I/O trace table for lines 052 and 031,
and now line I/O trace table entries are being written to the COMWRITE
data set. Response message

IED099I ROUTINE LOADED

is sent to the IBM 1050 indicating that line I/O trace table entries are now
being written to the COMWRITE data set.

C. Since line I/O trace is still active for lines 052 and 031, buffer and status
information for these lines is still being written to the COMWRITE data set.

7. CTL F TEST3,TRACE=052,OFF (eat)

A. Entries are still being made in the STCB trace table, and STCB trace table
entries are still being written to the COMWRITE data set.

B. Entries are still being made in the line I/O trace table for line 031, but not
line 052, and line I/O trace table entries for line 031 are being written to
the COMWRITE data set. Response message

IED029I TRACE STOPPED FOR 052

is sent to the IBM 1050 indicating that the line I/O trace was stopped for
line 052 as requested by the NOTRACE command.

C. Since line I/O trace is now active only for line 031, buffer and status
information for line 031 is still being written to the COMWRITE data set.

8. CTL F TEST3, DEBUG=D, IEDQFE30 (eat)

A. Entries are still being made in the STCB trace table, and STCB trace table
entries are still being written to the COMWRITE data set.

B. Entries are still being made in the line I/O trace table for line 031, and line
1/ Otrace table entries for line 031 are still being written to the COM­
WRITE data set.

Using TeAM Service Facilities 525

C. Inactive.

9. CTL F TEST3, DEBUG=D, IEDQFE20 (eat)
A. Entries are still being made in the STCB trace table, and STCB trace table

entries are still being written to the COMWRITE data set.
B. Entries are still being made in the line 1/ 0 trace table for line 031, but now

nothing is being written to the COMWRITE data set. Response message

IED1 001 ROUTINE DEACTIVATED

is sent to the IBM 1050 indicating that no line I/O trace table entries are
being written to the COMWRITE data set.

C. Inactive.
10. CTL F TEST3, DEBUG=D, IEDQFE 10 (eat)

A. Entries are still being made in the STCB trace table, but now nothing is
being written to the COMWRITE data set. Response message

IED1 001 ROUTINE DEACTIVATED

is sent to the IBM 1050 indicating that no STCB trace table entries are
being written to the COMWRITE data set.

B. Entries are still being made in the line I/O trace table for line 031, and
nothing is being written to the COMWRITE data set.

C. Inactive.
11. CTL F TEST3, TRACE=031 , OFF (eat)

COMEDIT Printing Utility

A. Entries are still being made in the STCB trace table, and nothing is being
written to the COMWRITE data set.

B. Inactive. Response message

IED0291 TRACE STOPPED FOR 031

is sent to the IBM 1050 indicating that entries are no longer being made in
the line I/O trace table.

C. Inactive.

The COMEDIT utility is a separate job or job step that formats and prints in
hexadecimal the specified output from the COMWRITE data set. The
COMWRITE data set may contain any combination of entries from the STCB
trace table, the I/O interrupt trace table, and buffer and status information. If the
COMWRITE data set is on magnetic tape, a search option may be invoked to
begin formatting the STCB trace dump at a specified time stamp (if the search
option is requested and the COMWRITE data set is on disk, error message

IED1201 'BLOCK=' PARM REQUIRES TAPE INPUT

is returned to the system console and the printing utility formats and prints all the
data from the physical beginning of the COMWRITE data set). The number of
lines printed per page on the listing may be varied if the default value of 60 is not
desired. Options that may be specified on the PARM= parameter of the EXEC
statement are:

Option

STCB

526 OS/MFT and OS/MVT TeAM Programmer·s Gwde

Function Provided

Provides a formatted printout of the dispatcher subtask
trace table entries that are on the data set.

IOTR

BUFF

Provides a formatted printout of the line I/O interrupt trace
table entries that are on the data set.

Provides a hexadecimal and EBCDIC formatted printout of
buffers and any trace records, other than STCB and IOTR,
that are on the data set.

If neither STCB, IOTR, nor BUFF is specified, then all blocks are formatted and
the hexadecimal dump contains all unknown records.

BLOCK=hhmmddd This keyword value is valid only for a tape data set; it
designates the starting point for formatting records from the
data set.

LINECNT=xx

hh is replaced by a 2-digit decimal integer that specifies the
hour in continental time.

mm is replaced by a 2-digit decimal integer that specifies
the minutes of the hour (using I-minute intervals).

ddd is replaced by a 3-digit decimal integer that specifies
the day of the year (using Julian days).

Specifies the number of lines to be printed per page, where
xx may be replaced by any 2-digit decimal integer up to 99.
If this keyword parameter is omitted, a value of 60 is as­
sumed.

These options may be coded in any order and as often as desired. If keyword
parameters are specified more than once, only the last duplicate parameter is
honored. If a parameter is coded incorrectly, the entire parameter list is printed on
the SYSPRINT data set and the location of the parm scan pointer is shown,
indicating the approximate location of the erroneous parameter.

Examples appear below for invoking various combinations of entries from the
COMWRITE data set; the ddnames SYSPRINT and SYSUTI are required names
for the DD statements in this program. The DCB attributes for SYSPRINT are
DSORG=PS,RECFM=FBA,LRECL= 121,BLKSIZE= 1331.

Example 1:
Prints only STCB trace table entries from the disk COMWRITE data set, and
specifies a line count of 80 for the printed listing.

Iljobname JOB
Iistepname EXEC PGM=IEDQXB,PARM='LINECNT=80,STCB'
IISYSPRINT DD SYSOUT=A
IISYSUTl DD DSN=COMWRITE,UNIT=SYSDA,VOL=SER=xxxxxx,DISP=OLD

Example 2:
Prints STCB trace table entries and line I/O interrupt trace table entries from
tape; specifies printed listing to begin at 10:15 pm on August 20,1970, and
specifies line count of 58.

Iljobname JOB
Iistepname EXEC PGM=IEDQXB,PARM='IOTR,BLOCK=2215232, X
II STCB,LINECNT=58,
IISYSPRINT DD UNIT=OOE
IISYSUTl DD UNIT=2400,VOL=SER=xxxxxx,DISP=OLD,LABEL=(,NL)

Using TCAM Service Facilities 527

If the search option is earlier than the first time stamp on the data set containing
the STCB trace table entries, the entire data set is formatted and printed. If it is
later than the last time stamp, no printing is done and error message

IED121I REQUESTED TIME NOT FOUND

is returned. In addition to the STCB trace being formatted by time and date,
queue control blocks are formatted by individually named fields. I/O interrupt
trace table entries o.n the COM WRITE data set appear as 32-byte records with
unit check and unit exception fields flagged.

Example 3:
Prints buffers from tape-standard label in; standard label out (for printing on
another machine).

l/j obname JOB
Iistepname EXEC PGM=IEDQXB,PARM='BUFF'
IISYSPRINT DD DSN=dsname,UNIT=2400,VOL=SER=xxxxxx,DISP=(,KEEP)
IISYSUTl DD UNIT=2400,VOL=SER=xxxxxx,DISP=OLD,DSN=COMWRITE

Example 4:
Prints buffer and status information and line I/O interrupt trace table entries from
tape; specifies line count of 65 (if duplicate keyword parameters are specified, the
last value coded is used).

l/j obname JOB
Iistepname EXEC PGM=IEDQXB,PARM='LINECNT=10,BUFF,IOTR, X
II LINECNT=65,
IISYSPRINT DD SYSOUT=A
IISYSUTl DD UNIT=2400,VOL=SER=TRACE,DISP=OLD,LABEL=(,NL)

If the PARM= parameter is omitted, all the entries on the COMWRITE data set
are formatted and printed. If a coding error is detected in one of the keyword ,<

values of the PARM= parameter, error message ,,~

IED123I INVALID PARAMETERS

is returned indicating that the COMEDIT printing utility cannot be continued due
to invalid JCL; replace the invalid JCL card and resubmit the job.

Message Queues Data Set Dump
TCAM provides a separate utility (IEDQXC) that formats the DASD message
queues data set for immediate printing, or it directs the messages queues data set
to either magnetic tape or disk for later printing (see the discussion on
Preformatting DASD Message Queues Data Sets in the chapter System
Preparation). The entire data set may be printed sequentially either by record
number or by queue. Also, up to five individual queues may be printed. Individu­
al reusable queues cannot be dumped after the message queues data set has been
wrapped. The contents of the formatted dump are controlled by options in the
PARM= parameter of the EXEC statement. The general format of the EXEC
statement is:

IISTEPl EXEC PGM=IEDQXC,PARM='Q=options'

Options that may be specified on the PARM= parameter of the EXEC statement
are:

Option

DMP

528 OS/MFT and OS/MVT TeAM Programmer's Guide

Function Provided

Prints all messages sequentially by
record number.

xxx,DMP Prints all messages sequentially, where
xxx is replaced by the 3-digit decimal
total number of queues.

Specifying xxx , DMP gives the same results as either specifying DMP alone or
omitting the PARM= parameter.
To find total number of queues from the assembly listing of the MCP, look
for ORG IEDNADDR in the expansion of the macro that is named by
TTABLE LAST=name. Following that ORG is the line DC A(n *4 + 1),
A(r *4 + 3). The value of n (for nonreusable disk) or r (for reusable disk)
is the maximum value for Q=xxx in the PARM= parameter of the IEDQXC
routine.
xxx,ALL Prints all messages sequentially by

queue, where xxx is replaced by the 3-
digit decimal total number of queues.

XXX,qlqlql'q2q2q2'
···qsqsqs

Prints all messages for queues q 1 q 1 q 1
through qsqsqs (up to 5 queues rp.ay be
specified); xxx is replaced by the 3-digit
decimal total number of queues, and qqq
is replaced by the 3-digit decimal number
corresponding to the queue (or queues)
whose contents are to appear in the
dump. qqq can be determined using the
DC located at hexadecimal 28 from the
first DC in the QCB CSECT in the
TERMINAL or TPROCESS macro ex­
pansion. The format of the DC is:

DC 3AL (yyy), 5AL(0) ,ALl (ppp,
AL3(O)

where yyy corresponds to the queue
number and ppp is the priority level of
that queue. There is one such DC for
each priority level designated for the ter­
minal. The number of queues to be
printed can be calculated using one of
the following equations:

For nonreusable queues
qqq=(yyy+3)+4

For reusable queues
qqq=(yyy+ 1)+4

Below are some sample JCL statements for invoking the IEDQXC printing
facility.

Each extent of the DASD message queues data set must be defined with a
DISKQnn DD card, where nn is replaced by decimal 01 for the first extent, by
decimal 02 for the second, etc. For single extent cataloged data sets, DSN = and
DISP= are the only required parameters. For multi-extent (multivolume) data
sets, the catalog information cannot be used. Each DD statement must have also
UNIT=xxxx,VOL=SER=xxxxxx information. These DD statements must define

Using TeAM Service Facilities 529

On-line Test Function

the volume identification in the same order as the volume identifications listed on
the IEDQDATA DD card on the IEDQXA utility JCL used when creating the
data set.

Example 1: Dumping queues sequentially

/ /j obname JOB
//stepname EXEC PGM=IEDQXC
//OISKQOl DO DSN=dsname,DISP=OLD
//SYSPRINT DO UNIT=OOF

Example 2:
Printing entire formatted queue

//jobname JOB
//stepname EXEC PGM=IEDQXC,PARM= Q=012,ALL'
//DISKQOl DO DSN=dsname,DISP=OLD~UNIT=23xx,VOL=SER=111111
//DISKQ02 DO DSN=dsname,DISP=OLD,UNIT=23xx,VOL=SER=222222
//DISKQ03 DO DSN=dsname,DISP=OLD,UNIT=23xx,VOL=SER=333333
//SYSPRINT DO UNIT=OOE

Example 3:
Printing selected queues (there are eight queues on the data set; this JCL formats
and prints queues 005,006, and 007 only)

//jobname JOB
//stepname EXEC PGM=IEDQXC,PARM='Q=008,OOS,006,007'
//DISKQ01DD DSN=dsname,OISP=OLD,UNIT=23xx,VOL=SER=111111
//DISKQ02DD DSN=dsname,DISP=OLD,UNIT=23xx,VOL=SER=222222
//DISKQ03DD DSN=dsname,OISP=OLD,UNIT=23xx,VOL=SER=333333
//SYSPRINTDD UNIT=OOE

The PARM= fields are fixed format, and a coding error causes error message
IED123I INVALID PARAMETERS

to be returned to the system console; replace the invalid JCL and resubmit the .. ~
job.

The IEDQXC utility program suppresses printing of zero or non-data records
during the sequential dump of a message queues data set. Consequently, the first
record printed may not be the first physical record in the queue, and intervening
zero records between data records in the queue are not printed.

The on-line test (OLT) function is an optional TCAM facility; its implementation
is described in detail in the as TeAM User's Guide, GC30-2025. OLT permits
either a system console operator or a remote control station user to test transmis­
sion control units and remote stations. The OLT function is used to:

Diagnose hardware errors
Verify repairs
Verify engineering changes
Check devices periodically
Check new stations brought on-line

The TCAM OLT function is implemented in three parts:

• the telecommunications on-line test executive (TOTE)

TOTE acts as an interface between TCAM and the OL Ts for scheduling and
controlling the execution of OL Ts. TOTE also prompts the user when he ~

530 OS/MFT and OS/MVT TCAM Programmer's Guide

Function

Getting debugging Dumping debugging Printing debugging aid
aid to reside in aid to either tape or from tape or disk data

Debugging Aid main storage disk data set set

~ INTRO operator INTRO operator
operands commands operands commands

Standard
(Note 1)

OS Dump
I

TCAM Formatted I

ABEND Dump
(Note 2)

V I

I/o Error
See the IFCEREPO system utility in the OS

(Note 3) Utilities Publication for printing the contents
Recording I of the SYSI. LOGREC data set.
TCAM

I "'-Logging
(Note 4)

Crass-Reference
CROSSRF~n

Table

STCB
DTRACE~n

DTRACE~n DEBUG (L, "-Trace COMWRTE~ YES IEDQFE10)

Line GOTRACE TRACE=n GOTRACE Use the COMEDIT printing utility
TRACE=n DEBUG (L,

Trace NOTRACE COMWRTE=YES IEDQFE30)- described in this section.

Buffer TRACE~n GOTRACE

Trace COMWRTE~YES
DEBUG (L,

IL I ED OFE 20

Message Queues
IEDQFE30

Use the IEDQXC utility program
Data Set Dump described in this section.

Notes:

1. See the OS publication Programmer's Guide ~ Debugging.

2. See the TCAM Program ~ ~ •

3. See TCAM I/O Error-recording Facility in this chapter.

4. See Using TCAM's Message Lagging Facility elsewhere in this publication.

Figure 38. Coding Requirements for Using TCAM Debugging Aids

Advantages of TOTE

requests help, when he makes an invalid request, or when a test needs more
data.

• a configurator

The configurator contains such data as telephone numbers, what devices are
attached to what channel addresses, features installed, and any other data the
on-line tests need to tailor needs for testing all the equipment at a specific
location .

• on-line tests (OLTs)

The OLTs are device tests that run under the supervision of TOTE. They
reside in a private library. The results are sent to a station specified by the test
requester. On-line tests affect application performance to the extent that test
transmissions require line time, tests require CPU time, and OLT modules
require main storage and DASD space.

To properly assess the resources required to support TOTE, it is necessary to put
TOTE in the proper perspective. TOTE is advantageous because it provides:

Using TCAM Service Facilities 531

Devices Supported

System Requirements

Dynamic remote test request
Remote test control
BSC support
Operation in a dedicated TP system

The on-line test concept allows device testing to be concurrent with other jobs
within the computer. TOTE goes even further by allowing concurrent testing on a
communication line basis. TOTE will have one terminal on a multipoint commu­
nication line while the rest are still doing the customer'sjob. As an attached
subtask of TCAM, TOTE can:

1. Start an On-Line Test on a particular resource.
2. Pause testing at a logical break point;
3. Return the line, but not the particular resource, to TCAM to allow other

programs to use the line;
4. Regain control of the line to continue testing;
5. Continue this sharing of the line or end the test at the discretion of the OLT.

In addition to the above advantages TOTE also allows any TCAM device capable
of entering alphanumeric or numeric data to enter the Test Request Message
(TRM), any TCAM device to be the test terminal, and any TCAM device capable
of entering and printing data to be the control terminal, and any TCAM device
capable of printing data to be the alternate printer. Thus up to four terminals may
be used to start, control and report results of a given OLT or all these functions
may be performed on the same terminal.

OLTs for the following terminal devices will be supported by TOTE. Theoretical­
ly, all TCAM stations may act as control terminals or alternate printers. However,
since the input and output capabilities of different terminals vary, exercise caution
in the selection of the control terminal and alternate printer to insure that
the capability 'of the control or print device is compatible with its role.

1030
1050
1060
2740 I
2740 II
2741
2760
2770

2780
2848/2260 Local
2848/2260 Remote
2845/2265
1130 (Terminal)
2020 (Terminal)
S360 (Terminal)
3275

3277
3284
3286

Note: More terminal OLTs are UNier development and will be supported
when available.

The following control units are supported by TOTE:

2701
2702

2703
3705

3271 7770
3272

This section describes main-storage requirements, TCAM MCP facilities that must

~
(.
.~

be specified to support on-line testing, OS/SYSGEN options that must be speci- 4
fied, and JCL requirements for TOTE/OLTs. ,

532 OS/MFT and OS/MVT TeAM Programmer's Guide

Main-Storage Requirements

Coding Requirements

In addition to the storage required for TCAM, the on-line test facility requires
storage. This storage is reserved by the OLTEST parameter of the INTRO macro
of TCAM's Message Control Program. OLTEST=12 reserves 12K of storage for
TOTE's use.

The minimum amount of storage to allow on line testing is 12K bytes. Additional
storage if reserved will allow larger OLTs or multiple asynchronous tests to be
run. The amount of storage required is a function of the number of on-line tests to
be run concurrently but asynchronously. The first test requires 8K bytes plus the
storage for the OLT. Each additional test requires 4K bytes for TOTE plus the
storage for the OLT.

During set-up and assembly of the TCAM MCP the following actions are required.

I. The OLTEST= operand of the INTRO macro in the MCP must be set to a
value representing the additional TCAM storage needed to include the OLT
function. OLTEST=12 would specify 12K (8K for TOTE and 4K for the
device test). Each increment of one would mean an additional 1 K. If the
OLTEST= operand is not specified at TCAM assembly time, a default of 12 is
assigned. To delete the OLT function from TeAM, set the OLTEST= operand
to zero (OLTEST=O). The minimum value of OLTEST is 12.

2. A new parameter of the TT ABLE macro should be entered. This parameter
specifies the number of dummy entries in the Terminal Table Entries available
for TOTE's use as well as a work area. TOTE will use this area during execu-
tion of an OLT. Imitation' Terminal Table Entries will be constructed in this
area to allow TOTE to communicate through TCAM's message handling facilities.
The operand is OLTERM=n. This operand will generate n dummy Terminal
Name Table entries, as well as a work area containing 120 bytes for each
dummy entry. These work areas are contiguous. Therefore, if n=6 an area
containing 6 x 120=720 bytes is reserved for TOTE's use. If this operand is
omitted, the default is OLTERM=O. If zero dummy entries are allocated to
TOTE, then no remote station can be the control terminal or the alternate
printer.

3. Each terminal on a non-switched line used or tested \>y TOTE must have a
symbolic name assigned to it in the TERMINAL macro. For switched lines a
symbolic name should be assigned for each group of terminals having the same
configuration. (For example, 2741s using correspondence code might be
assigned a symbolic name of KGN2741 and 2741s using BCD code assigned a
symbolic name of RAL2741.)

4. Each terminal used as control terminal or alternate printer by TOTE must
have standard TCAM translation tables specified in its DeB.

S. Sufficient storage for both TCAM and TOTE must be provided in the region
parameter in JCL for MYT systems or partition assignment in MFT systems.

6. DIAGMSG (the diagnostic message output device), the OLT library, and the
configuration library must be defined by job control language cards (JCL).

7. Since TOTE uses TCAM's message handling facilities to communicate with the
user, the MCP must contain the CODE macro unless the line code is EBCDIC.

8. All wrap lines must have a DCB and must be opened by the MCP. This
requirement allows TOTE to run those IBM 2702 and 2703 tests that use
the WRAP line to test the transmission control unit. In addition, this line must
be closed by the MCP during closedown. If the WRAP line is not used by the
MCP and does not have a data set attached to it the UCB must be specified as
a dial unit. This allows TCAM's Operator Control facilitiy to perform success-

Using TeAM Service Facilities 533

TOTE Requirements

Hardware Requirements

fully the functions requested of it by TOTE. The Operator Control facility may
have to be used to vary the WRAP line off-line if errors are reported by the
message v Old,offtp,i.

9. Each on-line test request must fit within a single buffer; furthermore, an on-line
test message identifier (either SOH% / or 99999) must fit within the first
buffer unit. These buffer design considerations must be taken into account
when the user specifies buffer sizes and buffer unit sizes (see the KEYLEN=
operand of the INTRa macro instruction and the BUFSIZE= operand of the
line group DCB macro instruction).

The following requirements must be met before executing TOTE:

1. The TCAM Operator Control facility must be initialized.
2. The OL T modules must have been placed in a library.
3. The Configuration Data Set (CDS) must have been built by stand-alone, on-line

Test Support Program.
4. The terminals must be represented in the TCAM JCL by a DD card.

The following requirements must be met before executing a device test:

1. The devices and communication lines used or tested must have been config­
ured.

2. The devices used as control terminal or alternate printer must be on opened
communication lines.

3. The communication lines to be tested must have been opened.
4. The symbolically named devices to be tested must be on opened communica-

tion lines.

For TCD tests:

The TCU lines to be tested must be available for testing allocated to TCAM and
assigned to TOTE by the stop line command, since the lines used for testing are
made unavailable to TCAM for the duration of the test. A terminal from which to
control the test must be available also. The control terminal can be a TCAM
terminal or display terminal not on the line(s) being tested, or the system console.
The TCD test automatically forces the non-concurrent mode (NCM) request.
Thus, the system operator must concur before TCU testing is allowed.

For terminals:

The tested terminal must be available for testing, since it is made unavailable to
TCAM for the duration of the test. If the non-concurrent mode option is selected,
the entire subchannel address will be unavailable for use by TCAM. A terminal
from which to control the test must be available also. This terminal can be the
tested terminal, another terminal (recommended to be near the test device), or the
system console. Caution must be exercised when specifying the control terminal
and the test device as the same device if hardware errors are occuring on the
test device because:

(1) It may be impossible to enter the information necessary to run the test.
(2) TCAM may not recognize the message as a TRM. Instead of sending the

TRM to TOTE, it may be sent to a Message Processing Program.
(3) The test results may not reach the control terminal.

Scheduling and Loading Unit Tests
The OL T sections are stored within a partitioned data set and are called into
storage for execution by the TOTE module IEDQWE. These sections are loaded

534 OS/MFT and OS/MVT TCAM Programmer's Guide

Prompting

Asynchronous Test Handling

into the region or partition assigned to TCAM/TOTE and then executed. In
order to be executed the sum of storage required for all OLTs and TOTE must
not exceed the amount of storage allocated for on line testing at INTRO time,
O=n where n is an integer equal to or greater than 12 and represents the amount
of kilo-bytes reserved for on line testing. Test selection is achieved by entering a
Test Request Message (TRM). The TRM may be entered from a TCAM station
or from an operator control terminal or the system console. The general format of
a TRM is:

Prefix Control Terminal/Test Devices/Tests/Options/

99999
Prefix = SOH%/

modify Tcamjob,OLT=
opid modify TCAMjob,OLT=

:Start/Stop or local 22xx
:BSC or local 32xx
:from system console
:from operator console

Control Terminal is the symbolic name of the station from which the test is to be
controlled. The control terminal must be one of the stations supported by
TCAM/TOTE.

Test Devices are the list of symbolic names of terminal devices to be tested. If the
test request is for a local control unit this field contains the physical addresses to
be used.

Tests identifies the on-line tests to be executed. One or more tests may be entered
as well as selecting individual routines of a given test.

Options specifies those options that will control the test procedure. Entries are
delimited by commas. If the TRM contains no options default options are used.

The above TRM is equivalent to:

99999PHIL34/NYC01/1060AA/MI/

Information required for TOTE to run OLTS can be entered in the prompting
mode. This mode can be entered upon the receipt of an invalid entry in a TRM, or
it can be requested. Upon entering the prompting mode the user is asked a series
of questions designed to obtain the required information. If he entered prompting
mode because of an error in his TRM, he is given the option of being prompted.

Each time an invalid entry is made in prompting mode, the user is given the option
to discontinue prompting, or retry a TRM entry. If he chooses to continue he is
given the chance to re-enter the information.

TOTE will run as many asynchronous OLTs as resources permit. Basically two
resources are required. The first is storage and the second is available entries in
TCAM's Terminal Name Table.

When TOTE has used the last of the storage assigned by the OLTEST operand,
TOTE will reject incoming TRMs until storage becomes available.

Using TeAM Service Facilities 535

OS/SYSGEN Requirements

If there is enough storage remaining to start another asynchronous TRM, TOTE
examines the TRM to determine the number of Terminal Name Table (TNT)
entries required. One is required for:

a) a control terminal,
b) an alternate printer.

Thus a maximum of two entries are required. If the entries are available TOTE
verifies that there is enough storage available in the dummy TTE area. If storage
is not available the TRM is rejected. If storage is available the dummy TTE
entries are generated by TOTE in the dummy TTE area and the OL T is loaded.

In order to support TOTE, the SUPRVSOR macro instruction must specify
OPTIONS=ONLNTEST at system-generation time.

At least two buffers must be specified in the WTOBFRS parameter of the
SCHEDULR macro instruction when on-line tests are included in the generated
system.

536 OS/MFT and OS/MVT TeAM Programmer's Guide

«

JCL Requirements for TOTE/OLTs
The following DD statements must be included in the TCAM JCL that defines
data sets when the on-line test function is to be included in the TeAM system:

/ISTEPl EXEC PGM=MAINTEST,REGION=250K,TIME=1440
//STEPLIB DO DSN=SYS1.LRDDVL2,DISP=OLD
// DO DSN=SYS1.LOADLIB,DISP=SHR
// DO DSN=SYS1.TOTDVLP,DISP=OLD
/ / DO DSN=SYS 1 . OLT2LIB, DISP=SHR 1
II DO DSN=SYS1.CDSLIB,DISP=OLD 2
//SYSABEND DD SYSOUT=A,SPACE=(CYL,(20,20))
IIOLTLIB DD DSN=SYS1.0LT2LIB,DISP=SHR 3
//CDSLIB DD DSN=SYS1.CDSLIB,DISP=SHR 4
/ /DIAGMSG DD UNIT=OFF 5
/ /INARU DD QNAME=GARUQ
//OUTARU DD QNAME=PARUQ
//IN2760 DD QNAME=GET2760
//OUT2760 DD QNAME=PUT2760
//APPIN DO QNAME=GETQ
//APPOUT DD QNAME=PUTQ
/ /DISKDD DO DSNAME=SYSl .SAMPl ,DISP=(OLD, PASS)
//RESDISK DD DSNAME=SYS1.RESUABL,DISP=(OLD,PASS)
IIDD2260R DD UNIT=OlD
//DD27402 DD UNIT=OlE AAA,BBB 2740 MOD 2
//TOTE071 DD UNIT=071
//TOTE072 DD UNIT=072
/ /WRAPDD DD UN I T=O 1 0 WRAP LINE FOR 2702 6
//RALDD DD UNIT=Oll RAL - 1050 DIAL
//ATLDD DD UNIT=012 ATL - 2740 WITH CHECKING - UNIT 2
//DD1050 DD UNIT=015 MARY AND HUYCK - 1050'S MULTI DROPPED TOGETHER
//DURDD DO UNIT=017 DUR - 2740 WITH CHECKING - UNIT 1
IlwASDD DD UNIT=OlA WAS,CHAR 2740'S DIAL UNIT 4&5
//NYCDD DD UNIT=018 NYC - 2740 WITH STATION CONTROL - UNIT 3
//DD2260L DD UNIT=150

Notes:
1. DSN=SYS1.0LT2LIB=Llbrary containing OLTs and local CDS

records; must be concatenated to STEPLIB.
2. DSN=SYS1.CDSLIB=Library containing remote CDS records; must be

concatenated to STEPLIB.
3. DDNAME OLTLIB=Library containing OLTs and local CDS records;

must De specified.
4. DDNAME CDSLIB=Library containing remote CDS records; must be

specified.
5. DDNAME DIAGMSG =Must be specified if the APSYSOUT option is

desired.
6. DDNAME WRAPDD = The wrap line (lowest channel address) of all 2702s

and 2703s must be specified in and opened by the MCP for
The wrap-line OLTs to function properly. If the user does not
have a data set attached to the wrap line, the line should be
specified as a dial line.

Using TeAM Service Facilities 537

c

System Preparation

This chapter provides information needed in setting up a teleprocessing system to
be run under TCAM. It indicates the machine and device requirements of a
TCAM system, touches upon system generation requirements peculiar to TCAM,
and describes the IEDQXA utility program provided by TCAM for pre formatting
message queues data sets on disk. The System Generation publication provides
information for generating an IBM Sy~tem/360 Operating System, including
machine configuration and data processing requirements.

Machine and Device Requirements
TCAM operates under the operating system MFT -II and MVT environments on
any System/360 Model 40 or above (that is, a CPU having at least 128K of main
storage). The only additions to the minimum requirements of the System/360
Operating System are:

• All telecommunications terminals, except the IBM 2260-2848 Local, must be
attached to either an IBM 2701 Data Adapter Unit Model I, an IBM 2702
Transmission Control Model I, an IBM 2703 Transmission Control Model I, or
an IBM 7770 Model 3 Audio Response Unit; they cannot be attached directly
to a channel.

• All IBM 2701,2702,2703, or 7770 control units that operate under TCAM
must be attached to the System/360 through the multiplexer channel.

A switch on the CE panel on the 2702 can be used to place a give line in CE mode
for equipment checking. Care must be taken to ensure that no lines are in CE
mode when TCAM is used, since no ending status will be returned to a SIO
command that is issued by the system.

• No device may be operated in burst mode on the multiplexer channel concur­
rently with the operation of TCAM, except when the TCAM operation involves
only the 2260 Display Complex (Local).

The following additional features may be required:

• The system ATTACH macro instruction must be specified for an MFT system.
• The line correction feature on IBM 1050 Data Communication System termi­

nals is necessary, if automatic retry is desired when a transmission error occurs.

Control Units and Terminal Types Supported

Multiprocessing System

TCAM supports any combination of the IBM 7770 Audio Response Unit and the
IBM 2701, 2702, or 2703 transmission control units on the same multiplexer
channel. Up to eight control units can be attached directly to the multiplexer
channel. TCAM also supports the IBM 2848 Display Control attached directly
either to the multiplexer or a selector channel. Figure 39 below illustrates the
device configurations supported by TCAM.

TCAM supports the multiprocessing (IBM Model 65 MP) system with the
configuration-control feature; this system is formed from two Model 65s operat­
ing as a single, large-scale system under one control program. Since the Model 65
MP permits simultaneous execution of two tasks in the system, the TCAM MCP
can execute simultaneously with a TCAM application program.

System Preparation 539

CPU

2701
Start
Stap

2701
BSC

2702

2703

2848

IBM 1030 Data Collection System
IBM 1050 Data Communication System
IBM 1060 Data Communication System
IBM 2740 Communication Terminal
IBM 2740 Model 2 Communication Terminal
IBM 2741 Communication Terminal
IBM 2760 Optical Image Unit
IBM 2260 Display Complex (Remote)
IBM 2265 Display Complex (Remote)
A T& T 8383 Selective Colling Stations
WU Plan liSA Outstations
TWX Models 33 and 35
World Trade Telegraph Terminals

IBM 1130 Computing System
IBM 2770 Data Communication System
IBM 2780 Data Transmission Terminal
IBM 2790 Data Communications System
IBM 3270 Information Display System
IBM 3670 Brokerage Communication System
IBM 3735 Programmable Buffered Terminal
IBM 3780 Data Communication Terminal
IBM System 3
IBM System/360 Model 20
IBM System/360 Models 25 and above

IBM 1 030 Data Collection System
IBM I 050 Data Communication System
IBM 1060 Data Communication System
IBM 2740 Communication Terminal
IBM 2740 Model 2 Communication Termin ...
IBM 2741 Communication Terminal
IBM 2760 Optical Image Unit
AT&T 83B3 Selective Colling Stations
WU Plan liSA Outstotions
TWX Models 33 and 35
World Trade Telegraph Terminals

IBM 1030 Data Collection System
IBM 1050 Data Communication System
IBM 1060 Data Communication System
IBM 2740 Communication Terminal
IBM 2740 Model 2 Communication Terminal
IBM 2741 Communication Terminal
IBM 2770 Data Communication System
IBM 2780 Data Transmission Terminal
IBM 2790 Data Communications System
IBM 3270 Information Display System
IBM 3670 Brokerage Communication System
IBM 3735 Programmable Buffered Terminal
IBM 3780 Data Communication Terminal
IBM System 3
IBM System/360 Model 20
IBM System/360 Models 25 and above
AT&T 83B3 Selective Colling Stations
WU Plan liSA Outstations
TWX Models 33 and 35
World Trade Telegraph Terminals
IBM System/370 Models 135 and above

IBM 2260 Display Complex (Local)

Figure 39. Device Configurations Supported by TCAM (Part I of 3)

System Generation Considerations
TeAM facilities can be incorporated into an operating system by performing an
operating system generation. This procedure is explained in the OS publication
System Generation.

Using system generation macro instructions, the user specifies the line configura-
tion and device requirements of the telecommunications system being supported, C

540 OS/MFT and OS/MVT TCAM Programmer's Guide

Audio
Che nne I Type TCU Response Line Type

Unit
IBM 2701 IBM 2702 IBM 2703
Octa Adapter Transmission Transmission IBM 7770

Station Type Multiplexer Selector Unit Control Control Model 3 Switched Nanswitched Notes

IBM 1030 Octa Collection Auto Poll X X X X The IBM Digital Time Out
System feature cannot be attached

X X X X X through an IBM 2701 TCU.

IBM 1050 Octo Auto Poll X X X X
Communication System

X X X X X X

IBM 1060 Octa Auto Poll X X X X
Communication System

X X X X X

IBM 2260-2848 Display X X X
Complex (Remote)

IBM 2260-2848 Display X X
Complex (Loco I)

IBM 2265-2845 Display X X X
Complex (Remote)

IBM 2740 Model I Auto Poll Two Types:
Communication Terminal X X X X 2740 with station control

2740 wHh station control and
record checking

Four Types:
2740 basic

X X X X X 2740 with station control
2740 with record checking
2740 with station control and
record checking

Four Types, all with dial:
2740

X X X X X 2740 with transmit control
2740 with record checking
2740 with transmit control
and record checking

IBM 2740 Model 2 Auto Poll Four Types:
Communication Terminal 2740

2740 with record checking
X X X X 2740 with buffer receive

2740 without buffer receive
(requires line slQ'oNdQ'oNn feature)

Four Types:
2740

X X X X X 2740 with record checking
2740 with buffer receive
2740 without buffer receive

IBM 2741 Communication
Terminal

X X X X X X

Figure 39. Device Configurations Supported by TCAM (Part 2 of 3)

and any optional features required. TCAM is specified as an option in the
ACSMETH= operand of the DATAMGT macro instruction.

The GENERATE macro instruction is modified for TCAM:

GENERATE: 1) A DD card will be punched for the SYS1.CQ548 component
library before group three macros are called so that the attention routine to handle
2260/2848 interrupts can be link edited into the nucleus. 2) A DD card will be
punched for the SYS1.CQ548 component library before the group five macros are
called, so that modules can be selected from it by SGIEC5TP. 3) SGIEC3TP and
SGIEC5TP will be called if QTAM, BTAM, or TCAM is specified.

IODEVICE and IOCONTRL: TCAM will support the 7770 Model 3 and
2845/2701.

System Preparation 541

Audio
TCU Response Line Type Channel Type Unit

fBM2701 IBM 2702 IBM 2703
Data Adapter TransmiSSion TransmiSSIon IBM 7770

Station Type Multiplexer Selector Unit Control Control Model 3 SWitched NonSWltched Notes

IBM 2760 Optical Image X X Attached to a 2140 Modell
Unit with record checking

IBM 2770 Data X X X X X BSC transmiSSion uSing either
Communication System ASCII or EBCDIC code

IBM 2780 Data Transmission X X X X X BSC transmiSSion ASCII,
Terminal EBCDIC, or 6-blt code

IBM 2790 Data X X X X X
Communications System

IBM 3270 Information X X X X
Display System

IBM 3670 Brokerage X X X X BSC transmiSSion uSing
CommunicatIon System EBCDIC code

IBM 3735 Programmable X X X X X Either ASCII or EBCDIC
Buffered Terminal

I eM3780 Data X X X X X BSC transmiSSIon uSing either
Communication Terminal ASCII or EBCDIC code

ISM 1130 Computing System X X X X X esc transmiSSion

IBM System 3 X X X X X Code TERM=202A or
TERM=202B on TERMINAL
Macro' inqUiry/response
not supported

I eM System/360 Model 20 X X X X X SSC transmiSSion uSing either
ASCII or EBCDIC code

I eM System/360 Models 25 X X X X X esc transmission and POlnt- to-
and above POint hnes only

AT&T 8383 Selective X X X X X
Calling Stations

Western Union Plan 115A X X X X X
Outstations

TWX Models 33 and 35 X X X X X Teletype terminals, dial
service (S-Ievel code)

World Trade Telegraph X X X X X Control unit must Incorporate
Terminals aWTTA

AudiO termmals X X X Example. IBM 2721 Portable
AudiO Terminal

Figure 39. Device Configurations Supported by TCAM (Part 3 of 3)

If TCAM specifies a switched line at system generation time, the lODE VICE
macro for that line must indicate either the AUTOCALL or AUTOANSR feature.
These features are automatically generated if BSC2 is specified.

There are four types of system generation; three of these affect the DATAMGT
macro and therefore TCAM.

1. Complete Operating System Generation: ACSMETH=(TCAM) must be
specified and the TELCMLIB macro specified.

2. Nucleus Generation: ACSMETH=(TCAM) must be respecified so current
SVCs are retained when the nucleus is re-link edited. If TCAM is not respeci­
fied, it will not be in the system generated by the nucleus generation. The
TELCMLIB macro need not be respecified, but must have been specified in the
complete operating system generation.

3. Processor/Library Generation: No effect on TCAM.
4. I/O Device Generation: ACSMETH=(TCAM) must be respecified so current

SVCs are retained. The TELCMLIB macro need not be respecified but must
have been specified in the complete operating system generation.

542 OS/MFT and OS/MVT TCAM Programmer's Guide

(

MFT users must allow enough SYSQUE space at SYSGEN time for attached
subtasks-180 bytes per ATTACH. The four attached subtasks are Checkpoint,
Operator Control, Comwrite, and On-Line Test. Checkpoint, Comwrite, and
On-Line Test are optional. TCAM will ABEND if enough space is not allocated.

Preformatting DASD Message Queues Data Sets
Since TCAM expects the disk message queues (both reusable and nonreusable) to
be totally preformatted, the IEDQXA routine should be used to perform this task
before initially running any TCAM job (TCAM automatically formats the disk
message queues for either a warm or a continuation restart). At SYSGEN time,
the IEDQXA routine is moved from SYS1.CQ548 to SYSl.LINKLIB along with
other TCAM non-resident modules. As a utility program, it is executed in a
separate step from the step executing TCAM. Sample JCL is shown in Figure 40.

Iljobname JOB
Iistepname EXEC PGM=IEDQXA
IIIEDQDATA DO DSNAME=anyname, DISP=(, CATLG) , *
II SPACE =(CYL,(n,n)"CONTIG), *
II UNIT=(xxxx,y), *
II VOLUME=SER=(aaaaaa,bbbbbb, ...), *
II DCB=KEYLEN=mm

Figure 40. Sample JCL for IEDQXA Utility

The variables in the figure are defined as follows:

anyname
User selects any name for the data set.

n
Since the number of cylinders must be the same for all extents, both primary and
secondary allocations must be identical. Allocation must be by cylinders.

xxxx
Anyone disk message queue must have all extents on one type of disk, either all
on 2311, 2314, or 3330 type disks.

y
The total number of volume serial numbers listed in VOLUME parameter. Maxi­
mum is 16.

aaaaaa, bbbbbb, ...
There is one extent per volume. List each volume serial number of each volume to
contain one extent of the data set. aaaaaa is the first extent, bbbbbb is the
second, and so on. A maximum of 16 volumes may be identified.

mm
Each record formatted contains a key and a data field. mm is the size of each
key portion of the record. Contrary to traditional usage of these fields, TCAM
sets up a short data field for internal control information and places the actual
buffer data in the key field. The data field size is an internally fixed constant (6
bytes), and the size of the key field (that is, mm) must be identical with the
buffer unit size, as specified by the KEYLEN = operand of the INTRO macro.
Although the buffer unit in main storage contains an internally generated 12-byte
prefix, only the first six of these bytes are used to define the data field on disk.
(Guidelines for determining a suitable buffer unit size are contained in the chapter
Defining Buffers).

System Preparation 543

There is no difference in the creation of reusable or nonreusable disk'message
queues. The data set created by this routine may be used by TeAM as either one.

In addition to the desired message queues data set, this routine sends a statement
to the programmer's console. This statement contains a cumulative record count.
Any error messages or an indication of successful compktion are also sent to the
console.

544 OS/MFT and OS/MVT TeAM Programmer's Guide

Conventions Used

Appendix A: TCAM Macro Formats

A format illustration accompanies each macro instruction in this publication. The
illustrations indicate which operands must be coded exactly as shown, which are
required, which are variable, etc. The conventions stated to describe the operands
are as follows:

1. Keyword operands are described by a three-part structure that consists of the
(uppercase) keyword operand, followed by an equal sign (both of which must
be coded), followed by a lowercase variable or an uppercase fixed value to be
specified by the user.

Examples:
KEYWORD=value, METHOD=NORMAL

2. Positional operands are described by a lowercase name, which is merely a
convenient reference to the operand and is never coded by the programmer, or
by an uppercase operand that is used exactly as shown. The programmer
replaces the lowercase operand by an allowable expression as defined in the
macro description.

Examples:
qtype ,destname , mask, MESSAGE.

3. Uppercase letters and punctuation marks (except as described in these conven­
tions) represent information that must be coded exactly as shown.

4. Lowercase letters and terms represent information that must be supplied by the
programmer. Restrictions (such as the maximum value that may be specified)
are stated in the description of the operand under the macro description.

5. An ellipsis (a comma followed by three periods) indicates that a variable
number of items may be included.

6. lAB t
1 5 Options contained within braces represent alternatives, one of which is

7. [ABJ

chosen by the user when he codes the operand in which the braces appear.

Information contained within brackets represents an option that can be
included or omitted, depending on the requirements of the program. If
more than one alternative is included within a single set of brackets, either
of the alternatives may be chosen, or the operand may be omitted (that is,
none of the alternatives are chosen). Operands that are not enclosed

8. ~Al within brackets are required.

L~ J ynde~lined elements represent an assumed value in the event a parameter
IS omItted.

In describing and illustrating the coding of macro instructions, the following
conventions are used.

Register notation: Unless otherwise specified, a register (2 through 11) may be
used. The number of the register must be enclosed in parentheses.

Appendix A: TeAM Macro Formats 545

Error returns: Error return codes are returned in the right-hand byte of register
15.

Commas in operand field: Sometimes two optional keyword operands are listed,
such as [A][,B]. The comma is to be omitted if A is omitted. The comma must
not be omitted for positional operands that are specified in another way.

Blanks in operand field: No blanks are allowed within the operand field.

546 OS/MFT and OS/MVT TeAM Programmer's Guide

Appendix B: Message Error Record

A five-byte message error record is assigned by TCAM to each message for the
duration of its processing by the incoming or outgoing group of a Message Han­
dIer; this message error record may be checked by macros coded in the inmessage
or outmessage subgroup of that group. Each of the 40 bits of the message error
record (except reserved bits) indicates the presence (when 1) or the absence
(when 0) of a specific error condition that has affected or may affect successful
processing or transmission of the message. Some of the errors that may be
recorded in the message error record are transmission and equipment errors (for
example, lost data, busout check), some are due to mistakes in entering a message
(wrong sequence number, invalid origin code), and some are due to a shortage of
system resources (insufficient number of buffers, insufficient space in a main­
storage-only message queues data set).

The TCAM user may code one or several error-handling macros in his Message
Handler; among these are CANCELMG, ERRORMSG, MSGGEN, REDIRECT,
and HOLD. CANCELMG may be coded in the inmessage subgroup only, while
the others may be coded in either the inmessage or the outmessage subgroup.
These macros each have an optional five-byte error-mask operand, which may be
used to test the message error record, so that the error-handling macro for which
the mask is coded is executed only if the errors specified in the mask have occur­
red. When error-handling macros are coded in an inmessage subgroup, they test
the message error record after the message is received from a station or applica­
tion program; in the outmessage subgroup they test the message error record after
the message is sent to a station or application program.

The last byte of the message error record consists of the sense byte for the I/O
device (in this case, the transmission control unit being used). When the unit
check bit is turned on in the CSW during an 110 operation, a sense command is
issued by TCAM, and the appropriate bits in the sense byte are turned on. The
CSW and the sense command are described in the Principles of Operation. A
detailed discussion of the meaning of each bit in the sense byte may be found in
the component description SRL for the transmission control unit being used.

The meaning of each bit in the message error record is shown below. Bit 0 is the
left-most bit and Bit 39 the right-most bit in each error record.

Bit Meaning

o Header error
The scan pointer has reached the end of the last segment in the message, but
the end of the inheader or outheader subgroup has not been reached.

1 Invalid origin code
The ORIGIN macro found that the origin field in the incoming header
contained a code that:
a. did not correspond to the name of a station that was connected to the

computer over a nonswitched line, or
b. did not correspond to any station name in any group (applicable only to

stations on switched lines).

Appendix B: Message Error Record 547

Bit Meaning

2 Reserved
3 Sequ~~ce number high or not a valid number

The SEQUENCE macro found a message sequence number that is not a
valid decimal integer or is higher than the expected number for the next
message originating from the station. When this error is detected, the
expected sequence number is not changed. If the message is not canceled by
the user, the same sequence number may appear in more than one message.

4 Sequence number low
The SEQUENCE macro found a message sequence number lower than the
expected number for the next message originating from the station. The user
may ~nadvertently use the same message number in more than one message.
This bit can be used to detect such an error, thus allowing the user to re-send
the corrected message.

5 Reserved
6 Insufficient buffers

The TCAM buffer assignment routine was unable to provide sufficient
buffers for the incoming message. Infrequent occurrences of this condition
may be corrected by requesting the originating station to re-send the mes­
sage. Frequent occurrences of this condition suggest that TCAM be rede­
fined with a larger number of buffers.

. 7 'Cutoff error (input only)

8

9

The CUTOFF macro found a buffer filled with identical characters or a
message whose length exceeded the maximum allowable length.
RVI error (output only)

On a multipoint, buffered terminal, if RVI is received in response to selec­
tion for a block other than the first, this bit and the text error bit are set.
MSMIN passed
The percentage of the number of units specified by the MSUNITS= operand
of the INTRO macro that are currently enqueued in the main-storage mes­
sage queues data set has fallen to or below the number specified by the
MSMIN = operand of INTRO.
MSMAX passed
The percentage of the number of units specified by the MSUNITS= operand
of the INTRO macro that are currently enqueued in the main-storage mes­
sage queues data set has risen to or above the number specified by the
MSMAX= operand of INTRO; used to indicate impending fullness of the
data set.

10 Reserved
11 Reserved
12 TOTE not in system

A request for on-line test has been detected by a ST ARTMH macro, but
TOTE is not included in the OLT= operand of the INTRO macro instruc­
tion.

13 BSC abort
An abort sequence was received from a BSC station.

14 Invalid destination code
A destination specified in the FORWARD macro is invalid because it does
not have a matching entry in the terminal table.

15 SOH%E, SOH%C, or SOH%R message
16 Incoming message lost

An incoming message has been lost due to lack of space in a main-storage­
only message queues data' set.

548 OS/MFT and OS/MVT TeAM Programmer's Guide

Bit Meaning

17 Invalid station identification
An identification sequence sent from a station is invalid.

18 Station inoperative
The destination station for this message is in intercept mode, and messages
are not currently being sent to it.

19 Reserved
20 User error

This bit may be set by the user to indicate a logical error condition of his
choosing. The bit is set by means of a TERRSET macro issued in a Message
Handler.

21 Format error
Message from BSC station is in wrong format for BSC (for instance, text
does not start with the required STX character).

22 Hardware attention
For output operations, hardware attention (causes bit 25 to be set).
Threshold reached
For input operations, the threshold has been reached on a main-storage-only
queue.

23 Unit exception
The unit exception bit is on in the CSW, indicating the presence of a condi­
tion that does not usually occur during an II 0 operation.

24 Error during invitation or selection
An error occurred during invitation or selection (before text transfer).

2S Error during text transfer
An error occurred during transfer of data. This bit is also set if an abnormal­
ly terminating application program has sent a partial message to the MCP
with a PUT or WRITE macro, since TCAM automatically sends this partial
message to the requested destination.

26 Error during connection or disconnection
An error occurred before invitation or selection, or while attempting to
disconnect.

27 Terminal error bit
A terminal malfunction has occurred.

28 Reserved
29 Error in control unit

A busout, equipment check, overrun, or similar error, recognized by the
control unit as an error in the control unit, has occurred.

30 Error in channel
A channel control check, interface control check, channel data check, or
command reject has occurred.

31 Undefined error
An error has occurred that cannot be classified by TCAM.

SENSE BYTE

32 Command reject
A command or a series of commands is received that the device is not
designed to execute or cannot execute because of its present state.

33 Intervention required
Some sort of intervention is required, or the device is in the not-ready state,
or in test mode, or not on the control unit.

34 Busout check
An invalid parity character is received by the device or control unit.

3S Equipment check
The device has malfunctioned.

Appendix B: Message Error Record 549

Bit Meaning

36 Data check
An error has occurred associated with the recording medium.

37 Overrun
The channel failed to respond on time to a request for service from a device,
or a device received a new command too late during command chaining.

38 Lost data
39 Tbne-outexceeded

More than the maximum allowable time elapsed between polling or address­
ing a station and reception of a response from it.

550 OS/MFT and OS/MVT TeAM Programmer's Guide

Appendix C: How To Make Transient Checkpoint and
Operator Control Modules Resident

Certain TCAM modules connnected with the TCAM checkpoint and operator
control facilities are normally transient, but may be made resident if the user so
desires. By making frequently used modules resident, the user increases the
performance of his system, at the expense of additional main-storage space.

The TCAM checkpoint and operator control modules that may be made resident
are located in SYS 1.LINKLIB. To make these modules resident, the user must
first specify at system-generation time the Reenterable Load Module Made
Resident option. This is done by specifying the OPTIONS=COMM and
RESIDNT=RENTCODE operands of the SUPRVSOR system-generation macro;
details are given in the System Generation publication.

Before initial program loading (IPL), the user makes a list of the load modules he
wishes to make resident and places it in SYS 1.PARMLIB by means of the
IEBUPDTE utility program. For more information on placing such a list in
SYSl.PARMLIB, see the OS System Programmer's Guide.

At IPL time, in response to the console message SPECIFY SYSTEM PARAMETERS,

the operator provides the unique identification for the list, and the routines
pointed to by the list are loaded into main storage. More information on replying
to this message is contained in the Messages and Codes publication.

The following checklists show:

1. In order of decreasing frequency of use, the ordinarily transient modules
associated with TCAM checkpoint routines that may be made resident as
described above.

2. Ordinarily transient modules associated with operator commands that may be
made resident. Some operator commands have more than one such module
associated with them.

Example:
An MVT user wishes to make some operator control modules resident. At system
generation time the user must code RESIDNT=RENTCODE and
OPTIONS=COMM on the SUPRVSOR macro.

The user might create a list named IEAIGGOC and a list named IEARSVOC to
contain the operator control modules. The user would get the modules and their
sizes from the checklist of modules. Sometime before IPL the IEBUPDTE utility
program, as shown in the Figure 41, would be used to place the lists in the
SYS 1.PARMLIB.

Appendix C: How To Make Transient Checkpoint and Operator Control Modules Resident 551

//RESIDENT JOB MSGLEVEL=(1,1)
//PERF EXEC PGM=IEBUPDTE
//SYSPRINT DD SYSOUT=A
//SYSUTl DD DSN=SYS1.PARMLIB,DISP=SHR
//SYSUT2 DD DSN=SYS1.PARMLIB,DISP=SHR
//SYSIN DD *
./ ADD NAME=IEARSVOC,LIST=ALL

SYS1.SVCLIB IGC0010D,IGCOll0D,IGC0710D,IGC010D,IGCV010D,
IGCM010D

./ ADD NAME=IEAIGGOC,LIST=ALL
SYS1.LINKLIB IEDQNQ,IEDQNJ,IEDQNO

/*

Figure 41. Sample of using the IEBUPDTE Utility (before IPL) for placing
list in SYS1.PARMLIB

Note that the statements starting with SYS1.SVCLIB and SYS1.LINKLIB begin
in column 2.

At IPL time, in response to the console message

EA lOlA SPECIFY SYSTEM PARAMETERS

the operator might reply

REPLY id, 'RAM=OO,OC,RSVC=OO,oc'

where 00 are the last two characters in the name of the standard
list of names of reenterable load modules, and OC are the last two characters
in the name of the IEAIGGOC list.

Checkpoint Modules and Their Sizes
Module

IEDQNG
IEDQNH
IEDQNJ
IEDQNK
IEDQNM
IEDQNO
IEDQNP
IEDQNQ

IEDQNR
IEDQNS

Description

Incident Record for CHECKPT
Incident Record for TCHNG
Checkpoint/ Operator Control
Environment Checkpoint
CKREQ
Checkpoint Queue Manager
Checkpoint I/O
Checkpoint Notification/
Disposition
No Main Storage
Incident Overflow

Decimal Size
(Approximate)

250 bytes
240 bytes
240 bytes
800 bytes
390 bytes
240 bytes
640 bytes

730 bytes
260 bytes
160 bytes

All of the following modules have a length of 1024 bytes.

Module

IGCDOIOD
IGCDIIOD
IGCD210D
IGCD310D
IGCD410D

552 OS/MFT and OS/MVT TeAM Programmer's Guide

Description

Display Scan
DPRIOPCL/DSECOPCL
QSTATUS
ACTIVATED/INACTVTD
INTRCEPT

Most Used

*

Module Description Most Used

IGCD510D STSTATUS
IGCD610D RLNSTATN
IGCD710D STATDISP
IGCD810D OPTFIELD
IGCD910D LNSTATUS
IGCHOlOD SUSPXMIT
IGCIOlOD ICHNG DEACTIVATE
IGCI110D ICHNG MOVE/ ACTIVATE
IGCMAlOD MODIFY SCAN II *
IGCMOlOD MODIFY SCAN I *
IGCMllOD MODIFY MSG MODULE *
IGCM210D AUTOSTOP/AUTOSTRT
IGCM410D INTERVAL/SYSINTVL/POLLDLA Y
IGCM510D ERRECORD
IGCM610D GOTRACE/NOTRACE
IGCM710D CPRIOPCL
IGCM810D DATOPFLD
IGCM910D DEBUG
IGCROlOD RESMXMIT
IGCVOlOD VARY SCAN *
IGCVllOD STOPLINE
IGCV210D NOENTRNG/NOTRAFIC
IGCV310D STARTLINE
IGCV410D ENTERING/ ACTVBOTH
IGCZOlOD HALT SCAN
IGCZllOD SYSCLOSE
IGCOOIOD CONSOLE/MPP/TOTEINTERFACE *
IGCOllOD TERMINAL INTERFACE *
IGC0310D ERROR MSG MOD I
IGC0410D ERROR MSG MOD II
IGC0510D ERROR MSG MOD III
IGC0610D INCIDENT CKPT INTERFACE *
IGC0710D OUTPUT WRITER *
IGC0810D ERROR MSG MOD IV
IGC0910D VARYMSGMOD

Appendix C: How To Make Transient Checkpoint and Operator Control Modules Resident 553

Arrangement of Charts

Appendix D: Internal and Transmission Code Charts

Two sets of charts are included in this appendix. Figure 42 comprises four foldout
charts that include character sets and hexadecimal code for the extended binary
coded decimal interchange code (EBCDIC), line codes for BSC devices
(USASCII and 6-bit Transcode hexadecimal representations that correspond to
EBCDIC), and line codes for start-stop devices (hexadecimal representations that
correspond to EBCDIC). Figures 43 through 57 compose the second set of code
charts; these figures illustrate, in collating sequence (from hexadecimal 00 to
hexadecimal FF), the valid hexadecimal representations of graphic and control
characters for each device.

The first set of charts (Figure 42) is based on the collating sequence of the
EBCDIC code that is used internally by the Operating System/360 Central
Processing Unit (see column 3). Line code for BSC devices may be in either
EBCDIC, USASCII, or 6-bit Transcode (columns 1 through 9). Columns 10
through 48 represent the character and code sets for start-stop devices that
correspond to the internal EBCDIC code listed in column 3.

There are three columns associated with each entry in Figure 42. For instance,
columns 1,2, and 3 are associated with the EBCDIC entry, and columns 10, 11,
and 12 are associated with the IBM 1030 entry. The "reference" columns on the
left and right ends of Figure 42 contain numbers to designate rows. These num­
bers can be used in conjunction with the column numbers to designate a particular
entry on the chart; for instance, location 21/17, the intersection of row 21 and
column 17, contains the control character CR (carriage return) for the IBM 1060
Data Communication System. For ease of reference, column 49 repeats the
EBCDIC code that appears in column 3.

The arrangement of the charts in Figures 43 through 57 is based on the collating
sequence of the hexadecimal representations of the line code for the various
devices.

Thus, columns 1 through 3 in Figure 42 (in conjunction with the columns that
correspond to the device that originally entered the message) may be used for
decoding messages in a dump when those messages have already been translated
by the appropriate translation table; if a message was entered by a BSC device
whose line code is EBCDIC, then columns 1 through 3 may be used for line code
translation and internal System/360 translation. Figures 43 through 57 may be
used to decode messages in a dump when the message appears in line code
(incoming messages are in line code when they have not yet been translated to
EBCDIC, and outgoing messages are in line code when they have been translated
from EBCDIC).

Conventions Used in Code Charts
In the code columns for the various devices in Figure 42, some hexadecimal
representations appear in parentheses, some in brackets, and others in neither.
Where parentheses are used, only outgoing translation is performed by the transla­
tion table that corresponds to the device type for that column. For example, the
alphabetical letter W in internal OS/360 code (EBCDIC) is represented by the bit
pattern that corrsponds to a hexadecimal E6 (see locations 230/1 and 230/3). If

Appendix D: Internal and Transmission Code Charts 555

hexadecimal E6 is to be transmitted to an IBM 1060 Data Communication
System, it must first be translated to the appropriate line code. The character is
directed to the appropriate translation table where it is converted to hexadecimal
2C (see locations 230/16 and 230/18), which is the hexadecimal representation
of the appropriate line code for the character W to be transmitted to an IBM
1060. Where the hexadecimal representation is enclosed in brackets (for instance,
location 54/30), only incoming translation is performed; thus, hexadecimal 9C is
translated to EBCDIC 36 when the uppercase key is pressed on an IBM 2741
Communication Terminal using BCD code. (see locations 54/3, 54/29, and
54/30). If there are neither parentheses nor brackets, both incoming and outgoing
translation is provided for that device.

Various code set options are indicated in the graphic columns in Figures 42
through 57. Where S, H, A, and C appear as subscripts to a character, S indicates
that the TCAM-provided translation table supports use of the standard code set
for that device; H, A, and C indicate TCAM support of optional code sets for that
device. For instance, at location 2/12, hexadecimal 16 is the outgoing line code to
an IBM 1030 Data Collection System; the graphic characters at location 2/l0
indicate that a pound sign (#) is printed by the IBM 1033 Printer if the printer
uses the standard character set, and an equal sign (=) if it uses the H option. See
the component description SRL of the device for a description of the character
sets that may be used (TCAM supplies translation tables for AT & T TWX
terminals that use the standard option, and for AT & T 83B3 and Western Union
115A terminals that use either A or C options).

Because each unique bit pattern for a terminal character can be represented only
once in an incoming translation table, the character associated with the bit pattern
can be translated to only one EBCDIC character. The converse is not true, (1

however; anyone transmission code bit pattern can be placed any number of 1'<1

times within an outgoing table. Therefore, any number of EBCDIC characters
can be translated to the terminal character represented by that bit pattern.

Appearance of two bit patterns opposite a single character signifies that the
character has both an uppercase (or figures shift) and a lowercase (or letters shift)
bit pattern, and that both forms .of the character are translated to the same
EBCDIC character. (Exception: In the code column for TWX terminals, where
two bit patterns appear, the left-hand one is the even-parity pattern, and the
right-hand one is the non-parity pattern.)

Example:
The bit pattern of the NL character appears in location 21/15. Both the lower­
case and uppercase bit patterns of this character are translated to the EBCDIC
NL character when they appear in an incoming message. When an EBCDIC NL
character appears in an outgoing message, TCAM translates it to the lowercase
form of the NL character.

Where more than one EBCDIC character requires translation to the same charac­
ter in a terminal character set, the terminal character appears an equivalent
number of times in the column (for instance, locations 0/38, 6/38, 7/38,23/38,
and 80/38 all contain the LTRS character).

Where a character appears in both the graphics and the controls columns for a
terminal type, its function depends on whether it is sent when the line is in control 4
mode or text mode. Depending on the type of terminal and the mode, the charac- ..

556 OS/MFT and OS/MVT TeAM Programmer's Guide

ter may perform a control function, print as a graphic, or both. For details, see
the reference manuals for the various terminal types.

Nonequivalent Characters

Substitutions

General Notes

Designing the system to accomodate terminal types having different character sets
and control functions has resulted in several instances where dissimilar characters
have been equated in translation tables. This accounts for the appearance in
certain rows in Figure 42 of non-equivalent characters, for example, in rows 3, 38,
and 50.

In other instances, the same or similar functions have different names among the
various terminal types; for example, HT and Tab in row 5 are equivalent, as are
DEL and Rubout in row 7. In a few instances, terminals using the same transmis­
sion code have different meanings assigned to the identical bit pattern; for exam­
ple, bit pattern 79 in the transmission code has the meaning PF for an IBM 1050
(see 4/14), and the meaning Subtract for an IBM 1060 (see 4/17).

Where blank positions appear in the character columns of the charts, there is no
equivalent internal EBCDIC character. Where these blanks appear, the SUB
character is to be assumed (they were omitted to make the charts more readable).
That is, in each translation table that handles incoming messages, each position
representing an invalid transmission code bit pattern (that is, one not specified in
the terminal's character set) is translated to the EBCDIC code 3F for the SUB
character. In each translation table that handles outgoing messages, the transmis­
sion code bit pattern for a substitute graphic is contained in each of the following
positions:

• Each position that represents an invalid EBCDIC bit pattern (a pattern to
which no EBCDIC characters have been assigned).

• Each position that represents a bit pattern for a character having no equivalent
in the destination terminal's character set.

For the IBM 1050,2260,2740, and 2741, this substitute character is a colon (:).
For the IBM 1030 and 1060, and the AT & T TWX and 83B3, and the Western
Union lISA, it is a slash (/).

Standard abbreviations are used to represent the control characters. The full
names of the characters are given in the section Control Characters below. For
descriptions of these characters, see the reference manuals for the various termi­
nals.

Where a circle character (@@' etc.) appears in parentheses adjacent to a
control character, it is an alternate name for the control character.

Most of the characters in the Sand H character set options (1030) and in the A
and C character set options (83B3, lISA) are identical. Where they differ
between the options, the translation tables favor the S option and the A option, as
illustrated in the charts. If messages from an H option 1030 are sent only to
another H option 1030, the translation table may be used as is, and similarly, for
the 83B3/115A, with respect to the C option. If messages from terminals with
the H or C option are to be exchanged with other terminal types, the user should
provide his own translation tables.

Appendix D: Internal and Transmission Code Charts 557

Control Characters
ACK Positive Acknowledgment

® End of block (same as EOB)
BEL Bell
BS Backspace
BYP Bypass

© End of transmission (same as EOT)
CAN Cancel
CC Cursor control
CR Carriage (carrier) return

CUI}
CU2 Reserved for customer use
CU3
@ Machine end-of-address (same as EOA)

DCI}
DC2 Device link escape
DC4
DEL Delete
DLE Data link escape
DS Digit select
EM End of medium
ENQ Enquiry
EOA End of address
EOB End of block
EOC End of card
EOFC End of first card t1
EOM End of message l

"4
EOT End of transmission
ETB End transmission block
ETX End of text
FF Forms feed
FIGS Figures shift
FS Field separator
HT Horizontal tabulate
IFS Interchange file separator
IGS Interchange group separator
IL Idle
IRS Interchange record separator
IUS Interchange unit separator
LC Lowercase shift
LF Line feed
LF-CR Line feed-carriage return
LTRS Letters shift
MZ Minus zero

® Negative response to polling, addressing, or LRC/VRC
NAK Negative acknowledgment
NL New line
NUL Null
PF Punch off
PN Punch on
PRE Prefix
PZ Plus zero
RES Restore

558 OS/MFT and OS/MVT TeAM Programmer's Guide

RM
RS

®
SI
SM
SMI
SO
SOH
SMM
SOS
SP
STX
SUB
SYN
Tab
TM
TpAuxOff
TpAuxOn
UC
VT
WRU
X-Off
X-On

®

Record mark
Reader stop
Start of address
Shift in
Set mode
Start manual input
Shift out
Start of header
Start manual message
Start of significance
Space
Start of text
Substitute
Synchronous idle
Tabulate (horizontal)
Tape mark
Tape auxiliary off
Tape auxiliary on
Uppercase shift
Vertical tabulate
"Who Are You?"
Transmitter off
Transmitter on
Positive response to polling, addressing, or LRC/VRC

Appendix D: Internal and Transmission Code Charts 559

Insert foldout pages 561, 563, 565, and 567 located at end of this book

Internal 5/360
Corle (EBCDIC)

C~orol;ter

Graphic Control

Ref. I 2

144
145 i
146 k
147 I

14B m

149 0

150 0

151 p

152 ,
153 ,
154
155

156
157
156
159

160
161
162 ,
163 I

16' " 165 ,
166 w

167 ,

16B y
169 ,
170
171

172
173
174
175

176
I],
17B
179

180
181
lB2
lB3

18.
lB5
186
187

lBF
lB9
190
191

192 PZ
193 A
194 B
195 C

196 0
197 E
19. F
199 G

200 H
201 I
202
203

204
205
206
207

208 MZ
209 J
210 K
211 l

212 M
213 N
214 0
215 P

USASCII

Co,," Character Code
(H.,)

Graphic Control
(Hex)

3 4 5 •
90
91 i 6A
92 k 6B
93 I 6C

94 m 60
95 0 6E
96 0 6F
97 p 70

9B , 71
99 , 72
9A
9B

9C
90
9E
9F

AO
AI' ~ 7E
A2 , 73
A3 I 74

A4 " 75
AS , 76
A6 w 77
A7 , 7B

AB y 79
A9 , 7A
AA
AS

,AC
AD
AE
Ai

BO
BI

" B3

B.
B5
BQ
B7

B,'!

89
SA
BB

BC
BD
BE
BF

CO [i'B
CI A 41
C2 B 42
C3 C 43

C4 0 «
C5 E 45
C6 E ..
C7 G 47

C8 H 48
C9 I 49
CA
C8

CC
CD
CE
CF " (SC)

DO } 70
01 4A
02 K 4B
D3 l 4C

D. M 40
05 N 4£
DO 0 4F
07 P 50

2. No EBCDIC character hlJl been osslgned to
thIS ioc.t.llion (161/3,161/4),

6-Bit Transcade

Character

Graphic Control

7 B

J
K
l

M
N
0
P

0 ,

s
T

U
V
w
X

y

Z

A
B
C

0
E ,
G

H
I

J
K
l

M
N
0
P

Figure 42. TCAM Internal and Device Codes (Part 3 of 4)

IBM 1030

Cod, Character Code
(Hex)

Graphic Control
(Hex)

9 10 11 12

(11) J (43)
(12) K (45)
(13) l (46)

(14) M (49)
115) N (4A)
(16) 0 (4C)
(17) P 14F)

(IB) 0 (51)
(19) , (52)

(22) s (25)
(23) T (16)

(24) U (29)
(25) V (2A)
(26) W (2C)
(27) X (2EI

(28) y (31)
(29) Z (32)

-'

\

\

,

01 A 62
02 B 64
03 C 67

D. 0 6ll
05 E 68
06 , 60
07 G 6E

08 H 70
09 I 73

11 J 43
12 K 45
13 l 46

14 M 49
15 N 4A
16 0 4C
17 P 4F

-
IBM 1050 IBM 1060 IBM 2260 (Remate}/2265

2260/2265 1053
Character Co,," Character Code Character Code Character

(Hex) Coda
Graphic Control Graphic Control (Hex) Graphic Control (Hex) Graphic Contlol (Hltx)

13 14 15 '0 II 10 19 20 21 22 23 24

i 43 J (43) J (AA) J (AA)
k 45 K (45) K (AB) K (AB)_
I 46 l (46) l (Ae) l (AC)

m 49 M (49) M (AD) M (AD)

" 4A N (4A) N (AE) N JAE)
0 4C 0 (4C) 0 (AF) 0 (AF)
p 4F p (4F) P (1lll) P (80)

, 51 Q (51) Q (Bl) Q (BI) , 52' , (52) , (B2) R (B2)

:

'«'

, 25 5 (25) S (B3) s (33)
I 26 T (26) T (64) T (84)

" 29 U (29) U (85) u '(as) , 2A V ,(ZA) V (B6) V '(as)
w 2C W (2C) W (B7) w (97) , 2F X 12F) X (88) X (88)

y 31 y (31) y (B9) y (89) , 32 Z (32) Z (BA) Z (&A)

,

PZ 75 Restore (75)
A E2 A 62 A AI A (Al)
B E4 • 64 B A2 B -(All
C E7 C 1·7) C A3 C (A3)

D EB 0 f/Xl) 0 A4 0 (A41
E E8 E 68 E AS E (A6) , ED E 60 , A6 F (A6)
G EE G (6E) G A7 G ~7)

H FO H (7Q) H AS H (AS)
I F3 I 73 I A9 I (A9)

MZ 5. Message (54) -
J _C3 J 43 J AA J (AA)
K 05- K 45 K A. K _ ~8)
l C6 l (46) l AC l lAC)

M C? M (49) M AD M . (AD)
N CA N (4A) N AE N (AEj
0 CC 0 (4C) 0 AF. 0 ~F ..
P CF P (4F) P BO P '(lIO)

IBM 2740 2741
AT&TTlNX WT Telegrap~ EBCDIC AT&T 83B3

BCD EBCD Correspondence W U liSA lTA2 Z5C3
Character Character Character Character Character

,
Character Character Character Code Code Code Ced. Cod. Cod. Code Cod. eo,,"

GraphiC Control (H&x) Graphic Control (Hex) Graphic Control (Hex) GraphiC Control (Hex) Graphic Cantrol (Hex) Grapnic Cantrol (Hex) Graphic Control (Hex) Grapnic Control (Hex) (Hex)
25 26 27 2B 29 :)0 31-i-- --

33 34 35 36 37 3B 39 40 41 42 43 44 45 46 47 48 49 ReI. 32

- 90 144
i 43 i 43- i 43 i 61 J (IA) J (53) (53) J (IA) J (IA) 91 145
k 45 k 45 k 45 k 2C K (IE) K (D2) (D3) K (IE) K (1E) 92 146
I 46 I 46 I 46 I 31 l (09) l (33) 133) l (09) l (09) 93 147

m 49 m 49 m 49 m 43 M (07) M IB2) IB3) M (07) M (07) 94 14B
0 4A 0 4A 0 4A 0 25 N (06) N (72) (73) N (06) N (06) 95 149
0 4C 0 4C 0 .C 0 51 0 (03) 0 (i3) (F3) 0 (03) 0 (03) 96 150
p 4F p 4F p 4F p 6B P (00) P lOA) (OB)- P (OD) P (00) 97 151

, 51 , 51 , 51 , 60 Q (10) Q (6B) (8BI Q (10) Q (10) 98 152 , 52 , 52
, 52 , 4A , (OA) , (-4B1 (48) R (OA) , (OA) 99 153

9A 154
9B 155

9C 156
90 lS7
9E 158

9' 159

AD 160
I Al 161 , 25 , 25 , 25 , 52 s (14) s (CA) (CB) s (4) S (14) A2 162

I 26 I 26 I 2. I 20 T (01) T (28) (2B) T 101) T 1011 A3 163

" 29- " 29 " 29 " 26 U (1C) u IAA) (AB) u (IC) U IIC) A4 164 , 2A , 2A , 2A , .. V (Of) V (M) (68) V (OF) V (OF) AS 165
w 2(; w 2C w 2<: w 57 w (19) w (EB) (EB) w (19) W (19) A6 166 , 2F c , 2F , 23 X (17) X (1B) (1B) X (17) X (17) A7 167 2F ,
y 31 y 31 y 31 y 73 y (l5) y (9A) 19BI y (15) y (151 AB 16B , 32 y 32 , 32 , 15 Z (II) Z (5A) 15B) Z Ill) z (11) A9 169

AA 170
AB 171

AC 172
,

AD 173
: AE 174

AF 175

BO 176
I . Bl 177 .

B2 17B
B3 179

B4 180
B5 181
B6 182

? B7 183

:-:.- , I": BB 164
B9 lB5 --, SA lB6

I",:" ' - BB lB7

-'.- -- BC lBB
I

BD IB9
BE '90
BF 191 --

, ,

CO 192
A 'Ell A E2 A ez A CF A 18 A 82 83 A 18 A IB Cl 193 • -. £4, • E4 a E4 a B7 a 13 B -.¢;l 43 • r 13 • 13 C2 194
C £7 C £7 C E7 C AF C DE C <:3 'C3 C Of C OE C3 195

0 £8 0 E8 0 S8 D AA 0 12 D 2Z 23 D 12 0 12 C4 '96
E $- ' E Ell - -' E EB E A9 E 10 E AJ A3 E 10 , 10 C5 197
F ED" F ED 10

, E7 F 16 E 63 63 F 16 E Jb C6 198 F
G EE, G E£

,
EE G E2 G OB G E2 E3 G OI! G OI! C7 199 G

H Fa H FO H FQ H .. B2 H 05 H J2 13 H : _ 05 H 05 CB 200
I F3 I f3 I F3 I CC I OC I 9. ~ I OC I OC C9 201

CA 202
C. 203

CC 20'
I CD 205

- :' -, CE 206
CF 207

.
00 20.

J 10 J 0 J C3 J £1 J IA J 53 53 J lA J IA Dl 209
K 05 K C5 K 05 K AC K IE K D2 03 K I IE K IE 02 210
l C6 l C6 l C6 l B1 l 09 l 33 33 l 09 l 09 03 211

M ; _0 M C? M 0 M - C3 M -w M 82 83 M 07 M 07 D' 212
N _ CA N CA . N CA N AS N <l<S N 72 73 N 06 N 06 05 213
0 .cc 0 CC 0 CC 0 01 0 Q3 0 F3 i3 0 03 0 03 06 214
p -CF' __ :_ P CF P C!' P fa P 00 P 01\ OI! P 00 P OD 07 215

Appendix D: Internal and Transmission Code Charts 565

Internal 5/360
IBM 2260 (Remote) /2265 2741 AT&T 83B3 WT Telegraph

Cod, (EBCDIC) U5A5Cll 6-Bit Transcode IBM 1030 IBM 1050 IBM 1060 2260/2265 1053 IBM 2740 BCD EBCD Correspondence W U 115A AT&T TWX ITA2 Z5C3 EBCDIC

Character Character Character Character O1aractet Character Character
Code

Character
Code

Character
Code

Character
Code Character Code Character

Code
O1oracter

Code
Character

Code
Character

Code Charactor
Cod. Cod. Code Code Code Code Codo Code

Graphic Control (Hex) Graphic Control (Hex) Graphic Control (Hex) Graphic Control (Hex) Graphic Control (Hex) Graphic Control (Hex) Graphic Control (Hex) Graphic Control (Hex) Graphic Control (Hex) Graphic Control (Hex) Graphic Control (Hex) Graphic Control (Hex) Graphic Control (Hex) Graphic Control (Hex) Graphic Control (Hox) Graphic Control {Hox) (Hex)

Re f. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 :l5 36 37 38 39 40 41 42 43 44 45 46 47 48 49 R.ef.

216 Q 08 Q 51 Q 18 Q 51 Q 01 Q (51) Q Bl Q (Bl) Q 01 Q 01 I Q Dl Q ED Q TO Q 8B 8B Q 10 Q 10 08 216
217 R D9 R 52 R 19 R 52 R 02 R (52) R 82 R (B2) R 02 R 02 R 02 R CA R OA R 4B 4s R OA R OA 09 217 ,
218 OA , DA 218
219 DB DB 219

220 DC DC 220
221 00 DO 221
222 DE DE 222
223 OF OF 223

224 RM ~~3 :j: RM 34 EO 224
225 \ 5C / \ 3A 3B E 1 225
226 5 E2 S 53 S 22 S 25 5 AS. S (25) 5 83 s (B3) 5 AS 5 AS S AS S 02 S 14 5 CA CB S 14 S 14 E2 226

23 T 26 T M T
0

(26) T 84 T (84) T A6 T A6 T A6 T AO T 01 T 2B 2B T 227 T E3 T 54 T 01 T 01 E3 227

228 U E4 U 55 U 24 U 29 U A9 U (29) U IlS U (1lS) U M U A9 U A9 u A6 U 1C U M AS U IC U 1C E4 228
229 V E5 V 56 V 25 V 2A V AA V (2A) V 86 V (86) V M V AA V AA V C6 V OF V 6A 6B V OF V OF E5 229
230 W f6 W 57 W 26 W 2C w AC W (2C) W B7 W (B7) W AC W AC w AC W 07 W 19 w fB EB W 19 w 19 E6 230
231 X E7 X 58 X 27 X 2f X AF X (2F) X B8 X (88) X AF X AF X AF X A3 X 17 X Is IB X 17 X 17 E7 231

232 y EB y 59 y 2B y 31 y BI y (31) y B9 y (89) y 81 y 81 y 81 Y F3 Y is y 9A 98 y 15 Y 15 E8 2.12
233 Z E9 Z 5A Z 29 Z 32 Z B2 Z (32) Z SA z (SA) Z 82 Z B2 Z B2 Z 95 Z n Z 5A 5B Z II Z II E9 233
234 EA EA 234
235 EB £B 235

236 EC EC 236
237 EO ED 237
238 EE EE 238
239 EF EF 239

240 0 FO 0 30 0 30 04 (15) (20] 0 15 0 15 0 50 0 (50) 0 15 0 15 0 15 0 13 0 21) 0 OC 00 0 20 0 28 FO 240
241 1 Fl 1 31 1 31 1 02 1 02 I OZ' 1 51 1 (51) 1 02 1 02 1 02 1 J 02 1 30 1 80 BD 1 3D 1 3C F 1 241
242 2 F2 2 32 2 32 2 04 2 04 2 04 2 52 2 (52) 2 04 2 04 2 04 2 04 2 39 2 40 40 2 39 2 3A F2 242
243 3 F3 3 33 3 33 3 07 3 07 3 07 3 53 3 (S3) 3 07 3 07 3 07 3 07 3 30 3 CC CO 3 30 3 39 F3 243

244 4 F4 4 34 4 34 4 OS 4 08 4 OB 4 54 4 (54) 4 08 4 OS 4 08 4 to 4 2A 4 20 20 4 2A 4 36 F4 244
24~, 5 f>.5 5 35 5 :l5 5 DB 5 OB 5 09 5 55 5 (55) 5 08 5 08 5 DB 5 OS 5 21 5 AC AD 5 21 5 35 F5 24j
2·-t6 6 F6 6 36 6 36 6 00 6 00 6 00 6 56 6 (56) 6 00 6 00 6 00 6 00 6 35 6 6e 60 6 35 6 33 F6 246
247 7 F7 7 :rJ 7 37 7 Of 7 Of 7 DE 7 57 7 (57) 7 OE 7 OE 7 Of 7 08 7 3C 7 ED ED 7 3C 7 27 F7 247

248 8 F8 8 38 8 38 8 10 8 10 8 10 8 58 8 (58) 8 10 8 10 8 10 8 OE B 2C 8 10 10 8 2C 8 2E F8 248
249 9 F9 9 39 9 39 9 13 9 13 9 13 9 59 9 (59) 9 13 9 13 9 13 9 fOA 16 9 23 9 9C 90 9 23 9 20 F9 249
250 FA FA 250
2S 1 FB FB 251

252 Fe FC 252
253 FO FD 253
254 Ff FE 254
255 Ff . FF 255

3. No EBCDIC character has been
assigned to this location (225/3,225/37),

'igure 42. TCAM Internal and Device Codes (Part 4 of 4)

Appendix D: Internal and Transmission Code Charts 567

5/360 Graphic Control
Byte (hex)

5/360 Graphic Control
Byte (hex)

5/360 Graphic Control
Byte (hex)

5/360 Graphic Cantrol
Byte (hex)

00 NUL 40 SP 80 CO PZ
01 SOH 41 81 a C! A
02 STX 42 82 b C2 B
03 ETX 43 83 c C3 C

04 PF 44 84 d C4 0
05 HT 45 85 e C5 E
06 LC 46 86 f C6 F
07 DEL 47 87 9 C7 G

DB 48 88 h C8 H
rH 49 89 i C9 I
OA SMM 4A ~ SA CA
DB VT 4B 8B CB

DC FF 4C < 8C CC
00 CR 40 (80 CD
OE SO 4E + 8E CE
OF 51 4F I 8F CF

10 OLE 50 & 90 DO MZ

" DC! 51 91 i 01 J
12 OC2, 52 92 k 02 K
13 TM 53 93 I 03 L

14 RES 54 94 m 04 M
15 NL 55 95 n 05 N
16 BS 56 96 a 06 0
17 IL 57 97 p 07 P

18 CAN 58 98 q 08 Q
19 EM 59 99 r 09 R
IA CC 5A I 9A OA
IB CUI 5B $ 9B DB

IC IFS 5C . 9C DC
10 IGS 50) 90 DO
IE IRS 5E 9E DE
IF IUS 5F -, 9F OF

20 OS 60 - AO EO RM
21 50S 61 / Al EI
22 FS 62 A2 5 E2 5
23 63 A3 t E3 T

24 BYP 64 A4 u E4 U
25 LF 65 AS v E5 V
26 ETB(EOB) 66 A6 w E6 W
27 ESC (PRE) 67 A7 x E7 X

28 68 A8 y E8 Y
29 69 A9 z E9 Z
2A SM 6A EOM AA EA
2B CU2 6B , AB EB

2C 6C % AC EC
20 ENQ 60 AD ED
2E ACK 6E >- AE EE
2F BEL 6F ? AF EF

30 70 BO FO 0
31 71 BI FI I
J2 SYN 72 B2 F2 2
33 73 B3 F3 3

34 PN 74 B4 F4 4
35 RS 75 85 F5 5
36 UC 76 86 F6 6
37 EOT 77 B7 F7 7

38 78 B8 F8 8
39 79 B9 F9 9
JA 7A BA FA
3B CU3 7B ,

EOA BB FB

3C DC4 7C @l 8C FC
3D NAK 70 ,

BO FO
3E 7E = BE FE
3F SUB 7F " BF FF

Figure 43. IBM S/360 Internal Code (EBCDIC),

Appendix 0: Internal and Transmission Code Charts 569

5/360 Graphic Control 5/360 Graphic Control 5/360 Graphic Control 5/360 Grophlc Control
Byte (helt) Byte (hex) Byte (hex) Byte (hex)

00 NUL 40 @ 80 CO
01 SOH 41 A 81 Cl
02 STX 42 B 82 C2
03 ETX 43 C 83 C3

04 EOT 44 0 84 C4
OS ENQ 45 E 85 C5
06 ACK 46 F 86 C6
r:n BEL 47 G 87 C7

08 BS 48 H 88 C8
09 HT 49 I 89 C9
OA LF 4A J SA CA
OS VT 48 K 88 CB

OC FF 4C L 8C CC
00 CR 40 M 80 CO
OE SO 4E N 8E CE
OF 51 4F 0 8F CF

10 OLE 50 P 90 DO
11 OCI 51 Q 91 01
12 DC2 52 R 92 02
13 DC3 53 5 93 03

14 OC4 54 T 94 D4
15 NAK 55 U 95 05
16 SYN 56 V 96 D6
17 ETB 57 W 97 07

18 CAN 58 X 98 DB
19 EM 59 Y 99 09
lA SU8 SA Z 9A OA
lB ESC 5B C 9B DB

lC FS 5C "- 9C DC
10 GS
IE RS

50 J
5E "-

90
9E

DO
DE

IF US 5F 9F OF -
20 SP 60 \ AO EO
21 ! 61 a Al El
22 62 b A2 E2
23

,
63 c A3 E3

24 $ 64 d A4 £4
25 % 65 e AS E5
26 & 66 f A6 E6
27

, 67 9 A7 E7

28 (68 h A8 E8
29) 69 I A9 E9
2A . 6A i AA EA
2B + 6B k AB EB

2C , 6C I AC EC
20 - 60 m AD ED
2E 6E n AE EE
2F / 6F 0 AF EF

30 0 70 P BO FO
31 I 71 q Bl Fl
32 2 72 r B2 F2
33 3 73 s B3 F3

34 4 74 t B4 F4
35 5 75 u B5 F5
36 6 76 v B6 F6
37 7 77 w B7 F7

38 8 78 x B8 F8
39 9
3A :

79 y
7A z

B9
BA

F9
FA

3B ; 7B (BB FB

3C < 7C
I
I BC FC

3D =
3E >
3F ?

70 1 7E
7F DEL

BO
BE
liF

FO
FE
FF

Figure 44. USASCII Code

c
570 OS TeAM Programmer's Guide

S/36O Graphic Control
Byte (hex)

S/360 Graphic Control
Byte (hex)

S/360 Graphic Control
Byte (hex)

5/360 Graphic Control
Byte (hex)

00 SOH 40 80 CO
01 A 41 81 CI
02 B 42 82 C2
03 C 43 83 C3

04 0 44 84 C4
05 E 45 85 C5
06 F 46 86 C6
07 G 47 87 C7

DB H 48 88 C8
09 I 49 89 C9
OA STX 4A SA CA
DB 4B 8B CB

DC t1 4C 8C CC
00 BEL 40 80 CD
DE SUB 4E 8E CE
OF ETB 4F 8F CF

10 & 50 90 DO
11 J 51 91 01
12 K 52 92 02
13 L 53 93 03

14 M 54 94 04
15 N 55 95 05
16 0 56 96 D6
17 P 57 97 07

18 Q 58 98 08
19 R 59 99 09
IA SP 5A 9A OA
IB $ 5B 9B 08

lC . 5C 9C DC
10 US 50 90 DO
IE EOT 5E 9E DE
IF OLE 5F 9F OF

20 - 60 AO EO
21 / 61 Al EI
22 S 62 A2 E2
23 T 63 A3 E3

24 U 64 A4 E4
25 V 65 AS E5
26 W 66 A6 E6
27 X 67 A7 E7

28 Y 68 A8 E8
29 Z 69 A9 E9
2A ESC 6A AA EA
2B 68 AB E8

2C % 6C AC EC
20 ENQ 60 AD ED
2E ETX 6E AE EE
2F HT 6F AF EF

30 0 70 80 FO
31 I 71 BI FI
32 2 72 82 F2
33 3 73 83 F3

34 4 74 84 F4
35 5 75 B5 F5
36 6 76 B6 F6
37 7 77 B7 F7

38 8 78 B8 F8
39 9 79 89 F9
3A SYN 7A SA FA
3B # 7B B8 FB

3C @ 7C 8C FC
3D NAK 70 BD FO
3E EM 7E BE FE
3F DEL 7F BF FF

Figure 45. Hexadecimal Equivalents for 6-bit Transcode

)

Appendix D: Internal and Transmission Code Charts 571

5/360 Graphic Control 5/360 Graphic Control 5/360 Graphic Control 5/360 Graphic Control
Byte (hex) Byte (hex) Byte (hex) Byte (hex)

00
01 5P

40 - @
41

80
81

CO
CI

02 I 42 82 C2
03 43 J 83 C3

04 2 44 84 C4
05 45 K 85 C5
06 46 l 86 C6
07 3 47 87 C7

08 4 48 88 C8
09 49 M 89 C9
OA 4A N 8A CA
OB 5 4B 8B CB

OC 4C 0 8C CC
00 6 40 80 CO
OE 7 4E 8E CE
OF 4F P 8F CF

10 8 50 90 00
II 51 Q 91 01
12 52 92 02
13 9 53 R 93 03

14 01 @ 54 94 04
15 55 95 05
16 Is ~

H EOA 56 96 06
17 57 $ 97 07

18 58 98 D8
19 59 99 09
IA SA 9A OA
IB 5B IF-CR 9B OB

IC 5C 9C DC
10 50 90 DO
IE 5E 9E OE
IF EOT SF 9F OF

20 0 IH
21

s

22

60
61 80s +H
62 A

AO
AI
A2

EO
EI
E2

23 / 63 A3 E3

24 64 B A4 E4
25 5 65 AS E5
26 T 66 A6 E6
27 67 C A7 E7

28 68 0 A8 E8
29 U 69 A9 E9
2A V 6A AA EA
28 6B E A8 EB

2C W 6C AC EC
20 60 F AO EO
2E 6E G AE EE
2F X 6F AF EF

30 70 H BO FO
31 Y 71 BI FI
32 Z 72 B2 F2
33 73 I B3 F3

34 74 B4 F4
35
36

@ 37

75
G) EOF~ 76

77

B5
B6
B7

F5
F6
F7

38 78 88 F8
39 79 89 F9
3A 7A HT BA FA
38 IF 78 BB FB

3C 7C BC FC
30 EOB 70 BO FO
3E 7E BE FE
3F 7F EOC DEL SF FF

Note 1: The IBM 1031 Input Station transmits the numeric 0 as an A bit only; the IBM 1033 Printer receives a numeric 0 as C-8-2 and an 'SY as an A bit.

(Note 2: The IBM 1031 Input Station cannot tTOnsmit the following characters as data: % * . @ J(an EOFC is transmitted and punched by the IBM 1034 Card Punch).

Figure 46. Line Code for IBM 1030 Data Collection System

572 OS/MFT and OS/MVT TCAM Programmer's Guide

5/360 Graphic Control
8yle (hex)

5/360 Graphic Control
8yte (hex)

5/360 Graphic Control
8yte (hex)

5/360 Graphic Control
Byle (hex)

00
01 51'

40 - @
41

SO
Bl 51'

CO - @
Cl

02 1 42 B2 = C2
03 43 i B3 C3 J

04 2
05

44
45 k

B4 < 85
C4
C5 K

06 46 I 56 C6 L
(11 3 47 87 ; C7

08 4 48 BB : C8
09 49 m B9 C9 M
OA 4A n SA CA N
08 5 48 8B % C8

OC 4C 0 BC CC 0
OD 6 4D BD

, CD
OE 7
Of

4E
4F P

8E >
BF

CE
CF P

10 8 50 90 . . DO
11 51 q 91 Dl Q

12 52 r 92 D2 R
13 9 53 93 (D3

14 54 MZ 94 D4
15 0 55 95) D5
16

,
EOA 56 96 " EOA D6

17 57 $ 97 D7 I

18 58 RE5 9B DB RE5
19 PN 59 99 PN D9
lA R5 SA 9A R5 DA
18 58 NL 9B DB NL

lC Upshift
lD

5C
5D 85

9C Upshift
9D

DC
DD BS

IE 5E IL 9E DE IL
IF EOT SF 9F DF

20 @ 60 AO • EO
21 61 & Al EI +
22 62 a A2 E2 A
23 / 63 A3 ? E3

24 64 b A4 E4 8
25 s 65 AS S E5
26 I 66 A6 T E6
27 67 c A7 E7 C

28 68 d AB E8 D
29 u 69 A9 U E9
2A v 6A AA V EA
28 68 e A8 EB E

2C w 6C AC W EC
2D 6D f AD ED F
2E 6E 9 AE EE G
2F x 6F AF X EF

30 70 h BO FO H
31 y 71 Bl Y Fl
32 z 72 B2 Z F2
33 73 i B3 F3 I

34 -+ RM 74 B4 F4
35
36

75 PZ
76 0

as
86

F5

0 F6 ...
37 , 77 B7 I F7

38 8VP 7B BB 8VP F8
39 79 PF B9 F9 PF
3A 7A TAB SA FA TAB
38 LF 78 BB LF FB

3C 7C Dwnshfl BC FC Dwnshfl
3D E08 7D BD EOB FD
3E PRE 7E 8E PRE FE
3F 7F DEL BF FF DEL

Figure 47. Line Code for IBM 1050 Data Communication System

Appendix D: Internal and Transmission Code Charts 573

5/360 Graphic Control
Byte (hex)

5/360 Grophic Control
Byte (hex)

5/360 Graphic Control
Byte (hex)

5/360 Graphic Control
Byte (hex)

00
01 5P

40 - @
41

80
81

CO
CI

02 I 42 82 C2
03 43 J 83 C3

04 2 44 B4 C4
05 4Ii K 85 C5
06 46 L 86 C6
C11 3 47 87 C7

08 4 4B 88 C8
09 49 M 89 C9
M 4A N SA CA
OB 5 48 88 CB

OC 4C 0 8C CC
00 6 40 80 CD
OE 7 4E BE CE
OF 4F P 8F CF

10 B 50 90 DO
II 51 Q 91 01
12 52 R 92 D2
13 9 53 93 03

14 54 Message 94 D4
15 0 55 95 05
16

,
EOA 56 96 D6

17 57 $ 97 07

18 58 . 98 DB
19 59 99 09
IA SA 9A OA
IB 5B CR 98 DB

IC 5C 9C DC
10 50 90 DO
IE 5E IL 9E DE
IF EOr 5F 9F OF

20 Add 60 AO EO
21 61 + AI EI
22 62 A A2 E2
23 / 63 A3 E3

24 64 B A4 E4
25 5 65 AS E5
26 T 66 A6 E6
27 67 C A7 E7

28 68 0 A8 E8
29 U 69 A9 E9
2A V 6A AA EA
2B 68, E AB EB

2C W 6C AC EC
20 60 F AD ED
2E 6E G AE EE
2F X 6F AF EF

30 70 H 80 FO
31 y 71 BI FI
32 Z 72 B2 F2
33 73 I B3 F3

34 74 B4 F4
35
36

75 Re&;,e
76

85
B6

F5
F6

37 . n B7 F7

3B 78 88 FB
39 79 Subtr B9 F9
3A 7A Tob SA FA
3B LF 78 BB FB

3C 7C BC FC
3D EOB 70 BO FO
3E 7E BE FE
3F 7F DEL BF FF

Figure 48. Line Code for IBM 1060 Data Communication System

574 OS/MFT and OS/MVT TCAM Programmer's Guide

S/360 Byte 2260/2265 1053
(hex) Graphic Control Graphic Control

S/360 Byte 2260/2265 1053
(hex) Graphic Control Graphic Control

00 40 SP SP

Gl
02 STX STX

41 - EOM I
42 • CHECK "

03 ETX ETX 43 # I

04 EOT EOT 44 $ $
05 45 % %
06 ACK ACK 46 & &
07 47

, ,

08 48 ((
09 49))
OA ~ NL NL 4A * *
OB 4B + +

OC 4C

00 40 - -
OE 4E
OF 4F / /

10 50 0 0

11 51 1 1

12 52 2 2

13 53 3 3

14 54 4 4

15 NAK NAK 55 5 5

16 56 6 6
17 57 7 7

18 CAN 58 8 8
19 59 9 9
lA 5A : :
lB 5B ; ;

lC 5C < <
10 50 = =
IE 5E > >
IF 5F ? ?

20 60
21 61
22 62
23 63

24 64
25 65
26 66
27 67

28 68
29 69
2A 6A
2B 6B

2C 6C
20 60
2E 6E
2F 6F

30 70
31 71
32 72
33 73

34 74
35 75
36 76
37 77

3B 78
39 79
3A 7A
3B 7B

3C 7C
30 70
3E 7E
3F 7F

Figure 49. Line Codes for IBM 2260 (Remote)/2265 Display Complexes and IBM 1053 Printer (Part 1 of 2)

Appendix D: Internal and Transmission Code Charts 575

5/360 Byte 2260/2265 1053 5/360 Byte 2260/2265 1053
(hex) Graphic umtrol Graphic Control (hex) Graphic Control Graphic Control

80 CO
81 Cl
82 C2
83 C3

84 C4
85 C5
86 C6
87 C7

88 C8
89 C9
SA CA
8B CB

8C CC
80 CO
8E CE
8F CF

90 DO
91 01
92 02
93 03

94 04
95 05
96 D6
97 07

98 08
99 09
9A OA
9B DB

9C DC
90 DO
9E DE
9F OF

AO EO @ @
Al A A El
A2 B B E2
A3 C C E3

A4 0 0 E4
AS E E E5
A6 F F E6
A7 G G E7

A8 H H E8
A9 I I E9
AA J J EA
AB K K EB

AC L L EC
AD M M ED
AE N N EE
AF 0 0 EF

BO P P FO
Bl Q Q Fl
B2 R R F2
B3 5 5 F3

B4 T T F4
as U U F5
B6 V V F6
B7 W W F7

B8 X X F8
B9 Y Y F9
SA Z Z FA
BB FB

BC
BO • SMI ~
BE

FC ..., ...,
FO
FE I I

BF - - FF

Figure 49. Line Codes for IBM 2260 (Remote)/2265 Display Complexes and IBM 1053 Printer (Part 2 of 2)

576 OS/MFT and OS/MVT TCAM Programmer's Guide

IBM 2740 EBCO Code

5/360 Graphic Control 5/360 Graphic Control 5/360 Graphic Control 5/360 Graphic Control
Byte (hex) Byte (hex) Byte (hex) Byte (hex)

00
01 5P
02 I

40 - @
41
42

80
81 5P
82 =

CO
@ Cl -

C2
03 43 i 83 C3 J

04 2 44 84 < C4
05 45 k 85 C5 K
06 46 I 86 C6 l
07 3 47 87 ; C7

08 4 4B 88 : C8
09 49 m 89 C9 M
OA 4A n 8A CA N
OB 5 4B 8B % CB

OC 4C 0 8C CC 0
00 6 40 80

,
CO

OE 7 4E 8E > CE
OF 4F P 8F CF P

10 8 50 90 * 00
11 51 q 91 01 Q

12 52 r 92 02 R
13 9 53 93 (03

14 54 94 04
15 0 55 95) D5
16 # EOA 56 96 " EOA D6
17 57 $ 97 D7 !

18 58 98 D8
19 59 99 09
lA SA 9A OA
IB 5B Nl 9B D8 Nl

lC Upshift 5C 9C Upshift DC
10 50 B5 90 DD 85
IE 5E Il 9E DE Il
IF EOT SF 9F DF

20 @ 60 AO ~ EO
21 61 & Al El +
22 62 a A2 E2 A
23 / 63 A3 ? E3

24 64 b A4 E4 B
25 s 65 AS 5 E5
26 t 66 A6 T E6
27 67 c A7 E7 C

28 6B d A8 E8 D
29 u 69 A9 U E9
2A v 6A AA V EA
2B 6B e AB EB E

2C w 6C AC W EC
20 60 f AD ED F
2E 6E 9 AE EE G
2F x 6F AF X EF

30 70 h BO FO H
31 y 71 Bl Y Fl
32 z 72 B2 Z F2
33 73 i 83 F3 I

34 74 B4 F4
3S
36

0 37 /

75
G) 76

n

B5
B6

G) B7 I

F5
G) F6,

F7

38 78 88 F8
39 79 89 F9
3A 7A HT SA FA HT
3B Index Attn 7B B8 Index Attn FB

3C 7C Dwnshft 8C FC Dwnshft
30 E08 70 BO EOB FO
3E PRE 7E 8E FE
3F 7F OEl BF FF DEL

Figure 50. Line Code for IBM 2740 Communication Terminal

Appendix D: Internal and Transmission Code Charts 577

5/360 Graphic Control 5/360 Graphic Control 5/360 Graphic Control 5/360 Graphic Control
Byte (hex) Byte (hex) Byte (hex) Byte (hex)

00
01 SP

40 - @
41

80
81 5P

CO - @
CI

02 I 42 B2 = C2
03 43 i B3 C3 J

04 2 44 84 0 C4
05 45 k 85 C5 K
06 46 I 86 C6 l
07 3 47 87 ; C7

08 4 48 88 : C8
09 49 m 89 C9 M
OA
OB 5

4A n
48

SA
@ 8B %

CA N
CB

OC 4C 0 8C CC 0
00 6 40 8D CD
OE 7 4E 8E " CE
OF 4F P 8F CF P

10 8 50 90 . DO
11 51 q 91 DI Q
12 52 r 92 D2 R
13 9 53 93 (D3

14 54 94 D4
15 0
16 # EOA

55
56

95)
96 ~ EOA

D5
D6

17 57 $ 97 D7 !

18 58 RES 98 D8 RES
19 59 99 D9
IA 5A 9A DA
IB 5B IF-CR 9B DB IF-CR

IC Upshift 5C 9C Upshift DC
10 50 BS 9D DD B5
IE 5E Il 9E DE Il
IF EOT 5F 9F DF

20 @ 60 AO 4 EO
21 61 & AI EI +
22 62 0 A2 E2 A
23 / 63 A3 ? E3

24
25 s

64 b
65

A4
A5 5

E4 B
E5

\~

26 t 66 A6 T E6
27 67 c A7 E7 C

28 68 d A8 E8 D
29 u 69 A9 U E9
2A v 6A AA V EA
28 6B e AB EB E

2C w 6C AC W EC
20 60 f AD ED F
2E 6E 9 AE EE G
2F x 6F AF X EF

30 70 h BO FO H
31 Y 71 BI Y FI
32 z 72 B2 Z F2
33 73 i B3 F3 I

34 74 B4 F4
35
36

(1) 37

75

0 76
77

B5
86
B7 (1)

F5

<V F6
F7

38 BYP 78 B8 F8
39 79 B9 F9
3A 7A HT BA FA HT
3B Index Attn 7B BB Index Attn FB

3C 7C Downshift BC FC Downshift
30 EOB 7D BD E08 FD
3E PRE 7E 8E FE
3F 7F DEL BF FF DEL

Figure 51. Hexadecimal Equivalents for IBM 2741 (BCD) Communication Terminal

578 OSjMFT and OSjMVT TCAM Programmer's Guide

5/360 Graphic Control 5/360 Graphic Control 5/360 Graphic Control 5/360 Graphic Control
Byte (hex) Byte (hex) Byte (hex) Byte (hex)

00
01 5P

40 - @
41

80
81 5P

CO ® Cl -
02 1 42 82 = EOA C2
03 43 ; 83 C3 J

04 2
05

44
45 k

84 < 85
C4
C5 K

06 46 I 86 C6 L
07 3 47 87 ; C7

08 4 48 88 : C8
09 49 m 89 C9 M
OA 4A n SA CA N
OB 5 4B 88 % C8

OC 4C 0 8C CC 0
OD 6 4D 8D CD
OE 7 4E 8E > CE
OF 4F P 8F CF P

10 8 50 90 * DO
11 51 q 91 Dl Q
12 52 r 92 D2 R
13 9 53 93 (D3

14 54 94 D4
15 0 55 95) D5
16 N EOA 56 96 D6
17 57 $ 97 D7 I

18 58 RES 98 D8 RES
19 59 99 D9
lA R5 5A 9A R5 DA
lB 5B NL 98 DB NL

lC UC 5C 9C UC DC
lD 5D B5 9D DD B5
IE 5E IL 9E DE IL
IF EOT 5F 9F DF

20 @ 60 AO ¢ EO
21 61 & Al El +
22 62 0 A2 E2 A
23 / 63 A3 ? E3

24 64 b A4 E4 B
25 s 65 A5 5 E5
26 t 66 A6 T E6
27 67 c A7 E7 C

28 68 d A8 E8 D
29 u 69 A9 U E9
2A v 6A AA V EA
2B 6B e A8 EB E

2C w 6C AC W EC
2D 6D f AD ED F
2E 6E 9 AE EE G
2F x 6F AF X EF

30 70 h 80 FO H
31 Y 71 81 Y Fl
32 z 72 82 Z F2
33 73 i 83 F3 I

J4 74 84 F4
35
36

0) 37

75

0 76
77

85
86

CD 87 I

F5
G) F6 -,

F7

38 BY 78 88 8Y F8
39 79 89 F9
3A 7A HT 8A FA HT
3B LF 7B 88 LF FB

3C 7C LC 8C FC LC
3D EOB 7D 8D EOB FD
3E PRE 7E 8E PRE FE
3F 7F DEL SF FF DEL

Figure 52. Line Code (EBCD) for IBM 2741 Communication Terminal

Appendix D: Internal and Transmission Code Charts 579

5/360 Graphic Control
Byte (hex)

5/360 Graphic Control
Byte (hex)

5/360 Graphic Control
Byte (hex)

5/360 Graphic Control
Byte (hex)

00
01 5P
02 1]
03

40 I
41
42
43 m

80-
81 5P
82 2: [
83

CO --.
Cl
C2
C3 M

04 2 44 84 @ C4
05 45 85 C5
06
07 3

46 v
47

86
87

, C6 V
C7

08 5 48 88 % C8
09 49

,
89 C9 "

OA 4A r SA CA R

OB 7 4B 8B & CB

OC 4C i 8C CC I
00 6 40 80 ¢ CD
OE 8 4E 8E . CE
OF 4F a 8F CF A

10 4 50 90 $ DO
11 51 a 91 01 0
12 52 s 92 02 5
13 0 53 93) 03

14 54 94 D4
15 z 55 95 Z 05
16 9 EOA 56 96 (D6
17 57 w 97 07 W

18 58 RE5 98 08
19 PN 59 99 09
lA RS 5A 9A DA
lB 5B LF-CR 9B DB LF-CR

lC Upshft
10

5C
50 B5

9C Up,hft
90

DC
DO B5

IE 5E IL 9E DE
IF EOT 5F 9F EOT OF

20 t 60 AO T EO
21
22

61 i
62 9

Al
A2

El J
I E2 G

23 x 63 A3 X E3

24 64 = A4 E4
25 n 65 AS N E5
26 u 66 A6 U E6
27 67 f A7 I E7 F

28 68 P A8 E8
29 e 69 A9 E E9
2A d 6A AA 0 EA
2B 6B ; AB EB

2C k 6C AC K EC
20 60 q AD I EO 0
2E 6E , AE EE
2F c 6F AF C EF

30 70 / BO FO
31 1 71 Bl L Fl
32 h 72 B2 F2
33 73 Y B3 H I F3 Y

34 74 B4 F4
35 75 85 F5
36 76 - B6 F6
37 b 77 B7 B F7

38 BYP 78 B8 Fa
39 79 B9 F9
3A 7A Tab SA FA Tab
3B Index Attn 7B BB Index Attn FB

3C 7C Dwnshft BC FC Ownshft
3D EOB 70 BO FO
3E PRE 7E BE FE
3F 7F BF FF

Figure 53. Line Code (Correspondence) for IBM 2741 Communication Terminal

580 OSjMFT and OSjMVT TCAM Programmer's Guide

5/360 Graphic Con.rol S/360 Graphl. Control S/360 Graphi. Control S/36O Graphl. Con.ral
8yte (hex) By.e (hex) By.e (hex) By.e (hex)

00 40 80 CO
01 T 41 81 el
02 CR 42 82 e2
03 0 43 83 e3

04 5P 44 84 e4
05 H 45 85 C5
06 N 46 86 C6
rn M 47 87 C7

08 LF 48 88 C8
09 L 49 89 C9
OA R 4A SA CA
OB G 48 sa CB

oc: I 4C 8C ec
00 P 40 80 CD
Of C 4E Sf CE
OF V 4F 8F CF

10 E SO 90 DO
II Z 51 91 01
12 0 52 92 D2
13 8 53 93 03

14 S 54 94 D4
IS Y 55 95 OS
16 F 56 96 D6
17 X 57 '11 07

18 A 58 98 08
19 W 59 99 D9
IA J SA 9A OA
18 FIGS 5B 98' DB

IC U SC 9C DC
10 Q SO 9" DO
IE K SE 9E DE
IF LTRS SF 9F OF

20 60 AO EO
21 5 61 AI £1
22 CR 62 A2 E2
23 9 63 A3 E3

24 SP 64 A4 E4
2S 'A STOPc
26 /A 7/8e
27

65
66
67

AS
A6
A7

E5
E6
E7

28 LF 68 A8 E8
29)A 3/4e
2A 4

69
6A

A9
AA

E9
EA

28 & 68 AB EB

2C 8 6C Ae EC
20 0 60 AD ED
2E 'A 1/8e
2F 'A 3/8e

6E
6F

AE
AF

EE
EF

30 3 70 BO FO
31 " 71 BI FI
32 $ 72 B2 F2
33 ?A !-:8c 73 B3 F3

34 'A Belle
3S 6

74
75

84
85

F4
F5

36 2A 1/4e
37 /

76
n

86
87

F6
F7

38 - 78 B8 F8
39 2 79 B9 F9
3A

'c
BellA

38 FIGS
7A
7B

SA
BB

FA
F8

3C 7 7C Be FC
3D I 70 BO FO
3E (A 1/2e
3F LTRS

7E
7F

BE
BF

FE
FF

Figure 54. Line Code for AT &T 83B3 and WU 115A Terminals

Appendix D: Internal and Transmission Code Charts 581

5/360 Graphic Control 5/360 Graphic Control 5/360 Graphic Control 5/360 Graphic Control
Byte (hex) Byte (hex) Byte (hex) Byte (hex)

00 NUL 40 80 SOH CO ETX
01 NUL 41 STX 81 CI ETX
02 42 B 82 A C2
03 @ 43 B 83 A C3 C

04 SP 44 " 84 I C4
05
06
07

45 "
46

bl 47

85 I
86

~ 1 87

C5
,

C6 cl
C7 c l

08 48 Tp Aux On 88 X-On C8
09 DLE 49 Tp Aux On 89 x-On C9 EOT X-Off
OA P 4A SA CA 5
OB P 4B R 8B Q CB 5

OC 0 4C 8C CC 3
OD 0
OE
OF pi

4D 2
4E r 1
4F rl

8D 11
8E

:1 8F

CD 3
CE
CF 51

10 50 LF 90 HT DO
11 BS 51 LF 91 HT Dl VT
12 H 52 92 D2 K
13 H 53 J 93 I D3 K

14 (54 94 D4 +
15 (
16
17 h

55 · 56 .1

57 11

95)
96 ~ 1
97 I

D5 +
D6
D7 kl

18 CAN 58 98 D8 ESC
19 CAN 59 SUB 99 EM D9 ESC
lA SA Z 9A Y DA
lB X 5B Z 9B Y DB C

lC 5C : 9C 9 DC
lD 8 1
IE ~1 IF

5D :
5E

ZI 5F

9D 9
9E

yl 9F

DD ;
DE
DF

20 60 ACK AO WRU EO
21 EOT 61 ACK Al WRU El Bell
22 D 62 A2 E2 G
23 D 63 F A3 E E3 G

24 $ 64 A4 E4 1
25 $ 65 & AS % E5 I 91
26

dl 27
66

fl 67
A6 e 1
A7 e 1

E6
91 E7

28 Tp Aux Off 68 A8 E8 ETB
29 Tp Aux Off 69 SYN A9 NAK E9 ETB
2A 6A V AA U EA
2B T 6B V AB U EB W

2C 6C AC 5 EC
2D 4 6D 6 AD 5 ED 7
2E t
2F t

6E
6F vi

AE
ul AF

EE wi
EF wi

30 FF 70 BO FO 51
31 FF 71 SO Bl CR Fl 51
32 72 N B2 M F2
33 L 73 N 83 M F3 0

34 74 · B4 - F4
35 '2 36

:2 37

75 · 76
n 1 77

B5 -
B6

ml B7

F5 /1
F6

~ 1 F7

38 78 RS 88 GS F8
39 FS 79 RS B9 GS F9 US
3A "- 7A SA FA -
3B "- 7B t BB J FB -
3C < 7C BC FC ?
3D < 7D > BD = FD ?
3E 7E ..., BE FE
3F J 7F ..., BF FF Rubout

Note 1: Lower case letters are converted to upper case in the terminal.

Note 2: Not all control characters are used by TWX but all are legitimate.

Figure 55. Line Codes for AT&T TWX Terminals

582 OS/MFT and OS/MVT TeAM Programmer's Guide

5/360 Graphic Control
Byte (hex)

5/360 Graphic Control
Byte (hex)

5/360 Graphic Control
Byte (hex)

5/360 Graphic Control
8yte (hex)

00 40 80 CO
01 T 41 81 CI
02 CR 42 82 C2
03 0 43 83 C3

04 5P 44 B4 C4
05 H 45 B5 C5
06 N 46 86 C6
07 M 47 87 C7

08 LF WRU 48 88 C8
09 L 49 89 C9
OA R 4A SA CA
OB G 4B 8B C8

DC I 4C 8C CC
OD P 4D 8D CD
Of C 4E 8E CE
OF V 4F 8F CF

10 E 50 90 DO
II Z 51 91 DI
12 D 52 92 D2
13 B 53 93 D3

14 5 54 94 D4
15 Y 55 95 D5
16 F 56 96 D6
17 X 57 97 D7

18 A 58 98 D8
19 W 59 99 D9
IA J 5A 9A DA
IB FIG5 5B 98 D8

IC U 5C 9C DC
ID Q 5D 9D DD
IE K 5E 9E DE
IF LTRS 5F 9F DF

20 60 AO EO
21 5 61 AI EI
22 CR 62 A2 E2
2~ 9 63 A3 E3

24 5P 64 A4 E4
25 65 AS E5
26 66 A6 E6
27 67 A7 E7

28 LF 68 A8 E8
29 } 69 A9 E9
2A 4 6A AA EA
2B 6B A8 E8

2C 8 6C AC EC
2D 0 6D AD ED
2E : 6E AE EE
2F = 6F AF EF

30 3 70 80 FO
31 + 71 81 FI
32 WRU 72 B2 F2
33 ? 73 83 F3

34
,

74 B4 F4
35 6 75 B5 F5
36 76 86 F6
37 / 77 87 F7

38 - 78 88 F8
39 2 79 89 F9
3A Bell 7A SA FA
3B FIG5 7B 88 FB

3C 7 7C 8C FC
3D I 7D 80 FD
3E (7E 8E FE
3F LTRS 7F 8F FF

Figure 56. Line Code for IBM World Trade telegraph IT A2

Appendix D: Internal and Transmission Code Charts 583

5/360 Graphic: Control 5/360 Graphic Control
Byte (hex) Byte (hex)

00 40
01 T 41
02 CR 42
03 0 43

04 SP 44
05 H 4S
06 N 46
(J1 M 47

08 IF WRU 48
09 L 49
OA R 4A
08 G 48

OC I 4C
OD P 40
Of C 4E
OF V 4F

10 E 50
11 Z 51
12 0 52
13 B 53

14 5 54
15 Y 55
16 F 56
17 X 57

18 A 58
19 W 59
lA J SA
lB FIG5 58

lC U 5C
10 Q 50
IE K 5E
IF LTRS 5F

20 60
21 61
22 CR 62
23 : 63

24 5P 64
25 ? 65
26 , 66
27 7 67

28 LF 68
29) 69
2A / 6A
2B 0 6B

2C Bell 6C
20 9 60
2E 8 6E
2F = 6F

30 - 70
31 71
32 WRU 72
33 6 73

34
,

74
35 5 75
36 4 76
37 77

38 + 78
39 3 79
3A 2 7A
3B FIG5 7B

3C 1 7C
3D 70
3E (7E
3F LTRS 7F

Figure 57. Line Code for IBM World Trade Telegraph ZSC3

584 OS/MFT and OS/MVT TCAM Programmer's Guide

5/360 Graphic Control
Byte (hex)

80
81
82
83

84
85
86
87

88
89
SA
88

8C
80
8E
8F

90
91
92
93

94
95
96
97

98
99
9A
9B

9C
90
9E
9F

AO
Al
A2
A3

A4
AS
A6
A7

A8
A9
AA
AB

AC
AD
AE
AF

BO
Bl
B2
B3

B4
85
B6
B7

B8
B9
SA
BB

BC
BO
BE
BF

5/360
Byte (hex)

CO
Cl
C2
C3

C4
C5
C6
C7

C8
C9
CA
CB

CC
CO
CE
CF

DO
01
D2
03

D4
05
D6
07

08
09
OA
DB

DC
DO
DE
OF

EO
El
E2
E3

E4
E5
E6
E7

E8
E9
EA
EB

EC
ED
EE
EF

FO
Fl
F2
F3

F4
F5
F6
F7

F8
F9
FA
FB

FC
FO
FE
FF

Graphic Control

DEL

(
\j

Appendix E: Running QT AM Application Programs Under TeAM

This section provides a brief summary of the changes needed to run a QT AM
Message Processing Program using TCAM. For more details, see OS Conversion
Guide from QTAM or BTAM to TCAM, Order No. GC30-2026.

U sing an Unmodified, Existing Program
If the QT AM processing program is written so that the only QT AM macros issued
are DCB, OPEN, CLOSE, GET, and PUT, the program need not be reassembled.
Substitute the QT AM DD statements related to each process (input) and destina­
tion (output) DCB macro with corresponding TCAM DD statements. The format
of the DD statement is

/ /ddname DO QNAME=procname

ddname is the symbolic name of the DD statement, and must be the same as the
name specified in the DDNAME= operand of the process or destination DCB
macro.

procname is the name of the process entry in the terminal table to which this entry
refers. This name is assigned by the TPROCESS macro creating the entry. The
destination queue may be changed at execution time by specifying a different
value for the QNAME= parameter.

Reassembling a QT AM Processing Program

QT AM Macro Facilities

If macros other than OPEN, CLOSE, GET, PUT, and DCB are included in the
application program, the program must be reassembled. A QSTART macro must
be added as the first instruction of the program, immediately after the START or
CSECT statement.

The QST ART macro distinguishes QT AM and TCAM application programs by
indicating whether the QT AM program is to be assembled to run under QT AM or
TCAM. QST ART is not coded in a TCAM application program, unless the
CKREQ macro is used in a TCAM statement. There are no operands, and no
assembler instructions are generated. The QST ART macro has an optional name
field.

If a QT AM program is reassembled with a QST ART macro included, only some
macro facilities are available. Password protection, as provided in TCAM, is not
available. The following chart summarizes the macro facilities.

Macro

RETRIEVE

RELEASEM

Facility

Transfers a message segment already
placed on a destination queue or a
process queue to a user-provided
work area.

Activates a designated terminal for
receipt of message traffic from the
CPU.

Appendix E: Running QTAM Application Programs Under TCAM 585

CLOSEMC Initiates termination of the TCAM
Message Control Program. Provides
a flush closedown only.

STARTLN Activates a designated line for
operation.

STOPLN Deactivates a designated line from
operation.

COPYP No-Op.

COPYQ No-Op.

COPYT No-Op.

CHNGT No-Op.

CHNGP No-Op.

586 OS/MFT and OS/MVT TeAM Programmer's Guide

Appendix F: Summary of Operator Commands Classified by Operation

This appendix groups all commands according to the type of operation (for
instance, DISPLAY, MODIFY, RELEASE) being performed. The following list
groups commands according to the areas in the TeAM system that are affected by
issuing operator commands.

See Operator Control in the chapter Using TCAM Service Facilities for an
explanation of operator command format and how to specify operator commands.

Operation Operands
Operator Command
Name

1 DI~LA Y! TP,ACT, ~ grpname,rln ~
I address ~

ACTVATED

TP,ADDR,statname

TP,INACT'lgrpname,rln ~
address ~

TP,INTER

TP,LINE, 1 grpname,rln ~
address ~

TP,LIST, 1 grpname,rln t
address ~

TP, OPTION ,statname,opfldname

TP,PRITERM

TP ,QUEUE,statname

TP,SECTERM

TP, TERM,statname

TP, ~QUICKl
IFLUSH\

TP=statname

id,AUTOPOLL= {grpname,rln},OFF
address

id,AUTOPOLL= { grpname,rln} ,ON
address

id,INTERVAL=POLL,statname,data

id,INTERV AL=SYSTEM

id,INTERVAL=SYSTEM,data

id,INTENSE= LINE, j grpname,rln l '
1 address \

sense,count

RLNSTATN

INACTVTD

INTRCEPT

LNSTATUS

STATDISP

OPTFIELD

DPRIOPCL

QSTATUS

DSECOPCL

STSTATUS

SYSCLOSE

SUSPXMIT

AUTOSTOP

AUTOSTRT

POLLDLAY

INTERVAL

SYSINTVL

ERRECORD

id,INTENSE= TERM,statname,sense,count ERRECORD
,,~

Appendix F: Summary of Operator Commands Classified by Operation 587

, ~ uperation Operand

id,OPERATOR= {statname }
SYSCON

id,OPT=statname,opfldname,data

id,TRACE= { grpname,rln },OFF
address

id,TRACE= {grpname,rln l ,ON
address f

{RE;EASE} TP=statname

588 OS/MFT and OS/MVT TeAM Programmer's Guide

statname,ONTP ,B

statname,ONTP ,E

gpstatname,OFFTP {: }

gpstatname,ONTP ~J

statname,OFFTP ,B

statname,OFFTP ,E

1 (grpname,rln) (,OFFTP,{ C }
(grpname I) I
address .

I (grpname,rln) (,ONTP
(grpname.)
address

;' ,Operator Command,.",
Name

CPRIOPCL

DATOPFLD

NOTRACE

GOTRACE

RESMXMIT

ACTVBOTH

ENTERING

GENPOLOFF

GENPOLON

NOTRAFIC

NOENTRNG

STOPLINE

STARTLINE

c

Appendix G: Device-Dependent Considerations

Start-Stop Devices

Details presented in this section pertain to specific devices (except for the general
information on binary synchronous (BSC) devices) supported by TCAM. Con­
siderations are listed for start-stop and BSC devices; the final section of this
appendix comprises considerations for the IBM 50 Magnetic Data Inscriber
(MDI). More general information about the subject matter contained here can be
found in the appropriate chapters of this publication.

1030 Data Collection System
• On the ST ARTMH macro instruction, the CONY = YES operand must be

coded if 1030 stations are included on lines processed by this Message Handler,
since these stations do not have the capability of entering an EOT line-control
character after their messages. CONY = (opfield, switch) may be coded when
the TERMINAL macro for the 1030 station initializes the option field to the
specified setting.

• When the ADDR= operand of the TERMINAL macro is coded for a 1030
station, the two addressing characters must be immediately preceded by a 37
(this is the hexadecimal equivalent of the "circle S" character for the 1030).
Neither the 3 7 nor the addressing characters are framed; the addressing charac­
ters must be the hexadecimal equivalent of the 1030 line code representation.

Example:
If the address of the 1030 is Bl, the ADDR= operand of the TERMINAL
macro would be coded as follows:

ADDR=376402

where 64 and 02 are the hexadecimal equivalent of the line-code representation
of the characters Band 1, respectively.

• TCAM will recognize a message of one data character from the IBM 1030.

1050 Data Communication System
• With regard to message translation, the character sets of the 1050 terminals

contain lowercase as well as uppercase alphabetic characters. When messages
from a 1050 are sent to stations or application programs that do not recognize
codes for lowercase letters, the user should either enter only the uppercase form
of alphabetic characters, or he should employ the 105F translation tables on the
incoming side. These tables translate each incoming lowercase letter to the
EBCDIC uppercase equivalent. These tables should also be specified if the
source or destination of a message is entered at an IBM 1050 terminal in
lowercase form; if the contents of the source or destination header field are not
in uppercase form at the time an ORIGIN or FORWARD macro is executed,
the header information is assumed to be invalid.

• The line correction feature is required if automatic retry is desired when a
transmission error occurs.

Appendix G: Device-Dependent Considerations 589

1060 Data Communication System
• On the STARTMH macro instruction, the CONV=YES operand must be

coded if 1060 stations are included on lines processed by this Message Handler,
since these stations do not have the capability of entering an EOT line-control
character after their messages. CONV=(opfield, switch) may be coded when
the TERMINAL macro for the 1060 station initializes the option field to the
specified setting.

2260 Display Station (Remote)
• The last character of the invitation sequence (on the INVLIST macro instruc­

tion) for a remote 2260 must be X'40' (this is the hexadecimal representation
of the Read MI character).

• When specifying the sequence of addressing characters, for a remote 2260, on
the TERMINAL macro instruction, the user must code one of the following
control characters immediately after the addressing sequence:

• X'AO' for a Write-DC operation;
• X'BO' for a Write-at-Line-Address operation;
• X'EO' for a Write-Erase operation.

The three operations are described in the discussion of the SCREEN macro
instruction.

• The 2260 translation table converts outgoing lowercase alphabetic char.acters
to uppercase so that the terminal receives only uppercase characters.

• The MSGLIMIT macro instruction is recommended for use with this type of
terminal. The outheader subgroup for 2260s should include a MSGLIMIT
macro specifying a limit of one message in inquiry applications (to ensure that a
response message is not erased before it can be read).

• Equal priority is recommended.
• The MSGFORM macro instruction and the LC=OUT operand of the

STARTMH macro instruction should be used when sending to the 2260 from
other devices.

• When the CUTOFF macro is executed, a 2848 Read-Skip with a 2848 Break is
issued to terminate the transmission.

• General Poll (see device-dependent considerations for the IBM 3270 Informa­
tion Display System). 2260 uses a single address.

2260 Display Station (Local)
In coding the INVLIST, TERMINAL, and line group DCB macros for the 2260
Local configuration, you may consider each 2848 Control Unit attached locally to
be a line group, and each 2260 station attached to such a control unit as a line in
that group; that is, you may code one DD statement and one line group DCB
macro per control unit and one INVLIST macro per terminal. In addition, each
2260 Local must be represented by a TERMINAL macro.

• Issue one INVLIST macro instruction for each IBM 2260 Local Display
Station; this macro must contain a single entry for the station. All 2260 Locals
attached to the same IBM 2848 Display Control Unit may be considered to be
in the same line group, or each 2260 may be defined separately; the INVLIST
macros for these stations must be specified in the INVLIST= operand of the
line group DCB macro according to ascending relative line number. (Relative
line number for 2260 Local stations in the same line group is determined by the
order in which their TERMINAL macros are arranged; see the description of
the TERMINAL macro.)

The INVLIST entry for a 2260 Local should consist of the name of the station, 4
a "+", and a one-byte code of X'02' (Read DS MI) indicating the type of Read

590 OS/MFT and OS/MVT TeAM Programmer's Guide

operation to be performed when data is entered at the station. For further
information about this Read command, see IBM System/360 Component
Description: IBM 2260 Display Station, IBM 2848 Display Control,
GA27-2700.

• Refer to the description of the SCREEN macro for information concerning
output screen-control management.

Example:
The following INVLIST macro is for a 2260 Local station named STAl.

LOCALSTl INVLIST ORDER=(STAf+02)

The X'02' causes a Read DS MI operation to be performed by TCAM when data
is entered at the terminal.

• Issue one TERMINAL macro per 2260 LocaL All TERMINAL macros for
2260s on the same 2848 Control Unit must be grouped together. Assign each
terminal a relative line number according to the position of its TERMINAL
macro in the group; that is, in the first TERMINAL macro in the group, enter
RLN=l, in the second, RLN=2, etc.

Example:
The following TERMINAL macro is the first in a group of macros representing
2260 Local terminals attached to a 2848 Control Unit:

TERMl TERMINAL QBY=L,RLN=1,DCB=DCB2260L,TERM=2260L,
QUEUES=MO

• The ADDR= operand of the TERMINAL macro is not meaningful for the
2260 Local.

• One line group DCB macro instruction may be coded for each locally attached
2848 Control Unit. The INVLIST= operand should be coded so that the order
in which the INVLIST macros for the terminals attached to the control unit are
named in the operand corresponds to the order in which the TERMINAL
macros for the terminals attached to the control unit are arranged.

• Specify CPRI=S. Send priority for 2260 Locals is the same as that for non­
switched contention stations, described in the transmission priority section of
the chapter Defining Terminal and Line Control Areas. If the user has
keyed in part of a message he wishes to enter, but has not actually entered it at
the time TCAM sends a message to his terminal, the message.he is attempting
to enter is erased from his screen and must be re-entered at a later time.

Example:
The following line group DCB is for an IBM 2848 Control Unit attached locally.

DCB2260L DCB DSORG=TX,MACRF=(G,P), *
CPRI=S,DDNAME=DD2260L, *
INVLIST=(LOCALST1", *
LOCALST2",LOCALST3,,), *
PCI=(N, N), BUFIN=l , BUFOUT=2, *
BUFSIZE=400,BUFMAX=2

The following DD statement would be included in the job control cards for the
execute steps, if the 2260s were assigned the addresses 150, 151, and 152:

IIDD2260L DD UNIT=150
II DD UNIT=151
II DD UNIT=152

Appendix G: Device-Dependent Considerations 591

2265 Display Station

Dynamic PCI buffering is not recommended for the 2260 Local, as the data rate
for this configuration is higher than for most other terminals.

• TCAM recognizes a one-character message entered by a 2260 local station
(generally, a message must be at least two bytes long in order to be recognized
by TCAM).

• For remote operations, the change specified by the SCREEN macro does not
take effect until the next message is sent to the terminal. If this condition is
not desirable, do not use the SCREEN macro. Instead, make the following
coding changes:

1. In the TERMINAL macro, code ADDR=xxxxOOFF where xxxx equals the
addressing sequence. OOFF tells TCAM that the first byte of data in the
current transmission is the control character to be used.

2. Before issuing a PUT or WRITE in the application program or while the
message is in the destination queue, insert the desired control character (X'AO',
X'BO', or X'EO') in the first data character position of the current message
header. If any other character appears in this first position, TCAM will auto­
matically default to WDC. The use of WLA (X'BO') conforms to the line
number requirements discussed under the SCREEN macro.

3. Before sending the message to the addressed terminal, the control character in
the first data character position in the header buffer must be replaced with an
STX character by using the MSGEDIT macro or user code in the outheader
subgroup of the Message Handler for the terminal.

• The MSGLIMIT macro instruction should be used for this type of terminal; the
outheader subgroup for 2265s should include a MSGLIMIT macro specifying a \~

limit of one message in inquiry applications (to ensure that a response message
is not erased before it can be read).

• Specifying receive priority with a user-determined delay may also be helpful.

2740 Communications Terminal
• With regard to message translation, the character sets of the IBM 2740 termi­

nals contain lowercase as well as uppercase alphabetic characters. When
messages from an IBM 2740 are sent to stations or application programs that
do not recognize codes for lowercase letters, the user should either enter only
the uppercase form of alphabetic characters, or he should employ the 274F
translation tables on the incoming side. These tables translate each incoming
lowercase letter to the EBCDIC uppercase equivalent. These tables should also
be specified if the source or destination of a message is entered at a 2740
terminal in lowercase form. If the contents of the source or destination header
field are not in uppercase form at the time an ORIGIN or FORWARD macro is
executed, the header information is assumed to be invalid.

2740 Terminals with Station Control, or Station Control and Checking
• On the INVLIST macro instruction, the invitation sequence for this type of

terminal consists of a single polling character, followed by a space character
(X'Ot' in line code).

• When a TERMINAL macro is coded for a 2740 with these features, the
addressing sequence consists of a single polling character. Immediately preced­
ing this character, X'37' should be coded; immediately following the character,
X'Ot' should be coded. ;1

592 OS/MFT and OS!MVT TeAM Programmer's Guide

2740 Terminals with Transmit Control, or Transmit Control and Checking

2740 Basic Terminals

2740 Basic Dial

2740 Terminals on a switched line

• When coding an INVLIST macro for a 2740 with these features, the following
invitation sequence must always be specified: X'2301' (X and framing quotes
are not coded).

• On the TERMINAL macro, no addressing sequence should be specified for a
2740 with these features.

• On the TERMINAL macro, no addressing characters should be coded for any
of the four IBM 2740 Basic terminal configurations supported by TCAM.

• Send priority is the suggested. method for using 2740 Basic terminals.
• If equal priority is specified for a 2740 Basic terminal on a nonswitched line,

messages may be entered at the terminal whenever the line is idle. The invita­
tion list for this line may consist of one dummy entry (see the description of the
INVLIST macro). The terminal operator may ask the computer to send by
pressing the BID key and then pressing the EOT key. The computer then sends
all messages queued for the terminal. After all messages are sent, the computer
is again ready to receive messages. Messages queued for the terminal will also
be sent as soon as the terminal operator enters a number of consecutive mes­
sages in the sequence: BID key-message-EOT, which is equal to the num­
ber specified by a MSGLIMIT macro coded in the inheader subgroup of the
Message Handler for this line (see the description of the MSGLIMIT macro).

• T~AM uses a Prepare command on 2740 Basic terminals and there is no
time-out constraint; consequently, an operator must enter BID EOT to indicate
to TCAM that he has no message to enter.

• For 2740s on a switched line, after the terminal operator has finished entering
his messages, he should press the BID key and then press the EOT key to
indicate that he has no more messages to enter; otherwise, TCAM does not
break the line connection. A 2740 Basic terminal on a switched line has a
Prepare command that does not time out.

2740 Model 2 Communication Terminal
• The 2740-2 is defined as buffered by the BFDELA Y = operand on the

TERMINAL macro. (For more details, see the discussion of transmission
priorities for nonswitched polled stations that use TCAM's buffering feature in
the chapter Defining Terminal and Line Control Areas).

• Send priority must be specified (see the description of the CPRI= operand of
the line group DeB macro instruction).

• Queuing must be by terminal (see the description of the QBY=T operand of
the TERMINAL macro instruction).

• Lock mode (obtained by the LOCK macro instruction) must not be used with
this terminal because of the danger of tying up the line.

• The user need not concern himself with the size of the buffer for the 2740
Model 2 with Checking (except when using the MSGFORM macro to insert
EOB characters after each block of data; the user must specify a block size that
will fit within the 2740 Model 2 buffer). After each block of text (delimited by
an EOB) sent to the terminal, TCAM sends an EOT and will delay sending the
next block of text to the terminal until the delay specified by the BFDELA Y =
operand of the TERMINAL macro has been observed. The EOB character
may be inserted by the processing program or by using the MSGFORM macro.

Appendix G: Device-Dependent Considerations 593

• The user should be aware that the 2701,-2, or -3 transmission control units
insert upshift and downshift characters that take up space in the 2740 Model 2
hardware buffer. A block size should be specified small enough to prevent an
overrun condition in the 2740 Model 2.

2741 Communications Terminal
• Can enter messages directed to other stations, and can receive messages

entered by itself.
• Cannot receive messages from other stations unless the accepting 2741 is

connected to a control unit equipped with the Transmit Interrupt (Reverse
Break) feature.

• Can receive messages directed to it from an application program, but only if
such messages are responses to inquiries from the terminal, and message lock or
extended lock mode is specified by the LOCK macro (these restrictions do not
apply to terminals attached to control u1'l.its equipped with the Transmit Inter­
rupt (Reverse Break) feature).

• Messages directed to the 2741 terminal must not contain an EOT line-control
character.

• Send priority must be specified by the CPRI= operand of the line group DCB
macro.

• DIALNO=NONE must be specified in the TERMINAL macro for switched
2741 stations.

• For stations that do not perform parity and block checking (for example, IBM
2740 Basic, IBM 2741, WTTC, TWX), you may wish to test for loss of incom­
ing messages by coding a MSGGEN macro in your inmessage subgroup.
MSGGEN should test bit 25 (error during text transfer) of the message error
record and send a message to the source indicating that the latest message
entered has been lost and should be re-entered, if bit 25 is on. A'l

• For 2741s on a switched line, after the terminal operator has finished entering ~

2760 Optical Image Unit

all his messages, he should press the carrier-return key to indicate that he has
no more messages to enter; otherwise, TCAM does not break the line connec-
tion.

• EOT must be stripped from outgoing messages.
• If the keyboard locks while the terminal user is entering data, the user must

reenter the complete message when the keyboard unlocks.
• When error recovery procedures clear a unit exception condition (that occurred

while a station was accepting messages), the first message after the wait excep­
tion may be preceded by a circle D control character that is printed at the
accepting station.

• For the user to perform conversational operations only, he must code the
LOCK macro and the CONV=YES operand on the STARTMH macro.

• The EOA sequence (X'16') is not written by TCAM; this character must be
provided by the user or by the MSGFORM macro and must appear in the first
position of each buffer.

• The user program also must provide the PRE 0 sequence (X'3E4C') that
directs messages sent from the CPU to the 2760. If provided in an application
program,X'2796' is specified, and the message is sent through an MH contain­
ing a CODE macro instruction. The folded translation table should not be used
or X'2796' will be translated to X'27D6'.

• TERM=2760 should be coded for the TERMINAL macro to permit operation
with both the 2760 and 2740. If TERM=274F, the 2760 cannot be successful­
ly used.

594 OS/MFT and OS/MVT TeAM Programmer's Guide

(

3735 Programmable Buffered Terminal
• The 3735 cannot be used as a primary or secondary operator control terminal.
• The CLOCK= operand should be specified on the TERMINAL macro for a

switched 3735. DIALNO=chars (also on TERMINAL) is necessary also.
• Text transmissions to the 3735 must be in blocks of 476 characters or less.
• The 3735 transmits data to the CPU in blocks of 476 characters; the last block

of a transmitted message may contain less than 476 characters.
• Send priority should be specified for the switched 3735. For more information,

see Transmission Priority for Switched Stations in the chapter Defining
Terminal and Line Control Areas.

• The LOCK macro should be used for the switched 3735.

7770 A.udio Response Unit (A.R U)
• Issue one INVLIST macro for each TCAM audio line; that is, a line connected

to an IBM 7770 Audio Response Unit, Model 3. This macro instruction assigns
an invitation message to the line; the message is sent whenever a telephone or
audio terminal calls in on the line. The operand of an INVLIST macro for an
audio line has a single entry that consists of the name of the TERMINAL
macro for the line over which the invita:tion message is to be sent, the
active/inactive entry indicator, and an invitational message which that is
specified as CPU ID.

The vocabulary of the ARU resides on an analog drum; a track on the drum can
contain one word of the ARU's vocabuhiry list. To specify his invitation
message, the user codes a series of pairs of hexadecimal digits in the CPU ID
entry; each pair represents the address of a track containing one word of the
message.For example, in the entry

CPUID=INVMSG

a message consisting of three words is specified by the constant INVMSG.
These words are located on tracks 09, 01, and 1B (hexadecimal notation) of the
vocabulary drum.

INVMSG DC X I 03 I LENGTH OF INVITATIONAL MESSAGE

X '09011 B I INVITATIONAL MESSAGE

• The name of the INVLIST macro for an audio line should be specified in the
INVLIST=operand of the DCB macro for the line group containing the line.

Example:
The following INVLIST macro instruction creates the invitation list for an

audio line.

LIST10 INVLIST ORDER=(BOS+),CPUID=INVMSG

BOS is the name of the TERMINAL macro instruction specifying
UTERM= YES for this line. The + indicates that messages may be received on
this line.

• A TCAM audio line, that is, a line connected to an IBM 7770 Audio Response
Unit, Model 3, requires a TERMINAL macro instruction coded with the
UTERM= YES operand.

• The LOCK macro instruction is required for audio terminals.

Appendix G: Device-Dependent Considerations 595

World Trade Telegraph (WlTA) Terminals
• For WTTA terminals, two message translation codes can be specified. These

are International Telegraph Alphabet number 2 (IT A2) and Figure Protected
Code (ZSC3).

• If equal transmission priority is specified for a WTT A terminal on a non­
switched contention line, messages may be entered at the terminal whenever
the line is idle. Messages queued for the terminal will be sent only if a
MSGLIMIT macro instruction is coded in the inheader subgroup of the Mes­
sage Handler for this line, and then only when the number of messages entered
by the terminal is equal to the number specified in the MSGLIMIT macro.
Send priority is recommended.

• The ADDR= operand of the TERMINAL macro must specify the WRU
character rather than addressing characters.

• When a message is entered from a World Trade Teletype terminal, one or more
MSGGEN macros can be coded on a selective basis to inform the source
terminal of receipt of the message, a transmission error, the need to re-enter the
message, etc.

• Since TCAM does not compare ID characters on a leased line, th~ ID character
does not need to be specified in the INVLIST macro.

Teletypewriter Exchange (TWX) Stations (A.T&T 33/35 Dial)
• All entries in an invitation list must have the same number of invitation charac­

ters. If TWX stations on the same switched line are assigned ID sequences that
differ in length, ID sequences shorter than the longest ID sequence specified in
an INVLIST entry should be padded to the right with EBCDIC blanks to bring
them up to the length of the longest sequence. The maximum-length, TWX ID
sequence supported by TCAM is 23 bytes (including framing control charac­
ters). It is recommended that each terminal ID sequence included as part of an
invitation list entry be preceded and followed by certain control characters.
These characters, and the hexadecimal representations of their line-code bit
patterns (shown in non-parity TWX transmission code) are:

a) characters

CR LF idchars CR LF XON

b) hexadecimal representation

B151idcharsB15189

An entry for a TWX terminal named RAL that is assigned the ID sequence
IBM 35ASR #1 might be coded:

RAL+B1519343B30fCDAD83CB4B05C58DB15189

(If a TERMINAL macro coded UTERM= YES were issued for the line, the
name of the TERMINAL macro would be coded in place of RAL.) For lines to
TWX terminals, it is recommended that the computer ID sequence also be
preceded and followed by certain control characters. These characters, and the
hexadecimal representations of their line-code bit patterns, are:

a) characters

Null CR LF Rubout idchars CR LF XON

b) hexadecimal representation

596 OS/MFT and OS/MVT TeAM Programmer's Guide

01B151FFidcharsB15189

If the ID sequence were RALEIGH, the operand for the computer ID might be
coded:

CPUID=CPUNAME

Somewhere within the same area of the MCP the following field would be
defined:

CPUNAME DC X'OE'
DC X'OlB151FF4B8333A393E313B15189'

A table for translating TWX line code to hexadecimal representation is given in
Appendix D.

Example:
The following INVLIST macro creates the invitation list for a switched line having
three TWX terminals (named SCTN, PITT, and PHIL) assigned to it. Each of
these terminals is assigned a unique ID sequence, consisting of its name. The
computer is assigned the ID sequence PENN. It is assumed that the TWX termi­
nals are non-parity machines.

LISTl INVLIST (SCTN+B151CBC32B73B15189,
PITT+B1510B932B2BB15189,
PHIL+B151B131933B15189),

CPUID=TWXADDR

*
*
*

Here, CBC32B73, OB932B2B, and OB131933 are the TWX, non-parity,
transmission-code representations of the ID sequences SCTN, PITT, and PHIL,
respectively, in hexadecimal notation. B 1, 51, and 89 are the non-parity hexade­
cimal representations of the TWX CR, LF, and XON line-control characters,
respectively. Somewhere in the MCP the following field is defined:

TWXADDR DC X'OB'
DC X'OlB151FFOBA37373B15189'

In this instance, OB is the hexadecimal length of the rest of the field. OBA37373 is
the non-parity, TWX, transmission-code representation of the ID sequence
PENN, in hexadecimal notation. 01, B1, 51, FF, and 89 are the non-parity,
hexadecimal representations of the TWX Null, CE, LF, Rubout, and XON
line-control characters, respectively.

• Transmission priority for TWX stations: the computer invites the station to
enter a message by sending the computer ID sequence to the station. The
computer ID sequence is sent after each message is entered by the station, to
invite the station to enter another message. When the station has no more
messages to enter, the station operator should so inform the computer by
pressing the XOFF key after receiving the computer ID sequence.

• Two types of TWX terminals may be used with TCAM. The first of these
enters and accepts parity data. For this type of TWX station, the TTYB
translation table is provided. The second type of TWX station enters and
accepts only non-parity data; that is, the parity bit must be one in all charac­
ters. The TTYC translation table is provided for translating data received and
sent to TWX terminals of this type. The user may wish to receive messages
from or send messages to both types of TWX terminals over lines in the same
line group, in which case he may issue two CODE macros in his incoming or
outgoing group and route each message to one or the other, as described in the
section Variable Processing within a Message Handler.

Appendix G: Device-Dependent Considerations 597

• The user should end all TWX messages with the XOFF control character
instead of with the EOT line-control-character. If EOT is used, the line is
disconnected and a console error message is posted.

• When the CUTOFF macro is executed a Write Break is issued to terminate the
transmission.

AT.tT ,j.3 Sekctive Calling Station
• When specifying the sequence of addressing characters on the TERMINAL

macro instruction for an AT & T 83B3 terminal, the user must code a LTRS
(letters-shift) control character immediately after the two addressing charac­
ters. The LTRS character is specified by coding X'IF'. The X and framing
quotes are not coded.

Biaary Synchronous Communication (BSC) Terminals
In this section, information that is applicable to BSC devices in general will be
presented first; following this general information will be sections dealing with
each BSC station supported by TCAM.

TeAM Se,,4 ""II llecei~e Operations on a BSC Line

Se Operations

This section presents TCAM's responses to various line-control characters entered
by a station during an attempt on the part of TCAM to read messages entered by
that station or to send messages to it, and describes conditions that TCAM
interprets as errors during invitation, selection, and transmission. This informa­
tion will be of interest to those who are programming a computer to serve as a
remote station in a TCAM system, to the user whose application demands a
knowledge of TCAM's line-control scheme, and to those interested in the various
conditions that prompt TCAM to set bits in the message error record having to do
with errors encountered while TCAM is reading or writing text on a BSC line. ..~

For general information on BSC line control, see the publication General
Information-Binary Synchronous Communications (GA27-3004). For detailed
information on TCAM's channel programs and error-recovery procedures, see the
TCAM PLM.

In the following two sections, the statement is made in many places that TCAM's
response to a particular error is to terminate its attempt to send or receive the
current message. In this case, TCAM attempts to send or to receive the next
eligible message. If no provision is made in the outmessage subgroup of an MH to
test whatever error bits were set and to take appropriate action following an error,
the message is treated by TCAM as if it had been successfully transmitted; no
further attempt is made to send it. On the receiving side, if any data in the
message in error is received, the portion of the message that was received is sent
through the incoming group of the appropriate MH and is placed on the destina­
tion queue for the destination (if the destination is known).

• If TCAM sends out an ENQ or an addressing sequence and receives a response
other than ACK, WACK, or (on a multipoint line only) RVI, TCAM attempts
six more times to elicit a satisfactory response; if none is received, TCAM sets
bit 24 (selection error) in the message error record and terminates its attempt
to send the current message.

• If TCAM sends out an ENQ or an addressing sequence and receives an EOT in
response, TCAM immediately sets bit 24 (selection error) in the message error
record and terminates its attempt to send the current message. C

For all point to point stations (including switched stations):

598 OS/MFT and OS/MVT TeAM Programmer's Guide

• If TCAM receives a WACK in response to an ENQ (indicating that the
station's hardware buffer is busy), TCAM responds by writing another ENQ;
this exchange is repeated until TCAM receives a response other than WACK.
(A WACK in response to an ENQ can be received from an IBM 2770 station
and from CPUs used as stations).

• If TCAM. receives a NAK in response to an ENQ, TCAM sets bit 24 (selection
error) in the message error record and sends an EOT to the station, thereby
terminating its attempt to send the current message.

For point-to-point, nons witched, contention stations

• If TCAM receives an ENQ in response to an ENQ (indicating a contention
situation), TCAM will yield if the MASTER=NO default is taken on the
INVLIST macro for that line. In this case, TCAM automatically delays the
current attempt to send, giving the station an opportunity to enter data; TCAM
attempts to send the message later. If MASTER= YES is specified, TCAM
attempts six more times to elicit a satisfactory response; if an ENQ is received
each time, TCAM sets bit 24 (selection error) in the message error record and
terminates its attempt to send the current message.

For multipoint stations:

• If TCAM receives a NAK in response to an addressing sequence, TCAM sets
bit 24 (selection error) in the message error record and terminates its attempt
to send the current message.

• If TCAM receives an RVI in response to an addressing sequence and TCAM's
buffered terminal support is specified (by the BFDELA Y = operand of the
TERMINAL macros for stations on the line), TCAM re-addresses the station
at a later time, if the addressing characters were for the first segment in the
message; if they were for a segment other than the first, TCAM sets bit 25
(error during text transfer) and bit 7 (cutoff/RVI error) in the message error
record and terminates its attempt to send the current message. If RVI is
received in response to addressing characters for a station that is not using
TCAM's buffered terminal support, TCAM re-sends the addressing sequence
at a later time.

For all BSC stations:

• If TCAM receives, as a response to a block of text, a character other than
ACK, NAK, WACK, RVI, or EOT, or receives no response at all, TCAM
sends the station an ENQ six times; if none of the six ENQs elicit a satisfactory
response, TCAM sets bit 25 (error during text transfer) in the message error
record and sends an EOT to the station, thereby terminating its attempt to send
the current message.

• If TCAM receives an EOT in response to text, TCAM immediately sets bit 14
(BSC abort) and bit 25 (error during text transfer) in the message error record
and terminates its attempt to send the current message.

• If TCAM receives a NAK in response to text, TCAM re-sends the block of text
up to six times; if no satisfactory response is elicited, after six retries TCAM
sets bit 25 (error during text transfer) in the message error record and sends the
station an EOT, thereby terminating its attempt to send the current message.

• If TCAM receives an RVI in response to text, TCAM considers this to be a
normal response and continues sending. If an RVI is received as the response
to two successive blocks of text, TCAM sends an ENQ in response to the
second RVI. If another RVI is received in response to the ENQ, TCAM sends

Appendix G: Device-Dependent Considerations 599

Receiving Operations

another ENQ; after six ENQ/RVI exchanges, TCAM sends the station an EOT
and terminates its attempt to send the current message.

• If TCAM receives a WACK in response to text sent to a BSC station using
TCAM's buffered terminal support(indicating that the terminal's buffer space
is exhausted), TCAM sends the station an EOT and sends the next block of
text after the interval specified by the BFDELA Y = operand of the
TERMINAL macro has been observed. If WACK is received in response to a
block of text sent to a station not using TCAM's buffered terminal support,
TCAM sends an ENQ; if another WACK is received, the cycle is repeated until
a different response is received by TCAM.

• Terminals defined as buffered (by the BFDELA Y = operand of the
TERMINAL macro) can interleave input as well as output operations. TCAM
considers a message to be a block of text ending with ETX followed by an
EOT. This definition would be advantageous with a large, batch input message
from the 2770 operating in inquiry mode. Two blocks of data will be read and
the line will be free for an output operation to another station or to service the
next invitation list entry. TCAM considers the remaining data received to be a
continuation of the same message until the ETX block is received followed by
the EOT. In receiving subsequent data blocks from the 2770, the number of
reserve characters in the first buffer is the number specified in the DCB for the
first incoming segment plus the difference between header prefix size and text
prefix size. TCAM will not send to any component on this station until the
message being received has ended. Note that input from any component on
this station that responds to polling will be accepted by TCAM as a continua­
tion of the same message. Also, if a permanent error is encountered while
attempting to poll any component on this station, data already read will be
considered as a complete message that ended in an error.

• Each block of incoming data must begin with a valid start character (SOH,
STX, DLE/STX) and end with a valid end character (ETB, ETX, EOT). (In
order to be valid, the EOT character must be transmitted by itself, as a separate
block.) 'When this requirement is not met, TCAM assumes that an error has
occurred and requests retransmission of the block. If the error has not been
corrected after six retries, TCAM sets bit 21 (format error) and bit 25 (error
during text transfer) in the message error record, and sends the station an EOT
character.

• Each incoming block of a message is required to be in the same transmission
mode (transparent or nontransparent) as the other blocks of the message. If all
blocks of the same message are not in the same transmission mode, TCAM sets
bit 21 (format error) and bit 25 (error during text transfer) in the message error
record.

• When TCAM receives an ENQ character while attempting to read, TCAM
sends back the previous acknowledgment character (ACKO or ACK1).

• When TCAM receives a TTD (temporary text delay, STX-ENQ) sequence,
TCAM responds with a NAK; this is not considered to be an error condition.
When TCAM receives a TTD and the next block read in is an EOT (indicates a
possible station malfunction resulting in a truncated message for a 2770 or
2780 station), TCAM sets bit 14 (BSC abort) and bit 25 (error during text
transfer) in the message error record.

• When TCAM receives a station ID sequence on a switched BSC line, TCAM
compares invitation lists for a matching ID sequence, beginning with the
invitation list for the line over which the ID sequence was received and working
upward through all lines in the line group having higher relative line numbers
than the line over which the ID sequence was received.

600 OS/MFT and OS/MVT TeAM Programmer's Guide

Other BSC Considerations

• If no match is found for a station ID sequence read in over a switched line,
TCAM attempts to read in the ID sequence and find a match for it six more
times. If these attempts are unsuccessful, TCAM sets bit 17 (invalid station ID)
in the message error record, and terminates its attempt to send or receive the
message. In addition, TCAM breaks the line connection with the station.

• If TCAM dials a BSC station on a switched line and receives an invalid ID
sequence, TCAM re-sends the computer's ID-ENQ sequence six times; if no
valid ID sequence is received from the station after six retries, TCAM sets bit
17 (invalid station ID) in the message error record and breaks the telephone
connection, thereby terminating its attempt to send the message eligible to be
sent first to the station.

• TCAM provides Reverse Interrupt (RVI) support for BSC terminals. Informa­
tion about implementation of this support is provided in the description of the
LOGICAL= operand of the STARTMH macro.

• EOB checking must be specified by the STARTMH macro if the Message
Handler is to operate on messages whose origin or destination is a BSC station
(for directions on specifying EOB checking, see the description of STARTMH).

• On the INVLIST macro instruction, all entries in an invitation list must have
the same number of invitation c)1aracters. This requirement presents a problem
with respect to BSC stations on a multipoint line. BSC stations are compatible;
that is, more than one type of BSC station may be included on the same line.
Since different types of polled BSC stations require different numbers of
polling characters (for example, a polled IBM 1130 requires one polling charac­
ter, while a polled IBM 2780 requires two), some polling sequences in an
invitation list for a line connecting different kinds of BSC terminals may have
to be padded to bring them up to the length of the longest sequence. Synchro­
nous idle characters are used to bring each sequence of polling characters
specified in an INVLIST entry for a polled BSC station up to the length of the
longest sequence specified in any entry for that INVLIST macro. These
characters are inserted to the left of the polling characters. The synchronous
idle characters used depend upon the transmission code for the station; appro­
priate characters are:

• for EBCDIC, X'32';
• for ASCII, X'16';
• for 6-bit Transcode, X'3A'.

The X and the framing quotes are not coded.

When creating an INVLIST entry for a polled BSC station, code the ENQ
line-control character after each sequence of hardware polling characters;
appropriate characters are:

• for EBCDIC, X'2D';
• for ASCII, X'OS';
• for 6-bit Transcode, X'2D'.

The X and the framing quotes are not coded. For example, the entry for a
polled IBM 2780 terminal named NYC that uses EBCDIC transmission code
might be coded

NYC+C1F62D

Appendix G: Device-Dependent Considerations 601

where CIF6 is the EBCDIC representation of the polling characters A6 in
hexadecimal notation, and 2D is the EBCDIC representation of the ENQ
line-control character in hexadecimal notation.

• The EOT= operand of the INVLIST macro must be coded for BSC stations on
a multipoint line.

• TCAM supports four BSC ID schemes; the user can specify a CPU ID and no
station ID, a station ID and no CPU ID, both a station ID and a CPU ID, or
neither a station ID nor a CPU ID.

• When BSC stations are assigned ID sequences, the unit size (as specified in the
KEYLEN = operand of the INTRO macro) must be at least as long as the sum
of the longest ID sequence that can be entered by a station plus one byte;
otherwise, errors may occur.

• If a unique ID is assigned to each BSC station on a switched line, no ORIGIN
macro is needed to identify these stations.

• The length of a CPU or station ID sequence must not be longer than 15 charac­
ters.

• If no ID exchange is desired for BSC stations on a switched line, the invitation
list for that line should consist of a single entry containing the name of a single
station on that line followed by a +.

Example: TERMA+

• If a one-character station ID sequence is being used, the EBCDIC pad charac­
ter (X'DF') should not be assigned as an ID.

e If BSC stations on the same switched line are assigned ID sequences that differ
in length, ID sequences shorter than the longest ID sequence specified in an
INVLIST entry should be padded to the right with EBCDIC blanks to bring
them up to the length of the longest sequence. The maximum length BSC ID
sequence is 15 bytes.

• The sequence of addressing characters for a BSC station must be followed by
the ENQ line-control character. Appropriate characters are:

• for EBCDIC, X'2D';
• for ASCII, X'05';
• for 6-bit Transcode, X'2D'

The X and framing quotes are not coded.

• A switched line to BSC stations that are all assigned unique ID sequences does
not require a TERMINAL macro instruction coded UTERM= YES. For such a
line, the user should enter each station's name and ID sequence and the CPU
ID sequence in the appropriate operands of the INVLIST macro instruction for
the line.

• If equal priority is specified for BSC point-to-point stations on a nonswitched
contention line, messages may be entered at the terminal whenever the line is
idle. Messages queued for the terminal will be sent only if a MSGLIMIT macro
instruction is coded in the inheader subgroup of the Message Handler for this
line, and then only when the number of messages entered by the terminal is
equal to the number specified in the MSGLIMIT macro instruction.

• Send priority for switched stations: When a BSC station calls the computer,
TCAM allows the station to enter a message. TCAM then sends all messages
queued for the station before allowing the receipt of another message from the
station. When the computer calls a BSC station at the expiration of the time
specified on either the CLOCK= or the CINTVL= operand of the
TERMINAL macro, TCAM allows the station to enter a message and then
sends all messages queued for the station. With this priority scheme, TCAM
transmits an EOT when the message queue is empty or after unsuccessful
attempts to recover from line errors. The line is turned around when TCAM

602 OS/MFT and OS/MVT TeAM Programmer's Guide

c

transmits or receives an EOT. TCAM also transmits an EOT after a MSGGEN
macro executes, resulting in a line turnaround.

• Equal priority for switched stations: When a BSC station calls the computer,
the computer allows the station to enter one message after the connection is
established. The BSC station enters a message if it has one. The computer then
sends the BSC station one message, if any is queued for the station, and if the
calling station has identified itself by means of an ID sequence or an origin field
(verified by an ORIGIN macro) in the message header. Messages are sent by
the computer according to the priority scheme outlined in Message Priority
and Queuing. The computer alternates between sending the BSC station a
single message and pausing to permit the station to enter a single message until
the message queue for the station is exhausted. If no input message is entered
immediately, the computer pauses for nine seconds before sending the station
the next message on its destination queue. (A computer serving as a remote
station can avoid the nine-second delay by entering an EOT when it has no
message to enter.) When the last incoming message is received and no further
messages appear on the destination queue for the station, the computer breaks
the line connection, making the line available for new calls. This scheme also
applies when the computer calls the station, except that the computer sends the
first message (if it has one for the station) in this case. If the computer has
nothing to send the station, and nothing comes in from the station, the comput­
er breaks the line connection.

If a BSC station calls the computer and does not identify itself (that is, does not
use ID verification), the computer allows the station to enter messages and sends
the station the messages queued for this line. If no messages are queued for the
line entry, and if the station has not identified itself by the time it enters its last
message, the computer breaks the line connection after giving the station a chance
to enter and after receiving no message from the station.

IBM 2770 Data Commullicatiolls System
• If 2770s are on multipoint lines, it is recommended that the stations be defined

as buffered (by the BFDELA Y = operand on the TERMINAL macro).
Enough delay time should be specified by BFDELA Y = to allow the terminal to
empty one of its two hardware buffers. (TCAM's buffered terminal support is
designed to optimize line usage for the 2770.)

• Only multipoint 2770 stations should be defined as buffered.
• Send priority must be specified for buffered terminals (see the description of

the CPRI= operand of the line group DCB macro instruction).
• Queuing must be by terminal (see the description of the QBY = operand of the

TERMINAL macro instruction).
• If the CONV= operand of the STARTMH macro specifies conversational

mode for an MH handling messages being sent to a 2770 station, and if the
station is set up so that selection of an output device is required, a device­
selection character (X'll', '12', or '13', depending upon the output device
selected) must be specified as the first character following the STX line-control
character in each message sent to the 2770 station. The user must see to it that
this character appears in his outgoing message-TCAM does not support
transparent mode for messages being sent to 2770 stations requiring selection
of an output device.

• When attempting to select a point-to-point 2770 or 2780 station, TCAM sends
an ENQ character, the station responds with ACKO, and TCAM writes the
escape sequence for the desired station component. If an RVI is received from

Appendix G: Device-Dependent Considerations 603

the station instead of ACKO, TCAM sends an EOT to the station and attempts
to send the message at a later time.

• Lock mode (obtained by the LOCK macro) must not be used with this terminal
if TCAM's buffered terminal support is specified for it (by the BFDELA Y =
operand of the TERMINAL macro).

• Operator commands must end with b char EOT rather than with bEOT.

IBM 2780 Data Transmission Terminal
• On the STARTMH macro instruction, the CONV= YES operand should not be

coded if any 2780s are included on lines handled by this Message Handler; if it
is coded, the BSC line integrity is destroyed.

• For a 2780 point-to-point, when the computer sends information to the punch
or printer, an escape sequence must be specified in the TERMINAL macro
(ADDR=escape sequence). .

• When attempting to select a point-to-point 2770 or 2780 station, TCAM sends
an ENQ character, the station responds with ACKO, and TCAM writes the
escape sequence for the desired station component. If an RVI is received from
the station instead of ACKO, TCAM sends an EOT to the station and attempts
to send the message at a later time.

2790 Data Communications System .
• The LMD option of TCAM is required for lines with 2790s (2715 Transmission

Control Unit) attached. See Handling Logical Messages in the section
Designing the Message Handler.

• The SETEOM macro must be coded

SETEOM PROCESS=YES,REMOVE=NO,EOM=ETB

• PCI=(X,X) or PCI=(N,N) must be specified.
• BSC1, BSC2, or BSC3 must be used.
• A set of macro instructions (not listed in this document) is available to enable

the user to define the tables and transactions required for a particular configu­
ration. These tables contain pointers and indexes, as well as parameters, that
are meaningful to the microcoded routines within the 2715. The user must
assemble all macros at the same time since the relationship among the tables is
established by labels.

The assembly output of the user macros is a set of tables, in object form, needed
for the 2715 internal operation. The user must write a TCAM application pro­
gram to load this table in the 2715. An alternate option is to use a loading proce­
dure such as BTAM. See the IBM 2790 Data Communications System Com­
ponent Description (GA27-3015) and the IBM System/360 OS DOS BTAM
Planning for IBM 2790 Data Communications System Support (C30-1004).

3270 In/ormation Display System
The eight categories for device-dependent considerations for the IBM 3270
Information Display System are:

1. Input data stream.
2. Output data stream.
3. SCREEN macro format for the 3270.
4. Defining terminal tables and invitation lists.
5. Specific and general polling.

604 OS/MFT and OS/MVT TeAM Programmer's Guide

Input Data Stream

Output Data Stream

6. Coding considerations.

7. Error handling for the 3270.
8. Dynamic Buffering for Local 3270.
To understand how the 3270 is supported by TCAM the user must be familiar
with the contents of An Introduction to the IBM 3270 Information Display
System (GA27-2739) and the J.BM 3270 Information Display System Compo­
nent Description (GA27-2749).

Input from a remote 3270 is the result of execution of a Read Modified command.
When a 3270 successfully receives valid polling characters, its positive response is
to transmit to the CPU all fields in which modified data tag bits have been set in
the attribute bytes. Translation from line code may be performed in the Message
Handler with the CODE macro.

The remote input data format is:

SCDACC
TUVIUU
X CDR R

Where:

TEXT

STX is the start-of-text, line-control character.
CU is the control unit, fixed-return address.
DVC is the device, fixed-return address.
AID is the attention identification byte.
CUR is the cursor address.
ETX is the end-of-text, line-control character.

The local input data format is:

ACC
I U U
ORR

TEXT

E
T
X

Output to a 3270 may originate either in an application program or a Message
Handler, or in both. For example, a message created in an application program
may be augmented or edited by the MSGEDIT or MSGFORM macros in the
Message Handler. For remote output data streams the command operator must be
the EBCDIC representation of a valid 3270 output command. The command
must be prefaced by an escape character (ESC). For local output the ESC and
CMD must not be present. The SCREEN macro may be used to alter output
commands for both remote and local 3270 devices. For remote devices the
SCREEN macro inserts commands into the data stream. Local channel programs
corresponding to the data stream command may be generated by action of the
SCREEN macro or the command may be specified in the macro. For information
about SCREEN macro coding see the Designing the Message Handler section of
this manual and the description of the SCREEN macro for 3270 in this appendix.

Translation into line code may be performed in the Message Handler with the
CODE macro.

Appendix G: Device-Dependent Considerations 605

The remote output data format is:

SEC W
T S M C
XC D C

Where:

TEXT E
T
X

CMD is the command operator.
WCC is the write control character.

The local output data stream appears as follows before processing by the
SCREEN macro:

W
C TEXT
C

SCREEN Macro Format for the 3270

symbol

l :~t
EAU \

Name Operation Operands

[symbol] SCREEN 1 WDCrconchars ,BLANK= {YES r
WRE NO
EAU char

[,RETRV ={~~' }1

Function: Name of the macro.
Default: None. Specification optional.
Format: Must conform to rules for assembler language symbols.

Function: Specifies the type of write operation.
Default: WDC for local output. Specification optional for remote output.
Format: WDC, WRE, or EAU.
Notes: The WDC (write display cursor) operation specifies that data will be
written starting at the cursor position. The WRE (write erase) operation specifies
that the entire screen will be erased before writing the output. The EAU (erase all
unprotected) operation specifies:

• on a formatted screen all unprotected fields will be erased;
• on a non-formatted screen the entire screen will be erased.

The EAU operation will not allow any data to be written out following the era­
sure. However, for 3270 local devices only, the EAU command indirectly points
to a buffer address and the information at this buffer address will be lost during
the execution of the EAU command. Therefore, an expendable buffer should be
used when the EAU operand is specified on the SCREEN macro. All the data in
this expendable buffer will be lost (not sent to its destination). The WDC, WRE,
and EAU operations are performed immediately on the buffer currently being
processed. 4

606 OS/MFT and OS/MVT TeAM Programmer's Guide

conchars

BLANK=S ~~s}
{char

Function: See the description of the SCREEN macro in the Message Handler
section of this manual.

Function: See the description of the SCREEN macro in the Message Handler
section of this manual.

Function: When RETRV=YES is coded the command byte is extracted from a remote
data stream (located in the data portion of the buffer), converted to the local equivalent,
and inserted in the local channel program. The remote data stream remains unchanged.
Default: NO
Format: RETRV=YES or RETRV=NO
Notes: The RETRV= operand is designed for those users who wish to send 3270 remote
data to a 3270 local device. There is, in the 3270 remote data stream, the command
code WDC (write display cursor), WRE (write erase), or EAU (erase all unprotected).
When RETRV=YES is coded on the SCREEN macro (for sending to a 3270 local device)
the type of command in the remote data stream is used to transmit the message to the
local 3270 device. The command code in the data stream must immediately follow the
escape character, and both the escape character and the command code must be located
in the first unit of the first header buffer at the time the SCREEN macro is executed.

The RETRV= operand applies only to local 3270 devices. However, if it is specified for
a remote 3270 device it will be ignored and not be flagged as an error as long as a valid
operation code (WDC, WRE, or EAU) has been specified. If RETRV=YES and a valid
operation (EAU, WRE, WDC) are specified, the operation will only be used when the
command code cannot be found in the first unit of the first buffer containing the data
stream. Otherwise the operation \yill be ignored. If both the operation code and the
RETRV=YES operands are omitted the SCREEN routine will return code X'04' in
register 15. See Message-Handler Macro Return Codes in Designing the Message Handler.

Example: A user wishes to send message to a local 3270 display device. The RETRV=
YES operand is coded in the SCREEN macro of the outgoing MH. Before each message
is written out the screen is to be erased.

The user's application program constructs only remote command order streams in a
buffer with the following format:

IPREFIX I HDR X'02' X'27' I X'FS' I MESSAGE

12 30 Data Stream

Bytes Bytes

The X'27' is the escape character followed immediately by the command code X'FS'
erase/write (WRC) for the 3270 remote display device. When the SCREEN macro is
executed in the MH, the screen processor will find the X'FS' command code immediately
following the escape character X'27', and TCAM will construct the local channel program
to perform the erase/write function.

The data in the buffer remains unchanged throughout the entire screen processing.
Therefore, the user will probably want to edit his data to conform to the format of
local 3270 data.

Appendix G: Device-Dependent Considerations 607

Defining Terminal Tables and Invitation Lists

Specific and General Pol6ng

One TERMINAL macro instruction is required for each display or printer device.
TERMINAL macros are not required for 3270 control units unless general polling is to
be performed. The 3270 terminal types have been added to the list of terminals
supported by TCAM on the TERM=type operand of the TERMINAL macro. (The
ADDR=chars operand of the TERMINAL macro will be described in the next category
on specific and general polling.) The coding of all other TERMINAL macro operands
remains the same.

TCAM invitation lists are required for 3270 support. There must be at least one entry
in an INVLIST macro for each device to be invited under specific poll. There must be at
least one entry in an INVLIST macro for each control unit when using general poll.
(Coding the ORDER=(entry, ...) of the INVLIST macro will be described in the next
category on specific and general polling.) The coding of all other operands of the
INVLIST macro remains the same.

Note: There must be a specific poll entry for every remote 3270 in the
system whether polled or not; this means that there must be specific poll
entries for printers as well as input devices. Under general poll, every device
connected to a control unit under general poll must be represented in the
invitation list.

Each control unit has a one-character polling address and a one-character selec­
tion address. Each display station or printer has its own one-character address for
specific polling and selection, and all devices share a one-character address for
general polling. See the Operational Sequences section of the IBM 3270
Information Display System Component Description manual (GA27-2749).

Double addressing is used for both control unit and device in the ADDR= ope­
rand of the TERMINAL macro and the ORDER= operand of the INVLIST
macro. Each five-character polling or selection sequence has the following format:

xxxxyyyyENQ

where xx is the hexadecimal representation in EBCDIC or ASCII of the control
unit address for polling or selection. yy is the hexadecimal representation of the
device address. ENQ is X'2D' for EBCDIC or X'OS' for ASCII. Notice that in
the above format the control unit and device addresses appear twice. The main
difference in coding for specific or general polling is that specific polling does not
require a TERMINAL macro for a 3270 control unit, and the INVLIST macro
does not require a control unit entry in the ORDER= operand.

General poll is a remote input technique for 2260 and 3270 remote devices in
which special invitation characters are sent to a device control unit instructing that
control unit to begin transmission from all devices ready to enter data. General
poll may be conducted with programmed poll or Auto Poll.

General poll begins with the sending of polling characters by the CPU. If a
positive response is received from a terminal, TCAM determines the identity of
the terminal originating the message. When an ETX is entered, a complete
message has been received, and the contents of all buffers are ready to be sent to
their destination. To receive the next message from the device control unit,
TCAM begins a new input operation. Invitation characters are not retransmitted;
instead the next message is read. This cycle continues until the device control unit
indicates it has no more data by transmitting an EOT character.

608 OS/MFT and OS/MVT TeAM Programmer's Guide

3270 Display Station

No sending is allowed until the EOT character is received by the CPU. After that,
TCAM either transmits or polls the next entry in the invitation list.

The following examples show the difference between terminal tables and invita­
tion lists for specific and general polling. They also illustrate the use of double
addressing in the ADDR= operand of the TERMINAL macro and the ORDER=
operand of the INVLIST macro.

Sample terminal table for specific poll:

TR3277A TERMINAL QBY=T,DCB=D3271,RLN=1,TERM=327R,
QUEUES=MO,ADDR=6060C1C12D

TR3277B TERMINAL QBY=T,DCB=D3271,RLN=1,TERM=327R,
QUEUES=MO,ADDR=6060C2C22D

TR3275A TERMINAL QBY=L,DCB=D3275,RLN=1,TERM=327S,
QUEUES=DR,ADDR=616140402D

Sample invitation list for specific poll:

INV327A INVLIST ORDER=(TR3277A+4040C1C12D,TR3277B-
4040C2C22D),EOT=37

INV327B INVLIST ORDER=(TR3275A-C1C140402D),EOT=37

Sample terminal table for general poll:

CU3271 TERMINAL QBY=T,DCB=D3271,RLN=1,TERM=327C,
QUEUES=MO

TR3277A TERMINAL QBY=T,DCB=D3271,RLN=1,TERM=327R,
QUEUES=MO,ADDR=6060C1C12D

TR3277B TERMINAL QBY=T,DCB=D3271,RLN=1,TERM=327R,
QUEUES=MO,ADDR=6060C2C22D

CU3275 TERMINAL QBY=L,DCB=D3275,RLN=1,TERM=327C,
QUEUES=DR

TR3275A TERMINAL QBY=L,DCB=D3275,RLN=1,TERM=327S,
QUEUES=DR,ADDR=616140402D

Sample invitation list for general poll:

INV327A INVLIST ORDER=(CU3271+40407F7F2D,
TR3277A+4040C1C12D,
TR3277B-4040C2C22D),EOT=37

INV327B INVLIST ORDER=(CU3275+C1C17F7F2D,
TR3275A-C1C140402D),EOT=37

(Local)
In coding the INVLIST, TERMINAL, and line group DCB macros for the 3270
Local configuration, you may consider each 3270 Control Unit attached locally to
be a line group, and each 3270 station attached to such a control unit as a line in
that group; that is, you may code one DD statement and one line group DCB
macro per control unit and one INVLIST macro per terminal. In addition, each
3270 Local must be represented by a TERMINAL macro.

Appendix G: Device-Dependent Considerations 609

Issue one INVLIST macro instruction for each IBM 3270 Local; this macro must
contain a single entry for the station. All 3270 Locals attached to the same IBM
3270 Display Control Unit may be considered to be in the same line group, or
each 3270 may be defined separately. The INVLIST macros for these stations
must be specified in the INVLIST= operand of the line group DCB macro accord­
ing to ascending relative line number. Relative line number for 3270 Local
stations in the same line group is determined by the order in which their TERMI­
NAL macros are arranged; see the description of the TERMINAL macro.

The INVLIST entry for a 3270 Local should consist of the name of the station, a
"+", and a one-byte code of X'02' (Read Buffer) or X'06' (Read Modified)
indicating the type of read operation to be performed when data is entered at the
station.

Example:
The following INVLIST macro is for a 3270 Local display device named DISPI.

LOCSTl INVLIST ORDER=(DISP1+06)

The 06 causes a Read Modified operation to be performed by TCAM when data is
entered at the dispiay device.

Issue one TERMINAL macro for each 3270 Local. All TERMINAL macros for
3270s on the same 3270 Control Unit must be grouped together. Assign a relative
line number to each 3270 display device according to the position of its
TERMINAL macro in the group; that is, in the first TERMINAL macro in the group
enter RLN=l, in the second RLN=2, etc.

Ex~ple:

The following TERMINAL macro is the first in a group of macros representing
3270 Local display devices attached to a 3270 Control Unit:

TERMl TERMINAL QBY=L,RLN=1,DCB=DCB3270L,TERM=327L
QUEUES=MO

The ADDR= operand of the TERMINAL macro is not meaningful for the 3270
Local. One line group DCB macro instruction may be coded for each locally
attached 3270 Control Unit. The INVLIST= operand should be coded so that the
order in which the INVLIST macros for the display devices attached to the control
unit are named in the operand corresponds to the order in which the TERMINAL
macros are arranged for the display devices attached to the control unit.

610 OS/MFT and OS/MVT TeAM Programmer's Guide

Coding Considerations

Error Handling for the 3270

Specify CPRI=S. Send priority for 3270 Locals is the same as that for non-switched
contention stations, described in the transmission priority section of the chapter
Defining Terminal and Line Control Areas. If the user has keyed in part of a message
he wishes to enter, but has not actually entered it at the time TCAM sends a message
to his display device, the message he is attempting to enter is erased from the screen
and must be re-entered at a later time.

Example:
The following line group DCB is for an IBM 3270 Control Unit attached locally:

DCB3270L DCB DSORG=TX,MACRF=(G,P),CPRI=S, *
DDNAME=DD3270L,INVLIST=(LOCST1 ", *
LOCST2" ,LOCST3"),PCI(A,N), *
BUFIN=1,BUFOUT=2,BUFSIZE=480,BUFMAX=2

The following DD statement would be included in the job control cards for the
execute steps, if the 3270s were assigned addresses 150, 15 1,152:

IIDD3270L
II
II

DD UNIT=150
DD UNIT=151
DD UNIT=152

• The KEYLEN= operand of the INTRO macro must be greater than 43.
• Buffered terminal support is not provided for the 3270.
• Use of the BFDELAY= operand of the TERMINAL macro is invalid for a 3270.
• The MSGLIMIT macro must be coded specifying a limit of one message when

performing general or specific polling. This ensures that a response message is not
erased before it can be read.

• For local 3270s, PCI=(A,N) may be specified on the line group DCB. PCI=(A,A) is
not supported for local 3270s.

• Read Buffer is not supported for remote 3270s and if coded will cause an I/O error.
• The default output command for local 3270s is Write (WDC).
• The 3270 treats ETBs as ETXs.
• The user must insert and check all message contents including commands.
• Under general poll, initiate mode is not supported.
• Logical message definition and mid-batch recovery are not supported for input

received from terminals under general poll.
• Lock mode is supported only with conversational mode. Extended lock mode is not

supported.
• Conversational mode is not supported by general poll.

On errors, using remote 3270s, either the buffers or the message in which the error
occurred are p~ssed through the corresponding Message Handler, and error bits are set
in the message error record. Next the SOH%R message is passed through the input
Message Handler before any additional I/O activity is conducted on the line.

The remote 3270 conveys device-dependent, error information in the SOH%R message.
When TCAM perceives, by an abnormal response, that a 3270 error has occurred, a
permanent error indication is set in the message error record, and the current operation
is terminated. All buffers are sent to the Message Handler to allow execution of error
handling macros in the inmessage or outmessage subgroup. No I/O is allowed on the
line until TCAM has made one attempt to retrieve the SOH%R message. TCAM conducts

Appendix G: Device-Dependent Considerations 611

Dynamic Buffering for Local 3270

a specific poll of the device that indicated an error to retrieve the device status. The
SOH%R message is passed through the input Message Handler as a text message, and the
SOH% bit (bit 15) is set in the error record after recording on SYS1.LOGREC.

Dynamic buffering may be used with local or remote 3270 devices. For local 3270
devices TCAM will attempt to recover from channel program checks caused by failure
of PCI buffering mechanism to provide buffers fast enough. When PCI=(A,N) is coded
on the DCB macro for a local 3270 device, TCAM constructs an input channel program
in which the PCI is enabled only on the first CCW. On this interrupt, BUFMAX/BUFIN
buffers are allocated. If buffers are not allocated rapidly enough and a channel program
check on an invalid TIC occurs, TCAM will restart I/O at the beginning of the channel
program. Recovery will be attempted three times.

3670 Brokerage Communication System
• For the broadcast facility, TERM=367C should be coded on the TERMINAL macro.

One broadcast terminal should be defined for each line with attached 3670s. This
allows all 3670 terminals on that line to receive the data queued for the broadcast
terminal.

• If the TCAM message concentration facility is being used, the broadcast terminal
macro must follow any TERMINAL macros defining the 3670s on the line as
concentrators.

• The broadcast terminal should not appear in the invitation list for the line.
• The broadcast data is sent by a fast-select channel program. There is no checking or "

error recovery procedures performed on broadcast data. ..~

• The broadcast facility is invoked by coding the COMMBUF= operand on the INTRO
macro and issuing a COMMBUF macro in an inheader or inbuffer subgroup (see the
description of the COMMBUF macro).

• Special OBR/SDR recording is provided for the IBM 3670 Brokerage Communication
System. The 3670 maintains counters for its attached devices and for the communi­
cations adapter. At the end of the day or when the counters overflow, the data in the
counters is sent to the host CPU for recording on SYSI.LOGREC and bit 15 of the
Message Error Record is set. Data from the counters is sent in the following message
format:

1 11 1 nIl

I SOH I % E DLE STX data DLE ETX

TCAM recognizes the SOH%E and records the transparent data on SYSl.LOGREC. The
EREP utility program may be used to print the SYSl.LOGREC file. Data is the value
of the counters.

See the IBM 3670 Brokerage Communication System Component Description manual,
(GA27 -3050) for the format of the data portion of the message and further information
about the broadcast facility.

612 OS/MFT and OS/MVT TeAM Programmer's Guide

c

• All messages (good morning messages, error messages, messages switched to a 3670
from other terminals, and operator control responses) sent to a 3670 must conform
to the 3670 output message format. TCAM provides the CTBFORM macro to assist
the user in formatting messages. See the description of the CTBFORM macro in
AppendixJ.

Note: For operator control response messages, the EOT character that ends
each response must be deleted if message concentration is being used.

IBM 3780 Data Communication Terminal
The 3780 Data Communication Terminal, with the exception of the Space
Compression/Expansion function, is supported by OS TCAM. From the Com­
munication Interface, the 3780 appears to the CPU or other terminal device to be
similar to the IBM 2770 in operation. However, there is one important difference.
The 3780, being a single input/output batch terminal, does not have component
selection. If a component selection character is received by a 3780 that is a
multipoint station, the terminal will not respond to that sequence. Therefore, for
multipoint operation, the addressing and polling sequence should not have compo­
nent selection. For point-to-point operation, if the terminal receives the compo­
nent selection character, the character will be folded and printed. (For further
details on methods of specifying addressing and polling sequences, see the descrip­
tions of the TERMINAL and INVLIST macros in this manual). While access
method programs do not support Space Compression/Expansion they will pass
messages containing compressed data. The user's application program must
implement the actual processing to make this feature operational.

Note: The coding of the TERMINAL macro for the 3780 is identical to
that of the 2770.

The TPEDIT Macro Instruction for the IBM 50 Magnetic Data Inscriber
The IBM 50 Magnetic Data Inscriber (MDI) is a key-operated device that records
data on cartridge-contained magnetic tape. (For a description of the IBM 50
MDI, see the publication IBM 50 Magnetic Data Inscriber Component
Description, GA27-2725.) It enables the user to enter data from source documents
to magnetic tape, which is then used to enter data into an IBM System/360
through the IBM 2772 Control Unit. Data received from the IBM 50 MDI
attachment to the IBM 2772 Multi-Purpose Control Unit contains MDI control
characters; the TPEDIT macro allows the user to edit this data.

The re-enterable editing routine is activated by the TPEDIT macro issued in an
application program following a GET or a READ macro (it must not be issued in
the MCP). This routine edits MDI control characters as specified by operands in
the TPEDIT macro. One of the operands also specifies whether a user error-exit
routine is to handle error records. If data is to be received from more than one
IBM 50 MDI at a time in an application program, a separate parameter list must
be issued for each (described in more detail in Input to the TPEDIT Macro)
below.

Appendix G: Device-Dependent Considerations 613

TPEDIT Macro Format

name

MINLN=n

EDlT=
{ EDlTR}

EDlTD

RECFM= {~}

Name Operation Operands

[name] TPEDIT MINLN=n

,EDIT = {EDITR }
EDITD

,RECFM={~ }

,ERROPT= {name }
IGNORE

,VERCHK= {VOKCHK }
NOCHK

,REPLACE= {X'XX' }
X'19'

,BUFFER={~~S }

Is the name of the macro and is optional. If included, the name may be any
symbol valid in the assembler language.

Specifies the minimum acceptable length of an input record where n is replaced
by the decimal number of bytes desired as a minimum. For EDIT=EDITD, SOR,
and EOR, codes are excluded from the length; for EDIT=EDITR, SOR, and EOR
are included in the length. This operand may not be omitted.

Specifies the type of editing to be done.

EDITR causes the input to be edited and the start-of-record (SOR) and end-of­
record (EOR) delimiters to be retained as part of the output.

ED lTD causes the input to be edited and start-of-record and end-of-record
delimiters to be deleted. EDITD is assumed if this operand is omitted.

The edit consists of the following functions: records are extracted one at a time
from the input area by scanning for the record delimiting codes (SOR and EOR).
Duplicating (DUP) codes are replaced by the character(s) from the corresponding
location of the record in the work area when control was last returned to the
editing routine (true for all records except the first). Left-zero fields are right­
adjusted, with leading zeros inserted where necessary. Left-zero start codes,
group separator codes, and records containing a cancel code do not appear in the
output stream. Line-control characters (ETB, ETX, STX, and DLE/STX) are
always deleted if found in the input area.

Specifies the format of the output from the editing routine.

If RECFM= U is coded, no segment descriptor word is added to each record.

614 OS/MFT and OS/MVT TeAM Programmer's Guide

ERROPT = { name }
IGNORE

VERCHK= 1 VOKCHK l
NOCHK ~

If RECFM= V is coded, a segment descriptor word is added to each record as
shown (RECFM=V is assumed if this operand is not coded).

fIIIj4t------------- Logical Record ----------~~
I
I Segment Descriptor I
: Word I

nn I bb data

where nn (2 bytes) is the length of the logical record and bb (2 bytes) is
binary zeros reserved for system use.

This four-byte field is included in the record length returned to the user in a
parameter list.

This four-byte field must be allowed for by the user when determining the size of
the work area (see a Input to the TPEDIT Macro below).

Specifies whether a user error exit routine is provided to handle error records.

name specifies the name of the user error exit routine to be entered when the
editing routine detects logical errors or replacement characters in the record.

IGNORE specifies that an error exit routine is not provided. The error conditions
are to be disregarded and the record is to be passed to the user without being
handled by an error exit routine. If this operand is omitted, ERROPT=IGNORE
is assumed.

(Valid only if ERROPT=name is coded)
Specifies whether the records are to be checked for verify OK (VOK) codes.
NOCHK is assumed if this operand is omitted (subsequent records are not
checked).

If VOKCHK is specified and a record does not contain the verify OK code, the
record is passed to the error exit routine.

When the editing routine encounters an erroneous record and control passes to
this user-supplied routine, register 13 contains the address of a 72-byte register
save area aligned on a fullword boundary, and register 1 contains the address of a
two-word parameter list aligned on a fullword boundary. The parameter list is
defined as follows:

Word Contents

1 Record address
2 Address of record length

The record length includes the four-byte Error Description Word appended, as
shown, to the data record. In addition, if RECFM= V is coded in the TPEDIT
macro, the logical record length (nn) includes these four bytes when it is passed
to the error exit routine.

Appendix G: Device-Dependent Considerations 615

REPLACE={X'XX' }
X'19'

If RECFM= V is specified:

... ~t------------Logical Record ------------I~ ..
I I

, "~I-__ Error Description -..: :
I ~~ I

nn bb

If RECFM= U is specified:

I I r-- Error Description -.t
I Wo~ :

r I

data

data

: I
.. '41------------ Logical Record ------------I~~:

The contents of the Error Description Word are shown below. Further informa­
tion is contained in a later section, Identifying Records in Error.

The error exit routine can be used to analyze and possibly correct a record that is
in error. When control returns to the editing routine with a BR 14 instruction the
user must set register 15 to zero if the erroneous record is to be bypassed. Regis-
ter 15 must be set to a nonzero value in order to direct the editing routine to r'
ignore an error in the erroneous record, and thereby process the record in the ~
normal manner. Whether the record in error is accepted or bypassed does not
change its effect on subsequent records. The Error Description Word is removed
by the editing routine when control returns from the error exit routine.

Specifies the code to be used as a replacement character when the editing routine
detects a 2772 replacement character (EBCDIC SUB character, X'3F') in the
input. X' 19' is the assumed value (default) because it is an end-of-data (ED)
signal for an IBM 50 MOl cartridge and therefore can never appear as a valid data
byte.

For REPLACE=X'xx', the user can replace xx with any hexadecimal characters
he chooses (note that xx must be enclosed in single quotes). Choices may be
made from the code chart in Figure 58 with exceptions as noted below.

BSC control characters should not be used as replacement characters if the data is
to be transmitted by BSC facilities after editing.

Hexadecimal characters representing special purpose MOl codes that should not
be used as replacement bytes are:

X'OO' (LZ) X'lE' (VOK) X'74' (P4)
X'll' (DUP) X'3C' (RM) X'75' (P5)
X'12' (LZS) X'71' (PI) X'76' (P6)
X'18' (CAN) X'72' (P2) X'77' (P7)
X'ID' (GS) X'73' (P3) X'78' (P8)

4

616 OS/MFT and OS/MVT TCAM Programmer's Guide

Bits 0, I 00 01 10 11

Bits 2,3 00 01 10 II 00 01 10 11 00 01 10 11 00 01 10 11

1st Hex Digit~ 0 I 2 3 4 5 6 7 8 9 A B C D E F

0000 0 LZ !sPaCE & Minus - "0 0-8-2 0

0001 I DUP / PI A J I

0010 2 lZ
Start P2 B K S 2

0011 3 P3 C L T 3

0100 4 P4 D M U 4

0101 5 P5 E N V 5

0110 6 P6 F 0 W 6

0111 7 P7 G P X 7

1000 8 CAN P8 H Q y 8

1001 9 ED I R Z 9

1010 A ~ I :

1011 B $, ,
1100 C RM < * % @

1101 D GS ()
~nder- I

line Prime

1110 E VOK + ; > =
1111 F I -, ? "

t t
Bits 2nd Hex
4,5 Digit
6,7

IBM 50 Code EBCDIC Code IBM 50 Code Name
Name Name (See Nate)

LZ (lZ Fill) NULL PI (Prog J)
DUP DC I P2 (Prog 2)
LZ Start DC2
CAN (Cancel) Can

P3 (Prog 3)
P4 (Prag 4)

ED (End Data) EM P5 (Prog 5)
RM (Rec Mark) DC 4 P6 (Prog 6)
GS (Group Sep) IGS P7 (Prog 7)
VOK Ner OK) IRS P8 (Prog 8)

Nate: Codes are assigned for IBM 50 use only.

Figure 58. IBM 50 MOl Control Codes

Appendix G: Device-Dependent Considerations 617

BUFFER= { ~~S}

Input to the TPEDIT Macro

This operand specifies whether the user's data is in BT AM buffers. TCAM users
should either omit this operand or code BUFFER=NO.

Register 1 must point to a four-word parameter list (aligned on a fullword bound­
ary) containing:

Word Contents

1 Input Address
This is the address of the data to be edited.

2 Input Length
This is the length of the data to be edited.

3 Edit work area address

The work area required by the editing routine for a given parameter list is
obtained in either of two ways. The work area can be provided by the
editing routine (by an unconditional GETMAIN), or it can be provided by
the user.

If the work area is to be provided by the editing routine, this word must
contain binary zeros. The editing routine issues a GETMAIN macro to
obtain the required storage, and places the address of the storage obtained in ,Ij

this word. If the work area is provided by the user, then this word contains \~
the address of the area supplied.

The amount of storage needed, in addition to the fixed amount required, is
determined from:

a. the maximum record length;
b. whether a user exit exists (72 bytes for a register save area and four

bytes for an EDW are required by the macro if an exit is specified);
c. whether variable record formats are used.

The size (in bytes) of the work area may be determined from the formula:

s= 84 + 76E + R + 4V

where
S is the size (in bytes) of the work area
E=O if ERROPT=IGNORE is coded
E=1 if ERROPT=name is coded
V=O if RECFM=U
V=1 ifRECFM=V
R is the length of the longest record to be processed

4 Maximum record length

618 OS/MFT and OS/MVT TeAM Programmer's Guide

Return Codes

This is the length, in bytes, of the longest valid edited record. For
EDIT=EDITD the length should exclude SOR and EOR codes; for
EDIT=EDITR, the length should include SOR and EOR codes.

The value of the maximum record size should not include the four-byt~
Segment Descriptor Word added to a variable length record.

Records that exceed the maximum record size are considered error records.

Register 13 must contain the address of a 72-byte register save area aligned on
a fullword boundary.

After the editing routine has edited a record, it provides a return code in register
15 indicating record availability and status of the input area, before returning
control to the user. The return codes and their meanings are:

Code
(hex) Meaning

00 A record is available; input area is empty. The routine has edited the last
logical record in the input area and is passing the record to the user.

04 A record is available; input area is not empty. The routine has edited one
logical record and is passing that record to the user.

08 No record is available; input area is empty. The last record in the input
area was incomplete; that is, it was a partial record.

OC End-of-data (ED) code was detected.

For return codes 00 and 04, the record address and the address of the record
length are given to the user in a two-word parameter list aligned on a fullword
boundary. The address of the parameter list is returned in register 1. The
parameter list has the following format:

Word Contents

1 Address of the record
2 Address of the record length

Identifying Records In Error
This section describes what the editing routine considers to be records in error.
Once a record is determined to be in error, the editing routine passes the record to
the user error exit routine, if ERROPT=name is specified in the TPEDIT macro
statement. If an error exit routine is not specified, the erroneous record is returned
as usual to the user.

The editing routine maintains information about each record as it is being edited.
This information is summarized in the Error Description Word (EDW) described
below. When the EDW contains a nonzero value in either the level status (byte 0)
or the type status (byte 1), the record is considered an erroneous record, and the
EDW is inserted between the four-byte record length field and the data portion if

Appendix G: Device-Dependent Considerations 619

Level Status (Byte 0)

RECFM= V is specified in the TPEDIT macro. Otherwise, the EDW is added to
the start of the record to aid the user in analyzing the error. Format of Error
Description Word for the TPEDIT Macro

Byte 0 Level Status

o - for any error record that will not cause questionable data to be in the
following record(s).

I - for any error record that may cause questionable data to be in the
following record(s).

2 - for any error record that (I) contains questionable data due to the error
level of preceding record(s) and (2) may cause questionable data to be
in the following record(s); and where the level status of the previous
record was either I or 2.

Byte 1 Type status

o - No identifiable error(s)
I - Start-of-record (SOR) or end-of-record (EOR) in error
2 - Length error
4 - Field error
8 - Data check error

This field may contain combinations of these error types; for example, a C
(hexadecimal) indicates a data check error and a field error.

Byte 2 Program Level

I - PI

2 - P2
3 - P3
4 - P4

5 - P5

6 - P6
7 - P7
8 - P8

Byte 3 Record Status

U - Unverified record
V - Verified record

E - none of the preceding levels. Start-of-record
(SOR) is in error.

E - Neither U nor V. End-of-record (EOR) is in error.

The error description record is in EBCDIC format. For example, a 2 is represent­
ed as X'F2'; a C is represented as X'C3'.

The level status indicator identifies erroneous records that result from interrecord
dependency and that cannot be identified in the type status byte.

The level status is presented with each error record and has a value of:

o For any error record that will not cause questionable data in following
record(s).

I For any error record that may cause questionable data in following record(s),
where the level status of the previous record was zero.

620 OS/MFT and OS/MVT TeAM Programmer's Guide

Type Status (Byte 1)

2 For any error record that has questionable data because of the error level of
preceding record(s) that may cause questionable data in the following
record(s),and where the level status of the previous record was either I or 2.

A level status other than zero is presented with error records resulting from the
following:

• The start-of-record (SOR) location has a character defined as an error.
• The record contains two or more data check bytes in succession.
• The record is longer than the user-specified maximum length record.
• The length of the record is not equal to the length of the first valid record of the

same program level encountered on the MDI cartridge from which data is being
obtained.

• The record has a data duplication dependency on a previous record with one of
the foregoing.

The level status is set to zero when the editing routine encounters a record without
one of the previous errors, a canceled record, or the first record of a cartridge.

The type status indicator identifies records in error because of SOR, EOR, length,
field, and/or data check error conditions.

The type status is presented with each error record and has a value of:

o For any record that has no identifiable error(s), but contains questionable data
because of a level status of other than zero (see Level Status).

I For any record that has an SOR character of other than PI through P8 or a GS
code; or that has an EOR character of other than a VOK code when the user
has specified VERCHK=VOKCHK; or that has an EOR character of other
than a VOK code or RM code when the user has specified
VERCHK=NOCHK.

2 For any record that has an incorrect length because it is:

• longer than the specified maximum, or
• shorter than the specified minimum (MINLN), or
• not equal to the length of the first valid record of the same program level

encountered on the MDI cartridge from which data is being obtained.

4 For any record that has one or more field error(s). A field error is duplication
and/ or left-zero justification functions that did not occur due to an error
condition.

8 For any record that has a data check error.

The type status indicator can also have hexadecimal values of 3, 5, 6, 7, 9, A, B,
C, D, E, and F. These values indicate various combinations of SOR, EOR, length,
field, and data check errors. For example, a value of A indicates a record with a
data check error (8) as well as an incorrect length (2).

A data check error is indicated by the presence of 2772 as replacement characters
(EBCDIC SUB character, X'3F') in the input.

Appendix G: Device-Dependent Considerations 621

Program Level (Byte 2)

Record Status (Byte 3)

This byte contains an indication of the start-of-record (SOR) character associated
with this record.

This byte contains an indication of the end-of-record (EOR) character associated
with this record.

Sample Records Containing Errors
These records show some of the errors that may occur during processing and their
effect on the Error Description Word (EDW). For these records, the maximum
record length is specified as 50; EDITR and VOKCHK are specified, and the
hexadecimal REPLACE character is '5B' ($). An asterisk in the records indicates
the presence of a DUP code in the location before editirlg.

Record 1 was a valid record. It contained a program level 1 code and thus
established the valid length for all program level 1 records received from the
cartridge.

Record 2 has a data check in the SOR location. Level status is set to 1 because
the SOR location might have contained a cancel code that would cause any data
duplicated into the following record to be questionable.

Record 3 has no identifiable error but may contain questionable data because it
contained DUP codes and follows a record with a level status of 1.

(Record 2)

v
*************** *0

19EV $111378 RECORD NUMBER 2AK

(Record 3)

V
P *************** *0

20i V 1357987 RECORD NUMBER 3AK

(Record 4)

V
P 0

081 V 1358977 REC$RD NUMBER 4AK

(Record 5)

p R
131 U 1358436 RECORD NUMBER 5M

(Record 6)

V
P *************** *0

241 V 1358436 RECORD NUMBER 6$K

622 OS/MFT and OS/MVT TeAM Programmer's Guide

'i

Programming Considerations

(Input record 7)

v
p 0

233E 3998865 RECORD NUMBER 7A MAXIMUM 00001430 IN WAREH OUSEK

\. y I

(Error record 7)

(Error record 8)

121 EV I OUSE~
(Input record 8)
(Error record 9)

v
P 0

081 V 1367$82 RECORD NUMBER 8AK

• Resulting Error Description Word

Record 4 has a data check error. Because it contained no DUP codes, the level
status is set to O.

Record 5 is shorter than first program level 1 records received from the cartridge
(length error). This record also contains an RM code rather than a VOK code in
the EOR location (VOKCHK was specified). Because the editing routine cannot
determine why the record is short, all data duplicated from this record is question­
able; therefore, the level status is set to 1.

Record 6 contains a DUP code that is beyond the last position of the preceding
record.

Record 7 is longer than the maximum specified record length. Note that it is
passed as two records. The first record indicates an EOR error and a length error;
the second indicates an SOR error.

Record 9 has a data check error. Because it contained no DUP codes, the Level
Status is set to zero.

• All canceled records are bypassed and are not passed as erroneous records.
• All input records less than three bytes in length (SOR location, one data

byte, EOR location) are treated as canceled records. An input record of this
size may be the remaining portion of a record that was longer than the
maximum user-specified record size.

• Data duplication occurs with the DUP code replaced by the character from
the corresponding location of the previous record in the work area when
control was last returned to the editing routine.

• Data duplication does not occur and the DUP code is replaced with the

Appendix G: Device-Dependent Considerations 623

End-of -Cartridge Code

user-specified error replacement character, and a field error is indicated, for
any of the following conditions:

The DUP code is encountered in the first record of a cartridge.

The DUP code is encountered in a record and previous record was a
canceled record.

The DUP code is encountered in a record and its position would cause
duplication of the previous record's end-of-record delimiter location or a
position beyond the length of the previous record.

• Left-zero justification does not occur, the left zero fill code (LZ) is replaced
with the user-specified error replacement character, and a field error is
indicated, for either of the following conditions:

The left-zero fill code (LZ), is encountered without its corresponding
left-zero start code (LZS).

The user-specified maximum record size is exceeded before encountering
the valid end of a left-zero field.

• For BT AM users using dynamic buffering, the BSC control characters ETB
and ETX should not be entered as data on IBM 50 MOl cartridges.

A unique code, written by the IBM 50 MOl, is used to signal to the 2772 control
unit that all meaningful data on a cartridge has been read. For the MOl cartridge,
the end-of-cartridge code is the ED character (X'19').

After initiation of a Read operation the MOl continues to read data from the tape
until it senses the ED character. When the MDI sends this character to the 2772,
the 2772 signals the tape to rewind and transmits the data in its buffer to the
computer.

624 OS/MFT and OS/MVT TeAM Programmer's Guide

c

Appendix H. Conserving Main Storage

Several operands of the INTRO macro instruction can be used to reduce the
amount of main storage required by a TCAM MCP.

If disk queuing is not needed, specifying DISK=NO results in a saving of 140
bytes.

When disk queuing is required CPB= 1 saves 730 bytes in addition to the actual
amount of storage required for the CPBs.

If the system interval is not required, specifying INTV AL=O will save 660 bytes.

If ENVIRON=TCAM and the system configuration permits, specifying the
LINETYP= operand as something other than LINETYP=BOTH results in a
considerable saving. The number of bytes saved is:

LINETYP=BISC 2110
LINETYP=STSP 4220
LINETYP=MINI6720

If ENVIRON= does not specify TeAM or MIXED, specifying LlNETYP=STSP will result
in a saving of 4220 bytes.

If the system timer feature is not required, specifying FEATURE = ("NOTIMER)
saves 820 bytes.

If ENVIRON=TCAM, the other suboperands of the FEATURE= operand will
also reduce main-storage requirements. FEATURE=(DIAL,N02741) saves 70
bytes. FEATURE = (NODIAL,N02741) saves 420 bytes. However,
FEATURE=(NODIAL,2741) does not result in a saving.

The use of the USEREG=, DTRACE=, OLTEST= and COMWRTE= operands
increases the amount of main storage required by the MCP. DTRACE= requires
an additional amount of main storage equal to the value specified multiplied by
four. OLTEST= requires lK of main storage for each integer specified (that is, if
OLTEST=10 is coded, an additional 10K of main storage is implied). For a
discussion of the effects on storage requirements of COMWRTE=, see the section
Debugging Aids in Using TCAM SER VICE Facilities as well as the as
Storage Estimates manual (GC28-6551). For a discussion of the use of the
USEREG= operand and its effects upon storage requirements, see User Code in
a Message Handler in the chapter Designing the Message Handler.

The WTTONE= operand will require an additional n+2 bytes of main storage,
where n is the integer specified for WTTONE=.

In addition to the INTRO operands, operands of the DCB, TERMINAL, and
TPROCESS macros, in conjunction with INTRO, may have an effect upon the
amount of main storage required for the MCP.

If dynamic allocation of buffers is not required, and all DCB macros specify
PCI=(N,N), 930 bytes are saved. The queuing type specified on the TERMINAL
and TPROCESS macros, in conjunction with the MSUNITS= and DISK=

Appendix H. Conserving Main Storage 625

operands of the INTRO macro, changes the amount of main storage required. If
reusable disk queuing or multiple queue types are used, an additional 3510 bytes
are needed. Disk queuing only saves 3300 bytes over a combination of disk and
main-storage queuing. Main-storage-only queuing saves 4110 bytes over a
combination of disk and main-storage, queuing.

The amount of main storage required may also be reduced by proper specification
of-buffers and buffer units. Specification is provided in the INTRO operands
LNUNITS=, MSUNITS=, and KEYLEN=, and the DCB operand BUFSZ=. A
checklist for determination of proper size for the application is found in Design
Considerations in Defining Buffers. The use of these operands depends on the
requirements of the application. It may not be possible to utilize all of the savings
possible in a particular application.

The operands and number of bytes saved are summarized in the following chart:

Macro Operand(s) Bytes Saved

INTRO DISK=NO 140
CPB=1 730
INTVAL=O 660
LINETYP=BISC 2110
LINETYP=STSP 4220
LINETYP=MINI 6720
FEATURE = ("NOTIMER) 820
FEATURE = (DIAL,N027 41) 70
FEATURE = (NODIAL,N027 41) 420
MSUNITS=n,DISK=NO 4110
MSUNITS=O,DISK= YES 3300

DCB PCI=(N,N) 930

626 OS/MFT and OS/MVT TeAM Programmer's Guide

Appendix I: Macro Instructions for Time-Sharing Support

Contents

Macro Instructions for Time-sharing Support 628
Operating in a TSO-Only Environment 628
Operating in a TSO/TCAM Mixed Environment 628

Changes to TCAM Macro Instructions 628
INTRO Macro Instruction 629
TERMINAL Macro Instruction .. 631
Line Group DCB Macro Instruction 635
ST ARTMH 636

TSO Macro Instructions 636
TSINPUT Macro Instruction 636
TRANLIST Macro Instruction 637

TSO Message-Handler Macro Instructions 638
STARTMH Macro Instruction. 639
A TTEN Macro Instruction . . . 639
CARRIAGE Macro Instruction 640
HANGUP Macro Instruction 640
LOGON Macro Instruction 640
SIMA TTN Macro Instruction 641

Message-Handler Routine. 641
ST ARTMH-Dependent TSO Macro Instructions 641
Non-Restricted TCAM and TSO Macro Instructions 641
Operand-Restricted TCAM Macro Instructions 642

LOG Macro Instruction 642
PATH Macro Instruction 643

TCAM Macro Instructions Not Used 643
TSO/TCAM Mixed Environment 644

Defining Terminals for Message Handlers 644
Defining Message Handlers to Allow MUltiple Applications 644
TSO/TCAM Mixed Environment Functional Flow 644
Operator Control Considerations 645

ACTV A TED 645
INTER V AL 646
QSTATUS 646
STOP LINE 647
SYSCLOSE 647

Checkpoint/Restart Considerations 648
Swappable Application Programs . . 648

Closing TeAM 648
TSO Bits in the Message Error Record 648
TSO/TCAM 3270 Device-Dependent Considerations 649

Appendix I. Macro Instructions for Time-Sharing Support 627

Macro Instructions for Time-Sharing Support
This appendix describes additional macro instructions and changes to TCAM
macro instructions for the system programmer who incorporates the mM
System/360 Operating System Time Sharing Option (TSO) into his system. It is
intended primarily for the system programmer who elects to design his own TSO
Message Handler. A summary of MH design considerations is contained below in
the section TSO/TCAM Mixed Environment.

TSO provides general-purpose time-sharing facilities in a System/360 Operating
System MVT environment. TCAM is the access method that controls I/O
operations for the TSO user. The OS publication TSO Guide describes the
concepts, features, and implementation of TSO and should be consulted for
designing, generating, or maintaining a TSO installation.

TSO jobs may be run in either of two environments, TSO-only or TSO /TCAM
mixed environment.

Operating in a TSO-Only Environment
In a TSO-only environment, time-sharing (or foreground) operations can take
place concurrently with the execution of standard batch jobs (background); thus,
the system need not be dedicated to time sharing. All terminals that are logged on
for a time-sharing session in a TSO-only environnient are dedicated to TSO
Message Handlers during the session. The system programmer who is designing
such a system should consult the TSO Guide for guidelines in generating his
IBM-supplied MCP. The LINEGRP, LISTTA, and TSOMCP assembly language
macros, described in the TSO Guide, are used to define line configuration, ~
terminal characteristics, and any optional features the user wished to include in his ~
system.

Operating in a TSO/TCAM Mixed Environment
When operating in a mixed environment, TCAM and TSO tasks concurrently
share all necessary system resources.

The system programmer provides his own MCP and is responsible for activating
and deactivating the system, defining terminal and line control areas, and defining
data sets. Optionally, he is relieved of the task of designing his MH routines for
handling TSO messages by specifying an IBM-provided MH routine with the
TSOMH macro (described in the TSO GUide). He is still responsible for design­
ing his TCAM Message Handlers. The remainder of this appendix is intended
primarily for the system programmer who designs his own TSO Message Han­
dlers; it is assumed that he is already familiar with the MCP and MH design
considerations and macro capabilities presented in earlier sections of this
publication.

Changes to TCAM Macro Instructions
Four TCAM macros are modified for TSO support:

• INTRO
• TERMINAL
• line group DCB
• STARTMH

This section provides a general statement on the function of each macro that it
discusses, and specific statements on operands affected by TSO. See other

628 OS/MFT and OS/MVT TeAM Programmer's Guide

INTRO Macro Instruction

ENVIRON= ~TSO ~
MIXED
TeAM

chapters in this publication for detailed discussions of the functions of these
macros in TCAM environment.

This macro is described in the section Activating and Deactivating the Message
Control Program. The INTRO macro establishes addressability, performs
initialization functions, and generates the TCAM constant and work area called
the address vector table. This macro must be included in a mixed environment.
The following operands are added or affected by time-sharing support.

Name Operation Operand

[symbol] INTRO ENVIRON = ~ TSO ~
MIXED
TCAM

,CPB= ~ ~teger ~

,MSMIN = ~ ;n~eger ~
-

,MSMAX= ~ ~~eger ~
-

,MSUNITS= ~ ~ntegert

-
,FEATURE = (~NODIAL~' ~N02741~' ~NOTIMER~)

DIAL 2741 TIMER

This keyword operand is added to INTRO.

Response Keyword: None.
Function: Specifies whether this MCP is dedicated to either TSO or TCAM
functions, or both.
Default: ENVIRON=TCAM
Format: TSO, MIXED, or TCAM
Notes: TSO specifies that this MCP is dedicated to time-sharing functions. This
keyword value causes the assembly of a smaller version of the address vector table
and sets a bit in the table indicating that only TSO Message Handlers can be used
in this MCP; it also causes the inclusion of required time-sharing subtasks and the
exclusion of disk and main-storage-queuing subtasks and other subtasks not used
for time sharing.

MIXED specifies that this MCP supports all required TCAM and TSO functions.
This keyword value causes the assembly of the full version of the address vector
table and sets bits in the table indicating that both TCAMand TSO Message
Handlers can be used in this MCP; it also causes the inclusion of all required
time-sharing subtasks.

Appendix I. Macro Instructions for Time-Sharing Support 629

MSMAX=~ ;~eger t

Response Keyword: D=
Function: Specifies the number of channel program blocks to be provided for
transferring data between buffer units and message queues maintained on disk.
Default: CPB=O
Format: Unframed decimal integer.
Maximum: 65535
Notes: If ENVIRON=TSO is specified, this operand is ignored, and a WTOR
response at INTRO execution time should not be entered. Such a response causes
the following message to be returned to the system console:

IED003A INVALID KEYWORD xxx

where xxx is replaced by CPB= or D=xx. Reenter all valid entries that were
initially entered after this invalid entry (do not reenter the invalid- entry). See
additional notes at the description of the CPB= operand of the INTRO macro.

Response Keyword: Y =
Function: Specifies the percentage of units enqueued on a message queues data
set (specified by the MSUNITS= operand) below which a bit is set in every
message error record in the system.
Default: MSMIN=50
Format: Unframed decimal integer.
Maximum: 99
Notes: If ENVIRON=TSO is specified, this operand is ignored, and a WTOR
response at INTRO execution time should not be entered. Such a response causes
the following message to be returned to the system console:

IED003A INVALID KEYWORD xxx

where xxx is replaced by MSMI or Y =xx. Reenter all valid entries that were
initially entered after this invalid entry (do not reenter the invalid entry). See
additional notes at the description of the MSMIN = operand of the INTRO macro.

Response Keyword: X=
Function: Specifies the percentage of the number of units (specified by the
MSUNITS= operand) to be enqueued on a main-storage message queues data set
before a warning is provided that the data set is nearly full.
Default: MSMAX=70
Format: An unframed decimal integer greater than zero.
Maximum: 100
Notes: If ENVIRON=TSO is specified, this operand is ignored, and a WTOR
response at INTRO execution time should not be entered. Such a response causes
the following message to be returned to the system console:

IED003A INVALID KEYWORD xxx

where xxx is replaced by MSMA or X=xx. Reenter all valid entries that were
initially entered after this invalid entry (do not reenter the invalid entry). See
additional notes at the description of the MSMAX= operand of the INTRO
macro.

630 OS/MFT and OS/MVT TeAM Programmer's Guide

MSUNITS=~ ~teger ~

FEATURE=(~ NODIAL t ,
1 DIAL ~

iN02741 t ,
12741 ~

iNOTIMERt)
1TIMER ~

TERMINAL Macro Instruction

Response Keyword: M=
Function: Specifies the maximum number of buffer units that may be assigned to
the main-storage message queues data set at anyone time.
Default: MSUNITS=O
Format: Unframed decimal integer.
Maximum: 65535
Notes: If ENVIRON=TSO is specified, this operand is ignored, and a WTOR
response at INTRO execution time should not be entered. Such a response causes
the following message to be returned to the system console:

IED003A INVALID KEYWORD xxx

where xxx is replaced by MSUN or M=xx. Reenter all valid entries that were
initially entered after this invalid entry (do not reenter the invalid entry).

If ENVIRON = MIXED is specified, either the MSUNITS= operand must specify
a nonzero value, or DISK= YES must be specified.

See additional notes at the description of the MSUNITS= operand of the INTRO
macro.

Response Keyword: None.
Function: Specifies additional features to be supported in the TeAM system.
Default: FEATVRE=(DIAL,2741,TIMER)
Format: NODIAL or DIAL, N02741 or 2741, and NOTIMER or TIMER.
Framing parentheses must be coded. If a suboperand other than the last is
omitted due to default, a comma must be coded to indicate that it is missing.
Notes: If the ENVIRON= operand specifies either TSO or MIXED, do not
specify the N02741 keyword value. See additional notes at the description of the
FEATURE= operand of the INTRO macro.

This macro is described in the section Defining Terminal and Line Control
Areas. The UTERM=NO operand generates an entry other than a line entry in the
terminal table and defines parameters for the station with which it is to be associ­
ated; there must be one such TERMINAL macro instruction defined for each
station attached to a nonswitched line. The UTERM= YES operand generates a
line entry in the terminal table and defines parameters for all stations that can dial
into a particular line and that do not uniquely identify themselves. The following

Appendix I. Macro Instructions for Time-Sharing Support 631

TERM=type

QBY=T

QUEUES=form

operands are either expanded or added for time-sharing support:

Name Operation Operand

symbol TERMINAL TERM=type

. [,QBY=T]

,QUEUES=form

[,SCRSIZE= (n,m)]

[,FEATURE=(bBREAK], [ATTN J ,[TOSUPPR])1
NO BREAK NO ATTN

Function: Specifies the terminal type.
De/au It: None. This operand must be specified.
Format: The values that can be specified to indicate TSO terminals in either a
mixed environment or a TSO environment are either 1050,2741, 226L, 226R,
2265,3335,5041,327L,or327R.
Notes: The value 5041 is added for TSO support indicating that both the IBM
2741 Communication Terminal and the IBM 1050 Data Communication System
may be supported by this terminal table entry. The 5041 keyword value is
supported only on switched lines.

When a group of terminals is defined by UTERM= YES, there is only one symbol­
ic name associated with all the terminals on that line. This symbolic name can be
used during an on-line test by TOTE in its scheduling and control functions, if all
terminals on the line are the same type (that is, line control is the same for all
terminals, all terminals have the same hardware features, and the configuration of
peripheral equipment is identical for all terminals).

Where terminals on a line are not of the same type (such as the 2741/1050
configuration described above), a separate TERMINAL macro, whose UTERM=
operand specifies YES, must be coded for each group of terminals that are of the
same type. These additional TERMINAL macros provide additional symbolic
names needed by TOTE for scheduling and controlling on-line tests for unlike
terminals.

Function: Specifies the type of message queuing.
De/au It: None. Must be specified for TSO or non-dedicated multipoint terminals.
Format: QBY=T

Function: Specifies where the message queues are to be maintained.
De/ault: None. This operand must be specified.
Format: TS, DRT, DNT, MOT, MRT, or MNT
Notes: One of these values is added to specify where the message queues are to be
maintained when time-sharing subtasks may be supported in the TeAM system.
TS indicates time-sharing use only, and requires that the ENVIRON= operand of
the INTRO macro must specify either TSO or MIXED. ~

632 OS/MFT and OS/MVT TeAM Programmer's Guide

SCRSIZE=(n,m)

FEATURE=(rBREAK J'
LNOBREAK

rATTN J
LNOATIN ,

[TOSUPPR])

QUEUES=TS causes the generation of a shorter destination queue control block,
which can be used only to support time sharing on this station. When TS is
specified and a queuing operand of L is specified on the QBY = operand of the
TERMINAL macro, the LEVEL= operand of the TERMINAL macro is ignored.

If QUEUES=TS is specified, DIALNO=NONE is assumed for this TERMINAL
macro (that is, there is no dial out to the time-sharing terminals represented by
this TERMINAL macro). The keyword values of the QUEUES= operand have
been expanded to allow definition of non-dedicated terminals. The first two
letters of the keyword values are explained in the definition of the TERMINAL
macro instruction in the Defining Terminal and Line-Control Areas section.
The additional value T indicates that time sharing may also be supported from
this terminal. Specifying one of these keyword values defines a non-dedicated
terminal. These keyword values ending in T are restricted to a mixed environment
(see TSO/TCAM Mixed Environment in this appendix). The following chart
should be helpful in choosing the appropriate QUEUES= operand for the
TERMINAL macro.

QUEUES= Type of Type of Message
Operand on Environment Terminal Handler
Terminal Supported
Macro

TS TSO Dedicated TSOMH
Mixed

DR; DN; MO TCAM Dedicated TCAMMH
MR;MN

DRT; DNT; MOT Mixed Non-Dedicated TSOMH
MNT;MRT TCAMMH

Function: Specifies the correct number of rows and characters per row for screens
of TSO display stations.
Default: None. This operand must be specified if display stations are used.
Format: Decimal integers of 1 or greater, enclosed in parentheses and separated
by commas.
Maximum: 255 each.
Notes: n is replaced by the number of rows on the display screen being used. m
is replaced by the number of characters per row allowed for the display screen
being used. The component description SRL for the device used provides the
correct values that must be specified. TCAM ignores this operand if it is specified
for a station that is not a TSO display station.

Function: Specifies featues for TSO terminals.

Appendix I. Macro Instructions for Time-Sharing Support 633

Features

Break feature

Attention featureS

Time out suppr_ion feature

Notes:

Default: Depends on terminal type specified on the TERM= operand (values
listed in the illustration below).
Format: BREAK or NOBREAK, ATTN or NOATTN, and TOSUPPR
Notes: The characteristics defined by this operand have meaning only during the
duration of a time-sharing session. The reverse break and time-out suppression
features can be changed during execution of a time-sharing session using TSO
commands from the terminal or terminals that are defined in TeAM by
TERMINAL macro instructions (TSO commands are described in the OS publica­
tion TSO command Language).

Figure 59 illustrates the hardware features that are either required, optional, or
invalid for terminals that are specified on the TERM= operand of the
TERMINAL macro. Each feature that can be specified by the FEATURE=
operand is discussed following the illustration.
BREAK indicates that the terminal has the Teverse break feature; that is, it can be
taken out of transmit mode by the computer. It also indicates that the TPUT
macro used with the break option is supported on this terminal (the TPUT macro
instruction transfers data from a calling program to the time-sharing control task
region-see Terminal I/O in the TSO Guide). Use of the TPUT macro with
the break option is not supported unless BREAK is either specified or assumed as
a default value.

Value specified on the TERM = aperand of the TERMINAL macro
Value specified
on FEATURE =

S041 226L, operand of the
TERMINAL macro 1050 2741 226R, 2265, 3335

(IBM 1050) (IBM 2741) 327L, or
327R

BREAK Optional Optional 1 Optional Optional Invalid Required2

----- ----- ----- ----- ----- ----- -----
NOBREAK Optional 3 Optional Optional 3 Optional 3 Required Invalid

ATTN Optional4 Optional4 Optional4 Optional4 Invalid Required2

----- ----- ----- ----- ----- ----- -----
NOATTN Optional Optional Optional Optional Required Invalid

TOSUPPR Optional Required2 Optional Required2 Invalid Required2

1. If neither BREAK nor NOBREAK is specified, the system defaults to the
value of BREAK

2. The system assumes that this feature is present even if it is not
specified on the FEATURE = aperand of the TERMINAL macra.

3. If neither BREAK nor NOBREAK is specified, the system defaults to the
value of NOBREAK.

4. If neither ATTN nor NOATTN is specified, the system defaults to the
value of ATTN.

S. Use of the attention key on the IBM 1050 without the text time-out suppression
feature is valid only during output; however, an attention interrupt can be
simulated during input by entering an EOT without a preceding CR. Use of the
attention key is valid on input or output with a 1050 having the text time-out
suppression feature.

Figure 59. Required, Optional, and Invalid Features for TSO Terminals

634 OS/MFT and OS/MVT TeAM Programmer's Guide

)

NOBREAK indicates that the terminal does not have the reverse break feature.

ATTN indicates that the terminal has the attention interrupt feature; thus, it can
interrupt the CPU while it is accepting data.

NOATTN indicates that the terminal does not have the attention interrupt
feature.

TOSUPPR specifies that an IBM 1050 terminal has an optional time-out suppres­
sion feature and that an INHIBIT channel command can be used safely with it.
INHIBIT channel commands are always used in a time-sharing session with the
IBM 2741 Communication Terminal and AT & T Models 33 and 35
Teletypewriter Terminals (switched).

Line Group DCB Macro Instruction

MH=mhname

CPRI=~ ~ ~

This macro is described in the section Defining the MCP Data Sets. The line
group DCB macro with a DSORG= operand that specifies TX defines each line
group data set. The following operands are either modified or affected by time­
sharing support.

Name Operation Operand

linedcb DCB MH=mhname

.CPR1lil
['TRANS={ table

list
~]

Alternate Source: None.
Function: Specifies the name of the time-sharing MH or TCAM MH (mixed
environment) for the line group represented by this DCB macro.
Default: None. This operand must be specified.
Format: Must conform to the rules for assembler language symbols, and must be
the same as the name specified in the name field of a STARTMH macro.

All time-sharing buffers are handled as if LC=IN, and CONY = YES are specified
on the STARTMH macro regardless of how STARTMH is coded. This operand
must be coded such that a time-sharing MH may be reached from line groups
handling time-sharing terminals or line groups handling non-dedicated terminals.
The decision to make terminals dedicated or non-dedicated is made by the choice
of keyword values for the QUEUES= operand of the TERMINAL macro (see
chart following the descriptions of the TERMINAL macro and TSO/TCAM
Mixed Environment in this appendix).

Alternate Source: PP, OE, DD.
Function: Specifies the relative transmission priority assigned to the lines in this
line group.

Appendix I. Macro Instructions for Time-Sharing Support 635

TRANS=~ table l
1 list ~

ST ARTMH Macro Instruction

Default: CPRI=S (this default value is supplied at execution time).
Format: CPRI=S
Notes: Do not specify either R or E. CPRI=S specifies that sending has priority
over receiving, and must be specified when the line group supports time-sharing
terminals. See additional notes at the description of the CPRI= operand of the
line group DCB macro.

Alternate Source: PP, OE, DD.
Function: Specifies the translation table for this line group.
Default: None. Either table or list must be specified.
Format: Additional values that may be specified for table are EB41 (2741 EBCD
transmission code), BC41 (2741 BCD transmission code), and CR41 (2741
Correspondence code). list may be replaced by the symbolic name of a
TRANLIST macro (described later).
Notes: For a full description of the TRANS=table operand, see the corresponding
entry in the line group DCB discussion in the section Defining the MCP Data
Sets). The TCAM code 105F (described in the same section) specifies the transla­
tion table that translates all lowercase characters into uppercase for data entered
by the IBM 1050 terminal. If the user specifies this code, his resulting data will
not have any lowercase characters in it.

The TRANS = list operand specifies that this line group contains terminals for
which determination of the transmission code is desired during execution.

See additional notes at the description of the TRANS= operand of the line group
DCB macro.

See TSO Message Handler Macro Instructions.

TSO Macro Instructions

TSINPUT Macro Instruction

symbol

Two macro instructions are provided for TSO support, TSINPUT and
TRANLIST.

The TSINPUT macro

• generates a queue control block for the time-sharing subtask,
• generates an extension of the address vector table for time-sharing support.

Name Operation Operand

[symbol] TSINPUT (no operands)

Function: Name of the macro.
Default: None. Specification optional.
Format: Must conform to the rules for assembler language symbols (see the
symbol entry in the Glossary).

\

'~

This macro is required when the ENVIRON = operand of the INTRO macro (

636 OS/MFT and OS/MVT TeAM Programmer's Guide

TRANLIST Macro Instruction

symbol

LlST=(~table t,···)
lusemame\

specifies either TSO or MIXED and is considered an error when
ENVIRON=TCAM is coded. Only one TSINPUT macro may be specified, and it
must be coded after the terminal table; it must be coded before the MH section of
code.

The TRANLIST macro

• provides a list of translation tables so that messages entered at a terminal may
be translated dynamically,

• allows the programmer to specify more than one translation table for a line
group.

Any combination of TCAM-provided and user-provided tables may be specified
by each TRANLIST macro. Multiple TRANLIST macros may be specified, and
they must not be coded either before the INTRO macro or within the terminal
table; they must be coded before the MH section of code.

Name Operation Operand

symbol TRANLIST rST-< l,able f'···) username I

L27 41-< 1 table f , ...) ,Ll 050-< 1 table f ,J
username username

,CHARS=(control chars, ...)

,OPFLD=opfldname

Function: Name of the macro.
Default: None. Specification of a name is required.
Format: Must conform to the rules for assembler language symbols (see thee
symbol entry in the Glossary).

Function: Provides translation for a line group consisting of either IBM 2741 or
1050 terminals (but not both).
Default: None. This operand must be specified for a line group consisting solely
of either IBM 2741 or 1050 terminals.
Format: table is replaced by one or more four-character codes indicating TCAM­
provided translation tables (see the discussion of the TRANS= operand of the line
group DCB macro in this appendix and in the section Defining the MCP Data
Sets).
username must conform to the rules for assembler language symbols (see the
symbol entry in the Glossary) and represents one or more names of user-provided
translation tables.
Notes: This operand requires that the TERM= operand of the TERMINAL
macro specify some value other than 5041.

Appendix I. Macro Instructions for Time-Sharing Support 637

L2741=(~ table t , ...)
1 username \

,Ll050=O table t , ...)
1 username \

CHARS=(control chars, ••.)

OPFLD=opndname

Function: Provides translation for a line group whose TERMINAL macros specify
some combination of IBM 2741 and 1050 terminals.
Default: None. This operand must be specified for a TSO line group consisting of
IBM 2741 and 1050 terminals.
Format: table is replaced by one or more four-character codes indicating TCAM­
provided translation tables (see the discussion of the TRANS= operand of the line
group DCB macro in this appendix and in the section Defining the MCP Data
Sets:
username must conform to the rules for assembler language symbols (see the
symbol entry in the Glossary) and represents one or more names of user-provided
translation tables.
Notes: The L2741= and LI050= operands must indicate the appropriate table or
username for each IBM 2741 and IBM 1050. This operand requires that the
TERM= operand of the TERMINAL macro specify 5041.

Function: Specifies control character groups used by the CODE macro routine for
determining dynamically the appropriate translation table to be used.
Default: None. This operand must be specified.
Format: Must conform to the rules for assembler language symbols (see the
symbol entry in the Glossary).
Maximum: As many as 5 control character groups, each consisting of no more
than 8 characters.
Notes: Anyone of the control character groups specified by this operand may be
specified also at the beginning of the first message for a time-sharing session. The ;'
characters specified as control characters should have unique hexadecimal repre- .~
sentations in the translation tables specified. Where the control group is translat-
ed the same for two tables, the first correct table found in the LIST=, L2741=, or
LI050= operand is used.

Function: Permits TCAM to locate the option field containing the address of the
translation table to be used.
Default: None. This operand must be specified.
Format: Must conform to the rules for assembler language symbols (see the
symbol entry in the Glossary).
Notes: opfldname is indentical to the name specified for the OPTION macro
whose option field is to contain the address of the translation table to be used.

TSO Message-Handler Macro Instructions
A Message Control Program consists of the Message Handlers, the sets of routines
that determine the operations upon messages being received from or sent to
remote stations or application programs. A Message Handler is defined by a
sequence of TCAM macro instructions and is constructed to handle messages for
a particular line group, or for several line groups having similar characteristics.

A Message Handler defines the macro-introduced routines that:

• examine and process control information in message headers, and
• perform functions necessary to prepare message segments for forwarding to

their destinations, which may be stations, application programs, or TSO.

638 OS/MFT and OS/MVT TCAM Programmer's Guide

ST ARTMH Macro Instruction

TSOMH= 1 ~~S f

AL TMH=mhname

A TTEN Macro Instruction

The ST ARTMH macro defines the beginning of a message-handling routine for
time sharing as it does for TCAM. The TSOMH= operand is added to the
STARTMH macro for time-sharing support. The ALTMH= operand is added to
the ST ARTMH macro for specifying an alternate Message Handler in a mixed
environment.

Name Operation Opemnd

mhname STARTMH [,TSOMH= {~~S}][,ALTMH=mhname]

Function: Determines whether this MH is dedicated to handling time-sharing
messages.
Default: TSOMH=NO
Format: TSOMH=YES or TSOMH=NO
Notes: YES indicates that the following operands of STARTMH are appropriate:

LC=IN
STOP=YES
CONV=YES

If one or more of these operands are omitted, or if inappropriate values are
specified, the system assumes the values listed here.

NO indicates that this MH is not dedicated to handling time-sharing messages.

Function: Specifies the name of an alternate MH.
Default: None. Specification optional.
Format: Must conform to the rules for assembler language symbols and must be
the same as the name in the name field of the STARTMH macro for the alternate
MH.
Notes: This operand specifies the name of the TSO MH to receive messages from
a terminal user logged on to time-sharing from a TCAM MH, or specifies the
name of the TCAM MH to receive messages from a terminal user logged on to
TCAM from a TSO MH. This operand is restricted to use in a mixed environ­
ment. It requires that the alternate MH as well as this MH have a LOGON macro
in its INHDR sequence.

The ATTEN macro

• causes the TSO/TCAM attention processing routine to receive control when
hardware or simulated attention occurs;

• is restricted to use in a TSO MH.

Name Operation Operand

ATTEN (no operands)

This TSO macro instruction must follow either an INMSG or an OUTMSG
delimiter macro instruction and must precede all MSGGEN macro instructions.

Appendix I. Macro Instructions for Time-Sharing Support 639

CARRIAGE Macro Instruction

HANGUP Macro Instruction

LOGON Macro Instruction

The ATTEN macro requires that the TSOMH= operand of STARTMH specify
YES. A name is not required and there are no operands.

The CARRIAGE macro causes a TSO/TCAM routine to

• keep track of the position of the carriage;
• is restricted to use in a TSO MH.

Name Operation Operand

CARRIAGE (no operands)

The CARRIAGE macro causes a TSO/TCAM routine to keep track of the
position of the carriage by adding one to a one-byte count for each character that
moves the carriage one position to the right, and subtracting one from the one­
byte count for each character that moves the carriage one position to the left.
When either a CR on an NL control character is encountered in the middle of a
message, the count is reset to zero and counting is resumed. If an input line does
not end with CR or NL, the carriage position count will not be zero. This TSO
macro instruction, must follow an INBUF delimiter macro instruction, and it
requires that the TSOMH= operand of the STARTMH macro specify YES. A
name is not required and there are no operands.

The HANGUP macro

• calls a TSO/TCAM routine to be executed at end-of-message to test for I/O
errors and error bits in the message error record; r:

• handles hardware errors that occur at the user's terminal; ."
• is restricted to use in a TSO MH.

Name Operation Operand

HANGUP (no operands)

This TSO macro instruction must follow either an INMSG or an OUTMSG
delimiter macro instruction and must precede all MSGGEN macros; it also
requires that the TSOMH= operand of ST ARTMH specify YES. A name is not
required and there are no operands.

The LOGON macro

• invokes a TSO/TCAM routine to perform logon procedures;
• must be used in all TSO Message Handlers or any TCAM Message Handler

operating in a mixed environment;
• should be coded immediately following the CODE macro in the inheader

subgroup (or inblock for LMD terminals) of the TSO or TCAM Message
Handler unless an INBLOCK macro exists in the TCAM MH. The CODE and
LOGON macros should then follow the INBLOCK macro and precede the
INHDR macro;

• only one LOGON macro is allowed per Message Handler.

640 OS/MFT and OS/MVT TeAM Programmer's Guide

SIMA TIN Macro Instruction

The LOGON format is:

Name Operation Operand

LOGON (no operands)

The TSO/TCAM routine scans for the EBCDIC characters LOGON or
TCAMON in the first buffer of every message destined for a TSO MH or TCAM
MH operating in a mixed environment. The LOGON macro must be specified in
the inheader subgroup of the appropriate MH. A name is not required and there
are no operands.

Note: The EBCDIC characters LOGON and TCAMON are recognized as
commands by the TSO/TCAM routine. Do not confuse the LOGON com­
mand with the LOGON macro.

The SIMATTN macro

• gives control to a routine to handle a simulated attention string or code;
• is restricted to use in a TSO MH.

Name Operation Operand

SIMATTN (no operands)

The SIMATTN routines scans the initial bytes in the first input buffer of a mes­
sage for a simulated attention string or code; if found, this routine processes the
simulated attention request. This macro must follow an INBUF delimiter macro
and requires that the TSOMH= operand of STARTMH specify YES. A name is
not required and there are no operands.

Message-Handler Routine
The TSO MH routine is a sequence of macro instructions that perform the
message-handling functions required for TSO. The LOGON macro causes
messages to be routed to the time-sharing input destination. The STAR TMH
macro defines the beginning of a Message Handler routine. A more detailed
discussion of the TSO operand that has been added to the STAR TMH macro can
be found in the section TSO Message Handler Macro Instructions in this
appendix.

STARTMH-Dependent TSO Macro Instructions
These macro instructions may be included only in an MH whose STARTMH
delimiter macro instruction specifies TSOMH= YES:

• ATTEN
• CARRIAGE
• HANGUP
• SIMATTN

These TSO macro instructions are discussed in an earlier section of this appendix,
TSO Message Handler Macro Instructions.

Non-Restricted TeAM and TSO Macro Instructions
The following macros may be used without restriction in a TSO MH. Macros that
are designated (TSO) are discussed in greater detail in TSO Message Handler
Macro Instructions in this appendix. Those designated (TCAM) are discussed in
earlier sections of this programmer's guide.

Appendix I. Macro Instructions for Time-Sharing Support 641

• ATTEN (TSO) causes the attention processing routine to receive control when
a hardware or simulated attention occurs.

• CANCELMG (TCAM) causes cancelation of a message if a specified error
occurs.

• CARRIAGE (TSO) keeps various carriage position and print line counts.
• CODE (TCAM) provides translation functions. If dynamic translation is

desired, this macro is required and operands must not be specified. If transla­
tion need not be dynamic, there are no restrictions on the use of this macro's
operands. For TCAM buffers, translation is performed on a message-by­
message basis. Once a user logs on for a time-sharing session, the same trans­
mission code is used until he logs off. One of the following return codes is
passed in register 15 after CODE executes:

Code Meaning

o Message translated
4 Correct translation table could not be found. Message not translated.

• COUNTER (TCAM) keeps a count of incoming or outgoing message segments
orcomplete messages depending on the subgroup in which the macro is issued.

• CUTOFF (TCAM) checks for incoming TCAM buffers filled with identical
characters (indicating terminal malfunction). In such a case, bit 7 is set in the
message error record and reception is terminated. The CUTOFF macro also
specifies the maximum number of characters allowed in either a TCAM or a
TSO message; if the maximum is exceeded, reception is terminated and bit 7 is
set in the message error record. Note that only specifying the maximum
number of characters is utilized for time-sharing support.

• HANGUP (TSO) causes a TSO/TCAM error processing routine to receive ,A

control to test for and handle hardware error conditions at the user's terminal. ~

• LOCOPT (TCAM) provides access to the option field of the terminal table,
permitting examination and modification of the contents of the fields.

• LOGON (TSO) invokes a TSO/TCAM routine to perform logon procedures.
• MSGGEN (TCAM) generates a special response message and routes it immedi­

ately to either the originating or the destination station. The response message
bypasses normal message handling, queuing, logging, and buffering functions.

• MSGLIMIT (TCAM) limits the number of messages to or from a station during
a single transmission sequence.

• SIMATTN (TSO) gives a routine control to handle simulated attention process­
ing for input messages.

• TERRSET (TCAM) causes bit 20 to be set in the message error record to
indicate,at the discretion of the user, that a user-defined logical error occurred.

Operand-Restricted TeAM Macro Instructions

LOG Macro Instruction

The following TCAM macro instructions may be used in a TSO MH with the
indicated operands only.

The LOG macro places copies of messages or message segments on a sequential
medium such as magnetic tape.

Name Operation Operand

[symbol] LOG dcbname

642, OS/MFT and OS/MVT TeAM Programmer's Guide

c

symbol

dcbname

PATH Macro Instruction

symbol

switch

opfield

Function: Name of the macro.
Default: None. Specification optional.
Format: Must conform to the rules for assembler language symbols (see the
symbol entry in the Glossary).

Function: Specifies the name of the data control block for logging.
Default: None. This operand must be specified.
Format: Identical to the name of the data control block specified for the message
log data set.
Notes: If dcbname does not match the name of a valid data control block, the
LOG macro does not execute, and a return code of X'04' is set in the low-order
byte of register 15.

The LOG macro may be coded in the inheader, inbuffer, outheader, or outbuffer
subgroups.

The PATH macro sets a bit in the option field specified by the opfield operand.
Succeeding macros may be executed conditionally, depending upon the bit set.

Name Operation Operand

[symbol] PATH switch,opfield

Function: Name of macro.
Default: None. Specification optional.
Format: Must conform to the rules for assembler language symbols (see the
symbol entry in the Glossary).

Function: Specifies the path switch setting to be made for the byte residing in the
option field named by the opfield operand.
Default: None. This operand must be specified.
Format: Decimal or hexadecimal. If hexadecimal format is specified, framing X' ,
or XL l' , characters must be used.
Maximum: 255 or a I-byte hexadecimal field.
Notes: If 0 is specified, all eight path switches are turned off. If 255 (or X'FF') is
specified, all switches are turned on.

Function: Specifies the path-switch byte to be operated upon.
Default: None. This operand must be specified.
Format: Identical to the name of a I-byte field in the option table that is defined
by an OPTION macro.
Notes: If the option field cannot be found, the path-switch byte is not operated
upon, and a return code of X'OO' is set in the low-order byte of register 15. See
additional notes at the description of the opfield operand of the PATH macro.

TeAM Macro Instructions Not Used
The following macro instructions may not be used in a TSO MH (they do not
assemble and MNOTEs are generated).

Appendix I. Macro Instructions for Time-Sharing Support 643

• CHECKPT
• DATETIME
• ERRORMSG
• FORWARD
• HOLD
• INITIATE
• LOCK
• MSGEDIT
• MSGFORM
• MSGTYPE
• ORIGIN
• PRIORITY
• REDIRECT
• SCREEN
• SEQUENCE
• SETEOF
• SETSCAN
• UNLOCK

TSO ITeAM Mixed Environment
Mixed-environment support will allow non-dedicated terminals, switched or
nonswitched, to be used with either TCAM applications or TSO applications. The
user will also have the option of dedicating terminals to TSO or TCAM applica­
tions. A user with a non-dedicated terminal may switch back and forth between
TCAM and TSO applications by entering a LOGON command if in a TCAM
session or a LOGOFF followed by a TCAMON if in a TSO session.

Defining Terminals for Message Handlers
Dedicated terminals may be defined by the keyword values (TS, DR, DN, MO,
MR, MN) of the QUEUES= operand of the TERMINAL macro. Non-dedicated
terminals may be defined by the keyword values (DRT, DNT, MOT, MRT, MNT)
of the QUEUES= operand of the TERMINAL macro. Non-dedicated terminals
can only be the time-sharing supported types. All dedicated and non-dedicated
terminals will be assigned to either a TCAM or a TSO Message Handler (MH). A
non-dedicated terminal should be assigned to the MH defining the type of applica­
tion (TSO or TCAM) most frequently used by that terminal. This assignment is
made by coding the DCB= operand of the TERMINAL macro to point to a DCB
whose MH= operand points to a TSO MH or a TCAM MH.

Defining Message Handlers to Allow Multiple Applications
A TCAM MH assigned non-dedicated terminals should specify the alternate TSO
MH to be used for TSO applications in the ALTMH= operand of its STARTMH
macro. Conversely, a TSO MH assigned non-dedicated terminals should specify
the alternate MH to be used for TCAM applications in the ALTMH= operand of
its STARTMH macro.

TSO/TCAM Mixed Environment Functional Flow
Dedicated terminals are functionally unchanged. The rest of this discussion
applies to non-dedicated terminals that may be connected to switched or non­
switched lines. When a user begins a terminal operation, the terminal will be
logically connected to the MH to which it was initially assigned. Terminal trans­
missions will proceed normally through the assigned MH until a LOGON or
TCAMON command is received by that MH. The command will identify the
user's request for a specific function. If the request is for the type of application

644 OS/MFT and OS/MVT TeAM Programmer's Guide

to which the MH is already connected, no switch is made. If not, the alternate
MH specified by the MH STARTMH macro will be checked; if this alternate MH
supports the requested function, a switch will be made to route all subsequent
traffic to this alternate MH. If the alternate MH does not support the requested
function, no switch will be made. If a switch is attempted to a TSO MH when
TSO is not active, no switch will be made. The following examples summarize
mixed-environment functional flow:

1. A LOGON command from a terminal assigned to a TCAM MH that specifies
an alternate TSO MH in its ST ARTMH macro will cause the terminal to be
temporarily switched to TSO and will cause subsequent message traffic to be
routed to the alternate TSO MH. When a LOGOFF command or terminal
disconnection is recognized, the terminal is switched back to its assigned
TCAM MH. At that time any messages that have been queued for that termi­
nal can be received by entering TCAMON at the terminal and switching a
message to itself.

2. A TCAMON command from a terminal assigned to a TSO MH that specifies an
alternate TCAM MH in its STAR TMH macro will switch the terminal tempo­
rarily to TCAM and will cause subsequent message traffic to be routed to the
alternate TCAM MH. When a LOGON command is recognized, the terminal
is switched back to its assigned TSO MH.

Note: Initiate mode messages from non-dedicated terminals assigned to a
TSO MH are not supported. If TCAM messages are queued for a terminal
while that terminal is in a TSO session the queued messages can be received
after a hangup or LOGOFF by entering TCAMON and switching a TCAM
message to the terminal. The message switch can be accomplished by coding
the following TCAM macros in the inheader subgroup of the M H that is to
process the TCAM messages from this terminal:

SETSCAN TCAMON, BLANK=NO, MOVE=RETURN
test return code from SETSCAN for TCAMON found;
if TCAMON not found continue INHDR processing.

FORWARD DEST=ORIGIN
(forward TCAMON to ORIGIN) test return code from
FOWARD; if foward is successful execute the inbuffer
subgroup.

Operator Control Considerations

ACTVATED

Discussions of the following operator commands are extensions of discussions of
the same commands in an earlier section of this publication, Operator Commands.
The functions and formats of commands are repeated here, and responses peculiar
to TSO follow the illustrated format of each command. An explanation of each
response appears after the response. See Operator Control in the section Using
TCAM Service Facilities for a complete explanation of each command as it is
used in TCAM.

This command requests a list of all entries in the invitation list for the specified
lines that are currently active for entering messages.

Appendix I. Macro Instructions for Time-Sharing Support 645

INTERVAL

QSTATUS

Format:

control characters operation operand

control chars ~gISPLAY~ TP,ACT, ~ grpname,rln f
address

Response:
IED036I jgrpname, rlnt ACTIVE=j statname [(userid) 1, ... t

1address ~ 1 NONE ~

Explanation:

userid is added to this response to indicate that the terminal named by statname
was engaged in a time-sharing session when this command was entered, where
userid is identical to the value specified by the TSO terminal user during his logon
procedure. Each statname entry in the response that represents a terminal en­
gaged in a time-sharing session is followed immediately by the appropriate userid
entry. The user identification is enclosed in parentheses; if less than eight charac­
ters, it is padded to the right with blanks.

This command activates the system interval whose value is specified by the
INTV AL= operand of the INTRO macro.

Format:

control characters operation operand

control chars ~~ODIFYf ~ ~procname.]id f
Jobname

,INTERV AL=SYSTEM

Response:

IED047I SYSTEM INTERVAL CANNOT BE ACTIVATED

Explanation:

The TSO ITCAM system did not permit this command to execute because TSO
was active in the system. This command is effective for starting the system
interval any time before starting TSO, or after TSO has been stopped, but not
while TSO is active.

This command requests display of the fields of a queue control block containing
the number of messages queued, the queue status, and the priority levels permitted
for either a line or a station queue.

646 OS/MFT and OS/MVT TeAM Programmer's Guide

'\

STOPLINE

SYSCLOSE

Format:

control characters operation operand

control chars l~ISPLAY~ TP ,QUEUE,statname

Response:

IED031 I statname QUEUE SIZE=number, QUEUETYP=type,
STATUS=status, •.. ;PRIORITY=integer, ...

Explanation:

A response of NO in the QUEUETYP= field of the response indicates
that this command was entered where statname was replaced
by the name of a TERMINAL macro that is associated with a TSO line group.

This command stops transmission of messages on a line or a line group.
The last operand determines whether transmission stops at the end of the current
message or immediately.

Format:

control characters operation operand

control chars l~ARYt j (grpname'rln)~ ,OFFTP, ~~~
(grpname.)

I address

Response:
IEDO 121 I TSO SESSION ON LINEjgrpname, rlnlCOMMAND REJECTED

1 address 5
Explanation:

This command was entered to stop transmission on a line or line group where the
line (or a line in the line group) was currently engaged in a time-sharing session.
Re-enter this command when the line is not engaged in a time-sharing session, or
when no line in the line group is engaged in a time-sharing session.

Response:

IED026I grpname ALL STOPPED

Explanation:

A form of the command was entered to stop transmission on all the lines in the
specified line group. All lines that were not currently engaged in a time-sharing
session were stopped as requested; any lines engaged in a time-sharing session
were not stopped, even though response message IED026I was returned. Re­
enter this command when the line, or lines, are not engaged in a time-sharing
session.

This command initiates either a quick or a flush closedown of a TeAM system.

Appendix I. Macro Instructions for Time-Sharing Support 647

Format:

control characters operation operand

control chars {~ALT} TP,{QUICK}
FLUSH

Response:

IED012I TSO.SESSION ON LINE HALT COMMAND REJECTED

Explanation:

The TSO /TCAM system did not permit this command to execute because TSO
was active in the system. This command is effective for deactivating the
TSO/TCAM system any time before starting TSO, or after TSO is stopped, but
not while TSO is active.

Checkpoint/Restart Considerations
The checkpoint/restart facility cannot be used for foreground tasks. Consequent­
ly, checkpoints for swappable application programs are ignored, and application
programs must be reinitiated by the user.

The status of a time-sharing session is not checkpointed; therefore, system failure
in the middle of a time-sharing session causes all message traffic to be lost for the
terminal. The status of each line in the TSO line group is checkpointed, however,
and the condition of the line at restart time is the same as before closedown or
failure (for instance, if a line at failure was enabled, it is enabled at restart time).
Once the system restarts, a TSO terminal user must repeat his logon procedures
and restart his session.

Swappable Application Programs

Closing TCAM

See the TSO Guide for including TCAM swappable application programs in the
foreground.

If TSO is still active when an MCPCLOSE macro is issued in a TCAM application
program, closedown is unsuccessful and a return code of X'04' is set in register
15. In order for closedown of the TCAM MCP to be successful, close TSO and
reissue the MCPCLOSE Macro in an application program.

TSO Bits in the Message Error Record
This section is an extension of Appendix B: Message Error Record; it identifies
and describes TSO bits that may be set in the message error record during a

648 OS/MFT and OS/MVT TCAM Programmer's Guide

time-sharing session in a mixed environment.

Bit Meaning

o Invatidlogon
The LOGON routine detected a misspelled or otherwise invalid LOGON
message.

1 Logon f allure
An attempt to log on to the TSO system failed due to an invalid com­
mand.

2 Non-TSO terminal
The terminal attempting to log on is not supported as a TSO terminal.

3 TSO not active
A terminal is attempting to log on, but TSO is not active in the system.

4 Too many TSO users
A terminal is attempting to log on, but the maximum number of TSO
users are already logged on.

10 Dynamic translation error
An error occurred while attempting to determine the correct translation
table for the terminal logging on.

11 Automatic tine number
Automatic line numbering is requested for this TSO terminal.

16 Attention-input ignored
An input attention occurred, and the current input message consequently
was ignored.

17 Attention-input deleted
An input attention occurred, and the current message consequently was
deleted.

19 Simulated attention
The simulated attention routine detected a request for a simulated atten­
tion.

22 Attention
An attention request was detected.

TSO/TCAM 3270 Device-Dependent Considerations
TSO/TCAM provides support for:

Input

Input Data Stream

3271 Remote Control Units
3272 Local Control Units
3277 Clustered Displays 48C and 19C
3275 Remote Stand-alone Displays 48SR and 19SR

The 3271 Remote Control Units are supported in a multipoint configuration.

An input line to TSO is defined as all modified data fields between the Set Buffer
Address (SBA), the start of the input message, and the end of the message. The
NEW LINE key repositions the cursor only and has no effect on the buffer
contents. Thus, all input from one transmission will be treated as one line or a
multiple thereof. A Null Line to TSO is defined as input from the ENTER key
only. Function key substitution for the ENTER key will be considered Null Line
input.

TSO/TCAM will provide additional control character removal for input from the
3270 device in a TSO session. Upon completion of all input editing, the 3270
local and remote input messages will be of the same format.

Appendix I. Macro Instructions for Time-Sharing Support 649

Remote Input

Local Input

The TGET EDIT and TGET ASIS interfaces are supported as specified in the
Supervisor and Data Management Macro Instructions publication. In EDIT
mode, all terminal control characters are suppressed from the data. In ASIS mode,
all terminal control characters remain in the data.

The remote input data stream format is:

TSO
editing
removed

~
seD
T U V
X C

Not Moved to
TSO user buffer
in EDIT mode

~

ACe S A A
I U U B D D
D R R ADD

1 2 1 2

~-------

Operator
supplied

~

..... Text

(before Logon)

------------~--~--------Formatted screen

Where:
STX
CU
DVC
AID

is the start-of-text, line-control character.
is the control unit fixed-return address.
is the device fixed-return address.
is the attention ID. *

TSO editing
removed

-E
T
X

CURl}
CUR2

is the two-character address of the cursor position.

SBA is the set buffer address order code.
ADDRl}
ADDR2
ETX

is the two-character address of the beginning of text.

is the end-of-text, line-control character.

*The input AID byte (EDIT OR ASIS mode) is preserved in the device dependent
field immediately following the option fields of the terminal table. Also present
are the display screen size (rows and columns) bytes.

The local input data stream format is:

Not moved to TSO user
buffer in EDIT mode

---­ACe S A A
I U U B D D
D R R ADD

1 2 1 2

Unformatted
buffer
(before Logon)
~

Formatted buffer

Operator supplied -- ----...................... TEXT

650 OS/MFT and OS/MVT TeAM Programmer's Guide

Output Data Stream

Remote Output

Local Output

TSO/TCAM will provide additional control character editing facilities for output
to the 3270 device in a TSO session. The TPUT EDIT, ASIS, and control mode
interfaces will be supported as specified in Supervisor and Data Management
Macro Instructions. In EDIT mode, all the necessary terminal control characters
will be inserted into the data. In ASIS mode, all the necessary terminal control
characters (ESC, CMD, WCC, and SBA/CUR1/CUR2) will be inserted if not
supplied or correctly defined in data. In control mode, valid terminal control
characters will be allowed or generated in the data. A bypass or restore character
in the output data, or a new-line character at the end of an ASIS message will be
converted to an appropriate attribute byte or insert cursor order.

The remote output data stream format after TSO editing is:

TSO User
editing TSO edit mode supplied supplied - ~

S E C W S C C S A .. text. .
T S M C B U U F T
X C D C A R R T

~ 1
TSO control
mode supplied
and TSO ASIS
mode inserted/
corrected

Where:
STX is the start-of-test, line-control character (X'02').
ESC is the escape control character (X'27').
CMD is the command operator (X'F1' - write).
WCC is the write control character (X'C1').
SBA is the set buffer address order code (X' 11 ').
CURl} is the two-buffer address.
CUR2
SF is the start field order code (X'lD').
ATT1 is the write attribute byte (X'C8').
ATT2 is the read attribute byte (X'40').
CUR3} is the two-buffer address.
CUR4
INC is the insert cursor order code (X'13').
ETX is the end-of-test, line-control character (X'03').

The local output data stream format after TSO editing is:

TSO edit model
supplied --S A sec I

F T B U U N
T A R R C
.2 3 4

TSO edit mode TSO edit mode
supplied User supplied supplied

~

W sec S A
C B U U F T
CAR R T

1 2 1
~
TSO control
mode supplied
and TSO ASIS
mode inserted/
corrected

------------- ----......-...­..... text. S A sec I
F T B U U N

TAR R C
234

TSO
editing -E

T
X

Appendix I. Macro Instructions for Time-Sharing Support 651

Screen Format
Each output message will have a high-intensity, attribute byte as its first position
(X'C8') and a default attribute byte as its last character position (X'40'). A
default attribute byte will be written in the right-most position of the last line of
each input message overwriting any display character occupying that position.
Normal screen format, therefore, will show the output data indented one position
and of higher intensity than the input data. The 3277 display is formatted with a
default attribute byte (X'40') located at the last buffer position (479 or 1919)
upon initial LOGON and subsequent TSO or CLEAR-key initiated screen era­
sures. In EDIT mode, the output after input will be on the next physical line of
the screen. Input after output will always begin at the cursor position. The user
may control screen format by using TPUT ASIS and including the necessary
control characters, commands, attribute bytes, and set buffer-address, character
sequences in the output data stream.

652 OS/MFT and OS/MVT TeAM Programmer's Guide

c

Contents

Appendix J: Concentrating and Deconcentrating Messages

Concentrating and Deconcentrating Messages " " " " " " " " " " "
Defining the "Network "

Queuing Techniques for Terminals Attached to a Concentrator
Queuing by Concentrator
Queuing by Priority Level
Queuing by Groups "
Queuing by Terminal " " "

Defining Data Sets """""""
Initializing a Message-Concentrating Device
Handling Incoming Concentrated Messages

Formats of Incoming Messages """""
Message Flow for Incoming Concentrated Messages
Source Determination " " " " "

ORIGIN Macro Instruction
Multiple MH Execution """"

TGOTO Macro Instruction
Status Analysis " " " " " " " " "

QACTION Macro Instruction
Constructing Outgoing Messages for a Concentrator,

Message Formats " " " " " " " " "
CTBFORM Macro Instruction" " " " " "

Message Flow """"""""""""""""
Intercepting and Releasing Outgoing Messages

Using Macros """"""""""""""""
Using Operator Commands " " " " " " " " "

Option Fields in a Concentrated-Message Network
Mid-Batch Recovery in a Concentrated-Message Network
Message Retrieval in a Concentrated-Message Network
Closedown Through Operator Control
Summary of Coding Requirements " " " " " " " " " " "

654
654
658
658
658
658
659
659
659
660
660
661
664
664
664
665
667
667
671
672
672
674
676
676
676
677
677
678
678
679

Appendix J: Concentrating and Deconcentrating Messages 653

Concentrating and Deconcentrating Messages

Defining the Network

When incoming messages from a group of terminals are directed to a remote
device that combines (concentrates) them into a single physical message for
forwarding to the CPU, TCAM extracts the messages and directs them to their
appropriate incoming Message Handlers. Conversely, if a TCAM Message
Handler concentrates outgoing messages into a single physical transmission and
directs them to a remote message-deconcentrating device, the device selectively
forwards the various messages within the physical transmission to their appropri­
ate destinations. A concentrator, therefore, is any remote device that concen­
trates incoming messages and deconcentrates outgoing messages in a TCAM
network.

This concentration/ deconcentration process increases line availability and reduces
the amount of CPU time required for handling lines. This appendix describes
TCAM's role in accepting and deconcentrating input from a concentrator, and in
building and transmitting concentrated output messages to be directed to a
concentrator. The reader should first be familiar with the procedures for extract­
ing logical messages from data in an incoming transmission sequence (deblocking)
described in Handling Logical Messages in the chapter Designing the Message
Handler.

The description of the TERMINAL macro instruction, in the section Defining
Terminal and Line Control Areas, should be read and understood before reading
this section. The following discussion and examples expand on the earlier descrip­
tion.

When defining a TCAM network to handle concentrated messages, a TERMINAL
macro instruction is coded to define a remote message-concentrating device and,
immediately following that macro, TERMINAL macro instructions are coded for
the terminals attached to that device. If two or more message-concentrating
devices are defined on a multipoint line, the TERMINAL macro for the second
message-concentrating device on the line must immediately follow the
TERMINAL macro defining the last station attached to the first concentrator
device on the line. Other concentrators on the same line and their attached
terminals must be defined in the same manner beginning immediately after the
TERMINAL macro for the last terminal attached to the second concentrator.
Further, message-concentrating devices on a multipoint line must be specified
before other devices, and switched message-concentrating devices may not be
specified.

654 OS/MFT and OS/MVT TeAM Programmer's Guide

DVCID=

Example:
Concentrators and non-concentrators on a multipoint line

CONCl
Tl
T2
CONC2
T3
T4
CONC3

TERMINAL DVCID=CONC,DCB=DCB1,RLN=1, ...
TERMINAL DVCID=A,DCB=DCB1,RLN=1, .. .
TERMINAL DVCID=B,DCB=DCB1,RLN=1, .. .
TERMINAL DVCID=CONC,DCB=DCB1,RLN=1, .,.
TERMINAL DVCID=C,DCB=DCB1,RLN=1, .. .
TERMINAL DVCID=D,DCB=DCB1,RLN=1, .. .
TERMINAL DVCID=CONC,DCB=DCB1,RLN=1, .,.

NOTCONC TERMINAL DCB=DCB1,RLN=1, ...

Two operands of the TERMINAL macro, DVCID= and QCNTRL=, are used
primarily to specify the characteristics of devices handling concentrated-messages.
DVCID= indicates whether the TERMINAL macro is for a concentrator or an
attached terminal. QCNTRL= controls queuing and line scheduling for data
going to terminals attached to a concentrator. Each use of the QCNTRL=
operand results in a destination queue. The user may group attached terminals to
share a common destination queue, or he may specify a separate destination queue
for each attached terminal.

Name Operation Operand

symbol TERMINAL [,DVCID= { (CONC[,integer]) f
chars
NONE

[,QCNTRL= (fLL !
(MSG[, ~isgcount~l
byte count

[,L][,ST A TUS][,char])][, CTBMAX=integer]

Function: Identifies the terminal table entry as being for a concentrator
or a terminal attached to a concentrator.
Default: None. If the device associated with this TERMINAL macro is a concen­
trator or is attached to a concentrator, this operand is required.
Format: (CONC, integer), chars, or NONE.
Notes: (CONC, integer) specifies that this is a concentrator. integer, if coded,
specifies the number of bytes in the longest IDfor a terminal attached to the
concentrator and may be from 1 to 8 inclusive. If integer is omitted, a one-byte
ID is assumed for all attached terminals.

chars specifies the ID of a terminal attached to a concentrator and must be in
unframed hexadecimal format. The ID is inserted at the beginning of each CTB
destined for this terminal (assuming that the CTBFORM macro specifies

Appendix J: Concentrating and Deconcentrating Messages 655

QCNTRL=

DVCID= YES). Do not specify FF. ID insertion occurs at CTBFORM execution
time, thus any subsequent CODE macros will cause the ID to be translated.

NONE specifies that this is a terminal attached to a concentrator, but has no ID.
ID insertion does not take place for messages destined for this terminal.

Function: Controls de queuing of messages destined for a concentrator.
Default: None. This operand is required for the first terminal on a concentrator
and is optional for all other terminals. Use of the QCNTRL= operand requires
that TERMINAL also specify the QUEUES= operand. If QNTRL= is not
specified, do not specify the QUEUES= operand.
Format: msgcount, if coded, may be any decimal integer between 1 and 255,
inclusive; if MSG is coded but msgcount is omitted, a value of 1 is assumed for
msgcount. bytecount if coded, may be any decimal integer between 1 and 32,767.
Notes: Absence of this operand causes this terminal to share the queue control
block of the first preceding TERMINAL macro that does include the QCNTRL=
operand. Thus, several terminals may be grouped under one queue control block.
Queuing is discussed further in Queuing Techniques for Terminals Attached to
a Concentrator in this appendix.

ALL specifies that all messages in this queue are sent in one transmission. Each
message is handled individually through the MH and treated as a CTB in the
concentrated message; that is, the ID is inserted at the beginning of each message
and the delimiter at the end, unless overridden by the CTBFORM macro. ALL
does not permit execution of the outmessage subgroup for messages read from the
associated destination queues (except that outmessage execution is per~itted if
there is an initial selection error or if transmission of outgoing messages is unsuc­
cessful due to a lack of buffers), and TCAM considers the messages to be sent
immediately after reading them. If All is specified, status analysis may not be
performed (that is, do not code STATUS as the third suboperand).

(MSG[, msgcount]) specifies the number of messages to be sent from this queue.
If only MSG is specified, one message is sent. MSG or (MSG, 1) must be specified
in order to code STATUS as the second sub-operand. If a value other than MSG
or (MSG, 1) is specified, then the outmessage subgroup is not executed, and
TCAM considers messages to be successfully sent after they are read from their
destination queue. msgcount may be from 1 to 255, inclusive.

bytecount specifies the maximum number of bytes that may be sent as a CTB (may
be from 1 to 32767, inclusive). The number of bytes sent is determined either by
reaching the number specified by bytecount or by reaching the end of a message,
whichever occurs first. Data for a CTB is never taken from more than one
message, but a single message may require multiple CTB transmissions. Sufficient
data is read into buffers to obtain the amount specified by bytecount (including
prefix and idle characters), These buffers are filled so that the amount read is
greater than or equal to bytecount, but not exceeding end-of-message. After the
data is processed through the MH, only the amount specified by bytecount
(including prefix and idle characters) is sent; the next transmission begins with the
first byte of data following the last byte sent. If STATUS is coded as the second
suboperand, status analysis is performed on each CTB, where several CTBs may
be required for a complete messages.

All terminals attached to a concentrator using byte count queue control _
(QCNTRL=(integer, ,» must use the same buffer size. If the BUFSIZE=

656 OS/MFT and OS/MVT TeAM Programmer's Guide

operand is specified on any TERMINAL macro using this queuing technique, the
BUFSIZE= operand must also be coded in the TERMINAL macro for the
concentrator to which the terminal is attached, and the same buffer size must be
specified.

Example:

CONC
TERM 1
TERM2
TERM3
TERM4
TERMS

TERMINAL DVCID=CONC,BUFSIZE=100, .. .
TERMINAL DVCID=F1,QCNTRL=(MSG), .. .
TERMINAL DVCID=F2, QCNTRL=(120, , ,90), ... , BUFSIZE=1 00, ...
TERMINAL DVCID=F3,QCNTRL=(MSG" ,90), .. .
TERMINAL DVCID=F4, QCNTRL=(SO, , ,90), ... ,BUFSIZE=1 00, .'.
TERMINAL DVCID=FS,QCNTRL=(200",90), .. .

L specifies that priority levels are to be established for a group of terminals so that
no more than one message for each of the terminals will be sent in a single trans­
mission (queuing by priority level is discussed in Queuing Techniques for
Terminals Attached to a Concentrator in this appendix). This suboperand
requires that the first value specified in the QCNTRL= operand be either (MSG)
or (MSG,l), and that this TERMINAL macro also specify the LEVEL= operand,
where the number of priority levels equals the number of terminals to be con­
trolled. If n priority levels are specified, then the next n terminal entries in the
terminal table are part of this control group, and none of these next n entries may
specify the QCNTRL= operand. The first entry following this control group (if
another entry exists) should either specify the QCNTRL= operand, or specify
another concentrator entry, or be for a device that is not a concentrator (and the
QCNTRL= operand is not specified). The same queuing control may be ob­
tained by specifying QCNTRL=MSG for each of the individual terminal entries in
the terminal table. The advantage of specifying QCNTRL=(... ,L, ...) is that only
one destination queue is generated instead of a destination queue per terminal, but
use of the L sub operand requires a priority scheme to direct messages on the
queue to their appropriate destinations.

Example:
Assume four attached terminals, A, B, C, and D, to be serviced from a single
destination queue, and at most, one message per destination is to be dequeued for
each transmission:

A TERMINAL
B TERMINAL
C TERMINAL
D TERMINAL

DVCID=id, QCNTRL=(MSG, L, ...), LEVEL=(1 ,2,3) , ...
DVCID=id, ... ,LMD=YES
DVCID=id, .. .
DVCID=id, .. .

STATUS specifies that status analysis is to be used in handling the queue generat­
ed by this TERMINAL macro. This suboperand requires that MSG, (MSG,l), or
bytecount be coded as the first value of the QCNTRL= operand. Once the
user-specified amount of data is sent, execution of the out-message subgroup for
this !flessage is delayed and no more data is sent from the queue until a subsequent
QACTION macro so specifies (the QACTION macro is discussed later in this
appendix), and transmissions to the terminal are interrupted temporarily after
each transmission from the queue. If STATUS is not specified, there is no delay
in executing the outmessage subgroup, and the user-specified amount of data may
be sent with each transmission (that is, the queue is free for sending if no other
restraints exist, such as using the HOLD macro to intercept messages). The same
MH must be used for all terminals using the same output queue.

char specifies, in unframed hexadecimal format, from one to eight characters to
delimit each CTB sent from the queue. This character is inserted into the data

Appendix J: Concentrating and Deconcentrating Messages 657

CTBMAX=integer

stream after MH processing and is not translated. Therefore, the character must
be the hexadecimal equivalent of the appropriate line control character used by
the concentrator for deblocking. Do not specify FF.

Function: Specifies maximum number of CTBs to be sent to a concentrator in
any transmission sequence.
Default: None. Specification of this operand is optional.
Format: CTBMAX=integer
Maximum: 255
Notes: This operand may be included in a TERMINAL macro for a concentrator,
and is invalid if the TERMINAL macro is for a terminal (the use of this operand
requires that the same TERMINAL macro specify DVCID=CONC). The value
for integer must be between 1 and 255 inclusive.

QlIelling Techniqlles for Terminals Attached to a Concentrator

Queuing by Concentrator

Queuing by Priority Level

Queuing by Groups

There are four queuing techniques that may be used for terminals attached to a
message-concentrating device:

• queuing by concentrator
• queuing by priority level
• queuing by groups
• queuing by terminal

When queuing by concentrator only, all attached terminals are serviced from a
single destination queue. This method of queuing requires less main storage than
queuing either by priority level, by groups, or by terminal. The following example
defines a terminal network that uses queuing by concentrator. ~

Queuing by Concentrator Only

CONC
T1
T2
T3
T4

TERMINAL
TERMINAL
TERMINAL
TERMINAL
TERMINAL

DVCID=CONC,QBY=T, .. .
DVCID=id,QCNTRL=, .. .
DVCID=id, .. .
DVCID=id, .. .
DVCID=id, .. .

Queuing by priority level establishes a single destination queue for a group of
terminals (see the discussion of the (L suboperand). This method of queuing
requires less main storage than establishing a destination queue for each terminal
in the group (that is, coding the QCNTRL= operand on each TERMINAL macro
in the group results in using more main storage).

When queuing by priority level, the user must code the LEVEL= operand on each
TERMINAL macro that specifies QCNTRL=(... ,L, ...). TCAM sends a single
message from each priority level established by the LEVEL= operand. This
technique cannot be used if the user wishes to send partial messages or multiple
messages from a single destination queue.

As in queuing by priority level, queuing by groups establishes a destination queue
for a group of terminals. Priority levels can be used with this queuing technique;
however, TCAM determines, by the QCNTRL= operand, how much data to send ,4
from each destination queue in a single transmission. The priority levels are ,.
serviced the same as in normal TCAM queuing. That is, all messages are sent

658 OS/MFT and OS/MVT TeAM Programmer's Guide

Queuing by Terminal

Defining Data Sets

progressively from the highest-existing priority level before any messages are sent
from the next lower priority level.

This technique provides the same queuing control as queuing by priority level by
specifying QCNTRL=MSG for each of the individual terminal entries in the
terminal group. However, more main storage is required since a destination queue
is established for each QCNTRL= operand.

Queuing by Groups (Terminals Tl, T3, and T4 constitute the first group, T2 the
second group, and T5 the third group.)

CONC TERMINAL DVCID=CONC,QBY=T
Tl TERMINAL DVCID=id, QCNTRL=, ...
T3 TERMINAL DVCID=id, ...
T4 TERMINAL DVCID=id, .. ,
T2 TERMINAL DVCID=id,QCNTRL=""
T5 TERMINAL DVCID=id,QCNTRL=, ,','

In this example, three destination queues are generated, one serving terminals Tl,
T3, and T4, one serving T2, and the last serving T5.

The QCNTRL= operand may be coded on the TERMINAL macro for each
terminal attached to the concentrator, A destination queue is generated for each
occurrence of the QCNTRL= operand, This queuing technique requires more
main storage than the other three queuing techniques discussed above.

The PCI= operand of the line group DCB macro must specify either N or X in
order to properly allocate and deallocate buffers on sending and receiving opera­
tions. (See the PCI= operand in the description of the line group DCB macro
instruction in an earlier chapter of this book.)

Initializing a Message-Concentrating Device

symbol

The FEATURE= operand of the INTRO macro specifies whether a concentrator
is in the network; if present, it also differentiates between a network consisting
entirely of concentrator-attached terminals and a network that includes terminals
not attached to a concentrator.

Name Operation Operand

[symbol] INTRO ... ,FEATURE=(... , {CONC r
CONCO
NOCONC

Function: Name of the macro.
Default: None. Specification optional.
Format: Must conform to the rules for assembler language symbols (see the
symbol entry in the Glossary).

Appendix J: Concentrating and Deconcentrating Messages 659

FEATURE=(~CONC ~)
CONCO
NOCONC

Function: Specifies the types of terminals in a concentrator network.
Default: NOCONC. This operand may not be omitted if one or more
concentrator-attached terminals are in the network.
Format: CONC, CONCO, or NOCONC.
Notes: CONC must be specified if some of the terminals in the system are con­
nected to a remote message-concentrating device while others are not.

CONCO must be specified if all the terminals in the system are connected to a
message-concentrating device. CONCO takes precedence over either DIAL or
2741 (that is, only concentrator support is provided). While CONCO does not
permit a 2741 to function in the network as a non-concentrator, a 2741 may
function as a terminal attached to a concentrator.

In addition to the FEATURE= operand, the INTRO macro also must specify
queuing by terminal (see QBY=T in the description of the INTRO macro in an
earlier chapter).

Handling Incoming Concentrated Messages
This section describes the formats of incoming messages that pass through a
message-concentrating device. It also discusses the flow of incoming messages
and additional TCAM functions in handling incoming messages from a concentra­
tor, including status analysis, source determination, and multiple MH execution.

Input to TCAM from a concentrator consists of multiple logical messages received
in a single transmission sequence. The deblocking facility is used to extract these
logical messages from the incoming physical transmission. \~

Formats of Incoming Messages
There are three levels of input messages by the time they are forwarded to their
destinations from an incoming Message Handler. To illustrate these various
levels, assume four terminals attached to a concentrator. Individual input mes­
sages to a concentrator are equivalent to concentrator terminal buffers (CTBs);
buffer in this instance is related to a concentrator's buffering scheme and bears
no relationship to a TCAM buffer.

Terminal A enters a single message (a CTB) to be forwarded to a destination
station.

Terminal B enters the first of two CTBs to be constructed (blocked) by a second
MH as one message for forwarding to a second destination.

The two CTBs (one each from terminals A and B) are combined by the concen­
trator to be entered in a single transmission sequence.

Terminal C enters a single message for a third destination.

Terminal D enters a single message for a fourth destination.

Terminal B enters the second (final) CTB needed to construct a logical message
for the second destination.

I CTB1 CTB21 I CTB31 CTB4 I CTB5 I

660 OS/MFT and OS/MVT TeAM Programmer's Guide

CTBs I-S represent the first level of messages; the concentrator receives the
individual terminal messages in the order shown.

PI P2
---~ ... --..... I \ (.--.... _--.... "

\ CTBI CTB2\ \ CTB3 I CTB41 CTBSI

P I and P2 represent the second level; the concentrator combines the first two
CTBs in this simplified example for the first physical transmission sequence (Pl).
The concentrator forwards PI to the CPU and begins receiving the next group of
CTBs to form P2 for forwarding to the CPU.

PI P2
I A..-..... __ \ (~ \

I CTBI I CTB21 ICTB31 CTB41 CTBSI

L1 L2 L3 L4 L2

LI-L4 represent the third level; when PI is forwarded to the CPU, it is directed to
an MH that extracts the logical messages Ll and L2 for forwarding to different
destinations. Note that the first logical message (Ll) corresponds to CTBI.
However, the second logical message (L2) consists of two CTBs; CTB2 in the
first transmission sequence and CTBS in the second transmission sequence. Since
L2 is incomplete after PI is forwarded, it is queued on the destination queue as a
partial message. The incoming MH handles P2 as it did PI, except that L2 in the
second transmission sequence is queued on the same destination queue as L2 in
the first transmission sequence (it is queued as the end of the message). If an
error is detected in L2 in the second transmission sequence, TCAM still deblocks
each logical message in P2 (each logical message goes through the MH, and an
error bit is set-L2 is sent to its destination even though it contains an error, thus
allowing inmessage execution).

This example, which illustrates input from terminals attached to a concentrator,
assumes multiple MH execution. Deblocking of physical transmissions occurs in
the first MH. Blocking of messages across physical transmissions (as with CTB2
and CTBS) is accomplished in a second MH. See Message Flow for Incoming
Concentrated Messages and the discussion of the TGOTO macro in this appendix.
Also see the SETEOM macro and Handling Logical Messages in the chapter
Designing the Message Handler.

Note: Incoming message headers may not cross CTB boundaries.

Message Flow lor Incoming Concentrated Messages
The flow of messages from any message-concentrating device is similar to message
flow for logical messages as outlined in the discussions on blocking and deblocking
incoming logical messages (see Logical Message Flow Within the System in the
chapter Designing the Message Handler). The following example discusses
message flow for incoming concentrated messages and should be read in conjunc­
tion with Figure 60. The format of the data arriving at the incoming MH in a

Appendix J: Concentrating and Deconcentrating Messages 661

E E E
0 0 0
M M M

I id I id I id I
~ V

A
V

)\.
y J.

I I
I L1 L2 L3 I
I I
I I ,.. Transmission Sequence .. I
I

where the first EOM delimits the first logical message (Ll), the second EOM
delimits the second logical message (L2), and the third EOM delimits the final
logical message (L3) in this transmission sequence. The message header in each
logical message identifies the originating terminal (ID).

1. Data is transmitted from a concentrator to the incoming MH where the PCI=
operand of the line group DCB macro specifies either N or X.

2. The SETEOM macro in the inblock subgroup deblocks the incoming data into
three logical messages (from this point logical messages are processed separate­
ly).
To prevent deblocking of line-control and EOT characters by SETEOM and
subsequently sending these control characters through the MH as logical
messages, LC=OUT may be coded on the STARTMH macro to remove
line-control characters, and a MSGEDIT macro may be coded before SETEOM
in the inblock subgroup to remove EOT characters.

3. The inheader subgroup then begins execution for Ll. The FORM= operand
on the ORIGIN macro determines which terminal attached to the concentrator
entered Ll. From this information supplied by the ORIGIN macro, the
TGOTO macro (discussed later in this appendix) can determine whether to
send this buffer of Ll to a second MH. If control is passed to the second MH,
subsequent macros in the first MH do not execute for this buffer. The second
MH executes completely before the next buffer starts through the first MH.
The purpose of the second MH is to handle the blocking of logical messages
entered by terminals attached to a concentrator. It is also used to handle
mid-batch recovery for terminals attached to a concentrator.

The ORIGIN macro need not be reissued in the second MH; the scan pointer is
reset to the beginning of the buffer at the start of the second MH, and header
processing in the second MH should be handled accordingly.

Buffers not sent to the second MH pass through the first MH in a conventional
manner. In the first MH in the example, status analysis, using the QACTION
macro, is bypassed for this message by using the MSGTYPE macro (the
QACTION macro is discussed later in this appendix).

4. Next, the inbuffer subgroup executes, where a second TGOTO macro condi­
tionally sends text buffers not executing the inheader sub-group to the second
MH (this is necessary since only header buffers can cause the inheader sub­
group to execute). This TGOTO macro causes text buffers to be sent to the
second MH for processing (the first TGOTO macro has already forwarded the
header buffer, associated with these text buffers, to the second MH).

5. Once MH execution is complete for Ll, including execution of the inmessage
subgroup, L2 and L3 are processing consecutively in the same manner as Ll,
including the possible use of the second MH.

I

Message flow for outgoing messages is discussed in Preparing Outgoing Concen- (
trated Messages.

662 OS/MFT and OS/MVT TeAM Programmer's Guide

Source DetermilUltion

ORIGIN Macro Instruction

)

L1

\

r-INBLOCK

E
o

E
o

M M
I L2 I

• ,
Concentrated
Message

1
STARTMH

I
MSGEDIT

-,

L3

LMD=YES

SETEOM PROC,ESS=YES

INHDR !
ORIGIN FORM=
TGOTO
MSGTYPE
QACTION

INBUF
TGOTO

INMSG

INEND

E
o
M
I
E
0
T I

I

STARTMH LC=OUT

INBLOCK
SETEOM PROCESS=NO

INHDR

INBUF

INMSG

INEND

~ ... -....
--- Destination , Queues , , -_ ... --, ----

Figure 60. Message Flow for Incoming Concentrated Message

The ORIGIN macro is used in the incoming group of a TCAM network handling
concentrated messages in order to identify and verify which terminal entered a
message. The FORM= operand, described below, is specified to verify either the
name of the source terminal (from the terminal name in the origin field of each
CTB), or the terminal device ID (from the ID inserted by the concentrator in each
CTB of the message). If multiple MHs are being used, the ORIGIN macro must
be executed in the inheader subgroup before the TGOTO macro.

The ORIGIN macro

• identifies and verifies the source of an incoming message from a concentrator­
attached station;

• is required in the inheader subgroup of the MH handling incoming concentrated
messages.

Name Operation Operand

[symbol] ORIGIN [,FORM= ~ID ~ J
NAME

Appendix J: Concentrating and Deconcentrating Messages 663

symbol

FORM= ~ID i
iNAME \

Multiple MH Execution

Function: Name of the macro.
Default: None. Specification optional.
Format: Must conform to the rules for assembly language symbols (see the symbol
entry in the Glossary).

Function: Specifies whether device id or the name in the origin field of the
message header is used to identify and verify the source terminal.
Default: None. If this operand is omitted, then the function described in the
discussion of the ORIGIN macro in an earlier chapter applies.
Format: ID or NAME.
Notes: This operand may be used only for source determination of messages from
concentrator-attached stations. Its use requires that the INTRO macro specify
either CONC or CONCO on its FEATURE= operand. If ID or NAME is
incorrectly specified, the ORIGIN macro does not expand. If the FEATURE=
operand of the INTRO macro specifies (or defaults to) NOCONC, the ORIGIN
macro does not expand because use of the FORM= operand is inconsistent with
NOCONC.

If FORM=ID is specified, it may be necessary to include the CODE macro before
ORIGIN executes in order to translate the incoming device id into the form
specified in the DVCID= operand of the TERMINAL macro. If a concentrator­
attached station enters a message that specifies an invalid name or ID, TCAM
assumes that the origin is the first terminal entry following the entry for the
concentrator.

Once ORIGIN executes, any option fields related to the source terminal may be I\j

referred to from this MH. For more information on option fields, see Option
Fields in a Concentrated-Message Network later in this appendix.

An ORIGIN macro with the FORM= operand specified will not execute for
messages from terminals not in a concentrator network.

After the ORIGIN macro executes, one of the following codes is returned in
register 15.

Code

X'OO'
X'04'

X'08'

X'OC'

Meaning

The ORIGIN macro executed successfully.
The FORM= operand was not specified and the source terminal was
not valid.
The FORM= operand was specified, but the source terminal is not
in a concentrator network.
The FORM= operand was specified, but the origin specified in the
message is not a valid name or ID for a terminal attached to the
concentrator entering data (the first terminal entry following the
entry for the concentrator is assumed to be the origin).

TCAM permits the logical messages within an incoming concentrated message to
be forwarded selectively to anyone of several MHs to be handled according to
user needs. This facility is provided by coding the TGOTO macro in the inheader
and, if needed, in the inbuffer subgroup of the incoming MH handling concentrat­
ed messages. The TGOTO macro also provides mid-batch recovery in a second
MH for input from concentrator-attached stations.

(

664 OS/MFT and OS/MVT TeAM Programmer's Guide

TGOTO Macro Instruction

symbol

MH=~ame of MH t
lopfield \

The TGOTO macro

• provides communication between two Message Handlers;
• executes only for terminals attached to a concentrator;
• requires that the source terminal's TERMINAL macro specify either the

LMD= operand or the MB= operand (or both);
• requires that source determination be done in the MH in which it appears;
• may be coded in the inheader or inbuffer subgroup.

Name Operation Operand

[symbol] TGOTO MH=~name of MH ~
opfield

Function: Name of the macro.
Default: None. Specification optional.
Format: Must conform to the rules for assembler language symbols.

Function: Names the Message Handler to which control is passed, or names an
option field containing the address of the MH.
Default: None. This operand must be specified.
Format: name of MH must be framed C' , or CLn' 'format. opfield must not
be framed and must be the name of an option field defined by an OPTION macro.
This option field must be defined as an address constant field either as AL4 or A.
The field can then be initialized to an MH address by specifying the name of the
MH in the OPDATA= operand of the TERMINAL macro. Both name of MH
and opfield must conform to the rules for assembler language symbols.

When TGOTO executes, no more macros of the MH are executed for the logical
message being handled (the buffer is passed to the second MH for handling as if it
had been read from a station). The buffer is processed by the second MH before
the first MH handles any more buffers.

By determining the source terminal with the ORIGIN macro, the second MH can
use the control blocks of the source terminal rather than using the control blocks
of the remote message-concentrating device.

One of the following codes, returned in register 15, describes the outcome of the
execution of a TGOTO macro.

Code

X'04'

X'08'

Meaning

The terminal that entered this message either is not attached to a
concentrator or is attached, but the station's TERMINAL macro
does not specify LMD= YES or MB= YES. Processing continued in
the inmessage subgroup of the first MH.
The TGOTO macro specified that the name of the second MH for
the terminal entering the message was in an option field, but the

Appendix J: Concentrating and Deconcentrating Messages 665

X'OC'

option field was not initialized by the OPDAT A= operand of the
station's TERMINAL macro.
The address of the second MH, specified either in the TGOTO
macro or in an option field, is not a valid MH address.

The SETEOM macro in the inbl~ck subgroup handling concentrated messages
must specify PROCESS= YES. This is required to deblock an entire concentrated
message into individual messages entered by the terminals attached to a concen­
trator. However, if a concentrator-attached terminal is entering a logical message
in two or more transmission sequences to be blocked by TCAM, the two or more
parts of the message must be redirected from the first MH to a second MH whose
SETEOM macro specifies PROCESS=NO. The point in the first MH at which
TGOTO is coded to redirect the parts of the logical message is important. Since
the first buffer of the logical message is a header buffer, it causes the inheader
subgroup of the first MH to execute. The buffer is then passed to the second MH
by TGOTO after the source is determined by the FORM= operand of the
ORIGIN macro. Any subsequent buffers of this logical message in the same
transmission as the first buffer are text buffers and do not cause the inheader
subgroup to execute. Therefore, a TGOTO macro is required in the inbuffer
subgroup of the first MH to send all subsequent buffers of the logical message
(that is, all subsequent buffers included in the same transmission sequence as the
header buffer). If the logical message is incomplete after the first transmission,
the first buffer containing additional data of the logical message (in a later trans­
mission sequence) is treated as a header buffer until it reaches the second MH.
This buffer causes the inheader subgroup of the first MH to execute even through
it is a continuation of the text portion of a logical message received in a previous
transmission sequence. Therefore, this buffer must be handled appropriately by
the subgroup of the first MH. As soon as the first MH identifies the source of the
message (with the FORM= operand of the ORIGIN macro), a TGOTO macro
must redirect this buffer to the second MH where it is tr~ated as a text buffer,
thereby avoiding improper handling in the inheader subgroup of the first MH.

Additional points that need to be considered in handling input from a concentrator
are:

• When a buffer is redirected to a second MH, the scan pointer is reset to the
beginning of the buffer before execution of any macros in the second MH.

• Do not issue a CODE macro in the second MH that would translate a buffer
already translated by a CODE macro in the first MH.

• The SETEOM macro specified in the second MH must specify PROCESS=NO
(the first MH requires PROCESS=YES).

• A buffer may be sent from one MH to another MH by the TGOTO macro only
once. That is, once a buffer is sent to a second MH, it may not be sent from this
second MH to another MH.

• To prevent the SETEOM macro from deblocking line-control and EOT charac­
ters and subsequently sending them as logical messages through the first MH,
and possibly sending them to a second MH, code LC=OUT on the ST ARTMH
macro to remove line-control characters, and code a MSGEDIT macro in the
inblock subgroup to delete EOT characters and "contract" the data following
deletion (issue MSGEDIT before SETEOM).

• Mid-batch recovery for incoming data from concentrator-attached terminals
must be handled in a second MH.

666 OS/MFT and OS/MVT TeAM Programmer's Guide

(

\~

Status Analysis

QACTION Macro Instruction

Once an outgoing CTB is removed from a destination queue and forwarded to a
concentrator, the user can delay further activity of that destination queue, pending
subsequent incoming status information from the concentrator and its attached
terminals. Whether outgoing message traffic resumes from the queue depends on
the results of a user-analysis routine that examines the status information. Previ­
ous operations that might determine a delay in subsequent transmissions to a
terminal include such things as whether the last message to that terminal was
transmitted successfully, whether the terminal's printer was operating correctly or
whether a message was not accepted because a printer was not ready. Such
information is useful in efficiently controlling subsequent output operations.

Status analysis is provided by specifying QCNTRL=ST ATUS in each
TERMINAL macro associated with the terminal for which analysis is desired.
The QCNTRL= operand is discussed earlier in this appendix. Also, the inheader
subgroup that executes on the incoming message (from the terminal whose data is
to be analyzed) must contain a QACTION macro instruction (described below).

The QACTION macro allows the user to take an exit to perform his analysis and
to indicate to TCAM the appropriate action to be taken, such as proceeding to the
next part of the data in the ouput sequence for a destination terminal or executing
an outmessage subgroup with the user error bit (bit 20--see Appendix B) set for
data previously sent to a terminal. The outmessage subgroup is executed also
when the user wishes to proceed after status is received for the last part of a
message.

Following are two examples of data formats that would use the status analysis
facility. RS is used as a delimiter.

Status For
All Devices

~ ________ ~T~ ______ -JJ·~ ________ -v ________ ~J·~ ________ ~. ___________ J

L1 L2 L3

L 1 (the first logical message included in this transmission seuqence) contains
status information for all terminals that provide input for this transmission.

~ ________ ~ ________ JJ·~ ________ -y ________ -J~ ________ v. ________ __

L2 L3 L1

In this example, all three logical message (L 1, L2, and L3) contain status informa­
tion; note, however, that the terminal associated with L2 did not provide any
input data for this transmission (the associated terminal accepted a message from
the concentrator, and, in this instance, the terminal had no input message).

The QACTION macro

• provides a user exit to analyze the status information given by the concentrator
and its attached terminals;

• allows the user to return to the MCP the processing he wants to be done for
each attached terminal (for instance, execution of the outmessage subgroup);

• permits output scheduling to a concentrator based on status analysis;
• is permitted only in the inheader subgroup.
• must be issued after the last SETEOM macro executed for this same message.

Appendix J: Concentrating and Deconcentrating Messages 667

symbol

This macro controls output to a terminal based on status information involving an
earlier operation by that terminal. When QCNTRL=ST ATUS is specified on the
TERMINAL macro for a terminal TCAM does not execute the outmessage
subgroup for that terminal until a QACTION macro instruction is executed for the
terminal on subsequent input. The user also may use the QACTION macro to
cause the user error bit (bit 20 of the message error record) to be set for executing
the outmessage subgroup.

When logical messages are transmitted to or from a terminal attached to a concen­
trator, execution of the inmessage subgroup may be forced for this logical message
either with or without the user error bit set.

When executed, QACTION gives control to the routine whose address is specified
in its EXIT= operand. When the user routine gains control, the following regis­
ters contain:

Register

3
4
6
14
15

Contents

station control block address
line control block address
buffer address
return address
user exit address

Do not alter the contents of register 13. The user routine performs its analysis
and returns information to TCAM defining the processing it is to perform for one
or several terminals (register 1 must contain the address of an area that defines
the processing TCAM is to do).

Among the information he returns, the user can specify for each terminal attached
to a concentrator:

• executing the outmessage subgroup;
• setting the user error bit (bit 20) of the message error record;
• preventing further output with or without previous operation pending

(outmessage subgroup not to be executed);
• continuing to send if multiple, segments are involved in an output message, or

resuming sending if previously stopped by above action.

In addition, the user may specify execution of the inmessage subgroup for the
buffer currently being processed in the MH. The format of the return area is
discussed in the EXIT= operand description below.

Name Operation Operand

[symbol] QACTION TYPE=~~ ,EXIT=name

Function: Name of the macro.
Default: None. Specification optional.
Format: Must conform to the rules for assembler language symbols (see the
symbol entry in the Glossary).

668 OS/MFT and OS/MVT TeAM Programmer's Guide

,r ,

.. ~

(

TYPE= 1~ ~

EXIT=name

Function: Specifies whether A-type or V-type addressing constant is generated for
the user routine.
Default: TYPE=V
Format: A or V
Notes: Specify A if the user routine is to be assembled as part of the MCP.
Specify V if assembled separately. A indicates an A-type, and V indicates a
V -type addressing constant.

Function: Specifies the name of a user-written routine to be given control each
time this macro is executed.
Default: None. This operand must be specified.
Format: name must conform to the rules for assembler language symbols.
Notes: TCAM automatically saves and restores registers for this routine; the user
need not save registers and may change the contents of registers 2 through 12. Do
not alter the contents of registers 13 and 14. The user-written routine returns
control to TCAM by issuing a BR 14 instruction-a return code is not required.

TCAM expects the user routine to place, in register 1, the main-storage address of
a field defined by the user and consisting of a byte containing the number of
terminals involved, followed by an entry for each terminal for which action is to
be taken. Each entry, in turn, must contain the following fields:

1. One byte, indicating the total length (including this byte) of this entry, and
indicating whether the device id or the terminal name is being passed.

bit 0= 0

bits 1-3
bits 4-7=

1

2. An action byte
bit 0= 1
bits 1-3
bit 4= 1

bit 5= 1

device ID passed.
terminal name passed.
reserved.
length of this entry (including this byte).

user error bit (bit 20) set in the message error record.
reserved.
sending to this terminal is to be (or is to remain) stopped; no
output is sent to any terminal using the same destination
queue. This condition is reversed by an action using bit 7 be­
low. Terminals being queued by priority level cannot be held
using the QACTION macro unless a message was sent earlier
to the terminal.
execution of the outmessage subgroup must be forced even if
the last segment sent to the terminal was not the last of the
message. Forced execution of the outmessage subgroup causes
the terminal error bit (bit 27) to be set in the message error
record.

bit 6= 1 the inmessage subgroup must be executed for this station.
bit 7 = 1 sending to this terminal must continue; the outmessage sub­

group is executed if the last segment sent was the last segment
of the message.

3. A variable-length field (1-8 bytes) containing either the device id or the name
of the terminal for which action is to be taken.

If bits 4, 5, and 6 are set in the action byte, bits 5 and 6 take priority. That is, if a
previous operation is pending, either the inmessage or the outmessage subgroup is
executed. If no operation is pending, output from the queue is stopped.

Appendix J: Concentrating and Deconcentrating Messages 669

Note: An action byte of x'oO' or a device ID of X'FF' causes an entry to
be ignored. If the user specifies an invalid action byte (for instance, bits 4
and 7 are set), or if the QCNTRL= operand of the TERMINAL macro
does not specify STATUS, then a X'04' return code is passed in register 15,
with register 1 pointing to the invalid entry. No action is taken for any
entry after the invalid one.

If no buffers are available, X'08' is returned in register 15. Register 1, in this
instance, points to the current entry, and no further action is taken for this or
subsequent entries.

Two procedures for intercepting messages, outlined below, should be followed to
avoid losing messages queued for output (these procedures are required if the
message queues data set is on reusable disk).

1. When the user routine sets bit 4 in the action byte to suspend transmission to a
terminal, messages are not intercepted as with the HOLD macro. Rather, an
internal TCAM routine temporarily suspends transmission to the terminal. If a
true intercept is needed, it is up to the user either to issue the functional HOLD
macro in a Message Handler, or to enter a SUSPXMIT operator command. An
intercept is required if a reusable disk message queues data set is being used; if
a true intercept is not accomplished at the time TCAM implements zone
reorganization for the disk queue, any messages being held temporarily because
bit 4 is set will be lost. See the description of the SUSPXMIT operator com­
mand in an earlier chapter of this book. The HOLD macro is discussed also in
an earlier chapter as well as in Intercepting and Releasing Outgoing Messages
in this appendix. Reorganization of a reusable disk data set is discussed in the
chapter Defining the MCP Data Sets.

2. If the TERMINAL macro for a terminal specifies status analysis, an internal
TCAM routine temporarily suspends transmission to that terminal each time '~
data is read from its output queue. If subsequent status information from the
concentrator indicates a situation that might prevent continued successful
transmission to that terminal, the user either must release that message for
transmission to its destination (by setting bit 7 of the action byte), or he must
discontinue sending through an intercept function (by setting bit 5 of the action
byte). When bit 5 is set, outmessage execution is forced-this causes the
terminal error bit (bit 27) to be set for the terminal; when the outmessage
subgroup is executed, the user must execute a HOLD macro to prevent losing
data. The HOLD macro must include a mask that specifies bit 27 in the mes-
sage error record.

Example:
Status information for three terminals is in a single CTB. The device IDs of the
terminals are Cl, C2Cl, and C2C2. The user wants to continue sending to
terminals Cl and C2C2, and to stop (or continue to have stopped) output to
C2C 1. The user passes device IDs to TCAM instead of terminal names. The
user-provided field would be:

Byte Bit Hex Value Meaning

}~
03 number of entries

0 0 ID is passed
entry 1 4-7 3 length of entry

01 action
Cl ID

670 OS/MFT and OS/MVT TeAM Programmer's Guide

((

{ ;-8
0 0 ID is passed

entry 2 4-7 4 length of entry
08 action
C2C1 ID

r 0 0 ID is passed
entry 3 4-7 4 length of entry

10 01 action
11-12 C2C2 ID

Constructing Outgoing Messages for a Concentrator
This section outlines the procedures and considerations for blocking output data
for a single transmission that incorporates messages for a variety of destinations.

The techniques for defining the type of queuing to be used in a concentrator
network require using the QCNTRL= operand of the TERMINAL macro. The
DVCID= operand of the TERMINAL macro must be used to differentiate
between concentrators and their attached terminals. See Defining the Network
in this appendix and the description of the TERMINAL macro in the chapter
Defining Terminal and Line Control Areas. A summary describing required,
optional, and invalid use of operands of the TERMINAL macro (for concentra­
tors and their attached terminals) are listed at the end of this appendix.

Only one outgoing MH is used for handling messages destined for terminals
attached to a concentrator. The MH is specified on the MH= operand of the line
group DCB macro. Outgoing messages to a terminal are blocked automatically
after MH execution.

Status analysis, performed in an input MH, may determine how output queues of
data are to be handled, based on the user analysis of status information made
available by the concentrator. See Status Analysis earlier in this appendix.

Output to concentrators is achieved by using normal TCAM techniques for line
scheduling. Consider the concentrator as a terminal with queuing by terminal
(QBY =T specified on the TERMINAL macro) even though there may be many
queues of data going to the concentrator. When data is available to send to any
terminal attached to the concentrator, it is as if data were available to send to the
concentrator; that concentrator is then scheduled for output. Send, equal, or
receive transmission priorities apply in the same way as in TCAM without mes­
sage concentration, and additional message queuing is not required. Further,
non-concentrators and concentrators may be included in the same line group using
the same type of line scheduling.

Output to a terminal attached to a concentrator may be held by using the HOLD
functional macro or by issuing the SUSPXMIT operator command. Intercepted
output messages may be released with the MRELEASE macro issued in an
application program, or by issuing the RESMXMIT operator command. Operator
control facilities to intercept or release output, as well as the application program
facility to release output, allow the user to intercept or release messages destined
for all terminals attached to a concentrator simply by intercepting or releasing
messages destined for the concentrator. The HOLD macro may be issued only for
attached terminals, not for the concentrator itself.

The INITIATE macro must not be issued for messages to or from concentrators or
their attached terminals, and the MSGGEN macro may not be used for generating

Appendix J: Concentrating and Deconcentrating Messages 671

Message Formats

CTBFORM Macro Instruction

error messages to terminals attached to concentrators. Messages may not be
transmitted in either lock or extended lock mode (see the description of the
LOCK macro in the Designing the Message Handlers chapter).

Just as for input from a concentrator, there are three levels of data in considering
output to a concentrator. The first is at the level of the message to be sent to a
terminal attached to a concentrator. This is the amount of data that is queued as a
message for the terminal. This unit of data is processed through the outgoing MH
with a single execution of the outmessage subgroup. However, transmission of
this message to the concentrator, and from there to an attached terminal may
require mUltiple transmissions. The amount of data sent by TCAM to each
terminal attached to a concentrator in each transmissIon is called (as it was for
input) a concentrator terminal buffer (CTB).

The CTB represents data at the second level. The amount of data placed in a
CTB is determined by the QCNTRL= operand of the TERMINAL macro and
may be less than or equal to the entire message for a destination. The insertion of
device ID and message delimiter takes place at the level of the CTB. This inser­
tion is accomplished by the CTBFORM macro in the outgoing MH (the
CTBFORM macro is discussed below). The third level is all of the data ip. the
transmission sequence to the concentrator that may be made up of multiple CTBs.
The length of the concentrated message is determined by the number and lengths
of the CTBs. Line control needed to send the concentrated message is inserted by
the MSGFORM macro in the outgoing MH. Line control is maintained by
inserting line-control characters for the entire concentrated message without
regard to CTB boundaries.

EOT characters are not removed from incoming messages even if LC=OUT is
specified on the STARTMH macro. Thus, if messages are to be blocked into an
outgoing concentrated message, replace the EOT characters with another byte of
data, such as an idle character, using the MSGEDIT macro in the outbuffer
subgroup.

Illustrated below are six CTBs to a concentrator (CTBI-CTB6) that make up the
two physical transmission sequences to the concentrator (PI and P2), and five
logical messages to terminals attached to the concentrator (LI-LS). Note that
logical message L2 is sent to its destination in two transmissions and is represent­
ed by two CTBs, CTB2 and CTB4.

PI P2
rr----------~'--------~\

I CTB I CTB2 CTB31
rr--------~~--------~,
I CTB4 CTBS CTB6 I

~~~ '--'"v"-~'-v-' 

Ll L2 L3 L2 L4 L5 

The CTBFORM macro 

• inserts device ID at the beginning of a CTB; 
• inserts a special field in the CTB text following the device ID; 
• inserts a delimiter at the end of the CTB; 
• is required in the outbuffer subgroup of an MH handling messages destined for 

a concentrator. 

672 OS/MFT and OS/MVT TeAM Programmer's Guide 

( 



symbol 

opfield 

The CTBFORM macro does not require reserve characters for insertion of data. 
However, if there are reserve characters remaining in the buffer, they will be used 
for inserting device id and option field data. Reserve characters are never used for 
inserting CTB delimiter characters. 

Separator characters are not inserted if there is no space available in the buffers, 
and there are no units available. Since insertion of separator characters occurs 
just before the data is transmitted, there is no return code to indicate whether 
insertion took place. 

The CTBFORM macro must be the last macro in the outbuffer subgroup that 
causes insertion of data (that is, the MSGEDIT and DATETIME macros must be 
coded before CTBFORM). The MSGEDIT macro should be coded in the outbuf­
fer subgroup to replace EaT characters in messages destined for a concentrator 
(discussed in the previous section). 

The following return codes in register 15 indicate whether this macro executed 
successfully, and if unsuccessful, why. 

Code Meaning 

X'04' 
X'08' 
X'OC' 
X'10' 
X'14' 
X'18' 
X'IC' 
X'20' 

Name 

[symbol] 

Separator character insertion requested; none defined. 
Insertion of opfield data requested; option field not found. 
Combination of X'04' and X'08'. 
Insertion of device 10 requested; device 10 not defined. 
Combination of X'04' and X'lO'. 
Combination of X'08' and X'10'. 
Combination of X'04', X'08', and X'lO'. 
Requested insertion of device 10 and option field; not done (out of 
units). 

Operation Operand 

CTBFORM [opfield][,DVCID= ~ NO ~ ][,ENDCHAR= ~NO ~ I 
YES YES --- ---

Function: Name of the macro. 
Default: None. Specification optional. 
Format: Must conform to the rules for assembler language symbols. 

Function: Specifies the name of an option field containing data to be inserted in 
the CTB after the device 10. 
Default: None. If this operand is omitted, data is not inserted. 
Format: Must be the same as the name of an option field defined by an OPTION 
macro. 
Notes: The first two bytes of the option field contain the offset in the CTB after 
which insertion is to begin. This position is calculated with respect to the begin­
ning of the CTB and includes any device 10 that may have been inserted. The 
maximum byte position that may be specified is 8, which corresponds to the 
maximum device 10 allowed. The next two bytes of the option field specify the 
length of the data to be inserted. 

Appendix J: Concentrating and Deconcentrating Messages 673 



(WelD= j NO t 
1YES ~ 

ENDCHAR= ~ NO t 
1 YES ~ 

Message Flow 

Function: Specifies whether device ID is to be inserted at the beginning of the CTB. 
Default: DVCID= YES 
Format: YES or NO. 
Notes: The device 10 that is inserted is defined by the DVCID=chars operand of 
the TERMINAL macro. If this operand is omitted, or if it specifies YES, ID 
insertion occurs. If NO is specified, TCAM does not insert the ID. 

Function: Specifies whether TCAM is to insert the delimiting character at the end 
of the CTB. 
Default: YES 
Format: YES or NO. 
Notes: The delimiting character that is inserted is defined by the 
QCNTRL=( ... , char) operand of the TERMINAL macro. If this operand is 
omitted, or if YES is specified, TCAM inserts the character designated by the 
QCNTRL= operand on the TERMINAL macro. If NO is specified, or if the 
QCNTRL= operand does not specify char, TCAM does not attempt to insert a 
delimiting character. 

Example: 
CTBFORM COMMAND,ENDCHAR=NO 

COMMAND is the name of an option field specifying byte position 1 and length 
3, where the device ID has been specified as one character on the TERMINAL 
macro; the TERMINAL macro also specifies a CTB length of 50 bytes. After ~ 
execution of the CTBFORM macro, the CTB begins with the one-character 10, 
continues with the three bytes of option field data, and ends with the original 50 
bytes of the CTB. The name field was omitted in this example. 

Output to a concentrator consists of one or more queues of messages destined 
ultimately for terminals attached to the concentrator (see Constructing Outgoing 
Messages for a Concentrator in this appendix). TCAM removes these messages 
from the one, or several, destination queues associated with the attached terminals 
and blocks them into a single concentrated message for transmission to the 
concentrator. 

To provide control for the various destination queues that may be defined for the 
concentrator, TCAM maintains an internal queue for each concentrator. This 
internal queue is maintained automatically by TCAM and requires no user specifi­
cation or consideration. Under control of the internal queue, a maximum of one 
message at a time is removed from a destination queue, even though several 
messages can be dequeued before transmitting a concentrated message. This 
message (or partial message) becomes the CTB, which then passes through the 
single, output Message Handler (the QCNTRL= operand of the TERMINAL 
macro allows specification of a maximum number of bytes of a message that may 
be sent in each transmission). At this time, line-control character insertion may 
be specified by the user by including the MSGFORM macro in the out buffer 
subgroup of the MH that handles messages for the concentrator. 

( 

674 OS/MFT and OS/MVT TeAM Programmer's Guide 



~·I , 

Other control character insertions, optionally included by coding the CTBFORM 
macro in the out buffer subgroup, include device IDs of attached terminals at the 
beginning of the CTB, a delimiter at the end of the CTB, and the data specified in 
an option field after the device ID (the CTBFORM macro is discussed in the 
preceding section of this appendix). The delimiter allows the concentrator to 
deblock the incoming message, and the device identifications tell the concentrator 
where to relay each individual, deblocked, outgoing message. The option field 
may contain control information for the attached terminal-its use, if required, 
depends upon the message-concentrating/ deconcentrating device being used. The 
device id is specified in the DVCID= operand of the TERMINAL macro, and the 
delimiter is specified in the QCNTRL= operand of the TERMINAL macro; both 
are described in Defining the Network in this appendix. The option field is 
specified by an OPTION macro and is initialized by the OPDAT A= operand of 
the TERMINAL macro. 

Control character insertion related to the entire outgoing transmission sequence 
takes place independently of CTB boundaries; line control characters that may be 
inserted are STX, ETB, ETX, EOT, EOA, and EOB. These must be inserted by 
issuing the MSGFORM macro. 

The amount of data that is dequeued and blocked before beginning transmission is 
determined by the BUFOUT= operand on the line group DCB macro assocated 
with this concentrator line. If program-controlled interruptions are to be taken to 
initiate subsequent dequeuing of data to be sent in this transmission, then the user 
must specify PCI=X on the associated line group DCB macro instruction. This 
option, described fully in Line Group DeB, allocates and fills buffers on a 
program-controlled interruption basis, but deallocates (frees) buffers at block 
check time. This allows recovery from message-block-transmission errors without 
having to reconstruct the message block. If PCI=X is not specified on the line 
group DCB macro, then PCI=N must be specified. If PCI=N is specified, no 
program-controlled interruptions will be taken and the BQFOUT= operand (also 
on the line group DCB macro) must specify enough buffers to contain the longest, 
.~oncentrated message that might be sent to a concentrator (that is, the size of a 
concentrated message should be limited using the CTBMAX= operand on the 
TERMIN AL macro). 

After the outgoing Message Handler forwards a message to the concentrator, the 
OUTMSG macro is executed, and TCAM considers the message successfully sent. 
However, if the user desires to incorporate status analysis in his system, execution 
of the outmessage subgroup is delayed until he has an opportunity to inspect the 
status of subsequent incoming messages to determine if processing should contin­
ue for message transmission. to one or more of the terminals attached to this 
concentrator·, This delay also applies to dequeuing messages from. the destination 
queues. 

If the user specifies that more than one message for a given destination be de­
queued for transmitting to a concentrator (that is, if the TERMINAL macro fOt' 
this destination specifies either QCNTRL=(All, ... ), or QCNTRL=(MSG,x), 
where x is greater than 1), messages for this destination are considered by TCAM 
to be successfully sent as they are dequeued (as opposed to after they have been 
transmitted to the concentrator), and the outmessage subgroup does not execute. 
Re-sending these messages is not possible if a transmission error occurs. Howev­
er, if a permanent error is encountered on output to a concentrator and the 
QCNTRL= operand specifies that only one message for a given destination be 

Appendix J: Concentrating and Deconcentrating Messages 675 



dequeued for transmission, the outmessage subgroup is executed for each de­
queued message. 

Intercepting and Releasing Outgoing Messages 

Using Macros 

Output to a terminal attached to a concentrator may be intercepted and released 
either by using macros or by entering operator commands. 

The HOLD macro instruction (described in the Designing the Message Handler 
chapter) may be coded in the inheader, inmessage, and outmessage subgroups of 
MHs handling messages destined for terminals attached to a concentrator. The 
MRELEASE macro, coded in an application program, may be issued to release 
messages that have been intercepted due to the HOLD macro (or the SUSPXMIT 
operator command). 

Name Operation Operand 

[symbol] MRELEASE statname[,PASSWRD=chars] 

If messages for a terminal are intercepted by a HOLD macro, the MRELEASE 
macro releases those messages when its statname operand is identical to the name 
of the TERMINAL macro that defines the affected terminal. 

This macro is used also to release messages that were intercepted earlier by a 
SUSPXMIT operator command. If the SUSPXMIT command intercepts messages 
for a specific destination, then those messages may be released by replacing 
statname with the name of the TERMINAL macro that defines the affected 
terminal (identical to the procedure for releasing messages intercepted by a 
HOLD macro). However, if the SUSPXMIT command intercepts messages on a 
concentrator basis (that is, if messages to all terminals attached to a concentrator 
are intercepted with one SUSPXMIT command), then those messages may be 
released by replacing statname with the name of the TERMINAL macro that 
defines the concentrator. 

If a SUSPXMIT command is used to intercept messages on a concentrator basis, it 
is permissible to issue one or more MRELEASE macros on a terminal basis in 
order to resume transmission selectively to those terminals chosen by the user. 

Using Operator Commands 
The SUSPXMIT operator command may be used to suspend transmission to a 
specific terminal attached to a concentrator. 

control characters operation operand 

control chars 1~OLD~ TP=statname 

The manner in which tranmission is suspended for a specific terminal is the same 
as described in the Operator Control section in the TCAM Service Facilities 
chapter of this book. In order to suspend transmission to all terminals attached 
to a concentrator, replace statname with the name of the TERMINAL macro that 
defines the concentrator (see symbol in the name field of the TERMINAL 
macro). 

676 OS/MFT and OS/MVT TeAM Programmer's Guide 

c 



Operator Control Considerations 

The RESMXMIT operator command is used to release intercepted messages for a 
specified terminal. 

control characters operation operand 

control chars ~~ELEASE~ TP=statname 

The manner in which queued messages are released for a specific terminal is also 
described in the Operator Control section. To release messages for all terminals 
attached to a concentrator, replace statname with the name of the TERMINAL 
macro that defines the concentrator (see symbol in the name field of the 
TERMINAL macro). 

When using the STOPLINE operator control command with logical message 
definition (LMD), the user must be aware that STOPLINE does not gain control 
until an EOM is received. This means that an EOM must be reached for every 
terminal on the line before STOPLINE gains control. With LMD, EOT does not 
equal EOM. 

Option Fields in a Concentrated-Message Network 
The COUNTER and MSGLIMIT macros in an inblock subgroup may refer to a 
concentrator's option fields any time before execution of an ORIGIN macro in a 
subsequent inheader subgroup. Once an ORIGIN macro executes, option fields 
associated with the concentrator may not be referred to from tl}is MH. 

After ORIGIN executes, however, the option fields associated with terminals 
attached to the concentrator may be referred to by an MH on the incoming side. 
Furthermore, these option fields can be checkpointed using the CHECKPT 
functional macro (note, however, that a concentrator's option fields may not be 
checkpointed) . 

A concentrator's option fields on the outgoing side may not be referred to from 
anyMH. 

Mid-Batch Recovery in a Concentrated-Message Network 
See TCAM I/O Error-Recovery Procedures in the Using TCAM Service 
Facilities chapter for a discussion of mid-batch recovery for non-concentrated 
messages. 

For incoming concentrated messages, recovery is not done on block boundaries. 
However, if multiple MHs are used to handle input from concentrator-attached 
terminals, the second MH may include a CANCELMG macro specifying 
LEVEL=BLK, which causes the CTB being handled to be canceled (the TGOTO 
macro, used for multiple MH execution, is described in this appendix). The 
incoming locical message is continued later with the next CTB from that source 
terminal. To accomplish this kind of recovery on input, the source terminal's 
TERMINAL macro must specify MB=YES. 

In concentrating messages for output to a destination, the outmessage subgroup of 
the MH handling the outgoing concentrated messages must contain a HOLD 
macro specifying LEVEL=BLK. Also, the destination's TERMINAL macro must 

Appendix J: Concentrating and Deconcentrating Messages 677 



specify MB= YES; this causes the last CTB sent to a destination to be retransmit­
ted. See the description of the HOLD macro in Designing the Message Handler. 

Message Retrieval in a Concentrated-Message Network 
Message retrieval, using a combination of POINT with GET or READ macro 
instructions, works the same for terminals attached to a concentrator as it does for 
terminals not attached to a concentrator (see TCAM's Message Retrieval Facility 
in the Writing TCAM-Compatible Application Programs chapter of this book for 
a complete description of how to retrieve an already queued message from a 
DASD). 

Messages are retrieved with respect to a specific destination terminal, not the 
concentrator itself. 

Closedown Through Operator Control 
The SYSCLOSE operator command may be entered for either a quick or a flush 
closedown of a TCAM network that includes one or more message-concentrating 
devices (the SYSCLOSE command and quick and flush closedowns are discussed 
respectively in Using TCAM Service Facilities and Activating and· Deactivating 
the Message Control Program, earlier in this book). 

If the user enters a SYSCLOSE command specifying a quick closedown while a 
CTB is being transmitted, the entire CTB is sent before transmission ceases on 
that line. However, if the TERMINAL macro for the destination station that is 
accepting such a message specifies QCNTRL= ... ,bytecount..., then the amount of 
data sent may be less than the TCAM message being sent (where bytecount 
specifies a length less than the TCAM message being sent). If such a situation 
exists, loss of messages at restart can be avoided by scanning the message queues '4 
at restart (see TCAM Checkpoint/Restart Facility); if the message queue is 
reinitialized and a scan is not performed, all messages or partial messages on the 
queue are lost. 

If the user enters a SYSCLOSE command specifying a flush closedown, the 
amount of queued data sent to a destination depends on whether status analysis is 
being performed for the destination (status analysis is discussed earlier in this 
appendix. If status analysis is not being performed, all messages are "flushed" 
from the queue and sent to their destination. If status analysis is being per­
formed, messages are handled exactly as they are during a quick closedown 
(described above); the discussions above on bytecount and scanning the message 
queues also apply for a flush closedown where status analysis is being performed. 

678 OS/MFT and OS/MVT TeAM Programmer's Guide 

( 



t, 

Function 

Initializing the 
Concentrator 

Defining the 
Network 

Macro 

INTRO 

TERMINAL 
(coded for a 
concentrator) 

Summary of Coding Requirements 

This section summarizes required and optional code for handling concentrated 
messages in a TeAM network. An incoming concentrated message consists of 
data composed of multiple logical messages. An incoming Message Handler 
deblocks the data in order to process its individual logical messages or to forward 
one or more of the logical messages to another MH for processing. The concept 
of deblocking incoming data, including coding requirements, is discussed in 
Handling Logical Messages in the chapter Designing the Message Handler; 
additional required, optional, and invalid coding considerations for handling both 
incoming and outgoing concentrated messages follow. 

Operand 

... [,FEATURE=("lCONC (n 
CONCO 
NOCONC 

... [,QBY=T) 
DVCID=(CONC [,integer) 

QBY=T 

DCB=dcbname 

RLN=integer 

TERM=type 

CTBMAX=integer 

ADDR=char 

BUFSIZE=integer 

NTB LKSZ=(b locksize,subb lock size ) 

TBLKSZ=integer 

OPDATA=(data, ... ) 

QCNTRL= 

LMD= 

MB= 

QUEUES= 

DIALNO= 

LEVEL= 

CLOCK= 

CINTVL= 

ALTDEST= 

required I OptlnMI 
rJn';alid 
, rNotes 

x 

x 
x 

x 

x 

x 

x 

x 

x 

x 

x 

x 

x 

x 

x 

x 

x 

x 

x 

x 

x 

x 

CONCO specifies a mixture of 
concentrator-attached terminals 
and terminals not attached to a 
concentrator. CONCO.specifies 
that all terminals are concen­
trator-attached. NOCONC 
specifies that the system con­
tains no message-concentrating 
devices. If this operand is 
omitted, NOCONC is assumed 
by default. 

Specifies queuing by station. 
Identifies terminal table entry as a 
concentrator or as an attached 
terminal. Integer specifies number 
of bytes in longest id for attached 
terminal; if omitted, one byte is 
assumed for all attached terminals. 

Appendix J: Concent~ting and Deconcentrating Messages 679 



Function Macro Operand 

BFDELAY= 

RETRY= 

SECTERM=YES 

COMP=YES 

UTERM=YES 

CALL= 

neQUired 

fjptional 

J Invalid 

INotes 

TERMINAL 
(coded for 
terminal 
attached to 
a concentrator) 

DVCIO= ~chars t 
1NONE' 

x 

QCNTRL=({ALL }[,t) x 
(MSG [1~sgcoun1 

bytecount 
[,STATUS) [,char» 

680 OS/MFT and OS/MVT TeAM Programmer's Guide 

x 

x 

x 

x 

x 

x 

x 

chars specifies id of concentrator­
attached terminal (unframed hexa­
decimal). Do not specify FF. 
Optional insertion of id is at beginning 
of each CTB destined for this terminal 
(if id insertion occurs, requires that 
outbuffer subgroup handling messages 
for this terminal contain a CTBFORM 
macro specifying DVCID=YES). 

NONE specifies that this concentrator­
attached terminal has no id (id 
insertion does not occur for messages 
destined for this terminal). 
Controls dequeuing of outgoing 
messages to a concentrator. Required 
for first attached terminal, optional 
for others. 

ALL specifies that all messages on this 
queue are to be sent in one transmis­
sion. If coded, the outmessage sub­
group does not execute (with two 
exceptions; outmessage execution 
occurs if there is an initial selection 
error or if transmission is unsuccessful 
due to a lack of buffers); also, status 
analysis is not performed (that is, do 
not specify the STATUS operand). 

MSG[,msgcount) specifies the number 
of messages to be sent (1 to 255 may 
be specified). If msgcount is omitted, 
one message per transmission is sent. 
If status analysis is desired, code MSG 
or (MSG,I) followed immediately by 
STATUS. If other than MSG or 
(MSG,I) is coded, then the outmessage 
subgroup does not execute and TCAM 
considers each message successfully 
sent as it is removed from its destina­
tion queue (with two possible excep­
tions; when (MSG,x) is specified, 
where x is greater than 1, outmessage 
execution occurs if there is an initial 
selection error or if transmission is 
unsuccessful due to a lack ofbuffers). 

bytecount specifies the maximum 
number of bytes sent as a CTB (1 to 
.32767 may be specified). If the end 
of the message is reached first, only 
the bytes in the message are included 
in the CTB. If STATUS immediately 



Function Macro Operand 

DCB~cbname 

RLN"'integer 

TERM"'type 

QUEUES"'form 

LMD"'l~~ ~ 
ADDR"'chars 

neQUired 

I j~iUdNMU 

x x 

x x 

x 

x x 

x 

x 

follows this operand, status analysis 
operates on each CTB of the message. 

L establishes priority levels for a 
group of terminals such that for any 
given transmission, no more than one 
message per terminal is sent. Requires 
that QCNTRL'" also specify either 
MSG or (MSG,l), and that this 
TERMINAL macro specify LEVEL'" 
I}. 12, ... In, wheren equals the 
number of terminals to be controlled. 
11, 12, and In are the priority levels to 
be used. 

STATUS specifies that status analysis 
is to be used in handling the queue 
generated by this TERMINAL macro. 
Requires that MSG, (MSG,l), or 
bytecount precede this operand. 

char specifies the delimiter to be 
inserted at the end of each CTB after 
MH processing (unframed hexadecimal 
characters must be specified but do 
not use FF). If character insertion 
occurs, requires that the CTBFORM 
macro specify ENDCHAR"'YES. 

Specifies the name of the data control 
block for the line group in which the 
terminal is included. If coded, must 
agree with the DCB'" operand on the 
TERMINAL macro that dermes the 
destination queue for this terminal. 
Must agree also with the DCB'" oper­
and on the TERMINAL macro for 
the concentrator terminal entry. 
This operand is required if QCNTRL'" 
is specified, otherwise optional. 

Specifies the relative line number, 
within the line group, of the commu­
nication line between computer and 
terminal. Required ifQCNTRL'" is 
specified, otherwise optional. 
Must agree with RLN operand on the 
TERMINAL macro that dermes the 
destination queue for this terminal. 
Must agree also with the RLN operand 
on the concentrator entry for this 
terminal. 

Specifies the terminal type. 

Specifies where message queues to be 
maintained. Required ifQCNTRL'" 
is specified, otherwise invalid. 

Specifies whether logical messages are 
to be entered frem this terminal. 

Specifies address of remote message­
concentrating device, and overrides 
any ADDR'" operand specified on 
TERMINAL macro for a concentrator. 
If omitted, the value specified on the 
ADDR'" operand of the TERMINAL 

Appendix J: Concentrating and Deconcentrating Messages 681 



Function Macro Operand 

r~ 
10
-" I Invalid 

!Notes 
macro for the concentrator is used. 
If more than one message is sent to a 
concentrator in a concentrated mes-
sage, the first message determines 
which addtessing character is used. 
This operand is used normally only 
when CfBMAX=l is specified on the 
TERMINAL macro for the concen-
trator (thus allowing the status 
analysis facility for concentrators that 
do not handle concentrated output). 

LEVEL=(integer, ... ) x Specifies permissible priority levels 
used in header of message destined 
for this terminal. 

BUFSIZE=integer x 

ALTDEST=entry x 

NTBLKSZ=(blocksize,subblocksize) x 

TBLKSZ=integer x 

OPDATA=(data, ... ) x 

M8=l ~~S ~ x 

SEcrERM1 ~~S ~ x 

COMP=l ~S ~ x 

crBMAX= x 
( 

QBY= x \ 
DIALNO= x 

CLOCK= x 

CINTVL= x 

BFDELAY= x 

RETRY= x 

UTERM=YES x 

CALL= x 

Defming Data Line group BUFOUT= l ;nteger ~ x Specifies amount of data to be 
Sets DCB dequeued and blocked before its 

transmission. If PCIs control subse-
quent dequeuing in this transmission, 
then PCI=X must be specified on this 
DCB. 

MH=mhname x 

PCI=l ~~ x 

MH Macros for STARTMH ... ,LMD= l ~~S ~ x Provides logical message support for 
Incoming Concen- incoming concentrated messages. 
trated Messages Requires an inblock subgroup. 

INBLOCK (no operands) x Identifies beginning of inblock sub-
group for handling incoming concen-
trated messages. Requires SETEOM 
macro. 

SETEOM x Deblocks incoming data from a 
concentrator to form a variable-
length message. 

ENDCHAR=lohars ~ x x Specifies character or character 
opfield string that delimits message. 

682 OS/MFT and OS/MVT TeAM Programmer's Guide 



Function Macro Operand 
r·M 

1P1'~ lNotes 

Required if LENGTH= operand not 
specified, otherwise optional. 

LENGTH=( ~ (integer)~ ,opfield2) x x Specifies length of message. 
opfield Required ifENDCHAR= operand not 

specified, otherwise optional. 

PROCESS=~ ~~S f x Specifies whether second portion of 
original message is to be processed or 
discarded. First MH must include 
inblock subgroup whose SETEOM 
macro specifies PROCESS=YES. 
Any second MH to which an ex-
tracted message is directed must 
include inblock subgroup whose 
SETEOM macro specifies 
PROCESS=NO. 

REMOVE=~ ~~S ~ x Removes EOM indicator from buffer. 

QACTION x Controls output operations based on 
information from terminals. Requires 
that terminals being controlled have a 
TERMINAL macro specifying 
QCNTRL= ... , STATUS, ... 

EXIT=name x Specifies name of user-written analysis 
routine that gains control each time 
QACTION executes. 

,TYPE=~ A x Specifies A-type or V-type address 
V constant to be generated for user 

routine. 

Specify A if routine is assembled as 
part of MCP. 

Specify V if routine is assembled 
separately. 

TGOTO x Permits communication between two 
Message Handlers. 

MH=~ nameofMH f x Specifies name ofMH to gain control, 
opfield or option field containing address of 

MH. 
ORIGIN x Determines origin of message from 

concentrator-attached terminal. 

,FORM=~ ID ~ x Specifies whether device id or name 
NAME in origin field is used to identify 

source terminal. If this operand 
omitted, TCAM executes in same 
manner as for non-concentrator 
terminals. Requires that the INTRO 
macro specify CONC or CONCO on 
its FEATURE= operand. 

INITIATE x 

MSGGEN x 
MH Macros for CTBFORM x Permits user to format cTBs on out-
Concentrating put. 
Outgoing Messages 

I> 
opfield x Specifies name of option field con-

taining data to be inserted in CTB ~! 
following device id. 

Appendix J: Concentrating and Deconcentrating Messages 683 



Function Macro Operand 

DVCID=1~s~ 

ENDCHAR=lNO f 
YES 

MSGFORM 

HOLD 

LEVEL=BLK 

LEVEL=MSG 

MSGGEN 

684 OS/MFT and OS/MVT TeAM Programmer's Guide 

required rptional 

J1n!,alid 

I !Note.\' 

x 

x 

x 

x 

x 

x 

x 

Specifies whether device id is to be 
inserted at the beginning of the CI'B 
(see the DVCID= operand of the 
TERMINAL macro). 

Specifies whether the delimiter, spe­
cified on the QCNTRL= operand of 
the TERMINAL macro, is inserted at 
the end of the CI'B. 

Inserts line control characters on out­
put. Issue in the outbuffer subgroup 
rather than the outheader subgroup. 

Required for mid-batch recovery of 
multi-block messages. 

Any C1'B (after the first) containing 
an error is sent again when this operand 
is specified. 

Causes terminal to be intercepted 
(see description ofnOLD macro). 
MSG is the default value. 



The following is a listing of the communication terms used in 
this manual. For a complete listing of all communications 
terms, refer to A Data Processing Glossary, GC20-l699. 

accepting : the process in which a destination station acquires 
a message transmitted to it from the central computer. Enter­
ing and accepting are functions of a station. 

accepting station : a destination station that acquires a mes­
sage. 

access line : a switched line continuously connecting a re­
mote station and the transmission control unit to a switching 
center (exchange). A telephone number is associated with the 
access line. 

access method : a combination of an access technique (either 
queued or basic) and a given data set organization (for instance, 
sequential, partitioned, indexed sequential, or direct) that 
allows the programmer to transfer data between main storage 
and I/O devices. 

active line : a communication line that is currently available 
for transmission of data. Contrast with inactive line. 

active station : a station that is currently eligible for entering 
and/or accepting messages on the line. A station may be active 
for entering or active for accepting, or both; the status of a 
station is determined by the status of the line it is on, by the 
type of character (+ or -) coded in the invitation list entry for 
the station, by the presence or absence of a HOLD macro in the 
outgoing group of the message handler handling outgoing mes­
sages for this station, and by the five operator commands 
(ACTVBOTH, ENTERING, NOENTRNG, NOTRAFIC, 
SUSPXMIT, that directly affect the station's status. 

addressing characters : identifying characters, sent by the 
computer, that cause a particular station (or component) to be 
selected to accept a message sent by the computer. 

answering : a procedure by which a called party completes a 
connection (for switched lines). 

application program : a user-provided program that process­
es the text portions of messages. Application programs run 
asynchronously with the message control program, and are 
usually located in another partition or region of main storage. 
TCAM application programs are optional; there may be many 
or none, depending on the needs of the user. 

ARU : see audio response unit. 

audio line : a communication line attached to an audio re­
sponse unit such as the IBM 7770 Model 3 Audio Response 
Unit. An audio communication line is always switched. 

audio response unit (ARU) : a control unit that provides 
much the same functions for audio stations that a transmission 
control unit provides for nonaudio stations; in addition, it 
causes an audible response to be made to an audio inquiry. 

Glossary 

audio station : a unit of equipment associated with an audio 
response unit, at which keyed or dialed data is entered for 
transmission to the computer; an audio response is produced by 
the ARU as output. 

Auto Answer : a machine feature that allows either a trans­
mission control unit or a station to respond automatically to a 
call that it receives over a switched line. 

Auto Call : a machine feature that allows either a transmis­
sion control unit or a station to automatically initiate a call over 
a switched line. A dialing operation that originates at the cen­
tral computer must use the Auto Call machine feature. 

Auto Poll : A machine feature of a transmission control unit 
that permits it to handle negative responses to polling without 
interrupting the central processing unit. At the end of the 
invitation list, polling is resumed automatically at the beginning 
of the list. 

available-unit queue : a queue in main storage to which all 
buffer units are assigned initially (that is, before allocation to 
TCAM lines and application programs requiring buffers). 
Empty buffer units (that is, buffer units whose contents have 
been processed by the incoming or outgoing group of an MH, 
and that are not assigned to the t:nain-storage message queues 
data set) are returned to the available-unit queue, from which 
they are reallocated. 

bid : in the contention form of invitation or selection, an 
attempt by the computer or a station to gain control of the line 
so that it can transmit data. 

binary synchronous communications (BSC) : data trans­
mission in which character synchronization is controlled by 
timing signals generated by the device that originates a message 
(and the device that obtains the message recognizes the sync 
pattern at the beginning of the transmission-the devices are 
locked in step with one another); contrast with start-stop 
transmission. 

block : that portion of a message terminated by an EOB or 
ETB line-control character or, if this is the last block in the 
message, by an ETX or EOT line-control character. When 
end-of-block checking is specified in the ST ARTMH macro, 
messages are checked for certain types of transmission and 
user-specified logical errors on a block-by-block basis. 

blocking : for an incoming operation, the combination of 
multiple incoming transmissions to form a single logical mes­
sage; for an outgoing operation, the removal of messages 
queued for terminals attached to a concentrator, and the subse­
quent combining of these messages into a single transmission to 
the concentrator (see also reblocking). 

BSC : see binary synchronous communications. 

buffer : an area in main storage into which a message seg­
ment is read, or from which a message segment is written. 
Buffers are temporary data-holding areas that compensate for 

Glossary 685 



the difference between the rate at which data can be entered 
from or accepted by a station and the rate at which it can be 
processed by the central processing unit; buffers also may be 
used as work areas in TCAM. The size of TCAM buffers is 
designated by the user. (See also hardware buffer.) 

buffer allocation: the assignment of buffers by TCAM to 
lines or application programs in preparation for receiving mes­
sage segments from stations on the lines or from application 
programs. (See also dynamic buffer al/ocation and static 
buffer al/ocation.) 

buffer deallocation : for a sending operation, de allocation 
consists of returning the units that compose the buffer to the 
available-unit queue after the data in these units has been sent 
to its destination station or application program; for a receiving 
operation, deallocation consists of transferring full buffers from 
the line or application program to which they were assigned to 
the incoming group of the MH that is to process the message 
segments they contain. 

buffer prefix: a control area contained within each TCAM 
buffer. The prefix for the buffer containing the first segment of 
a message is 30 bytes, while the prefix for each buffer contain­
ing a subsequent segment of the message is 23 bytes. The user 
must allow room for the buffer prefix when he specifies his 
buffer size. TCAM fills the prefix area with buffer control 
information. 

buffer unit : the basic building block from which TCAM 
buffers are constructed. All units in a particular TCAM system 
are the same size; this size is specified by the KEYLEN= ope­
rand of the INTRO macro. 

buffer-unit pool : all the buffer units in a particular TCAM 
system together constitute the buffer-unit pool for that system. 
The number of units in the pool is equal to the sum of the integ­
ers specified by the LNUNITS= and MSUNITS= operands of 
the INTRO macro. 

buffered terminal : a terminal having a hardware buffer. As 
used in this book, a buffered terminal is an IBM 2740 Model 2 
station or IBM 2770 station whose TERMINAL macro specifies 
BFDELAY=integer. 

calling : a procedure that establishes a connection over a 
switched line; a series of electrical signals, corresponding to the 
telephone numb« of the station or computer with which con­
tact is to be made, are sent down the line;· these pulses or notes 
cause automatic switching equipment belonging to the common 
carrier to establish the connection, if the party being called is 
free to accept the call. (Also referred to as dialing. ) 

cascade entry : an entry in the terminal table associated with 
a cascade list. 

cascade Ust : a list of pointers to single, group, or process 
entries. A message is queued for the valid entry in the list with 
the fewest messages queued for it. 

central processing unit (CPU) : a unit of a computer that 
controls interpretation and execution of instructions. 

channel program block (CPB) : a TCAM control block 

686 OS/MFT and OS/MVT TCAM Programmer's Guide 

used in the transfer of the data between buffer units and mes­
sage queues maintained on disk. The CPB= operand of the 
INTRO macro specifies the number of CPBs to be provided in a 
TCAM system. 

checkpoint data set : an optional TCAM data set that con­
tains the checkpoint records used to reconstruct the MCP envi­
ronment after closedown or system failure, when the TCAM 
checkpoint/restart facility is utilized. 

checkpoint records : records, located in the checkpoint data 
set, that are used to reconstruct the MCP environment upon 
restart following closedown or system failure. There are four 
types of checkpoint records: environment records, incident 
records, checkpoint request records, and a control record. 

checkpoint request record : a checkpoint record taken as a 
result of execution of a CKREQ macro issued in an application 
program; the record contains the status of a single destination 
queue for the application program. The latest checkpoint re­
quest record for a message queue is used during restart to cause 
sending from that queue to the application program to begin 
with the message that follows the last message sent to the pro­
gram from that queue at the time the checkpoint request record 
was taken, rather than with the message following the last 
message marked serviced. 

checkpoint/restart : a TCAM facility that records the status 
of the teleprocessing network at designated intervals or follow­
ing certain events. Following system failure or closedown, the 
checkpoint/restart facility uses the records it has taken to re­
store the message control program environment as nearly as 
possible to its status before the failure or closedown. 

CIB : see command input block. 

closedown : an orderly deactivation of the MCP by either an 
MCPCLOSE macro instruction issued in an application pro­
gram or an operator command. See quick closedown and 
flush closedown. 

cold restart : start-up of a TCAM message control program 
following either a flush closedown, a quick closedown, or a 
system failure. A cold restart ignores the previous environment 
(that is, the MCP is started as if this were the initial start-up), 
and is the only type of restart possible when no 
checkpoint/restart facility is used. 

command input block (CIB) : buffer-like areas that contain 
operator commands entered at the system console. Space is 
allocated for them dynamically when needed, and the main 
storage assigned to a CIB is freed once the 'operator command 
contained within the CIB has been processed. Only one CIB 
need be specified for operator commands entered from the 
system console. 

common carrier : in communications, a government­
regulated private company that furnishes the general public 
with telecommunications services; a telephone or telegraph 
company. 

component : an I/O device associated with a station. 

component entry : a terminal entry that defines a component 

( 



of a station that maybe individually addressed; if more than one 
component of a station may be individually addressed, a com­
ponent entry may be required for each. This entry is defined by 
a TERMINAL macro. 

computer : in this publication, the central processing unit in 
which the TCAM message control program is located. 

concentration : The process of combining multiple messages 
into a single message for transmission. 

concentrator : Any device that either combines multiple 
incoming messages into a single message (concentration), or 
extracts individual messages from data sent in a single transmis­
sion sequence (deconcentration). 

concentrator terminal buffer: the amount of data in indi­
vidual messages transmitted either to or from a concentrator. 
Buffer in this instance bears no relationship to a TCAM buffer. 

constructing : see blocking. 

contention : classically, a line-control scheme in which sta­
tions on a line compete for the use of that unused line; the 
station that is successful in gaining control of the line is able to 
transmit. In a TCAM system, the term is applied to any point­
to-point line configuration when the station on the line does not 
use polling and addressing characters. 

continuation restart : a restart of the TCAM message 
control program following termination of the message control 
program because of system failure; the TCAM 
checkpoint/restart facility restores the MCP environment as 
nearly as possible to its condition before failure. 

control characters : characters transmitted over a line that 
are not message data, but which cause certain control 
operations to be performed when encountered by the computer, 
transmission control unit, or station; among such operations are 
polling and addressing, message delimiting and blocking, 
transmission-error checking, and carriage return. 

control record : a record, included in a checkpoint data set, 
that keeps track of the correct environment, incident, and 
checkpoint request records to reconstruct the message control 
program environment during restart. 

CPB see channel program block. 

CPU see central processing unit. 

CTB : see concentrator terminal buffer. 

DASD : direct-access storage device, also referred to as disk. 
The DASD devices supported by TCAM are the IBM 2314 
Direct Access Storage Drive and the IBM 3330 Disk Drive. 

data collection : a telecommunications application in which 
data from several locations is accumulated at one location (in a 
queue or on a file) before batch processing. 

data control block (DCB) : an area of main storage that 

serves as a logical connector between the problem program and 
a data set. The data control block also can provide control 
information for any transfer of data. A data control block must 
be created for each TCAM data set except a message queues 
data set residing in main storage; a DCB macro instruction 
creates a data control block. 

Data set : 

1. a named, organized collection of logically related records 
(program data set). The information is not restricted to a 
specific type, purpose, or storage medium. Among the data 
sets specifically related to TCAM are the line group data 
sets, the message queues data sets, the checkpoint data set, 
the message log data set, and the input and output data sets 
for a TCAM-compatible application program. 

2. a device containing the electrical circuitry necessary to 
connect data processing equipment to a communication 
channel; also called a subset, Data-Phone*, 
modulator/demodulator, or modem. 

DCB : see data control block. 

dead-letter queue : the destination queue for the station or 
application program named by the DLQ= operand of the 
INTRO macro instruction. If an invalid destination is detected 
in a message header by a FORWARD macro instruction, and if 
no user exit is specified in the FORWARD macro, that message 
is sent to the dead-letter queue. 

deblocking : The process in a TCAM network whereby 
individual logical messages are extracted from an incoming 
transmission sequence. The resulting logical messages are 
processed individually by one or more incoming message 
handlers. 

deconcentration : the process of extracting individual 
messages from data sent in a single transmission sequence (see 
concentrator) . 

delimiter macro instruction : a TCAM macro instruction 
that classifies and identifies sequences of functional macro 
instructions and directs control to the appropriate sequence of 
functional macro instructions. 

destination : the place to which a message being handled by a 
TCAM message handler is to be sent. A destination may be 
either a station defined by a TERMINAL macro, a group of 
stations defined by a TLIST macro, or an application program 
defined by a TPROCESS macro. One or more destinations 
may be specified in fields of the message header that are 
checked by a FORWARD macro, or a single destination may be 
specified for all messages handled by a particular inheader 
subgroup by means of the D EST = operand of a FO RW ARD 
macro issued in that subgroup. 

destination field : a field in a message header containing the 
name of a station or application program to which a message is 
directed. 

destination queue a queue on which messages bound for a 

*Trademark of the American Telephone & Telegraph Co. 

Glossary 687 



particular destination are placed after being processed by the 
incoming group of a Message Handler. A separate destination 
queue is created for each station defined by a TERMINAL 
macro specifying queuing by terminal, one for each line whose 
stations are defined by TERMINAL macros specifying queuing 
by line, and one for each application-program process entry 
(defined by a TPROCESS macro) to which the application 
program may direct GET or READ macros. Destination 
queues are maintained in message queues data sets that may be 
located on disk or in main storage. Queuing messages by 
destination permits overlap of line usage in I/O operations. See 
also process queue. 

destination station : a station that accepts a message sent to 
it by the outgoing group of the message handler that is 
specified for the line to which the accepting station is assigned. 

diaUng : ~ee calling. 

dial line : see switched line. 

direct-access storage device : see DASD. 

disabUng the Une : a process whereby TCAM causes the 
computer to condition either the transmission control unit or 
the audio response unit to ignore incoming calls on a switched 
line. Once this is accomplished, the line is available for TCAM 
to send queued messages to a station on that line. See enabling 
the line. 

disk : see DASD. 

distribution entry : an entry in the terminal table associated 
with a distribution list. A distribution entry is created by a 
TLIST macro. 

distribution list : a list of single, group, cascade, or process 
entries; when a message is directed to the distribution entry 
associated with this list, TCAM sends the message to each 
destination named in the list. 

dynamic buffer allocation : the assignment of buffers to a 
line on an as-needed basis, after a message has started coming 
in over the line. Dynamic allocation occurs following 
program-controlled interruptions, and is specified by the PCI= 
operand of the line group DCB macro. See also static buffer 
allocation. 

EBCDIC Extended Binary Coded Decimal Interchange 
Code. 

enabUng the Une : a process whereby TCAM causes the 
computer to condition either the transmission control unit or 
the audio response unit to respond to incoming calls on a 
switched line. See disabling the line. 

end-of-address (EOA) character 

l. a control character or characters transmitted on a line to 
indicatethe end of nontext characters (for example, 
addressing characters). 

2. a TCAM character that must be placed in a message if the 
system is to accommodate routing of that message to several 
destinations; the character must immediately follow the last 

688 OS/MFT and OS/MVT TCAM Programmer's Guide 

destination code in the message header; and must also be 
specified by the EOA= operand of the FORWARD macro 
for the message. 

entering : the process in which a station places on the line a 
message to be transmitted to the central computer (a station 
enters and accepts messages, while the central computer sends 
and receives messages). 

environment record : a record of the total teleprocessing 
environment at a single point in time. The environment record 
resides in the checkpoint data set; at restart time, an 
environment record is updated by the contents of incident 
records that were taken after the environment record was 
taken, and the updated environment record then reconstructs 
the message control program environment as it existed before 
MCP closedown or system failure. 

EOA : see end-of-address character. 

error record : five bytes assigned to each message being 
processed by a message handler; these bytes indicate physical or 
logical errors that have occurred during transmission on the line 
or during subsequent processing or queuing of the message, and 
are checked by error-handling macros in the in message and 
out message subgroups of a message handler. Also called 
message error record. 

error-recovery procedures (ERP) : a set of internal 
TCAM routines that attempt to recover from transmission 
errors. 

exchange : a communications switching center. 

extended lock mode : a type of lock mode wherein a station 
is locked for the duration of several inquiry-response cycles. 
Compare with message lock mode; see also lock mode. 

extracting : see deblocking 

FEFO (rarst-ended first-out) : a queuing scheme whereby 
messages on a destination queue are sent to the destination on a 
first-ended first-out basis within priority groups. That is, 
higher-priority messages are sent before lower-priority 
messages; when two messages on a queue have equal priority, 
the one whose final segment arrived at the queue earliest is sent 
first. 

FIFO (first-in rU"st-out) : a queuing scheme whereby 
equal-priority messages on the same destination queue are sent 
in the order that their first segments arrived at the queue. 

flush closedown : a closedown of the TCAM message control 
program during which incoming message traffic is suspended 
and queued outgoing messages are sent to their destinations 
before c1osedown is completed; this form of termination is 
known as a flush closedown because unsent messages are 
flushed from the message queues. See also quick closedown. 

functional macro instructions : TCAM macros that perform 
the specific operations required for messages directed to the 
message handler. See also delimiter macro instruction. 

( 



group addressing : the capability of all terminals on a 
multipoint line recognizing addressing characters, but only one 
of the terminals responds. 

group entry : an entry in the terminal table associated with a 
group of terminals having the Group Code machine feature. 

half-duplex: a communication line over which transmissions 
can occur in either direction, but only in one direction at a time. 

hardware buffer : a buffer that is located in a station, as 
opposed to the buffers for the TCAM MCP, which are located 
in the computer. The IBM 2740 Communication Terminal 
Model 2, for example, contains a hardware buffer that 
accommodates up to 120 characters. See also buffered 
terminal. 

header : that portion of a message containing control 
information for the message; a header might contain one or 
more destination fields, the name of the originating station, an 
input sequence number, a character string indicating the type of 
message, a priority level for the message, etc. The message 
header is operated on by macros in the inheader and outheader 
subgroups of the message handler. 

header buffer : a buffer containing a header segment. 

header segment : a message segment containing all or part of 
the message header. 

identification characters (ID characters) : characters sent 
by a BSC station on a switched line to identify the station. ID 
characters can also be assigned to the computer (by the 
CPUID= operand of the INVLIST macro); in this case, the 
computer and the station can exchange ID sequences. TWX 
stations also use ID characters. 

idle : describes a line that is not currently available for 
transmission of data because IDLE was coded in the OPEN 
macro for the line group data set containing the line. Such a 
line may be activated by a ST ARTLINE operator command. 

inactive line : a communication line that is not currently 
available for transmitting data. Contrast with active line. 

inactive station : a station that is currently ineligible for 
entering and/or accepting messages. A station may be inactive 
for entering or inactive for accepting, or both; the status of a 
station is determined by the status of the line it is on, by a 
special character (+ or -) coded in the invitation list entry for 
the station, by the presence or absence of a HOLD macro in the 
outgoing group of the message handler handling outgoing 
messages for this station, and by the five operator commands 
(ACTVBOTH, ENTERING, NOENTRNG, NOTRAFIC, 
SUSPXMIT) that directly affect the station's status. 

incident record : a checkpoint record residing in the 
checkpoint data set on a DASD; an incident record logs a 
change in station status or in the contents of an option field that 
occurred since the last environment record was taken. Incident 
records update the information contained in environment 
records at restart time after a closedown or system failure. 

incoming group : that portion of a message handler designed 
to handle messages arriving for handling by the message control 
program. See also outgoing group. 

incoming message : a message being transmitted from a 
station to the computer. 

initiate mode : a function provided by an incoming message 
handler whereby TCAM sends the segments of a message from 
a destination queue to the destination as soon as possible after 
they are placed on the queue, regardless of whether the entire 
message has arrived at the destination queue. The INITIATE 
functional macro is coded to achieve this capability. 

input : of or related to a message transmission that involves 
entering data at a station or receiving data at the computer. 

input data set : a logical data set for a TCAM-compatible 
application program. The input data set contains all messages 
or records being sent to the application program from a single 
process queue. Though it is not located in a physical medium, 
the input data set requires a DD statement and a DCB macro 
for its definition and must be activated and deactivated by 
OPEN and CLOSE macros. See also output data set. 

input DCB : a data control block that defines an input data 
set. This DCB is created by an input DCB macro. 

input sequence number : a means of ensuring that messages 
are received from a source in the correct order; the user may 
place a sequence number in the header of each message entered 
by a station or application program, and code a SEQUENCE 
macro in the incoming group of his message handler. The 
SEQUENCE macro checks the sequence number for each 
message; if the number is not one more than that assigned to 
the previous message received from that origin, a bit is turned 
on in the message error record. 

inquiry processing : a TCAM application in which the 
message control program receives a message from a station, 
then routes it to an application program that processes the data 
in the message and generates a reply; the reply is routed by the 
message control program to the inquiring station. Response 
time often may be shortened by specifying the lock mode (by a 
LOCK macro in the message handler) and by locating the 
message queues data set containing the queues for the 
application program in main storage. 

intercepted station : a station to which no messages may be 
sent. A station is intercepted by issuing a HOLD macro 
instruction in the outmessage subgroup of a message handler; 
the suspension is either for a specified time interval or until 
either an operator command or an application-program macro 
instruction is issued to release messages held for the intercepted 
station. 

invalid destination : a destination specified for a message 
that does not correspond to a valid terminal-table entry. 

invitation : the process in which the computer contacts a 
station to allow the station fo transmit a message if it has one 
ready. 

invitation delay a period of time (specified by the INTVL= 

Glossary 689 



operand of the line group DCB macro), during which outgoing 
messages are sent to nonswitched polled stations for which 
receiving has priority over sending (because CPRI=R is coded 
in the line group DCB macro). This delay is observed for all 
such stations on a line when the end of the invitation list for 
that line is reached. The delay in polling is observed for such 
stations whether or not the computer has any messages to send 
them. If no invitation delay is specified for such stations, no 
messages can be sent to them. 

invitation list : a series of sets of polling characters or 
identification sequences associated with the stations on a line; 
the order in which sets of polling characters are specified (in the 
INVLIST macro for the line) determines the order in which 
polled stations are invited to enter messages on the line. 

inward W ATS : a service provided by the telephone 
company, whereby all incoming calls from within a prescribed 
area are charged to the receiving subscriber at a flat rate. See 
also WATS. 

LCD : see line control block. 

line : the communications medium linking the computer to 
one or more remote stations; message transmission occurs over 
this medium. See also nonswitched line, switched line, 
point-to-point line, and multipoint line. 

line control : the scheme of operating procedures and control 
signals by which a telecommunications system is controlled. 

line control block (LCD) : an area of main storage 
containing control information for operations on a line; one 
LCB is maintained by TCAM for each line in the system. 

line-control characters : characters that control 
transmission of data over a line; for example, line-control 
characters delimit messages, cause transmission-error checking 
to be performed, indicate whether a station has data to send or 
is ready to receive data. 

line entry : a terminal entry that defines a switched line that 
is used for input or input/output operations. The entry is 
defined by specifying UTERM= YES on the TERMINAL 
macro. 

line group : a set of one or more communication lines of the 
same type, over which stations with similar characteristics can 
communicate with the computer. 

line group data set : a message control program data set 
consisting of all the lines in a line group; the messages that are 
transmitted on these lines constitute the data in this data set. A 
line group data set is defined by a line group DCB macro 
instruction and by a DD statement for each line in the line 
group. 

line group DCD : a data control block created by a line group 
DCB macro instruction; information in the data control block 
defines the line group to TCAM. 

local station : a station whose control unit is connected 
directly to a computer data channel by a local cable. See 
remote station. 

690 OS/MFT and OS/MVT TCAM Programmer's Guide 

lock mode : a TCAM facility, invoked in a message handler 
by the LOCK macro, whereby a station entering an inquiry 
message for an application program is held on the line by the 
message control program until a response has been returned to 
it by the application program. Using lock mode decreases 
response time because there are no interruptions on the line 
before a response is returned. If LOCK is executed and 
CONV=YES is coded in the STARTMH macro, tete-a-tete 
interaction (defined in this Glossary) is in effect for the station. 
A station may be placed in lock mode either for the duration of 
a single inquiry and response (message lock mode) or for the 
duration of several inquiry-response cycles (extended lock 
mode). The type of lock mode is specified in the LOCK macro. 

log : a collection of messages or message segments placed on a 
secondary-storage device for accounting or data collection 
purposes. The TCAM logging facility is invoked by a functional 
macro instruction issued in a message handler. 

log data set : a data set consisting of the messages or message 
segments recorded on a secondary-storage medium by the 
TCAM logging facility. A log data set is defined by means of a 
BSAM DCB macro instruction that is issued with the DCB 
macro instructions defining the line group data sets, the 
message queues data sets, and the checkpoint data set. 

logical message : a unit of data defined by the user by coding 
the SETEOM functional macro. 

logtype entry : an entry in the terminal table associated with 
a queue on which complete messages reside while awaiting 
transfer to the logging medium (a logtype entry is not needed if 
message segments only are to be logged). A logtype entry is 
created by a LOGTYPE macro. 

MCP : see message control program. 

message : for a TCAM system that defines logical messages, a 
unit of data defined by the user by coding the SETEOM 
functional macro; if logical messages are not defined, a unit of 
data received from or sent to a station that is terminated by an 
EOT or ETX control character or, if the CONV= operand of 
the STARTMH macro is coded CONV=YES, by an EOB or 
ETX control character. A TCAM message is often divided into 
a header portion, which contains control information, and a 
text portion, which contains the part of the message of concern 
to the party ultimately receiving it. 

message concentration : see concentration. 

message control program (MCP) : a set of user-defined 
TCAM routines that identify the teleprocessing network to the 
System/370 Advanced Operating System, establish the line 
control required for the various kinds of stations and modes of 
connection, and control the handling and routing of messages 
to fit the user's requirements. 

message error record : see error record. 

message handler (MH) : a sequence of user-specified 
TCAM macro instructions in the message control program that 
examine and process control information in message headers, 
and perform functions necessary to prepare message segments 
for forwarding to their destinations. One message handler must 



be assigned to each line group by the MH= operand of the line 
group DCB macro, and one must be assigned to each 
TCAM-compatible application program by the MH= operand 
of the PCB macro. The incoming group of an MH handles 
messages received from either an originating station or an 
application program; the outgoing group of an MH handles 
messages before their being sent to a destination station or 
application program. 

message lock mode : a type of lock mode wherein a station 
is locked for the duration of a single inquiry and response. 
Compare with extended lock mode; see also lock mode. 

message priority : refers to the order in which messages in a 
destination queue are transmitted to the destination, relative to 
each other. Higher-priority messages are forwarded before 
lower-priority messages. Up to 255 different priority levels may 
be assigned to a single destination (by the LEVEL= operand of 
the TERMINAL or TPROCESS macro). The priority for each 
message sent to the destination may be specified in the message 
header or assigned by a PRIORITY macro; in either case, a 
PRIORITY macro should be coded in the inheader subgroup 
handling the message. 

message queue : see destination queue. 

message queues data set : a TCAM data set that contains 
one or more destination queues. A message queues data set 
contains messages that have been processed by the incoming 
group of a message handler and are waiting for TCAM to 
dequeue them, route them through an outgoing group of a 
message handler, and send them to their destinations. Up to 
three message queues data sets (one in main storage, one on 
reusable disk, one on nonreusable disk) may be specified for a 
TCAM message control program. 

message segment : the portion of a message contained in a 
single buffer. 

message switching : a telecommunications application in 
which a message is received from a remote station, stored until 
a suitable outgoing line is available, and then transmitted to its 
destination station. TCAM message switching can be handled 
entirely by the message control program. 

MH : See message handler. 

mid-batch recovery : the ability to recover from permanent 
text errors encountered in any block of data following the first 
block in a multiblock message. 

mixed environment : a system in which TCAM and TSO 
tasks concurrently share all necessary system resources. 

multipoint line : a nons witched line that connects several 
remote stations to the computer. 

nonswitched tine : a communication Hne that links stations 
for a continuous period, or for regularly recurring periods; also 
known as a private, leased, or dedicated line. 

nontransparent mode : a mode of binary synchronous 

transmission in which all control characters are treated as 
control characters (that is, not treated as text). See transparent 
mode. 

on-line test (OLT) : an optional TCAM facility that permits 
either a system console operator or a remote station operator to 
test transmission control units and remote stations to find out if 
they work properly. 

operator command : a command entered either at an 
operator control station or at the system console to examine or 
alter the status of the telecommunications network during 
execution. 

operator control station : a station eligible to enter operator 
commands. An application program and the system console 
may also serve as operator control stations. Operator control 
stations are designated as such by the PRIMARY = operand of 
the INTRO macro and by the SECTERM= operand of the 
TERMINAL and TPROCESS macros. See also primary 
operator control station and secondary operator control station. 

option field : a storage area containing data relating to a 
particular station, component, line, or application program; 
certain message handler routines that need source- or 
destination-related data to perform their functions have access 
to data in an option field. User-written routines also have 
access to data in an option field. Option fields are defined by 
OPTION macros and initialized for each station, line, 
component, or application program by the OPDAT A= operand 
of the TERMINAL or TPROCESS macro. 

option tables : a storage area containing option fields related 
to individual stations, components, lines, or application 
programs. 

origin : a station or application program from which a 
message or other data originates. See also destination. 

outgoing group : that section of a message handler that 
manipulates outgoing messages after they have been removed 
from their destination queues. The outgoing group has three 
types of subgroups-the outheader subgroup, which executes on 
outgoing header segments; the outbuffer subgroup, which 
executes on each outgoing segment; and the out message 
subgroup, which does not execute until after the message has 
been sent to its destination, if possible. See also incoming 
group. 

output data set : a logical data set for a TCAM-compatible 
application program. The output data set contains the 
messages or records returned from the application program to 
the message control program by a process entry in the terminal 
table. An output data set is defined by a DD statement and a 
DCB macro, and must be activated and deactivated by OPEN 
and CLOSE macros. See also input data set. 

output DCB : a data control block created by an output DCB 
macro. One output DCB is required for each output data set. 

output sequence number : a number placed in the header of 
a message by TCAM that determines the order in which 
messages were sent to a destination by the computer. When 
specified in an outheader subgroup, the SEQUENCE macro 

Glossary 691 



places an output sequence number in the header of each 
outgoing message; this sequence number is one greater than the 
sequence number for the last message sent to this destination. 
See also input sequence number. 

path switch : a one-byte field in the option table that 
determines whether a given subgroup in an MH is to be 
executed for the message. Path switches are initialized by an 
operand of the TERMINAL or TPROCESS macro and may 
subsequently be modified by a PATH macro or by a 
combination of OPTFIELD and DATOPFLD operator 
commands. 

physical transmission : the amount of data entered on a line 
during an entire transmission sequence, from the first byte of 
data to the end-of-transmission character. 

point-to-point line : a communication line that connects a 
single remote station to the computer. It may be either 
switched or nonswitched. 

poUing : a noncontention line management method whereby 
the computer invites remote stations on multipoint nonswitched 
lines and remote terminals on point-to-point lines to enter 
messages. The computer contacts stations in the order specified 
by the invitation list; each station contacted is invited to enter 
messages. 

poUing characters : a set of identifying characters peculiar to 
either a station or a component of that station; a response to 
these characters indicates to the computer whether the station 
has a message to enter. 

prefix : see buffer prefix. 

primary operator control station : an operator control 
station that receives, in addition to the responses to commands 
entered by it, the operator awareness message (IEAOOOI, 
described in TCAM I/O Error-Recording Facility in the chapter 
Using TCAM Service Facilities is sent whenever an I/O error 
occurs and TCAM's error-recovery procedures are unsuccessful 
in correcting it. The primary operator control station is 
designated by the PRIMARY = operand of the INTRO macro. 
Compare with secondary operator control station. 

priority : see message priority and transmission priority. 

process entry : a terminal entry that represents an 
application program. One must be defined (by means of a 
TPROCESS macro) for each queue to which an application 
program can issue a GET or READ and at least one must be 
defined for all PUTs or WRITEs from the same ~pplication 
program. 

process queue : a destination queue for an application 
program (see destination queue). A process queue is defined by 
a TPROCESS macro. 

queue : a set of items consisting of: 

I. a queue control block (an area in main storage containing 
control information for the queue), and 

2. one or more ordered arrangements of items (the items may 
be messages, main-storage addresses, etc.). 

692 OS/MFT and OS/MVT TCAM Programmer's Guide 

quick closedown : a c1osedown of the TCAM message 
control program that entails stopping message traffic on each 
line as soon as any messages being sent or received at the time 
the request for c1osedown is received are transmitted. See also 
flush closedown. 

read-ahead queue : an area of main storage from which an 
application program obtains work units in advance of their 
being requested by the application. 

reblocking : the ability of an outheader subgroup to divide 
outgoing messages into logical blocks of data based on a 
maximum size or a maximum number of sub blocks per block; 
the MSGFORM functional MH macro provides this capability. 

receiving : the process in which the central computer obtains 
a message from a remote station (the message is entered by the 
station). Receiving and sending are functions of the central 
computer. 

record : a logical unit of data, the length of which is defined 
by the user through the use of operands of the input or output 
DCB macro and delimiting characters in the message. 

relative line number : a number assigned by the user to a 
communications line of a line group at system generation time 
or MCP execution time. If a line group is defined at system 
generation time by a UNITNAME macro, the lines in the group 
are assigned relative line numbers according to the order in 
which their hardware addresses are specified in the UNIT= 
operand of UNITNAME; the line whose address is specified 
first is relative line number one, that address specified second is 
relative line number two, etc. If a line group is defined at MCP 
execution time by concatenated DD statements, the order in 
which the DD statements for the lines in the line group are 
arranged determines the relative line numbers for the lines. 
The line whose DD statement appears first is relative line 
number one, the statement that appears second is relative line 
number two, etc. 

remote station : a station that is connected to a computer 
data channel through either a transmission control unit or an 
audio response unit. See also local station. 

retry : an error-recovery procedure in which the current block 
of data (from the last EOB or ETB) is re-sent a prescribed 
number of times, or until accepted or entered correctly. 

scan pointer : a pointer that refers to the proper header field 
when the macro that acts upon that field is given control. Some 
user-specified macro instructions use this pointer to locate the 
field on which they act and automatically move the pointer to 
the next field before passing control to the next macro. The 
user must be aware of the positioning of the scan pointer as he 
designs his message handler. 

secondary operator control station : a station that can 
send operator commands and can receive related responses, but 
not internally-generated error messages (with one exception: 
when a primary operator control station other than the system 
console becomes inoperative, message IEAOOOI is sent to the 
system console, in this instance a secondary operator control 
station, stating that the primary operator control station is 
inoperative). Compare with primary operator control station. 



The secondary operator control station is designated by the 
SECTERM= operand of the TERMINAL or TPROCESS 
macro instruction. 

segment : the portion of a TCAM message contained in a 
single buffer. 

selection : the process whereby the computer contacts a 
remote station to send it a message. 

sending : the process in which the central computer places a 
message on a line for transmission to a station (the station 
accepts the message). Sending and receiving are functions of 
the central computer. 

sequence number see input sequence number and output 
sequence number. 

single entry : an entry in the terminal table associated with a 
single station or station component; one such entry must be 
created (by a TERMINAL macro) for each station in the 
TCAM system not defined by a group entry. 

start-stop transmission : data transmission in which each 
character being transmitted is preceded by a special control 
signal indicating the beginning of the sequence of data bits 
representing the character, and is followed by another control 
signal indicating the end of the data-bit sequence (character 
recognition by the device that obtains the data depends on the 
presence of these control signals for each character); contrast 
with binary synchronous communications. 

static buffer allocation : the assignment to a line, before 
transmission over that line, of all buffers to contain the 
transmitted data. When PCI=N or PCI=R is coded in the line 
group DCB macro, the number of buffers specified by the 
BUFIN= or BUFOUT= operand of the line group DCB macro 
instruction is assigned to a line before incoming or outgoing 
transmission begins on that line; once transmission has started, 
no more buffers are available to handle the data involved in the 
transmission. 

station : either a remote terminal or a remote computer used 
as a terminal. 

status analysis : the function provided by a user-written 
routine in efficiently controlling output to a concentrator on the 
basis of the previous output to that concentrator. The 
user-written routine determines whether output is to continue, 
or is to be delayed. 

subblock : that portion of a BSC message terminated by an 
ITB line-control character. 

switched line : a communication line on which the 
connection between the computer and a remote station is 
established by dialing. Also known as a dial line. 

symbol : in assembler language, a character or character 
string that represents addresses or arbitrary values. A symbol 
must meet the following requirements: 

1. A symbol may consist of no more than eight characters, the 
first character being a letter (A through Z, $, #, or @), and 
the other characters being either letters or digits. 

2. No blanks or special characters are allowed in a symbol. 

system interval : a user-specified time interval during which 
polling and addressing are suspended on multipoint lines to 
polled stations. The system interval is specified by the 
INTVAL= operand of the INTRO macro, and may be changed 
during TCAM initialization by a SYSINTVL operator 
command. The INTERVAL operator command tells TCAM to 
begin the system interval. The system interval minimizes 
unproductive polling, minimizes CPU meter time, and 
synchronizes polling on the polled lines in the system. See also 
invitation delay. 

TCU : see transmission control unit. 

telecommunications : any transmission or reception of 
signals, writing, sounds, or intelligence of any nature, by wire, 
radio, or other electromagnetic media. 

teleprocessing : the processing by a computer of data entered 
at a remote station. 

terminal : a point in a system at which data can enter, leave, 
or enter and leave. A terminal can also be a control unit to 
which one or more input/output devices can be attached. See 
component. 

terminal entry : a block of information about each station or 
application. The eight types are cascade, component, 
distribution, group, line, logtype, process, and single. Also 
referred to as terminal-table entry. 

terminal table : an ordered collection of information 
consisting of a control field for the table and blocks of 
information on each line, station, component, or application 
program from which a message can originate or to which a 
message can be sent. 

terminal-table entry : see terminal entry. 

tete-a-tete : a mode of message handling in which a station 
operating in lock mode is polled by the computer. The station 
responds with a message that ends with a character permitting 
selection to continue. The computer sends a response message, 
from an application program, that the station interprets as a 
positive response. 

text : that part of the message of concern to the party 
ultimately receiving the message (that is, the message exclusive 
of the header, or control, information). 

text buffer : a buffer containing message text only. Compare 
with header buffer. 

text segment : a portion of a message that contains no part 
of the message header. 

transmission : the transfer of coded data by an 
electromagnetic medium between two points in a 
telecommunications network. See also physical transmission. 

Glossary 693 



transmission control unit (TCU) : a control unit that serves 
as an interface between communication lines and a computer 
for logical operations. The transmission control units 
supported by TCAM are the 2701 Data Adapter Unit Modell, 
the 2702 Transmission Control Model I, and the 2703 
Transmission Control Model I. 

transmission priority : refers to the order in which sending 
and receiving occur, relative to each other, for a particular 
station. Transmission priority is specified on a line-group basis 
by the CPRI= operand of the line group DCB macro. The three 
transmission priorities possible in TCAM are send priority, 
equal priority, and receive priority. The exact meaning of each 
priority depends upon the line configuration and type of 
station. See also message priority. 

transparent mode : a mode of binary synchronous 
transmission in which all data, including normally restricted 
data-link control characters, is transmitted only as specific bit 
patterns. Control characters that are intended to be effective 
are preceded by a DLE character. 

TWX : abbreviation of Teletypewriter Exchange Service, a 
semi-automatic switching service provided by AT & T for 
interconnecting public teletypewriter subscribers. 

unit : see buffer unit or work unit. 

warm restart : a restart of the TCAM message control 
program following either a quick or a flush c1osedown; the 
TCAM checkpoint/restart facility restores the MCP 
environment as nearly as possible to its condition before 
failure. See continuation restart and cold res/art. 

694 OS/MFT and OS/MVT TCAM Programmer's Guide 

WATS : abbreviation for AT&T's Wide Area Telephone 
Service, which provides a special line on which the subscriber 
may make unlimited calls to certain zones on a 
direct-distance-dialing basis for a flat monthly charge. 

work area : an area of storage related to an application 
program that receives messages or records transferred to the 
application program from the message control program by 
GET or READ macros, and from which messages or records 
are transferred to the MCP by PUT or WRITE macros. The 
size of the work area must be specified in the BL~SIZE= 
operand of the input or output DCB macro associated with the 
data set whose contents are being transferred to or from the 
work area. A work area may be defined either statically (by a 
DC or DS assembler instruction) or dynamically (by specifying 
locate mode in the MACRF= operand of the input DCB 
macro). 

work unit : the amount of data transferred from the message 
control program to an application program by a single GET or 
READ macro, or transferred from an application program to 
the MCP by a single PUT or WRITE macro. The work unit 
may be a message or a record (or, for QT AM-compatible 
application programs, a segment). 

zero-length buffer: a buffer that has z zero in the PRFSIZE 
field of the buffer prefix. this type of buffer is sent by the Line 
End Appendage to the Message Handler to indicate that there is 
an error on the line. 



ABEND 
due to not specifying user error-analysis routine 108 
due to overlaying records on message queues data 95 

set 
due to uncorrectable I/O error 108 
due to wrapping nonreusable disk during flush 

closedown 96 
exit 

specifying address for problem program 81 
space requirements for attached subtasks 543 
specifying user exit 108 
TCAM formatted dump 518 
user routine options 109 

accepting 5 
accounting on a log data set 107 
ACT operand 429 
activatlOg and deactivating the MCP 111 

sample code 135 
active entries 

displaying for invitation list 459 
identifying (TSO) 607 
specifying in invitation list 420 

ACTV ATED operator command 459 
TSO 645 

ACTVBOTH operator command 460 
ADDR= operand 29 
address operand 435 
address vector table 111, 629 

dump 518 
generating extension of (TSO) 636 

addressing characters 17,37 
for a component 37 
specifyinl! 29 

addressing timeout exceeded indicated on message error 
record 550 

ALTDEST= operand 
TERMINAL macro 31 
TPROCESS macro 47 

alternate destination 
effect of size of reusable disk data set 95 
queuin$ requirement 93 
restriction 95 
sending messages to 290 
specifying 31 

for a component 37 
in the terminal table 47 

AL TMH= operand 639 
application program 353 

abnormal termination 450 
buffers 374-377 

design considerations 374-377 
definition checklist 374-375 

CKREQ macro 444-449 
example 448 

CLOSE macro 380 
coordinating restart with MCP 451 
coordinatinl! TCAM and OS checkpoints 446-451 
data set deflOition 358-373 
data transfer 

BSAM/TCAM completion codes 400 
CHECK macro 402 
coding TCAM macros 395-411 
GET macro 396 
multiple PUT macros 398 
multiple WRITE macros 398 
PUT macro 398 
READ macro 400 

multiple 400 
WRITE macro 403 

delimiting record for 48 
entering operator commands from 458 
error exits 412-414 
examining a queue control block from 424 
incident checkpoint records of option fields 212 
input data control block 356 
input data set 356 
input DCB macro 361-366 

format of position field 365 

inquiry/rapid response 435 
interface with MCP 356-358 

activating 377-382 
defining components 358-377 
specifying 45 

limiting number of messages sent to 273 
locking to station 241 
MCPCLOSE macro 381 
message flow to 355-356 
message handler for 189 
message queues for 

recording status of 505 
specifying where maintained 46 

message retrieval 432 
POINT macro 433 

moving invitation-list contents to work area 420 
moving terminal-table contents to work area 417 
network control 415 

ICHNG macro 428 
ICOPY macro 420 
macro summary 415 
MRELEASE macro 431 
operator commands (see network control macro 

descriptions) 
QCOPY macro 424 
TCHNG macro 301 
TCOPY macro 417 

OPEN macro 378 
OS checkpoint restriction 446 
output DCB macro 367 

format of position field 369 
password for specific macros 122 
PCB macro 372 
POINT macro 433 
priority 243 
process entry 358 
replacing contents of a terminal table entry 426 
replacing contents of option fields 426 
represented in the terminal table 19 

Index 

specified as a secondary operator control station 48 
specifying address of MH for 372 
specifying data/time messages received 47 
specifying maximum destination queues used 

simultaneously 95 
swappable (TSO) 648 
SYNADAF macro 414 

format of TCAM/SAM message buffer 414 
SYNAD exit 412 
TCAM/SAM compatibility 445 
testing in non-teleprocessing environment 353 
work area 356, 383 

defining 383 
specifying size 363, 368 
static definition of 383 

work unit 356, 369 
specifying 387 

area name operand 
GET macro 396 
ICHNG macro 429 
ICOPY macro 423 
PUT macro 283 
QCOPY macro 425 
READ macro 402 
TCHNG macro 427 
TCOPY macro 417 
WRITE macro 404 

assembler language conventions 3 
assembling the MCP 318 
AT operand 258 
AT & T TWX Terminals 

device-dependent considerations 596 
line codes for 582 

AT & T 83B3 Terminal 
device-dependent considerations 598 
line code for 581 

AT &T 33/35 Dial Station device-dependent 
considerations 596 
ATTACH macro considerations 539 

Index 695 



attached subtasks 
listed 543 
optional 

checkpoint 499 
COMWRITE 124 
on-line test 530 

required 
operator control 453 

ATTEN macro 639 
attention-input error indication (TSO) 649 
attention interrupt 36 

specifying for TSO 633 
attention processing routine (TSO) 639 
attention request error indication (TSO) 649 
audio terminals 

specifying invitation message 12 
use of LOCK macro 241 
use of TERMINAL macro 35 

Auto Answer 59 
Auto Call 59 
automatic line numbering (TSO) 649 
Auto Poll 56 

determining if line eligible for 420 
determining use on a line 421 
switching to 462 
verifying use on a line 485 

AUTOSTOP operator command 461 
AUTOSTRT operator command 462 
available-unit queue 65 

channel program block work area assigned to 90 
channel program block work area replacement 90 

background (TSO) 628 
base registers for an MH 198 
BFDELA Y = operand 31 
bidding 9 
binary synchronous transmission (see also BSC) 6 

transparent mode 8 
treatment of line control characters 8 

BLANK= operand 
INITIATE macro 239 
LOCK macro 242 
MSGEDIT macro 261 
MSGTYPE macro 276 
PATH macro 283 
PRIO RITY macro 287 
SCREEN macro 295 
SETEOF macro 300 
SETSCAN macro 306 
UNLOCK macro 315 

BLKSIZE= operand 106 
input DCB macro 363 
log DeB macro 107 
output DCB macro 368 

block 138 
blocking 661 
outgoing messages for a concentrator 671 
block size 32 

component 38 
overriding for a component 38 
overriding with the MSGFORM macro 32 
specifying for messages in transparent mode to 

a component 38 
specifying for outgoing messages in transparent 

mode 32 
BLOCK= operand 267 
blocked work units 

input data set 364 
output data set 370 

blocking factors 
component 38 
overriding for outgoing messages 266 
specifying 7-8 
specifying for outgoing messages 266 

nontransparent mode 32-33 
BREG= operand 198 
broadcast requests 116 

COMMBUF macro 217 
COMMBUF= operand 116 

common data areas 116 
moving data into 218 

696 OS/MFT and OS/MVT TCAM Programmer's Guide 

message routing 217 
size of data area 116 
specifying number of concurrent 116 

BSAM DeB macro operands for a log data set 107 
BSAM/TCAM completion codes 404 
BSC 

device-dependent considerations 598 
sending and receiving 598-601 

input format error indicated on message error 
record 549 

buffered station 55 
BUFFER= operand 618 
buffers 

allocation 73-74 
application program 374 

definition checklist 374 
design considerations 375-377 

control area 64 
deallocating empty units on 202 
defining 

application program 374 
MCP 63-75 

design considerations 70-75 
determining number for read-ahead queue 375 
general 75 
number of units 72 
size 72 

dynamic deallocation (effect on EOB checking) 194 
header 63 
identical characters indicated on message error 

record 548 
checking for 221 

identifying incoming subgroup to handle 201 
initial and maximum number per line 74 
MCP definition checklist 69-70 
message error record indication of insufficient 

number 548 
message header 

using scan pointer 149-152 
message 

format of TCAM/SAM SYNADAF 414 
outgoing message 

identifying subgroup to handle 205 
overriding size specified on the line group DCB 

macro 31 
overriding size specified for a component 38 
prefix 64 

TSO 635,641 
processing across buffer boundaries 149 
reserving bytes for inserting date/time/sequence 

number 84 
sample format 64 
size 

for line group 63 
overriding 63 
specifying for handling messages for an application 

program 372 
specifying for line 69 
specifying for MCP when messages are for 

application program 363 
specifying for messages destined for logging 

medium 51 
specifying for messages to MCP from application 

program 370 
specifying for outgoing messages 31, 38 

specifying bytes for date/time/sequence number 373 
specifying initial number for GET/READ operations 373 
specifying initial number for PUT/WRITE 

operations 373 
specifying initial number for receiving 81 
specifying maximum number for lines 82 
specifying program-controlled interruptions for 

allocation/de allocation of 83 
structure 63-65 
text 63 
trace 523 

for logical messages 155 
translation of data in 213 
unit 63 

allocation 66, 67 
as a work area in a channel program block 90 
deallocation 202 



specifying maximum used simultaneously for main­
storage queuing 118 

TSO 630 
specifying number for segments 118 
specifying size 117 

unit pool 63, 65-67 
main-storage message queues data set in 96 

BUFIN= operand 
line group DCB macro 81 
PCB macro 373 

BUFL= operand 
input DCB macro 363 
output DCB macro 370 

BUFMAX= operand 82 
BUFOUT= operand 

line group DCB macro 82 
PCB macro 373 

BUFSIZE= operand 
line group DCB macro 82 
LOGTYPE macro 51 
PCB macro 373 
TERMINAL macro 31 

burst mode restrictions 539 
bus out 

specifying intensive-mode error recording for 497 
check indicated in message error record 549 

calling 35 
between the computer and a switched station 59-61 
busy lines 60-61 
retrying to contact a switched station 35 
specifying time for computer-initiated calls 30 

canceling messages 210 
CANCELMG macro 210 

restrictions 210 
specifying conditional execution 210 
specifying logical connection between mask and message 

error record 210 
TSO 642 

CARRIAGE macro 640 
cascade list 

defining in the terminal table 43 
entry 19 
specifying actual entry in the terminal table 43-44 

CE mode 539 
central computer 5 
channel control check indicated on message error 
record 549 

channel data check indicated on message error record 549 
channel error indicated on message error record 549 
channel program blocks 89 

determining appropriate number 90 
formula for determining initial number of 91 
free pool 90 
specifying number of 116 

TSO 630 
channel program codes in operator awareness 
message 357 

channel status word indication of I/O error 491 
characters 

checking incoming buffers for identical 221 
data link control 8 
inserting and removing for messages 244 
logical messages 

deleting on input 268 
reblocking on output 267 

parity error indicated on message error record 549 
character sets 555 
CHARS= operand 638 
CHECK macro 

specifying name of data event control block 406 
checklists 

application program buffer definition 374-375 
checkpoint/restart 500-502 
MCP buffer definition 69 
specifying message queues data sets 92 

checkpoint 
coding requirements for obtaining 509-512 
coordinating TCAM and OS 446-451 

example 339-351 
using DCB exit for 449 

environment records 
example using 507-508 
specifying maximum time between 120 

exit restriction 446-447 
how it works 502-509 
incident record 

example using 339-351 
specifying 212 

incident records 
operator commands causing 490 

making resident 551 
module names and sizes 552 
OS restriction 446-447 
specifying as additional feature 125 
types of records 502-505 

checkpoint data set 104 
DD statement 106 
example of opening 129 
example of updating environment records 507-508 
equation for determining size 510-511 
specifying 103, 104 

as input/output 128 
specifying number of checkpoint request records for 122 

checkpoint DCB macro 105 
checkpoint request record 505 

automatic incident record when data set full 503 
priority used in dividing space for 511 
specifying data set for 105 
specifying number for checkpoint data set 122 

checkpoint/restart 499-514 
checklist 499-502 
TSO 648 

CHECKPT macro 212 
specifying incident checkpoint records 212 

CIB= operand 116 
CINTVL= operand 30 
CKPTSYN= operand 47 
CKREQ macro 

checkpoint/restart operands 499-502 
initiating checkpoint request records 509-512 
sample use of 507-508 
specifying maximum number of destination queues used 

simultaneously for application programs 122 
using for checkpoint coordination 446-449 

CKREQS= operand 122 
CLOCK= operand 30 
CLOSE macro 

application program 380 
specifying data control blocks 380 

MCP 132 
specifying data control blocks 134 

c1osedown 
automatic environment checkpoint record during 503 
concentrated-message network 678 
flush 

abnormal termination by wrapping nonreusable 
disk 96 

cold restart following 512 
specifying percentage of nonreusable disk records 

to be used prior to 85 
warm restart following 513 

initiating through operator control 489 
concentrated-message network 678 

quick 
cold restart following 512 
response to inquiring station in lock mode 436 
warm restart following 513 

restarting from 499 
specifying type 381 
with TSO still active 648 

code 
charts 555-584 

control characters 557 
conventions used in 555 
format of 555 
general notes 557 
nonequivalent characters 557 
substitutions 557 

EBCDIC 569 
hexadecimal equivalents of 6-bit Transcode 571 
invalid destination indicated on message error 

record 548 

Index 697 



line 
AT&T TWX 582 
AT&T 83B3 581 
IBM 1030 572 
IBM 1050 573 
IBM 1053 printer 575 
IBM 1060 574 
IBM 2260 (Remote)/2265 575 
IBM 2740 577 
IBM 2741 (Correspondence) 580 
IBM 2741 (EBCD) 579 
IBM 2741 (hexadecimal equivalents of BCD) 578 
IBM World Trade Telegraph ITA2 583 
IBM World Trade Telegraph ZSC3 584 
WU 115A 581 

list of translation tables provided 187 
TCAM macro formats 545 
USASCII 570 

CODE macro 213,216,642 
effects on PRIORITY macro 286 
format 215 
handling incoming concentrated messages 

during multiple MH execution 666 
specifying control characters group used 

by (TSO) 638 
specifying type of translation 215 
use with logical messages 214 

CODE= operand 270 
cold restart 

automatic recording of changes in option fields 504 
building "Good Morning" message 131 
following abnormal flush cIosedown 96 
good morning routine gaining control following 512 
preformatting DASD message queues data sets 92 

COMEDIT printing utility 526 
examples of invoking 527 
PARM= options 526 

command input block (specifying) 116 
command reject 

indicated on message error record 549 
specifying intensive-mode error recording for 496 

COMMBUFmacro 217 
COMMBUF= operand 116 
COMP= operand 36 
completion codes for BSAM/TCAM 404 
component definition 37 
component entry 18 
computer ID sequence 12-13 
COMWRITE data set 

printing contents of 526 
requirements and format 521 
specifying 124 

COMWRTE= operand 124 
concentration 653 

cIosedown 678 
constructing (blocking) outgoing messages 671 
controlling dequeuing for a concentrator 656 
CTB 660,672 
CTBFORM macro 672 
defining the network 654 
design considerations for handling input 666 
determining source terminal 663 
flow of incoming messages 661 
flow of outgoing messages 674 
handling incoming messages 660 
identifying and verifying source terminal 663 
initializing for 659 
message format 

incoming 660 
outgoing 672 

message retrieval 678 
mid-batch recovery 677 
multiple MH execution 664 
option fields 677 
QACTION macro 667 
queuing by concentrator 658 
queuing techniques for terminals 658 
sample code (concentrators and non-

concentrators on a multipoint line) 655 
specifying maximum CTBs sent to a concentrator 658 
specifying terminal table entry 655 
specifying terminal type 660 

698 OS/MFT and OS/MVT TCAM Programmer's Guide 

status analysis 667 
summary of coding requirements 679 
TGOTO macro 665 

con chars operand 169 
INITIATE macro 239 
LOCK macro 242 
MSGTYPE macro 275 
PATH macro 283 
PRIORITY macro 287 
SCREEN macro 295 
SETEOF macro 299 
UNLOCK macro 315 

configurator for on-line test 531 
CONNECT= operand 316 

CANCELMG macro 211 
ERRORMSG macro 226 
HOLD macro 236 
MSGGEN macro 270 
REDIRECT macro 291 

connection error indicated on message error record 549 
conserving main storage 625 
constructing (blocking) logical messages 153 
CONT= operand 196 
contention 9, 17 
contention line 5 
continuation restart 

replaced by cold restart due to faulty checkpoint 
records 513 

control characters 6-7 
in multiple buffer headers 174 
listed 558 
removing 139 
sending 139 
using to vary path of message in MH 173 

control characters group (specifying for TSO) 638 
control information 

buffers 64 
channel program blocks 89 

CONTROL= operand 117 
control unit errors indicated on message error 
record 549 

control units supported 539 
CONV= operand 198 
conversational mode 435 
conversion of QT AM application programs 585 
counter-overflow record 496 

access to 498 
COUNTER macro 219 

specifying location of count field 220 
TSO 642 

CPB= operand 116 
TSO 630 

CPINTVL= operand 120 
CPRCDS= operand 121 
CPRIOPCL operator command 463 
CPRI= operand 81 

TSO 636 
CPU 

interrupting on output (TSO) 634 
CPUID= operand 20 
cross-reference table 518 

specifying number of entries in 123 
CROSSRF= operand 123 
CTB 660,663 

delimiting by character count on output 657 
format on output to a concentrator 672 
inserting delimiter at end of 674 
inserting device id at beginning of 674 
output to a concentrator 675 
specifying bytes to control dequeuing to a 

concentrator 656 
specifying maximum number sent in a transmission 

to a concentrator 658 
CTBFORM macro 672 

return codes 673 
CTBMAX= operand 658 
cutoff indicated on message error record 548 
CUTOFF macro 221 

example 221 
restriction 221 
specifying maximum characters for messages 221 



TSO 642 
using the ERRORMSG macro with 221 

DASD 
checkpoint data set record types 502 
message queues data set 

designing for high message traffic 95 
dump 528 
preformatting 543 
reusable data sets 93 
sample JCL for obtaining printed output of 527 
specifying as input/output 128 
specifying P ARM= parameters for printed 

output 528 
specifying for message queues data set 116 

data check 
indicated on message error record 550 
specifying intensive-mode error recording for 496 

data collection by logging messages 514 
data control block 

checkpoint 105 
dump 518 
input 361 
line group 77 
message queues 103 
output 367 
specifying address 

GET macro 396 
PUT macro 398 
READ macro 401 
WRITE macro 403 

specifying exit address for problem program 81 
specifying for line group 27 
specifying name for data set being closed 134 
specifying name for log data set 51 
specifying name for opening application program data 

set 379 
specifying on POINT macro 435 

data event control block (specifying name) 
CHECK macro 406 
READ macro 401 
WRITE macro 403 

data file (delimiting) 299 
data link control 
data operand 257 
data set 

application program 
defining 358 
specifying name of data control block for 

closing 380 
specifying name of data control block for 

opening 379 
checkpoint 105 

DD statement for 106 
example of opening 129 
example of updating environment 

records 507 
equation for determining size 510-511 
specifying 102, 104 
specifying as input/output 128 
specifying number of checkpoint request records 

for 122 
types of records 502 

closing 134 
COMWRITE 

printing contents of 526 
specifying for output 124 

DASD message queues 
preformattin~ 92 
specifying as Input/output 128 

defining for message concentration 659 
disk (example of writing debugging 

information to) 523-526 
disk message queues 

example of assi~ning relative record numbers 90 
impending failure Indicated on message error 

record 548 
impending fullness indicated on message error 

record 548 
input 

DCB macro 361 

specifying 128 
specifying format and characteristics of work 

unit 363 
input and output DD statements 370 
line group 77 

creating 77 
examples of opening 129 
guideline for specifying as input/output 128 
identifying organization 80 
restriction for coding as output 127 
specifying activation of line 129 
specifying DD statements 86 

log 107,517 
example of opening 129 
list of operands for specifying for BSAM 108 
specifying as output 128 
specifying name of data control block 51 
specifying where messages to be queued 52 

logj!ing messages sequentially 514 
main-storage message queues 

destination queue in 96 
providing warning when nearly full 119 
specifying maximum units used 

simultaneously 119 
main-storage-only queues (Jost message 

indication) 548 
MCP 

defining 77 
initialization and activation 127 

message queues 88 
DCB macro 102 
DD statement 104 
destination queues on disk 89 
disk efficiency 92 
dump 528 
examples of opening 129 
main stora~e 96 
preformattlng disk 543 
sample JCL for obtaining printed output 527-528 
scanning queues in 505 
specifying 102, 106 
specifying one or more 99 
specifying PARM= parameters for printed 

output 528 
specifying when user informed that data set no 

longer crowded 119 
specifying whether on a DASD 116 
warning when nearly full (TSO) 630 

output 
COMWRITE requirements and format 521 
DCB macro 367 
specifying 128 
specifying format and characteristics of work 

unit 370 
reusable disk queues 93 

automatic environment checkpoint at zone 
changeover 503 

designing for high message traffic 95 
reorganizing 93 

reusable or nonreusable disk destination queue (message 
retrieval) 432 

specifying type 127 
SYSl.LOGREC error records 498 

data 
converting to logical messages (incoming) 154 
inserting in concentrated output following device id 634 
moving between input and output work areas 384 
processing across buffer boundaries 149 
specifying CPBs for (TSO) 630 
specifying whether to truncate following EOM 302 
transferring between MCP and application 

program 382 
translation of 213 
transmission failure indicated on message error 

record 548 
DATA= operand 227 
data transfer 

BSAM/TCAM completion codes 404 
CHECK macro 406 
coding TCAM macros in an application 

program 395 
GET macro 396 

Index 699 



issuing multiple READ macros 400 
PUT macro 398 
READ macro 400 
WRITE macro 403 

data-link control characters 8 
date 

format for inserting in header 223 
reserving bytes in buffer for inserting 84 
specifying for messages obtained by application 

program 410 
specifying for process entry 47 
specifying whether to be inserted in header 224 

DATE= operand 47 
DATETIME macro 223 

example 224 
reserving bytes for date/time 373 
restrictions 224 
specifying whether date to be inserted 224 
specifying whether time to be inserted 224 

DATOPFLD operator command 464 
DCB exit 

checkpoint restriction 446 
using for coordination 449 

DCB macros 
application program, closing 366 
BSAM operands for specifying a log data set 107 
checkpoint 105 

BLKSIZE= operand 106 
list of pertinent checkpoint/restart operands 500-502 
specifying data set 105 
specifying ddname 106 
specifying problem program exit list 106 
specifying use of GET and PUT macros for 

access 106 
input 

designating control of message transfer 362 
format of position field 365 
identifying data set organization 80 
list of pertinent checkpoint/restart operands 

operands 500-502 
operands optionally provided by alternate 

source 362 
specifying ddname 363 
specifying EODAD address 365 
specifying formal and characteristics of work 

units for input data set 363 
specifying optional fields of work unit 364 
specifying problem-program exit list 365 
specifying size of MCP buffers sent to application 

program 363 
specifying size of record plus optional fields 364 
specifying size of work area 363 
specifying SYNDAD address 365 
specifying type of access to destination 

queue 362 
STOP= operand 366 
summary of work-unit formats 364 

line group 77 
format 79 
identifying data set organization 80 
operands 79 
specifying buffer size 82 
reserving buffer space for date/time/sequence 

numbers 84 
specifying ddname 81 
specifying initial buffers for receiving 81 
specifying initial buffers for sending 82 
specifying invitation delay 80 
specifying maximum buffers for lines 82 
specifying name of MH 83 
specifying name of special characters table 86 
specifying names of invitation lists 82 
specifying problem-program exit list 81 
specifying program-controlled interruption 83 
specifying translation table 85 
specifying transmission priority for line 81 
specifying use of GET and PUT macros for 

access 80 
TSO 635 

message queues 102 
specifying data set 102 
specifying ddname 103 

700 OS/MFT and OS/MVT TCAM Programmer's Guide 

specifying either reusable or nonreusable disk 103 
specifying percentage of nonreusable disk records 

to be used before flush closed own 104 
specifying problem program exit list 103 
specifying use of GET and PUT macros for 

access 103 
output 

designating control of message transfer 368 
format of position field 369 
identifying data set organization 368 
list of pertinent checkpoint/restart operands 

operands 500-502 
operands optionally provided by alternate 

source 371 
specifying ddname 368 
specifying format and characteristics of work 

ullits for output data set 370 
specifying method of transferring messages to 

destination queue 368 
specifying optional fields for work unit 369 
specifying problem program exit list 370 
specifying size of buffers for messages to 

MCP 370 
specifying size of work area 368 
specifying size of work unit plus optional 

fields 369 
specifying SYNAD address 369 
summary of work-unit formats 389-390 

dcbname operand 
CLOSE macro 

application program 380 
MCP 134 

GET macro 396 
LOG macro 246 

TSO 643 
LOGTYPE macro 51 
OPEN macro 

application program 379 
MCP 128 

POINT macro 433 
PUT macro 398 
QRESET macro 443 
READ macro 400 
WRITE macro 403 

DCB= operand 
MCOUNT macro 409 
TERMINAL macro 27 

DD statement 
checkpoint data set 106 
message queues data set 104 
specifying for input and output data sets 370 
specifying for line group data set 86-88 
specifying name of for data control block 81 

input DCB macro 363 
line group DCB macro 81 
output DCB macro 368 

DDNAME= operand 
checkpoint DCB macro 106 
input DCB macro 363 
line group DCB macro 81 
log DCB macro 108 
message queues DCB macro 104 
output DCB macro 368 

DEACT operand 429 
deactivating the MCP 131-133 

CLOSE macro 134 
sample activation and deactivation 134 
TCAM with application programs 132 
TCAM with no application program 132 
types of closedown 131 

dead-letter queue specification 119 
deallocation 202 
deblocking logical messages (example) 660 
DEBUG operator command 465 
debugging aids 517-530 

activating 465 
basic coding requirements 531 
buffer trace 523 
COMEDIT printing utility 526 
cross-reference table 518 

specifying number of entries in 123 
dispatcher subtask trace table 521 



dumps 517 
error messages 517 
example of writing to disk data set 523-526 
line I/O interrupt trace table 519 

specifying number of entries in table 123 
specifying point in routine to gain control when table 

full 123 
message logging 514 
non-teleprocessing TCAM applications 353 
specifying COMWRITE output data set 124 
STCB trace table 521 

specifying number of entries in 124 
tracing flow of messages 515 
writing on data set for later printing 520 

decbname operand 
CHECK macro 406 
READ macro 401 
WRITE macro 403 

deconcentration 653 
dedicated line 5 
dedicated system (TSO) 629 
dedicated terminals (TSO) 628 
delay 

changing duration for polling 481 
specifying for invitation 80 

delimiter 
deleting from records for application program 393 
destination field in header for multiple routing 228 
inserting for record 263 

in application program 48 
invitation list 422 
MH macros 191-207 

functions in MH 149 
variable and undefined records 389 

destination 
expediting transmission of messages to 235 
logging 514 
maintaining count of outgoing messages for a 

station 219 
message (specifying on FORWARD macros) 230 
specifying additional 290 
specifying for error message 225 
specifying station to receive intercepted messages 431 
specifying type of access to queue 362 ' 
specifying user-written routine to gain control when 

invalid 231 
destination code error indicated on message error 
record 548 

destination field in optional fie.1ds in work area 387 
destination queues 

generating for message concentration 655 
in main-storage message queues data set 96 

destinations (canceling messages to multiple) 210 
DEST= operand 226,230,291 

ERRORMSG macro 226 
FORWARD macro 230 
REDIRECT macro 291 

device-characteristics fields in terminal table 417 
device-dependent considerations 589 

BSC devices 598 
general 598 
IBM 2770 603 
IBM 2780 604 
IBM 2790 604 
IBM 3270 604 
IBM 3670 612 
IBM 3780 613 
sending and receiving 598-601 
TSO/TCAM 3270 649 

start/stop devices 589-598 
AT&T 83B3 598 
AT&T TWX 596 
IBM 1030 589 
IBM 1050 589 
IBM 1060 590 
IBM 2260 (Local) 590 
IBM 2260 (Remote) 590 
IBM 2265 592 
IBM 2740 592 
IBM 2740 basic 593 
IBM 2740 basic dial 593 
IBM 2740 model 2 593 

IBM 2740 on switched line 593 
IBM 2740 with station control or station control with 

checking 592 
IBM 2740 with transmit control or transmit control 

with checking 593 
IBM 2741 594 
IBM2760 594 
IBM 7770 595 
IBM World Trade Telegraph 596 

TPEDIT macro for the IBM 50 Magnetic Data 
Inscriber 613 

device 
malfunction indicated on message error record 550 
not on control unit indicated on message error 

record 549 
not-ready state indicated on message error record 549 
test mode indicated on message error record 549 

device support listed 540 
device types 

BSCI 28 
BSC2 28 
BSC3 28 
TERM= operand 28 
TERMINAL macro 25 

dialing (see calling) 
dial line as additional feature 125 

TSO 631 
dial-out option as additional feature 125 
DIALNO= operand 29 
DISABLE= operand 316 
disconnection error indicated on message error record 549 
disk data set for debugging information 523-526 
disk queuing 88-96 

advantage of combining checkpoint coordination 
methods 450 

nonreusable 96 
specifying as additional feature 126 

disk 
error handling 491 
I/O-error records 495 
marking message serviced 506 
message retrieval from destination queues 432 
nonreusable 96 

specifying for message queues data set 103 
specifying percentage of records to be used before 

flush c1osedown 104 
preformatting message queues data set 543 
reusable 

automatic environment checkpoint of message queues 
at zone changeover 503 

specifying for message queues data set 103 
writing I/O error records to 495 
writing permanent error record on 495 

DISK= operand 116 
dispatcher records of subtask activation 521 
dispatcher subtask trace table 521 

activating 465 
examples of obtaining printed output from 527 
specifying number of entries in 124 

display station (TSO) 
specifying rows and characters per row 631 

distribution list 
defining in the terminal table 43 
entry 18 
specifying actual entry in the terminal table 43 

DLE 8 
DLQ= operand 119 
DPRIOPCL operator command 467 
DSECOPCL operator command 467 
DSORG= operand 

checkpoint DCB macro 106 
input DCB macro 362 
line group DCB macro 80 
log DCB macro 108 
message queues DCB macro 103 
output DCB macro 368 

DTRACE= operand 124 
DTSAREA= operand 411 
dummy entries 

terminal name table 533 
TOTE 530 
OLTERM= operand 20 

Index 701 



dummy invitation list 83 
dump of message queues data set 528 

sample JCL for printed output 527-528 
specifying PARM== parameters for printed 

output 528-529 
DVCID== operand 

CTBFORM macro 674 
TERMINAL macro 655 

dynamic translation (TSO) 637 

EAU function 606 
EAU operand 606 
EBCDIC code 569 

translation to line code 2 \3 
ED IT == operand 614 
ENDCHAR== operand 

CTBFORM macro 674 
MSGFORM macro 268 
SETEOM macro 301 

end-of-day record 496 
access to 496 

end-of-file 
signaling an application program 394 
specifying EODAD address on input DCB macro 365 

end-of-message 
forced for logical message 155 
I/O errors tested for 601 
signal for an application program 394 

ENTERING operator command 468 
entering 5 
entries 

displaying active (in invitation list) 459 
displaying inactive (for a line) 473 
specifying total number in invitation list 420 

entry 
deactivating for a station 476 
invitation list example 12 
specifying length in invitation list 420 
terminal 38 

activating nonswitched station for entering 468 
terminal-table 

count of Start I/O commands 495 
count of temporary errors 495 

types defined 18 
environment checkpoint records 

specifying size 106 
BLKSIZE== operand 106 

environment checkpoints (specifying maximum time 
between) 120 

environment records 503 
example 507 
how updated 504 
specifying number kept in checkpoint data set 121 

ENVIRON== operand 629 
EOA character 7 

example using 138 
removing from incoming messages 195 

EOA== operand 231 
EOB checking 

effects of dynamic buffer deallocation on 194 
effects of INITIATE macro on 194 
when performed 193 

EOB completion handling 196 
EOB line control character 7,382, 391 

logical message 154 
removing from incoming message 195 

EODAD address specification on input DCB macro 365 
EODAD== operand 365 
EOF 

signaling an application program 394 
specifying EODAD address on input DCB macro 365 

EOF message indication 299 
EOM 558,662 

logical messages 154-155 
removing from logical messages 303 
signaling an application program 394 

EOM==ETB operand 303 
EOT line control character 7, 382 

logical messages 154 
EOT== operand 12 
equipment check 

702 OS/MFT and OS/MVT TCAM Programmer's Guide 

indicated on message error record 549 
specifying intensive-mode error recording for 497 

ERRECORD operator command 469 
guidelines for using 496 

ERROPT== operand 615 
error 

counter overflow record written on disk 496 
end-of-day record written on disk 496 
I/O record types 496 
indicated on message error record 547 

TSO 642,648 
intensive mode recording 496 

displaying current status of 487 
irrecoverable 491 

terminating connection with station due to 491 
logical 

requirements for EOB-checking when user­
specified 193 

testing for 197 
mid-batch recovery 493 

specifying 35 
permanent I/O record written on disk 495 
recoverable 

operator awareness message indicating 
failures 497 

retrying the block for 493 
specifying EOB checking 193 

retransmitting block containing 236 
specifying mid-batch recovery 211 
suspending transmission to station due to 189 
temporary 

counter in terminal-table entry for 495 
intensive-mode recording for 469 
I/O record written on disk for 495 

transmission 
requirements for EOB checking 193 

types for which intensive mode may be specified 497 
undefined 

indicated on message error record 549 
error bits described for message error record 547 
error exits for application programs 412-416 
error handling 147 
error message 

altering text of 227 
generating an unqueued 269 
sending when errors occur 225 

specifying actual text of 227 
ERRORMSG macro 225 

format 226 
restrictions 225 
specifying conditional execution 226 
specifying destination for error message 226 
specifying error message 227 
specifying user-written routine to complete error message 

processing 227 
versus MSGEN macro 225 

error record 
gaining access to 498 
I/O 495-498 
specifying temporary I/O 469 

error-recovery procedures 
I/O 491 

ETB line control character 7,8,382,391 
removing from incoming messages 195 

ETX line control character 7,8,382,391 
removing from incoming messages 195 

EXEC statement for passing information to user code 182 
execute form on the OPEN macro 129 
executing an MCP (sample JCL) 318 
exit 

DeB 
checkpoint restriction 445 
using for checkpoint coordination 449 

SYNAD 412 
user-written routine for invalid destinations 231 

exit list for problem program 
specifying address on checkpoint DCB macro 106 
specifying address on input DCB macro 365 
specifying address on line group DCB macro 81 
specifying address on message queues DCB 

macro 103 
specifying address on output DCB macro 370 



EXIT= operand 
ERRORMSG macro 227 
FORWARD macro 231 
QACTION macro 669 

EXLST = operand 
checkpoint DCB macro 106 
input DCB macro 365 
line group DCB macro 81 
message queues DCB macro 103 
output DCB macro 370 

extended lock 437 
removing station from 314 

EXTEND operand 241 
extracting (deblocking) logical messages 661 

failure of system 
cold restart following 512 
example of scanning message queues during 

restart 507 
restarting from 499 
scanning message queues during restart 505 
specifying type of restart for 121 
suggestions for establishing checkpoint 

coordination 447-448 
features 

specifying additional 125 
specifying to conserve main storage 625 

FEATURE= operand 
INTRO macro 125 

concentrated messages 660 
TSO 631 

TERMINAL macro 36 
TSO 634 

fieldname operand 270 
field addressability requirements 176 
file updating sample program 339-351 
fixed-format work unit 388 
fixed-length work units 

input data set 364 
output data set 370 
specifying size 364 

flush c1osedown 
ABEND due to wrapping nonreusable disk 96 
automatic environment checkpoint record during 503 
cold restart following 512 
concentrated-message network 678 
initiating through operator control 489 
specifying in application program 381 
specifying percentage of nonreusable disk records to 

be used prior to 104 
TSO 647 
warm restart following 513 

FLUSH operand 381 
foreground (TSO) 628 
FORM= operand 664 
format error indicated for BSC input on message error 
record 549 

formatting TCAM macros 545 
conventions used 545 

FORWARD macro 229 
DEST= operand 
format 230 
restrictions 229 
specifying destination for messages 230 
specifying end of destination fields 231 
specifying exit routine to gain control for invalid 

destmations 231 
free pool queue for channel program blocks 90 
function modification 149 
function operand 256 
functional macros Ill, 209 

conditional execution 173 

general poll 
2260 590 
3270 608 

GENERATE macro modified for TCAM 541 
GENPOLOFF operator command 471 
GENPOLON operator command 472 
GET macro 396 

specifying address of data control block 396 
specifying address of work area 396 
specifying to gain access to checkpoint data set 106 
specifying to gain access to line group data set 80 
specifying to gain access to message queues data 

set 103 
GMMSG= o\,erand 131 
"Good Mormng" message for initial start 131 
good morning routine gai ning control 512 
GOTRACE operator command 472 
group 140-143 

incoming 
required delimiter macro 199,200,203 
translating to EBCDIC 213 

message flow within 166 
outgoing required delimiter macro 207 
queuing concentrated messages by 658 

group entry 18 
DSECTof 417 

group operand 256 
grpname operand 

ICHNG macro 429 
ICOPY macro 422 

HANGUP macro 640 
hardware attention 

indicated on message error record 549 
TSO 640 

hardware error (handling for TSO terminal) 640 
header 137 

controlling path of through an MH 275 
format for inserting date and/or time 223 
format of field for input sequence number 297 
logical message 158 
message 138-140 
multiple routing delimiter considerations 231 
multiple-buffer 

considerations for user code in an MH 176 
handling 169 

origin field validity 280 
outgoing segment records 245 
scan pointer used for 149-151 

header buffer 63 
header field 

locating 179 
header-only message 137 
header-processing 

functions 139 
HOLD macro 234 

concentrated messages 
design considerations 670 
intercepting output to a concentrator 676 

restrictions 234-235 
specifying conditional execution 235 
specifying duration of hold 236 
specifying type of hold 236 
specifying when retrying to dial a switched station 35 

hold/release 189 

I/O device generation 541 
I/O error 

counter overflow record written on disk 496 
end-of-day record written on disk 496 
permanent record written on disk 496 
recording 495-498 
record types 496 
recovery procedures 491 
specifying records of 469 
temporary 493 

record written on disk 496 
I/O interrupt trace facility 519 

activatin~ 472 
deactivatmg 477 

IBM 50 Magnetic Data Inscriber (MDI) 613 
TPEDIT macro for 614 

IBM 1030 Data Collection System 
device-dependent considerations 589 
line code for 572 

IBM 1050 Data Communication System 
device-dependent considerations 589 

Index 703 



line code for 573 
TSO 

specifying 632 
time-out suppression 635 
translation for group of 1050s 638 

IBM 1053 Printer line code 575 
IBM 1060 Data Communication System 

device-dependent considerations 590 
line code for 574 

IBM 2260/2265 Display Complex 
specifying (TSO) 632 

IBM 2260 (Remote)/2265 Display Complex line 
code 575 
IBM 2260 Display Station device-dependent considerations 

Local 590 
Remote 590 

IBM 2260 Display Station line-address characters 294 
IBM 2265 Display Station device-dependent 
considerations 592 
IBM 2311 Disk Storage Drive 88, 104 
IBM 2314 Direct Access Storage Facility 88, 104 
IBM 2740 Communication Terminal 

device-dependent considerations 592 
basic 593 
basic dial 593 
station control or station control with 

checking 592 
switched line 593 
transmit control or transmit control with 

checking 593 
line code for 577 

IBM 2740 Model 2 Communication Terminal 
device-dependent considerations 593 
specifying intensive-mode error recording for unusual 

leading ~raphic response 497 
transmissIOn priority 57 

IBM 2741 Communication Terminal 
device-dependent considerations 594 
line code 578 

BCD hexadecimal equivalents 578 
correspondence 580 
EBCD 579 

specifying as additional feature 125 
TSO 

specifying 631 
translation for group of 2741s 638 

IBM 2760 Opticallmagt' Unit device-dependent 
considerations 594 
IBM 2770 Data Communications System 

device-dependent considerations 603 
transmission priority 57 

IBM 2780 Data Transmission Terminal device-dependent 
considerations 604 
IBM 2790 Data Communication SYSTEM 604 

LMD= operand 35, 198 
IBM 3270 Information Display System 604 

coding considerations 611 
defining invitation lists 608 
defining terminal tables 608 
dynamic buffering 612 
error haodling 611 
input data stream 605 
output data stream 605 
SCREEN macro 606 
general,poll 608 

IBM 3670 Brokerage Communication System 612 
IBM 3735 Programmable Buffered Terminal device-dependent 
considerations 595 
IBM 3780 Data Communication Terminal 613 
IBM 7770 Audio Response Unit device-dependent 
considerations 595 

DATETIME macro 223 
error handling 147 
line lock description 435 
LOCK macro 241 
UNLOCK macro 314 

IBM World Trade Telegraph (WTT A) Terminals 
device-dependent consideratior.s 596 
line code 

ITA2 583 
ZSC3 584 

ICHNG macro 428 

704 OS/MFT and OS/MVT TCAM Programmer's Guide 

restriction 445 
specifying line group for modifying invitation list 429 
specifying modification or type of modification 429 
specifying password 122,430 
specifying relative line number for modifying an invitation 

list 429 
ICOPY 420 

restriction 445 
specifying line group containing invitation list to be 

displayed 422 
specifying relative line number to display invitation 

list 423 
specifying work area into which an invitation list is to be 

moved 423 
10 sequence of computer 12 
identification sequence exchange 9, 17 

invalid sequence 
indicated on message error record 549 

idle characters 
inserting in message 252 
example 263 

idle line 129 
IDLE operand 129 
IEBUPDTE 

using to make modules resident 551 
example 551 

IEDQXA 543 
IEDQXC 528 

sample JCL for invoking 528 
specifying 528 

IFCEREPO system utility program for gaining access to error 
records 498 

inactive entries displayed for a line 498 
INACTVTD operator command 473 
INBLOCK macro 199 
inblock subgroup 140 

processing data across buffer boundaries 149 
INBUF macro 201 

specifying conditional execution 201 
inbuffer subgroup 141 

functions of 141 
identifying beginning of 201 
identifying to handle incoming buffers 201 
translating to EBCDIC 213 

incident checkpoint records 
automatic environment record when full 504 
example using 507-508 
operator commands causing 490 
specifying 212 
use 490 

incoming data (see also incoming message) 
converting to logical messages 154 

incoming group 140 
required delimiter macro 199,200,203 
subgroups of 140-141 
translating to EBCDIC 213 

incoming message 
blocking 153 
checking buffers for identical characters 221 
checking input sequence number 297 
concentrated '660 

multiple MH execution for 664 
design considerations 666 

counting messages for origin station 219 
counting segments for origin station 219 
deblocking 154 
editing 252 
identifying end of MH processing 203 
identifying subgroup to handle buffers 201 
loss indicated on message error record 548 
maintaining record of traffic 245 
removing line control characters from 266 

EOA 195 
sample format 138 
translating 186 

INEND macro 203 
INHDR macro 200 

specifying conditional execution of 200 
inheadersubgroups 140 

functions of 141 
identifying beginning of 200 
specifying execution of 200 



translating to EBCDIC 213 
INHIBIT channel command (TSO) 635 
initializing and activating the MCP 111 

obtaining disk efficiency 91-92 
INITIATE macro 238 

effects on EOB checking 194 
example 240 
restrictions 238 
specifying conditional execution 239 
specifying use of EBCDIC blank characters 239 

inmessage subgroups 140 
functions of 141 
identifying beginning of 202 
required delimiter macro 202 

INMSG macro 202 
INOUT operand 128 
input data control block 358 
input data set 358 

specifying 128 
specifying DD statement 371 
specifying format and characteristics of work unit 363 

input DCB macro 361-366 
input/ output block 

sense byte in operator awareness message 497 
status bytes in operator awareness message 497 

INPUT operand 128 
input queue 

determining number of messages for application 
program 409 

input sequence number 
checking 297 
displaying for last message from a station 487 
format of header field 297 

inquiry / response 435 
coding considerations 438-439 
sample program 328-338 

inquiry/response application use of origin field in work 
area 385 
insert operation 252 
integer operand 

CUTOFF macro 221 
MSGLIMIT macro 274 
ORIGIN macro 281 
PRIORITY macro 287 
SETSCAN macro 305 

intensive-mode error recording 496 
displaying current status of 487 
specifying type 470 

intercepted stations 
destination queue restriction (reusable disk) 95 
displaying list of 474 
indicated on message error record 549 
restrictions on holding messages 189 
specifying 234 
specifying another destination to receive messages queued 

for 432 
use of HOLD macro 189 

intercept function 
considerations for outgoing concentrated messages 670 
output to a concentrator 676 
queuing requirement 98 
releasing messages 583 

interface for MCP /application program 45, 356-358 
defining components 358-359 

internal code (EBCDIC) 569 
interruption 

I/O error recovery procedures 491 
specifying number of entries in I/O trace table for a 

line 123 
specifying point in routine to gain control when I/O trace 

table full 123 
interval 

automatic environment checkpoint record following 503 
example 507 

between computer-initiated calJs to a switched 
station 30 

between inquiry and response 436 
specifying as additional feature 126 
system 61 

activating 474 
TSO 646 

changing duration of 490 

specifying length 120 
INTERVAL operator command 474 

TSO 646 
intervention required 

indicated on message error record 549 
specifying intensive-mode error recording for 496 

INTRCEPT operator command 474 
INTRO macro 113-126 

checkpoint/restart operands 500-502 
COMMBUF= operand 116 
format 115 
initialization and activation III 

message-concentrating device 659 
list of functions 113 
providing warning when main-storage queues nearly 

full 119 
saving registers when user code handles multiple-buffer 

headers 120 
specifying additional features 125 
specifying COM WRITE output data set 124 
specifying duration of mark character 125 
specifying identifier for operator commands 117 
specifying length of system interval 120 
specifying maximum command input blocks used 

simultaneously 116 
specifying maximum destination queues used 

simultaneously for application programs using CKREQ 
macros 122 

specifying maximum simultaneous on-line tests 124 
specifying maximum time between environment 

checkpoints 120 
specifying maximum units simultaneously used for main-

storage queuing 118 
specifying message IEAOOI to be displayed 125 
specifying name of dead-letter queue 119 
specifying name of MCP 115 
specifying number of channel program blocks 116 
specifying number of checkpoint request records 122 
specifying number of entries for line trace 123 
specifying number of entries in cross-reference 

table 123 
specifying number of entries in STCB trace 

table 124 
specifying number of environment records kept in 

checkpoint data set 121 
specifying number of units for segments 118 
specifying password for application program macros 122 
specifying point in routine to gain control when line trace 

table fulI 123 
specifying primary operator control station 117 
specifying size of buffer unit 118 
specifying type of lines 125 
specifying type of restart 121 
specifying when user informed that message queues no 

longer crowded 119 
specifying whether message queues data sets are on a 

DASD 116 
testing return code 126 
TSO 629 

INTVAL= operand 120 
INTVL= operand 

HOLD macro 236 
line group DCB macro 80 
RETRY macro 292 

invalid destination causing user-written routine to gain 
control 232 
invitation 9 

errors indicated on message error record 549 
lines to multipoint BSC stations 12 
specifying delay 80 

invitation characters 11 
invitation list 

activating terminal entry of nonswitched station for 
entering messages 468 

constructing 11-17 
deactivating an entry in 476 
delimiter 422 
displaying active entries in 459 
displaying inactive entries in 473 
displaying status of polIing for a line 485 
dummy 83 
entry (example) 12 

Index 705 



identifying active entries in (TSO) 645 
modifying 428-430 

specifying change or type of change for 429 
recording status of 503 
sample format 420-422 
specifying entries for a line 11 

example 12 
specifying names of 82 
use of relative line number in specifying entries 82 

invitation message for audio terminals 12 
INVLIST macro 11-17 

examples 12-17 
contention lines to terminals not assigned ID 

sequences 17 
MASTER= operand 13 
nonswitched lines to stations using polling 

characters 14 
output-only lines to stations having no ID 

sequences 17 
switched lines to stations using ID sequences 15 
switched lines to terminals using polling 

characters 15 
INVLIST = operand 82 
Inward W A TS (specifying telephone number) 29 
irrecoverable error 491 

terminating connection with station 493 
ITB control character 8 

retaining in incoming messages 195 
specifying for outgoing messages 267 

KEYLEN= operand 117 

L1050= operand (TSO) 638 
L2741 = operand (TSO) 638 
LAST = operand 20 
LC= operand 195 
leased line 5 
length operand 

READ macro 402 
WRITE macro 404 

LENGTH= operand 302 
LEVEL= operand 

CANCELMG macro 211 
HOLD macro 236 
TERMINAL macro 30 
TPROCESS macro 48 

LIMIT = operand 425 
line address characters for IBM 2260 294 
line address in operator awareness message 497 
line code 

line 

AT&T83B3 581 
AT&TTWX 582 
IBM 1030 572 
IBM 1050 573 
IBM \053 printer 575 
IBM \060 574 
IBM 2740 577 
IBM 2741 (Correspondence) 580 
IBM 2771 (EBCD) 579 
IBM 2771 (hexadecimal equivalents of BCD) 578 
IBM World Trade Telegraph IT A2 583 
IBM World Trade Telegraph ZSC3 584 

address insertion (sample user code) 296 
arrangement when using W ATS 60 
coding the TERMINAL macro 38 
configuration (TSO) 628 

defining 628 
contention 5 
dummy invitation list (output only) 83 
error indicated on message error record 549 
idle 129 
non-contention 5 
nonswitched 5 

stopping transmission for a station 478 
point-to-point 5 
recording changes in status 504 
recording status of 503 
specifying activation for line group data set 129 
specifying intensive-mode error recording for 496 

706 OS/MFT and OS/MVT TCAM Programmer's Guide 

specifying transmission priority 81 
TSO 635 

specifying types for TCAM 125 
starting or resuming transmission on 484 
stopping transmission 486 

TSO 647 
line control 5-8, 353 
line control block dump 518 
line-control characters 6 

in concentrated messages 666 
considerations for handling incoming concentrated 

messages 666 
inserting on output 673 

in an application program 7 
insertion 7 
removing by count 266 
when to remove 8 

line entry 
defining in the terminal table 37 
DSECT of 417 

line group 
changing polling delay of 481 
characteristics of 77 
data set 77 

creating 77 
examples of opening 129 
guideline for specifying as input/output 129 
restriction for coding as output 127 
specifying activation of lines in 129 
specifying DD statements 86 

DCB macro 79 
TSO 635 

priority 55 
specifying in order to modify invitation list 429 
specifying to display invitation list for a line 422 
starting or resuming transmission on 484 
stopping transmission on 486 
TSO 

specifying MH for 635 
specifying tables for dynamic translation 636 
specifying translation table for 636 
stopping transmission on 647 
translation for IBM 2741s and \050s 637 

LINEGRP macro (TSO) 628 
line I/O interrupt trace table 519 

activating 465,472 
deactivating 477 
examples of obtaining printed output 527 
specifying number of entries 123 
specifying point in routine to gain control when table 

full 123 
line lock description 435 
line tone (specifying duration of mark character) 125 
line trace 519 
LINETYP= operand 125 
linkage-editing an MCP (sample JCL) 318 
list form specified on OPEN macro 129 
LIST = operand 

TLIST macro 43 
TRANLIST macro (TSO) 637 

LISTTA macro (TSO) 628 
LMD= operand 

STARTMH macro 198 
TERMINAL macro 35 

LNST A TUS operator command 475 
LNUNITS= operand 118 
LOCK macro 241 

forms for coding 437 
inquiry/response coding considerations 438 
logical message use 241 
restrictions 241 
specifying conditional execution 241 
specifying type of lock mode 241 
specifying use of EBCDIC blank characters 242 

lock mode 241,436 
extended 241 

removing station from 314 
message 241 
response to inquiring station during quick 

closed own 436 
specifying type 241 

LOCOPT macro 244 



specifying name of option field to be accessed 244 
specifying register to contain address of option 

field 244 
TSO 642 

log data set 
BSAM operands 107 
data control block for 517 
example of opening 129 
specifying as output 128 
specifying name of data control block 51 
specifying where messages to be queued 52 

LOG macro 245 
logging messages or segments 517 
restrictions 245 
specifying location of log medium 246 
TSO 643 

logging 
messages 245, 514-518 
segments 245 
types listed 245 

logging on (TSO) 640 
logical errors 

indicated on message error record 549 
TSO 642 

testing for 197 
logical message 138 

blocking to form 153-154 
coding considerations 161-164 
constructing 153 

examples 153 
controlling amount of data in 301 
converting incoming data to 154 
deblocking to form 154 
delimiting on input 301, 199 
forcing EOM 155 
format 153-155 
handling 152 
header 158 
message flow 155 
mid-batch recovery 163, 494 
removing EOM 163, 164,303 
specifying length 164, 302 
specifying MH for 198 
specifying for a station 35 

LOGICAL= operand 197 
LOGOFF operator command 641,644 
logon errors indicated in messages error 
record (TSO) 649 

LOGON macro (TSO) 640 
LOGON operator command 644 
logtype entry 19 
LOGTYPE macro 

logging complete messages 517 
specifying buffer size for messages destined for logging 

medium 51 
specifying name of data control block 51 
specifying where messages for logging medium to be 

queued 52 
lost data 

indicated on message error record 550 
specifying intensive-mode error recording for 496 

LRECL= operand 
input DCB macro 363 
output DCB macro 368 

LTORG instruction 191 

machine and device requirements 539 
machine end-of-address (EO A) character 139 
MACRF= operand 

checkpoint DCB macro 106 
input DCB macro 362 
line group DCB macro 80 
log DCB macro 107 
message queues DCB macro 102 
output DCB macro 368 

macro Instructions (see directory at front of book) 
main-storage message queues data set 

destination queue in 97 
providing warning when nearly full 119 
specifying backup 

nonreusable disk 29 

reusable disk 29 
specifying maximum units used simultaneously 119 

TSO 631 
main-storage-only queues 

indicating excessive messages queued 229 
lost message indication 548 
specifying 29 

main-storage queuing 
with disk backup 97 
without disk backup 97 

maintaining orderly message flow 52 
mark character (specifying duration) 125 
mask operand 147 

CANCELMG macro 210 
ERRORMSG macro 225 
HOLD macro 234 
MSGGEN macro 269 
REDIRECT macro 290 

MASTER= operand 13 
MAX= operand 443 
MAXLEN = operand 20 
MB= operand 35 
MCOUNT macro 409 
MCP 

ABEND formatted dump 518 
activating and deactivating the application program 

interface 377-382 
assembling 318 
buffer definition checklist 69 
buffer size 71 

specifying for messages to MCP from application 
program 370 

buffer unit pool 65 
closedown 134 

specifying type of restart following 121 
coding requirements for message logging 515 
coordinating restart with application program 451 
datil set initialization and activation 127 
deactivation 131-133 

TCAM with application programs 132 
TCAM with no application program 132 

effect of abnormal termination on application 
programs 450 

execution 318 
automatic environment checkpoint record 503 
starting with catalogued procedures 319 

functional MH macros 209-302 
functions 3 
lBM-supplied (TSO) 628 
initializing and activating 111-131 
interface with application program 356-358 

defining components 358-377 
line control 353 
linkage-editing 318 
priority 353 
putting together 317-351 
reconstructing for restart 499 

specifying number of checkpoint request 
records 122 

sample code 320-351 
sections listed 3 ~7 
specifying name 115 
specifying size of buffers containing messages for 

application program 363 
starting and restarting III 
terminal table 18 

specifying logging complete messages 517 
tracing flow of messages 514, 515 
writing 3 
user tasks in 4 

MCPCLOSE macro 381,382 
restriction 445 
specifying password 382 
specifying type of closedown 381 
considerations for buffered terminals 57 

message 382 
canceled 210 
categorizing for processing 275 
concentration 653 

multiple MH execution 664 
counting number of (TSO) 642 
determining number queued for application program 409 

Index 707 



displaying number queued (TSO) 646 
dynamically varying path of through an MH 282 
format 137 
incoming (see incoming message) 
indicating EOF 299 
input sequence number check 297 
length error indicated on message error record 548 
limiting number sent 274 
logging (TSO) 642 
logical 

coding considerations 160-164 
delimiting on input 301 
removing EOM 303 
specifying length 302 
specifying MH for 198 
using CODE macro for 214 

loss avoided during warm restart 513 
loss due to system failure 505,506 
marking serviced 505 
multiblock 

specifying mid-batch-recovery for 35,211 
operator awareness 497 
outgoing (see outgoing messages) 
output suspended to a station 234 
parts of 137 
processing as a work unit 390, 391 
record 138 
redirecting when unsent 290 
reentering after system failure to prevent loss 506 
releasing when intercepted 483 
sample formats 138, 140 
selective translation 213-214 

example 214 
sequence number 297 

displaying last from a station 487 
displaying last to a station 487 

specifying destination on FORWARD macro 230 
specifying number de queued for concentrator 656 
testing for operator commands 213 

example 214 
text 137 
translation 186-187,213 

avoiding 186 
varying path within MH 172 
warm restart after flush closedown to prevent loss 513 

message and record processing 392 
message block 138 
message buffer format f.or TCAM/SAM SYNADAF 414 
message concentration 653 
message editing 252 
message error record 547 

bits described 547 
displaying for a line 476 
macros that set bits in 148-149 
setting bits in 491 
TSO 649 

testing at end-of-message 640 
use of TERRSET macro with 311 

message flow 
example of 2-segment message with multiple-buffer 

header 170 
example of 2-segment message with single-buffer 

header 170 
example of incoming concentrated message 663 
logjling 148 
logical messages 155-157 
output to a concentrator 674 
through an MH 165 
to an application program 355 
within MH group 166 

message header 
checking validity of origin field 280 
controlling path of through an MH 275 
delimiting destination field for multiple routing 231 
destination codes in 138 
format 137 

date and/or time 223 
input sequence number 297 

locating fields in 179-181 
logical messages 158 
scan pointer used for 149 
using control characters to vary path of message in 

708 OS/MFT and OS/MVT TCAM Programmer's Guide 

MH 172-173 
message lock 435 
message logging 514-518 

coding requirements 515-517 
complete messages 517 
how it works 515 
information flow 516 
logging segments 517 
selectivity 517 
TSO 643 

specifying data control blocks 643 
uses 514 
what to log 515 

message operand 
LOCK macro 241 
MSGGEN macro 270 

message priority 
after zone reorganization of DASD data set 93-94 
efficient use of 95 
queuing and 52 

message processing 382 
categorizing 275 
guidelines for specifying 375-377 

Message Processing Program (QT AM) conversion 585 
message queue 

application program 
specifying where maintained 46 

main storage 
providing warning when nearly full 119 
specifying maximum units used simultaneously 119 

main-storage-only lost message indication 548 
recording status of 503 
scanning 505-509 
TSO 

specifying where maintained 632 
warning when nearly full 630 

message queues data set 88 
DCB macro for 102 
DD statement for 85 
disk 

destination queue in main storage 96 
destination queues on disk 89 
disk efficiency 92 
dump 528 
example of assigning relative record numbers 90 
main storage 96 
preformatting 543 

opening (example) 129-130 
preformatting DASD 92 
reusable DASD 93 

automatic environment checkpoint at zone 
changeover 503 

designing for high message traffic 95 
reorganizing 93 

sample JCL for printed output 527 
scanning queues in 505-509 
specifying 103, 106 
specifying DASD as input/output 128 
specifying one or more 99 
specifying P ARM= parameters for printed output 528 
specifying tYPl! in terminal table 27 
specifying when user informed that message queues no 

longer crowded 119 
specifying where maintained 29 
specifying whether on a DASD 116 

message retrieval facility 432 
in a concentrated-message network 678 
POINT macro 432 

message routing 146 
control 3 
techniques of coding for one or more destinations 229 

message segments 63, 138, 166 
expediting transmission of 238 
maintaining incoming count for origin station 219 
translation of 213 

message subblock 138 
message switching sample program 321-327 
message transmission 

between start-stop and BSC stations 7 
dynamically varying path through an MH 282 
establishing contact for 9 
lost data indicated on message error record 548 



specifying continuation after retry exhausted 196 
specifying termination after retry exhausted 195 
stopping for a nonswitched station 478 
suspending 189 

output 234 
suspension to intercepted station indicated on message 

error record 549 
MF=operand 

application program 379 
MCP 129 

MFT-II 539 
MH 

base register requirements 198 
coding for application program 189 
conditional execution of functional macros 173 
controlling path of message through 275 
defining beginning of (TSO) 639 
delimiter macros 191-207 (see directory at front of 

book) 
designing 137 

conditionally executing macros 173-175 
delimiter macros 191-207 
functional macros 209-316 
hold/release facility 189 
list of groups/subgroups/delimiter macros 192 
message flow 165 
message format 137 
message header 138 
message translation 186-188 
order of macro specification 149 
selecting functions 145 
steps in 190 
structure 138 
user code in 176-185 
variable processing in 172 

dynamically varying path of message through 282 
functional macros 209-316 (see directory at front of 

book) 
functions provided 145 

error handling 147 
function modification 149 
message editing 145 
message routing 146 
record keeping 147 
system control 148 
validity checking 146 

gaining access to option fields 21-24 
groups 140 

delimiters 142 
order of 142 

incoming group 140-141 
macro return codes 182 
macros 

delimiter 137 
functional 137 
order of specification 149 

macros and corresponding subgroups listed 144 
message flow 165 

example of 2-segment message with multiple-buffer 
header 170 

example of 2-segment message with single buffer 
header 168 

message processed by application program 166 
switched message 165 
within group 166 

minimum requirements 142 
multiple execution for incoming concentrated 

messages 664 
organization 140 
outgoing group 143 
purpose of 137 
specifying address of for an application program 372 
specifying for line group 

TSO 635 
specifying for logical messages 198 
specifying type (TSO) 629 
specifying whether dedicated to TSO 639 
subgroups and corresponding macros listed 144 
subgroups 

delimiters 142 
functions of 140-142 
order of 142 

TCAM line groups in mixed environment 644 
TSO line groups in mixed environment 644 
types of macros 137 
user code in 176-185 

formula for determining bytes resulting from 176 
locating header field 179 
locating option fields 179 
macro return codes 182 
multiple-buffer header considerations 176 
obtaining information from EXEC job-control 

statement 182 
open subroutines 176 
requirements and restrictions 176 
sample activation of closed subroutine 178 

variable processing in 172-173 
varying path of message in 173 

MH macros (see directory at front of book) 
TCAM 191 
TSO 638 

MH return codes 182 
MH routine (TSO) 641 
MH= operand 

line group DCB macro 79 
TSO 635 

PCB macro 372 
TGOTO macro 665 

MHGET macro 247 
user specified work area, MH 247 

MHPUT macro 249 
user specified work area, MH 249 

mid-batch-recovery 493 
in a concentrated-message network 677 
for incoming concentrated messages 665-666 
retransmitting erroneous blocks 236 
specifying 35,211 

MINLN= operand 614 
mixed environment 628, 644 

specifying 629 
modules associated with operator commands 552 
MOVE= operand 307 
MRELEASE macro 431 

for terminals attached to a concentrator 676 
restriction 445 
specifying password 432 
specifying station to receive intercepted messages 431 

MSGEDIT macro 252 
avoiding coding problem 257 
example of coding problem 254 
examples 261-265,293 

deleting and replacing data 264 
deleting data followed by contracting 264 
deleting miscellaneous data 264 
deleting several characters 264 
deleting single character 264 
inserting control symbols in segments 265 
inserting data after every n bytes 263 
inserting data in header buffer 262 
inserting idle characters 263 
inserting line addresses 293 
multiple inserts and removes 265 
replacing data 262 
simultaneously inserting and replacing data 262 

format 256 
limitations 254 
restrictions 254, 259 
scan pointer effects 254, 256 
specifying beginning of data to be removed 258 
specifying data to be inserted 256-258 
specifying data to be removed 256-258 
specifying end of character string to be removed 259 
specifying insert or remove operation 256 
specifying location at which data to be inserted 258 
specifying type of function 256 
speed of execution 253 
structure of operand groups 256 

MSGFORM macro 266 
deleting characters on input 268 
reblocking on output 267 
SENDTRP= operand 267 
specifying outgoing blocking factors 267 
specifying outgoing ITB characters 267 
specifying subblock delimiters for output 267 

Index 709 



specifying whether transparent mode used 267 
MSGGEN macro 269 

restrictions 271 
specifying conditional execution 270 
specifying data for 270 
specifying logical connection between mask and message 

error record 270 
specifying type of translation 271 
TSO 642 
versus ERRORMSG macro 225 

MSGLIMIT macro 273 
restrictions 273 
specifying number of messages for a transmission 

sequence 273 
when ineffective 

MSGTYPE macro 275 
examples 277 
EXIT= operand 276 
specifying path of message through an MH 275 
specifying use of EBCDIC blank characters 276 
T ABLE= operand 276 

MSMAX= operand 119 
TSO 630 

MSMIN= operand 119 
TSO 630 

MSUNITS= operand 118 
specifying value in 118 
TSO 631 

multiblock messages 
mid-batch recovery 493 

specifying 35,211 
multiple-buffer header 167 

considerations for user code in an MH 176 
handling 167 

multiple destinations 229 
canceling messages to 210 
DEST= operand 230 
validity checking 232 

multiple disk arms 75 
multiple PUT macros, application program 398 
multiple READ macros 400 
multiple retrieval 433 
multiple-subgroup restrictions 171 
multiple WRITE macros, application program 398 
multiple-wait capability 406,411 

example 412 
multiplexer channel 539 
multiprocessing 539 
multipoint 5 
MVT 539 

network control facilities 415-432 
network control macros 415 

ICHNG macro 428 
ICOPY macro 420 
MRELEASE macro 431 
QCOPY macro 424 
TCHNG macro 426 
TCOPY macro 417 

network reconfiguration 498 
application program macro instructions for 498 
operator commands for 498 

NOENTRNG operator command 476 
non-contention line 5 
NONE operand 215 
nonreusable disk queues 96 

specifying 29 
message retrieval from destination queue 432 
preformatting 543 
specifying for message queues data set 102 
specifying percentage of records to be used before flush 

c1osedown 104 
nonswitched line 5 

activating station on 460 
activating station's terminal entry for entering on 468 
preventing station transmission to CPU 476, 478 

nontransparent mode 8 
specifying 267 

NOTRACE operator command 477 
NOTRAFIC operator command 478 

710 OS/MFT and OS/MVT TCAM Programmer's Guide 

NTBLKSZ= operand 32 
nucleus generation 542 

OBR extension for TCAM 495 
OLT (see on-line test) 
OLTERM= operand 20 
OL TEST= operand 124 
on-line test 530 

advantages 531 
devices supported 532 
invalid request indicated on message error record 548 
specifying maximum that may occur simultaneously 124 
system requirements 532 

coding 532 
JCLforTOTE/OLTs 538 
main-storage 532 
TOTE 531 

tests 53l 
TOTE facilities 531 

OPDAT A= operand 
TERMINAL macro 33 
TPROCESS macro 48 

OPEN macro 371-373 
checkpoint/restart operands to be considered 501 
examples of opening data sets 129 
initialization and activation 111 
specifying activation of line for line group data set 129 
specifying list and execute forms 129 
specifying name of data control block 379 
specifying name of DCB macro 128 
specifying type of data set 128 

operand formats 545 
operating system generation 541 
operator awareness message 497 

for I/O error 493 
specifying display of IEAOOOI 125 

operator commands 459 (see directory at front 
of book) 459 

entering from application program 458 
examples 456 
incident checkpoints resulting from 490 
incident records caused by 504 
incorrectly formatted 458 
listed by areas affected 492 
listed by type of operation 587 
operation types 454 
queuing responses to 457 
responses 457 
specifying 456 
specifying identifier for 117 

operator control 453 
activating debugging aids 465 
activating line trace 446 
activating nonswitched station for 

transmission 460 
activating nons witched station's entry for 

entering 468 
activating the system interval 474 
changing duration of polling delay 481 
changing duration of system interval 490 
checkpointing commands 490 
command format 453 
commands listed by operation 587 
considerations 677 

STOPLINE macro 677 
LMD 677 
EOT 677 
EOM 677 

deactivating line trace 477-478 
displaying active invitation list entries 459 
displaying current status of intensive-mode 

recording 487 
displaying list of inactive entries for a line 473 
displaying list of intercepted stations 474 
displaying message error record for a line 475 
displaying name of primary station 467 
displaying names of secondary stations 467 
displaying polling status of a line 485 
displaying queue control block fields 482 
displaying sequence number of last message to/from a 

station 487 

I~ 



displaying station's option fields 480 
displaying station status 487 
displaying station's relative line number 484 
displaying status field for a line 475 
entering commands from application program 459 
establishing primary station 463 
incident records caused by commands 504 
incorrectly formatted commands 458 
initialization for 453 
initiating closedown 489 
inserting data in option fields 464 
intensive-mode error recording 470, 496 
making resident 551 
preventing nonswitched station entering to CPU 476 
preventing transmission for nonswitched station 478 
primary station 

displaying name of 467 
operator awareness message 497 

queuing responses to commands 457 
releasing intercepted messages 483 
replies to a component 37 
responses to commands 457 
sample commands 456 
secondary stations 

displaying names of 467 
specifying an application program in the terminal 

table 48 
specifying commands 456 
specifying primary station 117 
specifying secondary stations in the terminal table 36 
specifying temporary I/O error records 469 
starting or resuming line transmission 484 
stopping transmission for line or line group 486 
suspending transmission to a station 488 
switching to Auto Poll 462 
switching to programmed polling 461 
testing for operator commands 214 

example 214 
TSO considerations 645 

op!ield operand 
COUNTER macro 220 
CTBFORM macro 673 
LOCOPT macro 244 
MSGLIMIT macro 274 
PATH macro 283 

TSO 643 
OPFLD= operand (TSO) 638 
OPTCD= operand 

checkpoint DCB macro 106 
input DCB macro 364 
message queues DCB macro 103 
output DCB macro 369 

OPTFIELD operator command 480 
option fields 

automatic recording of changes at cold restart 504 
definin~ in the terminal table 21 
displaY10g for a station 480 
examining contents 417 
gaining access to 

specifying name for 244 
specifying register to contain address for 244 
TSO 642 

in a concentrated-message network 677 
inserting data in 464 
locating 244 
macros that may gain access to 21 
modifying 426 
moving contents to work area 417 
not found 244 
recorded on environment checkpoint record 504 
recording changes in status 504 
recording status 504 
reserving space in 21 
setting bit 10 (TSO) 643 
specifying actual data to be inserted 33, 38, 48 

example 38, 49 
specifying address of translation table (TSO) 638 
specifying incident checkpoint record of 212 
specifying type and length in terminal table 22-24 
specifying work area to contain 419 

option table 21 
displaying fields in 480 

specifying address of field in 244 
OPTION macro 21-24 

coding examples 23-24 
specifying type and length of option field 22-24 

optional fields 
defining in work area 384-387 

origin and destination 384 
position field 385 
SAM prefix 386 

format of relative positions in work area 387 
included in specifying length of work unit 

READ macro 402 
WRITE macro 404 

included in specifying size of work area 362 
included in specifying record size in work area 363 
included in specifying work-unit size in work area 368 
specifying for work unit 363,369 

ORDER= operand 12 
origin code error indicated in message error record 647 
origin field 

in work area 384 
message header validation 280-281 
relative position among optional fields in work area 387 

ORIGIN macro 280 
identifying and verifying source of concentrated 

message 663 
return codes 664 

specifying character count for origin fields in a message 
header 281 

variable functions of 280 
origin station 

determining for a concentrated message 663 
maintaining incoming count 

of messages 219 
of message segments 219 

maintaining count of outgoing message segments 
for 219 

recording for message obtained by application 
program 411 

OS generation 540 
outboard recorder extension for TCAM 495 
OUTBUF macro 205 

specifying conditional execution 205 
outbuffer subgroups 140 

functions of 142 
identifying to handle outgoing buffer 205 
translating to line code 213 

OUTEND macro 207 
outgoing group 140-142 

required delimiter macro 207 
subgroups of 141-142 

outgoing message 
counting segments for destination station 2 t.9 
editing 252 
format of concentrated message 672 
identifying subgroup to handle buffers 205 
inserting sequence number 297 
maintaining count for destination station 219 
maintaining record of traffic 245 
sample format 138, 140 
specifying blocking factors 266 
specifying priority handling for 286 
specifying subblock delimiters for 267 
translating 186 

outgoing subgroup translation to line code 213 
OUTHDR macro 204 

specifying conditional execution 204 
outheader subgroup 140-141 

functions of 141 
identifying beginning of 204 
translating to line code 213 

outmessage subgroup 
functions of 142 
required delimiter macro 206 

OUTMSG macro 206 
specifying conditional execution 206 

output data control block 358 
output data set 358 

COMWRITE requirements and format 521 
DCB macro 367-371 

specifying DD statement 368 
specifying format and characteristics of work 

Index 711 



unit 370 
specifying type on OPEN macro 128 

output DCB macro 367-371 
OUTPUT operand 128 
output sequence number 297 

displaying last for a station 487 
inserting 297 

Outward W ATS (interval between computer-initiated calls to 
switched stations) 30 

overrun 550 
indicated on message error record 550 
specifying intensive-mode error recording for 496 

parameter list on OPEN macro 379 
parity character error indicated on message error 
record 549 

password for application program macros 122 
PASSWRD= operand 

ICHNG macro 427 
INTRO macro 122 
MCPCLOSE macro 382 
MRELEASE macro 432 
TCHNG macro 427 

path switches 173 
altering to vary path of message through an MH 282 
specifying byte (TSO) 643 
specifying execution of inheader subgroup 200 

path switching delimiter macros 149 
PATH macro 282-285 

example 284 
specifying conditional execution 283 
specifying path switch setting 282-284 
specifying path-switch byte to be used 283 
specifying use of EBCDIC blank characters 283 
TSO 643 

PATH= operand 
INBLOCK macro 199 
INBUF macro 201 
INHDR macro 200 
INMSG macro 202 
OUTBUF macro 205 
OUTHDR macro 204 
OUTMSG macro 206 

PCB macro 372-374 
specifying bytes for date/time/sequence number 374 
specifying initial buffers to handle data in user work 

area 373 
specifying initial buffers to handle data obtained by 

GET/READ 373 
specifying MH for an application program 372 
specifying size of buffers for an application 

program 372 
PCB= operand 46 
PCI= operand 83 
permanent-error record 495 

access to 498 
physical transmission 153 
point-to-point line 5 
POINT macro 433 

multiple retrieval 433 
restriction 445 
specifying data control block for message retrieval 435 
specifying required address of a field 435 

POINT = operand 306 
POLLDLAY operator command 481 
polling 9 

changing duration of delay 481 
determining type for a line 421 
displaying status of a line with respect to 485 
general 

2260 590 
3270 608 

specific 
3270 608 

suspension of 
timeout exceeded indicated on message error 

record 550 
polling characters 9 

for polled stations II 
position field 385 

guidelines for using in work area 376 

712 OS/MFT and OS/MVT TCAM Programmer's Guide 

relative position among optional fields in work area 387 
prefix 64 
primary operator control station 

command for establishing 463 
displaying name of 467 
operator awareness message 497 
specifying 117 

PRIMAR Y = operand 117 
printing utility 

COMEDIT 526 
examples of invoking 527 
PARM= options 526 

IEDQXC (PARM= options) 528 
priority 

application program 353 
equal 

nonswitched contention stations 58 
nonswitched polled station with programmed 

polling 55 
nonswitched polled stations with Auto Poll 56 

MCP 353 
message 52-55 

after zone reorganization of DASD data set 80 
busy lines 59 
efficient use of 95 

queuing concentrated message by 658 
receive 

nonswitched polled stations with Auto Poll 56 
nonswitched polled stations with programmed 

polling 56 
send 

nonswitched contention stations 58 
nonswitched polled stations with Auto Poll 56 
nonswitched polled stations with programmed 

polling 56 
specifying 30 

for terminals attached to a concentrator 657 
permissible levels for messages on a process 

queue 48 
transmission 55-59 

displaying (TSO) 646 
efficiency when receive specified 95 
queuing concentrated messages by 658 
specifying for concentrator-attached terminals 657 
specifying for line 81 

priority handling for outgoing messages 287 
PRIORITY macro 287 

effect of CODE macro on 286 
example 288-289 
specifying conditional execution 286 
specifying for a message 286 
specifying priority level for a message 286 
specifying use of EBCDIC blank characters 287 

private library definition 319 
problem program exit list 

specifying address on checkpoint DCB macro 106 
specifying address on message queues DCB macro 103 

process control block 
defining in the MCP 356-360 
dump of 518 
specifying name of in the terminal table 46 
PCB macro for 372-374 

process entry 19 
application pro!!ram requirements 357 
specifying date/time messages received 47 

PROCESS= operand 302 
processor/library generation 542 
PROGID= operand 115 
program-controlled interruption 

buffer allocation considerations 74 
for output to a concentrator 675 
specifying for buffer allocation 83 

program EOA 139 
example 138 

programmed polling 56 
determining use on a line 420 
switching to 461 

protection password for application program macros 122 
purging destination queue at restart 47 
PUT macro 398 

specifying address of data control block 398 
specifying address of work area 399 



specifying to gain access to checkpoint data set 106 
specifying to gain access to line group data set 80 
specifying to gain access to message queues data 

set 103 

QACTION macro 667 
QBACK= operand 50 
QBY= operand 27 
QCNTRL= operand 656 
QCOPY macro 424 

LIMIT = operand 425 
restriction 445 
specifying name of terminal table entry whose queue 

control block is to be displayed 425 
specifying name of work area for displaying queue control 

block 425 
QRESET macro 443 

dcbname operand 443 
MAX= operand 443 

QSTART macro 447 
in checklist for checkpoint/restart 501 

QST ATUS operator command 482 
TSO 646 

QTAM 
converting application programs 585 
macro facilities listed 5585 

queue 
determining number of incoming messages for application 

program 409 
specifying maximum number of main-storage 

units (TSO) 631 
specifying where maintained for TSO messages 632 

queue control block 
displaying fields in 482 

TSO 646 
dump of 518 
examining 424-425 
generating (TSO) 636 
master 424 
specifying name of terminal table entry for 

displaying 425 
priority 424 

queue reset facility 440 
dcbname operand 443 
MAX= operand 443 
QBACK= operand 50 
QRESET macro 443 
TPROCESS macro 45 

queue status (TSO) 646 
QUEUES= operand 

LOG TYPE macro 52 
TERMINAL macro 28 

TSO 632 
TPROCESS macro 46 

queuing and message priority 52-55 
queuing 

disk 88-96 
advantages and disavantages 89 

intercept function requirement on 98 
main storage 96 

with disk backup 98 
without disk backup 97 
indicating excessive messages queued 229 

messages for one or more destinations 229 
retrieve function requirement on 98 
specifying one or more methods 98 
specifying main-storage as additional feature 126 
specifying reusable disk as additional feature 126 
techniques listed 88 
terminals attached to a concentrator 658 

queuing by destination 88 
queuing by line 

considerations for 53 
example 54-55 

queuing by terminal 
considerations for 53-54 
example 54-55 

quick c1osedown 
automatic environment checkpoint record during 503 
cold restart following 512 
concentrated-message network 678 

initiating through operator control 489 
response to inquiring station in lock mode 436 
specifying in application program 381 
TSO 647 
warm restart following 513 

QUICK operand 381 

read-ahead queue 355, 375 
formula for number of buffers required for 375 
role in message flow 165 

READ macro 400 
issuing more than one per process queue 384 
specifying address of data control block 401 
specifying address of work area 402 
specifying initial buffers to handle data obtained by 373 
specifying length of work unit plus optional fields 402 
specifying name of data event control block 385 
specifying SF 401 

READY macro 130 
initialization and activation III 

reblocking outgoing records 266 
RECDEL= operand 48 
RECDLM= operand 410 
receiving 5 

BSC considerations 600 
RECFM= operand 

input DCB macro 363 
log DCB macro 108 
output DCB macro 370 
TPEDIT macro 614 

record 382 
checkpoint request 503 

priority used in dividing space for 511 
specifying data set for 106 
specifying number for checkpoint data set 122 

control 502 
counter overflow 496 
deleting delimiters 411 
delimiting for an application program 48 
end-of-day 496 
environment checkpoint 503 

example using 507 
how updated 503 

error 
displaying current status of intensive-mode 
recording 487 
gaining access to 498 
intensive mode recording 496 

I/O error types 496 
incident checkpoint 504 

automatic environment record when full 503 
example using 507 
operator commands causing 490 
specifying 212 
use 504 

inserting delimiter (example) 263 
maintaining for message traffic 245 
variable length reb locking on output 266 
permanent-error 493 
processing as a work unit 392 
specifying size 363 
types in checkpoint data set 502 

record keeping 147 
record and message processing 393 
record processing guidelines 376 
recoverable error 

operator awareness message indicating failure 497 
retrying the block 493 
specifying EOB checking 193 

REDIRECT macro 290 
specifying additional destinations 291 
specifying conditional execution 291 
specifying connection between mask and message error 

record 291 
( register) operand 

CODE macro 215 
LOCOPT macro 244 

registers 
saving when user code handles multiple-buffer 

headers 120 
specifying for an MH 198 

Index 713 



relative line number 
CPU calling a station 59 
displaying for a station 484 
example of TERMINAL macros arranged according 

to 40 
specifying 27 

to display invitation list 422 
to modify an invitation list 429 

station calling the CPU 58 
use in invitation list 82 

releasing intercepted messages 483 
output to a concentrator 676 

RELEASE operand 235 
remove operation 252 
REMOVE= operand 303 
REPLACE= operand 616 
RESERVE= operand 

line group DCB macro 84-85 
PCB macro 373 

RESMXMIT operator command 483 
resuming transmission to a terminal attached 

to a concentrator 677 
response (see inquiry/response) 
response keywords at INTRO execution time 114-115 
restart 473 

building "Good Morning" and "Restart in Progress" 
messages 130-131 

checkpoint data set for 105-106 
cold 512 

after abnormal flush closed own 96 
building "Good Morning" message 130-131 
good morning routine gaining control 

following 512 
reformatting DASD message queues data sets 92 

conditions required for various types 514 
continuation 513 

replaced by cold restart due to faulty checkpoint 
records 512 

coordinating MCP and application program 450 
maintaining continuity of sequence numbers 298 
purging destination queue 47 
scanning message queues after system 

failure 505 
TSO considerations 648 
types 512 

specifying 121 
warm 512 

replaced by cold restart due to faulty checkpoint 
records 512 

restart in progress routine (use) 506 
restarting the MCP 122 
RESTART = operand 122 
RESULT = operand 307 
retrieval of messages 432 

POINT macro 433 
queuing requirement 98 

retry count exhausted 
continuing message transmission 196 
terminating message transmission 195 

RETRY macro 292 
RETRY= operand 35 
return codes 182 

CTBFORM macro 673 
ORIGIN macro 664 
TGOTO macro 665 

retrying the block 493 
reusable disk queuing 93-96 

advantage of combining checkpoint coordination methods 
for 451 

automatic environment checkpoint at zone 
changeover 503 

designing for high message traffic 96 
preformatting 543 
retrieving messages from destination queue 432 
specifying 29, 126 

for message queues data set 102 
reverse break feature (TSO) 

specifying 634 
reverse interrupt (RVI) 197,598 
rln operand 

ICHNG macro 429 
ICOPY macro 422 

714 OS/MFT and OS/MVT TCAM Programmer's Guide 

RLN= operand 27-28 
RLNST ATN operator command 484 
RSMSG= operand 131 
RVI (see reverse interrupt) 

SAM {'refix 386 
SAM/TCAM compatibility 445 
sample programs 320-351 

file updating with checkpoint coordination 339-351 
inquiry/response 330-338 
message switching 323-327 

scanned message queues 505 
scan pointer 149 

automatically moving 149 
coding considerations 151-152 
error indication on message error record 547 
example of use 151 
MH macros not dependent upon 169 
moving 304-308 
redirecting concentrated messages to another MH 666 
use of with CODE macro 213 

SCREEN macro 293-296 
2260 

XRE operand 295 
XLA operand 295 
XDC operand 295 

3270 
EAU operand 606 

example 296 
return codes 295 
specifying conditional execution 295 
specifying type of Write operation 294 
specifying use of EBCDIC blank characters 295 
use of MSGEDIT macro with 293 

SCRSIZE= operand (TSO) 631 
SCT = operand 86 
SDR extension for TCAM 495 
secondary operator control station 116 

displaying names of 467 
specifying an application program as 48 
specifying in the terminal table 36 

secondary storage for message queues data sets 116 
SECTERM= operand 

TERMINAL macro 36 
TPROCESS macro 48 

segments 138 
counting (TSO) 642 
expediting message transmission using INITIATE 

macro 238 
incoming 

maintaining count for origin station 219 
maintaining record of 245 

outgoing 
maintaining count for destination station 219 
maintaining record of 245 

seizing the line 5, 17 
selection 9, 18 

errors indicated on message error record 547 
sending 5 

BSC considerations 598 
SENDTRP= operand 267 
sense byte in input/output block of operator awareness 
message 497 

sense count 497 
SEQUENCE macro 297 

reserving bytes for sequence number 373 
sequence number 

displaying for last message to or from a station 487 
errors indicated on message error record 547 
input 

checking 297 
format of header field 297 

internal counter for 297 
maintaining continuity during restart 298 
output 

inserting 297 
recording status of fields containing 505 
reserving bytes in buffer for 373 

service bit 506 
service facilities 453 

checkpoint/restart 499 



I/O-error recording 495 
I/O error-recovery procedures 491 
message logging 514 
network reconfiguration 498 
operator control 453 

SETEOF macro 299 
specifying conditional execution 299 
specifying use of EBCDIC blank characters 300 

SETEOM macro 301 
EOM=ETB operand 303 
mUltiple MH execution 666 

SETSCAN macro 304-308 
examples 307-308 
format 305 
specifying direction of scan pointer movement 306 
specifying new location of scan pointer 305 
specifying register to contain address of last 

character 307 
specifying use of EBCIDIC blank characters 306 
specifying whether scan pointer to remain stationary 

after a move 307 
SF operand 

READ macro 401 
WRITE macro 403 

SIMATTN macro (TSO) 641 
simulated attention (TSO) 641 

indicated in message error record 649 
single entry 18 
single entry DSECT 417 
SIO command counter in terminal table entry 495 
skip chars operand 305 
SLOWPOLL macro 309 
special characters table name (specifying) 85 
specific poll 

3270 608 
START command 319 
Start I/O command counter in terminal-table entry 495 
start-stop transmission 7 

device-dependent considerations 589 
starting and restarting the MCP 111 

building "Good Morning" message 130 
ST ARTLINE operator command 484 
ST ARTMH macro 193-198 

format 194 
function of 140-142 
inquiry / response coding considerations 437 
removing line control characters 195 
retaining line control characters 195 
reverse interrupt 197 
specifying continuation of transmission after retry 

exhausted 195 
specifying EOB completion handling 196 
specifying number of base registers 198 
specifying termination of transmission after retry 

exhausted 195 
specifying tete-a-tete interaction 196 
testing for logical errors 197 
TSO 639 

STARTUP= operand 121-122 
ST A TO ISP operator command 485 
station 5 

BSC device contention 13 
defining a component belonging to 18 
defining in a group 18 
defining individually 18 
designating to receive user-specified error 

messages 226 
displaying input sequence number of last message 

from 487 
displaying option fields 480 
displaying output sequence number of last message to a 

station 487 
displaying relative line number of 484 
displaying status of 487 
error indicated on message error record 547 
intercepted 

indicated in operator control display list 475 
indicated on message error record 547 
restriction on type of destination queue 95 
restrictions on holding messages 189 
specifying 234 
specifying another station to receive messages 

queued for 431 
use of HOLD macro 189 

invalid identification sequence indicated on message error 
record 549 

INVLIST macro II 
limiting number of messages sent to 273 
locking to application program 241 
maintaining count of outgoing messages for 219 
master 13 
MASTER= operand 13 
nonswitched 

activating 459 
activating terminal entry for entering 468 
preventing transmission to CPU 476 
stopping transmission for 478 

operator control 
command for establishing 463 
specifying secondary in the terminal table 36 

origin 
maintaining count of incoming message segments 

for 219 
maintaining count of incoming messages for 219 
maintaining count of outgoing message segments 

for 219 
primary operator control 

displaying name of 467 
operator awareness message sent to 497 

removing from extended lock mode 314 
secondary operator control 

displaying names of 467 
specifying an application program 47 

slave 13 
specifying incident checkpoint records of option fields 

belonging to 212 
specifying intensive-mode error recording for 496 
specifying logical messages for 35 
suspending transmission to 189, 488 
switched 

retrying to dial 35,292 
station control block dump 518 
station queue, displaying priority level for TSO 646 
statistical data recorder extension for TCAM 495 
statname operand 

MRELEASE macro 431 
TCOPY macro 418 

status analysis 667 
format of logical data using 667 
~pecifying for outgoing messages 657 

status bytes in operator awareness message 497 
status field displayed for a line 475 
status information for debugging 465 
STCB trace table 521 

activating trace 465 
examples of obtaining printed output 577 
specifying number of entries for table 124 

STOP= operand 195, 366 
STOPLINE operator command 486 

considerations for buffered terminals 57 
TSO 647 

STOPLN macro (QT AM) 586 
considerations for buffered terminals 57 

STST A TUS operator command 487 
STX control character 7, 8 

removing from incoming messages 195 
SUBBLCK= operand 267 
sub block 138 

size 33, 38 
subgroups 140 

arrangement 142 
executing by setting switch 173 
functions of 140 
inbuffer 

identifying beginning of 201 
identifying to handle incoming buffers 201 
translating to EBCDIC 213 

inheader 
identifying beginning of 200 
specifying execution of 200 
translating to EBCDIC 214 

in message 
identifying beginning of 202 
required delimiter macro 202 

Index 715 



outbuffer 
identifying to handle outgoing buffer 205 
translating to line code 205 

outgoing 
translating to line code 213 

outheader 
identifying beginning of 204 
translating to line code 213 

outmessage . 
required delimiter macro 206 

restrictions on multiple 171 
subtasks 

keeping record of activation 521 
attached 543 
optional 

attaching checkpoint 499 
attaching COMWRITE 520 
attaching on-line test 531 

required 
attaching operator control 453 

SUSPXMIT operator command 488 
suspending concentrated output 676 

switched line 5 
defining for input or input/output 18 
identifying station for incoming calls 280 
retrying to dial station 35, 398 
use of TERMINAL macro 39 

switches 173 
switch operand 282 

TSO 643 
SYNAD 

exit 412 
input to routine 413 
register contents on entry to 413 
status indicators of routine 414 

SYNAD address 
specifying on input DCB macro 365 
specifying on output DCB macro 369 

SYNADAF 413,414 
format of TCAM/SAM message buffer 414 

SYNAD= operand 
input DCB macro 365 
output DCB macro 369 

SYNADRLS macro 413 
SYSl.LINKLIB (making transient modules 
resident) 551 

SYSl.LOGREC (gaining access to error records on) 498 
SYSCLOSE operator command 489 

closing a concentrated-message network 678 
considerations for buffered terminals 57 
TSO 647 

SYSGEN 540 
SYSINTVL operator command 61-62,490 
system control 148 
system failure 

cold restart following 512 
continuation restart following 513 
restarting from 499 
scanning message queues during restart 505 

example 507 
specifying type of restart for 122 
suggestions for establishing checkpoint 

coordination 447 
system generation considerations 540 
system interval 61-62 

activating 474 
TSO 646 

changing duration of 490 
specifying length 120 

system macros issued in an MH 175 
system preparation 539 
system records of changes in status 504 

tablename operand 215 
TBLKSZ= operand 33 
TCAM/SAM compatibility 445 

use of SAM prefix 386 
TCAM 

closing system 380 
TSO 647 

determining presence in CPU from non-buffered 

716 OS/MFT and OS/MVT TCAM Programmer's Guide 

terminal 421 
machine and device requirements 539 
macro formats 545 

conventions used 545 
macros (TSO) 

changesto 628 
invalid for TSO MH 643 
non-restricted 641 
operand-restricted 642 

making transient modules resident 551 
modules associated with operator commands 552 
multiprocessing 389 
running QT AM application programs 585 
service facilities 453 
specifying during system generation 540 
system preparation 539 

TCAM-dedicated system 629 
TCAM/TSO mixed environment 644 
TCAMON operator command 644, 645 
TCHNG macro 426 

restriction 426 
specifying name of work area containing replacement 

for terminal table entry 427 
specifying password 122,427 
specifying terminal table entry whose contents are to be 

replaced 427 
TCOPY macro 417 

restriction 417 
specifying station whose terminal-table contents are to be 

moved 418 
specifying work area into which terminal table contents are 

to be moved 419 
telecommunications system 

macros used for controlling 148 
specifying line configuration and device 

requirements 540 
telephone number of a station (specifying) 29 
teleprocessing network indentification 
temporary error 496 

counter in terminal-table entry 496 
temporary-error record 496 

access to 498 
intensive-mode recording for 496 

TERM= operand 28 
TSO 632 

terminal characteristics (TSO) 
defining 628 

terminal entry types 18-19 
terminal errors (TSO) 639-640 
TERMINAL macro 25-42 

abnormal termination due to improperly specified message 
queues data set 28 

addressing characters for specifying a component 36 
coding for a component 37-38 
coding for a line 38 
controlling dequeuing for a concentrator 656 
defining a component 37,38 
defining a line entry 38 
delimiting CTB on output by character count 657 
establishing priority levels for concentrator-attached 

terminals 657 
for concentrators and non-concentrators on a multipoint 

line 655 
message concentration 654 
format 26 
multiple macros arranged by relative line number 

(example) 41 
operands 27-36 

specifying a component 37 
options for specifying terminal type 27 
overriding block size with the MSGFORM macro 32 
queuing by concentrator 658 
queuing by groups for concentrated messages 658 
relevant operands when specified for a line 40 
specifying addressing characters 29 
specifying alternate destination 31 

component 36 
specifying block and subblock sizes for a component 

accepting messages in nontransparent mode 38 
specifying block size for outgoing messages 

nontransparent mode 32 
transparent mode 33 



specifying block size of messages in transparent mode 
to a component 38 

specifying buffer size for outgoing messages 31 
specifying data control block name for line group 27 
specifying data for option fields 33 

example 34 
specifying delay between message blocks sent to a 

buffered station 31 
specifying interval between computer-initiated calls to a 

switched station 31 
specifying maximum number of CTBs sent to a 

concentrator 658 
specifying priorities 30 
specifying relative line number 27 
specifying secondary operator control stations 36 
specifying status analysis 657 
specifying subblock size for outgoing messages in 

nontransparent mode 32 
specifying telephone number of a station 29 
specifying terminal table entry for a concentrator 655 
specifying time for computer-initiated calls 30 
specifying type of message queuing 27 
specifying where message queues to be maintained 27 
specifying whether a component is to accept replies to 

operator commands 38 
summary determining use for a line 39 
TERM= operand 28 
TSO 631 
use of relative line number in dialing 28 
using for audio lines 39 

terminal 
checking for malfunction (TSO) 642 
concentrator-attached 

queuing techniques for 658 
defining 5-61 
determining number that are accepting 420 
determining total number on a line 420 
modifying Write operation 293 
recording changes in status 503 
recording status of 503 
specifying type (available options) 28 

handling concentrated messages 659 
TSO 632 

types supported 539 
terminal table 18 

constructing 18 
defining boundaries 19 
defining option fields 21 
DSECT format 417 
dump 518 
macro instructions 

LOGTYPE 51 
OPTION 21 
TERMINAL 25 
TLIST 43 
TPROCESS 45 
TTABLE 19 

reserving space in an option field 21 
specifying data for option fields (example) 49 
specifying last entry in 20 
specifying logging complete messages 517 
specifying secondary operator control stations 36 
types of terminal entry 18 

terminal table entry 
count of start I/O commands 495 
count of temporary errors 496 
examining contents 417 
modifying 426 
specifying for a concentrator 655 
specifying for a concentrator-attached terminal 655 
specifying name for displaying queue control block 425 
specifying name of for replacing contents 427 

termination 
application program 450 
due to not specifying user error-analysis routine 108 
overlaying records on message queues data set 96 
specifying user exit 108 
wrapping nonreusable disk during flush c1osedown 96 

terminology 5 
termname operand 

QCOPY macro 424 
TCHNG macro 426 

temporary I/O error 
intensive-mode recordings 496 
specifying records 469 

TERRSET macro 311 
setting a bit in the message error record 311 
TSO 642 
using ERRORMSG macro with 311 

tete-a-tete interaction (specifying) 196 
text 137 
text buffer 63 
text-only message 137 
text transfer error indicated on message error record 549 
TGOTO macro 665 

multiple MH execution 666 
return codes 665 

THRESH= operand 
FORWARD macro 232 
message queues DCB macro 104 

threshhold indication in message error record 549 
time 

format for inserting in header 224 
logging 515 
recording for message obtained by application 

program 411 
reserving bytes in buffer for 84, 373 
specifying for process entry 47 
specifying whether to be inserted in header 21 

time-of-day for computer-initiated calls 30 
Time Sharing Option (see TSO) 
TIME= operand 224 
timeout exceeded 

indicated on message error record 550 
specifying intensive-mode error recording for 496 

timer feature (TSO) 631 
time-out suppression (TSO) 635 
TLIST macro 43 

defining either distribution list or cascade list 43 
example of extended list of entries 44 
specifying entry for distribution list or cascade list 43 

TO operand 259 
TOPMSG= operand 125 
TOTE 530 

facilities 532 
invalid request indicated on message error record 548 

TP Op code in operator awareness message 498 
TPDATE macro 410 
TPEDIT macro 614 
TPROCESS macro 

checkpoint/restart operands 502 
delimiting a record for the application program 48 
interface between MCP and application program 45 
operands 46 
purging destination queue at restart 47 
QBACK= operand 50 
specifying actual data for option fields 48 

example 49 
specifying alternate destination 47 
specifying application program as secondary station 48 
specifying name of process control block 46 
specifying permissible priority levels for messages on a 

process queue 48 
specifying where application program message queues 

maintained 46 
TPUT macro (TSO) 634 
TRACE= operand 123 
TRANLIST macro (TSO) 637 
TRANS= operand 85 

TSO 636 
transferring data between MCP and application 
program 382 

transient modules (making resident) 551 
translation 186-188 

avoiding 186 
of data in buffers 213 
selective 215 
specifying type 215 
TSO 642 

dynamic 637 
for groups ofIBM 2741s and 1050s 637 

translation tables 187 
formatting 186 
list of TCAM-provided 187 

Index 717 



overriding for a line group 213 
providing 187 
specifying 7 

for line group 85 
user 215 

TSO 
error indicated in message error record 649 
for group of IBM 2741s and 1050s 637 
specifying address in option field 638 
specifying control characters group for 

dynamic translation 638 
specifying for line group 636 
TCAM-provided 637 

transmission 6 
dynamically varying path of message through an 

MH 282 
limiting number of messages to a destination 273 
logical message 152 
maintaining count of messages or message 

segments 219 
specifying continuation after retry exhausted 196 
starting or resuming on lines 484 
stopping for a nonswitched station 478 
stopping for line or line group 486 

TSO 647 
suspending 189 
suspending output to a station 234, 488 

transmission control unit 
examining sense byte for I/O error 491 

transmission priority 55 
efficiency when receive specified 95 
nonswitched contention stations 58 
nonswitched polled stations 55 

Auto Poll 56 
TCAM program poll 56 
using buffering 57 

specifying for line 81 
TSO 635 

switched stations 58 
BSC 598 
non-BSC 59 
TWX 597 

transparent mode 8 
specifying for message transmission 267 

TREXIT= operand 123 
TSINPUT macro (TSO) 636 
TSO 627 

background 628 
bits in message error record 648 
buffer prefix 635,641 
buffer unit (specifying maximum for main-storage 

queuing) 631 
channel program block (specifying number) 630 
checkpomt/ restart 648 
c1osedown 647 
commands 

LOGOFF 644, 645 
LOGON 644, 645 
TCAMON 644,645 

DCB macro (line group) 635 
dedicated system 629 
dedicated terminals 628 
dynamic translation 642 
errors 

indicated in message error record 642, 648 
logical 642 

terminal (handling) 640 
testing I/O at end-of-message 640 

flush c1osedown 647 
foreground 628 
interval (activating) 646 
line group DCB macro 635 
log~ing on 640 
logIcal error indicated in message error record 642 
MCP 

IBM-supplied 628 
message error record 648 

testing at end-of-message 640 
message logging 643 
message queues 630, 631, 632 
messages 

counting 642 

718 OS/MFT and OS/MVT TCAM Programmer's Guide 

displaying number queued 646 
logging 643 

MH 
defining beginning of 639 
specifying for line group 635 
specifying type 629 
specifying whether dedicated to TSO 639 

mixed environment 628, 644 
specifying 629 
non-dedicated terminals 644 

operator control considerations 645 
optional features (defining) 628 
option field 

gaining access to 642 
setting bit in 643 
specifying address of translation table 638 

quick c1osedown 647 
receive priority (specifying) 636 
restart considerations 648 
reverse break feature (specifying) 634 
send priority (specifying) 636 
simulated attention 639,641 
STARTMH macro 

AL TMH= operand 639 
stopping transmission for line or line group 647 
system interval (activating) 646 
TCAM 

3270 device dependent considerations 649 
closing 647 

TCAM macros 
changes to 628 
invalid in TSO MH 644 
non-restricted 641 
operand restricted 642 

TCAM/TSO mixed environment 644 
terminal characteristics (defining) 628 
TERMINAL macro 631 

QBY=T operand 632 
QUEUES=operand 632 

translation 642 
dynamic 637 
for group of IBM 2741s and 1050s 637 

translation table 
error indicated in message error record 649 
for group of IBM 2741s and 1050s 637 
specifying address in option field 638 
specifying control characters group for dynamic 

translation 638 
specifying for line group 636 
TCAM-provided 637 

transmission priority for lines 635 
specifying for lines in a line group 636 

TSO-dedicated system 629 
TSO macros 636 

non-restricted 641 
STARTMH-dependent 641 

TSO Message Handler macros 638 
TSO-only environment 628 
TSO/TCAM mixed environment 628, 644 

TT ABLE macro 20 
OLTERM=operand 20 
specifying length of terminal table name 20 

type length operand 22 
typename operand 246 
TYPE= operand 

QACTION macro 43 
TLIST macro 40 

TYPET ABL macro 313 

undefined error indicated on message error record 549 
undefined-format work unit 388 

input data set 365 
output data set 368 

undefined-length work unit size 368 
unit 

allocation 65-67 
examples 67 

dealiocating from end of buffer 202 
determining number needed 72 
specifying maximum simultaneously used for main-storage 

queuing 119 



specifying number for segments 118 
specifying sizefor buffers 117, 118 
warning when main-storage message queues data 

set nearly full (TSO) 630 
unit exception 

indicated on message error record 549 
specifying intensive-mode error recording for 496 

unit pool 63, 65-67 
UNITSZ= operand 118 
UNLOCK macro 314 

CONNECT= operand 316 
DISABLE= operand 316 
examples 314 
inmessage subgroup considerations 316 
inquiry/response coding considerations 437 
specifying conditional execution 315 
specifying use of EBCDIC blank characters 315 

USASCII code 570 
user code in MH 175 

formula for determining bytes resulting from 176 
user error indicated on message error record 549 
UTERM= operand 37 

variable-format work unit 388 
input data set 364 
output data set 370 

variable processing within MH 172 
variable record delimiter 389 
VERCHK= operand 615 

wait state, application program 405 
WAIT macro for testing BSAM/TCAM completion codes 405 
warm restart 512 

replaced by cold restart due to faulty checkpoint 
records 512 

WATS (arrangement of TCAM lines) 60 
WDC operation 293,295 
WLA function 293 
WLA operand 295 
work area 356, 382 

addressability requirements 176 
contents described in position field 369 
defining 383 
defining optional fields 384 

origin and destination 384 
position field 385 
SAM prefix 386 

dynamic definition of 383 
format of relative positions of optional fields in 387 
guidelines for using position field in 376 
including optional fields when specifying size 

of 364,369 
message handler 

format 247,249 
MHGET macro 247 
MHPUT macro 249 
user specified 247, 249 

moving contents of option fields to 417 
moving data between input and output 384 
optional fields included in specifying record size 364 
origin field in 384 

position field in 385 
format 365, 369 

SAM prefix in 386 
specifying address 

GET macro 396 
READ macro 401 

specifying from which terminal table contents are to be 
moved 427 

specifying initial buffers to handle data from 373 
specifying into which invitation list contents are to be 

moved 422 
specifying into which terminal table contents are to be 

moved 419 
specifying on PUT macro 399 
specifying size 368 
specifying station whose terminal table contents are to be 

moved to 418 
static definition of 383 

work unit 356, 382 
effect of type and format on determining size of 394 
formats 388 

input DCB macro summary 389 
output DCB macro summary 390 

optional fields included in specifying work-unit size 369 
processing 

for a message 390 
for a record 392 

specifying 387 
specifying input data set format and 

characteristics 363 
specifying length including optional fields 

READ macro 402 
WRITE macro 404 

specifying optional fields for 363, 369 
specifying output data set format and 

characteristics 370 
specifying size 368 
types 390 

WRE function 293 
WRE operand 294 
Write-at-Line-Address 293 
WRITE macro 403 

specifying address of data control block 404 
specifying length of work unit plus optional fields 404 
specifying name on data event control block 397 

Write operation 
modifying for terminals with display screens 293 
specifying type for 2265s (Remote) or 2260s 294 
verifying type in effect 294 

WTOR at INTRO execution time 114-115 
WTTONE= operand 125 
XDC function 295 
XDC operand 295 
XLA function 295 
XLA operand 295 
XRE function 295 
XRE operand 295 

example 507 

6-bit Transcode (hexadecimal equivalents) 571 

Index 719 





• 

READER'S COMMENT FORM 

OS/MFT and OS/MVT 
TCAM Programmer's Guide 

• How did you use this publication? 

As a reference source 
As a classroom text 
As .............. . 

o o 
o 

• Based on your own experience, rate this publication ... 

As a reference source: 
Very Good Fair 
Good 

As a text: 
Very Good Fair 
Good 

Poor 

Poor 

Order No. GC30-2024-3 

Very 
Poor 

Very 
Poor 

• What is your occupation? .................................................. . 

• We would appreciate your other comments; please give specific page and line references 
where appropriate. If you wish a reply, be sure to include your name and address . 

• Thank you for your cooperation. No postage necessary if mailed in the U.S.A. 



GC30-2024-3 

YOUR COMMENTS, PLEASE. • • 

Your answers to the questions on the back of this form, together with your comments, 
help us produce better publications for your use. Each reply is carefully reviewed by the 
persons responsible for writing and publishing this material. All comments and sugges­
tions become the property of IBM. 

Please note: Requests for copies of publications and for assistance in using your IBM 
system should be directed to your IBM representative or to the IBM sales office serving 
your locality. 

Fold 

I 
I 
I 
I 

Fold I 
- - - -- - -- - -- .... - - - - - - --- .... -- - - - - - - -- - - -- -- -...J 

BUSINESS REPLY MAIL 
NO POSTAGE STAMP NECESSARY IF MAILED IN u.s. A. 

POSTAGE WILL BE PAID BY ••• 

I BM Corporation 
P. O. Box 12275 
Research Triangle Park 
North Carolina 27709 

Attention: Publications Center, Dept. E01 

FIRST CLASS 
PERMIT NO. 569 
RESEARCH TRIANGLE PARK 
NORTH CAROLINA 

--~------------------------~ 
Fold 

International Bu.lne .. Machin .. Corporation 
Da .. Proc ... lng Dlvlalon 
1133 Wealchealer Avenue, White Plain., New York 10604 
(U.S.A. only) 

IBM World Trade Corporation 
121 United Nation. Plaza, New York, New York 10017 
(lntamatIonel) 

Fold 

(" 
): 
S 
""1: 

a 
(Q .... 
Q) 

3 
3 
m .... 
",' 

Co 
c: 
c: 
m 




