
GC30·2024-O

Systems

.J

.. ~

Systems

GC30·2024'()

IBM System/360
Operating System
Telecommunications
Access Method (TeAM)
Programmer's Guide and
Reference Manual

Program Number 3608 - CO - 548

This book is a reference manual and coding guide for
the programmer who must construct or modify a TCAM
Message Control Program (MCP), or who must write a
TCAM·compatible application program. It explains how to
write a TCAM MCP, how to write a TCAM·compatible
application program, and how to use a variety of auxiliary
service facilities. Also included is information that might be
of use in planning and setting up a teleprocessing system
incorporating TCAM. The reader is expected to be familiar
with the contents of the publication IBM System/360
Operating System Telecommunications Access Method
(TCAM) Concepts and Facilities, Order no. GC30·2022.

Preface The first section of this book, How to Use This Book defines the audience for which this
programmer's guide and reference manual is intended, explains how the book is organized,
and suggests how the reader might best familiarize himself with its contents. The chart
below lists alphabetically the key words that are used throughout the book to refer to other
publications; accompanying the key words are the corresponding title and order number to
which the key words refer.

Key Words Used in
This Publication Title

Assembler IBM System/360 Operating System Assembler Language
Language

Checkpoint/Restart IBM System/360 Operating System Advanced Checkpoint/Restart
Planning Guide Planning Guide

Data Management IBM System/360 Operating System Data Management Services
Services

Job Control IBM System/360 Operating System Job Control Language
Language

Messages and Codes IBM System/360 Operating System Messages and Codes

Operator's Guide IBM System/360 Operating System Operator's Guide

Principles of Operation IBM System/360 Operating System Principles of Operation

Programmer's Guide IBM Systemj360 Operating System Programmer's Guide to
to Debugging Debugging

Supervisor and Data IBM System/360 Operating System Supervisor and Data Management
Management Macro Macro Instructions
Instructions

Supervisor Services IBM System/360 Operating System Supervisor Services

System Generation IBM System/360 Operating System System Generation

TCAM Concepts and IBM System/360 Operating System Telecommunications Access
Facilities Method (TCAM) Concepts and Facilities

TCAMPLM IBM System/360 Operating System Telecommunications Access
Method (TCAM) Program Logic Manual

TOTE and Configuration IBM Diagnostic Program TOTE/Configurator Users' Manual
Reference Manual (Part No. 5172900)

Utilities IBM System/360 Operating System Utilities

First Edition (January 1971)
This publication corresponds to Release 20.0 of IBM Systemj360 Operating System until otherwise
indicated in new editions or Technical Newsletters. Changes are made periodically to the
information herein; before using this publication with IBM systems or equipment, refer to the latest
SRL Newsletter for editions that are applicable and current.

Requests for copies of IBM publications should be made to your IBM representative or to the IBM
branch office serving your locality.

This manual has been prepared by the IBM Systems Development Division, Publications Center,
Department E01, P. O. Box 12275, Research Triangle Park, North Carolina 27709. A form for
reader's comments is provided at the back of this publication. If the form has been removed,
comments may be sent to the above address.

© Copyright International Business Machines Corporation 1971

Order No.

GC28-6514

GC28-6708

GC26-3746

GC28-6539

GC28-663I

GC28-6540

GA22-682I

GC28-6670

GC28-6647

GC28-6646

GC28-6554

GC30-2022

GY30-2029

GC28-6586

Contents

How to Use This Book xi

Writing the Message Control Program 13
What the Message Control Program is . 13
Functions of the MCP 13
User Tasks in Writing the MCP 13

Defining Terminal and Line Control Areas 15
Terminology 15
Line Control 15
Establishing Contact 17

Invitation 18
Constructing the Invitation List . 18

INVUST Macro Instruction. . 19
Nonswitched point-to-point or multipoint lines to stations
using Polling Characters 21

Switched Lines To Terminals using Polling Characters .. 22
Switched Lines to Stations using ID Sequences 22
Switched or Nonswitched Contention Lines to Terminals which
are not assigned ID Sequences 23

Output-only Lines to Stations Having no ID Sequences Assigned
to Them 24

Selection 24
Constructing the Terminal Table 24

TTABlE Macro Instruction. . 25
OPTION Macro Instruction. . 26
TERMINAL Macro Instruction 29

Coding the TERMINAL Macro for a Component . 36
Coding the TERMINAL Macro for a Line 37

TUST Macro Instruction 40
TPROCESS Macro Instruction . 41
LOGTYPE Macro Instruction . . 44

Maintaining Orderly Message Flow 45
Message Priority and Queuing . 46
Transmission Priority 48

Transmission Priority for Nonswitched Polled Stations 48
Transmission Priority for Nonswitched Polled Stations Using
TCAM's Buffering Feature. 49

Transmission Priority for Nonswitched Contention Stations 50
Transmission Priority Switched Stations 50

Calls between the Computer and a Switched Station 51
The System Interval . 53

Defining Buffers. 55
Structure of a Buffer . . . 55
The Buffer Unit Pool . . . 57
Buffer Definition Checklist 59
Design Considerations 61

Size of Buffers . . . 61
Number of Units .. 61
Size of Units 62
Dynamic and Static Buffer Allocation 62
Initial and Maximum Number of Buffers per Line 63
Other Buffer Design Considerations 63

Defining the MCP Data Sets . . 65
Line Group Data Sets 65

Characteristics of a Line Group. 65
Creating a Line Group Data Set 65

Line Group DCB Macro Instruction . 65
DD Statements for a Line Group . . 70

iii

Message Queues Data Sets 72
Disk Queuing 72

Advantages and Disadvantages of Disk Queuing 73
Specifying Channel Program Blocks 74

How to Determine if too Many CPBs were Specified on the CPB =
Operand of the INTRO Macro Instruction 75

How to Determine if too Few CPBs were Specified on the CPB =
Operand of the INTRO Macro Instruction 75

Preformatting DASD Message Queues Data Sets. 75
Using Multiple Arm Support 75
Reusable Disk Queues. 76
Nonreusable Disk Queues 79

Main-storage Queuing 79
Specifying One or More Queuing Methods 81

Message Queues DCB Macro Instruction . 83
DO Statements for Message Queues Data Sets 84

Checkpoint Data Set 85
Checkpoint DCB macro Instruction 85
DO Statement for the Checkpoint Data Set 86

Log Data Sets 87
User ABEND Exits 87

Activating and Deactivating the Message Control Program. 91
Starting and Restarting TCAM . 91
Initialization and Activation . . 91

INTRO Macro Instruction 92
OPEN Macro Instruction. . 101
READY Macro Instruction . 104

Deactivation 105
Types of Closedown. . . . 105
Deactivating a TCAM System without Application Programs . 105
Deactivating a TCAM System with Application Programs . 106
CLOSE Macro Instruction 106

Sample MCP Activation and Deactivation Section . 107

Designing the Message Handler . 109
Message Format 109

The Message Header 110
Structure of the Message Handler . . 111
Selecting Message"handler Functions . 115

Message Editing . 115
Validity Checking . 116
Message Routing . 116
Record Keeping . . 116
Error Handling . . 116
System Control . . 117
Function Modification . 118
Functions Provided by Delimiter Macros . 118

Order of Macro Specification 118
The Scan Pointer 118

Message Flow through a Message Handler . 122
Message Flow within an MH Group. . . 123
Multiple Buffer Header Handling. . . . 124

Variable Processing within a Message Handler. . 129
Conditional Execution of Message Handler Functional Macros . 129
User Code in a Message Handler 130

General Requirements and Restrictions . 1;31
Multiple-buffer Header Considerations . 131
Including an Open Subroutine 132
Including a Closed Subroutine 132
Using LOCOPT to Locate an Option Field . 132
Using SETSCAN to Locate a Header Field . 132
Using MSGTYPE to Locate a Header Field . 134
Using the PARM parameter of the EXEC Job-control Statement . 136
Message Handler Macro Return Codes 136

iv

Message Translation 137
TCAM's Hold/Release Facility. . 139
Design Steps 140
Delimiter Macro Instructions . 141

STARTMH . 142
INHDR .145
INBUF . .146
INMSG . .147
INEND . . 147
OUTHDR .148
OUTBUF . 148
OUTMSG . 149
OUTEND . 149

Functional Macro Instructions . . 150
CANCELMG . . 150
CHECKPT . . 151
CODE. 151
COUNTER. . . 154
CUTOFF .. . 155
DATETIME . . 155
ERRORMSG . . 157
FORWARD . 159
HOLD. . . 162
INITIATE . 163
LOCK. . .165
LOCOPT . 167
LOG .. .167
MSGEDIT . 168
MSGFORM . 179
MSGGEN . .180
MSGLlMIT . 182
MSGTYPE. . 183
ORIGIN. . . 185
PATH. . . .187
PRIORITY. . 190
REDIRECT . 192
SCREEN . . 194
SEQUENCE . 196
SETEOF . 198
SETSCAN . 199
TERRSET . . 202
UNLOCK . .202

Putting the MCP Together . 205
Arranging the Sections of the MCP 205
Assembling, Linkage-editing, and Executing the Message Control Program . 206

Assembling an MCP 206
Linkage-editing an MCP 206
Executing an MCP 206

Starting the MCP by a Catalogued Procedure . 207
Sample MCPs ~................. . 208

Message Switching Between Terminal Types . 208
Inquiry and Rapid Response 213
File Updating with Checkpoint Coordination . . 220

Writing TCAM-Compatible Application Programs . 233
Message Flow to an Application Program 235
Overview of the MCP / Application-program Interface . 235
Defining the Components of the Interface 236

Defining the Application Program Data Sets and the Process Control Block . 237
Input DCB Macro Instruction .•......... . 238
Output DCB Macro Instruction 242
DD Statements for the Input and Output Data Sets . 245
PCB Macro Instruction 245

Defining Buffers for the Application Program 247

v

Defining Application-program Buffers 247
Application-program Buffer Design Considerations . 247

Activating and Deactivating the Application-program Interface . 249
OPEN Macro Instruction for the Application Program . 249
CLOSE Macro Instruction for the Application Program . . . 251
MCPCLOSE Macro Instruction 251

Transferring Data Between an MCP and an Application Program . 252
Defining the Application-program Work Area 253

Static Work-area Definition. 253
Dynamic Work-area Definition 254
Moving Data between Input and Output Work Areas . 254
Defining Optional Fields in the Work Area . 254

Origin and Destination Fields . 255
Position Field 255
SAM Prefix 256

Specifying Application-program Work Units . 257
Work-unit Formats 257
Work-unit Types 259

Processing the Message as a Work Unit . 259
Processing the Record as a Work Unit . 260

Signaling End of File and End of Message . 262
Coding TCAM's Data Transfer Macros . . 263

GET Macro Instruction (QSAM only) . . 264
PUT Macro Instruction (QSAM only) . 265
READ Macro Instruction (BSAM only) . 265
WRITE Macro Instruction (BSAM only) . 267

BSAM/TCAM Completion Codes . 269
CHECK Macro Instruction (BSAM only) . 269
Multiple-wait Capability . 270

Application Program Error Exits . 271
Input to the SYNAD Routine . 272
SYNADAF 273

Network Control Facilities . 273
T~OPY Macro Instruction . 274
ICOPY Macro Instruction . 276
QCOPY Macro Instruction . 280
TCHNG Macro Instruction . 281
ICHNG Macro Instruction . 282
MRELEASE Macro Instruction . 284

TCAM's Message Retrieval Facility . 285
POINT Macro Instruction .. . 285

TCAM's Inquiry/Rapid Response Facility . 286
TCAM/SAM Compatibility 289
Coordinating TCAM Checkpoints of the MCP with OS Checkpoints of the
Application Program . 289

Using the CKREQ Macro Instruction for Coordination . 290
Suggestions for Using CKREQ 291

Using the DCB Exit for Coordination 292
Coordinating MCP and Application-program Restarts . 293

Using TeAM Service Facilities 295
Operator Control 295

Initialization for Operator Control 295
General Format of Operator Commands . 295
Specifying Operator Commands . 297
Entering Operator Commands from an Application Program . 299
Incorrect Messages 299
Operator Commands 300
Checkpointing of Operator Commands . 326

TCAM I/O Error-recovery Procedures . 326
TCAM I/O Error-recording Facility . 327

Kinds of TCAM I/O Error Records . 327
Intensive-mode Error Recording . 328
Operator Awareness Message . 329
Gaining Access to Error Records . 329

vi

Network Reconfiguration
By Operator Commands
By Application Program Macros

TCAM Checkpoint/Restart Facility .
How the TCAM Checkpoint Facility Works

Types of Checkpoint Record
Scanning the Message Queues

How to get the TCAM Checkpoint Facility
Types of TCAM Restart

Using TCAM's Message Logging Facility
Uses of Message Logging
How Message Logging Works
How to Set Up a Message Logging Facility

Debugging Aids
Cross-reference Table
TCAM Line I/O Interrupt Trace Table . . .

Writing on a Data Set for Later Printing
COMWRITE Requirements and Format .

Dispatcher Subtask Trace Table
Buffer Dump
Writing Line Trace, STCB Trace, and Buffers to Disk Data Set
COM EDIT Printing Utility
Message Queues Data Set Dump

On-line Test Function
Advantages of TOTE
Devices Supported
TOTE Facilities
System Requirements

Main-storage Requirements
TOTE Requirements
Coding Requirements . . .
OS/SYSGEN Requirements
JCL Requirements for TOTE/OL Ts

System Preparation
Machine and Device Requirements

Control Units and Terminal Types Supported
Multiprocessing System

System Generation Considerations
Preformatting DASD Message Queues Data Sets

Appendix A: TCAM Macro Formats
Conventions Used

Appendix B: Message Error Record

Appendix C: How to make Transient Checkpoint and Operator Control
Modules Resident

Appendix D: Internal and Transmission Code Charts

Appendix E: Running QTAM Application Programs under TCAM

Appendix F: Summary of Operator Commands Classified by Operation

Appendix G: Device Dependent Considerations
Start/Stop Devices
Binary Synchronous Communication (BSC) Terminals
The TPEDIT Macro Instruction for the IBM 50 Magnetic Data Inscriber

Appendix H: Conserving Main Storage

Glossary

Index ..

.329

.329

.330

.330

.333

.333

.335

.338

.339

.341

.341

.342

.342

.344

.345

.345

.346

.347

.347

.349

.349

.352

.353

.356

.356

.356

.356

.357

.357

~~
.358
.358

.361

.361

.361

.361

.364

.365

.367

.367

.369

.373

.375

.403

.405

.407

.407

.413

.417

.427

.429

.437

vii

Figures

Figure 1. Chart for Deciding Whether a TERMINAL Macro Should be Coded for
a Switched Line 38

Figure 2. Two Buffers Assigned to a Line Group; KEYLEN = 60 and BUFSIZE = 120 56
Figure 3. Unit Allocation when Main-storage Queuing (with or without Backup

on Disk) is Specified 58
Figure 4. Unit Allocation when Disk-only Queuing is Specified 59
Figure 5. 706-byte Data Movement Resulting from Size Disparity between Input

and Output Buffers . 64
Figure 6. Relative Record Numbers of Disk Message Queues Data Set ASSigned

Across Three Volumes 73
Figure 7. Reorganizing a Reusable Data Set 76
Figure 8. Sample MCP Activation and Deactivation Section 108
Figure 9. Sample Format for an Incoming Message 111
Figure 10. Sample Format for an Outgoing Message 111
Figure 11. MH Subgroups and Macros 114
Figure 12. Scan Pointer Movement 119
Figure 13. Message Flow for a Switched Message . 122
Figure 14. Message Flow for a Message that is Processed by an Application

Program . 123
Figure 15. Flow of a Two-segment Message with a Single-buffer Header through

an MH . 125
Figure 16. Flow of a Two-segment Message with a Multiple-buffer Header through

an MH 126
Figure 17. Activation of a Closed, User-written Subroutine 133
Figure 18. Deletion of Data from a Message Segment followed by Contraction of

the Segment; KEYLEN = 60 and BUFSIZE = 120 178
Figure 19. Example of Using the MSGTYPE Macro Instruction 185
Figure 20. Example of Using the PATH Macro Instruction to Vary MH

Processing 189
Figure 21. Example of Using the PRIORITY Macro Instruction 192
Figure 22. Example of Inserting Line Address 196
Figure 23. Sample Message-switching Program (3 parts) . 210
Figure 24. Sample Inquiry/Response Program (6 parts) . . 214
Figure 25. Sample Checkpoint Coordination Program (10 parts) . 222
Figure 26. Interface between the Application Program and the MCP . 237
Figure 27. Relative Positions of Optional Fields in the Work Area .. . 257
Figure 28. Effect of a Work-unit's Type and Format on the Way in which

TCAM Determines its Size 263
Figure 29. Example of Multiple-wait Capability 271
Figure 30. Terminal Table DSECT for Single, Line, and Group Entries . 275
Figure 31. Sample Invitation List Containing Three Entries 277
Figure 32. Example of Using the CKREQ Macro Instruction for Checkpoint

Coordination . 291
Figure 33. Operator Commands Classified by Areas Affected 325
Figure 34. Formulas for Determining the Size of the Checkpoint Data Set (2 parts) . 338
Figure 35. Information Flow for Message Logging 343
Figure 36. Coding Requirements for Using TCAM Debugging Aids . 355
Figure 37. Device Configurations Supported by TCAM (3 parts) . 362
Figure 38. Sample JCL for IEDQXA Utility 365
Figure 39. Example of Using the IEBUPDTE Utility (prior to IPL) for Placing

a List in SYS1.PARMLIB. 373
Figure 40. TCAM Internal and Device Codes (4 parts) . 379
Figure 41. IBM S/360 Internal Code (EBCDIC) . 387
Figure 42. USASCII Code 388
Figure 43. Hexadecimal Equivalents for 6-bit Transcode . 389
Figure 44. Line Code for IBM 1030 Data Collection System . 390
Figure 45. Line Code for IBM 1050 Data Communication System . 391
Figure 46. Line Code for IBM 1060 Data Communication System . 392
Figure 47. Line Codes for IBM 2260 (Remote)/2265 Display Complexes and

IBM 1053 Printer (2 parts) 393

viii

Figure 48. Line Code for IBM 2740 Communication Terminal 395
Figure 49. Hexadecimal Equivalents for IBM 2741 (BCD) Communication Terminal . 396
Figure 50. Line Code (EBCD) for IBM 2741 Communication Terminal 397
Figure 51. Line Code (Correspondence) for IBM 2741 Communication Terminal . 398
Figure 52. Line Code for AT & T 83B3 and WU 115A Terminals . 399
Figure 53. Line Codes for AT & T TWX Terminals . 400
Figure 54. Line Code for IBM World Trade Telegraph ITA2 401
Figure 55. Line Code for IBM World Trade Telegraph ZSC3 . 402
Figure 56. IBM 50 MOl Control Codes• • 422

IX

x

Macro Directory
CANCELMG-150
CHECK-269
CHECKPT-151
CKREQ-290
CLOSE

Application Program-251
MCP-106

CODE-151
COUNTER-154
CUTOFF-155
DATETlME-155
DCB

Checkpoint-85
Input-238
Line Group-65
Log-87
Message Queues-83
Output-242

ERRORMSG-157
FORWARD-159
GET-264
HOLD-162
ICHNG-282
ICOPY-276
INBUF-146
INEND-147
INHDR-145
INITIATE-163
INMSG-147
.INTRO-92
INVLlST-19
LOCK-165
LOCOPT-167
LOG-167
LOGTYPE-44
MCPCLOSE-251
MRELEASE-284
MSGEDIT-168

Operator Command Directory
ACTVATED-300
ACTVBOTH-300
AUTOSTOP-301
AUTOSTRT-302
CPRIOPCL-303
DATOPFLD-304
DEBUG-305
DPRIOPCL-307
DSECOPCL-307
ENTERING-308
ERRECORD-308
GOTRACE-310
INACTVTD-311
INTERVAL-311
INTRCEPT -312
LNSTATUS-312

MSGFORM-179
MSGGEN-180
MSGLlMIT-182
MSGTYPE-183
OPEN

Application Program-249
MCP-101

OPTlON-26
ORIGIN-185
OUTBUF-148
OUTEND-149
OUTHDR-148
OUTMSG-149
PATH-187
PCB-245
POINT-285
PRIORITY-190
PUT-265
QCOPY-280
QSTART-403
READ-265
READY-I04
REDIRECT-192
SCREEN-194
SEQUENCE-196
SETEOF-198
SETSCAN-199
STARTMH-142
TCHNG-281
TCOPY-274
TERMINAL-29
TERRSET-202
TLlST-40
TPEDIT-417
TPROCESS-41
TTABLE-25
UNLOCK-202
WRITE-267

NOENTRNG-313
NOTRACE-314
NOTRAFIC-315
OPTFIELD-316
POLLDLAY-317
QSTATUS-317
RESMXMIT-318
RLNSTATN-319
STARTLlNE-319
STA TDISP-320
STOPLlNE-321
STSTATUS-322
SUSPXMIT-323
SYSCLOSE-324
SYSINTVL-324

How To Use This Book

This book is a reference manual and coding guide for the programmer who must
construct or modify a TCAM Message Control Program, or who must write a TCAM
compatible application program. The book assumes familiarity with the overall concepts
and structure of TCAM; a good way to achieve this familiarity is to read the TCAM
Concepts and Facilities publication.

The first seven chapters of the book are concerned with tasks you will encounter in
constructing a TCAM Message Control Program (MCP)-such tasks as defining buffers,
defining data sets, activating and deactivating an MCP, and actually putting an MCP
together. The eighth chapter tells how to make your application programs compatible
with a TCAM MCP. Following this is a chapter telling how to use auxiliary services pro
vided by TCAM, such as the checkpoint/restart facility, the operator control capability,
and the on-line test function. The final chapter contains information that might be useful
in planning and setting up an actual teleprocessing system incorporating TCAM-including
TCAM's machine and device requirements, a list of stations supported by TCAM, system
generation considerations unique to TCAM, and directions for pre formatting TCAM data
sets residing on disk.

Several appendices containing special, helpful information for the system programmer are
located in the back of this publication. They include macro instruction formats, trans
mission code charts, and aids for conversion from QT AM to TCAM. Also of particular
interest to the system programmer is the appendix concerning device dependent consid
erations, which should be read before an MCP is coded. Throughout this publication,
wherever a particular device dependency would appear, a reference is made to this appen
dix instead of listing the individual consideration.

As a first step in familiarizing yourself with this book, look over the table of contents.
The book is organized around user tasks, rather than around macros. In defining buffers
or terminal- and line-control areas, you must code operands of several macros. If the book
were organized around the macros, you would have to look at each operand of each
macro to determine which operands pertain to buffer definition, which to terminal- and
line-control-area definition, which to incorporating a checkpoint facility, etc. Because the
book is organized around tasks, rather than macros, you are saved much of this work. For
example, the chapter Defining Buffers contains a checklist of those TCAM macro
operands having to do with buffer definition. One of the macros mentioned in this check
list happens to be located in the chapter Activating and Deactivating the Message Control
Program, another is in the chapter Defining the MCP Data Sets, a third in the chapter
Defining Terminal and Line Control Areas. By discussing together those operands having
to do with buffers in a section titled Defining Buffers, the book saves you the trouble of
having to locate these operands yourself when it comes time to design and specify your
buffers.

In addition, the task-oriented organization facilitates retrieval of information; to locate
information on TCAM's reusable disk queuing scheme you need only relate reusable disk
queuing to the task of defining the MCP data sets and look in the table of contents under
the chapter-heading Defining the MCP Data Sets. Similarly, to locate information on
TCAM's checkpoint facility, you need only remember that this is a service facility and
look under the chapter-heading Using TCAM Service Facilities. Of course, this method
of retrieving information by relating it to tasks will work only if you are aware of the
tasks we discuss. Each chapter heading shown in the table of contents is the name of
one such task.

xi

What the Message Control
Program Is

Functions of the MCP

User Tasks in Writing the
MCP

Writing the Message Control Program

The Message Control Program (MCP) is a set of routines that identify the teleprocessing
network to the IBM System/360 operating system, establish line control required for the
various kinds of station and modes of connection, and control the handling and routing
of messages in accordance with the user's requirements. Every teleprocessing system
operated under TCAM requires one MCP.

The MCP serves as an intermediary between the remote stations, and between a remote
station and an application program. Device-dependent input/output operations are per
formed by TCAM routines in the MCP, based on station and line configurations of the
system as specified in the operands of TCAM macro instructions in the MCP.

An MCP is coded using a group of TCAM macro instructions. Coding requirements and
restrictions for a TCAM macro are identical to those for any other assembler language
macro instruction. Assembler language conventions for coding continuations, comments,
symbols, and the length, number and format of operands apply to all TCAM macros.

Depending on the requirements of the user, the TCAM MCP might perform any of the
following specific functions:

• Enable and disable communication lines.
• Invite terminals to transmit messages.
• Receive messages from terminals.
• Dynamically assign buffers to incoming messages.
• Handle messages on the basis of user-specified priorities.
• Perform message-editing functions for incoming messages. Among such functions are

the following: translating from the transmission code to EBCDIC code; deleting line
control characters; inserting time-received and date-received information in the
message header; recording the message on a secondary storage medium (logging);
inserting or removing user-specified data in the header; maintaining a count of the
number of messages received from each station.

• Determine the appropriate destination queue for a message and route the message to
that queue.

• Queue the message on the appropriate destination queue.
• Place response messages generated by application programs on queues for subsequent

transmission.
• Retrieve messages from destination queues and prepare them for transmission to

stations.
• Perform message-editing functions for outgoing messages. Among such functions are

the following: placing time-sent and date-sent information in the message header;
placing an output sequence number in the header; inserting or removing user-specified
data in the header; logging the outgoing message on a secondary storage device; main
taining a count of the number of messages sent to each terminal; inserting line-control
characters; translating the message from EBCDIC code to the appropriate transmission
code.

• Take periodic checkpoints of the system.
• Provide operator-to-system communications through system control terminals.
• Initiate corrective action when an error or unusual condition is detected.
• Cancel incoming messages containing errors.
• Reroute messages with erroneous header information to a special queue.
• Transmit error messages.

As a system programmer concerned with writing a Message Control Program, you will be
confronted with five basic tasks:

l. defining the various terminal and line control areas used by the MCP;
2. defining the buffers used by the MCP for handling, queuing and transferring message

segments between communication lines and queuing devices;
3. defining the data sets referred to by the MCP;
4. providing for the activation and deactivation of the MCP data sets;

Writing the MCP 13

14

s. defining the Message Handlers, the sets of routines that examine and process control
information in message headers, prepare message segments for forwarding to their
destination, and route messages to their proper destinations.

In the next five chapters, we shall consider each of these tasks in detail.

Terminology

Line Control

Defining Terminal and Line Control Areas

In constructing the Message Control Program, the user must provide control information
that identifies the remote stations, specifies their characteristics to the system, and tells
how they are to be handled by TCAM. This chapter describes how this information is
specified.

In the following discussion, the word computer refers to the central computer in the
TCAM system; this is the computer that contains the Message Control Program. Remote
terminals, as well as remote computers, are referred to as stations.

A nonswitched line (also known as a leased or dedicated line) is one over which con
nections between the computer and remote stations are continuously established. A
switched line (also known as a dial line) is one over which a direct physical connection
between computer and remote station must be established by dialing for data trans
mission to occur.

A point-to-point line connects a single remote station to the computer. Switched lines are
considered to be point-to-point. A multipoint line connects two or more stations to the
computer. For lines to Binary Synchronous (BSC) stations, a line to one station is
considered to be multipoint if multipoint BSC data-link control is used on the line.

A contention line is one over which the computer and a station may vie for use of the
line. Either the computer or a station may "seize" the line, thereby preventing its use by
another device on the line until after the device that gained control of the line has trans
mitted its messages and relinquished control. All TCAM-supported stations not assigned
polling or addressing characters, except BSC dial lines, are considered to be contention
stations. A non-contention line is one for which the computer, using certain user-specified
information, determines which station is permitted to enter or accept messages at any
particular time.

The computer sends a message to a station and receives a message from a station; sending
and receiving are functions of the computer.

A station enters a message to be transmitted to the computer and accepts a message
transmitted to it from the computer; entering and accepting are functions of a station.

Just as a computing system, with its variety of peripheral input/output equipment,
requires some means to coordinate the functioning of the various parts, the variety of I/O
equipment comprising a teleprocessing system requires a discipline to effectively manage
the flow of message traffic. A significant difference should be noted, however. In a con
ventional computing system, the various I/O devices are at the service of the programmer;
the requirements of his program and the characteristics of the data to be processed largely
determine which input and output devices are to be activated and when. Moreover, the
I/O devices are within reach of the computer operator; he can intervene when a device
malfunctions to correct the condition or to assign a different device. In a teleprocessing
system, on the other hand, the central computer receives data at random from remote
stations, and the operator at the central computer cannot exercise any direct control over
remote stations. He cannot, for example, correct a malfunctioning device at a remote
station.

A further distinction between a computing system and a teleprocessing system lies in the
handling of errors in data. With current techniques for transmitting data over long dis
tances, errors can be introduced into message data by unavoidable transient line condi
tions such as crosstalk and lightning strikes. Transmission errors occur much less often in
a computing system. A discipline for a teleprocessing system must accommodate the
facility to detect transmission errors and, when possible, to correct them (as by retrans
mitting the message containing the errors). If the error cannot be recovered from, its
occurrence must be signaled to the user program so that appropriate action can be taken.

The scheme of operating procedures and signals by which a teleprocessing system is
controlled is called line control (for binary synchronous communications, the term data
link control is often used). A line control scheme must consider the functional character
istics and capabilities of the equipment and communication lines comprising the system,

Defining Terminal and Line Control Areas 15

16

as well as the operational requirements of the system. Some specific factors that line
control must consider are: How is contact to be established between a sending and a
receiving station? How is a message to be directed to a specific station on a multistation
line? What if two stations try to send at the same time? What should be done if a station
fails to respond to a message?

Line control can be classified in two ways. The first way is by the transmission technique
(start-stop or binary synchronous) used for the line under consideration. With each of
these techniques is associated a set of control characters and rules for their use to effect
the needed functions. Some of the control characters are used for both start-stop and
BSC transmission, while others are peculiar to one or the other of the transmission
techniques. For a discussion of these transmission techniques, see the TCAM Concepts
and Facilities publication.

The second way in which line contiol can be classified is by the communication line
configuration with which it is used. For example, line control for a switched line differs
from that for a nonswitched line in the way in which initial contact is made.

While the general capabilities and functions of a given line control scheme are identified
in terms of transmission technique and line configuration, individual variations in capability
and function arise from differences in the kind of stations to be controlled, and by the
presence or absence in the stations of certain features. For example, a given line control
scheme may include the control characters needed to indicate occurrence of a trans
mission error and to request automatic retransmission, but some types of station equip
ment using that line control scheme may not be capable of error checking or automatic
retransmission. Generally speaking, all stations connected to a given line must be designed
to use the same line control scheme, and where a certain capability is provided by some
stations but not by others, the capability cannot be used.

It is not necessary for the TCAM programmer to specify the line control scheme to be
used for a given line; this information is provided implicitly at system generation time,
and at assembly time in the DCB macro instruction for the line group of which the given
line is a member, and in the TERMINAL macro instructions for the stations on the line.
The programmer must, however, have a general understanding of line control concepts to
correctly structure that portion of his program involved in message transmission, and to
decide intelligently how to deal with line-control characters in his message.

For start-stop stations, the line-control characters recognized by TCAM are EOA and
EOB. For BSC stations, the line-control characters recognized by TeAM are STX, ETB
and ETX. TCAM removes all of these line-control characters except the EOT from
incoming messages if the LC= operand of the STARTMH macro is coded LC=OUT, and
leaves them in incoming messages if the LC= operand is coded LC=IN (except that line
control characters are always removed from incoming messages in transparent mode).
TCAM inserts line-control characters into outgoing messages if the MSGFORM macro is
coded in the outheader subgroup of the Message Handler handling the outgoing message.

If the station that enters the message and the stations that are to accept it are either all
similar start-stop or all BSC, and if the user does not wish to change the size of physical
blocks of data in the message (if the message is divided into such blocks by EOB or ETB
line-control characters), then line-control characters may be left in the message. If the
originating and destination stations use different line codes, then the CODE macro must
be issued at appropriate places in the MH so that TCAM can translate the message from
the line code for the originating station to EBCDIC, then to the line code for the destina
tion station. TCAM's translation tables are set up so that line-control characters for an
originating station using one line code are translated into satisfactory characters in the
line code for the destination station, provided that the originating station and the destina
tion station are either both similar start-stop or both BSC.

Line control may be left in a message that is processed by a TCAM application program;
of course, the user code in the application program will have to take account of line
control characters if they are left in the message.

For a message sent between a start-stop and a BSC station, whether directly or via ail
application program, the conversion of line-control characters by TCAM's translation
tables is less likely to be satisfactory. Figure 40 in Appendix D is a chart showing the
line-code equivalents of EBCDIC graphic and control characters for each station sup-

Establishing Contact

ported by TCAM. This chart may be used to determine the character to which TCAM's
translation tables will translate an incoming character. For example, an incoming ETB
character from a BSC station using EBCDIC line code, if left in the message, will be
translated to an EOB character if TCAM's 1050 translation table is used to translate the
message from EBCDIC to 1050 line code. (The translation table to be utilized by TCAM
is specified by means of the TRANS= operand of the line group DCB macro, while the
CODE macro causes translation to be performed and may be used to override the trans
lation table specified in the DCB.)

If the user switching messages between stations having different line codes is satisfied
with the equivalent characters provided by TCAM's translation tables, and if he is satis
fied with the size of the physical blocks (if any) in his message, he may leave line-control
characters in his message; otherwise, he should remove line-control characters from the
incoming message by specifying LC=OUT in his STARTMH macro, and insert appropriate
line-control characters in his outgoing message by coding a MSGFORM macro in the
outgoing group of the Message Handler handling the message.

Operands of MSGFORM permit the user to specify fixed outgoing blocking factors, some
of which may be overridden on a terminal-by-terminal basis. The user who wishes to
specify physical blocks of data that differ in length within the same message may do so
by inserting the appropriate line-control characters in his outgoing message by means of
the MSGEDIT macro.

TCAM does not consider the BSC ITB control character to be a line-control character,
and does not remove it from incoming messages when LC=OUT is coded in the STARTMH
macro. However, the MSGEDIT macro may be used to remove and insert ITB characters,
and the BLOCK= operand of the MSGFORM macro may be used to specify a fixed
interval at which ITB characters are to be inserted by TCAM into outgoing messages.

For binary synchronous (BSC) stations, another transmission variable involves the treat
ment of line-control characters in a message. BSC messages may be transmitted in trans
parent mode or in nontransparent mode.

The transparent mode is a type of BSC transmission in which message segments may
include certain normally restricted data-link control characters, which are transmitted as
ordinary data and not as effective control characters; the only effective data-link control
characters transmitted when a message is in transparent mode are those preceded by a
DLE data-link character. Transparent mode is useful in transmitting messages containing
binary data, fixed- and floating-point data, packed decimal digits, source programs, and
object programs, because with such messages the binary structure of a character may be
the same as that for a data-link control character.

When a message in transparent mode arrives at the computer, TCAM automatically
removes the two initial line-control characters and all effective ETB and ETX control
characters. All DLE STX sequences are also removed, except those immediately following
an ITB. These characters are removed whether or not LC=OUT is coded in the STARTMH
macro. If the user wishes to place a message in transparent mode before sending it to a
BSC station, he issues a MSGFORM macro specifying SENDTRP=YES in the outheader
subgroup handling messages for that station.

In non transparent mode, all line-control characters are treated as such, and line control is
handled as it is for start-stop stations.

In deciding whether to remove and insert line-control characters, and whether messages to
BSC stations are to be in transparent mode, the TCAM programmer is concerned with line
control at the character level. On a more general basis, he must make decisions regarding
those line-control functions used by TCAM to establish contact between the computer
and remote stations, and those functions used to maintain an orderly flow of message
traffic. The rest of this chapter contains information that will help him to make and to
implement these decisions.

With TCAM, contact for the purpose of message transmission may be established in
several ways, depending upon the line configuration and the stations involved. Contact is
always established under the control of the central computer, which performs (in the
channel) a number of set-up or preparatory operations, which are followed by either a
Read or a Write operation on the line (except when the set-up operations determine that

Defining Terminal and Line Control Areas 17

Invitation

Constructing the Invitation List

18

the remote station is not free to enter or accept data, in which case no message trans
mission occurs).

In this publication, when contact is established for the purpose of receiving data from a
station, the process is called invitation; when contact precedes the sending of data to a
station, the process of establishing contact is called selection. Selection is performed
when the central computer has a message to send to a station; invitation is performed to
give a station the opp'ortunity to enter a message if it has one ready (in some cases of
invitation, the station initiates contact with the computer to enter a message and the
computer completes the invitation process).

There are two forms of invitation, that involving contention (with or without identifi
cation sequence exchange) and that involving polling.

In a TeAM system either the computer or a station on a point-to-point contention line
can bid for use of the line so that it can send a message to another device. In some con
figurations, it is possible for both computer and station to simultaneously bid for the line;
when this happens, the computer and station are said to contend with each other (hence
the name contention line).

For contention-type stations, invitation by TeAM means that TeAM gives the station an
opportunity to enter data, that is, TeAM "listens" on the line for a signal from the
station indicating that the station wishes to enter a message.

The alternative to the contention form of invitation involves a system in which the
central computer periodically examines each active entry in an invitation list (discussed
below) of remote stations, and invites each station to enter any input messages it has
ready. Each station in the list has a unique identifier, usually consisting of one or two
characters which cause that station, and no other, to respond. The process of contacting
each remote station in this manner is called polling, and the station identifiers are called
polling characters. Often, the first polling character identifies the station and the second
identifies a particular component of the station.

For polled nonswitched lines, TeAM commences invitation by polling the first station
listed in the invitation list for the line. (If the line is point-to-point, the first will be the
only station on it, and the invitation list for the line need contain only one entry.) TeAM
uses polling characters unique to each station to ask each if it has a message to send. If
the response is negative, or if there is no response (i.e., if the station is down), the polling
characters for the next station listed are sent; this process is repeated until a station
responds positively by entering a message. Such a station is permitted to enter any
messages it may have ready for the computer and may be sent any messages that are
queued for it (see Transmission Priority in this chapter for a discussion of when sending
to a station may occur relative to receiving). After all messages are entered, the computer
interrogates the next station in the invitation list. After all the active stations in an invita
tion list for a given polled line have been invited to enter a message, a delay equal to the
number of seconds specified in the INTVL= operand of the DeB macro for the line group
may be observed to allow for sending before polling is restarted at the beginning of the
list; if this operand is omitted, no delay occurs. The polling interval reduces unproductive
polling on lines that are not used continually.

For nonswitched polled lines, the computer initiates contact with the stations. However,
for switched lines the station may initiate the contact by successfully dialing the
computer. The polling function in this case consists only of sending the polling characters
to the station that initiates the contact. The station responds by entering one or more
messages. The computer sends the polling characters after each message is received.

It is possible for the computer to dial some types of polled stations on switched lines. The
user may specify computer-initiated contact by coding certain operands of the
TERMINAL macro, discussed below. In this case, the polling characters for the station
are sent once contact has been established and all messages queued for the station have
been transmitted.

A TeAM system maintains control of invitation by means of an invitation list for each
line. An invitation list is created by means of an INVLlST macro instruction.

INVLlST Macro Instruction

symbol

ORDER= (entry, •••)

EOT= hexchars

The INVLlST macro

• generates the invitation list for a line;
• specifies active and inactive invitation list entries;
• is required for each line in the system (though the same INVLIST macro may be

sufficient for more than one output-only line);
• is specified following the macros defining the terminal table.

One INVLlST macro must be issued for each line in the system, with the exception of
output-only lines to stations that do not use invitation sequences; a single INVLIST
macro is sufficient for all such output-only lines. The names of all INVLIST macros for
the lines in a line group must be specified, by ascending relative line number, in the
INVLIST= operand of the DCB macro for the line group.

For each station on a line, the INVLlST macro creates an invitation list entry that con
tains the invitation characters for the station (the polling characters for polled stations, or
the identification sequence assigned to TWX, World Trade, and switched BSC stations
using such a sequence). See Appendix G. Device Dependent Considerations, for particular
invitation list specifications for the:

• 2260 Display Stations, both local and remote;
• 2740 Communications Terminal with the Station Control or Station Control and

Checking feature;
• BSC terminals;
• 2740 Communications Terminal with the Transmit Control or Transmit Control and

Checking feature;
• TWX terminals;
• 7770 Audio Response Unit, Model 3.

No invitation characters are present in entries for contention terminals not assigned
identification sequences.

The INVLIST macro has the following format:

Name Operation Operand

symbol INVLlST ORDER= (entry, ...)[,EOT=hexchars] [,CPUID=addr]

Function: Specifies the name of the macro and of the invitation list for the line.
Default: None. This name must be specified.
Format: Must conform to the rules for assembler language symbols (see the symbol entry
in the Glossary).
Notes: This name must be the same as a name specified by the INVLIST= operand of the
DCB macro for the line group containing this line.

Function: Specifies the invitation list entries for the line.
Default: None. For all output-only lines to stations having no ID sequence assigned to
them, specification optional. For all other cases, this operand must be specified.
Format: The exact manner in which each entry is coded is described below. A maximum
of 200 entries may be coded.
Notes: For polled lines, there must be at least one entry for each station that can enter
messages on the line. Entries are specified iu the order in which the stations are to be
invited to send messages.

Function: Specifies the EOT line-control character for the stations on this line.
Default: None. For lines to multipoint BSC stations, this operand must be specified. For
all other cases, this operand must not be specified.
Format: A single hexadecimal character, unframed, in the transmission-code
representation.
Notes: Appropriate EOT characters are as follows:

• for EBCDIC: 37
• for ASCII: 04
• for 6-bit Transcode: IE

Defining Terminal and Line Control Areas 19

CPUID=addr

20

Example:
For a line to multipoint BSC stations using ASCII as their transmission code, this operand
would be coded as follows:

EOT=04

where 04 is the ASCII transmission code representation of the EOT control character, in
hexadecimal notation.

Function: Specifies the name of a field containing the ID sequence assigned to the
computer.
Default: None. For switched lines to stations using ID sequences, when the computer is
expected to exchange ID sequences with stations on the line when calls are made, this
operand must be specified. For all other cases, specification optional.
Format: Must conform to the rules for assembler language symbols.
Notes: The field named by addr should consist of a length byte, specifying in binary
form the number of characters in the computer ID sequence, followed by the ID se
quence itself in line code. For more information on ID sequences, see Switched Lines
to Stations Using ID Sequences below. This operand also specifies the invitation mes
sage for adio terminals.

Example:
For a switched line to stations using ID sequences and EBCDIC line code, this operand
might be coded as follows:

CPUID=CPUNAME

Somewhere within the same area of addressability in the MCP the following field might
be dermed:

CPUNAME DC X '04'
DC X'D5D6D3CI'

Here, X'04' is the hexadecimal number of bytes in the rest of the field, while
X'D5D6D3C I' is the EBCDIC character sequence NOLA in hexadecimal notation.

Each entry specified as a sub operand of the ORDER= operand consists of a station or line
name, an indicator that determines whether the station represented by the entry is ini
tially capable of entering messages, and a sequence of invitation characters.

The station name must be the name of the TERMINAL macro for the station being
entered in the list.

The indicators to distinguish active from inactive entries are as follows:

+ indicates that the station represented by the entry is initially activated for entering
messages.

- indicates that the station represented by the entry is not initially activated for entering
messages.

Entries may be activated or deactivated for entering, accepting or both, by means of
various operator commands or by an ICHNG macro issued in an application program.
When polling is used as the method of invitation, only stations that are activated for
entering are polled.

Following the indicator in an entry are the invitation characters for the station. These will
be either polling characters or an identification sequence. Invitation characters are gen
erally assigned to a station when it is installed. For information on whether a particular
station can be assigned identification or polling characters, consult the hardware manual
for that station. Invitation characters are specified in transmission-code representations,
converted to hexadecimal notation. (For conversion tables, see Appendix G). Each group
of invitation characters in a list must be of the same length.

An invitation list entry might be coded as follows:

NYC+E40D

Here NYC is the name of an IBM 1050 terminal in New York City, + indicates that this
entry is active for entering messages, and E40D is the IBM 1050 transmission code
representation of the polling characters B6 in hexadecimal notation.

NOTE: Because the operand field of a macro is limited to 255 characters, TCAM pro
vides a facility to specify additional INVLIST entries if necessary. A comma placed as the
last character of the last entry field; i.e.,

ORDER= (entry,entry, ... entry,)

indicates a continuation of the macro. The next source statement would then be coded

INVLlST ORDER= (entry,entry, ...)

There is no limit (other than the maximum of 200 entries that may be specified) on the
number of continuation statements used.

The exact manner in which the INVLlST macro is coded depends upon the line con
figuration and upon station features. The following paragraphs describe the possible ways
in which INVLlST may be coded.

Nonswitched point-to-point or multipoint lines to stations using polling characters
Issue one INVLlST macro for each such line, and code at least one entry for each station
(active and inactive) on the line. Each entry should include the terminal name, the activej
inactive-entry indicator, and the polling characters assigned to the terminal. If a terminal
is to be polled more than once in one pass through the invitation list, specify more than
one entry for this terminal-the terminal will be polled once for each active entry speci
fied. To poll a specific component of a terminal, specify the second polling character,
which identifies that component.

Example 1:
The following INVLlST macro creates the required invitation list for a nonswitched
multipoint line having three IBM 1050s as terminals.

Name Operation Operands

LIST! INVLIST ORDER= (NYC+E40D,BOS+E20D,NYC+E40D,
PHI-E715)

TCAM uses the invitation list created by this macro to poll the IBM 1050 terminals
located in New York City (NYC), Boston (BOS), and (again) New York City, in that
order. The New York City terminal is polled twice as often as the Boston terminal. The
Philadelphia terminal (PHI) is inactive until activated by the operator control facility or
by an ICHNG macro issued in an application program. E40D, E20D, and E715 are the
IBM 1050 transmission code representations of the polling characters B6, A6, and CO,
respectively, in hexadecimal notation. + means the terminal is initially active; - means
the terminal is initially inactive.

Example 2:
The following INVLlST macro creates the invitation list for a nonswitched multipoint
line having one BSC IBM 2780 and one BSC IBM 1130, using the Auto Poll hardware
feature.

Name Operation Operands

LlST2 INVLIST ORDER= (BAL+C2F62D,DET+32C42D),EOT=37

TCAM uses the invitation list created by this macro to autopoll an IBM 2780 located in
Baltimore (BAL) and an IBM 1130 located in Detroit (DET), in that order. The trans
mission code for the terminals being au top oiled is EBCDIC; the C2F6 and C4 are the
hexadecimal-notation form of the EBCDIC representation of the polling characters B6
and D, respectively. The 2D ending each entry is the hexadecimal-notation form of the
EBCDIC representation of the ENQ line-control character, which must be included with
all BSC polling sequences. The "32" in the Detroit entry is the hexadecimal-notation
form of the EBCDIC SYN character, used to pad the DET polling sequence to the length

Defining Terminal and line Control Areas 21

22

of the BAL sequence. The EOT= operand presents the hexadecimal form of the EBCDIC
EOT character; it must follow all entries in an INVLIST macro for autopolled terminals
using EBCDIC transmission code.

Switched lines to terminals using polling characters
Issue one INVLIST macro for each such line. Polling characters for all polled terminals
assigned to a switched line (by means of each terminal's TERMINAL macro, described
below) must be identical. Since all terminals assigned to the same line have the same
polling characters, it is necessary to code only one representative entry as the operand of
the INVLIST macro for a line; this entry names anyone of the terminals assigned to the
line, and gives the polling characters for all terminals assigned to the line. If a TERMINAL
macro with the operand UTERM=YES is issued for the line, code the name of that
TERMINAL macro, rather than the name of a terminal, in the representative entry.

Example:
The following INVLIST macro creates the invitation list for a switched line having three
polled IBM 1050 terminals (NYC, BOS, and PHI) assigned to it.

Name Operation Operand

LIST3 INVLIST ORDER=(NYC+E40D)

Whenever one of the three terminals calls in (or is called), TCAM uses the polling char
acters represented in hexadecimal notation by E40D to invite it to enter a message.
E40D is the IBM 1050 transmission code representation of the polling characters B6, in
hexadecimal notation.

Note that only one of the three terminals is used to create the entry in the invitation list.
If this entry were inactive (i.e., if - rather than + were coded), none of the three
terminals assigned to the line could enter messages.

Switched lines to stations using I D sequences
Issue one INVLIST macro for each such line. Code one entry for each ID sequence
assigned to one or more stations on the line, and code the CPUID= operand if the com
puter is assigned an ID sequence. Each ID sequence is entered in its transmission code
representation, converted to hexadecimal notation. No framing characters or quotes are
used.

If each station assigned to a switched line has its own unique ID sequence, then one entry
is coded for each station. Each entry consists of the station name, the aetive/
inactive-entry indicator, and the ID sequence assigned to the station. (See Example 1
below.)

If two or more stations assigned to a switched line share the same ID sequence, then one
entry is coded for each different ID sequence assigned to a station or stations on the line.
If a TERMINAL macro specifying UTERM=YES is issued for the line, then each entry
consists of the name of the TERMINAL macro, the active/inactive-entry indicator, and an '
ID sequence. If no such TERMINAL macro is issued, then each entry consists of the
name of a representative station using the ID sequence mentioned in this entry, the
active/inactive-entry indicator, and an ID sequence. (See Example 2 below. For guidance
on when to code a TERMINAL macro using UTERM=YES, see the discussion of the
TERMINAL macro.)

NOTE: If a switched station calls in and enters an ID sequence, TCAM uses the ID
sequence to establish the origin of messages entered by the station. If a switched station
assigned a non-unique ID sequence and represented by an invitation-list entry specifying
the name of a TERMINAL macro coded for a line calls in and fails to identify itself by
means of an origin field in a message header, the station will not receive any messages
during the call (because TCAM does not know whose messages to send unless there are
messages queued for the line). If a switched station assigned a non-unique ID sequence
and represented by an invitation-list entry specifying the name of a representative station
using the ID sequence calls in and fails to identify itself by means of an origin field in a
message header, during the call the station receives those messages queued for the station
named in the invitation-list entry, even ifthe calling station and the station named in the
invitation-list entry are two different stations. '

If a switched station calis in and enters an ID sequence, TCAM searches for the ID
sequence in the invitation list associated with the line on which the station called in. If
the ID sequence is not found in an entry in the invitation list for this line, TCAM con
ducts a search of the invitation lists for any lines in this line group which have a higher
relative line number than that assigned to the line over which the station called in. TCAM
searches these invitation lists according to ascending relative line number until either the
ID sequence is found in a list or the invitation list for the highest-numbered line in the
line group has been searched. If the ID sequence is found, TCAM assumes that the station
associated with that ID sequence in the invitation list is the calling station, and maintains
the connection. If the ID sequence is not found, TCAM breaks the connection with the
calling station, thereby freeing the line.

Example 1:
The following INVLlST macro creates the invitation list for a switched line having three
IBM 2770 terminals (named NYC, BOS, PHI) assigned to it. Each of these terminals is
assigned a unique ID sequence; that for NYC is AA, that for BOS is BB, while that for
PHI is CC. PHI is not to be initially eligible for entering data. The computer is assigned
the ID sequence POKl. The stations use EBCDIC line code.

Name Operation Operands

LlST4 INVLIST ORDER=(NYC+C1Cl,BOS+C2C2,PHI-C3C3),
CPUID=IDFIELD

Here CICI, C2C2, and C3C3 are the EBCDIC transmission-code representations of the ID
sequences AA, BB, and CC, respectively, in hexadecimal notation. Somewhere within the
same area of address ability in the MCP the following field is defined:

Name Operation Operand

IDFIELD DC X'04'
DC X'D7D6D2Fl'

Here, 04 is the hexadecimal length of the rest of the field. D7D6D2F I is the EBCDIC
representation of the ID sequence POKI, in hexadecimal notation.

Example 2:
The following INVLIST macro creates the invitation list for a switched line having six
IBM 1130 stations assigned to it. Three of these stations are assigned the ID sequence
BATCHI, while the remaining three are assigned the ID sequence BATCH2. The com
puter is assigned the ID sequence RAL. The stations used EBCDIC transmission code. A
TERMINAL macro with UTERM=YES specified, named RELLN3, has been issued for
this line.

Name Operation Operands

LISTS INVLIST ORDER=(RELLN3+C2CIE3C3C8FI,
RELLN3+C2CIE3C3C8F2), CPUID=IDADDR

Here, C2C 1 E3C3C8F 1 and C2C 1 E3C3C8F2 are the EBCDIC transmission-code repre
sentations of the ID sequences BATCHl and BATCH2, respectively, in hexadecimal
notation. Somewhere in the MCP the following field is defined:

Name Operation Operand

IDADDR DC X'03'
DC X'D9ClD3'

Here, 03 is the hexadecimal length of the rest of the field. D9C1D3 is the EBCDIC
transmission-code representation of the ID sequence RAL, in hexadecimal notation.

Switched or nonswitched contention lines to terminals not assigned ID sequences
If only one station is assigned to the line, include in the entry portion of the macro the
station name and the active/inactive indicator. If more than one station is assigned to the
line, include in the entry portion of the macro the name of a representative station and

Defining Terminal and Line Control Areas 23

Selection

the active/inactive indicator.

For IBM 2740 Basic and IBM 2780 stations for which equal priority is specified in the
line group DCB macro, include in the entry portion of the macro the station name, the
active/inactive indicator, and, optionally, a single dummy polling character in hexa
decimal notation (any character will do).

Example:
The following INVLIST macro creates the invitation list for a nonswitched line to an IBM
2740 Basic terminal in New York City (NYC).

Name Operation Operand

LIST6 INVLIST ORDER= (NYC+)

Output-only lines to stations having no ID sequences assigned to them.
Issue one INVLIST macro to serve all such lines; the name of this macro should be speci
fied in the INVLIST= operand of the DCB macro for each output-only line group. No
operand is coded for this INV:U:ST macro. (Stations having ID sequences assigned to
them must appear as entries in the INVLIST macro for their line, regardless of whether or
not the line is output-only.)

Example:
The following INVLIST macro creates the invitation list for all output-only lines to
stations having no ID sequences assigned to them.

Name Operation Operand

LIST7 INVLIST

Selection is the process by which contact is established between the computer and a
station for the purpose of transmitting data from the computer to the station.

As is 'the case with invitation, there are basically two forms of selection. One of these is
used with contention stations (which mayor may not be equipped with a feature permit
ting identification sequence exchange), while the other involves transmission by the
computer of addressing characters (similar to polling characters) to a station preparatory

. to sending the station a message. Response to the transmission of these characters indi
cates whether the terminal can accept the message.

The contention form of selection is similar to the contention form of invitation,
described above. When the computer has a message to send to a contention station, it
waits until the line is free of traffic and then seizes it; once it has control of the line, the
computer merely sends the message to the terminal.

When addressing characters are used in selection, the selection process is closely related to
the polling form of invitation, described above. That is, the flow of messages to and from
a station is controlled by the computer according to an orderly scheme. The nature of
this scheme is discussed in the section Maintaining Orderly Message Flow_ Addressing
characters are defined in the TERMINAL macro.

Constructing the Terminal Table In selecting a station or application program, TCAM uses information provided by TCAM
macros at assembly time and stored in control areas. The control areas used in selection
all depend upon the terminal table. The terminal table consists of blocks of information
about each station and application program; each such block is called a terminal entry.

24

There are eight types of terminal entry:

• A single entry in the terminal table defines a single station. A single entry is created by
means of a TERMINAL macro; one such entry must be created for each station in the
system that is not defined by a group or line entry (see below).

• A group entry represents a group of terminals on a line that have the Group Code
hardware feature; specification of a single set of unique addressing characters results in
simultaneous transmission of a message to all terminals in the group. If a terminal that
is a member of a group is also to be addressed individually, or is to be polled, it must

TTABlE Macro Instruction

also be represented by a single entry. A group entry is defined by a TERMINAL macro
and is for output only.

• A component entry defines a component of a station that may be individually
addressed-for example, a card reader or a printer on an IBM 1050 station. If more
than one component of a station may be individually addressed, a component entry
may be required for each. A component entry is defined by a TERMINAL macro.

• A line entry defines a switched line that is used for input or input/output operations.
The line entry is used to supply device characteristics for stations that call in on a
switched line before they identify themselves (by the origin field in a message header,
as checked by an ORIGIN macro in the Message Handler), and for stations that call in
and never identify themselves. The entry is defined by a TERMINAL macro specifying
UTERM=YES.

• A distribution list entry contains a list of pointers to single, group, cascade or process
entries. When a message or FORWARD macro contains the list name as its destination
code, TCAM sends the message by separate transmissions to all stations indicated by
the list. Each station on the list must have a corresponding single or group entry in the
terminal table. A distribution list entry is defined by a TLIST macro.

• A cascade list entry contains a list of pointers to single, group, or process entries.
When a message or FORWARD macro contains the list name as its destination code,
the message is queued to be sent to that single valid station or opened process entry in
the list that has the least number of messages queued for it. A valid station is one that
is capable of accepting a message, and that is on a line for which the line group data set
has been opened. If more than one valid station has the smallest number of messages
queued, the message is queued for the first of these. If no station is valid or if all
queues are of the same length, the message is queued for the first station in the list. A
cascade entry is defined by a TLIST macro.

• A process entry represents an application program. One process entry must be defined
for each queue to which an application program can issue a GET or READ and at least
one must be defined for all PUTs or WRITEs from the same application program. One
open input or output DeB in the application program is associated with each process
entry. A process entry is defined by a TPROCESS macro.

• A logtype entry represents a queue of complete messages for a logging medium. A
logtype entry is defined by a LOGTYPE macro.

The size, structure, and contents of the terminal table depend upon information provided
by the user through the TTABLE, OPTION, TERMINAL, TLIST, TPROCESS, and
LOGTYPE macro instructions. These macros are described in this chapter.

Macro instructions defining the terminal table are coded as a group. For an example of a
coding sequence for a terminal table, see the chapter Putting the MCP Together.

The TTABLE macro:

• defines the start of a terminal table,
• names the last entry in the table,
• is required as the first macro defining the terminal table,
• is issued only once.

An operand of TTABLE specifies the name of the last macro issued in the section of code
defining the terminal table; thus, TTABLE defines the beginning and end of the terminal
table coding section. The TTABLE macro must be followed immediately by the macros
defining the terminal table.

Defining Terminal and Line Control Areas 25

LAST=name

MAXLEN=integer

OPTION Macro Instruction

26

The TTABLE macro has the following format:

Name Operation Operand

[symbol] TTABLE LAST=name [,MAXLEN=integer]

Function: Specifies the name of the macro and the name of the terminal name table (an
internal table associated with the terminal table).
Default: None. Specification optional.
Format: Must conform to the rules for assembler language symbols (see the symbol entry
in the' Glossary).

Function: Specifies the name of the last entry in the terminal table (i.e., the name of the
last TERMINAL, TLIST or TPROCESS macro coded).
Default: None. This operand must be specified.
Format: Must conform to the rules for assembler language symbols.

Function: Specifies the number of characters in the name ofthe terminal table.
Default: None. Specification optional.
Format: An unframed decimal integer.
Maximum: 8
Notes: If this operand is omitted, the length of the last entry is assumed. The operand is
not necessary if the lengths of all terminal table entry names are the same, or if the last
entry has the greatest length.

The OPTION macro:

• Permits space to be reserved for an option field related to a station, component, line, or
application program.

• Must be specified prior to any TERMINAL, TLIST, or TPROCESS macros.
• Is optional among the macros defining the terminal table.

OPTION macros are issued as a group; in conjunction with the OPDATA = operands of
the TERMINAL and TPROCESS macros they defme the option table, a storage area
containing option fields related to individual stations, components, lines, or application
programs. The option fields are accessed by certain Message Handler routines that need
source- or destination-related storage in order to perform their functions. Among the MH
macros that invoke routines that access the option fields are the following: STARTMH,
INHDR, INBUF, INMSG, OUTHDR, OUTBUF, OUTMSG, COUNTER, ERRORMSG,
FORWARD, LOCOPT, MSGLIMIT, PATH, and REDIRECT. To gain some insight into
the function of option fields, the reader should turn to the individual discussions of these
macros in the chapter Designing a Message Handler. User-written routines can also access
information in an option field.

Taken together, the OPTION macros issued by a user define a complete set of option
fields; all or part of this set may be assigned to a particular station, component, line, or
application program by means of the OPDATA= operand of the TERMINAL or
TPROCESS macro (see the example below). An OPTION macro merely gives an option
field a name and describes the type and length of the field in assembler-language format;
an area of storage is neither initialized nor actually allocated for the field unless the field
is specified for a particular station, component, line, or application program by means of
the OPDATA= operand of the TERMINAL or TPROCESS macro. Up to 254 option
fields, each of which may be up to 255 bytes long, may be defined in an MCP by
OPTION macros. All or any part of the set of option fields may be allocated to each
station, component, line, or application program represented by a terminal-table entry.
For the set of option fields for a particular entry in the terminal table, the last option
field must be within 254 bytes of the first.

A new area of storage having the name and attributes specified by the OPTION macro
defining an option field is assigned to each station, component, line, or application pro
gram whose TERMINAL or TPROCESS macro initializes that field. Each TERMINAL or
TPROCESS macro may initialize a field differently; hence different stations, components,
lines, or application programs may be assigned option fields having identical names and
attributes, but different contents. This feature allows the user to tailor the functions of a
macro accessing an option field to meet the needs of a particular station, component,

opfldname

typelength

line, or application program. For example, the COUNTER macro maintains a count of
messages or message segments received from or sent to a station. This counter is located
in an option field for that station. If the OPTION macro for this field is named COUNT,
and if the COUNTER macro names COUNT as the field in which the counter should be
maintained, then a separate counter will be maintained for each station that uses the
OPDATA= operand of the TERMINAL macro to initialize COUNT.

A macro coded in an inheader, inbuffer, or inmessage subgroup handling messages entered
by stations on a line accesses the specified option field for the station that entered the
message being processed. (If the originating station is unknown because it called in on a
switched line and failed to identify itself, the specified option field for the line entry
associated with this line is accessed.) A macro coded in an outheader, outbuffer, or out
message subgroup handling messages destined for stations on a line accesses the specified
option field for the station that is to accept the message being processed. A macro coded
in an outheader, outbuffer, or outmessage subgroup handling messages destined for an
application program, accesses the specified option field associated with the process queue
to which the GET or READ macro that is moving this message to the application program
is directed. A macro coded in an inheader, inbuffer, or in message subgroup. handling
messages being received from an application program accesses the specified option field
for the process entry associated with the DCB named in the PUT or WRITE macro.

The OPTION macro has the following format:

Name Operation Operand

opfldname OPTION typelength

Function: Specifies the name of the option field.
Default: None. This name must be specified.
Format: Must conform to the rules for assembler language symbols (see the symbol entry
in the Glossary).

Function: Specifies the type and length of the option field.
Default: None. This operand must be specified.
Format: Standard assembler language format (e.g., H, CL8, AL3). All assembler language
type codes may be utilized. However, B, C, P, X and Z must be coded with a length
attribute (e.g., CLS, BL4). Duplication factors are not allowed; i.e., ABC OPTION 3DLS
is an invalid macro.
Notes: When the option field is used in conjunction with the FORWARD, ERRORMSG.
or REDIRECT macro, a character string of length n must be specified, where n is the
length in bytes of the data in the OPDATA= operand of the TERMINAL or TPROCESS
macros that initialize the fields.

If used with counter, typelength should be specified as H, since this macro requires a
halfword field on a halfword boundary.

If used with INBUF, INHDR, INMSG, OUTBUF, OUTHDR, OUTMSG, PATH, or
MSGLIMIT macros, typelength should specify a one-byte field (e.g., FLI, ALl). No
boundary alignment is required.

If used with STARTMH, typelength will specify a one- or four-byte field, depending upon
which STARTMH operand names the option field.

Points to remember:

• OPTION macros, if used, must be issued as a group and must immediately follow the
TTABLE macro.

• The order in which OPTION macros are arranged determines the order in whiCh
initialization data must be specified in the OPDATA= operand of the TERMINAL or
TPROCESS macro. If a field specified by an OPTION macro is not to be defined for

--./-

a particular station, component, line, or application program, then a comma should be
coded in place of the data for this field in the OPDATA= operand (but trailing
commas should not be coded).

Defining Terminal and Line Control Areas 27

28

• OPTION macros should be arranged so as to prevent waste of storage space in the
option table. For example, if three OPTION macros are coded

AA OPTION FLl
AB OPTION CL4
AC OPTIONH

the halfword specification for the AC field causes the assembler to perform boundary
alignment. Since the AC field may not already be on a halfword boundary, one byte of
storage area in the option table may be wasted for each terminal for which these
option fields are defined. To conserve storage space, the above macros should be coded
as follows:

AC OPTIONH
AA OPTION FL 1
AB OPTION CL4

if four OPTION macros are coded

BA OPTlONF
BB OPTION CLl
BCOPTION H
BD OPTION CLl

two bytes of storage area in the option table will be wasted for each station after the
first for which these option fields are defined. To conserve storage space, the above
macros should be coded as follows:

BAOPTION F
BCOPTION H
BB OPTION CLl
BD OPTION CLI

• In coding an OPTION macro, the user must specify the type and length of the option
field to be generated. This information is contained in the discussion of the individual
macro that accesses the option field.

Example:
In the following example, the TTABLE macro defines the begining and end of the
terminal table section of the Message Control Program. The OPTION macros, which are a
part of this section of code, define fields in the option table that are accessed by the
COUNTER, MSGLIMIT, REDIRECT, ERRORMSG, and PATH macros.

Name Operation Operand

TTABLE LAST=PROC
COUNT OPTION H
MSGLMT OPTION FLI
REDRECT OPTION CL3
ERRMSG OPTION CL4
PATHSW OPTION FLI

TT ABLE defines PROC as the name of the last entry in the terminal table. The OPTION
macros define an II-byte optional area for entries in the terminal table. The optional area
consists of five fields:

• COUNT defines a halfword for decimal data to be used by the COUNTER macro.
• MSGLMT defines one byte for decimal data to be used by the MSGLIMIT macro.
• REDRECT defines a character string consisting of three bytes naming the terminal;

this data is used by the REDIRECT macro.
• ERRMSG defines a character string consisting of a four-byte terminal name; this data

is used by the ERRORMSG macro.
• PATHSW defines one byte for eight binary path switches to be tested by various

delimiter macros.

TERMINAL Macro Instruction

If the OPDATA= operand of a TERMINAL macro were coded

OPDATA=(0,0,NYC,PITT,3)

an II-byte storage area would be set aside in the option table for use by MH macros in
handling messages to and from that terminal. The COUNT and MSGLMT fields would
initially contain 0, the REDRECT field would contain NYC, the ERRMSG field would
contain PITT, and the PATHSW field would contain 3.

Ifthe OPDATA= operand of another TERMINAL macro were coded

OPDATA=("NYC,PITT)

a 7-byte storage area would be set aside in the option table for use by MH macros in
handling messages to and from that terminal. Only the REDRECT and ERRMSG fields
would be created.

Note that for an option field to be created for any particular terminal, two conditions
must be satisfied:

1. An OPTION macro defining the field must be issued.
2. The field must be initialized in the OPDATA= operand of the TERMINAL macro for

that terminal. If a comma is coded in place of a field in the OPDATA= operand, no
space is set aside for that field. If the OPDATA= operand of a TERMINAL macro is
omitted, no option fields are set aside for that terminal.

The TERMINAL macro:

• Creates a single,group, or line entry in the terminal table.
• Specifies the type of queuing to be used (i.e., queuing by line or queuing by terminal),
• Specifies the addressing characters to be used in addressing a station,
• Specifies when the computer is to initiate contact with switched stations,
• Specifies how often the computer is to initiate contact with switched stations,
• Designates secondary operator control stations,
• Specifies initial data for the option table,
• Specifies an alternate destination for messages sent to the station for which this

TERMINAL macro is issued,
• Overrides the buffer size specified by the BUFSIZE= operand of the line group DCB,

for output only,
• Specifies blocking factors to be used for inserting control characters in outgoing

messages destined for this station, when a MSGFORM macro is executed in an out
header subgroup handling such messages,
Is required for each single or group station or line entry in the TCAM system.

The TERMINAL macro causes an EBCDIC station or line name, and information asso
ciated with the station or line, to be included as an entry in the terminal table. If a single
station or component is involved, TERMINAL produces a single entry in the terminal
table. If a group of stations having the group-code feature is involved, TERMINAL pro
duces a group entry. If a line is involved, TERMINAL produces a line entry.

One TERMINAL macro should be coded for:

1. Each station (whether switched or nonswitched) that can accept messages, and for
some terminals that can only enter messages (see Coding the TERMINAL Macro for a
Line below).

2. Each group of nonswitched terminals equipped with the hardware group-code feature.
Terminals can only accept messages under the group-code feature; they cannot enter
messages. Each terminal in the group that can also enter messages, or that can be
addressed separately, must also be represented by a single entry.

3. Each switched line to stations that do not uniquely identify themselves after calling
the computer.

For guidelines on coding the TERMINAL macro for a line and for a component, see the
next two sections of this chapter.

TERMINAL Macro 29

symbol

30

TERMINAL macros for stations on a line must be issued together, and the groups of
TERMINAL macros for each line in a line group must be contiguous and in ascending
relative line sequence.

When TERMINAL macros are issued for the individual components of a station, the
macros for the components must immediately follow that for the station. .

NOTE: See Appendix G. Device Dependent Considerations, for particular specifications
for the

• 1030 Station;
• 2260 Display Station (remote);
• 2740 with Station Control or Station Control and Checking feature;
• 2740 with the Transmit Control or Transmit Control and Checking feature;
• 2740 Basic Terminal;
• 2740 Model 2 Communications Terminal;
• 2770 Data Communications System;
• BSC stations;
• AT&T 83B3 stations.

The TERMINAL macro has the following format:

Name Operation Operand

symbol TERMINAL QBY=~n

,DCB=dc,bname
,RLN=integer
,TERM=type
,QUEUES=form
[,DIALNO= ~chars ~]

NONE
[,ADDR=chars]
[,LEVEL=(integer, ...)]
[,CLOCK=time]
[,CINTVL=integer]
[,B UF SIZE=in teger]
[,ALTDEST=entry]
[,BFDELAY=integer]
[,NTBLKSZ=(blocksize,sub blocksize)]
[, TBLKS Z=integer]
[,OPDATA=(data, ...)]
[,SECTERM=~~gS~]

[,COMP=~~gsf]

[,UTERM=l~gs~]

Function: Specifies the station name.
Default: None. This name must be specified.
Format: Must conform to the rules for assembler language symbols (see the symbol entry
in the Glossary).
Notes: This name can appear in an origin or destination field of a message header.
SYSCON may not be used.

If more than one TERMINAL macro is specified for the same buffered station (by coding
two TERMINAL macros, with different names, for the same station), message segments
may become intermixed during sending or receiving operations. Furthermore, a text
segment may be treated as a header segment. For these reasons, coding more than one
TERMINAL macro for the same buffered station is not a recommended procedure, unless
the TERMINAL macros are coded for components rather,than for the station itself.

DCB=dcbname

RLN=integer

TERM=type

QUEUES=fonn

Function: Specifies the type of message queuing.
Default: None. This operand must be specified.
Format: T or L.
Notes: T specifies that outgoing messages are to be queued by station; that is, all mes
sages for a given station on a line are sent in priority order before any messages for other
stations on that line are sent (except for 2770 stations for which BFDELAY= is coded;
messages are sent to these stations a buffer at a time). T should be specified for switched
stations, and must be specified for stations using TCAM's buffered-terminal support. For
a more complete discussion of queuing by station, see Maintaining Orderly Message Flow
in this chapter.

L specifies that outgoing messages are to be queued by line; messages for all stations on
the line are sent on a first-ended first-out basis within priority groups. If L is specified for
stations on a switched line, when contact is made with a station on that line all messages
on the queue are sent to that station, regardless of what station they are intended for. For
a more complete discussion of queuing by line, see Maintaining Orderly Message Flow in
this chapter.

This operand is ignored if the TERMINAL macro is coded for a component or for a line.

Function: Specifies the name of the data control block for the line group in which the
station is included.
Default: None. This operand must be specified.
Format: Must conform to the rules for assembler language symbols.

Function: Specifies the relative line number, within the line group, of the access line over
which the computer and the station communicate.
Default: None. This operand must be specified.
Format: An unframed decimal integer.
Maximum: 255.
Notes: For a discussion of how relative line numbers are assigned, see DD Statements for
a Line Group. For a switched station on a line for which no TERMINAL macro coded for
a line is issued, any access line in the group may be specified. When the computer calls a
station assigned to a switched line, it attempts to make the call using the line whose rela
tive line number is specified. If that line is unavailable, the line whose relative line number
is greater than that specified by integer is examinedi this process is repeated until a free
line is found or until all lines in the group that have relative line numbers higher than the
integer specified for this station have been examined. If all higher-numbered lines in the
line group are unavailable, the station is not dialed at this time. Dialing is postponed until
a suitable line is available.

Function: Specifies the terminal type.
Default: None. This operand must be specified.
Format: This operand may be replaced by any of the following values: 1030, 1050,
1060, 226L (2260 Local), 226R (2260 Remote), 2265, 274A (nonswitched Basic 2740
Model 1), 274B (switched 2740 Model 1), 274C (nons witched 2740 Modell with Station
Control), 274D (nonswitched 2740 Modell with Station Control and Checking), 274E
(switched 2740 Modell with Transmit Control and Checking), 274F (nonswitched 2740
Modell with Checking), 274G (switched 2740 Modell with Checking), 274H (switched
2740 Modell with Transmit Control), 2741 (2740 Model 2 with Checking), 274J (2740
Model 2 without Checking), 2741, 2760, 277A (polled 2770), 277B (non-polled 2770),
278A (polled 2780), 278B (non-polled 2780), 7770, 113A (polled 1130), 113B (non
polled 1130), 202A (polled Model 20), 202B (non-polled Model 20), 83B3, lISA
(Western Union Plan lISA outstations on a nonswitched network), 3335 (AT&T 33/35
Dial), WTTY (World Trade telegraph terminals), S36B (non-polled Systemj360).

Function: Specifies where the message queues are to be maintained.
Default: None. This operand must be specified.
Format: DR, DN, MO, MN or MR.
Notes: For a discussion of this topic, see Message Queues Data Sets.

If queuing is by terminal, this operand must be specified for all TERMINAL macros for a
station on the line. If queuing is by line, this operand must be specified for the first

TERMINAL Macro 31

DIALNO={ch81S }
NONE

ADDR=chars

LEVEL=(integer, ...)

32

TERMINAL macro coded for a station on the line, but may be omitted for subsequent
TERMINAL macros for stations on the line.

DR specifies reusable disk queues.
DN specifies nonreusable disk queues.
MO specifies main-storage-only queues.
MR specifies main-storage queues with backup on reusable disk.
MN specifies main-storage queues with backup on nonreusable disk.

If MO is specified, the distribution list, multiple routing and REDIRECT facilities should
be used with care, since one extra buffer is required to accommodate every destination
other than the original destination.

If the form of data set specified by this operand does not correspond to a related message
queues data set specified in the DCB, the TCAM system terminates abnormally.

If MO, MR or MN is specified, the MSUNITS= operand of the INTRO macro must specify
a non-zero integer; otherwise, the TERMINAL macro does not assemble properly and an
MNOTE is generated.

Function: Specifies the telephone number of the station.
Default: None. Specification optional.
Format: chars or NONE. chars is a decimal field with no framing characters.
Notes: This operand tells TeAM whether a station is on a switched or a nonswitched
line, and it must be specified for switched stations. chars is the telephone number of the
station.

DIALNO=chars must be specified if the CINTVL= operand of this macro is specified.
DIALNO=NONE specifies that this station is on a switched line, but the computer may
not initiate calls to it. DIALNO=NONE must be specified if the Transmission Control
Unit for the line over which contact is to be established with the station does not have
the Auto Call feature and should be specified if Inward WATS lines are to be used to best
advantage.

if this operand is omitted, the station for which this TERMINAL macro is coded is
assumed to be on a nonswitched line.

Function: Specifies the addressing characters (or the station, or specifies the end-to-end
control sequence for switched or nonswitched point-to-point 2770 or 2780 stations.
Default: None. Specification optional.
Format: Unframed hexadecimal equivalent of the appropriate transmission code
represen ta tion.
Notes:. Addressing characters are used by the central computer to inform a station that
the computer wishes to send it a message. For information on the addressing characters
for a specific station, see the hardware manual for that station.

If a station is assigned an ID sequence rather than addressing characters, this operand is
not coded; the ID sequence is entered in the invitation list (see the discussion of the
INVLlST macro).

This operand may also specify the end-to-end control sequence for a point-to-point 2770
or 2780 station. For information on the end-to-end control sequence, see the appropriate
hardware manual. The end-to-end control sequence is specified by writing the equivalent
of the appropriate transmission code representation, and must be immediately preceded
by the line-control character STX and immediately followed by the line-control character
ETB.

Function: Specifies the permissible priority levels that may be used in the header of a
message destined for this station.
Default: None. Specification optional.
Format: Unframed decimal integer.
Maximum: 255.
Notes: The levels must be specified in increasing order. For instance, if the messages
being sent to a certain station can have priorities of I, 9 or 11, the LEVEL= operand for
this station would be coded LEVEL= (1,9,11). If queuing is by line rather than by
terminal, the priority levels specified in the first TERMINAL macro coded for a station

CLOCK=time

CINTVL=integer

BUFSlZE=integer

ALTDEST=entry

BFDELAY=integer

on the line will apply to all stations on that line; in this case, the LEVEL= operand of
subsequent TERMINAL macros for the same line is ignored.

For more information on message priority, see the discussion of the PRIORITY macro
and Message Priority and Queuing in this chapter.

Function: Specifies the time of day that the computer should initiate contact with a
switched station.
Default: None. Specification optional.
Format: Two decimal integers for the hours, immediately followed by two decimal
integers for the minute. Framing characters may not be specified.
Maximum: 2359 (Le., 23 for the first field, 59 for the second).
Notes: If this operand is specified, CINTVL= must be omitted and DIALNO= must
specify the dial digits to be used. If CLOCK= and CINTVL= are both omitted, the com
puter does not periodically initiate contact with this switched station. When CLOCK= is
specified, the only time that the switched station will be sent messages is when the com
puter initiates contact with it (at the time of day specified by this operand). If the station
calls in at any time other than that specified by this operand, it may enter messages but
will not be sent any messages by the computer (except that a station locked to an applica
tion program will get its lock responses). This operand is used to take advantage of low
toll times.

Function: Specifies the period of time following which the computer should initiate
contact with a switched station, if neither the station nor the computer called the other
during this period.
Default: None. Specification optional.
Format: Unframed decimal integer.
Maximum: 65535
Notes: The interval is restarted at the termination of each call from the station, or when
the computer calls the station to send its messages. If CINTVL= is specified, DIALNO=
must also be specified, and CLOCK= must be omitted. The first interval starts when the
line group data set for this line is opened. This operand can be used to take advantage of
Outward WATS.

function: Specifies the buffer size for outgoing messages destined for this station, and
overrides the BUFSIZE= operand of the line group DCB macro.
Default: None. Specification optional.
Format: Unframed decimal integer greater than 32.
Maximum: 65535
Notes: If this operand is omitted, the buffer size specified in the line group DCB macro is
used.

Function: Specifies the alternate destination to which a message on a reusable disk queue
is sent at the time the zone containing the message is serviced for reuse.
Default: None. Specification optional.
Format: Must conform to the rules for assembler language symbols, and specify the
name of any single, group, or process entry in the terminal table capable of accepting
messages. Framing characters must not be specified.
Notes: See Reusable Disk Queues for a description of servicing for reuse. The name of
the TERMINAL macro for which this AL TDEST= operand is being coded may be speci
fied to prevent the message being discarded from a reusable queue. If the ALTDEST=
operand is omitted, messages in a reusable disk queue may be written over and lost to the
system with no error indication being made. This operand is ignored unless either
QUEUES=DR or QUEUES=MR is specified in this TERMINAL macro.

Function: Specifies the number of seconds of delay to be used before another message
block is sent to a buffered station (to avoid sending another message block while the
hardware buffer is still emptying the previous block of data).
Default: None. Specification optional.
Format: Unframed decimal integer.
Maximum: 65535
Notes: integer should specify the average time needed to empty the hardware buffer.
This may be computed from the number of characters in the hardware buffer and the rate
at which characters are transferred from the buffer to the terminal component.

TERMINAL Macro 33

NTBLKSZ=(blocksize,subblocksize)

TBLKSZ=integer

OPDATA=(data, ...)

34

This operand must be coded only for IBM 2740 Model 2 and multipoint IBM 2770
stations and should not be coded for any other station. For information on TCAM's
buffering feature, see Transmission Priority for Nonswitched Polled Stations Using
TeAM's Buffering Feature in this chapter.

The BFDELA Y= operand must either be included in all TERMINAL macros for stations
on the same line, or omitted from all TERMINAL macros for stations on the line. When
this operand is coded, queuing by station and send priority should also be specified. If
stations using a buffer delay are intermixed with nonbuffered stations on the same line
(this can be done because BSC stations are compatible), BFDELA Y=O should be specified
in the TERMINAL macros for the nonbuffered stations. The BFDELA Y= operand should
not be specified for start-stop or BSC stations on switched or point-to-point lines.

Function: Specifies blocking factors for outgoing messages in nontransparent mode
directed to this station.
Default: None. Specification optional.
Format: Unframed decimal integer.
Maximum: For blocksize, 65535. For subblocksize, 255.
Notes: blocksize is the number of bytes in each block of data in nontransparent mode
for messages directed to this station, when the MSGFORM macro is coded in the out
header subgroup handling these messages.

blocksize is used when LC=OUT is specified in the STARTMH macro to indicate where
EOB or ETB line-control characters are to be inserted in outgoing messages. If a blocksize
of 100 were specified, an EOB or ETB would be inserted after every 100 characters in the
message, provided that the message were handled by an outheader subgroup that contains
a MSGFORM macro. The value specified here may be overridden by coding the BLOCK=
operand of the MSGFORM macro; if the blocksize su1:>operand is omitted from the
TERMINAL macro, MSGFORM may still be used to specify the blocking factor. The
character inserted is not considered part of the block.

subblocksize is the number of bytes in each subblock of data in nontransparent mode for
messages directed to this BSC station. It is used when LC=OUT is specified in the
STARTMH macro to indicate where ITB line control characters are to be inserted in
outgoing messages. If a subblocksize of 100 were coded, an ITB would be inserted after
every 100 characters in the message, provided that the message were handled by an out
header subgroup that includes a MSGFORM macro. The value specified here may be
overriden by coding the SUBBLOCK= operand of the MSGFORM macro; if the
subblocksize suboperand is omitted from the TERMINAL macro, MSGFORM may still
be used to specify the number of bytes per subblock. The ITB inserted is not considered
part of the block.

Function: Specifies the number of bytes in each block of data for outgoing messages in
transparent mode.
Default: None. Specification optional.
Format: Unframed decimal integer.
Maximum: 65535
Notes: The appropriate line control sequence is transmitted after each number of bytes
of data specified by integer, provided that the MSGFORM macro is coded in the out
header subgroup handling this message, and provided that SENDTRP=YES is coded in
MSGFORM. The value specified here may be overridden by coding the BLOCK= operand
of the MSGFORM macto; if the TBLKSZ= operand is omitted from the TERMINAL
macro, MSGFORM may still be used to specify the blocking factor for outgoing messages
in transparent mode. '

Function: Specifies the actual data to be inserted in the set of option fields assigned to
this station (see the discussion of the OPTION macro), and also specifies which option
fields are not to be created for this station.
Default: None. Specification optional.
Format: The maximum length and type of data specified for each option field must
correspond to the length and type specified by the OPTION macro that defines the field,
and the order in which the data for each field is specified must correspond to the order in
which the OPTION macros are specified. Framing characters are not used.

/

SECTERM= ~~ ~

Notes: When specifying option fields for a particular station, the user may omit the last
several option fields defined by OPTION macros by merely closing the parentheses after
the data for the last field he wishes to define. A comma is used to:

1. delimit the data for each field;
2. indicate that no data is specified for the first or an intermediate field defined by an

OPTION macro;
3. indicate that the OPDATA operand is to be continued (if specified immediately pre

ceding the right parenthesis-see note below).

The user must specify either data and a comma, or a comma alone for the first and each
intermediate field (except the last) that is specified by an OPTION macro (with one
exception-see the note below). A comma alone is coded if a field other than the last is
not to be defined for this station. If the last field is not to be defined, no data is coded
for the field and the comma is also omitted. Framing characters (X or C and quotes) are
not coded.

Example:
Assume that four OPTION macros have been coded. If the user wants to specify all four
fields for a particular station, line, or application program, he would code the OPDATA=
operand of the TERMINAL or TPROCESS macro as follows:

,OPDAT A=(field I ,field2,field3,field4)

where field 1, field2, field3, and field4 represent the actual initial data to be inserted into
each of the four option fields. If only fieldl and field4 are to be implemented for this
station, line, or application program, the user would code

,OPDATA=(fieldl ",field4)

If only fieldl, field2, and field3 are to be implemented, the user would code

,OPDATA=(field I ,field2,field3)

If only fieldl is to be implemented, the user would code

,OPDAT A=(field 1)

NOTE: Because the operand field of a macro is limited to 255 characters, TCAM pro
vides a facility to specify additional OPDATA= parameters if necessary. A comma placed
as the last character of the OPDA TA= operand-Le.,

OPDAT A=(data,data, ... data,)

indicates a continuation of the OPDATA= operand. The next source statement would
then be coded

symbol TERMINAL OPDATA=(data, ...)

where

symbol is the name specified on the TERMINAL macro that specified the continuation.

There is no limit (other than the number of OPTION fields defined) on the n,l1mber of
continuation statements that may be used.

Function: Specifies whether this station may be considered a secondary operator control
station,
Default: SECTERM=NO
Format: YES or NO.
Notes: If YES is specified, operator commands will be recognized, acted upon and the
appropriate response returned to the station. The station for which SECTERM=YES is
specified must be on a nons witched line and must be able to both enter and accept
messages. If a station other than the system console is to be the primary operator control
station, SECTERM=YES must be specified for that station's TERMINAL macro,

TERMINAL Macro 35

36

Function: Specifies whether or not this TERMINAL macro is being used to define a
component of a station defined by another TERMINAL macro.
Default: COMP=NO
Format: YES or NO.
Notes: If this operand is coded COMP=YES, then the TERMINAL macro is for a com
ponent. If the operand is omitted or COMP=NO is coded, then the macro is not for a
component.

For guidelines on coding this operand, see Coding the Terminal Macro for a Component
in this chapter.

Function: Specifies whether or not this TERMINAL macro is being used to define a line
entry in the terminal table.
Default: UTERM=NO
Format: YES or NO.
Notes: If this operand is coded UTERM='YES, then the TERMINAL macro is for a line.
If the operand is omitted, or if UTERM=NO is coded, then the macro is not for a line.

For information on coding this operand, see Coding the TERMINAL Macro for a Line in
this chapter.

Coding the TERMINAL Macro for a Component
If the COMP= operand of a terminal macro is coded COMP=YES, then the TERMINAL
macro is one defining a component of a station defined by another TERMINAL macro. A
TERMINAL macro need be issued for a component only if messages may be directed to
more than one component of a station by means of appropriate addressing characters. If
addressing characters are not used, a TERMINAL macro for a component is unnecessary.
If a message can be sent to only one component of a terminal assigned addressing char
acters, that component may be specified by coding the appropriate addressing characters
in the ADDR= operand of the TERMINAL macro for the terminal. For an IBM 1050
terminal assigned addressing characters, for example, the second addressing character
identifies the component that is to receive the message. If only one component is to re
ceive messages, that component's selection character may be entered as the second
addressing character in the ADDR= operand of the TERMINAL macro for the terminal,
and no TERMINAL macro need be issued for the component. If more than one com
ponent of a station is to be specifically addressed by means of addressing characters, then
one or more component TERMINAL macros must be issued; these should immediately
follow the TERMINAL macro for the station to which the components belong.

The following operands of the TERMINAL macro are meaningful if the macro is issued
for a component:

ADDR=chars

Specifies the addressing characters for this component.

AL TDEST=entry

Specifies the alternate destination to which a message on a reusable disk queue is sent at
the time the zone containing the message is serviced for reuse (see Reusable Disk Queues
for a description of this servicing). Any terminal, component, or process entry for a
device capable of accepting messages may be specified. If the operand is omitted,
messages in a reusable disk queue may be written over and lost to the system with no
error indication being made.

SECTERM=~ ~~S~

Specifies whether replies to operator commands entered at this station are to be sent to
this component. If so, this component must be represented in the invitation list for this
line. If the station is polled, the operator command must have been entered in response to
polling characters associated in the invitation list with an entry having the same name as
the name of this terminal entry. (However, the two entries having the same name need
not refer to the same device-the polling characters could poll a card reader, f9r example,
while the addressing characters might address a printer).

NTBLKSZ=(blocksize, subblocksize)

Specifies blocking factors for outgoing messages in nontransparent mode directed to this
station. blocksize and subblocksize have the same meanings as those described above in
the discussion of the TERMINAL macro for a station.

TBLKSZ=integer

Specifies the number of bytes in each block of data for outgoing messages in transparent
mode directed to this component. This operand is similar to the TBLKSZ= operand for
the TERMINAL macro for a station, described above, and may be overridden by coding
the BLOCK= operand of the MSGFORM macro, and specifying SENDTRP=YES in
MSGFORM.

BUFSIZE=integer

Overrides the buffer size specified by the BUFSIZE= operand of the line group DCB
macro, but only for buffers containing outgoing messages destined for this component. If
this operand is omitted, the buffer size specified in the line group DCB macro is used.

OPDA T A=(data, ...)

Specifies the actual data to be inserted in the set of option fields assigned to this com
ponent (see the discussion of the OPTION macro), and also specifies which option fields
are not tei be created for this component. The description of the OPDATA= operand of
the TERMINAL macro for a station also applies to the OPDATA= operand of the
TERMINAL macro for a component.

COMP=~~~S~

Specifies whether this TERMINAL macro is for a component. COMP=YES indicates that
this TERMINAL macro is for a component.

Coding the TERMINAL Macro for a Line
A TERMINAL macro whose UTERM= operand is coded UTERM=YES causes informa
tion to be included in the terminal table for a line to switched stations that do not
uniquely identify themselves when calling the computer.

As a general rule, a switched line requires its own TERMINAL macro if any stations that
do not always uniquely identify themselves call the computer on that line. If all stations
calling in on a switched line always uniquely identify themselves, no TERMINAL macro
is required for that line. The following considerations apply when deciding whether a
particular switched line requires its own TERMINAL macro (see also Figure 1, which
summarizes these considerations):

1. A TCAM audio line (i.e., a line connected to an IBM 7770 Audio Response Unit,
Model 3) requires its own TERMINAL macro.

2. A switched line to BSC stations that are all assigned unique ID sequences does not
require its own TERMINAL macro. For such a line, the user should enter each
station's name and ID sequence, and the CPU ID sequence, in the appropriate
operands of the INVLIST macro for the line (see the discussion of the INVLIST
macro).

3. If none of th~ stations on a line ever dial the computer, the line needs no TERMINAL
macro. Terminal names and invitation characters are coded in the INVLIST macro (see
the discussion of the INVLIST macro).

4. For a switched line'to stations other than those described in (2) and (3) above, a
TERMINAL macro specifying UTERM=YES must be coded unless all messages
entered by stations on the line have origin fields in their message header and are pro
cessed by a Message Handler subgroup containing an ORIGIN macro (see the dis
cussion of the ORIGIN macro). For lines to stations that enter only messages having
origin fields, see (5). When a TERMINAL macro is coded for a line, the name of the
macro is entered together with the invitation characters for stations on the line in the
appropriate operand of the INVLIST macro for the line (see the discussion of the
INVLIST macro).

Defining Terminal and Line Control Areas 37

Yes

Yes

No

5. For a switched line to stations other than those described in (2) and (3), if.aU messages
entered on the line have valid origin fields in their message headers and are processed
by a Message Handler subgroup containing an ORIGIN macro, then a TERMINAL
macro may be specified for that line at the option of the user. If the TERMINAL
macro is specified, the user must enter its name as part of the entry operand of the
INVLIST macro for the line; otherwise the name of a TERMINAL macro for a station
on the line is entered as part of the INVLIST entry. Iii either case, one INVLIST entry
is coded for each series of invitation characters used by a station on the line (see the
discussion of the INVLIST macro). .

,
In order to decide whether to code a TERMINAL macro for a line under Case 5, the user
must first understand the function of the ORIGIN macro and the origin field of the
message header (discussed in the chapter Designing the Message Handler) and must also
understand the function of the OPTION macro (discussed in the present chapter). Then
he should consider the following paragraphs.

The TERMINAL macro has an optional OPDATA= operand. If a TERMINAL macro is
coded for a switched line, when a station on that line dials the computer the option fields
associated with the line entry are accessed and possibly modified by Message Handler
macros until an ORIGIN macro is encountered in the Message Handler.

The ORIGIN macro establishes the identity of the calling station; once identity has been
established, the option fields associated with the terminal entry for the station calling in
are accessed and possibly modified by Message Handler macros. If no line entry is created
for a switched line, then the option fields assigned to the representative station named in
the INVLIST macro operand are updated by the Message Handler macros until the
ORIGIN macro is encountered; once ORIGIN has established the identity of the calling
station, that station's option fields are updated by macros following ORIGIN in the
Message Handler.

Thus, if a user assigns no option fields to the stations on a switched line, or if he does
assign option fields but issues his ORIGIN macro in the Message Handler subsections
handling incoming messages before he issues any macros that modify option fields, he is
safe in omitting the TERMINAL macro for that line. Otherwise, a TERMINAL macro
specifying UTERM= YES should be coded for the line.

Yes

Yes

No

Code Terminol
Macro For

Line

Do Not Code
Terminal

Macro For Line

Notes: I. Do you wish to send messages

38

to unknown stations on the line?
2. Do you wish to update any option

fields on a line basis?

Figure 1. Chart for Deciding Whether a TERMINAL Macro Should be Coded for a Switched Line.

All TERMINAL macros for lines in a line group must be arranged according to ascending
relative line number. The TERMINAL macro for a particular line must immediately
precede all TERMINAL macros for stations on that line.

Example:
The TERMINAL macros for three switched lines in a line group, where each line has three
terminals associated with it, would be arranged in the following order:

• TERMINAL macro for relative line I (UTERM=YES)
• TERMINAL macro for a terminal on line I
• TERMINAL macro for another terminal on line I
• TERMINAL macro for a third terminal on line I
• TERMINAL macro for relative line 2 (UTERM=YES)
• TERMINAL macro for a terminal on line 2
• TERMINAL macro for another terminal on line 2
• TERMINAL macro for a third terminal on line 2
• TERMINAL macro for relative line 3 (UTERM=YES)
• TERMINAL macro for a terminal on line 3
• TERMINAL macro for another terminal on line 3
• TERMINAL macro for a third terminal on line 3

It may be that some lines in a line group have TERMINAL macros coded for them and
others do not. In this case, arrange the TERMINAL macros for the stations on the lines in
groups according to ascending relative line number, and place each TERMINAL macro for
a line immediately in front of the group of TERMINAL macros for stations on that line.

Example:
The TERMINAL macros for three switched lines in a line group, where each line has two
terminals associated with it, and line 2 has no TERMINAL macro coded for it, would be
arranged in the following order:

• TERMINAL macro for relative line I (UTERM=YES)
• TERMINAL macro for a terminal on line I
• TERMINAL macro for another terminal on line I
• TERMINAL macro for a terminal on line 2
• TERMINAL macro for another terminal on line 2
• TERMINAL macro for relative line 3 (UTERM=YES)
• TERMINAL macro for a terminal on line 3
• TERMINAL macro for another terminal on line 3

The following operands of the TERMINAL macro are relevant when the macro is
specified for a line:

DCB=dcbname
RLN=integer
TERM=type
ADDR=chars
OPDATA=data

UTERM=~~~S~

The DCB=, RLN=, and TERM= operands are the same as those given above for a
TERMINAL macro for a station.

The ADDR= operand need be coded in the TERMINAL macro for a line only when a
station that does not identify itself (by means of an origin field in the message header, as
checked by an ORIGIN macro in the Message Handler) when calling the computer may
call in on this line and either: .

(a) cause a response message to be sent back to the originating station by means of a
MSGGEN macro in the Message Handler, or

(b) place itself in lock mode (see the description of the LOCK macro) in order to await a
response message from an application program.

The ADDR= operand of the TERMINAL macro for a station must be coded unless that
station fails to identify itself after calling the computer and is restricted in usage to (a) or
(b) above. If the ADDR= operand of the TERMINAL macro for a line is coded, all
stations on the line must have identical addressing characters.

Defining Terminal and Line Control Areas 39

TLIST Macro Instruction

symbol

40

The OPDATA= operand specifies the data to be inserted in the set of option fields
assigned to this line. The operand is coded in the same way as the OPDATA= operand of
a TERMINAL macro for a station.

When a station on this line dials the computer, the option fields assigned to the line are
accessed and modified by Message Handler macros until an ORIGIN macro in the Message
Handler establishes the identity of the calling station; once identity is established, the
option fields assigned to the station calling in are updated by macros following the
ORIGIN macro in the Message Handler. When the computer calls a station, only the
option fields assigned to the station may be updated.

The UTERM= operand specifies whether this TERMINAL macro is for a line. If
UTERM=YES is coded, this TERMINAL macro is a line. If the operand is omitted or
coded UTERM=NO, this TERMINAL macro is not for a line.

The TLIST macro:

• Defines a cascade list entry or distribution list entry in the terminal table,
• Is optional among macros defirung the terminal table.

The TLIST macro causes the name of a list of single, group, or process entries in the
tenninal table, together with infonnation about the entries in the list, to be included as
an entry in the tenninal table.

A distribution or cascade list consists of the names of single, group, or process entries in
the terminal table. One TLIST macro must be specified for each list to be created.
Stations cannot enter messages using a distribution or a cascade list.

When a message contains the name of a distribution list as a destination code, TCAM
sends the message via separate transmissions to each station or application program indi
cated by an entry in the list. Each entry in the list must have a corresponding single,
group, or process entry in the terminal table. When a message contains the name of a
cascade list as a destination code, TCAM places the message on the destination queue for
that valid destination in the list that has the fewest messages waiting to be sent to it. If
several destinations have the same number of messages, the message is queued for the first
such destination.

The TLIST macro provides the initial contents for all fields in the list entry.

Name Operation Operand

symbol TLIST TYPE=~g~, llST=(entry,entry, ...)

Function: Specifies the name of the list.
Default: None. This name is required.
Format: Must conform to the rules for assembler language symbols (see the symbol entry
in the Glossary).

Function: Specifies whether the list is a distribution or a cascade list.
Default: None. This operand is required.
Format: D or C.
Notes: C specifies a cascade list. D specifies a distribution list.

Function: Specifies the actual entries in the distribution list or cascade list being created.
Default: None. This operand is required.
Format: Each entry is the name of a single, group, process, or cascade list entry in the
tenninal table. If TYPE=D, at least two entries must be specified. If TYPE=C, only one
entry is required.
Notes: The name of a distribution list entry in the terminal table may not be specified as
an entry in a distribution list. If the list being created is a distribution list, it may contain
the name of one or more cascade list entries. If it is a cascade list, it may not contain the
name of a cascade list entry.

Because of the limitation of 255 characters in a macro operand, a facility is provided to
specify additional TLIST entries if necessary. A comma placed as the last character of the

TPROCESS Macro Instruction

procname

entries operand indicates a continuation of the list. The next source statement would then
be coded:

symbol TLIST LIST=(entry, ...)

where

symbol is the TLIST name as specified on the previous TLIST macro that specified the
continuation. There is a limit of 32767 entries in a distribution or cascade list.

The TPROCESS macro:

• Serves as part of the interface between the MCP and an application program.
• Creates a terminal table entry for a queue associated with an application program.
• Is optional among macros defining the terminal table.

The TPROCESS macro causes the name of a queue for an application program and asso
ciated information to be included as an entry in the terminal table. The entry produced is
a process entry.

One TPROCESS macro must be included for each destination queue to which an applica
tion program can direct a GET or READ macro, and at least one must be included for
each process entry to which a PUT or WRITE macro may be directed.

An operand of the TPROCESS macro specifies the name of a process control block
(PCB), which is used to establish communication between a Message Handler and applica
tion programs. (The PCB is created by means of a PCB macro.)

An operand of TPROCESS enables the user to specify one alternate destination to which
the message may be sent in certain circumstances.

The user may specify that checkpointing of the application program is to be synchronized
with that of the Message Control Program. Synchronization of OS with TCAM check
points is discussed in the chapter Writing TCAM-Compatible Application Programs.

The user also specifies the initial contents of the option fields for the process entry in the
terminal table.

The TPROCESS macro helps connect an application program to the Message Control
Program. The GET and PUT or READ and WRITE macros issued in an application pro
gram each specify the name of a data control block created by a DCB macro issued in the
application program. The DCB macro specifies (by means of its DDNAME= operand) a
DD card. The QNAME= parameter of the DD card names a process entry. The pcbname
operand of the TPROCESS macro creating this entry specifies a process control block.
The MH= operand of the PCB macro creating the process control block specifies the
Message Handler that handles messages directed to and received from the application
program.

The TPROCESS macro has the following format:

Name Operation Operand

procname TPROCESS PCB=pcbname[,QUEUES=form)
[,ALTDEST=entry)
[,CKPTSYN=lYES~) [,SECTERM=l YESf)

NO· NO
[,RECDEL=delimiter]
[,LEVEL=(integer, ...)]
[,OPDA T A=(data,)]

Function: Specifies the name of the process entry in the terminal table.
Default: None. This name is required.
Format: Must conform to the rules for assembler language symbols (see the symbol entry
in the Glossary).
Notes: The name must be specified and must be the same as that entered in the
QNAME= parameter of the DD statement associated with the DCB macro for an applica
tion program.

Defining Terminal and Line Control Areas 41

PCB--pcbname

QUEUES=fonn

ALTDEST=entIy

CKPTSYN= l~~ f

SECTERM= 1~~~

42

Function: Specifies the name of the process control block that defines buffers, etc., to
handle messages queued to this process entry.
Default: None. This operand is required.
Format: Must conform to the rules for assembler language symbols.
Notes: The process control block is created by a PCB macro. All TPROCESS macros
issued fm the same application program must have the same PCB.

Function: Specifies where the message queues containing messages for the application
program are to be maintained. .
Default: None. Specification optional.
Format: DR, DN, MO, MR orMN.
Notes: DR specifies reusable disk queues. DN specifies nonreusable disk queues. MO
specifies main storage only queues. MR specifies main storage queues with reusable disk
backup. MN specifies main storage queues with backup on nonreusable disk. If the form
of data set specified by this operand does not correspond to a related message queues
data set defined by a DCB macro, the TCAM system terminates abnormally. By omitting
the QUEUES= operand, the user specifies that this process entry is for PUTs or WRITEs
from an application program.

If MO, MR or MNis specified, the MSUNITS= operand of the INTRO macro must specify
a non-zero integer; otherwise, the TPROCESS macro does not assemble properly and an
MNOTE is generated.

Function: If this process entry is for GETs or READs issued by an application program,
this operand specifies the alternate destination to be sent at the time the zone containing
the message is being serviced for reuse. If this process entry is for PUTs or WRITEs from
an application program, this operand specifies the destination to which replies to operator
commands issued by the application program are sent.
Default: None. Specification optional.
Format: The name of any single, group, or process entry in the terminal table.
Notes: The entry specified may be the one created by the TPROCESS macro, preventing
the message from being discarded from a reusable queue. If this operand is omitted for a
GET or READ process entry, the message may be overlaid in a reusable queue and lost to
the system: The operand is ignored unless QUEUES=DR or QUEUES=MR is specified for
the TPROCESS macro.

For a PUT or WRITE entry, the destination may be a station named by a TERMINAL
macro, or it may be an application program represented by a TPROCESS macro.

Function: Specifies whether the destination queue to which the application program
directs its GETs or READs is to be purged of serviced messages at restart.
Default: CKPTSYN=NO
Format: YES or NO.
Notes: CKPTSYN=YES specifies that no purging of the queue is to be performed. If an
OS checkpoint of the application program is used in synchronization with the TCAM
checkpoint, CKPTSYN=YES should be specified. If this operand is omitted, the queue is
scanned and updated at restart. When synchronization is not specified, operation follow
ing restart resumes with the first unserviced message for the queue (a message is con
sidered serviced when a GET or READ is issued for the next message from the queue and
that next message is placed on the queue). The first unserviced message is determined in
the scan of the message queue done at restart time. When not using synchronization with
an OS checkpoint, it is necessary to check for one duplicate message upon restart (Le.,
the message being processed when failure occurred).

For more information on TCAM's checkpoint facility, see the chapter Using TCAM
Service Facilities. Coordination of OS and TCAM checkpoints is discussed in the chapter
Writing TCAM-Compatible Application Programs.

Function: Specifies whether the application program may be considered a secondary
operator control station (so that operator commands may be sent to TeAM from the
application program by means of a PUT or WRITE macro).
Default: SECTERM=NO
Format: YES or NO.

RECDEL=defimiter

LEVEL=(integer, ...)

OPDATA=(data,. ••)

Notes: This operand is meaningful only if this process entry is associated with a PUT or
WRITE macro, and is ignored if coded for a process entry associated with a GET or
READ macro. If this process entry is to be the primary operator control station,
SECTERM=YES must be specified for the entry.

Function: For a process entry associated with a GET or READ macro this operand
specifies a one-byte non-zero hexadecimal value used to delimit a record for the
application program. For a process entry associated with a PUT or WRITE macro, this
operand specifies a value to be inserted at the end of each variable-length record returned
from an application program by means of a PUT or WRITE macro specifying the DCB
associated (by means of the QNAME= operand of its DD card) with the process entry.
Default: None. Specification optional.
Format: A single unframed hexadecimal character.
Notes: This character may be inserted periodically into a TCAM buffer by means of a
MSGEDIT macro whose DATA operand is coded DELIMIT, for a process entry asso
ciated with a GET or READ. If the RECFM= operand of the input DCB macro specified
by a GET or READ macro in the application program is coded RECFM=V, and if the
OPTCD= operand does not have the U sub operand coded in it, the application program
GET or READ considers this character to be a record delimiter. The delimiter specified
by RECDEL= may be included by the user in the incoming message, or may be inserted
by means of a MSGEDIT macro.

For a process entry associated with a PUT or WRITE macro, TCAM automatically inserts
the value at the end of each variable-length record. For other than variable length records,
this operand is meaningless.

Function: Specifies the permissible priority levels that may be used in the header of a
message enqueued on this process queue.
Default: None. Specification omitted.
Format: Each integer is a decimal integer. The integer, ... values must be specified in
ascending order.
Maximum: 255
Notes: If this operand is omitted, all messages sent to the application program by this
process entry are assumed to have zero priority. If the messages being sent to the applica
tion program via this process entry can have, for example, priorities of 1, 9 or 11, the
LEVEL= operand would be coded LEVEL=(l,9,11).

For more information on message priority, see the discussion of the PRIORITY macro
and Message Priority in this chapter.

Function: Specifies the actual data to be inserted in the set of option fields assigned to
this process entry (see the discussion of the OPTION macro), and also specifies which
option fields are not to be created for this process entry.
Default: None. Specification optional.
Format: The maximum length and type of data specified for each option field must
correspond to the length and type specified by the OPTION macro that defines the field.
The order in which the OPTION macros are specified must correspond to the values of
data specified in this operand.
Notes: A comma is used to:
1. delimit the data for each field;
2. indicate that no data is specified for the first or an intermediate field defined by an

OPTION macro;
3. indicate that the OPDAT A= operand is to be continued (if included immediately

preceding the right parenthesis-see note below).

The user must specify either data and a comma, or a comma alone for the first and each
intermediate field (except the last) that is specified by an OPTION macro (with one
exception-see the note below). A comma alone is coded if a field other than the last is
not to be defined for this line. If the last field is not to be defined, no data is coded for
the field and the comma is also omitted. Framing characters (X or C and quotes) are not
coded.

NOTE: When specifying option fields for a particular process entry, the user may omit
the last several option fields defined by OPTION macros by merely closing his paren
theses after the data for the last field he wishes to define.

Defining Termirtal and Line Control Areas 43

LOGTYPE Macro Instruction

44

Example:
Assume that four OPTION macros have been coded. If the user wants to specify all four
fields for a particular station, line, or application program, he would code the OPDATA=
operand of the TERMINAL or TPROCESS macro as follows:

,OPDATA=(fieldl, field2, field3, field4)

where field 1 , field2, field3, and field4 represent the actual initial data to be inserted into
each of the four option fields. If only field1 and field4 are to be implemented for this
station, line or application program, the user would code

OPDATA=(field 1 ",field 4)

If only field 1, field2, andfield3 are to be implemented, the user would code

,OPDAT A=(field I ,field2,field3)

If only field1 is to be implemented, the user would code

,OPDATA=(field 1)

A message processed by an application program and then sent to a destination station
must be handled by two sets of incoming and two sets of outgoing MH subgroups. Macros
issued in the incoming subgroups handling messages coming in from a station update the
option fields assigned to that station. Macros issued in the outgoing subgroups handling
messages for the application program update the option fields assigned to the process
entry associated with the GET or READ macro that obtains the messages for processing.
Macros issued in the incoming subgroups handling messages from an application program
update the option fields assigned to the process entry associated with the PUT or WRITE
macro that returns messages from the application program to the MCP. Macros issued in
outgoing subgroups handling messages being sent to a destination station update the
option fields assigned to that station. (For a description of which Message Handler sub
groups are required when there is an application program, see Message Flow through a
Message Handler in the chapter Designing a Message Handler. For a discussion of the
interface between the MCP and the application program see the introduction to Writing
TCAM-Compatible Application Programs.)

NOTE: Because the operand field of a macro is limited to 255 characters, TCAM pro
vides a facility to specify additional OPDATA= parameters if necessary. A comma placed
as the last character of the OPDATA= operand-t.e., OPDATA=(data,data, ... data,) indi
cates a continuation of the OPDATA= operand. The next source statement would then be
coded

symbol TPROCESS OPDATA=(data, ...)

where

symbol is the process-entry name as specified on the TPROCESS macro that specified the
continuation. There is no limit (other than the number of option fields defined) on the
number of continuation statements used.

The LOGTYPE macro:

• Initializes for using TCAM's logging facility,
• May not be omitted if TCAM's logging facility is to be used for logging complete

messages, and is unnecessary if segments are logged,
• If coded, must be specified among the macros defining the terminal table and must not

be the last such macro.

The LOGTYPE macro initializes TCAM's logging facility by specifying:

1. the name of the data control block for the log data set,
2. the buffer size used to handle messages to be logged,
3. the location of the data set (on disk or in main storage);

TCAM's logging facility is discussed in Using TeAM Service Facilities. The description of
the LOG macro contains information on when LOGTYPE should be specified.

NOTE: A LOGTYPE macro must not be coded as the last macro defining the terminal
table. No more than one LOGTYPE macro should be coded for a log data set.

Name Operation Operand

typename LOGTYPE dcbname, BUFSIZE=size
[,QUEUES=form]

typename Function: Specifies the name of the LOGTYPE macro and is the same as the typename
operand of a LOG macro. .
Default: None. This name is required.
Format: Must conform to the rules for assembler language symbols (see the symbol entry
in the Glossary).

dcbnarne Function: Specifies the name of the data control block for the log data set.
Default: None. This operand is required.
Format: Must conform to the rules for assembler language symbols.
Notes: This name must be the same as the name of the DeB macro specifying the log
data set.

BUFSIZE=size Function: Specifies the size of the buffers to be used to handle messages destined for the
logging medium.
Default: None. This operand is required.
Format: Unframed decimal integer greater than 32.
Maximum: 65535

QUEUES=form Function: Specifies where the messages are to be queued while awaiting transfer to the
logging medium.
Default: None. This operand is required.
Format: DR, ON, MO, MR or MN.
Notes: DR specifies reusable disk queues. ON specifies nonreusable disk queues. MO
specifies main storage only queues. MR specifies main storage queues with reusable disk
backup. MN specifies main storage queues with backup on nonreusable disk.

Maintaining Orderly Message Flow Thus far, this chapter has described how to define control areas needed by TCAM for line
control, and how contact is established for the purposes of invitation and selection. This
section describes how TCAM maintains an orderly message flow between the central
computer and remote stations.

Among the factors influencing the flow of messages within a TCAM system are message
priority and queuing, and transmission priority. Message priority refers to the order in
which messages are sent over a line or to an application program, relative to each other.
This order depends upon the priorities assigned to individual messages by the user as
specified by a priority field in the message header and a PRIORITY macro, and upon the
type of queuing (whether by line or by terminal) specified by the QBY= operand of the
TERMINAL macro. Transmission priority refers to the relative order in which messages
are sent to and received from a station or stations on a line. The transmission priority
(send, equal, or receive) for a nonswitched station is specified by the CPRI= operand of
the line group DCB macro. For switched stations, CPRI=S (indicating send priority) must
always be specified.

Message priority and queuing, and transmission priority are not the only factors influ
encing TCAM message flow; two other factors are the manner in which calls are made
between the computer and a switched station, and the system interval.

The remainder of this chapter is devoted to discussions of message priority and queuing,
transmission priority, calls between the computer and a switched station, and the system
interval.

Defining Terminal and line Control Areas 45

Message Priority and Queuing

46

To determine how to assign priorities to messages in a TCAM system, see the descriptions
of the PRIORITY macro and of the LEVEL= operand of the TERMINAL and
TPROCESS macros. In this section, we shall be concerned with a practical description of
what message priority means in a TCAM system; more specifically, given a certain number
of messages having different priorities, which are awaiting transmission to destination
stations on a certain line, or which are enqueued on a process queue for an application
program, we shall describe the order in which these messages are sent, relative to each
other. This order depends upon three variables :

• Whether queuing is by line or by terminal,
• The relative order in which the messages are received at the destination queue,
• What priorities the messages are assigned.

Messages whose destinations are stations may be queued by destination terminal or by
destination line. The user specifies the type of queuing he wants by the QBY= operand of
the TERMINAL macro; When outgoing messages are queued by line, one message queue
is created for a line, and messages destined for all stations on the line are placed on this
queue. (The incoming group of a Message Handler generally determines the destination of
a message by a FORWARD macro.) Messages are taken off the queue and sent to stations
on the line on a first-ended first-out (FEFO) basis within priority groups. That is, mes
sages on the queue that have a higher message priority (as specified in the message header
or assigned by a PRIORITY macro) are sent before messages having a lower priority;
when messages have the same priority, the one whose final segment arrived at the queue
first will be sent out first, and the others will be sent out in the order in which their final
segments arrived at the queue. (An example of queuing by line is given below.)

Advantages of Queuing by Line

• Queuing by line permits transmission of messages by priority on a line basis to stations
on a multipoint nonswitched line; that is, all messages of a given priority on the queue
are transmitted before any messages of a lower priority, whether or not the higher
priority messages are destined for two different stations on the line.

• Queuing by line takes less storage space than queuing by terminal. If queuing is by line
rather than by terminal, at least 65 bytes are saved for each station after the first on a
line, plus about 28 bytes per station after the first for each priority level specified
beyond one. .

Disadvantages of Queuing by Line

• Queuing by line results in switching between stations on the line rather than main
taining connection with a station.

When outgoing messages are queued by terminal, one message queue is created for each
station on a line. All messages queued for a given station are sent before any messages
queued for other stations on the line. Messages on a queue are sent to a station on first
ended first-out (FEFO) basis within priority groups. The first message on a queue is the
message whose last segment arrived at the queue before the last segment of any other
message arrived at the queue. Higher-priority messages are sent before lower-priority
messages; when two messages on a queue have equal priority, the one whose final segment
arrived at the queue earliest is sent first. For a multipoint line, the relative order in which
queues of messages are transmitted is also determined on a FEFO basis; the queue con
taining the message whose incoming transmission over the line was completed first will be
sent before any other queue for a station on that line.

Queuing by terminal must be specified for switched stations and for buffered terminals. If
switched stations were queued by line, a station that called in would receive not only its
messages, but those for all other stations in the line group as well.

Messages whose destination is an application program are placed on a queue for that pro
gram, and are removed from it as if they were messages queued by terminal; that is, they
are sent to the application program on an FEFO basis within priority groups.

Advantages of Queuing by Terminal

• Queuing by terminal permits transmission of messages by priority on a station-by
station basis; that is, all messages in a given queue for a station on a line are trans
mitted before any messages in other queues for the remaining stations on the line are

transmitted, whether or not the other queues contain messages having priorities higher
than those for the messages being transmitted. Thus, messages for the same station are
sent as a group.

Disadvantages of Queuing by Terminal

• Queuing by terminal takes more storage space than does queuing by line.

The orders of sending described above are disrupted when a message segment for which
the INITIATE macro has been executed arrives at a destination queue; such a segment is
treated as if it were a completed message having the highest priority on the queue, and is
sent before any other message on the queue is sent. In addition, no message on the queue
may be sent until all segments of the message for which INITIATE was executed have
arrived at the queue and been sent to their destination. (See the description of the
INITIATE macro.)

Examples:
Assume a multipoint nonswitched line on which are located the following three terminals
(each name given corresponds to the symbol field of the TERMINAL macro defining that
terminal): NYC, BOS, RAL. Nine messages arrive from various remote stations, or
perhaps from an application program; these messages are to be routed to the three
terminals on this line. Messages I through 9 are completely enqueued on a destination
queue in the following temporal order:

1 for NYC
2 for NYC
3 for BOS
4 for RAL
5 for RAL
6 for BOS
7 for NYC
8 for RAL
9 for RAL

First, assume that queuing is by line, and that all messages have the same message
priority. In this case, the messages are sent out in the same order that they were com
pletely enqueued on the destination queue for the line: 1,2,3,4,5,6,7,8,9.

Now, assume that queuing is by terminal and that all nine messages have the same mes
sage priority. In this case, the messages are queued

• for NYC in the order 1,2,7
• for BOS in the order 3, 6
• for RAL in the order 4, 5, 8,9

and are sent out in the order I, 2, 7, 3, 6, 4, 5, 8, 9.

Next, assume that messages 1,5, and 9 have a message priority of 10, that messages 2, 4,
and 7 have a message priority of 30, and that messages 3, 6, and 8 have a message priority
of 60.

The messages will be queued by line or by terminal (depending upon which is specified in
the TERMINAL macros) in the same order as they would if all messages had the same
priority. The order in which they are sent, however, differs from that given above for the
case in which all messages have the same priority.

If queuing is by line, the messages are sent in the order 3, 6, 8, 2, 4, 7, 1, 5, 9.

If queuing is by terminal, the messages are sent in the order 2, 7, 1,3,6,8,4,5,9.

Note the following points:

• When messages for stations on a multipoint line are queued by terminal, the order in
which the groups of messages queued for the individual stations on the line are trans
mitted with respect to each other depends upon the time that the last segment of the
first message on each individual queue arrives at the queue. In the above example the

Defining Terminal and Line Control Areas 47

Transmission Priority

48

last segment of the first message on the queue for NYC arrived at its queue before the
last segment of the first message on the queue for BOS arrived at its queue, and the
last segment of the first message on the queue for BOS arrived at its queue before the
last segment of the first message on the queue for RAL. Therefore, all messages
queued for NYC are transmitted before any message queued for BOS is transmitted,
and all messages queued for BOS are transmitted before any message queued for RAL
is transmitted.

• When messages to be sent to stations on a multipoint line are queued by terminal, the
order in which the messages queued for an individual station are transmitted is deter
mined by two rules:
1. All messages having a higher message priority are transmitted before any message

having a lower message priority is transmitted;
2. When messages have equal message priorities, the message whose final segment

arrived at the queue earliest is sent first, the message whose final segment arrived at
the queue next-earliest is sent second, etc.

When these two rules are in effect, messages are said to be sent out on a first-ended, first
out (FEFO) basis within priority groups.

Messages for stations on point-to-point lines, whether switched or nons witched, are also
transmitted on a FEFO basis within priority groups. (Remember that switched lines are
considered to be point-to-point, and that queuing by terminal should always be specified
for switched lines.)

Transmission priority refers to the relative order in which messages are sent to and re
ceived from the stations on a line. Transmission priority is specified on a line-group basis
by means of the CPRI= operand of the line group DCB macro.

Transmission priority has a different meaning for each of four configurations of stations
supported by TCAM:

1. Polled stations (unbuffered) on a nonswitched point-to-point or multipoint line;
2. Buffered polled stations .on a nonswitched multipoint line;
3. Contention stations on a nonswitched point-to-point line;
4. Stations on a switched line.

We shall describe the transmission priority scheme for each of these configUrations, in the
order given above.

NOTE: TCAM considers a buffered station to be one for whic;h the BFDELA Y= operand
of the TERMINAL macro is coded. A special scheme for transmitting outgoing messages
is implemented for such a station (see the description of the BFDELA Y= operand of
TERMINAL). A station may be defined as buffered using the BFDELA Y= operand even
though no delay is ever taken.

Transmission Priority for Nonswitched Polled Stations
For such stations, the user may specify that sending has priority over receiving (by coding
CPRI=S in the line group DCB macro), that receiving has priority over sending (by coding
CPRI=R), or that sending and receiving have equal priority (by coding CPRI=E). The
meaning of these priorities depends upon whether the line is being polled under the con
trol of the Auto Poll hardware feature, or under the control of the TCAM program
polling scheme.

TeAM Program Poll: . When this scheme is used, TCAM polls all stations designated as
active in the invitation list for an active line. In polling, TCAM begins with the first active
station in the list, and invites it to enter a message by sending it polling characters. If the
station has a message to enter, it responds by entering the message, following which
TCAM polls it again.

If receiving has priority over sending, the cycle of polling and entering is repeated until
the first station has no more messages to enter. When TCAM receives a negative response
to polling from the first active station in the list, it proceeds to the second active station
in the list, and polls it. TCAM continues to poll the second station until the station
indicates that it has no more messages to enter, at which time TCAM proceeds to the
third station. TCAM proceeds through the list in this fashion until a negative response to
polling is received from the last station in the list. At this time, TCAM observes the invi
tation delay specified by the INTVL= operand of the line group DCB macro, or by a

POLLDLA Y operator command. During the invitation delay, outgoing messages are sent
to stations on the line in the order described in Message Priority and Queuing. (If the
computer has no messages to send to stations on the line at this time, the invitation delay
is observed nevertheless.) Outgoing messages are sent until the delay expires or the
destination queues for stations on the line are empty. Upon expiration of the delay,
outgoing message transmission ends after the current message is sent, regardless of
whether any messages remain queued. As soon as outgoing message transmission ceases,
polling and incoming message transmission resume, and the cycle is repeated. It is im
portant to note that if no invitation delay is specified, outgoing message transmission
does not occur. If an invitation delay is specified, it must be long enough to accom
modate the expected density of outgoing message traffic; too short a delay causes out
going messages to accumulate on the destination queues for lines or stations in a line
group.

If receiving and sending have equal priority, polling and incoming message traffic proceed
without interruption until the end of the invitation list is reached. Then outgoing mes
sages (if any are present on the destination queues for the stations on the line) are sent to
stations on the line in the order described in the Message Priority and Queuing section.
Once outgoing transmission begins, it continues until all messages queued for stations on
the line have been sent, regardless of whether the user has specified an invitation delay.
When all messages for stations on the line have been sent, polling and incoming message
traffic resume. Note that, in contrast to the case where receiving has priority over
sending, outgoing message transmission occurs whether or not an invitation delay is
specified and regardless of the specified length of the delay.

If sending has priority over receiving, outgoing messages (if any are queued for stations on
the line) are sent:

1. Each time a negative response to polling is received from a station.
2. Each time an EOT is received from a station, indicating that a complete message has

been received.
3. Each time the end of the invitation list is reached.

Outgoing messages are sent in the order described in the Message Priority and Queuing
section. Once outgoing message transmission begins, it continues until all messages
queued for stations on the line have been sent. Note that when sending has priority over
receiving, outgoing transmission can occur after each station is polled, rather than only
after a complete polling pass.

Auto Poll; For lines polled under the control of the Auto Poll hardware feature, the
scheme given above is slightly modified.

If receiving has priority over sending, messages are sent to stations on the line during the
invitation delay. However, if no messages have been queued for stations on the line by the
time the end of the invitation list is reached, no invitation delay is observed.

If receiving and sending have equal priority, there is no difference between autopolled
and other polled lines.

If sending has priority over receiving, outgoing messages are sent over autopolled lines:

1. Each time an EOT is received from a station, indicating that a complete message has
been received.

2. Each time the end of the invitation list is reached.

Transmission Priority for Nonswitched Polled Stations Using TeAM's Buffering Feature
The IBM 2740 Model 2 contains a hardware buffer (and a message to the 2740 Model 2
must fit within this buffer); the IBM 2770 on a multipoint line contains two hardware
buffers. Messages to these stations fill the buffers at line speed. A message is read from
the buffer to the terminal output device at the speed of the output device. This improves
line utilization, since the line is occupied with individual stations for a relatively short
period of time. If a buffered station is addressed before the buffer has emptied, a negative
response is returned and the station must be selected again later. A message to be entered
from a buffered station is first entered into the buffer from the input component (at the
speed of the input device). When the buffer is filled or the message is entered, the message
is transmitted to the CPU at line speed the next time the station is polled.

Defining Terminal and Line Control Areas 49

50

TCAM sends to an IBM 2740 Model 2 a message at a time and to an IBM 2770 until its
buffer space is filled. The 2740 Model 2 accepts messages; thus, a block of data to the
2740 Model 2 must be equivalent to a whole message. To prevent TCAM from trying to
send a message to a 2740 Model 2 while the hardware buffer is still emptying the previous
message and thus wasting time on the line, TCAM allows the user to specify (in the
BFDELA Y= operand of the TERMINAL macro) the number of seconds of delay to
observe before sending each message after the first to a 2740 Model 2. The time specified
should be the average time needed to empty the hardware buffer (the BFDELAY=
operand must be specified for the IBM 2770; see BSC device-dependent considerations in
the section Sending Operations in Appendix G). While this interval is in effect, TCAM can
be sending messages to other stations on the line, thereby utilizing the line more
efficiently.

Thus, when BFDELA Y= is specified for the 2740 Model 2 on a multipoint line, messages
are sent to stations on the line on a message-by-message basis: the first message is sent; if
there are messages queued for othentations on the line, they are sent; subsequent
messages are sent as stations become available. For the 2740 Model 2 to become eligible
to accept another message, the time interval specified by the BFDELA Y= operand of its
TERMINAL macro must have elapsed. For information on how to determine the correct
interval and restrictions on coding BFDELAY=, see the description of this operand.

When a STOPLINE operator command, a QTAM STOPLN macro, a SYSCLOSE operator
command or an MCPCLOSE macro specifying a quick closedown is executed, trans
mission on a line to stations using TCAM's buffered-terminal support is not stopped until
all messages being sent to stations on the line at the time the command or macro is
executed have been completely sent and all intervals specified by the BFDELA Y=
operand of the TERMINAL macros for stations on the line have been observed.

For TCAM's buffering feature to work properly for the IBM 2740 Model 2, queuing by
terminal and either equal or send priority must be specified in the TERMINAL and line
group DCB macros.

Transmission Priority for Nonswitched Contention Stations
The following can be nonswitched contention stations: the IBM 2740 Basic, the IBM
2780, the IBM 2770, World Trade (WTT A) terminals, and the IBM System 360, System
360 Model 20, and 1130 Computing System. For nonswitched contention stations, either
equal or send priority may be specified. The way in which equal priority works is device
dependent, and is explained in Appendix G.

Send priority is similar for all these types of stations; if send priority is specified,
messages may be entered at the station whenever the line is idle. Whenever a message is
queued for sending, TCAM checks to see whether a message is being entered by the
station; if so, the computer waits until an EOT control character is received and then
sends all messages queued for the station. If no message is being entered, the computer
sends all queued messages immediately after checking. After sending all messages, the
computer is ready to receive messages from the station. The invitation list for the line
may consist of a dummy entry (see the description of the INVLIST macro).

For equal priority for the devices listed above, see Appendix G: Device Dependent
Considerations.

NOTE: When a BSC device is in contention with the CPU, TCAM defers to the BSC
device for control of the line. However, when a start-stop device has a message to enter,
and it is in contention with the CPU, the start-stop device loses that message (a Message
Handler that includes the SEQUENCE macro can indicate when a message is lost to the
system).

Transmission Priority for Switched Stations
For switched stations, CPRI=S must be specified in the line group DCB macro.

The relative order in which messages are sent to and received from a station on a switched
line depends upon whether the station is a BSC station or a non-BSC station.

When a non-BSC station calls the computer, once the connection is established the station
begins to enter any messages it may have ready for the computer. Before it can accept

Calls between the Computer
and a Switched Station

messages, the station calling in must identify itself to the computer by means of an origin
field, verified by an ORIGIN macro, in a message header. If the station does not identify
itself, the computer breaks the line connection upon receiving a negative response to
invitation, thereby making the line available for other calls. Once the station identifies
itself, it is eligible to accept messages. If any messages were queued for the station at the
time it identified itself, the station accepts these messages as soon as possible; no further
messages may be entered at the station until the queued messages are sent. Messages are
sent by the computer according to the priority scheme outlined in the section Message
Priority and Queuing. If the destination queue for the station was empty at the time the
station identified itself, and once the queue becomes empty during this call, messages are
sent to the station as soon as possible after they are placed on the destination queue. That
is, whenever a message is completely enqueued on the previously empty destination
queue during this call, TCAM checks to see whether a message is being entered by the
station; if so, the computer waits until the message has been completely received, and
then sends all messages queued for the station. After sending all messages, the computer
invites the station to enter messages. When the last incoming message is received and no
further messages appear on the destination queue for the station, the computer breaks the
line connection, making the line available for new calls.

When the computer calls a non-BSC station, the computer sends all messages queued for
the station before the station enters any messages. Messages are sent by the computer
according to the priority scheme described in the section Message Priority and Queuing.
Once all queued messages have been sent, or if the queue was empty, the station begins
entering any messages it may have ready. If a message is enqueued for the station after
the station begins entering messages, TCAM sends the message as soon as the message
currently being received from the station has finished, as described above. When the
station indicates that it has no more messages to enter, and no further messages appear
on the destination queue, TCAM breaks the line connection, rendering the line available
for new calls.

NOTE: See Appendix G. Device Dependent Considerations for the transmission priority
for:

• 2740 Communications Terminal on a switched line;
• Switched BSC stations;
• Switched TWX stations.

On a line-group basis, the order in which messages on a switched line are sent and received
depends upon whether the computer dials a station or a station dials the computer, and
upon when calls are made.

In a TCAM system, a station may call the CPU on a line that is in its own line group and
that has a relative line number equal to or greater than the line to which the calling
station is assigned. When a station dials the computer, the computer may answer either
manually or automatically if it is equipped with the Auto Answer feature.

If these requirements are satisfied, and if the line is not currently connected to another
station, a connection is established each time the station dials the number associated with
the line. If the line is connected to another station when a station dials its number, the
dialing station receives a busy signal and must try again later. Once contact is successfully
established between station and computer, message transmission occurs according to the
scheme described in the section Transmission Priority for Switched Stations.

If the computer is equipped with the Auto Call feature, it may dial switched stations. For
the computer to dial a switched station, the station's telephone number must be entered
in the DIALNO= operand of its TERMINAL macro (and the computer must be equipped
with the Auto Call feature). If CLOCK= is coded for the TERMINAL macro, the com
puter dials the station only at the time specified by CLOCK=, and this is the only time at
which the station may receive messages from the computer.

If CLOCK= is not coded, an attempt is made to call the station whenever a message is
completely received and enqueued in the previously empty destination queue for that
station. (A destination queue is considered to be "empty" when it contains no com
pletely received, but as yet unsent, messages.)

Defining Terminal and Line Control Areas 51

52

If the CINTVL= operand of the TERMINAL macro provides an interval, and the station
does not call in and is not called during this time, TCAM calls the station at the end of
the interval. (When the station calls in or is called during the specified interval, the
intelval begins again.)

When the first message arrives at the previously empty destination queue for a: station (if
CLOCK= is not coded), or the time specified by CLOCK= or CINTVL= is reached, the
computer attempts to dial the station over the line specified by the RLN= operand of the
TERMINAL macro for the station. If this line is currently being used by another station,
the computer attempts to place the call over the line whose relative line number is one
greater than that specified for this station. If this line is a1so being used by another
station, the computer checks the line whose relative line number is higher by one than
that for the line just checked; this procedure is repeated until an available line is found, or
until the line having the highest relative line number in this line group is checked and
found to be in use. If the line with the highest relative line number in the group is in use,
the call is delayed until a line becomes available, at which time it is sent. If more than one
waiting call is eligible to be made over a line that has just become available, TCAM
decides which call to make according to a priority scheme described below. Once the
connection between computer and station is established, transmission occurs in accor
dance with the scheme described in the section Transmission Priority for Switched
Stations.

TCAM's calling scheme is designed to take advantage of AT&T's Wide Area Telephone
Service (WATS). If WATS is used, care should be taken to arrange the lines in a switched
line group to take full advantage of the TCAM calling scheme. Lines should be arranged in
a line group according to increasing area of WATS coverage, with the line covering the
smallest area being assigned relative line 'Ill, and the line covering the largest area being
assigned the highest relative line number in the group. (The way in which lines in a line
group are assigned relative line numbers is described in DD Statement for a Line Group in
the chapter Defining the MCP Data Sets.) It is most economical for stations to be assigned
to lines whose WATS coverage extend to their area and no farther; in no event should
stations be assigned to a line whose coverage does not extend to their location.

When a call cannot be made because all suitable lines in the line group are busy, TCAM
queues the request and defers the call until a suitable line is available. If a line becomes
available, and if there is more than one call that could be made over the line according to
the rules described above (Le., the line is in the same line group as the line to which the
prospective station is assigned, and has a relative line number equal to or greater than
that of the line to which the prospective station is assigned), TeAM determines which
station will be called first by applying the following principles:

1. A station whose destination queue contains one or more messages having non-zero
message priorities is called before a station whose destination queue contains only
messages to which no message priority was assigned (Le., messages having zero
priority). A station whose destination queue contains only zero-priority messages is
called before a station whose destination queue contains no complete messages.

2. A station having a higher-priority message on its destination queue is called before a
station having lower-priority messages on its destination queue. If the highest-priority
messages on the queues for two eligible stations are equal in priority (and if this
priority is not zero), the time at which the last segments of the high-priority messages
were enqueued determines which station is called; the station whose destination queue
received the last segment of its highest-priority message first is called first.

3. Among stations having only zero-priority messages on their destination queues, TCAM
calls the station whose relative line number is equal to, or closest to but lower than,
the relative line number of the available line. Among stations having only zero-priority
messages on their destination queues and having the same relative line number, TCAM
calls the eligible station whose queue was first to receive a complete message.

4. Among stations whose queues contain no complete messages, TCAM calls the eligible
station for which the call has been deferred the longest (this principle is applicable
only for stations whose TERMINAL macro specifies CLOCK= or CINTVL=).

Note that a strict W ATS priority scheme for deferred calls is observed only among
stations whose destination queues contain only messages having zero priority. Ifrelative
line '116 becomes available and calls have been deferred for a station assigned to relative
line 'Ill and for a station assigned to relative line '116, and if the queue for the station
assigned to relative line '111 contains the highest-priority message, this station will be called

The System Interval

before the other, even though it would be more economical from a WATS standpoint to
call the station assigned to relative line 'fI6. (See Principle 'fI2 above.) If the queues for
both stations contain only zero-priority messages, a WATS priority scheme will be
applied, and the station assigned to relative line 'fI6 will be called first. (See Principle 113
above.)

If the computer dials a station and gets a signal indicating that the station's telephone is
already in use, this is treated as an error condition. The station's number will be dialed
twice more; if no connection is established in three attempts, TCAM sets the selection
error bit in the message error record, and the message is lost unless a REDIRECT or
HOLD macro is executed for it in the outmessage subgroup. (The text error bit in the
message error record may also be turned on - see the description of this bit in Appendix B.).
Once the connection between the computer and a switched station is established, transmis
sion occurs according to the scheme described in the section Transmission Priority for
Switched Stations.

Message flow is vitally affected by the system interval, a period of time specified by the
INTV AL= operand of the INTRO macro. The INTERVAL operator command tells
TCAM to begin the system interval. When this message is received, each multipoint line to
polled stations is "frozen" (i.e., polling and addressing cease on it) at the end of its cur
rent polling pass, and (if assigned receive priority) after the invitation delay has been
observed. When all multipoint lines are inactive, the system interval commences. Lines to
switched stations and nonswitched contention lines are left active; stations on such lines
may still enter and accept messages. A SYSINTVL operator command may be entered
from a contention operator control station to change the duration of the system interval.
If this message is entered while a system interval is in effect, it does not change the dura
tion of the current interval, but does change the duration of subsequent intervals.

The system interval is used to minimize unproductive polling, to minimize CPU meter
time, and to synchronize polling on the polled lines in the system. In general, if there is
no traffic on any line in the TCAM system the OS Supervisor is given control to dispatch
the next concurrent job. I

Defining Terminal and Line Control Areas 53

Structure of a Buffer

\
)

Defining Buffers

Messages entering a TCAM network are read into buffers, which are user-defined areas of
main storage used for handling, queuing, and transferring message segments between all
lines and queuing media, and between queuing media and application-program work
areas. (A message segment is that portion of a message contained in one buffer.) A buffer
has two parts, one containing control information (the buffer prefix) and the other con
taining all or part of the message. Buffers must be at least 31 bytes long, and may be no
longer than 65535 bytes.

To provide the best dynamic buffering capability and use of main storage, the TCAM
network has one buffer unit pool containing buffer units of one size. Buffer units are the
basic building blocks from which buffers are constructed.

The size of a unit is specified by the KEYLEN= operand of the INTRO macro of an MCP,
and the number of units in the pool is equal to the sum of the numbers specified by the
LNUNITS= and MSUNITS= operands of INTRO. For internal management purposes, 12
bytes are added by TCAM to the user-specified unit size. Thus, if a user specifies a unit
size of 60 bytes (KEYLEN=60), the size of the unit becomes 72. The user should not
concern himself with the extra 12 bytes when defining his buffers.

NOTE: If the sum of the number of bytes specified by the KEYLEN= operand plus 12
bytes is not evenly divisible by eight, TCAM adds enough bytes to each unit to make its
total length divisible by eight. This is done so that units which are contiguous in main
storage always start on a doubleword boundary.

The size of a buffer for a line group is specified by the BUFSIZE= operand of the DCB
macro defining the line group data set for that group. Each line group may utilize buffers
that differ in size from those assigned to other line groups.

By coding the BUFSIZE= operand of the TERMINAL macro, the user may override the
buffer size specified in the line group DCB macro on a station-by-station basis, for out
going messages only.

By linking an appropriate number of units, TCAM constructs buffers containing a number
of bytes at least as great as that specified by the BUFSIZE= operand of the DCB macro
for a given line group. (The 12 bytes added to each unit by TCAM should not be con
sidered in defming BUFSIZE=; the user should consider only the number of bytes he
specified in the KEYLEN= operand of the INTRO macro.) For example, if the user
specified KEYLEN=60 in the INTRO macro and BUFSIZE=120 in a line group DCB,
TCAM links together two units in building buffers for that line group. If, however,
KEYLEN=60 and BUFSIZE=l 00 is coded, TCAM will stilltink two units, but the last 20
bytes of the second unit cannot be used and main-storage space is wasted. If
KEYLEN=60 and BUFSIZE=40 is specified, the last 20 bytes of the first (and only) unit
assigned are wasted.

There are two types of logical buffers, header buffers. and text buffers. A header buffer is
a buffer that contains all or any part of a message header. A text buffer contains message
text only.

A buffer prefix is a control area contained within each physical buffer of the system. The
user must allow room for the buffer prefix in defining his buffers. TCAM fills in the
buffer prefix area with buffer control information.

If only one buffer is used to contain a message, the buffer prefix occupies the first 30
bytes of the buffer. If more than one buffer is used to contain a message, a 30-byte buffer
prefix occupies the beginning of the first buffer, and a 23-byte buffer prefix occupies the
beginning of each subsequent buffer assigned to the message.

Thus, there are two kinds of control areas associated with buffers. The l2-byte control
area associated with each buffer unit is assigned automatically by TCAM and need be of
no concern to the user when defining buffers. The 30-byte (header) or 23-byte (text)
buffer prefix assigned to each buffer is of concern to the user, who must allow for this
area in defining the size of his units. Each unit must be large enough to contain the larger

Defining Buffers 55

56

12 Bytes
Buffer Unit
Control

I

12 Bytes

prefix plus one byte (31 bytes) and may be no larger than 255 bytes. Obviously, the
second and subsequent buffers will contain more bytes of actual message than will the
first buffer, since their prefixes are seven bytes shorter than that of the first buffer.

Figure 2 shows how two buffers assigned to a line group would look if the user specified
KEYLEN=60 and BUFSIZE=120.

Notice that each buffer is composed of two units linked together, and that the two
buffers are also linked together. Each unit is 72 bytes long (the 60 bytes specified by
KEYLEN= plus a 12-byte unit control area added by TCAM). In defining BUFSIZE for
the line group, only the 60 bytes specified by the user were considered.

Remember that:

• A buffer is composed of one or more buffer units,
• Each buffer unit must be at least 31 bytes long (not counting the 12-byte control area

added by TCAM) and may be no longer than 255 bytes (not counting the unit control
area),

• Each buffer must be at least 31 bytes long (minimal size of one unit) and may be no
longer than 65535 bytes.

30 Bytes 30 Bytes
First Buffer Message Header Unit 1
Prefix Area and Text

Buffer'1

60 Bytes
Buffer Unit Message Header Unit 2
Control and Text

12 Bytes 23 Bytes 37 Bytes
Buffer Unit Subsequent Buffer Message Header Unit 1
Control Prefix Area and Text

Buffer 112

12 Bytes 60 Bytes
Buffer Unit Message Header Unit 2

Control and Text

Figure 2. Two Buffers Assigned to a Line Group; KEYLEN=60 and BUFSIZE=120

The Buffer Unit Pool One buffer unit pool is defined for the Message Control Program. This single pool con
tains a number of buffer units equal to the sum of the numbers specified by the
LNUNITS= and MSUNITS= operands of the INTRO macro. The total number of units
in the unit pool must not exceed 65535.

When message traffic is in progress, a unit in the unit pool may be in anyone of three
states:

1. If a main-storage message-queues data set is specified, some units are assigned to main
storage message queues,

2. Some units are linked to form buffers assigned to line groups or line application
programs to handle data transfer,

3. Some units are assigned to an available-unit queue, where they remain until linked to
form a buffer or until assigned to a message queue.

Figures 3 and 4 show how the units in a unit pool are allocated. Figure 3 illustrates how
units are allocated when the user specifies main-storage message queuing with or without
backup on reusable or nonreusable disk (see Defining the MCP Data Sets for a discussion
of main-storage message queuing).

The first block in Figure 3 shows how the unit pool looks just after storage has been
allocated for it, when main storage queuing is specified. The pool consists of a number of
units equal to the sum of the LNUNITS= and MSUNITS= operands of INTRO. Each unit
has a length equal to the number of bytes specified by the KEYLEN= operand of INTRO,
plus 12 bytes. All units are assigned to the available-unit queue.

The second block in Figure 3 shows how the pool looks just before selection and invita
tion begin. A certain number of units have been linked to form buffers, which are
assigned to line groups and application programs to handle initial send and receive opera
tions (the number of buffers assigned is specified for line groups by the BUFIN= and
BUFOUT= keyword operands of the line-group DCB macro, and for application programs
by the BUFIN= and BUFOUT= operands of the PCB macro). All other units are still in
the available-unit queue.

The third block in Figure 3 illustrates the situation when normal message traffic is in
progress. Some units are in line and application-program buffers; others are in main
storage message queues; the remainder are in the available buffer queue. The arrows
represent the normal limits in size of the fraction of the unit pool that can be assigned to
line and application-program buffers or to main-storage message queues after selection or
invitation has begun. The number of units assigned to main-storage message queues may
never exceed the number specified by the MSUNITS= operand of INTRO. The number of
units assigned to line and application-program buffers will not ordinarily exceed the
number specified by the LNUNITS= operand of INTRO. However, under exceptional
conditions (e.g., when main-storage queuing with backup on disk is specified, and there is
a peak period of line activity with low main-storage queue activity and high disk activity),
the number of units assigned to line and application-program buffers may exceed the
number specified by LNUNITS=, if the number of units required is available in the avail
able unit queue.

Figure 4 illustrates how units are allocated when the user has specified disk queuing only
for his message queues data set.

The first block in Figure 4 shows how the unit pool looks just after storage has been
allocated for it. The pool consists of a number of units equal to that specified by the
LNUNITS= operand of INTRO. All units are assigned to the available-unit queue.

The second block in Figure 4 shows how the pool looks just before selection or invitation
commence. A certain number of units have been linked to form buffers, which are
assigned to line groups and application programs to handle sending and receiving opera
tions. All other units are on the available-unit queue.

Defining Buffers 57

58

Initially:

Just Before Selection
or Invitation:

Normal
Ir!:!ffi.£ :

Assigned by
LNUNITS=

Assigned by
MSUNITS=

Assigned by
lNUNITS=

Assigned by
MSUNITS=

Assigned by
LNUNITS=

Assigned by
MSUNITS=

Unit Pool

Unit Pool

Unit Pool

Available -Unit
Queue

Units in line Buffers

Available-Unit Queue

Units in line Buffers

Available-Unit Queue

Units in Main-Storage
Message Queue

Figure 3. Unit Allocation when Main-storage Queuing (with or without Backup on Disk) is Specified

The third block in Figure 4 illustrates the situation when normal message traffic is in
progress. Each unit in the pool is either assigned to a line or application-program buffer or
assigned to the available-unit queue. The arrows illustrate the limit in size of the fraction
of the unit pool that may be asSigned to line buffers after selection or invitation has
begun. All units on the available-unit queue may be asSigned to line buffers.

NOTE: Buffers are not always available to be asSigned to lines; for example, when TCAM
does a read operation for a data set residing on disk, a buffer is reserved to hold the
record read from the disk.

Buffers assigned to TCAM application programs differ from those asSigned to the MCP in
the way in which they are defined and in the manner in which they are allocated. For
additional information on such buffers, see Defining Buffers for the Application Program
in the chapter Writing TCAM-Compatible Application Programs.

Buffer Definition Checklist

Initially:

Just lef9£! Selection
or Invitation:

Assigned by
LNUNITS=

Unit Pool f",...----_'"

'-------' ...

Unit Pool
~,...------)

Available-Unit
Queue

Units in line Buffers

Assigned by
LNUNITS=

... L.o-_____ } AvaU.bl.-Unit Queue

Normal
Traffic: -

Assigned by
LNUNITS=

Unit Pool

-.- - -_ _--
Figure 4. Unit Allocation when Disk-only Queuing is Specified

Units in line Buffers

Avai lable-Unit Queue

A checklist of the TCAM macro operands directly involved in MCP buffer definition
follows. (A similar checklist for defining application-program buffers is contained in the
chapter Writing TCAM-Compatl"ble Application Programs.) The macros to which the
operands belong are described in detail elsewhere in this publication .. The user should
first scan the checklist to give himself a general idea of what is involved in defining
TeAM buffers, and then read the next section, which contains guidelines for coding many
of these operands. Finally, the checklist may be used during actual buffer definition to
assure that all applicable operands are coded. For information on maximum and mini
mum values and defaults, see the operand description for the associated macro.

Defining Buffers 59

Buffer Definition Checklist

Macro

INTRO

Line Group DCB

TERMINAL

LOGTYPE

60

Operand

KEYLEN=integer

LNUNITS=integer

BUFSIZE=integer

[BUFIN=integer]

[BUFOUT=integer]

[BUFMAX=integer]

[RESERVE=
(integer 1;
[integer 2])]

[BUFSIZE=integer J

BUFSIZE=integer

Description of Function and Comments

Specifies the length in bytes of a buffer unit. The unit as it exists in the
unit pool is equal in length to the number of bytes specified by KEYLEN=
plus a 12-byte control area added by TeAM. TCAM begins each unit on a
doubleword boundary. In order to conserve main-storage space, the fol
lowing formula can be used as a guideline in determining a value for
KEYLEN=:

KEYLEN=8x-12

where x is any integer between 6 and 33, inclusive. A buffer unit must be
large enough to accommodate the larger of:

(a) a header prefix (30 bytes) plus the maximum number of reserve char
acters specified for the first buffer by the RESERVE= operand of any
line group DCB macro or PCB macro plus 3 bytes or,

(b) a text prefix (23 bytes) plus the maximum number of reserve bytes
specified for buffers other than the first by the RESERVE= operand of
any line group DCB macro or PCB macro plus 3 bytes.

Specifies the number of buffer units in the unit pool that may be used to
build line buffers and buffers to handle application-program traffic. The
sum of LNUNITS= plus MSUNITS= must not exceed 65535.

Specifies the size of buffers to be used for all lines in this line group. The
size specified here may be overridden on a station basis for outgoing
messages by means of the BUFSIZE= operand of the TERMINAL macro.
The maximum number of units per buffer is 255.

Specifies the number of buffers assigned initially for receiving operations
for each line in the line group.

Specifies the number of buffers to be asslgned initially for sending opera
tions for each line in the line group.

Specifies the maximum number of buffers allocated to a line at one time.
If this operand is omitted, the larger of BUFIN= and BUFOUT= is
assumed.

Specifies whether and how program-controlled interruptions (PCI) are to
be used for control of dynamic buffer allocation and deallocation. For the
meaning of the operands, see the discussion of program-controlled inter
ruptions in Dynamic and Static Buffer Allocation in this chapter.

integer 1 specifies the number of bytes to be reserved in the first buffer of
each incoming message for insertion of data by the DATETIME and
SEQUENCE macros. integer 2 optionally specifies the number of bytes to
be reserved in all buffers, except the first, for insertion of characters by
the DATETIME macro. See the descriptions of these macros, and the
discussion of this operand in the description of the line group DCB macro.

Overrides the buffer size specified by the BUFSIZE= operand of the line
group DCB macro, but only for buffers containing outgoing messages
destined for this station.

Specifies the size of the buffers to handle messages destined for the logging
medium when logging of messages is specified by a LOG macro.

Design Considerations

Size of Buffers

Number of Units

Management of data buffers for incoming and outgoing messages is an important factor in
running a TeAM system at optimal efficiency. There are several factors that a system
programmer must consider in weighing the trade-off of time and main storage.

1. The user must specify enough buffer units to assure no loss or undue delay of data.
2. The user must select the size of his buffer units and buffers to accommodate his

message.
3. The user must decide whether to use the program-controlled interruption (pel) feature

for control of dynamic buffer allocation and deallocation.
4. The user must determine the number of buffers to be assigned initially to each line in a

line group for sending and receiving operations, and the maximum number of buffers
to be assigned to each line.

The following lists may aid the system programmer in dealing with the first two of these
factors; the other factors are discussed in turn below.

Relative Advantages of Larger vs Smaller Buffers

Parameter

larger buffers
(more units per buffer)

smaller buffers
(fewer units per buffer)

Advantages

1. Fewer buffers required for a message; consequently
overhead required by TeAM to manipulate buffers is
decreased.

2. When dynamic allocation of buffers is used, the possi
bility of losing data because of a delayed pel is de
creased.

3. Number of pels required (if pel is specified) is de
creased.

4. Better use is made of the disk accessing method utilized
by TeAM (multiple-arm support) because there is a
larger number of contiguous records than there would
otherwise be.

5. There are fewer queuing operations per quantity of data;
this results in a saving of time.

1. Units in smaller buffers tend to be returned to the
available-unit queue more rapidly than would be units in
larger buffers (since it takes less time to empty and fill a
smaller than a larger buffer). Since units in smaller
buffers are available for reuse sooner than equivalent
units in larger buffers would be, a smaller unit pool is
possible when smaller buffers are used.

2. When smaller buffers are used, TeAM's work load is
broken into smaller pieces; this results in a more equi
table allocation of processing time among message
segments in main storage.

Relative Advantages of Having Many vs Few Units in the Pool

Parameter

more units in system

fewer units in system

Advantages

1. Likelihood of losing message data coming in over a line
is decreased.

2. Outgoing messages are less likely to be delayed as a
result of waiting for a buffer.

1. Main storage is utilized more efficiently. Since the
number of units in the free unit pool is not excessive,
main storage is saved.

Defining Buffers 61

Size of Units

Dynamic and Static
Buffer Allocation

62

Relative Advantages of Larger vs Smaller Units

Larger units

Smaller units

1. Disk space is utilized more efficiently, since there are
fewer interrecord gaps.

2. Proportion of area available for text to area containing
management information is relatively large.

3. Since more data is transmitted per CCW on line and disk,
channel activity is relatively light; this results in a saving
of channel fetch time and CPU time.

4. Fewer channel program blocks (CPBs) are needed for
transferring the same amount of data to and from disk;
this results in a saving of storage space and time (since
there is less queuing of CPBs).

1. Duplicate headers (used for multiple routing of
messages) take up relatively little room.

2. User can specify a relatively large range of buffer sizes
without wasting space in main storage and on disk.

3. Allocation of buffers can be more dynamic with smaller
units, since smaller units are passed around the TCAM
system more rapidly than larger units. .

When the PCI= operand of the DCB for a line group is coded to permit program
controlled interruptions, a PCI may occur during the filling of the first and each sub
sequent buffer assigned to a line group. When this interruption is received, control is given
to a TCAM PCI routine.

If PCI=A is coded, when the first interruption occurs a number of buffers equal to the
difference between the maximum number assigned to a line group (specified by the
BUFMAX= operand of the DCB) and the number initially assigned to the line group
(specified by the BUFIN= operand of the line group DCB for a receiving operation and by
the BUFOUT= operand for a sending operation) is assigned as soon as possible to the line
group. On subsequent PCIs, the buffer immediately preceding the one being filled or
emptied is deallocated (for a sending operation, the buffer units are returned to the
available unit queue; for a receiving operation, the buffer is sent to the Message Handler
for that line group) and a new buffer is requested to keep the number of buffers assigned
to the line group equal to that specified by BUFMAX=.

When PCI=R is coded, the previous buffer is deallocated when the second and subsequent
PCls occur, but no requests are made for additional buffers. If program-controlled inter
ruptions are not permitted (PCI=N), or if only deallocation is specified (PCI=R), then the
number of buffers assigned initially must be sufficient to handle the entire transmission.
If PCI=N is specified, no deallocation of buffers occurs until the transmission is com
pleted, or, if EOB checking is specified in the STARTMH macro, until an EOB control
character is received.

Advantages:

• When PCI=A is coded, fewer buffers need be assigned initially to a line, since dynamic
allocation brings the number of buffers assigned up to the value specified by
BUFMAX= and maintains this number if possible.

• When PCI=A is coded and a negative response to invitation occurs, only the number of
buffers assigned initially, rather than the maximum number assigned to the line, have
been fruitlessly allocated.

• When PCI= is specified as A or R, buffers are continuously being deallocated; the free
unit pool is therefore continuously being replenished and a smaller unit pool is
required.

Disadvan tages:

• Dynamic allocation and deallocation of buffers takes processing time.

Initial and Maximum Number
of Buffers per Line

Other Buffer Design
Considerations

NOTE: In order for dynamic allocation to work properly for BSC lines, the BUFMAX=
operand of the line group DeB macro must specify a value that is at least two greater
than that specified by the larger of either the BUFIN= or the BUFOUT= operand of the
line group DCB macro, unless the lengths of all messages (including prefixes) is less than
or equal to the total length of the number of buffers specified by BUFMAX=. For start
stop lines using dynamic allocation, a specification of BUFIN=2, BUFMAX=2 may cause
inefficient dynamic allocation.

The number of buffers that should be assigned initially to each line in the line group (by
the BUFIN= and BUFOUT= operands of the line group DCB macro) depends upon the
following factors:

• terminal type;
• terminal speed;
• line speed;
• whether dynamic allocation of buffers is specified.

The number of buffers to be assigned initially varies directly with the speed of the line
and the terminal; the faster the data is transmitted, the higher the initial assignment
should be.

The maximum number of buffers assigned to a line in the group (by the BUFMAX=
operand of the line group DeB macro) also depends upon the line and terminal speed.
For a system using dynamic allocation of buffers, allowance should be made for the fact
that program-controlled interruptions might not be accepted by the CPU in time for
buffer replenishment to be effective for any particular buffer. For high-speed BSC lines,
dynamic allocation may not be totally effective; that is, there may not be a one-to-one
correspondence o(replacement buffers to replaced buffers. If this happens consistently,
incoming data may be lost and bit 6 turned on in the message error record. The higher the
line speed, the greater the disparity may become. When dynamic allocation is not used by
the system, BUFMAX= is ignored.

NOTE: The buffers assigned to each line in a line group by the BUFIN= operand of the
line group DCB macro and the buffers assigned to each line by the BUFOUT= operand of
the line group DeB macro are never assigned to the same line at the same time. The
buffers specified by BUFIN= are assigned to a line just before a station on that line is
invited by TeAM to enter a message, while the buffers specified by BUFOUT= are
assigned immediately before a station on the line is selected to receive a message. Hence,
when the user is deciding how many units to define to handle initial line operations, he
need consider only the larger of the values specified by BUFOUT= and BUFIN= for each
line in a line group, and not the sum of the two values.

• If the buffer size (as specified by the BUFSIZE= operand of the line group DCB,
TERMINAL, LOG TYPE or PCB macro, or the BUFL= operand of the input or output
DC B) is not a multiple of the effective unit size (as specified by the KEYLEN=
operand of the INTRO macro), buffer space is wasted. For example, if the INTRO
macro specifies KEYLEN=36 and the DCB macro for a line group specifies
BUFSIZE=IOO, 108 bytes (Le., 36 X 3) are assigned to the buffer, but only 100 bytes
are available for prefix and message data. Thus, 8 bytes are wasted for each such
buffer.

• If disk queuing is used, an attempt should be made to ensure that the buffer size
specified by the source of a message is equal to the buffer size specified by the destina
tion. The source of a message may be either a station or an application program. If it is
a station, that station's line group DCB macro determines the buffer size of messages
that it may enter; if it is an application program, a PCB macro determines buffer size.
The destination for a message also may be either a station or an application program.
Buffer size for an accepting station is determined either by that station's line group
DCB macro or a TERMINAL macro (if the buffer size is specified on the TERMINAL
macro, this value overrides the value specified on the line group DCB). A PCB macro
determines buffer size for an application program that is the destination for a message.
When the buffer sizes specified for the origin and the destination of a message are
different, data movement occurs because of the necessity of adding or deleting pre
fixes when the message is placed in the buffers for the destination. (The message is

Defining Buffers 63

30 bytes 70 bytes

DATA

DATA

DATA

DATA

23 bytes n bytes ..
~------

DATA

DATA

DATA

DATA

23 bytes 77 bytes
A

~----'

DATA

DATA

DATA

52 bytes

DATA

64

queued on disk with its old prefixes; when it is removed from a queue and placed in
buffers of a different size, prefixes must be added or removed and message data must
consequently be shifted.) Movement of data takes time. Figure 5 illustrates a situa
tion in which 706 bytes of a 1076-byte message must be moved because of a differ
ence in origin and destination buffer size.

Buffering and queuing are closely related concepts; the discussions of main-storage and
disk queuing in the chapter Defining Data Sets should be read in conjunction with the
present chapter.

30 bytes 70 bytes

,.---A--v A
'\

I READER I DATA PREFIX

DATA
No Data Movement

J far these Units

DATA

DATA

, Data Mavement:

n bytes

DATA
23 bytes

n bytes

DATA
23 bytes

77 bytes

DATA
23 bytes

n bytes

DATA

,
54 bytes

DATA
46 bytes

54 bytes

DATA
46 bytes

54 bytes

DATA
48 bytes

EMPTY 6 bytes

EMPTY

Re levant Macro Operands

MACRO OPERAND

INTRO KEYLEN=l00

Li ne Group DCB
BUFSIZE=400 for Incoming Line

Line Group DCB BUFSIZE=1200,
for Outgoing Line BUFOUT=l

message length=1076 bytes.

Figure 5. 706-byte Data Movement Resulting from Size Disparity between Input and Output Buffers.

Line Group Data Sets

Characteristics of a Line Group

Creating a Line Group
Data Set

Line Group DeB
Macro Instruction

Defining the MCP Data Sets

The Message Control Program may refer to four types of data sets. Two of these are
required for every MCP, while two are optional. Required data sets are:

• The line group data set and
• The message queues data set.

Optional data sets are:

• The checkpoint data set, if the checkpoint facility is desired,
• The log data set, if the logging function is desired.

Log data sets are not TCAM data sets; they are discussed briefly below. Other data sets
are needed if there are any application programs; these data sets are described in the
chapter dealing with TCAM support for application programs.

With one exception (a message queues data set in main storage with no disk backup),
TCAM data sets are defined by the user by DCB macro instructions. The total number of
TCAM MCP data sets may not exceed 255.

A line group data set consists of the lines in a line group over which messages are trans
mitted to and from the Central Processing Unit. The user must specify one line group
DeB macro instruction for each line group in the system.

A line group may consist of from one to 255 lines. (The size of a line group is also limited
by the fact that the INVLIST= operand of the line group DeB macro can be no longer
than 255 characters, including commas; thus, if each of 255 lines has an invitation list
associated with it, the lines cannot all be accommodated within the same line group.) All
lines in the group must have the following common characteristics:

• Either all lines in the group are switched or all are nonswitched.
• Either all lines in the group use start-stop transmission or all use binary synchronous

transmission.
• All lines are associated with stations having the same device characteristics.
• All lines are preassigned the same number of buffers to handle the initial segments of

incoming messages.
• All lines use the same invitation delay.
• All lines use the same Message Handler.
• No line in the group is a member of another group.

A line group data set is defined by a line group DCB macro instruction, which creates a
data control block for the line group. Parameters based on the keyword operands speci
fied in the macro are included in the data control block.

Operands of the line group DCB macro enable one to specify functions concerned with
buffering (BUFOUT, BUFIN, BUFSIZE, BUFMAX, PCI), polling (INTVL, CPRI,
INVLIST), and message translation (TRANS) on a line-group basis. These operands are
described in detail in the next section. Various aspects of polling and translation are
discussed in the chapter Defining Terminal and Line Control Areas, while the chapter
Defining Buffers includes a discussion of how best to code the DCB operands concerned
with buffering.

The line group DCB Macro:

• Defines a line group data set;
• Must be issued for each line group in the TCAM system;
• Identifies the Message Handler for the lines in this line group;
• Identifies the invitation lists assigned to the lines in this group;
• Specifies the invitation delay;
• Indicates transmission priority for stations on lines in this group;
• Specifies the number of buffers assigned initially to lines in this group for sending and

receiving operations;
• Specifies when buffers servicing lines in this group are to be allocated and deallocated;

Defining MCP Data Sets 65

linedcb

keyword operands

DSORG=TX

MACRF=(G,P)

66

• Specifies the buffer size for buffers servicing lines in this group;
• Specifies the maximum number of buffers assigned to a line at one time;
• Specifies the number of bytes to be reserved for insertion of certain data into buffers;
• Specifies the translation tables to be used in translating incoming and outgoing

messages.

The line group DCB macro defines a data control block for a line group data set. Param
eters based on the keyword operands specified in the macro are included in the data
control block. One line group DCB macro must be issued for each line group in the
TCAM system. The macro generates no executable code.

The line group DCB macro has the following format:

Name Operation Operands

linedcb DeB keyword operands

Function: Specifies the name for the macro instruction and also for the data control
block generated by the expansion of the macro.
Default: None. This name is required.
Format: Must conform to the rules for assembler language symbols (see the symbol entry
in the Glossary).

Function: Are the operands that can be specified. They are described in the list of
operands that follows.
Notes: The operands may be specified in any order and are separated by commas with no
intervening blanks. See Appendix A for a description of the format and symbols that
define macro operands. When a parameter can be provided by an alternate source, a
symbol appears in the Alternate Source description for the operand associated with that
parameter. When there is not an alternate source (that is, the parameter must be specified
by the operand), the Alternate Source descriptor states none. The symbols have the fol
lowing meanings:

Symbol Explanation

DD The value of the operand can be provided at execution time by data
definition (DD) card for the data set. If a value is provided by a DD
statement, the macro operand must be either omitted or coded with a
zero value (if the operand is omitted, a zero value is supplied by TCAM).

PP The value of the operand can be provided by the user's problem program
any time before the data control block exit at open time.

OE The value of the operand can be provided by the problem program any
time up to and including the data control block exit at open time.

NOTE 1: If DD is specified, OE or PP may also be used. If OE is specified, PP may also
be used. For information on providing parameters via DD, see the sectionDD Statements
for a Line Group. For information on providing parameters via OE or PP, see Note I
following the description of DD, OE, and PP in Message Queues DeB Macro Instruction
in this chapter.

NOTE 2: The formats of macro illustrations, the symbols used in them, and rules for the
interpretation of operand descriptions, are all provided in Appendix A.

Alternate Source: None.
Function: Identifies the data set organization as that for a line group.
Default: None. This operand is required.
Format: DSORG=TX

Alternate Source: None.
Function: Specifies that access to the line group is gained with GET and PUT macro
instructions.
Default: None. This operand is required.
Format: MACRF=(G,P)

DDNAME=ddname

EXLST=address

Alternate Source: PP, OE, DD.
Function: Specifies the number of seconds of invitation delay (that is, the number of
seconds of intentional delay between passes through an invitation list).
Default: INTVL=O
Format: Unframed decimal integer.
Maximum: 255.
Notes: After all the stations in an invitation list for a given line have been invited to enter
a message, a delay equal to the number of seconds specified in this operand occurs before
invitation is restarted at the beginning of the list. An appreciation of the value of the
invitation delay may be gained by reading Transmission Priority iIi the chapter Defining
Terminal and Line Control Areas.

Alternate Source: PP, OE, DD.
Function: Specifies the relative transmission priority assigned to the lines in this line
group.
Default: None. This operand is required.
Format: R, E or S.
Notes: R specifies that CPU receiving has priority over CPU sending. E specifies that
receiving and sending have equal priority. S specifies that CPU sending has priority over
CPU receiving.

See Transmission Priority in the chapter Defining Terminal and Line Control Areas for a
discussion of the effect of transmission priority on the times when messages can be sent
on the line. .

Alternate Source: PP.
Function: Specifies the name that appears in the DD statement associated with the data
control block.
Default: None. This operand is required.
Format: Must conform to the rules for assembler language symbols.

Alternate Source: PP.
Function: Specifies the address of the problem program exit list.
Default: None. Specification optional.
Format: Must conform to the rules for assembler language symbols.
Notes: This list must be provided if data control block or user ABEND exits are required.
The list must start on a fullword boundary. Its format and contents are shown in the
as Data Management Services pUblication. User ABEND exits are described in the last
section of this chapter.

Alternate Source: PP, OE, DD.
Function: Specifies the number of buffers assigned initially for receiving operations for
each line in the line group.
Default: BUFIN=l. This default is supplied at open time, rather than at assembly time.
Format: Unframed non-zero decimal integer.
Maximum: 15.
Notes: These buffers are assigned just before a station is permitted to enter a message.
BUFIN=, BUFOUT= and BUFMAX= must all be specified from the same source.

For more information on initial assignments of buffers, see the chapter Defining Buffers.

Alternate Source: PP, OE, DD.
Function: Specifies the number of buffers assigned initially for sending operations for
each line in the line group.
Default: BUFOUT=2. This default is supplied at open time, rather than at assembly time.
Format: An unframed decimal integer greater than 1.
Maximum: 15.
Notes: BUFIN=, BUFOUT= and BUFMAX= must all be specified from the same source.

Line Group DeB Macro 67

BUFSIZE=integer

Alternate Source: PP, OE, DD.
Function: Specifies the maximum number of buffers used for data transfer for each line
in this line group.
Default: BUFMAX=2. This default is supplied at open time, rather than at assembly
time.
Format: Unframed decimal integer greater than l.
Maximum: IS.
Notes: Must be no less than the larger of the numbers specified by BUFIN= and
BUFOUT=.

BUFIN=, BUFOUT= and BUFMAX= must all be specified from the same source.

Alternate Source: PP, OE, DD.
Function: Specifies the buffer size in bytes used for all lines in this line group.
Default: None. Specification optional.
Format: Unframed decimal integer greater than 35.
Maximum: 65535.
Notes: The size specified here may be overridden for outgoing messages on a station basis
by the BUFSIZE= operand of the TERMINAL macro. If the buffer size is not an even
multiple of the buffer unit size specified by the KEYLEN= operand of the INTRO macro,
storage space is wasted. The maximum number of units per buffer is 255.

INVUST= (listname [,{A}],[$Atl " ...)
B lB j Alternate Source: None.

68

Function: Specifies the names of the invitation lists for the lines of the line group.
Default: None. This operand is required.
Format: Each listname is the name specified for the INVLlST macro used to define the
list for that line. Listnames are specified according to the ascending relative line numbers
of the lines in the group. The maximum total length of the data coded for this operand is
255 bytes. A and B are coded as shown.
Notes: For information on relative line number, seeDD Statements for a Line Group in
this chapter.

There must be one invitation list name in the sublist for each line in the line group. If a
line is used for output only, a dummy invitation list name with no entries is specified.
Any number of output only lines may refer to the same name. No list other than a
dummy invitation list may be named by more than one line.

For information on invitation lists, see the Invitation section in Defining Terminal and
Line Control Areas.

The two sets of AlB suboperands are meaningful only for lines attached to a channel
through an IBM 2701 Transmission Control Unit, in which case they have the following
meanings:

The first A specifies that communications are to be through the 2701 Data Adapter
Unit's Dual Communication Interface A.

The first B specifies that communications are to be through the 2701's Dual Communica
tion Interface B. This parameter is not coded if this feature is not present on the 2701.

The second A specifies that transmission will be in Code A for 2701 Data Adapter Unit
Dual Code Feature.

The second B specifies that transmission will be in Code B for 270 I Dual Code Feature.
This parameter is not coded if this feature is not present on the 2701.

A is the default value for both sets of suboperands.

NOTE: If either or both of the AlB suboperands are omitted, the commas that precede
them must still be coded. For example, if the names of the invitation lists for the lines in
this line group are LlSTl, LlST2, and LlST3, and if the AlB suboperands are to be
omitted from this operand, the operand might be coded as follows:

,INVLlST=(LIST I ",LIST2",LlST3)

MH=mhname

TRANs={table }
EBCD

Alternate Source: None.
Function: Specifies the name of the Message Handler for the line group represented by
this DCB macro.
Default: None. This operand is required.
Format: Must conform to the rules for assembler language symbols, and must be the
same as the name specified in the name field of a STARTMH macro.

Alternate Source: PP, OE, DD.
Function: Specifies if and how a program-controlled interruption (PCI) is to be used for
control of buffer allocation and de allocation.
Default: PCI=(A,A). This default is supplied at open time, rather than at assembly time.
Format: Framing parentheses required. N, R and A coded as shown.
Notes: The suboperands apply to recttiving and sending operations respectively. N speci
fies that no PCls are taken during filling (on receive operations) or emptying (on send
operations) of buffers. Buffers are deallocated at the end of transmission.

R specifies that after the first buffer is filled (on receive operations) or emptied (on send
operations), a PCI occurs during the filling or emptying of each succeeding buffer. The
completed buffer is deallocated, but no new buffer is allocated to take its place.

A specifies that after the first buffer is filled (on receive operations) or emptied (on send
operations), a PCI occurs during the filling or emptying of the next buffer. The first
buffer is deallocated. A buffer is allocated in place of the deallocated buffer.

The program-controlled interruption is more thoroughly described in the chapter
Defining Buffers.

Alternate Source: PP, OE, DD.
Function: integer 1 specifies the number of bytes reserved in the buffer receiving the first
incoming segment of each message entered on a line in this line group for insertion of
characters by the DATETIME and SEQUENCE macros. integer2 specifies the number of
bytes reserved in all buffers except the first, for insertion of characters by the
DATETIME macro.
Default: RESERVE=(O,O)
Format: Unframed decimal integers.
Maximum: For each, 255.
Notes: integer2 is relevant only in a multiple-buffer header situation when DATETIME is
to insert data in a portion of the header not in the first buffer (see the description of
DATETIME for an example showing when it might be desirable to execute DATETIME
on a portion of the header not located in the first segment).

Data may be inserted in either an incoming or an outgoing message header, but space must
be reserved in the incoming header. On the outgoing side, reserved space is retained for
the first buffer only; thus, a DATETIME or SEQUENCE macro, if specified in an out
header subgroup, must operate on the first segment of the message. No space need be
reserved for data inserted by means of a MSGEDIT macro.

The Scan Pointer section of the chapter Designing a Message Handler describes how
TCAM handles reserve bytes.

Each integer must be at least one less than the value specified in the BUFSIZE= operand.
Each buffer containing header data should be large enough to accommodate the segment
itself plus any data that may be inserted by means of DATETIME and SEQUENCE
macros. If a buffer containing header data does not have a sufficient number of bytes
reserved in it to accommodate data inserted by a DATETIME or SEQUENCE macro, the
macro does not execute, and control passes to the next instruction in the MH. Unused
reserve bytes are removed from an outgoing message segment when it is sent to its
destination.

Alternate Source: None.
Function: Specifies the translation table for this line group.
Default: TRANS=EBCD

Line Group DeB Macro 69

SCT=table

DD Statements for a
Line Group

70

Format: Either the name of a user-defined table conforming to the rules for assembler
language symbols, or one of the following four-byte symbols:

1030
1050
105F
1060
2260
2265
2740
274F
BC41
EB4l
CR4l
ITA2
ZSC3
TTYA
TTYB
TTYC
6BIT
ASCI
EBCD

1030 transmission code
1050 transmission code
Folded 1050 transmission code
1060 transmission code
2260 Remote transmission code
2265 transmission code
2740 transmission code
Folded 2740 transmission code
2741 BCD code
2741 EBCDIC code
2741 Correspondence code
World Trade terminals transmission code
World Trade terminals transmission code
83B3, 115A transmission code
33/35 parity transmission code
33/35 non-parity transmission code
2780 6-Bit transmission code
2780,360 CPUs, Model 20 ASCII transmission code
2770, 1130,2260 Local, 2780, 360 CPUs, Model 20 EBCDIC transmission
code.

Notes: Specification of a user-defined table is described in Message Translation in the
chapter Designing the Message Handler.

Translation is from transmission code to EBCDIC for incoming messages and from
EBCDIC to transmission code for outgoing messages. For incoming translation to occur, a
CODE macro must be executed in the incoming group handling the message. For out
going translation to occur, CODE must be executed in the outgoing group handling the
message. If this operand is omitted, no translation is performed.

The table specified for translation can be changed for messages from a particular line or
station by the CODE macro and the use of path switches.

TRANS=EBCD should be coded for lines to stations using EBCDIC line code, if any of
the stations may enter operator commands (TCAM uses the CODE macro to check for
operator commands).

For more information on the symbols, and on translation in the TeAM system, see
Message Translation and the description of the CODE macro in the chapter Designing a
Message Handler.

Altemate Source: None.
Function: Specifies the name of the special characters table (SCT) used for this line
group.
Default: The table specified for the TRANS= operand is assumed for the SCT= operand
if this operand is omitted.
Format: One of the four-byte codes permissible for the TRANS= operand.
Notes: If a user-specified table is coded for the TRANS= operand, the SCT= operand
must be coded. The SCT is an internal TCAM table containing certain device-specific
line-control characters needed by TCAM whether or not line-control characters are left in
incoming messages. TCAM makes no provision for the user to specify his own special
characters table.

The contents and layout of ~he SCT are described in the TeAM PLM.

At least one DD statement must be issued for each line group data set. Either of two
schemes may be followed in issuing DD statements for line groups:

1. If at system generation time a UNITNAME macro is issued to specify the lines in a line
group and to assign to them a single name, then a single DD statement may be issued
for this line group at MCP execution time. This DD statement would have the format

//ddname DD UNIT=(name,n)

where ddname is the name specified by the DDNAME= operand of the DCB macro for
the line group, name is the name assigned to this group of lines by the NAME=
operand of the UNITNAME macro, and n is the number of lines to be allocated from
among the lines whose hardware addresses are coded in the UNIT= operand of
UNITNAME.

Example:
At system generation time, the following UNITNAME macro was issued to define a
group of lines:

UNITNAME UNIT= (021,022,024,025)
NAME=GROUPONE

(The four numbers in the UNIT= operand are the hardware addresses of four lines, and
are assigned to the lines by IODEVICE macros at system generation time.) At execu
tion time for the Message Control Program, the following DD statement might be
issued for this line group:

/lddname DD UNIT=(GROUPONE,4)

In this case, the line group data set would consist of the four lines defined by the
UNITNAME macro. Relative line numbers are assigned to the lines in the same order
as they appear in the UNIT= operand of the UNITNAME macro. If the UNIT param
eter of the DD statement were coded UNIT=(GROUPONE,2), the line group data set
would consist of only the first two lines specified in the UNIT= operand of the
UNITNAME macro.

2. A DD statement may be issued for each line in a line group; these DD statements are
concatenated as follows (assume that the line group consists of three lines):

IIddname
/ /
II

DD UNIT=address
DD UNIT=address
DD UNIT=address

where ddname is the name specified by the DDNAME= operand of the DCB macro for
the line group, and address is the hardware address of the line, as assigned at system
generation time by means of an IODEVICE macro. Note that DD statements for all
lines in a line group are listed under a single ddname. When this scheme is used, the
order in which the DD statements for a line group are arranged determines the relative
line numbers specified in TERMINAL macros; i.e., the first line specified is relative
line number one, the second line specified is relative line number two, etc., (see the
discussion of the TERMINAL macro in the chapter Defining Terminal and Line
Control Areas).

NOTE: The type of stations on lines in the line group for which the DDstatement is
issued must be the same as the type specified by the IODEVICE macro that defines the
line at system generation time. Be sure that the line you specify in the UNIT= parameter
of your DD statement can handle the stations assigned to that line via TERMINAL
macros. Otherwise, the data set will not open.

Certain of the line group DCB macro operands may be omitted from the DCB macro and
be specified at MCP program execution time by coding them as subparameters in the DCB
parameter of the first DD statement for a line group. The way in which the DCB param
eter would be coded to specify anyone of these DCB macro operands is as follows
(BUFIN=, BUFOUT= and BUFMAX= must all be specified from the same source):

DCB=(BUFIN=integer,BUFOUT=integer,BUFMAX=integer)
DCB=(INTVL=integer)

DCB=(CPRI={~})
DCB=(RESERVE=(integer [,integer 1))

DCB=(PCI=({!}, {!r

DCB=(BUFSIZE=integer)

Defining MCP Data Sets 71

Message Queues Data Sets

Disk Queuing

72

These sub parameters are described in the discussion of the line group DCB macro. More
than one DCB operand may be specified in this manner.

If the above DCB operands are still zero after OPEN, the following defaults are used:

BUFIN=1
BUFOUT=2
BUFMAX=2
CPRI=S
RESERVE=O
PCI=(N,N)
BUFSIZE=value of KEYLEN= on INTRO.

Example:
The following DD statements define a line group consisting of three lines. The PCI=
operand was not specified in the line group DCB macro, but is being specified at program
execution time on the DD statement.

//ddname DD UNIT=024,DCB=(PCI=(R,R»
/I DD UNIT=022
II DD UNIT=025

In this example, the line whose address is 024 is assigned relative line number I, the line
whose address is 022 is assigned relative line number 2, and the line whose address is 025
is assigned relative line number 3.

In a TCAM system, messages entered by remote stations are queued by destination. A
destination may be a station on a line or an application program. Because each incoming
message is placed on a queue for its destination rather than being sent to the destination
immediately, overlap of line usage in I/O operations is possible. Messages having a
common destination may be received simultaneously from more than one source, and the
destination itself may also be entering or accepting a message.

Destination queues for each destination (line, terminal, or application program), and a
queue for each logging medium used (for message logging), are located in one or more
message queues data sets, which may reside either in main storage or on a direct-access
storage device. Messages may be queued

• On reusable disk;
• On nonreusable disk;
• In main storage only;
• In main storage with backup on reusable disk;
• In main storage with backup on nonreusable disk.

Although there are five queuing techniques, a maximum of three message queues data sets
need be defined; one on reusable disk, one on nonreusable disk, and one in main storage.

In the following discussion we shall first explain each of the five message queuing tech
niques, giving their relative advantages and disadvantages, and then describe how each
may be implemented.

Messages may be queued by destination line or by destination terminal; this topic is dis
cussed in the Message Priority and Queuing section of the Defining Terminal and Line
Control Areas chapter.

TCAM supports secondary-storage message queuing on the IBM 2311 Disk Storage Drive,
and on the IBM 2314 Direct Access Storage Facility.

The objective of TCAM's secondary-storage queuing scheme is to optimize channel and
disk performance. Rotational delay time is minimized through use of sequential disk
records wherever possible. The user may specify more than one DASD volume for a data
set; if he does, TCAM assigns relative record addresses across volumes, so that the next
relative record address after that of the last record on a track is on another volume.
Figure 6 illustrates this relative-record addressing scheme, which facilitates efficient
multiple-arm support. TCAM's multiple-arm support (described below) permits overlap of
seek time on multiple volumes and overlap of channel operations on multiple channels.

Cylinder Track

0 0

1

2

3

4

5

6

7

8

9

1 0

1

Advantages and Disadvantages
of Disk Queuing

Seek time is further optimized by minimizing arm movement.

Volume 1

12

,
'\ / , /

'\ /
'\ / '/

Relative
Record Numbers

0 1 2 3 4

12 13 14 15 16

24 27 28

36 39 40

48 51 52

60 63 64

72 75 76

84 87 88

96 99 100

108 111 112

120 123 124

132 •••

Volume 2

'\
'\ ,

Relative
Record Numbers

5 6 7

17 18 19

31

43

55

67

79

91

103

115

127

'\
'\

'\
/

/

/
/

/

8

20

32

44

56

68

80

92

104

116

128

Volume 3

'\

Relative
Record Numbers

9 10

21 22

'\
'\ ,

11

23

35

47

59

71

83

95

107

119'

131

'\
-'

Figure 6. Relative Record Numbers of Disk Message Queues Data Set Assigned Across Three Volumes

Locating destination queues in a message queues data set residing on a disk rather than in
a data set residing in main storage with no disk backup results in certain advantages:

1. Locating queues on disk rather than in main storage results in more main storage being
available to the user.

2. With disk queuing, messages being sent to a station that is temporarily inoperative may
be intercepted by a HOLD macro issued in the Message Handler, and sent out at a later
time. The interception facility is not available for destinations whose queues are
located in a main-storage data set having no disk backup.

3. By issuing a POINT macro in conjunction with a GET or READ macro in an applica
tion program, the user may retrieve from its destination queue the original copy of a
message that has already been successfully transmitted to a destination station or sent
to an application program. This retrieval capability (discussed in the Message Retrieval
section of the chapter Writing TCAM-Compatible Application Programs) might be used
to permit a message that was successfully sent to a terminal but lost at the terminal
(due, perhaps, to a tape breakage) to be retransmitted. Messages may not be retrieved
from main-storage queues.

4. When disk queuing is used, it is possible to take advantage of the TCAM checkpoint/
restart facility, which is described in the chapter Using TCAM Service Facilities. Main
storage queues cannot be checkpointed; unless disk backup is provided, the data in
such queues is lost when the TCAM system closes down or fails.

Defining MCP Data Sets 73

Specifying Channel

Program Blocks

74

Locating message queues in a data set on disk rather than in a main-storage data set also
has certain disadvantages:

1. Disk queuing is slower than main-storage queuing; that is, a message that is queued on
disk takes longer to reach its destination than a message that is queued in main storage,
all other things being equal.

2. Disk queuing ties up disk space and disk channels that otherwise could be used by
other jobs (for example, by a batch-processing job) in a computing system not dedi
cated to TCAM.

Main-storage queuing with disk backup (discussed below) preserves most of the advan
tages of disk queuing while achieving a faster response time than disk queuing alone. In
order to achieve main-storage queuing with disk backup, however, the user must define at
least two message queues data sets-one residing in main storage, the other on reusable or
nonreusable disk.

Channel program blocks (CPBs) are used to transfer data between buffers and direct
access secondary-storage devices. A CPB consists of 64 bytes of control information plus
a work area the size of one buffer unit. One CPB is involved whenever the contents of a
buffer unit are written on disk or read from disk.

CPBs that are not being used currently are queued in a CPB free pool. When a CPB is to
be used in writing data onto disk, TCAM "swaps" the CPB with a full buffer unit (the
contents of which are to be written onto the disk); that is, the CPB work area is assigned
to the available unit queue and a full buffer unit is assigned to the CPB to replace the
work area. This swapping of units is accomplished by changing addresses internally; no
movement of data occurs.

When the CPB has been used in reading from disk, its full work area is swapped with an
empty unit; that is, the CPB work area is assigned to the outgoing group of the Message
Handler for the destination, and is replaced by a unit from the available unit queue. Thus,
the unit pool always has the same number of units, even though they are not necessarily
the same units that were originally in the pool. The number of work areas assigned to the
CPB is also constant, although some of the work areas were once buffer units. This
swapping feature saves time; when swapping occurs, data need not be moved from the
CPB unit into the buffer unit.

NOTE: Swapping does not occur for units involved in a data transfer resulting from
disparity in size between origin buffers and destination buffers (for a discussion of such
data transfer, see Other Buffer Design Considerations in the Defining Buffers chapter. In
this case, data is moved from the CPB unit to an empty unit.

The number of CPBs in a TCAM system is specified by the CPB= operand of the INTRO
macro. The number that should be specified must be determined experimentally, and
depends upon the amount of message traffic during peak period of activity in the TCAM
system. The following formula may be used to determine initially how many CPBs to
specify in a system:

(2(BU) + 1)m

60 +r

where r is 1 if reusable disk and 0 otherwise, m is the average number of messages being
transmitted per minute during peak periods of message transmission, B is the number of
buffers per message, and U is. the number of units per buffer. The maximum number of
CPBs that TCAM can use at anyone time can be determined by adding the number of
units per buffer for every destination QCB in the system (destination QCBs are generated
when TERMINAL and TPROCESS macro instructions define stations and application
programs to which messages may be directed). There is not much likelihood that TCAM
will need this maximum number of CPBs.

If any messages are to be placed in a queue in a data set residing on reusable disk, at least
two CPBs must be specified (if any form of disk queuing other than reusable is being
used, the minimum CPBs that may be specified is one). It is highly recommended that at
least as many CPBs be specified as the maximum number of buffer units per buffer in the
system, so that an entire buffer can be dispatched with a minimum number of operations.

Preformatting DASD
Message Queues Data Sets

Using Multiple Arm Support

Specification of too few CPBs results in poor disk performance; messages are delayed
while TCAM waits for CPBs to become available to place the messages upon or remove
them from disk. Specification of too many CPBs results in waste of main storage; each
CPB has a length of 64 bytes plus the length of a buffer unit.

How to Determine if Too Many CPBs Were Specified on the CPB= Operand of the
INTRO Macro Instruction: The type of queuing used by the CPB free pool is LIFO (last
in-first-out), so that any unused CPBs at the bottom of the queue remain in the state they
were in at TCAM initialization time (all zeros).

The IEDFCPB field of the A VT points to the first entry in the CPB free pool; the
eleventh word of each CPB points to the next lower CPB entry on the queue. Conse
quently, a dump can be taken before the MCP is closed down, and by tracing the CPBs
until one is found in the dump whose first few words are zeros, the user can determine if
too many CPBs were specified. For instance, if 50 CPBs were specified, and the first
several words of CPB number 22 in the chain contained all zeros, then 29 of the 50 CPBs
were not used. If the next execution of this same TCAM MCP is likely to be under the
same line and traffic conditions, specifying 25 CPBs should be adequate.

How to Determine if Too Few CPBs Were Specified on the CPB= Operand of the INTRO
Macro Instruction: If, as a result of tracing CPBs in the dump discussed above, there are
found no CPBs whose first few words are zeros, one of two conclusions can be drawn:

1. The exact number of CPBs required to avoid poor disk performance were specified
(that is, all the CPBs were being used simultaneously on at least one occasion during
the execution of this MCP so that there was no delay in message traffic to or from
disk).

2. More likely, not enough CPBs were specified so that on one or more occasions, TCAM
had to wait until a CPB was available before it could place a message on (or remove it
from) disk.

The user should increase the number of CPBs the next time he executes this TCAM MCP
under the same line and traffic conditions. He can then determine, by the technique
described in the previous section, whether the increased number of CPBs is sufficient (if
the CPB at the bottom of the CPB free pool does not contain all zeros, then specify a
larger number of CPBs the next time this MCP executes).

Before the Message Control Program is started, TCAM expects message queues data sets
on both reusable and nonreusable disk to be totally preformatted by the IEDQXA utility
described in the chapter System Preparation. The records, into which each disk queue is
segmented, should have the same length as that specified by the KEYLEN= operand of
the INTRO macro. The name of the disk message queues data set is originally specified on
the IEDQDATA DD statement for the IEDQXA program. The data set may be cataloged
when the IEDQXA job is run.

Message queues data sets located on disk should be preformatted prior to each cold restart
of the MCP.

Increased disk efficiency can be obtained by spreading the disk message queues data set
over several volumes (up to 16 volumes per disk data set). At initialization time, this is
indicated by listing several volumes on the IEDQDATA DD card for the IEDQXA utility.
Each volume so indicated is initialized to contain one contiguous extent of the data set,
each volume containing identical amounts of record space for the disk message queues.

At TCAM open time, the old disk message queues data set is recognized as existing on
several volumes. OPEN builds an Input/Output Block for each extent, permitting TCAM
to issue several EXCP instructions, one per Input/Output Block or extent. When the I/O
Supervisor has several EXCP instructions to act upon, increased disk performance is
realized by overlapping seek times on the various devices; i.e., one drive can be seeking a
cylinder while another drive is actively transferring data. Even better performance can
be obtained by having the various volumes mounted on drives supported by different
channels. This permits simultaneous search/read-write activity on more than one volume.
Records are not assigned sequentially from beginning to end of the data set (although it
was initially created sequentially). The record assignment algorithm uses the records of
the first track, first cylinder, first extent, in a sequential manner. At the end of that track,
instead of progressing to the next track of that same cylinder, records are assigned from

Defining MCP Data Sets 75

\

Reusable Disk Queues

76

the first track, first cylinder, of the second volume. Only one track of each volume is used
before going to a new track on the next volume. This permits I/O requests to be made
from more than just one volume, thus gaining the advantages of multiple EXCPs on
several channels .

. The algorithm continues assigning the first track to new volumes until all volumes have
used one track. Record assignment returns to the first volume, second track, first
cylinder. Again, a new volume is used each time the end of a track is reached. This cycle
repeats until the first cylinder of all volumes is assigned. Then the second cylinder is
similarly assigned and so on until the entire data set is filled.

This procedure is used for both reusable and nonreusable disk message queues.

When reusable disk queuing is used, multiple arm support increases the likelihood that
one arm will be reading while another is writing, thus improving the efficiency of the
system. However, this advantage may be offset by the need to construct an extra lOB and
DEB extent for each volume, thereby increasing the amount of main storage required for
the TCAM program.

A DASD message queues data set that is reusable can often handle the same amount of
message traffic as a nonreusable message queues data set while occupying less disk space
than the nonreusable data set. A message queues data set located on reusable disk never
runs out of disk space under normal conditions, and the TCAM system need never be
closed down to replenish disk space for such a data set. In addition, when reusable disk
queuing is used, messages for an inoperative terminal need not be trapped in the data set
until the terminal is fixed, but may be sent to an alternate destination (specified by the
ALTDEST= operand of a TERMINAL macro), which might be another terminal in close
physical proximity to the first. This capability of automatically sending a message to an
alternate destination is available only to the user of reusable disk queuing. A somewhat
similar capability is provided by specifying a cascade list as a destination (see the descrip
tion of the cascade list in Constructing the Terminal Table in the chapter Defining
Terminal and Line Control Areas).

A reusable data set requires periodic reorganization. TCAM's method of reorganizing the
reusable data set is illustrated in Figure 7.

Send to alternate destination

Write "dummy" cancelled messages

Figure 7. Reorganizing a Reusable Data Set.

The data set as a whole (whether on one volume or sixteen) is divided into four equal
zones (shown in Figure 7 as zones A, B, C, and D). Messages are read into the four zones
sequentially. By the time Zone D is full, Zone A has been prepared for reuse, and a cycle
of use and reuse of the data set has been initiated.

Figure 7 shows a "loadpoint" located half-way through each zone. Assume that the data
set has been in use for some time; Zones A and B contain messages received relatively
recently. When the loadpoint for Zone C is reached, a TCAM reorganization routine is
automatically activated. This routine checks Zone A for messages that have not yet been
sent or canceled. Such messages are placed on the queue for the alternate destination
specified by the ALTDEST= operand of the TERMINAL or TPROCESS macro for the
original destination (these macros and their functions are described in the chapter
Defining Terminal and Line Control Areas). The alternate destination specified in
ALTDEST= may be the original destination. If the alternate destination queue is located
in the message queues data set currently being reorganized, the unserviced message is
written in Zone C. If any destination QCBs have assigned next header records in Zone B,
a canceled header is written in this location, thus updating these next header positions to
the current zone. This prevents a new message being sent to its alternate destination
because its header is too far back (by definition, this is an old message). By the time that
the end of Zone D is reached, Zone A is ready for reuse; all unserviced, uncanceled
messages that were in Zone A have been copied into Zone C (if the queue for the alter
nate destination is located in this data set) or copied into another data set. When Zone A
is reached, its contents are overlaid with incoming messages. The cycle is repeated as each
of the four load points is reached.

NOTE: When a zone is reorganized and the unserviced messages for a particular destina
tion located in that zone are requeued for their alternate destination, they are assigned a
message priority equal to or less than their original priority as specified for the alternate
destination and are placed in its FEFO queue. For instance, if the original destination
message had a priority of 8, and the available priority levels for the alternate destination
are 9, 7, 5 and 0, the message will be requeued with a priority level of 7. If the alternate
also had a priority level of 8, the original message will be requeued at the same priority
level. Messages are sent in the FEFO sending order usually in effect for messages having
the same priority on a destination queue (see the discussion of message priority and
queuing in the chapte..-Defining Terminal and Line Control Areas). Whether or not this
modified message priority and sending scheme for requeued messages turns out to be an
asset or a liability to the reusable disk user depends upon his application.

NOTE: When messages are moved in a zone reorganization, sequential ordering is not
maintained. The log message queue is not moved. If a backlog develops, logged messages
are overlaid and lost.

The advantages of reusable disk queuing have already been mentioned. When the reorgani
zation scheme just outlined is considered, certain disadvantages become evident:

1. The disk activity required during data-set reorganization may result in longer response
times than would occur if nonreusable disk were used. Each message that is requeued
must be read into main storage and rewritten in a message queues data set, and each
dummy canceled message must be written from main storage into the data set on re
usable disk. The longer messages remain enqueued on the disk before being sent, the
more likely it becomes that they will have to be reread and rewritten. Messages are
more likely to linger in a reusable disk queue when the transmission priority for the
nonswitched line to their destination is equal or receive rather than send (see the dis
cussion of transmission priority in the chapter Defining Terminal and Line Control
Areas), when many stations are assigned to the same line, when traffic to a destination
is heavy rather than light, when few CPBs are specified, when the destination station is a
start-stop rather than a bisynchronous terminal, when the destination is an application
program whose data sets are not open, and when a destination station on an Inward
WATS line calls the computer relatively infrequently. Terminal reliability is also a
factor; if messages for a station must be intercepted by an operator command or by a
HOLD macro because the station is inoperative, response time will lengthen as the
number of intercepted messages increases; this effect is compounded if the queue for
the alternate destination specified for an intercepted station is also located in the re
usable disk data set.

Defining MCP Data Sets 77

78

2. TCAM's capability of retrieving messages that have already been sent (as described in
the Message Retrieval section of the chapter Writing TCAM-Compatible Application
Programs) is limited when reusable disk queuing is used, because the original copy of a
transmitted message is eventually overlaid by another incoming message.

A serious problem may arise if a data set on a reusable disk becomes full, i.e., if TCAM's
reusability routine is called to service a new zone but has not yet completed servicing the
previous zone. If message traffic for the reusability routine to copy to alternate destina
tions is so heavy that active disk records may be overlaid, a logical read error occurs and
TCAM terminates abnormally with a system ABEND code of 045 and a user code of 02
or 03.

This heavy usage of reusable disk may be the result of either a sudden surge of incoming
traffic for this queue type, or accumulation of a large number of messages that must be
routed to alternate destinations because their primary destinations are unable to accept
them.

In an attempt to prevent the need for abnormal closedown, TCAM requests cessation of
incoming traffic, permitting send operations to have temporary priority and to clear the
data set of unsent messages. When the overlay danger is past, normal receive operations
are resumed. If the temporary halt of receive operations cannot prevent overlay of active
records, the ABEND is issued.

To reduce the frequency of this slowdown, the following steps may be taken:

a. Format a larger reusable disk data set. As a rule of thumb, the data set should be at
least large enough so that the longest message to that data set will span less than a
fourth of the disk (less than one of the four zones). Otherwise, the internal TCAM
zone reorganization routine may be unable to transmit unsent messages to their alter
nate destinations (because a zone for the abnormally long message has been overlaid,
resulting in loss of header information needed to send this message to its alternate
destination) .

b. Spread reusable disk data sets over several volumes (and ideally over several channels),
thereby facilitating more rapid servicing of the zones by TCAM's reusability routine.

c. If it is likely that a station will be intercepted or otherwise unable to receive an
appreciable percentage of the time, do not locate the destination queue for that
station on reusable disk.

d. To avoid trapping unsendable messages queued to a defective station, do not specify a
station as its own alternate destination.

e. To avoid accumulating messages queued to switched stations, exercise care in the
specification of the DIALNO= and CLOCK= operands on the TERMINAL macro. By
coding DIALNO=NONE, you prohibit the CPU from initiating a call to send messages
to this station. The CLOCK= operand restricts the CPU to a single call every 24 hours.

f. Consider the number of priority levels specified in the TERMINAL macro for each
destination queue. Each priority level requires one record for the next header being
sent to that destination. Thus, the more priorities that are assigned, the larger the
reusable disk needs to be. The number of priorities in the system should be less than
one-eighth the total number of records on the disk. To determine the number of
priorities, the following formula can be used:

T~ 8 (x+y)

where T is the total number of records on the disk, x is the total number of
TERMINAL, TPROCESS and LOGTYPE macros coded in the terminal table, and y is
the number of levels specified in every LEVEL= operand for every TERMINAL and
TPROCESS macro defined.

g. Receive priority with too short an interval can cause messages to accumulate and
create additional overhead.

h. Finally, remember that the busier the lines, the larger the reusable disk data set should
be; turnaround time for message transmission is adversely affected if the data set is not
large enough for high-density message traffic.

When using initiate mode or program-controlled interrupt for input, be aware of the
possibility that the first segment of a very long message can be overlaid before the last
segment is received.

--------------~~-- -- - ~
~-- -----~---

Nonreusable Disk Queues

Main Storage Queuing

For a TCAM MCP that must run continuously for an extended period of time with fairly
heavy message traffic, the user would have to allocate more disk space if he used non
reusable queuing than he would if he used reusable queuing. In addition, a TCAM system
using nonreusable disk queues must be closed down from time to time as the available
space in the data set is exhausted. One great advantage that nonreusable disk queues have
when compared with reusable disk queues is that system overhead is cut down during
extended periods of high message traffic when nonreusable disk queuing is specified,
because the data-set reorganization described above for reusable disk queues is not per
formed for nonreusable disk queues. Nonreusable disk queuing is attractive for applica
tions in which it is likely that many messages will remain enqueued for a relatively long
period of time before being sent; general criteria for estimating this likelihood are given
above in the discussion of reusable disk queues.

When a certain percentage of the records in a message queues data set on nonreusable disk
have been used, a flush closedown (defined in the chapter Activating and Deactivating the
Message Control Program) is initiated by TCAM. The threshold percentage is specified by
the THRESH= operand of the message queues DCB macro (described below) and should
be based on a consideration of the maximum number of message units that will result
from messages entered at stations and the number of units on the disk data set. If the
data set becomes filled before closedown can complete and wraparound of the nonre
usable disk will cause the first record to be overlaid, the TCAM MCP will terminate
abnormally with a system code of 045 and a user code of 01. Following the flush close
down, the data set must be reformated (using the IEDQXA utility described in the chapter
System Preparation), and the system may be restarted by means of a cold restart.

The main-storage message queues data set (if specified) is created at the time the INTRO
macro is executed, when an area of main storage is allocated to the buffer-unit pool. The
data set resides in the buffer-unit pool, which is described in the chapter Defining Buffers.
Buffer units containing data directed to a destination queue in the main-storage data set
are assigned directly to the appropriate queue. Upon removal from the queue, the units
are available for reuse. No data is moved when units are placed on the queue; however,
when the message is to be sent to its destination, it is copied from the enqueued units
containing it into a buffer. The original copy is held in the queue until the message has
been transmitted and any macros in the outmessage subgroup handling it have been given
an opportunity to check the message error record for the message; this is done so that the
message header may be retrieved from the queue, if necessary.

Because data in main storage is accessed and manipulated more rapidly than data stored
on disk, during periods of high message traffic messages directed to destinations whose
queues are located in main storage will be received much more rapidly than would be the
case if the queues for these destinations were located on disk. Because allocation and
de allocation of units for the main-storage data set is dynamic, the data set is essentially
"reusable."

When a message queues data set is located in main storage without disk backup, sufficient
main storage must be allocated to the data set to handle peak message traffic. The
MSUNITS= operand of the INTRO macro specifies the maximum number of units that
can be assigned at anyone time to the main-storage message queues data set. When in
sertion of buffer units containing part of an incoming message into the destination queue
would cause the number specified by MSUNITS= to be exceeded, bit 8 of all message
error records in the system is turned on. The first unit of the buffer is placed in the
queue; all other units are lost. If this was not the last buffer in the message, any error
handling macros coded in the inmessage subgroup of the Message Handler for this line
group that test bit 8 of the message error record are activated. For example, the user
might code a MSGGEN or ERRORMSG macro to advise the terminal operator or an
application program that message segments are being lost due to a lack of available main
storage units. The operator or application program could then slow down incoming
message traffic by means of appropriate operator commands or network control macros
until sufficient main-storage units are available. If the segment rejected was the last seg
ment, the entire message (except for the first unit) is lost; in this case the user may test
bit 8 of the message error record when another message is handled by this or another
Message Handler.

The first unit of a message that is lost due to a lack of main-storage units is always
enqueued in its proper destination queue. When this unit is processed by the outgoing
group of the Message Handler for the destination station, bit 16 of the message error

Defining MCP Data Sets 79

80

record for this message is turned on. In his outmessage subgroup, the user may code error
handling macros to test bit 16. For example, he might code an ERRORMSG macro that
would return the unit to the originating station together with a request that this message
be retransmitted.

In the event that there is not even enough main-storage space available to permit the first
unit of a message to be enqueued, (i.e., if enqueuing the unit would cause the percentage
specified in the MSMAX= operand to be exceeded), TeAM nevertheless enqueues the
unit. In addition, TeAM refuses to accept any more incoming messages (these messages
are not lost) until the number of units in the main-storage data set falls to or below the
level specified by the MSMIN= operand of the INTRO macro.

TeAM's only criterion in determining whether units are available for main-storage
queuing is the number specified by the MSUNITS= operand of the INTRO macro. It is up
to the user to specify a satisfactory number of main-storage units for his system. If he
does not, and if no disk backup is provided, throughput will suffer because fewer incom
ing messages will be accepted, and some message segments may be lost.

TeAM provides the user of main-storage queues with a means of informing himself when
the main-storage data set is in danger of running out of units. In the MSMAX= operand of
the INTRO macro, the user may specify a percentage of his main-storage data set units
(i.e., a percentage of the number specified in the MSUNITS= operand of INTRO); when
this percentage of units is enqueued, bit 9 of all message error records in the system is
set. The user may code a MSGGEN or ERRORMSG macro in his Message Handlers to
check this bit and inform the operator or an application program to slow down invitation
until a suitable number of enqueued messages have been sent to their destinations. Since
messages for inactive application programs are maintained on main-storage queues, the
user may also activate the application program and allow enqueued messages to be sent.
The MSMIN= operand of INTRO also specifies a percentage of the total number of units
available for main-storage queuing. When the percentage of units enqueued in the main
storage data set falls below that specified by MSMIN=, bit 8 is set on in all message error
records in the system. The user may code a MSGGEN or an ERRORMSG macro in his
Message Handlers to test this bit and inform the operator or an application program that
there is no longer a shortage of main-storage units, so that normal invitation may be
resumed.

When the percentage of enqueued units falls below that specified by MSMAX=, bit 9 is
turned off in all message error records. When the percentage of enqueued units rises above
that specified by MSMIN=, bit 8 is turned off in all message error records.

Neither the intercept function (see the description of the HOLD macro) nor the retrieve
capability (see the description of the POINT macro) is possible for messages queued in
main-storage-only queues. The ERRORMSG and REDIRECT macros provide a limited
retrieval capability when certain errors (such as transmission errors, as detected by the
EOB checking facility provided by the STARTMH macro) occur.

A message queues data set located in main storage without disk backup cannot be check
pointed; if the TeAM system closes down or fails, all data in the data set is lost.

Instead of (or in addition to) specifying a main-storage message queues data set with no
disk backup, the user may specify a main-storage data set having backup on reusable or
nonreusable disk. Main-storage queuing with disk backup combines advantages of disk
and main-storage queuing, and avoids certain of the problems associated with the other
queuing methods. Data directed to a main-storage queue with disk backup is never lost
because of unavailability of main-storage units, and TeAM does not refuse to accept
messages when the main-storage data set is full. TeAM's message-interception and
message-retrieval functions may be utilized, and closedown and restart of the system
without loss of data is possible. Response time is better than with disk queuing, because
most outgoing messages do not have to be read from disk.

When main-storage queuing with disk backup is used, TCAM copies each unit arriving at a
main-storage queue onto disk. Copying involves a movement of all data in the unit and a
writing operation. When the number of units specified in the MSUNITS= operand of the
INTRO macro is enqueued in main storage (i.e., when the main-storage queues will accept
no more units), data is not lost as it is when main-storage-only queuing is specified;
instead, the contents of incoming units are written directly onto disk. No bit in the

-------------_._---

Specifying One or More
Queuing Methods

message error record is set when main-storage units are exhausted, and invitation is not
suspended. The user may utilize the MSMAX= operand of the INTRO macro to warn him
that the number of units enqueued in main storage is approaching the maximum per
mitted, and he may use the MSMIN= operand of INTRO to inform him when the number
of units enqueued in main storage has fallen to a safe level.

Outgoing messages are sent from the main-storage queue when they are on this queue;
otherwise they are brought in from disk and sent. When a message is sent out from main
storage, its copy on disk is marked serviced.

The TCAM intercept function (using the HOLD macro) and retrieve function (using the
POINT macro) may be implemented when main-storage queuing with disk backup is used.
The disk queues are accessed to provide these functions.

Main-storage queuing with backup on disk uses more main storage than disk queuing and
results in a longer response time than would be the case if main-storage queuing with no
disk backup were specified (because each message must be completely copied onto disk
before it can be sent to its destination). Yet this method of queuing combines many of
the attractive features of the other methods, and for many applications it provides an
acceptable compromise between the speed of main-storage-only queuing and the reli
ability of disk queuing.

The user may specify up to three message queues data sets for his TCAM system. One of
these resides in main storage, another on reusable disk, while a third is located on non
reusable disk. Taken singly or in combination, these three possible data sets provide the
five queuing methods discussed. For main-storage-only queuing, a main-storage data set is
needed. Reusable and nonreusable disk queuing each require a data set. If the user wishes
to implement main storage queuing with reusable disk backup, he must define two data
sets-one in main storage and the other on reusable disk. Two data sets are also required
to support main-storage queuing with backup on nonreusable disk.

A TCAM system having two message queues data sets, one in main-storage and one on
reusable disk, will support three types of queuing: main-storage-only queuing, reusable
disk queuing, and main-storage queuing with backup on reusable disk. The type of
queuing used for a particular message in his system depends upon the message's destina
tion. The QUEUES= operand of the TERMINAL or TPROCESS macro defining a remote
station or an application program specifies the type of queuing for messages destined for
that station or application program. In the system being considered, messages sent to a
terminal whose TERMINAL macro specified QUEUES=MO would be queued in main
storage only. Messages sent to a terminal whose TERMINAL macro specified
QUEUES=DR would be queued on the reusable disk only. Messages sent to a terminal
whose TERMINAL macro specified QUEUES=MR would be placed on a queue in main
storage if possible, and would also be placed on a queue in the reusable disk data set.
Such messages would be retrieved and sent from the main-storage queue, if possible, or
from the disk queue.

The number of data sets that must be defined depends upon the type of queuing desired,
which in turn depends upon the application. As an example, consider a savings bank
inquiry application in which relatively short incoming messages (consisting perhaps of an
account number, a transaction amount, and a transaction code) are sent to an application
program, and relatively long response messages are returned by the application program.
The TCAM user with such an application might wish to use main-storage-only queuing for
the inquiry messages (since they are short), and disk queuing for the response messages
(since they are long). In this way, he could take advantage of the speed of main-storage
only queuing for his short input messages without giving up the main storage required if
main storage queuing were used for his long response messages. To implement his queuing
scheme, this user would have to define two data sets-one in main storage, and one on
disk.

Checklists for specifying the three types of message queues data sets supported by TCAM
follow. The macros listed are discussed elsewhere in this publication. Note that no DD
statement or DCB macro is required in defining a main-storage message queues data set,
but that both a DD statement and a DCB macro must be issued in defining a message
queues data set on either reusable or nonreusable disk. The DCB macro for a message
queues data set on disk and the DD statement for such a data set are described in the
next two sections.

Defining MCP Data Sets 81

Macro

INTRO

INTRO

INTRO

INTRO

TERMINAL
or

TPROCESS

Macro or
DD Card

Operand

MSUNITS=integer

MSMAX=integer

MSMIN=integer

DISK={NO}
YES

QUEUES={~~}

Operand

Checklist for Main-Storage Data Set

Comments

Specifies the maximum number of main-storage buffer units that may be used for
queuing.

integer is a percentage of the number of units specified in the MSUNITS= operand;
when this percentage of units is enqueued in the main-storage message queues data
set, a bit is set in each message error record in the system to warn the user that his
data set is nearly full.

When the percentage of the number of units specified by the MSUNITS= operand
falls below that specified by MSMIN=, a bit is set in every message error record in
the system. This operand may be used to inform the user that his main-storage
message queues data set is no longer crowded.

Specify NO if no message queues data set is to be provided on disk. Specify YES if
the system will have a message queues data set on disk.

Code MO for each station or application program whose queues are to be located in
main storage only; code MR if backup is to be provided on reusable disk; code MN
if backup is to be provided on nonreusable disk.

Checklist for Reusable Disk Data Set

Comments

DD Statement One needed; seeDD Statements for Message Queues Data Sets.

Message
Queues DCB One needed; see next section.

INTRO DISK=YES

INTRO

TERMINAL
or

TPROCESS

Macro or
DD Card

CPB=integer

QUEUES= {~~}

Operand

Specifies the nonzero number of channel program blocks to be provided for transfer
of data between buffers and the disk; see Specifying Channel Program Blocks in this
chapter.

Code DR for each station or application proglam whose queues are maintained on
reusable disk only; code MR for each station or program whose queues are main
tained in main storage with reusable disk backup.

Checklist for Nonreusable Disk Data Set

Comments

DD Statement One needed; seeDD Statements for Message Queues Data Sets.

Message
Queues DCB One needed; see next section.

INTRO DISK=YES

INTRO

TERMINAL
or

TPROCESS

82

- - ---------

CPB=integer

QUEUES=\~~}

Specifies the nonzero number of channel program blocks to be provided for
transfer of data between buffers and the disk; see Specifying Channel Program
Blocks in this chapter.

Code DN for each station or application program whose queues are maintained on
nonreusable disk only; code MN for each station whose queues are maintained in
main storage with nonreusable disk backup.

Message Queues DCB
Macro Instruction

diskdcb

keyword operands

DSORG=TQ

The message queues DeB macro:

• Defines a message queues data set residing on reusable or nonreusable disk,
• Specifies the location of the data set,
• Specifies the percentage of records in a nonreusable disk data set to be filled before a

flush closed own is initiated,
• Is not issued for a message queues data set residing in main storage.

The message queues DeB macro defines a data control block for a message queues data
set. Parameters based on the keyword operands specified in the macro are included in the
data control block. One message queues DeB macro is required for a message queues data
set residing on reusable disk, and one is required for such a data set residing on non
reusable disk. The macro generates no executable code.

The message queues DCB macro has the following format:

Name Operation Operands

diskdcb DCB keyword operands

Function: Specifies the name of the macro instruction and the name of the data control
block generated by the expansion of the macro.
Default: None. This name is required.
Format: Must conform to the rules for assembler language symbols (see the symbol entry
in the Glossary).

Function: Specifies the operands that can be used.
Format: The operands may be specified in any order and are separated by commas with
no intervening blanks.
Notes: The operands for the message queues DeB macro instruction are described
below. See Appendix A for a description of the format and symbols that define
macro operands.

When a parameter can be provided by an alternate source, a symbol appears in the
alternate source entry for the operand. When there is no alternate source (Le., the param
eter must be specified by the operand), the alternate source entry states "None." The
symbols have the following meanings:

Symbol Explanation

DD The value of the operand can be provided at execution time by the
data definition (DD) card for the data set.

PP The value of the operand can be provided by the user's problem
program any time before the data control block exit at open time.

OE The value of the operand can be provided by the problem program
any time up to and including the data control block exit at open time.

NOTE 1: If DD is specified, OE or PP may also be used. If OE is specified, PP may
also be used. For information on providing parameters via DD, see DD Statement
for Message Queues Data Sets. For information on providing parameters via DD and
OE, see Modifying the Data Control Block in the OS publication Data Management
Services. The section Processing Program Description, in the same publication,
describes the data control block exit that can be taken when OE is specified.

NOTE 2: The formats of macro illustrations, the symbols used in them, and rules
for the interpretation of operand descriptions are all provided in Appendix A.

Alternate Source: None.
Function: Specifies that the data set organization is for the message queues or check
point data set.
Default: None~ This operand is required.
Format: DSORG=TQ

Defining MCP Data Sets 83

MACRF=(G,P)

DDNAME=ddname

EXLST=name of list

TIlRESH=integer

DO Statements for Message
Queues Data Sets

84

Alternate Source: None.
Function: Specifies that access to that data set is gained with GET and PUT macro
instructions.
Default: None. This operand is required.
Format: MACRF=(G,P)

Alternate Source: PP.
Function: Specifies the name that appears in the DD statement associated with the data
control block.
Default: None. This operand is required.
Format: Must conform to the rules for assembler language symbols.

Alternate Source: DD, PP, OE.
Function: Specifies the location of the data set.
Default: None. This operand is required.
Format: L or R.
Notes: L specifies that the data set is to be on nonreusable disk. R specifies that the data
set is to be on reusable disk.

Alternate Source: PP.
Function: Specifies the address of the problem program exit list.
Default: None. Specification optional.
Format: Must conform to the rules for assembler language symbols.
Notes: This operand is required if user label, data control block, user ABEND or block
count exits are required. The list must start on a fullword boundary. Its format and
contents are shown in the OS Data Management Services publication. The user ABEND
exit is discussed in the last section of this chapter.

Alternate Source: DD, OE, PP.
Function: Specifies the percentage of the nonreusable disk message queue records to be
used before a flush closedown of the system is initiated.
Default: For reusable disk queues, specification optional. For nonreusable disk queues,
95.
Format: Unframed decimal integer.
Maximum: 100.
Notes: This operand is meaningful for nonreusable disk queues only.

One DD statement is needed for each disk message queues data set. The format of this
DD statement is as follows:

//ddname DD DSNAME=anyname,DISP=OLD

where ddname is the name specified by the DDNAME= operand of the DCB macro for
this data set, and any name is the name of the data set as specified by the DSNAME=
operand of the IEDQDATA DD card for the IEDQXA utility used to preform at disk
message queues. If the data set is not cataloged, the UNIT= and VOLUME= operands
must be included in the DD statement for the disk message queues data set.

The OPTCD= and THRESH= operands of the message queues DCB macro may be
omitted from the DCB macro and specified at execution time by coding the DCB param
eter of the DD statement for the message queues data set; i.e., DCB=(OPTCD={M) or

DCB=(THRESH=n). Both operands may be specified by coding DCB=(OPTCD= {i}'
THRESH=n). These operands are explained in the preceding section.

No DD statement is issued to define a message queues data set in main storage.

----------- --- ---~----- ~~- ---

Checkpoint Data Set

Checkpoint DCB Macro
Instruction

chkptdcb

keyword operands

DSORG=TQ

The TCAM checkpoint facility provides for records to be taken of the MCP environment
from which restart can be made in case of closed own or system failure. This facility is
described in the section Using TeAM Service Facilities.

The checkpoint data set consists of checkpoint records that are maintained and stored on
a direct-access storage device. A DCB macro instruction must be issued to define the data
control block for the checkpoint data set if the checkpoint facility is t6 be used. The DD
statement associated with the new checkpoint data set must allot space for these records
on the direct-access device used. The direct-access device may be either an IBM 2311 Disk
Storage Drive or an IBM 2314 Direct Access Storage Facility.

The checkpoint DCB macro

• Defines a checkpoint data set residing on a direct-access storage device.

The checkpoint DCB macro has the following format:

Name Operation Operands

chkptdcb DCB keyword operands

Function: Specifies the name of the macro instruction and the name of the data control
block generated by the expansion of the macro.
Default: None. This name is required.
Format: Must conform to the rules for assembler language symbols (see the symbol entry
in the Glossary).

Function: Specifies the operands that can be used.
Format: The operands may be specified in any order and are separated by commas with
no intervening blanks.
Notes: The operands for the DCB for the data set are described below.

See Appendix A for a description of the format and symbols that define macro operands.

When a parameter can be provided by an alternate source, a symbol appears in the alter
nate source entry for the operand. When there is no alternate source (i.e., the parameter
must be specified by the operand), the alternate source entry specifies "None." The
symbols have the following meanings: .

Symbol Explanation

DD The value of the operand can be omitted from the DCB macro and
provided at execution time by the data definition (DD) card for
the data set.

PP The value of the operand can be provided by the user's problem
program any time before the data control block exit at open time.

OE The value of the operand can be provided by the problem program any
time up to and including the data control block exit at open time.

NOTE: The formats of macro illustrations, the symbols used in them, and rules
for the interpretation of operand descriptions are all provided in Appendix A.

Function: Specifies that the data set organization is for the message queues or check
point data set.
Default: None. This operand is required.
Format: DSORG=TQ

Defining MCP Data Sets 85

MACRF=(G,P)

DDNAME=ddname

OPI'CD=C

EXLST=address

DD Statement for the
Checkpoint Data Set

86

Alternate Source: None.
Function: Specifies that access to the data set is gained with GET and PUT macro
instructions.
Default: None. This operand is required.
Format: MACRF=(G,P)

Alternate Source: PP.
Function: Specifies the name that appears in the DD statement associated with the data
control block.
Default: None. This operand is required.
Format: Must conform to the rules for assembler language symbols.

Alternate Source: PP, OE, DD.
Function: Specifies that the data set is for checkpoint records.
Default: None. This operand is required.
Format: OPTCD=C

Alternate Source: PP.
Function: Specifies the address of the problem program exit list.
Default: None. Specification optional.
Format: Must conform to the rules for assembler language symbols.
Notes: This list must be provided if user label, data control block, or user ABEND exits
are required. The list must start on a fullword boundary. Its format and contents are
shown in Data Management Services pUblication. The user ABEND exit is discussed in
the last section of this chapter.

One DD statement must be issued for the checkpoint data set, If DlSP=NEW is coded,
this statement must allocate space on DASD for all records in the checkpoint data set. A
formula for allocating sufficient space is given in Figure 34. The DISP= parameter must
be coded DISP=OLD for a warm restart and may be coded either DISP=OLD or
DlSP=NEW for a cold restart. If DlSP=NEW is coded, STARTUP=CY (or
STARTUP=CIY, if I is coded in the STARTUP= operand of INTRO) is assumed for the
INTRO macro instruction, regardless of what is coded for the STARTUP= operand at
assembly time or at WTOR response time. (The disposition term of DISP= may also be
coded.) Any incremental quantity request on the SPACE= parameter is ignored.

The OPTCD= operand of the checkpoint DCB macro may be specified at execution time
by coding the DCB parameter of the DD statement for the checkpoint data set as
DCB=(OPTCD=C).

A typical DD card used for initial allocation is:

IITPCHKPNT DD
1/
1/
/I

DSNAME=CPDS,UNIT=23 I I ,
YOLUME=SER=IIIIII,
SP ACE=(TRK,(3»,
DlSP=(NEW,CATLG)

*
*
*

NOTE: The step containing the DlSP=(NEW,CATLG) operand must completely
terminate normally for the deallocation routine to perform the catalog function. If such a
step is halted by SYSTEM RESET or Master Check, the catalog is not updated. The next
use of the data set, with DISP=OLD coded, must either supply the UNIT= and
YOL=SER= operands, or the name must have been entered into the catalog using the
CATLG command of the IEHPROGM system utility.

A typical DD card used for the same (cataloged) checkpoint data set after initial alloca
tion is:

IITPCHKPNT DD DSNAME=CPDS,DlSP=OLD

The data set does not have to be cataloged. If it is not cataloged, the data set is allocated
by specifying DISP=(NEW,KEEP), and subsequent uses of the data set must contain the
UNIT= and YOL=SER= keyword operands to provide the information that would other
wise be in the catalog.

NOTE: There is no utility job to format a checkpoint data set. It is formatted by OPEN
at each cold restart.

log Data Sets

User ABEND Exits

A log data set consists of messages or message segments placed on a secondary storage
device for accounting purposes. TCAM's support of the logging function is described in
the Using TCAM Service Facilities chapter, and in the descriptions of the LOG and
LOGTYPE macros. The TCAM logging facility is optional.

One log data set should be defined for each secondary storage device on which messages
or message segments may be logged. A log data set is defined by a BSAM DCB macro that
is issued with the DCBs defining the line group data sets, the message queues data sets,
and the checkpoint data set. The BSAM DCB macro is described in the OS Supervisor and
Data Management Macro Instruction(publication.

In the BSAM DCB macro for a log data set, the user should code the following operands:

Operand Comments

DSORG=PS
MACRF=W
DDNAME=symbol
BLKSIZE=keylen Replace key len with the value specified in the KEYLEN=

operand of the INTRO macro.

RECFM=F
NCP=integer Replace integer with the maximum number of buffer units that

may appear in a buffer.

The SYNAD=address operand of the BSAM DCB macro, where address is the name of a
user-specified, error-analysis routine to be given control when an un correctable 1/0 error
is detected, should also be coded. The error routine must conform to the standards set
forth in the discussion of this operand in the Supervisor and Data Management Macro
Instructions publication. Upon return from the error-analysis routine, the log function
continues as if no error had been encountered. All indications of the 1/0 error must be
removed from the DCB, so that the MCP will terminate abnormally when the next
WRITE is issued. (The format of the BSAM DCB is described in the OS System Control
Blocks publication.) If this operand is not specified, the MCP terminates abnormally
when a permanent 1/0 error occurs during the logging operation.

The UNIT= parameter of the DD statement associated with each log DCB macro should
specify the address of the appropriate secondary storage device.

The DCB macros for the line group data sets and for the message queues data sets permit
specification of a user-written routine to be given control if an OPEN macro fails to open
the data set for which the DCB macro is coded. The user routine is specified by coding a
special entry in the problem-program exit list named in the EXLST= operand of the
appropriate DCB macro. (The format and contents of the problem-program exit list are
shown in the publication, Data Management Services.) The special entry, called the
user ABEND entry, consists of a one-byte code of X'OE' followed by the three-byte
address of the user routine.

If the OPEN macro for a particular data set fails to execute properly, and if a user
ABEND entry is included in the EXLST= operand of the DCB macro for the data set, the
user routine is given control. The user routine should save and restore registers. When
control is passed to the user routine, the general registers contain the following
information:

Register

o
1
2-13

14
15

Contents

Error code
Options available to the user ABEND routine
Contents prior to execution of the OPEN macro
Return address (must not be altered by the exit routine)
Address of user-routine entry point

The error code, which occupies the right-hand byte of register 0 (the other 3 bytes are
set to 0) tells the user the reason why the OPEN failed. Possible error codes and brief
explanations are contained in the list that follows.

Defining MCP Data Sets 87

88

The error code is also included in a message directed to the system console when the
OPEN macro fails to execute properly.

This message, which is sent even when no user ABEND routine is specified, has the
following format:

IED008I TCAM OPEN ERROR xxx-y IN DCB dcbname descriptor

Here, xxx-y is the code referred to in the list of error codes. dcbname is the name of the
DCB macro for the data set that could not be opened properly. descriptor is a single word
describing the type of error. This message is discussed in the OS publication Messages and
Codes.

The following instructions may be coded iR the user ABEND routine to return control to
TCAM:

L 13,4(13)
RETURN (1 4,12),T,RC=(1 5)

If an OPEN macro fails to execute properly and no user ABEND exit is provided, TCAM
issues an ABEND macro to terminate the MCP task.

Error codes returned by TCAM OPEN routines

Error Code
(Hex Format)

01

02

03

04

os

06

07

08

09

Meaning

Not enough main storage is available to build a data extent block for a
line-group data set. To correct this situation, specify a larger region
(MVT) or partition (MFT) on the JOB DD statement for the MCP.

Incompatible stations specified in the same line group. To correct, set
up your line groups correctly, reassemble, and reexecute.

The Device Class field of the first unit control block (UCB) for a station
in the line group specifies something other than telecommunications or
graphics. To correct, check the addresses specified in the line group DD
statements to be sure that you are specifying valid line addresses.

An unsupported control unit was specified for this line group. To
correct, check the validity of the line addresses specified by the line
group DD statements.

The adapter-type and model-code bits in a UCB specify something
other than the lines specified by the DD statements for this line group.
To correct, check the validity of the line addresses specified by the line
group DD statements.

The device characteristics specified for stations in this line group are
not the correct ones for these stations. To correct, check the validity of
the line addresses specified by the line group DD statements.

Insufficient main storage is available to build a line control block for a
line group. To correct, specify a larger region or partition on the JOB
DD statement for the MCP.

Insufficient main storage is available to build a station control block for
a switched line. To correct, specify a larger region or partition on the
JOB DD statement.

The binary synchronous interface specified in the data control block
does not agree with that specified in a unit control block for a line in
this line group. To correct, check the type of interface specified in the
INVLIST= operand of the DCB macro against the bit settings specified
in the UCBs for each line in this line group.

OA

OB

OC

OD

OE

OF

10

11

12

13

14

15

The TERMINAL or TPROCESS macro specifies disk queuing or a DCB
macro for a message queues data set on disk is present, but DISK=YES
was not specified in the INTRO macro. Therefore, the AVT is not large
enough to support disk queuing. To correct this, specify DISK=YES in
the INTRO macro, reassemble, and reexecute.

The key length specified in the DCB macro for a message queues data
set does not match that specified in the INTRO macro.

When the IEDQXA utility was used to initialize this data set, multiple
volumes were specified; these volumes are not all on the same type of
device-either all should be on a 2311 drive, or all should be on a 2314
drive. To correct, reinitialize the data set, being certain that all volumes
are located on the same type of device. Then reexecute.

The DCBOPTCD field for this DCB specifies something other than
reusable or nonreusable queuing. To correct, check the contents of this
field.

A GETMAIN macro was issued by TCAM to obtain main storage to
build a data extent block for a message queues data set, but insufficient
main storage was available to satisfy the request. To correct, specify a
larger region or partition on the JOB JCL statement for the MCP.

A GETMAIN macro was issued by TCAM to obtain main storage to
build input/output blocks for a message queues data set, but insuffi
cient main storage was available to satisfy the request. To correct,
specify a larger region or partition on the JOB JCL statement for the
MCP.

The named message queues data set was allocated but not formatted
correctly; the last record number written on a track is zero. To correct,
format the data set by means of the IEDQXA utility, and rerun the job.

No valid UCB addresses were found for this line group; all UCB
addresses checked were zero. To correct, specify DD statements with
valid UNIT= operands.

The sum of the header prefix size plus the number of bytes reserved in
the first buffer of each message by the RESERVE= operand of the line
group DCB macro is equal to or greater than the size of the buffers
assigned to the lines in the group for input; thus, there is no room in
the buffers for data. To correct, specify a larger buffer size for input on
the BUFIN= operand of the line group DCB macro, reassemble, and
rerun the job. (If a DD statement source is used to specify this operand,
no reassembly is required.)

No data set has been specified for disk or main-storage queuing for a
specified terminal.

There are no lines in the line group (i.e., one or more of the lines in the
line group have not been opened due to some other error).

A relative line of 0 (zero) has been specified.

Before control is passed to the user ABEND routine, TCAM sets the bits in the right-hand
byte of register 1 to indicate to the ABEND routine what courses of action it may take.
The code in register 1 indicates possible user options; the TCAM open routines are set up
to work properly if any of the courses of action indicated by the code in register 1 are
taken. It is recommended that the user ABEND routine restrict its activities to the

Defining MCP Data Sets 89

90

options indicated in register 1. Possible user ABEND alternatives and the codes associated
with them are shown in the following list.

Code
in Register 1

X'03'

X'07'

Permissible User Options

1. You can abnormally terminate the MCP job-either by issuing an
ABEND macro in your subroutine, or by placing a return code of
X'02' or higher in the right-hand byte of register 15 and returning
control to TCAM.

2. You can tell the TCAM open routine to make no further attempt to
open this data set, but to pass control to the next instruction in the
MCP. This is done by placing a return code of X'OO' in the right
hand byte of register 15 and returning control to TCAM. In this
case, your MCP will run with restricted capabilities, since it will not
be able to use this data set.

1. Same as Option I for X'03' code.
2. Same as Option 2 for X'03' code.
3. In activating the lines in a line group data set, a TCAM open routine

has found a line on which there are stations incompatible with those
found on a previous line or lines. (See Characteristics of a Line
Group in the chapter Defining the MCP Data Sets for the common
characteristics that stations and lines in the same line group must
have.) When such a line is found, TCAM stops activating lines in the
line group. By placing a return code of X'Ol' in the right-hand byte
of register 15 and returning control to TCAM, you direct the open
routine to open a modified line group data set consisting of only
those lines that had been activated at the time that the line having
incompatible stations was encountered. In this case, messages
directed to stations or lines that were not activated will be enqueued
in a message queues data set, but will never be sent to these stations.

If the user specifies a return code of X'O l' in register 15 and the option code passed to
him in register 1 was X'03', TCAM immediately takes the ABEND exit again; unless the
user routine has code providing for this possibility, a loop will result.

For more information on the DCB exit list and how it is specified, see the OS publication
Data Management Services.

Starting and
Restarting TCAM

Activating and Deactivating the Message Control Program

This chapter describes how to start and restart the TCAM Message Control Program, how
to initialize and activate the TCAM data sets, and how to close down the TCAM MCP.

The TCAM Message Control Program is assembled, link-edited, and executed like any
other problem program running under an OS System. Sample Job Control Language for
assembling, linkage-editing, and executing the MCP is given in the chapter Putting the
MCP Together.

The TCAM MCP may be started or restarted by placing the Job Control statements for
the execute step in the card reader and activating an OS Reader/Interpreter (by a START
command issued at the system console) to read the JCL into the system. Another way to
start or restart the MCP is to issue a START command that names a cataloged procedure
that causes the MCP to he executed. The chapter on putting the MCP together contains
sample code and Job Control statements for implementing both types of startup. The
various types of restart available to the TCAM user are described in the TCAM Check
point/Restart Facility section of the chapter Using TCAM Service Facilities.

Initialization and Activation The INTRO, OPEN, and READY macros are issued as a group; together they constitute
the data-set initialization and activation section of the Message Control Program. This
section must precede the Message Handler sections of the MCP (see the chapter Putting
the Message Control Program Together). When the INTRO, OPEN, and READY macros
have been executed, the TCAM system is ready to handle message traffic.

As the first macro executed in the Message Control Program, INTRO expects to get con
trol from OS Job Management. INTRO establishes standard entry linkage with Job
Management, chains save areas, provides addressability, and saves the start parameter list
pointer. If it is desired to insert user-written code (which must not contain any TCAM
macros) before INTRO, the Message Control Program (Le., the code beginning with
INTRO) should be called as a subroutine of the inserted user code with register 15
containing the address of INTRO, register 14 containing the address to which the MCP
returns upon termination of TCAM, register 13 containing the address of a standard
18-word save area, and register 1 containing the start parameter list pointer as originally
passed in register 1 from Job Management.

If the user desires to refer to the PARM field of the EXEC Job Control statement, he may
either use the register 1 pointer as passed by Job Management (prior to INTRO execu
tion) to find the PARM field, or after INTRO execution, this same value (in register 1) is
stored by INTRO in a local constant area, a fullword tagged IEDSPLPT.

The INTROmacro also creates the Address Vector Table (which is the primary control
block of the TCAM system) wherein many system variables are defined. When INTRO is
executed, it optionally provides for dynamic redefinition of many of these system
variables by interpreting the operator's response to a WTOR message. Once the system
variables are defined in the AVT, INTRO continues with system initialization, creating
buffers and trac~ tables, and formatting control blocks.

The OPEN macro completes the initialization of the TCAM data sets and activates them
for use. The TCAM data sets that must be activated in the MCP by OPEN macros are
those for the message queues, the line groups, the message logs, and checkpoint.

Each data set that is used by the MCP can be opened by a separate OPEN macro, or all
data sets of the same type (e.g., all line group data sets) can be opened with one OPEN. If
used, the message queues data sets must be opened first, and the checkpoint data set must
be opened next. Opening a line group data set causes all lines in the line group to be
prepared for operation; the lines optionally may be prepared for message transmission at
this time, or activation may be deferred until later (the line is opened idle and later
started by the STARTLINE operator command).

The READY macro must be the last instruction in the initialization and activation section
of the MCP. When READY has executed, the system is ready to handle message traffic.
The expansion of this macro causes a branch to the internal routine that supports the

Activating and Deactivating the MCP 91

INTRa Macro Instruction

92

MCP, where procurement of the first message is awaited. When the first message is
procured (either from a terminal or an application program), control is transferred to the
MH section of the MCP for handling the message.

Once the MH sections are initially entered after the execution of the READY macro,
execution of user-specified code in the MCP is restricted to the Message Handlers; that is,
the MH sections are continually reentered to handle messages entering and leaving the
computer as long as the MCP is active. Accordingly, any user code must either be within
or be branched to from a Message Handler. User code cannot branch between Message
Handlers. (See the User Code in a Message Handler section of the chapter Designing the
Message Handler.)

For a sample MCP initialization and activation routine, see the last section of this chapter.

In addition to initial startup of the TCAM system, as described above, TCAM provides for
three types of restart following system closed own or failure. These are discussed in
Restart of the chapter Using TCAM Service Facilities.

The INTRa macro:

• Creates the Address Vector Table (the primary control block in the TCAM system);
• Performs the bulk of TCAM system initialization;
• Establishes addressability and entry linkages for the Message Control Program;
• Specifies the name of the Message Control Program;
• Specifies the number of channel program blocks to be provided for transferring data

between buffer units and queues maintained on disk;
• Specifies the maximum number of command input blocks that may be used at anyone

time to contain operator commands entered at the system console;
• Identifies the primary operator control terminal;
• Specifies a character string used to identify operator commands;
• Specifies the size of buffer units;
• Specifies the maximum number of units that may be assigned to a main-storage

message queues data set;
• Provides the user with a means of determining when his main-storage message queues

data set is nearly full, and when this condition of impending fullness has abated;
• Identifies the station or application program to which messages having an invalid

destination are to be forwarded;
• Specifies which user registers are to be saved when in-line user code is located in an

inheader or outheader subgroup that may handle multiple-buffer headers;
• Specifies the length of the system interval;
• Specifies the interval between environment checkpoints;
• Specifies the number of environment checkpoint records to be retained at anyone

time;
• Provides sytem optimization by specifying that unnecessary options are to be omitted;
• Specifies the type of restart to be performed following system closedown or failure;
• Specifies a password that must be coded in certain application-program macros that

affect operation of the MCP;
• Provides for inclusion of various debugging facilities;
• Specifies whether a special operator awareness message is to be displayed at the pri

mary operator control station whenever a station fails to respond to polling;

TCAM relies upon the INTRa macro to supply information defining and initializing a
variety of TCAM functions. The operands of INTRO provide information concerning
data-set definition (DISK=, CPB=, MSUNITS=, MSMAX=, MSMIN=), buffer definition
(KEYLEN=, LNUNITS=), the operator control facility (CIB=, PRIMARY=,
CONTROL=), the Message Handlers (DLQ=, USEREG=), line control (INTV AL=), the
TCAM checkpoint/restart facility (CPINTVL=,CPRCDS=, STARTUP=, RESTART=,
CKREQS=), system optimization (CPB=, DISK=, FEATURE=, LlNETYP=), network
configuration (PASSWD=), debugging aids (TRACE=, TREXIT=, DTRACE=,
CROSSRF=, TOPMSG=, COMWRTE=), and the on-line test facility (OLTEST=). A
section devoted to each of the above topics is located elsewhere in this publication. The
user may read over the description of the INTRO macro for general information before
he is familiar with the TCAM functions to which the operands refer, but he should not
attempt to code INTRO operands dealing with a particular TCAM function until he has
read the discussion of that function. In general, the operand descriptions refer the reader
to the sections where the functions of the operands are discussed.

TCAM provides the user with the ability to replace, at INTRO execution time, values
specified at assembly time by certain operands of the INTRO macro and to provide values
for INTRO operands that were omitted at assembly time.

At the time INTRO is executed, it may cause the following WTOR message to appear on
the system console:

nn IED002A SPECIFY TCAM PARAMETERS

This WTOR message is issued only if at least one of the following operands is omitted
from the INTRO macro: STARTUP=, KEYLEN=, LNUNITS=, and (if DISK=YES is
coded in INTRO) CPB=. If these operands are all coded in the INTRO macro, no WTOR
message is issued at execution time.

After the TCAM system issues the WTOR message, it waits for a user response to be
entered at the system console. The user has two options in responding; he may either
enter response keywords (as shown in the "response keyword" line in the list of INTRO
operands.), or he may enter INTRO operand names (as shown in the header line in the
list of operands) together with appropriate values. Several keywords or operands may
be coded in one response. Keywords or operands coded in a response are separated by
commas or vertical bars (I). Responses may be entered in upper- or lower-case letters.
They will be translated into upper-case automatically. Each response is limited to 41
characters. After a response has been entered, TCAM re-issues the WTOR message, and
continues to issue it after each response is entered until the user indicates that he has
nothing more to specify; the user does this by coding U at the end of a response. If the
user codes U and has not yet specified values for ST ARTUP=, KEYLEN=, LNUNITS= or
(if DISK=YES is specified in INTRO) CPB=, either in the INTRO macro or in a response
to the WTOR message, TCAM prompts him with the following message:

nn IED004A REQUIRED PARAMETER MISSING. SPECIFY operand

where operand is the name of the missing INTRO operand.

An error in specifying a response keyword or operand (such as an invalid response key
word or operand or an invalid value with a response keyword) causes an error message to
be printed at the console; the operator may respecify the response keyword or operand
when he receives such a message. An error in one response keyword or operand prevents
interpretation of any keywords in the same response to the right of the keyword in error.
A response keyword or operand may be coded more than once in the sequence of WTOR
responses; the latest value specified applies.

Example:
The following WTOR messages and responses occur at INTRO execution time for a user
who has omitted the STARTUP= and LNUNITS= operands from his INTRO macro. The
user specifies LNUNITS=, MSMIN=, MSMAX=, CPRCDS=, and CONTROL=, but forgets
to specify STARTUP= (a required operand) and is prompted for this operand.

message: 00 IED002A SPECIFY TCAM PARAMETERS

response: r 00,'B=2,MsMIN=80 IX=95,E=5'

message: 00 IED002A SPECIFY TCAM PARAMETERS

response: r OO,'CONTROL=OPcONT,U'

message: 00 IED004A REQUIRED PARAMETER MISSING. SPECIFY STARTUP=

response: r OO,'FC,U'

NOTE: If no response keyword is shown for a particular oper.and, the value for that
operand may not be specified at INTRO execution time.

INTRO Macro 93

symbol

keyword operands

PROGID=characters

DISK={~S}

CPB= {~teger }

CIB= {!teger }

94

The INTRO macro has the following format:

Name Operation Operands

[symbol) INTRO keyword operands

Function: Specifies the name of the macro.
Default: None. Specification optional.
Format: Must conform to the rules for assembler language symbols (see the symbol entry
in the Glossary).

Function: Specifies the operands that can be used.
Format: The operands may be specified in any order according to aS$embler language
conventions.
Notes: The operands for the INTRO macro are described in the following list.

The list of operands for the INTRO macro also shows the one-character response
keywords that may be substitutes for the operand names in responses to the WTOR
message SPECIFY TCAM PARAMETERS sent to the system master console at INTRO
execution time.

Response Keyword: None.
Function: Specifies the name of the Message Control Program.
Default: None. Specification optional.
Format: One to 230 unframed characters with no embedded blanks or commas.
Notes: TCAM inserts this name in a DC C'characters' field located in the MCP. In a
dump, this name appears in the EBCDIC field at the right of each page of the listing and
identifies the beginning of executable code for the MCP. If this operand is omitted, no
name is assigned the MCP.

Response Keyword: None.
Function: Specifies whether any of the message queues data sets defined for this MCP
are located on a direct-access secondary storage device.
Default: DISK=YES
Format: YES or NO.
Notes: DISK=YES is coded if any of the message queues data sets are located on disk.
DISK=NO is coded if no message queues data sets are located on disk.

For further information, see Message Queues Data Sets in the chapter Defining Data Sets.

Response Keyword: D=
Function: SpeCifies the number of channel program blocks to be provided for trans
ferring data between buffer units and message queues maintained on disk.
Default: CPB=O
Format: Unframed decimal integer.
Maximum: 65535
Notes: One CPB is involved in transferring the data in one unit to disk, or in filling one
unit with data from disk. See Specification of Channel Program Blocks in the chapter
Defining Data Sets.

This operand is ignored if DISK=NO is coded, and may be omitted in this case. If
DISK=NO is coded, this operand is ignored by INTRO, and both CPB= and D= are invalid
responses at INTRO execution time.

Response Keyword: C=
Function: Specifies the maximum number of command input blocks (CIBs) that can be
utilized at anyone time in the TCAM system.
Default: CIB=2
Format: Unframed decimal integer.
Maximum: 255

PRIMARY={ tennname}
SYSCON

CONTROL= {gharacters l

KEYLEN=integer

UNITSZ=integer

Notes: CIBs are buffer-like areas used to contain operator commands entered at the
system console. Space for them is allocated dynamically when needed, and the main
storage space assigned to a CIB is freed once the operator command contained within the
CIB has been processed. Only one CIB need be specified for operator commands entered
from the system console. However, more than one CIB should be specified if the user
anticipates attempting to process simultaneously more than one operator command
entered from the console. If an attempt is made to enter an operator command from the
system console when the number of CIBs specified by the CIB= operand are present
already in the system (because that many operator commands from the system console
are now being processed), the message being entered is rejected by TCAM.

Response Keyword: P=
Function: Specifies the name of the station or application program to be used as the
primary operator control station.
Default: PRIMARY=SYSCON
Format: termname or SYSCON. termname is the name of a station or application
program (defined by a TERMINAL or TPROCESS macro) and may not be a switched
line. It must be able to enter and to accept messages.
Notes: SYSCON is the name of the system console. The functions of the primary oper
ator control station are given in The Operator Control Facility section of Using TCAM
Service Facilities.

If termname is changed by a CPRIOPCL operator command, execution of a warm or con
tinuation restart causes the value specified in the macro to be overridden by the value
specified by the last CPRIOPCL command executed before closedown or failure.

Response Keyword: L=
Function: Specifies the character string used to identify each operator command as such
to TCAM.
Default: CONTROL=O
Format: One to eight unframed characters with no embedded commas or blanks.
Notes: CONTROL=O indicates that no character string is being specified, and is valid
only if all operator commands are to be entered at the system console.

Response Keyword: K=
Function: Specifies the size of a buffer unit.
Default: None. This operand is required.
Format: An unframed decimal integer greater than 32.
Maximum: 255
Notes: Guidelines for coding this operand are given in the chapter Defining Buffers. This
chapter should be thoroughly understood before KEYLEN= is specified.

If disk queuing is used, integer must be identical with the unit size specified in the
DCB=(KEYLEN=unitsize) parameter of the IEDQDATA DD statement for the IEDQXA
utility program used to preformat the disk queues.

A buffer must be large enough to accommodate the larger of:

a. a header prefix (30 bytes) plus the maximum number of reserve characters specified
for the first buffer by the RESERVE= operand of any line group DCB macro or PCB
macro plus three bytes, or

b. a text prefix (23 bytes) plus the maximum number of reserve bytes specified for
buffers other than the first by the RESERVE= operand of any line group DCB macro
or PCB macro plus three bytes.

Response Keyword: K=
Function: Specifies the size of a buffer unit.
Default: None. If KEYLEN= is specified, this operand must be omitted. If KEYLEN= is
not specified, this operand is required.
Format: An unframed decimal integer greater than 32.
Maximum: 255
Notes: This operand is an alternate spelling of the KEYLEN= operand. Either form, but
not both, may be specified.

INTRO Macro 95

LNUNITS=integer

MSUNITS= {~nteger }

MSMIN={~n~eger }

96

Reponse Keyword: B=
Function: Specifies the number of buffer units that may be used in building buffers to
contain incoming and outgoing message segments.
Default: None. This operand is required.
Format: Unframed decimal integer greater than zero.
Maximum: 65535
Notes: Guidelines for coding this operand are given in the chapter Defining Buffers.

Response Keyword: M=
Function: Specifies the maximum number of buffer units that may be assigned to the
main-storage message queues data set at anyone time. ;
Default: MSUNITS=O
Format: Unframed decimal integer.
Maximum: 65535
Notes: Guidelines for coding this operand are given in the discussion of main-storage
message queues data sets in the chapter Defining Data Sets.

This value is added to that specified for LNUNITS= to determine the total number of
units in the buffer unit pool.

If specified as part of the WTOR response at INTRO execution time, M=O is considered
an invalid response. At execution time, a value greater than zero must be specified.

If MSUNITS=O is specified or assumed, the expression M= may not be entered in the
WTOR response at INTRO execution time. Therefore, if a main-storage message queues
data set is desired, MSUNITS= must be coded with a nonzero integer, even if the value
specified is to be overridden at INTRO execution time by an M= expression.

Either MSUNITS= must be nonzero or DISK=YES must be coded.

Response Keyword: X=
Function: Specifies the percentage of the number of units specified by the MSUNITS=
operand to be enqueued on a main-storage message queues data set before a warning is
provided that the data set is nearly full.
Default: MSMAX=70
Format: An unframed decimal integer greater than zero.
Maximum: 100
Notes: When this percentage of units is enqueued, a bit is set in each message error
record in the system. This operand is discussed in greater detail in the section on main
storage message queues data sets in the chapter Defining Data Sets.

Response Keyword: Y=
Function: Specifies the percentage of the number of units enqueued on a message queues
data set (specified by the MSUNITS= operand) below which a bit is set in every message
error record in the system.
Default: MSMIN=50
Format: An unframed decimal integer.
Maximum: 99
Notes: The operand may be used to inform the user that his message queues data set is
no longer crowded. The value specified for MSMIN= must be less than that specified for
MSMAX; otherwise, the INTRO macro does not execute. Values specified for MSMIN=
(or MSMAX=) at INTRO execution time by means of a WTOR response are checked
against the current value of MSMAX= (or MSMIN=) if specified, to ensure that this rule is
not broken. If the rule is broken the value specified in the WTOR response is rejected and
an error message is sent to the system master console informing the operator of this fact.
The operator may then respecify the value. As an example, if MSMIN=95 and
MSMAX=99 are coded in the INTRO macro, an INTRO execution time the user should
not code

r 00 ,'MSMAX=90,MSMIN=85'

as a WTOR response, because the WTOR response is read from left to right and the new
MSMAX value will be compared with the old MSMIN value and be rejected. If however,
the user codes

USEREG={:teser }

INTV AL= {~teger }

CPINTVL={ integer}
1800

r 00,'MSMIN=85,MSMAX=90

these values will be accepted since the new MSMIN value is less than the old MSMAX
value, and the new MSMAX value is greater than the new MSMIN value, with which it is
compared.

Response Keyword: Q=
Function: Specifies the name of the dead-letter queue to which messages with invalid
destinations are sent.
Default: DLQ=O
Format: entry is the name of a station or application program as defined by a
TERMINAL or TPROCESS macro. DLQ=O specifies that no dead-letter queue is to be
used.
Notes: Dead-letter messages are messages having invalid destinations as determined by a
FORWARD macro. If a user-specified routine is coded for the EXIT= operand of the
FORWARD macro, messages with invalid destinations may have the destination cor
rected. If both the DLQ= operand of INTRO and the EXIT= operand of FORWARD are
omitted, dead-letter messages are overlaid and lost.

Response Keyword: None.
Function: Specifies the number of registers to be saved when inline user code is located
in an inheader or outheader subgroup that may handle multiple·buffer headers.
Default: USEREG=O
Format: An unframed decimal integer.
Maximum: 10
Notes: For guidelines on specifying this operand, see the section User Code in a Message
Handler. USEREG= specifies sequential registers, beginning with register 2. For instance,
if USEREG=4 is coded, registers 2,3,4 and 5 are saved.

Response Keyword: 1=
Function: Specifies the number of seconds in the system interval.
Default: INTV AL=O
Format: An unframed decimal integer.
Maximum: 65535
Notes: The system interval is described in Main taining Orderly Message Flow in the
chapter Defining Terminal and Line Control Areas.

Unless a nonzero integer is specified either in the operand or in the response to a WTOR
message at INTRO execution time, no system interval is possible for the MCP.

Response Keyword: V=
Function: Spe'cifies the maximum number of seconds between environment checkpoints
when the TCAM checkpoint/restart facility is used.
Default: CPINTVL= 1800
Format: An unframed decimal integer greater than 29.
Maximum: 65535
Notes: See the se'ction TCAM Checkpoint/Restart Facility of the chapter TCAM Service
Facilities for further information on this operand.

Response Keyword: E=
Function: Specifies the number of environment checkpoint records to be retained in the
checkpoint data set at anyone time.
Default: CPRCDS=2
Format: An unframed decimal integer greater than 1.
Maximum: 75
Notes: The most recent records are the ones retained. For example, if CPRCDS=2 is
specified, the most recent two environment checkpoints are kept in the checkpoint data
set. When a new environment checkpoint is taken, its record overlays the oldest environ
ment checkpoint record then being held in the data set. If an attempt is made to increase
or decrease integer during a warm or continuation restart the smaller value prevails.

INTRO Macro 97

STARTUP=(~,,) [I)

t::j

CKREQS= {~teger 1

98

Guidelines for coding this operand are included in the discussion of the TCAM check
point/restart facility in the chapter Using TeAM- Service Facilities.

Response Keyword: S=
Function: Specifies the type of startup to be performed following closedown of the
Message Control Program or system failure.
Default: None. This operand is required.
Format: C, CI, CY, CYI, W, WI, WY, or WYI.
Notes: The types of restart are defined in the discussion of the TCAM checkpoint/restart
facility in the chapter Using TeAM Service Facilities.

The values may be specified in any order. For instance, IC is just as valid and produces
the same results as CI.

C specifies that a cold restart is to be performed following a normal quick close or flush
close, and that continuation restart (including scanning of the message queues) is to be
performed following system failure.

CY specifies that a cold start is to be performed following a quick close, a flush close or a
system failure.

W specifies that a warm restart is to be performed following a normal quick close or flush
close, and that a continuation restart is to be performed following system failure. The
continuation restart will include full scanning of the message queues.

WY specifies that a warm start is to be performed following a quick or flush close, and
that a continuation restart is to be performed following system failure. The continuation
restart will not include scanning of the message queues.

I specifies that the status of each invitation list is to be included in the checkpoint record.
If I is not coded, invitation lists are not checkpointed. The status information recorded is
as follows:

1. whether the list is active or inactive,
2. whether the list is autopolled or program polled.

The specification of I prevails from one cold restart to the next. Attempts to change this
specification during a warm or continuation restart are ignored.

Response Keyword: R=
Function: Specifies the maximum number of destination queues in use at any time for
application programs that include a CKREQ macro.
Default: CKREQS=O
Format: An unframed decimal integer.
Maximum: 255
Notes: This operand specifies the number of checkpoint request records to be set up in a
checkpoint data set.

If an attempt is made to increase or to decrease integer during a warm or continuation
restart, the smaller value prevails.

Response Keyword: N=
Function: Specifies which environment checkpoint record the TCAM restart facility
should use in attempting to reconstruct the MCP environment as it existed at the time of
closed own or failure.
Default: RESTART=O
Format: An unframed decimal integer.
Maximum: 255
Notes: For more information on the use of this operand, see the section discussing the
checkpoint/resbut facility in the chapter Using TeAM Service Facilities.

-- -~--------

PASSWRD= {taracters}

CROSSRF={ ~teger }

TREXIT=symbol

If 0 is specified, the latest environment checkpoint record is used, if I is specified, the
next to the latest record is used, etc.

Although the maximum that may be specified is 255, the value entered must be less than
the number of environment checkpoint records kept, as specified by the CPRCDS=
operand. A scan is performed at restart if scanning is specified in the STARTUP=
operand. If RESTART=O is specified, or the operand is omitted and the latest environ
ment checkpoint record cannot be used (due, perhaps, to a disk I/O error), TCAM auto
matically goes back to the latest usable record and uses it.

If the message queues data set is on resuable disk and the integer specified causes TCAM
to attempt to restructure the environment from a checkpoint record that was taken
before serviced messages in certain queues were overlaid, it is unlikely that a warm restart
or a continuation restart will be successful.

This value should not be changed during a warm or continuation restart.

Response Keyword: W= ,.
Function: Specifies a character string that must be entered in an MRELEASE,
MCPCLOSE, TCHNG or ICHNG macro issued in an application program.
Default: P ASSWRD=O
Format: One to eight unframed characters with no embedded blanks or commas.
Notes: If this operand is coded, none of the above macros are executed unless they have
the correct password. A macro with an incorrect password or no password is ignored.

P ASSWRD=O indicates that no password is being specified. The user will be unable to
find the password as specified here in a storage dump; an internal TCAM routine
scrambles the password at INTRO execution time.

Response Keyword: F=
Function: Specifies the number of entries in the cross-reference table.
Default: CROSSRF=O
Format: An unframed decimal integer.
Maximum: 65535
Notes: The cross-reference table is a debugging aid. Each entry contains the addresses of
certain internal TCAM control blocks associated with a line. If a cross-reference table is to
be used, CROSSRF= should specify the maximum number of TCAM lines that are open
simultaneously.

This facility is described in the Debugging Aids section of the chapter Using TCAM
Service Facilities.

Response Keyword: T=
Function: Specifies the number of entries in the TCAM input/output trace table.
Default: TRACE=O
Format: An unframed decimal integer.
Maximum: 65535
Notes: This table provides a sequential record of the I/O interrupts occurring on a speci
fied line and is described in greater detail in Debugging Aids in the Using TCAM Service
Facilities chapter.

Response Keyword: None.
Function: Specifies the entry point of a user-written routine to be given control when all
entries in the TCAM I/O trace table have been used.
Default: None. Specification optional.
Format: Must conform to the rules for assembler language symbols.
Notes: The routine is passed the address of the I/O trace table in register O. Nothing is
returned by the routine. There is no special restriction on what may be done with the
table in the routine (i.e., the information might be transferred to an external device such
as the printer).

This operand cannot be specified if TRACE=O.

INTRO Macro 99

DTRACE= 1 ~nteger l
B! ,

OL TEST={ roteger}

TOPMSG={~}

100

The entries are reusable and may be updated while the exit routine is processing them,
since they are updated by code that is disabled to interrupts.

Response Keyword: A=
Function: Specifies the number of entries in the TCAM dispatcher trace table.
Default: DTRACE=O
Format: An unframed decimal integer.
Maximum: 65535·
Notes: The dispatcher trace table is a debugging aid that keeps a sequential record of
subtasks activated by the TCAM dispatcher. This table is discussed in Using TeAM
Service Facilities. One entry is created for each sub task activated; when the end of the
table is reached, the table is wrapped and new entries overlay the oldest entries.

Response Keyword: 0=
Function: Specifies the number of 1024-byte blocks of main storage to be used for on
line test procedures.
Default: OLTEST=IO
Format: The unframed decimal integer 0, or an unframed decimal integer greater than 9.
Maximum: 255
Notes: For information on coding this operand, see On-Line Test Function in the
chapter Using TeAM Service Facilities.

If the on-line test capability is not needed, OLTEST=O should be coded. If the operand is
omitted, 10K of main storage is reserved for OLT.

Response Keyword: G=
Function: Specifies that a special task is to be attached to the MCP.
Default: COMWRTE=NO
Format: YES or NO.
Notes: The task must be provided by the IBM Field Engineering representative. If
COMWRTE=YES is coded but the task is not available, the MCP runs, but a task asso
ciated with COMWRTE terminates abnormally and the COMWRTE function is not
available. This operand should be omitted unless the user is directed otherwise by the
IBM Field Engineering representative.

Response Keyword: None.
Function: Specifies the duration of the "mark" character for the World Trade users
whose BSC lines require a "line tone."
Default: WTTONE=O
Format: An unframed decimal integer.
Maximum: 450
Notes: Restricted to use in World Trade countries. This operand specifies the number of
characters that constitute the tone.

Response Keyword: H=
Function: Specifies whether the operator awareness message IEAOO I is to be displayed
at the primary operator control station when a polled station fails to respond to polling.
Default: TOPMSG=YES
Notes: The message is described in the section TeAM I/O Error-Recording Facilities of
the chapter Using TeAM Service Facilities.

If YES is specified, the message is displayed each time a station fails to respond to polling
during a pass through the invitation list (because, for instance, the station is inoperative).

UNETYP=lBISC }
STSP
MINI
!Qlli

FEATURE=

<{NODIAL} ,{N02741} ,{NOTIMERl>
DIAL 2741 TIMER f

OPEN Macro Instruction

Response Keyword: None.
Function: Specifies the type of lines used in the TCAM system.
Default: LINETYP=BOTH
Format: BISC, STSP, MINI or BOTH.
Notes: BISC is specified if all lines in the system are BSC lines only. STSP is specified if
all lines are start-stop only. MINI is specified if all lines in the system are IBM 1050
terminals on leased lines. BOTH is specified if all types of lines are supported.

Response Keyword: None.
Function: Specifies additional features to be supported in the TCAM system.
Default: FEATURE=(DIAL,2741,TIMER)
Format: NODIAL or DIAL, N02741 or 2741, and NOTIMER or TIMER. Framing
parentheses must be coded. If a sub operand other than the last is omitted due to default,
a comma must be coded to indicate that it is missing.
Notes: DIAL is specified if dial lines are used. If 2741 terminals are supported, 2741
should be coded. The TIMER sub operand should be specified if any of the following
features are included in the system:

checkpoint
any interval
dial-out options
main-storage queuing
reusable disk queuing.

If NOTIMER is specified but a function requiring the timer is used, TCAM terminates
abnormally with a system abend code of 045 and a user code of 06.

NOTES: Following the INTRO macro the user should include a section of code that
tests the return code in register 15 to determine whether INTRO has executed correctly.
If register 15 contains anything other than zero after execution of INTRO, it is unlikely
that the MCP will work satisfactorily. See the sample activation and deactivation section
of the MCP at the end of this chapter for a section of user code that checks the INTRO
return code and branches to an ABEND macro if the return code is anything other than
zero.

The OPEN macro:

• Completes initialization and activation of data sets belonging to the Message Control
Program,

• Is required for each MCP data set represented by a DCB macro, and for log data sets (if
present),

• Specifies whether activation of lines represented by line group data sets is to be im
mediate or deferred.

OPEN is used to complete initialization and activation of MCP data sets, and to provide
an interface with the BSAM routines handling the logging function for TCAM. Each MCP
data set required for execution (with the exception of a message queues data set residing
in main storage) must be activated in the Message Control Program by an OPEN macro.
Log data sets, if present, are also activated by an OPEN macro issued in the MCP. Each
MCP data set may be activated by a separate OPEN macro, or all data sets of the same
type (e.g., all line group data sets, or all message queues data sets) may be activated as a
group by a single OPEN. If message queues data sets residing on disk are present, they
must be opened first. The checkpoint data set, if present, must be opened next.

Instead of a standard OPEN macro, the user may code a list and an execute form of the
macro, which would be used in conjunction with each other; for general information on
the list and the execute form of a macro, including a discussion of the advantages of using
these forms, see the OS publication Supervisor Services.

Activating and Deactivating the MCP 101

symbol

dcbname

{
OUTPUT}
INOUT
INPUT

102

When an OPEN macro tries and fails to properly open a TCAM data set, an error message
is sent to the system console. This error message, which specifies the data set that could
not be satisfactorily opened and also tells why it could not be opened, is described in the
section User ABEND Exits of the chapter Defining the MCP Data Sets. In addition to
sending the error message, TCAM provides the user with the capability of specifying a
user-written subroutine that receives control when an OPEN macro fails to execute
properly. This capability is described in the User ABEND Exits section. If the user fails to
provide this subroutine, TCAM issues an ABEND macro for the MCP program when an
OPEN fails to execute properly.

When an OPEN macro is executed for a line group data set, TeAM issues commands to
prepare each line for message traffic. If TCAM does not receive an indication that the
commands have successfully executed within 28 seconds from the time they were issued,
the line is considered to be temporarily unavailable, and the following message is written
at the system console:

IED0791 ENDING STATUS NOT RECEIVED FROM LINE nnn - LINE
UNAVAILABLE

The unavailable line may subsequently be started by the STARTLINE operator com
mand. Unavailability of one line does not affect preparation for message traffic on other
lines in the line group.

The operand field of the OPEN macro consists of one or more groups of positional
operands, followed by a single keyword operand. Each group of positional operands
consists of the name of the data control block for the data set being opened (the name of
the block is the name of the DCB macro that created it) and some optional information
about the data set being opened. A comma is coded between groups. The optional key
word operand at the end permits the list and the execute form of the macro to be
specified.

The OPEN macro has the following format:

Name Operation Operands

[symbol] OPEN (dCbname,[({OUTPUT} [,IDLE])] , ...)
INOUT
INPUT

[,{MF=L }]
MF=(E,listname)

Function: Specifies the name of the macro.
Default: None. Specification optional.
Format: Must conform to the rules for assembler language symbols (see the symbol entry
in the Glossary).
Notes: If MF=L is specified; this name must also be provided. It becomes the name of
the parameter list generated by the macro.

Function: Specifies the name of a data control block identical with the name specified in
the symbol field of the DCB macro for the data set being opened.
Default: None. This operand is required.
Format: Must conform to the rules for assembler language symbols.
Notes: Register notation may also be used, in which case the specified register (2 through
12) should contain the address of the data control block for the data set being opened.

Function: Specifies the type of data setwith respect to the direction in which message
traffic may flow.
Default: INPUT
Format: OUTPUT, INOUT or INPUT.
Notes: OUTPUT specifies an output data set, and must be specified for a log data set.
The operand may be coded for a line group data set if none of the lines are to stations
that can enter data; in this case, the INVLIST= operand of the line group DCB macro
must refer to an invitation list having no entries (see the description of the INVLIST
macro).

IDLE

MF={L t
(E,listnamelf

INOUT specifies a data set that can be used for both input and output. INOUT must be
specified for a DASD message queues data set or a checkpoint data set, and should be
specified for a line group data set if any of the lines are to stations that both enter and
accept data.

INPUT specifies an input data set. This operand may be specified if none of the lines are
to stations that can accept data.

Function: Specifies whether the lines are to be activated when OPEN is executed.
Default: None. Specification optional.
Format: IDLE
Notes: Is meaningful only for a line group data set. If IDLE is coded, the line group data
set is initialized at OPEN execution time, but the lines are not activated. That is, no
invitation or selection is performed for stations on this line. Such lines may be activated
individually by means of a STARTLINE operator command. If IDLE is omitted, all lines
in the line group are automatically activated when the OPEN macro is executed. For
nonswitched lines to stations having polling characters, polling of stations having active
entries in the invitation lists for the lines begins after OPEN is executed, provided that
INPUT or INOUT is also specified.

A station assigned to a switched line that is idle may not call in on that line, but may call
in on any active line In its line group and enter messages. Such a station will not receive
any messages queued for it until it is activated by the STARTLINE operator command.

If neither INOUT, INPUT, OUTPUT nor IDLE is specified for a particular data set, and a
subsequent data control block address is specified in the sub list, two commas must appear
between the two specified data control block names.

Function: Specifies whether the OPEN macro is to generate a parameter list only or is to
generate executable code.
Default: None. Specification optional.
Format: listname specifies the name of an OPEN macro specifying MF=L.
Notes: MF=L causes creation of a parameter list based on the OPEN operands. No
executable code is generated. The user must specify this form of the OPEN among his
program constants. The parameters in the list are not used until the program issues an
OPEN or CLOSE macro with an MF= (E,listname) operand that refers to the list. The
name specified in the name field of the OPEN macro becomes the name assigned to the
parameter list.

MF= (E,listname) causes execution of the OPEN routine, using the macro having the
MF=L operand specified. Parameters specified through a macro having MF= (E,listname)
operand override corresponding parameters in the list.

Example:
The following OPEN macros open:

1. Two DASD message queues data sets whose name (as assigned by their DCB macros)
are DISKREUS and DISKNON;

2. A checkpoint data set named TPCHK;
3. A line group data set named GROUPONE and another line group data set named

GROUPTWO that is to be opened idle;
4. A log data set named MSGLOG.

Name Operation

OPENDISK OPEN

OPENCKPT OPEN

OPENLINEOPEN

OPENLOG OPEN

Operands

(DISKRE.DS,(INOUT),DISKNON,(INOUT»

(TPCHK,(INOUT»

(GROUPONE,(INOUT),GROUPTWO,(INOUT,IDLE»

(MSGLOG,(OUTPUT»

Note that the message queues data sets are opened first and that the checkpoint data set
is opened second.

Activating and Deactivating the MCP 103

READY Macro Instruction

symbol

GMMSG--routine

104

The READY macro:

• Completes initialization and activation of the MCP,
• Permits "Good Morning" and "Restart in progress" messages to be specified,
• Must be issued between the OPEN macros and the CLOSE macros in the activation

and deactivation section of the MCP.

The READY macro completes initialization and activation of the Message Control Pro
gram; once READY has executed, the TCAM system is ready for message traffic. One
READY macro is specified per MCP. This macro is located between the OPEN macros
and the CLOSE macros-in the activation and deactivation section of the MCP.

Two optional operands of READY provide the addresses of user-written routines that
may build "Good Morning" or "Restart in Progress" messages, and might also alter
option fields and other control areas to reflect the fact that a restart has occurred. The
exit for the "Good Morning" message is taken for the initial startup of the MCP and for
each cold restart; the exit for the "Restart in Progress" message is taken for a warm or a
continuation restart (for a discussion of the various types of TCAM startup, see TCAM
Checkpoint/Restart Facility in Using TCAM Service Facilities).

When initial startup or a restart occurs, the appropriate routine is given control for each
station defined by a TERMINAL macro, provided that the line group data set containing
the line on which the station is located has been opened by means of an OPEN macro.
The user routine should save and restore registers. When control passes to the user
routine, register 1 contains the address of a two-word parameter list. The first word in the
list contains the address of the terminal table entry for the station to which the message
generated by the user is to be sent, while the second word contains the address of the
option fields for the destination station. The user routine may use this information to
build a message tailored to this particular station, if a message is desired, and may also
alter fields in the terminal table entry and the option fields for the station to reflect the
fact that a restart has occurred (for a warm start or continuation restart, the data in the
terminal table entries and the contents of the option fields before closed own or failure
are preserved by the checkpoint facility).

The user routine returns to the MCP in register 15 the address of a message to be sent to
the station. An all-zero address indicates that no message is to be sent to this station. At
the specified address is a one-byte field indicating, in binary form, one more than the
number of bytes of data in the message, followed by the text of the message. The maxi
mum length of the message is 255 bytes. If queuing is by terminal, TCAM places the
message at the head of the queue for the destination station so that it is the first message
sent to that station following startup or restart. The message is handled by the outgoing
group of the Message Handler for the destination, and is transmitted like any other.
message. Since the message is handled by an MH group, it must have a header similar in
format to the headers of messages normally handled by the group. The user must con
struct this header in his exit routine and include it as the first part of his message.

If queuing is by line, the good morning or restart messages for the stations on a line will
be placed at the head of the destination queue for that line, and will be sent before any
other messages on that queue.

The READY macro has the following format:

Name Operation Operands

[symbol] READY [GMMSG=routine] [,RSMSG=routine]

Function: Specifies the name of the macro.
Default: None. Specification optional.
Format: Must conform to the rules for assembler language symbols (see the symbol entry
in the Glossary).

Function: Specifies the name of a user-written closed subroutine that builds "Good
Morning" messages on each line.
Default: None. Specification optional.
Format: Must conform to the rules for assembler language symbols.

RSMSG=routine

Deactivation

Types of Closedown

Deactivating a TCAM System
Without Application Programs

Notes: If this operand is coded, the routine is given control for the initial startup and for
each cold restart.

Function: Specifies the name of a user-written closed subroutine that builds "Restart in
Progress" messages.
Default: None. Specification optional.
Format: Must conform to the rules for assembler language symbols.
Notes: If this operand is coded, the routine is given control for a warm restart or a
continuation restart.

NOTE: The routines are coded and assembled as part of the MCP in the same manner as
the Message Handlers. Their exact location is not important since they are called as closed
subroutines. See User Code in a Message Handler in the chapter Designing the Message
Handler for the correct linkages.

Orderly deactivation of the TCAM system involves a number of steps. Incoming and out
going message traffic must be stopped, and if the status of the system is to be preserved, a
checkpoint record must be made. Data sets for any application program using TCAM as
its access method must be closed. Finally, the MCP data sets must be closed and control
returned to the OS Supervisor.

Closedown of a TCAM System may be initiated either by a SYSCLOSE operator com
mand or by an MCPCLOSE macro issued in an application program. These two means of
initiating closed own are described in the next two sections. Both the operator command
and the macro have an operand that specifies whether a flush closedown or a quick close
down is to be effected. A flush closedown may also be internally initiated when the non
reusable disk threshold is reached.

A flush closedown is one in which incoming message traffic on each line ceases after the
message being received at the time closedown is ordered has been completed (i.e., the line
is not repolled or re-enabled) .. As soon as incoming message traffic on each line ceases, any
eligible outgoing messages that have been queued for stations on that line are sent. (An
eligible message is a message to a station or application program that is not intercepted;
see the description of the HOLD macro.) In this manner, incoming message traffic
declines to nothing, while outgoing message traffic continues until all eligible messages
have been sent. An environment checkpoint record is taken after all eligible outgoing
messages have been sent. This record preserves the status of the MCP and also records the
locations on disk of outgoing messages that could not be sent because their destinations
were intercepted; after restart, these messages are sent once their destinations are eligible
to receive them. This form of termination is known as a flush closedown because unsent
messages are flushed from the message queues.

When a quick closedown is ordered, message traffic stops on each line as soon as trans
mission of any message currently being sent or received on the line has been completed.
Queues of messages to be sent are not flushed but their status is preserved by an environ
ment checkpoint'record, and they are sent ~o their appropriate destinations after restart.
(See the discussion of the TCAM checkpoint/restart facility in the chapter Using TCAM
Service Facilities.)

If there are no application programs in the TCAM system, a SYSCLOSE operator com
mand entered at an operator control station deactivates the system. The SYSCLOSE
command is discussed in the operator control section of the chapter Using TCAM Service
Facilities.

The SYSCLOSE command specifies either a quick or a flush closedown. When the com
mand is executed, traffic is suspended on each line, as described above.

When all message traffic and TCAM disk operations are complete, control returns to the
first instruction following the READY macro in the message control program. This in
struction must begin a user-written routine (or branch to a routine) that deactivates the
message control program. This MCP deactivation routine mu.st issue CLOSE macro in
structions for each open data set in the message control program.

The last TCAM data sets to be closed must be the checkpoint and then the DASD

Activating and Deactivating the MCP 105

Deactivating a TCAM System
With Application Programs

CLOSE Macro Instruction

symbol

106

message queues data sets. This is important, because closing these data sets deactivates the
telecommunications system. After the message queues data sets have been closed, no
further references can be made to queues, control blocks, the terminal table, invitation
lists, etc. The deactivation routine should end with a RETURN macro to end the message
control job. (For a sample MCP deactivation routine, see the last section of this chapter.)

When the TCAM system includes application programs, closedown may be effected by an
MCPCLOSE macro issued as part of a termination routine in an application program. A
recommended procedure is to enter a special closedown message at a station; this message
would be directed to each active application program in the system (by specifying the
names of the appropriate process entries in the terminal table as its destinations). Each
application program might contain a user-written termination routine that would be
activated when the message was received. The termination routine might perform the
following steps:

1. Close any open application program data sets;
2. Issue an MCPCLOSE macro;
3. Issue a system RETURN macro in order to end the application program job.

The user could code the SETEOF macro to execute on his closedown message. When the
application program receives the message on which SETEOF has executed, it branches to
the address specified by the EODAD= operand of the input DCB macro when the next
GET or CHECK macro is issued; at this address the user would have his closedown
routine.

When multiple application programs are being closed, an MCPCLOSE macro may be
issued in each; the MCPCLOSE macro issued first is the only one to execute.

The MCPCLOSE macro checks to see whether an MCPCLOSE macro has already been
issued; if so, the macro does not execute, but places a return code of X'QO' in register 15.
The first MCPCLOSE macro issued causes all message traffic on TCAM lines to cease, as
described above in the discussion of the types of closedown. An operand of MCPCLOSE
specifies either a quick or a flush closedown. After all message traffic has ceased, the
Message Control Program checks for open application-program data sets; when all such
data sets are closed, control passes to the instruction following the READY macro in the
MCP. This instruction begins a user-written routine (or branches to a routine) that issues
CLOSE macros for each data set opened in the MCP and ends with a system RETURN
macro. A sample routine is given in the last section of this chapter.

Instead of using an MCPCLOSE macro, the user may utilize the SYSCLOSE operator
command to close a TCAM system having application programs. If any application pro
gram data sets are open at the time message traffic ceases, error messages are directed to
the system console; the error messages list the open data sets. When these data sets are
closed, the system is deactivated.

The CLOSE macro:

• Is issued in the Message Control Program to deactivate any log data set, line group data
set, checkpoint data set, and DASD message queues data set that is open in the MCP,

• Must appear following the READY macro or be branched to from instructions follow
ing READY.

The CLOSE macro has the following format:

Name Operation Operands

[symbol] CLOSE (dcbname" ...)

Function: Specifies the name of the macro.
Default: None. Specification optional.
Format: Must conform to the rules for assembler language symbols (see the symbol entry
in the Glossary).

(dcbname" ...)

Sample MCP Activation
and Deactivation Section

Function: Specifies the names of the data control blocks for the data sets being closed.
Default: None. This operand is required.
Format: Each dcbname must conform to the rules for assembler language symbols, and
must correspond to the name specified on the DCB macro for the data set being closed.
Notes: Register notation may be used, in which case the addresses of the data control
blocks must previously have been loaded into the general registers specified.

All MCP data sets of the same type (e.g., all line group data sets or all message queues
data sets) can be closed with one CLOSE macro by including the names of their data
control blocks as operands. If more than one dcbname is coded in a CLOSE macro, the
names are separated by double commas.

If present, the last TCAM data sets to be closed must be the checkpoint and then the
DASD message queues data sets.

The code in Figure 8 represents an activation and deactivation section as it might appear
in an MCP. The section consists of an INTRO macro, some user code that tests whether
INTRO worked correctly and causes termination of the MCP if INTRO did not execute
properly, OPEN macros, a READY macro, and CLOSE macros. The TCAM macros in this
section should appear in the order shown.

Since the CPB= operand of the INTRO macro is omitted (and DlSK=YES is coded), the
TCAM system will issue a WTOR message at INTRO execution time; in his response to
this message, the user may specify a value for CPB= and override or supply values for
many other INTRO operands.

The section of user code following the INTRO macro is optional, but the user should test
the return code in register 15 to determine whether INTRO has executed correctly. If
register 15 contains anything other than zero after execution of INTRO, the chances are
that the MCP will not work properly.

The OPEN macro in Figure 8 is the same as that used as an example in the previous
section. The DASD message queues data sets are opened first, and the checkpoint data set
is opened second. (Neither of these data sets is required, but if present they should be
opened in the order shown.)

A user-written subroutine may be utilized to perform error checking and correction when
a TCAM data set fails to open. The EXLST= operand of the DCB macro for the data set
may be coded so that control passes to the user's subroutine whenever the data set fails to
open. (For more information on the EXLST= operand, see the descriptions of the DCB
macros for the various TCAM data sets.) In this example, the flags set by the OPEN
macro are tested for successful completion. Open flags are at an offset of 48 beyond each
DCB macro and are set to 16 if the data set is opened correctly. If th~ open flags are not
equal to 16, the abnormal exit is taken.

The READY macro is the last macro of the activation section. RTNA is the name of a
user-written closed subroutine that will be activated for the initial startup and each cold
restart; RTNB is given control for warm and continuation restarts. Both routines are
entered once for each station represented by an entry in the terminal table and located on
a line whose line group data set has been opened.

The first CLOSE macro begins the deactivation section. This CLOSE will not be executed
until"all data sets in TCAM application programs have been closed down, and until all
lines have been closed to traffic by means of a SYSCLOSE operator command or an
MCPCLOSE macro issued in an application program. The first CLOSE is given control by
TCAM once line traffic has ceased. Notice that the DASD message queues data set is
closed last, immediately after the checkpojnt data set; this practice should be followed
when these two data sets are present.

The instructions following CLOSE return control to the OS Supervisor.

Activating and Deactivating the MCP 107

TCAM1~IT INTKu pXUGID=MCPONE,
iJISI<=YE:S,
(.UMROL=OPIil,
KEYLEN=48,
LNU~ITS=20,
OLQ=NY(. ,
UScIlEG-10,
CPI~TVL-1000,
STARTUP-W,

• NOEXEC
•

CKR EQS=2,
PASSwRDaVALIDMSG,
CROSSRF-10,
OLTEST=10

LTK 15,15
SZ OPUDISK

ADEND 123,DUHP

PRU~~AM IUENTlfl~ATIUN
USING DISK
FOR OPERATO~ ~GMMANDS
UNIT LENGTH
NUMBER OF UNIT S
DEAD LETTER QUEUE
REGISTERS TO 8E SAVED
CHECKPOINT INTERVAL
WARM RESTART
CHECKPOINT REQUESTS
PASSWORD FOR APPLICATIONS
CROSS-REFERENCE ENTRIES
ON-LINE TESTS
TEST IF INTRa WORKED
IF SO OPEN DATA SETS

IF NOT TERMINATE WITH DUMP

CPENtlSK OPEN (DISKREUS,(INOUT),DISKNON,(INDUT') OPEN DISK DATA SETS

•
• CPENCKPT

• CPENllNE

•
• GPENlCG

•

TM
SNO

TM
DNa

OPEN
TM
SNO

OPEN
TM
8NO

TM
SNO

OPEN
TM
bNU

DISKREUS+48,16 TEST IF DPfNS WORKED
NOEXEC NO - TERMINATE

DISKNON+48,16
NOEXEC

(JP CHK, (I Noun.
TPC"'K+48,16
NOEXEC

OPEN CHECKPOINT DATA SET

(GRCUPONE,IINOUTJ,GROUPThO,IINOUT,JDlEJJ OPEN LINES
GROt.PONE+1t8,16
NOEXEC

GROLPTWO+1t8,16
NOEXEC

(MSGLOG,IOUTPUTJ)
MSGlOG+1t8,16
NOBEC

OPEN MESSAGE LOGGING DATA SET

AllSkElL READY GMMSG-RTNA,RSMSG=RTNB BEGIN EXECUTIDN
•
FINISHUP CLOSE IGRCUPONE"GROUPTWO.

CLOSE (MSGlOGJ
CLOSE (JPCHKJ
CLOSE (DISKREUS"DISKNON)
L 13,4113J
RETURN (14,12'"T

CLOSE LINE GROUP DATA SETS
CLOSE LOG DATA SET
CLOSE CHECKPOINT DATA SET
CLOSE DISK DATA SETS
PREPARE TO RETURN
RETURN CONTROL TO OS SUPERVISO~

Figure 8. Sample Activation and Deactivation Section

108

• • • • • • • • • • • •

Message Format

Designing the Message Handler

The heart of a Message Control Program consists of the Message Handlers, the sets of
routines that determine the operations upon messages being received from or sent to re
mote stations or application programs. A Message Handler is defined by a sequence of
TCAM macro instructions and is constructed to handle messages for a paiticular line
group, or for several line groups that have similar characteristics.

The purpose of a Message Handler (MH) is to define the macro-introduced routines that:

1. Examine and process control information in message headers;
2. Perform necessary functions in preparing message segments for forwarding to their

destinations, which may be stations or application programs.

There are two kinds of macro instructions that may be included in a Message Handler,
functional and delimiter macro instructions. The functional macros perform the spe
cific operations required for messages directed to the Message Handler. Delimiter macros
classify and identify sequences of functional macro instructions and direct control to the
appropriate sequence (some delimiter macros have limited functional capabilities).

Design of a Message Handler consists of selecting certain TCAM macro instructions de
scribed in this chapter, and writing them in a particular sequence, according to the re
quirements of the application and the characteristics of the lines. Careful analysis must
be made of such considerations as the type of station and the type of line in use, the
processing requirements of different types of messages, and the format of the message
headers to be handled.

Before discussing the Message Handler and its parts, we shall briefly consider the format
of the TCAM message and its message header.

A message may consist of two parts, the header portion and the text portion. The
header portion contains control information for the message, such as:

• One or more destination codes,
• The code name for the originating station,
• The number of the message relative to the numbers of the previous messages received

from that station (input sequence number),
• A message-type indicator,
• Various other fields containing control indicators.

The texfportion of a message consists of information of concern to the party ultimately
receiving the message, either a station or an application program.

Depending on the. application, messages may consist of a header only, text only, or
header and text. A header-only message may utilize a message-type indicator to route
the message to an application program and, possibly, obtain a standard response. If all
messages go to only one application program, such as a file-update program, the header
may be omitted .•

The determination of what part of the message is the header and what part is text is up
to the user.

Depending on the type of work unit with which he is dealing, the user must specify
appropriate characters for control purposes. The types of work units are defined as
follows:

• A block is that portion of a message terminated by an BOB or ETB control character
or, if this is the last block in the message, by an BTX or EDT control character. A
subblockis that portion of a BSC message terminated by an ITB.

• A segment is that portion of a message contained in a single buffer. The size of the
buffer is specified by the user for each line group and application program.

Designing the MH 109

The Message Header

110

• A' record for an application program is, most often, that portion of a message termi
nated by a format character (ESC, NL, TAB, CR, or LF), or; less often, a message
portion terminated by a character specified by the data operand of the MSGEDIT
macro (see the description of this macro) .

• A message is a unit of data terminated by an EOT or ETX control character or, if the
CONV= operand of the STARTMH macro is coded CONV=YES, by an ETB or EOB
control character (see the description of the STA.RTMH macro).

Operations on the fields of the message header are the primary function of the Message
Handlers in the Message Control Program. The length and format of the header and the
information it contains depend solely on the requirements of the application and the
user's preferences. The length may be a few characters or many characters. A header
may occupy more than one buffer. However, the entire header of a message must be con
tained within the first block of the message. EOBs may not be embedded within a
header.

The format of the message header dictates the arrangement of the appropriate Message
Handler macros. The control characters used and the sequence of fields within the
header must be predetermined so that the Message Control Program can be properly
coded.

Destination codes in the message header identify the stations or application programs to
which the message is to be routed. The message-type indicator can identify a header
that is to be processed in a special manner. By inserting certain macro instructions in
the Message Control Program, the user can insert in the header such data as the date and
time it is sent, and the output sequence number.

There are many possible variations for the format of a message header. The sample for
mats shown in Figures 9 and 10 are included simply- for illustrative purposes.

The format shown in Figure 9 could be used in a message switching application. This
figure shows how an incoming message might look just before it comes into main storage.

In this example, the EBCDIC blank character (here denoted by the symbol ~ serves as a
delimiter for each header field. This is not always the case, however; some MH macros
operating on the header do not look for field delimiters, but consider a certain number
of characters or a certain sequence of characters to be a header field. To determine what
constitutes a header field for any particular macro, the user should consult the descrip
tion of that macro in the section Functional Macro Instructions.

Byte 0 contains a machine end-of-address (EOA) character inserted by the station. When
the message is transmitted, this character signals the end of nonrecorded machine control
characters (such as addressing characters and the machine EOA itself) and the beginning
of data characters. Depending upon how the LC= operand of the STARTMH macro of
the Message Handler is coded, TCAM may remove the machine-control characters and
the machine EOA before placing the message in main storage. The 192 in bytes 1
through 3 is the input sequence number. Bytes 5 through 7 contain the code for the
terminal that originated the message. Bytes 9 through 11 and 13 through 15 contain
destination codes specifying the stations to which the message is to be sent. In this ex
ample, the semicolon in byte 17 has been designated by the user as the program EOA
character. Since some of the messages in this application contain multiple destination
codes, the destination delimiter character must follow the last destination code (for
more on the program EOA character, see the description of the FORWARD macro).
Byte 19 contains characters specifying the priority of the message. The remaining por
tion of the message is text and is followed by the EOT character (which must be inserted
by the station operator to indicate the end of the message).

If LC=OUT is coded in the STARTMH macro, all control characters (including the
machine EOA) are deleted after the message is placed in buffers; thus, the user must
allow room for these characters in his buffers. If he is going to insert time-received,
date-received, and output-sequence information into his message header, the user must
specify the number of bytes to be reserved in his input buffer for this information by the
RESERVE= operand of the line group DCB macro. (The user may also insert data into
his message by the MSGEDIT macro; no buffer space need be reserved for data inserted
by MSGEDIT.)

- -----------

Text

Figure 9. Sample Format for an Incoming Message

26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

Structure of the Message
Handler

Figure 10. Sample Format for an Outgoing Message

Figure 10 shows how the message would look as it was transmitted to a destination
station. In this example, the Message Control Program inserted time-received and date
received information in the header. The time-received information in bytes 26 through
33 indicates that the message was received at 11 hours, 30 minutes, and 45 seconds on
the date specified in bytes 19 through 24, which is November 5,1969. Insertion of this
information moved the priority data to byte 35. The message is then queued by priority
on the message queue for the destination station. When the message reentered main
storage prior to transmission to the destination stations, the Message Control program
placed a blank followed by the output sequence number in bytes 36 through 40 of the
header. TCAM sends a series of control characters (ending with the machine EOA)
before sending the message to its destination; TCAM supplies an EOT character when the
MSGFORM macro is coded.

TCAM, with its complete set of header-processing routines and associated macro instruc
tions, allows the user to indicate the header-processing functions he wants by including
the appropriate macro instructions in the Message Control Program. These functions and
the relationship of the message header format to the design of the Message Control
Program are discussed later in this chapter.

A Mess-age Handler is divided into two main groups of macro instructions, the incoming
group and the outgoing group. The incoming group of a Message Handler is designed to
handle all messages that arrive for handling by the Message Control Program; these
messages may originate from any of the lines, line groups, or application programs that
are assigned to have their messages handled by the Message Handler. The outgoing group
handles messages being sent from the Message Control Program to any of the lines, line
groups, or application programs.

Each of the two groups of a Message Handler may be divided into three kinds of sub
groups. The incoming group has the following possible subgroups:

• Inheader subgroups, which handle only those incoming message segments that include
all or part of a message header,

Designing the MH 111

112

• Inbuffer subgroups, which process all incoming message segments, and
• Inmessage subgroups, which are executed after a complete message has arrived at the

CPU.

The outgoing group also has three possible subgroups:

• Outheader subgroups, which handle only those outgoing message segments that
include all or part of a message header;

• Outbuffer subgroups, which process all outgoing message segments, and
• Outmessage subgroups, which are executed after a complete message" has been sent.

The following list presents an overview of MH organization, and describes typical
functions performed in each type of subgroup. The words in parentheses are the names
of the MH macros that perform the functions described.

MACRO OR
SUBGROUP

STARTMH

Inheader
Subgroup

Inbuffer
Subgroup

Inmessage
Subgroup

Outheader
Subgroup

Outbuffer
Subgroup

FUNCTION

Determines whether this is an incoming or an outgoing message,
and routes it to the appropriate MH group.

Operates on an incoming message-header; does such things as:

• Determining whether the message should be translated to
EBCDIC (CODE)

• Determining the message origin and destination (ORIGIN,
FORWARD)

• Checking the incoming sequence number (SEQUENCE)
• Determining the message priority (PRIORITY)
• Editing header fields (MSGEDIT)

Operates on each segment of an incoming message; does such
things as:

• Counting incoming message segments (COUNTER)
• Text editing (MSGEDIT)
• Checking the length of incoming messages and terminating recep

tion for messages that are t90 long (CUTOFF)

Specifies actions to be taken after the entire message has been
received, such as

• Logging the message (LOG)
• Canceling the message (CANCELMG)
• Returning error messages to the originating station (ERRORMSG,

MSGGEN)

Operates on an outgoing message header; does such things as:

• Inserting the date and time into the outgoing header
(DATETIME)

• Assigning an outgoing sequence number to the message and in
serting it in the header (SEQUENCE)

• Editing header fields (MSGEDIT)
• Determining whether the message should be translated to line

code (CODE)
• Determining whether line-control characters should be inserted

into the outgoing message (MSGFORM)

Operates on each segment of an outgoing message; does such things
as:

• Counting outgoing message segments (COUNTER)
• Text editing (MSGEDIT)

Outmessage
Subgroup

Specifies actions to be taken after the entire message has been sent,
such as .

• Logging the message (LOG)
• Sending an error message to the destination station (ERRORMSG,

MSGGEN)
• Causing future messages to the destination station to be held up

(because, perhaps, the station is inoperative) (HOLD)

More than one subgroup of a particular kind may be included within a group to accom
modate variations in handling that may be required by various kinds of messages (see
Variable Processing within a Message Handler in this chapter).

Delimiter macros identify the beginning and end of the various MH groups and subgroups.
The STARTMH macro identifies the beginning of an MH. INHDR, INBUF, and INMSG
respectively identify the beginning of the inheader, inbuffer, and inmessage subgroups of
the incoming group. INEND identifies the end of the incoming group. OUTHDR,
OUTBUF, and OUTMSG respectively identify the beginnings of the outheader, outbuffer,
and outmessage subgroups of the outgoing group, while OUTEND identifies the end of
this group. The delimiter macros are discussed in detail later in this chapter.

A minimum Message Handler consists of a STARTMH macro and either an incoming
group or an outgoing group (either group may be omitted, as when the incoming group is
omitted for an output-only line). If the outgoing group is omitted, the OUTEND macro
must be coded to preserve addressability.

The incoming group must precede the outgoing group if both are included in an MH.

The following rules govern the arrangement of subgroups within a group:

1. If there is an incoming group, an inheader subgroup is required as the first subgroup.
All other subgroups of the incoming groups are optional.

2. The first inheader subgroup in an incoming group may be followed by any combina
tion of inheader and inbuffer subgroups.

3. Inmessage subgroups, if present, must be the last subgroups in the incoming group.
4. Any of the three types of subgroups for the outgoing group may appear as the first

subgroup in the group. However, if an out message subgroup is the first subgroup, no
outheader or outbuffer may appear in the group.

s. Outheader and outbuffer subgroups may appear in the outgoing group in any order
(Le., either subgroup may appear first and each may be specified more than once to
accommodate variations in handling required by different types of messages).

6. Out message subgroups, if present, must be the last subgroups in the outgoing group.

The sample Message Handlers in this chapter illustrate some of the ways in which sub
groups may be arranged.

The presence or absence of particular groups and subgroups within a given Message
Handler depends upon the requirements of the user. Figure 11 summarizes the MH
macros that may appear within a given subgroup. The user should familiarize himself
with the functions of the macros shown in Figure 11 and decide which of these functions
to incorporate into his Message Handler. His choice of functions will determine which
subgroups will be present in his MH. For example, if he decides he needs the function
provided by the CANCELMG macro in his MH, then he will require an inmessage sub
group. Some macros (CODE, COUNTER, LOG, for example) may appear in more than
one kind of subgroup, but their functions vary according to the kind of subgroup in
which they appear.

Designing the MH 113

CHECKPT MSGLIMIT
CODE MSGTYPE
COUNTER ORIGIN
DATETIME PATH

Inheader FORWARD PRIORITY
Subgroup INITIATE SEQUENCE

LOCK SETSCAN
LOCOPT TERRSET
LOG UNLOCK
MSGEDIT

CHECKPT LOCOPT

Inbuffer CODE MSGEDIT

Subgroup COUNTER PATH
CUTOFF TERRSET
LOG

CANCELMG LOG
Inmessage CHECKPT MSGGEN
Subgroup ERRORMSG REDIRECT

HOLD

CHECKPT LOCOPT
CODE MSGTYPE
COUNTER PATH

Outheader DATETIME SCREEN
Subgroup LOG SETEOF

MSGEDIT SETSCAN
MSGFORM SEQUENCE
MSGLIMIT TERRSET

CHECKPT LOG
Outbuffer CODE MSGEDIT
Subgroup COUNTER PATH

LOCOPT TERRSET

Outmessage CHECKPT LOG
ERRORMSG MSGGEN Subgroup HOLD REDIRECT

Figure 11. MH Subgroups and Macros

114

~------ --~- -~----- -~--~------~----~--- -----~--~---- -----~- - ------- ~-~ ~~~~~~-

Selecting Message-Handler
Functions

Message Editing

Functional macro instructions perform the specific operations required for message seg
ments being handled by the various subgroups of a Message Handler. Message segments
are directed to the appropriate subgroup by the delimiter macros; the functional macros
of the subgroup are then executed in the order in which they are specified within the
subgroup. Functions provided by an MH include:

• Message editing (insertion of date, time, and sequence number, insertion or removal
of characters or character strings).

• Validity checking (verification of source and destination codes and of sequence
numbers in incoming message headers).

• Routing messages to various destinations or alternate destinations, possibly by
priority.

• Maintaining counts and logs for message traffic on a line.
• Error checking and handling (checking for errors in transmission and taking corrective

action).
• System control (interrogating or modifying activity on a system, line, or station

basis, or specifying properties or limitations for messages).
• Function selection (permitting dynamic selection of the functions to be performed

on messages).

The table below shows the various macros used to specify these functions. A brief
description of the Message Handler functions provided by TCAM is given here. A
complete description of these functions is found in the discussions of the individual
macros in the Functional Macro Instructions section of this chapter.

MH Functions and Macros Defining the Functions

Message Editing CODE, DATE TIME, MSGEDIT, MSGFORM, SEQUENCE

Validity Checking FORWARD, ORIGIN, SEQUENCE

Routing FORWARD, INITIATE, MSGGEN, PRIORITY, REDIRECT

Record Keeping CHECKPT, COUNTER, LOG

Error Handling CANCELMG, CUTOFF, ERRORMSG, HOLD, MSGGEN,
REDIRECT, TERRSET

System Control CUTOFF, HOLD, INITIATE, LOCK, LOCOPT, SCREEN,
SETEOF, MSGLIMIT, UNLOCK

Function Selection MSGTYPE, PATH, SETSCAN

Five TCAM macro instructions -CODE, DATETIME, SEQUENCE, MSGEDIT, and
MSGFORM - provide editing facilities.

CODE, when specified in the inheader or inbuffer subgroup, translates the data in the
buffer from the line code to EBCDIC, using a specified translation table. When specified
in the outheader or outbuffer subgroup, translation is from EBCDIC to the line code.

DATETIME inserts the date and the time at which the message is received by (or sent
by) the MCP in the header.

SEQUENCE, when specified in an outheader subgroup, inserts an output sequence
number in the'messages that are sent to a destination.

MSGEDIT inserts or deletes a character or character string in the message.

MSGFORM, when specified in an outheader subgroup, inserts blocking characters into
outgoing messages, thereby dividing the messages into logical blocks of data.

Designing the MH 115

Validity Checking

Message Routing

Record Keeping

Error Handling

116

Three TCAM macro instructions - FORWARD, ORIGIN, and SEQUENCE - provide
validity checking of fields in the message header.

FORWARD verifies that the station codes specified as destinations in the message header
are valid destinations in the sytem.

ORIGIN determines the station that entered a message by checking the origin field
in the message header for the symbolic name of the station. The origin field is that
field of the header allotted to contain the name of the originating station during the
design of the header and the Message Handler. .

SEQUENCE verifies that the input sequence number included in the message header
by the station operator is valid;that is, that the number is one greater than the
sequence number of the previous message from that station. To perform this function,
SEQUENCE is included in an inheader subgroup.

Five TCAM macro instructions - FORWARD, INITIATE, MSGGEN, PRIORITY, and
REDIRECT - perform functions related to the routing of messages to a particular
destination.

FORWARD routes messages to the destinations specified in the message headers
or to the destinations specified by the FORWARD macro.

INITIATE routes segments of messages to their destination as soon as they are
received, without waiting for the whole message to arrive.

MSGGEN generates a special response message and routes it immediately to either
the originating or the destination station. The response message bypasses normal
message handling, queuing, logging, and buffering functions.

PRIORITY routes messages to their destinations according to priority levels
specified either in the message header or by the PRIORITY macro.

REDIRECT queues a message for an additional or alternate destination under
certain error conditions, or unconditionally.

Two TCAM macro instructions - COUNTER and LOG - enable records to be kept
of the flow of messages in the system.

COUNTER keeps a count of incoming or outgoing message segments or complete
messages, depending on the subgroup in which the macro is issued.

LOG places copies of segments or messages passing through the system on a sequential
medium, such as magnetic tape.

Seven TCAM macro instructions - CANCELMG, CUTOFF, ERRORMSG, HOLD,
MSGGEN, REDIRECT and TERRSET -provide facilities for the detecting and
handling of errors. These macro instructions test for error conditions arising during
transmission and handling of the message, and take action accordingly. The seven
macros are used in conjunction with a message error record, which is assigned to
each message as the message is handled. The meaning of each of the bits in the
message error record is explained in Appendix B. Some error-handling macros.
(CUTOFF, TERRSET) set bits in the message error record; the rest test the bits in
the message error record.

A five-byte bit configuration (called a mask) is specified in some error-handling macros.
When the macro is executed, the mask is compared to the message error record
assigned to the message. If a I is detected in any bit position of both the mask and
the message error record, the functions specified by the macro are performed.
A 0 is specified in a mask bit position when the error condition represented by the
corresponding position in the message error record is to be ignored. (An operand of
the error-handling macro may specify that the macro is to be executed only if: all
bits specified in the mask are on in the message error record.)

System Control

The function specified by an error-handling macro may also be performed
unconditionally (that is, for all messages or message blocks, independent of the
setting of the message error record) by either specifying a mask consisting entirely
of zeros or not specifying a mask at all.

The requirements of the application must be analyzed to determine which errors or
conditions must be detected, and which can reasonably be ignored without
degrading the performance of the system. The seven error-handling macro
instructions provide varying methods by which corrective or control functions
can be initiated when an error has been detected.

CANCELMG cancels a message if a specified error has occurred.

CUTOFF checks for incoming buffers filled with identical characters (an indication
of station malfunction). In such a case, the appropriate bit is set in the message
error record. CUTOFF also specifies the maximum number of characters allowed
in a message; if the maximum is exceeded, reception is terminated and an error
bit is set.

ERRORMSG and MSGGEN send a specified message if a specified error has occurred.

TERRSET sets a bit in the message error record to indicate, at the discretion of the
user, that a user-defined error has occurred.

HOLD suppresses the sending of messages to a station when an error specified by
the mask has been detected; it is usually used to withhold transmission to an inoperative
station.

REDIRECT sends a message to an additional or an alternate destination if a specified
error has been detected. This function normally handles messages that cannot
be sent to their intended destinations.

The FORWARD, ORIGIN, and SEQUENCE macro instructions set bits on in the
message error record when they detect an invalid destination, origin, and sequence
number, respectively.

Nine TCAM macro instructions - CUTOFF, HOLD, INITIATE, LOCK, LOCOPT,
MSGLIMIT, SCREEN, SETEOF, and UNLOCK - provide facilities for modifying
the telecommunications system or for providing dynamic control over the functions
of the system.

CUTOFF terminates transmission of an excessively long message.

HOLD stops transmission of messages to a station known to be inoperative or
unattended for a period of time making transmission undesirable.

INITIATE sends message segments to their first destination before the entire message
has been received and enqueued.

LOCK maintains the connection between a station and an application program for
the duration of a message and its response. This facility is used for fastest response
during inquiry applications.

LOCOPT provides access to fields of the option table, permitting examination and
modification of the contents of the fields.

MSGLIMIT limits the number of messages sent to or received from a station during
a single transmission sequence.

SCREEN modifies the WRITE operation for terminals with display screens.

Designing the MH 117

Function Modification

Functions Provided by
Delimiter Macros

Order of Macro
Specification

The Scan Pointer

118

SETEOF indicates an end-of-file message for an application program.

UNLOCK removes a station from the LOCK condition.

Three TCAM macro instructions - MSGTYPE, PATH, and SETSCAN - permit
modification of the functions of the Message Handler. The first two macros provide
for variations in the processing provided by the MH for. different types of messages.
SETSCAN permits modification of the scan pointer setting (discussed below) to allow
processing of a field in the header in some order other than the normal sequential order.

ST ARTMH provides end-of-block checking for hardware and logical errors and takes
appropriate user-specified action when such errors are detected. These errors cause bits
to be set in the message error record. STARTMH also provides a capability for the
automatic deletion of certain line-control characters, so that the user need not concern
himself with them. Of the remaining delimiters, INHDR, INBUF, INMSG, OUTHDR,
OUTBUF, and OUTMSG provide path-switching facilities. Only the INEND and
OUTEND delimiter macros have no functional capabilities.

Functional macros relating to an entire message segment (i.e., MSGEDIT, LOG) may
appear at any point within the subgroup in which they are used. Those relating to
specific header fields (i.e., ORIGIN, DATETIME) should appear in the same order within
the inheader or outheader subgroup as the header fields appear within the header.
In planning a format for message headers, the user may arrange the various header fields
in any desired order within the header; the corresponding macros that act on those
fields must be placed within the subgroup in the same order. These order-dependent
macros involve either:

• Inserting a new field in the message header (e.g., DATETIME).
• Making a decision at some point during header processing (e.g., MSGTYPE), or
• Using a TCAM scanning routine to determine the contents of a specific field (e.g.,

ORIGIN).

Order is important with the macros relating to a specific header field because these
functions rely on a pointer (known as the scan pointer), which must refer to the proper
header field when the macro that acts upon that field is given control. The use of the
scan pointer is described below.

In handling a buffer, TCAM maintains a pointer to the current field in the message header.
Some macro instructions specified by the user use this pointer to locate the field on
which they act and automatically move the pointer to the next field before passing
control to the next macro. The user must be aware of the positioning of the scan
pointer as he designs his Message Handler.

There are basically two types of TCAM macro instructions that move the scan pointer
automatically, without intervention by the user. Examples can be found in Figure 12.

1. Certain macros (e.g., SETSCAN, FORWARD) move the scan pointer until a user
specified character string is found. After these macros have completed execution,
the scan pointer is positioned on the last character acted upon. In this case, the next
character string is assumed to be the next field to be looked at by the next field
dependent macro in the Message Handler.

2. Other· macro instructions move the scan pointer a certain number of characters.
There are three ways this number is determined.

a. With certain macros (FORWARD, ORIGIN, SETSCAN), the user may specify
explicitly a number of nonblank characters to be considered as the next field. When
these macros have completed, the scan pointer is positioned to the last character that
satisfies the count.

Example:
FORWARD DEST=3.
If a destination field in a header reads NYlSC,the scan pointer points to the C.

Before DATETIME is issued:

.... -----------Message Header -------------11

Buffer
Prefix

After DATETIME is issued:

7B 15 N Y W lAW

Position of Scan Pointer is at:

@ When the segment comes into the buffer.

® After STARTMH and INHDR have been issued.

@ After SETSCAN X'15' has been issued.

@) After ORIGIN has been issued.

@ After FORWARD has been issued.

Buffer
Prefix 7B 15 N Y W l A ~ 6 9 • 0 3 7 W 2 • 4 5

The DATETIME macro causes the header contents to be shifted 16 spaces
left to make room for the date and time. These are inserted and the
Scan Pointer is positioned at <D .

Figure 12. Scan Pointer Movement

Message
Text

Message
Text

Designing the MH 1.19

120

b. Some macro instructions may be concerned with fields of varying length, such
as FORWARD and ORIGIN. The scan pointer is moved past any blanks that might
precede the field. The field is then scanned for a blank delimiter. When such a macro
is completed, the scan pointer points to the character immediately preceding the blank
delimiter that designates the end of the field.

c. Some macros are concerned with fields whose length is specified implicitly by
coding the contents of the field in the macro itself. SETSCAN may search for a field
with contents matching those specified in the macro; the position of the scan pointer
after the macro executes is described in the discussion of the macro. The INITIATE,
LOCK, MSGTYPE, PATH, PRIORITY, SCREEN, SETEOF, and UNLOCK macros
have an optional conchars operand; when this operand is specified, the scan pointer
is moved past any blanks preceding the next field in the message, and the contents of
the field are compared with the conchars string. If the field and the con chars string
match, the scan pointer points to the last character of the field; otherwise, it is return
ed to the position it occupied before the comparison was made.

When a message segment is received for processing in an incoming group of an MH, the
space reserved for expansion by the RESERVE= operand of the line group DCB macro is
moved to the front of the segment and the scan pointer is positioned to the last re
served byte. If no reserve bytes were specified, the scan pointer points to the last byte
of the buffer prefix. The buffer is then examined for the presence of a machine EOA
sequence. If such a sequence is found, the scan pointer is moved to the last byte of the
sequence. However, the polling character used when the Auto Poll feature is active is not
considered to be part of the machine EOA sequence.

For an incoming message, the scan pointer is not necessarily at the end of the header
when the inheader subgroup finishes executing. The header may have additional fields
that are to be operated upon by an outheader subgroup when the message is removed
from its destination queue. In this case, when the message is removed from the queue,
STARTMH and OUTHDR reposition the scan pointer to the last remaining reserve byte
or, if there are no more unused reserve bytes, to the last byte of the prefix or, if there
is a machine EOA sequence to the last byte of the EOA. If he wishes to use an outheader
subgroup to process the remaining fields of his header, the user may use the SETSCAN
macro to reset the scan pointer to the last byte of the last field processed by the in
header subgroup.

Macro instructions in an MH should be placed in the same order within a subgroup as the
fields of the header on which they act. The scan pointer controls access to these fields,
progressing across the header from left to right as the various macro instructions are
executed. The user may use the scan pointer (via the SETSCAN macro) in his own
routines to perform additional heade'r analysis. However, he must take the respon
sibility of positioning the scan pointer to its proper pOSition before executing the next
re~m~. '

A few TCAM macro instructions perform across buffer boundaries, i.e., they are able to
process a field that is partly in one buffer and partly in the next buffer. SETS CAN used
to skip to a specified character string is an example.

To perform cross-buffer execution, TCAM upon detecting the fact that the field is in
complete in the current buffer, saves the part of the field that appears in the current
buffer in a TCAM internal control block. The address of the parameter list for the func
tion is also saved in this block, along with as many of the user's registers as are specified
in the USEREG= operand of the INTRO macro. The scan pointer is then set to point
beyond the end of the data in the current buffer. This prevents further processing of
data in the buffer by subsequent Message Handler macros. TCAM is able to recognize,
on entry, when the scan pointer is beyond the end of data and to discontinue the
requested function.

When the next buffer of the message is received by the MH, STARTMH detects the
presence of the parameter list address in the control block, which causes STARTMH to
exit to the function that failed to complete, rather than beginning to process the first
Message Handler macro as on initial entry.

The function thus reentered recognizes that entry is for completion of a previously
initiated operation. The data accessed from the previous buffer is recovered from the
control block, and processing resumes at the beginning of data in the new buffer. The
return point to the MH from the reentered function is calculated from the parameter
list address, and sequential processing resumes at that point.

The following example shows the sequence of events in a cross-buffer situation.

INHDR

SETSCAN C'START'

FORWARD DEST=3

SETSCAN C'DA TE='

DA TETIME TIME=NO

LOCOPT OPT!

SETSCAN C'ORDER'

First buffer processed to here.
Subsequent processing (the
SETSCAN C'ORDER') is
automatically bypassed on
the first buffer.

Second buffer processing starts
here. Previous processing
(SETSCAN C'START')
is automatically bypassed. The
date is inserted in the second
buffer, not the first.

reserveE

Buffer I header prefix chars

reserve

Buffer 2 text prefix chars

: START 7 D\

Moved Moved
here here
by by
FORWARD SETSCAN C'DATE='

TE= ORDER 25

t
SETSCAN C'DATE='
resumes processing
here

Not all TCAM Message Handler functions can perform cross-buffer processing. For
example, the MSGTYPE macro defaults to an unsuccessful comparison (no match found)
unless a string long enough to match the comparison string is found.

Not all MH functions are concerned with the position of the scan pointer. In a cross
buffer situation such as the one illustrated above, the LOCOPT macro executes for both
buffer 1 and buffer 2. If such processing is to be performed only once, the macro in
question should be so located in the MH that only one buffer will pass through its code.
This may be done by:

Designing the MH 121

Message Flow Through
a Message Handler

122

a. Placing the function early enough in the MH that the first buffer (hence, only the
first) passes through it,

b. Testing the return codes of functions that move the scan pointer and branching
accordingly, or

c. Insuring that no header extends beyond one buffer.

Figures 13 and 14 illustrate the overall flow of a message through Message Handlers
written for two representative TCAM applications. After briefly considering the overall
flow, the !lath of a message within a single incoming or outgoing group is described.

Figure 13 illustrates the flow through a single MH of a message to be switched from one
station to another that requires no processing by an application program. The incoming
message is routed by STARTMH to the incoming group of the MH assigned to the line
(by the MH= operand of the DCB macro for the line group in which the line is included).
After being processed by the incoming group, the message is placed on the destination
queue for the station to which the message is to be routed. This queue may be on a
direct-access storage device, or it may be in main storage. TCAM obtains messages from
the destination queue on a first-ended first-out basis within priority groups. STARTMH
routes the message from the destination queue to the outgoing group of the MH assigned
to the line on which the destination station is located. After being handled by the out
going group, the message is transmitted to the destination station.

Figure 14 illustrates the more complicated message flow for a message that is received,
routed to an application program, and then transmitted to a destination station. The
message is processed first by the incoming group of the MH handling messages for this
line, then placed on the destination queue for the application program (this queue is
created by a TPROCESS macro). The outgoing group created·especially for the applica
tion program and assigned to it by the MH= operand of a PCB macro processes the mes
sage when it is removed from the destination queue..; the message is then placed on the'
read-ahead queue, a special queue acc~ssed by GET or READ macros issued in the appli
cation program. After being processed by the application program, the message is re
turned to a process queue by PUT or WRITE macros and is handled by the incoming
group of the MH assigned to the application program by the MH= operand of the PCB
macro for the application program. The message is routed by this incoming group to the
destination queue for the station that is to accept the message. It is then handled by the
outgoing group of the MH assigned to the line and transmitted to the destination station.

Messoge
entered at
remote
station

Incoming
Group of MH
for line group

Destination
queue

Figure 13. Message Flow for a Switched Message

Message
accepted at
destination

Outgoing
Group of MH
for line group

Message
entered at
remote
station

L

Incoming
Group of MH
for line group

Destination
queue for
appl i cation
program

Message Flow within an
MH Group

Outgoing
Group of MH
for application
program

Read-ahead
queue

Incoming
Group of MH
for application
program

Appl ication
program

Message
accepted
at destination
station

1
Outgoing
Group of MH
for line group

Destination
queue for
accepting
station

Figure 14. Message Flow for a Message that is Processed by an Application Program.

In Figure 14, two incoming and two outgoing groups are used in handling the message.
One incoming and one outgoing group are assigned to the line, and one of each group is
assigned to the application program. The user might provide these groups by designing
one MH for his line and another for his application program; or he might design a single
MH and assign it to both the line and the application program. This single MH would
have some subgroups that would be executed only for messages coming in from or going
to a station on the line, and other subgroups that would be executed only for messages
being sent to or received from an application program. For a description of how this
selective execution is accomplished, see Variable Processing within a Message Handler in
this chapter.

For a more thorough description of the flow of a message through a TeAM system, see
Message Flow within the System. in the TCAM Concepts and Facilities publication.

That portion of a message contained within one main-storage buffer is called a message
segment. When a message segment arrives for processing by a Message Handler,
STARTMH determines whether the segment is part of an incoming or outgoing message
and routes it to the incoming or outgoing group, as appropriate. STARTMH also deter
mines whether the segment contains part of a multiple-buffer header. A multiple-buffer
header is a message header that occupies more than one buffer. Message segments con
taining part of a multiple-buffer header go through the inheader and outheader subgroups
in a special manner, described below.

DeSigning the MH 123

Multiple-Buffer Header
Handling

124

The flow through an MH assigned to a line group of a message that does not have a
multiple-buffer header is illustrated in Figure 15. After a segment has been routed to an
incoming or outgoing group, the INHDR or OUTHDR macro determines whether this is
the first seg~ent of a message, or a segment other than the first. Only the first segment
of a message not having a multiple-buffer header is routed to the inheader or outheader
subgroup (if present). All segments (inc111ding the first) are normally processed by the
inbuffer or outbuffer subgroups present in the group handling the message. The macros
in the inheader, outheader, inbuffer, and outbuffer subgroups are executed on a segment
by-segment basis, while those in the inmessage and outmessage subgroups are not
executed until the entire message has been handled by the other subgroups. The inmes
sage subgroup is executed when the last message segment reaches the inmessage de
limiter. The outmessage subgroup is not executed until after the entire message has been
transmitted to the destination station or sent to the application program.

In Figure 15 there are only three subgroups per group, and it is assumed that all subgroups
are involved in handling the message. Since some subgroups are optional, a group may
have fewer than three subgroups. On the other hand a group may have many more than
three subgroups, because more than one subgroup of a given type may be included in a
group. Moreover, not all subgroups included in a group need be involved when the group
handles a particular message; TCAM provides selective execution of subgroups according
to the setting of a path switch. This variable-processing capability is discussed later in
this chapter.

Figure 16 illustrates the flow through an MH assigned to a line group of a two-segment
message having a multiple-buffer header. The main difference between this type of flow
and that described above for a message not having a multiple-buffer header is the way in
which the inheader and outheader subgroups are executed.

The first segment of a message having a multiple-buffer header consists entirely of header
information. This first segment does not go through the entire inheader or outheader
subgroup. Once the last field in this segment has been processed by 'field-dependent in
structions in the inheader or outheader subgroup (Le., once the scan pointer has advanced
to the end of the buffer), TCAM saves the address of the next (unexecuted) inheader or
outheader instruction and also saves the contents of all registers specified by the
USEREG= operand of the INTRO macro.

The first segment continues through the inheader or outheader subgroup, but only those
macros that do not depend on the location of the scan pointer or upon certain data being
in the buffer are executed for it. Among such macros are CHECKPT, CODE, COUNTER,
LOCOPT, LOG, MSGFORM, MSGLIMIT, and TERRSET. The INITIATE, LOCK,
MSGTYPE, PATH, SCREEN .. SETEOF, and UNLOCK macros execute if the conchars
operand is not coded for them. The FORWARD macro executes if the destination is
specified in the macro, rather than in the message header. The PRIORITY macro exe
cutes if the priority level is specified in the JIlacro and no conchars operand is coded.

In Figure 16, a dotted flow line through the inheader/outheader section indicates that the
scan pointer has reached the end of the first header segment, and only those macros
listed above are being executed for it.

When the second segment is ready for handling, STARTMH routes it directly to the
inheader or outheader instruction whose address was saved, rather than to the INHDR or
OUTHDR macro at the beginning ofthe subgroup. (At this time, TCAM also restores
the contents of the registers specified by the USEREG= operand of the INTRO macro.)

If the CODE, FORWARD, PRIORITY, or INITIATE macros are issued in an inheader
subgroup handling multiple-buffer header segments, these macros must be specified early
enough in the subgroup so that they act upon the first message segment. This also applies
to PATH macros issued in an inheader or outheader subgroup, if all segments of the mes
sage are to be handled alike.

----_.----_. --_. __ .- . -.---.~---.---.. --.--------------.-- ---------

STARTMH

Inheader
or

Outheader
Subgroup

Inbuffer
or

Out buffer
Subgroup

inmessage I
or I.!!:!.MSG 2!:...9~S~ _

Outmessage I
Subgroup * I
INEND

or
OUTEND

STARTMH

Inheader I
or jltIHDR ~ OUT~_

Outheader I
Subgroup I
Inbuffer

or
Outbuffer
Subgroup

Inmessage or
Outmessage
Subgroup*

INEND
or

OUTEND

* Note: Functional macros in the Outmessage Subgroup are not executed
until after the entire message has been sent.

HEADER TEXT

First message segment

1
Destination queue
or remote station

TEXT

Subsequent message segment

Destination queue
or remote station

Figure 15. Flow of a Two-segment Message with a Single-buffer Header through an MH

Designing the IIIIH 1'25

I

1

STARTMH

Inheader
or

Outheader I
Subgroup I

Inbuffer
or

Outbuffer
Subgroup

Inmessage I
or ~MSG or OUTMSG __

Outmessage I
Subgroup * I
INEND

or
OUTEND

STARTMH

Inheader
or

Outheader
Subgroup

Inbuffer
or

Outbuffer
Subgroup

Inmessage
or

Outmessage
Subgroup*

INEND
or

OUTEND

* Note: Functional macros 10 the Outmessage Subgroup are
not executed until after the entire message has been
sent.

I
HEADER

First message segment

~
Destination queue
or remote station

HEADER I TEXT

Next message segment

Destination queue
or remote station

Figure 16. Flow of a Two-segment Message with a Multiple.ouffer Header through an MH

126

~-~~-- ---_._--- --_.

I

1

NOTE: Figure 16 contains only one of each kind of subgroup. For messages with
multiple-buffer headers, the use of multiple inheader or outheader subgroups is severely
restricted; all such subgroups must begin processing on the first message segment. In ad
dition, if part of a multiple-buffer header is to be processed by an inheader subgroup and
the rest is to be processed by an outheader subgroup, both subgroups must begin execu
tion on the first message segment.

The execution of an inheader or outheader subgroup can begin only on the first segment
of a message. This is because the INHDR or OUTHDR macro for a particular inheader or
outheader subgroup causes an message segments except the first to bypass the subgroup.
One inheader or outheader subgroup can handle a multiple-buffer header because the
INHDR or OUTHDR macro does not get the opportunity to check segments other than
the first (due to the way in which multiple-buffers are handled). If a second inheader or
outheader subgroup is coded to begin execution midway through the second segment, it
will never execute; its INHDR or OUTHDR macro will route incoming segments directly
to the next delimiter.

NOTE: If an outbuffer subgroup precedes an outheader subgroup that processes more
than one segment of a message having a multiple-buffer header, the outbuffer subgroup is
executed for the first segment only.

Designing the MH 127

128

Multiple-Buffer Header Processing Across Buffers

Will Cross Will Not Conditional
Macro N/A Buffers Cross Buffers (Note 1)

CHECKPT X

CODE (Note 2)

COUNTER X

DATETIME X

FORWARD (Note 3) DEST in message

INITIATE X

LOCK X

LOCOPT X

LOG X

MSGEDIT X

MSGFORM X

MSGLIMIT X

MSGTYPE X

ORIGIN (Note 4)

PATH X

PRIORITY (Note 5)

SCREEN X

SEQUENCE output input
only only

SETEOF X

SETSCAN chars integer
POINT=BACK
chars, RETURN=

TERRSET X

UNLOCK X

,
Note I: Will cross if con chars is not specified, or if entire character string is in a

subsequent buffer.
Note 2: Except that an operator command must be complete in a single buffer.
Note 3: Will cross if destination is in the macro or an option field and the macro is

executed for the first buffer.
Note 4: Will cross but origin may not be known on dial lines for first buffer.
Note 5: Will cross if conchars not specified and priority level is in macro.

Variable Processing Within
a Message Handler

Conditional Execution of
Message Handler Functional
Macros

The path of a message through a Message Handler may be varied dynamically using the
PATH and MSGTYPE macro instructions. By permitting different operations upon dif
ferent types of messages directed to the same Message Handler, these macros enhance the
versatility of the Message Handler. By judiciously using PATH and MSGTYPE macros,
the user can design a Message Handler that will handle messages having a variety of header
formats, and that will perform different operations upon different types of messages, even
when these different types are transmitted over the same line. Indeed, the user may in
some cases be able to design a single Message Handler capable of processing all the mes
sages that can be generated in a large TCAM-based telecommunications system performing
a wide range of tasks.

The path of a message through a Message Handler may be varied in two ways. One of
these involves the use of control characters in the message header, and the other involves
the setting of switches, based on the control characters, that determine whether a given
subgroup is to be executed for the message.

These switches, called path switches, are one-byte fields in the option table. The switches
are initialized by an operand of the TERMINAL or TPROCESS macro and may subse
quently be modified by a PATH macro or by a combination of OPTFIELD and
DA TOPFLD operator commands. An operand of a delimiter macro may specify that
certain bits of a path switch are to be tested. If any of the specified bits are on, the sub
group introduced by the delimiter is executed; if none of the specified bits are on, control
passes to the next subgroup. If a delimiter macro does not specify a path switch to be
tested, its subgroup is executed unconditionally. Different delimiters may test different
sets of path switches. For an example of the use of path switches and the PATH macro
to control the routing of messages from subgroup to subgroup, see the discussion of the
PATH macro.

By specifying, changing, and testing path switches, the user can determine which of the
subgroups in an MH group are to be executed for a particular message. To control the
path of a message within an inheader or outheader subgroup, the user may employ the
MSGTYPE macro. The MSGTYPE macro compares a character or character string in the
message header with a character or character string specified by a MSGTYPE operand. If
the two characters or character strings match, the instructions between this MSGTYPE
macro and the next MSGTYPE macro in the subgroup are executed (if this is the last
MSGTYPE macro in the subgrol,lp, all the remaining instructions in the subgroup are
executed) and control is then passed to the next delimiter macro. If the two characters
or character strings do not match, the instructions associated with this MSGTYPE macro
are not executed, and control passes to the next MSGTYPE macro in this subgroup (or to
the next delimiter, if this was the last MSGTYPE macro in the subgroup). A new compar
ison is made by each MSGTYPE macro to which control is passed. For an example of
the use of the MSGTYPE macro to vary processing within a subgroqp, see the description
of the MSGTYPE macro.

The PATH macro controls the routing of a message among subgroups. The MSGTYPE
macro controls the path of a message within an inheader or outheader subgroup.

Several MH functional macro instructions may request conditional execution dependent
upon the existence of a control field in the message. These macros are INITIATE, LOCK,
MSGTYPE, PATH, PRIORITY, SCREEN, SETEOF, and UNLOCK, with the optional
operand con chars. conchars may consist of from one to eight nonblank characters and
may be specified in unframed character format or with framing C" or CLn' , characters,
or in hexadecimal format with framing X' • or XLn' , characters.

These conditional characters specified in the macro are compared with the field in the
message at the current location of the scan pointer. If the fields \ire identical, the macro
will be executed and the scan pointer will be advanced to the last character of the field.
If the characters do not match, the scan pointer is not moved and the macro is not
executed.

Designing the MH 129

User Code in a Message
Handler

130

If two or more macros in the same subgroup specify control character strings that are
identical to a certain point but differ in length, and if there is any possibility that the
same field in the message header will be checked for both strings, then these macros
should be arranged according to decreasing length of their character strings. For example,
if the user codes

INITIATE 1
LOCK 12

in his inheader subgroup, both macros will execute if the field in the message header
contains 112. However, if the field contains 12, only the INITIATE macro will execute.

If the conditional characters are framed with CLn' , or XLn' , framing characters, n
should agree with the actual count of characters. If n specifies a value greater than the
actual count, it is possible that the mlJ,cro may never be executed. for example, if a
character string AB is defined as CL3'AB', the field is automatically padded to the right
with a blank. If the BLANK= operand specifies BLANK=YES (or BLANK=X'40' or
BLANK=C' '), a matching field can never be found. BLANK=YES states that blanks are
not to be considered part of the character string when found in the header, but in this
case the string used to determine execution contains a blank.

In the case of multiple buffer headers, the control characters must all be in the same
buffer. The control characters may be entirely contained within the buffer in which the
scan pointer is located when the comparison is begun, or they may be entirely contained
within a subsequent buffer. They may not, however, be split between buffers.

If the sequence

MSGTYPEABC
MSGTYPEAB
MSGTYPE A

is coded by the user, and if the characters being checked are AB and these are the last two
bytes in the buffer, the first MSGTYPE executes just as if three characters were found but
the compare was unequal. That is, the code following the first MSGTYPE is not executed
and control passeS to the second MSGTYPE macro. Execution of the second MSGTYPE
finds two bytes, detects an equal compare, and passes control to the code following the
second MSGTYPE. Note in this example, that even if a C is the next character beyond
the AB in the message, the first MSGTYPE does not find the string because it is split
between buffers.

If the string ABC is the next string in the message and is located entirely within the next
buffer, execution of the f4'st MSGTYPE detects that no characters remain in the current
buffer. Processing of buffer fields in this buffer is deferred, (including the subsequent
MSGTYPE processing). When the next buffer is passed to the Message Handler, execution
of the first MSGTYPE resumes at the start of data in this next buffer and, because the
string ABC is found, control passes to the code following the first MSGTYPE macro.

It is likely that the first result, where the string is split between buffers, is not the result
desired by the user. To avoid such a result, either limit the header to a single buffer or
avoid strings that are partially identical.

The user may insert serially reusable assembler- or macro-language code in a Message
Handler to supplement the facilities provided by TCAM. User-written code can be in
cluded as either an open or closed subroutine.

There are several reasons why the user might include such a subroutine. There may be no
MH macro to process particular information he wishes included in his message headers.
Or, he may wish to expand the scope of an MH macro (for example, to correct an invalid
destination field detected. by the FORWARD macro). A third case might be processing a
header field in a manner entirely different from that in which the MH macro handles
fields of this type. An example is inserting a date having a format different from the one
used by the DATE TIME macro.

General Requirements and
Restrictions

Multiple-Buffer Header
Considerations

The following requirements and restrictions apply to both open and closed user-written
subroutines that supplement the functions provided by TCAM macros in a Message
Handler:

1. All such subroutines must be serially reusable.
2. No executable code should be included within an inmessage or outmessage subgroup,

or between such subgroups.
3. Branching from one Message Handler to another is not permitted.
4. System macros that issue an SVC should be avoided, unless the user is fully aware of the

implications of using such macros in the TCAM system.
5. If the user provides a field or work area (as for the ERRORMSG, MSGGEN, and

MSGEDIT macros), the field must be addressable by the MH. Such a field is
addressable if placed after the OUTEND macro. If only one base register is used to
establish addressability for the MH, the field must also be within 4096 bytes of the
STARTMH macro in order to be addressable.

6. Nothing should be done that relinquishes control.
7. TCAM macros cannot be used in a closed subroutine.

When the MH is handling messages having multiple-buffer headers, user code within the
inheader and outheader subgroups should test register IS for a negative return code before
executing any open user subroutines or branching to a closed user subroutine if the user
subroutine to be executed depends upon certain data being in the buffer, or upon the
location of the scan pointer. A negative return code indicates that the previous TCAM
macro needed the next buffer but it was not available (for an understanding of how this
situation could arise, see Multiple-Buffer Header Handling in this chapter). If a negative
return code is detected, a branch should be made around a user subroutine that depends
upon the presence of certain data in the header, or upon the scan pointer; such a sub
routine is eventually executed on header fields in a subsequent message segment.

The USEREG= operand of the INTRO macro specifies the number of registers to be
saved between header segments when user code is executed in aninheader or outheader
subgroup that may handle multiple-buffer headers. The registers saved are sequentially
ordered, beginning with general register 2. When the scan pointer comes to the end of a
message segment and there is still code to be executed in the inheader or outheader sub
group processing the segment, TCAM saves the address of the next (unexecuted) inheader
or outheader instruction and also saves the contents of the registers specified by
USEREG=. The segment continues through the subgroup, but macros that depend upon
the location of the scan pointer or upon specific data being present in header fields do not
execute for the segment. When the second segment is ready for handling, the STARTMH
macro routes it directly to the inheader or outheader instruction whose address was
saved, and restores the contents of the saved registers. (See Multiple-Buffer Header
Handling for more information on this topic.) Only the contents of those user registers
specified by USEREG= are saved and restored.

Use of the USEREG= operand results in a larger MCP than would otherwise be the case.
This operand should be coded only when an inheader or outheader subgroup that contains
user code can expect to handle messages having multiple-buffer headers, with the user
subroutine extending across buffers.

The user can determine the number of extra bytes of main storage that coding USEREG=
will cost him by applying the following formula:

AS=4R(L+T)

where

AS is the number of extra bytes added to the MCP.
R is the number of registers to be saved between buffers, as specified in the USEREG=

operand of the INTRO macro.
L is the number of lines in the system on which are located stations whose TERMINAL

macros omit the BFDELA Y= operand.
T is the number of stations whose TERMINAL macros specify the BFDELA Y= operand.

Designing the MH 131

Including an Open Subroutine

Including a Closed Subroutine

Using LOCOPT to Locate An
Option Field

Using SETSCAN to Locate a
Header Field

132

A user-written open subroutine consisting of one or more assembler-language or system
macro instructions may be included in-line in the inheader, inbuffer, outheader, and
outbuffer subgroups of a Message Handler. TCAM macros may be included in an open
subroutine. All registers except register 12 and 13 are immediately Ilvailable for use in
such a subroutine. If register 13 is accessed in the subroutine, its original contents must
be saved and restored by the user. Register 12 should not be changed by user code, since
it is the base register. If more than one base register is used, the other base registers must
also be preserved.

When a user-written open subroutine is coded in an inheader or outheader subgroup that
can handle messages having multiple-buffer headers, the contents of user registers will be
lost if the header fields being processed by the user routine extend across more than one
buffer. (To see why this is so, consider carefully Multiple-Buffer Header Handling in
this chapter.) The user may specify that the contents of his registers be preserved in this
case by suitably coding the USEREG= operand of the INTRO macro. When this operand
is coded, the contents of the user's registers are saved when the scan pointer reaches the
end of the first segment of a message having a multiple-buffer header, and restored to the
user routine when the second segment arrives at the inheader or outheader subgroup.

A user-written closed subroutine may be included as a control section in the MCP; such a
subroutine may be accessed by any Message Handler in the MCP, or as a result of an exit
being taken that is specified by an INTRO, STARTMH, DCB, READY, ERRORMSG, or
FORWARD macro. A closed subroutine cannot contain TCAM macros. When activating
a closed subroutine, the user must provide his own linkages; he should save and restore
the invoking Message Handler's registers. Figure °17 illustrates the flow of control be
tween an MH and a user-written closed subroutine, and presents the recommended
linkages.

The LOCOPT macro enables the user to obtain the address of any option field aSSigned
to a particular station. The address of the desired field is placed in a user-specified
register. A user-written routine may then examine and modify the contents of the
option field.

The SETSCAN macro may be used to locate a portion of the message header for sub
sequent examination or processing by a user-written subroutine (but see Restriction
No.5 in the section General Requirements and Restrictions). For a detailed description
of the capabilities of SETSCAN, see the discussion of the macro.

Two capabilities of SETSCAN are of particular interest with respect to user code:

• By coding MOVE=RETURN, the user may employ SETSCAN to locate a designated
character string in the header and to place the absolute main-storage address of the
last character of the string in a specified register, which may then be accessed by user
code. When MOVE=RETURN is specified, the scan pointer is not actually moved, so
the user need not worry about repositioning it. If this capability is to be utilized
effectively, the character string to be examined must be located entirely within a
single buffer unit, because buffer units are not usually contiguous in main storage.
If a character string is split between two units, its two parts are likely to be at different
locations in main storage. If the character string to be processed is divided between
two buffer units, and the user knows where in the string the division occurs, he may
treat the segments as separate character strings, issue a SETSCAN macro specifying
.MOVE=RETURN to find the address of each, and process each independently.

• SETSCAN may be used to determine the main-storage address of the header byte to
which the scan pointer is currently pointing. This is done by specifying
MOVE=RETURN and coding 0 as the integer operand. If the user codes

Operation Operand

SETSCAN O,MOVE=RETURN

the address of the current location of the scan pointer is returned in register 15.

MHI

• • •
(Data Set initialization macros)

• •
STARTMH

•
•

(Other MH macros)

•
•
CALL USERRTN)

- (Next MH Macro)

t
I
I
I
I
I
I
I
I
I
I

•
•

(USERRTN calls no other subroutine)
USERRTN CSECT

I
USING *,15
SAVE (14,12)

I •
I (User Code)

I •

I
~RETURN (14, 12), T

END

L (USERRTN calls another subroutine)
- - - - f-- USERRTN CSECT

USING

SAVEl
SKIP

B
DC
SAVE
ST
LA
ST
LR
DROP
USING

•
(User Code)

•

*,15
SKIP
18F '0'
(14,12)
13,SAVE1+4
12, SAVEl
12,8(13)
13,12
15
SAVEl, 13

L_-------" ______ _ l 13,4(13)

-<RETURN (14, 12), T

END

Figure 17. Activation of a Closed, User-written Subroutine

Designing the MH 133

Using MSGTYPE to Locate a
Header Field

134

User-written code may be included in inheader and outheader subgroups to interrogate
and modify a field in a buffer of a message, and to interrogate but not modify a field
that spans more than one buffer of a message header.

The next field in a buffer, the one immediately following the scan pointer, can be
accessed from the buffer by use of a deliberately failing MSGTYPE macro as follows:

MSGTYPE C'XXXXXXXX'
MSGTYPE

Fields up to eight bytes in length can be accessed by this method. The number of charac
ters in the MSGTYPE operand is the length of the field to be accessed. In this example,
an eight-byte field is to be located. Care should be taken not to specify as the MSGTYPE
operand any string that could be found in the header. If a matching string is found, the
scan pointer is adjusted to point to its last byte.

If the string sought extends across buffers, it cannot be modified. This can be determined
by examining the contents of the second byte of the A VT parameter area IEDP ARM,
addressable throughout the MCP. If this byte is less than the requested length, the field
spans buffers. The byte at IEDP ARM+ I is maintained in hexadecimal format.

If the field does not span buffers, it may be modified by the use of the MSGEDIT macro.
Insertions before the string, removal of the string, or removal and replacement of the
string may be performed by coding an appropriate MSGEDIT macro with the AT operand
specified as SCAN (see the discussion of the MSGEDIT macro in this chapter). Insertion
after the string may be performed by coding a SETSCAN macro with a count equal to the
length of the string, followed by the desired MSGEDIT macro. It is recommended that a
MSGEDIT macro specifying the string itself as the AT operand not be used, since all
occurrences of the string found, not merely the current one, will cause the MSGEDIT
function to be performed.

The following procedure allows the .examination of a field that begins in one buffer and
ends in a subsequent buffer (not necessarily the next buffer). It makes use of two
parameters returned by the MSGTYPE function:

1. the characters found, whether matching or not, and whether as many as requested or
not, are placed in the AVT work areaIEDDOUBL;

2. the count of character found is placed in the second byte of the A VT parameter area
IEDPARM.

The procedure may be varied depending on the length of the field to be examined. This
example assumes the maximum, an eight-byte field.

SPLIT MVI COUNT,8 SET INITIAL LENGTH DESIRED
LA RWORK,WORK POINT TO FIRST BYTE OF WORK
CNOP 0,4 AREA

LOOP MSGTYPE C'XXXXXXXX'
MSGTYPE
CLI IEDP ARM+1 ,0 TEST IF ANY BYTES FOUND
BE NEXT BRANCH IF NOT TO A WAIT NEXT

* BFR

The operand of the MSGTYPE macro should specify as many characters as the string
desired, and the operand should be such that a match cannot be found. Because no
match is found, the MSGTYPE macro branches to the next delimiter. Therefore, a
delimiter must be specified as a branch address. In this case, MSGTYPE is used.

SR REGA,REGA CLEAR REGISTER FOR INSERT
IC REGA,COUNT PICK UP DESIRED COUNT
BCTR REGA,O DECREMENT FOR EXECUTE
EX REGA,MOVE MOVE BYTES FOUND TO

* WORKAREA
LA REGA, I (REGA) RESTORE TRUE DESIRED COUNT

These instructions move the characters found to me work area. The MVC instruction
(MOVE) is executed by the EX instruction so that the target address of the MVC can be
modified.

*

CLC
BE

COUNT,IEDP ARM+ I
FOUND

ARE ALL DESIRED BYTES FOUND
BRANCH IF YES

The count field will be higher if not all the bytes are found.

*

SR
IC

AR

REGB,REGB
REGB,IEDP ARM+ I

RWORK,REGB

CLEAR REGISTER FOR INSERT
PICK UP NUMBER OF BYTES
FOUND
ADJUST WORK AREA ADDRESS

The address register for the work area now points to the next byte to be filled, which
will come from a subsequent buffer.

SR REGA,REGB COMPUTE HOW MANY MORE

* BYTES
STC REGA,COUNT NEEDED AND RESET LENGTH

* FIELD
STC REGA,SCAN+7 MODIFY SETSCAN PARAMETER

* LIST
SCAN SETSCAN 0

B LOOP GO GET REMAINING BYTES
*
MOVE MVC O(O,RWORK),IEDDOUBL EXECUTED MOVE INSTRUCTION
WORK DS CL8
COUNT EQU LOOP+II

*
FOUND DS OH EXAMINE FIELD IN WORK

The SETSCAN function moves the scan pointer to point to the last byte in the buffer.
The skip length is adjusted to the proper number by modifying the parameter list.

When the MSGTYPE function is executed ayain, the scan pointer is moved beyond the
end of data in the buffer. The test followinb MSGTYPE must branch to the next sequen
tial buffer processing required. Because of the setting of the scan pointer, that processing
will not be performed on this buffer.

When the next buffer is passed to the Message Handler, execution of the MSGTYPE
function will be started again. At this time, the remaining bytes desired will usually be
accessed.

Note, however, that if the next buffer does not contain enough bytes to complete the
count desired - if, for example, it contained only blanks - the buffer following it would
be examined. That is, the field desired may actually be split over many buffers, and the
procedure will still access it.

Designing the MH 135

Using the PARM Parameter of
the EXEC Job Control
Statement

Message-Handler Macro Return
Codes

136

The user may wish to pass information to his user code by means of the P ARM parameter
of the EXEC job control statement (this capability is described in the OS publication
Job Control Language). If the PARM= operand is specified, when control is passed to
TCAM register 1 contains the address of a fullword, the low-order three bytes of which
contain the address of a two-byte length field immediately followed by the data specified
in the pARM parameter. When the INTRO macro is executed the address in register I is
overlaid, but before this happens, INTRO stores the contents of register 1 in a fullword
on a fullword boundary, from which it may be retrieved by user code. The name of the
fullword is IEDSPLPT.

During execution, certain MH macros cause a return code to be placed in a general regis
ter, usually register IS. The table below lists those TCAM macros whose return codes may
be checked by user code in a Message Handler. The return code occupies the low-order
byte in the register indicated; the rest of the register normally contains all zeros. Return
codes of X'F6' are negative return codes; the high-order three bytes of the register contain
binary ones. Some macros also return an address in a register; the locations and nature of
such addresses are also indicated in the following table of MH macro return codes.

Return
Macro Register Code Meaning

COUNTER 15 X'OO' Good return
15 X'FF' Option field not found

DATETIME 15 X'OO' Good return
15 X'04' Insufficient reserve characters

FORWARD IS X'OO' Good return
15 X'04' Invalid destination

LOCK 15 X'OO' Good return
15 X'04' Destination not specified
15 X'08' Destination not a process entry

LOCOPT
a) if return IS Address Good return
requested in of option
R15 field.

15 X'OO' Option field not found

b) if return 15 X'OO'
tequested USEREG Address
in user- of option Good return
specified field.
register 15 X'04'
(USEREG) USE REG Unchanged Option field not found

LOG 15 X'OO' Good return
15 X'04' DCB or LOGTYPE entry named in macro not

found

MSGEDIT 15 X'OO' Good return
15 X'04' No units available

MSGLIMIT 15 X'OO' Good return
15 X'04' Option field not found

ORIGIN 15 X'OO' Good return
15 X'04' Invalid origin

SCREEN 15 X'OO' Function not done
15 Function Good return

byte

Message Translation

SEQUENCE
a) macro 15
issued in 15
inheader 15
subgroup 15

b) macro
issued in
outheader
subgroup

SETSCAN
a1) locate
specified
character
string
and return
address in
Rl5

a2) locate
specified
character
string
and return
address in
user
specified
register
(USEREG)

bI) skip
n characters
and return
address in
Rl5

b2) skip
n characters
and return
address in
user
specified
register
(USEREG)

c) skip
n charac
ters
backward

15
15

15

IS

IS

15
USE REG

IS
USEREG

15
USEREG

15

15

15
USEREG

15
USEREG

15
15

d) Locate 15
scan pointer
address

15

X'OO'
X'04'
X'OS'
X'OC'

X'OO'
X'04'

Address
of last
character'
in string.
X'OO'

X'F6'

Good return
Sequence number in message high
Sequence number in message low
Originating station unknown

Good return
Insufficient reserve characters

Good return

Specified character string not found in this buffer

Scan pointer beyond end of buffer

X'OO' Good return
Address
of last
character
in string
X'04' Specified character string not found in this
Unchanged buffer

X'F6' , Scan pointer beyond end of buffer
Uncha~ged

Address
of char
acter
skipped to
X'OO'

X'OO'
Address
of char-
acter
skipped to

Good return

n greater than the number of characters remaining
in this buffer

Good return

X'04' n greater than the number of characters remaining
Unchanged in this buffer

X'OO'
X'04'

Address
of scan
pointer
X'F6'

Good return
n greater than the number of characters preceding
the scan pointer ,in this buffer

Good return

Scan pointer beyond end of buffer

TCAM provides a facility for translating incoming messages from line code into EBCDIC
and for translating outgoing messages from EBCDIC to line code. Translation is specified
by issuing a CODE, macro in the incoming and outgoing groups of an MH.

The user who does any appreciable amount of header analysis, or whose system includes
stations using different line codes, will probably want to use TCAM's translation facility.
Incoming translation must be specified for lines over which operator commands may be

Designing the MH 137

138

entered, since the CODE macro is used by TCAM to check for such messages (see the
discussion of the CODE macro for a way .of selectively translating operator commands
while leaving other messages entered on the same line untranslated).

Translation is not required in a message-switching application for which little or no header
analysis is required, provided that the originating and destination stations are of the same
type: The careful user may be able to avoid translating in other situations. The operands
of most MH macros may be specified in hexadecimal format. By using the tables and
information located in Appendix G the user may enter in his MH macro operands the
hexadecimal representation of header fields that are in line code and thereby avoid having
to translate. The user seeking to avoid translation should remember that the names
entered in the terminal table (i.e., the names given to the TERMINAL, TLIST,
TPROCESS, and LOGTYPE macros) must be specified in EBCDIC characters; no hexa
decimal capability is provided for specifying these names.

The user may avoid translation of messages handled by a particular incoming or outgoing
group of a Message Handler by omitting the CODE macro from that group. The user may
avoid translation of messages received from or sent to the lines in a certain line group by
coding a CODE macro having no operand and by specifying TRANS=EBCD in the line
group DCB macro for the line group.

Translation is normally accomplished by means of tables provided by TCAM, although the
user may provide his own translation tables if he wishes. The user providing his own
tables should format the individual 256-byte tables as described in tIie example illustrating
the use of the TRANSLATE instruction in the OS publication Principles of Operation.
A user-defined translation table should consist of a full word boundary, followed by a
256-byte table for translating from line code to EBCDIC, which is followed in turn by a
256-byte table for translating from EBCDIC to line code. The initial word should con
tain the address of the first byte of the second table.

Translation tables are provided for all stations supported by TCAM. The names of
these tables are given in the following list. When one of these names, or the name of a
user-specified table, is coded as part of the TRANS= operand of the line group DCB
macro, incoming messages for this line group are translated from the specified line code
to EBCDIC, and outgoing messages are translated from EBCDIC to the line code, when
CODE macros are executed in the incoming and outgoing groups of the MH for the line
group. The table specified by the DCB operand can be changed for messages to or from a
particular line, station,or application program by entering a different table name in the
tablename operand of the CODE macro and by using MSGTYPE macros or path switches
to cause different CODE macros to be executed for different messages (see Variable
Processing within a Message Handler in this chapter).

All of the characters in the character sets of each of the types of station supported by
TCAM can be represented within the computer. However, some characters valid for one
type of station may not be valid for another type, and some characters valid for a station
may have no EBCDIC equivalents. The way in which TCAM handles these problems is
described in the sections Nonequivalent Characters and Substitutions in Appendix D.
Internal and Transmission Code Charts.

See Appendix G. Device Dependent Considerations, for specific information about the
character sets for the:

• 1050 Data Communication System;
• 2260 Display System;
• 2740 Communications Terminal;
• TWX stations;
• WTTA terminals.

TeAM's Hold/Release
Facility

Names of Code Translation Tables Provided by TCAM

Table Name Type of Conversion

1030 1030 code to EBCDIC and back

1050 1050 code to EBCDIC and back

105F 1050 code to EBCDIC and back;
converts incoming lowercase letters to
uppercase

1060 1060 code to EBCDIC and back

2260 2260 code to EBCDIC and back

2265 2265 code to EBCDIC and back

2740 2740 code to EBCDIC and back

274F 2740 code to EBCDIC and back;
converts incoming lowercase letters to
uppercase

BC41 2741 BCD to EBCDIC and back

EB41 2741 EBCDIC to EBCDIC and back

CR41 2741 Correspondence Code to EBCDIC
and back

ITA2 5-level International Telegraph
Alphabet No. 2 to EBCDIC and back

ZSC3 5-level Figure Protected Code
ZSC3 to EBCDIC and back

TTY A 5-level (Baudot) code to EBCDIC
and back

TTYB 8-level TWX code to EBCDIC and back

TTYC 8-level TWX code to EBCDIC and back

6 BIT 6-bit Transcode to EBCDIC and back

ASCI ASCII to EBCDIC and back

EBCD No translation; coded for stations
using EBCDIC transmission code,
and when no translation is desired.

Terminal

IBM 1030

IBM 1050

IBM 1050

IBM 1060

IBM 2260

IBM 2265

IBM 2740

IBM 2740

IBM 2741

IBM 2741

IBM 2741

WTTA

WTTA

AT&T 83B3, WU 115A

AT&T 33/35
TWX (parity)

AT&T 33/35
TWX (nonparity)

IBM 2780

IBM 2770, 2780, S/360,
Model 20

IBM 1130, 2770, 2780,
S/360, Model 20

TCAM provides the capability of temporarily suspending transmission of outgoing mes
sages to a station. Transmission may be suspended either for a speCified period of time
or until the user chooses to resume outgoing traffic. Messages may be held either by the
HOLD MH macro or by the operator command SUSPXMIT, and released by the
RESMXMIT operator command, by the MRELEASE macro issued in an application pro
gram, or automatically at the expiration of the time interval specified by the HOLD
macro.

Designing the MH 139

Design Steps

140

HOLD is used to defer transmission of messages that should not be sent immediately
because of error conditions at the destination station (the destination is the station for
the message being processed by the outmessage subgroup when HOLD executes). If the
macro is not used, messages that cannot be transmitted because the destination is tempo
rarily out of order are treated as if they have been transmitted, even though they do not
reach their destinations.

Once tIOLD executes in an outmessage subgroup, no messages are sent to the destination
station either until the interval specified as an operand of the macro expires, or until a
RESMXMIT operator command or an MRELEASE application program macro is issued.
Accumulated messages can be released by RESMXMIT or MRELEASE even though the
specified time interval has not elapsed.

HOLD can be either unconditional or conditional based upon the setting of the message
error record. HOLD until a release is issued can be used if a station unexpectedly fails.
The error situation might be detected by a HOLD macro based on the message error
record. The interval format can be used if a station in the system is scheduled for main
tenance for a specific period of time. In this case, an unconditional HOLD with the
INTVL= operand might be used.

If HOLD is issued in an incoming group, the station that will be held is the station that
entered the message.

The HOLD macro cannot be executed for a station supported by main-storage only
queues or for a station whose line is not open or has been opened idle. The operator
command SUSPXMIT, which also causes an intercept, cannot be used unless a HOLD
macro has been coded somewhere in the Message Handlers. If the operator control hold
facility only is required, tIle HOLD macro coded in an MH can specify an impossible
combination of errors in the mask associated with the message error record. This will
ensure that the macro is never executed and will provide the operator control capability.

The design of a Message Handler and related control areas is a complex procedure that is
difficult to codify according to a strict succession of steps. The difficulty arises from
the profusion of functions available in TCAM and the variety of requirements of the
installations. The following outline suggests a possible approach but does not pretend to
be definitive.

1. Define the requirements of the application. Are messages to contain both header and
text segments? Is an application program involved? How many characters will be in a
normal message and in the longest message? Optimum buffer size depends on this.

2. Refer to the table of MH Functions and Macros Defining the Functions in a previous
section of this chapter and the related text to determine which functional macro
instructions might be used in the application. Study the detailed descriptions of these
macros. Tentatively select those macros that provide the desired functions.

3. Design the message header, if applicable. Are the following fields necessary - origin,
date, time, destination (single or multiple), priority? Should the field be entered by
the terminal operator or inserted by the Message Handler? What should the program
EOA characters be?

4. Start from a minimum Message Handler (required delimiter macros) and add the
macros necessary to process the header.

5. Determine what validity checking is required and add the appropriate macro
instructions.

6. Determine what error conditions need to be tested for and handled.
7. Determine what supplementary functions are desired - logging, initiate handling,

message limit, etc.
8. Assemble the completed MCP and take a look at it before linkage editing.

No attempt should be made to write a Message Control Program in one step. A program
should first be written, assembled, and tested that provides a very few of the desired
functions. Other functions may be added as familiarity with the TCAM facilities grows
and as the simpler programs are run successfully. For example, in a message switching
application, a first program might include only the delimiter macros and the ORIGIN,
SEQUENCE, CODE, and FORWARD functions. A second step might add the block
checking function of the STARTMH macro, DATETlME, and some ERRORMSG
functions. A third step might add multiple destinations, message counting and logging,
and additional error handling. A final step could add the MSGTYPE or PATH functions
to handle different message types.

Delimiter Macro
Instructions

The order in which macro instructions are specified requires thoughtful planning. It is
important that some macro instructions be specified early enough in a subgroup so that
they act on the first header buffer; these macro instructions are CODE, FORWARD,
PRIORITY, and INITIATE (and PATH if all segments of the message are to be handled
alike). In determining the relative placement of macros within the subgroup, the use of
the scan pointer must be understood. (Note the sample Message Control Programs in the
chapter Putting the MCP Together.)

Delimiter macro instructions identify the beginning or the end of various groups and sub
groups of a Message Handler. They also provide initialization (addressability) and con
trol functions within an MH. The table below shows the various groups and subgroups
and the delimiter macro-instructions that control their execution.

The STAR TMH macro identifies the beginning of an MH and must be the first instruc
tion in every MH. TCAM provides initialization by setting up base registers and ad
dresses for an MH at this point. STARTMH code determines whether the message being
processed is incoming or outgoing and directs the segment to the incoming or outgoing
group accordingly. STARTMH handles end-of-block checking, if specified.

MH Groups, Subgroups, and Delimiter Macro Instructions

Message Handler

Group Subgroup Delimiter Macro

STARTMH

INHEADER INHDR SUBGROUP

INCOMING INBUFFER INBUF
GROUP SUBGROUP

INMESSAGE INMSG
SUBGROUP

INEND

OUTHEADER OUTHDR SUBGROUP

OUTGOING OUTBUFFER OUTBUF GROUP SUBGROUP

OUTMESSAGE OUTMSG
SUBGROUP

OUTEND

STARTMH is the only delimiter macro that is always required. If the MH is to handle
incoming messages, the INHDR, INEND, and OUTEND delimiter macros are required.
If the MH is to handle outgoing messages, the OUTEND macro is required. Each of the
remaining delimiters is required only if the user chooses to include in the MH the
functional macros associated with that delimiter.

An inheader subgroup must be the first subgroup of the irrcoming group if an incoming
group is present. An outheader subgroup may be specified before or after an out buffer
subgroup (if both are present). INEND and OUTEND identify the ends of the incoming
and outgoing groups respectively.

Delimiter Macros 141

ST ARTMH Macro
Instruction

142

/

If an MCP contains more than one MH, a LTORG instruction (described in the OS
publication Assembler Language) should be coded immediately after the last delimiter
macro (INEND or OUTEND) of each MH if in-line user code includes literals.

The STARTMH macro:

• Establishes addressability for an MH,
• Directs messages to an incoming or outgoing group, as appropriate,
• Specifies whether line-control characters are to be left in messages,
• Checks for occurrence of hardware errors during message transmission,
• Handles user-detected logical errors,
• Specifies whether tete-a-tete interaction may occur between the computer and a

station,
• Specifies whether end-of-block completion handling is to be used,
• Is required as the first macro in every MH.

STARTMH is required and must be the first macro instruction of every MH. If the
STOP=, CONT=, CONY=, or LOGICAL= operand is specified, end-of-block (EOB)
checking is performed. Basically, this checking consists of determining whenever an
EOB, ETB, ETX, or EOT control character is received, whether certain types of trans
mission and user-specified logical errors have occurred; if so, the message is disposed of
according to certain operands specified in STAR TMH.

For an incoming message, EOB checking occurs before a buffer containing an EOB
is processed by the MH. If a hardware error is detected and retry is possible, a retry
operation is performed (see the Glossary for a definition of retry). No further MH
handling occurs until the block is received again. If retry is not possible (because, for
instance, the retry count is exhausted), either the error is ignored and the channel
program is restarted to receive the next block, or transmission is terminated and the
buffer continues through the MH, which processes it as the last buffer of the message.

After EOB checking (if any), and when it is full, a buffer containing an incoming message
segment is passed to the appropriate subgroup. Depending upon how the user has coded
the PCI= operand of the line group DCB macro, and upon whether or not his incoming
message contains EOB control characters, the buffer maybe deallocated and passed to
the appropriate MH subgroup soon after it is filled, or it may not be passed to the appro
priate subgroup until transmission has ceased on the line. (See Dynamic and Static Buffer
Allocation in the chapter Defining Buffers.) A full buffer is deallocated whenever a pro
gram-controlled interruption occurs; if this is not provided for by the user, no dealloca
tion occurs until an EOT control character is received.

For outgoing messages, EOB checking (if specified) is performed after each block is
transmitted. No check is made for logical errors. The transmission of a particular block
is deemed successful if the receiving terminal acknowledges that it has successfully re
ceived the block. Transmission errors detected by the terminal result in retries; once
the retry count is exhausted, transmission is either terminated or allowed to continue, as
for incoming messages. After transmission has terminated, control passes to the out
message subgroup, whose macros may then check the message error record for the message
and take appropriate action.

See Appendix G. Device Dependent Considerations, for specific coding information con
cerning the 1030 Data Collection System, the 1060 Data Communication System, the
2770 Data Communication System, and the 2780 Data Transmission Terminal.

mhname

LC={IN }
OUT

STOP={YES }
(opfield,switch)

NOTE: If the user specifies dynamic buffer deallocation by the PCI= operand of the
line group DCB macro, and if the block size for his incoming messages is greater than
his buffer size for incoming messages, segments containing transmission errors may be pro
cessed by the inheadet and inbuffer subgroups of the MH before the EOB-checkin~ routine
detects the errors. In this case, when the EOB-checking routine detects the errors, seg
ments in this block that have been enqueued are dequeued or ignored, and the input se
quence number is decremented if it was incremented by a canceled segment. Dequeuing
and sequence-number adjustment are done automatically by TCAM. However, any
option fields that were updated on the basis of data in the canceled segments remain up
dated, and if the canceled segments were logged they remain on the logging medium.

NOTE: When the INITIATE macro is executed in the inheader subgroup handling an
incoming message, no EOB checking is performed for that message, either on the in
coming or the outgoing side, regardless of what is specified by STARTMH operands.

Name Operation Operand

mhname STARTMH LC={~UT}
BSTOP }={YES }]

CONT (opfield,switch)

{YES }
GCONV= ~gfield, switch)]

[{ (opfield) }]
,LOGICAL= . (opfield 1, switch, opfield 2)

['BREG= {rteger}]

Function: Name of the macro and of the Message Handler.
Default: None. This name must be specified.
Format: Must conform to the rules for assembler language symbols (see the symbol entry
in the Glossary).
Notes: Must be the same as mhname specified in the MH= operand of the DCB for the
line group that uses this Message Handler.

Function: Specifies whether line-control characters in a start-stop message or a BSC
message in nontransparent mode are to be removed.
Default: None. This operand must be specified.
Format: IN or OUT
Notes: OUT causes TCAM to remove EOA and EOB line-control characters from ip.
coming messages entered at a start-stop station, and to remove STX, ETX ahd ETB line
control characters from incoming messages entered at a BSC station. EOT line control
characters are not removed when OUT is specified. EOB and ETB line control characters
are not temoved when CONV=YES is specified, regardless of how LC= is coded. Line
control characters are not removed until after the message segment is in a buffer;
therefore, the buffer must be large enough to accomodate line control.

The ITB control character is not considered by TCAM to be a line-control character,
and is not removed when OUT is specified.

IN causes the line control to remain in incoming messages (unless such messages are in
transparent mode, in which case "real" line control characters are removed regardless of
how this operand is coded).

Function: When a message block is found to be in error, this operand (conditionally)
specifies that once the retry count is exhausted, transmission of this message is to be
terminated. The error may be a hardware error or may be a user-detected logical error
if the LOGICAL= operand is also specified.

Delimiter Macros 143

CONT={YES }
(opfield,switch)

CONY= YES

{ ~~field'Switch)}

LOGICAL={(OPfield) }
(opfieldl,switch,
opfield2)

144

Default: None. Specification optional.
Format: YES or (dpfield,switch). opfield must conform to the rules for assembler
language symbols, and must be the name of a one-byte option field defined by an
OPTION macro. switch may be either decimal or hexadecimal. If hexadecimal format is
used, framing X" characters must be specified.
Maximum: iss or a one-byte hexadecimal field for switch.
Notes: YES specifies that transmission is to be terminated unconditionally. (opfield,
switch) specifies that transmission is to be terminated if any of the bits on in the switch
are also on in the option field.

When transmission is terminated because of an error detected by EOB checking, that
portion of the message that has been received (or sent) continues through the incoming
(or outgoing) group of the MH, where it is treated as if it were a complete message.
The user may issue certain error-handling macros in the inmessage (or outmessage) sub
group of the MH that test bit 25 of the message error record and dispose of the message
according to his specifications if bit 25 (which indicates that an error occurred during
transmission of data) is on. If this operand is omitted, end-of-block checking is not
done.

Function: When a message block is found to be in error, this operand (conditionally)
specifies that once the retry count is exhausted, transmission of this message is to be
continued.
Default: None. Specification optional.
Format: YES or (opfield,switch). opfie/d must conform to the rules for assembler
language symbols, and must be the name of a one-byte option field defined by an
OPTION macro. switch may be either decimal or hexadecimal. If hexadecimal format
is used, framing X" characters must be specified
Maximum: 255 or a one-byte hexadecimal field for switch.
Notes: YES specifies that transmission is to continue unconditionally. (opfield,switch)
specifies that transmission is to continue if any of the bits on in the switch are also on
in the option field.

When an error occurs, a bit in the message error record is set an. Message segments are
sent to the appropriate MH group just as if no EOB error had been found. If this oper
and is omitted, end-of-block checking is not done.

Function: Specifie~ whether EOB completion handling is to be used for the station, and
(in conjunction with a LOCK macro) whether tete-a-tete interaction is in effect for the
station.
Default: CONV=NO
Format: YES or NO or (opfield,switch). opfield must conform to the rules for assem
bler language symbols, and must be the name of a one-byte option field defined by an
OPTION macro. switch may be either decimal or hexadecitnal. If hexadecimal format
is used, framing X" characters must be specified.
Maximum: 255 or a one-byte hexadecimal field for switch.
Notes: YES ~pecifies that tete-a-tete interaction is to be used unconditionally, and that
a logical block of data being entered by a station is to be treated by TCAM as if it were
a complete message.

NO specifies that tete-a-tete interaction and EOB-completion handling are not to be
used. (opfield,switch) specifies that tete-a-tete interaction and EOB-completion handling
are to be used if any of the bits on in the switch are also on in the option field. If this
operand is specified, STOP= or CONT= must also be specified. For an explanation of
tete-a-tete interaction, see TCAM's Inquiry/Rapid Response Facility in Writing TCAM
Compatible Application Programs.

Function: Specifies whether a user-written routine is to be given control (conditionally)
to test for logical errors in incoming messages on a block-by-block basis. Such errors
might include a formatting error in a card or an inquiry addressed to the wrong applica
tion program.
Default: None. Specification optional.

INHDR Macro
Instruction

Format: (opfield) or (opfield l,switch,opfield 2). op/ield and op/ield2 must conform to
the rules for assembler language symbols, and must be the names of option fields defined
by OPTION macros. switch may be either decimal or hexadecimal. If hexadecimal
format is used, framing X" characters must be specified.
Maximum: 255 or a one-byte hexadecimal field for switch.
Notes: (op/ield) specifies that a user-written routine is to be given control uncondition
ally. op/ield refers to a four-byte option field, the high-order byte of which indicates
that an error has been found. The low-order three bytes are the address of the routine
to be given control. (op/ieldl,switch,op/ield2) specifies that the user-written routine in
op/ieldl is to be given control conditionally if any of the bits on in the switch are also on
in the one-byte op/ield2.

If this operand is specified, STOP= or CONT= must also be specified. The user may
initialize the routine-name option field by coding a V-type address constant naming his
routine as part of the OPDATA= operand of the TERMINAL or TPROCESS macro.
Upon return from the user routine, STAR TMH examines the high:order byte of the field.
If the byte is not zero and if the STOP= operand specifies that transmission is to be ter
minated, transmission is terminated. If the byte is zero, or if the CONT= operand is in
effect, operations are restarted on the line.

The user routine must save and restore registers 2 through 12, and must not alter the
contents of register 13 and 14. The information contained in the following registers upon
entry to the user routine may be of interest to the user:

Register 1 contains the address of the four-byte option field containing the one-byte
error indicator followed by the address of the user routine.

Register 4 contains the address of the LCB (line control block), an internal TCAM control
area described in the TCAM ·PLM.

Register 6 contains the address of the last buffer in the block of the data (the buffer
containing the EOB); this is the only buffer in this block that may be tested for logical
errors by the user routine.

Register 8 contains the address of the SCB (station control block), an internal TCAM
control area described in the TeAM PLM.

Register 13 contains the address of a TCAM save area, and must not be altered.

Register 14 contains the return address for the calling routine and must not be altered.

Register 15 contains the address of the entry point for the user routine.

Function: Specifies the number of base registers desired for this MH.
Default: BREG=I
Format: An unframed decimal integer between 1 and 11.
Maximum: 11
Notes: One base register is required for each 4096 bytes in the MH. Assignment begins
with register 12 and works downward. If BREG=3 is coded, for instance, registers 12,
11 and 10 are assigned as the base registers for the first three 4096-byte blocks of this
Message Handler.

The INHDR macro:

• Identifies the beginning of an inheader subgroup,
• Tests a path switch to allow alternative courses of action,
• Is required as the first macro of any incoming group.

INHDR identifies the beginning of an inheader subgroup, the functional macros in which
are concerned only with incoming header segments. An inheader subgroup must be the
first subgroup in the incoming group. Text segments are passed to the first inbuffer
subgroup.

Delimiter Macros 145

symbol

PATH= (opfield,switch)

INBUF Macro
Instruction

symbol

PATH= (opfield,switch)

146

An incoming message segment is tested by INHDR to determine whether it is a header
or text segment (the first segment of any message is always considered to be a header
segment). If it is a text segment or a canceled message, the segmentis passed to the
next subgroup; if it is a header segment, the inheader subgroup is executed.

If the P ATH= operand of INHDR is coded, INHDR examines a one- byte path switch
in a field of the option table. If any of the bits specified by INHDR are on in the path
switch, this subgroup is executed. If none of the bits are on, control is directed to the
next subgroup. If INHDR does not specify an operand, this subgroup is executed uncon
ditionally. For a more complete description of the path switch and its function, see
Variable Processing within a Message Handler in this chapter.

Name Operation Operand

[symbol) INHDR [P A TH=(name,switch) 1

Function: Name of the macro.
Default: None. Specification optional.
Format: Must conform to the rules for assembler language symbols (see the symbol entry
in the Glossary).

Function: Specifies conditional execution of this macro.
Default: None. Specification optional.
Format: .(opfield,switch). opfield must conform to the rules for assembler language
symbols, and must be the name of a one-byte option field defined by an OPTION macro.
switch may be either decimal or hexadecimal. If hexadecimal format is used, framing
X" characters must be specified.
Maximum: 255 or a one-byte hexadecimal field for switch.
Notes: If this operand is not specified, the subgroup is executed unconditionally.

The INBUF Macro:

• Identifies a subgroup that handles incoming message buffers,
• Tests a path switch to allow alternative courses of action,
• Is optional in the incoming group.

INBUF identifies the beginning of an inbuffer subgroup, which contains instructions con
cerned with both header and text portions of incoming messages.

If the PATH= operand of INBUF is coded, INBUF examines a path switch in a field of
the option table. If any of the bits specified by INBUF are on in the path switch, this
subgroup is executed. If none of the bits specified by INBUF are on in the path switch,
processing goes to the next subgroup. If INBUF does not specify an operand, this sub
group is executed unconditionally.

Name Operation Operand

[symbol) INBUF [PATH= (opfield,switch))

Function: Name of the macro.
Default: None. Specification optional.
Format: Must conform to the rules for assembler language symbols (see the symbol
entry in the Glossary).

Function: Specifies conditional execution of this macro and its subgroup.
Notes: For details concerning this operand, see the description of the INHDR macro.

tNMSG Macro
I~ruction

symbol

PATH= (opfield,switch)

INEND Macro
Instruction

symbol

The INMSG macro:

• Identifies the beginning of an inmessage subgroup,
• Tests a path switch to allow alternative courses of action,
• Is required as the first macro in an inmessage subgroup,
• Is optional in the incoming group.

INMSG identifies the beginning of an inmessage subgroup. The functional macros asso
ciated with this subgroup are executed after an entire message or block has entered the
system. Inmessage subgroups are specified after other subgroups in the incoming group.
No user-written code should be included in an inmessage subgroup, or between such sub
groups.

If the P ATH= operand of INMSG is coded, INMSG examines a path switch in a field of
the option table. If any of the bits specified by INMSG are on in the path switch, this
subgroup is executed. If none of the bits specified by INMSG are on, processing branches
to the next subgroup. If INMSG does not specify an operand, this subgroup is executed
unconditionally. Only one inmessage subgroup per message can be executed.

INMSG causes empty buffer units at the end of a buffer handled by this Message Handler
to be deallocated before the contents of the buffer are queued for a destination. Deal
located units are returned to the available unit queue. When the inmessage subgroup is
not included in a Message Handler, this deallocation function is performed by the
INEND macro.

Name Operation Operand

[symbol] INMSG [PATH= (opfield,switch)]

Function: Name of the macro.
Default: None. Specification optional.
Format: Must conform to the rules for assembler language symbols (see the symbol
entry in the Glossary).

Function: Specifies conditional execution of this macro and its subgroup.
Notes: For details concerning this operand, see the description of the INHDR macro.

The INEND macro:

• Identifies the end of the incoming group of an MH,
• Is required as the last macro of any incoming group.

INEND identifies the end of the instruction sequence that processes incoming messages.
One and only one INEND macro is required for each MH with an incoming group; it must
be the last macro in the incoming group. No operand is required.

Name Operation Operand

[symbol] INEND (no operands)

Function: Name of the macro.
Default: None. Specification optional.
Format: Must conform to the rules for assembler language symbols (see the symbol
entry in the Glossary).

There are no operands for this macro.

Delimiter Macros 147

OUTHOR Macro
Instruction

symbol

PATH= (opfield,switch)

OUTBUF Macro
Instruction

symbol

PATH= (opfield,switch)

148

The OUTHOR macro:

• Identifies the beginning of an outheader subgroup,
• Tests a path switch to allow alternative courses of action.
• Is optional in an outgoing group.

OUTHDR identifies the beginning of an outheader subgroup, which is concerned only
with the header portions of outgoing messages and, if included, m~y be either before or
after an outbuffer subgroup in the outgoing group.

An outgoing segment is tested to see whether it is a header or a text segment. The out
header subgroup is executed only on a header segment; it is bypassed if the segment
contains text only.

If the P ATH= operand of OUTHDR is coded, OUTHDR examines a path switch in a
field of the option table. If any of the bits specified by OUTHDR are on in the path
switch, this subgroup is executed. If none of the bits are on, control passes to the next
subgroup. If OUTHDR does not specify an operand, this subgroup is executed uncondi
tionally.

Name Operation Operand

[symbol] OUTHDR [PATH= (opfield,switch)]

Function: Name of the macro.
Default: None. Specification optional.
Format: Must conform to the rules for assembler language symbols (see the symbol
entry in the Glossary).

Function: Specifies conditional execution of this macro and its subgroup.
Notes: For details poncerning this operand, see the description of the INHDR macro.

The OUTBUF macro:

• Identifies a subgroup that handles outgoing message buffers,
• Tests a switch to allow alternative courses of action,
• Is optional in an outgoing group.

OUTBUF identifies the beginning of an outbuffer subgroup that contains instructions
concerned with both header and text portions of outgoing messages. If included, an
outbuffer subgroup may be located either before or after an outheader subgroup in the
outgoing group.

If the P A TH= operand of OUTBUF is coded, OUTBUF examines a path switch in a field
of the option table. If any of the bits specified by OUTBUF are on in the path switch,
this subgroup is executed. If none of the bits specified by OUTBUF are on, control
passes to the next subgroup. if OUTBUF does not specify an operand, this subgroup is
executed unconditionally.

Name Operation Operand

[symbol] OUTBUF [PATH= (opfield,switch)]

Function: Name of the macro.
Default: None. Specification optional.
Format: Must conform to the rules for assembler language symbols (see the symbol
entry in the Glossary).

Function: Specifies conditional execution of this macro and its subgroup.
Notes: For details concerning this operand, see the description of the INHDR macro.

OUTMSG Macro
Instruction

symbol

PAnI= (opfield,switch)

OUTEND Macro
Instruction

symbol

The OUTMSG macro:

• Identifies the beginning of an outmessage subgroup of an MH,
• Tests a path switch to allow alternative courses of action,
• Is required as the first macro in an outmessage subgroup,
• Is optional in an outgoing group.

OUTMSG identifies the beginning of an outmessage subgroup, which is executed only
after an entire block or message has been sent. Outmessage subgroups are specified
after other subgroups in the outgoing group.

If the P A TH= operand of OUTMSG is coded, OUTMSG examines a path switch in a field
of the option table. If any of the bits specified by OUTMSG are on in the path switch,
this subgroup is executed. If none of the bits specified by OUTMSG are on, control
passes to the next subgroup. If OUTMSG does not specify an operand, this subgroup is
executed unconditionally. Only one OUTMSG subgroup per message can be executed.

OUTMSG causes empty units at the end of buffers handled by this outgoing group to
be deallocated and returned to the available unit queue. If an outmessage subgroup is
not coded, this de allocation function is performed by OUTEND.

Name Operation Operand

[symbol] OUTMSG [PATH= (opfield,switch)]

Function: Name of the macro.
Default: None. Specification optional.
Format: Must conform to the rules for assembler language symbols (see the symbol
entry in the Glossary).

Function: Specifies conditional execution of this macro and its subgroup.
Notes: For details s:oncerning this operand, see the description of the INHDR macro.

The OUTEND macro:

• Identifies the end of any outgoing group,
• Is required as the last macro in any outgoing group.

OUTEND identifies the end of the instruction sequence that processes outgoing mes
sages. One OUTEND is required for each outgoing group; it must be the last macro in
the group. No operands are required.

Name Operation Operand

[symbol] OUTEND (no operands)

Function: Name of the macro.
Default: None. Specification optional.
Format: Must conform to the rules for assembler language symbols (see the symbol
entry in the Glossary).

There are no operands for this macro.

Delimiter Macros 149

Functional Macro
Instructions

CANCELMG Macro Instruction

symbol

mask

150

This section describes the functions provided by the MH macro instructions. The discus
sion of each macro begins with a capsule summary of its functions. The functions of the
macro are then described in detail, with a discussion of related topics necessary to an
understanding of these functions.

The coding of the macro is then described, using a boxed illustration. The formats of the
macro illustrations and the symbols used are shown in Appendix A. General rules for
interpretation of the operand descriptions are also provided in Appendix A, to which
the reader should refer.

The CANCELMG macro:

• Cancels messages either unconditionally or when certain errors occur,
• Is optional in an inmessage subgroup (and is permitted in no other subgroup),
• If specified, must be the first functional macro executed in the subgroup (one or more

CANCELMG macros may be specified in the same subgroup).

CANCELMG causes immediate cancellation of a message if any errors specified by the
error mask operand are also set in the message error record (see Appendix B for a descrip
tion of the message error record). A canceled message is not sent to its destination.· If
there are multiple destinations, the canceled message is not sent to any of them. The
ERRORMSG or MSGGEN macro may be used to notify the terminal operator of the
error, or the REDIRECT macro may be used to send the message that is in error to a
selected destination.

If an all-zero mask is specified, or if the mask is omitted, the message is canceled
unconditionally.

NOTE: CANCELMG should not be executed for a message if an INITIATE macro has
been executed for that message.

If the CANCELMG macro is executed in the inmessage subgroup for a lock mode mes
sage, the lock is not broken and the terminal will be repolled.

Name Operation Operands

[symbol] CANCELMG [mask] [,CONNECT= {~~D} 1

Function: Name of the macro.
Default: None. Specification optional.
Format: Must conform to the rules for assembler langua.~e symbols (see the symbol
entry in the Glossary.

Function: Specifies the five-byte bit configuration used to test the message error record
for the message (the message error record is described in Appendix B).
Default: None. Specification optional.
Format: Decimal or hexadecimal. If hexadecimal format is used, framing characters
must be specified. If X' 'is used, leading zeros must be coded. If XL5' , is used, leading
zeros may be omitted.
Maximum: 16777215 or a hexadecimal field five bytes in length.
Notes: Omitting the operand or specifying an all-zero mask causes unconditional
execution.

Function: Specifies the type of logical connection to be made between the mask and the
message error record.
Default: CONNECT=OR
Format: AND or OR
Notes: AND specifies that the macro is to be executed only if all of the bits specified
by mask are on in the message error record.

OR specifies that the macro is to be executed if any bit specified by mask is on in the
message error record.

CHECKPT Macro Instruction

symbol

CODE Macro Instruction

Example 1:
CANCELMG X'0000080 1 00' ,CONNECT=AND

specifies that the message is to be canceled only if bits 20 and 31 of the message error
record are both on.

Example 2:
CANCELMG 524544,CONNECT=OR

specifies that the message is to be canceled if either bit 20 or bit 31 of the message error
record is on.

The CHECKPT macro:

• Causes an incident checkpoint record to be taken of the option fields for the originat
ing or destination station or application program,

• May be coded in any subgroup of the Message Handler.

When coded in an inheader, inbuffer, or inmessage subgroup, the CHECKPT macro
causes an incident checkpoint record to be made of the option fields assigned to the
originating station or application program. This checkpoint record is taken after the
entire incoming group has executed and the message has been enqueued, so that the
option fields reflect the fact that a message has been processed by the incoming group.

When coded in an outheader, outbuffer, or out message subgroup, CHECKPT causes an
incident checkpoint record to be taken of the option fields assigned to the destination
station or application program. This checkpoint record is taken after the entire outgoing
group has been executed and the message has been sent; the option fields reflect the fact
that a message has been sent by the outgoing group.

If a message segment goes through any subgroup in which a CHECKPT macro is executed,
an incident checkpoint record is made after that message has been completely handled by
the appropriate MH group. Only one record per message is made, even if more than one
CHECKPT macro is coded in the group. If no CHECKPT record is coded in a group, no
incident checkpointing record is made when the message leaves the group.

For more information on TCAM's checkpoint facility, see the chapter Using TeAM
Service Facilities.

The CHECKPT macro has the following format:

Name Operation Operand

[symbol] CHECKPT (no operands)

Function: Name of the macro.
Default: None. Specification optional.
Format: Must conform to the rules for assembler language symbols (see the symbol
entry in the Glossary).

The CHECKPT macro has no operands.

The CO DE macro:

• Translates the data in the buffer being handled,
• Tests for operator commands,
• Is optional in the inheader, inbuffer, outheader and outbuffer subgroups (and not

permitted in any other subgroup),
• . May be issued at any point in the subgroup.

Functional Macros 151

152

CODE causes the message segment being handled to be translated. If specified in an in
header or inbuffer subgroup, translation is from line code to EBCDIC; if specified in an
outheader or outbuffer subgroup, translation is from EBCDIC to the line code. The line
code to be used is specified by the TRANS= operand of the DCB macro or by an operand
of the CODE macro (which overrides the table specified in the DCB macro).

If CODE is included in a subgroup, and any segments of a message are processed by that
subgroup, the entire message is translated. Macros issued prior to CODE. in the incoming
group act on message characters that are in line code, while macros issued subsequent to
CODE act on message characters that are in EBCDIC. The converse is true for the out
going group. If CODE is not included in the incoming group, incoming messages are not
translated; if CODE is not included in the outgoing group, outgoing messages are not
translated.

NOTE: Once a message has been translated by a CODE macro executed in a subgroup of
an incoming or outgoing group, care should be taken that no segment of it is routed
through another subgroup when the second subgroup also contains a CODE macro. The
second CODE macro would "translate" Ule message into gibberish.

The CODE macro permits flexibility of handling of buffers with respect to translation by
overriding the translation table specified for the line group.

CODE tests for operator commands, and transfers control accordingly. If operator com
mands may be entered by any station on a line, then a CODE macro should be issued in
the inheader subgroup of the MH handling incoming messages on that line. If the LC=
optlrand of the STARTMH macro is coded LC=OUT (i.e., if line-control characters are to
be automatically stripped from incoming messages), then CODE should be the first
functional macro issued in the inheader subgroup for a line on which operator commands
may be entered. If STARTMH is coded LC=IN (i.e., if line-control characters are not to
be removed from incoming messages by TCAM), then a SETSCAN macro should be
issued immediately prior to CODE. The SETSCAN macro should move the scan pointer
to the last initial line-control character (except the machine EOA, which is automatically
skipped by STARTMH). The scan pointer should be positioned on the last such
character.

NOTE: The user at a station may wish to enter one or more characters in front of the
character string identifying his operator command as such when he enters it at a station ..
This is permissible as long as the user sets his scan pointer to the nonblank character
immediately preceding the operator control character string before issuing CODE.

The CODE macro must be issued in the inheader subgroup handling messages from a
station if operator commands may be entered by that station. However, the user may not
wish to translate ordinary messages entered at the station. One way to avoid having to
translate every message is as follows (assume that line code is removed from incoming
messages):

Code a special inheader subgroup as the first subgroup of the incoming group; this special
subgroup may consist of a MSGTYPE macro followed by a CODE macro. Have the
MSGTYPE macro look at the first field in each incoming message in line code, and execute
only if this field consists of some specific character -for instance, A. Enter A before the
identification sequence of each operator command. If the first character of a message is
A, the CODE macro will execute and the message will be translated - otherwise, control
will be passed to the next delimiter, which may be another inheader subgroup designed to
handle ordinary messages in line code.

symbol

{
tablename}
NONE
(register)

Example:
The following code might be used to check for operator commands entered at a 1050
station, and cause each incoming message to be translated only if it is an operator com
mand. It is assumed that line code is removed from incoming messages and that the
operator at the station enters an A immediately in front of the identification sequence
for an operator command.

Name Operation Operands

OCMH STARTMH LC=OUT,STOP=YES
OCCHK INHDR

MSGTYPE X'E2'
CODE

NONOC INHDR

INBUF

INMSG

INEND

An incoming message enters the first inheader subgroup. If A (which is X'E2' in 1050
line code) is the first character in the message, CODE is executed. If this is an operator
command, the CODE macro causes it to be handled as such, and it never reaches the
second inheader subgroup. A message that does not begin with A is not translated and
is passed to the second inheader subgroup, which contains macros that handle ordinary
(non-operator-control) messages.

The CODE macro has the following format:

Name Operation Operand

[symbol] CODE [{ tablenamer
NONE
register

Function: Name of the macro.
Default: None. Specification optional.
Format: Must conform to the rules for assembler language symbols (see the symbol
entry in the Glossary).

Function: Specifies the type of translation to be done.
Default: None. Specification optional.
Format: tablename, (register) or NONE. tablename must either be one of the names
permitted for the TRANS= operand of the DCB macro or the name of a user-defined
table that conforms to the rules for assembler language symbols. (register) must specify
a decimal integer between 2 and 11.
Notes: If this operand is omitted, the table used for translation is that specified by the
TRANS= operand of the DCB macro.

If NONE is specified, the message is not translated. NONE can be used to check for
operator commands when the station transmits in EBCDIC.

If (register) is specified, the register must previously have been loaded with the address
of the table to be used.

A user-defined translation table must consist of a fullword on a fullword boundary,
followed by a 256-byte table for translating from line code into EBCDIC, followed by a
256-byte table for translating from EBCDIC into line code. The]irst word must contain
the address of the first byte of the second table. The high-order byte of the first word
must be zero.

Functional Macros 153

COUNTER Macro Instruction

symbol

opfield

154

The COUNTER macro:

• Maintains a count of complete messages or of message segments received from or sent
to a station,

• Is optional in inheader, inbuffer, outheader, and outbuffer subgroups.

COUNTER enables the user to maintain four types of count. The position of the
COUNTER macro within an MH determines which type of count is maintained.
COUNTER may appear:

• In the inheader subgroup to count incoming messages for each originating station;
• In the inbuffer subgroup to count incoming message segments for each originating

station;
• In the outheader subgroup to count outgoing messages for each destination station;
• In the outbuffer subgroup to count outgoing message segments for each destination

station.

Anyone or more of Ult: counts may be maintained by including COUNTER in the ap
propriate subgroups; within each subgroup, it may appear at any point.

For each COUNTER macro, the user must define, by an OPTION macro, a halfword
option field for the appropriate station or component. This provides space for main
taining the counters.

The use of COUNTER is optional. If it is used in an inheader or inbuffer subgroup and
the stations for which it maintains counts are on a switched line and do not have unique
ID sequences, and if a calling station entering a message is not identified by an ORIGIN
macro before COUNTER is executed, the option field associated with the related line
entry in the terminal table will be referred to.

NOTE: The COUNT may not be exact since recalled messages (from ERRORMSG,
for instance) and messages from buffered stations will be counted twice.

Name Operation Operand

[symbol] COUNTER opfield

Function: Name of the macro.
Default: None. Specification optional.
Format: Must conform to the rules for assembler language symbols (see the symbol
entry in the Glossary).

Function: Specifies the name of the halfword option field for the station or component
in which the count is to be maintained.
Default: None. This operand must be specified.
Format: Must conform to the rules for assembler language symbols and must be the
name of a halfword option field defined by an OPTION maCTO.
Notes: The field contains a binary count up to a maximum of 65535. When the
maximum count has been reached, the count is reset to zero for. the next message or
segment counted.

The user may gain access to the field at any time to determine or reset the count (by
operator commands or by user code including the LOCOPT macro.) The count is
initially set using the OPDATA= operand of the TERMINAL or TPROCESS macro.

If the option field is not found, COUNTER does not execute and control passes to the
next MH instruction. A return code of X'FF' in the low-order byte of register 15
indicates that COUNTER did not execute.

CUTOFF Macro Instruction

symbol

integer

DATETIME Macro
Instruction

The CUTOFF macro:

• Specifies the maximum allowable length of incoming messages,
• Checks for incoming buffers filled with identical characters,
• Is optional in the inbuffer subgroup (and not permitted in any other subgroup),
• Is normally issued prior to a related ERRORMSG macro.

CUTOFF specifies the maximum number of characters allowed in an incoming message.
If the maximum number is reached, reception is terminated as soon as those buffers
already assigned to the line have been filled. An error flag is set in bit 7 of the message
error record for the message (see Appendix B). CUTOFF also turns on bit 7 of the
message error record if the input buffer is filled with identical characters (usually an
indication of station malfunction).

An ERRORMSG macro may be used in the same incoming group as the CUTOFF macro
to test bit 7 of the message error record and to notify the terminal operator that recep
tion of the message has been terminated. The operator can determine if he exceeded the
allowed number of characters; otherwise a station malfunction is indicated. After the
CUTOFF macro has executed, processing continues through the inbuffer subgroup.

Name Operation Operand

[symbol] CUTOFF integer

Function: Name of the macro.
Default: None. Specification optional.
Format: Must conform to the rules for assembler language symbols (see the symbol
entry in the Glossary).

Function: Specifies the maximum number of characters allowed for each message.
Default: None. This operand must be specified.
Format: Decimal or hexadecimal. If hexadecimal format is llsed, framing X' , or XLn' ,
characters must be specified.
Maximum: 65535 or a hexadecimal field two bytes in length.

Example:
CUTOFF 400

specifies that reception of the message is to be terminated after 400 characters have
been entered.

NOTE: CUTOFF does not provide a precise limit to the number of characters in an in
coming message (because TCAM continues to read until the buffers currently aSSigned
have been filled).

The DATETIME macro:

• Inserts the date, the time, or both in an incoming or outgoing message header,
• Is optional in inheader and outheader subgroups (and not permitted in any other

subgroup,
• May not be specified for audio lines.

The DATE TIME macro causes insertion of the date, the time, or both the date and
the time in the header of an incoming or Qutgoing message. (If both are specified, the
date is inserted first.) Seven characters are inserted for the date, if specified: a blank,
the last two digits of the year, a period, and the three-digit day number. Nine characters
are inserted for the time, if specified: a blank, two digits for the hour, a period, two
digits for the minute, a period, and two digits for the second. If no operand is coded,
both the date and the time are provided (the operands specify which is to be omitted).

Space in the header for these insertions, seven characters for the date and nine characters
for the time, must be reserved by the RESERVE= operand of the DCB macro for the
communication line or by the RESERVE= operand of the PCB macro for the application
program if the insertions are required. After DA TETIME has executed, the scan pointer
is positioned at the last inserted character.

Functional Macros 155

symbol

156

When the DA TETIME mac1'() is coded in an outgoing subgroup, the macro may operate
upon the first message segment only. This is because TCAM does not maintain reserve
bytes for any segment of an outgoing message except the first (see the description of the
RESERVE= operand of the DCB macro).

To avoid having to specify a large first buffer, the user who wishes to insert both the
date- and time-received and the date- and time-sent in the salPe message header may
design his header so that it occupies two buffers, and then insert the incoming date and
time in that portion of the header contained in the second buffer, and the outgoing date
and time in that portion of the header contained in the first buffer.

The characters inserted by DATETIME are in EBCDIC code. Therefore, the DATETIME
macro should not be issued before a CODE macro in an inheader subgroup, or after a
CODE macro in an outheader subgroup.

DA TETIME may not be specified for audio lines.

Name Operation Operand

[symbol] DATETIME [DATE=tO II [,TIME=tO fl
YES YES - -

Function: Name of the macro.
Default: None. Specification optional.
Format: Must conform to the rules for assembler language symbols (see the symbol
entry in the Glossary).

Function: Specifies whether the date is to be inserted in a message header.
Default: DATE=YES
Format: YES or NO.
Notes: YES specifies that the date is to be inserted in the message header.

NO specifies that the date is to be omitted from the header.

Function: Specifies whether the time is to be inserted in a message header.
Default: TIME=YES
Format: YES or NO.
Notes: YES specifies that the time is to be inserted in the message header.

NO specifies that the time 18 to be omitted from the header.

The time inserted is the time at which this DATETIME macro is executed. TCAM de
termines this by examining the system timer.

NOTE 1: If no operand is coded, both the date and the time are inserted in the message
header.

NOTE 2: If insufficient buffer space is available (too few reserve characters), the
DATETIME macro does not execute and a X'04' return code is set in register 15.

Example:
The message

NYC 0039 * (message text) EOT

is entered at the NYC terminal (NYC is the origin, 0039 the input sequence number).
If the header buffer is being processed at 9:45:50 p.m. on February 6,1970 and if the
SEQUENCE macro is followed by DA TETIME DA TE=NO, the time is inserted in the
header, which becomes

NYC 003921.45.50 * (message text) EOT.

If the SEQUENCE macro is followed by DATETIME, the header becomes

NYC 0039 70.037 21.45.50 * (message text) EOT.

ERRORMSG Macro Instruction

symbol

The ERRORMSG macro:

• Sends an error message when an error occurs,
• Is optional in an inmessage or outmessage subgroup of an MH (and not permitted

in any other subgroup),
• May be used more than once in a subgroup.

ERRORMSG sends an error message specified by the user to a designated station when
errors specified by the error mask have occurred. The bits specified by the error mask
operand are compared with the setting of the bits in the message error record for this
message; if specified bits in the message error record are on, the error message is sent.
The message may be sent unconditionally by specifying an all-zero mask, or by omitting
the mask operand.

The message sent to the station includes the text written by the user preceded by the
header of the message in error, which is recalled from the message queue. The error
message, once formatted, is placed on the destination queue for the station selected to
receive the message, and is handled by the outgoing group of the MH for that queue.
Therefore, unless a MSGTYPE or PATH macro is used to distinguish between different
message types, the format of the header of the message in error must be compatible with
the macros executed in the outgoing group handling messages routed to the station
selected to receive the error message. If the MSGTYPE macro is used for this purpose,
the formats of the respective headers may differ after the message-type character.

If the MSGFORM macro is not coded in the outheader subgroup of the MH handling
messages for the destination station, the user must ensure that satisfactory line-control
characters (such as EOT) are included in his error message.

The user may prefer to use the MSGGEN function if the message header is not required
as a part of the error message. MSGGEN is faster than ERRORMSG (i.e., the user is
notified of the error sooner if he uses MSGGEN), but ERRORMSG returns the header
of the message in error, while MSGGEN does not.

If cancellation of an erroneous message is required, the CANCELMG macro must have
been issued prior to the ERRORMSG macro. ERRORMSG may appear in inmessage
and outmessage subgroups and can appear more than once in either subgroup.

NOTE: Since the header of the message in error is recalled from the destination queue,
it is not possible to use the ERRORMSG macro coded DEST=DESTIN when the destina
tion of the message in error is not known to TCAM. If a message having an invalid
destination field is entered, and the destination is not corrected by the user-exit of the
FORWARD macro, and no dead-letter queue is specified by the INTRO macro, then
ERRORMSG cannot be used in conjunction with that message, because the message
header cannot be recalled by TCAM from a destination queue.

Name Operation Operands

[symbol] ERRORMSG [mask] [,CONNECT= l~:D P
[,DBST= {""tinaliOn nam'f opfield

ORIGIN
DESTIN

,DATA= 1 message t
fieldname

[,EXIT=name of routine]

Function: Name of the macro.
Default: None. Specification optional.
Format: Must conform to the rules for assembler language symbols (see the symbol
entry in the Glossary).

Functional Macros 157

mask

CONNECT= l~~D ~

DEST={destination name}
opfield
ORIGIN
DESTIN

DATA=jmessage t
t fieldname ~

158

Function: Specifies the five-byte bit configuration used to test the message error record
for the message (the message error record is described in Appendix B).
Default: None. Specification optional.
Format: Decimal or hexadecimal. If hexadecimal format is used, framing characters
must be specified. If X ' , is used, leading zeros must be coded, If XLS' , is used, leading
zeros may be omitted.
Maximum: 16777215 or a hexadecimal field five bytes in length.
Notes: Omitting this operand or specifying an all-zero mask causes unconditional
execution.

Function: Specifies the type of logical connection to be made between the mask and the
message error record.
Default: CONNECT=OR
Format: AND or OR.
Notes: AND specifies that the macro is to be executed only if all of the bits specified by
mask are on in the message error record.

OR specifies that the macro is to be executed if any bit specified by mask is on in the
message error record.

Function: Specifies the destination for the error message.
Default: In an inmessage group, DEST=ORIGIN.

In an outmessage group, DEST=DESTIN.

Format: destination name, opfield, ORIGIN or DESTIN. destination name is the name
of a single or a process entry in the terminal table and must be enclosed in framing
C' , or CLn' 'character. opfield is the name of an option field defined by an
OPTION macro, conforming to the rules for assembler language symbols, which con
tains the name of a single or process entry in the terminal table. It must not be specified
with framing characters.
Notes: opfield is a field from two to nine bytes long, with the first byte containing the
decimal length of the rest of the field.

ORIGIN specifies that the error message is to be sent to the station from which the
message originated. This operand may be specified in either an inmessage or outmes
sage subgroup. If the originating station is not known (because it called in on a

- switched line and did not identify itself) the message is sent to the dead-letter queue
if one is specified and is lost otherwise.

DESTIN specifies that the error message is to be sent to the destination station specified
in the header of the message in error. This operand may be specified in either an inmes
sage or out message subgroup.

If an invalid destination is specified, or if DESTIN is specified in .an inmessage subgroup
for which no FORWARD macro has been issued previously, the message is sent to the
dead-letter queue if one has been specified by the DLQ= operand of the INTRO macro.
If no dead-letter queue is specified, the message is overlaid and lost.

A distribution list or a PUT process entry must not be specified as the destination of an
error message.

Function: Specifies the error message.
Default: None. This operand must be specified.
Format: message or fieldname. message is the actual error message to be sent and must
be specified within framing C' , or CLn' , characters. fieldname is the name of a location
containing in its first byte a binary count of the number of characters in the message,
followed by the message itself. The error message is a maximum length of 255 charac
ters. This is exclusive of the binary count in the fieldname format.
Notes: If an error message is longer than a single buffer unit, one additional buffer unit
is obtained and as much of the remainder of the message as will fit is placed in it. If the
entire message will not fit into these two units, the remainder is truncated. on the right.

EXIT=name oC routine

FORWARD Macro Instruction

Function: Specifies the name of a user-written routine that completes error message
processing. If additional processing is needed after the standard TeAM error message
processing is completed, the routine is given control after processing but before the mes
sage is sent.
Default: None. Specification optional.
Format: Must conform to the rules for assembler language symbols.
Notes: If the user provides an exit routine for ERRORMSG, TeAM automatically saves
and restores registers for this routine; the user need not save registers, and may chllnge
the contents of registers 2 through 12 as he likes. However, the contents of register 13
and 14 should not be altered by the user routine. When the routine receives control,
register 1 contains the address of the header buffer. Register 14 contains the return ad
dress for the calling routine. Register 15 contains the address of the entry point for the
user routine. TeAM expects no return code from the user routine. The routine should
return control to TeAM by a BR 14 instruction.

NOTE: When ERRORMSG is executed, only the first buffer of the message in error is
retrieved from the destination queue (if the header occupies more than one buffer, that
portion of the header extending beyond the first buffer is not retrieved). The actual
error message is placed in that portion of the first header buffer that contains message
text; the error message overlays the text. If the first buffer is entirely filled with header
information, or does not contain enough space after the header to hold the entire error
message, TeAM automatically assigns one extra unit to the buffer to hold as much as
possible of the remainder of the message. If the entire message will not fit, the remainder
is truncated on the right.

NOTE: The message is inserted in the header beginning at the current location of the
scan pointer. If an ERRORMSG macro is issued in the inmessage subgroup but there is
additional header information that would be recognized by the outheader subgroup, the
message will overlay this data, and data will be lost for outgoing processing. If data has
been inserted or removed during inbuffer or outbuffer processing, the data in the buffer
will be moved either to the right or the left while the scan pointer remains fixed. Thus,
when the error message is inserted at the scan pointer, data that is logically part of the
header may be lost, or data beyond the header may be included as part of the header
information returned with the message.

The FORWARD macro:

• Queues messages for one or more specified destinations,
• Is required in each inheader subgroup of the MH for every station and application

program that can enter messages directed to a specific destination.

FORWARD allows scanning of the destination code field in the header of each incoming
message and compares the field with the names of the terminal table entries. If the
destination code is valid (a matching entry is found in the terminal table), FORWARD
queues the message for the specified destination or destinations. If an invalid destination
code (Le., one not appearing in the terminal table) is detected, control passes to the
user routine specified by the EXIT= operand of FORWARD. If no user exit is specified,
the message is queued for the station or application program specified by the DLQ=
operand of the INTRO macro. If no station or application program is specified by
DLQ=, and no user exit is provided, messages with invalid destination codes are overlaid
and lost.

Messages may be routed to one or more destinations in the following ways:

1. To the single destination specified in the message header or named by an operand of
the FORWARD macro.

2. To the distribution list specified in the message header or named by an operand of
the FORWARD macro.

3. To the cascade list specified in the message header or named by an operand of the
FORWARD macro.

4. To the multiple destinations specified in the message header. The destination codes
may be of equal length or of varying lengths. In the case of multiple destinations, an
operand specifies the end-of-address character or characters included after the last

. destination code in the header of each incoming message.
5. To the group entry in the terminal table specified in the message header or in an

operand ofthe FORWARD macro.

Functional Macros 159

symbol

DEST={destnamel opfield
(number)
PUT
!!

160

If multiple destinations are specified in the message header, or if a distribution list is
specified, once the incoming group has finished processing the message, copies are made
and routed to the destination queue for each destination specified in the header or
distribution list.

A FORWARD macro must be included in each inheader subgroup handling messages
destined for stations or application programs; otherwise the incomipg group of the MH
does not know where to route the message.

If DEST= (number) or DEST=u is specified, the CODE macro must be executed prior
to FORWARD unless the line code is EBCDIC.

NOTE: Care must be taken in entering a character string in a destination field to ensure
that it matches a terminal-table entry. A character string entered in lower-case charac
ters from an IBM 2770 station, for example, will not match a terminal-table entry name
that is in upper-case characters.

The FORWARD macro has the following format:

Name Operation· Operand

[symbol] FORWARD
[DEST={"",name r opfield

(number)
.u
PUT

[,EOl\.=characters]
[,EXIT=name]

Function: Name of the macro.
Default: None. Specification optional.
Format: Must conform to the rules for assembler language symbols (see the symbol
entry in the Glossary).

Function: Specifies the destination for the message.
Default: DEST=u
Format: destname, opfield, (number), PUT or **. destname is the name of a single,
group, distribution list, cascade list or process entry in the terminal table and must be
specified with framing C' , or CLn' 'characters. opfield is the name of a field defined by
an OPTION macro containing the name of an entry ip the terminal table. Framing
characters must not be used. (number) is the number of characters in each of a list of
one or more destinations. PUT is specified when the destinations of messages entered by
an application program are placed by the user in an application program work area. **
specifies that there are one or more destination names of variable length in the message
header.
Maximum: (number) can be a decimal field with a maximum value of 8.
Notes: opfit;ld refers to an option field that is from 1 to 8 bytes long. If the destination
name is shorter than the length of the option field, the name must be padded to the
right with blanks to fill the field.

If (number) is specified, the destination names in the message header must all be the
same length. Delimiting and embedded blanks are ignored. If this operand is specified
and there is more than one destination, the EOA= operand must also be specified.

If ** is specifie4, delimiting blanks must be used between destination names in the
header, and there may not be any embedded blanks. If this operand is specified and
there is more than one destination in the message, the EOA= Qperand must also be
specified.

DEST=PUT should be specified in the inheader subgroups of the MH assigned to an ap
plication program when the MH is to handle messages coming from an application pro
gram that has OPTCD=W coded in its output DCB macro, if the user wishes the message
to go to the destination specified in the work area. For more information on specifying

EOA=characters

EXlT=name

the destination of a message in the application program, see the discu~sion of the
OPTCD= operand of the output DCB macro. Use of this operand is restricted to the case
just described.

If an invalid destination is specified, control passes to the user routine specified by the
EXIT= operand. If no user exit is specified, the message is queued for the station
specified by the DLQ= operand of the INTRO macro. If no station is specified by DLQ=
and no user exit is provided, messages with invalid destination codes are overlaid and
lost.

Function: Specifies the character or character string used after the last station name of
a multiple destination to delimit the destination field of the header.
Default: None. With DEST= coded destname, op!ield, or PUT, specification optional.
With DEST= coded (number) or ** and multiple destinations in the message, this operand
is required.
Format: One to eight non blank characters specified in character or hexadecimal format.
If character format is specified, the field may be unframed or framed with C' , or
CLn' 'characters. If hexadecimal format is specified, the field must be framed with
X' , or XLn' 'characters. n must be the actual length of the characters.
Notes: If this operand is specified and DEST= is coded destname, opfield or PUT, the
operand is ignored.

'Function: Specifies the name of a user-written exit routine that is given control when an
invalid destination is detected.
Default: None. Specification optional.
Format: Must conform to the rules for assembler language symbols.
Notes: The routine may correct the destination, provide another destination, or indicate
that the message is not to be processed for a destination. If an invalid destination is .
provided by the user exit routine, the message is forwarded to the dead-letter queue if
one is specified by the DLQ= operand of the INTRO macro; otherwise it is overlaid and
lost.

If the user provides an exit routine for FORWARD, TCAM automatically saves and re
stores registers for this routine; the user routine need not save registers and may change
the contents of registers 2 through 12. However, the contents of register 13 and 14
should not be altered. When the user routine receives control, register 1 contains the
address of the header buffer. Register 14 contains the return address for the calling
routine. Register 15 contains the address of the entry point for the user routine.

TCAM expects the user routine to place one of two items in register 15 before returning
control:

• A return code of all zeros in register 15 means that the user routine was unable to
provide a satisfactory destination for this message. In this case, the message is
forwarded to the dead-letter queue or is not processed for any destination if no
dead-letter queue is provided.

• Register 15 may contain the main-storage address of a field set up by the user and
consisting of a length byte followed by the name of a valid single, group, distribution
list, cascade list or process entry in the terminal table. The length byte must contain,
in binary form, the number of bytes in the rest of the field. TCAM assumes that the
specified name is the destination of the message. The field must be padded to the
right with blanks to the length of the longest entry.

The user routine should return control to TCAM via a BR 14 instruction.

This operand is ignored when DEST=PUT is specified.

NOTE: In the case of multiple-buffer headers, a destination must be determined for
the first header buffer. This can be ensured in one of two ways as the first header and
the subgroup are designed:

1. If the destination is specified by the macro operand, the FORWARD macro must
occur sufficiently early in the subgroup that it acts upon the first header buffer.

2. If the destinations are specified in the header rather than by the macro operand, the
first destination must be completely contained within the first buffer. For buffered
terminals, the first destination must appear in the first hardware buffer or the first
MCP buffer, whichever is smaller.

Functional Macros 161

HOLD Macro Instruction

symbol

mask

162

If the second condition is not met, TCAM assumes an invalid destination has been speci
fied and branches to the user exit, if provided. If no user exit is provided, or if the first
condition is not met, the message is routed to the dead-letter queue, or is overlaid and
lost, if no dead-letter queue is provided.

The HOLD macro:

• Suspends transmission to a station,
• Is optional in the inmessage and outmessage subgroups.

HOLD suspends transmission of output m~ssages to a station either for a time interval
or until the messages are released by a RESMXMIT operator command or by an
MRELEASE macro issued in an application program. HOLD may be requested uncon
ditionally by specifying an error mask of zero or by omitting the mask, or conditionally,
in which case the error mask specified in the first operand is compared to the message
error record assigned to the message; if specified errors are detected, transmission is
suspended. A station that cannot accept messages because of the effect of a HOLD
macro is said to be intercepted. For a discussion of holding, see the section TeAM's
Hold/Release Facility.

NOTE 1: A station whose destination queue is located in main storage with no disk
backup may not be intercepted; the HOLD macro is ignored in this case.

NOTE 2: Suspension of transmission begins with the message following that which
causes the HOLD macro to execute (since the outmessage subgroup does not execute
until after the message has been sent). However, when the station is released, the
message that caused HOLD to execute is retransmitted.

NOTE 3: If an initiate mode message is sent to a held terminal, the message will revert
to standard transmission (rather than initiate transmission). However, it will be queued
on the highest priority queue and be transmitted normally thereafter.

NOTE 4: If the HOLD macro is executed in the outmessage subgroup for a lock re
sponse, the lock is not broken, the terminal is not held, and the message will be retrans
mitted immediately (i.e., it will be sent twice). This can result in an infinite 10QP if the
condition for the HOLD is permanent and the line or terminal is inoperative. If a ter
minal is held by an operator command while in lock mode, or if lock is initiated while
the terminal is held, all lock responses will be sent as if the terminal were not held.
No other messages will be sent, however, until the terminal is released.

Name Operation Operands

[symbol) HOLD [mask) [,RELEASE) [,INTVL=integer)

[,CONNECT=~~:D~

Functiof1: Name of the macro.
Default: None. Specification optional.
Format: Must conform to the rules for assembler language symbols (see the symbol
entry in the Glossary).

Function: Specifies the five-byte bit configuration used to test the message error
record for the message (the message error record is described in Appendix B);
Default: None. Specification optional.
Format: Decimal or hexadecimal. If hexadecimal format is used, framing characters
must be specified. If X' , is used, leading zeros must be coded. If XL5' , is used,
leading zeros may be omitted.
Maximum: 16777215 or a hexadecimal field five bytes in length.
Notes: Omitting the operand or an all-zero mask causes unconditional execution.

If queuing is by line and a nonzero mask is specified, the mask must include the test
for the "terminal inoperative" bit of the message error record.

RELEASE

INTVL=integer

CONNECT= ~~D f

INITIATE Macro Instruction

Function: Specifies that transmission to the station is to be suspended until either a
RESMXMIT operator command is issued for the station, or until an MRELEASE macro
is issued for the station in an application program.
Default: None. Specification optional.
Format: RELEASE -
Notes: If this operand is omitted and INTVL= is also omitted, RELEASE is assumed.
If both RELEASE and INTVL= are coded, RELEASE prevails.

Function: Specifies the number of seconds that transmission to the station is to be
suspended.
Default: None. Specification optional.
Format: Decimal or hexadecimal. If hexadecimal format is used, framing X' , or
XLn' , characters must be specified.
Maximum: 65535 or a hexadecimal field two bytes in length.
Notes: At the end of the ~pecified period, transmission to the station is automatically
resumed. If this operand js omitted, RELEASE is assumed. If both RELEASE and
INTVL= are coded, RELEASE prevails.

Function: Specifies the type of logical connection to be made between the mask and
the message error record.
Default: CONNECT=OR
Format: AND or OR.
Notes: AND specifies that the macro is to be executed only if all of the bits specified
by mask are on in the message error record.

OR specifies that the macro is to be executed if any bit specified by mask is on in the
message error record.

NOTE: The TCAM checkpoint/restart facility permits restart of a TCAM system after
system closedown or failure. If the system fails or is closed down while the station is
intercepted, when the system is restarted by a warm start or continuation restart (de
fined in the discussion of the checkpoint/restart facility) the interception will still be
in effect, but the INTVL= operand will no longer apply; transmission will be suspended
until a RESMXMIT operator command or MRELEASE macro causes transmission to be
resumed.

The INITIATE macro:

• Sends message segments to their destination as soon as possible after they are re
ceived at the destination queue,

• Is optional in an inheader subgroup of an MH.

The INITIATE macro sends the segments of a message from a destination queue to the
destination as soon as possible after they are placed on the queue. (Normally, segments
are not sent to the destination until after the complete message has been placed on the
queue.) For information on when messages destined for stations on the same line are
sent out relative to each other, see Message Priority and Queuing in the chapter
Defining Terminal and Line Control Areas. The destination may be either a station
represented by a single or group entry in the terminal table, or an application program
represented by a process entry in the terminal table. This function may be specified
conditionally, based on the appearance of a specified character in the message header,
or it may be specified unconditionally.

When the first segment of a message processed by INITIATE arrives on a destination
queue, it is treated as if it were a complete message having the highest priority on the
queue. If the destination queue was created by a TERMINAL macro, as soon as a line
to the destination station is available, TCAM begins sending that portion of the mes
sage that has arrived at the destination queue. No other message may be sent on the
line until this entire message has been transmitted. If the destination queue was created
by a TPROCESS macro, then each message segment is sent to the application program
as soon as possible after it is enqueued.

Functional Macros 163

symbol

conchars

164

If a message is sent to a station for which messages are being held (see the description of
the HOLD macro), the message reverts to normal transmission mode rather than re
maining in initiate mode. The message is queued on the highest-priority queue and is
transmitted to its destination after the station is released for accepting messages. Once
the station is released from its hold condition, TCAM resumes transmitting message seg
ments to the destination 'via the initiate mode as described above.

The function provided by the INITIATE macro might be used as an early notifiction to
a destination station that a very long message is being received by the computer, handled
and routed to that destination.

If a message has multiple destination codes specified in the header, the INITIATE func
tion is performed only for the first destination. Sending to the remaining destinations
will occur only after the complete message has been placed on the destination queue.

If static deallocation of buffers is specified (i.e., if the PCI= operand of the line group
DCB macro is coded PCI=N, and the incoming message contains no BOB or ETB control
characters), the only effect of INITIATE is to give the message apriority higher than
that of any other message on the destination queue.

A message to be transmitted in initiate mode must contain no EOB, ETB, or ETX line
control characters, either when it is received by the computer or when it is sent from
the computer, otherwise, hardware errors may result.

Block checking is not performed for messages transmitted in initiate mode. Since
buffered terminals require this checking, the INITIATE macro should not be executed
for messages entered by buffered terminals.

Name Operation Operand

[symbol) INITIATE [COnChars['BLANK={~h~rr]

YES

Function: Name of the macro.
Default: None. Specification optional.
Format: Must conform to the rules for assembler language symbols (see the symbol
entry in the Glossary).

Function: Specifies the character or charllcter string that, if found in the header as the
next non blank field, causes execution of the function.
Default: None. Specification optional.
Format: One to eight nonblank characters in character or hexadecimal format. If
character format is used, the string may be unframed or framed with C' , or CLn' ,
characters. If hexadecimal format is used, the string must be framed with X' , or
XLn' , characters.
Notes: If this operand is onutted, the INITIATE function is performed uncondition
ally. If the next field in the header does not match this operand, the function is not
performed.

Function: Specifies whether EBCDIC blank characters are to be ignored when encoun
tered in the character string in the message header being compared to the string specified
by the conchars operand, or whether blanks are to be part of the header string when en
countered in it. If EBCDIC blanks are to be counted as part of the header string, this
operand also specifies whether some other hexadecimal character is to be ignored when
encountered in the header string.
Default: BLANK=YES

LOCK Macro Instruction

Format: YES, NO or char. char is a single character that may be specified in either
character or hexadecimal format. If character format is specified, it may be unframed
or framed with C' , or CLl' 'characters. If hexadecimal format is specified, it must
be framed with X' , or XLI' , characters.
Notes: This operand is meaningless unless the con chars operand is also specified.

YES specifies that the EBCDIC blank character (X'40') is to be ignored by this macro
whenever it is encountered in the header character string being checked against the
control character string specified by the con chars operand. For example, if
BLANK=YES is coded and an eight-byte field in the header is being checked by this
macro, a blank appearing in the fifth byte of the field will be ignored and the sixth
through ninth bytes will be considered to be the last four bytes of the field (assuming
that no blanks are coded in the sixth through ninth bytes).

NO specifies that the EBCDIC blank character is to be treated like any other character
when it is encountered by this macro in the header string being compared to the string
specified by con chars.

char specifies that the single character replacing char is to be ignored by this macro when
ever it is encountered in the header .string being compared to the string specified by the
con chars operand. That is, the macro automatically skips over the character without
performing a comparison and goes on to check the next character in the header. If
BLANK=char is coded and char is not the EBCDIC blank character, the EBCDIC blank
is not ignored by this macro when it is encountered in the header string, but is compared
to the character in the corresponding space in the con chars string, like any other char
acter.

Example:
INITIATE C'&'

causes the INITIATE function to be executed whenever the & character appears as the
next nonblank character in the message header.

NOTE: In the case of multisegment headers the INITIATE function must apply to the
first segment of the message. This is ensured by designing the message header so that
the control characters appear in the first segment.

The LOCK macro:

• Connects one station on a line to an application program to await the response to an
inquiry message entered by the station,

• Holds the connection for a single message or for an extended period,
• Is optional in an inheader subgroup (and not permitted in any other),
• Should not be used to specify extended lock mode with IBM 2740 Model 2 terminals,
• Is suggested for audio terminals.

LOCK keeps the connection between a station and an application program, as specified in
a message header or by a FORWARD macro, for a period of time not less than the dura
tion of a message and its response. A station connected in this manner is said to be in lock
mode. The application program to which a station is locked depends upon the destination
in the header or that specified by a FORWARD macro. If the destination is not an
application program, the station is not placed in lock mode.

NOTE: LOCK does not execute if the station that entered the message being handled is a
buffered station whose TERMINAL macro specified a buffer delay (via the BFDELA Y=
operand). In this case, a return code of X'00000004' is passed in register IS by TCAM's
lock routine.

For a description of the lock function, see TCAM's Inquiry/Rapid Response Facility in
the chapter Writing TCAM-Compatible Programs.

Functional Macros 165

symbol

{ EXTEND}
. MESSAGE

conchars

166

The LOCK macro has the following format:

Name Operation Operand

[symbol] LOCK 1 EXTEND ILconcharS[,BLANK= rES fl 1
MESSAGE NO

char

Function: Name of the macro.
Default: None. Specification optional.
Format: Must conform to the rules for assembler language symbols (see the symbol entry
in the Glossary).

Function: Specifies the type of lock mode required .
Default: MESSAGE
Format: EXTEND or MESSAGE. ,.
Notes: EXTEND specifies that the station transmitting the message is to be placed in
lock mode until it has no more messages to transmit or until an UNLOCK macro is
executed.

MESSAGE specifies that the station transmitting the message is to be placed in lock mode
for the duration of the message and its response, and that the line is to be freed once the
response has been sent.

Function: Specifies the character or character string that, if found in the header as the
next nonblank field, causes execution of the function.
Default: None. Specification optional.
Format: One to eight nonblank characters in character or hexadecimal format. If char
acter format is used, the string may be unframed or framed with C' , or CLn' , characters.
If hexadecimal format is used, the string must be framed with X' , or XLn' , characters.
Notes: If this operand is omitted, the LOCK function is performed unconditionally. If
the next field in the header does not match this operand, the function is not performed.

For a station in extended lock mode, control characters are meaningful only for the header
of the message being processed at the time the station is placed in lock mode. The LOCK
macro does not examine headers of messages entered by a station already in extended
lock mode for control characters.

Function: Specifies whether EBCDIC blank characters are to be ignored when encoun
tered in the character string in the message header which is being compared to the string
specified by the conchars operand, or whether blanks are to be part of the header string
when encountered in it. If EBCDIC blanks are to be counted as part of the header string,
this operand also specifies whether some other hexadecimal character is to be ignored
when encountered in the header string.
Default: BLANK=YES
Format: YES, NO or char. char is a single character that may be specified in either char
acter or hexadecimal format. If character format is specified, it may be unframed or
framed with C' , or CLI' , characters. If hexadecimal format is specified, it must be
framed with X' , or XL}' , characters.
Notes: This operand is ignored unless the conchars operand is also specified. YES speci
fies that the EBCDIC blank character (X'40') is to be ignored by this macro whenever it is
encountered in the header character string being checked against the control character
string specified by the conchars operand. For example, if BLANK=YES is coded and an
eight-byte field in the header is being checked by this macro, a blank appearing in the
fifth byte of the field will be ignored and the sixth through ninth bytes will be considered
to be the last four bytes of the field (assuming that no blanks are coded in the sixth
through ninth bytes).

NO specifies that the EBCDIC blank character is to be treated like any other character
when it is encountered by this macro in the header string being compared to the string
specified by conchars.

LOCOPT Macro Instruction

symbol

opfield

{(register) }
(~)

LOG Macro Instruction

char specifies that the single character replacing char is to be ignored by this macro when
ever it is encountered in the header string being compared to the string specified by the
con chars operand. That is, the macro automatically skips over the character without
performing a comparison and goes on to check the next character in the header. If
BLANK=char is coded and char is not the EBCDIC blank character the EBCDIC blank is
not ignored by this macro when it is encountered in the header string, but is compared to
the character in the corresponding space in the con chars string, like any other character.

NOTE: For a station in extended lock mode, control characters are meaningful only in
the header of the message being processed at the time that the station is placed in lock
mode. The LOCK macro does not examine the headers of messages entered by a station
already in extended lock mode for control characters.

The LOCOPT macro:

• Provides access to fields in the option table,
• Is optional in inheader, inbuffer, outheader, and outbuffer subgroups (and not per

mitted in any other).

LOCOPT enables the user to obtain the address of any option field for the appropriate
terminal table entry. The address of the desired field or a not-found indicator is placed in
a user-specified register. A user-written routine may then examine and modify the con
tents of the option field. If specified in the incoming group, LOCOPT accesses option
fields for the originating station; if specified in the outgoing group, LOCOPT accesses
option fields for the destination station. If specified in an MH handling messages to or
from an application progmm, LOCOPT locates the option fields in the process entry for
the queue to which the GET or READ is directed (if LOCOPT is issued in the outgoing
group), or the fields in the process entry for the queue to which the PUT or WRITE is
directed (if LOCOPT is issued in the incoming group). LOCOPT may be used only for
option fields for stations or application programs using the MH in which LOCOPT is
issued.

Name Operation Operand

[symbol] LOCOPT oPfield,{ (register)}
(15)

Function: Name of the macro.
Default: None. Specification optional.
Format: Must conform to the rules for assembler language symbols (see the symbol entry
in the Glossary).

Function: Specifies the name of the option field whose address is desired.
Default: None. This operand must be specified.
Format: Must be the name of an option field as defined by an OPTION macro.
Notes: If the option field is not found, LOCOPT does not execute and a X'04' return
code is set, unless the default register 15 is used for the address of the option field, in
which case register 15 contains a fullword of zeros on return.

Function: Specifies the register into which the address of the desired option field is to be
placed.
Default: (15).
Format: A decimal register 2 through 11 or 15, enclosed in parentheses.

The LOG macro:

• Enables the user to log complete messages or message segments,
• Is optional in any subgroup of an MH.

LOG enables the user to maintain a record of incoming or outgoing message traffic on a
sequential medium. Message segments or full messages, as determined by the placement of

Functional Macros 167

symbol

{dcbname}
typename

MSGEDIT Macro Instruction

168

LOG macros in an MH, are placed on an output device. The various types of logs, and the
corresponding MH sribgroups in which LOG appears are:

1. Incoming header segments only (inbeader)
2. All incoming segments (inbuffer)
3. Complete incoming messages (inmessage)
4. Outgoing header segments only (outheader)
5. All outgoing segments (outbuffer)
6. Complete outgoing mesSages (outmessage).

When LOG is specified in an inbuffer or outbuffer subgroup, segments are logged in the
sequence in which they are handled by the Message Handlers. In this case, segments of
different multi-segment messages handled at about the same time are likely to be inter
mixed on the logging medium. When segments are logged, their buffer prefixes are logged
with them. The 12-byte control area connected with each buffer unit is not logged.

LOG may appear at any point in an MH subgroup in which it is used. However, the results
of any alteration of segments or messages by macros preceding LOG in the subgroup will
appear in the log. For example, if LOG is preceded by DATETIME, a logged header
segment will contain the date or time, as specified in DATETIME, depending on the
location of the date and time in a multi-segment message.

LOG may be specified in any subgroup of an MH and may be used more than once in a
subgroup if desired. The message log may be maintained on any available output medium.
The user must supply, define, and open the message log data sets. For each log data set
used to log complete messages, a log type entry in the terminal table must be defined by a
LOGTYPE macro (this is not necessary if only segments are logged). For information on
specifying the message log data set, see Defining the MCP Data Sets.

NOTE: When logging segments after a FORWARD macro with multiple destinations, the
last character of the first destination is overlaid with an unprintable character. This byte
will be restored at the inmessage subgroup and thus will appear if messages are logged.

Name Operation Operand

[symbol] LOG {dcbname}
typename

Function: Name of the macro.
Default: None. Specification optional.
Format: Must conform to the rules for assembler language symbols (see the symbol entry
in the Glossary).

Function: Specifies the name of the data control block or the logtype entry used for
logging.
Default: None. This operand must be specified.
Format: dcbname or typename. dcbname is the name of the data control block for the
message log data set, and is used if the macro is specified in the inbeader, inbuffer, out
header or outbuffer subgroup. typename is the name of a logtype entry in the terminal
table, and is used if the macro is specified in the inmessage or outmessage subgroup.
Notes: If dcbname is specified and does not match the name of a valid data control
block, or if typename is specified and does not match the name of a log type entry in the
terminal table, the LOG macro does not execute, and a return code of X'04' is set in the
low-order byte of register 15.

The MSGEDIT macro:

• Inserts specified characters at specified locations in a message,
• Deletes specified characters from a message, and
• Replaces deleted characters with other characters, or contracts remaining data to fill

the gap caused by deletion,
• Dynamically allocates buffer units to contain data inserted in message segments,
• Is optional in inheader, inbuffer, outheader, and outbuffer subgroups, and may not be

coded in any other subgroup.

The MSGEDIT macro allows the user to edit incoming and outgoing messages from a
Message Handler. Each editing operation performed by MSGEDIT falls into one of two
categories: it is either an insertion or a removal.

An insert operation is one in which specified characters are inserted at a specified point in
a message, with no characters being deleted in the operation. The operands of MSGEDIT
allow characters to be inserted

• at a single point in a message;
• at a specified offset from the beginning of each message segment;
• whenever a certain character string appears in a message;
• after every n bytes of message date, where n is a number specified by the user.

The inserted data may consist of a single character, an ordinary character string, or a
string of identical characters. If the MSGEDIT macro is issued in an inheader or out
header subgroups, the insert operation is performed only for a single segment of a
message. This is usually the first segment, but may be a subsequent segment if the
message has a multiple-buffer header and the MSGEDIT macro is issued in a portion of
the subgroup that is processing header fields in the second or subsequent segments. (The
manner in which inheader and outheader subgroups are executed for multiple-buffer
headers is described in the chapter Designing the Message Handler.) If the MSGEDIT
macro is issued in an inbuffer or outbuffer subgroup, the insert operation is performed
for each segment in the message. The insert function might be used to add a new destina
tion name to the destination field in a message header, or to insert idle characters into an
outgoing message going to a termin·al with a printer requiring such characters to prevent
"printing on the fly" during a carriage-return operation. For other uses, see the examples
below.

A remove operation is one in which a specified character string is removed from a
message. The user may specify that the character string be replaced with another char
acter string, or that data remaining in the segment after removal be contracted to fill the
gap left by the deleted data. The user may remove

• a single character string;
• a specified character string whenever it appears;
• a specified number of bytes of data whenever a certain character string appears;
• the data located in a specified section of a buffer.

In any of the above cases, the user may replace the deJeted data with other data, or he
may specify that data following the deleted data in a message segment be moved left to
fill the gap left by the deleted data. If a substituted character string is longer or shorter
than the deleted character string, TeAM automatically spreads or contracts the data
remaining in the buffer to "fit" the new string; buffer units are allocated as needed to
accommodate the new data. If MSGEDIT is coded in an inheader or outheader subgroup,
data is removed from only a single header segment of a message. If MSGEDIT is coded in
an inbuffer or outbuffer subgroup, data is removed from all message segments. The
remove function might be used to delete a destination from the destination field in the
message header, to substitute one destination name for another in the header, to remove
unnecessary data from an outward-bound message, or to replace a specified character
with a logical-record delimiter that is recognized by application-program GET macros.

If the buffer containing a message segment is not long enough to accommodate addi
tional data inserted by a MSGEDIT macro, additional buffer units are automatically
added to the buffer as needed. Empty units at the end of a buffer are automatically
deallocated when the buffer is passed to an INMSG or OUTMSG macro; deallocated
units are returned to the available-unit queue.

Up to 31 separate insert and remove operations may be specified by issuing a single
MSGEDIT macro having up to 31 groups of positional operands. However, assembler
language restrictions on the length of a macro operand also apply.

The MSGEDIT macro operand field consists of from one to 31 groups of four operands
each, and a single keyword operand that is coded as the last operand of the macro. Each
group of positional operands is enclosed in parentheses, and each specifies a single insert
or remove operation (which may, however, entail multiple insertions or deletions). If the

MSGEDIT Macro 169

170

user wishes to perform many insert or remove operations on his messages, he may either
code a single MSGEDIT macro having many groups, or he may code several MSGEDIT
macros, each performing one or two insert or remove operations.

A single MSGEDIT macro with five groups executes more rapidly than would five
MSGEDIT macros, each having one of the groups. However, certain restrictions that
apply to a MSGEDIT macro having several groups are not applicable when several
MSGEDIT macros having one group each are used instead (these restrictions are discussed
below in the description of the MSGEDIT operands). Thus, the tradeoff to be considered
when deciding whether to specify one MSGEDIT macro with several groups of operands
or several MSGEDIT macros with one group each is between speed of execution and
flexibility.

Each group contains an AT operand, which specifies where, in a buffer, an insert or
remove operation is to begin. The order in which operations are performed depends upon
the relative locations of the character strings specified by the AT operand in each group.
The function specified by the group whose AT operand appears first in a particular
message segment is performed first for that segment, the function specified by the group
whose AT operand appears second is performed second, etc.

NOTE 1: If end-of-block checking is specified for the message handler, the MSGEDIT
macro may not be used in an incoming group to expand or contract the amount of data
in the buffer. If the MSGEDIT macro is used in this manner and an error occurs in trans
mission, the retransmission of the segment will result in duplicated data if the buffer is
contracted and lost data if it is expanded. This restriction does not apply if static alloca
tion and de allocation of buffers is specified for receive operations (by coding N as the
first suboperand of the PCI= operand of the line group DCB macro).

NOTE 2: When multiple groups of positional operands are coded for a MSGEDIT macro,
rather than multiple MSGEDIT macros each with a single group, data inserted by one
operation is not considered to be part of the message segment when another operation is
being performed. For example, if one group caused a B character to be inserted after
every A character in the message, and another group of the same MSGEDIT macro speci
fied that a C character be inserted after every B character in the message, no C character
would be inserted after a B character that was itself inserted as a result of an A character
being encountered in the message segment by the MSGEDIT macro.

Insertion or removal of data using a MSGEDIT macro always results in a movement of
data in the buffer. Even when a MSGEDIT macro specifies only a single remove operation
and the replacement string is equal in length to the character string being replaced, move
ment of data occurs (though in this case the result of the data movement would be that
the replacement string occupies the space originally occupied by the deleted string). As a
rule, when a MSGEDIT macro operates on any data in a buffer, all of the data
between the characters affected by the first insert or remove operation and the end of the
buffer is shifted once by means of MVC instructions issued internally by TCAM. No data
is shifted more than once per MSGEDIT macro, regardless of the number of operations
specified in the macro.

The MSGEDIT macro has certain limitations:

1. When issued in an inheader or outheader subgroup, MSGEDIT acts only upon one
header segment of messages having multiple-buffer headers. The segment acted upon is
the one being processed by the inheader or outheader subgroup at the time MSGEDIT
is executed. Moreover, a MSGEDIT macro issued in an inheader or outheader subgroup
assumes that the header occupies the entire segment being operated upon. Thus, if a -
MSGEDIT macro in an inheader subgroup specifies that NYC is to replace BOS when
ever the latter character string occurs in the header, and if the header ends midway
through the first message segment, BOS will be replaced if it appears in the second half
of the segment, even though it is outside of the header.

2. A character string to be removed may not extend across segments; the delimiters for
both ends of the character string must be located in the same buffer.

3. Any character string in an operand specified in character format rather than as hexa
decimal data cannot include a comma or a right parenthesis. If the character field
requires the use of these characters, the field must be specified in hexadecimal format.

- --------- -- - -_._-. - _._---- _._--------------

4. The user must beware of performing MSGEDIT functions that either add or remove
data to the left of the scan pointer while he is performing sequential processing of
header fields. Because the scan pointer points to a particular physical location in the
buffer, rather than to a particular character; addition of data to the left of the scan
pointer results in the shifting of the original scan pointer to the left. The following
example illustrates the possible problem resulting from improper placement of a
MSGEDIT macro in the message handler:

SETSCAN CoX'
ORIGIN 5
MSGEDIT «(I,C'INSERT',l)
FORWARD DEST=5,EOA=*

After the SETSCAN and the ORIGIN macros are executed, the buffer might look like
this:

prefix X TERMA TERMB TERMC * message data

• . t scan pom er

After the MSGEDIT macro executes, the buffer looks like this:

prefix INSERT X TERMA TERMB TERMC * message • • scan pomter

When the FORWARD macro executes, the origin (TERM A) will be considered to be the
first destination (TERMB). To avoid such problems, the user may follow these two guide
lines:

1. Perform as many of the MSGEDIT functions as possible in an INBUF or OUTBUF
subgroup rather than in INHDR or OUTHDR.

2. Perform all MSGEDIT functions that affect header fields either before all sequential
processing of header fields begins, or after all sequential processing of header field has
been completed. Examples are:
a. MSGEDIT ((I,C'INSERT',l»

SETSCAN CoX'
ORIGIN 5
FORWARD DEST=5,EOA=*

b. SETSCAN CoX'
ORIGIN 5
FORWARD DEST=5,EOA=*
MSGEDIT «I,C'INSERT',l)

NOTE: MSGEDIT adjusts the scan pointer backwards for the user for one special case.
This is a remove (or replace) function specifying the scan pointer itself as the TO
operand. Examples of this are:

MSGEDIT «R,,25,SCAN»

MSGEDIT «R,C'INSER T', 25 ,SCAN»

In these examples, if the remove or replace function results in the deletion of more bytes
than exist between the scan pointer and the end of data in the buffer after the macro
executed, the scan pointer would, if not adjusted, erroneously point beyond the end of
the data in the buffer and prevent any subsequent sequential processing. Therefore, in
these cases, the scan pointer is moved backward a distance equal to:

a. The length of the data removed, or
b. The length of data removed less the length of data inserted.

The MSGEDIT macro is far and away the most complex TCAM functional macro. The
user is cautioned that he may have to read the following description several times before
he understands how to code the macro. Several examples follow the macro description.

MSGEDIT Macro 171

symbol

«(sroupl),(poup2),. ••)

172

The MSGEDIT macro instruction has the following format:

Name Operation Operands

[symbol] MSGEDIT «group 1),(group2),···)tBLANK= ~ I]
Function: Specifies the name of the macro.
Default: None. Specification optional.
Format: Must conform to the rules for assembler language symbols (see the symbol entry
in the Glossary).

Function: Each group specifies a single insert or remove function.
Default: None. At least one group must be specified.
Format: Each group contains (function,data,AT,TO) operands. They must be provided
in the order shown, enclosed in parentheses, and separated from each other by a comma.
Maximum: A maximum of 31 groups may be coded.
Notes: Due to the complexity of the macro, the operands are explained individually
below.

The structure of each group of positional operands is as follows:

Function operand Data operand AT operand TO operand

g~.[A] [T] J
~. -

- ~
.-. -, characters , characters ., characters

(hexform,n) offset offset

DELIMIT
=er,optfield)

SCAN
CONTRACT (count)

i ~ ...,

, ...

Function: Specifies whether an insert or remove function is to be performed and, if a
remove function, whether the characters delimiting the beginning and the end of removal
are themselves to be removed.
Default: None. This operand must be specified.
Format: I, R, RA, RT, RAT or RTA.
Notes: I specifies that an insertion function is to be performed. The data specified in the
data operand is the data inserted in the message.

R specifies that a remove function is to be performed; any data specified by the AT
operand and the TO operand is to be removed from the message and replaced with the
data specified by the data operand. If no data is specified by the AT operand or by the
TO operand, MSGEDIT removes one byte of data beginning at the location currently
designated by the scan pointer. If no data is specified by the data operand, data remaining
in a buffer after a deletion is contracted to fill the space left by the deleted data.

A specifies that removal is to begin with the first character of the character string speci
fied in the AT operand; ill this case, if replacement data is specified in the data operand,
the first byte of replacement data is inserted in the space occupied originally by the first
byte of the character string specified by the AT operand. If A is omitted, removal and
replacement begin with the character immediately following the last character in the
string specified in the AT operand. If A is coded in a group, a character string should be
coded as the AT operand; otherwise, MSGEDIT removes one byte of data beginning at
the location currently designated by the scan pointer and proceeds to the next group, if
any, to accomplish the next insert or remove function.

T specifies that removal is to end with the last character of the string specified in the TO
operand; if T is not coded, the character immediately preceding the first character of the
string specified by the TO operand is the last character removed. If T is coded in a group,
a character string should be specified as the TO operand; otherwise, MSGEDIT removes
one byte of data beginning at the location currently designated by the scan pointer and
proceeds to the next group, if any, to accomplish the next insert or remove function.

AT operand

ch.actelS ~ offset
(integer,opfield)

Function: If this is an insert function, specifies the data to be inserted in the message. If
this is a remove function, specifies either the data to replace the characters removed from
the message or specifies that the data remaining in a buffer after deletion is to be con
tracted to fill the space originally occupied by the deleted data.
Default: CONTRACT
Format: characters, (hexform,n), DELIMIT or CONTRACT.

characters may be one to eight nonblank characters in character or hexadecimal format.
If character format is used, framing C' , or CLn' , characters must be used. If hexadecimal
format is used, framing X' , or XLn' , characters must be specified.

(hexform,n) must be coded within parentheses. hexform is a single character in hexa
decimal or character format surrounded by framing X' , or C' , characters. n is a decimal
integer and must not be framed.
Maximum: n may have a maximum length of the length of one buffer unit.
Notes: characters in an insert operation specifies the character string to be inserted into
the message. In a remove operation, characters specifies the character string that is to
replace the deleted data. If messages are to be translated, inserted characters should be in
EBCDIC; if they are not to be translated, inserted characters should be in terminal trans
mission code.

(hexform,n) specifies that the single character represented by hexform is to be inserted
the number of times indicated by n. The inserted characters will be contiguous; if this is a
remove operation, they will replace the deleted data. This operand may be used to insert
idle characters in outgoing messages.

DELIMIT is valid only if the function operand specifies a remove function. DELIMIT
specifies that the character in the RECDEL= operand of the TPROCESS macro whose
name is entered as this message's destination is to replace the character string delimited
by the AT and TO operands. This character is recognized by the application program's
GET macro as the delimiter of a variable-length record. The MSGEDIT macro in which
this operand is coded is normally located in the outbuffer subgroup of the MH for the
app!ication program or inbuffer subgroup for the line over which the message is received.
If MSGEDIT is located in an inheader subgroup, only a single header segment is scanned
for the character to be replaced. The destination queue must be identified by means of a
FORWARD macro before the MSGEDIT macro is issued. If the destination of this
message is not an application program, the MSGEDIT group containing DELIMIT does
not execute.

CONTRACT is valid only if the function operand specifies a remove function. CON
TRACT specifies that after the appropriate data has been deleted from a message seg
ment, succeeding characters in the buffer are to be moved to overlay deleted characters.
If contraction results in one or more empty units at the <lnd of the buffer, these are
released when the segment leaves the incoming or outgoing group of the MH.

If the function operand specifies an insert function and if CONTRACT is coded (or if the
data operand is omitted), this MSGEDIT macro does not execute, and control passes to
the next instruction in the MH.

Function: If an insert function is being performed, specifies the location at which the
insertion is to be made. If a remove function is being performed, specifies the location of
the beginning of the string to be removed.
Default: SCAN
Format: characters, offset, (integer,opfield), or SCAN.

characters specifies one to eight nonblank characters in either character or hexadecimal
format. If character format is used, the string must be framed with C' , or CLn' , char
acters. If hexadecimal format is used, the string must be framed with X' , or XLn' ,
characters.

MSGEDIT Macro 173

174

offset is a decimal integer specified without framing characters.

(integer,opfield) must be coded within framing parentheses. integer may be specified
either in decimal or hexadecimal format. If hexadecimal format is used, the value must be
coded within framing X' , or XLn' , characters.opfield is the name of a ha1fword option
field defined by an OPTION macro.
Maximum: For offset, 65535. For integer, 65535, or a hexadecimal field two bytes in
length.
Notes: If this is an insert function, characters specifies a string, immediately following
which the data specified in the data operand is to be inserted. If the MSGEDIT macro is
included in an inheader or outheader subgroup, the specified data is inserted each time
this string is encountered in the message header. If the MSGBDIT macro is issued in an
inbuffer or out buffer subgroup, the specified data is inserted each time this string is
encountered anywhere in the message.

If this is a remove function, characters specifies a string that delimits the beginning of the
data to be removed. If the A suboperand of the function operand is included, removal
begins with the first character of this string; if A is not included, removal begins with the
character immediately following the last character of this string. If A is coded in the
function operand and the TO operand is coded (0) or is omitted, only the string specified
in the AT operand is removed. If the MSGBDIT macro is included in an inheader or out
header subgroup, removal occurs each time the character string is encountered in the
message header. If the macro is issued in an inbuffer or outbuffer subgroup, removal
occurs each time the character string is encountered in the message.

If character is coded, either characters or (count) should be specified as the TO operand.
If SCAN is specified as the TO operand, TCAM a~umes a count of zero has been speci
fied for TO. If an offset is specified for the TO operand, TCAM assumes that the offset is
a count.

If characters is coded, the entire string must be located within a single buffer. If more
than one group of operands is included in this macro, the AT operand for each group
must be specified as characters, and each character string specified as an AT operand must
begin with a different character.

If this is an insert function, offset specifies the number of bytes beyond the buffer prefix
immediately following which the first character specified in the data operand is to be
inserted. If this is a remove function, offset specifies the number of bytes beyond the
prefix immediately following which deletion of data is to begin.

If the MSGBDIT macro is specified in an inheader or outheader subgroup, offset applies
to a single header segment only, and insertion or deletion of data occurs only once. If the
macro is coded in an inbuffer or out buffer subgroup, data is inserted or deleted at the
specified offset in every segment of the message. If this is an insert operation and an
offset of 2 is specified, the first character inserted will immediately follow the contents of
the second byte beyond the buffer prefix. If this is a remove function and an offset of 2
is specified, the first byte whose contents are removed from a segment will be the third
byte beyond the buffer prefix.

(integer,opfield) specifies that the data coded for the data operand is to be inserted after
every number of bytes specified by integer. If integer is 20, for instance, the data speci
fied in the data operand is inserted after every 20 bytes of message. Insertion will occur in
both the header and text. opfield is the name of an option field assigned to the origin (if
MSGBDIT is coded in the incoming group) or to the destination (if MSGBDIT is coded in
the outgoing group). The option field must be initialized via the OPDATA= operand of
the TBRMINAL or TPROCBSS macro (it may be set to a halfword of zero).

(integer,opfield) coded as the AT operand has the following restrictions:

• I must be coded as the function operand.
• This MSGEDIT macro may be coded in an inbuffer or outbuffer subgroup only.
• Only one group of positional operands may be specified.
• characters or (hexform,n) must be specified for the data operand.

SCAN specifies that insertion or deletion is to begin with the character immediately
following the byte at which the scan pointer is currently pointing (see the description of
the scan pointer in Designing the Message Handler). This operand may be specified only
when the macro is issued in an inheader or outheader subgroup.

[~':c,:!] offset
SCAN

~unt)
Function: For remove functions only, specifies the end of the character string to be
deleted.
Default: (0)
Format: characters, offset, SCAN, (count) or (0).

characters specifies a one to eight byte field in either character or hexadecimal format. If
character format is used, framing C' , or CLn' , characters must be specified. If hexa
decimal format is used, framing X' , or XLn' , characters must be specified.

offset specifies a decimal integer, coded without framing characters. (count) must be
coded within its framing parentheses, and is a decimal integer specified without framing
characters.
Maximum: Both offset and (count) have a maximum value of 65535.
Notes: characters indicates the location of the last character to be deleted. If the T
sub operand of the function operand is coded, deletion ends with the last character of the
string specified here; otherwise, deletion ends with the character immediately preceding
the first character of the string. The entire string must be located in the buffer that con
tains the delimiter specified by the AT operand, since deletion must begin and end in the
same buffer. If both the AT and the TO operand specify character strings, TCAM assumes
that the first byte of the TO string is to the right of the last byte of the AT string.

offset specifies an offset from the beginning of the data in a message segment; this offset
defines the end of the string to be deleted in this operation. If the offset is 20, for
instance, the character occupying the twentieth byte from the beginning of data in the
buffer is the last character deleted. The offset must specify a byte that is in the same
buffer as, and either in the same position as or to the right of the first byte of data
removed (as specified by the AT operand); each deletion must begin and end in the same
buffer. If the offset specified by the TO operand is identical with the offset specified by
the AT operand, the single character located at this offset is removed. If the offset is
beyond the end of the buffer, data will be deleted to the end of the buffer.

If this MSGEDIT macro is specified in an inheader or outheader subgroup, offset applies
to a single header segment only and deletion occurs only once. If the macro is coded in an
inbuffer or outbuffer subgroup, data is deleted from each segment.

SCAN specifies that the character indicated by the current position of the scan pointer is
to be the last character deleted in this remove operation. This operand may be coded only
in a MSGEDIT macro issued in an inheader or outheader subgroup. If SCAN is coded for
both the AT and the TO operand, and R is specified in the function operand, the single
character located at the current position of the scan pointer is deleted.

(count) and its default value (0) specify the number of bytes of data to be deleted,
starting with the byte immediately following the AT operand. If the AT delimiter is a
character string and if A is coded in the function operand, the amount of data removed is
equal to the sum of the number of characters in the AT delimiter string plus the number
of bytes specified by count. If the integer specified by count is greater than the number
of bytes between the AT delimiter and the end of the buffer, all characters between the
AT delimiter and the end of the buffer are deleted. A count of zero indicates that no data
is to be deleted (except for the characters in the AT delimiter if A is coded in the
function operand); if the TO operand is omitted, a count of 0 is assumed. If A is coded in
the function operand and a string is coded in the AT operand, the string is removed each
time it is encountered if (0) is coded or if no TO operand is specified.

Function: This operand specifies whether EBCDIC blank characters are to be ignored
when encountered in searching the message for a field, or whether blanks are to be con
sidered part of the field when encountered. If EBCDIC blanks are to be counted when
found, this operand also specifies whether some other hexadecimal character is to be
ignored when encountered in searching the message for a field.
Default: BLANK=YES.

MSGEDIT Macro 175

176

Format: YES, NO or char. char is a single character that may be specified in either char
acter or hexadecimal format. If character format is specified, it may be unframed or
framed with C' , or CLl' , characters. If hexadecimal format is specified, it must be
framed with X' , or XLI' , characters.
Notes: YES specifies that the EBCDIC blank character (X'40') is to be ignored by this
macro whenever it is encountered in a message. For example, if BLANK=YES is coded
and an eight-byte field is being acted upon by this macro, a blank appearing in the fifth
will be ignored and the sixth through ninth bytes will be considered to be the last four
bytes of the field (assuming that no blanks are coded in the sixth through ninth bytes).

NO specifies that the EBCDIC blank character is to be treated like any other character
when it is encountered by this macro in the message.

char specifies that the single character replacing char is to be ignored by this macro when
ever it is encountered in the header. That is, the macro automatically skips over the char
acter without checking it. If BLANK=char is coded and char is not the EBCDIC blank,
the EBCDIC blank is treated like any other character.

Restriction 1: Deletion must always begin and end in the same buffer. The entire char
acter string to be deleted must reside in a single buffer.

Restriction 2: With one exception (when both the AT and the TO operands are coded as
SCAN), the first byte of a string of data to be removed, as determined by the AT operand,
must be to the left of, or in the same position as, the last byte of the string of data to be
removed, as determined by the TO operand. See the examples following,

NOTE: The first character in a character string to be deleted, as specified by the AT
operand, must not be to the right of the last character of the character string, as specified
by the TO operand. If both operands specify the same byte, that byte only is removed.
As an example, consider the following initial portion of a buffer, with the scan pointer
pointing at D:

!NIYICIDIRIAILI~
2S

be inning SCAN
of data PTR

A MSGEDIT macro coded

MSGEDIT «R,CL3'BOS' ,SCAN,4»

data

would result in the character D being replaced with the string BOS in the buffer.

A MSGEDIT macro coded

MSGEDIT «R,CL3'BOS' ,CLl'D' ,CL3'RAL'»

would result in BOS inserted after D; this macro says to remove the character between D
and R and replace it with BOS. Since there is no character between D and R, none is
removed, but BOS is still inserted.

Examples:
MSGEDIT is a complex macro, capable of performing many functions. In this section,
some of the more common functions of MSGEDIT are discussed and illustrated with
examples.

Insertion of a single character string after a specified field in a header buffer: The
following MSGEDIT macro might be coded in an inheader subgroup to add the destina
tion RAL to the list of destinations specified in the message header. Assume that the last
destination specified in the header is NYC, and that DEST=(3) is coded in the
FORWARD macro.

EDIT! MSGEDIT «I,CL3'RAL' ,CL3'NYC'»

Note that only the function, data, and AT operands are coded for this macro; the TO
operand must not be coded for an insert operation.

Example 2:
Insertion of a character string after every 50 bytes of message data: The following
MSGEDIT macro might be coded in the outbuffer subgroup of a Message Handler
assigned to an application program to cause the EBCDIC Z character (specified as a
record delimiter by the RECDEL= operand of the TPROCESS macro creating the process
entry specified as the destination of the message) to be inserted after every 50 bytes of
message data.

EDIT2 MSGEDIT «(I,C'Z',(50,EDITOPT)))

Note that no TO operand is coded and that only one group is specified. EDITOPT is the
name of a halfword option field created by an OPTION macro and initialized with zeros
by the OPDATA= operand of the TPROCESS macro creating the process entry specified
as the destination of this message.

Example 3:
Replacement of one character string in a message with another character string: The
following MSGEDIT macro is coded in the inheader subgroup; it causes the character
string BOS to be replaced with the character string OMAHA wherever the former string
appears in the first segment of the message (remember, however, that the entire character
string BOS must occur in the segment in order for MSGEDIT to operate on it). If a buffer
is not long enough to accommodate the longer character string, TCAM will dynamically
allocate extra units to the buffer as needed. This allocation is automatic.

EDIT3 MSGEDIT «RA,CL5'OMAHA' ,CL3'BOS'»

Note that no TO operand is coded. The A in the function operand specifies that the AT
character string is to be deleted and that the 0 in OMAHA is to be positioned at the
location occupied by the Bin BOS. If the TO operand had been coded BOS, all data in
the segment between the first BOS and a second BOS would be deleted. If the segment
contained no second BOS, the remove operation would not take place; the macro would
not execute, and control would pass to the next macro.

Example 4:
Insertion and Replacement: A single MSGEDIT macro might be issued in an inheader
subgroup to accomplish the two editing functions described above. This macro would
cause RAL to be inserted after each NYC in the first segment, and would also cause BOS
to be replaced with OMAHA each time the former character string appeared in the first
segment.

EDIT4 MSGEDIT «I,CL3'RAL' ,CL3'NYC'),
(RA,CL5'OMAHA' ,CL3'BOS'»

Example 5:
Deletion and Contraction: The following MSGEDIT macro might be issued in the
inheader or outheader subgroup. It causes the ten bytes immediately following the
current position of the scan pointer to be deleted; all data following the deleted ten bytes
in the first message segment is shifted to the left ten spaces to fill in the space occupied
by the deleted data. The shift may result in an empty unit at the end of this buffer;
empty units are dynamically deallocated and returned to the available unit queue when
the buffer leaves the MH group.

EDIT5 MSGEDIT «R",(lO)))

Note that the data and AT operands were not coded, since their default values are CON
TRACT and SCAN, respectively. Figure 18 illustrates how a single buffer containing an
entire message might look before and after this macro was executed. Assume that the
units are 64 bytes long, that the buffer consists of two units, and that the second unit
contains only six bytes of data before the MSGEDIT macro is executed. Assume also that
all of the ten bytes immediately following the position of the scan pointer contain mean
ingful data (i.e., none of the bytes contain blanks).

Note that after the deletion was made, all data following the deleted characters was
moved ten bytes to the left; as a result the second unit contains no meaningful data after
the remove operation.

MSGEDIT Macro 177

Buffer before 10-byte deletion of data:

Unit'l

12 byte
Control area - ----30 byte prefix -----~ 14 bytes of data

12 byte
L--_t- control area

• Scan Pointer

~--------- 54 "empty" bytes -------------.1

Buffer after deletion and contraction of data:

12 byte
~ control area

178

Unit'l

30 byte prefix N Y C B 0 S _14 bytes data_ 3 5 , * * * r- 4 empty bytes_

12 byte
control area

• Scan Pointer
Unit '2

60 "empty" bytes

Figure 18. Deletion of Data from a Message Segment, followed by Contraction of the Segment:
KEYLEN=60 and BUFSIZE=120.

Example 6:
Insertion of Idle Characters: The following macro, when coded in an inbuffer or out
buffer subgroup, causes 13 EBCDIC idle characters (X' 17') to be inserted whenever a
period is encountered in a message.

EDIT6 MSGEDIT «(I,(X'17', l3),CLl '.'))

Example 7:
Insertion of a Record Delimiter: The following macro, when coded in an inbuffer or
outbuffer subgroup, causes the logical record delimiter X to be substituted for the char
acter D wherever the latter character appears in a message. The X delimiting character,
which would be coded in the RECDEL= operand of a TPROCESS macro, is considered
by a GET command issued by an application program to be the delimiter of a logical
record.

EDIT7 MSGEDIT «RA,DELIMIT,CLl'D'))

Example 8:
Miscellaneous Examples: The following MSGEDIT macro, when coded in an inbuffer or
outbuffer subgroup, causes the character string OUT and the ten characters immediately
following OUT to be removed from a message segment wherever OUT appears in a seg
ment. Data following the 13 deleted characters is moved to the left to fill the gap caused
by the deletion. EBCDIC blanks are counted as characters in this example.

EDIT8 MSGEDIT «RA,CONTRACT,CL3'OUT',(1 O))),BLANK=NO

The following MSGEDIT macro, when coded in an inbuffer or outbuffer subgroup causes
the data between every R character and E character to be replaced with the character
string EPLAC. If the data being deleted occupies less space than the replacement string,
the data in the buffer is automatically spread out to make room for the insertion, and
another buffer unit is added to the buffer if necessary. If the data being deleted occupies
more space than the replacement string, data to the right of the replacement string is
automatically moved to the left to fill the gap.

MSGFORM Macro Instruction

EDlT9 MSGEDIT «R,CL5'EPLAC' ,CLl 'R',CLl 'E'»

The following MSGEDIT macro, coded in an inbuffer or outbuffer subgroup, causes the
characters occupying the tenth through twentieth bytes of each buffer to be deleted, and
the remaining data to be shifted left to fill the gap caused by deletion.

EDITlO MSGEDIT «R,,9,20»

The following MSGEDIT macro, coded in an inheader or outheader subgroup, causes the
character occupying the byte at which the scan pointer is currently pointing to be
removed; subsequent data in the segment is shifted one byte left to fill the gap. Note
the defaults.

EDlTlI MSGEDIT «R",SCAN»

The following MSGEDIT macro, coded in an out buffer subgroup, causes three EBCDIC
SYN control symbols (X'32') to be inserted in each segment, beginning at the thirty-first
byte.

EDIT 1 2 MSGEDIT «(I,(X'32',3)3I)

The following MSGEDIT macro, coded in an inbuffer or outbuffer subgroup causes the
EBCDIC blank character (X'40') to be replaced by 13 EBCDIC idle characters (X'I7')
wherever a blank occurs (BLANK=NO must be specified for this operation). In addition,
the character string DOLLARS is replaced with the character $ wherever it appears, and
two blanks are inserted after each period in the message.

EDIT I 3 MSGEDIT «RA,(XLl'17',13),CL1' '),
(RA,CL1'$',CL7'DOLLARS'),
(I,CL2' ',CLl'.'»,BLANK=NO

NOTE: When multiple operations are performed by a single MSGEDIT macro, the data
inserted by insert operations is not considered when remove operations are performed.

Thus in the above example, the two blanks inserted after each period would not be re
placed by 13 idle characters each.

The MSGFORM macro

• Puts line control characters into outgoing messages,
• Permits specification and overriding of blocking factors for outgoing messages,
• Indicates whether an outgoing message is to be transmitted in transparent or non

transparent mode,
• May be specified in the outheader subgroup only.

The MSGFORM macro is optional; if specified, it may be included in an outheader sub
group only. The MSGFORM macro should be coded only in the outheader subgroup of a
Message Handler assigned to a line group, and not in the outheader subgroup of the MH
for an application program. The MSGFORM macro permits the user to divide his out
going messages into logical blocks of data. The user specifies blocking factors in the
operands of the TERMINAL or MSGFORM macro; the blocking factors specified in
MSGFORM override those specified in TERMINAL. If MSGFORM is coded, TCAM
inserts appropriate blocking control characters into outgoing messages at the beginning
and end of each message and at the locations indicated by the TERMINAL or MSGFORM
operands. No buffer space need be reserved for the characters inserted by MSGFORM.
MSGFORM inserts EOA, ETX, and EOT characters where needed. These and the
blocking characters are not inserted at the time MSGFORM is executed; rather, the char
acters are inserted after all executable macros in the outgoing group have been executed.
For IBM 2260 (Remote), IBM 2265, and BSC stations, STX characters are also inserted.
For more information on the line-control scheme utilized by TCAM, see Defining
Terminal and Line Control Areas.

Functional Macros 179

symbol

BLOCK=integer

SUBBLCK=integer

SENDTRP= l~~l

MSGGEN Macro Instruction

180

The MSGFORM macro has the following format:

Name Operation Operands

[symbol] MSGFORM [BLOCK=integer] [,SUBBLCK=integer]

Function: Name of the macro.
Default: None. Specification optional.

[,SENDTRP= l~~S f)

Format: Must conform to the rules for assembler language symbols (see symbol entry in
the Glossary).

Function: Specifies the number of bytes in each block of data for outgoing messages in
transparent or nontransparent mode.
Default: None. Specification optional.
Format: Decimal or hexadecimal. If hexadecimal format is used, framing X' , or XLn' ,
characters must be specified.
Maximum: 65535 or a hexadecimal field two bytes in length.
Notes: If this operand is not specified, the value used is that specified by the blocksize
sub operand of the NTBLKSZ= operand of the TERMINAL macro, or by the TBLKSZ=
operand of the TERMINAL macro for the destination station.

TCAM inserts an EOB or an ETB line control character after each number of bytes speci
fied by integer.

Function: Specifies the number of bytes per ITB character for outgoing messages in
nontransparent mode to BSC stations.
Default: None. Specification optional.
Format: Decimal or hexadecimal. If hexadecimal format is used, framing X' , or XLI' ,
characters must be specified.
Maximum: 255 or a hexadecimal field one byte in length.
Notes: If this operand is not specified, the value used is that specified by the
subblocksize operand of the NTBLKSZ= operand of the TERMINAL macro for the
destination station.

TCAM inserts an ITB control character after each number of bytes specified by integer.

Function: Specifies whether this message is to be sent out in transparent mode.
Default: SENDTRP=NO
Format: YES or NO.
Notes: YES specifies that this message is sent out in transparent mode. SENDTRP=YES
should not be coded unless the message is being sent to a BSC station.

NO specifies that the message is sent out in nontransparent mode.

The MSGGEN macro:

• Generates an unqueued message,
• Is optional in inmessage and outmessage subgroups,
• May be issued more than once in a subgroup.

MSGGEN generates a message if the errors specified by the error mask operand match the
bits set in the message error record (see Appendix B for a description of the message error
record). If a zero mask is specified, the message is generated unconditionally. The gener
ated message bypasses all normal functions, such as MH processing, queuing, logging, and
buffer requesting. The MSGGEN macro informs the user of an error more rapidly than
does the ERRORMSG macro, but does not return the header of the message in error, as
the latter macro does.

If MSGGEN is specified in an inmessage subgroup, the generated message, as specified by
an operand, is sent to the originating station; if specified in an out message subgroup, the
message is sent to the destination station. MSGGEN may be specified more than once
within a subgroup.

symbol

mask

jmessage t
1 fieldname ~

Name Operation Operand

[symbol] MSGGEN [mask] 'l message t
fieldname

[,CONNECT=l~Dt]

[,CODE=l~~lenamep

Function: Name of the macro.
Default: None. Specification optional.
Format: Must conform to the rules for assembler language symbols (see the symbol entry
in the Glossary).

Function: Specifies the five-byte bit configuration used to test the message error record
for the message (see the description of the message error record in Appendix B).
Default: None. Specification optional.
Format: Decimal or hexadecimal. If hexadecimal format is used, framing characters must
be specified. If X' , is used, leading zeros must be coded. If XLS' , is used, leading zeros
may be omitted.
Maximum: 1677721 S or a hexadecimal field five bytes in length.
Notes: Omitting the operand, or an all-zero mask, causes unconditional execution.

Function: Specifies the message or the location of the message to be sent to the origi
nating or destination station, depending on whether MSGGEN is issued in an inmessage
or outmessage subgroup respectively.
Default: None. This operand must be specified.
Format: message or fieldname. message is the actual message to be sent, and has a maxi
mum length of 24 bytes. It must be framed, either by C' " CLn' " X' " or XLn' , framing
characters. fieldname is the symbolic name of the field containing the message. It must
not be specified with framing characters.
Notes: The message may be specified in EBCDIC and translated as specified by the
CODE= operand, or it may be specified in line code if no translation is to occur.

The field referred to by fieldname must have as its first byte the hexadecimal count equal
to the number of bytes in the rest of the field. The maximum number of bytes in the
message portion of the field is 24.

All line control characters, including the EOT, must be coded by the user in his message,
with the following exceptions:

• TCAM provides the EOA line-control characters for the IBM 1030, IBM 10S0, IBM
1060, IBM 2740, lISA and 83B3 stations .

• TCAM provides an EOT character for BSC stations.

If the user inserts block-checking characters (i.e., EOB) in MSGGEN messages directed to
a start-stop station, no checking occurs. For BSC stations, the presence of block-checking
characters will cause checks to be made. Messages sent out by MSGGEN are never trans
mitted in transparent mode.

Function: Specifies the type of logical connection to be made between the mask and the
message error record.
Default: CONNECT=OR
Format: AND or OR.
Notes: AND specifies that the macro is to be executed only if all of the bits specified by
mask are on in the message error record.

Functional Macros 181

MSGLlMIT Macro Instruction

symbol

182

OR specifies that the macro is to be executed if any bit specified by mask is on in the
message error record.

Function: Specifies the type of translation for the generated message.
Default: None. Specification optional.
Format: tablename or NO. tablename is specified as described for the TRANS= operand
of the line group DCB macro. Register notation may not be used. The user may devise
and specify his own translation table as described for the CODE macro.

NO specifies that the message is not to be translated. If this operand is omitted, the
message is translated using the translation table specified in the line group DCB for the
line. If this operand is omitted and no translation table is specified in the line group DCB
macro, no translation occurs.

A message generated by MSGGEN may not be directed to a distribution list or to an
application program when specified in an inmessage subgroup.
Note: A premature disconnection on a switched line will prevent the message from
being returned to the originating station; the message is lost.

The MSGLIMIT macro:

• Limits the number of messages to or from a station during a single transmission
sequence,

• Is effective only when used with a nonswitched line,
• Is optional in the inheader and outheader subgroups of an MH.

MSGLIMIT limits the number of messages that can be transmitted to or accepted from a
single station on a nonswitched line following a positive response to invitation or selec
tion. If coded in an inheader subgroup, MSGLIMIT limits the number of messages entered
by a station or application program during a single transmission sequence; if coded in an
outheader subgroup, MSGLIMIT limits the number of messages sent to a station or
application program during a single transmission sequence. For instance, for stations that
are polled, MSGLIMIT in the inheader subgroup causes the current station to cease to be
polled once the specified maximum number of messages is reached; the next entry is then
polled. If no limit is set for polled stations, each station is polled until it has no more
messages to enter (negative response).

MSGLIMIT has no effect when used with a switched line. The MSGLIMIT macro is
optional in inheader and outheader subgroups. Its use is suggested for IBM 2260 and
2265 terminals; the outheader subgroup for these terminals should include a MSGLIMIT
macro specifying a limit of one message in inquiry applications (in order to ensure that a
response message is not erased before it can be read). For a description of the use of
MSGLIMIT with a contention terminal, see Transmission Priority for Nonswitched Con
tention Stations in the chapter Terminal and Line Control Area Definition.

NOTE: If a MSGTYPE macro or user code is used to cause MSGLIMIT to be executed
only for certain types of messages, only those subsequent messages examined by the same
MSGLIMIT macro will be counted when the limit for a station is being determined.

Name Operation Operand

[symbol] MSGLIMIT ~ integer ~
opfield

Function: Name of the macro.
Default: None. Specification optional.
Format: Must conform to the rules for assembler language symbols (see the symbol entry
in the Glossary).

jinteger t
~opfield ~

MSGTYPE Macro Instruction

symbol

Function: Specifies the number of messages or the location of the number of messages
that the user wishes to transmit to or receive from each terminal on the line.
Default: None. This operand must be specified.
Format: integer or opfield. integer may be specified either in decimal or hexadecimal
format. If hexadecimal format is specified, framing X' , or XLn' , characters must be
coded. opfield must be the same as the name of a one-byte option field defined by an
OPTION macro.
Maximum: For integer, 255 or a hexadecimal field one byte in length.
Notes: If integer is specified, all stations processed by this MH are limited to the same
MSGLIMIT value.

If opfield is specified, the option field contains the limit of consecutive message trans
missions that is allowed to or from a station. Use of this operand allows the message limit
specification to be different for each station. If the option field cannot be found,
MSGLIMIT does not execute and a return code of X'04' is set in the low-order byte of
register IS.

The MSGTYPE macro:

• Controls the path of a header through an MH,
• Is optional in inheader and outheader subgroups (and not permitted in any other

subgroup),
• May be used more than once in a subgroup.

MSGTYPE enables the user to categorize incoming or outgoing messages into two or
more message types, each of which he processes in a different manner. The next nonblank
character or character string in a header buffer (after the current setting of the scan
pointer) is compared with a character or character string specified by the operand of
MSGTYPE. If the two characters or character strings are identical, the instructions be
tween this MSGTYPE macro and the next MSGTYPE or (if this is the last MSGTYPE
macro in the subgroup) the next delimiter macro are executed. If the two characters or
character strings are not identical, those instructions are not executed (the scan pointer is
reset to its position prior to the comparison). Instructions between a MSGTYPE macro
with no operand and the next delimiter are executed for all message headers whose char
acter string has not matched the operand specified in a previous MSGTYPE macro. (The
MSGTYPE macro with no operand should be the last MSGTYPE macro issued in the
subgroup.) These instructions are bypassed if the message was previously handled by a
MSGTYPE macro with a message-type character operand.

Use of MSGTYPE is optional. Any number of MSGTYPE macros may be issued within a
subgroup, provided that they all examine the same position in the buffer for the message
type characters. Only one field in a header per inheader or outheader subgroup may
contain message-type characters, and only one sequence of code beginning with a
MSGTYPE macro is executed in an inheader or out header subgroup for anyone incoming
or outgoing message. MSGTYPE may be used only within inheader and outheader
subgroups.

The use of MSGTYPE is discussed in the Variable Processing within a Message Handler
section of this chapter.

Name Operation Operand

[symbol] MSGTYPE [conchars[,BLANK=l~~!]]

Function: Name of macro.
Default: None. Specification optional.
Format: Must conform to the rules for assembler language symbols (see the symbol
entry in the Glossary).

Functional Macros 183

conchars

BLANK=l~~S~
char)

184

Function: Specifies the character or character string to be compared with the message
type field in the message header.
Default: None. Specification optional.
Format: One to eight nonblank character or hexadecimal format. If character format is
used, the string may be unframed or framed with C' , or CLn' , characters. If hexadecimal
format is used, the string must be framed with X' , or XLn' , characters.
Notes: If the con chars field matches the field found in the message, all macro instruc
tions between this MSGTYPE macro and the next MSGTYPE macro (or the next de
limiter, if there is not another MSGTYPE) are executed. If the control characters do not
match the header field, the MSGTYPE macro does not execute and control passes to the
next MSGTYPE macro in the subgroup or, if this was the last MSGTYPE macro in the
subgroup, to the next delimiter macro.

If this operand is omitted, the group of macro instructions that immediately follows this
MSGTYPE will process all message headers not handled by a preceding MSGTYPE macro
with a nonblank opemnd. A MSGTYPE macro with no conchars operand may be used
only as the last of a series of MSGTYPE macros (with nonblank operands).

If MSGTYPE macros are used both with and without the conchars operand, either some
message type field should always be specified, or care should be taken, if the field is
omitted, that the next field cannot match any of the strings specified by the conchars
opemnd in the series of MSGTYPE macros.

Function: Specifies whether EBCDIC blank characters are to be ignored when en
countered in the character string in the message header being compared to the string
specified by the conchars operand, or whether blanks are to be part of the header string
when encountered in it. If EBCDIC blanks are to be counted as part of the header string,
this operand also specifies whether some other hexadecimal character is to be ignored
when encountered in the header string.
Default: BLANK=YES
Format: YES, NO or char. char is a single character that may be specified in either char
acter or hexadecimal format. If character format is specified, it may be unframed or
fmmed with C' , or CLl' , characters. If hexadecimal format is specified, it must be
framed with X' , or XL l' , characters.
Notes: This operand is meaningless unless the conchars operand is also specified. YES
specifies that the EBCDIC blank character (X'40') is to be ignored by this macro when
ever it is encountered in the header character string being checked against the control
character string specified by the con chars opemnd. For example, if BLANK=YES is
coded and an eight-byte field in the header is being checked by this macro, a blank
appearing in the fifth byte of the field will be ignored, and the sixth through ninth bytes
will be considered to be the last four bytes of the field (assuming that no blanks are
coded in the sixth through ninth bytes).

NO specifies that the EBCDIC blank chamcter is to be treated like any other character
when it is encountered by this macro in the header string being compared to the string
specified by con chars.

char specifies that the single character replacing char is to be ignored by this macro when
ever it is encountered in the header string being compared to the string specified by the
conchars operand. That is, the macro automatically skips over the character without
performing a comparison and goes on to check the next character in the header. If
BLANK=char is coded and char is not the EBCDIC blank character, the EBCDIC blank is
not ignored by this macro when it is encountered in the header string, but is compared to
the chamcter in the corresponding space in the conchars string, like any other character.

Example:
The beginning of an MH using MSGTYPE is shown in Figure 19. Type A messages are
processed and forwarded to terminal NYC, type B to terminal BIX, and all others to an
application program.

OR IGI N Macro Instruction

Name Operation Operands Comments

MHA STARTMH LC=OUT LC= must be coded
for STARTMH

INHDR Delimiter

SEQUENCE Macro instructions
ORIGIN executed for all
DATETIME header segments

COUNTER FIELD Count incoming
segments

MSGTYPE C'A' Test for Type A
messages

- Macro instructions
executed for all

--- Type A messages

FORWARD DEST=CL3'NYC'

MSGTYPE COB' Test for Type B
messages

- Macro instructions
executed for all

- Type B messages

FORWARD DEST=CL3'BIX'
MSGTYPE
FORWARD DEST=CL8'PROCESSQ' Macro instructions

executed for all
other message types

INMSG Delimiter
etc.

Figure 19. Example of Using the MSGTYPE Macro Instruction

The ORIGIN macro:

• Checks the validity of the origin field in a message header,
• Sets a bit in the message error record for the message if the origin field is invalid,
• Permits identification of a switched station calling the computer,
• Is optional in the inheader subgroup and is not permitted in any other subgroup.

The function of the ORIGIN macro depends upon the kind of connection made with the
station. For nonswitched stations, ORIGIN verifies that the origin field in the header
contains the symbolic name of the station that was invited to send the message (that is,
the origin field is compared with the name of the terminal table entry for the station that
was contacted). If the names are not the same, an error flag is set in bit I of the message
error record for the message.

Functional Macros 185

symbol

pntegeil
lnEJ

186

For switched stations, ORIGIN both checks the validity of the origin field in the header
and identifies the calling station to TCAM. Unless the calling station is a BSC station that
transmits a unique ID sequence upon successfully calling the computer, TCAM does not
know what station is on the line until an ORIGIN macro is issued in the MH. Once an
ORIGIN macro is issued, TCAM compares the name in the origin field of the message
header with the terminal table entries for the stations assigned to lines in the line group to
which the line connecting the station to the computer is assigned. If a match is found,
TCAM assumes that the station named in the origin field is the calling station. If no
match is found, an error flag is set in bit I of the message error record for the message.

Inheader subgroups for switched lines to stations that do not have unique ID sequences
and that may call the computer and enter messages should include an ORIGIN macro, as
this is the only means TCAM has of identifying the calling station in this situation.

An inheader subgroup that handles only messages entered by BSC stations having unique
ID sequence requires no ORIGIN macro. When an ORIGIN macro is included in the in
header subgroup that processes header segments entered by such a station, the name in
the origin field, if valid, takes precedence over the name associated with the ID sequence
in the invitation list; that is, TCAM assumes that the station named in the origin field is
the station that entered the message.

For switched stations assigned to a line for which a TERMINAL macro coded
UTERM=YES has been issued, the position of ORIGIN in the inheader subgroups deter
mines whether the option fields assigned to the line or those assigned to the station will
be updated by MH macros when a station calls the computer. Inheader macros executed
prior to ORIGIN refer to option fields assigned to the line by a TERMINAL macro coded
for the line, while macros executed after ORIGIN refer to option fields assigned to the
station by a TERMINAL macro coded for that station. (For a more detailed discussion of
the relationship between the ORIGIN macro and the TERMINAL macro coded for a line,
see Coding the Terminal Macro for a Line in Defining Terminal and Line Control Areas.)

If ORIGIN is used with a message having a multiple-buffer header and entered from a
station on a switched line, ORIGIN must be executed for the first header buffer in order
to effectively identify the station.

A CODE macro must be issued prior to ORIGIN (unless the line code is EBCDIC).

NOTE: Care must be taken in entering a character string in an origin field in the message
header to ensure that it matches a terminal-table entry. A character string entered in
lower-case characters from an IBM 2770 station, for example, will not match a terminal
table entry name that is in uppercase characters;

The ORIGIN macro has the following format:

Name Operation Operand

[symbol] ORIGIN entegeJ
X'FF'

Function: Name of the macro.
Default: None. Specification optional.
Format: Must conform to the rules for assembler language symbols (see the symbol entry
in the Glossary).

Function: Specifies the number of characters in the origin field of a message header.
Default: X'FF'
Format: Decimal or hexadecimal. If hexadecimal format is specified, framing X' , or
XLI' , characters must be used.
Maximum: 8
Notes: If in teger is specified, that many characters are accessed and considered to be the
origin field. Embedded blanks are ignored.

X'PP' indicates that the origin field is of variable length. The origin field is considered to
end at the next blank.

PATH Macro Instruction

symbol

switch

opfield

NOTE: If an ORIGIN macro determines that the source of a message on a nonswitched
line is invalid, a return code of X'04' is set.

The PATH macro:

• Alters a path-switch byte, thereby permitting dynamic variation of the path of a
message through an MH,

• Is optional in inheader, inbuffer, outheader, and outbuffer subgroups (and permitted
in no other subgroup).

One-byte option fields are used to maintain switches known as path switches. These
switches are located in option fields defined by OPTION macros. The switches must be
set initially by the OPDATA= operand of the TERMINAL or TPROCESS macro (if the
option fields are not initialized, the PATH macro provides a return code of X'OO'). The
setting of path switches is examined by each delimiter macro as the message reaches the
subgroup it controls (the user specifies by the PATH operand of each delimiter which
path-switch bytes are to be examined). More than one option field may be specified for
each station; each path-switch byte so defined consists of eight binary switches.

If any of the binary switches tested by a delimiter is on, the subgroup controlled by that
delimiter is executed; if none of the binary switches tested is on, control passes to the
next delimiter.

The user may specify a character string (consisting of one to eight nonblank characters).
If this character string appears in the header of a message, the PATH macro having char
acter string sets one or more specified path switches. If no character string is specified,
the switches are set unconditionally.

PATH may specify any number between zero and 255 inclusive. The switches remain set
until reset by a PATH macro specifying the same option field, until modified by user
code and LOCOPT, or until modified by a DATOPFLD operator command.

The use of PATH is discussed in the Variable Processing within a Message Handler
section of this chapter.

Name Operation Operand

[symbol] PATH switch,opfield [,conchars[,BLANK= l~~S! II

char

Function: Name of the macro.
Default: None. Specification optional.
Format: Must conform to the rules for assembler language symbols (see the symbol entry
in the Glossary).

Function: Specifies the path switch setting to be made for the byte residing in the option
field named by theopfield operand.
Default: None. This operand must be specified.
Format: Decimal or hexadecimal. If hexadecimal format is specified, framing X' , or
XLI' , characters must be used.
Maximum: 255 or a hexadecimal field one byte in length.
Notes: If 0 is specified, all eight path switches are turned off. If 255 (or X'FF') is speci
fied, all switches are turned on.

Function: Specifies the path-switch byte to be operated upon.
Default: None. This operand must be specified.
Format: The name of a one-byte field in the option table as defined by an OPTION
macro.
Notes: If the option field cannot be found, the path-switch byte is not operated upon
and a return code of X'OO' is set in the low-order byte of register IS.

If PATH is coded in the incoming group of an MH for a line group, the specified option
field for the station entering the message is operated upon. If PATH is coded in the
outgoing group of a line MH, the specified option field for the destination station is

Functional Macros 187

conmars

BLANK=l~~l
char ,

188

operated upon. If PATH is coded in the outgoing group of an MH assigned to an applica
tion program, the option field associated with the process queue to which the GET macro
is directed is operated upon. If the macro is coded in the incoming group of an MH
assigned to an application program, the option field for the process entry associated with
the DCB named in the PUT macro is operated upon.

Function: Specifies the character or character string that, if found in the header as the
next nonblank field, causes execution of the function.
Default: None. Specification optional.
Format: One to eight nonblank characters in character or hexadecimal format. If char
acter format is used, the string may be unframed or framed with C' , or CLn' , characters.
If hexadecimal format is used, the string must be framed with X' , or XLn' , characters.
Notes: This operand should be coded only in PATH macros issued in an inheader or out
header subgroup.

If this operand is omitted, the PATH function is performed unconditionally. If the next
field in the header does not match this operand, the function is not performed.

Function: Specifies whether EBCDIC blank characters are to be ignored when en
countered in the character string in the message header being compared to the string
specified by the con chars operand, or whether blanks are to be part of the header string
when encountered in it. If EBCDIC blanks are to be counted as part of the header string,
this operand also specifies whether some other hexadecimal character is to be ignored
when encountered in the header string.
Default: BLANK=YES
Format: YES or NO or char. char is a single character that may be specified in either
character or hexadecimal format. If character format is specified, it may be unframed or
framed with C' , or CLl' , characters. If hexadecimal format is specified, it must be
framed with X' , or XLI' , characters.
Notes: This operand is meaningless unless the con chars operand is also specified. YES
specifies that the EBCDIC blank character (X'40') is to be ignored by this macro when
ever it is encountered in the header character string being checked against the control
character string specified by the conchars operand. For example, if BLANK=YES is
coded and an eight-byte field in the header is being checked by this macro, a blank
appearing in the fifth byte of the field will be ignored and the sixth through ninth bytes
will be considered to be the last four bytes of the field (assuming that no blanks are
coded in the sixth through ninth bytes).

NO specifies that the EBCDIC blank character is to be treated like any other character
when it is encountered by this macro in the header string being compared to the string
specified by conchars.

char specifies that the single character replacing char is to be ignored by this macro when
ever it is encountered in the header string being compared to the string specified by the
conchars operand. That is, the macro automatically skips over the character without
performing a comparison and goes on to check the next character in the header. If
BLANK=char is coded and char is not the EBCDIC blank character, the EBCDIC blank is
not ignored by this macro when it is encountered in the header string, but is compared to
the character in the corresponding space in the con chars string, like any other character.

Example:
Figure 20 shows the outline of an inmessage group of an MH. Messages with A, B, or C in
an appropriate field are routed through the incoming group by PATH macro instructions.
The switch settings enable the user to select appropriate inbuffer and inmessage sub
groups. Message type A passes through the first inbuffer subgroup and the second in
message subgroup, etc.

Warning:
In the case of multiple-buffer headers, the entire control-character field must appear in
the first header segment.

Name Operation Operands Comments

VARYPATII STARTMH LC=OUT Inheader subgroup executed
INHDR for all messages.

• •
•

PATII 4,SWITCH,C'A' Sets switch for Type A
messages (not executed for
others).

• • •
PATII 2,SWITCH,C'B' Sets switch for Type B

messages.

PATH I,SWITCH,C'C' Sets switch for Type C
messages.

•
• •

INBUF 4,SWlTCH This inbuffer subgroup is
executed if switch is 4.

• • •
INBUF 2,SWlTCH This inbuffer subgroup is

executed if switch is 2.

• • •
INBUF I,SWITCH This inbuffer subgroup is

executed if switch is 1.

• •
•

INMSG 3,SWITCH This inmessage subgroup is
executed if switch is 1 or 2.

•
• •

INMSG 4,SWITCH This inmessage subgroup is
executed if switch is 4.

• •
•

INEND

Figure 20. Example of Using the PATH Macro Instruction to Vary MH Processing

Functional Macros 189

PRIORITY Macro
Instruction

symbol

integer

190

The PRIORITY macro:

• Specifies priority handling for messages,
• Is optional in an inheader subgroup of the MH,
• May be used more than once in the subgroup.

PRIORITY provides handling of outgoing messages according to priority levels. The
priority level may be entered in the message header by the user, or it may be specified
by an operand of the PRIORITY macro. The permissible priority levels for each station
or application program are specified in the TERMINAL or TPROCESS macro for that
destination. If queuing by line rather than queuing by terminal is specified, the first
TERMINAL macro for the line contains the permissible priority levels for all stations on
the line; if subsequent TERMINAL macros for the same line specify priority levels,
they are ignored. If a message priority is requested that is not permitted, the message is
assumed to have the next lower permissible priority. The PRIORITY macro must be
specified within the subgroup in the same relative order as the header field on which it
acts.

Absence of the PRIORITY macro causes a priority level of zero to be assigned to the
messages.

For more information on message priority, see Message Priority in Terminal and Line
Control Area Definition.

NOTE: TCAM converts the decimal priority levels specified by the LEVEL= operand
of the TERMINAL or TPROCESS macro to their one-byte hexadecimal equivalents.
If the priority is specified in a message header, it may occupy a one-byte field and should
provide the hexadecimal equivalent of a decimal priority level specified by the LEVEL=
operand of the TERMINAL or TPROCESS macro. For example,if PRIORITY is
executed after a CODE macro (Le., the message segment has been translated from line
code to EBCDIC), and if messages entered by a particular station may be assigned prior
ities of 1, 2, A, B, or C on output, the LEVEL= operand of the TERMINAL macro for
that station should be coded LEVEL= (193, 194, 195, 241, 242). Here, 193 is the
decimal representation of the hexadecimal equivalent of the EBCDIC character A; 241
is the decimal representation of the hexadecimal equivalent of the EBCDIC character 1,
etc. In this case, a message assigned a line-code character 1 as its priority would be
higher in priority than a message assigned a line-code character A, B, or C.

On the other hand, if PRIORITY is executed prior to a CODE macro, and if the
messages are being entered by a 1050 station and may be sent with priorities of 1, 2, A,
B, or C, the LEVEL= operand of the TERMINAL macro should be coded LEVEL= (2, 4,
226,228,231); here 2 is the decimal representation of the hexadecimal equivalent of
the 1050 line-code character 1; 226 is the decimal representation of the hexadecimal
equivalent of the 1050 line-code character A, etc. In this case, a message assigned a line
code character A as its priority would be higher in priority than a message assigned a
line-code character I or 2.

Name Operation Operands

[symbol] PRIORITY [integer] [,conchars] ['BLANK=I~~S\]

char

Function: Name of the macro.
Default: None. Specification optional.
Format: Must conform to the rules for assembler language symbols (see the symbol
entry in the Glossary).

Function: Specifies the priority level to be assigned to this message.
Default: None. Specification optional.
Format: Unframed decimal integer.
Maximum: 255

conchars

BLANK=I~~S I
char

Notes: If this operand is omitted, TCAM assumes that the priority level is contained
in the next nonblank byte following the current setting of the scan pointer. If the pri
ority level is not one that the TERMINAL or TPROCESS macro specifies as permissible,
the next lower permissible priority is assumed.

Function: Specifies the character or character string that, if included in the message
header, causes execution of the PRIORITY macro specifying that string.
Default: None. Specification optional.
Format: One to eight nonblank characters in character or hexadecimal format. If
character format is used, the string may be unframed or framed with C' , or CLn' ,
characters. If hexadecimal format is used, the string must be framed with X" or
XLn' , characters.
Notes: If this operand is omitted, PRIORITY is specified unconditionally. If the con
trol characters do not match, the PRIORITY macro does not execute and control pass
es to the next instruction.

If this operand is specified, but the integer operand is omitted:

• The message priority is assumed to be contained in the message header as the next
nonblank character following control characters.

• A comma must precede the conchars operand.

Function: Specifies whether EBCDIC blank characters are to be ignored when encoun
tered in the character string in the message header being compared to the string specified
by the conchars operand, or whether blanks are to be part of the header string when
encountered in it. If EBCDIC blanks are to be counted as part of the header string, this
operand also specifies whether some other hexadecimal character is to be ignored when
encountered in the header string.
Default: BLANK=YES
Format: YES, NO or char. char is a single character that may be specified in either
character or hexadecimal format. If character format is specified, it may be unframed
or framed with C' , or CLI' 'characters. If hexadecimal format is specified, it must
be framed with X' , or XL I' , characters.
Notes: This operand is meaningless unless the con chars operand is also specified.

YES specifies that the EBCDIC blank character (X'40') is to be ignored by this macro
whenever it is encountered in the header character string being checked against the con
trol character string specified by the conchars operand. For example, if BLANK=YES
is coded and an eight-byte field in the header is being checked by this macro, a blank
appearing in the fifth byte of the field will be ignored and the sixth through ninth bytes
will be considered to be the last four bytes of the field (assuming that no blanks are
coded in the sixth through ninth bytes).

NO specifies that the EBCDIC blank character is to be treated like any other character
when it is encountered by this macro in the header string being compared to the string
specified by con chars.

char specifies that the single character replacing char is to be ignored by this macro
whenever it is encountered in the header string being compared to the string specified by
the conchars operand. That is, the macro automatically skips over the character without
performing a comparison and goes on to check the next character in the header. If
BLANK=char is coded and char il> not the EBCDIC blank character, the EBCDIC blank
is not ignored by this macro when it is encountered in the header string, but is com
pared to the character in the corresponding space in the con chars string, like any other
character.

NOTE 1: If the integer and con chars operands are omitted, the priority is assumed to be
in the message header in the next nonblank character following the current setting
of the scan pointer.

Functional Macros 191

REDI RECT Macro
Instruction

192

NOTE 2: In the case of multiple-buffer headers, the priority, if desired, must be deter
mined for the first header segment to pass through the inheader subgroup. This can
be ensured in one oftwo ways:

1. The priority field in the header, if used, must be in the first header segment (and for
messages from buffered terminals, in the first hardware buffer if the hardware buffer
is smaller than the MCP buffers), or

2. The integer operand must be specified to provide the priority, and any control char
acters used to execute the PRIORITY macro must be in the first buffer (and for
messages from buffered terminals, in the first hardware buffer, if the hardware
buffer is smaller than the MCP buffers).

Example:
The following examples show the various ways message priority may be specified. It
is assumed that the LEVEL= operand of the TERMINAL macro for the destination
station is coded LEVEL= (241, 243, 245, 247).

PRIORITY Macro Header Fields Priority given message
in EBCDIC (decimal notation)

PRIORITY 5 5
PRIORITY 6 5
PRIORITY 241 3 5
PRIORITY 241, PRI PRI 241
PRIORITY, PRI PRI3 243
PRIORITY, PRI PRO Priority of 0 is assigned

(the macro is not
executed)

Figure 21. Example of Using the PRIORITY Macro Instruction

The REDIRECT macro:

• Queues a message for an additional destination,
• Is optional in an inmessage or outmessage subgroup of an MH,
• May be specified more than once within a subgroup.

REDIRECT queues a message for a destination in addition to the destinations specified
by the FORWARD macro, when errors specified by the mask operand are detected.
The bits specified by the error mask operand are compared with the setting of the bits
in the message error record for the message. If specified bits in the message error record
are on, the REDIRECT macro is executed; otherwise, the REDIRECT macro is not
executed.

The additional destination specified may be any single, group, process, or cascade list
entry in the terminal table. A distribution list cannot be specified as the additional
destination.

REDIRECT may be used to send unsent messages to an application program, or to
return them to the originating station, or to send them to the alternate destination
when the intended destination is inoperative.

If REDIRECT is specified, it must appear in an inmessage or outmessage subgroup of
anMH.

symbol

mask

DESTldestnarnej
opfield
ORIGIN

Name Operation Operands

[symbol] REDIRECT [mask] [,CONNECT={~:Dp

[.DES"r",nam'f -opfield
ORIGIN

Function: Name of the macro.
Default: None. Specification optional.
Format: Must conform to the rules for assembl~r language symbols (see the symbol
entry in the Glossary).

Function: Specifies the five-byte bit configuration used to test the message error record
for the message (the message error record is described in Appendix B).
Default: None. Specification optional.
Format: Decimal or hexadecimal. If hexadecimal format is used, framing characters
must be specified. If X' , is used, leading zeros must be coded. If XL5' , is used, leading
zeros may be omitted.
Maximum: 16777215 or a hexadecimal field five bytes in length.
Notes: Omitting the operand, or an all-zero mask, causes unconditional execution.

Function: Specifies the type of logical connection to be made between the mask and
the message error record.
Default: CONNECT=OR
Format: AND or OR.
Notes: AND specifies that the macro is to be executed only if all of the bits specified by
mask are on in the message error record.

OR specifies that the macro is to be executed if any bit specified by mask is on in the
message error record.

Function: Specifies the additional destination.
Default: DEST=ORIGIN
Format: destname, opfield, or ORIGIN. destname may be up to eight bytes in length
and is the name of any single, group, or cascade list entry in the terminal table. It must
be specified within framing C' ',CLn", X" or XLn" characters. opfield is the unframed
name of an option field defined by an OPTION macro, and cannot be named ORIGIN.
Notes: If an invalid destination is specified, REDIRECT does not execute.

opfield refers to an option field up to eight bytes in length, containing the name of the
destination. The additional destination is the station

• Specified in the option field assigned to the originating station or application program,
if REDIRECT is used in an inmessage subgroup and if the originating station is not a
switched station that called the computer to enter the message but did not identify
itself by means of a unique ID sequence or by a valid origin field checked by an
ORIGIN macro,

• Specified in the option field assigned to this line by a TERMINAL macro coded for a
line if the originating station is a switched station that called the computer in order
to enter this message but did not uniquely identify itself,

• Specified in the option field assigned to the destination station or application pro
gram if REDIRECT is used in an outmessage subgroup.

ORIGIN specifies that the message in error is to be sent to the station from which it
originated (in addition to the destinations specified in the message header).

If this operand is omitted or if DEST=ORIGIN is specified, and the originating station is
a switched station which has called the computer in order to enter the message, the
station must identify itself by means of a unique ID sequence or by means of a valid
origin field as checked by an ORIGIN macro. Otherwise TCAM is unable to identify the
station of origin and cannot route the message to it.

Functional Macros 193

SCREEN Macro Instruction

194

The SCREEN macro:

• Modifies the Write operation for terminals with display screens,
• Is optional in outheader subgroups of Message Handlers for terminals with display

screens.

SCREEN may be used in an outheader subgroup of an MH to specify the type of modifi
cation to be made to the Write operation for the 2260 or the 2265. If the user specifies
the Write Display Control (WDC) operation, write operations begin at the position of the
display cursor. Alternatively, the user may specify the Write Erase (WRE) function so
the screen is erased before the next segment is displayed and writing begins at the top
of the screen. Or, the user may specify the line on which he wishes to write, using the
Write-at-Line-Address (WLA) function.

If the WLA function is used, the user must spe~ify the line address character desired as
the first character of the header of the message to be written. If line-control is left in
the message, the line-address character should follow any initial line-control characters.
The user may insert the line address in the message header by:

1. Including the necessary assembly language instructions in an MH or in an application
program.

2. Using the MSGEDIT macro.

The table below gives the appropriate line addresses in EBCDIC for 2260 terminals. The
following MSGEDIT macro, executed in an outheader subgroup on the first segment of a
message, would place the line -address for line number ten in the first byte of the header
(assuming that the header contains no line control):

LINEADDR MSGEDIT «I,XLI 'F9',0»

The type of operation (WRE, WLA, WDC) to be performed for a display terminal is
specified initially by the user in the TERMINAL macro for that terminal. (See the
description of the ADDR= operand of the TERMINAL macro.) When the TERMINAL
macro is executed, TCAM sets a byte in the terminal-table entry to indicate the type of
Write operation to be performed for all messages directed to this terminal. The SCREEN
macro changes the type of operation to be performed by modifying this byte (e.g.,
from WLA to WRE). However, for remote operations, the change specified by SCREEN
does not take effect until the next message is sent to the terminal; if WLA was changed
by SCREEN to WDC, all messages sent to the terminal after the current message would
have a WDC operation performed for them, but the current message (i.e., the message
being processed when SCREEN executes) would have a WLA operation performed for
it. For local operations, the change specified by SCREEN takes effect for the current
operation.

When WLA is changed to another Write operation by SCREEN, the user must still
place the line address in the header of the current message, since a WLA operation will
be performed for this message. If the operation type operand of SCREEN is omitted,
then when SCREEN finishes executing, a return code is placed in register 15 to indicate
what the setting of the terminal-table byte was before SCREEN changed it. User code
may test the return code; if the code indicates that a WLA operation was being per
formed, a MSGEDIT macro may be executed to insert the line address. Otherwise, the
user code may branch around the MSGEDIT macro (see the example following the
macro description).

Line Address Characters for the IBM 2260 Terminal

Hexadecimal representation
of EBCDIC line address

FO
FI
F2
F3
F4
F5
F6
F7
F8
F9
FA
FB

Selected line

I
2
3
4
5
6
7
8
9
10
11
12

symbol

conehars

The SCREEN macro has the following format:

Name Operation Operands

[symbol] SCREEN 1 WRE~ ['conchars['BLANK=l YESr]
WLA NO
WDC char

Function: Name of the macro.
Default: None. Specification option.
Format: Must conform to the rules for assembler language symbols (see the symbol
entry in the Glossary).

Function: Specifies the type of write operation for the IBM 2265 (Remote) or the
IBM 2260 (Local or Remote).
Default: None. Specification optional.
Format: WRE, WLA, or WDC.
Notes: WRE specifies a Write Erase operation, the erasure of the screen before the next
segment is displayed.

WLA specifies a Write at Line Address operation. The user must insert a line address
character as the first character (following any initial line-control characters, if line con
trol was left in the message) of the message to be written out.

WDC specifies a Write Display Control operation.

Function: Specifies the character or character string that, if found in the header as the
next nonblank field, causes execution of the function. .
Default: None. Specification optional.
Format: One to eight non blank characters in character or hexadecimal format. If
character format is used, the string may be unframed or framed with C' , or CLn' ,
characters. If hexadecimal format is used, the string must be framed with X' , or XLn' ,
characters.
Notes: If this operand is omitted, the SCREEN function is performed unconditionally.
If the next field in the header does not match this operand, the function is not
performed.

A SCREEN macro specifying no WRE, WLA or WDC operation may be issued to check
the type of write operation in effect for the message being processed without changing
the operation type. See the example below.

If WLA is changed to another Write operation, the user code in the outheader subgroup
needs to know whether to cause a line-address character to be inserted in the current
message. The following return codes may be returned by SCREEN in register IS:

Code

X'AO'
X'BO'
X'EO'

Operation

WDC
WLA
WRE

Function: Specifies whether EBCDIC blank characters are to be ignored when encoun
tered in the character string in the message header being compared to the string specified
by the conchars operand, or whether blanks are to be part of the header string when en
countered in it. If EBCDIC blanks are to be counted as part of the header string, this
operand also specifies whether some other hexadecimal character is to be ignored when
encountered in the header string.
Default: BLANK=YES
Format: YES, NO or char. char is a single character that may be specified in either
character or hexadecimal format. If character format is specified, it may be unframed
or framed with C' , or CLl ' 'characters. If hexadecimal format is specified, it must be
framed with Xu or XLI' , characters.

Functional Macros 195

SEQUENCE Macro Instruction

196

Notes: This operand is meaningless unless the con chars operand is also specified.

YES specifies that the EBCDIC blank character (X'40') is to be ignored by this macro
whenever it is encountered in the header character string being checked against the
control character string specified by the conchars operand. For example, if
BLANK=YES is coded and an eight-byte field in the header is being checked by this
macro, a blank appearing in the fifth byte of the field will be ignored and the sixth
through ninth bytes will be considered to be the last four bytes of the field (assuming
that no blanks are coded in the sixth through ninth bytes).

NO specifies that the EBCDIC blank character is to be treated like any other character
when it is encountered by this macro in the header string being compared to the string
specified by conchars.

char specifies that the single character replacing char is to be ignored by this macro
whenever it is encountered in the header string being compared to the string specified
by the conchars operand. That is, the macro automatically skips over the character
without performing a comparison and goes on to check the next character in the !leader.
If BLANK=char is coded and char is not the EBCDIC blank character, the EBCDIC
blank is not ignored by this macro when it is encountered in the header string, but is
compared to the character in the corresponding space in the conchars string, like any
other character.

Example:
The following code might be issued in an outheader subgroup to determine whether the
Write-at-Line-Address (WLA) operation is specified in the appropriate byte in the ter
minal-table entry for the destination station for the message being processed, and to
cause a line address of 1 ° to be placed in the first byte of the message header of the
current message if WLA is specified in the terminal-table entry. SCREEN is executed
only for type A messages (as determined by a field in the message header and the
conchars operand of SCREEN).

Name Operation Operand

OUTHDR
SCREEN ,A
LA 5,X'BO'
CLR 5,15
BNE CONTINUE
MSGEDIT «I,XLI 'F9' ,0»

CONTINUE EQU '"
next
instruction

Figure 22. Example of Inserting Line Address.

The SEQUENCE macro:

• Checks the input sequence number of an incoming message,
• Inserts the output sequence number in an outgoing message,
• Is optional in inheader and outheader subgroups on non-audio lines (and may not be

used in any other subgroup),
• Should be specified only once in each subgroup.

If specified in an inheader subgroup, SEQUENCE scans the input sequence number field
in the header of each message. If the sequence number is not one greater than the se
quence number of the last message received from the same station or application pro
gram, an error flag is set in bit 3 or 4 of the message error record assigned to the message
(depending on whether the number is high or low, respectively), and a return code in
dicating an error is set in register 15.

The header field for the input sequence number may contain up to four characters of
sequence (leading zeros may be omitted from the input sequence number entered at the
station). This field should contain a decimal representation of the input sequence num
ber, and should be delimited by a blank. For example, if the sequence number is twelve,

- ---------~------------ ------~-- ----~-- ----

symbol

the field should consist of a character 1 followed by a character 2 followed by a
delimiting blank. At the time SEQUENCE looks at the field, the characters should have
been translated into EBCDIC by a CODE macro. The user should reserve five bytes in
his header (via the RESERVE= operand of the line group DCB macro) for insertion of
the output sequence number, if used.

TCAM maintains internal counters in the terminal table entry to keep track of the in
coming and outgoing sequence numbers for each station and application program. If the
SEQUENCE macro is issued in an inheader subgroup, the first message from a station or
application program must contain the same input sequence number as the input counter
for that station or application program. TCAM initially sets each input counter to 1.
The next incoming message after 9999 must be numbered 1. Processing continues after
the maximum number is reached.

In general, SEQUENCE in an inheader subgroup causes the input counter to be in
cremented for each message having a correct input sequence number in the header. If,
however, a CANCELMG macro causes a message to be canceled, or if a STARTMH
macro causes retransmission of a message header segment, the input sequence number
is not incremented. In the latter case, the number is incremented only when the segment
is successfully retransmitted.

If specified in an outheader subgroup, SEQUENCE places an output sequence number
in the header of each outgoing message handled by the MH. The five-byte output se
quence number (a blank followed by four EBCDIC characters) is inserted immediately
following the byte to which the scan pointer is pointing when SEQUENCE executes.
When the first message is sent to a station or application program, a 1 is placed in the
output counter for that station or application program; as each succeeding output
message is handled, this sequence number is incremented by 1 and the resulting number
inserted in the header. (A count is maintained for each station and for each terminal
group where group addressing is used.) A message in error routed via a REDIRECT
macro retains the output sequence number placed in it.

Use of SEQUENCE is optional. If used, it must appear within an inheader or outheader
subgroup. Its position must correspond to the relative position, within the header, of
the sequence-number field.

TCAM increments the input sequence number counter in the terminal table entry only
if a SEQUENCE macro is issued in the inheader subgroup. TCAM increments the output
sequence number counter in the terminal-table entry, automatically, each time that a
message is sent to the station or application program.

If SEQUENCE is included in an inheader subgroup handling header segments entered by
a switched station that calls the computer to enter the segments, and if the station does
not have a unique ID sequence assigned to it, SEQUENCE should not be executed until
after an ORIGIN macro has been executed. In this case, ORIGIN is needed to identify
the calling station so that SEQUENCE can access the correct input counter.

Name Operation Operand

[symbol] SEQUENCE (no operands)

Function: Specifies the name of the macro.
Default: None. Specification optional.
Format: Must conform to the rules for assembler language symbols (see the symbol
entry in the Glossary).

There are no operands. Five spaces must be reserved for insertion of an output sequence
number; space is reserved by a RESERVE= operand of the line group DCB macro. If
insufficient space is reserved, a SEQUENCE macro coded in an outheader subgroup is
not executed and a return code of X'04' is set in register 1 s. For incoming messages,
if the input sequence number in the message header is low, a X'04' return code is set,
and if the number is high or if there is no valid decimal number in the header field
being examined, X'08' is set. If the source of an incoming message is not known at the

Functional Macros 197

SETEOF Macro Instruction

I -..

symbol

conmus

BLANK=l!1

198

time SEQUENCE is reached in an inheader subgroup, the macro does not execute and
a returll code of X'OC' is placed in register 15. In none of these cases is the input se
quence counter in the appropriate terminal-table entry incremented.

Note: Continuity of sequence numbers is maintained by the continuation and warm
start capabilities of the TCAM restart facility.

The SETEOF macro:

, Sets a bit in the buffer prefix to indicate an EOF message,
• Is optional in the outheader subgroup of the MH assigned to an application program

(and should be coded in no other).

The SETEOF macro is used to identify the last message in a data file being processed by
an application program. When the application program receives a message flagged by
SETEOF, the next GET or READ/CHECK it issues after the complete message has been
received will cause control to be passed to the routine whose address is specified by the
EODAD= operand of the application program input DCB for the destination queue
accessed by the GET or READ. Thus, by issuing a SETEOF macro, the user causes the
application program to stop obtaining work units from one or more destination queues
and do whatever is specified by the routine located at the EODAD address.

The SETEOF macro is issued in the outheader subgroup of the outgoing group of the
MH handling messages routed to an application program.

Note: In the case of multiple-buffer headers, SETEOF must be executed for the first
header buffer to be effective.

The SETEOF macro has the following format:

Name Operation Operand

[symbol] SETEOF [COnCharS['BLANK=l~~sr]

char

Function: Specifies the name of the macro.
Default: None. Specification optional.
Format: Must conform to the rules for assembler language symbols (see the symbol
entry in the Glossary).

Function: Specifies the character or character string that, if found in the header as the
next nonblank field, causes execution of the function.
Default: None. Specification optional.
Format: One to eight nonblank characters in character or hexadecimal format. If
character format is Ul~ed, the string may be unframed or framed with C' , or CLn' ,
characters. If hexadecimal format is used, the string must be framed with X' , or XLn' ,
characters.
Notes: If this operand is omitted, the SETEOFfunction is performed unconditionally.
If the next field in the header does not match this operand, the function is not
performed.

Function: Specifies whether EBCDIC blank characters are to be ignored when encoun
tered in the character string in the message header being compared to the string specified
by the conchars operand, or whether blanks are to be part of the header string when en
countered in it. If EBCDIC blanks are to be counted as part of the header string, this
operand also specifies whether some other hexadecimal character is to be ignored when
encountered in the header string.
Default: BLANK=YES

SETSCAN Macro Instruction

Format: YES, NO or char. char is a single character that maybe specified in either
character or hexadecimal format. If character format is specified, it may be unframed
or framed with C' , or CL l' 'characters. If hexadecimal format is specified, it must be
framed with X' , or XLI' , characters.
Notes: This operand is meaningless unless the conchars operand is also specified.

YES specifies that the EBCDIC blank character (X'40') is to be ignored by this macro
whenever it is encountered in the header character string being checked against the con
trol character string specified by the conchars operand. For example, if BLANK=YES
is coded and an eight-byte field in the header is being checked by this macro, a blank
appearing in the fifth byte of the field will be ignored and the sixth through ninth bytes
will be considered to be the last four bytes of the field (assuming that no blanks are
coded in the sixth through ninth bytes).

NO specifies that the EBCDIC blank character is to be treated like any other character
when it is encountered by this macro in the header string being compared to the string
specified by con chars.

chars specifies that the single character replacing char is to be ignored by this macro
whenever it is encountered in the header string being compared to the string specified
by the con chars operand. That is, the macro automatically skips over the character
without performing a comparison and goes on to check the next character in the header.
If BLANK=char is coded and char is not the EBCDIC blank character, the EBCDIC
blank is not ignored by this macro when it is encountered in the header string, but is
compared to the character in the corresponding space in the conchars string, like any
other character.

The SETSCAN macro:

• Explicitly moves the scan pointer forward or backward, or
• Returns in a designated register the address of the last character of a specified

character string, or
• Returns in register 15 the current address of the scan pointer.
• Is optional in inheader and outheader subgroups (and not permitted in any other

subgroup),
• May be specified more than once in the same subgroup.

The SETSCAN macro explicitly repositions the scan pointer forward or backward in
the buffer, if specified. After the previous macro has executed, the scan pointer is
positioned at the last character of the field acted upon by that macro. SETSCAN moves
the scan pointer a specified number of nonblank characters, to a specified character, or
to the last character of a specified character string, so that one or more fields is skipped.
The scan pointer is left at its new position.

Alternatively, the scan pointer is not moved. Instead, either a designated character
string is located, and the address of the last character of the string is placed in a specified
register, or the current address of the scan pointer is placed in register 15.

Use of SETSCAN is optional in inheader and outheader subgroups, where it may be
used as many times as desired.

NOTE 1: When an outgoing message is processed by an outheader subgroup, ST ARTMH
positions the scan pointer to the last reserve character in the buffer or, if there are no
reserve characters, to the last byte ofthe buffer prefix or, if there is a machine EOA
sequence, to the last byte of the EOA. If this is not the location of the next header field
to be processed, the user may employ SETSCAN to move the scan pointer to the byte
immediately preceding the next header field to be processed.

NOTE 2: For an inheader subgroup that handles messages from stations designated as
operator control terminals, if LC=IN is coded in the STARTMH macro, a SETSCAN
macro should be coded as the first functional macro of the subgroup, with a CODE
macro being the second functional macro (CODE tests for operator commands). The
SETSCAN macro should move the scan pointer past the line control characters (not in
cluding the EOA), leaving it pointing to the byte immediately preceding the first byte
of meaningful header data.

Functional Macros 199

symbol

{~Pchars} mteger

BLANK={~}
char

200

The SETSCAN macro has the following format:

Name Operation Operands

[symbol] SETSCAN { ~kiPChars}
mteger

['BLANK={~~S }]

char

['POINT={BACK P
FORWARD

[,MOYE={RETURN}1
KEEP

[,RESULT= {(register)p
(!1)

Function: Specifies the name of the macro.
Default: None. Specification optional.
Format: Must conform to the rules for assembler language symbols (see the symbol
entry in the Glossary).

Function: Specifies the new location of the scan pointer, either a character string to be
located or a number of characters to be advanced.
Default: None. This operand must be specified.
Format: skip chars or integer. skip chars can be one to eight nonblank characters in char
acter or hexadecimal format. If character format is used, the string may be unframed
or framed with C' , or CLn' 'characters. If p.exadecimal format is used, the string must
be framed with X' , or XLn" characters. integer is a decimal integer in decimal format.
Maximum: For integer, 65535.
Notes: skipchars is the character or character string to which the scan pointer is to
be moved when MOYE=KEEP is specified, or whose address is to be placed in the regis
ter specified by RESULT=(register) when MOYE=RETURN is specified. If
MOYE=KEEP is specified, SETSCAN operates across buffers until the string is found. If
MOYE=RETURN is specified, the character string must be located in the current
buffer; otherwise, SETSCAN does not execute and a return code is set. If register 15
is specified to contain the address of the string and the string is not found in the buffer,
a return code of X'OO' is set in the low-order byte of register 15. If another register is
specified for the address of the string and the string is not found in this buffer, a return
code of X'04' is set in the last byte of register 15 (see the description of
MOYE=RETURN below). The pointer should not be moved to a position outside the
header. If skipchars is specified, POINT=BACK may not be specified.

integer is the number of nonblank characters to be skipped. If 0 is specified in place of
integer, TCAM returns the main-storage address to which the scan pointer is currently
pointing. If an attempt is made to set the scan pointer outside of the current buffer,
SETSCAN does not execute and control passes to the next macro. If integer is coded
MOYE=KEEP is assumed by TCAM, even if MOYE=RETURN is coded in the macro
(unless 0 is coded in place of integer). If 0 is coded, the MOYE= and RESULT=
operands are ignored.

Function: Specifies whether EBCDIC blank characters are to be ignored when being
counted or when encountered in the character string in the message header being com
pared to the string specified by the skipchars operand, or whether blanks are to be
counted as characters or as part of the header string when encountered in it. If EBCDIC
blanks are to be counted as characters or as part of the header string, this operand also
specifies whether some other hexadecimal character is to be ignored when skipping or
when encountered in the header string.
Default: BLANK=YES

POINT={BACK }
FORWARD

MOVE={RETURN}
KEEP

RESULT={(register)}
(!§)

Format: YES, NO or char. char is a single character that may be specified in either
character or hexadecimal format. If character format is specified, it may be unframed
or framed with C' , or CLl' 'characters. If hexadecimal format is specified, it must be
framed with X' , or XL I' , characters.
Notes: YES specifies that the EBCDIC blank character (X'40') is to be ignored by the
macro whenever characters are being skipped or whenever it is encountered in the header
character string being checked against the skip character string specified by the skipchars
operand. For example, if BLANK=YES is coded and an eight-byte field in the header
is being checked by this macro, a blank appearing in the fifth byte of the field will be
ignored and the sixth through ninth bytes will be considered to be the last four bytes
of the field (assuming that no blanks are coded in the sixth through ninth bytes).

NO specifies that the EBCDIC blank character is to be treated like any other character
when characters are being skipped or whenever it is encountered in the header string
being compared to the string specified by skipchars.

char specifies that the single character replacing char is to be ignored by this macro
whenever characters are being skipped or whenever it is encountered in the header string
being compared to the string specified by the skipchars operand. That is, the macro
automatically skips over the character without counting or performing a comparison and
goes on to check the next character in the header. If BLANK=char is coded and char
is not the EBCDIC blank character, the EBCDIC blank is not ignored by this macro
when it is encountered in the header, but is counted or compared to the character in the
corresponding space in the skipchars string, like any other character.

Function: Specifies whether the scan pointer is to be moved forward or backward.
Default: POINT=FORWARD
Format: BACK or FORWARD.
Notes: FOR WARD specifies that the scan pointer is to be moved forward. BACK
specifies that the scan pointer is to be moved backward. If POINT=BACK is specified,
neither skipchars nor MOYE=RETURN may be specified. If POINT=BACK is specified,
the scan pointer may not be moved out of the buffer in which it is located; if integer
is greater than the number of characters preceding the scan pointer in the buffer, the
macro does not execute and a return code of X'04' is rlaced in the rightmost byte of
register 15.

Function: Specifies whether the scan pointer is to be moved to the designated position
and not returned to its original position before the next macro is issued, or is to remain
stationary, with the specified character string being located and the main-storage address
of the last character in the string being returned in a designated register.
Default: MOYE=KEEP
Format: RETURN or KEEP.
Notes: If integer is replaced by zero, this operand is ignored. If integer is specified,
MOYE=KEEP is assumed by TCAM even if the macro is coded MOYE=RETURN.

MOYE=RETURN may not be specified if POINT=BACK is.specified.

KEEP specifies that the scan pointer is to be moved to the designated character (if
skipchars is coded) or moved the designated number of characters (if integer is coded);
the pointer remains in its new location until the next macro affecting the scan pointer
is issued.

RETURN specifies that the scan pointer is not to be moved. Instead, the specified
character string is located and the main-storage address of the last character in the string
is returned in the register designated by the RESUL T= operand.

Function: Specifies the general register into which the main-storage address of the last
character of the designated character string is to be placed once the string is located.
Default: RESULT=(15)
Format: A general register 2 through 11, or 15, enclosed in parentheses.

Functional Macros 201

TERRSET Macro Instruction

symbol

UNLOCK Macro Instruction

202
\

Notes: If the desired character string is found, the address of its last character is placed
in the register. If RESULT=(l5) is coded and the character string is nbt found in this
buffer (if skipchars is coded) or if the integer specified would take the scan pointer out
of this buffer (if integer is specified), the macro does not execute and a return code of
X'OO' is placed in the rightmost byte of register 15.

If some register other than IS is specified and the character string is not found in the
buffer, or the integer specified would take the scan pointer out of the buffer, the macro
does not execute and a return code ofX'04' is placed in the low-order byte of register
15; in this case the contents of the specified register are unchanged.

If integer is replaced by zero, this operand is ignored.

Example 1: A SETSCAN macro that causes the scan pointer to skip forward over 5
characters and remain in its new position:

SETSCAN 5,POINT=FORWARD,MOYE=KEEP

Example 2: A SETSCAN macro that results in no movement by the scan pointer, but
causes the address of the character '=' (located to the right of the pointer) to be placed
in register 2:

SETSCAN C'=',POINT=FORWARD,MOYE=RETURN,RESULT=(2)

The TERRSET macro:

• Enables the user to set a bit in the message error record.
• Is often issued prior to a related ERRORMSG macro,
• Is optional in inheader, inbuffer, outheader and outbuffer subgroups.

The TERRSET macro enables the user to set on bit 20 of the message error record for
this message. This may be used to indicate any condition for which the user wishes to
issue an error message. A subsequent ERRORMSG macro may be issued specifying a
mask including the user error bit.

Name Operation Operand

[symbol] TERRSET (no operands)

Function: Specifies the name of the macro.
Default: None. Specification optional.
Format: Must conform to the rules for assembler language symbols (see the symbol
entry in the Glossary).
There are no operands.

The UNLOCK macro:

• Removes a station from extended lock mode,
• Is optional in an inheader or outheader subgroup.

The UNLOCK macro is included in the inheader subgroup of an MH to remove a station
locked to an application program by a LOCK macro from extended lock mode. The
conchars operand may be used in conjunction with control characters in the message
header to provide the capability of optional execution of UNLOCK.

The UNLOCK macro is meaningful only in the inheader subgroup of an MH handling
inquiry or response messages being exchanged by an application program and a station
locked to it by a LOCK macro having EXTEND coded as an operand. When the lock
condition is not in effect, the macro is ignored.

When the UNLOCK macro is issued in an inheader subgroup handling inquiry messages
being received from a station in extended lock mode, the message currently being

symbol

conchus

BLANK=l~':: \
char

handled is routed to the destination specified in its header or by a FORWA~D macro
(and checked by a FORWARD macro) if UNLOCK is issued before the FORWARD
. macro is issued. If UNLOCK is issued after FO RW ARD, the message is routed to the
application program to which the originating station was locked.

The UNLOCK macro may be issued immediately following an unconditional LOCK
macro to remove a certain message type from lock mode before the message is queued.
For example,

LOCK EXTEND
UNLOCK A

would place the station in extended lock mode for all except type A messages. Again,

LOCf(MESSAGE
UNLOCK J

would terminate message lock mode only for type J messages.

For a discussion of the lock mode and its function in a TCAM system, see the descrip
tion of the LOCK macro.

The UNLOCK macro has the following format:

Name Operation Operand

[symbol) UNLOCK [COnchars['BLANK=~~~Sr]

char

Function: Specifies the name of the macro.
Default: None. Specification optional.
Format: Must conform to the rules for assembler language symbols (see the symbol
entry in the Glossary).

Function: Specifies the character or character string that, if found in the header as the
next nonblank field, causes execution of the function.
Default: None. Specification optional.
Format: One to eight nonblank characters in character or hexadecimal format. If
character format is used, the string may be unframed or framed with C' , or CLn' ,
characters. If hexadecimal format is used the string must be framed with X' , or XLn' ,
characters.
Notes: If this operand is omitted, the UNLOCK function is performed unconditionally.
If the next field in the header does not match this operand, the function is not
performed.

Function: Specifies whether EBCDIC blank characters are to be ignored when encoun
tered in the character string in the message header being compared to the string specified
by the conchars operand, or whether blanks are to be part of the header string when en
countered in it. If EBCDIC blanks are to be counted as part of the header string, this
operand also specifies whether some other hexadecimal character is to be ignored when
encountered in the header string.
Default: BLANK=YES
Format: YES, NO or char. char is a single character that may be specified in either
character or hexadecimal format. If character format is specified, it may be unframed
or framed with C' , or CLl' 'characters. If hexadecimal format is specified, it must be
framed with X' , or XLI' , characters.
Notes: This operand is meaningless unless the conchars operand is also specified.

YES specifies that the EBCDIC blank character (X'40') is to be ignored by this macro
whenever it is encountered in the header character string being checked against the
control character string specified by the conchars operand. For example, if
BLANK=YES is coded and an eight-byte field in the header is being checked by this

Functional Macros 203

204

macro, a blank appearing in the fifth byte of the field will be ignored and the sixth
through ninth bytes will be considered to be the last four bytes of the field (assuming
that no blanks are coded in the sixth through ninth bytes).

NO specifies that the EBCDIC blank character is to be treated like any other character
when it is encountered by this macro in the header string being compared to the string
specified by conchars.

char specifies that the single character replacing char is to be ignored by this macro
whenever it is encountered in the header string being compared to the string specified
by the con chars operand. That is, the macro automatically skips over the character
without performing a comparison and goes on to check the next character in the header.
If BLANK=char is coded and char is not the EBCDIC blank character, the EBCDIC
blank is not ignored by this macro when it is encountered in the header string, but is
compared to the character in the corresponding space in the conchars string, like any
other character.

NOTE: UNLOCK specified in an inheader subgroup removes the lock condition for the
source terminal. In an outheader subgroup the lock for the destination is removed.

Arranging the Sections of
the MCP

Activation and Deactivation

Data Set Definition

Terminal and Line Control
Area

Message Handler

User Routine

Putting the MCP Together

This chapter describes the physical parts of the MCP and tells how to arrange these parts
in relation to each other and how to assemble, linkage-edit, and execute a TCAM MCP.
In addition, several sample MCPs are presented and explained.

An MCP has five sections. These are the activation and deactivation section (the INTRO,
OPEN, READY, and CLOSE macros and some user code to determine whether INTRO
executed satisfactorily), a data set definition section (the DCB macros defining the
TCAM data sets and, if application programs are to be run in conjunction with the MCP,
one PCB macro for each application program), a terminal and line control area section
(those macros associated with the invitation lists and the terminal table), a Message
Handler section (one or more Message Handlers), and an optional user routine section
(closed, user subroutines called by an MH, as well as exit routines referred to by the
INTRO macro, by DCB macros, and by the STARTMH macro). These sections may be
coded in the order just given, or in any other order, except that the activation and
deactivation Section must come first. Each MCP section and locations for coding
directions are given below. The sample program in this chapter will conform to this
organization.

NOTE 1: The PCB macro defining an application program must be included in the MCP.
This macro is logically similar to a DCB macro, and may be included in the Data Set
Definition Section, or it may be included in any other section, but should not be coded
between OPTION macros, among macros defining the terminal table, or within an MH.

NOTE 2: The INVLIST macros defining invitation lists must follow the macros defining
the terminal table.

• Initializes, activates and deactivates'the MCP;
• Opens and closes the MCP .data sets;
• Described in the chapter Activating and Deactivating the MCP.

• Defines the data sets for the TCAM line groups, message queues, and checkpoint
and logging facilities;

• Described in the chapter Defining the MCP Data Sets.

• Defines the terminal table for the MCP;
• Defines the option fields associated with the terminal-table entries;
• Defines the invitation list for each line;
• Described in the chapter Defining Terminal and Line Control Areas.

• Determines the way in which each incoming and outgoing message is to be
processed;

• Routes each message to its proper destination, if possible;
• Informs the user of errors occurring during message transmission, routing, and

handling;
• Described in the chapter Designing the Message Handler.

• Consists of closed user subroutines that may be entered from a MH, or by an exit
specified by an INTRO, STARTMH, FORWARD, ERRORMSG, READY, or DCB macro.

• Described in the section Including a Closed Subroutine of the chapter DeSigning the
Message Handler; the description of each macro operand specifying an exit tells what
TCAM passes to the routine associated with that exit, and what TCAM expects the exit
routine to return.

Putting the MCP Together 205

Assembling, linkage-editing,
and Executing the Message
Control Program

Assembling an MCP

Linkage-editing an MCP

Executing an MCP

206

The assembly, linkage-editing, and execution of a TCAM MCP is similar to the assembly
linkage-editing, and execution of any other problem program running under OS. Sample
job control statements are given in this section for these three steps; these statements are
guidelines only.

A typical control-card sequence for assembling a TCAM MCP is as follows:

//ASSEMBLY
IISTEPI
// ASM.SYSIN

MCP Source Deck

JOB
EXEC
DD

MSGLEVEL=1
ASMFC
•

A typical control-card sequence for linkage-editing an MCP is as follows (in this case,
the MCP load module is to be placed in a private library called SYS1.TCAMLIB that
has previously been created by the user):

I/LINKEDIT
II STEP I
/I
//SYSPRINT
//SYSUTl
IISYSLMOD
//SYSLIB
//SYSLIN

JOB
EXEC

DD
DD
DD
DD
DD

MCPObject Module

NAME

MSGLEVEL=I
PGM=IEWL,PARM='XREF,LIST,LET' ,
REGION=96K
SYSOUT=A
UNIT=SYSDA,SP ACE=(I 024,(200,20»
DSNAME=SYSI. TCAMLIB,DISP=OLD
DSNAME=SYSI.TELCMLIB,DISP=OLD
•

TCAMPROG(R)

The SYSLIB DD statement names SYS1.TELCMLIB, a special library area defined at
system generation time. TCAM's resident modules are located in SYS1.TELCMLIB.

The MCP load module resulting from the link-edit may be stored in SYSl.LINKLIB, or
in a private library such as SYS I. TCAMLIB in the example.

The TCAM MCP is normally executed as the highest-priority task in the highest-priority
partition or region in the system. The TCAM MCP is executed either by placing the ap
propriate job control statements in the card reader and using an OS Reader/Interpreter
to place the job in the system, or by issuing at the console a START command referring
to a cataloged procedure that contains the necessary job control statements. (Starting
by a START command is discussed below.) The job control statements needed for the
execute step are similar for both cases.

A typical control card sequence for executing an MCP is as follows (in this case, the
MCP has two line group data sets containing three lines each, and a message queues data
set residing on disk; no checkpoint or logging facility is included). The load-module
form of the MCP is placed on SYSI. TCAMLIB by the linkage editor.

//EXECMCP
IIGOSTEP
//STEPLIB
IIDDI050
II
1/
IIDD2740
1/
1/
IIDISKDD
//SYSABEND

JOB
EXEC
DD
DD
DD
DD
DD
DD
DD
DD
DD

'EXECUTE MCP' ,MSGLEVEL=1
PGM=TCAMPROG,REGION=IOOK
DSNAME=SYS I. TCAMLIB,DISP=SHR
UNIT=025
UNIT=026
UNIT=027
UNIT=OI5
UNIT=016
UNIT=017
DSNAME=DISKDS,DISP=OLD
SYSOUT=A

The DISKDD DD statement is for a message queues data set residing on disk;
DISKDD is the name specified in the DDNAME= operand of the DCB macro for this
data set, while DISKDS is the name of the data set as specified by the DSNAME operand
of the IEDQDATA DD statement for the IEDQXA utility used to preformat disk
message-queues data sets residing on disk.

Information on the DD statments for line group data sets and message queues data sets
is found in the chapter Defining the MCP Data Sets.

The STEPLIB DD statement defines SYS1.TCAMLIB, the private library on which the
MCP was placed by the linkage editor. If the linkage editor had placed the MCP in
SYSI.LINKLIB, no such DD statement would be needed. As an alternate to the
STEPLIB DD statement, a JOBLIB DD statement could define the private library. The
JOBLIB statement would immediately follow the JOB statement, and would be coded
as follows:

I/JOBLIB DD DSN AME=SYS I.TCAMLIB,DISP=SHR

Defining the private library by a STEPLIB DD statement is necessary if the MCP is
running under MVT and is to be started by a START command; a JOBLIB DD state
ment may not be included in a cataloged procedure in SYS I.PROCLIB, while a
STEPLIB DD statement may be so included in an MVT system (see the next section).

Starting the MCP by a Cataloged Procedure The user may catalog his job control
statements for the execute step by using the IEBUPDTE utility program to place the
statements in SYS l.PROCLIB. (IEBUPDTE is described in the OS publication Utilities).
In order to start or restart his MCP, the user need only issue a START command from the
system console naming his cataloged procedure. (Use of the START command for this
purpose is described in the OS publication Operator's Guide.)

In the following example, three procedures are cataloged. The first of these, named
PROCl, causes an MCP, named MCPllocated in SYSl.LINKLIB, to be started. The
second and third procedures, named PROC2 and PROC3, both cause another MCP,
named MCP2 and located in a private library named SYS1.TCAMLIB, to be started.
The difference between PROC2 and PROC3 is in the line configurations specified;
PROC2 contains DD statements for one line group data set, while PROC3 contains DD
statements for two line group data sets. In the initialization section of MCP2 the user
has coded OPEN macros for both data sets, and has also coded DCB macros for both
data sets. When PROC2 is used to start MCP2, the OPEN macros for the extra line group
data set and the DCB macro for this data set do not execute since no DD statement is
present for this data set-but control passes to the next instruction in each case, and the
MCP will be started. Thus, by specifying his cataloged procedures, the user can
choose between MCPs, or between different line configurations for the same MCP, at
start-up time.

To get MCP2 with 2 line groups, at start-up time the user would enter

START PROC3.ID

at the system console (ID is the identification sequence that must be specified by
TCAM MODIFY commands entered at the system console; see the section Specifying
Operator Control Messages in Using TCAM Service Facilities).

I/STARTPGM
II
IISYSPRINT
IISYSUTl
IISYSUT2
IISYSIN
.1
.1
1/
I/DD1050
II

JOB
EXEC
DD
DD
DD
DD
ADD
NUMBER
EXEC
DD
DD

MSGLEVEL=l
PGM=IEBUPDTE
SYSOUT=A
DSNAME=SYS I.PROCLIB,DISP=OLD
DSNAME=SYS 1.PROCLIB,DISP=OLD
DATA
NAME=PROCI,LIST=ALL
NEWI=1O,INCR=20
PGM=MCPl
UNIT=OI5
UNIT=OI6

Putting the MCP Together 207

SAMPLE MCPS

MESSAGE SWITCHING
BETWEEN TERMINAL
TYPES

208

/I
IISYSABEND
.1
.1
/I
IlsTEPLlB
IIDD2770
/I
/I
I/SYSABEND
.1
.1
/I
IlsTEPLlB
/IDDI050
/I
/I
IIDD2770
/I
/I
IISYSABEND
1
1*

DD
DD
ADD
NUMBER
EXEC
DD
DD
DD
DD
DD
ADD
NUMBER
EXEC
DD
DD
DD
DD
DD
DD
DD
DD
ENDUP

UNIT=017
SYSOUT=A
NAME=PROC2,LlST=ALL
NEW1=10,INCR20
PGM=MCP2
DSNAME=SYS 1. TCAMLlB,DISP=SHR
UNIT=021
UNIT=022
UNIT=023
SYSOUT=A
NAME=PROC3,LlST=ALL
NEW1=10,INCR=20
PGM=MCP2
DSNAME=SYS 1. TCAMLlB,DISP=SHR
UNIT=015
UNIT=016
UNIT=017
UNIT=021
UNIT=022
UNIT=023
SYSOUT=A

This section presents three sample message control programs (MCPs) together with
associated application programs and JCL statements. The examples consist of an MCP
to message switch between terminal types, an MCP with an application program to
demonstrate inquiry and rapid response, and an MCP with two application programs
showing both file updating with checkpoint coordination and message retrieval.

The programs are designed to run under MVT on a 512K IBM System/360 Model 50.
The LKED procedure used in the programs for inquiry and rapid response and file up
dating has been modified to linkage edit modules to a private library named
SYSI.TCAMLlB rather than to SYSl.LlNKLlB, the standard linkage library.

The first two programs run in a single region; the third needs three regions. Terminal
requirements are included in the explanation preceding each MCP. The application
programs provided are guidelines only and therefore do not demonstrate real processing.

This MCP is designed to switch messages between IBM 1050 Data Communications
Systems. It assumes two nonswitched 1050s on a multipoint line and a switched 1050
on another line. The addressing and invitation characters used in the TERMINAL and
INVLlST macros, and the unit addresses on the DD JCL statements are installation
dependent. The values specified in this sample program are to be used as guidelines only.

The MCP is written to run in two steps. The first step is an assembly creating an
object deck. If the assembly is successful, the second step is a link-edit and go using
the object deck obtained from the assembly.

In addition to message switching, this sample program permits use of the operator con
trol facility. Operator commands may be entered either from the system console or
from the 1050 terminal named NYCl.

The format of a message entered in the system depends on whether it is a message to be
switched or an operator command. If it is an operator command it must begin with the
four characters OPID. If it is a message to be switched, its format is:

leading data X destination = data EOT

Since the translation table is 1050, the destination name and the X must be entered in
upper case. The message must end with an EOT character. Examples of messages en
tered and responses received are:

--------~~----- .----

a. Entered at NYC2, a message to be switched,

X CHGO = message data newlineEOT
Received at CHGO, the response
X CHGO = 000 I message data newlineEOT

b. Entered at NYC I, an operator command

OPID D TP,PRITERM newlineEOT
Received at NYCl, the response
IED041 I PRIMAR Y=SYSCON

Since all of the required INTRO operands are not specified in the assembly, the WTOR
message IED002A SPECIFY TCAM PARAMETERS will be received when the GO step
is executed. A minimum response is S=C,U. Any other INTRO operands with short
keyword equivalents may be altered at this time. Any operands not specified in the
assembly but required for this execution (for instance, fewer cross-reference entries, a
system interval, or removal of on-line test) may also be specified as part of the response
to the WTOR.

Each section of the sample program is commented to provide an explanation of the
macros used and the operands specified.

Putting the MCP Together. 209

IIASMMSGSw JLo MSGLEVELzl
II EXEC ASHfC,PARM.ASMa'NOlGAD,DECK'
liAS'" .SVSIN DO •
"SGS .. TCH CSECT

••••• •
PRIIIoT hOGEN

•• ACtiVATION AND tEACTlVATlCN SECTIOIlo
•
• THIS SECTION INllIALIZES THIS MESSAGE CONTRGL PROGRAM (lNTRO MA('Rc..t,
• OPEIIoS THE M~P DATA SETS (OPEN MACROSt, ACTIVATES THE MCP (READV
• MACROI, CLOSES T~E MCP DATA SETS (CLOSE MACROSJ AND DEACTIVATES THE
• PRCGRAM (RETURN MACROt. SIXTY 8UfFER UNITS (LNUNITS + MSUNITSt ARE
• DEfINEC, AND THE LENGTH OF EACH 8UFFER UNIT IS SET AT 116 BYTES
• (KEYLENI. THE NUM8ER OF UNITS PER BUFFER IS DEFINED IN THE DCb MACROS
• IN tHE DATA SET CEFINITION SECTION. THE TYPE OF STARTUP ON INTRO HAS
• 8EEf\ OMITTED FRO., THE MACRO TO PERMJT ALTERNATE SPECIFICATION AND
• ADCITICN OF GPERANDS AT EXECUTION. T~O LINE GROUPS (CONSISTING
• OF GNE LINE EACHt AND A MESSAGE QUEUES DATA SET ON REUSA8LE DISK
• ARE GPENED.
• •••••
TCAMll\oIT INTRO CP8aZ, CHANNEL PROGRAM 8LOCKS •

DISlCaYES, DISK QUEUING UTILIZED •
PROGlOaMESSAGE/SWnCHI,NG, PROGRAM IDENTIFICATION •
LNUI\oITSa~O, UNITS ASSIGNED TO LINES •
MSUIIoITS-20, UNITS ASSIGNED TO MAIN STORAGE •
KEYLENa1l6, SIZE OF 8UFFER UNITS •
CROSSRf-2, CROSS REFERENCE--DEBUG AID •
TRACE-l0, 1/0 TRACE--DE8UG AID •
DTRACE-l00, SU8TASK TRACE--OEBUG AID •
CONTROL-OPID 10 SEQUENCE FOR OPERATOR

• CONTROL MESSAGES
LTR 15,15 TEST IF INTRa EXECUTED
8Z OPEIIoDISK PROPERL Y

•
NDUEC A8END 123,DUMP
• CPENClSK OPEN

•
TM
8NO

(DISK,IINOUTJJ
DISK+~8.DC80FLGS
NOElIEC

IF NOT, ABNORMAL EXIT

OPEN DISK QUEUE BEFORE LINES
OPEN SUCCESSFUL
NCJ - A8END

GPENLINE C;PEN (GRCUPONE,(INOUTt,GROUPT~O,(INOUTII OPEN LINE GROUPS
TM
8NO

GRO'-PONE+48,DC80fLGS OPEN SUCCESSFUL
NOElIEC NO - A8END

•
TM GROlPTWO+48,DC~OFLGS
BNO NOEXEC

•
ALLSaELL READY
FINISHUP CLOSE (GRCUPONE"GROUPT~O)

CLOSE OISI<

• ••••• •

L 13,lt(13)
RETURN 111t,12)

•• DATA SET DEFINITION SECTION
•

OPEN SUCCESSFUL
NO - ABEND

BEGIN PROCESSING
CLOSE LINE GROUPS BEFORE DISK
CLOSE DISK DATA SET
RETURN CONTROL TO OS
SUPERVISOR

• THIS SECTIGN DEFINES THE DATA SETS fOR THE TCAM lINE &ROUPS AND THE
• MESSAGE QUEUES Olio DISK. THE DiSK MESSAGE QUEUES DATA SET IS DEfIhED
• TO EE REUSA8LE. 80TH lINE GROUPS ARE IBM 1050 DATA COMMUNICATION
• SYSTEM GROUPS. tYNAMIC 8UffER ALLOCATION IS NOT SPE('IfIED FLR
• EIT~ER GROUP. T~EY BOTH USE THE SAME MESSAGE HANDLER (MHt. bUFfERS
• ARE eUILT hlTH SINGlE BUffER UNITS (BUfSIZE-11b, AS IS KEVLEN ON
• T~E INTRG MACRO).
• •••••
ClSK OC8 CSORG .. TQ,

MA('Rf=(G,P),
OPTCO-R,
DDN"ME=OISKDD

• GROUPC:IIIE cet! IJSGI'G=TX,

Figure 23. Sample Message-switching Program (Part 1 of 3)
210

ORGANIZATIGN IS TCAM DISK •
RE~UIRED OPERAND •
DATA SET ON REUSABLE OISK •
NAME Lf ASSOCIATED DO Jel
STATEMENT
ORGANIZATIUN IS TeAM LINE •

HACI'F=CG,P)' REQUIRED LPERAND • CPRI-E, SEND/RECEIVE PRIORITY EQUAL •
j.)DN~ME"CDONE, NAME OF DO JCL STATEMENT • TRAI\S"1050, 1050 TRANSLATILN TABLE •
SCT-1050, SPECIAL CHARACTER TABLe • MH=SWnCHMH, MESSAGE HANDLER FOR LINE •
INVLIST-CLISTGNEI, INVITATION LIST FOR LIN~ • PClaeN,N) , NO DYNAMIC ALLGCATION •
~UFSIZE"1l6, SIZE OF A BUFfER • aUF IN-l, INITIAL ASSIGNMENT FOR INPUT •
8UFCUT=4. INITIAL ASSIGNMENT FOR OUTPUT • BUFfoIAX=It, MAXIMUM BUFFERS PER LINE • RESERVE-ell,O,O,O) RESERVED FOR INSERTION OF

• DATA IN MESSAGES
GR(lUn .. c, '"'Cd CSORG-TX, DCB fOR SECOND LINE GROUP • MACAF-CG,PJ, • CPRI-S, SEND ~AS PRIORITY OVER RECEIVE •

TRAI\S-1050,
SCT-I050,
DCN~ME"DDGRPTWO,
MtI· SW ITCHMH,
INVLIST-CLISTTWOJ,
PClaeN,NJ,
8UFSIZEa1l6,
BUF IN-l,
BUFCUTa4,
BUFfoIAX-It.
RESERVEaC2l,O,O.O)

••••• • •• TERMINAL AND LII\E C(lNTROL AREA
• • nus SECTJGN DEF INES THE TERMINAL TABLE fOR THE MCP, THE ENTRIES
• IN THE TERMINAL TABLE, AND THE INVITATION LISTS FDA EACH LINE. THE
• TERIiINALS NYCl AI\D NYCl ARE AS,.sOCfATED WITH THE LINE GROUP DEfINED
• BY THE GROUPONE eCB, WHILE CHGO IS THE ONLY LINE IN THE GROUP TWO
• LII\E GROUP. QUElING IS BY TERMINAL FOR EACH TERMINAL, AND USES
• MAIN-STORAGE QUEtING WITH REUSABLE CISK BACKUP. NYCI IS DEFINED
• AS A SECGNDARY OPERATOR CONTROL TERMINAL: THUS NYCI AND THE SYSTEM
• CGI\SOLE ARE THE CNLY TERMINALS CAPABLE Of ENTERING OPERATOR
• CO~MANDS. SINCE PRIMARY .. WAS NOT SPECifIED ON THE INTRO MACRO,
• Ttle SYSTEM CONSOLE IS THE PRIMARY OPERATOR CONTROL TERMINAL
• FOil THIS MCP.
• •••••
I\YCI

NYC2

•
eMGC

• •
LI STll\E
LlSThC

TTABlE LAST-CHGO
TERMINAL 'BY-T,

CCBaGROUPGNE,
RLNal,
TER""1050,
QUElES-MR,
ACDII-6ItOl,
AL TCEST-NYCl,
SEC JERM-YES

H:RMII\AL ,BY=T,
DCB=GROUPGNE,
RLN-l,
TER,.-1050,
QUELES=MR.
ADDII-6lC2,
AL TCEST=NYC1,
SECTERM=NO

HkMJ!\AL 'dY=T,
CCb=GRLLPTWO,
KLN=l,
TERfI=1050.
,",UELES=MR,
AODA=blC2,
'::;IAlt.lO=NuN~

THE LAST ENTRY IN THE TABLE
QUEUING BY TERMINAL
ASSOCI ATED DCB
RELATIVE lINE NUMBER
TYPE Of TERMINAL
MAIN STORAGE, REUSABLE DISK
ADDRESSING CHARACTERS
ALTERNATE DESTINATION
S~CONDARY uPERATOR CONTROL
SECOND TERMINAL IN GROUP

NOT AN OPERATOR CONTROL
TERMINAL
TlRMINAL FLk GRLUPT .. O

MAY NOT BE CALLEU BY THE
C~NTAAL PROCESSING UNIT
BOTH ENTkJES Ak~ ACTIV~

J~VLJST URDER=(NYC1+bItOd,NVCl+620bl GROUPuNE INVITATION
INVLIST GI'O~k=(CHGL+b20d) GROUPT~O INVITATION LIST

LIST

Figure 23. Sample Message-switching Program (Part 2 of 3)

• • • • • • • • • •

• • • • • • •
• • • • • • •
• • • •
* lI<

Putting the MCP Together 211

........
•
•• MlS~A~l n~~LlE~ S~lTICN
•
• THiS ~tl.llL' F-RLIIiDES THt: ME~SA"~-SIoaIH.HING CAPAtlJLIH GI- TI1~ M'-P.
• INC(MI~" Mt:~SAG~S ARE TKANSlATED TL t:~CDIl. A~D CHECKEu Ie StE If
• Th~~ A"~ uF~R~TL~ CLMMAND~. IF SL TH~Y ARE PROCt:SS~C tiY THE LPEkATO~
• CC~TRLl l-uNl.TION. If THEY ARE N~T, ThE DATE AND TIME IS INSEkT~D Ih
• TH~MESSAGi 'uSI~G 16 LF THE ~1 tlYTES kESERVtD bY Th~ "kESERV~="
• GP~~AND IN ThE DedI AND THE MESSAGE IS fCkwARUED TO THE UESTINATILN
• SPECIfIt:D IN THE HEADER. GUTGUING MESSAGES ARE SEQUENCED 'USIN~ THE
• Rt:~AININ" RESERVED CHARACTERSI, TRANSLATED BACK TO 1050 LINE CuDE
• Md. SEH •
SWnC .. MH STARTMH LC=IN
• • It..CCMI~u ut{uLP Of THE MH
•
INGIOCI.P INHCk

l.LUt: ,
::.HSl.AN x
FLKWARD , "j

• •
INENO

•
• CLTGCIt.." GRuUP Of THE MH ..
CUTGHLP GUThDR

SET S<;AN
SEQUENCE
CODE ,
LUTENO ..

CCBCflGS EI.lU
END

X'IC'

L~AV~ LINl CuNT~ul IN

P~Ol.ESS HEAJEk~ uNlY
TRANSLATE TU ldeDIC
SET S'-AN POINTER TO AN X
FORWARD TO THE DESTINATIuN
NAMED IN THE NEXT fOUR BYTES
OF THE MESSAGE
END Of THE INCCMING GROUP

PRO~ESS HEADERS ONLY
SET SCAN POINTER TO AN =
INSERT SEQUENCE NUMBER
TRANSLATE TO 1050 LINE CODE
END OF THE OUTGOING GROUP

IllK'~SGSw JGS MSGLEV~L=l.REGIGN=l~CK,TYPkUN=HClO
1152 EXi:C LK~DG
IILKEt.SYSlI~ 00 D~N=SYSl.TCAMlld,DISP=SHK
IILKEt.SYSIN DO ..

ObJECT DECK HfRE

IIGC.STcPlld UD CS~=SYS1.T~AMlID.uISP=ShR
IIGG.tISK~u DU DS~'ME=SAMPl,DISP=SHk
IISYSPRI~T UD SYSOLT=A
IISy~~eE~u DO SYSGLT=A
IIGL.C~(~c UU UNIT=Ol~
IIGG.tD~RPT~G to U~IT=011

Figure 23. Sample Message-switching Program (Part 3 of 3)

212

INQUIRY AND RAPID
RESPONSE This MCP is designed to utilize the conversational capabilities of TCAM. It locks a ter

minal to an application program from the time a message is entered until a response is
provided. A sample application program is also provided, but its functions are limited
to recognition of messages. It does not do any processing.

The MCP assumes two nonswitched IBM 1050 Data Communications Systems on a
multipoint line, and a single switched 1050 on another line. The addressing and invita
tion characters used in the TERMINAL and INVLIST macros, and the unit addresses on
the DD JCL statements are installation-dependent. The values specified in the sample
programs are guidelines only.

The programs are written to run in three steps. The MCP and the application program are
are first assembled and object decks are obtained. If there are no assembly errors, the
object decks are link-edited. The fiR.al step is the execution of the MCP, which will
attach the application program after the MCP data sets are open.

The inquiry and rapid response feature has a limiting effect on transmission in the multi
point line group. If one of the terminals on the line enters a message, the other is
locked out (cannot enter data) until the response has been received by the originating
terminal. The terminal on the other line may enter messages during a lock on the
multipoint line. The message format for the example is:

originif sequencet$ = ifdata)j/(l6}5) EOT

If the origin and sequence fields are valid, the response is:

origin date timeV sequenceV = out-sequence l,/dataV/

MESSAGE RECEIVED EOT

If the origin field was incorrectly specified, the response is:

ORIGIN FIELD WRONG

If the sequence number was incorrectly specified, the response is:

origin date timeif sequence SEQUENCE NUMBER HIGH

or

origin date time)! sequence SEQUENCE NUMBER LOW

Since the translation table used is 1050, the origin field must be entered in uppercase
characters.

The MCP includes the operator control facility. Operator commands may be entered
from the system console or from the terminal named NYC 1. If an operator command
is entered at NYC1, it must begin with the four-character identifier OPID.

Since all of the required INTRO operands are not specified in the assembly of the MCP,
a WTOR message IED002A SPECIFY TCAM PARAMETERS will be received at the
system console when the GO step is executed. The minimum required response is
'S=C,U'. Any other INTRO operands with short keyword equivalents may be altered,
and operands not specified in the assembly but required for this execution may also be
specified as part of the response to the WTOR.

Each section of the sample MCP and the application program that follows it has been
commented to provide an explanation of the macros used and the operands specified.

Putting the MCP Together 213

IIAS~I~~ J~d MSGLE~EL=1
II EXEC A~MF~,PARM.ASM&'NOLUAD,DECK·
liAS) :SYSIt. {;D •
INQUI~Y (;SI:CT

••••• •
PRIt.T NO('EN

•• A(TIVATIO~ AND CEACTIVATION SECTIG~
•
• THIS SECTleN INITIALIZES T~E MESSAGE CO~TRCL PRUGRAM IINTRO MACROJ,
• OPE~S THE MCP DATA SETS (OPEN MACReJ, ATTACHES THE APPLICATION
• PRCGRA~ (AT'ACH ~ACRQJ, ACTIVATES T~E MCP (READY MACROJ, CLOSES ThE
• MCP DATA SETS (CLOSE MACROJ AND CEACTIVATES THE PROGRAM (RETURN
• NACRe). SIXTY B~ffERS (LNUNITS + HSUNITS) ARE DEfiNED, AND THE
• lE~GTH wf EACH BUffER UNIT SET AT 116 (KEYLEN). THE ~UMBER Of UNITS
• PER BUffER IS DEFINED IN THE DCB MACROS IN THE DATA SET DEfINITIO~
• SECTICN. THE TYPE OF STARTUP ON INTRO HAS BEEN OMITTED fROM THE
• MAC~G TO PERMIT ALTERNATE SPECIFICATION AND ADDITION uf OPERANDS AT
• EXECUTION. T.O LINES ARE OPENED.
• •••••
TCAMI~IT INTRa DISK=NO,

•
•
1\10 f:XE C
•

PROGIOaINQUIRY/RESPONSE,
LNU~ITS·40,
MSU~ITS-20,
KEYLEN-U6,
CROSSRf'"'2,
TRACE-10,
DTRACE-100,
CGN1ROl=OPILl

LTR 15,15
bl GPE~LlNE

A81:ND 123,&)UMP

NO DISK QUEUING
PROGRAM IDENTifICATION
BUffERS ASSIGNED TO LINES
BUfFERS ASSIGNEO TO MAIN STOR
SIZE Of BUffER UNITS
CRo~S-REfERENCE - DEBUG AID
1/0 TRACE - DEBUG AID
SUBTASK TRACE - DEuUG AID
ID SEQUENCE fOR OPERATOR
CONTRUL MESSAGES
TEST If INTRa EXECUTEO
PRuPERlY

If NOT, Ab~URMAL EXIT

CHillUM: CPEN (GRCUPONE,(INOUTJ,GReuPTWO,(INOUTJ) OPEN LINE GROUPS
TM
dNO

GROLPONE+48,DCBUfLGS OPEN SUCCESSfUL
NOE)lEC NO - ABEND

•
•

1M GROLPTWO+48,DCBCfLGS
BNO NOEXEC

ATTACH EP-INQAP
REACY

fiNIShUP CLOSE (GRCUPONE"GROUPT.OJ
l 13,4113J

• ••••• •

RETURN (lit, 12)

•• tATA SET DEfINI1ION SECTION
•

OPEN SUCCESSfUL
NO - ABEND

ATTACH APPLICATION PROGRAM
BEGIN PROCeSSING
CLOSE LINE GROUPS
RETURN CONTRCL TO as
SUPERVISOR

• THIS SECTIGN OEf INES THE DATA SETS FeR THE T('AM LINE GROUPS AND The
• PRCCESS (.uNTROL INTERFACE. seTH LINE GROUPS ARE IBM 1050 DATA
• ce~~UNICATIuN SYSTEM GROUPS. OYNAMI' BUfFER ALLOCATION IS NuT
• SPECifIED fGR EITHER GROUP. THEY BeTH USE THE SAME Mt:SSAGE HANDLt:R
• (MhJ. BUFFERS ARE SUILT WITH SINGLE BUffER UNITS. THE PROCESS
• CC~TRGL b~CCK REFERS TO A DiffERENT MH. SINCE THE APPLICATION
• PRCGRAM GeTS AND PUTS MESSAGES, THE SUfFER SIZE fOR THE PROCESS
• C~~TRLL aLG~K IS THE SAME AS THAT fCR ThE lINES.
• •••••

• • • • • • • •

GROUFC~E oed OSORG=TX, uRGANIZATILN IS TCAM LINE •
. MACRf=(G,PJ,
('PRI=E,
DON~Me=(;DGRPlJNE,

TRA~S=1050,

SCT=1050,
MHe LI NEMH,
INVLIST=ILISTCNE),
PCI"("',~),
dUFSIZE=1l6,
dUF IN=2,

Figure 24. Sample Inquiry/Response Program (Part 1 of 6)

214

REQUIRED OPERAND •
SENDIRECEIVE PklLRITY EQUAL •
NAMe Of DO JCL STATEMENT •
1050 TRANSLATIL~ TASlt: •
SPECIAL CHARACTERS TAdlE •
Ml~SAGE HANDltR F~R LINE •
INVITATluN LIST FOR LINE •
NL uY~AMIC aUFFER ALLO~ATIO~ •
SIZe GF A aUFFE~ •
INITIAL ASSIGNMt~T - INPUT •

BUfCUT=4,
BUf~AX=4,
RESERVt=(Zl,C,O,O)

'~ITIAL ASSIGNM~NT - OUTPUT ...
MAXIMUM BUFFERS PER Llht ...
RtStRV~U fOR INSERTION Of

• OATA Ih MESSAGES
C.RCUPhL Dl.b OSORG=TX, D~B fCk SECOND LINE C.ROUP ...

MAC Rf= (G , P) , ...
CPR I=S,
DCN~ME=DDGRPTwO,
TRAI\S=1050,
SCT&1050,
MH=LlNEMH,
INVLIST-(LISTTWO),
P"-(N,N) ,
BUfINcZ,

SEND hAS PRIORITY OVER kECEIV~ ...
...
...
...
...
...
...
...

••••• •

BUFCUT-4,
I:IUF~AXz:4.

RESERVE-(Zl,O.O.O)
MH=~PPMH,
BUFSIZE-1l6,
BUFIN=5,
BUFCUT=5.
RESERVEc(5,0)

•• TERMINAL AND lll\E ceNTROl SECTION
•

PROCESS CONTROL BLOCK

• THIS SECTION DEFINES THE TERMINAL TAblE fOR THE HCP, THE ENTRIES IN
• ThE TERMINAL TABLE, AND THE INVITATION LISTS FOR EACH LINE. THE
• TERf!lhALS NYC1 AhD NYC2 ARE AssaCI.ATED WITH THE LINE GROUP DEfiNED
• BY THE GROUPONE tC8, WHILE tHGO IS THE ONLY LINE IN THE GROUPTWO
• LI~E GROUP (THIS IS A SWITCHED LINE. GROUPCNE IS NON-SWITCHED).
• ,UEUING IS BY TERMINAL FOR EACH TERMINAL, AND USES MAIN-STORAGE ONLY
• QUEUING. NYCI IS DEFINED AS A SECehDARY OPERATOR CONTROL TERMINAL.
• TWC PReCESS ENTRIES ARE ALSO uEFINEC, ONE FOR GET PROCESSING AND
• ThE eTHER FOR PUT. QUEUING FOR THE GET PROCESSOR ISHAIN-STORAGE
• CNLY AhO IT IS DEFINED AS ITS OWN ALTERNATE CESTINATION.
• eOTH PROCESS ENT~IES REFER TO THE SAME PROCESS CONTROL BLOCK (PCBI •

•••••
GPRC

PPRC
hYCI

•
t-.YC2

•
ChGG

•
LI STChE
LlSTHlIl

TTABLE LAST-CHGO
TPROCESS PCB-QPROC,

QUELES-HO,
AL TtEST-GPRC

TPROCESS fCB-QPROC

LAST [hTRY IN THE TABLE
PCB NAHE
MAIN-STORAGE OhLY QUEUING
ALTERNATE DESTINATION
PUT PROCESS ENTRY
QUEUING BY TERMINAL
ASSOC JATED DCB
RELATIVE LINE NUMBER
TYPE Of TERMINAL
MAIN-STORAGE OhLY QUEUES
ADDRESSING CHARACTERS
SIZE Of A BLOCK

TERMINAL '8Y-T,
DCB-GROUPONE,
RLN-I,
TER"-1050,
QUELES-MO,
ADDR-M02,
NT8LKSl= (1161,
SECTERH"YES SE'ONDARY OPERATOR CONTROL

TERMINAL
TERMINAL 'BY=T,

DCB-GROUPCNE,
RLN-l,
TERfI=1050.
QUElES=MO,
ADDR=620Z,
NT8LKSZz:(116),
ALTCEST=NYC1,
SECTERM=NO

SELOND TERMINAL IN GROUP~NE

ALTEMNATE DESTI~ATION
NLT A SECONDARY OPERATOk
CONTROL TERMINAL

TEkMINAl FOR GROUPTWO HRMINAl 'BY=T,
DCB=GRClJPTau ,
RLN=l,
TEl(fI=1050,
QUElES=MC,
ADDlh=6ZC2,
NTBLKSl=(1l6),
DIALr-.O=hCNE MAY NOT dE CALLED BY THE

ClNTRAL PROCESSOI(
INVLIST O~DER=(NYCl+b40d,NYCZ+6201:l) GROUPONE INVITATIUN
INvLIST u~DER=(CHGu+6l0d) GROUPTWU INVITATION LIST

LIST

Figure 24. Sample Inquiry/Response Program (Part 2 of 6)

• •
• • • •

• •
• • • • • • •
• • • • • • • •
• • • • • • •

Putting the MCP Together 215

.......
• •• MESSAGE HANDLER SECTION
•
• THIS SECTIUN PRO~IDES THE MESSAGE ~ANDLING fUNCTION Of THE MCP.
• IT C~NTAINS ThO MHS. THE fiRST RECEIVES INPUT fROM LINES AND
• FCR~AROS TO THE GET APPLICATION PRCGRAM AfTER ITS ORIGIN AND
• Sf'~ENC~ ~UM8ER hAVE 8EEN VERifiED AND THE DATE AND TIME HAVE BEEN
• INSEATED. THE TERMINAL THAT SENT THE MESSAGE IS LCCKEO TO TH~
• APFllCATICN PROGRAM UNTil A RESPC~SE IS ReCEIVED. MESSAGES wiTH
• JN~AlIO G~IGIN OR SEQUENCE NUMBER ARE CANC~lED, AND AN ERROR
• MESSAGE HUILT. (UTGOING MESSAGES ARE SEQUENCED AND AN E08/EOT IS
• INSERTED AT THE END Of THE MESSAGE. THE SECGND MH R~CEIVES INPUT
• Fat,. THE APPLICATION PROGRAM AND fORWARDS IT TO THE DESTINATIUN
• PA(YIOED HY THE ~PPlICATION PROGRAM.
• ••••• • .. FIRST
• lll'.£,

•
•

•
•

MESSAGE HA~DlER - FOR LINES

STARTMH lC-OUT,
STOP-YES,
CONY-YES

INHDR
CODE l05C

ORIGIN It

DATer IME
SEQUENCE
FORWARD DEST-C'GPRCr
LOCK MESSAGE

INMSG
CANCELMG X'5800000000'

REMOVE LINE CONTROL
STOP ON ERRORS
CONVERSE MODE REQUESTED
TO PROCESS HEADERS
CONVERT TO EBCDIC FR~M 1050
LINE ceDE
GET FGUR-CHARACTER ORIGIN
FRON MESSAGE
INSERT DATE AND TIME
VERIFY SEQUENCE NUMBER
FOR~ARC TO GET PROCESSOR
LOCK TERMlhAl TC APPLICATION
PROGRAM UNTIL RESPONSE
FULL MESSAGE RECEIVED
CANCEL MESSAGES WITH INVALID
ORIGINS AND SEQUENCE NUMBERS
IF ORIGIN WRONG, SEND

WRONG' THIS MESSAGE

.. ..

• MSGGEN X'~OOOCOOOOO',
Cl18'QRIGIN fiELD

ERRuRMSG X'lOOOOOOOOO',
DEST-ORIGIN,
DATA-C' SEQUENCE NUMBER

~RRORMSG X'08COOOOOOO',
DEST-ORIGIN,
DATA-C'SEQUENCE NUMBER

IF SEQUENCE HIGH, RETURN THIS •
MESSAGE WITH THE HEADER TO ITS •

HIGH' ORIGIN

• •

INEND
OUTHDR
SETSCAN C '-'
SEQUENCE
CODE ,
MSGFOAM
OllTEND

IF SEQUENCE lOW, RETURN THIS •
MESSAGE WITH THE HEADER TO ITS ..

lOW' ORIGIN
EhD OF INCOMING GROUP
TO PROCESS HEADERS
SET SCAN POINTER TO AN •
INSERT SEQUENCE NUMBER
TRANSLATE bACK TO liNE CODE
INSERT EOBIEOT IN MESSAGE
END OF OUTGOING GROUP
THIS MH

• SECCND M~SSAGE HANDLER - fGR APPLICATION PROGRAM
•
APFMt-

• •

•

STARTMH lC-OUT
INHDR
FORWARD DEST-PUT

INENe
GUTHDR
SETSCAN C '.'
SETEOF C'ClOSEAP'

CUTEND
CCBOfLGS EQU X'lC'

END

Figure 24. Sample Inquiry/Response Program (Part 3 of 6)

216

REMOVE lINE ceNTROl
TG PRGCESS HEADERS
TO DESTINATION IN HEADER
PROVIDED BY PUT APPLICATION
PROGRAM
tNO Of INCOMING GROUP
PROCESS OUTGOING HEADERS
RESET SCAN POINTER
SET END OF FilE IF CLOSEDOWN
MESSAGE RECEIVED
END OF OUTGOING GROUP

-- --- --------- - ----~
---- ~~

---,---.-~.- -----

IIAS~IN~AP JGd MSGlEVEl-l
II c~EC ASHfC,PARH.ASMa'NOlOAU,UfCK'
IIAS~.SYSIN 00 •
INQAF C.SECT

PRII'cT NOGEN
••••• •
•• I~JTIALllATION SECTION
•
• THIS SECTION ODES THE NECESSARY INITIALIZATION fUR THE PROGRAM.
• IT SAVES REGISTERS, ESTA8LISHES ADDRESSAblLITY AND SETS THE
• NEa SAVE AREA ADtRESS IN THE STANDARD SAVE AREA REGISTER.
•

......
•

SAVe
LR
USING
ST
lA

IlIt,121,,·
12,15
INg'P.12
13. SAVE+1t
l3,SAVE

•• ACTIVATION SECTION
•

SAVE REGISTERS
RESET BASE REGISTER
ESTABLISH ADDRESSABILITY
SAVE ADDRESS OF SAVE AREA
NEW SAVE AREA ADDRESS

• ThiS SECTION OPEfIoS THE DATA SETS FOR THE PROGRAM.
•
CPEN

......
•

EQU
CPI:N
OPEN

•
DCtliN
DCBtUT

•• P~CCESSING SECTION
•

OPEN INPUT DCB
OPEN OUTPUT DCa

• THIS SECTION DOES THE ACCESS, PROCESSING AND RETURN OF MESSAGES.
• IT ALSO TESTS FOR THE NEED TO CLOSE DOWN THE PROGRAM. AND CLEARS
• .O~K AREAS IF hOT.
• •••••
lOCP

LOCP2

•

•
• PUT

•
•

EIojU •
lA 10, GOTMSG
GET DCBIN.WORK
LA 9,1
LA 2,WCRK+8
EQU •
Cli 012"C'I'
BE PUT

LA
LA
CR
SE

B

9,119'
2,112'
2,lC
CLOSEM

LOGF2

EQU •
LA 2,1121
MVC 0116,21.GOTMSG
LA 9.21(91
STH 9,DCBOUT+82
PUT DCBCUT,.ORK
MVI WORK,C"
MVC wORK+1I llt9J ,WORK
B LljuF

•• DEACTIVATIO/'c SECTION
•

GET END OF WORK AREA ADDRESS
GE:T A MESSAGE
SET LENGTH COUNTER
GET START OF MSG DATA

SEARCH FOR END OF DATA
IF FOUND. COMPLETE PROCtSSING

INCREMENT LENGTH
BUMP TO NEXT CHARACTER
END AND NO I
YES - CLOSE OOWN

~(jNTINUE SEARCH

GET PAST LAST CHARACTER
PUT 'MSG RECEIVEO' IN MSG
ADD INSERT LENGTH
PUT LENGTH IN LRECL FIELD.
PUT THE MESSAGE

CLEAR WORK AREA TO BLANKS
GET ANOTHER MESSAGE

• THIS SE~TluN CLOSES THE uATA StTS FGH THE PROGRAM AND RETURNS TO
• T~E GS SuPEKVISO~ ..
••••• (LeSE,. hiu •

,-LuSE OC81,..

Figure 24. Sample Inquiry/Response Program (Part 4 of 6)

CLUSE INPUT DeB

Putting the Mep Together 217

• ••••• •

(.lLSE DCBClJT
l 13,SAVt+4
ktTUR~ (14,ld

•• E~RCR NA~CLINf SECTION
•

ClUSE OUTPUT OCb
RESTOKE ADDRESS Of SAVt AReA
RETJRN TU uS SlJPEKVISOR

• THIS SE~TIGN PROVIDES THf E~ROR HANCllNG FOR UHCORRECTAoLE 1/0
• ER~CRS AND tND Of DATA.
• •••••
ERRO~

•
END

• ••••• •

EQU
wTO
B

EQU
wTO
fj

•
'SY~AD ENTERED'
CLOSEM

•
'EOCAD ENTERED'
CLGSEM

•• tATA SET DEfiNITION SECTION
•

lJNCORRECTA8LE ERROR
CLOSE DOWN THE PROGRAM

END Of DATA INDICATOR
CLOSE DOWN THE PROGRAM

• ThiS SECTION DEfiNES THE DATA SETS USED BY THE PROGRAM.
• •••••
CC BIt.

tCBOLT

••••• •

()ce

DC8

CSORG=PS,
BLKSIZEz 124,
DONAME=APPIN,
SYNAD=ERROR,
EODAD=END,
lRECL=116,
OPTCD=w,
MAtRf=G*4
OSDRG-PS,
BLKSIZE=124,
DDNAf4E=APPDUT,
SYNAD=ERRCR,
LRECL=116,
OPTCD=wU,
MAC~f=PM

•• wtRK AREA DEfiNITION SECTION
•

PHYSICAL SEQUENTIAL
SIZE Of MESSAGE AND WORK
NAME Of DO JCL STATEMENT
UNCORRECTABLE ERROR HANDLER
END Of DATA HANDLER
SIZE DF LOGICAL RECORD
BUILD PREfiX fOR SOURCE
DCB fOR GET

DCB FOR PUT

• THIS SECTION DEfiNES THE wORK AREAS USED dY THE PROGRAM.
• •••••
SAVE
wORK
GOTMSG
•

DC
0(,

CC

END

18f '0'
150C' ,
C'MESSAGE RECEIVED'

Figure 24. Sample Inquiry/Response Program (Part 5 of 6)

218

PROGRAM SAVE AREA
wORK AREA FOR MESSAGE
MESSAGE PROCESSED INDICATOR

• ..
•
.. ..
•
•

IILKtl~_ J~d HSGLE~EL=l
" E)II:(. LKI:D
IllKEC.SYSLMCO 00 CS~=SYSl.TCAMLld,LISP=OLD
IILKEC.SYSIN DO •

CBJECT DECK HERE

NAME INI;IJlkY(RI
IILKtl~~AP Jed MSGlEVEL=l
" EHC LKED
IILKEC.SYSLMGD DO [SN=SYSl.TCAMll~,DISP=ULO
IILKft.SYSIN uO •

GBJECT DECK HERE

IIGOI~~ JC~ MSGlEVEL=l,REGION=liOK,TYPRUN=HuLO
IIJOfLIb DO DS~=SYSl.TCA"LIB,OISP=SHR
II E)EC PuM=INQUIRY
IIGU.SYSABENO 00 S~SGUT=A
IIAPFIN 00 w~AME=GFRC
II~PFC~T 00 QNAME-PPRC
IIOOG~PCN~ DO UNIT-029
IICOG~PTR~ 00 UNIT-021

Figure 24. Sample Inquiry/Response Program (Part 6 of 6)

Putting the MCP Together 219

FILE UPDATING WITH
CHECKPOINT
COORDINATION

220

This MCP demonstrates coordination of checkpointing by the MCP and an application
program. It also has the capability to switch messages and to use the operator control
facility. Finally, it has a second application program to utilize the retrieve capabilities
of the POINT macro. Two lines are assumed, one a point-ta-point line with two IBM
1050s, and the other supporting a single nonswitched IBM 2740. The addressing and
invitation characters used in the TERMINAL and INVLIST macros, and the unit ad
dresses on the DD JCL statements are installation-<iependent. The values specified in
the sample programs are guidelines only.

The job is set up to run in three steps. The MCP and both application programs are
first assembled. Then object decks from the first step are link-edited. As the final step,
the MCP is executed. The MCP will prompt at the system console when it is time for the
application programs to be started.

The format of the message depends upon the function desired. If it is a message to be
switched, the format on input is:

destination)/ S)Jorigin)Jdata)llEOT

If the origin is correct, the message received at the destination is:

destination)J S)Jorigin)jdata

If the origin is invalid, the message received at the source will be:

ORIGIN FIELD WRONG

If it is a message for the application program that does the file update, the input format
is:

destination~ A ~sequence)J dataW(l6)J)EOT

For valid sequence numbers, the message received at the destination is:

out-sequence destination)ll A)IIsequence date time)Jdata

If the sequence number is invalid, the message received at the source is:

SEQUENCE NUMBER HIGH

or

SEQUENCE NUMBER LOW

Messages for the retrieve application program may be formatted either:

destinationW)Jdata)J EOT

or

destination'f/ A ~sequence)ll/)IIdata)J EOT

The data is assumed to be in the format of the name of the origin of input messages or
of the destination of output messages to be retrieved, a character I for input or 0 for
output retrieval, and the sequence number of the message to be retrieved. Operator
commands entered from NYCl or CHGO must begin with the identifier OPID. Because
of the translation tables used, messages entered by NYCl and NYC2 must specify des
tination and origin in uppercase, while the same fields when entered by CHGO may enter
these fields in either upper or lowercase.

Since all of the required INTRO operands were not specified in the assembly, the WTOR
message IED002A SPECIFY TCAM PARAMETERS will be received at the console when
the GO step is executed. A minimum response must specify some sort of restart with
the S= operand. Any other operands with a short keyword equivalent specified in the
assembly may be altered, and any operands not specified but required for this execution
may also be specified as part of the response to the WTOR.

The MCP and its associated application programs are commented to provide an explana
tion of the macros used and the operands specified.

Putting the MCP Together 221

IIA~~LPDT ~yd ~SGLEVEL=l
II t)E' A~~F~,PARM.AS~='LGAD,DECK'
IIAS~.SYSjN JD •
LPDTCt<PT C.:>t:CT

*

PKI~T NGGEN

** ACTIVATION AND CEACTIVATION SECTleN
* * ThIS SEtTION INITIALIZES THE MESSAGE LONTRCL PROGRAM (INTRG MACRO),
* OPE~S THt MCP DATA SETS (OPEN MACReS), INDICATES THAT THE
* APPLILAT WN PRGGRAMS MAY BE S;TARTEC (wTO MACRO), ACTIVATES THE
* MLF (READY MACRO), CLOSES TH~ DATA SETS (CLOSE MACROS) AND
* DEACTIVATES THE FROGRAM (RET~RN MACRO). SIXTY BUFfERS (LNUNITS +
* MSL~ITS) ARE DEFINED, AND THE LENGTH Of EACH BUFFER UNIT SET AT
• llt (KEYLEN). T~E NUMBER Of UNITS PER SUFFER IS DEfiNED IN THE
* eCE MACROS IN THE DATA SET DEFINITIGN SECTION. THE TYPE OF
* STAHTUF ON INTRO HAS BEEN OMITTED FROM THE MACRO TO PERMIT
* ALTERNATE SPECIFICATION AND ADDITION OF OPERANDS AT EXECUTION.
* TW(LI~E GROUPS ARE CPENED.

* *****
TCAMI~IT INTRa CPB=2, CHANNEL PROGRAM BLOCKS *

DISK=YES, DISK QUEUING USED •
PROGIO=CHECKPGINT/COORCINATION, PROGRAM IOENTIFICATICN •
LNU~ITS·40, BUFFERS ASSIGNED TO LINES *
MSU~ITS.20, BUFFERS ASSIGNED TO MAIN STLR *
KEYLEN=1l6, SIlE Of BUFFER UNITS •
CPI~TVL=l800, CHECKPGINT EVERY 30 MINUTES •
CKREQS-2, CKREQ MACROS IN FILEAP *
CROSSRF=2, CRO~S-REFERENCE - DEBUG AID *
TRACE-lO, 1/0 TRACE - DEBUG AID *
DTRACE=100, SUB TASK TRACE - DEBUG AID •
CGNTROl=OPID 10 SEQUENCE FOR OPERATOR

* CONTROL MESSAGES

* hOEXEC

* CPENCISK

*

*

*

*

•

* *****
*

LTR 15,15 TEST If INTRa EXECUTED
BZ OPE~DISK IMPROPERLY

AbEND 123,DUMP AbfllURMAL EXIT

EQU •
OPEN (DISK,CINOUT)J OPt:N DISK QUEUE fiRST
TM DISK+4B,DCBOFLGS OPEN SUCCESSfUL
tlND NOEXEC NO - ABEND

OPEN (CKFT, (INOUT)) OPEN CHECKPOINT QUEUE NEXT
TM CKPT+48,DC80FLGS OPEN SUCCESSFUL
8Nu NGEXEC NO - ABEND

(PEN (GRCUPONE,(INOUT),GRCUPTwO,(INLUT)J OPEN LINE QUEUES
TM GROLPONE+48,DCBCFLGS OPEN SUCCESSFUL
dNO NOEXEC NO - ABEND

TM GROLPTWO+48,DCBeFLGS
BND NOEXEC

OPEN SUCCESSFUL
NG - AtSEND

wTO 'TI~E Te START APPLICATIGN PRCGRAMS'
RtADY BEGIN PROCeSSING

CLOSE (GRCUPONE"GROUPTWGJ
CLllSE CKPT
(,LlJSE DISK
L 13,It(13)
kHURN (llt,12)

CLuSE LINE QUEUES FIRST
CLOSE CHECKPOINT QUEUE NEXT
CLOSE CISK QUEUE LAST
RETURN CONTRCL Tu as
SUPERVISOR

** DATA SET DEFINITIGN SECTIGN

* * THIS SECTIGN DEFINES THE DATA SETS ~OR THE TCAM DISK QUEUE,
• TME ChECKPUINT Q~EUE, AND THE LINE GROUPS ~ND APPLltATION PRU~RAM
* PR(CESS CONTRlJL INTERFACE. LNt LINE GRGUP USES TwO IBM 1050 OATA
* CC~~lJNIGATION SYSTEMS ANO THE OTHER UStS ThE IBM 2740
* SYSTEM. DYNAMIG ~UFFER ALLOCATIGN IS NLT SPECI~IED FOR EITHtR

Figure 25. Sample Checkpoint Coordination Program (Part 1 of 10)

222

• GRl~P. ~uTH u~t THl SAMe ~e~~AGt hA~OLeR (Mh), AND ~OTH USE
• BUfHkS IWILT C.F ~I"'GLE UI'4ITS. T I: PRO('bS (.ONTlWL BLOCKS
• RtfER Te A DIfFERENT MH. &UfFER SIZE FLR SLTH APPLI('ATION
• Pk(bRA~S IS THE SAMl AS THAT fOR ThE LI~E ~kOUPS.

•
(;1SK D~D

UPT 1Jl.~

GROUPCNE O('S

•
GROUP TWO DL.tl

RETk" Pl.B

••••• •

CSORG=TQ,
MACRF=(G,P),
OPTCD=R,
DON'ME=CISKDD
OS£JRGzTQ,
MACRF=CG,P),
OPT('D-C,
OCN'ME-CKPTUO
CSORG-TX,
MACRF=CG,P)'
('PRI=E,
DCN'ME=O()UNE,
TRA/\,S=lOSO,
SCT z I05C,
MHzLlNEMH,
INVLIST-CINVO/,;E),
PCI-CN,N),
BUFSIZE z 116,
BUF IN"2,
BUFCUT=4,
BUF~AX=4,
RESERVE=C21,0,0,0)

CSORG=TX,
MACRF .. C G,P),
CPRI=E,
TRA/\,S=274F,
SCT=274F,
DCN'ME-DDTWO,
MH-LlNEMH,
INVLIST-CINVTWO),
PCI-CN,N),
BUFSIZE"116,
BUF IN=2,
BUFCUT=4,
BUFflAX=4,
RESERVE=(2l,0,0,0)
MHz'PPMH,
BUFSIZE=l1b,
BUF IN=!> ,
BUFCUT=S,
RESERVE=CS,O)
MH='PPMH,
BUFSIZE=116,
BUFIN-S,
BUFCUT=S,
RESERVE=(S,O)

•• TEkMI/';AL AND LII\oE (.CNTRJL Se(.TIUN
•

ORGANIZATluN IS TCAM DISK •
REQUIR~D OPERAND •
DATA SET ON REuSAbLe DISK '"
NAME OF DO JCL STATEMENT
CHECKPOINT DATA SET '"

'" DATA SET IS CHE('KPOINT '"

ORbANIZATION IS TCAM LINE '"

'" SEND/RECEIVE PRIORITY EQUAL '"

'" 10S0 TRANSLATION TABLE '"
SPECIAL CHARACTERS TABLE '"
MESSAGE HANDLER FOR LINE •
INVITATION LIST FOR LINE •
NO DY/,;AMIC BUFFER ALLOCATION '"
SIZE OF A BUFFER '"
INITIAL ASSIGNMENT - INPUT '"
INITIAL ASSIGNMENT - OUTPUT '"
MAXIMUM BUFFERS PER LINE '"
RESERVED FUR INSERTION OF
DATA IN MESSAGES
DCB FOR SECOND LINE GROUP '"

'" •
FOLDED 2740 TRANSLATION TABLE '"

'" '" '" '" • •
'" '" •

FILE PROCESS CONTROL BLO('K •

'" •
'"

PCb FOR RETRIEVE '"
• • •

• THIS SECTION DEFINES THE TERMINAL TABLE FOR THE MCP, THE ENTRIES
• IN THe T~RMINAl TAbLE, AND THE INVITATIuN LISTS fOR ~ACH LINE.
• IT 'lSG DEFl/';ES 'N GPTION flELu Tl ~AINTAIN A COUNTER OF MESSAGES.
• Rt~tIVED. THE TERMINALS NYGl AND NYC2 ARE ASSOCIATED wITH THE
• ll~t G~LUP DEFINED bY THe GRuUPuNt G~b, WHiLE CHGO IS THE ONLY LI~E
• 1111 THE ~RUUPT~G LINl GRDJP. ~UeUJ~G JS bY TERMINAL fuR tA~H
• TE~~INAL, AND MAIN-STCRAGE ~uEulNl· ~ITH REUSABLE OI~~ bACKUP IS
• l.SH~ NYCl AI'4C CHGu ARt: ~UTH OEfI~ED AS SE~CNDARY (JPERATOR (.(JNTkC·L
• Te~MINALS. FOUR PROCESS eNTkilS ARE ~L~u ulflNED, TWL FuR GET ANl
• he fu" ,",vT Pk(jCESSIf\G. IJUI:Ulf~G fl,j(THE ;I::T ENTklES IS MAIN
• STlj(~vl wITH REuSAblE ClSK ~ACKUP.
•

TTA~Lt lAST=CHGu
CLUNTIh LPTIJN H
fILE TPKOCESS FCB='PRUC,

CKPTSYI\i=YES,

LA~T ~f\TkY IN THE TAbLl
OPTILh FIELD feR GOUNTEk
"loc NA~E
FLk ~H[CKPuI~TlhG

Figure 25. Sample Checkpoint Coordination Program (Part 2 of 10)

* •

Putting the MCP Together 223

PUTF
GETR

PUT/(
hYCl

•
NYC2

CI1GO

INVO"E
INI/ThO
• ••••• •

QUU.ES=MR, MAIN-!)lURAGt, Rl:USAi:lLE aA(.~l'p *
ALTCEST=FIL~ AlTER~ATc uESTl~ATION

TPKOCESS PCB-QPROC St(.ONu PkuCES~ ENTRY .FOR fllEAP
TPKOCESS PCB-Rt:TRV, pet! "'A~E •

QUELES=MR, •
AL TCEST-GET~

TPKOCESS PCB-RETRV SECOND PROtESS ENTRY FUR AP~ET
TEKMINAL 'BY-T, QUEUING I:IY TERMINAL •

DCe-GROUP(;NE, ASS(JC JAlED DCI:I •
RLN-1, RELATIVE LINE NUMBER •
TERfI.1050, TYPE OF TERMINAL •
QUEl.ES-MR, QUEUING TYPE •
ADDR-64C2, ADDRESSING CHAkACTERS •
NTBLKSZ- (116), SI Zt OF A bLOCK •
OPD~TA.O, INITIAL VALUE uF OPTION •
SEC TERM-YES SECONDARY OPERATUR CONTkuL

TERMINAL
TERMINAL CBY-T, SECOND TERMINAL IN GROUP •

OCBaGROUPoNt, •
RLNa2, •
TER'-1050, •
ADDP-6202, •
QUE"ES-MR, •
oPD'TA-O, •
NTBLKSZ- C 116)

TERMINAL CBY-T, TERMINAL ON OTHER LINE ~ROUP •
DC8·GRo"PT~O, •
RLN-1, •
TERfI·27'tF, NCJNSW ITCHED WITH CHECKI NG •
QUE"ES-MR, •
ADDP-E201, •
NTBLKSZ-Cl16), •
OPD'TA-O, •
SEC TERM-YES

INVlIST ORDER-(NYC1+640B,NYC2+o20B) GROUPONE INVITATION LIST
INVLIST ORDER-CCHGO+E201,CHGO+E201) GROUPTWO INVITATION LIST

POLL TWICE BEFORE DELAY

•• MESSAGE HANDLER SECTION
• • TI1IS SECTION PROVIDES THE ~ESSAGE HANDLING FUNCTION OF THE ",Po
• IT CONTAINS TWO "HS. THE fIRST RECEIVES INPUT fROM LINES AND
• FOP_ARDS TO THE tESTINATION SPECifIED IN THE MESSAGE, WHICH MAY BE
• EIT~ER ANOTHER STATI(;N OR AN APPLICATION PROGRAM. MESSAGES ARE
• C(;""TEO, AND THE DATA INSERTED DEPENDS UPON A MESSAGE-TYPE
.. INCICATOR SPECIFIED IN THE: MESSAGE. INVALIO MESSAGES ARE
• CA"CELED AND MESSAGES INDICATING THE ERROR ARE RETURNED TO THE
• ORIGINATING STATION. THE SECOND MESSAGE HANDLER RECEIVES INPUT
• FRCM EITHER Of T~E APPLICATICN PRCJGRAMS, SEQUENCES THEM AND
• RETuRNS THEM TO THE DESTINATION SPECIfiED IN THE WORK AREA BUILT ~Y
• T~E APPLI~ATI(;N FROGRAM.
•
lIhE~~

•

..

STARTMH
INHDR
CHECKPT
CI.JUNTER
CODE ,
FORWARD

LC=OUT

CCUNTIN

.DEST

MSGTYPE A
SE\olUENCE
UATETIME
MSGTVPE S
URIGIN ,
INMSG
CANCELMG X'5BOOCOOOOO'

TAKE OUT LINE CONTROL
PRO~ESS INCOMING HEADERS
CHECKPOINT OPTION FIELDS
COUNT HEADERS RECEIVED
TRANSLATE TO EBCDIC
fORWARD TO DESTINATION NAMED
IN NEXT FIELD OF MESSAGE
TO AN APPLICATION PROGRAM
YE~ - SEQUENCE VERIFY IT
IN5l:RT DATE AND TIME
T8 A SWITCHED TERMINAL
YES - VERifY URIGIN
TO PROCESS ~OMPLETE MESSAGE
~ANCEL MESSAGES WITH INVALIL
O~IGIN OR SEQUENCE NUMB~R

HSGGEN X'4000COCOOO', SEND INVALID ORIGIN MESSAGt
eL1S'ORIGIN FIELD WRONG' BACK TL WHOEVER SENT IT

MSGGEN X'lOOOOOCOOO', SEND SEQUENCE HIGH MESSAGE
CLZC'SE~UENCE NUM~ER hl~H' TG ITS SOUk('E

~~GGEN X'C800COOOOO', Sl~D SEQUENCE LOW Hl:SSA6E

Figure 25. Sample Checkpoint Coordination Program (Part 3 of 10)

224

•
•
•

•
APPM~

•

•

CL1S'SEQUEN~~ NUMbtk
INeND
UUTHDR
MSGFORM
CODE ,
DUTEND

STARTMH LC=aUT
INHDR
FORWARD DEST=PUT

INEND
aUTHOR
SEQUENCE
GUT END

CCBGflGS EQU X'le'
END

LLW' TO ITS SOURCE
END OF INCOMING GkOUP
PR~'ESS uUTGUING HEADERS
INSERT E08/EOT AT END
CONVERT SACK TU LINE 'ODE
END OF OUTGOING GROUP
THI S MH
REMUVE LINE CONTROL
PROCeSS INCOMING HEADERS
FURWARD TO DESTINATION PRUVIDED
BY APPLICATION PROGRAM
END CF INCOMING GROUP
PROCESS OUTGOING HEADERS
SEQUENLE OUTGOING MESSA&ES
END OF OUTGOING GROUP

Figure 25. Sample Checkpoint Coordination Program (Part 4 of 101

Putting the MCP Together 225

IIA~~AF~l Jud MSGLEVEL=l
II~XE~ ASMFC,PARM.ASM='NGLUAD,UECK'
IIAS~.SYSIN 00 •
FJLEAP CHCT

••••• •
PKJlHNOGEN

•• I~lTIALllATIG~ SECTION
•
• THIS SECTION ESTABLISHES AOORESSA81LITY AFTER SAVING THE CALLER
• REGISTERS. A QSTART MACkO IS THE fiRST STATEMENT IN THE PROGRAM
• 8ECAUSE IT IS NEEDED IN ORDER TO USE TH~ CKREQ MACRO.
• •••••

'START
SAVE (14,12)".
LR 12,15
USING FILEAP,12
ST 13,SAVE+4
LA 13, SAVE

• ... ACTIVATION SECTION
•

FOR CKREQ USAGE
SAVE REGISTERS
SET dASE REGISTER
ESTABLISH ADDRESSABILITY
SAVE ADDRESS OF SAVE AREA
SET NEW SAVE AREA ADDRESS

• THIS SECTIGN OPE~S ALL APPLICABLE CATASETS. IN THJS EXAMPLE, THE
• CNL~ DATA SETS OPENED ARE THE TCAM DC~S. IN A TRUE FILE UPDATING
• PRCGRAM, THE OATA SETS FOR THE FILES WOULD ALSO 8E OPENED IN THIS
• SECTlOt\.
• •••••

••••• •

OPEN OC81h
OPEN DC8CUT

•• P~GCESSING SECTIGN
•

OPEN INPUT DC8
OPEN OUTPUT DU

• THIS SECTION DOES THE PROCESSING REQUIRED TO UPDATE FILES, AND TAKE
• ThE CUCROINATED CS AND TCAM CHECKPOINTS. SINCE THIS IS ONLY AN
• EXA~PLE,NO FILES ARE UPDATED. COHMENTS ARE PROVIDED TO EXPLAIN
• W~ERE THE UPDATI~G AND CHECKPOINTING WOULD BE DONE IN A TRUE FILE
• UPCATlhG PROGRAM. CHECKPOINTS ARE TAKEN AFTER EVERY 5 UPDATES.
• •••••
LtCP

LOOP2

•

•
PUT

•
•
CSCKFT
• •
• CTEST

EQU
LA
GET
LA
LA
LA
EQU
Cll
Bt:

LA
LA
CK
Bt:

B
EQU
LA
MVC
LA
STH
PUT

BCT

tieR

~j(KEQ

bjU

• 2,5
OCBIN,WORK
5,GCTMSG
4,1
3,WCRK+8
•
0(3)'C'I'
PUT

3,1(3)
4,1(4)
3,5
CLOSEN

LCOF2
••
3,1(3)
0(16,31,GaTMSG
4,21(41
4,OCBOUT+B2
DC8CUT,WORK

2,LCOP

0,0

•

SET A LOOP CONTROL
GET A teAM MESSAGE
GET END OF WORK AREA
SET LCRECL COUNT
GET WORK AREA START

SEARCH FOR END Of DATA
FOUND - BUILD RESPONSE

SUMP TO NEXT 8YTE -
BUNP LRECL COUNTER
END OF WORK
YES - ERROR

GO LOOK AT NEXT BYTE

GET PAST 1
PUT RECEIVED IN MSG
INCREMENT 'LRECL COUNTER
Sf:T LRECL f I EL 0
PUT THE MESSAGE 8A'K TU THE
TCAH QUEUES
DtCkEMENT AND TEST LOOP CONTROL

THE INSTRUCTIOhS NEED~D TL CS
CH~CKPGINT THE FILE JU~T
UPDATED WOULD dE PLACEU HERE
TtAM APPLICATION PROGRAM Q~EUE
CHECKPGINT

Figure 25. Sample Checkpoint Coordination Program (Part 5 of 10)

226

iIoTLlR 'TIH Te CLuSE IU:PLY 'ItS LR NC',REP,l,WE~B
X\. WECIH4) ,WEC~ CLEAR ECb FOR A ~AIT
wAIT ECB&WE~B ~AJT FOR RfSPONSE

•
CLI REP ,C·y· REPLY YES
dE CLOSEM YES - CLUSE DOWN

•
XC REP(8J,REP CLEAR REPLY AREA
MVI WORl<,X'40'
MVC WORK+l(149J,WGRK CLEAR WORK AREA TO BLANKS
B LOOP GET ANOTHER MESSAGE

• ••••• •
•• DfACTIIiATION SECTION
•
• THIS SECTION DEACTIVATES THE DATA SETS USED BY THE PROGRAM. ANY
• CT~ER tATA SETS CPENED I~ THE ACTIVATION SECTIUN WOULD BE CLUStD
• IN THIS SECTION.
• •••••
CLOSE'-

• ••••• •

EQU •
CLOSE DCBIN
CLOSE DcaeUT
l 13,SAVE+/t
RETURN Cl4,12J

•• E~RGR HANtlING SECTION
•

CLOSE INPUT DCB
CLOSE OUTPUT DCB
RESTORE ADDRESS OF SAVE AREA
RETURN TO OS SUPERVISOK

• ThiS SECTION PRO~IDES THE ERROR HANtlING REQUIRED FOR
• UNCORRECTA8LE ERRORS AND THE END-OF-DATA SITUATIONS. • •

•••••
ERROR EQU • WTO • SYI\AD ENTE",EO' UNCORRECTABLE ERROR

6 CLOSE" CLOSE DOWN THE PROGRAM
•
END EQU •

WTO ' EOtAD ENTERED' END OF DATA INDICATOR
a CTEST TEST IF CLOSEDUWN WANTED

• ••••• • •• CHCKPCINT SECTION
•
• ThIS SECTION PRO~IDES TH~ CHECKPCINTING AS SPECIFIED IN THE
• EXIT LIST OPERANt OF THE DCB MACROS.
• •••••
EXIT

• • • •
• ••••• •

EQU •
BCR 0,0

CKtl.EIol

•• t~TA SET D~FI~ITION SECTILN
•

IF OS CHECKPOINTING WERt
NEEDED (PER THE EXLST
OPERAND OF THE oed MACRUS)
THIS WGUlU BE A RUUTINt TG uu
THE CHECKPGINTING
THIS CuORDINATES WITH THE
Tl.AM CHECKPOINT

• THIS SECTION PRO~IDES ONLY THE TIIIIL TCAM DCbS. ANY OTHER DebS
• RELATIVE TO A FILE TO BE UPUATEU WOULD b~ DEFINEu IN THIS SELTILN.
• •••••
CCeJ 1\ DC8 DSO~G=PS,

BLJ<.SIlE:=124,
UONAME:=APPLl N,
SYN~"=ERRGR,
I::GDAD=ENO,
EXlST=EXITLIH,
LRECL=llo,

PHYSICAL SEQUENTIAL
SIlt OF ME~SA~E: AND wJK~

NAME OF DO JCL STATEMENT
UNCURRECTAL8E.ERRJR HAN~LEk
E~u CF DATA HANDLER
~S CHECKPUINT EXIT LIST
SILt GF LOGlCAL REI.ORO

Figure 25. Sample Checkpoint Coordination Program (Part 6 of 10)

*
* >I<

*
*
*
*

Putting the MCP Together 227

CCeuLT

••••• • •

uCd

OPTCD=W,
MA~Rf=GM

CSOJ<G=PS,
8lKSJZE-124,
DC"'''MEaAPPlJUT,
SYNAD=ERROR,
EXlH=EXITLIST,
lRECl-1l6,
OPTCD=hU,
MACRf-PM

••• C~K A~EA DEflNITILN SECTION

dUI LlJ PMt:fJ}(fOR SOURCf:
D('~ flJR GET
OUTPUT DC8

0(,8 fOR PUT

• THIS SECTION DEfiNES THE hORK AREAS USED BY THE PROGRAM.
• •••••
SAVE DC
REP CC
.. Eell OC
hORK CC
GOTMSG C~
EXITLI5T DC

IJC

• END

lSf'O'
2f' C'
f '0'
150C' ,
C'MESSAGE RECEIVED'
X'Sf'
Al3(EXITJ

SAVE AREA
REPLY AREA FOR ~TOR
EC8 fOR WTOR
WORK AREA FOR MESSAGE
MESSAGE PROCESSED INDICATOR
EXIT FOR CHECKPOINT
ADDRESS OF CHECKPOINT ROUTINE

Figure 25. Sample Checkpoint Coordination Program (Part 7 of 10)

228

•
• • • • • • •

//A~~A~P2 Ju~ ~SGLEVEL=l
II t)E~ A~MF~,PA~~.ASM='NOLUAD,UECK'
//AS~.SYSIN DO •
RETRIEVe (,SI:CT

PkII'.T NLGt:N
••••• •
•• I~ITIALllATIUN SECTILN
•
• THIS SECrICN PROVID~S THE NE~ESSARY I~ITIALILATION FOR THE PRuGRA~

• INCLuDING SAVING OF REGISTERS AND eSTABLISHING ADDRtSSABILITY •

•••••

.......
•

SAVE
L~

USING
ST
LA

114,ll),,·
12, IS
RETRIEVEtl2
l3,SAVl:+4
13,SAVE

SAVE REGISTERS
RESET BASE ~tGISTER
ESTA~LISH ADDRESSABILITY
SAV~ ADDRESS OF SAVE AREA
SET NEw SAVE AREA ADDRESS

•• ACTIVATION SECTION
•
• THIS SECTION OPENS THE DATA SETS USED IN THE PROGRAM.
•
••••• •

LJPi:N DC81N
'"'PEN DCBCUT

OPEN DCd FOR INPUT
OPtN DCB fuR OUTPUT

•• PRGCESSING SECTION
•
• THIS SECTION DOES THE PROCESSING NECESSARY TG DETERMINE FRCM THE
• INFUT MESSAGE THE MESSAGE TO BE RETRIEVED, RETRIEVES IT AND StNDS
• IT BACK TU THE REQUESTER OF THE ORIGINAL ~ESSAGE.

• •••••
lGCPl

lOGP~

..

•
•
PROCESS

CTEST

•

•

EQU
lA
GET
lA
EQU
CLI
Bt

LA
CR
dE

b

E\o1U
MVC
MVC
MVC
PACK
XC
eVB
HH
MVe
POINT
GET
MVe
LH
5TH
PUT
EQU
wTOR
XC
.. AIT

ell
bE

•
la, FTwORK
DCBIN,WORK
l,~CRK+S

•
Olll,C'/'
PROCESS

2,1(2)
l,lC
ClOSEM

LCOFl

•
TERMWORKIS),lIl)
IOWCRKIl),91l)
DOUELEIS),10ll)
DGUBlE+6Il),DOU8LEIS)
DCUBLE(6) ,DOUBLE
3, DCU8l E
3,DCUBlE
SEQhORK(2) ,DOUBlE
DCBIN,PTWGRt<
OC8IN,wORK
WORK,TERMWGRK
9,DCBIN+S2
9,DC80UT+82
DCBCUT,WGRK
•

GET END OF wOkK AREA ADDRESS
GET REQUESTER MESSAGE
GET START Of MESSAGE

START OF DATA
YES - PICK UP RETRIEVE DATA

BUMP TO NEXT CHARACTER
END AND NO I
YES - CLOSE DOWN

CHECK FOR I

PUT TERMNAME IN POINT wuRK
PUT I LR 0 IN POINT WORK
PuT SEQUENCE IN WORK AREA
CONVERT TO PACKED DECIMAL
CLEAR H.IGH-ORDER ByreS
CONVERT TO HEXADECIMAL
PUT IT 8ACK IN WORK AREA
PUT I~TO POINT WORK
POINT TO WORK AREA
GET RETRIEVAL RECORD
PUT NAME IN RETURN AREA
GET INPUT LRECL
SET LkECL FOR PUT
RETURN RETRIEVED MESSAGe

, TI f'E TI,; CLOSE
WECB(4) ,WECB
EC8=WEeB

REPLY YES uR NO',REP,l,WEeB
CLEAR ECB fOR WAIT
WAIT FCK RESPONSE

REP,C'Y'
CLLSEM

REPIS),Rt:P

REPLY YES
YES - CLUSE Duw~ THE PkGukAM

~lt:~R KESPuNSt AREA

Figure 25. Sample Checkpoint Coordination Program (Part 8 of 101
Putting the MCP Together 229

• ••••• •

MVI
MVC
b

WCRI<,X'40'
WORI<+1(149I,WLRK
LCGFl

•• Dc~CTIVATION SECTIuN
•

CLeAR WORK AReA TO BLANKS
~lT ANCTHek ReCORD

• THIS SECTIONDEACTIIJATES THE DATA SETS US~D IN THE PROGRAM ANu
• RET~RNS CONTROL TO THE OS SUPERVISOR.
• .** ••
CLLSEM

* * ••••
*

EQU *
CLOSE OCBIN
CLOSE DCbClJT
L 13,SAIJE+4
RETURN (14,121

•• ERROR HANDLING SECTION
•

CLOSE INPUT DCB
CLOSE OUTPUT Dca
RESTORE ADDRESS OF SAVE AREA
RETURN TO OS SUPERVISOR

* THIS SECTION PROIJIDES THE eRROR HANtLING FOR UNCORReCTABLE ERRORS
• ANt END OF DATA SITUATIONS.

* •••••
ERROfi

* END

• ••••• •
•• t~TA
•
• TI"I1 S • ,.
cc e I"

[CBOlT

••••• •

EQU * WTO ' SYIIAD ENTERED'
B CLOSEM

EQU •
wTO ' EOtAD ENTERED'
e CTEST

SET DEF I NI Tl ON SECTION

SECTlCN DEFINES THE DATA

DCB DSGI'G=P S,
BLKSIZE=124,
DDN~ME=APP2IN.
SYfdD=ERRGR,
ECD~D=END,
LRECL=116,
OPTCD=W,
MACRf=GMT

DCB DSORG=PS,
BLKSIlE=124,
DDN~ME=APP20UT,
SYN~D=ERROR,

LRECL=116,
OPTCD=WU,
MACRf=PM

•• wCfiK AREA DEFINITILN SECTION
•

UNCORRECTABLE ERROR
CLOSE DOWN THE PROGRAM

END OF DATA
TEST IF CLOSEDOWN NEEDED

CONTRCL BLOCKS FOR THE PROGRAM.

PHYSICAL SEQUENTIAL
SIZE OF MESSAGE AND WORK
NAME OF DO JCL STATEMENT
UNCORRECTABLE ERROR HANDLER
END OF DATA HANDLER
SIZE OF LOGICAL RECORD
BUILD PREFIX FOR SOURCE

DCB FOR GET
OUTPUT DCB

DCB FGR PUT

• THIS ScLTION DEFINES ThE WCRK AREAS U~~D dY THE ~R~GRAM.
• •••••
SAIJI: LL 1aF'O' PkLG.<A~ SAVE AReA
GOUtiLf: (iL /:lC' ,

DCUdLE~ORD WORK AREA
1cIf(.~ LL F'O' E('S fOR WAIT
REP (iL 2f'C' ARt:A FeR WTOR REPLY
.. GRK CC 150C' , AREA FOR GET AND PUT
PTlclul'K t .. u • POINT WORK AREA
TEICi'1~lkK el- 8C' , FOR TE:RMINAL NAME
lCWCi'K DC C' , FGR I LR 0
SH; .. OI<. LL 2X' C' HR St:~UEI\oCE" NUMIiEk
•

lNu

Figure 25. Sample Checkpoint Coordination Program (Part 9 of 10) ,
230

* • • • • • •
•
*
* • •
*

IILKtLPDT JOb MSGLEVfL=1
II E)EC LKEO,PARM.LKfO='LIST,LtT,XRtf '
IILKEu.SYSLMOO 00 tSN=SYSI.TCAMLId,OISP=OLD
IILKEC.SYSIN 00 *

GdJECT DECK HERE

NAME IJPtTCKPHR)
IILKCAPPI JOB MSGlEVEl=1
" EHC LKEO
IILKED.SYSlMOo 00 CSN=SYSI.TCAMLID,OISP=OLO
IILKEt.SYSIN DO *

08JECT DECK HERE

NAME FlLEAP(R)
IIlKtAPP2 JOB MSGlEVEL=1
II EXEC LKEO
IILKEC.SYSLMGD DO CSN=SYSI.TCAMLld,~ISP=OlD
IILKEC.SYSIN 00 *

OBJECT OECK HERE

NAME IH:TRIEVE(R)

ilGOlPOT JOB MSGlE~El=I,TYPRUN=HGlO,REGION=120K
IIJOELIB 00 OSN=SYSI.TCAMLI8,OISP=SHR
II E)EC PGM=UPOTCKFT
IISYSA8f~D 00 SYSOLT=A
IICISKOO 00 OSNAME-SAMPI,OISP=SHR
II'KFTOO 00 OSNAME=SAMP2,UNIT=231I,VOlUME=SER=TSTAMI,SPACE=(TRK,(3J),
II OISP-(NEW,CATLGJ
IICOC~E CO UNIT&OI5
IIOD1~C 00 UNIT=OI7

IIGO~PPI Jud MSGLf~El=l,TYPRuN=HGlD
IIJGBLld DO OSN=SYSl.TCA~lIB,OISP=SHR
II E)EC FuM=fIlEAP
II~PFLIN DO QNAME=fIlE
II~PFLL~T 00 QNAME=PUTf

IIGU~PP2 JOB MSGlEVEL=l,TYPRUN=HOl~
IIJGBLlb UU OSN=SYSl.TCAMLIB,OISP=SHR
II EXEC PGM=RETRIE~E
IIAPF2IN CU QNAME=GETR
IIAPf2CUT DO QNAME=PUT~

Figure 25. Sample Checkpoint Coordination Program (Part 10 of 10)

Putting the MCP Together 231

(

WRITING TCAM-COMPATIBLE APPLICATION PROGRAMS

As described previously, a TCAM message may consist of header and text portions. The
header portion is the primary concern of the Message Handler (MH) sections of the Mes- -
sage Control Program (MCP). If any processing of text portions of messages is required,
this processing is performed by an application program, written by the user to suit the
needs of his particular application. The main concern of TCAM with respect to an ap
plication program is to pass messages to the program for processing and later to return
the messages to the appropriate station. (However, there may be no return message, as
in the case of a file update application.) TCAM provides the means of transferring data
between the patitions (GET, PUT, READ, WRITE, and CHECK macros), and provides
a unique scheme for buffer usage for application programs. Application programs run
asynchronously with the MCP, usually in another partition or region, but always as a
separate system task or subtask. The MCP must have higher priority than any application
program, since the MCP must have control after system interrupt (this becomes extreme
ly important if the user's application program has a program loop that might cause
continued contention with the MCP for control).

TCAM application programs need not be concerned with the station at which a mes
sage originated, or with the transmission code of the line, or with what the station line
control had been. TCAM automatically handles line control in the Message Control
Program. However, if a response message is generated, the application programmer
must consider line control characters in the response, unless a MSGFORM macro is
coded in the outheader subgroup handling messages for the destination station. The
response message must be in line code unless the CODE macro is inserted in the out
going group handling messages for the destination station.

Messages to be processed are placed in a destination queue by a Message Handler; a
destination queue and its process entry in the terminal table are defined by a
TPROCESS macro. A message from a station (or from an application program) can be
routed to any predefined application program by a FORWARD macro.

The GET or READ macros that obtain messages from the destination queues transfer
the data to a user-specified work area. The work area and the units of work placed in
it are discussed below. Once in the work area, the data is analyzed and processed by
the application program. Optionally, a PUT or a WRITE macro causes a response mes
sage to be returned to the Message Control Program for transmission either to a station
(not necessarily the one that originated the message), to a list of destinations, or to
anoth~r application program.

TCAM application programs allow the user to define at execution time, via the
QNAME= parameter on the DD card, which of the destination queues specified in the
terminal tableis to be linked to the related data set.

TCAM allows the user to run his application programs in a non-teleprocessing environ
ment for debugging, and then run them under TCAM without reassembling. The user
may include such.MCP-related, application-program TCAM macros as TCOPY, ICOPY,
QCOPY, TCHNG, ICHNG, MRELEASE, and MCPCLOSE (all of which are discussed -
below) in an application program being debugged in a non-teleprocessing environment,
provided that the macro definition library for the system under which the program
is assembled includes the necessary macro definitions (as the result of a system gen
eration procedure). When these macros are encountered at execution time in a system
having no MCP, a return code is generated and control passes to the next instruction;
otherwise, execution of the program is not hindered.

In some applications, the required processing may be such that one destination queue
can handle all the messages, and a single application program having a single interface
with the MCP can perform the processing. If various kinds of processing are required,
there are ,two means of providing it:

• Each of several application programs may be provided with its own interface with
the MCP, and the destination field in the message header is used to route the mes
sage to the appropriate destination queue for the desired program.

TeAM Application Programs 233

234

•. Alternatively, all messages that require processing are routed to the same application
program, where a user-written analysis routine determines the kind of message re
ceived, based upon a user-specified code in the message. The messages are transferred
by this routine to the appropriate processing routines, or possibly to a processing pro
gram in another partition or region (via a PUT or WRITE back to the MCP).

When the destination field in the header is used to route messages to the appropriate
processing program, the processing needed for the message must be determined with
Message Handler facilities. Messages requiring different processing can be differentiated
by MSGTYPE or PATH macros (see the descriptions of these macros).

Application programs transfer data to and from the MCP using GET/PUT (QSAM) or
READ/WRITE/CHECK (BSAM) macro instructions. Support is provided for fixed-,
variable-, and undefined-format work units. When using TCAM's GET/PUT support,
the user may specify move or locate mode, but not substitute mode.

If the EODAD= operand is specified in the input DCB macro, the SETEOF macro may
be issued in the MCP to indicate the end of a file of data, and the EODAD exit is taken
on the next GET or READ after TCAM moves end-of-message into the user's work area.
On succeeding GETs or READs, normal processing continues. If EODAD is not speci
fied at end-of-data, the application program may stop issuing GETs or READs and issue
a CLOSE macro to close the input DCB. If no SETEOF macro is issued, the GET or
READ with CHECK is not finished until a message arrives on the queue. Time of entry to
EODAD is controlled by the user because the real-time nature of the process queue for
the application program. The SYNAD exit for logical errors is handled in the same
manner as under BSAM and QSAM. The SYNADAF and SYNADRLS macros may be
used.

Certain other features can also be incorporated into an application program:

I. A PUT or WRITE work area prefix can be used to specify the destination to which
a message can be sent.

2. A GET or READ work area prefix can be used to receive the name of the message
source.

3. The work area contents may be described to TCAM for PUT or WRITE operations
and by TCAM for GET and READ operations as first segment, intermediate seg
ment, last segment, or single-segment message.

These three options may be included at execution time by a DD card parameter,
(DCB=OPTCD=operand), or at assembly time by the appropriate DCB operands.

The POINT macro, used in conjunction with a GET or READ macro, provides the user
with the capability to retrieve a message from a message-queues data set on disk, when
this message has already been sent to its destination.

TCAM provides certain teleprocessing network control facilities from an application pro
gram (TCOPY, ICOPY, QCOPY, TCHNG, ICHNG, MRELEASE, and MCPCLOSE
macros). All operator control functions are available from application programs;
operator commands may be transferred by PUT or WRITE macros to the MCP. Re
sponses to operator commands may be directed to any destination queue (except a PUT
process entry) by the ALTDEST= operand of the PUT process entry.

Application programs written to run with a QT AM Message Control Program can be
used when conversion is made from QT AM to TCAM. QT AM application programs
being modified to run under TCAM need only be reassembled with a QSTART macro
as the first instruction. During execution, the modified application program operates
in most respects as it did under QTAM. Appendix E gives details on how to run QTAM
application programs under TCAM.

Message Flow to an
Application Program

Overview of the
MCP/ Application
Program Interface

This section describes the flow of a single-segment message between a remote station
and an application program operating under TCAM with QSAM as the SAM interface.
The steps described here are repeated for a multisegment message, except that the
response message, if any, may be returned by the PUT macro any time after the first
segment is received. This discussion summarizes the description in Message Flow within
the System in the TCAM Concepts:and Facilities, and adds a detail unique to application
programs, the read-ahead queue.

A message segment enters the MCP and is placed in a buffer. The segment is handled
by the incoming group of the MH for the originating station and is placed on the
destination queue for the application program (called, hereafter, the process queue).

The segment is then removed from the destination queue and handled by the outgoing
group of the MH for the application program. At this point, the message is queued on
the read-ahead queue, an area in main storage related to the process queue. The read
ahead queue permits overlap of MCP and application-program processing of messages
queued for a particular destination. This queue allows a message to be removed from
a process queue to be processed by the outgoing group of the MH for the application
program at the same time that a message that was previously on a process queue is being
processed by the application program itself. The application program obtains the
message from the read-ahead queue by GET or READ macro instructions. These macros
obtain the messages in sections of data called work units, that will fit in an area of the
application program called the work area. The message is placed in the work area for
processing; the size of the work area bears no necessary relationship to the size of the
MCP buffers.

After processing, and assuming there is a response message, the message is returned to
the MCP, where it is placed in buffers. The buffers are handled by the incoming group
of the MH for the application program and are placed on the appropriate destination
queue (which may also be a process queue). After handling by the outgoing group of
the MH for the destination, the response message is either sent on a line to a remote
station or transferred to another application program.

The TCAM MCP routes messages between an application program and remote stations.
Because an application program depends on the MCP to perform its input/output
operations, an interface must be established between an application program and the
MCP. TCAM provides the following services that establish interface from an applica
tion program:

• Definition of the interface (by the application program input and output DCB
macros and DD statements, and by the PCB and TPROCESS macros in the MCP).

• Initialization and activation of the interface (by the OPEN macro).
• Transfer of messages between the application program and the MCP (by GET, PUT,

READ, WRITE, CHECK, and POINT macro instructions).
• Deactivation of the interface (by the MCPCLOSE and CLOSE macros).

TCAM also provides buffer facilities specifically designed for the MCP interface.

Unlike the functions performed by the analysis and processing routines of an application
program, these functions are partially or wholly peculiar to TCAM and the telecom
munications environment. Therefore, TCAM provides routines to accomplish these
functions. Linkage to these routines is established by TCAM and by standard data
management macro instructions in an application program. These macros are discussed
in this and succeeding sections.

Information necessary for communication between the MCP and an application program
is provided by a control area defined by a PCB macro issued in the MCP (note also that
the queues for an application program are defined by a TPROCESS macro in the MCP).
No more than one application program can use a process control block, the control
area defined by a PCB macro.

TeAM Application Programs 235

Defining the Components
of the Interface

236

Message transfer from a destination queue to an application program is controlled by an
input data control block (input DCB). An input DCB defines a logical data set called an
input data set, which contains the messages being sent to the application program from a
single destination queue created by a TPROCESS macro. If response messages are gen
erated, message transfer from the application program to the MH queue is handled by
another data control block, the output DCB. An output DCB defines a logical data set
called an output data set, which contains messages being returned from the application
program to the MCP by one process entry in the terminal table. (A PUT, GET, READ
or WRITE macro names a DCB. The DCB macro specifies a DD statement. The
QNAME parameter of the DD statement is coded with the name of a process entry.
One data set must be defined for each process entry designed to receive messages from
and send messages to an application program.) The user must define, open, and close
the logical data sets represented by the DCBs.

A separate process entry must be specified for each input or output DCB in the applica
tion program. A DD statement must be provided for each such DCB. The format of the
DD card is indicated later in this section.

Figure 26 shows how to set up the interface between the MCP and the application pro
gram by coding macro operands. Only those operands that help establish the interface
are shown in the figure.

The GET, PUT, READ, WRITE, PCB, and input and output DCB macros, and the DD
statements for the input and output DCB macros, are discussed in detail in this chapter.
The TPROCESS macro is discussed in Defining Terminal and Line Control Areas.

The GET and PUT or READ and WRITE macros issued in an application program each
specify the name of a data control block created by an input or output DCB macro.
One input DCB macro must be coded in the application program for each terminal-table
process entry named in a destination field in a message header or in an operand of the
FORW ARD macro to direct messages to the application program. A destination queue
is created by TCAM for each such process entry. One output DCB macro must be coded
in the application program for each process entry to be associated with response
messages entered by the application program.

Each input or output DCB macro specifies (in its DDNAME= operand) a DO statement
that must be included as part of the Job Control Language for execution of the applica
tion program. This DD statement has a QNAME= parameter that specifies the name of
a process entry in the terminal table of the MCP. The TPROCESS macro that creates
each process entry has a pcbname operand, which names a PCB macro. The PCB macro
names an MH to handle messages being sent to or received from the application program
by process entries whose TPROCESS macros name this PCB macro. The PCB macro is
similar to the line group DCB macro in that both specify Message Handlers and other
related values. The MH specified by the line group DCB macro handles messages trans
mitted between remote stations and the computer, while the MH specified by the PCB
macro -handles messages sent to and received from the application program by the MCP.

Among the components of the MCP/ Application Program interface are the following:

• Process entries located in the terminal table and referred to by GET/READ and
PUT/WRITE macros

• Data control blocks (and DD statements) for the application-program input and out
put data sets

• The process control block (this block specifies the MH for the application program)
• Buffers to transfer data between the MCP and the application-program work areas.

Process entries are created by TPROCESS macros (described in the chapter Defining
Terminal and Line Control Areas). The other components of the interface are described
in this section.

Figure 26. Interface between the Application Program and the MCP

Defining the Application Program
Data Sets and the Process
Control Block Two types of logical data sets, called the input data set and the output data set, must be

defined when writing a TCAM application program.

The input data set consists of the data (messages or records) sent to an application pro
gram from a single destination queue created by a TPROCESS macro (process queue).
An input data set is defined by an input DCB macro. One input data set should be de
fined for each process queue.

The messages or records in an input data set are transferred from the process queue to
the application program by a GET or READ macro that specifies the name of the input
data set.

An output data set contains the messages or records returned from the application pro
gram to the MCP by a process entry in the terminal table. An output data set is defined
by an output DCB macro. One output data set must be defined for each process entry
designed to receive messages from an application program. Messages are transferred
from the application program to the MCP by a PUT or WRITE macro specifying the
name of the output data set.

The line group DCB macro for the MCP names the Message Handler that is to handle
messages sent over any line in the line group for which it is issued. For the application
program, this function is performed by the PCB macro rather than by the input or out
put DCB macro. One and only one PCB macro must be coded for each application

TeAM Application Programs 237

Input DeB Macro Instruction

dcbname

keyword operands

238

program that is to interface with the MCP. This macro is coded in the MCP rather than
in the application program. In addition to assigning an MH to the application program,
the PCB macro specifies the size of the buffers to be assigned by the MCP to handle
messages being sent to and received from that application program.

The next sections describe the input and output OCB macros, the DD statements re
quired for these macros, and the PCB macro. Many operands of the input and output
DCB macros are concerned with aspects of data transfer and processing (type of record,
type of work area, etc.); these operands should not be coded until Transferring Data
Between an MCP and an Application Program in this chapter has been read.

The input DCB macro:

• Defines an input data set for an application program;
• Must be issued for each process queue accessed by the application program with GET

or READ macros;
• Specifies whether BSAM or QSAM is to be used to transfer messages or records from

the MCP to the application program;
• Specifies the length in bytes of the application-program work area to which data is

transferred from the MCP;
• Specifies the length in bytes of buffers to be used in the MCP to transfer messages

from the process queue to the application-program interface;
• Specifies whether the application program is to handle entire messages or message

portions called logical records;
• Specifies the format and characteristics of records in the input data set;
• Indicates the address of a routine to be given control when the end of a user-defined

series of data records is reached;
• Indicates the address of a routine to be given control when message overflow occurs.

The input DCB macro allocates main storage space for a data control block at assembly
time. Parameters based on the operands specified in the macro are included in the data
control block. The macro generates no executable code. One (and only one) input OCB
macro is coded for each process queue to which the application program may direct a
GET or 'a READ macro. (The GET or READ specifies the name of the input DCB macro;
the DCB macro names a DD statement; the DD statement names a process entry in the
terminal table.)

The input DCB macro has the following format:

Name Operation Operands

dcbname DCB keyword operands

Function: Specifies the name of the macro instruction and also the name of the data
control block generated by the expansion of the macro.
Default: None. This name is required.
Format: Must conform to the rules for assembler language symbols (see the symbol
entry in the Glossary).

Function: Specifies the operands that can be used.
Format: May be specified in any order, separated by commas with no intervening
blanks.
Note: The operands are described below.

When a parameter yan be provided by an alternate source, an appropriate symbol appears
below the operand associated with that parameter. When there is no alternate source
(Le., the parameter must be specified by the operand), no symbol is shown. The
symbols have the following meanings:

DSORG=PS

MACRF=JG~~PT] }
lR [P]

DDNAME=symbol

BLKSIZE=integer

Symbol Explanation

DD The value of the operand can be omitted from the DCB macro and pro-
vided at execution time by the Data Definition (DD) card for the data
set.

OE The value of the operand can be provided by the problem program any
time up to and including the data control block exit at open time.

PP The value of the operand can be provided by the user's problem pro-
gram any time before open time.

Note: If DD is specified, OE or PP may also be used. If OE is specified, PP may also be
used.

For information on how to provide parameters by means of OE or PP, see Data
Management Services. The same publication describes the data control biock exit that
can be taken when OE is specified. Information on providing parameters by DD is
given in DD Statements for the Input and Output Data Sets.

Alternate Source: None.
Function: Specifies that the data control block governs message transfer to and from
a destination queue, and identifies the data set organization as physical sequential.
Default: None. This operand is required.
Format: DSORG=PS
Notes: This operand achieves TCAM compatibility with QSAM or BSAM.

Alternate Source: None;
Function: Specifies the type of access to the destination queue.
Default: None. This operand is required.
Format: GM, GMT, GL, GLT, R, RP
Notes: G indicates GET (QSAM), R indicates READ in move mode (BSAM). GET is in
move (M) or locate (L) mode.

The optional T indicates that the POINT macro may be used in conjunction with GET
and may not be omitted if POINT is to be used with GET.

The optional P indicates that the POINT macro may be used in conjunction with READ
and may not be omitted if POINT is to be used with READ.

If locate mode (L) is specified for a GET, TCAM obtains a work area by the GETMAIN
macro instruction at OPEN time from the application program main storage. TCAM
returns the address of the work area in register I following the first GET macro, and
uses this work area for succeeding GETs (see Dynamic Work-Area Definition in this
chapter). Locate mode is inconsistent with BSAM.

Alternate Source: PP.
Function: Specifies the name of the DD statement associated with the data control
block.
Default: None. This operand is required.
Format: Must conform to the rules for assembler language symbols.
Note~: If this operand is omitted, it must be provided by the alternate source.

Alternate Source: DD.
Function: Specifies the length in bytes of the application program work area.
Default: None. This operand is required.
Format: Unframed decimal integer no smaller than the length of a record as specified
by the LRECL= operand.
Maximum: 32760
Notes: If this operand is omitted, it must be provided by the alternate source.

Input DeB Macro 239

8UFL=integer

LRECL=intepr

RECFM={F }
V[8]
!l

OPTCD=[W] [U] [C]

240

The length of optional fields in the work area must be included in the value specified
for this operand. TCAM uses this field to determine the length of the work area.

For undefined-format work units, the value specified for BLKSIZE= may be dynamically
overridden on a work-unit-by-work-unit basis by the limgth operand of the READ macro.

Alternate Source: None.
Function: Specifies the size in bytes of buffers used in the MCP for messages 'Coming to
the application program associated with this DCB macro.
Default: None. Specification optionaL
Format: Unframed decimal integer greater than 35.
Maximum: 65535
Notes: If this operand is omitted, the value specified in the BUFSIZE= operand of the
PCB macro is used.

Alternate Source: DD.
Function: Specifies the number of by·tes in the length of a record, plus the length of any
optional fields in the work area.
Default: If RECFM=F, this operand is required. Otherwise, specification optional.
Format: Unframed decimal integer.
Maximum: 32760
Notes: If RECFM=U is specified, the LRECL= field in the input DCB is updated after
each GET or READ macro with the sum of the number of bytes of data fetched by that
GET or READ, plus the length of any optional fields in the work area.

Alternate Source: DD.
Function: Specifies the format and characteristics of the work units in this input data
set.
Default: RECFM=U
Format: F, V, VB, or U.
Notes: V specifies that the work units are variable in format. For BSAM and QSAM,
each work unit is prefaced in the work area by a standard SAM four-byte prefix (all
entries in the prefix are in hexadecimal format).

VB specifies that the work units are treated as blocked, although only one work unit is
transferred per GET or READ. The variable-length work unit work area includes a
blocked work area prefix of eight bytes if MACRF=R is specified, and of four bytes if not.

U specifies undefined-format work units. TCAM, like SAM, provides no prefix. The
length of the work unit is stored by TCAM in the LRECL= field in the input DCB.
TCAM updates the LRECL= field after each GET or READ with the length of the work
unit.

F specifies fixed-length work units. The sum of the length of each work unit obtained
plus the length of any optional fields in the work area is specified by the user in the
LRECL= field of the input DCB and may be updated before each GET or READ. This
option should be used only when the number of bytes of data in a message is an exact
multiple of the number of bytes specified by the LRECL= operand. Otherwise, the
last portion of the message contains fewer bytes than the number specified in the
LRECL= operand, which the program must be capable of handling.

Alternate Source: DD.
Function: Specifies the optional fields for the work unit.
Default: None. Specification optional.
Format: W, WU, WC, WUC, U, UC, C.
Notes: W specifies that the name of the source of each message is to be placed in an
eight-byte origin field in the work area. TCAM places the name of the source, in
EBCDIC, in the field, left-adjusted and padded to the right with blanks. If W is coded
but TCAM cannot determine the message source, the field is filled with eight character
blanks.

-~---~-~--
--~--- --------------------_. ---~-- -----

EODAD=address

SYNAD=address

EXLST=address

U specifies that the work unit to be handled is either a message or a message segment
that is not a record. If U is omitted, the work unit is assumed to be a record.

C specifies that a one-byte field in the work area, called the position field, is to indicate
whether the work unit being handled is the first, an intermediate, or the last segment
of the message. The contents of this field, filled in by TCAM, have the following
meanings:

Position Field Work Area Contents

X'FI' (1)
X'40' (blank)
X'F2' (2)
X'F3' (3)

First portion of message
Intermediate portion of message
Last portion of message
An entire message

Alternate Source: PP.
Function: Specifies the address of an open or closed subroutine to be given control
after the access method recognizes a user-generated end-of-file indication in the header
of a message.
Default: None. Specification optional.
Format: Must conform to the rules for assembler language symbols.
Notes: TCAM takes this exit when the next GET or CHECK macro is issued following
complete transfer of the end-of-file message into the work area.

Alternate Source: PP.
Function: Specifies the address of an open or closed subroutine to be given control if
message processing is used, the work unit is larger than the work area, and OPTCD=C is
not specified.
Default: None. Specification optional.
Format: Must conform to the rules for assembler language symbols.
Notes: For more information on the SYNAD exit, see Application Program Error Exit
in this chapter.

Alternate Source: PP.
Function: Specifies the address of the problem-program exit list.
Default: None. Specification optional.
Format: Must conform to the rules for assembler language symbols.
Notes: The list must start on a fullword boundary; its format and contents are more
fully shown in Data Management Services. Each entry is a fullword made up of a control
byte followed by the three-byte address of a user-written routine.

Only two entries in the list (those having control bytes of X'OS' and X'OF') are meaning
ful for a TCAM input DCB.

The entry having a control byte of X'OS' is the DCB exit entry; it is explained in the
Data Management Services publication.

If the control byte is X'OF', the user-written routine is given control to initiate an OS
checkpoint of the application program (see the section on coordinating OS and TCAM
checkpoints in this chapter).

Upon entry to the routine specified by the exit-list entry, the contents of registers 0 and
2 through 13 are the same as they were just before the GET or CHECK macro was exe
cuted. Register I contains the address of this input DCB, while register 14 contains the
return address for the application program. The user routine must save and restore the
contents of register I and 14. The contents of the user-defined save area must not be
altered by the exit routine.

Input DeB Macro 241

Output DeB Macro Instruction

dcbname

keyword operands

DSORG=PS

242

The output DCB macro:

• Defines an output data set for an application program;
• Must be issued for each process entry set up to receive messages or logical records from

an application program;
• Specifies whether QSAM or BSAM is to be used to transfer messages or logical records

from the application program to the MCP;
• Specifies the format and characteristics of records in the data set;
• Specifies the length of the MCP buffers used to receive messages from this application

program;
• Specifies the address of a routine to be given control when logical output errors

occur;
• Specifies the address of the problem-program exit list.

The output DCB macro has the following format:

Name Operation Operands

dcbname DCB keyword operands

Function: Specifies the name of the macro instruction and the name of the data control
block operated by the expansion of the macro.
Default: None. This name is required.
Format: Must conform to the rules for assembler language symbols (see the symbol
entry in the Glossary).

Function: Specifies the operands that may be used.
Format: May be specified in any order, separated by blanks with no intervening commas.
Notes: The operands are described below.

When a parameter can be provided by an alternate source, an appropriate symbol ap
pears below the operand associated with that parameter. When there is no alternate
source (Le., the parameter must be specified by the operand), no symbol is shown. The
symbols have the following meanings:

Symbol Explanation

DD The value of the operand can be provided at execution time by
the Data Definition (DD) card for the data set.

OE The value of the operand can be provided 'by the problem program
any time up to and including the data control block exit at open
time.

PP The value of the operand can be provided by the user's problem
program any time before open time.

Note: If DD is specified, OE or PP may also be used. If OE is specified, PP may also be
used.

For information on how to provide parameters by one of these alternate sources, see the
note following the explanation of DD, OE, and PP in the discussion of the input DCB
macro.

Alternate Source: None.
Function: Specifies that the data control block governs message transfer to or from an
application program, and identifies the data set organization as physical sequential.
Default: None. This operand is required.
Format: DSORG=PS
Notes: This operand achieves TCAM compatibility with QSAM and BSAM.

DDNAME=syrnbol

BLKSIZE=integer

LRECL=integer

OPTCD=[W] [U] [C]

Alternate Source: PP.
Function: Specifies the name that appears in the DD statement associated with the data
control block.
Default: None: This operand is required.
Format: Must conform to the rules for assembler language symbols.
Notes: If this operand is omitted, it must be specified from the alternate source.

Alternate Source: None.
Function: Specifics the method by which messages are to be transferred to the destina
tion queue.
Default: None. This operand is required.
Format: PM, PL or W.
Notes: P spetifies that messages are to be transferred by PUT macros. W specifies that
messages are to be transferred by WRITE macros.

PUT may be in move (M) or locate (L) mode. WRITE implies move mode.

If locate mode (L) is specified for PUT, TCAM obtains a work area by the GETMAIN
macro instruction when the first PUT is executed. TCAM returns the address of the
work area in register I following the first PUT (see Dynamic Work-Area Definition in
this chapter).

Alternate Source: DD.
Function: Specifies the length in bytes of the application program work area.
Default: None. If locate mode is not specified, specification optional. Otherwise, this
operand is required.
Format: Unframed decimal integer no smaller than the length of a work unit.
Maximum: 32760
Notes: The length of any optional fields in the work area should be included in the
value specified for this operand. If locate mode is specified by the MACRF= operand
and this operand is omitted, it must be specified by an alternate source.

Alternate Source: None.
Function: Specifies the sum of the number of bytes in the length of a fixed- or
undefined-length work unit, plus the length of any optional fields in the work area.
Default: If RECFM=F is specified, this operand is required. Otherwise, specification
optional.
Format: Unframed decimal integer.
Maximum: 32760
Notes: If RECFM=U is specified and no work-unit length is specified by the length
operand of the WRITE macro, the contents of the field must be updated dynamically
by the program before a PUT or WRITE macro is issued; user code must place the number
of bytes of data in the work area (including optional fields) in the LRECL= field of the
DCB. This may be done with the aid of the DCBD macro, described in Supervisor and
Data Management Macro Instructions.

If a value is specified by the length operand of the WRITE macro, this value overrides
the value specified in the LRECL= field for undefined work units.

Alternate Source: DD.
Function: Specifies the type of optional field to be used.
Default: None. Specification optional.
Format: W, WU, WC, WUC, U, UC, C.
Notes: W specifies that the program must place the name of the destination of the mes
sage in an eight-byte destination field in the work area before a PUT or WRITE macro is
executed. If a FORWARD macro with the operand DEST=PUT is coded in the incoming
group of the application-program Message Handler, the message is routed to the destina
tion specified in this field.

Output DeB Macro 243

SYNAD=address

RECFM=lF ! V[B]
1!

EXLST=address

BUFL=integer

244

U specifies that the work unit is a message or a portion of a message that is not a record;
if U is omitted, the work unit is assumed to be a record.

C specifies that a one-byte position field in the work area is used to describe the position
of the work unit in the message of which it is a part. The control byte is defined as
follows:

Position Field

X'FI' (1)
X'40' (blank)
X'F2' (2)
X'F3' (3)

Alternate Source: PP.

Work Area Contents

First portion of message
Intermediate portion of message
Last portion of message
An entire message

Function: Specifies the address of a routine to be given control when logical output er
rors occur.
Default: None. Specification optional.
Format: Must conform to the rules for assembler language symbols.
Notes: For more information on this routine, see Application Program Error Exit in
this chapter.

Alternate Source: DD.
Function: Specifies the format of the work units in this output data set.
Default: RECFM=U
Format: F, V, VB, or U.
Notes: V specifies that the work units are variable in length. For BSAM and QSAM,
each work unit is prefaced in the work area by a standard SAM variable-length record
prefix of four bytes (the contents of which are in hexadecimal format). The length of
the work unit must be provided by setting up the prefix before issuing a PUT or WRITE
macro.

If RECFM=VB, the records are treated as blocked, although only one work unit is
transferred to the MCP per PUT or WRITE macro. The variable-length record work area
includes a blocked work area prefix of eight bytes if MACRF=W is specified, and four
bytes if otherwise.

U specifies undefined-length work units. TCAM, like SAM, provides no prefix. The
sum of the length of the work unit plus the length of any optional fields in the work
area must be placed in the LRECL= field of the DCB prior to each PUT or WRITE,
unless it is specified by the length operand of the WRITE macro.

F specifies fixed-length work units. Prior to the PUT or WRITE, the sum of the length
of the work unit plus the length of any optional fields in the work area must be placed
in the LR:ECL= field of the output DCB.

Alternate Source: PP.
Function: Specifies the address of the problem-program exit list.
Default: None. Specification optional.
Format: Must conform to the rules for assembler language symbols.
Notes: The description of this operand is the same as that provided above for the
EXLST= operand of the input DCB macro.

Alternate Source: DD.
Function: Specifies the length in bytes of the MCP buffers that are to receive messages
coming from this application program.
Default: None. Specification optional.

DO Statements for the Input
and Output Data Sets

ddnarne

procnarne

PCB Macro Instruction

·pcbnarne

Format: Unframed decimal integer greater than 35.
Maximum: 65535
Notes: If this operand is omitted, the value specified in the BUFSIZE= operand of the
PCB macro in the MCP is the value used.

At application-program execution time, one DD statement must be provided for each
DCB. TheDD statement has the following format:

//ddname DD QNAME=procname

Is the symbolic name of the DD statement, and must be the same as the name specified
in the DDNAME= operand of the input or output DCB macro.

Is the name of the process entry in the terminal table to which this entry refers. This
name is assigned by the TPROCESS macro creating the entry. The destination queue
may be changed at execution time by specifying a different value for the QNAME=
parameter.

NOTE: The following DCB operands may be omitted from the input or output DCB
macro and coded as parameters of the DD statement when the operand's functions are
to be provided by an alternate source. These operands are explained in the discussion
of the input and output DCB macros. More than one operand can be specified in one
DCB= parameter; multiple operands should be separated by commas.

[,DCB=([BLKSIZE=integer 1
[,BUFL=integer 1 [,LRECL=integer 1
[,OPTCD=[Wl [Ul [ell

[,RECFM=lU ~])
V[Bl
F

The PCB macro:

• Provides a control block in the MCP to interface with an application program,
• Is required for each application program running with the MCP,
• Is coded in the MCP, not the application program.

The PCB macro generates a named control block, known as a process control block
(PCB). A process control block is a vehicle to provide information needed to communi
cate between the MCP and an application program. One and only one PCB macro is
required for each active application program.

The PCB macro has the following format:

Name Operation Operands

pcbname PCB MH=mhname, BUFSIZE=size
[,BUFIN= ~ nurber} 1 [,BUFOUT= 1nu~berp

[,RESER VE=(integer 1 ,integer2) 1

Function: Specifies the name of the macro and the name of the process control block
generated by the macro referred to in the TPROCESS macro.
Default: None. This name is required.
Format: Must conform to the rules for assembler language symbols (see the symbol
entry in tlie Glossary).

TeAM Application Programs 245

MH=mhname

BUFSIZE=integer

BUFOUT= {lumber}

RESERVE=(integer 1 ,integer2)

246

Function: Specifies the symbolic address of the Message Handler for the application
program represented by this macro.
Default: None. This operand is required.
Format: Must conform to the rules for assembler language symbols and be identical to
the name specified in the name field of a STARTMH macro in the Message Handler.

Function: Specifies the size of the buffers to be assigned to handle messages for the
associated application program.
Default: None. This operand is required.
Format: Unframed decimal integer greater than 35.
Maximum: 65535
Notes: This value may be overriden by specifying the BUFL= operand of the input or
output DCB for the application program.

Function: Specifies the initial number of buffers requested into which the data in the
user's PUT/WRITE work area will be emptied.
Default: BUFIN=2
Format: Unframed decimal integer greater than 1.
Maximum: 15
Notes: The optimum number specifies enough buffers to contain the entire work area.

Function: Specifies the initial number of buffers that may be filled in anticipation of a
GET or READ.
Default: BUFOUT=2
Format: Unframed decimal integer greater than l.
Maximum: 25
Notes: Used as a read-ahead queue for a process entry.

Function: Specifies the number of bytes to be reserved in buffers.
Default: None. Specification optional.
Format: Unframed decimal integers.
Maximum: 255 for each.
Notes: integer 1 specifies the number of bytes to be reserved in the buffer receiving the
first incoming segment of each message entered by an application program; the space is
reserved for insertion of data by DATETIME and SEQUENCE functional MH macros.

integer2 specifies the number of bytes to be reserved in all buffers except the first for
insertion of characters by the DATETIME macro. integer2 is relevant only in a multiple
buffer header situation when the DATE TIME macro is to insert data in a portion of the
header that is not in the first buffer (see the description of the DATE TIME macro for an
example of when it might be desirable to execute DATETIME on a portion of the header
not located in the first segment).

Data may be inserted in either an incoming or an outgoing message header, but space must
be reserved in the incoming header. On the outgoing side, reserved space is retained for
the first buffer only; thus, DATETIME and SEQUENCE macros, if specified in an out
header subgroup, operate on the first segment of the message.

No space need be reserved for .data inserted by a MSGEDIT functional MH macro.

The Scan Pointer section of the chapter Designing a Message Handler describes how
TCAM handles reserve bytes. Each buffer containing header data should be large enough
to accommodate the segment itself plus any data that may be inserted by DATETIME
and SEQUENCE macros. If a buffer containing header data does not have a sufficient
number of bytes reserved in it to accommodate data inserted by a DATE TIME or
SEQUENCE macro, the macro does not execute and control passes to the next instruction
in the MH. Unused reserve bytes are not sent out with an outgoing message segment when
it is sent to its destination.

Defining Buffers for the
Application Program

Defining Application-Program
Buffers

Macro Operand

Like messages being transferred between the MCP and a remote station, messages being
transferred between the application program work area and the MCP reside in buffers.
The buffers for transferring data to and from the application program are ordinary TCAM
buffers, as described in Defining Buffers. That chapter should be read and understood by
the programmer responsible for defining the application-program buffers, as the struc
tural description and most of the design considerations in that chapter are also
applicable to application-program buffers.

Buffers used to transfer data between an application program and an MCP differ from
those assigned to a line in two respects;

• The way in which they are defined;
• The manner in which they are allocated.

The next section describes application-program buffer definition. The following section
describes the allocation scheme for application-program buffers as part of a discussion of
application-program buffer design considerations.

A buffer-definition checklist for the application-program buffers follows. Guidelines for
coding many of the operands shown are given in the next section.

Description of Function and Comments

INTRO KEYLEN=integer Specifies the length in bytes of a buffer unit; all buffers in the TCAM
system are constructed of units of this size. (Considerations for coding
this operand are given in the chapter Defining Buffers.) integer must be
between 31 and 255 inclusive.

PCB

Input
DeB

Output
DeB

BUFSIZE=integer

[BUFOUT={~nteger p

[BUFIN={ ftegerp

[BUFL=integer 1

[BUFL=integer 1

Specifies the length in bytes of the buffers to transfer message segments
between the process queues for the application program and an
application-program work area. May be overriden for a single input or
output data set by the BUFL= operands of the input or output DCB
macro for that data set. integer must be between 31 and 65535
inclusive.

Specifies the maximum number of application-program buffers that may
be filled from the destination queue, processed by the outgoing group of
the application-program MH, and placed on the read-ahead queue in main
storage in anticipation of a GET or READ macro. integer must be at
least 2 (TCAM uses one buffer internally) and may be no greater than 25.

Specifies the initial number of buffers to be allocated to receive data
being transferred by a PUT or WRITE macro from the application-program
work area to the MCP. integer may be between 2 and 15 inclusive.

Specifies the length in bytes of the buffers to be used to transfer message
segments from the MCP to the application program; overrides the value
specified by the BUFSIZE= operand of the PCB macro. integer must be
between 31 and 65535 inclusive.

Specifies the length in bytes of the buffers to be used to transfer messages
segments from the application program to the MCP; overrides the value
specified by the BUFSIZE= operand of the PCB macro. integer must be
between 31 and 65535 inclusive.

Appl ication-Program Buffer
Design Considerations The user assigns a maximum number of buffers that can be used at one time to handle

messages being transferred from MCP process queues to the application-program work
area via the BUFOUT= operand of the PCB macro. These buffers are used to construct
the read-ahead queue, a temporary queue in main storage on which messages are held in
anticipation of a GET or READ. The read-ahead queue is discussed in Message Flow to
an Application Program in this chapter. TCAM constructs one read-ahead queue for
each process queue associated with an opened input data set.

TeAM Application Programs 247

248

The maximum capacity of a read-ahead queue is two messages. Buffers are allocated
to this queue dynamically, but the queue never contains more than the number of
buffers needed to handle two messages. If the user specifies (with the BUFOUT=
operand of the PCB macro) a number of buffers less than that needed to contain two
entire messages on the read-ahead queue, less main storage is tied up by being assigned
to the read-ahead queue, but more time is required to transfer messages to the applica
tion program.

The following formula for calculating the BUFOUT= operand of the PCB macro provides
a read-ahead queue always capable of containing two complete messages; by specifying
a queue of this size, the user minimizes delay in transferring messages to the application
program:

I=2X+I

Here I represents the integer to be coded for BUFOUT=, and X is the maximum number
of buffers needed to hold one message being transferred to the application program. The
extra buffer represented by I is used internally by TCAM.

NOTE: If main-storage-only queuing is the sole type of queuing used for process queues,
the optimum number of buffers specified by BUFOUT= is reduced; in this case, one
need specify only enough buffers to handle the largest work unit to be sent to the appli
cation program for optimal-performance read-ahead queues.

The BUFIN= operand of the PCB macro specifies the initial number of buffers to be
allocated to receive data being transferred by a PUT or WRITE macro from the applica
tion program to the MCP. (If there is more than one application-program process entry
that may be referred to by PUT or WRITE macros, the number of buffers specified by
BUFIN= is allocated to each.) Buffers assigned to receive data from the application pro
gram are deallocated and sent through the incoming group of the application-program
message handler as they are filled.

If the number of buffers specified by BUFIN= is not sufficient to handle the entire
work unit being transferred, TCAM dynamically allocates additional buffers. However,
such allocation takes time; to optimize performance, a sufficient number of buffers
should be assigned initially to handle the entire work unit.

The size of the application-program buffers is specified by the BUFSIZE= operand of the
PCB macro. This size may be overridden for buffers handling data being transferred to
the application program by the BUFL= operand of the input DCB macro, and for
buffers handling data being transferred from the application program by the BUFL=
operand of the output DCB macro.

Buffer size considerations given in the chapter Defining Buffers are relevant to
application-program buffers (considerations in that chapter that deal with program
controlled interruptions (PCI) are an exception).

Buffers are sent through the incoming group of the application-program MH as soon as
they are filled. If a buffer is not filled when the end of the work unit is reached, either
a time- or a space-penalty will be incurred, depending upon whether a position field is
present in the work area, and upon whether message- or record-processing is specified.
(Position fields are discussed in Defining Optional Fields in the Work Area in this
chapter. Message- and record-processing are described in Specifying Application-Program
Work Units.)

If no position field is present and message processing is specified, the partially-filled
buffer is sent through the incoming group of the application program as soon as the last
portion of the work unit has been received. In this case a space penalty is incurred and
main storage is wasted, since the entire buffer is tied up while the work unit is being
processed by the incoming group. If record processing is specified and there is no posi
tion field, a buffer that is larger than the work unit it contains is not sent through the
incoming group immediately, but is held until it is fitted by a subsequent PUT or
WRITE (or until the application-program signals end-of-message by closing the output
data set); in this case, a time penalty is incurred.

Activating and
Deactivating the
Application-Program
Interface

Open Macro Instruction for
the Application Program

If a position field is present and indicates that the current work unit is the last or only
work unit in the message, the buffer containing that work unit is sent through the in
coming group as soon as the work unit is placed in it; if the work unit is shorter than
the buffer, main-storage space is wasted, as .explained above. If the position field indi
cates that the current work unit is the first or an intermediate unit in a multi-unit mes
sage, then the buffer is not sent through the incoming group until it is filled or until
the end of the message is encountered; if the work unit is smaller than the buffer, a
time penalty is incurred, as explained above.

When the buffer sizes specified for the origin and the destination of a message are dif
ferent, data movement occurs because prefixes must be added or deleted when the
message is placed in the buffers for the destination (this is discussed in the chapter
Defining Buffers). Because data movement takes time, the buffer size for line buffers
handling messages being sent to or from an application program should be the same as
the buffer size for the application-program buffers wherever possible. By overriding
the buffer size specified by the BUFSIZE= operand of the PCB, the BUFL= operand of
the input and output DCB macros may be used to tailor application-program buffer
sizes to buffer sizes for particular origin or destination stations.

For example, if line buffers for all stations that could enter and accept messages pro
cessed by a particular application program were either 116 bytes long or 232 bytes long,
the user could define two input and output data sets (each with its own GET/READ
and PUT/WRITE process entries), one for each buffer length. He could direct all
incoming messages for the application program that were entered by stations using 116-
byte buffers to one process queue, and all incoming messages for the application program
that were entered by stations using 232-byte buffers to the other process queue. If he
coded BUFSIZE=116 in his PCB macro and BUFL=232 in the input DCB macro for the
data set containing messages placed in 232-byte buffers upon arrival at the computer,
no data transfer would be necessary when the data was read from the destination queue
into application-program buffer.

When transferring responses from the application program, the user would name the
PUT/WRITE process entry for the 116-byte-buffer output data set or for the 232-byte
buffer output data set, depending upon the size of the line buffers for the destination
station. In the output DCB for the 232-byte-buffer output data set, he would specify
BUFL=232. Again, no data transfer would be necessary when messages were read from
the destination queues into the line buffers for the destination station if this scheme were
followed.

Activation and deactivation of the interface between an application program and the
MCP is handled by OPEN, CLOSE, and MCPCLOSE macro instructions. The OPEN and
CLOSE macros for TCAM-compatible application programs are used and coded in the
same way as OPEN and CLOSE macros coded for application programs in a non-telepro
cessing environment and described in the Supervisor and Data Management Macro
Instructions publication. List and execute forms may be coded for OPEN and CLOSE.
The user may code options for the OPEN and CLOSE macros shown in Supervisor and
Data Management Macro Instructions to run his application program in a non
teleprocessing environment for debugging purposes; when the program is run in a TCAM
environment, the option fields are ignored. More than one data set may be opened or
closed with the same application-program OPEN or CLOSE macros. The OPEN,
CLOSE, and MCPCLOSE macros are described in this section. Deactivation of the
application program is discussed in the chapter Activating and Deactivating the Message
Control Program.

The OPEN macro for the application program:

• Completes initialization and activation of the input and output data sets for the ap
plication program.

• Is required to activate each data set represented by an input or output DCB macro.

TeAM Application Programs 249

symbol

(dcbname" •••)

MF=~L t
~ (E,listname) 5

250

Initialization and activation of the interface to the MCP is accomplished by issuing one
or more OPEN macros to open the data sets represented by the input and output DCB
macros.

One input DCB macro must be coded for each process queue for an application program
(i.e.,each queue for which messages can be obtained by GET or READ macros). One
output DCB macro must be coded for each process entry that can be referred to by a
PUT or WRITE macro when a work unit is being transferred from the application pro
gram to the MCP.

The open routines in TCAM activate the interface between the MCP and the application
programs. No TCAM macro instructions in the application program may be successfully'
executed before the DCB for the message queues data set has been opened in the MCP
or after it has been closed (if disk queuing is used), or before the input and output data
sets are opened or after they are closed. After the message queues data sets on disk and
application-program data sets have been opened, transfer of data to and from the ap
plication program can commence.

The operand field of the OPEN macro consists of one or more positional operands, fol
lowed by a single keyword operand. Each positional operand consists of the name of the
data control block for the data set being opened (the name of the block is the name of
the DCB macro that created it). A comma is coded between names. The optional key
word operand at the end permits the list and the execute form of the macro to be speci
fied.

The OPEN macro for the application program has the following format:

Name Operation Operand

[symbol] OPEN (dcbname" ...)[, MF= lL \]
(E,listname)

Function: Specifies the name of the macro.
Default: None. If MF=L is coded, this name is required. Otherwise specification op
tional.
Format: Must conform to the rules for assembler language symbols (see the symbol
entry in the Glossary).
Notes: If MF=L is specified, this name becomes the name of the parameter list gener
ated by this macro.

Function: Specifies the name of the data control block and is identical to the name
specified in the symbol field of the DCB macro for the data set being opened.
Default: None. This operand is required.
Format: Must conform to the rules for assembler language symbols.
Notes: Register notation may be used, in which case the specified register (2 through 12)
should contain the address of the data control block for the data set being opened. The
specified register number must be enclosed in parentheses. If more than one dcbname
is specified, they must be separated by double commas.

Function: Specifies that a list is to be created, or that a previously created list is to be
opened.
Default: None. Specification optional.
Format: listname must conform to the rules for assembler language symbols.
Notes: MF=L causes creation of a parameter list based on the OPEN operands. No
executable code is generated. The user must specify this form of the OPEN among his
program constants. The parameters in the list are not used until the problem program
issues ail OPEN (or CLOSE) macro with an MF= (E,listname) operand that refers to the
list. The name specified in the name field becomes the name assigned to the parameter
list.

MF= (E,listname) causes execution of the OPEN routine, using the parameter list refer
red to by listname. This list was created by a macro having the MF=L operand specified.
Parameters specified in a macro having the MF= (E,listname) operand override cor
responding parameters in the list.

CLOSE Macro Instruction
for the Application
Program

symbol

(dcbname" ...)

MF=JL }
l(E,listname)

MCPCLOSE Macro
Instruction

The CLOSE macro:

• Is issued in the application program to deactivate any open input or output data sets.

The CLOSE macro has the following format:

Name Operation Operand

[symbol] CLOSE (dcbname" ...)[MF=~ L ~]
(E,listname)

Function: Specifies the name of the macro.
Default: None. Specification optional.
Format: Must conform to the rules for assembler language symbols (see the symbol entry
in the Glossary).

Function: Specifies the name of the data control block(s) for the data set(s) being
closed.
Default: None. This operand is required.
Format: Framing parentheses must be coded. Each dcbname must conform to the rules
for assembler language symbols, and must be the same as the name of the DCB macro
creating the control block.
Notes: All application-program data sets can be closed with one CLOSE macro by in
cluding the names of their data control blocks as operands.

If register notation is used, the register number must be enclosed in parentheses, and ad
dresses of the data control blocks must previously have been loaded into the registers
specified.

If more than one data set is being closed, the names must be separated by double commas.

Function: Specifies list or execute form of the macro.
Notes: See the OS publication Supervisor and Data Management Macro Instructions for
the definition and use of this operand.

System ABEND issues CLOSE macros for all opened DCBs within a task when it abends.
Open DCBs are found by means of a scan of the DEB chain contained in the TCB of the
task to be terminated abnormally.

The MCPCLOSE macro:

• Initiates closedown of the telecommunications system,
• Is optional in an application program.

MCPCLOSE may be issued in an application program to initiate system closed own. At the
time MCPCLOSE is issued in a user- written termination routine, all data sets in the ap
plication program should be closed (if MCPCLOSE detects an open data set in any ap
plication program, it issues a WTO message and places the MCP in a wait state until all
data sets are closed). Following successful execution of MCPCLOSE, control passes to a
user-specified routine that deactivates the MCP. For more information on the use of
MCPCLOSE, see Deactivation in Activating and Deactivating the Message Control Program.

Only one MCPCLOSE macro is needed to close down the entire system. The closedown
functions of the macro are also available through use of the SYSCLOSE operator com
mand.

One of the following return codes is returned to the application program in register 15
after the MCPCLOSE macro is issued:

TeAM Application Programs 251

symbol

{QUICK}
FLUSH

PASSWRD=chars

Transferring Data
Between an MCP and
an Application
Program

252

Code Meaning

X'OOOOOOOO' The MCPCLOSE macro executed successfully.
X'OOOOOOOC' TCAM is not in the system.
X'00000014' Either

a) An invalid protection password is specified in the
PASSWRD= operand, or

b) The PASSWRD= operand is not specified and is needed
because the INTRO macro's P ASSWRD= operand speci-
fies a protection password.

The MCPCLOSE macro has the following format:

Name Operation Operand

[symbol] MCPCLOSE {QUICK~'P ASSWRD=chars 1
FLUSH

Function: Specifies the name of the macro instruction.
Default: None. Specification optional.
Format: Must conform to the rules for assembler language symbols (see the symbol
entry in the Glossary).

Function: Specifies the type of closed own required.
Default: FLUSH
Format: QUICK or FLUSH.
Notes: QUICK specifies that message traffic is to cease upon completion of any mes
sage currently in progress. Messages queued for the destinations are not transmitted.

FLUSH specifies that input message traffic is to cease upon completion of the message
currently in progress. All messages queued for the destinations are then transmitted.

Function: Specifies the protection password that enables only qualified application
programs to issue the macro.
Default: None. If the P ASSWRD= operand is specified on the INTRO macro in the
MCP, this operand is required. Otherwise, specification optional.
Format: One to eight unframed non blank characters.
Notes: If the character string specified in this operand does not match that specified
in the INTRO macro, the MCPCLOSE macro is ignored and a X' 14' return code is set
in register 15.

TCAM provides the application program user with facilities for obtaining messages from
the MCP, and for returning response messages to the MCP.

Although the messages are received from (or sent to) remote stations over communication
lines, the application programmer uses data-transfer macros similar to those of the
Queued Sequential Access Method (GET and PUT) or the Basic Sequential Access Method
(READ, WRITE, and CHECK) of OS/360. A TCAM Message Control Program performs
device-dependent input/output operations for the application program.

Since the macros used by TCAM for transfer of data between an application program
and an MCP are patterned after those of BSAM and QSAM, the TCAM application pro
grammer is expected to be familiar with these access methods, which are explained in the
Supervisor Services, Data Management Services, and Supervisor and Data Management
Macro Instructions publications.

The amount of data transferred from the MCP to an application program by a single
GET or READ macro, or transferred from an application program to the MCP by a
single PUT or WRITE macro, is called a work unit. The work unit is processed in an

Defining the Application
Program Work Area

Static Work-Area
Definition

application-program work area. A work unit may be an entire message, or a portion of
a message (which mayor may not be a record). A message is a unit of data received from
or sent to a station and terminated by an EOT or ETX line-control character or, if the
CONV= operand of the STARTMH macro is coded CONV=YES, by an ETX or EOB
line-control character. (Line-control characters may be deleted by the MCP, but TCAM
places the length of each message segment in the buffer prefix for that segment, and can
determine the message length by adding the contents of the prefix fields.)

A record is a logical unit of data whose length is defined by operands of the input or out
put DCB macro and delimiting characters in the message. In TCAM, each record is trans
ferred to and from a remote station as part of a message, but the size of the record need
not coincide with the size of the message; one message may contain many records. After
an incoming message is placed on a process queue for the application program, the user
obtains the records in it one at a time, with one record being passed between the MCP
and the application-program for each GET or READ macro directed to the process queue.
Similarly, a record may be sent to the MCP from a work area whenever a PUT or WRITE
macro naming the work area is issued in the application program.

Just because a work unit is not an entire message does not mean that it is a record.
Message processing or record processing is indicated by the OPTCD= operand of the in
put and output DCB macros. If message processing is specified, but the entire message
does not fit into the work area, TCAM provides the capability of processing a portion
of the message in the work area, then bringing in the next portion and processing it,
until the entire message has been processed. The portions of the message processed in
this way are not considered to be records, since message processing rather than record
processing was specified; TCAM handles records and other message portions differently,
as shown below in the discussion of work units and work areas. These differences may be
summarized as follows:

• An incoming record cannot overflow the work area, whereas an incoming message can.
• An incoming record may be delimited by a delimiting character specified by the

RECDEL= operand of the TPROCESS macro; when message processing is specified
in the input DCB macro, such delimiters are ignored.

• If neither a delimiting character nor end-of-message is encountered in a record by the
time the work area is full, the size of the record is assumed to be the size of the work
area. When message processing is specified, a work-area overflow condition is assumed
to exist if the work area fills before the entire message is read in; in this case, the user
specifies by an input DCB operand, whether he wants to process the message piece
by piece or go to an error routine.

• If a delimiting character is specified by the RECDEL= operand of the TPROCESS
macro named in a PUT or WRITE macro, TCAM places the character at the end of
each outgoing record. If message processing is specified, TCAM places no delimiting
character at the end of outgoing messages or pieces of messages.

The next three sections of this chapter discuss in detail the application-program work
area, work-unit, and data-transfer macros.

Work units obtained by a GET or READ macro are transferred from the MCP to a work
area defined by the user when he codes his application program. The work areas for
TCAM-compatible application programs are similar to those for programs using the Basic
or Queued Sequential Access Method.

A work area may be defined in one of two ways. It may be defined at application
program assembly time by a DC or DS assembler instruction issued in the application pro
gram. The label of the instruction becomes the name of the work area, and is coded in
the GET, PUT, READ or WRITE instructions that move data to and from the work
area. The size of the work area must be specified in the BLKSIZE= operand of the input
DCB macro associated with the data set whose contents are being transferred to or from
the work area.

TeAM Application Programs 253

Dynamic Work-Area

Definition

Moving Data between Input

and Output Work Areas

Defining Optional Fields

in the Work Area

254

When a work area is defined in this way, move processing mode should be specified by
coding M in the MACRF= operand of the DCB macros referred to by the data-transfer
macros that use the work area. A static work area may receive data from or send data
to more than one input or output data set.

A work area may be defined dynamically at application-program execution time, if GET
or PUT macros are to gain access to it. If the user specifies locate mode by coding L in
the MACRF= operand of his input DCB macro, execution of the first GET macro referring
to the opened data set causes TCAM to dynamically obtain a work area (by a GETMAIN
macro) in the same area of addressability as the application program, and to move a work
unit of data into this work area. The length of the work area is that specified by the
BUFSIZE= operand of the input DCB macro referred to by the GET macro. The work
area's address is returned in register I, and is saved by TCAM. The second and subsequent
executions of GET macros referring to the DCB move data into this work area.

If locate mode is specified by coding L in the MACRF= operand of the output DCB
macro, execution of the first PUT macro referring to the opened data set causes TCAM
to dynamically obtain a work area (by a GETMAIN macro) in the same area of addres
sability as the application program. The address of this work area is returned in register 1.
This address should be saved by the user and placed in register I before each PUT after
the first is issued. The length of this work area is specified by the BLKSIZE= operand of
the output DCB referred to by the PUT macro. The user must move his data into the
work area before executing another PUT referring to this DCB. Execution of subsequent
PUT macros referring to this DCB moves the data from this same work area to the MCP
buffers.

In some user applications, a work unit is transferred from the MCP to the application
program by a GET or READ, processed by the application program, and then returned
to the MCP by a PUT or WRITE. If move mode is specified in the input and output
DCB macros for the input and output data sets through which the work unit proceeds,
then the GET/READ and PUT/WRITE macros may refer to the same work area, so that
the user need not move his data from an input to an output work area.

If locate mode is specified in the input or output DCB macro, and move mode is speci
fied in the DCB macro for the other data set through which the work unit passes, then
the user can still get by with one work area, because TCAM permits specification of a
register containing the address of the work area when GET or PUT is coded.

If locate mode is specified for both the input and the output DCB macro, then two work
areas will be present, and the work unit must be transferred from one to the 'other.

The following operands of the input and output DCB macros cause TCAM to create op
tional fields in the front part of the work area and fill them with data (input DCB macro)
or to examine these fields (output DCB macro):

• OPTCD=W
• OPTCD=C
• RECFM=V[B]

If none of these operands are coded, TCAM starts with the first byte of the work area
when filling or emptying it.

The contents of the optional fields are not moved out of the work area with the mes
sage or record being processed.

Origin and Destination
Fields

Position Field

If W is coded in the OPTCD= operand of the DCB macro of the input data set for this
work unit, eight bytes of the work area are reserved for the name of the source of the
message. When the message comes into the work area, TCAM places the EBCDIC name
of the source (as specified in the terminal table) into these eight bytes. The name is left
adjusted, and the field is padded to the right with blanks if the name is shorter than eight
bytes.

If TCAM cannot determine the origin of a message, the field is filled in with eight char
acter blanks. TCAM usually knows the origin of a message. TCAM does not know the
origin when a switched station with no ID sequence calls in and fails to identify itself
by having a valid origin field in the message header checked by an ORIGIN macro. If
the switched station is assigned an ID sequence that is not unique, an incorrect name may
be placed in the field. (See the dlscussion of the ORIGIN macro for more information
on switched stations with no ID sequences or non-unique ID sequences.)

The eight-byte origin field immediately precedes the work unit in the work area, and
follows the other two optional fields if either or both of the other fields are present.
Figure 27 shows where the origin field goes in the work area.

If W is coded in the OPTCD= operand of the DCB macro of the output data set for this
work unit, when a PUT or WRITE macro is issued to move a work unit from this work
area to the MCP, TCAM looks in an eight-byte field in the work area for the name of the
destination of the message. The name should be in EBCDIC, left-justified, and padded
to the right with blanks if necessary. If a FORWARD macro with the DEST= operand
coded DEST=PUT is executed in the inheader subgroup of the Message Handler for an
application program, the message is sent to the destination specified in the eight-byte
field (see the description of the FORWARD macro).

TCAM assumes that the eight-byte destination field immediately precedes the work unit
in the work area (if W is coded in the OPTeD= operand); Figure 27 shows where TeAM
looks for the destination field. Only the work unit, and not the contents of the destin
ation field, is transferred to the MCP when a PUT or WRITE macro is executed.

The user with an inquiry-response application may wish to refer to the same work area
with his GET/READ and PUT/WRITE macros; if he codes·W in the OPTCD= operands
of his input and output DeB macros, TCAM places the origin in the eight-byte field when
the inquiry message is read into the work area. After the application program processes
the message data (without changing the contents of the eight-byte field), a PUT or
WRITE macro is issued; the contents of the eight-byte field are now assumed to specify
the destination. If a FORWARD macro with the DEST= operand coded DEST=PUT is
coded in the inheader subgroup for the application program, the response message will
go back to the originating terminal.

If C is coded in the OPTeD= operand of an input or output DCB macro, a one-byte field
is reserved in the work area associated with the DCB (if locate mode is specified in the
DCB macro},or named by the GET/READ or PUT/WRITE macro transferring data to or
from an input or output data set. This field is useful when messages sent to the applica
tion program are larger than the application-program work area that is to receive them
(e.g., when logical records or other message portions, rather than entire messages, are
processed by the application programs). This byte contains a code indicating whether
the work unit being processed is the first portion of a message, an intermediate portion,
the last portion, or an entire message (these codes are given in the discussion of the
OPTCD= operand of the input and output DCB macros).

If C is specified in the OPTCD= operand of the input DCB macro containing the work
unit to be moved into the work area, TCAM fills in the position field with a code indi
cating whether this work unit is the first, intermediate, or last portion of a message, or
an entire message.

If C is specified in the OPTCD= operand of the output DCB macro for the work unit,
the application programmer must ensure that the position field contains the appropriate
code to describe his work unit. TCAM checks this field and uses it to account for mes
sage portions being transferred to the MCP. The user must not interleave segments from !

TeAM Application Programs 255

SAM Prefix

256

different messages. If the operand is omitted from the output DCB macro, TCAM must
make one of two assumptions, depending upon whether record processing or message pro
cessing is specified in the OPTCD= operand of the output DCB macro (message pro
cessing and record processing are described in the next section).

• If message processing is specified, the end of the work unit is assumed to be the end
of the message-i.e., TCAM assumes that one work unit equals one message.

• If record processing is specified, TCAM assumes that all work units being sent to the
process entry associated with this output DCB, from the time the output data set is
opened until the time it is closed, are part of the same message-i.e., the application
program signals end-of-message by issuing a CLOSE macro after the last work unit in
the message is sent to the MCP.

The position field is located in the work area, immediately to the left of the eight-byte
origin or destination field. If no origin or destination field is present, the position field
is located immediately to the left of the first byte of message data in the work area.
Figure 27 shows the location of the position field in the work area.

If V or VB is coded in the RECFM= operand of the input or output DCB macro, a prefix
field is assumed to be present in the work area containing the message received from or
sent to the data set represented by the DCB. This prefix is useful when TCAM/SAM
compatibility-the ability to run application programs in a non-teleprocessing environ
ment using SAM data sets, and then run the same program in a TCAM environment with
out reassembling-is desired (see TCAM/SAM Compatibility in this chapter). In addition,
TCAM needs a SAM prefix when variable-format work units are specified in the output
DCB macro (such work units are discussed in Work-Unit Formats in this chapter).

The SAM prefix, if present, occupies the first four or eight bytes of the work area, as
shown in Figure 27.

If RECFM=V is coded in the input DCB macro, TCAM places a four-byte prefix into the
work area receiving a work unit from the input data set for which the DCB macro was
coded. The first two bytes of the prefix contain the binary sum of the length of the
work unit plus four bytes (the length of the prefix). The second two bytes of the prefix
each contain binary zeros.

If RECFM=VB is coded in the input DCB macro, TCAM places an eight-byte prefix into
the work area receiving a work unit from the input data set for which the DCB macro
was coded provided MACRF=R was also coded (a four-byte prefix is provided otherwise).
The first two bytes of the prefix contain the binary sum of the length of the work unit
plus eight bytes (the length of the prefix) in hexadecimal notation. The second two
bytes each contain a binary zero. The third two bytes contain a binary number four
less than that contained in the first two bytes. The final two bytes each contain a binary
zero. This eight-byte prefix is for BSAM compatibility; work units are treated as if they
were blocked records, although only one work unit is transferred for each READ or
GET macro execution.

If RECFM=V is coded in the output DCB macro, TCAM assumes that a four-byte prefix
precedes each work unit being sent to the output data set for which the DCB macro is
coded. This prefix is similar to a standard SAM variable-length prefix; its contents are
described above in the discussion of the SAM prefix for the input side. It is the applica
tion programmer's responsibility to see that the prefix contains the proper data before
a PUT or a WRITE is issued.

If RECFM=VB is coded in the output DCB macro, TCAM assumes that the work unit
being sent to the output data set for which the DCB macro is coded is preceded by an
eight-byte prefix provided that MACRF=W is also specified; a four-byte prefix is
provided otherwise whose layout is the same as that described above for the eight~byte
BSAM-compatible prefix for the input side. This prefix is for BSAM compatibility;
work units are treated as if they were blocked, although only one work unit is trans
ferred for each WRITE macro. It is the application programmer's responsibility to see
to it that the prefix contains the proper data before a WRITE macro is executed.

---11 byte r-r-4 bytes ---, ,..------ 8 bytes

SAM Prefix

t
.Start of
Work Area

Pos.
Field

Origin or Destination Field

t
Start of
Work Unit

Figure 27. Relative Positions of Optional Fields in the Work Area

Specifying Application
Program Work Units

Work-Unit Formats

The way in which TCAM decides how long a work unit is and how to handle it depends
upon two factors:

• The format of the work unit (fixed, variable, or undefined);
• The type of work unit (message or record).

The user specifies the format and type of work units his application program is to pro
cess by coding operands of the input and output DCB macros for the application pro
gram. These operands indicate whether the work unit is a message or a record, and
whether it is always the same length or may vary in length from message to message or
from record to record.

If messages or records sent to an application program may vary in length, user code in
the application program will want to know the length of the work unit currently being
processed. TCAM counts the number of bytes in the incoming work unit, adds the
number of bytes that must be reserved in the work area for optional fields, and places
the total either in a special field in the work are~ or in a field ill the input DCB (depend
ing upon which field the user specifies in an input DCB operand). User code may then
inspect this field to determine the length of the work unit being processed.

On the output side of the application program, TCAM must know the length of mes
sages or records whose lengths may vary, before these work units can be transferred to
the MCP. The application programmer must ensure that the sum of the work-unit
length and the length of any optional fields in the work area has been placed in a special
field in the work area or output DCB before issuing a PUT or WRITE macro to transfer
the work unit.

The next two sections of this chapter discuss the effects of work-unit format and type
upon the way in which TCAM transfers the work unit to and from the application pro
gram. Figure 28, at the end of the second section, summarizes much of this discussion.

Work units that always have the same length are said to have a fixed format, while work
units that may vary in length may have either a variable format or an undefined format,
depending upon the location of the field in which their length is stored (for incoming
work units) or examined (for outgoing work units) by TCAM.

A fixed-format work unit is one whose length is defined by the number of bytes coded
in the LRECL= operand of the input and output DCB macros. A variable-format work
unit is one whose length (plus the length of any optional fields in the work area) is
stored in the SAM prefix in the work area (see SAM Prefix in this chapter). An undefined
format work unit is one whose length (plus the length of any optional fields in the work
area) is stored in a field in the input or output DCB. TCAM counts the number of bytes
in the incoming work unit for both variable- and undefined-format work units-the only
difference between the two types of work units (other than the lengths of their respective
prefixes) is the location of the field where the count is stored by TCAM.

TeAM Application Programs 257

258

The tables at the end of this section summarize the specification and characteristics of
the various work-unit formats.

The user specifies the kind of work units his application program expects to accept by
the RECFM= operand of the input DCB macro. If he codes RECFM=F, then TCAM
knows that his application program is set up to process fixed-length work units, and
looks for the length of these units in the LRECL field of the input DCB. If he codes
RECFM=V, then TCAM keeps track of the length of each incoming work unit and
stores in the SAM prefix the sum of this length plus the length of any optional fields in
the work area. If he codes RECFM=U, then TCAM keeps track of the length of each
incoming work unit and stores the sum of this length plus the length of anY'optional
fields in the work area in the LRECL field in the input DCB.

For work units being transferred from an application-program to the MCP, a similar setup
prevails. The user tells TCAM, by the RECFM= operand of the output DCB macro, where
to look for the length of the work unit being sent back to the MCP by each PUT or
WRITE macro. If the user specified RECFM=F, TCAM looks for the length of the work
unit in the LRECL field of the output DCB. If the user specifies RECFM=V,TCAM
looks for the sum of the length of the work unit plus the length of any optional fields
in the work area in the length field of the SAM prefix in the work area. If the user speci
fies RECFM=U, TCAM looks for the sum of the length of the work unit plus the length
of any optional fields in the work area in the LRECL field of the output DCB if a PUT
or WRITE is being issued. It is up to the user to ensure that the field TCAM examines
contains the correct length; the technique for modifying a DCB field is described in
Data Management Services. If the WRITE macro is used with the length operand, the
length specified in the WRITE macro is used.

The tables below summarize the TCAM work-unit formats and illustrate how they are
specified by operands of the input and output DCB macros.

The delimiter mentioned in the discussions of variable and undefined records is the end
of the message when message processing is specified; when record processing is specified,
the delimiter may be either the end of the message or a special record-delimiting character
specified by the RECDEL= operand of the TPROCESS macro creating the queue accessed
by the GET or READ.

Work-Unit Formats-Input DCB

Format How Specified Significance

Fixed RECFM=F All incoming work units (except possibly the
last in a message) are the same length. When
a GET or READ macro is executed, TCAM
attempts to bring in the number of bytes
specified by the LRECL= operand of the in-
put DCB macro.

Variable RECFM=V[B] Incoming work units vary in length. When a
GET or READ macro is executed, TCAM
brings in data until a delimiter or the end of
the work area is encountered, and then places
the sum of the length of the work unit plus
the length of any optional fields in the work
area in the SAM prefix, which precedes the
work unit in the work area.

Undefined RECFM=U Incoming work units vary in length. When
a GET or READ macro is executed, TCAM
brings in data until a delimiter or the end of
the work area is encountered, and then
places in the LRECL field in tlie input DCB
the sum of the length of the work unit plus
the length of any optional fields in the work
area.

- ---~- --~-~-- ~~~~ ------ ------~-----------------~-- ----~

Work Unit Types

Work-unit Formats-Output DCB

Format How Specified Significance

Fixed RECFM=F A PUT or WRITE macro referring to this
DCB moves the number of bytes specified
in theLRECL field of this DCB from the
work area to the MCP. TCAM subtracts
the length of any optional fields from the
number specified in the LRECL field.

Variable RECFM=V[B] When a PUT or WRITE macro referring to
this DCB is executed, TCAM determines
the length of the work unit to be moved
by looking in the SAM prefix preceding the
work unit in the work area (and subtract-
ing the length of any optional fields in the
work area).

Undefined RECFM=U If a PUT macro referring to this DCB is
executed, TCAM determines the length of
the work unit to be moved to the MCP by
looking in the LRECL field of the DCB.
If a WRITE macro with the'S' operand
referring to this DCB is executed, TCAM
determines the length of the work unit to
be moved by looking in the LRECL field
of the DCB. (In either case, TCAM sub-
tracts the length of any optional fields in
the work area from the value found.)
If the WRITE macro with the length oper-
and referring to this DCB is executed,
TCAM uses the length specified in the
WRITE inacro as the length of the work
unit to be moved.

An application program may be set up to handle messages or records. A work unit
may be a message or a portion of a message; a work unit that is a portion of a message
may be, but need not be, a record.

The terms message and record are defined above, in the section Transferring Data
Between an MCP and an Application Program; differences in the manner in which
TCAM handles records and the manner in which it handles other message portions that
are not records are also summarized under this heading. The table at the end of this
section gives a more detailed contrast between message and record processing by TCAM.

The user specifies that he has set up his application program to handle mess!,ges by
coding U in the OPTCD= operand of the input DCB macro. If U is not coded, TCAM
assumes that the incoming work unit is a record.

Processing the Message as a Work Unit: If U is coded in the OPTCD= operand of the in
put DCB macro, TCAM attempts to read in an entire message when a GET or a READ
macro is executed. If the work area is large enough to accommodate the entire message,
TCAM reads in data up to and including the EOT or ETX line-control character unless
conversational mode is specified in the STARTMH macro, in which case TCAM reads in
a block of data (Le., that amount of data delimited by an EOB or ETB character when
received by the computer). If LC=OUT is specified in the STARTMH macro associated
with the line group DCB macro, the EOB or ETB line-control character is removed when
the message comes into the incoming group of the MCP, but the EOT or ETX line-control
character is not removed.

TeAM Appli'Cation Programs 259

260

If the entire message does not fit into the designated work area, TCAM performs one of
three actions, depending upon how operands of the input OCB macro are coded:

l. If a position field is specified in the OPTCD= operand, the portion of the message that
did not fit into the work unit is obtained by the next GET or READ macro executed
(the position field is discussed in Optional Fields in the Work Area in this chapter);

2. If no position field is specified but SYNAD= is coded, TCAM gives control to the rou
tine specified by SYNAD= (this routine is discussed in Application-Program Error
Handling Facilities in this chapter);

3. If neither a position field nor a SYNAD exit is specified, TCAM places a return code
of X'00000008' in register 15. This return code indicates an error condition, and
the user should terminate the application program and correct the error.

If TCAM performs the first of these three actions, the application program may process
the first portion of the message and issue a PUT or WRITE macro to return it to the
MCP before issuing a GET or READ to bring in the rest of the message.

To determine whether an incoming message fits into the work area, TCAM must first
know what the length of the work area is. For fixed-format messages, TCAM assumes
that the length of the work area is equal to the number of bytes specified in the
LRECL= operand of the input OCB macro. For variable- and undefined-format mes
sages, TCAM assumes that the work-area length is equal to the number of bytes specified
in the BLKSIZE= operand of the input OCB macro. When a work-area overflow error
occurs, TCAM discards the message that caused the overflow. If the input data set is
closed and then reopened as a result of work-area overflow, the first message received in
the work area following reopening of the data set is not the message that caused the over
flow; this message is thrown away by TCAM.

To prevent work-area overflow, the CUTOFF macro can be coded in the inbuffer sub
group of the MH; this macro checks the length of incoming messages and permits
cancellation of messages that would be too long for the work area.

If U is specified in the OPTCD= operand of the output OCB macro, TCAM assumes
message processing on the output side. If a position field is specified in the work area
(by coding OPTCD=e in the output OCR macro), TCAM uses this field to determine
whether the work area contains an entire message or only a portion of a message. If the
work area does not contain an entire message, TCAM treats each piece of data moved
from the work area by a PUT or WRITE as part of the same message, until the contents
of the position field indicate that the work unit currently being processed is the last unit
in the message. If no position field is specified, TCAM assumes that the entire message
is located in the work area.

Depending upon the format of the work unit (Le., whether it is fixed, variable, or un
defined), TCAM looks in the SAM prefix or in an output DCB field for the length of the
outgoing work unit and sends out the quantity of data specified in the appropriate field,
after allowing for optional fields in the work area. (See Work-unit Formats in this
chapter for information on the exact location of the field containing the message
length.)

Processing the Record as a Work Unit: If U is not coded in the OPTCD= operand of the
input DCB macro, TCAM treats the incoming work unit as a record, rather than as a
message or a message portion that is not a record.

If the user specifies that the input to his application program is to be fixed-format
records (by coding RECFM=F in the input DCB macro), TCAM assumes that each in
coming record is equal in length to the number of bytes specified in the LRECL= operand
of the input DCB macro (minus the length of any optional fields in the work area) and
moves in this number of bytes each time that a GET or READ macro is executed for this
input data set. The last record in a message may be shorter than the number of bytes
specified by LRECL=, in which case TCAM brings in the actual number of bytes in this
record.

If fixed-format records are designated as the output from an application program (by
coding RECFM=F in the output OCB macro), each time a PUT or WRITE is executed

----~~~
--~~--- ------

---~-- ---

TCAM transfers to the MCP a record equal in length to the number of bytes specified in
the LRECL= operand of the output DeB macro (after making allowance for the length
of optional fields in the work area).

If the user specifies that the input to his application program is to be variable- or
undefined-length records (by coding V or U, respectively, in his input DeB macro),
TCAM determines the length of incoming records according to the following principles:

1. If a delimiting character (specified by the RECDEL= operand of the TPROCESS
macro creating the destination queue accessed by the GET or READ macro) is
encountered while the work area is being filled, TCAM assumes that the current record
ends with this character.

2. If the end of a message is reached before the work area is filled, TCAM assumes that
the last character in the message is also the last character in the current record.

3. If neither a delimiter nor the end of the message is reached by the time the work area
is filled, TCAM assumes that the length of the record is equal to the size of the work
area (minus the size of any optional fields in the work area). TCAM determines the
size of the work area by looking in the BLKSIZE field of the input DCB.

When record processing is specified in the DCB macro for the output data set, TCAM
sends out a single record with each PUT or WRITE. The size of the record is indicated
in the SAM prefix for variable-format records and in the LRECL field of the output DCB
or in the WRITE macro for undefined-format records transferred by a PUT or WRITE.

The table below and Figure 28 summarize many points discussed in this section and in
the one immediately preceding it.

Differences between Message and Record Processing

MESSAGE PROCESSING

On Input: • When GET/READ is issued,
TCAM brings in data until
either the end of the message
is encountered or the work
area is filled.

If the work area has been
filled and the end of the
message was not reached,
TCAM either brings in the
rest of the message with the
next GET or READ (if a
position field is present in
the work area), or goes to
the error-handling routine
specified by the SYNAD=
operand of the input DCB
macro.

RECORD PROCESSING

• When GET/READ is issued,
TCAM brings in data until
1) the delimiting character
specified by the TPROCESS
macro referred to by the GET
or READ is encountered, or
2) the end of the message is
encountered, or
3) the work area is filled.
(Delimiting character is
ignored for fixed-format
records).

• If the work area is filled, TCAM
assumes that a complete record
has been received.

TeAM Application Programs 261

Signaling End of File and
End of Message

262

Differences between Message and Record Processing (Continued)

MESSAGE PROCESSING

On Output: • Whenever PUT/WRITE is
executed, TCAM transfers
one work unit of data from
the application-program
work area to the MCP.

• The RECDEL= operand of
the output TPROCESS
macro is ignored.

• If a position field is pre
sent and indicates an initial
or intermediate segment,
TCAM transfers the rest of
the message to the MCP
when the next PUT or
WRITE is executed for this
output data set. If no
position field is present,
TCAM assumes that the end
of the message coincides
with the end of the work area.

RECORD PROCESSING

• Same as for messages - one work
unit (record) transferred per
PUT or WRITE.

• The delimiting character
specified by the RECDEL=
operand of the output
TPROCESS is placed at the end
of each outgoing undefined
format record and each outgoing
variabl~formatrecord,except
for the last record of the
message.

• If a position field is present,
TCAM considers all records to
be part of the same message
until the position field indicates
that the current record is the
last record in the message. If no
position field is present, execu
tion of the CLOSE macro for
the output data set signals the
end of the message.

TCAM provides the capability of signaling the application program that the contents of
the message currently being processed by the application program constitute the end of
a logical file of data; after processing the work unit or work units in this message, the
application program may take an exit to a user-defined end-of-data subroutine. Such a
subroutine might close the input data set, cause a different type of application-program
activity to begin, issue a GET or READ macro referring to a different process queue, etc.

The user indicates that the contents of the current message represent the final portion of
a logical file of data by issuing a SETEOF macro in the outheadersubgroup of the
application-program Message Handler. SETEOF can be coded to execute conditionally
based on the presence in the message header of a specified character string. When
SETEOF executes, a bit is set in the prefix of the message, indicating that this is the last
message in the file. When a message with this bit on in the prefix is transferred to the
application program by GET or READ macros, TCAM notes that this is the last message
in the file and remembers this fact. Execution of the first GET or CHECK macro
following transfer of the entire end-of-file message to the application-program work area
gives control to the subroutine specified by EODAD.

Upon entry to the user-specified subroutine, the registers contain the same data as before
execution of the GET or CHECK macro, except that register 15 contains the address of
the exit subroutine.

If the user returns from this subroutine to the subroutine issuing GET or READ macros,
these macros will execute in a normal fashion.

If no SETEOF macro is executed and a GET or READ macro referring to an empty
process queue is issued, the application program enters a wait state until a message
arrives at the process queue for the application program. (If READ was issued, the
wait state begins only when the CHECK macro is executed.)

If the SETEOF macro executes and no EODAD exit is specified, when the next GET
or CHECK macro following transfer of the entire end-of-file message tc. the application

Input Side
(GET/READ)

Output Side
(PUT!WRITE)

Work-Unit Type: Record Message

Work-Unit Formot: Fixed Variable Undefined Fixed Variable Undefined

LRECL field
of X X

input DCB

BLKSIZE field
af X X X X

input DeB

Work-Unit
Size length field

Determined of X X
By: READ macro

delimiter
specified via X X
TPROCESS macro

end-of-message X X X X X X

field in SAM X X
Work-Unit prefix

Size LRECL field
Stored In: of X X

input DCB

LRECL field
of X X X X

Wor.k-Unit
output DCB

Size length field

Determined of X X

By: WRITE macro

field in SAM
prefix X X

Delimiter Specified via TPROCESS Macro X X
Inserted After Each Record

Figure 28. Effect of a Work-unit's Type and Format on the Way in which TeAM Determines its Size

program is executed, a completion code of X'00000004' is returned by TCAM in
register 15, and control returns to the application program. User code may check for
this return code and take appropriate action.

If record processing is specified (by the absence of U in the OPTCD= operand of the
output DCB macro), the user may indicate that this is the last record in a message being
sent from the application program to the MCP by coding X'P2' in the position field
preceding the record in the work area (see Optional Fields in the Work Area in this
chapter for a description of the position field). If no position field is dermed, the
program may signal TCAM that the last record in the message has been sent by closing
the output data set after executing a PUT or WRITE macro for this last record. (If
message processing is specified, and no position field is provided, TCAM assumes that
the work unit being processed constitutes the entire message.)

Coding TCAM's Data
Transfer Macros TCAM provides facilities for obtaining messages from the MCP for processing, and for

obtaining messages from the MCP for processing, and for returning response messages
to the MCP. Although the messages are received from (or sent to) remote stations over
communication lines, the programmer uses QSAM (GET and PUT) or BSAM (READ,
WRITE, and CHECK) macros for obtaining and sending messages. A TCAM Message
Control Program performs the device-dependent input/ output operations for the
application program. The user specifies whether he wishes to use the GET/PUT or
READ/WRITE/CHECK support in the MACRP= operand of the input and output DCB
macro.

TeAM Application Programs 263

GET Macro
Instruction (QSAM only)

I

symbol

dcbnarne

areanarne

264

Since TCAM's GET/PUT and READ/WRITE/CHECK support is similar to that provided
by OS, the TCAM application programmer is expected to be thoroughly familiar with
the OS sequential acce::s method (BSAM or QSAM) whose counterpart he is coding in
the TCAM application program. This requirement implies a knowledge of the applicable
contents of Data Management Services and Supervisor and Data Management Macro
Instructions.

The GET Macro:

• Obtains work units from the MCP for processing,
• May be coded more than once in an application program.

The GET macro transfers a single work unit from the MCP to an application-program
work area. The size of the work unit transferred depends upon whether record or
message processing is specified by the OPTCD= operand of the input DCB macro
(Specifying Application-Program Work Units in this chapter details the differences
between record and message processing).

The GET macro instruction has the following format:

Name Operation Operand

symbol GET dcbname [,areaname]

Function: Specifies the name of the macro instruction.
Default: None. Specification optional.
Format: Must conform to the rules for assembler language symbols (see the symbol
entry in the Glossary).
Function: Specifies the symbolic address of the data control block associated witli
the process queue from which the application program is to obtain a work unit.
Default: None. This operand is required.
Format: Must conform to the rules for assembler language symbols.
Notes: The DD statement for this DCB names a process entry in the terminal table
coded especially to receive messages from the application program. See Overview of
the MCP/Application-Program Interface in this chapter.

If register notation is used, the register number (2 through 12) must be enclosed in
parentheses, and the address of the data control block must previously have been loaded
into the register.

Function: Specifies the symbolic address oUhe user-defined area into which the work
unit is to be placed.
Default: None. If move mode is specified in the MACRF= operand of the input DCB
macro, this operand is required. Otherwise, specification optional.
Format: Must conform to the rules for assembler language symbols.
Notes: If register notation is used, the specified register number must be enclosed in
parentheses and the address of the work area must previously have been loaded into the
register (l through 12).

This operand may be omitted if locate mode is specified in the input DCB macro, in
which case TCAM obtains a work area from the application program main storage by
issuing a GETMAIN macro instruction when the input data set is opened. After the
first GET, TCAM returns the address of the work area in register 1. TCAM uses this
same work area until termination.

PUT Macro
Instruction (QSAM Only)

symbol

dcbname

areaname

READ Macro
Instruction (BSAM Only)

The PUT macro:

• Returns work units to the MCP after processing,
• May be specified more than once in an application program.

The PUT macro causes the processed message or message segment to be transferred from
the work area specified to the MCP, where it is processed by the incoming group of the
MH for the application program, and then placed on the destination queue for a
particular destination. This destination may be specified either in the message header
and subsequently checked by a FORWARD macro in the incoming group handling
messages from an application program, or as an operand of the FORWARD macro, or
in a special destination field in the work area that may be filled in by user code before
the PUT is issued (see Defining Optional Fields in the Work Area in this chapter for a
description of the destination field).

If a PUT is issued and the message queues data set on reusable disk or in main storage
that contains the destination queue for the destination of the message is congested with
traffic, the PUT does not execute, a return code of X'OOOOOO 1 0' is returned in register
15, and control passes to the next instruction; in this case, the user may test the return
code and re-issue the PUT.

The PUT macro instruction has the following format:

Name Operation Operand

[symbol] PUT dcbname [,areaname]

Function: Specifies the name of the macro.
Default: None. Specification optional.
Format: Must conform to the rules for assembler language symbols (see the symbol
entry in the Glossary).
Function: Specifies the symbolic address of the data control block for the output
data set.
Default: None. This operand is required.
Format: Must conform to the rules for assembler language symbols.
Notes: The DD statement for this DCB names a process entry in the terminal table that
is coded especially to receive messages from the application program. See Overview of
the MCP/Application-Program Interface in this chapter.

If register notation is used, the register number specified must be enclosed in parentheses,
and the address of the data control block must have been loaded previously into a
register 1 through 12.

Function: Specifies the symbolic address of the user-defined work area from which the
work unit is to be transferred.
Default: None. If move mode is specified in the MACRF= operand of the output DeB
macro, this operand is required. Otherwise, specification optional.
Format: Must conform to the rules for assembler language symbols.
Notes: If register notation is used, the register number specified must be enclosed in
parentheses, and the address of the work area must previously have been loaded into a
register 0 or 2 through 12.

If locate mode is used, this operand should be omitted. In this case, the address of a
work area into which the next work unit is to be placed is returned in register 1 for the
first PUT macro referring to this DCB. For more information on locate mode, see
Dynamic Work Area Definition in this chapter.

The READ macro instruction causes a work unit to be moved from the MCP into a
designated area of main storage in the application program. It differs from the GET
macro in that control may be returned before the work unit is retrieved when READ is
used, whereas with GET control is not returned to the application program until the
work unit is in the work area. The READ input operation may be tested for completion
u.sing a CHECK macro insttuction; once CHECK is issued, control is not returned to the
application program until the work unit is in the work area.

TeAM Application Programs 265

266

An application program containing more than one READ macro should be designed so
that each data event control block (DECB) generated by a READ macro is associated with
one and only one process queue from OPEN to CLOSE (i.e., the decbname and
dcbname operands of the READ macro, once specified, should always be paired;
decbname should not be specified with a particular dcbname in one READ macro and
then associated with a different dcbname in another READ macro). The user may
specify only one DECB per process queue. This technique allows the user to determine
the status of any process queue by merely interrogating the current completion code in
the DECB. See the completion codes in the next section. (The DECB is a system
control block; for information on the layout of this control block see The System
Control Blocks publication.)

NOTE: Since only one DECB may be specified per process entry, multiple READ macros
directed to the same process queue are not permitted. However, the user may achieve
the effect of issuing multiple READ macros directed to the same process queue by coding

. a list and an execute form of the READ macro. He would code one list form of READ
and several associated execute form READ macros. The list READ and all the execute
READ macros would specify the same DECB. The list and the execute forms of the
READ macro are explained in the Supervisor and Data Management Macro Instructions
publication.

Example:
In the following example, two READ macros of the execute form and one READ macro
of the list form are coded. All three macros specify the same DECB (named INPUT); the
list READ also specifies the appropriate DCB and work area.

READ
CHECK

READ
CHECK

LIST
INA REA
INDCB

USER CODE

INPUT,SF,MF=(E,LIST)
INPUT

USER CODE

INPUT ,SF ,MF=(E,LIST)
INPUT

USER CODE

CONSTANT AREA

READ INPUT,SF,INDCB,INAREA,MF=L
DC SOF'O'
DCB DSORG=PS,MACRF=R,BLKSIZE=200,
OPTCD=WUC,RECFM=V,DDNAME=IN

The READ macro instruction has the following format:

Name Operation Operand

[symbol] READ decbname,SF,
dcbname,areaname,
llength~

oS' [MF=lL n
- (E,listname)

.. _-_._---- --- -----~~~---~- - -----~

*

- - - - -------

symbol

decbname

SF

dcbname

areaname

{ length}
'S'

MF={L }
(E,listname)

WRITE Macro
Instruction (BSAM Only)

Function: Specifies the name of the macro.
Default: None. Specification optional.
Format: Must conform to the rules for assembler language symbols (see the symbol
entry in the Glossary).

Function: Specifies the name to be assigned to the data event control block (DECD)
created as part of tile macro expansion.
Default: None. This operand is required.
Format: Must conform to the rules for assembler language symbols.

Function: None. Must be coded for proper macro expansion.
Default: None. This operand is required.
Format: SF

Function: Specifies the symbolic address of the data control block associated with the
process queue being accessed.
Default: None. This operand is required.
Format: Must conform to the rules for assembler language symbols.
Notes: If register notation is used, the address of the data control block must previously
have been loaded into a register I through 12, and the register number must be enclosed
in parentheses.

The DD statement for this DeB names a process entry in the terminal table coded
especially to receive messages from the application program.

Function:Specifies the name of the work area into which the work unit is to be
placed.
Default: None. This operand is required.
Format: Must conform to the rules for assembler language symbols.
Notes: If register notation is used, the address of the work area must previously have
been loaded into a register 2 through 12, and the register number must be enclosed in
parentheses.

Function: Specifies the sum of the length of the work unit to be read plus the length
of any optional fields in the work area.
Default: 'S'
Format: length is an unframed decimal integer.
Maximum: 32760 for length.
Notes: This operand is coded only for undefined-format work units; it is ignored for
fixed-and variable-format work units.

Note that S is enclosed in single quotes. if'S' is coded, and an undefined-format work
unit is to be processed, the number of bytes to be read is taken from the LRECL=
operand of the input DeB macro; for undefined-format work units, 'S' is the default.

Function: Specifies the list or execute form of the macro.
Notes: Described in the OS publication Supervisor and Data Management Macro
Instructions.

The WRITE Macro:

• Returns work units to the MCP after processing,
• May be specified more than once in an application program.

The WRITE macro instruction causes the contents of a work area in the application
program to be moved to the MCP in the same manner as PUT. Control may be returned
before the block is moved. The output operation may be tested for completion using a
CHECK macro instruction. (See the next section for a completion code table.)

TeAM Application Programs 267

symbol

decbname

SF

dcbname

areaname

{ length}
'S'

268

The destin~tion ~y eespecified either in the message header and subsequently checked
by a FORWARD macro in the incoming group handling messages from an application
program, or by an operand of the FORWARD macro, or in a special destination field
in the work area that may be filled in by user code before the WRITE is issued (see
Defining Optional Fields in the Work Area in this chapter for a description of the
destination field).

the WRITE macro instruction has the following format:

Name Operation Operands

[symbol} WRITE decbname,SF,
dcbname,areaname,
1lengthf

'S'

Function: Specifies the name of the macro.
Default: None. Specification optional.
Format: Must conform to the rules for assembler language symbols (see the symbol
entry in the Glossary).

Function: Specifies the name to be assigned to the DECB created as part of the macro
expansion.
Default: None. This operand is required.
Format: Must conform to the rules for assembler language symbols.

Function: None. This operand must be coded for proper macro expansion.
Default: None. This operand is required.
Format: SF

Function: Specifies the name of the data control block associated with the destination
queue.
Default: None. This operand is required.
Format: Must conform to the rules for assembler language symbols.
Notes: If register notation is used, the specified register number must be enclosed in
parentheses, and the address of the data control block must previously have been loaded
into register 1 through 12.

Function: Specifies the address of the area from which the work unit will be moved to
the MCP.
Default: None. This operand is required.
Format: Must conform to the rules for assembler language symbols.
Notes: If register notation is used, the specified register number must be enclosed in
parentheses, and the address of the work area must previously have been loaded into
register 2 through 12.

Function: Specifies the sum of the length of the work unit to be transferred to the
MCP plus the length of any optional fields in the work area.
Default: 'S'
Format: 32760 for length.
Notes: This operand is meaningful only for undefined-format work units; it is ignored
for fixed- or variable-format work units.

Note that S is enclosed in single quotes. if'S' is speciiled and an undefined-format work
unit is specified, the number of bytes to be written is taken from the LRECL= parameter
of the output DCB macro.

CHECK Macro
Instruction (BSAM Only)

BSAM/TCAM Completion Codes

After the user has issued a READ or WRITE, and the TCAM READ or WRITE routine
has compieted execution, a completion code is placed in the ECB in the DECB associated
with the READ or WRITE. The codes are as follows:

Hex Code Meaning

7FOOOOOO Normal completion. (READ and WRITE)
70000000 SETEOF macro executed in MCP. The work area does not

contain a work unit. (READ only)
5COOOOOO Congested destination message queues data set. (WRITE only)
58000000 Work unit sequence error. (WRITE only)
54000000 Invalid message destination. (WRITE only)
52000000 Work area overflow. (READ only)
50000000 READ issued in conjunction with a POINT macro to retrieve

a message; message not found.
40000000 Data on read-ahead queue.
02000000 End of queue condition (not SETEOF and no data in TCAM

MCP for DCB).
01000000 Read-ahead queue empty, but destination queue not empty.

The primary use of these codes is for communication between the READ or WRITE and
CHECK routines (see the next section). If a user prefers to issue a WAIT macro rather
than a CHECK macro, he is responsible for testing the completion code. A completion
code of X'70000000' indicates an end-of-file condition and requires CHECK to take the
user's EODAD exit. Code '5COOOOOO' indicates that the WRITE was not effective
because the message queues data set for the destination is congested with traffic and
cannot accept the work unif at this time. The user may issue another WRITE in this
case. Codes X'52000000', X'54000000', and X'58000000' indicate error conditions
and require CHECK to take the user's SYNAD exit. Completion code X'58000000'
indicates that the output DCB macro associated with the WRITE macro specifies
OPTCD=C and that the work-unit position field specifies the wrong type of work
unit - for example, the position field might say that this work unit is the first portion
of a message, but the position field for the last work unit processed did not say that it
was the last portion of a message. Codes X'02000000' and X'OIOOOOOO' indicate that
the process queue has no data on it; when data is placed on the queue, the code is
automatically changed from X'02000000' to X'40000000'. Code X'40000000'
indicates that after a READ macro was issued and the process queue was found to be
empty, some data was placed on the process queue. Another READ or a CHECK
macro should be issued to bring in this data. If SYNAD is not specified, a return code
of X'00000008' is sent to the application program in register 15.

NOTE: Neither the wait nor the complete bit in the DECB's ECB is set to 1 by the
two "empty-queue" completion codes (X'02000000' and X'O 1 000000'). This allows
the user to wait on ECBs posted in this manner without first having to set the wait
bit in the ECB to O.

User code may test the ECB before issuing a CHECK macro; if the ECB contains code
X'02000000', the user routine might engage in some other program activity rather than
issue the CHECK macro and enter a wait state.

The CHECK macro instruction causes the application program to be placed in the wait
state, if necessary, until the associated input or output operation (READ or WRITE) is
completed. The input or output operation is then tested for errors. If no error
occurred, control returns to the instruction following the CHECK macro instruction.
If an error occurred, the routine specified by the SYNAD= operand of the input or
output DCB macro is given control. If no error routine is specified and an error
occurred, a return code of X'08' is sent to the user in register 15 after the CHECK macro.

TeAM Application Programs 269

\

symbol

decbname

Multiple-Wait Capability

270

A CHECK may be issued after each READ and each WRITE in the same order as the
READ or WRITE macro instructions are issued. If data is available at READ time, it is
moved at CHECK time into the work area, and the event control block (ECB) in the
data event control block (DECB) is posted complete with a return code of X'7FOOOOOO'
(the ECB is contained within the first four bytes of the DECB, on a fullword boundary).
If there is no data available and a user-controlled end of file has not been generated
(by the SETEOF macro), the application program CHECK macro waits for data. When
data is available, CHECK causes data movement; when this has been accomplished, the
application program receives control after the CHECK macro.

A WAIT macro may be issued rather than a CHECK by specifying the DECB address
in the ECB= operand of the WAIT macro; this provides a multiple-wait capability (see
below). The WAIT macro.is described in the Supervisor and Da ta Managemen t Macro
Instructions publication.

The CHECK macro has the following format:

Name Operation Operand

[symbol] CHECK decbname

Function: Specifies the name of the macro.
Default: None. Specification optional.
Format: Must conform to the rules for assembler language symbols (see the symbol
entry in the Glossary).

Function: Specifies the name of the data event control block created by the associated
READ or WRITE macro instruction.
Default: None. This operand is required.
Format: Must conform to the rules for assembler language symbols and must be the
same as the dcbname for the associated READ macro.
Notes: If register notation is used, the specified register number must be enclosed in
parentheses, and the address of the DECB must previously have been loaded into a
register 1 through 12.

If the user detects an empty-queue completion code in the DECB and does not wish to
wait implicitly (CHECK) or explicitly (WAIT) he may do some other processing. After
this processing, the completion code will have been altered if a message has been placed
on the associated read-ahead queue. The user must issue either CHECK or another
READ to cause the pending READ to complete. This technique requires one DECB per
process queue.

The user may achieve a multiple-wait capability by issuing more than olle READ macro
to more than one process queue and then issuing a WAIT macro. In the list specified
by the ECBLIST= operand of the WAIT macro, the user would place the addresses of
the DECBs associated with the READ macros issued as well as any other DECBs
associated with the application program. A message satisfying a pending READ macro
would cause a completion code of X'40000000' to be placed in the associated ECB.
After the WAIT macro, one or more CHECK macros (or perhaps READ macros)
should be coded so that the data will be moved into the user's work area. For informa
tion on the WAIT macro, see Supervisor and Data Management Macro Instructions.

Example:
In the following section of code, the user issues READ macros specifying DCBs associated
with three process queues (DCBA, DCBB, DCBC), and then issues aWAIT macro speci
fying one event and having an ECBLIST= operand pointing to a list of addresses of the
DECBs associated with the READ macros. When a pending READ macro is satisfied, a
completion code of X'40000000' is placed in the .ECB associated with the READ, and
the address of the EBC is placed in register 1. If only one event is specified, the user may
issue a CHECK macro specifying register 1; this macro moves the message satisfying the
READ into its own work area (AREAA if READA was satisfied, AREAB if READB was
satisfied, AREAC if READC was satisfied).

---~---~- -------- -----~------~-------

Application Program
Error Exits

Name Operation Operand

MULWT CSECT
READA READ DECBA,SF,DCBA,AREAA
READB READ DECBB,SF,DCBB,AREAB
READC READ DECBC,SF,DCBC,AREAC

WAIT 1,ECBLIST=DECBLIST
LA 1,DECBA
TM DECBA,COMP
BO CHEKIT
LA I,DECBB
TM DECBB,COMP
BO CHEKIT
LA I,DECBC

CHEKIT CHECK (1)
PROCESSING
CODE

DECBLIST DS OF
DC A (DECBA)
DC A (DECBB)
DC XLI'80'
DC AL3(DECBC)

AREAA DS IOOF
AREAB US 200F
AREAC DS 300F
COMP EQU X'40'

END

Figure 29. Example of Multiple-wait Capability

The instruction immediately preceding the last address in the list causes the high-order
bit of the last entry to be turned on; this is an OS requirement.

The input and output DCB macros for TCAM-compatible application programs permit
the application programmer to specify an exit to be taken when certain errors occur
during transfer of data between the MCP and the application program. This is the
SYNAD exit, specified in the SYNAD= operand of the DCB macro.

The open or closed user subroutine whose address is specified in the SYNAD= operand
receives control when certain errors occur. The user subroutine receives input identical
to that provided by QSAM and BSAM for their SYNAD exit (as explained in Supervisor
and Data Management Macro Instructions). This implies that SYNADAF or SYNADRLS
macro instructions may be issued in the SYNAD routine. The next section details the
register contents on entry to the SYNAD routine and the contents of the status indicator
field for the SYNAD routine, while the following section contains information on using
the SYNADAF macro.

The SYNAD routine specified by an input DCB macro is given control if 1) message-type
processing has been specified (by coding U in the OPTCD= operand), 2) the message to
be transferred by the current GET or READ macro is larger than that portion of the
work area available to it, and 3) no position field is specified for this work area
(OPTCD= does not specify C). In his SYNAD toutine, the user must close and reopen
this set before issuing another GET or READ; otherwise, TCAM will not continue to
function properly. The routine is entered after a GET or CHECK macro is issued. If
the error condition occurs and SYNAD is not specified, TCAM returns a completion
code of X'00000008' in register 15 following GET or CHECK. In this case, user code
should close the data set.

TeAM Application Programs 271

Input to the SYNAD
Routine

272

The SYNAD routine specified by an output DeB macro is given control when one of
two logical output errors occur. These are:

1. The position field contains a value that is invalid (not X'40', X'Fl', or X'F2', or
X'F3') or that indicates that the current position of the message is out of sequence
(e.g., the position field indicates that this is the first portion of the message, but the
position field for the previous work unit did not indicate end-of-message).

2. The destination name in the destination field is not a valid entry in the terminal table.

For BSAM, this exit is entered only from the CHECK routine. If SYNAD= is not
specified, condition (1) above results in a completion code of X'00000008' in register
15, while condition (2) results in a code of X'OOOOOOOC'.

Input to SYNAD from TCAM/SAM access method modules is compatible with SAM.
Register contents on entry to the SYNAD routine are as follows:

Register Bits Meaning

0 8-31 Address of the data event control block
(DECB) for BSAM; address of status
indicators for QSAM.

1 0 Bit is on for error caused by GET or
READ.

1 Bit is on for error caused by PUT or WRITE.

4 Bit is on if user specified an invalid destination
(PUT or WRITE). .

8-31 Address of associated data control block (DeB).

2-13 8-31 Contents before the macro instruction
was issued.

14 8-31 Return address.

15 8-31 Address of error analysis routine specified
by the SYNAD= operand of the input OCB.

Word five (5) of the DECB (DECB+ 16) contains the status indicator address for BSAM
support. Status indicators for the SYNAD routine are as follows:

Offset from status
Indicator addr¢ss Meaning

Byte Bit

+2 0 Command reject (work units out of sequence).

+13 1 Incorrect length (workarea overflow).

All other fields in the SAM-compatible status indicator field are unused by TCAM.
Main storage for this block is allocated at OPEN time if the SYNAD= keyword is
coded in the DCB macro instruction or if provision is made by an alternate source.

--~~-~ ~--------~----
~--~-~-~---~~

~-------~

SYNADAF

Network Control
Facilities

If the user issues a SYNADAF macro specifying BSAM or QSAM in his error analysis
routine, he receives the following values in the specified registers:

Register I contains the address of a buffer containing a message describing the
TCAM/SAM error. The message consists of EBCDIC information and is in the form
of a variable length record (see table below).

Register 0 contains a return code of X'OO' right adjusted.

See Supervisor and Data Management Macro Instructions publication for further infor
mation on the use of SYNADAF and SYNADRLS.

Format of TCAM/SAM SYNADAF Message Buffer

Bytes Contents

0-7 SAM variable (or variable blocked) length prefix
8-49 (character blanks)
50-57 job name
58 ,(character comma)
59-66 stepname
67 ,(character comma)
68-73 (character blanks)
74 ,(character comma)
75-82 ddname (name of DD statement in which QNAME= parameter

is coded)
83 ,(character comma)
84-89 macro format (GET, PUT, READ, or WRITE)
90 ,(character comma)
91-105 error description (WORKAREA OF LOW, INVALID DEST, or

SEQUENCE ERROR)
106 ,(character comma)
107-120 ****************
121 ,(character comma)
122-125 TCAM

TCAM provides facilities for dynamically controlling the telecommunications network
through macro instructions issued in an application program. Three macros are pro-
vided to allow the contents of a control block to be examined: TCOPY, ICOPY, and
QCOPY. Two macros are provided to allow modification of the contents of a control
block: TCHNG and ICHNG. TCAM also provides the MRELEASE macro, which
releases messages queued for an intercepted station, and the MCPCLOSE macro
(discussed in Activation and Deactivation of the MCP Interface in this chapter), which
initiates closedown of the Message Control Program. These macros are described in detail
below. The facilities provided by these macros are also available using the operator
commands of the operator control facility (see each macro description below),

NOTE: In order to execute, TCOPY, QCOPY, and TCHNG require at least one open
input or output DCB for this application program.

Application-Program Network-Control Macros

A) Interrogation Capability

• TCOPY

• ICOPY

• QCOPY

Copy the contents of a designated terminal-table
entry and its associated option fields into a work area.
Copy the contents of a specified line's invitation
list into a work area.
Copy the contents of the queue control block (and
its related priority QCBs) associated with a terminal
(or process entry) into a work area.

TeAM Application Programs 273

TCOPY Macro Instruction

274

B) Modification Capability (Password Protection Optional)

• INTRO

• TCHNG

• ICHNG

• MRELEASE

• MCPCLOSE

P ASSWRD1tarsl

Defines the password.
Place contents of work area into a terminal-table
entry and its .associated option fields.
Replace a specified invitation list with the contents
of the work area, or activate or deactivate all
entries in the specified list.
Activate a destination for receipt of messages
from the CPU.
Initiate termination of the TCAM message control
program.

In addition to these macros, TCAM provides the user with the capability of defining his
application program as a secondary operator control station (by coding the SECTERM=
operand of the TPROCESS macro) and of entering operator commands from it by means
of PUT or WRITE macros. Responses to these commands are sent to the destination
specified by the AL TDEST= operand of the TPROCESS macro creating the terminal
table process entry associated with the PUT or WRITE macro. For more information
on the use of an application program as an operator control station, see Entering
Operator Commands from an Application Program in the chapter Using TCAM Service
Facilities.

Protection against unauthorized use of the ICHNG, TCHNG, MRELEASE, and
MCPCLOSE macros is provided by the P ASSWRD= operand of these macros. The pass
word specified must be the same as the password specified by the P ASSWRD= operand
of the INTRO macro, otherwise, the application program macro is ignored.

The user might code a special application program designed solely to modify the tele
processing system in the event of errors or other unusual conditions. For example, he
might code ERRORMSG or REDIRECT macros in an inmessage subgroup handling
messages coming in over a line group; these macros could test various bits in the message
error record and when these bits were on, the macros could direct a special error message
or the message being handled when the error occurred to the process queue for the appli
cation program. The application program could fetch error messages by GET or READ
macros, analyze them, and issue operator commands (if it were designated a secondary
operator control station by the TPROCESS macro) or network control macros to modify
the system in a manner appropriate to the error detected.

The user is required to have at least one open TCAM DeB in the application program
in which these network control macros are issued.

The TCOPY macro:

• Permits examination of the contents of a terminal-table entry and its associated
option fields. .

• Is optional in a TCAM application program.

TCOPY moves the contents of a designated terminal-table entry to a work area,
together with the contents of any option fields that are associated with the entry. The
terminal-table entry may be any of the six entry types.

Various functions of TCOPY are also provided by the STSTATUS and OPTFIELD
operator commands (see the Operator Commands section in Using TCAM Service
Facilities). Execution of TCOPY alters the contents of registers 14 and 15.

The dummy section (DSECT) describing the single, line, and group terminal-table
entries has the following format:

- _. ------- ----

TRMSTATE TRMDESTQ I
0 +1

TRMINSEQ TRMOUTSQ :~ +4 +6

TRMALTD TRMDEVFL :~ +8 +10

TRMSIO ITRMTEMPR TRMSE~~
+12 +14

TRMCHCIN TRMOPNO TRMOPTBL : ~
+16 +17 +18 t

TRMOPT
Start of device
characteristics field

+20

Figure 30. Terminal Table DSECT for Single, Line, and Group Entries

The length of the TRMOPT field is variable. If no OPTION macros are coded in the
MCP, no space is allocated for the TRMOPNO field, the TRMOPTBL field, or the
TRMOPT field. A variable number of device-characteristics fields follow the
TRMOPT field (if OPTION macros are coded) or the TRMCHCIN field (if no OPTION
macros are coded). The first byte of each device-characteristics field contains the
binary length of the rest of the field; the rest of the field contains the device-dependent
data.

In addition to the contents of the terminal-table entry itself, TCOPY moves the
contents of any option fields associated with a terminal-table entry into the specified
work area. The first option field immediately follows the last device-characteristics
field in the work area. A two-byte field named TRMOPTBL, located at an offset of 18
bytes from the beginning of the terminal-table entry, contains the offset from the
beginning of the terminal-table entry to the beginning of the first option field in the
user's work area.

The user must ensure that his work area is large enough to accommodate the largest
possible string of data moved into it by TCOPY. (If the work area is not large enough
to accommodate the data, the contents of main storage adjoining the work area are
overlaid and lost.) The user may determine the length of the longest possible string of
data that the TCOPY macro can move into his work area by looking at the assembly
listing for his MCP. Under each TERMINAL, TLIST, TPROCESS, and LOGTYPE
macro expansion are control sections having "TERMINAL ENTRY," "OPTION
OFFSETS," and "DEVICE-DEPENDENT FIELDS" in their comment fields. These
CSECTs indicate the length of the terminal-table entry, the option-field offsets, and the
device-characteristics fields, respectively. The user should find the sum of these
lengths for each terminal-table entry he might wish to copy using TCOPY, and add to
this sum the total length of the option fields associated with that entry. The work area
named in TCOPY should contain a number of bytes equal to or greater than the largest
sum obtained in this way.

TeAM Application Programs 275

symbol

statname

areaname

ICOPY Macro Instruction

276

One of the following return codes is returned to the application program in register 15
after the TCOPY macro is issued:

Code Meaning

X'OOOOOOOO' The TCOPY macro executed successfully.
X'00000008' TCAM is not in the system.
X'OOOOOOOC' A TCAM application program DeB is not open; at least one

input or output DeB must be open in order for this macro to
execute.

X'OOOOOO20' An invalid station name is specified in the field of the TCOPY
macro (Le., no such entry exists in the terminal table).

For a complete description of terminal-table entries, see the discussion of Data Tables
in section 4, Data Area Layouts in the TCAM PLM.

The TCOPY macro has the following format:

Name Operation Operands

[symbol] TCOPY statname, areaname

Function:Specifies the name of the macro.
Default: None. Specification optional.
Format: Must conform to the rules for assembler language symbols (see the symbol
entry in the Glossary J.

Function: Specifies the name of the station whose contents are to be moved to the
work area.
Default: None. This operand is required.
Format: Must conform to the rules for assembler language symbols and be the
same as the name for the station specified in the MCP terminal table.
Notes: If register notation is used, the register must previously have been loaded with
the address of a field containing the entry name. The name must be left-adjusted and
padded with blanks to the length of the largest allowable station name. Permissible
registers are 0, 2 through 12, 14 and 15.

Function: Specifies the name of the work area into which the contents of the terminal
table entry and its associated option fields are to be placed.
Default: None. This operand is required.
Format: Must conform to the rules for assembler language symbols.
Notes: If register notation is used, the register must previously have been loaded with
the address of the work area. Framing parentheses must be coded. Permissible
registers are I through 12, 14 and 15.

The ICOPY macro:

• Permits examination of the contents of an invitation list.
• Is optional in a TCAM application program.

The ICOPY macro moves the contents of a designated invitation list to a work area. The
function of ICOPY is not provided by the operator control facility. However, the
ACTV ATED and STATDISP operator commands cause display of the active and
inactive terminals in a list and the status byte of an invitation list, respectively. Execu
tion of ICOPY alters the contents of registers 14 and 15.

One of the following codes is returned to the application program in register 15 after
the ICOPY macro is issued:

Control
Infonnotion

Active
Entries

Delimiter

Inactive
Entries

byte: 0

8

X'03'

Code Meaning

X'OOOOOOOO' The ICOPY macro executed successfully.
X'OOOOOOO4' An invalid relative line number is specified in the rln field

of the ICOPY macro.
X'OOOOOOO8' TCAM is not in the system.
X'OOOOOO20' The name specified is not the name of an opened TCAM line

group OCB.

For a complete description of the invitation list, see Defining Terminals and Line
Control Areas and in the System Control Areas discussion in Section 1: TCAM PLM.

Figure 31 below illustrates the format of an invitation list with three entries. Individual
fields in the invitation list are discussed following the illustration.

I

I I I
X'02' X'03' CPU identifier

I I I
1 2

/3 4~ 5 6 7 8

II 1 1 .. 1
iCAr Ttro(b'j

1 1

bit: 0 1 2 3 4 5 6 7

porfing I-byte POding I-byte

choryters
index used

charrters
index used

by TCAM by TCAM

9 10 11 12 13 14

E 14 15

I ,
polling I-byte

char,cters
index used

1
by TCAM

15 16 17

Figure 31. Sample Invitation List Containing Three Entries

TeAM Application Programs 277

Control Information:

Byte Meaning

0 Indicates the total number of entries (both active and inactive) in
this invitation list. All zeros in this byte indicates that this invitation
list is for an output only line (stations on' this line carinot enter
messages). This invitation list contains three entries.

1 Indicates the number of active entries in this invitation list (an active
entry is one that is currently eligible to be polled). This invitation
list contains two active entries.

2 Indicates the number of bytes, including a one-byte index used by
TCAM, in each entry in this list. The sample invitation list in the
illustration above contiuns entries of three bytes each. The index
byte must be the last byte in each entry.

3 Bits 0 through 5 in byte 3 are control bits used by TCAM (their con-
tents must not be altered). If bit 6 is on, this is an active invitation
list (it is being polled); if it is off, this invitation list is not currently
eligible to be polled. If bit 7 is on, the Auto Poll feature is being
used on the line corresponding to this invitation list; if it is off,
programmed polling is in effect (this bit is meaningless if bit 6 if off).
Bits 6 and 7 are both on in the sample invitation list, thus, this list
is currently being polled by using the Auto Poll feature.

4-7 For non-buffered terminals, bytes 4 through 7 contain either all
zeros or the address of a field that identifies the central processing
unit into which TCAM is loaded. For buffered terminals, bytes 4
through 7 indicate the following:

Byte Meaning

4 A one-byte count of the terminals on this line to which TCAM is
currently sending.

5 Contains X'O l' if the line is eligible for Auto Poll.

6 (unused)

7 A one-byte count of the total number of terminals on the line.

The contents of bytes 4 through 7 must never be altered.

Active Entries:

Byte Meaning

8-10 Bytes 8 through 10 represent the first active entry in this invitation
list. The polling characters for a station (or a component) are con-
tained in the two-byte field starting at byte 8; although all the entries
in this list use two-byte fields to contain polling characters, other
lengths may be used. Byte 10 contains an index used by TCAM; this
index must not be altered.

11-13 Bytes 11 through 13 represent the second active entry in this
sample invitation list. (The same general discussion of bytes 8-10
also applies here.)

278

symbol

grpname

rID

areaname

Delimiter:

Byte Meaning

14 For an invitation list containing entries for BSC devices, an EOT
character followed by X'FE' serves as a delimiter to indicate the
end of the list of active entries. For start-stop devices, the delimiter
is X'FE' without an EOT character.

In this sample invitation list, entries are for start-stop devices. Two
active three-byte entries precede the delimiter, and byte 0 indicates
that there are three entries; consequently, there is a third entry in
this invitation list (and since it follows the delimiter, it is an
inactive entry). The contents of the delimiter must not be altered.

Inactive Entry:

Byte Meaning

15-17 Bytes 15 through 17 represent the first inactive entry in this invitation
list. (The same general discussion of bytes 8-10 also applies here,
except that this is an inactive entry.)

The ICOPY macro has the following format:

Name Operation Operands

[symbol] ICOPY grpname, rIn, areaname

Function: Specifies the name of the macro.
Default: None. Specification optional.
Format: Must conform to the rules for assembler language symbols (see the symbol
entry in the Glossary).

Function: Specifies the name of the line group containing the line whose invitation
list is to be displayed.
Default: None. This operand is required.
Format: Must conform to the rules for assembler language symbols and be the same
as that specified in the DDNAME= operand of the DCB macro for the line group.
Notes: If register notation is used, tl).e register specified must have previously been
loaded with the address of a field containing the grpname. Permissible registers are
1-12, 14 and 15. Framing parentheses must be coded. The name must be left-adjusted
and padded with blanks to eight characters.

Function: Specifies the relative line number, within the line group, of the line whose
invitation list is to be displayed.
Default: None. This operand is required.
Format: Unframed decimal integer greater than zero.
Maximum: 255
Notes: If register notation is used, the relative line number must previously have been
loaded (in binary form and enclosed in parentheses) in the register designated.
Permi~sible registers are 0,2 through 12, 14 and 15.

Function: Specifies the name of the work area into which the designated invitation list
is to be moved.
Default: None. This operand is required.
Format: Must conform to the rules for assembler language symbols.
Notes: The number of bytes to be allowed for each entry in the list depends upon the
type of entry in the list.

If register notation is used, the register number specified must be enclosed in parentheses
and must contain the address of the work area. Permissible registers are 2 through 12,
14 and 15.

TeAM Application Programs 279

acopy Macro Instruction

symbol

tennnarne

280

The QCOPY macro:

• Permits examination of a queue control block;
• Is optional in a TCAM application program.

QCOPY causes the contents of both a destination queue control block (QCB) and its
related priority QCBs to be copied in a designated work area. The QCB is an internal
TCAM control block associated with a destination queue. For a complete description
of queue control blocks, see the discussion of System Control Blocks in section 4.
Data Area Layouts in the TCAM PLM. A master QCB is 4Q-bytes long and always
has associated with it at least one priority QCB (even if no priorities are specified for
this destination QCB's corresponding station in the station's LEVEL= operand of its
TERMINAL macro). Each priority QCB is 28 bytes long: therefore, the formula for
determining the number of bytes needed in the work area in the user's application
program is:

68 + 28n bytes

where n is the number of different priorities specified (for the station whose associated
QCB is being copied) in the station's LEVEL= operand of its TERMINAL macro.

Part of the function of QCOPY is also provided by the QST A TUS and RLNST ATN
operator commands (see their descriptions in the Operator Commands section of the
chapter Using TCAM Service Facilities).

One of the following return codes is returned to the application program in register 15
after the QCOPY macro is issued:

Code Meaning

X'OOOOOOOO' The QCOPY macro executed successfully;
X'OOOOOOO4' Invalid.terminal-table entry type (e.g., distribution list, or cascade

list is specified in the termname field).
X'OOOOOOO8' TCAM is not in the system.
X'OOOOOOOC' A TCAM application program DCB is not open: in order for this

macro to execute, at least one input or output OCB must be open.
X'OOOOOO20' An invalid station name is specified in the termname field of the

QCOPY macro (i.e., no such entry exists in the terminal table).

The QCOPY macro has the following format:

Name Operation Operand

[symbol] QCOPY termname, areaname

Function: Specifies the name of the macro.
Default: None. Specification optional.
Format: Must conform to the rules for assembler language symbols (see the symbol
entry in the Glossary).

Function: Specifies the name of the terminal table entry whose QCB is to be displayed.
Default: None. This operand is required.
Format: Must conform to the rules for assembler language symbols and be identical to
the name of the entry in the terminal table.
Notes: If register notation is used, the specified register number must be enclosed in
parentheses and the register must contain the address of a field containing the name of
the entry. The name must be left-adjusted and padded with blanks to the length of the
largest allowable station name in the table.

-------- -~-"---.---"-~-------------

ueaname

TCHNG Macro Instruction

symbol

termname

Function: Specifies the name of the work area into which the contents of the designated
QCB are to placed.
Default: None. This operand is required.
Format: Must conform to the rules for assembler language symbols.
Notes: If register notation is used, the register number designated must be enclosed in
parentheses and must have been loaded previously with the address of the work area;
permissible registers are 2 through 12.

The TCHNG macro:

• Places specified data in a terminal table entry and its associated option fields,
• Is optional in a TCAM application program.

TCHNG causes the contents of a designated work area to replace the contents of a speci
fied terminal-table entry. The TCOPY macro may be used to move the contents of a
terminal-table entry to a work area where the contents are manipulated as desired (see
the discussion of the TCOPY macro for a description of a terminal-table entry). The
TCHNG macro is then used to move the modified entry back to the terminal table.
Option fields are modified in the same manner by this macro.

All necessary information for proper execution of TCAM must be placed in the terminal
table entry in proper form. The contents of option fields may also be modified by the
DATOPFLD operator command (see the Operator Commands section of this publication).

One of the following return codes is returned to the application program in register IS
after the TCHNG macro is executed: '

Code Meaning

X'OOOOOOOO' The TCHNG macro executed successfully.
X'OOOOOOO8' TCAM is not in the system.
X'OOOOOOOC' A TCAM application program DCB is not open; at least

one input or output DCB must be open in order for this
macro to execute.

X'OOOOOO14' Either a) an invalid protection password is specified as the
PASSWRD= operand of the TCHNG macro, or b) the
PASSWRD= operand is not specified in the TCHNG macro
(and it must be specified because the INTRO macro's
PASSWRD= operand specifies a protection password;
code this operand exactly as it is coded in the INTRO
macro).

X'OOOOOO20' An invalid station name is specified in the termname field
of the TCHNG macro (i.e., no such entry exists in the terminal
table).

The TCHNG macro has the following format:

Name Operation Operand

[symbol] TCHNG termname, areaname [,PASSWRD=chars]

Function: Specifies the name of the macro.
Default: None. Specification optional.
Format: Must conform to the rules for assembler language symbols (see the symbol
entry in the Glossary).

Function: Specifies the name of the terminal-table entry whose contents are to re
placed by the contents of the designated work area.
Default: None. This operand is required.

TeAM Application Programs 281

areaname

PASSWRD=chars

ICHNG Macro Instruction

282

Format: Must conform to the rules for assembler language symbols and be identical to
the name of the station as specified in the terminal table.
Notes: If register notation is used, the specified register number must be enclosed in
parentheses, and the register must contain the address of a field containing the name of
the terminal-table entry, left-adjusted and padded with blanks. The field must be as long
as the largest allowable station name with a maximum of eight characters. Permissible
register are 2 through 12.

Function: Specifies the name of the work area from which the information is to be
moved into the terminal table entry.
Default: None. This operand is required.
Format: Must conform to the rules for assembler language symbols.
Notes: The first byte of the entry receives the first byte of data in the work area, which
must accordingly be the status byte. The work area should be at least as long as the long
est terminal table entry that will be changed.

If register notation is used, the specified register number must be enclosed in parentheses,
and the register must contain the addrt<Ss of the work area. Permissible registers are 2
through 12.

The new entry must contain in proper form all information necessary for successful
operation of TCAM. See the description of the terminal table entries in the chapter
Defining Terminal and Line Control Areas.

Function: Specifies the protection password that enables only qualified application pro
grams to issue the macro.
Default: None. If the P ASSWRD= operand of the INTRO macro was coded, this
operand is required. Otherwise, specification optional.
Format: One to eight nonblank characters, unframed.
Notes: If coded, this operand must specify the same characters as were specified in the
INTRO macro.

The ICHNG macro:

• Modifies an invitation list;
• Is optional in TCAM application programs.

ICHNG causes the contents of a designated work area to replace the contents of a speci
fied invitation list, or the stations in the specified list to be activated or deactivated for
entering messages (if they are polled stations). ICOPY macro may be used to move the
contents of an invitation list to a work area where the contents are manipulated as
desired. The ICHNG macro may then be used to move the modified list contents back
to the invitation list. For a complete description of the invitation list, see Establishing
Contact in the chapter Defining Terminal and Line Control Areas in this book and the
System Control Areas in Section I of the TCAM PLM. A sample invitation list con
taining three entries is presented in the discussion of ICOPY above.

If the macro is used to replace the contents of a specified invitation list with the contents
of a work area, all necessary information for proper execution of TCAM must be placed
in the invitation list in proper form. Entries in an invitation list may also be activated
or deactivated by the ENTERING, NOENTRNG, NOTRAFIC and ACTVBOTH operator
commands. The Auto Poll facility may be activated or deactivated by the AUTOSTRT
and AUTOSTOP operator commands, respectively (if the autopoll bit is turned on in the
UCB). See the description of these commands in the Operator Commands section of
this publication. Stopping and starting of lines before and after changing the contents
of an invitation list is handled automatically for the TCAM user. Execution of ICHNG
alters the contents of registers 14 and 15.

One of the following return codes is returned to the application program in register 15
after the ICHNG macro is issued:

symbol

grpname

rln

{
areaname}
ACT
DEACT

Code Meaning

X'OOOOOOOO' The macro executed successfully.
X'OOOOOOO l' The DeB for the line group specified by grpname is not open.
X'OOOOOOO4' Either a) an invalid name is specified for the grpname oper-

and of the ICHNG macro, or b) an invalid relative line num-
ber is specified in the rZn field of the ICHNG macro (i.e., no
such relative number exists for the group).

X'OOOOOOOC' TCAM is not in the system.
X'OOOOOOI4' The P ASSWRD= operand is not specified or is specified in-

correctly in the ICHNG macro (and it must be specified
because the INTRO macro's PASSWRD= operand specifies
a protection password; code this operand exactly as it is
coded in the INTRO macro).

The ICHNG macro has the following format:

Name Operation Operand

[symbol) ICHNG grpname,rln'l areaname ~
ACT
DEACT [,PASSWRD=chars)

Function: Specifies the name of the macro.
Default: None. Specification optional.
Format: Must conform to the rules for assembler language symbols (see the symbol
entry in the Glossary).

Function: Specifies the name of the line group containing the line whose invitation list
is to be modified.
Default: None. This operand is required.
Format: Must conform to the rules for assembler language symbols and be identical to
the name specified on the DD statement associated with the line group.
Notes: If register notation is used, the specified register number must be enclosed in
parentheses and the address of a field containing the grpname must previously have been
loaded into the general register specified. The name must be left-adjusted in the field and
padded with blanks to a length of eight bytes. Permissible registers are 1 through 12 and
14.

If the DCB for the line group has not been opened, ICHNG is not executed and a return
code of X'OI' is set in register 15.

Function: Specifies the relative line number within the line group of the line whose invita
tion list is to be modified.
Default: None. This operand is required.
Format: Unframed decimal integer greater than zero.
Maximum: 255
Notes: If register notation is used, the register number specified must be enclosed in
parentheses, and the register must previously have been loaded with the relative line
number in binary format. Permissible registers are 1 through 12 and 14.

Function: Specifies the type of modification or the modification itself.
Default: None. This operand is required.
Format: areaname, ACT or DEACT. areaname must conform to the rules for assembler
language symbols.
Notes: areaname specifies the name of the area that contains the new invitation list. The
first byte of the invitation list receives the first byte of the data in the work area, which
accordingly must be the first byte of the invitation list control word.

TeAM Application Programs 283

PASSWRD=chars

MRELEASE Macro

Instruction

284

ACT causes the activation of all entries in the specified invitation list. DEACT causes
deactivation of all entries in the specified invitation list. No further polling will occur
until the list is reactivated by an ICHNG macro specifying ACT, or an ENTERING
operator command.

Register notation may be used for areaname. If register notation is used, the specified
register number must be enclosed in parentheses, and the address of the work area must
previously have been loaded into the register specified. Permissible registers are 1 through
12 and 14. .

If areaname is specified, the new invitation list must contain, in proper format, all
information necessary for successful operation of TCAM. See the description of the
ICOPY macro for the format of the control word and of an invitation list.

Function: Specifies the protection password that enables only qualified application pro
grams to issue the macro.
Default: None. If the PASSWRD= operand of INTRO was coded, this operand is re
quired. Otherwise, specification optional.
Format: One to eight nonblank characters, unframed.
Notes: If coded, this operand must specify the same characters as specified by the
P ASSWRD= operand of INTRO. If the characters do not agree, or if INTRO specified
P ASSWRD= but this macro does not, ICHNG does not execute.

The MRELEASE Macro:

• Releases messages queued for a destination,
• Reactivates a destination made inactive by a HOLD macro or a SUSPXMIT operator

command.

The MRELEASE macro releases messages queued for a station. This macro has the
same effect as the RESMXMIT operator command.

One of the following return codes is returned to the application program in register 15
after the MRELEASE macro is issued:

Code Meaning

X'OOOOOOOO' The MRELEASE macro executed successfully.
X'OOOOOO04' The MRELEASE macro did not execute because either

a) an invalid station is specified in the statname field of the
macro, or b) the station is already receiving its queued
messages.

X'OOOOOOOC' TCAM is not in the system.
X'OOOOOOI4' The MRELEASE macro did not execute because either

a) the protection password specified in the P ASSWRD=
operand does not match the protection password specified
by the P ASSWRD= operand of the INTRO macro, or b) a
protection password is not specified in the P ASSWRD=
operand of the MRELEASE macro (and it must be speci-
fied because the INTRO macro's PASSWRD= operand speci-
fies a protection password). Code the PASSWRD=
operand exactly as it is coded in the INTRO Macro.

The MRELEASE macro has the following format:
-

Name Operation Operand
\

[symbol] MRELEASE statname [,PASSWRD=chars]

---- ----~~--- - - - ~----~------ ----- - -------~----

symbol

statname

PASSWRD=chars

TeAM's Message
Retrieval Facility

POINT Macro Instruction

Function: Specifies the name of the macro.
Default: None. Specification optional.
Format: Must conform to the rules for assembler language symbols (see the symbol
entry in the Glossary).

Function: Specifies the name of the station that is now to receive its queued messages.
Default: None. This operand must be specified.
Format: Must confo~ to the rules for assembler language symbols and be the same as
the name of the terminal entry.
Notes: If register notation is used, the address of a location containing the name of the
station must be placed in the general register 2- 12 that is indicated in parentheses. The
name must be left-adjusted and padded with blanks to the length of the longest station
name.

Function: Specifies the protection password that enables only qualified application pro
grams to issue the macro.
Default: None. Specification optional.
Format: One to eight non blank unframed characters.
Notes: If the P ASSWRD= operand is specified on the INTRO macro in the MCP, this
operand must be specified and must be the same as the INTRO value. If they do not
match or if this operand is omitted but a value is specified for INTRO, the MRELEASE
macro does not execute.

During the operation of a telecommunications system, it may be necessary to retrieve a
message that has already been placed on a destination queue located in a message queues
data set on reusable or nonreusable disk. Messages cannot be retrieved from main-storage
only queues, or if message traffic flows between stations whose queues are not the same
type. TCAM uses a combination of POINT with GET or READ macro instructions to
retrieve the desired message. After the message has been retrieved, user code may pro
cess it as appropriate and direct it to a desired destination. The message may be retrieved,
whether or not it has already been sent to its destination, provided that the entire mes
sage has been queued on disk at the time that the POINT macro is executed.

If the application-program work area is too small to contain the entire message, the next
GET or READ macro referring to the same DCB retrieves the rest of the message if C is
specified in the OPTCD= operand 'of the appropriate input DCB macro. If C is not speci
fied, the SYNAD= exit is taken. If the application program does not wish to retrieve the
rest of the message, it may so specify by issuing a POINT macro whose address operand
points to a block containing the station name followed by a X'40' (see the description
of the address operand of the POINT macro below).

The POINT Macro:

• Returns a station identification to the application program.

The POINT macro is used in conjunction with GET or READ to identify a station by
passing in a register or a field the station identification and the sequence number of the
message to be retrieved. Registers that may be altered during execution of the POINT
routine are 0, 1, 14, and 15.

One of the following return codes is returned to the application program in register 15
after the POINT macro is issued:

Code Meaning

X'OOOOOOOO' The POINT macro executed successfully.
X'00000004' No message having the specified sequence number is queued

in the specified destination queue.
X'000OOO08' The destination name specified is not a valid entry in the

terminal table.
X'OOOOOOOC' 1) The specified destination queue is not located in a data

set residing on disk;
2) More than one type of disk queuing is specified.

TeAM Application Programs 285

symbol

dcbname

address

TeAM's Inquiry/Rapid
Response Facility

286

- ----~ ~ ~-~-- -- .. -~--~--~ -

The POINT macro has the following format:

Name Operation Operand

[symbol] POINT dcbname,address

Function: Specifies the name of the macro.
Default: None. Specification optional.
Format: Must conform to the rules for assembler language symbols (see the symbol
entry in the Glossary).

Function: Specifies the name of the data control block in the application program for
the subsequent GET or READ associated with the POINT macro.
Default: None. This operand is required.
Format: Must conform to the rules for assembler language symbols and must agree with
the name of the DCB macro for the associated data control block.
Notes: If register notation is used, the address of the data control block must previously
have been loaded in register 1, or 2 through 12. The register must be coded within
framing parentheses.

Function: Specifies the symbolic address of a field needed for the POINT macro.
Default: None. This operand is required.
Format: Must conform to the rules for assembler language symbols.
Notes: address is the symbolic address of a field containing a block with three contiguous
fields:

1. An eight-byte field containing the station name, left-adjusted and padded with char
acter blanks (X'40').

2. Either I (X'C9') or 0 (X'D6') indicating either an input or output sequence number,
respectively. This field contains a blank (X'40') for retrieval termination.

3. A two-byte binary sequence number, right-adjusted with leading binary zeros.

If register notation is used, the address of this area must previously have been loaded in
a register I through 12. Framing parentheses must be coded.

TCAM can maintain a connection between a station and an application program for a
period of time not less than the duration of the message and its response. This feature
is called lock mode, and is supplemented by a hardware feature known as conversational
mode. In this mode, a station is able to accept a text response to an inquiry message
without having to be selected prior to receiving the response. Lock mode and the
conversational feature are complementary functions. Both shorten the interval between
an inquiry and its response.

Lock mode is used for inquiry applications. For fastest response, the station remains on
the line until an application program returns the required information. While the station
is in lock mode, no incoming messages are accepted from any other station on the line,
and no outgoing messages other than the response message are sent to any station on the
line (including the station in lock mode). Many stations on other lines may be simulta
neously locked to the same application program.

There are two types of lock mode - message lock and extended lock. The desired
function is specified by an operand of the LOCK message handler macro instruction.

If the station is in message lock mode, the connection is maintained while the entire
message is sent to an application program and until the response message arrives. The
first message from the application program to arrive at the destination queue for the
locked station is assumed to be the response. The line is automatically freed when the
response has been sent.

----------------~~
-~----------

-----~~---~-----

In extended lock mode, the same station is polled again after the response has been sent
to it. If the response is positive, the next inquiry message is entered by the station. If
the response is negative, the station is repolled until a positive response is received. Lock
mode is maintained until an UNLOCK macro is issued.

Once a station is in extended lock mode, all messages entered by it are assumed to be
inquiry messages directed to the application program to which the station is locked.
Destinations specified in the headers of messages and checked by a FORWARD macro
are overridden when the station is in extended lock mode. Therefore, once extended lock
mode is in effect, the FORWARD macro must be executed after the UNLOCK macro
to be effective.

Message lock is used if a single inquiry will provide all the information required. For
instance, an inventory application might handle inquiries requesting the quantity of a
certain part in stock. Extended lock mode is used if a series of inquiries must be made,
each requiring a response. In a credit application, the inquiries might ask if a person has
an account, await verification, and then request the credit balance. (Extended lock mode
is not supported for stations specifying TCAM's buffered terminal support using the
BFDELA Y= operand of their TERMINAL macros.)

Either form of lock mode may be entered unconditionally or conditionally. Conditional
execution occurs when a message header containing a control character or character string
is processed by a LOCK macro specifying that character.

The UNLOCK macro is used to remove a station locked to an application program from
extended lock mode. It may also be issued either unconditionally or conditionally de
pending upon a control field specified by both macro and message header.

If a station locked to an application enters a message, and a quick closedown is initiated
or the line is stopped by operator control, the response is received before the station is
deactivated. If the application program data set is closed, TCAM automatically discon
nects from lock mode all stations locked to that application program using the deactivated
data set.

The various forms of lock mode are summarized in the following table.

MESSAGE FORM EXTENDED FORM

CONDITIONAL Coded: LOCK Coded: LOCK
MESSAGE, A EXTENDED, B
Locked: When LOCK is Locked: When LOCK is
executed, if A is the next executed, if B is the next
character in the header of character in the header of
the message currently be- the message currently be-
ing handled by inheader ing handled by inheader
subgroup. subgroup.
Unlocked: When response Unlocked: On execution
has been sent. of an UNLOCK macro.

fOd'd' LOCK MESSAGE roded' LOCK EXTEND Locked: When LOCK is Locked: When LOCK is
executed. executed.

UNCONDITIONAL
EXECUTION Unlocked: When response Unlocked: On execution

has been sent. of an UNLOCK macro.

TeAM Application Programs 287

288

The conversattonal mode feature is specified by the CONV= operand of the STARTMH
macro. When the computer receives a message from a station using this feature, instead
of sending the normal positive acknowledgment, the computer sends a response message
(from an application program) to the station. The station interprets this as a positive
response. Transmission in this manner saves two line turnaround sequences.

If conversational mode is specified, a logical block of data being entered by a station is
treated 'by TCAM as if it were a complete message. That is, an EOB or ETX line control
character is assumed to be an EOT. Conversational mode may occur only for receiving
and is operative only if the station is placed in lock mode when the message is processed
by the inheader subgroup.

Conversational mode may be specified unconditiona.lly (CONV=YES) or conditionally by
the use of an option field. The CONV= operand specifies a bit setting and a one-byte
option field. If any of the bits in the option field are on, conversational mode will be
used for this message handler. (If the option field is longer than one byte, the first byte
in the field is the one tested.)

An example of an MCP and an application program using message lock and conversational
mode is shown in the Sample MCPs section.

There are several coding considerations for the three macro instructions involved in
utilizing TCAM's inquiry/rapid response facility. They are based upon the type of station
being used, the logic of the application program, and the interaction with other Message
Handler macro instructions. These considerations are summarized below.

LOCK

• Suggested for audio terminals.
• Cannot be used in extended mode with any station using TCAM's buffered~terminal

support.
• Should not be used if the logic in the application program requires that certain inquiry

messages not be provided a response (when a station sends an inquiry in lock mode,
an application program must send a response to the inquiry station, otherwise, the line
may be lost either to the inquiring station, or to another station to which the applica
tion program may erroneously send the response).

• Requires the user to specify a destination in the destination field in the work area, and
to code a FORWARD macro having a DEST= operand specifying DEST=PUT in the
incoming group of the MH for the application program.

• If the originating terminal is an IBM 2260 Local terminal, the entire line group is
placed in lock mode. If another 2260 Local in the line group attempts to enter a
message, the read request is recognized and queued for later servicing. However, the
message will not be received from the second 2260 until a response message has been
sent to the originating 2260.

• If a station on a switched line breaks the line connection by hanging up while in
extended lock mode, the line is unavailable for transmission to or from any stations.
To render the line available for further transmission, issue a STOPLINE operator
command for the line, and then issue a ST ARTLINE operator command to reactivate
the line.

• If the CANCELMG macro is executed in the inmessage subgroup for a lock message,
the lock is not broken, and the station will be repolled.

• If the HOLD macro is executed in the out message subgroup for a lock response, the
lock is not broken, the terminal is not held, and the message will be retransmitted
immediately (i.e., it will be sent twice). This can result in an infinite loop if the
condition for HOLD is permanent and the line or station is inoperative.

• If a station is held by an operator command while in lock mode, ,or if a lock is
initiated while the station is held, all lock responses will be sent as if the station were
not held. No other messages will be sent until the station is released.

• No QTAM network control macro should be issued in an application program
for a line on which is located a station locked to this application program by a LOCK
macro. If this happens this line is lost to the system, and any line over which any
operator command is entered after this condition occurs is also lost to the system.

TCAM/SAM
Compatibility

Coordinating TCAM
Checkpoints of the MCP
with OS Checkpoints of
the Application Programs

UNLOCK

• When the UNLOCK macro is issued in the inheader subgroup handling inquiry
messages being received from a station in extended lock mode, the message currently
being handled is routed to the destination specified in its header, or by a FORWARD
macro, if UNLOCK is issued before the FORWARD macro is issued. If UNLOCK is
issued after FORWARD, the message is routed to the application program to which
the originating station was locked.

STARTMH

• CONV=YES should be specified if IBM 1030 or IBM 1060 stations are included on
lines handled by this message handler, since these lines do not have the capability of
entering an EOT line-control character after their messages.

• CONV=YES should not be coded if any IBM 2780 station or IBM 2770 station using
TCAM's buffered-terminal support, is included on a line handled by this Message
Handler. If CONV=YES is coded in either of these cases, device hardware assumes
an error after a block of data is entered, and retransmits the same block when next
invited to enter data.

TCAM gives the user the capability of testing his application programs in a non
teleprocessing environment and then running them in conjunction with a TCAM MCP.
(An example would be exercising the logic of a TCAM application program by using input
from a card reader with output going to a printer). In many cases, the user can convert
from a non-TP to a TCAM environment merely by changing the DD statements for his
application-program data sets.

If you intend to run a TCAM application program in a non-TP environment, you should
remember the following points:

1. The OPTCD= operand of the DCB macro has incompatible meanings in a non-TP
and a TCAM environment. Therefore, this operand should be omitted from the DCB
macro and specified if needed at execution time by the DCB= parameter of the DD
statement. Test data for the non-TP environment should contain any optional fields
that would be present in the work area if the program were run under TCAM, for
the space in the work area allocated to optional fields to be filled.

2. The POINT macro must not be issued in a non-TCAM environment.
3. When issued in a non-TCAM environment, the TCOPY, ICOPY, QCOPY, TCHNG,

ICHNG, MRELEASE, and MCPCLOSE macros merely place a return code in register
IS indicating that TCAM is not in the system, and pass control to the next instruction.

4. The DCB checkpoint exit is ignored in a non-TCAM environment.

TCAM checkpoints of the Message Control Program may be coordinated with OS check
points of TCAM application programs by CKREQ macros issued in the application pro
grams. The purpose of coordination is to allow the MCP and each application program to
restart at the same point following system failure. This section describes how the
CKREQ macro is used to ensure coordination between application program and MCP, and
also how a user-specified exit from the input or output DCB macro for the application
program may be used for this purpose. For more information on the TCAM checkpoint
restart facility, see the chapter USing TCAM Service Facilities. The OS checkpoint facility
is described in Advanced Checkpoint/Restart Planning Guide.

When external files are updated by the contents of messages sent to an application
program, coordination of the contents of the files, the application-program environment,
and the messages being sent to the application program following a continuation restart
might be achieved by using OS checkpoints and the CKREQ macro, as described below,
in conjunction with "flip-flop" files set up to revert upon restart to their status as of the
last OS checkpoint. Another possibility would be to specify CKPTSYN=NO in the
TPROCESS macros for the application program and take an OS checkpoint each time
that a file update occurred. If one file update per message were perform~d and one OS
checkpoint per message were taken, upon restart the application program would have to
check for one duplicate message in order to ensure that updating of the file would resume
from the point of interruption.

TeAM Application Programs 289

Using the CKREQ Macro
Instruction for Coordination

symbol

290

NOTE: An OS checkpoint cannot be taken for an application program that is in an
attached task.

In the following discussions, "system failure" is assumed to involve MCP failure. If the
MCP fails, the application-program data sets are automatically closed; after the MCP is
restarted, the user may restart his application program.

Failure of the application program need not be accompanied by failure of the MCP. In
some applications, the user might wish to close down his MCP folloWing abnormal
termination of an application program, so that both might be restarted from the same
point. See Coordinating MCP and Application-Program Restarts below fOI more on this
topic.

When a CKREQ macro is executed in an application program, a checkpoint request record
is made in the checkpoint data set for each process queue to which a GET or READ
macro can be directed by the application program. This record is used to update the
MCP environment upon restart. The CKREQ macro causes sending to the application
program after restart to begin with the last message marked serviced at the time the check
point request record was taken, rather than with the last message marked serviced before
MCP closedown or failure.

The CKREQ macro is effective only for queues created by TPROCESS macros specifying
CKPTSYN=YES. When a continuation restart is performed, normal scanning of the
message queues (as described in the discussion of the TCAM checkpoint facility in the
chapter Using TCAM Service Facilities) does not occur for message queues created by
TPROCESS macros specifying CKPTSYN=YES. Instead, the message to be sent from the
process queue to the application program following restart is determined by the contents
of the last checkpoint request record made for that queue as the result of execution of a
CKREQ macro. If CKPTSYN=NO is specified, the first unserviced message in the highest
priority group of messages on the queue is sent following restart.

When the CKREQ macro is used in an application program with low message traffic, the
record resulting from it may be obsolete compared to the MCP environment (e.g., it may
contain information pertaining to a zone that has been wrapped on a reusable disk).
When this happens, messages are lost.

In order for the CKREQ macro to expand, a QSTART macro must be coded as the first
macro of the application program. (The QSTART macro is ordinarily coded only for
QTAM application programs that are to run under TCAM,but is also coded for ordinary
TCAM application programs when the CKREQ macro is used).

The CKREQ macro has the following format:

Name Operation Operand

[symbol] CKREQ (no operands)

Function: Specifies the name of the macro.
Default: None. Specification optional.
Format: Must conform to the rules for assembler language symbols (see the symbol
entry in the Glossary).

The CKREQ macro has no operands. Registers that may be altered during execution of
the CKREQ macro are 0, 1, 14, and 15.

Upon completion, a return code is placed in register 15. Possible values are:

a) X'OOOOOOOO' - checkpoint record (s) written on disk.
b) X'00000004' -no checkpoint record was written on disk for this request.

Suggestions for Using CKREQ When the CKREQ macro is to be used to synchronize TCAM checkpoints of the MCP
with as checkpoints of the application program following system failure, CKPTSYN=YES
should be coded for TPROCESS macros creating process queues to which the application
program can direct a GET or a READ macro. A continuation restart should be specified
in the STARTUP= operand of the INTRa macro.

After processing n messages or records, the user might take an as checkpoint. After the
as checkpoint is taken, a CKREQ macro might be issued. If this were done, upon restart
the application program environment would be restructured using the latest as checkpoint
and a maximum of n duplicate messages (i.e., messages already processed by the applica
tion program) would be sent.

NOTE: If both as checkpoints and checkpoint request records are used, CKREQ should
be issued each time an as checkpoint is taken.

Figure 32 illustrates the use ofCKREQ.

DESTINATION QUEUE FOR
APPLICATION PROGRAM

Environment
"---Checkpoint

Record

Message #1

Message #2

Message #3

Message #4

."

APPLICATION PROGRAM

GET'1

+ process and dispose of msg '1 ,
OS CHECKPOINT '1 ,
CKREQ MACRO '1

+
GET '2

t
process and dispose of msg '2

+
GET '3

+ process and dispose of msg '3 ,
OS CHECKPOINT '2 ,
CKREQ MACRO'2 ,
GET '4

protess and dispose of msg '4

*indicates first message sent to appl ication program from this queue following restart.

Figure 32. Example of Using the CKREQ Macro Instruction for Checkpoint Coordination

A TCAM environment checkpoint record is taken before GET No.1 is issued. After the
first message is processed and disposed of by the application program, an as checkpoint
is taken. Upon return from the checkpoint subroutine, a checkpoint-request record is

TeAM Application Programs 291

Using the DeB Exit for
Coordination

292

taken of the status of the destination queue for the application program. When GET
No.2 is satisfied, (i.e., after the second message has been moved into the work area)
message No. 1 is marked serviced in the destination queue. When GET No.3 is satisfied,
message No.2 is marked serviced. After message No.3 is processed by the application
program, another OS checkpoint record and TCAM checkpoint request record are taken.
When GET No.4 is satisfied, message No.3 is marked serviced.

Assume that system failure (i.e., failure of the MCP) occurs during the processing of
message No.4. In this case, upon restart the application program would be reconstructed
using OS checkpoint No.2, and message No.4 (the message pointed to by CKREQ
macro No.2) would be the first message sent upon restart. No duplication messages
would be sent to the application program from this queue.

Now, assume that system failure occurs during processing of message No.3. In this case,
the application-program environment would be reconstructed using OS checkpoint No.1,
and message No.2 would be the first message sent upon restart. This would be the next
unprocessed message with respect to the reconstructed application program environment.

Finally, assume that system failure occurs after OS checkpoint No.2 is taken, but before
CKREQ macro No.2 is executed. In this case, the application-program environment is
reconstructed using OS checkpoint No.2, but the first message sent upon restart is
message No 2. Messages No.2 and No.3 would be duplicate messages with respect to the
reconstructed application-program environment.

The input and output DCB macros for TCAM application programs permit specification
of a user-written routine to take an OS checkpoint after each TCAM environment check
point is taken. The user may specify the address of a problem-program exit list by
coding the EXLST= operand of the input or output DCB macro for the application pro
gram. The list must start on a fullword boundary; its format and contents are discussed
in Data Management Services. The user specifies his OS checkpoint routine by coding an
X'OF' as a control-byte in the exit list and following the control byte with the three-~yte
address of his OS checkpoint routine. The user routine must save and restore the contents
of registers 1 and 14. He must not store data in the area pointed to by register 13 upon
entry to his routine. All registers .except 1 and 14 contain what they held before the
macro causing the exit to be taken is executed. In addition to coding the EXLST=
operand of the input or output DCB macro, the user should specify CKPTSYN=YES in
the TPROCESS macro for each process queue to which a GET or READ may be directed.

When the EXLST= operand is coded, an indication is made to the application program
each time an environment checkpoint record is made. If the EXLST= operand is coded
in the input DCB macro, the first GET or READ macro issued by the application program
after the environment checkpoint is taken passes control to the user-specified OS check
point routine. The GET or READ macro does not perform its function until after con
trol is returned to the application program by the user routine. If the EXLST= operand
is coded in the output DCB macro, the first PUT or WRITE macro issued by the applica
tion program after the environment checkpoint is taken passes control to the user-speci
fied OS checkpoint routine. The PUT or WRITE is honored after control is returned to
the application program by the user routine. If OS checkpointing is used, a CKREQ
macro should be issued after every OS checkpoint.

Upon restart following system failure, message traffic to the application program
resumes with the message in each process queue that was the earliest completed, unser
viced message in the highest-priority group at the time the checkpoint was taken.
Unserviced messages on t4e queue at the time the environment checkpoint was taken and
all complete messages enqueued between the time the environment record was taken and
the time of system failure are sent to the application program upon restart.

By coding the CPINTVL= operand of the INTRO macro, the user may ensure that en
vironment checkpoints are taken within user-specified time limits.

NOTE: Ordinarily, the OS checkpoint routine cannot be invoked from a DCB exit
routine. When the DCB involved is a TCAM input or output DCB, however, this
restriciion does not hold.

Coordinating MCP and
Application Program Restarts Information on restarting the MCP after closedown or system failure is contained in

TCAM Checkpoint/Restart Facility in the chapter Using TCAM Service Facilities. When
restarting an MCP in conjunction with an application program, the MCP is restarted first.
Then the application program is restarted using OS restart facilities.

If the MCP terminates abnormally, any TCAM application programs currently active are
automatically terminated abnormally. If the TCAM checkpoint facility is being used, a
continuation restart may be performed for the MCP; the application program may then
be started.

If the application program terminates abnormally and the MCP does not terminate, the
user has three courses of action open to him:

1. The user may restart his application-program job without closing down or terminating
the MCP job. In this case, the first message received by the restarted application pro
gram from a particular process queue is that unserviced message in the highest-priority
group for that queue which was completely received and enqueued before any other
message in the highest-priority group in the queue. Remember that a message is not
marked serviced on disk until the next message to be sent to the application program
from the same queue has been transferred in its entirety to the application program.
Therefore, if message A is transferred to the application program and is followed im
mediately by message B on the same process queue, and if the application program
terminates abnormally when half of message B has been transferred to the application
program, the first message to be transferred to the application program following its
restart (assuming that the MCP continued to function between the time of application
program failure and restart) would be message B. If this course of action is followed,
no synchronization of OS checkpoints with the TCAM MCP is performed.

2. Following failure of the application program, the user can close down the TCAM MCP,
then activate the MCP with a warm restart and the application program by an OS
restart. In this case, the application program will receive from each process queue
those messages that were on the queue and unserviced at the time that the last check
point request record (or environment record, if no checkpoint request record was
made) was taken for that queue, plus all messages that were placed on the queue after
the last checkpoint request record was taken.

3. The user may cancel his MCP job. He would then activate the MCP by using contin
uation restart and the application program by an OS restart. In this case, the applica
tion program will receive all messages that were on the process queue and unserviced
at the time the last checkpoint request record (or environment record, if no checkpoint
request record was made) was taken, plus all messages that were placed on the queue
after the last checkpoint request (or environment) record was taken.

When reusable disk queuing is used, there is an advantage to be gained from combining
the two coordination methods described in this section by issuing both a CKREQ macro
and an OS checkpoint request in the DCB exit routine (see the chapter Defining Data
Sets for a discussion of reusable-disk queuing). If an environment checkpoint is taken due
to a zone changeover on the reusable-disk data set, checkpoint request records taken prior
to the data set reorganization are now out of date, because they do not point to the zone
currently being used. Since the DCB exit routine is given control after each environment
checkpoint is taken, it provides the user with an opportunity to take a fresh checkpoint
request record after each zone changeover.

TeAM Application Programs 293

j

Operator Control

Initialization for Operator
Control

General Format of Operator
Commands

control chars

Using TCAM Service Facilities

TCAM provides the user with a variety of facilities that support a teleprocessing system.
Some of these facilities are specified by the user; others are provided automatically by
TCAM.

The operator control facility enables the user to enter operator commands to examine
or to alter the status of a telecommunications network. Operator commands may be
entered from the system console, remote stations, and application programs; they are
supported by either resident or nonresident routines (see Appendix C). A discussion of
operator commands entered at the system console may be found also in the OS publica
tion, Operator's Guide. The concepts and functions of operator commands for TCAM
are discussed in TCAM Concepts and Facilities.

Initialization for the operator control facility is accomplished through operands of the
INTRO, TERMINAL, and TPROCESS macros. The INTRO macro specifies the single
set of control characters to identify all operator commands (see the CONTROL=
operand) and the primary operator control station (see the PRIMARY= operand); it
also specifies the maximum number of command input blocks that may be used at any
one time to contain operator commands entered at the system console (see the CIB=
operand). The TERMINAL and TPROCESS macros associated with the stations selected
as operator control stations have operands to indicate specification as secondary control
stations (see the SECTERM= operand discussions of both macros). A primary operator
control station receives the internally-generated error message, IEAOOOI, indicating that
a permanent I/O error has occurred; it also has the capabilities of a secondary operator
control station. (For a discussion of the IEAOOOI error message and permanent I/O
errors, see TCAM I/O Error-Recording Facility in this chapter.) A secondary operator
control station can send operator commands and can receive related responses, but not
internally-generated error messages (with one exception: when a primary operator
control station other than the system console becomes inoperative, message IEAOOOI is
sent to the system console, in this instance a secondary operator control station, stating
that the primary operator control station is inoperative).

The fields of operator commands are separated by one or more blanks and must be in
the order shown below. Commands entered at the system console do not include the
control chars field and cannot occupy more than one line (e.g., if a command is entered
through a card reader, it may not be more than 80 characters long, and if it is typed in
at the system console, it may not be longer than 126 characters). Commands entered
from either a remote station or an application program must not be longer than a buffer.
Required letters (those shown in uppercase) must be entered in uppercase when an oper
ator command is entered from either a station or an application program; if the com
mand is entered at the system console, it may be either uppercase or lowercase.
Brackets [] and braces {} are not coded. Brackets indicate an option; the enclosed
item (or one of the several enclosed items) may be coded. Braces indicate that one of
the several enclosed items must be coded.

control chars operation operand [nextIine] ending

Used only with commands being entered either from a station or from an application
program. Must be a character string (one to eight nonblank characters conforming to
the rules for assembly language symbols) that identifies a command as an operator com
mand (control characters are not recognized by the system if issued by the system con
sole). One character string identifies all operator commands that may be entered from a
station or an application program and is specified either at assembly time by the
CONTROL= operand of the INTRO macro or at INTRO execution time by the L=
keyword response to the WTOR message; the character string is stored in the AVT.
User-written code in the MCP can override the CONTROL= operand to change this
character string at the user's discretion (see the section on user code in the chapter
DeSigning the Message Handler). The control chars field must be specified except when
the operator command is entered at the system console (in which case control chars

Using TeAM Service Facilities 295

operation

operand

statname

address

grpname

rln

296

must not be specified) and must be followed by one or more blanks. Command formats,
in the Operator Commands section below, do not include the control chars field; how
ever, each operator command that is entered from stations and application programs
must begin with this character string.

One of the following six operation types must be entered in the operation field by all
sources requesting an operator command. One or more functions that provide system
control are associated with each operation (see Appendix F):

• l~ARY f

• l~ODlFY f

• l~ALT f

• l~ISPLAY f

Braces indicate that a choice must be made in the form of the command (e.g., either
VARY or V is keyed, not both; the shorter form is provided for coding efficiency).

Entered by all sources requesting an operator command. This field consists of one or
more operands (illustrated for each message in Operator Commands). These operands
determine which functional operator command is associated with the operation type
specified (Appendix F). If more than one operand is used, they are separated by
commas without intervening blanks.

The most common operands used by the commands are statname, address, grpname,
and rln.

The name of the station, as specified in that station's TERMINAL macro.

The hardware address of the line, identical to the UNIT= operand of the DD statement
for the line for which this operator command is being entered.

The name of the line group, identical to the DDNAME= operand of the DeB macro
instruction for the line group for which the operator command is being entered.

The relative line number of the line within the line group.

The first operand of all commands associated with the MODIFY operation has the
following -Cormat:

j ~procname.]id l
1 Jobname r

id is the abbreviation for identifier. The [procname.}id operand is used when TCAM has
been started; it is identical to the procname.identifier field in the console START com
mand. In an MVT environment, the id suboperand is a name chosen by the user in the
ST ART command for entering operator commands that are grouped as MODIFY opera
tions, and id alone may be coded (the use of procname. is optional). In an MFT envi
ronment, the id suboperand is replaced by the partition number.

Specifying Operator Commands

Thejobname operand is used when TCAM is dequeued from the input stream (e.g., from
a card reader). jobname is replaced by the name of the job to which the MODIFY op
eration applies, and is identical to the ;obname field in the job statement for the job
being modified by an operator command.

Thus, the TCAM job may be executed either as a normal job through SYSIN, or as a
started procedure by the START command from the system console.

[nextIine] ending

The simultaneous use of both subfields is restricted to stations entering operator com
mands (the ending subfield alone is entered when the command is from either the sys
tem console or an application program). nextline is replaced by the appropriate control
characters needed to accomplish either a carriage return or a new line operation to
ensure that TCAM's response message does not print over the previous line of print.
See the IBM component description SRL (for the device that is used to enter the opera
tor command) to determine the correct cohtrol character for either a carriage return or a
new line operation. The nextline subfield, when used, is followed immediately, without
intervening blanks, by the ending subfield. The [nex tline] ending field must be sepa
rated from the operand field by one or more blanks; any invalid characters appearing
between the blank delimiter and the first character of the [nex tline] ending field are
considered comments and are disregarded by TCAM. ending is the end-of-message signal
and is required by all sources entering an operator command. The signal is EOB for
the system console, EOT for start-stop stations, and ETXjEOT* for BSC stations. Com
mand formats, in the Operator Commands section below, do not include the
[nex tline] ending fields; however, each operator command that is entered on the line
must contain the appropriate code as described for it above.

*IF the CONV= operand of the STARTMH macro is specified (causing EOB, ETB, or
ETX line-control characters to be treated like EOT line-control characters), then either
EOB, ETX, or ETB alone is sufficient.

The operator commands, together with the functions they perform, are discussed in a
later section. Specification of these commands varies slightly depending upon whether
the command is entered at the system console or from an application program or a
remote station.

Commands entered at the system console follow the conventions outlined in the Opera
tor's Guide. Required chraracters (those shown in uppercase) must be entered, but can
be entered in either uppercase or lowercase, and the console operator must not enter
the control characters field described above.

Commands entered either from an application program or a remote station must also
enter required characters, and they must be uppercase unless the translation table used
by the CODE macro, which recognizes the command, permits lowercase data. Further
more, the control characters field must be the first field entered for each operator com
mand for TCAM to recognize the operation.

Example 1:
If TeAM has been started and the procname field of the console START command
specifies AQTPROC.QID and the INTRO macro specifies CONTROL=OPID, the com
mand to change a terminal from secondary to primary operator control terminal status
is:

• From an IBM 1050 terminal

OPID MODIFY QID,OPERATOR=NYC

or OPID F QID,OPERATOR=NYC

or OPID MODIFY AQTPROC.QID,OPERATOR=NYC

or OPID F AQTPROC.QID,OPERATOR=NYC

nex tlineEOT

nextlineEOT

nextlineEOT

nextlineEOT

Using TeAM Service FaCilities . 297

298

where uppercase characters are coded as shown (see the OPRIOPCL operator command
in a later section, Operator Commands); NYC is the name of the station to be made
primary, nextline is replaced by the appropriate carriage-return operation for the 1050,
and EOT is the ending character to be used with the 1050.

• From an application program

OPID MODIFY QID,OPERA TOR=NYC EOT

or OPID F QID,OPERATOR=NYC EOT

• or OPID MODIFY AQTPROC.QID,OPERATOR=NYC EOT

or OPID F AQTPROC.QID,OPERATOR=NYC EOT

• From the system console

MODIFY QID,OPERATOR=NYC

or F QID,OPERATOR=NYC

or MODIFY AQTPROC.QID,OPERATOR=NYC

or F AQTPROC.QID,OPERATOR=NCY

Example 2:

EOB

EOB

EOB

EOB

If TCAM is being executed as a normal job through SYSIN with the jobname
TCAMJOB and the INTRO macro specifies CONTROL=OPID, the commands of
Example I become;

• From an IBM 1050 terminal

OPID MODIFY TCAMJOB,OPERATOR=NYC

or OPID F TCAMJOB,OPERATOR=NYC

• From an application program

nextlineEOT

nextlineEOT

OPID MODIFY TCAMJOB,OPERATOR=NYC EOT

or OPID F TCAMJOB,OPERATOR=NYC EOT

• From the system console

MODIFY TCAMJOB,OPERATOR=NYC

or F TCAMJOB,OPERA TOR=NYC

EOB

EOB

Responses to operator commands are placed on the destination queue for the station
that entered the command, and are sent through the outgoing Message Handler as
normal messages. If selective execution is required in the outgoing groups, the first
outheader subgroup can use a MSGTYPE macro to detect operator responses and a
PATH macro to vary the processing path. Since responses to operator commands al
ways begin with the character string lED, they are easily detected by macros such as
MSGTYPE.

Operator responses are queued with no priority and without any line control informa
tion. For BSC lines and lines that expect internal blocking, the MSGFORM macro
should be issued to provide the necessary blocking. The operator responses are placed
on the destination queue in EBCDIC and must be translated to line code.

Assuming that the blocking operands and the translation table are specified in the DCB
macro instruction for the line group of which the station accepting the operator response
is a member, a suggested coding sequence is:

Entering Operator Commands from

OUTHDR
MSGTYPE C'IED'
MSGFORM
CODE
PATH I,PATHSW
MSGTYPE,

OUTEND

FOR OUTGOING HEADERS
DETECT OPERATOR RESPONSES
ADD BLOCKING INFORMATION
TRANSLATE TO LINE CODE
SET A PATH SWITCH
HANDLE NON-OPERA TOR RESPONSES

Possible responses to commands are included with each command description in the
Operator Commands section. The responses described in Incorrect Messages (see below)
may be returned in addition to one of those described for each command.

an Application Program An application program may enter operator commands if SECTERM=YES is coded in
the TPROCESS macro that creates the terminal-table process entry associated with the
PUT or WRITE macro that moves messages.

Incorrect Messages

When it wishes to enter a command, the application program moves that command into
its PUT or WRITE work area (the operator command must have the same format as
commands that are entered from stations; the command must begin with the control
characters field).

A PUT or a WRITE macro is issued to move the command from the application program
to the MCP. The inheader subgroup of the incoming group that handles messages
entered by the application program must contain a CODE macro if the program may
enter operator commands. One of the functions of CODE is to recognize operator com
mands (see the description of the CODE macro). Once it is recognized by CODE, the
command from the application program is treated like any other operator command.

The response to a command entered from an application program is directed to the al
ternate destination specified by the ALTDEST= operand of the TPROCESS macro that
creates the terminal-table process entry associated with the PUT or WRITE macro
causing the operator command to be sent to the MCP. If no alternate destination is
specified, the response is sent to the dead-letter queue. If no dead-letter queue is pro
vided, the response is lost.

The station operator may cancel a partially entered operator command by entering the
control characters sequence (preceded and followed by one or more blanks) again after
entering the initial control characters. At the system console, the CANCEL key is used.
There is no response message for a canceled command.

Incorrectly formatted commands are returned to the operator, using a WTO response if
the system console (or card reader) is being used. The format of the response message
to an invalid command is:

IEDOl61 STATION statname NOT FOUND

or

IEDOI7I LINE ~ grpname,rlnt NOT OPEN
1 address ~

or

IEDO 181 operation COMMAND INVALID

where statname, address, grpname, and rln are explained in the operand description, and
operation is the operation type, as specified in the operation field, and the first operand.

The response IEDO 161 is received if the station name is not in the terminal table. This
can be caused by a misspelled name, or by a name entered in lowercase when a folded
translation table is not used.

Using TeAM Service Facilities 299

Operator Commands

300

IEDOl71 is received if the line is not open, if the OPEN macro specified IDLE, if the
groupname specified has no matching DD statement, or if the relative line number
specified is zero or is higher than any relative line number in the group.

IEDOl81 is received if the format of the command or a field in the command is incor
rect. Possible errors include a required field missing or misspelled, fields in the wrong
order, and numeric fields entered in non-numeric format.

The operator commands appear in alphabetical order; command formats are discussed in
an earlier section. See the discussions of con trol chars and [nex tUne J ending in an earlier
section, General Format of Operator Commands, to determine the appropriate control
characters that must precede operator commands that are entered from a station or an
application program, and carriage-return (or newline) control characters and the end-of
message signal to be used with each command. Summaries of these command functions
are illustrated in Figure 33 at the end of this section and in Appendix F. Keyword
names (e.g., ACTVATED) are assigned to each command for ease of reference only
(these names serve no programming function).

Where statname appears in an operand or a response message, it refers to the name of a
station and must be identical to the name specified for that station's TERMINAL macro
(see the definition of symbol in the discussion of the TERMINAL macro).

Likewise, grpname refers to a line group when it appears in an operand or a response
message, and it must be identical to the name specified in the DDNAME= operand of the
DCB macro for that line group.

Each response message to an operator command is preceded by a message number. The
Messages and Codes publication contains a sequential list of all TCAM messages, includ
ing a complete discussion of each response to an operator command.

ACTVATED
This command requests a list of all entries in the invitation list for the specified lines that
are currently active for entering messages (see also the descriptions of the INACTVTD
operator command and the ICOPY macro instruction for an application program).

Format:

control characters operation operand

control chars 19l5PLAY ~ TP,ACT'1 grpname,rln f
address

Response:

IEDO 171 LINE j grpname,rln t NOT OPEN
.. 1 address ~

or

IED036I

Explanation:

5 grpname,rln t ACTlVE= j statname, ... t
1 address I 1NONE ~

An operator command was entered to display the list of active stations associated with
the line named by grpname,rln or address that entered. statname, ... are the names of
the entries that meet this requirement. If there are no active stations on the line,
statname, ... is replaced with NONE.

ACTVBOTH
This command combines the functions of the RESMXMIT and ENTERING operator
commands and activates a nonswitched station for both accepting and entering messages.
(Before issuing the ACTVBOTH command, a STOPLINE command must be entered to
stop the line on which the station to be stopped or started resides. After ACTVBOTH is
issued and its response is received, a STARTLINE command may be issued to restart the
line.)

Format:

control characters operation operand

control chars ~~ARY f statname,ONTP ,B

statname is replaced by the name of the station to be activated. If a station is included
more than once in an invitation list, all the entries for that station are activated.

Response:

IEDOl6I STATION statname NOT FOUND

or

IEDOl9I statname ALREADY STARTED

Explanation:
An operator command to start the station named by statname was entered. The station
is already active.

or

IED020I statname STARTED

Explanation:
An operator command to start the station named statname was entered. The station
is started, and the message is a confirmation of the action taken.

or

IED046I LINE FOR statname IS OUTPUT ONLY STATION

Explanation:
An operator command was entered to start a station for entering and accepting mes
sages. statname is the name of the station to be started. The command is not
processed.

or

IED089I LINE ACTIVE - VARY TERMINAL COMMAND REJECTED

Explanation:
An operator command to start a station was received, but the line for the station has not
been previously stopped. The command is not processed.

AUTOSTOP
This command switches a line from the Auto Poll facility to the programmed polling
facility if the automatic polling bit is on in the UCBTYP field of the UCB for the line (if
this bit is on, the user gets Auto Poll at startup time).

Operator Commands 301

•

..

302

Format:

control characters operation operand

control chars l~ODIFYf 1 ~ procname. lid t,
Jobname

AUTOPOLL= 19rpname,rln ~ ,OFF
address

Response:

IEDOl7I LINE {grpname,rln} NOT OPEN
address

or

IED027I AUTOPOLL STOPPED FOR {grpname,rln}
address

Explanation:
A request was made to stop autopolling on the line named by grpname, rln or address.
This message confirms that autopolling has been stopped on this line.

or

IED028I AUTO POLL ALREADY STOPPED FOR {grpname,rln}
address

Explanation:
An operator command was entered to stop autopolling on the line named by
grpname,rln or address. Autopolling on the lfue is not in progress at this time.

or

IEDOS7I {grpname,rln} NOT CAPABLE OF AUTOPOLL
address

'Explanation:
An operator command was entered to stop autopolling on the line named by
grpname,rln or address, but according to the UCB for the line, the line is not capable of
being autopolled or is a buffered station that is temporarily receiving. The command is
not executed.

AUTOSTRT
This command changes a line from the programmed polling facility to the Auto Poll
facility if the automatic polling bit is on in the UCBTYP field of the UCB for this line.

Format:

control characters operation operand

control chars l~ODIFYf l ~procname.] id t,
Jobname

AUTOPOLL=l grpname,rlnf ,ON
address

Response:

IEDOl7I LINE {grpname,rln} NOT OPEN
.. address

or

IED021I AUTO POLL STARTED FOR {grpname,rln}
address

Explanation:
A request was made to start autopolling on the line named by grpname,rln or by address.
This message confirms that autopolling has been started on this line.

or

IED0221 AUTO POLL ALREADY STARTED FOR {grpname,rln}
address

Explanation:
A request was made to start autopolling on the line named by grpname,rln or by address,
but autopolling is already active for the line.

or

IED0571 {grpname,rln} NOT CAPABLE OF AUTOPOLL
address

Explanation:
An operator command was entered to start autopolling on the line named by
grpname,rln or by address, but according to the UCB for the line, the line is not capable
of being autopolled or is a buffered station that is temporarily receiving. The command
is not executed.

CPRIOPCL
This command requests that either a secondary operator control station or the system
console become the primary operator control station.

Format:

control characters operation operand

control chars l~ODlFY~ 1 ~ procname.] id ~ ,
Jobname

OPERATOR=lstatname f
SYSCON

statname is the name of a station other than the system console that is to become the
primary operator control station. SYSCON must be coded if the system console is to
become the primary operator control station.

Response:

IEDO 161 STATION stat name NOT FOUND

or

IED041I PRIMARY= {statname}
SYSCON

Explanation:
An operator command has been entered requesting that the station named by statname
or the system console be made the primary operator control station. This message
confirms that the requested action has been taken.

or

IED0421 {SYSCON} ALREADY PRIMARY
statname

Operator Commands 303

304

Explanation:
An operator command has been entered requesting that the. station named by statname
or the system console be made the primary operator control station, but the system
status indicates that this is already so.

or

IED044I statname NOT ELIGIBLE FOR PRIMARY

Explanation:
An operator command was entered requesting that the station named by statname be
made the primary operator control station, but statname is not eligible to be made
primary (i.e., it is not defined as a secondary operator control station).

DATOPFLD
This command requests that data be inserted in an option field for a station.

Format:

control characters operation operand

control chars l~ODlFYf 1 ~procname.] idf'
Jobname

OPT=statname,opfldname,data

statname is the name of the station whose related option field is affected by this
operator command. op[ldname is the name of the option field, as specified in its
related OPTION macro, where data is to be inserted. data is that data to be inserted into
the specified option field. The data may either be enclosed in C' " D' " or X' , framing
characters or specified in unframed character format. The number of characters of data
must be no greater than the size of the option field (if greater, it is rejected). If the
replacement data is shorter in length that the size defined for the field, standard padding
is used according to assembler language standards. All OPTION names are kept in a
table with their offset into the offsets field of the terminal-table entry; this enables an
option field named in an operator command to be found.

NOTE: Data to be inserted in an option field must be entered in the same format as the
format defined for the option field. If the OPTION macro specifies a character data
format, the data field of the macro may be either framed or unframed characters. If
the OPTION macro specifies one of the hexadecimal formats (X, F, etc.) the data field
of the command must be hexadecimal format with framing X' 'characters. If the
formats do not agree, message IED056I is returned and the option field is not modified.

Response:

IEDOl6I STATION statname NOT FOUND

or

IED034I statname HAS NO opfldname OPTION

Explanation:
An operator command was entered to modify the contents of the option field named by
op[ldname for the station named by statname, but no option field with this name exists
for this station. The command is not executed.

or

IED050I statname OPTION opfldname MODIFIED

Explanation:
An operator command was entered to modify the contents of the option field named
by op[ldname associated with the station named by statname. This message confirms
that the requested action is taken.

-------------~-~---- ----~-----~--~

or

IEDOS 61 statname OPTION opfldname DATA FORMAT INVALID

Explanation:
An operator command was entered to modify the contents of the option field named by
opf/dname associated with the station named by statname, but the data format specified
in the command differs from the definition of the option field format.

or

IED0621 statname OPTION opfldname CANNOT ACCEPT SPECIFIED DATA

Explanation:
An operator command was entered to modify the contents of the option field named by
opf/dname associated with the station named by statname, but the data to replace the
current setting of the option field is greater in length than the field.

or

IED0771 statname OPTION opfldname DATA CHARACTER INVALID

Explanation:
An operator command was entered to modify the contents of the option field named by
opf/dname associated with the station named by statname, but the contents of the
modification data do not agree with the framing characters surrounding the data.

DEBUG
This command activates a TCAM service aid routine that writes the dispatcher subtask
trace table (STCB trace), the I/O interrupt trace table (line trace), or a dump of buffer
and status information on either tape or disk. If buffers are written to the tape or disk
data set using this command, it must be preceded by a DEBUG command that activates
a line trace (and the line trace requires that the TRACE= operand of the INTRO macro
instruction be coded). If the STCB trace is activated by this command, the DTRACE=
operand of INTRO must specify a positive integer. Use of the DEBUG command requires
that COMWRTE=YES be coded in the INTRO macro instruction.

NOTE: If either a closedown or a failure of the TCAM system occurs while DEBUG
writing routines are still active, the functions provided by this command are not acti
vated automatically when TCAM restarts. Reenter the DEBUG command with its
appropriate operands after TCAM restarts to continue writing to the tape or disk data
set. See Debugging Aids later in this chapter for more details on these and other diag
nostic aids, including information on specifying the tape or disk data set and the sepa
rate utility that formats and prints the data set contents (the data set may Gontain vari
ous combinations of the STCB trace table, the I/O interrupt trace table, and buffers
and status information).

Format:

control characters operation operand

control chars l~ODIFY~ 1 ~procname.] id~,DEBUG= lL~,
Jobname D

{IEDQFEIO}
IEDQFE20
IEDQFE30

Either Lor D is coded in the DEBUG= keyword operand; L causes the service aid
routine to be loaded and activated, and D causes the service aid to be deactivated and
deleted. Either IEDQFElO, IEDQFE20, or IEDQFE30 is coded as shown. IEDQFElO
either activates (DEBUG=L) or deactivates (DEBUG=D) the service aid routine that
writes the STCB trace table to either magnetic tape or disk, in order to use this service
aid routine, the DTRACE= operand of the INTRO macro instruction must specify a

Operator Commands 305

306

---------- -

non-zero value. IEDQFE20 either activates or deactivates the routine that writes the
I/O interrupt trace table; use of the DEBUG command for writing the I/O interrupt
trace table requires that the TRACE= operand of the INTRO macro instruction specify
a non-zero value, and the GOTRACE operator command must precede the DEBUG
command (to activate the line trace). IEDQFE30 causes either activation or deactivation
of the service aid routine that dumps TCAM buffers. See the chapter Debugging Aids
for a description of the utility program to use to get a formatted listing of either the
STCB trace, the line trace, or a buffer dump that is on tape or disk.

Response:

IED0991 ROUTINE LOADED

Explanation:
The routine that was called by the DEBUG command is loaded and initialized.

or

IEDl 001 ROUTINE DEACTIVATED

Explanation:
The routine designated in the DEBUG command was deactivated and deleted.

or

IEOlOlI RESTART IN PROGRESS

Explanation:
The requested operation cannot be processed because TCAM is being restarted by either
a checkpoint warm or a checkpoint cold restart.

or

lED 1021 INY ALiD OPERAND

Explanation:
The DEBUG command format is incorrect. One or more of the following operands
were in error.

a. A subparameter other than L or D was specified.
b. An invalid routine name was specified. Valid names are:

IEDQFElO
IEDQFE20
IEDQFE30

or

IEDl 031 ROUTINE ALREADY ACTIVE

Explanation:
A request has been made to activate a debugging routine that is already active.

or

lED I 041 ROUTINE NOT ACTIVE

Explanation:
A request has been made to deactivate a debugging routine that is not active.

or

1E0l071 COMWRITE NOT ACTIVE

~--- -- - - -- --~--~------ -------_._------- ----

Explanation:
A request has been made to activate a debugging routine that requires that the
COM WRITE routine be active. COM WRITE is not active (COMWRTE=YES was not
specified on the INTRO macro instruction).

or

IED124I QUEUE HAS BEEN WRAPPED

Explanation:
The message queues data set has been wrapped. Since the message queues data set can
no longer be formatted reliably, the IEDQXB printing utility is terminating.

or

IED125I xxx BYTES NEEDED

Explanation:
Insufficient main storage exists for loading the requested debugging aid.

DPRIOPCL
This command requests the name of the current primary operator control station.

Format:

control characters operation

control chars 19I5PLAYf

Response:

IED041I PRIMARY=j stat name t
lSYSCONS

Explanation:

operand

TP,P RITE RM

An operator command was entered that requested the display of the station that is
currently the primary operator control station. This response displays the requested
information.

DSECOPCL
This command requests the names of current secondary operator control stations.

Format:

control characters operation operand

control chars 19I5PLAYf TP,SECTERM

Response:

IED043I SECONDARY=statname, ...

Explanation:
An operator command was entered that requested the display of all stations defined as
secondary operator control stations. statname, ... are the names of all stations so defined.

NOTE: All operator control stations except SYSCON are listed by this command, even
if one of them is designated primary (a primary operator control station by definition
has the capabilities of a secondary operator control station).

Operator Commands 307

308

--~-.------

ENTERING
This command activates a terminal entry in an invitation list for entering messages from a
nonswitched station that are to be received at the central computer. (Before entering this
command, a STOPLINE command must be entered to stop the line on which the station
to be stopped or started resides. After a response to the ENTERING command is received,
a ST ARTLINE command may be entered to restart the line.)

Format:

control characters operation operand

control chars l~ARYf statname,ONTP ,E

statname is replaced by the name of the station to be activated. If a station is included
more than once in an invitation list, all the entries for that station are activated for
entering messages.

Response:

IEDOl6I statname NOT FOUND

or

IEDOl91 statname ALREADY STARTED

Explanation:
An operator command requesting the station named by statname be activated for
entering has been received. The station is already active for entering.

or

IED020I statname STARTED

Explanation:
An operator command requesting that the station named by statname be activated for
entering has been received. This response verifies that the requested action has been
taken.

or

IED0461 LINE FOR statname IS OUTPUT ONLY STATION

Explanation:
An operator command requesting that the station named by statname be activated for
entering has been received, but the station is not capable of entering data. The re
quested action is not taken.

or

IED089I LINE ACTIVE - VARY TERMINAL COMMAND REJECTED

Explanation:
An operator command requesting that the station be activated for entering has been
received, but the line associated with the station is active. The requested action cannot
be taken.

ERRECORD
This command causes temporary-error records to be made for recoverable I/O errors
occurring on a specified line or for a specified station. See the discussion of intensive
mode error recording in TeAM I/O Error-Recording Facility in this chapter for more
information on the use of the ERRECORD command.

n" ____________________ _
--.---~-----.. - -.-.------~-~- ---

Format:

control characters operation operand

control chars l~ODIFYf l ~procname.]idf'
Jobname

INTENSE-{ LINE, j"",nam"dn f f"'" jeoun,!
address .li.

TERM,statname

grpname,rln, and address, respectively, are replaced by the name of the line group con
taining the line, the relative line number of the line within the line group, and the ma
chine address of the line. statname is replaced by the name of the station for which
failure incidents records are desired. Either LINE, ... or TERM, ... is coded, not both.
(LINE, ... provides intensive-mode error recording for all the stations on the specified
line; TERM, ... restricts intensive-mode error recording to the specified station.) sense
is replaced by one of the following:

sense type of intensive recording.provided

BO busout check
CR command reject
DC data check
EC equipment check
1M general intensive mode
IR intervention required
LD lost data
M2 leading graphics for 2740 Model 2 terminal
OR overrun
TO timeout
UE unit exception

Eight of the conditions listed (busout check, command reject, data check, equipment
check, intervention required, lost data, overrun, timeout) correspond to bits of the sense
byte for the 1/0 device (which is, in this case, the transmission control unit being
used). When the unit check bit is turned on in the CSW during an 1/0 operation, a
sense command is issued by TCAM, and the appropriate bits in the sense byte are
turned on. The CSW and the sense command are described in the Principles of
Operation. A detailed discussion of the meaning of each bit in the sense byte may be
found in the component description SRL manual for the transmission control unit
being used.

Unit exception in the list refers to the unit exception bit of the CSW, which is turned
on to indicate the presence of a condition that does not usually occur during an 1/0
operation.

When M2 is coded, a temporary-error record is made when an unusual leading graphic
character (indicating a difficulty at the terminal) is received from an IBM 2740 Model 2
terminal, provided that the condition indicated by the character is recovered from. The
use of leading-graphic sense characters by the 2740 Model 2 terminal, to indicate the
terminal status and specific error conditions, is discussed in the publication/BM 2740
Communication Terminal Models 1 and 2 Component Description (Order no. GA24-3403).

When 1M is coded, a temporary-error recording is made when any of the error conditions
in this list (except for the unusual leading-graphics response for the IBM 2740 Model 2
terminal) occurs and is recovered from.

The count field is replaced by a decimal number from I to 15 (depending upon the
number of records desired for the incident type specified in the sense field). If this
field is omitted, a value of 15 is assumed.

Operator Commands 309

310

Response:

IED0161 STATION statname NOT FOUND

or

IEDO 171 LINE S grpname,rln t NOT OPEN
(address 5

or

IED05 811 grpname,rln (SENSE COUNT=count, SETTING=sense
address
statname

Explanation:
An operator command requesting that the sense information for the line named by
grpname,rln or by address .or for the station named by statname be altered is entered.
This response verifies that the requested action has been taken.

GOTRACE
This command activates the TCAM I/O interrupt trace facility (line I/O trace) for a line.
Use of this command requires that a positive integer be specified in the TRACE= operand
of the INTRO macro instruction. See the Debugging Aids section of this chapter for
information on the TCAM I/O interrupt trace facility.

Format:

control characters operation operand

control chars l~OFIDY~ 1 ~procname.]idf'
Jobname

TRACE= 1 grpname,rln ~ ,ON
address

The trace is started for the line specified either by grpname,rln or by address.

Response:

IEDO 171 LINES grpname,rlnt NOT OPEN
(address 5

or

IED0231 TRACE STARTED FOR S grpname,rln t
(address 5

Explanation:
An operator command requesting that the I/O trace be started for the line named by
grpname,rln or by address has been entered. This response confirms that the requested
action has been taken.

or

IED0241 TRACE ALREADY STARTED FORjgrpname,rlnt
1 address 5

Explanation:
An operator command requesting that the I/O trace be started for the line named by
grpname,rln or by address has been entered, but I/O trace was already active on the
line when the command was received.

or

IED0551 I/O TRACE CANNOT BE ALTERED

Explanation:
An operator command requesting that the 110 trace be started has been entered, but the
trace facility was not defined for this execution of the TCAM system.

INACTVTD
This command requests a list of the inactive entries in the invitation list for the specified
line (see also the descriptions of the ACTV A TED operator command and the ICOPY
macro instruction for an application program).

Format:

control characters operation operand

control chars 19I5PLAYf TP ,INACT, l grpname,rln ~
address

A list of inactive entries is displayed for the invitation list specified either by grpname,rln
or by address.

Response:

IEDOl7I LlNEj grpname,rlnt NOT OPEN
t address ~

or

IED037I j grpname,rlnt INACTIVE= j statname, ... t
1 address ~ t NONE 5

Explanation:
An operator command has been entered requesting a display of the names of all
stations associated with the line named by grpname,rln or by address that are currently
inactive. The response provides a list of the names of all inactive stations. If no stations
are inactive, NONE replaces statname, ... in the response.

INTERVAL
This command activates the system interval whose value is specified by the INTV AL=
operand of the INTRO macro instruction (if the INTV AL= operand is not coded, this
operator command does not affect the system). For more information on the system
interval, see System Interval in Defining Terminal and Line Control Areas.

Format:

control characters operation operand

control chars ~~ODIFYf ~ ~procname.] idt ,INTERVAL=SYSTEM
Jobname

Response:

IEDO III SYSTEM INTERVAL CANNOT BE ALTERED

Explanation:
Either a system interval of zero or no system interval at all was specified in the INTV AL=
operand of the INTRO macro or in the response to a WTOR message at INTRO execution
time, and an operator command was entered to modify the value of the interval.

or

IED04SI SYS INTERVAL ALREADY ACTIVE

Operator Commands 311

312

-._---------

Explanation:
An operator command was entered requesting that the system interval be activated, but
the system interval was already in the process of being activated.

or

IED0931 SET SYSTEM INTERVAL COMMAND ACCEPTED

Explanation:
An operator command was entered requesting that the system interval be activated.
This response verifies that the command has been received and is being acted upon.

INTRCEPT
This command requests display of all stations in the system that are intercepted (an
intercepted station is one to which transmission has been suspended by a HOLD macro
or a SUSPXMIT operator command).

Format:

control characters operation operand

control chars 19I5PLAYl TP,INTER

Response:

IED0391 NO STATIONS INTERCEPTED

Explanation:
An operator command has been entered requesting a display of all intercepted stations
in the TCAM system. There are no stations currently intercepted.

or

IED040I INTERCEPTED STA TIONS=statname, ...

Explanation:
An operator command has. been entered requesting a display of the names of all
intercepted stations in the TCAM system. statname, ... are the names of the stations
that are currently intercepted.

LNSTATUS
This command requests display of the status field and the message error record for the
specified line.

Format:

control characters operation operand

control chars 19I5PLAYl TP,LlNE i,grpname,rlnf
address

The status field and the message error record are displayed for the line specified either
by grpname,rln or by address.

-- ---------- ----------.--------------- ---------------~----.--~---- --------~---

Possible responses in the LNSTAT= ... field of the response message are:

RESPONSE

BS
CM
CR
DL
1M
LF
MS
NR
OC
RC
RV
SD
TB
TR

MEANING

bisync line
line in control mode
continue or reset operation
switched (dial) line
receiving initiate mode message
line free
msggen/startup message
negative response to polling
operator control is stopping line
recall being performed
line in receive mode
line in send mode
EOT from a buffered terminal
I/O trace active

If no bits are set in the status field, the response is NO BITS ON.

Possible responses in the ERR= ... field of the response message are given below. Each
response is a mnemonic corresponding to a bit of the message error record. See
Appendix B for an explanation of the error indicated by the mnemonic. If no bits are
set in the message error record, the response is NO BITS ON.

ABR - abort-BSC station
CDC - connect/ disconnect error
CHR - channel error
CUR - control unit error
CUT - cutoff error
FMT- format error
FWD - forward error
HDR - header incomplete
HDW - hardware error
INV - id from station invalid
ISB - insufficient buffers
LER -line error
LST - message lost (overlaid)
MAX - main storage maximum passed

MIN - main storage minimum passed
MNS - message not sent/received
NOP - station inoperative
NTS - TSO not in system
OL T - on-line test not in system
ORG - invalid origin
SEL - selection error
SQH - sequence high
SQL - sequence low
TER - terminal error
TXT - text transfer error
UNR - undefined error
UNX - unit exception
USE - user error

For a more complete discussion of these bits and their meanings, see the TeAM PLM.

Response:

IEDOl71 LlNESgrpname,rlntNOT OPEN
faddress S

or

IED03 21 S grpname,rln t LNST A T=status, ... ERR=error, ...
f address 5

Explanation:
An operator command was entered requesting display of the status field and the message
error record for the line named by grpname,rin or by address. This response displays the
requested information.

NOENTRNG
This command prevents the control program receiving messages from a specific non
switched station by deactivating that station's entry in the invitation list. Any message
currently being received is completed. (Before issuing the NOENTRNG command, a
STOPLINE command must be issued to stop the line on which the station to be stopped
or started resides. After NOENTRNG is issued and its response is received, a STARTLINE
command may be issued to restart the line.)

Operator Commands 313

314

Format:

control characters operation operand

control chars l~ARYf statname,OFFTP ,E

statname is replaced by the name of the nonswitched station to be stopped from entering
messages. If a station is included more than once in an invitation list, all the entries for
the station are deactivated.

Response:

IED0161 STATION statname NOT FOUND

or

IED0251 statname ALREADY STOPPED

Explanation:
An operator command has been entered requesting that the station named by statname
be stopped from entering messages. The station is already stopped from entering.

or

IED0261 statname STOPPED

Explanation:
An operator command has been entered requesting that the station named by statname
be stopped from entering messages. This response confirms that the requested action
has been taken.

or

IED0461 LINE FOR statname IS OUTPUT ONLY STATION

Explanation:
An operator command has been entered requesting that the station named by statname
be stopped from entering messages, but the line is defined as an output only line. The
station is not capable of entering messages, and the requested action is not taken.

or

IED0891 LINE ACTIVE - VARY TERMINAL COMMAND REJECTED

Explanation:
An operator command has been entered requesting that the station be stopped from
entering messages, but the line associated with that station is still active. The requested
action cannot be taken.

NOTRACE
This command deactivates the TCAM I/O trace facility for a line (line trace). The TCAM
I/O trace facility is discussed in the Debugging Aids section of this chapter.

Format:

control characters operation operand

control chars {~ODIFY} 1 [procname.] idf' TRAcE=l~name,rln~,OFF
jobname a dress

The trace is stopped for the line specified either by grpname,rln or by address.

Response:

IEDO 171 LINE~ grpname,rlnt NOT OPEN
1 address ~

or

IED0291 TRACE STOPPED FOR~ grpname,rln t
1 address ~

Explanation:
An operator command has been entered requesting that I/O trace be stopped for the
line indicated by grpname,rln or by address. This response verifies that the requested
action has been taken.

or

IED030I TRACE ALREADY STOPPED FOR~grpname,rlnt
1 address ~

Explanation:
An operator command has been requested that I/O trace be stopped for the line
indicated by grpname,rln or by address, but I/O trace is not currently active for the line.

or

IED0551 I/O TRACE CANNOT BE ALTERED

Explanation:
An operator command requesting that I/O trace be stopped has been entered, but the
I/O trace facility is not defined for this execution of the TCAM system.

NOTRAFIC
This command combines the functions of the SUSPXMIT and NOENTRNG operator
commands and may be used to stop transmission both to and from a station on a non
switched line. (Before issuing the NOTRAFIC operator command, a STOPLINE com
mand must be issued to stop the line on which the station to be stopped or started re
sides. After NOTRAFIC is issued and its response is received, a STARTLINE command
may be issued to restart the line.)

Format:

control characters operation operand

control chars ~~ARYt statname,OFFTP,B

statname is replaced by the name of the station to be stopped from both accepting and
entering messages.

Response:

IED0161 STATION statname NOT FOUND

or

IED0251 statname ALREADY STOPPED

Explanation:
An operator command requesting that the station named by statname be deactivated
was entered, but the station is already inactive.

or

IED0261 statname STOPPED

Operator Commands 315

316

Explanation:
An operator command requesting that the station named by statname be deactivated was
entered. This response confirms that the requested action has been taken.

or

IED046I LINE FOR statname IS OUTPUT ONL Y STATION

Explanation:
An operator command was entered requesting that the station named by statname be
deactivated, but the station is not one that is capable of entering and accepting messages.
It may accept messages, but the line with which the station is associated is defined as an
output-only station. The requested action cannot be taken.

or

IED0891 LINE ACTIVE - VARY TERMINAL COMMAND REJECTED

Explanation:
An operator command requesting that the station be deactivated is entered, but the
line with which the station is associated is active. The requested action cannot be taken
until the line is deactivated.

OPTFIELD
This command displays the field that is reserved in an option table by an OPTION macro
instruction issued for a station.

Format:

control characters operation operand

control chars l gISPLAYf TP,OPTION,statname,opfldname

Response:

IEDOl6I STATION statname NOT FOUND

or

IED034I statname HAS NO opfldname OPTION

Explanation:
An operator command has been entered requesting the display of the contents of the
option field named by opjldname for the station named by statname, but no such
option field is defined for that station.

or

IED0351 statname OPTION opfldname=entry

Explanation:
An operator command has been entered requesting the display of the contents of the
option field named by opjldname for the station named by statname. entry is the
contents of the field, displayed in the format in which it was defined.

All OPTION names are kept in an option table with their offsets in the offsets field of
the terminal entry; this enables an option field named in an operator command to be
found. statname is replaced by the name of the station whose associated option field
is to be displayed; opf/dname is replaced by the name of the option field in the option
table and is identical to the name field of the OPTION macro irtstruction that reserved
space in the option table for this station.

POLLDLAY
This command, which is used only for stations on a nonswitched line, requests a change
in the duration of the polling delay specified for the line group in the corresponding line
group DCB macro instruction.

Format:

control characters operation operand

control chars l~ODIFY~ 1 ~procname.]idf'
Jobname

INTERV AL=POLL,statname,data

statname is replaced by the name of any station on the line group and data by the
decimal number of seconds (not to exceed ~SS) to be used for the polling delay. The
length of the polling delay is changed for the entire line group, not just for the station
named in the statname field above.

Response:

IEDOl6I STATION statname NOT FOUND

or

IED048I POLLING DELAY FOR statname=data

Explanation:
An operator command has been entered requesting that the value of the polling delay
for the station named by statname and its associated line be modified to the value
specified by data. This response confirms that the requested action has been taken.

or

IED06l I POLLING DELAY FOR statname CANNOT BE ALTERED

Explanation:
An operator command has been entered requesting that the value of the polling delay
for the line associated with the station named by statname be modified, but the line
is defined as a dial line and has no polling delay. The command cannot be executed.

QSTATUS
This command requests display of the fields of a queue control block containing the
number of messages queued, the queue status, and the priority levels permitted for either
a line or a station queue.

Format:

control characters operation operand

control chars {gISPLAY} TP,QUEUE,statname

If queuing is by station, statname is replaced by the name of any station for which the
information is desired. If queuing is by line, statname may be the name of any station
on the line for which the information is desired.

Operator Commands 317

318

number specifies the number of messages in the queue. Possible returns for the status
field in the response message are:

SNDBUF - sending to a buffered terminal
NONEON - no status bits on
TWELVE - call delay is greater than twelve hours
DELAY - in the delay queue
BUFFRD - queue for a buffered station
TSOSES - TSO session in progress
RDPRIO - read has priority

Possible returns for the queue type field in the response message are:

DR - reusable disk queue
DN - nonreusable disk queue
MO - main-storage-only queue
MR - main storage queue with reusable disk backup
MN - main storage queue with nonreusable disk backup
NO - no queuing used

PRIORITY=integer ... specifies each priority level in the LEVEL= operand of the
TERMINAL macro instruction issued for either the station or the line (see the discussion
of the LEVEL= operand of the TERMINAL macro). A response of PRIORITY=OOO
indicates that no priorities were specified in the TERMINAL macro instruction.

Response:

IED016I STATION statname NOT FOUND

or

IED031I statname QUEUE SIZE=number,QUEUETYP=type,STATUS=status, ...

PRIORITY=integer, ...

Explanation:
An operator command has been entered requesting the display of queue information
for the station named by statname. This response displays the requested information.

RESMXMIT
This command releases intercepted messages queued either for a specified station or for
the line on which the specified station is located.

Format:

control characters operation operand

control chars {!ELEASE} TP=statname

statname is replaced by the name of the station for which the released messages are
queued (or the name of a station on a line for which the released messages are queued).

Response:

IEDOl6I STATION statname NOT FOUND

or

IED053I statname ALREADY RELEASED

Explanation:
An operator command has been entered requesting the release from intercept status of
the station named by statname, but the station is not currently intercepted.

IED054I statname RELEASED,SEQ-OUT=integer

Explanation:
An operator command has been entered requesting the release from intercept status of
the station named by statname. This response confirms that the requested action has
been taken, and provides the output sequence number of the first message to be
released.

RLNSTATN
This command requests the relative line number on which a station resides.

Format:

control characters operation operand

control chars {gISPLAY} TP,ADDR,statname

statname is replaced by the name of the station whose relative line number is, sought.

Response:

IEDOl61 STATION stat name NOT FOUND

or

IED038I statname IS ON LINE grpname rIn address

Explanation:
An operator command was entered requesting information regarding the line with which
the station is associated. statname is the name of the station about which the informa
tion is requested, grpname and rln provide the group name and the relative line number,
and address is the hardware address of the line.

IED090I statname IS NOT A SINGLE ENTRY

Explanation:
An operator command was entered requesting information regarding the line that the
station named by statname is on, but statname is not a single entry and has no line
group, relative line number or machine address.

STARTLINE
This command causes transmission either to begin or to resume on a particular line (or
all the lines) in a line group.

Format:

control characters operation operand

control chars {~ARY} { (grpname,rIn)j,ONTP
grpname
address

grpname is the name of the line group and rZn the relative line number of the line within
the line group. The rln may also be replaced by ALL. The (grpname,rZn) form of the
operand starts transmission on the line indicated (the framing parentheses must be coded
if this command is entered at the system console); the grpname form starts all the
lines in the line group. address starts the line and is the machine address of the line
(address consists of three hexadecimal digits). If polling is used, an invitation list that
is active for entering messages is a prerequisite for message reception. STARTLINE
initiates polling, enabling, or preparing of input lines. This command may thus be used
to activate a line or line group that was opened idle.

Operator Commands 319

320

Response:

IED017I LlNE{grpname,rln}NOT OPEN
address

or

IEDO 191 {grpname,rln}ALREADY STARTED
address

Explanation:
An operator command has been entered to start the line named by grpname,rZn or by
address or the line group named by grpname (with the optional rZn specified as ALL).
The line or line group is already active.

or

IED0201{ grpname,rln}STARTED
address

Explanation:
An operator command has been entered to start the line named by grpname,rZn or by
address or the line group named by grpname (with the optional ,In specified as ALL).
This response confirms that the requested action has been taken.

or

IED0491 OL T CONTROLS LlNE{grpname,rln}COMMAND REJECTED
address

Explanation:
The operator command to start the line named by grpname,rZn or by address has been
entered, but the line is currently controlled by the on-line test facility. The command
cannot be executed.

or

IED0921 BISYNC ERROR - LINE{grpname,rln}CANNOT BE STARTED
address

Explanation:
An operator command to start the line named by grpname,rZn or by address has been
entered, but it is a BSC line with an error preventing it being started.

STATDISP
This command displays whether the Auto Poll feature is being used for a specified line.

Format:

control characters operation operand

control chars {gISPLAY} TP,LlST,{grpname,rln}
address

The status of the invitation list is displayed for the line specified either by grpname,rZn
or by address.

---------------- ----- -- ~--

Response:

IED0171 LlNE{grpname,rln}NOT OPEN
address

or

IED0591{grpname,rln}LlST STATUS=JAUTOPL }
address lNO BITS ON

Explanation:
An operator command requesting display of the status of the invitation list associated
with the line named by grpname,rln or by address has been entered. This response
displays the requested information. A response of NO BITS ON indicates an invitation
list that is polled using programmed polling or a list associated with a dial line.

STOPLINE
This command stops transmission of messages on a line or a line group. The last operand
determines whether transmission stops at the end of the current message (C) or
immediately (I).

Format:

control characters operation operand

control chars {~ARY} {(grpname,rln)j ,OFFTP, f}
grpname I
address

grpname is replaced by the name of the line group, and rln the relative line number of
the line within the line group or by ALL (parentheses must be coded as indicated in the
grpname,rln form of addressing if this command is entered at the system console).
address is replaced by the machine address of the line. Either C or I is coded as shown
(C stops transmission at the end of the current message, I stops transmission immediately).
If either (grpname,rin) or address is coded, transmission stops on the specified line;
if grpname alone is coded, transmission stops on the whole line group.

Response:

IEDO 131 STOP REQUEST FOR SELF - VARY COMMAND REJECTED

Explanation:
An operator command to stop a line was entered, but the line specified is that which is
associated with the station that entered the command. The command will not be
executed.

or

IEDOl7I LlNE{grpname,rln}NOT OPEN
address

or

IED0251{grpname,rln}ALREADY STOPPED
address

Explanation:
An operator command was entered to stop the line named by grpname,rin or by
address or the line group named by grpname or by grpname, ALL, but the line is not
currently active.

Operator Commands 321

322

or

IED0261{grpname,rln} STOPPED
address

Explanation:
An operator command to stop the line or line group named was entered. This response
verifies that the requested action was taken.

or

IED0491 OL T CONTROLS LlNE{grpname,rln}COMMAND REJECTED
address

Explanation:
An operator command to stop the line named by grpname,rln or by address was entered,
but the line is currently controlled by the on-line test facility. The command cannot be
executed.

STSTATUS
This command displays the station status, the input sequence number of the next mes
sage to be received from the station, the output sequence number of the last message sent
to the station, and the current intensive mode recording status.

Format:

control characters operation operand

control chars {gISPLAY} TP,TERM,statname

statname is replaced by the name of the station for which the status is desired.

Response:

IEDO 171 STATION statname NOT FOUND

or

IED0331 statname STATUS=status, ... INTENSE= H~~se countVN-SEQ=integer

OUT-SEQ=integer

Explanation:
An operator command has been entered requesting display of information related to
the station named by statname. This response displays the relevant information.

The status field in the station entry is examined, and possible conditions that may
appear in the status, ... field are:

INTCEPT
SCNDARY
SNGLTRM
PROCESS
DISLIST
CASLIST
LlNEENT
OPTFLDS

Station is intercepted.
Station is a secondary operator control station.
Station entry is either a single or a group entry.
Station entry is a process entry.
Station entry is a distribution list.
Station entry is a cascade list.
Station entry is a line entry.
Station has option fields defined.

INTENSE=sense count indicates that a specific type (sense) and number (count) of
intensive recording have been specified by the ERRECORD operator command for
failure incidents, where sense and count are the same as that specified in ERRECORD's
operand fields (see ERRECORD for a description of the intensive mode recordings
that may be made and the restrictions on the number of recordings to be made).
INTENSE=NO indicates that intensive mode recordings for failure incidents have not
been requested by the ERRECORD command. integer in both IN-SEQ and OUT-SEQ
refers to input and output sequence numbers, respectively.

SUSPXMIT
This command suspends transmission to a specified station.

Format:

control characters operation operand

control chars {~OLD} TP=statname

The form that the suspension takes depends upon the form of the first HOLD macro
executed following this command in the Message Handler for the station. If an interval
is specified for HOLD, this command causes a suspension of traffic for that period of
time (the station is said to be intercepted). If the RELEASE operand is specified in
the HOLD macro, suspension is maintained either until another operator command is
issued to release messages queued for the station (see the RESMXMIT command) or
until an MRELEASE macro (or a QTAM RELEASEM macro) is issued in the application
program for the station. If no HOLD macro is specified in the MH, this command is
rejected. statname is replaced by the name of the station to which transmission is to
be suspended.

NOTE: An intercepted station may still enter messages - only traffic to the station is
suspended.

Response:

IED0161 STATION statname NOT FOUND

or

IED051 I statname SET FOR HOLD, SEQ-OUT=integer

Explanation:
An operator command has been entered requesting that the station named by statname
be held. This response verifies that the requested action has been taken, and provides
the output sequence number for the first message which is held.

or

IED0521 statname ALREADY SET FOR HOLD

Explanation:
An operator command has been entered requesting that the station named by statname
be held, but the station is already held.

or

IED060I statname CANNOT BE HELD

Explanation:
An operator command has been entered requesting that the station named by statname
be held, but the station cannot be held because it is associated with a main-storage-only
queue, it is on a line that is not open or has been opened idle, or there is no HOLD
macro in the system.

Operator Commands 323

324

SYSCLOSE
This command initiates either a quick or a flush closedown of the system (for a discussion
of quick and flush closedowns, see the discussion of closedown in the Deactivation section
of the chapter Activation and Deactivation of the Message Control Program).

Format:

control characters operation operand

control chars {~ALT} TP,{QUICK}
FLUSH

Either QUICK or FLUSH is coded as shown (the user must determine whether he wants
a quick or flush closedown).

Response:

IED063I CLOSEDOWN IN PROGRESS - HALT COMMAND REJECTED

Explanation:
An operator command has been entered requesting that the TCAM system be closed
down, but a closedown is already in progress.

SYSINTVL
This command changes the duration of the system interval previously specified in the
INTV AL= operand of the INTRO macro (if the INTV AL= operand is not coded, this
operator command does not affect the system).

Format:

control characters operation operand

control chars {~ODIFY} {~procname.l id},INTERVAL=SYSTEM,data
Jobname

For a discussion of the system interval, see The System Interval in the Defining
Terminal and Line Control Areas chapter.

data is replaced by the decimal number of seconds to be used for the system interval
(65535 is the maximum number that can be specified).

Response:

IEDOllI SYSTEM INTERVAL CANNOT BE ALTERED

Explanation:
Either a system interval of zero or no system interval at all was specified in the
INTV AL= operand of the INTRO macro or in the WTOR response at INTRO execution
time, and an operator command was entered to modify the value of the interval. The
interval cannot be altered.

IED047I SYS INTERVAL IS data

Explanation:
An operator command was entered to change the system interval to the value specified
by data. This command verifies that the action has been taken.

AREA TYPE OF KEYWORD SPECIFIC
AFFECTED FUNCTION NAME FUNCTION

System CPRIOPCL Changes primOI)' operator control to mother station.

ERRECORD Records recoverable and nonrecoverable failure incidents.
Change

INTERVAL Changes to system transmission Interval.

SYSINTVL Changes the duration of the system interval.

Closedown SYSCLOSE Initiates system closedown.

DEBUG Activates a routine that dumps control blocks.

DPRIOPCL Displays the name of the primary operator control stotion.
Display

DSECOPCL Displays the names of all secondary operator control stotians.

INTRCEPT Displays all intercepted stations.

Line Group Change POLLDLAY Chonges polling delay for a line group.

Start STARTLINE Starts transmission on a line or a line group_

Stop STOPLINE Stops transmission on a I ine or a line group.

Line Change INTERVAL Changes to system transmission Interval.

ACTVATED Displays the names of all active stations on a line.

INACTVTD Displays the names of all inactive stations on a line.

Display LNSTATUS Displays status of a communication line.

QSTATUS Displays status of a message queue.

STATDISP Displays the status byte of on invitation list.

AUTOSTRT Storts Auto Poll on a line.

Start GOTRACE Starts TCAM trace facility on a line.

STARTLINE Starts transmission on a line or a line group.

AUTOSTOP Stops Auto Poll on a line.

Stop NOTRACE Stops TCAM troce facility on a line.

STOPLINE Stops tl"Cl1smission on a line or a line group.

Stotion Activate ACTVBOTH Activates a station for both accepting and entering messages.

ENTERING Activates a station for entering messages.

CPRIOPCL Changes primary operotor control to another station.
Change

DATOPFLD Inserts data in an option field lor a station.

ERRECORD Records recoverable and nonrecovercble failure incidents.

ACTVATED Displays the names of all active stations on Q line.

DPRIOPCL Displays the name of the primary operator control station.

DSECOPCL Displays the names of all secondary operator control stations.

INACTVTD Displays the names of all inactive stations on a line.

Display INTRCEPT Displays the names 01 all Intercepted stotions.

OPTFIELD Displays an option field for a station.

QSTATUS Displays the status of a message queue.

RLNSTATN Displays the relative line number 01 a station.

STATDISP Displays the status byte of an invitotion list.

STSTATUS Displays the status of a station.

Resume RESMXMIT Resumes transmission to a station.

Stop NOENTRNG Stops a stat'ion entering after current message is completed.

NOTRAFIC Stops a station accepting and entering ofter current message is campleted.

Suspend SUSPXMIT Suspends transmission to a station (HOLD dependent).

Figure 33. Operator Commands Classified by Areas Affected

Operator Commands 325

Checkpointing Operator

Commands

TeAM I/O Error-Recovery
Procedures

326

If the checkpoint DCB has been opened, incident checkpoint records are written when
the following operator commands have been successfully processed:

ACTVBOTH
AUTOSTOP
AUTOSTRT
CPRIOPCL
DATOPFLD
ENTERING
ERRECORD
GOTRACE
NOENTRNG
NOTRACE
NOTRAFIC
POLLDLAY
RESMXMIT
STARTLINE
STOPLINE
SUSPXMIT
SYSINTVL

Display commands and unsuccessful operations are not checkpointed. Commands
affecting the invitation list are checkpointed only if the STARTUP= operand of the
INTRO macro included I.

The TCAM MCP includes a comprehensive set of error-recovery procedures for dealing
with the various types of input/output errors that may occur in a telecommunications
environment.

Whenever an input/output error interruption occurs, the error-recovery procedures ex
amine the sense byte for the transmission control unit, and also the channel status word
(CSW). (The CSW is described in the publication Principles of Operation, while the
sense byte is described in the component description SRL for the transmission control
unit being used.) If either the sense byte or the CSW indicates an error condition,
TeAM takes action appropriate to the type of error.

An irrecoverable error is one that is incapable of being corrected by program action
(e.g., overrun on a write command). For such an error, TCAM sets the appropriate
bit or bits in the message error record, causes a special operator awareness message to
be sent to the primary operator control station, causes a permanent error record to be
written on disk by TCAM's I/O error recording facility, and may cause the connection
between the computer and the station to be terminated.

The message error record is a five-byte storage area assigned to a message. The bits of
the message error record indicate the presence (when on) or absence (when off) of
specific error conditions, and may be checked by error-handling macros in the inmessage
and outmessage subgroups of the Message Handler. These macros perform such functions
as generating error messages, and causing all messages queued for a station to be held on
the queue (because, perhaps, the station is inoperative). The message erorr record, which
handles text errors as well as I/O errors, is described in Appendix B.

The section of this chapter titled TeAM I/O Error Recording Facility describes the
permanent error record and the operator awareness message. Both of these yield infor
mation helpful to the user in diagnosing and correcting hardware difficulties that result
in permanent 1/ 0 errors.

The connection with the station may be terminated in one of three ways following an
irrecoverable error. For multipoint polled stations, the computer polls the next station
in the invitation list. For a switched station the computer attempts to send the next
message queued for the station; if there ar;rio more messages in the queue, the computer
gives the station a chance to enter data, then hangs up. (If the switched station is not in
text mode when the error occurs, the computer hangs up immediately; the computer

TeAM 1/0 Error-Recording
Facility

Kinds of TeAM I/O Error
Records

will redial if it initiated the call in the first place and if there are any messages on the
queue.) For nonswitched contention stations, the computer merely resets itself to send
or to receive the next message.

If the I/O error is not irrecoverable, TCAM's error recovery procedures may attempt to
recover from it, usually by retransmitting the block of data in which the error occurred
(this is called retrying the block). If the station is in text mode, the block probably will
be retried only if at least one of four operands (START=, CONT=, CONV=, LOGICAL=)
of the STARTMH macro is coded. If none of these operands were coded, no retries are
likely to be performed, and the error is handled as an irrecoverable error. (If none of
these operands is coded, retries will be performed for text errors if the error recovery
procedures have access to the entire block in error.) If the station is not in text mode,
the error recovery procedures will retry regardless of what is coded in STARTMH.

Two retries are performed for start-stop stations, while six are performed for BSC
stations. If these retries fail to correct the error, it is treated as an irrecoverable error,
and the actions described above for irrecoverable errors are taken. .

The user can keep track of the number of temporary errors (i.e., errors that are re
covered from as a result of retries) for a specific station by TCAM's I/O error-recording
facility, described in the next section.

TCAM provides an I/O error-recording facility that creates records on disk when certain
terminal-related I/O errors occur. The TCAM error-recording facility, which is an ex
tension of the OS outboard recorder (OBR) and statistical data recorder (SDR) error
recording programs and operates in conjunction 'with TCAM's I/O error recovery
procedures, helps to reduce the time that the TCAM system is inoperative by providing
information useful in diagnosing line and terminal problems.

For each station for which a TERMINAL macro is issued, TCAM maintains (in the
terminal table entry) two counters. One of these is a two-byte counter that keeps track
of the approximate number of Start I/O (SIO) commands issued for the station or line
(SIO commands issued as a result of retrying during TCAM's I/O error-recovery proce
dures are not reflected in the total count). The other is a one-byte counter that contains
the number of temporary errors (defined errors occurring during SIO operations for
which retry was successful) that have occurred since the last error record was written on
disk. If the station for which an SIO operation is being performed in known, the
counters in the terminal table entry for that station are updated. The counters in a line
entry in the terminal table are updated only if the station for which the SIO operation
is being performed is not known; the counters are reset each time their contents are
recorded on disk.

Four types of I/O error records may be written on disk: permanent, temporary, over
flow, and end-of-day. These are discussed in order in the next section.

A permanent-error record is written on disk for each permanent I/O error. A permanent
I/O error is either an irrecoverable error (i.e., an undefined, unanticipated I/O error for
which TCAM provides no error recovery procedure), or an I/O error for which TCAM
provides an error-recovery procedure and has tried several times to correct the error only
to fail each time. Each permanent-error record contains the following information:

• Date
• Time
• Program ID
• Station name
• Type of record (i.e., permanent, temporary, overflow, end-of-day)
• Contents of SIO counter for this line or station (count is approximate)
• Contents of temporary-error counter for this line or station
• First CCW
• Failing CCW
• Channel/unit address
• CSW
• Sense byte data

Using TeAM Service Facilities 327

• Device type
• Unit status
• Channel status

Information on the CCW and CWS may be found in Principles of Operation. Record
fields are discussed in the description of the IFCEREPO program in Utilities.

A temporary-error record is made on disk whenever an error occurs that is specified for
a particular line or station in an ERRECORD operator command, provided that TCAM's
error-recovery procedures are successful in recovering from the error. If TCAM's error
recovery procedures are unsuccessful, a permanent-error record is made and a special
message is sent to the primary operator control station; the contents of this message are
described below. This record contains the same information as the permanent-error
record. More information on temporary error records and their use is contained in the
section titled Intensive-Mode Error Recording.

A counter overflow record is made when either the SIO counter or the temporary-error
counter in a particular terminal table entry is about to overflow. This record consists of:

• Date
• Time
• Program ID
• Type of record
• Station name
• Contents of SIO counter for this station (count is approximate)
• Contents of temporary-error counter for this station
• Channel/unit address
• Device type

Once the record is put on disk, the counters in the terminal table entry are reset.

When a line group data set is closed, an end-of-day record is made for each station and
line in the line group for which there is a terminal table entry. Each record contains the
same information as the counter overflow record.

The section below titled Gaining Access to I/O Error Records describes how to get
formatted, printed records.

Intensive-Mode Error Recording A station or line in intensive mode is one for which a temporary-error record is created
each time that a specified error occurs and from which recovery is made. A station or
line is put in iptensive mode by means of an ERRECORD operator command. In issuing
an ERRECORD command, the user may specify one of the particular types of error
checked for by TCAM (time-out, lost data, overrun, data check, equipment check, bus
out, intervention required, command reject, unit exception, or unusual leading graphic
response from an IBM 2740 Model 2 terminal) and also may specify the number of
times (I to 15) that a temporary-error record is to be made when the specified error
occurs and is recovered from for this line or station. Alternatively, the user may specify
in the ERRECORD command that a temporary-error recording be made if any of the
above errors (except for the unusual leading graphics response from the 2740 Model 2
station) occurs and is recovered from; in this case he would also specify the number of
times a recording is to be made.

328

Intensive-mode error recording may be specified either for a line or for a station. If a
station is specified in the ERRECORD command, temporary-error records are created
when the error specified in the command occurs for that station and from which recovery
is made. If a line is specified, a temporary-error record is made each time the specified
error occurs and is recovered from for any station on the line (i.e., all stations on the line
are placed in intensive mode).

If a station is placed in intensive mode for one type of error, and an ERRECORD com
mand specifying a different type of error is then issued for the station, the type of error
specified by the secondoperator command is the one that causes temporary-error records
to be made after it is issued. An ERRECORD command for a line overrides those

------- -----------

Operator Awareness Message

issued previously for stations on the line; that is, if an ERRECORD command, which
specitles that temporary-error records be taken for data checks occurring for a station
named NYC, is followed by an ERRECORD command that specifies that temporary
error records be taken for time-outs occurring for any station on the line, after the
second command is issued temporary-error records will no longer be taken for data
checks occurring for the station NYC. If a third ERRECORD command, specifying that
temporary-error records be taken for data checks occurring for NYC, is now issued, a
temporary-error record will be made each time a data check occurs for NYC, and each
time a time-out condition occurs for any other station on the line.

The following message is sent to the primary operator control station when an I/O error
occurs for which TCAM provides error recovery procedures, if the error recovery proce
dures are unsuccessful in correcting the error. (This message is in addition to the
permanent-error record that is created on disk when such an error occurs.)

IEAOOOI I/O ERR,aaa,bb,cccc,ddee,ffgghhhh

aaa
is the line address in hexadecimal format.

bb
is the command code in hexadecimal format as specified in the failing channel program.

cccc
is the status bytes of the channel status word (CSW) as specified in the input/output
block (lOB) in hexadecimal format.

dd
is the first sense byte as specified in the input/output block (lOB) in hexadecimal
format.

ee
always zero.

ff
is the TP Op code as specified in the failing CCW in the channel program for the last
retry attempt (in hexadecimal format).

gg
Is the TP Op code of the failing CCW for the first occurrence of the error.

hhhh
For stations on switched lines, if the station is known, hhhh is replaced by the last four
dial digits, if assigned; if the station is not assigned dial digits, hhhh is replaced by the
station's addressing characters. For stations on nonswitched lines, hhhh is replaced by
polling characters for receiving operations and by addressing characters for sending
operations. If the station is on a switched line and is unidentified to TCAM at the time
the error occurred, hhhh is replaced by the polling characters for stations on this line;
if no polling characters are assigned, hhhh is replaced by zeros. hhhh appears in hexa
decimal format.

Gaining Access to Error Records Permanent-error, temporary-error, counter-overflow, and end-of-day TCAM I/O error
records are located in the SYSl.LOGREC data set. The user can gain access to these
records by using the IFCEREPO system utility program; information on using this pro
gram to write TCAM I/O error records may be found in the Utilities publication.

Network Reconfiguration Direct control of network reconfiguration during execution is available for the station
operator and the application programmer through operator commands and application
program macros.

By Operator Commands Functions provided by operator commands (with the corresponding command name in
parentheses) are:

• Starting and stopping transmission on a line or a line group (STARTLlNE;
STOPLlNE),

• Starting and stopping automatic polling on a line (AUTOSTART; AUTOS TOP),

USing TeAM Service Facilities 329

By Application Program Macros

TCAM Checkpoint/Restart
Facility

330

• Starting and stopping the TCAM trace facility on a line (GOTRACE; NOTRACE),
• Activating and deactivating a station for accepting and/or entering messages on a lhie

(ENTERING; ACTVBOTH; NOENTRNG; NOTRAFIC),
• Suspending and resuming transmission to a station (SUSPXMIT; RESMXMIT),
• Changing primary operator control to another station (CPRIOPCL),
• Activating system interval (INTERVAL),
• Changing the duration of the system interval (SYSINTVL),
• Changing the polling delay for a line group (POLLDLA V),
• Inserting data in an option field for a station (DATOPFLD), and
• Initiating system closed own (SYSCLOSE).

An example of TCAM's flexibility provided by network reconfiguration through opera
tor commands is changing the status of a defective terminal before performing a manual
device reconfiguration. See Operator Control in an earlier section for further informa
tion on the use of (and more detailed descriptions of) these and other operator
commands.

Two macros are provided for changing the contents of control blocks during execution
of the application program; TCHNG and ICHNG are used to modify the contents of a
terminal table entry and an invitation list, respectively. Two other macros, MRELEASE
and MCPCLOSE, reactivate a destination and initiate system closedown, respectively.

TCHNG
This macro, in conjunction with TCOPY, moves the contents of a terminal table entry
to a work area (where the contents optionally may be changed), and then moves the
modified entry back to the terminal table. Related option fields may be modified the
same way. Execution of this macro causes an incident checkpoint to be taken. It in
cludes the station status, sequence numbers, and option fields. At restart time if the
message queues are scanned, the sequence numbers will be overlaid if larger sequence
numbers are encountered in the message on the disk queues.

ICHNG
This macro, in conjunction with ICOPY, moves the contents of a specified invitation
list to a work area (where the contents of the invitation list optionally may be changed),
and then moves the modified list contents back to the invitation list. When ICHNG
executes, TCAM automatically stops message transmission on the line so that these
changes can be made; when the invitation list contents have been replaced, TCAM restarts
the line. Execution of the macro causes an incident checkpoint to be taken if I is speci
fied in the STARTUP= operand of the INTRO macro.

MRELEASE
This macro, whose primary function is to release messages queued for a destination,
also reactivates the destination that has been inactivated by a HOLD macro issued in the
MCP. Execution of this macro causes an incident checkpoint to be taken.

MCPCLOSE
This macro, when executed in a user-written termination routine, initiates closed own of
the telecommunications system. Execution of this macro causes an environment check
point to be taken.

For a more detailed discussion of network reconfiguration using these macros, see
Network Control Facilities. See the introductory section of Writing Application Programs
for an overview of the various approaches to incorporating application programs into a
system (the manner in which a systems programmer designs his system directly affects
network reconfiguration during the execution of his program).

The optional TCAM checkpoint/restart facility allows the TCAM system to be restarted
with minimum loss of message data following closedown or system failure. TCAM
achieves this goal by periodically recording, in a special data set on disk, information
on the status of each station, destination queue, terminal table entry, and invitation list
in the system; when start-up after system closedown or failure occurs, TCAM uses this
information to restore the MCP environment to its condition before closed own or
failure. Upon restart, the terminal table, line, option table, invitation lists, and internal
control blocks associated with stations and lines are restored to the condition they were
in when the last checkpoint record was taken; outgoing message traffic to each destina
tion resumes with the highest-priority unsent message.

Macro

INTRO

checkpoint
DCB

Operand

The TCAM checkpoint/restart facility permits restoration of the MCP environment upon
restart. The OS/360 advanced checkpoint/restart facility (described in the Advanced
Checkpoint/Restart Planning Guide publication) may be used to perform a similar service
for TCAM application programs. In designing the TCAM facility, certain features were
included to permit TCAM checkpoints of the MCP to be coordinated with OS checkpoints
of TCAM application programs, so that upon restart the entire TCAM system (MCP plus
application programs) would be restored as nearly as possible to its condition at the time
of system closedown or failure. These features are discussed in the lIection How to
Coordinate TCAM Checkpoints of the MCP with OS Checkpoints of the Application
Programs of the chapter Writing TCAM-Compatible Application Programs.

The checklist below lists the macro instructions and operands that must be considered
when checkpoint/restart is included in the system.

Comments

CPINTVL={integer}
1800

Specifies the maximum number of seconds between environment check
points. Specify any value between 30 and 65535, inclusive. If this
operand is omitted, -CPINTVL= 1800 is assumed.

CPRCDS= {~nteger}

CKREQS= {~nteger}

REST AR T= {~nteger}

DSORG=TQ

Specifies the number of environment records to be retained in the check
point data set at anyone time. Specify any value between 2 and 75, in
clusive. If this operand is omitted, CPRCDS=2 is assumed.

Specifies the type of restart to be performed following closedown of the
MCP or system failure.

C causes a cold restart after a normal quick or flush close, and a continua
tion restart (including scanning of message queues) after system failure.

CY causes a cold restart after either a quick or a flush close, or after a
system failure.

W causes a warm restart after a normal quick or flush close, and a contin
uation restart (including scanning of message queues) after system
failure.

WY causes a warm restart after either a quick or a flush close, and a
continuation restart (without scanning the message queues) after system
failure.

I causes the status of each invitation list to be included in the checkpoint
record (indicates whether the list is active, and if active, whether it is
being automatically polled). This value may be specified only when the
invitation list is being checkpointed.

If this operand is omitted, a value must be specified in response to the
WTOR message issued by INTRO at execution time.

Specifies the maximum decimal number of destination queues in use at
any time for application programs that include a CKREQ macro. integer
is the number of checkpoint request records to be set lip in a checkpoint
data set. The maximum that may be specified is 255. If this operand is
omitted, 0 is assumed.

Specifies the environment record used to reconstruct the MCP environ
ment as it existed at the time of closedown or failure. 0 causes the
latest record to be used, I causes the next-to-the latest record to be used,
etc. The maximum value that may be specified is 255; however, the value
specified must be less than the number of environment records kept (see
the CPRCDS= operand above). If this operand is omitted, REST ART=O
is assumed.

Identifies the data set organization as that for the message queues or
checkpoint data set. This operand may not be omitted.

Using TeAM Service Facilities 331

MACRF=(G,P)

[DDNAME=ddname]

[OPTCD=C]

[EXLST=address]

OPEN (dcbname,(INOUT»

CHECKPT (none)

CKREQ (none)

QSTART (none)

TPROCESS CKPTSYN=YES

input DCB [EXLST=address]

output DCB [EXLST=address]

332

Specifies that access to the data set is to be gained with GET and PUT
macro instructions. This operand may not be omitted.

Is the name that appears in the DD statement associated with the data con
trol block. If this operand is omitted, the value must be provided by the
user's problem program any time before the data control block exit at open
time.

Specifies that the data set is for the checkpoint records. If this operand
is omitted, the value must be provided either by a DD card, or by the
user's problem program any time up to and including the data control
block exit at open time.

Specifies the address of the problem program exit list. This list must be
provided if user label, data control block, or user ABEND exits are re
quired. The list must start on a fullword boundary. The user ABEND
exit is discussed in the last section of the chapter Defining the MCP Data
Sets.

An OPEN macro instruction must be provided in order to open the check
point data set. If this macro instruction is omitted, the checkpoint/restart
facility is not activated.

When coded in an incoming group, causes an incident record to be made
of the status and the option fields assigned to the originating station or
application program; the record is taken after the entire incoming group
has executed.

When coded in an outgoing group, causes an incident record to be made
of the status and the option fields assigned to the destination station or
application program; the record is taken after the entire outgoing group
has executed.

Coordinates TCAM checkpomts of the MCP with OS checkpoints of
TCAM application programs. When executed in an application program,
causes a checkpoint request record to be made in the checkpoint data set
for each process queue to which a GET or READ macro can be directed
by the application program; these records are used to update the MCP
environment upon restart. This macro causes a message to be sent to the
application program (after restart) beginning with the message following
the last message sent to the application program when the checkpoint
requ,estrecordwas taken, rather than beginning with the last message
marked serviced. Expansion of the CKREQ macro requires that a
QSTART macro be coded as the first macro in an application program;
CKREQ is effective only for queues created by TPROCESS macros
specifying CKPTSYN=YES.

Must be the first macro in an application program that includes a
CKREQ macro.

If an OS checkpoint of the application program is used in synchronization
with the TCAM checkpoint, CKPTSYN=YES must be specified in the
TPROCESS macro that corresponds to the application program.
CKPTSYN=YES specifies that the destination queue to which the appli
cation program. directs its GET or READ macros is not to be purged of
serviced messages at restart. If this operand is omitted, the queue is
scanned normally and updated at restart.

This operand must be specified if a user-written routine is to be given
control to initiate an OS checkpoint of the application program. address
specifies the address of the problem program exit list; the entry in the
list is a fullword consisting of a control byte (X'OF') followed by the
three-byte address of a user-written routine that initiates an OS
checkpoint.

(The discussion of the EXLST= operand for the input DCB also applies
to the EXLST= operand of the output DCB.)

How the TCAM Checkpoint
Facility Works Checkpoint records, containing the information necessary to reconstruct the MCP en

vironment upon restart, are kept in the checkpoint data set on a DASD. Directions for
defining this data set are contained in the chapter Defining the MCP Data Sets, while a
formula for determining the amount of space to allocate for this data set is given below
(see the section How to Get the TCAM Checkpoint Facility). The four types of records
that may reside in the checkpoint data set are a control record, two or more environment
checkpoint records, a series of incident checkpoint records, and one or more checkpoint
request records.

Types of Checkpoint Record The control record is used internally by TCAM during
restart and requires no user coding considerations.

Environment checkpoint records are used to record the total MCP environment; each
environment checkpoint record contains information on the status of each message
queue, terminal, line and (optionally) invitation list at the time the record was taken,
and also includes the contents of the option fields for each station.

If the checkpoint/restart facility is specified, environment checkpoint records are taken
automatically at certain points during the execution of the MCP.

1. At the beginning of execution (when the READY macro is executed).
2. When the area alloted to incident checkpoint records has been filled with data (see

the discussion of incident checkpoint records below).
3. If a message queues data set on reusable disk is present, when a zone changeover

occurs (see Reusable Disk Queues in the chapter Defining the MCP Data Sets).
4. During a quick or flush closedown (discussed in the chapter Activating and Deacti

vating the Message Control Program).
5. After the time interval specified by the CPINTVL= operand of INTRO has expired.

These automatic checkpoints, along with the automatic incident checkpoints discussed
below are sufficient to ensure satisfactory restart of the MCP itself after system close
down or failure. If the user is synchronizing his TCAM checkpoints with OS checkpoints
of the application program, he may wish to ensure that a TCAM environment checkpoint
be taken once a certain time interval has elapsed since the last environment checkpoint
(see the discussion of the use of the DCB exit for coordination in How to Coordinate
TCAM Checkpoints of the MCP with OS Checkpoints of the Application Program in the
chapter Writing TCAM-Compatible Application Programs). This-is done by specifying
the time interval in the CPINTVL= operand of the INTRO macro instruction. TCAM
keeps track of the amount of time that has elapsed since the last environment checkpoint;
when the amount of lapsed time equals the time interval specified in INTRO, an
environment checkpoint record is taken.

The user specifies the number of environment checkpoint records he desires to keep in
his checkpoint data set at anyone time by coding the desired number in the CPRCDS=
operand of the INTRO macro instruction. If CPRCDS=3 is coded, 'the three most recent
environment checkpoint records are kept in the checkpoint data set. When a new check
point record is taken, it overlays the oldest environment record in the data set. Ordi
narily (i.e., unless the RESTART= operand of the INTRO macro instruction specifies
some integer other than 0), TCAM uses the most recent environment record in the data
set to restructure the MCP environment for a restart. If, however, the latest record can
not be used (due, perhaps to a disk Read or Write error), TCAM informs the user of this
fact by means of a WTO message at the system console and automatically attempts to
use the next most recent record. If that record is also unusable, and if there is another
environment record in the data set, TCAM issues another WTO and attempts to use that
record.

The more environment records there are in the data set, the greater is the likelihood that
the environment can be recreated for restart. However, the recreated environment be
comes increasingly inaccurate as earlier and earlier environment records are used; when
environment records earlier than the latest are used, certain incident checkpoint records
that TCAM needs to reconstruct the environment are likely to be overlaid and therefore
inaccessible (see the discussion of the incident checkpoint below, and also the example
at the end of this section). Another pitfall exists when a message queues data set on
reusable disk is present; if TCAM's restart routine drops back to an environment

Using TeAM Service Facilities 333

334

checkpoint record that was taken so long ago that the disk containing the data set has
been wrapped since the time the record was taken, successful restart is unlikely, since
pointers used by the TCAM restart routine to scan the message queues will have been de
stroyed in this case (scanning is . discussed below).

Incident records are used to record single changes in terminal status, line status, system
status, and option fields; these changes occur as a result of execution of MH macros,
certain TeAM-related application-program macros (TCHNG and ICHNG), and operator
commands. Each change in station status (from active to inactive or vice versa) is re
corded by means of an incident record if STARTUP=I is specified on the INTRO macro
instruction. At cold restart time, each change in a station's option fields caused by a
TCHNG macro instruction or a DATOPFLD operator command is automatically recorded
on an incident checkpoint record. One incident record is made of terminal status, of
sequence numbers, and of the contents of the option fields assigned to the origin or
destination station or application program each time a message is processed by an in
coming or outgoing Message Handler group containing a CHECKPT macro instruction;
this record reflects changes in the station's option fields caused by processing of the mes-
sage by the MH. .

NOTES: The user performing an initial startup or cold restart specifies (in the
STARTUP=operand of the INTRO macro) whether or not he wants his invitation lists
to be checkpointed. Whatever the user specifies, with respect to checkpointing of invi
tation lists, prevails until another cold restart is performed. If he specifies no oheck
pointing of invitation lists at initial start-up time but asks for such checkpointing in his
WTOR response at INTRO execution time during a warm or continuation restart, he
gets no invitation list checkpointing. If the input or output sequence number currently
assigned to a station is less than the maximum it has had since the last cold restart (be- .
cause the counter has been changed by -a TCHNG macro, or because the counter has
"wrapped" from 9999 to 1), TCAM uses an algorithm to determine which number is re
stored during a warm or continuation restart. TCAM takes the smaller number and sub
tracts it from the larger .number. If the difference is less than or equal to 5000, the
larger number is restored; otherwise, the smaller number is restored. If TCHNG changes
the sequence number upward from that possessed by the last message, the same algo
rithm is applied to determine which number is restored. Changes in MCP status caused by
operator commands (e.g., from programmed polling to automatic polling, from one
polling interval to another, from an active to an intercepted station) are recorded by
means of incident checkpoints and are reflected in the next environment record; that
is, each operator command (except for INTERVAL and SYSCLOSE) that varies,
modifies, or alters the status causes incident records. An exception is as follows: if I is
not coded in the STARTUP= operand of the INTRO macro, changes from active to in
active status and vice versa are not reflected upon start-up; the original station status, as
specified in the INVLIST macro, is reassigned in this case.

Incident records are used to update the information contained in environment records at
restart time unless the STARTUP= operand of the INTRO macro instruction specifies
WY. The TCAM restart routine takes the information contained in the latest usable
environment record (unless an integer other than 0 is coded in the RESTART= operand
of the INTRO macro instruction) and updates it with the contents of all incident records
taken since the environment record was taken.

The number of incident records that may be taken depends upon the amount of space
allocated on the disk for the checkpoint data set (allocation is discussed below). When
the checkpoint data set:is opened; space is automatically allocated for the control record,
the number of environment checkpoint records specified by the CPRCDS= operand of·
the INTRO macro instruction, one incident record, and the number of checkpoint re
quest records specified by the CKREQS= operand of INTRO. Any remaining space in
the data set is used to set up additional incident checkpoint records. When all the space
allocated for incident checkpoint records has been filled with records, another environ
ment checkpoint record is taken automatically. (For furti}er information on incident
checkpoints and how they interact with environment records, see the example at the end
of this section.)

Checkpoint request records are taken as a result of issuing CKREQ macro instructions
issued in an application program. They record the status of the application program's
message queues, option fields, and sequence-number fields, and are used in much the

same way as incident records to update the environment record during restart (except
that the latest checkpoint request record for each application-program queue is used to
update the environment record even when the checkpoint request record is older than
the environment record.) The number of checkpoint request records set up by the TCAM
checkpoint facility is specified by the CKREQ= operand of the INTRO macro instruc
tion, and should be equal to the maximum number of process queues that are active at
any time for application programs that include a CKREQ macro instruction. Each
checkpoint request is associated with a particular process entry. Checkpoint request
macro instructions help synchronize TCAM checkpoints with OS checkpoints of the
TCAM application programs; their use is discussed in the section How to Coordinate
TCAM Checkpoin ts of the MCP with OS Checkpoints of the Application Program in the
chapter Writing TeAM-Compatible Application Programs.

Scanning the Message Queues: In addition to updating the latest usable environment
checkpoint record (or the record specified in the RESTART= operand of the INTRO
macro instruction) with any incident records taken since the environment record, the
TCAM start-up routine may perform a scan of the message queues in the message queues
data set.

A scan of the message queues involves searching the queues from the point at which the
environment record being used for restart was taken to the point of system failure; al
ready sent messages are passed over, so that after restart occurs, sending of messages to
each destination station or application program represented by a message queue resumes
with the highest-priority un sent message that was completely received before system
failure. Scanning of the message queues occurs only when a restart following system
failure is being performed, and then only if a Y is not coded in the STARTUP= operand
of the INTRO macro instruction.

When a message on a disk message queue has been completely transmitted to a destination
station, or completely transferred by means of either GET or READ macro instructions
to an application-program work area, a TCAM routine sets a special bit that marks the
message on disk as serviced. For a message transmitted to a station, the service bit is set
when acknowledgment is received from the station that the entire message has been
successfully received. For a message sent to an application program, the service bit is set
when TCAM satisfies either a GET or a READ macro instruction for the next message
in the queue; i.e., a message is not marked serviced until the next message has been
entirely moved into the application-program work area. In performing a scan, the TCAM
restart routine starts with the earliest message placed on the queue (or the earliest mes
sage that has not been overlaid, if the queue is on reusable disk) and goes down the queue
to the point of failure; each message with a service bit on is passed over, while each
complete message with a service bit off is transmitted according to its message priority.
Messages on the same destination queue and having the same message priority are sent
on a first-in first-out (FIFO) basis; that is, the message whose first segment arrived at the
queue first is sent first, the message whose first segment arrived at the queue second is
sent second, etc. (see also the discussion of message priority in the chapter Defining
Terminal and Line Control Areas).

When a scan is performed for a restart following system failure, at most one message per
line to non-buffered stations, or per process queue for an application program, need be
re-sent. If a message was in the process of being sent to a station or application program
at the time failure occurred, that message is re-sent automatically if a scan is performed.
If a message was in the process of being received from either a station or an application
program when failure occurred, that portion of the message that was received and queued
before failure occurred is not transmitted following restart, but is lost; the message must
be re-entered by the originating station or application program.

When a scan is performed for buffered stations (that is, stations for which the BFDELA Y=
operand of the TERMINAL macro is coded), at most one message per station (that is,
the message was in the process of being sent or received when failure occurred) must be
retransmitted to make sure no message is lost.

In addition to checking the service bits and eliminating serviced messages from the queues,
TCAM also determines whether each message was completely received at the time failure
occurred; incomplete messages are purged from the queue and are not sent.

Using TeAM Service Facilities 335

336

The user may use his restart in progress routine to check the input sequence number in
the terminal table entry for each station at the time of restart; he might then tequest by
means of a restart in progress message that any message entered after the message having
this sequence number be re-sent. (Since the input sequence number is not incremented
until the entire message has been enqueued, this method will work as long as a
SEQUENCE macro instruction is included in the inheader subgroup of the MH handling
the message.) The restart in progress routine is described in the discussion of the READY
macro instruction in the chapter Activating and Deactivating the Message Control
Program; no restart in progress facility is available for application programs; suggestions
for rendering such programs relatively insensitive to system failure are contained in the
section on coordinating TCAM and OS checkpoints in the chapter Writing TCAM
Compatible Application Programs.

When no scan is specified for restart following system failure (that is, if WY is coded in
the STARTUP= operand of the INTRO macro instruction), upon restart those messages
that were on the destination queues waiting to be sent at the time the environment
checkpoint being used for restart was taken are sent as if they had been queued just after
restart (that is, in FEFO order, according to priority groups). Messages that were on a
destination queue waiting to be sent at the time the environment checkpoint was taken
(and were subsequently sent before failure occurred) are re-sent following start-up.
Messages that were placed on a queue after the environment checkpoint was taken, and
were not sent before failure occurred, are not sent after restart; these messages are lost.
Incomplete messages are purged from the queues and are not sent. (Incident records
are not used so that option fields will reflect the messages that are on each destination
queue as a result of using the environment checkpoint record.)

NOTE: If CKPTSYN=YES is specified in a TPROCESS macro instruction, all com
pletely received but unsent messages at the time the last checkpoint request record was
made, and all messages completely received between the time the last checkpoint request
record was made and the time of failure, are sent upon restart (unless Y is coded in the
STARTUP= operand of the INTRO macro instruction; see the description of this
operand). See the section on coordinating OS checkpoints with TCAM checkpoints in
the chapter Writing TCAM-Compatible Application Programs for a discussion of when
CKPTSYN=YES would be specified.

Example:
Consider a checkpoint data set that contains space for three environment checkpoint
records and five incident checkpoint records. After the initial environment checkpoint
macro executes, assume that four incident checkpoint records are taken. At this point,
the condition of the data set can be represented as follows (if we ignore the control
record and any checkpoint request records that may be present):

Environment checkpoint records I '-_~_-'-_""
Incident checkpoint records

I I I I I 1
Here, a number in the area allotted to an environment record means that the area has
been filled with that record; a number in the area allotted to an incident record means
that the area is filled with an incident record taken after the environment record having
the corresponding number and before an environment record having a higher number.

Assume that another incident checkpoint is taken. This causes the area allotted to inci
dent records to be filled with records taken since the last environment checkpoint; as a
result, a second environment record is taken in place of the next incident record. Now,
let four more incident checkpoints be taken. These will overlay the earliest incident
checkpoints taken after the first environment checkpoint. The data set now has the
following appearance (an X over a number means that the record represented by that
number has been overlaid):

Environment checkpoint records 2

---~~-------~----- - --~------ -----------~

Incident checkpoint records

At this point, the time interval specified in the CPINTVL= operand of the INTRO
macro instruction expires, resulting in an environment checkpoint, which is followed in
turn by three more incident checkpoints. The data set now has the following appearance:

Environment checkpoint records ~1_-L_2--J"--3

Incident checkpoint records

A zone changeover now occurs for a message queues data set on reusable disk, resulting
in another environment record, which overlays environment record No. 1. Assume that
after two more incident records are taken, system failure occurs. At this point, the
checkpoint data set would appear as follows:

Environment checkpoint records

Incident checkpoint records

Assume that the ST ARTUP= operand of the INTRO macro instruction is coded
STARTUP=W, and that the RESTART= operand is omitted. When the restart after
failure is performed, the TCAM restart routine will attempt to reconstruct the environ
ment using environment record No.4 as a base. If record No.4 is usable, the recon
structed MCP environment created through its use is updated with all the information
contained in those incident checkpoint records for which a No.4 is specified.

In updating, the restart routine begins with the earliest No.4 incident record, and pro
cedes from earlier to later No.4 records, continuing to update until all No.4 incident
records have been used; at this point, the MCP environment created by means of en
vironment record No.4 is considered to be updated.

After the environment record is updated, all message queues in the system are scanned
as described above. When updating and scanning are completed, message traffic resumes
within one message of the point of failure.

Now, assume that environment record No.4 is unusable, due, perhaps, to a disk I/O
error. In this case, the user would be informed by a message to the system console that
the latest environment checkpoint is unusable, and environment record No.3 would be
used as the basis for restart. Environment record No.3 is updated with all incident
records that were taken after it was taken (Le., those labeled No.3 and No.4). In
updating, the records still containing information related to incident checkpoint No.3
are used first, then the two No.4 records are used, starting with the earlier one; this
sequence must be followed in order to ensure that the updated environment record
contains the latest available information.

If, after zone changeover, there were three No.4 incident records rather than two, the
earliest No.3 record would be overlaid. Now, if environment record No.3 is used as
the base, the reconstructed environment probably will not be entirely accurate. This is
because the earliest No.3 record in the incident checkpoint area has been updated for
environment record No.4; when this happened, part of the information related to
environment record No.3 was overlaid. This overlaid information may have referred to
environment record fields different from those referred to by the data that overlaid it ..
The overlaid information was presumably superseded by the information in environment
record No.4, but since the information in environment record No.4 is inaccessable, the
environment record fields that the overlaid information pertains to may contain informa
tion that is out of date when restart occurs. Note that this effect is compounded if

USing TeAM Service Facilities 337

How to Get the TCAM
Checkpoint Facility

338

environment record No.3 is also unusable and record No.2 is used as a base. In the
present example, if environment record No.2 were also inaccessable, the environment
could not be reconstructed, since there are no more environment records in the data
set. In this case, the system would be started as if no checkpoint records had been
taken (Le., all fields would be initialized to the original values assigned at assembly time),
and the checkpoint facility would not be available to the restarted system. The user
would get a message at the system console informing him that his environment was not
reconstructed, and that his system has no checkpoint facility. To regain his checkpoint
facility in this case, the user might close down his system, run the IBCDASDI utility
program to assign alternates to defective tracks on the disk containing the checkpoint
data set, and then do a cold restart.

In order to incorporate the TCAM checkpoint facility into his TCAM system, the user
must perform the following steps:

1. Include in his MCP a DCB macro instruction defining the checkpoint data set;
2. Include with his MCP a DD statement that allocates space on a disk for the checkpoint

data set during initial start-up;
3. Include in his MCP an OPEN macro instruction to open the checkpoint data set.

If the user performs these steps, the TCAM checkpoint facility is included in his TeAM
system, where it operates automatically as described in the previous section.

The DCB macro instruction and DD statement for the checkpoint data $et are described
in the chapter Defining the MCP Data Sets, while the chapter Activation and Deactivation
contains directions for opening the checkpoint data set.

Space must be allocated on disk for the checkpoint data set if the checkpoint facility
is desired. The user specifies the number of disk tracks he needs in the SP ACE= para
meter of the DD statement for the checkpoint data set issued at initial MCP execution
time.

Formulas that may be used to determine the number of bytes occupied by the checkpoint
data set appear in Figure 34. The formula to be used depends upon whether an IBM
2311 or an IBM 2314 Direct-Access Storage Device is used to contain the data set.
Formulas for converting bytes to tracks appear in the component description manual for
the direct-access device used.

The formulas in Figure 34 are a bit complex; as an approximate figure, 3 tracks on
disk should be sufficient for checkpointing an MCP for which a total of 6 to 10
TERMINAL and TPROCESS macros are coded.

If insufficient storage is allocated for the checkpoint data set, the user may not get as
much space allocated for incident records as he wants.

For the IBM 2311 Disk Storage Drive the size in bytes of the checkpoint data set is
given by the formula

S= (6l+1.05L)+1.26AL +N(6l+1.05L.) + (M+3) (6l+1.0SL k)
c e 1

For the IBM 2314 Direct Access Storage Device the size in bytes of the checkpoint
data set is given by the formula

In these formulas,

Lc =the length of a control record=30+3A
Le =the length of an environment record=22+B+C+4D+SE+

(21Fl +21F2 + ... +21FE) + (G(Hl +H2 + ... +HJ)
Li =the length of an incident record=12+K
Lk =the length of a checkpoint request record= 17+21 F+ J

Figure 34. Formulas for Determining the Size of the Checkpoint Data Set (Part 1 of 2)

Types of TeAM Restart

where

A is the value coded in the CPRCDS= operand of the INTRa macro instruction.
B is the total number of bytes of data located in all option fields assigned to

stations, lines, or application programs.
C is equal to the sum of the number of single entries in the terminal table plus the

number of group entries in the terminal table.
D is equal to the number of single, group, and process entries in the terminal table

whose destination queues are maintained on disk.
E is equal to the number of destination queues maintained on disk for single, group,

and process entries in the terminal table.
F is equal to the number of priority levels specified for each destination (assume one

priority level for each destination queue defined by a TPROCESS macro instruction
and one for each destination queue defined by a TERMINAL macro instruction
having no LEVEL= operand).

G is equal to I if I is specified in the STARTUP= operand of the INTRa macro
instruction; otherwise, G is equal to O.

H is equal to the length of an invitation list (a formula for determining this length is
given in the discussion of the ICOPY macro instruction).

I is equal to the number of lines having invitation lists (not counting output-only
lines).

J is the length, in bytes, of the maximum number of option fields assigned to any
one entry in the terminal table.

K is equal to J if J is greater than 32; otherwise K is equal to 32.
M is equal to the value coded for the CKREQS= operand of the INTRa macro

instruction.
N is equal to the number of incident checkpoint records desired (N should be between

I and 255).

If Le is less than 300 bytes, it is rounded up to 300 bytes.

Figure 34. Formulas for Determining the Size of the Checkpoint Data Set (Part 2 of 2)

The checkpoint routine uses a priority scheme to divide the space allocated for the
checkpoint data set among the various types of checkpoint records. This is to ensure
the most efficient use of the checkpoint facility even if less space is provided than would
be ideal. Using the available space, the checkpoint facility will:

1. Reserve space for the control record.
2. Reserve space for two environment records.
3. Reserve space for one incident record.
4. Reserve space for the number of checkpoint request records specified in the

CKREQ= operand of the INTRa macro instruction, plus 3 (to allow for disk errors).
5. Reserve space for an additional number of environment records sufficient to bring

the total number up to that specified in the CPRCDS= operand of the INTRa macro
instruction.

6. Use any remaining space to set up additional incident records.

If there is insufficient space for items one through four, the data set is not formatted, no
checkpoint facility is provided, and an awareness message is sent to the system console.
Also, if there is not enough main storage specified to incorporate either all or a part of
the checkpoint/restart facility in the partition or region, the following awareness message
is returned to the system console:

IED009I CHECKPOINT DISK ALLOCATION ERROR - DATA SET NOT OPENED

See the as publication Messages and Codes for explanations of and responses to aware
ness messages.

A restart is any TeAM start-up other than the initial startup. A restart may, but need not,
involve reconstructing the MCP environment as it existed prior to system closedown or
failure.

Using TeAM Service Facilities 339

340

The three types of restart supported by TCAM are the cold restart, the warm restart,
and the continuation restart. These are described below. A cold restart is similar to the
initial start-up in that the previous environment is ignored, while the other two types of
restart both involve using the TCAM checkpoint facility to reconstruct the environment
as it existed before a quick or flush closedown (in the case of a warm restart) or system
failure (in the case of a continuation restart).

All three types of restart may be initiated by reloading the object deck for the assembled
Message Control Program or by issuing a START command at the system consple. For a
warm restart or a continuation restart, the DISP= parameter on the DD statement for
the checkpoint data set must be coded DISP=OLD; for a cold restart, either DISP=OLD
or DISP=NEW may be coded. The chapter Putting the MCP Together describes the job
control language and procedures for restarting the MCP.

A cold restart ignores the previous environment; the system is started as though for the
first time. The message queues are considered new and must be reformatted (by means
of the IEDQXA routine described in Appendix E) before the restart attempt is made
(the checkpoint data set, however, is reformatted automatically). A cold restart is per
formed when the DISP= operand of the DD statement associated with the checkpoint
DCB macro is coded DISP=NEW. If the DD statement is coded DISP=OLD, a cold re
start is performed following either a quick or a flush closedown if the ST ARTUP=
operand of the INTRO macro instruction has a C coded in it, and is also performed fol
lowing system failure if the STARTUP= operand of INTRO has CY coded in it. Finally,
a cold restart is performed when the TCAM system fails in an attempt to perform a warm
or continuation restart because of faulty checkpoint records; in this case, the llser is
informed by means of a message directed to the system console that a cold restart is
being performed. (If none of the environment records can be read at restart time, the
checkpoint data set is not opened, so that the ensuing restart is essentially a cold restart.)

If the address of a good morning routine is specified in the GMMSG= operand of the
READY macro instruction, this routine is given control immediately following a cold
restart and before the resumption of normal message traffic. This routine, which is
described further in the discussion of the READY macro instruction, may be used to
provide specialized initialization for certain stations, and to send a message to each
station in the system, informing each that a cold restart has occurred.

There are two forms of restart that reconstruct the environment as it existed before
closedown or system failure, the continuation restart and the warm restart. A continua
tion restart involves reestablishing the MCP environment as it existed before system
failure. This is done through use of an environment record, incident records, and check
point request records in the checkpoint data set, as described above. A continuation
restart is performed following system failure ifthe DISP= operand of the DD statement'
for the checkpoint data set is coded DISP=OLD, provided that CY is not specified in the
STARTUP= operand of the INTRO macro instruction.

During a continuation restart, the message queues may be scanned (as described in the
previous section) to determine the last complete message received and transmitted before
failure for each queue; whether scanning is performed depends upon how the STARTUP=
operand of the INTRO macro instruction is coded (see the description of this operand).
If synchronization with OS checkpoints of an application program is specified for a
particular process queue by coding CKPTSYN=YES in its TPROCESS macro instruction,
that queue is scanned during restart; upon restart, those complete messages that were
marked serviced after the last checkpoint request record was made, or were enqueued
after this record was made, are sent. (If no checkpoint request records were made be
tween the time of start-up and the time of failure, all messages marked serviced or
received since the last environment checkpoint record was made are sent upon restart).

For a warm restart following a quick or flush closedown, the MCP environment is recon
structed as for a continuation restart. Since an environment checkpoint is taken near the
end of a quick or flush closedown, no incident records need be used to reconstruct the
MCP environment during a warm restart. A warm restart is performed if the DISP= oper
and of the DD statement for the checkpoint data set is coded DISP=OLD, provided that
a W or WY is coded in the STARTUP= operand of the INTRO macro instruction and
that the restart follows a quick or flush close (both of which are described in the
Deactivation section of the chapter Activation and Deactivation).

---- --~-----

Using TeAM's Message
Logging Facility

Uses of Message Logging

If the address of a restart in progress routine is provided in the RSMSG= operand of the
READY macro instruction, this routine is given control immediately following a warm
restart or continuation restart. This routine, which is described further in the discussion
of the READY macro instruction, may be used to gain access to and to change option
fields and information contained in terminal table entries, and may be used to inform
each station that a warm or continuation restart has occurred. The message might also
provide each station with the input sequence number of the last message received from
the station, and request that all messages entered having higher sequence numbers be
reentered.

Below is a summary of the conditions that must be met in order to obtain each of the
types of restart described in this section. It is assumed that the DISP= operand of the
DD statement associated with the checkpoint DCB macro instruction is coded
DISP=OLD; if DISP=NEW is coded, a cold restart is always performed.

Type of
Termination

Flush closedown
Flush closedown
Quick closedown
Quick closedown
System failure
System failure

System failure

INTRa Operand
STARTUP=

WorWY
CorCY
WorWY
CorCY
CorW
WY

CY

Resulting
Restart

Warm restart
Cold restart
Warm restart
Cold restart
Continuation restart with queue scan
Continuation restart with no 'queue
scan
Cold restart

The user may wish to specify a warm restart following a flush closedown in order to
avoid the loss of messages that could not be flushed during closedown either because
an application program was closed or because a station was inoperative or intercepted.

TCAM's message logging facility enables the user to keep a record of the message
traffic handled by an MCP on a sequential data set. The LOG macro instruction causes
either a message or a message segment to be recorded on a log data set while the message
is currently being processed by an MCP subgroup.

Message logging can be useful to the programmer of a telecommunications system in two
ways: first, as an integral part of the system, recording messages for accounting purposes
by the user, and second, as a programming aid, helping to diagnose errors and providing
information needed to evaluate system performance.

Message Logging as a System Component: In some systems, it may be desirable for
messages to be recorded for accounting purposes, even though the messages have been
successfully dispatched to their destinations. This allows the programmer greater
flexibility in his accounting procedures. Some uses of a logging facility might be:

• copying groups of messages sent over a long period of time to a variety of destinations,
• providing long-term back-up for messages that might be accepted by one or more

destinations but later lost through human error, and
• eriabling collection of exceptional cases. .

Message logging can provide any of these functions without requiring that an application
program be written.

Message Logging as a Programming Aid,: Including a carefully designed message logging
facility in a Message Handler permits the programmer to trace the flow of messages
through a Message Control Program, thus allowing quick diagnosis of errors while
debugging the MCP. By anticipating the need for debugging aids in the design of his

Using TeAM Service Facilities 341

How Message Logging Works

How to Set Up a Message
Logging Facility

342

message logging facility, the programmer can provide a useful diagnostic tool with very
little programming effort. Because of its modular design, the message logging facility
can be removed easily, without the necessity of . rewriting any parts of the MCP involved,
when the program is free of errors.

By determining the flow patterns of message traffic, a programmer can more efficiently
allocate the resources of a telecommunications system. Message logging assists the pro
grammer as a data collection facility, providing the information needed to make such a
determination. When the TCAM MCP first executes, it can include the code ne~essary to
log information such as time, origin, and destination for each message, or in cases where
traffic is heavy, for certain representative messages. The programmer is then able to re
allocate resources efficiently, and he can easily remove the message logging facility when
it is no longer needed.

A later section titled Debugging Aids includes message logging among the various tech
niques that might be used to aid in debugging the TCAM environment.

When a LOG macro executes in an MH subgroup, either a complete message or a message
segment is copied as it then exists onto a log data set. The operand coded on the LOG
macro and the type of subgroup in which the LOG macro appears determine what is to
be logged - message segment or complete message. If only a segment is to be logged, an
operand of the LOG macro refers directly to the DCB for the log data set. If an entire
message is to be logged, the operand refers to a LOGTYPE macro that points to the DCB
and contains additional information necessary to log multiple segments. The relationship
of the LOG macro and the various subgroups is discussed in What to Log. Figure· 35
shows the flow of data and control that occurs during the logging process for message
segments and complete messages.

This section discusses the elements of a message logging facility in the order in which the
programmer is likely to deal with them while writing an MCP. Complete descriptions of
the macro instructions discussed in this section (LOG, LOGTYPE, PATH, MSGTYPE,
and the log DCB macros) may be found elsewhere in this publication.

What to Log The logging facility can handle the following:

• incoming header segments,
• incoming segments,
• incoming messages,
• outgoing header segments,
• outgoing segments, and
• outgoing messages.

When a LOG macro executes, the message unit (either a complete message or a message
segment) that is being processed by its subgroup is logged. The type of unit to be logged
is aetermined by the type of subgroup in which the LOG appears; if it is coded in an
inheader or outheader subgroup, message segments containing message headers are logged.
Its occurrence in an inbuffer or outbuffer subgroup causes each segment to be logged.
Each complete message is logged as a unit when the LOG macro occurs in an inmessage
or outmessage subgroup.

As larger units are logged, the logging facility requires more processing time and main
storage space, and the logged messages occupy more space in the log data set. Therefore,
the message logging facility should be designed to operate on the smallest units that will
~upply the information needed. In a message switching application, simply logging
ncoming headers may supply all the information that is needed for a logging application.
1 more sophisticated applications where the body of a message is needed, It may be
'cessary to log complete messages.

Logging Message Segments;

Logging Complete Messages:

• • •

• • •

Message Buffer

Segment

LOG ---1---+

~:
---... ~(:ontrol information flow

Figure 35. Information Flow for Message Logging.

Terminal Table

• • •
LOGTYPE

Log Data Set
DCB

Log Dota Set
DCB

Log Data Set
DO

Log Dota Set
DO

Using TeAM Service Facilities 343

Debugging Aids

344

The Log Data Set and its DeB: Logged messages and message segments are maintained
on sequential data sets residing on any type of BSAM-supported device. There may be
any number of log data sets for any given MCP. Multiple log data sets may be found
useful where logged messages are differentiated by some program-discernable character
istic, such as format, destination, or source. The device upon which a log data set
resides must be able to handle the volume of information expected to be logged at least
as fast as the MCP can handle it. This prevents a backlog of messages from accumulating
and being lost as buffer areas fill and are overwritten with new messages. Some devices
that might be used for logging purposes are tape, disk, and, where traffic is light, printer.

The DCB for a log data set is coded with the rest of the DCBs for the MCP. Coding
details appear in the section Log Data Sets in the chapter Defining MCP Data Sets. Note
that the size of the records is determined by the size of the buffer units used in the MCP.

The LOGTYPE Macro: The LOGTYPE macro provides the additional information needed
by a message logging facility when it is to log complete messages (that is, when a LOG
macro appears in an inmessage or outmessage subgroup). Since messages consist of a
series of message segments, buffer and queue areas must be defined; the BUFSIZE= and
QUEUES= operands of the LOG TYPE macro are used for this purpose. When a
LOGTYPE macro is needed, it should appear in the terminal table section of the MCP.
Coding details appear in the section LOGTYPE Macro Instruction in the chapter
Defining Terminal and Line Control Areas.

The LOG Macro: The LOG macro causes a message or message segment to be logged
When it is encountered in an MH subgroup, the currently processed unitis transferred to
the logging medium or to a queue waiting for such a transfer. The operand of the macro
refers either to the log data set or the LOGTYPE macro associated with this particular
LOG macro. Coding details for the LOG macro are discussed in the section LOG Macro
Instruction in the chapter Designing the Message Handler.

Selective Logging: It may be desirable to log only messages that meet certain criteria,
instead of each message handled by a particular MH subgroup. Use of the PATH and
MSGTYPE macros enables the programmer to include decision-making code in the mes
sage logging facility. The chapter Designing the Message Handler contains discussions of
facilities provided by both of these macro instructions.

During the execution of a TCAM MCP, error messages may be directed to the system
console and to operator control stations. Each TCAM message starts with an alphameric
identifier; an exact definition of the message and any user action that may be required
is documented in alphameric order in Messages and Codes (this document also lists and
defines codes).

When the MCP partition or region is dumped, the MCP control blocks are formatted
(described in the TCAM PLM). Among the blocks formatted are the terminal table,
station control blocks, line control blocks, queue control blocks, data control blocks,
process control blocks, and the address vector table.

In addition to normal dumps of the MCP partition or region, TCAM provides some special
aids for debugging the telecommunications network and the MCP. Two of these have
already been described in this chapter; the I/O error recording facility, described in the
section TCAM I/O Error-Recording Procedures, and the TCAM logging facility covered
in the section Using TCAM's Message Logging Facility. A TCAM formatted ABEND
dump is taken of the TCAM MCP partition or region that terminates abnormally; this
ABEND dump, which is in addition to the OS ABEND dump, formats TCAM control
areas and attached subtasks and is discussed in the TCAM PLM. Other optional debugging
aids include a cross-reference table of line-related information, located in main storage,
and special dumps of a subtask control block (STCB) trace, line I/O interrupt trace for a
line, buffers, and message queues data sets. In addition, the cross-reference table, STCB
trace, and line I/O interrupt trace may reside in main storage and may be included in a
standard dump.

Cross-Reference TablE

TCAM Line lID Interrupt
Trace Table

Figure 36 at the end of this section lists coding requirements for using the special TCAM
debugging aids, and the sections below discuss the individual aids. The Diagnostic Aids
section of the TCAM PLM contains several tables that should be useful in debugging
a TCAM system.

The TCAM cross-reference table provides the user with a convenient means of locating
in a standard OS dump certain information associated with each open line. The cross
reference table is built by TCAM if the user codes a non-zero integer in the CROSSRF=
operand of the INTRO macro instruction.

At INTRO execution time, TCAM allocates l6n+8 contiguous bytes of main storage
(where n is the integer specified in the CROSSRF= operand and 8 bytes is the length of
the control block preceding the first entry) for the cross-reference table, and places the
address of the cross-reference table in the A VT (address vector table) field labeled
AVTCRSRF. Each time a line is opened, the next available four-word entry in the cross
reference table is filled in for that line.

The format of the 8-byte control block preceding the first entry is:

Byte Explanation

0 address of first available entry

+4 address of last entry

The format of each entry in the table is:

Byte Explanation

0 unit control block name

+4 unit control block address

+8 line control block address

+12 address of a master queue control block for this line

If queuing is by line, there is only one master queue control block assigned to the line,
and its address is placed in the fourth word. If queuing is by terminal, there is a master
queue control block for each station on the line; the fourth word in this instance is
filled in with the address of the queue control block for the station whose terminal table
entry appears in the terminal table before that of any other station on the line. (The line
control block and the queue control block are internal TCAM control blocks and are
discussed in the TCAM Program Logic Manual,) If the user opens more lines than he
provides entries for in the cross-reference table, the table is filled in until the space in it
is exhausted; lines opened after space runs out in the table have no cross-reference
entries.

The TCAM line I/O interrupt trace table provides a sequential record (referred to as a
line I/O trace) in main storage of the I/O interrupts occuring on a specified line. When an
I/O interrupt occurs on a line for which a line I/O trace is requested (by the GOTRACE
operator command), information about the interrupt, including the CSW and the CCW,
is stored as an entry i.n the line I/O interrupt trace table; however, interrupts resulting
from retries by TCAM's error recovery procedures are not recorded.

The line I/O interrupt trace facility is brought into main storage by specifying a positive
value (from I to 65535) in the TRACE= operand of the INTRO macro instruction; once
it is in main storage, it may be activated and deactivated for a specified line by the
GOTRACE and NOTRACE operator commands, respectively.

Using TeAM Service Facilities 345

346

At INTRO execution time, 32n+l6 contiguous bytes of main storage (where n is the
integer specified in the TRACE= operand and 16 bytes is the length of the control block
preceding the first entry) are allocated for the line I/O interrupt trace table; TCAM
places the address of the table in the A VTRACE field of the A VT. When all the 32-byte
entries in the I/O trace table have been filled, the earliest entries are overlaid as new
interrupts occur.

A standard OS dump, described in the Programmer's Guide to Debugging, may be
obtained to determine the kinds of interrupts that occurred during execution of the
MCP.

The format of the 16-byte control block preceding the first entry is:

Byte Explanation

0 address of current trace entry

+4 address of first trace entry

+8 address of last trace entry

+12 address of middle entry

Each entry in the TCAM I/O interrupt trace table has the following format:

Sense
CSW

Byte

o +1

J
I Interrupt

\.

Interrupt CCW CCWTP
OP Code , J

I "
+8 +13 +14 +16

I

+16
,

)

,
J

+24

First CCW in Channel Program Chain

Station Name

+30

I

First "
CCWTP
Op Code

I

" +23 +24

Channel
and Unit
Address

+32

Tl1e channel programs used by TCAM may be found in the TCAM Program Logic Manual.
A teleprocessing operation code (TP Op code) is assigned to each CCW, and may be found
in the sixth byte of each CCW in the table. TP Op codes facilitate a trace of the channel
program execution sequence - they are described in the tCAM Program Logic Manual.
A detailed description of the contents of the sense byte may be found in the component
description SRL publication for the transmission control unit being used. If the identity
of the connected station is not known when the interrupt occurs, then the channel and
unit addresses, in unpacked form, are placed in the last two bytes of the 32-byte entry.

Writing on a Data Set for later Printing: The user invokes the I/O trace dump
(IEDQFE20) by entering the DEBUG operator command; this routine requires that
COMWRTE=YES be specified on the INTRO macro instruction.

Dispatcher Subtask Trace Table

As soon as TCAM makes half the number of entries in the line I/O interrupt trace table
that was specified on the TRACE= operand of the INTRO macro instruction, the I/O
trace dump routine passes that portion of the trace table to the COM WRITE routine to
be written on a sequential data set (the requirements of COMWRITE are explained in the
next section below). TCAM makes entries in the second half of the trace table until that
section is filled, at which time the I/O trace dump routine again passes data to
COMWRITE. TCAM continues to overlay the line I/O interrupt trace table, and the
process outlined above is repeated.

COMWRITE Requirements and Format: The output data set format is undefined with a
maximum block size that is permissible for the particular device. An example of the
JCL required to specify that the output data set (COM WRITE) be on tape is:

/ /COMWRITE DD UNIT=2400,DSN=COMWRITE,VOL=SER=xxxxxx,DISP=(,KEEP)

Multiple volumes (either labeled or unlabeled) may be specified; secondary allocation is
not permitted. Once a disk data set is filled, the disk is wrapped with subsequent entries.

Sample JCL for specifying that the output data set be on disk is:

/ /COMWRITE DD UNIT=SYSDA,DSN=COMWRITE,DISP= (,KEEP), x
/ / VOL=SER=xxxxxx,SP ACE=(CYL,(5))

The COMWRITE data set is used also when sequentially writing the STCB trace and
buffers (the data set is specified only once); the appropriate operand of the DEBUG
operator command determines whether a line trace, an STCB trace, or buffers are
written on the data set (see examples in Writing Line Trace, STCB Trace, and Buffers
to Disk Data Set below). Output from the COMWRITE data set is printed by a separate
task that is discussed below in COMEDIT Printing Utility.

If too few entries are specified on the TRACE= operand of the INTRO macro instruction,
COMWRITE may become too busy to forward all records to the data set; such records
are lost and the I/O trace dump routine reuses that seCtion of the table and the count
field of the output indicates a missing record. When the printed output indicates lost
records, increase the number of entries on the TRACE= operand of the INTRO macro
to prevent reoccurrence.

NOTE: Since the blocksize is limited by the type of storage device, care must be taken
in defining the sizes of the various main storage trace tables to be recorded by
COMWRITE. Since each record is one-half the trace table, no trace table can exceed
twice the maximum blocksize permitted for the COMWRITE external storage device.
This implies the need for tiipe to record extra large main storage tables since tape supports
larger records.

The dispatcher subtask trace table is used to keep a sequential record in main storage of
the sub tasks activated by the TCAM dispatcher. An entry is placed in the table by the
TCAM dispatcher each time a TCAM subtask is dispatched. The table is filled on the
wraparound principle; that is, when all of the available entries have been used, the
dispatcher places the new entries at the beginning of the table thus overlaying the earliest
entries. The table might be used, for example, to trace the path of a buffer through the
TCAM system. The TeAM dispatcher and TCAM subtasks are described in detail in the
TCAM Program Logic Manual.

The dispatcher subtask trace table is generated if the user specifies some value between
4 and 65,535 in the DTRACE= operand of the INTRO macro (see note below). At
INTRO execution time, TCAM allocates (l6n + 16) contiguous bytes of main storage
(where n is the integer specified in the DTRACE= operand) for the table. The table
consists of a 16-byte control block followed by n 16-byte entries. The address of the
16-byte control block is then stored in a field in the AVT (address vector table) at a
displacement of 12 bytes past the labellEDP ARM. .

Using TeAM Service Facilities 347

348

The control block for the dispatcher subtask trace table has the following format:

Byte Explanation

0 Address of next entry to appear in the table
-'-

+4 Address of first entry in the table

+8 Address of last entry in the table

+12 Size of the table in bytes

NOTE: Since the first word of this control block contains the address of the next entry
in the table, the last recorded entry is located at this address minus 16.

An entry in the dispatcher sub task trace table has the following format:

o
,
)

L

priority of the

dispatched element

address of the

dispatched element

+1

address of the entry point
of the dispatched subtask

<

+4

,
II

)
(

,

\

+4 +8

1_ \ , (

flag byte of the address of the

dispatched QCB dispatched QCB
<r;

I \

+8 +9
,

+12
,
1

sub task entry address of the

code (MCPL) dispatched STCB ..
I

+12 +13

For a further description of the QCB, the QCB flag byte, the STCB, the sub task entry
code (MCPL), and the priority of the dispatched element, refer to the TCAM Program
Logic Manual.

+16

The sub task trace, like the line trace, can be written sequentially to a data set (either
magnetic tape or disk) provided the COMWR TE= operand of the INTRO macro
instruction specifies YES. See the DEBUG operator command for a description of how
to activate and deactivate the STCB trace dump (IEDQFElO). The requirements of
COM WRITE are discussed earlier in COMWRITE Requirements and Format.

Buffer Dump

Writing line Trace, STCB Trace,

and Buffers to Disk Data Set

NOTE 1: As soon as TCAM has made half the number of entries in the subtask trace
table that is specified on the DTRACE= operand of the INTRO macro instruction,
IEDQFE I 0 determines that new entries exist in the first half of the table and passes
the first half of the trace table to COM WRITE to be written on a sequential data set.
TCAM continues, without interruption, filling in the last half of the table with entries.
When the second half is filled, IEDQFE I 0 passes the second half to COMWRITE to
be written. Each time IEDQFE lOis entered, a counter is incremented and placed in the
output record.

If too few entries are specified on the DTRACE= operand of the INTRO macro instruc
tion, COM WRITE may become too busy to forward all records to the data set; such a
records are lost and IEDQFEIO reuses that section of the table and the count field of
the output indicates a missing record. When the printed output indicates lost records,
increase the number of entries on the DTRACE= operand of INTRO to prevent reoccur
rence.

NOTE 2: Since the blocksize is limited by the type of storage device, care must be taken
in defining the sizes of the various main storage trace tables to be recorded by
COMWRITE. Since each record is one half the trace table, no trace table can exceed
twice the maximum blocksize permitted for the COMWRITE external storage device.
This implies the need for tape to record extra large main storage tables since tape sup
ports larger records.

This facility permits TCAM buffer contents and status information to be dumped to a
data set residing either on magnetic tape or on disk. To get this facility, the user speci
fies YES on the COMWRTE= operand of the INTRO macro instruction (causing_a rou
tine to be attached to the TCAM partition or region that sequentially writes buffers to
tape or disk), and enters the DEBUG operator command to activate IEDQFE30. The
data set to which buffers are written is specified by the JCL that is discussed above in
COMWRITE Requirements and Format. The buffer dump also requires that a line trace
be active on the line whose buffers are to be dumped (see I/O Interrupt Trace Table,
covered earlier in this section, for a discussion of how to activate the line trace).

The format of the buffer dump on tape or disk is:

fl
Buffer SCB Error CSW Sense

Address C;
~ Byte Flags

I

\

o +4
I

+8 +12 +13
IL

J
lOB lOB ERB LCB Line Buffer Prefix

FLl FL3 Status Status Address and Data
~

I '---,
+13 +18 +20 +96 +14 +15 +16

See a later section, COMEDIT Printing Utility for a discussion of how the COMEDIT
routine can produce a formatted listing of the buffer.

The following example of. entering GOTRACE, NOTRACE, and DEBUG operator com
mands illustrates how debugging information can be written to the COM WRITE data set
for later printing. The general format of the commands and command responses used in
the example may be found in this chapter under the heading Operator Commands. The

Using TeAM Service Facilities 349

350

numbered paragraphs below denote a sequence of operator commands entered at an IBM
1050 Data Communication System terminal that has been designated as an operator con
trol station. The lettered entries designate discussions of

A. STCB trace,
B. line I/O trace, and
C. buffer dump, respectively.

The example assumes that the INTRO macro instruction specifiesCOMWRTE=YES,
DTRACE=integer, TRACE=integer, and CONTROL=CTL; the jobname of the TCAM
MCP is TEST3; the following DD statement has been added to the EXEC statement for
theTCAMMCP

//COMWRITE DD
/I

UNIT=SYSDA,DSN=COMWRITE,DlSP= (,KEEP),
YOL=SER=456789,SP ACE=(CYL,(5»

X

(specifies that the COMWRITE data set be on disk); and the TCAM job is dequeued from
the input stream and has just started execution.

Example:
1. Nothing has been entered at the IBM 1050 terminal.

A. Entries are being made in the STCB trace table in main storage, and nothing is
being written to the COMWRITE data set.

B. Inactive.
C. Inactive.

2. CTL F TEST3,TRACE=052,ON (eot)
A. Entries are still being made in the STCB trace table, and nothing is being written

to the COMWRITE data set.
B. Entries are now being made in the line I/O trace table in main storage for line 052,

and nothing is being written to the COMWRITE data set. Response message

IED0231 TRACE STARTED FOR 052

is sent to the IBM 1050 indicating that the line I/O trace was started for line 052
as requested by the GOTRACE command.

C. Inactive.
3. CTL F TEST3,DEBUG=L,IEDQFEI0 (eot)

A. Entries are still being made in the STCB trace table, and now the STCB trace table
entries are being written to the COM WRITE data set. Response message

IED0991 ROUTINE LOADED

is sent to the IBM 1050 indicating that the STCB trace table entries are being
written to the COM WRITE data set.

B. Entries are still being made in the line I/O trace table for line 052, and nothing is
being written to the COMWRITE data set.

C. Inactive.
4. CTL F TEST3,DEBUG=L,IEDQFE30 (eot)

A. Entries are still being made in the STCB trace table, and STCB trace table entries
are still being written to the COMWRITE data set.

B. Entries are still being made in the line I/O trace table for line 052, and nothing is
being written to the COMWRITE data set.

C. Since line I/O trace is active for line 052, buffer and status information for line
052 is now being written to the COMWRITE data set. Response message

IED0991 ROUTINE LOADED

is sent to the IBM 1050 indicating that buffer and status information is being
written to the COM WRITE data set.

- ------~-~------ ------- - --------~~---------------- ------~- ---

•

5. CTL F TEST3,TRACE=031,ON (eot)
A. Entries are still being made in the STCB trace table, and STCB trace table entries

are still being written to the COMWRITE data set.
B. Entries are still being made in the line I/O trace table for line 052, entries are also

being made now in the line I/O trace table in main storage for line 031, and
nothing is being written to the COM WRITE data set. Response message

IED023I TRACE STARTED FOR 031

is sent to the IBM 1050 indicating that the line I/O trace was started as requested
by the GOTRACE command.

C. Since line I/O trace is active for lines 052 and 031, buffer and status information
for these lines is being written to the COMWRITE data set.

6. CTL F TEST3,DEBUG=L,IEDQFE20 (eot)
A. Entries are still being made in the STCB trace table, and STCB trace table entries

are still being written to the COM WRITE data set.
B. Entries are still being made in the line I/O trace table for lines 052 and 031, and

now line I/O trace table entries are being written to the COM WRITE data set.
Response message

IED099I ROUTINE LOADED

is sent to the IBM 1050 indicating that line I/O trace table entries are now being
written to the COM WRITE data set.

C. Since line I/O trace is still active for lines 052 and 031, buffer and status infor
mation for these lines is still being written to the COM WRITE data set.

7. CTL F TEST3,TRACE=052,OFF (eot)
A. Entries are still being made in the STCB trace table, and STCB trace table entries

are still being written to the COMWRITE data set.
B. Entries are still being made in the line I/O trace table for line 031, but not line 052,

and line I/O trace table entries for line 031 are being written to the COMWRITE
data set. Response message

IED029I TRACE STOPPED FOR 052

is sent to the 1050 indicating that the line I/O trace was stopped for line 052 as
requested by the NOTRACE command.

C. Since line I/O trace is now active only for line 031, buffer and status information
for line 031 is still being written to the COMWRITE data set.

8. CTL F TEST3,DEBUG=D,IEDQFE30 (eot)
A. Entries are still being made in the STCB trace table, and STCB trace table entries

are still being written to the COM WRITE data set.
B. Entries are still being made in the line I/O trace table for line 031, and line I/O

trace table entries for line 031 are still being written to the COMWRITE data set.
C. Inactive.

9. CTL F TEST3,DEBUG=D,IEDQFE20 (eot)
A. Entries are still being made in the STCB trace table, and STCB trace table entries

are still being written to the COMWRITE data set.
B. Entries are still being made in the line I/O trace table for line 031, but now nothing

is being written to the COM WRITE data set. Response message

IEDlOOI ROUTINE DEACTIVATED

is sent to the IBM 1050 indicating that no line I/O trace table entries are being
written to the COMWRITE data set.

C. Inactive.
10. CTL F TEST3,DEBUG=D,IEDQFE1 O(eot)

A. Entries are still being made in the STCB trace table, but now nothing is being
written to the COMWRITE data set. Response message

IED! 001 ROUTINE DEACTIVATED

is sent to the IBM 1050 indicating that no STCB trace table entries are being
written to the COMWRITE data set.

B. Entries are still being made in the line I/O trace table for line 031, and nothing is
being written to the COMWRITE data set.

C. Inactive.

Using TeAM Service Facilities 351

COMEDIT Printing Utility

352

11. CTL F TEST3,TRACE=031,OFF (eot)
A. Entries are still being made in the STCB trace table, and nothing is being written

to the COMWRITE data set.
B. Inactive. Response message

IED0291 TRACE STOPPED FOR 031

is sent to the IBM 1050 indicating that entries are no longer being made in the
line I/O trace table.

C. Inactive.

The COMEDIT utility is a separate job or job step that formats and prints in hexadecimal
the specified output from COMWRITE data set. The COMWRITE data set may contain
any combination of entries from the STCB trace table, the I/O interrupt trace table, and
buffer and status information. If the COM WRITE data set is on magnetic tape, a search
option may be invoked to begin formatting the STCB trace dump at a specified time
stamp (if the search option is requested and the COMWRITE data set is on disk, error
message IED1201 'BLOCK=' PAR~ REQUIREDTAPE INPUT is returned to the system
console and the printing utility formats and prints all the data from the physical
beginning of the COMWRITE data set). The number of lines printed per page on the
listing may be varied if the default value of 60 is not desired. Options that may be
specified on the PARM= parameter of the EXEC statement are:

Option

STCB

IOTR

BUFF

Function Provided

Provides a formatted printout of the dispatcher subtask
trace table entries that are on the data set.

Provides a formatted printout of the line I/O interrupt
trace table entries that are on the data set.

Provides a hexadecimal and EBCDIC formatted printout
of buffers and any trace records, other than STCB and
IOTR, that are on the data set.

NOTE: If neither STCB, IOTR, nor BUFF is specified, then all blocks are formatted and
the hexadecimal dump contains all unknown records.

BLOCK=hhmmddd This keyword value is valid 'only for a tape data set; it
designates the starting point for formatting records from
the data set.

LlNECNT=xx

hh is replaced by a 2-digit decimal integer that specifies
the hour in continental time.

mm is replaced by a 2-digit decimal integer that specifies
the minutes of the hour (using I-minute intervals).

ddd is replaced by a 3-digit decimal integer that specifies
the day of the year (using Julian days).

Specifies the number of lines to be printed per page, where
xx may be replaced by any 2-digit decimal integer up
to 99. If this keyword parameter is omitted, a value of 60
is assumed.

These options may be coded in any order and as often as desired. If keyword parameters
are specified more than once, only the last duplicate parameter is honored. If a param
eter is coded incorrectly, the entire parameter list is printed on the SYSPRINT data set
and the location of the parm scan pointer is shown, indicating the approximate location
of the erroneous parameter.

Examples appear below for invoking various combinations of entries from the
COMWRITE data set; the ddnames SYSPRINT and SYSUTl are required names for the
DD statements in this program.

The DCB attributes for SYSPRINT are

DSORG=PS,RECFM=FBA,LRECL=12l,BLKSIZE=133l.

Example 1:
Prints only STCB trace table entries from the disk COMWRITE dat set, and specifies a
line count of 80 for the printed listing.

JOB
EXEC PGM=IEDQXB,PARM='LINECNT=80,STCB'
DD SYSOUT=A

//jobname
I/stepname
//SYSPRINT
I/SYSUTl DD DSN=COMWRITE,UNIT=SYSDA,VOL=SER=xxxxxx,DlSP=OLD

Example 2:
Prints STCB trace table entries and line I/O interrupt trace table entries from tape;
specifies printed listing to begin at 10: 15 pm on August 20, 1970, and specifies line
count of 58.

//jobname
I/stepname
1/
//SYSPRINT
I/SYSUTI

JOB
EXEC PGM=IEDQXB,PARM= 'IOTR,BLOCK=22 1 5232,

STCB,LINECNT=58'
DD UNIT=OOE
DD UNIT=2400,VOL=SER=xxxxxx,DlSP=OLD,LABEL= (,NI)

X

NOTE: If the search option is earlier than the first time stamp on the data set contain
ing the STCB trace table entries, the entire data set is formatted and printed. If it is later
than the last time stamp, no printing is done and error message lED 121 I REQUESTED
TIME NOT FOUND is returned. In addition to the STCB trace being formatted by time
and date, queue control blocks are formatted by individually named fields. I/O interrupt
trace table entries on the COMWRITE data set appear as 32-byte records with unit check
and unit exception fields flagged.

Example 3:
Prints buffers from tape - standard label in; standard label out (for printing on another
machine).

//jobname
I/stepname
I/SYSPRINT
I/SYSUTl

JOB
EXEC PGM=IEDQXB,P ARM='BUFF'
DD DSN=dsname,UNIT=2400, VOL=SER=xxxxxx,DlSP= (,KEEP)
DD UNIT=2400,VOL=SER=xxxxxx,DISP=OLD,DSN=COMWRITE

Example 4: Prints buffer and status information and line I/O interrupt trace table entries
from tape; specifies line count of 65 (if duplicate keyword parameters are specified, the
later value is used).

//jobname
I/stepname
II
/ISYSPRINT
I/SYSUTl

JOB
EXEC PGM=IEDQXB,PARM='LINECNT=lO,BUFF,IOTR, X

LINECNT=65'
DD SYSOUT=A
DD UNIT=2400,VOL=SER=TRACE,DlSP=OLD,LABEL= (,NL)

NOTE: If the PARM= parameter is omitted, all the entries on the COMWRITE data set
are formatted and printed. If a coding error is detected in one of the keyword values
of the PARM= parameter, error message IED1231 INVALID PARAMETERS is returned
indicating that the COMEDIT printing utility cannot be continued due to invalid JCL:
replace the invalid JCL card and resubmit the job.

Message Queues Data Set Dump TCAM provides a separate utility (IEDQXC) that formats the DASD message queues
data set for immediate printing, or it directs the messages queues data set to either
magnetic tape or disk for later printing. (See the discussion on Preformatting DASD
Message Queues Data Sets in the chapter titled System Preparation). The entire data set
may be printed sequentially either by record number or by queue. Also, up to five
individual queues may be printed. The contents of the formatted dump are controlled by
options in the P ARM= parameter of the EXEC statement. The general format of the
EXEC statement is:

I/STEPI EXEC PGM=IEDQXC,P ARM='Q=options'

Using TeAM Service Facilities 353

354

Options that may be specified on the PARM= parameter of the EXEC statement are:

Option

DMP

xxx,DMP

Function Provided

Prints all messages sequentially by record number.

Prints all messages sequentially, where xxx is replaced by the
3-digit decimal total number of queues.

NOTE 1: Specifying xxx, DMP gives the same results as either specifying DMP alone or
omitting the PARM= parameter.

NOTE 2: To find total number of queues from the assembly listing of the MCP, look
for ORG IEDQNADDR in the expansion of the macro that is named by TT ABLE
LAST=name. Following that ORG is the line DC A(n + 1),A(r + 1). The value of n
(for nonreusable disk) or r (for reusable disk) is the maximum value for Q=xxx in the
PARM= parameter of the IEDQXB routine.

xxx,ALL Prints all messages sequentially by queue, where xxx is replaced
by the 3-digit decimal total number of queues.

xxx,nln 1 n 1,n2n2n2,
... nSnSnS Prints all messages for queues nln InI through nsnSn 5 (up to

5 queues may be specified); xxx is replaced by the 3-digit deci
mal total number of queues, and nnn is replaced by the 3-digit
decimal number corresponding to the queue (or queues) whose
contents are to appear in the dump.

Below are some sample JCL statements for invoking the IEDQXC printing facility.

NOTE 3: Each extent of the DASD message queues data set must be defined with a
DISKQnn card, where nn is replaced by decimal 01 for the first extent, by decimal 02 for
the second, etc. For single extent cataloged data sets, DSN= and DISP= are the only
required parameters. For multi-extent (multivolume) data sets, the catalog information
cannot be used. Each DD statement must have also UNIT=23xx,VOL=SER=xxxxxx
information. These DD statements must define the volume identification in the same
order as the volume identifications listed in the IEDQDA T A DD card on the IEDQXA
utility JCL used when creating the data set.

Example 1:
Dumping queues sequentially

//jobname
//stepname
//DISKQOl DD
//SYSPRINT DD

Example 2:

JOB
EXEC PGM=IEDQXC
DSN=dsname,DISP=OLD
UNIT=OOF

Printing entire formatted queue

//jobname
//stepname
//DISKQOl DD
//DISKQ02 DD
//DISKQ03 DD
//SYSPRINT DD

JOB
EXEC PGM=IEDQXC,PARM='Q=O 12,ALL'
DSN=dsname,DISP=OLD;UNIT=23xx,VOL=SER=111111
DSN=dsname,DISP=OLD,UNIT=23xx,VOL=SER=222222
DSN=dsname,DISP=OLD,UNIT=23xx,VOL=SER=333333
UNIT=OOE

Debugging Aid

~
Standard
OS Dump

TCAMFarmatted
ABEND Dump

I/o Errar
Recording

TCAM
Logging

Cross-Reference
Table

STCB
Trace

Line
Trace

Buffer
Dump

Message Queues
Data Set Dump

Notes:

Example 3:
Printing selected queues (there are eight queues on the data set; this JCL formats and
prints queues 005,006, and 007 only)

//jobname
//stepname
//DlSKQOI
//DlSKQ02
//DlSKQ03
//SYSPRINT

JOB
EXEC PGM=IEDQXC,P ARM='Q=008,005 ,006,007'

DD DSN=dsname,DlSP=OLD,UNIT=23xx,VLL=SER=111111
DD " DSN=dsname,DlSP=OLD,UNIT=23xx,VOL=SER=222222
DD DSN=dsname,DlSP=OLD,UNIT=23xx,VOL=SER=333333
DD UNIT=OOE

The PARM= fields are fixed format, and a coding error causes error message IEDl231
INV ALID PARAMETERS to be returned to the system console; replace the invalid
JCL and resubmit the job.

Function

Getting debugging Dumping debugging Printing debugging oid
aid ta reside in aid ta either tape or from tape or disk data
main storage disk data set set

INTRO operator INTRO operator
operands commands operands commands

(Nate 1)
1
I

(Nate 2)
V 1

I See the IFCEREPO system utility in the OS
(Note 3) Utilities Publication far printing the contents

I af the SYSI. LOGREC data set.

(Note 4) 1,\

CROSSRF=n

DTRACE=n DTRACE=n DEBUG (L, 1,\
COMWRTE=YES IEDQFE1O)

GOTRACE TRACE=n GOTRACE Use the COMEDIT printing utility
TRACE=n DEBUG (L,

NOTRACE COMWRTE=YES IEDQFE36>' described in this section.

TRACE=n" GOTRACE

COMWRTE=YES
DEBUG (L,

V IEDQFE20)

Use the IEOQXC utility program
described in this section.

1. See the OS publicatian Pragrammer's ~!2 Debugging.

2. See the TCAM Pragram \:2al!: ~.
3. See TCAM I/O Error-recording Facility in this chapter.

4. See Using TCAM's Message Logging Facility elsewhere in this publication.

Figure ~6. Coding Requirements for Using TCAM Debugging Aids.

Using TeAM Service Facilities 355

On-line Test Function

Advantages of TOTE

Devices Supported

TOTE Facilities

356

The on-line test (OLT) function is an optional TCAM facility; its implementation is
described in detail in the TOTE/Configurator User's Manual. OLT permits either a sys
tem console operator or a remote control station user to test transmission control units
and remote stations. The OLT function is used to:

- Diagnose hardware errors
- Verify repairs
- Verify engineering changes
- Check devices periodically
- Check new stations brought on-line

The TCAM OLT function is implemented in three parts:

• the telecommunications on-line test executive (TOTE)

TOTE acts as an interface between TCAM and the OL Ts for scheduling and controlling'
the execution of OL 1's. TOTE also prompts the user when he requests help, when he
makes an invalid request, or when a test needs more data.

• a configurator

The configurator collects data about the stations and control units from TCAM and OS.
When adequate data is not available the configura tor prompts the on-line test user for the
information.

• On-line tests (OLTs)

The OL Ts run under the supervision of TOTE. They reside in either SYS l.LINKLIB or
a private library. The results are sent to a station specified by the test requester. The
device tests are written primarily by taking the off-line diagnostics and converting them
to run on-line under TCAM/TOTE. On-line tests affect application performance to the
extent that test transmissions require line time, tests require CPU time, and OL T
modules require main storage and DASD space.

In order to properly assess the resources required tl;> support TOTE, it is necessary to
put TOTE in the proper perspective. TOTE is advantageous because it provides:

- Dynamic remote test request
- Remote test control
- BSC support
- Operation in a dedicated TP system

On-line tests are provided for the IBM devices listed in the section Machine and Device
Requirements of the chapter titled System Preparation. In addition, on-line tests for
the following adapters are provided:

2701 adapters and features:
IBMI, IBMII, IBMIII, SDAII, TTYI, TTYII, and WTC-TTY

2702 adapters and features:
IBMI, IBMII, TTYI, TTYII, and WTC-TTY

2703 adapters and features:
IBMI, lBMII, TTYI, TTYII, BSC, and WTC-TTY

Two levels of tests are supported by TCAM/TOTE. These levels are referred to by the
name of the message used to request them. These are defined as:

RFT (request for test). This refers to a test whose function is to determine if a device
works or does not work and may be used as a tool in the diagnostic activity. These are
similar to those provided by OS/BT AM.

System Requirements

TRM (terminal request message). This refers to a test whose function is to perform
problem definition. These tests provide functional testing and are, for the most part,
written by converting existing off-line diagnostics to run on-line under TCAM/TOTE.

With respect to the application's use of the TP sub-system, on-line tests under TOTE
may be run in two modes, concurrent and nonconcurrent. Concurrent mode means that
TOTE can execute an on-line test for one station on a multipoint line while the applica
tion continues to use the remaining stations. Nonconcurrent mode means an entire line
must be dedicated to the on-line test function. BSC tests normally cannot be run in
concurrent mode.

Synchronous testing, while not an explicit feature of on-line tests under TeAM, is a
by-product of the design (maintenance support is provided for this facility). This is de
fined as the execution of the same or different OL Ts on different devices during the
same time interval. Special coding considerations are not required. Enough main
storage must be allocated to support the maximum number of tests to be run asynchro
nously during the same time interval.

It is possible for test request messages to be entered at the time an on-line test is being
executed (or the maximum number of asynchronous tests are being executed). In this
case, the test request message is queued and the test requester is notified that it has
been queued.

Other TOTE facilities that support on-line test execution are:

• Repeating a given test a specified number of times (testing loop).
• Looping on the set of instructions that detect the first error (error loop).
• Printing options such as notification of testing progress, detailed error prints, and an

alternate printer.
• Executing test routines that require manual intervention during their execution.
• Entering test requests from the system console as well as from a remote station.

This section describes main storage requirements, TCAM MCP facilities that must be
specified to support on-line testing, OS/SYSGEN options that must be specified, and
JCL requirements for TOTE/OLTs.

Main-storage Requirements: TOTE plus the OL T reside in the MCP partition or region of
TCAM. The basic main storage requirement is 10K bytes. This allocates enough space
for TOTE (6K) plus one OLT section (4K). Test sections for BSC and display devices
may require 6K to 8K bytes.

If asynchronous testing is desired, more storage is required. The following formula
should be used to calculate the specific number of bytes:

n(6 + MTS)

where: n=number of tests to be run.
MTS=maximum on-line test size.

The local FE Branch Office provides assistance in determining the MTS
value for specific BSC or display devices.

The main storage occupied by the OL Ts may be shared with other TCAM functions
such as checkpoint/restart. This storage is not available to the application.

TOTE Requirements: The OLTEST= operand of the INTRO macro instruction must
either be omitted or must specify either zero or a positive integer greater than 9. If the
operand is omitted, 10K bytes of storage is reserved for on-line tests. If OL TEST=O is

Using TeAM Service Facilities 357

358

coded, no storage is reserved. If OLTEST=lO is coded, 10K bytes are reserved; if
OLTEST=21 is coded, 21K bytes are reserved, etc. At least 10K bytes of main storage
must be reserved if on-line test is to be incorporated into the TCAM system.

The STARTMH routine determines if incoming messages are OLT requests. When
STARTMH recognizes a message as an OLT request, and TOTE is not active because
the OL TEST= operand of the INTRO macro instruction specifies zero, TCAM sets bit
12 in the message error record to indicate that TOTE is not active. This bit is also set
by TCAM when the amount of storage specified by the OLTEST= operand is currently
being used by TOTE, and when the OL T request does not fit into a single buffer (see
next section).

Coding Requirements: Each on-line test request must fit within a single buffer; further
more, an on-line test message identifier (either SOH% or 99999) must fit within the
first buffer unit. These buffer design condiderations must be taken into account when
the user specifies buffer and buffer unit sizes (see the KEYLEN= and LNUNITS=
operands of the INTRO macro instruction and the BUFSIZE= operand of the line
group DCB macro instruction).

In designing his MH, the user should determine if bit 12 is on when an OLT request is
made; if this bit is on, he should send an error message to the requesting station (see the
descriptions of the MSGGEN and ERRORMSG macro instructions). It is up to the
station operator who receives the error message to determine that:

1. TOTE is in the system (that is, the on-line test function was specified properly at
execution time), and

2. the test request fits into a single buffer (that is, the system programmer specified
TCAM buffers large enough to hold an OLT request).

If these two requirements are met, then the station operator should retry his request
later (his request was not honored because the amount of main storage specified for on
line test was being used to accomplish other on-line tests that were being made). If
these two requirements are not met, an on-line test cannot be performed.

NOTE 1: When a group of terminals in a TCAM environment are defined by the
UTERM=YES operand of the TERMINAL macro instruction, there is only one sym
bolic name associated with all the terminals on that line. This symbolic name can be
used by TOTE in its scheduling and control functions provided that all terminals on the
line are the same type.

NOTE 2: When STARTMH recognizes a TOTE request message, the line associated with
the station entering the request is marked stopped. If an operator command is issued
to stop the line a response is received stating that the line is already stopped. If the
request is for another line, the original line is restarted, and the requested line is
stopped.

OS/SYSGEN Requirements: In order to support TOTE, the SUPRVSOR macro instruc
tion must specify OPTIONS=ONLNTEST at system generation time.

At least two buffers must be specified in the WTOBFRS parameter of the SCHEDULR
macro instruction when on-line tests are included in the generated system.

JCL Requirements for TOTE/OL Ts: The following DD statements must be included in
the TCAM JCL that defines data sets when the on-line test function is to be included in
the TCAM system:

• A DD card for output of diagnostic messages from TOTE/OLT to SYSOUT:

//DIAGMSG DDSYSOUT=A

NOTE: To obtain direct output of TOTE diagnostic messages when APSYSOUT is
specified, substitute UNIT=xxx for SYSOUT=A. xxx is the 3-digit hexadecimal address
of a printer that is not assigned to an output writer.

• A DD card for the OL T unit test module library:

IIJOBUB DD DSN=SYS I.OL TUB,DISP=SHR

NOTE: This example assumes that the OL T unit test modules have been replaced in a
private library named SYSJ .OLTUB, and SYS I.OL TUB has been cataloged .

• A DD card for the configuration data library:

IIDCHBDD DD DSN=SYS I.OLTUB(DCHB),DISP=OLD

NOTE: This example assumes that the configuration data is to be placed in
SYS 1. OL TUB as a member named DCHB. It also assumes that SYS I.OL TUB has
been cataloged.

Using TeAM Service Facilities 359

Machine and Device
Requirements

Control Units and Terminal
Types Supported

Multiprocessing System

System Preparation

This chapter provides information needed in setting up a teleprocessing system to be run
under TeAM. It indicates the machine and device requirements of a TCAM system,
touches upon system generation requirements peculiar to TeAM, and describes the
IEDQXA utility program provided by TeAM for preformatting message queues data
sets on disk. The System Generation publication provides information for generating
an IBM System/360 Operating System, including machine configuration and data
processing requirements.

TCAM operates under the operating system MFT-II and MVT environments on any
System/360 Model 40 or above (that is, a CPU having at least 128K of main storage).
The only additions to the minimum requirements of the System/360 Operating System
are:

• All telecommunications terminals, except the IBM 2260-2848 Local, must be attached
to either an IBM 2701 Data Adapter Unit Modell, an IBM 2702 Transmission
Control Modell, an IBM 2703 Transmission Control Modell, or an IBM 7770
Model 3 Audio Response Unit; they cannot be attached directly to a channel.

• All IBM 2701, 2702, 2703, or 7770 control units that operate under TCAM must be
attached to the System/360 through the multiplexer channel.

NOTE: A switch on the CE panel on the 2702 can be used to place a given line in CE
mode for equipment checking. Care must be taken to ensure that no lines are in CE
mode when TCAM is used since no ending status will be returned to an SIO command
that is issued by the system.

• No device may be operated in burst mode on the multiplexer channel concurrently
with the operation of TCAM, except when the TCAM operation involves only the
2260 Display Complex (Local).

The following additional features may be required:

• The system ATTACH macro instruction must be specified for an MFT system;
• The line correction feature on IBM 1050 Data Communication System terminals if

automatic retry is desired when a transmission error occurs.

TCAM supports any combination of the IBM 7770 Audio Response Unit and the IBM
2701,2702, or 2703 transmission control units on the same multiplexer channel. Up to
eight control units can be attached directly to the multiplexer channel. TCAM also
supports the IBM 2848 Display Control attached directly either to the multiplexer or a
selector channel. Figure 37 below illustrates the device configurations supported by
TCAM.

TCAM supports the multiprocessing (IBM Model 65 MP) system with the configuration
control feature; this system is formed from two Model65s operating as a single large
scale system under one control program. Since the Model 65 MP permits simultaneous
execution of two tasks in the system, the TCAM MCP can execute simultaneously with
a TCAM application program.

System Preparetion 361

CPU

2701
Start
Stop

2701
BSC

2702

2703

Figure 37. Device Configurations Supported by TCAM (Part 1 of 3)

362

IBM 1030 Data Collection System
IBM 1050 Data Communication System
IBM 1060 Data Communication System
IBM 2740 Communication Terminal
IBM 2740 Model 2 Communication Terminal
IBM 2741 Communication Terminal
IBM 2760 Optical Image Unit
IBM 2260 Display Complex (Remote)
IBM 2265 Display Complex (Remote)
AT&T 83B3 Selective Calling Stations
WU Plan 115A Outstations
TWX Models 33 and 35
World Trade Telegraph Terminals

IBM 2770 Data Communication System
IBM 2780 Data Transmission Terminal
IBM 1130 Computing System
IBM System/360 Model 20
IBM System/360 Models 25 and above

IBM 1030 Data Collection System
IBM 1050 Data Communication System
IBM 1060 Data Communication System
IBM 2740 Communication Terminal
IBM 2740 Model 2 Communication Terminal
IBM 2741 Communication Terminal
IBM 2760 Optical Image Unit
AT&T 83B3 Selective Calling Stations
WU Plan 115A Outstations
TWX Models 33 and 35
World Trade Telegraph Terminals

IBM 1030 Data Collection System
IBM 1050 Data Communication System
IBM 1060 Data Communication System
IBM 2740 Communication Terminal
IBM 2740 Model 2 Communication Terminal
IBM 2741 Communication Terminal
IBM 2770 Data Communication System
IBM 2780 Data Transmission Terminal
IBM 1130 Computing System

IBM System/360 Model 20
IBM System/360 Models 25 and above
AT&T 83B3Selective Calling Stations
WUPlan 115A Outstations
TWX Models 33 and 35
World Trade Telegraph Terminals

Audio
Chonnel Type TCU Response

Unit
Line Type

IBM 2701 IBM 2702 IBM 2703
Dota Adapter Transmission Transmission IBM 7770

Siotion Type Multiplexer Selector Unit Control Control Model 3 Switched Nonswitched Notes

IBM 1030 Dolo Collection Auto Poll X X X X The IBM 0191101 Time Out
System feature cannot be attached

X X X X X through an IBM 2701 TCU.

IBM IOSO Dolo Auto Pall X X X X
Communication System

X X X X X X

IBM 1060 Dolo Auto Poll X X X X
Communication System

X X X X X

IBM 2260-2848 Display X X X
Complex (Remote)

IBM 2260-2848 Disploy X X
Complex (Local)

IBM 2265-2845 Disploy X X X
Complex (Remote)

IBM 2740 Model I Auto Poll Two Types:
Communication Terminal X X X X 2740 with station control

2740 with station control and
record checking

Four Types:
2740 basic

X X X X X 2740 with station control
2740 with record checking
2740 with station control and
record checking

Four Typesl all with dial:
2740

X X X X X 2740 with transmit control
2740 with record checking
2740 with transmit control
and record checking

IBM 2740 Model 2 Auto Poll Four Types:
Communication Terminal 2740

2740 with record checking
X X X X 2740 with buffer receive

2740 without buffer receive
(requires line slowdown feature)

Four Types:
2740

X X X X X 2740 with record checking
2740 with buffer receive
2740 without buffer receive

IBM 2741 Communication The attention feature is not
Terminal supported, and the break

X X X X X X feature is supported only if the
CPU is sending and the terminal
has not entered data when the
break is issued.

Figure 37. Device Configurations Supported by TCAM (Part 2 of 3)

System Ptepariltion 363

Audio
Channel Type TCU Response Line Type

Unit

IBM 2701 IBM 2702 IBM 2703
Data Adapter Transmis$ion Tran$mission IBM7nO

Station Type Multiplexer Selector Unit Control Control Madel 3 Switched Nonswitehed Note$

IBM 2760 Optical Image X X Attached to a 2740 Model I
Unit with record checking

IBM2nO 0,1<1 X X X X X asc transmission using either
Communication System ASCII or EBCDIC code

IBM 2780 Dlta Transmis$ion X X X X X BSC tran$mi$sion using ASCII,
Terminal EBCDIC, or 6-bit code

IBM 1130 Computing Sy,tem X X X X X esc transmission

IBM System/360 Model 20 X X X X X BSC Transmission using either
ASCII or EBCDIC code

IBM Sy,tem/360 Model, 25 BSC transmission and point-to-
and above X X X X X point lines only

AT&T 83B3 Selective X X X X X
Calling Stations

Western Union Plan lISA
Outskltiom X X X X X

TWX Madel, 33 and 35 X X X X X Teletype terminals, dial
Utrvice (8-level code)

World T rode Tel egraph Control unit must incorporate
Terminals X X X X X aWTIA

Audio terminals X X X E><omple: IBM 2721 Por1<lble
Audio Terminal

Figure 37. Device Configurations Supported by TCAM (Part 3 of 3)

System Generation
Considerations

364

TCAM facilities can be incorporated into an operating system by performing an operating
system generation. This procedure is explained in the OS publication System Generation.

Using system generation macro instructions, the user specifies the line configuration and
device requirements of the telecommunications system being supported, and any optional
features required. TCAM is specified as an option in the ACSMETH= operand of the
DAT AMGT macro instruction.

The GENERATE macro instruction is modified for TCAM:

GENERATE: 1) A DD card will be punched for the SYSl.CQ548 component library
before group three macros are called so that the attention routine to handle 2260/2848
interrupts can be link edited into the nucleus. 2) A DD card will be punched for the
SYS1.CQ548 component library before the group five macros are called, so that modules
can be selected from it by SGIEC5TP. 3) SGIEC3TP and SGIEC5TP will be called if
QTAM, BTAM, or TCAM is specified.

IODEVICE and IOCONTRL: TCAM will support the 7770 Model 3 and 2845/2701.

There are four types of System Generation; three of these affect the DATAMGT macro
and therefore TCAM.

1. Complete Operating System Generation: ACSMETH=(TCAM) must be specified and
the TELCMLIB macro specified.

2. Nucleus Generation: ACSMETH= (TCAM) must be respecified so current SVCs are
retained when the nucleus is re-link edited. If TCAM is not respecified, it will not be
in the system generated by the nucleus generation. The TELCMLIB macro need not
be respecified, but must have been specified in the Complete Operating System
Generation.

3. Processor/Library Generation: No affect on TeAM.
4. I/O Device Generation: ACSMETH=(TCAM) must be respecified so current SVCs

are retained. The TELCMLIB macro need not be respecified but must have been
specified in the Complete Operating System Generation.

Preformatting DASD
Message Queues Data Sets

MFT users must allow enough SYSQUE space at SYSGEN time for attached subtasks -
180 bytes per ATTACH. The four attached subtasks are Checkpoint, Operator Control,
Comwrite, and On-Line Test. Checkpoint, Comwrite and On-Line Test are optional.
TCAM will ABEND if enough space is not allocated.

Since TCAM expects the disk message queues (both reusable and nonreusable) to be
totally preformatted, the IEDQXA routine should be used to perform this task prior to
initially running any TCAM job (TCAM automatically formats the disk message queues
for either a warm or a Gontinuation restart).

At SYSGEN time, this routine is moved from SYS1.CQS48 to SYS1.LINKLIB along with
other TCAM non-resident modules. As a utility program, it is executed in a separate step
from the step executing TCAM.

/ljobname
/lstepname
IISYSPRINT
llIEDQDATA
II
I I
I I
II

JOB
EXEC PGM=IEDQXA
DD SYSOUT=A
DD DSNAME=anyname,DISP=(,CATLG),

SP ACE=(CYL,(n,n)"CONTlG),
UNIT=(23xx,Y),
VOLUME=SER=(aaaaaa,bbbbbb, ...),
DCB=(,KEYLEN=mm)

Figure 38. Sample JCL for IEDQXA Utility

The variables in the figure are defined as follows:

anyname

User selects any name for the data set.

n

*
*
*
*

Since the number of cylinders must be the same for all extents, both primary and
secondary allocations must be identical. Allocation must be by cylinders.

xx

Anyone disk message queue must have all extents on one type of disk, either all on 2311
or on 2314 type disks.

y

The total number of volume serial numbers listed in VOLUME parameter.
Maximum is 16.

aaaaaa.bbbbbb •.•.

There is one extent per volume. List each volume serial number of each volume to
contain one extent of the data set. aaaaaa is the first extent, bbbbbb is the second, and
so on. A maximum of 16 volumes may be identified.

mm

System Preperation 365

366

Each record formatted contains a key and a data field. mm is the size of each key
portion of the record. Contrary to traditional usage of these fields, TCAM sets up a short
data field for internal control information and places the actual buffer data in the key
field. The data field size is an internally fixed constant (6 bytes), and the size of the key
field (i.e., mm) must be identical with the buffer unit size, as specified by the KEYLEN=
operand of the INTRO macro. Although the buffer unit in main storage contains an
internally generated 12-byte prefix, only the first six of these bytes are used to define the
data field on disk. (Guidelines for determining a suitable buffer unit size are contained
in the chapter Defining Buffers.)

There is no difference in the creation of reusable or nonreusable disk message queues.
The data set created by this routine may be used by TeAM as either one.

In addition to the desired data set, this routine lists a statement on the SYSPRINT data
set after the successful formatting of each extent. An accumulative record total is listed
for each extent. This data set contains any error messages or an indication of successful
completion.

Conventions Used

Appendix A. TCAM Macro Formats

A format illustration accompanies each macro instruction in this publication. The illus
trations indicate which operands must be coded exactly as shown, which are required,
which are variable, etc. The 'conventions stated to describe the operands are as follows:

1. Keyword operands are described by a three-part structure that consists of the
(uppercase) keyword operand, followed by an equal sign (both of which must be
coded), followed by a lowercase variable or an uppercase fixed value to be specified
by the user. Examples: KEYWORD=value, METHOD=NORMAL

2. Positional operands are described by a lowercase name, which is merely a convenient
reference to the operand and is never coded by the programmer, or by an uppercase
operand that is used exactly as shown. The programmer replaces the lowercase
operand by an allowable expression as defined in the macro description. Examples:
qtype, destname, mask, MESSAGE.

3. Uppercase letters and punctuation marks (except as described in these conventions)
represent information that must be coded exactly as shown.

4. Lowercase letters and terms represent information that must be supplied by the
programmer. Restrictions (such as the maximum value that may be specified) are
stated in the description of the operand.under the macro description.

5. An ellipsis (a comma followed by three periods) indicates that a variable number of
items may be included.

6. ! A t Options contained within braces represent alternatives, one of which is chosen
1 B ~ by the user when he codes the operand in which the braces appear.

7. [A] Information contained within brackets represents an option that can be included
B or omitted, depending on the requirements of the program. If more than one

alternative is included within a single set of brackets, either of the alternatives
may be chosen, or the operand may be omitted (i.e., none of the alternatives
are chosen). Operands that are not enclosed within brackets are required.

8 f!BJ Underlined elements represent an assumed value in the event a parameter is
LC omitted.

In describing and illustrating the coding of macro instructions, the following conventions
are used.

Register notation: Unless otherwise specified, a register (2 through 11) may be used.
The number of the register must be enclosed in parentheses.

Error Returns: Error return codes are returned in the right-hand byte of register IS.

Commas in Operand Field: Sometimes two optional keyword operands are listed, such
as [A] [,B]. The comma is to be omitted if A is omitted. The comma must not be
omitted for positional operands that are specified in another way.

Blanks in Operand Field: No blanks are allowed within the operand field.

Appendix A: Macro Formats 367

Appendix B: Message Error Record

A five-byte message error record is assigned by TCAM to each message for the duration
of its processing by the incoming or outgoing group of a Message Handler; this message
error record may be checked by macros coded in the inmessage or outmessage subgroup
of that group. Each of the 40 bits of the message error record (except reserved bits) in
dicates the presence (when 1) or the absence (when 0) of a specific error condition that
has affected or may affect successful processing or transmission of the message. Some
of the errors that may be recorded in the message error record are transmission and
equipment errors (e.g., lost data, busout check), some are due to mistakes in entering
a message (e.g., wrong sequence number, invalid origin code), and some are due to a
shortage of system resources (e.g., insufficient number of buffers, insufficient space in a
main-storage-only message queues data set).

The TCAM user may code one or several error-handling macros in his Message Handler;
among these are CANCELMG, ERRORMSG, MSGGEN, REDIRECT, and HOLD.
CANCELMG may be coded in the inmessage subgroup only, while the others may be
coded in either the inmessage or the outmessage subgroup. These macros each have an
optional five-byte error-mask operand, which may be used to test the message error
record, so that the error-handling macro for which the mask is coded is executed only
if the errors specified in the mask have occurred. When error-handling macros are
coded in an inmessage subgroup, they test the message error record after the message
is received from a station or application program; in the outmessage subgroup they test
the message error record after the message is sent to a station or application program.

The last byte of the message error record consists of the sense byte for the I/O device
(in this case, the transmission control unit being used). When the unit check bit is turned
on in the CSW during an I/O operation, a sense command is issued by TCAM, and the
appropriate bits in the sense byte are turned on. The CSW and the sense command are
described in the Principles of Operation. A detailed discussion of the meaning of each bit
in the sense byte may be found in the component description SRL for the transmission
control unit being used.

The meaning of each bit in the message error record is shown below. Bit 0 is the left
most bit and Bit 39 the right-most bit in each error record.

Bit Meaning

o Header error

The scan pointer has reached the end of the last segment in the message,
but the end of the inheader or outheader subgroup has not been reached.

Invalid origin code

The ORIGIN macro found that the origin field in the incoming header con
tained a code that:

a. did not correspond to the name of a station that was connected to the
computer over a nonswitched line, or

b. did not correspond to any station name in any group (applicable only to
stations on switched lined).

2 reserved

3 Sequence number high or not a valid number

The SEQUENCE macro found a message sequence number that is not a
valid decimal integer or is higher than the expected number for the next
message originating from the station. When this error is detected, the ex
pected sequence number is not changed. If the message is not canceled by
the user, the same sequence number may appear in more than one message.

Appendix B: Message Error Record 369

370

Bit Meaning

4 Sequence number low

The SEQUENCE macro found a message sequence number lower than the
expected number for the next message originating from the station. The
user may inadvertently use the same message number in more than one
message. This bit can be used to detect such an error, thus allowing the
user to re-send the corrected message.

5 reserved

6 Insufficient buffers

The TCAM buffer assignment routine was unable to provide sufficient
buffers for the incoming message. Infrequent occurrences of this condition
may be corrected by requesting the originating station to re-send the mes
sage. Frequent occurrences of this condition suggest that TCAM be rede
fined with a larger number of buffers.

7 Cutoff error

The CUTOFF macro found a buffer filled with identical characters or a
message whose length exceeded the maximum allowable length.

8 MSMIN passed

The percentage of the number of units specified by the MSUNITS=
operand of the INTRO macro that are currently enqueued in the main
storage message queues data set has fallen to or below the number specified
by the MSMIN= operand of INTRO; used to indicate impending failure of
the data set. .

9 MSMAX passed

The percentage of the number of units specified by the MSUNITS=
operand of the INTRO macro that are currently enqueued in the main
storage message queues data set has risen to or above the number specified
by the MSMAX= operand of INTRO; used to indicate impending fullness
of the data set.

10 reserved

11 reserved

12 reserved

13 TOTE not in system

A request for on-line test has been detected by a STARTMH macro, but
TOTE is not included in the OLT= operand of the INTRO macro
instruction.

14 BSC abort

An abort sequence was received from a BSC station.

15 Invalid destination code

A destination specified in the FORWARD macro is invalid because it does
not have a matching entry in the terminal table~

16 Incoming message lost

An incoming message has been lost due to lack of space in a main-storage
only message queues data set.

Bit Meaning

17 Invalid station identification

An identification sequence sent from a station is invalid.

18 Station inoperative

The destination station for this message is in intercept mode, and messages
are not currently being sent to it.

19 reserved

20 User error

This bit may be set by the user to indicate a logical error condition of his
choosing. The bit is set by means of a TERRSET macro issued in a
Message Handler.

21 Format error

Message from BSC station is in wrong format for BSC (for instance, text
does not start with the required STX character).

22 reserved

23 Unit exception

The unit exception bit is on in the CSW, indicating the presence of a condi
tion that does not usually occur during an I/O operation.

24 Error during invitation or selection

An error occurred during invitation or selection (before text transfer).

25 Error during text transfer

An error occurred during transfer of data.

26 Error during connection or disconnection

An error occurred before invitation or selection, .or while attempting to
disconnect.

27 reserved

28 reserved

29 Error in cOfJtrol unit

A busout, equipment check, overrun, or similar error, recognized by the
control unit as an error in the control unit, has occurred.

30 Error in channel

A channel control check, interface control check, channel data check, or
command reject has occurred.

31 Undefined error

An error has occurred that cannot be classified by TCAM.

Appendix B: Message Error Record 371

372

SENSE BYTE

Bit Meaning

32 Command reject

A command or a series of commands is received that the device is not de
signed to execute or cannot execute because of its present state.

33 Intervention required

Some sort of intervention is required, or the device is in the not-ready
state, or in test mode, or not on the control unit.

34 Busout check

An invalid parity character is received by the device or control unit.

35 Equipment check

The device has malfunctioned.

36 Data check

An error has occurred associated with the recording medium.

37 Overrun

The channel failed to respond on time to a request for service from a device,
or a device received a new command too late during command chaining.

38 Lost data

39 Time-out exceeded

More than the maximum allowable time elapsed between polling or address
ing a station and reception of a response from it.

Appendix C: How To Make Transient Checkpoint and Operator Control
Modules Resident

Certain TCAM modules connected with the TCAM checkpoint and operator control
facilities are normally transient, but may be made resident if the user so desires. By
making frequently used modules resident, the user increases the performance of his
system, at the expense of additional main-storage space.

The TCAM checkpoint and operator control modules that may be made resident are
located in SYS1.LINKLIB. In order to make these modules resident, the user must
first specify at system-generation time the Reenterable Load Module Made Resident
option. This is done by specifying the OPTIONS=COMM and RESIDNT=RENTCODE
operands of the SUPRVSOR system generation macro; details are given in the System
Generation publication.

Before initial program loading (IPL), the user makes a list of the load modules he wishes
to make resident and places it in SYS1.PARMLIB by means of the IEBUPDTE utility
program. For more information on placing such a list in SYSl.PARMLIB, see the
System Programmer's Guide.

At IPL time, in response to the console message SPECIFY SYSTEM PARAMETERS,
the operator provides the unique identification for the list, and the routines pointed to
by the list are loaded into main storage. More information on replying to this message
is contained in the Messages and Codes publication.

The following checklists show,

a. in order of decreasing frequency of use, the ordinarily transient modules associated
with TCAM checkpoint routines that may be made resident as described above;

b. ordinarily transient modules associated with operator commands that may be made
resident. Some operator commands have more than one such module associated
with them.

Example:
An MVT user wishes to make the routines for the ENTERING, ACTVBOTH,
ACTVATED, NOENTRNG, and NOTRAFIC operator commands resident. At system
generation time the user must code the RESIDNT= operand of the SUPRVSOR macro
RESIDNT=RENTCODE, and the OPTIONS= operand of the same macro
OPTIONS=COMM.

The user might create a list named IEAIGGOC to contain the modules for these mes
sages. He would get the modules from the checklist of modules and their sizes. Some
time before IPL, he might use the IEBUPDTE utility program as shown in the example
of using the IEBUPDTE utility to place the list in SYS I.P ARM LIB.

ffADDLIST
/I STEP
//SYSPRINT
//SYSUT2
//SYSIN
./
.f
jtSYS I.LINKLIB
./
/*

JOB
EXEC
DD
DD
DD
ADD
NUMBER

ENDUP

1865,R.E.LEE
PGM=IEBUPDTE,P ARM=NEW
SYSOUT=A
DSNAME=SYS I.P ARMLIB,DISP=OLD
DATA
NAME=IEAIGGOC,LIST=ALL
NEWI=OI,INCR=02
IEDQCO,IEDQCL

Figure 39. Sample of Using the IEBUPDTE Utility (prior to IPL) for Placing a List in

SYS1.PARMLIB

Note that the statement beginning SYS I.LINKLIB begins in column 2.

Appendix C: Making Modules Resident 373

374

At IPL time, in response to the console message

IEAIOIA SPECIFY SYSTEM PARAMETERS

the operator might reply

REPLY id, 'RAM=OO,OC'

where 00 are the last two characters in the name of the standard list of names of re
enterable load modules, and OC are the last two characters in the name of the
IEAIGGOC list.

Checkpoint Modules and Their Sizes

Decimal Size
Module Description Approximate

IEDQNG Incident Record for CHECKPT 250 bytes
IEDQNH Incident Record for TCHNG 240 bytes
IEDQNJ Checkpoint/ Operator Control 240 bytes
IEDQNK Environment Checkpoint 800 bytes
IEDQNM CKREQ 390 bytes
IEDQNO Checkpoint Queue Manager 240 bytes
IEDQNP Checkpoint I/O 640 bytes
IEDQNQ Checkpoint Notification/

Disposition 730 bytes
IEDQNR No Main Storage 260 bytes
IEDQNS Incident Overflow 160 bytes

Modules Associated with Operator Commands
Decimal Size

Message Modules Used Approximate

ACTVATED IEDQCL 1110 bytes
ACTVBOTH IEDQCO 1510 bytes
AUTOSTOP IEDQCW 890 bytes
AUTOSTRT IEDQCW 890 bytes
CPRIOPCL IEDQCN 530 bytes
DATOPFLD IEDQCF 2270 bytes
DEBUG IEDQC6 1370 bytes
DPRIOPCL IEDQCM 550 bytes
DSECOPCL IEDQCM 550 bytes
ENTERING IEDQCO 1510 bytes
ERRECORD IEDQCX 803 bytes
GOTRACE IEDQCP 870 bytes
INACTVTD IEDQCL 1110 bytes
INTERVAL IEDQCZ 940 bytes
INTRCEPT IEDQCK 510 bytes
LNSTATUS IEDQCI 1070 bytes

, NOENTRNG IEDQCO 1510 bytes
NOT RACE IEDQCP 870 bytes
NOTRAFIC IEDQCO 1510 bytes
OPTFIELD IEDQCF 2270 bytes
POLLDLAY IEDQCZ 940 bytes
QSTATUS IEDQCJ 680 bytes
RESMXMIT IEDQCQ 1170 bytes
RLNSTATN IEDQCG 510 bytes
STATDISP IEDQC3 60 bytes
STARTLINE IEDQCU 1720 bytes
STOPLINE IEDQCV 1230 bytes
STSTATUS IEDQCH 700 bytes
SUSPXMIT IEDQCQ 1170 bytes
SYSCLOSE IEDQCO

IEDQCV 1230 bytes
SYSINTVL ,IEDQCZ 940 bytes

Arrangement of Charts

Conventions Used I n Code
Charts

Appendix 0: Internal and Transmission Code Charts

Two sets of charts are included in this appendix. Figure 40 comprises four foldout
charts that include character sets and hexadecimal code for the extended binary coded
decimal interchange code (EBCDIC), line codes for BSC devices (USASCII and 6-bit
Transcode hexadecimal representations that correspond to EBCDIC), and line codes for
start-stop devices (hexadecimal representations that correspond to EBCDIC). Figures
41 through SS compose the second set of code charts; these figures illustrate in collating
sequence (from hexadecimal 00 to hexadecimal FF) the valid hexadecimal representa
tions ot graphic and control characters for each device.

The first set of charts (Figure 40) is based on the collating sequence of the EBCDIC
code that is used internally by the Operating System/360 Central Processing Unit (see
column 3). Line code for BSC devices may be in either EBCDIC, USASCII, or 6-bit
Transcode (columns 1 through 9). Columns 10 through 45 represent the character and
code sets for start-stop devices that correspond to the internal EBCDIC code listed in
column 3.

There are three columns associated with each entry in Figure 40. For instance, columns
1,2, and 3 are associated with the EBCDIC entry, and columns 10,11, and 12 are as
sociated with the IBM 1030 entry. The unnumbered columns on the left and right ends
of Figure 40 are reference numbers to designate rows. These numbers can be used in
conjunction with the column numbers to designate a particular entry on the chart; for
instance, location 21/17, the intersection of row 21 and column 17, contains the control
character CR (carriage return) for the IBM 1060 Data Communication System. For
ease of reference, column 46 repeats the EBCDIC code that appears in column 3.

The arrangement of the charts in Figures 41 through 55 is based on the collating· se
quence of the hexadecimal representations of the line code for the various devices.

Thus, columns 1 through 13 in Figure 40 (in conjunction with the columns that cor
respond to the device that originally entered the message) may be used for decoding
messages in a dump when those messages have already been translated by the appropri
ate translation table; if a message was entered by a BSC device whose line code is
EBCDIC, then columns 1 through 3 may be used for line code translation and internal
Systern/360 translation. Figures 41 through 55 may be used to decode messages in a
dump when the message appears in line code (incoming messages are in line code when
they have not yet been translated to EBCDIC, and outgoing messages are in line code
when they have been translated from EBCDIC).

In the code columns for the various devices in Figure 40, some hexadecimal representa
tions appear in parentheses, some in brackets, and others in neither. Where paren
theses are used, only outgoing translation is performed by the translation table that
corresponds to the device type for that column. For example, the alphabetical letter
W in internal OS/360 code (EBCDIC) is represented by the bit pattern that corresponds
to a hexadecimal E6 (see locations 230/1 and 230/3). If hexadecimal E6 is to be
transmitted to an IBM 1060 Data Communication System, it must first be translated to
the appropriate line code. The character is directed to the appropriate translation table
where it is converted to hexadecimal 2C (see locations 230/16 and 239/18), which is
the hexadecimal representation of the appropriate line code for the character W to be
transmitted to an IBM 1060. Where the hexadecimal representation is enclosed in
brackets (for instance, location 127/30), only incoming translation is performed; thus,
hexadecima18E is translated to EBCDIC 7F when an IBM 2741 Communication
Terminal using BCD code enters line code for the character double quote (see locations
127/3, 127/28, and 127/30). If there are neither parentheses nor brackets, both in
coming and outgoing translation is provided for that device.

Various code set options are indicated in the graphic columns in Figure 40 and 41
through 55. Where S, H, A, and C appear as subscripts to a character, S indicates that
the TCAM-provided translation table supports use of the standard code set for that
device; H, A, and C indicate TCAM support.of optional code sets for that device. For
instance, at location 2/12, hexadecimal 16 is the outgoing line code to an IBM 1030

Appendix 0: Code Charts 375

Non-equivalent Characters

Substitutions

376

Data Collection System; the graphic characters at location 2/10 indicate that a pound
sign (#) is printed by the IBM 1033 Printer if the printer uses the standard character
set, and an equal sign (=) if it uses the H option. See the component description SRL
of the device for a description of the character sets that may be used (TCAM supplies
translation tables for AT&T TWX terminals that use the standard option, and for AT&T
83B3 and Western Union II SA terminals that use either A or C options).

Because each unique bit pattern for a terminal character can be represented only once
in an incoming translation table, the character associated with the bit pattern can be
translated to only one EBCDIC character. The converse is not true, however; anyone
transmission code bit pattern can be placed any number of times within an outgoing
table. Therefore, any number of EBCDIC characters can be translated to the terminal
character represented by that bit pattern.

Appearance of two bit patterns opposite a single character signifies that the character
has both an uppercase (or figures shift) and a lowercase (or letters shift) bit pattern, and
that both forms of the character are translated to the same EBCDIC character. (Excep
tion: In the code column for TWX terminals, where two bit patterns appear, the left
hand one is the even-parity pattern, and the right-hand one is the non-parity pattern.)

Example:
The bit pattern of the NL character appears in location 21/1 S. Both the lowercase and
uppercase bit patterns of this character are translated to the EBCDIC NL character when
they appear in an incoming message. When an EBCDIC NL character appears in an out
going message, TCAM translates it to the lowercase form of the NL character.

Where more than one EBCDIC character requires translation to the same character in a
terminal character set, the terminal character appears an equivalent number of time in
the column (for instance, locations 0/35,6/35, 7/35, 23/35, and 50/35 all contain the
LTRS character).

Where a character appears in both the graphics and the controls columns for a terminal
type, its function depends on whether it is sent when the line is in control mode or text
mode. Depending on the type of terminal and the mode, the character may perform a
control function, print as a graphic, or both. For details, see the reference manuals for
the various terminal types.

Designing the system to accommodate terminal types having different character sets
and control functions has resulted in several instances where dissimilar characters have
been equated in translation tables. This accounts for the appearance in certain rows in
Figure 40 of non-equivalent characters, for example, in rows 3, 38, and so.

In other instances, the same or similar functions have different names among the various
terminal types; for example, HT and Tab in row 5 are equivalent, as are DEL and Rubout
in row 7. In a few instances, terminals using the same transmission code have different
meanings assigned to the identical bit pattern; for example, bit pattern 79 in the trans
mission code has the meaning PF for an IBM 1050, and Subtract for an IBM 1060.

Where blank positions appear in the character columns of the charts, there is no equiva
lent internal EBCDIC character. Where these blanks appear, the SUB character is to be
assumed (they were omitted to make the charts more readable). That is, in each trans
lation table that handles incoming messages, each position representing an invalid trans
mission code bit pattern (that is, one not specified in the terminal's character set) is
translated to the EBCDIC code 3F for the SUB character. In each translation table that
handles outgoing messages, the transmission code bit pattern for a substitute graphic is
contained in each of the following positions:

• Each position that represents an invalid EBCDIC bit pattern (a pattern to which no
EBCDIC characters have been assigned),

• Each position that represents a bit pattern for a character having no equivalent in the
destination terminal's character set.

For the IBM 1050,2260,2740, and 2741, this substitute character is a colon (:). For
the IBM 1030 and 1060, and the AT&T TWX and 83B3, and the Western Union lISA,
it is a slash (f).

General Notes

Control Characters

Standard abbreviations are used to represent the control characters. The full names of
the characters are given in the section Control Characters below. For descriptions of
these characters, see the reference manuals for the various terminals.

Where a circle character (®; @, etc.) appears in parentheses adjacent to a control
character, it is an alternate name for the control character.

Most of the characters in the S and H character set options (1030) and in the A and C
character set options (83B3, liSA) are identical. Where they differ between the options,
the translation tables favor the S option and the A option, as illustrated in the charts.
If messages from an H option 1030 are sent only to another H option 1030, the trans
lation table may be used as is, and similarly, for the 83B3/IISA, with respect to the C
option. If messages from terminals with the H or C option are to be exchanged with
other terminal types, the user should provide his own translation tables.

ACK Positive Acknowledgment

® End-of-block (same as
EOB)

BEL Bell
BS Backspace

© Bypass
End-of-
transmission (same as
(EOT)

CAN Cancel
CC Cursor control
CR Carriage (carrier) return

CUl! CU2 Reserved for customer use

~ Machine end-of-address
(same as EOA)

DCI! DC2 Device link escape
DC4
DEL Delete
DLE Data link escape
DS Digit select
EM End of medium
ENQ Enquiry
EOA End-of-address
EOB End-of-block
EOC End of card
EOFC End of first card
EOM End-of-message
EOT End-of-transmission
ETB End-transmission-block
ETX End-of-text
FF Forms feed
FIGS Figures shift
FS Field separator
HT Horizontal tabulate
IFS Interchange file separator
IGS Interchange group separator
IL Idle
IRS Interchange record

separator
IUS Interchange unit separator

Appendix 0: Code Charts 371

378

LC
LF
LF-CR
LTRS

~
NAK
NL
NUL
PF
PN
PRE
PZ
RES
RM

~
SM
SMI
SO
SOH
SMM
SOS
SP
STX
SUB
SYN
Tab
TM
TpAuxOff
TpAuxOn
UC
VT
WRU
X-Off

?y)n

Lowercase shift
Line feed
Line feed-carriage return
Letters shift
Minus zero
Negative response to
polling, addressing, or
LRC/VRC
Negative acknowledgment
New line
Null
Punch off
Punch on
Prefix
Plus zero
Restore
Record mark
Reader stop
Start-of-address
Shift in
Set mode
Start manual input
Shift out
Start-of-header
Start-manual-message
Start-of-significance
Space
Start-of-text
Substitute
Synchronous idle
Tabulate (horizontal)
Tape mark
Tape auxiliary off
Tape auxiliary on
Uppercase shift
Vertical tabulate
'Who Are You?'
Transmitter off
Transmitter on
Positive response to
polling, addressing, or
LRC/VRC

S/36O Graphic ConlTol
Byte (hex)

5/360 Graphic Control
Byte (hex)

S/360 Graphic Control
8yte (hex)

S/36O Graphic Control
8yte (hex)

00 NUL 40 SP 80 CO PZ
01 SOH 41 81 0 CI A
02 STX 42 82 b C2 8
03 ETX 43 83 c C3 C

04 PF 44 84 d C4 0
OS HT 45 85 e C5 E
06 LC 46 86 f C6 F
rn DEL 47 87 9 C7 G

08 48 88 h C8 H
rR 49 89 i C9 I
OA SMM 4A 4 SA CA
OB VT 48 8B C8

OC FF 4C < 8C CC
00 CR 40 (80 CO
OE SO 4E + 8E CE
OF 51 4F I 8F CF

10 OLE 50 & 90 00 MZ
11 OCI
12 OC2

51
52

91 i
92 k

01 J
D2 K

13 TM 53 93 I 03 L

14 RES 54 94 m 04 M
15 NL 55 95 n 05 N
16 BS 56 96 0 06 0
17 IL 57 97 p 07 P

18 CAN
19 EM

58
59

98 q
99 r

08 Q
09 R

lA CC SA ! 9A OA
lB CUI 58 $ 98 08

lC IFS 5C . 9C OC
10 IGS 50) 90 00
IE IRS 5E , 9E OE
IF IUS 5F -, 9F OF

20 OS 60 - AO EO RM
21 50S 61 / AI EI
22 FS 62 A2 , E2 S
23 63 A3 t E3 T

24 BYP 64 A4 u E4 U
25 LF 65 AS v E5 V
26 ETB(EOB) 66 A6 w E6 W
27 ESC (PRE) 67 A7 x E7 X

28 68 A8 y Ea Y
29 69 A9 z E9 Z
2A SM 6A EOM AA EA
2B CU2 6B , AB EB

2C 6C % AC EC
20 ENQ 60 AO EO
2E ACK 6E ;; AE EE
2F 8EL 6F ? AF EF

30 70 80 FO 0
31 71 81 FI I
32 SYN 72 B2 F2 2
33 73 83 F3 3

34 PN 74 84 F4 4
35 RS 75 85 F5 5
36 UC 76 86 F6 6
37 EOT n B7 F7 7

38 78 88 F8 8
39 79 89 F9 9
3A 7A 8A FA
3B CU3 7B

,
EOA 88 F8

3C DC4 7C @ 8C FC
30 NAK 70 BO FO
3E 7E = 8E FE
3F SUB 7F " 8F -f'F

Figure 41. IBM 5/360 Internal Code (EBCDIC)

Appendix 0: Code Charts 387

S/36O Graphic Centrol
Byte (he~)

S/36O Graphic Control
8yte (hex)

S/36O Graphic Control
Byte (hex)

5/360 Graphic Control
Byte (hex)

00 NUL 40 @ 80 CO
01 SOH 41 A 81 Cl
02 STX 42 JI 82 C2
03 ETX 43 C 83 C3

04 EOT 44 0 84 C4
OS ENQ 45 E 85 C5
06 ACK 46 F 86 C6
07 BEL 47 G 111 C7

OB BS 48 H 88 C8
09 HT 49 I 89 C9
OA LF 4A J SA CA
OB VT 4B K 88 CB

oC FF 4C L ac CC
00 CR 40 M SO CO
OE SO 4E N BE CE
OF SI 4F 0 8F CF

10 OLE 50 P 90 DO
11 DCl 51 Q 91 01
12 DC2 52 R 92 D2
13 DC3 53 S 93 03

14 DC4 54 T 94 D4
15 NAK 55 U 95 05
16 SYN 56 V 96 06
17 ETB 57 W '1l 07

18 CAN 58 X 98 DB
19 EM 59 Y 99 .• 09
lA SUB SA Z 9A OA
lB ESC 5B C 98 DB

lC FS 5C " 9C DC
10 GS 50 I 9D DO
IE RS 5E 9E DE
IF US SF 9F OF -
20 SP 60 [AO EO
21 I 61 a Al EJ
22 " 62 b A2 E2
23

,
63 c A3 E3

24 $ 64 d A4 E4
25 % 65 e AS E5
26 & 66 f A6 E6
27 . 67 9 A7 E7

28 (68 h AS E8
29) 69 i A9 .E9
2A . 6A i AA EA
28 + 6B k AB E8

2C , 6C I AC EC
20 - 60 m AD EO
2E 6E n AE EE
2F / 6F 0 AF EF

30 Q 70 P 80 FO
31 1 71 q Bl FJ
32 2 72 r B2 F2
33 3 73 • 83 F3

34 4 74 t 84 F4
35 5 75 u as F5
36 6 76 v B6 F6
37 7 77 w B7 F7

38 8 78 x B8 F8
39 9
3A :

79 y
7A z

B9
SA

F9
FA

38 ; 7B (BB FB

3C < 7C I BC FC
3D =
3E >
3F ?

70 l 7E
"'" 7F DEL

BO
BE
BF

FO
FE
FF

Figure 42. USASCII Code

388

Ref.

10
II

12
13
14
15

16
17
18
19

20
21
22
23

24
25
26
27

28
29
30
31

32
33
34
35

36
37
38
39

40
41
42
43

44
45
46
47

48
49
50
51

52
53
54
55

56
57
58
59

60
61
62
63

64
65
66
67

68
69
70
71

eF
HI
lC
DEL

SMM
VT

FF
C,
SO
51

OLE
DCI
DC2
TM

RES
Nl
BS
Il

CAN
EM
CC
CUI

IFS
IGS
IRS
IUS

OS
50S
FS

SM
CU2

ENQ
ACK
BEL

SYN

eN
RS
UC
EOT

CU3

DC4
NAK

SU8

se

Figure 40. TCAM Internal;and Device Codes (Part 1 of 4)

*C9 and 21 are volid EOT character~
for both even parity and non,parity
tronsmi~sion.

3C
3D
3E
3F

40
41

42
43

8
9

10
II

12
13
14
15

16
17
18
19

20
21
22
23

24
25
26
27

28
29
30
31

32
33
34
35

36
37
38
39

40
41
42
43

44
45
46
47

48
49
50
51

52
53
54
55

56
57
58
59

60
61
62
63

64
65
66
67

68
69
70
71

Appendix D: Code Charts 379

Ref.

72 72

73 49 73

74 • SMI 4A 74

75 48 75

76 < < (A 1/2e <
77 (((

78 + + +

79

80 & & & &

81
82
83

84 54 84

85 55 85

86 56 86

87 57 87

88 58 88

89 2A 1/4e
59 89

90 5A 90

91 $ 58 91

92) 3/4
92

93 ;: 3/8~ 93

94 94

95 95

96 96

97 / / / / / / / / /
98
99

100
101
102 102

103 103

104 68 104

105 69 105

106 EOM - EOM 7/8 6A 106

107 ® ® ' A e 68 107

108 % % % % % % 6C 108

109 CEll 6D 109

110 > > > > > 0 > 6E 110

111 ? ? ? ? ?A 5/8e ? 6F 111

112 70 112

113 71 113

114 72 114

115 73 115

116 74 116

117 75 117

118 76 118

119 77 119

120 [
121

'A 1/8e 122 C,

123 EOA

124 @ @ @ @ @ @
125 '. Belle
126
127 EOA

128 80 128

129 0 A A A A A A A A 81 129

130 b 8 8 8 8 8 8 8 8 82 130

131 C C C C C C C C 83 131

132 D D D 84 132

133 E E E 85 133

134 F F F 86 134

135 G G G 87 135

136 H H H 88 136

137 I I I 89 137

138 8A 138

139 88 139

~- 140 8C 140 ,
141 8D 141

142 8E 142

143 8F 143

Figure 40. TCAM Internal and Device Codes (Part 2 of 4) Appendix D: Code Charts 381

Ref.

144
145
146
147

148
149
150
151

152
153
154
155

156
157
158
159

160
161
162
163

164
165
166
167

168
169
170
171

172
173
174
175

176
177
178
179

180
181
182
183

184
185
186
187

188
189
190
191

192
193
194
-195

196
197
198
199

200
201
202
203

204
205
206
207

208
209
210
211

212
213
214
215

A
B
C

0
E
F
G

J
K
l

M
N
0
P

PZ

MZ

{
A
B
C

0
E
F
G

2. No EBCDIC character hus been assigned to
this locution (161/3,161/4).

Figure 40 .. TCAM Internal and Device Codes (Part 3 of 4)

PZ Restore

M
N N
0 0
P P

A
B
C

0
E
F
G

K
l

M
N
0

K
l

M
N
o
P

Q

v
w
x

y

z

A
B
C

0
E
f
G

H

J
K
l

M
N
0
P

'" 145
146
147

148
149
150
1)1

152
ij3

154

155

156
'57
58

159

160
16 '
162
163

164
165
166
167

168
169
170
171

172
173
174
175

176
177

7R
179

i so
;81
'82
• 83

184
185
186
187

188
189
190
191

192
193
194
195

196
197
i98
199

200
201
202
203

204
205
206
207

208
209
210
211

212
213
214
215

Appendix D: Code Charts 383

Ref. Ref.

Q Q
216 Q Q 216
217 R R R R D9 217
218 DA 218
219 DB 219

220 DC 220
221 DD 221
222 DE 222
223 DF 223

224 RM RM EO 224
225 \ E1 225
226 S E2 226
227 T E3 227

228 U U U U U U U U E4 228
229 V V V V V V V V E5 229
230 W W W W W w w W E6 230
231 X X X X X X X X E7 231

232 Y Y y Y Y Y Y Y Y E8 232
233 Z Z Z Z Z Z Z Z Z E9 233
234 EA 234
235 [B 235

236 EC 236
237 ED 237
238 EE 238
239 EF 239

240 04 FO 240
241 1 F1 241
242 2 F2 242
243 3 F3 243

244 4 4 4 4 F4 244
245 5 5 5 5 F5 245
246 6 6 6 6 F6 246
247 7 7 7 7 F7 247

248 F8 248
249 F9 249
250 FA 250
251 FB 251

252 FC 252
253 FD 253
254 FE 254
255 FF 255

3. No EBCDIC character has been
assigned to this location (225/3,225/37),

Figure 40. TCAM Internal and Device Codes (Part 4 of 4)

Appendix D: Code Charts 385

5/360 Graphic Control 5/360 Graphic Cont",1 5/360 Graphic Control 5/360 Graphic Control
Byte (hex) Byte (hex) Byte (hex) Byte (hex)

00 SOH 40 80 CO
01 A 41 81 Cl
02 B 42 82 C2
03 C 43 83 C3

04 0 44 84 C4
05 E 45 B5 C5
06 F 46 86 C6
(J7 G 47 87 C7

08 H 4B 88 C8
09 1 49 89 C9
OA STX 4A SA CA
08 4B 8B CB

OC tl 4C BC CC
00 BEL 40 80 CO
OE SUB 4E 8E CE
OF ETB 4F 8F CF

10 & 50 90 DO
11 J 51 91 01
12 K 52 92 02
13 L 53 93 03

14 M 54 94 04
15 N 55 95 05
16 0 56 96 06
17 P 57 97 07

18 Q 58 98 08
19 R 59 99 09
IA SP SA 9A OA
lB $ 5B 9B DB

lC . 5C 9C DC
10 US 50 90 DO
IE EOT 5E 9E DE
IF OLE 5F 9F OF

20 - 60 AO EO
21 / 61 Al El
22 S 62 A2 E2
23 T 63 A3 E3

24 U 64 A4 E4
25 V 65 AS E5
26 W 66 A6 E6
27 X 67 A7 E7

28 Y 68 A8 E8
29 Z 69 A9 E9
2A E5C 6A AA EA
28 6B AB EB

2C % 6C AC EC
20 ENQ 60 AD ED
2E ETX 6E AE EE
2F HT 6F AF EF

30 0 70 BO FO
31 1 71 Bl Fl
32 2 72 82 F2
33 3 73 B3 F3

34 4 74 84 F4
35 5 75 85 F5
36 6 76 86 F6
37 7 77 B7 F7

38 8 78 B8 F8
39 9 79 B9 F9
3A 5YN 7A SA FA
3B

,
7B BB FB

3C @ 7C BC FC
3D NAK 70 BO FO
3E EM 7E BE FE
3F DEL 7F BF FF

Figure 43. Hexadecimal Equivalents for 6-bit Transcode

Appendix D: Code Charts 389

5/360 Graphic Control
Byte (hex)

5/360 Graphic Control
Byte (hex)

5/360 Graphic Control
Byte (hex)

S/36O Graphic Control
Byte (hex)

00
01 5P

40 - @
41

80
81

CO
Cl

02 1 42 82 C2
03 43 J 83 C3

04 2 44 84 C4
OS 45 K 85 C5
06 46 L 86 C6
07 3 47 87 C7

08 4 48 88 C8
09 49 .M 89 C9
OA 4A N SA CA
OB 5 4B 88 C8

OC 4C 0 8C CC
00 6 40 80 CO
OE 7 4E 8E CE
OF 4F P 8F CF

10 8 50 90 DO
11 51 Q 91 01
12 52 92 02
13 9 53 R 93 03

14 01 @ 54 94 04
15 55 95 05
16 's ~H EOA 56 96 D6
17 57 $ 97 07

18 58 98 08
19 59 99 09
lA 5A 9A OA
lB 5B LF-CR 98 DB

lC 5C 9C DC
10 50 90 DO
IE 5E 9E DE
IF EOT 5F 9F OF

20 0 lH
21 s

22

60
61 &, +H
62 A

AO
Al
A2

EO
El
E2

23 / 63 A3 E3

24 64 8 A4 E4
25 5 65 A5 E5
26 T 66 A6 E6
27 67 C A7 E7

28 68 0 A8 E8
29 U 69 A9 E9
2A V 6A M EA
28 68 E A8 E8

2C W 6C AC EC
20 60 F AD ED
2E 6E G AE EE
2F X 6F AF EF

30 70 H BO FO
31 Y 71 Bl Fl
32 Z 72 B2 F2
33 73 I B3 F3

34
35
36

® 37 ,

74
75 <V EOFC 76
77

B4
B5
B6
B7

F4
F5
F6
F7

38 78 88 F8
39 79 B9 F9
3A 7A HT SA FA
3B LF 7B BB F8

3C 7C BC FC
3D EOB 70 BO FO
3E 7E BE FE
3F 7F EOC DEL BF FF

Note 1: The IBM 1031 Input Station transmits the numeric 0 as an A bit only; the IBM 1033 Printer receives a numeric 0 as C-8-2 and an @as an A bit.

Note 2: The IBM 1031' Input Station cannot transmit the following characters as dolo: % •• @ I< (an EOFC is transmitted and punched by the IBM 1034 Cord Punch).

Figure 44. Line Code for IBM 1030 Data Collection System

390

5/360 Graphic Control
Byte (hex)

5/360 Graphic Control
Byt. (hex)

5/360 Graphic Control
Byte (hex)

5/360 GraphIc Control
Byt. (hex)

()()

01 5P
40 - <ED
41

80
81 5P

CO - @
CI

oi I 42 82 = C2
03 43 I 83 C3 J

04 2
OS

44
45 k

84 < 85
C4
C5 K

06 46 I 86 C6 L
(J1 3 47 87 ; C7

OB 4 48 88 : C8
09 49 m 89 C9 M
OA 4A n SA CA N
OB 5 4B 88 % CB

OC 4C 0 8C CC 0
00 6 40 80 · CO
OE 7
OF

4E
4F p

8E >
8F

CE
CF P

10 B 50 90 · DO
11 51 q 91 01 Q
12 52 r 92 02 R -
13 9 53 93 (03

14 54 MZ 94 D4
15 0 55 95) 05
16 # EOA 56 96 .. EOA 06
17 57 $ 97 07 I

18 58 RE5 98 08 RES
19 PN 59 99 PN 09
IA R5 SA 9A RS OA
IB 5B NL 98 DB NL

IC Up.hift
ID

5C
50 BS

9C Upshift
90

DC
DO BS

IE 5E IL 9E DE IL
IF EOT SF 9F OF

20 @ 60 AD • EO
21 61 & AI EI +
22 62 a A2 E2 A
23 / 63 A3 ? E3

24 64 b A4 £4 B
25 • 65 AS 5 E5
26 t 66 A6 T E6
27 67 c A7 E7 C

28 68 d A8 E8 0
29 u 69 A9 U E9
2A v 6A AA V EA
2B 68 • A8 EB E

2C w 6C AC W EC
20 60 f AD ED F
2E 6E 9 AE EE G
2F x - 6F AF X EF

30 70 h 80 FO H
31 y
32 z

71
72

81 Y
82 Z

Fl
F2

33 73 i 83 F3 I

34 • RM 74 84 F4
35
36

75 PZ
76 <Y)

85
86

F5
(0 F6 -,

37 , 77 87 I F7

38 BVP 78 88 8YP F8
39 79 PF 89 F9 PF
3A 7A TA8 SA FA TAB
3B LF 7B 88 LF FB

3C 7C Dwnshft BC FC Dwnshft
30 EOB 70 BO EOB FO
3E PRE 7E BE PRE FE
3F 7F OEL BF FF DEL

Figure 45. Line Code for IBM 1050 Data Communication System

Appendix D: Code Charts 391

5/360 Graphic Control 5/360 Graphic Control 5/360 Graphic Control 5/360 Graphic Control
Byte (hex) Byte (hex) Byte (hex) Byte (hex)

00
01 SP

40 - ®
41

80
81

CO
CI

02 I 42 82 C2
03 43 J 83 C3

04 2 44 B4 C4
OS 45 K as C5
06 46 l 86 C6
(Jl 3 47 B7 C7

08 4 48 BB C8
09 49 M 89 C9
OA 4A N SA CA
08 5 4B 8B CB

DC 4C 0 8C CC
00 6 40 80 CO
DE 7 4E BE CE
OF 4F P 8F CF

10 8 50 90 DO
11 51 Q 91 01
12 52 R 92 D2
13 9 53 93 03

14 54 Message 94 D4
IS 0 55 95 05
16

,
EOA 56 96 D6

17 57 $ 97 07

18 58 . 98 08
19 59 99 09
IA SA 9A OA
IB 5B CR 9B DB

IC 5C 9C DC
10 50 90 DO
IE 5E Il 9E DE
IF EOT 5F 9F OF

20 Add 60 AD EO
21 61 + Al EI
22 62 A A2 E2
23 / 63 A3 E3

24 64 B A4 E4
25 5 65 AS E5
26 T 66 A6 E6
27 67 C A7 E7

28 68 0 A8 E8
29 U 69 A9 E9
2A V 6A AA EA
2B 68 E AB- E8

2C W 6C AC EC
20 60 F AD ED
2E 6E G AE EE
2F X 6F AF EF

30 70 H BO FO
31 Y 71 BI FI
32 Z 72 B2 F2
33 73 I B3 F3

34 74 B4 F4
35
36

75 Re~e
76

as
86

F5
F6

37 . 77 B7 F7

3B 78 B8 F8
39 79 Subtr B9 F9
3A 7A Tab SA FA
3B IF 7B 8B F8 .-
3C 7C BC FC
3D EOB 70 BO FO
3E 7E BE FE
3F 7F DEL BF FF

Figure 46. Line Code for IBM 1060 Data Communication System

392

S/36O Byte 2260/2265 1053
(hex) Graphic Control Graphic Control

S/36O Byte 2260/2265 1053
(hex) Graphic Control Graphic Control

00 40 SP SP
01
02 STX STX

41 - EOM I
42 • CHECK ·

03 ETX ETX 43
, ,

04 EOT EOT 44 $ $
05 45 % %
06 ACK ACK 46 & &
07 47 , ,

08 48 ((
09
OA .. NL NL

49))
4A . · OB 4B + +

OC 4C · 00 40 - -
OE
OF

4E
i 4F /

10 50 0 0
II ,$1 I 1
12 ,$2 2 2
13 53 3. 3

14 ,$4 4 4
15 NAK NAK 5,$ 5 ,$
16 56 6 6
17 57 7 7

18 CAN 58 8 8
19 59 9 9
lA 5A : :
lB , 5B ; ;

IC SC < <
10 SO = =
IE SE > >
IF SF ? ?

20 60
21 61
22 62
23 63

24 64
25 65
26 66
27 67

28 68
29 69
2A 6A
2B 6B

2C 6C
20 60
2E 6E
2F 6F

30 70
31 71
32 72
33 73

34 74
35 75
36 76
37 77

38 78
39 79
3A 7A
3B 7B

3C 7C
30 70
3E 7E
3F 7F

Figure 47. Line Codes for IBM 2260 (Remote)/2265 Display Complexes and IBM 1053 Printer (Part 1 of 2)

Appendix D: Code Charts 393

5/360 Byte 2260/2265 1053 5/360 Byte 2260/2265 1053
{hex) Graphic Control Graphic Control (hex) Graphic Control Graphic Control

80 CO
81 Cl
82 C2
83 C3

84 C4
85 C5
86 C6
87 C7

/

88 C8
89 C9
SA CA
8B CB

8C CC
8D CD
8E CE
8F CF

90 DO
91 Dl
92 D2
93 D3

94 D4
95 D5
96 D6
97 D7

98 D8
99 D9
9A DA
9B DB

9C DC
9D DD
9E DE
9F DF

AO EO @ @
Al A A El
A2 B B E2
A3 C C E3

A4 D D E4
AS E E E5
A6 F F E6
A7 G G E7

A8 H H E8
A9 I I E9
AA J J, EA
AB K K EB

AC L L EC
AD M M ED
AE N N EE
AF 0 0 EF

BO P P FO
Bl Q Q Fl
82 R R F2
83 5 5 F3

B4 T T F4
85 U U F5
86 V V F6
87 W W F7

B8 X X F8
B9 Y Y F9
SA Z Z FA
BB FB

BC
BD • SMI ~
BE

FC ..., ...,
FD
FE I I

BF - - FF

Figure 47. line Codes for IBM 2260 (Remote)/2265 Display Complexes and IBM 1053 Printer (Part 2 of 2)

394

S/360 Graphic Control
Byte {hex)

S/36O Graphic Comol
Byte {hex)

S/36O Graphic Control
Byte {hex)

S/36O Graphic Control
Byte {hex)

00
01 SP
02 I

40 - @
41
42

80
81 SP
82 =

CO
@ CI -

C2
03 43 i 83 C3 J

04 2 44 84 < C4
05 45 k 85 C5 K
06 46 I 86 C6 L
07 3 47 87 ; C7

08 4 48 88 : CB
09 49 m 89 C9 M
OA 4A n SA CA N
OB 5 4B 8B % CB

OC 4C 0 8C CC 0
OD 6 4D 8D · CD
OE 7 .olE 8E > CE
OF 4F p 8F CF P

10 8 50 90 · DO
11 51 q 91 Dl Q
12 52 r 92 D2 R
13 9 53 93 (D3

14 54 94 D4
15 0 55 95) OS
16

,
EOA 56 96 · EOA D6

17 57 $ 97 D7 I

18 58 98 DB
19 59 99 D9
IA SA 9A DA
IB 5B NL 9B DB NL

IC Uplhift
ID

5C
5D 8S

9C up.hift
9D

DC
DD BS

IE 5E IL 9E DE IL
IF EOT SF 9F DF

20 @ 60 AD ¢ EO
21 61 & AI El +
22 62 a A2 E2 A
23 / 63 A3 ? E3

24 64 b A4 E4 B
25 • 65 AS S E5
26 t 66 A6 T E6
27 67 c A7 E7 C

28 68 d A8 E8 D
29 u 69 A9 U E9
2A v 6A AA V EA
2B 6B • AB EB E

2C w 6C AC W 'EC
2D 6D f AD ED F
2E 6E 9 AE EE G
2F x 6F AF X EF

30 70 h BO FO H
31 y 71 BI Y FI
32 z 72 B2 Z F2
33 73 i B3 F3 I

34 74 B4 F4
35
36

0 37 /

75
(i) 76

77

B5
B6

G) B7 I

F5
(i) F6,

F7

38 78 88 F8
39 79 B9 F9
3A 7A HT SA FA HT
3B Index Attn 7B BB Index Attn FB

3C 7C Ownrhft BC FC Ownshft
3D EOB 7D BD EOB FD
3E PRE 7E BE FE
3F 7F DEL BF FF DEL

Figure 48. Line Code for IBM 2740 Communication Terminal

, Appendix 0: Code Charts 396

5/360 Graphic Control
Byte (hex)

5/360 Graphic Control
Byte (hex)

5/360 Graphic Control
Byte (hex)

5/360 Graphic Control
Byte (hex)

00
01 5P

40 - @
41

BO
81 Sf'

CO - @
CI

02 I 42 82 = C2
03 43 i 83 C3 J

04 2 44 84 0 C4
OS 45 k 85 C5 K
06 46 I 86 C6 L
a1 3 47 87 ; C7

OB 4
09

48
49 m

88 :
89 ~ M

OA
OB 5

4A n
4B

SA
@ 8B %

CA N
CB

OC 4C a 8C CC 0
00 6 40 80

,
CO

Of 7 4E BE · CE
Of 4F P 8F CF P

10 8 50 90 · DO
II 51 q 91 01 Q
12 52 r 92 02 R
13 9 53 93 (03

14 54 94 04
15 0
16 I EOA

55
56

95)
96 :t EOA

05
06

17 57 $ 97 07 I

18 58 RES 98 OS RES
19 59 99 09
lA SA 9A OA
lB 5B LF-CR 98 DB LF-CR

lC Upshift 5C 9C Upshift DC
10 50 B5 90 DO as
IE 5E IL 9E DE IL
IF EOT 5F 9F OF

20 @ 60 AO • EO
21 61 & AI EI +
22 62 a A2 E2 A
23 / 63 A3 ? E3

--.:...
24 64 b A4 E4 B
25 • 65' A5 5 E5
26 t 66 A6 T E6
27 67 c A7 E7 C

28 68 d AS E8 0
29 u 69 A9 U E9
2A v 6A AA V EA
2B 68 e AB E8 E

2C w 6C AC W EC
20 60 f AD ED F
2E 6E 9 AE EE G
2F x 6F AF X EF

30 70 h BO FO H
31 y 71 BI Y FI
32 z 72 B2 Z F2
33 73 i B3 F3 I

34 74 84 F4
35
36

@ 37 .
75

G) 76
77

B5
86

@ B7 ·
F5

G) F6
F7

38 BYP 78 88 F8
39 79 B9 F9
3A 7A HT BA FA HT
3B Index Attn 7B BB Index Attn F8

3C 7C Downshift BC FC Downshift
3D E08 70 BO EOB FO
3E PRE 7E BE FE
3F 7F DEL BF FF DEL

Figure 49. Hexadecimal Equivalents for IBM 2741 (BCD) Communication Terminal

396

S/360 Graphic Control S/360 Graphic Control 5/360 Graphic Control S/:i60 Graphic Control
Byte (hex) Byte (hex) 8yte (hex) Byte (hex)

00
01 SP

40 - ® 41
80
81 Sf

CO - ® Cl
02 1 42 82 = EOA C2
03 43 ; 83 C3 J

04 2
05

44
45 k

84 < 85
C4
C5 K

06 46 I 86 C6 L
07 3 47 87 ; C7

08 4 48 88 : CB
09 49 m 89 C9 M
OA 4A n SA CA N
08 5 4B 88 • % CB

OC 4C 0 8C CC 0
00 6 40 80 0 CO
OE 7 4E 8E > CE
OF 4F P 8F CF P

10 8 50 90 . 00
II 51 q 91 01 Q
12 52 r 92 02 R
13 9 53 93 (03

14 54 94 D4
15 0 55 95) 05
16

,
EOA 56 96 " D6

17 57 $ 97 07 I

18 58 RES 9a 08 RES
19 59 99 09
IA RS SA 9A RS OA
18 58 NL 9B OB NL

IC UC 5C 9C UC OC
10 50 BS 90 00 BS
IE 5E IL 9E DE IL
IF EOt 5F 9F OF

20 @ 60 AO ¢ EO
21 61 & AI EI +
22 62 a A2 E2 A
23 / 63 A3 ? E3

24 64 b A4 E4 B
25 s 65 A5 S E5
26 t 66 A6 1 E6
27 67 c A7 E7 C

28 68 d A8 Ea 0
29 u 69 A9 U E9
2A v 6A AA V EA
2B 68 e A8 EB E

2C w 6C AC W EC
20 60 f AO ED F
2E 6E 9 AE EE G
2F x 6F AF X EF

JO 70 h 80 FO H
31 y 71 BI Y FI
J2 z 72 B2 Z F2
33 73 i B3 F3 I

J4 74 B4 F4
35
36

CD 37 ,

75

0 76
77

B5
B6

0 B7 I

F5

0 F6 -,
F7

38 8Y 78 B8 BY Fa
39 79 B9 F9
JA 7A HT BA FA HT
38 LF 78 BB LF F8

3C 7C LC BC FC LC
30 E08 70 BO EOB FO
3E PRE 7E BE PRE FE
3F 7F OEL BF FF DEL

Figure 50. Line Code (EBCD) for IBM 2741 Communication Terminal

Appendix D: Code Charts 397

5/360 Graphic Control 5/360 Grophic Control 5/360 Grophic Control 5/360 Graphic Control
8yte (hex) 8yte (hex) 8yte (hex) Byte (hex)

00 40 I 80 CO
01 5P
02 1 J

41
42

81 SP
82 ! [

CI
C2

03 43 m 83 C3 M

04 2 44 84 @ C4
05 45 85 C5
06
07 3

46 y

47
86
87 I

C6 V
C7

08 5 48 88 % C8
09 49

,
89 C9 "

OA 4A r SA CA R
08 7 48 8B & CB

OC 4C i 8C CC I
00 6 40 80 ~ CO
OE 8 4E 8E . CE
OF 4F a 8F CF A

10 4 50 90 $ DO
11 51 0 91 01 0
12 52 s 92 02 S
13 0 53 93) 03

14 54 94 D4
15 % 55 95 Z 05
16 9 EOA 56 96 (06
17 57 w 97 07 W

18 58 RES 98 08
19 PN 59 99 09
lA RS SA 9A OA
18 58 LF-CR 9B 08 LF-CR

IC Upshft
10

5C
50 as

9C Upshft
90

OC
00 85

IE 5E IL 9E OE
IF EOT 5F 9F EOT OF

20 t 60 AO T EO
21 61 i AI EI J
22 62 9 A2 E2
23 x 63 A3 X E3

24 64 = A4 E4
25 n 65 AS N E5
26 u 66 A6 U E6
27 67 f A7 E7

28 68 p A8 E8
29 e 69 A9 E E9
2A d 6A AA 0 EA
28 68 ; AB E8

2C k 6C AC K EC
20 60 q AO EO
2E 6E AE EE
2F c 6F AF C EF

30 70 / BO FO
31 I 71 BI L FI
32 h 72 B2 F2
33 73 y B3 H F3

34 74 B4 F4
35 75 as F5
36 76 - 86 F6
37 b 77 87 B F7

38 8YP 78 88 F8
39 79 B9 F9
3A 7A Tab SA FA Tab
38 Index Attn 7B BB Index AHn F8 ,

3C 7C Dwnshft 8C FC Ownshft
30 EOB 70 BO FO
3E PRE 7E BE FE
3F 7F BF FF

Figure 51. Line Code (Correspondence) for IBM 2741 Communication Terminal

398

5/360 Graphic Conlrol
Byle {hex)

S/360 Graphic Conlrol
Byle {hex)

S/360 Graphic Control
Byle (hex)

5/360 Graphic Conlrol
8yte {hex)

00 40 80 CO
01 T 41 81 CI
02 CR 42 82 C2
03 0 43 83 C3

04 5P 44 84 C4
05 H 4S 85 CS
06 N 46 86 C6
(Jl M 47 87 (,7

08 LF 48 88 C8
09 L 49 89 C9
OA R 4A SA CA
08 G 48 8B CB

OC I 4C 8C CC
00 P 40 80 CO
OE C 4E 8E CE
OF V 4F 8F CF

10 E 50 90 DO

" Z 51 91 01
12 0 52 92 02
13 B 53 93 03

14 S 54 94 D4
15 Y 55 95 OS
16 F 56 96 D6
17 X S7 97 07

18 A 58 98 08
19 W 59 99 09
IA J SA 9A OA
IB FIGS 56 98 DB

lC U 5C 9C DC
10 Q 50 91> DO
IE K SE 9E DE
IF LTRS SF 9F OF

20 60 AO EO
21 5 61 AI £1
22 CR 62 A2 E2
23 9 63 A3 E3

24 SP 64 A4 E4
2S 'A STOPe
26 /A 7/8e
27

65
66
67

AS
A6
A7

ES
E6
E7

28 LF 68 A8 E8
29 ,)A 3/4e
2A 4

69
6A

A9
AA

E9
EA

2B & 6B AB EB

2C 8 6C AC EC
20 0 60 AD ED
2E' :. l/Be
2F 'A 3/8e

6E
6F

AE
AF

EE
EF

30 3 70 80 FO
31 71 81 FI
32 $ 72 B2 F2
33 ?A !'..8e 73 83 F3

34
'A Belle

3S 6
74
75

84
85

F4
FS

36 2A 1/4c
37 /

76
n

86
B7

F6
F7

38 - 78 88 F8
39 2 79 89 F9
3A 'c

BellA
3B FIGS

7A
7B

SA
BB

FA
FB

3C 7 7C BC FC
3D 1 70 BO FO
3E (A 1/2e
3F LTRS

7E
7F

8E
BF

FE
FF

Figure 52. Line Code for AT & T 8383 and WU 115A Terminals

Appendix 0: Code Charts 399

S/36O Graphic Control S/360 Graphic Control S/36O Graphic Control 5/360 Graphic Control
Byte (hex) Byte (hex) 8yte (hex) Byte (hex)

00 NUL 40 80 SOH CO ETX
01 NUL 41 STX 81 CI ETX
02 42 8 82 A C2
03 @ 43 B 83 A C3 C

04 • SP 44 00 84 I C4
05
06
07

45 00

46
bl 47

85 I
86

~1 87

CS
, .

C6 cl
C7 cl

08 48 Tp Aux On 88 X-On CB
09 OLE 49 Tp Aux On 89 x-On C9 EaT X-Off
OA P 4A SA CA 5
OB P 48 R 88 Q CB S

OC 0 4C 8C CC 3
00 0
OE

pi OF

4D 2
4E r 1
4F rl

80 11
8E

~1 8F

CD 3
CE
CF 51

10' 50 LF QO HT DO
11 BS 51 LF 91 HT 01 VT
12 H 52 92 02 K
13 H 53 J 93 I 03 K

14 (
15 (
16
17 h

54
55 *
56 .1

57 II

94
95)
96 '1

~ I 97 I

D4 +
os +
D6
07 kl

18 CAN 58 98 DB ESC
19 CAN 59 SUB 99 EM D9 ESC
lA SA Z 9A Y OA
lB X 5B Z 9B Y DB [

lC 5C : 9C 9 DC
10 8 1
IE ~1 IE

50 :
5E

ZI SF

90 9
9E

yl 9F

DO ;
DE
OF

20 60 ACK AO WRU EO
21 EaT 61 ACK Al WRU El Bell
22 0 62 A2 E2 G
23 0 63 F A3 E E3 G

24 $ 64 A4 E4 I
25 $ 65 & AS % E5 I 91
26

dl 27
66

fl 6i
A6 .1
A7 el

E6
91 E7

28 Tp Aux Off 68 AS E8 ETB
29 Tp Aux Off 69 SYN A9 NAK E9 ETa
2A 6A V AA U EA
28 T 6B V AB U Ea W

2C 6C AC 5 EC
20 4 60 6 AD 5 ED 7
2E t
2F t

6E
6F vi

AE
ul AF

EE wi
EF wi

30 FF 70 80 FO 51
31 FF 71 SO Bl CR FI SI
32 72 N B2 M F2
33 L 73 N 83 M F3 a

34 74 . 84 - F4
35 '2 36

:2 37

75 .
76

n 1 n

as -
86

ml il7

F5 /1
F6 a I
F7 a

38 78 RS B8 G5 F8
39 FS 79 RS B9 G5 F9 US
3A " 7A SA FA -3B " 78 t B8 J Fa -
3C < 7C BC FC ?
3D < 70 > BO = FD ?
3E 7E -, BE FE
3F J 7F .., BF FF Rubout

Note 1: Lower case letters are converted to upper case in the te~inal.

Note 2: Not all control charact.rs are used by TWX but all are legitimate.

Figure 53. Line Codes for AT & T TWX Terminals

400

S/J60 Graphic Control
Byte (hex)

5/360 Graphic Control
Byte (hex)

5/360 Graphic Control
Byte (hex)

5/360 Graphic Control
Byte (hex)

00 40 80 CO
01 T 41 81 CI
02 CR 42 82 C2
03 0 43 83 C3

04 SP 44 84 C4
05 H 45 85 C5
06 N 46 86 C6
fJl M 47 87 C7

OB IF WRU 48 88 C8
09 L 49 89 C9
OA R 4A SA CA
OB G 4B 88 CB

OC I 4C 8C CC
OD p 40 80 CO
Of C 4E 8E CE
OF V 4F 8F CF

10 E 50 90 DO

" Z 51 91 01
12 0 52 92 02
13 B 53 93 03

14 5 54 94 04
15 Y 55 95 05
16 F 56 96 06
17 X 57 97 07

18 A 58 98 08
19 W 59 99 09
IA J 5A 9A OA
lB FIGS 5B 9B DB

IC U 5C 9C DC
10 Q 50 90 00
IE K 5E 9E DE
IF lTRS 5F 9F OF

20 60 AO EO
21 5 61 AI EI
22 CR 62 A2 E2
23 9 63 A3 E3

24 SP 64 A4 E4
25 65 A5 E5
26 , 66 A6 E6
27 67 A7 E7

28 IF 68 A8 E8
29) 69 A9 E9
2A 4 6A AA EA
2B 6B AB EB

2C 8 6C AC EC
20 0 60 AD ED
2E : 6E AE EE
2F = 6F AF EF

30 3 70 BO FO
31 + 71 BI FI
32 WRU n 82 F2
33 ? 73 B3 F3

34 0 74 84 F4
35 6 75 B5 F5
36 76 86 F6
37 / 77 B7 F7

3B - 78 B8 F8
39 2 79 B9 F9
3A Bell 7A SA FA
3B FIGS 7B 8B F8

3C 7 7C BC FC
3D I 70 80 FO
3E (7E BE FE
3F LTRS 7F BF FF

Figure 54. Line Code for IBM World Trade Telegraph ITA2

Appendix 0: Code Charts 401

5/360 Graphic Control 5/360 Graphic Control 5/360 Graphic Control 5/360 Graphic Control
Byte (hex) Byte (hex) Byte (hex) Byte (hex)

00 40 80 CO
01 T 41 81 Cl
02 CR 42 B2 C2
03 0 43 B3 C3

04 5P 44 54 C4
OS H 4S as cs
06 N 46 86 C6
(11 M 47 87 C7

DB LF WRU 4B sa .C8
09 L 49 89 C9
(\II R 4A SA CA
DB G 4B 8B CB

OC I 4C 8C CC
00 P 40 80 CD
Of C 4E 8E CE
OF V 4F SF CF

10 E 50 90 DO
11 Z 51 91 01
12 0 52 92 02
13 B 53 93 03

14 5 54 94 04
15 Y 55 95 05
16 F 56 96 06
17 X 57 97 07

18 A sa 98 08
19 W 59 99 09
lA J SA 9A OA
lB FIGS 58 98 DB

lC U 5C 9C DC
10 Q 50 90 DO
IE K 5E 9E DE
IF LTR5 5F 9F OF

20 60 AD EO
21 61 AI El
22 CR 62 A2 E2
23 : 63 A3 E3

24 5P 64 A4 E4
25 ? 65 AS E5
26 , 66 A6 E6
27 7 67 A7 E7

28 LF 68 A8 E8
29) 69 A9 E9
2A / 6A AA EA
2B 0 68 AB EB

2C Bell 6C AC EC
20 9 60 AD ED
2E 8 6E AE EE
2F = 6F AF EF

30 - 70 BO FO
31 71 Bl Fl
32 WRU 72 B2 F2
33 6 73 B3 F3

34
,

74 B4 F4
3S 5 75 as F5
36 4 76 86 F6
37 77 B7 F7

38 + 78 B8 F8
39 3 79 B9 F9
3A 2 7A SA FA
3B FIG5 7B BB FB

3C 1 7C BC FC
3D 70 BO FD
3E (7E BE FE DEL
3F LTRS 7F BF FF

Figure 55. Line Code for IBM World Trade Telegraph ZSC3

402

Using an Unmodified
Existing Program

Reassembling a QTAM
Processing Program

QTAM Macro Facilities

Appendix E: Running QTAM Application Programs Under TeAM

This section provides a brief summary of the changes needed to run a QT AM Message
Processing Program using TCAM.

If the QT AM processing program is written so that the only QT AM macros issued are
OCB, OPEN, CLOSE, GET, and PUT, the program need not be reassembled. Substitute
the QTAM DD statements related to each process (input) and destination (output) OCB
macro with corresponding TCAM DD statements. The format of the DD statement is

//ddname DD QNAME=procname

ddname is the symbolic name of the DD statement, and must be the same as the name
specified in the DDNAME= operand of the process or destination DCB macro.

procname is the name of the process entry in the terminal table to which this entry
refers. This name is assigned by the TPROCESS macro creating the entry. The destina
tion queue may be changed at execution time by specifying a different value for the
QNAME= parameter.

If macros other than OPEN, CLOSE, GET, PUT, and OCB are included in the applica
tion program, the program must be reassembled. A QSTART macro must be added as
the first instruction of the program, immediately after the START or CSECT statement.

The QSTART macro distinguishes QTAM and TCAM application programs by indicating
whether the QT AM program is to be assembled to run under QTAM or TCAM. QSTART
is not coded in a TCAM application program, unless the CKREQ macro is used in a
TCAM statement. There are no operands, and no assembler instructions are generated.
The QSTART macro has an optional name field.

If a QTAM program is reassembled with a QSTART macro included, only some macro
facilities are available. Password protection, as provided in TCAM, is not available. The
following chart summarizes the macro facilities.

Macro Facility

RETRIEVE Transfers a message segment already placed on a destination queue or a
process queue to a user-provided work area.

RELEASEM Activates a designated terminal for receipt of message traffic from the
CPU.

CLOSEMC Initiates termination of the TCAM Message Control Program. Provides
a flush closed own only. .

STARTLN Activates a designated line for operation.

STOPLN Deactivates a designated line from operation.

·COPYP No Op.

COPYQ NoOp.

COPYT NoOp.

CHNGT NoOp.

CHNGP NoOp.

Appendix E: QTAM Programs 403

Appendix F: Summary of Operator Commands Classified by Operation

This appendix groups all commands according to the type of operation (for instance,
DISPLAY, MODIFY, RELEASE) being performed. Figure 33 groups commands ac
cording to the areas in the TCAM system that are affected by issuing. operator commands.

See Operator Control in the chapter Using TCAM Service Facilities for an explanation of
operator command format and how to specify operator commands.

Operation Operands Operator Command
Name

~DISP5AY~ TP,ACT,~grpname,rln ~ ACTVATED
address

TP ,ADD R,statname RLNSTATN

TP ,INACT 'lgrpname,rln~ INACTVTD
address

TP,INTER INTRCEPT

TP ,LINE'1grpname,rln f LNSTATUS
address

TP,LIST1grpname,rln f STATDISP
address

TP ,OPTION ,statname,oplfdname OPTFIELD

TP,PRITERM DPRIOPCL

TP,QUEUE,statname QSTATUS

TP,SECTERM DSECOPCL

TP ,TERM,statname STSTATUS

~HAiT~ TP.~QUICK f SYSCLOSE
FLUSH

}HO~D~ TP=statname SUSPXMIT

~MO~FY~ id,AUTOPOLL=~grpname,rln~,OFF AUTOSTOP
address

id,AUTOPOLL=~grpname,rln~ON AUTOSTRT
address

id,INTERVAL=POLL,statname, data POLLDLAY

id,INTERV AL=SYSTEM INTERVAL

id,INTERV AL=SYSTEM,data SYSINTVL

id,INTENSE= LINE,~grpname,rlnJ,sense,coun t ERRECORD
address

id,INTENSE=TERM ,statname,sense,count ERRECORD

id,OPERAToR=lstatname ~ CPRIOPcL
SYSCON

Appendix F: Operator Commands 405

Operation Operands Operator Command
Name

id,OPT=statname,opfldname,data DATOPFLD

id, TRACE=lgrpname,rlnf,OFF NOTRACE
address

id, TRACE=lgrpname,rlnf,oN GOTRACE
address

1RELEAASE~ TP=statname RESMXMIT

lVAJ"Y~ statname,ONTP ,B ACTVBOTH

statname,ONTP ,E ENTERING

statname,OFFTP ,B NOTRAFIC

statname,OFFTP,E NOENTRNG

j<grpname,rlnlOFFTP f f STOPLINE
grpname I
address

l(grpname,rln)!,ONTP STARTLINE
grpname
address

Operator Commands Classified by Type of Operation.

406

Start-Stop Devices

1030 Data Collection System

1050 Data Communication
System

1060 Data Communication
System

2260 Display Station (Remote)

Appendix G: Device Dependent Considerations

Details presented in this section pertain to specific devices (except for the general
information on binary synchronous (BSC) devices) supported by TCAM. Considerations
are listed for start-stop and BSC devices; the final section of this appendix comprises
considerations for the IBM 50 Magnetic Data Inscriber (MOl). More general information
about the various subject matter contained here can be found in the appropriate chapters
of this publication.

• On the STARTMH macro instruction, the CONV=YES operand must be coded if 1030
stations are included on lines processed by this message handler, since these stations do
not have the capability of entering an EOT line control character after their messages.
CONV=(opfield,switch) may be coded when the TERMINAL macro for the 1030
station initializes the option field to the specified setting.

• When the ADDR= operand of the TERMINAL macro is coded for a 1030 station, the
two addressing characters must be immediately preceded by a 37 (this is the hexa
decimal equivalent of the "circle S" character for the 1030. Neither the 37 nor the
addressing characters are framed; the addressing characters must be the hexadecimal
equivalent of the 1030 line code representation. Example: if the address of the 1030 is
Bl, the ADDR= operand of the TERMINAL macro would be coded as follows:

ADDR=376402
where 64 and 02 are the hexadecimal equivalent of the line-code representation of the
characters B and I, respectively.

• TCAM will recognize a message one data character in length from the IBM 1030.

• With regard to message translation, the character sets of the 1050 terminals contain
lowercase as well as uppercase alphabetic characters. When messages from a 1050 are
sent to stations or application programs that do not recognize codes for lowercase
letters, the user should either enter only the uppercase form of alphabetic characters,
or he should employ the 105F translation tables on the incoming side. These tables
translate each incoming lowercase letter to the EBCDIC uppercase equivalent. These
tables should also be specified if the source or destination of a message is entered at an
IBM 1050 terminal in lowercase form; if the contents of the source or destination
header field are not in uppercase form at the time an ORIGIN or FORWARD macro is
executed, the header information is assumed to be invalid.

• The line correction feature is required if automatic retry is desired when a transmission
error occurs.

• On the STARTMH macro instruction, the CONV=YES operand must be coded if 1060
stations are includea .,n lines processed by this message handler, since these stations do
not have the capability of entering an EOT line control character after their messages.
CONV=(opfield,switch) may be coded when the TERMINAL macro for the 1060
station initializes the option field to the specified setting.

• The last character of the invitation sequence (on the INVLlST macro instruction) for a
remote 2260 must be X'40' (this is the hexadecimal representation of the Read MI
character).

• When specifying the sequence of addressing characters for a remote 2260 on the
TERMINAL macro instruction, the user must code one of the following control char
acters immediately after the addressing sequence:

• X'AO' for a Write-DC operation;
• X'BO' for a Write-at-Line-Address operation;
• X'EO' for a Write-Erase operation.

The three operations are described in the discussion of the SCREEN macro
instruction.

Appendix G: Device.<fependent Considerations 407

2260 Display Station (local)

408

• The 2260 translation table converts outgoing lowercase alphabetic characters to upper
case so that the terminal receives only uppercase characters.

• The MSGLIMIT macro instruction is recommended for use with this type of terminal;
the outheader subgroup for 2260s should include a MSGLIMIT macro specifying a
limit of one message in inquiry applications (in order to ensure that a response message
is not erased before it can be read). Equal priority is recommended.

• The MSGFORM macro instruction and the LC=OUT operand of the STARTMHmacro
instruction should be used when sending to the 2260 from other devices.

NOTE: In coding the INVLIST, TERMINAL, and line group DCB macros for the 2260
Local configuration, you may consider each 2848 Control Unit attached locally to be a
line group, and each 2260 station attached to such a control unit as a line in that group;
that is, you may code one DD statement and one line group DCB macro per control unit
and one INVLlST macro per terminal. In addition, each 2260 Local must be represented
by a TERMINAL macro.

• Issue one INVLlST macro instruction for each IBM 2260 Local Display Station; this
macro must contain a single entry for the station. All 2260 Locals attached to the
same IBM 2848 Display Control Unit may be considered to be in the same line group,
or each 2260 may be defined separately; the INVLIST macros for these stations must
be specified in the INVLIST= operand of the line group DCB macro according to
ascending relative line number. (Relative line number for 2260 Local stations in the
same line group is determined by the order in which their TERMINAL macros are
arranged; see the description of the TERMINAL macro.)

The INVLIST entry for a 2260 Local should consist of the name of the station, a "+",
and a one-byte code of X'02' (Read DS MI) indicating the type of Read operation to
be performed when data is entered at the station. For further information about this
Read command, see IBM System/360 Component Description: IBM 2260 Display
Station, IBM 2848 Display Control, Order No. GA27-2700.

Example:
The following INVLlST macro is for a 2260 Local station named STAl.

LOCALSTl INVLIST ORDER=(STAl+02)

The X'02' causes a Read DS MI operation to be performed by TCAM when data is
entered at the terminal.

• Issue one TERMINAL macro per 2260 Local. All TERMINAL macros for 2260s on
the same 2848 Control Unit must be grouped together. Assign each terminal a relative
line number according to the position of its TERMINAL macro in the group; i.e., in
the first TERMINAL macro in the group, enter RLN=I, in the second, RLN=2, etc.
The ADDR= operand is not meaningful for the 2260 Local.

Example:
The following TERMINAL macro is the first in a group of macros representing 2260
Local terminals attached to a 2848 Control Unit:

TERM I TERMINAL Q~! Y=L,RLN= 1 ,DCB=DCB2260L,TERM=2260L,QUEUES=MO

• One line group DCB macro instruction may be coded for each locally attached 2848
Control Unit. The INVLIST= operand should be coded so that the order in which the
INVLIST macros for the terminals attached to the control unit are named in the
operand corresponds to the order in which the TERMINAL macros for the terminals
attached to the control unit are arranged.

Specify CPRI=S (or CPRI=E if a MSGLIMIT macro is used to limit the number of
messages). Send priority for 2260 Locals is the same as that for nonswitched
contention stations, described in the transmission priority section of the chapter
Defining Terminal and Line Control Areas.

If the user has keyed in part of a message he wishes to enter, but has not actually
entered it at the time TCAM sends a message to his terminal, the message he is
attempting to enter is erased from his screen and must be re-entered at a later time.

Example: .
The following line group DCB macro is for an IBM 2848 Control Unit attached locally.

DCB2260L DCB DSORG=TX,MACRF=(G,P),
CPRI=S,PDNAME=DD2260L,
INVLlST=(LOCALSTl '"
LOCALST2",LOCALST3,,),
PCI=(N,N),BUFIN=l,BUFOUT=l,
BUFSIZE=400,BUFMAX=1

*
*
*
*
*

The following DD statement would be included in the job control cards for the
execute steps, if the 2260s were assigned the addresses 150, 151, and 152:

IIDD2260L
/I
/I

DD
DD
DD

UNIT=150
UNIT=151
UNIT=152

Dynamic PCI buffering is not recommended for the 2260 Local, as the data rate for
this configuration is higher than for most other terminals.

• TCAM recognizes a one-character message entered by a 2260 local station (generally, a
message must be at least two bytes long in order to be recognized by TCAM).

2265 Display Station • The MSGLlMIT macro instruction should be used for this type of terminal; the out-
header subgroup for 2265s should include a MSGLlMIT macro specifying a limit of
one message in inquiry applications (in order to ensure that a response message is not
erased before it can be read).

• Specifying receive priority with a user-determined delay may also be helpful.

2740 Communications Terminal • With regard to message translation, the character sets of the IBM 2740 terminals

2740 Terminals with Station
Control or Station Control
and Checking:

2740 Terminals with Transmit
Control or Transmit Control

and Checking:

2740 Basic Terminals:

contain lowercase as well as uppercase alphabetic characters. When messages from an
IBM 2740 are sent to stations or application programs that do not recognize codes for
lowercase letters, the user should either enter only the uppercase form of alphabetic
characters, or he should employ the 274F translation tables on the incoming side.
These tables translate each incoming lowercase letter to the EBCDIC uppercase
equivalent. These tables should also be specified if the source or destination of a
message is entered at a 2740 terminal in lowercase form; if the contents of the source
or destination header field are not in uppercase form at the time an ORIGIN or
FORWARD macro is executed, the header information is assumed to be invalid.

• On the INVLIST macro instruction, the invitation sequence for this type of terminal
consists of a single polling character, followed by a space character (X'O l' in line
code).

• When a TERMINAL macro is coded for a 2740 with these features, the addressing
sequence consists of a single polling character. Immediately preceding this character,
X'37' should be coded; immediately following the character, an X'Ol' should be
coded.

• When coding an INVLlST macro for a 2740 with these features, the following invita
tion sequence must always be specified: X'230 l' (X and framing quotes are not
coded).

• On the TERMINAL macro, no addressing sequence should be specified for a 2740
with these features.

• On the TERMINAL macro, no addressing characters should be coded for any of the
four IBM 2740 Basic terminal configurations supported by TCAM.

• Send priority is the suggested method for using 2740 basic terminals.
• If equal priority is specified for a 2740 Basic terminal on a nonswitched line, messages

may be entered at the terminal whenever the line is idle. The invitation list for this line
may consist of one dummy entry (see the description of the INVLIST macro). The
terminal operator may ask the computer to send by pressing the BID key and then

Appendix G: Device-dependent Considerations 409

2740 Basic Dial:

2740 Terminals on a
Switched Line:

2740 Model 2 Communication

pressing the EOT key. The computer then sends all messages queued for the terminal.
After all messages are sent, the computer is again ready to receive messages. Messages
queued for the terminal will also be sent as soon as the terminal operator enters a
number of consecutive messages in the sequence: BID key - message - EOT, which is
equal to the number specified by a MSGLIMIT macro coded in the inheader subgroup
of the message handler for this line (see the description of the MSGLIMIT macro).

• TCAM uses a Prepare command on 2740 Basic terminals and there is no time-out
constraint; consequently, an operator must enter BID EOT to indicate to TCAM that
he has no message to enter.

• For 2740s on a switched line, after the terminal operator has finished entering his
messages, he should press the BID key and then press the EOT key to indicate that he
has no more messages to enter; otherwise, TCAM does not break the line connection
and the terminal will eventually time out. NOTE: A 2740 Basic terminal on a switched
line has a response command that does not time out.

Terminal: • The 2740-2 is defined as buffered by the BFDELAY= operand on the TERMINAL
macro. (For more details, see the discussion of transmission priorities for nonswitched
polled stations that use TCAM's buffering feature in the chapter Defining Terminal
and Line Control Areas.)

• Send priority must be specified (see the description of the CPRI= operand of the line
group DCB macro instruction).

• Queuing must be by terminal (see the description of the QBY=T operand of the
TERMINAL macro instruction).

• Extended lock mode (obtained by the LOCK macro instruction) must not be used
with this terminal because of the danger of tying up the line.

• The data portion of a message sent to an IBM 2740 Model 2 must not be longer than
the length of the terminal's hardware buffer; otherwise, data in the buffer is overlaid
and lost.

2741 Communications Terminal • Can enter messages directed to other stations, but cannot receive messages from other
stations. Can receive messages entered by itself.

• Can receive messages directed to it from an application program, but only if such
messages are responses to inquiries from the terminal, and message lock or extended
lock mode is specified by the LOCK macro.

• Messages directed to the 2741 terminal must not contain an EOT line-control
character.

• Send priority must be specified by the CPRI= operand of the line group DCB macro.
• CALL=NONE must be specified in the TERMINAL macro for switched 2741 stations.
• For stations that do not perform parity and block checking (e.g., IBM 2740 Basic, IBM

2741, WTTC, TWX), you may wish to test for loss of incoming messages by coding a
MSGGEN macro in your inmessage subgroup; this macro should test bit 25 (error
during text transfer) of the message error record and send a message to the source
indicating that the latest message entered has been lost and should be re-entered, if bit
25 is on.

• For 274ls on a switched line, after the terminal operator has finished entering all his
messages, he should press the carrier-return key to indicate that he has no more
messages to enter; otherwise, TCAM does not break the line connection.

2760 Optical Image Unit • Line"control for the 2760 is the same as for other 27408 and 1050s except for the

410

advancement to the next frame on the screen.
• For the user to perform conversational operations only, he must code the LOCK

macro and the CONV=YES operand on the STARTMH macro.
• The EOA sequence (X'16') is not written by TCAM; this character must be provided

by the user or by the MSGFORM macro and must appear in the first position of each
buffer.

• The user program also must provide the PRE 0 sequence (X'3E4C') that directs
messages sent from the CPU to the 2760. If provided in an application program,
X'27D6' is specified and :the message is sent through an MH containing a CODE macro
instruction.

1770 Audio Response Unit
(ARU)

World Trade Telegraph (WTT A)
Terminals

Teletypewriter Exchange (TWX)
Stations

• Issue one INVLlST macro for each TCAM audio line; e.g., a line connected to an IBM
7770 Audio Response Unit, Model 3. This macro instruction assigns an invitation
message to the line; the message is sent whenever a telephone or audio terminal calls in
on the line. The operand of an INVLlST macro for an audio line has a single entry that
consists of the name of the TERMINAL macro for the line over which the invitation
message is to be sent, the active-finactive-entry indicator, and an invitational message is
specified as CPU ID.

The vocabulary of the ARU resides on an analog drum; a track on the drum can contain
one word of the ARU's vocabulary list. To specify his invitation message, the user
codes a series of pairs of hexadecimal digits in the CPU ID entry: each pair represents
the address of a track containing one word of the message. For example, in the entry

BOS+09011B

a message consisting of three words is specified. These words are located on tracks 09,
01, and IB (hexadecimal notation) of the vocabulary drum.

The name of the INVLlST macro for an audio line should be specified in the
INVLlST= operand of the DCB macro for the line group containing the line.

Example:
The following INVLlST macro instruction creates the invitation list for an audio line.

Name Operation Operand

LIsno INVLIST ORDER=(BOS+09011B)

BOS is the name of the TERMINAL macro instruction specifying UTERM=YES for
this line. The + indicates that messages may be received on this line. The characters 09,
01, and IB are the numbers (in hexadecimal notation) of the tracks on the ARU
vocabulary drum that contain the words of the invitation message for this line.

• A TCAM audio line, i.e., a line connected to an IBM 7770 Audio Response Unit,
Model 3, requires a TERMINAL macro instruction coded with the UTERM=YES
operand.

• The LOCK macro instruction is required for audio terminals.

• For WIT A terminals, two message translation codes can be specified. These are Inter
national Telegraph Alphabet number 2 (ITA2) and Figure Protected Code (ZSC3).

• If equal transmission priority is specified for a WTT A terminal on a nons witched con
tention line, messages may be entered at the terminal whenever the line is idle.
Messages queued for the terminal will be sent only if a MSGLlMIT macro instruction is
coded in the inheader subgroup of the Message Handler for this line, and then only
when the number of messages entered by the terminal is equal to the number specified
in the MSGLlMIT macro.

• TCAM does not support the WRU character on output.

• All entries in an invitation list must have the same number of invitation characters. If
TWX stations on the same switched line are assigned ID sequences that differ in length,
ID sequences shorter than the longest ID sequence specified in an INVLIST entry
should be padded to the right with EBCDIC blanks to bring them up to the length of
the longest sequence. The maximum-length TWX ID sequence supported by TCAM is
23 bytes (including framing control characters). It is recommended that each terminal
ID sequence included as part of an invitation list entry be preceded and followed by
certain control characters. These characters, and the hexadecimal representations of
their line-code bit patterns (shown in non-parity TWX transmission code) are:

a) characters

CR LF idchars CR LF XON

Appendix G: Device·dependent Considerations 411

412

b) hexadecimal representation

B l5lidcharsB 15189

An entry for a TWX terminal named RAL that is assigned the ID sequence IBM
35ASR til might be coded:

RAL+B1519343B305CDAD83CB4B05C58DB15189

(If a TERMINAL macro coded UTERM=YES were issued for the line, the name of the
TERMINAL macro would be coded in place of RAL.)

For lines to TWX terminals, it is recommended that the computer ID sequence also be
preceded and followed by certain control characters. These characters, and the hexa
decimal representations of their line-code bit patterns, are:

a) characters

Null CR LF· Rubout idchars CR LF XON

b) hexadecimal representation

01B151FFidcharsB15189

If the ID sequence were RALEIGH, the operand for the computer ID might be coded:

CPUID=CPUNAME

Somewhere within the same area of the MCP the following field would be defined:

CPUNAME DC X'OE'
DC X'01B151FF4B8333A393E313B15189'

A table for translating TWX line code to hexadecimal representation is given in
AppendixD.

Example:
The following INVLlST macro creates the invitation list for a switched line having
three TWX terminals (named SCTN, PITT, and PHIL) assigned to it. Each of these
terminals is assigned a unique ID sequence, consisting of its name. The computer is
assigned the ID sequence PENN. It is assumed that the TWX terminals are non-parity
machines.

Name Operation Operands

LlSTl INVLlST (SCTN+B151CBC32B73B15189, *
PITT+B151OB932B2BB15189, *
PHIL+B151B131933B15189), *
CPUID=TWXADDR

Here, CBC32B73, OB932B2B, and OB131933 are the TWX non-parity transmission
code representations of the ID sequences SCTN, PITT, and PHIL, respectively, in
hexadecimal notation. B 1, 51, and 89 are the non-parity hexadecimal representations
of the TWX CR, LF, and XON line-control characters, respectively. Somewhere in the
MCP the following field is defined:

Name Operation Operand

TWXADDR DC X'OB'
DC X'OlB 151FFOBA37373B15189'

In this instance, OB is the hexadecimal length of the rest of the field. OBA37373 is the
non-parity TWX transmission-code representation of the ID sequence PENN, in hexa
decimal notation. 01, B1, 51, FF, and 89 are the non-parity hexadecimal representa
tions of the TWX Null, CE, LF, Rubout, and XON line-control characters, respectively.

AT&T 8383 Selective Calling
Station

Binary Synchronous
Communication (BSC)
Terminals

TCAM Send and Receive
Operations on a BSC Line

• Transmission priority for TWX stations is as follows: the computer invites the station
to enter a message by sending the computer ID sequence to the station. The computer
ID sequence is sent after each message is entered by the station to invite the station to
enter another message. When the station has no more messages to enter, the station
operator should so inform the computer by pressing the XOFF key after receiving the
computer ID sequence.

• Two types of TWX terminals may be used with TCAM. The first of these enters and
accepts parity data. For this type of TWX station, the TTYB translation table is pro
vided. The second type of TWX station enters and accepts only non-parity data; i.e.,
the parity bit must be one in all characters. The TTYC translation table is provided for
translating data received and sent to TWX terminals of this type. The user may wish to
receive messages from or send messages to both type of TWX terminals over lines in
the same line group, in which case he may issue two CODE macros in his incoming or
outgoing group and route each message to one or the other, as described in the section
Variable Processing within a Message Handler.

• The user should end all TWX messages with the XOFF control character instead of
with the EOT line control character. If EOT is used, the line is disconnected and a
console error message is posted.

• When specifying the sequence of addressing characters on the TERMINAL macro
instruction for an AT&T 83B3 terminal, the user must code a LTRS (letters-shift)
control character immediately after the two addressing characters. The L TRS char
acter is specified by coding X'IF'. The X and framing quotes are not coded.

In this section, information that is applicable to BSC devices in general will be presented
first; following this general information will be sections dealing with each BSC station
supported by TCAM.

This section presents TCAM's r~ponses to various line-control characters entered by a
station during an attempt on the part of TCAM to read messages entered by that station
or to send messages to it, and describes conditions that TCAM interprets as errors during
invitation, selection, and transmission. This information will be of interest to those who
are programming a computer to serve as a remote station in a TCAM system, to the user
whose application demands a knowledge of TCAM's line-control scheme, and to those
interested in the various conditions that prompt TCAM to set bits in the message error
record having to do with errors encountered while TCAM is reading or writing text on a
BSC line. For general information on BSC line control, see the publication General
Information-Binary Synchronous Communications (Order No. GA27-3004). For detailed
information on TCAM's channel programs and error-recovery procedures, see the TCAM
Program Logic Manual.

In the following two sections, the statement is made in many places that TeAM's
response to a particular error is to terminate its attempt to send or receive the current
message. In this case, TCAM attempts to send or to receive the next eligible message. If
no provision is made in the outmessage subgroup of an MH to test whatever error bits
were set imd to take appropriate action following an error, the message is treated by
TCAM as if it had been successfully transmitted; no further attempt is made to send it.
On the receiving side, if any data in the message in error is received, the portion of the
message that was received is sent through the incoming group of the appropriate MH and
is placed on the destination queue for the destination (if the destination is known).

Sending Operations

• If TCAM sends out an ENQ or an addressing sequence and receives a response other
than ACK, WACK, or (on a mUltipoint line only) R VI, TCAM attempts six more times
to elicit a satisfactory response; if none is received, TCAM sets bit 24 (selection error)
in the message error record and terminates its attempt to send the current message.

• If TCAM sends out an ENQ or an addressing sequence and receives an EOT in
response, TCAM immediately sets bit 24 (selection error) in the message error record
and terminates its attempt to send the current message.

Appendix G: Device-clependent Considerations 413

414

For all point to point stations (including switched stations):

• If TCAM receives a WACK in response to an ENQ (indicating that the station's hard
ware buffer is busy), TCAM responds by writing another ENQ; this exchange is
repeated until TCAM receives a response other than WACK. (A WACK in response to
an ENQ can be received from an IBM 2770 station and from CPUs used as stations).

• If TCAM receives a NAK in response to an ENQ, TCAM sets bit 24 (selection error) in
the message error record and sends an EOT to the station, thereby terminating its
attempt to send the current message.

• For point-to-point nonswitched contention stations, if TCAM receives an ENQ in
response to an ENQ (indicating a contention situation) TCAM always yields; that is,
TCAM automatically delays the current attempt to send, giving the station an oppor
tunity to enter data. In this case, TCAM attempts to send the message later.

For multipoint stations:

• If TCAM receives a NAK in response to an addressing sequence, TCAM sets bit 24
(selection error) in the message error record and terminates its attempt to send the
current message.

• If TCAM receives an R VI in response to an addressing sequence and TCAM's buffered
terminal support is specified (by the BFDELA Y= operand of the TERMINAL macros
for stations on the line), TCAM re-addresses the station at a later time, if the address
ing characters were for the first segment in the message; if they were for a segment
other than the first, TCAM sets bit 25 (error during text transfer) and bit 7 (cutoffj
RVI error) in the message error record and terminates its attempt to send the current
message. If R VI is received in response to addressing characters for a station that is not
using TCAM's buffered terminal support, TCAM re-sends the addressing sequence at a
later time.

For all BSe stations:

• If TCAM receives, as a response to a block of text, a character other than ACK, NAK,
WACK, RVI, or EOT, or receives no response at all, TCAM sends the station an ENQ
six times; if none of the six ENQs elicit a satisfactory response, TCAM sets bit 25
(error during text transfer) in the message error record and sends an EOT to the
station, thereby terminating its attempt to send the current message.

• If TCAM receives an EOT in response to text, TCAM immediately sets bit 14 (BSC
abort) and bit 25 (error during text transfer) in the message error record and termi
nates its attempt to send the current message.

• If TCAM receives a NAK in esponse to text, TCAM re-sends the block of text up to six
times; if no satisfactory response is elicited, after six retries TCAM sets bit 25 (error
during text transfer) in the message error record and sends the station an EOT, thereby
terminating its attempt to send the current message.

• If TCAM receives an RVI in response to text, TCAM considers this to be a normal
response and continues sending. If an R VI is received as the response to two successive
blocks of text, TCAM sends an ENQ in response to the second RVI. If another RVI is
received in esponse to the ENQ, TCAM sends another ENQ; after six ENQjRVI ex
changes, TCAM sends the station an EOT and terminates its attempt to send the cur
rent message.

• If TCAM teceives a WACK in response to text sent to a BSC station using TCAM's
buffered terminal support (indicating that the terminal's buffer space is exhausted),
TCAM sends the station an EOT and sends the next block of text after the interval
specified by the BFDELA Y= operand of the TERMINAL macro has been observed. If
WACK is received in response to a block of text sent to a station not using TCAM's
buffered terminal support, TCAM sends an ENQ; if another WACK is received, the
cycle is repeated until a different response is received by TCAM.

Receiving Operations

• Each block of incoming data must begin with a valid start character (SOH, STX,
DLEjSTX) and end with a valid end character (ETB, ETX, EOT). (In order to be valid
the EOT character must be transmitted by itself, as a separate block.) When this
requirement is not met, TCAM assumes that an error has occurred and requests re
transmission of the block. If the error has not been corrected after six retries, TCAM

Other BSC Considerations

sets bit 21 (format error) and bit 25 (error during text transfer) in the message error
record, and sends the station an EOT character.

• Each incoming block of a message is required to be in the same transmission mode
(transparent or nontransparent) as the other blocks of the message. If all blocks of the
same message are not in the same transmission mode, TCAM sets bit 21 (format error)
and bit 25 (error during text transfer) in the message error record.

• When TCAM receives an ENQ character while attempting to read, TCAM sends back
the previous acknowledgment character (ACKO or ACKl).

• When TCAM receives a TTD (temporary text delay, STX-ENQ sequence, TCAM
responds with a NAK; this is not considered to be an error condition. When TCAM
receives a TTD and the next block read in is an ET (indicates a possible station mal
function resulting in a truncated message for a 2770 or 2780 station), TCAM sets bit
14 (BSC abort) and bit 25 (error during text transfer) in the message error record and
tenninates its attempt to send the current message.

• When TCAM receives a station ID sequence on a switched BSC line, TCAM compares
invitation lists for a matching ID sequence, beginning with the invitation list for the
line over which the ID sequence was received and working upward through all lines in
the line group having higher relative line numbers than the line over which the ID
sequence was received. .

• If no match is found for a station ID sequence read in over a switched line, TCAM
attempts to read in the ID sequence and find a match for it six more times. If these
attempts are unsuccessful, TCAM sets bit 17 (invalid station ID) in the message error
record, and terminates its attempt to send or receive the message. In addition, TCAM
breaks the line connection with the station.

• If TCAM dials a BSC station on a switched line and receives an invalid ID sequence,
TCAM re-sends the computer's ID-ENQ sequence six times; if no valid ID sequence is
received from the station after six retries, TCAM sets bit 17 (invalid station ID) in the
message error record and breaks the telephone connection, thereby terminating its
attempt to send the message eligible to be sent first to the station.

• EOB checking must be specified by the STARTMH macro if the Message Handler is to
handle messages whose origin or destination is a BSC station (for directions on specify
ing EOB checking, see the description of STARTMH).

• On the INVLlST macro instruction, all entries in an invitation list must have the same
number of invitation characters. This requirement presents a problem with respect to
BSC stations on a multipoint line. BSC stations are compatible; that is, more than one
type of BSC station may be included on the same line. Since different types of polled
BSC stations require different numbers of polling characters (e.g., a polled IBM 1130
requires one polling character, while a polled IBM 2780 requires two), some polling
sequences in an invitation list for a line connecting different kinds of BSC terminals
may have to be padded to bring them up to the length of the longest sequence.
Synchronous idle characters are used to bring each sequence of polling characters
specified in an INVLlST entry for a polled BSC station up to the length of the longest
sequence specified in any entry for that INVLIST macro. These characters are inserted
to the left of the polling characters. The synchronous idle characters used depend
upon the transmission code for the station: appropriate characters are

• for EBCDIC, X'32';
• for ASCII, X'16';
• for 6-bit Transcode, X'3A'.

The X and the framing quotes are not coded.

When creating an INVLlST entry for a polled BSC station, code the ENQ line control
character after each sequence of hardware polling characters. Appropriate characters
are

• for EBCDIC, X'2D';
• for ASCII, X'OS';
• for 6-bit Transcode, X'2D'.

The X and the framing quotes are not coded. For example, the entry for a polled IBM
2780 terminal named NYC that uses EBCDIC transmission code might be coded

NYC+ClF62D

Appendix G: Device-dependent Considerations 415

416

where CI F6 is the EBCDIC .representation of the polling characters A6 in hexadecimal
notation, and 2D is the EBCDIC representation of the ENQ line control character in
hexadecimal notation.

• The EOT= operand of the INVLIST macro must be coded for BSC stations on a multi
point line.

• TCAM supports four BSC ID schemes; the user can specify a CPU ID and no station
ID, a station ID and no CPU ID, both a station ID and a CPU 10, or neither a station
ID nor a CPU ID.

• When BSC stations are assigned'ID sequences, the unit size (as specified in the
KEYLEN= operand of the INTRO macro) must be at least as long as the sulli of the
longest ID sequence that can be entered by a station plus one byte; otherwise, errors
may occur.

• If a unique ID is assigned each BSC station ona switched line, rio origin macro is
needed to identify these stati,ons.

• The length of a CPU or station ID sequence should not be longer than eight characters.
• If no ID exchange i& desired for BSC stations on a switched line, the invitation list for

the line should consist of a single entry containing the name of a single station on that
line followed by a +. Example: TERMA+

• If a one-character station ID sequence is being used, the EBCDIC pad character
(X'DF') should not be assigned as an ID.

• If BSC stations 011 the same switched line are assigned ID sequences that differ in
length, ID sequences 'shorter than the longest ID sequence specified in an INVLIST
entry should be padded to the right with EBCDIC blanks to bring them up to the
length of the longest sequence. The maximum length BSC ID sequence is 15 bytes.

• The sequence of addressing characters for a BSC station must be followed by the ENQ
line control character. Appropriate characters are:

• for EBCDIC, X'2D';
• for ASCII, X'OS';
• for 6-bit Transcode, X'2D'.

The X and framing quotes are not coded.
• A switched line to BSC stations that are all assigned unique ID sequences does not

require a TERMINAL macro instruction coded UTERM=YES. For such a line, the user
should enter each station's name and ID sequence and the CPU ID sequence in the
appropriate operands of the INVLISt macro instruction for the line.

• If equal prioritY is specified for BSC point-ta-point stations on a nons witched con
tention line, messages may be entered at the terminal whenever the line is idle.
Messages queued for the terminal will be sent only if a MSGLIMIT macro instruction is
coded in the inheader subgroup of the message handler for this line, and then only
when the number of messages entered by the terminal is equal to the number specified
in the MSGI.IMIT macro instruction. '

• Transmission priority for switched stations: When a BSC station calls the computer,
the computer allows the station to enter one message after the connection is estab
lished. The BSC station enters a message if it has one. The computer then sends the
BSC station one message, if any is queued for the station, and if the calling station has
identified itself by means of an ID sequence or an origin field, verified by an ORIGIN
macro, in the message header. Messages are sent by the computer according to the
priority scheme outlined in Message Priority and Queuing. The computer alternates
between sending the BSC station a single message and pausing to permit the station to
enter a single message until the message queue for the station is exhausted. If no input
message is entered immediately, the computer pauses for nine seconds before sending
the station the next message on its destination queue. (A computer serving as a remote
station can avoid the nine-second delay by entering an EOT when it has no message to
enter.) When the last incoming message is received and no further messages appear on
the destination queue for the station, the computer breaks the line connection, making
the line available for new calls.

This scheme also applies when the computer calls the station, except that the com
puter sends the first message (if it has one for the station) in this case. If the computer
has nothing to send the station, and nothing comes in from the station, the computer
breaks the line connection.

If a BSC station calls the computer and does not identify itself (that is: does not use
ID verification), the computer allows the station to enter messages and sends the
station messages queued for this line. If no messages are queued for the line entry, and

IBM 2770 Data Communications
System

IBM 2780 Data Transmission
Terminal

The TPEDIT Macro
Instruction for the
IBM 50 Magnetic Data
Inscriber

if the station has not identified itself by the time it enters its last message, the com
puter breaks the line connection after giving the station a chance to enter and after
receiving no message from the station.

• If 2770s are on multipoint lines, it is recommended that the stations be defined as
buffered (by the BFDELAY= operand on the TERMINAL macro). Enough delay time
should be specified by BFDELA Y= to allow the terminal to empty one of its two
hardware buffers. (TCAM's buffered terminal support is designed to optimize line
usage for the 2770.)

• Only multipoint 2770 stations should be defined as buffered.
• Send priority must be specified for buffered terminals (see the description of the

CPRI= operand of the line group DCB macro instruction).
• Queuing must be by terminal (see the description of the QBY= operand of the

TERMINAL macro instruction).
• If the CONV= operand of the STARTMH macro specifies conversational mode for an

MH handling messages being sent to a 2770 station, and if the station is set up so that
selection of an output device is required, a device-selection character (X'l1', '12', or
'13', depending upon the output device selected) must be specified as the first char
acter following the STX line-control character in each message sent to the 2770
station. The user must see to it that this character appears in his outgoing message
TCAM does not support transparent mode for messages being sent to 2770 stations
requiring selection of an output device.

• When attempting to select a point-to-point 2770 or 2780 station, TCAM sends an ENQ
character, the station responds with ACKO, and TCAM writes the escape sequence for
the desired station component. If an RVI is received from the station instead of
ACKO, TCAM sends an EOT to the station and attempts to send the message at a later
time.

• Extended lock mode (obtained by the LOCK macro) must not be used with this
terminal if TCAM's buffered terminal support is specified for it (by the BFDELA Y=
operand of the terminal macro).

• On the ST ARTMH macro instruction, the CONV=YES operand should not be coded if
any 27 80s are included on lines handled by this Message Handler; if it is coded, the
BSC line integrity is destroyed.

• For a 2780 point-to-point, when the computer sends information to the punch or
printer, an escape sequence must be specified in the TERMINAL macro
(ADDR=escape sequence).

• When attempting to select a point-to-point 2770 or 2780 station, TCAM sends an ENQ
character, the station responds with ACKO, and TCAM writes the escape sequence for
the desired station component. lf an RVI is received from the station instead of
ACKO, TCAM sends an EOT to the station and attempts to send the message at a later
time.

The IBM 50 Magnetic Data Inscriber (MOl) is a key-operated device that records data on
cartridge-contained magnetic tape. (For a description of the IBM 50 MDI, see the publica
tion IBM 50 Magnetic Data Inscriber Component Description, Order No. GA27-2725.) It
enables the user to enter data from source documents to magnetic tape, which is then
used to enter data into an IBM System/360 through the IBM 2772 Control Unit. Data
received from the IBM 50 MDI attachment to the IBM 2772 Multi-Purpose Control Unit
contains MDI control characters; the TPEDIT macro allows the user to edit this data.

The re-enterable editing routine is activated by the TPEDIT macro issued in an applica
tion program following a GET or a READ macro (it must not be issued in the MCP); it
edits MDI control characters as specified by operands in the TPEDIT macro. One of the
operands also specifies whether a user error-exit routine is to handle error records. If data
is to be received from more than one IBM 50 MDI at a time in an application program, a
separate parameter list must be issued for each (described in more detail in Input to the
TPEDIT Macro) below.

Appendix G: Device-dependent Considerations 417

TPEDIT Macro Format

name

MINLN=n

EDIT= j EDITR t
1EDITDf

418

Name Operation Operand

[name] TPEDIT MINLN=n

,EDIT= 1 EDITR t
EDITD

,RECFM=l~f

,ERROPT= rame f
IGNORE

,VERCHK= tOKCHKf
NOCHK

,REPLACE=lX'XX'f
X'19'

,BUFFER= l~~S f

Is the name of the macro and is optional. If included, the name may be any symbol valid
in the assembler language.

Specifies the minimum acceptable length of an input record where n is replaced by the
decimal number of bytes desired as a minimum. For EDIT=EDITD, SOR and EOR codes
are excluded from the length; for EDIT=EDITR, SOR and EOR are included in the
length. This operand may not be omitted.

Specifies the type of editing to be done.

EDITR causes the input to be edited and the start-of-record (SOR) and end-of-record
(EOR) delimiters to be retained as part of the output.

ED lTD causes the input to be edited and start-of-record and end-of-record delimiters to
be deleted. ED lTD is assumed if this operand is omitted.

The edit consists of the following functions: records are extracted one at a time from the
input area by scarining for the record delimiting codes (SOR and EOR). Duplicating
(DUP) codes are replaced by the character(s) from the corresponding location of the
record in the work area when control was last returned to the editing routine (true for all
records except the first). Left-zero fields are right-adjusted, with leading zeros inserted
where necessary. Left-zero start codes, group separator codes, and records containing a
cancel code do not appear in the output stream. Line-control characters (ETB, ETX,
STX, and DLE,STX) are always deleted if found in the input area.

Specifies the format of the output from the editing routine.

If RECFM=U is coded, no segment descriptor word is added to each record.

If RECFM=V is coded, a segment descriptor word is added to each record as shown
(RECFM=V is assumed if this operand is not coded).

ERROPT=1name t
llGNOREf

VERCHK=1VOKCHKt
lNOCHK f

Segment Descriptor Word

1------------1
I 1
1 1

I

nn bb d~a

I 1

... Lcl------------- Logical Record ~
1 I

where nn (2 bytes) is the length of the logical record and bb (2 bytes) is binary zeros
reserved for system use.

This four-byte field is included in the record length returned to the user in a parameter
list.

NOTE: This four-byte field must be allowed for by the user when determining the size of
the work area (see Input to the TPEDIT Macro) below.

Specifies whether a user error exit routine is provided to handle error records.

name speCifies the name of the user error eXit routine to be entered when the editing
routine detects logical errors or replacement characters in the record.

IGNORE specifies that an error exit rou tine is not provided. The error conditions are to
be disregarded and the record is to be passed normally to the user. If this operand is
omitted, ERROPT=IGNORE is assumed.

(valid only if ERROPT=name is coded) Specifies whether the records are to be checked for verify OK (VOK) codes. NOCHK is
assumed if this operand is omitted (and subsequent records are not checked).

If VOKCHK is specified and a record does not contain the verify OK code, the record is
passed to the error exit routine.

When the editing routine encounters an erroneous record and control passes to this user
supplied routine, register 13 contains the address of a 72-byte register save area aligned on
a fullword boundary, and register 1 contains the address of a two-word parameter list
aligned on a fullword boundary. The parameter list is defined as follows:

Word Contents

1 Record address
2 Address of record length

The record length includes the four-byte Error Description Word appended, as shown, to
the data record. In addition, if RECFM=V is coded in the TPEDIT macro, the logical
record length(nn) includes these four bytes when it is passed to the error exit routine.

Appendix G: Device-dependent Considerations 419

420

If RECFM=V is specified:

Error

Description

Word -------------I I
I
I
I

nn bb I I I I I data

1 I
I I

14 Logical Record --------------I~~I
I

If RECFM=U is specified:

Error

Description

Word

-------------I
I I
I I

~ I

I I I I I data

1 I
I I

!II\4 ------------ Logical Record -----------.:~:

The contents of the Error Description Word are shown below. Further information is
contained in a later section, Identifying Records in Error.

The error exit routine can be used to analyze and possibly correct a record that is in
error. When control returns to the editing routine with a BR 14 instruction, the user must
set register 15 to zero if the erroneouS record is to be bypassed. Register 15 must be set
to a nonzero value in order to direct the editing routine to ignore an error in the erro
neous record, and thereby process the record in the normal manner. Whether the record in
error is accepted or bypassed does not change its effect on subsequent records. The Error
Description Word is removed by the editing routine when control returns from the error
exit routine.

REPLACE=jX'xx't
lX'19'~

BUFFER=t~:~

Input to the TPEDIT Macro

Specifies the code to be used as a replacement character when the editing routine detects
a 2772 replacement character (EBCDIC SUB character, X'3F') in the input. X'19' is the
assumed value (default) because it is an end-of-data (ED) signal for an IBM 50 MDI
cartridge and therefore can never appear as a valid data byte.

For REPLACE=X'xx', the user can replace xx with any hexadecimal characters he
chooses (note that xx must be enclosed in single quotes), Choices may be made from the
code chart in Figure 56 with exceptions as noted below.

Programming note: BSC control characters should not be used as replacement characters
if the data is to be transmitted by BSC facilities after editing.

Hexadecimal characters representing special purpose MDI codes that should not be used
as replacement bytes are:

X'OO'
X'll'
X'12'
X'18'
X'ID'

(LZ)
(DUP)
(LZS)
(CAN)
(GS)

X'IE'
X'3C'
X'71'
X'72'
X'73'

(VOK)
(RM)
(PI)
(P2)
(P3)

X'74'
X'75'
X'76'
X'77'
X'78'

(P4)
(P5)
(P6)
(P7)
(P8)

This operand specifies whether the user's data is in BT AM buffers. TCAM users should
either omit this operand or code BUFFER=NO.

Register I must point to a four-word parameter list (aligned on a fullword boundary)
containing:

Word Contents

1 Input Address
This is the address of the data to be edited.

2 Input Length
This is the length of the data to be edited.

3 Edit work area address
The work area required by the editing routine for a given parameter list is
obtained in either of two ways. The work area can be provided by the editing
routine (by an unconditional GETMAIN), or it can be provided by the user.

If the work area is to be provided by the editing routine, this word must
contain binary zeros. The editing routine issues a GETMAIN macro to obtain
the required storage, and places the address of the storage obtained in this
word. If the work area is provided by the user, then this word contains the
address of the area supplied.

The amount of storage needed in addition to the fixed amount required is
determined from:

a) the maximum record length;
b) whether a tiser exists (72 bytes for a register save area and four bytes for

an EDW are required by the macro if an exit is specified);
c) whether variable record formats are used;

The size (in bytes) of the work area may be determined from the formula:

S= 84 +76E +R+4V

where

S is the size (in byes of the work area
E= 0 if ERROPT=IGNORE is coded
E= 1 if ERROPT=name is coded
V= 0 if RECFM=U
V= 1 if RECFM=V
R is the length of the longest record to be processed

Appendix G: Device-dependent Considerations 421

Bits 0, I 00 01 10 11

Bits 2,3 00 01 10 11 00 01 10 11 00 01 10 II 00 01 10 11

1st Hex Digit _____ 0 I 2 3 4 5 6 7 8 9 A B C 0 E F

0000 0 LZ SpaCE & Minus
- 0- 0-8-2 0

0001 I OUP I PI A J I

0010 2 LZ
Start P2 B K S 2

. 0011 3 P3 C L T 3

0100 4 P4 D M U 4

0101 5 P5 E N V 5

, OliO 6 P6 F 0 W 6

Olll 7 P7 G P X 7

1000 8 CAN P8 H Q Y 8

1001 9 ED I R Z 9

1010 A ¢ I :

lOll B $, ,
lJOO C RM < * % @

1101 0 GS { } Vnder- ,
line Prime

1110 E VOK + ; > =
Illl F I -, ? "

f f
Bits. 2nd Hex
4,5 Digit
6,7

IBM 50 Code EBCDIC Code IBM 50 Code Nome
Name Name {See Note}

LZ {LZ Fill} NULL PI (Prag 1)
OUP DC I P2 (Prog 2)
LZ Start OC2 P3 {Prog 3}
CAN {Cancel} Can P4 (Prog 4)

ED {End Data} EM P5 (Prog 5)
RM (Rec Mark) OC4 P6 (Prog 6)
GS {Group Sep} IGS P7 (Prog 7)
VOK Ner OK) IRS P8 (Prog 8)

Note: Codes ore assigned for IBM 50 use only.

Figure 56. IBM 50 MOl Control Codes

422

Return Codes

Identifying Records In Error

level Status (Byte 0)

4 Maximum record length
This is the length, in bytes, of the longest valid edited record. For
EDIT=EDITD the length should exclude SOB and EOB codes; for
EDIT=EDITR, the length should include SOR and ER codes.

The value of the maximum record size should not include the four-byte
Segment Descriptor Word added to a variable length record.

Records that exceed the maximum record size are considered error records.

Register 13 must contain the address of a 72-byte register save area aligned on a full word
boundary.

After the editing routine has edited a record, it provides a return code in register 15
indicating record availability and status of the input area, prior to returning control to the
user. The return codes and their meanings are:

Code
(hex) Afeaning

00 A record is available; input area is empty. The routine has edited the last
logical record in the input area and is passing the record to the user.

04 A record is available; input area is not empty. The routine has edited one
logical record and is passing that record to the user.

08 No record is available; input area is empty. The last record in the input area
was incomplete; i.e., it was a partial record.

OC End-of-cartridge (ED) code was detected.

For return codes 00 and 04, the record address and the address of the record length are
given to the user in a two-word parameter list aligned on a full word boundary. The
address of the parameter list is returned in register 1. The parameter list has the following
format:

Word

1
2

Contents

Address of the record
Address of the record length

This section describes what the editing routine considers to be records in error. Once a
record is determined to be in error, the editing routine passes the record to the user error
exit routine, if ERROPT=name is specified in the TPEDIT macro statement. If an error
exit routine is not specified, the erroneous record is returned normally to the user.

The editing routine maintains information about each record as it is being edited. This
information is summarized in the error description word (EDW) described below. When
theEDW contains a non-zero value in either the level status (byte 0) or the type status
(byte 1), the record is considered an erroneous record, and the EDW is inserted between
the four-byte record length field and the data portion if RECFM=V is specified in the
TPEDIT macro. Otherwise, the EDW is added to the start of the record to aid the use in
analyzing the error.

The level status indicator identifies erroneous records that result from inter-record
dependency and that cannot be identified in the type status byte.

The level status is presented with each error record and has a value of:

Format of Error Description Word for the TPEDIT Macro.

o

2

For any error record that will not cause questionable data in following
record(s).
For any error record that may cause questionable data in following record(s),
and the level status of the previous record was zero.
For any error record that has questionable data because of the error level of
preceding record(s) that may cause questionable data in the following
record(s), and where the level status of the previous record was either 1 or 2.

Appendix G: Device-dependent Considerations 423

Type Status (Byte 1)

424

----~.-- -_ .. _--"

Byte 0

o

2

Byte 1

o
I
2
4
8

Level status

For any error record that will not cause questionable data to be in the follow
ing record(s).
For any error record that may cause questionable data to be in the following
record(s).
For any error record that (I) con tains questionable data due to the error level
of preceding record(s) and (2) may cause questionable data to be in the
following record(s); and where the level status of the previous record was
either I or 2.

Type status

No identifiable error(s)
Start-of-record (SOR) or end-of-record (EOR) in error
Length error
Field error
Data check error

NOTE: This field may contain combinations of these error types; e.g., a C (hexadecimal)
indicates a data check error and a field error.

Byte 2

I - PI
2 - P2
3 - P3
4 -P4

Byte 3

U
V
E

Program Level

5 - P5
6 - P6
7 - P7
8 - P8

E - none of the preceding levels.
Start-of-record (SOR) is in error.

Record Status

Unverified record
Verified record
Neither U nor V. End-of-record (EOR) is in error.

NOTE: The error description record is in EBCDIC format. For example, a 2 is repre
sented as X'F2'; a C is represented as X'C3'.

A level status of other than zero is presented with error records resulting from the
following:

• The start-of-record (SOR) location has a character defined as an error.
• The record contains two or more data check bytes in succession.
• The record is longer than the user-specified maximum length record.
• The length of the record is not equal to the length of the first valid record of the same

program level encountered on the MDI cartridge from which data is being obtained.
• The record has a data duplication dependency on a previous record with one of the

foregoing.

The level status is set to zero when the editing routine encounters a record without one of
the previous errors, a canceled record, or the first record of a cartridge.

The type status indicator identifies records in error because of SOR, EOR, length, field,
and/or data check error conditions.

The type status is presented with each error record and has a value of:

o

--------- --

For any record that has no identifiable error(s), but contains questionable
data because of a level status of other than zero. (See Level Status.)
For any record that has an SOR character of other than PI through P8 or a
GS code; or that has an EOR character of other than a VOK code when the
user has specified VERCHK=VOKCHK; or that has an EOR character of
other thana VOK code or RM code when the user has specified
VERCHK=NOCHK.

---- - ----~-----

2

4

8

For any record that has an incorrect length because it is:

• Longer than the specified maximum, or
• Shorter than the specified minimum (MINLN), or
• Not equal to the length of the first valid record of the same program level

encountered on the MDI cartridge from which data is being obtained.

For any record that has one or more field error(s). A field error is a field
where duplication and/or left-zero justification functions did not occur due
to an error condition.
For any record that has a data check error.

The type status indicator can also have hexadecimal values of 3,5,6, 7, 9, A, B, C, D, E
and F. These values indicate various combinations of SOR, EOR, length, field, and data
check errors. For example, a value of A indicates a record with a data check error (8) as
well as an incorrect length (2).

NOTE: A data check error is indicated by the presence of 2772 replacement characters
(EBCDIC SUB character, X'3F'), in the input.

Program Level (Byte 2) This byte contains an indication of the start-of-record (SOR) character associated with
this record.

Record Status (Byte 3) This byte contains an indication of the end-of-record (EOR) character associated with
this record.

Sample Records Containing Errors These records show some of the errors that may occur during processing and their effect
on the error description word (EDW). For these records, the maximum record length is
specified as 50; EDITR and VOKCH are specified, and the hexadecimal REPLACE
character is '5B' ($). An asterisk in the records indicates the presence of a DUP code in
the location before editing.

(Record 2) v
*************** *0

19EV $111378 RECORD NUMBER 2AK

(Record 3)
V

P *************** *0
201 V 1357987 RECORD NUMBER 3AK

(Record 4) V
P 0

081 V 1358977 REC$RD NUMBER 4AK

(Record 5)
P R

131 U 1358436 RECORD NUMBER 5M

(Record 6)
V

p *************** *0
241 V 1358436 RECORD NUMBER 6$K

(Input record 7)
V

P 0
233E 3998865 RECORD NUMBER 7A MAXIMUM 00001430 IN WAREH OUSEK

\, y I

(Error record 7)
(Error record 8)

(Input record 8): .-----r-~-----------V--,
(Error record 9) P 0

081 V 1367$82 RECORD NUMBER 8AK

• Resulting Error Description Word

Appendix G: Device..cJependent Considerations 425

Programming Considerations

End~f-Cartridge Code

426

Record 1 was a valid record. It contained a program level I code and thus established the
valid length for all program level I records received from the cartridge.

Record 2 has a data check in the SOR location. Level status is set to I because the SOR
location might have contained a cancel code that would cause any data duplicated into
the following record to be questionable.

Record 3 has no identifiable error but may contain questionable data because it
contained DUP codes and follows a record with a level status of 1.

Record 4 has a data check error. Because it contained no DUP codes, the level status is set
to O.

Record 5 is shorter than first program level I records received from the cartridge (length
error). This record also contains an RM code rather than a VOK code in the EOR location
VOKCHK was specified). Because the editing routine cannot determine why the record is
short, all data duplicated from this record is questionable; therefore, the level status is set
to 1.

Record 6 contains a DUP code that is beyond the last position Of the preceding record.

Record 7 is longer than the maximum specified record length. Note that it is passed as
two records. The first record indicates an EOR error and a length error; the second
indicates an SOR error.

Record 9 has a data check error. Because it contained no DUP codes, the Level Status is
set to zero.

• All canceled records are bypassed and are not passed as erroneous records.
• All input records less than three bytes in length (SOR location, one data byte, EOR

location) are treated as canceled records. An input record of this size may be the
remaining portion of a record that was longer than the maximum user-specified record
size.

• Data duplication occurs with the DUP code replaced by the character from the
corresponding location of the previous record in the work area when control was last
returned to the editing routine.

• Data duplication does not occur and the DUP code is replaced with the user-specified
error replacement character, and a field error is indicated, for any of the following
conditions:

The DUP code is encountered in the first record of a cartridge.

The DUP code is encountered in a record and previous record was a canceled record.

The DUP code is encountered in a record arid its position would duplicate the
previous record's end-of-record delimiter location or a position beyond the length of
the previous record.

• Left-zero justification does not occur, the left-zero fill code (LZ) is replaced with the
user-specified error replace character, and a field error is indicated, for either of the
following conditions:

The left-zero fill code (LZ), is encountered without its corresponding left-zero start
code (LZS).

The user-specified maximum record size is exceeded before encountering the valid end
of a left-zero field.

• For BTAM users using dynamic buffering, the BSC control characters ETB and ETX
should not be entered as data on IBM SO MDI cartridges.

A unique code, written by the IBM SO MDI, is used to signal to the 2772 control unit
that all meaningful data on a cartridge has been read. For the MDI cartridge, the end-of
cartridge code is the ED character (X'19').

After initiation of a Read operation the MDI continues to read data from the tape until it
senses the ED character. When the MDI sends this character to the 2772, the 2772 signals
the tape to rewind and transmits the data in its buffer to the computer.

Appendix H: Conserving Main Storage

Several operands of the INTRO macro instruction can be used to reduce the amount of
main storage required by a TCAM MCP.

If disk queuing is not needed, specifying DISK=NO results in a saving of 140 bytes.

When disk queuing is required, if the application will permit specification of only one
channel program block, CPB=l saves 730 bytes in addition to the actual amount of
storage required for the CPBs.

If the system interval is not required, specifying INTV AL=O will save 660 bytes.

If ENVIRON=TCAM and the system configuration permits, specifying the L1NETYP=
operand as something other than L1NETYP=BOTH results in a considerable saving. The
number of bytes saved is:

L1NETYP=BISC 2110
L1NETYP=STSP 4220
LlNETYP=MINI 6720

If ENVIRON= does not specify TCAM, specifying L1NETYP=STSP will result in a
saving of 4220 bytes.

If the system timer feature is not required, specifying FEATURE=("NOTIMER) saves
820 bytes.

If ENVIRON=TCAM, the other suboperands of the FEATURE= operand will also reduce
main storage requirements. FEATURE=(DIAL,N02741) saves 70 bytes.
FEATURE=(NODIAL,N02741) saves 420 bytes. However, FEATURE=(NODIAL,2741)
does not result in a saving.

The use of the USEREG=, DTRACE=, OL TEST= and COMWRTE= operands increases
the amount of main Iltorage required by the MCP. DTRACE= requires an additional
amount of main storage equal to the value specified multiplied by four. OLTEST=
requires lK of main storage for each integer specified (Le., if OLTEST=lO is coded, an
additional 10K of main storage is implied). For a discussion of the effects on storage
requirements of COMWRTE=, see the section DebuggingAids in Using TCAM Service
Facilities. For a discussion of the use of the USEREG= operand and its affect upon
storage requirements, see User Code in a Message Handler in the chapter Designing the
Message Handler.

The WTTONE= operand will require an additional n+2 bytes of main storage, where n is
the integer specified for WTTONE=.

In addition to the INTRO operands, operands of the DCB, TERMINAL and TPROCESS
macros, in conjunction with INTRO, may have an effect upon the amount of main
storage required for the MCP.

If dynamic allocation of buffers is not required, and all DCB macros specify PCI=(N,N),
930 bytes are saved, The queuing type specified on the TERMINAL and TPROCESS
macros, in conjunction with the MSUNITS;:: and DISK= operands of the INTRO macro,
changes the amount of main storage required. If reusable disk queuing or multiple
queue types are used, an additional 3510 bytes are needed. Disk queuing only saves
3300 bytes over a combination of disk and main-storage queuing. Main-storage-only
queuing saves 4110 bytes over a combination of disk and main-storage queuing.

The amount of main storage required may also be reduced by proper specification of
buffers and buffer units. Specification is provided in the INTRO operands LNUNITS=,
MSUNITS= and KEYLEN=, and the DCB operand BUFSZ=. A checklist for determina
tion of proper size for the application is found in Design Considerations in Defining
Buffers.

The use of these operands depends on the requirements of the application. It may not
be possible to utilize all of the savings possible in a particular application.

Appendix H: Main-storage Considerations 427

The operands and number of bytes saved are summarized in the following chart.

MACRO OPERAND(S) BYTES

INTRO DISK=NO 140
CPB=1 730
INTVAL=O 660
LlNETYP=BISC 2110
LlNETYP=STSP 4220
LlNETYP=MINI 6720
FEATUR~=("NOTIMER) 820
FEATURE=(DIAL,N02741) 70
FEATURE=(NODIAL,N02741) 420
MSUNITS=n,DISK=NO 4110
M~UNITS=O,DISK=YES 3300

OCB PCI=(N,N) 930

\ 428

accepting: the process in which a destination station acquires a
message transmitted to it from the central computer. Entering
and accepting are functions of a station.

accepting station: a destination station that acquires a
message.

access line: a switched line continuously connecting a remote
station and the transmission control unit to a switching center
(exchange). A telephone number is associated with the access
line.

access method: a combination of an access technique (either
queued or basic) and a given data set organization (for
instance, sequential, partitioned, indexed sequential, or direct)
that allows the programmer to transfer data between main
storage and I/O devices.

active line: a communication line that is currently available for
transmission of data. Contrast with inactive line.

active station: a station that is currently eligible for entering
and/or accepting messages on the line. A station may be
active for entering or active for accepting, or both; the status of
a station is determined by the status of the line it is on, by the
type of character (+ or -) coded in the invitation list entry for
the station, by the presence or absence of a HOLD macro in the
outgoing group of the Message Handler handling outgoing
messages for this station, and by the five operator commands
(ACTVBOTH, ENTERING, NOENTRNG, NOTRAFIC, SUSPXMIT,
that directly affect the station's status.

addressing characters: identifying characters, sent by the
computer, that cause a particular station (or component) to be
selected to accept a message sent by the computer.

answering: a procedure by which a called party completes a
connection (for switched lines).

application program: a user-provided program that processes
the text portions of messages. Application programs run
asynchronously with the Message Control Program, and are
usually located in another partition or region of main storage.
TCAM application programs are optional; there may be many or
none, depending on the needs of the user.

ARU: see audio response unit.

audio line: a communication line attached to an audio response
unit such as the IBM 7770 Model 3 Audio Response Unit. An
audio communication line is always switched.

audio response unit (ARU): a control unit that provides much
the same functions for audio stations that a transmission
control unit provides for non-audio stations; in addition, it
causes an audible response to be made to an audio inquiry.

audio station: a unit of equipment associated with an audio
response unit, at which keyed or dialed data is entered for
transmission to the computer; an audio response is produced
by the ARU as output.

Auto Answer: a machine feature that allows either a
transmission control unit or a station to respond automatically
to a call that it receives over a switched line.

Auto Call: a machine feature that allows either a transmission
control unit or a station to automatically initiate a call over a

Glossary

switched line. A dialing operation that originates at the central
computer must use the Auto Call machine feature.

Auto Poll: A machine feature of a transmission control unit that
permits it to handle negative responses to polling without
interrupting the central processing unit. At the end of the
invitation list, polling is resumed automatically at the beginning
of the list.

available-unit queue: a queue in main storage to which all
buffer units are assigned initially (that is, before allocation to
TeAM lines and application programs requiring buffers). Empty
buffer units (that is, buffer units whose contents have been
processed by the incoming or outgoing group of an MH, and
that are not assigned to the main-storage message queues data
set) are returned to the available-unit queue, from which they
are reallocated.

bid: in the contention form of invitation or selection, an attempt
by the computer or a station to gain control of the line so that it
can transmit data.

binary synchronous communications (BSC): data transmission
in which character synchronization is controlled by timing
signals generated by the device that originates a message (and
the device that obtains the message recognizes the sync
pattern at the beginning of the transmission--the devices are
locked in step with one another); contrast with start-stop
transmission.

block: that portion of a message terminated by an EOB or ETB
line-control character or, if this is the last block in the message,
by an ETX or EOT line-control character. When end-of-block
checking is specified in the ST ARTMH macro, messages are
checked for certain types of transmission and user-specified
logical errors on a block-by-block basis.

BSC: see binary synchronous communications.

buffer: an area in main storage into which a message segment
is read, or from which a message segment is written. Buffers
are temporary data-holding areas that are used to compensate
for the difference between the rate at which data can be
entered from or aCGepted by a station and the rate at which it
can be processed by the central processing unit; buffers also
may be used as work areas in TeAM. The size of TCAM buffers
is designated by the user. (See also hardware buffer.)

buffer allocation: the assignment of buffers by TeAM to lines or
application programs in preparation for reception of message
segments from stations on the lines or from application
programs. (See also dynamic buffer allocation and static buffer
allocation.)

buffer deal/ocation: for a sending operation, deallocation
consists of returning the units that compose the buffer to the
available-unit queue after the data in these units has been sent
to its destination station or application program; for a receiving
operation, deallocation consists of transferring full buffers from
the line or application program to which they were assigned to
the incoming group of the MH that is to process the message
segments they contain.

buffer prefix: a control area contained within each TeAM
buffer. The prefix for the buffer containing the first segment of
a message is 30 bytes long, while the prefix for each buffer
containing a subsequent segment of the message is 23 bytes
long. The user must allow room for the buffer prefix when he

Glossary 429

specifies his buffer size. TCAM fills the prefix area with buffer
control information.

buffer unit: the basic building block from which TCAM buffers
are constructed. All units in a particular TCAM system are the
same size; this size is specified by the KEYLEN = operand of
the INTRO macro.

buffer unit pool: all the buffer units in a particular TCAM
system together constitute the buffer unit pool for that system.
The number of units in the pool is equal to the sum of the
integers specified by the LNUNITS= and MSUNITS = operands
of the INTRO macro.

buffered terminal: a terminal having a hardware buffer. As
used in this book, a buffered terminal is an IBM 2740 Model 2
Station or IBM 2770 station whose TERMINAL macro specifies
BFDELAY = integer. When the BFDELAY = operand of
TERMINAL is coded, messages are sent to the station
segment-by-segment; after a segment is sent, the Message
Control Program pauses before sending the next segment to
allow the station's buffer to empty. During this pause, the MCP
may send segments to other stations on the line.

calling: a procedure that establishes a connection over a
switched line; a series of electrical signals, corresponding to the
telephone number of the station or computer with which contact
is to be made, are sent down the line; these pulses or notes
cause automatic switching equipment belonging to the common
carrier to establish the connection, if the party being called is
free to accept the call.

cascade entry: an entry in the terminal table associated with a
cascade list.

cascade list: a list of pointers to single, group, or process
entries. A message is queued for the valid entry in the list with
the fewest messages queued for it.

central processing unit (CPU): a unit of a computer that
controls interpretation and execution of instructions.

channel program block (CPB): a TCAM control block used in
the transfer of the data between buffer units and message
queues maintained on disk. The CPB = operand of the INTRO
macro specifies the number of CPBs to be provided in a TCAM
system.

checkpoint data set: an optional TCAM data set that contains
the checkpoint records used to reconstruct the MCP
environment after closedown or system failure, when the TCAM
checkpoint; restart facility is utilized.

checkpoint records: records, located in the checkpoint data set,
that are used to reconstruct the MCP environment upon restart
following closedown or system failure. There are four types of
checkpoint records: environment records, incident records,
checkpoint request records, and a control record.

checkpoint request record: a checkpoint record taken as a
result of execution of a CKREQ macro issued in an application
program; the record contains the status of a single destination
queue for the application program. The latest checkpoint
request record for a message queue is used during restart to
cause sending from that queue to the application program to
begin with the message that follows the last message sent to
the program from that queue at the time the checkpoint request
record was taken, rather than with the message following the
last message marked serviced.

checkpoint/restart: a TCAM facility that records the status of
the teleprocessing network at designated intervals or following

430

certain events. Following system failure or closedown, the
checkpoint/restart facility uses the records it has taken to
restore the Message Control Program environment as nearly as
possible to its status before the failure or closedown.

closedown: an orderly deactivation of the MCP by either an
MCPCLOSE macro instruction issued in an application program
or an operator command. See quick c/osedown and flush
c/osedown.

cold restart: start-up of a TCAM Message Control Program
following either a flush closedown, a quick closedown, or a
system failure. A cold restart ignores the previous environment
(that is, the MCP is started as if this were the initial start-up),
and is the only type of restart possible when no
checkpoint/restart facility is used.

common carrier: in communications, a government-regulated
private company that furnishes the general public with
telecommunications services; a telephone or telegraph
company.

component: an I/O device associated with a station.

computer: in this publication, the central processing unit in
which the TCAM Message Control Program is located.

contention: classically, a line-control scheme in which stations
on a line compete for the use of that line; the station that is
successful in gaining control of the line is able to transmit. In a
TCAM system, the term is applied to any point-to-point line
configuration when the station on the line does not use polling
and addressing characters.

continuation restart: a restart of the TCAM Message Control
Program following termination of the Message Control Program
because of system failure; the TCAM checkpoint/restart facility
is used to restore the MCP environment as nearly as possible to
its condition before failure.

control characters: characters transmitted over a line that are
not message data, but which cause certain control operations to
be performed when encountered by the computer, transmission
control unit, or station; among such operations are polling and
addressing, message delimiting and blocking,
transmission-error checking, and carriage return.

control record: a record, incl4ded in a checkpoint data set, that
keeps track of the correct environment, incident, and
checkpoint request records to use for reconstructing the
Message Control Program environment during restart.

CPB: see channel program block.

CPU: see central processing unit.

DASD: direct-access storage device, also referred to as disk.
The DASD devices supported by TCAM are the IBM 2311 Disk
Storage Drive and the IBM 2314 Direct Access Storage Drive.

data collection: a telecommunications application in which data
from several locations is accumulated at one location (in a
queue or on a file) ~efore batch processing.

data control block (DCB): an area of main storage that serves
as a logical connector between the problem program and a data
set. The data control block also can be used to provide control
information for any transfer of data. A data control block must
be created for each TCAM data set except a message queues
data set residing in main storage; a DCB macro instruction is
used to create a data control block.

Data set:

1. a named, organized collection of logically related records
(program data set). The information is not restricted to a
specific type, purpose, or storage medium. Among the data
sets specifically related to TCAM are the line group data
sets, the message queues data sets, the checkpoint data
set, the message log data set, and the input and output data
sets for a TCAM-compatible application program.

2. a device containing the electrical circuity necessary to
connect data processing equipment to a communication
channel; also called a subset, Data-Phone*,
modulator/demodulator, or modem.

dead-letter queue: the destination queue for the station or
application program named by the DlQ = operand of the INTRO
macro instruction. If an invalid destination is detected in a
message header by a FORWARD macro instruction, and if no
user-exit is specified in the FORWARD macro, that message is
sent to the dead-letter queue.

delimiter macro instruction: a TCAM macro instruction that
classifies and identifies sequences of functional macro
instructions and directs control to the appropriate sequence of
functional macro instructions.

descriptor code: under Multiple Console Support, indicates the
means of message presentation and message deletion on
display devices.

destination: the place to which a message being handled by a
TCAM Message Handler is to be sent. A destination may be
either a station defined by a TERMINAL macro, a group of
stations defined by a TliST macro, or an application program
defined by a TPROCESS macro. One or more destinations may
be ·specified in fields of the message header that are checked
by a FORWARD macro, or a single destination may be specified
for all messages handled by a particular in header subgroup by
means of the DEST = operand of a FORWARD macro issued in
that subgroup.

destination field: a field in a message header containing the
name of a station or application program to which a message is
directed.

destination queue: a queue on which messages bound for a
particular destination are placed after being processed by the
incoming group of a Message Handler. A separate destination
queue is created for each station defined by a TERMINAL macro
specifying queuing by terminal, one for each line whose stations
are defined by TERMINAL macros specifying queuing by line,
and one for each application-program process entry (defined
by a TPROCESS macro) to which the application program may
direct GET or READ macros. Destination queues are maintaine"
in message queues data sets which may be located on disk 01

in main storage. Queuing messages by destination permits
overlap of line usage in I/O operations. See also process
queue.

destination station: a station that accepts a message sent to it
by the outgoing group of the Message Handler that is specified
for the line to which the accepting station is assigned.

dial: see calling.

dial line: see switched line.

direct-access s,torage device: see DASD.

*Trademark of the American Telephone & Telegraph Co.

disabling the line: a process whereby TCAM causes the
computer to condition either the transmission control unit or the
audio response unit to ignore incoming calls on a switched line.
Once this is accomplished, the line is available for TCAM to
send queued messages to a station on that line. See enabling
the line.

disk: see DASD.

distribution entry: an entry in the terminal table associated with
a distribution list. A distribution entry is created by a TLiST
macro.

distribution list: a list of single, group, cascade, or process
entries; when a message is directed to the distribution entry
associated with this list, TCAM sends the message to each
destination named in the list.

dynamic buffer allocation: the assignment of buffers to a line
on an as-needed basis, after a message has started coming in
over the line. Dynamic allocation occurs following
program-controlled interruptions, and is specified by the PCI =
operand of the line group DCB macro. See also static buffer
allocation.

EBCDIC: Extended Binary Coded Decimal Interchange Code.

enabling the line: a process whereby TCAM causes the
computer to condition either the transmission control unit or the
audio response unit to respond to incoming calls on a switched
line. See disabling the line.

end-oF-address (EOA) character:

1. a control character or characters transmitted on a line to
indicate the end of non-text characters (for example,
addressing characters).

2. a TCAM character that must be placed in a message if the
system is to accommodate routing of that message to
several destinations; the character must immediately follow
the last destination code in the message header; and must
also be specified by the EOA = operand of the FORWARD
macro for the message.

entering: the process in which a station places on the line a
message to be transmitted to the central computer (a station
enters and accepts messages, while a computer sends and
receives messages).

environment record: a record of the total teleprocessing
environment at a single point in time. The environment record
resides in the checkpoint data set; at restart time, an
environment record is updated by the contents of incident
records that were taken after the environment record was
taken, and the updated environment record is then used to
reconstruct the Message Control Program environment as it
existed before MCP closedown or system failure.

EDA: see end-at-address character.

error record: five bytes assigned to each message being
processed by a Message Handler; these bytes indicate physical
or logical errors that have occurred during transmission on the
line or during subsequent processing or queuing of the
message, and are checked by error-handling macros in the
in message and outmessage subgroups of a Message Handler.

Glossary 431

error recovery procedures (ERP): a set of internal TCAM
routines that attempt to recover from transmission errors.

exchange: a communications switching center.

FEFO (first-ended first-out): a queuing scheme whereby
messages on a destination queue are sent to the destination on
a first-ended first-out basis within priority groups. That is,
higher-priority messages are sent before lower-priority
messages; when two messages on a queue have equal priority,
the one whose final segment arrived at the queue earliest is
sent first.

FIFO (first-in first-out): a queuing scheme whereby
equal-priority messages on the same destination queue are
sent in the order that their first segments arrived at the queue.

flush closedown: a closedown of the TCAM Message Control
Program during which incoming message traffic is suspended
and queued outgoing messages are sent to their destinations
before closedown is completed; this form of termination is
known as a flush closedown because unsent messages are
flushed from the message queues. See also quick closedown.

functional macro instructions: TCAM macros that perform the
specific operations required for messages directed to the
Message Handler. See also delimiter macro instructions.

group entry: an entry in the terminal table associated with a
group of terminals having the group-code machine feature.

half-duplex: a communication line over which transmissions
can occur in either direction, but only in one direction at a time.

hardware buffer: a buffer that is located in a station, as
opposed to the buffers for the TCAM MCP, which are located in
the computer. The IBM 2740 Communication Terminal Model
2, for example, contains a hardware buffer that accomodates
up to 120 characters. See also buffered terminal.

header: that portion of a message containing control
information for the message; a header might contain one or
more destination fields, the name of the originating station, an
input sequence number, a character string indicating the type
of message, a priority level for the message, etc. The message
header is operated on by macros in the inheader and outheader
subgroups of the Message Handler.

header buffer: a buffer containing a header segment.

header segment: a message segment containing all or part of
the message header.

identification characters (10 characters): characters sent by a
BSC station on a switched line to identify the station. 10
characters can also be assigned to the computer; (by the
CPUID = operand of the INVLlST macro) in this case, the
computer and the station can exchange 10 sequences. TWX
stations also use 10 characters.

idle: describes a line that is not currently available for
transmission of data because IDLE was coded in the OPEN
macro for the line group data set containing the line. Such a
line may be activa'ted by a STARTLINE operator command.

inactive line: a communication line that is not currently
available for transmission of data. Contrast with active line.

inactive station: a station that is currently ineligible for entering
and/or accepting messages. A station may be inactive for
entering or inactive for accepting, or both; the status of a
station is determined by the status of the line it is on, by a

432

special character (+ or -) coded in the invitation list entry for
the station, by the presence or absence of a HOLD macro in the
outgoing group of the Message Handler handling outgoing
messages for this station, and by the five operator commands
(ACTVBOTH, ENTERING, NOENTRNG, NOTRAFIC, SUSPXMIT)
that directly affect the station's status.

incident record: a checkpoint record residing in the checkpoint
data set on a DASD; an incident record logs a change in station
status or in the contents of an option field that occurred since
the last environment record was taken. Incident records are
used to update the information contained in environment
records at restart time after a closedown or system failure.

incoming group: that portion of a Message Handler designed to
handle messages arriving for handling by the Message Control
Program. See also outgoing group.

incoming message: a message being transmitted from a station
to the computer.

input: of or related to a message transmission that involves
entering data at a station or receiving data at the computer.

input data set: a logical data set for a TCAM -compatible
application program. The input data set contains all messages
or records being sent to the application program from a single
process queue. Though it is not located in a physical medium,
the input data set requires a DO statement and a DCB macro
for its definition and must be activated and deactivated by
OPEN and CLOSE macros. See also output data set.

input sequence number: a means of ensuring that messages are
received from a source in the correct order; the user may place
a sequence number in the header of each message entered by
a station or application program, and code a SEQUENCE macro
in the incoming group of his Message Handler. The SEQUENCE
macro checks the sequence number for each message; if the
number is not one more than that assigned to the previous
message received from that origin, a bit is truned on in the
message error record.

inquiry processing: a TCAM application in which the Message
Control Program receives a message from a station, then routes
it to an application program that processes the data in the
message and generates a reply; the reply is routed by the
Message Control Program to the inquiring station. Response
time often may be shortened by specifying the lock mode (by a
LOCK macro in the Message Handler) and by locating the
message queues data set containing the queues for the
application program in main storage.

intercepted station: a station to which no messages may be
:;.ant. A station is intercepted by issuing a HOLD macro
instruction in the outmessage subgroup of a Message Handler;
the suspension is either for a specified time interval or until
either an operator command or an application program macro
instruction is issued to release messages held for the
intercepted station.

invalid destination: a destination specified for a message that
does not correspond to a valid terminal table entry.

invitation: the process in which the computer contacts a station
in order to allow the station to transmit a message if it has one
ready.

invitation delay: a period of time (specified by the INTVL =
operand of the line group DCB macro), during which outgoing
messages are sent to nonswitched polled stations for which
receiving has priority over sending (because CPRI = R is coded
in the line group DCB macro). This delay is observed for all

such stations on a line when the end of the invitation list for
that line is reached. The delay in polling is observed for such
stations whether or not the computer has any messages to
send them. If no invitation delay is specified for such stations,
no messages can be sent to them.

inv{tation list: a series of sets of polling characters or
identification sequences associated with the stations on a line;
the order in which sets of polling characters are specified (in
the INVLlST macro for the line) determines the order in which
polled stations are invited to enter messages on the line.

inward WAfS: a service provided by the telephone company,
whereby all incoming calls from within a prescribed area are
charged to the receiving subscriber at a flat rate. See also
WAfS.

line: the communications medium linking the computer to one
or more remote stations; message transmission occurs over this
medium. See also nons witched line, switched line,
point-to-point line, and multipoint line.

line control: the scheme of operating procedures and control
signals by which a telecommunications system is controlled.

line control block (LCB): an area of main storage containing
control information for operations on a line; one LCB is
maintained by TCAM for each line in the system.

line-control characters: characters that control transmission of
data over a line; for example, line control characters delimit
messages, cause transmission-error checking to be performed,
indicate whether a station has data to send or is ready to
receive data.

line group: a set of one or more communication lines of the
same type, over which stations with similar characteristics can
communicate with the computer.

line group data set: a Message Control Program data set
consisting of all the lines in a line group; the messages that are
transmitted on these lines constitute the data in this data set.
A line group data set is defined by a line group DCB macro
instruction, and by a DD statement for each line in the line
group.

line group DCB: a data control block created by a line group
DCB macro instruction; information in the data control block
defines the line group to TCAM.

local station: a station whose control unit is connected directly
to a computer data channel by a local cable. See remote
station.

lock mode: a TCAM facility, invoked in a Message Handler by
the LOCK macro, whereby a station entering an inquiry message

, for an application program is held on the line by the Message
Control Program until a response has been returned to it by the
application program. Use of the lock mode decreases response
time because there are no interruptions on the line before a
response is returned. If LOCK is executed and CONY = YES is
coded in the STARTMH macro, tete-a-tete interaction (defined
in this Glossary) is in effect for the station. A station may be
placed in lock mode either for the duration of a Single inquiry
and response (message lock mode) or for the duration of
several inquiry-response cycles (extended lock mode). The
type of lock mode is specified in the LOCK macro.

log: a collection of messages or message segments placed on
a secondary storage device for accounting or data collection
purposes. The TCAM logging facility is invoked by a functional
macro instruction issued in a Message Handler.

log data set: a data set consisting of the messages or message
segments recorded on a secondary storage medium by the
TCAM logging facility. A log data set is defined by means of a
BSAM DCB macro instruction that is issued with the DCB macro
instructions defining the line group data sets, the message
queues data sets, and the checkpoint data set.

logtype entry: an entry in the terminal table associated with a
queue on which complete messages reside while awaiting
transfer to the logging medium (a logtype entry is not needed if
message segments only are to be logged). A logtype entry is
created by a LOGTYPE macro.

MCP: see Message Control Program.

message: a unit of data received from or sent to a station that
is terminated by an EOT or ETX control character or, if the
CONY = operand of the STARTMH macro is coded CONY = YES,
by an EOB or ETX control character. A TCAM message is often
divided into a header portion, which contains control
information, and a text portion, which contains the part of the
message of concern to the party ultimately receiving it.

Message Control Program (MCP): a set of user-defined TCAM
routines that identify the teleprocessing network to the
System/360 Operating System, establish the line control
required for the various kinds of stations and modes of
connection, and control the handling and routing of messages
to fit the user's requirements.

Message Handler (MH): a sequence of user-specified TCAM
macro instructions in the Message Control Program that
examine and process control information in message headers,
and perform functions necessary to prepare message segments
for forwarding to their destinations. One Message Handler
must be assigned to each line group by the MH = operand of
the line group DCB macro, and one must be assigned to each
TCAM-compatible application program by the MH = operand of
the PCB macro. The incoming group of an MH handles
messages received from either an originating station or an
application program; the outgoing group of an MH handles
messages prior to their being sent to a destination station or
application program.

message priority: refers to the order in which messages in a
destination queue are transmitted to the destination, relative to
each other. Higher-priority messages are forwarded before
lower-priority messages. Up to 255 different priority levels
may be assigned to a single destination (by the LEVEL =
operand of the TERMINAL or TPROCESS macro). The priority
for each message sent to the destination may be specified in
the message header or assigned by a PRIORITY macro; in either
case, a PRIORITY macro should be coded in the in header
subgroup handling the message.

message queue: see destination queue.

message queues data set: a TCAM data set that contains one or
more destination queues. A message queues data set contains
messages that have been processed by the incoming group of a
Message Handler and are waiting for TCAM to dequeue them,
route them through an outgoing group of a Message Handler,
and send them to their destinations. Up to three message
queues data sets (one in main storage, one on reusable disk,
one on non-reusable disk) may be specified for a TCAM
Message Control Program.

message segment: the portion of a message contained in a
single buffer.

message switching: a telecommunications application in which
a message is received from a remote station, stored until a

Glossary 433

suitable outgoing line is available, and then transmittted to its
destination station. TCAM message switching can -be handled
entirely by the Message Control Program.

MH: See Message Handler.

multipoint line: a nonswitched line that connects several
remote stations to the computer.

nons witched line: a communication line that links stations for a
continuous period, or for regularly recurring periods; also
known as a private, leased, or dedicated line.

nontransparent mode: a mode of binary synchronous
transmission in which all control characters are treated as
control characters (that is, not treated as text). See transparent
mode.

on-line test (OLT): an optional TCAM facility that permits either
a system console operator or a remote-station operator to test
transmission control units and remote stations to find out if they
work properly.

operator command: a command entered either at an operator
control station or at the system console to examine or alter the
status of the telecommunications network during execution.

operator control station: a station eligible to enter operator
commands. An application program and the system console
may also serve as operator control stations. Operator control
stations are designated as such by,the PRIMARY = operand of
the, INTRO macro and by the SECTERM = operand of the
TERMINAL and TPROCESS macros. See also primary operator
control station and secondary operator control station.

option field: a storage area containing data relating to a
particular station, component, line, or application program;
certain Message Handler routines that need source- or
destination-related data to perform their functions have access
to data in an option field. User-written routines also have
access to data in an option field. Option fields are defined by
OPTION macros and initialized for each station, line,
component, or application program by the OPDATA = operand
of the TERMINAL or TPROCESS macro.

origin: a station or application program from which a message,
or other data originates. See also destination.

outgoing group: that section of a Message Handler that
manipulates outgoing messages after they have been removed
from their destination queues. The outgoing group has three
types of subgroup-the outheader subgroup~ which executes
on outgoing header segments; the outbuffer subgroup, which
executes on each outgoing segment; and the out message
subgroup, which does not execute until after the message has
been sent to its destination, if possible. See also incoming
group.

output data set: a logical data set for a TCAM-compatible
application program. The output data set contains the
messages or records returned from the application program to
the Message Control Program by a process entry in the terminal
table. An output data set is defined by a DO statement and a
DCB macro, and must be activated and deactivated by OPEN
and CLOSE macros. See also input data set.

output DCB: a data control block created by an output DCB
macro. One output DCB is required for each output data set.

output sequence number: a number placed in the header of a
message by TCAM that determines the order in which
messages were sent to a destination by the computer. When

434

specified in an outheader subgroup, the SEQUENCE macro
causes an output sequence number to be placed in the header
of each outgoing message; this sequence number is one greater
than the sequence number for the last message sent to this
destination. See also input sequence number.

point-to-point line: a communication line that connects a single
remote station to the computer. It may be either switched or
nonswitched.

polling: a non-contention line management method whereby
the computer invites remote stations on multipoint nonswitched
lines and remote terminals on point-to-point lines to enter
messages. The computer contacts stations in the order
specified by the invitation list; each station contacted is invited
to enter messages.

polling characters: a set of identifying characters peculiar to
either a station or a component of that station; a response to
these characters indicates to the computer whether the station
has a message to enter.

prefix: see buffer prefix.

primary operator control station: an operator control station
that receives, in addition to the responses to commands
entered by it, the operator awareness message (lEAOOOI,
described in TCAM I/O Error-Recording Facility in the chapter
Using TCAM Service Facilities is sent whenever an I/O error
occurs and TCAM's error-recovery procedures are unsuccesful
in correcting it. The primary operator control station is
designated by the PRIMARY = operand of the INTRO macro.

priority: see message priority and transmission priority:

process queue: a destination queue for an application program
(see destination queue). A process queue is defined by a
TPROCESS macro.

queue: a set of items consisting of:

1. a queue control block (an area in main storage containing
control information for the queue), and

2. one or more ordered arrangements of items (the items may
be messages, main storage addresses, etc.).

quick c1osedown: a closedown of the TCAM Message Control
Program that entails stopping message traffic on each line as
soon as any messages being sent or received at the time the
request for closedown is received are transmitted.

read-ahead queue: an area of main storage from which an
application program obtains work units in advance of their
being requested by the application.

receiving: the process in which the central computer obtains a
message from a remote station (the message is entered by the
station). Receiving and sending are functions of the central
computer.

record: a logical unit of data, the length of which is defined by
the user through the use of operands of the input or output
DCB macro and delimiting characters in the message.

relative line number: a number assigned by the user to a
communications line of a line group at system generation time
or MCP execution time. If a line group is defined at system
generation time by a UNITNAME macro, the lines in the group
are assigned relative line numbers according to the order in
which their hardware addresses are specified in the UNIT =
operand of UNITNAME; the line whose address is specified first
is relative line number one, that '!.ddress specified second is

relative line number two, etc. If a line group is defined at MCP
execution time by concatenated DO statements, the order in
which the DO statements for the lines in the line group are
arranged determines the relative line numbers for the lines.
The line whose DO statement appears first is relative line
number one, the statement that appears second is relative line
number two, etc.

remote station: a station that is connected to a computer data
channel through either a transmission control unit or an audio
response unit. See also local station.

retry: an error recovery procedure in which the current block
of data (from the last EOB or ETB) is re-sent a prescribed
number of times, or until accepted or entered correctly.

routing code: under Multiple Console Support, indicates the
consoles to which the messages should be sent.

segment: the portion of a TCAM message contained in a single
buffer.

selection: the process whereby the computer contacts a remote
station to send it a message.

sending: the process in which the central computer places a
message on a line for transmission to a station (the station
accepts the message). Sending and receiving are functions of
the central computer.

sequence number: see input sequence number and output
sequence number.

single entry: an entry in the terminal table associated with a
single station or station component; one such entry must be
created (by a TERMINAL macro) for each station in the TCAM
system not defined by a group entry.

start-stop transmission: data transmission in which each
character being transmitted is preceded by a special control
signal indicating the beginning of the sequence of data bits
representing the character, and is followed by another control
signal indicating the end of the data-bit sequence (character
recognition by the device that obtains the data depends on the
presence of these control signals for each character); contrast
with binary synchronous communications.

static buffer allocation: the assignment to a line, before
transmission over that line, of all buffers to be used to contain
the transmitted data. When PCI = N or PCI = R is coded in the
line group DCB macro, the number of buffers specified by the
BUFIN = or BUFOUT = operand of the line group DCB macro
instruction is assigned to a line before incoming or outgoing
transmission begins on that line; once transmission has started,
no more buffers are available to handle the data involved in the
transmission.

station: either a remote terminal, or a remote computer used
as a terminal.

subblock: that portion of a BSC message terminated by an ITB
line control character.

switched line: a communication line on which the connection
between the computer and a remote station is established by
dialing. Also known as a dial line.

symbol: in assembler language, a character or character string
used to represent addresses or arbitrary values. A symbol
must meet the following requirements:

1. A symbol may consist of no more than eight characters, the
first character being a letter (A through Z, $, #, or @), and
the other characters being either letters or digits.

2. No blanks or special characters are allowed in a symbol.

system interval: a user-specified time interval during which
polling and addressing are suspended on multipoint lines to
polled stations. The system interval is specified by the
INTVAL = operand of the INTRO macro, and may be changed
during TCAM initialization, by a SYSINTVL operator command.
The INTERVAL operator command tells TCAM to begin the
system interval. The system interval is used to minimize
unproductive polling, to minimize CPU meter time, and to
synchronize polling on the polled lines in the system. See also
invitation delay.

rcv: see transmission control unit.

telecommunications: any transmission or reception of signals,
writing, sounds, or intelligence of any nature, by wire, radio, or
other electromagnetic media.

teleprocessing: the processing by a computer of data entered
at a remote station.

terminal: a point in a system at which data can enter, leave, or
enter and leave. A terminal can also be a control unit to which
one or more input/output devices can be attached. See
component.

terminal table: an ordered collection of information consisting
of a control field for the table and blocks of information on each
line, station, component, or application program from which a
message can originate or to which a message can be sent.

tete-a-tete: a mode of message handling in which a station
operating in lock mode is polled by the computer. The station
responds with a message that ends with a character permitting
selection to continue. The computer sends a response
message, from an application program, that the station
interprets as a positive response.

text: that part of the message of concern to the party
ultimately receiving the message (that is, the message exclusive
of the header, or control, information).

text segment: a portion of a message that contains no part of
the message header.

transmission: the transfer of coded data by an electromagnetic
medium between two points in a telecommunications network.

transmission control unit (rCV): a control unit that serves as
an interface between communication lines and a computer for
logical operations. The transmission control units supported by
TCAM are the 2701 Data Adapter Unit Model 1, the 2702
Transmission Control Model 1, and the 2703 Transmission
Control Model 1.

transmission priority: refers to the order in which sending and
receiving occur, relative to each other, for a particular station.
Transmission priority is specified on a line-group basis by the
CPRI = operand of the line group DCB macro. The three
transmission priorities possible in TCAM are send priority, equal
priority, and receive priority. The exact meaning of each
priority depends upon the line configuration and type of station.
See also message priority.

transparent mode: a mode of binary synchronous transmission
in which all data, including normally restricted data-link control
characters, is transmitted only as specific bit patterns. Control

Glossary 435

characters that are intended to be effective are preceded by a.
OLE character.

TWX: abbreviation of Teletypewriter Exchange Service, a
semi-automatic switching service provided by AT & T for
interconnecting public teletypewriter subscribers.

unit: see buffer unit.

warm restart: a restart of the TCAM Message Control Program
following either a quick or a flush closedown; the TCAM
checkpoint/restart facility is used to restore the MCP
environment as nearly as possible to its condition before failure.
See restart.

WATS: abbreviation for AT & Ts Wide Area Telephone Service,
which provides a special line on which the subscriber may make
unlimited calls to certain zones on a direct distance dialing
basis for a flat monthly charge.

436

work area: an area of storage related to an application program
that receives messages or records transferred to the
application program from the Message Control Program by GET
or READ macros, and from which messages or records are
transferred to the MCP by PUT or WRITE macros. The size of
the work area must be specified in the BLKSIZE = operand of
the input or output DCB macro associated with the data set
whose contents are being transferred to or from the work area.
A work area may be defined either statically (by a DC or OS
assembler instruction) or dynamically (by specifying locate
mode in the MACRF = operand of the input DCB macro).

work unit: the amount of data transferred from the Message
Control Program to an application program by a single GET or
READ macro, or transferred from an application program to the
MCP by a single PUT or WRITE macro. The work unit may be a
message or a record (or, for QTAM-compatible application
programs, a segment).

6-bit Transcode (hexadecimal equivalents)
ABEND

389

due to not specifying user error-analysis routine 87
due to overlaying records on message queues data

set 78
due to uncorrectable I/O error 87
due to wrapping nonreusable disk during flush
closedown 79

exit
specifying address for problem program

space requirements for attached subtasks
specifying user exit 87 -90
TCAM formatted dump 968
user routine options 90

accepting 15
accounting on a log data set
ACT operand 283

87

activating and deactivating the MCP 91-107
sample code 108

active entries
displaying for invitation list
specifying in invitation list

active invitation list identification
ACTVATED operator command
ACTVBOTH operator command
ADDR = operand 32
address operand 286
address vector table 91

dump 344
addressing characters 24, 36

for a component 36
specifying 32

300
278

278
300
300

67
365

addressing timeout exceeded indicated on message error
record 372

AL TDEST = operand
TERMINAL macro
TPROCESS macro

alternate destination

33
42

effect of size of reusable disk data set
queuing requirement 76
restriction 78
sending messages to
specifying 33

192

for a component 36
in the terminal table 42

application program 233-293
abnormal termination 293
buffers 247 -249

design considerations 247 -249
definition checklist 247

CKREQ macro 290
example 291

CLOSE macro 251
coordinating restart with MCP 293
coordinating TCAM and OS checkpoints
data set definition 237 - 246
data transfer

BSAM/TCAM completion codes
CHECK macro 269
coding TCAM macros
GET macro 264
PUT macro 265
READ macro 265

multiple 266
WRITE macro 267

delimiting record for 43

263-271

entering operator commands from
error exits 271- 27 3

269

299

78

289-293

examining a queue control block from 280-281
incident checkpoint records of option fields 151
input data control block 236
input data set 236
input DCB macro 238

format of position field 241
inquiry /rapid response 286-289
interface with MCP 235-236

activating 249-252

Index

defining components 236-249
specifying 41

limiting number of messages sent to 182
locking to station 165
MCPCLOSE macro 251-252
message flow to 235
message queues for

recording status of 334
specifying where maintained 42

message retrieval 285-286
POINT macro 285

moving invitation-list contents to work area 276-279
moving terminal-table contents to work area 274-276
network control 273-285

ICHNG macro 282-284
ICOPY macro 276-279
macro summary 273
MRELEASE macro 284-285
operator commands (see network control macro
descriptions)

QCOPY macro 280-281
TCHNG macro 281-282
TCOPY macro 274-276

OPEN macro 249-250
OS checkpoint restriction 290
output DCB macro 242-245

format of position field 244
password for specific macros 99
PCB macro 245-246
POINT macro 285
priority 233
process entry 236
replacing contents of a terminal table entry 281-282
replacing contents of option fields 281-282
represented in the terminal table 25
specifying address of MH for 246
specified as a secondary operator control station 42
specifying maximum destination queues used

§imultaneously 78
SYNADAF macro 273

format of TCAM/SAM message buffer 273
SYNAD exit 271
TCAM/SAM compatibility 289-293
testing in non-teleprocessing environment
work area 235, 253

defining 253,257
specifying size 239, 243
static definition of 253

work unit 235, 243
specifying 257

areaname operand
GET macro 264
ICHNG macro 283
ICOPY macro 279
PUT macro 265
QCOPY macro 281
READ macro 267
TCHNG macro 282
TCOPY macro 276
WRITE macro 268

assembler language conventions 13
assembling the MCP 206
AT operand 173
AT&T TWX Terminals

device-dependent considerations 411-413
line codes for 400

AT&T 83B3 Terminal
. device-dependent considerations 413

line code for 399
ATTACH macro considerations 365
attached subtasks

listed 365
optional

checkpoint 330-341
COMWRITE 346-349, 100
on-line test 356-358

required

Index 437

operator control 295-300
audio terminals

specifying invitation message 20
use of LOCK macro 165
use of TERMINAL macro 37

Auto Answer 51
Auto Call 51
Auto Poll 49

determining if line eligible for 278
determining use on a line 278
switching to 302
verifying use on a line 320

AUTOSTOP operator command 301
AUTOSTRT operator command 302
available-unit queue 57

channel program block work area assigned to 74
channel program block work area replacement 74

base registers for an MH 145
BFDELAY = operand 33
bidding 18
binary synchronous transmission 16 (see a/so BSC)

transparent mode 17
treatment of line control characters 17

BLANK = operand
INITIATE macro 164
LOCK macro 166
MSGEDIT macro 175
MSGTYPE macro 184
PATH macro 188
PRIORITY macro 191
SCREEN macro 195
SETEOF macro 198
SETSCAN macro 200
UNLOCK macro 203

BLKSIZE = operand
input DCB macro 239
log DCB macro 87
output DCB macro 243

block 109
block size 34

component 37
overriding for a component 37
overriding with the MSGFORM macro 34
specifying for messages in transparent mode to
a component .37

specifying for outgoing messages in transparent
mode 34

BLOCK = operand 180
blocked work units

input data set 240
output data set 244

blocking factors
component 37
overriding for outgoing messages 179
specifying 17
specifying for outgoing messages 179

nontransparent mode 34
BREG = operand 145
BSAM DCB macro operands for a log data set 87
BSAM/TCAM completion codes 269
BSC

device-dependent considerations 411-417
general 415-417
sending and receiving 413-415

input format error indicated on message error
record 371

buffered station 48
BUFFER = operand 421

specifying delay between blocks 33
buffers

allocation 62-63
application program 247 -249

definition checklist 247
design considerations 247-249

control area 55
deallocating empty units on 147
defining

application program 247 - 249
MCP 55-64

438

design considerations 61- 64
determining number for read-ahead queue
general 63
number of units 61
size 61-62

dump 349
activating 305

dynamic deallocation (effect on EOB checking)
header 55
identical characters indicated on message error
record 370

checking for 155
identifying incoming subgroup to handle 146
initial and maximum number per line 63
MCP definition checklist 59
message error record indication of insufficient

number 370
message header

using scan pointer
message

118-122

format of TCAM/SAM SYNADAF
outgoing message

273

identifying subgroup to handle 148
overriding size specified on the line group DCB
macro 33

overridi"ng size specified for a component 37
prefix 55
reserving bytes for inserting date/time/sequence
number 69

sample format 56
size 61

for line group 55
overriding 55

248

143

specifying for handling messages for an application
pro~ram 246

specifying for line 68
specifying for MCP when messages are for

application program. 240
specltyingfor messages destined for logging
medium 45

specifying for messages to MCP from application
program 244

specifying for outgoing messages 33, 37
specifying bytes for date/time/sequence number
specifying initial number for GET/READ operations
specifying initial number for PUT/WRITE
operations 246

specifying initial number for receiving
specifying maximum number for lines
specifying printed debugging listings of

example 353

67
68

352

specifying program-controlled interruptions for
aliocafion/dealTocalion of 69 '

structure 55-S'6
text 55
translation of data in 151
unit 55

allocation 58
as a work area in a channel program block
dealiocation 147

74

246
246

specifying maximum used simultaneously for maio-
storage queuing 96

speclfYirig number for segments 96
specifying size 95, 96

unit pool 55, 57-58
main-storage message queues data set in

BUFIN = operand
line group DCB macro 67
PCB macro 246

BUFL = operand
input DCB macro
output DCB macro

BUFMAX = operand

240
244

68
BUFOUT = operand

line group DCB macro
PCB macro 246

BUFSIZE = operand
line group DCB macro
LOGTYPE macro 45
PCB macro 246
TERMINAL macro 33

67

68

79

burst mode restrictions 361
bus out

specifying intensive-mode error recording for 328
check indicated in message error record 372

calling
between the computer and a switched station 51-53
busy lines 52-53
specifying time .for computer-initiated calls 33

canceling messages 150
CANCELMG macro 150

restrictions 150
specifying conditional execution 150
specifying logical connection between mask and message
error record 150

cascade list 430
defining in the terminal table 40
entry 25
specifying actual entry in the terminal table

CE mode 361
40

central computer 15
channel control check indicated on message error
record 371

channel data check indicated on message error record
channel error indicated on message error record 371
channel program blocks 74-75

determining appropriate number 75
formula for determining initial number of
free pool 74
specifying number of 94

channel program codes in operator awareness
message 329

channel status word indication of I/O error
characters

checking incoming buffers for identical
data link control 17

74

326

155

inserting and removing for messages 168-179
parity error indicated on message error record 372

character sets 375
CHECK .macro 269

specifying name of data event control block
checklists

application program buffer definition
checkpoint/restart 331-332

247

MCP buffer definition 59-60
specifying message q\Jeues data sets 82

checkpoint
coding requirements for obtaining 338
coordinating TCAM and OS 289-293

example 220-231
using DCB exit for 292

environment records
example using 336-338
specifying maximum time between

exit restriction 289
how it works 333-338
incident record

example using 336-338
specifying 151

incident records
operator commands causing

making resident 373-374
326

module names and sizes 374
OS restriction 290
queuing requirements 80
specifying as additional feature
types of records 333-335

101

checkpoint data set 85-86
DD statement 86
example of opening 103
example of updating environment records
formula for determining size 338-339
specifying 83, 85

as input/output 102

97

270

336-338

specifying number of checkpoint request records for
checkpoint DCB macro 85
checkpoint reques\ records 334

automatic incident record when data set full 333
priority used in dividing space for 339
specifying data set for 86

371

98

specifying number for checkpoint data set
checkpoint/restart 330-341

checklist 331-332
CHECKPT macro 151

specifying incident checkpoint records
CIB = operand 94
CINTVL = operand
CKPTSYN = operand
CKREQ macro

33
42

checkpoint/restart operands 332

151

initiating checkpoint request records 334
sample use of 291

98

specifying maximum number of destination queues used
simultaneously for application programs 98

using for checkpoint coordination 290-292
CKREQS = operand 98
CLOCK = operand 33
CLOSE macro

application program 251
specifying data control blocks

MCP 106
251

specifying data control blocks 107
closedown 430, 251-252

automatic environment checkpoint record during 333
flush 181

ebnormal termination by wrapping nonreusable
disk 79

cold restart following 340
specifying percentage of nonreusable disk records
to be used prior to 84

warm restart following 340
initiating through operator control 324
quick 101

cold restart following 340
response to inquiring station in lock mode
warm restart following 340

restarting from 330
specifying type 252

code
charts 375-402

control characters
conventions used in
format of 375
general notes 377

377
375

nonequivalent characters
substitutions 376

EBCDIC 387

376

hexadecimal equivalents of 6-bit Transcode
invalid destination indicated on message error
record 370

line
AT& T TWX 400
AT& T 83B3 399
IBM 1030 390
IBM 1050 391
IBM 1053 printer
IBM 1060 392

393-394

IBM 2260 (Remote)/2265
IBM 2740 395
IBM 2741 (Correspondence)
IBM 2741 (EBCD) 397

393-394

398

IBM 2741 (hexadecimal equivalents of BCD)
IBM World Trade Telegraph ITA2 401
tBM World Trade Telegraph ZSC3 402
WU 115A 399

list of translation tables provided 138
TCAM macro formats 367
USASCII 388

CODE macro 151-153
effects on PRIORITY macro 190
format 153
specifying type of translation

CODE= operand 182
153

cold restart 340
automatic recording of changes in option fields
building 'Good Morning' message 104-105
following abnormal flush closedown 79
good morning routine gaining control following
reformatting DASD message queues data sets

COM EDIT printing utility 352
examples of invoking 353

287

389

396

334

340
75

Index 439

PARM = options 352
command input block (specifying) 94
command reject

indicated on message error record 371, 372
specifying intensive-mode error recording for 328

COMP = operand 36
completion codes for BSAM/TCAM 269
component definition 36-37
component entry 25
computer ID sequence 20
COMWRITE data set 346-347

printing contents of 352
requirements and format 347
specifying 100

COMWRTE = operand 100
conchars operand 124

INITIATE macro 164
LOCK macro 166
MSGTYPE macro 184
PATH macro 188
PRIORITY macro 191
SCREEN macro 195
SETEOF macro 198
UNLOCK macro 203

configurator for on-line test 356
CONNECT = operand

CANCELMG macro 150
ERRORMSG macro 157
HOLD macro 163
MSGGEN macro 181
REDIRECT macro 193

connection error indicated on message error record 371
conserving main storage 427
CO NT = operand 144
contention 18, 24
contention line 15
continuation restart 340

replaced by cold restart due to faulty checkpoint
records 340

control characters 16
in multiple buffer headers 130
listed 377
removing 11 0
sending III
using to vary path of message in MH 129

control information
buffers 55
channel program blocks 74

CONTROL = operand 95
control record 333
contr,ol unit errors indicated on message error
record 371, 372

control units supported 361
CONV = operand 144
conversational mode 286
conversion of QTAM application programs 403
counter-overflow record 328

access to 329
COUNTER macro 154

specifying location of count field 154
CPB = operand 94
CPINTVL = operand 97
CPRCDS = operand 97
CPRIOPCL operator command 303
CPRI = operand 67
CPUID = operand 20
cross-buffer execution 120
cross-buffer processing

example 121
limitations 121

cross-reference table 345
specifying number of entries in 99

CROSSRF = operand 99
cutoff indicated on message error record 370
CUTOFF macro 155

example 155
restriction 155
specifying maximum characters for messages 155
using the ERRORMSG macro with 155

440

DASD
checkpoint data set record types 333-335
message queues data set

designing for high message traffic 78
dump 353
preformatting 365
reusable data sets 76-78
sample JCL for obtaining printed output of 353
specifying' as input/output 102
specifying PARM = parameters for printed
output 354

specifying for message queues data set 94
data check

indicated on message error record 372
specifying intensive-mode error recording for 328

data collection by logging messages 341
data control block 430

checkpoint 85
dump 344
input 238
line group 65
message queues 83
output 242
specifying address

GET macro 264
PUT macro 265
READ macro 267
WRITE macro 268

specifying exit address for problem program 67
specifying for line group 31
specifying name for data set being closed 107

application program 284
specifying name for log data set 45
specifying name for opening application program data
set 250

specifying on POINT macro 286
data event control block (specifying name)

CHECK macro 270
READ macro 267
WRITE macro 268

data file (delimiting) 198
data link control 15
data operand 173
data set

application program
definin~ 237 -246
specifying name of .data control block for
closin~ 251

specifying name of data control block for opening 250
checkpoint 85-86

DD statement for 86
example of opening 103
example of updating environment
records 336-338
formula for determining size 338-339
specifying 83, 85
specifying as input/output 102
specifying number of checkpoint request records
for 98

types of records 333-335
closing 107
COMWRITE

printing contents of 352
specifying for output 100

DASD message queues
preformatting 75
specifying as input/output 102

disk (example of writjng debugging
information to) 349-352

disk message. queues
example of assigning relative record numbers 18

impending failure indicated on message error
record 370

impending fullness indicated on message error
record 370

input
DCB macro 238-241
specifying 102
specifying format and characteristics of work

unit 240
input and output DD statements 245

line group 65-72
creating 65-72

examples of opening 103
guideline for specifying as input/output 103
identifying organization 66
restriction for coding as output 102
specifying activation of line 103
specifying DO statements 70-72

log 87, 344
example of opening 103
list of operands for specifying for BSAM 87
specifying as output 102
specifying name of data control block 45
specifying where messages to be queued 45

logging messages sequentially 341-344
main-storage message queues

destination queue in 79
providing warning when nearly full 96
specifying maximum units used
simultaneously 96

main-storage-only queues (lost message
indication) 370

MCP
defining 65-90
initialization and activation 101

message queues 72-84
DCB macro 83-84
DO statement 84
destination queues on disk 73
disk efficiency 75
dump 353
examples of opening 103
main storage 79-81
preformatting disk 365
sample JCl for obtaining printed output 353
scanning queues in 335-338
specifying 83, 85
specifying Olle or more 81-84
specifying PARM = parameters for printed

output 354
specifying when user informed that data set no
longer crowded 96

specifying whether on a DASD 94
output

COMWRITE requirements and format 347
DCB macro 242-245
specifying 102
specifying format and characteristics of work
unit 244

reusable disk queues 76-78
automatic environment checkpoint at zone

changeover 333
designing for high message traffic 78
reorganizing 76

reusable or nonreusable disk destination queue (message
retrieval) 285

specifying type 102
SYSl.lOGREC error records 329

data
moving between input and output work areas 254
transferring between MCP and application
program 252-271

translation of 151
transmission failure indicated on message error
record 370

DATA = operand 158
data transfer

BSAM/TCAM completion codes 269
CHECK macro 269
coding TCAM macros in an application
program 263-271

GET macro 264
issuing multiple READ macros 266
PUT macro 265
READ macro 265
WRITE macro 26]

data-link control characters 17
date

format for inserting in header 155
reserving bytes in buffer for inserting 69, 246
specifying whether to be inserted in header 156

DATE = operand 156

DATETIME macro 155
example 156
reserving bytes for date/time 246
restrictions 156
specifying whether date to be inserted 156
specifying whether time to be inserted 156

DATOPFLD operator command 304
DCB exit

checkpoint restriction 289
using for coordination 292

DCB macros
BSAM operands for specifying a log data set 87
checkpoint 85

list of pertinent checkpoint/restart operands 331
specifying data set 85
specifying ddname 86
specifying problem program exit list 86
specifying use of GET and PUT macros for
access 86

input 238-241
designating control of message transfer 239
format of position field 241
identifying data set organization 239
list of pertinent checkpoint/restart operands 332
operands 239-241
operands optionally provided by alternate

source 245
specifying ddname 239
specifying EODAD address 241
specifying format and characteristics of work
units for input data set 240

specifying optional fields of work unit 240
specifying problem-program exit list 241
specifying size of MCP buffers sent to application
program 240

specifying size of record plus optional fields 240
specifying size of work area 239
specifying SYNDAD address 241
specifying type of access to destination
queue 239

summary of work-unit formats 258
line group 65-70

format 66
identifying data set organization 66
operands 66-70
specifying buffer size 68
reserving buffer space for date/time/sequence
numbers 69

specifying ddname 67
specifying initial buffers for receiving 67
specifying initial buffers for sending 67
specifying invitation delay 67
specifying maximum buffers for lines 68
specifying name of MH 69
specifying name of special characters table 70
specifying names of invitation lists 68
specifying problem-program exit list 67
specifying program-controlled interruption 69
specifying translation table 69
specifying transmission priority for line 67
specifying use of GET and PUT macros for

access 66
message queues 83-84

specifying data set 83
specifying ddname 84
specifying either reusable or nonreusable disk 84
specifying percentage of nonreusable disk records
to be used before flush closed own 84

specifying problem program exit list 84
specifying use of GET and PUT macros for
access 84

output 242-245
deSignating control of message transfer 242
format of position field 244
identifying data set organization 242
list of pertinent checkpoint/restart operands 332
operands 242-245
operands optionally provided by alternate source 245
specifying ddname 243

Index 441

specifying format and characteristics of work
units for output data set 244

specifying method of transferring messages to
destination queue 243

specifying optional fields for work unit 243
specifying problem program exit list 244
specifying size of buffers for messages to
MCP 244

specifying size of work area 243
specifying size of work unit plus optional
fields 243

specifying SYNAD address 244
summary of work-unit formats 259

dcbname operand
CLOSE macro

application program
MCP 106

GET macro 264
LOG macro 168
LOGTYPE macro 45
OPEN macro

application program
MCP 102

POINT macro 286
PUT macro 265
READ macro 267
WRITE macro 268

DCB = operand 31
DD statement

checkpoint data set 86

251

250

messa~e queues data set 84
specifYing for input and output data sets
specifying for line group data set 71-72
specifying name of for data control block

input DCB macro 239
line group DCB macro 67
output DCB macro 243

DDNAME = operand
checkpoint DCB macro
input DCB macro 239

86

line group DCB macro 67
log DCB macro 87
message queues DCB macro
output DCB macro 243

DEACT operand 283
deactivating the MCP 105-107

CLOSE macro 106

84

sample activation and deactivation
TCAM with application programs
TCAM with no application program
types of c1osedown 105

dead-letter queue specification 97
deallocation 147
DEBUG operator command 305
debugging aids 344-355

activating 305
basic coding requirements 355
buffer dump 349
COMEDIT printing utility 352
cross-reference table 345

107
106

105

specifying number of entries in 99
dispatcher subtask trace table 347
dumps 344
error messages 344

245

example of writing to disk data set 349-352
line I/O interrupt trace table 345

specifying number of entries in table 99
specifying point in routine to gain control when table
full 99

message logging 341
non-teleprocessing TCAM applications
specifying COMWRITE output data set
STCB trace table 347

specifying number of entries in
tracing flow of messages 342
writing on data set for later printing

decbname operand
CHECK macro 270
READ macro 267
WRITE macro 268

dedicated line 15

442

233
100

100

346

delay
changing duration for polling 317
specifying for invitation 67

delimiter
destination field in header for multiple routing 161
inserting for record 178

in application program 43
invitation list 279
MH macros 140-149

functions in MH 118
variable and undefined records 258

destination
expediting transmission of messages to 163
logging 342
maintaining «ount of outgoing messages for a

station 154
message (specifying on FORWARD macros) 160
queue in main-storage message queues data set 79
specifying additional 193
specifying for error message 158
specifying station to receive intercepted messages 285
specifying type of access to queue 239
specifying user-written routine to gain control when
invalid 161

destination· code error indicated on message error
record 370

destination field in optional fields in work area 257
destinations (canceling messages to multiple) 150
DEST = operand

ERRORMSG macro 158
FORWARD macro 160
REDIRECT macro 193

device-characteristics fields in terminal table 275
device-dependent considerations 407 -426

BSC devices 413-417
general 415-416
IBM 2770 417
IBM 2780 417
sending and receiving 413-415

start! stop devices 407 -413
AT & T 83B3 413
AT & T TWX 411-413
IBM 1030 407
IBM 1050 407
IBM 1060 407
IBM 2260 (Local) 408
IBM 2260 (Remote) 407
IBM 2265 409
rBM 2740 409-410
IBM 2740 basic 409
IBM 2740 basic dial 410
IBM 2740 model 2 410
IBM 2740 on switched line 410
IBM 2740 with station control or station control with
checking 409

IBM 2740 with transmit control or transmit control
with checking .409
IBM 2741 410
IBM 2760 410
IBM 7770 411
IBM World Trade Telegraph 411

TPEDIT macro for the IBM 50 417-429
device

malfunction indicated on message error record 372
not on control unit indicated on message error
record 372

no-t-ready state indicated on message error record 372
test mode indicated on message errror record 372

device support listed 362-364
dial line as additional feature 101
dial-out option as additional feature 101
DIALNO = operand 132
direct-access storage device specified for message queues
data sets 194

disconnection error indicated on message error record 371
disk data set for debugging information 349-352
disk queuing 72 -79

advantage of combining checkpoint coordination
methods 293

nonreusable . 79
specifying as additional feature 101

disk
I/O-error records 327
marking message serviced 335
message retrieval from destination queues 285
nonreusable

specifying for message queues data set 84
specifying percentage of records to be used before
flush closedown 84

preformatting message queues data set 365
reusable

automatic environment checkpoint of message queues
at zone changeover 333

specifying for message queues data set 84
writing I/O error records to 327
writing permanent error record on 326

DISK = operand 94
dispatcher subtask trace table 347

activating 305
examples of obtaining printed output from 353
specifying number of entries in 100

dispatcher records of subtask activation 347
distribution list

defining in the terminal table 40
entry 25
specifying actual entry in the terminal table 40

OLE 17
DLQ = operand 97
DPRIOPCL operator command 307
DSECOPCL operator command 307
DSORG = operand

checkpoint DCB macro 85
input DCB macro 239
line group DCB macro 66
log DCB macro 87
message queues DCB macro 83
output DCB macro 242

DTRACE = operand 100
dummy invitation list 68
dump of message queues data set 353

sample JCL for printed output 353
specifying PARM = parameters for printed
output 354

EBCDIC code 387
translation to line code 151

EDIT = operand 418
end-of-day record 328

access to 329
end-of-file

signaling an application program 262
specifying EODAD address on input DCB macro 241

end-of-message signal for an application program 262
ENTERING operator command 308
entering 15
entries

displaying active (in invitation list) 300
displaying inactive (for a line) 311
specifying total number in invitation list 278

entry
deactivating for a station 313
invitation list example 20
specifying length in invitation list 278
terminal 37

activating nonswitched station for entering 308
terminal-table

count of Start I/O commands 327
count of temporary errors 327

types defined 24
environment checkpoints (specifying maximum time
between) 97

environment records 333
example 336-338
how updated 334
specifying number kept in checkpoint data set 97

EOA character 16
example using 110
removing from incoming messages 143

EOA = operand 161
EOB checking

effects of dynamic buffer deallocation on 143

effects of INITIATE macro on 143
when performed 142

EOB completion handling 144
EOB line control character 16, 253, 259

removing from incoming message 143
EODAD address specification on input DCB macro
EODAD = operand 241
EOF

signaling an application program 262
specifying EODAD address on input DCB macro

EOF message indication 198
EOM 377

signaling an application program 262
EDT line control character 16, 253, 259
EDT = operand 19
equipment check

indicated on message error record 372
specifying intensive-mode error recording for

ERRECORD operator command 308
guidelines for using 328

ERROPT = operand 419
error

counter overflow record written on disk 228
end-of-day record written on disk 328
I/O record types 327 -328
indicated on message error record 369-372
intensive mode recording 328

displaying current status of 322
irrecoverable 326

terminating connection with station due to
logical

requirements for EOB-checking when user-
specified 142

testing for 144
permanent I/O record written on disk
recoverable

327

operator awareness message indicating
failures 329

retrying the block for 327

241

241

328

326

suspending transmission to station' due to
temporary

140

counter in terminal-table entry for 327
intensive-mode recording for 308
I/O record written on disk for 328

transmission
requirements for EOB checking 142

types for which intensive mode may be specified
undefined

indicated on message error record 371

328

error bits described for message error record 369-372
error codes returned by TCAM Open routihes 88-89
error exits for application programs 271-27 5
error handling 116
error message

generating an un queued
sending when errors occur

specifying actual text of
user-specified 156

ERRORMSG macro 157-159
format 157
restrictions 157

180
157
158

specifying conditional execution 158
specifying destination for error message
specifying error message 158

158

specifying user-written routine to complete error message
processing _ 159

error record 431
gaining access to
I/O 327-329

329

specifying temporary I/O
error-recovery procedures

I/O 326

308
432

ETB line control character 16, 17, 253, 259
removing from incoming messages 143

ETX line control character 16, 17, 253, 259
removing from incoming messages 143

EXEC statement for passing information to user code 136
execute form on the OPEN macro 103
executing an MCP (sample JCL) 206
exit

DCB

Index 443

checkpoint restriction 289
using for checkpoint coordination 292

SYNAD 271
user-written routine for invalid destinations 161

exit list for problem program
specifying address on checkpoint DCB macro 86
specifying address on line group DCB macro 67
specifying address on input DCB macro 241
specifyillj(address on message queues DCB
macro 84

specifying address on output DCB macro 244
EXIT = operand

ERRORMSG macro 159
FORWARD macro 161

EXLST = operand
checkpoint DCB macro 86
input DCB macro 241
line group DCB macro 67
message queues DCB macro 84
output DCB macro 244

extended lock 287
removing station from 202

EXTEND operand 166

failure of system
cold restart following 340
example of scanning message queues during
restart 337

restarting from 330
scanning message queues during restart 335
specifying type of restart for 98
suggestions for establishing checkpoint
coordination 291-292

features
specifying additional 101
specifying to conserve main storage 427

FEATURE = operand 101
fieldname operand 181
field addressability requirements 131
file updating sample program 220-231
fixed-format work unit 257
fixed-length work units

input data set 240
output data set 244
specifying size 243

flush closedown 10 1
ABEND due to wrapping nonreusable disk 79
automatic environment checkpoint record during 333
cold restart following 340
initiating through operator control 324
specifying in application program 252
specifying percenta@ of nonreusable disk records to

be used prior to _ 84
warm restart following 340

FLUSH operand 252
format error indicated for BSC input on message error
record 371

formatting TCAM macros 367
conventions used 367

FORWARD macro
format 160
restrictions 161
specifying destination for messages 160
specifying end of destination fields 161
specifying exit routine to gain control for invalid
destinations 161

free pool queue for channel program blocks 74
function modification 118
function operand 172
functional macros 109, 150-204

conditional execution 129

GENERATE macro modified for TCAM 364
GET macro 264

specifying address of data control block 264
specifying address of work area 264
specifying initial buffers to handle data obtained by 246
specifying to gain access to checkpoint data set 86
specifying to gain access to line group data set 66

444

specify.ing to gain access to message queues data
set 84

GMMSG = operand 104
"Good Morning" message for initial start 104-105
good morning routine gaining control 340
GOTRACE operator command 310
group 111, 113

incoming
required delimiter macro 145, 147
translating to EBCDIC 152

message flow within 123
outgoing required delimiter macro 149

group entry 24
DSECT of 275

group operand 1 72
grpname operand

ICHNG macro 283
ICOPY macro 279

header 109
controlling path of through an MH 183
format for insertin!;l date and/or time 155
format of field for Input sequence number 196
incoming segment records 167
message 110-111
multiple routing delimiter considerations 161
multiple-buffer

considerations for user code in an MH 131
handling 124
processing across buffer 128

origin field validity 185
outgoing segment records 168
scan pointer used for 118-121

header buffer 55
header field

locating 132
header-only message 109
header-processing

functions 111
HOLD macro 162

restrictions 162, 163
specifying conditional execution 162
specifying duration of hold 163
specifying type of hold 163

hold/release 139

I/O device generation 364
I/O error

counter overflow record written on disk 328
end-of-day record written on disk 328
permanent record written on disk 327
recording 327 -329
record types 327 -328
recovery procedures 326
speCifying records of 308
temporary 327

record written on disk 328
I/O interrupt trace facility 345

activating 310
deactivating 314

IBM 50 Magnetic Data Inscriber (MOl) 417
TPEDIT macro for 417 - 426

IBM 1030 Data Collection System
device-dependent considerations 407
line code for 390

IBM 1050 Data Communication System
device-dependent considerations 407
line code for 391

IBM 1053 Printer line code 392-394
IBM 1060 Data Communication System

device-dependent considerations 407
line code for 392

IBM 2260 (Remote)/2265 Display complex line code 393-394
IBM 2260 Display Station device-dependent considerations

Local 408
Remote 407

IBM 2260 Display Station line-address characters 194
IBM 2265 Display Station device-dependent
considerations 409

IBM 2311 Disk Storage Drive 72. 85
IBM 2314 Direct Access Storage Facility 72. 85
IBM 2740 Communication Terminal

device-dependent considerations 409-410
basic 409

automatic environment record when full 333
example using 336-338
operator commands causing 326
specifying 151
use 334

basic dial 410
station control or station control with

incoming group 111
required delimiter macro 145. 147

checking 409
switched line 410
transmit control or transmit control with
checking 409

line code for 395
IBM 2740 Model 2 Communication Terminal

device-dependent considerations 410
specifying intensive-mode error recording for unusual
leading graphic response 328

transmission priority 49
IBM 2741 Communication Terminal

device-dependent considerations 410
line code 396-398

subgroups of 111
translating to EBCDIC 152

incoming message
checking buffers for identical characters 155
checking input sequence number 196
counting messages for origin station 154
counting segments for origin station 154
editing 168-179
identifying end of MH processing 147
identifying subgroup to handle buffers 146
loss indicated on message error record 370
maintaining record of traffic 167
removing EOA character 143

BCD hexadecimal equivalents 396
correspondence 398
EBCD 397

sample format 111
translating 137 -139

INEND macro 147
specifying as additional feature 101

IBM 2760 Optical Image Unit device-dependent
considerations 410

IBM 2770 Data Communications System
device-dependent considerations 417

INHDR macro 145
specifying conditional execution of 146

inheader subgroups 111
functions of 112
identifying beginning of 145

transmission priority 49
IBM 2780 Data Transmission Terminal device-dependent
considerations 417

IBM 7770 Audio Response Unit device-dependent

specifying execution of 146
translating to EBCDIC 152

initializing and activating the MCP 90-105
obtaining disk efficiency 75

considerations 411 INITIATE macro 163
IBM World Trade Telegraph (WTTA) Terminals

device-dependent considerations 411
line code

effects on EOB checking 143
example 165
restrictions 164

ITA2 401
ZSC3 402

ICHNG macro 282-284
restriction 289

specifying conditional execution 164
specifying use of EBCDIC blank characters 164

inmessage subgroups 112
functions of 112

specifying line group for modifying invitation list 283
specifying modification or type of modification 283

identifying beginning of 147
required delimiter macro 147

specifying password 99. 284
specifying relative line number for modifying an invitation
list 283

ICOPY 276-279
restriction 289
specifying line group containing invitation list to be
displayed 279

specifying relative line number to display invitation
list 279 '

specifying work area into which an invitation list is to be
moved 279

ID sequence of computer 20
identification sequence exchange 18, 24

invalid sequence 19
indicated on message error record 371

idle characters

INMSG macro 147
INOUT operand 102
input data control block 236
input data set 236

specifying 102
specifying DD statement 245
specifying format and characteristics of work unit 240

input DCB macro 238-241
input/output block

sense byte in operator awareness message 329
status bytes in operator awareness message . 329

INPUT operand 102
input sequence number

checking 196
displaying for last message from a station 322
format of header field 196

inserting in message 169
example 178

idle line 103
IDLE operand 103
IEBUPDTE

inquiry /rapid response 286-289
coding considerations 288
sample program 213 -219

inquiry-response application use of origin field in work
area 255

using to make modules resident 373
example 373

IEDQXA 365

insert operation 169
integer operand

CUTOFF macro 155
IEDQXC' 353 MSGLlMIT macro 183

sample JCL for invoking 353
specifying PARM = parameters for printed output 354

IFCEREPO system utility program for gaining access to error
records 329

inactive entries displayed for a line 311
INACTVTD operator command 311
INBUF macro 146

specifying conditional execution 146. 147
inbuffer subgroup 112

functions of 112
identifying beginning of 146
identifying to handle incoming buffers 146
translating to EBCDIC 152

incident checkpoint records 334

ORIGIN macro 186
PRIORITY macro 190
SETSCAN macro 200

intensive-mode error recording 328
displaying current status of 322
specifying type 309

intercepted stations
destination queue restriction (reusable disk) 78
displaying list of 312
indicated on message error record 371
restrictions on holding messages 140
specifying 162
specifying another destination to receive messages queued
for 28~

Index 445

use of HOLD macro 139
intercept function 168

queuing requirement 80
releasing messages 318

interface control check indicated on message error
record 371

interface for MCP/application program 235-236,41
defining components 236-249

internal code (EBCDIC) 387
interru ption

I/O error recovery procedures 326
specifying number of entries in I/O trace tabl!! for a
line 99

specifying point in routine to gain control when I/O trace
table full 99

interval
automatic environment checkpoint record following 333

example 337
between computer-initiated calls to a switched
station 33 .

between inquiry and response 286
specifying as additional feature 101
system 53

activating 311
changing duration of 322
specifying length 97

INTERVAL operator command 311
intervention required

indicated on message error record 372
specifying intensive-mode error recording for 328

INTRCEPT operator command 312
INTRO macro 92-101

checkpoint; restart operands 331
format 94
initialization and activation 91
list of functions 92
providing warning when main-storage queues nearly
full 96

saving registers when user code handles multiple-buffer
headers 97

specifying additional features 101
specifying COM WRITE output data set 100
specifying duration of mark character 100
specifying identifier for operator commands 95
specifying length of system interval 97
specifying maximum command input blocks used
simultaneously 94

specifying maximum destination queues used
simultaneously for application programs using CKREQ
macros 98

specltying maximum simultaneous on-line tests 100
specifyin& maximum time between environment
checkpOints 97

specifying maximum units simultaneously used for main-
storage queuing 96
specifying message IEA001 to be displayed 100
specifying name of dead-letter queue 97
specifying name of MCP 94
specifying number of channel program blocks 94
specifying number of checkpoint request records 98
specifying number of entries for line trace 99
specifying number of entries in cross-reference table 99
specifying number of entries in STCB trace
. table 100
specifyin~ number of environment records kept in
checkpOInt data set 97

specifying number of units for segments 96
specifying password for application program macros 99
specifying point in routine to gain control when line trace
table full 99

specifying primary operator control station 95
specifying size of buffer unit 95
specifying type of lines 101
specifying type of restart 98
specifying when user informed that message queues no

longer crowded 96
specifying whether message queues data sets are on a
DASD 94

testing return code 101
INTVAL = operand 97
INTVL = operand

446

HOLD macro 163
line group DCB macro 67

invalid destination causing user-written routine to gain
control 161

invitation 18
errors indicated on message error record 371
lines to multipoint BSC stations 20
specifying delay 67

invitation characters 19
invitation list

activating terminal entry of nonswitched station for
entering messages 308

constructing 19-24
deactivating an entry in 313
delimiter 279
displaying active entries in 300
displaying inactive entries in 311
displaying status of polling for a line 320
dummy 68
entry (example) 20
modifying 282-284

specifying change or type of change for 283
recording status of 333
sample format 277 - 279
specifying entries for a line 19

example 20
specifying names of 68
use of relative line number in specifying entries

invitation message for audio terminals 20

INVLlST macro 19-24
examples 21-24

contention lines to terminals not assigned 10
sequences 23

nonswitched lines to stations using polling
characters 21

output-only lines to stations having no 10
sequences 24

switched lines to stations using 10 sequences
switched lines to terminals using polling
characters 22

INVLlST = operand 68
Inward WATS (specifying telephone number) 32
irrecoverable error 326

terminating connection with station 326
ITB control character 17

retaining in incoming messages 143
specifying for outgoing messages 180

KEY LEN = operand 95

LAST = operand 26
LC = operand 143
leased line 15
length operand

READ macro 267
WRITE macro 268

LEVEL = operand
TERMINAL macro 32
TPROCESS macro 43

line address characters for IBM 2260 194
line address in operator awareness message 329
line code .

AT&T 83B3 399
AT&T TWX 400
IBM 1030 390
IBM 1050 391
IBM 1053 printer 393-394
IBM 1060 392
IBM 2740 395
IBM 2741 (Correspondence) 398
IBM 2741 (EBCD) 397
IBM 2741 (hexadecimal equivalents of BCD) 396
IBM World Trade Telegraph ITA2 401
IBM World Trade Telegraph ZSC3 402
specifying 152
translation to EBCDIC 151
WU 115A 399

line

68

22

address insertion (sample user code) 196
arrangement when using WATS 52
coding the TERMINAL macro 37 -40
contention 15
dummy invitation list (output only) 68
error indicated on message error record 371
idle 103
non-contention 15
nonswitched 15

stopping transmission for a station 315
point-to-point 15
recording changes in status 334
recording status of 333
specifying activation for line group data set 103
specifying intensive-mode error recording for 328
specifying transmission priority 67
specifying types for TCAM 101
starting or resuming transmission on 319
stopping transmission 321

line control 15-17, 233
defining 15
establishing 13
use of scan pointer during translation 152

line control block dump 344
line-control characters 16

in an application program 16
insertion 16
when to remove 17

line entry 25
defining in the terminal table 36
DSECT of 275

line group 433
changing polling delay of 317
characteristics of 65
data set 65-72

creating 65-72
examples of opening 103
guideline for specifying as input/output 103
restriction for coding as output 102
specifying activation of lines in 103
specifying DD statements 70-72

DCB macro 65-70
priority 48
specifying in order to modify invitation list 283
specifying to display invitation Mst for a line 279
starting or resuming transmission on 319
stopping transmission on 321

line I/O interrupt trace table 345
activating 305, 310
deactivating 314
examples of obtaining printed output 353
specifying number of entries 99
specifying point in routine to gain control when table
. full 99

line tone (specifying duration of mark character) 100
line trace 345
LlNETYP = operand 101
linkage-editing an MCP (sample JCL) 206
list form specified on OPEN macro 103
LIST = operand 40
LNSTATUS operator command 312
LNUNITS = operand 96
LOCK macro 165

forms for coding 287
inquiry/rapid response coding considerations 288
restrictions 165
specifying conditional execution 166
specifying type of lock mode 166
specifying use of EBCDIC blank characters 166

lock mode 165, 286
extended 166

removing station from 202
message 166
response to inquiring station during quick
closedown 287

specifying type 166
LOCOPT macro 167

specifying name of option field to be accessed 167
specifying register to contain address of option

field 167
LOG macro 167

log data set 87
BSAM operands 87
data control block for 344
example of opening 103
specifying as output 102
specifying name of data control block 45
specifying where messages to be queued

LOG macro
logging messages or segments
restrictions 168
specifying location of log medium

logging
messages
segments
types listed

logical errors

168, 341-344
168

168

indicated on message error record
testing for 144

LOGICAL = operand
logtype entry 25
LOGTYPE macro 44

144

344

168

371

logging complete messages 344

45

speCifying buffer size for messages destined for logging
medium 45

speeifying name of data control block 45
specifying where messages for logging medium to be
queued 45

lost data
indicated on message error record 372
specifying intensive-mode error recording for

LRECL = operand
input DCB macro 240
output DCB macro 243

L TORG instruction 142

machine and device requirements 361-363
machine end-of-address (EOA) character 110
MACRF = operand

checkpoint DCB macro 86
input DCB macro 239
line group DCB macro 66
log DCB macro 87
message queues DCB macro 84
output DCB macro 243

macro formats
TCAM 367

macro instructions (see directory at front of book)
main-storage message queues data set

destination queue in 79
providing warning when nearly full 96
specifying backup

nonreusable disk 32
reusable disk 32

328

speCifying maximum units used simultaneously 96
main-storage-only queues

lost message indication 370
specifying 32

main-storage queuing 79-81
specifying as additional feature 101
with disk backup 80
without disk backup 79

maintaining orderly message flow 45-53
mark character (specifying duration) 100
mask operand 116

CANCELMG macro 150
ERRORMSG macro 157
HOLD macro 162
MSGGEN macro 181
REDIRECT macro 193

MAX LEN = operand 26
MCP 13

ABEND formatted dump 344
activation and deactivation 91-107
activating and deactivating the application program

interface 249-252
assembling 206
buffer definition checklist 59
buffer size 61

specifying for messages to MCP from application
program 244

Index 447

buffer unit pool 57-58
closedown 10 1

specifying type of restart following 98
coding requirements for message logging 342
coordinating restart with application program 293
data set initialization and activation 101
deactivation 105-107

TCAM with application programs 106
TCAM with no application program 105

effect of abnormal termination on application
programs 293

execution 206
automatic environment checkpoint record 333
starting with catalogued procedures 207

functional MH macros 150-204
functions 13
initializing and activating 90-105
interface with application program 235-236, 41

defining components 236-249
line control 233
linkage-editing 206
priority 233
putting together 205-231
reconstructing for restart 331-341

specifying number of checkpoint request
records 98

sample code 208-231
sections listed 205
specifying name 94
specifying size of buffers containing messages for
application program 240

starling and restarting 91
terminal table 24

specifying logging complete messages 344
tracing flow of messages 341, 342
writing 13
user tasks in 13

MCPCLOSE macro 251, 252
restriction 289
specifying password 99, 252
specifying type of closedown 252
considerations for buffered terminals 50

message 109, 253
canceled 150
categorizing for processing 183
dynamically varying path of through an MH 187
format 109-111
incoming (see incoming message)
indicating EOF 198
input sequence number check 196
length error indicated on message error record 370
limiting number sent 182
loss avoided during warm restart 341
loss due to system failure 335, 336
marking serviced 335
operator awareness 329
outgoing (see outgoing messages)
output suspended to a station 162
parts of 109
processing as a work unit 259, 260
record 110
redirecting when unsent 192
reentering after system failure to prevent loss 336
releasing when intercepted 318
sample formats 111
selective translation 152

example 153
sequence number 196

displaying last from a station 322
displaying last to a station 322

specifying destination on FORWARD macro 160
testing for operator commands 152

example 153
text 109
translation 137-139, 152

avoiding 138
varying path within MH 129
warm restart after flush closedown to prevent loss 341

message and record processing 261
message block 109
message buffer format for TCAM/SAM SYNADAF 27·3

448

message editing 115, 168-179
message error record 369-372

bits described 369-372
displaying for a line 313
macros that set bits in 117
setting bits in 327
use of TERRSET macro with 202

message flow
example of 2.~segment message with multiple-buffer
header 126

example of 2-segment message with single-buffer
header 125

logging· f 16
through an MH 122 -128
to an application program 235
within MH group 123

message header 110-111
checking validity of origin field 185
controlling path of through an MH 183
delimiting destination field for multiple routing 161
destination codes in 110
format 110

date and/or time 155
input sequence number 196

locating fields in 132-135
scan pointer used for 118-121
using control characters to vary path of message in

MH 129
message lock 286
message logging 341-344

coding requirements 342-344
complete messages 344
how it works 342
information flow 343
logging segments 344
selectivity 344
uses 341
what to log 342

message operand
LOCK macro 166
MSGGEN macro 181

message priority 45
after zone reorganization of DASD data set 77
efficient use of 78
queuing and 46-48

message processing 253
categorizing 183
guidelines for specifying 248, 249

Message Processing Program (QTAM) conversion 403
message queue

application program
recording status 334,335
specifying where maintained 42

main storage
providing warning when nearly full 96
specifying maximum units used simultaneously 96

main-storage-only lost message indication 370
recording status of 333
scanning 335-338

message queues data set 72-84
DCB macro for 83-84
DD statement for 84
disk

example of assigning relative record numbers 73
preformatting 365

DeB macro for 83-84
destination queue in main storage 79
destination queues on disk 73
disk efficiency 75
dump 353
main storage 79-81

opening (example) 103
preformatting DASD 75
reusable DASD 76-79

automatic environment checkpoint at zone
changeover 333

designing for high message traffic 78-79
reorganizing 76

sample JCL for printed output 353
scanning queues in 335-338
specifying 83, 85

specifying DASD as input/output
specifying one or more 81-84

102

specifying PARM = parameters for printed output
specifying type in terminal table 31

354

specifying when user informed that message queues no
longer crowded 96

specifying where maintained 31
specifying whether on a DASD 94

message retrieval facility 285, 286
POINT macro 285

message routing 116
control 13
techniques of coding for one or more destinations 159

message segments 55, 109, 123
expediting transmission of 163
maintaining incoming count for origin station 154
outgoing maintaining count for destination station 154
translation of 152

message sub block 109
message switching sample program
message transmission

208-212

between start-stop and BSC stations 16
dynamically varying path through an MH 187
establishing contact for 17
lost data indicated on message error record
specifying continuation after retry exhausted
specifying termination after retry exhausted
stopping for a nonswitched station 315
suspending 139

output 162

370
144

143

suspension to intercepted station indicated on message
error record 371

MF = operand
application program 250
MCP 103

MFT-II 361
MH

base register requirements 145
conditional execution of functional macros 129
controlling path of message through 183
delimiter macros 140-149 (see directory at front of

book)
designing 109-205

conditionally executing macros 129
delimiter macros 140-149
functional macros 150-204
hold/release facility 139
list of groups/subgroups/delimiter macros 141
message flow 122-128
message format 109-111
message header 110
message translation 137 -139
order of macro specification 118
selecting functions 115 -118
steps in 140
structure 111-114
user code in 130-137
variable processing in 129

dynamically varying path of message through 187
functional macros 150-204 (see directory at front of
book)

functions provided 115
error handling 116
function modification 118
message editing 115
message routing 116
record keeping 116
system control 117
validity checking 116

gaining access to option fields 26
groups 112

delimiters 113
order of 113

incoming group 112
macro return codes 136
macros

delimiter 109
functional 109
order of specification 118

macros and corresponding subgroups listed 115
message flow 122-128

example of 2-segment message with multiple-buffer
header 126

example of 2-segment message with single buffer
header 125

message processed by application program
switched message 122

123

within group 123
minimum requirements 113
organization 112
outgoing group 112
purpose of 109
specifying address of for an application program 246
specifying for line group 69
subgroups and corresponding macros listed
subgroups

115

delimiters 113
functions of 112
order of 113

types of macros 109
user code in 130-137

closed subroutines 132
formula for determining bytes resulting from
locating header field 132-135
locating option fields 132
macro return codes 136
multipl~-buffer header considerations 131
obtaining information from EXEC job-control
statement 136

open subroutines 132
requirements and restrictions 131
sample activation of closed subroutine

variable processing in 129
varying path of message in

MH = operand
line group DCB macro 69
PCB macro 245

MINLIN = operand 418

129

modules associated with operator commands
MOVE = operand 169
MRELEASE macro 284-285

restriction 289
specifying password 99, 285

133

374

specifying station to receive intercepted messages
MSGEDIT macro 168-179

avoiding coding problem
EOB-checking restrictions
example of coding problem
examples 175-179, 194

172
170

171

deleting and replacing data 178
deleting data followed by contracting
deleting miscellaneous data 178
deleting several characters 179
deleting single character 179

177

inserting control symbols in segments 179
inserting data after every n bytes 177
inserting data in header buffer 176
inserting idle characters 178
inserting line addresses 194
multiple inserts and removes 179
replacing data 177
simultaneously inserting and replacing data

format 172
limitations 170
restrictions 170, 174, 175
scan pointer effects 171

131

285

177

specifying beginning of data to be removed 173
specifying data to be inserted 172, 173
specifying data to be removed 172, 173
specifying end of character string to be removed
specifying insert on remove operation 172
specifying location at which data to be inserted
specifying type of function 172
speed of execution 170
structure of operand groups

MSGFORM macro 179
172

specifying outgoing blocking factors 180
specifying outgoing ITB characters 180
specifying whether transparent mode used

MSGGEN macro 180
restrictions 182
specifying conditional execution 181

180

175

173

Index 449

specifying data for 181
specifying logical cormection between mask and message
error record 181

specifying type of translation 182
MSGLlMIT macro 182

restrictions 182
specifying number of messages for a transmission
sequence 182

MSGTYPE macro 183
example 184
specifying path of message through an MH 184
specifying use of EBCDIC blank characters 184

MSMAX = operand 96
MSMIN = operand 96
MSUNITS = operand 96
multiple-buffer header 123

considerations for user code in an MH 131
handling 124

multiple destinations 159
canceling messages to 150

multiple disk arms 75-76
multiple READ macros 266
multiple-subgroup restrictions 124, 127
multiple-wait capability 270

example 271
multiplexer channel 361
multipoint 15
multiprocessing 361
MVT 361

NCP = operand 87
network control facilities 273-285
network control macros 273, 274

ICHNG macro 282-284
ICOPY macro 276-279
MRELEASE macro 284-285
QCOPY macro 280-281
TCHNG macro 281-282
TCOPY macro 274-276

network reconfiguration 329-330
application program macro instructions for 330
operator commands for 329

NOENTRNG operator command 313
non-contention line 15
NONE operand 153
nonreusable disk queues 79

specifying 32
message retrieval from destination queue 285
preformatting 365
specifying for message queues data set 83
specifY.inR. percentage of records to be used before flush
closedown 84

nonswitched line 15
activating station on 300
activating station's terminal entry for entering on 308
preventing station transmission to CPU 313, 315

nontransparent mode 17
specifying 180

NOTRACE operator command 314
NOTRAFIC operator command 315
NTBLKSZ = operand 34
nucleus generation 364

OBR extension for TCAM 327 -329
OL T (see on-line test)
OLTEST = operand 100
on-line test 356-359

advantages 356
devices supported 356
invalid request indicated on message error record 370
specifying maximum that may occur simultaneously 100
system requirements 357 -359

coding 358
JCL for TOTE/OLTs 358
main-storage 357
OS/SYSGEN 358
TOTE 357, 358

tests 356
TOTE facilities 356

450

OPDATA = operand
TERMINAL macro 34
TPROCESS macro 43

OPEN macro 101-104, 249-250
checkpoint/restart operands to be considered 332
examples of opening data sets 103
initialization and activation 91
specifying activation of line for line group data set
specifying list and execute forms 103
specifying name of data control block 250
specifying name of DCB macro 102
specifying type of data set 102

Open routine error codes returned by TCAM
operand formats 367
operating system generation
operator awareness message

for I/O error 326

364
329

specifying display of IEA001 100

88-89

103

operator commands 300-324 (see directory at front of book)
entering from application program 299
examples 297
incident checkpoints resulting from
incident records caused by 334
incorrectly formatted 299
listed by areas affected 325
listed by type of operation 405
operation types 296
queuing responses to 298
responses 298
specifying 297
specifying identifier for

operator control 295-325
activating debugging aids
activating line trace 310

95

305

activating nonswitched station for
transmission 300-301

326

activating nonswitched station's entry for
entering 308

activating the system interval 311
changing duration of polling delay 317
changin~ duration of system interval 324
checkpomting commands 326
command format 295
commands listed by operation 405
deactivating line trace 314- 315
displaying active invitation list entries 300
displaying current status of intensive-mode recording 322
displaying list of inactive entries for a line 311
displaying list of intercepted stations 312
displaying message error record for a line 312, 313
displaying name of primary station 307
displaying names of secondary stations 307
displaying polling status of a line 320

. displaying queue control block fields 317
displaying sequence number of last message to/from a
station 322

displaying station's option fields
displaying station status 322

316

displaying station's relative line number 319
displaying status field for a line 312, 313
entering commands from application program
establishing primary station 303
incident records caused by commands 334
incorrectly formatted commands 299
initialization for 295
initiating closedown 324
inserting data in option fields
intensive-mode error recording
making resident 373-374

304
309,328

299

operator commands (see directory at front of book)
preventing nonswitched station entering to CPU 313
preventing transmission for nonswitched station 315
primary station

displaying name of 307
operator awareness message 329

queuing responses to commands 298
releasing intercepted messages 318
replies to a component 36
responses to commands 298, 299

sample commands
secondary stations

297

displaying names of 307
specifying an application program in the terminal
table 42

specifying commands 297
specifying primary station 95
specifying secondary stations in the terminal table
specifying temporary I/O error records 308
starting or resumingJine transmission 319
stopping transmission for line or line group
suspending transmission to a station 323
switching to Auto Poll 303
switching to programmed polling
testing for operator commands

example 153
opfield operand

COUNTER macro 154
LOCOPT macro 167
MSGLlMIT macro 182
PATH macro 187

OPTCD = operand
checkpoint DCB macro
input DCB macro 240

86

message queues DCB macro
output DCB macro 243

301
152

84

OPTFIELD operator command 316
option fields 434

automatic recording of changes at cold restart
defining in the terminal table 26
displaying for a station 316
examining contents 274
gaining access to

specifying name for 167
specifying register to contain address for

inserting data in 304
locating 132
macros that may gain access to
modifying 281- 282

26

moving contents to work area 275
recorded on environment checkpoint record
recording changes in status 334
recording status 334
reserving space in 26

321

334

167

333

specifying actual data to be inserted 34,37,43
example 37, 44

specifying incident checkpoint record of 151
specifying type and length in terminal table 27
specifying work area to contain 276

option table 26
displaying fields in 316
specifying address of field in 167

OPTION macro 26-29
coding examples 28-29
specifying type and length of option field

optional .fields
defining in work area 254-257

origin and destination 255
position field 255
SAM prefix 256

format of relative positions in work area
included in specifying length of work unit

READ macro 267
WRITE macro 268

27

257

included in specifying size of work area 239

35

included in specifying record size in work area 240
included in specifying work-unit size in work area 243
specifying for work unit 240, 243

ORDER = operand 19
ORIGIN macro 185
origin code error indicated in message error record
origin field

in work area 254
message header validation 185, 187
relative position among optional fields in work area

ORIGIN macro

369

257

specifying character count for origin fields in a message
header 186

variable iunctions of
origin station

185

maintaining incoming count

of messages 154
of message segments 154

maintaining count of outgoing message segments
for 154

OS generation 364
outboard recorder extension for TCAM 327-329
OUTBUF macro 148

specifying conditional execution 149
outbuffer subgroups 112

functions of 112
identifying to handle outgoing buffer
translating to line code 152

OUTEND macro 149

148

outgoing group 112
required delimiter macro 149
subgroups of 112

outgoing message
counting segments for destination station
editing 168-179

identifying subgroup to handle buffers
inserting sequence number 196
maintaining count for destination station
maintaining record of traffic 167

148

154

sample format 111
specifying blocking factors 179
specifying priority handling for 190
translating 137- 139

outgoing subgroup translation to line code
OUTHDR macro 148

152

specifying conditional execution 148
outheader subgroup 112

functions of 112
identifying beginning of 148
translating to line code 152

outmessage subgroup 112
functions of 113
required delimiter macro 149

OUTMSG macro 149
specifying conditional execution

output data control block 236
149

output data set 236
COMWRITE requirements and format 347
DCB macro 242-245

specifying DO statement 245
specifying format and characteristics of work
unit 244

specifying type on OPEN macro
output DCB macro 242-245
OUTPUT operand 102
output sequence number

displaying last for a station
inserting 196

322

102

154

Outward WATS (interval between computer-initiated calls to
switched stations) 33

overrun
indicated on message error record 372
specifying intensive-mode error recording for 328

parameter list on OPEN macro 250
parity character error indicated on message error
record 372

password for application program macros 99
PASSWRD = operand

ICHNG macro 284
INTRO macro 99
MCPCLOSE macro 252
MRELEASE macro 284
TCHNG macro 282

path switches 129
altering to vary path of message through an MH 187
specifying execution of inheader subgroup 145

path switching delimiter macros 118
PATH macro 187-189

example 188
specifying conditional execution 188
specifying path switch setting 187
specifying path-switch byte to be used 187
specifying use of EBCDIC blank characters 188

PATH = operand
INBUF macro 146

Index 451

INHDR macro 146
INMSG macro 147
OUTBUF macro 148
OUTHDR macro 148
OUTMSG macro 149

PCB macro 245-246
specifying bytes for date/time/sequence number 246
specifying initial buffers to handle data in user work
area 246

specifying initial buffers to handle data obtained by
GET/READ 246

specifying MH for an application program 246
specifying size of buffers for an application
program 246

PCB = operand 42
PCI = operand 69
permanent-error record 326, 327

access to 329
point-to-point line 15
POINT macro 285

restriction 289
specifying data control block for message retrieval 286
specifying required address of a field 286

POINT = operand 201
POL LOLA Y operator command 317
polling 18

changing duration of delay 317
determining type for a line 278
displaying status of a line with respect to 320
timeout exceeded indicated on message error
record 372

polling characters 18
for polled stations 19

position field 255
guidelines for using in work area 248
relative position among optional fields in work area 257

prefix 55
primary operator control station 434

command for establishing 303
displaying name of 307
operator awareness message 329
specifying 95

PRIMARY = operand 95
printing utility

COMEDIT 352
examples of invoking 353
PARM = options 352

IEDQXC (PARM = options) 354
priority

application program 233
equal

nonswitched contention stations 50
nonswitched polled station with programmed

polling 49
nons witched polled stations with Auto Poll 49

MCP 233
message 45-48

after zone reorganization of DASD data set 77
busy lines 52
efficient use of 78

receive
nonswitched polled stations with Auto Poll 49
nonswitched polled stations with programmed

polling 48
send

nonswitched contention stations 50
nonswitched polled stations with Auto Poll 49
nonswitched polled stations with programmed

polling 49
specifying 32

permissible levels for messages on a process
queue 43

transmission 45, 48-51
efficiency when receive specified 78
specifying for line 67

priority handling for outgoing messages 190
PRIORITY macro 190

effect of CODE macro on 190
example 192
specifying conditional execution 190
specifying for a message 190

452

specifying priority level for a message 190
specifying use of EBCDIC blank characters 191

private library definition 207
problem program exit list

specifying address on checkpoint DCB macro 86
specifying address on message queues DCB macro

process control block
defining in the MCP
dump of 344

237-246

specifying name of in the terminal table
PCB macro for 245-246

process entry 25
application program requirements

process queue 434
236

specifying priority levels of messages on
processor /library generation 364
PROGID = operand 94
program-controlled interruption

buffer allocation considerations 62
specifying for buffer aliocation/deallocation

program EOA (example) 110
programmed polling 48

determining use on a line
switching to 301

278

42

43

69

protection password for application program macros
purging destination queue at restart 42
PUT macro 265

specifying address of data control block 265

99

specifying address of work area 265
specifying to gain access to checkpoint data set 86
specifying to gain access to line group data set 66
specifying to gain access to message queues data
set 84

QBY = operand 30
QCOPY macro 280-281

restriction 289
specifying name of terminal table entry whose queue
control block is to be displayed 280

84

specifying name of work area for displaying queue control
block 281

QST ART macro 290
in checklist for checkpoint/restart 332

QSTATUS operator command 317
QTAM

converting application programs 403
macro facilities listed 403

queue 434
queue control block

displaying fields in 317
dump of 344
examining 280-281
master 280
specifying name of terminal table entry for
displaying 280

priority 280
QUEUES... operand

LOG TYPE macro 45
TERMINAL macro 31
TPROCESS macro 42

queuing and message priority 46-48
queuing

checkpoint facility requirements 80
disk 72-79'

advantages and disavantages 73-74
intercept function requirement on 80
main storage 79-81

with disk backup 80
without disk backup 79

messages for one or more destinations 159-161
retrieve function requirement on 80
specifying one or more methods 81-84
specifying main-storage as additionaUeature 101
specifying reusable disk as additional feature 101
techniques listed 72

queuing by destination 72
queuing by line

considerations for 46
example 47 -48

queuing by terminal

considerations for 46, 47
example 47-48

quick closedown 10 1
automatic environment checkpoint record during 333
cold restart following 340
initiating through operator control 324
response to inquiring station in lock mode 287
specifying in application program 252
warm restart following 340

QUICK operand 252

read-ahead queue 235, 247
formula for number of buffers required for
role in message flow 122
use of 246

READ macro 265
issuing more than one per process queue
specifying address of data control block
specifying address of work area 267

248

266
267

specifying initial buffers to handle data obtained by
specifying length of work unit plus optional fields
specifying name of data event control block 267
specifying SF 267

READY macro 104-105
initialization and activation 91

RECDEL = operand 43
receiving 15

BSC considerations 414
RECFM = operand

input DCB macro 240
log DCB macro 87
output DCB macro 244
TPEDIT macro 418

record 110, 253
checkpoint request 334

priority used in dividing space for 339
specifying data set for 86
specifying number for checkpoint data set 98

control 333
counter overflow 328
delimiting for an application program 43, 258
end-of-day 328
environment checkpoint 333

example using 336-338
how updated 334

error
displaying current status of intensive-mode
recording 322
gaining access to 329
intensive mode recording

I/O error types 327-328
incident checkpoint 334

328

automatic environment record when full
example using 336-338
operator commands causing
specifying 151
use 334

inserting delimiter (example)
maintaining for message traffic
permanent-error 326

326

178
167

processing as a work unit 260-263
specifying size 240
types in checkpoint data set 333-335

record keeping 116
record and message processing 261
record processing guidelines 248-249
recoverable error

333

246
267

operator awareness message indicating failure 329
retrying the block 327

REDIRECT macro 192
specifying additional destinations 193
specifying conditional execution 193
specifying connection between mask and message error

record 193
(register) operand

CODE macro
LOCOPT macro

registers

153
167

saving when l,Is_er code handles multiple-buffer
head.!lr~ 97

specifying for an MH 145
relative line number 434

CPU calling a station 52
displaying for a station 319
example of TERMINAL macros arranged according

to 39
specifying 31

to display invitation list 279
to modify an invitation list 283

station calling the CPU 51
use in invitation list 68

releasing intercepted messages 318
RELEASE operand 163
remove operation 169
REPLACE = operand 421
RESERVE = operand

line group DCB macro 69
PCB macro 246

RESMXMIT operator command 318
response (see inquiry/rapid response)
response keywords at INTRO execution time 93
restart 330-341

building "Good Morning" and "Restart in Progress"
messages 104-105

checkpoint data set for 85-86
cold 340

after abnormal flush closedown 79
automatic recording of changes in option

fields 334
building "Good Morning" message 104-105
good morning routine gaining control

following 340
reformatting DASD message queues data sets 75

conditions required for various types 341
continuation 340

replaced by cold restart due to faulty checkpoint
records 340

coordinating MCP and application program 293
maintaining continuity of sequence numbers 198
purging destination queue 42
scanning message queues after system

failure 335-337
types 339-341

specifying 98
warm 340

replaced by cold restart due to faulty checkpoint
records 340

restart in progress routine (use) 336
restarting the MCP 91
RESTART = operand 98
RESULT = operand 201
retrieval of messages 285-286

POINT macro 285
queuing requirement 80, 81

retry count exhausted
continuing message transmission 144
terminating message transmission 143

retrying the block 327
reusable disk queuing 76-78

advantage of combining checkpoint coordination methods
for 293

automatic environment checkpoint at zone
changeover 333

designing for high message traffic 78
preformatting 365
retrieving messages from destination queue 285
specifying 32, 101

for message queues data set 83
rln operand

ICHNG macro 283
ICOPY macro 279

RLN = operand 31
RLNST ATN operator command 319
RSMSG = operand 105

SAM prefix 256-257
SAM/TCAM compatibility 289-293
sample programs 208-231

file updating with checkpoint coordination
inquiry /rapid response 213-219

220-231

Index 453

message switching
scan 335-338

208-212

scan pointer 118-121
automatically moving 118
coding considerations 120
error indication on message error record 369
example of use 119
MH macros not dependent upon 124
moving 199-202
use of with CODE macro 152

SCREEN macro 194-196
example 196
return codes 195
specifying conditional execution 195
specifying type of Write operation 195
specifying use of EBCDIC blank characters 195
use of MSGEDIT macro with 194

SCT = operand 70
SDR extension for TCAM 327 -329
secondary operator control station

displaying names of 307
specifying an application program as
specifying in the terminal table 35

42

secondary storage for message queues data sets
SECTERM = operand

TERMINAL macro
TPROCESS macro

segments 109

35
42

expediting message transmission using INITIATE
macro 163

incoming
maintaining count for origin station 154
maintaing record of 167

outgoing

94

maintaining count for destination station 154
maintaining record of 167

seizing the line 15. 24
selection 18. 24

errors indicated on message error record 371
sending 15

BSC considerations 414
SENDTRP = operand 180
sense byte in input/output block of operator awareness
message 329

sense count 323
SEQUENCE macro 196

reserving bytes for sequence number 246
sequence number

displaying for last message to or from a station 322
errors indicated on message error record 369-370
input 432

checking 196
format of header field 196

internal counter for 197
maintaining continuity during restart
output 434

198

inserting 196
recording status of fields containing 334-335
reserving bytes in buffer for 69 . 246

service bit 335
service facilities 295-359

checkpoint/restart 330-341
I/O-error recording 327 -329
I/O error-recovery procedures 326
message logging 341-343
network reconfiguration 329-330
operator control 295-325

SETEOF macro 198
specifying conditional execution 198
specifying use of EBCDIC blank characters

SETSCAN macro 199-202
examples 202
format 200
specifying direction of scan pointer movement
specifying new location of scan pointer 200
specifying register to contain address of last
character 201

198

201

specifYing use of EBCIDIC blank characters 200
specifying whether scan pointer to remain stationary
after a move 201

SF operand

454

READ macro 267
WRITE macro 268

single entry 24
DSECT of 274-275

SIO command counter in terminal-table entry 327
skipchars operand 200
special characters table name (specifying) 70
START command 207
Start I/O command counter in terminal-table entry 327
start-stop transmission 16

device-dependent considerations 407 -413
starting and restarting the MCP 91

building "Good Morning" message 104-105
STARTLINE operator command 319
STARTMH macro 142-145

format 143
function of 112
inquiry/rapid response coding considerations 288
removing line control characters 143
retaining line control characters 143
specifying_continuation of transmission after retry
exhausted 144

specifying EOB completion handling 144
specifying number of base registers 145
specifying termination of transmission after retry

exhausted 143
specifying tete-a-tete interaction 144
testing for logical errors 144

STARTUP = operand 98
STATDISP operator command 320
station 15

defining a component belonging to 25
defining in a group 24
defining individually 24
designating to receive user-specified error messages 157
displaying input sequence number of last message
from 322

displaying option fields 316
displaying output sequence number of last message to a

station 322 .
displaying relative line number of 319
displaying status of 322
error indicated on message error record 371
intercepted

indicated in operator control display list 312
indicated on message error record 371
restriction on type of destination queue 78
restrictions on holding messages 140
specifying 162
specifyinK another station to receive messages

queued for 285
use of HOLD macro 139

invalid identification sequence indicated on message error
record 371

limiting number of messages sent to 182
locking to application program 165
maintaining count of outgoing messages for 154
nonswitched

activating 300
activating terminal entry for entering 308
preventing transmission to CPU 313
stopping transmission for 315

operator control
command for establishing 303
specifying secondary in the terminal table 35

origin
maintaining count of incoming message segments

for 154
maintaining count of incoming messages for 154
maintaining count of outgoing message segments

for 154
primary operator control

displaying name of 307
operator awareness message sent to 329

removing from extended lock mode 202
secondary operator control

displaying names of 307
specifying an application program 42

specifying incident checkpoint records of option fields
belonging to 151

specifying intensive-mode error recording for 328

suspending transmission to 139, 323
station control block dump 344
statistical data recorder extension for TCAM
stat name operand

MRELEASE macro 285
TCOPY macro 276

status bytes in operator awareness message
status field displayed for a line 312
status information for debugging 305
STCB trace table 347

activating trace 305

327-329

329

examples of obtaining printed output
specifying number of entries for table

353
100

STOP = operand 143
STOPLINE operator command 321

considerations for buffered terminals
STOPLN macro (QTAM) 403

considerations for buffered terminals
STSTATUS operator command 322
STX control character 16, 17

removing from incoming messages
SUBBLCK = operand 180
subblock 109

size 34, 37
subgroups 111

arrangement 113
executing by setting switch
functions of 112

129

inbuffer
identifying beginning of 146

50

50

143

identifying to handle incoming buffers
translating to EBCDIC 152

inheader
identifying beginning of 145
specifying execution of 146
translating to EBCDIC 152

inmessage
identifying beginning of
required delimiter macro

outbuffer

147
147

146

identifying to handle outgoing buffer 148
translating to line code 152

outgoing
translating to line. code

outheader
identifying beginning of
translating to line code

outmessage

152

148
152

required delimiter macro 149
restrictions on multiple 127

subtasks
keeping record of activation 347
attached 365
optional

attaching checkpoint
attaching COMWRITE
attaching on-line test

required

330-341
346-347
356-358

attaching operator control 295-300
SUSPXMIT operator command 323
switched line 15

defining for input or input/ output
identifying station for incoming calls

25
185

use of TERMINAL macro 37, 38
switches 129
switch operand
SYNAD

exit 271

187

input to routine 272
register contents on entry to
status indicators of routine

272
272

SYNAD address
specifying on input DCB macro
specifying on output DCB macro

SYNADAF 271,273

241
244

format of TCAM/SAM message buffer
SYNAD = operand

input DCB macro 241
output DCB macro 243

SYNADRLS macro 271
SYSl.LlNKLlB (making transient modules

273

resident) 373-374
SYSl.LOGREC (gaining access to error records on) 329
SYSCLOSE operator command 324

considerations for buffered terminals 50
SYSGEN 364
SYSINTVL operator command 53, 324
system control 117
system failure

cold restart following 340
continuation restart following 340
restarting from 330
scanning message queues during restart 335

example 337
specifying type of restart for 98
suggestions for establishing checkpoint
coordination 291-292

system generation considerations 364
system interval 53

activating 311
changing duration of 324
specifying length 97

system macros issued in an MH 131
system preparation 361-366
system records of changes in status 334

tab/ename operand 153
TBLKSZ = operand 34
TCAM/SAM compatibility 289-293

use of SAM prefix 256
TCAM

closing system 251-252
determining presence in CPU from non-buffered

terminal 278
machine and device requirements 361-364
macro formats 367

conventions used 367
making transient modules resident 373-374
modules associated with operator commands 374
multiprocessing 364
running QTAM application programs 403
service facilities 295-359
specifying during system generation 364
system preparation 361- 366

TCHNG macro 281-282
restriction 289
specifying name of work area containing replacement
for terminal table entry 282

specifying password 99, 282
specifying terminal table entry whose contents are to be

replacea 21,31
TCOPY macro 274

restriction 289
specifying station whose terminal-table contents are to be

moved 276
specifying work area into which terminal table contents are

to be moved 276
telecommunications system

macros used for controlling and modifying 117
specifying line configuration and device
requirements ·364

telephone number of a station (specifying) 32
teleprocessing network indentification 13
temporary error 327

counter in terminal-table entry 327
temporary-error record 328

access to 329
intensive-mode recording for 328

TERM = operand 31
terminal entry 24

activating nonswitched station for entering 308
types 24, 25

TERMINAL macro 29-36
abnormal termination due to improperly specified message

queues data set 32
addressing characters for specifying a component 36
coding for a component 36-37
coding for a line 37
defining a component 36, 37
defining a line entry 36
format 30

Index 455

multiple macros arranged by relative line number
(example) 39

operands 30-36
specifying a component 36

options for specifying terminal type 31
overriding block size with the MSGFORM macro 34
relevant operands when specified for a line 39-40
specifying addressing characters 32
specifying alternate destination 33

component 36
specifying block and subblock sizes for a component
accepting messages in nontransparent mode 37

specifying block size for outgoing messages
nontransparent mode 34
transparent mode 34

specifying block size of messages in transparent mode
to a component 37

specifying buffer size for outgoing messages 33
specifying data control block name for line group 31
specifying data for option fields 34

example 35
specifying delay between message blocks sent to a
buffered station 33

specifying interval between computer-initiated calls to a
switched station 33

specifying priorities 32
specifying relative line number 31
specifying secondary operator control stations 35
specifying subblock size for outgoing messages in
nontransparent mode 34

specifying telephone number of a station 32
specifying time for computer-initiated calls 33
specifying type of messilge queuing 31
specifying where message queues to be maintained 31
specifying whether a component is to accept replies to
operator commands 36

summary determining use for a line 37 -38
use of relative line. number in dialing 31
using for audio lines 37

terminal
defining 15
determining number that are accepting 278
determining total number on a line 278
modifying Write operation 194
recording changes in status 334
recording status of 333
speCifying type (available options) 31
types supported 361

terminal table 24
constructing 24-45
defining boundaries 25
defining option fields 26
device-characteristics fields in 275
DSECT format 275
dump 344
macro instructions

LOGTYPE 45
OPTION 26
TERMINAL 29-36
TUST 40
TPROCESS 41-44
TTABLE 25

reserving space in an option field 26
specifying data for option fields (example) 44
specifying last entry in 26
specifying logging complete messages 344
specifying secondary operator control stations 35
types of terminal entry 24-25

terminal table entry
count of start I/O commands 327
count of temporary errors 327
examining contents 274
modifying 281-282
specifying name for displaying queue control block 280
specifying name of for replacing contents 281

termination
application program 293
due to not specifying user error-analysis routine 87
due to uncorrectable I/O error 87
improperly specified message queues data set 32
overlaying records on message queues data set 78

456

specifying user exit 87 -90
wrapping nonreusable disk during flush closedown 79

terminology 15
termname operand

QCOPY macro 280
ICHNG macro 281

temporary I/O error
intensive-mode recordings 328
specifying records 308

TERRSET macro 202
setting a bit in the message error record 202
using ERRORMSG macro with 202

tete-a-tete interaction (specifying) 144
text 109
text buffer 55
text-only message 109
text transfer error indicated on message error record 371
THRESH = operand 84
time

format for inserting in header 156
logging 342
reserving bytes in buffer for 69, 246
specifying whether to be inserted in header 156

time-of-day for computer-limited calls 33
TIME = operand 156
timeout exceeded

indicated on message error record 372
specifying intensive-mode error recording for 328

TUST macro 40
defining either distribution list or cascade list 40
example of extended list of entries 41
specifying entry for distribution list or cascade list 40

TO operand 175
TOPMSG = operand 100
TOTE 356

facilities 356
invalid request indicated on message error record 370

TP Op code in operator awareness message 329
TPEDIT macro 417 -426
TPROCESS macro 41-44

checkpoint/restart operands 332
delimiting a record for the application program 43
interface between MCP and application program 41
operands 42-44
purging destination queue at restart 42
speCifying actual data for option fields 43

example 44
specifying alternate destination 42
specifying application program as secondary station 42
specifying name of process control block 42
specifying permissible priority levels for messages on a
process queue 43

specifying where application program message queues
maintained 42

TRACE = operand 99
TRANS = operand 69
transferring data between MCP and application
program 252-271

transient modules (making resident) 373-374
translation 16, 137 -139

avoiding 138
of data in buffers 151
selective 153
specifying type 153

translation tables 138
formatting 138
list of TCAM-provided 138
overriding for a line group 152
providing 138
specifying 17

for line group 69
user 153

transmission 16
dynamically varying path of message through an

MH 187
limiting number of messages to a destination 182
maintaining count of messages or message segments 154
specifying continuation after retry exhausted 144
starting or resuming on lines 319
stopping for a nonswitched station 315
stopping for line or line group 321

suspending 139
suspending output to a station 162, 323

transmission control unit 435
examining sense byte for I/O error 326

transmission priority 45, 48-51
efficiency when receive specified 78
nonswitched contention stations 50
nonswitched polled stations 48-49

Auto Poll 49
TCAM program potl 48-49
using buffering 49-50

specifying for line 67
switched stations 50-51

BSC 413
non-BSC 50-51
TWX 413

transparent mode 17
specifying for message transmission 180

TREXIT = operand 99
TTABLE macro 25

specifying last entry in terminal table 26
specifying length of terminal table name 26

type/ength operand 27
typename operand 168
TYPE = operand 40

undefined error indicated on message error record 371
undefined-format work unit 257

input data set 240
output data set 244

undefined-length work unit size 243
undefined record delimiter 258
unit 55

allocation 57 -58
examples 58, 59

deallocating from end of buffer 147
determining number needed 61
specifying maximum simultaneously used for main-storage
queuing 96

specifying number lor segments 96
specifying size for buffers 95, 96

unit exception
indicated on message error record 371
specifying intensive-mode error recording for 328

unit pool 55,57-58
UNITSZ = operand 95
UNLOCK macro 202

examples 203
inquiry/rapid response coding considerations 288
specifying conditional execution 203
specifying use of EBCDIC blank characters 203

USASCII code 388
user code in MH 130-137

formula for determining bytes resulting from 131
USEREG = operand 97
user error indicated on message error record 371
UTERM = operand 36

variable-format work unit 257
input data set 240
output data set 244

variable processing within MH
variable record delimiter 258

123

VERCHK = operand 419
wait state

application program 269
during closedown procedures 251

WAIT macro for testing BSAM/TCAM completion codes
warm restart 340

replaced by cold restart due to faulty checkpoint
records 340

WATS (arrangement of TCAM lines)
WDC operation 194, 195
WLA function 194
WLA operand 195
work area 235, 253

addressability requirements 131
contents described in position field
defining 253-257

52

241, 244

269

definin~ optional fields 254-257
origin and destination 255
position field 255
SAM prefix 256

dynamic definition of 254
format of relative positions of optional fields in 257
guidelines for using position field in 248-249
including optional fields when specifying size
of 240,243

moving contents of option fields to 275
moving data between input and output 254
optional fields included in specifying record size 240
origin field in 255
position field in 255

format 241, 244
SAM prefix in 256
specifying address

GET macro 264
READ macro 267

specifying from which terminal table contents are to be
moved 282

specifying initial buffers to handle data from 246
specifying into which invitation list contents are to be
moved 279

specifying into which terminal table contents are to be
moved 276

specifying on PUT macro 265
specifying size 239,243
specifying station whose terminal-table contents are to be
moved to 276

static definition of 253
work unit 235, 252

effect of type and format on determining size of 263
formats 257-259

input DCB macro summary 258
output DCB macro summary 259

optional fields included in specifying work-unit size 243
processing

for a message 259
for a record 260-263

specifying 257-263
specifying input data set format and
characteristics 240
specifying length including optional fields

READ macro 267
WRITE macro 268

specifying optional fields for 240, 243
specifying output data set format and
characteristics 244

specifying size 243
types 259-263

WRE function 194
WRE operand 195
Write-at-Line-Address 194
WRITE macro 267

specifying address of data control block 268
specifying length of work unit plus optional fields 268
specifying name on data event control block 268

Write operation
modifying for terminals with display screens 194
specifying type for 2265s (Remote) or 2260s 195
verifying type in effect 195

WTOR at INTRO execution time 93, 94
WTTONE = operand 100
zone changeover (automatic environment checkpoint
record) 333

example 337

Index 457

READER'S COMMENT FORM

IBM System/360 Operating System
Telecommunications Access Method (TCAM)
Programmer's Guide and
Reference Manual

• How did you use this publication?

As a reference source 0
As a classroom text 0
As a self-study text 0

• Based on your own experience, rate this publication.

As a reference source: Very Good
Good

As a text: Very Good
Good

• What is your occupation?

Fair Poor

Fair Poor

Order No. GC30·2024·0

Very
Poor

Very
Poor

• We would appreciate your other comments; please give specific page and line
references where appropriate. If you wish a reply, be sure to include your name
and address.

• Thank you for your cooperation. No postage necessary if mailed in the U. S. A.

GC30-2024-O

YOUR COMMENTS, PLEASE •..

This publication is one of a series that serves as a reference source for systems analysts,
programmers, and operators of IBM systems. Your answers to the questions on the
back of this form, together with your comments, help us produce better publications
for your use. Each reply is carefully reviewed by the persons responsible for writing and
publishing this material. All comments and suggestions become the property ofIBM.

Please note: Requests for copies of publications and for assistance in using your IBM
system should be directed to your IBM representative or to the IBM sales office serving
your locality.

Fold

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN U. S. A.

Attention: Publications Center, Dept. E01

POSTAGE WILL BE PAID BY •••

IBM Corporation
P. O. Box 12275
Research Triangle Park
North Carolina 27709

- - ----- - - - - - - -- - -- - - ------------
Fold

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Pleins, New York 10604
(U.S.A. only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(lntematlonal)

I
I
I
I

Fold I

FIRST CLASS
PER/.m NO. 569
RESEARCH TRIANGLE PARK
NORTH CAROLINA

_.J
I
I
I

Fold ~
:i"
at
Q.

5"

!=
rn
?>

Gl
n g
~
0
i'.)

"'" 6

GC30·2024·0

International Business Machines Corporation
Da .. Processing Division -
1133 We .. che .. er Avenue, White Plains, New York 10604
(U.S.A. only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(International)

