
Program Product

SC28-6456-0

IBM OS Full American
National Standard COBOL
Compiler and Library, Version 4,
Programmer's Guide

Program Numbers: 5734-CB2
5734-LM2

This publication describes how to compile an American
National Standard COBOL X3.23-1968 program using
Version 4 of the I BM Operating SYstem Full American
National Standard COBOL compiler. It also discusses
how to link edit and execute or load the program under
control of the I BM Operating System. There is a
description of the output of each of these steps, i.e.,
compile, link edit, load, and execute. In addition, there
is an explanation of the features of the compiler and
available options of the operating system.

This edition corresponds to Version 4 of the IBM OS Full American
National Standard COBOL Compiler.

Changes are periodically made to the information herein; any such
changes will be reported in subsequent revisions or Technical
Newsletters. Before using this publication in connection with the
operation of IBM systems, refer to the latest SRL Newsletter, Order
No. GN20-0360, for editions that are applicable and current.

Requests for copies of IBM publications should be made to your IBM
representative or to the IBM branch office serving your locality.

A form for readers' comments is provided at the back of this
publication. If the form has been removed, comments may be addressed to
IBM corporation, Programming publications, 1271 Avenue of the Americas,
New York. New York 10020.

© copyright International Business Machines corporation 1972

The purpose of this publication is to
enable programmers to compile, link-edit,
and execute, or compile and load Full
American National Standard COBOL Compiler
and Library, Version 4, programs under
control of the IBM Operating System. The
COBOL language is described in the
publication IBM as Full &uerican National
Standard COBOL, Order No. GC28-6396, which
is a corequisite to this publication.

Programmers who are familiar with the
operating system and wish to know how to
run COBOL programs should read "Job Control
Statements" and "Data Set Requirements"
under "Job Control Procedures," and
"Output." These chapters provide
information about the preparation of COBOL
programs for processing by the operating
system.

Programmers who are unfamiliar with the
concepts of OS should read "Introduction,"
"Job Control Procedures," "Checklist for
Job control Procedures," and "Using
Cataloged Procedures" in addition to the
sections listed above.

The chapters "Program Checkout" and
"Programming Techniques" are of special
interest, since they contain information
about debugging and efficient programming.
Other chapters discuss optional features of
the language and the operating system.
Some chapters include introductory
information about features of the operating
system that are described in detail in
other publications.

The chief features available with this
compiler are Optimized Object Code, COBOL
Teleprocessing, and Advanced Symbolic
Debugging capabilities. With the
Teleprocessing Feature, the user can write
device-independent message-processing
proqrams using COBOL language statements to
send and receive messages over a
communications network. The Optimized
Object Code Feature allows for a
considerable reduction in object=time code.
Advanced Symbolic Debugging -
incorporating symbolic dumping
capabilities, a flow trace of a
user-specified number of procedures, and
the number of the source statement causing
abnormal termination -- can result in a
marked saving of debugging time.

Additional features of this compiler
provide for a syntax-only compilation,
significantly reducing compilation time;
the sharing of reentrant COBOL object-time

library subroutines by mUltiple
regions/partitions; dynamic invocation and
release of user subprograms; and
manipulation of data to separate contiguous
data into multiple logical subfields or to
concatenate two or more subfields into a
single field.

The machine configuration required for
system operations is described in the
chapter "Machine Considerations."

Wider and more detailed discussions of
the operating system are given in the
following publications:

IBM OS Job Control Language Reference,
Order No. GC28-6104

!~~_Q~_~~g~Y~~Q~_~g~y~~g~, Order
No. GC28-6646

IBM OS Sort/Merge Programmer's 3uide,
Order No. SC33-4001

IBM OS Utilities, Order No. GC28-6586

!~~_Q~_~y~~~~_~~g~~~~~Qg, Order
No. GC28-6554

Diagnostic messages, together with their
problem determination documentation can be
found in the following publication:

IBM as Full American National Standard
£Q~Q~L Version 4 Messages, Order
No. SC28-6457

Information on installing the compiler
and using it under the Time Sharing Option
(TSO> of the IBM Operating System can be
found in the following Program Product
publications:

IBM as Full American National Standard
COBOL Compiler and Library, Version ~
Installation Reference Material, Order
No. SC28-6458

IBM as (TSO): COBOL Prompter
Installation Reference Material, Order
No. SC28-6434

The COBOL teleprocessing user must write
a message control program CMCP) to handle
messages transmitted between remote
stations and the central computer before
they can be processed by a COBOL program.
General telecommunications access method
(TCAM) information, as well as specific
guidelines for creating an MCP, can be
found in the following publications:

IBM as Telecommunications Access Method
(TCAM) Concgets and Facilities, Order
No. GC30-2022.

INTRODUCTION • • • • • • • • • • • •
Executing a COBOL Program

Compilation

• • 15
15

Linkage Editing
Loading • • • •
Execution

Operating System Environments • • • •
Multiprogramming With a Fixed Number
of Tasks • • • • • • • • • • • • •
Multiprogramming With a Variable
Number Of Tasks • • • •

• 15
16

• 16
16

• 16

16

• 16

JOB CONTROL PROCEDURES 17
Control Statements • • • • • • • 19

Job Management • • • • • • • 19
Preparing Control Statements 19

Name Field • • • • 20
Operation Field 20
Operand Field • • • • 20
Comments Field • • • • • • • 21

Conventions for Character Delimiters • 21
Rules for continuing Control
Statements • • • • • • • • • • • • • • 21
Notation for Describing Job Control
Statements • • • • • • • • • • • •

JOB Statement • • • • • • • • • • •
Identifying the Job (jobname)

JOB Parameters • • • • • • • •

22
23
23
24

• • • • 24
Supplying Job Accounting
Information • • • • • •
Identifying the Programmer
Displaying All Control Statements,
Allocation, and Termination
Messages (MSGLEVEL) ••••••
Specifying Conditions for Job
Termination (COND) • • • • •
Requesting Restart for a Job (RD)
Resubmitting a Job for Restart
(RESTART) •••• • • • • •

Priority Scheduling Job Parameters
Setting Job Time Limits (TIME) •
Assigning a Job Class (CLASS)
Assigning Job Priority (PRTY)
Requesting a Message Class
(MSGCLASS) • • • • • • • • • • •
Specifying Main Storage
Requirements for a Job (REGION)
Holding a Job for Later Execution
Specifying Additional Storage
(ROLL) • • • • • .. : s • •

EXEC Statement • • • • • • • • • • •
Identifying the Step (stepname)

Positional Parameters • • • • • •
Identifying the Program (PGM) or
Procedure (PROC) • • • • • • • •

24

24

25
• 25

26
27

• • 27
21
27

28

28
• 29

29
29
30
30

30
32

32

Keyword Parameters • • • • • • • •
Specifying Job Step Accounting
Information (ACCT) • • • •
Specifying Conditions for
Bypassing or Executing the Job
Step (COND) ••••••• • • • 32

Passing Information to the
Processing Program (PARM)
Options for the Compiler •
Options for Use Only Under TSO
Options for the Linkage Editor

3S
35
39
40
40 Options for the Loader •

Options for Execution • • • . 42
Requesting Restart for a Job Step
(RD) • • • • • • • • • • • • . 42
Priority Scheduling EXEC Parameters 44
Establishing a Dispatching
Priority (DPRTY) • • • • • • • • • . 44
Setting Job Step Time Limits (rIME) 44
Specifying Main Storage
Requirements for a Job Step
(REGION) • • • • • • • • • • • • • . 45
Specifying Additional Main stora~e
for a Job Step (ROLL) ••••• 45

DD Statement • • • • • • • • • • • • • . 46
Additional DO Statement Facilities • 60

JOBLIB and STEPLIB DD Statements 60
SYSABEND and SYSUDUMP DD Statements • 60

PROC Statement • • • • • • • 61
PEND Statement • • • • • • • . 61
Command Statement 61
Delimiter Statement • • • • 61
Null Statement. • • • 61
Comment Statement • • • • 61
BATCH Compilation • • • • 62
Data Set Requirements • • • • 64

Compiler • • • • • • • • • • • . 64
SYSUT1, SYSUT2, SYSUr3, SYSUr4,
SYSUT5 • • • • • • . 64
SYSIN • • • • • • • • . 64
SYSPRINT • • • • • • 64
SYSPUNCH •••• 65
SYSLIN • • • • • • • • • • • • • 65
SYSLIB • • 65

Linkage Editor • • • • • 66
SYSLIN • • • • • 66
SYSPRINT • • • • • • 67
SYSLMOD 67
SYSUT1 • • • • • • • • . 68
SYSLIB • • 68
User-Specified Data Sets • • 68

LOADER • • • • • • • • • • • • 68
SYSLIN • • • • . 68
SYSLIB • • 68
SYSLOUT 69

Execution Time Data Sets • 69
DISPLAY Statement
ACCEPT Statement • • • •
EXHIBIT or TRACE Statement •
COBOL Debugging ~ids • • • •
Abnormal Termination Dump
COBOL Subroutine Library • •

• • • • 69
70

• • 70
70
71
71

• • • . 72
• • • • . 72

USER FILE PROCESSING • • • •
User-Defined Files • • • • • •

File Names and Data Set Names
Specifying Information About a

Fiie Processing Techniques • • •

72
File • 73
• • • • 73

73
75
79

Data set organi~ation • • • • • • • •
Accessing a Standard sequential File •
Specifying ASCII File Processing •
Processing ASCII Files • • • • • • • • 80

Block Prefix • • • • • • • • • •
Handling Numeric Data Items from
ASCII Files • • • • • • • • • • • •

80

81
Direct File Processing • • • • • • • • 81

Dummy and Capacity Records • • • 83
Sequential Creation of Direct Data
Set • . . .
Random creation of a Direct Data
Set • • • • • • • • •
Sequential Reading of Direct Data
Sets • • • • • • • • • • • • •
Random Reading, Updating, and
Adding to Direct Data Sets
Multivolume Data Sets
File Organization Field of the

84

• • 86

• 87

• 87
88

System-Name • • • • • 89
Randomizing Techniques • 90

Relative File Processing. • .100
Sequential Creation .101
Sequential Reading. • • .102
Random Access • • • • .. •• 102

Indexed File Processing ••••••• 110
Indexes • • • • • • • • .110
Indexed File Areas. • • .112
Creating Indexed Files. • •• 113
Reading or Updating Indexed Files
Sequentially 117
Accessing an Indexed File Randomly .119

Using the DO Statement. • • • • • .121
Creating a Data set • • • • • • .121

Creating Unit Record Data Sets .122
Creating Data Sets on Magnetic Tape 123
Creating sequential (BSAM or QSAM)
Data Sets on Mass Storage Devices .123
Creating Direct (BDAM) Data Sets •• 124
Creating Indexed (BISAM and QISAM)
Data Sets ••••••••••••• 124
Creating Data Sets in the Output
Stream ••••••••••••••• 124
Examples of DD Statements Used To
Create Data Sets 125

Retrieving Previously Created Data
Sets ••••••••••••••••• 128

Retrieving Cataloged Data Sets ••• 128
Retrieving Noncataloged (KEEP)
Data Sets • • • • • • • • • • .129
Retrieving Passed Data Sets •••• 129
Extending Data Sets with
Additional output ••••••
Retrieving Data through an Input

.129

Stream. • • • • • • • • • • •• 129
Examples of DD Statements Used to
Retrieve Data Sets ••••••••• 131

DD Statements that Specify Unit Record
.132 Devices • • • • • • •

Cataloging a Data Set
Generation Data Groups
Naming Data Sets • • •
Additional File Processing

••••••• 132
• .132

• 133
Information .133

Data Control Block • • •
Overriding DCB Fields ••••
Identifying DCB Information

Error Processing for COBOL Files
System Error Recovery • • • •

• .133
••• 133

.134

.134
••• 134

INVALID KEY Option • • •
USE AFTER ERROR Option •

Volume Labeling • • • •
Standard Label Format
Standard Label Processing
Standard User Labels • • •

User Label Totaling
Nonstandard Label Format •
Nonstandard Label ProcessiDg •
User Label Procedure • • • • •

ASCII File Labels • • • •
ASCII Standard Label Processing
ASCII User Label Processing
User Label Exits •

• • 135
• . 135
• . 138
• • 138
• .139
• .139

.140
• .140
• .140
• • 141
• .142
... 142

.142

.143

RECORD FORMATS • • • • • . 144
Fixed-Length (Format F) Records •• 144
Unspecified (Format U) Records ••••• 145
Variable Length (Format V) Records ••• 145

APPLY WRITE-ONLY Clause •••••• 148
Spanned (Format S) Records. • • .148

S-Mode Capabilities • • • •• • .149
Sequential S-Mode Files (QSAM) for
Tape or Mass Storage Devices. • .149

Source Language Considerations ••• 150
Processing Sequential S-Mode Files
(QSAM) • • • • • • • • • • • • • • . 150

Directly Organized S-Mode Files
(BDAM and BSAM) 152

Source Language Considerations ••• 153
Processing Directly Organized
S-Mode Files (BDAM and BSAM) •. 153

OCCURS Clause with the DEPENDING ON
Option .. • • .. • • • • • • 154

SYMBOLIC DEBUGGING FEATURES
Use of the Symbolic Debugging
Features • • • • • • •

STATE Option • • •
FLOW Option
SYMDMP Option
Object-Time Control Cards

• • 157

• • 157
• .157
• .157
• • 158
• .158
• .160 Overall Considerations • • •

Sample Program -- TESTRUN
Debugging TESTRUN

• • • • • 160
• • • • • • 161

OUTPUT • • • • • • • • •
Compiler Output

Object Module
Linkage Editor Output

Comments on the Module Map and

• • 173
• .173
• • 179
• .180

Cross Reference List. • • .182
Linkage Editor Messages ••• 182

Loader Output ••••••••••••• 183
COBOL Load Module Execution Output ••• 183

Requests for output •• 186
Operator Messages • • • • • .186

System Output .186

PROGRAM CHECKOUT •
Syntax-Checking Compilation
Debugging Language • • • • •

Following the Flow of Control
Displaying Data Values During
Execution • • • • • • • • • •
Testing a Program Selectively
Testing Changes and Additions to
Programs • • • • • • • • • • • • •

• • 187
• .187
• .187
• .187

• .188
• 190

• .190

Dumps •••• • • • • • • • • •
Errors That Can Cause a Dump •

Input/Output Errors
Errors Caused by Invalid Data
Other Errors.. • • • • •

Completion Codes • • • • •
Finding Location of Prog~am
Interruption in COBOL Source

• .190
• .191

• •• 191
.191
.193

• .193

Program Using the Condensed Listing 196
Using the Abnormal Termination Dump .196

Finding Data Records in an Abnormal
Termination Dump •••••••••• 204
Locating Data Areas for Spanned
Records ••• • • • • • • •
Locating TCAM Data Areas • •

Incomplete Abnormal Termination
Scratching Data Sets ••••

• .215
.216

• .218
.218

PROGRAMMING TECHNIQUES. • • • • • .220
General Considerations. • • .220

Spacing the Source Program Listing .220
Environment Division • • • • • .220

CONFIGURATION Section •• 220
APPLY WRITE-ONLY Clause .220
QSAM Spanned Records •••••••• 220
APPLY RECORD-OVERFLOW Clause •••• 220
APPLY CORE-INDEX Clause •• 220
BDAM-W File Organization. • .220

Data Division • • • • • • .221
Overall Considerations .221

Prefixes. • • • • • • .221
Level Numbers • • • • • .221

File section ~ = e e _ • • .222
RECORD CONTAINS Clause. • .222

Communication Section ••• 222
CD Entries. • • • • • • .222

Working-Storage Section •• 222
Separate Modules. • • • .222
Locating the Working-Storage
Section in Dumps •

Data Description • •
REDEFINES Clause • •
PICTURE Clause •
SIGN Clause
USAGE Clause • • •

• •• 222
• • • • • • • 223

• • • • • .223
• • • • .223

• •• 224
• .227

SYNCHRONIZED Clause • • • •
special Considerations for DISPLAY

.228

and COMPUTATIONAL Fields. • • .228
Data Formats in the Computer •••• 228

Procedure Division ••••••••••• 230
Modularizing the Procedure Division .230

Main-Line Routine ••• 230
Processing Subroutines. • .231
Input/Output Subroutines. • .231

Intermediate Results. .231
Intermediate Results and Binary
Data Items • • • • •
Intermediate Results and COBOL
Library Subroutines

.231

• .231
Intermediate Results Greater than
30 Digits • • • • •
Intermediate Results and
Floating-Point Data Items
Intermediate Results and the ON
SIZE ERROR Option

Verbs • • • • • • •
CALL Statement •
CANCEL Statement •

• • • 231

• .232

• .232
• .232

.232

.232

CLOSE Statement • • • • • .232
COMPUTE Statement •. 232
IF Statement. • .232
MOVE Statement . 233
NOTE Statement •• 233
OPEN Statement • • • • • .233
PERFORM Verb • • • •• • • 233
READ INTO and WRITE FROM Options •• 234
RECEIVE Statement 234
SEND Statement.. • • • • • • • . 234
START Statement • . 234
STRING Statement •• 235
TRANSFORM Statement • • 235
UNSTRING Statement. • .235

Using the Report Writer Feature •• 236
REPORT Clause in FD •. 23b
Summing Technique • • • • .. . 236
Use of SUM • • • • • • • 237
SUM Routines. • • • • • .237
Output Line Overlay •• 238
Page Breaks • • • • • .238
WITH CODE Clause. • • • .239
Control Footings and Page Format •• 240
Floating First Detail Rule • • . 240
Report Writer Routines. •• • .241

Table Handling Considerations • • • 241
Subscripts. • • • • • • • .241
Index-Names • . 241
Index Data Items • • . 241
OCCURS Clause •• 241
DEPENDING ON Option 241
SET Statement • • • •• • .242
SEARCH Statement. • • • .. • .244
Building Tables ••••• 246

Queue Structure Considerations. • .246
Accessing Queue Structures throu~h
COBOL • • .. • .. • • • • • • • . 248

Specifying ddnames with Elementary
Sub-Queues • • • • • • • • • • • 249
Rules for Queue Structure
Description • • • • • • • .251

CALLING AND CALLED PROGRAMS .252
Specifying Linkage. • • • • .252

Linkage in a Calling COBOL Program •• 253
Linkage in a Called COBOL Progran • . 253

Dynamic Subprogram Linkage ••••• 253
Correspondence of Identifiers in
Calling and Called Programs •• 257

File-Name and Procedure-Name
Arguments • • • • • • • • • • • . 257
Linkage in a Calling or Called
Assembler-Language Program... • .257

Conventions Used in a Calling
Assembler-Language Program. • .257
Conventions Used in a Called
Assembler- Language Program • • 258

Communication with Other Languages •• 259
Sample CALLING and CALLED Programs • .. • 260
Link-Editing Programs • • • • • .264

Specifying Primary Input • .. • • 265
Specifying Additional Input ••••• 265

INCLUDE Statement •• 266
LIBRARY Statement • • • • 266
ALIAS Statement •• 266
NAME Statement. • • • .266

Programs Compiled with the DYNAM
and/or Resident Options • • • • • • • 267

• • • • • 267 Specifying DYNAM/RESIDENT
Specifying NODYNAM/RESIDENT
Specifying NODYNAM/NORESIDENT

Linkage Editor Processing
Example of Linkage Editor

• .267
• 268

• • 271

Processing. • • • • • • • • •• 272
Overlay structures. • • • • • .273

Considerations for Overlay ••••• 273
Linkage E1iting with Preplanned
Overlay • • • • • • • • •
Dynamic Overlay Technique

Loading Programs • • • • • • •
Specifying Primary Input • •
Specifying Additional Input

.273
• .275

• • • 280
• •• 280

• 280

LIBRARIES • • • • • • • • • • • • .281
Kinds of Libraries. • • • • • • •• 281

Libraries Provided by the System ••• 281
Link Library • • • • • .281
Procedure Library .282
Sort Library. • • • • • • • •• 282
COBOL Subroutine Library. .282

Libraries Created by the User •• 283
Automatic Call Library. .283
COBOL Copy Library. • • •• 283
COpy Statement. • •••••• 284
BASIS Card • • • • • • • 285
JOB Library •• 286

Sharing COBOL Library Subroutines ••• 287
Concatenating the Subroutine Library .287

Creating and Changing Libraries .288

USING THE CATALOGED PROCEDURES • •
Calling Cataloged Procedures • • •

Data Sets Produced by cataloged

.289
• 289

Procedures. • • • • • • • • •• 289
Types of Cataloged Procedures ••• 290

Programmer-Written Cataloged
Procedures • • • • • • • • •

Testing Programmer-Written
Procedures • • • • •

• •• 290

.290
Adding Procedures to the Procedure
Library •••••••••••••• 290

IBM-Supplied cataloged Procedures •• 291
Procedure Naming Conventions •• 292
Step Names in Procedures. • • .292
unit Names in Procedures. • • .292
Data Set Names in Procedures •••• 292
COBUC Procedure • • • • .292
COBUCL Procedure. • •••••• 292
COBULG Procedure. • •••••• 293
COBUCLG Procedure ••••••• 295
COBUCG Procedure. • •••••• 295

Modifying Existing Cataloged Procedures 295
overriding and Adding to Cataloged
Procedures. • ••••••••••• 295

Overriding and Adding to EXEC
Statements • • • • • • •

Examples of Overriding and Adding
.295

to EXEC Statements ••••••••• 296
Testing a Procedure as an In-Stream
Procedure • • • • •
Overriding and Adding to DD
Statements • • • • • • •

Examples of Overriding and Adding

.297

• • 297

to DD Statements. • • • .298
Using The DDNAME Parameter ••••• 299

Examples of Using the DDNAME
Parameter • • • • • • • 300

USING THE SORT FEATURE. • •••• 302
Sort DD Statements • • • • 302

Sort Input DD Statements •• 302
Sort Output DD Statements •••••• 302
Sort Work DD Statements •• 302

SORTWKnn Data Set Considerations •• 302
Input DD Statement. • • • .303
output DD Statment • •• • ••• 303
SORTWKnn DD Statements. .303

Additional DD Statements. • ••• 304
Sharing Devices between rape Data Sets .304
Using More than One SORT Statement in
a Job • • • • • • • • • • • •• • . 304
SORT Program Example •••••••••• 304
Cataloging SORT DD Statements •• 304
Linkage with the SORT/MERGE Progran •• 305

Completion Codes • • • • •• • • 305
Locating Sort Record Fields • 305
Locating Last Record Released to Sort
by an Input Procedure • • • • • • 306
Sort/Merge Checkpoint/Restart •• 30b
Efficient Program Use • • • • • .306

Data Set Size • • • • • • • .30b
Main Storage Requirements • 306

Sort Diagnostic Messages. • • ••• 307
Defining Variable-Length Records •••• 307

Sorting Variable-Length Records ••• 308
Terminating a Sort Operation. • .308
Sort for ASCII Files • • • • • • • • 308

USING THE SEGMENTATION F'EArURE •
Using the Perform Statement in a
Segmented Program • • • •
Operation • • • • • • • • •
Compiler Output • • • • •
Job Control Considerations

• • 310

• • 311
• • 311
• .312

• • • 312

USING THE CHECKPOINT/RESTART FEATURE •• 327
Taking a Checkpoint • • • • • • • • 327

Checkpoint Methods. • • • .327
DD Statement Formats. • • .327
Designing a Checkpoint • • • . 329
Messages Generated during Checkpoint .329

Restarting a Program • • • 329
RD Parameter. • • • • ••••• 329
Automatic Restart • • • • 330
Deferred Restart. • • ••••• 330

CHECKPOINT/RESTART DATA SETS. .331

USING THE TELEPROCESSING FEATURE
Writing a Message Control Program

Functions of the Message Control

• . 334
.337

Program • • • • • 337
User Tasks •••••••••••••• 337

Defining the Buffers • • • • • • • • 359
Activating and Deactivating the
Message Control Program •••••• 359

• • 360
Defining the MCP Data Sets and
Process Control Blocks • •
Defining Terminal and Line Control
Areas • • • • • • • • • • • • 360
Designing the Message Handler .362

Putting the MCP Together. • •• • .365
Assembling, Link-Editing, and
Executing an MCP • • • • • • • • • 365

Assembling an MCP .365
Link-Editing an MCP • • •••••• 365
Executing an MCP • • • • .365

Writinq a TCAM-Compatible COBOL Program 367
Testing a COBOL TP Program. • .367
communicating between a COBOL
Program and the MCP • • • • • .370

Defining the Interface. • • • .370
Activating the Interface •••••• 375
Transferring Messages between the
COBOL Program and the MCP ••••• 375
Deactivating the Interface ••••• 375
Additional Interface Considerations 375

Using TeaM Service Facilities ••• 376
Operator Control • • • • • • • • • • • 376
Specifying Operator Commands ••••• 377

SYSCLOSE Command. • •••••• 377
SUSPXMIT Command. • .377
RESMXIT Command ••••••• 377
INTRCEPT Command. • • • • .377
STARTLINE Command ••••••• 377

MACHINE CONSIDERATIONS ••••••• 379
Minimum Machine Requirements for the
COBOL Compiler • • • • • • • • .379
Multiprogramming with a variable'
Number of Tasks (MVT) •••••••• 380

REGION Parameter •••••••••• 380
Intermediate Data Sets under MVT •• 380

Execution Time Considerations •• 381
Sort Feature Considerations ••• 382

APPENDIX A: SAMPLE PROGRAYI OUTPUT 383

APPENDIX B: COBOL LIBRARY SUBROUTINES
Subroutines for Subprogram Linkage

ENTER Subroutine (ILBONTRO)
STOP RUN Version 4 Subroutine

.395

.395

.395

(ILBOSRVO) ••••••••••••• 395
STOP RUN Subroutine (ILBOSTPO) .395

Object-Time Program operations. • .395
COBOL Library Conversion Subroutines .395

Separate Sign Subroutine (ILBOSSNO) 396
COBOL Library Arithmetic Subroutines .398
COBOL Library Subroutines for Testing
Conditions at Object Time •••••• 398

Class Test Subroutine (ILBOCLSO) •• 398
COMPARE Subroutine (ILBOVCOO) .398
Compare with Figurative Constant
Subroutine (ILBOIVLO) ••••••• 398

COBOL Library Data Manipulation
Subroutines ••••••••••••• 398

1v10VE Subroutine (ILBOVMOO and
ILBOVM01) ••••••••••••• 398
MOVE Subroutine for System/370
(ILBOSMVO) ••••• ~ ~ Q ~ Q 0 0 =398
MOVE to Alphanumeric-Edited Field
Subroutine (ILBOANEO) •• 398
MOVE to Numeric-Edited Field
Subroutine (ILBONEDO)
TRANSFORM Subroutine (ILBOVTRO)
STRING Subroutine (ILBOSTGO) ••
UNSTRING Subroutine (ILBOUSTO) •

COBOL Library Data Management
Subroutines • • • • • • • • •

DISPLAY, TRACE, and EXHIBIT

• .398
• • 399
• .399
• • 399

• • 399

Subroutine (ILBODSPO) •• 399
DISPLAY Subroutine (ILBODSSO) ••• 399

ACCEPT Subroutine (ILBOACPO) •••• 399
Generic Key START Subroutine
(ILBOSTRO) ••••• ,. • • •• .399
Checkpoint Subroutine (ILBOCKPO) •• 400
Error Intercept Subroutine
(ILBOERH.O) • • • • • • • •• • .400
Printer Overflow Subroutine
(ILBOPTVO) • • • • • • • • • .400
Printer Spacing Subroutine
(ILBOSPAO) • • • • • • • • • . 400
BSAM WRITE/CLOSE and BDAM OPEN
Subroutine (ILBOSAMO) ••••••• 400
BSAM READ Subroutine (ILBOSPNO) •• 400
RECEIVE Subroutine (ILBOkECO) ••. 400
RECEIVE Initialization Subroutine
(ILBORNTO) • • • • • • • • •
Queue Analyzer Object-Time
Subroutine (ILBOSQAO)
Queue Structure Description
Subroutine (ILBOQSUO)
SEND Subroutine (ILBOSNDO) •

• • 400

• • 400

• . 400
• • 401

SEND Initialization Subroutine
(ILBOSNTO) ••••••••••••• 401

COBOL Library Subroutines for Special
Features ••••••••••••••• 40~

Sort Feature Subroutine (ILBOSRrO) .401
SEARCH Subroutine (ILBOSCHO) •••. 401
Segmentation Subroutine (ILEOS3MO) .401
GO TO DEPENDING ON Subroutine
(ILBOGDOO) ••••••••••••. 401
Date-and-Time Subroutine (ILBODIEO) 401

Object-Time Debugging •••••• 401
Debug Control Subroutine (ILBODB30) 402
Flow Trace Subroutine (ILBOFLWO) •• 402
Statement Number Subroutine
(ILBOSTNO) ••••••••.•••. 402
Symbolic Dump Subroutine (ILBOD10
and ILBOD20) •••••••••••• 402
SYMDMP Error Message Subroutine
(ILBODBEO) • • • • • • . 402

APPENDIX C: FIELDS OF THE D~TA CONrR~L
BLOCK • • • • • • • • • • • • • . 409

APPENDIX D: COMPILER OPTIMIZATION .415
Performance Considerations • • • • • • • 415
Block Size for Compiler Data sets ••• 41~
How Buffer Space Is Allocated to
Buffers •••••••••••••••• 416

APPENDIX E: INVOCATION OF THE COBOL
CO~PILER AND COBOL COMPILED PROGRA~S • • 418

Invoking the COBOL Compiler •. 418
Invoking COBOL Compiled Programs ••• 419

APPENDIX F: SOORCE PROGRAM SIZE
CONSIDERATIONS • • • • • •

Compiler Capacity
Minimum Configuration SOORCE
PROGRA('-1. Size • • • • • • • • •

Effective Storage Considerations ••
Linkage Editor capacity

APPENDIX G: INPUT/OUTPUT ERROR
CONDITIONS • • • • • • • • • •

Standard Sequential, Direct, and
Relative File Processing Technique
(Sequential Access) •••••••

• • 420
• .420

. 420
• • 420
• • 421

• • 423

• . 423

Direct and Relative File Processing
Technique (Random Access) •••••• 423
Indexed File Processing Technique
(Sequential Access) ••••••••• 423
Indexed File Processing Technique
CRandom Access) •••••••• 424

APPENDIX H: CREATING AND RETRIEVING
INDEXED SEQUENTIAL DATA SETS. 5 •••• 425

Creating an Indexed Data Set •••• 425
Retrieving an Indexed Data Set ••• 427

APPENDIX I: CHECKLIST FOR JOB CONTROL
PROCEDURES ••••••••••••••• 429
Compilation •••••••••••••• 429

Case 1: Compilation Only -- No
Object Module Is to Be Produced •• 429
Case 2: Source Module from Card
Reader. • • • • • • • .429
Case 3: Object Module Is to Be
Punched • • • • • • • • .429
Case 4: Object Module Is to Be
Passed to Linkage Editor • • •
Case 5: Object Module Is to Be

.429

Saved ••••••••••••••• 430
Case 6: COpy Statement in COBOL
Source Module or a BASIS Card in
the Input Stream • • • • • • •

Linkage Editor • • • • • • • • • •
Case 1: Input from Previous

.430

.430

Compilation in Same Job ••• 430
Case 2: Input from Card Reader •• 430
Case 3: Input Not from Compilation
in Same Job •••••••••••• 430

Case 4: Output to Be Placed in
Link Library. • • • • • •• • .431
Case 5: Output to Be Placed in
Private Library. • • • •. • .431
Case 6: Output to Be Used Only in
this Job. • • • • • • • •• • .431

Execution Time • • • • • • • •• ~ . 431
Case 1: Load Module to Be
Executed Is in Link Library .431
Case 2: Load Module to Be
Executed Is a Member of Private
Library • • • • • • • • • • • • • . 431
Case 3: Load Module to Be
Executed Is Created in Previous
Linkage Editor step in Same Job • . 432
Case 4: Abnormal Termination Dump .432
Case 5: DISPLAY Is Included in
Source ~odule • • • • • • . • • • . 432
Case 6: DISPLAY UPON SYSPUNCH Is
Included in Source ~odule • • • • . 432
Case 7: ACCEPT Is Included in
Source Module • • • • • • •. 432
Case 8: Debug Statements EXHIBIT
or TRACE Are Included in Source
Module. • • • • • . • • • .432
Case 9: Object Time Symbolic
Debugging Options . • • •• • .432

APPENDIX J: FIELDS OF THE GLOBAL T~BLE .433
Task Global Table • . 433
Program Global Table . • • . . 438

INDEX .441

Figure 1.
Figure 2.
Figure 3.
statements
Figure 4.
Figure 5.
Figure 6.
and Loader
Figure 7.
of 2)

Job Control Procedure 18
Catalog Procedure 18
General Format of Control

• • • • • • • • • • • • • 20
JOB Statement • • • • • • • 23
EXEC Statement • • • • • • • 31
Compiler, Linkage Editor,

PARM Options 41
The DD Statement (Part 1

Figure 8. Device Class Names
Required for IBM-Supplied Cataloged

47

Procedures ••••••••• 52
Figure 9. Example of a Batch
compilation • • • • • • • • • • 63
Figure 10. Creation of Four Load
Modules with Programs PROG1 and PROG2
and BASIS Library Members PAYROLL and
PAYROLL2 •••••••••••• • 63
Figure 11. Determining the File
Processing Technique • • • • • • • • 74
Figure 12. DD Statement Paraweters
Applicable to Standard sequential
OUTPUT Files • • • • • • • • • • • • • • 78
Figure 13. DD Statement Parameters
Applicable to Standard sequential
INPUT and 1-0 Files • • .. oj 79
Figure 14. Directly Organized Data as
it Appears on a Mass Storage Device • • 82
Figure 15. Sample Format of the First
Two Tracks of a Direct File •••••• 83
Figure 16. Sample Space Allocation
for Sequentially Created Direct Files • 85
Figure 17. Sample Space Allocation
for Randomly Created Direct Files 86
Figure 18. Sample Program for a
Randomly Created Direct File (Part 1
of 2) ••••••••••••••••• 96
Figure 19. Relatively organized Data
as it Appears on a Mass Storage Device .101
Figure 20. Sample Format of Two
Tracks of a Relative File ••••• 101
Figure 21. Sample Program for
Relative File Processing (Part 1 of 4) .104
Figure 22. Track Index •••••••• 110
Figure 23. Cylinder Index. • • .111
Figure 24. Blocked Records on an
Indexed File. • • • • • • • • • • .111
Figure 25. Unblocked Records on an
Indexed File = .. = c c = e e112
Figure 26. Cylinder Overflow Area ••• 113
Figure 27. Independent Overflow Area .113
Figure 28. DD Statement Parameters
Applicable to Indexed Files Opened as
Output •••••••••••••••• 116
Figure 29. Example of DD Statements
for New Indexed Files ••••••••• 116
Figure 30. DD Statement Parameters
Applicable Indexed Files Opened as
INPUT or I-a •••••••••••••• 119
Figure 31. DD Statement Parameters
Frequently Used in Creating Data Sets .122

Figure 32. Parameters Frequently used
in Retrieving Previously Created Data
sets ••••••••••••••••. 128
Figure 33. Parameters Used To Specify
Uni t Record Devices • • • • • • • • • . 132
Figure 34. Links between the SELE2T
Statement, the DO Statement, the Data
Set Label, and the Input/Output
Statements • • • • • • • • • •. • . 134
Figure 35. Exit List Codes •• 141
Figure 36. Parameter List Formats ••. 141
Figure 37. Label Routine Return C8des 142
Figure 38. Fixed-length (Format F)
Records •••••••••••••••. 144
Figure 39. Unspecified (Format U)
Records • • • • • • • • • • • •• .14~
Figure 40. Unblocked V-Mode Records .146
Figure 41. Blocked V-Mode Records •. 146
Figure 42. Fields in Unblocked V-~ode
Records •••••••••••.•••. 147
Figure 43. Fields in Blocked V-Mode
Records • • • • • • • • • • • . 147
Figure 44. First T~o Blocks of
VARIABLE-FILE-2 • • • • • • ••. 148
Figure 45. Control Fields of an
S-Mode Record • • • • • • • •. • .150
Figure 46. One Logical Record
Spanning Physical Blocks •••••••. 150
Figure 47. First Four Blocks of
SPAN-FILE • • • • • • • • • •• • .151
Figure 48. Advantage of S-Mode
Records Over V-Mode Records .151
Figure 49. Direct and Sequential
Spanned Files on a Mass Storage Device 152
Figure 50. Calculating Record Lengths
When Using the OCCURS Clause with the
DEPENDING ON Option •••••••••• 155
Figure 51. Using the SYMDMP Option to
Debug the Program TESTRUN (Part 1 of
11) •••••••••••••• • .162
Figure 52. Examples of Compiler
output (Part 1 of 3) • • • • • • • .173
Figure 53. Linkage Editor Output
Showing Module Map and Cross-Reference
List • •••• • • • • • • • • • • . 181
Figure 54. Module Map Format Example .184
Figure 55. Execution Job Step Output .185
Figure 56. Example of Program Flo~

• • • • • • • • • • • • • • • 189
Figure 57. Selective Testing of B ••• 190
Figure 58. Nonsegmented COBOL Proqram
with Abnormal Termination Dump (Part 1
of 3) • • • • • • • • • • • . 199
Figure 59. Load List • • • • •. 203
Figure 60. Segmented COBOL Progran
with Abnormal Termination Dump (Part 1
of 4) • • • • • • • • • • 20 S
Figure 61.
5)
Figure 62.
Record Area

Sample Program (Part 1 of

Locating the QSAM Logical
• 210

• 215

Figure 63. Logical Record Area and
Segment Work Area for BDAM and BSAM
Spanned Records •• 216
Figure 64. Fields of the RECEIVE Queue
Block ••••••••••••••• 217
Figure 65. Fields of the SEND Queue
Block ••••••••••••••• 217
Figure 66. Structure of a TCAM Record 218
Figure 67& Using the STRING Statement 235
Figure 68. Using the UNSTRING
Statement ••••••••••••••• 236
Figure 69. Sample Showing GROUP
INDICATE Clause and Resultant Execution
Output •••••••••••••••• 239
Figure 70. Format of a Report Record
When the CODE Clause is Specified .239
Figure 71. Storage Layout for Table
Reference Example ••••••••••• 243
Figure 72. A Queue Structure with
Three Levels of Sub-Queues •••••• 246
Figure 73. A Sample Queue Structure
Descripion •••••••••••••• 247
Figure 74. Using ddnames with Queue
structures •••••••••••••• 250
Figure 75. Calling and Called Programs 252
Figure 76. Sample Calling and Called
Programs Using Dynamic CALL and CANCEL
Statements (Part 1 of 3) •••••••• 254
Figure 77. Sample Linkage Coding Used
in a Calling Assembler-Language Progra~ 259
Figure 78. Sample Calling and Called
Programs (Part 1 of 6) • • • • 200
Figure 79. Save Area Layout and
Contents • • • • • • • • .265
Figure 80. CALL with DYNAM and
RESIDENT • • • • • • • • • .261
Figure 81. CALL With NODYNAM and
RESIDENT •••••••••••• 268
Figure 82. CALL With NODYNAM and
RESIDENT With CALL Literal Option ••• 268
Figure 83. CALL With NODYNAM and
NONRESIDENT. • • • • • • • • • • .268
Figure 84. Sample JCL for
Called/Calling Programs Compiled with
the DYNAM and RESIDENT options .209
Figure 85. Sample Linkage Coding Used
in a Called Assembler-Language Program
that Calls Another Program. . •. .270
Figure 86. Sample Coding Used for a
Calling Assembler-Language Program and
a Called COBOL Program. . • . •. .271
Figure 87. Specifying Primary and
Additional Input to the Linkage Editor 212
Fiqure 86. Overlay Tree Structure ••• 274
Figure 89. Sample Deck for
Linkage-Editor Overlay Structure •..• 275
Figure 90. Sample COBOL Mai~ Program
and Assembler-Language Subprogram
Using Dynamic Overlay Techn1que (Part
1 of 3) •••••••••••••••• 277
Figure 91. Format of a Library .282
Figure 92. Entering Source Statements
into the COpy Library • • • • • • • • • 283
Figure 93. Updating Source Statements
in a COpy Library ••••••••••• 284
Figure 94. COBOL Statements to Deduct
Old Age Tax •••••••••••••• 285

Figure 95. Programmer Changes to
Source Program •••••••.••.•. 280
Figure 96. Changed COBOL Statements
to Source COpy Library Statements .280
Figure 97. concatenating the
Subroutine Library •••••.• .288
Figure 98. Example of Adding
Procedures to the Procedure Library •• 291
Figure 99. Statements in the COBUC
Procedure • • • • • • • • • .293
Figure 100. Statements in the COBUCL
Procedure • • • • • • • • • •••. 293
Figure 101. Statements in the COBULG
Procedure • • • • • • • • . •••. 294
Figure 102. Statements in the COBUCLG
Procedure • • • • • • • • • •••. 294
Figure 103. Statements in the COBUCG
Procedure • • • • • • • • • .294
Figure 104. Sort Feature Control
Cards •••••.•••••••. 304
Figure 105. Sorting Variable-Length
Records Whose File-name Description and
Sort-File-name Description Correspond .309
Figure 106. Segmentation of Program
SAVECORE • • • • • • • • • . •• • . 310
Figure 107. Storage Layout for
SAVECORE ••••••••••• •. 311
Figure 108. Sample Segmentation
Program (Part 1 of 14) •••. •. 313
Figure 109. Restarting a Job at a
Specific Checkpoint Step •. 331
Figure 110. Using the RD Parameter .• 332
Figure 111. Modifying Control
Statements Before Resubmitting for
step Restart • • • • • • • •• •• . 332
Figure 112. Modifying Control
Statements Before Resubmitting for
Checkpoint Restart • • • • • • . 333
Figure 113. Message Flow Between
Remote Stations and a COBOL Progran •. 33~
Figure 114. A Message Control Program
for Teleprocessing Application (Part 1
of 20) •••••••.•.•.•.•. 339
Figure 115. Sample JCL for Running a
Teleprocessing Job without Hardware ••. 308
Figure 116. Sample JCL for Running a
Teleprocessing Job in a Quasi-Terminal
Environment. • • • • •369
Figure 117. Sample JCL for Running a
Teleprocessing Job with a Remote
Terminal . • . . . • • . . • . . • . . .369
Figure 118. Creating a rCAM Data Set
for resting without rermina13 . 371
Figure 119. A CObOL Program Ihat
Processes reAM ~essaqes •373
Figure 120. Creating an Indexed Data
Set • • . • • • • . • . . •426
Figure 121. Retrieving an Indexed
Data Set. • • . • . . . • • •. . .428
Figure 122. General Job Control
Procedure for Compilation .429
Figure 123. General Job Control
Procedure for a Linkage Editor Job ste~ 431
Figure 124. General Job Control
Procedure for an Execution-Time Job
Step. • • • • • . •••••. 432
Figure 125. Fields of the rask Glob3l
Table • • • • • • ••. •••. 434
Figure 126.
Global Table

Fields of the Program
. 439

Table 1. Control statements •• • • • 19
Table 2. Significant Characters for
Various Options • • • • • • • • • • • • 35
Table 3. Mass Storage Volume States • 56
Table 4. Data Set References • • • 57
Table 5. Data Sets Used for
Compilation • • • • • • • • • 66
Table 6. Data Sets Used for Linkage
Editing • • •• •• • • • • • • • • 67
Table 7. COBOL Clause for Sequential
File Processing • • • • • •• • • • 76
Table 8. DEN Values •• • • • • 76
Table 9. Mass Storage Device
Overhead Formulas • • • • • • • • 92
Table 10. Mass Storage Device
Capacities
Table 11.
Capacity •
Table 12.

Mass Storage Device Track

Partial List of Prime

• 92

93

Numbers •• • • • • • • • • • • • 94
Table 13. Direct File Processing on
Mass Storage Devices • • • • • • • • 98
Table 14. JCL Applicable to Directly
Organized Files • • • • • • • • • • • • 99
Table 15. Relative File Processing on
Mass Storage Devices •••••••••• 108
Table 16. JCL Applicable to
Relatively Organized Files. • •• 109
Table 17. Indexed File Processing on
Mass Storage Devices. • • • • • • .121
Table 18. Recovery from an Invalid
Key Condition or from an Input/Output
Error • • • • • • • • 136
Table 19. Input/Output Error
Processing Facilities ••••• 136
Table 20. Individual Type Codes Used
in SYMDMP Output. • • • • • • • .161
Table 21. Glossary Definition and
Usage ••• 179

Table 22. Symbols Used in the Listing
and Glossary to Define
Compiler-Generated Information •
Table 23. System Message
Identification Codes
Table 24. Codes Used in the TCAM

• .180

• .186

Control Byte •••••••••••••• 218
Table 25. Data Format Conversion • • . 226
Table 26. Relationship of PICTURE to
storage Allocation • • • • • • • •
Table 27. Treatment of Varying Values

.230

in a Data Item of PICTURE S9 •••••. 230
Table 28. Rules for the SET Statement .244
Table 29. Sample Message Retrieval
Options •• • • • • • • • •
Table 30. Linkage Registers

• 249
.258

Table 31. Macros that can be coded in a
Message Handler. • • • • • .363
Table 32. Operator Command Formats .378
Table 33. Functions of COBOL Library
Conversion Subroutine (Part 1 of 2) •. 39b
Table 34. Function of COBOL Library
Arithmetic Subroutines • • • •
Table 35. Calling and Storage
Information for COBOL Library
Subroutines • • • • • • • • •
Table 36. Data Control Block Fieljs
for Standard Sequential Files
Table 37. Data Control Block Fields

• . 397

• . 403

• • 410

for Direct and Relative Files Accessed
Sequentially • • • • • • • • • • • • • . 411
Table 38. Data Control Block Fields
for Direct and Relative Files Accessed
Randomly • • • • • • • • • • • • • • • . 412
Table 39. Data Control Block Fields
for Indexed Files Accessed sequentially 413
Table 40. Data Control Block Fields
for Indexed Files Accessed Randomly •. 414
Table 41. Area Arrangement for
Indexed Data Sets • • • • • • . • • • . 427

An American National Standard COBOL
program can be processed by the IBM
operating System. The operating system
consists of a number of processing_2~Qgra~~
and a ~QgtrQ!-Erogra~.

The processing programs include the
COBOL compiler, service programs, and any
user-written programs.

The control program supervises the
execution or loading of the processing
programs; controls the location, storage,
and retrieval of data; and schedules jobs
for continuous processing.

A request to the operating system for
facilities and scheduling of program
execution is called a job. For example, a
job could consist of compiling a program by
utilizing the COBOL compiler. A job
consists of one or more iob ~teps, each of
which specifies execution of a program.
The programmer can make requests to the
operating system by using job control
statements.

Each job is headed by a JOB statement
that identifies the job. Each job step is
headed by an EXEC statement that describes
the job step and calls for execution.
Included in each job step are data
definition (DO) statements, which describe
data sets and request allocation of
input/output devices.

The data processed by execution of any
processing program must be in the form of a
~ata_~et. A data set is a named, organized
collection of one or more records that are
logically related. Information in a data
set mayor may not be restricted to a
specific type, purpose, or storage medium.
A data set may be, for example, a source
program, a library of subroutines, or a
group of data records that is to be
processed by a COBOL program.

A data set resides in one or more
volumes. A volume is a unit of external
storage that is accessible to an
input/output device. For example, a volume
may be a reel of tape or it may be a mass
storage device.

To facilitate retrieval of a data set,
the serial number of the volume upon which
it resides can be entered, along with the

data set name, in the system ~atal2g of
data sets. The catalog itself is a jata
set residing on one or more mass storage
devices. It is organized into indexes that
relate each data set name to its location-
the volume in which it resides and its
position within the volume. Only the data
set name and DISP parameter need be
specified to identify a cataloged data set
to the system.

The catalog is originally created by a
utility program. Once the catalog exists,
any data set residing on either a mass
storage device or a magnetic tape volume
can be cataloged automatically by use of a
catalog sUbparameter in a DO statement that
refers to the data set.

Several input/output devices grJu~ed
together and given a single name when the
system is generated constitute a device
class. Each device class can be referred
to by a collective name. For example, one
device class called SYSDA could consist of
all the mass storage devices in the
installation; another called SYSSQ could
consist of all the mass storage devices and
tape devices.

~~~£Q~ING A rOBOL PROGRAM 

Four basic operations are performed to 
execute a COBOL program: 

• Compilation 

• Linkage editing 

• Loading 

• Execution 

COMPILATION 

Compilation is the process of 
translating a COBOL source program into a 
series of instructions comprehensible to 
the computer, i.e., machine language. In 
operating system terminology, the input 
(source program) to the compiler is called 
the source module. The output (compilej 
source-program)-from the compiler is called 
the QQi~£~_~Q~~!~. 

Introduction 15 



LINKAGE EDITING 

The linkage editor is a service program 
that prepares object modules for execution. 
It can also be used to combine two or more 
separately compiled object modules into a 
format suitable for execution as a single 
program. The executable output of the 
linkage editor is called a load module, 
which must always be stored-as-a-member of 
a partitioned data set. 

In addition to processing object 
modules, the linkage editor can combine 
previously edited load modules, with or 
without one or more object modules, to form 
one load module. 

During the process of linkage editing, 
external references between different 
modules are resolved. 

LOADING 

The Loader is a service program that 
processes COBOL object and load modules, 
resolves any references to subprograms, and 
executes the loaded module. All these 
functions are performed in one step. The 
Loader cannot produce load modules for a 
program library. 

For detailed information on the Loader, 
see the publication IBM OS Linkage Editor 
and Loader, where a discussion of invoking 
the Loader can be found in nUsing the 
Cataloged Procedures. n 

EXECUTION 

Actual execution is under supervision of 
the control program, which obtains a load 
module from a library, loads it into main 
storage, and initiates execution of the 
machine language instructions contained in 
the load module. 

16 

OPERATING SYSTEM ENVIRONMENTS 

The IBM operating system offers two 
control programs. These are 
Multiprogramming with a Fixed Number of 
Tasks (MFT) and Multiprogramming with a 
Variable Number of Tasks (MVT). 

MULTIPROGRAMMING WITH A FIXED NUMBER OF 
TASKS 

The multiprogramming with a fixed number 
of tasks (MFT) control program divides 
storage into a number of discrete areas 
called partitions. Job steps are directed 
to these partitions using a priority 
scheduling system; that is, jobs are not 
executed as encountered in the job stream 
but according to a priority code. The MFT 
control program provides for: 

• Priority scheduling of jobs using the 
class code 

• Concurrent scheduling and execution of 
up to 15 separately protected jobs 

• Reading one or more input streams 

For further information about the 
various optional features of the MFT 
control program, see the publication I~M OS 
~iQE~g~_~~i!~~i~~· 

MULTIPROGRAMMING WITH A VARIABLE NUMBER OF 
TASKS 

The multiprogramming with a variable 
number of tasks (MVT) control program 
divides storage into areas called regions. 
Like MFT, the MVT control program uses a 
priority scheduling system and provides for 
concurrent execution of up to 15 jobs. In 
addition, the MVT control program provides 
for assignment of storage regions on a 
variable basis according to a region code. 



Communication between the COBOL 
programmer and the job scheduler is 
effected through nine job control 
statements (hereinafter called control 
statements): 

1. Job Statement 

2. Execute statement 

3. Data Definition Statement 

4. PROC Statement 

S. PEND Statement 

6. Command Statement 

7. Delimiter Statement 

8. Null statement 

9. Comment Statement 

Parameters coded in these control 
statements aid the job scheduler in 
regulating the execution of jobs and job 
steps, retrieving and disposing of data, 
allocating input/output resources, and 
communicating with the operator. 

The jQb statement (hereinafter called 
the JOB statement) marks the beginning of a 
job and, ~hen jobs are stacked in the input 
stream, marks the end of the control 
statements for the preceding job. It may 
contain accounting information for use by 
an installation's accounting routines, give 
conditions for early termination of the 
job, and regulate the display of job 
scheduler messages. With priority 
schedulers, additional parameters are used 
to assign job priority, to request a 
specific class for job scheduler messages, 
to specify the amount of main storage to be 
allocated to the job, and to hold a job for 
later execution. 

The execute statement (or EXEC 
statement) marks the beginning of a job 
step and identifies the program to be 
executed or the cataloged procedure to be 
used. It may also provide job step 
accounting information, give conditions for 
bypassing the job step, and pass control 
information to a processing program. With 
priority schedulers, additional parameters 
assign a time limit for the execution of 
the job step and specify the amount of main 
storage to be allocated. 

The data definition statement (Dr DD 
statement) describes a data set and 
requests the allocation of input/output 
resources. The DD statement parameters 
identify the data set, give volume and unit 
information and disposition, and describe 
the labels and physical attributes of the 
data set. 

The ~gQ~_~~~~~~~g~ appears as the first 
control statement in a cataloged procedure 
or an in-stream procedure and is used to 
assign default values to symbolic 
parameters defined in the procedure. 

The PEND statement appears as the last 
control statement in an in-stream procedure 
and marks the end of the in-stream 
procedure. For further information about 
in-stream procedures, refer to the topic 
"Testing a Procedure as an In-Stream 
Procedure" in the chapter "Using the 
Cataloged Procedures." 

The £Q~~g~_§~~~~~~g~ is used by the 
operator to enter commands through the 
input stream. Commands can activate or 
deactivate system input and output units, 
request printouts and displays, and perform 
a number of other operator functions. 

The delimiter statement and the null 
statement are markers in an input stream. 
The delimiter statement is used, when data 
is included in the input stream, to 
separate the data from subsequent control 
statements. The null statement can be used 
to mark the end of the control statements 
for certain jObS. 

The comment statement can be inserted 
before or-after-any-control statement and 
can contain any information deemed helpful 
by the person who codes the control 
statements. Comments can be coded in 
columns 4 through 80. The comment cannot 
be continued onto another statement. If 
the comment statement appears on a system 
output listing, it can be identified by the 
appearance of asterisks in columns 1 
through 3. 

The sequence of control statements 
required to specify a job is called a jQ£ 
£Q~~fQl~Qce~~f~· 

For example, the job control procedure 
shown in Figure 1 could be placed in the 
input stream to compile a COBOL source 
module. 

Job Control Procedures 17 



r---------------------------------------------------------------------------------------, 
1/ /JOBI JOB I 
I//STEPI EXEC PGM=IKFCBLOO,PARM=DECK i 
I//SYSUTI DD DSNAME=&&UTI,UNIT=SYSDA,SPACE=(TRK,(40» I 
1//SYSUT2 DD DSNAME=&&UT2,UNIT=SYSSQ,SPACE=(TRK,(40» I 
II/SYSUT3 DD DSNAME=&&UT3,UNIT=SYSSQ,SPACE=(TRK, (40» I 
1//SYSUT4 DD DSNAME=&&UT4,UNIT=SYSSQ,SPACE=(TRK, (40» I 
I//SYSPRINT DD SYSOUT=A I 
1/ /SYSPUNCH DD SYSOUT=B I 
'//SYSIN DD * I 
1 (source deck) I 
1/* I l _______________________________________________________________________________________ J 

Figure 1. Job Control Procedure 

In the illustration, JOBl is the name of 
the job. The JOB statement indicates the 
beginning of a job. 

STEPI is the name of the single job step 
in the job. The EXEC statement specifies 
that the IBM as Full American National 
Standard COBOL Compiler (IKFCBLOO) is to 
execute the job. The statement also 
specifies that a card deck of the object 
module is to be produced (PARM=DECK). 

NOLe: Under MVT a REGION parameter is also 
required. 

The SYSUrl, SYSUT2, SYSUT3, SYSUT4, and 
SYSUT5 Cif the SYMDMP option is specified 
in the PARM parameter of the EXEC card) DD 
statements define utility data sets used by 
the compiler to process the source module. 
The names of the data sets defined by 
SYSUT1, SYSUT2, SYSUT3, SYSUT4, and SYSUT5 
are &&UT1, &&UT2, &&UT3, &&UT4, and &&UT5, 
respectively. SYSUTl must be on a mass 
storage device (UNIT=SYSDA). The system 
will allocate 40 tracks of space to SYSUTl 
[SPACE=(TRK, (40»]. The other three 
utility data sets are assigned either to 
any available tape, in which case the SPACE 
parameter is ignored, or to a mass storage 
unit (UNIT=SYSSQ). 

The SYSPRINT DD statement defines the 
data set that is to be printed. SYSOUT=A 
is the standard designation for data sets 
whose destination is the system output 
deviCE, usually indicating that the data 
set is to be listed on a printer. 

The SYSPUNCH DD statement defines the 
data set that is to be punched. SYSOUT=B 
designates a card punch. 

The SYSIN DD statement defines the data 
set (in this case, the source module) that 
is to be used as input to the job step. 
The asterisk (*) indicates that the input 
data set followS in the input stream. 

18 

The delimiter (/*> statement separates 
data from subsequent control statements in 
the input stream. 

output from this job step includes any 
diagnostic messages associated with the 
compilation. They are printed in the data 
set specified by SYSPRINT. 

Note: SYSDA, SYSQ, A, and Bare 
IBM-specified device class names. If they 
are to be used, they must be incorporated 
at system generation time. If SYSOUT=B is 
to be used, the unit name SYSCP must be 
specified at system generation. 

To avoid rewriting these statements, and 
the possibility of error, the programmer 
may place frequently used procedures on a 
system library called the procedure 
library. A procedure contained in the 
procedure library is called a £~t~l2~~~ 
pro£~dure. A cataloged procedure can be 
called for execution by placing in the 
input stream a simple procedure that may 
require only the JOB and EXEC statements. 

If slightly modified, the procedure in 
the previous example can be cataloged, 
i.e., placed in the procedure library. For 
example, if it were cataloged and given the 
name CATPROC, it could be called for 
execution by placing the statements shown 
in Figure 2 in the input stream. 

r-----------------------------------------, 
1/ /JOB2 JOB I 
I//STEPA EXEC PROC=CATPKOC I 
1//STEP1.SYSIN DD * I 
I (source deck) I 
1/* I l _____________________________ ~ ___________ J 

Figure 2. Catalog Procedure 

In Figure 2, JOB2 is the name of the job. 
STEPA is the name of the single job step. 



The EXEC statement calls the cataloged 
procedure containing STEPl to execute the 
job step (PROC=CATPROC). 

A procedure can be tested before it is 
placed in the procedure library by 
converting it into an in-stre~~_Q~Q£~1~~~. 
An in-stream procedure can be executed any 
number of times during a job. For further 
information about in-stream procedures, 
refer to the topic "Testing a Procedure as 
an In-Stream Procedure" in "Using the 
cataloged Procedures." 

"User File Processing" and "Appendix I: 
Checklist for Job Control Procedures" 
explain, with numerous examples, the 
preparation of job control procedures. 
"Data Set Requirements" describes required 
and optional data sets for compilation, 
linkage editing, and execution time job 
steps. The chapter "Using Cataloged 
Procedures" provides information about 
using and modifying cataloged procedure~. 

The section "Control Statements," below, 
shows the format and use of the parameters 
and subparameters that can be specified for 
each job control statement. Some 
parameters of the statements are described 
only briefly. For further information, see 
the publication IBM OS Job Cont:rolLan9:.~~g~ 
gefe~en£~. The syntactic format --
descriptions in this chapter can be used as 
a reference for the exact format and for 
the use of each parameter. 

The COBOL programmer uses the control 
statements shown in Table 1 to compile, 
linkage edit, and execute programs. 

JOB MANAGEMENT 

Control statements are processed by a 
group of operating system routines known 
collectively as job management. These job 
management routines interpret control 
statements and commands, control the flow 
of jobs, and issue messages to both the 
operator and the programmer. Job 
management comprises two major components: 
a job scheduler and a master scheduler. 

The iob scheduler is a set of routines 
that reads input streams, analyzes control 
statements, allocates input/output 
resources, issues diagnostic messages to 
the programmer, and schedules job flow 
through the system. 

Table 1. Control Statements 
r---------T-------------------------------, 
\ statement I Function I 
~---------f-------------------------------~ 
IJOB IIndicates the beginning of a I 
I I new job and describes that I 
I I job. I 
~---------+-------------------------------~ 
\ EXEC IIndicates a job step and I 
I \ describes that job step; I 
\ I indicates the load module or I 
\ \ cataloged procedure to be I 
I I executed. I 
~---------+------------~==----------------~ 
IDD IDescribes data sets, and I 
I I controls device and volume I 
I I assignment. I 
~---------+-------------------------------~ 
Idelimiterlseparates data sets in the I 
I I input stream from control I 
I I statements; it must follow I 
I I each data set that appears inl 
I I the input stream, e.g., afterl 
I I a COBOL source module punchedl 
\ I deck. I 
~---------f-------------------------------~ 
I comment IContains miscellaneous remarks I 
I I and notes written by the I 
I I programmer; it may appear I 
I I anywhere in the job stream I 
I I after the JOB statement. I L _________ i _______________________________ J 

The master scheduler is a set of 
routines that accepts operator commands and 
acts as the operator's agent within the 
system. It relays system messages to the 
operator, performs system functions at his 
request, and responds to his inquiries 
regarding the status of a job or of the 
system. The master scheduler also relays 
all communication between a processing 
program and the operator. 

Priority schedulers process complete 
jobs according to their relative priority, 
and available system resources. 

PREPARING CONTROL STATEMENTS 

Except for the comment statement, 
control statements are identified by the 
initial characters // or /* in card columns 
1 and 2. The comment statement is 
identified by the initial characters //* in 
columns 1 through 3. Control statements 
may contain four fields: name, operation, 
operand, and comment, as shown in Figure 3. 

Job Control Procedures 19 



r----------------T----------------------------------------------------------------------, 
I I Columns Fields I 
I ~--T-T--T--------------------------------------------------------------~ 
I statement 1 11213 1 q I 
~----------------+--+-+--~--------------------------------------------------------------~ 
1 Job I /I/Iname JOB operand1 comments 1 I 
1 Execute I /1/lname 1 EXEC operand comments1 I 
1 Data Definitionl 1I/Iname1 DD operand comments 1 I 
! Procedure I / I / I name1 PROC operand comments 1 I 
I Command I /1/1 operation (command) operand comrnents1 I 
I Delimiter I /1*1 comrnents 1 I 
I Null 1 / III I 
I Comment I /1/1* comments I 
I Pend I 1I/Iname1 PEND 1 

~----------------~--~-~-----------------------------------------------------------------~ 
1 1 0ptional. I L _______________________________________________________________________________________ J 

Figure 3. General Format of Control statements 

The name contains from one through eight 
alphanumeric characters, the first of which 
must be alphabetic. The name begins in 
card column 3. It is followed by one or 
more blanks. The name is used, as follows: 

• To identify the control statement to 
the operating system 

• To enable other control statements in 
the job to refer to information 
contained in the named statement 

• To relate DD statements to files named 
in a COBOL source program 

Operation Field 

The operation field is preceded and 
followed by one or more blanks. It may 
contain one of the following operation 
codes: 

JOB 
EXEC 
DD 
PROe 
PEND 

If the statement is a delimiter statement, 
there is no operation field and comments 
may start after one blank. 

20 

The operand field is preceded and 
followed by one or more blanks and may 
continue through column 71 and onto one or 
more continuation cards. It contains the 
parameters or subparameters that give 
required and optional information to the 
operating system. Parameters and 
subparameters are separated by commas. A 
blank in the operand field causes the 
system to treat the remaining data on the 
card as a comment. There are two types of 
parameters: positional and keyword 
(Figures 4, 5, and 7). 

positional Parameters: positional 
parameters are-the-iirst parameters in the 
operand field, and they must appear in the 
specified sequence. If a positional 
parameter is omitted and other positional 
parameters follow, the omission must be 
indicated by a comma. If other positional 
parameters do not follow, no comma is 
needed. 

~eyword Parameters: A keyword parameter 
may be placed anywhere in the operand field 
following the positional parameters. A 
keyword parameter consists of a keyword, 
followed by an equal sign, followed by a 
single value or a list of subparameters. 
If there is a subparameter list, it must be 
enclosed in parentheses or single quotation 
marks; the subparameters in the list must 
be separated by commas. Keyword parameters 
may appear in any sequence. 

Subparameters are either positional or 
keyword. Positional and keyword 
subparameters for job control statements 
are shown in Figures 4, 5, and 7. 
positional subparameters appear first in 
the parameter and must be in the specified 
sequence. If a positional subparameter is 



omitted and other positional subparameters 
follow, a comma must indicate the omission. 

comments Field 

Optional comments must be separated from 
the last parameter (or the 1* in a 
delimiter statement) by one or more blanks 
and may appear in the remaining columns up 
to and including column 71. An optional 
comment may be continued onto one or more 
continuation cards. comments can contain 
blanks. 

Note: Comments in the optional comments 
field follow different procedures from 
those on the comment statement. 

CONVENTIONS FOR CHARACTER DELIMITERS 

Commas, parentheses, and blanks are 
interpreted as character delimiters. If 
they are not intended by the programmer to 
be used as delimiters, the fields in which 
they appear must be enclosed in single 
quotation marks, indicating that the 
enclosed information is to be treated as a 
single field. When an apostrophe (or a 
single quotation mark, since the same 
character is used for either) is to be 
contained within such a field, it must be 
shown as two consecutive sinql~~Q~~tion 
marks (5-8 punch), not as a double 
quotation mark <7-8 punch). For example, 

Wm. O'Connor 

should be shown as 

'Wm. O"Connor' 

This convention applies to three fields: 
programmer's name in the JOB statement, 
information in the PARM parameter of the 
EXEC statement, and accounting information 
in the JOB and EXEC statements. 

RULES FOR CONTINUING CONTROL STATEMENTS 

Except for the comment statement, 
control statements are contained in columns 

1 through 71 of cards or card images. If 
the total length of a statement exceeds 71 
columns, or if a parameter is to be placed 
on separate cards, the operating system 
continuation conventions must be used. To 
continue an operand field: 

1. Interrupt the field at the end of a 
complete parameter or subparameter, 
including the comma that follows it, 
at or before column 71. 

2. Include comments by following the 
interrupted field with at least one 
blank. 

3. Optionally, code any nonblank 
character in column 72. If a 
character is not coded in column 72, 
the job scheduler treats the next 
statement as a continuation statement 
as long as the conventions outlined in 
items 4 and 5 are observed. 

4. Code the identifying characters II in 
columns 1 and 2 of the following card 
or card image. 

5. Continue the interrupted operand 
beginning in any column from 4 through 
16. 

Comments other than those on a comment 
statement can be continued onto adjitional 
cards after the operand has been completed. 
To continue a comments field: 

1. Interrupt the comment at a convenient 
place. 

2. Code a nonblank character in column 
72. 

3. Code the identifying characters II in 
columns 1 and 2 of the following card 
or card image. 

4. Continue the comments field beginning 
in any column after column 3. 

Any control statements in the input 
stream that the job scheduler considers to 
contain only continued comments will print 
on a system output listing with a 11* in 
columns 1 through 3. Comments written on a 
comment statement cannot be continued. 

Job Control Procedures 21 



NOTATION FOR DESCRIBING JOB CONTROL 
STATEMENTS 

The notation used in this publication to 
define the syntax of job control statements 
is as follows: 

1. The set of symbols below define 
control statements, but they are never 
written in an actual statement. 

~~ Symbol 
hyphen 

"or" symbol 

braces } 

brackets [ ] 

ellipsis 

superscript 1 2 3 

22 

PurpQ~~ 
Joins lower-case 
letters, words, and 
symbols to form a 
single variable 

Indicates alternatives 

Indicate that the 
enclosed is a group of 
related items, only 
one of which is 
required 

Indicate that the 
enclosed are optional 
items. Brackets are 
also used with 
alternatives to 
indicate that a 
default is assumed if 
no alternative is 
listed 

Indicates that the 
preceding item or 
group of items can be 
repeated 

Indicates a footnote 
reference 

2. Stacked items, enclosed in either 
brackets or braces, represent 
alternative items. No more than one 
of the stacked items can be written by 
the programmer. 

3. Upper-case letters and words, numbers, 
and the set of symbols listed below 
are written in an actual control 
statement exactly as shown in the 
statement definition. (Any exceptions 
to this rule are noted in the 
definition of a control statement.) 

Name 
single quotation mark 
asterisk 
comma 
equal sign 
parentheses 
period 
slash 

* 

/ 

4. An underscore indicates a default 
option. If an underscored alternative 
is selected, it need not be written in 
the actual statement. 

~Q£~: Many of these defaults can be 
changed at system generation time. 

5. Lower-case letters, wor1s, an~ symbols 
appearing in a control statement 
definition represent variables for 
which specific information is 
substituted in the actual statement. 

6. Blanks are used in Figures 4, 5, 6, 
and 7 to improve the readability of 
control statement definitions. In 
actual statements, blanks would be 
interpreted as delimiters. 



r----------T---------T------------------------------------------------------------------, 
I Name I Operation I Operand I 
~----------f---------f------------------------------------------------------------------~ 

Positional Parameters 

//jobname JOB [([account-number] [,accounting-information])1 2 3] 

[,programme~-name]q 5 

[MSGLEVEL=(x,y)]6 
[TIME=(minutes,seconds)] 
[CLASS=jobclass] 
[COND=( (code, operator) [, (code, operator)] ••• 7) 8] 
[PRTY=job priority] 
[MSGCLASS=classname] 
[REGION=(nnnnnxK[,nnnnnyK])] 
[ROLL=(x,y)] 
[TYPRUN=HOLD] 
[RD=request] 

[RESTART=<{ :tepname } [,checkid]) ] 
stepname.procstepname 

~----------i---------i--------------------------------__________________________________ ~ 
1If the information specified (account-number and/or accounting-information) contains I 

blanks, parentheses, or equal signs, the information must be delimited by sin~le I 
quotation marks instead of parentheses. I 

2If only account-number is specified, the delimiting parentheses may be omitted. I 
3The maximum number of characters allowed between the delimiting quotation marks is I 
142. I 

qrf programmer-name contains any special characte~s other than the period, it must be I 
enclosed within single quotation marks. 

5The maximum number of characters allowed for programmer-name is 20. 
6X = 0, 1, or 2 is the JCL message. 

y = 0 or 1 is the allocation message level. 
Note that the value 1 may be used in place of (1,1). 

7The maximum number of repetitions allowed is 7. 
8If only one test is specified, the outer pair of parentheses may be omitted. I L ____________________________________________________________________ ~ __________________ J 

Figure 4. JOB statement 

JOB STATEMENT 

The JOB statement is the first statement 
in the sequence of control statements that 
describe a job. The JOB statement can 
contain the follo~ing information: 

1: Name of the job. 

2. Accounting information relative to the 
job. 

3. programmer's name. 

4. Indication of whether or not the job 
control statements are to be printed 
on the system output listing. 

5. Conditions for terminating the 
execution of the job. 

6. For priority scheduling systems: job 
priority assignment, job scheduler 
message class, and for the MVT 
environment, main storage region size. 

Figure 4 is a general format of the JOB 
statement. 

Identifying the Job (jobname) 

The jobname identifies the job to the 
job scheduler. It must satis£y the 
positional, length, and content 
requirements for a name field. No two jObs 
being handled by a priority scheduler 
should have the same jobname. 

Job Control Procedures 23 



For job accounting purposes, the JOB 
statement can be used to supply information 
to an installation's accounting procedures. 
To supply job accounting information, code 
the positional parameter first in the 
operand field. 

r-----------------------------------------, 
I (acct#,additional accounting information) I L _________________________________________ J 

Replace the term "acct#" with the account 
number to which the job is charged; replace 
the term "additional accounting 
information" with other items required by 
an installation's accounting routines. As 
a system generation option with sequential 
schedulers, the account number can be 
established as a required subparameter. 
With prio-ri ty schedulers, the requirement 
can be established with a cataloged 
procedure for the input reader. Otherwise, 
the account number is considered optional. 

24 

• Subparameters of additional accounting 
information must be separated by 
commas. 

• The number of characters in the account 
number and additional accounting 
information must not exceed a total of 
142. 

• If the list contains only an account 
number, the programmer need not code 
the parentheses. 

• If the list does not contain an account 
number, the programmer must indicate 
its absence by coding a comma preceding 
the additional accounting information. 

• If the account number or any 
subparameter of additional accounting 
information contains any special 
character (except hyphens), the 
programmer must enclose the number or 
subparameter in apostrophes (5-8 
punch). The apostrophes are not passed 
as part of the information. 

• To write an accounting routine that 
processes job accounting information, 
see the section "Adding an Accounting 
Routine to the Control Program" of the 
publication !~~_Q§_£Yst~~EQ~E~~~~E~~ 
~uiQ~. 

The person responsible for a job codes 
his name or identification in the JOB 
statement, following the job accounting 
information. This positional parameter is 
also passed to an installation's routines. 
As a system generation option with 
sequential schedulers, the programmer's 
name can be established as a requirej 
parameter. With priority schedulers, the 
requirement can be established with a 
cataloged procedure for the input reader. 
Otherwise, this parameter is considered 
optional. 

• The number of characters in the name 
cannot exceed 20. 

• If the name contains special characters 
other than periods, it must be enclosed 
in apostrophes. If the special 
characters include apostrophes, each 
must be shown as two consecutive 
apostrophes, e.g., 'T.O"NEILL'. 

• If the job accounting information is 
not coded, the programmer must indicate 
its absence by coding a comma preceding 
the programmer-name. 

• If neither job accounting information 
nor programmer-name is present, the 
programmer need not code commas to 
indicate their absence. 

• To write a routine that processes the 
programmer's name, see the section 
"Adding an Accounting Routine to the 
Control Program" of the publication IBM 
Q§_§y~!~~_~EQ~E~~er~~_~~ide. ---

The MSGLEVEL parameter indicates whether 
or not the programmer wants control 
statements and/or allocation and 
termination messages to appear in his 
output listing. To receive this output, 
code the keyword parameter in the operand 
field of the JOB statement. 

r-----------------------------------------, 
I MSGLEVEL= (x, y> I L _________________________________________ J 



The letter "x" represents a job control 
language message code and can be assigned 
the value 0, 1, or 2. When x = 0 is 
specified, only the JOB statement, 
incorrect control statements, and 
associated diagnostic messages are 
displayed. When x = 1 is specified, input 
statements, cataloged procedure statements, 
and symbolic substitution of parameters are 
displayed. When x = 2 is specified, only 
input statements are displayed. 

The letter "y" represents an allocation 
message code and can be assigned the value 
o or 1. When y = 0 is specified, no 
allocation, termination, or recovery 
messages are displayed, unless an ABEND 
occurs during problem program execution. 
If an ABEND occurs, termination messages 
are displayed. When y = 1 is specified, 
all allocation, termination, and recovery 
messages are displayed. 

• If the value 1 is selected for both 
codes, the value may be specified once 
~ithout the parentheses; i.e., 
MSGLEVEL=l is the same as 
MSGLEVEL=(l, 1). 

e The default values are taken from the 
reader procedure. 

• If an error occurs on a control 
statement that is continued onto one or 
more cards, only one of the 
continuation cards is printed with the 
diagnostic messages. 

To eliminate unnecessary use of 
computing time, the programmer might ~ant 
to base the continuation of a job on the 
successful completion of one or more of its 
job steps. At the completion of each job 
step, the processing program passes a 
number to the job scheduler as a return 
code. The COND parameter provides the 
means to test each return code as many as 
eight times. If anyone of the tests is 
satisfied, subsequent steps are bypassed 
and the job is terminated. 

To specify conditions for job 
termination, code the keyword parameter in 
the operand field of the JOB statement. 

r-----------------------------------------, 
ICOND=«code,operator), •• , (code,operator» I L _________________________________________ J 

See the COND parameter on the EXEC 
statement for a discussion of the operator 
values and the codes issued by the compiler 
and linkage editor at the end of a job 
step. 

Note: 

• The subparameters EVEN and ONL~ cannot 
be specified as part of the COND 
parameter on the JOB statement. 

g~guesting Restart for a Job (RD) 

The restart facilities are used in order 
to minimize the time lost in reprocessing a 
job that abnormally terminates. These 
facilities permit execution of jobs that 
abnormally terminate to be automatically 
restarted. 

Execution of a job can be automatically 
restarted at the beginning of the job step 
that abnormally terminated (step restart) 
or within the step (checkpoint restart). 
In order for checkpoint restart to occur. 
the CHKPT macro instruction must have been 
e~ecuted in the processing program prior to 
abnormal termination. The CHKPT macro 
instruction is activated by the COBOL 
source language RERUN clause. The RD 
parameter specifies that step restart can 
occur or that the action of the CHKPT macro 
instruction is to be suppressed. 

To request that step restart be 
permitted or to request that the action of 
the RERUN clause be suppressed, code the 
key~ord parameter in the operand field of 
the JOB statement. 

r-----------------------------------------, 
I RD=request I L _________________________________________ J 

Replace the word "request" with: 

R to permit automatic step 
restart 

NC to suppress the action of the 
CHKPT macro instruction and not 
to permit automatic restart 

NR to request that the CHKPT macro 
instruction be allowed to 
establish a checkpoint, but not 
to permit automatic restart 

RNC -- to permit step restart and to 
suppress the action of the 
CHKPT macro instruction 

Job Control Procedures 25 



Each of these requests is described in 
greater detail in the following paragraphs. 

RD=R: If the processing programs used by 
the job do not include any CHKPT macro 
instructions, RD=R allows execution to be 
resumed at the beginning of the step that 
causes abnormal termination. If any of the 
programs do include one or more CHKPT macro 
instructions, step restart can occur if a 
step abnormally terminates before execution 
of a CHKPT macro instruction; thereafter, 
checkpoint restart can occur. 

RD=NC or RD=RNC: RD=NC or RD=RNC should be 
specified to suppress the action of all 
CHKPT macro instructions included in the 
programs. When RD=NC is specified, neither 
step restart nor checkpoint restart can 
occur. When RD=RNC is specified, step 
restart can occur. 

RD=NR: RD=NR permits a CHKPT macro 
instruction to establish a checkpoint, but 
does not permit automatic restart. 
Instead, at a later time, the job can be 
resubmitted and execution can begin at a 
specific checkpoint. (Resubmitting a job 
for restart is discussed later.) 

Before automatic step restart occurs, 
all data sets in the restart step with a 
status of OLD or MOD, and all data sets 
being passed to steps following the restart 
step, are kept. All data sets in the 
restart step with a status of NEW are 
deleted. Before automatic checkpoint 
restart occurs, all data sets currently in 
use by the job are kept. 

If the RD parameter is omitted and no 
checkpoints are taken, automatic restart 
cannot occur. If the RD parameter is 
omitted but one or more checkpoints are 
taken, automatic checkpoint restart can 
occur. 

26 

• When using a system with MVT or MFT, 
restart can occur only if MSGLEVEL=l is 
coded on the JOB statement. 

• If step restart is requested, each step 
must be assigned a unique step name. 

• If no RERUN clause is specified in the 
user's program, no checkpoints are 
written regardless of the disposition 
of the RD parameter. 

• For detailed information on the 
checkpoint/restart facilities, see the 
publication I~~_Q~Su~~vi~QE_~g~y!£g~. 

gg~~Q~!11!gg a Job for Restart (RESThRT) 

The restart facilities can be used if 
the job is abnormally terminated and the 
programmer wants to resubmit the job for 
execution. These facilities reduce the 
time required to execute the job since 
execution of the job is resumed, not 
repeated. 

Execution of a resubmitted job can be 
restarted at the beginning of a step (step 
restart) or within a step (checkpoint 
restart). In order for checkpoint restart 
to occur, a program must previously have 
had a checkpoint record written. The 
RESTART parameter specifies where execution 
is to be restarted. 

If execution is to be restarted at a 
particular job step, code the keyword 
parameter in the operand field of the JOB 
statement before resubmitting the job. 

r-----------------------------------------, 
I RESTART=stepname I L _________________________________________ J 

Replace the word "stepname" with the name 
of the step at which execution is to be 
restarted. Replace stepname with an 
asterisk C*> if execution is to be 
restarted at the first job step. 

If execution is to be restarted at a 
particular checkpoint within a particular 
job step, code the keyword parameter in the 
operand field of the JOB statement before 
resubmitting the job. 

r-----------------------------------------, 
I RESTART=<stepname,checkid) I L _________________________________________ J 

Replace the word stepname with the name of 
the step in which execution is to be 
restarted. Replace the term "checkid" with 
the 1- to 16-character name that identifies 
the checkpoint within the step. 

If execution is to be restarted at a 
checkpoint, the resubmitted job must 
include an additional DD statement. This 
DD statement defines the checkpoint data 
set and has the ddname SYSCHK. Do not 
include a SYSCHK DD statement if step 
restart is to be performed. 

If the RESTART parameter is not 
specified on the JOB statement of the 
resubmitted job, execution is repeated. 



• If execution is to be restarted at or 
~ithin a cataloged procedure step, give 
both the name of the step that invokes 
the procedure and the procedure step 
name, as below. 

r-----------------------------------------, 
I RESTART=stepname.procstepname I L _________________________________________ J 

• If step restart is performed, 
aeneration data sets that were created 
~nd cataloged in steps preceding the 
restarted step must not be referred to 
in the restart step or in steps 
follo~ing the restart step by means of 
the same relative generation numbers 
that were used to create them. For 
example, a generation data set assigned 
a generation number of +1, would be 
referred to as 0 in the restart step or 
steps following the restart step. 

• Backward references cannot be made to 
steps that precede the restart step 
using the following keyword parameters: 
PGM, COND, SUBALLOC, and VOLUME=REF, 
unless in the last case the referenced 
statement includes VOLUME=SER=(ser#). 

• For detailed information on the 
checkpoint/restart facilities, see the 
publication IBM System/360 Operating 
System: Supervisor Services. 

PRIORITY SCHEDULING JOB PARAMETERS 

~ett~~Job Time Limits (TI~£) 

To assign a limit to the computing time 
used by a job, code the keyword parameter 
in the operand field. 

r-----------------------------------------, 
I TIME=(minutes, seconds) I L _________________________________________ J 

Such an assignment is useful in a 
multiprogramming environment where more 
than one job has access to the computing 
system. The time is coded in minutes and 
seconds to represent the maximum time for 
execution of a job. 

• The number of minutes cannot exceed 
1439 and the number of seconds cannot 
exceed 59. If the job is not completed 
in this time it is terminated. 

• If the job requires use of the system 
for more than 24 hours (1439 minutes) 
specify TIME=1440. This number 
suppresses job timing. 

• If the time limit is given in minutes 
only, the parentheses need not be 
coded; e.g., TIME=S. 

• If the time limit is given in seconds, 
the comma must be coded to indicate the 
absence of minutes; e.g., TIME=(,4~). 

• If the TIME parameter is omitted, the 
default job time is assumed. 

~~~i~~i~~ Job Class (CLASS) 

To assign a job class to a job, code the
keyword parameter in the operand field of
the JOB statement.

r---,
I CLASS=jobclass I L ___ J

Replace the term "jobclass" with an
alphabetic character A through o. The use
of this parameter and the meaning of the
character A through 0 are to be determined
by each installation.

If the CLASS parameter is omitted, or
CLASS=A is coded, the default jon class of
A is assigned to the job.

• If an installation provides
time-slicing facilities in a system
with MFT, the CLASS parameter can be
used to make the job part of the group
of jobs to be time-sliced.
Time-slicing permits the processing of
tasks of equal priority so that each is
executed for its specified period of
time. At system generation, a group of
contiguous partitions are selected to
be used for time-slicing, and each
partition is assigned at least one job
class. If the job is to be
time-sliced, specify a class that was
assianed onlv to the partitions
sele6ted for~time-slicing.

To assign a priority other than the
default job priority (as established in the
input reader procedure), code the keyword
parameter in the operand field of the JOB
statement.

Job Control Procedures 27

r---,
I PRTY=nn I L ___ J

Replace the letters "nnn with a decimal
number from 0 through 13 (the highest
priority number is 13).

If an installation provides time-slicing
facilities in a system with MVT, the PRTY
parameter can be used to make the job part
of a group of jobs to be time-sliced. At
system generation, the priority of the
time-sliced group is selected. If the job
priority number specified corresponds with
the priority number selected for
time-slicing, then the job will be
time-sliced.

If the PRTY parameter is omitted, the
default job priority is assigned to the
job.

~ote: Whenever possible, avoid using
priority 13. This is use1 by the system to
expedite processing of jobs in which
certain errors were diagnosed. It is also
intended for other special uses by future
features of systems with priority
schedulers.

Requesting a Messa~ Class (MSGCLASS)

With the quantity and diversity of data
in the output stream, an installation may
want to separate different types of output
data into different classes. Each class is
directed to an output writer associated
with a specific output unit. The MSGCLASS
parameter allows routing of all messages
issued by the job scheduler to an output
class other than the normal message
class, A.

To choose such a class, code the keyword
parameter in the operand field of the JOB
statement.

r---,
I MSGCLASS=x I L ___ J

Replace the letter "xn with an alphabetic
(A-Z) or numeric (0-9) character. An
output writer, which is assigned to process
this class, will transfer this data to a
specific device.

If the MSGCLASS parameter is omitted, or
coded MSGCLASS=A, job scheduler messages
are routed to the standard output class, A.

28

Reference:

• For a more detailed discussion of
output classes, see the publication IBM
OS Operator's Reference, Order
No. GC28-6691.

For jobs that require an unusual amount
of main storage, the JOB statement provides
the REGION parameter. The REGION parameter
specifies:

• The maximum amount of main storage to
be allocated to the job. This amount
must include the size of those
components required by the user's
program that are not resident in main
storage.

• The amount of main storage to be
allocated to the job, and the storage
hierarchy or hierarchies in which the
space is to be allocated. This request
should be made only if main storage
hierarchy support has been specified
during system generation. If an IBM
2361 Core Storage, Model 1 or 2, is
present in the system, processor
storage is referred to as hierarchy 0
and 2361 Core Storage is referred to as
hierarchy 1. If 2361 Core Storage is
not present but main storage hierarchy
support was specified in system
generation, a two-part region is
established in processor storage when a
region is defined to exist in two
hierarchies. The two parts are not
necessarily contiguous.

To specify a region size, code the
keyword parameter in the operand field of
the JOB statement.

r---,
I REGION=(nnnnnxK[,nnnnnyK]) I L ___ J

To request the maximum amount of main
storage required by the job, the term
"nnnnnx" should be replaced with the number
of 1024-byte areas allocated to the jOb,
e.g., REGION=52K. This number can range
from 1 to 5 digits but cannot exceed 16383.

To request a region size and the
hierarchy desired, the term nnnnnx is
replaced with the number of contiguous
1024-byte areas to be allocated to the job
in hierarchy 0; the term nnnnnny" is
replaced with the number of contiguous
1024-byte areas to be allocated in

hierarchy 1, e.g., REGION=(60K,200K). When
only processor storage is used to include
hierarchies 0 and 1, the combined values of
nnnnnx and nnnnny cannot exceed 16383. If
2361 Core Storage is present, nnnnnx cannot
exceed 16383 and, for a 2361 Modell,
nnnnny cannot exceed 1024, or 2048 for a
2361 Model 2. Each value specified should
be an even number. (If an odd number is
specified, the system treats it as the next
higher even number.)

ir storage is requested only in
hierarchy 1, a comma must be coded to
indicate the absence of the first
subparameter, e.g., REGION=(,200K). If
storage is requested only in hierarchy 0,
or if hierarchy support is not present, the
parentheses need not be coded, e.g.,
REGION=70K.

If the REGION parameter is omitted or if
a region size smaller than the default
region size is requested, it is assumed
that the gefault value is that established
by the input reader procedure.

Notes:

• Region sizes for each job step can be
coded by specifying the REGION
parameter in the EXEC statement for
each job step. However, if a REGION
parameter is present in the JOB
statement, it overrides REGION
parameters in EXEC statements.

• If main storage hierarchy support is
not included but regions are requested
in both hierarchies, the region sizes
are combined and an attempt is made to
allocate a single region from processor
storage. If a region is requested
entirely from hierarchy 1, an attempt
is made to allocate the region from
processor storage.

• For information on storage requirements
to be considered when specifying a
region size, see the publication !BM OS
Storage Estimates.

~olg!g~a Job for Later Execution

To temporarily prevent a job from being
selected for processing, code the keyword
parameter in the operand field of the JOB
statement.

r---,
I TYPRUN=HOLD I L ___ J

The job is then held until a RELEASE
command is issued by the operator. This
specification is particularly useful when
one job must be run after another job has
terminated.

§Q~£!fy!gg Additional Storage (ROLL)
(MVT only)

To allocate additional main storage to a
job step whose own region does not contain
any more available space, code the keyword
parameter in the operand field of the JOB
statement.

r---,
I ROLL=(x,y) I L ___ J

In order to allocate this additional space
to a job step, another job step may have to
be rolled out, i.e., temporarily
transferred to secondary storage. When x
is replaced with YES, each of the
programmer's job steps can be rolled out;
when ~ is replaced with NO, the job steps
cannot be rolled out. When y is replaced
with YES, each job step can cause rollout;
when y is replaced with NO, the job steps
cannot cause rollout. If additional main
storage is required for the job's steps,
YES must be specified for y. If this
parameter is omitted, ROLL=(YES, NO) is
assumed. ROLL parameters can also be coded
in EXEC statements, but are superseded by a
ROLL parameter coded in the JOB statement.

EXEC STATEMENT

The EXEC statement defines a job step
and calls for its execution. It contains
the following information:

1. The name of a load module or the name
of a cataloged procedure that contains
the name of a load module that is to
be executed. The load module can be
the COBOL compiler, the linkage
editor, the loader, or any COBOL
program in load module form.

2. Accounting information for this job
step.

3. Conditions for bypassing the execution
of this job step.

4. For priority scheduling systems:
computing time for a job step or
cataloged procedure step, and main
storage region size.

Job Control Procedures 29

5. Compiler, linkage editor, or loader
options chosen for the job step.

Figure 5 is the general format of the
EXEC statement.

~ote: If the information specified is
normally delimited by parentheses but
contains blanks, parentheses, or equal
signs, it must be delimited by single
quotation marks instead of parentheses.

Identifying the Stg£_i2tepname)

The stepname identifies a job step
within a job. It must satisfy the
positional, length, and content
requirements for a name field. The
programmer must specify a stepname if later
control statements refer to the step or if
the step is going to be part of a cataloged
procedure. Each stepname in a job or
procedure must be unique.

POSITIONAL PARAMETERS

Identifying the PrQgram (PGM) or Procedure
(PRO~

The EXEC statement identifies the
program to be executed in the job step with
the PGM parameter. To specify the COBOL
compiler, code the positional parameter in
the first position of the operand field of
the EXEC statement.

r---,
I PGM=IKFCBLOO I L ___ J

It indicates that the COBOL compiler is the
processing program to be executed in the
job step.

To specify the linkage editor, code the
positional parameter in the first position
of the operand field of the EXEC statement.

r---,
I PGM=IEWL I L ___ J

This indicates that the linkage editor is
the processing program to be executed in
the job step.

The PGM parameter depends upon the type
of library in which the program resides.
If the job step uses a cataloged procedure,

30

the EXEC statement identifies it with the
PROC parameter, in place of the PGM
parameter.

1. Temporary libraries are temporary
partitioned data sets created to store
a program until it is used in a later
job step of the same job. This type
of library is particularly useful for
storing the program output of a
linkage editor run until it is
executed in a later job step. ro
execute a program from a temporary
library, code the positional parameter
in the first position of the operand
field of the EXEC statement.

r---,
I PGM=*.stepname.ddname I L ___ J

The asterisk (*) indicates the current
job step. Replace the terms stepname
and ddname with the names of the job
step and the DD statement within the
procedure step, respectively, in which
the temporary library is created.

If the temporary library is created in
a catalogued procedure step, in order
to call it in a later job step outside
the procedure, give both the name of
the job step that calls the procedure
and the procedure stepname by coding
the positional parameter in the first
position of the operand field of the
EXEC statement.

r---,
I PGM=*.stepname.procstepname.djname I L ___ J

2. The system library is a partitioned
data set named SYS1.LINKLIB that
contains nonresident control program
routines, and processor programs. To
execute a program that resides in the
system library, code the positional
parameter in the first position of the
operand field.

r---,
I PGM=progname I L ________________ ~ ________________________ J

Replace the term progname with the
member name or alias associated with
this program. This same keyword
parameter can be used to execute a
program that resides in a p~i~~~~
library. Private libraries are made
available to a job with a special DD
statement (see "Additional DD
Statement Facilities").

r--------------T-----T--1
I lOper-I I
I Name lationl Operand I
~--------------+-----t--~

I ~Q~itiQ~~l_~~~~~gt~~~
I

//[stepname]
1

EXEC :l~~:~~~~f~~~:me.ddname !
I PROC=procname
I procname
I PGM=*.stepname.procstep.ddname
I
I ~~yword Parameters

!~!~~i~procstep~ (accounting-information; 4 5]

!~~~~procstep~ «COde,operatorl,ste~amel.procstePll' ••• '6 1
:~:~:2procstep~ (optionl,optionl •.• ; 8 9]
l~i:i:procstep~ (minutes,seconds,]

~~~~i~=.procstep~ = nnnnnxKI,nnnnnYK~ 
rj:;~~~.procstep~ (X'Y'] 

~~.procstep! request] 

~~:~ii.procstep~ (value 1, value 2,J 
~--------------~-----~------------------------------------------------------------------~ 

1Stepname is required when information from this control statement is referred to in a 
later job step. 

2If this format is selected, it may be repeated in the EXEC statement once for each 
step in the cataloged procedure. 

3If the information specified contains any special characters except hyphens, it must 
be delimited by single quotation marks instead of parentheses. 

4If accounting-information contains any special characters except hyphens, it must be 
delimited by single quotation marks. 

5The maximum number of characters allowed between the delimiting quotation marks or 
parentheses is 142. 

6The maximum number of repetitions allowed is 7. 
7If only one test is specified, the outer pair of parentheses may be omitted. 
sIf the only special character contained in the value is a comma, the value may be 
enclosed in quotation marks. 

'The maximum number of characters allowed between the delimiting quotation marks or 
parentheses is 100. 

Figure 5. EXEC Statement 

Job Control Procedures 31 



3. Instead of executing a particular 
program, a job step may use a 
£~~alo~~Q£~Qure. A cataloged 
procedure can contain control 
statements for several steps, each of 
~hich executes a particular program. 
Cataloged procedures are members of a 
library named SYS1.PROCLIB. To 
request a cataloged procedure, code 
the positional parameter in the first 
position of the operand field of the 
EXEC statement. 

r-----------------------------------------, 
I PROC=procname I L _________________________________________ J 

Replace the term procname with the 
unqualified name of the cataloged 
procedure (see "Using the DO 
statement" for a discussion of 
qualified names). 

Note: A procedure may be tested before it 
is placed in the procedure library by 
converting it into an in-stream procedure 
and placing it within the job step itself. 
In-stream procedures are discussed in the 
section, "Testing a Procedure as an 
In-Stream Procedure" in the chapter "Using 
the Cataloged Procedures." 

KEYWORD PARAMETERS 

Specifying Job Ste~ccounting Information 
(ACCT) 

When executing a multistep job, or a job 
that uses cataloged procedures, the 
programmer can use this parameter so that 
jobsteps are charged to separate accounting 
areas. To specify items of accounting 
information to the installation accounting 
routines for this job step, code the 
keyword parameter in the operand field of 
the EXEC statement. 

r-----------------------------------------, 
I ACCT=(accounting information) I L _________________________________________ J 

Replace the term "accounting information" 
with one or more subparameters separated by 
commas. If both the JOB and EXEC 
statements contain accounting information, 
the installation accounting routines decide 
how the accounting information shall be 
used for the job step. 

To pass accounting information to a step 
within a cataloged procedure, code the 

32 

keyword parameter in the operand field of 
the EXEC statement. 

r-----------------------------------------, 
I ACCT.procstep=(accounting information) I L _________________________________________ J 

Procstep is the name of the step in the 
cataloged procedure. This specification 
overrides the ACCT parameter in the named 
procedure step, if one is present. 

~p~£!fy!~g_~Q~~!~!Qg~_fQf_gYp~~sing_or 
Executing the Job Step (CONO) 

The execution of certain job steps is 
based on the success or failure of 
preceding steps. The COND parameter 
provides the means to: 

• Make as many as eight tests on return 
codes issuea by preceding job steps or 
cataloged procedure steps, which were 
completed normally. If anyone of the 
tests is satisfied, the job step is 
bypassed. 

• Specify that the job step is to be 
executed even if one or more of the 
preceding job steps abnormally 
terminated or only if one or more of 
the preceding job steps abnormally 
terminated. 

To specify conditions for bypassing a 
job step, code the keyword parameter in the 
operand field of the EXEC statement. 

r-----------------------------------------, 
I COND=«code,operator,[stepname]), ••• , I 
I (code, operator, [stepname]» I L _________________________________________ J 

The term "code" may be replaced by a 
decimal numeral to be compared with the job 
step return code. The return codes for 
both the compiler and the linkage editor 
are: 

00 Normal conclusion 

04 Warning messages have been listed, 
but program is executable. 

08 Error messages have been listed; 
execution may fail. 

12 Severe errors have occurred; 
execution is impossible. 

16 Terminal errors have occurred; 
execution of the processor has been 
terminated. 



The compiler issues a return code of 16 
when any of the following are detected: 

• BASIS member-name is specified and no 
member of that name is found 

• COpy member-name is specified and no 
SYSLIB statement is included 

• Required device not available 

• Not enough core storage is available 
for the tables required for compilation 

• A table exceeded its maximum size 

• A permanent input/output error has been 
encountered on an external device 

The return codes have a correlation with 
the severity level of the error messages. 
With linkage editor messages, for example, 
the rightmost digit of the message number 
states the severity level; this number is 
multiplied by 4 to get the appropriate 
return code. With the COBOL compiler, 04, 
OS, 12, and 16 are equal to the severity 
flags: W. C, E, and D, respectively. 

The term "operator" specifies the test 
to be made of the relation between the 
programmer-specified code and the job step 
return code. Replace the term operator 
with one of the following: 

GT (greater than) 
GE (greater than or equal to) 
EQ (equal to) 
LT (less than) 
LE (less than or equal to) 
NE (not equal to) 

The term "stepname" identifies the 
previously executed job step that issued 
the return code to be tested and is 
replaced by the name of that preceding job 
step. If stepname is not specified, code 
is compared to the return codes issued by 
all preceding steps in the job. 

Replace the term stepname with the name 
of the preceding job step that issues the 
return code to be tested. 

If the programmer codes 

CONO=«4,GT,STEP1), (S,EQ,STEP2» 

the statement is interpreted as: "If 4 is 
greater than the return code issued by 
STEP1, or if STEP2 issues a return code of 
8, this job step bypassed." 

Notes: 

• If only one test is made, the 
programmer need not code the outer 
parentheses, e.g., CONO=(12,EQ,STEPX). 

• If each return code test is made on all 
preceding steps, the programmer need 
not code the terms stepname, e.g., 
CONO= ( ( 4, GT) , (S, EQ) ) • 

• When the return code is issued by a 
cataloged procedure step, the 
programmer may want to test it in a 
later job step outside of the 
procedure. In order to test it, give 
both the name of the job step that 
calls the procedure and the procedure 
stepname, e.g., CONO=«code,operator, 
stepname.procstep), ••• ). 

Abnormal termination of a job step 
normally causes subsequent steps to be 
bypassed and the job to be terminated. By 
means of the CONO parameter, however, the 
programmer can specify execution of a job 
step after one or more preceding job steps 
have abnormally terminated. For the COND 
parameter, a job step is considered to 
terminate abnormally if a failure occurs 
within the user's program once it has 
received control~ (If a job step is 
abnormally terminated during scheduling 
because of failures such as job control 
language errors or inability to allocate 
space, the remainder of the job steps are 
bypassed, whether or not a condition for 
executing a later job step was specified.) 

To specify the condition for executing a 
job step, code the keyword parameter in the 
operand field of the EXEC statement. 

r-----------------------------------------, 
II 1 EVEN ~ II CONO= 
I ONLY I L _________________________________________ J 

The EVEN or 
exclusive. 
be coded in 
return code 
between, or 

ONLY subparameters are mutually 
The subparameter selected can 
combination with up to seven 
tests, and can appear before, 
after return code tests, e~g.: 

CONO=(EVEN, (4,GT,STEP3» 

CONO=«S,GE,STEP1>, (16,GE>,ONLY) 

The EVEN subparameter causes the step to 
be executed even when one or more of the 
preceding job steps have abnormally 
terminated. However, if any return code 
tests specified in this job step are 
satisfied, the step is bypassed. The ONLY 

Job Control Procedures 33 



subparameter causes the step to be executed 
only when one or more of the preceding job 
steps have abnormally terminated. However, 
if any return code tests specified in this 
job step are satisfied, the step is 
bypassed. 

When a job step abnormally terminates, 
the COND parameter on the EXEC statement of 
the next step is scanned for the EVEN or 
ONLY subparameter. If neither is speci
fied, the job step is bypassed and the EXEC 
statement of the next step is scanned for 
the EVEN or ONLY subparameter. If EVEN or 
ONLY is specified, return code tests, if 
any, are made on all previous steps 
specified that executed and did not 
abnormally terminate. If anyone of these 
tests is satisfied, the step is bypassed. 
Otherwise, the job step is executed. 

If the programmer codes 

COND=EVEN 

the statement is interpreted as: "Execute 
this step even if one or more of the 
preceding steps abnormally terminated 
during ex~cution." If COND=ONLY is coded, 
it is interpreted as: "Execute this step 
only if one or more of the preceding steps 
abnormally terminated during execution." 

If the COND parameter is omitted, no 
return code tests are made and the step 
will be bypassed when any of the preceding 
job steps abnormally terminate. 

34 

• When a job step that contains the EVEN 
or ONLY subparameter refers to a data 
set that was to be created or cataloged 
in a preceding step, the data set will 
not exist if the step creating it was 
bypassed. 

• When a jobstep that contains the EVEN 
or ONLY subparameter refers to a data 
set that was to be created or cataloged 
in a preceding step, the data set may 
be incomplete if the step creating it 
abnormally terminated. 

• When the job step uses a cataloged 
procedure, the programmer can establish 
return code tests and the EVEN or ONLY 
subparameter for a procedure step by 
including, as part of the keyword COND, 

the procedure stepname, e.g., 
COND.procstepname. This specification 
overrides the COND parameter in the 
named procedure step if one is present. 
The programmer can code as many 
parameters of this form as there are 
steps in the cataloged procedure. 

• To establish one set of return code 
tests and the EVEN or ONLY subparameter 
for all steps in a procedure, code the 
COND parameter without a procedure 
stepname. This specification replaces 
all COND parameters in the procedure if 
any are present. 

Job steps following a step that 
abnormally terminates are normally 
bypassed. If a job step is to be executed 
even if a preceding step abnormally 
terminates, specify this condition. along 
with up to seven return code tests: 

r-----------------------------------------, 
1//STEP3 EXEC PGM=CONVERT, XI 
1// COND=(EVEN, (4,EQ,STEP1)),... I L _________________________________________ J 

Here, the step is executed if the return 
code test is not satisfied, even if one or 
more of the preceding job steps abnormally 
terminated. If a job step is to execute 
only when one or more of the preceding 
steps abnornally terminate, replace EVEN in 
the above example with ONLY. 

If the EXEC statement calls a cataloged 
procedure, the programmer can establish 
return code tests and the EVEN or ONLY 
subparameter for a procedure step by coding 
the COND parameter followed by the name of 
the procedure step to which it applies: 

r-----------------------------------------, 
1//STEP4 EXEC ANALYSIS,COND. XI 
1// REDUCE=«16,EQ,STEP4.LOOKUP),ONLY), ••• I L _________________________________________ J 

Here, the cataloged procedure step named 
REDUCE will be executed only if a preceding 
job step has abnormally terminated and the 
procedure step named LOOKUP does not issue 
a return code of 16. The programmer can 
code as many COND parameters of this type 
as there are steps in the procedure. 



Passig~Information to the Processin~ 
~rogr~~_iRARM) 

For processing programs that require 
control information at the time they are 
executed, the EXEC statement provides the 
PARM parameter. To pass information to the 
program, code the keyword parameter in the 
operand field. 

r-----------------------------------------, 
i PARM=(option[,option] ••• i I l _________________________________________ J 

This will pass options to the compiler, 
linkage editor, loader, or object program 
when anyone of them is called by the PGM 
parameter in the EXEC statement or to the 
first step in a cataloged procedure. 

To pass options to a compiler, the 
linkage editor, loader, or the execution 
step within the named cataloged procedure 
step, code the keyword parameter in the 
operand field. 

r-----------------------------------------, 
I PARM.procstep=(option[,optionl ••• ) I l _________________________________________ J 

Any PARM parameter already appearing in the 
procedure step is deleted, and the PARM 
parameter that is passed to the procedure 
step is inserted. 

A maximum of 100 characters may be 
written between the parentheses or single 
quotation marks that enclose the list of 
options. The COBOL compiler selects the 
valid options of the PARM field for 
processing by looking for three significant 
characters of each key option word. When 
the keyword is identified, it is checked 
for the presence or absence of the prefix 
NO, as appropriate. The programmer can 
make the most efficient use of the option 
field by using the significant characters 
instead of the entire option. Table 2 
lists the significant characters for each 
option (see "Options for the Compiler" for 
an explanation of each). 

Table 2. Significant Characters for 
Various Options 

r------------------T----------------------, 
I I Significant I 
I Option I Characters I 
~------------------+----------------------~ 

LINECNT CNT 
SEQ SEQ 
FLAGE(W) LAG,LAGW 
SIZE SIZ 
BUF BUF 
SOURCE SOU 
DECK DEC 

SPACE 
DMAP 
PMAP 
SUPMAP 
CLIST 
TRUNC 
APOST 
QUOTE 
XREF 
BATCH 
N~E 

SXREF 
STATE 
TERM 
NUM 
FLOW 
LIB 
SYMDMP 

LOA 
ACE 
D~ 

PMA 
SUP 
CLI 
TRU 
APO 
QUO 
XRE 
BAT 
NAM 
SXR 
STA 
TER 
NUM 
FLO 
LIB 
SYM 

OPTIMIZE OPT 
SYNTAX SYN 
CSYNTAX CSY 
RESIDENT RES 
DYNAM DYN 
SYSx SYS 
VERB VER 
ZWB ZWB __________________ ~ ______________________ J 

The IBM-supplied default options 
indicated by an underscore in the following 
discussion can be changed when the compiler 
is installed. The format of the PARM 
parameter is illustrated in Figure 6. 

• when a subparameter contains an equal 
sign, the entire information field of 
the PARM parameter must be enclosed by 
single quotation marks instead of 
parentheses, e.g., 
PARM='SIZE=160000,PMAp t • 

• When an option and its default (such as 
XREF and NOXREF) are both specified, 
the last encountered option is 
generally the one assumed. (Exceptions 
to this rule are cited in the option 
descriptions.) Accordingly, the 

Job Control Procedures 35 



programmer may change one of the many 
options without repunching the entire 
EXEC card. 

SIZE=yyyyyyy 
indicates the amount of main storage, 
in bytes, available for compilation 
(see "Machine Considerations"). 

BUF=yyyyyy 
indicates the amount of main storage 
to be allocated to buffers. If both 
SIZE and BUF are specified, the amount 
allocated to buffers is included in 
the amount of main storage available 
for compilation (see "Appendix D: 
Compiler Optimization" for information 
about how buffer size is determined). 

Note: The SIZE and BUF compile-time 
parameters can be given in multiples of K, 
where K=1024 decimal bytes. For example, 
80K is 81,920 decimal bytes. 

SOURC~ 
NOSOURCE 

indicates whether or not the source 
module is to be listed. 

CLIST 
NOCLIST-
---- indicates whether or not a condensed 

listing is to be produced. If 
specified, the procedure portion of 
the listing will contain generated 
card numbers (unless the NUM option is 
in effect), verb references, and the 
location of the first instruction 
generated for each verb. Global 
tables, literal pools, register 
assignments, and information about the 
Working-Storage Section are also 
provided. CLIST and PMAP are mutually 
exclusive options. 

Note: In nonsegmented programs, verbs are 
listed in source order. In segmented 
programs, the root segment is last. (For 
programs run with the OPTIMIZE option the 
root segment is first, followed by the 
individual segments in order of ascending 
priority.) 

DMAP 
NOOMAP 

indicates whether or not a glossary is 
to be listed. Global tables, literal 
pools, register assignments, and 
information about the Working-Storage 
Section are also provided. 

PMAP 
NOPMAP 
-----Indicates whether or not register 

assignments, global tables, literal 
pools, information about the 

36 

Working-Storage Section, and an 
assembler-language expansion of the 
source modules are to be listed. 
CLIST and P~lliP are mutually exclusive 
options. 

~Q~~: If anyone of the options CLISr, 
DMAP, and P~~P is specified, the compiler 
will produce a message giving the 
hexadecimal length and starting address of 
the Working Storage Section. For an 
illustration of the use of these options, 
see the "Output" section. 

VERB 
NOVERB 

indicates whether procedure-names and 
verb-names are to be listed with the 
associated code on the object-program 
listing. VERB has meaning only if 
PMAP or CLIST is in effect. NOVERB 
yields more efficient compilation. 

!!Q~Q 
NOLOAD 

indicates whether or not the object 
module is to be placed on a mass 
storage device or a tape volume so 
that the module can be used as input 
to the linkage editor. If the LOAD 
option is used, a SYSLIN DD statement 
must be specified. 

DECK 
NODECK 
-----Indicates whether or not the object 

module is to be punched. If the DECK 
option is used, a SYSPUNCH DD 
statement must be specified. 

~~Q 
NOSEQ 

indicates whether or not the compiler 
is to check the sequence of the source 
module statements. If the statements 
are not in sequence, a message is 
printed. 

~Q~~: For examples of what the SOURCE, 
DMAP, PMAP, and SEQ options produce, see 
"Output." 

LINECNT=nn 
indicates the number of lines to be 
printed on each page of the 
compilation source card listing. The 
number specified by nn must be a 
2-digit integer from 01 to 99. If the 
LINECNT option is omitted, 60 lines 
are printed on each page of the output 
listing. 

Note: The compiler allows for 
headings three lines of what the user 
has specified. (For example, if nn=55 



~WB 
NOZWB 

is specified, then 52 lines are 
printed on each page of the output 
listing.) 

indicates whether or not the compiler 
generates code to strip the sign from 
a signed external decimal field when 
comparing this field to an 
alphanumeric field. If ZWB is 
specified, the signed external decimal 
field is moved to an intermediate 
field, in which its sign is removed, 
before it is compared to the 
alphanumeric field. ZWB complies with 
the ANS standard; NOZWB should be used 
when, for example, input numeric 
fields are to be compared with SPACES. 

Note: The default option cannot be changed 
when the compiler is installed. 

FLAGVl 
FLAGE 

indicates the type of messages that 
are to be listed for the compilation. 
FLAGW indicates that all warning and 
diagnostic messages are to be listed. 
FLAGE indicates that all diagnostic 
messages are to be listed, but that 
the warning messages are not to be 
listed. 

SUPMAP 
NOSUPMAP 
-----indicates whether or not the object 

code listing, and object module and 
link edit decks are to be suppressed 
if an E-Ievel or D-Ievel message is 
generated by the compiler. 

SPACEl 
SPACE2 
SPACE3 

indicates the type of spacing that is 
to be used on the source card listing 
generated when SOURCE is specified. 
SPACEl specifies single spacing, 
SPACE2 specifies double spacing, and 
SPACE3 specifies triple spacing. 

TRUNC 
NOTRUNC 
---- applies to movement of COMPUTATIONAL 

arithmetic fields. If TRUNC (standard 
truncation) is specified and the 
number of digits in the sending field 
is greater than the number of digits 
in the receiving field, the arithmetic 
item is truncated to the number of 
digits specified in the PICTURE clause 
of the receiving field when moved. If 
NOTRUNC is specified, movement of the 

item is dependent on the size of the 
field (halfword, fullword). 

QUOTE 
APOST 
-----indicates to the compiler that either 

the double quote (") or the apostrophe 
(I) is acceptable as the character to 
delineate literals and to use that 
character in the generation of 
figurative constants. 

STATE 
NOSTATE 
-----ifidicates whether or not the number of 

the COBOL statement being executed at 
the time of an abnormal termination is 
desired. STATE identifies the number 
of the statement and the number of the 
verb oeing executed. If the STATE 
option is used, a SYSDBOUT DD 
statement must be specified at 
execution time for the output data set 
on which the statement number message 
can be written. For more information, 
see "Debugging Facilities" in the 
chapter "Program Checkout." 

FLOW[=nn] 
NOFLOW 
-----indicates whether or not a formatted 

trace is desired for a variable number 
of procedures executed before an 
abnormal termination. The number of 
procedures traced is specified by nn: 
where gg may be any integer value from 
one to 99. FLOW [=nn] must be 
specified at compile time to generate 
the necessary trace linkage; however, 
specifying nn may be deferred until 
execution time. If nn is omitted, 
thedefault value is employed. This 
value is either 99 or that specified 
at program product installation. 
Specifying NOFLOW at compile time 
precludes specification of the Flow 
Trace option at execution time. A 
SYSDBOUT DD statement must be included 
for the output data set on which the 
trace can be written. See "Options 
for Execution" for more information. 

SYMDMP 
!,!Q§~~Q~~ 

requests a formatted dump of the data 
area of the object program at abnormal 
termination. With this option, the 
programmer may request dynamic dumps 
of specified data-names at strategic 
points during program execution. 

Job Control Procedures 37 



Notes: 

1. If the SYMDMP option is in effect, 
the SYSUT5 data set must be 
specified. 

2. If the BATCH option is requested, 
symbolic debugging is rejected. 

3. Specification of the SYMDMP option 
automatically yields the OPTIMIZE 
feature, discussed below, and 
rejects the STATE option because 
SYMDMP output includes STATE 
output at abnormal termination. 

For a discussion of the FLOW, STATE, and 
SYMDMP options, and their value to the 
COBOL programmer, see the chapter entitled 
"Symbolic Debugging Features." A SYSDBOUT, 
SYSDBG, and debug file DD codes are 
required at execution time. 

OPTIMIZE 
NOOPTIMIZE 

causes optimized object code to be 
generated by the compiler, 
considerably reducing the use of 
object program main storage. In 
general, the greater the number of 
COBOL Procedure Division source 
statements, the greater the percentage 
of reduction in the amount of main 
storage required. 

Note: The optimizer feature is 
automatically in effect when the 
SYMDMP feature is specified. 

SYNTAX 
CSYNTAX 
NOSYNTAX 
---- indicates whether the source text is 

to be scanned for syntax errors only 
and appropriate error message are to 
be generated. For conditional syntax 
checking (CSYNTAX), a full compilation 
is produced so long as no messages 
exceed the W or C level. If one or 
more E-Ievel or higher severity 
messages are produced, the compiler 
generates the messages but does not 
generate object text. 

38 

Notes: 

1. When the SYNTAX option is in 
effect, all of the following 
compile-time options are 
suppressed: 

LOAD 
XREF 
SXREF 
CLIST 
NOSUPMAP 

PMAP 
DECK 
SYMDMP 
TRUNC 
OPTIMIZE 

FLOW 
STATE 
NAME 
RESIDENT 

NUM 
NONUM 

2. If both SYNTAX and OPTIMIZE are 
specified, no object code is 
produced. 

3. Unconditional syntax checking is 
assumed if all of the following 
compile-time options are 
specified: 

NOLOAD 
NOXREF 
NOSXREF 

NOCLIST 
NOPMAP 

SUPMAP 
NODECK 

-----indicates whether or not line numbers 
have been recorded in the input and, 
rather than compiler-generated source 
numbers, should be used in error 
messages, as well as in PMAP, CLIST, 
STATE, XREF, SXREF, and FLOW. NONUM 
indicates that the compiler-generated 
numbers should be used in error 
messages as well as in PMAP, CLIST, 
STATE, XREF, SXREF, and FLOW. 

Note: If when the NUM option is in 
effect the compiler discovers a 
non-numeric character in a line number 
or if ascending numeric sequence is 
broken and one or more of the 
debugging options are in effect, the 
compiler invalidates the number. The 
compiler then takes the last valid 
card number in sequence, adds a 1 to 
that number and begins generating card 
numbers from that point. The 
increment is 1. Six digits is the 
maximum sequence number. The card 
that follows 999999 will be flagged 
and NUM, SYMDMP, and test cancelled. 
STATE and FLOW will not be cancelled. 

XREF 
NOXREF 
-----indicates whether or not a 

cross-reference listing is produced. 
If XREF is specified, an unsorted 
listing is produced with data-names 
and procedure-names appearing in two 
parts in source order. 

SXREF 
NOSXREF 

indicates whether or not a sorted 
cross-reference listing is produced. 
If SXREF is specified, a sorted 
listing is produced with data-names 
and procedure-names in alphanumeric 
order. 

Note: XREF and SXREF are mutually 
excrusive. 



~IB 
NOLIB 

indicates whether or not a COpy and/or 
a BASIS request will be part of the 
COBOL source input stream. If no 
library facilities are to be used, the 
specification of NOLIB will save 
compilation time, because it avoids 
the opening of the SYSLIB data set. 

BATCH 
NOBATCH 
---- indicates whether or not multiple 

programs and/or subprograms are to be 
compiled with a single invocation of 
the compiler. In the BATCH 
environment all compiler options 
specified on the EXEC card, plus all 
default options, will apply to every 
program in the batch unless specific 
options are overridden on the CBL 
card, which must be included for each 
program. See "Batch Compilation" for 
more information on batch compilations 
and the CBL card. 

NAME 
NONAME 
-----rndicates whether or not programs in a 

batch compilation environment will be 
link-edited into one or more load 
modules. If NAME is specified, each 
succeeding program in the batch will 
be link-edited into a separate load 
module. This option will remain in 
effect for the entire compilation 
unless NONAME is specified on the CBL 
card for an individual program. If 
NONAME is specified on the CBL card, 
no name will be generated for this 
compilation. Names for the load 
modules will be formed according to 
the rules for forming module names 
from the PROGRAM-ID. See "Batch 
Compilation" for more details on batch 
compilation and the CBL card. 

Note: If the BATCH option is not 
specified, NONAME will be in effect. 

RESIDENT 
NORESIDENT 

requests the COBOL Library Management 
feature. When one program in a given 
region/partition requests the RESIDENT 
option, the main program and all 
subprograms in that region/partition 
should also request it. 

Note: The RESIDENT option is 
automatically in effect when the DYNAM 
option is invoked. 

DYNAM 
NODYNAM 

causes subprograms invoked through the 

SY~~ 
SYSx 

CALL literal statement to be 
dynamically loaded and through the 
CANCEL statement to be dynamically 
deleted at object time (instead of 
link-edited with the calling program 
into a single load module). 

Note: When both NORESIDENT and 
NODYNAM are either specified or 
implied by default, and a CALL 
identifier statement occurs in the 
source statement being compiled, the 
COBOL Library Management Facility 
option (RESIDENT) is automatically in 
effect. A printed statement of this 
is given in the compiler output. (For 
a discussion of the COBOL Library 
Management Facility, see the section 
"Sharing COBOL Library Subroutines" in 
the "Libraries" chapter.) 

indicates whether SYSOUT or SYSOUx, 
where x must be alphanumeric (that is, 
0-9 or A-Z except for T), is the 
ddname of the file to be used for 
debug output and for data when SYSOUT 
is specified, either implicitly or 
explicitly, in a DISPLAY statement. 
The specification in the program that 
is first to access the file is chosen. 

Options for Use Only Under TSO 

In addition to the preceding compiler 
options, the following options are designed 
for use with the Time Sharing option (TSO). 
Time Sharing provides the COBOL programmer 
with facilities for entering, compiling, 
and testing programs at his terminal. (For 
further information on the Time Sharing 
Option, see the Program Product publication 
!~~_Q~_i~§Qtl __ ~QBo~_~ro~~~~~~er~~_~~!de 
and Reference.) These options are listed 
rn-Frgure-6~-where: 

PRINT { (*) } 

(dsname) 
NOPRINT 

indicates whether or not the program 
listing is to be suppressed, placed on 
the output data set specified by 
dsname, or displayed at the terminal. 
If PRINT is specified, the listing 
will include page headings, line 
numbers of the statements in error, 
message identification numbers, 
severity levels, and message texts (as 
well as any other output requested by 
SOURCE, CLIST, DMAP, PMAP, XREF, or 
SXREF). If (*> is specified instead 
of data-set name, the printed output 

Job Control Procedures 39 



is sent to the terminal. If PRINT 
alone is specified, a listing data set 
is created on secondary storage and 
named according to standard data set 
naming conventions. NOPRINT specifies 
that no listing is to be printed. If 
neither PRINT nor NOPRINT is specified 
and anyone or more of the options 
SOURCE~ CLIST, DMAP, XREFp or PMAP are 
specified, PRINT is the default. 
Otherwise, NOPRINT is the default. If 
PRINT is specified in a non-TSO 
environment, it is ignored. 

TERM 
NOTERM 
-----rndicates whether or not progress and 

diagnostic messages are to be printed 
on the SYSTERM terminal data set. The 
severity level of the messages may be 
controlled by the FLAG option. If 
PRINT (*) is specified, then NOTERM is 
the default, to ensure that"messages 
appear only once. If TERM is 
specified in a non-TSO environment, 
the output that normally goes to the 
SYSTERM DD data set is written on the 
SYSTERM file if a SYSTERM DO card has 
been included. If there is no SYSTERM 
DO card, a warning message is issued. 

options for the Linkage Editor 

MAP 

XREF 

40 

indicates that a map of the load 
module is to be listed. If MAP is 
specified, XREF cannot be specified, 
but both can be omitted. 

indicates that a cross-reference list 
and a module map are to be listed. If 
XREF is specified, MAP cannot be 
specified. 

LIST 

OVLY 

indicates that any linkage editor 
control statements associated with the 
job step are to be listed. 

indicates that the load module is to 
be in the format of an overlay 
structure. This option is required 
when the COBOL Segmentation feature is 
used. 

The format of the PARM parameter is 
illustrated in Figure 6. For examples of 
what the MAP, XREF, and LIST options 
produce, see "Output." Linkage editor 
control statements and overlay structures 
are explained in "Calling and Called 
Programs." There are other PARM options 
for linkage editor processing that describe 
additional processing options and special 
attributes of the load module (see the 
publication IBM OS Linkage Editor and 
Loader). 

MAP 
NOMAP 
-----indicates whether or not a map of the 

loaded module is to be produced that 
lists external names and their 
absolute addresses on the SYSPRINT 
data set. If the SYSPRINT OD 
statement is not used in the input 
deck, this option is ignored. An 
example of a module map is shown in 
"Output." 



r---------------------------------------------------------------------------------------, 
Compiler: 

1 :::. procstep} 
=([SIZE=yyyyyyyJ [,BUF=yyyyyyJ 

[
SOURCE J r.

DMAP 

~NODMAP 
r. PMAP J 
~ NOPMAP 

FSUPMAP ] 

~NOSUPMAP 

["TRUNC I 

~ :ClTRUNCJ 

~
SPACE1J 

,SPACE2 
,SPACE3 

r. BATCH J 
kNOBATCH 

r.SYMDMP J 
~NOSYMDMP 

, NOSOURCE 

"LOAD J 
~ NOLOAD 

r. CLIST l 

[NOCLISTJ 

[

,DECK 1 
, NODECKJ 

r, FLAGW l 

~FLAGEJ 
f STATE l f XREF 

tNOSTAT~ ~NOXREF 

r. FLOW [=nnl1 F TERM 1" 
~~FLQ~ J t~Q!~~ 
r. OPTIMIZE J [SYNTAX J 
~ NOOPTIMIZE ,CSYNTAX 

~Q£YNT~X 

r-S~ ] 
~ NOSEQ 

[, LINECNT=nnJ 

'-~UOTE l 
::POST J 
,SXREF 1 ' NAME 

, NOSXRE~ , NONAME 

,PRINT {( *) } J 
(dsname) 

,~oPg!.~~ 

r, RESID·ENT 1 FDYNAM I ~ VERB J r: ZWB l [sYs~l1. 2 3 

~ NORESIDENTJ h NODYNAMJ h :::RB L :ozwJ :~J 
~---------------------------------------------------------------------------------------~ 
ILinkage Editor: 1 

i )PARM ~ = ( ffMAP }] [,LISTl [, OVLYl I i 
I ~PARM.procstep) LtXREF I 
~---------------------------------------------------------------------------------------~ 
Loader: 

f
PARM 1 ~PARM.procstep 

= 
[

, RES J 
' NORES 

r. CALL ] 

~NOCALL 
r. LET J 
~ NOLET 

r. SIzE=l~Ol\l 
~ SIZE=slzeJ 

[, EP=name J [PRINT J 
' NOPRINT 

Execution: 

(PARM) ~ FLOW [=nnJl j , = ([user parameters] /' I I ) 
~PARM. procstepj ~ ~Q~~Q~ J 

~---------------------------------------------------------------------------------------~ 
I1.If the information specified contains any special characters, it must be delimited by I 
1 single quotation marks instead of parentheses. I 
12If the only special character contained in the value is a comma, the value may be 1 
I enclosed in parentheses or quotation marks. I 
13 The maximum number of characters allowed between the delimiting quotation marks or 1 
1 parentheses is 100. 1 
14These options should be used in the Time Sharing environment only. I 
ISTSO-only format. 1 L _______________________________________________________________________________________ J 

Figure 6. Compiler, Linkage Editor, and Loader PARM Options 

Job Control Procedures 41 



RES 
NORES 

QALL-

indicates whether or not an automatic 
search of the link pack area queue is 
to be made. This search is always 
made after processing the primary 
input (SYSLIN), and before searching 
the SYLIB data set. When the RES 
option is specified, the CALL option 
is automatically set. 

NOCALL (NCAL) 

LET 
NOLET 

indicates whether or not an automatic 
search of the SYSLIB data set is to be 
made. If the SYSLIB DD statement is 
not used in the input deck, this 
option is ignored. The NOCALL option 
causes an automatic NORES. 

-----indicates whether or not the loader 
will try to execute the object program 
when a severity level 2 error 
condition is found. 

SIZE:;:100K 
SIZE=size 

specifies the size, in bytes, of 
dynamic main storage that can be used 
by the loader. This storage must be 
large enough to accommodate the object 
program. 

EP=name 

PRIN,!: 

specifies the external name to be 
assigned as the entry point of the 
loaded program. 

NOPRINT 
indicates whether or not diagnostic 
messages are to be produced on the 
SYSLOUT data set. 

The format of the PARM parameter is 
illustrated in Figure 6. The default 
options, indicated by an underscore, can be 
changed at system generation with the 
LOADER macro instruction. 

Options for Execution 

Note: The programmer may want to include 
additional user parameters in the PARM 
field for the execution step of his job. 
These parameters are discussed below. 

FLOW[=nn] 
NOFLOW 
-----rf the FLOW option is specified at 

compile time for a trace of procedure 

42 

names, at execution time a value for 
nn may be specified that overrides any 
value set at compile time. If FLOW is 
requested at compile time with no 
value for nn, a value should be 
specified at execution timee A 
default of 99 is assumed for nn if it 
is not specified at either step and 
FLOW is in effect; otherwise, nn is as 
previously specified. When specified 
at execution time, FLOW must be the 
last option in the PARM field. (The 
format of the PARM parameter is 
illustrated in Figure 6.> 

The FLOW trace may be suppressed at 
execution time by specifying NOFLOW. 
FLOW cannot be specified as an option 
for execution if it is not specified 
at compile time or if NO FLOW is in 
effect by default. See the sections 
"Debugging Facilities" and "Options 
for the Compiler" for additional 
information. 

The restart facilities can be used in 
order to minimize the time lost in 
reprocessing a job that abnormally 
terminates. These facilities permit the 
automatic restart of jobs that were 
abnormally terminated during execution. 

The programmer uses this parameter to 
tell the operating system: (1) whether or 
not to take checkpoints during execution of 
a program, and (2) whether or not to 
restart a program that has been 
interrupted. 

A checkpoint is taken by periodically 
recording the contents of storage and 
registers during execution of a program. 
The RERUN clause in the COBOL language 
facilitates taking checkpoint readings. 
Checkpoints are recorded onto a checkpoint 
data set. 

Execution of a job can be automatically 
restarted at the beginning of a job step 
that abnormally terminated (step restart) 
or within the step (checkpoint restart). 
In order for checkpoint restart to occur, a 
checkpoint must have been taken in the 
processing program prior to abnormal 
termination. The RD parameter specifies 
that step restart can occur or that the 
action of the CHKPT macro instruction is to 
be suppressed. 

To request that step restart be 
permitted or to request that the action of 
the CHKPT macro instruction be suppressed 
in a particular step, code the keyword 



parameter in the operand field of the EXEC 
statement. 

r-----------------------------------------, 
I RD=request I L _________________________________________ J 

Replace the word nrequestn with: 

R to permit automatic step restart. 
The programmer must specify at 
least one RERUN clause in order 
to take checkpoints. 

NC to suppress the action of the 
CHKPT macro instruction and to 
prevent automatic restart. No 
checkpoints are taken; no RERUN 
clause in the COBOL program is 
necessary. 

NR to request that the CHKPT macro 
instruction be allowed to 
establish a checkpoint, but to 
prevent automatic restart. The 
programmer must specify at least 
one RERUN clause in order to take 
checkpoints. 

RNC -- to permit step restart and to 
suppress the action of the CHKPT 
macro instruction. No 
checkpoints are taken; no RERUN 
clause in the COBOL program is 
necessary. 

Each request is described in greater detail 
in the following paragraphs. 

gO=R: If the processing programs used by 
this step do not include a RERUN statement, 
RD=R allows execution to be resumed at the 
beginning of this step if it abnormally 
terminates. If any of these programs do 
include one or more CHKPT macro 
instructions (through the use of the RERUN 
clause), step restart can occur if this 
step abnormally terminates before execution 
of a CHKPT macro instruction; thereafter, 
checkpoint restart can occur. 

RD~NC or RO=RNC: RD=NC or RD=RNC should be 
specified to suppress the action of all 
CHKPT macro instructions included in the 
programs used by this stepo When RD=NC is 
specified, neither step restart nor 
checkpoint restart can occur. When RD=RNC 
is specified, step restart can occur. 

RD=Ng: RD=NR permits a CHKPT macro 
instruction to establish a checkpoint, but 
does not permit automatic restarts. 

However, a resubmitted job could have 
execution start at a specific checkpoint. 

Before automatic step restart occurs, 
all data sets in the restart step with a 
status of OLD or MOD, and all data sets 
being passed to steps following the restart 
step, are kept. All data sets in the 
restart step with a status of NEW are 
deleted. Before automatic checkpoint 
restart occurs. all data sets currently in 
use by the job are kept. 

If the RD parameter is omitted and no 
CHKPT macro instructions are executed, 
automatic restart cannot occur. If the RD 
parameter is omitted but one or more CHKPT 
macro instructions are executed, automatic 
checkpoint restart can occur. 

Notes: 

• If the RD parameter is specified on the 
JOB statement, RD parameters on the 
job's EXEC statements are ignored. 

• Restart can occur only if MSGLEVEL=l is 
coded on the JOB statement. 

• If step restart is requested for this 
step, assign the step a unique step 
name. 

• When this job step uses a cataloged 
procedure, make restart request for a 
single procedure step by including, as 
part of the RD parameter, the procedure 
stepname, i.e., RD.procstepname. This 
specification overrides the RD 
parameter in the named procedure step 
if one is present. Code as many 
parameters of this form as there are 
steps in the cataloged procedure. 

• To specify a restart request for an 
entire cataloged procedure, code the RD 
parameter without a procedure stepname. 
This specification overrides all RD 
parameters in the procedure if any are 
present. 

• If no RERUN clause is specifiej in the 
user's program, no checkpoints are 
written, regardless of the disposition 
of the RD parameter. 

• For detailed information on the 
checkpoint/restart facilities, see the 
publication !~~_Q~_~~2g~yi~2E-~g~yi£es. 

Job Control Procedures 43 



~st~blishinq a DisQ~tchin~iQ~itY_i~~g!X~ 
(MVT only) 

rhe DPRTY parameter allows the 
programmer to assign to a job step, a 
dispatching priority different from the 
priority of the job. The dispatching 
priority determines in what sequence tasks 
use main storage and computing time. To 
assign a dispatching priority to a job 
step, code the keyword parameter in the 
operand field of the EXEC statement. 

r-----------------------------------------, 
I DPRTY=(value 1,value 2) I l _________________________________________ J 

Both "value 1" and "value 2" should be 
replaced with a number from 0 through 15. 
"Value 1" represents an internal priority 
value. "Value 2" added to "value 1" 
represents the dispatching priority. The 
higher numbers represent higher priorities. 
A default value of 0 is assumed if no 
number is assigned to "value 1." "A default 
value of 11 is assumed if no number is 
assigned to "value 2." 

• Whenever possible, avoid assigning a 
number of 15 to "value 1." This number 
is used for certain system tasks. 

• If "value 1" is omitted, the comma must 
be coded before "value 2" to indicate 
the absence of "value 1," e.g., 
9PRTY=(,14). 

• If "value 2" is omitted, the 
parentheses need not be coded, e.g., 
DPRTY=12. 

• On an MVT system with time-slicing 
facilities, the DPRTY parameter can be 
used to make a job step part of a group 
of job steps to be time-sliced. The 
priorities of the time-sliced groups 
are selected at system generation. To 
cause the job step to be time-sliced, 
assign to "value 1" a number that 
corresponds to a priority number 
selected for time-slicing. "Value 2" 
is either omitted or assigned a value 
of 11. 

• When the step uses a cataloged 
procedure, a dispatching priority can 
be assigned to a single procedure step 
by including the procedure step name in 
the DPRTY parameter, i.e., 
DPRTY.procstepname=(value 1, value 2). 
This parameter may be used for each 
step in the cataloged procedure. 

• To assign a single dispatching priority 
to an entire cataloged procedure, code 
the DPRTY parameter without a procedure 
step name. This specification 
overrides all DPRTY parameters in the 
procedure if there are any. 

setting Job Step Time Limits (TIME) 

To assign a limit to the computing time 
used by a single job step, a cataloged 
procedure, or a cataloged procedure step, 
code the keyword parameter in the operand 
field of the EXEC statement. 

r-----------------------------------------, 
I TIME=(minutes,seconds) I L _________________________________________ J 

such an assignment is useful in a 
multiprogramming environment where more 
than one job has access to the computing 
system. Minutes and seconds represent the 
maximum number of minutes and seconds 
allotted for execution of the job step. 

• If the job step requires use of the 
system for 24 hours (1440 minutes) or 
longer, the programmer should specify. 
TIME=1440. Using this number 
suppresses timing. The number of 
seconds cannot exceed 59. 

• If the time limit is given in minutes 
only, the parentheses need not be 
coded; e.g., TIME=S. 

• If the time limit is given in seconds, 
the comma must be coded to indicate the 
absence of minutes; e.g., TlME=(,4S). 

• When the job step uses a cataloged 
procedure, a time limit for a single 
procedure step can be set by qualifying 
the keyword TIME with the procedure 
step name; i.e., TI~ill.procstep= 
(minutes, seconds). This specification 
overrides the TIME parameter in the 
named procedure step if one is present. 
"As many parameters of this form can be 
coded as there are steps in the 
cataloged procedure. 

• To set a time limit for an entire 
procedure, the TIME keyword is left 
unqualified. This specification 
overrides all TIME parameters in the 
procedure if any are present. 

• If this parameter is omitted, the 
standard job step time limit is 
assigned. 



The REGION parameter permits the 
prcqrammer to specify the size of the main 
storage region to be allocated to the 
associated job step. The REGION parameter 
specifies: 

• The maximum amount of main storage to 
be allocated to the job. This amount 
must include the size of those 
components required by the user's 
program that are not resident in main 
storage. 

• The amount of main storage to be 
allocated to the job, anj the storage 
hierarchy or hierarchies in which the 
space is to be allocated. This request 
should be made only if main storage 
hierarchy support has been specified 
during system generation. If an IBM 
2361 Core Storage, Model 1 or 2, is 
present in the system, processor 
storage is referred to as hie"rarchy 0 
and 2361 Core Storage is referred to as 
hierarchy 1. If 2361 Core storage is 
not present but main storage hierarchy 
support was specified in system 
generation, a two-part region is 
established in processor storage when a 
region is defined to exist in two 
hierarchies. The two parts are not 
necessarily contiguous. 

To specify a region size, code the 
keyword parameter in the operand field of 
the EXEC statement. 

r-----------------------------------------, 
I REGION=(nnnnnxK[,nnnnnyK]) I L _________________________________________ J 

To request the maximum amount of main 
storage required by the job, replace the 
term "nnnnnx" with the maximum number of 
contiguous 1024-byte areas allocated to the 
job step, e.g., REGION=52K. This number 
can range from 1 to 5 digits but must not 
exceed 16383. 

To request a region size and the 
hierarchy desired, the term "nnnnnx" is 
replaced with the number of contiguous 
1024-byte areas to be allocated to the jOb 
in hierarchy 0; the term "nnnnny" is 
replaced with the number of contiguous 
1024-byte areas to be allocated in 
hierarchy 1, e.g., REGION=(60K.200K}. when 
only processor storage is used to include 
hierarchies 0 and 1, the combined values of 
nnnnnx and nnnnny cannot exceed 16383. If 
2361 Core Storage is present, nnnnnx cannot 
exceed 16383 and, for a 2361 Modell, 
nnnnny cannot exceed 1024, or 2048 for a 

2361 Model 2. Each value specified should 
be an even number. (If an odd number is 
specified, the system treats it as the next 
higher even number.) 

If storage is requested only in 
hierarchy 1, a comma must be coded to 
indicate the absence of the first 
subparameter, e.g., REGION=(,200K). If 
storage is requested only in hierarchy 0, 
or if hierarchy support is not present, the 
parentheses need not be coded, e.g., 
REGION=10K. 

If the REGION parameter is omitted or if 
a region size smaller than the default 
region size is requested, it is assumed 
that the default value is that established 
by the input reader procedure. 

• Region sizes for each job step can be 
coded by specifying the REGION 
parameter in the EXEC statement for 
each job step. However, if a REGION 
parameter is present in the JOb 
statement, it overrides REGION 
parameters in EXEC statements. 

• If main storage hierarchy support is 
not included but regions are requested 
in both hierarchies, the region sizes 
are combined and an attempt is made to 
allocate a single region from processor 
storage. If a region is requested 
entirely from hierarchy 1, an attempt 
is made to allocate the region from 
processor storage. 

• For information on storage requirements 
to be considered when specifying a 
region size, see the publication IB~ OS 
Storage Estimates. 

~Q~£ifyigg_~~~itiQg~l_Main Storage for a 
Job Step (ROLL) 
(MVT only) 

To allocate additional main storage to a 
job step whose own region does not contain 
any more available space, code the keyword 
parameter in the operand field of the EXEC 
statement. 

r-----------------------------------------, 
I ROLL=(x,y) I L _________________________________________ J 

In order to allocate this additional space 
to a job step, another job step may have to 
be rolled out, i.e., temporarily 
transferred to secondary storage. When x 
is replaced with YES, the job step can be 

Job Control Procedures 4S 



rolled out; when x is replaced with NO, the 
job step cannot be rolled out. When y is 
replaced with YES, the job step can cause 
rollout; when y is replaced with NO, the 
job step cannot cause rollout. (If 
additional main storage is required for the 
job step, YES must be specified for y.) If 
this parameter is omitted, ROLL=(YES,NO) is 
assumed. 

46 

• If the ROLL parameter is specified in 
the JOB statement, the ROLL parameter 
in the EXEC statements is ignored. 

• When a job step uses a cataloged 
procedure, it can be indicated whether 
or not a single procedure step has the 
ability to be rolled out and to cause 
rollout of another job step. To 
indicate this, the procedure stepname, 
i.e., ROLL.procstepname, is included as 
part of the ROLL parameter. This 
specification overrides the ROLL 
parameter in the named procedure step, 
if one is present. As many parameters 
of this form can be coded as there are 
steps in the cataloged procedure. 

• To indicate whether or not all of the 
steps of a cataloged procedure have the 

ability to be rolled out and to cause 
rollout of other job steps, the ROLL 
parameter can be coded without a 
procedure stepname. This specification 
overrides all ROLL parameters in the 
procedure, if any are present. 

The data definition (DD) statement 
identifies each data set that is to be used 
in a job step, and it furnishes information 
about the data set. The DD statement 
specifies input/output facilities required 
for using the data set; it also establishes 
a logical relationship between the data set 
and input/output references in the program 
named in the EXEC statement for the job 
step. 

Figure 7 is a general format of the DD 
statement. 

Parameters used most frequently for 
COBOL programs are discussed in detail. 
The other parameters (e.g., SEP anj ~FF) 
are mentioned briefly. For further 
information, see the publication IBM OS Job 
~Qgt~Ql_~~ggg~ge Reference. ----------



r------------------------T--------------T--------------------------------------
I Name I Operation I Operand 
~---7---------------~----+--------------+---------------------------------
I ,ddname I 1 I DD I 
1// ~ > 1 I (see below and next page) 
1 fprocstep.ddname~ I I L ___ ~ ____________________ L ______________ L _____________________________________ _ 

r---------------------------------------------------------------------------------------, 
I Operand2 I 
~---------------------------------------------------------------------------------------~ 

~ositioQ~l_~~~ameters 

3 

Keyword Parameters q. 5 

[DDNAME=ddname] 

~DSN~1E( 
tDSN ) 

dsname 
dsname(element) 
*.ddname 
*.stepname.ddname 
*.stepname.procstep.ddnarne 
&&name 
&&name(element) 

11 

[QNAME=processnarne] 

DCB=( I" *.ddname 
*.stepname.ddname 

[ 

Idsname ] 
[.sUbParameter-listll 

L~·stepname.procstep.ddname 

[
SEP=(SUbParameter list)7] 10 

AFF=ddname 

J 

6 

~ ~ 

~
UNIT=(name[, [n/?] [,DEFE~]] [,SEP=(list of up to 8 ddnameS)])sJ 
UNIT=(AFF=ddname) 

Po~i~iQQ~l Subparame~ers 

10 12 

SPACE=( f~~~ I 
~average-reCOrd-length~ 

, (primary-quantity[,secondary-quantity], 

[directory- or index-quantity]) [,RLSE] 
[

MXLG J ,ALX 
,CONTIG 

[, ROUND]) 

SPACE=(ABSTR, (quantity, beginning-address [, directory- or index-quantity]» 

~CYL t 
{average-reCOrd-lengt~ 

SPLIT=(n, , (primary-quantity[,secondary-quantity]) 

SUBALLOC=( ~~~~ ( 
taverage-reCOrd-lengt~ 

[.directory-quantityl). ~~~~~~:me.ddname ( ) 
(stepname.procstep.ddname) l ______________________________________ ~ ________________________________________________ J 

, (primary-quantity[,secondary-quantity] 

Figure 7. The DD Statement (Part 1 of 2) 

Job Control Procedures 47 



r---------------------------------------------------------------------------------------, 
IOperand2 (cont.) I 
~---------------------------------------------------------------------------------------~ 

Positional Subparameters 

.~voLuMEI, 
/VOL \ 

=([PRIVATE], [RETAIN], [volume sequence number], [volume count]) 
/ 

Keyword Subparameters 

,SER=(volume-serial-number[volume-serial-number]9 ••• ) 

, REF= 

I 

ldsname 
.-'* • ddname 
'.stepname.ddname l 
~.stepname.procstep.ddname) 

[ LABEL=([data-set-sequence-number), fi~L I 
~SUL j 

DISP=( ~NEW] OLD 
SHR 
MOD ~

!')ELETE J ' KEEP 
, PASS 
,CATLG 
,UNCATLG t 

DELETE] , KEEP 
,CATLG 
,UNCATLG 

SYSOUT=classname 
SYSOUT=(x[,program-name] [,form-no.]) 

[
, EXPDT=YYddd] 
,RETPD=xxxx 

[. PASSWORD) I] 

~---------------------------------------------------------------------------------------~ 
1The name field must be blank when concatenating data sets. 
2All parameters are optional to allow a programmer flexibility in the use of the DD 
statement; however, a DD statement with a blank operand field is meaningless. 

3If the positional parameter is specified, keyword parameters other than DCB cannot be 
specified. 

4If subparameter-list consists of only Q~g subparameter and no leading comma 
(indicating the omission of a positional subparameter) is required, the delimiting 
parentheses may be omitted. 

5If sUbparameter-list is omitted, the entire parameter must be omitted. 
6See nUser-Defined Files" for the applicable subparameters. 
7See the publication IBM OS_~ob_£Q~~~Ql_~~~g~~gg_g~f~~~g£g. 
8If only name is specified, the delimiting parentheses may be omitted. 
9If only one volume-serial-number is specified, the delimiting parentheses may be 

omi tted. 
10The SEP and AFF parameters should not be confused with the SEP and AFF subparameters 

of the UNIT parameter. 
11The value specified may contain special characters if the value is enclosed in 

apostrophes. If the only special character used is the hyphen, the value need not bel 
enclosed in apostrophes. If DSNAME is a qualified name, it may contain periods I 
without being enclosed in apostrophes. I 

12rhe unit address may contain a slash, and the unit type number may contain a nyphen, I 
without being enclosed in apostrophes, e.g., UNIT=293/S,UNIT=2400-2. I 

113The QN~ME= parameter is used in COBOL teleprocessing and must be the name of a TCAM I 
I destination queue. I L _______________________________________________________________________________________ J 

Figure 7. The DD Statement (Part 2 of 2) 

48 



Name Field 
ddnaffie-TIdentifying the DD Statement) 

is used: 

• To identify data sets defined by 
this DD statement to the compiler or 
linkage editor (see "Compiler Data 
Set Requirements" and "Linkage 
Editor Data Set Requirements"). 

• To relate the data sets defined in 
this DD statement to a file 
described in a COBOL source program 
(see "User-Defined Files"). 

• To identify this DD statement to 
other control statements in the 
input stream. 

procstep.ddname 
is used to alter or add OD statements 
in cataloged procedures. The step in 
the cataloged procedure is identified 
by procstep. The ddname identifies 
either one of the following: 

• A DD statement in the cataloged 
procedure that is to be modified by 
the DO statement in the input 
stream. 

• A DD statement that is to be added 
to the DD statement in the procedure 
step. 

* (Defining Data in an Input Stream) 
indicates that data immediately 
follows this DD statement in the input 
stream. This parameter is used to 
specify a source deck or data in the 
input stream. If the EXEC statement 
specifies execution of a program, only 
one data set may be placed in the 
input stream. The end of the data set 
must be indicated by a delimiter 
statement. The data cannot contain // 
or /* in the first two characters of 
any record. The DD * statement must 
be the last DO statement of the job 
step. In MVT, for a step with a 
single input stream data set, DO * and 
a /* statement are not required. The 
system will supply both if missing. 
The default DDNAME will be SYSIN. 

DATA (Defining Data in an Input Stream) 
also indicates a source deck or data 
in the input stream. If the EXEC 
statement specifies execution of a 
program, only one data set may be 
placed in the input stream. The end 
of the data set must be indicated by a 
delimeter statement. The data cannot 
contain /* in the first two characters 
of any record. The DD DATA statement 

must be the last DD statement of the 
job step. // may appear in the first 
and second positions in the record, 
for example, when the data consists of 
control statements of a procedure that 
is to be cataloged. 

DUMMY (Bypassing Input/Output Operations on 
the Data Set) 
allows the user's processing program 
to operate without performing 
input/output operations on the data 
set. The DUMMY parameter is valid 
only for sequential data sets to which 
reference is made by the basic 
sequential or queued sequential file 
processing techniques. If the DUMMY 
parameter is specified, a read request 
results in an end of data set exit. A 
write request is recognized, but no 
data is transmitted. No device 
allocation, external storage 
allocation, or cataloging takes place 
for dummy data sets. 

In multiprogramming environments, data 
in the input stream is temporarily 
transferred to a direct-access device for 
19ter high-speed retrieval. Normally, the 
reader procedure assigns a blocking factor 
for the data when it is placed on the 
direct-access device. The programmer may 
assign his own values through use of the 
BLKSIZE parameter of the DeB parameter. He 
may also indicate the number of buffers to 
be assigned to transmitting the data, 
through use of the BUFNO parameter. For 
example, he may assign the following: 

DCB=(BLKSIZE=800,BUFNO=2) 

If the programmer omits these parameters or 
assigns values greater than the capacity of 
the input reader, it is assumed that the 
established default values for the reader 
are in effect. 

DDNAME_~~~~~~~~~_i~Q~~EQg~gg_~g~_Q~f~g~t~Qg 
of a Data Set) -----defines-a pseudo data set that will 

assume the characteristics of a real 
data set if a subsequent DO statement 
of the step is labeled with tht 
specified ddname. When the ODNAME 
parameter is specified, it must be the 
first parameter in the operand. All 
other parameters are ignored and 
should be omitted when the DDNAME 
parameter appears (see "Using the 
cataloged Procedures"). 

Job Control Procedures 49 



QQ~AME Subpa~~~gter 
ddname 

names a DD statement that, if 
present, supplies the attributes 
of the data set. If it is not 
present, the statement is 
ignored. 

Q§N~~~ Par~~eter lI~~gtifyinq_th~_Q~t~_Set~ 
allows the programmer to specify the 
name of the data set to be created or 
to refer to a previously created data 
set. Various types of names can be 
specified (see "Using the DD 
statement" for a discussion of the 
various names) as follows: 

• Fully qualified names: For data 
sets to be retrieved from or stored 
in the system catalog. 

• Generatio!Ldata_q~~name§..!.. For an 
entire generation data group. or any 
single generation thereof. 

• §imele_game§.: For data sets that 
are not cataloged. 

• Reference names: For data sets 
whosenamesare given in the DSNAME 
parameter of another DD statement in 
the same job. 

• Temporary-g~§..!.. For temporary data 
sets that are to be named for the 
duration of one job only. 

If the DSNAME parameter is omitt~d, 
the operating system assigns a unique 
name to the data set. (This parameter 
should be supplied for all except 
temporary data sets to allow future 
referencing of the data set.) DSNAME 
may be coded DSN. 

QSNAM~_§ubparam~ters 
dsname 

specifies the fully qualified 
name of a data set. This is the 
name under which the data set can 
be cataloged or otherwise 
identified on the volume. 

dsname(element) 

50 

specifies a particular generation of a 
generated data group, a member of a 
partitioned data set, or an area of an 
indexed data set. To indicate a 
generation of a generated data group, 
the element is a zero or a signed 
integer. To indicate a member of a 
partitioned data set, the element is a 
name. To indicate an area of an 
indexed data set, the element is 
PRIME, OVFLOW, or INDEX (see "Using 
the DO Statement" for information 

about generation data groups and 
examples of partitioned data sets). 

*.ddnawE 
indicates that the OSNAME parameter 
(only> is to be copied from a 
preceding DO statement in the current 
job step. 

*.stepname.ddname 
indicates that the DSNAME parameter 
(only) is to be copied from the DD 
statement, ddname, that occurred in a 
previous step, stepname, in the 
current job. If this form of the 
subparameter appears in a DD statement 
of a cataloged procedure, stepname 
refers to a previous step of the 
procedure, or, if no such step is 
found, to a previous step of the 
current job. 

*.stepname.procstep.ddname 
indicates that the DSNAME parameter 
(only) is to be copied from a DO 
statement in a cataloged procedure. 
The EXEC statement that called for 
execution of the procedure, as well as 
the step and DD statement of the 
procedUre, must oe identified. 

&&name 
allows the programmer to supply a 
temporary name for a data set that is 
to be deleted at the end of the job. 
The operating system substitutes a 
unique symbol for this subparameter. 
The programmer can use the temporary 
name in other steps to refer to the 
data set. The same symbol is 
substituted for each recurrence of 
this name within the job. Upon 
completion of the job, the name is 
dissociated from the data set. The 
same temporary name can be used in 
other jobs without ambiguity. 

&&name(element) 
allows the programmer to supply a name 
for a member of a temporary 
partitioned data set that will be 
deleted at the end of the step. 

~AME Parameter (Defining_~h~_Q~~~_tQ_Q~ 
~££~~~~£_Qy-!£~~~ 

specifies the name of a TPROCESS macro 
that defines a destination queue for 
messages that are to be processed by 
an application program and creates a 
process entry for the queue in the 
Terminal Table (see the section 
"Defining Terminal and Line Control 
Areas" in the chapter entitled "Using 
the Teleprocessing Feature"». 

Note: The DCB parameter is the only 
parameter that can be coded on a DO 



statement with the QNA~~ parameter. 
The only operands that may be 
specified as subparameters are 
BLKSIZE. BUFL, LRECL, OPTCD, and 
RECFM. 

DCB Parameter (Describing the Attributes of 
the Data Set) 

allows the progr~mmer to specify at 
execution time, rather than at 
compilation time, information for 
completing the data control block 
associated with the data set (see 
nExecution Time Data Set Requirements" 
and nAdditional File Processing 
Information" for further information 
about the data control block and DCB 
subparameters). 

The first subparameter of this 
parameter may be used to copy DeB 
attributes from the data set label of 
a cataloged data set or from a 
preceding DD statement (see the 
publication IBM OS Supervisor and Data 
Management Macro Instructions for 
detailed information about the DCB 
subparameter) • 

§g~_~g9:_AF[~aram~ter~!Qptimi~ing_~~~!!ne!. 
~saggl 

allow the programmer to optimize the 
use of channels among groups of data 
sets. SEP indicates channel 
separation and AFF indicates channel 
affinity. 

If neither parameter is supplied, any 
available channel, consistent with the 
UNIT parameter requirement, is 
assigned. The affinity parameter 
groups two or more data sets so that 
they can be separated from another 
data set requesting channel 
separation. For indexed sequential 
data sets these parameters are written 
in the same way as those for any data 
set. They can be used in succeeding 
DD st.atements to refer to the first DD 
statement defining an indexed 
sequential data set. However, the 
second and third DD statements cannot 
request separation from or affinity to 
one another because they are unnamed. 
Thus, to establish channel separation 
and affinity for all of the areas, the 
name subparameter of the UNIT 
parameter must be used to request 
specific devices on specific channels. 

UNIT Parameter (Reguesting a Unit) 
specifies the quantity and types of 
input/output devices to be allocated 
for use by the data set. 

If the UNIT parameter is not specified 
in the current DD statement, there are 
several ways in which the unit 
information may be inferred by the 
system: 

• If the current data set has already 
been created and it is either being 
passed to the current step, or if it 
has been cataloged, any unit name 
specified in this DD statement is 
ignored. 

• If the REF subparameter of the 
VOLU~£ parameter is specified, the 
current data set is given affinity 
with the data set referred to; that 
data set's defining DD statement 
provides the unit information. 

• If the current data set is to 
operate in the split cylinder mode 
with a previously defined data set, 
it will reside on the unit specifled 
in the DD statement for the previous 
data set. 

• If the current data set is to use 
space suballocated from that 
assigned to a previously defined 
data set, it will reside on the same 
unit as the data set from which the 
space is obtained. 

• If the current data set is assigned 
to the standard output class (SYSOUT 
is specified), it is written on the 
unit specified by the operator for 
class A. 

If the current data set is in the input 
stream (defined by a DD * or DD DATA 
statement), the DD statement defining the 
data set should not contain a UNIT 
parameter. 

If this parameter specifies a mass 
storage device for a data set being 
created, it is also necessary to reserve 
the space the data set will occupy, using 
another parameter of the DD statement. 
Depending on the way in which the space 
will be used, the SPACE, SPLIT, or SUBALLOC 
parameter can be specified. These 
parameters are discussed under individual 
headings. 

If the UNIT parameter specifies a tape 
device, no SPACE, SPLITt or SUBALLoe 
parameters are required. 

The UNIT parameter must be specified if 
VOLUME=SER is specified in the DD 
statement. 

Job Control Procedures 51 



QNIT_SubQ~~~~~ter~~ 
name 

n 

P 

DEFER 

specifies the name of an input/output 
device, a single cell within a data 
cell drive, a device class name, or 
any meaningful combination of 
input/output devices specified by an 
installation. (Mass storage devices 
and magnetic tape devices can be 
combined. No other device type 
combination is allowed.) Names and 
device classes are defined at system 
generation time. The device class 
names that are required for IBM 
cataloged procedures and are normally 
used by most installations are shown 
in Figure 8. These names can be 
specified by the installation at 
system generation time. 

The block size specified in the source 
program (in the BLOCK CONTAINS clause 
or in the record description) must not 
exceed the maximum block size 
permitted for the device. For 
Example, the maximum block size for 
the IBM 2311 is 3625 characters, and 
the maximum block size for the IBM 
2400 series is 32,760 characters. 

Note: When device-independence is 
specified by use of UT as the device 
class in the ASSIGN statement in the 
Environment Division, the device 
chosen by the system will be dependent 
on the DD statement. Therefore, if 
the user1s installation has both an 
IBM 2311 and an IBM 2302 that may be 
used as utility devices, the user 
should write 

BLOCK CONTAINS 3625 CHARACTERS 

(or any number smaller than 3625' to 
ensure that the block can be contained 
on one track. 

specifies the number of devices to be 
allocated to the data set. If this 
parameter is omitted, 1 is assumed. 

specifies parallel mount. 

indicates deferred mounting. Deferred 
mounting cannot be specified for a new 
output data set on a mass storage 
device or for an indexed data set. 

SEP=(list of up to eight ddnames) 
specifies unit separation. 

52 

AFF=ddname 
specifies unit affinity. 

r----------T---------------T--------------, 
iClass Namelclass FunctionslDevice Type I 
~----------+---------------+--------------~ 
ISYSSQ I writing Imass storage I 
I I reading Imagnetic tape I 
~----------+---------------+--------------~ 
ISYSDA I writing Imass storage I 
I I reading I I l __________ ~ _______________ i ______________ J 

Figure 8. Device Class Names Required for 
IB~-Supplied cataloged 
Procedures 

~~~~~_~~E~~~~~E_l~1!2£~ti~g_~~~s StQE~~ 
~QS!.£§'!.

specifies space to be allocated in a
mass storage volume. Although SP~CE
has no meaning for tape VOlumes, if a
data set is assigned to a device class
that contains both mass storage
devices and tape devices, SPACE should
be specified.

Two forms of the SPACE parameter may
be used, with or without absolute
track address (ABSTR). The ABSTR
parameter requests that allocation
begin at a specific address.

~l~~~~T~~QQ~~~~~t§.~~~ J
TRK
CYL
average-record-Iength

specifies the unit of mEasurement in
which storage is to be assigned. The
units may be tracks (ABSTR or TRK),
cylinders (CYL), or records
(average-record-Iength, expressed as a
decimal number). In addition, the
ABSTR subparameter indicates that the
allocated space is to begin at a
specific track address. If the
specified tracks are already allocated
to another data set, they will not be
reallocated to this data set.

~Qt~: For indexed data sets, only "the
CYL or ABSTR subparameter is
permitted. When an indexed data set
is defined by more than one DD
statement, all must specify either CYL
or ABS'IRi if some statements contain
CYL and others ABST~, the job will be
abnormally terminated.

(primary-quantity[,secondary-quantityJ
[,directory- or index-quantity])

specifies the amount of space to be
allocated for the data set. The

RLSE

primary quantity indicates the number
of records, tracks, or cylinders to be
allocated when the job step begins.
For indexed data sets, this
subparameter specifies the number of
cylinders for the prime, overflow, or
index area (see "Execution Time Data
set Requirements"). The secondary
quantity indicates how much additional
space is to be allocated each time
previously allocated space is
exhausted. This subparameter must not
be specified when defining an indexed
data set. If a secondary quantity is
specified for a sequential data set,
the program may receive control when
additional space cannot allocated to
write a record. The directory
quantity is used when initially
creating a partitioned data set (PDS>,
and it specifies the number of
256-byte records to be reserved for
the directory of the PDS. It can also
specify the number of cylinders to be
allocated for an index area embedded
within the prime area when a new
indexed data set is being defined (see
the publication IBM OS Job_~QgtEQl
Lanquaqe_Ref~rence).

Note: The directory contains the name
and the relative position! within the
data set, for each member of a
partitioned data set. The name
requires eight bytes, the location
four bytes. Up to 62 additional bytes
can be used for additional
information. For a directory of a
partitioned data set that contains
load modules, the minimum directory
requirement for each member is 34
bytes.

indicates that all unused external
storage assigned to this data set is
to be released when processing of the
data set is completed.

1
MXIG \
ALX
CONTIG

qualifies the request for the space to
be allocated to the data set. MXIG
requests the largest single block of
storage that is greater than or equal
to the space requested in the primary
quantity. ALX requests the allocation
of additional tracks in the volume.
The operating system will allocate
tracks in up to five blocks of
storage, each block equal to or
greater than the primary quantity.
CONTIG requests that the space
indicated in the primary quantity be
contiguous.

ROUND

If this subparameter is not
specified, or if any option cannot be
fulfilled, the operating system
attempts to assign contiguous space.
If there is not enough contiguous
space, up to five noncontiguous areas
are allocated.

indicates that allocation of space for
the specified number of records is to
begin and end on a cylinder boundary.
It can be used only when average
record length is specified as the
first subparameter.

quantity
specifies the number of tracks to be
allocated. For an indexed data set,
this quantity must be equivalent to an
integral number of cylinders; it
specifies the space for the prime,
overflow, or index area (see
"Execution Time Data Set
Requirements").

beginning address
specifies the relative number of the
track desired, where the first track
of a volume is defined as O. (Track 0
cannot be requested.) The number is
automatically converted to an address
based on the particular device
assigned. For an indexed data set
this number must indicate the
beginning of a cylinder.

directory quantity
defines the number of 256-byte records
to be allocated for the directory of a
new partitioned data set. It also
specifies the number of tracks to be
allocated for an index area embedded
within the prime area when a new
indexed data set is being defined. In
the latter case, the number of tracks
must be equivalent to an inte~ral
number of cylinders (see the
publication IBM OS Job Control
~~~~aqe Reference). 

~~~!r_~~ra~~t~E_l~112£~~~~g~~~~~_£~2f~g~ 
Space)

is specified when other data sets in
the job step require space in the same
mass storage volume, and the user
wishes to minimize access-arm movement
by sharing cylinders with the other
data sets. The device is then said to
be operating in a split cylinder mode.
In this mode, two or more data sets
are stored so that portions of each
occupy tracks within every allocated
cylinder.

Job Control Procedures 53

n

Note: SPLIT should not be used when
one of the data sets is an indexed
data set.

indicates the number of tracks per
cylinder to be 11sed for this data set
if CYL is specified. If the average
record length is specified, ~ is the
percentage of the tracks per cylinder
to be used for this data set.

{
CYL }
average-record-length

indicates the units in which the space
requirements are expressed in the next
subparameter. The units may be
cylinders (CYL) or physical records
<in which case the average record
length in bytes is specified as a
decimal number not exceeding 65,535).
If the average record length is given,
and the data set is defined to have a
key, the key length must be given in
the OCB parameter of this DO
statement.

primary-quantity
defines the number of cylinders or
space for records to be allocated to
the entire group of data sets.

secondary-quantity
defines the number of cylinders or
space for records to be allocated each
time the space allocated to any of the
data sets in the group has been
exhausted and more data is to be
written. This quantity will not be
split.

A group of data sets that share
cylinders in the same device is
defined by a sequence of DO
statements. The first statement in
the sequence must specify all
parameters except secondary quantity,
which is optional. Each of the
statements that follow the first
statement must specify only g, the
amount of space required.

SUB~LLOC Parameter (Allocatin~~~~_~tQ~age
~pace)

54

permits space to be obtained from
another data set for which contiguous
space was previously allocated. This
enables data sets to be stored in a
single volume. Space obtained through
suballocation is removed from the
original data set, and may not be

further suballocated. The SUBALLOC
parameter should not be used to obtain
space for an indexed data set.

Excep~ for the subparameters
described below, the subparameters in
the SUBALLOC parameter have the same
meaning as those described in the
SPACE parameter.

~Q~~LQ£_~~bearameters:
ddname

indicates that space is to be
suballocated from the data set defined
by the DO statement, ddname, that
appears in the current step.

stepname.ddname
indicates that space is to be
suballocated from the data set defined
by the DO statement, ddname, occurring
in a previous step, stepname. If this
form of the subparameter appears in a
DD statement in a cataloged procedure,
stepname refers to a previous step of
the procedure, or if no such step is
found, to a previous step of the
current job.

stepname.procstep.ddname
indicates that space is to be
suballocated from a data set defined
in a cataloged procedure. The first
term identifies the step that called
for execution of the procedure, the
second identifies the procedure step,
and the third identifies the DO
statement that originally requested
space.

VOLUME (VOL) Parameter (Se~£~fy~gg_~Q~~~~
Information)
-----specifies information about the

volume(s) on which an input data set
resides, or on which an output data
set will reside. A volume can be a
tape reel, or a mass storage device.
Volumes can be used most efficiently
if the programmer is familiar with the
states a volume can assume. Volume
states involve two criteria: the type
of data set the programmer is defining
and the manner in which the programmer
requests a volume.

Data sets can be classified as one
of two types, temporary or
nontemporary. A temporary data set
exists only for the duration of the
step that creates it. A nontemporary
data set can exist after the job is
completed. The programmer indicates
that a data set is temporary by
coding:

• DSN~ME=&&name

• No DSN~ME parameter

• DISP=(NEW,DELETE), either explicitly
or implied, e.g., DISP=(,DELETE)

• DSN~ME=reference, referring to a DD
statement that defines a temporary
data set.

All other data sets are considered
nontemporary~ If the programmer
attempts to keep or catalog a passed
data set that was declared temporary,
the system changes the disposition to
PASS unless DEFER was specified in
theUNIT parameter. Such a data set is
deleted at the end of the job.

The manner in which the programmer
requests a volume can be considered
specific or ~on~~2ific. A specific
reference is implied whenever a volume
with a specific serial number is
requested. Anyone of the following
conditions denotes a specific volume
reference:

• The data set is cataloged or passed
from an earlier job step.

• VOLUME=SER is coded in the DD
statement.

• VOLUME=REF is coded in the DD
statement, referring to an earlier
specific volume reference.

~ll other types of volume references
are nonspecific. (Nonspecific
references can be made only for new
data sets, in which case the system
assigns a suitable volume.)

The state of a volume determines
when the volume will be demounted and
what kinds of data sets can be
assigned to it.

Mass Storage Volumes: Mass storage
volumes differ from tape volumes in
that they can be shared by two or more
data sets processed concurrently by
more than one jobe Because of this
difference, mass storage volumes can
assume different volume states than
tape volumes. The volume state is
determined by one characteristic from
each of the following groups:

Mount
Characteristics
Permanently

Resident
Reserved
Removable

Allocation
Characteristics
Public---------

Private
Storage

Pe~~~g~g~ly_~~~~~~~~ volumes are
always mounted. The permanently
resident characteristic applies
automatically to:

• All physically permanent volumes,
such as 2301 Drum Storage.

• The volume from which the system is
loaded (the IPL volume).

• The volume containing the system
data sets SYS1.LINKLIB,
SYS1.PROCLIB, and SYS1.SYSJOBQE.

• Other volumes can be designated as
permanently resident in a special
member of SYS1.PROCLIB named
PRESRES.

Permanently resident volumes are
always public. The reserved
characteristic applies-to-volumes that
remain mounted until the operator
issues an UNLOAD command. They are
reserved by a MOUNT command referring
to the unit on which they are mounted
or by a PRESRES entry. The ~~~~Y~Ql~
characteristic applies to all volumes
that are neither permanently resident
nor reserved. Removable volumes do
not have an allocation characteristic
when they are not mounted. A reserved
volume becomes removable after an
UNLOAD command is issued for the unit
on which it resides.

The allocation characteristics,
public, private, and storage, indicate
the availability status of a volume
for assignment by the system to
temporary data sets, and, if the
volume is removable, when it is to be
demounted. A 2~Ql!~ volume is used
primarily for temporary data sets and,
if it is permanently resident, for
frequently used data sets. It must be
requested by a specific volume
reference if a data set is to be kept
or cataloged on it. If a public
volume is removable, it is demounted
only when its unit is required by
another volume. The programmer can
change a public volume to private
status by specifying VOLUME=PRIV~TE.
A private volume must be requested by
a specIfIc volume reference. A new
data set can be assigned to a private
volume by specifying VOLUME=PRIVATE.
If the volume is reserved, it remains
mounted until the operator issues an
UNLOAD command for the unit on which
it resides. If it is removable, it
will be demounted after it is used,
unless the programmer specifically
requested that it be retained
(VOLUME=,RETAIN) or passed
(DISP=,PASS~. Once a removable volume

Job Control Procedures 55

has been made private, it will
ultimately be demounted. To use it as
a public volume, it must be remounted.
A storage volume is used as an
extension of main storage, to keep or
catalog nontemporary data sets having
nonspecific volume requests. The
programmer can assign the PRIVATE
option to storage volumesg

Table 3 shows how mass storage
volumes are assigned their mount and
allocation characteristics.

Table 3. Mass storage Volume States
r---------------T-------------------------,
I I Allocation I
I I Characteristic I
I Mount ~--------T--------T-------~
ICharacteristic IPublic IPrivate Istoragel
r---------------+--------+--------+-------~
I Permanently IPRESRES IPRESRES I PRES RES I
I Resident I or I I I
I I Defaul t I I I
~---------------+--------+--------+-------~
I Reserved IPRESRES IPRESRES IPRESRESI
I I or I or I or I
I I MOUNT I MOUNT I MOUNT I
I Icommand Icommand I command I
~---------------+--------+--------+-------~
I Removable IDefault IVOLUME= I na I
I I IPRIVATE I I
~---------------L--------~--------L-------~
Ina = Not applicable I L ___ J

56

Magnetic Tape Volumes: The volume
state of a reel of magnetic tape is
also determined by a combination of
mount and allocation characteristics:

Mount
Characteristics
Reserved
Removable

Allocation
Characteristics
Private--------
Scratch

The reserved-scratch combination is
not a valid volume state. Reserved
tape volumes assume their state-when
the operator issues a MOUNT command
for the unit on which they reside.
They remain mounted until the operator
issues a corresponding UNLOAD command.
Reserved tapes must be requested by a
specific volume reference.

A removable tape volume is assigned
the e~ivate characteristic when one of
the following occurs:

• It is requested with a specific
volume reference.

• It is requested for allocation to a
nontemporary data set.

• The VOLUi1E parameter is coded with
the PRIVATE option.

A removable-private volume is
demounted after its last use in the
job step, unless the programmer
requests that it be retained.

All other tape volumes are assigned
the removable-scratch state. The tape
volumes remain mounted until their
unit is required by another volume.

Volume Parameter Facilities: The
facilities of the VOLUME parameter
allow the programmer to:

• Request private volumes (PRIVATE)

• Request that private volumes remain
mounted until the end of the job
(RETAIN)

• Select volumes when the data set
resides on more than one volume
(volume-sequence-number)

• Request more than one nonspecific
volume (volume-count)

• Identify specific volumes (SER and
REF)

These facilities are all optional.
The programmer can omit the VOLUME
parameter when defining a new data
set, in which case the system assigns
a suitable public or scratch volume.

YQ~Q~_~~~~~~~~~~~l
PRIVATE

indicates that the volume on which
space is being allocated to the data
set is to be made private. If the
PRIVATE, SER, and REF subparameters
are omitted for a new output data set,
the system assigns the data set to any
suitable public or scratch volume that
is available.

RETAIN
indicates that this volume is to
remain mounted after the job step is
completed. Volumes are retained so
that data may be transmitted to or
from the data set, or so that other
data sets may reside in the volume.
If the data set requires more than one
volume, only the last volume is
retained; the other volumes are
previously dismounted. Another job
step indicates when to dismount the
volume by omitting RETAIN. If each
job step issues a RETAIN for the

volume, the retained status lapses
when execution of the job is
completed.

volume-sequence-number
is a 1- to 4-digit number that
specifies the sequence number of the
first volume of the data set that is
read or written. The volume sequence
number is meaningful only if the data
set is cataloged and earlier volumes
are omitted.

volume-count

SER

REF

specifies the number of volumes
required by the data set. Unless the
SER or REF subparameter is used this
subparameter is required for every
multivolume output data set.

specifies one or more serial numbers
for the volumes required by the data
sets. A volume serial number consists
of one to six alphanumeric characters.
If it contains fewer than six
characters, the serial number is left
justified and padded with blanks. If
SER is not specified and DISP is not
specified as NEW, the data set is
assumed to be cataloged, and serial
numbers are retrieved from the
cataloge A volume serial number is
not required for new output data sets.
Two volumes should not have the same
serial number. When the SER parameter
is included, the volume is treated as
PRIVATE commencing with allocation for
the current job step. If this
subparameter is specified, the UNIT
parameter must also be specified.

indicates that the data set is to
occupy the same volume(s) as the data
set identified by dsname *.ddname,
*.stepname.ddnamE, or *.stepname.

Table 4. Data Set References

procstep.ddname. Table 4 shows the
data set references.

When the data set resides in a tape
volume and REF is specified, the data
set is placed in the same volume,
immediately behind the data set
referred to by this subparameter.
When the REF subparameter is used, the
UNIT and LABEL parameters, if
supplied, are ignored.

If SER or REF is not specified, the
control program will allocate any
nonprivate volume that is available.

~~~~~_~~E~~~t~E_iQ~~£E!Q~Q~_Q~t~_~~t_~~~~l~ 
specifies information about the label 
or labels associated with the data 
set. If a data set is passed from a 
previous job step, label information 
is retained from the DO statement that 
specified DISP=(,PASS). A LABEL 
parameter, if specified in the DO 
statement receiving the passed data 
set, is ignored. If the LABEL 
parameter is omitted and the data set 
is not being passed, standard labeling 
is assumed. The operating system 
verifies mounting when the label 
parameter s?ecifies standard labels 
(SL) or standard and user labels 
<SUL). Nonstandard labels can be 
specified only when installation
written routines to write and process 
nonstandard labels have been 
incorporated into the operating system 
(see "User Label Processing" and the 
publication IBM System/360 OE~E~t~~g 
System: Sy~t~~~_~EQgE~~~~E~~_~~~~~ 
for information about writing these 
routines> • 

~~~~~_~~-E~E~~~t~E~: 
data-set-sequence-number

is a 4-digit number that identifies
the relative location of the data set

r------------------------------T--,
I Option I Refers to I
~------------------------------+--~
I REF=dsname I A data set named dsname i
~------------------------------+--~
IREF=*.ddname IA data set indicated by DD statement ddname in the I
I I current job step I
~------------------------------+--~
IREF=*.stepname.ddname IA data set indicated by DD statement ddname in the jOb I
I I step stepname I
~------------------------------+--~
IREF=*.stepname.procstep.ddnameIA data set indicated by DD statement ddname in the I
I Icataloged procedure step procstep called in the job stepl
I Istepname (see "Using the Cataloged Procedures") I l ______________________________ ~ __ J

Job Control Procedures 57

~~ {SU~~

with respect to the first data set in
a tape volume. (For example, if there
are three data sets in a magnetic tape
volume, the third data set is
identified by data set sequence number
0003.) If the data set sequence
number is not specified, the operating
system assumes that it is 0001. (This
option ~hould not be confused with the
volume sequence number, which
represents a particular volume for a
data set.)

specifies the kind of label used for
the data set. NL indicates no labels.
SL indicates standard labels. NSL
indicates nonstandard label. SUL
indicates standard and user labels.

EXPDT=yyddd
RETPD=xxxx

specifies how long the data set shall
exist. The expiration date,
EXPDT=yyddd, indicates the year (yy»
and the day (ddd) that the data set
can be deleted. The period of
retention, RETPD=xxxx, indicates the
period of time, in days, that the data
set is to be retained. If neither is
specified, the retention period is
assumed to be zero.

PASSWORD
indicates that the data set is to be
made accessible only when the correct
password is issued by the operator.
The operating system assigns security
protection to the data set. In order
to retrieve the data set, the operator
must issue the password on the
console.

QISf_~~~~~te~§e~£ifyi~~t~~~t_~t~t~~
~nd~Qiseosition)

58

describes the status of a data set and
indicates what is to be done with it
after its last use, or at the end of
the job. The job scheduler executes
the requested disposition functions at
the completion of the associated job
step. If the step is not executed
because of an error found by the
system before trying to initiate the
step (e.g., an error in a job control
language statement), the remaining
statements are read and interpreted;
however, none of the succeeding steps
are executed, and the requested
dispositions are not performe~. This
parameter can be omitted for data sets
created and deleted during a single
job step. Additional information
about the relationship between the
DISP parameter and the volume table of

OLD

SHR

MOD

contents is contained in "Additional
File Processing Information."

indicates that the data set is being
generated in this step. If the status
is omitted, the NEW subparameter is
assumed.

indicates that the data set specified
in the DSNAME parameter already
exists.

has meaning only in a multiprogramming
environment for existing data Gets
that reside on mass storage volumes.
This subparameter indicates that the
data set is part of a job in which
operations do not prevent simultaneous
use of the data set by another job.
For a data set that is to be shared,
the DO statement DISP parameter should
be specified as DISP=SHR for every
reference to the data set in a job.
Unless this is done, the data set
cannot be used by a concurrently
operating job, and the job will have
to wait until the particular file is
free.

causes logical positioning after the
last record in the data set. It
indicates that the data set already
exists and that it is to be added to,
rather than read. When MOD is
specified and neither the volume
serial number is given nor the data
set cataloged or passed from an
earlier job step, MOD is ignored and
NEW is assumed. If the volume serial
number is given, it is assumej that
the data set is on the specified
volume.

DELETE

KEEP

causes the space occupied by the data
set to be released for other purposes
at the end of the current step. If
the data set is cataloged, and the
catalog is used to locate it,
reference to the data set is removed
from the catalog. If it is on a mass
storage device, all references are
removed from the volume table of
contents, and the device space is made
available for use by other data sets.
If the data set is on tape, the volume
in which the data set resides is thEn
available for use by other data sets.

ensures that the data set remains
intact until a DELETE parameter is
exercised in either the current jab or

PASS

some subsequent job. If the data set
is on a mass storage device, it
remains tabulated in the volume table
of contents after completion of the
job. When the volume containing the
data set is to be dismounted, the
operator is advised of the
disposition.

indicates that the data set is to be
referred to in a later step of the
current job, at which time its
disposition may be determined. When a
subsequent reference to this data set
is encountered, its PASS status lapses
unless another PASS is issued. The
final disposition of the data set
should be specified in the last DD
statement referring to the data set
within the current job.

While a data set is in PASS status,
the volume(s) on which it resides are,
in effect, retained; that is, the
system will attempt to avoid
demounting them. If demounting is
necessary, the system will ensure
proper remounting, through operator
messages. The unit name specified on
the DO statement in the receiving step
must be consistent with the unit name
in the passing step.

causes the creation, at the end of the
job step, of an index entry in the
system catalog pointing to the data
set. The data set can be referred to
by name in subsequent jobs, without
the need for volume serial number or
device type information from the
programmer. cataloging also implies
KEEP.

UNCATLG
causes the index entry that pOints to
this data set to be removed from the
index structure at the end of this
step. The data set is not deleted.
If it is on a mass storage volume,
reference to it remains in the volume
table of contents.

Notg: The absence of DELETE, KEEP,
PASS, C~TLG, and UNCATLG indicates
that no special action is to be taken
to alter the permanent or temporary
status of this data set. If the data
set was created in this job, it will
be deletej at the end of the current
step. If the data set existed before
this job, it will be kept.

The third subpararneter indicates the
disposition of the data set in the event

the job step terminates abnormally. This
is the conditional disposition
subparameter. Explanations for DELETE,
KEEP, CATLG, and UNCATLG are the same as
those for normal termination. The
following points should be noted when using
the third subparameter.

• If a conditional disposition is not
specified and the job step abnormally
terminates, the requested disposition
(the second subparameter) is performed.

• Data sets that were passed but not
received by sUbsequent steps because of
abnormal termination will assume the
conditional disposition specified the
last time they were passed. If a
conditional disposition was not
specified at that time, all new data
sets are deleted and all other data
sets are kept.

• A conditional disposition other than
DELETE for a temporary data set is
invalid and the system assumes that it
is DELETE.

SYSOUT Parameter (Routing Data Set throug!'.!
the OutE!!t_§.!:E~~~!.

schedules a printing or punching
operation for the data set described
by the DD statement.

SYSOUT Subparameters:
classname

specifies the system output class on
which the data set is to be written.
A classname is an installation
specified 1-character name designating
the output class to which the data set
is to be written. Each classname is
related to a particular output unit.
Valid values for the SYSOUT parameter
are A through Z and 0 through 9. A is
the standard output class. Both data
sets and system messages can be routed
through the same output stream when
using a priority scheduler. In this
case, the output class selected for
the data sets must be the same output
class as that selected for the
MSGCLASS parameter in the JOB
statement.

Note: Classes 0 through 9 should not
be used except in cases where the
other classes are not sufficient.
These classes are intended for future
features of systems using priority
schedulers.

Job Control Procedures 59

(x [, proqrarn- name] [, form-no])
is used for priority scheduling
systems only. When priority
schedulers are used, the data set is
usually written on an intermediate
mass storage device during program
execution, and later routed through an
output stream to a system output
device. The x can be an alphabetic or
numeric character specifying the
system output class. Output writers
route data from the output classes to
system output devices. The DD
statement for this data set can also
include a unit specification
describing the intermediate mass
storage device and an estimate of the
space required. If there is a special
installation program to handle output
operations, its program-name should be
specified. Program-name is the member
name of the program, which must reside
in the system library. If the output
data set is to be printed or punched
on a specific type of output form, a
4-digit form number should be
specified. Form-no. is used to
instruct the operator of the form to
be used in a message issued at the
time the data set is to be printed.

• If both the program-name and form-no.
are omitted, the delimiting parentheses
can be omitted.

• If the Direct SYSOUT Writer is used to
write a data set, both the form-no.
and program-name are ignored. All
parameters on the DD statement, i.e.,
UNIT or SPACE, are also ignored.

ADDITIONAL DD STATEMENT FACILITIES

By specifying certain ddnames, the
programmer can request the operating system
to perform additional functions. The
operating system recognizes these
special-purpose ddnames:

• JOBLIB and STEPLIB to identify private
user libraries

• SYSABEND and SYSUDUMP to identify data
sets on which a dump may be written

JOBLIB AND STEPLIB DD STATEMENTS

The JOBLIB and STEPLIB DD statements are
used to concatenate a user's private
library with the system library

60

<SYS1.LINKLIB). Use of JOBLIB results in
the system library being combined with the
private library for the duration of a job;
use of STEPLIB, for the duration of a job
step. During execution, the library
indicated in these statements is scanned
for a module before the system library is
searched.

The JOBLIB DD statement must appear
immediately after the JOB statement and its
operand field must contain at least the
DSNAME and DISP parameters. The DISP
parameter must contain PASS as the second
subparameter if the library is to be made
available to later job steps. Only one
JOBLIB statement may be specified for a jOb
but more than one library may be specified
on a JOBLIB statement. The JOBLIB
statement is meant to concatenate existing
private libraries with the system library.
It need not be specified for load modules
created in the job or for permanent members
of the system library (see "Checklist for
Job Control Statements" and "Libraries" fDr
examples).

The STEPLIB DD statement may appear in
any position among the DD statements for
the job step. The library should be
defined as OLD. If the library is to be
passed to other job steps, the second
subparameter of the DISP parameter should
be coded PASS. A later job step may then
refer to the library by coding its STEPLIB
DD statement as follows:

//STEPLIB DD DSNAME=*.stepname.STEPLIB. X
// DISP=(OLD,PASS)

The STEPLIB statement overrides the
JOBLIB statement if both are present in a
job step.

SYSABEND AND SYSUDUMP DD STATEMBNTS

The ddnames SYSABEND or SYSUDUMP
identify a data set on which an abnormal
termination dump may be written. The dump
is provided for job steps subject to
abnormal termination.

The SYSABEND DD statement is used when
the programmer wishes to include in his
dump the problem program storage area, the
system nucleus, and the trace table if the
trace table option had been requested at
system generation time.

The SYSUDUMP DD statement is used when
the programmer wishes to include only tne
problem program storage area.

The programmer may rout the dump
directly to an output writer by specifying
the SYSOUT parameter on the DD statement.
In a multiprogramming environment, the
programmer may also define the intermediate
direct-access device by specifying the UNIT
and SPACE parameters.

PROC STATEMENT

The PRoe statement may appear as t.he
first control statement in a cataloged
procedure and must appear as the first
control statement in an in-stream
procedure. The PROC statement must contain
the term PROC in its operation field. For
a cataloged procedure, the PROC statement
assigns default values to symbolic
parameters defined in the procedure; its
operand field must contain symbolic
parameters and their default values. The
PROC statement marks the beginning of an
in-stream procedure; its operand may
contain symbolic parameters and their
default values.

PEND. STATEMENT

The PEND statement must appear as the
last control statement in an in-stream
procedure and marks the end of the
in-stream procedure. It must contain the
term PEND in the operation field. The PEND
statement is not used for cataloged
procedures. For further information about
in-stream procedures, see "Testing a
Procedure as an In-Stream Procedure" in
"Using the Cataloged Procedures."

COMMAND STATEMENT

The operator issues commands to the
system via the console or a command
statement in the input stream. Commands
can also be issued to th~ system via a
command statement in the input stream.
Hotoiev'er, this should be avoided since
commands are executed as they are read
(except for SET and START in systems with
PCP) and may not be synchronized with
execution of job steps. Command statements
must appear immediately before a JOB
statement, an EXEC statement, a null
statement, or another command statement.

The command statement contains
identifying characters (II) in columns 1
and 2, a blank name field, a command, and,
in most cases, an operand field. The

operand field specifies the job name, unit
name, or other information being
considered.

Note: A command statement cannot be
continued, it must be coded on one card or
card image.

The delimiter statement marks the end of
a data set in the input stream. The
identifying characters 1* must be coded
into columns 1 and 2, the other fields are
left blank. Comments are coded as
necessary.

Note: When using a system with MFT or MVT,
the end of a data set need not be marked in
an input stream that is defined by a DD *
statement.

NULL STATEMENT

The null statement is used to mark the
end of certain jobs in an input stream. If
the last DD statement in a job defines data
in an input stream, the null statement
should be used to mark the end of the job
so that the card reader is effectively
closed. The identifying characters II are
coded into columns 1 and 2, and all
remaining columns are left blank.

The comment statement is used to enter
any information considered helpful by the
programmer. It may be inserted anywhere in
the job control statement stream after the
JOB Statement. (The comment statement
contains a slash in columns 1 and 2, and an
asterisk in column 3. The remainder of the
card contains comments.) Comments are
coded in columns 4 through 80, but a
comment may not be continued onto another
statement.

When the comment statement is printed on
an output listing, it is identified by the
appearance of asterisks in columns 1
through 3.

Job Control Procedures 61

The catch compile feature is used to
compile multiple programs or subprograms
with one invocation of the compiler. The
object programs produced from the batch
compilation may be link-edited into either
one load module or separate load modules.

This feature must be requested at
compile time by specification of BATCH in
the PARM field or, if a cataloged procedure
is used, in the PARM.COB field of the EXEC
card. In the BATCH mode, all options
specified on the EXEC card, as well as all
default options, apply to every program in
the batch unless specific options are
overridden, via the CBL card, for an
individual compilation.

The CBL card must be the first card in
each prcgram within a batch mode. The CBL
card, used to specify additional compiler
options or to change existing options for
that individual program, has the following
format:

r---,
I I
I CBL [option 1] [,option 2] I
I I l ___ J

The letters CBL may appear in any three
consecutive columns 1 through 72, and the
option(s) specified may be any PARM
compiler option(s) except SIZE, BUF, and
BATCH, which are ignored if indicated.

62

• A sequence number may appear in columns
1 through 6 of the CBL card.

• Any option given on the CBL card
overrides options on the EXEC card for
this compilation only, except where the
option requires the use of a file
desired in a subsequent compilation
(for example, LOAD and SYSLIN). In
such a case, the option must be
specified either as a default or as an
option on the EXEC card. This is not
to imply that the option cannot be
negated on any eBL card when it is not
desired.

• If a CBL card is present and BATCH is
not specified on the EXEC card, the CBL
card is regarded as an invalid
statement.

• If the compiler NAME option is
specified on the CBL card, a linkage
editor NAME control card is generated

for this compilation, facilitating the
link-editing of the program into a
separate load module.

• The output of a batch compilation may
be executed immediately only if it is
made up of a single load module (for
example, a main program and
subprograms). In order for this load
module to be executed, the member name
specified at compile time must be
specified at execution time.

• The batch option may be used in
conjunction with BASIS. This facility
provides the COBOL programmer with the
ability to combine a (multiple) BASIS
library member(s) and/or a (multiple)
COBOL source program(s) with one
invocation of the compiler.

• The BATCH option and the SY~illMP option
are mutually exclusive.

When the batch option is used in
combination with BASIS, the following rules
apply:

1. All the BASIS library members to be
compiled must be members of the
partitioned data set(s) referre1 to by
the SYSLIB DD data set name(s).

2. Each BASIS library member must contain
only one source program.

Figure 9 shows that with one invocation
of the COBUCL cataloged procedure (see the
chapter "Using the Cataloged Procedures"),
the programs COMPILE1, CO~iPILE2, and
COMPILE3 are compiled and two load modulES
created as follows:

1. COMPILE1 and COMPILE2 are link-edited
together to form one load module with
the member name of COMPILE2, a typical
called/calling situation. (For
further discussion of articulation
between COBOL programs, see the
chapter "Called and Calling
Programs".) In this case, the entry
point of the load module is still the
first program, COMPILE1.

2. COMPILE3 is link-edited to create the
load module with the member name of
COMPILE3.

Figure 10 shows that with one invocation
of the COBUCL procedure the programs PROG1
and PROG2 and BASIS library members PAYROLL
and PAYROLL2 are compiled and four load
modules are created. (An example of how to
execute load modules created with the BA~CH
feature using the procedure COBUCL is given
in Figure 9.>

r---,
Iljobname JOB 1, BATCH, MS GLEVEL= 1
IICOMPILE EXEC1 COBUCL,PARM.COB=· BATCH, NAME'
IICOB.SYSIN DD *

CBL NONAME
ID DIVISION.
PROGRAM-ID. COMPILE1.

CBL NAME
10 DIVISION.
PROGRAM-ID. COMPILE2.

CBL NAME
10 DIVISION.
PROGRAM-ID. COMPILE3.

1*
IILKED.SYSLMOD DO DSN=BATCHRUN.SPACE=(TRK. (10,5.2), ••••
1*
IICOMPILE2 EXEC PGM=COMPILE2
IISTEPLIB2 DD DSN=BATCHRUN2,DISP=SHR, ••••
II (Cards needed to execute COMPILEl and COMPILE2)
1*
IICOMPILE3 EXEC PGM=COMPILE3
IISTEPLIB DD DSN=BATCHRUN,DISP=SHR, ••••
II (Cards needed to execute COMPILE3)
1*
~---~
11In the compile step, no special JCL is needed for SYSLIN because the COBUCL cataloged I
i procedure is used (see the chapter "Using The cataloged Procedures").
1 2 In the link-edit step, a partitioned data set is created with the DSN of BATCHRUN. I l ___ J

Figure 9. Example of a Batch Compilation

r---,
Iljobname JOB 1, BATBASIS= MSGLEVEL=l
IICOMP EXEC COBUCL,PARM.COB='BATCH,NA~ffi,LIB'
IICOB.SYSLIB DD DSN=LIBPOS, ••• 1
IICOB.SYSIN DD *

CBL NAME, NOLIB
IDENTIFICATION DIVISION.
PROGRAM-ID. PROG1.

CBL
BASIS

CBL
BASIS

CBL

NAME, LIB
PAYROLL2
NAME,LIB
PAYROLL2
NAME, NOLIB
IDENTIFICATION DIVISION
PROGRAM-ID. PROG2.

IILKED.SYSLMOD3 DD DSN=BATCHBAS,SPACE=(TRK, (10,5,2» ••••
1*
~---~
11This partitioned data set contains as separate members PAYROLL and PAYROLL2. 1
12 Example as shown in Figures 76-78. I
13The load modules of these four COBOL programs exist as separate members of a I
1 partitioned data set named BATCHBAS. I L ___ J

Figure 10. Creation of Four Load Modules with Programs PROGl and PROG2 and BASIS
Library Members PAYROLL and PAYROLL2

Job Control Procedures 63

COMPILER

Eleven data sets may be defined for a
compilation job step; six of these (SYSUT1,
SYSUT2, SYSUT3, SYSUT4, SYSIN, and
SYSPRINT) are required. A seventh data set
SYSUT5, is required if the SYMDMP option is
invoked. The other three data sets
(SYSLIN, SYSPUNCH, and SYSLIB) are
optional.

For compiler data sets other than
utility data sets, a logical record size
can be specified by using the LRECL and
BLKSIZE subparameters of the DCB parameter.
The values specified must be permissible
for the device on which the data set
resides. LRECL equals the logical record
size, and BLKSIZE equals LRECL multiplied
by ~, where g is equal to the blocking
factor. If this information is not
specified in the DO statement, it is
assumed that the logical record sizes for
the unblocked data sets have the following
default values:

Unblocked
Qata set
SYSIN
SYSLIN
SYSPUNCH
SYSLIB
SYSPRINT
SYSTERM

Default
Value (bytes)

80
80
80
80

121
121

~ote: When using the SYSUT1, SYSUT2,
SYSUT3, SYSUT4, SYSUT5, SYSPRINT, SYSPUNCH,
or SYSLIN data sets, the following should
be considered: If the primary space
allocated for the data set is insufficient
~hen compiling large programs, an area of
core storage may be used to complete
processing. This area would be used for an
extra data extent block (DEB) and ~ould be
in the middle of the compiler's required
core. Therefore, enough contiguous space
may not be available to load a compiler
phase. Such a condition will result in an
abnormal termination of the job. The
programmer should therefore attempt to
allocate sufficient primary space to
eliminate the need for a secondary
allocation of space. See the Program
Product publication !~~~Full ~~~~i~~~
National Standard COBOL Compiler and
1ibr~~~L-ygrsiQ~lL_!~~tal!atiQ~_R~f~~~~~~
Material for information on storage
estimates for compile data sets.

The ddname that must be used in the DD
statement describing the data set appears
as the heading for each description that
follows. Table 5 lists the function,
device requirements, and allowable device

64

classes for each data set. (See "Appendix
D: Compiler Optimization" for further
information on blocked compiler data sets
other than utility data sets.)

SYSUT1, SYSUT2, SYSUT3, SYSUT4, SYSUT5

The DD statements using these ddnames
define utility data sets that are used by
the compiler when processing the source
module. The data set defined by the SYSUT1
DD statement must be on a mass storage
device. Except for SYSUT5, ~hich is needed
at execution time, these data sets are
temporary and have no connection with any
other job step. For example, the DD
statement

//SYSUT1 DD UNIT=SYSDA,SPACE=(TRK, (40,10»

specifies that the data set is to be
written on any available mass storage
device, with a primary allocation of 40
tracks. Additional tracks, if required,
are to be allocated in groups of 10. The
data set is to be deleted at the end of the
job step (by default).

The data set defined by the SYSIN DO
statement contains the input for the
compiler, i.e., the source module
statements that are to be processed. The
input/output device assigned to this data
set can be either the device transmitting
the input stream (the device designated as
SYSIN at system generation time) or a
device designated by the programmer. When
using a cataloged procedure, the DO
statement describing this data set usually
appears in the input stream. For example,

//SYSIN DD *
specifies that the input data set follows
in the input stream. If the asterisk or
DATA convention is used, the fiYSIN DO
statement must be the last DD statement in
the job step.

This data set is used by the compiler to
produce a listing. Output may be directed
to a printer, a mass storage device, or a
magnetic-tape device. The listing will
include the results of the default or
specified options of the PARM parameter

li.e., diagnostic messages, the object code
listing). For example, in the DD statement

IISYSPRINT DD SYSOUT=A

SYSOUT is the disposition for printer data
sets, and A is the standard output class
for printer data sets.

The data set defined by the SYSPUNCH DD
statement is used to punch an object module
deck. This data set can be directed to a
card punch, mass storage device, or
magnetic tape. For example, in the DD
statement

IISYSPUNCH DO SYSOUT=B

SYSOUT is the disposition for punch data
sets, and B is the standard output class
for punch data sets.

Note: The SYSPUNCH DO statement is not
required if NODECK is in effect. SYSPUNCH
may be either a sequential data set or a
member of a POSe

The device defined by the SYSLIN DD
statement is used by the compiler to store
an object module. It may be on a mass
storage or magnetic tape device. For
example:

IISYSLIN 00
II
II
II

OSNAME=&&GOFILE,
OISP=(MOO,PASS),
UNI T=SYSDA,
SPACE=(TRK, (30,10)

x
X
X

The temporary name of the data set is
GOFILE, the parameter OISP=(MOD,PASS)
indicates that the data is to be created or
added to in this job step and is to be
passed to another job step, which may be
the linkage editor step. The device to be
assigned for storage is a mass storage
device on which 30 tracks are initially
allocated to the data set. If more space is
needed, tracks are allocated 10 at a time.

Note: The SYSLIN DD statement is not
required if NOLOAD is in effect. SYSLIN
may be either a data set or a member of a
POSe

The SYSLIB DD statement defines the
library (POS) that contains the data
requested by a COpy statement (in the
source module) or by a BASIS card in the
input stream. Note that more than one
partitioned data set may be used for the
library function by concatenating them with
SYSLIB (see "Libraries" for an example).
Libraries must always be on mass storage
devices. Only one SYSLIB statement may be
used in a compilation job step. For
example, in the DD statement

IISYSLIB DO DSNAME=USERLIB,OISP=OLD

the name of the library is USERLIB, and
OISP=OLO indicates that the library has
been created in a previous job and is
cataloged, or has been created in a
previ-ous step in this job. No other
information need be given if the specified
library has been cataloged.

Note: The SYSLIB DO statement is not
required if NOLIB is in effect.

Job Control Procedures 65

Table 5. Data sets Used for Compilation
r----------T------------T---------------------T--------------------T--------------------,
I 'I I Device I Allowable I
I ddname' Type' Function I Requirements I Device Classes I
~----------+------------+---------------------+--------------------+--------------------~
ISYSIN ,Input/outputIReading the source ICard reader ISYSSQ, SYSDA, or thel
I (required) I I program IIntermediate storagelinput stream device I
I I I I I (specified by DD * I
I I I I lor DD DATA) I
~----------i ~---------------------+--------------------+--------------------~
ISYSPRINT I IWriting the storage I Printer ISYSSQ, SYSDA, stand-I
I (required), I map, listings, and IIntermediate storagelard output class A I
I I 'and messages I I I
~----------~ ~---------------------+--------------------f--------------------~
ISYSPUNCH I IPunching the object ICard punch ISYSCP, SYSSQ, SYSDA, I
I (optional) , I module deck I Mass storage I standard output I
I 'I I Magnetic tape I class B I
~----------~ ~---------------------t--------------------+--------------------~
ISYSLIN, ICreating an object IMass storage ISYSSQ, SYSDA I
I (optional) I I module data set as I Magnetic tape I I
I I loutput from the com- I I I
I I I piler and input to I I I
I I I the linkage editor I I I
t----------t------------f---------------------f--------------------f--------------------~
ISYSUTl I Utility IWork data set needed IMass storage ISYSDA I
, (required) , I by the compiler' I I
, I I during compilation I I I
t----------~ ~---------------------t--------------------t--------------------~
,SYSUT2, ,Work data set needed IMass storage ISYSSQ, SYSDA I
I (required) I Iby the compiler IMagnetic tape I I
, I ,during compilation I I I
t----------~ ~---------------------f--------------------f--------------------~
ISYSUT3 I IWork data set needed IMass storage ISYSSQ, SYSDA I
I (required), Iby the compiler IMagnetic tape I I
I I I during compilation I I I
t----------~ ~---------------------t--------------------+--------------------~
ISYSUT4 I ,Work data set needed IMass storage ISYSSQ, SYSDA I
I (required) I Iby the compiler IMagnetic tape I I
, I I during compilation I I I
t----------~ t---------------------t--------------------f--------------------~
ISYSUT5 I Iwork data set needed IMass storage ISYSSQ, SYSDA I
I I I when the SYMDMP I Magnetic tape I I
I I loption is in effect I I I
t----------+------------t---------------------t--------------------t--------------------~
ISYSLIB JLibrary JOptional user source IMass storage ISYSDA I
I (optional) I I program library I I I
t----------~------------~---------------------~--------------------~--------------------~
INot~: Once created, a SYSUT5 data set can be moved only to a device of the same class. I
IThat is, if the SYSUT5 data set is put on tape at compile time, that data set cannot bel
Jmoved to a disk at execution time. The SYSUT5 data set must be unblocked. I L ___ J

LINKAGE EDITOR

Five data sets are required for linkage
editor processing. Others may be necessary
if secondary input is specified. In the
following discussions, the ddname that must
be used in the DD statement describing the
data set appears as the heading for each
description of the particular data set.
For any user-defined data set, the ddname
is defined by the programmer. Table 6
lists the function, device requirements,
and allowable. device classes for each data
set.

66

The SYSLIN DD statement defines the data
set that is primary input to linkage editor
processing. Normally this data set
consists of the output from a previous
compilation job step. The primary input
may also be linkage editor control
statements, such as the INCLUDE, LIBRARY,
or OVERLAY statements (see "Calling and
Called Programs"). The input device
assigned to this data set is either the
device transmitting the input stream, if

Table 6. Data sets Used for Linkage Editing
r--------------T-------T----------------------T--------------T--------------------------,
, " , Device' Allowable ,
, ddname 'Type' Function , Requirements I Device Classes ,
~--------------+-------+----------------------+--------------+--------------------------~
ISYSLIN ,Inputl Primary input data, IMass storage ISYSSQ, SYSDA, or the inputl
I (required) I output normally the output 'Magnetic tape \ stream device (specified'
I I of the compiler ICard reader I by DD * or DD DATA) ,
~--------------~ ----------------------+--------------+--------------------------~
ISYSPRINT , Diagnostic messages \ Printer ISYSSQ, standard output I
I (required) I Informative messages I Intermediate I class A ,
, I Module map ,storage, I
I I Cross-reference list I' ,
~--------------~ ----------------------+--------------+--------------------------~
'SYSLMOD I output data set for 'Mass storage ISYSDA ,
I (required) I the load module, I ,
~--------------+-------+----------------------+--------------+--------------------------~
ISYSUT1 IUtilitylWork data set IMass storage 'SYSDA I
I (required) I' " I
~--------------+-------+----------------------+--------------+--------------------------~
'SYSLIB ILibrarYIAutomatic call librarylMass storage ISYSDA ,
I (required) I ,(SYS1.COBLIB is the I' ,
I for COBOL I I name of the COBOL 'I ,
I Library , I subroutine library) I I I
, subroutines I I I I I
~--------------+-------f----------------------+--------------+--------------------------~
I user-specified I IAdditional object ,Mass storage ISYSDA, SYSSQ I
I (optional), I modules and load IMagnetic tape I ,
I I I modules I \ I l ______________ ~ _______ ~ ______________________ ~ ______________ ~ __________________________ J

the input is an object module deck, or a
device designated by the programmer.
However, the data set may simply be passed
from the previous compilation job step.
For example, in the DD statement

IISYSLIN
II

DD DSNAME=*.STEPNAME.SYSLIN. X
DISP=(OLD,DELETE)

the data set is defined in the SYSLIN DD
statement contained in the compiler job
step, STEPNAME. DISP=(OLD, DELETE)
indicates that the data set was created in
a previous job step and is to be deleted at
the end of this job step.

The data set defined by the SYSPRINT DD
statement is used by the linkage editor to
produce a listing. For example:

IISYSPRINT DD SYSOUT=A

output may be directed to a printer or to
magnetic tape. The listing may include any
options specified by the PARM parameter of
the EXEC statement (a module map or cross
reference list, diagnostic or informative
messages, etc.).

The SYSLMOD DD statement defines the
output data set, in this case the load
module. The load module must be placed in
a library as a named member. The library
can be the Link Library (SYS1.LINKLIB) or a
private user-defined library. such
libraries must always reside on a mass
storage device, and space for the library
is allocated when the library is created.
For example, in the DD statement

IISYSLMOD DD DSNAME=SYS1.LINKLIB(MEMBER),X
II DISP=OLD

the load module, MEMBER, is stored as a
member of the link library. DISP=OLD
indicates that the library is already
created and additions are to be made to it.

IISYSLMOD DD
II
II
II
II

DSNAME=LIB1(BALANCE) ,
DISP=(NEW, CATLG) ,
VOLUME=SER=llllll,
SPACE=(TRK, (40,10,1»,
UNIT=SYSDA

X
X
X
X

The load module, BALANCE, is to be a member
of a library, LIB1, which is to be created
in this job step, with BALANCE as its first

Job Control Procedures 67

member. The mass storage volume to which
it is directed is identified by the serial
number, 111111. A primary quantity of 40
tracks is allocated to the library with an
additional allocation for one 256-byte
record to be used for the directory. If
more space is needed for the library,
tracks are added, 10 at a time. (However,
no additional space can be allocated for
the directory.)

Note: If the load module is placed in a
private library, the JOBLIB DD statement
must be specified in subsequent jobs that
execute load modules from the library.

The SYSUT1·DD statement defines a
utility data set used by the linkage editor
when processing object modules and load
modules. The data set must be on a mass
storage device. It is a temporary data set
and has no connection with any other job
step. For example:

//SYSUTl DO UNIT=SYSDA,SPACE=(TRK, (40,10»

The data set is initially allocated 40
tracks on any available mass storage
device. If more space is needed, tracks
are added, 10 at a time. A temporary name
is assigned to the data set for the job
step.

The SYSLIB OD statement assigns the
named partitioned data set to the automatic
call library from which modules may be
automatically obtained by the linkage
editor to resolve external references.

//SYSLIB DO DSNAME=SYS1.COBLIB,DISP=SHR

This statement assigns the COBOL subroutine
library to the automatic call library.
When there is a possibility that the
compiler may have generated calls to any
COBOL library subroutines, the SYSLIB
statement must be specified (see "Appendix
B: COBOL Library Subroutines" for a list
of library subroutines, their functions,
and entry points).

Note: The SYSLIB statement can also define
a-5equential data set (see "Libraries").

68

Additional data sets may be defined for
linkage editor processing. These data sets
may be used as additional input sources of
object modules or load modules. They may
also be concatenated with the primary input
data set or the automatic call library (see
n Libraries") •

LOADER

One data set (SYSLIN) is required for
loader processing. Two are optional
(SYSLIB, SYSLOUT). (These ddnames can be
changed during system generation with the
LOADER macro instruction.) In addition,
any DD statements and data required by the
loaded program must be included in the
input deck.

In the following discussions, the
default ddname for the DD statement
describing the data set appears as the
heading for each description of the
particular data set.

The SYSLIN DD statement defines the data
set that is primary input to the loader.
This input can be either object modules
produced by the COBOL compiler or load
modules produced by the linkage editor, or
both. The loader allows both object module
and load module concatenation on SYSLIN.
The data sets defined by the SYSLIN DD
statements can be either sequential data
sets or members of a partitioned data set.

SYSLIB

The SYSLIB DD statement defines the data
set containing IBM or user-written library
routines to be included in the loaded
program. The SYSLIB data set is searched
when unresolved references remain after
processing SYSLIN and, optionally,
searching the link pack area of Mvr or the
resident reusable routine of MFT. The
library may contain either object modules
or load modules but not both. The data set
defined by the SYSLIB DD statement must be
a partitioned data set.

The SYSLOUT DD statement defines the
data set used for error and warning
messages and for an optional map of
external references. The record format of
SYSLOUT must be FA, FBA, or FBSA.

EXECUTION TIME DATA SETS

Any number of data sets may be used for
execution time processing. These data
sets, or files, are identified in the
source program, and each must be described
by a DD statement. The ddname is used to
link the DD statement to the COBOL ASSIGN
clause in the source program that specifies
the ddname. DD statement requirements for
the DISPLAY, ACCEPT, EXHIBIT, and TRACE
statements are discussed in the following
text. DD statements that specify COBOL
debuqging aids and an abnormal termination
dump are also discussed. Use of either the
Sort or the RERUN feature requires
additional DD statements. For information
about these statements, see "Using the Sort
Feature n and nUsing the Checkpoint/Restart
Feature. n

DISPLAY Statement

The DISPLAY statement requires an
associated DD statement unless the data is
to be displayed on the console. The DD
statements needed for each form of the
DISPLAY statement are as follows:

t
identifierl

DISPLAY ••• UPON SYSPUNCH
literal

//SYSPUNCH DD applicable parameters

It is assumed that SYSPUNCH is an
unblocked data set that has a logical
record length of 80 characters. For
example:

IISYSPUNCH DD SYSOUT=B

However, the programmer can specify a
blocked data set by using the subparameters
of the DCB parameter as follows:

RECFM=FB,BLKSIZE=n*80

where:

g is the blocking factor

SYSPUNCH must be on a device where blocking
is permitted. For example:

//SYSPUNCH
//
//
1/

DD UNIT=SYSSQ,
DCB=(RECFM=FB,
BLKSIZE=160) ,
LABEL=(, NL)

When the UPON option is omitted, SYSOUT is
the default option.

~~~!!!E!.~_~: 

DISPLAY {:::::::

ie1 
I/SYSOUT DD applicable parameters 

X 
X 
X 

It is assumed that SYSOUT is an 
unblocked data set that has a line width of 
121 characters (i-byte per control 
character) • 

For example: 

//SYSOUT DD SYSOUT=A 

However, the programmer can specify an 
alternate line width, recording mode, 
and/or a blocked data set by using the DCB 
parameter. To specify an alternate line 
width, the subparameters of the DCB 
parameter are used as follows: 

LRECL=line width+l,BLKSIZE=LRECL value 

To specify a blocked data set, the 
subparameters are used as follows: 

RECFM=FBA,LRECL=line width+l, 
BLKSIZE=n*(LRECL value), 

where: 

g is a blocking factor 

SYSOUT must be on a device where blocking 
is permitted. The extra character in LRECL 
allows for the carriage control character. 
For example, to specify an alternate line 
width, the following SYSOUT statement can 
be used. 

I/SYSOUT 
II 

DD SYSOUT=A,DCB=(LRECL=133, X 
BLKSIZE=133) 

Job Control Procedures 69 



To specify a blocked data set, the 
following SYSOUT statement can be used. 

//SYSOUT 
// 
// 
// 
// 
// 

DD DSNAME=PRINI'OUT, 
UNIT=SYSDA, ••• , 
DCB=(RECFM=FBA., 
LRECL=121, 
BLKSIZE=60S), 
VQLUME=SER=111111 

The DISPLAY statement can use a 
mnemonic-name rather than a system-name. 

Example 

x 
X 
X 
X 
X 

DISPLAY 

3: 

~identifieJ 
lliteral ) 

••• UPON mnemonic-name 

where mnemonic-name is associated with the 
word SYSPUNCH or SYSOUT in the Environment 
Division. 

// \SYSPUNCH l DD applicable parameters 

lSYSOUT ~ 
- ---.-----~-- ~-, .•• =-

ACCEPT Statement 

The ACCEPT statement requires an 
associated DD statement unless either the 
data is being accepted from the console or 
format 2 of the ACCEPT statement is used 
(making possible use of the options DATE, 
DAY, and TIME). The DD statements for each 
form of the ACCEPT statement are as 
follows: 

ACCEPT identifier 

When the FROM option is omitted, SYSIN is 
the default option. 

//SYSIN DD applicable parameters 

ACCEPT identifier FROM mnemonic-name 

where mnemonic-name is associated with the 
word SYSIN in the Environment Division. 

//SYSIN DD applicable parameters 

It is assumed that SYSIN is an unblocked 
data set that has a logical record length 
of 80 characters. 

70 

For example: 

//SYSIN DO * 
(data) 

/* 

However, the programmer can specify a 
blocked data set by using the sUbparameters 
of the DCB parameter as follows: 

RECFM=FB,BLKSIZE=n*80 

where: 

g is the blocking factor 

SYSIN must be on a device where blocking is 
permitted. For example: 

//SYSIN 
// 
// 
// 

DD UNIT=2400, ••• , 
DCB= (RECFM=FB, 
BLKSIZE=160), 
LABEL= (f NL) 

x 
X 
X 

If a logical record length of other than 80 
characters is desired, it must be specified" 
in the LRECL field of the DCB parameter. 

The EXHIBIT or TRACE statement requires 
a SYSOUT DO statement as discussed for 
DISPLAY. 

Note: If the job step already includes a 
SYSOUT DO statement for some other use, 
another may not be inserted since all 
SYSOUT output from any source in the job 
step will be merged onto the one SYSOUT 
data set defined for that job step. 

COBOL Debugging Aids 

If one or more of the options FLOW, 
STATE, and SYMDMP is in effect, the 
following DO statement must be used: 

//SYSDBOUT DO applicable parameters 

If the output is routed through the output 
stream and written on a system output 
device, the following may be used: 

//SYSOBOUT DO SYSOU'I=A 

The recording mode is FBA. The user 
can, however, specify a blocked data set 
and alternate recording mode by using the 
DCB subparameters. 



Note: It is assumed that SYSDBOUT is an 
unblocked data set that has a line width of 
121 bytes (one byte for a control 
character). 

Abnormal-Termination Dump 

To obtain an operating system 
hexadecimal dump in case the job is 
abnormally terminated, one of the following 
DD statements must be used: 

//SYSABEND DD applicable parameters. 

//SYSUDUMP DD applicable parameters. 

The dump provided when the SYSABEND DD 
statement is used includes the system 
nucleus, the program storage area, and a 
trace table, if the trace table option was 
requested at system generation. The 
SYSUDUMP DD statement provides a dump of 
the program storage area. The applicable 
parameters are those for a standard 
sequential data set. If the dump is routed 
through the output stream and written on a 
system output device, the following DD 
statement may be used: 

//SYSUDUMP DD SYSOUT=A 

Note: If a COBOL program abnormally 
terminates, then a formatted dump is 
provided for all COBOL programs compiled 
with the SYMDMP option which could include 
the abnormally terminating program and its 
callers, up to and including the main 
program. The //SYSABEND or //SYSUDUMP DD 
card need not be included. For a 
discussion of the symbolic dumping option, 
as well as of other COBOL symbolic 
debugging options, see the chapter entitled 
"Symbolic Debugging Features." 

COBOL Subroutine Library 

The user should concatenate a library of 
selected COBOL object-time subroutines with 
the link library as soon as the compiler is 
installed. (For information on how this 
can be accomplished, see the section 
"Sharing COBOL Library Subroutines" in the 
chapter entitled "Libraries"). 

Job Control Procedures 71 



USER FILE PROCESSING 

USER~DEFINED FILES 

Files that are processed in a COBOL 
program must be described as data sets to 
the operating system. Whenever a file is 
specified in a program by the following 
statement: 

SELECT [OPTIONAL] file-name 
ASSIGN TO system-name 

this file must be described in an FD 
file-name entry and in a DD statement in 
the execution-time job step. The ddname in 
the DD statement is a portion of the 
system-name specified in the ASSIGN TO 
clause. In the system-name 

UT-2400-S-TAXRATE 

TAXRATE is the ddname portion of the 
system-name. 

Note: The device-number specified in the 
system-name is ignored used by the 
compiler. Actual device allocation is a 
function of the DD statement. 

FILE NAMES AND DATA SET NA~~S 

The terms nfilen (COBOL usage) and ndata 
setn (operating system usage) have 
essentially the same meaning. There may. 
however, be a difference between the 
file-name and the data set name. The data 
set name always represents a specific data 
set. The file-name can, at different 
times, represent different data sets. The 
DD statement allows a programmer to select, 
at the time his program is executed, the 
specific data set that is to be associated 
with a particular file-name. This facility 
can be especially powerful when applied to 
input data sets. 

The file-name is a name known within the 
COBOL program. Changing a file-name 
requires changing input/output statements 
and recompiling the program. Changing a DD 
statement when a program is executed is a 
simple procedure. 

As an example, consider a COBOL program 
that might be used in exactly the same way 
for several different master files. It 
might contain the clause 

72 

SELECT MASTER ASSIGN TO 
DA-2302-D-MASTERA •••• 

In that case, the following DD statements, 
used at different times, would assign the 
different named data sets to the program: 

//MASTERA 
//MASTERA 
//MASTERA 

DD DSNAME=~~STER1, ••• 
DO DSNAME=MASTER2 •••• 
DD DSNAME=MASTER3 •••• 

If the first DD statement appears in tne 
job step that calls for execution of the 
program, any reference within the program 
to MASTER is a reference to the data set 
named ~illSTER1; if the second DD statement 
appears, the reference is to MASTER2; if 
the third, the reference is to MASTER3. 

However, if a file-name within a program 
is always to be applicable to only a single 
data set, the names might be written as 
follows: 

SELECT TAXRATE ASSIGN TO 
UT-2400-S-TAXRATE ••• 

The applicable DD statement might be: 

//TAXRATE DD DSNAME=TAXRATE •••• 

Of the names, the ddname portion of the 
system-name that appears in the ASSIGN 
clause and the ddname of the DD statement 
must always be the same. The file-name and 
the data set name may be the same, or they 
may be different. (Of course, the 
file-name in the SELECT sentence must be 
the same as the FD name.) 

If two or more files on direct-access 
devices have the same ddname and are open 
at the same time (i.e., the output from the 
files is being merged into one data set). 
the files must have no conflicting 
attributes. The foregoing also applies to 
SYSOUT data sets if they are written on an 
intermediate direct-access device. 

The use of the DISPLAY, EXHIBIT, or 
READY TRACE verbs causes the compiler to 
open its own file whose ddname is SYSOUT. 
If the programmer has also assigned one of 
his output files to SYSOUT, he must ensure 
that he has opened, written, and closed his 
file before the first execution of any of 
the previously mentioned verbs. 



SPECIFYING INFORMATION ABOUT A FILE 

Some of the information about the file 
must always be specified in the FO entry, 
SELECT sentence, APPLY, and other COBOL 
clauses. Other information must be 
specified in the DO statement. For 
example, the amount of space allocated for 
a mass storage output file must be 
specified in the DO statement by the SPACE, 
SPLIT, or SUBALLOC parameters. Certain 
characteristics of files cannot be 
expressed in the COBOL language, and may be 
specified on the DD statement for the file 
by the DCB parameter. This parameter 
allo~s the programmer to specify 
information for completing the data control 
block associated with the file (see 
"Additional File Processing Information" 
for a discussion of the data control block, 
and "Appendix C: Fields of the Data 
Control Block"). 

Each file used in the program must be 
referred to by a particular file processing 
technique. Four processing techniques are 
discussed in this publication. They are 
standard sequential (QSAM) , direct (BSAM, 
BDAM) , relative (BSAM, BDAM) , and indexed 
(QISAM, BISAM). 

A fifth processing technique, called 
partitioned data organization (BPAM), is 
discussed throughout the publication, when 
it is used for program storage. 

A partitioned data set (PDS) is composed 
of named, independent groups of sequential 
data, each of which is called a member. 
Each member has a simple name stored-in a 
directory that is part of the data set and 
that contains the location of each member's 
starting point. Partitioned data sets are 
used to store programs, and are often 
referred to as libraries. 

The full range of facilities available 
in BPAM are not available to the COBOL 
programmer. A partitioned data set may be 
referred to in COBOL only by treating it as 
a standard sequential data set. 

FILE PROCESSING TECHNIQUES 

DATA SET-ORGANIZATION 

A data set used by a COBOL program can 
have Qne of four types of organization: 
standard sequential, direct, relative, and 
indexed. The first type (sequential) may 
be on any input/output device. All other 
types must be on mass storage devices (see 
Figure 11 for information in determining 
the file processing technique to be used, 
according to data set organization). 

1. A ~t~gda£~_~~Q~gtial data set is one 
in which records are organized solely 
on the basis of their successive 
physical positions. 

2. A ~ir~£t data set is one in ~hich 
records are referred to by use of 
relative track addressing. An ACTUAL 
KEY specifies the track relative to 
the first track allocated to the data 
set and identifies the record on the 
track. 

3. A relative data set is one in which 
records are referred to by use of 
relative record addressing. A NOMINAL 
KEY identifies-the record location 
relative to the first record in the 
data set. 

4. An indexed data set is one in which 
records are arranged on the tracks of 
a mass storage device so as to permit 
access in logical sequence (according 
to a key that is part of every 
record). A separate index or set of 
indexes maintained by the system 
indicates the location of each record. 
This permits random, as well as 
sequential, access to any record. 

User File Processing 73 



r---------------------T------------------T-----------------T-------------T--------------, 
, I I Permissible I , I 
, IACCESS Clause and I Record Formats , I File I 
I File Processing IOrganization Field~-------T---------~ Device I Processing I 
I Requirements I(N) in System-name I Blocked I Unblocked I Requirements I Technique I 
~---------------------+------------------+-------+---------+-------------+--------------1 
I Write, read, and ,ACCESS SEQUENTIAL IF,V,S IF,V,U IMass Storage IQSAM I 
, update standard I or ACCESS clausel I IMagnetic Tapel I 
I sequential file I is omitted i i I Unit Record I I 
I IN=S I I I I I 
~---------------------+------------------+-------+---------+-------------+--------------~ 
,Write and read a IACCESS SEQUENTIAL I IF IMass Storage IBSAM I 
I mass storage file I or omitted I I I I I 
I with relative IN=R I I I I I 
, record addressing I 'I I I , 
~---------------------+------------------+-------+---------+-------------+--------------~ 
'Read and update ,ACCESS RANDOM , IF IMass Storage IBDAM I 
I a mass storage IN=R I I I , I 
, file with relative I I I I I I 
, record addressing I I I , , I 
~---------------------+------------------+-------+---------+-------------+--------------~ 
ICreate and read a IACCESS SEQUENTIAL I IF,V,U,S ,Mass Storage IBSAM , 
I mass storage file I or omitted I I I I I 
, wi th rela ti ve I N=D 'I I I I 
, track address ing , I I I I I 
~---------------------+------------------+-------+---------+-------------+--------------~ 
I Create, read, update, I ACCESS RANDOM I IF,V,U,S IMass Storage IBDAM I 
I and insert into a IN=D or W(REWRITE) I I I I I 
, mass storage file I I I I I I 
, with relative I 'I I I I 
I track addressing I I I I I I 
~---------------------f------------------f-------f---------f-------------f--------------~ 
'Create a mass ,ACCESS SEQUENTIAL IF IF IMass Storage IQISAM I 
I storage file with I or omitted I I I I I 
I indexed sequential I N=I I I I I I 
,organization I I I r I I 
~---------------------f------------------+-------+---------+-------------+--------------~ 
,Read and update IACCESS SEQUENTIAL IF IF IMass Storage IQISAM , 
I a mass storage I or omitted I I I I I 
I file with indexed I N=I I I I I I 
I organization I I I I I I 
~---------------------f------------------+-------+---------+-------------+--------------~ 
IRead, update, and IACCESS RANDOM IF IF IMass Storage IBISAM I 
I insert into I N=I I I I I I 
I a mass storage I I I I I I 
I file with indexed I I I I I , 
I random I "I I I 
I organization, 'I I , I L _____________________ ~ __________________ ~ _______ ~ _________ ~ _____________ ~ ______________ J 

Figure 11. Determining the File Processing Technique 



ACCESSING A STANDARD SEQUENTIAL FILE 

A standard sequential file may only be 
accessed sequentially, i.e., records are 
read or written in the order in which they 
app2ar on the file. The file processing 
technique used to create and retrieve a 
standard sequential file is QSAM (Queued 
sequential Access Method). Table 7 shows 
the COBOL clauses that may be used with 
these files. Special considerations for 
these clauses are as follows: 

1. The RESERVE clause can be used to 
specify more buffer areas, allowing 
overlap of input/output operations 
with the processing of data. If this 
clause is not used, additional buffers 
may be specified by using the BUFNO 
option in the DD statement. If no 
additional buffer areas are specified, 
two buffers are reserved by the 
system. When the SAME AREA clause is 
specified for the file, the number of 
buffers used is determined from the 
RESERVE clause or if the RESERVE 
clause is not present, it is given a 
default of two. The BUFNO option in 
the DD statement is ignored if the 
SAME AREA clause is specified. 

2. If the WRITE BEFORE/AFTER ADVANCING 
statement or the WRITE AFTER 
POSITIONING statement is used, the 
record size specifie3 in the FD entry 
must allow for the carriage control or 
stacker select character, even though 
the character is not to be printed or 
punched. For example, if the record 
size specified in the FD entry is 121, 
the actual record is 121 characters; 
however, only 120 characters are 
printed or punched. 

• If the immediate destination of the 
record is a device that does not 
recognize a carriage control or 
stacker select character, the system 
assumes that the control character 
is the first character of the data. 
If the WRITE BEFORE/AFTER ADVANCING 
statement or the WRITE AFTER 
POSITIONING statement- is not- used~ 
the first byte of the record is 
treated as data by the punch or 
printer. 

• The compiler may direct extra 
records, containing the appropriate 
control characters, to the file to 
effect printer spacing as specified 

in the WRITE BEFORE/AFTER ADVANCING 
statement. These extra records are 
for spacing purposes only and will 
not appear externally if the file is 
assigned to an online printer. 
However, if the file is assigned to 
a device that does not recognize the 
control characters (for example, a 
tape or a direct-access device), the 
extra records are written onto the 
file. These extra records are 
produced only if ADVANCING more than 
three lines is specified or if both 
the BEFORE and AFTER options are 
specified for a file. 

3. If the input device is the card 
reader, RECORDING MODE IS F should be 
specified. If RECORDING MODE IS V or 
S is specified, the first 8 bytes of 
the record will be interpreted as the 
control bytes required for files with 
format V or S records. 

4. If standard sequential files are on 
magnetic tape, the record block size 
should be at least 18 bytes. Records 
less than 18 bytes in length will be 
read with no problems, unless a parity 
check occurs. If a parity check 
occurs while reading a record less 
than 18 bytes: it will be treated as a 
noise record and skipped over. 

5. The S (standard) option can be 
specified in the DCB RECFM 
subparameter for a fixed/blocked 
record data set with only standard 
blocks (i.e., having no truncated 
blocks or unfilled tracks within the 
data set, except for the last block of 
the last track). If a fixed/blocked 
data set is created through the use of 
an American National Standard COBOL F 
program, a truncated physical block 
may be written only by the executions 
of the CLOSE or CLOSE UNIT (or REEL) 
statement. Therefore, on a single 
volume data set, a COBOL-created fixed 
record set is standard except, 
possibly, when the data set is 
extended using DISP=MOD. 

6. The T (TRACK OVERFLOW) option can be 
specified for the DCB RECFM 
subparameter of the DD statement for 
QSAM files with RECORDING MODE V, S, 
or F. Specification of the T option 
is equivalent to including the APPLY 
RECORD-OVERFLOW option in the source 
program, but use of the T option in 
the DO statement allows the user to 
make his selection at object time. 

User File Processing 75 



Table 7. COBOL Clause for Sequential File Processing 

DIob MinllFment I 
Dnicr Access KEY 

Techniq .... Type Method Cauaea 

QSAM 

I 
TAPE SEQUENTIAL NOT 

I I AllOWED 

I I 

QSAM MASS SEQUENTIAL NOT 
STORAGE AllOWED 

Figures 12 and 13 show the parameters in 
the DD statement that may be used with 
standard sequential files. All parameters 
except the DCB are described in "Job 
Control Procedures." Additional DCB 
subparameters not shown in the illustration 
are required for use with the Sort feature 
(see the chapter "Using the Sort Feature" 
for information on these parameters). 

The DCB subparameters that can be 
specified in the DD statement for standard 
sequential files are as follows: 

76 

DCB=[DEN={0111213}] 
[,TRTCH={CIEITIET}] 
[,PRTSP={0111213}] 
[,MODE={CIE}] 
[, STACK={112}] 
[,OPTCD={WICIWCITIQIZ}] 
[,BLKSIZE=integer] 
[,BUFNO=integer] 
[,EROPT={ACCISKPIABE}] 
[,RECFM={SIT}] 

OPEN A=- CLOSE 

Statement Verba StalelMDt 

INPUT READ [INTO) [REEL) 

[REVERSED] AT END 
[LOCK 1 

NO REWIND 

I I 
NO REWIND 

rLEAVE 1 POSITIONING I 
lREREADJ 

lDisP J 
D1SP 

-- - - - - -- - --------

OUTPUT WRITE [FROM) 

[N°~~l [tEFORE! ] LEAVE 
AFTER ADVANCING 

REREAD 

D1SP [AFTER POSITIONING) 

INPUT READ [INTO) [UNITI 

AT END [lOCK) 

~---- - -- --- - -
OUTPUT WRITE [FROM) 

INVAUDKEY 

WRITE [FROM) 

[I BEFORE! J AFTER ADVANONG. 

[AFTER POSmONlNG) 1------------"-- --------
1-0 READ [INTO) [lOCK) 

AT END 

WRITE [FROM) 

INVAUDKEY 

REWRITE [FROM) 

INVAUDKEY 

DEN={0111 2 13} 
can be used with magnetic tape, and 
specifies a value for the tape 
recording density in bits per inch as 
listed in Table 8. If no value is 
specified, 800 bits-per-inch is 
assumed for 7-track tape, 800 
bits-per-inch for 9-track tape ~ithout 
dual density and 1600 bits-per-inch 
for 9-track tape with dual density. 

Table 8. DEN Values 
r---------T-------------------------------, 
I I Tape Recording Density I 
1 1 (Bits per inch) -- Model 24001 
1 ~---------------T---------------1 
IDEN Value I 7 Track 1 9 Track I 
~---------+---------------+---------------~ 
I 0 I 200 1 1 
I 1 I 556 I I 
I 2 I 800 I 800 I 
I 3 I I 1600 I L _________ ~ _______________ ~ _______________ J 



TRTCH={CIEITIET} 
is used with 7-track tape to specify 
the tape recording technique, as 
follows: 

C - specifies that the data-conversion 
feature is to be used; if data 
conversion is not available, only 
format F and format U records are 
supported by the control program. 

E - specifies that even parity is to 
be used; if omitted, odd parity is 
assumed. 

T - Specifies that BCD to EBCDIC 
conversion is required. 

ET- Specifies that even parity is to 
be used and BCD to EBCDIC 
conversion is required. 

PRTSP={0111213} 
specifies the line spacing on a 
printer as 0, 1, 2, or 3. If PRTSP is 
not specified, 1 is assumed. 

The PRTSP subparameter is valid only 
if the unit specified for the file is 
a printer. It is not valid if the 
file is a report file, nor is it valid 
if the WRITE statement with the 
BEFORE/AFTER ADVANCING option or WRITE 
AFTER POSITIONING is specified in the 
COBOL source program. Single spacing 
always is assumed for a printer unless 
other information is supplied. 

MODE={CIE} 
can be used with a card reader, a card 
punch or a card-read punch 
and specifies the mode of operation 
as follows: 

C - Specifies card image (column 
binary) mode. 

E - Specifies EBCDIC code. 

If this information is not supplied 
by any source, E is assumed. 

STACK={112} 
can be used with a card reader, a card 
punch, or a card-read punch, and it 
specifies which stacker bin is to 
receive the card. Either 1 or 2 is 
specified. If this information is not 
supplied by any source, 1 is assumed. 

STACK should not be used when the 
WRITE statement with the AFTER 
ADVANCING or POSITIONING option is 
used to specify pocket selection. 

OPTCD={WICIWC\TIQIZ} 
requests an optional service provided 
by the system as follows: 

W - To perform a write validity check 
(on mass storage devices only). 

C - To process using the chained 
scheduling method (see the 
publication IBM OS Data Manag~~~~t 
Services). 

WC- To perform a validity check and 
use chained scheduling. 

T - To request user totaling facility. 

Q - To translate to or from ASCII 

Z - To request the search direct 
option 

If this information is not supplied 
by any source, none of the services 
are provided, except in the case of 
the IBM 2321 mass storage device where 
OPTCD=W is specified by the operating 
system. 

~Q~~~ If the validity check is 
specified, the system verifies that 
each record transferred from main 
storage to mass storage is written 
correctly. Standard recovery 
procedures are initiated if an error 
is detected. 

BLKSIZE=integer 
is used to specify the block size. 
This clause is used only when BLOCK 
CONTAINS ° RECORDS was specified at 
compile time. 

BUFNO=number of buffers 
is used to specify the number of 
buffers to be assigned to the file 
when neither the RESERVE nor the SAME 
AREA clause is specified for the file 
in the source program. The maximum 
number is 255. However, the maximum 
number allowed for an installation is 
established when the program product 
is installed. 

EROPT={ACCISKPIABE} 
specifies the options to be executed 
if an error occurs in writing or 
reading a record as follows: 

ACC - To accept the error block for 
processing. 

SKP - To skip the error block. 

User File Processing 77 



ABE - To terminate the job. 

There are two cases when the 
subparameter can be specified: 

• If no error processing declarative 
(USE sentence) is specified, the 
option is taken immediately. 

• If an error processing declarative 
is specified, the option is taken 
after the error declarative returns 
control via a normal exit (and only 
if that is the case). 

If no option is specified, ABE is 
assumed. 

RECFM={SIT} 
specifies the option to be executed in 
processing the data set, as follows: 

S - to expect the data set to consist 
of standard blocks; this option 
can be specified only if the 
RECORDING MODE is F • 

T - to use the TRACK OVERFLOW option 
(this specification has the same 
effect as including the APPLY 
RECORD-OVERFLOW option in the 
source program). 

r-----------------------------------------------------------------, 
I Device Type I 

r---------------------f---------------------T---------------------T---------------------J 

I Parameter I Mass Storage , Magnetic Tape I Unit Record I 
~---------------------+---------------------~---------------------~---------------------~ 
I DSNAME' as I 
~---------------------f-----------------------------------------------------------------~ 
I UNIT I as I 
~---------------------+-------------------------------------------T---------------------~ 
I VOLUME I as I na I 
~---------------------f---------------------T---------------------+---------------------~ 
I LABEL I SL I SL I NL I 

I I SUL I NL I I 
I I , NSL , I 
I I , SUL , I 
~---------------------f---------------------+---------------------~---------------------~ 
, SPACE I as I na , 
~---------------------+---------------------f-------------------------------------------~ 
I SUBALLOC , as' na , 
~---------------------f---------------------+-------------------------------------------~ 
I SPLIT I as' na , 
~---------------------+---------------------~-~------~------------T---------------------~ 
I DISP I j NEwt (, KEEP ) , SYSOUT=A, B. • • , 
, I (MOD~ ),PASS (I I 
I , 1 CATLG {, I 
I , (, DELETE' I , 
~---------------------+---------------------T--------~------------f---------------------~ 
I DCB Device Dependent, OPTCD=W, WC , TRTCH, DEN , PRTSP, MODE, STACK I 
~---------------------+---------------------~---------------------+---------------------~ 
I DCB General I OPTCD=C/T, BUFNO, BLKSIZE, EROPT=ABE , EROPT=ACC , 
I , RECFM={S, T} , (printer only) , 
I I I EROPT=ABE I 
~---------------------~-------------------------------------------~---------------------~ 
I as = Applicable subparameters I 
I na = Not applicable I L _______________________________________________________________________________________ J 

Figure 12. DD stateroent Parameters Applicable to Standard Sequential OUTPUT Files 

78 



r-----------------------------------------------------------------, 
I Devi ce Type I 

r---------------------t---------------------T---------------------T---------------------J 

I Parameter I Mass Storage I Magnetic Tape I Unit Record I 
~---------------------+---------------------~---------------------~---------------------~ 
I DSNAME I as I 
~---------------------t---------------------T---------------------T---------------------~ 
I UNIT I Not required I Not required I I 
I I if cataloged I if cataloged I as I 
~---------------------t---------------------t---------------------t---------------------~ 
I VOLUME I Not required I Not required I I 
I I if cataloged I if cataloged I na I 
~---------------------t---------------------t---------------------t---------------------~ 
I LABEL I SL I SL I na I 
I I SUL I NL I i 
I I I NSL I I 
I I I SUL I I 
~---------------------t---------------------~---------------------~---------------------~ 
I SPACE I na I 
~---------------------+-----------------------------------------------------------------~ 
I SUBALLOC I na I 
~---------------------t-----------------------------------------------------------------~ 
I SPLIT I na I 

r-~~;~----------------r----------------------l~~~\----\:~!~~---{------------------------1 
I I I· , CATLG , I 
I I , UNCATLG I 
I I . , DELETE , I 
~---------------------t---------------------T---------~-----------T---------------------~ 
I DCB Device Dependent I I TRTCH, DEN I MODE, STACK I 
~---------------------+---------------------~---------------------~---------------------~ 
I DCB General I OPTCD=C/T, BLKSIZE, BUFNO, EROPT=ACC, SKP, ABE, RECFM={SIT} I 
~---------------------~-----------------------------------------------------------------~ 
I as = Applicable subparameters I 
I na = Not applicable I l _______________________________________________________________________________________ J 

Figure 13. DO Statement Parameters ~pplicable to Standard Sequential INPUT and 1-0 Files 

SPECIFYING ~SCII FILE PROCESSING 

The compiler is notified by a special 
format of the ASSIGN clause that an ASCII 
(American National Standard Code for 
Information Interchange) file is to be 
created or read. The system-name in the 
ASSIGN clause must have the following 
format to indicate that an ASCII file is to 
be processed: 

UT(-device)-C-(buffer offset)-name 

where: 

UT 
must be specified for a utility. 

device 

C 

which if specified must be a magnetic 
device, since ASCII support is only 
for magnetic tape files. If the 
device is omitted here, the magnetic 
tape device way instead be specified 
at execution time through JCL. 

an organization code which specifies 
that an ASCII-encoded sequential file 
is to be processed, or that an 
ASCII-collated sort is to be 
performed. 

buffer offset 
a two-character field that indicates 
the length of the block prefix for 
that file. This entry is required if 
a non-zero block prefix exists; it 
must, however, be omitted when an 
ASCII-collated sort is requested. 

User File Processing 79 



name 
a field of 1 to 8 characters that 
specifies the system-recognized name 
of the file. It is this external name 
that appears in the name field of the 
DD card for the file. 

PROCESSING ASCII FILES 

Record formats allowed for ASCII files 
are the following: mode F (fixed length), 
mode U (undefined), and mode D (variable 
length). D-mode records are of variable 
length with a four-byte record descriptor 
field for each record. The COBOL 
programmer processing variable-length 
records specifies V-mode records. Then the 
format information generated from the DCB 
parameter is internally converted to D 
mode. Format-D records cannot be 
explicitly sppcifiei by the user in a COBOL 
proqram. 

An ASCII file may have a variable-length 
field, called a block ~efix, preceding the 
first logical record in a physical record. 
If this prefix exists on an ASCII file, its 
length must be in1icated at compile time in 
the buffer offset field of the ASSIGN 
clause. The compiler places this length in 
the DCB parameter at compile time. 

Whether the optional block prefix 
contains the block length or simply user 
information depends on the type of file 
specified (input or output) and the 
internal record mo1e (i.e., F, U, or D). 
These distinctions are maje in the 
discussion that follo~s. 

Eile~_Opegg~_~s I~~t: Input files with 
either blocked or unblocked records have an 
optional block prefix of 0 to 99 bytes that 
does not contain the block length but may 
contain user information. For D-mode 
records, however, a block prefix of length 
four may contain the block length. 
Regardless of the record format, file 
processing is identical to that for files 
coded in EBCDIC. 

~ile~~pene~_~~Q~t~t: The block prefix 
for output files applies only to D-mode 
records and, when specified, must have a 
length of 4. The prefix must contain the 
length of the block, which length includes 
the buffer offset. 

For any ~SCII output file the ASSIGN 
clause may include a buffer offset of four. 

80 

Alternatively, the programmer may omit this 
specification from the ASSIGN clause, 
instead making use of the phrase BLOCK 
CONTAINS 0 RECORDS. The offset can then De 
specified at execution time in the JCL. 
However, if BLOCK CONTAINS 0 RECORDS is 
used, the following options must be 
included in the JCL: 

BUFOFF=(n) 
must be included in the DCB parameter 
of the EXEC card, where n is the 
length of the block prefix from 0 to 
99 characters on input, and either 0 
or 4 on output. 

BLKSIZE=(n) 
must be included on the DD card, where 
~ is the size of the block, including 
the length of the block prefix. 

• If a block prefix exists on an ASCII 
file and the BLOCK CONTAINS clause witn 
the CHARACTERS option is use1, the 
length of the block prefix must be 
included in the BLOCK CON'I'AINS clause • 

• If either the RECORDS option is 
specified or the BLOCK CONTAINS clause 
is omitted, the compiler compensates 
for the block prefix (if specified •• 

Additional JCL considerations for ASCII 
data sets follow. 

LABEL= 

where AL specifies American National 
Standard labels, AUL specifies American 
National Standard and user labels, and NL 
indicates no labels. --

The subparaweters below are specified in 
the DCB parameter of the DD statement: 

OPTCD=Q, where Q specifies an ASCII-encoded 
data set. 

RECFM=D, where D represents a 
variable-length record, is an optional 
parameter. Whether or not this 
parameter is specified at execution 
time, the programmer must specify an 
ASCII file in the ASSIGN clause as 
well as a mode-V record. The compiler 
converts from mode V to mode D, or to 
the internal representation for a 
variable-length record. 

BUFOFF=(L), where L indicates a four-byte 
block prefix that contains the block 
length including the block prefix. 



Handling Numeric Data Items from ASCII 
File~ 

It is highly recommended that the 
programmer take advantage of the separately 
signed numeric data type. The SIGN clause 
(see "SIGN Clause" in the chapter 
"Programmer Considerations") can be used to 
specify the position and the mode of 
representation of the operational sign of 
numeric data items. 

DIRECT FILE PROCESSING 

The direct file processing technique is 
characterized by the use of the relative 
track addressing scheme. When this 
addressing scheme is used, the tracks of 
mass storage devices are consecutively 
numbered from 0 to g (where 0 equals the 
first track of the file, and g equals the 
last track). The positioning of logical 
records in a file is determined by the 
ACTUAL KEY supplied by the user in the 
Environment Division. The first part of 
the key, called the track identifier, 
specifies either the track on which space 
for the record is first sought or the track 
at which the search for a record is to 
begin. The second part, called the record 
identifier, serves as a unique identifier 
for the record. Files with direct data 
organization must be assigned to mass 
storage devices. 

r-----------------------------------------, 
I Format I 
~-----------------------------------------~ 
I I 
I~QAL KEY IS data-name I 
I I L _________________________________________ J 

Data-name may be any fixed item from 5 
through 259 bytes in length and must be 
defined in the File Section, Working
storage Section, or Linkage Section. The 
following considerations a~ply when 
defining the ACTUAL KEY: 

• Track Identifier 
The first four bytes of data-name are 
the track identifier. The identifier 
is used to specify the relative track 
address for the record and must be 
defined as a 5-integer binary data item 
whose maximum value does not exceed 
65,535. 

• Record Identifier 
The-remainder-of-data-name, which is 1 
through 255 bytes in length, is the 
record identifier. It represents the 
symbolic portion of the key field used 
to identify a particular record on a 
track. 

The following example illustrates the 
use of the ACTUAL KEY clause: 

r-----------------------------------------, 
ENVIRONMENT DIVISION. I 

ACTUAL KEY IS THE-ACTUAL-KBY. 

DATA DIVISION. 

WORKING-STORAGE SECTION. 
01 THE-ACTUAL-KEY. 

I 
I 
I 
I 
I 
I 
I 
I 
I 
f 
I 
I 
I 

05 TRACK-IDENT PIC S9(5) COMP 
05 RECORD-IDENT PIC X(25). 

SYNCa I 
I L _________________________________________ J 

Note: The same record identifier may 
appear more than once in the same file when 
using COBOL. However, using the same 
record identifier is not recommended for 
the following reasons: 

1. If they appear on the same track, only 
the first occurrence can be retrieved 
(using BDAM). 

2. If an extended search is used in 
either creating or updating a file, 
the position of records containing 
duplicate record identifiers may be 
unpredictable. 

With direct file processing, records 
must be unblocked and may be V-, U-, F-, or 
S-mode records. Figure 14 illustrates 
those parts of a directly organized file 
that are of importance to a COBOL 
programmer. 

User File Processing 81 



r---------------------------------------------------------------------------------------, 
I INDEX I 
I POINT GAP 
I 'I RO R1 R2 
I I I ~~ .-/'-........ ___ ...... 
I , I r-------, r--------, r-----T---T----' r-----T---T----' 
! V V ITRACK I I CAPACITY I I I I Ii' I I 
I G 'ADDRESS I G IRECORD I G !COUNT!KEYIDATA! G !COUNT!KEY!DATAI G 
, L _______ J L ________ J L _____ .!. ___ .!. ____ J L _____ .!. ___ .!. ____ J 

, , 
L _______________________________________________________________________________________ J 

Figure 14. Directly Organized Data as it Appears on a Mass storage Device 

Each track contains the following: 

Index Point 
There is one index point to indicate 
the physical beginning of each track. 

U@~ 
Gaps separate the different areas on 
the track. Certain equipment 
functions take place as the gap is 
rotating past the read/write head. 
The length of the gap varies with the 
device, the location of the gap, and 
the length of the preceding area. For 
instance, the gap that follows the 
index point is a different length than 
the gap that follows the track 
address. The length of the gap that 
follows a record depends on the length 
of that record. 

Track Address 
-----This field defines the physical 

location of the track. It indicates 
the cylinder in which the track is 
located and the read/write head that 
services the track. 

g~f~eacity Record) 
This field indicates the amount of 
unused space available for additional 
records on the track. 

~~ ••• , Rn 

82 

These are physical records that 
contain the following: 

count_~ -- control information 

key area -- the-record identifier 
(1-255 bytes) as 
specified by the 
programmer in the ACTUAL 
KEY clause. 

data area -- the-data moved into the 
FD before a WRITE 
statement was eXEcuted. 

The following example illustrates the 
relationship between the ACTUAL KEY and the 
positioning of records on a mass storage 
device during the creation of a direct 
file. 

r-----------------------------------------, 
ENVIRONMEN'I DIVISION. 

ACTUAL KEY IS THE-ACTUAL-KEY. 

DATA DIVISION. 
FILE SECTION. 
FD DIRECT-FILE 

LABEL RECORDS ARE STANDARD. 
01 REC-l PIC X(200). 

WORKING-STORAGE SECTION. 
01 THE-ACTUAL-KEY. 

05 TRACK-IDENT PIC S9(5) COMP SYNC. 
05 RECORD-IDENT PIC X(3). L _________________________________________ J 



r---------------------------------------------------------------------------------------, 
I Count Key Data Count Key Data Count Key Data I 
I r-----T---T-----' r-----T---T-----' r-----T---T-----' I 
I TRACK a G I IAAAI REC-l I G I ICCCIREC-li G I IBBBIREC-li I I L _____ ~ ___ ~ _____ J L _____ ~ ___ ~ _____ J L _____ ~ ___ ~ _____ J I 

I I 
r-----T---T-----' r-----T---T-----' r-----j---T-----' 

TRACK 1 G I IDDDIREC-li G I IFFFIREC-li G I IEEEIREC-li L _____ ~ ___ ~ _____ J L _____ ~ ___ ~ _____ J L _____ ~ ___ ~ _____ J 

I 
I 
I 

I I L _______________________________________________________________________________________ J 

Figure 15. Sample Format of the First Two Tracks of a Direct File 

Consider REC-l being written six times; the 
contents of THE-ACTUAL-KEY varying with 
each WRITE instruction: 

THE-ACTUAL-KEY 

TRACK I RECORD 
IDENTIIDENT 
r----t----, 

WRITE 1 I a I MAl 
~----+----~ 

WRITE 2 I a I CCCI 
~----+----~ 

WRITE 3 I a I BBBI 
~----+----~ 

wRITE 4 I 1 I DDDI 
~----t----~ 

WRITE 5 I 1 I FFFI 
~----+----~ 

WRITE 6 I 1 I EEEI 
l ____ i. ____ j 

Relative track a and relative track 1 of 
the mass storage device will appear as 
shown in Figure 15. 

when the WRITE statement is execute1, 
the system seeks the track that corresponds 
to the number contained in TRACK-IDENT. It 
then searches for the next available 
position into which a record may be placed. 
The system writes a count area, writes the 
contents of RECORD-IDENT in the key area, 
and writes the information contained in 
REC-l in the data area. 

~ote: The record identifier is not 
included in the level-al record description 
(REC-l). It will, however, be moved into 
the output buffer before being written on 
the mass storage device. Buffer areas, 
therefore, will be large enough to 
accommodate both the contents of REC-l and 
the record identifier. 

Dummy and Capacity Records 

Once a direct file has been created, 
records can be added randomly on tracks 
formatted sequentially. Unless a track is 
already filled with data records, it is 
formatted by the compiler via the writing 
of dummy records (mode F) or of one 
capacity record (mode U, V, or S). 

In order to format tracks, a COBOL 
subroutine executes instructions to write 
dummy records for F-mode files or write 
capacity records for v-, U-, or S-mode 
files. Dummy records are identified by the 
presence of the figurative constant 
HIGH-VALUE in the first byte of the record 
identifier portion of the ACTUAL KEY. This 
indicates to the system that a record can 
be added to the file in the space assigned 
to the dummy record. (The user should not 
attempt to retrieve a dummy record by 
moving this configuration to the record 
identifier because it is considered an 
invalid key.) A capacity record is a 
single record at the physical beginning of 
each track that indicates the amount of 
space available for additional records. As 
V-, U-, or S-mode records are added to a 
track, the capacity record is written 
accordingly. Capacity records are never 
made available to the user. 

When a file is created, it should 
contain enough dummy records, or 
appropriately written capacity records, to 
allow for future expansion. Once the file 
is closed, more space cannot be allocated 
and the extent of the file cannot be 
increased. 

Note: Tracks that have been assigned to a 
file but are not formatted, are considered 
"allocated." The user should not attempt 
to write on tracks that have been allocated 
but not formatted. 

User File Processing 83 



The file processing technique used to 
create a direct file sequentially is BSAM 
(Basic sequential Access Method). 

• The associated COBOL statements are 
summarized in Table 13. 

• The associated JCL parameters are 
summarized in Table 14. 

The ACTUAL KEY is required. It 
specifies the relative track number on 
which the record is to be written. since 
access is sequential, all records will be 
written serially in the sequence in which 
they are lIloved into the output buffer. It 
is, therefore, necessary that all records 
to be written on the first track (track 
identifier = 0) be processed before records 
to be written on the 2nd, 3rd, ••• , ~th 
track (track identifier = 1, 2, ••• , n-l) 
are processed. -

When records are written sequentially, 
the user need not update the contents of 
the track identifier portion of the ~crUAL 
KEY. A COBOL subroutine will update it as 
follows: 

• Records will be written on the first 
available track until space is no 
longer available. At such time, the 
COBOL subroutine will increment the 
track identifier by 1, and continue 
writing on the next track. 

• The value of track identifier used by 
the system is made available to the 
user in the track identifier portion of 
the ACTUAL KEY after the record is 
written. 

• ~fter a CLOSE or CLOSE UNIT statement 
has been executed, the COBOL subroutine 
places the relative track number of the 
last track written on (for a data, 
dummy, or capacity record) in the track 
identifier of the ACTUAL KEY. 

• If the user updates the contents of 
track identifier and attempts to write 
on track 2 when tracks 0 through 4 are 
already full, the systew will 
automatically adjust the track 
identifier to 5 (the next track with 
available space). 

If the user wishes to skip tracks, the 
number of tracks, equal to the number of 
tracks to be advanced, must be added to the 
track identifier. The COBOL subroutine 
will then add dummy records (F-mode) or 
write capacity records (V-, U-, or S-mode) 

84 

to complete the intervening track(s) (see 
"Dummy and Capacity Records"). If the 
value of track identifier for the initial 
WRITE is not 0, the subroutine will 
complete the preceding tracks with dummy or 
capacity records. 

SP~CE ~LLOCATION FOR SINGLE VOLUME FILES: 
When a file is created sequentially, the 
number of primary tracks specified on the 
DD card must be available on the primary 
volume. If this quantity is not available, 
the job will not begin execution. Once 
execution begins however, the final 
allocation of space will not be made until 
the file is closed. 

The following discussion illustrates the 
space allocated to a direct file created 
using BSAM. Figure 16 is an example of a 
user program that: 

• Writes 350-1/2 tracks and then closes 
the file. 

• Specifies SPACE=(TRK, (200,100» on the 
associated DO card. 

TRACK-LIMIT Clause Specified: 

1. If the TRACK-LIMIT clause specifies 
TRACK-LIMIT = 500 and the file is 
closed after writing only 350-1/2 
tracks: 

Note: A COBOL subroutine will format 
aii-remaining tracks up to and 
including the 500th track. This 
represents 150 extra tracks on which 
records may be added. 

2. If the TRACK-LIMIT clause specifies 
TRACK-LIMIT = 300 and the program 
continues writing all 350-1/2 tracks: 

Note: The TRACK-LIMIT clause is 
ignored and the system allocates and 
formats as if. no TRACK-LIMIT clause 
had been specified. 

TRACK-LIMIT Clause Not Specified: If the 
TRACK-LIMIT clause is not specified, the 
system will allocate the primary extent 
(i.e., 200 tracks) and up to 16 secondary 
extents (i.e., 100 tracks each), as 
required. In Figure 16, the system 
allocates the first 200 tracks, all of 
which are completed. The second 
allocation, of 100 tracks, is also 
completed. The next 100-track allocation 
is, however, only partially used. The file 
is closed after writing on 350-1/2 tracks. 
At this time: 



• A COBOL subroutine will format the rest 
of the 351st track. (Note that 351 
tracks are actually relative tracks 0 
through 350) 

• The balance of 49 tracks will remain 
allocated but will not be formatted. 

~2t~: In some of the foregoing cases, the 
number of tracks allocated to the file 
exceeds the number of tracks formatted by 
the COBOL subroutine. If the excess space 
was requested in track or block units, it 
should be released by specifying the RLSE 
option of the SPACE parameter. 

r---------------------------~---------------T-------------------------------------------1 

1 Specified as TRACK-LIMIT=500 I TRACK-LlL>1IT Clause Not Specified 1 

~-------------------------------------------+-------------------------------------------~ 

written on 
formatted 

formatted 

r---------'t I 1 
I 1 
I 200 l(lst 
I I, 
~---------~ 
1 100 I' 
1 It 

~---=~~---J} 2nd 

t ----~~---~{ 3rd 

( i----~~---~j 
): 100 it 4th 

t ~---------J 
1 1 
1 unused I 
1 I 
I I 

allocation 

allocation 

allocation 

allocation 

written on 
and/or 

formatted 

unformatted 

r----------" 
I I ( 
I L. I 200 1\ 
I I. 
~----------~/ 
1 1 J 
I I~ 
I 100 1 \ 
~----------~/ 

{~-----~:---~( 
~-----~~---~) 
I 
I 
I unused 
I 
I 

1 
1 
I 
I 
1 

1st allocation I 
I 
I 
1 
1 

2nd allocation 1 
I 
I 

3rd allocation I 
J 
I 
I 
I 
I 
I 
I 
1 
1 
1 
I 

~-------------------------------------------i---------__________________________________ ~ 
I ~2tes: 1 
1 1. SPACE=(TRK, (200,100» on a single volume. 1 
1 2. The user program writes 350-1/2 tracks before closing the file. I l _______________________________________________________________________________________ J 

Figure 16. Sample Space Allocation for Sequentially Created Direct Files 

User File Processing 85 



r---------------------------------------------------------------------------------------, 
A 

,-:::--1 ) 
I I 
I I 

Specified as I I 
TRACK-LIMIT=950~------~ 

I I 
I 100 I 
~------~ 
I , 
I 100 I L ______ J 

formatted 

B 
r------, 
I I 
,100 I 
~------~ 
I I 
I I 

I 100 I 
~------~ , , 
,100 I 
~------~ 
I I 
I 100 ! L ______ J 

formatted 

C 

r--;o--l} 
~------1 

~--~~--~} 
I I 
I unused I 
I I 
I I 

formatted 

allocated 

~---------------------------------------------------------------------------------------~ 

TRACK-LIMIT 
clause not 
specified 

A 
r------, 
I , 
I I 
I 300 I , , 
I I 
I I 
~------~ , , 
I unused I 
I I 
I , 
I I 

formatted B 

r------, I I! I 100 , 
~------~ 
I I 
lunused, 
I I 
I I 
I I 

formatted 

C 

:-:::--1! 
~------~ 
, I 
lunusedl 
, I 
, I 
I , 

formatted 

~---------------------------------------------------------------------------------------~ 
I SPACE=(TRK, (300,100» on Volumes A, B, and C I L _______________________________________________________________________________________ J 

Figure 17. Sample Space Allocation for Randomly Created Direct Files 

gandom Creation of a Direct Data Set 

The file processing technique used to 
create a direct file randomly is BDAM 
(Basic Direct Access Method). 

• The associated COBOL statements are 
summarized in Table 13~ 

• The associated JCL parameters are 
summarized in Table 14. 

Figure 18 (sample program) illustrates 
the random creation of a direct data set. 

The ACTUAL KEY is required. When a 
direct file is created randomly, records 
need not be written in any particular 
sequence. The system seeks the track 

86 

specified in the track identifier portion 
of the ACTUAL KEY and writes the record in 
the next available position on that track. 

When a file is created using BDAM, the 
number of tracks specified in the primary 
extent must be available on the primary 
volume. If there are secondary volumes, 
one secondary extent must be available on 
each of the secondary volumes. If these 
extents are not available, the job will not 
begin execution. Once execution begins, 
the final allocation of space is determined 
by the TRACK-LIMIT clause and the SPACE and 
volume-count parameters of the DO card when 
the file is opened as an output file. 
Figure 17 illustrates the allocation and 
formatting of space when the TRACK-LIMIT 
clause is specified as well as when it is 
not specified (see "Dummy and Capacity 
Records" for a definition of allocate and 
form~t)· --------



1. When a TRACK-LIMIT clause is specifed 
(Figure 17), the system will do the 
following: 

a. Allocate tracks, by blocks, until 
the quantity specified by the 
TRACK-LIMIT clause has been 
equaled or just exceeded. 

b. Format only the space specified in 
the TRACK-LIMIT clause, even if 
the space formatted is less than 
the space allocated~ 

2. When a TRACK-LIMIT clause is not 
specified (Figure 17>, the first 
volume will be allocated and formatted 
according to the primary allocation 
quantity, and any succeeding volumes 
will be allocated and formatted from 
the secondary quantity, one quantity 
per volume. 

Records cannot be written on those 
tracks that were allocated but unformatted. 
Any attempt to do so will have 
unpredictable results. Unformatted tracks 
can be released by specifying the RLSE 
option in the SPACE parameter on the 
corresponding DD statement. Only space 
requested in track or block units can be 
released. If the CYL subparameter was 
specified, the unformatted tracks cannot be 
released. 

Unlike direct files created with BSAM, 
the BDAM processing technique allocates and 
formats tracks when the file is opened. 
This is significant because the system will 
not allocate secondary extents if the user 
attempts to write on more tracks than the 
quantity initially formatted. 

Note: The extended search option may be 
used during random creation. See "Random 
Reading, Updating, and Adding to Direct 
Data Sets" for a detailed description. 

The file processing technique used to 
read a direct file sequentially is BSAM 
(Basic sequential Access Method). 

• The associated COBOL statements are 
summarized in Table 13. 

• The associated JCL parameters are 
summarized in Table 14. 

When a direct file is being read 
sequentially, records are retrieved in 
logical sequence. This logical sequence 

corresponds exactly to the physical 
sequence of the records on the mass storage 
device. Dummy records, if present, are 
also made available. 

For reading a file sequentially, the 
ACTUAL KEY clause need not be specified; 
however: 

• If the key is not specified, the user 
will have no way of distinguishing 
between real and dummy records (F-mode 
only). Dummy records can be recognizej 
by testing for the presence of the 
figurative constant "HIGH VALUE" in the 
first position of the record 
identifier. 

• If the ACTUAL KEY clause is specified, 
the record's key will be placed in the 
record identifier portion of the ACTUAL 
KEY during the execution of a RE~D 
statement. The track identifier, 
however, remains unchanged. 

g~g~Q~_g~~~ig~L Updating, and Adding_to 
Direct Data Sets 

The file processing technique used to 
read, update, and add to a direct file 
randomly is BD~l (Basic Direct Access 
Method). 

• The associated COBOL statements are 
summarized in Table 13. 

• The associated JCL parameters are 
summarized in Table 14. 

When records are being retrieved from a 
direct file randomly, the ACTUAL KEY is 
required to determine the track and to 
locate a particular record on that track. 
When a match is found, the data portion of 
the record is read. For an add operation, 
after locating the track, the system 
searches for the next available position on 
the track, and writes the new record. For 
an update operation, after locating the 
track, the system searches for the record 
specified in the record identifier portion 
of the ACTUAL KEY. 

In all of the foregoing cases, the 
specified track is the only one searched. 
If the desired record cannot be found, or 
room for an additional record cannot be 
found, the search terminates with an 
INVALID KEY condition. If the user wishes 
to extend the search to a specific number 
of tracks or to the entire file, the DCB 
OPTCD and LIMCT subparameters should be 
specified on the corresponding DD card. 
(Figure 18 illustrates the use of extended 
search.) 

User File Processing 87 



Multivolume Data Sets 

Multivolume data sets, like 
single-volume data sets, may be created 
either randomly or sequentially. 

Sequential Creation: When a file is 
created sequentially, the number of tracks 
specified in the primary extent must be 
available on the primary volume and the 
number of tracks specified in the secondary 
extent must be available on each of the 
secondary volumes. If extents are not 
available, execution of the job will not 
begin. Once execution begins, the primary, 
and as many secondary allocations as 
possible, are given to the first volume (up 
to 16 extents per volume). Subsequent 
volumes are allocated from the secondary 
specification. 

If the CLOSE UNIT statement is executed, 
the current extent is formatted, volume 
switching procedures are executed, and the 
contents of ACTUAL KEY are updated to 
reflect the relative track number of the 
last track on the old volume. This is 
illustrated in the following example. 

consider the creation of a multivolume 
file whose space is allocated by: 

SPACE=(TRK, (300,100» 

1. When execution begins, the system 
allocates 300 tracks on the first 
volume. When the 300 tracks are used 
up, the system allocates 100 tracks 
more. Up to 16 allocations of 100 
tracks each are possible. 

2. If, after writing on 450 tracks, a 
CLOSE UNIT statement is executed, a 
COBOL subroutine will format the 
remaining 50 tracks of the current 
allocation before making the next unit 
available. 

3. After the CLOSE UNIT statement is 
executed, a COBOL subroutine places 
the relative track number of the last 
track written on (for a data, dummy, 
or capacity record) in the track 
identifier of the ACTUAL KEY. 

~ote: A CLOSE UNIT statement always 
formats the tracks remaining on that unit 
from the current allocation. The 
formatting of tracks on the last unit, when 
a CLOSE file-name statement is executed, 
depends on the presence or absence of a 
TRACK-LIMIT clause, just as it did for 
sinqle-volume files (see "Space Allocated 
for Single- Volume Files"). The RLSE 
option of the SPACE parameter applies only 
to the unformatted tracks at the end of the 
last unit. 

88 

Automatic Volume Switching: The user may 
choose to permit volume switching to occur 
automatically. This can be accomplished by 
writing on all allocated tracks until no 
more are available, or may be made 
available. This procedure, however, does 
not guarantee a specific distribution of 
records over the volumes, the placement of 
a particular record on a particular volume, 
or whether the data set is, in fact, 
mul ti volume. 

Note: If the user permits system 
controlled volume switching, but specifies 
the file be created on more than one volume 
[e.g., VOL=SER=(Vl,V2,V3)]; the system may 
write the entire file on the primary volume 
if there is enough room. The next time an 
attempt is made to open that file, since 
the system expects it to reside on three 
volumes, an ABEND will occur. This can be 
avoided by specifying: 

VOL=(",3,SER=(Vl,V2,V3» 

This specifies the file be contained on one 
or mQre volumes. 

To create a file with records 
distributed as evenly as posible over 
several volumes, the programmer must 
calculate the amount of space his file will 
require -(see "Determination of File Space") 
and divide by the number of volumes. The 
result of this calculation (rounded) should 
be specified as both the primary and 
secondary allocation of the SPACE parameter 
of the associated DD statement. The 
programmer should execute CLOSE UNIT before 
the end of the initially allocated space on 
the first volume (that is, execute the 
CLOSE UNIT before writing the record that 
is to be first on the second volume). 

For example, to distribute 2232 SO-byte 
records as evenly as posible on three 2311 
volumes, 34 tracks per volume are required 
and the SPACE parameter should specify 
(34,34). After writing the 744th record 
the programmer should execute CLOSE UNIT 
and continue writing. 

If the required space is overestimated 
and the records do not fill the last 
trackCs), the compiler will write dummy 
records to complete them. These records 
are included in the record count and should 
be taken into account when trying to 
address records on subsequent volumes. 

If the space required is underestimated, 
automatic volume switching may occur before 
the CLOSE UNIT is executed since space on 
the first volume is filled. If this has 
happened, the CLOSE UNIT starts a third 
volume. 



If no secondary allocation has been 
specified and the program issues a CLOSE 
UNIT statement, the job will terminate 
abnormally, since the allocation of 
subsequent volumes is taken from the 
secondary allocation field of the SPACE 
parameter. 

In the creation of an output file, 
performance is improved by specifying the 
CONTIG subparameter of the SPACE parameter 
in the DO statement. However, space 
allocation is more efficient if CONTIG is 
not specified. 

Random Creation: When a file is created 
randomly, space allocation and formatting 
is done as described in "Random Creation of 
a Direct Data Set" (Figure 17). It is 
important to note that a CLOSE UNIT 
statement is not permitted when creating a 
file randomly. 

The following description pertains to 
Figure 17: 

1. When the TRACK-LIMIT clause is 
specified, the total extent of the 
file is 950 tracks. The only valid 
track identifiers are 0 through 949: 

• Tracks 000 through 499 are contained 
on volume A. 

• Tracks 500 through 899 are contained 
on volume B. 

• Tracks 900 through 949 are contained 
on volume C. 

2. When the TRACK-LIMIT clause is not 
specified, the total extent of the 
file is 500 tracks. The only valid 
track identifiers are a through 499: 

• Tracks 000 through 299 are contained 
on volume A. 

• Tracks 300 through 399 are contained 
on volume B. 

• Tracks 400 through 499 are contained 
on volume C. 

File Organization Field of the System-Name 

The single character "0" or own, 
specifying the file organization, must be 
coded as part of the system-name. The user 
should be aware of the followinq 
differences: -

• Sequentially accessed files must specify 
organization "0". 

• Randomly accessed files may specify "0" 
or OW". When opened input or output "0" 
and own function identically. 

1. Opened output ("O" and OW"): 

WRITE adds a new record. If a 
record containing the same key 
already exists, the system will add 
the record anyway. The result will 
be records with duplicate keys. 

2. Opened 1-0 ("W"): 

a. REWRITE automatically searches 
for a record with a matching 
record identifier, and updates 
it. 

b. WRITE adds a new record to the 
file whether or not a duplicate 
key already ~xists. 

3. Opened 1-0 ("0"): 

a. WRITE updates the file only if 
the preceding input/output 
statement was a READ of the same 
record. 

b. WRITE adds a new record to the 
file, whether or not a duplicate 
key already exists, if the 
preceding input/output statement 
was anything other than a READ 
of the same record. 

User File Processing 89 



Note: when a file is openej 1-0 (BDAM 
"0") the contents of ACTUAL KEY are 
moved to a save area during the 
execution of a READ state~ent. During 
the execution of a WRITE statement, the 
contents of ACTUAL KEY are compared to 
the contents of the save area to 
determine whether the system should add 
or update a record. A check is also 
made to assure that the preceding 
input/output statement was a READ. If 
it was a WRITE of any record, a new 
record is added to the file. Opening a 
file 1-0 (BDAM "W") omits the save and 
compare steps entirely. The system adds 
a record when a WRITE statement is 
executed and updates a record when a 
REWRITE statement is executed. It is, 
therefore, more efficient to use BDAM 
"W" than it is to use BDAM "D" if it is 
known in advance whether the record 
should be added or updated. 

Qete~!!!inatiQ!!-.2f_[i!.~_§.~ce: To determine 
the amount of space a data set requires, 
the following variables should be 
considered: 

Device Type 
Track capacity 
Tracks per Volume 
Cylinders per Volume 
Data length (block size) 
Key Length 
Device Overhead 

Device overhead refers to the space 
required on each track for hardware data, 
i.e., address markers, count areas, 
inter-record gaps, Record 0, etc. Device 
overhead varies with each device and also 
depends on whether the blocks are written 
with keys. The formulas in Table 9 may be 
used to compute the actual space required 
for each block, including device overhead. 

Table 10 lists device storage capacity, 
and Table 11 lists capacity in records per 
track for several mass storage devices. 

Programmers who require more detailed 
information on mass storage devices may 
refer to the publications that follow: 

90 

IBM OS Component-Description -- 2841 
§.torage ControIL_~l~Disk_§'tQ~~~~L 
MQQel~~nd~L_~l11 Disk §.tQ~~~g_DriveL 
Model 1; 2321 Data Call DriveL-~l03 
Qrum; Order No. A26-5988. 

~Q~onent Summary -- 3830 Stora9~ 
~QntrolL_ll~Di~~Stor~~, Order 
No. GA26-1592. 

~Qt~: Specification of the "S" option in 
the DCB subparameter RECFM can markedly 
increase 3330 performance (see the 
description of RECFM earlier in this 
chapter) • 

Randomizing Techniques 

One method of determining the value of 
the track identifier portion of the AcrUAL 
KEY is called indirect addressing. 
Indirect addressing generally is used when 
the range of keys for a file includes a 
high percentage of unused values. For 
example, employee numbers may range from 
000001 to 009999, but only 3000 of the 
possible 9999 numbers are currently 
assigned. Indirect addressing can also be 
used with nonnumeric keys. A nonnumeric 
field (e.g., alphanumeric), when moved to a 
computational field, will be packed anj 
then converted to binary notation. Since 
packing eliminates the zone fields, the 
final binary item will be numeric. 

Indirect addressing means that the key 
is converted to a value for the track 
identifier by use of some algorithm 
intended to limit the range of addresses. 
Such an algorithm is called a ~~!!QQ~i~i~g 
technique. Randomizing techniques need not 
produce a unique address for every record: 
in fact, such techniques usually produce 
synQ!!~~. Synonyms are records whose keys 
randomize to the same address. 

Two objectives must be considered in 
selecting a randomizing technique: 

1. Every possible key in the file must 
randomize to an address within the 
designated range. 

2. The addresses should be distributed 
evenly across the range so that there 
are as few synonyms as possible. 

Note that one way to minimiZE synonyms 
is to allocate more space for the file than 
is actually required to hold all the 
records. For example, the percentage of 
locations actually used might comprise only 
80 to 85 percent of the allotted space. 



Division/Remainder Method: One of the 
simplest waystoaddress a directly 
organized file indirectly is to use the 
division/remainder method. 

1ft Determine the amount of locations 
required to contain the data file. 
Include a packing factor for 
additional space to eliminate 
synonyms. The packing factor should 
be approximately 20 percent of the 
total space allotted to contain the 
data file. 

2. Select the nearest prime number that 
is less than the total of step 1. A 
prime number is a number divisible 
only by itself and the integer 1. 
Table 12 is a partial list of prime 
numbers. 

3. Clear any zones from the key that is 
to be used to calculate the track 
identifier of actual key. This can be 
accomplished by moving the key to a 
field described as COMPUTATIONAL. 

4. Divide the key by the prime number 
selected. 

5. Ignore the quotient; utilize the 
remainder as the relative location 
within the data file. 

For example, assume that a company is 
planning to create an inventory file on a 
2311 disk storage device. There are 8,000 
different inventory parts, each identified 
by an 8-character part number. Using a 20 
percent packing factor, 10,000 record 
positions are allocated to store the data 
file. 

Method A: The closest prime number to 
10,000~-but under 10,000, is 9973. Using 
one inventory part number as an example, in 
this case #25DF3514. and clearing the 
zones, we have 25463514. Dividing by 9973 
a quotient of 2553 results in a remainder 
of 2445. Thus, 2445 is the relative 
location of the record within the data file 

corresponding to part number 25DF3514. The 
record address can be determined from the 
relative location as follows: 

1. Determine the number of records that 
can be stored on a track (e.g., 12 per 
track on a 2311, assuming each 
inventory record is 200-bytes long). 

Note: Because each data record has 
nondata components, such as a count 
area and inter-record gaps, track 
capacity for data storage will vary 
with record length. As the number of 
separate records on a track increases, 
inter-record gaps occupy additional 
byte positions so that data capacity 
is reduced. Track capacity formulas 
provide the means to determine total 
byte requirements for records of 
various sizes on a track (see Tables 
9, 10, and 11). 

2. Divide the relative number (2445) by 
the number of records to be stored on 
each track. 

3. The result, quotient = 203, now 
becomes the track identifier of the 
actual key. 

Method B: Utilizing the same example, 
another approach will also provide the 
relative track address. Method B is 
illustrated in Figure 17: 

1. The number of records that may be 
contained on one track is 12. 
Therefore, if 10,000 record locations 
are to be provided, 834 tracks must be 
reserved. 

2. The prime number nearest, but less 
than 834, is 829. 

3. Divide the zone-stripped key by the 
prime value. (In the example, 
25463514 jivided by 829 provides a 
quotient of 30715 and a remainder of 
779. The remainder is the track 
identifier.) 

User File Processing 91 



Table 9. Mass Storage Device Overhead Formulas 
r-----------T---------------------------------------------------------------------------, 
I I Bytes Required by Each Data Block I 
I ~-------------------------------------T-------------------------------------~ 
I Device I Blocks With Keys I Blocks Without Keys I 
I Type ~-----------------------T-------------+------------------T------------------~ 
I , Bi 'Bn I Bi I Bn I 
t-----------f-----------------------f-------------f------------------f------------------~ 
! 2311 I 81+1a049(KL+DL) I 20+KL+DL I 61+1.049(DL) I DL i 
I 2314 (2319) I 146+1. 043 (KL+DL) I 45+KL+DL , 101 +1.043 (DL) I DL I 
I 2302 ,81+1.049 (KL+DL) ,20+KL+DL, 61+1.049 (DL) , DL I 
I 2303 I 146+KL+DL , 38+KL+DL ,108+DL I DL I 
I 2301 I 186+KL+DL , 53+KL+DL I 133+DL I DL I 
I 2321 I 100+1.049 (KL+DL) ,16+KL+DL, 84+1. 049 (DL) , DL I 
I 2305-1 I 634+KL+DL I 634+KL+DL ,432+DL , 432+DL, 
,2305-2 ,289+KL+DL , 289+KL+DL, 198+DL , 198+DL I 
I 3330 ,191+KL+DL , 191+KL+DL I 135+DL I 135+DL, 
t-----------~-----------------------~-------------~------------------~------------------~ 
, Bi is any block but the last on the track. I 
, Bn is the last block on the track. I 
I DL is data length. , 
, KL is key length. I l _______________________________________________________________________________________ J 

Table 10. Mass Storage Device capacities 
r-----------T------------T-------------T--------------------T-------------T-------------, 
I Device I Volume I Track I , Number of ,Total , 
I Type 'Type ,Capacity ,Tracks per Cylinder' Cylinders ,Capacity I 
t-----------f------------+-------------f--------------------f-------------+-------------~ 
, 2311 I Disk , 3625 I 10 I 200 I 7,250,000 I 
, 2314(2319), Disk I 7294 I 20 ,200 I 29,176,000 I 
I 2302 I Disk I 4984 I 46 I 246 I 56,398,944 I 
I 2303 'Drum , 4892, 10 ,80, 3, 913, 600 I 
, 2301 ,Drum I 20483, 8 ,25**, 4,096,600, 
, 2321 'Cell , 2000, 20*** ,980*** I 39,200,000, 
,2305-1 ,Drum , 14136, 8 I 48 ,5,428,224 I 
,2305-2 I Drum , 14660, 8 I 96 I 11,258,880, 
I 3330 I Disk , 13030, 19 ,404, 101,751,270 , 
t-----------~------------~-------------~--------------------~-------------~-------------~ 
I *Capacity indicated in bytes. , 
I **There are 25 logical cylinders in a 2301 Drum. , 
, ***A volume is equal to one bin in a 2321 Data Cell. -I l _______________________________________________________________________________________ J 

92 



c:: 
CJl 
CD 
Ii 

I-%j ...,. 
~ 
CD 

t-d 
Ii 
o 
(') 
(\) 
CJl 
CJl ...,
;=j 

ILl 

1.0 
Lv 

2311 

3625 
1740 
1131 

830 
651 

532 
447 
384 
334 
295 

263 
236 
213 
193 
177 

162 
149 
138 
127 
118 

109 
102 

95 
88 
82 

77 
72 
67 
63 
59 

2314 
(2319) 

7294 
3520 
2298 
1693 
1332 

1092 
921 
793 
694 
615 

550 
496 
450 
411 
377 

347 
321 
298 
276 
258 

241 
226 
211 
199 
187 

176 
166 
157 
148 
139 

Maximum Bytes per Record 
Formatted without Keys 

2302 2303 2301 2321 2305-1 

4984 4892 20483 2000 14136 
2403 2392 10175 935 6852 
1570 1558 6739 592 4424 
1158 1142 5021 422 3210 

912 892 3990 320 2480 

749 725 3303 253 1996 
634 606 2812 205 1648 
546 517 2444 169 1388 
479 447 2157 142 1186 
425 392 1928 119 1024 

381 346 1741 101 892 
344 308 1585 86 782 
313 276 1452 73 688 
286 249 1339 62 608 
164 225 1241 53 538 

244 204 1155 44 478 
225 186 1079 37 424 
209 169 1012 30 376 
196 IS5 952 24 334 
183 142 897 20 296 

171 130 848 15 260 
161 119 804 10 230 
151 109 763 6 200 
143 100 726 174 
135 92 691 150 

127 84 659 128 
121 77 630 106 
114 70 603 88 
108 64 577 70 
102 S8 554 52 

Records 
per 

Track 
2305-2 3330 

14660 13030 1 
7231 6447 2 
4754 4253 3 
3516 3156 4 
2773 2498 5 

2278 2059 6 
1924 1745 7 
1659 1510 8 
1452 1327 9 
1287 1181 10 

1152 1061 11 
1040 962 12 

944 877 13 
863 805 14 
792 742 15 

730 687 16 
676 639 17 
627 596 18 
584 557 19 
544 523 20 

509 491 21 
477 463 22 
448 437 23 
421 413 24 
396 391 25 

373 371 26 
352 352 27 
332 335 28 
314 318 29 
297 303 30 

Maximum Bytes per Record 
Formatted with Keys 

2314 2311 
(2319) 

2302 2303 2301 2321 2305-1 

3605 7249 4964 4854 20430 1984 13934 
1720 3476 2383 2354 10122 920 6650 
1111 2254 1505 1520 6686 S76 4222 
0811 1649 1139 1104 4968 406 3008 

632 1288 893 854 3937 305 2278 

512 1049 730 687 3250 238 1794 
428 877 614 568 2759 190 1446 
364 750 527 479 2391 154 1186 
315 650 460 409 2104 126 984 
275 571 406 354 1875 103 822 

244 506 362 308 1688 85 690 
217 452 325 270 1532 70 580 
194 407 294 238 1399 58 486 
174 368 267 211 1286 47 406 
158 333 245 187 1188 38 336 

143 304 224 166 1102 29 276 
130 277 206 148 1026 21 222 
119 254 190 131 959 15 174 
108 233 176 117 899 9 132 

99 215 163 104 844 94 

90 198 152 92 795 58 
82 183 142 81 751 
76 168 132 71 710 
69 156 123 62 673 
63 144 116 54 638 

58 133 108 46 606 
53 123 102 39 577 
48 114 95 32 550 
44 105 89 26 524 
40 96 83 20 501 

2305-2 

14569 
7140 
4663 
3425 
2682 

2187 
1833 
1568 
1361 
1196 

1061 
949 
853 
772 
701 

639 
585 
536 
493 
453 

418 
386 
357 
330 
305 

282 
261 
241 
223 
206 

3330 

12974 
6391 
4197 
3100 
2442 

2003 
1689 
1454 
1271 
1125 

1005 
906 
821 
749 
686 

631 
583 
540 
501 
467 

435 
407 
381 
357 
335 

315 
2961 
279 1 

262 
247 

8 
~ 
tr ..... 
CD 

p 
p . 
~ 
en 
en 
CIl 
M" 
o 
Ii 
~ 

ILl 
ct> 

o 
ct> 
<l ...,
(') 
ct> 

8 
11 
~ 
(') 
~ 

n 
~ 
"0 
~ 
(') 

1-" 
M" 
'< 



Table 12. Partial List of Prime Numbers 
(Part 1 of 2) 

r-------------------T---------------------, 
I I Nearest Prime I 
I I Number Less than I 
I Number I Number I 
~-------------------+---------------------~ 

500 
600 
700 
800 
900 

1000 
1100 
1200 
1300 
1400 
1500 
1600 
1700 
1800 
1900 
2000 
2100 
2200 
2300 
2400 
2500 
2600 
2700 
2800 
2900 
3000 
3100 
3200 
3300 
3400 
3500 
3600 
3700 
3800 
3900 
4000 
4100 
4200 
4300 
4400 
4500 
4600 
4700 
4800 
4900 
5000 
5100 
5200 
5300 
5400 
5500 
5600 
5700 
3800 
5900 

499 
599 
691 
797 
887 
997 

1097 
1193 
1297 
1399 
1499 
1597 
1699 
1789 
1889 
1999 
2099 
2179 
2297 
2399 
2477 
2593 
2699 
2797 
2897 
2999 
3089 
3191 
3299 
3391 
3499 
3593 
3697 
3797 
3889 
3989 
4099 
4177 
4297 
4397 
4493 
4597 
4691 
4799 
4889 
4999 
5099 
5197 
5297 
5399 
5483 
5591 
5693 
5791 
5897 L ___________________ ~ _____________________ J 

Table 12. Partial List of Prime Numbers 

94 

Table 12. Partial List of Prime Numbers 
(Part 2 of 2) 

r-------------------T---------------------, 
I I Nearest Prime I 
I I Number Less than I 
I Number I Number I 
~-------------------+---------------------~ 

6000 5987 
6100 6091 
6200 6199 
6300 6299 
6400 6397 
6500 6491 
6600 6599 
6700 6691 
6800 6793 
6900 6899 
7000 6997 
7100 7079 
7200 7193 
7300 7297 
7400 7393 
7500 7499 
7600 7591 
7700 7699 
7800 7793 
7900 7883 
8000 7993 
8100 8093 
8200 8191 
8300 8297 
8400 8389 
8500 8467 
8600 8599 
8700 8699 
8800 8793 
8900 8899 
9000 8899 
9100 9091 
9200 9199 
9300 9293 
9400 9397 
9500 9497 
9600 9587 
9700 9697 
9800 9791 
9900 9887 

10,000 9973 
10,100 10,099 
10,200 10,193 
10,300 10,289 
10,400 10,399 
10,500 10,499 
10,600 10,597 L ___________________ ~ ____________________ _ 



Figure 18 is a sample COBOL program that 
creates a direct file using method B (see 
"Randomizing Technique") and provides for 
the possibility of synonym overflow. 
Synonym overflow will occur if a record 
randomizes to a track that is already full. 
The following discussion highlights some 
basic features. Circled numbers in the 
program example refer to corresponding 
numbers in the text that follows. 

1. Since this randomizing teChnique (!) 
employs the prime number 829 as its 
divisor, the largest possible 
remainder is 828. By the interWction 
betw2en the TRACK-LI~ clause 2 and 
the SPACE parameter ~ , the pr gram 
formats 830 tracks (i.e., relative 
tracks 000-829). This establishes 
track 829 as the only track that can 
contain synonym overflow from track 
828. 

2. The DCB subparameter ~ OPTCD=E is 
specified. If a synonym overflow 
condition arises, an extended search 
will be employed, and the additional 
record will be written in the first 
available position on the following 
track(s). 

3. The DCB subparameter 0 LIMCT=5 is 
specified. This limits the extended 
search to five tracks. If no room is 
found within this limit, an invalid 
key condition results. A value should 
always be specified for the LIMcr 
subparameter when OPTCD=E is 
indicated. Otherwise, the default 
value of LIMCT, which is zero, will 
result in an error that will be 
treated as an exceptional input/output 
condition. 

Note: The randomizing technique chosen 
should minimize the number of synonym 
overflows for two reasons: 

1. The more extended search is employed 
during file creation, the more it will 
be required during record retrieval. 
Extended searches increase access time 
proportionately. 

2. When an extended search is employed. 
the adjusted value of the track 
identifier is not made available to 
the user after the execution of a 
WRITE statement. The user. tnerefore, 
has no way of knowing the track on 
which an overflow record is actually 
written. 

User File Processing 9S 



00001 
00002 
aooo) 
00<'04 
0000"1 
00006 
00007 
OOOOA 
nooog 
C0010 
00011 
0001.? 
'10011 
1)0014 
0001e; 
000lF 
1)"1017 
') 1)0 18 
()001g 
n0020 
1)1)021 
0"022 
1)0(')21 
"0024 
10025 
OOO?f; 
aoen 
f1CC2" 
1)002Q 
01)030 
(')0011 
(00)2 
O(')O)~ 

00011£ 
000 1 ') 

<'DOlI; 
1)00 1 7 
OOOlfl 
1;)C1Q 
"001£0 
00041 
I)f)04;? 
0104] 
0~044 
')0045 
,)()C46 
on047 
CC048 
1)1)')49 
COOSO 

00101 
00102 
0010) 
00104 
00105 
00106 
00107 
00108 
0010Q 
00110 
00112 

*.Qr103 
01)114 
0011S 
00116 
00117 
00118 
nOl H 
00120 
00121 
0012? 
01)201 
0020] 
0020 
C07.(':4 
OO~OS 
0(,)?06 

00207 
O()~Cq 

00710 
00211 
00212 
00213 
00214 

OOlCl 
0(') l04 
COlee; 
<'0106 
0')107 
Cl)1CA 
rlC10q 
onl0 
0" 1 1 , 
00)12 
0')11) 

00314 
nOll'; 
0(')16 

IDENTIPIC~TTON DIVISTON. 
fROGRAP!-ID. M~THOD B. 
ENVTRONP!ENT DTVI5ION. 
CONFIGURATION SECTION. 
SOURCE-CO"lPUT~H. IB!'l-)60. 
08JECT-CO~fUTEq. TRM-160. 
TNPnT-OUTPUT SECTION. 
FILE-CO\JTR01. 

SFLEC~ D-FItE ASSIGN DA-2314-D-~ASTRR 
ACCESS IS PANno~ ACTUAL KEY IS ACT-KEYeD 
TRACK-LH!TT IS AlD. • ·2 
5EtECT C-FTIF. ASSIG~ UT-S-CAROS. 

1')ATA DIVISTO"l. 
FlU: SEC'~Ir.N. 

PO f)-FltP. 
LABEL ~F.CORnS A~E S~ANnARD. 

01 D-REC. 
02 p~~T-nIJM PTC 1( (R) • 
02 Nry~-C~-HA"'n PIC Q(4). 
02 PRTCR PTC q(~}Vqq. 

02 FILP'R PTC X (181). 
FD C-FILE 

T. ~ A FL PEC 0 I) n S A ~ ~ 0 ~ T'!'T 'F. D. 
01 C-PEC. 

OJ P~~'T'-"'!"1 PTC X' (R) • 
o 2 N rJ ~ - ~ '" - ff 1\ '" D PI C q ( 4) • 
02 pqrc~ PTC q("I)Vqq. 
!'l2 'C'TLIER PTC X(61). 

WO~KIMG-~Tn~~GE ~FC~TON. 

77 SAV~ PIC ~q (q) CO"lP Sv"c. 
71 'JUO'l'P'NT "IC "q r<:;l CC'on' SYNC. 
01 ~CT-!<'F.Y. 

f)2 T~ACT<-Ifl PTC ~Q ('i) cr.~p SYNC. 
02 PRe-ID PTC Y (R) • 

pqOCE~UP~ nTvTsION. 
r)?~"1 np'J1' C-FTLE O'J'l'PUT O-P!t.E. 

DEAry C-'t'TLF A~ F~O ~o TO EaJ. 
"Inv~ r~PQF.~PO",ryI~~ c-pp.~ TC C-F~C. 

"I"VE PIIR'1"-'ftll'! OF C-RPC TO ~EC-Tr ~AVF. (;\ 
·HVT'1~ SAVJ:' flY q')q r.rVIsr; OT"JTTFNT PF.-H"IDER 'r'''ACT(-T'1.---0 

WQITES. 
EXqIqr~ ~~~J:'~ T?~~~-T~ C-P~C. 

wpr~E r-QFc T"IV~LID ~F.Y r.o Tn TnVALID-KEY. 
~') Tn p'C'An". 

nVH ID-f(fV. 

FOJ. 
DIS"lAV 'rNVALI~ ~EY 'TPArK-I~ PEC-In. 

CLOSE ~-FIL'C' ~-FTrp.. 

STOP RUJI. 

Figure 18. Sample Program for a Randomly Created Direct File (Part 1 of 2) 

96 



STEP STEP2 
I/STEP3 RXEC 
IISYSOU'!' OD 
I/SYSUDUMP 00 
11"1 AS'rER DO 
II 

TERPlINATEO. TIPIE 00.00 HR. HORTB/BR * 00.00.23.30 HR. PlIH.SEC. HDRTH/SEC*DATE 70.139 
PGPl=*.STEP2.SYSLPlCD 

SYSOUT=G (;\ 
SISOUT=! ~ 

SPACF= (TRK, (500,100) , RLSE) , X 
tCE=(OPTCD=E,lIPlCT=5},UHIT=2314 

~ '<D /ICAPD~ DO * 
II 

TRACK-In 00801 
TRACK-IO 00801 
T~ACK-I1) ooeOl 
"'RACJr-TD 00801 
TR ACK-IC 00031 
T~ACK-ID 00801 
'roACK-TD 0060i 
'I'BACK-TD 00801 
TPACK-TJ') OOAO 1 
TPACK-ID 00801 
'1"!UCK-TD 00801 
TRACK-II) 00801 
TRACK-ID 00801 
TRACK-In 00801 
TPACK-ID 00801 
"'RACK-TO 00801 
TPACK-ID 00801 
TRACK-IO 00000 
T'PACK-ID 00801 
TRAC~-IO 00801 
1'IHCK-Tr 00801 
'T'RACK-IO 00801 
"'RACK-Tr. 00809 
T?ACK-TD 00801 
TRACK-II: 00A01 
TRACK-It 00801 
TRACK-TO 00R01 
TRACf!:-!O 00801 
T~ACK-Ir 00A01 

C-REC A2900eOlcnl 
C-REC 82900e01C02 
C-BEe 82900801CD3 
C-REC 82<100801C04 
C-BEC 82900031 
C-REC A2CJOO801C05 
C-RFC 82900801CD6 
C-REe 82900801C07 
C-BEC 82900801C08 
(-BEC 82900801CD9 
C-REC 82900A01CD10 
C-REC A2900~OlCD11 
C-REC 82900f.f01CD12 
C-RE( 82900801C013 
C-BEC ="·8290080 lCOl 4 
C-REC 82qOO~01Cn15 

C-~FC 82900801C016 
C-FEC 929000003 
C-PEC 82QOOA01C017 
C-FEe 82900801C018 
C-REC 82900801CD19 
C-PEe 82900801C020 
C-BEC 8?QOO80Q 
C-PEC 82900801CD21 
C-RFC 8290CAQ1CD22 
C-REC 82QOOA01CD223 
C-PEC 82900801CD2Q 
C-HFC 82QOO801cn25 
c-p.~c 8?901)801Cn?6 

Figure 18. Sample Program for a Randomly Created Direct File (Part 2 of 2) 

User File Processing 97 



'..0 
':0 File 

Orpnizalion 

D 

W 

1lI1_ M.n_.,lIlenl Acc:ea 

Techniques Method 

BSAM SEQUENTIAL 

BDAM RANDOM 

BDAM RANDOM 

KEY OPEN 

o.u_ Statement 

ACTUAL INPUT 

1--- --- -
OUTPUT 

ACTUAL INPUT 

~-------
OUTPUT 

~---- - --
1-0 

ACTUAL 1-0 

Ace. 

Vir. 

READ [INTO) 

AT END 

.... - --- - -
WRITE (FROM] 

INVALID KEY 

SEEK 

READ (INTO] 

INVALID KEY 

--------
SEEK 

WRITE (FROM] 

INVALID KEY 

1--------
SEEK 

READ [INTO) 

INVALID KEY 

WRITE [FROM] 

INVALID KEY 

SEEK 

READ [INTO] 

INVALID KEY 

WRITE [FROM] 

INVALID KEY 

REWRITE [FROM) 

INVALID KEY 

CLOSE 

SlIItemellt 

(UNIT) 

(WITH LOCK] 

(WITH LOCK) 

[WITH LOCK] 

--

.-

o 
~. 

Ii 
(l) 
(') 
rt 
t'Zj 
~ . 
..... 
(l) 

ttl 
Ii 
o 
(') 
(l) 
CIl 
CIl 
~. 

::s 
I.Q 

o 
::s 
3: 
~ 
CIl 
CIl 

Cf.l 
rt 
o 
Ii 
~ 

I.Q 
(l) 

o 
(1) 

<: 
~. 

(') 
(l) 
CIl 



Table 14. JCL Applicable to Directly Organized Files 
r---------------------------------------------------------------------------------------, 
I I 
I DD Statement Parameters Applicable to BSAM Input Files I 
I I 
~------T--------T------------T------T-----T--------T-----T-----------------T------------~ 
IDSNA~EIDevice IUNIT VOLUME ILABEL I SPACE, SUBALLOC, SPLITI DISP I DCB I 

~~~----t;~~~----t~~~-~~~~i~~dt[~~-~~t-----t--------t-----t-{~~~-}-~I~~~~~--1 .. -t----~~------1 
I I Storage I if cataloged I SUL] I I na I I SHR • KEEP I I
I I required I I I I I I , CATLG \ I I
I I I I I I I I , DELETE I I
I I I I I I I I , UNCATLG I I
I I I I I I I I / I I
r--~------------1

~---~
I I
I DD Statement Parameters Applicable to BSAM output Files I
I I
~-------T--------T------------T------T-----T--------T-----T-----------------T------------~
I DSNAMEI Device IUNIT VOLUME ILABEL ISPACEISUBALLOCISPLITI DISP I DCB I
~------+--------+------------+------+-----+--------+-----+-------~---------+------------~
I as I Mass I as , [SL or I as I as I na I NEW (, KEEP) I [DSORG=DA] I
, IStorage I 'SUL] IRLSE I I I 1CATLG (10PTCD=[W,T] I
I I required I I I I I I). PASS (.' I I
I I I 'I I I I \' DELETE' I I
I , I I I I I I / I I
I I I I' I I I !!2!:~ : MOD not I I
I I I I I I I I meaningful I I
~------~--------~------------~------~-----~--------~-----~-----------------~------------~
~---~
I I
I DD Statement Parameters Applicable to BDAM Input and 1-0 Files I
I I
~------T--------T------------T------T-----T--------T-----T-----------------T------------~
I DSNAMEI Device IUNIT VOLUME ILABEL ISPACE,SUBALLOC,SPLITI DISP I DCB I
~------+--------+------------+------+-----+--------+-----+---------------~-+------------~
las I Mass Inot required I [SL orl I I I{OLD} (,PASS J las specifiedl
I IStorage lif catalogedlSUL] I I na I I SHR ',KEEP ~ lat file I
I I required I I I I I I 'i' CATLG 1 I creation I
I I I I' I I' , UNCATL I I
, I I I I I I I , DELETE I I
~------~--------~------------~------~-----~--------~-----~-----------------~------------~
~---~
I I
I DD Statement Parameters Applicable to BDAM Output Files I
, I
~------T--------T------------T------T-----T--------T-----T-----------------T------------~
I DSNAMEI Device IUNIT VOLUME ILABEL I SPACE I SUBALLOCI SPLITI DISP I DCB I
~------+--------+------------+------+-----+--------+-----+-----------------+------------~
las I Mass I as I [SL orlas las Ina I NEW {,KEEP] I [DSORG=DA] I
, Istorage I 'SUB] IRLSE I I I ,CATLG I OPTCD=[W,E) I
I I required I 'I I I I ,PASS ILIMCT=n I
I I I 'I I I I , DELETE I I
I I I 'I I I I !!2!:~:· MOD not I I
I I I I I I I I meaningful I I
t------~--------~------------~------i-----~--------~-----~-----------------i------------1
las = Applicable subparameters I
Ina = Not applicable I L ___ J

User File Processing 99

REL~TIVE FILE PROCESSING

Relative file processing is
characterized by the use of the relative
record addressing scheme. When this
addressing scheme is used, the position of
the logical records in a file is determined
relative to the first record of the file
starting with the initial value of zero. A
NOMINAL KEY is used to identify randomly
accessed records. Files with relative data
organization must be assigned to mass
storage devices.

r---,
1 Format 1
~---~
I I
INOMINA~ KEY IS data-name I
I 1 l ___ J

Data-name must be defined as an·
8-integer binary item whose value must not
exceed 16,777,215. NOMINAL KEY must be
defined in the Working-Storage Section.

The following example illustrates use of
the NOMINAL KEY clause:

r---,
ENVIRONMENT DIVISION.

NOMIN~L KEY IS THE-NOMINAL-KEY.

DATA DIVISION.

WORKING-STORAGE SECTION.
177 THE-NOMINAL-KEY PIC S9(8) COMP SYNC. l ___ J

The relative file processing technique
supports only unblocked fixed-length
records.

Figure 19 illustrates those parts of a
relatively organized file that are of
importance to a COBOL programmer. The
track format is similar to the format
described for directly organized files (see
section "Direct File Processing"). The
following is a list of significant
differences:

100

1. The records (R1, R2, ••• , Rn) are
formatted without a key area.

2. The COUNT area contains a record 1D:

a. 2 bytes containing the cylinder
number.

b. 2 bytes containing the read/write
head.

c. 1 byte containing a record number
from 1 through 255.

Records on mass storage devices will
always appear sequentially ranging from 0
to g, where g equals the highest key
contained in the file.

The following example illustrates the
relationship between the NOMINAL KEY and
the positioning of records on a mass
sto.[,dye device.

r---,
ENVIRONMENT DIVISION.

NOMINAL KEY IS THE-NOMIN~L-KEY.

DATA DIVISION.
FILE SECTION.
FD RELATIVE-FILE

L~BEL RECORDS ARE STANDARD.
01 REC-1 PIC X(80).

WORKING-STORAGE SECTION.

177 THE-NOMINAL-KEY PIC S9(8) COMP SYNC. l ___ J

consider REC-1 being written 50 times.
With each execution of the WRITE statement,
the content of THE-NOMIN~L-KEY is
incrementej by 1, from a through 49. Since
a 2311 mass storage device has room for
only twenty-five 80-character records on
each track (see "Determination of File
Space" in "Direct File Processing") REC-1
will be written as follows:

• Relative records 0 through 24 Nill be
on the first track.

• Relative records 25 through 49 will be
on the second track.

r---,
I INDEX 1
I POINT GAP 1
I I I RO Rl R2 1
I I I / ___ '~~~ 1
I I I r-------, r--------, r----------, r-----T----' I
I V I I TRACK I I CAPACITY I I I I 1 I I 1
I G I ADDRESS I G IRECORD I G I COUNT I DATAl G ICOUNTIDATAI G 1 I L _______ J L ________ J L _____ .l. ____ J L _____ .l. ____ J 1

I I L ___ J

Figure 19. Relatively Organized Data as it Appears on a Mass storage Device

r---,
I
I
I
I
list TRACK
I
I
I
I
12nd TRACK
I
I

Count Data Count Data Count Data
r-------T-----' r-------T-----' r-------T-----'

G 101,00,1IREC-ll G 101,00,2IREC-ll G 101,00,3IREC-lIG
I I (0) I I I (1) I I I (2) I L _______ .l. _____ J L _______ .l. _____ J L _______ .l. _____ J

r-------T-----' r-------T-----' r-------T-----'
G 101,01,lIREC-ll G 101,01,2IREC-ll G 101,Ol,3IREC-lIG

1 1(25) 1 I 1(26) 1 I 1(27) I
L _______ .l. _____ J L _______ .l. _____ J L _______ .l. _____ J

Count Data
r--------T-----'

GI01,00,25IREC-ll
I 1 (24) 1
L ________ .l. _____ J

r--------T-----'
GI01,01,25IREC-ll

1 1 (49) 1
L ________ .l. _____ J

L __ _

Figure 20. Sample Format of Two Tracks of a Relative File

If the two tracks assigned to RELATIVE FILE
are "cylinder 01 track 00" and "cylinder 01
track 01," they would appear as shown in
Figure 19.

It is important to note that information
about the length of each record, the
capacity of each track and the relative
record number, as indicated by the NOMINAL
KEY is used by the system to determine the
exact location of each record. As
indicated in Figure 20, the system converts
each relative record number into a unique
cylinder number, head number, and record
number, which are ~ritten in the count area
of each physical record.

Note: Since count areas do not appear in
1-0 buffers and there are no key areas,
buffer size need be onlv larae enouah to
accommodate data in REC:l. - -

sequential Creation

Relative files must be created
sequentially using the file processing
technique BSAM (Basic sequential Access
Method).

• The associated COBOL statements are
summarized in Table 15.

• The associated JCL statements are
summarized in Table 16.

Figure 21 illustrates the creation of a
relative data set.

Records in relative files, are arranged
sequentially in the order in which they
were written. The first record written is
relative record 0, the second record is
relative record 1, the nth record written
is relative record n-l.- A file containing
1000 records will thus contain relative
records 0 through 999. The clause that
allows the user to specify the relative
record needed is the NOMINAL KEY clause.

When a relative file is being cre~ted,
the NOMINAL KEY clause may be specified.

• If the NOMINAL KEY is specified and the
value in the NOMINAL KEY (when a WRITE
statement is executed) is greater than
the next sequential relative number,
the necessary number of dummy records
is written by the compiler so that the
actual record is written in the
specified relative position. If tne
NOMINAL KEY for a WRITE statement is

User File Processing 101

less than the next sequential relative
record number, the key is ignored and
the record is written in the next
available position.

• If the NOMINAL KEY is not specified,
the system begins writing at relative
record 0 and increments the relative
record number by 1 for each additional
WRITE statement. When the key is not
specified, the user is responsible for
insertion of dummy records. The only
time the compiler will add dummy
records is during the execution of a
CLOSE or CLOSE UNIT statement.

Note: Dummy records are identified by
the presence of the figurative constant
HIGH-VALUE in the first position of the
record.

The relative block number of the last
record written is placed in the NOMINAL KEY
after a WRITE, CLOSE, or CLOSE UNIT
statement, if the key is specified.

Once a file is created, more space
cannot be allocated and the extent of the
file cannot be increased. The only way to
add records to an already existing file is
to replace dummy records. Therefore, to
allow for future additions, the user should
create the file with as many excess dummy
records as desired.

The allocation of space to a relative
file (both single-volume and multivolume)
is similar to the allocation of space
described for a sequentially created direct
file. Highlights and essential differences
are discussed below:

• The relative file processing technique
does not include a TRACK-LIMIT clause.
Space allocation and formatting will,
therefore, be determined by an
interaction between the SPACE parameter
of the DD card and the number of
records written.

• The total number of tracks formatted
will be determined when the file is
closed. Dummy records will be added to
complete the current track, if
necessary.

• Tracks that are allocated but
unformatted, and have been requested in
track or block units, can be released
by specifying the RLSE subparameter on
the DD statement.

• When a unit of a multivolume file is
closed, all tracks that have been
allocated on the current unit are
formatted (initialized with dummy
records> before the next unit is made

102

available. The RLSE subparameter of
the DD statement applies only to the
allocated tracks at the end of a data
set.

Not~: In order to determine the amount of
space a data set requires, see Tables 9-11.

eeguential Reading

The file processing technique used to
read a relative file sequentially is BSAM
(Basic sequential Access Method).

• The associated COBOL statements are
summarized in Table 15.

• The associated JCL parameters are
summarized in Table 16.

When a relative file is being read
sequentially, the records are made
available in the sequence in which the
records were written. Dummy records are
also made available. The NOMINAL KEY, if
specified, will be ignored.

The file processing technique used to
read or update a relative file randomly is
BDAM (Basic Direct Access Method).

• The associated COBOL statements are
summarized in Table 15.

• The associated JCL statements are
summarized in Table 16.

Since a relative file cannot be created
randomly, the following restrictions exist:

1. The file cannot be opened as an output
file.

2. The WRITE verb is not permitted.

A relative file with EDAM can be opened
as input or 1-0. Records are made
available according to the contents of
NOMINAL KEY. If the user wishes to update
a file, it must be opened as 1-0. Records
can then be read into a single buffer,
updated in that buffer, and rewritten from
that buffer. If the user wishes to add
records to a file, the file must have been
created with excess dummy records. If
dummy records are present, the file can be
opened as 1-0 and dummy records can be

replaced by the additions. If dummy
records are not present, additions cannot
be made.

Note: Records cannot be deleted, but can
be replaced by dummy records.

Figure 21 illustrates several basic
characteristics of the relative file
processing technique. It creates a
relative file (R-FILE) using a card file
(C-FILE) as input. C-FILE consists of 11
cards in the following sequence:

Card
Number Card Contents

1 010 NAME01
2 020 NAME 0 2
3 030 NAME03
4 040 NAME 0 4
5 050 NAME 0 5
6 060 NAME 0 6
7 000 THIS CARD IS OUT OF SEQUENCE
8 070 NAME 0 7
9 080 NAME 0 8

10 090 NAME 0 9
11 100 NAME10

The program, during creation, exhibits
the contents of NOMINAL KEY after the
execution of each WRITE statement. After
creation f the relative file is closed,
reopened as an input file, and written out
on the printer. The following discussion
highlights some basic features. Circled
numbers in the program example refer to
corresponding numbers in the text.

1. The nominal keys, (il , that have been
exhibited contain ~ relative record
numbers of real records on the file.
Relative records 10, 20, 30, 40, 50,
60, 61, 70, 80, 90, and 100 are real;
all others are dummy records formatted
by a COBOL subroutine. Note the

2.

3.

4.

5.

nominal key N-KEY = 61. The initial
value taken from C-FILE, card 7, was
000. This value, however, was not in
logical sequence since relative
records 000 through 060 had already
been written. Therefore, a COBOL
subroutine ignored the value 000 and
adjusted it to the next appropriate
relative record number (i.e., 61).

The con~tts of N-KEY for the first
WRITE, 2 , was 10. This means that
a COBOL broutine formatted relative
records 0 through 9, placing the
constand HIGH-VALUE in the first
position of each record.

Note: The constant HIGH-VALUE is
exhibited as a blank since FF is not a
printable character.

The cont~ts of N-KEY for the second
WRITE, 3 ,was 20. Therefore, the
COBOL su routine formatted relative
records 11 through 19.

The con~ts of N-KEY for the seventh
WRITE, 4 ,was initially 000. As
explaine in step 1 , N-KEY was
adjusted to 61 and the record was
written in the next available
position.

Since this file was created on a 2311
mass-storage device, the track
capacity for R-FILE is 25 record per
track. Relative record 100 is,
therefore, the first record written on
track 4 (remember: the first 5 tracks
of a file are actually relative tracks
a through 4). Since the file is
closed after writing relative record
100, the COBOL subroutine formats the
rest of track 4. In this case, it
means the addition of 24 dummy
records, ®

User File Processing 103

00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
00028
00029
00030
00031
00032
00033
00034
00035
00036
00037
00038
00039
00040
00041
00042
00043
00044
00045
00046
00047
00048
00049
00050
00051

IDENTIFICATION DIVISION.
PROGRAM-ID. CREATER.

00101
00102
00103
00104
00105
00106
00107
00108
00109
00110
00111
00112
001125
001126
001127
00113
00114
00115
00116
00117
00118
001184 01
001185 FD
001186 01
00201 FD
00202
00203
00204
002041
002042
002043
002044
002045
002046
00205
00206
00207
00208
00209
00210
00211
00212
00213
00214
00215
00216
00217
00218
00219
00220
00230

REMARKS. ILLUSTRATE CREATION OF A RELATIVE FILE.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-360.
OBJECT-COMPUTER. IBM-360.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT R-FILE ASSIGN DA-2311-R-MASTER
ACCESS IS SEQUENTIAL
NOMINAL KEY IS N-KEY.

SELECT C-FILE ASSIGN UR-S-CARDS.
SELECT R-FILE2 ASSIGN DA-2311-R-MASTER.
SELECT PRTFILE ASSIGN UR-S-PRTOUT.

DATA DIVISION.
FILE SECTION.
FD R-FILE

LABEL RECORDS ARE STANDARD
RECORDING MODE IS F
DATA RECORD IS DISK.
DISK PIC X(80).
R-FILE2 LABEL RECORDS ARE STANDARD.
DISK2 PIC X(SO).
C-FILE
LABEL RECORDS ARE OMITTED
DATA RECORD IS CARD.

01 CARD.
02 C-KEY PIC 9(3).
02 FILLER PIC X(77).

FD PRTFILE LABEL RECORDS ARE OMITTED.
01 PRT.

02 FILLER PIC X.
02 FIELDl PIC X(132).

WORKING-STORAGE SECTION.
77 N-KEY PIC S9(8) COMP SYNC.
PROCEDURE DIVISION.

OPEN INPUT C-FILE
OUTPUT R-FILE.

Rl. READ C-FILE AT END GO TO EOJ1.
MOVE C-KEY TO N-KEY.
WRITE DISK FROM CARD.
EXHIBIT NAMED N-KEY. GO TO Rl.

EOJ1.
CLOSE C-FILE R-FILE.
OPEN INPUT R-FILE2 OUTPUT PRTFILE.

R2. READ R-FILE2 AT END GO TO EOJ2.
MOVE DISK2 TO FIELD1.
WRITE PRT AFTER 1 LINES GO TO R2.

EOJ2.
CLOSE R-FILE2 PRTFILE. STOP RUN.

Figure 21. Sample Program for Relative File Processing (Part 1 of 4)

104

lEF2R51 PPO[P'S1 P.SSED
lEF2851 VCl ~EP ~C~. l~'SI'.
IEF2!SI 5'56~lE~.1C~C~2~.A~CCC.AfllE.~11 tElETED
lEF28~t veL ~EP ~CS. '~1RES.
IEF28~1 ~Y~69184.TC3C423.AVOOO.AfllE.AJCB P.SSED
IEF2e~1 VCL 5E~ ~OS. ~~2222.
IEF2851 SYS1.cceLI! KEPT
IEF2E~1 VCL SEP ~DS· lS'SI'.
IEF28~1 S'S~~IE~.TC~C~2!.S~CCC.PFllE.PCOCCO!2 S'SCl1
IEF28SI VCL SE~ NDS. 231400.
IEF2!~1 S'S~~lE~.TC!(~23.P~COC.PfllE.F~C~ [ELETEC
tEF28S1 veL SEP NOS- ~~~222.
~TEP ~TEP2 TEA~I~'TEC. TI~E CO.CC tA.tCATt/tR • CC.CO.18.08 MA.'t~.SEC.HDRTH/SEC.C'TE 6~.184
IISTEP3 EXEC PG' ••• STEP2.S'5l~CC
IISVSCUT DC S~SCU1-'
II~YSlDU'P CC SV~CLT-'
II"'STEP DC l~IT·2!11,~CLU~E.SEP.C'C28,SF'CE.(TP~,(5.5)"CC~TIG). X
II CS~'ME.PfILE,CISP.(~E~,KEEPJ
IIPPTC~l CC S'~CLT.'
I/CARDS ["0 •
/I
IEF2361 'LLCC. FCP PFllE ~TEP!
IEF2!11 JeBLIB Ch 1~3
IEF2311 FG~ ••• CD CN I~C
lEF2311 CYSCLT Ch 23C
IEf2311 S'SlDl'F C~ 2!~
IEF2311 ~'STEP CN 1~~
IEF2311 PPl(ll (~2!C

IEF2~11 CARDS (~2!~

~-KE~ • (C(CCCIC
N-KEY • (COCCC2C
~-KEY • C0000030
N-KEY • (CCCCC~C
N-KEY z cccccc~c (;\1
N-KEY • COOOCO~C \!I
N-KEY • CCCCCC~l
N-KEY • COCOOClC
~-KE~ • cceCOC8C
N-KEY • ((CCCC~C
~-KEY • C000010C

10 NA"'EC1
10 ~A"'ECI
10 ~A"'E01
10 ~''''EOI
10 ~A"'E01 CD 10 ~AfIIEOI

10 UfllEOl
10 ~""E01
10 UfIIEOl
10 ~A~EC1

010 ~A"'E01
20 U"E02

!0
20 UfIIE02
20 ~'''EC2
20 ~A"E02
20 UfirE02
20 UJIIE02
20 UfIIEC2
20 NI~fC2
20 "'fIIEC2

Figure 21. Sample Program for Relative File Processing (Part 2 of 4)

User File Processing 105

ULU "."tUL
30 ~&"'EC3
30 "."'EC3
30 p.a"'EC3
30 "''''EC~ 30 "."'EC3
30 "''''EO 30 "'''EC~ 30 "'fIIEC3
30 "''''EC~

03C "''''EC3
40 """'E04
40 "'H04
40 "'H04
4C """E04
40 "'''E04
40 """E04
40 ".HOIt
40 "''''E04
4C "'HOI,

040 H04
50 "''''E05
50 ",,'E05
50 ".H05
50 "'''E05
50 "."'EOS
SO "''''EOS
Cia "."'EcJ'S
SO "''''EOS
SO "''''EOS

050 "'",EC5
60 "'EOe,
60 "'E06
60 ,.. .. EO~
60 "'He6
60 "',"Ee6
60 ","E06
60 "&HO~
60 ""'EOe,
6C "'HOe,

06('1 ","EC6
CD 000 HIS "fie IS Cll Cf SEQUE~CE

70 "''''E07
70 "''''E07
70 ,,''''E07
70 ".H07
70 ""'E07
70 ".HOl
70 "'H07
70 E07

070 ,,'H07
eo "''''Ece
eo ,,''''Eoe
eo "''''Eoe
eo ,,''''Eoe
eo "'''Eoe
80 "''''Ece
eo "''''Ee8
eo "E08
eo ""'Ece

oeo "''''Ee8
qO EOq
qO ","ECq
QO "''''ECq
C;C t<I'''ECC;
qO ","EOq

Figure 21. Sample Program for Relative File Processing (Part 3 of 4)

106

'10 ~."tO'f
C)O ~AfIIEOCjl

90 UfIIE09
90 U"EC9

OC)O ~AfIIEOc)

00 U"UO
00 ~."UO
00 U"UO
00 t.lll'E 10
00 ~A"UO
00 ~."UO
00 U"UO
00 UflElO
00 U"EIO

100 UII'E10
00 UII'ElO\
00 UtIIElO
00 U"E!O
00 U"ElO
00 U"ElO
00 ~.flUO
00 U"ElO
00 U"ElO
00 U"ElO
00 f\A"EIO
00 U"ElO
00 U"ElO ® 00 U"ElO
00 ~."ElO
00 U"ElO
00 UfiElO
00 UflElO
00 U"ElO
00 p.lfIElO
00 UII'ElO
00 U"ElO
00 ~A"EIO
00 ~AtIIElO

00 ~AtIIElO

Figure 21. Sample Program for Relative File Processing (Part 4 of 4)

User File Processing 107

f-""
o
00

Data Management

Techniques

BSAM

BDAM

Access

Method

SEQUENTIAL

RANDOM

KEY

aauses

INOMINALI

r----------

NOMINAL

NOMINAL

OPEN

Statement

INPUT

~- --- --
OUTPUT

INPUT

~------

INPUT

OUTPUT

Aeena CLOSE

Verbs Statement

READ [INTO] IUNITI

AT END IWITII LOCK I

-- - -- --
WRITE [FROM I

INVALID KEY

READ [INTO] [WITH LOCK]

INVALID KEY

- -----
RE.AD [INTO]

INVALID KEY

REWRITE [FROM)

INVALID KEY

Table 16. JCL Applicable to Relatively Organized Files
r---,
I I
I DD statement Parameters Applicable to BSAM Input Files I
I I
~------T--------T----T-------T------T--------------------T------------------T-----------~
I DSNAME\Device \UNIT\VOLUME \LABEL I SPACE, SUBALLOC, SPLIT I DISP \ DCB I
~------+--------+----~-------+------+--------------------+------------------+-----------~
I as I Mass I not required I [SL or I I {OLD} l' PASS II na I
I IStorage lif catalogedlSUL] I na I SHR ,KEEP I I
! I required I I I I, CATLG I I
I I I I I I, DELETE I I
I I I I I I, UNCATLG I I
~------~--------~------------~------~--------------------~------------------~-----------~
~---~
I I
I DD Statement Parameters Applicable to BSAM Output Files I
I I
~------T--------T----T-------T------T-----T--------T-----T------------------T-----------~
I DSNAMEIDevice IUNITIVOLUME ILABEL I SPACE I SUBALLOCI SPLITI DISP I DCB I
~------f--------f----~-------+------f-----f--------+-----f------------------f-----------~
las I Mass I as I [SL orlas las Ina I NEW I'KEEP i IOPTCD={W,Tll
I I Storage I I SUL] I RLSE I I I , CATLG I [DSORG=DA.] I
I I required I I I I I I , PASS I I
I I I I I I I I , DELETE I I
I I I I I I I I I I
I I I I I I I I Note: MOD not I I
I I I I I I I I meaningful I I
~------~--------~------------~------~-----~--------~-----~------------------~-----------~
~---~
I I
I DD Statement PARAMETERS Applicable to BDAM Input and 1-0 Files I
I I
~------T--------T----T-------T------T--------------------T------------------T-----------~
I DSNAMEI Device IUNITIVOLUME ILABEL ISPACE,SUBALLOC,SPLITI DISP I DCB I
~------+--------+----~-------+------+--------------------+------------------+-----------1
las IMass Inot requiredl[SL orl I{OLD} 1,PASS i las has beenl
I IStorage lif catalogedlSUL] I I SHR ,KEEP I specified I
I I required I \ I na I , CATLG I I
I I I I I I, UNCATLG I I
I I I I I I, DELETE I I
~------~--------~------------~------~--------------------~------------------~-----------1
las = Applicable subparameters I
Ina = Not applicable I L ___ J

User File Processing 109

INDEXED FILE PROCESSING

The indexed file processing technique
arranges records on the tracks of a
mass-storage device in a sequence
determined by keys. The key is a control
field that is a physical part of the record
(defined in the FD) and is specified by the
RECORD KEY clause in the Environment
Division. The RECORD KEY clause identifies
for the compiler the location and length of
that item within the data record that will
contain the key. It must always be
specified.

r---,
I Format I
~---~
I I
I RECORD KEY IS data-name I
I I L ___ J

Qata-name may be any fixed-length item
from 1 through 255 bytes in length.

When two or more record descriptions are
associated with a file, a similar fiel~
must appear in each description, and must
be in the same relative position from the
beginning of the recor~, although the same
data-name need not be used for both files.

Data-name must be defined to exclude the
first byte of the record in the following
cases:

1. Files with unblocked records.

2. Files from which records are to be
deleted.

3. Files whose keys might start with a
delete-code character (HIGH-VALUE).

With these exceptions, the item
specified by data-name may appear anywhere
within the record.

The position of each logical record in a
file is determined by indexes created with
the file and maintained by the system. The
indexes are based on the RECORD KEYS and
provide the following capabilities:

• Write and later read or update logical
records in a sequential, ascending
order (using QIS~M) based on the
collating sequence of the keys. This
is done in a manner similar to that for
sequential organization.

• Read or update individual logical
records in a random manner (using
BISAM). This method is somewhat slower
per record than reading according to a
collating sequence, since a search for
pointers in indexes is required for the
retrieval of each record.

• Insert new logical records at any point
within the file (using BISAM). Using
the indexes, the system locates the
proper position for the new record and
makes all necessary adjustments so that
the sequence of the records, according
to the keys, is maintained.

There are two basic types of indexes:
track indexes and cylinder indexes. There
is one track index for each cylinder in the
prime area (see "Indexed File Areas" for a
description of prime area). The track
index is written on the first track of the
cylinder that it indexes. Each entry in
the track index contains the identification
of a specific track in the cylinder and the
highest key on that track (Figure 22).

Figure 22 is the representation of a
track index with the following areas:

Home Address -- This field defines the
----physical location of the track in

which the index appears. It
indicates the cylinder in which the
track is located and the read/write
head that services the track.

r---,
I RO Normal Overflow Normal Overflow I
I ~ 1
I r----' ~ r~ f~' r-----T----' r~' I
I 101001 ICoeRI 100010100011 100010100011 100025100021 100025100021 I
I L ____ J L ____ J L _____ .l ____ J L _____ .l ____ J L _____ .l ____ J L _____ J. ____ J 1

1 Horne Key Data Key Data Key Data Key Data I

I ~ddress I L ___ J

Figure 22. Track Index

110

£OCR <Cylinder Overflow Control Record)
-- When a cylinder overflow area is
specified (see "Indexed File ~reasn
for a description of overflow
areas), RO of each track index is
used to keep track of overflow
records and space available in the
cylinder overflow area.

Normal Entry -- There is one normal and
one overflow entry for each usable
track in the cylinder. The Normal
Entry contains two areas:

• Key -- the key of the highest
record on the track specified in
the Data area

• Data -- the horne address of one of
the prime tracks in the cylinder

Figure 22 shows that the highest key
on track 1 is 10 and the highest key
on track 2 is 25.

Overflow Entry -- The overflow entry is
originally the same as the normal
entry. It is changed when an
attempt is made to add a record to a
prime track on which space is no
longer available. In this case, the
overflow entry keeps track of the
logical sequence of records although
physically the record may be added
to an overflow area.

There is one cylinder index for each
file in which prime area data occupies more
than one cylinder. The cylinder index
contains one entry for each cylinder in the
prime area; each entry pointing to the
track index for a particular cylinder
(Figure 23).

r---,
I I
Ir-----T----' r-----T----' r-----T----' I
1100500 I 0000 I 100945100011 101550 I 00021 ••. I
J L _____ ~ ____ J L _____ ~ ____ J L _____ ~ ____ J I
I Key Data Key Data Key Data I

i "'CYlindJ address / i
I I L ___ J

Figure 23. Cylinder Index

The cylinder index is formatted in the
same fashion as the track index. Figure 23
shows that the highest key on cylinder 0 is
500, the highest key on cylinder 01 is 945,
the highest key in cylinder 02 is 1550,
etc.

Notg: If an indexed file is being read
randomly, the system locates the given
record by its key after a search of the
cylinder index and the track index within
the indicated cylinder. If the file is
being read sequentially, starting, with the
first record, no index search is performed.

Records, in indexed files, may be either
blocked or unblocked; but must be F-mode
records. Figures 24 and 25 illustrate
blocked and unblocked records as they
appear on prime tracks of mass storage
devices.

BLOCKED RECORDS

~Q~gt: contains control information

~gy: contains the key of highest record in
the block

Q~t~!lL_~_~~L_~L: each contains the
information defined in the FDi including
its own record key.

r---,
I r-------T-----T-------T-------T-------, r-------T-----T-------T-------T-------, I
I I COUNT t KEY I DATAl I DATAl I DATA3 I J COUNT I KEY IDATA4 I DAT~5 I DATA6 I I I L _______ ~ _____ ~ _______ ~ _______ ~ _______ J L _______ ~ _____ ~ _______ ~ _______ ~ _______ J I

I ------.. ~ ---- ----- ---- I --------------~------.. -------I I
I I
J 1st Block 2nd Block J L ___ J

Figure 24. Blocked Records on an Indexed File

User File Processing 111

r---,
I I
I r-----T---T-----' r-----T---T-----' I
, ! COUNT! KEY! DATAl I !COUNTIKEYIDATA21 I I L _____ ~ ___ L _____ J L _____ L~-~-----J I
I ~ I
I 1st Block 2nd Block I l ___ J

Figure 25. Unblocked Records on an Indexed
File

UNBLOCKED RECORDS

Coun~: contains control information

Key: contains the key of the record that
is in the block.

Qata_ilLL (2), etc.: each contains the
information defined in the FO; including
its own record key.

Indexed File Areas

The programmer specifies the structure
of an indexed file and space to be
allocated for it in the DO statement for
the file when the file is created. In some
instances, more than one DD statement is
required. (These DO statements are
described in "Using the DD Statements
Sinqle Volume Files.") The space being
allocated must be divided into one, two, or
three areas, depending on the needs of the
programmer. These areas are: prime area,
index area, and overflow area. The
overflow area is optional.

~rim~ Are~: The prime area is the area in
which data records are written when the
file is created or reorganized. These
records are in a sequence determined by the
record keys. The track indexes also use a
portion of the reserved prime area. To
reserve prime area space so that new
logical records may be inserted without
forcing records into an overflow area
(described below), dummy records (records
containing the figurative constant
HIGH-VALUE in the first character position)
may be written when the file is being
created. The prime area may span multiple
volumes and may consist of several
noncontiguous areas.

Index Area: The index area contains the
cylinder indexes and, if requested, master
indexes (described later) for the file.
This area exists for any file that has a

112

prime area on more than one cylinder.
Space for this area will be allocated
separately from the prime area if
specifically requested. The index area
must be contained within one volume, but
that volume need not be the same device
type as the prime area volume. If not
specifically requested, the index area will
automatically be constructed in the
independent overflow area, or, if there is
no independent overflow area, it is
constructed in the prime area.

Overflow Area: The overflow area is the
area in which space is allocated for
records forced from their original <prime)
tracks by the insertion of new recor3s.
The fact that some records are stored in
these areas, physically out of sequence,
does not change the ability of QISA~ to
read the file in a logical sequence. An
overflow area need not be specified if
records are either not going to be added to
the file, or sufficient space was
originally reserved by writing dummy
records in the prime area.

There are three ways in which space for
an overflow area may be allocated:

1. Cylinder Overflow (Figure 26). Tracks
on each cylinder can be reserved to
hold the overflow of that cylinder
(cylinder overflow option).

2. Independent Overflow (Figure 27).
Space may be requested for an
independent overflow area, using the
dsname (OVFLOW) DO statement, either
on the same volume or on a separate
volume of the same device type as that
of the prime area.

3. If the prime area is not filled when
the file is created, the space
remaining on the last cylinder on
which data has been written will be
designated as an independent overflow
area (even though it is not requested
directly). If a separate independent
overflow area is requested, the
remainder of the prime area is
available for resuming a load
operation.

Additional information about indexed
file structure is contained in the
publication IBM OS Data Management
~~;:Y!£~~·

r---,
\ \ \ I I I I I
\CYLO\CYL1\CYL2\CYL3\CYLij\CYL5ICYL61
~----+----+----+----+----+----+----~
I \ ,Track Indexes, I I
~----+----+----+----+----+----+----~ , , , , , \ \ \
I , I , , , , \
I Prime Area I
\ I I 1
I I' 1
I I I 1
I I , , I I I I
~----~----~----~----+----+----+----~
Iii iii 1 1
\ Cylinder Overflow Area I
I I 1 I I I I I L ____ ~ ___ ~ ____ ~ ____ ~ ____ ~ ____ ~ ____ J

L __ _

Figure 26. Cylinder Overflow Area

An advantage of having a cylinder overflow
area is that additional seek operations are
not required to locate overflow records. A
disadvantage is that there will be unused
space if additions are unevenly distributed
throughout the file.

r---,
\ I I I I I I I
\ 1 I I I' I I
ICYLOICYL1ICYL21CYL31 ICYLX ICYLY I
~----t----+----+----~ ~--~--+-----~
1 Track Indexes I I I' I
~----+----+----+----~ 1 I I
1 1 I I I I· -I I
I Prime Area 1 ~Independentl

I 1 1 I I I Overflow I
I 1 I I 1 I Area I
I 1 1 I I I I 1 L ____ ~ ____ ~ ____ ~ ____ J L _____ ~ _____ J

Figure 27. Independent Overflow Area

An advantage of having an independent
overflow area is that less space need be
reserved for overflows. A disadvantage is
that accessing overflow records requires
additional seek operations.

A suggested approach is to have cylinder
overflow areas large enough to contain the
average number of overflows caused by
additions and an independent overflow area
to be used as the cylinder overflow areas
are filled.

Creating Indexed Files

Indexed files must be created
sequentially using QISAM (Queued Indexed
Sequential Access Method). Records must be
arranged and written in ascending order
according to the contents of RECORD KEY.
If a WRITE statement is executed and the
current contents of RECORD KEY is less than
or equal to the previous contents of RECORD
KEY, an INVALID KEY condition will result.

The structure of an indexed file, and
the space to be allocated to it, is
specified in a DD statement(s). The space,
which can be allocated in several different
ways, must be sufficient for all areas of
the file.

QQ_~!~!~~~~g~QQ!RE~~!~_~Qg_!~Q~~~Q
~!~~~: The special parameter requirements
for DD statements that define new indexed
files are discussed below. rhe discussion
is oriented to indexed files on one volume.
Many of the parameters used for creating
multivolume files are not discussed here.
For more detailed information about
parameters for both single-volume and
multivolume files, see either of the
publications !~~_Q~_~Q~£Q~~EQ!~~~g~~g~
g~f~E~~£~ or !~~_Q~_~QQ_£Qrit~Ql_~~~g~~g~
~EQgE~~~er~~~~id~.

ddname (name field)
The name field of the first or only DD
statement defining the indexed
sequential file can contain the
symbolic identification ddname or
procstep.ddname. Succeeding DD
statements for the file must not be
nameda

DSNAME (DSN)
This parameter must be specified and
is coded as follows:

~DSNAME~ __ {dsnamel [(element)]
DSN &&name

The first subparameter, dsname, or
&&name must be the same in all the DD
statements defining one data set. The
element subparameter, INDEX, PRIME, or
OVFLOW, indicates the type of area
defined by the DD statement. If more
than one DD statement is used to
define a file, the order in which the
statements should be placed in the
input stream is as follows:

DD DSNAME=dsname(INDEX)
DD DSNAME=dsname(PRIME}
DD DSNAME=dsname(OVFLOW)

User File Processing 113

SPACE

SPLIr

DISP

DCB

114

Deviation from this sequence results
in abnormal termination of the job.
If the element subparameter is omitted
PRIME is assumed. Note that an
indexed file cannot be specified by
statements containing only index and
overflow elements.

This parameter specifies the space to
be allocated for each of the separate
areas on the device and must be
included. Only cylinder (CYL) or
absolute track (ABSTR) requests are
permitted, and with ABSTR the
designated tracks must encompass an
integral number of cylinders. All the
DO statements defining one indexed
file must specify the same
subpararneter, either CYL or ABSTR.
When all the DD statements specify
CYL, all must also specify or omit
CONTIG, depending on whether the space
allocated is to be contiguous or
noncontiguous. The directory or index
quantity subparameter of the SPACE
parameter is used to request the
number of cylinders to be allocated
for an index area embedded within the
prime area (see "Space Parameter" in
"Job Control Procedures"). An
embedded index resides in the middle
of a track and saves searching time by
first determining which half of the
track contains the requested record.

This parameter should never be
specified for an indexed file, either
for sharing a cylinder with indexed
files or for sharing it with an
indexed file and another type of file.

This parameter is written as it would
be for any new file that cannot be
cataloged. The CATLG subparameter
must not be specified unless only one
DD statement is used to allocate the
file space (see "Cataloging Files" for
additional information about
cataloging indexed files).

This parameter must be specified for
each DO statement and is coded as
follollis:

DCB=(DSORG=IS
[,BUFNO=integerl
[,OPTCD={YIIIRIWILIMIU,NTM=integer}]
[,BLKSIZE=integer])

The DSORG=IS subparameter is required
and indicates that the organization of
the file is sequential. The DCB
subparameters of all the DD statements
defining one file must not conflict.

For example, if the OPTCD=Y
subparameter appears in the first DD
statement, the subsequent DD
statements should also contain
OPTCD=Y. To avoid any errors, code
all the DCB subparameters on the first
DD statement. Code DCB=*.ddname on
the remaining statements; ddname is
the name of the DO statement that
contains the DCB subparameters. The
subparameters are discussed below.

BUFNO=number of buffers
This subparameter is used to specify
the number of buffers to be assigned
to the file if no RESERVE or SAME AREA
clause is specified for the file in
the source program. rhe maximum
number is 255; however, the maximum
number allowed for an installation Iray
differ and is established at system
generation time.

OPTCD=options
This subparameter is used to tell the
system that certain additional
facilities are to be provided for this
file. Any combination of the
following options can be specified for
the OPTCD subparameter. If more than
one option is specified, the options
are written as a character string
(i.e., without intervening commas or
blanks). Note that if certain of
these options are used, an additional
subparameter must also be specified as
indicated. In addition to the
information supplied, the following
default services are provided: (1)
the COBOL compiler will supply
OPTCD=L; and (2) in the case of an IBM
2321 mass storage device, the
operating system will supply OPl'CD=W.

• OPTCD=L: This option requests
that the control program delete
marked records. Marked records
will be deleted when space for
new records is required.

• OPTCD=Y: This option requests
that a cylinder overflow area be
created. It specifies that a
certain number of tracks on each
cylinder are to be reserved to
contain any overflow records
from other tracks on that
cylinder. Another DCB
subparameter, CYLOFL=xx, must
also be written. The xx
specifies the number of tracks
on the cylinder to be reserved
for the overflow area. The
maximum number is 99.

• OPTCD=I: This option requests
that an independent overflow
area be reserved. It is used in

conjunction with DSNAME=dsname
(OVFLOW) parameter in the DD
statement used to allocate the
independent area.

• OPTCD=M: This option requests
that a master index be created
(see "Master Index" for a
discussion of master indexes).
Another DCB subparameter,
NTM=xx, must also be written.
It specifies the maximum number
of tracks to be contained in the
cylinder index before a higher
level index is created. The
maximum value that can be
specified is 99.

• OPTCD=R: This option requests
reorganization criteria
feedback, as described in
"Reorganizing Files."

• OPTCD=W: This option requests
the system to perform a write
validi ty check.

• OPTCD=U: This option requests
that track index entries be
accumulated in core storage
until there are enough entries
to fill a track. when the track
is full all the entries will be
written out. If enough core
storage cannot be obtained
entries will be written two at a
time.

The following is an example of how
the OPTCD subparameter can be used:

DCB=(DSORG=IS,OPTCD=M,NTM=20)

The foregoing example requests that a
master index be created when the
cylinder index exceeds 20 tracks.

BLKSIZE=integer
specifies the blocksize. This clause
is used only if BLOCK CONTAINS 0
RECORDS was specified at compile time.

Note: Figure 28 shows the parameters that
may be used in a DD statement when
processing indexed files opened as output.
Additional information about indexed file
structure is contained in the publication
IB~OS Qata Ma~~ement Services.

Q~ig~ the DD Statements -- Single-Volume
Files: The following examples refer to
files that can be contained on one volUme.
Additional information about DD statements,
including details on multivclume file
allocation, can be found in the publication
IBM OS Job Control Language Reference.

All three areas for an indexed file can
be contained on a single volume if they are
small enough. If such is the case and the
programmer elects to allow the system to
subdivide storage into the prime and index
areas when the file is created, he need
only code the following DD statement:

//ddname DD
//
//
//

DSNAME=dsname(PRIME) ,
SPACE=(CYL, (no. of
cylinders», UNI'I'=unit,
DCB=(DSORG=IS, •••)

x
X
X

The DD statement given will produce a prime
area with the index area occupying the last
cylinder(s' of the space in the prime area.
If any track(s) remain on the last cylinder
after the index area, they are used as an
independent overflow area; if no track(s)
remain, an overflow area does not exist.

If the programmer definitely wants an
independent overflow area, he must provide
a second DD statement as follows:

//ddname DD
//
//
//
//
// DD
//
//
//
//

DSNfu~=dsname(PRlME),

SPACE=(CYL, (no. of
cylinders»,UNIT=unit,
VOLUME=SER=222222,
DCB=(DSORG=IS,OPTCD=I, •••)
DSNAME=dsname(OVFLOW),
SPACE=(CYL, (no. of
cylinders»,UNIT=unit,
VOLU~£=SER=222222,

DCB=*.ddname

X
X
X
X

X
X
X
X

These DD statements will produce a prime
area and a separate overflow area with the
index area at the end of the overflow area.
All three areas reside on the same volume.

Note: When more than on DD statement is
used, only the first can be named. The
others must not have a data definition name
(ddname) but all must have the same data
set name (dsname).

User File Processing 115

r--------T--------------------------------,
Iddname I ddname used only for first DD I
I I statement of each file I
t--------t--------------------------------,
IDSN~ME I)dsname{ (INDEX) I
I (DSN) I l&&name~ (PRIME) ,
I' (OVFLOW) I
I 'Not~: If more than one DD I
I Istatement is used, elements ,
I Imust be in this order. ,
t--------t--------------------------------~
I Device IMass storage required I
t--------+--------------------------------~
I UNIT IDEFER not permitted ,
t--------t--------------------------------~
ISEP, AFFIRestricted, see "Job Control ,
I I Procedures" I
t--------t--------------------------------~
I VOLUME IVolume sequence number subparam-I
I , eter not applicable I
t--------t--------------------------------~
I LABEL ,SL ,
t--------t--------------------------------~
I SP~CE 'CYL , ••• [" CONTIG] ,
I , ABSTR I
t--------+--------------------------------~
ISUB~LLOC'Not applicable ,
t--------t--------------------------------~
I SPLIT INot applicable I
t--------+--------------------------------~
I DISP I ~KEEP J ' , , NEW1 , P~SS ,
I' ,DELETE,
t--------t--------------------------------~
I DCB2 ,Required: DSORG=IS ,
I ,Optional: BUFNO=xxx BLKSIZE=xxxxl
I I OPTCD={WIM!YII!R!L!U} I
t--------i--------------------------------~
11 MOD not meaningful. CATLG allowed only I
I if all areas are allocated with a single!
I DD statement ,
!2The DCB parameter should be the same for!
I each DD statement , L ___ J

Figure 28. DD Statement Parameters
Applicable to Indexed Files
Opened as Output

If the programmer desires more control
in the placement of the index area, he can
subdivide storage befo~e the data set is

created by providing another DD statement
as follows:

//ddname DO DSN&¥.:E=dsname (INDEX) ,
/1 SPACE=(CYL, (no. of
// cylinders»,UNIT=unit,
// VOLUME=SER=333333,
/1 DCB=(DSORG=IS, ••• ~

// DD DSNAME=dsname(PRIME),
/1 SPACE=(CYL, (no. of
/1 cylinders».UNIT=unit,
/1 VOLUME=SER=333333,
1/ DISP=(disp),DCB=*.ddname

These DD statements will produce two
separate areas: index and prime. Each
area is on the same volume.

X
X
X
X

X
X
X
X

If, along with more control of his
index, the programmer wishes an independent
overflow area, a third DD statement
(OVFLOW) can be specified, as detailed
earlier. The sequence will be:

I/ddname DD
// DD
1/ DD

DSN~ili=dsname(INDEX), •••
DSNAME=dsname(PRI~E), •••
DSNAME=dsname(OVFLOW), •••

These DD statements will produce three
separate areas: index, prime, and
overflow.

Note that the OPTCD subparameter of the
DCB parameter in each of the DD statements
must specify an independent overflow area
(OPTCD=I). All three areas reside on the
same volume if so specified in the VOLUME
parameter.

Note: The sequence of the DSNAME parameter
elements in all of the foregoing examples
must be followed when placing the DD
statements into the input stream, or an
abnormal termination of the job will
resul t.

The example in Figure 29 defines a new
indexed file that consists of three
separate areas. All three areas reside on
the same volUme. The volume is on an IBtt
2311 Disk Storage Drive.

r---,
, /IFILE DO DSN~ME=ISM(INDEX),UNIT=2311,SP~CE=(CYL, (1», X I
I II VOLUME=SER=llllll,DCB=(DSORG=IS,OPTCD=I, •••) I
I 1/ DD DSNAME=ISM(PRIME),UNIT=2311,SP~CE=(CYL, (5», X I
I II VOLUME=SER=111111,DISP=(,KEEP),DCB=*.FILE I
I 1/ DD DSNAME=ISM(OVFLOw),UNIT=2311,SPACE=(CYL, (1», X I
I II VOLUME=SER=111111,DISP=(,KEEP),DCB=*.FILE I L ___ J

Figure 29. Example of DD Statements for New Indexed Files

116

Cataloging Files: An indexed file can be
cataloged if:

• All the areas of the file are allocated
with a single DD statement. such a
file is cataloged in the usual manner
by specifying the DISP parameter in the
DD statement:

DISP=(NEW,CATLG)

• The areas are allocated with more than
one DD statement, but all volumes are
on the same type of device. Such a
file is cataloged using the IEHPROGM
utility program (see the publication
IBM OS Utilities).

An indexed file that is being created
cannot be cataloged if its areas are on
different device types. An existing
indexed file cannot be cataloged through
the specification of the CATLG subparameter
of the DISP parameter in the DD statement.

Note: The DD statement(s) defining a new
or existing indexed file can appear in
cataloged procedures.

Calculating Space Reguirements: To
determine the number of cylinders required
for an indexed file, the programmer must
consider the number of records that will
fit on a cylinder, the number of records
that will be processed, and the amount of
space required for indexes and overflow
areas. In making the computations,
additional space is also required for
device overhead.

Note: The allocation of space to the
different areas of an indexed file is
permanent. New allocations can be achieved
only by recreating the file. It is,
therefore, important to remember:

• Unused space on the last cylinder on
which data was written, in the prime
area, is converted to an independent
overflow area. Space allocated in
excess of this cannot be released and
will be wasted.

• Excess space allocated to overflow or
index areas cannot be released.

Detailed information on space allocation
can be found in the publication !~~_Q§_Q~t~
Management Services.

Master Index: QISAM provides a master
index facility to avoid inefficient serial
searches of large cylinder indexes. The
master index provides an index to the
cylinder index. The programmer can specify
with the DCB parameter in his DD

statement(s) (see "DD Statement
Requirements for Indexed Files" in
"Creating Indexed Files") that a master
index be built if the size of a cylinder
index exceeds a certain number of tracks.
Each entry in the master index points to a
track of the cylinder index. If the size
of the master index exceeds the nunber of
tracks specified in the NTM parameter of
the DD statement, the master index is
automatically indexed by a higher level
master index. Three such higher level
master indexes can be constructed.

COBOL Considerations: When creating
indexed files, the QISAM file processing
technique is used. The followinq COBOL
programming considerations should be noted:

• RECORD KEY Clause. The RECORD KEY
clause in the SELECT sentence of the
Environment Division is required. It
is used to specify the location of the
key within the record itself. If the
RECORD KEY clause has a PICTURE clause
that specifies that the item is binary
(COMPUTATIONAL>, zero is the lowest
number acceptable as the first record.
A negative key is considered to be
larger than a positive key; therefore,
if a record is inserted into the file,
a negative key would place the record
after tho$€ records with positive keys.

• Dummy Records. To reserve space for
records to be added at a later time,
when creating indexed files, dummy
records can be written with the delete
code (the figurative constant
HIGH-VALUE) in the first byte. Dummy
records and their deletion are
described in "Using the WRITE
Statement."

• Required and optional COBOL statements
are summarized in Table 17.

Readigg or Updating Indexed Files
§gg~g!!ti~llY

QISAM can be used to read or update an
existing indexed file. Adding a record to
an already existing file, however, can be
done only with BISAM (see "Accessing an
Indexed File Randomly").

When QISAM is used to read an input
file, the READ statement makes available
one logical record at a time in an
ascending sequence determined by the record
keys. Durr~y records are not made
available. If there are records in the
overflow area, this sequence will not
correspond exactly to the physical sequence
of the records in the file. The file must
have been created using QISAM.

User File Processing 117

When QISAM is used to update an 1-0
file, the READ and REWRITE statements
permit updating-in-place or deletion of a
logical record. Logical records are read
sequentially.and may be either updated and
re~ritten, or re~ritten unaltered, from the
same area. Alteration of record length or
insertion of new records is not permitted.
A logical record is marked for deletion by
moving the figurative constant HIGH-VALUE
into the first character position of the
record and then using the REWRITE
statement. Records in the file that
contain this deletion code are not made
available on input.

The discussion that follows is primarily
concerned ~ith indexed files that can be
contained on a single volume. Additional
information about processing existing
indexed files accessed sequentially,
including multivolume files, can be found
in the publication !§M os JOb_QQgt~Ql
~ang~aqe Reference.

Parameter Requirements: In the DD
statement(s) indicating an existing indexed
file, the follo~ing differences and
requirements should be noted:

DCB
The DSORG=IS subparameter must be
specified, whereas the BUFNO
subparameter is optional. The OPTCD
field must not be specified again.
Any OPTCD subparameter facilities that
~ere specified when the file was
created are in effect as long as the
data set exists. For example, if the
programmer specified the
~rite-validity check option (OPTCD=W)
when he created the file, the option
is still in effect at the time of any
subsequent WRITE statement. The
BLKSIZE subparameter must not be
specified. LRECL does not have to be
specified if it already exists in the
data set label.

DSNAME (DSNJ

DISP

This parameter is written
DSNAME=dsname. The element
subparameters (INDEX, PRIME, OVFLOW> ,
must not be ~ritten.

The first subparameter must be OLD.
The second subparameter cannot be
CATLG or UNCATLG (see "Cataloging
Files" above for more information on
cataloging indexed files).

~ote: For further information about
Indexed parameters, see "DD Statement
Requirements for Indexed Files" in
"Creatinq Indexed Files."

118

Only one DD statement is needed to
specify an existing file if all of the
areas are on one volume. The following is
an example of a DD statement that can be
used when processing a single-volume QISAM
file.

//ddname
//
//

DD DSNfu~=dsname,

DCB=(DSORG=IS, ••• J,
UNIT=unit,DISP=OLD

Further details about DD statements for
existing single-volume and multivolume
indexed files can be found in the
publication IBM OS Job Control Lan~~~g~
Reference.

X
X

~Qt~: Figure 30 shows the parameters that
may be used in a DD statement when
processing indexed files opened as input or
1-0. Additional information about indexed
file structure is contained in the
publication IBM OS Data Management
§.~!:Y!.£~~ •

Reorganizing Files: As new records are
added to an indexed file, chains of records
may be created in the overflow area if one
exists. The access time for retrieving
records in an overflow area is greater than
that required for retrieving records in the
prime area. Input/output performance is,
therefore, sharply reduced ~hen many
overflow records develop. For this reason,
an indexed file can be reorganized as soon
as the need becomes evident. The system
maintains a set of statistics to assist the
programmer when reorganization is desired.
These statistics are maintained as fields
of the file's data control block. Iney arE
made available when APPLY REORG-CRITERIA is
specified. If these statistics arp
desired, the OP'I'CD subpararr,et.E:r of the DCB
parameter must have included the OPICD=~
parameter in each of the DD statements when
the file was created. Additional
information about reorganizinq files is
contained in the publication IBM OS Data
~~g~gement services.

§.~g~~gt!.al_ggtE!.gY~l_Q~!.gq_th~_§.!~g!
Statement: For indexed INPUT and I-a
fIles~-retrieval starts with the first
nondummy record in the file. If the
programmer wishes to begin processing at a
point other than the beginning of t.he filer
he can do so through the use of the START
verb. When the START statement is used,
the retrieval starts sequentially from t.he
record specified in the NOMINAL KEY.

r--------T--------------------------------,
\ddname \ ddname used only for first DD I
\ I statement of each file I
~--------t--------------------------------~
\ DSNAME \ dsname \
\ \ I
\ \Note: Element subparameter must \
\ \ not be used. I
~--------t--------------------------------~
\ Device \Mass storage required \
~--------+--------------------------------~
IUNIT \Applicable subparameter I
\ I \

Not needed if file is I
I

\ I cataloged. \
~--------+--------------------------------~
\SEP, AFF\Restricted; see "Job Control I
\ I Procedures" I
~--------+--------------------------------~
\ VOLUME IApplicable subparameters I
~--------t--------------------------------~
\ LABEL ISL I
~--------+--------------------------------~
\ SPACE \Not applicable I
~--------t--------------------------------~
jSUBALLOC\Not applicable I
~--------+--------------------------------~
\ SPLIT \Not applicable \
~--------t--------------------------------~
\ DISP \ [, KEEP] \
I I OLD1. , PASS I
I I ,DELETE \
~--------+--------------------------------~
IDCB I Required: DSORG=IS \
\ \ \
\ I Optional: BUFNO=xxx (not allowedl
I I for BISAM) \
I I LRECL=xxx I
~--------~--------------------------------~
I1.CATLG UNCATLG not permitted. I L ___ J

Figure 30. DD Statement Parameters
Applicable Indexed Files Opened
as INPUT or 1-0

£QB01 Consid~ratiQns: When processing an
already existing file with QISAM, the
following COBOL programming considerations
should be noted:

• RECORD KEY Clause. The RECORD KEY
always in the SELECT sentence of the
Environment Division is required, just
as it is when creating the file. Note
other record key considerations under
"~ccessing an Indexed File Randomly."

• Delete Option. In order to keep the
number of records in the overflow area
to a minimum, and to eliminate
unnecessary records, an existing record
may be marked for deletion. This is
done by moving the figurative

constant HIGH-VALUE into the first
character position of the record. rhe
record is not physically deleted unless it
is forced off its prime track by the
insertion of a new record (see "Using the
WRITE Statement" in "Accessing an Indexed
File Randomly"), or if the file is
reorganized. Records marked for deletion
may be replaced (using BISAM) by new
records containing equivalent keys.
Execution of the READ statement in QISAM
does not make available a record marked for
deletion, whetner the record has been
physically deleted or not; DUIDIDY records
and deletion are discussed further in
"Accessing an Indexed File Randomly."

Accessing an Indexed File Randomly

The file processing technique used for
random retrieval of a logical record, the
random updating of a logical record, and/or
the random insertion of a record is BISAM
(Basic Indexed Sequential Access Method).
When accessing an indexed file randomly,
both NOMINAL KEY and RECORD KEY must be
specified. The format of the NOMINAL KEY
is described briefly below:

r---,
I Format I
~---~
I \
\ NOMINAL KEY IS data-name I
I \ L ___ J

Data-name may be any fixed-length
Working Storage item from 1 through 255
bytes in length. If it is part of a
logical record, it must be at a fixed
displacement from the beginning of that
record description (see the publication IBM
OS Full American National Standard COBOL
for additional information).

Since a RECORD KEY is used to identify a
record to the system, the record keys
associated with the logical records of the
file may be thought of as a table of
arguments. When a record is read or
written, the contents of NOMINAL KEY is
used as a search argument that is compared
to the record keys of the file.

User File Processing 119

The following example illustrates the
use of the NOMINAL KEY clause.

ENVIRONMENT DIVISION.

NOMINAL KEY IS NOM-KEY
RECORD KEY IS REC-KEY.

DATA DIVISION.
FILE SECTION.
FD INDEXED-FILE

LABEL RECORDS ARE STANDARD.
01 REC-1.

02 DELETE-CODE PIC X.
02 REC-KEY PIC 9(5).

WORKING-STORAGE SECTION.
17 NOM-KEY PIC 9(5).

Because of their complementary use of
the indexed file organization, much of the
information discussed above for QISAM also
applies to BISAM. Differences are noted
below.

Qsirrg_th~WRITE St~t~ment: The programmer
can use the WRITE statement to add a new
rEcord into an indexed file. The record is
added on the basis of the value specified
in the NOMINAL KEY. The contents of the
~OMINAL KEY are used to locate the two
records in the file between which the new
record is to be inserted. The records
souqht are those that have values less than
and greater than the values in the nominal
key field. Two methods can be used to add
records.

In the first method, the key to be added
is a new key value. The record is inserted
in place so that the sequence of the keys
is maintained. If an overflow area exists,
the insertion may cause records to be
forced off the prime track into the
overflow area. Dummy records forced off
the track in this way are physically
deleted and are not written in the overflow
area.

In the second method, the key of the
record to be added has the same value as
that of a known dummy record. If the dummy
record has not been physically deleted, it
is replaced by the new record. If it has
been physically deleted, the record is
inserted as though it had a new key value.
If the key of the record to be added has
the same value as a record other then a
dummy record, an INVALID KEY condition will
result.

120

• Records with a key higher (or lower)
tnan thE current highest (or lowest)
key of the file may ne added.

• Whenever a WRITE statement is executed
the contents of RECORD KEY and NOMINAL
KEY must be identical. Except in the
case of dummy records, this value must
be unique in the file.

Q~irrg the REWRITE Statement: If a record
is to be updated, the indexed file should
be opened as I-a and the REWRITE statement
should be used. All REWRITE statements
must be preceded by a READ statement.
However, a READ statement can be followed
by either a WRITE, REWRITE, or another
READ.

Note: Whenever a REWRITE statement is
executed the value contained in NOMINAL KEY
and RECORD KEY must be identical.

Q~irrg_thg_g~~Q_~~~~gmeg~: Records are
retrieved on the basis of the value
specified in tne NOMINAL KEY. If the key
of a record marked for deletion is
specified and the record has not been
physically deleted, it will be produced.
If the record has been physically deleted,
the READ statement will cause an INVALID
KEY condition and control will go to the
INVALID KEY routine if specified.

Note: Although the RECORD KEY clause must
be specified, no value need be moved to the
record key field before the execution of
the READ statement. The search for the
desired record is based on the contents of
NOMINAL KEY.

COBOL Considerations: When processing an
indexed-lile-randomly, the following COBOL
programming considerations should be noted:

• RECORD KEY Clause and NOMINAL KEY
Clause. The RECORD KEY and NOMINAL KEY
clauses in the SELECT sentence of the
Environment Division are required. The
RECORD KEY clause is used to specify
the location of the key within the
record itself. The NOMINAL KEY is used
as a search argument to locate the
proper record, and must not be defined
within the file being processed. Note
that since a RECORD KEY is defined
within a record, the contents of RECORD
KEY are not available after a WRITE
statement has been executed for that
record.

Table 17. Indexed File Processing on Mass Storage Devices

Data MaoaFfDeDt Access KEY OPEN Access CLOSE
Tedmiques Method Causes Statement Verbs Statement

QISAM SEQUENTIAL RECORD INPUT READ [INTO] [WITH LOCK]
NOMINAL AT END

START
INVALID
KEY 1-------- r- - ------

OUTPUT WRITE [FROM]
INVALID KEY 1--------1----------

1-0 READ [INTO]

I

AT END
START

INVALID
KEY

REWRITE !FROM]
INVALID KEY

BISAM RANDOM RECORD INPUT READ [INTO] [WITH LOCK]
NOMINAL INVALID KEY

1-------- -- ---- -

• TRACK-AREA Clause. Specifying the
clause results in a considerable
improvement in efficiency when a record
is added to the file. If a record is
added and the TRACK-AREA clause was not
specified for the file, the contents of
the NOMINAL KEY field are unpredictable
after the WRITE statement is executed.
In this case, the key must be
reinitialized before the next WRITE
statement is executed.

• APPLY REORG-CRITERIA Clause. If the
OPTCD=R parameter was specified on the
DD card for an indexed file when it was
created, the APPLY REORG-CRITERIA
clause can be used to obtain the
reorganization statistics when the file
is closed. These statistics are moved
from the data control block to the
identifier specified in the clause when
a CLOSE statement is executed for the
file.

• APPLY CORE-INDEX Clause. This clause
specifies that the highest level index
will reside in core storage during
input/output oper~tions. otherwise,
the index will be searched on the
volume: and processing time will be
longer.

• Required and optional COBOL statements
are summarized in Table 17.

USING THE DO STATEMENT

Each data set that is defined by a DO
statement is either to be created, or has
been previously created and is to be

1-0 READ [INTO]
INVALID KEY

WRITE [FROM]
INVALID KEY

REWRITE [FROM]
INVALID KEY

retrieved. In either case, the data set
must have a disposition; for example, if
the data set is being created, the
disposition must indicate whether the data
set is to be cataloged, kept, or deleted.
Other DD parameters may simply indicate
that the data set is in the input stream or
that ultimately the data set is to be
printed or punched.

The following sections summarize the DO
statement parameters and show examples for
various uses of the DD statement. These
sections include information about
cataloging data sets and creating or
referring to generation data groups;
examples of cataloged data sets and
partitioned data sets are included. For
additional information about partitioned
data sets see "Libraries." Also see
"Appendix I: Checklist for Job Control
Procedures" for additional examples of the
DO statement used in job control
procedures.

CREATING A DATA SET

When creating a data set, the programmer
ordinarily will be concerned with the
following parameters:

1. The data set name (DSNAME) parameter,
which assigns a name to the data set
being created.

2. The unit (UNIT) parameter, which
allows the programmer to state the
type and quantity of input/output
devices to be allocated for the data
set.

User File Processing 121

3. The volume (VOLUME) parameter, which
allows specification of the volume in
which the data set is to resije. This
parameter also gives instructions to
the system about volume mounting.

4. The space (SPACE), split cylinder
(SPLIT), and suoallocation (SUBALLOC)
parameters, for mass storage devices
only, which permit the specification
of the type and amount of space
required to accommodate the data set.

5. The label (LABEL) parameter, which
specifies the type and some of the
contents of the label associated with
the data set.

6. The disposition (DISP) parameter,
which indicates what is to be done
with the data set oy the system when
the job step is completed.

7. The DCB parameter, which allows the
programmer to specify additional
information to complete the DCB
associated with the data set (see
"User-Defined Files"). This allows
additional information to be specified
at execution time to complete the DCB
constructed by the compiler for a lata
set defined in the source Frogran~

Figure 31 shows the subparameters that
are frequently used in creating data sets.
Additional subparameters are discussed in
"Job Control Procedures."

Data sets whose destination is a printer
or card punch are created with the DD
statement parameters UNIT and DCB.

r--l~;~~;l-----{d~~~;~---------l---,
= dsname(element)

DSN &&name
&&name(elementl

UNIT=(name[,n])

{ VOLUME(=([PRIVATE] [,RETAIN] [,volume-sequence-numoer] [,volume-count]
VOL f

[

SER=<VOlume-serial-numberr,VOlume-serial-number] ••• >]
dsname
*.ddname

,REF= *.stepname.ddname
*.stepname.procstep.ddname

SPACE=({~~~ } , <primary-quantity[,secondary-quantity]
average-record-Iength

r,directory-quantity]»

SPLIT=(n,
[

CYL J r, (primary-quantity, [secondary-quantity])]
average-record-Iength

LABEL=([data-set sequence-number],

f
NL)
SL ~
NSL(
SUL)

DISP=(~E~
LMonJ [DELET~ ,KEEP

,PASS
,CATLG

DCB=(subparameter-list)

~ DELETEJ ,KEEP
,CATLG

jrEXPDT=yyddd 0
~RETpn=xxxx J

L __ _

Figure 31. DD Statement Parameters Frequently Used in Creating Data Sets

122

UN~T: Required. Code unit information
uS1ng the 3-digit address (e.g., UNIT=OOE),
the type (e.g., UNIT=1403) , or the
system-generated group name (e.g.,
UNIT=PRINTER) •

DCB: Required only if the data control
block is not completed in the processing
proqram. Valid DCB subparameters are
listed in n~ppendix C: Fields of the Data
Control Block."

Creating Data sets on Magnetic Ta2~

Tape data sets are created using
combinations of the DD statement parameters
UNIT, L~BEL, DSNAME, DCB, VOLUME, and DISP.

UNIT: Required, except when volumes are
requested using VOLUME=REF. A unit can be
assigned by specifying its address, type,
or qroup name, or by requesting unit
affinity with an earlier data set.
Multiple output units and defer volume
mounting can also be requested with this
parameter.

LABE~: Required w:hen the tape has user
labels or does not have standard labels,
and when the data set does not reside first

~re~ti!:!~!!enti~UBSA~~SAMl_Q~ta
~ets_Q!:!_Mass Sto~~ge Devices

sequential data sets are created using
combinations of the DD statements
parameters UNIT, DSNAME, VOLUME, LABEL,
DISP, DCB, and one of the space allocation
parameters SPACE, SPLIT, or SUB~LLOC.

UNI!: Required, except when volumes are
requested using VOLUME=REF or space is
allocated using SPLIT or SUBALLOC. Assign
a unit by specifying its address, type, or
qroup name, or by requesting unit affinity.

DSNAME: Required for all but temporary
datasets.

1ab~1: Required to specify label type and
to assign a retention period or password
protection.

QCB: Kequired only when data control block
information is not completely specified in
the processing program. Usually, such
attributes as the logical record length

on the reel. It is also used to assign a
retention period and password protection.

DSNAME: Required for data sets that are to
be cataloged or used by a later job.

DCB: Required only when data control block
information cannot be specified in COBOL.
Usually, such attributes as the logical
record length (LRECL) and buffering
technique (BFTEK) will have been specified
in the processing program. Other
attributes, such as the OPTCD field and the
tape recording technique (TRTCH), are more
appropriately specified in the DO
statement. Valid DCB subparameters are
listed in "~ppendix C: Fields of the Data
Control Block."

VOLQ~§: Optional, this parameter is used
to request specific volumes. If VOLUME=REF
is specified, and the existing data sets on
the specified volume(s) are to be saved,
indicate the data set sequence number in
the LABEL parameter.

DISP: Required for data sets that are to
be cataloged, passed, or kept. The
programmer can specify conditional
disposition as the third term in the DISP
Parameter to indicate how the data set is
to be treated if the job step abnormally
terminates.

(LRECL) and buffering technique (BFTEK)
will have been specified in the processing
program. Other attributes, such as the
OPTCD field are more appropriately
specified in the DD statement. Valid DCB
subparameters are listed in "Appendix C:
Fields of the Data Control Block."

VOLU~~: Optional. This parameter requests
specific volumes (SER and REF), specific
volumes when the data set resides on more
than one volume (seq #), multiple
nonspecific volumes (volcount), private
volumes (PRIVATE), or private volumes that
are to remain mounted until the end of the
job (RETAIN).

DISP: ReqUired for data sets that are t.o
be cataloged, passed, or kept. The
programmer can specify conditional
disposition as the third term in the DISP
parameter to indicate how the data set is
to be treated if the job step abnormally
termina tes.

SP~~~L-SPLIT, SUBALLOC: One of these is
required for all new mass storage data
sets.

User File Processing 123

Direct (BDAM) data sets are created
using the same subset of DD statement
parameters as sequential data sets, with
the exception of the SPLIT parameter.
Valid DCB subparameters for EDAM data sets
are listed in "Appendix C: Fields of the
Data Control Block."

£~~tin~ndexed (BISAM and QIS~l) Data
~ets

Indexed (ISAM) data sets are created
using combinations of the DO statement
parameters UNIT, DSNAME, VOLUf-m, LABEL,
DISP, DCB, and SPACE. ~he ISAM data sets
occupy three areas of storage: an i~~~~
~rea-that contains master and cylinder
indexes, a erime area that contains the
data records and track indexes, and an
optional overflow area to hold additional
records when the prime area is exhausted.
Detailed information on creating and
retrieving indexed data sets is presented
in "Appendix H: Creating and Retrieving
Indexed Sequential Data sets."

Creating Data Sets in the Output St~~~~

New data sets can be written on a system
output device in much the same way as
messages. When using a sequential
scheduler, a data set is 1irected to the
output stream with the SYSOUT and DCB
parameters.

~YSOUT: Required. The output class
through which the data set is routed must
be specified. output classes are
identified by a single alphanumeric
character.

QCB: Required only if complete data
control block information has not been
specified in the processing program.

When using a priority scheduler, data
sets are not routed directly to a system

124

output device. They are stored by the
processing program on an intermediate mass
storage device and later written on a
system output device. In addition to the
SYSOUT and DCB parameters, DD statements
defining a data set of this type can also
contain UNIT and SPACE parameters. All
other parameters must be absent.

~~~QQ~: Required. The output class 
through which the data set is routed must 
be specified. Output classes are 
identified by a single alphanumeric 
character. (Do not use classes 0 through 9 
except in cases where the other classes are 
not sufficient.) 

Q~~: Required only if complete data 
control block information has not been 
specified in the processing program. Data 
control block information is used when the 
data set is written on an intermediate mass 
storage volume and read by the output 
writer. However, the output writer's own 
DCB attributes are used when the data set 
is written on the system output device. 
Valid DCB parameters are listed in 
"Appendix C: Fields of the Data Control 
Block." 

UNIT: Optional. An intermediate mass 
storage device is assigned if UNIT is 
specified. A default device is assigned if 
this parameter is omitted. 

~PA£~: Optional. Estimate the amount of 
mass storage space required. A default 
estimate is assumed if this parameter is 
omitted. 

Note: When a Direct SYSOUT Writer is used, 
the priority scheduler functions as a 
sequential scheduler. The SYSOUT data sets 
of the particular output class from any of 
the elegible job classes are not stored on 
an intermediate storage device, but are 
written directly to the system output 
device. When Direct SYSOUT Writer is used, 
all the parameters on the DD card are 
ignored. For detailed information on 
Direct SYSOUT Writer, see the publication 
IB~OS_Qp~~~tQ£~~_g~f~£~g£~. Order 
No. GC28-6691. 



Examples of DD Statements Used To Create Data Sets 

The following examples show various ways of specifying DD statements 
for data sets that are to be created. In general, the number of 
parameters and subparameters that are specified depend on the 
disposition of the data set at the end of the job step. If a data set 
is used only in the job step in which it is created and is deleted at 
the end of the job step, a minimum number of parameters are required. 
HOwever, i= the data set is to be cataloged, more parameters should be 
specified. 

g~~~~: creating a data set for the current job step only. 

//SYSUTl DD UNIT=SYSDA,SPACE=(TRK, (50,10» 

This example shows the basic required DD statement for creating and 
storing a data set on a mass storage device. The UNIT parameter is 
required unless the unit information is available from another source. 
If the data set were to be stored on a unit record or a tape device, the 
SPACE parameter would not be needed. The operating system assigns a 
temporary data set name and assumes a disposition of (NEW, DELETE). 

Example 2: Creating a data set that is used only for the current job. 

//SYSLIN 
// 

DD DSNAME=&&TEMP,DISP=(MOD,PASS),UNIT=SYSSQ, 
SPACE= (TRK, (50) ) 

x 

This example shows a DD statement that creates a 1ata set for use in 
more tnan one step of a job. The system assigns a unique symbol for the 
name, and this same symbol is substituted for each recurrence of the 
&&TEMP name within the job. The data set is allocated space on any 
available mass storage or tape device. If a tape device is selected, 
the SPACE parameter is ignored. The disposition specifies that the data 
set is either new or is to be added to (MOD), and is to be passed to the 
next job step (PASS). This DD statement can be used for specifying the 
data set that is created as output from the compiler and that is to be 
used as input to the linkage editor. By specifying MOD, separately 
compiled object modules can be placed in sequence in the same data set. 

Note: If MOD is specified for a data set that does not already exist, 
the job may be abnormally terminated when a volume reference name, a 
volume serial number, or the disposition CATLG is specified or when the 
dsname is indicated by a backwards reference. 

User File Processing 125 



Example 3: Creating a data set that is to be kept but not cataloged. 

//TEMPFILE DO DSN=FILEA,DISP=<,KEEP),SPACE=(TRK, (30,10», x 
// UNIT=DIRECT,VOL=(,RETAIN,SER=AA70) 

The example shows a DO statement that creates a data set that is kept 
but not cataloged. The data set name is FILEA. The disposition (,KEEP) 
specifies that the data set is being created in this job step and is to 
be kept. It is kept until a disposition of DELETE is specified on 
another DO statement. The KEEP parameter implies that the volume is to 
be treated as private. Private implies that the volume is unloaded at 
the end of the job step but because RETAIN is specified, the volume is 
to remain mounted until the end of the job unless another reference to 
it is encountered. The DIRECT parameter is a hypothetical device class, 
containing only mass storage devices. The volume with serial number 
AP£70, mounted on a device in this class, is assigned to the data set. 
Space for the data set is allocated as specified in the SPACE parameter. 
The data set has standard labels since it is on a mass storage volume. 

If the volume serial number were not specified in the foregoing 
example, the system would allocate space in an available nonprivate 
volume. Because KEEP is specified, the volume becomes private. 
(Another data set cannot be stored on a private voluw.e unless its volume 
serial number is specified or affinity with a data set on the volume is 
stated.) The volume serial number of the volume assigned, if 
applicable, is included in the disposition message for the data set. 
Disposition messages are messages from the job scheduler, generated at 
the end of the job step. 

Example 4: Creating a data set and cataloging it. 

//DDNAMEA 
// 
// 
// 

DO DSNAME=INVENT.PARTS,DISP=(NEW,CATLG), 
LABEL=("EXPDT=71031>,UNIT=DACLASS, 
VOLUME=(,REF=*.STEP1.DD1), 
SPACE=(CYL, (5,1)"CONTIG) 

x 
X 
X 

This example shows a DO statement that creates a data set named 
INVENT. PARTS and catalogs it in the previously created system catalog. 
The data set is to occupy the same volume as the data set referred to in 
the DO statement named DDl occurring in the job step named STEP1. The 
UNIT parameter is ignored since REF is specified. Five cylinders are 
allocated to the data set, and if this space is exhausted, more space is 
allocated, one cylinder at a time. The five cylinders are to be 
contiguous. The disposition (CATLG), implies that the volume is to be 
private. The INVENT. PARTS is to have standard labels. The expiration 
date is the 31st day of 1971a 

Example 5: Adding a member to a previously created library. 

//SYSLMOD DO DSNAME=SYS1.LINKLIB(INVENT),DISP=OLD 

This DO statement adds a member named INVENT to the link library 
(SYS1.LINKLIB). When a member is added to a previously created data 
set, OLD should be specified. The member INVENT takes on the 
disposition of the library. 

126 



Example-6: creating a library and its first member. 

//SYSLMOD 
// 

DD DSNAME=USERLIB(MYPROG),DISP=(,CATLG), 
SPACE=(TRK, (50,30,3»,UNIT=2311,VOLUME=SER=111111 

x 

This DD statement creates a library, USERLIB, and places a member, 
MYPROG, in it. The disposition (.CATLG) indicates that the data set is 
being created in this job step (NEW is the default condition for the 
DISP parameter and is indicate1 by the comma) and is to be cataloged. 
The data set is to have standard labels. Space is allocated for the 
data set in a volume on a mass storage device that is an IBM 2311 unit. 
Initially, 50 tracks are allocated to the data set, but when this space 
is exhausted, more tracks are added, 30 at a time. The SPACE parameter 
must be specified when the library is created, and it must include 
allocation of space for the directory. SPACE cannot be specified when 
new members are added. If additional space is required when new members 
are added, the secondary allocation, if specified, will be used. Three 
256-byte records are to be used for the directory. The volume serial 
number of the volume on which the library is to reside, is 111111. 

Example 7: Replacing a member of an existing library. 

//SYSLMOD DD DSNAME=MYLIB(CASE3),DISP=OLD 

This DD statement replaces the member named CASE3 with a new member 
with the same name. 1f tbe named member does not exist in the library, 
the member is added as a new member. In the foregoing example, the 
library is cataloged. 

Example 8: Creating and adding a member to a library used only for the 
current job. 

//SYSLMOD 
// 

DD DSNAME=&&USERLIB(MYPROG),DISP={,PASS>,UNIT=SYSDA, 
SPACE={TRK, (50,,1» 

This DD statement creates and adds a member to a temporary library. 

x 

It is similar to the DD statement shown in Example 6, except that a 
temporary name is used and the data set is not cataloged nor kept but is 
simply passed to the next job step. Since the data set is to be used 
only for this one job, it is not necessary to specify VOLUME and LABEL 
information. This statement can be used for a linkage edit job step in 
which the module is to be passed to the next step. 

Note: If DISP=(,DELETE) is specified for a library, the entire library 
will be deleted. 

User File Processing 127 



RETRIEVING PREVIOUSLY CREATED DATA SETS 

The parameters that must be specified in 
a DD statement to retrieve a previously 
created data set depend on the information 
that is available to the system about the 
data set. For example, 

1. If a data set on a magnetic-tape or 
mass storage volume was created and 
cataloged in a previous job or job 
step, all information for the data 
set, such as volume, space, etc., is 
stored in the catalog and data set 
label. This information need not be 
repeated. Only the dsname and 
disposition parameters need be 
specified. 

2. If the data set was created and kept 
in a previous job but has not been 
cataloged, information concerning the 
data set, such as space, record 
format, etc., is stored in the data 
set label. However, the unit and 
volume information must be specified 
unless available elsewhere. 

3. If the data set was created in the 
current job step, or in a previous job 
step in the current job, the 
information in the previous DD 
statement is available to the system 
and is accessible by referring to the 
previous DD statement. Only the 
dsname and disposition parameters need 
be specified. 

Notg: A programmer may wish to change the 
previous disposition of a data set. For 
example, if KEEP was specified when the 
data set was created, the DD statement that 
retrieves the data set may change the 
disposition by specifying CATLG. 

Figure 32 shows the parameters that are 
used to retrieve previously created data 
sets. 

Input data sets, assigned a disposition 
of C~TLG or cataloged by the IEHPROGM 
utility program, are retrieved using the DO 
stateroent parameters DSNAME, DISP, L~BEL, 

and DCB. The device type, volume serial 
number, anj data set sequence number (if 
tape) are stored in the catalog. 

128 

r-----------------------------------------, 

~DSNA.ME1 
{DSN ~ I

dsname I dsname(element) 
*.ddname 
*.stepname.ddname 
&&name 
&&name(element) 

UNIT= (name [, n] ) 

DCB=(subparameter-list) 

DISP=( [
OLD] 
SHR 
MOD ~

DELETE J ,KEEP 
,PASS 
, CATLG 
,UNCATLG 

LABEL=(subparameter-list) 

~
DELErEJ ,KEEP 

,CATL3 
, UNCATLG 

\VOLUMEt = (subpararneter-listl 

tVOL ~ 
Figure 32. Parameters Frequently Used in 

Retrieving Previously Created 
Data sets 

DSNAM~: Required. The data set must be 
identified by its cataloged name. If the 
catalog contains more than one index level, 
the data set name must be fully qualified. 

DI~~: Required. The status (OLD or StiR) 
of the data set must be given and an 
indication made as to how it is to be 
treated after its use, unless it is to 
remain cataloged. The programmer can 
specify as the third term in the DISP 
parameter a conditional disposition to 
indicate how the data set is to be treated 
if the job step abnormally terminates. 

LABEL: Required only if the data set does 
not-nave a standard label. 

QCB: Required only if complete data 
control block information is net specified 
by the processing program and the data set 
label. To save recoding time, DCB 
attributes can be copied from an existing 
DCB parameter and modified if necessary. 
Valid DCB subparameters are listed in 
"Appendix C: Fields of the Data Control 
Block." 

Note: In addition to the disposition 
UNCATLG, a cataloged data set can be passed 
to a later step (PASS) or deleted (DELETE). 



k€trieving~2ncat~!2~ed (KEEP) Data Sets 

Input data sets that were assigned a 
disposition of KEEP are retrieved by their 
tabulated name and location, using the DD 
statement parameters DSNAME, UNIT, VOLUME, 
DISP, LABEL, and DCB. 

DSN~ME: Required. The data set must be 
identified by the name assigned to it when 
it was created. 

QNIT: Required, unless VOLUME=REF is used. 
The unit must be identified by its address, 
type, or group name. If the data set 
requires more than one unit, give the 
number of units. Deferred volume mounting 
and unit separation can be requested with 
this parameter. 

VOLU~lE: Required. The volume(s) must be 
Identified with serial numbers or, if the 
data set was retrieved earlier in the same 
job, with VOLUMF=REF. If the volume is to 
be PRIVATE, it must be so designated. If a 
private volume is to remain mounted until a 
later job step uses it, RETAIN should be 
designated. 

DISP: Required. The status (OLD or SHR) 
of the data set must be given and an 
indication made as to how it is to be 
treated after its use. The programmer can 
specify conditional disposition as the 
third term in the DISP parameter to 
indicate how the data set is to be treated 
if the job step abnormally terminates. 

LABE~: Required if the data set does not 
have a standard label. If the data set 
resides with others on tape, its sequence 
number must be given. 

DCB: Required for all indexed data sets. 
Otherwise, required only if complete data 
control block information is not supplied 
by the processing program and the data set 
label. To save recoding time, copy DCB 
attributes from an existing DCB parameter, 
and modify them if necessary. Valid DCB 
subparameters are listed in Appendix C. 

Input data sets used in a previous job 
step and passed are retrieved using the DD 
statement parameters DSN&~, DISP, and 
UNIT. The data set·s unit type, volume 
location, and label information remain 
available to the system from the original 
DD statement. 

Q~NAME: Required. The original data set 
must be identified by either its name or 
the DD statement reference term 
*.stepname.ddname. If the original DD 
statement occurs in a cataloged procedure, 
the procedure stepname must be included in 
the reference term. 

DISP: Required. The data set must be 
identified as OLD, and an indication made 
as to how it is to be treated after its 
use. The programmer can specify 
conditional disposition as the third term 
in the DISP parameter to indicate how the 
data set is to be treated if the job step 
abnormally terminates. 

UNIT: Required only if more than one unit 
is allocated to the data set. 

~~~~g~ig~ Data Sets with Additional output 

A processing program can extend an
existing data set by adding records to it
instead of reading it as input. such a
data set is retrieved using the same
subsets of DD statement parameters
described under the preceding three topics,
depending on whether it was cataloged,
kept, or pa ssed when cr-ea ted. In each
case, however, the DISP parameter must
indicate a status of MOD. When MOD is
specified, the system positions the
appropriate read/write head after the last
record in the data set. If a disposition
of CATLG for an extended data set that is
already cataloged is indicated, the system
updates the catalog to reflect any new
volumes caused by the extension.

When extending a multivolume data set
where number of volumes might exceed the
number of units used, the programmer should
either specify a volume count or deferred
mounting as part of the volume information.
This ensures data set extension to new
volumes.

Data sets in the form of decks of cards
or groups of card images can be introduced
to the system through an input stream by
interspersing them with control statements.
To define a data set in the input stream,
mark the beginning of the data set with a
DD statement and the end with a delimiter
statement. The DD statement must cont~in
one of the parameters * or DATA. Use D~TA
if the data set contains job control
statements and an * if it does not. Two
DeB subparameters can also be coded when

User File Processing 129

defining a data set in the input stream.
In systems with MFT or MVT, data in the
input stream is temporarily transferred to
a mass storage device. The DCB
subparameters BLKSIZE and BUFNO allow
blocking of this data as it is placed on
the mass storage device.

When using a sequential scheduler:

• The input stream must be on a card
reader or magnetic tape.

• Each job step and procedure step can be
associated with only one data set in
the in~ut stream.

• The DD statement must be the last in
the job step or procedure step.

130

• The records must be unblocked, and
80-characters in length.

• The characters in the records must be
coded in BCD or EBCDIC.

When using a priority scheduler:

• The input stream can be on any device
supported by QSAM.

• Each job step and procedure step can be
associated with several data sets in an
input stream. All such data sets
except the first in the job must be
preceded by DD * or DD DATA statements.

• The characters in the records must be
coded in BCD or EBCDIC.

Examples of DD statements Used to Retrieve Data Sets

Example 1: Retrieving a cataloged data set.

//CALC DD DSNA}ffi=PROCESS, DISP=<OLD, PASS, KEEP)

This DD statement retrieves a cataloged data set named PROCESS. No
UNIT or VOLUME information is needed. Since PASS is specified, the
volume in ~hich the data set is written is retained at the end of the
job step. PASS implies that a later job step will refer to the data
set. The last step in the job referring to the data set should specify
the final disposition. If no other DD statement refers to the data set,
it is assumed that the status of the data set is as it existed before
this job. In the event of an abnormal termination, the KEEP disposition
explicitly states the disposition of the data set.

Example 2: Retrieving a data set that ~as kept but not cataloged.

//TEMPFILE DD DSNAME=FILEA,UNIT=DIRECT,VOLUME=SER=AA70,DISP=OLD

This DD statement retrieves a kept data set named FILEA. (This data
set is created by the DD statement shown in Example 3 for creating data
sets.) The data set resides on a device in a hypothetical device class,
DIRECT. The volume serial number is AA70.

Example 3:

//SAMPLE
//STEPl

//SYSLIN
//STEP2
//SYSLIN

Referring to a data set in a previous job step.

JOB
EXEC PGM=IKFCBLOO,PARM=DECK

DD DSNAME=ALPHA,DISP=(NEW,PASS),UNIT=SYSSQ
EXEC PGM=IEWL
DD *.STEP1.SYSLIN,DISP=(OLD,DELETE)

The DD statement SYSLIN in STEP2 refers to the data set defined in
the DD statement SYSLIN in STEP1.

Example 4: Retrieving a member of a library.

//BANKING DD DSNAME=PAYROLL(HOURLY),DISP=OLD

The DD statement retrieves a member, HOURLY, from a cataloged
library, PAYROLL.

User File Processing 131

QQ~TATEM~~r~_!H~r_~~~£!~Y-Q~!r_R~£Q~Q
QEV!£E.§

A DD statement may simply indicate that
data follows in the input stream or that
the data set is to be punched or printed.
Figure 33 shows the parameters of special
interest for these purposes.

r---,
I I
I \ * (I
I IDATA~ I
I I
I SYSOUT=n.. I
I I
I UNIT=name I
I I
I DCB=(subparameters) I
I I
~---~
I Note: The DCB parameter can be I
I specified, where permissible, for data I
I sets on unit record devices. For I
I example, it can be specified for I
I compiler data sets (other than SYSUT1, I
I SYSUT2, SYSUT3, and SYSUT4) and data I
I sets 3pecified by the DD statements I
I required for tie ACCEPT and DISPLAi I
I statements, when any of these data sets I
I are assigned to unit-record devices. I L ___ J

Figure 33. Parameters Used To Specify
Unit Record Devices

~xam~: Specifying data in the card
reader.

//SYSIN DD *

The asterisk indicates that data follows
in the input stream. This statement must
be the last DD statement for the job step.
The data must be followed by a delimiter
statement.

§xam~: Specifying a printer data set.

//SYSPRINT DD SYSOUT=A

SYSOUT is the system output parameter; A
is the standard device class for printer
data sets.

132

EX~~Ele_l: Specifying a card punch.

//SYSPUNCH DO SYSOUT=B

B is the standard device class for pUDch
devices.

A data set is cataloged whenever CATLG
is specified in the DISP parameter of the
DO statement that creates or uses it. Thi3
means that the name and volume
identification for the data set are placed
in a system index called the catalog. (See
nprocessing with QISru~n in the section
"Execution Time Data Set Requirements n for
information about cataloging indexed data
sets.) The information stored in the
catalog is always available,to the system;
consequently, only the data set na~e and
disposition need be specified in subsequent
DO statements that retrieve the data set.
See Example 4 in "Creating Data Sets," and
Example 1 in "Retrieving Data Sets."

If DELETE is specified for a cataloged
data set, any reference to the data set in
the catalog is deleted unless the OD
statement containing DELETE retrieves the
data set in some way other than by using
the catalog. If UNCATLG is specified for a
cataloged data set, only the reference in
the catalog is deleted; the data set itself
is not deleted.

Note: A "cataloged data set" should not be
~~~Fused with a "cataloged procedure" (see 
"Using the Cataloged Procedures"). 

It is sometimes convenient to save data 
sets as elements or generations of a 
generation data group (DSNAME=dsname 
(element». A g~~~E~~!Q~_data gro~e is a 
collection of successive, historically 
related data sets. Identification of data 
sets that are elements of a generation data 
group is based upon the time the data set 
is added as an element. That is, a 
generation number is attached to the 
generation data group name to refer to a 
particular element. The name of each 
element is the same, but the generation 
number changes as elements are added or 
deleted. The most recent element is 0, the 
element added previous to 0 is -1, the 
element added previous to -1 is -2, etc. A 
generation data group must always be 
cataloged. 



For example, a data group named PAYROLL 
might be used for a weekly payroll. The 
elements of the group are: 

PAYROLL(O) 
PAYROLL(-l) 
PAYROLL(-2) 

where PAYROLL(O) is the data set that 
contains the information for the most 
current weekly payroll, and is the most 
recent addition to the group. 

When a new element is added, it is 
called element(+n), where n is an integer 
greater than O. For example, when adding a 
new element to the weekly payroll, the DO 
statement defines the data set to be added 
as PAYROLL(+l)i at the end of the job the 
system changes its name to PAYROLLCO). The 
element that was PAYROLLCO) at the 
beginning of the job becomes PAYROLL(-l) at 
the end of the job, and so on. 

If more than one element is being added 
in the same job, the first is given the 
number (+1), the next (+2) and so on. 

NAMING DATA SETS 

Each data set must be given a name. The 
name can consist of alphanumeric characters 
and the special characters, hyphen and the 
+0 (12-0 multipunch). The first character 
of the name must be alphabetic. The name 
can be assigned by the system, it can be 
given a temporary name, or it can be given 
a user-assigned name. If no name is 
specified on the DD statement that creates 
the data set, the system assigns to the 
data set a unique name for the job step. 
If a data set is used only for the duration 
of one job, it can be given a temporary 
name (DSNAME=&&name). If a data set is to 
be kept but not cataloged, it can be given 
a simple name. If the data set is to be 
cataloged it should be given a fully 
qualified data set name. The fully 
qualified data set name is a series of one 
or more simple names joined together so 
that each represents a level of 
qualification. For example, the data set 
name DEPT999.SMITH.DATA3 is composed of 
three simple names that are separated by 
periods to indicate a hierarchy of names. 
Starting from the left, each simple name 
indicates an index or directory within 
which the next simple name is a unique 
entry. The rightmost name identifies the 
actual location of the data set. 

Each simple name consists of one to 
eight characters, the first of which must 
be alphabetic. The special character 
period (.) separates simple names from 

each other. Including all simple names and 
periods, the length of a data set name must 
not exceed 44 characters. Thus, a maximum 
of 21 qualification levels is possible for 
a data set name. 

Programmers should not use fully 
qualified data set names that begin with 
the letters SYS and that also have a P as 
the nineteenth character of the name. 
Under certain conditions, data sets with 
the above characteristics will be deleted. 

The following topics are discussed in 
this section: the data control block, 
error processing for COBOL files, and 
volume and data set labels. 

More information about input/output 
processing is contained in the publication 
!~~_Q~_Q~t~_~~g~~ement Services. 

DATA CONTROL BLOCK 

Each data set is dgsGrip~d to the 
operating system by a data control block 
(DCB). A data control block consists of a 
group of contiguous fields that pr~vide 
information about the data set to the 
system for scheduling and executing 
input/output operations. The fields 
describe the characteristics of the data 
set (e.g., data set organization) and its 
processing requirements (e.g., whether the 
data set is to be read or written). The 
COBOL compiler creates a skeleton DCB for 
each data set and inserts pertinent 
information specified in the Environment 
Division, FD entry, and input/output 
statements in the source program. The DeB 
for each file is part of the object module 
that is generated. Subsequently, other 
sources can be used to enter information 
into the data control block fields. The 
process of filling in the data control 
block is completed at execution time. 

Additional information that completes 
the DCB at execution time may come from the 
DD statement for the data set and, in 
certain instances, from the data set label 
when the file is opened. 

Once a field in the DCB is filled in by 
the COBOL compiler, it cannot be overridden 

User File Processing 133 



by a DD statement or a data set label. For 
example, if the buffering factor for a data 
set is specified in the COBOL source 
program by the RESERVE clause, it cannat be 
overridden by a DJ statement. In the same 
way, information from the DD statement 
cannot be overridden by information 
included in the data set label. 

The links between the DCB, DD statement, 
data set label, and input/output statements 
are the filename, the system name in the 
ASSISN clause of the SELECT statement, the 
ddname of the system-name, and the dsname 
(Figure 34). 

1. The filename specified in the SELECT 
statement and in the FD entry of the 
COBOL source program is the name 
associated with the DCB. 

2. Part of the system-name specified in 
the ASSIGN clause of the source 
program is the d~name link to the DD 
statement. This nam~ is placed in the 
DCB. 

3. The ~sname spRcified in the DD 
statement is the lin~ to the physical 
data set. 

The fieljs of the data control block are 
described in the tables in Appendix C. 
They identify those fields for which 
information must be supplied by the source 
proqram, by a DD statement, or by the data 
set label. For further information about 
the data control block, see the discussion 

of the DCB macro instruction for the 
appropriate file processing technique in 
the publication IBM as Dat~~anaqe~~nt 
~erYice§.. 

ERROR PROCESSING FOR COBOL FILES 

During the processing of a COBOL file, 
data transmission to or from an 
input/output device may not be successful 
the first time it is attempted. If it is 
not successful, standard error recovery 
routines, provided by the operating system, 
attempt to clear the failure and allow the 
program to continue uninterrupted. 

If an input/output error cannot be 
corrected by the system, an abnormal 
termination (ABEND) of the program may 
occur unless the programmer has specified 
some means of error analysis. Error 
processing routines initiated by the 
programmer are discussed in the following 
paragraphs, and in "Appendix G: 
Input/Output Error Conditions." 

For sequential files, the programmer can 
specify a DD statement option (EROPT) that 
specifies the type of action to be taken by 
the system if an error occurs. This option 
can be specified whether or not a 
declarative is written. If a declarative 
is specified, the DD statement option is 
executed when a normal exit is taken from 
the declarative. See "Accessing a Standard 
Sequential File" for further information. 

r--------------------l r-------------------l 
I SELECT I I Data Set I 

I Statement I I Label I 

r---------- - - +mm,mc7m-,m:mctt?1 f;-"",~""",-,~,"",~,'"":f - -- - +'~---~---0'-'~'-~'--"'-'-~1 I 

l ~lllllllt---JIIIIII~ ~11:11\114------------J 
I Other I I I 
I Input/Output I I DD I 

I statements I I Statement I L _____________________ J L ___________________ J 

Figure 34. Links between the SELECT Statement, the DD Statement, the Data Set Label, and 
the Input/Output Statements 

134 



INVALID KEY errors may occur for files 
accessed randomly, or for output files 
accessed sequentially. A test to determine 
these errors may be made by using the 
INVALID KEY option of the READ, WRITE, 
REWRITE, or START verb. 

Note: Secondary space allocation must be 
specified when the INVALID KEY option is 
used in a WRITE statement for QSAM and 
BSAM. 

USE AFTER ERROR Option 

The programmer may specify the USE AFTER 
ERROR option in the declarative section of 
the Procedure Division to determine the 
type of the input/output error. with the 
USE AFTER ERROR option, the programme-r can 
pass control to an error-processing routine 
to investigate the nature of the error. If 
the GIVING option of the USE AFTER ERROR 
declarative is specified, data-name-l will 
contain information about the error 
condition. Data-name-2, if specified, will 
contain the block in error if the last 
input/output operation was a read. If the 
file was opened as output, data-name-2 in 
the GIVING option cannot be referenced. 

Data-name-2 of the GIVING option 
contains valid data only if data was 
actually transferred on the last 
input/output operation. For example, if 
the declarative is entered after execution 
of a START verb for a QISAM file on which 
no INVALID KEY option was present, an 
attempt to access data-name-2 results in an 
abnormal termination, because no transfer 
of data has taken place. Hence, the user 
should specify data-name-2 only within 
declaratives associated with READ 
statements. Otherwise, the user should 
define data-name-2 within the linkage 
section, so the user can examine 
data-name-l and decide whether data-name-2 
will be helpful. 

Either or both the INVALID KEY clause 
and the USE AFTER ERROR declarative mav be 
specified for a file. If both have been 
specified and an INVALID KEY error occurs, 
the imperative-statement specified in the 
INVALID KEY option will be executed. If 
both have been specified and any other type 
of input/output error occurs, the USE AFTER 
ERROR declarative will be entered. If an 
error occurs and neither has been 

specified, the program may terminate 
abnormally or may continue executing with 
incorrect aata. Table 18 is a generalized 
summary of the means available for recovery 
from an invalid key condition or an 
input/output error. Table 19 lists the 
error processing facilities available for 
each type of file organization. The 
following discussion summarizes the action 
taken by each facility for each type. For 
further information on the USE AFTER ERROl{ 
option, see the publication IBM OS Full 
American National Standard COBOL:------

STANDARD SEQUENTIAL 

• Operating System: If the error cannot 
be corrected (read only), the program 
will ABEND in the absence of a DO 
statement option, USE AFTER STANDARD 
ERROR declarative, or INVALID KEY 
option. If both the DO statement 
option and USE section are specified, 
the control program will execute the 
USE declarative first and then the DD 
option if normal exit is taken from the 
declarative section. If no EROPT 
subparameter is indicated, or if ABS is 
specified and a USE A.FTER S'I'ANDARD 
ERROR declarative exists, the 
declarative will receive control. 
A.fter a normal exit, the job will 
abnormally terminate. 

• DO Statement Option: The EROPT 
subparameter in the DCB parameter 
specifies one of three actions: accept 
the error block (ACC), skip the error 
block (SKP), or terminate the job 
(ABE) • 

• INVALID KEY: A transfer of control to 
the procedure indicated in the INVALID 
KEY phrase occurs if additional space 
cannot be allocated to write the record 
requested. This condition occurs when 
either no more space is available or 16 
extents have already been allocated on 
the last volume assigne~ to the data 
set. The transfer of control occurs 
only if a secondary-quantity is 
specified in the DD statement SPACE, 
SPLIT, or SUBALLOC parameter. If no 
secondary-quantity is specified, the 
primary-quantity is assumed to be the 
exact amount of space required for the 
data set, and any attempt to write a 
record beyond the storage allocated 
causes the program to end abnormally. 
When an INVALID KEY error occurs, the 
file can be closed so that it may 
subsquently be reopened for retrieval 
as INPUT or 1-0. 

User File Processing 135 



Table 18. Recovery from an Invalid Key condition or from an Input/Output Error 

Go to invalidlGo to user's IGo to invalidlError ignored; I 
key routine I routine Ikey routine Inext sequential I 

I I I instruction I I 
1 1 1 executed 1 1 

-------------+--------------+-------------+---------------+--------------~ 
Return to ,Go to user's IGo to user's IReturn to 1 1 
system 1 routine 1 routine I system 1 ABEND I . _____________ ~ ______________ ~ _____________ ~ _______________ ~ ______________ J 

Table 19. Input/Output Error Processing Facilities 

x I X I Note 1 1 X I 

--------------+-----------------+------------+-------------------~ 
1 'I 1 
I I I 1 

X 1 I X 1 X I 
X I I Note 2 I X I 

------------+-----------------+------------+-------------------~ 
Note 3 I I X 1 X I 

-------------+-----------------+------------+-------------------~ 
I I I I 
I I I I 

X I I Note 1 I X I 
------------+-----------------+------------f-------------------~ 

X I I X I X I 
I I I I 

-------------~-----------------~------------~-------------------~ 
INotes: 
I~-~olds only for WRITE. 

I 
I 
I 
I 
I 
I 

12. Error cannot be caused by an invalid key. 
13. No system error processing facility is available. If errors occur, they are 
I ignored and processing continues, unless a programmer-specified error processing 
I routine is indicated. l _______________________________________________________________________________________ J 

• USE AFTER STANDARD ERROR: The 
programmer may specify this option in 
order to display the cause of the 
error. Control goes to the declarative 
section; the programmer can then 
display a ruessage indicating the error 
and execute his DD statement option on 
a normal exit from the declarative 
section. 

INDEXED (R1\NDOM) 

• INV1\LID KEY: If the error is caused by 
an invalid key, recovery is possible. 

136 

If the error is not an invalid key and 
the USE AFTER ERROR option is not 
specified, the program is terminated. 

• USE AFTER STANDARD ERROR: Control goes 
to the declarative section. The 
programmer can check the error type in 
the section by specifying data-name-l 
in the GIVING option. If the error is 
caused by a key error or the "no space 
found" condition, recovery is possible. 
On a READ error, the block can be 
skipped by executing additional RE1\D 
statements. If the error persists 



(more bad READ statements than the 
blocking factor), processing is limited 
to a CLOSE statement. Any other error 
cannot be corrected. The program may 
continue executing, but processing of 
the file is limited to CLOSE. If the 
programmer closes the file, he may do 
so in either the declarative section or 
in the main body of his program. 

INDEXED (SEQUENTIAL) 

A. WRITE (load mode) 

• Operating System: If the error 
cannot be corrected, the program 
will ABEND unless an error 
processing option is specifie~. 

• INV~LID KEY: If the error is caused 
by an invalid key, recovery is 
possible. (The programmer may 
attempt to reconstruct the key and 
retry the operation, or may bypass 
the error record.) 

• USE AFTER STANDARD ERROR: Control 
goes to the declarative section. 
The programmer can check the error 
type in the section by specifying 
data-name-1 in the GIVING option. 
If the error is the result of a key 
error, recovery is possible. If the 
error is not a key error, the error 
cannot be corrected. The program 
may continue executing, but 
processing of the file is limited to 
CLOSE. If the programmer closes the 
file, he may do so in either the 
declarative section or in the main 
body of his program. 

B. READ, REWRITE (scan mode) 

• Operating System: If the error 
cannot be corrected, the program 
will ABEND unless an error 
processing option is specified. 

• INVALID KEY: The error cannot be 
caused by an invalid key. A source 
program coding error is implied and 
a compiler diagnostic message is 
generated. 

• USE AFTER STANDARD ERROR: The 
programmer may specify this option 
in order to display the cause of the 
error. Control goes to the 
declarative section. The programmer 
can check the error type in the 
section by specifying data-name-1 in 
the GIVING option. Since the error 
cannot be caused by an invalid key, 
processing of the file is limited to 
CLOSE. If the programmer elects to 
close the file, he may do so in 

either the declarative section or in 
the main body of his program. 

DIRECT or RELATIVE (RANDOM) 

• Operating System: If the error 
cannot be corrected, the program 
will ABEND unless an error 
processing option is specified. 

• INVALID KEY: If the error is caused 
by an invalid key, recovery is 
possible. 

• USE AFTER STANDARD ERROR: Control 
goes to the declarative section. 
The programmer can check the error 
type in the section by specifying 
data-name-1 in the GIVING option. 
If the error is the result of a key 
error or the nno space found within 
the search limitn condition, 
recovery is possible. Any other 
error cannot be corrected. The 
program may continue executing, but 
processing of the file is limited to 
CLOSE. If the programmer closes the 
file, he may do so in either the 
declarative section or in the main 
body of his program. 

DIRECT or RELATIVE (SEQUENTIAL) 

• operating System: If no error 
processing option is specified, a 
message is written to the console 
providing identification of the file 
and type of input/output error. 
Then control is returned to the 
system. For sequential data sets, 
if EROPT has SKP or ACC (as 
specified in the JCL for the data 
set), an ABEND will not occur and 
processing will continue. 

• INVALID KEY: A transfer of control 
to the procedure indicated in the 
INVALID KEY phrase occurs if 
additional space cannot be allocated 
to write the record requested. This 
condition occurs when either no more 
space is available or 16 extents 
have already been allocated on the 
last volume assiqned to the data 
set. The transfer of control occurs 
only if a secondary-quantity is 
specified in the DD statement SPACE, 
SPLIT, or SUBALLOC parameter. If no 
secondary-quantity is specified, the 
primary-quantity is assumed to be 
the exact amount of space required 
for the data set and any attempt to 
write a record beyond the storage 
allocated causes the program to end 
abnormally. When an INVALID KEY 
error occurs, the file can be closed 

User File Processing 137 



so that it may subsequently be 
reopened for retrieval as INPUT or 
1-0. 

• USE AFTER STANDARD ERROR: The 
programmer may specify this option 
in order to display the cause of the 
error. Control goes to the 
declarative section. The programmer 
can check the error type in the 
section by specifying data-name-1 in 
the GIVING option. If the error is 
not the result of an invalid key, 
processing of the file is limited to 
CLOSE. If the programmer elects to 
close the file, he may do so in 
either the declarative section or in 
the main body of his program. 

Notes: The user should consider the 
follo~ing when a relatively large number of 
INVALID KEY exits or declarative sequences 
(with GO TO exits) are to be executed: 

1. The distinction between error 
processing via an error declarative 
and the INVALID KEY clause. When an 
input/output operation is requested, a 
storage area (called an input/output 
block, or lOB) is allocated until the 
request is satisfied (or, in the event 
of an error, until return from the 
user-provided error-handling routine). 
If the error declarative is used, a 
normal exit from the declarative 
returns control to the system and 
frees the lOB. When the INVALID KEY 
routine is used, however, the system 
does not regain control, and the lOB 
is not freed. 

2. The error declarative dynamically 
allocates storage for a register save 
area upon entry. If a GO TO statement 
is used to exit from the declarative, 
neither this save area nor the lOB is 
freed. 

To make the maximum space available to 
other users, the programmer should 
rely on the declarative as much as 
possible, taking a normal exit from 
it. Otherwise, it is recommended that 
the programmer specify a larger 
region. 

VOLUME LABELING 

Various groups of labels may be used in 
secondary storage to identify magnetic-tape 
and mass storage volumes, as well as the 
data sets they contain. The labels are 
used to locate the data sets and are 
identified and verified by label processing 
routines of the operating system. 

138 

There are two different kinds of labels, 
standard and nonstandard. Magnetic tape 
volumes can have standard or nonstandard 
laoels, or they can be unlabeled. The 
type(s) of label processing for tape 
volumes to be supported by an installation 
is selected during the system generation 
process. Mass storage volumes are 
supported with standard labels only. 

Standard labels consist of volume labels 
and groups of data set labels. The volume 
label group precedes or follows data on the 
volume; it identifies and describes the 
volume. The data set label groups precede 
and follow each data set on the volume, and 
identify and describe the data set. 

• The data set labels that precede the 
data set are called header labels. 

• The data set labels that follow the 
data set are called trailer labels. 
They are almost identical to the header 
labels. 

• The data set label groups can 
optionally include standard user labels 
except for ISAM files. 

• The volume label groups can optionally 
include standard user labels for QS~M 
files. 

Nonstandard labels can have any format 
and are processed by routines provided by 
the programmer. Unlabeled volumes contain 
only data sets and tapemarks. In the job 
control statements, a DD statement must be 
provided for each data set to be processed. 
The LABEL parameter of the DD statement is 
used to describe the data set's labels. 

Specific information about the contents 
and physical location of labels is 
contained in the publications IBM OS Data 
Mag~g~ment Services, Order No. GC26-3146, 
and IBM OS Tape Labels, Order 
No. GC28-6680. 

STANDARD LABEL FORMAT 

standard labels are 80-character records 
that are recorded in EBCDIC and odd parity 
on 9-track tape; or in BCD and even parity 
on 7-track tape. The first four characters 
are always used to identify the labels. 
These identifiers are: 



VOLl volume label 
HDRl and HDR2 data set header 

labels 
EOVl and EOV2 data set trailer 

labels (end-of-volume) 
EOFl and EOF2 data set trailer labels 

<end-of-data set) 
UHLl to UHLS user header labels 
UTLl to UTL8 user trailer labels 

The format of the mass storage volume 
label group is the same as the format of 
the tape volume label group, except one of 
the data set labels of the initial volume 
label consists of the data set control 
block (DSCB). The DSCB appears in the 
volume table of contents (VTOC) and 
contains the equivalent of the tape data 
set header and trailer information, in 
addition to space allocation and other 
control information. 

STANDARD LABEL PROCESSING 

Standard label processing as performed 
by the system consists of the following 
basic functions: 

• Checking the labels on input data sets 
to ensure that the correct volume is 
mounted, and to identify, describe, and 
protect the data set being processed. 

• Checking the existing labels on output 
data sets to ensure that the correct 
volume is mounted and to prevent 
overwriting of vital data. 

• Creating and writing new labels on 
output data sets. 

When a data set is opened for input, the 
volume label dnd the header labels are 
processed. For an input end-of-data 
condition, the trailer labels are processed 
when a CLOSE statement is executed. For an 
input end-of-volume condition, the trailer 
labels on the current volume are processed, 
and then the volume label and header labels 
on the next volume are processed. 

When a data set is opened for output, 
the existing volume label and HDRl label 
are checked, and new header labels are 
written. For an output end-of-volume 
condition, trailer labels are written on 
the current volume, the existing volume 
labels and header labels on the next volume 
are checked, and then new header labels are 
written on the next volume. When an output 
data set is closed, trailer labels are 
written. 

STANDARD USER LABELS 

Standard user labels contain 
user-specified information about the 
associated data set. User labels are 
optional within the standard label groups. 
The format used for user header labels 
(UHL1-S) and user trailer labels (UTL1-S) 
consists of a label SO characters in length 
recorded in EBCDIC on 9-track tape units, 
or in BCD on 7-track tape units. The first 
three bytes consist of the characters that 
identify the label: UHL for a user header 
label (at the beginning of a data set) or 
UTL for a user trailer label (at the 
end-of-volume or end-of-data set). The 
next byte contains the relative position of 
this label within a set of labels of the 
same type and can be any number from 1 
through 8. The remaining 76 bytes consist 
of user-specified information. 

User labels are generally created, 
examined, or updated when the beginning or 
end of a data set or volume (reel) is 
reached. User labels are applicable for 
sequential, direct, and relative data sets. 
For sequentially processed data sets, end 
or beginning of volume exits are allowed 
(i.e., "intermediate" trailers and headers 
may be created or examined). For direct or 
relative data sets~ user labe~ routines 
will be given control only during OPEN or 
CLOSE condition for a file opened as INPUT, 
OUTPUT, or 1-0. . Trailer labels for files 
opened as INPUT or 1-0 are processed when a 
CLOSE statement is executed for the file 
that has reached an AT END condition. 
Thus, for standard sequential data sets, 
the user may create, examine, or update up 
to eight header labels and eight trailer 
labels on each volume of the data set, 
whereas for direct or relative data sets 
the user may create, examine, or update up 
to eight header labels during OPEN and up 
to eight trailer labels during CLOSE. Note 
that these labels reside on the initial 
volume of a multi-volume data set. This 
volume must be mounted at CLOSE if trailer 
labels are to be created, examined, or 
updated. 

When standard user label processing is 
desired, the user must specify the label 
tvoe of the standard and user labels (SUL) 
o~~the DD statement that describes the 
dataset. For mass storage volumes, 
specification of a LABEL subparameter of 
SUL results in a separate track being 
allocated for use as a user-label track 
when the data set is created. This 
additional track is allocated at initial 
allocation and for sequential data sets at 
end-of-volume (volume switch) time. The 
user-label track (one per volume of a 
sequential data set) will contain both user 
header and user trailer labels. 

User File Processing 139 



User_Lab~l T0E.~lin~ 
(BSAM and QSAM only) 

When creating or processing a data set 
with user labels on a sequential file, the 
programmer may develop control totals to 
obtain exact information about each volume 
of the data set. This information can be 
stored in his user labels. For example, a 
control total accumulated as the data set 
is created, can be stored in a user label 
and later compared with a total accumulated 
while processing a volume. The user 
totaling facility enables the programmer to 
synchronize the control data that he has 
created while processing a data set with 
records physically written on a volume. In 
this way, he can tell exactly what records 
were written. This information can also be 
used for accurately labeling tape reels 
(i.e., assigning physical adhesive labels). 

ro request this option, specify OPTCD=T 
in the DCB parameter of the DD statement. 
The user's TOTALING area, where control 
data is accumulated, is provided by the 
user. In this area, the user can store 
information on each record he writes. When 
an input/output operation is scheduled, the 
control program sets up a user TOTALED save 
area that preserves an image of the 
information in the user's TOTALING area. 
When the output USE LABEL declarative is 
entered, the values accumulated in the 
user's TOTALING area corresponding to the 
last record actually written on the volume 
are stored in the TOThLED area. These 
values can be included in user labels. 

When using this facility for an output 
data set (i.e., when creating the data 
set), the programmer must update his 
control data in the TOTALING area prior to 
issuing a WRITE instruction. When 
subsequently using this data set for input, 
the programmer can accumulate the same 
information as each recori is read. These 
values can be compared with the ones 
previously stored in the user label when 
the records were created. 

Variable length records with APPLY 
WRITE-ONLY or records with SAME RECORD AREA 
specified require special considerations 
when using the TOTALING option. Since the 
control program determines whether a 
variable-length record will fit in a buffer 
after a WRITE instruction has been issued, 
the values accumulated may include one more 
record than is actually written on the 
volume. In this case, the programmer must 
update his TOTALING area after issuing a 
WRITE instruction. 

User label totaling is not available 
with S-mode records. 

140 

For further information on user label 
totaling, see the Program Product 
publication IBM QS Ful~hmerican N~~iQ~~! 
Standard COBOL. 

NONSTANDARD LABEL FORMAT 

Nonstandard labels do not conform to the 
standard label formats. They are designed 
by programmers and are written and 
processed by programmers. Nonstandard 
labels can be any length less than 4096 
bytes. There are no requirements as to the 
length, format, contents, and number of 
nonstandari labels, except that the first 
record on the volume cannot be a standard 
volume label. In other words, the first 
record cannot be 80 characters in length 
with the identifier VOL1 as its first four 
characters. 

NONSTANDARD LABEL PROCESSING 

To use nonstandard labels (NSL), the 
programmer must: 

• Create nonstandard label processing 
routines for input header labels, input 
trailer labels, output header labels, 
and output trailer labels. 

• Insert these routines into the 
operating system as part of the SVC 
library (SYS1.SVCLIB). 

• Code NSL in the LABEL parameter of the 
DD statement at execution time. 

The system verifies that the tape has a 
nonstandard label. Then if NSL is 
specified in the LABEL parameter, it loads 
the appropriate NSL routines into transient 
areas. These NSL routines are entered at 
OPEN, CLOSE, and END-OF-VOLUME conditions 
by the respective executors. 

For a data set opened as output, the NSL 
routines entered include: 

• ht OPEN time, a header routine to check 
the old header and/or create the new 
header; 

• At CLOSE time, a trailer-creation 
routine; 

• At EOV time, a trailer-creation routine 
and a header routine. 

For a data set opened as input essentially 
the same types of routines are required. 



Note: The NSL routines must observe the 
foiio~ing conventions: 

1. Follo~ Type-IV SVC routine 
conventions. 

2. Use GETMAIN and FREEMAIN for work 
areas. 

3. Be reentrant load moduies of 1024 
bytes each. 

4. Use EXCP for I/O operations and XCTL 
for passing control among load modules 
and then returning to the I/O-support 
routines. 

5. Begin with the letters NS~ if the 
system branches to them directly. 
(Other user-written modules having to 
do with nonstandard labels must begin 
with the letters IGC.) 

6. Have as their entry points the first 
byte in each load module. 

In addition, the NSL routines must write 
their own tapemarks, do all I/O operations 
necessary (via EXCP) , determine when all 
labels have been processed, and take care 
of data set positioning. These routines 
may communicate at the LABEL source level 
with U-S-EBEF-GRE L-A-BEL PROG-E-DURE 
declaratives by means of linkage described 
under "User Label Procedure." 

USER LABEL PROCEDURE 

The USE ••• LABEL PROCEDURE statement 
provides the user with label handling 
procedures at the COBOL source level to 
handle nonstandard or user labels. The 
BEFORE option indicates processing of 
nonstandard labels. The AFTER option 
indicates processing of standard user 
labels. The labels must be listed as 
data-names in the LABEL RECORDS clause in 
the File Description entry for the file. 
When the file is opened as input, the label 
is read in and control is passed to the USE 
declarative if a USE ••• LABEL PROCEDURE is 
specified for the OPEN option or for the 
file. If the file is opened as output, a 
buffer area for the label is provided and 
control is passed to the USE declarative if 
a USE ••• LABEL PROCEDURE is specified for 
the OPEN option or for the file. For files 
opened as INPUT or I-a, control is passed 
to the USE declarative to process trailer 
labels when a CLOSE statement is executed 
for the file that has reached the AT END 
condition. A more detailed discussion of 
the USE ••• LABEL PROCEDURE statement is 
contained in the Program Product 
publication IBM OS Full American National 
Standard COBOL. 

One of the concerns of the programmer is 
linkage between the nonstandard label SVC 
routine and the USE BEFORE LABEL PROCEDURE 
section. Other problems related to ~riting 
nonstandard label SVC routines are 
discussed in the publication IB~OS ~y~~~~ 
Programmer's Guide. 

When the nonstandard label SVC routine 
has determined that a particular DCB has 
nonstandard labels, the nonstandard label 
routine must inspect the DCB exit list for 
an active entry to ensure that there is a 
USE BEFORE ••• LABEL section for this DCB and 
for that type of label processing. The DCB 
field EXLST contains a pointer to this exit 
list. An active entry is defined as a 
l-byte code other than X'OO' or X'80' 
followed by a 3-byte address of the 
appropriate label section (Figure 35). 

r-----T-----------------------------------l 
ICode I Exit List I 
~-----+-----------------------------------~ 
I 1 I (USE section for header labels) I 
I I I 
I 2 I (USE section for trailer labels) I 
I I I 
I I I 
I I I 
~-----~=--~-------------------------------i 
I Notes: I 
I 1. Code 1 is set to X'01 1 indicating I 
I INPUT, or X'02' indicating OUTPUT. I 
I 2. Code 2 is set to 'X'OD' indicating I 
I INPUT, or X'04 1 indicating OUTPUT. I l _________________________________________ J 

Figure 35. Exit List Codes 

Once the nonstandard label SVC routine 
tests that the exit list confirms an 
appropriate active entry, it must pass the 
address of a parameter list in register 1. 

The parameter list (Figure 36) must have 
the following format. 

r-------------T------------------l 
I 1 byte I 3 bytes I 

r--------t-------------t------------------i 
I Byte 0 I 0 I A (label buffer) I 
I Byte 4 ! Flag byte ! A(DCB) ! 
I Byte 8 I Error flag I I l ________ ~ _____________ ~ __________________ J 

Figure 36. Parameter List Formats 

The A(label buffer) is the address of 
the label record On input and the address 
where the label will be created on output. 

The A(DCB) is the address of the DCB. 
The DCB contains a pointer to the DEB. The 
nonstandard label SVC routine must test the 

User File Processing 141 



EOF bit in the OFLGS field of the DEB (data 
extend block) to determine whether to 
return control to the EOV or CLOSE module. 
control is given to the CLOSE module only 
at EOF. 

The error flag byte will have bit 0 set 
to 1 if an input/output error occurs when 
reading or writing a label. 

r-------------T-----------T---------------, 
IRoutine Type IReturn CodelApplicable Note I 
~-------------+-----------+---------------~ 
IInput header I 0 I 1 I 
land/or I 4 I 2 ! 
I trailer I 16 I 3 I 
~-------------+-----------+---------------~ 
10utput header I 4 I 1 I 
land/or I 8 I 2 I 
I trailer I I I 
~-------------+-----------+---------------~ 
IUpdate headerl 8 I 1 I 
land/or I 12 I 2 I 
I trailer I 16 I 3 I 
~-------------~-----------~---------------~ 

Notes: 
~--Por output mode, the label is 

written or rewritten. For input 
mode, normal processing is resumed; 
any additional user labels are 
ignored. 

2. Another label is read (for input 
mode) and control is returned to the 
USE BEFORE LABEL PROCEDURE section. 
For output mode, the labels should 
be written and control should be 
returned to the USE BEFORE LABEL 
PROCEDURE section. When control is 
returned to the nondeclarative 
portion, either normal processing 
will continue or the label section 
will be re-entered, depending on 
whether the return code is 4 or 8. 

3. A return code of 16 indicates that 
the USE BEFORE LABEL PROCEDURE 
section has determined that an 
incorrect volume was mounted. When 
LABEL-RETURN is set to a nonzero 
value, the return code is set to 16. l _________________________________________ J 

Figure 37. Label Routine Return Codes 

When the USE BEFORE LABEL PROCEDURE 
section returns control to the nonstandard 
label SVC routine, it will pass a return 
code that will indicate whether or not more 
labels are to be processed (Figure 37). 
This return code is set by assigning a 
value to the special register LABEL-RETURN. 

The maximum size of the label record is 
stored on a halfword boundary at the 
EXITLIST address +38. 

142 

The user's nonstandard label routines 
are responsible for all tape positioning. 
For multifile volumes, the user may specify I 

a file sequence number in the LABEL 
parameter on the DD card. The nonstandard 
label routines can inspect this information 
in the JFCB and position the files 
accordingly. For additional information, 
see the IBM OS System Prog~~~~~~~~_~~~~~. 

ASCII files on magnetic tape may have 
American National Standard labels or 
American National Standard and user labels, 
or they may have no label. Any labels on 
an ASCII tape must be in ASCII code. Tapes 
containing a combination of ASCII and 
EBCDIC labels are not read. All the record 
formats supported (i.e., fixed, undefined, 
and variable) are allowed on ASCII files, 
regardless of whether or not the files are 
labeled. Spanned records are not supported 
under ASCII. 

When American National Standard labels 
are being processed, the label type must be 
specified in the DD statement that 
describes the data set. The parameter for 
American National Standard labels is 
LABEL=AL. The parameter for American 
National Standard and user labels is 
LABEL=AUL. Nonstandard labels are not 
permitted for ASCII files. The user may 
indicate no labels as LABELS=NL. 

Standard label processing for ASCII 
files is identical to standard label 
processing for files coded in EBCDIC. 
ASCII code is translated into EBCDIC code 
prior to processing. 

All American National Standard user 
labels (LABEL=AUL) are optional. ASCII 
files may have user header labels (UHLn) 
and user trailer labels (UTLn), which are 
processed very much like the standard user 
labels on EBCDIC files. However, there is 
no limit to the number of user labels 
possible at the beginning and the end of a 
file. No check is made on the number of 
labels written. It is left to the user to 
determine how many labels he wants written. 



All user labels must be 80 bytes in 
length, but they may contain any user 
information desired. 

Note: USE BEFORE STANDARD LABEL procedures 
are-not allowed, because they are 
nonstandard. 

User Label Exits 

To create or verify user labels, the 
programmer must code for the file a USE 
AFTER STANDARD LABEL procedure. 

User File Processing 143 



Logical records may be in one of four 
formats: fixed-length (format F), 
variable-lAngth (format V), unspecified 
(format U>, or spanned (format S). F-mode 
files must contain records of equal 
lengths. Files containing records of 
unequal lengths must be V-mode, U-mode, or 
S-mode. Files containing logical records 
that are longer than physical records must 
be S-mode. 

The record format is specified in the 
RECORDING MODE clause in the Data Division. 
If this clause is omitted, the compiler 
determines the record format from the 
record descriptions associated with the 
file. If the file is to be blocked, the 
BLOCK CONT~INS clause must be specified in 
the Data Division. 

The prime consideration in the selection 
of a record format is the nature of the 
file itself. The programmer knows the type 
cf input his program will receive and the 
type of output it will produce. The 
selection of a record format is based on 
this knowledge as well as an understanding 
of the type of input/output devices on 
which the file is written and of the access 
method used to reart or write the file. 

FIXED-LENGTH (FORMAT F) RECORDS 

Format F records are fixed-length 
records. The programmer specifies format F 
records by including RECORDING MODE IS F in 
the file description entry in the Data 
Division. If this clause is omitted and 
both of the following are true: 

• All records in the file are the same 
size 

• BLOCK CONTAINS [integer-l TO] 
integer-2... does not specify 
integer-2 less than the length of the 
maximum level-Ol record 

the compiler determines the recording mode 
to be F. ~ll records in the file are the 
same size if there is only one record 
description associated with the file and it 
contains no OCCURS clause with the 
DEPENDING ON option; or if multiple record 
descriptions are all the same length. 

144 

The number of logical records within a 
block (blocking factor) is normally 
constant for every block in the file. When 
fixed-length records are blocked, the 
programmer specifies the BLOCK CONTAINS 
clause in the file description (FD) entry 
in the Data Division. 

In unblocked format F, the logical 
record constitutes the block. The BLOCK 
CONTAINS clause is unnecessary for 
unblocked records. 

Format F records are shown in Figure 38. 
The optional control character, represented 
by the letter C in Figure 37 is used for 
stacker selection and carriage control. 
When carriage control or stacker selection 
is desired, the WRITE statement with the 
ADVANCING or POSITIONING option is used to 
write records on the output file. In this 
case, one character position must be 
included as the first character of the 
record. This position will be 
automatically filled in with the carriage 
control or stacker select character. The 
carriage control character never appears 
when the file is written on the printer or 
punched on the card punch. 

Note: Illustrations of unblocked Format F 
records do not take into account the key 
field required when direct organization is 
used. 

r-----------------------------------------, 
Logical Record 

r---T------------------------, 
I C I Data I l ___ ~ ________________________ J 

Blocked Records 
r-----------T-----------T-----------, 
I Logical I Logical I Logical I 
I Record I Record I Record I l ___________ L ___________ L ___________ J 

<------------Fixed Length-----------> 

Unblocked Record 
r-----------------------------------, 
I Logical Record I l ___________________________________ J 

<------------Fixed Length-----------> 
_________________________________________ J 

Figure 38. Fixed-length (Format F) Records 



UNSPECIFIED (FORMAT U) RECORDS 

Format U is provided to permit the 
processing of any blocks that do not 
conform to F, V, or S formats. Format U 
records are shown in Figure 39. The 
optional control character C, as discussed 
under "Fixed-Length (Format F) Records," 
may be usei in each logical record. 

The programmer specifies format U 
records by including RECORDING MODE IS U in 
the file description (FD) entry in the Data 
Division. U-mode records may be specified 
only for direct or standard sequential 
files. 

If the RECORDING MODE clause is omitted, 
and BLOCK CONTAINS [integer-1 TO] 
integer-2... 10es not specify integer-2 
less than the maximum level-01 record, the 
compiler determines the recording -mode to 
be U if the file is direct and one of the 
following con1itions exist: 

• The FD entry contains two or more 
level-01 descriptions of different 
lengths. 

• A record description contains an OCCURS 
clause: with the DEPENDING ON option. 

• A RECORD CONTAINS clause specifies a 
range of record lengths. 

Each block on the external storage media 
is treated as a logical record. There are 
no record-length or block-length fields. 

When a READ INTO statement is used for a 
U-mode file, the size of the longest record 
for that file is used in the MOVE 
statement. All other rules of the MOVE 
statement apply. 

Note: Illustrations of Format U records do 
not-take into account the key field 
required when direct organization is used. 

r-------------------------------------=-=~1 

I Logical Record I 
I r---T----------------------, I 
I I C I Data I I I l ___ ~ ______________________ J I 

I I 
I Format U Record I 
I r---------------------------------, I 
I I Logical Record I I I L _________________________________ J I 

I I L _________________________________________ J 

Figure 39. Unspecified (Format U) Records 

The programmer specifies format V 
records by including RECORDING MODE IS V in 
the file description entry in the Data 
Division. V-mode records may be specified 
only for direct or standard sequential 
files. If the RECORDING MODE clause is 
omitted and BLOCK CONTAINS [integer-1 TO] 
integer-2 ••• does not specify integer-2 
less than the maximum level-01 record, the 
compiler determines the recor1ing mode to 
be format V if the file is standar1 
sequential an1 one of the following 
conditions exist: 

• The FD entry contains two or more 
level-01 descriptions of different 
lengths. 

• A record description contains an OCCURS 
clause with the DEPENDING ON option. 

• The RECORD CONTAINS clause specifies a 
range of record lengths. 

V-mode records, unlike U-mode or F-mode 
records, are preceded by fields containing 
control information. These control fields 
are illustrated in Figures 40 and 41. 

The first four bytes of each block 
contain control information (CC): 

LL -- represents two bytes designating 
the length of the block (including 
the ICC' field). 

BB -- represents two bytes reserved for 
system use. 

The first four bytes of each logical 
record contain control information (cc): 

11 -- represents two bytes designating 
the logical record length 
(including the 'cc' field). 

bb -- represents two bytes reserve1 for 
system use. 

For unblocked V-mode records (Figure 
40), the Data portion + CC + cc constitute 
the block. 

For blocked V-mode records (Figure 41), 
the Data portion of each record + the cc of 
each record + CC constitute the block. 

Record Formats 145 



r-----------------------------------------, 
I I 
I I 
I 4 4 variable i 
I <--bytes-><--bytes--><------bytes-------> I 
I r----T----T----T----T-------------------, I 
I I LL I BB III I bb I Data II I L ____ i ____ i ____ i ____ i ___________________ J I 
I~'~ I 
I I CC I 

I ec l I 
I I L _________________________________________ J 

Figure 40. Unblocked V-Mode Records 

Variable-length record descriptions, for 
input and output files, must not define 
space for the control bytes. Control bytes 
are automatically provided when a record is 
written and are not communicated to the 
user when a file is read. Although they do 
not appear in the descriptions of logical 
records, control bytes do appear in the 
buffer areas of main storage. The compiler 
automatically allocates input and output 
buffers that are large enough to contain 
the required control bytes. 

When variable-length records are written 
on unit record devices, control bytes are 
neither printed nor punched. They do 
appear, however, on other external storage 
devices. V-mode records moved from an 
input buffer to a working storage area will 
be moved without the control bytes. 

Note: When a READ INTO statement is used 
for a V-mode file, the size of the longest 
record for that file is used in the MOVE 
statement. All other rules of the MOVE 
statement apply. 

Consider the following standard 
sequential file consisting of unblocked 
V-mode records: 

FD VARIABLE-FILE-1 
RECORDING MODE IS V 

01 

BLOCK CONTAINS 35 TO 80 CHAHACTERS 
RECORD CONTAINS 27 TO 72 CHARACTERS 
DATA RECORD IS VARIABLE-RECORD-1 
LABEL RECORDS ARE STANDARD. 

VARIABLE-RECORD-1. 
LOGICAL RECORD 
05 FIELD-A PIC X(20). 
05 FIELD-B PIC 99. 
05 FIELD-C OCCURS 1 TO 10 TIMES 

DEPENDING ON 
FIELD-B PIC 9 (5) • 

The LABEL RECORDS clause is always 
required. The DATA RECORDCS) clause is 
never required. If the RECORDING MODE 
clause is omitted, the compiler determines 
the mode as V since the record associated 
with VARIABLE-FILE-1 varies in length 
depending on the contents of FIELD-B. The 
RECORD CONTAINS clause is never requirej. 
The compiler determines record sizes from 
the record description entries. The BLOCK 
CONTAINS clause is also not required, since 
the compiler assumes unblocked records if 
the clause is omitted. Note: Record 
length calculations are affected by the 
following: 

• When the BLOCK CONTAINS clause with the 
RECORDS option is used, the compiler 
adds four bytes to the logical record 
length and four more bytes to the block 
length. 

• When the BLOCK CONTAINS clause with the 
CHARACTERS option is used, the user 
must include each cc + CC in the length 
calculation. In the definition of 
VARIABLE-FILE-1, the BLOCK CONTAINS 
clause specifies eight more bytes than 
does the RECORD CONTAINS clause. Four 
of these bytes are the logical record 
control bytes and the other four are 
the block control bytes. 

r---------------------------------------------------------------------------------------, 
I 1st 2nd 3rd I 
I Logical Record Logical Record Logical Record I 
I ./'.... ./'.... -"""'- I 
I r----T----T----T----T-----------T----T----T----------T----T----T----------, I 
I I LL I BB I 11 I bb I DATA-1 I 11 I bb I DATA-2 I 11 I bb I DATA-3 I I I L ____ i ____ i ____ i ____ i ___________ i ____ i ____ i __________ i ____ i ____ i __________ J I 

I '~-----~ ~ -~' I 

: (blOc~C~:ntrol ______________ creco;~c~ontrol_____________ : 
I bytes) bytes) I L _______________________________________________________________________________________ J 

Figure 41. Blocked V-Mode Records 

146 



In Example 1, assume that FIELD-B 
contains the value 02 for the first record 
of a file and FIELD-B contains the value 03 
for the second record of the file. The 
first two records will appear on an 
external storage device and in buffer areas 
of main storage as shown in Figure 42. 

If the file described in Example 1 had a 
blocking factor of 2, the first two records 
would appear on an external storage medium 
as shown in Figure 43. 

If VARI~BLE-FILE-2 is blocked, with 
space allocated for three records of 
maximum size per block, the following FD 
entry could be used when the file is 
created: 

FD VARIABLE-FILE-2 
RECORDING MODE IS V 
BLOCK CONTAINS 3 RECORDS 
RECORD CONTAINS 20 TO 100 CH~RACTERS 
DAT~ RECORDS ARE Vk~IABLE-RECORD-l, 

VARIABLE-RECORD-2 
LABEL RECORDS ARE STANDARD. 

01 VARIABLE-RECORD-l. 
05 FIELD-A PIC X(20). 
05 FIELD-B PIC X(80). 

01 VARIABLE-RECORD-2. 
as FIELD-X PIC X(20). 

As mentioned previously, the RECORDING 
MODE, RECORD CONTAINS, and DATil. RECORDS 
clauses are unnecessary. By specifying 
that each block contains three records, the 
programmer allows the compiler to provide 
space for three records of maximum size 
plus additional space for the required 
control bytes. Hence, 316 character 
positions are reserved by the compiler for 
each output buffer. If this size is other 
than that required, the BLOCK CONT~IclS 
clause with the CHARACTERS option should be 
specified. If the block size is to be 
specified at execution time by use of the 
BLKSIZE subparameter on an associated DD 
carj, BLOCK CONTAINS a CHARACTEl<.S must be 
specified. 

Note: Blocked variable-length recorjs are 
permitted only when the file processing 
technique is standard sequential. 

In Example 2, assume that the first six 
records written are five lOa-character 
records followed by one 20-character 
record. The first two blocks of 
VARAIBLE-FILE-2 will appear on the external 
storage device as shown in Figure 44. 

r-------------------------------------------------------------------------------------------------, 
I 1st Block 2nd Block I 
I _______ ~ I 
I r----T--T----T--T T T T---- --T----T--T----T--T-------T--T-------T-------T-------, I 
I I0040IBBI0036IbbIFIELD-AI02IFIELD-cIFIELD-cI0045IBBloO41IbbIFIELD-AIO~IFIELD-cIFIELD-cIFIELD-cl I I L ____ ~ __ ~ ____ ~ __ ~ _______ ~ __ ~ _______ ~ _______ ~ ____ ~ __ ~ __ --~ __ ~ _______ ~ __ ~ _______ ~ _______ ~ _______ J I 

I I 
I Note: Lengths appear in decimal notation for illustrative purposes. I 
I I L _____________________________________________________ ------______________________________________ J 

Figure 42. Fields in Unblocked V-Mode Records 

r---------------------------------------------------------------------------------------, 
I 1st Record 2nd Record I 
! __ . /"'-__ . ______ I 
I r----T--T----T--T-------T--T-------T-------T----T--T-------T--T-------T-------T-------, i 
I I0081IBBI0036IbbIFIELD-AI02IFIELD-CIFIELD-CI0041IbbIFIELD-AI03IFIELD-CIFIELD-CIFIELD-CII I L ____ ~ __ ~ ____ ~ __ ~ _______ ~ __ ~ _______ ~ _______ ~ ____ ~ __ ~ _______ ~ __ ~ _______ ~ _______ ~ _______ J I 

I I 
I Note: Lengths appear in decimal notation for illustrative purposes. I 
I I L _______________________________________________________________________________________ J 

Figure 43. Fields in Blocked V-Mode Records 

Record Formats 147 



r-------------------------------------------------------------------------------------------------, 
I 1st Block 2nd Block I 
I............... ____ I 

I r---T--T---T--T----T---T--T----T---T--T---- --T--T---T--T----T---T------------------, I 
i j316iBBjl0QjbbjDatajl04\bblDatajl04lbblData 2361BBI1041bbiDatal1041bbiDatal241bbiDatai I I L ___ ~ __ ~ ___ ~ __ ~ ____ ~ ___ ~ __ ~ ____ ~ ___ ~ __ ~___ _ __ ~ __ ~ ___ ~ __ ~ ____ ~ ___ ~ __________________ J I 

I I 
I Note: Lengths appear in decimal notation for illustrative purposes. I 
I I L _____________________________________________________ ----------__________________________________ J 

The buffer for the second block is 
truncated after the sixth WRITE statement 
is executed since there is not enough space 
left for a maximum size record. Hence, 
even if the seventh WRITE to 
VJffiIABLE-FILE-2 is a 20-character record, 
it ~ill appear as the first record in the 
third block. This condition can be 
eliminated by using the APPLY WRITE-ONLY 
clause when creating files of 
variable-length blocked records. 

Note: Illustrations of unblocked Format V 
records do not take into account the key 
field required when direct organization is 
used. 

~PPL! WRITE-ONLY Clause 

The APPLY WRITE-ONLY clause is used to 
make optimum use of buffer space when 
creating a standard sequential file with 
blocked V-mode records. 

Suppose VARIABLE-FILE-2 is being created 
with the following file description entry: 

FD VARIABLE-FILE-2 
RECORDING MODE IS V 
BLOCK CONTAINS 316 CH~RACTERS 
DATA RECORDS ARE VARIABLE-RECORD-1, 

VARIABLE-RECORD-2 
LABEL RECORDS ARE STANDARD. 

01 VARIABLE-RECORD-1. 
05 FIELD-A PIC X(20). 
05 FIELD-B PIC X(80). 

01 VARIABLE-RECORD-2. 
05 FIELD-X PIC X(20). 

The first three WRITE statements to the 
file create one 20-character record 
followed by two 100-character records. 
Without the APPLY WRITE-ONLY clause, the 
buffer is truncated after the third WRITE 
statement is executed since the maximum 
size record no longer fits. The block is 
written as shown below: 

148 

r---T--T--T--T----T---T--T----T---T--T----' 
1236lbbl24lbblDatal104lbblDatal104lbb/Datal L ___ ~ __ ~ __ ~ __ ~ ____ ~ ___ ~ __ ~ ____ ~ ___ ~ __ ~ ____ J 

Using the APPLY WRITE-ONLY clause causes 
a buffer to be truncated only when the next 
record does not fit in the buffer. That 
is, if the next three WRITE statements to 
the file specify VARIABLE-RECORD-2, the 
block is created containing six logical 
records, as shown below: 

~Q~~: When using the APPLY WRITE-ONLY 
clause, records must not be constructed in 
buffer areas. An intermediate work area 
must be used with a WRITE FROM statement. 

A spanned record is a logical record 
that may be contained in one or more 
physical blocks. Format S records may be 
specified for direct (BDAM, BSAM) files and 
for standard sequential (QSAM) files 
assigned to magnetic tape or to mass 
storage devices. 

When creating files with S-mode records, 
if a record is larger than the remalnlng 
space in a block, a segment of the record 
is written to fill the block. The 
remainder of the record is stored in the 
next block or blocks, as required. 

When retrieving a file with S-mode 
records, only complete records are made 
available to the user. 

Spanned records are preceded by fields 
containing control information. Figure 44 
illustrates the control fields. 



BDF (Block Descriptor Field): 

LL -- represents two bytes designating 
the length of the physical block 
(including the block descriptor 
field itself). 

BB -- represents two bytes reserved for 
system use. 

SDF (segment Descriptor Field): 

11 -- represents two bytes designating 
the length of the record segment 
(including the segment descriptor 
field itself). 

bb -- represents two bytes reserved for 
system use. 

~ote: There is only one block descriptor 
field at the beginning of each physical 
block. There is, however, one segment 
descriptor field for each record segment 
within the block. 

Each segment of a record in a block, 
even if it is the entire record, is 
preceded by a segment descriptor field. 
The segment descriptor field also indicates 
whether the segment is the first, the last, 
or an intermediate seg-ment. Each blo-ck 
includes a block descriptor field. These 
fields are not described in the Data 
Division; provision is automatically made 
for them. These fields are not available 
to the user. 

A spanned blocked file may be described 
as a file composed of physical blocks of 
fixed length established by the programmer. 
The logical records may be either fixed or 
variable in length and that size may be 
smaller, equal to, or larger than the 
physical block size. There are no required 
relationships between logical records and 
physical block sizes. Records of a spanned 
file may only be blocked when organization 
is sequential (QSAM). 

A spanned unblocked file may be 
described as a file composed of physical 
blocks each containing one logical record 
or one segment of a logical record. The 
logical records may be either fixed or 
variable in length. When the physical 
block contains one logical record, the 
lenqth of the block is determined by the 
logical record size. When a logical record 
has to be segmented, the system always 
writes the largest physical block possible. 
The system segments the logical record when 
the entire logical record cannot fit on the 
track. 

Figure 46 is an illustration of blocked 
spanned records of SFILE. SFILE is 

described in the Data Division with the 
following file description entry: 

FD SFILE 
RECORD CONTAINS 250 CHARACTERS 
BLOCK CONTAINS 100 CHARAcrERS 

Figure 46 also illustrates the concept 
of record segments. Note that the third 
block contains the last 50 bytes of REC-l 
and the first 50 bytes of REC-2. Such 
portions of logical records are called 
record segments. It is therefore correct 
to say that the third block contains the 
last segment of REC-l and the first segment 
of REC-2. The first block contains the 
first segment of REC-l and the second block 
contains an intermediate segment of REC-l. 

S-MODE CAPABILITIES 

Formatting a file in the S-mode allows 
the user to make the most efficient use of 
external storage while organizing data 
files with logical record lengths most 
sui ted to his needs. 

1. Physical record lengths can be 
designated in such a manner as to make 
the most efficient use of track 
capacities on mass storage devices. 

2. The user is not required to adjust 
logical record lengths to maximum 
physical record lengths and their 
device-dependent variants when 
designing his data files. 

3. The user has greater flexibility in 
transferring logical records across 
DASD types. 

Spanned record processing will support 
the 2400 tape series, the 2311 and 2314 
disk storage devices, and the 2321 data 
cell drive. 

SEQUENTIAL S-MODE FILES (QSAM) FOR TAPE OR 
MASS STORAGE DEVICES 

When the spanned format is used for QSAM 
files, the logical records may be either 
fixed or variable in length and are 
completely independent of physical record 
length. A logical record may span physical 
records. A physical record may contain one 
or more logical records and/or segments of 
logical records. 

Record Formats 149 



r---------------------------------------------------------------------------------------, 
I I 
I <--4 bytes---> <--4 bytes--> <----------------Variable bytes------------------> I 

r------T------T------T------T-------------------------------------------------, I 
I LL I BB I 11 I bb I Data Record or Segment I I L ______ i ______ i ______ i ______ i __________________ _______________________________ J I 

~ ~ ! 
BDF SDF I 

I 
.l.~~-~-----. __ --.-._~~=-~_.~-~~~~==== ___ ._ ... __ . ___________ . ______ . ___________ "'"'_~~~~ _____ _' ..... __ ....... _ ..... ==_==,,",;0 

Figure 45. Control Fields of an S-Mode Record 

r---------------------------------------------------------------------------------------, 
I I 
I <--------100 bytes-------> <--------100 bytes-------> <-50 bytes-> <-50 bytes-> I 
I r------------------------, r------------------------, r---------~-T------------, I 
I I REC-l I G I REC-l I G I REC-1 I REC-2 I I I L ________________________ J L ________________________ J L ___________ i ____________ J I 

I 1st Block 2nd Block 3rd Block I 
I I l _______________________________________________________________________________________ J 

Figure 46. One Logical Record Spanning Physical Blocks 

Source Language Considerations 

The user specifies S-mode by describing 
the file with the following clauses in the 
file description (FD) entry of his COBOL 
proqram: 

• BLOCK CONTAINS integer-2 CHARACTERS 

• RECORD CONTAINS [integer-1 TO] 
integer-2 CHARACTERS 

• RECORDING MODE IS S 

The size of the physical record must be 
specified using the BLOCK CONTAINS clause 
with the CHARACTERS option. Any block size 
may be specified. Block size is 
independent of logical record size. 

The size of the logical record may be 
specified by the RECORD CONTAINS clause. 
If this clause is omitted, the compiler 
will determine the maximum record size from 
the record descriptions under the FD. 

Format S may be specified by the 
RECORDING MODE IS S clause. If this clause 
is omitted, the compiler will set the 
recording mode to S if the BLOCK CONTAINS 
inteter-2 CHARACTERS clause was specified 
and either of the following conditions 
exist: 

• Integer-2 is less than the largest 
fixed-length level-01 FD entry. 

150 

• Integer-2 is less than the maximum 
length of a variable level-Ol FD entry 
(i.e., an entry containing one or more 
OCCURS clauses with the DEPENDING ON 
option) • 

Except for the APPLY WRITE-ONLY, APPLY 
RECORD-OVERFLOW, WRITE BEFORE ADVANCING, 
WRITE AFTER ADVANCING, or WRITE AFTER 
POSITIONING clauses, all the options for a 
variable file apply to a spanned file. 

Suppose a file has the following file 
description entry: 

FD SPAN-FILE 
BLOCK CONTAINS 100 CHARACTERS 
LABEL RECORDS ARE STANDARD 
DATA KECORD IS DATAREC. 

01 DATAREC. 
05 FIELD-A PIC X (100). 
05 FIELD-B PIC X (50). 

Figure 47 illustrates the first four 
blocks of SPAN-FILE as they would appear on 
external storage devices (i.e., tape or 
mass storage) or in buffer areas of main 
storage. 



1. The RECORDING MODE clause is not 
specified. The compiler determines 
the recording mode to be S since the 
block size is less than the record 
size. 

2. The length of each physical block is 
100 bytes, as specified in the BLOCK 
CONTAINS clause. All required control 
fields, as well as data, must be 
contained within these 100 bytes. 

3. No provision is made for the control 
fields within the level-Ol entry 
DATAREC. 

The preceding discussion dealt with 
S-mode records which were larger than the 

physical blocks that contained them. It is 
also possible to have S-mode records which 
are equal to or smaller than the physical 
blocks that contain them. In such cases, 
the RECORDING MODE clause must specify S 
Cif so desired) since the compiler cannot 
determine this by comparing block size and 
record size. 

One advangage of S-mode records over 
V-mode records is illustrated by a file 
with the following characteristics: 

1. RECORD CONTAINS 50 TO 150 CHARACTERS 

2. BLOCK CONTAINS 350 CHARACTERS 

3. The first five records written are 
150, 150, 150, 100, and 150 characters 
in length. 

r---------------------------------------------------------------------------------------------------------, 
4 4 92 4 4 58 4 30 

<-bytes-><-bytes-><-----------bytes-------------> <-bytes-><-bytes-><---bytes---><-bytes-><--bytes---> 
r---T---T---T----T------------------------------, r---T---T---T----T-------------T---T-~--T-----------, 
ILL IBB III I bb I DATAREC (1) I ILL IBB III I bb I DATAREC (1) III I bb IDATAREC (2)1 L ___ ~ ___ ~ ___ ~ ____ ~ ______________________________ J L ___ ~ ___ ~ ___ ~ ____ ~ _____________ ~ ___ ~ ____ ~ ___________ J 

1st Block 2nd Block 

4 4 92 4 4 28 4 60 
<-bytes-><-bytes-><-----------bytes-------------> <-bytes-><-bytes-><--bytes---><-bytes-><---bytes---->I 
r---T---T---T----T------------------------------, r---T---T---T----T-----------T---T----T-------------, I 
ILL IBB III I bb i DATAREC (2) I ILL IBB III I bb IDATAREC (2) III I bb I DATAREC (3) I I L ___ ~ ___ ~ ___ ~ ____ ~ ______________________________ J L ___ ~ ___ ~ ___ ~ ____ ~ ___________ ~ ___ ~ ____ ~ _____________ J I 

I 
3rd Block 4th Block I 

I L _________________________________________________________________________________________________________ J 

Figure 47. First Four Blocks of SPAN-FILE 

r------------------------------------------T--------------------------------------------, 
I RECORDING MODE IS V I RECORDING MODE IS S I 
~---------------------~--------------------+--------------------------------------------~ 
I I I 
I I I 
! r-----Y-----, r-----T-----' r-----' I r-----T-----T-----' r-----T-----T-----' I 
I I 150 I 150 I G I 150 I 100 I G I 150 I I i 150 i 150 i 50 i G I 100 I 100 I 150 I I 
: ~~ ~.L~ ~ : ~~.L _____ J", L _____ .L~.L~ : 

I Rl R2 R3 R4 R5 I Rl R2 R3 R4 R5 I 
I I I 
I I I 
~----------------------~-------------------.L----------__________________________________ ~ 
INote: The enclosed diagrams are for illustrative purposes only. Neither takes into I 
laccount the space required for control fields. I L _______________________________________________________________________________________ J 

Figure 48. Advantage of S-Mode Records Over V-Mode Records 

Record Formats 151 



For V-mode records, buffers are 
truncated if the next logical record is too 
large to be completely contained in the 
block (Figure 48). This results in more 
physical blocks and more inter-record gaps 
on the external storage device. 

Note: For V-mode records, buffer 
truncation occurs: 

1. When the maximum level-01 record is 
too large. 

2. If APPLY WRITE-ONLY or SAME RECORD 
~REA is specified and the actual 
logical record is too large to fit 
into the remainder of the buffer. 

For S-mode records, all blocks are 350 
bytes in length and records that are too 
large to fit entirely into a block will be 
segmented. This results in more efficient 
use of external storage devices since the 
number of inter-record gaps are minimized 
(Figure 48). 

A second advangage of S-mode processing 
over that of V-mode is that the user 1S no 
lonqer limited to a record length that does 
not exceed the track of the mass storage 
device selected. Records may span tracks, 
cylinders, extents, and volumes. 

QSAM spanned records differ from other 
QSAM record formats because of an 
allocation of an area of main storage known 
as the "Logical Record Area." If logical 
records span physical blocks, COBOL will 
use this Logical Record Area to assemble 
complete logical records. If logical 
records do not span blocks (i.e., they are 
contained within a single physical block) 

the Logical Record Area is not used. 
Regardless, only complete logical records 
are made available to the user. Both READ 
and WRITE statements should be thought of 
as manipulating complete logical records 
not record segments. 

The allocation of a Logical Record Area 
JIl~ ¥--b.e---.a.--~-a-p:A:.~" .... -t.-G-.--.t.-r-&----GGBG-I:.-.-U&B£-.-'--"-- . 
Additional main storage, consisting of 36 
bytes + the maximum record length, will 
always be required. The Logical Record 
Area is discussed in detail in "Finding 
Data Records in an Abnormal Termination 
Dump." 

DIRECTLY ORGANIZED S-MODE FILES (BDAM AND 
BSAM) 

When S-mode is used for directly 
organized files, only unblocked records are 
permitted. Logical records may be either 
fixed or variable in length. A logical 
record will span physical records if, and 
only if, it spans tracks. A physical 
record will contain only one logical record 
or a segment of a logical record. A track 
may contain a segment of a logical record, 
or segments of two logical records and/or 
whole logical records. Records may span 
tracks, cylinders, and extents, but not 
volumes. 

r---------------------------------------------------------------------------------------, 
sequential File 3 Direct File 

r-----T---------T-------------, r-----' r---------, r-------, 
I R1 I R2 I R3 I ••• 1st track ••• I R1 I G I R2 I G I ~3 I L _____ ~ _________ ~ _____________ J L _____ J L _________ J l _______ J 

r-----------------------------, r-------------------------------, 
I R3 I ••• 2nd track ••• I R3 I L _____________________________ J L _______________________________ J 

r-----------T-----------------, r-----------------, r---------, 
I R3 I R4 I ••• 3rd track ••• I R3 I G I R4 I l ___________ ~ _________________ J L _________________ J L _________ J 

r-------, 
••• 4th track ••• I R4 I L _______ J 

------------------------_______________________________________________________________ J 

Figure 49. Direct and Sequential Spanned Files on a Mass Storage Device 

152 



Source Language-Considerations 

The user specifies S-mode by describing 
the file with the following clauses in the 
file description (FD) entry of his COBOL 
program: 

• BLOCK CONTAINS integer-2 CHARACTERS 

• RECORD CONTAINS [integer-1 TO] 
integer-2 CHARACTERS 

• RECORDING MODE IS S 

The size of a logical record may be 
ppecified by the RECORD CONTAINS clause. 
If this clause is omitted, the compiler 
will determine the maximum record size from 
the record descriptions under the FD. 

The spanned format may be specified by 
the RECORDING MODE IS S clause. If this 
clause is omitted, the compiler will set 
the recording mode to S if the BLOCK 
CONTAINS integer-2 CHARACTERS clause was 
specified and integer-2 is less than the 
greatest logical record size. This is the 
only use of the BLOCK CONTAINS clause. It 
is otherwise treated as comments. 

The physical block size is determined by 
either: 

1. The logical record length. 

2. The track capacity of the device being 
used. 

If, for example, the track capacity of a 
mass storage device is 3625 characters, any 
record smaller than 3625 characters may be 
written as a single physical block. If a 
logical record is greater than 3625 
characters, the record is segmented. The 
first segment may be contained in a 
physical block of up to 3625 bytes, and the 
remaining segments must be contained in 
succeeding blocks. In other words, a 
logical record will span physical blocks 
if, and only if, it spans tracks. 

Figure 49 illustrates four 
variable-length records (R1, R2, R3, and 
R4) as they would appear in direct and 
sequential files on a mass storage device. 
In both cases, control fields have been 
omitted for illustrative purposes. For 
both files, assume: 

1. BLOCK CONTAINS 3625 CHARACTERS (track 
capacity = 3625) 

2. RECORD CONTAINS 500 TO 5000 CHARACTERS 

In the sequential file, each physical 
block is 3625 bytes in length and is 
completely filled with logical records. 
The file consists of three physical blocks, 
occupies three tracks, and contains no 
inter-record gaps. 

In the direct file, the physical blocks 
,vary in length. Each block contains only 

one logical record or one record segment. 
Logical record R3 spans physical blocks 
only because it spans tracks. The file 
consists of seven physical blocks, occupies 
more than three tracks, and contains three 
inter-record gaps. 

When processing directly organized 
files, there are two advantages spanned 
format has over the other record formats: 

1. Logical record lengths may exceed the 
length restriction of the track 
capacity of the mass storage device. 
If, for example, the track capacity of 
a mass storage device is 2000 bytes, 
this does not represent the maximum 
length of the logical record that can 
be specified (even when the device 
does not have a Track Overflow 
feature) • 

Note: Even when the spanned format is 
used, the COBOL restriction on the 
length of logical records must be 
adhered to (i.e., a maximum length of 
32,767 characters). 

2. S-mode records give the user the same 
facility as the Track Overflow 
feature. If neither RECORDING MODE IS 
S nor APPLY RECORD-OVERFLOW is 
specified, only complete logical 
records can be written on any single 
track. This means that when a track 
has only 900 unoccupied bytes and a 
record of 1000 bytes is to be added, 
it will be written on the next 
available track. This is inefficient, 
since a 900 byte segment could be 
added to the current track by means of 
either APPLY RECORD-OVERFLOW or 
RECORDING MODE IS S. 

Note: If a choice exists between 
Track Overflow and S-mode records, 
neither has any particular advantage 
over the other with regard to the 
efficient use of storage space. 

The disadvantage of BSAH and BDl:..M 
spanned records is similar to that 
mentioned for QSAM. A segment work area is 

Record Formats 153 



always allocated which occupies additional 
main storage. 

Like QS~M, the processing of BSAM and 
BDAM spanned records relies on an 
interaction between buffers, segment work 
areas, and Logical Record Areas. For QSAM, 
input-output buffers are used as the 
segment work area and complete logical 
r.~.c.px~:ls ... !::tr.~ ..... as_s_eJnble.d .. _in.. .. _a_._.Lo_g.i_c_al .. RE'.cDr.d 
Area before being made available to the 
user if the record is segmented. If the 
record is not segmented, the logical record 
is made available to the user within the 
buffer unless the SAME AREA clause is 
specified. For BSAM and BDAM, input-output 
buffers are used as a Logical Record Area 
and a separate segment work area must be 
allocated. Segment work areas and Logical 
Record Areas are described fully in 
"Finding Data Records in an Abnormal 
Termination Dump." 

OCCURS CLAUSE WITH THE DEPENDING ON OPTION 

If a record description contains an 
OCCURS CLAUSE WITH THE DEPENDING ON option, 
the record length is variable. This is 
true for records described in an FD as well 
as in the Working-Storage section. The 
previous sections discussed four different 
record formats. Three of them, V-mode, 
U-mode, and S-mode, may contain one or more 
OCCURS clauses with the DEPENDING ON 
option. 

The following section discusses some 
factors that affect the manipulation of 
records containing OCCURS clauses with the 
DEPENDING ON option. The text indicates 
whether the factors apply to the File (FD) 
or Working-Storage sections, or both. 

The compiler calculates the length of 
records containing an OCCURS clause with 
the DEPENDING ON option at two different 
times, as follows (the first applies to FD 
entries only, the second to both FD and 
Working-Storage entries): 

1. When a file is read and the object of 
a DEPENDING ON option is within the 
record. 

154 

2. When the object of the DEPENDING ON 
option is changed as a result of a 
move to it or to a group that contains 
it. (The length is not calculated 
when a move is done to an item which 
redefines or renames it.) 

.consi.der.the t-ol.lowi-n-g -exa--rn-pl-e·:-

WORKING-STORAGE SECTION. 

77 CONTROL-1 
77 WORKAREA-1 

PIC 99. 
PIC 9(6)V99. 

01 SALARY-HISTORY. 
as SALARY OCCURS a TO 10 TIMES 

DEPENDING 
ON CONTROL-l PIC 9(6)V99. 

The Procedure Division statement MOVE 5 
TO CONTROL-1 will cause a recalculation of 
the length of SALARY-HISTORY. MOVE SALARY 
(5) TO WORKAREA-1 will not cause the length 
to be recalculated. 

The compiler permits the occurrence of 
more than one level-01 record, containing 
the OCCURS clause with the DEPENDING ON 
option, in the same FD entry (Figure 50). 
If the BLOCK CONTAINS clause is omitted, 
the buffer size is calculated from the 
longest level-01 record description entry. 
In Figure 50, the buffer size is determined 
by the description of RECORD-1 (RECORD-1 
need not be the first record description 
under the FD). 

During the execution of a READ 
statement, the length of each level-01 
record description entry in the FD will be 
calculated (Figure 50). The length of the 
variable portions of each record will be 
the product of the numeric value contained 
in the object Of the DEPENDING ON option 
and the length of the subject of the OCCURS 
clause. In Figure 50, the length of 
FIELD-1 is calculated by multiplying the 
contents of CONTROL-1 by the length of 
FIELD-1; the length of FIELD-2, by the 
product of the contents of CONTROL-2 and 
the length of FIELD-2; the length of 
FIELD-3 by the contents of CONTROL-3 and 
the length of FIELD-3. 



r---------------------------------------------------------------------------------------, 
FD INPUT-FILE 

DATA RECORDS ARE RECORD-l RECORD-2 RECORD-3. 

01 RECORD-l. 
02 CONTROL-l PIC 99. 
02 FIELD-l OCCURS 0 TO 10 TIMES DEPENDING ON CONTROL-l PIC 9(5). 

01 RECORD-2. 
02 CONTROL-2 PIC 99. 
02 FIELD-2 OCCuct.s 1 TO 5 TIMES DEPENDING ON CONTROL-2 PIC 9(4). 

01 RECORD-3. 
02 FILLER PIC XX. 
02 CONTROL-3 PIC 99. 
02 FIELD-3 OCCURS o TO 10 TIMES DEPENDING ON CONTROL-3 PIC X(4). L _______________________________________________________________________________________ J 

Figure 50. Calculating Record Lengths When Using the OCCURS Clause with the DEPENDING O~ 
Option 

Since the execution of a READ statement 
makes available only one record type (i.e., 
RECORD-l type, RECORD-2 type, or RECORD-3 
type), two of the three record descriptions 
in Figure 50 will be inappropriate. In 
such cases, if the contents of the object 
of the DEPENDING ON option does not conform 
to its picture, the length of the 
corresponding record will not be 
calculated. For the contents of an item to 
conform to its picture: 

• An item described as USAGE DISPLAY must 
contain decimal data. 

• An item described as USAGE 
COMPUTATIONAL-3 must contain internal 
decimal data. 

• An item described as USAGE 
COMPUTATIONAL must contain binary data. 

The following example illustrates the 
length calculations made by the system when 
a READ statement is executed: 

FD 

01 RECORD-l. 
05 A PIC 99. 
05 B PIC 99. 
05 C PIC 99 OCCURS 5 TIMES 

DEPENDING ON A. 

01 RECORD-2. 
05 D PIC XX. 
05 EPIC 99. 
05 F PIC 99. 
05 G PIC 99 OCCURS 5 TINES 

DEPENDING ON F. 

WORKING-STORAGE SECTION. 

01 TABLE-3. 
05 H OCCURS 10 TIMES DEPENDING ON B. 

01 TABLE-4. 
05 I OCCURS 10 TIMES DEPENDING ON E. 

Record Formats 155 



When a record is read, lengths are 
determined as follows: 

1. The length of RECORD-l is calculated 
using the contents of field A. 

2. The length of RECORD-2 is calculated 
US.iily the contents of field F. 

3. The lenqth ()f __ l'AELE~3 is calculated 
llsing-tji-e contents of field B. 

4. The length of TABLE-4 is calculated 
using the contents of field t. 

The user should be aware of several 
additional factors that affect the 
successful manipulation of variable-length 
records. The following example illustrates 
a group item (i.e., REC-l) whose 
subordinate items contain an OCCURS clause 
with the DEPENDING ON option and the object 
of that DEPENDING ON option. 

WORKING-STORAGE SECTION. 
01 REC-l. 

05 FIELD-l 
05 FIELD-2 OCCURS 5 

FIELD-l 

01 REC-2. 
05 REC-2-DATA 

PIC S9. 
TIMES DEPENDING ON 
PIC XCS). 

PIC X(SO). 

The results of executing a MOVE to the 
group item REC-l will be affected by the 
following: 

• The length of REC-l may have been 
calculated at some time prior to the 
execution of this MOVE statement. The 
user should be sure that the current 
length of REC-l is the desired one. 

• The length of REC-l may never have been 
calculated at all. In this case, the 
result of the move will be 
unpredictable. 

• After the move, 8ince the contents of 
FIELD-l have been changed, an attempt 
will be made to recalculate the length 
of REC-l. This recalculation, however, 
will be made only if the new contents 
of FIELD-l conform to its picture. In 

156 

other words, if FIELD-1 does not 
contain an external decimal item, the 
length of REC-l will not be 
recalculated. 

~2~~: According to the COBOL description, 
FIELD-2 can occur a maximum of five ~im~s: 
If, however, FIELD-1 contains an external 
decimal item whose value exceeds five, the 
leng-t-h ---o-fR-E(?-l wi-l13ti-l-l----be-c-ab:;tllC:l.t-ed~ 

One possible consequence of this invalid 
calculation will be encountered if the user 
attempts to initialize REC-1 by moving 
zeros or spaces to it. This initialization 
would inadvertently delete part of the 
adjacent data stored in REC-2. 

The following example applies to 
updating a record containing an OCCURS 
clause with the DEPENDING ON option and at 
least one other subsequent entry. In this 
case, the subsequent entry is another 
OCCURS clause with the DEPENDING ON option. 

WORKING-STORAGE SECTION. 
01 VARIABLE-REC. 

05 FIELD-A PIC X(10). 
05 CONTROL-l PIC S99. 
05 CONTROL-2 PIC S99. 
05 VARY-FIELD-l OCCURS 10 

DEPENDING ON CONTROL-l 
05 VARY-FIELD-2 OCCURS 10 

DEPENDING ON CONTROL-2 

01 STORE-VARY-FIELD-2. 

TIMES 
PIC X(S)., 
TIMES 
PIC X ( 9) • 

05 VARY-FLD-2 OCCURS 10 TIMES 
DEPENDING ON CONTROL-2 PIC X(9). 

Assume that CONTROL-l contains the value 
5 and VARY-FIELD-1 contains 5 entries. 

In order to add a sixth field to 
VARY-FIELD-l, the following steps are 
required: 

MOVE VARY-FIELD-2 TO STORE-VARY-FIELD-2. 
ADD 1 TO CONTROL-l. 
MOVE 'additional field' TO 

VARY-FIELD-1 (CONTROL-i). 
MOVE STORE-VARY-FIELD-2 TO VARY-FIELD-2. 

For a discussion of the use of the 
OCCURS DEPENDING ON clause in a sort 
program, see "Sorting Variable-Length 
Records." 



A programmer using the Full American 
National Standard COBOL Compiler, Version 
4, under the IBM Operating System, has 
several methods available to him for 
testing and debugging his programs. Use of 
the symbolic debugging features is the 
easiest and most efficient method for 
testing and debugging and is described in 
detail in this chapter. 

"Appendix A: A Sample Program" contains 
an example of a program run without the 
symbolic debugging features. The chapter 
"Program Checkout" contains information 
useful for finding the instruction that 
causes the abnormal termination and then 
correcting the problem. The chapters 
"Output" and "Using the Checkpoint/Restart 
Feature" inclu:1e a discussion of compiler 
output and a description of taking 
checkpoints and restarting programs, 
respectively. 

USE OF TH~ SYMBOLIC DEBUGGING F~ATURES 

As an aid to debugging, compiler options 
can be requested that provide additional 
diagnostic information for an abnormal 
termination other than "canceled by 
operator" or, under MVT, as a result of 
exceeding the system-state time slice. 
Three user options are available for 
object-time debugging -- the statement 
number option (STATE), the flow trace 
option (FLOw), and the symbolic debug 
option (SYMDMP). 

The STATE option causes the number of 
the card for the last verb executed before 
termination to be printed out. The FLOW 
option causes a trace of the last 
user-specified number of procedures 
executed to be printed out (with a default 
of 99). Both STATE and FLOW cause the 
PROGRAM-ID, the condition code, and the 
last problem PSW to be printed out. The 
SYMDMP option enables the user to request a 
symbolic formatted dump of the data area of 
the object program for an abnormal 
termination, or to request dynamic dumps of 
data areas at strategic points during 
execution. 

Use of these features requires no source 
language coding; rather the user specifies 
these options at compile time, through job 
control language. Operation of the SYMD~~ 
option is dependent on execution-time 
control cards. Figure 51 illustrates the 

SYMBOLIC DEBUGGING FEATUrtES 

output generated for each of these 
features. 

If the STATE option is in effect and an 
abnormal termination occurs, the printed 
output includes the compiler-generated carj 
number or, if NUM is in effect, the card 
sequence number for the last verb executed. 
To use the STATE option, the programmer 
must: 

• Request the option at compile time by 
specifying STATE in the PARM field or, 
if a cataloged procedure is used, in 
the PARM.COB field. 

• Include a //SYSDBOUT DD card for the 
output data set at execution time. 

For additional information, see "Options 
for the Compiler." 

If the FLOW option is in effect, a 
formatted list containing the PROGRAM-ID 
and either the compiler-generated card 
number or the line number (if NUM is in 
effect) of the last n executed procedures 
is printed on SYSDBOUT. The number of 
procedures traced can vary from 1 to 99 and 
is specified by the programmer. To use the 
flow trace facility, the programmer must: 

• Request a trace at compile time by 
specifying FLOW in the PARM field or, 
if a cataloged procedure is used, in 
the PARM.COB field. 

• Indicate the number of procedures to be 
traced at compile time or, by 
specifying FLOW[=nnl on the EXEC card, 
at execution time. 

• Include a //SYSDBOUT DD card for the 
output data set to be used for the 
trace. 

The number of procedures to be traced may 
be specified at compile time via either the 
PARM parameter or, if a cataloged procedure 
is used, the PARM. COB field. 'Ihis number 
may be overridden at execution time via the 
PARM parameter or, if a cataloged procedure 

Symbolic Debugging Features 157 



is used, the PARM.GO parameter. If the 
number of procedures traced is specified at 
neither compile time nor execution time, 
either the default value of 99 or the value 
specified at program product installation 
will be employed. 

If batch ccmpiiation 1.3 uSed, FLOw call 
be specified at compile time and remain in 
effect for every . program in the .. batch •.. To 
suppiess--a-l:::-r-a-ce --ror----a: ·par-Ef6uTai--progr-am--
within the batch, the programmer should 
specify NOFLOW at execution time as the 
last parameter in the PARM field for that 
program, or change the CBL card. For more 
information, see the sections "Options for 
the compiler" and nOptions for Execution. n 

Note: The FLOW option is completely 
independent of the READY/RESET TRACE 
feature of the debugging language. 

SYMDMP Option 

If the SYMDMP option is in effect, a 
symbolic formatted dump of the object 
program's data area is produced when the 
program abnormally terminates. This option 
also enables the programmer to request 
dynamic dumps of specified data-names at 
strategic points during program execution. 
If t~o or more COBOL programs are 
link-edited together and one of them 
terminates abnormally, a formatted dump is 
produced for all programs in the calling 
sequence compiled ~ith the SYMDMP option, 
up to and including the main program. 

Note: The terminating program need not 
have been compiled with the SYMDMP option. 

The abnormal termination dump consists 
of the following parts: 

1. An abnormal termination message, 
including the number of the statement 
and of the verb beinq executed at the 
time of an abnormal termination. 

2. Selected areas in the Task Global 
Table. 

3. A formatted dump of the Data Division 
including: 

158 

(a) For an SO -- the card number, the 
sort-file-name, the type, and the 
sort record. 

(b) For an FD -- the card number, the 
file-name, the type, the ddname, 
the DECB and/or DeB status, the 
contents of the DECB and/or DCB in 
hexadecimal, and the fields of the 
record. 

(c) For an RD -- the card number, the 
report-name, the type, the report 
line, and the contents of 
PAGE-COUNTER and LINE-COUNTER if 
present. 

(d> For a CD -- the CD itself in its 
implicit format, as well as the 
area containing the message data 
<::1J_:r:.r.en_tly . b.e_ing ___ hu££ prpn .: ___ _ 

(e) For an index name -- the name, the 
type, and the contents in decimal. 

The symbolic dump option is requested at 
compile time via the SY~~MP option, through 
the PARM parameter of the EXEC card. 
Operation of the symbolic dump option is 
dependent on object-time control cards 
placed in the SYSDBG data set. This data 
set must consist of unblocked 80-byte 
records. If the object-time control cards 
are not present, SYMDMP is cancelled at 
execution time. These cards are discussed 
belo~. 

Object-Time Control Cards 

The operation of the SYMDMP option is 
determined by t~o types of control cards: 

Program-control card -- required if 
abnormal termination and/or dynamic 
dumps are requested. 

Line-control card -- required only if 
dynamic dumps are requested. 

Syntax Rules: The fields of both the 
program-control card and the line-control 
card must conform to the following rules: 

1. Control cards are essentially free 
form, i.e., parameters coded on these 
cards can start in any column. 
However, parameters may not extend 
beyond column 71. 

2. Each parameter except the last must be 
immediately followed by a comma or a 
blank. 

3. No commas are needed to account for 
optional parameters that are not 
specified. 

4. All upper-case letters in IBM 
documentation represent specifications 
that are to appear in the actual 
statement exactly as snown. 

5. All lower-case letters represent 
generic terms that are to be replaced 
in the actual statement. 



b. Brackets are used to indicate that a 
specification is optional and is not 
always required in the statement. 

7. Brackets enclosing stacked items 
indicate that a choice of one item 
may, but need not, be made by the 
programmer. 

8. Braces enclosing stacked items 
indicate that a choice of one item 
~~st be made by the programmer. 

ge All punctuation marks and special 
characters shown in the statement 
formats other than hyphens, brackets, 
braces, and underscores, must be 
punched exactly as shown. This 
includes commas, parentheses, and the 
equal sign. 

Note: Blanks may be substituted for 

program-id 
is a 1-8 character program-name of a 
COBOL program compiled with the SYMDMP 
option. This parameter is required 
and must appear first on the 
program-control card. 

ddname 
is the ddname assigned to the file 
that was produced at compile time on 
SYSUT5. This parameter is required 
and must follow the program-ide 

ENTRY 
NOENTRY 

ENTRY is used to provide a trace of a 
program-name when several programs are 
link-edited together. Each time the 
program whose PROGRAM-ID matches the 
"program-id" parameter is entered, its 
name is displayed. 

commas. HEX 

continuation Cards: To continue either the 
proqram-control card or the line-control 
card, the programmer must code a nonblank 
character in column 72 of the continued 
card. Individual keywords and data-names 
cannot be split between cards. 

Control Statement Placement: If a main 
program is compiled with the SYMDMP option, 
or if at least one subprogram called by the 
main program is a COBOL program compiled 
with the SYMDMP option, the control cards 
may either follow or precede the 
programmer's data, if any, in the input 
stream: 

//GO 
//GO.SYSDBG 

EXEC 
DD 

PGM= 

* 
{user's control cards} 

/* 
/IGO.SYSIN DD * 

{user's data cards, if any} 

1* 

For an example of the control statements 
use1 to compile a program with the SYMDMP 
option, see Figure 51. 

~rogram~control Cards: A program-control 
card must be present at execution time for 
any program requesting a SYMDMP service. 
Proqram-control cards have the following 
format: 

proqram-id.ddnamel.ENTRY1[ 

where: 

~Q!!~~ 
is optional and refers to the format 
of the Data Division area in the 
abnormal termination dump. If HEX is 
specified, level-01 items are provided 
in hexadecimal. Items subordinate to 
level-Ol items are printed in EBCDIC, 
if possible. Level-77 items are 
provided both in EBCDIC and 
hexadecimal. If HEX is not specified; 
items subordinate to level-Ol items 
and level-77 items are provided in 
EBCDIC. If these items are 
unprintable, hexadecimal notation is 
provided. 

Line-Control Cards: Line-control cards 
have-the-following format: 

line-num[, (verb-num)] [,ON n] [, m] [, k] 

l
r, (HEX) J L, (!,!OH~~) 
r, (HEX) l 
L' NOHE~~ 

line-num 

.M!~ ( 

[.namel lTHRU name21} ••• ~ 
indicates the card number associated 
with the point in the Procedure 
Division at which the dynamic dump is 
to be taken. The card number is 
either the compiler-generated number 
or, if NUM is in effect. the user's 
number in card columns 1 through 6. 

verb-num 
indicates the position of the verb in 
the card indicated by "line-num" 
before whose execution a dynamic dump 
is taken. When "verb-num" is not 
specified, the value 1 is assumed; 
when specified, "verb-num" must follow 
"line-num" and may not exceed 15. 

Symbolic Debugging Features 159 



ON n [, m] [, k] 

is equivalent to the COBOL statement 
ON n ~ND EVERY m UNTIL k... This 
option limits the requested dynamic 
dumps to specified times. For 
example, "ON n" would result in one 
dump, given the nth time "line-num" is 
reached during execution. nON n,m" 
would result in a dump the first time 

. aJ;:. __ t.b.~. Jlt.h .. ~xe_c_ution._.o.f".line..~_nurrt" and 
thereafter at every mth execution 
until end-of-job. 

HEX 
NOHEX 
-----refers to the format of the Data 

Division areas provided in the dynamic 
dump. If HEX is specified, level-Ol 
items are provided in hexadecimal. 
Items subordinate to level-Ol items 
are printed in EBCDIC, if possible. 
Level-77 items are printed in both 
EBCDIC and hexadecimal. If HEX is not 
specified, items subordinate to 
level-Ol items and level-77 items are 
provided in EBCDIC. If the items are 
unprintable, hexadecimal notation is 
provided. Note that if "namel" is 
specified and it represents a group 
item and HEX has not been specified, 
neither the group nor the elementary 
items in the group will be provided in 
hexadecimal. 

namel [THRU name21 
represents selected areas of the Data 
Division to be dumped. With the THRU 
option, a range of data-names 
appearing consecutively in the Data 
Division is dumped. "namel" and 
"name2" may be qualified but not 
subscripted. If the programmer wishes 
to see a subscripted item, specifying 
the name of the item without the 
subscript results in a dump of every 
occurrence of that item. 

results in a dump of everything that 
would be dumped in the event of an 
abnormal termination. The purpose of 
ALL is to allow the programmer to 
receive a formatted dump at nornal 
end-of-job. To do this, the generated 
statement number of the line on which 
a STOP RUN, EXIT PROGRAM, or GOBACK 
statement appears must be specified as 
the "line-num" parameter. 

The end-of-file control card, slash 
asterisk (/*) must end the symbolic deb~g 
control card data set. If a run unit 
includes one or more programs that have 

160 

been compiled with the SYMDMP option anj no 
symbolic dump is required at execution 
time, the input data set is not re~uired. 
In this case, SYMD~;lP responds with the 
following message: 

IKF177I- SYMDMP CANCELLED. NO CONTROL 
CARDS. 

SAMPLE PROGRAM -- TESTRUN 

Figure 51 is an illustration of a 
program that utilizes the Symbolic 
Debugging feature. In the following 
description of the program and its output, 
letters identifying the text correspond to 
letters in the program listing. 

Because the SYMDMP option is requested 
in the PARM parameter of the EXEC 
card, the logical unit SYSUT5 must .be 
assigned at compile time. 

The PARM parameter specifications on 
the EXEC card indicate that an 
alphabetically ordered cross-reference 
dictionary, a flow trace of 10 
procedures, and the SYMDMP option are 
being requested. 

An alphabetically ordered 
cross-reference dictionary of 
data-names and procedure-names is 
produced by the compiler as a result 
of the SXREF specification in the PARM 
parameter of the EXEC card. 

The file assigned at compile time to 
SYSUT5 to store SYMDMP information is 
assigned to DOl at execution time. 

The SYMDMP control cards placed in the 
input stream at execution time are 
printed along with any diagnostics. 

The first card is the 
program-control card where: 

(a) TESTRUN is the PROGRAM-ID. 

(b) DDl is the ddname of the 
SYSUT5 file at execution time. 

The second card is a line-control 
card which requests a (HEX) 
formatted dynamic dump of KOUN1, 
NAME-FIELD, NO-OF-DEPENDENTS, and 
RECORD-NO prior to the first and 
every fourth execution of 
generated card number 70. 

The third card is also a 
line-control card which requests a 
(liEX) formatted dynamic dump of 
WORK-dECORD and B prior to the 



® 
® 
@ 

® 

execution of generated card number 
81. 

The type code combinations used to 
identify data-names in abnormal 
termination and dynamic dumps are 
defined. Individual codes are 
illustrated in Table 20. 

The dynamic dumps requested by the 
first line-control card. 

The dynamic dumps requested by the 
second line-control card. 

Program interrupt information is 
provided by the system when a proqram 
terminates abnormally. 

The statement number information 
indicates the number of the verb and 
of the statement being executed at the 
time of the abnormal termination. The 
name of the program containing the 
statement is also provided. 

A flow trace of the last 10 procedures 
executed is provided because FLOW=10 
was specified in the PARM parameter of 
the EXEC card. 

Selected areas of the Task Global 
Table are provided as part of the 
abnormal termination dump. 

For each file-name, the generated card 
number, the file type, the file 
status, the file organization, the DCB 
status, and the fields of the DCB and 
DECB, if applicable, are provided in 
hexadecimal. 

The fields of records associated with 
each FD ar~ provided in the format 
requested on the program-control card. 

The contents of the fields of the 
Working-Storage Section are provided 
in the format requested on the 
program-control card. 

The value associated with each of the 
possible subscripts is provided for 
each of the data items described with 
an OCCURS clause. 

Asterisks appearing within the EBCDIC 
representation of the value of a given 
field indicate that the type and the 
actual content of the field conflict. 

Note: When the SYMDMP option is used, 
level numbers appear "normalized" in the 
symbolic dump produced. For example, a 
group of data items described as: 

01 RECORDA. 
05 FIELD-A. 

10 FIELD-Al PIC X. 
10 FIELD-A2 PIC X. 

will appear as follows in SY~illMP output: 

01 RECORDA ••• 
02 FIELD-A ••• 
03 FIELD-Al ••• 
03 FIELD-A2 ••• 

Debugging TESTRUN 

1. Reference to the statement number 
information J provided by the SYMDMP 
option shows that the abnormal 
termination occurred during the 
execution of the first verb on card 
81. 

2. Generated card number 81 contains the 
statement COMPUTE B = B + 1. 

3. Through verification of the contents 
of B at the time of the abnormal 
termination R, it can be seen that 
the usage of B (numeric packed) 
conflict$ with the value contained in 
the data area reserved for B (numeric 
display). 

4. The abnormal termination occurred 
during an attempt to perform an 
addition on a display item. 

More complex errors may require the use 
of dynamic dumps to isolate the problem 
area. Line-control cards are included in 
TESTRUN merely to illustrate how they are 
used and what output they produce. 

Table 20. Individual Type Codes Used in 
SYMDMP Output 

r----------T------------------------------, 
I Code I Meaning I 
~----------+------------------------------~ 

A Alphabetic 
B Binary 
D Display 
E Edited 
* Subscripted Item 
F Floating Point 
N Numeric 
P Packed Decimal 
S Signed 
OL overpunch Sign Leading 
OT Overpunch Sign Trailing 
SL Separate Sign Leading 
ST Separate Sign Trailing 

----------~------------------------------

Symbolic Debugging Features 161 



IEF2981 DEBUG SYSOUT=U. 
IIDEBUG JOB 707 4722674,'D. DAVIDSON',MSGLEVE~=l.MSGCL~SS=G 
IIJOBLIB DO 9SN=DUMMYOS,UNIT=2314,VOL=SEx=DC1S6,DISP=SHR 
II DO DSN=PRODVER4,DISP=SHR 

~I I EX~C UCOB4CLG, PARM. COB=' DMAP, P;t.]l.P, 3XREF, FLO~""'=10, SYED~P, QTJOT:t:, r';ORES' 
\.V XXCOB EXEC PGN=IKFCBLOG, REGIOI~=80K, PAa11=(LOADI 

IICOB.SYSPRINT DD SYSOUT=G,OUTLIM=1000 
X/SYSPRIlH DO SYSOUT=U,OUTLIM=1000 
XXSYSUD m·'p DD SYSOUT=U, OUTLI M=l 000 
XXSYSUTl DD SPACE= (CYL, (10,21 I, UNIT=2314 
XXSYSUT2 DD SPACE=(CYL, (10,2»,UNIT=(2314,SEP=SYSUT1) 
XXSYSUT3 DO SPACE= (CYL. (10.2) I. UNIT=( 2314. SEP= (SYSlJ'T'1. SYSTl'T'? I I 

fa\."~ XXSYSUT4 DO SPA.CE= (CYL, (10,2») ~ UNIT= (2314~ ssp= (SYSU'I1~ SYSUr2. SYSU'l31) 
~IICOB.SYSUT5 DD DSNA¥~=&&UT5,UNIT=SYSDA,SPACE=(TRK, (100,1011, 

II DISP=(NEW,PA.SS) 
X/3Y3UTj DD"SPlI:CE= (C11.., TID; ·2fT~UNlT=[.:nLr; DS'1'1=&SY!I;.TIBG, DISP= fN:2W,Pl1sSI 
XXSYSLI~'l DD DSN=&LOADSET, DISP=(MOD, PASS), UNIT=2314, SPA.CZ=(CYL, (10,2» 
I/COB.SYSIN DO * 

00000010 
SlJ;F 

OOOOOSl'-F 
OOOOOStJ,F 
00000040 
00000050 
('OOO(}060 
00000070 

ooooaopo 
00000090 

Figure 51. Using the SYMDMP Option to Debug the Program TESTRUN (Part 1 of 11) 

162 



IEC130I SYSLIB DD STATEM.ENT M.ISSIi~G 

I~F'3731 STEP i'COB / STl-.. RT 72144.0024 
It:F314I STEP /COB / STOP 12144.0029 CPU OMIN 04.09SEC HAIN 78K LCS 
STEP COB ENDED. COMP CODE 0004 COrtE REQUSTED= OO~OK. CORE USE.D= 0078K. 
XXLKED EXEC PGM=IEWL,PARM=(XREF,LIST,LETI,CON~=(S,LT,COBI, 00000100 
XX REGION=96K 00000110 
XXSYSLIN DD DSN=&LOADSET,8ISP=(OLD,DELETEI 00000120 
XX DD DDNAME=SYSIN 00000130 
XXSYSLMOD Dj) DSN=&GODA'IA(RUNI,DISP=(NEW,PASSI, 00000140 
XX UNIT=2314, SPACI::=( 1024, (50,20,1» 000001S0 
//LKED.SYSLIB DO DSN=NEWSYMJB,UNIT=2314,VOL=SER=DC157,DISP=SHR 
X/SYSLIB DD DSN=SYS1.DYN~~LIB,DISP=SHR 
/ / DD DSNlI.1I'..E=SYS1. DYNJI...MLIB, DISP=SHB 
X/ DD DSN=SYS1.TELCMLIB,DISP=SHR 
XXSYSUT1 DO UNIT=(2314,SEP=(SYSLIN,SYSLNOD»,SPACE=(1024, (SO, 20» 
//LKED.SY~PRIL~ DD SYSOUT=G,OU~LIM=1000 

X/SYSPRINT DD SYSOUT=U,OUTL!!'l=lCOO 
XXSYSUDUr-iP DD SYSOUT=U,OUTLIM=1000 

IEF373I STEP /LKED / START 72144.0029 

00000160 

00000170 
OOOOOtEO 

SMF 
00000.3~:.F 

OOOOOSMF 

IEF374I STEP /LKED / STOP 72144.0030 CPU OMIN 00.67SEC ~.AId 96K LCS OK 
STEP LKED ENDED. COMP CODE 0000 CORE REQUSTED= 0096K. CORE USED= 0096K. 
XXGO EXEC PGM=*.LKED.SYSLMOD,COND=«S,LT,COB),(S,LT,LKED») 00000210 
//GO.SYSUDUMP DO SYSOUT=G,OUTLIM=1000 SMF 
X/SYSUDUMP DD SYSOUT=U,OUTLIM=1000 OOOOOSMF 
XXSYSDBOUT DD SYSOUT=U,OUTLIM=1000 OOOOOSM.F 

~//GO.DDI DD DSN=&&UT5,illiIT=SYSDA,DISP=(OLD,DELETEI 
~X/DDl DO DSN=&SYMDBG,DISP=(OLD,DELETE) 00000240 

//GO.SAMPLE DD UNIT=2400,LABEL=(,NL),DISP=(NEW,DELETE),VOL=S~q=TESTER 
//GO.SYSOUT DD SYSOUT=G,OUTLIM=1000 SMF 
//GO.SYSDBOUT DD SYSOUT=G,OUTLIM=1000 SFF 
//GO.STEPLIB DD DSN=NEWSY~llB,UNIT=2314,VOL=SER=DC1S7,DISP=SHR 

// DD DSN~ffi=SYS1.8YNAMLIB,DISP=SHR 

//GO.SYSDBG DD * 
// 

Figure 51. Using the SYMDMP Option to Debug the Program TESTRUN (Part 2 of 11) 

L"iU= 2,02 

[·10= .00 

Symbolic Debugging Features 163 



IEC130I SYSDTERM DD STATEMENT MISSING 
A 0001 NYC 0 
B 0002 NYC 1 
C 0003 NYC 2 
D 0004 NYC 3 
E 0005 l-lYC 4 
F 0006 NYC 0 
G 0007 [-lYC 1 
H 0008 NYC 2 
I 0009 NYC 3 
IEF4601 WTP MESSAGE LIMIT EXCEEDED 
COMPLETION CODE - SYSTEM=OC7 USER=OOOO 
IEF242I ALLOC. FOR DEBUG GO 
IEF237I 136 ALLOCATED TO JOBLIB 
.L,I;,.r~JI.J.. 3J:; ALLOCATED 'l'u 
IEF237I 240 ALLOCATED TO PGM=*.DD 
IEF237I 242 ALLOCATED TO SYSUDUMP 
IEF237I 242 ALLOCATED TO SYSDBOU'I' 

""IEF"23'n---241AI.LOCATFiri"-To--01)1 
IEF237I 282 ALLOCATED TO SAMPLE 
IEF2371 242 ALLOCATED TO SYSOUT 
IEF237I 242 ALLOCATED TO SYSDBOUT 
IEF237I 137 ALLOCATED TO STEPLIB 
IEF237I 355 ALLOCATED TO 
IEF237I 241 ALLOCATED TO SYSDBG 

AT ABEND 

IEF285I DUMMYOS PASSED 
IEF285I VOL SER NOS= DC156 • 
IEF285I PRODVER4 PASSED 
IEF285I VOL SER NOS= DC160 • 
IEF285I SYS72144.T002347.RVOOO.DEBUG.GODATA PASSED 
IEF2851 VOL SER NOS= 231400. 
IEF285I SYS72144.T002347.SVOOO.DEBUG.R0000011 SYSOUT 
IEF285I VOL SER NOS= 231402. 
IEF285I SYS72144.T002347.SVOOO.DEBUG.R0000012 SYSOUT 
IEF285I VOL SER NOS= 231402. 
IEF2851 SYS72144.T002347.RVOOO.DEBUG.UT5 DELETED 
IEF285I VOL SER NOS= 231401. 
IEF285I SYS72144.T002347.RVOOO.DEBUG.R0000013 DELETED 
IEF285I VOL SER NOS= TESTER. 
IEF285I SYS72144.T002347. SVOOO.DEBUG. R0000014 DELETED 
IEF285I VOL SER NOS= 231402. 
IEF285I SYS72144.T002347. SVOOO.DEBUG. R0000015 DELETED 
IEF285I VOL SER NOS= 231402. 
IEF285I NEWSYMJB KEPT 
IEF2851 VOL SER NOS= DC157 • 
IEF285I SYS1.DYNAMLIB KEPT 
IEF285I VOL SER NOS= DC160 • 
IEF285I SYS72144.T002347.RVOOO.DEBUG.S0000016 SYSIN 
IEF285I VOL SER NOS= 231401. 
IEF285I SYS72144.T002347.RVOOO.DEBUG.S0000016 DELETED 
IEF2851 VOL SER NOS= 231401. 
IEF373I STEP IGO I START 72144.0030 
IEF3741 STEP IGO I STOP 72144.0033 CPU OHIN 03.20SEC MAIN 52K LCS OK 
STEP GO ENDED. COMP CODE 00C7 CORE REQUSTED= 0052K. CORE USED= 0052K. 
IEF2851 DUMMYOS KEPT 
IEF285I VOL SER NOS= DC156 • 
IEF2851 PRODVER4 KEPT 
IEF2851 VOL SER NOS= DC160 • 
IEF2851 SYS72144.T002347. RVOOO.DEBUG. GODATA DELETED 
IEF285I VOL SER NOS= 231400. 
IEF3751 JOB /DEBUG I START 72144.0024 
IEF3761 JOB IDEBUG I STOP 72144.0033 CPU OHIN 07. 96SEC 
JOB DEBUG ENDED. CODE= 00C7 JOB READ IN AT 00.40 ON 72144 JOB STRTED AT 00.41 

~'V= 1.16 

ON 72144 JOE ENDED Ar 00.56 

Figure 51. Using the SYMDMP option to Debug the Program TESTRUN (Part 3 of 11) 

164 

Ol~ 72144 



~P 5734-CB2 V4 LVL76 TB~ os A~!RrCAN N~TIONAL STANDARD caSOL DATE .HN 6,1972 

IKFOOllI-1oi SI:SLIE NOT USABLE. COl'!PILATTON :::O'lTI:lUIW;. 
$LEID'1P 7 X 
:'LBC"!P 

2 

OOCCl 
J0002 
00003 
]OOO!! 
;)0005 
.10001'. 
I)OOC? 
00008 
oocr.g 
00010 
!JOOll 
00012 
ooon 
)00 14 
JOG15 
000111 
oe017 
(l0018 
OCC19 
00020 
I')OC21 
10022 
:JOC2] 
00024 
a0025 
0002f) 
00C27 
-10028 
00029 
00030 
00031 
OQ032 
)0031 

aoo 3fJ 
00035 
0003f) 
00037 
000 ]8 
00039 
00040 
{}OC41 
00042 
00043 
00044 
00045 
00046 
00C47 
00048 
00049 
00050 
00051 
00052 
00053 
~)005fJ 

,) OC5O:; 
100')6 
JOC57 

100010 
100020 
100030 
1000fJO 
1000')0 
100060 
1000?O 
100080 
10COgO 

100100 
100110 
100120 
100130 
100140 
100 150 
1001110 
100170 

100 180 
100190 
100 200 
100210 
100220 
100225 
100230 
100240 
100250 
100260 
100270 
100280 
1-0-0290 
100300 
100310 
100320 
1003 JO 
100340 

100350 
10031)0 
100370 
100375 
100380 
100395 
100405 
100410-
100420 
100440 
100450 
100460 
100410 
100480 
100490 
1000:;00 
100')10 
100')20 
100')21 

Fiqure 51. 

IDENTIFIC~TTCN DIVIS InN. 
PROGRAM-TC. TESTIUN. 

~UTqOR. FROGRH1MFR ~A"'~. 

I~STALLATION. NEW YORK PROGRAMMIN3 CENTER. 
DATE-liRITTE N. JUlY 12, 1968. 

CATE-COMPILED. JAN 6,1972 
R:::-!ARKS. THIS PROGP.A~ HAC; EEFN \i~ITTFN AS 1\ S,~>r.I?LF' PROGRA'1 F:)R 

COBOL USERS. IT CREAT!S AN OUTPUT FILE AND REAnS IT BAC~ ~ 
INPUT. 

1': NVI RONI"F. NT DIVISICN. 
CON FIGUR ATION SF:CTION. 

SOURCE-CCMPUTER. IPM-360-R50. 
OBJ ECT-COt'lPUTEP. I3~- 3~o-H ")0. 

INPUT-OUTFUT SECTICN. 
FIt F-CONTROL. 

SE LECT FTLE-1 ASS IGN TO UT-2400-S-SAMPL 2:. 
SELECT FILE-2 ASSIGN TO UT-2400-S-SA"Pl~. 

DATA DIVISIO~. 

FI I.E SECTION. 
H FTLE-l 

lABEL RSCORDS ARE OMITTE!: 
BLOCK CONTAINS 100 C~ARACTERS 
RECORD· CONT AI NS 20 CHARAC'!' ERS 
FECORnnG MODE IS F 
DA n FECORD IS RECopr-l. 

01 RFCORD-l. 
02 FIELD-A PICTURP IS X(20). 

FI: FILE-2 
lABEL RECORDS ARE OMITTED 
BLOC-K CONTAIN S '5 RECORDS 
RECORD CONTAINS 20 CHIIRAC1'FRS 
RECORDING MODE IS F 
DATA RECORD IS RECORD-2. 

o 1 R ECO R D- 2. 
02 FIElD-A PICTURE IS X(20). 

IWRKI NG-STOBAGE SECTION. 
17 KOUNT PICTURE Sqq CaMP SYNC. 
71 NCMBER PICTURE S99 COMP SYNC. 

01 FILLIR. 
02 ALPHABET PICTURE X (26) V AIU F "ABCDEFGHIJKL''!NOPQRSTUVWXYZ''. 
02 ALPHA REDEFINES ALPHABET PICTURE X OCCURS 2f; TIMES. 
02 DEPENDENTS PICTURE X(26) VALUE "0123401231101?341)121401234 
"0". 
02 DEPEND REDFFIN .... S DEPENDENTS PICTUll": X OCCUPS 2fi 'I'T."'~S. 

01 WORK-RECORD. 
02 NAI'IE-FIELO PICTURE X. 
02 FILLER PICTURE X VALUE IS SPACE. 
02 REceRD-NO PICTTTRF 9999. 
02 Fn.LER PTCTU?E x VUl1E IS SPACF:. 
02 LOCATION PICTlJRF. AliA V ALU E IS "NYC". 
02 FIT.LER PICTUP"!': X VAtllE IS SPACP.. 
02 NO-CF-DFPFNDFNTS PTCl'UTlE xx. 
02 FILL?R PICTURE XC?) VAl.HE IS SPACES. 
01 RECCRDA. 

Using the SYMDMP Option to Debug the Program TESTRUN (Part 4 of 11) 

Symbolic Debugging Features 165 



(}OO<;R 100<;77 

00C59 100523 
00060 100530 
00C61 100540 
00062 100550 
00C63 100560 
00064 100570 
00065 100580 
00066 100590 
00067 100600 
I)f)f)~s:! 1001'; 10 

00069 1 C062 0 
00070 100630 
00071 100640 
olHfn 1om;1JIT 
00C73 100660 
00074 100670 
00075 100680 
00076 100690 
00077 100700 
00078 100710 
00079 10072 a 
00080 100730 
00C81 100731 
00082 100740 
00083 10075 a 
00084 100760 
00085 100770 
00086 100780 

18 

DAT A NAP'! ES 

A 
ALPHA 
AlPHABET 
B 
DEPEND 
DEPENDEN'JS 
PIELD-~ 

PIELD-A 
FIlE-l 
FILE-2 
KeU NT 
LOCATION 
HAl'! E-FIEL[ 

07 ,A PTr'T'llR"P. SQ{U) '1AT.IIl': 171U_ 

02 B REDEfINES A PICTfJRE S9 (7) COP'lPUT~TIONAL-J. 

PROCEDURE DIVISION. 
BEG I N. RE A OY TRACE. 

NOTE TH.AT THE FOLLOWING OPENS THE OUTPUT FILE 1'0 BE r:REAl'~f) 

AND INITIALIZES COUNTERS. 
STEP-l. OPEN OUTPUT FILE-1. MOVE ZERO TO KOUNT ~OMREL 

NOTE THAT THE FOLLOWING CRFATES INTERNALLY ~HF RFC0ROS TO ~E 

CONTAInED IN THE PUR. WRITES TH1':P'I ON TIIPE. liND DISPLA.YS 
THEM ON THE CONSOLE. 

S'l'FP-?~ ~!:l!:l 1 T() !C()I}NT. A.!:l11 , ~n N0"!BFlI. !,!nv~ 1.!.PI!~ (!ColIliI'!"l Tn 

NA I'!E-FIF.ln e 

MOVE DEPEND (KOUN~ TO NO-Of-DEPENDENTS. 
MOVE NeMBER TO RECORD-NO. 

STEP-';;J:;'-DISPLTy'-'~j"(5RK:"'RECORIy"UPONCON's6n;~ W'RI'i'E RECORD-l FROM 
WCRK-FECORD. 

STEP-4. PERFORM STFP-2 THRU STEP-] UNTIL KOIJNT IS F.QUAL 1'0 2'>. 
NCTE TH~T THE FCLLO~ING CLOSES OnTPUT AND R¥OPF~S I~ AS 
INPUT. 

S'IEP-5. CLOSE FILE-l. OPFN INPUT FILE-2. 
NOTF THAT THE FOLLOWISG RF.ADS BACK THE FILE ASD STNGLFS our 
R~PICYEES WITH NO DEPENDENTS. 

STEP-6. READ FILE-2 RECORD INTO WORK-RECORD ~T ENn ,,0 1'0 S1'EP-Q. 
CCHUTE B = B + 1. 

STEP-7. IF NO-Of-DEPENDENTS IS EQUAL TO "0" MOVE "7," '!"C 
NO-Of-DEPENDENTS. EXHIBIT NAMED WORK-REC0RD. GO 70 
STEP-6. 

S'IEP-B. CLOSE F11E-2. 
STOP RUN_ 

® -:ROSS-REFERRNCE DICTIONAIlY 

DEPN REFERENCE 

cocase 
000044 000068 
000043 
000059 OOOORl 
000047 000070 
000045 
000C29 
0000J7 
000017 OOOOE4 000072 000077 
000018 000077 000080 0000 8 ') 
00004C 000064 00001)8 000070 000074 
00005] 
000049 00001i8 

NO-OF- DEPE NOE NTS 000055 000070 0000B2 
NCMEEB 000041 00001)4 0000f'8 000071 
RECORD-NO 000051 000071 
llECOBD-l 000028 000072 
RECOBD-2 000036 000080 
IH!COPDA OOOOS7 
WORK-RECORD 000048 000072 000080 00 no A 3 

Figure 51. Using the SYMDMP Option to Debug the Program TESTRUN (Part 5 of 11) 

166 



1'J 

P"ROC,,!)URF ~.I\ "12S :;Er~ ? F rF:; E~~ CE 

f1e:GI'i! 000061 
ST EP-1 CCQUiU 
SEP-2 OOOOFiil o o ()r)7U 
'5'£ EP-] COOC72 00007[1 
SBP-4 O,)O()74 
STF.P-S COOC77 
S'I2?-r. O')()0~O OO()()R:J 
STFP-7 COO082 
S'IEP- 8 conOR ') OO()O.:JO 

20 

CAR!) ".:RROR ME SSAG E 

5E IKf2190I-TO PIC'T'URE CUUSE IS SIGNED, VALUE CLlIUSE TJ"1SIr.'JED. lISSTJ"IED POSITIVE. 

PHASE FILEl PIIE2 FILE:J FILE4 FILE5 
1 00000000 00000000 0000034C 00000000 COOOOOOO 
2 COCOOOOO 00000000 00000000 0000001)0 00000000 
3 00000000 000002D6 00000000 00000000 00000000 
4 00000000 00000000 00000000 0000040 A 00000000 
5 00000000 00000000 C00002e 1 00000000 OOOCOOO!) 
6 00000000 00000000 00000000 000003":F 00000000 
7 00000000 00000000 00000000 00000000 000C0400 
8 00000000 00000000 000003S1 00000074 OOOOOQao 
9 000005DD 00000000 oooooooc 00000000 OOOCOOOO 
"- COOOOOOO 00000000 00000000 oonOODOO OOo()onoo 
B 00000000 0000083C COOOO01,) COOOOOOO 00000000 
C 0000004 00000000 00000240 0000',)001 00000000 
D 00000000 00000000 eoooooco conacoco ooocoooo 
E 00000000 00000000 00000000 oonooaOa 0000(1000 
F 00000000 00000783 COOOOOOO eOCOeOE:2 ooocoooo 
'; 000001".:B 00000000 00000114 00000000 00000000 
H 00000000 00000000 ooooooec eOOOGono oooeol) 00 

Figure 51. Using the SYMDMP Option to Debug the Program TESTRUN (Part 6 of 11) 

Symbolic Debugging Features 167 



0':-T FSTRUN, [[1 

~"11\ """, .. ,. 't"I'~'V''' """T'I''I.~", "1'':10'''''' 'r.I"rr'l ........... " ....... - ........ - ... - ..... ~- ------. _.-. \..:,.I' ..... ",,'-'..I.. " '"", ' .... ,t..AI rnUUL'.L,l1H.l"JL-C LL.uU,Ctv-\}r-UT;ur:.!"41J!:',NJ.::'l ,l:1L\..U.:1il,-N\..; 

0--81, (H~ X) , weHR-HECOD, E 

TESTRUN UNIDENTIFIED ELEr.ENTS ON CONTROL CAR9S 

*ERROR* CAPO/VERB 

IKF1601 70 IDENTIFIER NOT FOUND 

TEST RU N nCAR [ 00007C 
LOC CARD IV NA ME 

CCCE 

A 
AN 
ANE 
o 
DE 
F 
FD 
NF. 
NB- S 
NO 
ND-OL 
NO-OT 
ND-5L 
ND-ST 
HE 
NP 
NP-S 

* 

001 ERRORS FOU~D TN CON'!'ROL CARDS 

0-TYPE con::s USE!) IN SH!rlf'lP OUTPUT 

MFANTNG 

ALPHABETIC 
ALPHANUMERIC 
ALPHANUM~RIC EDITPn 
DIS PLAY (ST FHLING NONR~?ORT) 
DISPLA 1 EDITED (STERll NG REPCRT) 
FLOATING POINT (COl'IP-1jCOMP-2) 
FLOATING POIN'!' IHSPLAY (PXT1';RNU nOArING pon;"', 
NUMERIC BINARY UNSIGNED ~OMP) 

NUMERIC BINARY SIGNED 
NUIURlC DISPLAY IJNSIGNED (EXTERNAL !)ECI~AL) 
NU~ERIC DISPLAY CVF.RFUNCH SIGW LEADING 
NU~ERIC DISPLAY OVERPU.CH SIGN TRAILI.G 
NUMERIC DISPLAY SEPARATE SIGN LEArING 
NUMERIC DISPLAY SEPARATE SIGN TRAILING 
NUMERIC EDITP,D 
.nMERIC PACKH DECI~AL UNSIGNED (COI'IP-1) 
NUMERIC PACKF.D DECIMAL SIGNED 
SUBSCRIP'T'ED 

TYPE vnup 

(!)-oC0778 000040 77 KOUNT NB-S +01 
(HEX) 0001 

o DOH8 000049 02 NAME-FIELD liN 

00 e7BA oeOC,)1 02 RECCFD-Ne .r **** 
(H!': X) 4 7<;Or:'1 F"" 

T EST FUN n CARr 00007C 
LOC CARD LV N HiE TYPF VllL[J~ 

000778 000040 77 KOUNT NR-S +0<; 
(HFX) OOOe: 

o D07P8 00004g 0:< N AM E- F IFL D AN E 

ODCiBA OCCO:51 02 RECCH-NC 1\[ '1004 

TE~TFUN lI'I CAR[ 000070 
Lce ORe LV N AM E TYPE VAWl': 

ODC778 OCOO'~O 77 [(CUNT N p-s +09 
(HE X) aOog 

o DO 7B 8 000049 02 NAME-FInn liN 

Figure 51. Using the SYMDMP Option to Debug the Program TESTRUN (Part 7 of 11) 

168 



ODe-JBII. OCl!O~l U2 REeCHD-NC NC 00U8 

TE='IRUN AT CARr 000010 
Lec CARD LV NAM E TYPE VALUE 

00 e77 8 OC0040 77 ~CUNT NP-S +13 
(HE Xl OOon 

00 C 7B 8 0(004 9 02 NHE-FIELD AN 1'! 

o D07E A 000051 02 RECORe-NO NO 'l012 

TESTRUN AT CII.RD 000070 
LOC CARD IV NHE TYPE Vi\LUE 

000778 000040 77 KOUNT N8-S +17 
(HEX 1 0011 

o C07 1:8 000049 02 N!lM E-F IEL T) liN Q 

ODCillA 0000')1 02 RF:CCBD-NC Nt 001fj 

TE=TFUN ~'I CAR[ 000070 
LCC ORI: LV N AM E TYPE v.un:; 

00 (778 oeCC40 17 KCUNT N E-S +21 
(HE Xl 001') 

OD C i r3 8 000C49 02 NAr.E-FI~LD !IN U 

OCCiEA 000051 02 R ECO Re-NO Nr 0020 

TEST PU N JIT CARr 00007C 
LaC CART) LV N,I\/'lE TYP" V ~ r. 'I": 

o e0778 000040 77 KOUNT t\f\-S +2 c:, 
(HH) 001'1 

0007 F8 000049 02 N MI E- FI Ell) 
" N 

Y 

OD01BA 000051 02 R",CCBf)-NO NO 0024 

® __ 'IJ:'!:'IR UN AT C!lRD 000081 
LCC ORe LV NAME TYP1" VIIT.Ur.; 

0OO04R 01 'ilOR"I-RECORD 
OD Ci!} e (HEX) C140"'OPO FOP 140D5 Eflc140FO '~0404040 4040UOUO 
OCOH8 0000U9 02 N AM F- f I "L D II N 1\ 
ODe i~ s oe0050 02 ~I Ll E R .8.1" 
o C07 Ell 000051 02 RECORD-NO ND 0001 
ODC78E 000052 02 PILlE R .8.~ 

0001 EF 000053 02 LOCATION A NYC 
OD (iC 2 000054 02 FI lIE F ~l\ 

Q 1:07C3 0000')5 02 NO-O F- D1"P E~ i) E'l 'I S 1111 I) 

OD C 7c 5 OCOO')6 02 "Ill".:R .~ N 

a COHO 0000'i9 02 H-S *1*2*3* 
("flf 1 f1:' 2!" .~c U 

Figure 51. Using the SYMDMP Option to Debug the Program TESTRUN <Part 8 of 11) 

Symbolic Debugging Features 169 



TFSTRUN 

COHE'TION COCE = OC7 LAST PSij 8~POR~ ftBEND = FFnsoonnnoono~o~ 

1:'LOW '1'RIl.\'E 

®-T~STRUN 000068 000072 OCOOF8 00C072 OOOOF8 nOC072 00006H 000077. 000077 000080 

(I)-TASK GLOBAL TABlE 

SHE AREA 

SWITCH 
TALL Y 
SCET-SAVE 
ENTRY-SAVE 
SOFT-COH-S IZ E 
RETURN-CODE 
SCRT-FF'l'URN 
liOR KI NG CP. LLS 

SCE1T-FlLF-SIZE 
SOR'I-~ODE-SIZF' 

fGT-VN TEL 
'lG'I-VN 'lPL 
VCCN JlCIF 
1j N TR L T F"'; 'Tn 

I A E FL F FTU ~. 

CURRENT FRIORITY 
I E1'U G SHE 1 ~ 
C080L INDIC.\TOR 
}. (INIT 1) 
DEBUG 'fABLE PH' 
surco!', ~[J:R 

~OR'I DDNAM<: 
UNUS Er 
DEBUG SAVEll 
UNUSH 
PRBADR CFU 
GENCE TJlELE 
IN I SED 
T Ii ~ NS I E NT A R FA LEN GT H 
(NIS~D 

CV Eli FL Cli (ELLS 
8L CELLS 
I:ECEAIB (nLS 
1E!'lP STORAGE 
EI 1 CELLS 

Lce 

090<)38 
OD09')i:l 
OD097H 
OOC9EO 
OD098~ 

OD09E8 
on098C 
0[)09S0 
OJOQ94 
OD09% 
000998 
CrOGB8 
On09n8 
ODO'1 Fe 
o D Oil. 18 
0[10 r-38 
0')011 0::13 
000A7R 
OJOII 9'1 
ODD II!3S 
000AC8 
a no Ace 
ODO.a. DO 
o no A D4 
01)0AD8 
OnOIlr.e 
ODOII.DE 
ODO /lOP 
ODOA ~O 
000 A .... 4 
ODOII E8 
Dna A C:C 
DrOI\FO 
o DO II F4 
OOOA FC 
000 P 1 0 
ODOR 1 !j 
o no "'18 
enOB1C 
ODD R20 
000:121 
ODO 1324 
(NOH) 
ODO B2C 
( NOH) 
o Da 8JF3 
CDCB40 

VU[JF 

009~.9200 

000 ?""CP:u 
700 ;lO":Cr.. 
7':) oor.or~R 
OOOOOOOr) 
CCOCCr.OO 
OOO!:O He 
OOOCOOOO 
0') F!, 

,,~91 

000 T'2U<;r, 
F?F (4 00') 
rC081R9g 
7000DCOO 
20~Cl000 

000 DO ~OC 
COOCOO') 0 
000 co 1'170 
427CB 001 
E00841f:!O 
ocoeoooo 
Doaoonoo 
f:'~n291U2 

')0 EO r008 
~e'jcnooc 

u177 
CC 
00 
7CO"0":CE 
.1\ NS C 
OCOf)O('PO 
0OOOO47H 
oconOF:lO 

"i be', cn 000 
OuO ro fCC 
C1J011Bl,) 
0001:0 [,pR 

DCOE1F'D2 
01) 
7,,0r:;00 
"i0 049600 

OOOCI\41U 

00000000 
OCDencco 

n~T~ DIVISION n1~p CP '1'FS~RUN 

00 on::: 768 OOOD .~? ~'J 700JO~P"i 0000E2H 
OOCOOODl) 700rOEOF' 000 D07B 0')OD1\41U 
OOOCOB70 

Or)O ~7. F 1 ~ 1'1'~"F~2E ,)00!)C7r.R 0')021)3 "i: 
':' flC 34 OFO 0200U020 40~0404C OOOC06FO 
<i0910000 U1UOCORi\ ~ 7 FO Cl r.'l D2001000 
1'JE00700 FA30fO')8 ("ouP070C ,)>'lOOD 1 08 
10 C 00 000 OOO.1I.77fl" ooonoooo 0000"11)01 
010090 EC 400DOF84 :100['l10P1\ 00000030 
7001)0;;; OF. 0001'0778 000"A414 000 r:)f- FO 
000 ro E9 E 000['110'111 00000030 8~ on: 020 
92 UOB 002 9200!3n03 4.1405000 4U4090 1"F. 

PQOCu lC7 COOl11177 "'0019102 

ooccooon lF74Ul00 000 C181'1 ,)8,)')')OOU 

~O024140 

OOOCA400 OOOD0778 

0000026[' 
ooceoooo 

700 COECE OOODA!JOO OOonO'1'3Q 
OOOD A400 OOODI1FFF 0000 CF':F 0 

ooooonoo O010gnOO ":9401"0"'0 
O(lOr06FO ooonOR70 1)0089202 
7000 n 200 DOS'JUOOO D7001'O"i8 
07fPU 000 OOOOOfAO 000 DC6S8 
000 A7ECO 47FOFQ()P (100DOF;9~ 

OOODOE9F OOODOI'!Oe 00026C"'4 
OOOrOFT' 0001'0"""'0 OOO!' OJD': 
000D080r:: 00011n Q noo no 1:'% 
50l'iOPOO U 0~70111170 917.~'3()C:O 

Figure 51. Using the SYMDMP o~tion to Debug the Program TESTRUN (Part 9 of 11) 

170 



VLC CELlS (NCNF) 
SEL CELLS (NONE) 
INDEX CElLS (NONE) 
(TEU {S H 1'I ErWRY MAP) ODOBII8 

0001'168 

LOC CARD IV NJUIE 

~---------"000017 FD FILE-1 

OD (eoc 
o Dce2C 
OD0811C 

OCc028 
000029 ®--01:~414 

0----·, oe0018 

o C08 f8 
0008D8 
ODC8F8 

~®N CDA400 
P --01:0778 

0007J\ 

ODC78C 

@---01:0780 
000781 
00C7e2 
o r078 3 
ODC784 
o D078,) 
ODC786 
01:0787 
00C7f:8 
o Don9 
OD (7 871 
o r078 P 
on C 7 8e 
D 1:078 C 
UD (7 8F' 
J C078 F 
on (7 <; C 
o D019 1 
01')(7'32 
o D079.1 
0!H7<;4 
o D079,) 
00 (iS€; 
o C07Q7 

000036 
OCOO37 
000040 
00004,1 

000042 
000043 
0000114 

01 FECCFD-1 
02 F HL D-I\ 

FD FllE-2 

01 R E(ORC- 2 
02 FIfIO-A 
77 ({OUNT 
77 NC~BEF 

01 FILL FR 
02 ArP~Ag~T 

02 ALPHA 

(SUP1) 
1 

7 

<? 
1 C 
11 
12 
11 
10 
15 
11: 
17 
18 
19 
20 
21 
22 
23 
24 

n ...... !HVTS!CN THT!'lF Q!O' 1'EST~IJN 

000D0799 000D07B3 OOOOOry90 00000090 
OAOC08CA 20C60AOA 

800008B8 181111E11 1I101100C 00000001 

DCP 

DCB 

DATA DIVISION DUfiF OF' TF.STRlTN 

TYPF VAtUF 

QSAl'l FI LE: CLOS EO ORr;ANIZATTn~: PHYSICAL SEQT1ENTTH 

eooooooO 00000000 00000000 OOOOOOOh 
~6000001 900n070C E2C1D4D7 D3C,)4040 
COCOOOOO 00000000 00000000 00000001 

AN T> ooo~ NYC 

00P1QOOO 000DII391 00C04000 0000C001 
02000048 0000001}1 060D24,6 00000064 
OOOOl}014 00000001 00000000 00000000 

QS AM :TL"': OP"'1 ORG ~ NT Z,\ 'TION: PHYSICA L SF'CUE~TT n 

00000000 00000000 00000000 00000007 
4fiODO":C8 900"0888 007C~AOO 01)021iC.E4 
2R01282A 000DBC30 000ryA4fi4 000nA400 

AN A 0001 NYC 0 
NS-S +2fi 
NE-S +2fi 

0081C300 020~~390 OOOO~OOO 00000001 
120F?~00 000FEC40 060D245f 00090064 
00000014 00000001 00000000 OOOFFB9R 

AN 
*A N 

~BrnFF~HIJKL~N1PORSTUVWXYZ 

T1 

(' 

G 
q 

() 

F 
() 

? 
S 

rJ 

V .. 
X 

Figure 51. Using the SYMDMP Option to Debug the Program TESTRUN (Part 10 of 11) 

Symbolic Debugging FEatures 171 



nAT", !>I VISIC~ DUMP (1'" TE:H RUN 

Lee Ciifli) l.V NAI"t:: TYPF' VALUi: 

o Il0798 25 Y 
ODC799 2(' 'l 
o D079 A 000045 02 DFPfNr:F.~TS AN 01234012J40123401234012140 

CCCC~.., 02 DEEN;; *AN 

ODCHA 
@--..C SUB1 ) 

1 0 
OIlC79P 2 1 
(j L(j7~L 3 7. 
00(7<]0 4 
o C079 E 

_________ ODLLQY ______ -- _._--6------... ----ff--

o Il071\0 7 1 
00 (711. 1 8 
o DOH2 9 3 
ODe7113 10 4 
o r07!!4 11 0 
0007.1\5 12 1 
o r07 AIj 13 2 
ODC7!\. 7 14 3 
o r07 A8 15 4 
OD C7A 9 1(, a 
o D07 AA 17 1 
ODenB 18 2 
ODOBe 19 3 
ODC7AD 20 
o r07 At 21 
ODC1AF 22 
orOHO 23 2 
ODOS 1 24 3 
o D07 E2 25 4 
OD C 76 3 26 0 

000048 01 WORK-RECORD ~ 
00 C7"R 8 000049 02 NA rfl!-FIELD AN 
o r07 E9 000050 02 FILLER AN 
ODO'iBA OC0051 02 RECORD-NO IH orlo 1 
Or07H 000052 02 FnLE9 !\ N 
ODCiBF OeC053 02 ICCATICN A NYC 
o D07C2 000054 02 PILLER ",N 
OD07c 3 000055 02 NC-CP-DEF~~DENTS liN 0 
o D07 CI) 00001)6 02 fILL ER AN 

000057 01 REC01iDA 
o C07 [0 000058 02 A ND-OT +1234 ---® 
OD C 7D 0 000059 02 R NP-S * 1* 2* "* R 

(HE Xl F1F2F3C4 

D~TA r:lIVISION TllJMP OF TF'STRUN 

Lee OR I:: LV NMlf TYPE V",LUF 

~ND OF COBOL DIAGNOSTIC AIDS 

Figure 51. Using the SYMDMP Option to Debug the Program TESTRUN (Part 11 of 11) 

172 



The compiler, linkage editor, COBOL load 
module, and other system components can 
produce output" in the form of printed 
listings, punched card decks, diagnostic or 
informative messages, and data sets 
directed to tape or mass storage devices. 
This chapter describes the output listings 
that can be used to document and debug 
programs and the format of the output 
modules. The same COBOL program is used 
for each example. "Appendix A: Sample 
Program output" shows the output formats in 
the context of a complete listing generated 
by a sample program. 

The output of the compilation job step 
may include: 

• A printed listing of the job control 
statements 

• Device allocation and deal location 
messages from the job scheduler 

• A printed listing of the statements 
contained in the source module 

• A glossary of compiler-generated 
information about data 

• A printed listing of the object code 

• Compiler diagnostic messages 

• System messages 

• Disposition messages from the job 
scheduler 

• An object module 

• A cross-reference listing 

• A condensed listing containing source 
card numbers and the location of the 
generated instruction for each verb 

• Compiler statistics 

Diagnostic messages associated ~ith the 
compilation of the source program are 
automatically generated as output. The 
other forms of output may be requested in 
the PARM parameter in the EXEC statement. 
The level of diagnostic messages printed 
depends upon the FLAGW or FLAGE options. 

All output to be listed is written on 
the device specified by the SYSPRINT DD 
statement. Line spacing of the source 
listing and the number of lines per page 
can be controlled by the SPACEn and LINECNT 
options. 

Figure 52 contains a portion of the 
compiler output listing shown in "Appendix 
A: Sample Program output." Each type of 
output is numbered, and each format within 
each type is lettered. The text following 
Figure 50 is an explanation of the 
illustration. 

l 
llTEST JOB 
IIJOBLIB DD 
I I STEPl EXEC 
IISYSUTl DD 
IISYSUT2 DD 
IISYSUT3 DD 
IISYSUT4 DO 
IISYSLIN DO 
II 

NY83922041,'A. HALL I ,MSGLEVEL=( 1,1) ,CLASS=C ,MSGCLASS=U 
DSN=PRODVER4,DISP=SHR,VOLUME=SER=USAS,UNIT=2314 

IISYSPRINT DO 
IISYSIi~ DO 

PGM= I KFCBLOO , PARM= I DMAP, PMAP , XRE F ,QUOTE, OPT I , REG ION= 76 K 
DSNAME=&&UTl ,UN IT=SYSDA ,SPACE= (TRK, (100,10» 
DSNAME=&&UT2,UNIT=SYSDA,SPACE=(TRK,(100,10» 
DSNAME=&&UT3,UNIT=SYSDA,SPACE=(TRK,(100,10» 
DSNAME=&&UT4,UNIT=SYSDA,SPACE=(TRK,(100,10» 
DSNAME=&&PNCH,UNIT=SYSDA,SPACE=(TRK,(lOO,lO», 
DISP=(NEW,PASS) 
SYSOUT=U 
* 

IEF7361 AllOC. fOR H';TRllN cnR 
(EF2371 23~ ALLOCATED TO SVSPR(NT 
lEF2371 7.10 ALLoCATF~ TO SYSUnUMP 
(EF237( ~15 ALLOCATED TO 5YSUTl 
IFF2371 23() AllnCATED Tn SYSllT2 
IEF2371 242 ALLaCATF~ TO 5YSUT1 
IEF237I 73() ALLOCATFn TO 5YSllT4 
IFF237( 215 ALLOCATED TO SYSLI~ 
(EF2371 241 All neArED TO STEPU 8 
IFF2371 235 ALLOCATED TO SYS(~ 

Figure 52. Examples of Compiler output (Part 1 of 3) 

X 

output 173 



I 00001 
00002 

100010 IDENTIFICATION DIVISION. 
100020 PROGRAI'.-lD. TESTRUN. 

UUUUJ lUUU30 AUTHOR. PROGRAMMER NAME. 
00004 100040 INSTALLATION. NEW YORK PROGRAM!'.ING CENTER. 
00005 100050 DATE-WRITTEN. JULY 12, 1968. 
00006 100060 DATE-COMPILED. FEB 19,1972 

00018 100180 DATA DIVISION. 
00019 100190 FILE SECTION. 
00020 100200 FD FILE-1 
00021 100210 LABEL RECORDS ARE OMITTED 
00022 100220 3LOCK CONTAINS 100 C!IARACTERS 
00023 100225 RECORD CONTAINS 20 CHARACTERS 

< 
UUUL4 

00025 
0002b 
00027 
0..00 .. 28 

l.UULjU .Kt~;CUH.U.LNl:j MUU,t; 1.::> 1'-

100240 DATA RECORD IS RECORD-1. 
100250 01 RECORD-I. 
100260 02 FIELD-A PICTURE IS X(20'. 
100.27.0 pD FILE:-.2 

00057 
00058 
00059 
00060 
00061 

00078 
00019 
00080 
00081 
00082 
00083 

0 

100!>30 PROCEDURE DIVIS!ON. 
100540 BEGIN. READY TRACE. 
100550 NOTE THAT THE FOLLOWING OPENS THE OUTPUT FILE TO BE CREATED 
lC0560 AND INITIALIZES COUNTERS. 
100570 STEP-I. OPEN OUTPUT FILE-I. MOVE ZERO TO KOUNT NOMBER. 

100730 STEP-6. READ FILE-2 RECORD INTO WORK-RECORD -'''.T END GC TO STEP- 8. 
100740 STEP-7. IF NO-OF-DEPENDENTS IS EQUAL TO ·0" MOVO: 'Z' TO 
100750 NO-OF-DEPENDENTS. EXHlE'J":' NAMED WORK-RECORD. GO TO 
100760 STEP-6. 
100170 STEP-8. CLOSE FI!.E-2. 
100780 STOP RUN. 

0 CD ® 
INTRNL NAME LVL SOURCE NAME 
DNM;1-148 FD FILE-l 
DNM;1-167 01 RECORD-1 
DNM;1-188 02 FIELD-A 
DNM;1-205 FD FILE-2 
DNM;1-224 01 RECORD-2 
DNM;1-245 02 FIELD-A 
DNM;1- 2 65 71 ROUNT 

DNM;2-071 02 B 

o MFMnRY "~P 
TGT 

SAVE AREA 
SWITCH 
TI\LLY 
SORT SAVE 
ENTRY-SAVE 

00248 

00248 
00290 
00294 
00298 
0029C 

CD ® CD 
BASE DISPL INTRNL NAME 

DCB;Ol DNM;1-148 
B~l 000 DNM;1-161 
BL;l 000 DNM;1-188 

DCB;02 DNM;1-205 
BL;2 000 DNM;1-224 
B~2 000 DN~Fl-245 
BL;3 000 DNM;1-265 

BL;3 058 DNM;2-071 

o LITERAL POOL (HEX' 

® ® CD 
DEFINITION USAGE il 0 Q M 

QSAM F 
OS OCL20 GROUP 
u::; 20e DISP 

QSAM 
OS OCL20 GROUP 
DS 20C DISP 
OS 1H COOP 

DS 4P COMP-3 

004FO (LIT+O' 00000001 lC00001A o.04805EF 48000000 

XSASW CELLS 
XSA CELLS 

PGT 

OVERFLOW CELLS 
VIRTUAL CELLS 
PROCEDURE NAME CELLS 
GENERATED NAME CELLS 
DCB ADDRESS CELLS 
VNI CELLS 
LITERALS 
DISPLAY LITERALS 

00478 
00478 

00498 

00498 
00498 
004B8 
004CC 
004E4 
004EC 
004FO 
00504 

DISPLAY LITERALS (BCD' 

00504 (LTL+20' 'WORK-RECORD' 

CD WORKI"G-STORAGE STARTS AT LOCATION 00088 FOR A LENGTH OF 00060 

CD 0 ® ® ® CD (!) ® 
58 VERB 

000510 START EQU 
000510 07 00 BCR 0,0 
000512 58 FO C OOC L 15, OOC( 0,12) VIILBODBG4) 
000516 05 EF BALR 14,15 
000518 58 FO COlO L 15,010(0,12) VIILEOFLWl) 
00051C 05 IF BALR 1,15 
00051E 0000003A DC X, 0000003A' 

@ 000522 58 FO C 014 L 15,014 (0,12) V (ILBODSPO' 
000526 05 IF BALR 1,15 
000528 000140 DC X' 000140' 
00052E 05F5F84o.404040 DC X' 0 5F5F8 404 C4 0. 40' 

58 VERB 
000532 96 40 D 048 01 048(131,X'40' SWT+O 

61 VERB 
000536 58 Fa C OOC L 15,OOC(O,121 VIILBODEG41 
00053A 05 EF BALR 14,15 
00053C 58 Fa COlO L IS, 010( 0,121 V (ILBOFLWll 
000540 05 IF BALR 1,15 
000542 00000030 DC X, 00000030' 
000546 58 FO C 014 L 15, 014 (0,12) V ( ILBODSPO) 
00054A 05 IF BALR 1,15 
00054C 000140 DC X' 000140' 
00054F OSF6Fl40404040 DC X' 0 5F6F 140404040' 

bl V:::i<B 
000556 58 FO e OOC L 15,OOC(O,121 V ( I LBO::JBG4 ) 

OOC::'5A OJ EF BALR 14,15 

Figure 52. Examples of Compiler Output (Part 2 of 3) 

174 



, *S'!'l\.'!'ISTICS* SOURCE. RECORDS = 84 DATA DIVISION STATEMENTS = 25 PROCEDURE DIVISION STATEMENTS = 22 

CD ~ :~~~~: ~: ;::~~~: Sl~~;. 8~~~~. ~~~L~ST. ~6~;PM~~~E~~~R;F~7 ~~;~~~. F~~~;: NO~~g~. Q~~~~~L NOTf<UNC. FLOW= 35 
t *OPTIONS IN FFFECT* NOTERM, NONUM, NOBATCH, NONAME, COMPILE=Ol. S'IAT~, NORESIDENT. NODYNAM, NOLIB. NOSYNTAX 

® 

®{ 

® 

DArt. N""'Ee; 

FIELD-A 
FIELD-A 
FILE-1 
FILE-2 
KOUNT 
LOCATION 
NAl'iE-FIELD 

OF.F~ 

000027 
000035 
000016 
000017 
000037 
000050 
0000!i6 

CIIOSS-REFERE~CE OICT In"lAIIV 

IIFFEIIFNCE 

000061 000070 000075 
000075 000078 000082 
000061 000065 000068 000072 

000065 
NO-OF- DEPEND EN'l'S 000052 000068 000079 

P~OCEDURE NAI4ES OEFN REFERENCE 

BEGIN 
3TEP-1 
STEP-2 
STEP-3 

STEP-8 

IEF2851 
IEF2851 
IEF2851 
IEF2851 
IEF2851 
IEF2851 

IIEF2851 
IEF~1I51 

0000::>8 
000061 
00006~ U0007 <: 
000070 001072 

000082 000078 

CARD ERROR MESSAGE 
IKFll001-W 2 SEQUENCE ERRORS IN SOTJRCE PROGRAM. 
IKF2190I-W PICTURE CLAUSE IS SIGNED, VALUE CLAUSE UNSIGNED. ASSUME:D POSITIVE. 

SYSTl023. Tt:.'Il121l9.RVMI'). TESTRUN.GOOATA 
VOL SER NOS= OORllb. 
SYSTlI')B. TOlI2I)Q. SV':II''). TE S TRUN. ROOOl)O 11 
VOL SFR 'IIOS= 2314"". 
SVS71023. T01120Q. SVI)O 1. TF S TRUN. ROO,)0012 
VOL SEll NOS= 2 H4')n. 
SVS71 ')23. TOl121)Q.RVOC'). TFSTIIUN.1I00n O"13 
vnl SEll NOC;= lO'l31('1. 

PASSEl) 

DFlETEO 

SVSOUT 

OELETF~ 

Figure 52. Examples of Compiler output (Part 3 of 3) 

1. 

2. 

3. 

Listing of job control statements 
as~ociated with_this~Q~~te2. These 
statements are listed because 
MSGLEVEL=(l,l) is specified in the JOB 
statement. JCL statements with XX 
instead of // represent statements in 
a cataloged procedure. 

~11oc~tion~~~~~ges from_th~_iQQ_ 
~chg~~ler. These messages provide 
information about the device 
allocation for the data sets in the 
job step. They appear after the job 
control statements in the compile, 
linkage edit, and execution job steps. 
For example: 

IEF237I 235 ALLOCATED TO SYSUTl 

indicates that the data set for SYSUT1 
has been assigned to the device 235. 

§Q~f~~_mo~ul~_!i~ti~g. The statements 
in the source module are listed 
exactly as submitted except that a 
compiler-generated card number is 
liste1 in the first column of each 
line. This number is referred to in 
diagnostic messages, on the XREF or 
SXREF listing, and in the object code 
listing. If NUM is specified, the 

programmer-encoded source numbers in 
columns 1 through 6 are used in each 
of these cases. (See the description 
of the NUM option under "Options for 
the Compiler.") The source module is 
not listed when the NOSOURCE option is 
specified. 

The following notations may appear on 
the listing: 

C Denotes that the statement was 
inserted with a COPY statement. 
Statements copied will not be listed 
if SUPPESS is indicated. 

** Denotes that the card is out of 
sequence. 

I Denotes that the card was inserted 
with an INSERT card. 

If DATE-COMPILED is specified in the 
Identification Division, -any sentences in 
that paragraph are replaced in the listing 
by the date of compilation in the following 
format: 

DATE-COMPILED. month day, year 

Output 17~ 



4. Glossary: The glossary is listed when 
the DMAP option is specified. rhe 
glossary contains information about 
names in the COBOL source program. 

176 

A and F~ The internal name generated 
b? the compiler. This name is 
used in the compiler object code 
~isti-R-g ·toG ··~-e-p-r-e-S€-nt.-·····"the····-n-afn-e -as-ea 
in the source program. It is 
repeated for readability. 

B. A normalized level number. This 
level number is determined by the 
cumpiler as follows: (1) the 
first level number of any 
hierarchy is always 01, and 
in~rements for other levels are 
al'>lays by one: (2) only level 
n'..Lnbers 03 through 49 are affected 
-- level numbers 66, 77, as well 
as 88 and FD, SO, RD, and CD 
in1icators are not changed. 

C. The data name that is used in the 
source module. 

Note that the following Report writer 
internally generated data-names can 
appear under the SOURCE NAME column: 

CTL.LVL 

GRP.IND 

TER.COD 

FRS.GEN 

-nnnn 

RPT.RCD 
CTL.CHR 

RPT.LIN 

CODE-CELL 

E.nnnn 

S.nnnn 

N.nnnn 

Used to coordinate control 
break activities. 

Used by coding generated 
for GROUP INDICATE 
clause. 

Used by coding generated 
for TERMINATE statement. 

Used by coding generated 
for GENERATE statement. 

Generated report record 
associated with the file 
on which the report is to 
be printed. 

Build area for print record 
First or second position of 

RPT.RCD. Used for 
carriage control 
character. 

Beginning of actual 
information that will be 
displayed. Second or 
third position of 
RPT.RCD. 

Used to hold code specified 
in CODE clause. 

Name generated from COLUMN 
clause in a level-02 
statement. 

Used for elementary level 
with SUM clause, but not 
wi th data-name. 

Used to save the total 
number of lines used by a 
report group when 
relative line numbering 
is specified. 

5. 

D and E. For data names, these 
columns contain information anout 
the address in the form of a base 
and displacement. For file names, 
the column contains information 
about the associated DCB and DECB, 
if any. 

G. Th-isc-oliiffiII-definE's ::)'\::ora-gt'-ftrr
each data item. It is represented 
in assembler-like terminology. 
Table 21 refers to information in 
this column. 

H. Usage of the data name. For FD 
entries, the file processing 
technique is identified (e.g. 
QSAM, BDAM, etc.). For group 
items, GROUP is identified. For 
elementary items, the inf~rmation 
in its USAGE clause is identified, 
or the USAGE that was specified on 
its group. 

I. A letter under column: 

R-Indicates that the data-name 
redefines another data-name. 

O-Indicates that an OCCURS clause 
has been specified for that 
data-name. 

Q-Indicates that the data-name is 
the object or contains the 
object of the DEPENDING ON 
option of the OCCURS clause. 

M-Indicates that the format of the 
records of the file is: 

F fixed 
V variable 
U undefined 
S spanned 

I-Indicates an input CD in a 
teleprocessing application 

O-Indicates an output CD in a 
teleprocessing application 

Global Tables and Literal Pool: The 
global table is listed when the PMAP, 
CLIST, or DMAP option is specified 
unless SUPMAP is also specified and an 
E-level diagnostic message is 
generated. A global table contains 
easily addressable information needed 
by the object program for execution. 
For example, in the Procedure Division 
source coding (3), the address of the 
first instruction under STEP-l, 
namely: 

OPEN OUTPUT FILE-l. 

would be found in the PROCEDURE NAME 
CELLS entry of the Program Global 
Table (PGT). 



6. 

7. 

8. 

A. Task Global Table (TGT). This 
table consists of switches, 
addresses, and work areas whose 
information changes during 
execution of the program. 

B. Literal Pool. The literal pool 
lists the collection of the 
literals in the program, with 
duplications eliminated. These 
literals include those specified 
by the programmer (e.g., MOVE 
"ABC" TO DATA-NAME) and those 
generated by the compiler (e.g.~ 
to align decimal points in 
arithmetic computation). The 
literals are divided into two 
groups: those that are referred 
to by instructions (marked 
"LITERAL POOL") and those that are 
referred to by the calling 
sequences to object time 
subroutines (marked "DISPLAY 
LITERALS"). 

C. Program Global Table (PGT). This 
table contains the remaining 
addresses and the literals used by 
the object program. 

FOr further discussion, see 
"Appendix J: Fields of the Global 
Table." 

BQgiste~ As~iqg~ent: This contains 
the register assigned to each base 
locator (BL) in the object program. 

Wo~K!.!!g::.Stor~~: When PMAP, CLIST, or 
DMAP is specified, both the location 
and the length (in hexadecimal) of the 
Working-Storage Section, if any. are 
provided. 

ObjeQt~oje 1i~tigg: The object code 
listing is produced when the PMAP 
option is specified unless SUPMAP is 
also specified and an E-Ievel error is 
encountered. The actual object code 
listing contains: 

A. The compiler-generated card number 
or source card number, if NUM is 
specified. The number refers to 
the COBOL statement in the source 
module that contains the verb 
listed under column B. 

B. The relative verb number for each 
card number. 

The statement within which the 
COBOL verb appears determines the 
information under columns C, Dr F, 
and G. 

If VERB is specified in 
connection with PMAP or CLIST, 

55 
58 
62 

9. 

procedure-names and verb-names are 
listed with the associated code. 

C. The relative location, in 
hexadecimal notation, of the 
object code instruction in the 
module. 

D. The actual object code instruction 
in hexadecimal notation. 

E. The procedure-name number. A 
number is assigned only to those 
procedure-names tc which reference 
is made in other Procedure 
Division statements. This may be 
a PN <procedure-name) or GN 
(generated-name) number. 

F. The object code instruction in a 
form that closely resembles 
assembler language (with 
displacements in hexadecimal 
notation). 

G. Compiler-generated information 
about the operands of the 
generated instruction. This 
includes names and relative 
locations of literals. Tables 21 
and 22 refer to information in 
this column. 

Note: The programmer can produce a 
condensed listing by specifying CLIST 
as an option in place of PMAP. The 
CLIST option produces only the source 
card number, the relative verb number, 
and the location of the first 
generated instruction, as follows: 

VERBl 
VERB2 
VERB2 

0004AC 
0004F2 
00051A 

58 
62 
62 

VERBI 
VERB1 
VERB3 

0004CO 
OOOSOE 
000526 

~t~t~~t~£~: The compiler statistics 
list the options in effect for this 
run and the number-at-Data Division 
and ProceJure Division statements 
specified. Each level number is 
counted as one statement in the Data 
Division. Each verb is counted as one 
statement in the Procedure Division. 

10; Cross-Reference Dictionary: The XREF 
dictionary, produced when either the 
XREF or the SXREF option is specified, 
consists of two parts: 

A. The XREF dictionary for data-names 
followed by the generated number 
or source card number of the card 
on which the statement begins, if 
NUM is in effect. For condition 
names, the data-name of the 
conditional variable appears in 
the XREF diction~ry. 

Output 177 



B. The XREF dictionary for 
procedure-names followed by the 
generated number or source card 
number of the card on which the 
statement begins. 

For XREF, all the names begin in the 
order ill whidl they are defined in the 
source program. For SXREF, the names 
appear sort~g __ iJ! __ 9,lQ.l].c!I)_lJ.me:r:.iJ::_Qr.de:r:.-a-
T-lie----[iumher of references appearing for 
a given name is based on the number of 
times the name is referenced in the 
compiler-generated code. 

11. Di~gnostic me~sages: The diagnostic 
messages associated with the 
compilation are always listed. The 
format of the diagnostic message is: 

178 

A. Compiler-generated line number or 
source card number. This is the 
number of a line in the source 
module related to the error. 

Note: In this listing of TESTRUN, 
there were no error messages. 
However, a typical message is 
provided with the compiler output 
to serve as an example of message 
format. 

B. Message identification. The 
message identification for COBOL 
compiler diagnostic messages 
always begins with the symbols 
IKF. 

C. Severity level. There are four 
severity levels as follows: 

W Warning -- This severity level 
indicates that an error was 
made in the source program. 
However, it is not serious 
enough to hinder the execution 
of the program. These warning 
messages are listed only if 
FLAGW is specified. 

C Conditional -- This severity 
level indicates that an error 
was made but that the compiler 
makes an assumption, which in 
some cases corrects the error. 
The statement containing the 
error is retained. Execution 
can be attempted for its 
debugging value. 

E Error -- This severity level 
indicates that a serious error 
has been detected. Usually the 
compiler makes no corrective 
assumption. The statement or 
operand containing the error is 
dropped. Execution of the 

program should not be 
attempted. 

D Disaster -- This severity level 
indicates that a serious error 
was made. Compilation is not 
completed. Results are 
unpredictable. 

There is a correlation between 
severity level and the return 
codes referred to by the COND 
parameter. For example, a 
compilation in which a W-Ievel 
error is detected generates a 
return code of 4; a C-level error, 
a code of 8; an E-Ievel error, of 
12; and a D-level error, of 16. 

D. Message text. The text identifies 
the condition that caused the 
error and indicates the action 
taken by the compiler. 

Since Report Writer generates a 
number of internal data items and 
procedural statements, some error 
messages may reflect internal 
names. In cases where the error 
manifests itself mainly in these 
generated routines, the error 
messages may indicate the card 
number of the RD entry for the 
report under consideration. In 
addition, there are errors that 
may indicate the card number of 
the card upon which the statement 
containing the error ends rather 
than the card upon which tne error 
occurred. Messages for errors in 
the files refer to the card number 
of the associated SELECT clause. 
Internal name formats for Report 
Writer are discussed in the 
"Glossary." 



On a given page of the listing, 
all messages beginning with the 
symbols 'IKF6' follow all other 
messages, as in the example below. 

CARD ERROR MESSAGE 

93 IKF1015I-E EXTERNAL NAME IN 

Et"{ROR r-1ESSAGE 

SYSTEM-NAME ***** 
INVALID. 
SYSTEM-N~~E IGNORED. 

IKF6006I-E SUPMAP SPECIFIED AND 
E-LEVEL DIAGNOSTIC 
HAS OCCURRED •••• 

A complete list of compiler 
diagnostic messages is contained 
in the Program Product publication 
I~~_OS_f~11_~~erican_~~i1Qg~1 
Standard COBOL, Version 4 
[-1essages. 

12. Disposition messages from the iQQ 
scheduler: These messages contain 
information about the disposition of 
the data sets, including volume serial 

Table 21. Glossary Definition and Usage 

numbers of volumes in which the data 
sets reside. 

OBJECT MODULE 

The object module contains the external 
symbol dictionary, the text of the program, 
and the relocation dictionary. It is 
followed by an END statement that marks the 
end of the module. For more detailed 
information about the external symbol 
dictionary, text, and relocation 
dictionary, see the publication IBM OS 
~ig~~g~_~~iiQE_~g~_~oa~~E· ------

An object module deck is punched if the 
DECK option is specified unless SUPMAP is 
specified and an E-level diagnostic message 
is generated, and if a SYSPUNCH DD 
statement is included. An object module is 
written in an output volume if the LOAD 
option is specified unless SUPMAP is 
specified and an E-Ievel diagnostic message 
is generated, and if a SYSLIN DD statement 
is included. 

r---------------------------~~T--------------------------T------------------------------, 

\ Type \ Definition1 \ Usage I 
~-----------------------------+--------------------------+------------------------------~ 

Group Fixed Length I DS OCLN GROUP 
~lphabetic I OS NC DISP 
~lphanumeric I OS NC DISP 
~lphanumeric Edited I os NC AN-EDIT 
Group Variable Length I DS VLI=N GROUP 
Numeric edited I DS NC NM-EDIT 
Sterling Report I DS NC RPT-ST 
External Decimal I DS NC DISP-NM 
External Floating Point I DS NC DISP-FP 
Internal Floating point I DS 1F2 or 4C COMP-1 

Binary 
Internal Decimal 
Sterling Non-Report 
Index-Name 
File (FD) 
Condition (SS) 
Report Definition (RD) 

I DS 1D2 or SC COMP-2 
I DS 1H2,lF2,2F2,2C,4C,SC CO~~ 

I DS NP COMP-3 
I 
I 
I 
I 
I 

DS NC 
BLANK 
BL~NK 

BLANK 
BLANK 

DISP-ST 
INDEX-NAME 
FILE PROCESSING TECHNIQUE 
BLANK 
BLANK 

Sort Definition (SD) I BLANK BLANK 
~-----------------------------~--------------------------~------------------------------~ 
I~In this column, N = size in bytes: except in group variable length where it is a I 
\ variable-length cell number. i 
\2If the SYNCHRONIZED clause appears, these fields are used. I L _______________________________________________________________________________________ J 

Output 179 



~able 22. Symbols Used in the Listing and Glossary to Define Compiler-Generated 
Information 

r--------------------------T------------------------------------------------------------, 
I Symbol I Defini tion I 
~--------------------------+------------------------------------------------------------~ 
I DNM I Source Data Name I 
I SAY I Save Area Cell ! 
! SAV2 I Input/Output Error Save Cell I 
I SAV3 I OPEN Parameter I 
I SWT_L _.§ __ ~tt.gJL_C_~.1_l -+----

-T- ---------,-YL-y-- Tally Cell 
WC Working Cell 
TS Temporary Storage Cell 
TS2 Temporary Storage (Non-Arithmetic) 
TS3 Temporary Storage (Synchronization) 
TS4 Temporary Storage (Table-Handling) 
VLC Variable Length Cell 
SBL Secondary Base Locator 
BL Base Locator 
BLL Base Locator for Linkage Section 
ON On Counter 
PFM Perform Counter 
PSV Perform Save 
VN Variable Procedure Name 
DEC DECB Address 
SBS Subscript Address 
XSW Exhibit Switch 
XSA Exhibit Save Area 
PRM Parameter 
PN Source Procedure Name 
GN Generated Procedure Name 
DCB DCB Address 
VNI Variable Name Initialization 
LTL Literal 
INX Index Cell 
V(BCDNAME) Virtual 
RSV Report Save Area 
SSV Sort Save Area 
CKP Checkpoint Counter 
PBL Procedure Block (Optimizer) __________________________ ~ ____________________________________________________________ J 

LINKAGE EDITOR OUTPUT 

The output of the linkage editor job 
step may include: 

• A printed listing of the job control 
statements 

• A map of the load module after it has 
been processed by the linkage editor 

• A cross-reference list 

• Informative messages 

• Diagnostic messages 

• Disposition messages 

• A listing of the linkage-editor control 
statements 

180 

• A load mojule that must be assigned to 
a library 

Any diagnostic messages or informative 
messages associated with the linkage editor 
are automatically generated as output. The 
other forms of output may be requestej by 
the PARM parameter in the EXEC statement. 
All output to be listed is written in the 
data set specified by the SYSPRINT DD 
statement. 

Figure 53 is an example of linkage 
editor output listing. It shows the jab 
control statements, informative messages, 
and module map. The different types of 
output are numbered and each type to be 
explained is lettered. The text following 
Figure 53 is an explanation of the 
illustration. 



XXlKED EXEC PGM~IEWl,PARM~IXREF,lIST,lETI,COND~(5,lT,COBI, 

REGION~Cj6K 

DO OSNAMF=&lOADSET,DISP~COlD,DElETEI 
DO I)DNIlMF~SVSIN 

xx 
XXSVSLlN 
XX 
lCXSYSU40D 
xx 

~D DSNAME~&GOOATA(RUNI,OISP~(NEW,PASSI, 

UNIT~SYSOA,SPACE~(1'24,(~0,20,1)1 
1)0 DSN~SVSl.COBUlIB,OISP~SHR l(XSYSlI ~ 

XXSYSUTl 
XX 
XXSYSPRPH 

00 UNIT~ISVSDA,SFP=ISVSLlN,SYSlMODII, 
SPACE~II024,{50,2')) 

DO SYSOUT~A 

. XXSYSUnUMP QO sYsmJT~A 

~ 
[EF2361 AllOC. FOR TESTRUN 
IEF237I 235 Illl0CATED Tn 
IEF237I 242 ALLOCATED Tn 

(2't IFF2~7I 243 ALLOCATED TO 
\,:::/ (IEF2371 230 ALLOCATIOD TO 

IEF237I 230 ALLOCATED TO 
IEF237I 230 ALLOCATED TO 

LKFD 
SYSLIN 
SYSl'40D 
SYSlIR 
SYSUT-l 
SYSPRINT 
SYSUOUMP 

FAB-LEVEL LINKAGE EDITOR OPTIONS SPECIFIED XRFF,LIST,LET 
VARIABLE OPTIONS USED - SIZE~{CjOl12,163A4)-

0 0 
CROSS REFFPENCE 

CONTROL SECTION ENTRY 

XOOOO,)l,)n 
0001)0111) 
0001)012() 
001)0()130 

XOOOO,)14,) 
00000150 
00000160 

X'I1J000170 
1)00001AtJ 
00')00190 
00000200 

DEFAULT OPTIONIS) USED 

TABLE 

NAME ORIGIN lENGTH NAME lOCATION NAME LOCATION NAME LOCATION NAME LOCATION 

® 

®{ 
0{ 

TFSTRlJfII 0') 
ILROOSPO· '101) 
ILBOERRO. EAA 

TlROSTPO. 1')90 

0 
LOCATION REFER S 

438 
441) 
lCjR 

EfIITRY ADDRFSS 
TO Tl\L LE NG TH 

TO 

801') 
6A6 
IF 6 

IlRfJERRl EAS IlROERR2 
TlROERR5 FA6 

~5 

ILBOSTPI I1')A6 

(!) ® 
SYMBOL IN cnlllTROL SECTION LOCATION 

ILBOSTpn ILBOSTPt) 4~C 
IlROSTPl ILRDSTPO EC 
IlB!JFPRl IlROERRt) 

CD **·*RUN DOFS NOT EXIST RUT HAS BEEN ADDEO TO DATA SET 

DELETED 

EEA ILBOERR4 FI8 IlROERR3 F3E 

REFERS TO SYMBOL IN CONTROL SECTION 

IUJOOSPO iUWOSPO 
ILROEPR 1 ILBOERRO 

,IEF2I.!';Y 
f'7\ , I FF 2 85 I 
~) IEF2851 

~IFF2Rr;I 

SVS71021.TOl120Cj.RVOI')O.TESTRUN.LOADSET 
VOL SER NOS= 2~1401. 
SVS11021.TOl12,)Cj.RVOO,).TFSTRUN.GOOATA 
VOL SER NOS= OnR116. 

PASSED 

Figure 53. Linkage Editor Output Showing Module Map and Cross-Reference List 

1. 

2. 

Th~iob control statements. These 
statements are listed because 
MSGLEVEL=(l,l) is specified on the JOB 
statement for this job, shown in 
Figure 52. 

~llo~~~ion~~~~~from_~h~_i2Q 
scheduler. These messages provide 
information about the device 
allocation for the data sets in the 
job step. For example, the message 

IEF2371 230 ~LLOCATED TO SYSUTl 

indicates that the data set for SYSUTl 
has been assigned to the device 230. 

3. 

4. 

~inkage ejitor informative message. 
This message lists the PARM options 
that were specified. 

Linkage editor informative messag~. 
This is a disposition message 
describing the disposition of the load 
module. 

A. Name of the load module specified 
in the DSNAME parameter of the 
SYSLMOD DD statement 

B. Text of message 

Output 181 



s. Mod~!~_~~. The module map is listed 
when either the XREF or the M~P option 
is specified in linkage editor 
processing. The module map sho~s all 
control sections in the output ~odule 
and all entry names in each control 
section. The control sections are 
arranged in ascending order according 
to tneir assigned origins. All entry 
names are 1 i'sted "belowthec'untro 1 
section in which they are defined. 
Each COBOL program is a control 
section, and any COBOL library 
subroutine is a separate control 
section (except as noted under 
segmentation) • 

A. Co!!tf.0l_~ection. Under this 
heading the name, origin, and 
length of each control section is 
listed. 
Name. The name of the control 
section. This name is the 
PROGR~M-ID name in the main COBOL 
program or a called program. Each 
control section that is obtained 
from a library by an automatic 
liorary call is indicated by an 
asterisk. 
Origin. The relative origin in 
hexadecimal notation. 
1~ngth. The number of bytes in 
each control section in 
hexadecimal notation. 

B. Entry. The entry names within 
each control section and their 
relative location. A called 
program may have more than one 
entry point. For a called COBOL 
program, the entry points are the 
same as the names specified by the 
ENTRY statements in the source 
program. 

C. Entry address. The relative 
address of the instruction with 
which processing of the module 
begins. It will always be INIT1 
if the COBOL program is the main 
program of the load module. 

D. Total le~gth. The total number of 
bytes, in hexadecimal notation, of 
the load module. It is the sum of 
the lengths of all control 
sections. 

6. Cross reference list. The cross 
reference-rIst;-as well as a module 
map, is listed if the XREF option is 
specified. The M~P and XREF options 
should not be specified together. The 
cross reference list provides the 
following information: 

182 

A. Location. The relative location 
in the program where another 
program is called. 

B. ~y~QQ!_r~f~r~!!~~. The name of the 
entry point of the called program. 

C. In control section. The control 
section that contains the entry 
puint. 

For example, 440 is the location where 
a COBOL subroutine is called. 
ILBOSRV1 is the entry point of the 
called program. ILBOSRVO is the 
control section that contains the 
entry point ILBOSTP1. 

If XREF is specified, the cross 
reference list appears before the 
Entry Address. 

7. Disposition messages from the iob 
scheduler. These messages contain 
information about the disposition of 
the data sets. 

Comments on the Module Map and Cross 
Reference List 

The severity of linkage editor 
diagnostic messages may affect the 
production of the module map and the cross 
reference list. 

Since various processing options will 
affect the structure of the load module, 
the text of the module map and cross 
reference list will sometimes provide 
additional information. For example, the 
load module may have an overlay structure. 
In this case, a module map will be listed 
for each segment in the overlay structure. 
The cross reference list is the same as 
that previously discussed, except that 
segment numbers also are listed to indicate 
the segment in which each symbol appears. 

List~Qg the Linkage Editor Control 
Statements: If the LIST option is 
specified, linkage editor control 
statements, such as OVERLAY and LIBRARY, 
are listed. 

Linkage Editor Messages 

The linkage editor may generate 
informative or diagnostic messages. A 
complete list of these messages is included 
in the publication !~~_Q~_~!g~~g~_~~it~r 
and Loader. 



LOADER OUTPUT 

Loader output consists of a collection 
of diagnostic and error messages, and, if 
MAP is specified, a storage map of the 
loaded program. The output data set, 
SYSLOUT is sequential and blocked as 
specified by the user in the DCB. For 
better performance, the user can also 
specify the number of buffers to be 
allocated. 

Diagnostic messages include a loader 
heading and a list of options requested by 
the user. The error messaqes, identifying 
the source of error, will be written when 
th€ error is detected. After processing is 
complete, an explanation of the error will 
be written. A complete list of loader 
diaqnostic messages is found in the 
publication IBM Q§_~ig~~g~EditQ~_~g~ 
Load~;:. 

The map includes the name and absolute 
address for each control section and entry 
point defined in the program. It is 
written on SYSLOUT concurrently with input 
processing so it appears in order of input 
ESD items. The total size and storage 
extent also are included. Figure 54 is an 
example of a module map. 

The output generated by program 
execution (in addition to data written in 
program output files) can include: 

• Data displayed on the console, or on 
the printer 

• Cards 

• Messages to the operator 

• System informative messages 

• System diagnostic message 

• A system dump 

• Debugging information 

Note: If a program ends abnormally and 
one of the options FLOW, STATE, or SYMDMP 
is in effect and the SYSDBOUT DD card has 
been included, debugging information 
appears in the program listing (see the 
chapter entitled "Symbolic Debugging 
Fea tures" ) • 

A dump as well as system diagnostic 
messages are generated automatically if a 
program contains errors that cause abnormal 
termination. 

NO~~: If a COBOL program abnormally 
terminates, then a formatted dump is 
provided for all COBOL programs compiled 
with the SYMDMP option which could include 
the abnormally terminating program and its 
callers, up to and including the main 
program. For a discussion of the SYMDMP 
option as well as of other COBOL symbolic 
debugging options, see the chapter entitled 
"Symbolic Debugging Features." 

Figure 55 shows an example of output 
from the execution job step. The following 
text is an explanation of the illustration. 

1. ,!:!!~~ob control statements. These 
statements are listed because 
MSGLEVEL=(l,l) is specified in the JOB 
statement for this job. 

2. ~!!~_iQ~_~llQ~~~~Qg_~~~~~g~~_fEQ~_~!!~ 
job scheduler. These messages indi
cate the device that is allocated for 
each data set defined for the job 
step. 

3. Q~~eQ~~~~Q~_~~~~~g~~_f;:Q~_~!!~_iQQ 
scheduler. These messages are 
contained in the publication IBM as 
Messages and Codes. ------

4. ~;:ogram output on printer. The 
results of execution of the TR~CE and 
EXHIBIT N~illD statements appear on 
program listing. 

5. ~Q~~Ql~Q~~e~~. Data is printed on 
console as a result of execution of 
DISPLAY UPON CONSOLE. 

Output 183 



05/360 LOADER 

OPTIONS USED - PRINT,MAP,NOLET,CALL,NORES,SIZE=424176 

NAME TYPE AOOR NAME TYPE 

SAMPL2B SO 161EO SAMPL2BA SO 
SYSIN SO 17048 IHEVQC • SO 
IHEOIA • SO 183CO IHEOIAA • LR 
IHEVPA • SO 18870 IHEVPAA • LR 
IHEVPCA • LR 189F8 IHEVFE • SO 
IHEONC · SO lBCBB IHEONCA LR 
IHEOMA • SO 19010 IHEDMAA LR 
IHEVFAA • LR 19160 IHEVPB SO 
IHEIOB SO _ __ -1_9 41l8 _______ :tH_~_;\:..Q_~ __ ! __ ~_~ __ 

--rllE-sARe ----LR-
IHEBEGA • LR 
IHEERRA LR 
IHEITAZ LR 
IHEDCNB • LR 
IHEVTB • SO 

IHEQINV PR 
SYSIN PR 
IHEQLW3 PR 
IHEQFVO PR 
IHEQEVT PR 
IHEQSFC PR 

IEW1001 
IEW100l 
IEW100l 
IEW100l 
IEW1001 
IEW1001 
IEW1001 
IEW1001 
IEW1001 
IEW1001 
IEW1001 
IEW1001 
IEW1001 
IEW1001 
IEW1001 
IEW1001 
IEW1001 
IEW1001 

IHEUPBA 
IHEUPAA 
IHETERA 
IHEM91C 
IHEM91B 
IHEM91A 
IHEODOO 
IHEVPFA 
IHEVPOA 
IHEOBNA 
IHEVSFA 
IHEVSBA 
IHEVCAA 
IHEVSAA 
IHEONBA 
IHEUPBB 
IHEUPAB 
IHEVSEB 

TOTAL LENGTH 
ENTRY ADDRESS 

lA9C8 
1AE28 
lAE86 
lB81E 
1B862 
1BCFO 

00 
14 
28 
3C 
58 
70 

5068 
17000 

IHESADO • LR 
lHEERR • SO 
IHEERRE • LR 
IHEITAX • LR 
IHEIOO • SO IHEVTBA • LR 

IHEQERR PR 
IHEQLSA PR 
IHEQLW4 PR 
IHEQCFL PR 
IHEcjSLA PR 

AOOR NAME TYPE AOOR 

16EC8 IHEMAIN SO 17CF8 
17080 IHEVQCA LR 17080 
183CO IHEOIAB LR 183C2 
18870 IHEVFC • SO 18900 
18BE8 IHEVFEA LR 18BE8 
18CB8 IHEDOA SO 18F30 
19010 IHEVFO • SO 19108 
19248 IHEVPBA • LR 19248 

____ l9~_8_8 ____ .. __ IHE_I.QBB __ ! __ I..R _______ t9J'--9JL 
lA90E IHESAFF • LR lAA18 
1AE68 IHEERRD • LR lAE68 
lB4E2 IHEIOF • SO lBs80 
1B82A IHEITAA • LR 1B83E 
1BAsO IHEIODG • LR lBAsO 
1BCFO IHEVQA • SO lB078 

4 SAMPL2BB PR 8 
18 IHEQLWO PR lC 
2C IHEQLWE PR 30 
40 IHEQFOP PR 48 
60 IHEQSAR PR 64 

IEW1001 WARNING - UNRESOLVED EXTERNAL REFERENCE (NOCALL SPECIFIED) 

Figure 54. Module Map Format Example 

184 

NAME TYPE ADOR NAME TYPE ADOR 

IHENTRY SO 17000 IBESPRT SO 17010 
IHEVQB • SO 17F08 IBEVQBA • LR 17F08 
IHEVPE • SO 18608 IBEVPEA • LR 18608 
IHEVFCA • LR 18900 IBEVPC • SO lB9F8 
IHEVSC • SO 18C08 IBEVSCA • T.R 1!~~! 
IBEDOAA • LR 18F30 IHEDOAB • LR 18F32 
IHEVFOA • LR 19108 IBEVFA • SO 19160 
IHEXIS • SO 193FO IBEXISO • LR 193FO 

__ LHF. TnBC _ ~---.t.R----~-9 !h9-!--- ----:RIE-!.Q.Im--~-~··- -.-t-~ .. -.-.-.-
IHEPRT • SO lAB70 IBEPRTA • LR lAB70 
IBEERRC • LR lAE72 IBEERRB • LR 1AE7C 
IHEIOFB • LR lB580 IBEIOFA • LR lB582 
IHEDCN • SO lB860 IBEDOtA • LR 1B860 
IHEIOOP • LR lBAs2 IBEIODT • LR lBBO 
IHEVQAA • LR 18078 

SAMPL2BC PR C IBEQSPR PR 10 
IHEQLWl PR 20 lBEQLW2 PR 24 
lBEQLCA PR 311 IBEQVDA PR 38 
IBEQADC PR IIC IBEQXLV PR 50 
IHEQLWF PR 68 lHEQRTC PR 6C 



{

XXGO EXEC ~GM= •• lKED.SVSlMOD,COND=CC5,lT,COR),C5.lT,lKEDJI 

XXSYSUDUM~ DO SVSOUT=A 
IIGO.SYSOUT ~O SYSOUT=G . 
IIGO.SAM~lE DO UNIT=24n O,lABEl=I,NL) 

l
IEFn6I AllOC. FOR TE"TRUN GO 
IEF231I 242 ALlOCATFD TO ~GM= •• DD 
IEF231I 230 ALLOCATED TO SYSUOUMP 
IEF2311 230 AlLOCATE~ TO SYSOUT 
IEF2311 lA2 ALLOCATED TO SAMPLE 

IEF2851 
IEF2851 
IFF285I 
IEF2851 
IEF2851 
IEF2851 
IE'F285I 

\ IEF~A51 

SYS11023.T~112~9.RVOO'.TESTRUN.GODATA 
VOL SER NOS= DDBI16. 
SYS110~3.TOl12~q.SVO~~.TESTRUN.ROOOOOll 

VOL SFR NOS= 2314~~. 
SYS11023.TOl1209.SV001.TFSTRUN.R0000012 
VOL SER NO~= 231400. 
SYS11'23.T011209.RV000.TE'STRUN.ROO~0~13 
vnL SER NOS= lO~300. 

58 
62 
66 
68 
62 
66 
62 
66 

(Repeat 21 times) 

62 
66 
62 
66 
71 
74 
75 

WORK -RECORD 
14 
15 
WORK-REr:ORrl 
14 
15 

A ,)~~1 NYC 

B 0')02 "lye 

WORK-RECORI) C 0(\03 "lye 
74 
r; 
WORK-RECORD 0 0004 NYC 3 
74 
15 

WORK-RE'CORD 
14 
1'5 
WORK-RFCORD 
14 
1'5 
WORK-RFCORO 
74 
15 

V 0022 NYC 

W 1023 NY£: 7 

X 1)1)24 NYC 3 

WORK-RECORD = y ~025 NYC 4 
74 
75 
WORK-RECORD = Z 0026 NYC Z 
74 
78 

A 'l001 "lYC n 
A 01)('12 NYC 
r 001)3 NYC 
I) 1004 "lye 

V 00n NYC 
w 0023 NYC 
x 0024 NYC 

Figure 55. Execution Job Step Output 

PASSED 

DELETEO 

SYSOUT 

DElETED 

00000210 
00000220 

output 185 



REQUESTS FOR OUTPUT 

1. The programmer can request data to be 
displayed by using the DISPL~Y 
statement and including the following 
;n +-ho -inh I""nn+- .... nl n .... nI""ONl1 .... O. 
_ .... ---- J-- -- ... ---- r---------

//SYSOUT DD SYSOUT=A 

2. Message to the operator can also be 
displayed on the console when 
requested in the source program 
(DISPLAY UPON CONSOLE). 

3. The programmer can request debugging 
information in case of an abnormal 
termination by specifying FLOW and/or 
STATE and including the following in 
the job control procedure: 

//SYSDBOUT DD SYSOUT=A 

4. The programmer can request a full 
dump, in case his program is 
terminated abnormally, by including 
the following in the job control 
procedure: 

//SYSABEND DD SYSOUT=A 

Note: Under MVT, the SPACE parameter 
should also be included in the DD 
statement. For example: 

//SYSABEND DD 
// 
// 

SYSOUT=A, X 
SPACE= X 
(125, (200,1000), RLSE) 

Dumps and debugging facilities are 
explained in "Program Checkout." 

OPERATOR MESSAGES 

The COBOL load module may issue operator 
messages. A complete list of these 
messages and required operator responses 

186 

can be found in the publication IBM OS Full 
American National Standard COBOL;-version~ 
Messa~ MCS considerations are discussed 
there also. 

SYSTEM OUTPUT 

Informative and diagnostic messages may 
appear in the listing during execution of 
any job step. Further information about 
system diagnostics is found in the 
publication I~~_Q~_~~~~~g~~_~~~_~2~~~. 
COBOL messages and associated documentation 
for this compiler appear in the Program 
Product publication IBM OS Full American 
Nati2~~1_~t~~~~~~_~Q~Q~~=~~~~~2~=~-----
Mess~~~. 

Each of these messages contains an 
identification code in the first three 
columns of the message to indicate the 
portion of the operating system that 
generated the message. Table 23 lists 
these codes, along with an identification 
of each. 

Table 23. System Message Identification 
Codes 

r-----T---------------------------------~-, 
ICode I Identification I 
~-----t-----------------------------------~ 
IlEA I An on-line console message from 
I I the supervisor. 
IIEC I An on-line console message from 
I I data management. 
lIEF I A message from the job scheduler. 
IIKF I A message from the COBOL compiler. 
IIER I A message from the Sort program. 
IIET I A message from the assembler. 
IlEW I A message from the linkage editor. 
IIHB I A message from the supervisor and 
I I data management. L _____ ~ __________________________________ _ 



A programmer using the COBOL compiler 
under the IBM Operating System has several 
methods available to him for testing and 
debugging his programs or revising them for 
increased efficiency of operation. 

The syntax-checking options can be 
specified to save prograrrwer and machine 
time while checking the source statements 
for syntax errors. 

The COBOL debugging language can be used 
by itself or in conjunction with other 
COBOL statements. A dllinp can also be used 
for program checkout. For a discussion of 
the COBOL symbolic debugging options, see 
the chapter entitled "Symbolic Debugging 
Features." 

The compiler checks the source text for 
syntax errors and then generates the 
appropriate error messages. with the 
syntax-checking feature, the programmer can 
request a compilation either conditionally, 
with object coae produced only if no 
messages or just w- or C-Ievel messages are 
generated, or unconditionally, with no 
object code produced regardless of message 
level. 

Selected test cases run with the 
syntax-checking feature have resulted in a 
compilation-time saving of as much as 70%. 
For a discussion of the syntax-checking 
options, SYNTAX ana CSYNTAX, see the 
section "Options for the Compiler~ under 
"Job Control Procedures." 

DEBUGGING LANGUAGE 

The COBOL debugging language is designed 
to aid the COBOL programmer in producing an 
error-free program in the shortest possible 
time. The sections that follow discuss the 
use of the debugging language and other 
methods of program checkout. 

The three debugging language statements 
are TRACE, EXHIBIT, and ON. Anyone of 
these statements can be used as often as 
necessary. They can be interspersed 
throughout a COBOL source program, or they 
can be in a packet in the input stream to 
the compiler. 

PROGRAM CHECKOUT 

Program debugging statements may not be 
desired after testing is completed. A 
debugging packet can be removed after 
testing. This allows elimination of the 
extra object program coding generated for 
the debugging statements. 

The output produced by the TRACE and 
EXHIBIT statements is listed on the system 
logical output device (SYSOUT». If these 
statements are used, the SYSOUT DD 
statement must be specified in the 
execution time job step. 

The following discussions describe ways 
to use the debugging language. 

FOLLOWING THE FLOW OF CONTROL 

The READY TRACE statement causes the 
compiler generated card numbers for each 
section and paragraph name to be listed on 
the system output unit when control passes 
to that point. The output appears as a 
list of card numbers. 

To reduce execution time, a trace can be 
stopped with a RESET TRACE statement. rhe 
READY TRACE/RESET TRACE combination is 
helpful in examining a particular area of 
the program. The READY TRACE statement can 
be coded so that the trace begins before 
control passes to that area. The RESET 
TRACE statement can be coded so that the 
trace stops when the program has passed the 
area. The two trace statements can be used 
together where the flow of control is 
difficult to determine, e.g., with a series 
of PERFORM statements or with nested 
conditionals. 

Another way to control the amount of 
tracing, so that it is done conditionally, 
is to use the ON statement with the TRACE 
statement. When the COBOL compiler 
encounters an ON statement, it sets up a 
mechanism such as a counter that is 
incremented during execution whenever 
control passes through the ON statement. 
For example, if an error occurs when a 
specific record is processed, the ON 
statement can be used to isolate the 
problem record. The statement should be 
placed where control passes only once for 
each record that is read. When the 
contents of the counter equal the number of 
the record (as specified in the ON 
statement), a trace can be taken on that 
recorda The following example shows a way 

Program Checkout 187 



in ~hich the processing of the 200th record 
could be selected for a TRACE statement. 

Col. 
1 8 

DEBUG 

RD-REC; 

RD-REC. 
PARA-NM-1. ON 200 READY TRACE. 

ON 201 RESET TRACE. 

If the TRACE statement were used without 
the ON statement, the processing of every 
record would be traced. 

A common program error could be either 
(1) failing to break a loop, or 
(2) unintentionally creating a loop. If 
many iterations of the loop are required 
before it can be determined that there is a 
program error, the ON statement can be used 
to initiate a trace only after the expected 
number of iterations has been completed. 

Note: If an error occurs in an ON 
statement, the diagnostic message may refer 
to the previous statement number. 

DISPLAYING DATA VALUES DURING EXECUTION 

A programmer can display the value of a 
data item during program execution by using 
the EXHIBIT statement. The three forms of 
this statement display (1) the names and 
values of the identifiers or nonnumeric 
literals listed in the EXHIBIT statement 
(EXHIBIT NAMED) whenever the statement is 
encountered during execution, (2) the 
values of the items listed in this 
statement only if the value has changed 
since the last execution (EXHIBIT CHANGED), 
and (3) the names and values of the items 
listed in the statement only if the values 
have changed since the previous execution 
(EXHIBIT CHANGED NAMED). 

Note: The combined total length of all 
items displayed with EXHIBIT CHANGED and 
EXHIBIT CHANGED NAMED cannot exceed 32,767 
bytes. The length of anyone operand must 
be less than or equal to 256 bytes. The 
length of a "NAME" must be less than or 
equal to 120 characters. 

Data can be used to check the accuracy 
of the program. For example, the 
programmer can display specified fields 
from records, ~ork the calculations 
himself, and compare his calculations with 
the output from his program. The coding 
for a payroll problem could be: 

188 

Col. 
1 8 

GROSS-PAY-CALC • 
. COMpUTE -GI~.6ss,,:, PAY 
RATE-PER-HOUR * (HRSWKD 
+ 1.5 * OVERTIMEHRS). 

NET-PAY-CALC. 

DEBUG NET-PAY-CALC 
SAMPLE-1. ON 10 AND 

EVERY 10 EXHIBIT NAMED 
RATE-PER-HOUR, HRSWKD, 
OVERTIMEHRS, GROSS-PAY. 

This coding will cause the values of the 
four fields to be listed for every tenth 
data record before net pay calculations are 
made. The output could appear as: 

RATE-PER-HOUR = 4.00 HRSWKD = 40.0 
OVERTI~mHRS = 0.0 GROSS-PAY = 160.00 

RATE-PER-HOUR = 4.10 HRSWKD = 40.0 
OVERTIMEHRS = 1.5 GROSS-PAY = 173.23 

RATE-PER-HOUR = 3.35 HRSWKD = 40.0 
OVERTIMEHRS = 0.0 GROSS-PAY = 134.00 

Note: Decimal points are included in this 
example for clarity, but actual printouts 
depend on the data description in the 
program. 

The preceding is an example of checking 
at regular intervals (every tenth record). 
A check of any unusual conditions can be 
made by using various combinations of COBOL 
statements in the debug packet. For 
example: 

IF OVERTIMEHRS GREATER THAN 2.0 
EXHIBIT NAMED PAYRCDHRS 

In connection with the previous example, 
this statement could cause the entire pay 
record to be displayed whenever an unusual 
condition (overtime exceeding two hours) is 
encountered. 



The EXHIBIT CHANGED statement also can 
be used to monitor conditions that do not 
occur at regular intervals. The values of 
the items are listed only if the value has 
changed since the last execution of the 
statement. For example, suppose the 
proqram calculates postage rates to various 
cities. The flow of the program might be 
as shown in Figure 56. 

~----------------------------~------------, 

~
--------j-READ INPUT 
DATA FOR <-----~ 

CITY -V 
---T---

I 
I 
V 

r-----------, 
I CALCULATE I 
I RATE FOR I 
I CITY I 
l-----T----- J 

I 
I 
v 

r-----------, 
I EXHIBIT I 
I CHANGED I 
l-----T-----J 

I 
I 
V 

~--~~---.,fs'\ 
~ 'V 

f 
I YES 
I 
I 
V 

_________________________________________ J 

Figure 56. Example of Program Flow 

The EXHIBIr CHANGED statement in the 
proqram could be: 

EXHIBIT CHANGED STATE CITY RATE 

The output from the EXHIBIT CHANGED 
statement could appear as: 

01 01 10 
02 15 
03 
04 10 

02 01 
02 20 
03 15 
04 

03 01 10 

The first column contains the code for a 
state, the second column contains the code 
for a city, and the third column contains 
the code for the postage rate. The value 
of an item is listed only if it is changed 
since the previous execution. For example. 
since the postage rate to city 02 and 03 in 
state 01 are the same, the rate is not 
printed for city 03. 

The EXHIBIT CHANGED NAMED statement 
lists the name of the data item and the 
value of that item if the value has 
changed. For example, the program might 
calculate the cost of various methods of 
shipping to different cities. After the 
calculations are made, the following 
statement could be in the program: 

EXHIBIT CHANGED NAMED STATE CITY RAIL 
BUS TRUCK AIR 

The output from this statement could appear 
as: 

STATE = 01 CITY = 01 RAIL = 10 
BUS = 14 TRUCK = 12 AIR = 20 

CITY 02 

CITY 03 BUS = 06 AIR = 15 

CITY 04 RAIL = 30 BUS = 25 
TRUCK = 28 AIR 34 

STATE = 02 CITY 01 TRUCK = 25 

CITY 02 TRUCK 20 AIR = 30 

Note that the name of the item and its 
value are listed only if the value has 
changed since the previous execution. 

Program Checkout 189 



TESTING A PROGRAM SELECTIVELY 

~ debug packet allows the programmer to 
select a portion of the program for 
testing. The packet can include test data 
and can specify operation::; the programmer 
wants performe1. When the testing is 

---Gnmp_Let_e.Jj.--.t-__ tJ:L~ __ Q.?c}5et can be removed. The 
f low of control can besei-ecti vely----a-itered-----
by the inclusion of debug packets, as shown 
in Figure 57. 

r-----------------------------------------, 
r---------, 
I I 
I START I 
I I 
L----T----J 

I L ________________ , 

r---------, 
I I 
I A I 
I I L _________ J 

I 
V 

r---------,-
J DEBUG I 
I PACKE'l' l 
I FOR A I 
L----T----J 

J 

r----------------J 
I 
V 

r---------, 
I I 
I B I 
I I 
L----T----J 

I L ________________ , 

r---------, 
I J 
J C J 

I I L _________ J 

I 
V 

r---------, 
I DEBUG I 
I PACKET J 

I FOR C I 
L----T----J 

I 
I 

r----------------J 
I 
V 

r---------, 
I I 
I STOP I 
I RUN I 
L _________ J I 

L ________ ---------------------------------J 
Figure S7. Selective Testing of B 

In this program, A creates data, B 
~rocesses it, and C prints it. The debug 
packet for A simulates test data. It is 
first in tne program to be executed. In 
the packet. the last statement is GO TO B, 

190 

which permits A to be bypassed. After B is 
executed with the test data, control passes 
to the debug packet for C, which contains a 
GO TO statement that transfers control to 
the end of the program, bypassing C. 

TESTING CHANGES AND ADDITIONS TO PROGRAMS 

If a proqram runs correctly but changes 
or additions can make it more efficient, a 
debug packet can be used to test changes 
without modifying the original source 
program. 

If the changes to be incorporated are in 
the middle of a paragraph, the entire 
paragraph, with the changes included, must 
be written in the debug packet. The last 
statement in the packet should be a GO TO 
statement that transfers control to the 
next procedure to be executed. 

There are usually several ways to 
perform an operation. Alternative methods 
can be tested by putting them in debug 
packets. 

The source program library facility can 
be used for program checkout by placing a 
source program in a library (see 
"Libraries"). Changes or additions to the 
program can be tested by using the BASIS 
card and any number of INSERT and DELETE 
cards. Such changes or additions remain in 
effect only for the duration of the run. 

A debug packet can also be used in 
conjunction with the BASIS card to debug a 
program or to test deletions or additions 
to it. The debug packet is inserted in the 
input stream immediately following the 
BASIS card and any INSERT or DELETE cards. 

If a serious error occurs during 
execution of a program, the job is 
abnormally terminated; any remaining steps 
are bypassed, and a dump is generated. The 
programmer can use the dump for program 
checkout. (However, any pending transfers 
to an external device may not be completed. 
For example, if a READY TRACE statement is 
in effect when the job is abnormally 
terminated, the last card number may not 
appear on the external device.) In cases 
where the abnormal termination does not go 
to completion, a uump is not produced. 
This situation may cause duplicate name 
definition when the next job is run, and is 
discussed at the end of this section. 



~Q.J:UI.MI?_UO,~em.en.t...ha.s..~.b~ 
j.I}~J..Y:2.~_g_i.I1, .. J:Jl~~.~e.xgg,\.\t;loJ).;7J·J.!Pg_.J9.E.~.§1§..e.., 
. 1;!}~ .... ~.Y,?t.ep_"~~*'!~!n~o~~.,tll..,~rog~mm~r ... ~~tth 
~.","l'.F~?P-...tt-1..q,.,~ .• ,~':C~.9~~£.}m.~J..,."aJ.l!.l.~BC.D-lG 
format, of main stora,a.e.· Those areas 
occupiea"'B·Y""'i:.l1Et'i)ro~ble~ program and its 
data at the time the error occurred, will 
be included. This printout is called an 
abnormal termination dump and is identified 
by the heading 

*** ABDUMP REQUESTED *** 
~f a SYSABEND DD sta tement_,.is.. . .spe.c.i.ti.e.d, 
tlifL conte~~~ . ..9..f.-ille ,D)JCI.~.P...§..J_~l!.l~o 
printed. ----

If neither a SYSUDUMP nor a SYSABEND DD 
statement is included in the execution-time 
job step, or its specification has been 
destroyed, an indicative dump is produGed. 
This dump does not contain a printout of 
main storage and is not given under MV,T. 

All dumps include a completion code 
designating the condition that caused the 
termination. The completion code consists 
of a syatem code and a user code. Only one 
of the codes is nonzero. A nonzero system 
code indicates that the control program 
detected the error. . 

The COBOL programmer can now request 
dynamic dumps via a compile-time option. 
The SYMDMP option, requested in the PARM 
parameter of the EXEC statement, produces a 
symbolic formatted dump of the data area of 
the object program ~hen the program 
abnormally terminates. At execution time, 
the user can also request a dynamic dump at 
any point in the Procedure Division. 

• If a COBOL program abnormally 
terminates, then a formatted dump is 
produced for all COBOL programs 
compiled with the SYMDMP option which 
could include the abnormally 
terminating program and its callers, up 
to and including the main program. 

• The explanation of the system-generated 
completion codes and a complete 
description of the dumps are contained 
in the publication IBM OS ProqE~~meris 
Guide to Debuqqi·ng. For a discussion 
of the COBOL symbolic debugging 
options, see the chapter entitled 
"Symbolic Debugging Features." 

ERRORS THAT CAN CAUSE A DUMP 

Following is a discussion of some error 
conditions that can cause a program to be 

abnormally terminated and a dump to be 
listed • 

Errors can occur while a COBOL file is 
being processed. For example, during data 
transmission, an input/output error may 
occur that cannot be corrected. If the 
file being processed is organized 
sequentially and no error-processing 
declarative or INVALID KEY option has been 
specified for the file, the job is 
terminated. If it is a QSAM file, the job 
will be terminated when there is no 
declarative or INVALID KEY option and the 
EROPT=ABE option in the DD statement has 
been specified. 

Referring to an input area before OPEN 
and READ statements are issued can cause 
unpredictable results, because base locator 
(BL) cells and registers are not properly 
initialized. 

Another error that can cause termination 
is an attempt to read a file whose records 
are of a different size than those 
described in the source program. The 
section "Additional File Processing 
Information" contains more information 
about input/output errors. 

Errors Caused by Invalid Data 

Abnormal termination of a job occurs 
when a data item with an invalid format is 
processed in the Procedure Division. 

Some of the program errors are: 

1. A data item in the Working-Storage 
Section is not initialized before it 
is used, causing invalid data to be 
picked up. 

2. For an item whose usage is 
COMPUTATIONAL, COMPUTATIONAL-l, or 
COMPUTATIONAL-2, either the alignment 
is incorrect, or the description of 
the item does not specify the proper 
alignment. Some examples are: 

a. A redefining entry contains one or 
more of the above items and the 
redefined entry is not properly 
aligned. Alignment will not be 
performed for items that cause the 
starting address of the redefining 
item to be changed. 

b. A record in the Linkage Section of 
a called program is described by 

Program Checkout 191 



an 01 entry and contains one or 
more of the above items, and the 
corresponding argument in the 
calling program is not properly 
aligned. 

c. A file, containiuy Ofl€! or more of 
the above items, is blocked, but 
the required iIlter:-recordslack 
b-ytes-- wer-e 'not 'inse-r-t'ecC-when ttl-eo 
file was created. If the file is 
later read as an input file, the 
alignment may not be correct. 

3. ~n input file or received message 
contains invalid data or data 
incorrectly defined by its data 
description. For example, the 
contents of the sign position of an 
internal or external decimal data item 
in the file may be invalid. The 
compiler does not generate a test to 
check the sign position for a valid 
configuration before the item is used 
as an operand. 

4. If a group item is moved to a group 
item and the subordinate data 
descriptions are incompatible, the new 
data in the receiving field may not 
match the corresponding data 
descriptions. (Conversion or editing 
is not performed in a move involving a 
group item.) 

5. The SIZE ERROR option is not specified 
for the COMPUTE statement and the 
result of the calculation is larger 
than the specified resultant 
COMPUT~TIONAL data name. Using the 
result in a subsequent calculation 
might cause an error. 

6. The SIZE ERROR option is not specified 
for a DIVIDE statement, and an attempt 
is made to divide by zero. 

7. The US~GE specified for a redefining 
data item is different from the US~GE 
specified for the redefined item. An 
error results when the item is 
referred to by the wrong name for the 
current content. 

8. A record containing a data item 
described by an OCCURS clause with the 
DEPENDING ON da~a-nameoption, may 
cause data items in the record to be 
affected by a change in the value of 
data-name during the course of program 
execution. This may result in 
incorrectly described data. 

192 

~dditional information about how to 
correct this situation is included in 
"Programming Techniques." 

9. The data description in the Linkage 
Section of a called program does not 
correctly describe the data defined in 
the calling program. 

10. Dlanks r£~d into data fields defined 
as numeric generate an invGlid sign. 

11. Some common errors that occur when 
clearing group items in storage are: 

a. Moving ALL ZEROS to a group level 
item to clear several counters 
causes an invalid sign to be 
generated in all of the elementary 
fields except the lowest order 
field. 

b. Moving SPACES to a group level 
item will put invalid data in any 
numeric field in that group. 

c. Moving 0 to a group level item 
moves one zero and pads the rest 
of the fields with blanks. 

12. Failure to initialize counters 
produces incorrect results. No 
initial values are generated by the 
compiler unless specifically 
instructed to do so with a VALUE 
clause. If such fields are defined as 
decimal, internal or external, invalid 
signs may result in addition to 
unpredictable initial values. If 
defined as binary, they will cause 
unpredictable results and, further, if 
used in subscripting, may exceed the 
range of the associated OCCURS clause 
and cause data to be fetched or stored 
erroneously. An addressing exception 
may occur if the uninitialized 
subscript generates a bad address. 

13. Not testing to insure that a subscript 
or index does not exceed the range of 
the associated OCCURS clause may lead 
to fetching and storing data from and 
to some incorrect locations. 

14. Failure to initialize an index 
produces incorrect results. No 
initial values are generated by the 
compiler unless a SET statement is 
executed. When indexing is then 
specified, the range of the OCCURS 
clause may be exceeded and cause data 
to be fetched or stored erroneously. 
An addressing exception may occur if 
the initialized index generates an 
address outside the range of the 
machine, or a protection exception if 
data is stored outside the partition 
of this program. 



15. A subscript or index set at zero will 
address data outside the range of the 
table. 

16. If either HIGH-VALUE or LOW-V~LUE is 
moved to internal or external decimal 
fields and those fields are used for 
comparisons, computations, or 
subscripting, a data exception will 
occur. HIGH-VALUE and LOW-VALUE are 
the hexadecimal values X'FF' and 
X'OO', respectively. 

1. No DD statement is included for a file 
described in the source program and an 
attempt is made to access the file. 
When an OPEN statement for the file is 
executed, the system console message 
is written. The programmer can elect 
to direct the operator to continue 
processing his program, but any READ 
or WRITE associated with the unlocated 
file will result in an abnormal 
termination. A similar situation 
exists when a file is closed WITH LOCK 
and all attempt is made to reopen it 
(see the Program Product publication 
IBM OS Full American National Standard 
COBOL, Version 4 Messages for the 
format of the generated error 
message) • 

2. A file is not opened and execution of 
a RE~D or WRITE statement for the file 
is attempted, or a MOVE to a record 
area in the file is attempted. 

3. A GO TO statement, with no procedure 
name following it, is not properly 
initialized with an ALTER statement 
before the first execution of the GO 
'IO statement. 

4. Reference is made to an item in a file 
after end of data. This includes the 
use of the TERMINATE statement of the 
Report writer feature, if the CONTROL 
FOOTING; PAGE FOOTING: or REPORT 
FOOTING contain items that are in the 
file (e.g., SOURCE data-name, where 
data-name refers to an item in the 
file). 

5. Block size for an F-format file is not 
an integral multiple of the record 
length. 

6. In a blocked and/or double buffered 
file, a count cannot be kept directly 
in a record. 

7. A READ is issued for a data set 
referenced on a DD DUMMY statement. 
The AT END condition is sensed 
immediately and any reference to a 
record in the data set produces 
unpredictable results. 

8. Under MVT, a STOP RUN statement is 
executed before all files are closed. 

9. A SORT did not execute successfully. 
The programmer may check SORT-RETURN. 

10. An input/output statement is issued 
for a file after the AT END branch is 
taken, without closing and reopening 
the file. 

11. A SEND or RECEIVE statement is issued 
when a message control program is not 
running. 

12. A SEND or RECEIVE statement is issued 
for a QNAME (i.e., the nQNAME=n 
parameter of the DD card) that is 
unknown to the message control 
program. 

In. addition to errors that can result in 
an abnormal termination, errors in the 
source program can occur that cause parts 
of the program to be overlaid and the 
corresponding object code instructions to 
become invalid. If an attempt is then made 
to execute one of these instructions, an 
abnormal termination may result because the 
operation code of the instruction is 
invalid, the instruction results in a 
branch to an area containing invalid 
instructions, or the instruction results in 
a branch to an area outside the program, 
such as an address protected area. 

Some COBOL source program errors that 
can cause this overlaying are: 

1. Using a subscript whose value exceeds 
the maximum specified in the 
associated OCCURS clause. 

2. Using a data-name as a counter whose 
value exceeds the maximum value valid 
for that counter. 

COMPLETION CODES 

The following cases represent some of 
the errors that can occur in a COBOL 
program and the interrupt or completion 
code associated with them. These errors do 
not necessarily cause an abnormal 
termination at the time they are recognized 
and do not always hold true. 

Program Checkout 193 



1. 013--Check register 2 of registers at 
the entry to ABEND. This address 
points to the DCB in conflict. 

2. 043--Error occurred during the 
attempted opening of a TCAM 
application program data set, as 
described below. 

__ ~_. _ _ J\ __ Y~)"Jl~ ___ Q_;f __ Ql __ .i_n ___ r.eqis..t._ex_O __ 
indicates the attempted opening of 
a TCAM application program data 
set without an active message 
control program (MCP) in the 
system. 

b. A value of 02 indicates that the 
QNAME= parameter of a DD statement 
associated with an input or output 
DCB for a COBOL program is not the 
name of a process entry defined in 
the terminal table. 

c. A value of 03 indicates that the 
process entry named by the QNAME= 
parameter of a DD statement 
associated with a COBOL program is 
currently being used by another 
COBOL program. 

d. A value of 04 indicates that 
insufficient main storage was 
available in the MCP to build 
internal control blocks associated 
with the COBOL program interface. 
Specify a larger region or 
partition size in the JOB 
statement for the MCP. 

e. A value of 05 indicates that 
insufficient main storage was 
available in the COBOL work area 
to build internal control blocks. 
Specify a larger region or 
partition size in the JOB 
statement for the COBOL program. 

3. 046--Error occurred during the 
termination of the TCAM MCP 
because the COBOL program data 
set was still open. Specify the 
STOP RUN statement when COBOL 
processing is complete. Ensure 
that all COBOL programs have 
terminated processing before 
deactivating the MCP. 

4. OC1--0peration Exception: 

194 

a. When the interrupt is at 000048 or 
at 004800, look for a missing DD 
card or an unopened file. 

b. When the interrupt is at 000050, 
look at register 1 of the 
registers at entry to ABEND. Add 
hexadecimal 28 to the address 

found in register 1. This should 
point to the DD name of a missing 
DD statement. 

c. When the interrupt is at 00004A, 
look for a missing card, i.e., 

//SYSOUT DD SYSOUT=A 

t;I ny_rni !::.!::.; Tlg..-J-CL--car-d,--QJ:;: -t;he----w:-~--G-ng 
name of a JCL card. Add 
hexadecimal 28 to the address 
found in register 1 at entry to 
ABEND. This should point to the 
DD name of the DD statement in 
error. 

d. When interrupt is at 00004F, look 
for inconsistent JCL or check the 
system-name in the COBOL program. 

5. OC4--Protection Exception: 

a. Check for the block size and 
record size being equal for 
variable record input or output. 

b. Check for missing SELECT 
statement. 

c. If interrupt is at 004814, check 
for an attempt to READ an unopened 
input file or a missing DD card. 

d. Check for an uninitialized index 
or subscript. 

6. OC5 and OC6--Addressing and 
Specification Exceptio~: 

a. Subscript or index value may have 
exceeded maximum and instruction 
or table area was overlaid. 

b. Check for an improper exit from a 
procedure being operated on by a 
PERFORM statement. 

c. Check for duplicate close of an 
input or output file if DS 
formatting discontinued. 

d. A sort is being attempted with an 
incorrect catalog procedure. 

e. Attempting to reference an 
input/output area before a READ or 
OPEN statement, respectively. 

f. Alignment for COMPUTATIONAL data 
is incorrect when record is 
blocked, and inter-record slack 
bytes were not inserted. 

g. Check for initialized subscript or 
index value. 



7. OC7--Data Exception: 

a. Data field was not initialized. 

b. Input record numeric field 
contains blanks. 

c. Subscript or index value exceeded 
maximum and invalid data was 
referenced. 

d. Data was moved from the DISPLAY 
field to the COMPUTATIONAL or 
COMPUTATIONAL-3 field at group 
level. Therefore, no conversion 
was provided. 

e. The figurative constants ZERO or 
LOW-VALUE moved to a group level 
numeric field. 

f. Omission of USAGE clause or 
erroneous USAGE clause. 

g. Incorrect Linkage Section data 
definition, passing parameters in 
wrong order, omission or inclusion 
of a parameter, failure to carry 
over a USAGE clause when 
necessary, or defining the length 
of a parameter incorrectly. 

8. 001--1/0 Error: 

a. Register 1 of the SVRB points to 
the DCB which caused the 
input/output problem. Look for 
input record and blocking errors. 
That is, the input does not agree 
with the record and blocking 
descriptions in the DCB, the COBOL 
file description, or the DD 
statement LRECL parameter. 

b. Attempted to READ after EOF has 
been sensed. 

9. 002--Register 2 of reqisters at the 
entry to ABEND contains the 
address of the DCB for the file 
causing the input/output problem. 
Check the DeB list for the 
specific file. 

10. 213--Error during execution of OPEN 
statement for data set on mass 
storage device, as follows: 

a. DISP parameter of DD statement 
specified OLD for output data set. 

b. Input/output error cannot be 
corrected when reading or writing 
the DSCB. Recreate the data set 
or resubmit the job, check 

register 14 of the registers at 
entry to ABEND. This address 
points to the file that has no 
DSCB. 

11. 214--Error during CLOSE for data set 
on tape; there is an input/output 
error that cannot be corrected 
either in tape positioning or 
volume disposition. Resubmit the 
job and inform the field engineer 
if error persists. 

12. 237--Error at EOV: 

a. Incorrect volume serial number 
specified in SER subparameter of 
VOLU~lli parameter of DD statement. 

b. Incorrect volume ~ounted. 

c. Incorrect labels. 

13. 400--If this completion code is 
generated during a compile step, 
the member to be compiled has not 
been extracted from the source 
library for compilation~ 

14. 413--Error during execution of an OPEN 
statement for a data set on tape: 

a. Volume serial number was not 
specified for input data set. 

b. Volume could not be mounted on the 
allocated device. 

c. There is an input/output error in 
reading the volume label that 
cannot be corrected. 

15. 806--The error occurred during 
execution of a LINK, XCTL, 
ATTACH, or LOAD macro 
instruction. An error was 
detected by the control program 
routine for the BLDL macro 
instruction. The contents of 
register 15 indicates the nature 
of the error: 

04 The requested program was not 
found in the indicated source 
private, job, or link library. 

08 An uncorrectable input/output 
error occurred when the control 
program attempted to search the 
directory of the library 
indicated as containing the 
requested program. 

Program Checkout 195 



16. 80A--Insufficient contiguous core 
storage for linkage to some phase 
of the compiler. The programmer 
should look to see if secondary 
data-set allocation has caused an 
extra DEB to be built at lower 
core addresses within the region. 
If so, this problem can be 
corrected by assigning sufficient 

_ .prj Tn;:) ry extents£.ortheda ta set 
in question. See "Data Set 
Requirements" for further 
information. 

17. 813--Error during execution of an OPEN 
statement in verification of 
labels: 

a. Volume serial number specified in 
VOLUME parameter of DD statement 
is incorrect. 

b. Data set name specified in DSNAME 
parameter is incorrect. 

c. Wrong volume is mounted. 

18. When compilation is terminated with 
diagnostic message IKF0010I-D, 
IKF0020I-D, or IKF0030I-D, an abnormal 
termination dump is generated to 
provi1e additional debugging 
information. 

Findi~~Location of Program InterruetiQrr_i~ 
~QBO~_§ourc~_Prog~~m_Q~in~he_Co~~~~~~~ 
!!isting 

To determine the location of the 
interruption, the programmer should proceed 
as follows: 

1. From first page of 1ump: 

a. Get completion code and program 
interruption storage location. 

b. Determine the starting address of 
the program (PRB address+20). 

2. From linkage editor listing: 

196 

a. Determine storage address for each 
module. Add starting address of 
the program to origin of each 
module. 

b. Determine module in which 
interrupt storage location falls. 

c. Determine relative address. 
Subtract module storage address 
from interrupt location. 

3. From Procedure Division map: 

a. Find the highest previous relative 
address in the condensed listing. 
That statement is in error. 

b. Get line number and verb of COBOL 
source statement. 

4. From source listing find the line 
number and verb of source statement 
causing program interruption. 

USING THE ABNORMAL TERMINATION DUMP 

The programmer can also determine the 
cause of an abnormal termination with the 
following material: 

1. The COBOL program object code listing. 

2. A knowledge of the layout of the COBOL 
object module. 

3. The full abnormal termination dump in 
conjunction with the linkage editor 
map or cross reference list. 

A description of the linkage editor 
output and of the COBOL object code listing 
is found in "Output." Figure 53 shows the 
layout of the COBOL program object module. 

Note: The information in this section 
about the use of the abnormal termination 
dump applies only when running under MFT. 
For information about the abnormal 
termination dumps under MVT, see the 
publication IBM OS Programmer's Guide to 
Q~Q!!ggirrg. Note that under the MVT option 
no indicative dumps are given. 

The abnormal termination dump provides 
the address at which the load module has 
been loaded (load address) and the address 
of the instruction that caused the 
interrupt. The programmer computes the 
load module area by adding the load address 
to the load module length, as shown in the 
linkage editor output. It is now possible 
to determine whether the instruction falls 
within the load module. If it does not, 
the interrupt could have resulted from an 
improper branch to a point outside the load 
module or an error occurring in another 
part of the system. 



If the instruction does fall within the 
load module, the programmer now determines 
in which part: the main program, a COBOL 
library subroutine, or a called program. 
The ranges of the various parts are 
determined by adding their relative 
origins, as shown in the linkage editor 
output, to the load address. 

If the instruction occurred in an object 
module generated for a COBOL program, 
(i.e., the main program), the programmer 
can determine whether or not the 
instruction was one of the generated object 
code instructions. He can determine the 
address of the first instruction in the 
Procedure Division (as found in the object 
code listing) by adding its relative 
location to the location of the object 
module (load address plus relative origin). 
If it was one of the object code 
instructions, a similar technique can 
used to locate the exact instruction. 
it was not one of these instructions, 
error has occurred in another part of 
object module. Control possibly went 
because of an improper branch. 

be 
If 

the 
the 
there 

If the instruction that initiated the 
dump occurred in a COBOL library 
subroutine, or if the original program 
called another program and the instruction 
occurred in the called program, the 
instruction can be located by a similar 
technique. The linkage editor cross 
reference list indicates the locations 
where the call to the program or subroutine 
in question was made. 

The following general rules can be used 
to determine the cause of the dump and the 
error. 

1. Determine the COBOL statement that 
generated the code leading to the 
program check. 

a. The top of the system dump will 
tell the address of the PC 
(Program Check) instruction and 
the type of PC.' Locate the 
instruction in the core dump~ 

b. Determine the relocation factor of 
the program from the linkage 
editor map. Subtract the 
relocation factor from the address 
of the invalid instruction. 

c. The address that results may be 
located in the procedure division 
map generated by the MAP option. 
(The coding shown at this location 
of the map should correspond to 

the instruction located in step 
one.) 

d. Preceding the address and code 
found in step three, find the 
sequence number of the 
corresponding COBOL statement in 
the listing and the number of the 
element in the sentence that 
generated the code. 

2. Be sure the COBOL statement is coded 
properly. 

3. If the statement is coded properly, go 
back to the core dump and determine 
the type of PC. 

a. It it is a data exception, the 
programmer will probably find that 
the instruction is a decimal 
instruction, and that one of the 
fields either will not have a 
valid sign or will contain digits 
other than 0 to 9. To determine 
this, it will be necessary to find 
the fields in core storage. 
Inspect bits 4 through 7 of the 
low-order byte for a valid sign 
(A through F). If one is not 
present, this is the cause of the 
PC. 

If one or both of the fields 
being operated on are defined as 
external decimal, the programmer 
will find one or more pack 
instructions immediately ahead of 
the PC instruction. From these 
determine the address of the 
external decimal field that 
generated the invalid sign. 
Several common causes of data 
exceptions are given in nErrors 
Caused by Invalid Data. n 

b. If it is a protection exception, 
one possible cause is that a base 
register used in the instruction 
has not been initialized. Base 
registers in COBOL are initialized 
at different times. For input 
files, the register is not 
initialized until the first 
successful read; it is not 
initialized when the file is 
opened. For output files, the 
registers are initialized during 
the processing of the OPEN 
statement. When faced with a 
protection exception, the 
programmer should go to the COBOL 
source program to ascertain that 
no data has been moved prior to 
the time when base registers are 
ini tialized. 

Program Checkout 197 



c. If an addressing or specification 
exception occurs, the programmer 
may find upon inspection (but not 
always) that registers have been 
unexpectedly modified and the 
problem becomes one of finding out 
how. Two possible approaches are: 

(1) Check the addresses in 
r"egisters14"_"and.~S ~'tgainst 
the address of the PC 
instruction. If the address 
of the PC instruction is equal 
to or slightly larger than the 
address in regiJter 15, the 
address probably is in a 
subroutine, and the address in 
register 14 should be the 
return address. A BAL or BALR 
instruction probably will 
precede the return address. 
The programmer should look for 
this particularly when the 
problem is not with a COBOL 
statement. If the PC 
instruction has an address 
equal to or a bit larger than 
the address in register 14, 
then the programmer probably 
has just returned from a 
subroutine, and register 15 
should still be pOinting to 
the entry address of the 
subroutine. The programmer 
should check the coding to see 
if this could reasonably be 
so, and check the entry points 
listed on the linkage editor 
map. If this approach bears 
further action, a listing of 
the subroutine would be needed 
or the instructions from the 
dump must be interpreted. 

(2) If the foregoing step does not 
locate the error, the 
programmer should check back 
through the dump to see what 
exists between the PC 
instruction and the last 
unconditional branch in order 
to determine the possible 
course of events. 

The sample COBOL program ABEND and its 
output, shown in Figure 58 for a 
nonsegmented program and in Figure 59 for a 
segmented program, illustrates in detail 
the way in which an object code listing, a 
cross-reference table, and an abnormal 
termination dump can be used together to 

198 

debug a program. The circled numerals in 
the figures are cited in the associated 
text. Note that all values are expressed 
in hexadecimal format unless otherwise 
indicated. 

In both examples of the ABEND orogram~ 
the completion code in the dump, (2), 
indicates the condition causing tne 
ab-no.r;ma1· ·"t-e~mi·r:aat.-i-en. If· the· g·y-g.-tefft'·· "part 
of the code is nonzero, the explanation can 
be found in the publication I~~_OS 
~EQ~rammer's Guide to Debugging. In the 
program ABEND, the completion code is OC?; 
invalid data is the reason for termination. 

Debuggi~Nonsegmented Pro~E~~: 
Suggested below are general procedures for 
locating and correcting the source 
statement responsible for abnormal 
termination. 

1. 

2. 

The PROGRAM INTERRUPTI~(DATA) AT 
LOCATION hhhhhh entry. 2 , gives the 
hexadecimal address of e 'instruction 
following the instruction that 
initiated the interrupt and caused the 
dump. This address can be used to 
determine the relative location of the 
instruction in the load module (see 
item 4 below). In the example, the 
address is B52DO. 

To determine the main storage area 
occupied by the load module, add the 
total length of the module, in 
hexadecimal format, to its load 
address. The load address can ~ 
obtained from the USE/EP entry, 3 , of 
the first ACTIVE RBS (Request BI cks) 
specification. The last six digits of 
this entry are the address of the 
entry point (INIT1) in the COBOL 
program. In this case, the address is 
B5020 in hexadecimal format. 

The total length of the load module 
is ind~' ated in the TOTAL LENGTH 
entry, 4 • in the linkage editor 
output 340, in the example). The 
highest location in the load module 
is: 

B5020 + 540 B5560 

Thus, the range is from B5020 to 
B5560. Since the address B52DO falls 
within this range, the instruction 
initiating the dump must be within the 
load module. 



('I()101 
"1"),)O? 
'l'1,)OJ 
001')04 
01')'11')'; 
1')01')06 
()0,)'11 
1')010R 
')000'1 
"('1')11') 

00011 
nO:H7 
nO')11 
On014 
nOl)15 
1)1')')16 

00011 
00')1'1 
'JOl)l'l 

Inr-\lTlFT~HT'1N nTvTSFlIII. 
PI>'I';RA"I-IO. ABEIII!). 
PF"'~~~~. 

THIS IS A PROGRAM TO ILLUSTRATE THE ABNORMAL 
TERMINATION OF A NONSEGMENTEO PROGRAM. . 

CNVIRON"IENT nIVISION. 
:':JNF IGURATIO'll SfcrrON. 
SI1URCF-CO"lPlJTER. IR"I-3bO-H50. 
,)~JE'CT-CO"'PIJTER. IR"'-~bO-H';O. 

OAT!!. DIVIsrOlll. 

WORI( I NG-S TOR Ar,,, SE'C T I 0111. 
01 "ECI1ROA. 

02 A PlrTIIRr: SQ(41 VlIllJE 1234. 
02 B PF'lFI'I\lI'S A PICTIJRF <;"1(11 COMPUTATIONAL-3. CD 

oQOCEDURE OIVISl'lN. 

'NTPNl NA"'E 
1N14=1-0V 
ii"i;';=i-05:? 
'111"'=1-0b~ 

CONIPUTF. fI = fI + 1. f8\ 
STOP PIJN. \!.I 

LVL SOURCE NA"'E 
Cl RECOROA 
02 
02 

T(;T 

<;!lVF. A'IEA 
SWITCH 
Tt.LL Y 
sno T SAVE 
FIIITRY-SIlVE 
SOPT CooE Sll!' 
RET rOOF 
SOil. T PFT 
Io/I)PI(INr. CFlL~ 

"OR T F I L F <; 17 F 
SOR T "'OOE S I 71' 
or,T-VIII TBL 
TGT-VN Tfll 
VCOllloTP 
LENGTH OF VN TBL 
Lt.fl!;l RF r 
CllRRE'IT P~I'10lTY 
lJIIIU<;ED 
I N I Tl AO(rlN 
OERilr. TABLF OTR 
UNIJ<;EO 
"VERFlOW CFLl 5 
I'\t CEllS 
OFr~Al)o CELL<; 
T~"4P STORAGf 
TF"P ST'l·ar,"-? 
TFMO srrl~A(;f-1 

TI"IP S TOR Ar.!;-4 
'Ill CFLl <:; 

VLC CFLL S 
Sfll UllS 
IIIIrq=x CHl <; 
<;IJ"AOP CEll S 
'1'1lCTL (I'LLS 
P""'ClL CFLl <; 
PF"SAV CfLLS 
V'll Cft lC; 
SAVe hOCA =2 
SAVE ARFII =3 
XSASW CELLS 
XSA CELL S 
PARA~ CFll <; 
RPTSAV ARFA 
CHECKPT CTD 
VrON PIL 

001)'10 

000'1(' 
00008 
oonoc 
OOI)FO 
OO')F4 
1)00FfI 
OOOEC 
OOl')[E 
OI')OFO 

0"2;>0 
00224 
ocnl! 
0022C 
on230 
on;>34 
O~;>'b 

on? 37 
00?1" 
fJl)?4(l 

00744 
1)0;>48 
')024C 
O~?t;.r 

00750 
01);>';0 
0025('1 
00750 
no?';c 
00?50 
002';8 
I)('I?';~ 

00?';fI 
I)C2"" 
OO? 5" 
()()?5'l 
1)"25f1 
0')7'>" 
,)n?5f1 
O('l2'i" 
0,);>5f1 
OO;>5A 
0075A 
00~5R 

OO?'iA 
0"?5 A 

611SE 
Bl =1 

'Il= 1 

OISOl INTRNl NAME DEFINITION 
000 DN"'''1-032 OS OCl4 
000 DN"l=1-052 Ds 4C 
000 DNM=1-0&3 OS 4P 

llTEFlAl pnO! (HEX) 

~f)21,) (lI T +!)) 1C 

Pr.T 

I1VERFLOW Cfll S 
VIPTlIAL C~LLS 
DQOCFfJUQF NA'4F CF.LL C; 

GENF~~TE!) N!~F fEltS 
nCR AfJDHSS rFIl5 
V~I C~Ll<; 
llTFPAIS 
!)ISflIAY L!T<OAI~ 

O('l? (,Q 

OO?f>n 
00;>60 
00;>61\ 
0026" 
OO?"C 
CO?6C 
1)1')27('1 
0077\ 

USAGE 
GI>OUP 
DISP-N'" 
COMP-3 R 

Q 14 

Fi~ure 51. Nonsegmented COBOL Program with Abnormal Termination Dump (Part 1 of 3) 

Program Checkout 199 



Q r- (~~ . "" :- 1 

~"'Q'!"I",-,r(F'~r,C ~T~IJT<; ~T l'lr~T"l'" oro'l'l rrw ~ IF"Ir,TH '1~ {lOOll". 

1 ~ Cq"PIJT( "0r)?1;> CD ~T~QT,"7'I PJtI '" 
"on~1't c~ ~('1" ()()'l C 0\0 0 ~~ 00014,'''1,1''111)11.121 

l' < rnp OOO?lH ';N:I)I FOil '" 
nn071P '>'l Fn ( ')()4 l 1';,n('1411)'\"1 
"""I;>lC ('1 FF "r~ 15,1'; 
0l)'1?H 'i'1 no (l')A INlr? ~f 1~,()'H'In,"1 

"00;>0;> 0;1) 'iO 104 ~I 0;.n0410.1~1 

')I)')?HI) 'i0 Fn ') "')4 ~T 14,00;41')'I~1 

1)(''')7'1''' o4 f Fn04R 'II ')4AII~I,x'F.f-' 
('1)');>,,( 'iii F,' r. 1"II)'l l 1 'i,OOOI C, 121 
1"10,),,02 I)'i rr f\aL~ 14,\,; 

,- -o:ry;,-?Q-4--~i)' T~-"-ri '-I-ii-~--' , -- "~T- '" '-l;-C~i!i0,'T'i-1 
,)0"1;>0'1121)1) lTP 'l,n 
000?0/\ '17 '10 Hen '1,0 
I)n'l?oc Of, II) I) 1)41'1 '11 04HII~I,X'10' 
I)I)n;>A0 00; Fn II\JIT~ nAI~ 100,n 
n002/\? "170 (1 ')4'1 T~ 041'11IJI,X'?I)' 
I"IO(J 7 I\r', 47 EO 111'> lie 14,OlblO,\'i1 
00"17AA 9'1?[) 00;0 L" 7,1 ~,o')r( III 
00"2A( ')0 '", R "4R I n,('140lC", III 
1"111";>"7 'i'l EO n n'i4 I 14,05411"1,131 
0007'1.. 07 FF 'lCP 15,14 
non7HA 'If> 7"1 Il "4'1 nf 041111~I,X';>')' 
I)002RC 41 ,,'l ') "')4 LA h,00410,"1 
nrO?Co 41 10 C 1)1'1 LII 1,0011111,171 
('Ir)(l7(4 '+1 7"1 r ~I" 1 A 7,0101001'" 
000;>(1' C" 7"1 RCT'l 1,0 
0007CII "5 51) HAlD 5,(J 
0002CC 5q 40 1 n')n l 4,00010,11 
O(ln700 IE 4R ALP 4,11 
000;>07 ')0 40 1 (lnO <;T 4,0'l0In,11 
000206 fl7 l~ 'i 000 RXLf 1,f>,'l001'i1 
00020A 41 '1'1 (J I'1C III o,IBCIO,lll 
nO(l7DF 41 11) n I'IF l4 1,IAFI0.131 
0002E7 no; 10 ~AlD 1,0 
0002E4 0;11 (JO R ~Ol) l O.OOOln,'l1 
n007EII IF OR III I! 0,\1 
O(l(l;>Eh o;n n(' "11)'1 q 0,0()(1I0.RI 
0002EE '17 ~6 'lJ'l AXLE R,b.oonlll 
11002F2 o;q bO n I~C L b.lBCIO,131 
0002Ff, ,)R EO 0 n0;4 l 14.054' 0, 1'1 
'lO(l2FII '17 FE 'ICf' 15,\4 
1"100(100 00 FC Il OOC INITI C;TM 14,12,onCllll 
000004 Ifl ')f) l~ 5,13 
')oorot- 05 Fa ~ALQ 15,0 
00nn08 45 ,~O F 1"110 ~4l B,rn'lIo.I'd 
ilooorc C1Cn"i[l'i:::440404'1 nc X'CIC7r.5('5(441)404,)' 
000014 CI1l5[2C~ f)f X'rtDO;F2C~' 
00'1111'1 
noe-f)1 A 
noro IF 
001'')70 
000!)74 
'1(,C'02" 
00002A 
"0002C 
"01'1'13'1 
'10')0'4 
0')"'1~f' 
n"),"Ic~c 

(100(14" 
00n044 
"OOC4Q 

,)7 ')0 

oil qF F 1'24 
rn FF 
q 6 "7 I 0 ~4 
1)7 FE 
41 F'l1 001 
(17 FF 
000')(l7A ') 
(I "(I(Jnl1r'1 
""1(1)11"011 
()')()I1'l;>f>" 
'10 n ')0110') 
()0""I')?7? 
"lCl0,,)Ol7F 

RCD 

l'" 
RCP 
'11 
OCR 
LII 
BCP 
M)Cl'" 
AI1C,,]"I 
40CON 
4)C'1"1 
Al1cnN 
I\DCrl"l 
IInc'1'" 
f)~ 

0.0 
0, 10;, ~241 10;) 
\';, 10; 
0341l1,x'(l2' 
15,J 4 
15,00)11 '1, 01 
15,14 
l41 polin I 
L411N1Tl I 
l411 "I IT I I 
l41PGTI 
l41Tr.TI 
L41 STIIPTI 
L4' !"I!Tn 
I 5F 

VI1LROqPII 

C;WT+r 
II I ~ = 1 

<'WT+O 

~wT+O 

<;'1='11 
I I T+O 

nllF= I 
T5=01-1 

'II = I 

I 'T.O 

"'STIITISTICS. S'1URCF REcnRDS IQ UUII OIVISlnN STATF"1ENTS = PR'lCf'flURF 01111510"1 STIITEMF"ITS = 
*O"TIIl"'S IN !'FFECH< SIU = '1lo?O RUF 276R L1"!fCNT = 0;7 ~PACFI, Fl4l';W. SEQ, SntIIlC[ 
"-'PTI(1N<; IN [FFFCT* O"IIP, P"'AP, NOCl.lq, NOSIIP"1AP, IIlnXIlEF, NnSxPFF, ,~.:l..)1, ",noECK. APOST, NOTRl/NC, NPFUJW 
.0PTIOIIl~ IIIl EFFFCT'" "IOTE!!", "'ON')M, IIlOI:IATCH, NOlllA"1F, cn"PILf=OI, NQSTIITF, ,LIB, VERB, ZWB, SYST 

F'lFl-lflifL LINKAGE EDITOR nPTIO'lS C;"ECIFIED XPf F,lIST,LFT 
V4~IArlLF OPTIONS liSEn - SllF=IQ2tr'>rdIQ"1 nFFA'ILT OPTI n.., , SI USFD 

CROSS PEFEREIIlCF HALf 

cnNTllll S(CTI'lN 

'1" Ir.I"I lENGTH 

300 
2FC 0 

"In 

ENTRY 

N4"'f-

IlRO~TP I ~Ir 

LnCATI,,"I QFFE~S Til SY .. A0l IN Cn"lTQnl SECTTfl"! 

?~" ILBOSTPI') ILflfJSTI''l 

F~TRY ~nDRESS 1"1" 
T,,]TAl lFNGTH 140 (!) 

""'.R'I'" D'1r:S >.j(1T EXIST BUT HAS 'IEEIIl A[)f)FO TO OATil 5':T 

L'1CATION "I4ME LOCATION NIIME 

LOCAl 10"1 PFFFRS TO SY"'~OL IN CONTROL SEC TlnN 

7!>4 Il BOSTPl ILB(lSTPO 

Lf'lCHION 

Figure 58. Nonsegmented COBOL Program with Abnormal Termination Dump (Part 2 of 3) 

200 



Jn~ AtH'I'1 ~TFI' r":'1 

Cn"PlrTlnN r.'l:1F SYS TFM or. 7 <D 
,-, .. -•. 

"'Rnr.~A" INT~I>"1I0TI'lN rnATAI AT L'1r:~Tln"l 014;>'1;> 

TNTFlIDlJOT AT 014;1q'!. (!) 
PSII AJ ~"'TRY Tn AREND rF 1 ',~nrlO r)014ZQQ 

Tr.q ::l,,) c; 'OR Q~ OO,)"C'1Rn °If '10000000 
M<;S 0()':l154h" P'< le'- G 10'110401'1 
Fe:;ll 1~'1hr.FI10 Tr.fl ')00001)0') 
11<;[0 0'1000'1('10 

ACTIVE RRS 

PRB '11400:) e:;7/STAq 006COOr.'1 

SV1B ,,)6CDFO ... /4 SVC-401C <;7151Aq 00120117 
RG 0-1 00n1404'1 50"114304 
qr, 8-15 00014770 000142CO 

<;VRR O"crISf'I ..... SVC-I05A <;lIC;rAil O'1ClCOI1? 
qG 1-7 00014160 1'10143R~ 

IlG A-15 '1M0545E oon1442E 

PIP ST'lR IIGE ROUIIIOAI{ IE S 1')'11'14000 Tfl 1)00"0000 

1)14661l 
06C050 
06CEFI'I 

sr IF 

00058ZlIR 
00000030 
00'l001)2A 

SAVE AREA TRIICE 

RUlli WAS EIllTE'REO 

SII OhUBa 1101 Ot)OOOOOO 
Rl 0006C FFR 
R7 0006CC30 

SA 0140RO WDI OOOOOCl~O 

PI 00000000 
R7 00000000 

REGS liT FIIITRV to ARENO 

HC;A 00000000 
R2 O')O~OOOO 

111'1 0006C F7B 

HSII 1)00hCFAO 
R;> :)00')0000 
oq OO()')OOOO 

LSA 
R3 
Rq 

L SII 
R3 
Qq 

IlATf nO<'l7 

OFR ",)0"£:004 T I rJT n::JO"CFlo rMP A()C1r.r10rl flO 1\1 "'"001)01)0 
Fl r. ,)1C01?FR ILe:; '10000000 Jl8 1)00'1000') JSf OO~I),~"'I) 

TMF 010'1o;4R~ 1'11\ F()01QFCO ... STAF 00000000 TeT MOI)I)'I1C 

USE/FP ~~'4n~ P'iW FFI50000 C001429R Q 000001'1 liT Il"lK OOO'J'B019 

USE/foP 110oo41A8 PSW FF0400·33 40004110 0 EROlEA WTlUIK Qt)n 14'JOQ 
00060000 00060000 00014020 500142fC 1'101'1 140A8 OOl)142bF 
00014020 00014020 00014280 000140BO 000142q~ ~(1)142C2 

USF/FP 0')00414A PSW fF04"230 R000043C 0 C813rA WT/l ... K 0006(0(0 
O"OOl?r') '.00041 All 0'1001010 000000"0 0')014360 R001435F: 
00'16~0~0 ~OOO~lOq 000'1530R 000143CQ 600~4lFA 00014297 

000140AO PFT 000064CC EPA 50014020 RO 0000006q 
00060000 R4 0006CF70 R5 00000060 R6 00005308 
00000000 RIO 0006CFBO ~1l 0006CFF8 1112 600143EA 

08000026 RET 00000001 EPA 00000001 RO 00000000 
80000000 R4 00000000 R5 00000000 R6 00000000 
00000001 !II0 00004000 "11 00000001 1112 42000001 

00.000000 1)0000000 00.000000 00000000 00.000000 00000000 00.000:)')0 00000000 

REGS 1)-7 
REGS q-15 

PIP STrI~IIGE 

014000 D9E4D540 
')14020 90f'CDOOC 
014040 Q60210H 
014060 00014292 
014080 000(1)000 
0140AO 00000000 
0140CO 00000001 

Figure 58. 

000140A8 50014304 0006D'100 (0061)000 00014020 500142EC 000140A8 0001426F 
00014270 ClO0l4;:>C0 00014020 00014020 00014280 00014080 00014292 500142C2 

40404040 006CI)OCO 00014020 FF150000 Coo14298 00000000 0000531)8 *RUN •••••••••••••••• Q* 
1'l5005FO 45ROF01"1 CIC2C505 C4404040 C ID5E2C3 070098<JF F02407FF * ••••••• 0 •• 0.A6EIII0 AIII5C •••• 0 ••• * 
07FE41F('I 000107FE 00,)142Cn 00014020 00014020 00014280 000140BO * •••.... 0 •••••••••• ... ....... .* 
00014291' 0000(01)0 000000'10 00000000 00000000 OOOOOCIOO 00000000 * ....•....•....•..••••.....••••••• 
OOOOnOon 00000001) 000')0001' 00000000 00000000 00000000 00000000 * .•.•••••....•.•.•••••........•.• * 
00000000 FIFZ"3C4 00000000 00000000 0006CFBO 08000026 00000001 * •••••••• 1230 •••••••••••••••••••• * 
00000000 00000000 00000000 80000000 00000000 00000000 00000000 * .••••••••••..••••••.••..•....••• * 

Nonsegmented COBOL Program with A.bnormal Termination Dump (Part 30f 3) 

Program Checkout 201 



3. To determine the relative location 
within the load module of the 
instruction indicated in the 
INTERRUPTION entry, subtract the load 
address from the address of the 
instruction. In the example, this 
bee-om!?s; 

B52DO - B5020 = 2BO 

4. To determine whether or not the 
instruction occurred in the object 
module generated for the program, 
compare its relative l~tion (2BO) 
with the total length,~, of the 
object module. If the relative 
location were greater than the size of 
the object module, then the error 
would not be part of this program. A 
relative loc~on between the size of 
the program,~, and the total length 
would indicate that the abnormal 
termination had occurred in one of the 
COBOL library subroutines. such an 
error could be located by comparing 
the relative location with the 
relative origin of the subroutines. 
In this example, 2BO is less than the 
program size (356), so the instruction 
occurred in the main program. 

5. To determine whether or not the 
abnormal termination occurred in one 
of the object code instructions 
generated as a result of a statement 
in the Procedure Division of the 
source program, compare its relative 
location with the relative location of 
the first generated ~truction in the 
Procedure Division, ~. In this 
example, the relative location of the 
instruction is greater than that of 
the first generated instruction 

202 

(2BO > 2AA) and so it can be found by 
locating the corresponding relative 
location. The immediately preceding 
object code instruction then is the 
~struction that initiated the dump, 
\ZJ. In this example, it is an 
lnstruction generated as a result of a 
COMPUTE statement. Checking back to 
the source program listi~ the 
corresponding statement,~, is 

located and 'B' is seen to be the 
data-name that caused the trouble. 
Data item~is defined in the Data 
Division,\.2j. as a COMPUTATIONhL-3 or 
internal decimal item, but the value 
at B is there as a result of a VALUE 
clause for A: the item that B 
redefines. This value is in external 
decimal format since there is no USAGE 
clause specILI.ed. The c;onfiguLatio{1 
of A is invalid for B and results in 
an interrupt. 

Determining the Location of an ABEND When 
g~gg~gg_Qyg~~~~~llY: When running 
dynamically. the programmer should do the 
following to determine whether the abend 
occurred in the main program. 

1. The compiler produces a Load List that 
contains the COBOL subroutine library 
names and the addresses used in the 
program. T~e are anything beginning 
with ILBO. A Figure 59 is a Load 
List, the Ie ters corresponding to the 
explanation in the text. The 
programmer is particularly interested 
in any ILBO subroutine that does not 
end in a zero, such as ILBORNT, 
ILBOREC, ILBODSP, etc. 

2. In this case, the abend has occurred 
at 441CC. To determine whether this 
is within the main program, go to the 
Load List, and look for the subroutine 
with its address closest to that of 
the abend. ILBOREC ~ has an address 
of 043E18. 

3. Look below to the second part of the 
Load List. This contains the length 
of the subroutines that begin at the 
address specified above. In this case 
at 043E18, under the LN column, ~e 
length of the subroutine is 9E8~. 
Adding the length of the subroutlne 
9E8 to the starting address 043E18, 
results in a number falling within the 
confines of the main program. 

4. After this is determined, the 
programmer continues his debugging in 
the specified manner. 



'U 
Ii 
0 

LQ 
Ii 
~ 
3 

n 
::r 
(l) 
() 
~ 
0 
C 
rt 

1'-,) 
0 
vJ 

"1'j 
1-'. 

LQ 
C 
I'i 
(l) 

U1 
\.0 . 
t;"1 
o 
~ 
0. 

t-t 
1-'. 
Ul 
rt 

m: e-oo-z 3~9ii RSP-Cl)E OZ-02~-q28 

NE 0OO238Af! RSP-r.Of 01028708 
NE 000243fl8 RSP-CDE OI0;:>}[)20 
f\!f On0246f8 RSP-'-r:Of' !) 10787('R 
NF 0002536R RSP-Cf)f 010?~FIO 
N[ 0002hlOfl PSP-CDE 010248118 

CDE 

02531lH I\TPi 01:1 NCI1[ 00(10.00 
02392 H ATRl 3() NC"'F 023A7R 

02fl308 ATRI ~o NCf)F 0:.'8339 
028238 ATRJ 110 NC,)E 028268 
0?8Znn ATl<l 1'10 NCOr: 02R2-:;8 
02RIDfl A TR 1 1l,0 ~C,)F 028208 
O?3R38 ATPI '31 ~C.{)I' 82'020 
t}~3D20 ATkl 31 NCO!' (') Z:1DHr 
02301'8 ATR 1 '33 NCOE ODFlO 
028308 ATF 1 flO Nef)1:': 0 2f13'3 fI 
07ITZt'>R ATP'T °0 NCJF Oznzqn 
0281/18 1\ Hi 1 flO NeUE 02RIIJR 
02833R IITPl ,,0 ~CDF :12f13AB 
~flo A l~t (J~ N'(DE 024HIR 
023E28 ATFI 37 ~C OF.: 02 /.870 
024IR8 ATRI 33 NCf)[' 023E28 
OZ47Ci1 t.TRl 17 NCO!:' 0?'.8CO 
024870 1\1Pl 33 i\lCIH: 0247C8 
0748Ml '\Tf.: I 37 NC r)~ c;){.flBR 
Oi-o'r8tO ATkl :l3 /IIeDE 6~'4'8Att 

024968 ATPl 16 NCOE 02531H3 
024B88 ATf{1 12 I\Icn[= 024968 

XL 

0253C 8 Sl 00000010 NO OOOOCO()l 
0239013 SZ 00000010 NO 00000001 
DZFl?F 8 S7 OI")M)OOll") Nt) 01)000001 
0?il228 Sl 00000010 f\J,) 00000001 
02HIFR SZ 00000010 f\JO "000('001 
(}l1'rte.i3 Sl C)I)OflOOtO NU ,)000000 1 
023B213 Sz. 00000010 NO 00000001 
023010 57 00000010 N[) 00000001 
023Drl" Sl 00000010 NC aOOOf"t"'('11 
02fl2F8 Sf 1):)0(10010 NO ()OOI)OOOl 
02fl25H Sl '](If)COO 1 f') !\jfJ r;(1)01"0:1 L 
028t<}t! Sl OOOOOOiO NO oooonol) 1 
02832 I:' 5Z 0000,1)010 NO 00000001 
0246A& SZ 00000010 NO oOOonOOl 
o-Zq<Tg 'SZ (lOOOI")OIC Nfl conoooot 
0247~"''' Sl 00000010 Nfl 1)I)I)0nro 1 
024848 5Z 00()C001n "m OCOOO(I(ll 
0240KO Sl OOnOO010 NO 00000001 

nUl 

N1" OOOl3~<)8 R')P-(f)12 JI02830fl 
NF 00023R20 PSP-COE 0102810R 
NE 000244A8 RSP-COE 010230FS 
N£ 00024QF,0 R$p-r.OE Oli'2?1 fie, 
NE 000253A8 ~SP-COE 01023[28 
NE 00000000 RSP-COF 01024Q68 

RnC-RR 00025200 
ROC-RB OOOOI)O()O 

ROC-RB 00000000 
ROC-·RA 00000000 
ROCe·:RR 000('\0000 
ROC-RB 00000000 
R()C-P R 000000(10 
~OC-Rfl 00000000 
~Or-RB 00000000 
ROC-RR nOOOOOOO 
ROC-RB 00000('100 
RnC-RB 00000000 
RUC-P fI 00000000 
ROC-RB 00000000 
ROC-RA 000241DO 
ROC-·R R 00000000 

Nf'.1 PIIN 
N'I.1 

NM 
NM 
NM 
f\I~1 

NM 
NM 
NM 
~"1 

NM 
Nt-' 
N'" 
NM 
NM 
NM 

IGCOAOc;A 

IGG019Cf) 
IGG019CJ 
IGG 0 19811 
IGGOI9RB 
[r,r;019PL 
IGGOIQRG 
lLflORNT 
IGG019CI1 
l(;(;Ol<)Cl 
IGGOlql\I 
IGr,O 1 <)I\D 
Il~OSRVO 
ILROPFCO 
hBORtC 

USF 01 
liSE 01' 

USE 02 
USE 02 
U"F 02 
USF 02 
USE' 01 
U<;E 01 
lJ<;F 01 
U<;E 07 
lIsr 02 
LJ <;:: ()2 

USE 02 
USf 01 
USF 00 
USE 01 

RnC"-R~ 000741 no NNt 
POC-RA 00000000 NM 
RO("-f{B 000241no NM 
~DC-·RR 00000000 t'vM 
ROC-RR 000241 00 NM 
ROC-·RB 00000000 NM 

ILROOSPO IlJsr no 
Il'On,p USF OJ 
JLf\n~TfU) lJSF. 00 
ILBONTR USF nl 
ILB[)("nMO USE' 01" 
IL~OCO~ USE 01 

LN Anp 0L~' 
80001168 0004169R 
80000640 0004(960 
80000270 0007El"30 
ROOOOIIO 0007f)n10 
eOOO('ll90 (0071)fHll) 
800001J8 00070A5g 
8000014f1 0004nR4~ 

80000B70 00040C90 
80000300 1)01)41088 
80000270 0007E130 
ROOOOIIO on07~02n 

80000080 0007090fl 
80rOOl00 0007F3~0 
8000 0180 000414'5H (;;\ 

f8nCOQ9F8 ()(jN~El'3t-\£; 
800 0 07AO 0004'1060 
80000790 1)004~H70 

800000(0 000415DQ 

O? 3~4 J 0n~oo~q4 ()0000fl<)4 cooon~q4 Ol)1"7nnlO onOOOAQ4 00r"nJC~ 

100230C8 HflO('lOOOO aFooonoo 01000000 
00000010 ~0000014 OOOq0032 00(110001 
C3D1C3C4 00000000. ooooooon 00000000 

OL'39bO 00000306 0OO02RtO 11000000 04023F.('8 
023980 1~000000 EF04F2~0 04023948 100029hC 
OZ34AO 000C0000 00000000 00000070 C2C2C2Cl 
07 'l 'IT:,) OOOCOr:r:0 r')()000;'J['O r')rl)rl1~OQO n"30nOOn5 

(j'E'f\ 

02 3D·~O ooonocoo n000010C 

NE 0OO738AO RSP-COE OlO28?3R 
Nf 000241RO RSP-CDF 01023838 
NE 00024 5BO RSP-COE 01028308 
"IF nOO24f1130 ASP-COF 0102A~~R 
NF. 000:'.'53CO PSP--CDE 010747(8 

EDA IHl69fl 
FI'll 1)4C960 

FPA 07f 130 
EPA 07[)010 
EP,n 07DflBO 
EPI\ 07DA'58 
FPLI O{+f)~48 

EPA 04f)C90 
FPA 041088 
EPA 07fl30 
[PA "7E020 
FDA 07n9f)8 
rrA 071"3110 
EPA 0414'511 
f[lfl 0431:1A 
FPA 1)43!;;181 
FPII 0430A7 
F-PII 0430hO 
FPA 042 1'172 
fPA 04287" 
EPA 041508 
EP/\ 041508 

AOR 

fI TP 2 ?('I 
flTP? 2R 

.Q R2 70 
flTP? 70 
IITP? 70 
ATP2 20 
lQ"2 ?O 
ATP? ?O 
ATP2 20 
A TR2 70 
fI TP? ?r) 
~TP? 70 
ATR? 70 
A TR 2 ? 0 
IIT P2 1O 
ATR2 20 
/lT P 2 10 
~,TP2 1'1) 
(IT P 2 10 
ATP2 20 
ATP? 10 
ATP2 20 

LN 

XL/MJ 0?I)3C8 
YL/"'J OnQ08 

PAGE 0002 
XL/"lJ 02A?F8 
X1/MJ 02A228 
XLI"',' 07A] FA 
XL/MJ O?81C8 
Xl/"1J 0231121.\ 
xl/MJ On010 
Xl/MJ 023DE8 
XLI~J 02A2FA 
xt/MJ 078758 
XLn~J O?A19A 
XL./"1J onn28 
XL IMJ O?4MA 
XL/MJ 0241R8 
XL/MJ 024798 
Xl/MJ 074870 
XL/"1J (1?47FlA 
Xl/..,J 024ACO 
Xl/MJ 024A9A 
Xl/MJ 024R88 
Xl/MJ 0240flO 

flOR 

* ••.•.•.•.•••••.••.••••••••.•••.• * 
* ................. •• H •••••••••••• * 
* ...... ? •••••••••••••••••••••••• * 
* ............ AARACJCO •••••••••••• * 
* ................... 8301[ •••••••• * 

;(c ••• o ................ o .....•••.••• * 

CD 



Qeb~ggi~~Segmented Program: Below are 
the recommended steps for identifying the 
segment executing at the time of the error 
causing abnormal termination. 

1. 

2. 

3. 

:~~n~~~~R~k:~~E~~~:~I~ (D~~~~_A~k_ 
.L"J'--c:L..L'&''-'L~ »l .. 1HUH C:1lL..L'I'\.!:J' ':::ILVC:;:' L.UC: 

hexadecimal address of ~he instruction 
following the instruction that 
iniEial."ed the····iriFei·i-up·tci"nd ca"used the 
dump. This address can be used to 
determine the relative location of the 
instruction in the load module (see 
item 3 below). In the example (Figure 
60>, the address is 14BCE. 

To determine the main storage load 
address of the load module, subtract 
the length of the segment table 
($SEGTAB) from the entry point 
address. The load address can ~ 
obtained from the USE/EP entry, 3 , of 
the first active RBS (Request BI cks) 
specification. The last six digits of 
this entry are the address of the en
try point (INIT1) in the COBOL 
program. In this case, the address is 
14050. 

The length of the segment table, 
~, in the linkage editor output is 20 
1n this example. The load address of 
the module is: 

14050 - 20 = 14030. 

To determine the relative location of 
the instruction indicated in the 
INTERRUPTION entry, subtract the load 
address from the address of the 
instruction. In the example, this 
becomes: 

14BCE - 14030 = B9E. 

4. To determine whether or not the 
abnormal termination occurred in the 
object module generated for the 
program, compare its relative location 
(B66) with the starting address of 
each cf the modules following $SEGTAB. 
The last of these modules ($ENTAB) 
begins at B70 and ends at B87. 

201.1 

Because the location B9E is beyond the 
range of locations in the main program 
and the COBOL subroutines, the 
instruction initiating the dump would 
appear to be in another program. 
However, another check must be made. 
If the locati~B9E is less than the 
TOTAL LENGTH,~, but greater than the 
end O~ENTAB. it is in the transient 
area, ~. 

5. Subtract the starting address of the 
transient area from the relative 
location of the abnormally terminating 
instruction, as below: 

6. 

7. 

B9E - B88 = 16 

Therefore, 16 is the relative address 
of the instruction immediately 
-folTowfng theone·responsIbie for the 
abnormal termination. It remains to 
identify the segment of the program in 
which this instruction occurs. 

To find location 16 in the segment 
being executed at the time of the 
abnormal termination, compu~the sum 
of the location of CURSEGM, 7 , and 
the load address (computed i item 3). 

14030 + B29 = 14B59 

The hexadecimal contents of the byte 
indicated, (8), identify this segment. 
In this ex~le, the hexadecimal value 
is 32 <which is equivalent to the 
decimal value 50), so the priority 
number of the current segment is 50. 

In the section of priority 50 (SEC50), 
the instruction immediately following 
the one that caused th~bnormal 
termination is a Load,~, so that the 
instruction causing the data interrupt 
was the Add Decimal instruction at 
location 10. In this example, as in 
the nonsegmented program ABEND (Figure 
58), this instruction was generated as 
the result of a COMPUTE statement. 

Fingi~q Data Records in an Abnormal 
Termination Dump 

The glossary, listed when the DMAP 
option is specified, contains information 
about all data-names described in the COBOL 
source program. The location assigned to a 
given data-name may be found by using the 
BL number and displacement specified for 
that entry in the glossary, and then 
locating the appropriate BL cell in the 
TGT. The hexadecimal sum of the glossary 
displacement and the contents of the cell 
should give the relative address of the 
area desired. This can be converted to an 
absolute address as described in the text 
associated with Figure 59 (for a 
nonsegmented program) and Figure 60 (for a 
segmented program). 



OUOU~ 

OU003 
00004 
OOOO~ 

OOOUb 
00007 
00008 
00009 
00010 
00011 
00012 
00013 
000111 
00015 
0001b 
00017 
00018 
00019 
00020 
00021 
00022 
00023 
000211 

IDENTIFI~:'o.T!aN DIVISION. 
PRO;';I{AM-ID. ABEND. 
RE:>'IARK!';. 

THIS IS A PROGRAM TO ILLUSTRATE THE ABNORMAL 
TERMINATION OF A SE:;MENTED PROGRAM. 

ENVIRONM.ENT DIVISION. 
CONFIGURATlON SECTION. 
SOURCE-COMPUTER. IBM-3bO-H50. 
OBJECT-COMPUTER. IB!IJ-360-H50. 

OAT/\. DIVISION. 

~ORKING-STORAGE SECTION 
01 RECORDA 

02 A PICTURE 59(111 VALUE 12311. 
02 B REDEFINES A PICTURE S9(71 COMPUTATIONAL-3. 

PROCEDURE ;)IVISION. 
SEC10 SECTION 10. 

DISPLAY • START TEST'. 
BE:;IN. 

REI\.DY rRI\.CE. 
SEc50 SECTION 50. 

COMPUTE B = B + 1. 
STOP RuN. 

INrRNL NAME 
DN)o1=1-080 
DN~j=1-100 

DN)o1=l-l11 

LVL SOURCE NAME 
01 RECORDI\. 
02 I\. 
02 B 

SI\.VE /\.REI\. 
SwITCH 
TALLY 

MEMORY Ml\.P 

SORT SAVE 
EtHRY-SI\.VE 
SORT CORE SIZE 
REr CODE 
SORT RET 
iNORKING CELLS 
SORT FILE SIZE 
SORT MODE SIZE 
P:;T-VN TBL 
TGT-VN TBL 
VCONPTR 
LENGTH OF VN TBL 
Llt-..BEL .RET 
CURRENT PRIORITY 
UrmSED 
INIT1 I\.DCON 
DEBUG TABLE PTR 
UNUSED 
OVERFLOiN CELLS 
BL CELLS 
DECBADR CELLS 
TE~P STORI\.GE 
TEM.P STORAGE-2 
TE)o1P STORI\.:;E- 3 
TEMP S1'ORI\.GE-4 
BLL CELLS 
VLC CELLS 
SBL CELLS 
INDEX CELLS 
SUBADR CELLS 
ONCTL CELLS 
PF)o1CTL CELLS 
PFM.SAV CELLS 
VN CELLS 
SAVE AREA =2 
SI\.VE AREI\. =3 
XSI\.SW CELLS 
XSA CELLS 
PI\.RAM. CELLS 
RPTSI\.V I\.REI\. 
CflECKPT CTR 
VCON TBL 

P:;I' 

OVERFLOW CELLS 
VIRTUAL CELLS 
PROCEDURE NAME C8LLS 
GENERATED NI\.ME CELLS 
DCB I\.DDRESS CELLS 
VNI CELLS 
LITERALS 
DISPIAY LITERALS 

00090 

00090 
000D8 
OOODC 
OOOEO 
000E4 
000E8 
OOOEC 
OOOEE 
OOOFO 
00220 
00224 
00228 
0022C 
00230 
00234 
00236 
00237 
00238 
00240 
00244 
00248 
0024C 
0024C 
00250 
00250 
00250 
00250 
00250 
00250 
00258 
00258 
00258 
00258 
00258 
00258 
00258 
00258 
00258 
00258 
00258 
00258 
00258 
00258 
00258 
00258 

00268 

00268 
00268 

0027C 
00280 
00280 
00280 
00281 

BI\.SE 
BL=l 
BL=l 
BL=l 

DISPL 
000 
000 
000 

INTRNL NAME 
DNM=1-080 
DNM=1-100 
DNM=1-111 

DEFINITION 
DS OCL4 
DS 4C 
DS 4P 

US!!.:>E 
GROUP 
DISP-NM 
CO!U'-3 

R 0 Q M 

Figure 60. Segmented COBOL Program with Abnormal Termination Dump (Part 1 of 4) 

Program Checkout 205 



!,:<Cl:;rr ... ,l\SSI:';N~L::Nr 

L<;rU b llL =1 

"':)1'<1\ I ~.:;-. I'ORI\::;,:: S fl\RTS Ar LOCAl'ION 00088 FOR 1\ LENGTH OF 00008. 

SE::;MEIliT OF PTY 50 

n 000000 PN=Ol E;;lU · 000000 58 FO C 004 L 15,004 (0,12) VI ILBOOSPO 1 
000004 05 IF BALR 1,15 
000006 000140 DC X' 000140' 
000009 05F2F240404040 DC X' 05F2F240404040' 2, nOOO10 lO h non (" 02~ aD QI)O~I!p 6~. o!.~ ~!. !2~ nllJM-,:1_111 L! T'+ r) 

~4 00001b GN=Ol (!) E;)U · 000016 58 FO C OOC I L 15, OOC (0,12) VIILBOSTPlI 
000011\ 07 FF BCR 15,15 

ROOT SEGMENT 

LITEt<I\L POOL (HEXI 

00280 ( LIT+O) 1C 

OISPLA.Y LITERA.LS (BCD) 

00281 (LIL+1) 'START TEST' 

18 00028C STA.RT EQU · 00028c 58 FO C 004 L 15,004 (0,12) V II LBOOS PO) 
000290 05 IF BALR 1, 1~ 
000292 000140 DC X, 000140' 
000295 05F1F840404040 DC X' 05F1F840401l01l0' 

19 00029C 58 FO C 0011 L 15,0011(0,12) VIILBOOSPO) 
0002AO 05 1F BALR 1. 15 
0002A.2 0001 0: X, 0001' 
00021'.4 10 0: X'10' 
0002A5 000001'. 0: x' OOOOOA.' 
0002A8 OCOOOOB DC X'OCOOOO19' LIT+1 
00021\.: 0000 0: X' 0000' 
0002A.E FFFF DC X'FFFF' 

20 000290 58 FO C 0011 L 15,0011 (0,12) VIILBOOSPO I 
0002BII 05 IF B1\.LR l,lS 
0002B6 000140 DC X' 0001110' 
0002B9 05F2FOIIO 110404 0 DC X' OSF2FOII0404040' 

21 0002:0 96 40 0 048 or 048 (13), X, qO' SioIT+O 
0002e4 58 00 COlO L 0,010(0,12) PN=Ol 
0002:8 13 00 LCR 0,0 
0002CA 58 FO C 008 L 15,008(0,12) V(ILBOSGMO) 
0002:E 05 EF B1\.LR 14,15 
0002DO 50 00 5 008 INIT2 ST 13,008(0,5) 
000204 50 50 D 004 sr 5,004(0,13) 
000208 50 EO 0 054 ST 14,054(0,13) 
00020: 94 EF D 048 N1 048 (131, X' EF' SioIT+O 
0002EO 58 FO C 000 L 15,00010,12) V1R=1 
0002E4 05 EF B1\.LR 14,15 
0002E6 50 10 j) IB8 ST 1,188(0,13) 
0002E" 12 00 LIR 0.0 
0002EC 07 89 BCR 8,9 
0002EE 96 10 0 048 01 0118 (13), X' 10' SioIT+O 
0002F2 05 FO INIT3 B"LR 15,0 
0002F4 91 20 ;) 048 r!-l 048113),X'20' SioIT+O 
0002F8 47 EO F 016 BC 14,01610,15) 
0002FC 98 2D B 050 LM 2,13,050(111 
000300 58 00 B 048 L 0,048(0,11) 
000304 58 EO D 0,,4 L 14,054(0,131 
000308 07 FF. BCR 15,14 

000331\ 87 16 ~ 000 BXLE 1,6,000(5) 
00033E 41 80 0 IBe L1\. 8,lBCIO, 13) OVF=l 
000342 41 70 D !BF LA. 7,lBF(0,13) TS=01-1 
000346 05 10 BALR 1,0 
000348 58 00 8 000 L 0,00010,8' 
00034C lE OB ALR 0,11 
00034E 50 00 000 sr 0,000;0,8) 
000352 87 86 000 BXLE 8,6,000(1) 
000356 58 60 D IBC L 6, IBCIO, 13) BL =1 
00035A 58 EO D 054 L 14,05410,13) 
00035E 07 FE BCR 15,14 
000000 90 EC D OOC INITl STM 14,12, OOC (13) 
000004 18 5D Ltl. 5,13 
000006 05 FO B1\.LR 15,0 
000008 45 80 F 010 B1\.L 8,010(0,15) 
OOOOOC C1C2C5D5C 11404 04 a DC x' CIC2C505C4404040' 
000014 CI05E;2C3 DC X' CI05E2C3' 
000018 07 00 BCR 0,0 
00001A 98 9F F 024 LM 9,1~, 024(15) 
OOOOH: 07 FF BCR 15,15 
000020 96 02 1 034 01 034(1) ,X'02' 
000024 07 FE BCR 15,14 
000026 41 FO a 001 Lz\ IS, 00110, 0) 
00002A. 07 FE BCR 15,14 
00002C 000002F2 A.DCON L4IINIT3) 
000030 00000000 1\.DCON L4 (SEGMI) 
000034 00000000 1\.DCON L4(INITll 
000038 00000268 1\.DCON L4 1 J?GT) 
00003C 00000090 ADCON L4 (TGT) 
000040 0000028C ADCON L4 (STA.Rr) 
000044 000002DO A.OCON L4IINIT2) 
000048 03 15F 

Figure 60. Segmented COBOL Progran with Abnormal Termination Dump <Part 2 of 4) 

206 



*::;TII.TIsrr::s* SOURCE RECORDS 24 DATA DIVISION STATEMENTS = PROCP.DURE DIVISION STATEMENTS = 
"UPTluNS IN EFFECT" SIZE = 81920 BUF 2768 LINECNT = 57 SPACEl., FLAGW, SEQ, SOURCE 
"OPTIONS IN EFFECT. DMAP, PMAP, NOCLIST, NOSUP!!!AP, NOXREF, NOSXREF, LOAD, NODECK, APOST, NOTRUNC, NOFLOW 

I .OPTIot~S IN EFFECT. NOTERM, NONU!!!, NOBI\.TCH, NUNAME, COMPILE=Ol, NOSTI\.TE, LIB, VERB, ZWB, SYST 

F88-LEIIEL LINKAGE EDITOR OP'TIONS SPECIFIED LIST, LET, XREF, OVLY 
III\.RII\.BLE OPTIONS USED - SIZE=(92160, 8192) DEFAULT OP'TION( SI USED 

I;,;WOOOO 
U;;./OOOO 
ILwOOOO 
Il:.wOOOO 

INSERT ABEND 
OVERL1I.Y A 
INSERT ABEND50 
ENTRY I\.BEND 

CONTR')L SECTION 

NAME ORIGIN LENG'TH 

$SEGT",B 00 20 
II.BEND 20 360 
ILBODSPO" 380 6CI\. 
ILBOS3MO· 11.50 DB 

ILBOSTPO· B30 3D 

$cNTAB B70 18 

CROSS REFERENCE TI\.BLE 

ENTRY 

SEG. NO. NAME LOCI\.TION NAME LOCATION NA!!IE LOCATION N1I.M~ LOCATION 

10 

CURSEGM B29 CD 
ILBOSTP1 B4C 

LOCATI::;,~ REFERS TO SYMBOL IN CONTROL SECTION SEG. NO. LOCATION REFERS TO SYMBOL IN CONTROL SECTION SEG. NO. 

284 
28C 
294 

CONTKOL SECTION 

II.BENDSO 
ILBODSPO 
ILBOSTP1 

ORIGIN LENGTH SEG. NO. 

B88 1C 

ABENDSO 
ILBODSPO 
ILBOSTPO 

ENTRY 

2 
1 
1 

NAME LOCATION 

288 
290 

SO 

NAME LOCATION 

ILBOSTPO 
ILBOSGMO 
ABEND50 

NI\.ME LOCAl'ION 

ILBOSTPO 
ILBOSG~O 
I\.BENDSO 

N1I.ME LOCI\.IION 

LOCATIO., REFERS TO SYMBOL IN CONTROL SECTION SEG. NO LOCATION REFERS TO SYMBOL IN CONTROL SECTION SEG. NO. 

£NTRY I\.D;)RESS 20 
TOTA.L LENGTH BA8 0 

••• "RUJ DOES NOT EXIST BUT dAS BEEN I\.DDED TO DATA SET 

.. ABDU!1P RE;:1UESTED • 

JUB I\.BEr-ID STEP GO TIMS 173122 D!l.TE 7108b 

CO,"iPLLTIO:-I CODE SYSTE.M 0::7 Q) 
PROGRAr1 INTERRUPTION (DATI\.l AT LOCATION 014BC8 

Ii~TER"UPT AT 014B:::E @ 
PSW AT ENTRY TO ABEND FF1S000D C0014BCE 

TCB 00S298 RB 0006::888 
~,ss 00005320 
FS!I. 1406::FBO 
US£K 00000000 

PIE 00000000 
PK/FLG 10910408 
TCB 00000000 

DEB 0006C80C 
FLG 000002F9 
TME 0000S348 

rIOT 0006CF10 
LLS 0006:::BAO 
PIB E0009F98 

eMP 800C7000 
JLB 00000000 
,ISTAE 00000000 

TRN 00000000 
JS2 00000000 
Ter OOOOOE::E 

Figure 60. segmented COBOL Program with Abnormal Termination Dump (Part 3 of 4) 

Program Checkout 207 



AC1.LVl!; KIj;:i 

PKB SZ/STAB 017BOOCO USE/EP 0001q050 PSW FF150000 C001qBCE Q 000000 flULNK 00005298 

SVRa ObCB10 N~ SVC-q01C SZ/STI'.B 00120172 
R:i 0-7 COFEBqqB 0001qBC8 
RG 8=15 000lq2~O OOD143~2 

SVR6 06c888 NM SVC-105A SZ/STAB 000C0172 
RG 0-7 0001QB08 0001QC30 
R:; 8-15 0000531E 0001QCA6 

LOA:::> LIST 

USE/EP 0000q1!'.8 PSW FFOq0033 qOOOq370 Q E803E8 ,H/LNK 0001QOOO 
00060000 00060000 3201QBCE 5001Q36E 0001QOOB 0001Q29F 

00014050 OOOH2Ba 000140EO 00014BB8 000143EO 

USE/EP 0000UA8 PSW FFOQ0235 8000053C Q C803C8 io/ULNK 0006C610 
000012cO QOOOQ1AA 00000000 00000000 0001QB08 8000Q35E 
00060000 00005298 00005298 0001QCQO 6000Q3FA 0001Q6C8 

LPRB 06CBI'.8 NM IEOlSZOVR Sz/STI'.B 00Q12010 USE/EP 0106cBC8 PSOl FFOQ0232 800073FO Q 000000 iH/LNK 0006C610 

P/P STORA:iE BOUNOI'.RIES 0001QOOOrO 00060000 

F.-<EE AREAS 

01QEi;0 
06C858 
06C060 
06CEE8 

SIZE 

00057590 
00000030 
00000008 
00000028 

SAVE. AREA rRACE 

RUN "AS ENTEREO 

SA. 06CFao w01 00000000 HSA 00000000 LSI'. 0001QOEO REI' 00006QCC EPA 5001Q050 RO 00000008 

R1 0006CFF8 R2 00060000 R3 00060000 tl.Q 0006CF70 tl.5 00000060 1<6 000052% 
R7 0006cC30 R8 0006CF78 R9 00000000 R10 0006CFBO R11 0006CFF8 R12 60011131:;1'. 

RUN flAS ENTEREO VIA CALL 

SA 01QOt.O ioJ01 00000000 dSA 0006CFBO LSI'. 00000000 RET 0001QBB8 EPA 0001QA80 RO 5001ll64c 
£1.1 9200CCCO tt2 COFEBQQ8 R3 8F06CE10 RQ OOObOOOO R5 00060000 R6 00014BC2 
R7 00000005 R8 0006CA21 R9 00000079 R10 90014482 R11 6000C010 R12 0000CF:'8 

IU,GS AT I:.,HRY 1'0 ABENO 

FL. PI' Rl>:;S O-b 

ih,GS 0-7 
K.;.GS 6-15 

P/P STORA:;E 

014000 09E405110 
014020 000111030 
014040 00000000 
014060 cIIII04040 
014080 00014868 
0140AO 00000000 
01110CO 00000000 
O:i.40EO 00000000 
0111100 8F06CE10 
0111120 6000C010 

0141\.EO 4020FOD8 
014800 11780FOBII 
014D20 FOA80203 
0140,40 07FE51120 
014£160 117FOF006 
0111680 58EOF01C 
OlllBM 117FFOOO::: 
0146CO 1I005F2F2 
0111tlEO 0007000::: 
014COO 002C0020 
01llC20 01000:::40 
01QC40 00000000 
0111C60 00014C88 
014C80 00014EEO 
014CAO 98EOO15C 
014CCO D0661BFE 
014CEO 000858FO 
014DOO en 704740 
014D20 117AOOOEI'. 
014D'I0 'IE100150 
OlllDbO 411EOOOII 
014D80 00014080 
01llDAO 0006C6E5 
0140CO 4011040110 

00.000000 00000000 00 000000 00000000 

COFEB448 000146C8 00060000 00060000 
0001421>.0 00014342 00014BB8 00014050 

110110110110 017BOOCO 00014050 FF150000 :::00146CE 
C0111CCOO 00000500 00000600 0006CF78 000111020 
00000000 00000002 01000002 90ECOOOC 185005FO 
C105E2:::3 0700989F F02407FF 960210311 07FE41FO 
00014050 00014268 0001110EO 0001420C 00014320 
00000000 00000000 00000000 00000000 00000000 
00000000 08000056 00000001 00000001 00000000 
0006CF60 00000000 00014668 000141'.80 5001464C 
00060000 00060000 0001116C2 00000005 0006CA21 
0000CF58 70000046 00000000 00000000 0001420C 

4220011'\7 41000032 19204740 FOBII91110 FOOA4710 
1181001Al! 88100002 5850019C 58600198 12114780 
50006000 415500011 416600011 11610F09A 5030000C 
F004117FO F021111898 COFEB448 (!) 0000007F 7FFFFFFF 
B1001BOO 9101F03C 071E4100 00019601 F03C5000 
118FOO05c 5800EOOII 58EOOOOC 980C00111 07FE5820 
00014B68 02000000 01'.2058FF 000407FF 010111030 
110110110110 FA306000 C01858FO COOC07FF 00001068 
0110072111'. 00280c9A 00000001 00004000 00000001 
0006C80C 92000588 00000518 OBOOOO01 00000372 
00000C40 00000070 00000001 000020BE 000111B08 
00057BA8 401104040 401104040 110404040 600111CF6 
00005298 00004539 00014:::20 800043AI'. 00000000 
00000017 7FOOOOOO 110204040 000111608 0006C470 
12EE4780 0096D27C FOOOO16C 41FF0070 50F00160 
1I0FOO168 0203EOOO 016841FE 0001l50FO 0160411D 
F03005EF 111100048 58E01008 58FOE0311 05EFIIllO 
00CE4720 00CC1A01 11'.0111'.01 921100170 0277Dl71 
11000005::: 07F54810 005E4111 000111010 005E92F1 
F33301E2 D15496FO 01E5D201 D05C0130 117FO~060 

191F0785 117FOOOB2 07C1C7C5 FFFF07FE 00000000 
OOOOOEEO 00000000 FOFOFOFO C6FOC6FO 6COOO05C 
0006C7E8 036FIIOIIO 00704040 QOFOF1FII CIIC1FOIIO 
1104040110 FOFIIFOQO C6FOC6F4 C6FOF4FO 1I0C3F6C6 

LIN!:.S 014DEO-014EOO SAME AS ABOVE 

00 000000 00000000 00.000000 0000000(; 

32014BCE 50011136E 00014008 00014L91' 
000142a8 000140EO 00014B88 000143bO 

00000000 00005298 ·RU.' .......................... 
02020000 00000000 •.. ................... .. ............... * 
4580F010 c1C2C505 •...................... 0 .. 0 ABfN· 
000107FE 0001113112 *0 ANSC •••. 0 •.••••••• O ••••••••• 
00000000 00000000 * •••••• ........ .. ................ 
00000000 00000000 * ............................................................... 
FlF2F3C4 00000000 •..... .. ........ .. . .. .. . 1230 ••••• 
9200CCCO COFE64118 * ............................................................ " 
00000079 8001114B2 * ............................. E .......................... r _ .. 

00000000 00000000 * ...................................................... * 

F0840500 F009EOOO . • 0;;' •••••••••••• O •• , O ••• O. N. 0 R •. * 
FOBII9180 600011710 * •• 0 •••••••••••••••••••• 0 ••••••• * 
98ECOOOC 911BFFOOA *O.K ••••••••••••••• O ••••••••••• O.* 
0~2il088 800011780 * •••. OM. 00 •••••••••••••.••••••••. * 
F03807FE 91100F020 *.00 ••••••• 0 ••••••••• 0 •.. 0 ••••. O. * 
000140EO 01dll900F * •• 0 •••••••••••••••••••.••• ..... * 
58FOC004 051FOOOl * .......................... O •••••• * 
00000100 20000000 . .22 ••••••. D •••••••••••••••• * 
04000001 54000000 * •••.•• 0 0 • o ••• o. o. o •••••• 0" • 0" • * 
3001100118 4106cOB8 ••••••• H ••• N ••• N •••••••.••••••••• * 
00005298 00000000 * ••...•..• o' •••• o' o ••••• \do o. 0 •••• * 
00000518 0006C7E8 *. 0 0.0 .... ... b .. N ... CY* 
AOOOll1l8C 0001110d1 * ••..••..••.•• o •• 0 o. 0 •••••• o •• o •• * 
0006cOCO 000t.0005 * ••••••..•••..•..••. ;,) .. G •••••••••• 
II11F0070 1910117CO • •• J ••••••• K.O.J ••••••••••••••••. * 
00489220 100558F1 •.... '" K ••. J •••••••••••••••••• 1* 
00014BOO 005C9560 •••• 00 •••••••••••• 0 ••••.••••••••• * 
01704110 00381901 *J ••.••••••••••••• J.K.J.J ••••••. * 
01700203 0100012C • ••••••••• 5 ••••••••.•••• 1J.K.J.J.* 
98EOiJ15c 12EE.07S5 * •••. 3. JSJ •• G.:rVK ••• J •• C •••• J •••.• * 
00000000 000111C30 * ••••••••. O •• PA3l •••••••••••••••• * 
800011262 0006C470 * ••...•..••...•.. 1I:::3D ••.••••••• :;. * 
401l0FOFO FOr'6C3F6 ••• FV •• :;Y •. 
FOC3F6C6 F41104040 

Figure 60. Segmented COBOL Program with Abnormal Termination Dump (Part 4 of 4) 

208 



Since the sample proolem program shown 
in Figure 61 was interrupted because of a 
data exception, the prograrr~er should 
locate the contents of field B at the time 
of the interrupt. The numerals encircled 
in the two techniques given below refer to 
information similarly labeled in the sample 
program. 

Qsing_~h~_~eneral_g~gi~~ers: The general 
registers usually contain information that 
can be helpful to the prograrr~er who is 
trying to locate specific data. 

1. Locate data-name B, (2) I in the 
glossary. It appears under the column 
headed SOURCE-NAMEa Source-name B has 
been assigned to base locator 3 (i.e., 
BL=3) with a displacement of 058. The 
sum of the value of base locator 3 and 
the hexadecimal displacement value 58 
is the address of data-name B. 

2. The Register Assignment table, ~ , 
lists the registers assigned to each 
base locator. Register 6 has been 
assigned to BL=3. 

3. The contents of the 16 general 
registers at the time of the interrupt 
are diililayed at the beginning of the 
dump, 3 • Register 6 contains the 
addres ··0014200. 

4. The location of data-name B, ~ , can 
now be determined by adding the 
contents of register 6 and the 
hexadecimal displacement value 58. 
The result, 14258, is the, address of 
the leftmost byte of the 4-byte 
field B. Field B contains F1F2F3C4. 
This is external decimal 
representation and does not correspond 
to the USAGE COMPUTATIONAL-3 defined 
in the source listing. 

Q~ing_~h~ TGT_~~~Q~Y_~~Q: If the general 
registers appear not to contain meaningful 
information, it may be that errors in the 
problem program have destroyed their 
contents. In such a case, the alternate 
method of locating data-names given below 
should be helpful. 

1. The location assiqned to a given 
data-name [nay also be found by using 
the BL CELLS relocation value given in 
the TGT Memory Map, ~. To find the 

location of the BL cells, add 003FC 
(from the TGT table) to the entry 
point address1 , 14020, of the object 
mOdule,~. In this example, the BL 
cells begln at location 1441C: 

003FC + 14020 = 1441C 

2. The first four bytes are the first BL 
cell, the second four bytes are the 
second BL cell etc. Note that the 
third BL cell,t2j, contains the value 
14200~ This is the same value as that 
contained in register 6. 

Note: Use of the FLOW and ST~TE 
optIons eliminates the need for the 
calculations described above. ~ll 
that is needed for program debugging 
is the output from FLOW and ST~TE 
printed at the end of the listing,~, 
and described below. 

A. specification of either FLOW or 
S'I'ATE causes the PROGRl':Jvl-ID, the 
completion code, and the PSW for 
the last problem program executed 
before the abnormal termination to 
be printed out. 

B. If STATE is in effect, the printed 
output includes the compiler
generated card number for the last 
verb executed. 

C. If FLOW is in effect, the words 
FLOW TRACE are printed out, 
together with the PROGRAM-ID and 
the card numbers of the procedure
names executed for all COBOL 
programs with the FLOW option in 
effect. 

For further discussion of the FLOW and 
STATE compiler options, including 
their relationship to the NUM option 
and to the SYMDMP option, see the 
chapter entitled "Symbolic Debugging 
Features." 

1For nonsegmented programs, the entry point 
address and the load point address are the 
same. (For a discussion on computing the 
load point address for a segmented 
program, see the section "Debugging a 
Segmented Program.") 

Program Checkout 209 



(l1j{:1)! !(I(I(I!I) 

00002 100020 
OCOC3 1C0030 
CCCC4 100040 
000C5 10005C 
00006 100060 
OCOC7 lceCH 
00008 100080 
cccce; lCOC9C 
COCIC ICOICC 
OOCll 100110 
1){:{:!2 !1)t)!21j 
OCOl~ ICC nc 
00014 10C14C 
CCCI5 1COl50 
OCOiir -i.·C·v"ii-O 
00017 100170 
OCCle ICO lI!C 
COO 1<1 lCO 1 qc 
CCC2C 1002CO 
00C21 ICC21C 
00022 10022C 
cccn 100225 
OCC;;'4 lccnc 
CC025 10024C 
CCC26 1C025C 
00021 lCOUC 
CCC28 IC0270 
(CC2e; ICC2ec 
(C030 1002QO 
CCC31 1C03CC 
OCC32 tCC~IC 

OCC~3 IC032C 
oe034 lOC33C 
CCC~5 lCC34C 
CC036 1~015C 
CCC~7 IC03H 
OC03f 1C031C 
CC03e; 10CH5 
CCC4e ICC 3 8C 
C0041 1003'15 
CCC42 100405 
OCC4? lC041(-
CCC44 IC042C 
CCC4"i lCC44( 
CCC4e lCC45C 
OCC47 IC046C 
CCC4~ 1CC47C 
CCC4e; 1CC4EC 
ceC5C 1C04QC 
CCC51 1CC50C 
OCC52 1000; 1C 
OCC53 100521.: 
CCC~4 loc~n 

00C55 100524 
CCC56 IO/"l5U 
CCC51 ICC53C 
CCC5E lCC54C 
CCC5<; lC055C 
CCCtO 1C056C 
OCCl:I lC051C 
(10062 10C580 
00061 1005QC 
CCCe4 ICCHC 
CCC65 1C061C 
CCCH ICCt2C 
CCCl:l lC0625 
aC06A IC'063C 
CCCl:'1 lC064C 
CCC1C lC065C 
CCC7l lC0660 
(CC72 ICC6H 
00073 1006flC 
00C14 lCC6e;c 
CCC75 lC01CC 
CCC16 10011C 
CCCH 100720 
eCOle lCC13C 
OOC19 10014C 
(CefO 1CC15C 
occel HCHC 
CCCe2 lCOHC 
CCCE3 1CC18C 

Figure 61. 

210 

!D~~T!~!{:AT!O~ ~~~!S!O~= 

PReGRA~-lt. TESTRUN. 
AUTMeR. PROGRA~MER NAME. 
INSTALLATIC~. NEk YORK PRO~RAMMI"G CENTER. 
tATE-WRITTEN. JULY 12, lq6e. 

CATE-C(MPILED. MAY 6,1911 
REMARKS. THIS PReGRA" HAS BEEN WRITTEN AS A SAMPLE PROGRAM FOR 

C080L USERS. IT CREATES AN OUTPUT FILE AND READS IT BACK AS 
INPUT. 

ENVIRONMENT DI~ISIQN. 
CONFIGURATION SECTION. 

C;r.::I.:R{:~-r.::r.::"~ljT~A = ! !!-3~O-~~Q = 
08JECT-CCpoIPUTER. 18M-3f:O-H'50. 

INPLT-CUTPUT SECTICN. 
F ILE-C (NTRel. 

"' ··5-Etf-£-l··-f-H.-E--l '~5S';-G-N" Ta··~T-£~aa--:a-~fiffi.-e·.-

SELECT FILE-2 ASSIGN TO UT-2400-S-SAMPLE. 
eAU CIVISICt\. 
fILE SECTICN. 
Fe Fit E-l 

LABEL RECORDS ARE OpollTTED 
BLCCK ceNTAINS 100 C~ARACTERS 
IIfCCPC CCt\TAINS 20 e~ARACTERS 
RECORDING ,",ODE IS F 
CATA REeCRC IS RECORt-l. 

01 PEceRD-l. 
C2 FIELC-A PICTURE IS XI2CI. 

FC FILE-2 
LAeEL ~EecPCS ARE C,",ITTEC 
BLeCK COt\TAINS '5 RECCRDS 
IIECCIIC eCNTAINS 20 C~ARACTERS 
AECCRDIt\G "'(CE IS F 
CATA RECORD IS RECORC-2. 

Cl PECCRC-2. 
C2 FIELC-A PICTURE IS X1201. 

"CPKI~G-STCRAGE SECTION. 
17 KClNl FleTUPE S99 CC,",F SYNC. 
11 t\CM8ER PICTURE s<;e; C(,",F SYNC. 

Cl FillER. 
C2 6LPHAefT PICTURE X(261 VALUE "ABCCEfGMIJKLMNOPQRSTUVWXYZ". 
C2 ALPHA REDEFINES ALPHABET PICTURE X (CCURS 26 TlpoIES. 
C2 CEPEt\CENTS PICTURE X(261 VALUE "0123401234C1234C1234C1234 
"C". 
C2 CEPEND REDEFINES CEPEt\CENTS PICTLRE X CCCURS 26 TI,",ES. 

Cl HRK-RECCPC. 
e2 NA"'E-FIELD PICTlRE x. 
C2 FILLfP PICTLRE X VALUE SPACE. 
C2 ~EC(IID-NO PICTURE QQ99. 
(2 FILLER PICTlRE X ~AlUE SPACE. 
C2 L[CATICN PICTURE AAA VALUE "NYC". 
C2 FILLER PI(TlRE X VALUE SPACE. 
C2 NC-Cf-CEPFNCENTS PICTURE )X. 
C2 FILLER PICTURE X(71 VALlE SPACES. 

(1 IIECODA. 
C~ A PICTLRE 5<;141 ~ALlE 12~4. 
C2 e QECEFINES A PICTURE SQ(11 CC,",PUTATIONAL-~. 

P~DCEDlRE CI~ISICN. 
BEGn. 

NOTE T~AT THE FCLLCWING CPENS T~E DUTPlT FILE TO 8E CREATED 
At\C 1~ITltLIZES CO~NTERS. 

STEP-l. [PEt\ ClTPUT FILE-l. ~CVE ZEIIC TC KCUt\T NCMeER. 
~CTE T~AT THE FDLLO~It\G CREATES INTERNALLY THE IIECCRCS TC eE 
CCt\Ttlt\Et IN T~E FILE, WRITES THEM ON TAPE, ANC CISPLAYS 
T~E~ eN T~E CCt\SCLE. 

STEP-2. ACC I TO KCUNT, ACD 1 TC NCMBEII, MC~E ALP~A (KCLNTI TC 
t\A"E-F IHC. 

CC,",PlTE B = B + 1. 
,",OVE CEPEt\D IKCLNTI TO NC-CF-DEPENCENTS. 
~CVE t\[~eER TC IIEeCRC-~C. 

STEP-3. DI~PLAY ~CPK-RECCRC LPCN CCNSOLE. ~RITE IIE(CRD-I fAC" 
W(I'K-RECfRC. 

STEP-4. PE~FCR,", STEP-2 T~PU STEP-3 UNTIL KCUNT IS ECUAL TC 26. 
NCTE THAT THE FOLLOhING CLCSES OUTPUT ANC RECPENS IT AS 
It-PUT. 

STEP-5. CLCSE FilE-I. CPEN I~FlT fILE-2. 
NOTE T~AT THE FOLLOWING READS SACK THE FILE ANC SINGLES CLT 
E"FL(YEES kITH NC DEPENCENTS. 

STEP-~. READ FILE-2 RECCIID It\T( ~CPK-RECCRC AT ENC GC TO STEP-8. 
STEP-7. IF t-O-OF-CEPENDEt-TS IS ECUAL TO "0" ~OVE ·Z" TO 

NC-CF-DEPEt\CENTS. EX~leIT t\A,",EC WCIIK-RtCORD. GC TO 
STEP-6. 

STEP-B. (LCSE FILE-2. 
5TCP RLN' 

Sample Program (Part 1 of 5) 



I HRNL NA"'E LH SCURCE NA"E 
C""'=1-148 Fe F IlE-l 
CN"'=1-161 (1 HCCPC-I 
CNM=I-IBf' (2 FiElC-A 
C""'=1-205 FC FllE-2 
0""=1-224 (I PECCPC-2 
C""':1-245 (2 FIELC-A 
0."'=1-265 11 KCUNT 
DN"'=1-28( 11 NC"'BER 
C""':1-2<;6 Cl FILLER 
C""'=1-315 (2 AlP!-ABET 
ON"'=1-3]~ (2 ALPHA 
C""'=1-351 C2 CEPEI\DENTS 
0""=1-371 (2 CEPE"D 
CN",= 1-387 Cl "'CRK-RECORD 
c",.,=1-411 C2 "tME-FIElC 
0t-."=1-431 (2 "lllFR 
C"fI'=I-45( (2 REeCRC-NC 
C""=1-46<; C2 fILLER 
CNM:I-4eE (2 lCCATlCN 
n"'=2-CO( (2 fIll ER 
[1\"=2-C1<; C2 !lC-CF-OEPE"CE"TS 
CN"=2-C45 (2 FILLER 
CI\"=2-C64 CI HeeHA 
r;",,=2-(84 C2 :-0 CN"=2-CC;': (2 

TO 

SAllE AREA 
Sk ITC!-
TALL'I 
SCRT SA\lE 
F" TPY-~ A'vE 
sePT ((RE SIZE 
RET CCCE 
SOT HT 
"CPKlf\<i CELLS 
SOT FILE SIU 
S(RT "ceE SIZE 
PG T-I;" Tel 
TCT-I;f\ TeL 
"(C"FYI< 
lE/l.GlH OF "" TBL 
URfl I'ET 
CLRRE"T PI<IOIlY 
Uf\LSEC 
I"ITI Accn 
CEeLG TAeLE PTR 
UI\USEC 

fi\ C\lERFl(~ CEllS 
~eL CELLS 

CECRAC R CELLS 
TE"P STC!'tlGE 
TEfoIP ~lORAGE-2 

TE"P STCI<IIGE-] 
TE"!, STrI'IIGE-4 
ell. CELL S 
I;lC CElLS 
SBl CELLS 
I"CEX CelLS 
SUP/l[R (EllS 
nCll CEllS 
PF"'CTl CEllS 
FHS/!\I CELLS 
1;" CEll S 
StI\lE IIREtI =2 
S/H IlIlEA =~ 

)(SAS" CElL 5 
)SA CELLS 
FIlRUI CElLS 
I1PTSA" AREA 
CI-ECKFT (TP 
\oCC" TEL 
[EBLG TABLE 

ee24C 

eC24C 
C(2e8 
CC2AC 
(e2SC 
((2C;4 
CC2Q8 
(e2C;C 
C(2C;E 
(C2AO 
CODC 
onC4 
CC3CB 
CC30C 
COtC 
(C3E4 
(C3E6 
COH7 
ce3Ee 
cnFC 
CCH4 
CC3Fe 
OOH 
CC3FC 
CC4ce 
(C4CB 
C(4IO 
(C4IC 
C(4IC 
(C41C 
(C4 Ie 
CC418 
((4IE 
((41E 
CC42C 
C(42C 
((42C 
CC424 
e(42e 
((428 
CC4]C 
(e43C 
(C4~C 

CC434 
C(4~4 

CC438 
CC43!' 

EJSE 
OCB=OI 

El=1 
El:I 

OCB=02 
I!l=2 
Bl:2 
Bl:] 
EL=3 
BL:3 
I!l=] 
I!L=] 
Bl=] 
I!L=3 
Ell=3 
ElL=3 
1!l=3 
I!l:3 
I!L=] 
I'L=] 
Bl=] 
BL=3 
Bl=] 
Bl=] 
I'L=] 
I!l=3. 

OISPl 

OCO 
000 

oeo 
CCO 
ceo 
002 
eC8 
ce8 
CC8 
C22 
022 
040 
(40 
C4I 
C42 
C46 
C41 
C4A 
04B 
C40 
C58 
C58 
C58 

Figure bl.. Sample Program (Part 2 of 5) 

INTR"l "A"'t: CEFINiT 101</ USA<iE R 0 Q '" ON"'=1-148 CSAM F 
ON"': 1-1(:1 OS CCl20 GROUP 
0t-. .... 1-188 os 20C OISP 
0"''''=1-2C5 CSA'" 
ONM: 1-224 CS CCl20 GROUP 
D"""1-245 CS 2e( OISP 
ONM=I-265 OS IH CC"P 
CNM=1-280 CS 1H COIIP 
ON"=1-296 CS OCL52 GROUP 
ON"=I-]15 DS 26( CISP 
D""=1-3]3 CS IC OISP R C 
0""':1-]51 CS 26C DISP 
ON ... = 1-371 DS Ie OISP R C 
C""'=1-387 CS OCl20 GROUP 
ON"'=l-411 CS lC OISP 
CN"'=1-431 CS le OISP 
C~":1-45C CS 4C CISP-"" 
ON .. =1-46C; OS lC OISP 
CNM=I-488 CS ]C DISP 
0",,=2-0CO es Ie CISP 
ON"'=2-Cl<; DS 2C CISP 
C""=2-C45 CS 7C OISP 
0""=2-C64 CS CCL4 GROUP 
CNM=2-CB4 CS 4C OISP-",., 
C""=2-095 CS 4P CO"p-) R 

Program Checkout 211 



LITERAL POOL HEX I 

CC4A!! 11IT+0) CCCOCOCI lCOOCOlA COltB05EF 4BOOOOCO COOOOOCO 

t ISPUV lITEIIAl5 le([1 

CCl.;eC fl Tl+2Cl '\o(II!(-IIECCII[' 

PGT CC450 

CIIEIIFlOI CELLS CC45C 
IIIIITLAL CElLS CC45C 
FIICCEOlllE "'AME CElLS CC4l:C 
HHIIATEC ""ME CEllS CC4Be 
r: C.!LAJJJ:J~_E_S_~ __ U,lJ_S __ OClt9B 
111\1 CEll S (C'i;At 
LlTEIIALS CC4AB 
CISPLAv LITEIIALS 004ec 

IIEGISTEII ASS«r>.,.HT 

IIEG (: eL =3-® 
REG 7 H =1 
PEG E! RL =2 

ioCR 1<1 "'G-STCFAGE ST ~flT5 AT lceAT IC,.. 001EC FOR A LENGTH OF (C06C. 

5B ·RHIr>. 
O(04CA STAIIT Eeu • 
ceC4CE C1 CC BCR 0.0 
OCC4U 5f' FC ( ,OOC L 15.00CIO.12) IIIILBOCeG4) 
C(C4CE C'5 EF BHR 14.15 
C(C4CC '5E Fe C 01C L 15.01CI0.121 Ilf ILBOFLW11 
CC04C4 C5 IF BALR 1,15 
(((40(: ((00CC3A DC X' OOOCOO]A' 

61 ·STEP-1 
((C4CA 58 FC ( OOC L 15.((CIC.l21 IIIIlBOOeG41 
eCC40E C'5 EF BALR 14.15 
C(CltEC 58 FC C 01C L 15.CICIC.121 'vllleCFLloill 
(CC4E4 C5 IF BALR 1.15 
CCC4Ef C((CCC3D DC x'0000003C' 

61 (PEr>. CCIJ4EA Sf' FC C OOC l 15,(CCIC.121 'vlllBOD(lG4) 
CCCltEE (5 EF BAlR 14.15 
(((4H '5E I( C 04€ l I.C48IC.121 eCE'=1 
CCC4F4 C2 (1 1 032 C 06C MIIC 0)2(2.1I.C(:CI121 LIT+8 
((C4FA D2 Cl 1 OtC C C62 Mile 060(2.1),062(12) LlT+1C 
(CC5CC 5C I( D IE 8 5T 1.1E8(0.13) SA'v3 
CCC5C4 <;2 8F ( lEA Mill 1E8Inl.X'8F· SA'v3 
eec'5C€ 41 I( ( IE e LA 1.1E8(0.13) SAII3 
cecsce CA 13 5"C Ie; 
((CSC!' SA 1C 048 L 1.04810.121 cce=1 
ceC512 18 21 LII 2.1 
CC0514 S€ FC 030 L 15.C3CIC.1I 
eCC':H C5 EF BALli 14.IS 
CCC51A SC 10 C lAC ST 1,18CIC.UI Bl =1 
ceCStE 5f 7C D 1 AC l 7.1PCIO.131 (lL = 1 

t:l "'[IIE OCC':22 (2 (1 6 OGO C C 5 E M"C CCOI2.(:I.C5E(121 C""=1-265 LIT tC 
CCC528 C2 01 6 1)02 C CS€ MIIC 002(2.61.C5EC12) O"''''=1-2E!0 Ll hC 

(:'5 *STEP-2 
CCC'52E P~;Cl EC;l • 
ceC52E 5€ Fe OOC L 15.00CIO,121 l,c (LeOCRG4) 
CCC':~;; CO: EF e/llR 14,15 
CCO'534 ':E FC 01C L IS.OICIC.12) 'vIlLI!CfU.lI 
(eC'5~f (<; 1 F I3ALR 1.1S 
CCe'53.ft ceeCOC41 DC X'00000C41' 

t,S Ace COC':3f 48 3C C OSA It- 3,0'5ACC,12) LIT+2 
C(C':lo2 itA 3C t: 000 AI- 3.0CCIO.61 CIII"=1-265 
CCCo;lol: 4C 3C t: oec STH 3.C(0IC,61 Ct.,. = 1-265 

(:<; ADC eccslo~ 48 3C ( OSII u- 3.C5AIC012) LI T+2 
cecr;4f loA ~C (: ~C2 III- 3,OC210.61 C"'''=1-2EO 
CC00;52 4C 3C (: OC2 Sl ... 3,OC2(0.61 C,.,I/=1-2€0 

(:S 1010 liE CCCS5t 41 4C 6 00f' l.ft 4.0C810.(:1 CN"'=1-3,?~ 

cec 0: '50'1 4E 2e t: CCC LH 2.00010.61 Ct>."=I-Uo; 
CeC'5SF 4C 2C ( OSA ,., ... 2.0SAI00121 LIT+2 
CeC'562 III lo2 IIIl 4.2 
CCC'5l:4 S£' 4e c OS€ S 4,CS61C0121 lil-tO 
CCCS6f' ':iC 4C C lOR ST 4,lCeCC.131 585= I 
CCC56C "ie EC G 108 L 14.1C8(C.131 ses= 1 
CCC57C C2 OC t: 040 F OCC "'"C 04011,61,oeCI141 C"',,= 1-411 C".,.= 1-333 

(:7 UJf"PLTE CC0576 FA 3C 6 058 C C5( AP C5EI4.61.C5(ll.121 0"'''=2-<;<; L1 T+4 
(:E! "'(1\iF (e Co; 1( 41 loC t: 022 LII 4.02210,6) C"'''= I-~71 

CCC5ec 4€ 2C l: OCC Lt- 2.CCCIC.6) ["'''=1-265 
c:eO;A4 4( 2C C C5~ /lit- 2,CSIIIO,121 lIT+2 
cccr;e~ 10'1 42 AP 4,2 
C(C'SEt "iE' 40 ( 058 S 4.C5€IC,l21 LI1+C 
ceC'SPE o;C 4C C IDC ST 4.1C(0.131 SRS=2 
CCCo;S2 ':e FC c ID( L 14.1((IC,131 SE'S=2 
C(C5'76 (2 !JC 6 04!! E ')CO MII( OloBIl.(:I,CCCI141 0"'''=2-1<; C"'''=1-371 
ceco;c;c <;2 4e 6 04( "'"1 04CI61,X'40' Cr>."=2-1<;+1 

Figure 61. Sample Program (Part 3 of 5) 

212 



.ST~lISTICS* SCUPCE PECOPCS 83 cATA DiviSiu" STATe~EniS z ~~ PROCEDURE DI~I~ICN STATE~E~TS = 
*OPTICNS IN EfFECT* SIZE: B192C BUF 2768 LI~ECNT = 57 SP_CEI. ALAGW. SEQ, SOURCE 
*CPTIChS IN EfFECT* C~AP, PMAP. NCCLIST, NCSUP~AP, NO~REf. NCS~REF. LOAC. NCCECK. CUCTE, NOTRUNC, fLCW= 35 
*CPltC~S I~ EFFECT. NCTER~. N(NU~. N08ATCH~ NONAME. CC~PILE=Ol. STATE. LI~ VERB, ZWB, SYST 

e~R( ERRCR ~ESSA(E 

I KF 2l<;CI-~ PICTLPE CLALSE IS SIGNlC. VALUE CLALSE UNSIGNEC. ASSU~EO PCSITl~E. 

* Ae[L~p PECLE~tE[ • 

Jce T~STRUN STEP (C TIME C64:!42 onE 11126 

C["PHT In eCCE 5VSTE" OCl 

PRCGRA~ INTERRUPTICN (C~TAI AT LCCATION CI4~~E 

fNTFRQLPT AT CC4C34 

PS~ AT E~TRY Te ABENC CCC4CCCO ECCI45<;C 

He GG52qR PE CCCHA40 PIE cccecccc OEf! CCCE:CSC4 TlCT CCC6CEEB CPlP 800C7000 HI 1'4 OOOCOOOO 
"'SS CCCr.532C Pt</flG 109104C8 FLC 0OOOO4f9 LLS COOCCOOC JL8 cccccocc JSE CCOCOOOO 
FSA 14UCFeC TCfl ccecccco TPIF OCCO'B4e PIe EOCC9f98 NSHE ACC6CCF8 TCT OCOC4CBC 
lJSEP CCCCCCCO 

ACT"''' RI'S ~ 
PRP C14CC: M' RUN SllSTAB C51BCCCC t;SE/F.P coe1402e PSR Ff15CCCC E:OCC4C34 C oeoeoc .T ILI'4K OCOC52ge 

SliP P. CE:CDH N~ SlIc-eetc SlIST~P 0012C172 USE/EP OCCC4IAc PSIof FFF5000D ECC14~~C Q 1 ec ~ 18 liT IL~K OCC14000 
RG C- i C(CCCC~C CCC145'5E CCCOCOOI OCCCOCCI COC1420e 50C14e5E C(C14LCC OCCE:CB9!! 
RG A-15 C(C14C2C OCCI4E2E: CC(14C2C CCC14C2C CCCI447C CCC1426C OCC1420e OCC16C06 

SI/Rfl Cl:CUC N~ S'vC-4CIC ~ZlSTAe C012C172 USE/EP 00CC41A8 PSIof FF04C033 4CCC4:!1C Q E8C~Ee RTIL~K OCCl:C068 
FIG (-7 FIICCCCeE eccc7CCC eCC(5Eb4 OOOOE:47C CCCC529B CCOHCb8 OOOl:COfE OC014000 
II( e-15 0(C14COC OCOC44E2 OOCl:CDCB COCC5EC4 CCCC52~E CCCHAfe 40CC'tlAA CCCCOOOO 

S\lRP (teA"C N" S'vC-lC5,a ~ZlSlAB CCCCDl72 L;SE/EP ccee41AB PSIof FF04C235 BCGCC~~C Q cec~ce .T ILt-.K CCCfCAAC 
FIG (-7 cre 1(:AOe OOCHS3C CCCC 12CC 4CCC41AA eccooeoe cceooooo OCC168C8 80CC435E 
PC E-15 CCCC5~lE OCC16C;~t OCCl:COCC ceeC52~B eC0052se CCC Itc:4C E:CCC43fA 2CC14596 

PIP STCR~GE eCUNCARIE5 CCC14CCC Te eCctCCCC 

Figure 61. Sample Program (Part 4 of 5) 

Program Checkout 213 



CD 

~ECS ~T ENTRY TO ABE~C 

Fl.PT.REGS C-6 cc.cccocc ccccceoo OO.OOOOOC ooccoooo 

QEGS (-1 
RECS 8-15 

00000030 
00014020 

0001455E 
00014826 

00000001 
00014020 

00000001 
00014020 

PIP Sl(RAGE 

C14CCC C'H4054C 4C4C404C C5H!CCCC OCC14C2C FF15COOO 60004C34 
C14C2: 90ECCOO( lR~C05FC 4580FOI0 E3C~E2E3 CC;E40540 C105E2C3 
( 14C4C CH:C21C~4 (lFE41FC CCCIC1FE OC014826 OCC14020 00014C2e 
C140H cec 144H CO(14fC4 ccccccee COCCCCCC ccccoeco oooooceo 
C14CE( oeccccoc ('cccocce eecoecce oce000CO oeccecoc ccoocecc 
(;.1 .. 4.c..4.J: c.c..c..U.L.t:..c...L£J: ... C..c..c..c..CLf.c..c..C.C.c..c. . .!1nrl1r.C\r..r ... .. C1LC11nr.r.o .. ccnno.c.o..o .. 
C 140(( ceeccecl (ccceccc cceecccc OCCCCCCC ecccecce ccoocecc 
C114CH CCCCCCCC ccsunce 02e6cec;O 000C40CO oeccceOl 46Ceooc I 
(1"IC( eCCf:CE:<C c :<cccccr CeCC(F~E OHl~p1e eCC'iOCM 2EC12828 
')1417.'" r':;C6C811C CCCCCOl4 OOCCOOOI occcecec COCCOHB C5EFCCCC 
(11,14': (ccccece cceeccec (I(eCcecc ccceceoo ccccoocc cccoccce 
G1416C ccceccce CPCI4C4l: CCCCCCCI ccecceCl ecccceec ccooecoo 
C141P( CCCCCCCC ecccccce ccececoc OCCCCOCC oceccccc CCCOCCCI 
I'llldA( 4;?CCCC:Cl C;CC1415C E2CiC4[7 03C5404C C2CCOOOC COOOOOCo 
(141CC occcecec eccecccc cccccoce eccccccc CCCCCC14 cccoecce 
C141EC cceecece Cc(ccecc GCCCOCCC cccococr; ccccoecc coecoccc 
(1"2(( ceCICCCI (cccecce C 1C2( ~el, C5CfC1CE CC;CIC2C3 C4C5C6C1 
GI422C E8EC;FC~1 f2F3F4FC FlF2nF4 FCF IF2F3 F4fCFlF2 F3F4FIJFl 
C14~4C C1'1CC(.(C CCCC4CC.5 E8(34(CO OC4·C4C4C 404C4C4C eoeoeoco 
C 142t:e ccccecce (CUCHC oc UCO ~c 5CC14'554 cce16ect: CCOoo030 
C142~C CCC6CCC( CCC14C2C 50C148'5S occ142ec cce6ceC;8 ceo 14020 
Cl"?AC ce C Il:c:t C eee 1~41( 3HCCC4E cccccccc ccccoooo CCCl44EB 
C 14 ~C ( C(ccccce (CC(CCCC cccccoce occccooe OCOOOOOO ecoooooo 

lr~FS eI42Ec-Cll,~EC ~A"E AS ABCVE 
(144C( cccceccc cceccccc cceccccc OOOCCOOO CC014C20 CCCOC43F 
C1442C CCCI4C~C'CCCI4?CC cceecccc 00000000 ocoooooc ecoooooo 
C1444C cccceccc cce I4t-.2C efcl4cr.4 CCCCCCCC cccceccc CCOOOOCI 

o fFPCG~A" TESTIll;~ CD 
A )ec"PlETln crCE = CC1 l.~l ps~ PEFe~E ABE~t FFF5000D E001459C 

#"!";,. 

co.ceeooc eccocece ~cc.ocoooo 
00014208 50014858 00014200 
00014470 00014260 O~ 

00000000 

0006CB98 
00016006 

ccoeooco 000052C;6 ·Pl.fIi .................. $ 
e1CCC;SC;F FC24C1fF • ••••••• O •• O.TESTRII'" AP;"( ~ , "Q __ • 
CC01441C CCOI42(:C • ••••••• c •••••••••• .......... 
ccecccce ecccooeo •••• Y •••••••••••••••••••••••• •••• * 
cceececc cccccceo ••••••••••••••••••••••••••••••••• :$ 

!.J __ e.!J.!.~Ab .t'l'nnnnn 1. -~''''''''''''''''''''''''''''''''''-''''''''''''''-'-'-'''''-.. '.-.• -.. -.--.-' •.•. -.. -.... -
eeccecee eececcoo •.................................. 
QOe14CA4 CCf:8CC48 •.......•...... ........... ..... ~ 
42C6CE3C Oe06CEFC • ......................................... :t 
ccceecce CCCOOCOO ............................................................. ... -
CCCCOCCC c(eCCCCC .................................................................. 
cccc-cccc 8ccoooeo * ............ .................................................. * 
CCCC4CCC CCCCCCCI ..................................................... .......... :t 
CC015e1S CCCCCCM • •••••••• SAilPlE ................................. 
cccccccc CCCOCCCO ................................................................. :0 
cceccccc cccoccce * ............. " .................................................. 
(8eC;E2E3 E4E5E6E1 • ••••••••• eC[EfC~IJKl~NCP'~STLV~)* 
F2F3F4FC CCCOOCOO .YlOI234CI234C1234C12340l2340 •••• * 
FlF2F3C4 c.ceccccc *A .... ~'YC .. •••• 1230 •••• * 
5C01455~ cce 14CC4 It ........................................................... "* CCC14EU CCC14C20 ............. ............... • 3 ••••• .. 
ccoccecc CCcce(CC ... •••••••••••••••••••• Y •••••••• * 
CCOCOC(C eccccecc ••••••••••••••••••••••••••••••••• * 
CCCf:CFF E CCC6CBC;8 .................... •••••••• 8 ••••• 
CC0142CS ccccccco t •• • •••••••••••••••• .e .. e , ., :t •••••• :(\1: 

23CCC1E4 ccccccce ............ ,. ••••••••••••••• u •••• * 

® l~Sl CAR[ H~EEF/vEFE ~l"EE~ EXECLTfC -- (ARC NUI'eER 000067/VERB NUMBER 01. 

~ ~-------CD lfSHL"" CCCC~E CCC(U CCCCf:~ FLek TlUCE 

E~[ (F (eeCl [EelCCI~G AICS 

Figure 61. Sample Program (Part 5 of 5) 

214 



r---------------------------------------------------------------------------------------, 
21 24 

DCB I DCBBUFCB I 
>-

----------T----------T-------------------------r 
-----------~----T-----~-------------------------l 

I 
r---------------J 
I 
v 8 12 

Buffer 
Area 

r-----------T--------T-------------------------, 
I IA (Area) I Buffers I 
L-----------~---T----~-------------------------J 
<-----BUFCB-----+----> 
r---------------J 
V 5 6 24 32 

Logical 
Record 
Area 

,-------1---1------------1--------1-------------) 
L _______ ~ ___ ~ ____________ ~ ________ ~ _____________ ~ 

'---... ---- " 
I 

control I 
data I 

I 
I 

displacement 
field 

variable 
data record 
origin 

---------------------------------------------------____________________________________ J 

Figure 62. Locating the QSAM Logical Record Area 

~oc~:ti!!g Data Areas for Spanned Records 

QSAM: QSAM (sequential) spanned records 
allocate a Logical Record Area in which 
complete logical records may be assembled 
(see "Record Formats"). Figure 62 
illustrates the relationship between the 
DCB, the Buffer Areas, and the Logical 
Record Area. 

1. The DCB contains the DCnBUFCB field at 
a displacement of 21 bytes from the 
origin of the DCB. The contents of 
DCBBUFCB points to the origin of the 
Buffer Control Block (BUFCB) in the 
Buffer Area. 

2e The BUFCB field contains an 
Area-Address (A(Area» at a 
displacement of 8 bytes from the 
origin of the Buffer Area. The 

Area-Address points to the origin of 
the Logical Record Area. 

3. The Logical Record Area contains a 
displacement field at a displacement 
of 5 bytes from its origin. This 
field contains a value from 0 to 8 
indicating the number of bytes the 
record has been displaced. The 
contents of this 1-7 byte field must 
be added to the value 24 (the first 
byte in the variable data record 
origin area' in order to locate tne 
beginning of the logical data record 
within the Logical Record Area. Note 
that the first 4 bytes of the Logical 
Record Area are control data 
indicating the length of the Logical 
Record Area (including the 4 bytes of 
control data). 

~2:t~: The Logical Record Area is not 
allocated for QSAM records formatted in V, 
U, or F mode. 

Program Checkout 215 



r---------------------------------------------------------------------------------------, 
I 
I 
I 
I 
I 
I 
I 
I 

variable 4 variable 
<----bytes----><-bytes-><----------bytes----------> 
r--------------T----T--T--------------------------~ 
I REC-ID I LL 1111 Maximum 01 ~ l ______ ~ _______ ~ ____ ~ __ ~ __________________________ _ 

Logical Record Area 
-- _ .. __ ._. __ . __ .. -1- .. - .. -- ---------.. ---... -.-.--.----- ... -- .--- - . --·-····_-·---·-_·-t-·--·-

18 variable 4 variable 
<--------bytes-------> <--bytes--><-bytes-><--------bytes--------> 
r----------------------T---------T----T----T----------------------
I BUFCB I REC-ID I LL I 111 Data Segment < l ______________________ ~ _________ ~ ____ ~ ____ ~ _____________________ r 

----------~---------------.... -------- -------........ -----------........--
Buffer 

Control Block 
Segment Work Area 

Figure 63. Logical Record Area and Segment Work Area for BD~~l and BSAM Spanned Records 

BSAM-and BDAM: BSAM and BDAM (direct) 
spanned records allocate a Segment Work 
Area. This work area is used for temporary 
storage of record segments before a 
complete logical record is assembled in the 
Logical Record Area. Figure 63 illustrates 
the Logical Record Area and the Segment 
Work Area. 

2. The DECB address plus 12 bytes points 
to the beginning of the Logical Record 
Area. 

1. The DECB address plus 12 bytes points 
to the beginning of the Segment Work 

Note; The segment work area is not Area. 
allocated for BSAM and BDAM records 
formatted in v, U, or F mode. 

2. The DCB address plus 100 bytes points 
to the beginning of the Logical Record 

The following discussion illustrates the Area. 
relationship between the DCB, the Logical 
Record Area, and the Segment Work Area as 
shown in Figure 63. 

1. The DCB address plus 100 bytes points 
to the beginning of the BUFCB (Buffer 
Control Block). 

2. The contents of the BL assigned to the 
level-Ol entry in an FD points to the 
Logical Record Area labeled RMaximum 
01" in Figure 63 (see Figure 59 for an 
example of the BL pointer.) 

BSAM.output 

1. The DCB address plus 76 bytes points 
to the beginning of the BUFCB (Buffer 
Control Block). 

216 

Locating TCAM Data Areas 

In a teleprocessing application, control 
blocks, called queue blocks, are created 
for a given partition/region. For the 
RECEIVE statement, the number of queue 
blocks created agrees with the number of 
queues accessed. For the SEND statement, 
however, only one queue block is created 
for each partition/region. The encircled 
numerals ip Figures 64 and 65 refer to the 
numbered paragraphs below. 

1. The TGT address plus 440 bytes points 
to the SUBCOM field (see Figure 125 in 
Appendix J: "Fields of the Global 
Table"). The fullword at X'50'bytes 
into SUBCOM points to the first 
RECEIVE queue block. The fullworj at 



X'S4' off SUBCOM points to the SEND 
queue block. In both cases, the first 
field (IHADCB) contains the data 
control block (DeB). 

2. At X'S8' bytes into either a RECEIVE 
or a SEND queue block, the first byte 
of the 4-byte BUFRADR field indicates 
~hether the address that follows 
represents a TCAM buffer or a BSAM 
buffer. If the two high-order bits 
are on, the address contained in the 
next three bytes is for a TCAM buffer. 

Notg: For TCAM there is only one 
buffer; for BSAM there is one buffer 
for each queue. 

Relative 
Location Field 

0 

58 

5C 

5E 

60 

74 

78 

7A 

90 

98 

99 

9A 

Figure 64. 

r-----------------, 
I IHADCB 1 I 
~-----------------~ 
I BUFRADR 2 I 
~-----------------~ 
I BUFSIZE 3 I 
~-----------------~ 
I SUMGIVEN 4 I 
~-----------------~ 
I DECBQB 5 I 
~-----------------~ 
I MOREBLKS 6 I 
~-----------------~ 
I AMTLEFT 7 I 
~-----------------~ 
I DATIMSOR 8 I 
~-----------------1 
I QNAMEQB 9 I 
~-----------------~ 
I EORCHAR 10 I 
~-----------------1 
I HELDOVER 13 I 
~-----------------~ 
I ISITPART 14 I L _________________ J 

Fields of the RECEIVE Queue 
Block 

Relative 
Location Field 

r-----------------, 
o I IHADCB 1 ! 

~-----------------~ 
58 I BUFRADR 2 I 

~-----------------1 
5C I BUFSIZE 3 I 

~-----------------~ 
5£ I MOREROOM 7 I 

~-----------------1 
60 I ENDICATR 8 I 

~-----------------~ 
61 I EORCHAR 10 I L _________________ J 

Figure 65. Fields of the SEND Queue Block 

3. In either a RECEIVE or a SEND queue 
block, the next field (BUFSIZE) 
specifies the size of the buffer, 
whose format is pictured in Figure 66. 
(For a list of codes used in the rCAM 
control byte, see Table 24.) 

4. The SUMGIVEN field of the RECEIVE 
queue block indicates the number of 
bytes of data given to the user for 
this request. 

5. The DECBQB field of the RECEIVE queue 
block contains the data event control 
block (DECB). 

6. In the RECEIVE queue block, the 
MOREBLKS field provides the address of 
the next queue block. If the first 
byte of this field is zero, there are 
no additional queue blocks. 

7. For BSAM only, the AMTLEFT field of 
the RECEIVE queue block indicates the 
amount of data being held in the 
buffer from the last request. 

8. For BSAM only. the MOREROOM field of 
the SEND queue block indicates the 
number of unused bytes left in the 
buffer. 

9. The 22-byte DATIMSOR field of the 
RECEIVE queue block contains the date 
and time of the last message received 
from this queue, as well as the source 
of the message. 

10. The ENDICATR field of the SEND queue 
block contains the end indicator (in 
zoned decimal) specified in the COBOL 
source statement. 

11. The QNAMEQB field contains the ddname 
for the queue block specified in the 
COBOL teleprocessing program. This is 
the name the COBOL programmer used in 
the SYMBOLIC QUEUE clause of the CD 
entry. 

12. The EORCHAR field in both the RECEIVE 
queue block and the SEND queue block 
contains the record delimiter 
specified in the MCP. 

13. The HELD OVER field in the RECEIVE 
queue contains a character that, in 
some instances, is the next data 
character. 

14. The ISITPART field in the RECEIVE 
queue block is a switch byte. 

Program Checkout 217 



1 5 6 14 

========I===I===============I===~_~=====_ ~---"-------.....r------____________ 
v 

prefix 
TCAM Source ID 

control 
Data 

Byte 

Not~: The prefix, the TCAM control byte, 
and the source ID must be user specified 
for a SAM file. However, if the user 
invokes the SEND statement to create a 
SAM file for subsequent input, then the 
COBOL compiler adds bytes 1 through 13 
(see Figure XY in the chapter entitle1 
"Using the Teleprocessing Featuren ). 

Figure 66. Structure of a TCAM Record 

INCOMPLETE ABNORMAL TERMINATION 

If a job is abnormally terminated and 
the abnormal termination process goes to 
completion, the following procedures are 
carried out: 

• A dump (ABDUMP) is produced by the 
system. 

• The data sets in the job steps are 
disposed of as specified in the VISP 
parameter (i.e., kept, deleted, etc.). 
This is indicated in the job scheduler 
disposition messages produced for the 
job step. 

• Temporary data sets, including those 
passed from previous job steps, are 
deleted. 

When the abnormal termination process 
does not go to completion (i.e., no end of 
dump message is present), none of these 
procedures will be carried out. Those 
data sets in the job step that were in 
existence previous to the point at which 
the error condition occurred will remain 
in effect. For data sets on direct access 
volumes, the names will remain tabulated 
in the Volume Table of Contents (VTOC) of 
the volume (see nAdditional File 
Processing Information" for details on the 
VTOC). The result of an incomplete 
abnormal termination is that space needed 
by a subsequent job will be unavailable, 
or, if the same job is then rerun, 
duplicate name definition will result for 
those data sets that are newly created in 
the job step. This is true for temporary 
data sets for which the system has 
assigned the name, as well as data sets 
for which the programmer has assigned the 
name. 

218 

Table 24. Codes Used in the TCAM Control 
Byte 

r------T----------------------------------, 
j Code jMeaning i 
~------+----------------------------------~ 
I X'Fl' IThe first block of a multiblock I 
I I message I 
I I I 
I X'FS' I The first block of a multiblock I 

-l~ ... --m-e~-,-.. ··W-i-t-h· -~~J.pril··· ·G·t· . seg-m-e-n:t:· f . 
I I indicated I 
~------+----------------------------------~ 
I X'40' IAn intermediate data block I 
I I I 
I X'F4' IAn intermediate data block, with I 
I I end of segment indicated I 
~------+----------------------------------~ 
I X'F2' IThe last block of a multiblock I 
I Imessage I 
I I I 
I X'F6' IThe last block of a multiblock I 
I I message, with end of segment I 
I I indicated I 
~------+----------------------------------~ 
I X'F3' IA single block message I 
I I I 
I X'F7' IA single block message, with end I 
I lof segment indicated I l ______ ~ __________________________________ J 

SCRATCHING DATA SETS 

To avoid duplicate name definition and 
to ensure that space will be available for 
newly created data sets, the programmer can 
scratch his direct-access volume data sets 
by using the utility program~. To 
scratch such a data set means to remove its 
data set label <which includes its name) 
from the VTOC and to make the space 
assigned to it available for reallocation. 
Scratching does not uncatalog any cataloged 
data sets. This is done by the UNCArLG 
option of the IEHPROGM. 

Note: The information in this section 
about scratching data sets applies only 
when running under MFT. Under the MVT 
option, direct-access volume data sets are 
scratched automatically. For use of the 
system utilities under MVT, see the 
publication !~~_Q~_Qt~l~t~~~. 

If a DSNAME parameter has been specified 
in the DD statement for the data set, the 
IEHPROGM utility program requires the name 
of the data set. For data sets named by 
the programmer, the specified name is the 
dsname. For data sets for which the 
DSNAME=&&name convention has been used, an 
internal name 

name.jobname 



is assigned by the system, where iQQ~~~~ is 
the name of the job and game is from the 
&&name. If no DSNAME parameter is 
specified, an internal name is assigned by 
the system. For data sets with no DSN~ME 
parameter there exists an option by which 
the programmer can specify that all such 
data sets on the volume be scratched, 
without h3ving to specify their names. 

If the programmer wishes to obtain a 
listing of the names of all the data sets 
on a volume, including system-assigned 
internal names, he can use the utility 
program IEHLIST. This program provides a 
listing of the VTOC of the volume. 

Information on how to use these utility 
proqrams is contained in the publication 
IBM Q§~tiliti~~. The following example 
illustrates the job control statements that 
might be used to scratch temporary data 
sets: 

//SCR 
//STEP1 
//SYSPRINT 
//D01 
//OD2 
// 

JOB 
EXEC 
DD 
DD 
DO 

,SCR~TCH,MSGLEVEL=l 

PGM=IEHPROGM 
SYSOUT=A 
UNIT=2311,OISP=OLD 
UNIT=2311,DISP=OLD, 
VOLUME=SER=222222 

X 

//SYSIN DD * 
SCRATCH DSNAME=GOJOB.TEMP, X 

VOL=2311=222222,PURGE 
SCRATCH VTOC,VOL=2311=222222,X 

SYS, PURGE 

In this example, the SYSPRINT DO 
statement specifies the output data set for 
the listing and the DOl DO statement 
specifies the system residence volume. The 
other DD statements specify the volume 
serial number of the volumes that can be 
mounted on which the data sets have been 
written. These DD statements are needed to 
allocate the required devices. The first 
SCRATCH statement eliminates a data set for 
which DSNAME=&&TEMP had been specified on 
the DD statement, and the second SCR~TCH 
statement eliminates all data sets on the 
volume for which no DSNAME parameter had 
been specified. 

Note that the possibility of duplicate 
name definition also applies to cataloged 
procedures in which temporary data sets are 
used. 

For those procedures that are executed 
often, the programmer may wish to include, 
at the beginning of his job, a procedure to 
scratch all temporary data sets. 

Program Checkout 219 



Some techniques for increasing the 
efficiency of a COBOL program are described 
in this chapter. It is divided into seven 

--part-s-.--- - -The-first -f-our--p--a-rt-s--dea-l- -in 
general with coding a COBOL program. The 
fifth is concerned with the Report Writer 
feature, the sixth with table handling, and 
the seventh with queue structure 
description. 

spacing the Source Program Listing 

There are four statements that can be 
coded in any or all of the four divisions 
of a source program: SKIP1, SKIP2, SKIP3, 
and EJECT. These statements provide the 
user with the ability to control the 
spacing of a source listing and thereby 
improve its readability. 

CONFIGURATION SECTION 

To take advantage of the new instruction 
set on the IBM System/370, the programmer 
should specify IBM-370 as the computer-name 
in the OBJECT-COMPUTER paragraph. 

APPLY WRITE-ONLY Clause 

To make optimum use of buffer space 
allocated when creating a standard 
sequential file with blocked V-mode 
records, the programmer may use the APPLY 
WRITE-ONLY clause for the file. Use of 
this option causes a buffer to be truncated 
only when the next record does not fit in 
the buffer. (If the APPLY WRITE-ONLY 
clause is not specified, the buffer is 
truncated when the maximum size record will 
not fit in the space remaining in the 
buffer.) When using APPLY WRITE-ONLY, all 
the WRITE statements must have FROM 
options. None of the subfields of the 
associated records may be referred to by 
procedure statements and they may not be 
the object of the DEPENDING ON option in an 
OCCURS clause. 

220 

EKC:-e--p-t-f---e-r-- --APPb¥ - WRITE- G-NL¥-, AfH{-~NC-ING;

POSITIONING, and APPLY RECORD-OVERFLOW, all 
the options for variable length record 
files apply to spanned records. 

APPLY RECORD-OVERFLOW Clause 

The APPLY RECORD-OVERFLOW clause makes 
more efficient use of direct access storage 
space by using the Track Overflow feature. 
If APPLY RECORD-OVERFLOW is specified, a 
record that does not fit on a track will be 
partially written on that track and the 
remainder will be written on the next 
available track. 

The use of the APPLY RECORD-OVERFLOW 
option requires that Track Overflow be 
specified at system generation time. 

To minimize processing time with indexed 
files accessed randomly, the programmer 
should use the APPLY CORE-INDEX clause. 
Use of this option causes the highest level 
index to be brought into core storage for 
input/output operations. This speeds 
processing by eliminating the extra time 
needed to search the index on the volume. 

The use of BDAM-W for file organization 
results in less system generated coding 
than for BDAM-D. When BDAM-D is used and a 
WRITE statement is issued, extra code must 
be generated to compare the contents of the 
ACTUAL KEY of the WRITE statement with the 
key of the precejing READ statement to 
determine whether the system should add or 
update a record. If the keys are the same 
the record is updated. If the keys are 
different the record is added. 



BDAM-W eliminates this comparison step. 
The system adds a record when a wRITE 
statement is issued and updates a record 
~hen a REWRITE statement is issued. 

DATA DIVISION 

OVERALL CONSIDERATIONS 

Prefixes --------

Assign a prefix to each level-01 item in 
a program, and use this prefix on every 
subordinate item (except FILLER) to 
associate a file ~ith its records and 
work-areas. For example, MASTER is the 
prefix used here: 

FILE SECTION. 
FD MASTER-INPUT-FILE 

01 MASTER-INPUT-RECORD. 

WORKING-STORAGE SECTION. 
01 MASTER-WORK-AREA. 

05 MASTER-PAYROLL PICTURE 9(3). 
05 MASTER-SSNO PICTURE 9(9). 

If files or work-areas have the same 
fields, use the prefix to distinguish 
between them. For example, if three files 
all have a date field, instead of DATE, 
DAT, and DA-TE, use MASTER-DATE, 
DETAIL-DATE, and REPORT-DATE. Using a 
unique prefix for each level-Ol and all 
subordinate fields makes it easier for a 
person unfamiliar with the program to find 
fields in the program listing, and to know 
which fields are logically part of the same 
record or area. 

when using the MOVE statement ~ith the 
CORRESPONDING option and referring to 
individual fields, redefine or rename 
"corresponding" names with the prefixed 
unique names. This technique eliminates 
excessive qualifying. For example: 

01 MST-WORK-AREA. 
05 SAME-NAMES. <***> 

10 LAST-NAME PIC ••• 
10 FIRST-NAME PIC ••• 
10 PAYROLL PIC ••• 

05 DIFF-NAMES REDEFINES SAME-NAMES. 
10 MST-LAST-NAME PIC ••• 
10 MST-FIRST-NA}lE PIC ••• 
10 MST-PAYROLL PIC ••• 

01 RPT-WORK-AREA. 
05 SAME-NAMES~ (***) 

10 PAYROLL PIC ••• 
10 FILLER PIC ••• 
10 FIRST-NAME PIC ••• 
10 FILLER PIC ••• 
10 LAST-NAME PIC ••• 

PROCEDURE DIVISION. 

IF MST-PAYROLL IS EQUAL TO HDQ-PAYROLL 
AND MST-LAST-NAME 
IS NOT EQUAL TO PRRV-LAST-NAME 
MOVE CORRESPONDING 
MST-WORK-AREA 
TO RPT-WORK-AREA. 

Not~: Fields marked with a triple asterisk 
(***) in the foregoing listing must have 
exactly the same names for their 
subordinate fields in order to be 
considered corresponding. The same names 
must not be the redefining ones, or they 
will not be considered to correspond. 

The programmer should use widely 
incremented level numbers, i.e., 01, 05, 
10, 15, etc., instead of 01, 02, 03. 04, 
etc., in order to allow room for future 
insertions of group levels. For 
readability, indent level numbers. Use 
level-SS nu~bers for codes. Then, if the 
codes must be changed, the Procedure 
Division coding for tests need not be 
changed. 

Programming Techniques 221 



FILE SECTION 

REcoaD CONI'AIHS Clause 

The programmer should use the RECORD 
CONTAINS integer CHARACTERS clause in order 
to save himself as well as any future 

·-·-·----·----·--~-re-r-~"i-e-·-·=t-a-s-k---s-f----e~i-rr\f--{:;-lTe---E!ata ..... 
record description positions. Also, the 
compiler can then diagnose errors if the 
data record description conflicts with the 
RECORD CONTAINS clause. 

COMMUNICATION SECTION 

The Communication Section of a COBOL 
program must be specified if the program is 
to take advantage of the Teleprocessing 
Feature (TPl. Through the inclusion of 
communication Description (CD) entries, the 
programmer establishes communication 
between the COBOL object program and the 
Message control Program (MCP). 

When specified, the Communication 
Section must contain at least one CD entry. 
For example, a single CD entry would be 
sufficient for applications with either an 
input or an output message but not both. A 
COBOL TP program that is both to receive 
and to send messages must contain at least 
two1 CD entries, as below. 

CD cd-name FOR INPUT. 
CD cd-name FOR OUTPUT. 

The CD entry may instead be pre-written 
and included in the user-created library. 
The programmer may then include the entry 
in a COBOL program by means of a COpy 
statement. 

CD cd-name COpy library-name. 

The input CD contains such information as 
input queue and sub-queue names, message 
date and time, the source, the message text 
length, the end key, the message status 
key, and the queue depth. The output CD 
contains the text length, a status key, an 
error key, and the name of the output 
queue. For information about the CD 
formats possible, see the publication IBM 
OS Full American National Standard COBOL, 
Order-No:-GC28-6396:--------------------

1Multiple input and output CD entries ~ay 
be specified. 

222 

~2t~: The required inclusion of the 
parameter DATE=YES in all input TPROCESS 
entries whose destination is a COBOL 
program results in the placing of the date 
and time of message entry in the input CD 
(see the section "Additional Interface 
Considerations" in the chapter entitled 
"Using the Teleprocessing Feature"). 

WORKING-STORAGE SECTION 

In a large program, the programmer 
should plan ahead for breaking the programs 
into separately compiled modules, as 
follows: 

1. When employing separate modules, an 
attempt should be made to combine 
entries of each Working-Storage 
Section into a single level-Ol record 
(or one level-01 record for each 32K 
bytes). Logical record areas can be 
indicated by use of level-02, level-03 
etc., entries. A CALL statement with 
the USING option is more efficient 
when a single item is passed than when 
many level-01 and/or level-77 items 
are passed. When this method is 
employed, mistakes are more easily 
avoided. 

2. Areas that do not have VALUE clauses 
should be separated from areas that do 
need VALUE clauses. VALUE clauses 
(except for level-88 items) are 
invalid in the Linkage Section and the 
Communication Section. 

3. When the Working-Storage Section is 
one level-01 item with no VALUE 
clauses, the COpy statement can easily 
be used to include the item as the 
description of a Linkage Section in a 
separately compiled m01ule. 

4. See "Use of Segmentation Feature" for 
more information on how to modularize 
the Procedure Division of a COBOL 
program. 

When anyone or more of the options 
PMAP, CLIST, and DMAP are specified, both 
the location and the length (in 
hexadecimal) of the Working-Storage 
Section, if any, are provided (see the 
section "Options for the Compiler" in the 
chapter entitled "Job Control Procedures"). 



Alternatively, the programmer may locate 
this section in object-time dumps by 
including the following two statements in 
the program, in the order given:. 

77 FILLER PICTURE X(44), VALUE npROGRAM V/ 
XXXXXXXX WORKING-STORAGE BEGINS HEREn. 

01 FILLER PICTURE X(42), VALUE "PROGRAM 
XXXXXXXX WORKING-STORAGE ENDS HERE". 

These two nonnumeric literals will 
appear in all dumps of the program, 
delineating the Working-Storage Section. 
The program-name specified in the 
PROGRAM-ID clause should replace the 
XXXXXXXX in the literal. 

DATA DESCRIPTION 

The Procedure Division operations that 
most often require adjustment of data items 
include the MOVE statement, the IF 
statement when used in a relation test, and 
arithmetic operations. Efficient use of 
data description clauses, such as 
REDEFINES, PICTURE J and USAGE, avoids the 
generation of extra code. 

REDEFINES Clause 

REUSING DATA AREAS: The main storage area 
can be used more efficiently by writing 
different data descriptions for the same 
data area. For example, the coding that 
follows shows how the same area can be used 
as a work area for the records of several 
input files that are not processed 
concurrently: 

WORKING-STORAGE SECTION. 
01 WORK-AREA-FILE1. 

(largest record d~scription for FILE1) 

01 WORK-AREA-FILE2 REDEFINES 
WORK-AREA-FILE1. 

(largest record description for FILE2) 

ALTERNATE GROUPINGS AND DESCRIPTIONS: 
Proqram data can often be described more 
efficiently by providing alternate 
groupings or jata descriptions for the same 
data. For example, a program refers to 
both a field and its subfields, each of 
which is more efficiently described with a 

different usage. This can be done with the 
REDEFINES clause as follows: 

01 PAYROLL-RECORD. 
as EMPLOYEE-RECORD PICTURE X(28). 
as EMPLOYEE-FIELD REDEFINES 

EHPLOYEE RECORD. 
10 NAME PICTURE X(23). 
10 NUMBERX PICTURE S9(S) COMPo 

as DATE-RECORD PICTURE X(10). 

As an example of different data 
descriptions specified for the same data. 
the foilowing illustrates how a table . 
(TABLEA) can be initialized: 

as VALUE-A. 
10 Al PICTURE S9(9) COMPUTATIONAL 

VALUE IS ZEROES. 
10 A2 PICTURE S9(9) COMPUTATIONAL 

VALUE IS 1. 

10 Al00 PICTURE S9(9) 
COMPUTATIONAL VALUE IS 99. 

as TABLEA REDEFINES VALUE-A 
PICTURE S9(9) COMPUTATIONAL 

OCCURS 100 TIMES. 

Note: Caution should be exercised when 
redefining a subscript; for if the value of 
the redefining data item is changed in the 
Procedure Division, no new calculation for 
the subscript is performed. 

DECIMAL-POINT ALIGNMENT: Procedure 
6ivision-operations-are most efficient when 
the decimal positions of the data items 
involved are aligned. If they are not, the 
compiler generates instructions to align 
the decimal positions before any operations 
involving the data items can be executed. 
This is referred to as ~~~!!gg. 

Assume, for example, that a program 
contains the following instructions: 

WORKING-STORAGE SECTION. 
77 A PICTURE S999V99. 
77 B PICTURE S99V9. 

PROCEDURE DIVISION. 

ADD A TO B. 

Programming Techniques 223 



Time anj internal storage space are 
saved by defining Bas: 

77 B PIC1URE S99V99. 

If it is inefficient to define B 
differently~ a one-time conversion can be 
done, as explained in "Data For~at 
Conversion." 

FIELDS OF UNEQUAL LENGTH: When a data item 
is moved to another data item of a 
different length, the following should be 
considered: 

• If the items are external decimal 
items, the compiler generates 
instructions to insert zeros in the 
hiqh-order positions of the receiving 
field when it is the larger. 

• If the items are nonnumeric, the 
compiler generates instructions to 
insert spaces in the low-order 
positions of the receiving field (or 
the high-order positions if the 
JUSTIFIED RIGHT clause is specified. 
This generation of extra instructions 
can be avoided if the sending field is 
described with a length equal to or 
greater than the receiving field. 

Use QK-Sign: The absence or presence of a 
plus or minus sign in the description of an 
arithmetic field often can affect the 
efficiency of a program. The following 
paragraphs discuss some of the 
considerations. 

Decimal Items: The sign position in an 
internal or external decimal item can 
contain: 

1. A plus or minus sign. If S is 
specified in the PICTURE clause, a 
plus or minus sign is inserted when 
either of the following conditions 
prevails: 

224 

a. The item is in the Working-Storage 
Section and a VALUE clause has 
been specified. 

b. ~ value for the item is assigned 
as a result of an arithmetic 
operation during execution of the 
program. 

If an external decimal item is 
punched, printed, or displayed, an 
overpunch will appear in the low-order 
digit. In EBCDIC, the configuration 
for low-order zeros normally is a 
nonprintable character. Low-order 
digits of positive values will be 
represented by one of the letters A 
through I (digits 1 throuqh 9); 
low-order digits of negative values 

will be represented by one of the 
letters J through R (digits 1 through 
9). 

2. A hexadecimal F. If S is not 
specified in the PICTURE clause~ an F 
is inserted in the sign position when 
either of following conditions exists: 

a. The item is in the Working-Storage 
Section and a VALUE clause has 
been specified. 

b. A value for the item is developed 
during the execution of the 
program. 

An F is treated as positive, but is 
not an overpunch. 

3. ~n invalid configuration. If an 
internal or external decimal item 
contains an invalid configuration in 
the sign position, and if the item is 
involved in a Procedure Division 
operation, the program will be 
abnormally terminated. 

Items for which no S has been specified 
(~~~~~~~~~!~~~) are treated as absolute 
values. Whenever a value (signed or 
unsigned) is stored in, or moved in an 
elementary move to an unsigned item, a 
hexadecimal F is stored in the sign 
position of the unsigned item. For 
example, if an arithmetic operation 
involves signed operands and an unsigned 
result field, compiler-generated cod~ will 
insert an F in the sign position of the 
result field when the result is stored. 

For internal and external decimal items 
used as input, it is the user's 
responsibility to ensure that the input 
data is valid. The compiler does not 
generate a test to ensure that the 
configuration in the sign position is 
valid. 

When a group item is involved in a ~QY~, 
the data is moved without regard to the 
level structure of the group items 
involved. The possibility exists that the 
configuration in the sign position of a 
subordinate numeric item may be destroyed. 
Therefore, caution should be exercised in 
moves involving group items with 
subordinate numeric fields or with other 
group operations such as READ or ACCEPT. 

This clause, which specifies both the 
position and the mode of the operational 



sign for a numeric data description entry, 
is requirea only ~hen an explicit 
description of the sign's properties is 
necessary. The SIGN clause may be 
specified for either a numeric data 
description entry whose PICTURE contains 
the character ~ or a group item that 
contains at least one such numeric data 
description entry. 

The numeric data description entries to 
which the SIGN clause applies must be 
described, implicitly or explicitly, as 
USAG~ IS DISPLAY. Only one SIGN clause may 

be associated with any given numeric data 
description entry. 

The format of the SIGN clause is as 
follows: 

{
LEADING} 

SI~~ IS [SEPARATE CHARACTER] 
TRAILING 

Qse_2f_th~~~~~RA~~_~HAg~CTER~Qt~Qg: The 
programmer can elect to consider the 
character ~ in the PICTURE character string 

as a separate character or not, as he 
chooses. If the SEPARATE CHARACTER option 
is specified: 

• The position of the character S is not 
taken to be a digit position. 

• The character S is counted in 
determining tne size of the data item. 

• The characters '+' and '_I are used for 
the positive and the negative 
operational signs, respectively. 

• If neither the character 1+' nor the 
character I_I is present in the data at 
object time, an error takes place and 
the program ABENDS. 

Whether or not the SEP~.RATE, CH]l,.RACIER 
option is in effect, the operational sign 
is assumed to be associated with either the 
LEADING or the TRAILING digit position, as 
specified, of the elementary numeric data 
item. 

Programming Techniques 22S 



Table 25. Data Format Conversion 
r---------T------------T---------T-----------------T-----------T------------------------, 
, , I I I Converted I I 
, , IBoundary I I for I I 
I I Bytes I Alignment I I Ari thmetic , I 
I Usage I Required IRequired I Typical Use IOperations ISpecial Characteristics I 
~---------+------------+---------+-----------------t----- ~{------- ----------~ 
I DISPLAY 11 per digit I No IInput from cards, I Yes IMay be used fo~ numeric I 
I (externall(except for I I output to I I fields up to 18 digitsl 
ldecirrfalJ rvt- -r r- cards, lrsti-ngs I , Tong. I 
I I I I I I Fields over 1S digits I 
I I I I I I require extra in- I 
I I I I I I structions if used in I 
I I I I I \ computations. \ 
~---------f------------f---------f-----------------f-----------+------------------------~ 
I DISPLAY 11 per \ No \Input from cards, \ Yes \Converted to I 
\ (external I character I I output to I I COMPUTATIONAL-2 I 
Ifloating I (except for I I cards, listings I \ format via COBOL I 
I point) I V) I I I I library subroutine. I 
~---------+------------+---------+-----------------+-----------+------------------------~ 
COMP-3 1 byte per No Input to a report Sometimes Requires less space than 
(internal 2 digits item when a DISPLAY. 
decimal) plus 1 byte small 

for the low- Arithmetic fields COMP-3 
order digiti tern is 
and sign used with 

Work areas a small 
COJ.V'..P 
item. 

Convenient form for 
decimal alignment. 

Can be used in 
arithmetic computa
tions without 
conversion. 

Fields over 1S digits 
require a subroutine 
when used in 
computations. 

~---------+------------+---------+-----------------+-----------+------------------------~ 
COMP 2 if 1~N~4 halfword Subscripting Sometimes Rounding and testing for 
(binary) for both the ON SlZ~ ERROR con-

4 if 5~N~9 

8 if 10~N:518 
where N is 
the number 
of 9s in the 
PICTURE 
clause 

fullword 

fullword 

Arithmetic fields mixed and 
unmixed 
usages 

dition are cumbersome 
if calculated result 
is greater than 9(9). 

Extra instructions are 
generated for binary 
computations if the 
SYMCHRONIZED clause is 
not specified. 

Fields of over 9 digits 
require more handling. 

~---------+------------+---------+-----------------+-----------+------------------------~ 
COMP-1 14 (short- Ifullword IFractional expo- I No I Tends to produce less I 
(inte~nallprecision) I I nentiation I I accuracy if more than I 
float1ng I I I I I 17 significant digits I 
point) I I I I I are required and if I 

I I' 'I the exponent is big. I 
I I I I' Requires f loa ting- I 
I I' 'I point feature. 
I I' I I Extra instructions are 
I I I I I generated if the j 

I " 'I SYNCHRONIZED clause isl 
I I' I I not specified. I 

r---------f------------f---------f-----------------f-----------f------------------------~ 
ICOMP-2 18 (long- I double- IFractional expo- I No 'Same as COMPUTATION~L-l I 
I (internal I precision) I word ,nentia tion when I I I 
Ifloating I I I more precision I I I 
I point) I I , is required I I I L _________ ~ ____________ ~ _________ i _________________ ~ ___________ ~ ________________________ J 

226 



This clause should be written at the 
highest level possible. 

DATA FORMAT CONVERSION: Operations 
involving mixed, element,ary numeric data 
formats require conversion to a common 
format. This usually means that additional 
storage is used and execution time is 
increased. The code generated must often 
move data to an internal work area, perform 
any necessary conversion, and then execute 
the indicated operation. Often, too, the 
result may have to be converted in the same 
way (see Table 25). 

If it is impractical to use the same 
data formats throughout a program, and if 
two data items of different formats are 
frequently used together, a one-time 
conversion can be effectei. For example, 
if A is defined as a COH?UTATIONAL item and 
B as a COMPUTATIONAL-3 item, A can be moved 
to a work area that has been defined as 
COMPUTATIONAL-3. This move causes the data 
in A to be converted to COMPUTATIONAL-3. 
whenever A anj B are used in a Procedure 
Division operation, reference can be made 
to the work area rather than to A. Using 
t.his technique, the conversion is performed 
only once, instead of each time an' 
operation is performed. 

The following eight cases show how nata 
conversions are handled on mixed elementary 
items for names, data comparisons, and 
arithmetic operations. Moves to and from 
qroup items, without the CORRESPONDING 
option, as well as comparisons involving 
qroup items, are done without conversion. 

Numeric DISPLAY to COMPUTATIONAL-3: 

To Move Data: Converts DISPLAY data to 
COMPUTATIONAL-3 data. 

IQ Compare Data: Converts DISPLAY data 
to COMPUTATIONAL-3 data. 

To Perform Arithmetic Operations: 
Converts DISPLAY data to COMPUTATIONAL-3 
data. 

Numeric DISPLAY to COMPUTATIONAL: 

Io MO~~ Data: Converts DISPLAY data to 
COMPUTATIONAL-3 data and then to 
COMPUTATIONAL data. 

To Compare Data: Converts DISPLAY to 
COMPUTATIONAL-3 and then to 
COMPUTATIONAL or converts both DISPLAY 
and COMPUTATIONAL data to 
COMPUTATIONAL-3 data. 

:rQ_~erform Arithmetic Operat!.2!!~: 
Converts DISPLAY data to Cm/1PUTh.TIOl~AL-3 
or COt·1Pi]': "T l.O:'Ji'_L data. 

COMPUTATIONAL-3 to COMPUTATIONAL: 

To Move Data: Moves COMPUTATIONAL-3 
data to a work field and the converts 
COMPUTATIONAL-3 data to COMPUTATIONAL 
data. 

'IQ_~Q~~~~_Q~!::~: Converts COL"lPO':f'AT IO~1A.~ 
data to COMPUTATIONAL-3 or vice versa, 
depeniing on the size of the field. 

To Perform Arithmetic Op~~~tion~: 
Converts COMPUTATIONAL data to 
COMPUTATIONAL-3 or vice versa, depending 
on the size of the field. 

To ~love Data: Converts COMPUTAI'Iot.JAL 
data to COMPUTATIONAL-3 data in a work 
field, tten moves the work field. 

'IQ_~Q!!!2~~~_Q~!::~: Converts COHPUTATIONAL 
to COMPUTATIONAL-3 data or vice versa, 
depending on the size of the field. 

To Preform Arithmetic O~ra!::ion~: 
Converts COMPUTATIONAL to 
COL-1PUTATIONAL-3 data or vice versa, 
depending on the size of the field. 

To Move Data: Converts CO~PUTArIONAL 
data to COMPUTATIONAL-3 data and then to 
DISPLAY data. 

To Compare Data: Converts DISPLAY to 
Cm-1PUTATIONAL or both COrvlPU'l'ATIONAL and 
DISPLAY data to COHPUTATIONAL-3 data, 
depending on the size of the field. 

To Perform Arithmetic Operations: 
Dependinq on the size of the field, 
converts DISPLAY data to COMPUTATIONAL 
data, or both DISPLAY and COMPUTATIONhL 
data to COMPUTATIONAL-3 data in which 
case the result is generated in a 
COH.PUTATIONAL- 3 work area and then 
converted and moved to the DISPLAY 
result field. 

COMPUTA.TIONAL-3 to Numeric DISPLAY: 

'IQ_~QY~_Q~!::~: Converts COMPUTATIONAL-3 
data to DISPLAY data. 

TQ_~Q~~~~_Q~!::~: Converts DISPLAY data 
to COMPUTATIONAL-3 data. The result is 
generated in a COMPUTA.TIONAL-3 work area 

Programming Techniques 227 



and is then converted and moved to the 
DISPLAY result field. 

Numeric DISPLAY to Numeric DISPLAY: 

To Perform Arithmetic Operations: 
converts all DISPLAY data to 

----eOMPiTritl'TONA:G--s---a-a-tcr;m----.l'tre----re-sure-is· ---
qenerated in a COMPUTATIONAL-3 work area 
and is then converted to DISPLAY and 
moved to the DISPLAY result field. 

External Floating-Point to AnY-Qth~E: When 
an external floating-point item is to be 
used in an airthmetic operation or in data 
manipulation, precision errors may occur 
due to required conversions. 

~nt~~rral Floati~-Point to Any Other: When 
an item described as COMPUTATIONAL-lor 
COMPUTATIONAL-2 (internal floating-point) 
is used in an operation with another data 
format, the item in the other data format 
is always converted to internal 
floating-point. If necessary, the internal 
floating-point result is then convertej to 
the format of the other data item. 

SYNCHRONIZED Clause 

DATA-FORMATS: As shown in Table 24, 
COMPUTATIONAL, COMPUTATIONAL-1, and 
COMPUTATIONAL-2 items have specific 
boundary alignment requirements. To ensure 
correct alignment, either the programmer or 
the compiler may have to add slack bytes, 
or the compiler must generate instructions 
to move the item to a correctly aligned 
work area when reference is made to the 
item. 

The SYNCHRONIZED clause may be used at 
the elementary level to specify the 
automatic alignment of elementary items on 
their proper boundaries or at level-01 to 
synchronize all elementary items within the 
group. For COMPUTATIONAL items, if the 
PICTURE is in the range of S9 through 
S9(4), the item is aligned on a halfword 
boundary. If the PICTURE is in the range 
of S9(5) through S9(18), the item is 
aliqned on a fullword boundary. For 
COMPUTATIONAL-1 items, the item is aligned 
on a fullword boundary. For 
COMPUTATIONAL-2 items, the item is aligned 
on a double-word boundary. The 
SYNCHkONIZED clause and slack bytes are 
fully discussed in the publication !~~_Q~ 
Full-American National Standard COBOL. 

228 

Special Considerations for DISPLAY and 
COMPUTATIONAL Fields 

NUMERIC DISPLAY FIELDS: Zeros are not 
inserted into numeric DISPLAY fields by the 
instruction set. ~"lhen numeric DISPL~Y 1ata 
is moved, the compiler generates 
instructions that insert any necessary 

_n_ zero-s----lnt5--tn-e--urSPLAY-- f1elds. - --w1i-e-ii------------
numeric DISPLAY data is compared, and one 
field is smaller than the other, the 
compiler generates instructions to move the 
smaller item to a work area where zeros are 
inserted. 

COMPUTATIONAL FIELDS: COMPUTATION~L fields 
can be aligned on either a halfword or 
fullword boundary. If an operation 
involves COMPUTATIONAL fields of different 
lengths, the halfword field is 
automatically expanded to a fullword field. 
Therefore, mixed halfword and fullword 
fields require no additional operations. 

COMPUTA'l'IONAL-1 AND COMPUTATIONAL-2 FIELDS: 
If an arithmetic operation involves a 
mixture of short-precision and 
long-precision fields, the compiler 
generates instructions to expand the 
short-precision field to a long-precision 
field before the operation is executed. 

~Q~~Q~~~~Q~~~~l_~!~~Q~: The compiler does 
not have to generate instructions to insert 
high-order zeros for ADD and SUBTRhCT 
statements that involve COMPUTATIONAL-3 
data. The zeros are inserted by the 
instruction set. 

Data Formats in the Computer 

The various COBOL data forDats and how 
they appear in the computer in EBCDIC 
(Extended Binary-Coded-Decimal Interchange 
Code) format are illustrated by the 
following examples. More detailed 
information about these data formats 
appears in the publication !~~OS 
~~ig~ieb~~_Qf_QEeration, Order 
No. A22-6821. 

Numeric DISPLAY (External Decimal): 
Suppose the value of an item is -1234, and 
the PICTURE and USAGE are: 

PICTURE 9999 DISPLAY. 

or 

PICTURE S9999 DISPLAY. 

The item appears in the computer in the 
following forms respectively: 



I Fl I F2 I F3 I F4 I 
l ____ ~ ____ ~ ____ ~ ____ J 

'-v-'" 

Byte 

I Fl I F2 I F3 I D4 I l ____ ~ ____ ~ ____ ~ ____ J 

'-"v--' 

Byte 

Hexadecimal.F is treated arithmetically as 
PIus in the low-order byte. The 
hexadecimal character D represents a 
negative sign. 

COMPUTATIONAL-3 (Internal Decimal): 
Suppose the value of an item is +1234, and 
its PICTURE and USAGE are: 

PICTURE 9999 COMPUTATIONAL-3. 

or 

PICTURE S9999 COMPUTATIONAL-3. 

The item appears in the computer in the 
following forms, respectively: 

I 01 I 23 I 4F I l ____ ~ ____ ~ ____ J 

'-v-'" 

Byte 

I 01 I 23 I 4C I l ____ ~ ____ ~ ____ J 

'-v-'" 

Byte 

Hexadecimal F is treated arithmetically as 
posi ti vee ~-.-h.~JI!al char.g.c.te~. C 
represents a plu.:,s'§,,;l9n. -_._._ .. _._-- -

Note: Since the lOw-order byte of an 
Internal decimal number always contains a 
sign field, an item with an odd number of 
digits can be stored more efficiently than 
an item with an even number of digits. 
Note that a leading zero is inserted in the 
foregoing example. 

COMPUTATIONAL (Binary~: Suppose the value 
of an item is 1234, and its PICTURE and 
USA3E are: 

PICTURE S9999 COMPUTATIONAL. 

The item appears in the computer in the 
following form: 

I 0000 I 0100 I 1101 I 0010 I l ______ ~ ______ ~ ______ ~ ______ J 

. t 
s1gn 

position 

A a-bit in the sign position means the 
number is positive. Negative numbers are 
represented in two's complement form; thus, 
the sign position of a negative number will 
always contain a l-bit. 

For example -1234 would appear as 
follows: 

I 1111 I 1011 I 0010 I 1110 I l ______ ~ ______ ~ ______ ~ ______ J 

. t 
s1gn 

position 

~ig~Ey_!te~_~~g!E~!~~ion: A binary item is 
allocated storage ranging from one half word 
to two words, depending on the number of 9s 
in its PICTURE. Table 26 is an 
illustration of how the compiler allocates 
this storage. Note that it is possible for 
a value larger than that implied by the 
PICTURE to be stored in the item. For 
example, PICTURE S9(4) implies a maximum 
value of 9,999, although it could actually 
hold the number 32,767. 

Because most binary items are 
manipulated according to their allotted 
storage capacity, the programmer can ignore 
this situation. For the following reasons, 
however, there are some cases where he must 
be careful of his data: 

1. When the ON SIZE ERROR option is used, 
the size test is made on the basis of 
the maximum value allowed by the 
picture of the result field. If a 
size error condition exists, the value 
of the result field is not altered and 
control is given to the imperative 
statements specified by the error 
option. 

2. When a binary item is displayed or 
exhibited, the value used is a 
function of the number of 9s specified 
in the PICTURE clause. 

3. When the actual value of a positive 
number is significantly larger than 
its picture value, a 1 could result in 
the sign position of the item, causing 
the item to be treated as a negative 
number in subsequent operations. 

Table 27 illustrates three binary 
manipulations. In each case, the result 
field is an item described as PICTURE 89 
COMPUTATIONAL. One halfword of storage has 
been allocated; and no ON SIZE ERROR option 
is involved. Note that if the ON SIZE 
ERROR option had been specified, it would 
have been executed for cases Band C. 

Programming Techniques 229 



Table 2b. Relationship of PICTURE to Storage Allocation 
r------------------------T----------------------------T---------------------------------, 
I PICTURE I Maximum Working Value I Assigned storage I 
~------------------------+----------------------------+---------------------------------1 
159 through S9(4) I 32,76 7 1 one halfword I 
I I I I 
IS9(5)> through S9(9) I 2,147,483,64 1 1 one fullword I 
! ! I 
IS9(10) through S9(18) I 9,223,372,036,854,775,8071 two fullwords L ________________________ ~ ____________________________ ~ _________________________________ J 

Table 21. Treatment of Varying Values in a Data Item of PICTURE S9 
r------T------------------------T-------------T-------------------------T---------------, 
I I Hexadecimal Result of I Decimal I Actual Decimal Value I Display or I 
I Case I Binary Calculation I Equivalent I in Halfword of Storage I Exhibit Value I 
~------+------------------------+-------------+-------------------------+---------------~ 
I A I 0008 I 8 I +8 I 8 I 
~------+------------------------+-------------+-------------------------+---------------~ 
I B I OOOA I 10 I +10 I 0 I 
~------+------------------------+-------------+-------------------------+---------------1 
I C I C350 I 50000 I -15536 I 6 I L ______ ~ ________________________ ~ _____________ ~ _________________________ ~ _______________ J 

COMPUTATIONAL-lor COMPUTATIONAL-2 
lFIQ~ti~Point): Suppose the value of an 
item is +1234, and that its USAGE is 
COMPUTATIONAL-l, the item appears in the 
computer in the following form: 

101100 001110100 1101 0010 0000 0000 00001 
L_~ _________ ~ _____________________________ J 

s 1 7 8 31 

s is the sign position of the number. 

A O-bit in the sign position 
that the sign is plus. 

A 1-bit in the sign position 
that the sign is minus. 

Bits 1 through 1 are the exponent 
(characteristic) of the number. 

Bits 8 through 31 are the fraction 
(mantissa) of the number. 

indicates 

injicates 

This form of data is referred to as 
floating-paint. The example illustrates 
short-precision floating-point data 
(COMPUTATIONAL-l). In lonq-precision 
(COMPUTATIONAL-2», tne fraction length is 
56 bits. (For a detailed explanation ~f 
floating-point representation, see the 
publication !BM_Q§_~~ig~i21~~_Qf 
Qper~tiog.» 

230 

A prograw. can often be made more 
efficient or easier to debug in the 
Procedure Division with some of the 
techniques described below. 

MODULARIZING THE PROCEDURE DIVISION 

When the Procedure Division is 
mOjularized, programs are easier to 
maintain and document. In addition, 
modularization makes it simple to break 
down a program using the segmentation 
feature, thEreby resulting in a more 
efficient seqmented program. 
Modularization of the Procedure Division 
involves organizing it into at least three 
functional levels: a main-line routine, 
processing SUbroutines, and input/output 
subro'Jtines. 

This routine should be short. si~plef 
anj contain all the major logical decisicns 
of the program. This routine controls 
which second-level subroutines are execute~ 
and in what order. All second-level 
subroutines should be invoked from tne 
main-line routine by PERFORM statE~Ents. 



These should be broken down into as many 
functional levels as necessary, depending 
on the complexity of the program. These 
must be completely closed subroutines, with 
one entry point and one exit point. The 
entry point should be the first statement 
of the subroutine. The exit point should 
be the EXIT statement. The processing 
subroutines can perform only lower level 
subroutines; return to the higher level 
subroutine (processing subroutine) must be 
made by a GO TO statement, which references 
the EXIT statement. 

Input/Output Subroutines 

These should be the lowest level 
subroutines, since all higher level 
subroutines should have access to them. 
There should be one OPEN subroutine and one 
CLOSE subroutine for the program, and only 
one functional (READ or WRITE) subroutine 
for each file. One READ or WRITE 
subroutine per file, which is always 
performed, has several advantages: 

1. Coding can be added to count records 
on a file, transform blanks into 
zeros, check for 9s padding, etc. 

2. Input and output files can be 
reformatted without changing the logic 
of the program. 

3. DEBUG statements can be added during 
testing to create input or to DISPLAY 
formatted output, instead of having to 
create a test file. 

INTERMEDIATE RESULTS 

The compiler treats arithmetic 
statements as a succession of operations 
and sets up intermediate result fields to 
contain the results of these operations. 
Examples of such statements are the 
arithmetic statements, and statements 
containing arithmetic expressions. In the 
publication IBM OS Full American National 
stan~ard_COBOL, the section "Appendix A: 
Intermediate Results" describes the 
algorithms used by the compiler to 
determine the number of places reserved for 
intermediate result fields. 

If an operation involving binary 
operands requires an intermediate result 
greater than 18 digits, the compiler 
converts the operands to internal decimal 
before performing the operation. If the 
result field is binary, the result will be 
converted from internal decimal to binary. 

If an intermediate result will not be 
greater than nine digits, the operation is 
performed most efficiently on binary data 
fiel~s. 

If a decimal multiplication operation 
requires an intermediate result greater 
than 30 digits, a COBOL library subroutine 
is used to perform the multiplication. lhe 
result of this multiplication is then 
truncated to 30 digits. 

A COBOL library subroutine is used to 
perform division if: 

1. the scaled divisor is equal to or 
greater than 15 digits. 

2. the length of the scaled Jivisor plus 
the length of the scaled dividend is 
greater than 16 bytes. The lengths of 
the operands are internal decimal. 

3. the scal~~ dividend is greater than 30 
digits. (A scaled dividend is a 
number that has been multiplied by a 
power of ten in order to obtain the 
desired number of decimal places in 
the quotient.) 

Whenever the number of digits in a 
decimal intermediate result is greater than 
30, the field is truncated to 30 digits. A 
warning message will be generated at 
compile time, and program flow will not be 
interrupted at execution time. This 
truncation may cause a result to be 
incorrect. 

If binary or internal decimal data is in 
accord with its data description, no 
interrupt can occur because of an overflow 
condition in an intermediate result. This 
i$ due to the truncation described in the 
preceding paragraph. 

Programming rechniques 231 



if the possibiiity exists that an 
intermediate result field may exceed 30 
diqits, truncation can be avoided by the 
specification of floating-point operands 
(COMPUT~TION~L-l or COMPUTATIONAL-2)i 
however, accuracy may not be maintained. 

-Int-ermediate---Result-s- Cfnci"" -Floati!!Et:.~Qi!!f 
Qata_Items 

If a floating-point operand has an 
intermediate result field in which exponent 
overflow occurs, the job will be abnormally 
terminated. 

Intermediate Results and the ON SIZE ERROR 
Option 

The ON SIZE ERROR option applies only to 
the final calculated results and not to 
intermediate result fields. 

VERBS 

CALL-Statement 

The CALL statement permits communication 
between a COBOL object program and one or 
more COBOL subprograms or other language 
subprograms. A called program may be 
entered either at the beginning of the 
Procedure Division or later in the program. 
When a subprogram is called, it may already 
be core resident and be link-edite5 with 
the main program, or it may be specified as 
dynamic and link-edited into a separate 
load module. Dynamic loading, via the CALL 
statement, enables the user to load a 
subprogram only when it is actually needed. 

The first dynamic call to a subprogram 
brings in a fresh copy of that subprogram. 
Any subsequent calls to the same 
subprogram, by either the original caller 
or another subprogram in the same 
region/partition, cause a branch to the 
same copy of the subprogram in its 
last-used state, until the user deletes it 
(see the section on the "CANCEL 
Statement"). 

For examples of both static and dynamic 
CALL statements, see the section "Dynamic 
Subprogram Considerations" in the chapter 
entitled "Calling and Called Programs." 

232 

The CANCEL statement permits dynamic 
deletion of COBOL subprograms from the 
COBOL processing environment. That is, a 
CANCEL statement issued for a subprogram 
that h~G been dy~~micully loaded causes Lh~ 
storage occupied by the subprogram to be 
free~. _~~ a resul t,a sunsequent caLL t() 
tne-- suoprOg-iarn functiOns as -1'£'---11: ~eie th-e 
first. 

CANCEL CALLED- PROGRMi. 

~Qt~: A program other than the original 
caller may issue a Cru~CEL statement 
referring to a called program. 

There are two ways in which to use the 
CLOSE statement when closing several files: 

CLOSE DET~IL-FILE MASTER-FILE. 

or 

CLOSE DETAIL-FILE. 
CLOSE MASTER-FILE. 

Each CLOSE statement for a file requires 
the use of a storage area that is directly 
proportional to the number of files being 
closed. Closing more than one file with 
the same statement is faster than when 
using a separate statement for each file. 
However, separate statements require less 
storage. 

The use of the COMPUTE statement 
generates more efficient coding than does 
the use of individual arithmetic statements 
because the compiler can keep track of 
internal work areas and does not have to 
store the results of intermediate 
calculations. It is the user's 
responsibility, however, to insure that the 
data is defined with the level of 
significance required in the answer. 

Nested and compound IF statements should 
be avoided as the logic is difficult to 
debug. 



Performing an IF operation for an item 
greater than 256 bytes in length requires 
the generation of more instructions than 
are required for that of an IF operation 
for an item of 256 bytes or less. 

Note: In teleprocessing applications, the 
MESSAGE condition determines whether or not 
one or more complete messages exist in a 
designated queue of messages. The COBOL 
programmer can include in an IF statement 
the condition: 

[NOT] MESSAGE FOR cd-name 

with an action to be performed when the 
condition is met. 

When using compound IF statements, care 
must be taken to ensure that the message 
condition is tested, so that the QUEUE 
DEPTH field is actually updated. For 
example, according to the statement: 

IF A B AND MESSAGE FOR QUEUE-IN •••• 

then when A is not equal to B, the message 
condition is not tested and the QUEUE DEPTH 
field for QUEUE-IN is not updated. (For 
further discussion of the message 
condition, see the publication !~~_Q~_[ull 
American National Standard COBOL.) 

Performing a MOVE operation for an item 
qreater than 256 bytes in length requires 
the generation of more instructions than 
are required for that of a MOVE operation 
for an item of 256 bytes or less. 

When a MOVE statement with the 
CORRESPONDING option is executed, data 
items are considered CORRESPONDING Q~!Y if 
their respective data names are the same, 
including all implied qualification, up to, 
but not including, the data-names used in 
the MOVE statement itself. 

For example, 

01 AA 01 XX 
05 BB 05 BB 

10 CC 10 CC 
10 DD 10 DD 

05 EE 05 yy 

10 FF 10 FF' 

The statement MOVE CORRESPONDING AA ro xx 
will result in moving CC and DD but not FF 
because FF of EE does not correspond to FF 
of YY) .. 

Note: The other rules for MOVE 
CORRESPONDING, of course, must still be 
satisfied. 

NOTE Statement 

An asterisk (*) should be used in place 
of the NOTE statement, because there is the 
possibility that when NOTE is the first 
sentence in a paragraph, it will 
inadvertently cause the whole para~raph to 
be treated as part of the NOTE. 

There are two ways in which to use the 
OPEN statement when opening several files: 

OPEN INPUT INFILE UPDATES OUTPUT OUTFILE 

or 

OPEN INPUT INFILE 
OPEN INPUT UPDATES 
OPEN OUTPUT OUTFILE 

Each OPEN statement for a file requires 
the use of a storage area that is jirectly 
proportional to the number of files being 
opened. Qpening more than one file with 
the same stat-ement is faster than using a 
s~pa~ate statement for each file. However, 
separate statements require less storage. 

PERFORM is a useful verb if the 
programmer adheres to the followin~ rules: 

1. Always execute the last statement ot a 
series of routines oeing operated on 
by a PERFORM statement. When 
branching out of the routine, make 
sure control will eventually return to 
the last statement of the routine. 
This statement should be an EXIT 
statement. Although no code is 
generated, the EXIT statement allows a 
programmer to recognize immediately 
the extent of a series of routines 
within the range of a PERFOR~ 

statement. 

2. Always either PERFORM routine-name 
THRU routine-name-exit, or PERFOR~ 
section-name. A PERFORM 

Programming Techniques 233 



paragraph-name can cause trouble for 
the programmer trying to maintain the 
program. For example, if a paragraph 
must be broken into two paragraphs, 
the programmer must examine every 
statement to determine whether or not 
this paragraph is within the range of 
the PERFORM statement. Then all 
statements referencing the 

·r.::: Y;:I gYa.pfr.= nrl w"' .. _l'!!.!l.s-t.mhe. . cJ:'Lt:tRg.ed .. t~o 
PERFORM THRU statements. 

Use RE~D INTO and WRITE FROM, and do all 
processing in the Working-Storage Section. 
This is suggested for two reasons: 

1. Debugging is much simpler. 
Working-storage areas are easier to 
locate in a 1ump than are buffer 
areas. ~nd, if files are blocked, it 
is much easier to determine which 
record in a block was being processed 
when the abnormal termination 
occurred. 

2. Trying to access a record area after 
the AT END condition has occurred (for 
example, AT END MOVE HIGH-VALUE TO 
INPUT-RECORD) can cause problems if 
the record area is only in the File 
section. 

Note: The programmer should be aware that 
additional time is used to execute the move 
operation involved in each READ INTO or 
WRITE FROM instruction. 

The RECEIVE statement makes available to 
the COBOL program a message, a message 
segment, or part of a message or message 
segment, as well as information about that 
message from a queue maintained by the 
message control program (MCP). The 
following example of the RECEIVE statement 
is taken from the sample COBOL 
teleprocessing program shown in Figure 114: 

RECEIVE CDNAME-IN MESSAGE INTO IDENT-REC. 

Specification of the SEND statement in 
the COBOL program causes a message, a 
message segment, or part of a message or 
message segment to be released to the 

234 

message control program (MCP). The 
following example of the SEND statement is 
taken from the sample COBOL teleprocessing 
program shown in Figure 113: 

SEND CDNAME-OUT FROM IDENT-SEND WITH EMI. 

.• Al thQu_g.h ... tbe .. CQB.OJ... pr.Q.9rq,.fil. h~ts_.i:!.C;:J"!.~P~. 
to a message only when the MCP has 
received it in entirety and placed it 
in a queue, once several messages have 
met this requirement the COBOL program 
can process messages from different MCP 
queues at the same time. 

• If one execution of a RECEIVE statement 
(or a SEND statement) transmits only 
part of a message, subsequent 
executions of RECEIVE statements (or 
SEND statements) in that run unit are 
required for transmission of the rest 
of the message. 

The START statement must be executed 
before the READ statement for a given 
record if either of the following is true: 

• Processing begins with other than the 
first record; 

• Processing continues with a record 
other than the next sequential record. 

There are two ways to use the Sr~RT 
statement to begin processing a segment of 
a sequentially accessed indexed file at a 
specified key. The programmer may indicate 
either Method 1, to begin at a specific 
NOMINAL KEY that matches a RECORD KEY 
within the file, or Method 2, to start 
within the first record in a specific 
generic key class. 

START file-name 
[~~~~~!Q KEY imperative-statement] 

START file-name USING KEY data-name 

{~UAL TO} = iden~ifier 

[!NVALID KEY imperative-statement] 

where data-name is the data-name given i~ 
the RECORD-KEY-clause and identifier 
contains the generic key value-for-the 



request and may be any data item whose 
length is less than or equal to that of the 
RECORD KEY. 

~ote: For ISAM a problem may result with 
the generic key facility with binary key if 
the low-order byte of the search argument 
is binary zero. 

STRING Statement 

The STRING statement combines two or 
more subfields into a single field. When 
this statement is executed, characters from 
the sending item(s) are transferred to the 
receiving item in the same way that moves 
from alphanumeric to alphanumeric item(s) 
are effected. The example in Figure 66 
illustrates the use of the STRING statement 
options available to the user. For a 
discussion of the formats possible with the 
STRING statement, see the publication Q~ 
Full American National Standard COBOL. 

The TRANSFORM statement generates more 
efficient code than the EXAMINE statement 
with the REPLACING BY option when only one 
character is being transformed. TR~NSFORM. 
however, uses a 256-byte table. 

The UNSTRING statement separates 
contiguous data in a sending field, placing 
it in multiple receiving fields. The 
example in Figure 68 illustrates the use of 
the UNSTRING statement options available to 
the user. 

For a discussion of the formats possible 
with the UNSTRING statement, see the 
publication IBM OS Full American National 
~t~g~~~~_~Q~Q~~--------------------------

r---------------------------------------------------------------------------------------, 
STRING SNDFLD5 DELIMITED BY DLMTR 

SNDFLD6 DELIMITED BY SIZE 

* combine data in SNDFLD5 up to the delimiter indicated by DLMTR with all the data 
* in another sending field (as indicated by the SIZE option of the STRING 
* statement). 

INTO RCDFLDl WITH POINTER POINTR 

* Place the result in RCDFLDl beginning at the relative location designated 
* by POINTR. 

ON OVERFLOW GO TO OVERFLOW2. 

* If RCDFLDl is not large enough to accommodate the combined data-fields, or 
* if the original contents of the pointer field were less than 1, execute a user
* written checking routine called OVERFLOW2. l _______________________________________________________________________________________ J 

Figure 67. Using the STRING Statement 

Programming l'echni~ues 235 



r---------------------------------------------------------------------------------------1 
UNSTRING SNDFLD I 

* Separate the data in the sending area. 

DELIMITED BY DLMTR1 
OR SPACES 
OR ALL 'E' 

INTO RCFLD 

* When the character, or set of characters, marking the end of a section of the 
* sending area is found, move the isolated data into the data-receiving"field. 

DELIMITER IN DELIM-IN 

* Move the delimiter found into the delimiter-receiving area DELIM-IN. 

COUNT IN COUNT-IN 

* Specify in COUNT-IN the number of characters placed in the RCFLD 
* data-receiving field. 

WITH POINTER POUNTR 

* Indicate the relative position in the SNDFLD sending area of the first 
* character to be examined. At the end of the operation, POINTR contains a value 
* equal to the initial value plus the number of characters examined in the sen1ing 
* field. 

TALLYING IN TALLY-IN 

* Record the number of data-receiving areas acted upon. At the end of the 
* operation, TALLY-IN will contain a value equal to the initial value plus the 
* number of receiving areas acted upon. 

ON OVERFLOW 
DISPLAY 'OVERFLOW CONDITION' 
GO TO CHECK-ROUTINE. 

* If the data-receiving fields cannot accommodate the data being sent, or if 
* the original value of the pointer was less than 1 or greater than the size of the 
* sending field, execute a user-written checking routine. l _______________________________________________________________________________________ J 

Figure 68. Using the UNSTRING statement 

USING THE REPORT WRITER FEATURE 

REPORT Clause in FD 

DATA DIVISION. 
FD FILE-1 RECORDING MODE F 

RECORD CONTAINS 121 CH~R~CrErtS 
REPORT IS REPORT-A. 

FD FILE-2 RECORDING MODE V 
RECORD CONTAINS 101 CHAR~CTERS 
REPORT IS REPORT-A. 

I 

A given report-name may appear in a 
maximum of two file description entries. 
The file description entries need not have 
the same characteristics. If the same 
report-name is specified in two file 
description entries, the report will be 
written on both files. For example: 

For each GENERATE statement, the records 
for REPORT-A will be written on FILE-l and 
FILE-2, respectively. The records on 
FILE-2 will not contain columns 102 thr~ugh 
121 of the corresponding records on FILE-l" 

ENVIRONMENT DIVISION. 

236 

SELECT FILE-l ASSIGN UR-1403-S-PRTOUT. 
SELECT FILE-2 ASSIGN UT-2400-S-SYSUT1. 

The object program can be made more 
efficient with respect to execution time by 



keeping in mind the fact that Report Writer 
source coding is treated as though the 
programmer had written the program in COBOL 
without the Report Writer feature. 
Therefore, a complex source statement or 
series of statements will generally be 
executed faster than simple statements that 
perform the same function. The example 
below shows two coding techniques for the 
Report Section of the Data Division. 
Method 2 uses the more complex statements. 

RD ••• CONTROLS ARE YEAR MONTH w~EK DAYY 

01 TYPE CONTROL FOOTING YEAR. 
as SUM COST. 

01 TYPE CONTROL FOOTING MONTH. 
as SUM COST. 

01 TYPE CONTROL FOOTING WEEK. 
as SUM COST. 

01 TYPE CONTROL FOOTING DAYY. 
as SUM COST. 

01 TYPE CONTROL FOOTING YEAR. 
as SUM A. 

01 TYPE CONTROL FOOTING MONTH. 
as A SUM B. 

01 TYPE CONTROL FOOTING WEEK. 
as B SUM C. 

01 TYPE CONTROL FOOTING DAYY. 
as C SUM COST. 

Method 2 will execute faster. One addition 
will be performed for each day, one more 
for each week, and one for each month. In 
Method 1, four additions will be performed 
for each day. 

Use of SUM 

Unless each identifier is the name of a 
SUM counter in a TYPE CONTROL FOOTING 
report group at an equal or lower position 
in the control hierarchy, the identifier 
must be defined in the File, 
Working-Storage or Linkage Sections, as 
well as in a TYPE DETAIL report group as a 
SOURCE item. A SUM counter is 
algebraically incremented just before 
presentation of the TYPE DETAIL report 
group in which the item being summed 
appears as a source item or the item being 
summed appeared in a SUM clause that 
contained an UPON option for this DETAIL 
report group. This is known as SOURCE-SUM 
correlation. In the following example~--
SUBTOTAL is incremented only when DETAIL-1 
is generated: 

FILE SECTION. 

as NO-PURCHASES PICTURE 99. 

REPORT SECTION. 
01 DETAIL-1 TYPE DETAIL. 

as COLUMN 30 PICTURE 99 SOURC~ 
NO-PURCHASES. 

01 DETAIL-2 TYPE DETAIL. 

01 DAY TYPE CONTROL FOOTING 
LINE PLUS 2. 

01 

as SUBTOTAL COLUMN 30 PICTURE 999 
SUM NO-PURCHASES. 

MONTH TYPE CONTROL FOOTING 
LINE PLUS 2 NEXT GrtOUP 
NEXT PAGE. 

~Q~_gQ!!t.!.!!~§. 

A SUM routine is generated by the Report 
writer for each DETAIL report group of the 
report. The operands included for summing 
are determined as follows: 

1. The SUM operand(s) also appears in a 
SOURCE clause(s) for the DETAIL report 
group. 

2. The UPON detail-name option was 
specified in the SUM clause. In this 
case, all the operands are included in 
the SUM routine for only that DETAIL 
report group, even if the operand 
appears in a SOURCE clause in other 
DETAIL report groups. 

When a GENERATE detail-name statement is 
executed; the SUM routine for that DETAIL 
report group is executed in its logical 
sequence. When a GENERATE report-name 
statement is executed and the report 
contains more than one DETAIL report group. 
the SUM routine is executed for each one. 
The SUM routines are executed in the 
sequence in which the DETAIL report groups 
are specified. 

The following examples show the SUM 
routines that are generated by the Report 

Programming Techni~ues 237 



Writer. Example 1 illustrates how operands 
are selected for inclusion in the routine 
on the basis of simple SOURCE-SUM 
correlation. Example 2 illustrates how 
operands are selected when the UPON 
detail-name· option is specified. 

EXAMPLE 1: The foll()wing statements are 
coded -In-the Report· S-eciion·: 

01 DETAIL-l TYPE DE ••• 
as ••• SOURCE A. 

01 DETAIL-2 TYPE DE ••• 
as SOURCE B. 
as ••• SOURCE C. 

01 DETAIL-3 TYPE DE ••• 
as ••. SOURCE B. 

01 'I'YPE CF ••• 
05 SUM-CTR-l ••• SUM A, B, C. 

01 TYPE CF ••• 
as SUM-CTR-2 ••• SUM B. 

One SUM routine is generated for each 
DETAIL report group, as follows: 

REPORT-SAVE 
ADD A TO SUM-CTR-l. 

REPORT-RETURN 

SUM Routine for DETAIL-2 

REPORT-SAVE 
ADD B TO SUM-CTR-l. 
ADD C TO SUM-CTR-1. 
ADD B '10 SUM-CTR-2. 

REPORT-RETURN 

REPORT-SAVE 
ADD B TO SUM-CTR-l. 
ADD B TO SUM-CTR-2. 

REPORT-RETURN 

EXAMPLE 2: In this example, the same 
coding-is used as in Example 1, with one 
exception: the UPON detail-name option is 
used for SUM-CTR-1, as follows: 

238 

01 TYPE CF ••• 
as SUM-CTR-1 ••• SUM A, B, C UPON 

DETAIL-2. 

The following SUM routines woulj then oe 
generated instead of those resulting from 
the calculations in Example 1. 

SUM Routine for DETAIL-1 

REPORT-SAVE 
REPORT-RETURN 

REPORT-SAVE 
ADD A TO SUM-CTR-l. 
ADD B TO SUM-CTR-l. 
ADD C TO SUM-CTR-l. 
ADD B TO SUM-CTR-2. 

REPORT-RETURN 

REPORT-SAVE 
ADD B TO SUM-CTR-2. 

REPORT-RETURN 

Out2ut Line Overlay 

The Report Writer output line is put 
together with an internal REDEFINES 
specification, indexed by ~gteqer-1. No 
check is made to prevent overlay on any 
line. For example: 

as COLUMN 10 PICTURE X(23) 
VALUE "MONTHLY SUPPLIES REPORT". 

as COLUMN 12 PICTURE X(9) 
SOURCE CURRENT-MONTH. 

the length of 23 in column 10, folloNej by 
a specification for column 12 will cause 
field overlay. 

The Report Writer page break routine 
operates independently of the routines that 
are executed after any control breaks 
(except that a page break will occur as the 
result of a LINE NEXT PAGE clause). Thus, 
the programmer should be aware of the 
following facts: 



1. A Control Heading is not printed after 
a Page Heading except for first 
generation. If the programmer wishes 
to have the equivalent of a Control 
Heading at the top of each page, he 
must include the information and data 
to be printed as part of the Page 
Heading. But since only one Page 
Heading may be specified for each 
report, he should be selective in 
considering his Control Heading 
because this "Control Heading" will be 
the same for each page, and may be 
printed at inopport~ne times (see 
"Control Footings and Page Format," in 
this chapter.) 

2. GROUP INDICATE items are printed after 
page and control breaks. Figure 69 
contains a GROUP INDICATE clause and 
shows the execution output. 

r-----------------------------------------, 
l-<EPORT SECTION. 

01 DETAIL-LINE TYPE IS DETAIL LINE 
NUMBER IS PLUS 1. 
05 COLUMN IS 2 GROUP INDICATE 

PICTURE IS A(9) SOURCE IS 
MONTHNAME OF RECORD-AREA (MONTH). 

(Execution output) 

~-----------------------------------------~ 
I I 
I JANUARY 15 AOO... I 
I AO 2. • • I 
I I 
I PURCHASES AND COST... I 
I I 
~-----------------------------------------~ 
I I 
I JANUARY 21 A03... I 
I A03. • • I 
I I l _________________________________________ J 

Figure 69. Sample Showing GROUP INDICATE 
Clause and Resultant Execution 
Output 

When more than one report is being 
written on a file and the reports are to be 
selectively written, a unique l-character 
code must be given for each report. ~ 
mnemonic-name is specified in the RD-level 
entry for each report and is associated 
with the code in the Special-Names 
paragraph of the Environment Division. 

Note: If a report is written with the COUl:!; 

option, the report should not be written 
directly to a printer device. 

This code will be written as the first 
character of each record that is written on 
the file. When the programmer wishes to 
write a report from this file, he needs 
merely to read a record, check the first 
character for the desired code, and have it 
printed if this code is found. The record 
should be printed starting from the third 
character, as illustrated in Figure 70. 

r---------T---------T--------j 
I I Control I 
I Code I characterl Record l _________ ~ _________ ~ _______ _ 

123 n 

Figure 70. Format of a Report Record when 
the CODE Clause is Specified 

The following example shows how to 
create and print a report with a code of A. 
A Report Writer program contains the 
following statements: 

ENVIRONMENT DIVISION. 

SPECIAL-NAMES. 'A' IS CHR-A 
• B' IS CHR-B. 

DATA DIVISION. 
FILE SECTION. 
FD RPT-OUT-FILE 

RECORDS CONTAIN 122 CHARACTERS 
LABEL RECORDS ARE STANDARD 
REPORTS ARE REP-FILE-A REP-FILE-B. 

REPORT SECTION. 
RD REP-FILE-A CODE CHR-A ••• 

RD REP-FILE-B CODE CHR-B ••• 

Programming Techniques 239 



The RPT-OUT-FILE must be written on a tape 
or mass storage device. A second program 
could then be used to print only the report 
with the code of ~, as follows: 

DP.TA DIVISION. 
FD 

RECORD CONTAINS 122 CHARACTE~S 
LABEL RECORDS ARE STANDARD 
D-~TA-- -R-E-CORb- -I SRPT-RCD. 

01 RPT-RCD. 
05 CODE-CHR PICTURE X. 
05 PRINT-PART. 

10 CTL-CHR PICTURE X. 
10 RECORD-PART PICTURE X(120). 

PO PRINT-FILE 
RECORD CONTAINS 121 CHARACTERS 
LABEL RECORDS ARE STANDARD 
DATA RECORD IS PRINT-REC. 

01 PRINT-REC. 
05 FILLER PICTURE X(121). 

PROCEDURE DIVISION. 

LOOP. REA9 RPT-IN-FILE AT END 
GO TO CON'IINUE. 
IF CODE-CHR = nAn 

WRITE PRINT-REC FROM 
PRINT-PART 

AFTER POSITIONING CTL-CHR 
LINES. 

GO TO LOOP. 
CONTINUE. 

~ont~ol Footings and Page Format 

Depending on the number and size of 
Control Footings (as well as the page depth 
of the report), all of the specified 
Control Footings may not be printed on the 
same page if a control break occurs for a 
high-level control. When a page condition 
is detected before all required Control 
Footings are printed, the Report Writer 
will print the Page Footing (if specified), 
skip to the next page, print the Page 
Heading (if specified), and then continue 
to print Control Footings. 

If the programmer wishes all of his 
Control Footings to be printed on the same 
page, he must format his page in the 
RD-Ievel entry for the report (by setting 
the LAST DETAIL integer to a sufficiently 
low line number) to allow for the necessary 
space. 

240 

RD EXPENSE-REPORT CONTROLS ARE FIN~Lt 

MONTH, ['AYY 

01 TYPE CONTROL FOOTING DAYY 
LINh PLUS 1 NEXT GROUP 
NEXT PAGE. 

01 TYPE CONTROL FOOTING MONTH 
LINE PLUS 1 NEXT GROUP 
NEXT PAGE. 

(Execution Output) 

EXPENSE REPORT 

January 31 ••••••••• 29.30 
(Output for CF DAYY) 

January total ••••• 131.40 
(Output for CF MONTH) 

Note: The NEXT GROUP NEXT PAG~ clause for 
the-control footing DAY is not activated. 

The first presentation of a body group 
(PH, PF, Cd, CF, or DE) that contains a 
relative line as its first line, will have 
its relative line spacing suppressed, and 
the first line will be printed on either 
the value of FIRST DETAIL or INTEGER PLUS 1 
of a NEXT GHOUP clause from the preceding 
page. For example: 

A. If the following body group was the 
last to be printed on a page 

01 TYPE CF NEXT GROUP NEXT P~GE 

Th~n this next body group 

01 TYPE DE LINE PLUS 5 

would be printed on value of FIRST 
DETAIL (in PAGE clause). 

B. If the following body group was tne 
last to be printed on a page 

01 TYPE CF NEXT GROUP LINE 12 



and after printing, line-counter 
then this next BODY GROUP 

01 TYPE DETAIL LINE PLUS 5 

40, 

would be printed on line 12 + 1 (i.e., 
line 13). 

Report Writer Routines 

At the end of the analysis of a report 
description entry (RD), the Report Writer 
routines are generated, based on the 
contents of the RD. Each routine has its 
own compiler-generated card number. 
Therefore, in the source listing, the last 
compiler-generated card number for an RD 
and that of the next source statement are 
not sequential. 

TABLE HANDLING CONSIDERATIONS 

If a subscript is represented by a 
constant an-d if the subs-crii?ted i tern has a 
fixed length, the location of the 
subscripted data item within the table or 
list is resolved-at compile time. 

If a subscript is represented by a 
data-name, the location is resolved at 
execution time. The m6st efficient format, 
in this case, is COMPUTATIONAL, with 
PICTURE size less than five integers. 

The value contained in a subscript is an 
integer that represents an occurrence 
number within a table. Every time a 
subscripted data-name is referenced in a 
program, the compiler generates up to 16 
instructions to calculate the correct
displacement. Therefore, if a subscripted 
data-name is to be processed extensively, 
move the subscripted item to an 
unsubscripted work area, do all necessary 
processing, and then move the item back 
into the table. Eyen when subscripts are 
~--~ ~~e~ -- computational, subs~~;~~;nN 

Index-names are compiler-generated 
items, one fullword in length, assigned 
storage in the TGT. An index-name is 
defined by the INDEXED BY clause. The 
value in an index-name represents an 

actualdisplacement from the beginning ~f 
the table that corresponds to an occurrence 
number in the table. Address calculation 
for a direct index takes a maximum of four 
instructions: address calculation for a 
relative index takes a few more. 
Therefore, the use of index-names in 
referencing tables is more efficient than 
the use of subscripts. The use of direct 
indexes is faster than the use of relative 
indexes. 

Index-names can only be referenced in 
the PERFORM, the SEARCH, and the SET 
statements. 

Index data items are compiler-generated 
storage positions, one fullword in length, 
that are assigned storage within the COBOL 
program area. An index data item is 
defined by the USAGE IS INDEX clause. The 
programmer can use index data items to save 
values of index-names for later reference. 

Great care must be used when setting 
values of index data items. Since an index 
data item is not part of any taole, the 
compiler places the value contained in the 
index-name or other index data item into 
the index data item (see the example given 
in "SET Statement"). Index jata items can 
only be referenced in SEARCH and SET 
statements. 

OCCURS Clause 

A t~Q!~_~!~~~gt is represented oy the 
subject of an OCCURS clause, and is 
equivalent to one level of a table. If 
indexing is to be used to reference a table 
element, and the Format 2 (SEARCH ~LL) 
statement is also to be used, the KE~ 
option ~~~t be specified in the OCCURS 
clause. The table element must then be 
ordered upon the key(s) data-name(s) 
specified. 

If a data item described by an OCCURS 
clause with the DEPENDING ON data-name 
option1 is followed by nonsubordinate-data 

1For a discussion of the use of the OCCURS 
DEPENDING ON clause in a sort program, see 
"Sorting Variable-Length Records." 

Programming Techni~ues 241 



items, a change in the value of data-name 
during the course of program execution-will 
have the following effects: 

1. The size of any group described by or 
containing the related OCCURS clause 
will reflect the new value of 
data-na!!!~. 

2..... __ WBPneyeX ':l M.QVR .... t n.. a..tie~.d .. c.o.n..+-:::t ; '1-i .... '1..g- .. 
an OCCURS clause with the DEPENDING ON 
option is executed, the MOVE is made 
on the basis of the current contents 
of the object of the DEPENDING ON 
option. 

3. The location of any nonsubordinate 
items following the item described 
with the OCCURS clause will be 
affected by the new value of 
~~ta-name. If the user wishes to 
preserve the contents of these items, 
the following procedure can be used: 
prior to the change in ~~t~~~~~~, move 
all nonsubordinate items following the 
variable item to a work area; after 
the change in data-name, move all the 
items back. ---------

~ot~: The value of Qat~~name may change 
because a move is made to it or to the 
qroup in which·it is contained; or the 
value of data-name may change because the 
qroup in which it is contained is a record 
area that has been changed by execution of 
a READ statement. 

For example, assume that the Data 
Division of a program contains the 
following coding: 

01 ANYRECORD. 
05 A PICTURE 5999 COMPUTATIONAL-3. 
05 TABLEA PICTURE 5999 OCCURS 100 

TIMES DEPENDING ON A. 
05 GROUPB. 

(Subordinate data items.) 

(End of record.) 

GROUPB items are not subordinate to TABLEA, 
which is described by the OCCURS clause. 
Assuming that WORKB is a work area with the 

242 

same data structure as GROUPE, the 
following procedural coding could be used: 

1. MOVE GROUPB TO wORKB 

2. Calculate new value of A 

3. MOVE WORKB TO GROUPB 

~-P~---a.OOV€· -c-.t.-a-b erne nt.-s· C-il··n .. ··fie·---a-v-ei-d-e:}"--Dy" 
putting the OCCURS clause with the 
DEPENDING ON option at the end of the 
record. 

Not~: Data-name can also change because of 
a change in the value of an item that 
redefines it. In this case, the group size 
and the location of nonsubordinate items as 
described in the two preceding paragraphs 
cannot be determined. 

The SET statement is used to assign 
values to index-names and to index data 
items. 

When the SET statement assigns to an 
index-name the value of a literal, 
identifier, or an index-name from another 
table element, it is set to an actual 
displacement from the beginning of the 
table element that corresponds to the 
occurrence number indicated by the second 
operand in the SET statement. The compiler 
performs all tne necessary calculations. 
If the SET statement is used to assign an 
index-name to another index-name for the 
same table element, the compiler neej make 
no conversion of the actual displacement 
value contained in the second operanJ. 

However, when an index data item is set 
to another index data item or to an 
index-name, or when an index-name is set to 
an index data item, the compiler is unable 
to change any displacement value it finds, 
since an index data item is not part of any 
table. Thus, no conversion of values can 
take place. If the programmer forgets 
this, programming errors can occur. 



r---------------------------------------------------------------------------------------1 
Byte 
No. 

r--------------------T----l 0 

1: 
(1, 1, 1) I E IF I 

~--------------------+----~ 25 
C (1, 1) (1, 1, 2) I E IF I 

~--------------------+----~ 50 
(1, 1, 3) I E IF I 

B (1) ~--------------------+----1 75 

~: 
(1, 2, 1) I E IF I 

~--------------------+----~ 100 
C ' 1 2) (1, ') ')\ I TO 11' i , ..... , 

~: 
'£', ,£.1 I .u 

~--------------------+----1 125 
(1, 2, 3) I E IF I 

A ~--------------------+----~ 150 

1: 
(2, 1, 1) I E IF I 

~--------------------+----~ 175 
C (2, 1) (2, 1, 2) I E IF I 

~--------------------+----1 200 
(2, 1, 3) I E IF I 

B (2 ) ~--------------------+----~ 225 

1: 
(2, 2, 1) I E IF I 

~--------------------+----~ 250 
C (2, 2) (2, 2, 2) I E IF I 

~--------------------+----1 27S 
(2, 2, 3) I E IF I l ____________________ L ____ J 

300 l _______________________________________________________________________________________ J 

Figure 71. Storage Layout for Table Reference Example 

For example, suppose that a table has 
been defined as: 

01 A. 
02 B OCCURS 2 INDEXED BY 11, IS. 

03 C OCCURS 2 INDEXED BY 12, 16. 
04 D OCCURS 3 INDEXED BY 13, I4. 

05 EPIC X(20). 
05 F PIC 9(5). 

Figure 71 shows how the table is laid 
out in main storage. 

NOW, suppose it is necessary to 
reference D (2,2,3). The following steps 
are in£Qf.!:.ect: 

SET 13 TO 2. 
SET INDX-DATA-ITM TO 13. 
SET 12, 11 TO INDX-DATA-ITM. 
SET 13 UP BY 1. 
MOVE D(I1, 12, 13) TO WORKAREA. 

The value contained in 13 after the first 
SET statement is 25, which represents the 
beginning point (in bytes) of the second 
occurrence of D. When the second SET 
statement is executed, the value 25 is 
placed in INDX-DATA-ITM, and the third SET 
statement moves the value 25 into 12 and 
11. The fourth SET statement increases the 
value in 13 to 50. The calculation for the 

address D (11, 12, 13) woulj then be as 
follows: 

(address of D(l,l,l» + 25 + 25 + 50 
(adjress of D(l,l,l» + 100 

where D(l,l,l) represents the first 
occurrence of D. This is not the address 
of D (2. 2, 3) • 

The following steps will find the 
cor!:.ect address: 

SET 13 TO 2. 
SET 12, 11 TO 13. 
SET 13 UP BY 1. 

In this case, the first SET statement 
places the value 2S in 13. Since the 
compiler is able to calculate the lengths 
of Band C, the second SET statement places 
the value 75 in 12, and the value 150 in 
11. The third SET statement places the 
value 50 in 13. The correct address 
calculation will be: 

<address of D(l,l,l» + 150 + 75 + SO 
(address of DC1,l,l» + 275. 

The rules for the SET statement are 
shown in Table 28. 

programming Techniques 243 



Table 28. Rules for the SET Statement 

Sending 1 
1 
1 Index-name Index Data Item 

Move without 
conversion 

Identifier 
or Literal 

Set to value 
corresponding 
to occurrence 

set to value I corresponding 
_____ ~~[((~~~rrence t r numbe-rt 

--------------------- --------------------+---------------------+----------------------~ 
Index Data Move without 1 Move without I 1 
Item conversion 1 conversion 1 1 

--------------------- --------------------+---------------------+----------------------~ 
Identifier Set to occurrence 1 1 1 

number represented 1 1 1 
by index-name 1 1 1 

~--------------------£_-------------------~---------------------~----------------------~ 
11If index-name refer to the same table element move without conversion 1 l _______________________________________________________________________________________ J 

Only one level of a table (a table 
element) can be reference1 with one SE~RCH 
statement. Note that SEARCH statements 
cannot be nested, since an 
imperative-statement must follow the WHEN 
condition, and the SEARCH statement is 
itself conditional. 

There are two formats for the SEARCB 
statement. Format 1, SEARCH, is used for a 
serial search. Format 2, SEARCH ALL, is 
used for a binary search. 

[2Emat 1 SEARCH statements perform a 
serial search of a table element. If the 
programmer knows that the "found" condition 
will come after some intermediate point in 
the table element, to speed up execution, 
he can use the SET statement to set the 
index-names at that point and search only 
part of the table element. If the table 
element is large, and must be searched from 
the first occurrence to the last, the use 
of Format 2 (SEARCH ALL) is more efficient 
than Format 1, since it uses a binary 
search technique: however, the table must 
then be ordered. 

In Format 1, the VARYING option allows 
the programmer to: 

• Vary an index-name other than the first 
index-name stated for this table 
element. Thus, with two SEARCH 
statements each using a different 
index-name, reference can be made to 
more than one value in the same table 
element for comparisons, etc. 

244 

• Vary an index-name from another table 
element. In this case, the first 
index-name specified for this table 
element is used for the search, and the 
index-name specified in the VARYING 
option is incremented at the same time. 
Thus, it is possible to step through 
two table elements at once. 

In Format 1, the WHEN condition can be 
any relation condition, and can be 
multiple. If multiple WHEN conditions are 
stated, the implied logical connective is 
OR -- that is, if anyone of the WHEN 
conditions is satisfied, the 
imperative-statement following the wHEN 
condition is executed. If all conditions 
of the SEARCH statement are-to be satisfied 
before exiting from the search, a compound 
WHEN condition with an AND logical 
connective must be written. 

In Format 2, the SEARCH ALL statement, 
the table must be ordered on the KBY(S) 
specified in the OCCURS clause. Any KEY 
may be specified in the WHEN condition, but 
all preceding data-names in the KEY option 
must also be tested. The test must be an 
"equal to" (=) condition, and the KEY 
data-name must be either the subject or 
object of the condition, or the name of a 
conditional variable with which the tested 
condition-name is associated. The WHEN 
condition can also be a compound condition, 
formed from one of the simple conditions 
listed above, with AND as the only logical 
connective. The KEY and its object of 
comparison must be compatible, as given in 
the rules of the relation test. 

To write a series of statements that 
will search the three-dimensional table 
discussed in the section "The SET 
Statement n , the programmer could write: 



77 COMPARANDl PIC X(5). 
77 COMPARAND2 PIC 9(5). 
01 A. 

05 B OCCURS 2 INDEXED BY 11 IS. 
10 C OCCURS 2 INDEXED BY 12 16. 

15 D OCCURS 3 INDEXED BY 13, 14. 
20 EPIC X(5). 
20 F PIC 9 (5) • 

(initialize comparandl and comparand2) 

PERFORM SEARCH-TESTl THRU SEARCH-EXITl 
VARYING 11 FROM 1 BY 1 UNTIL 11 GREATER 
THAN 2 AFTER 12 FROM 1 BY 1 UNTIL 12 
GREATER THAN 2. 

ENTRY-NOENTRY1. GO TO ERROR-RECOVERY1. 

SEARCH-TEST1. SET 13 TO 1. 
SEARCH D WHEN E (11, 12, 13) = 

COMPARANDl AND 
F (11, 12, 13) = COMFARAND2 
SET IS TO 11 
SET 16 TO 12 
SET 12 TO 3 
SET 11 TO 3 
ALTER ENTRY-NOENTRYl TO PROCEED TO 
ENTRY-PROCESSING1. 

SEARCH-EXIT1. EXIT. 

ERROR-RECOVERY1. 

ENTRY-PROCESSING1. 
MOVE E(I5, 16, 13) TO OUT-AREAl. 
MOVE F(I5, 16, 13) TO OUT-AREA2. 

The PERFORM statement varies the indexed 
(11 and 12) associated with table elements 
Band C; the SEARCH statement varies 13, 
which is associated with table element D. 

The values of Ii and I2 that satisfy the 
WHEN conditions of the SEARCH statement are 
saved in IS and 16. 11 and 12 are then 
both set to 3 using the SET statement, so 
that upon return from the SEARCH statement 
control will fall through the PERFORM 
statement to the GO TO statement. 

Subsequent references to the desired 
occurrence of table elements E and F make 
use of the index-names IS and 16 in which 
the correct value was saved. 

For example, a user-defined table may be 
the following: 

01 TABLE. 
05 ENTRY-IN-TABLEE OCCURS 90 TI~ES 

ASCENDING KEY-l, KEY-2 
DESCENDING KEY-3 
INDEXED BY INDEX-l. 
10 PART-l PICTURE 9(2). 
10 KEY-l PICTURE 9(5). 
10 PART-2 PICTURE 9(6). 
10 KEY-2 PICTURE 9\4). 
10 PART-3 PICTURE 9(33). 
10 KEY-3 PICTURE 9 (5). 

A search of the entire table can be 
initiated with the following instruction: 

SEARCH ALL ENTRY-IN-TABLEE AT 
END GO TO NOENTRY 

WHEN KEY-l (INDEX-l) = VALUE-l ~ND 
KEY-2 (INDEX-l) = VALUE-2 
AND KEY-3 (INDEX-l) = VALUE-3 

MOVE PART-l (INDEX~l) TO 
OUTPUT-AREA. 

The foregoing instructions will execute 
a search on the given array TABLE which 
contains 90 elements of 55 bytes and 3 
keys. The primary and secondary keys 
(KEY-l and KEY-2) are in ascending aider 
whereas the least significant key (KEY-3) 
is in descending order. If an entry is 
found in which three keys are equal to the 
given values (i.e., VALUE-l, VALUE-2 
VALUE-3) PART-l of that entry will be movej 
to OUTPUT-AREA. If matching keys are not 
found in any of the entries in TABLE, the 
NOENTRY routine is entered. 

If a match is found between a table 
entry and the given values, the index 
(INDEX-l) is set to a value corresponding 
to the relative position within the taole 
of the matching entry. If no match is 
found, the index remains at the setting it 
had when execution of the SEARCH ALL 
statement began. 

Compilation is faster if KEY(S) are 
tested in the SEARCH statement in the same 
order they appear in the KEY option. 

Note that if KEY entries within the 
table do not contain valid values, then the 
results of the binary search will be 
unpredictable. 

Programming Techniques 245 



Building Tables 

When reading in data to build an 
internal table: 

1. Check to make sure the data does not 
exceed the space allocated for the 
table. 

2. If the data must be in sequence, check 
the sequence. 

3. If the data contains the subscript 
determining its position in the table, 
check the subscript for a valid range. 

When testing for the end of a table, use 
a named value giving the item count, rather 
than using a literal. Then, if the table 
must be expanded, only one value need be 
changed, instead of all references to a 
literal. 

QUEUE STRUCTURE CONSIDERATIONS 

In a COBOL teleprocessing (TP) program, 
a CD FOR INPUT allows the specification of 
one through three levels of sub-queues from 
which data can be received; this allows the 
COBOL object program, at execution time, to 
make use of pre-defined queue structures, 

QUEUE 

and to access all or parts of such 
structures. For TP programs, such queue 
structures are analogous in function and ~ 
form to the File Description (FD) entry anj 
its associated 01 record description for 
file processing programs. If pre-defined 
queue structures are used, each lowest 
level sub-queue name in the structure 
corresponds to a DD name; the associated DD 
card must specify a TPROCESS entry in the 
message control program (MCP) terminal 
table). Figure 72 shows the configuration 
of one queue structure such that queue A is 
made up of sub-queues Band C, sub-queue B 
is made up of sub-queues D and E, and 
sub-queue D is made up of sub-queues Hand 
I (where sub-queue H contains messages Zl 
and X2 and sub-queue I contains messages 
X3, X4, and XS), and so on. 

During program execution, when the user 
wishes to recelve a message from a queue 
(or sub-queue) he need not place the names 
of all sub-queues in the input CD; he need 
specify only the SYMBOLIC QUEUE name, which 
may be the name of a pre-defined queue 
structure, or he may specify that name plus 
one or more sub-queue names -- which allows 
him to access only that part of the entire 
structure that is needed. A COBOL 
oDject-time subroutine uses the name(s) 
placed in the input CD to determine which 
lowest-level sub-queue(s) and corresponding 
TCAM queue(s) can be used to fill the 
request. 

1 

1 
AI 

I 
1 

r---------------~---------------, 
I I 
I 1 

SUB-QUEUE (1) BI CI 
I 1 
I 1 

r-------~-------, r-------~-------, 
1 I 
1 I 

SUB-QUEUE (2) DI EI 
I 1 
I I 

r---~---, r---~---, 
I I I I 
I 1 I I 

SUB-QUEUE (3) HI II JI KI 
I I I 1 
I I I I 
1 I I I 

Zl X3 ~.! Z6 
MESSAGE X2 X4 Y3 Z7 

- XS YS Y6 
- ~~ -

I 
1 

FI 
I 
1 

r---~---, 

I I 
I I 

LI MI 
I 1 
1 1 
I 1 

'£1 '£.! 
Y8 :'£~ 

Figure 72. A Queue Structure with Three Levels of Sub-Queues 

246 

I 
1 

GI 
1 
1 

r---~---, 

I I 
1 1 

NI 01 
1 1 
1 1 
1 I 

X6 ~~ 
Z3 
Z4 
~~ 



r---------------------------------------------------------------------------------------, 

I 
I 
t 

//BLDRDS JOB user information 
//JOBLIB1 DO DSN=SYS1.COBLIB,UNIT=2314,VOL=SER=DC160,DISP=OLD 
//SUBQS2 EXEC PGM=ILBOQSU,REGION=96K 
//COBTPQD3 DO DSN=SUBQPDS,UNIT=2314,VOL=SER=DC160, X 
// SPACE=C4000, (SO,20,l»,DISP=(OLD,KEEP) 
//SYSPRINT4 DO SYSOUT=A 
//SYSIN5 DO * 
// 

QUEUE STRUCTURE DEFINITIONS FOR USE IN COBOL PROGRAMS WdICH PROCESS QUEUES ~ND 

SUB-QUEUES. 

QUEUE IS A. 

SUB-QUEUE-1 IS B. 

SUB-QUEUE-2 IS D. 

SUB-QUEUE-3 IS H. 

SUB-QUEUE-3 IS I. 

SUB-QUEUE-2 IS E. 

SUB-QUEUE-3 IS J. 

SUB-QUEUE-3 IS K. 
... _----- .. _----_ .. _--

SUB-QUEUE-1 IS C. 

SUB-QUEUE-2 IS F. 

SUB-QUEUE-3 IS L. 

SUB-QUEUE-3 IS M. 

SUB-QUEUE-2 IS G. 

SUB-QUEUE-3 IS N. 

Note: The parenthetical entries below are 
for illustrative purposes only, they may 
not appear in the program itself. 

(FD clause) 

(01 entry) 

(02 entry) 

(03 entry) 

(03 entry) 

(02 entry) 

(03 entry) 

(03 entry) 

(01 entry) 

(02 entry) 

(03 entry) 

(03 entry) 

(02 entry) 

(03 entry) 

SUB-QUEUE-3 IS o. 03 entry) 
~-------------------------------------------~-------------------------------------------~ 
Notes: 

1. The data-set name SYS1.COBLIB represents the Version 4 COBOL Library. 

2. The utility program ILBOQSU (called the Queue Structure Description routine) 
creates a partitioned data set with one member for each complete queue structure 
defined. It has an alias name of BLDQS, which may be specified on the EXEC card 
instead. 

3. The partitioned data set must be described on a DD card with the reserved name 
//COBTPQD. The SPACE parameter on this card must request allocation in terms of 
4000-byte blocks. 

4. The SYSPRINT DD statement defines the output message and listing data set. 

15. The SYSIN DD statement defines the input to the program. The SYSIN data set must 
I consist of gO-character records. L _______________________________________________________________________________________ J 

Figure 73. A Sample Queue Structure Descripion 

Programming Techniques 247 



In order to do this, the user must have 
previously defined his queue structures in 
a form that is acceptable to the COBOL 
object-time subroutine. A utility program 
that functions as the Queue structure 
Description routine (included in the 
Version 4 Library) makes this possible. 
Input to the Queue Structure Description 
routine consists of a series of statements 
that define queue structures. The 
statements are written in a COBOL-like 
format, similar to an FD entry and its 
associated record description entry. The 
Queue structure Description routine 
produces as output a partitioned data set 
with one member for each complete queue 
structure. The sample listing shown in 
Figure 13 provides the queue definition 
statements that correspond to this queue 
structure. At the right of each statement, 
in parenthesis, is each FD entry 
equivalent. 

Each logical record in a queue structure 
description may include only a queue or 
sub-queue definition; it may not include, 
for example, the usual COBOL sequence 
number. (For a detailed description of the 
possible formats for input to the Queue 
Structure Description routine, see the 
Section "Rules for Queue structure 
Description" in this chapter.) 

ACCESSING QUEUE STRUCTURES THROUGH COBOL 

Once the user has defined and stored the 
queue structures, COBOL TP programs can 
utilize these structures. At execution 
time, the partitioned data set is described 
on a DD card with the name COBTPQD. If, 
for example, the user wanted to access 
messages described in the queue structure 
defined in Figure 73, a DD card specifying 
the partitioned data set SUBQPDS, as below, 
would be required. 

//COBTPQD DD DSN=SUBQPDS,DISP=OLD 

Additional DD cards would be required to 
link the message control program terminal 
table entries and the lowest-level 
sub-queue names. (For a description of 
terminal table entries, see the section 
"Terminal and Line Control Areas" in the 
chapter "Using the Teleprocessing 
Feature".) The name of the DD card may be 
defined either as the sub-queue name itself 
(for example, as H, I, J, K, L, M, N, or 0) 
or as a ddname that is equivalent to the 
lowest-level sub-queue name. This 
alternative approach permits the COBOL 
program to reuse SYMBOLIC SUB-QUEUE names 
without ambiguity. These two approaches 
are illustrated below. 

248 

Method 1: The DD card associated with the 
queue-definition SUB-QUEUE-3 is H would be: 

//H DD QNAME=Ql 

Method 2: The DD card associated with the 
queue-definition SUB-QUEUE-3 is HtFIRSTMSG) 
would be: 

//FIRSTMSG DD QNAME=Q1 

where Q1 is an entry in the terminal table 

Before a RECEIVE statement is executed, 
the user places <via a MOVE statement) the 
needed queue and sub-queue name(s) in the 
CD entry. When the RECEIVE statement is 
executed, the RECEIVE subroutine checks for 
the presence of the partitioned data set 
describing these queue structures. If the 
data set is present, the RECEIVE subroutine 
invokes a Queue Analyzer routine, which 
searches the partitioned data set for a 
member corresponding to the name in the 
SYMBOLIC QUEUE field, reads that member 
into main storage, and uses it to validate 
the SYMBOLIC SUB-QUEUE name(s) in the COBOL 
program input CD entry. The Queue Analyzer 
routine then determines the first valid 
name f'or the structure specified and gives 
this name to the RECEIVE routine. 

Names at the SUB-QUEUE-1 level take 
priority over names at the SUB-QUEUE-2 
level. Names at the SUB-QUEUE-2 level take 
priority over names at the SUB-QUEUE-3 
level. At any given level, names at the 
left take priority over, and are completely 
evaluated before, names at the right. 
(Taking advantage of this retrieval 
technique, the user can improve object-time 
performance by defining the most frequently 
used suo-queues at the left of the 
structure. Table 29 illustrates TCAM 
message retrieval.) 

The RECEIVE subroutine then attempts to 
access the queue specified. If the DD car~ 
for this queue is not present, or if there 
are no messages in the associated MCP 
queue, the Queue Analyzer provides the 
RECEIVE routine with another valid name. 
The procedure is repeated until the RECEIVE 
routine accesses a message, or until there 
are no more queues to access. 

During a RECEIVE operation, a COBOL 
program using queue structures need not 
specify all levels of sub-queues. The 
highest level <QUEUE) must be specified; 
that level plus a SUB-QUEUE-l may also be 
specified; or all four levels may be 
specified. If a lower level is specified, 
then all higher levels must also be 
specified. 

If the COBOL programmer wishes to access 
the next message in the queue structure, 



Table 29. Sample Message Retrieval Options 
r---------------------------------------------------------------------------------------1 
I Input CD Message Returned by the MCP I 
~---------------------------------------------------------------------------------------~ 

CD CDNAME-IN FOR INPUT 
SYMBOLIC QUEUE IS data-name-l. Message Zl 

(where data-name-l contains 'A') 

CD CONAME-IN FOR INPUT 
SYMBOLIC QUEUE IS data-name-l. 

SYMBOLIC SUB-QUEUE-l IS data-name-2. 
(where data-name-l contains IAI and 
data-name-2 contains 'C I » 

CD CONAME-IN FOR INPUT 
SYMBOLIC-QUEUE IS data-name-l, 
SYMBOLIC-QUEUE-l IS data-name-2, 

Message Y7 

SYMBOLIC-QUEUE-2 IS data-name-3. Message Xl 
(where data-name-l contains 'A', 
data-name-2 contains IB', 
and data-name-3 contains tE') 

~---------------------------------------------------------------------------------------~ 
INot~: Data-name-l, data-name-2, and so on, refer to the optional clauses of a queue I 
Istructure defined under "Rules for Queue Structure Description" in this chapter. I l _______________________________________________________________________________________ J 

regardless of which sub-queue that message 
may be in, he specifies the queue name 
only, and initializes the sUb-queue-names 
to SPACES. The Queue Analyzer, when 
supplying the message, returns to the COBOL 
o.b~~c..L_-progIam -any: ---appl-i-cahl-e--- -su-~.que-Ue- -
names via the data items in the associated 
input CD. If, however, the programmer 
wishes the next message in a given 
sub-queue, he must specify both the queue 
name and any applicable sub-queue names~ 
Once a program has begun receiving any part 
of a message from a queue (or sub-queue), 
subsequent requests must specify both the 
queue-name and any applicable 
sUb-queue-names until end of message is 
indicated. Table 29 illustrates the 
relationship between the information 
contained in the input CD at object time 
and the message(s) accessed when the 
RECEIVE statement is executed (where each 
example refers to the queue structure 
pictured in Figure 72). 

Suppose that an application program is 
written to accept TP messages as input to 
an inventory control process. Each of five 
different locations transmits data on four 
different parts. The diagram in Figure 74 
illustrates the relationship between the 
input messages and the four different parts 
for each location. 

Each elementary, or lowest-level, queue 
in the structure must specify the name of a 
DO card, which in turn names a TPROCESS 
entry. While the example, as shown in 
Figure 74, is not ambiguous (that is, 

- WlJ.E-N-roR-¥..--C---H-I:-G~-P-AR--T-A--i-s -d-ist-i-ne-t- f-rom 
INVENTORY.LOS-ANGELES.PARTA), the 
elementary queues by themselves are not 
(that is, the elementary name PARTA, which 
corresponds to a ddname, can be anyone of 
five different PARTAls). To eliminate this 
ambiguity, whenever there are duplicate 
names in the lowest level of a queue 
structure, the user must define ddnames in 
addition to the sub-queue names at the 
lowest level when he defines the structure 
to the Queue Structure Description routine. 
Then the object-time Queue Analyzer routine 
automatically associates the fully 
qualified queue structure names with the DD 
names required. Accordingly, in this 
example: 

NEW-YORK.PARTA could have ddname DOl. 

NEW-YORK.PARTB could have ddname 002. 

NEW-YORK.PARTC could have ddname 003. 

NEW-YORK.PARTO could have ddname DD4. 

CHICAGO.PARTA could have ddname 005. 

CHICAGO.PARTB could have ddname 006. 

and so forth. In this way, each elementary 
queue has a unique designation; yet the 
COBOL program can refer to the sub-queue 
names without ambiguity. 

Programming Techniques 249 



SUB-QUEUE-2 SUB-QUEUE-l 
------~-_/'--.._---

PARTA(DD1) ----------------, 
1 

PARTB(DD2) ----------------~ NEW-YORK 
1-------------------------, 

PARTC(DD3) ----------------~ I 
I 1 PARTD(DD4) ________________ J 1 

I 
I 

PARTA(DD5) ----------------, I 
I 1 

PARTB(DD6) ----------------~ CHICAGO 1 
I-------------------------~ 

PARTC(DD7) ----------------~ 1 
1 I PARTD(DDS) ________________ J I 

1 
I 

PARTA(DD9) ----------------, I 
1 I 

QUEUE _----./'0... -

PARTB (DD10) ----------------~ S1'-LOUIS 1 INVENTORY 
1-------------------------+-------------------------------

PARTC(DDll)----------------~ I , , 
PARTD(DD12)----------------J 1 

I 
1 

PARTA(DD13)----------------, 1 , , 
PARTB(DD14)----------------~ DENVER 1 

,-------------------------~ 
PARTC(DD15)----------------~ I 

, 1 
PARTD(DD16)----------------J 1 , , 
PARTA(DD17)----------------, I 

, 1 

PARTB(DD1S)----------------~ LOS-ANGELES' 
~-------------------------J 

PARTC(DD19)----------------~ 

1 
PARTD(DD20)----------------J 

Figure 74. Using ddnames with Queue Structures 

250 



r---------------------------------------------------------------------------------------1 
I Format I 
~---------------------------------------------------------------------------------------~ 

{~UEUE } IS data 

{{ IS data-name-2[(ddname-)]} ••• 
{

SUB-QUEUE-l} 

SUBQl 

{
SUB-QUEUE-2} 

[[ IS data-name-3[(ddname)]] ••• 
CTTDf"'I") \...,..,.l.JX.&. } 

{

SUB-QUEUE-3} 
IS data-name-4[(ddname-3)]] ••• ]} ••• 

SUBQ3 

Rules for Queue Structure DescriQii2g 

For each member of the partitioned data 
set, the input to the Queue Structure 
Description Routine must take the format 
above. 

The clauses of the queue structure may 
be ~ritten free form; however, only one 
clause may appear on each 80-character 
r-eeo-r-d. --At --least one sub--quene-- i:evei---mu-st 
be specified; no more than 200 sub-queue 
names may be specified in one queue 
structure. 

The sub-queues at each level must be 
specified to the Queue Structure 
Description routine in left-to-right order: 
When the queue structure is referred to at 
object program execution time, names at a 
higher level take priority over names at a 
lo~er level. At a given level in the queue 
structure, names to the left take priority 
over names to the right. 

A queue structure need not include all 
levels of sub-queues. However, if a lower 
level is included in one leg of a queue 

structure, then that leg must include all 
higher levels. 

Each clause of the structure may 
optionally be followed by a period. 

Q~i~~na~~~l is the name of the queue 
structure, and becomes the name of that 
member of the partitioned data set. 

Data-name-2 though data~~~~~~~ are 
sub-queue names within the data set member. 

Note: A data-name cannot contain more than 
12 characters. 

Each data-name at the lowest 
(elementaryf-revel of a leg of the queue 
structure may be a ddnarne; alternatively, 
each such data-name may be followed by a 
parenthesized ddnarne. If a parenthesized 
ddname follows a sub-queue name, the left 
parenthesis must immediately follo~ the 
sub-queue name with no intervening spaces. 
There must be no spaces between the 
parentheses and the ddname. 

Programming Techniques 251 



CALLING AND CALLED PROGRAMS 

~ COBOL program can refer to and pass 
control to other COBOL programs, or to 
programs written in other languages. ~ 
program in another language can refer to 
and pass control to a COBOL program. ~ 
program that refers to another program is a 
calling program. ~ program that is 
referred to is a ~alled program. Control 
is returned from a called program to the 
first instruction following the calling 
sequence in the calling program. 

A called program can also be a calling 
program; that is, a called program can, in 
turn, call another program. However, a 
called program cannot call the program that 
called it, an earlier calling program, or 
itself. In Figure 75, for instance, 
program ~ calls program B; program B calls 
program C. Therefore: 

1. A is considered a calling progran by B. 

2. B is considered a called program by A. 

3. B is considered a calling program by C. 

4. C is considered a called program by B. 

control is returned in the same order of 
calling; that is, a called program (program 
C) returns control to its own calling 
program (program B)f not to an earlier 
calling program (program ~). Compiler
generated switches (e.g., ON and ALTER) are 
not reinitialized upon each entrance to the 
called program, that is, the program is in 
the last executed state unless it has been 
the object of a CANCEL statement. 

Usually called and calling prograns to 
be executed as a single job step are 
link-edited together; they must all De 
included in the same load module. However, 
with the COBOL dynamic call feature a 
programmer can request that a called 
program be link-edited into a separate 
module and called only if it is needed (see 
the section "Dynamic Subprogram Linkage", 
in this chapter). 

This chapter describes the accepted 
linkage conventions for calling and called 
programs in both COBOL and assembler 
language and discusses how such programs 
are link-edited. An example is provided to 
illustrate the coding required to have 
proper interface between both COBOL and 
assembler language calling and called 
programs. In addition, it includes a 
discussion of overlay design in which 
different called programs may, at different 
times, occupy the same area in main 
storage. Another example is provided to 
illustrate one method of accomplishing 
program linkage using the dynamic overlay 
technique. 

SPECIFYING LINKAGE 

Whenever a program calls another 
program, a link must be established between 
the two. The calling program must state 
the entry point of the called program and 
must specify any identifiers to be passed. 
The called program must have an entry point 
and must be able to accept the identifiers. 
In addition, the called program must 
establish the linkage for the return of 
control to the calling program. See Figure 
76 for an example of the linkage statements 
required in a typical calling/called 
situation. 

r---------------------------------------------------------------------------------------, 
I ABC I 
I r--------------, r--------------, r--------------, I 
I I I I I I I I 
I I I I Called I I I I 
I I Calling I I program of AI I Called I I 
I I program of B ~---------> I ~---------> I program of B I I 
I I I I Calling I I I I 
I I I I program of C I I I I 
I I I I I I I I I L ______________ J L ______________ J L ______________ J I 
L _______________________________________________________________________________________ J 

Figure 75. Calling and Called Programs 

252 



LINKAGE IN A CALLING COBOL PROGRAM 

A calling COBOL program must contain the 
following statement at the point at which 
another program is to be called: 

f 
literal-1 ~ 

CALL 
identifier-1 

[USING identifier-list]. 

Literal~l or the contents of identifier-l 
must be either the name of the program that 
is being called or the name of an entry 
point in the called program. The first 
eight characters of literal-lor 
identifier-1 are used to make the 
correspondence between the calling program 
and the called program. The 
identifier-list is one or more data-names, 
called identifiers and separated by blanks, 
that are to be passed to the called 
program. 

If the called program is an 
assembler-language program, the identifier 
in the USING phrase may also be a file-name 
or a procedure-name. If the identifier in 
the USING phrase is a file-name, the COBOL 
compiler passes the address of the DCB for 

----a--queued -ft-te-,or----tiIe--address--o-£-- the---tJ-EeB 
for a basic file, as this entry of the 
identifier-list. This can be used to test 
bits in the DCB or DECB or to enter some 
options in the DCB. However, when changing 
a field of the DCB, precautions should be 
taken not to contradict the information in 
other fields or the information in the 
object code supplied by the compiler, job 
control language, or other sources. When 
the identifier in the USING phrase is a 
procedure-name, the value passed is the 
beginning address of the procedure. If no 
identifiers are passed, the USING clause is 
omitted. 

LINKAGE IN A CALLED COBOL PROGRAM 

A called COBOL program must contain two 
statements. 

One of the following statements must be 
inserted to name the point where the 
program is to be entered: 

ENTRY literal-1 
[USING identifier-list]. 

or 

PROCEDURE DIVISION [USING 
identifier-list]. 

The literal-lor PROGRAM-ID is the name of 
the entry point in the called program. It 
is the same name that appears in the C~LL 
statement of the program that calls this 
program that the compiler uses. The 
identifier-list is one or more data-names 
that correspond to the identifier-list of 
the CALL statement of the calling progra~. 
Each data name of the identifier-list must 
be defined in the Linkage Section of the 
Data Division and must have a level number 
of 01 or 77. 

One of the following statements must be 
inserted at the point at which control is 
to be returned to the calling program: 

GOBACK. 

or 

EXIT PROGRAM. 

The GOBACK or EXIT PROGR~M statement 
enables restoration of necessary registers 
and returns control to the point in the 
calling program immediately following the 
calling sequence. 

~2t~: The GOBACK and EXIT PROGRAM 
statements may be used in a main program, 
with--tne- resu-ltthcrt any--e-flOOlJ---prtygram --can
be used as either a calling or a called 
program, if written with this end in mind. 
If a GOBACK statement appears within the 
main program, control is returned 
irr@ediately to the system; if an EXIT 
PROGRAM statement appears, it is simply 
regarded as a null instruction. 

A called program may pass a completion 
code to its caller by storing a value in 
RETURN-CODE. The calling program may 
interrogate RETURN-CODE after a return is 
made from a called program to determine the 
completion code. 

Note: RETURN-CODE may also be used to pass 
a-completion code to the system at the end 
of a run unit. 

Dynamic Subprogram Linkage 

With the dynamic subprogram linkage 
feature, a called program need not be 
link-edited with the main program. It may 
instead be link-edited into a separate load 
module, so that at execution time it is 
loaded if and only if it is called. 
Accordingly, the first dynamic call to a 
subprogram obtains a fresh copy of the 
subprogram. Subsequent calls to the same 
subprogram, by either the original caller 
or any other subprogram in the same 

Calling and Called Programs 253 



region/partition, result in a branch to the 
same copy of the subprogram in its 
last-used state until the subprogram is 
cancelled the first call following a C~NCEL 
statement results in a branch to a fresh 
copy of the subprogram. 

Specification of the DYNAM option in the 
PARM field of the EXEC statement (see the 
section on "Compiler Options" in the 
chapter entitled "Job Control Procedures") 
makes all calls dynamic. If NODYN~M is in 
effect, through either user specification 
at compile time or as the default option, 
only CALL identifier statements are 
dynamic; when NODYNAM is in effect, CALL 
literal statements are static. (For a 
discussion of the formats possible with the 
CALL statement, see the publication IBM OS 
Full ~merican National Standard COBOL~f---

For an example of a COBOL program that 
takes advantage of the dynamic C~LL/C~NCEL 
feature, see Figure 76 in this chapter. 

Notes: 

1. When the dynamic CALL is used, the 
main program and all subprograms in 
one region/partition should take 
advantage of the COBOL Library 
Management Facility (see the 
"Libraries" chapter). Even when the 
DYNAM option is not specified, a 
program with CALL identifier or C~NCEL 
identifier statements requires the 
Library Management Feature. 

2. The USING option should be included in 
the CALL statement only if there is a 
USING option in the called entry 
point. 

3. ~ segmented program may be called out 
only by its PROGRAM-ID or by an entry 
point within the root segment. 

r---------------------------------------------------------------------------------------, 
//C~LLJOB JOB user information 
//STEPl EXEC UCOBFCL,P~RM.COB=·DYNAK,RESIDENT· 

//COB.SYSIN DD * 

/* 

IDENTIFICATION DIVISION 
PROGR~M-ID. SUBPROG1. 
~UTHOR. J. SMITH 
REMARKS. 

THIS SUBPROGR~M IS C~LLED BY THE MAIN PROGRAM. 
IT ISSUES ~ MESS~GE TO INDIC~TE WHETHER IT IS 
IN INITI~L OR L~ST-USED ST~TE, ~ND THEN RETURNS 
TO THE MAIN PROGR~M. 

ENVIRONMENT DIVISION. 
CONFIGURATION SECTION, 
SOURCE-COMPUTER. IBM-360. 
OBJECT-COMPUTER. IBM-360. 
DATA DIVISION. 
WORKING-STORAGE SECTION. 
77 SWITCH PIC 9 V~LUE O. 
PROCEDURE DIVISION. 

IF SWITCH=O DISPLAY 'SUBPROGl C~LLED -- IN 
INITIAL ST~TE' 

GO TO RETURN-POINT. 
DISPLAY 'SUPROGl CALLED -- IN LAST-USED STATE'. 

RETURN-POINT. 
ADD 1 TO SWITCH. 
EXIT PROGRAM. 

//LKED.SYSLMOD DD DSN=SUBPROGS,UNIT=2314,VOL=SER=XXXXXX, 
// DISP=(NEW, KEEP), SPACE=(TRK, (5,1,1» 
/* 

~---------------------------------------------------------------------------------------~ 
INot~: When a subprogram is called dynamically, the (N~lE and/or ALIAS) option of the I 
Ilinkage editor is used to identify the module that is accessed by an OS LOAD macro at I 
\execution time (see the section entitled "Link-editing COBOL Programs"). I L _______________________________________________________________________________________ J 

Figure 76. Sample calling and Called Programs Using Dynamic CALL and CANCEL State~ents 
(Part 1 of 3) 

254 



r---------------------------------------------------------------------------------------, 
//CALLJOB2 JOB user information 
//STEPl EXEC UCOBFCL,PARM.COB='DYNAM,RESIDENT' 
//COB.SYSIN DD * 

1 
+-/* -

IDENTIFICATION DIVISION. 
PROGRAM-ID. SUBPROG2. 
AUTHOR. J. SMITH 
REMARKS. 

THIS SUBPROGRAM IS CALLED BY THE MAD-J PROGRAM. 
IF IT IS IN INITIAL STATE, IT ISSUES A MESSAGE 
TO TgAT EFFECT AND RETURNS TO THE MAIN PROGRAM. 
IF NOT, IT ISSUES A MESSAGE THAT IT IS IN THE 
LAST-USED STATE, CANCELS SUBPROGl VIA A CANCEL 
IDENTIFIER. AND RETURNS TO THE MAIN PROGRAM. 

ENVIRONMENT DIVISION. 
CONFIGURATION DIVISION. 
SOURCE-COMPUTER. IBM-360. 
OBJECT-COMPUTER. IBM-360. 
DATA DIVISION. 
WORKING-STORAGE SECTION. 
77 SWITCH PIC 9 VALUE O. 
77 CANCL-ID PIC X(8). 
PROCEDURE DIVISION. 

IF SWITCH=O DISPLAY 'SUBPROG2 CALLED -- IN INITIAL 
GO TO RETURN-POINT. 

DISPLAY 'SUBPROG2 CALLED -- IN LAST-USED STATE'. 
DISPLAY 'SUBPROG2 CANCELLING SUBPROG1'. 
MOVE iSUBPROG1' TO CANCL-ID. 
CANCEL CANCL-ID. 

RETURN-POINT. 
ADD 1 TO SWITCH. 
EXIT- PROGRAM. 

I//LKED.SYSLMOD DD DSN=SUBPROGS,UNIT=2314,VOL=SER=XXXXXX, DISP=OLD 

STArE' 

1/* I L _______________________________________________________________________________________ J 

FigUre 76. Sample Calling and Called Programs Using Dynamic CALL and CANCEL State~ents 
(Part 2 of 3) 

Calling and Called Progra~s 2S~ 



r---------------------------------------------------------------------------------------, 
//CALLJOB3 JOB user information 
//STEPl EXEC UCOBFCLG,PARM.COB='DYNAM,RESIDENT' 
//COB.SYSIN DD * 

/* 
//GO.STEPLIB 
//GO.SYSOUT 

1/* 

IDENTIFICATION DIVISION. 
PROGRAM-ID. MAINPROG. 
AUTHOR= J= SMITH 
REMARKS. 

THIS IS A MAIN PROGRAM. IT CALLS SUBPROGl AND 
SUBPROG2 TWICE. ON THE FIRST CALL, EACH SUBPROGRAM 
SHOULD BE A FRESH COPY (THAT IS, IN INITIAL STATE). 
ON THE SECOND CALL, EACH SUBPROGRAM SHOULD BE IN ITS 
LAST-USED STATE. WHEN SUBPROG2 IS CALLED THE SECOND 
TIME, IT CANCELS SUBPROGi. THEN MAINPROG CALLS 
SUBPROGi AGAIN, AND AGAIN A FRESH COPY OF THIS 
SUBPROGRAM SHOULD BE MADE AVAILABLE. 
THE OUTPUT FROM THIS RUN SHOULD READ AS FOLLOWS: 

'BEGIN MAINPROG. 
MAINPROG CALLING SUBPROGi. 
SUBPROGl CALLED -- IN INITIAL STATE. 
MAINPROG CALLING SUBPROG2. 
SUBPROG CALLED -- IN INITIAL STATE. 
MAINPROG CALLING SUBPROGi. 
SUBPROG CALLED -- IN LAST-USED STATE. 
MAINPROG CALLING SUBPROG2. 
SUBPROG2 CALLED -- IN LAST-USED STATE. 
SUBPROG2 CANCELLING SUBPROGi. 
MAINPROG CALLING SUBPROGi. 
SUBPROGi CALLED -- IN INITIAL STATE. 
MAINPROG CANCELLING SUBPROGi AND SUBPROG2. 
END MAINPROG.' 

ENVIRONMENT DIVISION. 
CONFIGURATION SECTION. 
SOURCE-COMPUTER. IBM-360. 
OBJECT-COMPUTER. IBM-360. 
DATA DIVISION. 
WORKING-STORAGE SECTION. 
77 SWITCH PIC 9 VALUE O. 
77 CALLID PIC X(S). 
PROCEDURE DIVISION. 

DISPLAY 'BEGIN MAINPROG'~ 
START-CALLS. 

IF SWITCH IS LESS THAN 2 PERFORM CALLi. 
PERFORM CALL2. 
GO TO START-CALLS. 
PERFORM CALLi. 
DISPLAY 'MAINPROG CANCELLING SUBPROGi AND SUBPROG2'. 
CANCEL'SUBPROGi','SUBPROG2'. 
DISPLAY 'END MAINPROG'. 
STOP RUN. 

CALLi. 
MOVE 'SUBPROG' TO CALLID. 
DISPLAY 'MAINPROG CALLING SUBPROG'. 
CALL CALLID. 

CALL2. 

DD 
DD 

MOVE 'SUBPROG2' TO CALLID. 
DISPLAY 'MAINPROG CALLING SUBPROG2'. 
CALL CALLID. 
ADD 1 TO SWITCH. 

DSN=SUBPROGS,UNIT=23i4,VOL=SER=XXXXXX,DISP=OLD 
SYSOUT=A 

L _______________________________________________________________________________________ J 

Figure 76. Sample Calling and Called Programs Using Dynamic CALL and CANCEL State~ents 
(Part 3 of 3) 

256 



The number of data-names in the 
identifier list of a calling program must 
be the same as the number of data-names in 
the identifier list of the called program. 
There is a one-to-one correspondence; that 
is, the first identifier of the calling 
program is passed to the first identifier 
of the called program, the second 
identifier of the calling program is passed 
to the second identifier of the called 
proqram, and so forth. 

Only the address of an identifier list 
is passed. consequently, the data-name 
that is an identifier of the calling 
program and the data-name that is the 
corresponding identifier of the called 
program both refer to the same locations in 
main storage. The pair of names, ho~ever, 
need not be identical, but the data 
descriptions must be equivalent. For 
example, if an identifier of the calling 
proqram is a level-77 data-name of a 
character string of length 30, its 
corresponding identifier of the called 
program could also be a level-77 data-name 
of a character string of length 30, or the 

___ iden.ti£ieI _ oE !:.he _called_pIo_gram c.uuld he a 
level-Ol name with subordinate names 
representing character strings whose 
combined length is 30. 

Although all identifiers of the called 
program in the ENTRY statement must be 
described with level numbers of 01 or 77, 
there is no such restriction made for 
identifiers of the calling program in the 
CALL statement. An identifier of the 
calling program may be a qualified name or 
a subscripted name. When a group item with 
a level number other than 01 is specified 
as an identifier of the calling program, 
proper word-boundary alignment is required 
if subordinate items are described as 
COMPUTATIONAL, COMPUTATIONAL-l, or 
COMPUTATIONAL-2. If the identifier of the 
calling program corresponds to a level-Ol 
identifier of the called program, 
doubleword alignment is required. 

FILE-NAME AND PROCEDURE-NAME ARGUMEt~rs 

A calling COBOL program that calls an 
assembler-language program can pass 
file-names and procedure-names, in addition 
to data-names, as identifiers. In the 
actual identifier-list that the compiler 
generates, the procedure-name is passed as 
the address of the procedure. For a queued 
file, the file-name is passed as the 
address of the DCB (Data Control Block); 
for a basic file, the file-name is passed 
as the address of the DECB (Data Event 
Control Block). 

LINKAGE IN A CALLING OR CALLED 
ASSEMBLER-LANGUAGE PROGRAM 

In a COBOL program, the expansi~ns of 
the linkage statement provide the save and 
return coding that is necessary to 
establish linkage between the calling and 
the called programs. Assembler-language 
programs must be prepared in accordance 
with the basic linkage conventions of the 
operating system. Table 30 shows the 
conventions for use of general registers as 
linkag.e registers._ 

Conventions Used in a Calli~ 
Assembler-Language Program 

A calling assembler-language program 
must reserve a save area of 18 words, 
beginning on a fullword boundary, to be 
used by the called program for saving 
registers. It must load the address of 
this area into register 13. If the program 
is to pass identifiers, an identifier list 
must be prepared, and the address of the 
identifier list must be loaded into 
register 1. The calling program must load 
the address of the return point into 
register 14, and it must load the address 
of the entry point of the called program 
into register 15. 

calling and Called Programs 257 



Table 30. Linkage Registers 
r----------T------------T---------------------------------------------------------------, 
, Register I Register I I 
I Number I Use I Contents I 
~----------+------------+---------------------------------------------------------------~ 
I 1 I Identifier I Address of the list that is passed to the called program. I 
I I I I 
I 13 ISave Area I Address of an area (of,18 fullwords) to be used by the called I 
I I I program to save registers. I 
I I I I 
I 14 I Return I Address of the location in the calling program to which I 
I I I control should be returned after execution of the called I 
I I I program. I 
I I I I 
I 15 IEntry Point1 1 Address of the entry point in the called program to which I 
I I I control is to be transferred. I 
~----------i------------i-----------------------------__________________________________ ~ 
I 1Register 15 is also used as a return code register. The return code indicates I 
I whether or not any exceptional conditions occurred during execution of the called I 
I program. I L _______________________________________________________________________________________ J 

The identifier list is a group of 
contiguous fullwords, each of which is an 
address of a data item to be passed to the 
called program. The identifier list must 
begin on a fullword boundary. The 
high-order bit of the last identifier, by 
convention, is set as a flag of one to 
indicate the end of the list. Figure 77 
shows a portion of an assembler-language 
program that illustrates the conventions 
used in a calling program. 

A GOBACK statement or a STOP RUN 
statement issued within a COBOL program 
will (always for STOP RUN, but only in a 
main program for GOBACK) reference the 
COBOL library subroutine ILBOSRV. 
Furthermore, the STOP RUN statement will 
end the run unit, which is assumed to begin 
with the highest-level COBOL program 
called. To circumvent this assumption, a 
higher-level assembler language program 
must call the COBOL library subroutine 
ILBOSTPO before making any calls to other 
COBOL programs. This should be done as 
soon as possible after entry to the 
assembler-language program, as part of the 
proqram's initialization procedure. 

258 

~2gy~g~i2g~_~~~~_!g_~_~~!!~~_~~~~~Q!~~~ 
Langu~~~_~~2~~~~ 

A called assembler-language program must 
save the registers and store other 
pertinent information in the save area 
passed to it by the calling prograill (the 
layout of the save area is shown in Figure 
79). A called program must also contain a 
return routine that (1) loads the address 
of the save area back into register 13, 
(2) restores the contents of other 
registers, loading the return address in 
register 14, and (3) optionally. sets flags 
in the high-order eight bits of word 4 of 
the save area to l's to indicate that the 
return occurred. It can then branch to the 
address in register 14 to complete the 
return. 

Figure 85 shows a portion of an 
assembler-language program that illustrates 
the conventions used in called programs 
that are also calling programs. Figure 86 
shows the JCL suggested for corr.piling, 
link-editing, and executing a calling 
assembler-language program and a called 
COBOL program. 



r---------------------------------------------------------------------------------------, 
LA 13, AREA LOA.DS THE ADDRESS OF THIS PROGRAM'S SAVE AREA. INTO 

* REGISTER 13. 

AREA DS 18F RESERVES 18 WORDS FOR THE SAVE AREA 

* CALLING SEQUENCE 

* 

* 
* 
* 
* 
* 

LA l,ARGLST 

CALL COBREGN~ 

LOADS INTO REGISTER 1 THE ADDRESS OF THE IDENTIFIER 
LIST TO BE PASSED. TRANSFERS CONTROL TO THE ENTRY 
POINT OF THE CALLED PROGRAM. (THE CALL MACRO 
INSTRUCTION GENERATES CODING THAT LOADS A V-TYPE 
ADDRESS CONSTANT -- COBREGN2 -- INTO REGISTER 15 AND 
PLACES INTO REGISTER 14 THE RETURN ADDRESS, THAT IS, 
THE ADDRESS OF THE FIRST BYTE FOLLOWING THE MACR~ 
EXPANSION. 

* PARAMETER LIST 
DS OF THIS PARAMETER LIST CONTAINS ONLY ONE ARGUMENT. 

ARGLST DC X'80' FIRST BYTE OF LAST ARGUMENT (ONLY 
DC AL3(ARGUMENT) ARGUMENT IN THIS PROGRAM) SETS BIT a 

ARGUMENT DC C'l' TO 1. 
~---------------------------------------------------------------------------------------~ 
INot~: Since the calling program containing this coding could previously have been I 
I called by another program, it also could establish linkage between the save area it hasl 
Ireceived and the save area it passes to the called program. It would store in ~ord I 
l:t_t"l_r:~_~ ___ ~_~ ___ !:_~_~ ___ ~ lc! ___ ~i3.y~ a~~a __ !J~~ ___ ~_ggE~~s ___ S?_tth~ ___ !l~w_ ~~ye _~_:r::::~_~J ___ ~_P:g_~_:t __ ~_0:tl:t~ __ l:itQ!=:~ __ J_l1 ___ ~orq.J _ 
Itwo of the new save area the address of the old save area. I L _______________________________________________________________________________________ J 

Figure 77. Sample Linkage Coding Used in a Calling Assembler-Language Program 

COMMUNICATION WITH OTHER LANGUAGES 

An American National Standard COBOL 
program may communicate at object time with 
programs written in other source program 
languages, such as COBOL F, PL/l, FORTRAN, 
and, as in the foregoing discussion, 
assembler language. The relatively few 
problems that may arise in using American 
National standard COBOL with COBOL F 
usually have to do with slightly different 
boundary alignments, slack-byte insertion, 
different meanings for the same reserved 
word, and so on. 

There is a greater disparity between 
American National Standard COBOL and 
FORTRAN, much of it stemming from the basic 
differences in the applications for which 
these languages were developed. (FORTRAN 
is process oriented and does comparatively 
little file processing; COBOL, on the other 
hand, is definitely file oriented and is 
not mathematically self-sufficient.) Care 
must be taken, therefore, in attempting to 
pass arguments between American National 
Standard COBOL and FORTRAN programs. 

The use of COBOL and PL/I together 
presents such a large number of problems 

that a considerable amount of study is 
necessary to implement anything but the 
most basic application. For further 
information, see the publications ~~~_Q~ 
Lin~~~e Editor and Loader, Order 
No. GC28-6538, and IBM as PL/I (F) 
Pro~rammer's Guide, Order No. C28-6594. 

Abnormal terminations in non-COBOL 
programs calling COBOL programs co~piled 
with either the STATE or the SYMDMP option 
(see the chapter ~ntitled "Symbolic 
Debugging Features") cause generation of 
the following misinformation: 

• Incorrect number for the statement 
responsible for the abnormal 
termination. The last COBOL statement 
in the called program executed before 
the return to the calling non-COBOL 
program is given in the "Last Card 
Number Executed" message. 

• Incorrect PROGRAM-ID when such an 
abnormal termination occurs after 
return from the called COBOL program. 
The PROGRAM-ID message contains the 
user-specified name for the called 
COBOL program. 

calling and Called Programs 259 



The following set of programs (Figure 
76) contains a sample COBOL main-line 
program, COBMAIN, which calls COBOL and 
assembler-language programs using arguments 
that represent a data-item and a file-name. 

Some of the called programs (COBOL1, 
COBOL1B, and ASSMPGM) are themselves 

calling programs. Program COBREGNO is 
called by several programs, each of which 
enters at a oifferent entry point within 
the program. 

The assembler language program, ASSMPGM 
shown in Figure 7S (Part 6A), is 
illustrated in part in Figures 77 anj 85, 
where sample linkage coding methods are 
demonstrated. 

r---------------------------------------------------------------------------------------, 
IDENTIFICATION DIVISION. 
PROGRAM-ID. COBMAIN. 
ENVIRONMENT DIVISION. 
CONFIGURATION SECTION. 
SOURCE-COMPUTER. IBM-360-F50. 
OBJECT-COMPUTER. IBM-360-F50. 
INPUT-OUTPUT SECTION. 
FILE-CONTROL. 

SELECT FILE-X ASSIGN TO UR-2S40R-S-INFILE. 
I-O-CONTROL. 
DATA DIVISION. 
FILE SECTION. 
FD FILE-X 

RECORD CONTAINS SO CHARACTERS 
LABEL RECORD IS OMITTED. 

01 IN-REC. 
05 TYPEN PIC X. 
05 HOLDER PIC X. 
05 FILLER PIC X(7S). 

WORKING-STORAGE SECTION. 
77 SIGNAL PIC XeS). 
PROCEDURE DIVISION. 

OPEN INPUT FILE-X. 
READ FILE-X AT END GO TO CLOSE-FILE. 

CALL 'COBOL1' USING IN-REC. 

CALL 'COBREGN1' USING IN-REC. 

CALL 'ASSMRTN' USING SIGNAL. 

CLOSE-FILE. CLOSE FILE-X. 

STOP RUN. L ______________________________________________________________________________________ _ 

Figure 78. Sample Calling and Called Programs (Part 1 of 6) 

260 



r---------------------------------------------------------------------------------------, 
IDENTIFICATION DIVISION. 
PROGRAM-ID. COBOL1. 
ENVIRONMENT DIVISION. 
CONFIGURATION SECTION. 
SOURCE-COMPUTER. IBM-360-FSO. 
OBJECT-COMPUTER. I~M-360-FSO. 
INPUT-OUTPUT SECTION. 
FILE-CONTROL. 
I-O-CONTROL. 
DATA DIVISION. 
FILE SECTION. 
WORKING-STORAGE SECTION. 
77 TRANS-COBL PIC X(7). 
LINKAGE SECTION. 
01 PASS-REC. 

05 FILLER PIC X. 
05 TRANS-VALUE PIC X. 
05 FILLER PIC X(78). 

PROCEDURE DIVISION USING PASS-REC. 

CALL 'COBOL1A' USING TRANS-COB1. 

CALL 'COBOLIB' USING TRANS-COB1. 

+- --GOBAGK-. ----1-L _______________________________________________________________________________________ J 

Figure 78. Sample Calling and Called Programs <Part 2 of 6) 

r---------------------------------------------------------------------------------------, 
IDENTIFICATION DIVISION. 
PROGRAM-ID. COBOL1A. 
ENVIRONMENT DIVISION. 
CONFIGURATION SECTION. 
SOURCE-COMPUTER. IBM-360-FSO. 
OBJECT-COMPUTER. IBM-360-FSO. 
INPUT-OUTPUT SECTION. 
FI LE-CONTROL. 
I-O-CONTROL. 
DATA DIVISION. 
FILE SECTION. 
WORKING-STORAGE SECTION. 
LINKAGE SECTION. 
77 TRANS-COB1A PIC Y(7). 
PROCEDURE DIVISION USING TRANS-COB1Ae 

GOBACK. L _______________________________________________________________________________________ J 

Figure 78. Sample Calling and Called Programs (Part 3 of 6) 

Calling and Called Programs 261 



r---------------------------------------------------------------------------------------, 
IDENTIFICATION DIVISION. I 
PROGRAM-ID. COBOL1B. I 
ENVIRONMENT DIVISION. I 
CONFIGURATION SECTION. I 
SOURCE-COMPUTER. IBM-360-F50. I 
OBJECT-COMPUTER. IBM-360-F50. I 
INPUT=OG~PUT SECTION. I 
FILE-CONTROL. I 
I-O-CONTROL. I 
DATA DIVISION. I 
FILE SECTION. I 
WORKING-STORAGE SECTION. I 
77 TRANS-COBREGN PIC X (7) • I 
LINKAGE SECTION. I 
77 TRANS-COB1B PIC X (7) • I 
PROCEDURE DIVISION USING TRANS-COB1B. I 

I 
I 
I 

CALL 'COBREGNO' USING TRANS-COBREGN. I 
I 
I 
I 

GOBACK. I L _______________________________________________________________________________________ J 

Figure 78. Sample Calling and Called Programs (Part 4 of 6) 

r---------------------------------------------------------------------------------------, 
IDENTIFICATION DIVISION. 
PROGRAM-ID. COBREGNO. 
ENVIRONMENT DIVISION. 
CONFIGURATION SECTION. 
SOURCE-COMPUTER. IBM-360-F50. 
OBJECT-COMPUTER. IBM-360-F50. 
INPUT-OUTPUT SECTION. 
FILE-CONTROL. 
I-O-CONTROL. 
DATA DIVISION. 
FILE SECTION. 
WORKING-STORAGE SECTION. 
LINKAGE SECTION. 
77 TRANS-COB PIC XC?). 
77 TRANS-ASSM PIC X(4). 
01 PASS-REC. 

05 FILLER PIC X. 
05 TRANS-VALUE PIC X. 
05 FILLER PIC X(78). 

PROCEDURE DIVISION USING TRANS-COB. 

GOBACK. 
B. ENTRY 'COBREGN1' USING PASS-REC. 

GOBACK. 
C. ENTRY 'COBREGN2' USING TRANS-ASSM. 

GOBACK. 

Figure 78. Sample Calling and Called Programs (Part 5 of 6) 

262 



r---------------------------------------------------------------------------------------, 
ASSMPGM START 0 

PRINT NOGEN 
ENTRY ASSMRTN ESTABLISHES ASSMRTN AS AN EXTERNAL NAME THAT CAN BE 

* REFERRED TO IN ANOTHER PROGRAM. 

* SAVE 
ASSMRTN 

* 
* 
* 
* 
* 
* 
* 
* 

* 
* 

* 

* 

* 
AREA 

PROCESS 

* 
* 
* 
* 
* 
* 
* 
* 
* 

USING ASSMRTN,15 

ROUTINE 
SAVE 

LR 
DROP 
USING 
LR 

LA 

ST 

ST 

B 
DS 

L 

(14,12) 

10,15 
15 
ASSMRTN,10 
11,13 

13, AREA 

13,8(11) 

11,4(13) 

PROCESS 
18F 

2,0(1) 

STORES THE CONTENTS OF REGISTERS 14, 15, 0, ~ND 1 
IN WORDS 4, 5, 6, AND 7 OF THE SAVE AREA. 
THESE ARE CONVENTIONAL LINKAGE REGISTERS. 
REGISTERS 2 THROUGH 12, WHICH ARE Nor 
ACTUALLY USED FOR LINKAGE, ARE SAVED IN SUBSEQUENr 
WORDS OF THE SAVE AREA. THE EXPANDED CODE OF rHE 
SAVE MACRO INSTRUCTION USES REGISTER 13, WHICH 
CONTAINS THE ADDRESS OF THE SAVE AREA, IN 
EFFECTING THE STORAGE OF REGISTERS. 

LO~DS THE ADDRESS OF THE SAVE AREA INro REGISTER 11, 
WHICH WILL SUBSEQUENTLY BE USED TO REFER TO rHE 
SAVE AREA. 

LOADS THE ADDRESS OF THIS PROGRAM'S SAVE ARE~ INTO 
REGISTER 13. 

STORES THE ADDRESS OF THIS PROGRAM'S SAVE AREA INTO 
WORD 3 OF THE SAVE AREA OF THE CALLING PR03R~M. 

STORES THE ADDRESS OF THE PREVIOUS SAVE AREA INTO 
WORD 2 OF THIS PROGRAM'S SAVE AREA. 

RESERVES 18 WORDS FOR THE SAVE AREA. 

LOADS INTO REGISTER 2 THE ADDRESS OF rHE IDENTIFIER
LIST PASSED TO THE PROGRM4. THE ADDRESS OF THE 
IDENTIFIER-LIST IS ALWAYS PASSED IN REGISTER 1, 
WHICH IS USED HERE AS THE BASE REGISTER TO GET THE 
ADDRESS. SUBSEQUENT REFERENCES TO THE IDENTIFIER 
WILL USE REGISTER 2 AS THE BASE REGISTEK FOR TH~T 
ADDRESS. (IF A VARIABLE-LENGTH IDENTIFIER-LIST 
COULD BE USED IN CALLING THIS PROG~A~, EACH 
IDENTIFIER WOULD BE TESTED FOR A ONE IN THE 
HIGH-ORDER BIT.) 

{User-written program statements} 

* CALLING SEQUENCE 

* 

* 
* 
* 
* 
* 
* 

LA 1,ARGLST 

CALL COBREGN2 

LOADS INTO RE3ISTER 1 THE ADDRESS OF rHE IDENTIFIER
LIST TO BE PASSED. 

TRANSFERS CONTROL TO THE ENTRY POINT OF THE CALLED 
PROGRAM. [THE CALL MACRO INSTRUCTION GENERATES 
CODING THAT LOADS A V-TYPE ADDRESS CONSTANT -
COBREGN2 -- INTO REGISTER 15 AND PLACES INTO 
REGISTER 14 THE RETURN ADD~ESS (THAT IS, THE 
ADDRESS OF THE FIRST BYTE FOLLOWING THE MACRO 
EXPANSION) ] • 

{User-written program statements} 

Figure 78. Sample Calling and Called Programs (Part 6A of 6) 

Calling and Called Programs 263 



r---------------------------------------------------------------------------------------, 
* CALLING SEQUENCE 

* 

* 
* 
* 
* 
* 
* 

LA 1,ARGLST 

CALL COBREGN2 

LOADS INTO REGISTER 1 THE ADDRESS OF THE 
IDENTIFIER-

LIST TO BE PASSED. 

TRANSFERS CONTROL TO THE ENTRY POINT OF THE C~LLED 
PROGRAM. [THE CALL MACRO INSTRUCTION GENER~TES 
CODING THAT LOADS A V-TYPE ADDRESS CONSTANT -
COBREGN2 -- INTO REGISTER 15 AND PL~CES INTO 
REGISTER 14 THE RETURN ADDRESS (THAT IS, rHE 
ADDRESS OF THE FIRST BYTE FOLLOWING THE M~CRO 
EXPANSION) ] • 

{User-written program statements} 

* RETURN ROUTINE I 
L 13,4(13) LOADS THE ADDRESS OF THE PREVIOUS S~VE AREA I 

* BACK INTO REGISTER 13. I 
I 

RETURN(14,12),T,RC=(15) THIS RETURN MACRO INSTRUCTION RESTORES THE S~VED I 
* REGISTERS (14, 15, AND 0 THROUGH 12). THE RETURN 
* ADDRESS IS RESTORED TO REGISTER 14, AND THE 
* EXPANSION INCLUDES A BRANCH TO TH~T INSTRUCTION. 
* THE 'T' IN THE RETURN MACRO INSTRUCTION CAUSES 
* THE EIGHT HIGH-ORDER BITS OF WORD 4 OF THE S~VE 
* AREA TO BE SET TO ONES AS AN INDICATION THA'T rHE 
* RETURN HAS OCCURRED. THE RC=(15) P~RAMETER 

INDICATES THAT THIS PROGRAM IS PASSING A RErURN 
CODE IN REGISTER 15. 

* PARAMETER 
DS 

~RGLST DC 
DC 

~RGUMENT DC 
END 

LIST 
OF 
X'80' 
AL3 (ARGUMENT) 
C'l' 

THIS PARAMETER LIST CONTAINS ONLY 1 ARGUMENT. 

FIRST BYTE OF LAST ARGUMENT (ONLY ARGUMENT IN 
THIS PROGRAM) SETS BIT 0 TO 1. 

L ______________________________________________________________________________________ _ 

Figure 78. SaQple Calling and Called Programs (Part 6B of 6) 

LINK~EDITING PROGRAMS 

Each time an entry point is specified in 
a called program, an external name is 
defined (except when a program is compiled 
using the DYNAM and RESIDENT compiler 
options). An external name is a name that 
can be referred to by another separately 
compiled or assembled program. Each time 
an entry name is specified in a calling 
program, an external reference is defined 
except when a program is compiled using the 
DYNAM and RESIDENT compiler options. An 
external reference is a symbol that is 
defined as an external name in another 
separately compiled or assembled program. 
The linkage editor resolves external names 
and references and combines calling and 
called programs into a format suitable for 
execution together, i.e., as a single load 
module except when programs are compiled 
with dynamic CALL statements and/or the 
RESIDENT option (see the section entitled 
nprograms Compiled with the DYN~ and/or 
RESIDENT Options n). 

264 

Load modules of both calling and called 
programs are used as input to the linkage 
editor. There are two kinds of input, 
primary and additional. ~Ei~~EY input 
consists of a sequential data set that 
contains one or more separately compiled 
object modules and/or linkage editor 
control statements. The primary input can 
contain object modules that are either 
calling or called programs or both. 
Additional input consists of object modules 
or load modules that are not part of the 
primary input data set but are to be 
included in the load module. The 
additional input may be in the form of (1) 
a sequential data set consisting of one or 
more object modules with or without linkage 
editor control statements, or (2) libraries 
containing object modules with or ~ithout 
linkage editor control statements, or (3) 
libraries consisting of load modules. Note 
that the secondary input (all libraries 
and/or data sets) must be composed of 
either all QQi~£~ modules or all lo~~ 
modules, but it cannot contain both types. 
The additional input is specified by 



r---------------------------------------------------------------------------------------, 
!Word Area ! 
! No. No. contents I 
~---------------------------------------------------------------------------------------~ 

1 AREA Used by COBOL. 

2 AREA +4 Address (passed by the calling program) of the save area used by the 
calling program. This is the address of a save area that was 
passed to the called program by the program that called the called 
program. 

3 AREA +8 Address <stored by the called program) of the next save area, that 
is, the save area that the called program provides for a pr~gra~ 
that it calls. The called program need not reserve a save area if 
it does not, in turn, call another program. 

4 AREA +12 Return address (contents of register 14) stored by the called 
program. 

5 AREA +16 Entry point address (contents of register 15) stored by the called 
program. 

6 AREA +20 Contents of register 0 (stored by the called program). 

7 AREA +24 Contents of register 1 (stored by the called program); that is, the 
address of the identifier list passed to the called program. 

8 AREA +28\~ 
: Contents of reg1sters 2 through 12 (stored oy the called program). 

18 AREA +68 
.. -""''''''.,..,.,."."...-.. -_"'''=_.~ ...... _''''=.=_,..,~~ .. - .. ==.''''.,.",,,.''''''.~_. __ .. ---_-~~._._.~~._~ __ . ______________________________ . ___ ._.~~-__ ~J 

Figure 79. Save Area Layout and Contents 

linkage editor control statements in the 
primary input and a DD statement for each 
additional input data set. Additional 
input may contain either calling or called 
programs or both. 

Note: Each additional input data set may 
itself contain external references or names 
and linkage editor control statements that 
specify more additional input. 

SPECIFYING PRIMARY INPUT 

The primary input data set is specified 
for linkage editor processing by the SYSLIN 
DD statement. The linkage editor must 
always have a primary input data set 
specified by a SYSLIN DD statement whether 
or not there are called or calling programs 
and even if the primary input data set 
contains only linkage editor control 
statements. The SYSLIN DD statement that 
specifies the primary input is discussed in 
WLinkage Editor Data Set Requirements n (see 
"Example of Linkage Editor Processing" for 
a discussion of how to specify a primary 
input data set that contains more than one 
object module along with linkage editor 
control statements). 

SPECIFYING ADDITIONAL INPUr 

Additional input data sets are soecified 
by linkage editor control statement~ and a 
DO statement for each additional input data 
set. 

The linkage editor control statements 
that specify-additional input are INCLUDE 
and LIBRARY. 1 A primary input data set may 
consist entirely of such statements. rhe 
INCLUDE and LIBRARY statements may be 
placed before, between, or after object 
modules or other control statements in 
either primary or additional input data 
sets. One method of using these statements 
is shown in Figure 87. 

Notg: Additional input often contains 
members of libraries (see "Specifying 
Libraries as Additional Input" in 
"Libraries"). 

1The operation field in a linkage editor 
control statement must start after column 
1. The operand field must be freceded by 
at least one blank. 

Calling and Called Programs 265 



INCLUDE Statement 

The INCLUDE statement is used to include 
an additional input data set that is either 
a member of a library or a sequential data 
set. Its format is: 

r-----------T-----------------------------, 
I Operation I Operand I 

~-----------+-----------------------------~ 
I INCLUDE I ddname[(member-name I 

I I [,member-name] ••• )] I 
I I [,ddname[(member-name I 

I I [,member-name ••• ])]] ••• I l ___________ i _____________________________ J 

where ddname indicates the name of the DD 
statement that specifies the library or 
sequential data set, and member-name is the 
name of the library member that is to be 
included. Member-name is not used when the 
additional input data set is not a member 
of a partitioned data set. 

LIBRARY statement 

The LIBRARY statement is used to include 
additional input that may be required to 
resolve external references. 

The format is: 

r-----------T-----------------------------, 
I Operation I Operand I 
~-----------+-----------------------------~ 
I LIBRARY I ddname(member-name I 
I I [ • member-name] ••• ) I 
I I [,ddname(member-name I 
I I [,member-name ••• ])]... I L ___________ i _____________________________ J 

where ddname indicates the name of the DD 
statement that specifies the library, and 
member-name is the name of the member of 
the library. 

The LIBRARY statement differs from the 
INCLUDE statement in that libraries 
specified in the LIBRARY statement are not 
searched for additional input until all 
other processing, except references 
reserved for the automatic library call, is 
completed by the linkage editor. Any 
additional module specified by an INCLUDE 
statement is incorporated immediately, 
whenever the INCLUDE statement is 
encountered. 

266 

The ALIAS statement specifies ad~itional 
names for the output library member, an~ 
can also display names of additional entry 
points. If a load module has more than one 
entry point or more than one CS~CT and the 
user wishes to access that alternate entry 
at execution time via a dynamic CALL, he 
should specify an ALIAS with the same 
symbolic name as the desired entry point or 
CSECT. 

r---------T-------------------------------l 
I Operation I Operand I 
~---------+-------------------------------~ I I {SymbOl } [, symbol JI 
I ALIAS I I 
I I external name ,external namel L _________ i _______________________________ J 

where symbol specifies an alternate name 
for the load module, and external name 
specifies a name that is defined as a 
control section name in the output module. 

If the linkage-editor input inclu~es an 
ALIAS statement, the symbolic name 
specified is identified with the relative 
location of the entry point or CSECT name 
that matches the ALIAS. If there is no 
matching entry point or CSEcr name, the 
ALIAS is identified with relative location 
zero in the load module. 

NAME Statement --------------

The NAME statement specifies the name of 
the load module created from the preceding 
input modules, and serves as a delimiter 
for input modules, and serves as a 
delimiter for input to the load module. 
The NAME statement may be used to assign a 
symbolic name to a load module. This 
symbolic name is entered in the directory 
of the partitioned data set that contains 
the module, and allows the module to be 
accessed at execution time by an OS LOAD 
macro. A Load module name is always 
associated with relative location zero in 
the load module. 

r-----------T-----------------------------, 
I Operation I Operand I 
~-----------+-----------------------------~ 
I NAME I member-name [( R) ] I L ___________ i _____________________________ J 

where member-name specifies the name to be 
assigned to the load module that is created 
from the preceding input modules, an~ (R) 
indicates that this load module replaces an 
identically name~ module in the input 
module library. (If the module is not a 



replacement, the parenthesized value (R) 
should not be specified.) 

If the linkage-editor input inclujes a 
NAME statement, the symbolic name specified 
is always identified with relative location 
zero in the load module. 

PROGRAMS COMPILED WITH THE DYNAM AND/OR 
RESIDENT OPTIONS 

In the usual called/calling situation, 
all references to any subprogram or library 
subroutines generated in an object program 
result in a V-type address constant (VCON) 
that must be resolved by the linkage 
editor. Therefore, at link-edit time, the 
modules referred to by VCONs are made a 
part of a single load module containing the 
object program and all required subprograms 
and library routines. When the object 
program is executed, all those required 
routines are present in the user region for 
the entire execution step, even though they 
may have been used only at the beginning of 
the main program and never invoked again. 
with dynamic linkage, on the other hand, 
the user can invoke a called program when 
it is needed and retain it for only the 
P~~j.99 _ Itee_ded~ __________ _ 

Subprograms invoked through the CALL 
literal statement are dynamically loaded 
using the operating System LOAD macro if 
DYNAM is specified. Before the CALL 
Subprogram is executed, linkage is effected 
for all COBOL library subroutines required 
by the subprogram. Similarly, use of the 
CANCEL statement makes it possible to 
dynamically delete subprograms at object 
time. 

Figure 76 earlier in this chapter is an 
example of a job compiled with the DYNAM 
and RESIDENT options. Figures 80 through 
83 in this section illustrate for 
called/calling programs the relationship 
between the possible combinations of the 
DYNAM/RESIDENT options and the identifier 
and literal options of the CALL and CANCEL 
statements. Figure 84 shows the JCL 
necessary for compiling, link-editing, and 
executing a calling COBOL program and a 
called COBOL program when both of the 
programs invoke the DYNAM and RESIDENT 
compiler options. 

when a program is compiled with DYNAM 
and RESIDENT, no external references are 
generated. Therefore, while the program 
may refer to other modules, no references 
are resolved by the linkage editor. In 
such a case, the only input to the linkage 
editor is the program itself. Any module 
the program refers to must exist in load 

module form in a library that is available 
to the system at execution time. 

The link-editing that takes place varies 
with the combinations of the DYNAM(NODYNAM) 
and RESIDENT(NORESIDENT) options in effect. 
What would seem to be the most 
representative link-edit situations are 
discussed in the sections that follow. 

When both DYNAM and RESIDENT are 
specified for the called/calling situation 
pictured in Figure 78, first the main 
program COBA is compiled and link-edited; 
then each of the two subprograms COBB and 
COBC is compiled and link-edited 
separately, thereby producing three 
modules. Then the main program is 
executed. 

In this situation, all external 
references are dynamically resolved. 
Therefore, no VCONs are generated for the 
address of an external symbol that would be 
used in a static situation (that is, a 2ALL 
literal without the DYNAM option) to effect 
branches to other programs. 

r----' r----' r----' 
I I CALL I I CALL I I 
ICOBA~--------->ICOBBt--------->ICOBCI 
I Iliteral I Iliteral I I 
l ____ J l ____ J l ____ J 

Figure 80. CALL with DYNAM and RESIDENr 

~~~~fying NODYN~l/RESIDENT 

When NODYNAM and RESIDENr are specified
for the c~lled/calling situation pictured
in Figure 81, a dynamic situation occurs
because of the inclusion of CALL identifier
in the calling programs. That is, because
the name of the called subprogram is not
available until execution time, a 2ALL
identifier statement cannot be used in a
static situation.

Moreover, when NODYNAM and NORESIDENr
are either specified or implied by default.
and a CALL identifier or CANCEL identifier
statement occurs in the source program
being compiled, the Library Management
Feature is automatically in effect.

~2t~: A printed indication of the compiler
options in effect appears in the statistics
section of the compiler output. (For
examples of compiler statistics, see the
chapter entitled "output.")

Calling and Called Programs 267

r----' r----' r----'
I I CALL I I CALL I I
ICOBA~--------->ICOBB~--------->ICOBCI
I I identifier I lidentifierl I l ____ J L ____ J L ____ J

Figure 81. CALL with NODYNAM and RESIDENT

In contrast with Figure 81, the
called/calling situation pictured in Figure
82 invokes the CALL literal option. Again
the programs are compiled in the order
COBA, COBB, and COBC. The CALL literal
statements included in programs COBA and
COBB result in static calls that must be
resolved by the linkage editor. However,
with the COBOL Library Management Feature
in effect, linkage to the library is
dynamic. That is, the required COBOL
object-time library subroutines are not
link-edited, but linkage is effected
dynamically at object time.

Note: When including both dynamic and
static CALL statements in the same run
unit, the programmer should not dynamically
call any subprograms that are otherwise
called statically. To do so might cause
multiple copies of the called program to be
created and, therefore, produce
unpredictable results.

CALL CALL
literal---> literal--->

r---------T---------T---------------,
I I I I
I COBA I COBB I COBC I
I I I I L _________ ~ _________ ~ _______________ J

Figure 82. CALL With NODYNAM and RESIDENT
With CALL Literal Option

268

For the called/calling situation
pictured in Figure 83, the COBOL Library
Management Feature is not in effect, and
all CALL statements result in static calls
that must be resolved by the linkage
editor. One load module is produced for
the programs COBA, COBB, COBC, and all of
the necessary COBOL library subroutines.

The NODYNAM/NORESIDENr set of options
should be used only when the user does not
intend to use the CALL or CANCEL identifier
statement or the Library Management
Feature. If either a CALL identifier or a
CANCEL identifier statement appears in any
one program, the Library Management Feature
is in effect for that program only. This
situation may result in a duplication of
subprograms and COBOL library subroutines
within the user region/partition, thereby
causing unpredictable results.

r----------T------------T------------,
I I I I
I COBA I COBB I COBC I
L----T-----~------------~------T-----J

ICOBOL Library Subroutines I L _________________________ J

Figure 83. CALL With NODYNAM and
NONRESIDENT

r---,
//JOBY JOB
//STEPl EXEC PGM=IKFCBLOO,P~RM='LOAD,DYNAM,RESID£NT'

//SYSLIN
//SYSIN

/*
//STEP2
//SYSLMOD
//SYSLIN
//SYSIN

NAME
/*
//STEP3
//SYSLIN
//SYSIN

/*
//STEP4
//SYSLMOD
//SYSLIN
//SYSIN

NAME
/*

DD
DD

DSNAME=&&LINKDS1,DISP=(MOD,PASS>,UNIT=SYSSQ

*
{Source module for COBMAIN, a calling COBOL program}

CALL 'COBSUB'

EXEC
DD
DO
DD
COBMAIN

EXEC
DO
DO

PGM=IEWL
DSNAME=&&GOFILE,DISP=(MOD,PASS>,UNIT=SYSSQ
DSNAME=&&LINKDS1,DISP=(OLD,DELETE),UNIT=SYSSQ

*

PGM=IKFCBLOO, PARM=LOAD, DYNAM, RESIDENT
DSNAME=&&LINKDS2,DISP=(MOD, PASS> ,UNIT=SYSSQ

*
{Source module for COBSUB, a called COBOL program}

EXEC
DO
DO
DO
COBSUB

PGM=IEWL
DSNAME=&&GOFILE,DISP=(MOD,PASS>,UNIT=SYSSQ
OSNAME=&&LINKDS2,DISP=(OLD,DELETE),UNIT=SYSSQ

*

//STEP5 EXEC PGM=COBMAIN I
~-//S'I'E-PLIB -.oD-- -- ~..ME::;&&GOFlLEfDISP::;;{OLDfDEI.E'I'E), UNIT::;SYSSQ-- --+ ----------
1/* I L ___ J

Figure 84. Sample JCL for Called/Calling Programs Compiled with the DYNAM and RESIDENT
Options

Calling and Called Programs 269

r---,

ENTRY ASSMRTN

*

* SAVE ROUTINE
ASSMRTN SAVE (14,12)

*
*
*
*
*
*
*
*

LR 11,13

*
*

LA 13, AREA

*
ST 13,8(11)

*
*

ST 11,4(13)

*

AREA DS 18F'0'

* RETURN ROUTINE
L 13,4(13)

*

ESTABLISHES ASSMRTN AS AN EXTERNAL N~ME THAT C~N BE
REFERRED TO IN ANOTHER PROGRAM.

STORES THE CONTENTS OF REGISTERS 14, 15, 0, ~ND 1
IN WORDS 4, 5, 6, AND 7 OF THE S~VE AREA. THESE
ARE CONVENTION~L J .. INKAGE REGISTERS. REGISTERS 2
THROUGH 12, WHICH ARE NOT ACTUALLY USED FOR
LINKAGE, ARE SAVED IN SUBSEQUENT WORDS OF THE SAVE
AREA. THE EXPANDED CODE OF THE SAVE MACRO
INSTRUCTION USES REGISTER 13, WHICH CONTAINS THE
ADDRESS OF THE SAVE AREA, IN EFFECTING THE STOR~GE
OF REGISTERS.

LOADS THE ADDRESS OF THE SAVE AREA INTO REGISTER 11,
WHICH WILL SUBSEQUENTLY BE USED TO REFER TO THE
SAVE AREA.

LOADS THE ADDRESS OF THIS PROGRAM'S SAVE AREA INTO
REGISTER 13.

STORES THE ADDRESS OF THIS PROGRAM'S SAVE ARE~
INTO WORD 3 OF THE SAVE AREA OF THE CALLINS
PROGRAM.

STORES THE ADDRESS OF THE PREVIOUS SAVE AREA INTO
WORD 2 OF THIS PROGRAM'S SAVE AREA

RESERVES 18 WORDS FOR THE SAVE AREA AND
INITIALIZES THEM TO ZERO.

LOADS THE ADDRESS OF THE PREVIOUS SAVE AREA BA2K
INTO REGISTER 13.

RETURN(14,12),T,RC=(15) THIS RETURN MACRO INSTRUCTION RESTORES TH£ SAVED
* REGISTERS (14, 15, AND 0 THROUGH 12). THE RETURN
* ADDRESS IS RESTORED TO REGISTER 14, AND THE
* EXPANSION INCLUDES A BRANCH TO THAT INSTRU2TION.
* THE 'TI IN THE RETURN MACRO INSTRUCTION CAUSES THE
* EIGHT HIGH-ORDER BITS OF WORD 4 OF THE SAVE AREA
* TO BE SET TO ONES AS AN INDICATION THAT THE RETURN!
* HAS OCCURRED. THE RC=(15) PARAMETER INDIC~IES !
* THAT ThIS PROGRAM IS PASSING A RETURN CODE IN !
* REGISTER 15; THIS VALUE SHOULD BE SET TO ZERO !
* IF NONE IS WANTED. !

~---~
I Not§: If the called program containing this coding did not call another program, it I
Iwould not require a reserved save area (AREA) and the coding to store the save area's !
I address. I L ___ J

Figure 85. Sample Linkage Coding Used in a Called Assembler-Language Progra~ th~t 2alls
Another Program

270

r---,
IICALLPROG JOB
IISTEPl EXEC PGM=IKFCBLOO,PARM=(LOAD,NODECK)

/ISYSLIN
/1
IISYSIN

DD DSN=&&TEMPLIB1,UNIT=SYSSQ,DISP=(NEW,PASS>, x
SPACE=(TRK, (10,1»)

DD *
(Source module for COBSUB, a called COBOL program)

1*
IISTEP2
II
//SYSGO
/ISYSIN

EXEC PGM=IEUASM,PARM=(LOAD,NODECK), x
COND=(9,LT,STEP1)1

DD DSN=~~TEMPLIB1~UNIT=SYSSQ~DISP=(MOD~PASS)

DD *
(Source module for ASSMMAIN, a calling assembler-

language program)
1*
IISTEP3
II

EXEC PGM=IEWL,PARM=(LIST,XREF,LET), X
COND=«9,LT,STEP1), (S,LT,STEP2»

IIPROGLIBl
IISYSLIN

DD
DD
INCLUDE
ENTRY

DSN=&&TEMPLIB1,DISP=OLD

* PROGLIB1 2
ASSMMAIN3

1*
IISTEP4 EXEC PGM=*.STEP3.SYSLMOD,COND=«9,LT,STEP1>, X
/1 (S,LT,STEP2),(S,LT,STEP3»
/ISYSOUT DD SYSOUT=A
~---~
p·Th-is exa-mplewa-s -chosen to illustrate the testing of condition codes~ - l-
12See the discussion under the INCLUDE statement. I
13 Because the COBOL program is compiled first and the linkage editor cannot identify thel
I proper entry point, the ENTRY statement must be included. I L ___ J

Figure 86. Sample Coding Used for a Calling Assembler-Language Program and a Called
COBOL Program

LINKAGE EDITOR PROCESSING

The linkage editor first processes the
primary input and any additional input
specified by INCLUDE statements. All
external references in the primary that
refer only to other modules in the included
input are resolved first. If there are
still unresolved references after this
input is processed, the automatic call
library, which includes libraries specified
by the SYSLIB DD statement and by the
LIBRARY statements, is searched to resolve
the references. The automatic call library
generally will contain the COBOL library

subroutines. (External references to these
subroutines are generated by the COBOL
compiler when statements in the source
module require certain functions t~ be
performed, such as some data conversions.)

If the additional input contains
external references and/or linkage editor
control statements, the references are
resolved in the same way. Data sets
specified by the INCLUDE statement are
incorporated when the statement is
encountered. Data sets specified by the
LIBRARY statement are used only when there
are unresolved references after all of the
other processing is completed.

Calling and Called Programs 271

r---1
I//JOBX JOB
1//STEPl EXEC PGM=IKFCBLOO,P~RM=LOAD

1
I
1
1
///SYSLIN
//SYSIN

/*
//STEP2

//SYSLIN
//SYSIN

/*
//STEP3

//SYSLIN
//SYSIN

/*
//STEP4

//SYSLIB
//SYSLMOD
//
//DBLIB
//ADOLIB
//SYSLIN
//

1/*

DD
DO

DSNAME=&&GOFILE,DISP=(MOO, PASS), UNIT=SYSSQ

*
(Source module for COBMAIN)

EXEC

DD
DD

PGM=IKFCBLOO,PARM=LOAO

DSNAME=*.STEP1. SYSLIN,DISP=(MOD, PASS)

*
(Source module for COBOL1)

EXEC

DD
DD

PGM=IKFCBLOO,P~RM=LOAD

DSNAME=*.STEP2.SYSLIN, DISP=(MOD, PASS)

*
(Source module for COBOL1A)

EXEC

DD
DD

DD
DD
DD
DD
INCLUDE
LIBRARY

PGM=IEWL

DSNAME=SYS1.COBLIB,OISP=OLD
DSNAME=PGMLIB(CALPGM),OISP=NEW,UNIT=2311,SPACE= X
(1024, (SO,20,2),VOLUME=SER=LIBPAK
DSNAME=DBJLIB,DISP=OLD
DSNAME=MYLIB,DISP=OLD
DSNAME=&&GOFILE,DISP=(OLD,DELETE) X

*
DBLIB(COBOL1B,~SSMPGM)

ADDLIB (COBREGNO)
L __ _

Figure 87. Specifying Primary and Additional Input to the Linkage Editor

Example of Linkage Editor Processin~

Figure 87 shows the control statements
for a job that separately compiles three
source modules (one is a calling program
and two are called programs) and places
them in one data set as primary input for
the linkage editor. The linkage editor
then links them together with additional
input (called programs that are members of
the specified libraries) to form one load
module.

272

STEPl compiles a source module called
COBMAIN, STEP2 compiles a source module
called COBOL1, and STEP3 compiles a source
module called COBOL1A. The object module
from each step is placed in the sequential
data set called &&GOFILE. (Since MOD and
PASS are specified for &&GOFILE in the
SYSLIN DD statement in STEP1, the object
modules COBOLl and COBOL1A are placed in
the data set behind the object module
COBMAIN.)

In STEP4, the linkage editor uses the
&&GOFILE data set as primary input, and the

cataloged libraries MYLIB, OBJLIB, and
SYS1.COBLIB as additional input. (The
INCLUDE and LIBRARY statements become part
of the primary input through the DD *
statement following the SYSLIN DO
statement.

The object modules of the data set
&&GOFILE and the members COBOLIB and
ASSMPGM of OBJLIB are processed first. If
there are unresolved references after this
input is processed, the linkage editor
searches the automatic call library, which
includes the COBOL subroutine library and
member COBREGNO of MYLIB, to resolve these
references. OBJLIB is specified in the
OBLIB DD statement and MYLIB in the AODLIB
DD statement.

After linkage editor processing is
completed, a new library, PGMLIB, is
created with CALPGM as a member. CALPGM
contains COBMAIN, COBOL1, COBOLIA, COBOLIB,
ASSMPGM, and, possibly, COBOL subroutines
and COBREGNO.

OVERLAY STRUCTURES

must be link-edited together to form one
module 42,000 bytes in size. Therefore,
COBMAIN would require 42,000 bytes of
storage in order to be executed.

If the subprograms needed do not fit
into main storage, the follo~ing three
techniques of overlay are available to the
COBOL programmer:

• Preplanned overlay using the linkage
editor

• Dynamic overlay using macro
instructions during execution

• Segmentation Feature

Note: The largest load module that can be
processed by Fetch is 524,248 bytes. If a
load module exceeds this limit, it should
be divided.

Lin~~ge Editing ~ith Preplanned Overla~

The preplanned linkage editor facility
permits the reuse of storage locations
already occupied. By judiciously

If the called programs needed to execute modularizing a program and using the
_ o_D.e __ COHQL __ s_o_u_r_c_e __ -P-I:.Q.g.ram_:lQ __ .DQt ____ a_ll ____ fit ___________________ Li_nk.a..g:..e ___ €_d_it_Qr __ QlleIla-¥ ____ f_ac_ili:ty+ __ a ____ p.r.Qg..r.am __ . __ _ _
into main storage at the same time, it is that is too large to fit into storage at
still possible to use them with the overlay one time can be executed.
technique or with the use of the
segmentation feature. Called programs that
do not need to be in main storage at the
same time can be given the same relative
storage address and then loaded at
different times during execution when they
are needed. In this way, the same storage
space can be used for more than one called
program. The use of segmentation is
discussed in "Using the Segmentation
FE;!ature."

considerations for Overlay

Assume that the six programs illustrated
in Figure 78 have the following load module
sizes:

r-------------T---------------------------, i Program I Module Size (in Bytes) i
~-------------+---------------------------~
I COBMAIN I 11, 000 I
I COBOLl I 4,000 I
I COBOLIA I 6,000 I
I COBOLIB I 5,000 I
I COBREGNO I 3,000 I
I ASSMPGM I 13,000 I L _____________ i ___________________________ J

Through the linkage mechanism, CALL
COBOL1 ••• , all subprograms plus COBM~IN

In using the preplanned overlay
technique, the programmer specifies to the
linkage editor which subprograms are to
overlay each other. The subprograms
specified are processed as part of the
program by the linkage editor, so they can
be automatically placed in main storage for
execution when requested by the program.
The resulting output of the linkage editor
is called an overlay structure.

It is possible, at linkage edit time, to
set up an overlay structure by using the
COBOL source language linkage statement and
the linkage editor OVERLAY statement.
These statements enable a user to call a
subprogram that is not actually in storage
The details for setting up the linkage
editor control statements for accomplishing
this procedure can be found in the
publication I~~_Q§_~~g~~g~_~~!tor ~g~
LoadeE·

In a linkage editor run, the programmer
specifies the overlay points in a program
by using OVERLAY statements. The linkage
editor treats the entire input as one
program, resolving all symbols and
inserting tables into the program. rhese
tables are used by the control program to
bring the overlay subprograms into storage
automatically when called.

Calling and Called Programs 273

-T-

I
I
I

Root Segment 1

{
COBMAIN }

,COBREGNO.
I
I
I

r----------------------i
-----------------------,

I ALPHA I
I I

Segment 2
{COBOL1}

I
I
I

Segment 5
{ASSMPGM}

r--------------------- i
------------------------,

I BETA I
I I

Segment 3 Segment 4
{COBOL1A} {COBOL1B}

I I
I I
I I I _i_

I
i

Figure 88. Overlay Tree Structure

Figure 88 is an overlay tree structure
illustrating how the six programs in Figure
78 could be positioned in core at execution
time using preplanned linkage editor
overlay.

Figure 89 shows the deck arrangement
required to achieve the overlay illustrated
in Figure 88. The OVERLAY statements
specify to the linkage editor that the
overlay structure to be established is one
in which the called programs of COBOLl
(COBOL1A and COBOL1B) overlay each other
when called for execution, and that ASSMPGM
and COBOLl and its called program overlay
each other when called.

274

.1.

Routine COBREGNO is placed with COBMAIN
in the root segment of the overlay
structure because it is called by three of
the routines in the program, the largest of
which is ASSMPGM~ Utilizing COBRE3NO as an
individual overlay segment would not have
resulted in a net decrease in the amount of
core required for execution because the
minimum amount of core needed would have to
contain COBMAIN, ASSMPGM, and COBRE3NO at
the same time. Creating another overlay
segment for COBREGNO would only have added
to the amount of time required for program
execution.

r---1
//OVERLAY JOB NY83937800,COSMO,MSGLEVEL=1
//STEPl EXEC PGM=IEWL,PARM='OVLY,LIST,XREF,LET'
//SYSLIB DD DSNAME=SYS1.COBLIB,DISP=SHR
//SYSPRINT DD SYSOUT=A
//SYSUTl DO UNIT=SYSDA,SPACE=(1024, (50,20»
//SYSLMOD DD DSNAME=&GODATA(RUN),DISP=(NEW,PASS),UNIT=SYSDA, X
// SPACE=(1024, (50,20,1»
//SYSLIN DD *

{COBMAIN object deck}
{COBREGNO object deck}

OVERLAY ALPHA
{COBOLl object deck}

OVERLAY BETA
{COBOL1A object deck}

OVERLAY BETA
{COBOL1B object deck}

OVERLAY ALPHA
{ASSMPGM object deck}

/* L ___ J

Figure 89. Sample Deck for Linkage-Editor Overlay Structure

Qynamic Overlay Technigue

IIi preparation for thedynitmic overlay
technique, each part of the program brought
into storage independently should be
processed separately by the linkage editor.
{Hence, each part must be processed as a
separate load module.) To execute the
entire program, the programmer must:

1. Specify the main program in the EXEC
statement.

2. Bring the separately processed load
modules into storage when they are
required, by using the appropriate
supervisor linkage macro instructions.
This is accomplished during execution.

The dynamic overlay technique can be
used to overlay subprograms during
execution. To accomplish dynamic overlay
of subprograms, the programmer must write
an assembler language subprogram that
employs the LINK macro instruction to call
each COBOL subprogram. For a detailed
description of the LINK macro instruction,
see the publication IBM OS: SQ2~~Yi~or_an~
Data-Management Macro Instructions.

In using the dynamic overlay technique,
the main program communicates with the
assembler language sUbprogram by using the
COBOL language CALL statement. The CALL
statement can be used to pass the name of
the COBOL subprogram (to be linked) and the

specified parameter list to the assembler
language subprogram. This procedure is the
same for each CALL used in the main
program. :Hence, eachcA.Lt resuits in
linking with a subprogram through the
assembler language subprogram.

When the COBOL subprogram is finished
executing, it returns control to the
assembler language subprogram, which in
turn returns to the main program. The
process is repeated for each CALL to the
assembler-language subprogram.

Dynamic overlay requires that a
programmer have detailed knowledge of the
linkage conventions, assembler lan~uage,
and the LINK macro instruction with its
features and restrictions.

Figure 90 contains an example of a COBOL
main program, PROm'lAST, and an assembler
language subprogram, LINKRTN. The two
programs are link-edited together as a
single load module. At execution tine, the
assembler-language subprogram dynamically
fetches COBOL subprograms (OPN, BILL, CRDT
TRNF, and LCK, none of which are shown in
the example) for the main program using the
LINK macro instruction. The COEOL
subprograms are stored in a private
library, DYNLINK.

The parameter list passed to LINKRTN
contains three identifiers, TRANS-REC ,
COM-WORD, and SWITCH, two of which
(TRANS-REC and SWITCH) are referencej by

Calling and Called Programs 27~

LINKRTN, and two of which (TRANS-REC and
COM-WORD) are referenced by the COBOL
subprograms fetched. LINKRTN passes the
same parameter list it receives to the
COBOL subprograms fetched.

LINKRTN determines from identifier
TRANS-REC which subprograms to fetch, and
from SWITCH when to open and close the
library DYNLINK.

Note; In structuring a program with either
the preplanned overlay technique or the
dynamic overlay technique, special
consideration must be given to the presence
of the TRANSFORM table and the class test
tables, which are members of the COBOL
object-time library (see "Appendix B:
COBOL Library Subroutines"). The TRANSFORM
table is link-edited with a COBOL program
if the TRANSFORM statement is used.
Similarly, one or more of the class test
tables is present in a COBOL load module if

276

a class test is performed or if the OCCURS
DEPENDING ON option is used.

For these tables, which contain no
executable code and are not branched to but
are merely referenced, the compiler
designates A-type address constants
(ADCONs) and EXTRN references, rather than
V-type address constants (VCONsJ.
Accordingly, the overlay structure segment
containing the table(s) must be either the
root segment or a segment that is higher in
the same leg as the segment containing the
reference(s) to the table(s). This
requirement has no effect on the COBOL
segmentation feature (see the chapter
entitled "Use of the Segmentation
Feature"), since (1) all members of the
object-time subroutine library are
link-edited into the root segment, and
(2) American National Standard COBOL
subprograms may not be segmented.

r---1
IDENTIFICATION DIVISION.
PROGRAM-ID. PROGMAST.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-360-F50.
OBJECT-COMPUTER. IBM-360-F50.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT FILE-Y ASSIGN TO UR-2540R-S-INFILE.
I-O-CONTROL.
DATA DIVISION.
FILE SECTION.
FD FILE-Y

RECORD CONTAINS 80 CHARACTERS
LABEL RECORD IS OMITTED.

01 TRANS-REe.
05 ACCOUNT-NUMBER PIC 9(10).
05 TRANSACTION PIC 9(4).
05 NAME PIC X(20).
05 LOCATION PIC X(20).
05 METER-READING PIC 9(6).
05 DATE PIC 9(6).
05 FILLER PIC X(8).
05 AMOUNT PIC 9(6).

WORKING-STORAGE SECTION.
77 COM-WORD PIC X(12).
77 SWITCH PIC 9 VALUE ZERO.
PROCEDURE DIVISION.

I
1 -oPEN---INPU'l'--FII:;E--Y. i-
I B. READ FILE-Y AT END GO TO END-RUN. I
I C. CALL 'GETUM' USING TRANS-REC COM-WORD SWITCH. I
I I
I I
I I
I END-RUN. CLOSE FILE-Y. I
! MOVE 2 TO SWITCH.. I
I PERFORM C. I
I STOP RUN. I L ___ J

Figure 90. Sample COBOL Main Program and Assembler-Language Subprogram Using Dynamic
Overlay Technique (Part 1 of 3)

Calling and Called Programs 277

r---,
LINKRTN START °

PRINT NOGEN
ENTRY GETUM UPON ENTRY TO THIS PROGRAM, REGISTER 1 POINTS

*
*
* ;;;

*
*
*
*
*
*
*
GETUM

*
SAVEAREA

OPENLIB

*
*
*
*
* TABLE

INITREG

FTNDRTN

*

ERRMSG
EXIT

USING GETUM,15
SAVE (14,12)
LR 10,15
DROP 15
USING GETUM,10
LR 11,13
LA 13,SAVEAREA
ST 13,8(11)
ST 11,4(13)
L 5,0(1)
USING PARAMLST,5

B OPENLIB
OS 18F

L 6,8(1)
CLI 0(6),C'1'
BE INITREG

BH CLOSLIB

OPEN (DYNLINK)

01 0(6),C'l'

LOOK-UP ROUTINE

LA 2,RTNLST
LA 3,6
CLC TRANSACT, 0(2)

BE GETRTN
LA 2,12(0,2)
BCT 3,FINDRTN
MVC ERRMSG+28 (4) ,TRANSACT
WTO 'INVALID TRANSACTION'
L 13,4(13)
SR 15,15
RETURN(14,12),T,RC=(15)

* DYNAMIC OVERLAY ROUTINE
GETRTN L 1,24(11)

*
*

LA 4,4(0,2)
LINK EPLOC=(4),DCB=DYNLINK

B EXIT

TO A FIXED-LENGTH PARAMETER LIST OF THREE
WORDS.
THE FIRST WORD CONTAINS THE ADDRESS OF

RECORD TRANS-REC.
THE SECOND WORD CONTAINS THE ADDRESS OF

COM-WORD, TO WHICH THIS PROGRAM DOES NOT
REFER BUT WHICH IS USED BY ROUTINES 'THIS
PROGRAM LATER LINKS TO.

THE THIRD WORD CONTAINS THE ADDRESS OF
SWITCH USED BY THIS PROGRAM TO CHECK THE
STATUS OF THE PRIVATE LIBRARY DYNLINK

REGISTER 5 LOADED WITH ADDRESS OF TRANS-RE2
REGTER 5 IS USED AS THE BASE REGISTER 1'0

REFERENCE TRANS-REC.

REGISTER 6 LOADED WITH ADDRESS OF SWITCH.
CHECK SWITCH STATUS.
IF SWITCH = 1, DYNLINK IS ALREADY OPEN;

INITIALIZE REGISTERS.
IF SWITCH > 1, DYNLINK IS NO LONGER NEEDED;

CLOSE DYNLINK.
IF SWITCH = ° THE FIRST TIME THROUGH, OPEN

DYNLINK.
SET SWITCH SO THAT OPEN IS BYPASSED ON FUTURE

ENTRY.

INITIALIZE REGISTERS 2 AND 3 FOR LOOK-UP.

TRANSACT CONTAINS THE TRANSACTION CODE THAI'
DETERMINES WHICH ROUTINE TO FETCH.

PRODUCE ERROR MESSAGE IF TRANSACT CONTAINS
AN INVALID CODE.

SET REGISTER 15 TO ZERO.
THE RC=(15) PARAMETER INDICATES THAT THIS

PROGRAM IS PASSING A RETURN CODE IN REGISTER,
15. ,

RESTORE REGISTER 1 TO ORIGINAL STATUS.
PASS REGISTER 4 TO NAME OF ROUTINE TO BE

FETCHED. HAVE THE CONTROL PROGRAM
FETCH THE ROUTINE POINTED TO BY
REGISTER 4 FROM PRIVATE LIBRARY DYNLINK.

, , , , ,
, ,
I - __ J

Figure 90. Sample COBOL Main Program and Assembler-Language Subprogram Using Dynamic
Overlay Technique (Part 2 of 3)

278

r---,
CLOSLIB CLOSE (DYNLINK) CLOSE PRIV~TE LIBRARY. I

B EXIT I

OF
I
I

RTNLST
OS
EQU * ~S THE T~BLE SEARCHED BY THE TABLE LOOK-UP I

*
*
*

ROUTINE, RTNLST CONTAINS A LIST OF ALL VALID I
TRANSACTION CODES AND THE NAMES OF THE I

ROUTINES FETCHED TO HANDLE THE TRANSACTIONS I
I

DC
DC
DC
DC
DC
DC
DC
DC
DC
DC

C'OlOO'
CL8'OPN'
C' 0200'
CL8'BILL'
C· 0300'
CL8'CRDT'
C· 0400'
CL8'TRNF'
C'OSOO'
CL8'LCK'

TRANSACTION CODE I
ROUTINE NAME ASSOCIATED WITH ABOVE TRANS~CTION

DYNLINK EQU *
DCB DDNAME=SYNLNKDD,DSORG=PO,MACRF=(R)

* DCB TO DEFINE PRIVATE LIBRARY REFERRED TO IN
* LINK MACRO INSTRUCTION.

PARAMLST DSECT DSECT USED BY REGISTER S TO REFER TO TR~NS-
* REC. THE RECORD DESCRIPTION CORRESPONDS TO
* THAT OF TRANS-REC IN PROGMAST.
TRANSREC
~CCTNUM

TRANSACT
N.MI'.I.E
LOCATION
METERRD
DATE

AMOUNT

DS
OS
OS
DS
DS
DS
DS
DS
DS
END

OCL80
CL10
CL4
CL20
CL20
CL6
CL6
CL8
CL6

l
I
I
I
I
I
I
I

Not~: Had a job or step library (requiring either a JOBLIB or STEPLIB DD statement in I
the job control for execution of the main program) been used instead of a private I
library (which for this example requires a DD statement named DYNLNKDD), responsibility I
for the opening and closing of the library would have been with the control program andl
not with LNKRTN. I

The use of a private library reduces to a minimum the amount of search time needed
I
I

Ito retrieve member modules from a library. I L ___ J

Figure 90. Sample COBOL Main Program and Assembler-Language Subprogram Using Dynamic
Overlay Technique (Part 3 of 3)

Calling and Called Programs 279

LOADING PROGRAMS

The loader resolves external names and
references and combines calling and called
programs into a format suitable for
execution as a single load module. For
information on invoking the loader, see
"Using the Cataloged Procedures."

When the dynamic call is used, all
subprograms to be called dynamically must
have been processed by the linkage editor.
The loader may be used only to resolve
references to subprograms invoked by static
calls. Otherwise, load modules of both
calling and called programs are used as
input to the loader. There are two kinds
of input, primary and additional. ~~i~ary
input consists of one or more separately
compiled object modules and/or load
modules. Additional input consists of
object modules or load modules that are not
part of primary input data sets but are to
be included in the load module. The
additional input may be in the form of
(1) libraries containing object modules, or
(2) libraries containing load modules.
Additional input may contain either calling
or called programs or both.

280

SPECIFYING PRIMARY INPUT

The primary input data set is specified
for loader processing by the SYSLIN DD
statement. The loader must always have a
primary input data set whether or not there
are calling or called programs. The SYSLIN
DD statement that specifies primary input
is discussed in the section "Data Set
Requirements."

SPECIFYING ADDITIONAL INPUT

Additional input data sets are specified
by the SYSLIB DD statement. The SYSLIB DD
statement is discussed in the section "Data
Set Requirements."

NO~~: Neither the overlay facility nor the
segmentation feature can be used with the
loader.

Libraries are an integral part of the
operating system. Some libraries have
system-supplied names and system-supplied
data. other libraries have system-supplied
names but may contain user-specified data.
still other libraries have both
user-supplied names and user-supplied data.

Libraries, in general, are made up of
partitioned data sets. Any library with a
user-supplied name and user-supplied data
is always a single partitioned data set,
which is a collection of independent sets
of sequentially organized data, called
members. ~ll of the members within a
partitioned data set have the same
characteristics as that of record format.
When used to store programs, a partitioned
data set containing load modules can
contain only load modules: it cannot
contain both load modules and object
modules.

Each partitioned data set is headed by a
directory of entries· pOinti-ng· -to---the
members that make up the library. Each
member has a unique member name. ~
partitioned data set must reside on a
single mass storage device, but some
libraries can consist of a concatenation of
more than one partitioned data set.

Figure 91 shows the format of a library
that is a single partitioned data set of
four members. Space for the members of
such a library and its directory is
requested in the SPACE parameter of the DO
statement when the library is created.
Additional members can be added to a
library at a later time. If additional
space is required to store a member,
allocation will be made in the amount
specified by the secondary allocation in
the SPACE parameter of the DD statement
that was used when the library and its
first member were created. Additional
space carUlot be allocated for the
directory, however. Directory space is
allocated for the entire library when the
library is created. If the original
allocation was not large enough, the
IEHMOVE utility program can be used to
expand the directory size. If the
directory is filled, no additional members
can be added to the library. Following is
an example of a DD statement that might be
used to create a library:

//001
//
//
//
//

DO OSNAME=FILELIBtFILE1) ,
DISP=(NEW,C~rLG),
UNIT=2311,
SPACE=(TRK, (40,10,3»,
VOLUME=SER=111111

x
X
X
X

This statement specifies that a library
named FILELIB is to be created and
cataloged in this job step. Its first
member is named FILE1. Initial space
allocated for data sets is to be 40 tracks,
with additional allocation to be made, as
necessary, in units of 10 tracks. In
addition, space for three 256-byte records
is to be allocated for the directory. rhe
volume serial number is 111111.

A member of a partitioned data set can
be replaced or deleted. The system
actually accomplishes this by modifying or
deleting the directory pointer to the
member. The space occupied by the original
member is not available for reuse until the
MOVE or COpy control statement of the
IEHMOVE utility program is used. rhe space
pr-eviotlslyoecupied by the rep-laced--0l?
deleted member is thus made available.
(For further details, see the publication
!~~_Q~_Qti!~~~~~.)

KINDS OF LIBRARIES

A programmer can use libraries already
provided by the system, or he can create
libraries of his own. In addition, certain
library names recognized by the system may
be assigned to partitioned data sets
provided by the system, by the programmer,
or both. These libraries and their uses
are discussed in the following paragraphs.

LIBR~RIES PROVIDED BY THE SYSTEM

Link Library

The link library is a partitioned data
set that contains load modules to be
executed. Unless specified otherwise, a
load module name in an EXEC statement is to
be fetched from the link library.
Operating system programs, such as the
COBOL compiler, are usually contained in
this library.

Libraries 281

Directory

Library
Members

r------------T-------------T-------------T-------------T--------------,

l' Entry for I Entry for I Entry for I Entry for I I

I Member A I Member B I Member C I Member K I Note 1 I

~------------~-------------~-------------~-------------~-------T------~

(
, I I
I Member C I Note 21
~--T-------------T-------~------~
I I I I
I Note 2 I Member B I Member K I

~--~-------------~--------------~
I I
I Member K I
~--------------------------------T------------------------------------~
I I I
I Member K I Member A I
~------------T-------------------~------------------------------------~
I I I
I Member A I Note 3 I
~------------~--~
I I
I Note 3 I L ___ J

~otes:

1. Space available in directory.
2. Space available from deleted member after data set has been

compressed.
3. Space available in library.

Figure 91. Format of a Library

The link library can be used by the
programmer to store executable load modules
at link-edit time. The technique for doing
this is described in "Linkage Editor Data
Set Requirements."

The link library is identified in a job
control statement as SYS1.LINKLIB.

Procedure Library

The procedure library is a partitioned
data set whose members are the cataloged
procedures at an installation. They
include the cataloged procedures provided
by IBM. Procedures written at the
installation can be added to the procedure
library with the IEBUPDTE utility program
(see "Using the Cataloged Procedures").

The system name for the procedure
library is SYS1.PROCLIB.

Sort Library

The sort library is a partitioned data
set that contains load modules from which
the sort program is produced.

282

It is identified by the name
SYS1.S0RTLIB (see "Using the Sort
Feature") •

The COBOL subroutine library is a
partitioned data set that contains the
COBOL library subroutines in load nodule
form. These subroutines may be included in
a COBOL load module or dynamically loaded
to perform such functions as data
conversion and double precision aritnmetic.
The COBOL programmer does not refer
directly to these subroutines; calling
sequences to them are generated at compile
time from certain Procedure DivisiDn
statements, and they are incorporated into
the load module at link-edit time or loaded
at program initialization time. A listing
of subroutine names, functions, entry
points, and size is given in Appendix B.

The system name for the COBOL subroutine
library is SYS1.COBLIB.

LIBRARIES CREATED BY THE USER

A programmer can create members of the
link library, the procedure library, and
the job libr~ry. He can also create
partitioned data sets for use in the copy
library, the automatic call library, and
the job library. In addition, he can
create partitioned data sets to be used as
libraries for additional input to the
linkage editor, and he can create libraries
whose members are source program entries.

Automatic Call Library

The automatic call library, defined by
the SYSLIB DD statement in the link-edit
job step, contains load modules or object
modules that may be used as secondary input
to the linkage editor. If the library
contains object modules, it may also
contain control statements. External
symbols that are undefined after all
primary input has been processed cause the
automatic library call mechanism to search
the automatic call library for modules that
will resolve the references. The COBOL
subroutine library must be specified for
the automatic call library if any of the
subroutines_ will be needed to __ r_esol ve
external references. Other partitioned
data sets may be concatenated as shown in
the following example:

IISYSLIB
II

DD DSNAME=SYS1.COBLIB,DISP=SHR
DD DSNAME=MYLIB,DISP=SHR

In this case, both the COBOL subroutine
library and the partitioned data set named
MYLIB are available to the automatic
library call.

No~~: If the partitioned data set named in
the SYSLIB DD statement contains load
modules, any data set concatenated with it
must also be a load module partitioned data
set. If the first contains object modules.
the others must also contain object
modules.

The linkage editor LIBRARY control
statement has the effect of concatenating
any specified member names with the
automatic call library.

COBOL Copy Library

The COBOL copy library is a user-created
library consisting of statements or entire
COBOL programs frequently used by the
programmer. The programmer can include
these statements or programs into a program
at compile time. He calls them with the
COBOL COPY statement or BASIS card.

To enter or update source statements in
the copy library, a utility program must be
used. IEBUPDTE is the IBM-supplied utility
program used to catalog procedures. A full
discussion of the statements used in this
program may be found in the publication I~~
OSUtilit_ies"

~Qt~~i~g_~Q~~£~_~~~~~~~~t~: Figure 92
illustrates the method to insert source
statements into a copy library member.

The .1 ADD statement is a utility
statement that copies CFILEA into the
library called COPYLIB. CFILEA describes
an FD entry. The NUMBER statement assigns
a sequential numbering system to the
statements in the library. The first
statement is assigned number 10 and each

r---1
IICATALOG JOB
II EXEC PGM=IEBUPDTE,PARM=(NEW)

DSNAME=COPYLIB,UNIT=2311,
DISP=(NEW,KEEP),
VOLUME=SER=llllll,
SPACE=(TRK, (15,10,2»,

IISYSUT2 DD
II
II
II
II
IISYSPRINT
IISYSIN
.1
.1

.1
1/*

DD
DCB=(LRECL=80:BLKSIZE=80:RECFM=F)
SYSOUT=A

DD *
ADD NAME=CFILEA,LEVEL=OO,SOURCE=O,LIST=ALL
NUMBER NEW1=10,INCR=5

BLOCK CONTAINS 13 RECORDS
RECORD CONTAINS 120 CHARACTERS
LABEL RECORDS ARE STANDARD
DATA RECORD IS FILE-OUT.

ENDUP

X
X
X
X

l __ _

Figure 92. Entering Source Statements into the copy Library

Libraries 283

r---,
//UPDATE JOB
// EXEC
//SYSUT1 DD
//
//

PGM=IEBUPDTE,PARM=(MOD)
DSNAME=COPYLIB,UNIT=2311,

DISP=(OLD, KEEP) ,
VOLUME=SER=llllll,

X
X
X

//
//SYSUT2
//

DCB=(RECFM=F,BLKSIZE=80)
DD DSNAME=COPYLIB,UNIT=2311, X

X
X //

//SYSPRINT
//SYSIN

DISP=(OLD,KEEP),
VOLUME=SER=111111

DD SYSOUT=A
DD *

./ CHANGE NAME=CFILEA,LEVEL=Ol,SOURCE=O,LIST=ALL
BLOCK CONTAINS 20 RECORDS 00000010

./
/*

ENDUP
l __ _

Figure 93. Updating Source Statements in a COpy Library

succeeding statement is incremented by 5.
The entries following the utility
statements are the actual source statements
to be cataloged. The ENDUP statement
signals the end of the entries to be
inserted.

The same procedure can be used to
catalog entire source programs.

Qpda!::ing Sou!.ce~t.~te!!!~nt§.: Figure 93
illustrates the method to update source
statements in a copy library member
inserted in the previous example.

SYSUT1 and SYSUT2 describe the data
sets. Note that changes may be made on the
same data set (identified on the DSNAME
parameter). The utility statement CHANGE
indicates that the new entry of CFILEA
replaces the old entry. The sequence
number of the altered statement must be
supplied. This number, 00000010, is
indicated in columns 73 through 80 of the
replacement source statement. Note that,
although in the insert example (see Figure
92 -- NUMBER statement) the number was
coded as 10 without leading zeros, the
program assigns an 8-character field to a
sequence number and pads with leading zeros
if necessary. When updating a sequence
number in a library, these leading zeros
must be included.

At compile time, COPYLIB is identified
on a SYSLIB DD statement, as follows:

//SYSLIB DD
//
//

DSNAME=COPYLIB,
VOLUME=SER=111111,
DISP=SHR,UNIT=2311

getrievi~g Source Statements: Members of
the cataloged library can be retrieved
using the copy statement or BASIS card.

284

X
X

The COpy statement permits the
programmer to include cataloged source
statements in the Data or Environment
Divisions. If the programmer wishes to
retrieve the member, CFILEA, cataloged in
the previous examples, he writes the
statement:

FD FILEA COpy CFILEA

The compiler translates this instruction to
read:

FD FILEA BLOCK CONTAINS 20 RECORDS
RECORD CONTAINS 120 CHARACrERS
LABEL RECORDS ARE STANDARD
DATA RECORD IS FILE-OUT.

Note that CFILEA itself does not appear in
the statement. CFILEA is a name
identifying the entries. It acts as a
header record but is not itself retrieved.
The compiler source listing, however, will
print out the COpy statement as the
programmer wrote it.

The COpy statement also permits the
programmer to include previously cataloged
source statements into the Procedure
Division.

Assume a procedure named DOWORK was
cataloged with the following stateillents:

.1 ADD NAME=DOWORK,LEVEL=OO,
SOURCE=O,LIST=ALL

.1 NUMBER SEQ1=400,INCR=10
COMPUTE QTY-ON-HAND =

TOTAL-USED-NUMBER-ON-HAND.
MOVE-QTY-ON-HAND TO PRINT-AREA •

• I ENDUP

To retrieve the cataloged member, DOWORK,
the programmer writes:

paragraph-name. COPyfDOWORK~

The statements included in the DOWORK
procedure will immediately follow the
paragraph-name, replacing the words COpy
DOWORK.

BASIS Card

Frequently used source programs, such as
a payroll program, can be inserted into the
copy library. The BASIS card brings in an
entire source program at compile time.
C<;illinqin_a, .. J?r.ogr;<;i!n .~l:i.mina,:t~$.. _th~ ne~d __
for the programmer to handle a program each
time he wants to compile it. The
proqrammer may, however, alter any
statement in the source program by
referring to its COBOL sequence number with
an INSERT or DELETE statement. The INSERT
statement will add new source statements

after the sequence number indicated. rhe
DELETE statement will eliminate the
statements indicated by the sequence
numbers. The programmer may delete a
single statement with one sequence number,
or he may delete more than one statement,
separating by a hyphen the first and last
sequence numbers to be deleted.

Note: The COBOL sequence number is the
6-digit number that the programmer assigns
in columns 1 through 6 of the source cards.
This sequence number has nothing to do with
the sequence numbers assigned in simulated
columns 73 through 80 by the I£BUPDTE
utility program. The sequence numbers
assigned by IEBUPDTE are used to update
source statements in the copy library.
changes made using these numbers are
intended to be permanent changes. The
COBOL sequence numbers are used to update
COBOL source statements at compile time.
such changes are in effect for the one run
only.

Assume that a company payroll progra~ is
kept as a source program in the copy
library. The name of the program is
PAYROLL. During a particular year, old age
tax is taken out at a rate of two and a
half percent each week for all personnel
un.tJl_ eax:piI}gS eXG~~d $Q6.00 •.... The_ cQ;ji,ng. to
accomplish this is shown in Figure 94.

Now, however, due to a change in the old
age tax laws, tax is to be taken out until
earnings exceed $7800 and a new percentage
is to be placed. The programreer can code
these changes as shown in Figure 95.

r---,
COBOL IEBUPDTEI
Sequence Sequence 1
Numbers ~~~Q~~~_I
000730 IF ANNUAL-PAY GREATER THAN 6600 GO TO PAY-WRITE. 000001051
000735 IF ANNUAL-PAY GREATER THAN 6600 - BASE-PAY GO TO LAST-TAX. 000001101
000740 TAX-PAYR. COMPUTE TAX-PAY = BASE-PAY * .025 000001151
000750 MOVE TAX-PAY TO OUTPUT-TAX. 000001201
000760 PAY-WRITE. MOVE BASE-PAY TO OUTPUT-BASE. 000001251
000770 ADD BASE-PAY TO ANNUAL-PAY. 000001301

I
1
I

1000850 STOP RUN. 000002401 L ___ J

Figure 94. COBOL Statements to Deduct Old Age Tax

Libraries 285

r---,
I I
1 I
I I
IBASIS PAYROLL I
IDELETE 000730-000740 I
!000730 IF· ANNUAL-PAY GREATER THAN 7800 GO TO PAY-WRITE.
1000735 IF ANNUAL-PAY GREATER THAN 7800 - BASE-PAY GO TO LAST-TAX.
1000740 TAX-PAYR. COMPUTE TAX-PAY = BASE-PAY * .044. l ___ J

Figure 95. Programmer Changes to Source Program

r---,
1000730 IF ANNUAL-PAY GREATER THAN 7800 GO TO PAY-WRITE. I
1000735 IF ANNUAL-PAY GREATER THAN 7800 - BASE-PAY GO TO LAST-TAX. 1
1000740 TAX-PAYR. COMPUTE TAX-PAY = BASE-PAY * .044. I
1000750 MOVE TAX-PAY TO OUTPUT-TAX. I
1000760 PAY-WRITE. MOVE BASE-PAY TO OUTPUT-BASE. I
1000770 ADD BASE-PAY TO ANNUAL-PAY. I
1 I
I I
I I
1000850 STOP RUN. I l ___ J

Figure 96. Changed COBOL Statements to Source COpy Library Statements

The altered program will contain the
coding shown in Figure 96.

Note that changes made through use of
the INSERT and DELETE statements remain in
effect for the one run only.

~ote: If both the COpy statement and the
BASIS card are used, the library containing
the member specified in the BASIS card must
be defined first. The COpy libraries ---
concatenated with the BASIS library may be
defined and referenced in any order (see
"Appendix I: Checklist for Job Control
Procedures"). For a discussion of special
considerations when using BASIS with the
BATCH option, see "Batch Compilation."

The job library consists of one or more
partitioned data sets that contain load
modules to be executed. It is specified by
the JOBLIB DO statement that must precede
the EXEC statement of the first step of a
job. Partitioned data sets assigned to the
job library are concatenated with the link
library so that any load module is obtained
automatically when its name appears in the
PGM= parameter of the EXEC statement. The
following statements illustrate how three

286

partitioned data sets can be assigned to
the job library:

//MYJOB
//JOBLIB
//
//
//STEPl

//STEP2

JOB
DO DSNAME=MYLIB1,OISP=lOLO,PASS)
DO OSNAME=MYLIB2,DISP=(OLD,PASS)
DD DSNAME=MYLIB3,DISP=(OLD, PASS)
EXEC

EXEC

These statements specify that the job
library containing the data sets MYLIB1,
MYLIB2, and MYLIB3 is to be concatenated
with the link library. When a load nodule
is named in an EXEC statement in any step
of the job, the directories of the job
library will be searched for the name.
When a job library is specified for a job,
the link library is searched for a named
load module only when the module is not
found in the job library.

Partitioned data sets used in the JOD
library can be created by specifying the
partitioned data set name and the member
name in the SYSLMOD DD statement when each
member is processed by the linkage editor.

~dditiQnal_Ige~t_tQ_th~_~inkag~_~£it~~:
Libraries of object modules (with or
without linkage editor control statenents)
and libraries of load modules can be used
as additional input to the linkage editor.
Members are specifipd by use of the INCLUDE
and LIBRARY linkage editor control
statements.

A library of object modules and control
statements can be created by use of the
IEBUPDTE utility program.

A library of load modules can be created
by use of the SYSLMOD DD statement i~ the
linkage editor job step, as discussed in
"Job Library."

SHARING COBOL LIBRARY SUBROUTINES

Use of the COBOL Library Management
Feature makes it possible for all programs
in the same or different regions/partitions
to share one copy of the COBOL library
subroutines. That is, the most economical
use of main storage is made when the most
frequently used COBOL library subroutines
are placed in the MVT link pack area (LPA),
or the MFT resident reusable routine (RRR)
area-.-- rat..l1e-rthan ineach-reg-ion.l-pa-rti-t-io!l-.
To make the most effective use of the
Library Management Feature, and to use the
IBM cataloged procedures whether or not
Library Management is needed, the user
should concatenate the COBOL subroutine
library with the system link library.

The user may request the COBOL Library
Management Feature at compile time, via the
RESIDENT option (see the section "Options
for the Compiler" in the chapter entitled
"Job Control Procedures").

CONCATENATING THE SUBROUTINE LIBRARY

To concatenate the subroutine library
with the link library, the user executes
the IEBUPDTE utility program to add a
member named LNKSTOO to SYS1.PARMLIB,
specifying the library desired (that is,
either the entire COBOL subroutine library
or a private library containing
user-selected COBOL library subroutines).
Note that the library containing the
subroutines must be cataloged.

An installation that is pl2nnin~ to use
the Library Management Feature will find it
convenient to include frequently used COBOL
library subroutines in the MV1 LPA or the
MFT RRR area. Infrequently used
subroutines are then brought into the
region/partition as required. To add C~bOL
subroutines to either of these areas, the
user invokes the IEBUPDTE utility program
to add a member named IEAIGGXX (see Note 2
in Figure 97) to SYS1.PARMLIB, specifying
all names and aliases for the COBOL library
sUbroutines to be included. Then, at an
initial program load (IPL) time~ the
operator identifies the link list to the
system, which subsequently places the
identified COBOL subroutines in main
storage in the LPA/RRR area.

Figure 97 illustrates how an
installation can accomplish both these
functions in one operation. The encircled
letters in the figure refer to the JCL
suggested A to concatenate the C~BOL
subroutine library (SYS1.COBLIB) with the
system link library (SYS1.LINKLIB), and
~nen B to place the user list of desired
COBOL library subroutines and their aliases
to the LPA/RRR. (For further information,
see the publication OS Full American
National Standard COBOL Comeile~_~g~
-Li-br-aPf,---Ve r s-ion-4-- --Ins-t.a ll-at-i-Qn -R-€£ -e r-enc-€
Material.

Notes:

1. If the user does not wish to place any
COBOL subroutines in the RRR/LPA area,
he need not execute the portion of the
IEBUPDTE utility program that adds
IEAIGGXX to SYS1.PARMLIB shown above.
He may still make use of the Library
Management Feature. However, all
required library subroutines will be
loaded into his own region/partition
when they are needed by one or more
programs, and deleted when they are no
longer needed. Thus, not all library
subroutines needed by all programs in
the region need be resident at the
same time. In this case, however, the
user must supply a job control card at
execution time pointing to the COBOL
subroutine library or to his own
private library of COBOL subroutines.
(For a discussion of the various COBOL
library subroutines available to the
programmer, see "Appen1ix B: COBOL
Library Subroutines.")

Libraries 287

r---,
IICATLG JOB user information
II EXEC PGM=IEBUPDTE,PARM=MOD
IISYSPRINT DD SYSOUT=A
IISYSUT1 DO DSN=SYS1.PARMLIB,OISP=SHR
IISYSUT2 DD DSN=SYS1.PARMLIB,OISP=SHR
IISYSIN DO *

.1 REPL NAME=LNKLSTOO,LIST=ALL
SYS1.LINKLIB,SYS1.COBLIB

.1 ADD NAME=IEAIGG01,LIST=~LL

SYS1962(S62B1,NAME1,ALIAS1, •••
1*

~---~

1.

2.

The name used in the JCL must identify the data set to De concatenated with the
system link library, and is selected by the installation. (Note that this data
must be cataloged.)

The last two digits of this member-name can vary, but the digits specified here
must also be specified in the R~M= parameter used at IPL time. For example, if
IEAIGG02 were specified, 'RAM=02 1 would be required at IPL time.

I
I
I

setl
I
I
I
I
I
I

3. The names and aliases of the COBOL library subroutine members to be made resident I
must be specified by the installation. The system searches the last name first; inl
this case, ALIAS1 is searched last. The user should, therefore, specify the most I
frequently used name last. I L ___ J

Figure 97. concatenating the Subroutine Library

2. If one or more programs in a given
region/partition request the COBOL
Library Management Feature, then the
main program and all subprograms in
that region/partition must use it.
Otherwise, the multiple copies of
COBOL library subroutines resident at
one time may cause unpredictable
results.

~ programmer can create or change a
partitioned data set in one of three ways:
(1) through the use of DD statements,
(2) through the use of utility programs,
and (3) through the use of certain linkage
editor control statements.

The DD statement can be used to create
libraries as is discussed at the beginning
of this chapter. In addition, OD
statements can be used to add members to

288

existing libraries, including the link
library, and to retrieve members of
existing libraries.

Utility programs can be used to create
libraries such as those used in the copy
library or as secondary input to the
linkage editor. In addition, utility
programs can be used to move, copy, and
replace members of an existing library; to
add, delete, and renumber the records
within an existing library; and tc assign
sequence numbers to the records of a new
library.

Linkage editor control statements can be
used to make changes to memDers of a
library of load modules. The name of a
member can be changed or additional names
can be specified. Additional entry pOints
can be identified, existing entry points
can be deleted, and portions of a load
module can be deleted or replaced. For
further information, see the publication
I~~_Q~Lin~~gg_~~itor ag~_~Q~der.

~ cataloged procedure is a set of job
control statements placed in a partitioned
data set called the procedure library
(SYS1.PROCLIB). It can be retrieved from
the library by using its member name in an
EXEC statement of a job step in the input
stream. Frequently used procedures, such
as those used for compiling and linkage
editing, can be cataloged to simplify their
subsequent use.

A cataloged procedure can contain
statements for the processing of an entire
job, or it can contain statements to
process one or more steps of a job, ~ith

the remaining steps defined by job control
statements in the input stream. A job can
use several catalogei procedures, each
processing one or more of the job steps. A
job can also call for execution of the same
cataloged procedure in more than one job
step.

This chapter describes the following:

• How to call cataloged procedures

• The types of cataloged procedures,
including those supplied by IBM for use
with COBOL source programs

• How to add procedures to the procedure
library

• How to modify existing procedures for
the current job step only

• How to override and add to cataloged
procedures

• How to use the DDNAME parameter in
cataloged procedures

CALLING CATALOGED PROCEDURES

A cataloged procedure is called by a job
that appears in the input stream. The job
must consist of a JOB statement and an EXEC
statement that specifies the cataloged
procedure name in the positional parameter
(either procname or PROC=procname). For
example:

//STEPQ EXEC COBUC
//STEPQ EXEC PROC=COBUC

Either of these EXEC statements could be
used to call the IBM-supplied cataloged

procedure COBUC to process the job step
STEPQ.

A job step that calls for execution of a
cataloged procedure can also contain DD
statements that are applicable to the job
steps of the cataloged procedure. A job
that calls for execution of a cataloged
procedure may, in other steps, call for
execution of other cataloged procedures,
call for other executions of the same
cataloged procedure, or call directly for
execution of load modules. The following
example shows a job control procedure that
calls both cataloged procedures ani load
modules.

//JOBl
//STEPA
//COB.SYSIN

JOB
EXEC
DD

COBUC

*
(source module)

/*
//STEPL EXEC PGM=IEWL

(DD statements for the linkage editor)

//STEPE EXEC PGM=*.STEPL.SYSLMOD

(DD statements for user-defined files)

The IBM-supplied cataloged procedure
COBUC for compilation is used to process
STEP~. The COB.SYSIN DD statement is
required to define the input to the
compiler. The remaining statements in the
procedure refer to execution of the linkage
editor and the subsequent load module.

Data Sets Produced by Cataloged Procedures

Data sets produced during execution of a
cataloged procedure can be used in
subsequent job steps. They can also be
called as follows:

Using the Cataloged Procedures 289

//jobname JOB 1234,J.SMITH
//STEPA EXEC PROCED
//PROC1.SYSIN DD *

(source module)

/*
//stepname EXEC PGM=*.STEPA.PROC2.SYSLMOD

(DD statements for user-defined files)

The cataloged procedure PROCED is
composed of two job steps, PROCl and PROC2,
that compile and linkage edit the source
module.

TYPES OF CATALOGED PROCEDURES

The programmer can write his own
procedures and catalog them, or he can use
the five COBOL cataloged procedures
provided by IBM.

PROGRAMMER-WRITTEN CATALOGED PROCEDURES

The programmer can write cataloged
procedures, consisting of EXEC and DD
statements, which incorporate job control
procedures he uses frequently. For
example, the programmer may wish to catalog
an EXEC statement and the associated DO
statements for a job step that specifies
execution of a program. In this way, the
DO statements need not be specifiej each
time the program is executed.

In writing a procedure for cataloging,
the programmer must follow these rules:

• Another cataloged procedure cannot be
referred to, i.e., only the
PGM=progname form in an EXEC statement
can be used.

Note, however, that a catalogej
procedure may contain a DD statement
that refers to a cataloged data set.

• SYSABEND or SYSUDUMP DO statements
should not be cataloged because they
cannot be overridden.

• The following statements cannot be used
in a cataloged procedure:

290

1. The JOB statement

2. A DO statement with JOBLIB in the
name field

3. A DD statement ;,vith an * in the
operand field

4. A DD statement with DATA in the
operand field

5. The delimiter statement

A procedure can be tested before it is
placed in the procedure library by
converting it into an in-stream procedure
and executing it any number of times durinq
a job. For fUrther information about
in-stream procedures, refer to the section
"Testing a Procedure as an In-Stre~m
Procedure" •

The IEBUPDTE utility program is used to
add procedures to the procedure library. A
description of the use of this program is
given in the publication IB~~~ Ut~~~~~~~.

In Figure 98, two procedures are added
to the procedure library (SY51.PROCLIB).
All control statements are in the input
stream.

The first procedure is for a COBOL
compilation. Mass storage volumes are
specified for the four utility data sets,
anj 100 tracks are allocated for each
utility data set. This cataloged procedure
is named COBDA.

The second procedure is also for a COBOL
compilation. Unlaoeled tape volumes are
specified for three utility jata sets; for
the fourth, SYSUT1, a mass storage device
must be specified. This cataloged
procedure is named COBTP.

Job control statements: the EXEC card
specifies that the IEBUPDTE program is to
be executed, and PARM=NEW is used because
all data is read from one source, i.e., the
input stream.

Utility statements: the ADD statement
specifies the member name of the procedure,
the level modification (00, first run) and
the source of the modification (0,
user-supplied). The NUMBER statement
specifies the sequence numbers for records
in the member. The first record of the
cataloged procedure is numbered 00000010,

and subsequent records are incremented by
tens.

Note that leading zeros in the NUMBER
statement are not necessary, as indicated
in the example for the COBTP procedure.

IBM-SUPPLIED CATALOGED PROCEDURES

IBM distributes cataloged procedures
with the operating system, which can be
incorporated when the system is generated.

Five of the procedures are for use with
COBOL programs.

1. COBUC provides for compilation.

2. COBUCL provides compilation and
linkage editing.

3. COBULG provides linkage editing and
execution.

4. COBUCLG provides for compilation,
linkage editing, and execution.

5. COBUCG provides for compilation and
loading.

These procedures may be used with any of
the job schedulers released as part of the
IBM Operating System. When parameters
required by a particular scheduler are
encountered by another scheduler that does
not require those parameters, either they
are ignored or alternative parameters are
substituted automatically.

The five cataloged procedures are shown
in Figures 99, 100, 101, 102, and 103.
(Space allocations in these procedures are
in terms of record lengths on the 2311 disk
storage device.) Note that when OSNAME=&&
is used in a DD statement the specified
data set is given a unique name by the
operating system, and it is assumed to be a
temporary data set that will be deleted
when the job is completed. If the data set
is to be kept, the DD statement can be
overridden with a permanent data set name,
and the appropriate parameters can be
specified.

r---,
Job /IADPROC JOB 1234,J.DUBOB
Control /ISTEPl EXEC PGM=IEBUPDTE,PARM=NEW
Language /ISYSPRINT DD SYSOUT=A
Statements IISYSUT2 DD DSNAME=SYS1.PROCLIB,DISP=OLD

Utility
Statements

First
Procedure

Utility
Statements

Second
Procedure

I 1""~7'''''''T''7\.''
/ / ;::).L;::)J..fll

.1

.1

//COB
//SYSUTl
/ISYSUT2
//SYSUT3
//SYSUT4
//SYSPRINT
//SYSPUNCH

./

./

//COB
//SYSUTl
//SYSUT2
//SYSUT3
//SYSUT4
//SYSPRINT
//SYSPUNCH

DO

ADD
NUMBER

EXEC
DD
DD
DD
DD
DD
DD

ADD
NUMBER

EXEC
DD
DD
DD
OD
DD
DD

I Delimiter ./ ENDUP
I Statements 1*

DATA

NAME=COBDA,LEVEL=OO,SOURCE=O
NEW1=00000010,INCR=00000010

PGM=IKFCBLOO
UNIT=SYSDA,SPACE=(TRK, (100,10»
UNIT=SYSOA,SPACE=(TRK, (100,10»
UNlr=SYSDA,SPACE=(TRK, (100,10»
UNIT=SYSDA,SPACE=(TRK, (100,10»
SYSOUT=A
SYSOUT=B

NAME=COBTP,LEVEL=OO,SOURCE=O
NEW1=10,INCR=10

PGM=IKFCBLOO
UNIT=SYSDA,SPACE=(TRK, (100,10»
UNIT=2400,LABEL=(,NL)
UNIT=2400,LABEL=(,NL)
UNIT=240Q,LABEL=(,NL)
SYSQUT=A
SYSQUT=B

l __ _

Figure 98. Example of Adding Procedures to the Procedure Library

Using the Cataloged Procedures 291

~ote: If the compiler options are not
explicitly supplied with the procedure,
default options established at the
installation apply. The programmer can
override these default options by using an
EXEC statement that includes the desired
options (see "Overriding and Adding to EXEC
statements" and "Overriding Cataloged
Procedures Using Symbolic Parameters").

Procedure names begin with the
abbreviated name of the processor program,
which, in the case of the COBOL procedures,
is COB.

The processor's abbreviated name is
followed by the processor's level indicator
(U) and then by C (compile), L (linkage
edit), G (go -- i.e., execute), or
combinations of them. Hence, procedure
COBUC is a single-step procedure that
compiles a program using the COBOL
processor; COBUCLG is a 3-step procedure
wherein the first step compiles a program
using COBOL, the second step link-edits the
output of the first step, and the third
step executes the output of the linkage
editor.

§tepNames in Procedures

In a cataloged procedure, the step name
is the same as the abbreviated processor
name (LKED). The step that executes a
compiled and link-edited program is named
GO.

For example, in the procedure named
COBUCLG, the first step is named COB, the
second step is named LKED, and the third
step is named GO.

Unit Names in Procedures

The two unit names used in IBM-supplied
cataloged procedures are as follows:

SYSSQ

SYSDA

any magnetic tape or mass
storage device

any mass storage device

A pool of units must be assigned to
these unit names during the system
generation procedure. For example, only
2311 Disk storage Drives might be assigned

292

to the SYSSQ name. Then again, both 2400
Magnetic Tape Units and 2311 Disk Storage
Drives might be assigned to the SYSSQ name
Once a pool of devices is assigned to these
classes, device selection is done by the
Job Scheduler.

Data Set Names in Procedures

When DSNAME=&&name is used in a DD
statement, the specified data set is given
a unique name by the scheduler, and it is
assumed to be a temporary data set that
will be deleted when the job terminates.
If the data set is to be retained, the DD
statement must be overridden with a
permanent data set name and appropriate
DISP parameters.

The COBUC procedure is a single-step
procedure to execute the COBOL com~iler.
It produces a punched object deck. Figure
99 shows the statements that make u~ the
COBUC cataloged procedure.

The following DO statement must be
supplied in the input stream:

IICOB.SYSIN DO * (or appropriate
parameters defining an
input data set)

If the DO * statement is used under MFT.
the delimiter statement (/*) must follow
the source module. Under MVr, the 1*
statement is not required.

The COBUCL procedure is a two-ste~
procedure to compile and link-edit using
the COBOL compiler. Figure 100 shows the
statements that make up the cataloged
procedure.

The COB job step produces an object
module that is input to the linkage editor.
Other object modules may be added as
illustrated in Example 5 under "Using the
OONAME Parameter."

The following DD statement, indicating
the location of the source module, ~ust be
supplied in the input stream:

IICOB.SYSIN DD * (or appropriate
parameters)

COBULG Procedure

The COBULG cataloged procedure is a
two-step procedure to link-edit and execute
the output of a COBOL compilation. Figure
101 shows the statements that make up the
procedure.

The following DO statement indicating
the location of the object module must be
supplied in the input stream:

//LKED.SYSIN DD * (or appropriate
parameters)

If the COBOL program refers to SYSIN in
the execution step, the following DO
statement must also be supplied and must be
the last of·the //GO, cards.

//GO.SYSIN DD * (or appropriate
parameters)

If the COBOL program refers to other
data sets in the execution step such as
user-defined files, DD statements that
define these data sets must also be

r---,
I//COB EXEC PGM=IKFCBLOO,PARM='DECK,NOLOAD,SUPMAP'JREGION=86K I
I//SYSPRINT DD SYSOUT=A I
I//SYSPUNCH DO SYSOUT=B I
1//SYSUTl DD DSNAME=&&SYSUT1,UNIT=SYSOA,SPACE=(460, (700,100» I
1//SYSUT2 DO DSNAME=&&SYSUT2,UNIT=SYSDA,SPACE=(460, (700,100» I
1//SYSUT3 DD DSNAME=&&SYSUT3,UNIT=SYSDA,SPACE=(460, (700,100» I
\//SYSUT4 DO DSNAME=&&SYSUT4,UNIT=SYSDA,SPACE=(460, (700,100» I L ___ J

Figure 99. statements in the COBUC Procedure

r--- - - -- - --- -.------ - - - - ------ - - ------ - - - ---- - - -:.~ ~.~ . .;:;.-~~.~;;;; ;,;;~.;.;;; - -. ~.=~-;;;; ~-- -' ----.-.. ... --.~=----~ _ .. -.----.-------.,-
//COB EXEC PGM=IKFCBLOO,REGION=86K
//SYSPRINT DO SYSOUT=A
//SYSUTl DD DSNAME=&&SYSUT1,UNIT=SYSDA,SPACE=(460, (700,100»
/ISYSUT2 DD DSNAME=&&SYSUT2,UNIT=SYSDA,SPACE=(460, (700,100»
/ISYSUT3 DD DSNAME=&&SYSUT3,UNIT=SYSDA,SPACE=(460, (700,100»
/ISYSUT4 DD DSNAME=&&SYSUT4,UNIT=SYSDA,SPACE=(460, (700,100»
/ISYSLIN DD DSNAME=&&LOADSET,DISP={MOD,PASS>,UNIT=SYSDA, X
1/ SPACE=(80, (500,100)
//LKED EXEC PGM=IEWL,PARM='LIST,XREF,LET',COND=(S,L'I,COB), X
// REGION=96K
/ISYSLIN DD DSNAME=&&LOADSET,DISP=<OLD,DELETE)
// DO DDNAME=SYSIN
//SYSLMOD DD DSNAME=&&GOSET,DISP=(NEW,PASS),UNIT=SYSDA, X
// SPACE=(1024, (50,20,1»)
//SYSLIB DD DSNAME=SYS1.COBLIB,DISP=SHR
/ISYSUTl DD UNIT=(SYSDA,SEP=(SYSLIN,SYSLMOD», X
// SPACE=(1024, (50,20»

l//SYSPRINT DO SYSOUT=A L __ -----__________________________________ J

Figure 100. statements in the COBUCL Procedure

Using the Cataloged Procedures 293

r---,
I//LKED EXEC PGM=IEWL,PARM='LIST,XREF,LET',REGION=96K I
I//SYSLIN DO DDNAME=SYSIN I
I//SYSLMOD DO DSNAME=&&GOSET(GO),DISP=(NEW,PASS),UNIT=SYSDA, X I
1// SPACE=(1024, (50,20,1» I
I//SYSLIB DD DSNAME=SYS1.COBLIB,DISP=SHR I
1//SYSUT1 DD DSNAME=&&SYSUT1,UNIT=(SYSDA,SEP=(SYSLIN,SYSLMOD», X I
!// SPACE=(1024,!SO,20» i
I//SYSPRINT DO SYSOUT=A I
I//GO EXEC PGM=*.LKED.SYSLMOD,COND=(S,LT,LKED) I l ___ J

Figure 101. Statements in the COBULG Procedure

r---,
//COB EXEC PGM=IKFCBLOO,PARM=SUPMAP,REGION=86K
//SYSPRINT DO SYSOUT=A
//SYSUTl DO DSNAME=&&SYSUT1,UNIT=SYSDA,SPACE=(460, (700,100»
//SYSUT2 DD DSNAME=&&SYSUT2,UNIT=SYSDA,SPACE=(460, (700,100»
//SYSUT3 DO DSNAME=&&SYSUT3,UNIT=SYSDA,SPACE=(460, (700,100»
//SYSUT4 DD DSNAME=&&SYSUT4,UNIT=SYSDA,SPACE=(460, (700,100»
//SYSLIN 00 DSNAME=&&LOADSET,DISP=(MOD,PASS),UNIT=SYSDA, X
// SPACE=(SO, (SOO,100»
//LKED EXEC PGM=IEWL,PARM='LIST,XREF,LET'~COND=(S,LT,COB), X
// REGION=96K
//SYSLIN DO DSNAME=&&LOADSET,DISP=(OLD,DELETE)
// DD DDNAME=SYSIN
//SYSLMOD DD DSNAME=&&GOSET(GO),DISP=(NEW,PASS),UNIT=SYSDA, X
// SPACE=(1024, (50,20,1»
//SYSLIB DO DSNAME=SYS1.COBLIB,DISP=SHR
//SYSUTl DO UNIT=(SYSDA,SEP=(SYSLIN,SYSLMOD», X
// SPACE=(1024, (50,20»
//SYSPRINT DD SYSOUT=A

I//GO EXEC PGM=*.LKED.SYSLMOD,COND=«S,LT,COB), (S,LT,LKED» L __ _

Figure 102. Statements in the COBUCLG Procedure

r---,
I//COB EXEC PGM=IKFCBLOO,PARM='LOAD'iREGION=86K I
I//SYSPRINT DD SYSOUT=A I
1//SYSUTl DD DSNAME=&&SYSUT1,UNIT=SYSDA,SPACE=(460, (700,100» 1
1//SYSUT2 DD DSNAME=&&SYSUT2,UNIT=SYSDA,SPACE=(460, (700,100» 1
1//SYSUT3 DD DSNAME=&&SYSUT3,UNIT=SYSDA,SPACE=(460, (700,100» 1
1//SYSUT4 DO DSNAME=&&SYSUT4,UNIT=SYSDA,SPACE=(460, (700,100» 1
I//SYSLIN DD DSNAME=&&LOADSET,DISP=(MOD,PASS), X I
1// UNIT=SYSDA,SPACE=(SO, (500,100» I
I//GO EXEC PGM=LOADER,PARM='MAP,LET',COND=(S,LT,COB>,REGION=106K I
I//SYSLIN DO OSNAME=*.COB.SYSLIN,OISP=(OLD,DELETE) I
I//SYSLOUT DD SYSOUT=A I
I//SYSLIB DD DSNAME=SYS1.COBLIB,DISP=SHR I l ___ J

Figure 103. Statements in the COBUCG Procedure

294

The COBUCLG procedure is a three-step
procedure to compile, link-edit, and
execute using the COBOL compiler. Figure
102 shows the statements that make up the
procedure.

The COB job step produces an object
module that is input to the linkage editor.
Other object modules may be added as
illustrated in Example 5 under nUsing the
DDNAME Parameter. n

The following DD statement, indicating
the location of the source module, must be
supplied in the input stream:

//COB.SYSIN DD * (or appropriate
parameters)

If the COBOL program refers to SYSIN,
the following DD statement indicating the
location of the input data set must also be
supplied:

//GO.SYSIN DO * (or appropriate
parameters)

If the COBOL program refers to other
data sets, DD statements that define these
data sets must also be supplied.

COBUCG Procedure

The COBUCG procedure is a two-step
procedure to compile, load, and execute
using the COBOL compiler and as loader.
Figure 103 shows the statements that make
up the procedure.

The COB job step produces an object
module that is input to the loader.

The following DD statement, indicating
the location of the source module, must be
supplied in the input stream:

//COB.SYSIN DD * (or appropriate
parameters)

If the COBOL program refers to SYSIN,
the following DD statement indicating the
location of the input data set must also be
supplied:

//GO.SYSIN DO * (or appropriate
parameters)

If the COBOL program refers to other
data sets, the DD statements that define
these data sets must also be supplied.

Existing cataloged procedures can be
permanently modified by using the IEBUPDT£
utility program described in the
publication IBM as Utilities.

OVERRIDING AND ADDING TO CATALOGED
PROC~DURES

An:L.parameter _ in a _ .. c:;a~~.;LQg~.d._ .. pr()ce.q.u:re
except :t:he~--PGJ1§-iiiQgriim_e~._gQ.,raru.~ter--in.,the
E1CEC;o~it.?,t:~~IIle>P,t.".c.a.n __ be __ ().v~rridc1~.n.
Parameters or statements not specified in
the procedure can also be added. when a
cataloged procedure is overridden or added
to, the changes apply only during one
execution.

OVERRIDING AND ADDING TO EXEC STATEMENTS

An EXEC statement can be overridden or
added to in one of two ways:

1. Specify, in the operand field of the
EXEC statement calling the procedure,
the keyword, the procedure step-name
and the sUbparameters, for example:

COND.procstep=(subparameters)

If a multistep procedure is being
modified, parameters in the calling
EXEC statement must be specified step
by step; i.e., the parameters for one
step must be specified before those of
the next step. If the return code of
a cataloged procedure step is to be
tested, the name of the step in the
procedure (procstep) must be qualified
by the name of the step that called
for execution of the cataloged
procedure (stepname).

2. Specify in the operand field of the
EXEC statement calling the procedure
only the keyword parameters and
subparameters, for example:

COND=(subparameters)

If a multistep procedure is being
called, the specified parameters (with
the exception of PARM) apply to all
steps in the procedure. The PARM

Using the Cataloged Procedures 29S

keyword subparameters override the
first EXEC statement and nullify any
subsequent PARM keyword subparameters.
The CONO and ACCT parameters apply to
all steps in the procedure. To
override PARM parameters in job steps
other than the first, the previous
method can be used.

~: A parameter in an EXEC statement
cannot be partly overridden; it must be
overridden in its entirety. Any parameter
not overridden remains as originally
defined.

Examples of Overriding an1 Adding to EXEC
Statements

This section contains examples of
overriding and adding to the EXEC
statement. The procedures overridden or
added to are the IBM procedures shown in
Figures 99, 100, 101, 102 and 103.

Examele 1: The following example shows the
overriding of one parameter in the EXEC
statement of the one procedure step in the
IBM-supplied COBUC procedure. The
statements appear in the input stream as
follows:

//jobname
//STEPA
//
//
//COB.SYSIN

JOB 1234,J.SMITH
EXEC COBUC,PARM.COB='OECK,

NOLOAD,BUF=4000,
SIZE=9600'

DO *
(source module)

X
X

Note: In actual use the PARM.COB parameter
cannot be continued in this manner. In the
PARM parameter that is overridden, the DECK
and NOLOAD options were specified. They
are included again since the parameter must
be overridden in its entirety. The
information is here enclosed in single
quotation marks, since subparameters that
contain equal signs must be enclosed in
this manner.

Examele 2: The following example shows the
overriding of two parameters and the adding
of another in the EXEC statement of one
procedure step of the IBM-supplied COBUCLG
procedure. The statements appear in the
input stream as shown:

296

//jobname
//STEPA
//
//
//
//COB.SYSIN

JOB 1234,J.SMlrH
EXEC COBUCLG,COND.LKEO=

(9,LT,STEP~.COB),

PARM.LKEO=(MAP,LIST),
ACCT=(1234)

OD *
(source module)

x
X
X

Note: In actual use the COND.LKED and
PARM.LKED parameters cannot be continued in
this manner. For the linkage editor job
step in the above example, the CONO and
PARM parameters have been overridden and
the ~CCT parameter added.

Example-l: The following example shows the
overriding of individual parameters in more
than one procedure step of the IBM-supplied
COBUCLG procedure. The statements appear
in the input stream as shown.

JOB 1234,J.SMlrH //jobname
//stepname
//

EXEC COBUCLG,PARM.LKEO=OVLY, X
COND.GO=«S,EQ, X

//
//
//COB.SYSIN

/*

DO

stepname.COB) ,
(S,EQ,stepname.LKED»

*
(source module)

~Q~~: In actual use the CONO.GO statement
cannot be continued in this manner. The
PARM option OVLY replaces the PARM
subparameters of the link-edit job step.
The CONO option EQ (equal to) replaces the
option LT (less than) in the execution job
step.

x

Note that all overriding parameters for
one step of the procedure must be specified
before those for the next step.

Example 4: The following example shows
overriding of parameters on all EXEC
statements in the IBM-supplied COBUCLG
procedure. The statements appear in the
input stream as shown:

//jobname
//stepname
//
//
//
//COB.SYSIN

JOB
EXEC

DD

1234,J.SMITH
COBUCLG,
PARM=CLOAD,PMAP),
COND=(3,LT),
ACCT=(123456,DEPrQ)

*
(source module)

the

X
X
X

The PARM options are added to the procedure
step COB and nullify the PARM options in
the LKED and GO steps. The COND and ACCT
parameters apply to all steps in the
procedure.

TESTING A PROCEDURE AS AN IN-STREAM
PROCEDURE - ---__.u __ ----

A procedure can be tested before it is
placed in the procedure library by
converting it into an in-stream procedure
and executing it any number of times during
a job. In-stream procedures are described
in detail in the publication !BM_Q~_~QQ
Control Language Reference.

-~
An in-stream procedure is a series df

job control language statements enclosed
within a PROC statement and a PEND
statement. The following example shows how
to convert the COBUC procedure (Figure 99)
into an in-stream procedure and execute it
twice:

//CONVERT JOB 1234,YOURNAME
//INSTREAM PROC
//COB EXEC PGM=IKFCBLOO,PARM='OECK, X

NOLOAD,SUPMAP',REGION=86K
//SYSPRINT DO SYSOUT=A
//SYSPUNCH DD SYSOUT=B
//SYSUT1 DO OSNAME=&&SYSUT1, X

UNIT=SYSDA, X
SPACE=(460,(700,100»

//SYSUT2 DO DSNAME=&&SYSUT2, X
UNIT=SYSDA, X
SPACE=(460, (700,100)

//SYSUT3 DD OSNAME=&&SYSUT3, X
UNIT=SYSDA, X
SPACE=(460, (700,100»

//SYSUT4 DD DSNAME= & & SYSUT4, X
UNIT=SYSDA, X
SPACE=(460, (700,100))

//ENDPROC PEND
// EXEC INSTREAM'
//COB.SYSIN DD *

(input data)

/*
// EXEC INSTREAM
//COB.SYSIN DO *

(input data)

/*

OVERRIDING AND ADDING TO DD STATEM8NrS

A DO statement can be overridden Dr
added to by using a DO statement whose name
is composed of the procedure step-name that
qualifies the ddname of the DD statement
being overridden, as follows:

//procstep.ddname DO (appropriate
parameters)

Entire OD statements can also be adde9.

There are rules that must be followej
when overriding or adding a DD statement
within a step in a procedure.

• ~-gl:~.~!l.9 .. PQ_ ... ?~~ ~;.~~,Il tS_ ... !?:'l~.t .~.~ .. ~.!"!.t.h.e
same oreier .. in t.he. 1: Ilput .. stre.i:lrI1.as the.y
are "Tn" the" ·ca·~?.J:.g.ged . .procedure.
'"-"'" ___ ...,.....,.-1" ,-.... '" ~ ••• ~

• DD state.me.nts to. D.e. added. must fallow DVeriidin'g DD ;"t~te~~nt~': _·· .. c '" .. ' .. , ••.•• - ••• "C'._

• L01_stg.J;.~...m~.nt._~i th an * in the operand
f i.e 1_? __ t~X.ll)J.Q';Lt_E;?s·~i~~:~·s·s-y·ng ~J'---' . __ . __ ."
st!l;5'$..E;!quE!,Il.t. DD staterrlents' Tli both the
proc~_Q\U.e_ .. ari·d·"·the·Tiipht· ·S·t..-:te2fffi--'·for··the
Job-step, out' not"nec'esEr~frTiY "for' the
jQ:Q~" . . .' .., '. ". ~':.~.-' .. _----.
-~...".-.'

There are some special cases that snoulj
be kept in mind when overriding a DD
statement.

• All parameters are overridden in their
entirety, except for the DeB parameter.
within the DCB parameter, individual
subparameters may be overridden.

• To nullify a keyword parameter (except
the DCB parameter), write, in the
overriding DD statement, the keyword
and an equal sign followed by a comma.
For example, to nullify the use of the
UNIT parameter, specify UNIT=, in the
overriding DD statement.

• A parameter can be nullified by
specifying a mutually exclusive
parameter. For example, the SPACE
parameter can be nullified by
specifying the SPLIT parameter in the
overriding DD statement.

• The DUMMY parameter can be nullified by
omitting it and specifying the DSNAM~
parameter in the overriding DD
statement.

• To override DD statements in a
concatenation of data sets, the
programmer must provide one DD
statement for each data set in the

Using the Cataloged Procedures 297

concatenation. Only the first DD
statement in the concatenation should
be named. However, if a DD statement
to be changed follows one (or more) DD
statement(s) to be left intact, the
first overriding statement(s) should
have a blank operand.

• If the DDNAME=ddname parameter is
specified in a cataloged procedure, it
cannot be overridden; rather it can
refer to a DD statement supplied at the
time of execution.

ExamE!es of overriding and Addigg_t2_DD
§tat~ments

This section contains examples of
overriding and adding to parameters in DD
statements. The procedures overridden or
added to are the IBM procedures shown in
Figures 99, 100, 101, 102 and 103.

The DDNAME parameter is not used in
these examples, although it can be useful
with the cataloged procedures. The use of
the DDNAME parameter is described in detail
later in this chapter.

Example-1: The following example shows the
overriding of DD statements in the
IBM-supplied COBUCLG procedure.

Iljobname
Ilstepname
IICOB.SYSLIN
IICOB.SYSIN

JOB 1234,J.SMITH
EXEC COBUCLG
DD DSNAME=GOFILE
DD *

(source module)

1*
IILKED.SYSL~N DD
II

DSNAME=*.COB.SYSLIN,
DISP=(OLD,CATLG)

1*

(other DD statements for
user-defined files)

X

The name of the data set in SYSLIN in the
procedure step COB is changed to GOFILE.
The name of the data set of SYSLIN in the
procedure step LKEO is changed to a
reference to the SYSLIN DD statement in the
COB procedure step, and the data set name
GOFILE is cataloged.

298

Example 2: The following example shows the
adding of 00 statements to the IBM-supplied
COBUCLG procedure. Note that if the
statement DO * or the statement 00 DATA is
used, it must be the last to appear in a
series of DD statements.

//jOQname
Ilstepname
II
IICOB.SYSPUNCH
IICOB.SYSIN

JOB 1234,J.SMITH
EXEC COBUCLG,
PARM.COB=(DECK,LOAD,P~AP)

DD SYSOUT=B
DD *

(source module)

1*
IIGO.TRANSACT DO OSNAME=JUNE,DISP=OLD

1*

(other DD statements for
user-defined files)

x

Note: In the foregoing example TRANSACT is
a cataloged data set. When a data set is
cataloged, it is sufficient to refer to it
by DSNAME and DISP=OLD.

The PARM.COB option DECK and the SYSPUNCH
00 statement are added to obtain a punched
object module. The PARM option PMAP is
added to obtain a listing of the assembler
language expansion of the source module.

~~~~pl~_l: The following example shows 
overriding and adding to DD statements at 
the same time in the IBM-supplied COBUC 
procedure. Note that overriding statements 
must be in the same sequence as they appear 
in the procedure and must precede those 
statements being added. 

Iljobname JOB 1234,J.SMITH 
Ilstepname EXEC COBUC,PARM.COB=(LOAD) 
IICOB.SYSUT2 DO SPACE=,UNIT=SYSSQ 
IICOB.SYSLIN DO DSNM1E=&&GOFILE, 
II DISP= ([ViOD, PASS) , 
II UNIT=SYSSQ 
IICOB.SYSIN DO * 

(source module) 

1* 

(subsequent job steps) 

The device class on the COB.SYSUT2 DD 
statement is changed to SYSSQ, and the 
SPACE parameter ie nullifiej. Therefore, 

X 
X 



mass storage devices cannot be allocated. 
Any tape volumes to be assigned must have 
standard labels. The COB.SYSLIN DD 
statement is changed so that it passes the 
object module to subsequent job steps. 

Exam~: The following example shows how 
to concatenate a data set with a data set 
defined in the COBULG procedure. 

Iljobname JOB 
Iistepname EXEC 

IILKED.SYSLIB DD 
II DD 

1* 

1234,J.SMITH 
COBULG 

[blank operand field] 
[parameters] 

Instead of the blank operand field, 
parameters could have been used to override 
the SYSLIB statement; the data set defined 
by the unnamed DD statement would then be 
concatenated to the data set that was 
redefined by overriding. 

Note that any number of libraries could 
be .cQn.catena ted to the SYSLIB data_ se_t. 
For example: 

IILKED.SYSLIB 
II 
II 

DD 
DD DSNAME=USERLIB,DISP=OLD 
DD DSNAME=MYLIB,DISP=OLD 

The DDNAME parameter is used to define a 
dummy data set that can assume the 
characteristics of an actual data set, 
defined by a subsequent DD statement within 
the step. If a matching DD statement is 
found, its characteristics, with the 
exception of its ddname, replace those of 
the statement using the DDNAME parameter. 
If a matching DD statement is not found 
within the step, the data set defined by 
the DDNAME parameter remains a dummy. 

This section contains examples showing 
the use of the DDNAME parameter with 
cataloged procedures. 

The rules for using the DDNAME para~eter 
are as follows: 

• A backward reference (e.g., *.ddname) 
to a DO statement referred to by a 

DDNAME parameter cannot be used because 
the statement that is referred to loses 
its identity. 

• A backward reference to a statement 
containing a DDNAME parameter can be 
used, but only after the statement to 
which the DDNAME parameter refers has 
been encountered. If a backward 
reference is used before the dummy data 
set (defined by DDNAME) has been given 
real characteristics, these real char
acteristics will not be transferred to 
the DD statement that contains the 
backward reference. For example, if 
DCB=*.ddname is used (where ddname is 
the name of a statement containing an 
unresolved ODNAME parameter), the DCB 
fields that are transferred are blank. 

• Unnamed DD statements can be placed 
after a statement containing the DDNAME 
parameter (indicating concatenation), 
but unnamed DD statements cannot be 
placed after a statement referred to by 
a DDNk~E parameter. 

• The DDNAME parameter can be used a 
maximum of five times in a step, but 
each DDNAME parameter must refer to a 
different statement. 

• The DDNAME parameter cannot be used in 
a JOBLIB statement. 

When using the DDNAME parameter, the 
programmer should also keep the following 
in mind: 

• The name of the DD statement referred 
to does not replace the name of the 
referencing statement. 

• If a statement that contains the DDNAME 
parameter is overridden, it is 
nullified. 

• If overriding is performed with a 
statement that contains the ODNAME 
parameter, all parameters in the 
overridden statement are nullified. 

The following DO statements: 

I/S1 
1101 
1102 
1103 

EXEC PGM=progname 
DD DDNAME=D3 
DD (parameters X,Y,Z) 
DD (parameters U,T,V) 

will result in the same data definition 
produced by the following statements: 

IIS1 
IID1 
IID2 

EXEC PGM=progname 
DD (parameters U,T,V) 
DD (parameters X,Y,Z) 

Using the Cataloged Procedures 299 



EXAMPLES OF USING THE DDN~ME PARAMETErt 

~xamEle 1: The following example shows how 
to override the first DD statement in a 
catalogej procedure with a DD * statement, 
and allow subsequent statements to be proc
essed. without the DDNAME parameter, 
replacing the first DD statement with a DD 
* statement would terminate processing of 
subsequent statements in the job step. The 
cataloged procedure (PROC3) is as follows: 

//STEP1 EXEC PGM=progname 
//DD1 DD (any parameters except 

DATA or *) 
//DD2 DD (any parameters except 

DATA or *> 

The job procedure in which the overriding 
takes place appears in the input stream as 
follows: 

//JOBl JOB 1234,J.SMITH 
//Sl EXEC PROC3 
//STEP1.DD1 DO ODNAME=Dl 
//01 DD * 

The STEP1.DDl statement overrides the 
DD1 statement; the DD2 statement is proc
essed; then the D1 statement is processed. 

gxamE!~~: The following example shows how 
to override the first DD statement in a 
cataloged procedure with a DD * statement 
and how to add a DD statement. The 
cataloqed procedure (PROC3) is as follows: 

//STEP1 
//DD1 

//D02 

EXEC PGM=progname 
DD (any parameters except 

DATA or *) 

DO (any parameters except 
DATA or *) 

The job procedure in which the overriding 
takes place appears in the input stream as 
follows: 

//JOB2 JOB 1234,J.SMITH 
//Sl EXEC PROC3 
//STEP1.DDl DD DDNAME=DD4 
//STEP1.D03 DD (any parameters except 

DATA or *> 
//004 DD * 

The DD4 statement effectively overrides 
the DDl statement, after the DD2 statement 
has been processed and the DD3 statement 
has been added. 

300 

~!~~El~_l: The following example shJws how 
to concatenate a data set in the input 
stream with a data set defined by a 00 
statement in a cataloged procedure. The 
cataloged procedure (PROC3) is as follJws: 

//STEPl EXEC PGM=progname 
//001 DO (any parameters except 

DATA or *) 
//OD2 DO (any parameters except 

DATA or *) 

The job procedure in which the 
concatenation takes place appears in the 
input stream as follows: 

//JOB3 
//Sl 
//STEP1.DDl 
// 
//D03 

JOB 1234,J.SMITH 
EXEC PROC3 
DO (blank operand fielj) 
DD DDNAME=D03 
DO * 

The data set in the input stream is 
concatenated with the data set defined by 
the DOl statement after the 002 statement 
has been processed. 

§!~~E!~_~: The following example shows hON 
to concatenate a data set in the input 
stream with a data set defined by a DO 
statement in a cataloged procedure and how 
to add a DO statement. The cataloged 
procedure (PROC3) is as follows: 

//STEPl EXEC PGM=progname 
//DOl DO (any parameters except 

DATA or *) 

//D02 DO (any parameters except 
DATA or *) 

The job procedure in which the concate
nation takes place appears in the input 
stream as follows: 

//JOB4 JOB 1234, J.SMITH 
//Sl EXEC PROC3 
//STEP1.DD2 DD (blank operand fiel:U 
// DD DDNAME=DD4 
//STEP1.DD3 DO (any parameters except 

DATA or *) 
//OD4 DO * 



Exam~: The following example shows how 
the statement DD DDNAME=SYSIN in the 
IBM-supplied COBUCLG procedure can be used 
to add more object modules as input to the 
linkage editor. The statements appear in 
the input stream as follows: 

//jobname 
//stepname 

JOB 
EXEC 

//COB.SYSIN DD 

(source deck) 

/* 
//LKED.SYSIN DD 

1234,J.SMITH 
COBUCLG 

* 

* 
(first object module) 

(last object module) 

/* 

(//GO. cards) 

The COBUCLG procedure contains the 
following two statements in the linkage 
edit step: 

//SYSLIN DD DSNAME=&&LOADSET, 
// DISP= (OLD, DELETE) 
// DD DDNAME=SYSIN 

x 

The result of concatenating SYSIN with 
SYSLIN is that when SYSLIN (input to 
linkage editor> is read, SYSIN is also reaj 
and linked with it. For example~ if 
ILBODSPO is one of the object modules in 
the SYSIN stream, it will be linked with 
SYSLIN. The ILBODSPO module from 
SYS1.COBLIB will not be used. 

Using the Cataloged Procedures 301 



USING THE SORT FEATURE 

In order to use the IBM System/360 
Operating System Sort/Merge program, Sort 
feature statements are written in the COBOL 
source program. These statements are 
described in the publication IBM Q§_f~!! 
American National Standard COBOL. The 
sort/Merge program itself is described in 
the publication IBM OS Sort/Merge. In this 
publication, the system requirements when 
the Sort feature is used are discussed in 
"Machine Considerations." 

00 statements must be written in the 
execution-time job steps of the procedure 
to describe the data sets used by the sort 
program. 00 statements for data sets used 
during the sort process are described in 
the section "Sort OD Statements." 

Note: The Sort/Merge Checkpoint Restart 
feature is available to the programmer who 
uses the COBOL SORT statement through the 
use of the RERUN statement. 

SORT 00 STATEMENTS 

Three types of data sets can be defined 
for the sort program in the execution time 
job step: input, output, and work. In 
addition, data sets must be defined for the 
use of the system during the sorting 
operation. 

SORT INPUT DO STATEMENTS 

The input data set is associated with a 
ddname that appears as the ddname portion 
of the system-name in an ASSIGN clause in 
the COBOL source program. When the USING 
option is specified, the compiler will 
generate an input procedure that will open 
the data set, read the records, release the 
records and close the data set. 

SORT OUTPUT DO STATEMENTS 

The output data set is associated with a 
ddname that appears as the ddname portion 
of the system-name in an ASSIGN clause in 
the COBOL source program. When the GIVING 
option is specified, the compiler generates 
an output procedure that will open the data 
set, return the records, write the records, 
and close the data set. 

302 

SORT WORK DO STATEMENTS 

~ort program reguires at least three 
~s. The ddnam~a~ 
statement 1S in the form SORTWKnn, where nn 
is a decimal number. The ddnames for the 
required data sets must be SORTWK01, 
SORTWK02, and SORTWK03. Additional work 
data sets may be defined, but their ddnames 
must be consecutively numbered, beginning 
with 04. 

Intermediate data sets (i.e., SORTWKnn 
data sets) for a sort may be assigned to 
either magnetic tape or mass storage 
devices. All of the intermediate st~r3ge 
for one sort must be assigned to the same 
device type. These may not be on both 
7-track and 9-track tape units in the 3ame 
sort. Anyone of the following devi~es may 
be used for intermediate storage: 

IBM 2400-series Magnetic Tape unit 
(7-track) 

IBM 2400-series Magnetic Tape Unit 
(9-track) 

IBM 2311 Disk Storage Drive 
IBM 2301 Drum storage 
IBM 2305 Fixed Head Storage, Models 1 

and 21 
IBM 3330 Disk Storage1 

The publication !BM OS_Sor~~~g£g§ cont3ins 
detailed information about these devices. 

Since spanned records can be input to 
and output from the sorting operation. it 
is the user's responsibility to assign the 
sort work files to mass storage devices 
whose track sizes are larger than the 
logical record size of the records being 
sorted. An S-mode file whose logical 
record length is greater than its track 
size may be sorted by assigning the work 
files to a magnetic tape unit. 

If data sets not involved in the sorting 
operation are assigned to tape units, these 
tape units may be used as sort work files 
by using the UNIT=AFF parameter. For 
example, if PAYROLL is specified as the 

1The programmer should be sure that the 
sort program selected supports these new 
devices. 



ddname of the ASSIGN clause in a SELECT 
statement, the tape unit assigned to 
PAYROLL could be used as a sort work file 
by using the following DD statement: 

//PAYROLL DD UNIT=2400 •••• 
//SORTWK02 DD UNIT=AFF=PAYROLL ••• 

Input DD Statement 

The input data set must reside on a 
physical device, a magnetic tape unit, a 
mass storage device, or in the system input 
stream. The following example shows DD 
statement parameters that could be used to 
define a cataloged input data set. 

//INSORT 
// 

DD DSNAME=INPT, 
DISP=(OLD,DELETE) 

x 

These parameters cause the system to search 
the catalog for a data set named INPT 
(DSNAME parameter). When found, the data 
set is associated with the ddname INSORT 
and used by the sort program. The control 
proqram obtains the unit assignment and 
volume serial number from the catalog, and 
-dis-play-s---a- -me-un-t.-i~ message--to--t-he
operator. The DISP parameter indicates 
that the data set has already been created 
(OLD). It also indicates that the data set 
should be deleted (DELETE) after the 
current job step. 

output DD Statment 

The output DD statement must define all 
of the characteristics of the output data 
set. The following example shows DD 
statement parameters that could be used to 
characterize an output data set: 

//OUTSORT DD 
// 

DSNAME=OUTPT,UNIT=2400, 
DISP=(NEW,CATLG) 

The DISP parameter indicates that the data 
set is unknown to the operating system 
(NEW) and that it should be cataloged 
(CATLG) under the name OUTPT (DSNAME 
parameter). The UNIT parameter specifies 
that the data set is on a 2400-series tape 
unit. 

x 

SORTWKnn DD Statements 

SORTWKnn data sets may be contained on 
tape or mass storage volumes. When mass 
storage -space is assigned, only the primary 
aLlocation is used by the sort, anj it must 
be contiguous. 

Note that the SORTWKnn data sets: 

1. May not be on 7-track tape when the 
input data set is on 9-track tape. 

2. May be on 7-track tape when the 
output data set is on 9-track tape. 

3. Cannot use the data conversion feature 
if they are on 7-track tape. The 
TRTCH sUbparameter must reflect this. 

4. May be on 9-track tape when the input 
data set is on 7-track tape. 

SOgTWKnn E~~~le~: The following DD 
statement parameters 'could be used to 
define a tape intermediate storage data 
set: 

//SORTWK01 DD 
// 

UNIT=2400,LABEL=(,~L), 

-- -VOWME-=S-ER=DUlYk'l'i- .. 
x 

These parameters specify an unlabelej data 
set on a 2400-series tape unit. Since the 
DSNAME parameter is omitted, the system 
assigns a unique name to the data set. The 
omission of the DISP parameter causes the 
system to assume that the data set is new 
and that it should be deleted at the end of 
the current job step. The 2400-series tape 
units are explicitly of the 9-track format_ 

~Qg~~~~~ ExamEle~: The following DD 
statement parameters could be used to 
define a mass storage intermediate storage 
data set: 

//SORTWK01 DD 
// 

UNIT=SYSDA, X 
SPACE=(TRK, (200),.CONTIG) 

These parameters specify a mass storage 
data set with a standar1 label (LABEL 
parameter default value). The SPACE 
parameter specifies that the data set is to 
be allocated 200 contiguous tracks. The 
system assigns a unique name to the data 
set and deletes it at the end of the job 
step. 

Using the Sort Feature 303 



ADDITIONAL DD STATEMENTS 

The sort program requires two additional 
DD statements: 

//SYSOUT DD SYSOUT=A 

which defines the system output data set. 

//SORTLIB DD 
// 

DSNAME=SYS1.S0RTLIB, 
DISP=SHR 

which defines the library containing the 
SORT modules. 

x 

Note: At system generation time, 
theprogrammer can designate that SORT 
diaqnostic messages be printed either on 
the console or on the unit designated 
SYSOUT. If the system is generated to 
write SORT messages on SYSOUT, these 
messages may overprint any COBOL output 
assigned to SYSOUT. For example, if the 
programmer has selected SYSOUT on which to 
print a report in the output procedure 
associated with the execution of the COBOL 
SORT statement, any SORT messages will be 
interspersed within that report. If it is 
not possible to assign the SORT messages to 
the console, the programmer should assign 
his COBOL output to temporary files and 
print the reports at a later time. 

A single tape unit may be assigned to 
two sort data sets when the data sets are 
one of the following pairs: 

• The input data set and the first 
intermediate storage data set 
(SORTWK01). 

• The input data set and the output data 
set. 

The AFF subparameter of the UNIT 
parameter can be used to associate the 
input data set with either the SORTWK01 
data set or the output data set. The 
subparameter can appear in the DD statement 
for SORTWK01 or output. 

More than one SORT statement may be used 
in a single program or in two or more 
programs that are combined into a single 
load module. 

304 

The control cards in Figure 104 eQuId be 
used with the sample program that 
illustrates the Sort feature. A 
description of the Sort Feature can be 
found in the publication IBM OS Full 
Arr~~ic~n NatiQ~~l_~t~~~~~~=~Q~Q~~---

r-----------------------------------------, 
//SORTEST JOB NY838670165, XI 
// 'J.SMITH'. X 
// MSGLEVEL=l 
//SORTJS3 EXEC COBUCLG 
//COB.SYSIN DD * 

(COBOL source program) 

//GO.SORTWK01 DD 
// 
// 
//GO.SORTWK02 
// 
// 
//GO.SORTWK03 
// 
// 

DD 

DD 

DD 

UNIT=2311, 
SPACE=(TRK, (200), 
, CONTIG) 
UNIT=2311, 
SPACE=(TRK, (200), 
, CONTIG) 
UNIT=2311, 
SPACE=(TRK, (200), 
, CONTIG) 
UNIT=183, 

X 
X 

x 
x 

X 
X 

X //GO.OUTSORT 
// 
// 
//GO.SYSOUT 
//GO.SORTLIB 
// 

DD 
DD 

X LABEL= (, NL), 
VOLUME=SER=NONE 
SYSOUT=A 
DSNAME=SYS1.S0RTLIB, X 
DISP=SHR 

//GO.INFILE 
// 
// 

DD UNIT=182, 
LABEL= (, NL) , 
VOLUME=SER=DUMMY 

X 

XI 
I l _________________________________________ J 

Figure 104. Sort Feature Control Cards 

The minimum number of SORTWKnn data sets 
are used; the sort operation can be 
optimized by using additional work data 
sets (see the publication IBM System/360 
Q~erating System: sort/Mer~). 

Since repeated use of the Sort feature 
often involves the same execution time DD 
statements, the user may wish to catalog 
them (see "Using the Cataloged 
Procedures"). 

When using the COBOL RERUN feature, all 
SORT messages are written on the console. 



Communication between the Sort/Merge 
proqram and the COBOL program is maintained 
by the COBOL library subroutine ILBOSRTO. 
The programmer must designate via the 
appropriate SORTLIB DD statement the 
Sort/Merge program he wishes to use. 

If the INPUT PROCEDURE option of the 
SORT statement is specified, exit E15 of 
the Sort/Merge program is used. The return 
code indicating "insert records" is issued 
when a RELEASE statement is encountered, 
and the return code indicating "do not 
return" is issued when the end of the 
procedure is encountered. 

If the OUTPUT PROCEDURE option is 
specified, exit E35 of the Sort/Merge 
program is used. The return code 
indicating "delete records" is issued when 
a RETURN statement is encountered,.and the 
return code indicating "do not return" is 
issued when the end of the procedure is 
encountered. (For additional information, 
about the Sort/Merge program, see the 
publication IBM OS Sort/Mer~). 

compl·eticn ·CoGe-s 

The Sort/Merge program returns a 
completion code upon termination. This 
code may be interrogated by the COBOL 
proqram. The codes are: 

o 

16 

Successful completion of 
Sort/I'1erge 
Unsuccessful completion of 
Sort/Merge 

SUCCESSFUL COMPLETION: When a Sort/Merge 
application has been successfully executed, 
a completion code of zero is returned and 
the sort terminates. 

UNSUCCESSFUL COMPLETION: If the sort, 
during execution, encounters an error that 
will not allow it to complete successfully, 
it returns a completion code of 16 and 
terminates. (Possible errors include an 
out-of-sequence condition or an 
input/output error that cannot be 
corrected.) The publication IBM O~ 
Sort£Merge contains a detailed description 
of the conditions under which this 
termination will occur. 

The returned completion code is stored 
in a special register called SORT-RETURN by 
the COBOL library subroutine; an 
unsuccessful termination of the sort may 

then be tested for and appropriate action 
specified. Note that the contents of 
SORT-RETURN will change with the execution 
of a SORT statement. The followin3 is an 
example of the use of SORT-RETURN with the 
sort feature: 

SORT SALES-RECORDS ON ASCENDING KEY 
CUSTOMER-NUMBER, DESCENDING KEY DATE, 
USING FN-1, GIVING FN-2. 

IF SORT-RETURN NOT EQUAL TO ZERO, 
DISPLAY 'SORT UNSUCCESSFUL- UPON 
CONSOLE~ STOP RUN. 

If no references to SORT-RETURN are made in 
a program, an unsuccessful sort will 
generate the following message: 

IKF888I- UNSUCCESSFUL SORT FOR SD 
SORT-FILE DDNAME 

See the publication IBM OS Full American 
National Standard COBOL Version 4 Messag~~t 
for a description of action to be taken. 

Records defined under a COBOL SD are 
as-si-g-ne-d----a-g.LL----(~----Loc-atO_r------f-_O_r..- Link-~--

Section), rather than a BL (Base Locator) 
as is done with other records. Location of 
a given data item in an object-time dump 
when the record in which it is contained 
references a BLL can be determined as 
follows: 

1. From the compilation listing, 
determine: 

a. The displacement of the item (see 
Data Division Map). 

b. The relative address of the BLL 
CELLS (see the Memory Map Table). 

c. The BLL number. 

2. From the dump, determine the 
relocation factor (USE/EP). 

3. Add the relative address of the BLL 
CELLS to the relocation factor to 
obtain the absolute BLL CELLS address 
in the dump. 

4. Each BLL is 4 bytes long; they are 
located in ascending sequence. 
beginning in the dump at the address 
computed in Step 3 BLL=1 is the first 
4 bytes, BLL=2 is the seconJ 4 bytes, 
etc. Find the appropriate 4 bytes. 

Using the Sort Feature 305 



5. The 4 bytes obtained in Step 4 contain 
the absolute base address of the 
desired record. Add the item's 
displacement to it to obtain the 
absolute address of the leftmost byte 
of the field in the dump. 

LOCATING LAST RECORD RELEASED TO SORT BY AN 
INPUT PROCEDURE 

For debugging purposes, it is sometimes 
useful to determine the last input record 
released to the Sort program. The 
following procedure should be used: 

1. From the Data Division map, determine 
the BLL number of the SORT file being 
processed at the time of program 
termination. Assume it is BLLn. 

2. From the Task Global Table map, 
determine the location of the BLL 
cells in the COBOL object program. 

3. The ~th BLL in the core dump will 
point to the last record released to 
SORT. 

Note: This BLL is initialized when control 
is first transferred to the input 
procedure. Thus, if the program terminates 
before control ever goes to the input 
procedure, the BLL will not be initialized. 

SORT/MERGE CHECKPOINT/RESTART 

The CHECKPOINT/RESTART feature is 
available to the programmer using the COBOL 
SORT statement. In order to initiate a 
checkpoint, the programmer uses DD 
statements and the RERUN clause. The DD 
statement for use in taking a checkpoint is 
discussed in nUsing the Checkpoint/Restart 
Feature." 

The RERUN clause is used to indicate 
that checkpoints are written, at logical 
intervals determined by the sort program, 
during the execution of all SORT statements 
in the program. This RERUN clause is fully 
described in the publication !BM_Q~_Eull 
Am~~!£~g~~t!onal_~t~nd~~d COBOL. 

EFFICIENT PROGRAM USE 

The information you give the Sort/Merge 
program about the application it is to 
perform helps the sort and merge phases to 
produce a fast, efficient sort or merge. 

306 

When you do not supply information such as 
data set size and record format, toe 
program must make assumptions, which, if 
incorrect, lead to ineffiency. 

DATA SET SIZE 

The most important information one can 
give is an accurate data set size using the 
SORT-FILE-SIZE special register. If the 
exact number of records in the input data 
set is known, that number should be used as 
the value. If the exact number is not 
known, an estimate should be made. 

When the Sort/Merge program has accurate 
information about data set size, it can 
make the most efficient use of botn main 
storage and intermediate storage. Unless 
the Sort/Merge Program Product (SM1) is 
installed, the SORT-FILE-SIZE special 
register has no effect when the sort w8rk 
data sets are on disk. When SM1 is used, 
accurate specification of SORT-FILE-SIZE is 
the only way the S~1 performance benefits 
are reached. 

MAIN STORAGE REQUIREMENTS 

If the maximum amount of main storage to 
be used by the Sort/Merge program was not 
specified at system generation time for SM 
(the OS Sort/Merge Program -- Program No. 
360S-SM-023) or at installation time for 
SM1 (the Program Product Sort/Merge -
Program No. 5134-SM1), the program assumes 
a maximum of 15,500 bytes. The sort 
program requests 12,000 bytes leaving 3500 
bytes for system functions. Performance 
usually improves as the program is given 
more main storage. Approximately 44K bytes 
of main storage are needed for efficient 
execution of the sort/merge program, and 
performance increases as more main storage 
is made available. 

If the amount of main storage was 
specified at system generation time, it is 
the programmer's responsibility to ensure 
that the Sort/Merge program has at least 
that much core storage available in 
addition to the space needed for Data 
Management and the COBOL program. If this 
amount of core storage is not available, 
the program will terminate abnormally. 

The programmer may alter, dynamically 
within the COBOL program, the core storage 
default values for the Sort/Merge program. 
The SORT-CORE-SIZE special register nay be 



used to communicate changes to the 
Sort-Merge program. In general, a positive 
value placed in SORT-CORE-SIZE denotes the 
amount of storage the programmer is 
allocating for use by the Sort/Merge 
program. For example, the statement "MOVE 
30000 TO SORT-CORE-SIZE" means that 30000 
bytes of storage are available to the 
Sort/Merge program. 

Special considerations apply when S~l is 
used. If the program product is installed 
with the CORE=MAX option, SMl allocates all 
available core storage in a region for its 
own use. If an input procedure then 
attempts to open a file, an 80A abnormal 
termination may result if the necessary 
data management modules have not already 
been loaded, or are not resident in the 
link pack area (LPA), since no more space 
is available. Accordingly, if 30000 is 
moved to SORT-CORE-SIZE, COBOL communicates 
to SMl that 30000 bytes of storage are 
available to it. There are, in addition, 
two other uses for SORT-CaRE-SIZE. 

If a negativt value is placed in the 
special register prior to execution of the 
sort, SMl uses the default CORE option 
specified at installation, but sets aside 
that absolute value before obtainina the 
CORE SIZE installed. Also, if ALL '9' (or 
+39399-9) -i-smoved---to SO-RT"""CORE-SI'lE prior 
to a sort operation, SMl executes with the 
CORE=MAX option, regardless of the 
installed value, while reserving 6K bytes 
of main storage for use by the data 
management routines. (For additional 
information about the Sort Feature options, 
see the Program Product publication I~~_OS 
~ort{~~~g~_~~Qg~~~~~~~ Guid~. Order No. 
SC33-4007.) 

Changing the main storage allocation can 
be useful when a sort-merge application is 
to be run in a multiprogramming 
environment. By reducing the amount of 
main storage allocated to sort, so that 
other programs can have the storage they 
need to operate simultaneously, the 
performance of sort is impaired. However, 
if this allocation is increased, so that a 
larqe sort application runs more 
efficiently. the performance of other jobs 
sharing the multiprogramming environment is 
impaired, if not made altogether 
imposs ible. 

The messages generated by the Sort 
Feature are listed in the publication [BM 
OS SQrt/Merge and IBM OS Messages_~~g 
~ompletion Codes. The identifying 
characters in a sort message are IER. 

When the Sort/Merge program is 
installed, the user can elect to have 
messages sent to the printer, in which case. 
a DD card with a ddname of SYSOUT must be 
included in the job step. If SMl is used, 
the programmer can dynamically alter the 
ddname of the file on which S~l is to write 
its messages. If SMl has been installed 
with provision for routing its messages to 
the printer, then the programmer can place 
in the SORT-MESSAGE special register the 
ddname that SM1 is to substitute for 
SYSOUT, for message routing. For example, 
when the statement MOVE "SORTDDNM" TO 
SORT-MESSAGE is executed before an 8M1 sort 
is initiated, then the SM1 sort writes its 
printer messages to the data set SORIDDNM 
rather than to SYSOUT. If SORT-~ESSAG£ is 
not referred to in the program, SYSOUT is 
the default value. 

One technique for specifying the sort 
print file ddname would be to include 
source language and jOb control language 
statements as follows: 

01 SORT-PARAMETERS. 
05 PARAMETER-COUNT PIC 9 \ 4) USAGE CO:-O~P. 

05 SORT-DDNM1L PIC X(8). 

• -Immetliately pr-ecedihg-th~_~~~!: 
Q2.~~ation 

IF PA}{ANETER-COUNT IS NOT' EQuAL TO 0 
MOVE SORT-DDNAME TO SORI-MESSASE. 

• On the EXEC card 

//GOSTEP EXEC PGM=program-name, 
PARM='SO£<.TDDNM' 

~2~~: This technique of assigning a unique 
value to SORT-MESSAGE without modifying or 
recompiling the program can also be appliej 
to the special registers SORT-CORE-SIZE, 
SORT-MODE-SIZE, and SORT-FILE-SIZE. 

If the input records used are of 
variable length, the record length tnat 
occurs most frequently in the input data 
set (modal length) should be put into the 
special register SORT-MODE-SIZE. This 
value is used to help define a data set 
based on a particular length. If a value 
is not specified, the SORT program assumes 
it is equal to the average of the maximum 
and minimum record lengths in the input 
data set. If, for example. the data set 
contains mostly small records and just a 
few long records, the SORT program would 
assume a high modal length and would 

Using the Sort Feature 307 



allocate a larger record storage area than 
necessary. Conversely, if the data set 
contains just a few short records and many 
long records, the SORT program would assume 
a low modal length and might not allocate a 
large enough record storage area to sort 
data. For a complete discussion~ see the 
publication IBM_Q~_~Qrt/Mer~~EQgE~~. 

SORTING VARIABLE-LENGTH RECORDS 

Figure 105 illustrates one way to sort 
variable-length records described by the 
OCCURS clause with the DEPENDING ON option. 
If the FD's (file-name description) and the 
SD'$ (sort-file-name description) are 
defined as in this figure, where the record 
descriptions of the FD's and the SO 
correspond, possibilities for error arise. 
It is suggested, therefore, that the user 
consider the following: 

1. Specification of the statement 

SORT SORT-FILE USING INPUT-FILE ••• 

would probably lead to incorrect 
results. This statement implies a 
READ ••• INTO statement; that 
is, after INPUT-FILE has been read, 
the record is moved to AAA. However, 
because the user must set the length 
of this receiving field prior to 
moving A to AAA but cannot do so, the 
compiler may use an incorrect length 
that results in abnormal termination. 
Instead, the user should substitute an 
input procedure for the USING option, 
as in the section of code labeled 
PARA2B in the example. 

2. Similarly, the statement 

308 

SORT SORT-FILE... GIVING OUTPUT-FILE 

would probably yield incorrect 
results. Before OUTPUT-FILE is 
written out, the record is moved to 

AA. The correct length of this 
receiving field must be set before the 
move, but use of the GIVING option 
precludes this. To avoid error, the 
user should substitute an output 
procedure for the GIVING option, as in 
section PARA3B of the example. 

TERMINATING A SORT OPERATION 

The SORT-RETURN special register can 
also be used to terminate an SMl s~rt 
operation. If the programmer places the 
value 16 in this special register ~t ~ny 
point during an input or output procedure, 
the sort is terminated immediately after 
execution of the next RELEASE or RETURN 
statement. 

Note: Once a value has been placed in a 
sort special register and the SORT 
statement has executed, this value is used 
(even if the special register is modified 
during the sort operation) until another 
sort is initiated. The one exception to 
this rule is in the use of the special 
register SORT-RETURN, which is set t~ zero 
at the beginning of each sort. 

For sorting ASCII files, the normal 
EBCDIC collating sequence is provided 
unless the user specifies otherwise on a 
per sort basis. 

To specify a sort using the ASCII 
collating sequence, the programmer must 
include the "C" organization entry in the 
ASSIGN clause for the file-name associated 
with the file to be sorted. No buffer 
offset may be given with the sort feature. 

Note: The SMl program is required for 
sorting a file using the ASCII collating 
sequence. 



Part 1 Part 2 
r-----------------------------------------, r-----------------------------------------l 
IDENTIFICATION DIVISION. 
PROGRAM-ID. VLSORT. 
ENVIRONMENT DIVISION. 
INPUT-OUTPUT SECTION. 
FILE-CONTROL. 

SELECT 
SELECT •••• 
SELECT •••• 

DATA DIVISION. 
FILE SECTION. 
FD INPUT-FILE. 

LABEL RECORDS ARE 
DATA RECORD IS A. 

01 A. 

OMITTED 

02 
02 

B PIC 99. 
C OCCURS 1 
DEPENDING 
03 D PIC 
03 EPIC 

TO 10 TIMES 
ON B. 
99. 
XX. 

FD OUTPUT-FILE 
LABEL RECORDS ARE OMITTED 
DATA RECORD IS AA. 

01 AA. 
02 BB PIC 99. 
02 CC OCCURS 1 TO 10 TIMES 

DEPENDING ON BB~ 

03 DD PIC 99. 
03 EE PIC XX. 

SD SORT-FILE 
I DATA RECORD IS AAA. 

_J_Ol, _~ ... ____ _ 

PROCEDURE DIVISION. 
PARl SECTION. 

SORT SORT-FILE ASCENDING KEY BBB. 
INPUT PROCEDURE PAR2 
OUTPUT PROCEDURE PAR3. 

STOP RUN. 
PAR2 SECTION .. 
PAR2A. 

OPEN INPUT INPUT-FILE. 
PAR2B. 

READ INPUT-FILE AT END GO TO PAR2e. 
MOVE B TO BBB. 
RELEASE AAA FROM A.1 
GO TO PAR2B. 

PAR2C. 
CLOSE INPUT-FILE. 

PAR2-EXIT. 
EXIT. 

PAR3 SECTION. 
PAR3A. 

OPEN OUTPUT OUTPUT-FILE. 
PAR3B. 

RETURN SORT-FILE AT END GO TO PAR3C.2 
MOVE BBB TO BB. 
WRITE AA FROM AAA. 
GO TO PAR3B. 

PAR3C. 
CLOSE OUTPUT-FILE. 

PAR3-EXIT. 
EXIT. 

I 
I 02 BBB PIC 99. ---r 
I 02 CCC OCCURS 1 TO 10 TIMES I 
t DEPENDING ON BBB. I 
I 03 DDD PIC 99. I 
I 03 EEE PIC XX. I L ________________________________________ _ L _________________________________________ J 

1When using a sort input procedure, the RELEASE ••• 
and then a RELEASE, should always be preceded by a 
receiving field (AAA, in this example). 

2When using a sort output procedure, the RETURN ••• 
the RETURN and then a MOVE, should never be used. 
the correct length of the receiving-field. 

FROM clause, which implies a MOVE 
MOVE that sets the length of the 

INTO clause, which implies 
There is no way for the user to set 

Figure 105. Sorting Variable-Length Records Whose File-name Description and 
Sort-File-name Description Correspond 

Using the Sort Feature 309 



Segmentation provides a means of 
accomplishing object time overlay as a 
result of specifications made at the SOurce 
lanquage level. The programmer may divide 
the Procedure Division of a source program 
into sections. Through the use of a system 
of priority numbers, certain sections are 
designated as permanently resident in core 
and other sections as overlayable fixed 
segments and/or independent segments. 
Thus, a large program can be executed in a 
defined area of core storage by limiting 
the number of segments in the program that 
are permanently resident in core storage. 

~ote: The segmentation feature is not 
available when the loader is used. 

Suppose that because of core storage 
limitations the program SAVECORE is 
segmented as shown in Figure 106. Only 
those segments having priority numbers less 
than the segment limit of 15 are designated 
as permanently resident. 

Assuming that 12K is available for the 
proqram SAVECORE, Figure 107 shows that 
manner in which core storage would be 
utilized. Sections 3 and 6, and sections 5 
and 7 are considered logical units since 
they have the same priority numbers. 
Sections 3 and 6 can be in core together, 
but section 7 cannot be there at the same 
time. Similarly, sections 5 and 7 can be 
in core together, but sectio~ 3 cannot be 
there at the same time. 

sections in the permanent segment 
(SECTION-l, SECTION-2, and SECTION-4) are 
those that must be available for reference 
at all times, or those to which reference 
is made frequently. They are distinguished 
here by the fact that they have been 
assigned priority numbers less than the 
segment limit. 

Sections in the overlayable fixed 
segment are sections that are less 
frequently used. These sections are always 
made available in the state in which they 
were last used. They are distinguishable 
here by the fact that they have been 
pssigned priority numbers greater than the 
segment limit, but less than 50. 

Sections in the independent segment can 
overlay, and be overlaid by, either an 
overlayable fixed segwent or another 
independent segment. Independent segments 

310 

are those assigned priority numbers gre3ter 
than 49 and less than 100. These 
independent segments are returned to their 
initial state when they art Drought into 
core storage. 

r-----------------------------------------l 
IDENTIFICATION DIVISION. 

PROGRAM-ID. SAVECORE. 

ENVIRONMENT DIVISION. 

OBJECT-COMPUTER. IBM-360-h50 
SEGMENT-LIMIT IS 15. 

DATA DIVISION. 

PROCEDURE DIVISION. 
SECTION-l SECTION 8. 

SECTION-2 SECTION 8. 

SECTION-3 SECTION 16. 

SECTION-4 SECTION 8. 

SECTION-5 SECTION 50. 

SECTION-6 SECTION 16. 

SECTION-7 SECTION 50. 

l--_______________________________________ J 

Figure 106. Segmentation of Progr~m 
SAVECORE 



r---------------------------------------------------------------------------------------, 

rd~~~=b~ff~~~~-;l~~~l-~~~l~~---I} cO~~~~~a~~~~~;a1~on 
I etc. (lk) I core storage) 
~------------------------------~ 

Fixed 
portion 

(7K) 

I SECTION-1 (2K) I 
~------------------------------~ 
I SECTION-2 (2K) I permanent segment 

(segment limit < 15) ~------------------------------~ 
Total 
Available 
Core 
storage 

I SECTION-4 (2K) I 

(12K) 
Core 

storage 
Available 

for 
Overlay 

(5K) 

1:--;~~;~~~=3--~3;;-------------:--;~~;~~~=5--~;;~-----~ 

I I I 
I I I 
I I I 
I I I 
I I I 
I I I 
I I I 
I I I 
I SECTION-6 (2K) I SECTION-7 (lK) I ______________________________ _ ___________________________ J 

---- ~ --- ~ -
SECTION-3 and SECTION-6 
are overlayable fixed 
segments 

SECTION-5 and SECIION-7 
are injependent segments 
(49 < segment limit < 100) 

(14 < segment limit < 50) L _______________________________________________________________________________________ J 

Figure 107. storage Layout for SAVECORE 

USING THE PERFORM STATEMENT IN A SEGMENTED 
PROGRAM 

When the PERFORM statement is used in a 
segmented program, the prograwmer should be 
aware of the following: 

• A PERFORM statement that appears in a 
section whose priority-number is less 
than the segment limit can have within 
its range only (a) sections with 
priority-numbers less than 50, and (b) 
sections wholly contained in a single 
segment whose priority-number is 
greater than 49. 

Note: As an extension to American 
National Standard COBOL, the OS Full 
American National Standard COBOL 
Compiler allows sections with any 
priority-number to fall within the 
range of a PERFORM statement. 

• A PERFORM statement that appears in a 
section whose priority-number is equal 
to or greater than the segment limit 
can have within its range only (a) 
sections with the same priority-number 
as the section containing the PERFORM 

statement, and (b) sections with 
priority-numbers that are less than the 
segment limit. 

Note: As an extension to American 
National Standard COBOL, the OS Full 
American National Standard COBOL 
Compiler allows sections with any 
priority-nurr~er to fall within the 
range of a PERFORM statement. 

• When a procedure-name in a segnent with 
a priority-number less than the segment 
limit referred to by a PERFO~M 
statement in a segment with a 
priority-number greater than the 
segment limit, the independent segment 
will be reinitialized upon exit from 
the PERFORM. 

OPERATION 

Execution of the object program begins 
in the root segment; i.e., the first 
segment in the permanent segment. If the 
program contains no permanent segments, or 
if the first section to be executej in the 

Using the segmentation Feature 311 



program is not part of the root segment, 
the compiler generates a dummy segment that 
will initiate the execution of the first 
overlayable or independent segment. All 
global tables, literals, and data areas are 
part of the root segment. Called 
object-time subroutines are also part of 
the root segment. Called subprograms are 
loaded with the fixed portion of the main 
program and assigned a priority of zero. 
Otherwise, the program executes just as if 
it were not segmented. 

For a discussion on determining the 
priority of the last segment loaded into 
the transient area, see the section 
"Debugging a Segmented Program" in the 
chapter "Program Checkout". 

COMPILER OUTPUT 

The output produced by the compiler is 
an overlay structure consisting of multiple 

312 

object modules preceded by linkage EJitar 
control statements. Segments whose 
priority is greater than the segment limit 
(or 49, if no SEGMENT-LIMIT clause is 
specified) consist of executable 
instructions only. The PMAP output is 
given in this sequence: all sections with 
priorities greater than the segment limit 
are listed first in ascending order by 
priority number, followed by the root 
segment. 

Figure 108 shows the output of a sample 
segmentation program. 

JOB CONTROL CONSIDERATIONS 

In order to execute a segmented program. 
the programmer must specify OVLY in the 
parameter field of the linkage editor EXEC 
statement. Note that when using the 
IBM-supplied cataloged procedures, the user 
must respecify the LIST and LET parameters. 



2 

00001 
00002 
00003 
00004 
00005 
00006 
00007 
00008 
00009 
00010 
00011 
00012 
00013 
00014 
00015 
00016 
00017 
00018 
00019 
00020 
00021 
00022 
00023 
00024 
00025 
00020 
00027 
00028 
00029 
00030 
00031 
00032 
00033 
00034 
0003') 
00036 
00037 
00038 
00039 
00040 
00041 
QO __ Q42 ___ _ 
00043 
00044 
00045 
00046 
00047 
00048 
00049 
00050 
00051 
00052 
00053 
00054 
00055 
00056 
000~7 

000060 
000070 
000080 
000090 
000100 
000110 
000120 
000130 
000140 
000150 
000160 
000170 
000180 
000190 
000200 
000210 
000220 
000230 
000240 
000250 
000260 
000270 
000280 
000290 
000300 
000310 
000320 
000330 
000340 
000350 
000380 
000390 
000400 
000410 
000420 
000430 
000440 
000450 
000460 
000470 
000480 

_ _0_0.a~ 9_0_ 
000500 
000510 
000520 
000530 
000540 
000550 
000560 
000570 
000580 
000590 
000600 
000610 
000620 
000630 
000640 

Figure 108. 

IDENTIFICATION DIVISION. 
PROGRAM-ID. SEG-SAMPLE. 
AUTHOR. PROGRAMMER-NAME. 
REMARKS. 

SPECIAL OPERATOR INSTRUCTIONS - NONE. 
INPUT REQUIRED - NONE. 
PURPOSE 

TO CREATE A SINGLE FILE ON DISK USING 
QS~JDTFSD, AND READ IT BACK. 
PROGRAM USES SEGMENTATION 
WITH FILE PROCESSING SPREAD OVER 
THE PERMANENT, OVERLAY ABLE FIXED, 
AND INDEPENDENT SEGMENTS. 

EXPECTED RESULTS 
START TEST SEG-SAMPLE 
(EACd SEGMENT DISPLAYS ITS SEGMENT Nut-1BER 
AND FUNCTION)_ 
END TEST SEG-SAMPLE SUCCESSFUL RUN 
SECTIONS WHILE WRITING APPEAR 
IN ORDER 80, 20, 30, 60, 40. 
SECTIONS WHILE ~EADING APPEAR 
IN ORDER 80, 60, 30, 40, 20. 

ERROR INDICATIONS 
**ERROR DISK SEQ 1/0** 
**ERROR END OF EXTENT WRITING aFTER (RECORD)** 
**ERROR UNEXPECTED EOF READING AFT~R 

RECORD (RECNO)** 
**ERROR EOF NOT FOUND** 
**RECOKD IS (RECNO) 

SHOULD BE (RECNO)** 
PROGRAM CONTAINS PERFORMS FROM BASE SECTION 
TO PER~~NENT, OVERLAYABLE FIXED, AND INDEPENDENT 
SEGMENTS. 
ALSO CONTAINS PERFORMS FROM INDEPENDENT TO PERMANENT 
AND FR011 OVERLAYABLE FIX~D TO PER~1ANENT SEGMENTS. 
ALSO CONTAINS PERFORMS ENTIRELY WITHIN A SEGMENT IN 
IN EACH CATEGORY. 

ENVIRONMENT DIVISION. 
CONFIGURATION SECTION. 
SOURCE-COMPUTER. IBM-360-40. 
OBJECT-COMPUTER. IBM-360-40 

MEM.QRLsr~_E_6~OQO __ CHARAC'l'J;;~S 
SEGMENT-LIMIT IS 25. 

INPUT-OUTPUT SECTION. 
FILE-CONTROL. 

SELECT FILE-1 ASSIGN TO 
DATA DIVISION. 
FILE SECTION. 
FO FILE-1 

RECORDING MODE IS F 
LABEL RECORDS Ol-lIT'TED 
DATA RECORD IS RECFD1. 

01 RECFD1 ?ICTURE X(83). 
WORKING-STORAGE SECTION. 
77 ERRORSW PIC A VALUE SDACE. 
77 ERCTFL PIC 599 VALUE ZERO. 

D~-2311-S-DKSQ01A. 

77 MSGHDR PIC X(22) VALUE '**ERROR DISK SEQ 1/0**'. 

sample Segmentation Program (Part 1 of 14) 

00154790 

00154820 
00154830 
00154840 
00154850 
00154860 
00154870 
00154880 
00154890 
00154900 
00154910 
00154920 

00154940 
00154950 

00154970 
00154980 
00154990 
00155000 
00155010 
001550"20 
00155030 
00155040 
00155050 
00155060 
00155070 
00155080 
00155110 
00155120 
00155130 
00155140 
00155150 
00155160 
00155170 
00155180 
00155190 
00155200 
00155210 
00155220 
-b-Ciiss-23-6 
00155240 
00155250 
00155260 
00155270 
00155280 
00155290 
00155300 

00155310 
00155320 
00155330 
00155340 
00155350 
00155360 

Using the Segmentatio~ ~e~cure 313 



3 

OOO::J8 000650 
00059 000660 
00060 000670 
00061 000680 
00062 000090 
00003 000700 
00064 000710 
00065 000720 
00066 000730 
00007 000740 
00068 000750 
00069 000760 
00070 000770 
00071 000780 
00072 000790 
00073 000800 
00074 000810 
00075 000820 
0()076 000830 
00077 000840 
00078 000850 
00079 000860 
00080 000870 
00081 000880 
00082 000890 
00083 000900 
00084 000910 
00085 000920 
00086 000930 
00087 000940 
00088 000950 
00089 000960 
00090 000970 
00091 000980 
00092 000990 
00093 001000 
00094 001010 
00095 001020 
00096 001030 
00097 001040 
00098 001050 
00099 001060 
00100 001070 
00101 001080 
00102 001090 
00103 001100 
00104 001110 
00105 001120 
00106 001130 
00107 001140 
00108 001150 
00109 001160 
00110 001170 
00111 001180 
00112 001190 
00113 001200 
00114 001210 

Figure 108. 

314 

77 MSGEOX PIC X,36) 
VALUE '**ERROR £ND OF EXTENT WRITING AFTER '. 

77 MSGEOF PIC X137' 
VALUE '**ERROR UNEXP.c;CTED EOF READING AFTER '. 

77 MSGNEF PIC X(23) VALUE' HERROR EOF NOT FOUND**'. 
01 REC1. 

02 REC-ID. 
03 REC-HD PIC X(4) VALUE 'RECD'. 
03 REC-NO PIC 89(4) VALUE ZERO. 
02 FILLER PIC A(7S) VALUE SPACES. 
66 RECID RENAMES REC-ID. 

01 VER-REC. 
02 VER-ID. 
03 VER-HD PIC X(4) VALUE 'RECD'. 
03 VER-NO PIC S9(4) VALUE ZERO. 

PROCEDURE DIVISION. 
BASE-SECTION SECTION O. 

DISPLAY 'START TEST SEG-SM~PLE'. 
OPEN OUTPUT FILE-l. 
PERFORM W-80-0 THRU W-80-9. 
PERFORM W-30-0 THRU W-30-9. 
PERFORM W-oO-O THRU W-60-9. 
PERFORM W-40-0 THRU W-40-9. 

BASE-50. 
CLOSE FILE-l. 
OPEN INPUT FILE-l. 
PERFORM R-80-0 THRU R-80-9. 
GO TO R-60-0. 

BASE-60. 
PERFORM R-40-0 THRU R-40-9. 
fu!:AD FILE-l IN1'O RECl AT END GO TO BASE-70. 
DISPLAY HSGHUR DISPLAY MSGNEF 
MOVE 'E' TO ERRORSW. 

BASE-70. 
CLOSE FILE-l. 

BASE-90. 
IF ERRORSW IS EQUAL TO 'E' 
DISPLAY 'END TEST SEG-SA~2LE UNSUCCESSFUL RUN' ELSE 
DISPLAY 'END TEST SEG-SAMPLE SUCCESSFUL RUN'. 
STOP RUN. 

SE:TION-20 SECTION 20. 
W-20-0. 

DISPLAY 'SECTION 20 WRITE'. 
NOTE ENTERED BY PERFORM FROM W-80-0. 
PERFOR~l W- 21-0 THRU W-21-9 5 TIMES. 

W-20-9. 
EXIT. 

W-21-0. 
WRITE RECFD1 FROt-l RE;C1 INVALID KEY 
DISPLAY MSGHDR 
DISPLAY MSGEOX RECIO 
MOVE 'E' TO ERRORSW 
GO TO BASE-50. 
ADD 0001 TO REC-NO. 

W-21-9. 
EXIT. 

R-20-0. 

Sample Segmentation Program (Part 2 of 14) 

00155370 
0015~380 

00155390 
00155400 
00155410 
00155420 
00155430 
00155440 
00155450 
00155460 
00155470 
00155480 
00155490 
00155500 
00155510 
00155520 
00155530 

00155550 
00155560 
00155570 
00155580 
00155590 
00155600 
00155610 
00155620 
00155630 
00155640 
00155650 
00155660 
00155670 
00155680 
00155690 
00155700 
00155710 
00155720 
00155730 

00155760 
00155770 
00155780 
00155790 
00155800 
00155810 
00155820 
00155830 
001558110 
00155850 
00155860 
00155870 
00155880 
00155890 
00155900 
00155910 
00155920 
00155930 



4 

00115 
00116 
00117 
00118 
00119 
00120 
00121 
00122 
00123 
00124 
00125 
00126 
00127 
00128 
00129 
00130 
00131 
00132 
00133 
00134 
00135 
00136 
00137 
00138 
00139 
00140 
00141 
00142 
00143 
00144 
00145 
00146 
00147 
00148 
00149 
00150 
00151 
00152 
00153 
00154 
00155 
00156 
-60157 
00153 
00159 
00160 
00161 
00162 
00163 
00164 
00165 
00166 
00167 
00168 
00169 
00170 
00171 

001220 
001230 
001240 
001250 
001260 
001270 
001280 
001290 
001300 
001310 
001320 
001330 
001340 
001350 
001360 
001370 
001380 
001390 
001400 
001410 
001420 
001430 
001440 
001450 
001460 
001470 
001480 
001490 
001500 
001510 
001520 
001530 
001540 
001550 
001560 
001570 
001580 
001590 
001600 
001610 
001620 
001630 
001640 
001650 
001660 
001670 
001680 
001690 
001700 
001710 
001720 
001730 
001740 
001750 
001760 
001770 
001780 

Figure 108. 

DISPLAY 'SECTION 20 REA~'. 
NOTE ENTERED BY PERFORM FrtOM BASE-40. 
PERFORM R-21-0 THRU R-21-9 :) TIfi:ES. 

R-20-9. 
EXIT. 

R-21-0. 
READ FILE-1 INTO REC1 AT END 
DISPLAY MSGHDR DISPLAY MSGEOF 
ADD 4 TO ERCTFL ~OVE 'E' TO ERrtORSW 
GO TO R-21-9. 
IF REC-ID IS NOT EQUAL TO VER-ID 
DISPLAY t~GhDR DISPLAY 'EXPECTED' VER-ID ' FOJND I REC-ID 
ADD 1 ~O ERCTFL MOVE 'E' TO ERRORSW 
MOVE REC-ID TO VER-ID. 
ADD 1 TO VER-NO. 

R-21-9. 
IF ERCTFL IS GREATER THAN 
GO TO BASE-70. 

SECTION-30 SECTION 30. 
W-30-0. 

DISPLAY 'SECTION 30 WRITE'. 
NOTE ENTERED BY PERFORM FROM BASE-SEC:TION. 
PERFORM W-31-0 THRU W-31-9 11 TIMES. 

W-30-9. 
EXIT. 

W-31-0. 
WRITE RECFD1 FROM REC1 INVALID KEY 
DISPLAY MSGHDR 
DISPLAY MSGEOX RECID 
MOVE 'E' TO ERRORSW 
GO TO BASE-50. 
ADD 0001 TO REC-NO. 

W-31-9. 
EXIT. 

R-30-0. 
DISPLAY 'SECTION 30 READ'. 
NOTE ENTERED BY GO TO FRO!'<l R-60-0. 
PERFORM R-31-0 THRU R-31-9 11 TDmS. 
GO TO BASE-60. 

R-31-0. 
READ FILE-l INTO REC1 AT END 
DISPLAY MSGHDR NSPLAYMSG.E.OF 
iillO---4 -TO ERCTFL MovE'- E' --To ERROHSW 
GO TO R-31-9. 
IF REC-ID IS NOT EQUAL TO VER-ID 
DISPLAY MSGHDR DISPLAY 'EXPECTED • VER-ID ' FOU~D ' KEC-ID 
ADD 1 TO ERCTFL MOVE 'E' TO ERRORSW 
MOVE REC-ID TO VER-I~. 
ADD 1 TO VER-NO. 

R-31-9. 
IF ERCTFL IS GREATER THAN 3 
GO TO B]l.SE-70. 

SECTION-40 SECTION 40. 
W-40-0. 

DISPLAY 'SECTION 40 WRITE'. 
NOTE ENTERED BY PERFORM FROM BASE-SECTION. 
PERFORM W-41-0 THRU W-41-9 17 TI~ES. 

Sample segmentation Program (Part 3 of 14) 

00155940 
001S5950 
0015S960 
00155970 
001:'5980 
00155990 
00156000 
00156010 
00156020 
00156030 
00156040 
00156050 
001~6060 

00156070 
00150080 
00156090 
00156100 
00156110 
00156120 
00156130 
00156140 
00lS6150 
00156160 
00156170 
00156180 
00156190 
00156200 
00156210 
00156220 
001')6230 
0015ti240 
0015'l250 
00156260 
00150270 
00150280 
00156290 
00156300 
00156310 
00156320 
00156330 
00156340 
0.01563-30-
00150360 
00156370 
00156380 
00156390 
00156400 
00156410 
00156420 
00156430 
00156440 
00156450 
00156460 
00156470 
00156480 
001:)0490 
00156::i00 

USing the Segmen~ation Feature 315 



S 

00172 001790 
00173 001800 
00174 001810 
00175 001820 
00176 001830 
00177 001840 
00178 001850 
nn .. ...,n 001860 VV.1.I:;1 

00180 001870 
00181 001880 
00182 001890 
00183 001900 
00184 001910 
00185 001920 
00186 001930 
00187 001940 
00188 001950 
00189 001960 
00190 001970 
00191 001980 
00192 001990 
00193 002000 
00194 002010 
00195 002020 
00196 002030 
00197 002040 
00198 002050 
001"99 002060 
00200 002070 
00201 002080 
00202 002090 
00203 002100 
00204 002110 
00205 002120 
00206 002130 
00207 002140 
00208 002150 
00209 002160 
00210 002170 
00211 002180 
00212 002190 
00213 002200 
00214 002210 
00215 002220 
00216 002230 
00217 002240 
00218 002250 
00219 002260 
00220 002270 
00221 002280 
00222 002290 
00223 002300 
00224 002310 
00225 002320 
00226 002330 
00227 002340 
00228 002350 

Figure 108. 

316 

W-40-9. 
EXIT. 

W-41-0. 
WRI'IE RECFD1 FROM REel INVALIG KEY 
DISPLAY MSGHDR 
DISPLAY MSGEOX RECID 
MOVE 'E' TO ERRORSW 
GO TO BP.~E-50 .. 
ADD 0001 TO REC-NO. 

W-41-9. 
EXIT. 

R-40-0. 
DISPLAY 'SECTION 40 READ'. 
NOTE ENTERED BY PERFORM FROM BASE-bO. 
PERFORM R-41-0 THRU R-41-0 7 TI~£S. 
PERFORM R-20-0 THRU R-20-9. 

R-4'O-9. 
EXIT. 

R-41-0. 
READ FILE-1 INTO REC1 AT E~D 
DISPLAY MSGHDR DISPLAY MSGEOF 
ADD 4 TO ERCTFL t-10VE 'E' TO ERRORSW 
GO TO R-41-9. 
IF REC-ID IS NOT EQUAL TO VER-ID 
DISPLAY MSGHDR DISPLAY 'EXPECTED' VER-I9 ' FOUND' REC-ID 
ADD 1 TO ERCTFL MOVE 'E' TO ERRORSW 
MOVE REC-ID TO VER-ID. 
ADD 1 TO VER-NO. 

R-41-9. 
IF ERCTFL IS GREATER THAN 3 
GO TO BASE-70. 

SECTION-60 SECTION 60. 
W-60-0. 

DISPLAY 'SECTION 60 WRITE'. 
NOTE ENTERED BY PERFORM FROM BASE-SECTION. 
PERFORM W-61-0 THRU W-61-9 13 THiES. 

W-60-9. 
EXIT. 

W-61-0. 
WRITE RECFD1 FROM REC1 INVALID KEY 
DISPLAY MSGHDR 
DISPLAY MSGEOX RECID 
MOVE 'E' TO ERRORSW 
GO TO BASE-50. 
ADD 0001 TO REC-NO. 

W-61-9. 
EXIT. 

R-60-0. 
DISPLAY 'SECTION 60 READ'. 
NOTE ENTERED BY GO TO FROM BASE-50. 
PERFORM R-61-0 THRU R-61-9 13 TIMES. 
GO TO R-30-0. 

R-til-O. 
READ FILE-1 INTO REC1 AT END 
DISPLAY MSGHDR DISPLAY MSGEOF 
ADD 4 TO ERCTFL MOVE 'E' TO ERRORSW 
GO TO R-61-9. 

Sample Segmentation Program (Part 4 of 14) 

00156510 
00156520 
00156530 
00156540 
00156550 
00156560 
00156570 
00156580 
00156590 
00156600 
00156610 
00156620 
00156630 
00156640 
00156650 
00156660 
00156670 
00156680 
00156690 
00156700 
00156710 
00156720 
00156730 
00156740 
00156750 
00156760 
00156770 
00156780 
00156790 
00156800 
00156810 
00156820 
00156830 
00156840 
00156850 
00156860 
00156870 
00156880 
00156890 
00156900 
00156910 
00156920 
00156930 
00156940 
00156950 
00156960 
00156970 
00156980 
00156990 
00157000 
00157010 
00157020 
00157030 
00157040 
00157050 
00157060 
00157070 



6 

00229 002360 IF REC-ID IS NOT EQUAL TO VER-ID 00157080 
00230 002370 DISPLAY MSGHDR DISPLAY 'EXPECTED' VER-ID 

, 
FOUND • REC-ID 00157090 

00231 002380 ADD 1 TO ERCTFL MOVE 'EI TO ERRORSW 00157100 
00232 002390 MOVE REC-ID TO VER-ID. 00157110 
00233 002400 ADD 1 TO VER-NO. 00157120 
00234 002410 R-61-9. 00157130 
0023S 002420 IF ERCTFL IS GREATER THAN 3 00157140 
00236 002430 GO TO BASE-70. 00157150 
00237 002440 SECTION-80 SECTION SO. 00157160 
00238 002450 w-SO-O. 00157170 
00239 002460 DISPLAY 'SECTION SO WRITEI. 00157180 
00240 002470 NOTE ENTERED BY PERFORM FROM BASE.-SECTION. 00157190 
00241 002480 PERFORM W-81-0 THRU W-Sl-9 7 'TIMES. 00157200 
00242 002490 PERFORM W-20-0 THRU W-20-9. 00157210 
00243 002500 W-SO-9. 00157220 
00244 002510 EXIT. 00157230 
002'..15 002520 W-81-0: 00157240 
00246 002530 WRITE RECFD1 FROM REC1 INVALID KEY 00157250 
00247 002540 DISPLAY MSGHDR 00157260 
0024S 002550 DISPLAY ~SGEOX RECID 00157270 
00249 002560 MOVE' E' TO ERRORSW 001572S0 
00250 002570 GO TO BASE-50. 00157290 
00251 002580 ADD 0001 TO REC-NO. 00157300 
00252 002590 w-81-9. 00157310 
00253 002600 EXIT. 00157320 
00254 002610 R-SO-O. 00157330 
00255 002620 DISPLAY 'SECTION 80 READ'. 00157340 
00256 002630 NOTE ENTERED BY PERFORM FROM BASE-50. 001573~0 

00257 002640 PERFORM R-81-0 THRU R-81-9 17 'l'IMES. 00157360 
00258 002650 R-80-9. 00157370 
00259 002660 EXIT. 00157380 
00260 002670 R-81-0. 00157390 
00261 002680 READ FILE-1 INTO RECl AT END 00157400 
00262 002690 DISPLAY MSGliDR DISPLAY MSGEOF 00157410 
00263 002700 ~~D 4 TO ERCTFL MOVE 'E' TO ERRORSW 00157420 
00264 002710 GO TO R-81-9. 00157430 
00265 002720 IF REC-ID IS NOT EQUAL TO VER-ID 00157440 
00266 002730 DISPLAY MSGHDR DISPLAY • EXPECTED • VER-I~ 

. FOLIND . REC-ID 00157450 
00267 002740 ADD 1 TO ERCTFL MOVE 'E' TO ERRORSW 00157460 
00268 002750 MOVE REC-ID TO VER-ID. 00157470 
00269 002760 ADD 1 TO VER-NO. 00157480 
0027{)·- 002110 -R-8-b8 .. 
00271 002780 IF ERCTFL IS GREATER THAN 3 (YO 1 S-1-S00 
00272 002790 GO TO BASE-70. 00157510 
00273 002800 R-Sl-9. 
00274 002S10 EXIT. 

7 

INTRNL NAME LVL SOURCE NAME BASE DISPL INTRNL NAME DEFINITION USr;.GE R 0 Q M 

DNM=2-234 FD FILE-1 DCB=Ol DNM=2-234 QSAf'i F 

DNM=2-253 01 RECFD1 BL=l 000 DNM=2-253 DS S3C DISP 

DNM=2-272 77 ERRORSW BL=2 000 DNM=2-272 DS 1C DISP 

DNM=2-292 77 ERCTFL BL=2 001 DNM=2-292 DS 2C DISP-NM 

DNM=2-30S 77 f".lSGHDR BL=2 003 DNl·1=2-308 DS 22C DISP 

DNM=2-324 77 MSGEOX BL=2 019 DNM=2-324 DS 36C DISP 

DNM=2-340 77 MSGEOF BL=2 03D DNN=2-340 DS 37C DISP 

DNM=2-356 77 MSGNEF BL=2 062 DNM=2-356 DS 23C DISP 

DNM=2-372 01 REC1 BL=2 080 DNM=2-372 DS OCLS3 GROUP 

DNM=2-389 02 REC-ID BL=2 OSO DNM=2-389 DS OCL8 GROUP 

DNM=2-40S 03 REC-HD BL=2 OSO DNM=2-40S DS 4C DISP 

DNM=2-424 03 REC-NO BL=2 084 DNM=2-424 DS 4C DISP-Nl'l 

DNM=2-440 02 FILLER BL=2 OS8 DNM=2-440 DS 75C DISP 

DNM=2-451 66 RECID BL=2 080 DN~=2-451 DS OCL8 GROUP 

DNM=2-469 01 VER-REC BL=2 ODS DNM=2-469 DS OCLS GROUP 

DNM=2-489 02 VER-ID BL=2 OD8 DNM=2-489 DS OCLS GROUP 

DNM=3-000 03 VER-HD BL=2 ODS DNM=3-000 DS 4C DISP 

DNM=3-016 03 VER-NO BL=2 ODC DNM=3-016 DS 4C DISP-NM 

Figure 108. sample segmentation Program (Part 5 of 14) 

Using the segmentation Feature 317 



8 

TGT 

SAllE AREA 
SWITCH 
TALLY 

MEMORY MAP 

SORT SAVE 
ENTRY-SAVE 
SORT CORE SIlE 
RET CODE 
SORT RET 
WORKING CELLS 
SORT FILE SIZE 
SORT MODE SIZE 
PGT-VN TBL 
TGT-VN TBL 
VCONPTR 
LENGTH OF VN TBL 
LABEL RET 
CURRENT PRIORITY 
DB3 R14SAVE 
COBOL INDICATOR 
A(lNITl) 
DEBUG TABLE PTR 
saBCOM PTR 
SORT DDNAME 
UNUSED 
DBG Rl1S/WE 
UNUSED 
PRBL1 CELL PIR 
3ENCBTBL PTR 
UlmSED 
TA LENGTH 
UNUSED 
OVERFLOW CELLS 
BL CELLS 
DE:::BADR CELLS 
TEMP STORAGE 
TEMP STORAGE-2 
rEMP STORAGE-3 
TEMP STORAGt-4 
BLL CELLS 
VLC CELLS 
SBL CELLS 
INDEX CELLS 
SUBADR CELLS 
ONCTL CELLS 
PF~CTL CELLS 
PFMSAV CELLS 
liN CELLS 
SAllE AREA =2 
SAllE AREA =3 
XSASW CELLS 
XSA CELLS 

00218 

00218 
00260 
00264 
00268 
0026C 
00270 
00274 
00276 
00278 
003A8 
003AC 
003BO 
003B4 
003B8 
003BC 
003BE 
003BF 
003CO 
003C4 
003C8 
003CC 
00300 
00304 
003DC 
003FO 
003F4 
003F8 
003FC 
00400 
00401 
001104 
0040C 
0040C 
00414 
00418 
00420 
00420 
00420 
00420 
00423 
00428 
00428 
00428 
00428 
00428 
00450 
00498 
004£0 
004EO 
004F8 
004E8 

Figure 108. Sample Segmentation Program (Part 6 of 14) 

318 



1U 

LITERhL POOL (HEX) 

00 5C 8 ( Ll T+ 0 ) lC4C3COO 4805EF48 00000005 OOOBOOll 0007000D 

OISPL~Y LITERALS (BCD) 

OO~DC iLrL+201 
00614 (Ll'L+7b) 
0064C (LTL+1321 
00684 (LrL+188) 
006BC (LTL+244) 

'START TEST SEG-S~M?LEEND TEST SE~-S~MPLE UNSUCCESSFUL RU' 
'NEND TEST SEG-SAMPLE SUCCESSFUL RUNSECrION 20 wRITESECTI' 
'ON 20 i{EhDEXPECTED FOUND SECTION 30 WRITESECTION 30 REAi 
'DSECTI::lN 40 WRITESE::;TION 40 READSECTION 60 WRITESECTION • 
'60 RE~DSECTION 80 WRITESECTION 80 READ' 

PGT 

DEBUG LINK~GE AREA 
OVERFLOW CELLS 
VIRTUAL CELLS 
VIRTUAL EBCDIC NAMES 
PROCEDURE NAME CELLS 
~ENERATED NAME CELLS 
DCB ADDRESS CELLS 
VNI CELLS 
LITERALS 
DISPLAY LITERALS 
PROCEDURE BLOCK CELLS 

REGISTER ~SSIGNMENT 

REG 6 
REG 7 

BL =2 
BL =1 

00510 

00510 
00510 
00514 
00528 
00550 
00550 
0057C 
00580 
005C8 
005DC 
006E4 

WORKIN':;-STOR!'I.GE SThRTS AT LOCATION 00088 FOR A LENGTH OF OOOEO. 

Fiqure 108. Sample Segmentation Program (Part 7 of 14) 

Using the segmentation Feature 319 



..,.., 

***************SEGMENT OF PTY 30**************** 

133 VERB 6S 
000000 PN=016 EQU 

134 VERB 66 
000000 PN=017 EQU 

1 J5 VFRR 67 
000000 58 FO C 004 L 15, 004( 0,12) V(ILBODSPO) 
000004 05 IF B/\'L~ 1,1::> 
OOOOOb 0001 DC X'OOOl' 
0000(;8 10 DC X'10' 
000009 000010 DC X'OOOO10' 
OOOOOC OCOOO156 DC X' OCOOO156' LIT+158 
000010 0000 DC X'OOOO' 
000012 FFFF iJC X, FFFF' 

137 VERB 68 
000014 D2 03 D 2S8 D 294 MVC 258(4,13),294(13) PSV=9 VN=06 
00001A 41 00 B 021'. LA 0,02/\.(0,11) Gi"J=019 
00001E 50 00 D 294 ST 0,294(0,13) VN=06 
000022 48 10 C OC4 LH 1,OC4(0,12) LIT+12 
000026 50 10 D 218 ST 1,218(0,13) PFM=3 
00002A GN=019 EQU 
00002A 58 EO D 218 L 14, 21f)( 0,13) PFl:<~=3 

00002B 06 EO BCTR 14,0 
000030 50 EO D 218 ST 14, 218( 0,13) PFM=3 
000034 12 EE. LTR 14,14 
000036 58 BO C 1D8 L 11,lD8(O,12) PBL=2 
00003A 47 40 B 048 BC 4,048(0,111 GN=054 
0OO03E 58 FO C OOC L 15,OOC(0,12) V(ILBOSGM1 ) 
000042 05 bF BALR 14,15 
000044 IE DC X'lE' 
000045 02 DC X' 02' 
000046 0051'. DC X'005A' PN=019 
000048 GN=054 RQU 
000048 D2 03 D 294 D 258 MVC 294(4,13),258<13) VN=06 P5V=9 

138 VERB 69 
00004E PN=01!:l E\.lU 

139 VERB 70 
140 VERB 71 

00004E 58 00 D 290 L 0,290(0,13) VN=05 
000052 58 FO C 014 L 15, 014( 0,12) V(ILBOSGMO) 
000056 05 EF BALR 14,15 
000058 1EOO DC X'lEOO' 
00005A PN=019 EQU 

141 VERB 72 
00005/\. D2 52 7 000 6 080 MVC 000(83,71,080(61 DNM=2-253 ONM=2-372 
000060 58 10 C ObC L 1,ObC(0,12) DCB=l 
000064 18 21 LR 2,1 
00006b 58 40 2 024 L 4,024(0,2) 
00006/\. 02 02 4 019 C 040 MVC 019 (3,41, 04D (12) GN=020+1 
000070 58 10 C 06C L 1,06C(O,121 DCB=l 
000074 58 00 1 04C L 0,04C(0,1) 
000078 58 FO 1 030 L 15,030(0,1) 
00007C 44 00 1 060 EX 0,060(0,11 
000080 50 10 D 1FlI S1 1,lF4(0,13) BL =1 
000084 58 70 D IF4 L 7,H4(O,13) BL =1 

Figure 108. Sample Seqmentation Program (Part 8 of 14) 

320 



23 

000088 96 01 4 01B 01 01B(4),X'Ol' 
00008C 47 FO B OCE BC 15,OCE(O,lll GI.=021 
000090 GN=020 EQU 

142 VERE 73 
000090 58 FO C 004 L 15,004(0,12) VnLBODSPO) 
000094 05 IF BALR 1, 15 
000096 0001 DC x'OOOl' 
000098 00 DC X' 00' 
000099 000016 DC X'OOOO16' 
00009C ODOOOIF8 DC X' ODOOOIF8' BL =2 
OOOOAO 0003 DC X'OO03' 
0000A.2 FFFF DC X' FFF-F' 

143 VERB 74 
0000A4 58 FO C 004 L 15,004(0,12) VI ILBUD3f'0 I 
0000A8 05 1F BALR 1,15 
OOOOAA 0001 DC x'OOOl' 
OOOOAC 00 DC X'OO' 
OOOOAD 000024 DC X'OOO024' 
OOOOBO ODOOOIF8 IX i:' ODOOOlF-8' BL =2 
0000B4 0019 DC X' 001~' 
0000B6 00 DC X'Ou' 
000037 000008 DC X'000008' 
000031',. ODOOOIF8 DC X'ODOOOIF8' DL =2 
OOOOBE 0080 DC x'0080' 
OOOOCO FFFF DC X· FfTF' 

144 VERB 75 
0000C2 92 C5 6 000 t<NI OOO(b),X'CS' Dt\'r-.:=2-272 

145 VERB 76 
0000C6 58 BO C ID4 L 11, ID4( 0,12) P13L=l 
OOOOCA 41 FO D ODE BC 15, ODE(O, 1ll PN=03 
OOOOCE GN=021 EQU * 

146 VERB 77 
oaOOCE F2 73 D 200 6 084 PACK 200(S, 13), 084(4, 6) TS=Ol DNt-:=2-424 
0000D4 FA 20 ::> 205 C OBB AP 205l3,13). 0£,8 n,12) 'Ts=Ot- LIT+O 
OOOODA F3 32 6 084 D 20S UNPK 084(4,6),205(3,13) Di.'l1V.i=2-424 TS=Ob 

147 VERB 18 
OOOOEO PN=020 E'QU * 

148 VERB 79 
149 VERB 80 

OOOOEO 58 00 ~ 294 L 0,294(0,13) VN=06 
0000E4 S8 FO C 014 L 15, 014( 0,12) V<IL305GMO) 

_0_0_00E8 OS_EY BA.r,.B-._ 14,15 
OOOOEA lEOO DC -X-' i E-6 6-'-
OOOOEC l-'N=021 EQU * 

150 '..lERB 81 
OOOOEC 58 FO C 004 L 15,004(0,12) V(ILBODS?O) 
OOOOFO 05 IF BAi..R 1,15 
0000F2 0001 DC X·0001· 
0000F4 10 DC X·I0' 
OOOOF') OOOOOF DC X'OOOOOy' 
0000F8 OCOOO166 DC X'OCOOO166' L1T+174 
OOOOF'C 0000 DC x'OOOO· 
OOOOFE FFFF DC X' _ff'FF' 

152 VERB 82 
000100 D2 03 D 25C D 298 ~,VC 25C(4,13),298(13) PSV=10 Vf)j=07 
000106 41 00 B 116 LA. 0,116(0,11) GN=022 
00010A 50 00 D 298 ST 0,298 (0,13) VN=07 

Figure 108. sample Segmentation Program (Part 9 of 14) 

Using the SE~mentation leature 321 



24 

00010E 48 10 C OC4 LH 1, ocu (0,12) LIT+12 
000112 50 10 0 21C ST 1,21C(0,131 PFM=4 
000116 GN=022 EQU * 
000116 58 EO D 21e L 14,21ClO,131 l-'FM=4 
000111'1 06 EO BCTR 14,0 
00011C 50 EO 0 21e ST 14,21C(0,131 PFM=4 
000120 12 ~r:: J.TR 14,14 
000122 47 40 B 130 BC 4,130(0,11) GN=055 
000126 5& FO C OOC L 15, QuC( 0,12) VCILBOSGMl ) 
000121'1 OS EF BI\LR 14,15 
00012C u; DC X'lE' 
000120 02 DC X'02' 
00012E 013E DC X'013E' PN=022 
000130 GN=055 EQU * 
000130 02 03 0 298 o 25C MVC 298 (4,13), 25C (13) VN=07 PSV=10 

1~3 VERB 83 
000136 58 80 C liJ4 L 11, 104( 0,12) PBL=l 
000131'1 47 FO [, 182 BC 15,182(0,11) PN=04 

154 VERB 84 
00013E PN=022 EQU * 

155 VERB 85 
00013E 58 10 C 06e L l,06C(0,12) OCB=l 
000142 18 21 LR 2,1 
000144 D2 0:; 2 021 e 051 MVC 021 (3, 2),051 (12) GN=023+1 
000141'1 58 FO 1 030 L 15, 030( 0,1) 
00014E OS EF BALR lU,15 
000150 50 10 0 IF'4 ST 1,lF4(0,13) BL =1 
000154 58 70 D IF4 L 7,lF4(O,13) BL =1 
000158 D2 52 6 080 7 000 MVC 080(83,6),000(7) ONM=2-372 ON~-,=2-253 

00015E: U7 FO B 11'18 BC 15,11'18(0,11) GN=024 
000162 GN=023 EQU * 

Li6 VERB 86 
000162 58 FO C 004 L 15,004(0,12) vc lLBOOSPO) 
000166 05 1F BALR 1,15 
000168 0001 DC 1.'0001' 
000161'1 00 DC X' 00' 
00016B 000016 DC X'000016' 
OOOHE ODOOOIF8 DC X' 000001F8' BL =2 
000172 0003 DC X'0003' 
000174 FFFF DC X' FFFF' 

156 VERB 87 
000176 58 FO C 004 L 15,004(0,12) VI lLBODSPO) 
00017A 05 1F BALR 1,1~ 

00017C 0001 DC x'G001' 
00017E 00 DC X'OO' 
00017I<' 000025 DC X' 000025' 
000182 ODOO01FF DC X'ODOOOIF8' BL =2 
000186 003:) DC X' 003D' 
000188 FFFF DC X'FFFF' 

157 VERB 88 
000181'1 F2 71 0 200 6 001 PACK 200 (8,13), OOlC 2,6) TS=Ol ON~"=2-292 

000190 FA 10 0 206 C 089 AP 20b(2,13),OB9(1,12) TS=07 LlT+l 
000196 F3 11 6 001 D 206 UNPK 00lC2, 6), 206(2, 13) DNM=2-292 TS=07 

1:'7 VL~:oI 89 
00019C 92 C5 b 000 MVl OOO(b), x'es' ONM=2-272 

b8 VEf<.3 90 
00011',.0 58 BO C 11.;8 L 11,lD8(O,12) PEL=2 

Figure 108. Sample Segmentation Program (Part 10 of 14) 

322 



25 

0001A4 47 FO B 226 BC 15, 226( 0,11> PN=023 
0001A8 GN=024 EQU * 

159 VERB 91 
0001A8 05 07 6 080 6 008 CLC 080(8,6),008(6) DNM=2-389 DNM=2-489 
0001AE 47 80 B 214 BC 8,214(0,11) GN=025 

160 VERB 92 
0001B2 58 FO C 004 L 15,004 (0,12) VCILBODSPO) 
0001B6 05 1F BALR 1,15 
0001B8 0001 DC X'OOOl' 
OOOlBA 00 DC X' 00' 
0001BB 000016 DC X'OOOO16' 
0001BE ODOO01F8 DC X'ODOO01F8' BL =2 
0001C2 0003 DC X'OO03' 
0001C4 FFFF DC X' FFFF' 

160 VERB 93 
0001C6 58 FO C 004 L 15,004(0,121 V ( ILBODSPO I 
0001CA 05 1F BALR 1,15 
0001CC 0001 DC X' 0001' 
0001CE 10 DC X'10' 
0001CF 000009 DC X'OOOO09' 
000102 OCOOO14b DC X' OCOOO146' LIT+142 
0001D6 0000 DC X'OOOOi 
0001D8 00 DC X'OO' 
0001D9 000008 DC X'000008' 
0001DC ODOO01F8 DC X'ODOO01F8' BL =2 
00OlEO 00D8 DC X'00D8' 
0001E2 10 DC X'10' 
0001E3 000007 DC X'000007' 
0001E6 OCOOO14F DC X'OCOOO14F' LIT+1~1 

0001EA 0000 DC X'OOOO' 
0001EC 00 DC X'OO' 
0001ED 000008 DC X'OOOO08' 
0001FO ODOO01F8 DC X'ODOO01F8' BL =2 
0001F4 0080 DC X' 0080' 
0001F6 FFFF DC X'FFFF' 

161 VERB 94 
0001F8 F2 71 D 200 6 001 PACK 200(8,13),001<2,6) TS=Ol DN.'-,=2-292 
0001FE FA 10 D 206 C OB8 AP 206 (2, 13), Ob8 (1,12) T8=07 LII'+O 
000204 F3 11 6 001 D 206 UNPK 001<2,6),206(2,13) DNM=2-292 '1'5=07 

161 VERB 95 
00020A 92 C5 6 000 MVI 000(6),X':::5' DNM=2-272 

162 VERB 96 
00020E -02- 0'1 6 OD8 6 080 MVC (J]JBTff ~ 6) , "08--0 ( 6 J -DNM=Z --q-g-g Dm;.=-2 - 3B"9 

000214 GN=025 EQU * 
163 VERB 97 

000214 F2 73 D 200 6 ODC PACK 200(8,13),ODC(4,b) T8=01 DNM=3-1b 
00021A FA 20 D 205 C OB8 AP 205(3,13), OB!.'<1, 12) T!:,=06 LI1+0 
000220 F3 32 6 ODC 0 205 UNPK ODC(4,61,20513,13) DNM=3-16 1'3=06 

164 VERB 98 
000226 PN=023 EQU * 

165 VERB 99 
000226 F2 71 D 200 6 001 PACK 200(8,13),001(2,6) TS=Ol DNYi=2- 292 
00022C F9 10 D 206 C OBA CP 206( 2,13), OBA<1, 12) TS=07 LIT+2 
000232 47 DO B 23E BC 13,23E(0,111 GN=026 

166 VERB 100 
000236 58 BO C lD4 L 11,104(0,12) PBL=l 
00023A 41 FO B 200 BC 15, 200( 0,11) PN=05 

26 

00023E GN=026 EQU * 
00023E 58 00 D 298 L 0,298(0,13) VN=07 
000242 58 FO C 014 L 15, 014( 0,12) V(ILBOSGEO) 
000246 05 EF BALR 14,15 
000248 1EOO DC X'lEOO' 
00024A 58 FO C OOC L 15,OOC(0,12) VlILBOSGM11 
0OO24E 05 "'-'" BALR 14,15 
000250 28 DC X' 28' 
000251 03 DC X'03' 
000252 0000 DC X, 0000' PN=024 

Figure 108. Sample Segmentation Program (Part 11 of 14) 

Using tte Segmentation icature 323 



rROSS-RF'F'F:RF.NC'''. nTC''fTONA,RV 

DEFN REFERENCE 

000007 
000056 000123 000127 000131 000157 000161 000165 000193 000197 000201 000227 

000231 000235 000263 000267 000271 
000055 000090 000094 000109 000123 000127 000144 000157 000161 000178 000193 

000197 000214 000227 000231 000249 000263 000267 
000046 000076 000082 000083 000088 000092 000106 000121 000141 000155 000175 

000191 000211 000225 000246 000261 
000060 000122 000156 000192 000226 000262 
000058 000108 000143 000177 000213 000248 
000057 000089 000107 000122 000126 000142 000156 000160 000176 000192 000196 

000212 000226 000230 000247 000202 000266 
000062 000089 
000065 
000064 000125 000126 000128 000159 OOOlbO 000162 000195 000196 000198 000229 

000230 000232 000265 000266 000268 
000066 000111 000146 000180 000216 000251 
000053 000088 000106 000121 000141 000155 000175 000191 000211 000225 000246 

000261 
000068 000108 000143 000177 000213 000248 
000063 000088 000106 000121 000141 000155 000175 000191 000211 000225 000246 

000261 
000071 
000070 000125 000126 000128 000159 000160 000162 000195 000196 000198 000229 

000230 000232 000265 000260 000261' 
000072 000129 000163 000199 000233 000269 
000069 

Figure 108. Sample Segmentation Program (Part 12 of 14) 

324 



44 

PROCEDURE NAMES 

EASE-SECTION 
BASE-50 
EASE-ciO 
BA3E-70 
BASE-90 
R-20-0 
R-20-9 
R-21-0 
1<-21-9 
R-30-0 
1<-31-0 
R-31-9 
R-40-0 
R-40=-9 
R-41-0 
R-41-9 
R-60-0 
R-61-0 
R-61-9 
R-80-0 
R-80-9 
R-81-0 
R-81-8 
rt.-81-9 
SECTION-20 
SECTION-30 
SECTION-40 
SECTION-bO 
SECTION-80 
W-20-0 
W-20-9 
W-21-0 
W-21-9 
W-30-0 
W-30-9 
W-31-0 
W-31-9 
W-40-0 

-·-W-4{}-c} 

W-41-0 
W-41-9 
W-60-0 
W-60-9 
W-61-0 
W-61-9 
W-80-0 
W-80-9 
W-81-0 
W-81-9 

Figure 108. 

DEFN REFERENCE 

000074 
000081 000110 000145 000179 000215 000250 
000086 000153 
000091 000088 000132 000166 000202 000236 000272 
000093 
000114 000187 
000118 000187 
000120 000117 
000130 000117 000124 
000149 000223 
000154 000152 
000164 000152 000158 
000183 000087 
000188 000087 
000190 000186 
000200 000194 
000219 000085 
000224 000222 
000234 000222 000228 
000254 000084 
000258 000084 
000260 000257 
000270 
000273 000257 000264 
000098 
000133 000132 
000167 000166 
000203 000202 
000237 000236 
000099 000242 
000103 000242 
000105 000102 
000112 000102 
000134 000078 
000138 000078 
000140 000137 
000147 000137 
000168 000080 
Q.OO.lc7-2· . -·OOO·(HW· 
000174 000171 
000181 000171 
000204 000079 
00020e 000079 
000210 000207 
000217 000207 
000238 000077 
000243 000077 
000245 000241 
000252 00021+1 

Sample Segmentation Program (Part 13 of 14) 

Using the Segmentation Feature 325 



F8!l-LEVEL LINKA3E EDITOR OPTIONS SPH'TF'Tt<:n T.T~'T'_ nvT.V 
DEFAULT OPTIONCS) USEO - SIZE=C90112,iZ288) 

INSERT SEGOSAMP IEWOOOO 
IEWOOOO 
IEWOOOO 
IEWOOOO 
IEWOOOO 
IEWOOOO 
IEWOOOO 
IEWOOOO 
IEWOOOO 
IEWOOOO 
****RUN 

START TEST 
SECTIOU 80 
SECTION 20 
SECTION 30 
SECTION 60 
SECTION 40 
SECTION 80 
SECTION 60 
SECTION 30 
SECTION 40 
SECTION 20 

OVERLAY A 
INSERT SEGOSA30 
OVERLAY A 
INSERT SEGOSA40 
OVERLAY A 
INSERT SEGOSA60 
OVERLAY A 
INSERT SEGOSA80 
ENTRY SEGOSAMP 

DOES NOT EXIST BUT HAS BEEN ADDED TO DATA SET 

SEG-SAMPLE 
WRITE 
WRITE 
WRITE 
WRITE 
WRI'I'E 
READ 
READ 
READ 
READ 
READ 

END TEST SEG-SAMPLE SUCCESSFUL RUN 

Figure 108. Sample Segmentation Program (Part 14 of 14) 

326 



The IBM Operating System Checkpoint/ 
Restart feature is designed to be used with 
programs running for an extended period of 
time when interruptions may halt processing 
before the end of the job. The feature is 
available with both sequential and priority 
scheduling systems. The feature may be 
used when the programmer anticipates any 
type of interruption, i.e., interruptions 
caused by machine malfunctions, 
input/output errors, or intentional 
operator intervention, etc. It allows the 
interrupted program to be restarted at the 
JOD step or at a point other than at the 
beginning of the job step. The feature 
consists of two routines: Checkpoint and 
Restart. 

The £h~~~Qint_~Q~~ine is invoked from 
the COBOL load module containing the user1s 
program. It moves information stored in 
registers and in main storage into a 
checkpoint record at user-designated points 
during execution of tne program. The 
programmer specifies these points using the 
COBOL RERUN clause in the Environment 
Di-v-ts-ion. 

The Restart routine restarts an 
interrupted program:--Restart can occur at 
the beginning of a job step, or at a 
checkpoint if a checkpoint record has been 
written. The checkpoint record will 
contain all information necessary to 
restart the program. Restart can be 
initiated at any time after the program was 
interrupted; that is, it may be run 
immediately after the interrupt has 
occurred, as an automatic restart, or at a 
later time convenient to the programmer, as 
a deferred restart. 

The COBOL RERUN clause provides linkage 
to the system checkpoint routine. Hence, 
any cautions and restrictions on the use of 
the system Checkpoint/Restart feature also 
apply to the use of the RERUN clause. 

The Checkpoint/Restart feature is fully 
described in the publication l~~_Q~ 
supe~~i~or_~er~ice~. 

TAKING A CHECKPOINT 

In order to initiate a checkpoint, the 
programmer uses job control statements and 
the COBOL RERUN clause. The programmer 
associates each RERUN clause with a 
particular COBOL file. The RERUN clause 

indicates that a checkpoint record is to be 
written onto a checkpoint data set whenever 
a specified number of records on that file 
are processed or when end of voluffie is 
reached while processing a file. Ihe 
programmer decides when he Hants t~e 
checkpoints taken as he codes the RE~U~ 
clause. The checkpoint records are Nritten 
on the checkpoint data set defined by the 
DD statement and are referenced by 
system-name in the dERUN clause. Ihe 0D 
statement describes both a checkpoint j~ta 
set and a checkpoint method. 

Checkpoint records on ASCII-collated 
sorts can be taken, out the system-n~me 
indicating the checkpoint data set must not 
specify an ASCII file. 

Note: If checkpoints are to be taken 
during a sorting operation, a DD statement 
called SORTCKPT must be added when the 
program is executed. 

The programmer may elect to store single 
or multiple checkpoints. 

~ig~!~: Only one checkpoint record exists 
at any given time. hfter the first 
checkpoint record is written, any 
succeeding checkpoint record overlays the 
previous one. This method is acceptable 
for most programs. It offers tne advantage 
of saving space on the checkpoint jata set 
and allows the programmer to restart his 
program at the latest checkpoint. 

~~!~i2!~_1~~!~ie!g_~Qg!iguous~: 
Checkpoints are recorded and numbered 
sequentially. Each checkpoint is saved. 
This method is used when the programmer may 
wish to restart a program at a checkpoint 
other than the latest one taken. 

DD STATEMENT FORMATS 

The programmer records checkpoints on 
tape or direct access devices. Following 
are the DD formats to define checkpoint 
data sets. 

Using the Checkpoint/Restart Feature 327 



For Tape: 
r-----------------------------------------, 
I//ddname DD DSNAME=data-set-name, XI 
1// VOLUME=SER=volser, XI 
1// UNIT=deviceno, XI 
1 ~W I 
1// DISP=( ,PASS), XI 
I MOD I 
1// DCB=(TRTCH=C),LABEL=(,NL) I l _________________________________________ J 

Note: The DCB parameter is necessary only 
for 1-track tape conversion; for 9-track 
tape it is not used. 

For Mass Storage: 
r-----------------------------------------, 
I//ddname DD DSNAME=data-set-name, XI 
1// VOLUME=(PRIVATE,RETAIN, XI 
1// SER=volser), XI 
1// UNIT=deviceno, XI 
1// SPACE=(subparms), XI 
I NEW I 
1// DISP=( ,PASS) ,KEEP, XI 
I MOD I l _________________________________________ J 

where: 

ddname 
is the same as the ddname portion of 
the system-name used in the COBOL 
RERUN clause to provide a link to the 
DD statement. 

data-set-name 
is the name given to each particular 
data set used to write checkpoint 
records. This name identifies the 

, checkpoint data set to the Restart 
procedure (see "Restarting a 
Program") • 

volser 
identifies the volume by serial 
number. 

deviceno 
identifies the device. For tape it 
indicates the device number for 
1-track or 9-track tape. For mass 
storage, it indicates the device 
number for disk or drum. 

subparms 

328 

specifies the amount of track space 
needed for the data set. 

MOD 
is specified for the multiple 
contiguous checkpoint method. 

NEW 
is specified for the single checkpoint 
method. 

PASS 
is specified in order to prevent 
deletion of the data set at the 
successful completion of the job step 
unless it is the last step in the job. 
If it is the last step, the data set 
will be deleted with PASS. 

KEEP 
is specified in order to keep the data 
set if the job step abnormally 
terminated and may be restarted. 

The following listings are examples that 
define checkpoint data sets. 

• To write single checkpoint rec~rjs 
using tape: 

//CHECKPT 
// 

DD DSNAME=CHECK1, 
VOLUME=SER=ND003, 
UNIT=2400,DISP=(NEW,KEEP) , 
LABEL= (, NL) 

// 
// 

ENVIRONMENT DIVISION. 

x 
X 
X 

RERUN ON UT-2400-S-CHECKPr EVERY 
5000 RECORDS OF ACCT-FILE. 

• To write single checkpoint records 
using disk (note that more than one 
data set may share the same 
external-name): 

//CHEK 
// 

DD DSNAME=CHECK2, 
VOLUME=(PRIVATL,RETAIN, 

SER=DB030, 
UNIT=2314,DISP=(NEW,KEtP', 
SPACE=(TRK,300) 

// 
// 
// 

ENVIRONMENT DIVISION. 

RERUN ON UT-2314-S-ChEK EVEkY 
20000 RECORDS OF PAYCODE. 
RERUN ON UT-2314-S-ChEK EVEkY 
30000 RECORD OF IN-FILE. 

X 
X 
X 
X 



• To write multiple contiguous checkpoint 
records (on tape): 

//CHEKPT 
// 
// 
// 

DD DSNAt1E=CHECK3, 
VOLUME=SER=llllll, 
UNIT=2400, DISP=CMOD, PASS) , 
LABEL= ( , NL) 

ENVIRONMENT DIVISION. 

RERUN ON UT-2400-S-CHEKPT EVERY 
10000 RECORDS OF PAY-FILE. 

Note: A checkpoint data set must be 
sequential. 

DESIGNING A CHECKPOINT 

The programmer should design his 
checkpoints at critical points in his 
program so that data may be easily 
reconstructed. For example, in a program 
using mass storage files, changes to 
records in these files will replace 
previous information; thus the programmer 
sho-a-ld-.--b-e-sU-];e--oo-.ca-n-id€ntify-previous~y

processed records. Assume that a mass 
storage file contains loan records that 
periodically are updated for interest due. 
If a checkpoint is taken, records are 
updated, and then the program is 
interrupted, the records updated after the 
last cneckpoint will be updated a second 
time in error unless the proqrammer 
controls this condition. (He may set up a 
date field for each record and update the 
date each time the record is processed. 
Then, after the restart, by investigating 
the date field he can determine whether or 
not the record was previously processed.) 
For efficient repositioninq of a print 
file, the programmer should take 
checkpoints on that file only after 
printing the last line of a page. At 
system generation time, those ABEND codes 
for which the checkpoints are desired 
(DEFAULT) must be specified. 

MESSAGES GENERATED DURING CHECKPOINT 

x 
X 
X 

The system checkpoint routine advises 
the operator of the status of the 
checkpoints taken by displaying informative 
messages on the console~ 

When a checkpoint has been successfully 
completed, the following message will be 
displayed: 

[IHJ004I jobname (ddname,unit,volser) 
CfIKPT checkidl 

where checkid is the identification name of 
the checkpoint taken. Checkid is assigned 
by the control program as an 8-digit 
number. The first digit is the letter 2, 
followed by a decimal number indicating the 
checkpoint. For example, checkid C0000004 
indicates the fourth checkpoint taken in 
the job step. 

The system Restart routine retrieves the 
information recorded in a checkpoint 
record, restores the contents of main 
storage and all registers. 

The Restart routine can be initiated in 
one of two ways: 

• Automatically at the time an 
interruption stopped the program 

• At a later time as a deferred restart 

The type of restart is determined by tne RD 
par.amet_er __ Qf_ .. the. __ j9Q __ .S::QIlt.r9l: .. l9,ng.u.a g_e • 

The RD parameter may appear on either 
the JOB or the EXEC statement. If coded on 
the JOB statement, the parameter overrides 
any RD parameters on the EXEC statement. 
If the programmer wishes to have his 
program restart automatically, he codes 
RD=R Or RD=RNC. RD=R indicates that 
restart is to occur at the latest 
checkpoint. The proqrammer should specify 
the RERUN clause for at least one data set 
in his program in order to record 
checkpoints. If no checkpoint is taken 
prior to interruption, restart occurs at 
the beginning of the job step. RD=RNC 
indicates that no checkpoint is to be 
written and any restart will occur at the 
beginning of the job step. In this case, 
RERUN clauses are unnecessary; if any are 
present, they are ignored. If the RD 
parameter is omitted, the CHKPT macro 
instruction remains activated, and 
checkpoints may be taken during processing. 
If an interrupt occurs after the first 
checkpoint, automatic restart will occur. 
Thus! if the user does not want automatic 
restart, he should always include the RD 
parameter with a code of either RD=NR or 
RD=NC, both of which suppress the automatic 
restart procedure. 

Using the Checkpoint/Restart Feature 329 



If the programmer wishes his progra~ to 
be restartej on a deferrej basis, he shoulj 
code the RD parameter as RD=NR. This form 
of the parameter suppresses automatic 
restart but allows a checkpoint record to 
be written provided a RERUN clause has been 
specified. At restart time, the programmer 
may choose to restart his program at a 
checkpoint other than at the beginning of 
the job step. 

The programmer may also elect to 
suppress both restart and writing 
checkpoints. By coding RD=NC, the 
programmer, in effect, is ignoring the 
features of the Checkpoint/Restart 
facility. 

Automatic Restart 

Automatic Restart occurs only at the 
latest checkpoint taken. (If no checkpoint 
was taken before interruption, Automatic 
Restart occurs at the beginning of the job 
step) • 

In order to restart automatically, a 
program must satisfy the following 
conditions. 

• A program must request restart by using 
the RD parameter or by taking a 
checkpoint. 

• An ABEND that terminated the job must 
return a code eligible to cause 
restart. (For further discussion on 
this requirement, see the publication 
IBM OS Supervisor Services.) 

• The operator authorizes the restart, 
with the following procedure: 

330 

The system displays the following 
message to request authorization of the 
restart: 

xxIEF225D SHOULD 
jobname.stepname.procstep 
RESTART [checkidJ 

The operator must reply in the 
following form: 

REPLY xx, '{YESINOIHOLD}' 

where YES authorizes restart, NO 
prevents restart, and HOLD defers 
restart until the operator issues a 
RELEASE command, at which time restart 
will occur. The HOLD option is 
applicable only in a multiprogramming 
environment. 

Whenever automatic restart is to occur, 
the system will reposition all devices 
except unit-record machines. 

Deferred restart may occur at any 
checkpoint, not necessarily the latest one 
taken. 

The programmer requests a deferred 
restart by means of the RESTART parameter 
on the JOB card and a SYSCHK DD statement 
to identify the checkpoint data set. The 
formats for these statements are as 
follows: 

//jobname JOB 
// 
//SYSCHK DD 
// 
// 

where: 

, MSGLEVEL=l, 
RESTART=(request, [checkid]) 
DSNAME=data-set-name, 
DISP=OLD,U~IT-deviceno, 

VOLO~ffi=SER=volser 

MSGLEVEL=l (or MSGLEVEL=tl,y) where l is 
either 0 or 1) 

is required if restart is to occur in 
an MVT environment. 

RESTART=(request, [checkidJ) 

x 

x 
X 

identifies the particular checkpoint 
at which restart is to occur. Request 
may take one of the following forms: 

* to indicate restart at the beginning 
of the job 

stepname to indicate restart at the 
beginning of a job step 

stepname.procstep to indicate restart 
at a procedure step within the 
jobstE:p 

checkid 
identifies the checkpoint where 
restart is to occur. 

SYSCHK 
is the DDNAME used to identify a 
checkpoint data set to the control 
program. The SYSCHK DD statement must 
immediately precede the first EXEC 
statement of the resubmitted job, and 
must follow any JOBLIB statement. 

data-set-name 
must be the same name that was used 
when the checkpoint was taken. It 
identifies the checkpoint data set 



deviceno and volser 
identify the device number and the 
volume serial number containing the 
checkpoint data set. 

As an example illustrating the use of 
these job control statements, a restart of 
the GO step of a COBUCLG procedure, at 
checkpoint identifier (CHECKID) C0000003, 
might appear as follows: 

//jobname JOB ,MSGLEVEL=l, 
, , 
" // 
//SYSCHK 
// 
// 

RESTART= 
(stepname.GO,C0000003) 

DD DSNAME=CHEKPT, 
DISP=OLD,UNIT=2400, 
VOLUME=SER=111111 

{DD statements similar to original deck} 

X 
x 

X 
X 

The Restart routine uses information 
from DD statements in the resubmitted job 
to reset files for use after restart; 
therefore, care should be taken with any DO 
statements that may affect the execution of 
the restarted job step. Attention should 
be paid to the following: 

• During the original execution, a data 
set meant to be deleted at the end of a 
job step should conditionally be 
defined as PASS rather than DELETE in 
order to be available if an 
interruption forces a restart. If the 
restart is at the beginning of a step. 
a data set created in the original 
execution (defined as NEW on a DO 
statement) must be scratched prior to 
the restart. If the data set is not 
deleted, the DD statement must be 
changed to define it as OLD. 

• At restart time, input data sets on 
cards should be positioned as they were 
at the time of the checkpoint. Input 
data sets on tape or direct access 
devices will be automatically 
repositioned by the system. 

• At restart time, the EXEC statement 
parameters PGM and COND, and the DD 
statement parameters SUBALLOC and 
VOLUME=REF must not be used in steps 

following the restart step if they 
contain the form stepname or 
stepname.procstep referring to a step 
preceding the restart step. However, 
if these parameters are used, the 
preceding step referred to must be 
specified in the resubmitted deck. 

When a deferred restart has Deen 
successfully completed, the system will 
display the following message on the 
console: 

IHJ0081 ;nhnrimp 
J ----- ••. - HESTARTED 

Control is then given to the user's program 
that executes in a normal mannero 

CHECKPOIN'I"/RESTART DATA SETS 

If the RERUN clause was executed during 
the original execution of the processing 
program, checkpoint entries were written on 
a checkpoint data set. To resubmit a job 
for restart when execution is to be resumed 
at a particular checkpoint, an additional 
DD statement must be included. This DO 
statement describes the data set on which 
the checkpoint entry was written and it 
must have--theddname-S-Y-S-CHK-. The SYSGHK -DO--
statement must immediately precede the 
first EXEC statement of the resubmitted job 
and must follow the DD statement named 
JOBLIB, if one is present. 

For both deferred and automatic 
checkpoint/restart~ if Direct SYSOUT writer 
for the restarted job was active at the 
time the checkpoint was was taken, it must 
be available for the job to restart. For 
further information, see the publication 
IBM_Q~_Operat2E~~ef~renc~, Order 
No. GC28-6691. 

If the checkpoint data set is 
multivolume, the sequence number of the 
volume on which the checkpoint entry was 
written must be included in the VOLUME 
parameter. If the checkpoint data set is 
on a 7-track magnetic tape with nonstandard 
labels or no labels, the SYSChK DO 
statement must contain DCB=(TRTCH=C, ••. ). 

Figure 109 illustrates a sequence of 
control statements for restarting a jOb. 

r---------------------------------------------------------------------------------------1 
I//PAYROLL JOB MSGLEVEL=1,REGION=80K,RESTART=(STEP1,CHECKPT4) I 
I//JOBLIB DD DSNAME=PRIV.LIB3,DISP=OLD I 
i//SYSCHK DD DSNAME=CHKPTLIB,UNIT=2311,VOL=SER=456789, X I 
1// DISP=(OLD,KEEP) I 
1//STEPl EXEC PGM=PROG4,TIME=5 I L _______________________________________________________________________________________ J 

Figure 109. Restarting a Job at a Specific Checkpoint Step 

Using the Checkpoint/Restart Feature 331 



If a SYSCHK DD statement is present in a 
job and the JOB statement does not contain 
the RESTART parameter, the SYSCHK DD 
statement is ignored. If a REST~RT 
parameter without the CHECKID subparameter 
(as in Figure 91) is included in a job, a 
SYSCHK DD statement must not appear before 
the first EXEC statement for a job. 

Figure 110 illustrates the use of the RD 
parameter. Here, the RD parameter requests 
step restart for any abnormally terminated 
job step. The DD statement DDCKPNT defines 
a checkpoint data set. For this step, once 
a RERUN clause is executed, only automatic 
checkpoint restart can occur, unless a 
CHKPT cancel is issued. 

Figure 111 illustrates those 
modifications that might be made to control 
statements before resubmitting the job for 
step restart. The job name has been 
changed to distinguish the original job 

from the restarted job. The RESTART 
parameter has been added to the JOb 
statement and indicates that restart is to 
begin with the first job step. The DD 
statement WORK originally assigned a 
conditional disposition of KEEP for this 
data set. If this step did not abnormally 
terminate during the original execution, 
the data set was deleted anj no 
modifications need be made to this 
statement. If the step did abnormally 
terminate, the data set was kept. In this 
case, define a new data set as shown in 
Figure 111, or change the data set's status 
to OLD before resubmitting the job. A new 
data set has also been defined as the 
checkpoint data set. 

Figure 112 illustrates those 
modifications that might be made to control 
statements before resubmitting the job for 
checkpoint restart. 

r---------------------------------------------------------------------------------------, 
1//J1234 JOB 386, SMITH, MSGLEVEL=l, RD=R 1 
I//Sl EXEC MYPROG 1 
I//IND~TA D,) DSNAI"lE=INVENT,UNIT=2400,DISP=OLO,VOLUME=SER=91468, X 1 

1// LABEL=QETPD=14 1 
I//REPORT DD SYSOUT=A I 
I//WORK DO DSNAME=T91468,DISP=("KEEP),UNIT=SYSDA, X 1 
1// SPACE=(3000, CSOOO,SOO»),VOLUME=(PRIVATE,RETAIN,,6) I 
I//OOCKPNT DO UNIT=2400,DISP=(MOD,PASS,CATLG),DSNAME=C91468 1 L _______________________________________________________________________________________ J 

Figure 110. Using the RD Parameter 

r---------------------------------------------------------------------------------------, 
1//J3412 JOB 386, SMITH, MSGLEVEL=l,RD=R, RESTART=* 1 
I//Sl EXEC MYPROG 1 
I//INOATA DO DSNAME=INVENT,UNIT=2400,DISP=OLD,VOLUME=SER=91468, X 1 
1// LABEL=RETPD=14 I 
I//REPORT DD SYSOUT=A 1 
I//WORK DD DSNAME=S91468,DISP=("KEEP),UNIT=SYSDA, X I 
1// SPACE=(3000,(SOOO,SOO»,VOLUME=(PRIV~TE,RETAINf,6) 1 
I//DDCHKPNT DD UNIT=2400,DISP=(MOD,PASS,CATLG),DSNAME=R91468 I L _______________________________________________________________________________________ J 

Figure 111. Modifying Control Statements Before Resubmitting for Step Restart 

332 



r---------------------------------------------------------------------------------------1 
IIIJ3412 JOB 386, SMITH, MSGLEVEL=l, RD=R, RESTART=(*.C0000002) I 
IIIS1 EXEC MYPROG I 
IIISYSCHK DD DSNAME=C91468,DISP=OLD I 
IIIINDATA OD DSNAME=INVENT,UNIT=2400rDIS~=OLD, X I 
III VOLUME=SER=91468,LABEL=RETPD=14 I 
IIIREPORT DD SYSOUT=A I 
IIIWORK DO DSN&~E=T91468,DISP=('rKEEP),UNIT=SYSDA, X I 
III SPACE=(3000, (SOOO,500»,VOLUME=(PRIVATE,RETAIN"b) I 
IIIDDCKPNT DD UNIT=2400,DISP=(MOD,KEEP,CATLG),DSNAME=C91468 I L _______________________________________________________________________________________ J 

Figure 112. Modifying Control State~ents Before Resubmitting for Checkpoint Restart 

The job name has been changed to 
distinguish the original job from the 
restarted job. The RESTART parameter has 
been added to the JOB statement and 
indicates that restart is to begin with the 
first step at the checkpoint entry named 
C0000002. The DD statement DDCKPNT 
oriqinally assigned a conditional 
disposition of CATLG for the checkpoint 
data set. If this step did not abnormally 

terminate during the original execution J 

the data set was kept. In this case, the 
SYSCHK DD statement must contain all of the 
information necessary to retrieve the 
checkpoint data set. If the job did 
abnormally terminate, the data set was 
cataloged. In this case, the only 
parameters required on the SYSCHK DO 
statement, as shown in Figure 112, are the 
DSNAME and DISP parameters. 

Using the Checkpoint/kestart Feature 333 



A teleprocessing environment consists of 
a central computer i , remote or 10ca12 
stations, and communication lines between 
such stations and the central computer. 
Use of the Teleprocessing Feature (TP) 
enables the COBOL programmer to create 
device-independent programs for 
teleprocessing applications. 

Teleprocessing applications require a 
special, user-written assembler-language 
program that controls the flow of data 
between the central computer and the remote 
stations. This message control program 
(r'lCP) also performs such additional tasks 
required only in a TP environment as 
dial-up, polling, (or contacting each 
remote station), and synchronization, as 
well as such device-dependent tasks as 
character translation and insertion of 
control characters. 

The MCP consists of routines that 
identify the teleprocessing network to the 
operating system, establish line control 
between the computer and the various kinds 
of stations, and process messages in a way 
tailored to meet the needs of the user. A 
"message" is the data flowing either from a 
remote station to the central computer or 
from the central computer to a remote 
station. Each unit of data representing a 
message is terminated by a control 
character. An MCP is required in a 
teleprocessing system operating under rCAM. 

Depending on the needs of the 
installation, one or more COBOL programs 
may be required to process the contents of 
the messages. An example of a job needing 
no application program is message 
switching, an operation consisting only of 
forwarding messages unaltered (except for 
such processing as the MCP may perform) to 
one or more other stations. 

The MCP itself can perform limited 
processing (for example, examination of the 
first portion of a message to determine 
certain routine information and message 

1A System/360, at least a Model 40, or a 
System/370 model with a minimum of 128K 
bytes of main storage. 

2A station whose control unit is connected 
directly to a computer data channel by a 
local cable. 

334 

code translation>. Further, the M2P can 
obtain the time of day a message is 
received from a station and transmit this 
information to a COBOL program. It can 
also check the input messages to determine 
whether an error message should be sent to 
the designated station. 

This section describes the flow of a 
single-segment message through a system 
operating under TCAM, from the time it is 
entered at the remote station to its 
transmission to a destination station. 
Figure 113 outlines the flow of a message 
segment through a TCAM system. The 
encircled numerals in the flow diagram 
correspond to the steps listed in the 
description that follows. 

Because of the possible variety of both 
message types and destinations, it is often 
helpful for the user to precede the message 
"text" with a message "header" so that the 
user can transmit to the MCP information 
essential to handling the text. It is the 
user who determines which part of the 
message is the header and which part is the 
text. 

Step~_and 2: The input message is 
prepared at the remote station and entered 
on the line. The message may be keyed in, 
or it may be entered from a card or tape 
reader. The originating station enters the 
message via a communication line, the 
transmission control unit, and the 
multiplexor channel. 

Step l: The message enters the central 
computer and is stored, together with the 
internally generated buffer prefix, in a 
main storage buffer. As message data fills 
the buffer, TCAM inserts the necessary 
control information in the prefix. Before 
the message characters are placed in the 
first buffer, TCAM may reserve space in the 
buffer for later insertion of the time, 
date, and sequence number for the message, 
and for the screen control character for 
the IBM 2260 and 2265 remote display 
complexes, if appropriate. Once a buffer 
is filled with the first segment of the 
message, the MCP controls the flow of the 
buffer through the teleprocessing network. 
The heart of the MCP consists of the 
message handlers (~lli) constructed by the 
user to process messages from the various 
lines or line groups. 



" i 
"2.) MCP 

Primary and Secondary Storage I Message Handler 

I 

/~'~-~~ I 
at remote station 

I 

~ I CD 
MCP 

I Incoming Group 
I 

buffer T -- of M H specified 

I for the iine 

I 
0 I 

10-
Destination queue I ~ - I Yes required in No 
for application 

COBOL ",pl;~t;o, V 1 program I program 

I 

0 I (2) I 
I Outgoing Group of 

MCP MH specified for 
buffer I - COBOL application 

I 
program 

0 I 
0 I 

4- Read-Ahead I 
Receive 

queue I 
COBOL 

I 
application @ I @ program 

I .JDc9illingGr()up_oJ . 

~ Send 
MCP I MH specified for .. 
buffer - COBOL application 

I program 

I 

@I 
I @ 

I 
I 

10- Destination queue 
i No More Yes ~ I processing B for accepting station 
I required 

I 
I 

@" I ® I 
MCP I Outgoing Group 

buffer - of MH specified 

I for the line 

I 
~ I 

~ 
l,~~oc~pi 

at destination 

Figure 113. Message Flow Between Remote Stations and a COBOL Program 

Using the Teleprocessing Feature 33S 



step_~: The incoming message is routed to 
the incoming group of the MH specified for 
the line (by the MH= operand of the DCB 
macro for the line group in which the line 
is included). The message is passed, a 
buffer at a time, through the incoming 
group, which performs such user-selected 
functions on the message header as origin 
checking, and input sequence-number 
checking. Similarly, such functions may be 
performed for the message segment as 
translating the segment from line code to 
EBCDIC and causing an error message to be 
sent to the originating station when the 
incoming group detects any user-specified 
error in the segment. In performing its 
functions, the incoming group of the MH 
scans and processes header fields based on 
the relative order of the individual MH 
macro instructions. The incoming group 
then routes the message to the destination 
queue. 

Step_~: After processing by the incoming 
group, the message is placed on a 
destination queue for either the COBOL 
program, for processing, or an accepting 
station. (If no message processing is 
necessary, the next action performed is 
that described in Step 13.) All messages 
requiring text processing are routed to the 
destination queue for the COBOL program 
that processes that type of message. The 
user controls this routing via the message 
header by placing the name of the 
destination queue for the COBOL program in 
a destination field of the message header 
or by MH macro instructions such as MSGTYPE 
that may be used to direct messages of a 
particular type to a particular queue. 

Step~~ 7, and 8: The message from a 
destination queue for a COBOL program is 
placed in a main-storage buffer; the 
outgoing group of an MH (the MH is created 
especially for the application program and 
is assigned to it by the MH= operand of the 
PCB macro in the MCP) places it on the 
read-ahead queue, a special queue that 
allows overlap of MCP and application 
program processing of messages queued for a 
particular destination. 

Step~~: Each time the COBOL program issues 
a RECEIVE statement, TCAM passes message 
data from the read-ahead queue to a 
user-specified work area in the COBOL 
program. As the message data is moved to 
the work area, TCAM removes the header or 
text prefix from the buffer. After 
receiving the message data, the COBOL 
program processes it as required and then 
generates a response message, if any is to 
be returned to a station. The destination 
queues act as buffers between the COBOL TP 
program and the remote stations. Thus, the 
COBOL TP program can accept messages from 
MCP destination queuse and place these 

336 

messages in MCP destination queues as if 
the queues were sequential files within a 
conventional COBOL program. (The sa~ple 
COBOL program TESTTP1, shown in Fi~ure 118, 
reads a sequential file and then sends each 
record to a destination queue, creating a 
TCAM data set for the COBOL TP pro~ram 
TESTTP2, shown in Figure 119, rn~ki~g it 
possible to test a COBOL TP progran without 
terminals.) 

~t~Es 1Q~g~_!!: When the COBeL prograal 
issues a SEND statement, TC~M moves the 
data from the work area into an MCP buffer 
before it is handled by the incoming group 
of the MH designed for the COBOL program. 
A header or text buffer prefix is created 
when data is moved to the buffer, as for 
other incoming messages. As the message 
data fills the buffer, TCAM inserts control 
information in the prefix field. The 
response message generated by an 
application program can be any 
user-selected length. After the buffer is 
filled, the message is handled by the 
incoming group of the MH assigned to the 
application program by the MH= operand of 
the PCB macro instruction that provides an 
interface between the MCP and the COBOL 
program. 

Step_!~: If fUrther processing of the 
message is required in anotner application 
program, the message is queued for tnat 
destination (and Steps 5 through 11 are 
repeated). If however, no other 
application program processing is needed, 
the processed message is placed on the 
destination queue for an accepting station. 
The destination is that specified by the 
COBOL programmer in the file reference~ by 
the SYMBOLIC DESTINATION clause of the 
output CD. It may be for an application 
program or a station. 

SteE-!l: The destination queue for an 
accepting station, like the destination 
queue for an application program, is a part 
of the message queues data set. TC~M 

obtains message segments from the 
destination queue on a first-ended 
first-out (FEFO) basis within priority 
groups. 

~t~p~_!~_~g~_!2: The message segment is 
placed in a buffer, and the outgoing group 
of the MH specified for the line processes 
the message. The MH performs such 
user-selected functions as converting the 
code of the message to the transmission 
code for the station (if necessary), 
inserting the time and data in the header, 
logging messages, and updating message 
counts. These operations are performed in 
the buffers that receive the message 
segments from the destination queue. 



§tep_l£: TCAM transmits the message, minus 
the header and text prefixes, to the 
appropriate station. 

WRITING A MESSAGE CONTROL PROGRAM 

The COBOL programmer can write a message 
control program (MCP) desigr.ed specifically 
for his teleprocessing needs using 
telecommunications access methods (TeAM) 
macro instructions. Using a group of TCAM 
macro instructions, the user follows in 
general the coding requirements an:j 
restrictions of any other 
assembler-language macro instruction. 
Guidelines for writing an MCP are contained 
in the IBM OS Telecommunications Access 
Method (TCAM) Prog~am~~~~Guide_~gQ 
Reference Manual. The user must tailor 
these general statements to meet the needs 
of the installation. 

The sample message control program that 
appears in Figure 114 in this chapter is a 
hypothetical program designed for specific 
COBOL applications. The needs of the user 
will undoubtedly vary from installation to 
installation. Nevertheless, the sample MCP 

--toget.her wi t.h- the --sample--COBOt. ---prOgrarnE;"------
TESTTP1 and TESTTP2 (shown in Figures 118 
and 119) can serve as an excellent example 
of COBOL programs and an MCP written for 
teleprocessing applications. 

FUNCTIONS OF THE MESSAGE CONTROL PROGRAM 

Depending on the requirements of the 
installation, the user can create an MCP to 
perform any of the following functions: 

• Enable and disable communication lines 

• Invite terminals to transmit messages 

• Receive messages from terminals 

• Dynamically assign buffers to incoming 
messages 

• Handle messages on the basis of 
user-specified priorities 

• Perform message-editing functions for 
incoming messages 

• Determine the appropriate destination 
queue for a message and route the 
message to that queue 

• Queue the message in the appropriate 
destination queue 

• Place response messages generated by 
application programs on queues for 
subsequent transmission 

• Retrieve messages from destination 
queues and prepare them for 
transmission to remote stations 

• Perform message-editing functions for 
outgoing messages 

• Take periodic checkpoints of the system 

• Provide operator-to-system 
communications through system control 
terminals 

• Initiate corrective action when an 
error or unusual condition is detected 

• Cancel incoming messages containing 
errors 

• Reroute messages with erroneous control 
information to a special queue 

• Transmit error messages 

HOwever, not all of these functions are 
required of an MCP. Many of the optional 
TCAM macros allow the user to write an MCP 
that includes functions that would 
ot.he-rwi-s-e--fiiive-to--1:ie- -ex-eciite3-hy-tn-e-CDBOL 
program. There are, nevertheless, some 
functions the MCP must always provide and 
in so doing follow certain conventions. 
These requirements are discussed under 
"User Tasks." 

USER TASKS 

Guidelines for writing an ~CP are 
contained in the publication IBM OS Access 
Method (TCAM) ProgEammer'~_~~i~~_~~~-----
Reference Manual. The user must tailor 
these-general statements to meet the 
specific needs of his installation. For 
example, a message can be transmittej from 
one terminal to another, from a terminal to 
an application program, or from one 
application program to another. Moreover, 
the message may contain anyone of several 
types of data. 

Regardless of the specific requirements 
of the user, the MCP writer must always be 
concerned with four major tasks, as 
follows: 

• Defining the core storage buffers used 
by the MCP for handling, queueing, and 
transferring message data between 
communication lines and queueing 
devices. 

Using the Teleprocessing Feature 337 



• Defining the data sets referred to by 
the MCP, and providing for their 
activation and deactivation. 

• Defining the various terminal and line 
control areas used by the MCP (that is, 
the operating procedures and signals by 
which a teleprocessing system is 
controlled). 

• Defining the message handlers (the sets 
of routines that examine and process 
control information in message headers, 
prepare message segments for forwarding 

338 

to their destination, and route 
messages to their proper destination). 

In carrying out each of these t3sks, tne 
user codes a variety of assembler-language 
macros in a specified oraer. Some of these 
macros must be included in every MCP: 
others the user specifies according to the 
needs of his installation. Required as 
well as optional macros are illustrated in 
the sample MCP given in Figure 114. The 
encircled numerals in the discussion th3t 
follows refer to sections of code that are 
similarly labeled in the figure. 



LOC OBJECT CODE 

000000 

Figure 114. 

ADDR1 ADDR2 STMT SOURCE STATEMENT F150CT70 

1 *** 
2 * 
3 * tlliSSAGE CONTROL PROGRAM 
q * 
5 MCP 
6 

7 * 
8 * IN THE 
9 * 

10 * 
11 * 
12 * 
13 * 
1q * 
15 * 
16 * 
17 * 
18 * 
19 * 
20 * 
21 * 
22 * 
23 * 
2q * 
25 * 
26 * 
27 * 
28 * 
29 * 
30 * 
31 * 
32 * 
33 * 
3q * 
35 * 
36 * 
37 * 
38 * 
39 * 
ItO * 
q1 * 
q2 * 
q3 * 
q4 * 
q5 * 
46 * 
q7 * 
48 * 
q9 * 
50 * 
51 * 
52 * 
53 * 
54 * 
55 * 

CSECT 
PRINT NOGEN 

FOLLOWING MACRO--
PROGID MAY BE OMITTED--IF USED, IT IS PLACED AT THE 

BEGINNING OF THE EXECUTABLE CODE IN THE MCP 
DISK=YES IS THE ASSUMED OPER~ND--IF NO MESSAGE QUEUES DATA 

SETS ARE ON DISK,CODE DISK=NO 
CPB= USED IN READING FROM AND WRITING TO DISK--NEEDED IF 

DISK=YES--NO. DEPENDS ON NO. OF LINES, AMOUNT OF ~ESSAGE 
TRAFFIC AND SIZE OF BUFFER UNITS 

CIB=NO. OF COMMAND INPUT BLOCKS--BUFFER-LlKE AREAS USED TO 
CONTAIN OPERATOR CONTROL MESS1>.GES FROM SYSTEM CONSOLE-
FREED ONCE A MESSAGE PROCESSED--2 ASSUMED AND ~lliX. IS 255 

PRlMARY=SYSCON--THIS IS ASSut-mD AND SPECIFIES THE SYSTEM 
CONSOLE AS THE PRIMARY OPERATOR CONTROL TERMINAL FOR 
ENTERING AND ACCEPTING OPERATOR CONTROL MESSAGES--IF A 
TERMINAL IS SPECIFIED, IT MUST BE ON A NON-SWITCHED LINE 
Al~ BE ABLE TO ACCEPT AND ENTER MESSAGES 

CONTROL=--USED TO IDENTIFY OPFRATOR CONTROL ~~SSAGES TO SYSTEM 
WHEN RECEIVED FROM OTHER THAN SYSTEJ:.1 CONSOLE--O IS DEFAULT 
AND IS VALID ONLY IF ALL OPERATOR COMMANDS ARE TO BE 
ENTFRED FROM SYSTEM CONSOLE 

KEYLEN=--SIZE OF BUFFER UNIT--BETW~EN 33 AND 255-
CAN ALSO SPECIFY BY UNITSZ= RATHER THAN KEYLEN= 

LNUNITS=--NO. OF BUFFER UNITS TO BE USED IN BUILDING BUFFERS 
FOR INCOMING AND OUTGOING MESSAGE SEGMh~S--IF TOO FEW ARE 
SPECIFIED, INCOMING MESSAGE DATA MAY BE LOST--Too MANY 
WASTES STORAGE SPACE 

MSUNITS=--NEEDED IF HAVE MAIN STORAGE MESSAGE QUEUES DATA SET 
--NO. OF BUFFER UNITS ASSIGNED TO THIS DATA SET--IF NO DISK 
BACK-UP IS SPECIFIED, MESSAGE SEGMENTS ~AY BE LOST IF NOT 
ENOUGH UNITS 

MSMAX=--PERCENTAGE OF UNITS IN ~AIN STORAGE ~~SSAGE QUEUES 
DATA SET WANT USED BEFORE BIT IN ERROR RECORD SET--
10 _AS.sU~tED.___________ _ . ________ ____ _ 

MSMIN=--PERCENTAGE OF UNITS IN MAIN STORAGE MESSAGE QUEUES 
DATA SET WANT UNUSED BEFORE BIT SET NOTIFYING NO LONGER 
CROWDED--MUST BE LESS TH1U~ MSMAX--
50 ASSUMED 
(NOTE--THIS BIT ALwAYS SET IF SPECIFIED PERCENTAGE OF UNITS 
UNUSED) 

DLQ=--OPTIONAL--USED TO SPECIFY A TERMINAL TO RECEIVE MESSAGES 
HAVING INVALID DESTINATIONS AS DETERMINED BY FORWARD MACRO 

INTVAL=--AN OPERATOR CONTROL MESSAGE TELLS TCAM TO ENTER THIS 
DELAY TO MINL~IZE UNPRODUCTIVE POLLING--WF~N ALL MULTIPOINT 
LINES ARE INACTIVE, THE INTERVAL COMMENCES--LINES TO 
SWITCHED STATIONS AND NONSWITCHED CONTENTION LINES LEFT 
ACTIVE--THE OPERATOR COMMAND IS A MODIFY COMMAND REFERRED 
TO AS 'INTERVAL'~-THE NO. SPECIFIES THE NO. OF SECONDS 

ST~~TUP=-IF THIS OPERAND IS OMITTED, THE USER WILL BE GIVEN 

PAGE 1 

5/03/72 

A Message Control Program for Teleprocessing Application (Part 1 of 20) 

Using the Teleprocessing Feature 339 



LOC OBJECT CODE 

000512 12FF 
00051~ ~780 D520 

000532 9110 D738 
000536 ~7EO D510 

0005~6 9110 D76~ 
0005~A 47J:,O D510 

r'AG£ 2 

ADDr1 ADD.R2 STMT SOURCE STATEMENT F15OCT70 5/03/72 

00740 

0076C 

0 

00528 

56 * 
57 * 
58 * 
59 * 
60 * 
61 * 
62 * 
63 * 
64 * 
65 * 
66 * 
67 * 
68 * 
69 * 
70 * 
71 * 
72 * 
73 * 
74 * 
75 * 
76 * 
77 

309 * 

THE OPPORTUNITY TO SPECIFY IT AT INITIALIZATION TIMF AND 
HE MAY ALSO CHANGE OTHER INTRO OPERANDS--CY ~£ANS ALWAYS 
A COLD START--W SPECIFIES A W~~ START AFTER A ~UICK OR 
FLUSH CLOSE:DOWN AND A CONTINUATION AFTER A SYSTEM FAILURE 
--W INDICA~ES THE CONTINUATION RESTART WILL INCLUDE FULL 
SCANNING OF THF. QUF.U"E-S--WY IS THE SlLII!E AS W EXCEPT NO 
SCANNING OF THE QUEUES FOR ALREADY SENT MESSAGES IS DONE-
--A CHECKPOINT DATA SET IS NEEDED FOR ANYTHING BUT A COLD 
START--ALSO, IF DD CARD FOR CHECKPOINT DATA SET SPECIFIES 
DISP=NEW, WILL GET A COLD START REGARDLESS 

OLTEST=IF DO NOT WISE ON-LIN~ TEST FACILITY--CODE 0 
FEATURE= THE DEFAULTS ARE DIAL, 2741, AND TlMER--SINC£ WE DO 

NOT HAVE A 2741 TERMINAL, WE ARE CODING TO INDICATE THIS 
LlNETYP= STSP SPECIFIES START-STOP LINES ONLY, BISC SPECIFI5S 

BSC LINES ONLY, MINI SPECIFIES ALL TERMINALS ARE IBM 1050 
ON I,EASED LINES, BOTH IS DEFAULT AND INDICATES ALL TYPES 
OF LINES ARE SUPPORTED--IF THE LINES IN THE SYSTEM DO NOT 
FALL UNDER THE 'BOTH' CATEGORY, SPACE IS SAVED BY CODING 
THIS OPERAND 

DTRACE -- PUT IN FOR TESTING ONLY TEST * 
INTRO PROGID=MCP,DISK=YES,CPB=10,CIB=2,PRI~~Y=SYSCON. X 

CONTROL=TCAM,KEYLEN=100,LNUNITS=20,MSUNITS=50,MSMAX=7S, X 
MSMIN=50,DLQ=T1, INTVAL=12 0 0, STA.RTUP=W, OLTEST=O, X 
FEATUIlli'= (DIAL, N02741, TIMER), LINE'IYP=BOTti, X 
DTRACE=700 

310 * 
311 

TEST IF INTRO MACRO WORKED SUCCESSFULLY 

312 
313 ABEND 
321 * 

LTR 15,13 
BZ OPENFILE 

ABEND 123, DUMP 
YES 
INTRO OR AN OPEN FAILED 

322 * THE MESSAGE QUEUES DATA SFT MUST BE OPENED FIRST IF IT RESIDES ON 
323 * DISK--A MAIN STORAGE MESSAGE QUEUES DATA SET IS NOT OPENED 

~ 324 OPENFILE OPEN (~~GQ, (INOUT» ~ 
330 TM MSGQ+48,X'10' CHECK IF OPEN SUCCESSFUL 

00518 

00518 

331 BNO ABEND BRANCH IF NOT 
332 * 
333 * 
334 
340 
341 
342 * 

IF THE CHECKPOINT DATA SET IS USLD, IT MUST B~ OPENBD NEXT 
OPEN (CHKPT, (INOUT» ® 
TM CHKPT+48,X'10' CHECK IF OPEN SUCCESSFUL 
BOO ABEND BRANCH IF NOT 

343 * OPEN LINE GROUP DATA SETS--LINES WILL BE ACTIVATED SINCE IDLE NOT 
344 * SPECIFIED 
345 * NOTE--WE ARE NOT CHECKI~G FOR OPEN ERRORS FOR THE LINES--SINCE THERB 
346 * IS PROBABLY NO NEED TO STOP THE SYSTEM IF SOME OF THE LINES ARE NOT 
347 * WOKKING--MESSAGES WILL BE PRINTED ON THE SYSTEM CONSOLE FOR LIN~S 
348 * THAT ARE NOT WORKING--
349 * IF A LINE BECOMES OPERATIONAL DURING A RUN, IT CAN 'I'HEN BE STARTED 
350 * BY TH£ VARY COMMA~ID USED TO START A LINE WHICH IS OPENED AS IDLE 
351 OPE~ (LN1050, (INOUT),LNTWX,CINOUT) ~ 
359 * 
360 * OPEN LOG DATA SET ~ 
361 * 

Fiqu:::"E: 114. A rvle~;sage Control Program for leleprocFss:tn· Af:!licat~on~: {Fart : of 20 I 

340 



LOC OBJECT CODE 

00056A 9110 D7FC 
00056E 47EO D510 

00057E 9110 D854 
000582 47EO D510 

00060E 58DD 0004 

ADDRl ADDR2 STMT SOURCE STATEMENT F150CT70 

00804 

0085C 

00518 

00518 

362 
368 
369 
370 * 
371 
377 
378 
379 * 

OPEN 
TM 
BNO 

OPEN 
TM 
BNO 

(~SGLOG, (OUTPUT» 
MSGLOG+48, X'10' 
ABEND 

(DUMP, (OUTPUT» 
DUMP+48,X'10' 
ABEND 

CHECK IF OPEN SUCCESSFUL 
BRANCH IF NOT 

FOR SNAPS 
CHECK IF OPEN SUCCESSFUL 
BRANCH IF l~OT 

TEST*** 

380 * ISSUE THE FOLLOWING BETWEEN THE OPENING AND CLOSING OF Tf:iE DATA SETS 
0381 READY 

398 * TEST*** 
399 SNAP DCB=DUMP,PDATA=ALL * 
411 * 

~ 412 * CLOSE DATA SETS 
~.1.J cr.ueSE (Lr-ll050" LNTWX) 0 LINE GROUP DATA SETS 

00004 

® 

421 * 
422 
428 * 
429 
435 * 

CLOSE (DUMP,DISP) ~ 

CLOSE (MSGLOG,DISP)(S) 

SNAP DATA SET 

LOG DATA SET 

436 * ALW~YS CLOSE CHECKPOINT DATA SET NEXT TO LAST 
437 CLOSE (CHKPT,DISP) @ 
443 * 
444 * THF MESSAGE QUEUES DATA SET MUST ALWAYS BE CLOSED LAST 
445 CLOSE (MSGQ, DISP) fe'\ 
4~1 * \.:::,J 
452 * RE~URN TO OS SUPERVISOR 

TEST*** 

* 

453 L 13,4(13) 
454 * 
455 * 

PICK UP ADDRESS OF SYSTEJ.VJ SAVE AREA SAVED 
IN IEDSAVE1--ADDRESS OF IEDSAVEl WAS PUT 
IN REG. 13 WHICH WAS MADE BASE REGISTER 

456 RF.TURN (14,12>,RC=O 
460 * 

PAGE 3 

5/03/72 

Figure 114. A Message Control Program for Teleprocessing Applications ,Part 3 of 20) 

Using the Teleprocessing Feature 341 



LOC OBJECT CODE 

Figure 114. 

342 

ADDR1 ADDR2 STMT SOURCE STATEMENT 

462 **** 
463 * 

F150CT70 

464 * DATA DEFINI~IONS--PROCESS CONTROL BLOCKS AND DATA CONTROL BLOCKS 
465 * 
466 **** 
467 * 
468 * PCB--PROCESS CONTROL BLOCK--USED TO COMMUNICATE BETWEEN THE ~CP 
469 * AND AN APPLICATION PROGRAM--
470 * ONE PCB IS NEEDED FOR EACH ACTIVE APPLICATION PROGRAM 
471 * 
472 * IN THE FOLLOWING MACRO--
473 * MH= GIVES THE SY~~OLIC ADDRESS OF THE MESSAGE HANDLER FOR THIS 
474 * APPLICATION PROGRAM 
475 * BUFSIZE= SPECIFIES SIZE OF BUFFERS TO HANDLE MESSAGES FOR 
476 * APPLICATION PROGRAM 
477 * BUFIN= INITIAL NO. OF BUFFERS INTO WHICH USERS WRITE WORK AREA 
478 * E~£TIED--OPTIMUM NO. IS ENOUGH FOR ALL OF WORK AREA--BETwEEN 
479 * 2 AND 15--2 ASSUMED 
480 * BUFOUT= INITIAL NO. OF BUFFERS THAT MAY BE FILLED IN ANTICIPATION 
481 * OF A READ--BETWEEN 2 AND 15--2 ASSUMED 
482 * RESERVE=NO. OF BYTES TO RESERVE FOR INSERTION OF CHARS. BY DATE'll',,., 
483 * AND SEQUENCE MACROS FOR MESSAGES COMING FROM APPLICATlON PROGRAi·~; 
484 * DATE=YES--THIS IS NEEDED FOR ALL PCB ENTRIES FOR A COBOL PROGRAM. 
485 * THIS WILL ~~E THE DATE AND TIME AVAILABLE SO IT MAY BE PLACED 
486 * IN THE COBOL PROGRAM INPUT CD-- (IT IS ALSO NEEDED ON AN INPUT 
487 * TPROCESS ENTRY) 
488 * 
489 * PROCESS CONTROL BLOCK FOR COBOL PROGRAM RUNNING WITH TERMIN~LS 

PAGE 4 

5/03/72 

490 * ~ 
~ 491 PCBLK PCB\:}MH=MHTRMAPP,BUFSIZP=100,BUFIN=2,BUFOUT=5,RESERVE=21, X 
\.:;J DATE=YES 

526 * 
527 * PROCESS CONTROL BLOCK FOR COBOL PROGRAMS THAT SIMULATE TERNINAL 
528 * INPUT DATA--USED FOR TESTING WITHOUT TERMINALS 
529 * fb\ 
530 PCBLK1 PCB\:!MH=MHAPPAPP,BUFSIZE=100,BUFIN=2,BUFOUT=S,DATE=YES 
563 * 
564 * PROCESS CONTROL BLOCK FOR COBOL PROGRMf,S TESTING MESSAGES SENT 'TO 
565 * DESTINATIONS DEFINED BY A QUEUE STRUCTURE 
566 * 
567 * IT USES THE SAME MH THAT PCKBLK1 USES 
568 * ~ 
569 PCBLK2 PCB~MH=MHAPPAPP,BUFSIZE=100,BUFIN=2,BUFOUT=5,DATE=YES 
602 * 
603 * DCBS 
604 * 
605 * 
606 * 
607 * 

DCB FOR MESSAGE QUEUES DATA SET 
IN THE FOLLOWING MACRO--

608 * 
609 * 
610 * 
611 MSGQ 
643 * 
644 * DCB 

OPTCD=R SPECIFIES REUSABLE DISK--IF NON-REUSABLE,SPECIFY L 
THRESH= SHOULD PROBABLY BE USED IF NON-REUSABLE DISK-

SPECIFIES PERCENTAGE OF RECORDS TO BE USED BEFORE A FLUSh 
CLOSEDOWN INITIATED--A CERTAIN PERCENTAGE ASSU~ED 

DCB~DSORG=TQ,MACRF=(G,P),DDNAME=QFILE,OPTCD=R 

FOR THE CHECKPOINT DATA SET 

A Message Control Program for I~leprocessing Applications (Part 4 of 201 



LOC OBJECT CODE 

LOC OBJECT CODE 

Figure 114. 

PAGE; 5 

ADDRl ADDR2 STMT SOURCE STATEMENT F150CT70 

645 CHKPT DCB®DSORG=TQ,MACRF=(G,P),DuNAME=CFILE,OPTCD=C 

FOR THE 1050 LINE GROUP 
677 * 
678 * DCB 
679 * IN 
680 * 
681 * 
682 * 
683 * 
684 * 
685 * 
686 * 
687 * 
688 * 
689 * 
690 * 
691 * 
692 * 
693 * 
694 * 
695 * 
696 * 
697 * 
698 * 
699 * 
700 * 
701 * 
702 * 
703 * 
704 * 
705 * 
706 * 
707 * 
708 * 
709 * 
710 * 
711 * 
712 * 
713 * 
714 * 
11.5* 

THE FOLLOWING r~CRo--
CPRI=R INDICATES THAT RECEIVE HAS PRIORI'I'Y OVER SENDING--

S IHDICATES THAT SE;'NDING HAS PRIORITY OVi;R RECEIVING-
E INDICATES EQUAL PRIORITY--

FOR SWITCHED LINES. S MUST BE SPECIFIED 
BUFIN=NO. OF BUFFERS TO ASSIGN IN-ITIALLY FOR RECEIVING FOR 

EACH LINE--l ASSmffiD--15 MAXI MUfJi 
BUFOUT=NO. OF' BUFFERS TO ASSIGN INITIALLY FOR SElmING FOR 

EACH LINF--2 ASSID'JED--15 MAXIMUN 
BUFMAX=~AX. NO. OF BUFFERS TO BE USED FOR DATA TRANSFER FOi{ 

EACH LINF IN LINE GROUP--NO LESS THAN LARGER OF RUFIN AND 
BUFOUT--15 MAXIMUM 

BUFSIZE=BUFFEK SIZE IN BYTES USED FOR ALL LINES IN THIS LlNE 
GROUP--SIZE SHOULD BE A MULTIPLE; OF THE BUFFER UNIT SIZE 
SPECIFIED IN KEYLEN= OPERAND OF INTRO MACRO-- (~AY BE 
OVERRIDDEN ON A STATION BASIS BY BUFSIZE= OPERAND OF THE 
TERMINAL ~.ACRO) 

INVLIST=NAMES OF INVITATION LISTS FOR LINES OF LINE GROUP 
--INVITATION LIST NMi'..E:S ARE SPECIFIED Po.CCORDING '1'0 THE 
ASCENDING RELATIVE LINE NOS. OF THE LINES IN THE GROUP 

MH=ADDRESS OF MESSAGE HANDLER 
PCI=SPECIFIES IF' AND HOW A PROGRAM-CONTROLLED INT!<:RRUPTION 

TO BE USED FOR BUFFER ALLOCATION Ai.m DEALLOCATION--IST 
SUBOPERAN.:> :t!.EFERS TO RECEIVING AND 2ND TO SENDING--
N SPECIFIES NO PCIS--R SPECIFIES AFTER 1ST BUFFER, COMPLETED 
BUFFER DEF~LOCATED--A IS ASSUMED AND SPECIFIES AFTER 1ST 
BUFFER, C01~LETED BUFFER DEALLOCATED AND ANOTHER BUFFER IS 
ALLOCATED 

RESERVE=NO. OF BYTES TO RESERVE FOR INSERTION OF CdARS. BY 
DATETIME AND SEQUENCE MACROS 

TRANS=TRANSLATION TABLE 
SCT=SPECIAL CHARACTERS TABLE 
(IF CPRI=R AND NON-SWITCHED LItlE, NEED INTVL= OR NO MESSAGES 
ARE SENT--INTVL=NO. OF SECONDS TO DELAY AFTER PASS THRU 
INVITATION LIST--NO LARGER THAN 255--TOO SHORT A DELAY CAUSES 
MESSAGES TO ACCUt-:ULATE) 

716 LNI050 DeBe DSORC;;TX, ~.ACRF= (G'; pf, CPRj:;;"S ~DDw.:..ME:~t~NT,BUFtN=2; 
BUFOUT=4,BUF~~=4,BUFSIZE=100,I!fVLIST=(LIST1050), 

~ili=MH1050,PCI=(A,A),RESERVE=21,TRANS=105F,SCT=105F 

753 * 
754 * DCB FOR THE TWX LINE--SEE DESCRIPTION OF OPEKANDS BEFORE DCB FOR 
755 * 1050--LNI050 
756 * ~ 
757 LNTWX DCB DSORG=TX,MACRF=(G,P) ,CPRI=S,DDNAME=LN2, BUFIN=2, 

794 * 
795 * 
796 * 
797 * 
798 * 

BUFOUT=4,BUFMAX=4,BUFSIZE=100,INVLIST=(LISTTWX>, 
~E=~ffiTWX,PCI=(AiA)iRESERVE=21~TRANS=TTYC,SCT=TTYC 

DCB FOR LOG DATA SET 
IN TEE FOLLOWING MACRO-- * 

BLKSIZE=--THE VALUE SHOULD BE THE SAME AS IN KEYLEN OPERAND OF 
INTRO MACRO * 

x 
X 

X 
X 

5/03/72 

PI,GE 6 

ADDRl ADDR2 STMT SOURCE STATEMENT F150CT70 

799 * 
800 * 
801 MSGLOG 

NCP=--MAX. NO. OF BUFFER UNITS THAT MAY APPEAR IN A BUFFER * 

DCB~DSORG=PS'MACRF=(W),DDNAME=LOGFILE'BLKSIZE=100'RECFM=F. *x 
NCP=2 * 

852 '" TEST*** 
853 * DCB FOR SNAPS * 
854 DUMP DCB DSORG=PS,RECFM=VBA,MACRF=(W>,LRECL=125,DDNAME:=LRDUt-P, *x 

BLKSIZE=882 * 

5/03/72 

A Message Control Program for Teleprocessing Applications (Part 5 of 20) 

Using the Teleprocessing Feature 343 



LOC OBJECT CODE 

Figu:r-e 114. 

344 

ADDR1 ADDR2 STMT SOURCE STATEMENT F150C'J70 

906 **** 
907 * 
908 * TEffillINAL AND LINE CONTROL--DEFINES TERMINAL TABLE E~nRIES AND THI' 
909 * INVITATION LISTS FOR EACH LINE 
910 * 
911 **** 
912 :;: 
913 * 
914 * 
915 * 
916 * 
917 
945 * 
946 * 
947 * 
948 * 
949 * 
950 * 
951 * 
952 * 
953 * 
954 * 
955 * 
956 * 
957 * 
958 * 
959 * 
960 * 
961 * 
962 * 
963 * 
964 * 
965 * 
966 * 
967 T1 

1001 * 

DEFINE THE TERMINAL TABLE 
LAST= NAME OF LAST ENTRY IN TABLE 
~~LEN= NUMBER OF CHARACTERS IN LONGEST NAME 

TTABLE LAST=D1,MAXLEN=5 
NOTE* 

IF ANY OPTION MACROS ARE t-I""EEDED, THEY GO HERE--DATA GOES I~ EN'I'RIES * 
USING THE OPDATA= OPERAND OF THE TE~~JNAL OR TPROCESS ENTRIES 

ENTRY FOR 1050 TERMINAL 
IN THE FOLLOWING MACRO--

QBY= T SPECIFIES THAT OUTGOING MESSAGES ARE TO BE QUEUED BY 
TERMIN~.L--USE L IF BY LINE 
--MUST QUEUE BY TERMINAL IF A SWITCHED STATION OR A 
BUFFERED TERMINAL 

DCB= DeBNA-ME FOR LINE 
RLN=RELATIVE LINE NO. WITHIN THE LINE GROUP OF THIS LINE 
TERM=SPECIFIES TYPE OF TERMINAL 
QUEUES=MR SPECIFIES MESSAGE QUEUES KEPT IN MAIN STORAGE wITH 

BACKUP ON REUSABLE DISK 
ADDR=6213 IS A9 IN 1050 CODE--USED WHEN COMPUTER HAS MESSAGE 

TO SEND--9 IS CODE FOR ANY OUTPUT DEVICE 
ALTDEST=IS NEEDED BECAUSE THIS IS REUSABLE DISK--NEEDED SO 

MESSAGE IS NOT DISCARDED AT ZONE CHANGEOVER 
NTBLKSZ= THE NO. OF CHARS. BETWEEN INSE~TION OF EOB CHARS. 

IN OUTPUT MSG. WHEN MSGFORM CODED IN OUTHDR 

TERMINAL~QBY=T.DCB=LN1050,RLN=1.TERM=1050,QUEUES=MR, 
ADDR=6213,ALTDEST=T1,NTBLKSZ=(120) 

1002 * DEFINE ENTRY FOR THE SWITCHED TWX LINE WHICH CAN BE USED BEFORE AN 
1003 * ORIGIN MACRO IS ISSUED TO IDENTIFY THE STATION 
1004 * UTERM=YES IDENTIFIES THIS AS SUCH AN ENTRY 
1005 * THIS MACRO MUST PRECEDE ALL TERMINAL MACROS FOR STATIONS ON LINE 
1006 * IN THE FOLLOWING MACRo--
1007 * ALWAYS SPECIFY DCB ~, RELATIVE LINE NO., TERMINAL TYPE, 
1008 * AND QUEUES 
1009 * --ADDR= ~dGHT BE CODED IF STATION HAD ADDRESSING CH~RS.--IF 
1010 * USED, ALL STATIONS ON LINE MUST HAVE IDENTICAL ADDRESSING 
1011 * CHARACT~ 
1012 * y~ 
1013 T2A TERMINAL UTERM=YFS,DCB=LNTWX,RLN=1,TERM=3335,QUEUES=MR 
1041 * 
1042 * TERMINAL ENTRY FOR TWX TERMINAL--SEE DESCRIPTION OF MOST OF OPERANDS 
1043 * PRECEDING TERMINAL MACRO FOR 1050 
1044 * IN ADDITION--
1045 * DIALNO= SPECIFIES TELEPHONE NO. OF STATION AND MUST BE 
1046 * SPECIFIED FOR SWITCHED STATIONS--CODE 'NONE' IF NO AUTO 

5/03/72 

x 

A Message Control Program for Teleprocessing Applications (Part 6 of 20) 



LOC OBJECT CODE 

Figure 114.. 

1--DDRl ADDR2 STMT 

1047 * 
1048 * 
1049 * 
1050 * 
1051 * 
1052 * 
1053 T2 

1076 * 

SOURCE STATEMENT F150CT70 

CALL FEATURE 
ArDR= IS NOT GIVEN SINCE THIS STATION IS ON A SWITCHED LINE 
NTBLKSZ IS NOT USED FOR TWX TERMINALS 
CIh~L= NO. OF SECONDS BEFORE COMPUTER SHOULD CALL STATION 

--NOT NEEDE~F NO AUTO CALL FEATURE 

TERl>'lINAL QBY=T, uCB=L;IITWX, RLN=l, TER.."1=3335, QUEUES=~;R, 
DIALNO=NONE,ALTDEST=T2 

1077 * TP~OCESS E~~IES 
1078 * 
1079 * 
1080 * 
1081 * 
1082 * 
1083 * 
1084 * 
1085 * 
1086 * 
1087 * 
1088 * 
1089 * 
1090 * 
1091 * 
1092 * 
1093 * 
1094 * 
1095 * 

IN TilE FOLLOWING f¥1"ACROS--
PCB= NAME OF PROCESS CONTROL BLOCK--ALL TPROCESS 

ENTRIES FOR THE SAME APPLICATION PROGRAM MUST HAVE THE Sh~: 
PCB 

QUEUES= IS THE sru~ AS FOR A TERMINAL MACRO--HOWEVBR, BY 
OMITTING, USER SPECIFIES THAT THIS 2NTRY IS USED FOR PUTS & 
WRITES FROM APPLICATION PROGRAM 

ALTDEST= FOR OUTPUT, GIVES WBERE REPLIES TO OPERATOR MSGS. SENT 
IF WERE FNTEFZD FROM AN APPLICATION PROGRA}1--NO~' APPLICABLE 
TO COBOL--
ONLY NEEDED FOR INPUT QUEUES IF REUSABLE DISK QUEUEING 

RECDEL= SPECIFIES CHARACTER USED '1'0 DENOTE END OF RECORD 
DATE=YES--THIS IS NEEDED FOR ALL INPUT TPROCESS ENTRIES 

FOR A COBOL PROGRAM. THIS WILL ~~ THE DATE AND TIME 
AVAILABL~ SO IT MAY BE PLACED IN THE COBOL PROGRAM 
INPUT CD. 

1096 * INPUT TPROCESS ENTRY FOR COBOL PROGRAM RUNNING WITH TERMINALS 
® 1097 * 

1098 PIN TPROCESS PCB=PCRLY.,QUEUES=MR,ALTDEST=PIN,RECDEL=FF,DATE=YES 
1127 * 
1128 * OUTPUT TPROCESS ENTRY FOR COBOL PROGAAM RUNNING WITP TERf.lINl'.LS 
1129 * 

TPROCESS PCB=PCBLK,RECDEL=FF 

THE FOLLOWING TWO INPUT TPROCESS ENTRIES ARE FOR COBOL PROGRAMS 
THAT SIMULAT~ TERMINAL INPUT DATA--USED FOR TESTING WITHOUT 
TERMINATJS 

1130 POUT 
1156 * 
1157 * 
1158 * 
1159 * 
1.160 * 
1161 Pl 
1187 * 
1188 P2 
1214 * 

TPROCESS PCB=PC~LK1,QUEUES=MF.,ALTDEST=P2,RECDEL=FF,DATE=YES 

1215 * OUTP~ TPROCESS ENTRY FOR THESE COBOL PROGRAMS 
1216 * 
1217 POUTl 
1243 * 

TPROCESS PCB=PCBLK1,RECDEL=FF d 

1244 * T~E FOLLOWING SIX INPUT TPROCESS ENTRIES A.."RE FOR COBOL QUEUE 
1245 * STRUCTURE TEST PROG~~ 
1246 * 
1247 PQl 
1273 * 
1274 PQ2 
1300 * 

TPROCESS PCB=PCRLY.2,QUEUES=MR,ALTDEST=PQ1,RECDEL=FF,DATE=YES 

TPROCFSS PCB='PCBLK2, QUEUES=MR, ALTDEST=PQ2, RECDEL=FF, DATE=YES 

t'AGL 8 

5/03/12 

X 

A Message Control Pro~ram for Teleprocessinq Applications (Part 7 cf 201 

Jsinq tne 'ItleprccEscing ~'t.::c.t..urE: 34J 



LOC OBJECT CODE 

LOC OBJECT CODE 

0009DB OC 

~nDRl ADDR2 STMT SOURCE STATEMEN'l' 

1301 PQ3 
1327 * 
1328 PQ4 
1354 * 
1355 PQ5 
1381 * 
1382 PQ6 
1408 * 

TPROCESS 

TPROCFSS 

TPROCESS 

TPROCESS 

Fl!)OCT10 

PC:S:=PCBLK2,QUEUES=MR,ALTDEST=PQ3,RECDEL=FF,DATE=YES 

PCB=PCBLK2,QUEUES=MR,ALTDEST=PQ4,RECDEL=FF,DATE=YES 

PCE=PCBLK2,QUEUES=MR,ALTDEST=PQ5,RECDEL=FF,DATE=YES 

PCB=PCBLK2,QUEUES=MR,ALTDEST=PQ6,RECDEL=FF,DATE=YES 

1409 * OUTPUT TPROCESS ENTRY FOR COBOL QUEUE STRUCTURE TEST PROGRAMS 
1410 * 
1411 PQOUT 
1437 * 
1438 * 

TPROCESS PC~PCBLK2,RECDEL=FF 

1439 * DISTRIBUTION LIST ENTRY --
1440 * 
1441 * 
1442 * 
1443 * 
1444 * 
1445 * 
1446 * 
1447 * 
1448 * 
1449 * 
1450 * 
1451 * 
1452 * 
1453 * 
1454 * 
1455 * 

IN THE FOLLOWING MACRO --
LIST = NAMES OF TERMINAL OR TPROCESS ENTRIES IN ThE 

TERMINAL TABLE 

THE LIST SHOULD NOT INCLUDE A TPRCCESS ENTRY FOR A 
COBOL APPLICATION PROGRAM 

TYPE= D SPECIFIES THIS IS A DISTRIBUTION LIST ENTRY 
C WOULD SPECIFY A CASCADE LIST ENTRY 
DISTRIBUTION LISTS INDICATE A MESSAGE FORWARDED TO THEM 
WILL BE SE"t-.'T TO ALL NAMES IN THE LIST 

WITH CASCADE LISTS, MESSAGES WILL BE SENT TO THL QUEUE 
SPECIFIED IN THE LIST WITH THE FEWEST NO. OF MESSAGES 

1456 * 1050 AND TWX--USED BY MESSAGE PROCESSING PROGRAM 
1457 * 
1458 D1 
1479 * 
1480 * 

TLIST LIST=(Tl,T2),TYPE=D 

1481 * INVITATION LISTS 
1482 * SHOULD ALWAYS BE SPECIFIED FOLLOWING THE MACROS DEFINING THE TERMINAL 
1483 * TABLE 
1484 * 
1485 * LIST 
1486 * 
1481 * 
1488 * 
1489 * 
1490 * 
1491 * 
1492 * 

FOR 1050 LINE--
ORDER= EN~IES 

T1 SPECIFIES 
MACRO 

FOR STATIONS ON LINE IN THE ORDER TO BE POLLED 
A STATION O~ THE LINE DEFINED BY A TERMINAL 

+ SPECIFIES THE TERMINAL IS INITIALLY ACTIVE, - WOULD 
SPECIFY IT WAS INITIALLY INACTIVE 

6215=AO IN 1050 CODE--A IS THE STATION ADDRESS--O ASKS FOH 
INPUT FROM ANY INPUT COMPONENT 

1493 * 
1494 LISTI050 INVLIST ORDER=(T1+6215) ~ 
1503 * 
1504 * LIST FOR TWX LINE--
1505 * SINCE A TERMINAL MACRO WITH UTERM=YES WAS DEFINED FOR THIS LINE, 
1506 * THIS MACRO NA..~E IS USED RATHER THAN THE ONE FOR THE TWX STATION 
1501 * 
1508 * ThIS IS A SWITCHED LINE WHICH DOBS NOT HAVE THE AUTO-CALL FEATURE--

ADDRl ADDR2 STMT SOURCE STATEMBNT F150CT10 

1509 * THE COMPUTER NEVER ASKS FOR THE ID SEQUENCE FROM THE TWX TERMINAL 
1510 * UNLESS THE AUTO-CALL FEATURE IS PRESENT 
1511 * 
1512 * IF AUTO-CALL FEATURE IS NOT PRESENT OR TWX TERMINAL DOES NOT HAVE 
1513 * AN ID SEQUENCE FOR A.N ANSWER-BACK, OMIT THE ID SEQUENCE CHARS. IN 
1514 * THE INVLIST MACRO 
1515 * 
1516 * IF AN ID SEQUENCE IS USED FOR THE TWX--IT IS SUGGESTED THE 
1511 * FOLLOWING CHARACTERS BE USED -- CR LF IDCHARS CR LF XON--IN LINE 
1518 * CODE 
1519 * 
1520 * THE CPUID OPERAND IS NEEDED FOR TWX TERMINALS--IT WILL PRINT AT 
1521 * TE~~INAL WHEN CONNECTION IS MADE 
1522 * 
1523 LISTTWX INVLIST ORDER=(T2A+),CPUID=TWXSEQ (§) 
1532 * 
1533 * REFERENCED BY LISTTWX AS CPUID OPERAND 
1534 * -- SUGGESTED USE NULL CR LF RUBOUT InCHARS CR LF XON 
1535 * CPUID IS -- COBOL 
1536 TWXSEQ DC X'OC' 12 CHARACTERS 

5/03/72 

PAGE 10 

5/03/72 

0009DC 01B151FFC3F343F3 1531 DC X'01B151FFC3F343F333B15189' 
1538 * 

Figure 114. ~ Message Control Program for Teleprocessing Applications (Part 8 of 201 

346 



LOC OBJECT CODE 

Figure 114. 

ADDR1 ADDR2 STMT SOURCE STATEMENT 

1540 **** 
1541 * 
1542 * MESSAGE HANDLERS--MH1S 
1543 * 
1544 * THE HEADER RECEIVED FROM THE TERMINAL IS--
1545 * POSSIBLE LINE FORMAT CHARS.--CR,LF,NL 
1546 * $ 
1547 * BLANK 
1548 * MSGTYPE--1 CHAR. 
1549 * BLANK 
1550 * SOURCE--2 CHARS. 
1551 * BLANK 
1552 * EOF FIELD--F IF EI\'D OF A GROUP OF ~~SSAGES 
1553 * --ANY OTHER CHAR. (EXCEPT BLANK) IF [JOT 
155q '" 
1555 * 
1556 * 
1557 * 
1558 * 
1559 **** 
1560 *** 
1561 * 

BLANK 
ACTION CODE FOR APPLICATION PROGRAM--2 CHARS. 
BLANK 
PUNCTUATION MARK--PERIOD 

1562 * ~lESSAGE HANDLER FOR INPUT FROM AND OUTPUT TO 1050 TERMINAL 
1563 * 

FOLLOWING MACRO IS REQUIRED AND MUST BE FIRST 
LC= IS THE ONLY REQUIRED OPERAND--

OUT SAYS TO REMOVE LINE CONTROL CH~~S. 
IN SAYS NOT TO REMOVE LINE CONTROL CHARS. 

F1"5a<;:T70 

1564 * THE 
1565 * 
1566 * 
1567 * 
1568 * 
1569 * 
1570 * 
1571 * 
1572 * 

STOP= SAYS W-tlEN EOB ERROR FOUND AND RETRY COUNT EXHAUSTED, 
ONLY THAT PORTION OF MESSAGE RECEIVED OR SENT CONTINUES 
THRU MH-- USER MAY CHECK ERROR RECORD BITS IN INMSG OR OUTI~SG 

CONT= SAYS THAT AFTER RETRY, SET BIT IN ERROR RECORD--BUT 
CONTINUE TRANSMISSION 

1573 * IF 
1574 * 

NEITHER STOP NOR CONT SPECIFIED,NO EOB CHECKING PERFO~ffiD 

1575 MH1050 STARTMH LC=OUT,CONT=YES 
1596 * 
1597 * THE FOLLOWING MACRO IS REQUIRED AS THE FIRST MACRO I~ ANY INCOMING 
1598 * GROUP 
1"599-- -INHDR 

1613 * 
1614 * THE FOLLOWING MACRO TRANSLATES FROM LINE CODE TO EBCDIC--~ACROS 
1615 * FOLLOWING THIS WILL ACT UPON CHARACTERS IN EBCDIC--IT WILL CAUSE 
1616 * ENTIRE MESSAGE TO BE TRANSLATED EVEN THOUGH IN INfIDR GROUP 
1617 CODE 
1641 * 
1642 * LOG INCOMING HEADERS--USE DCBNAME AS OPERAND 
1643 * 
1644 LOG MSGLOG 
1655 * 
1656 * SET SCAN POINTER TO $ 
1657 SETSCAN C'$' 
1673 * 
1674 * PROCESS THE REMAINDER OF THE HEADER ACCORDING TO THE MSGTYPE FIELD 
1675 * SPECIFIED NEXT IN THE HEADER--IF THE NEXT FIELD ~ATCHES THE CHARACTER 

OJAGE 11 

5/03/72 

A Messag~ Control Program for Teleprocessing Applications (Part 9 of 20, 

Using the Teleprocessing Feature 347 



LOC OBJECT CODE 

Figure 114. 

348 

ADDR1 ADDR2 STMT SOURCE STATEMENT F150C'!.70 

1676 * SPECIFIED IN THE OPERAND, THE MACROS SPECIFIED BETWEEN IT AND THE 
1671 * NEXT MSGTYPE MACRO ARE EXECUTED AND CONTROL IS THEN PASSFD TO THE 
1618 * NEXT DELIMITER--IN THIS CASE INBUF -IF TliEY DO NOT l-lATCH, CONTROL 
1619 * PASSES TO THE NEXT MSGTYPE ~..ACRO WHERE THE TEST IS AGAIN MADE 
1680 * 
1681 * IF MSGTYPE IS 1, THIS MESSAGE SHOULD .BE t'ORWARDED TO 'I'Hr. 1.0'10 
1682 MSGTYPE C'l' 
1698 * 
1699 * 
1700 * 
1101 * 
1702 * 
1703 
1716 
1734 * 
1735 * 
1736 * 
1737 
1755 
1765 
1180 * 
1781 * 
1782 * 
1783 * 
1784 
1802 
1812 
1827 * 

SCAN POINTER IS AT SOURCE FIELD--SINCE THIS IS A ~ON-SWITCHED STATlOi~ 
--ORIGIN VERIFIES THAT TIlE SOURCE FIELD CONTADIS THE SYrftBOLIC NA.I(E 
OF THE STATION THAT WAS INVITED TO SEND THE MESSAGE--IF" NOT, ERROk 
BIT IN FoRROR RECORD FOR ~SS~GE IS SET TO 1 

ORIGIN 
FORWARD DEST=C'T1' 

IF MSGTYPE IS 2, THIS MESSAGE SHOULD BE FORWARDED 
SEE COMMENTS UNDER MSGTYPE 1 FOR OTHER ~~CHOS 

NSGTYPE c'2' 
ORIGIN 
FORWk~D DEST=C'T2' 

TO T{r?X TERNINAI..--

IF MSGTYPE IS 5, THIS MESSAGE SHOULD BE FORWARDED TO Tim COBOL 
APPLICATION PROGRAM--
SEE COMMENTS UNDER MSGTYPE 1 FOR OTHER MACROS 

MSGTYPE 
ORIGIN 
FORWARD 

C'S' 

DEST=C' PIN' 

1828 * IF MSGTYPE IS 6, THE SOURCE FIELD HAS BEEN ONITTED--UNNECESSMY 'I'c 
1829 * ISSUE AN ORIGIN FOR A NON-SWITCHED LINE--SEND MESSAGE TO THE COBOL 
1830 * APPLICATION PROGRAM 
1831 MSGTYPE C'6' 
1849 FORWARD DEST=C'PIN' 
1864 * 
1865 * 
1866 * 
1867 * 
1868 
1873 
1888 
1895 * 
1896 * 
1897 * 
1898 
1903 * 
1904 * 
1905 * 
1906 * 
1907 * 
1908 
1919 * 

IF THE MSGTYPE IS ANYTHING ELSE, IT IS ItWALID--SET THE USER E~~OR 
BIT WITH THE TERRSET MACRO--IN THE INMSG GROUP, WE WILL CANCEL MSG.-
ISSUE FORWARD MACRO ANYWAY SINCE REQUIRED 

MSGTYPE 
FORWARD DEST=C'Tl' 
TER.."R.SET 

THE MACROS IN THE FOLLOWING SUBGROUP ARE EXECUTED FOR EVERY BUFFER 
OF THE MESSAGE 

INBUF 

SPECIFY THE t~IMUM NO. OF CHARACTERS ALLOWED IN AN INCO~llNG MESSAGE 
--THIS MACRO ALSO CHECKS IF THE INPUT BUFFER IS FILLED WITH IDENTICAL 
CHARACTERS, USUALLY AN INDICATION OF STATION MALFUNCTION--SETS A 
BIT IN ERROR RECORD FOR EITHER CONDITION 

CUTOFF 900 

1920 * INSERT X'FF' FOR EVERY NL AND LF CHARACTER--X'FF' IS THE RECDEL CHAR. 
1921 * SPECIFIED IN THE TPROCESS MACROS--IF A ~lliSSAGE WERE ALWAYS BEING 
1922 * FORWARDED TO AN APPLICATION PROGRAM, ;m COUI~D USE DELIFIT INSTEAD 
1923 * OF XL1'FF' 

5/03/72 

A Message Control Program for Teleprocessing Applications (?art 10 8f 20) 



LOC aDJECT CODE 

PACE 13 

ADDRl ADDR2 STMT 

1924 
1953 * 

SOURCE STATF.MENT F'150CT70 

MSGEDIT «RA,XL1'FF',XL1'15'), (RA.XL1'FF',XL1'25'» 

1954 * THE INMSG SUBGROUP IS SPECIFIED AFTER O'l'HER SUBGROUPS--IT IS EXECUTED 
1955 * AFThK AN ENTIRE MESSAGE OR BLOCK HAS BEEN PROCESSED--NO EXECUTABLE 
1956 * USER-WRITTEN CODE SHOULD BE INCLUDED IN THIS SUBGROUP 
1957 INMSG 
1965 * 
1966 * 
1967 * 
1968 * 
1969 * 
1970 * 
1971 
1979 * 

CANCELMG CAUSES H1MEDIATE CANCELLATION OF MESSAGE IF ANY ERRORS 
SPECIFIED BY ITS MASK OCCOR--IF USED, IT I'mST BE 1ST MACRO UNDER 
INMSG--AN ERRORl'1.SG MACRO tolAY THEN NOTIFY OF' TBE ERROR--
CANCBLMG IF THE USER ERROR BIT IS SET Il~ICATING THE MSGTYPE FIELD 
WAS INVALID--BIT20 

CANCELMG X'0000080000' 

1980 * IN THE FOLLOWING ERROR f~SSAGES! THE 1ST FIELD IS THE MASK CORRE-
1981 * SPONDING TO THE BITS IN THE ERROR RECORD,DEST= IS ALWAYS Tl FOR THE 
1982 * 1050 TERMINAL AND THE DATA= IS THE ERROR MESSAGE THAT IS SENT--
1983 * THE MESSAGE INCLUDES THE HEADER OF THE MESSAGE IN ERROR AND THE 
1984 * FRROR MESSAGE 
1985 * 
1986 * 
1987 * 
1988 

2004 

2016 

2028 

THE LAST CHARACT~ OF THE MESSAGE IS NL--SO THE CARRIAGE WILL BE 
RrTuqNED WITH A LINE FEED AT THE END OF TEE PRINTING OF THE MESSAGE 

ERRORMSG X'8000000000',DEST=C'Tl'; 
DATA=C'E ERROR IN PROCESSING HEADER ' 

F~ORMSG X'4000000000',DEST=C'Tl', 
DATA=C'E INVALID ORIGIN IN HEADER ' 

EKRO~~SG X'0200000000',DEST=C'T1'. 
DATA=C'E INSUFFICIENT BUFFERS FOR INCOMING MESSAGE I 

ERRORMSG X'0100000000',DEST=C'Tl', 
DATA=C' E l'1ESSAGE TOO LONG' 

THE FOLLOWING ERROR i"lESSAGE SHOULD ONLY OCCUR WITH MAIN STORAGE 
QUEUEING WITH OR WITHOUT DISK BACKUP 

x 

x 

x 

X 

2040 * 
2041 * 
2042 * 
2043 E~~ORMSG X'0040000000',DEST=C'T1', X 

DATA=C'E PERC:ENTAGE OF BUFFER UNITS IN BUFl·jAX ARE USED-SX 
LOW DOWN ' 

2055 * 
2056 

2080 

2092 

2104 

2116 * 

ERRORMSG Y'0002000000',DEST=C'Tl', 
DATA=C'E FORWARDED TO INVALID DESTINATION ' 

ETillORJyiSG---X'-_OQo.o.!lQ_OOQO_~_.DRST_=C~'Il~_! _______ _ 
DATA=C' E nNALID STATION ID AT CONNECT TUlE ' 

':RROR."'lSG X' 0000200000' ,DEST=C'Tl', 
DATA=C' E 'IBRMn~AL IS IN HOLD STATUS ' 

ERRORMSG X'0000080000',DEST=C'Tl', 
DATA=C'E MSGTYPE CODE IN HEADER INVALID' 

FRRORMSG X'OOOOOOEOOO',DEST=C'Tl', 
DATA=C'E A HARDWARE ERROR HAS OCCURRED' 

2117 * INEND IS REQUIRED AS LAST DELIMITER lv'!ACRO OF INCOMING GROUP 
@ 2118 IlfEND 

2122 * 
2123 *** 
2124 * 
2125 * OUTGOING GROUP OF MESSAGE HANDLER FOR 1050 TERMINAL 

@ 2126 aUTHOR 

x 

x 

X 

x 

x 

5/03/72 

A Message Control Program for Teleprocessing Applications (Part 11 Jf 20) 

Using the Teleprocessing Feature 349 



LOC OBJECT CODE 

Figure 114. 

350 

ADDRl ADDR2 STMT SOURCE STATEMENT F150CT70 

2132 * 
2133 * TBE FOLLOWING MACRO CAUSES EOT LINE CONTROL CHARACTE~S TO BE INSERTED 
2134 * IN EACH OUTGOING MESSAGE--SINCE NTBLKSZ=(BLKSIZE) CODED IN THE 
2135 * TERMINAL MACRO--IT ALSO INSERTS EOB CHARS.--THIS PA~lETER COULD 
2136 * ALSO BE PLACED AS AN OPERAND OF THIS MACRO TO OVERRIDE THE NO. 
2137 * SPECIFIED IN THE TERMINAL MACRO 
2138 MSGFORM 
2149 * 
2150 * 
2151 * 
2152 * 
2153 * 
2154 * 
2155 * 
2156 * 
2157 
2173 * 
2174 * 
2175 * 
2176 
2187 
2202 * 

SINCE ERROR MESSAGES ARE SENT TO THIS TERMINAL--AND THESE COULD 
INCLUDE THOSE FOR THE APPLICATION TO APPLICATION PROGRAM WHICH 
WILL NOT HAVE A HEADER AND CANNOT BE PROCESSED AS A NOR~~ OUTPUT 
MESSAGE TO THIS TERMINAL--CHECK 1ST CHAu~CTER FOR AN E--THE 1ST 
CHAR. OF EVERY ERRORMSG--IF NOT E WILL SKIP TO NEXT ~lliGTYP~ MACRO-
IF Er WILL PROCESS TO NEXT MSGTYPE MACRO AND THEN SKIP 'I'e NEXT 
DELIMITER--OUTBUF 

MSGTYPE C"E" 

SET SCAN POINTER BACK TO BEGINNING OF BUFFER AND INSERT NL CHARACTEh 
AT BEGINNING OF MESSAGE--IDLES WILL BE INSERTED AFTER NL IN OUTBUF 

SETSCAN 1,POINT=BACK 
MSGEDIT «I,XL1'lS';SCAN» 

2203 * USE MSGTYPE WITH BLANK OPERAND TO PROCESS OTHER MESSAGES 
2204 MSGTYPE 
2209 * 
2210 * INSERT NL CHARACTER AT BEGINNING OF MESSAGE--IDLES WILL BE INSERTED 
2211 * AFTER NL IN OUTBUF 
2212 MSGEDIT «I,XLl'15',SCAN» 
2224 * 
2225 * SET THE SCAN POINTER TO THE PERIOD IN THE HEADER AND INSERT DATE, 
2226 * TIME, AND SEQUENCE NO.--INSERTED IN EBCDIC SO DO BEFORE CODE 
2227 SETSCAN C'.' 
2240 * 

* 

IF NO OPERAND--BOTH DATE AND TIME ARE INSERTED--SPACE MUST BE 
RESERVED BY MFANS OF THE RESERVE= OPERAND OF DCB FOR LINE--THE DA~E 
IS IN FORM--(BLANK)YY.DDD--7 CHARS.--TIME IN FORM--
(BLANK) HH.MM.SS--9 CHARACTERS 

DATETIME 

* SEQUENCE IN AN OUTHOR SUBGROUP INSERTS SEQUENCE NO. IN FORM--

2241 * 
2242 * 
2243 * 
2244 * 
2245 
2261 
2262 
2263 
2264 
2265 
2275 * 
2276 * 
2277 * 
2278 * 
2279 * 
2280 

* (BLANK)NNNN--5 CHARS.--SPACE MUST BE RESERVED BY MEANS OF RESERVE= 
* OPERAND OF DCB FOR LINE 

2288 * 

SEQUENCE 

LOG OUTGOING HEADERS--USE DCBNAME AS OPEP~ND--PUT MACRO AFTER 
INSERTION OF DATE, TIME, AND SEQUENCE NOS. SO THESE WILL APPEAR 
IN LOGGEiJ HEADER 

LOG MSGLOG 

2289 * THE MACROS IN THE FOLLOWING SUBGROUP ARE EXECUTED FOR EVERY BUFFER 
2290 * OF THE MESSAGE 
2291 OUTBUF 
2296 * 
2297 * INSERT NL CHAR. FOR EVERY X'FF' CHAR. IN MESSAGE--X'FF' IS THE 

5/03/72 

A Message Control Program for Teleprocessing Applications <Part 12 of 20) 



LOC OBJECT CODE 

OOOE60 

Figure 114. 

PAGE 15 

]I..DDRl ADDR2 STMT SOURCE STATEMENT F150CT70 

2298 * RECDEL CHAR. SPECIFIED IN THE TPROCESS r-'lACROS 
2299 MSGEDIT «RA,XL1'15',XL1'FF'» 
2317 * 
2318 * INSERT 13 IDLE CHARS. AFTER EVERY NL CHARACTER PLACED IN l"..ESSAGE 
2319 MSGEDIT «I,(X'17',13),XL1'15'» 
2336 * 
2337 * 
2338 * 
2339 * 
2340 
2349 * 

TRANSLATE THE MESSAGE FROM EBCDIC TO LINE CODE--IF ISSUED IN A 
SUBGROUP AND ANY SFG~~NTS OF A MESSAGE PROCESSED BY THAT SUBGROUP. 
THE ENTIRE ~~SSAGE IS TRANSLATED 

CODE 

2350 * THE OUTMSG SUBGROUP IS SPECIFIED AFTER OTHER SUBGROUPS IN OUTGOING 
2351 * GROUP--IT IS EXECUTED ONLY AFT~~ AN ENTIRE BLOCK OR r~SSAGE HAS BEEN 
2352 * SENT 
2353 OLlTMSG 
2362 * 
2363 * THE HOLD MACRO SUSPENDS TRANSMISSION TO A STATION EITHER FOR A TI~ffi 
2364 * INTERVAL (IF SPECIFIED) OR UNTIL RELEASED BY AN OPERATOR CONTROL 
2365 * MESSAGE--IF NOT USED, MESSAGES THAT CANNOT BE TR~NSMITTED ~_~E 
2366 * TREATED AS THOUGH THEY HAVE BEEN TRANSMITTED--ALSO, A HOLD OPERATOR 
2367 * CONTROL MESSAGE HAS NO EFFECT IF THERE IS NO HOLD MACRO--
2368 * BITS BEING TESTED BY MASK ARE FOR HARDWARE ERRORS 
2369 HOLD X'OOOOOOEOOO' 
2381 * 
2382 * IN THE FOLLOWING ERROR MESSAGES, . THE 1ST FIELD IS THE MASK CORRB-
2383 * SPONnING TO THE BITS IN THE ERROR RECORD,DEST= IS ALWAYS Tl FOR THE 
2384 * 1050 TERMI~~ AND THE DATA= IS THE ERROR MESSAGE THAT IS SENT--
2385 * THE MESSAGE INCLUDES THE HEADER OF THE r-'£SSAGE IN ERROR AND THE 
2386 * ERROR MESSAGE 
2387 * 
2388 * THE LAST CHP~RACTER OF THE MESSAGE IS NL--SO THE CARRIAGE WILL BE 
2389 * RETURNED WITH A LINE FEED AT THE END OF THE PRINTING OF THE MESSAGE 
2390 E~~ORMSG X'8000000000',DEST=C'Tl', 

DATA=C'E ERROR IN PROCESSING HEADER' 
2402 * 
2403 * THE FOLLOWING ERROR MESSAGE SHOULD ONLY OCCUR WITH t-1AIN STORAGE 
2404 * QUEUEING WITH OR WITHOUT DISK BACKUP 

x 

2405 ERRORMSG X'0040000000',DEST=C'Tl', X 
DATA=C'E PERCENTAGE OF BUFFER UNITS IN BUFr-'lAX ARE USED-SX 

-- . LeW- D0WN-. !-

2417 * 
2418 

2454 * 

ERRORMSG X'0000400000',DEST=C'Tl', 
DATA=C' E HiVALID STATION ID AT CONNECT TUlE ' 

ERRORMSG X'0000200000',DEST=C'Tl', 
DATA=C'E TERMIi~ IS IN HOLD STATUS' 

ERRORMSG X'OOOOOOEOOO',DEST=C'Tl', 
DATA=C' E A HARDWARE ERROR HAS OCCURRED ' 

2455 * OUTEND REQUIRED AS LAST DELIMITER MACRO OF OUTGOING GROUP 
2456 OUTEND 
2460 * 
2461 * A LTORG SHOULD BE CODED AFTER LAST DELIMITER OF EACH ~ili IF MCP HAS 
2462 * MORE THAN 1 ~ill 
2463 LTORG 
2464 * 

X 

x 

x 

5/03/72 

A Message Control Program for Teleprocessing Applications (Part 13 ~f 20J 

Using the Teleprocessing Feature 351 



LOC OBJECT CODE 

Figure 114. 

352 

ADDR1 ADDR2 STMT SOURCE STATEMENT 

2466 *** 
2467 * 
2468 * MESSAGE HANDLER FOR INPUT FROM AND OUTPUT TO TWX TERMINAL 
2469 * 
2470 * THE FOLLOWING MACRO IS REQUIRED AND MUST BE FIRST 
21!71 * 
2472 * 
2473 * 
2474 * 
2475 MHTWX 
2489 * 

LC= IS THE O~~Y REQUIPJill CPEP~h~--
OUT SAYS TO REMOVE LINE CONTROL CHARS. 
IN SAYS NOT TO RFMOVE LINE CONTROL CHARS. 

STARTMH LC=OUT 

F150C'l'70 

2490 * THE FOLLOWING MAC~O IS REQUIRED AS THE FIRS'! MACRO IN ANY INCOMING 
2491 * GROUP 
2492 INHDR 

* * THE FOLLOWING MACRO TRANSLATES FROM LINE CODE TO EBCDIC--~ACROS 
2503 
2504 
2505 
2506 
2507 
2527 * 

* FOLLOWING THIS WILL ACT UPON CHARACTERS IN EBCDIC--IT WILL CAUSE 
* ENTIRE MESSAGE TO BE TRANSLATED EVEN THOUGH Il~ INHDR GROUP 

CODE 

2528 * LOG INCOMING HEADERS--USE DCBNAME AS OPERAND 
2529 * 
2530 
2538 * 

LOG MSGLOG 

2539 * SET SCAN POINTER TO $ 
2540 SETSCAN CiS' 
2553 * 
2554 * 
2555 * 
2556 * 
2557 * 
2558 * 
2559 * 
2560 * 

PROCESS THE J:U:MAINDER OF THE HEADER ACCORDING TO THE I"1SGTYPE FIELD 
SPECIFIED NEXT IN THE HEADER--IF THE NEXT FIELD MATCHES THE CHARACTER 
SPECIFIED IN THE OPERAND, THE MACROS SPECIFIED BETWEEN IT AND THE 
NEXT MSGTYPE MACRO ARE EXECUTED AND CONTROL IS THEN PASSED TO THE 
NEXT DELIMITER--IN THIS CASE INBUF -IF THEY DO NOT MATCH. CONTROL 
PASSES TO THE NEXT MSGTYPE MACRO WHERE THE TEST IS AGAIN i~E 

2561 * IF MSGTYPE IS 1, THIS MESSAGE SHOULD BE FORWARDED TO THE 1050 
2562 MSGTYPE C'l' 
2578 * 
2519 * SCAN POINTER IS AT SOURCE--ISSUE ORIGIN--SINCE THIS IS A SWITCHED 
2580 * LINE,ORIGIN WILL CHECK VALIDITY OF FIELD AND ID~~IFY THE CALLING 
2581 * STATION TO TCAM 
2582 ORIGIN 
2592 FORWARD DEST=C'Tl' 
2601 * 
2608 * 
2609 * 
2610 
2628 
2638 
2653 * 

IF MSGTYPE IS 2, THIS MESSAGE SHOULD BE FORWARDED 
SEE COMMENTS UNDER MSGTYPE 1 FOR OTHER MACROS 

MSGTYPE c'2' 
ORIGIN 
FORWARD DEST=C'T2' 

TO TWX TERMINAL--

2654 * IF MSGTYPE IS 5, THIS MESSAGE SHOULD BE FORWARDED TO TH~ COBOL 
2655 * APPLICATION PROGRAM--
2656 * SEE COMMENTS UNDER MSGTYPE 1 FOR OTHER MACROS 
2651 MSGTYPE CiS' 
2675 ORIGIN 
2685 FORWARD DEST=C'PIN' 

t-AG.E 16 

5/03/72 

~ Message Control Program for Teleprocessing ~pplications (Part 14 ~f 20) 



LOC OBJECT CODE 

Figure 114. 

PAGi:. 17 

ADDR1 ADDR2 STMT SOURCE STATEMENT F15OCT70 

2700 * 
2701 * IF MSGTYPE IS 6, THE SOURCE FIELD HAS BEEN OMITTED (IN ORDER FOH 
2702 * THE COBOL PROGRAM TO CHECK THAT THE LINE N~ili--T2A--RATHER THAN THE 
2703 * STATION ~~--T2--IS GIVEN AS SOURCE)--THE MESSAGE IS TO BE SENT TO 
2704 * THE COBOL APPLICATION PROGRAM 
2705 MSGTYPE C'6' 
2723 FORWARD DEST=C'PIN' 
2738 * 
2739 * IF THE .-1SGTYPE IS iliWTnING ELSE, IT IS INVALID--SET THE USER ERROR 
2740 * BIT WITH THE TERRSET MACRO--IN THE INMSG GROUP, WE WILL CANCEL MSG.--
2741 * ISSUE FORWARD MACRO ANYWAY SINCE REQUIRED 
2742 MSGTYPE 
2747 FORWARD DEST=C'T1' 
2762 TERRSET 
2769 * 
2770 * THE MACROS IN THE FOLLOWING SUBGROUP ARE EXSCUTED FOR EVERY BUFFER 
2771 * OF THE ~ESSAGE 
2772 INBUF 
2777 * 
2778 * SPECIFY THE MAXIMUM NO. OF CHARACTERS ALLOWED IN AN INCOMING i.IJ.ESSAGE 
2779 * --THIS MACRO ALSO CHECKS IF THE INPUT BUFFER IS FILLED WITH IDENTICAL 
2780 * CHARACTERS, USUALLY AN INDICATION OF STATION MALFUNCTION--SETS A 
2781 * BIT IN ERROR RECORD FOR EITHER CONDITION 
2782 CUTOFF 900 
2790 * 
2791 * DEL~~E EVERY CR CHAR. AND INSERT X'FF' FOR EVERY LF CHAR.--X'FF' 
2792 * IS THE RECDEL CHARACTER SPECIFIED IN THE TPROCESS ~~CROS (IF MESSAGES 
2793 * WERE ALWAYS GOING TO AN APPLICATION PROGRAM, WE COULD USE DELIMIT 
2794 * INSTEAD OF XL1'FF') 
2795 MSGEDIT «RA,CONTRACT,XL1'26'),(RA,XL1'FF',XLl"15'}) 
2818 * 
2819 * THE INMSG SUBGROUP IS SPECIFIED AFTER OTHER SUBG~OUPS--IT IS EXECUTED 
2820 * AFTER AN ENTIRE MESSAGE OR BLOCK HAS BEEN PROCESSED--NO EXECUTABLE 
2821 * USER-WRITTEN CODE SHOULD BE INCLUDED IN THIS SUBGROUP 
2822 INMSG 
2830 * CANCELMG CAUSES IMI.lJ.EDIATE CANCELLATION OF MESSAGE IF ANi ERRORS 
2831 * 
2832 * SPECIFIED BY ITS l<'~SK OCCUR--IF USED, IT MUST BE 1ST ~..ACRO UNDE1, 
2833 * INl'1SG--AN ERROR'\:lSG MACRO MAY THEN NOTIFY OF THE E:RROR--

_?8 3 4 _ .. !.S:_z\~~")!:~(L!.r __ TI~_JJ$.n:E _.ERR9.IL~I_'I'. ... J§ __ §.J;:T. I~QJ.~T:r.N_G.._TJILr!l~GT_¥PE XIJ:;.Jdl . 
2835 * WAS INVALID--BIT20 
2836 CANCELMG X'0000080000' 
2841 * 
2842 * IN THE FOLLOWING ERROR MESSAGES, THE 1ST FIELD IS THE MASK CORRE-
2843 * SPONDING TO THE BITS IN THE ERROR RECORD,DEST= IS ALWAYS T1 FOR THE 
2844 * 1050 TERMINAL AND THE DATA= IS THE ERROR MESSAGE THAT IS SF:NT--
2845 * THE MESSAGE INCLUDES THE HEADER OF THE MESSAGE IN ERROR AND 'h!F 
2846 * ERROR !!!ESSAGE 
2847 * 
2848 * THE L&ST CH~~CTER OF THE ~£SSAGE IS NL--SO TEE ~~RIAGE WILL BE 
2849 * RETURNED TNITH A LINE FEW AT THE END OF THE PRIHTING OF THE MESSAGE 
2850 ERRORNSG X'8000000000'~DSST=C'T1'f X 

DATA=C'E ERROR IN PROCESSING HEADER ' 
2862 ERRORMSG X'qOOOOOOOOOI,DEST=C"Tl', X 

DATA=C'E INVALID ORIGIN IN HEADER I 

5/03/72 

A Message Control Program for Teleprocessing Applications (Part 15 Jf 20) 

Using the Teleprocessing l:'eature 353 



LOC OBJECT CODE 

Figure 114. 

354 

~DD?l ADD~2 STMT 

2874 

2886 

2898 * 

SOU aCE STATEMENT F150CT70 

SRROruv..sG x' 0200000000', DEST=C 'Tl' , 
DATA=C' E INSUF}o'ICIENT BUFFERS FOR INCOMING l.-:ESSAGE ' 

ERRORMSG X'0100000000',DES~=C'Tl', 

DATA=C'E MESSAGE TOO LONG' 

2899 * THE FOLL~ING ERROR MESSAGE SHOULD ONLY OCCUR WITH MAIN STORA..GE 
2900 * QUEUEING WITH OR WITHOUT DISK BACKUP 

x 

x 

2901 FRRORNSG X'0040000000',DEST=C'Tl', X 
DATA=C'E PERCENTAGE OF BUFFER UNITS IN BUF~~X AKE U8FD-SX 
LOW DOWN ' 

2913 * 
2914 

2926 

2938 

2950 

2962 

2974 * 

ERRORMSG X'0002000000';DEST=C'Tl', 
DATA=C'E FORWARDED TO INVALID DESTINATIO~ , 

ERRORMSG X'0000400000',DEST=C'Tl', 
DATA=C':;:; INVALID STATION ID AT CONNECT TIl'i..E • 

ERROR~ISG x' 0000200000', DEST=C'Tl', 
DATA=C' E TERMIiffi.L IS Il~ HOLD STATUS ' 

ERRORMSG X'0000080000',DEST=C'Tl', 
DATA=C'E MSGTYPE CODE IN HEADER INVALID • 

ERRORMSG X'OOOOOOEOOO',DEST=C'Tl', 
DATA=C'E A HARDWARE ERHOR rlAS OCCURRED' 

2975 * INElID IS xEQUIRED P,5 LAST DELIHITER t-'lACRO OF INCOMING G:a.OUP 
2976 INEND 
2980 * 
2981 *** 
2982 * 
2983 * OUTGOING GROUP OF MESSAGE a~LRR FOR TWX TE&~NAL 
2984 OUTHOR 
2990 * 
2991 * INSERT CR LF RUBOUT AT BEGINNING OF ~~SSAGE 
2992 MSGEDIT «I.XL3'261507',SC~N) 

3004 * 
3005 * THE FOLLOWING MACRO CAUSES EOT LINE CONTROL CHARACTERS TO BE INSERTED 
3006 * IN EACH OUTGOING MESSAGE 
3007 MSGFO~M 

3014 * 
3015 * SE~ THE SCAN POINTER TO THE PERIOD IN THE HEADER AND INSERT DATE, 
3016 * TIME, AIID SEQUENCE NO.--INSERTED IN EBCDIC SO DO BEFORE CODE 
3017 SFTSCAN C'.' 
3030 * 
3031 * 
3032 * 
3033 * 
3034 * 
3035 
3048 * 

IF NO OPER~ND--BOTH DATE AND TIML ARE INSERT~D--SPACE ~UST BE 
RESBRVED BY MEANS OF THE RESERVE= OPERAND OF DCB FOR LINh--TrlE DATE 
IS IN FO~--(BLANK)YY.DDD--7 CHARS.--TIME IN FO~--
(BLANK) HH. MM. SS--9 CHAAACTEI<S 

iJATETIME 

3049 * SEQUENCE IN AN OUTHDR SUBGROUP INSER'lS SEQUENCE NO. IN FORM--
3050 * (BLANK)NNNN--5 CHARS.--SPACE MUST BE RESERVED BY MEANS OF RESERVE= 
3051 * OPEHAND OF DCB FOR LIN£ 
3052 S]::QUEl~CE 

3059 * 
3060 * LOG OUTGOING HFADERS--USE DCBNA.ME AS OPERAND--PUT MACRO AFTEH 
3061 * INSERTION OF DATE, TIMF., AND SEQUENC~ NOS. SO THESE WILL APPEAR 
3062 * IN LOGGEn HF.ADF.~ 

x 

x 

x 

x 

x 

5/03/72 

A Message Control Program for Teleprocessing Applications <Part 16 ~f 20) 



LOC OBJECT CODE 

Lac OBJECT CODE 

001270 

Figure 114. 

PAGE 19 

ADDR1 ADDR2 STMT SOURCE STATEMENT F150C'l'70 

3063 * 
3064 LOG MSGLOG 
3072 * 
3073 * THE MACROS IN THE FOLLOWING SUBGROUP ARE EXECUTED FOR EVERY BUFFER 
3074 * OF THE MESSAGE 
3075 OUTBUF 
3079 * 
3080 * INSERT CR LF RUBOUT FOR EVERY X'FF' CHAR. IN MESSAGE--X'FF' IS 
3081 * THE RFCDBL CHAR. SPECIFIED IN THE TPROCESS MACROS 
3082 MSGEDIT «RA,XL31 261507 1 ;XL1 I FF'» 
3100 * 
3101 * TRANSLATE THE MESSAGE FROM EBCDIC TO LINE CODE--IF ISSUED IN A 
3102 * SUBGROUP AND ANY SEGMENTS OF A MESSAGE PROCESSED BY THAT SUBGROUP, 
3103 * THE ENTIRE MESSAGE IS TRANSLATED 
3104 CODE 
3113 * 
3114 * THE OUTMSG SUBGROUP IS SPECIFIED AFTER OTHER SUBGROUPS IN OUTGOING 
3115 * GROUP--IT IS EXECUTED ONLY AFTER AN ENTIRE BLOCK OR MESSAGE HAS BEEN 
3116 * SENT 
3117 OUTMSG 
3126 * 
3127 * THE HOLD MACRO SUSPENDS TRANSMISSION TO A STATION EITHFM FOR A TIME 
3128 * INTERVAL (IF SPECIFIED) OR UNTIL RELEASED BY AN OPERATOR CONTROL 
3129 * MESSAGE--IF NOT USED, MESSAGES THAT CANNOT BE TRANS~rrTTFD ARE 
3130 * TREATED AS THOUGH THEY HAVE BEEN TRANSMITTED--ALSO, A hOLD OPERATOR 
3131 * CONTROL MESSAGE HAS NO EFFECT IF THERE IS NO HOLD MACRO--
3132 * BITS BEING TESTED BY MASK ARE FOR HARDWARE ERRORS 
3133 HOLD X'OOOOOOEOOO I 

3139 * 
3140 * IN THE FOLLOWING ERROR MESSAGES, THE 1ST FIELD IS THE MASK CORRE-
3141 * SPONDING TO THE BITS IN THE ERROR RECORD,DEST= IS ALWAYS T1 FOR THE 
3142 * 1050 TERMINAL AND THE DATA= IS THE F~OR ~£SSAGE THAT IS SENT--
3143'* THE MESSAGE INCLUDES THE HEADER OF THE MESSAGE IN ERROR AND THE 
3144 * ERROR MESSAGE 
3145 * 
3146 * THE LAST CHARACTER OF THE MESSAGE IS NL--SO THE CARRIAGE WILL BE 
3147 * RETURNED WITH A LINE FEED AT THE END OF THE PRINTING OF ThE MESSAGE 
3148 ERRORMSG X'8000000000';DEST=C'T1 1

, X 
DATA=CIE ERROR IN PROCESSING HEADER I 

3160 * 
j16i.· 'I'BE F6Lt~ING--ERROR--MESSAGE-BKOULD--ONL-Y--OCCUR -WI'lli l"lAIN STORAGE 
3162 * QUEUEING WITH OR WITHOUT DISK BACKUP 
3163 ERRORMSG X1 0040000000 1 ,DEST=C I T1'; X 

3175 * 
3176 

3188 

3200 

3212 * 

DATA=C'E PERCENTAGE OF BUFFER UNITS IN BUFMAX ARE USED-SX 
LOW DOWN ' 

ERRORMSG X'0000400000',DEST=C'T1', 
DATA=C'E INVALID STATION ID AT CONNECT TI~ili ' 

ERRORMSG X'0000200000',DEST=C'T1', 
DATA=C' E TERMINAL IS IN HOLD STATUS ' 

ERRORMSG X'000000EOOO',DEST=C'T1', 
DATA=CIE A HARDWARE ERROR HAS OCCURRED I 

X 

X 

x 

3213 * OUTEND REQUIRED AS LAST DELIMITER MACRO OF OUTGOING GROUP 
3214 OOTEND 

5/03/72 

PAGE 20 

ADDR1 ADDR2 STMT SOURCE STATEMENT F15OCT70 

3218 * 
3219 * A LTORG SHOULD BE CODED AFTER LAST DELIMITER OF EACH ME IF MCP HAS 
3220 * MORE THAN 1 ME 
3221 LTORG 
3222 * 

5/03/12 

A Message Control Program for Teleprocessing Applications (Part 17 Jf 20, 

Using the Teleprocessing Feature 3Sj 



Lec OBJECT C01)E 

Figure 114. 

356 

PAGE 21 

ADD?l ADDR2 STMT SOURCE STATEMENT 

3224 *** 
3225 * 

F150CT70 

3226 * ~ESSAGE HANDLER FOR INPUT FROM AND OUTPUT TO APPLICATION PROG~~ 
3227 * RUNNING WITH TERMINALS 
3228 * 
3229 * THE FOLLOWING MACRO IS REQUIRED AND MUST BE FIRST 
3230 * LC= IS A REQUIRED OPERAND--PUT! IN! SINCE NO LINE CON1.1HOL 
3231 * CH~~CTERS TO REMOVE 
3232 ~~TRMAPP STARTMH LC=IN 
3246 * 
3247 * THE INCOMING GROUP HANDLES ~£SSAGES COMING FROM AN APPLICATION 
3248 * PROGRAM--THE MESSAGES WILL SUBSEQUENTLY BE PROCESSED BY THE OUTGOING 
3249 * GROUP FOR THE DESTINATION TERMINAL 
3250 * 
3251 * THE I~HDR DELIMITER IS REQUIRED AND IS ALWAYS 1ST MACRO 
3252 INHDR 
3263 * 
3264 * LOG INCOMING HEADERS--USE DCBNAME AS OPERAND 
3265 * 
3266 LOG MSGLOG 
3274 * 
3275 * THE FORWARD MACRO IS REQUIRED IN EACH INHDR SUBGROUP--
3276 * THE OPERAND DEST=PUT SAYS TO FORWARD TO THE DESTINATION SPECIFIED 
3277 * IN THE PREFIX TO THE APPLICATION PROGRAM WORK AREA 
3278 FORWARD DEST=PUT 
3286 * 
3287 * THE INMSG SUBGROUP IS SPECIFIED AFTER OTHER SUBGROUPS IN AN INCOMING 
3288 * GROUP--IT IS EXECUTED AFTER AN ENTIRE MESSAGE OR BLOCK HAS BEEN 
3289 * PBOCBSSED 
3290 INMSG 
3298 * 
3299 * IN THE FOLLOWING ERROR MESSAGES, THE 1ST FIELD IS THE MASK CORRE-
3300 * SPONDING TO THE BITS IN THE ERROR RECORD, DEST= IS ALWAYS Tl FOR ThE 
3301 * 1050 TERMINAL AND THE DATA= IS THE ERROR MESSAGE THAT IS SEN'I'--
3302 * 
3303 * THE LAST CHARACTER OF THE MESSAGE IS NL--SO THE C~..RRIAGE WILL BE 
3304 * RETURNED WITH A LINE FEED AT THE END OF THE PRINTING OF THE MESSAGE 
3305 ERRORMSG X'0200000000',DEST=C'Tl'; x 

DATA=C'E INSUFFICIENT BUFFERS FOR INCOMING MESSAGE' 
3317 * 
3318 * THE FOLLOWING ERROR MESSAGE SHOULD ONLY OCCUR WITH MAIN STORAGE 
3319 * QUEUEING WITH OR WITHOUT DISK BACKUP 
3320 F.RRORMSG X'0040000000';DEST=C'Tl', x 

DATA=C'E PERCENTAGE OF BUFFER UNITS IN BUFMAX ARE USED-SX 
LOW DOWN' • 

3332 £RRORf.lSG X'0002000000',DEST=C'Tl', X 
DATA=C'E FORWARDED TO INVALID DESTINATION' 

3344 * 
3345 * INEND IS REQUIRED AS LAST DELIMITER OF INCOMING GROUP 
3346 INEND 
3350 * 
3351 *** 
3352 * 
3353 * OUTGOING GROUP HANDLES ~mSSAGES BEING SENT TO APPLICATION PROGRAM 
3354 OUTH])l:{ 

5/03/72 

A Message Control Program for Teleprocessing Applications (Part 18 Jf 20) 



LOC OBJECT CODE 

001390 

Figure 114. 

ADDR1 ADDR2 STMT SOURCE STATEMENT F150CT70 

* * DELETE ATII"Y CHARS. SUCH AS CR, LF WHICH APPEAR BEFORE $ IN HEADER 
3360 
3361 
3362 
3377 * 
3378 * 
3379 * 
3380 
3388 '* 
3389 * 
3390 * 
3391 
3398 * 

~SGEDIT «R,CONTRACT,SCAN,C"$"» 

SET SCAN POINTER OVER 2 NON-BLANK CHARS.--$ AND MSGTYPE FIELD--SO 
IT POINTS TO BEFORE SO{h-{CE FIELD 

SETSCAN 2 

INS&~T SEQUENCE NO.--FOfuvAT IS (BLANK)NNNN--5 CHARS--SPACE MUST BE 
RESERVEiJ BY romANS OF RESERVE= OPERAND OF DCB FOR LINE 

SEQUENCE 

3399 * LOG OUTGOING HEADERS--USE DCBNAME AS OPERAND--PUT MACRO AFTER 
3400 * INSERTION OF SEQUENCE NO. SO THIS WILL APPSAR IN LOGGED HEADER 
3401 * 
3402 
3410 * 
3411 * 
3412 * 
3413 
3421 * 
3422 * 
3423 * 
3424 * 
3425 * 
3426 * 
3427 
3444 * 
3445 * 
3446 * 
3447 * 
3448 * 
3449 * 

LOG MSGLOG 

SET SCAN POINTER OVER 2 NON-BLANK CHARS. (SOURCE FIELD) SO IT POINTS 
TO EOF FIELD 

SETSCAl~ 2 

SETEOF IS USED TO IDENTIFY THE LAST MESSAGE OF A GROUP OF MESSAGES 
TO THE APPLICATION PROGRAM--IT CAUSES THE NEXT READ/CHECK AFTFR 
THIS COMPLETE MESSAGE HAS BEEN RECEIVED TO PASS TO AN APPLICATION 
PROGRAM EODAD ROUTll{E--(THE COBOL PROGRAM WOULD RECEIVE AN ETI 
INDICATION) 

SETEOF C"F" 

NO OUTMSG SUBGROUP WILL BE EXECUTED FOR A MESSAGE BEING TRANSFE~~ED 
FROM A TPROCESS QUEUE TO AN APPLICATION PROGRAM--
SO OMIT OUTMSG IN THIS HESSAGE HANDLER 

3450 * OUTEND IS REQUIRED AS LAST DELIMITER OF OUTGOING GROUP 
3451 OUTEND 
3462 * 
3463 * A LTORG SHOULD BE CODED AFTER LAST DELIMITER OF EACH ~..H IF r-:CP HAS 
3464 * MORE THAN 1 MH 
3465 LTORG 
3.4.66*_ 

PAGE 22 

5/03/72 

A Message Control Program for Teleprocessing Applications (Part 19 of 20) 

Using the Teleprocessing FeatUre 357 



LOC OBJECT CODE 

LOC OBJECT CODE 

001420 

Figure 114. 

358 

l?AG~ 23 

ADDR1 ADDR2 STMT SOURCE STATE;MENT 

3468 *** 
3469 * 

F150CT70 

3470 * MESSAGE HANDLER FOR COBOL PROG~lS THAT SIMULATE TERMINAL INPUT DATA 
3471 * --USED FOR 'TESTING WITHOUT TERMINALS 
3472 * 
3473 * THE FOLLOWING MACRO IS REQUIRED AND MHS'T' FIR FTRS'T' 
3474 * LC= IS A REQUIRED OPERAND--PUT'IN'SINCE NO LINE CONTROL 
3475 * CHARACTERS TO RENOVE 
3476 ¥iliAPPAPP STARTMH LC=IN 
3490 * THE INCOMING GROUP HANDLl!:S rmSSAGES COMING FROM AN APPLICATION 
3491 * PROGRAM--THE MESSAGES WILL SUBSEQUENTLY BE PROCESSED BY THE OUTGOING 
3492 * GROUP WHEN THE APPLICATION PROGRAM READS THEM BACK 
3493 * 
3494 * THE INHDR DELIMITER IS REQUIRED AND IS ~WAYS 1ST MACRO 
3495 INHDR 
3506 * 
3507 * THE FORWARD MACRO IS REQUIRED IN EACH INHDR SUBGROUP--
3508 * THE OPERAND DEST=PUT SAYS TO FORWARD TO THE DESTINATION SPECIFI~D 
3509 * IN THE PREFIX TO THE APPLICATION PROGRAM WORK AREA 
3510 FORWARD DEST=PUT 
3518 * 
3519 * THE INMSG SUBGROUP IS SPECIFIED AFTEK OTHER SUBGROUPS IN AN INCOMING 
3520 * GROUP--IT IS EXECUTED AFTER AN ENTIRE. MESSAGE OR BLOCK HAS EEEN 
3521 * PROCESSED 
3522 INMSG 
3530 * 
3531 * IN THE FOLLOWING ERROR ¥£SSAGES, THE 1ST FIELD IS THE MASK CORRF.-
3532 * SPONDING TO T.-fE BITS IN THE ERRO~ RF:CORD, DEST= IS ALWAYS T1 FOt{ THi', 
3533 * 1050 TERMINAL AND THE DATA= IS T3E ERROR MESSAGE THAT IS SENT--
3534 * 
3535 * THE LAST CHARACTER OF THE MESSAGE IS NL--SO THE C~IAGE WILL BE 
3536 * RETURNED WI'l'H A LINE FEED AT THE END OF THE PRINTING OF THE l';ESSAGE 
3537 ERRORMSG X'0200000000',DEST=C'T1'; X 

3549 * 
3550 * 
3551 * 
3552 

3564 

3576 * 

DATA=C'E INSUFFICIENT BUFFERS FOR INCOMING MESSAGE ' 

THE FOLLOWING ERROR MESSAGE SHOULD ONLY OCCUR WITH MAIN STORAGE 
QUEUEING WITH OR WITHOUT DISK BACKUP 

ERRORMSG X'0040000000'.DEST=C'T1', A 
DATA=C'E PERCENTAGF. OF BUFFER UNITS IN BUF¥~ ARE USED-SX 
LOW DOWN ' 

ERRORMSG X'0002000000',DEST=C'T1', X 
DATA=C'E FORWARDED TO INVALID DESTINATION' 

3577 * INEND IS REQUIRED AS LAST DELIMITER OF INCOMING GROUP 
3578 INE~~ 

3582 * 
3583 *** 
3584 * 
3585 * OUTGOING GROUP HANDLES MESSAGES BEING SF.NT TO APPLICATION PROGRAM. 
3586 * 
3587 * NO OUTMSG SUBGROUP WILL BE EXECUTED FOR A MESSAGE BEING TRA.."ISFERRED 
3588 * FROM A TPROCESS QUEUE TO AN APPLICATION PROGRAM--
3589 * SO OMIT OUTMSG IN THIS ~mSSAGE HANDLER 
3590 * 
3591 * 

'J/03/72 

PAGE 24 

ADDR1 ADDR2 STMT 

* 

SOURCE STATEMENT 

OUTEND IS REQUIRED AS LAST DELIMITER OF OUTGOING GROUP 
OUTEND 

F150c'170 

* A LTORG SHOULD BE CODED AFTER LAST DELIMITER OF EACH ~lli IF MCP hAS 

3592 * 
3593 
3604 
3605 
3606 
3607 
3608 * 
3609 

* MORE THAN 1 ME 
LTORG 

END 

5/03/12 

A Message Control Program for Teleprocessing Applications (Part 20 Jf 20J 



User-defined areas of main storage 
receive any an~ all messages entering a 
TCAM network. Such areas, known as 
buffers, are used for handling, queueing, 
and transferring message segments between 
all lines and queueing media, and between 
queueing media and COBOL work areas. 

In order to understand how the buffers 
are defined, it is necessary to distinguish 
bet~een buffer units and buffers. TCAM has 
one buffer unit pool that contains buffer 
units of one size. Buffer units are the 
basic building blocks from which buffers 
are constructed (that is, buffer units-are 
linked together to form buffers). 
Therefore, even though the buffers for line 
groups and for the application program may 
differ in size, each size specified should 
be a multiple of the size specified for a 
buffer unit, in order to use space 
optimally. 

Three operands of the IN~RO ma?ro, ~, 
descriDe the TCAM buffer Unlt pOOl. As In 
the sample program shown in Figure 114, 
the operands that define the size of buffer 
units and specify the number assigned are 
KEYLEN, LNUNITS, and MSUNITS. The operands 
B-BFSIZE ,----BYF];N-,--- and --EY-FOO'I' r -- -qi ~-n---in-- the 
D~ for line groups,@,andinthepCB, 

6 , for an application program, specify 
t e buffer size and the number of buffers 
to be assigned initially for a receiving or 
sending operation. The manner in which the 
P~= operand of the DCB for a line group, 
n~. is coded qreatly affects the number 

cbaed for LNUNITS in the INTRa macro and 
the numbers coded for the BUFIN and BUFOUT 
operands of the DCB for the line group. 

~fti~~ti~g_~~~_Q~~fti~~tigg~h~~~~~~g~ 
£ont~ol_PrQgram 

The TCAM message control program is 
assembled, link-edited, and executed like 
any other program running under an as 
system. The macros INTRa, OPEN, and READY, 
issued as a group, make up the data-set 
initialization and activation section of 
the message control program. 

Orderly deactivation of the TCAM system 
must stop incoming and outgoing message 
traffic and create a checkpoint record. 
The user must ensure that the data sets for 
any application program using TeAM as its 
access method are closed before the MCP 
enters its deactivation section, which 
closes the MCP data sets. (It is suggested 
that the headers of messages transmitted to 
the COBOL programs contain a code that 

signals the COBOL program to go to the 
STOPRUN statement.) Finally, the ~CP 
coding must return control to the os 
supervisor. 

INTRa Macro: As the first macro executed 
in the-message control program, INTRO, 1 
establishes standard entry linkage, chains 
save areas, provides addressability, and 
saves the start parameter list pointer. (A 

description of the operands in the INTRa 
macro precedes the macro itself in the 
sample program.) 

Not~: The message below is issued if at 
least one of the following operands is 
omitted from the INTRa macro: STARTUP=, 
KEYLEN=, LNUNITS= , and <if DISK=YES is 
coded in the INTRa macro) CPB=. 

00 IED002A SPECIFY TCAM PARAMETERS 

The user may then enter the additional 
required parameters, changing certain 0ther 
operands as desired. 

OPEN Macro: The OPEN macros, C?), complete 
the-initialization of the rCA~ data sets 
and activate tnem for use. rhe TCAM data 
sets that must be activated in the MCP by 

·~tE~~~~m~~!:~~:~~~!~~~~r~rthe . 
oPtionally~. If a snap dump is used, the 
user must ~o open the data set f0r snap, 

0· 
g~~Q~_~~£~2: The READY macro, 0, must be 
the last instruction in the initlalization 
and activation section of the MCP. when 
READY has executed, the system is ready to 
handle message traffic. 

CLQ~~~acro: An optional snap dump of the 
program begins the deactivation section. 

~
en the first CLOSE macro instruction, 

4 , is executed. This deactivation 
s ction is not executed until all data sets 
in TCAM application programs have been 
closed. In the example, t~user closes 
the line group data~tsl a, first; next 
the snap data~ s, b; the the message 
log data set, c; t e checkpoint jata set 
next to last~ ~; and finally the message 
queues data seE, ~. 

Note: The data sets may be closed in any 
order provided that the checkpoint data set 
and the message queues data set are closed 
in the order indicated. 

B~~Qg~_~~£~Q: The assembler-language Load 
instruction is issued to restore register 
13 with the address of the smyem save 
area, and the RETURN macro, 5, is issued 
to return control to the as s pervis0r. 

Using the Teleprocessing Feature 3j9 



The user must provide information that 
serves as an interface between the message 
control program and the application 
program. This information is contained in 
process control blocks (PCB) and is 
generated by the PCB macro. 

The message control program must also 
describe the MCP data sets to be used. Two 
of the four possible types of data sets 
usually required by every message control 
program are the line group data set, if 
there are lines, and the message queues 
data set, if there are disk queues. The 
operation of the MCP requires that either a 
message queues data set or a line group 
data set be opened. A user employing main 
storage queueing for application-to
application program processing (who, 
therefore, does not need either 6f these 
data sets) must, nevertheless, op~n a dummy 
line to meet this requirement. An error 
message will be issued at the system 
console because no hardware is attached, 
but this message can be ignored. 

If the user does not open a line and, 
therefore, does not need either a DCB for a 
line group or a TERMINAL entry, the 
assembly of the MCP, nevertheless, 
generates an error message for the 
undefined symbol of IEDQSTCS. The user can 
either define this symbol in this program 
with a dummy label or ignore the severity 
level of 8 in the link-edit step. The 
symbol IEDQSTCS need not be correctly 
defined when the user is running only 
application-to-application programs. 

Either or both of the other two types of 
data sets -- the checkpoint data set and 
the log data set -- may be specified if 
needed. To describe data sets to the 
system, the user (via a DCB macro) defines 
a data control block (DCB) for each data 
set cited. 

~CB Macro: A process control block, 
created through specification of the PCB 
macro, is required in the MCP for each 
active application program. The PCB macro 
is similar to the DCB for the line groups 
in that it specifies the name of the 
message handler to be used for messages 
being sent by or received from an 
application program, as well as buffer 
requirements. The TPROCESS macro (see the 
discussion under "Defining Terminal and 
Line Control Areas") refers to the name of 
the PCB macro. 

1n the sample program given in Figure 
114 ar8hree process control blocks -
PCBLK, ~, for a COBOL ?rogram running 

360 

with terminals; PCBLK1, ~, for COBOL 
programs that simulate the sending of 
messages from a remote terminal; and 
PCBLK2, ~, for testing COBOL pro~rams 
that take advantage of the queue structure 
feature. Having these three control blocks 
makes it possiole for the COBOL DrJ~ram 
running with terminals to run at~th~ same 
time as one of the other COBOL programs& 
In the example in this cnapter, the rESrIPl 
program simulates a terminal sending 
messages to the TESTTP2 program. 

Q~~_~~£~£: A data control block, created 
~ough specification of the DCB rna.cro, 
\2), is requirej for each data set referrel 
to by the ~CP. In the sample me~sage 
control program, data control block~ are 
defined as follows: 

• The message queues DCB macro, which 
defines a data control block fJr a 
message queues data set, ~lSGQ ~. 

• rhe checkpoint DCB macro, which defines 
a checkpoint data set if the c~kpoint 
facility is to be used, CHKPT~. 

• The line group DCB macro, which defines 
a line group data set, must be 
specified for each line group in the 
system. In the sample MCP, tWJ line 
group data sets are defin~-- the 10SO 
line group, named LN1050 c, and the 
TwX line group, named LNT' 0. 

• The log DCB marco, which defines data 
sets for messages or message segments, 
should be specified for each secondary 
storage device on which messages or 
message segments may be logged. In the 
sample program, only one log DCB 
defining the MSGLOG data set, ®, is 
specifiej. 

• The snap dump DCB macro, which defines 
the data set for a snap dump, shJulj be 
specified only if the user wants a snap 
dump. In the sample~ogram, the DUHP 
data set is defined,~. 

In writing an MCP, the user must providt 
information that identifies the re~ote 
stations, specifies their characteristics 
to the system, and tells how they are to be 
handled. Line control is the scheme of 
operating procedures and signals by which a 
teleprocessing system is controlled. 

Line control concerns itself with such 
tasks as establishing contact between a 
sending and a receiving station, directing 
a message to a specific station on a 



multistation line, handling priorities when 
two stations try to send at the same time, 
and performing a user-specified action when 
a station fails to respond to a message. 

Several TCAM macros are available to the 
user for identifying stations and 
specifying how message transmission is to 
be handled. The TCAM macros used in the 
sample message control program given in 
Figure 113 -- TTABLE, TERMINAL, INVLIST, 
TLIST, and TPROCESS -- are described below. 
Two additional macros -- OPTION, which 
-----................. ,r.r""IIo""=ll,..L""\ ~,...,...". ":Ii'r'l "r"'It.+-; r'\T"ti -1=; a1 r1 ::::an,::) .Leoe.L V'C;O .;>pg, ...... c ,L.'J..L ~.L'&' '-'.1::"'--'-'-' ... .& ..... ..L.'-..L._, ......... .& ......... 

LOG TYPE , needed only for logging entire 
messages -- are also available to the COBOL 
user. 

TTABLE Macro: The TTABLE macro, (8), 
defines the start and the end of iJ?e 
terminal table, needed to provide 
information about each station and 
application program. 

TERMINAL Macro: The TERMINAL macro, ~, 
specified three times in the sample 
program, must be coded for each station 
that can accept messages (as well as for 
some terminals that can only enter 
messages), each group of non-switched 
terminals equipped with the hardware 

--group-code-fea-ture-,- an-a----each---switche-d--line 
to stations that do not uniquely identify 
themselves after calling the computer. 

Specification of the TERMINAL macro 
places a station or line name and 
associated information in this terminal 
table. TERMINAL produces a single entry: a 
group entry, or a line~try. In the 
example, the T1 entry, a ,provides 
information~out the 1 0 terminal, the 
T2A entry, b , information about the 
switched TWX ine, and the T2 entry, ~ , 
information about the TWX terminal on \(his 
line. 

1. The "UTERM=YES" specification in the 
TERMINAL macro for the switched TWX 
line creates an entry for the line. 
This gives the program the control 
information it needs to handle 
stations that call this line. After 
the station is identified by means of 
the ORIGIN macro in the MR, the 
program then refers to the TERMINAL 
entry for the station. 

2. All TERMINAL macros for lines in a 
line group must be arranged in 
ascending relative line numbers. The 
TERMINAL macro for a particular line 
must immediately precede all TERMINAL 
macros for stations on that line. In 
the sample MCP, there is only one line 

per line group and one terminal per 
line, but this need not be true. 

TP8Q~~~~ Ma~~Q: By placing the name of a 
queue for an application program, as well 
as associated information, i~tht terminal 
table, the TPROCESS macro, 1 ,helps 
connect a COBOL program with he message 
control program. 

The user must specify one TPROC~SS macro 
for each destination queue from which a 
COBOL program is to receive messages and at 
least one that is used when messages are 
sent by a COBOL program. (That is, one 
output TPROCESS entry is required for each 
application program running 
simultaneously.) The output TPROCESS entry 
is not the name of a queue. In the sample 
program, for example, twelve TPROCESS 
entries are specified. The PIN entry, Cal 
, identifies an input destination queue'rSr 
a COBOL program running with terminals; 
POUT identifies an output process entry. 

Similarly. the P1, ~ , and P2, ~, 
entries identify in~ destination queues 
for COBOL programs that simulate terminal 
input data, and the POUT1, ~ , entry 
identifies an output process entry for such 
COBOL programs. The PQ1, PQ2, PQ3, PQ4, 
PQS, PQ6, and PQOUT TPROCESS entries are 
used--f-o-r--C0-B-e-L--p-rog-rams---that- e-m.-ple-y--t-h-e -- ---- -----
queue structure feature. 

Note: Because the PIN and POUT entries in 
the-example refer to one process control 
block (PCBBLK) and the P1, P2, and pour1 
entries refer to another process control 
block (PCBBLK1)~ a program running Nith 
terminals can run concurrently with another 
program. This is alco true of the PQ 
entries, which refer to PCBLK2. 

T~I~T_Ma£EQ: An instruction that places 
the name of a list of a single, a group, or 
a process entr~in the terminal table, the 
TLIST macro, 11 ,must be specified for 
each such list 0 be created. This list 
can be specified as either a distribution 
list or a cascade list. when a message is 
sent to a distribution list, the same 
message is sent to all locations on the 
list. When a message is sent to a casc3de 
list, the message is transmitted to the 
listed destination with the fewest messages 
enqueued. In the sample message control 
program, the TLIST entry D1, (a), 
represents a distribution list entry. rhe 
list should not include a TPROCESS entry 
for a COBOL application program. 

INVLI~T Ma£EQ: An instruction that creates 
an invitation list entry containing the 
invitation characters for the stations on 
the line (in the order in which they are to 
be invited to send messages), the INVLIST 
macro, @' must be issued for each line 

Using the Teleprocessing Feature 361 



in the system. However, one INVLIST macro 
suffices for all output-only lines to 
stations that do not use invitation 
sequences. Two INVLIST entries -
~ISTI050, ~ , and LISTTWX, (§) -- appear 
1n the sam~ program. 

Note: Either a parameter of + in the 
INVLIST macro or an operator control 
command (see the section "Using TC~M 
Service Facilities" in this chapter) must 
initially activate a station for entering 
messages. 

In the entry LISTI050, for example, ITl 
+ 621S' _indicates that the IBM 1050 
terminal identified as Tl is active for 
entering messages. (621S is the IBM 10S0 
transmission code representation of the 
polling characters AO in hexadecimal 
notation.) Accordingly, the symbol 'T2A+' 
in the LISTTWX entry indicates an initially 
active line. (Note: The terminal name for 
the line, not the station, must be used.) 
For a TWX station,-the-t+ 1 character would 
be followed by an ID sequence instead of 
the polling character used in the LISrl050 
example. In the example, no ID sequence is 
given. The (CPUID) = operand in the 
INVLIST macro for the TWX terminal is 
required. 

The major section in a message control 
proqram is the group of message handlers 
CMH>, made up of sets of routines that 
examine and process control information in 
message headers (see Table 31) and perform 
the functions necessary in preparing 
message segments for forwarding to their 
destinations. There is usually a message 
handler for each line group or active 
application program. Each message handler 
usually contains both an incoming and an 
outgoing group. 

A message may consist of two parts -
the header, or control. portion and the 
text portion -- depending on the 
application. The sample message control 
program shown in Figure 114 contains four 
message handlers, as listed below. Three 
of these message handlers are based on a 
message header containing the information 
described in the comments that immediately 
precede the first sample message handler, 
~ • The fourth message handler in the 
s~ple MCP, MHAPP~PP, handles messages with 
no headers. 

362 

• A message handler (MHI0S0) for input 
from and output to the IBM 1050 Data 
Communications System rerminal. 

• A message handler (MHTWX) for input 
from and output to the Teletypewriter 
Exchange (TWX). 

• ~ message handler (MHTRM~PP' for input 
from and output to an application 
program running with terminals. 

• ~ message handler (MHAPP~PP) for input 
from and output to an a?plication 
program that simulates terminal input 
data. This type of message handler cafi 
be used for testing without terminals 
or for handling messages sent from one 
application program to another, as in 
the sample COBOL programs TLSTTPl (see 
Figure 116) and TESTTP2 (see Figure 
117) • 

Two kinds of macro instructions thac may 
be included in a message handler are 
functional macros and delimiter macros. 
~~~£tiQ~~!_@~£~Q~ perform the specific 
operations necessary for messages directed
to the message handler. Delimiter macros
classify and identify sequences-of-------
functional macro instructions and then
direct control to the appropriate sequence.
Table 31 shows some of the functional
macros that can be used with the delimiter
macros in the incoming group and the
outgoing group of the message handler. All
of these macros are included in the sample
message handler in Figure 114.

To decide which macro to place in Which
group, the user must understand which group
is executed when. This is discussed in the
description associated with Figure 113.
The steps executed by a message handler are
shown at the right-hand side of this
figure. When messages are received from
stations, the incoming group of a message
handler for the line is executed before the
outgoing group. However, when messa~es are
sent to application programs, the outgoing
group of the message handler for the
application program is executed first. The
decision boxes shown in Figure 113 are
determined by the destination specified in
the required FORWARD macro of a message
handler (that is, if the destination is the
name of a TPROCESS entry, processing is
required in a an application program; if,
however, the jestination is the name of a
TERMIN~L macro, no more processing is
required) •

Table 31. Macros that can be coded in a
Message Handler

r--------T-----------T---------T----------,
I I I Delimiter I Functional I
I Groups I Subgroups I Macros \ Macros I

~--------t-----------t---------+----------~
STARTMH*

CODE
LOG

Inheader SETS CAN
Incoming Subgroup INHDR* MSGTYPE
Group ORIGIN

1:'''nr.T7\Dn
J:vnnC'1.1\.L..I

TERRSET

Inbuffer CUTOFF
Subgroup INBUF MSGEDIT

Inmessage INMSG CANCELMG
Subgroup ERRORMSG

INEND*
~--------+-----------t---------+----------~
I I \ MSGFORM I
I I I MSGTYPE I
I I \ MSGEDIT \
I Outheader I \SETSCAN I
I Subgroup 10UTHDR \DATETIME I
I \ \ SEQUENCE \
I Outgoing I \ LOG I
Group I \ SETEOF \

1 -t----- 1"
outbuffer \OUT3UF \ MSGEDIT \
Subgroup I \ CODE I

I \ I
Outmessage 10UTMSG I HOLD I
Subgroup I IERRORMSG \

10UTEND* \ I
r--------------------i---------~----------~
I*The STARTMH macro is always required. I
I If the message handler is to handle I
I incoming messages, the INHDR, INEND, an1\
\ OUTEND macros are also required. If thel
I message handler is to handle outgoing I
I messages, the OUTEND macro is required. I l ___ J

~ote: For descriptions of other macros
that can be coded in an MCP, see the
publication IBM OS Telecommunications
Access Method (TCAM) Prograrr~er's Guide and
Reference Manual.

A discussion of sample message handlers
for terminal line groups appears below.
For discussions of the MHTRMAPP an1
MHAPPAPP message handlers, see the sections
"A Message Handler for an Application
Proqram Running with Terminals" an1 "A
Message Handler for an Application Program
that Simulates Input Data."

A MESSAGE HANDLER FOR THE TERMINAL LINE
GROUPS: Because the message handlers for
the 1050 line and the TWX line are similar
(except for the difference in line control

characters an1 the use of the 1050 for
error messages), the description of the
message handler for the 1050 (~ilil050) given
below should also suffice for the TWX line
group (MHTWX).

!h~_!.!!~2!!!!'!!SI._~E2!!E: The first macro~· n the
MHl050 message handler is STARTMH, 13 ,
in which the LC=OUT operand specifie that
line control characters are to ~ removed.
The first macro in~he INHDR, 4,
subgroup (CODE), 15 I transla s the
incoming~essages 0 EBCDIC. Then the LOG
macro, 6 ' records the header on the log
data set. Even though the CODE macro is
part of the INHDR subgroup, all buffers of
the message are translated from line co1e
to EBCDIC -- not just the first (hea1er)
buffer. In the normal case, unless the
line code is EBCDIC, the CODE macro should
be placed first, as in this example. A
CODE macro must be issued before an ORIGIN
macro, since the name in the header is
checked against the terminal names, which
are in EBCDIC. The name in the header,
therefore, cannot be located unless it has
first been translated. The same
translation reqUirem~ts apply to such
macros as SETSCAN, 17, in the example.
In this case, if the '$' in the message
were not first translated to EBCDIC, the
C'$' would have to be specified in line
code~

The SETSCAN macro, 6:n, sets the scan
pointer to "$11 in~he h'i?a'der, and the
MSGTYPE macros, 18 , that follow cneck
the character in t e next field (with
fields separated by at least one blank
character) for one of the four codes that
represent possible message 1estinations.
If the scan yields a match between a field
in the incoming message an1 the cO:le for
one of the MSGTYPE macros, the macros
between this MSGTYPE macro and the next
MSGTYPE macro are executed. Control is
t~n given to the next subgroup (INBUF),

22 • When a ~'I'YPE match is foun1, the ° GIN macrc, 1 , is issued& The
FORWARD macro, 0, which is always
required, transmits the message to the
destination specified.

If there is no match with any of the
operands specified in the MSGTYPE ~acros,
the last MSGTYPE macro, which has a blank
operand field, is executed. The re~uired
FORWARD ~cro follows, and the TERRSEI'
macro, 2 , sets the user error bits in
the erro record for the message.

In thbINBUF subgroup, @ , the CUTOFf
macro, ~ , limits the size of the
incoming messages and checks for station
malfunction. The insertion of th~ECDEL
character by the MSGEDIT macro, ~ ,
allo~s for record delimiters in tile
message, needed when the COBOL pro~ram

Using the Teleprocessing Feature 363

r~ds in segment mode. The INMSG subgroup,
~ , checks the error bits in the error

record for this message and either CielS
the message via the CANCELMG macro, 26 ,
and/or sends an error message to the 50
terminal using the~~RO~MSG macro, 2 5

The INEND macro. ~m , a required
delimiter macro, s~nifies the end of the
incoming groups.

The Q~tgQi~~~oue: The macros discussed
below, known as the outgoing group, are
executed when messages are transmitted to
t~ 1050 terminal. In the ~THDR subgroup,
~ , the MSGFORM macro, ~ , causes
llne control characters to De inserted in
the outgoing message. <Unless the user
provides line control characters himself,
this macro must be coded.) The MSGTYPE
macro determines the type of message, so
that a message can be processed either as
an ordinary message or as an error message.

For every error message, the SETSCAN
macro returns the scan pointer to the
beginning of the message, and the MSGEDIT
macro inserts the "NL" character before the
message text. Processing of erro~essages
resumes in the OUTBUF subgroup, ~ , of
the message handler.

For the non-error messages, the MSGEDIT
macro also inserts "NL" at the beginning of
the message. Then the SETSCAN macro sets
the scan pointer to the period at the end
of the message header so that pertinent
information can b~inserted there. The
DATETIME macro, ~ , records in the
message being senE the date and time this
m~ro is executed. The SEQUENCE macro,

32 ,inserts a sequence number, and the
LO macro records the control information
contained in the message header.

In the OUTBUF subgroup, ~ , of this
message handler, the MSGEDIT macro inserts
an "NL" character for every record
delimiter character in the message.
Because in the incoming group the RECDEL
character is inserted for every "NL" and
"LF" character, for a message that is
simply transmitted from one terminal to
another the message handler appears to send
the same line control characters it
receives. For a message sent by a COBOL
program, on the other hand, wether or not
record delimiter characters remain depends
on the mode specified in the RECEIVE or
SEND statement. (Tnat is, when the
programmer receives a message in ~~~~~~t
mode, the record delimiter character is
removed; when the programmer receives a
message in messa~~ mode, the record
delimiter is not removed. Accordingly,
when the programmer sends a message in
~egm~nt mode, the record delimiter
character is added; when the programmer
sends a message in IT!~ssage mode, the record

364

delimiter is not added.) The next MSGEDIT
macro inserts 13 idle characters after
every "NL" character placed in the message,
to allow the terminal sufficient time to
return its carriage before receiving the
next line. Finally, the CODE macro
translates from EBCDIC to line code when uv

more handling is required with macros that
operate in EBCDIC.

Like the INMSG subgroup (see "The
I~oming Group"), the OUTMSG subgroup,
~, checks the error bit in the error

record for the message and transmits error
messages, if any,~o the 1050 terminal.
The HOLD macro, ~ , is invoked only if
there are hardware errors. ~ccordingly, a
terminal placed in HOLD status is not
released until an operator control message
is issued. The OUTEND macro, 6b) ,
signifies the end of the outgoi~ group.

A MESSAGE HANDLER FOR AN APPLICATION
~gQ~g~~=gQ~~!~~=~!~~=~~g~!~~~~:--The
MHTRMAPP message handler handles messages
transmitted by a terminal for the
application program that is sending and
receiving messages from terminals. Like
the message handler discussed earlier,
MHTRMAPP includes both an incoming group
and an outgoing group.

In this message handler, because
messages are sent to the application
program from a terminal, the ~tgoing grou~
headed by the OUTHDR macro, ~ , is
executed first. The first macro (MSGEDII)
deletes any characters (for example, "NL",
nCR", or "LF") that have preceded "$" in
the header. This step is necessary bec~use
of the application program's expectation of
receiving a fixed-length header beginning
with "$". The next macro (SETSCAN) sets
the scan pointer over the "$" and the
MSGTYPE field. Then the SEQUENCE macro
numbers the messages sent to the
application program, and the LOG macro
records the information contained in the
message header.

The next SETSCAN macro sets the scan
pointer over the source field in the header
so that it points instead to the EJF field,
The SETEOF macro identifies the last
message in a data file being processed by
an application program. If the character
specified at the location pointed to by the
scan pointer (and given as an operand in
the SETEOF macro) is "F", the first RECEIVE
statement issued by the COBOL program after
receipt of the message causes the MCP to
enter an application program EODAD routine.
As far as the COBOL user is concerned, this
section sets the "ETI" indicator in the
field referred to by the END KEY clause in
the input communication description (CD).
The OUTMSG subgroup is not included in this
message handler because it is not executed

for messages sent to an application
program. Nevertheless, the OUTEND
delimiter macro signifies the end of the
outgoing group.

The macros in the incoming group of this
m~sage handler, headed by the INHDR macro,
~ , are executed when messages are

received from the COBOL program. The LOG
macro records the information contained in
the header, and the FORWARD macro, wnich is
always required, specifies "DEST=PUT" as
the message destination. This will cause
the message to be forNarded to the
destination the COBOL program has indicated
in the output CD. The INMSG subgroup that
follows checks to see whether sufficient
buffer units are available for the message
and verifies that the destination specified
is valid. The INEND delimiter macro then
specifies the end of the incoming group.

A MESSAGE H~NDLER FOR AN APPLICATION
PROGRAM THAT SIMULATES TERr-UNAL INPUT DATA:
The MHAPPAPP message handler is for
messages having no header. As a result,
the only macro in the out~ing group is the
delimiter macro OUTEND, ~ , which is
always required.

The i~Oming group contains both the
INHDR, 40 , subgroup, containing the
required ORWARD macro, and the INMSG
subgroup, which checks for availability of
sufficient buffer units and verifies that
the destination specified is valid. The
required INEND delimiter macro is present.

This section names the parts of the MCP
described earlier, explaining how to
arrange them in relation to one another and
how to assemble, link-edit, and execute a
TCAM MCP. The five sections of an MCP
include those previously discussed -- an
activation and deactivation section. a data
set definition section, a terminal and line
control area section, a message handler
section -- and an optional user routine
section (that is, user subroutines called
by a message handler, as well as exit
routines referred to by the INTRO macro, by
DCB macros, and by the STARTMH macro). The
only stipulation about ordering these
sections is that the activation and
deactivation section must corne first.

ASSEMBLING, LINK-EDITING, AND hXECUTING ~N

MCP

The assembly, link-edit, and eXecution
steps of a TCAM MCP are similar to these
steps for any other problem progra~ running
under OS. The job control statements given
below for these three steps are guidelines
only.

A typical control card se~uence for
assembling a rCAM MCP is as follows:

//ASSEMBLY
//STEP1

JOB MSGLEVEL=l
EXEC ASMFC

//ASM.SYSIN DO *
{MCP Source Deck}

T-he--following--is --a-tY-I?i-c:-a.l---- control--- ca r-d- -
sequence for link-editing an ~CP:

//LINKEDIT JOB MSGLEVEL=l
//STEP1 EXEC PGM=IhWL,PARM='XKEF,LIST.
// LET',REGION=9bK
//SYSPRINT DD SYSOUr=A
//SYSUr1 DO UtUT=SYSOA,
// SPACE=\ 1024, (200,20))
//SYSLMOD DD DSNAME=SYS1.TCAMLIB,

DISP=OLD
//SYSLIB DO DSNAME=SYS1.TELCMLIB, X.

DISP=OLD
// DO DSNAME=SYS1.MACLIB, X
// DISP=OLD
//SYSLIN DO *
{MCP Object Module}

NAME TCAMPROG(R)

Note: In this example, the MCP load module
is to be placed in a user-created private
library called SYS1;TC~M~IB.

Executing an MCP

The TCAM MCP is normally executed as the
highest-priority task in the
highest-priority partition or region in the
system. It may have an equal priority, but

Using the Teleprocessing Feature 365

it should never be assigned a lower
priority. A typical control card sequence
for executing an MCP is the following:

//EXECMCP JOB
//
//GOSTEP EXEC
//STEPLIB DO
//
//001050 DO
// DO
// OD
//002140 DO
// DD
// DO
//QFILE DD
//LOGFILE DO
/ISYSABEND DD

'EXECUTE MCP',MSGLEVEL=l, X
PRTY=12
PGM=TCAMPROG,REGION=100K
DSNAME=SYS1.TCAMLIB, X
DISP=SHR
UNIT=025
UNIT=026
UNIT=027
UNIT=015
UNIT=016
UNIT=017
DSNAME=MSGQ,OISP=OLO
OSNAME=LOGF,OISP=OLD
SYSOUT=A

1. In this example, the MCP has two line
group data sets, each containing three
lines; no checkpoint facility is
included. (For a discussion of the DD
cards for a checkpoint data set, see
the section "Defining the Checkpoint
Data Set.")

2. The QFILE OD statement is for a
message queues data set residing on
disk; QFILE is the name specified in
the DDNAME= operand of the DCB macro
for this data set, and MSGQ is the
name of the data set specified by the
DSNAME operand of the IEOQDATA DO
statement for the IEDQXA utility used
to preformat disk message queues data
sets residing on disk (see the section
"Defining the Message Queues Data
Sets").

3. If the data set is not cataloged, the
UNIT= and VOLUME= operands must be
included in the DO statement for the
disk message queues data set.

4. The //LOGFILE OD card must be included
if the LOG data set is to be used.

Oefi~i~~h~Chec~20int Data Set: One DD
statement that mayor may not catalog the
data set must be issued for the checkpoint
data set. However, if it is not cataloged,
the user should allocate the data set by
specifying OISP=(NEW,KEEP) as in the
example and subsequent uses of the data set
must contain the UNIT= and VOL=SER=keyword
operands, given below.

//CFILE
//
//
/1

366

DO DSNAME=CPDS,UNIT=2314, X
VOL=SER,DB197, X
SPACE=(TRK, (5)), X
DISP=(NEW,KEEP)

After a checkpoint data set is SEt u~
and the MCP has terminated norrr,ally. tne
programmer should replace the DG carj
described above with one of the following
type:

//CFILE DD DSNAME=CPDS,OISP=OLD,
VOL=SER=DB197,UNIT=2314

Q~fi~i~g_~i~~_~E2~E_Q~~~_~~t~: The user
must include in his job control st3tements
at least one DO statement for each line
group data set, but he has two options for
handling these definitions.

1. If a UNITNAME macro is issued for 3
line group at system generation time,
then a single DD statement may be
issued for this line group at ~CP
execution time. For example, a
UNITNAMF. macro could be issued to
define a group of lines as follows:

UNITNAME UNIT=(040, 041)
NAME=GROUPLINE

Where the two numerals in the
UNIT=operand parameter represent the
hardware addresses of two lines in a
line group. At execution time for the
MCP, the following DD statement might
be issued for this line group:

//LNS DD UNIT=(GROUPLINE,2)

Where the line group data set woul] be
made up of two lines defined by the
UNITNAME macro.

2. A DD statement may be issued for each
line in a line group, as in the DO
cards for line group OD1050 and line
group OD2740 in the sample JCL
statements given in section "Executing
an MCP."

3. The following DD cards were used to
execute the sample message control
program shown in Figure 112.

//LN1
//LN2

DD UNIT=040 (for the 1050 terminal)
DD UNIT=041 (for the TWX terminal)

Defi~i~~~~_~~~~~g~_Q~~~~~_Q~t~_~~t~: The
number of message queues data sets require]
for an MCP depends on the types of queues,
which depend on the application. reAM
supports three types of data sets -- a main
storage data set, a reusable disk set, and
a nonreusable disk data set. (For
checklists governing specification of the
three types of message queues data sets,
see the publication IBM OS
Telecommunications Access Method (rCAM)
PrQ~~ammer's G~ide and_Ref~~~g£e ~~g~~!.)

TCAM expects the disk message queues
iboth reusable and nonreusable) to be

totally preformatted. The COBOL user
should engage the IEDQXA utility routine to
perform this task prior to initially of a
set of job control statement used to invoke
this routine.

~ote: The value given in the KEYLEN
parameter must be the same as that
specified in the KEYLEN operand of the
INTRO macro (see the section "Defining the
Buffers").

//JOBNAME JOB user information
//FORMATQ
//SYSPRINT
//IE:JQDATA
//
//
//
//
/*

EXEC PGM.=IEDQXA
DD SYSOUT=A
DD JSN=MSGQ,DISP=(,CATLG), X

SPACE=(CYL, (S,S)"CONTIG) X
UNIT=(2311,1), X
VOL=SER=333333, X
DCB=(,KEYLEN=100)

WRITING A TCAM-COMPATIBLE COBOL PROGRAM

Two of the chief processing applications
for which COBOL programs can be written are
inquiry processing and processing collected
data. An inquiry-processing COBOL program
receives messages from stations, processes
theaata-,- and then-sends- -rep-l-iestothe
originating stations. Depending on the
inquiry, the COBOL program may transmit
either the information requested or a
message stating that this information is
unavailable and telling when it can be
provided. The COBOL program that simply
processes data collected by a message
control program can either operate
concurrently with the collection of data by
the MCP or be loaded and initiated at a
later time.

The sample COBOL TP program TFSTTP2
(shown in Figure 119) represents an

application of processing data. This
program accepts messages transmitted from a
remote station, formats the message, and
then transmits each complete message to the
destination specified. rhe COBOL program
TESTTPl (shown in Figure 118) simulates
terminal input data. The user can,
therefore, test an installation-written
COBOL TP program by running it with the
sample MCP and TESTTP1.

TESTING A COBOL TP PROGRAM

Depending on the status of an
installation's teleprocessing system, tne
user can code anyone of three sets of JCL
to run a teleprocessing job. A system that
is fully operational has a message control
program with a user-designated message
handler for each type of teleprocessing
situation expected, as well as remote
terminal hook-ups. The user whose system
is only partially developed or is still in
the design stage may, nevertheless, wish to
test COBOL teleprocessing programs using
BSAM.

Accordingly, the JCL shown in Figure llJ
is for a strictly BSAM situation (that is,
for a teleprocessing program that is to be
run without either an MCP or hardware); the
JCL shown in Figure llb is for a
quasi-terminal situation (that is, with l-'.iCP
but without hardware); and the JCL shown in
Figure 117 is for a teleprocessing job
running with a remote terminal. For both
the non-terminal and the quasi-terninal
situation an input data set must be
created. 10 run a COBOL teleprocessing
program with a terminal hook-up. only the
teleprocessing program itself is needed.

Using the Teleprocessing Feature 367

r---,
IITESTTPl JOB user information I
II EXEC UCOBFCLG I
IICOB.SYSIN DD * I

{Source deck for TESTrp1 program (Figure 118)}
1*
IIGO.TSTTP
II
IIGO.COBTPOUT DD2
IITESTTP2 JOB
II EXEC
IICOB.SYSIN DD

UNIT=2400,L~BEL=(,NL),VOL=SER=NI19S,DCB=(LRECL=SO,BLKSIZE=SO,
RECFM=F,DEN=2) ,
UNIT=2314,VOL=SER=231400,DSN=&1,DISP=(NEW,P~SS),SPACE=(CYL, (1, 2»
user information
UCOBFCLG

*
{Source deck for TESTTP2 program (Figure 119)}

1*
IIGO.Ql DD3 DSN=P1, VOL=SER=231400, UNIT=2314, DISP=(OLD, PASS)
IIGO.COBTPOUT DD4 DSN=P2,VOL=SER=231400,UNIT=2314,DISP=(NEW,PASS),SPACE=lCYL, (1,2»
IIDUMPIT JOB user information
II· EXECs PGM=IMASP=AP

X

I
I
I

IISYSLIB DD DSNAME=data set to be printed,UNIT=2314,VOL=SER=231400, XI
II DISP=OLD,OCB=OSORG=PS I
IISYSPRINT DO SYSOUT=A j

IIISYSIN DD * I
I ABSOUMP ALL I
1/* I
~---~
Not~2:

1. Input sequential file with records of SO characters each (BSAM JCL).

2. Output data set that simulates sending messages to a terminal named 'P1'.

3. Input data set that simulates reading messages from a terminal named 'P1'.

4. Output data set that simulates sending messages to a terminal named 'P2'.

S. This job prints out the records in the simulated data set. For further
information, see the publication I~~_Q~_~~~~i£~_~i~2' Order No. GC28-6719. l __ _

Figure 11S. Sample JCL for Running a releprocessing Job without Hardware.

368

r---,
//TESTTPl JOB user information I
// EXEC UCOBFCLG I
//COB.SYSIN DD * I

/*
//GO.TSTTP
//
//GO.COBTPOUT
//TESTTP2
//
//COB.SYSIN

/*
//GO.Ql
//GO.COBTPOUT
//DUMPIT
//
//DISQOl
//SYSPRINT
/*

{Source deck for TESTTPl program (Figure llS)}

DD2
JOB
EXEC
DD

UNIT=2400,LABEL=(,NL) ,VOL=SER=NI195, DCB=(LRECL=50, BLKS IZE=50,
RECFM=F,DEN=2)
QNM·m=POUTl
user information
UCOBFCLG

*
{Source deck for TESTTP2 program (Figure 119)}

DD3
DD4
JOB
EXEC
DD5
DD

QNAME=Pl
QNAME=POUTl
user information
IEDQXC
DSN=MSGQ,VOL=SER=DB197,UNIT=2314,DISP=SHR
SYSOUT=A

X

I
I
I

~---~
I Notes: I
I I
11. Input sequential file with records of 50 characters each. (This is the same JCL asl
I in BSAM.) I
I I
12. Output is sent to an MCP message queue named 'Pl', which is defined for processing I
I by a COBOL program. I
I I
1 3. -Input-- is- r-eceiv-ed -fr--o-mthe- ~lCPm-essa-ge -queue named- 'P1J --.-- --l-
I I
14. Output is sent to an MCP message queue named 'P2', which is defined for processing I
I by a COBOL program. I
I I
15. This job prints out records in the MSGQ queue. For further information, see the I
I publication !~~Q§ Teleco~~gi~~tiQg~_~~~~~~_~~tgQ~_lT~~~_~fQgf~~~~f~~_~~i~~_~g~ I
! Reference Material: Order No. GC30-2024. I l ___ J

Figure 116. Sample JCL for Running a Teleprocessing Job in a Quasi-Terminal Environment.

r---,
1/ITESTTP2 JOB user information I
11/ EXEC UCOBFCLG I
I//COB.SYSIN DD * I
I {Source deck for TESTTP2 program (Figure 119)} I
11* I
1//GO.Ql DD1 QN~M~=Pl I
I//GO.COBTPOUT DD2 QNAME=POUTl I
~---~
INot~~: I
I I I •
11. The input is received from the MCP message queue 'Pl'. I
I I
12. The output is sent to an MCP message queue defined for a terminal. I l ___ J

Figure 117. Sample JCL for Running a Teleprocessing Job with a Remote Terminal.

Using the Teleprocessing Feature 369

COMMUNICATING BETWEEN A COBOL PROGRAM ~ND
THE MCP

The TCAM message control program routes
messages between a COBOL teleprocessing
program and remote stations. Because the
~CP performs the input/output operations
necessary for the COBOL teleprocessing
proqram, the user must establish an
interface between these two programs by
doing the following:

• Defining the interface

• Activating the interface

• Transferring messages between the COBOL
program and the MCP

• Deactivating the interface

In each of the sections that follow, both
COBOL statements and TeAM macros, ,as well
as their relationship, are described as
appropriate. The encircled numerals in
this discussion refer to the sections
similarly labeled in the sample COBOL
teleprocessing program TESTTP2 shown in
Figure 119.

Defining the Interface

The Communication Section in the COBOL
program and the PCB and TPROCESS macros in
the message control program set up the
interface between the two programs.

Qefiging_IgQ~t_an~_Q~t2~t~~t~ Set~: ~t
execution time, one DD statement must he
provided for each SYMBOLIC QUEUE name
specified in an input CD. A prototype of
such a statement is

//ddname DD QNAME=procname

where "procname" is the name of the process
entry in the terminal table to which this
entry refers (see the section "Defining
Terminal and Line Control Areas").

As in the following example from the
sample program TESTTP2 (shown in Figure
92.7), the COBOL user should specify the
SYMBOLIC QUEUE names for the ddnames and
the corresponding TPROCESS entry names for
the procname. In TESTTP2, one input queue
and one output queue are defined. The DD
card for the input queue is:

//Q1 DD QNAME=P1

370

Similarly, the COBOL programmer must
provide a DD card for the process entry
defined in the MCP to send messages from
the COBOL program. As in the example that
follows, the dJname must be COBTPOU1, 3nd
the QNAME must be the name of a TPR02ESS
entrv for an ont_Dnt nr()r-p~s p~t-rv_ The t-1CP
shouid have a q~~~~ d;fi~;d ;~-P2~ but no
DD statement is needed for this queue.

//COBTPOUT DD QNAME=POUT1

The user should notice that these
destination queues are among those
specified in the message control program
via the TPROCESS macro. For examples of
these TPROCESS entries, see the discussion
the "TPROCESS i"lacro" under "Defining
Terminal and Line Control Areas".

In a COBOL TP program, the user can
specify one through three levels of
subqueues from which data can be received.
This feature allows the COBOL object
program, at execution time, to make use of
pre-defined queue structures, and to aCCESS
all or parts of such structures. If
pre-defined queue structure are used, each
lowest level subqueue name in the structure
corresponds to a TC~l queue and mu~t,
therefore, have an associated Du card
pointing to a TPROCESS entry in the MCP
terminal table. Each subqueue must be
defined in the communication description
<CD) of the COBOL source program and have
been defined earlier in a queue structure
description (see the sections "Queue
Structure Considerations" and
"Communication Section" in the chapter on
"Programming Techniques").

If the user wishes to access the next
message in the queue structure, regardless
of which sub-queue that message may oe ln,
he specifies the queue name only and
initializes the sub-queue names to SPA2ES.
The MCP, when supplying the message,
returns to the COBOL object program any
applicable sub-queue names via the data
items in the associated input CD. If,
however, the programmer desires the next
message in a given sub-queue, he must
specify Doth the queue name and any
applicable sub-queue names. Once a program
has begun receiving any part of a message
from a queue (or sub-queue), subse~uent

requests must specify all applicable names
until end of message (EMI) is indicated.

IDENTIFICATION DIVISION.
PROGRAM-ID.

TESTTP1.
DATE-COMPILED. DEC 9,1971

001010
001020
001030
001080
001100 REMARKS. THE SAMPLE COBOL TELEPROCESSING PROGRAM THAT

FOLLOWS SERVES AS A SIMPLE ILLUSTRATION OF THE COBOL TELE
PROCESSING FEATURE. THIS PROGRAM READS IN A FILE OF 50-
CHARACTER MESSAGES, TRANSMITTING THEM ONE BY ONE TO THE
SPECIFIED DESTINATION.

001160
001170 ENVIRONMENT DIVISION.
001180 INPUT-OUTPUT SECTION.
001190 FILE-CONTROL.

SELECT i~STER-FILE
ASSIGN TO UT-2400-S-TSTTP.

DATA DIVISION.
FILE SECTION.
FD MASTER-FILE

001200
001210
002010
002020
002030
002040
002050
002060
002070
003010
003110
003120 01
003130

*
003150

RECORDING MODE IS F
LABEL RECORDS ARE STANDARD
DATA RECORD IS RECORD1.

01 RECORDl PIC X(50).
WORKING-STORAGE SECTION.

IDENT-SEND.
02 I-SEND PIC X(50).

SET UP A WORK AREA OF 50 CHARACTERS

* THE COMMUNICATION SECTION MUST BE SPECIFIED IN A COBOL PROGRA~
* THAT IS TO UTILIZE THE COBOL TELEPROCESSING FEATURE. THE
* COMMUNICATION DESCRIPTION (CD) ENTRIES THAT APPEAR IN THIS
* GROUP OF SOURCE STATEMENTS ESTABLISH THE INTERFACE BETWEEN THE
* C-OBOL-OBJECT--PRO-GRAMAND" THE MESSAGE CONTROL PROGRAM (RCP).

004010 COMMUNICATION SECTION.
004120 CD CDNAME-OUT FOR OUTPUT
004130 TEXT LENGTH IS TEXTLNTH-OUT

* SPECIFY LENGTH OF OUTPUT MESSAGE.
004140 STATUS KEY IS STATKY-OUT

* PROVIDE INFORMATION ON MESSAGE STATUS.
004150

* 004160

004170
005010
005020
005030

005040

*

*
* 005045

005050
005060

ERROR KEY IS ERRKY
PROVIDE ERROR INFORMATION.

SYMBOLIC DESTINATION IS SYMDES.
SPECIFY OUTPUT QUEUE.

PROCEDURE DIVISION.
START-JOB.

DISPLAY 'BEGIN TESTTP1'.
START THE COBOL TELEPROCESSING PROGRAM.

OPEN INPUT MASTER-FILE.
OPEN THE INPUT FILE.

READ-ROUTINE.
READ MASTER-FILE INTO IDENT-SEND

AT END GO TO END-ROUTINE.

* PLACE INPUT RECORDS IN A wORK AREA UNTIL END OF FILE IS
* REACHED.

006010 SEND-ROUTINE1.
006020 MOVE 'Pl' TO SYMDES.

* SET UP OUTPUT DESTINATION.
006040 MOVE 50 TO TEXTLNTH-OUT.

* IDENTIFY MESSAGE LENGTH AS 50.
006060 SEND CDNAME-OUT FROM IDENT-SEND WITH EMI.

* TRANSMIT A COMPLETE MESSAGE.
006070 PERFORM CHECK-SEND THRU CHECK-EXIT.
006080 GO TO READ-ROUTINE.

Figure 118. Creating a TCAM Data Set for Testing without Terminals
(Part 1 of 2)

Using the Teleprocessing Feature 371

* EXECUTE USER-WRITTEN CODE FOR CHECKING ON THE SUCCESSFUL
* COMPLETION OF MESSAGE TRANSMISSION. IF END OF FILE IS
* REACHED, GO TO END-OF-JOB ROUTINE. OTdERWISE, GET THE NEXT
* RECORD.

008010 CHECK-SEND.
008020*
008021*
008022*
008030* USER CHECKING ROUTINE FOR DETERMINING THE
008040* SUCCESSFUL COMPLETION OF rHE SEND.
008050*
008160
008170 CHECK-EXIT.
008180 EXIT.

**008180*
008190
011110 END-ROUTINE.
011111 CLOSE MASTER-FILE.

* CLOSE THE INPUT FILE.
011150 DISPLAY 'SUCCESSFUL END OF TESTTP1'.

* TERMINATE THE PROGRAM.
011160 STOP RUN.

Figure 118. Creating a TCA}'~ Data Set for Testing without I'erminels (Bart 2 of 2)

372

IDENTIFICATION DIVISION.
PROGRAM-ID.

TESTTP2.
DATE-COMPILED. DEC 9,1971

001010
001020
001030
001080
001100 REMARKS. THE SAMPLE COBOL TELEPROCESSING PROGRAM THAT

FOLLOWS SERVES AS A SIMPLE ILLUSTRATION OF THE COBOL TELE
PROCESSING FEATURE. THIS PROGRAM SETS UP A DESTINATION
FOR INCOMING MESSAGES, AND THEN READS THEM, ONE BY ONE,
INTO A WORK AREA. THE PROGRAM BUILDS 50-CHARACTER MESSAGES
AND SENDS THEM TO THE MCP WITH THE END-OF-MESSAGE (EMI)
INDICATOR. WHEN ALL THE INCOMING MESSAGES HAVE BEEN PRO
CESSED, THE MESSAGE • SUCCESSFUL END OF TESTTP2' IS PRINTED
ON THE CONSOLE, AND THE PROGRAM IS TERMINATED.

001120
001130
001170
001180
001190
001200
002010

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
INPUT-OUTPUT SECTION.

DATA DIVISION.
WORKING-STORAGE SECTION.

003110

~
003120 01 CD 003130
003160 01
003170
003190

IDENT-SEND.
02 I-SEND PIC X(50).
IDENT-REC.
02 I-REC PIC X(50).

* THE COMMUNICATION SECTION MUST BE SPECIFIED IN A COBOL PROGRAM
* THAT IS TO UTILIZE THE COBOL TELEPROCESSING FEATURE. THE
* COMMUNICATION DESCRIPTION (CD) ENTRIES THAT APPEAR IN THIS
* GROUP OF SOURCE STATEMENTS ESTABLISH THE INTERFACE BETWEEN THE
* COBOL OBJECT PROGRAM AND THE MESSAGE CONTROL PROGRAM (MCP) •
.. G OMM9-NI C-A'I'-I 0,.1'>).- SECT 100.--

004120 CD CDNAME-OUT FOR OUTPUT
004130 TEXT LENGTH IS TEXTLNTH-OUT

* SPECIFY LENGTH OF OUTPUT MESSAGE.
004140 STATUS KEY IS STATKY-OUT

* PROVIDE INFORMATION ON OUTPUT MESSAGE STATUS.
004150 ERROR KEY IS ERRKY

* PROVIDE ERROR INFORMATION.
004160 SYMBOLIC DESTINATION IS SYMDES.

* SPECIFY OUTPUT QUEUE.
004170

**004020 CD
004030

* 004040
004050

CDNAME-IN FOR INPUT
SYMBOLIC QUEUE IS SYMQ

IDENTIFY INPUT MESSAGE QUEUE.
MESSAGE DATE IS MSGDATE
MESSAGE TIME IS MSGTIME

* PROVIDE DATE AND TIME OF RECEIPT OF MESSAGE.
004060

* 004070

* 004080

*

SYMBOLIC SOURCE IS SYMSOURCE
IDENTIFY THE MESSAGE SOURCE.

TEXT LENGTH IS TEXTLNTH-IN
SPECIFY THE EXPECTED LENGTH OF INPUT MESSAGE.

END KEY IS ENDKY
PROVIDE CODE FOR ACTIVATING END-OF-JOB ROUTINE.

** FOR A RECEIVE ¥£SSAGE:
* A CODE OF 3 I~DICATES END OF TRANSMISSION (ETI).
* A CODE OF 2 INDICATES END OF MESSAGE (EMI).
* A CODE OF 0 I~DICATES RECEIPT OF LESS THAN A MESSAGE.
** FOR A RECEIVE SEGMENT:
* A CODE OF 3 INDICATES END OF TRANSMISSION (ETI).
* A CODE OF 2 INDICATES END OF MESSAGE (EMI).
* A CODE OF 1 INDICATES END OF SEGMENT (ESI)
* A CODE OF 0 INDICATES RECEIPT OF LESS THAN A SEGMFNT~

Figure 119. A COBOL Program That Processes TCAM Messages
(Part 1 of 2)

Using the Teleprocessing Feature 373

**
*

004090
*

004100
*

004110

HIERARCHY -- 0, ES1, EMI, ETI-WHEN MORE THAN ONE CONCURRENTLY
HIGH LEVEL APPEARS.
STATUS KEY IS STATKY-IN

PROVIDE INFORMATION ON INPUT MESSAGE STATUS.
QUEUE DEPTH IS QDEPTH.

SPECIFY DEPTH OF INPUT QUEUE.

**002100

o PROCEDURE DIVISION.
DISPLAY 'BEGIN TESTTP2'.

RECV-DATA.
009040 MOVE 'Ql' TO SYMQ.

* Ci) 009050
009055

SET UP INPUT DESTINATION.
RECEIVE CDNA~£-IN MESSAGE INTO IDENT-REC

NO DATA GO TO END-ROUTINE.
* ACCEPT INPUT MESSAGES, ONE BY ONE, AS ON A SEQUENTIAL FILE.
* WHEN ALL MESSAGES HAVE BEEN PROCESSED, INVOKE END-OF-JOB
* ROUTINE.

009060 CHECK-RECEIVE.
009010*
009080* USER CHECKING ROUTINE FOR DETERMINING THE
009090* SUCCESSFUL COMPLETION OF THE RECEIVE.
009100*
009110 PROCESS-DATA.
009120*
009130* USER ROUTINE TO BUILD MESSAGE TO BE SENT.
009140*

**006010 SEND-ROUTINE1.
006020 MOVE 'P2' TO SYMDES.

* SET UP OUTPUT DESTINATION.
* NOTE: FOR THE NON-TERMINAL AND PARTIAL TERMINAL SITUATIONS,
* 'P2' SHOULD BE SPECIFIED AS THE SYMBOLIC DESTINATION. FOR
* A COBOL PROGRAM RUNNING WITH TERMINALS, 'Tl' SHOULD BE
* SPECIFIED.

006040 MOVE 50 TO TEXTLNTH-OUT.

006060

006010

* SPECIFY LENGTH OF OUTPUT MESSAGES.
SEND CDNAME-OUT FROM IDENT-SEND WITH EMI.

* TRANSMIT FORMATTED MESSAGE, WITH THE CODE FOR A COMPLETE
* MESSAGE.

PERFORM CHECK-SEND THRU CHECK-EXIT.
* INVOKE USER-WRITTEN ROUTINE FOR CHECKING MESSAGE TRANSMISSION.

* 006090
ACCEPT THE NEXT MESSAGE FROM THE INPUT QUEUE.

GO TO RECV-ryATA.
001120
008010 CHECK-SEND.
008020*
008030* USER CHECKING ROUTINE FOR DETERMINING THE
008040* SUCCESSFUL COMPLETION OF THE SEND.
008050*
008110 CHECK-EXIT.
008180 EXIT.
008190
011110 END-ROUTINE.
011150 DISPLAY 'SUCCESSFUL END OF TESTTP2'.
011160 STOP RUN.

Figure 119. A COBOL Program That Processes TCAM Messages (Part 2 of 2)

314

Qefi!:!ing_~~Q~es~_~Q!:!i!::QL310ck~: In the
MCP the user must also code a process
control block (PCB) for each active
application program running with the MCP.
The pca macro specifies the name of the PCB
process control block generated by the
macro. The process control block is
referred to in the TPROCESS macro (see
"Defining the MCP Data Sets and Process
Control Blocks").

Activating the Interface

The COBOL programmer coding a program
for a teleprocessing app~'cation
initializes work areas, 1 , and activates
the COBOL program as for ny other OS
application. In this appliGation, the job
begins with the use of the ~PLAY
statement "BEGIN TESTTP2,"~. The COBOL
proqrammer need not be concerned with how
the interface is activated. The interface
is activated when the first RECEIVE or SEND
statement is issued.

TCAM enables the application programmer
to obtain messages from the MCP and to
return response messages to the MCP.
specifically, the COBOL programmer can use
either the RECEIVE statement or the SEND
statement to transfer data between the MCP
and the COBOL program, depending on the
direction of the flow of data.

1he RECEIVE Statement: This COBOL source
statement causes-transmission of messaqe
data from an input queue to a
user-specified work area in the COBOL
proqram. In the sample COBOL
teleprocessing program m-own in Figure 119,
the RECEIVE statement, 3 , transfers data
from the input queue reL rred to by SYMQ to
a work area. The COBOL sentence before the
RECEIVE statement is "MOVE 'Q1' TO SYMQ,"
so the data is received from Ql.

The ~ENQ~~~~~~en~: The COBOL source
statement causes data from the COBOL
program to be placed in an output queue for
subsequent transmission. Accordinqly, when
the outgoing message has b~ formatted,
the sample SEND statement, ~ , transmits
it to the output destination referred to by
SYMDES. The end-at-message indicator (EMI)
signals a complete message. The first
sentence in the paragraph labeled
"SEND-ROUTINE1" is "MOVE 'P2' TO SYMDES,"
so the data is sent to P2.

Notes:

• For an additional example of tne f8rmat
of the RECEIVE statement and the S~ND
statement, see the section "Procedure
Division" in the chapter on
"Programming Techniques".

• The amount of data transferred from the
MCP to a COBOL program by a single
RECEIVE statement, or transferred from
an application program to the MCP by a
single SEND statement, is called a
"work unit". Each work unit is
processed in a user-designated work
area in the COBOL progra~.

As in all American National Standard
COBOL programs, the teleprocessing
application user returns control to the
~tem by issuing a STOP RUN statement,

~.

Note: So that the COBOL program can give
control to the S1'OP RUN statement, the MCP
writer should include in the message header
a --£pecialcode -for the COBOL_ program.
Although the sample MCP (Figure 114) has an
action code field which includes such a
co~e in the section of comments immediately
preceding the Mh1050 message handler, 13
Figure 119 gives control to the STOP RUN
statement only when there is no more data.
This technique is acceptable for a COBOL
program that receives a fixed amount of
data, i.e., a program that is not
continually looping waiting for data.

The information that follOWS is a
summary of miscellaneous recommendations
and/or restrictions that apply to the
communication oetween the message control
program and the COBOL application program.

1. The parameter DATE=YES must be coded
in all input TPROCESS entries whose
destination is a COBOL program ani tn8
parameter is also required in the PCB
macro referenced ny the TPROCESS
macro. Inclusion of this parameter
causes the date and time of message
entry to be placed in the r-£SSA.SE OAT=-'
and MESSAGE TIME clauses of the input
CD (see "Communication Section" in the
chapter entitled "Programming
Techniques").

Using the Teleprocessing Feature 37j

2. The RECDEL= parameter must be coded in
the TPROCESS macro of the MCP if the
COBOL programmer is to accept (via the
RECEIVE statement) or transmit (via
the SEND statement) data in SEGMENT
mode. The user may either include in
the incoming message the delimiter
specified in this parameter or insert
it via a MSGEDIT macro (see the
section "Designing the Message
Handler" in this chapter).

3. The INITIATE macro cannot be used in a
message handler for messages ~hose
destination is a COBOL program. This
macro ~ould cause the MCP to transmit
segments of a message to a destination
queue before receiving the complete
message. American National Standard
COBOL, on the other hand, assumes that
a complete message has been enqueued.

4. American National Standard COBOL
removes the last character of a
message if it is Xl 37' (~hich is the
EBCDIC representation for the EOT
character). This is the last
character of a message from a terminal
that has been translated in the MH of
the MCP via the CODE macro, or that is
not processed in conversational mode
(~hich would have been specified by
coding CONV=YES in the STARTMH macro).

5. An execution of the RECEIVE statement
with the SEGMENT option results in the
setting of the ESI (end of segment)
indicator if end of segment is
reached. When end of segment is also
end of message, an end key of 2
indicating EMI is given. If the last
two characters in the message are an
end segment indicator and the end of
message character, the user will
receive the indication first. Another
RECEIVE will be necessary to receive
the EMI indication. The RECEIVE from
the EMI indication will set the TEXT
LENGTH field of the input CD to zeros.

6. For a message transmitted from a COBOL
program to the location specified in
the SYMBOLIC DESTINATION clause of an
output CD, the FORWARD macro in the
inheader subgroup of the MH for the
COBOL program must specify DEST=PUT as
its operand.

USING TCAM SERVICE FACILITIES

TCAM allows for a variety of services in
support of a COBOL teleprocessing system.
Some of these services are provided
automatically; others the user must
specify. Some of the TCAM services are the

376

following: operator control, error
recovery, checkpoint/restart, message
logging, debugging aids, and an on-line
test feature. All of these rCAM aids are
discussed in the publication IBM O~
Telecommunications Access Method (IC~M)

~iQgrammer's Guide ana-Reterence-Manual.
Some of these TCAM services have already
been discussed in this chapter. This
section briefly describes the operator
control facility.

OPERATOR CONTROL

The TeAM operator control facility
enables the user to examine or alter the
status of a TP network simply by entering a
series of specified operator commands.
These commands may be entered from the
system console or remote stations.

Use of the operator control facility is
made possible through operands of the INTRO
and TERMINAL macros, discussed under "User
Tasks" in this chapter. The INTRO macro
contains an operand PRIMARY= that
identifies the primary control station.
The INTRO macro also specifies the single
set of control characters that identify all
operator commands. In the sample ~CP shown
in Figure 114 the INTRa command includes
the PRIMARY=SYSCON operand, where SYSCON is
the default, and the CONTROL=operand.

~Q~g: The CONTROL= operand is needed only
when operator control messages are to be
received from sources other than the system
console. This operand is included in the
example to show how it is specified.

The MCP writer may specify a terminal
name rather than SYSCON, provided that the
terminal is on a nonswitched line and is
able both to enter and to accept messages.
If a station other than the system console
is to be the primary operator station,
"SECTERM=YES" must be specified in the
station's TERMINAL macro. This operand of
the TERMINAL macro is also used to specify
other stations as secondary operator
control stations.

Operator command fields must be in the
order indicated below and be separated from
one another by at least one blank
character.

control-chars operation operand
[nextline] ending

where:

control-chars
indicates a character string of
one-to-eight nonblank characters
identifying a command as an operand.

Note: The "control chars" field must
be specified only with commands
entered from a station and must not be
specified in commands entered from the
system console.

operation
indicates one of five operation types
-- H~LT, HOLD, RELEASE, DISPLaY, and
VARY -- discussed under "Specifying
Operator Commands". (There is also a
MODIFY operation not discussed here.)

operand
consists of one or more operands, the
most commonly used of which are
statname, address, grpname, and rln.
These operands determine which
functional operator command is
associated with the operation ~YQg
specified. (For some sample operands,
see Table 32 in this chapter.)

[nextline]
ensures that the reply will start on
the next line. The "nextline"
subfield must be followed immediately
by the "ending" subfield.

Note: The "nextline" sUbfield is
specified only at terminals; it may
not be used at the system console.

ending
indicates the end of a message and
must be used by all sources entering
an operator command. Depending on
where the commands are being entered,
TC~M has provided end-of-message
signals as follows:

• EOB, for system console

• EOT, for start-stop stations

• ETX/EOT, for BSC stations.

These signals are further described in
the publication IB~OS
Telecommunications Access Method
(TCAM) Programmer's Guide and
Reference Material.

SPECIFYING OPERATOR CO~~_~NDS

Five sample operator commands that the
COBOL TP user may want to use are the
following: SYSCLOSE, SUSPXMIT, RESXMIT,
INTRCEPT, and STARTLINE. These commands
are described briefly below; their formats
are given in Table 32~ A general

discussion of command formats is included
under "Operator Control".

For additional information about these
and other possible operator commands, see
the publication IBM OS Telecommunications
~££g~~_~etgQ~ l~~~I=~EQgE~~~~E~~=~~~~~=~~~
ggfg~g~£g_~~~~~b·

Initiates either a quick or a flush
closedown of the system. In a "quick"
closedown, message traffic for each line is
stopped as soon as any messages currently
being sent or received have been completed.
In a "flush" closedown, incoming message
traffic is suspended as in a quick
closedown, and queued outgoing messages are
sent to their destination before closedown
is completed.

Suspends transmission to a specified
station. An intercepted staticn may still
ent_er_.m€ss_.;l._H~S; on)..y traffic to the station
is suspended.

Releases intercepted messages queued
either for a specified station or for the
line on which the specified station is
located.

Requests display of all stations in the
system that are intercepted (that is, those
stations to which transmission has been
suspended by a BOLD macro or a SUSXMIT
operator command).

Causes transmission either to begin or
to resume on a particular line (or all the
lines) in a line group.

Using the Teleprocessing Feature 377

Table 32. Operator Command Formats
r-------------T-------------------T----------T-----------------------T------------------l
I I I I I ,
I Command I Control Characters I OperationlOperand I [nextlineJending I
~-------------+-------------------+----------+-----------------------+------------------~

HALT TP, QUICK 1

SYSCLOSE FLUSH EOB
Z

HOLD TP=statname 2 EOB
SUSPXMIT

H

RESMXIT RELEASE
TP=statname 2 EOB

INTRCEP'l' DISPLAY TP,INTER EOB

D

STARTLINE VARY (grpname, 3rln4) ,ONTP
grpname3 EOB

V ad1ress 5

~-------------~-------------------~----------~-----------------------~------------------~
Notes:

1. The user selects either QUICK or FLUSH, depending on the type of closedown desired.

2. The replacement for "statname" should be the name of the TERMINAL macro.

3. The "grpname" field should be the same as the DDNAME=operand field of the DCB for
the line group.

4. The "rln" field should contain the relative line number of the line within the
group.

5. The address is the physical line number. L ___ J

378

This chapter contains information
concerning system requirements for the
COBOL compiler, execution time, and the
sort feature. Additional information for
use in estimating the main and auxiliary
storage requirements is contained in the
publication !~~OS_[~ll~meri~~g_~~tiQ~~l
C+-:::.nri::,. .. -ri f"'(")Qr'lT. f"'1"'ITr.n;' or :::.nrl T.; h..-",rt7
~~~~~_~~~~_~~~:=~~_~~_~~~~~~LL 

yersiQg_~L_!~~taI1~tiQ~_R~f~~~g~~_~~t~~i~1· 

MINIMUM r-rlACHINE REQUIREMENTS FOR THE COBOL 
COMPILER 

The basic system requirements for use of 
the COBOL compiler are: 

• A System/360 (at least a Model 40) or a 
System/370 model 1 , with a minimum qf 
80K (81,920) bytes of main storage 
available to the compiler, and trre 
standard and decimal instruction sets. 
The floating-point instruction set is 
required if floating-point data items 
and---fract-ional---exponent-s-- are· use-d--in 
the program. 

At least 80K (81,920) bytes should 
be allocated in the SIZE option of the 
EXEC job control card that requests 
execution of the compiler. If less 
than this is specified: the system 
assumes the default value of 80K. If 
more storage is allocated, the compiler 
will run more efficiently. 

Notes: Before deciding on a value for 
the-SIZE option, the programmer should 
consider all of the following: 

1. The value of compiler data set 
SPACE parameters. Given limited 
storage under MFT, if the primary 
space allocation for compiler data 
sets is too small and secondary 
extents are needed, the system 
must often use the compiler 
linkage area for the respective 

1A System/370 model may be substituted for 
a Systeml360 model for compilation 
regardless of other considerations. If, 
however, IBM-370 is specified as the 
computer-name in the OBJECT-COMPUTER 
paragraph, a System/370 model ~~~t be used 
for object program execution. 

MACHINE CONSIDERATIONS 

data extent block. Such action 
often results in either an 80A 
abnormal termination, if the space 
limitations are encountered when 
an attempt is made to load a 
compiler phase, or diagnostic 
message IKF0020I-D, if more 
extensive core has to De allocated 
for table space for compiler 
processing. 

2. The size and/or complexity of the 
program to be compiled. A large 
or complex program requires more 
table space than a small or simple 
one. Accordingly, this table 
space must be reflected in the 
SIZE parameter chosen. (For 
further discussion of table 
requirements, see "Table Handling 
Considerations.") 

3. The blocking factors used for 
compiler data sets. The SIZE 
parameter (and BUF parameter) 

···ref-le-ct-t-he-i-ne-r-eased---btt-ffer- -s--i-z-e
needed to handle blocked compiler 
data sets. 

• Compiler Work Files -- Five utility 
data sets named SYSUT1, SYSUT2, SYSUT3. 
SYSUT4~ and SYSUT5 (if the SYMD~P 
option is specified). At least one 
mass storage device, such as an IBM 
2311 Disk Storage Drive, for residence 
of the operating system and SYSUr1. 
Both the operating system and SYSUr1 
may reside on the same volume. rhe 
data sets SYSUT2, SYSUr3, SYSUr4, and 
SYSUT5 (if the SYMD~& optiJn is 
specified) can reside on tape or on 
mass storage. If they reside on tape, 
there must be a tape volume for each 
data set. If they reside on mass 
storage, there must be enough space on 
the volume to accon~odate the data 
sets. 

• A device, such as the 1052 
Printer-Keyboard, for direct operator 
communication. 

• A device, such as a card reader or a 
tape unit, for the job input stream. 

~ A printer or tape unit for the system 
output file. 

Machine Considerations 379 



MULTIPROGR~MMING WITd A VARIABLE NUMBER OF 
TASKS (MVT) 

~OMEILATION: If the compiler is being 
executed under the MVT option of OS, the 
REGION parameter, specified as 80K bytes in 
the COBUC and COBUCLG cataloged procedures, 
becomes significant (see the section "Using 
the Cataloged Procedures"). If the 
programmer wishes to override this value, 
he can specify a region size in either the 
JOB statement or in the EXEC statement of 
the compiler. The size specified should 
not be less than the value of SIZE in the 
PARM field of the EXEC statement. 

The following examples illustrate both 
the default and the override cases: 

//JOB1 JOB 
//STEP1 EXEC 

1234,J.SMITH 
COBUC 

In this example, the programmer 
accepts the REGION default value of 
80K specified in the COBUC cataloged 
procedure. 

Example 2 

//JOB2 
//STEP1 
// 

JOB 1234,J.SMITH 
EXEC COBUCLG,REGION=128K, X 

PARM.COB='SIZE=130000· 

In this example, the REGION default 
value is overridden. Rounding 130000 
to the next highest 2K multiple, it 
becomes 131012, or 128K. 

EX~£UTIO~: Priority schedulers require 
that the REGION parameter be specified for 
execution of object programs, unless the 
proqrammer is willing to accept default 
region size. The default value is 
established in the input reader procedure. 
The reqion size needed for the execution of 
the object program is the sum of the 
following values: 

1. The size of the object module after it 
has been link-edited with all of the 
necessary object time subroutines. 

2. The size of the input/output buffers 
being used, multiplied by the blocking 
factor (standard sequential files are 

380 

double buffered if no blocking faeter 
is specified). 

3. The size of tne data management 
routines and control blocks that are 
used (see the publication !e~_Q~ 
~!:2~~~~!:!rnate~). 

4. Any GET~iAIN macro instructior:. executej 
for USE LABELS, etc. 

5. An additional 4K bytes. 

b. If the Sort feature is used, 15,360 
bytes plus any additional core storage 
assigned via the SORT-CORE-SIZE 
special register. 

Except when the Direct Sysout Writer is 
used, SYSIN and SYSOUT data resideS in 
intermediate direct-access data sets. 
These data sets are used by the system to 
temporarily hold all of the job's in~ut anj 
output data. 

~~~I~=~~~QQI_~~~g~~~~gI~II~~: lhe input 
and output data set characteristics are
determined by the system, but can be
altered by the programmer if necessary.
Tne procedure used to alter the default
values depends on whether the data set is
for input or output, as follows:

• For SYSIN data -- the programmer must
request, at the time the job is
submitted, that the operator use one of
the several reader procedures
availaule. Reader procedures are
cataloged procedures that control the
reader and vary according to the
blocking factor specified.

• For SYSOUT data -- ~he program~er must
use overrije statements as described iu
"Using the Cataloged Procedures."

Output is placed in the SYSOUT
intermediate data set, except when the
Direct SYSOUT ~riter is used, in wnich case
output goes directly to the printer, punch,
or tape as in systems with the prinary
control program. Since nothing is written
out until the completion of the job, the
programmer must make sure that the SYSOUT
data set is large enough to hold all of the
possible output data of his program. rhe
SPACE parameter of the DO statement is
specified for SYSOUT with a specifiej
default value. If the programmer
determines that his output will exceed the
default value, he can do either or botn of
two things:

1. Specify blocking of his data set with
the DCB parameter of an override DD
statement

2. Override the compilation step of a
compiled procedure by specifying the
SPACE parameter. An example of a
statement that can be used is:

//COB.SYSPRINT DD SPACE=(121, (500,50»

Note: If the TRK or CYL subparameters of
the SPACE parameter are used, the
programmer should be aware that requests
will differ depending upon the mass storage
device used (2301, 2303, 2311, ••• , etc~)a
To avoid this consideration, the average
record-length subparameter can be used.

MULTIPLE OPEN AND CLOSE STATEMENTS: Under
the MVT control program, input data
following the DD * or DD DATA card becomes
a single data set. Once a CLOSE statement
is encountered. The data set is
repositioned to the beginning of the data
set. To avoid errors, the programmer
should keep this in mind when using more
than one OPEN and CLOSE statement for a
data set assigned to SYSIN.

Note: Under MVT, a file must be closed
before the STOP RUN or EXIT PROGR~M
statement is executed. Failure to do this
results in an abnormal termination.

The total space required for object-time
debugging should be calculated as follows:

S
TS

S
S + [S] + STN

DBG FLW
S

SYMDM.P

r---l
where:

S

S

S

TS the total space

DBG the space allocated once and
only once for a run containing
any object-time debugging
options

FLW the space required for the FLOwl
option I

S
STN the space required for the

STATE option

I
I
I

I
I
I

S I
~ S¥MDMP- -=- the-space. -r_equir_e_d.LoL .. tJte L--
I SYMDMP option I L ___ J

• S 3700 bytes
DBG

• S =(1672 + 4*nn + 10*P) bytes
EXECUTION TIME CONSIDERATIONS FLW

The amount of main storage must be where
sufficient to accommodate at least:

nn = the number specified in the
• The control program FLOW=nn parameter of the EXEC

job control statement
• Data management support

• The load module to be executed

When the OPTIMIZE option is specified,
the number of procedure blocks in the
program cannot exceed 255. A procedure
block is approximately 4096 bytes of
Procedure Division code.

COBOL programs compiled with any of the
symbolic debugging options (STATE, FLOW,
SYMDMP) have execution time requirements
that differ from those of similar programs
compiled without these options. If the
SYMDMP option is in effect, the data set it
required at compile time (SYSUT5) must be
present at execution time.

P the total number of
paragraph- nctmes in 3 COBOL
program

• S =(1090 + 5*V) bytes
STN

where

v the number of verbs in the
COBOL program ta number that
is approximately equal to the
number of statements in the
program)

• S
SYMDMP

=(11250 + S +S) bytes
DM TABLES

Machine Considerations 381

r---,
I where I
I I
I S I
I TABLES the size of tables for SYMDMP I
I I
IS J
i DM the size of data management I
I required for SYMDMP I L ___ J

S =(72*PC+[19*LC+[S*ON]+7*id]+[S])bytes
TABLES ODOTAB

where

PC = the number of program control
cards

LC the number of line control cards

ON

id

S

the number of line control cards
with ON options

the number of identifiers
requested on line-control cards

ODOTAB = the size of ODOTAB on the
debug file (approximately 27
times the number of unique
objects of OCCURS DEPENDING ON
statements).

S =(818+S + [S])bytes
OM BSAM QSAM

382

where

S
BSAM = 800 bytes = the space required

for BSAM modules (when not in the
LPA)

S
QSAM = 1424 bytes = the space

required for QSAM modules (wnen
not on the LPA) anj no QSAM files
are used in the program

The i~put/output device requirement3 for
execution of the problem program are
determined from specifications made in the
Environment Division of the source program

Not~: An IBM System/370 is required for
execution if IBM-370 is specified as the
computer-name with OBJECT-COMPUTER
paragraph of the Configuration section.

SORT FEATURE CONSIDERATIONS

The basic requirements for use of the
Sort feature are:

• A System/360 model or System/370 with
sufficient main storage to accommodate
the load module to be executed plus a
minimum of 15,360 bytes for execution
of the sort program and any additional
core storage assigned to the sort
program via the SORT-CORE-SIZE special
register.

• At least one mass storage device (which
may be the system residence deviceJ for
residence of SYS1.S0~TLIB.

• At least three tape units or one mass
storage devic2 for intermediate
storage.

The following is a sample COBOL program
and the output listing resulting from its
compilation, linkage editing, and
execution. The program creates a blocked,
unlabeled, standard sequential file, writes
it out on tape, and then reads it back in.
It also does a check on the field called
NO-OF-DEPENDENTS. All data records in the
file are displayed. Those with a zero in
the NO-OF-DEPENDENTS field are displayed
with the special character Zc The records
of the file are not altered from the time

of 'creation, despite the fact that the
NO-OF-DEPENDENTS field is changed for
display purposes. The individual recorJs
of the file are created using the
subscripting technique. TRACE is used as a
debugging aij during program execution.

The output formats illustrated in the
listing ar~ described in "Output."
Individual parts of the listing are
numbered in accordance with the nunbers
used in the chapter "Output."

00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00615
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
0002b
00027
00028
00029
00030
00031
00032
00033
00034
00035
00036
00037
00038
00039
00040
00041
00042
00043
00044
00045
00046
00047
00048
00049
00050
00051
00052
00053
00054

IDENTIFICATION DIVISION.
PROGRA~-ID. TESTRuN.

100010
100020
100030
100040
100050
100060
100070
100080
100090
100100
100110
100120
100130
100140
106i~6
100160
100170
100180
100190
100200
100210
100220
100225
100230
100240
100250
100260
100270 FD
100280
100290
100300
100310
100320
100330
100340
100350
100360
100310
100315

00900008
00900010
00900012
00900014
00900016
00900018
00900020
00900022
00900024
00900026
00900028
00900030
00900032
00900034
0-0-9-0-0-0 }Ef

00900038
00900040
00900042
00900044
00900046
00900048
00900050

•• 00380
100395
100405
100410-
100420
100440
100450
100460
100470
100480
100490
100500
100510
100520
100522

AUTnO~. PkOGRAMMER NAME.
INSTALLATION. NEW YORK PROGRA"1MING CENTER.
DATE-WRITTEN. JULY 12, 19b8.

DATE-CCMPILED. FEB 19,1912
~EMARKS. THIS PROGRAM HAS BEEN WRITTEN AS A SAMPLE PROGRAM FOR

COBOL USERS. IT CREATES AN OUTPUT FILE AND KEA~S IT BACK AS
INPUT.

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.

SOURCE-COMPUTER. IBM-360-H~0.
OBJECT-COMPUTER. IBM-360-H50.

INPUT-OUTPUT SECTION.
F-ii.E~coNTlf6f..

SELECT FILE-1 ASSIGN TO UT-2400-S-SAMPLE.
SELECT FILE-2 ASSIGN TO UT-2400-S-SAMPLE.

DATA DIVISION.
FILE SECTION.
FD FILE-l

LABEL RECORDS ARE OMITTED
BLOCK CONTAINS 100 CHARACTERS
RECORD CONTAINS 20 CHkQACTERS
RECORDING MODE IS F
DATA RECORD IS RECORD-1.

01 RECORD-1.
02 FIELD-A PICTURE IS X(201.
FILE-2
LABEL RECORDS ARE OMITTED
BLOCK CONTAINS 5 RECORDS
RECORD CONTAINS 20 CHARACTERS
RECORDING MODE IS F
DATA RECORD IS RECORD-2.

01 RECORD-2.
02 FIELD-A PICTURE IS X(201.

WORKING-STORAGE SECTION.
77 KOUNT PICTURE S99 COMP SYNC.

00900052
00900054
00900056
00900058
00900060
009000b2
00900064
00900066
009000b8
00900010
00900072
00900074
00900016

11 NOMBER PICTURE S99 COMP SYNC. 00900080
01 FILLER. 00900082

02 ALPHABET PICTURE X(26) VALUE "ABCDEFGHIJKLMNOPQRSTUVWXYZ".00900084
02 ALPHA REDEFINES ALPHABET PICTURE X OCCURS 26 TIMES. 0090008b
02 DEPENDENTS PICTURE X(26) VALUE "012340123401234012340123400900088
"0"= 00900090
02 DEPEND REDEFINES DEPENDENTS PICTURE X OCCURS 26 TIMES. 00900092

01 WORK-RECORD. 00900094
02 N~~-FIELD PICTURE X. 00900096
02 FILLER PICTURE X VALUE SPACE. 00900098
02 RECORD-NO PICTURE 9999. 00900100
02 FILLER PICTURE X VALUE SPACE. 00900102
02 LOCATION PICTURE AAA VALUE "NYC". 00900104
02 FILLER PICTURE X VALUE SPACE. 00900106
02 NO-OF-DEPENDENTS PICTURE XX. 00900108
02 FILLER PICTURE X(1) VALUE SPACES. 00900110

01 RECORDA.

Appendix A: Sample Program Output 383

02 A PICTURE S9(4) VALUE 1234.
02 B HEDEFINES A PICTURE S9(7) COMPUTATIONAL-3.

PROCEDURE DIVISION.
BEGIN. READY TRACE.

NOTE THAT THE FOLLOWING OPENS THE OUTPUT FILE TO BE CREATED
AND INITIALIZES COUNTERS.

STEP-1. OPEN OUTPUT FILE-1. MOVE ZERO TO KOUNT NOMBER.

00900112
00900114
00900116
00900118

00055
OOO~b

00057
00058
00059
00060
00061
00062
00063
00064
00065
00066
00067
00068
00069
00070
00071
00072
00073
00074
00075
00076
00077
00078
00079
00080
00081
00082
00083
00084

100524
100~:'!b

100530
100540
100550
100560
100570
100580
100590
100600
100610
100620
100625
100630
100640
100650
100660
100670
100680
100690
100700
100710
100720
100730
100740
100750
100760
100770
100780

NOTE THAT THE FOLLOWING CREATES INTERNALLY THE RECORDS TO BE
CONTAINED IN THE FILE, WRITES THEM ON TAPE, AND DISPLAYS
THEM ON THE CONSOLE.

00900122
00900124
00900126

**xx

INTRNL NAME
DNM=1-148
DNM=1-167
DNM=1-188
DNM=1-205
DNM=1-224
DNM=1-245
DNM=1-265
DNM=1-280
DNM=1-296
DNM=1-310
DNM=1-328
DNM=1-346
DNM=1-366
DNM=1-382
DNM=1-406
DNM=1-426
DNM=1-440
DNM=1-459
DNM=1-473
DNM=1-491
DNM=2-000
DNM=2-026
DNM=2-040
DNM=2-060
Dl)IM=2-071

384

STEP-2= ADD 1 TO KOUNT, ADD 1 TO NOMBER, MOVE ALPHA {KOUNTl TO
NAME-FIELD.

COMPUTE B = B + 1.
MOVE DEPEND (KOUNT) TO NO-OF-DEPENDENTS.
MOVE NOMBER TO RECORD-NO.

STEP-3. DISPLAY WORK-RECORD UPON CONSOLE. WRITE RECORD-1 FROM
WORK-RECORD.

STEP-4. PERFORM STEP-2 THRU STEP-3 UNTIL KOUNT IS EQUAL TO 26.
NOTE THAT THE FOLLOWING CLOSES OUTPUT AND REOPENS IT AS
INPUT.

STEP-5. CLOSE FILE-1. OPEN INPUT FILE-2.
NOTE THAT THE FOLLOWING READS BACK THE FILE AND SINGLES OUT
EMPLOYEES WITH NO DEPENDENTS.

STEP-6. READ FILE-2 RECORD INTO WORK-RECORD AT END GO TO STEP-8.
STEP-7. IF NO-OF-DEPENDENTS IS EQUAL TO "0" MOVE "Z" TO

NO-OF-DEPENDENTS. EXHIBIT NAMED WORK-RECORD. GO TO
STEP-6.

STEP-8. CLOSE FILE-2.
STOP RUN.

LVL SOURCE NAME BASE DISPL INTRNL NAME
FD FILE-1 DCB=01 DNM=1-148
01 RECORD-1 BL=1 000 DNM=1-167
02 FIELD-A BL=1 000 DNM=1-188
FD FILE-2 DCB=02 DNM=1-205
01 RECORD-2 BL=2 000 DNM=1-224
02 FIELD-A BL=2 000 DNM=1-245
77 KOUNT BL=3 000 DNM=1-265
77 NOMBER BL=3 002 DNM=1-280
01 FILLER BL=3 008 DNM=1- 296
02 ALPHABET BL=3 008 DNM=1-310
02 ALPHA BL=3 008 DNM=1-328
02 DEPENDENTS BL=3 022 DNM=1-346
02 DEPEND BL=3 022 DNM=1-366
01 WORK-RECORD BL=3 040 DNM=1-382
02 NAME-FIELD BL=3 040 DNM=1-406
02 FILLER BL=3 041 DNM=1-426
02 RECORD-NO BL=3 042 DNM=1-440
02 FILLER BL=3 046 DNM=1-459
02 LOCATION BL=3 047 DNM=1-473
02 FILLER BL=3 04A DNM=1-491
02 NO-OF-DEPENDENTS BL=3 04B DNM=2-000
02 FILLER BL=3 04D DNM=2-026
01 RECORDA BL=3 058 DNM=2-040
02 A BL=3 058 DNM=2-060
02 B BL=3 058 DNM=2-071

00900130

00900134
00900136
00900138

00900142
00900144
00900146
00900148
00900150
00900152
00900154
00900156
00900158
00900160
00900162
00900164

DEFINITION

DS OCL20
DS 20C

DS OCL20
DS 20C
DS 1H
DS 1H
DS OCL52
DS 26C
DS 1C
DS 26C
DS 1C
DS OCL20
OS 1C
DS 1C
DS 4C
DS 1C
DS 3C
DS 1C
DS 2C
DS 7C
DS OCL4
DS 4C
DS 4P

USl\GE R 0 Q M
QSAM F
GROUP
DISP
QSAM F
GROUP
DISP
CaMP
COMP
GROUP
DISP
DISP R 0
DISP
DISP R 0
GROUP
DISP
DISP
DISP-NM
DISP
DISP
DISP
DISP
DISP
GROUP
DISP-NM
COMP-3 R

TG'I

SA.VI:. ARE.A
SwITCH
Tl\LLY

i/.Et-l0RY

SOR~ SAVE
ENTRY-SAVE
SORT CORE SIZE
RET CODE
SOR.T RET
WORKING CELLS
SO.'{T FILE SIZE
SORT MODE SIZE
PGT-VN TBL
TGT-VN TBL
VCONPTR
LENGTH OF VN TBL
LABEL RET
CURRENT PRIORITY
DBG R14SAVE
COBOL I t-TDICATOR
A. <INITl)
DEBUG TABLE PTR
SUBCOM PTR
SORT DDNAME
UNUSED
DBG RllSAVE
UNUSED
PRBL1 CELL PTR
GENCBTBL PTR
UNUSED
TA LENGTH
UNUSED
OVERFLOW CELLS
BL CELLS
DECBADR CELLS
TEMP STORAGE
TEMP STORAGE-2
TEMP STORAGE-3
TEMP STORAGE-4

--BLL-CELLS--
VLC CELLS
SBL CELLS
INDEX CELLS
SUBADR CELLS
ONCTL CELLS
PFMCTL CELLS
PFMSAV CELLS
VN CELLS
SAVE AREA =2
SAVE AREA =3
XSASW CELLS
XSA CELLS

00248

00248
00290
00294
00298
0029C
002AO
002A4
002A6
002A8
003D8
003DC
003EO
003E4
003E8
00lEC
003EE
003EF
003FO
003F4
003F8
003FC
00400
00404
0040C
00420
00424
00428
0042C
00430
00431
00434
0043C
0043C
00448
00450
00458
00458
00458

·IWlfSll- -
00460
00460
00460
00460
00468
00468
00468
0046C
00470
00470
00478
00478

Appendix A: Sample Program Output 385

OOLl?l (l..IT+OI 000J0001 1COOOJ1A 00480SEF 48000000 COOOOOOO

Cl1C:iPLAY LIT~HP.LS (2CD)

00504 (LTL+20) , WORK-RECOJ.D'

PG'I

OVERFLOW CELLS
VIRTUAL CELLS
PROCEDURE NAME CELLS
GENFRATED i~A!-:E CELLS
DeB ADDRESS CELLS
VNI CELLS
LITERALS
DISPLAY LITERALS

REGlSTER ASSIGN~·~T

REG b
REG 7
REG 8

tiL =3
BL =1
BL =2

00498

00498
00498
004B8
004CC
004E4
004EC
004FO
00504

WOt{KIl~G-STOt<AGE STARTS AT LOCATION 00088 FOR A LENGTH OF 00060. J

5P VERB 1
000510 START EQU *
000510 07 00 BCR 0,0
000512 58 FO C OOC L 15, OOCCO, 12)
000516 05 EF BALR 14,15
000518 58 FO C 010 L 15,010(0,12)
00051C 05 IF BALR 1,15
00051E 0000003A DC X'OOOOO03A'
000522 58 FO C 014 L 15,014(0,12)
000526 05 1F BALR 1,15
000528 000140 DC x' 000140'
00052B 05F5F840404040 DC X'05F5F840404040'

58 VERB 2
000532 96 40 D 048 01 048(13},X'40'

61 VERB 3
000536 58 FO C OOC L 15, OOC (0,12)
00053A 05 EF BALR 14,15
00053C 58 FO C 010 L 15,010 (0,12)
000540 05 1F BALR 1,15
000542 0000003D DC X'0000003D'
000546 58 FO C 014 L 15,014 (0,12)
00054A 05 1F BALR 1,15
00054C 000140 DC x' 000140'
00054F 05F6F140404040 DC X'05F6F140404040'

61 VERB 4
000556 58 FO C OOC L 15,00CCO,12)
00055A 05 EF BALR 14,15

386

v (I LBODBG 4)

v (I LEOFLW1)

V(ILBODSPOI

SWT+O

V(ILBODBG4)

v (I LBOFLW1)

v (ILBODSPO)

V (ILBODBG4)

OOOSSC S8 10 C 04(: L l,04C<O,12) DCS=l
000560 D2 03 D 060 C 018 MVC 060(4,13),018(12) Wc=Ol VCIi..BOi.RR1)

000566 82 02 1 039 D 061 MVC 039,3,1>,061(13) WC=02

00056C 58 10 C 04C L 1, 04C(0, 12) DCB=l
000570 82 01 1 032 C 060 MVC 032(2,1>,060<12) LIT+8

000576 D2 01 1 060 C 062 MVC 060(2,1>,062<12) LIT+10

00057C 50 10 D 228 ST 1,228<0,13) SAV3

000580 92 8F D 228 MVI 228(13),X'8F' SAV3

000584 41 10 D 228 LA 1,228(0,13) SAV3
000588 OA 13 SVC 19
00058A. 58 10 C 04C L 1,04C(0,12) DCB=l
00058£ 18 21 LR 2,1
000590 58 FO 1 030 L 15,030(0,11
000594 05 EF BALR 14,15
000596 50 10 D 1F4 ST l,lF4(O,13) BL =1
00059A. 58 70 D 1F4 L 7,lF4(0,13) BL =1

61 Vi.;~g 5
00059E D2 01 6 000 C 058 MVC 000 (2,6), 058(12) DNM=1-265 LI'I+O
0005A4 D2 01 6 002 C 058 MVC 002(2,6),058<12) DNM=1-280 LIT+O

65 VERB 6
0005AA PN=Ol EQU *
0005AA 58 FO C OOC L 15, OOC(0,12> VULBODBG4)
0005AE 05 EF BALR 14,15
0005BO 58 FO C 010 L 15,010(0,12> V (I LBOFLW1)
0005B4 05 1F BALR 1,15
0005B6 00000041 OC X'00000041'
0005BA 58 FO C 014 L 15,014(0,12) V(ILBODSPO)
0005BE 05 1F BALR 1,15
0005CO 000140 OC X' 000140'
0005C3 05F6F540404040 OC X'05F6F540404040'

65 VERB 7
0005CA 48 30 C 05A LH 3, 0 SA (0, 12) LIT+2
0005CE 4A 30 6 000 AH 3,000(0,6) DNM=1-265
0005D2 40 30 6 000 STH 3,000(0,6) ONM=1-265

65 VERB 8
000506 48 30 C 05A LH 3, 0 SA <0, 12) L1T+2
00050A 4A 30 6 002 AH 3,002(0,6) ONM=1-280
0005DE 40 30 6 002 STH 3,002(0,6) DNM=1-280

65 VERB 9
0005E2 41 40 6 008 LA 4,008(0,6) DNM=1-328
0005E6 48 20 6 000 LH 2,000(0,6) DNM=1-265
0005EA 4C 20 C 05A f.1H 2, 0 SA (0, 12) L1T+2
o-W5-EE 11\:- 42- AR 4,-2
0005FO 5B 40 C 058 S 4,058 (0,12) LIT+O
0005F4 50 40 0 218 ST 4,218(0,13) SBS=l
0005F8 58 EO D 218 L 14,218(0,13) SBS=l
OOOSFC J2 00 b 040 E 000 MVC 040<1,6) ,000(14) DNM=1-406 ONM=l- 328

67 VERB 10
000602 FA 30 6 058 C 05C AP 058(4,6),05C(l,12) DNM=2-71 LIT+4

68 VERB 11
000608 41 40 6 022 LA 4,022(0,6) DNM=1-366
aooooc 48 20 0 000 LH 2,000(0,6) DNM=1-265
000610 4C 20 C 05A MH 2,05A(0,12) L1T+2
000614 1A 42 AR 4, :2
000616 5B 40 C 058 S 4,058(0,12) L1T+O
00061A 50 40 0 21C ST 4, 21C<O, 13) SBS=2
00061E 58 EO D 21C L 14,21C(0,13) saS=2
000622 02 00 6 04B E 000 MVC 04B<1,6) ,000(14) ONM=2-0 DNM=l- 366
000628 92 40 6 04C MV1 o 4C (6) , X' 40 • DNM=2-0+1

69 VERB 12
00062C 48 30 6 002 LH 3,002(0,6) DNM=1-280
000630 4E 30 0 208 CVD 3,208(0,13) TS=Ol
000634 F3 31 6 042 D 20E UNPK 042(4,6), 20E(2,13) ONM=1-440 TS=07
00063A 96 FO 6 045 01 045(6) ,X' FO' DNM=1-440+3

70 VERB 13
00063E 58 FO C OOC L 15,00C(0,12) V (1LBODBG4)
000642 05 EF BALR 14,15
000644 58 FO C 010 L 15,010(0,12) V (1LBOFLW1)
000648 05 1F BALR 1,15
00064A 00000046 DC x'00000046'
00064E 58 FO C 014 L 15,014(0,12) VULBODSPO)
000652 05 1F BALR 1,15
000654 000140 DC X'OOO140'
000657 05F7F040404040 DC X'05F7F040404040'

A.ppendix A: Sample Program Output 387

70 VERB 14
00065£ S8 FO C OOC L 1S,00C(0,12) V (ILBODBG4)
000662 OS EF BALR 14,15
000664 S8 FO C 014 L 15,014(0,12) V (ILBODSPO)
000668 OS 1F BALR 1,15
00066A 0002 DC X'0002'
00066C 00 DC X'OO'
000660 000014 DC X'000014'
000670 ODOO01FC DC X'ODOO01FC' BL =3
000674 0040 DC X' 0040'
000676 FFFF nt"' X'PFFP'

70 VERB 15
000678 58 FO C OOC L 1S, OOC(O, 12) VnLBOOBG4)
00067C OS EF BALR 14,1S
00067E 02 13 1 000 6 040 MVC 000(20,7),040(6) DNM=1-161 DNM=1-382
000684 58 10 C 04C L 1,04C(0,12) DCB=l
000688 18 21 LR 2,1
00068A S8 10 C 04C L 1,04C(0,12) DCB=l
00068E S8 00 1 04C L 0, 04C(0, 1)
000692 S8 FO 1 030 L 15,030 (0,11
000696 44 00 1 060 EX 0,060(0,1)
00069A 50 10 0 1F4 ST 1,lF4(0,13) BL =1
00069E 58 70 0 1F4 L 7,1F4(0,13) BL =1
0006A2 GN=01 EQU *
0006A2 58 10 0 224 L 1,224(0,13) VN=Ol
0006A6 07 Fl BCR 15,1

72 VERB 16
0006A8 PN=02 EQU •
0006A8 07 00 BCR 0,0
0006AA 58 FO C OOC L 15,00C(0,12) V (ILBODBG4)
0006AE 05 EF BALR 14,15
0006BO 58 FO C 010 L 15,010(0,12) V (ILBOFLW1)
0006B4 05 IF BALR 1,15
0006B6 00000048 DC X'00000048'
0006BA 58 FO C 014 L 15, 014(0,12) VnLBODSPO)
0006BE 05 IF BALR 1,15
0006CO 000140 DC X'000140'
0006C3 05F7F240404040 DC x'05F7F240404040'

72 VERB 17
0006CA 58 00 D 224 L 0,224(0,13) VN=Ol
OOObCE ~O 00 0 220 S'I 0,220(0,13) PSV=1
000602 S8 00 C 03P L 0,038(0,12) GN=02
000606 50 00 0 224 ST 0,224(0,131 VN=Ol
0006DA GN=02 EQU •
00060A 48 30 6 000 LH 3,000(0,6) ONM=1-265
00060E 49 30 C OSE CH 3, OSE(O, 12) LIT+6
000bE2 58 FO C 03C L 15,03C(0,121 GN=03
0006£6 07 8F BCR 8,15
000bE8 58 10 C 020 L 1,020(0,121 PN=Ol
0006EC 07 F1 BCR 1 S, 1
OOObEE GN=03 EQU
0006EE S8 00 !) 220 L 0,220(0,13) PSV=1
0006F2 SO 00 0 224 ST 0,224(0,131 VN=Ol

7'3 VEH.B 16
0006F6 58 FO C OOC L 15,OOC(0,121 V <ILBODBG4 I
0(J06FA 0'3 EF BALR 14,15
0006FC 58 FO C 010 L 15,010(0,121 V (ILBOFLW1)
000700 05 1F BALR 1, 1~
000702 0000004B DC X' 0000004B'
000706 58 FO C 014 L 1S, 014(0, 12) V<ILBODSPO)
00070A OS 1F BALR 1,15
00070C 000140 DC X'OOO140'
00070F 05F7FS40404040 DC X'OSF7F540404040'

75 VERB 19
000716 S8 FO C OOC L 15,OOC(0,121 V (ILBODBG41
Oa071A OS EF BALR 14,lS
0007lC 58 10 C 04C L 1,04C(O,121 DCB=1
000120 58 30 1 02C L 3, 02C(0,1)
000724 91 OF 3 OOC TM OOC(3),X'OF'
000728 05 50 BALR. S,O

388

0OO72A 47 EO 5 010 BC 14,010(0,5)
00072E 58 20 1 04C L 2, 04C (0,1)
000732 4B 20 1 052 SH 2,052(0,11
000736 50 20 1 04C ST 2, 04C (0,1)
00073A 58 10 C 04C L l,04C(O,12) DCB=l
00073E 50 10 D 228 ST 1,228(0,13) SAV3
000742 92 90 D 228 MVI 228 (13) , X' 90' SAV3
000746 41 10 D 228 LA 1,228(0,13) SAV3

00074A OA 14 SVC 20
00074C 58 20 C 04C L 2, 0 4C (0, 12) DCB=l
000750 58 10 2 014 L 1,014<0,2)
000754 96 01 2 017 01 017(2),X'Ol'
000758 lB 44 SR 4,4
00075A 43 40 1 005 IC 4,005(0,1)
00075E 4C 40 1 006 MH 4,006 (0,1)
000762 41 00 4 008 LA 0,008(0,4)
000766 41 10 1 000 LA 1,000(0,11
00076A OA OA SVC 10

75 VERB 20
00076C 58 FO C OOC L 15,OOC(O,12) V <ILBODBG4)
000770 05 EF BALR 14,15
000772 58 10 COSO L 1,050(0,12) DCB=2
000776 D2 03 D 060 C 018 MVC 060(4,13),018(12) wc=Ol V(ILBOERR1)

00077C D2 02 1 039 D 061 MVC 039 (3,1),061< 13) WC=02

000782 58 10 C 050 L 1,050(0,12) DCB=2
000786 D2 01 1 032 C 064 MVC 032<2,1),064<12) LIT+12

00078C 50 10 D 228 ST 1,228(0,13) SAV3
000790 92 80 D 228 MVI 228(13),X'80' SAV3
000794 41 10 D 228 LA 1,228(0,13) SAV3
000798 OA 13 SVC 19

78 VERB 21
00079A PN=03 EQU * 00079A 58 FO C OOC L 15, OOC(O, 12) V<ILBODBG4)
00079E 05 EF BALR 14,15
0007AO 58 FO C 010 L 15,010 (0,12) V <I LBOF LWl)
0007A4 05 lF BALR 1,15
0007A6 0000004E DC X'0000004E'
0007AA 58 FO C 014 L 15,014(0,12) V(ILBODSPO)
0007AE 05 lF BALR 1,15
0007BO 000140 DC X' 000140'
0007B3 05F7F840404040 DC x'05F7F840404040'

78- VERB 22-- - --_ .. _---------------_ ..• -- --- _._-_ ... - -_ ... - -- ----_•... _---_ .. __ __ ..•.... - - ---- --_ .. _---------------

0007BA 58 FO C OOC L 15, OOC(O, 12) V <ILBODBG4)
0007BE 05 EF BALR 14,15
0007CO 58 10 COSO L 1,050(0,12) DCB=2
0007C4 18 21 LR 2,1
0007C6 D2 02 2 021 C 041 MVC 021(3,2),041(12) GN=04+1
0007CC 58 FO 1 030 L 15,030(0,1)
0007DO 05 EF BALR 14,15
0007D2 50 10 D lF8 ST l,lF8<O,13) BL =2
0007D6 58 80 lF8 T 8, lFS (0, 13) BL =2 JJ .LI

0007DA D2 13 6 040 8 000 MVC 040(20,6),000(8) DNM=1-382 DNM=1-224
0007EO 58 50 C 02C L 5, 02C(0, 12) PN=04
0007E4 07 F5 BCR 15,5

78 VERB 23
0007E6 GN=04 EQU *
0007E6 58 10 C 030 L 1,030(0,12) PN=05
0007EA 07 Fl BCR 15,1

79 VERB 24
0007EC PN=04 EQU * 0007EC 07 00 BCR 0,0
0007EE 58 FO C OOC L 15,OOC(0,12) V (ILBODBG4)
0007F2 05 EF BALR 14,15
0007F4 58 FO C 010 L 15,010 (0, 12) V (ILBOFLW1)
0007F8 05 IF BALR 1,15
0007FA 00OOO04F DC X'0000004F'
0007FE 58 FO C 014 L 15,014 (0,12) V <ILBODSPO)
000802 05 IF BALR 1,15
000804 000140 DC X'000140'
000807 05F7F940404040 DC X'05F7F940404040'

A.ppendix A.: Sample Program output 389

79 VERB 25
00080E 58 20 C 044 L 2,044(0,121 GN=05
000812 95 FO 6 04B CLI 04B(6},X'FO' DNM=2-0
000816 07 72 BCR 7,2
000818 95 40 6 04C CLI o 4C (6 1 , X' 40' DNM=2-0+1
00081C 07 72 BCR 7,2

79 VERB 26
00081E 92 E9 6 04B MVI 04B(6) ,X' E9' DNM=2-0
000822 92 40 6 04C MVI o 4C (6) , X, 40' DNt-1=2-0+1

OJ"\ 'r71:'n'O ,}"7
OV V J,:."".u I- ,

000826 GN=05 EQU •
000826 58 10 C 068 L 1,068(0,12) LIT+16
00082A 50 10 D 230 ST 1,230(0,13} PRM=l
00082E 41 20 D 230 LA 2,230(0,13) PRM=l

000832 58 FO C OOC L 15,00C(0,12) V(ILBODBG41
000836 05 EF BALR 14,15
000838 58 FO C 014 L 15,014 (0, 12) V (ILBODSPO)
00083C 05 IF BALR 1,15
00083E 8001 DC X'8001'
000840 10 DC X'10'
000841 OOOOOB DC X' OOOOOB'
000844 OCOOO06C DC X'OCOOOO6C' LIT+20
000848 0000 DC X' 0000'
00084A 00 DC X'OO'
00084B 000014 DC X· 000014'
00084E ODOO01FC DC X'ODOO01FC' BL =3
000852 0040 DC X'0040'
000854 FFFF DC X'FFFF'

80 VERB 28
000856 58 10 C 028 L 1,028(0,12) PN=03
00085A 07 Fl BCR 15,1

82 VERB 29
00085C PN=05 EQU •
00085C 07 00 BCR 0,0
00085E 58 FO C OOC L 15,00C(0,121 V (ILBODBG4)
000862 05 EF BALR 14,15
000864 58 FO C 010 L 15,010 (0, 121 V <ILBOFLWl)
000868 05 IF BALR 1,15
00086A 00000052 DC X'00000052'
00086E 58 FO C 014 L 15,014(0,12) V(ILBOOSPO)
000872 05 IF BALR 1,15
000874 000140 DC X'000140'
000877 05F8F240404040 DC X'05F8F240404040'

82 VERB 30
00087E 58 FO C OOC L 15,00C(0,121 V (ILBODBG4)
000882 05 EF BALR 14,15
000884 58 10 C 050 L 1,050(0,12) DCB=2
000888 58 30 1 02C L 3, 02C(0,1)
00088C 91 OF 3 OOC TM OOC(3),X'OF'
000890 05 50 BALR 5,0
000892 47 EO 5 010 BC 14,010(0,51
000896 58 20 1 04C L 2, 04C<O, 1)
00089A 4B 20 1 052 S8 2,052 (0, 1)

00089E 50 20 1 04C ST 2,04C(0,1)
0008A2 58 10 C 050 L 1,050(0,12) DCB=2
0008A6 50 10 D 228 ST 1,228 (0,13) SAV3
0008AA 92 90 0 228 MVI 228 (13), X· 90' SAV3
0008AE 41 10 D 228 LA 1,228 (0,13) SAV3
0008B2 OA 14 SVC 20
0008B4 58 20 C 050 L 2,050(0,12} DCB=2
0008B8 58 10 2 014 L 1,014(0,2)
0008BC 96 01 2 011 01 017(2),X'01'
0008CO 1B 44 SR 4,4
0008C2 43 40 1 005 IC 4,005(0,1)
0008C6 4C 40 1 006 MH 4,006(0,11
0008CA 41 00 4 008 LA 0,008(0,4)
0008CE 41 10 1 000 LA 1,000(0,11
000802 OA OA SVC 10

83 VERB 31
0008D4 58 FO C OOC L 15,00C(0,12) V (I LBODBG 4)
000808 05 EF BALR 14,15

390

0008DA GN=06 EQU •
0008DA 58 FO C ~1C L 15, 01C(0, 12) V (I LBOSRV1)

0008DE 07 FF BCR 15,15
0008EO 50 00 5 008 IN1T2 ST 13,008 (0,5)
0008E4 50 50 D 004 ST 5,004<0,13)
0008E8 50 EO 0 054 ST 14,054(0,13)
0008EC 91 20 D 048 TM 048(13),X'20' SWT+O
0008FO 41 EO F 02E BC 14,02E(0,15)
0008F4 58 20 D lB8 L 2,lB8(0,13)
0008F8 91 40 D 049 TM 049(13),X'40' SWT+1
0008FC 41 EO 9 000 BC 14,000(0,9)
000900 96 04 2 000 01 OOO(2),X'04'
000904 58 FO 2 038 L 15,038(0,2)
000908 41 FO F 004 LA 15, 004(0,15)
00090C 01 FF BCR 15,15
00090E 94 EF D 048 N1 048(13),X'EF' SWT+O
000912 58 FO C 000 L 15,000(0,12) VIR=l
000916 05 EF BALR 14,15
000918 50 10 D 1B8 ST 1,188(0,13)
00091C 12 00 LTR 0,0
00091E 07 89 BCR 8,9
000920 96 10 D 048 01 048(13), X'10' SWT+O
000924 58 FO C 004 1N1T3 L 15,004(0,12) VIR=2
000928 05 EF BALR 14,15
00092A 05 FO BALR 15,0
00092C 91 20 D 048 TM 048(13), X' 20' SWT+O
000930 47 EO F 016 BC 14,016(0,15)
000934 58 00 B 048 L 0,048(0,11)
000938 98 2D B 050 LM 2,13,050(11)
00093C 58 EO D 054 L 14,054(0,13)
000940 07 FE BCR 15,14
000942 96 20 D 048 01 048(13},X'20' SWT+O
000946 41 60 ° 004 LA 6,004(0,0)
00094A 41 10 C 020 LA 1,020 (0,12) PN=Ol
00094E 41 70 C 058 LA 7,058(0,12) LIT+O
000952 06 70 BCTR 1,0
000954 05 50 BALR 5,0
000956 58 40 1 000 L 4,000(0,1)
00095A lE 4B ALR 4,11
00095C 50 40 1 000 ST 4,000(0,1)
000960 81 16 5 000 BXLE 1,6,000(5)
-0--0-6%!t 41--S-9--f}--1-F-4 LA_ _8---4_1X~_ tOLU) OVF=l
000968 41 70 D 207 LA 7,207(0,13) Ts=Ol~l

00096C 05 10 BALR 1, °
0OO96E 58 00 8 000 L 0,000(0,8)
000912 lE OB ~.LR 0,11
000974 50 00 8 000 ST 0,000(0,8)
000918 81 86 1 000 BXLE 8,6,000(1)
00091C D2 03 0 224 C 054 MVC 224(4,13),054(12) VN=Ol VN1=l
000982 58 60 D lFC L 6,lFC(0,13) BL =3
000986 58 70 D lF4 L 1,lF4(0,13) BL =1
00098A 58 80 D 1F8 L 8, 1F8 (0,13) BL =2
00098E 58 EO D 054 L 14,054(0,13)
000992 01 FE BCR 15,14
000000 90 EC D OOC 1N1Tl STM 14,12, OOC (13)
000004 18 5D LR 5,13
000006 05 FO BALR 1~,0

Appendix A: Sample Program Output 391

000008 45 80 F 010 BA!. o n1 n, n 1 c:. \
"'r" """'v'~Jr

OOOOOC E3C5E2E3D9E4D540 DC X'E3C5E2E3D9E4D540'
000014 CID5E2F4 DC X'CID5E2F4'
000018 01 00 BCR 0,0
00001A 98 9F F 024 LM 9,15,024(15.
00001E 01 FF BCR 15,15
000020 96 02 1 034 01 034 (1) ,X' 02'
000024 01 FE BCR 15,14
000026 41 FO 0 001 LA 15,001 (0, 0)
00002A 01 FE BCR 15,14
0OO02C 00000924 ADCON L4 (INIT3)
000030 00000000 ADCON L4 CINIT1.
000034 00000000 ADCON L4UNIT1)
000038 00000498 ADCON L4(PGT)
00003C 00000248 ADCON L4(TGT)
000040 00000510 ADCON L4(START)
000044 000008EO ADCON L4 (INIT2)
000048 DS 15F
000084 00000000 DC X'OOOOOOOO'

.STATISTICS. SOURCE RECORDS 84 DATA DIVISION STATEMENTS

.OPTIONS IN EFFECT. SIZE = 81920 BUF 2768 LINECNT = 57

.OPTIONS IN EFFECT. DMAP, PMAP, NOCLIST, NOSUPMAP, NOXREF,

.OPTIONS IN EFFECT. NOTERM. NONUM, NOBATCH, NONAME, COMPILE=Ol,

.OPTIONS IN EFFECT. NOOPT, NOSYMDMP

25 PROCEDURE DIVISION STATEMENTS =
SPACE1, FLAGW, SEQ, SOURCE
SXREF, LOAD, NODECK, QUOTE, NOTRUNC, FLOW=

STATE, NORESIDENT, NODYNAM, NOLIE, NOSYNTAX

CROSS-REFERENCE DICTIONARY

DATA NAMES DEFN REFERENCE

A 000055
ALPHA 000041 000065
ALPHABET 000040
B 000056 000067
DEPEND 000044 000068
DEPENDENTS 000042
FIELD-A 000021
FIELD-A 000035
FILE-l 000016 000061 000070 000015
FILE-2 000017 000075 000018 000082
KOUNT 000031 000061 000065 000068 000072
LOCATION 000050
NAME-FIELD 000046 000065
No-OF-DEPENDENTS 000052 0.00068 000079
NOMBER 000038 000061 000065 000069
RECORD-NO 000048 000069
RECORD-1 000026 000010
RECORD-2 000034 000078
RECORDA' 000054
WORK-RECORD 000045 000070 000018 000080

392

PI{QCEDUR£ NAMES

BF.GIH
3TEP-l
STEP-2
STEP-3
STEP-4
STEP-5
STEP-6
STEP-7
STEP-8

55

61
65

IKFll00I-W
IKF2190I-w

DEFN F<.EFEREi~CE

000058
000061
000065 000012
000010 000072
000012
000075
000078 000080
000079
000082 000078

2 SEQUENCE ERRORS IN SOURCE PROGRAM.
PICTURE CLAUSE IS SIGNED, VALUE CLAUSE UNSIGNED. ASSUMED POSITIVE.

Appendix A: Sample Program Output 393

COBOL library subroutines perform
operations that require such extensive
coding that it would be inefficient to
place the coding in the object module each
time it is needed.

COBOL library subroutines are stored in
the COBOL library (SYS1.COBLIB). The
required subroutines are inserted in load
modules by the linkage editor.

There are several major categories of
COBOL library subroutines, namely:
subprogram linkage, object-time program
operations (i.e., data conversions,
arithmetic operations, test conditions,
data manipulation, data management, and
special features), and object-time
debugging. The categories are described in
this order.

Table 35 later in this chapter includes
a list of COBOL library subroutines, their
storage requirements, and the associated
calling information.

_ .. --- --- - ... --

In addition, Q routines, which are not
classified as COBOL library subroutines,
are used to calculate the length of
variable-length fields and the location of
variably located fields resulting from an
OCCURS clause with a DEPENDING ON option.

SUBROUTINES FOR SUBPROGRAM LINKAGE

The subroutines that control the loading
of library subroutines or subprograms and
the exiting from programs or subprograms
are described here.

The ILBONTRO subroutine is used (1) when
the RESIDENT option is an effect, to load
one copy of each subroutine called by the
main program or any of its subprograms into
any region/partition; and (2) when the
DYN~M option is in effect, to call any
subprogram specified in a CALL literal or
CALL identifier statement, first loading it
if it has not already been loaded into that
region/partition.

When a program finishes execution, this
routine deletes all the subroutines called
by the program except those subroutines

APPENDIX B: COBOL LIBR~RY SUBROUTINES

that are being used by another program in
the region/partition. It also deletes any
subprogram in the CANCEL literal or C~N2EL
identifier statement.

The ILBOSRV subroutine is called by all
programs compiled by the Version 4
compiler. This routine returns control to
the system, if the calling program is the
main program, or to the caller, if it is
not.

STOP RUN Subroutine (ILBOSTPO)

The ILBOSTP subroutine acts as a
non-reenterable interface between a program
c_ompiled by ___ the ___ IBM ___ F'Jlll_American Natio_n_a1 _
Standard COBO~ Version 3 Compiler, or a
non-COBOL program and the Version 4
subroutine library. It may be entered from
COBOL programs or subprograms.

OBJECT-TIME PROGRAM OPER~TIONS

COBOL LIBRARY CONVERSION SUBROUTINES

Eight numeric data formats are permitted
in COBOL -- five external (for input and
output) and three internal (for internal
processing) •

The five external formats are these:
(1) external or zoned decimal, (2) external
floatinq-point. (3) sterlinq display,
(4) numeric edited, and (5)-steriing
report. The three internal formats are
these: (1) internal or packed decimal.
(2) binary, and (3) internal
floating-point.

The conversions from internal decimal to
external decimal, from external decimal to
internal decimal, and from internal decimal
to numeric edited are done in-line. The
other conversions are performed by the
COBOL library subroutines shown in Table
33, and by the separate sign subroutine.

Appendix B: COBOL Library Subroutines 39j

separate Sign Subroutine (ILBOSSNO)

The ILBOSSNO subroutine converts
separately signed data-names to internal
decimal format and then checks for a valid

sign. If the sign is valid, this
subroutine generates the corresponjing
overpunch in the receiving field. If not,
it causes an object time message to be
issued and the job to be terminated.

Table 33. Functions of COBOL Library Conversion Subroutine (Part 1 of 2)
r-----------------------T---,
I I Conversion I
I Subroutine Name ~-------------------------------T-------------------------------~
I and I I I
I Entry Points I From I To I
~-----------------------t-------------------------------t-------------------------------~
I ILBOEFL2 I External Floating-point I Internal Decimal I
I I I I
I ILBOEFLl I External Floating-point I Binary I
I , , I
I ILBOEFLO 'External Floating-point I Internal Floating-point I
~-----------------------+-------------------------------+-------------------------------~
I ILBOBID01 ,Binary I Internal Decimal ",
I I I I
I ILBOBID11 I I I
I I I I
I ILBOBID21 , I ,
~-----------------------t-------------------------------t-------------------------------~
I ILBOBIE01 I Binary I External Decimal I
I , , I
I ILBOBIE11 , I I
I I I I
I ILBOBIE21 , , I
~-----------------------t-------------------------------+-------------------------------~
I ILBOBII02 I Binary I Internal Floating-p~int I
I I I I
I ILBOBII12 I I I
~-----------------------t-------------------------------t-------------------------------~
I ILBOTEF02 I Binary I External Floating-point I
I , I I
I ILBOTEF1 2 , I I
I I I I
I ILBOTEF2 I Internal Decimal 'External Floating-point I
I I I ,
I IFBOTEF3 ,Internal Floating-point I External Floating-point I
~-----------------------+-------------------------------+-------------------------------~
I ILBOIBDO I Internal Decimal ,Binary ,
I I I I
I ILBOIDBl I External Decimal I Binary ,
~-----------------------t-------------------------------t-------------------------------~
I ILBODCIl I Internal Decimal I Internal Floating-point I
I I I I
I ILBODCIO I External Decimal I Internal Floating-point I
~-----------------------+-------------------------------+-------------------------------~
I ILBOIFDO I Internal Floating-point I Internal Decimal I
I , I I
I ILBOIFDl I Internal Floating-point I External Decimal I
~-----------------------~-------------------------------~-------------------------------~
11The entry points used depend on whether the double-precision number is in registers 0 ,
I and 1, or 2 and 3, or 4 and 5, respectively. ,
12The entry points are for single-precision binary and double-precision binary, I
I respectively. I
13 This entry point is used for calls from other COBOL library subroutines. I L ___ J

396

Table 33. Functions of COBOL Library Conversion Subroutines (Part 2 of 2)
r-----------------------T---1
I I Conversion I
I Subroutine Name ~-------------------------------T-------------------------------1
I and I I I
I Entry Points I From I To I
~-----------------------+-------------------------------+-------------------------------1
I ILBOIFBl I Internal Floating-point I Binary integer and a pOwer I
I I I of 10 exponent I
I ILBOIFB23 I I I
I ILBOIFB03 I Internal Floating-point I Binary I
~-----------------------+-------------------------------+-------------------------------1
I ILBOIDRO I Internal Decimal I Sterling Report I
~-----------------------+-------------------------------+-------------------------------1
I ILBOIDTO I Internal Decimal I Sterling Non-Report i
~-----------------------+-------------------------------+-------------------------------1
I ILBOSTIO I Sterling Non-Report I Internal Decimal I
~-----------------------+-------------------------------+-------------------------------i
I ILBOCVBO I External decimal I Binary I
~-----------------------+-------------------------------+-------------------------------1
I ILBOCVBl I External decimal I Binary I
~-----------------------~-------------------------------~-------------------------------i
11The entry points used depend on whether the double-precision number is in registers 0 I
I and 1, or 2 and 3, or 4 and 5, respectively. I
12The entry points are for single-precision binary and double-precision binary, I
I respectively_ I
13This entry point is used for calls from other COBOL library subroutines. I l ___ J

- --_ .. _- - ._------_. _._--------------- -- - ... _ .. ----_ _----- - _-------------_._--- -.----- -

Table 34. Function of COBOL Library Arithmetic Subroutines
r---------------T---1
ISubroutine Name I Function I
~---------------+---1
IILBOXMUO I Internal Decimal Multiplication (30 digits * 30 digits = bO digits) I
~---------------+---i
IILBOXDIO I Internal Decimal Division (60 digits/30 digits = 60 digits; I
~---------------+---1
IILBOXPRO I Exponentiation of an Internal Decimal Base by a Binary Exponent I
~---------------+---1
IILBOFPWO I Floating-point Exponentiation I
~---------------+---1
IILBOGPW01 I Floating-point Exponentiation I
~---------------~---i
11The ILBOGPWO entry point is used if the exponent has a picture specifying an integer. I
I The ILBOFBWO entry point is used in all other cases. I L ___ J

Appendix B: COBOL Library Subroutines 397

COBOL LIBRARY ARITHMETIC SUBROUTINES

Most arithmetic operations are performed
in-line. However, involved calculations,
such as exponentiation, and calculations
with very large numbers, such as decimal
multiplication of two 30=digit numbers, are
performed by COBOL library subroutines.
These subroutine names and their functions
are given in Table 34.

COBOL LIBRARY SUBROUTINES FOR TESTING
CONDITIONS AT OBJECT TIME

Several subroutines are used to test
conditions that determine the path of
control the object program selects. Such
subroutines are described below.

The ILBOCLSO subroutine is used to
perform class tests for variable-length
items and those fixed-length items over 25b
bytes long, to determine whether a field is
alphanumeric.

~otg: The following tables are placed in
the library for use by the in-line coding
generated and the subroutines called for by
both class test and TRANSFORM:

ILBOATBO
ILBOETBO

ILBOITBO

ILBOTRNO
ILBOUTBO

ILBOWTBO

alphabetic class test
external decimal class
test
internal decimal class
test
transformation
unsigned internal decimal
class test
unsigned external decimal
class test

COMPARE Subroutine (ILBOVCOO)

The ILBOVCOO subroutine compares two
operands, one or both of which are of
variable lengths. They may exceed 256
bytes.

The ILBOIVLO subroutine compares the
identifier to a figurative constant. The

398

figurative constant must always be the
second operand. If it is first in the
source program, the operands are reversed
and the condition code to be passed on is
inverted before this subroutine is called.

COBOL LIBRARY DATA MANIPULATION SUBROUTINES

Subroutines are used to manipulate data
in main storage in response to the MOVE,
TRANSFORM, ST~INGf and UNST~I~G statements.
(Data manipulation in response to the
EXAMINE statement is performed in-line by
the oDject program.)

The MOVE sUDroutine is used when one or
both operands is variaole in length. They
may exceed 256 bytes. The MOVE subroutine
is also used for READ and WRITE statements
processed in conjunction with the S~~E
RECORD AREA clause. The subroutine has two
entry points, depending on the typ~ of
move: ILBOVMOO (left-justified) and
ILBOVM01 (right-justified).

MOVE Subroutine for System/370 (ILBOSMVO)

This special MOVE subroutine is used
when the length of the receiving field is
either greater than 512 bytes or variaole.
The subroutine transfers characters to a
right-justified receiving field.

MOV~_~2-Alphanumeric-Edited Field
SubrQ~~~ne_~!~~OA~~QL

The ILBOANEO subroutine moves a
data-name, literal, or figurative constant
into a right- or left-justified
alphanumeric edited field.

MOVE to Numeric-Edited Field Subroutine
(ILBONEDO)

The ILBONEDO subroutine is called by the
UNSTRING subroutine to move characters from
a packed decimal field into a
numeric-edited receiving field.

TRANSFORM Subroutine (ILBOVTRO)

The ILBOVTRO subroutine translates
variable-length items.

STRING Subroutine (ILBOSTGO)

The ILBOSTGO routine combines the
partial or complete contents of two or more
subfield(s) into a single field. This
routine transfers characters from the
sending item(s) to the receiving item in
the same way that moves from alphanumeric
item(s) to alphanumeric item(s) are
effected.

UNSTRING Subroutine (ILBOUSTO)

The ILBOUSTO routine separates
continuous data in a sending field, placing
it in multiple receiving fields.

COBOL LIBRARY DATA MANAGEMENT SUBROUTINES

COBOL library subroutines are called to
process the following verbs: DISPLAY,
TRACE, EXHIBIT. ACCEPT, START (when generic
key is specified), READ (BSAM), WRITE
(BSAM), CLOSE (BSAM) , OPEN (BSAM) , RECEIVE
(TCAM), and SEND (TCAM); library
subroutines are also called for I/O errors,
printer spacing, and printer overflow.

The ILBODSPO subroutine is used to
print, punch, or type data, usually in
limited amounts, on an output unit. TRACE
and EXHIBIT are kinds of DISPLAY.

The acceptable forms of data for this
subroutine are:

1. Display

2. External decimal

3. Internal decimal (converted by the
subroutine to external decimal)

4. Binary (converted by the subroutine to
external decimal)

5. External floating-point

Internal floating-point numbers must be
converted to external floating-point
numbers before the subroutine is called.

Note: If the contents of a data-name are
such· that when converted they will exceed
18 decimal digits, the ILBODSPO subroutine
cannot process them and the results are
unpredictable.

DISPLAY Subroutine (ILBODSSO)

The ILBODSSO subroutine prints or types
data of a certain kind on SYSPRINT or at
the console. This subroutine is used
instead of ILBODSPO when there are n~
requests by the program for rRACE or
EXHIBIT, and no variable-length or
floating-point items; when there are n~
requests for display upon SYSPUNCH; and
when neither the RESIDENT nor the DYNAM
option is in effect.

The ILBOACPO subroutine is called t~
read from SYSIN or from the operator's
console at execution time. For SYSIN, a
logical record size of 80 is assumed. If
the size of the data item being accepted is
less than 80 characters, the data must
appear as the first set of characters
within the input record. If the size of
the data item is greater than 80
characters, as many records as necessary
are read until the storage area allocated
to the data item is filled. If the data
item is greater than 80 characters, DUL is
not an exact multiple of 80, the remainder
of the last logical record is not
accessible. For the console, a maxinum of
114 characters are accepted and either 114
characters or the length of the item,
whichever is smaller, is moved to the
operand named in the ACCEPr statement.

The ILBOSTRO subroutine is called when a
USING KEY clause is coded with the STAKr
verb for ISAM files. The subroutine
formats the search argument so that data
management can get control to search for
the generic key.

Appendix B: COBOL Library Subroutines 399

Checkpoint Subroutine (ILBOCKPO)

The ILBOCKPO subroutine generates a
checkpoint record, continuing the status of
a program ~hen a checkpoint is taken. This
record is ~ritten on a checkpoint data set.

Error Intercept Subroutine (ILBOERRO)

The ILBOERRO subroutine is used to test
for various error conditions, and passes
control to the interpretive-statement
specified in the INVALID KEY option phrase
or to the USE FOR ERROR declarative section
dependinq on the type of error and error
handling options specified. The entry
points used for error processing by
ILBOERRO are:

ILBOERRl Standard Sequential Files

ILBOERR2 Direct and Relative Files
Accessed Sequentially

ILBOERR3 Indexed Files Accessed
Sequentially

ILBOEER4 Direct and Relative Files
Accessed Randomly

ILBOERR5 Indexed Files Accessed
Randomly

The ILBOPTVO subroutine is used to
control printer overflow testing and page
ejection.

Printer Spacing Subroutine (ILBOSPAO)

The ILBOSPAO subroutine is used to
control printer spacing.

BSAM WRITE/CLOSE and BDAM OPEN Subroutine
(ILBOSAMO)

The ILBOSAMO routine processes
input/output statements for direct or
relative files accessed sequentially. It
also handles OPEN statements and CLOSE
statements with the REEL option for
directly organized output files accessed
randomly. -

400

The BSAM read routine reads segments of
a logical record and assembles them into a
complete logical record. The routine is
called by a compiler-generated READ code
for a spanned record direct BSAM file.

RECEIVE Subroutine (ILBORECO)

The ILBORECO subroutine transfers a
message, a message segment, or part of a
message or message segment from the message
control program to the COBOL application
program. This routine always updates the
input communication description (CO) entry
as ~ell as processes the IF MESSAGE
clause(s), if any.

The ILBORNTO subroutine builds the
control block that communicates ~ith the
input queue associated with the cdname
specified in the RECEIVE statement.

Queue Analyzer Object-Time Subroutine
!!LBOSQ~Ql.

The ILBOSQAO subroutine is called by the
ILBORECO routine if the COBTPQD data set is
present. This routine searches the COBTPQD
data set for a member that corresponds to
the name in the SYMBOLIC QUEUE field
(defined in the COBOL source statements).
If a match is found, the analyzer reads the
member into main storage, using it to
validate the SYMBOLIC SUB-QUEUE name(s) in
the input CD of the COBOL source program.
The analyzer also identifies the first
valid DD name for the queue structure and
gives this name to the ILBORECO routine.

Queue Structure Description Subroutine
(IL~Q~UO)

The ILBOQSUO subroutine creates a
partitioned data set ~ith one member for
each queue structure defined in the
COBOL-like source statements. This routine
also generates a printed listing of the
structure element, as well as of error
messages, if any.

The ILBOSNDO subroutine transfers a
message, a message segment, or part of a
message or message segment from the COBOL
application program to the message control
proqram. This routine always updates the
output CD entry.

SEND Initialization Subroutine (ILBOSNTO)

The ILBOSNTO subroutine (ILBOSNTO)
subroutine builds the control block that
communicates with the output queue
associated with the cdname specified in the
SEND statement.

COBOL LIBRARY SUBROUTINES FOR SPECIAL
FEl'-\TURES

sui5ioufTiies--are--iis-ed -for tbie-e cf--tne
special features of COBOL:

• Sort feature

• Table handling feature (SEARCH
statement)

• Segmentation feature (GO TO statement)

Also, a subroutine is called in response to
the use of the following special registers:
CURRENT-DATE, DATE, DAY, TIME, and
TIME-OF-DAY.

Sort Feature Subroutine (ILBOSRTO)

The ILBOSRTO subroutine acts as an
interface between the COBOL calling program
and the Sort/Merge program via the entry
point name SORT.

The ILBOSCHO subroutine performs a
binary search on a specified level of a
table. It is used for the SEARCH ALL
statement.

~~mentation Subroutine (ILBOSG~O)

The ILBOSGMO subroutine is used to load
segments of a program that are not in core
storage and to pass control from one
segment to the other.

The ILBOGDOO subroutine uses the value
of a particular data-name as an index into
a list of constants for each PN specified
and then transfers control to the proper
PN. If the value of the data-name is
greater than the number of PN's specified,
control returns to the next instruction
after the calling sequence.

This group of subroutines performs five
functions in response to the use of the
special registers CURRENT-DArE, DArE, DAY,
TIME, and TIME-OF-DAY. The list below
indicates the function of each of the entry
po-iiiEs;-- aii-a--ffie-Tor-rnaE" --6r-e-acFi--res-uIE---rn--
the receiving field of the specified MOVE
or ACCEPT statement.

ILBODTEO

ILBODTEl

ILBODTE2

ILBODTE3

ILBODTE4

day/month/year

hour minute second

year month :lay

year day

hour minute second
hundredth of a secon:l

Three options are available for
object-time debugging: the statement
number option (STATE), the flow trace
option (FLOW>, and the symbolic debugging
option (SYMDMP). The sUbroutines for the
first two options provide debugging
information at abnormal termination 8f a
program; the subroutines for the third
option provide debugging information either
at abnormal termination or dynamically
during the execution of a program. All of
these SUbroutines are under the control of
and are supervised by the debug control
subroutine ILBODBGO. The debug control
subroutine is described first, followej by
the subroutines that are called in response

Appendix B: COBOL Library Subroutines 401

to the specification of the STATE, FLOW,
and SYMDMP options.

Debug control Subroutine

The ILBODBGO subroutine is called once
at entry point ILBODBGO for each COBOL
program for which any of the debugging
options have been specified. This
subroutine handles linkage and input/output
for the STATE, FLOW, and SYMDMP options.
It also produces the program name, the
condition code, and the last PSW message at
the time of the abnormal termination.

Flow Trace Subroutine (ILBOFLWO)

The ILBOFLWO subroutine produces a
formatted trace of the last wnw of COBOL
procedures executed prior to an ABEND. It
initializes, builds, and writes out the
flow trace table.

Statement Number Subroutine (ILBOSTNO)

The ILBOSTNO subroutine processes the
STATE option and determines both the card
number and the verb number for the last
statement executed before the ABEND, and
then generates a message containing this
information.

§ymbolic Dump Subroutine (ILBOD10 and
!LBOQ£Ql

The ILBOD10 subroutine is called when
the SYMDMP option is in effect; this
routine calls other modules as necessary
for SYMDMP initialization. The ILBOD20
subroutine services SYMDMP output requests
from DBGO. SYMDMP generates the following
information as output on the SYSDBOUr data
set: a copy of all SYMDMP control
statements; diagnostic messages; dynamic
dumps of user-selected data areas at
strategic points during program execution;
an abnormal termination statement number
message; and the complete abnormal
termination dump. In addition,
modifications are made to the COBOL program
in main storage if dynamic dumping is
requested for the program.

402

~Qt~: When SYMDMP services are re~uested
for a job step, the sequence of events is,
in general, as follows: (1) initialization
-- for the first COBOL program in a JOo
step, then for all other COBOL pro~rams in
that job step, and finally for indepenjent
program segments; (2) processing -- first
for dynamic dump requests, and then for
abnormal termination dumps.

"ERRTN" of ILBODBGl entry point

The ILBODBEO subroutine is called by the
PRINT routine of the debug control
subroutine to format the appropriate error
message in the SYSDBOUT output buffer.

For additional information on the FLOW,
STATE, and SYMDMP options and their
relationship to other COBOL options, see
the chapter entitled "Symbolic Debugging
Features" and the section "Options for the
Compiler" in the chapter entitled "Job
Control Procedures."

Table 35 includes a list of COBOL
library subroutines, their storage
requirements, and the associated calling
information. The subroutines are arranged
alphabetically by the characters following
'ILBO'. The list includes subroutines that
are called directly by the object program
-- ~imary subroutines -- and tne
subroutines they call -- ~~£Q~~ary
subroutines. Some subroutines (for
example, ILBOANE) function as both primary
and secondary subroutines.

The superscripts that accompany several
of the entries refer to footnotes at the
end of the table. Footnotes that appear
with the names of subroutines indicate
routines that are conditionally obtained,
that are secondary subroutines only, or
that may never reside in the MVT link pack
area (LPA) or the MFT resident reusable
routine area (RRR). The footnotes that
appear with some of the numeric values
indicate whether the information represents
a maximum value, a minimum value, or an
estimated value. In all cases, the numeric
values represent decimal bytes rounded off
to the nearest 50.

For descriptions of the primary
subroutines and of the major secondary
subroutines, see the sections of this
appendix entitled "Subroutines for
Subprogram Linkage," "Object-Time Program
Operations," and "Object-Time Debug~ing."

Table 35. Calling and Storage Information for COBOL Library Subroutines (Part 1 of 5)

r--------------------T---------------------T------T---------T-----------T------T----------T-------,
I Primary I calling ISize I Dynamic I Secondary ISize I Dynamic I Total I
I Subroutine I Information I IWork Areal Subroutines I IWork Area IAmount I
~--------------------+---------------------+------+---------+-----------+------+----------+-------~
ILBOACP Called by compiled 500 100 None I 600
(ACCEPT) code I

ILBOANE
(MOVE alphanumeric
edited field)

ILBOANF
(MOVE figurative
constant)

ILBOATB
I (Alphabetic table
1 for class test)
I
IILBOBID
I (Binary to internal
I decimal)
I
IILBOBIE
I (Binary to external

.1 decimal)
I
IILBOBII
I (Binary to internal
i floating-point)
I
IILBOCKP
I (Checkpoint)

-1---
ILBOCLS
(Class test)

ILBOCQM4 9

(Subroutine
communications)

ILBOCVB
(Decimal to
binary/binary
to decimal)

ILBODBG
(Debug control)

Called by compiled
code and by
ILBOUST

Called by compiled
code

used for ILBOCLS

Called by compiled
code

Called by compiled
code

called by compiled
code and by
ILBODCI, ILBOEFL

ICalled by compiled
I code
t-

350

150

300

150

150

500

100

!
Called by compiled I 150

code I
I

Link-edited or loaded I 150
by compiled code I
and by ILBOSRV; I
used by most COBOL I
library subroutines I

I
Called by compiled 11050

code and by I
ILBOUST and ILBOSTGI

I
I

o

0

0

0

0

0

o

I
o

o

3005

Called by compiled
code if FLOW,
STATE, or SYMDMP
is specified

12125, 950 7
1
I
I

None

None

None

None

None

None

None
I

-1-
I
I
I
I None
I
I
I

None

ILBODBGl

ILBODBG2

I ILBODBG3
I ILBODBG4
I ILBODBG5
I ILBODBG1

I
I
I
I
I
I
I
!

1 ILBODBE7 8 1200
I ILBOSTN7 1109
I ILBOFLW7 1600
I ILBOD01 7 8 150

1
I
I
I
I
I
I
I
I ,

o
110
600 3

I 3002
23003

3~0

150

300

150

150

500

100

150

150

1350

--------------------~---------------------~------~---------~-----------~------~----------~-------

Appendix B: COBOL Library Subroutines 403

Table 35. Calling and Storage Information for COBOL Library Subroutines (Part 2 of 5)

r--------------------T---------------------T------T---------T-----------T------T----------T-------,
I Primary ICalling I I Dynamic I Secondary I I Dynamic I Total 1
I Subroutine 1 Information 1 Size IWork Area I Subroutines I Size IWork Area IAmount I
~--------------------+---------------------+------+---------+-----------+------+----------+-------~
ILBOD010 Called when SYMDMP ILBOD10 12550 1 13100

ILBODCI
(Decimal to internal
floating-point)

ILBODSP
(DISPLAY, TRACE,
EXHIBIT)

ILBODSS"
(DISPLAY)

ILBODTE
(Date, day, and
time)

ILBOEFL
(Conversion
from external
floating-point)

ILBOERR
(Error intercept)

ILBOETB
(External decimal
table for class
test)

ILBOFLW
(Flow trace option)

ILBOFPW
(Floating-point
exponentiation)

ILBOGDO
(GO TO DEPENDING ON)

ILBOGPW
(Floating-point
exponentiation to a
binary exponent)

ILBOIDB
I (Decimal to binary)

is in effect I I

Called by compiled
code

Called by compiled
code

Called by compiled

Called by compiled
code

Called by compiled
code

Called by the system

Used by ILBOCLS

Called by compiled
code and by ILBODBG

Called by compiled
code

Called by compiled
code

Called by compiled
code

Called by compiled
code or by ILBODCI

1938 104

350 1 0

500 0

600 0

500 0

1 300 0
1
1
1
1
11600 600 3

800 0

100 0

100 0

150 0

ILBOD11 7 B I 750 1 0
ILBOD12 7 B 11750 1 1 0
ILBOD13 7 B 11550 1 0
ILBOD14 7 B 11500 1 0
ILBOD20 7 B I 950 I 0
ILBOD21 7 B 11500 25/0DO
ILBOD22 7 B 12500 0
ILBOD23 7 B 13800 0
ILBOD24 7 B 14050 1 0
ILBOD25 7 8 1200 1 0

ILBOIDB 150 0

None

None

None

ILBOIOB 150 0
ILBOBII 450 0

None

None

None

None

None

None

None

822

2100

3S0 1

3~0

1200

~OO

300

2300 3

800

100

100

150
l ____________________ ~ _____________________ ~ ______

---------~-----------
_ _________ ~ _______ J

404

Table 35. Calling and Storage Information for COBOL Library Subroutines (Part 3 of S)

r--------------------T---------------------T------T---------T-----------T------T----------T-------,
1 Primary 1 Calling 1 I Dynamic I Secondary I I Dynamic I Total I
1 Subroutine I Information I Size IWork Areal Subroutines I Size IWork hrea IAmount I
~--------------------+---------------------+------+---------+-----------+------+----------+-------~
ILBOIDR I Called by compiled 1700 0 None 1700
(Internal decimal I code
to sterling report) I

I
ILBOIDT I Called by compiled 600 0 None 600
(Internal decimal to code
sterling non-
report)

ILBOIFB
(Internal
floating-point to
decimal or binary)

ILBOIFD
(Internal floating
to decimal or
binary)

ILBOITB
(Internal decimal
table for class
test)

ILBOIVL
(Comparison with
figurative
constant)

Called by compiled
code or by ILBOIFD
or ILBOTEF

Called by compiled
code

Called by compiled
code

Called by compiled
code

ILBOPTV ICalled by compiled
ttPrtnter- overlluw)- . t---- --code-·· ------------

ILBOQSU4 10
(Queue structure
utility program)

ILBOREC
(RECEIVE)

ILBOSAM
(BSAM WRITE and
CLOSE/BDAM OPEN)

ILBOSCH
(SEARCH)

called by JCL

called by compiled
code

Called by compiled
code

Called by compiled
code

300

200

300

100

6500

2400

1104

700

~
I
I
I
I

--1-

0

0

0

o

o

4000

o

o

o

None

ILBOIFB

None

None

I None
-t--------

None

ILBORNT7

ILBOSOA10

None

None

300

900

2000

o

300

300

100 I
I
I
I
I

I 150 I
--t--- ------1--

I I
110,500 I
I I
I I
I I

2S5/queue I I
blocks I I

200/bufferl !
units 3800 2 I

PDS member I
SIZE I

1104 I
I
I
I

700 I
I
I

ILBOSGM Called by compiled 400 0 ILBODBG 2000 1 6002 3000 1 21
(Segmentation) code I I L ____________________ ~ _____________________ ~ ______ ~ _________ ~ ___________ ~ ______ ~ __________ ~ _______ J

Appendix B: COBOL Library Subroutines 405

Table 35. Calling and Storage Infor~ation for COBOL Library Subroutines (Part 4 of 5)

r--------------------T---------------------T------T---------T-----------T------T----------T-------,
I Primary I Calling I I Dynamic I Secondary I I Dynamic I Total I
I Subroutine I Information I Size IWork Area I Subroutines I Size IWork ~rea IAmount I
~--------------------+---------------------+------+---------+-----------+------+----------+-------~

ILBOSMV Called by compiled SO 0 None SO
(f.,lOVE to right
justified field for
System/370)

ILBOSND
(SEND)

ILBOSPA
(Printer spacing)

ILBOSRT
<Sort)

ILBOSRV
<STOP RUN
for Version 4)

ILBOSSN
(Separately
signed numeric)

ILBOSTG
(STRING)

code

Called by compiled
code

Called by compiled
code

Called by compiled
code

Called by a program
compiled by the
Version 4 compiler

Called by compiled
code

Called by compiled
code

14S0

900

300

2001

600

ILBOSTI Called by compiled 600
(Sterling non-report code
to internal decimal)

ILBOSTN
(Statement number
option)

ILBOSTP
(STOP RUN)

ILBOSTR
(START with
qeneric key)

ILBOTEF
(Conversion to
external
floating-point)

ILBOTRN
(TRANSFORM table)

ILBOUST
(UNSTRING)

1100

Called by a non-COBOL 100 1

program

Called by compiled
code

called by compiled
code or by ILBOD23

Used by ILBOVTR

Called by compiled
code

100

700

300

2000

o

o

200

o

o

o

o

110

o

o

o

o

250 5

ILBOSNT1

None

None

None

ILBOSRV

ILBODBG

ILBOCVB

None

ILBODBG

ILBOSRV

None

ILBOBIE

600

300

20001

10S0

2000 1

l

300

lS0

2S5/queue
blocks

200/buffer
200/buffer

o

600 2

300

600 2

o

o

1000

1100

300

31001 2

1950

600

39501 2

400 1

100

None 300

ILBONED7 8 1400

ILBOANE7 8 3S0 0
ILBOCVB7 110S0 SOS03 l ____________________ ~ _____________________ ~ ______ ~ _________ ~ ___________ ~ ______ ~ __________ ~ ______ _

406

Table 35. Calling and Storage Information for COBOL Library Subroutines (Part 5 of 5)

r--------------------T---------------------T------T---------T-----------T------T----------T-------,
I Primary I Calling I I Dynamic I Secondary I I Dynamic I Total I
I Subroutine I Information I Size IWork Areal Subroutines I Size IWork ~rea IAmount I
~--------------------+---------------------+------+---------+-----------+------+----------+-------~

ILBOVTB I Called by compiled 300 0 None 300
(Unsigned internal \ code
decimal table
for class test)

ILBOVCO
(Variable-length
comparison)

(Variable-length
name)

ILBOVTR
(TRANSFORM)

ILBOWTB
(Unsigned external
decimal table for
class test)

ILBOXDI
(Decimal division)

(Decimal
multiplication)

ILBOXPR
(Decimal fixed-point

Called by compiled
code

Called "'r'\rnn.;'o~ __ "'LLt:"'~~--

code

Called by compiled
code

Used by ILBOCLS

Called by compiled
code and by ILBOXPR\

I

550

600

150

300

300

I
Called by compiled I 200

code and by ILBOXPR\

Called by compiled
code

I
I 700
I

o

o

o

o

o

o

o

None

ILBOSRV

ILBOADR7
ILBODBG7

None

None

None

None

ILBOXDI

300

300
20001.

300

o

o
600

o

550

32001. ..

150

300

300

200

-r-e-xponeritTat10iiT ------r r -1 - r- I 1-j i-
~--------------------~---------------------~------~---------~-----------~------~----------~-------~
Notes:
1. The
2. The
3. The

size given is an estimate.
size given is a minimum.

4. The
MFT

size given is a maximum.
subroutine indicated may never
resident reusable routine area

reside in the MVT link pack area (LPA) or the
(RRR) •

5. The 256-byte storage area obtained by subroutine ILBOCVB is used by subroutine
ILBOUST.

6. Because the ILBODBG subroutine dynamically loads and deletes subroutines as they
are needed, depending on the options specified, it is possible only to estimate a
minimum and/or a maximum amount of storage used by anyone of the debugging
options. For each storage estimate given below, the effect of possible core
fragmentation is not considered.
a. - Basic debug package -- 3100 bytes
b. Debug with the STATE option -- 3950 bytes
c. Debug with the FLOW option -- 892 bytes
d. Debug with the SYMDMP option -- 11,372 bytes mlnlmum and 13,348 bytes maximun
e. Debug with dynamic dumps -- 15,112 bytes minimum and 18,198 bytes maximum;

(whenever a primary routine calls subroutine ILBODBG, the storage requirement
is that for the basic package size).

7. The subroutine or dynamic work area indicated is obtained conditionally.
8. The subroutine indicated is never called as a primary subroutine.
9. The subroutine indicated must be on-line at execution time. L ___ J

Appendix B: COBOL Library Subroutines 407

In this appendix, each field of the data
control block is listed by the name of the
operand of the assembler-language macro
instruction that can specify a value for
that field. Tables 36 through 40
illustrate the data control blocks for
sequential, direct, relative, and indexed
files. Some of the data control block
fields can be referred to with the DCB
parameter of the DD statement. However,
any field filled in by the COBOL compiler
cannot be overridden except for the indexed
file OPTCD field in which the
L-subparameter is set by the compiler using
DeB exit.

Values for fields for which no entry
appears in the column headed "COBOL Source"
may be supplied by the DD statement or by
the data set label.

For information concerning the
specification of values for data control
block fields: see the DeB macro instruction
for the different file processing
techniques in the publication IBM os
~~2~fY~~2f ~n~_Q~~~_Marr~gemegt M~~fQ
!rr~~f~~tiog~.

Note: The DCB subparameters are discussed
under "User Defined Files" in the chapter
"User File Processing."

Appendix C: Fields of the Data Control Block 409

Table 36. Data Control Block Fields for Standard Sequential Files
r------------T-------------------------T-------------------------T----------------------l
I I I I Applicable I
I Data Cantrall I I DD Statement I
IBlock Field I Explanation of Field I COBOL Source I DCB Subparameters I
~------------+-------------------------+-------------------------+----------------------~
BFALN Alignment (COBOL specifies double-

BFTEK

BLKSIZE

BUFCB

BUFL

BUFNO

BUFOFF

DDNAME

DSORG

EODAD

EROPT

EXLST

LRECL

MACRF

OPTCD

RECFM

SYNAD

Buffering technique
(S or E)

Maximum length of block

Address of buffer pool

Length of each buffer

Number of buffers
assigned to DCB

word boundary)

<COBOL specifies S)

BLOCK CONTAINS
Data record description

SAME AREA

RESERVE

Name of DD statement ASSIGN clause

Access method ASSIGN clause
ACCESS clause

Address of user1s end-of- READ ••• AT END
data-set exit routine
for input data set

BLKSIZE

BUFNO=N(jefault=2)

(BUFOFF=[nll])

Error option (EROPT=[ACCISKPIABE])

Address of exit list Used by the compiler for
USE ••• LABEL, etc.

Logical record length FD entry

Type of macro instruction OPEN INPUT, READ
OPEN OUTPUT, WRITE
OPEN 1-0, READ, WRITE
REWRITE

LRECL

Optional service provided (OPTCD=[WICIWCIIIQ])
by control program

Characteristics of
records in data set

Address of error exit
routine

RECORDING MODE
Record description
ADVANCING
POSITIONING
BLOCK CONTAINS
APPLY RECORD-OVERFLOW

Used by compiler for
INVALID KEY and
USE AFTER ERROR

(RECFM=D)

RECFM={SIT}

L ____________ ~ _________________________ ~ ______________ -----------~----------------------

410

Table 37. Data Control Block Fields for Direct and Relative Files Accessed Sequentially
r------------T--------------------------T------------------------T----------------------,
I I I I Applicable I
I Data Cantrall I I DD Statement I
IBlock Field I Explanation of Field I COBOL Source I DCB Subparameters I
~------------+--------------------------+------------------------+----------------------~
BLKSIZE Maximum length of block Data record description

DDNAME

DSORG

EXLST

KEYLEN

LRECL

r<lACRF

OPTCD

Name of DD statement ASSIGN clause

Access method ASSIGN clause
ACCESS clause

Address of end-of-data-set READ ••• AT END
exit (input)

Address of exit list USE ••• LABEL PROCEDURE

Length of key ACTUAL KEy1

Logical record length

Type of macro instruction

Optional service to be
provided by control
program

(length of
ACTUAL KEY - 4)

FD entry

OPEN INPUT, READ
OPEN OUTPUT,
WRITE (DIRECT ONLY)

---1RECFM tCharac-teristi-cs- -of -{---R-ECQ..WI-NG---MODE- -- -~

I I records in data set I Record description I
I I I APPLY RECORD-OVERFLOW I
I I I I
ISYNAD IAddress of error exit I USE AFTER ERROR I

LRECL

[OPTCD=WIT]

I I routine I INVALID KEY I I
~------------L--------------------------L-------------___________ L ______________________ ~
11Direct files only; for relative files f the field is o. I L __ J

Appendix C: Fields of the Data Control Block 411

Table 38. Data Control Block Fields for Direct and Relative Files Accessed Randomly
r------------T---------------------------T-------------------------T--------------------l
I I I I Applicable I
I Data Cantrall I I DD statement I
IBlock Field I Explanation of Field I COBOL Source I DCB Subparameters I
~------------+---------------------------+-------------------------+--------------------~
BLKSIZE Maximum length of block Data record description I

I
DDNAME Name of DD statement ASSIGN clause I

DSORG

EXLST

KEYLEN

LIMCT

MACRF

OPTCD

RECFM

SYNAD

Access method

Address of exit list

Length of key for each
physical record

Search limits

Type of macro instruction

Option service to be
provided by the control
program

Characteristics of
records of data set

Address of error exit
routine

ASSIGN clause
ACCESS clause

USE ••• LABEL, etc.

ACTUAL KEy1
(length of
ACTUAL KEY - 4)

OPEN INPUT, READ
OPEN OUTPUT,
WRITE (DIRECT ONLY)
OPEN 1-0, READ,
WRITE (DIRECT ONLY),
REWRITE

RECORDING MODE
APPLY RECORD-OVERFLOW
Record description

Used by compiler for
INVALID KEY and
USE AFTER ERROR

LIMCT=n (OPTCD=E
must be specified)

OPTCD=E/W

~------------~---------------------------~-------------------------~--------------------~
11Direct files only, for relative files this field is O. I L ___ J

412

Table 39. Data Control Block Fields for Indexed Files Accessed sequentially
r------------T---------------------------T-------------------------T--------------------,
I I I I 1\pplicable I
I Data Control I I I DD Statement I
IBlock Field I Explanation of Field I COBOL Source I DCB Subparameters I
~------------+---------------------------+-------------------------+--------------------~
BF1\LN Buffer alignment (F or D) (COBOL specifies D) I

I
BKLSIZE Maximum length of block BLOCK CONT1\INS IBLKSIZE

I
BUFCB Address of buffer pool SAME ARE1\ I

I
BUFNO Number of buffers assigned RESERVE BUFNO=N(default=2)

CYLOFL

DDNAME

DSORG

EODAD

EXLST

IKEYLEN
I
I

-rLRECL

MACRF

NTM

OPTCD

RECFM

RKP

to DeB

Number of overflow tracks
for each cylinder

Name of DD statement

Access method

Address of user's end-of
data-set exit routine
for input data set

Address of exit list

ILength of key for each
I logical record
I
rLogicarrecot:d-length

Type of macro instruction

Maximum n~~~er of
cylinder index tracks

Optional services

Characteristics of
records in data set

Relative position of
record key in logical
record

ASSIGN clause

ACCESS clause
ASSIGN clause

READ ••• AT END

Used by the compiler

IRECORD KEY
I
I

--lFD-- etftry--

OPEN INPUT, READ, START
OPEN OUTPUT, WRITE
OPEN 1-0, READ, START,

REWRITE

RECORDING MODE
RECORD DESCRIPTION
BLOCK CONT1\INS

RECORD KEY

ISYNAD 1\ddress of error exit Used by the compiler for
i routine INVALID KEY,
I USE AFTER ERROR

CYLOFL=XX

--1 LRECL- --

NTM=XX

OPTCD=IIRIWIYIMIUIL
(must also have
NTM=M)

L ____________ ~ ___________________________ ~ _________________________ ~ ____________________ J

Appendix C: Fields of the Data Control Block 413

Table 40. Data Control Block Fields for Indexed Files Accessed Randomly
r-------------T---------------------------T--------------------------T-------------------l
I I I I 1\pplicable I
IData Control I I I DD Statement I
IBlock Field I Explanation of Field I COBOL Source IDCB Sub~arameters I
~-------------+---------------------------+--------------------------+------------------~
BFALN Buffer alignment (F or D). <COBOL specifies D)

I
I

DDNAME

DSORG

EXLST

KEYLEN

LRECL

MACRF

MSHI

MSwA

SMSI

Name of DD statement. ASSIGN clause

Access method. ACCESS clause
ASSIGN clause

Address of exit list. Used by the compiler

Key length. NOMINAL KEY

Logical record length. FD entry

Type of macro instruction. OPEN INPUT, READ
OPEN 1-0, READ,
WRITE, REWRITE,

Address of area for APPLY CORE-INDEX
highest level index
of data set.

Address of area reserved TR1\CK-ARE1\
for control program.
Required for variable
length records.

Size for area provided for
highest level index of
the data set.

APPLY CORE-INDEX

ISMSW Number of bytes reserved TRACK-ARE1\
I for main storage
I work area. L _____________ ~ ___________________________ ~ __________________________ ~ __________________ J

414

In general, compilation is faster when:

1. options in the EXEC statement are
specified to:

a. Make more main storage available
(the SIZE option)

b. Optimize the space available for
buffers (the BUF option)

c. Suppress output (the NOSOURCE,
NODECK, NOLOAD, and the SUPMAP
options, among others)

d. Suppress object code if one or
more E-Ievel messages are
generated.

2. The maximum block size for a compiler
data set is specified.

3. A disk configuration and separate
channels for utility data sets are
used.

4. Separate--devices (i.e., -not-the same
mass storage unit) on the same channel
are used.

compilation time is also affected by the
speed of the devices allocated to the data
sets. For example, a tape device is faster
than a printer for printed output. The
blocking information that follows applies
to MFT or MVT.

The OS Full American National Standard
COBOL Compiler, Version 4, provides
additional opportunities for saving either
main storage or time. For example,
specification of the Optimized Code
Feature, the COBOL Library Management
Feature, the Dynamic Subprogram Feature, or
all three of these features, can result in
a considerable saving in main storage. The
notes given below provide additional
performance information on programs run
with these and other new features.

• When the Optimized Code Feature is
requested, via the OPTIMIZE compiler
option, execution time is reduced for
non-I/O bound programs; however,
compilation time is increased.

• Specification of the COBOL Library
Management Facility, via the RESIDENT
compiler option, results in a saving of
both main storage and secondary
storage, as well as of time at the
link-edit step and the initial program
load for the program.

• Dynamic invocation and release of COBOL
SUbprograms, specified by the DYN~M
compiler option, also results in
savings in main storage.

• A syntax checking compilation,
specified by the SYNTAX or SYNTAX
compiler option, saves machine time.
Depending on which compiler options are
chosen, as well as the various source
program statements, compile time can be
reduced by as much as 20% to 70%.

The symbolic dump feature, specified by
the SYMDMP option, can save much debugging
time. However, use of this option can
decrease performance expectations for
programs run with it. That is, such
programs--re-qu-i-re-- -addit-i-onal---t-ime---for the
compile, link-edit, and execute job steps.
They also require more main storage than
programs run without this feature.

For information about re~uestin~ any of
these options,see the section "Options for
the Compiler" in the chapter on "Job
Control Procedures".

The blocking factor specified for
compiler data sets other than utility data
sets must be permissible for the device the
data set is on. In addition, for the
SYSLIN data set, it must be permissible for
the linkage editor used. (Any block size
specified for a utility data set in a DD
statement is overridden by the compiler.)
If a block size other than the def3ult
option is needed, it can be requeste~ by
specifying the BLKSIZE subparameter of the
DCB parameter in the DD statement for the
data sets. The format of the subparameter
is:

DCB=(,BLKSIZE=nnn)

where nnn is equal to N times the logical
record size in bytes, and 1 ~ N ~~. M is
equal to the blocking factor permissible
for the device, and, in the case of SYSLIN,

Appendix 0: Compiler Optimization 415

to the blocking factor permissible for the
linkage editor used.

If blocking is desired, the record
format for SYSPRINT [DCB=(,RECFM=nnn)]
should be specified as FBA. The record
format for SYSIN, SYSLIN, SYSPUNCH, and
SYSLIB should be specified as FB.

The logical record size for SYSPRINT is
121 bytes. The logical record size for
SYSIN, SYSLIN, SYSPUNCH, and SYSLIB is 80
bytes.

~: For compile, link-edit, and execute
cases when labeled volumes aOre used, RECFM
and BLKSIZE must be given for SYSLIN in the
compile step only. If BLKSIZE is specified
for SYSPUNCH, LRECL must also be specified.
The 44K version of the linkage editor
supports input data sets with a blocking
factor of up to 40 specified.

HOW BUFFER SPACE IS ALLOCATED TO BUFFERS

Once the amount of space available for a
compilation is determined, the compiler
subtracts the amount required for itself.
From the space remaining, it then computes
the space available for utility and
input/output data set buffers. If space
still remains, the compiler makes use of it
for internal processing.

Once the amount of space available for
buffers is determined, the compiler
calculates how this space is to be divided.
First, it computes the amount of space
required for the buffers of the
input/output data sets. From the space
remaining, it determines the maximum buffer
size, and hence block size, possible for a
utility data set. The utility data sets
all have the same block size. Thus, the
block size of a utility data set is
dependent on the amount of space available
for buffers. If a block size has been
specified in a DD statement for a utility
data set, it is overridden.

A larger buffer size for a utility data
set allows for faster processing. However,
if the program being compiled takes up a
large amount of the available storage, a
smaller space for buffers enables the
compiler to use more main storage for
internal processing.

The following describes how the space
available for buffers is determined and how
it is allocated to buffers.

Let A represent the space that can be
allocated to these buffers. It is
determined as follows:

416

1. If neither the BUF nor the SIZE option
of the PARM parameter of the EXEC
statement is specified, A equals the
default value for buffer space. This
value is specified at system
generation time. The minimum value is
2768 bytes except when BATCH is
specified, when it is 2928 bytes.

2. If the SIZE option is specified, but
BUF is not, A equals (SIZE - 80K) / 4
plus the default value for buffer
space.

3. If BUF is specified <whether or not
SIZE is specified), A equals the value
specified for BUF.

Note: The minimum difference between
SIZE and BUF must always be equal to
or greater than the difference between
the minimum SIZE value and the minimum
BUF value (81920 bytes - 2768 bytes;
or, when BATCH is specified, 81920
bytes - 2928 bytes).

4. If BUF is smaller than 2768, or for
BATCH 2928, bytes (the minimum value),
a warning message is printed and the
minimum value is assumed. If BUF is
too large to allow minimum table space
for compilation, a warning mes~age is
printed and the default value (or the
minimum value, if the default value is
also too large) is assumed.

The programmer must make sure that the
amount of buffer space allocated by the
system is sufficient, taking into consid
eration the block sizes specified for the
compiler data sets. The allocated buffer
space is divided as follows:

1. Let B represent the amount of buffer
space to be allocated for input/output
data sets. B is computed as either
equal to:

2 times the block size of SYSPRINT +
SYSIN + SYSLIB

or

2 times the block size of SYSPRINT +
SYSPUNCH + SYSLIN

whichever is larger. The maximum
allowable value of B is A - 1280
bytes. If the computed value is
greater than the maximum allowable
value, a diagnostic message is printed
and compilation is abandoned.

If the block sizes are not
specified in the DD statements, the
following default values are assumed:

Data Set
SYSIN
SYSLIN
SYSPUNCH
SYSLIB
SYSPiUNT
SYSTERM

Default
Value_iQy~g~~

80
80
80
80

121
121

Let C represent the amount of buffer
space to be allocated for each utility
data set. Therefore, C equals the
block size of data sets, SYSUT1.
SYSUT2, SYSUT3, and SYSUT4,
respectively.

A - B
If A ~ 6B, then C

5

A
If A > 6B, then C

6

If C > maximum block size permitted
for any device a utility data set is
on, then the maximum block size is the
value chosen for C. The mini1l.um block
size for a utility data set is 255
bytes.

Appendix 0: Compiler Optimization 417

APPENDIX E: INVOCATION OF THE COBOL COMPILER AND COBOL COMPILED PROGRAMS

The COBOL compiler can be invoked bv a
problem program at execution time through
the use of the ATTACH or the LINK macro
instruction, i.e., dynamic invocation.
Dynamic invocation of COBOL compiled
programs can be accomplished through the
use of the LINK or the LOAD macro
instruction.

INVOKING THE COBOL COMPILER

The problem program must supply the
following information to the COBOL
compiler:

• The options to be specified for the
compilation

• The ddnames of the data sets to be used
during processing by the COBOL compiler

• The header to appear on each page of
the listing

r--------T---------T----------------------,
I Name I Operation I Operand I
~--------+---------+----------------------~
I [symbolll LINK I EP=IKFCBLOO, I
I I ATTACH IPARAM=(optionlist I
I I I [, ddnamelistl , I
I I I [,headerlist]),VL=l I l ________ ~ _________ ~ ______________________ J

where:

EP

PARAM

418

specifies the symbolic name of the
COBOL compiler. The entry point at
which execution is to begin is
determined by the control program
(from the library directory entry).

specifies, a~ a sublist, address
parameters to be passed from the
problem program to the COBOL compiler.
The first fullword in the address
parameter list contains the address of
the COBOL option list. The second
fullword contains the address of
ddname list. If standard ddnames are
to be used and no header list is
specified, this list may be omitted.
If standard ddnames are to be used and
a header list is specified, this entry
should contain the address of a word
of binary zeros, aligned on a
halfword. The last fullword contains
the address of the header list. This
list may be omitted.

option list
specifies the address of a variable
length list containing the COBOL
options specified for compilation.
For additional details, see the
description of the EXEC statement in
the chapter "Job Control Procedures."
This address must be written even
though no list is provided.

The option list must begin on a
halfword boundary. The two high-order
bytes contain a count of the number of
bytes in the remainder of the list.
If no options are specified, the count
must be zero. The option list is free
form with each field separated from
the next by a comma. Ho blanks or
zeros should appear in the list.

ddname list
specifies the address of a vari~ble
length list containing alternative
ddnames for the data sets used during
COBOL compiler processing. If
standard ddnames are used, this
operand may be omitted.

The ddname list must begin on a
halfword boundary. The two high-order
bytes contain a count of the number of
bytes in the remainder of the list.
Each name of less than eight bytes
must be left justified and padded with
blanks. If an alternate ddname is
omitted from the list, the standard
name will be assumed. If the n~me is
omitted within the list, the 8-byte
entry must contain binary zeros.
Names can be omitted from the end
merely by shortening the list.

The sequence of the 8-byte entries in
the ddname list is as follows:

ddname
~:.Qyte_En~IT

1
2
3
4
5
6
7
8
9

10
11
12
13

Name for
Whic~~~~~~it~te~

SYSLIN
not applicable
not applicable
SYSLIB
SYSIN
SYSPRINT
SYSPUNCH
SYSUT1
SYSUT2
SYSUT3
SYSUT4
SYSTERM
SYSUT5

header list

VL

specifies the address of a
variable-length list containing
information to be included in the
heading on each page of the listing.
The list must begin on a halfword
boundary. The two high-order bytes
should contain a count of the number
of bytes in the new heading
information; the next four bytes of
the list should contain the page
number at which the heading is to
start, in EBCDIC format.

specifies that the sign bit is to be
set to 1 in the last fullword of the
address parameter list.

When the COBOL compiler completes
processing, a return code is placed in
register 15. For additional details, see
the discussion of the COND parameter in the
chapter "Job Control Procedures."

INVOKING COBOL COMPILED PROGRAMS

Linkage editor control
specified as follows:

1. For the PROGRA}1-ID program-name, a
NAME card.

2. For each ENTRY literal-1, an ALIAS
card should be specified in a COBOL
program that is to be dynamically
invoked.

Appendix E: Invocation of the COBOL Compiler and COBOL Compiled Programs 419

APPENDIX F: SOURCE PROGRAM SIZE CONSIDERATIONS

Limitations on the size of a COBOL
source program should be considered in
relation to the capacities of both the
COBOL compiler and the various linkage
editors. This appendix contains
information to aid the programmer in
determining ho~ his source program affects
usage of space at compilation time and
linkage editing time.

COMPILER CAPACITY

The capacity of the COBOL compiler is
limited by two general conditions: (1) the
total contiguous space available must be
sufficient for compilation and (2) an
individual table may not have a length
greater than 32,161 bytes, with the
exception of the ADCON and cross-reference
tables. If either of these conditions is
not met during compilation, one of the
following error messages will be issued:

IKF0001I-D SIZE PARAMETER TOO SMALL FOR
THIS PROGRAM.

IKF0010I-D A TABLE HAS EXCEEDED THE MAXIMUM
PERMISSIBLE SIZE.

In either case, compilation is terminated.
Ho~ever, in the first case, the program may
be recompiled with a larger SIZE parameter.
The size of the ADCON and cross-reference
tables is not limited to 32,161 bytes.

If a table overflows, the following error
message will be generated, and the user
will need to rerun the program in a larger
region.

IKF6001I-D TABLE OVERFLOW. PMAP LOAD
MODULE OR DECK WILL BE
INCOMPLETE. INCREASE SIZE
PARAMETER.

Minimum Configuration SOURCE PROGRAM Size

The compiler will accept and compile a
1500 card program in the minimum machine
configuration (SOK). Within an SOK byte
environment, the user should not specify
buffer size for the compiler files. Of
course, the various reader procedures may
affect the value required for SIZE and BUF
parameters. The compiler will allocate the
minimum required amounts that are 256 bytes
for each of the 4 intermediate files, 80
bytes for each system file with the

420

exception of SYSOUT for which 120 bytes are
allocated. Double buffering will be
assumed.

within this configuration, assuming no
REPORT SECTION, the compiler will accept:

• Three hundred procedure references
assuming an average procedure-name
length of 12 characters

• Twenty-five OCCURS clauses with the
DEPENDING ON option

• Ten files assuming an average of three
subordinate record entries

• Four hundred literals assuming an
average of eight bytes

The amount of core storage within the
compiler's partition and the limitation on
the size of an individual internal table
are two factors that limit the capacity of
the compiler. The limitation on the size
of internal tables can, in some instances,
be overcome by the spilling over of some
tables onto external devices. However,
spilling over may cause a severe
degradation of performance. The core
storage limitation should not be reached by
any reasonable use of the language.
Ho~ever, within a limited storage capacity
excessive use of certain features and
combination of features in the language
could make compilation impossible. Some of
the features that significantly affect
storage usage are the following:

Each entry occupies 8 bytes. rhis
table is not limited to the maximum
size of 32,161 bytes. Entries are
based on the:

• Number of 4096-byte segments in the
Working-Storage Section

• Number of 4096-byte segments in a
file buffer area

• Number of referenced procedure-narrles

• Number of implicit procedure-name
references such as those generated
by IF, SEARCH, and GENERATE

statements, ON SIZE ERROR, INV~LID

KEY, and AT END options, the OCCURS
clause with the DEPENDING ON option,
USE sentences, and the segmentation
feature.

• Number of files

This table contains the number of
definitions written in a section and
unresolved procedure references.
Procedure references are resolved at
the end of a section if the definition
of the procedure-name is in that
section or a preceding section.
Therefore, forward references beyond a
section impact space. Approximately
900 unqualified entries are possible.
A maximum number of 16,255 entries may
be specified.

3. OCCURS DEPENDING ON Table

This table contains an entry for
each unique object of an OCCURS clause
with the DEPENDING ON option. rhe
size of an entry is 2 + length of name
+ length of each qualifier bytes.

4-. . T ndex---T-abl e--

An entry is made for each INDEXED
BY clause consisting of 11 bytes for
each index.

5. File Table

An entry is made for each file
specified in the program. Each entry
occupies 60 bytes of storage.

6. Report writer Tables

A considerable amount of
information is maintained for each RD
such as controls, sums, headings,
footings, routines to be generated,
and so on. The contents of the table
are increased by qualification and
subscripting in the Report section.
Approximately 30 reports can be
processed without exceeding the limit
of the table.

7. Dictionary-Table

An entry is made for each
procedure-name and each data-name in
the program. A procedure entry
consists of (7 or 9 + length of name)
bytes. A data entry consists of
(length of name + n) bytes, where ~ is
determined by the attributes of the
data item. Some of the features that
contribute to the value ~ are:

• One byte for each character in a
numeric edited or alphanumeric
edited item picture

• Five bytes for an elementary item
with a Sterling Report picture
clause

• Three bytes for an item subordinate
to an OCCURS clause

The total length of all literals
may not exceed 32511 bytes. No more
than 16255 literals may be specified.

9. Miscellaneous Tables

The presence of the following items
causes entries to be made into tables
that affect the total space required
for compilation.

• SAME [RECORD] ARE~ clause
• Subscripting
• Intermediate Arithmetic Results
• complex Arithmetic Expressions
• Complex Logical Expressions
• APPLY clauses
• Special-Names
• RERUN clauses

.• ---Error ___ rne5sages_
• XREF
• segmentation feature

LINK~GE EDITOR CAPACITY

Some COBOL program and linkage editor
considerations are listed below as a
further guide in preparing a source
program. Consult the publication I~M os
~!Q~~~~_Ed!~Q~_~Q~_~Q~~~~, for additional
information on linkage editor capacities
and processing.

1. All COBOL object programs, with the
exception of segmented programs,
consist of a single CSECT (control
section). The size of the object
module may be determined by looking at
the location of the last instruction
in INIT3 in the object code listing
(see the section entitled "Output") or
from the END card.

2. The size of the object module is
greatly increased by any of the
following:

a. The blocking factor and alternate
area reservation of randomly
accessed files

Appendix F: Source Program Size considerations 421

b. The specification of the SAME AREA
clause for sequentially accessed
files

3. RLD (Relocation List Dictionary) cards
are part of the load module, and are
used by the linkage editor to compute
the address constants for the load
module. The number of RLDs produced
by the compiler can be determined by
the follo~ing formula:

422

number of RLDs = number of unique
subprograms called + number of COBOL
library routines called + number of
nonresident segments

4. The output text of the compiler is
written out in a sequence that differs
from the order indicated by the
location counters contained in each
output item. This sequence difference
may result in a strain on the
facilities of the linkage editor.

5. VALUE clauses in the Working-Storage
Section may result in many
discontinuous text records.

6. The object module produced by the
COBOL compiler may not be sorted prior
to the linkage editor step.

This appendix contains a brief summary
of input/output (I/O) error conditions for
each of the file processing techniques.
More detailed information on error
conditions can be found in the following
publications:

IEM OS Supervisor and Data z..lana9:.~l!!~!lE:
Macro Instructions

IBM OS System Control Blocks

STANDARD SEQUENTIAL, DIRECT, AND RELATIVE
FILE PROCESSING TECHNIQUE (SEQUENTIAL
ACCESS>

Register 1 contains error bits
indicating the exact cause of an error.
Conditions causing input/output errors and
suggested user responses are as follows:

• 110 Eiror Coilditions:

1. Input Error

2. Output Error

3. Invalid Request <BSAM only)

§gggested User Response:

For BSAM, display the error message.
Processing of the file is limited to CLOSE.
For QSAM, display the error message and
then execute the EROPT option in the DD
statement. Note that the EROPT option
gives the user three choices:

• ACC - Accept the error block and
continue processing

• SKP - Skip to the next block.

• ABE - Terminate the job.

DIRECT AND RELATIVE FILE PROCESSING
TECHNIQUE (RANDOM ACCESS)

The DECB contains two error condition
bytes at location DECB + 4. Conditions
causing input/output errors and suggested
user responses are as follows:

APPENDIX G: INPUT/OUTPUT ERROR CONDITIONS

1. Record Not Found

2. Invalid Request

a. Requested block outside data set.

b. Attempt to add fixed-length record
with key beginning with
hexadecimal FF.

Condition caused by invalid key.
Processing of the file may be continued.

Space Not Found

Processing of the file may be continued.
CLOSE, -READ, - Or- REWRITE En:'c:ft.-emerU.S may be
executed for the file.

• I/O Error Conditions:

1. Uncorrectable I/O Error

2. Uncorrectable Error, Not I/O

Suggested User Response:

Processing of the file is limited to CLOSE,

INDEXED FILE PROCESSING TECHNIQUE
(SEQUENTIAL ACCESS)

The DCB contains two error condition
bytes named EXCD1 and EXCD2, at location
DCB + 80. Conditions causing I/O errors
and suggested user responses are as
follows:

• I/O Error Conditions:

1. Sequence Check

2. Duplicate Record

~~qqested User Response:

Condition caused by INVALID KEY.
Processing of the file may be continued.

Appendix G: Input/Output Error Conditions 423

• I/O Error conditions:

1. Space Not Found

2. Uncorrectable Output Error

3e Unreachable Block (Input)

4. Unreachable Block (Update)

Suggested User-Response:

Processing of the file is limited to CLOSE.

• I/O Error Conditions:

Uncorrectable Input Error

~~ested User Response:

The user may attempt to bypass the block
containing the error. If, in reading the
next block, the error does not recur, he
may continue processing without closing the
file. If the error persists, processing of
the file is limited to CLOSE.

INDEXED FILE PROCESSING TECHNIQUE (RANDOM
ACCESS)

The DECB contains an error condition
byte at location DECB + 24. Conditions
causing I/O errors and suggested user
responses are as follows:

• I/O Error Condition:

1. Record Not Found

2. Duplicate Record

424

Sug~sted User Response:

Condition caused by INVALID KEY.
Processing of the file may be continued.

Space Not Found

Sug~sted User Response:

Processing of the file may be continued.
The record may be written after changing
the keys and executing a WRITE statement if
a cylinder overflow area is available for
the new value of the keys. CLOSE or RE~D
may be executed for the file.

• I/O Error Condition:

Invalid Request

Processing of the file is limited to CLOSE.

1. Uncorrectable I/O Error.

2. Unreachable Block--Index Cannot Be
Read.

Suggested User Response:

Processing of the file is limited to CLOSE .
The user can try to execute the instruction
again. If the error persists, he can close
the file or perform file recovery
procedures.

APPENDIX H: CREATING AND RETRIEVING INDEXED SEQQ~~~!~_Q~!~_~~!~

Indexed data sets are created and
retrieved using special subsets of DO
statement parameters and subparameters.
They can occupy up to three different areas
of space:

• Prime Area -- This area contains data
records and related track indexes. It
exists for all indexed data sets.

• Overflow Area -- This area contains
overflow from the prime area when new
data records are added. It is
optional.

• Index Area -- This area contains master
and cylinder indexes associated with
the data set. It exists for any
indexed data set that has a prime area
occupying more than one cylinder.

Indexed data sets must reside on mass
storage volumes. Because an Indexed data
set can be associated with more than one
type of unit, it is not usually cataloged.

creating an Indexed Data Set

Indexed data sets are created with from
one to three DO statements. One of the
statements must define the prime area. If
additional areas are to be defined, the DO
statements must appear in the following
sequence:

1. Index area

2. Prime area

3. Overflow area

This order must be maintained even if one
of the statements is absent. Only the
first DO statement defining the data set
can contain a name field. Other
statements, if any, must have a blank name
field.

The subset of DD statement parameters
used to create an indexed data set excludes
the asterisk, DATA, DUMMY, DDNAME, SYSOUT,
SUBALLOC, and SPLIT parameters. The
remaining DD statement parameters -
DSNAME, UNIT, VOLUME, LABEL, DCB, DISP,
SPACE, SEP, and AFF -- are all valid.
However, certain restrictions must be
followed in using these parameters.

DSNAME: Required. In addition to giving
the data set name, the DSNAME parameter
identifies the area being defined, i.e.,
DSNAME=name(INDEX), DSNAME=name(PRIME),
and DSNAME=name(OVERFLOW).

• If the data set is temporary, name
is replaced with &&name.

• If only one DD statement is used to
define the entire data set,
DSNA~£=name(PRIME) or DSNAME=name
should be used.

UNIT: Required, unless VOLU~~=REF is used.
----The first subparameter identifies a mass

storage unit. If separate statements
for the prime and index areas are
included, request the same number of
units for the prime area as there are
volumes. The DEFER sUbparameter cannot
be specified on any of the statements.
Another way of requesting units is by

. --using __ the_unit_ aff_inity: __ s.1Jb-P9.:r;.a.:n~t~r.: , __ _
AFF.

• DD statements for prime and overflow
areas must indicate the same type of
unit.

• The DO statement for the index area
can indicate a unit type different
than the others.

~OLQ~~: Optional. Can be used to request
private volumes (PRIVATE), to retain
private volumes (RETAIN), or to make
specific volume references (SER or REF),

LABEL: Optional. Can be used to specify a
---retention period (EXPDT or RETPD) and/or

password protection (PASSWORD).

DCB: Required. Can be used to complete
the data control block if it has not
been completed by the processing
program. Either DSORG=IS or DSORG=ISU
must be included in the list of
attributes, even though this attribute
was provided in the processing program.
If more than one DO statement is usej to
define the data set, the DeB parameters
in the statements must not contain
conflicting attributes.

Appendix H: Creating and Retrieving Indexed Sequential Data Sets 425

DISE: optional. Must be coded to keep the
data set (KEEP), to catalog it (CATALG),
or to pass it to a later job step
(PASS). An indexed data set can be
cataloged using CATLG only if all three
areas are defined by the same DO
statement.

• Indexed data sets defined by more
than one DD statement can be
cataloged by using the system
utility program IEHPROGM, provided
all volumes reside on the same type
of unit. The utility program
IEHPROGM is described in the
publication IBM OS Utilities.

SPACE: Required. Space must be requested
using either the recommended nonspecific
allocation technique or the more
restricted absolute track (ABSTR)
technique. All DD statements used to
define the data set must request space
using the same technique.

If the ~E~£ifi~~ace_~llQ£~tiQ~
technique is used, space must be
requested in units of cylinders (CYL).
The quantity of space requested is
assigned to the area identified in the
DSNAME parameter. If more than one unit
is requested, this quantity of space is
allocated to each volume used by the
data set. Incremental space cannot be
requested for indexed data sets. If one
DO statement is used to define both the
index and prime areas, the size of the
index must be indicated in the SPACE
parameter of the DD statement defining
the prime area. The subparameters RLSE,
MXIG, ALX, and ROUND cannot be used.
Contiguous space can be requested on
each of the volumes occupied by the data
set with the subparameter CONTIG. If
CONTIG is coded on one of the

statements, it must be coded on all of
them.

If the absolute track technique of
allocating-space-rs-used, the number of
tracks must be equivalent to an integral
number of cylinders. The address of the
beginning track must correspond with the
first track of a cylinder other than the
first cylinder on a volume. If more
than one unit is requested, space is
allocated beginning at the specified
address and continuing through the
volume and onto the next volume until
the request has been satisfied. If one
DD statement is used to define both the
index and prime areas, indicate the size
of the index (in tracks> in the SPACE
parameter of the DD statement defining
the prime area. This number must also
be equivalent to an integral number of
cylinders.

Notes:

• The first volume to be allocated for
the prime area of an indexed data
set cannot be the volume from which
the system is loaded (the IPL
volume).

• Space can be requested on more than
one volume only on the DO statement
that defines the prime area.

SEP AND AFF: Optional. Channel separation
-~rom earlier data sets can be requested

on any of the DD statements in the
group. In order to have areas of an
indexed data set written using separate
channels, units should be requested by
their actual address (e.g., UNIr=190).

Figure 120 illustrates a valid set of DD
statements for creating an indexed data
set. Note that each area is defined by a
separate DD statement.

r---,
1//OUTPUT4 DO DSNAME=MHB(INDEX),UNIT=2301,DCB=DSORG=IS, X 1
1// SPACE=(CYL,10"CONTIG),DISP=(,KEEP) I
1 1
1// DD DSNAME=MHB(PRIME),DCB=OSORG=IS,UNIT=(2311,2), X I
1// VOLUME=SER=(334,335),DISP=(,KEEP), X 1
1// SPACE=CCYL,25"CONTIG) 1
1 1
1// DD DSNAME=MHB(OVFLOW),DCB=DSORG=IS,UNIT=2311, X 1
1// VOLUME=SER=336,SPACE=(CYL,25"CONTIG),DISP=(,KEEP) 1 L ___ J

Figure 120. Creating an Indexed Data Set

426

Table 41. Area Arrangement for Indexed Data Sets
r--T----------------------T---------------------,
I CRITERIA I Restrictions on I I
~---------------T---------------T----------~ unit Types and I Resulting I
I Number of I Types of IIndex Sizel Number of Units I Arrangement I
I DD Statements I DD Statements I Coded? I Requested I of Areas I
~---------------+---------------+----------+----------------------+---.------------------~
! 3 I INDEX I \PRIME and OVFLOW ISeparate index. I
I I PRIME I Imust specify the same I prime, and overflow I
I I OVFLOW I lunit type. lareas. I
~---------------+---------------+----------+----------------------+---------------------~
I 2 I INDEX I I None ISeparate prime and I
I I PRIME I I I overf low areas, wi th ,

Ian index at the end
I I I I lof the prime area. I
~---------------+---------------+----------+----------------------+-.--------------------~
i 2 I PRIME I No IBoth statements must IPrime area and aver- I
I I OVFLOW I Ispecify the same type Iflow area with an I
I I I lof unit. I index at its end. I
~---------------+---------------+----------+----------------------+---------------------1
I 2 I PRIME I Yes IBoth statements must IPrime area with em- I
I I OVFLOW I Ispecify the same unit Ibedded index and I
I I I I type. The statement loverflow area. I
I I I I defining the prime I I
I I I I area cannot request I I
I I I I more than one unit. I I
~---------------+---------------+----------+----------------------+---------------------1
I 2 I PRIME I No I None IPrime area with indexl
I I I I I at its end. Unused I
I I I I I index areas, if any I I
I I I I lused for overflow. I
~---------------+---------------~----------+----------------------+---------------------~ r 1 1 PRIME I Yes l-CcfnllCfE recrue-sE lPrirrre-ar-ea--~ti-th r------ ---
I I I Imore than one unit. lembedded index area. I L _______________ ~ _______________ ~ __________ ~ ______________________ i _____________________ J

The manner in which the areas of an
indexed data set are arranged is based
primarily on two criteria:

• The number of DD statements used to
define the data set.

• The types of DD statements used (as
reflected in the DSNAME parameter).

An additional criterion arises when a DD
statement is not included for the index
area:

• The index size and whether or not it
has been coded in the SPACE parameter
of the DD statement defining the prime
area.

Table 41 illustrates the arrangements
resulting from various permutations of the
foregoing criteria. In addition, it points
out restrictions on the number and type of
units that can be requested for each
permutation.

Indexed data sets are retrieved with the
DD statement parameters DSNAME, UNIT,
VOLUME, DCB, and DISP. Channel separation
requests can be made using the SEP and AFF
parameters. If all areas of the data set
reside on the same type of unit, the entire
data set can be retrieved with one DD
statement. If the index resides on a
different type of unit, two DD statements
must be used.

Q~~~~~: Required. Identify the data set
by its name. If it was passed from a
previous step, identify it by a backwarj
reference or its temporary name. Do not
include the terms INDEX, PRIHE, or
OVFLOW.

UN;!: Required, unless the data set was
passed on one volume~ Identify the unit
type. If the data set resides on more
than one volume and all units are the
same type, request the total number of
units required by all areas. If the
index area resides on a different type
of unit, use two DD statements, each

Appendix H: Creating and Retrieving Indexed sequential Data Sets 427

indicating the number of units of the
specified type required.

VOLUME: Required, unless the data set was
passed on one volume. Identify the
volumes by their serial numbers (SER),
listed in the same sequence as they were
when the data set w'as created.

DCB; Required, unless the data set was
passed. This parameter is used to
complete the data control block if it

was not completed in the program.
Include either DSORG=IS or DSORG=ISU.

~I§~: Required. Identify the data set as
OLD or MOD and give its new disposition.
to change its disposition.

Figure 121 shows how to retrieve the
indexed data set created by the
illustration in Figure 120.

r---,
I I
I//INPUT DO DSNAME=MHB,DCB=DSORG=IS,UNIT=2301,DISP=OLD I
1// DO DSNAME=MHB,DCB=DSORG=IS,UNIT=(2311,3),DISP=OLD, X I
1// VOLUME=SER=(334,335,336) I
1 I l ___ J

Figure 121. Retrieving an Indexed Data Set

428

This checklist illustrates general job
control procedures for compiler, linkage
editor, and execution processing. More
than one example may be used for a job
step. The checklist is intended as an aid
to preparing procedures, not as an
inclusive list of the options and
______ .L.. __ _

pc:u .. Qlllot:: l..ot::.L.".

COMPILATION

Figure 122 shows a general job control
procedure for a compilation job step. The
following cases demonstrate how to add to
or modify the general procedure to obtain
various processing options.

Case 1: Compilation Only -~ No Objg£t
Module Is to Be Produced

The general procedure should be used. A
listing is produced. It will include the
-defaul-t----or-- specified-options----o£---the-PARM----
parameter that affect output. Any
diagnostic messages are listed, unless
listing of warning messages is suppressed
by the FLAGE option of the PARM parameter
and only warning messages are produced.

Case-2: Source Module from Card Reader

Modify the end of the procedure as
follows:

IISYSIN DD *
(source module)

1*

If the DD * convention is used, the
SYSIN DD statement must be the last DD
statement for the job step, and the source
module must follow. If another job step
follows the compilation, the EXEC statement
for that step follows the 1* statenent.

Case 3: Object Module Is to Be Punched

Add LIe statement:

IISYSPUNCH DD SYSOUT=B

Note: If DECK is not the installation
default condition, it must be specified in
the PARM parameter of the EXEC statement.

Add the statement:

//SYSLIN
II
II
II

DD DSNAME=(subparms),
UNIT=SYSDA,
SPACE=(subparms),
DISP=(MOD,PASS)

Note: If LOAD is not the installation
default condition, it must be specified in
the PARM parameter of the EXEC statement.

X
X
X

r---,
i !
Illjobname JOB acctno, name, MSGLEVEL=l I
Illstepname EXEC PGM=IKFCBLOO,PARM=(options) I
IIISYSUT1 DD UNIT=SYSDA,SPACE=(subparms) I
IIISYSUT2 DD UNIT=SYSDA,SPACE=(subparms) I
IIISYSUT3 DD UNIT=SYSDA,SPACE=(subparms) I
IIISYSUT4 DD UNIT=SYSDA,SPACE=(subparms) I
IIISYSPRINT DD SYSOUT=A I
jllSYSIN DD DSNAYill=dsname,UNIT=SYSSQ,VOLUME=(subparms), X !
1// DISP=(OLD,DELETE) I
I I L ___ J

Figure 122. General Job Control Procedure for Compilation

Appendix I: Checklist for Job Control Procedures 429

Case 5: Object Module Is to Be Saved

The object module can be saved by
cataloging it, by keeping it, or by adding
it as a member of a library. Add the
SYSLIN statement as shown in examples A, B,
or C.

• A. Cataloging

//SYSLIN DO DSNAME=dsname,
NEW

//

//
//

//

//

• B. Keeping

DISP=(,CATLG) ,
MOD

VOLUME=(subparms),
LABEL=(subparms),

SYSDA
UNIT=

SYSSQ

SPACE
SPLIT =(subparms)
SUBALLOC

//SYSLIN DO DSNAME=dsname,
NEW

//

//
//

II

//

DISP=(,KEEP) ,
MOD

VOLUME=(subparms),
LABEL=(subparms),

SYSDA
UNIT=

SYSSQ

SPACE
SPLIT =(subparms)
SUBALLOC

• C. Adding a Member to an Existing
Library

//SYSLIN DD DSNM1E=dsname(member) ,
// DISP=OLD

Add the SYSLIB DD card(s), as shown in
examples A, B, or C.

A. COpy

//SYSLIB DD DSNA~ili=copylibname,DISP=SHR

B. BASIS Card

IISYSLIB DD DSNAME=basislibname,DISP=SHR

430

x

x

x
X

X

X

X

X
X

x

X

C. Both BASIS and COpy

//SYSLIB DO DSNAME=basislibname,OISP=SHR

/1 DO DSNAME=copylibname,DISP=SHR

(DO statements for additional copylibs may
tollow.)

LINKAGE EDITOR

Figure 123 shows a general job control
procedure for a linkage editor job step.
The following cases show how to add to or
modify the procedure to obtain various
processing options.

Case 1: Input from Previous Compi!~~!Qg in
~~!!!~-~QQ

Change the SYSLIN statement to

I/SYSLIN DD DSNAME=*.stepname.SYSLIN,
// DISP=(OLD, DELETE)

where stepname is the name of the previous
compilation job step and ddname is SYSLIN.
If the input is to be saved, specify KEEP
rather than DELETE.

Case 2: Input from Card Reader

Change SYSLIN statement and the end of
the procedure as follows:

IISYSLIN DO *
(object module(s»

1*

If the DO * convention is used, the
SYSLIN DD statement must be the last DD
statement in the job step. If another job
step follows the link-edit step, the EXEC
statement for that job step follows the 1*
statement.

x

Specify in the SYSLIN DO statement where
the object modules to be used as input are
stored. (Only one member of a library can
be specified in the SYSLIN DO statement.)

r---,
Illjobname JOB acctno,name,MSGLEVEL=l I
I I
I I
I I
I Iistepname EXEC PG11=IEWL. PARM= (options) I
\IISYSPRINT DD SYSOUT=A \
IIISYSLMOD DD DSNAME=&&name(member) ,UNIT=SYSDA,DISP=(NEW, PASS) , X I
III SPACE=(subparms) I
IIISYSLIB DD DSNAME=SYS1.COBLIB,DISP=OLD I
IIISYSUT1 DD UNIT=SYSDA,SPACE=(subparms) I
IIISYSLIN DD DSNAME=dsname,DISP=OLD I l ___ J

Figure 123. General Job Control Procedure for a Linkage Editor Job step

Case 4: Output to Be Placed in Link
Library

Change the SYSLMOD statement as follows:

IISYSLMOD
II

DD DSNAME=SYS1.LINKLIB(member),X
DISP=OLD

where member is the name of the load module
that is to be added to the link library.
No other information is needed in the
statement.

Case 5: Output to Be Placed in Private
Library

Change the SYSLMOD statement as follows:

IISYSLMOD DD DSN~~E=dsname(member)! X
II DISP=OLD

where member is the name of the load module
to be added, and dsname is the name of an
existing library. If the library is not
cataloged, UNIT and VOLUME parameters must
be specified.

Note: See "Using the DD Statement" for
example of creating a new library and
storing the load module as its first
member.

Case 6: output to Be Used Only in this

The general procedure should be used.
The load module is stored in a temporary
library.

an

Job

EXECUTION TIME

Figure 124 shows a general job control
procedure for an execution-time job step.
The following cases show how to add to or
modify the general procedure to obtain
various processing options.

Case 1: Load Module to Be Executed Is in
Link Library

Use the general procedure, where
progname in the EXEC statement is the
member name of the load module.

Case 2: Load Module to Be Executed Is a
Member of Private Library

The JOBLIB statement must follow the Joa
statement, as in the following statements:

IIJOB1 JOB
IIJOBLIB DD DSNAME=MYLIB, X
II DISP=(OLD,PASS)
IISTEP1 EXEC PGM=PAYROLL

IISTEP2 EXEC PGM=ACCOUNl'

Appendix I: Checklist for Job Control Procedures 431

r---1
I//stepname EXEC PGM=progname I
!//ddname DO (parameters for user-specified data sets) I
I I
I !
! I L ___ J

Figure 124. General Job Control Procedure for an Execution-rime Job Step

The JOBLIB statement defines the private
library MYLIB. No volume or unit
parameters are given since the library is
cataloged. Since JOBLIB has the
disposition PASS, both steps can execute
members of the library named in the JOB LIB
statement. If only the first step executes
a load module from the library, the
disposition PASS on the JOBLIB statement
need not be included.

Case 3: Load Module to Be Executed Is
Created in Previous Linka~ £~iiQ~_~t~~_i~
§~mg-~QQ

Change the EXEC statement as follows:

//stepname EXEC PGM=*.stepname.SYSLMOO

where stepname following PGM is the name of
the linkage editor job step that created
the load module.

Case 4: Abnormal Termination OumQ

Add the statement:

//SYSABEND DO SYSOUT=A

This statement requests a full dump if
abnormal termination occurs during
execution.

Case 5: DISPLAY Is Included in Source
Mo~~le

Add the statement:

//SYSOUT DD SYSOUT=A

432

Ca~~_~~~SP~~x UPQ~SYSPQ~£~Is_~~£!~~ed
in Source Module

Add the statement:

//SYSPUNCH DO SYSOUT=B

Case 7: ACCEPT Is Included in Source
MO~~!~

If the data is in the input stream, add
the statement:

//SYSIN DD *
(data)

/*

<See Case 2 under "General Job Control
Procedures for a Compilation Job Step" for
a discussion of the DD * convention.)

Use the statement (unless it is already
included):

//SYSOUT DO SYSQUT=A

Not~: If the job step already includes a
SYSOUT DO statement for some other use,
another need not be inserted.

Case 9: Object Time SymbQli£_Q~Q~~~i~~
OptiQ~~

//SYSOBOUT DO SYSOUT=A required for all
options

//SYSDBG OD * required for SYMDMP
option

(control cards)
/*

debug DDnarne card also needed

In this appendix, each field of the Task
Global Table (Figure 125) and of the
Program Global Table (Figure 126) is listed
by its relative location in main storage.
Each field is further described in the
discussion associated with Figures 125 and
126.

TASK GLOBAL TABLE

The Task Global Table (TGT) is used to
record and save information needed during
execution of the object program. It begins
with a series of fixed-length fields
followed by a series of variable-length
fields. These fields are illustrated in
Figure 125 and are described in this
section.

Appendix J: Fields of the Global Table 433

Relative
Location

0

72

76

80

84

88

92

94

96

400

404

408

412

416

420

422

423

424

428

432

436

440

444

452

453

472

476

480

484

489

492

Figure 125.

434

Field
r-----------------------------,
ISAVE AREA I
~-----------------------------~
I SWITCH I
~-----------------------------~
I TALLY i
~-----------------------------~
ISORT SAVE I
~-----------------------------~
IENTRY SAVE I
~-----------------------------~
ISORT CORE SIZE I
~-----------------------------~
IRET CODE I
~-----------------------------~
ISORT RET I
~-----------------------------~
IWORKING CELLS I
~-----------------------------~
ISORT FILE SIZE I
~-----------------------------~
ISORT MODE SIZE I
~-----------------------------~
IPGT-VN TABLE I
~-----------------------------~
ITGT-VN TABLE I
~-----------------------------~
IVCON PTR I
~-----------------------------~
ILENGTH OF VN TBL I
~-----------------------------~
ILABEL RET I
~-----------------------------~
ICURRENT PRIORITY I
~-----------------------------~
IDBG R14SAVE I
~-----------------------------~
IANSC I
~-----------------------------~
IA(INIT1) I
~-----------------------------~
IDEBUG TABLE PTR I
~-----------------------------~
ISUBCOM PTR I
~-----------------------------~
ISORT DDNAME I
~-----------------------------~
ISYSTDD I
~-----------------------------~
I Unused I
~-----------------------------~
IDBG R11SAVE I
~-----------------------------~
I Unused I
~-----------------------------~
IPRB1 CELL PTR I
~-----------------------------~
I Unused I
~-----------------------------~
ITA LENGTH I
~-----------------------------~
I Unused I L _____________________________ J

Fields of the Task Global
Table (Part 1 of 2)

Relative
Location

500
beginning
of
variable
length
portion

Figure 125.

Field
r-----------------------------1
I OVERFLOW
t-----------------------------,
IBL I
~-----------------------------,
IDECABDR I
~-----------------------------1
ITEMP STORAGE I
~-----------------------------1
ITEMP STORAGE-2 I
~-----------------------------~
ITEMP STORAGE-3 I
~-----------------------------~
ITEMP STORAGE-4 I
~-----------------------------~
IBLL I
~-----------------------------~
IVLC I
~-----------------------------~
ISBL I
~-----------------------------~
lIND I
~-----------------------------~
ISUBADR I
~-----------------------------~
IONCTL I
~-----------------------------~
IPFMCTL I
~-----------------------------~
IPFMSAV I
~-----------------------------~
IVN I
~-----------------------------~
ISAVE AREA-2 I
~-----------------------------~
ISAVE AREA-3 I
~-----------------------------~
IXSASW I
~-----------------------------~
IXSA I
~-----------------------------~
IPARAM I
~-----------------------------~
IRPTSAV AREA I
~-----------------------------~
ICHECKPT CTR I
~-----------------------------~
IVCON TBL I
~-----------------------------~
IDEBUG TABLE I L _____________________________ J

Fields of the Task Global
Table (Part 2 of 2)

The lengths of the variable-length
fields are determined by the requirements
of the program Cif not required, a
particular field may not exist in the
object program).

SAVE AREA
the program's save area; used to
provide standard subroutine linkage
when this program is called (by the
Operating System or by another
program) and when this program calls
,...+-ho,... n",,"",...,...::>mc
- - t'~-'"'::J .. - ... " .. ~.

SWITCH
a fullword switch. Only the following
bits are used:

Bit
-0-

1

2

Meaning
Indicates a size error in

series addition or
subtraction. If a SIZE
ERROR clause was included in
the source statement, and a
size error occurs before all
data items in the series
have been added or
subtracted, this bit is set
to 1. It is tested after
the entire audition or
subtraction is complete. If
the value is 1, the
instructions generated for
the ON SIZE ERROR clause are
executed.

Used for TPACE. It is set to
1 by the execution of a
READY statement, and reset
to 0 by a RESET statement.
If the program uses a TRACE
statement, there are
instructions to test this
bit at the point of
defini~ion for every source
program procedure-name (PN).
If it is on, the DISPLAY
subroutine (ILBODSPO) is
called to print the card
number of the procedure
name. <See "Appendix B:
COBOL Library Subroutines"
for a description of the
DISPLAY subroutine.>

Indicates program initiali
zation. Set to 1 by routine
INIT3 to show that
initialization has been
performed. Tested by INIT3
so that if the module is
re-entered, INIT3 can per
form re-entry functions
instead of initialization
functions.

3

4

5

6

7

8

Main or subprogram switch.
Set by INIT2 if this is a
main program.

Used for SYMDMP. It is set
to 1 if the symbolic debug
option is in effect for the
program. This bit is tested
by the object-time COBOL
library debugging control
subroutine ILBODBGO.

Used for FLOvl.
if the flow trace option is
in effect for the program.
This bit is tested by the
object-time COBOL library
debugging control subroutine
ILBODBGO.

Used for STATE. It is set to
1 if the statement number
option is in effect for the
program. This bit is tested
by the object-time COBOL
library debugging control
subroutine ILBODBGO.

Used for OPT. It is set to 1
if optimization has been
requested for the program or
if the SYMDM-P or STA.T-E and.
OPT, or FLOW and OPT options
have been specified.

Used for IF MESSAGE or the
OVERFLOW option of the
STRING or UNSTRING verb. It
is set to 1 when the MESSAGE
condition being tested is
true or if an overflow
condition occurs in the
execution of STRING or
UNSTRING. It is tested by
the generated code.

9 Used for CALL, CANCEL, or a
recursive CALL. It is set
to 1 by the generated code
for the CALL or CANCEL verb.
It is tested by INIr2 to
determine whether a
recursive CALL condition
exists.

10-11 Unused

12

13

Used for QUOTE IS APOST. It
is set to 1 if the
apostrophe is to be used to
delineate literals and to be
used in the generation of
figurative constants.

Used for SYMDMP. It is set to
1 if when SYMDMP is
requested the program

Appendix J: Fields of the Global Table 435

contains a floating-point
item.

14 Always set to 1.

15 Indicates maximum length for a
variable-length field.
Before the execution of a
Q-Routine, this bit is set
to 1 if the VLC and SBL for
the field are to be set to
their maximum possible
values, rather than a value
depending on the current
value of a data item. The
maximum value is the value
of X in the clause "OCCURS X
TIMES DEPENDING ON ••• ".

16 SRVBIT set on if ILBOLOM is
link-edited with program.

24-31 DECIMAL-POINT IS CO~MA clause
byte. If this clause was
specified, the byte contains
a comma in EBCDIC. If not,
it contains a decimal point.

TALLY
a fullword used for source program
references to the special register
TALLY.

SORT SAVE
a fullword used during the execution
of a SORT RETURN statement to contain
the GN for the next sequential
instruction following the RETURN.

ENTRY SAVE
a fullword used to save the entry
point of the program during INIT2 and
INIT3 execution.

SORT CORE SIZE
a fullword for the SORT-CORE-SIZE
special register as used in the source
program.

RET CODE
a halfword for the RETURN-CODE special
register, which is used in the source
program to provide a completion code
on a STOP RUN, EXIT PROGRAM, or GOBACK
statement, or to store the return code
from a called program. It is the
user's responsibility to set this
code.

SORT RET
a halfword used to contain the return
code from a SORT operation.

WORKING CELLS

436

variable-length cells used by COBOL
library subroutines called by the
program. The total length of the
field is 304 bytes.

SORT FILE SIZE
a fullword for the SORT-FILE-SIZE
special register as used in the source
program.

SORT MODE SIZE
a fullword for the SORT-MODE-SIZE
special register as used in the source
program.

PGT-VN TBL
a fullword pointer to that part of the
VN field of the PGT containing VN's
for independent segments.

TGT-VN TBL
a fullword pOinter to that part of the
VN field of the TGT containing VN's
for independent segments.

VCON PTR
pOinter to the VCON TBL field of the
TGT. This is'required because the
VCON TBL field is variably located,
and the VCON PTR is fixed within the
TGT.

LENGTH OF INO VN TBL
a halfword containing the length of .
that part of the VN field (the length
is the same for both the TGT and PGT)
containing VN's for the independent
segments.

LABEL RET
the LABEL-RETURN special register for
nonstandard labels. If an error
occurs in such a label, it is the
user's responsibility to place a
nonzero value into this i-byte cell.

CURRENT PRIORITY
if the STATE compiler option is
specified for a segmented program, the
segmentation subroutine ILBOS3MO
inserts the priority of the segment
currently in the transient area. This
field is initialized to zero.

DBG R14SAVE

ANSC

indicates the contents of register 14.
A routine of the debug control
subroutine ILBODBGO is called to save
this information before the execution
of any instruction that passes control
outside the COBOL program.

identifies the object program as an
American National Standard COBOL
program.

INITl ADCON
address of INITl used for GOBACK, STOP
RUN, and EXIT PROGRAM instructions,
and for segmentation cOding.

TGTTAB PTR
if the FLOW SYMDMP or STATE compiler
options are specified, this field
points to the TGTTAB.

SUBCOM PTR
a pointer to the subroutine
communications (SUBCOM) area in the
COBOL subroutine library.

SORT DDNAlV1E
___ ..: _J... 1.-.. __ .L.. _ ____ .c __ .J...\...._

au OC.J..~Ul..-uyl..C: a.Loca .LV.L 1..1lOC

SORT-MESSAGE special register, which
is used in the source program to allow
the user to specify to the Sort/Merge
program where to place the messages it
issues.

SYSTDD
DBG RllSAVE

indicates the contents of register 11.
When the dynamic dumping routine of
the debug control subroutine ILBODBGO
receives control, it places the return
address to the in-line code of the
calling program in register 11.
Therefore, the contents of register 11
must be saved.

PRBLl CELL PTR
a fullword cell con-ta-ining the address
of the first PROCEDURE BLOCK cell in
the PGT.

TA LENGTH
a halfword initialized to the length
of the largest segment with a nonzero
priority_

OVERFLOW

BL

if the TGT is longer than 4096 bytes,
this field contains one fullword cell
pointing to each 4096-byte area after
the first. The cell is loaded into a
register when a base is required for
the overflow area.

base locators. Each BL cell is a
fullword containing an address in the
data area. There is one BL pointing
to the beginning of the Working
Storage Section and one for each file
in the File Section. More than one BL
is assigned if an area is larger than
4096 bytes.

DECBADR
DECB addresses. There is one fullword
cell pOinting to the address of the
DECB for each basic file.

TEMP STORAGE
temporary storage for arithmetic
operations. TS space is allocated in
doubleword blocks.

TEMP STORAGE-2
temporary storage for nonarithmetic
instructions. These cells are
variable in length.

TEMP STORAGE-3
temporary storage used to align fields
of data described by the SYNCdRO~IZED
option. The field begins on a
double word boundary.

TEHP STORAGE-4

BLL

VLC

SBL

IND

temporary storage cells used for the
SEARC}I ALL table=handling verb. ~11t
field starts on a doubleword bounjary.

base locators for the Linkage Section.
Each BLL cell is a fullword containing
the address of an area passed as a
result of an ENTRY statement, a label
record, a totaled area, a sort
description entry, or a GIVING option
in a USE ••• ERROR statement.

variable-length cells. Each VL2 is a
halfword whose value is set by the
execution of a Q-Routine. It contains
the current length of a variable
length field. There is one VLC for
each OCCURS •• eDEPENDING ON clause and
all it-ems to which it is subordinate.

secondary base locators. Each SBL
cell is a fullword set by the
execution of a Q-Routine. It contains
the current address of a field which
is variably located because it followo
a variable-length field.

fullword cells, each containing the
current value of an INDEX-~AME. There
is one IND cell for each INDEX-NAME
defined in a file.

SUBADR

ONCTL

subscript addresses. Each SUB~DR cell
is a fullword containing the address
for a subscripted reference.

control counters for ON statenents.
Each is
zero.

a fullword initialize~ .L.~
l..V

PFMCTL
PERFORM control counters and DEBUG
saved location. Each PFMCTL cell is a
fullword used for a PERFORM n TIMES
statement to count the number of times
the procedure has been performej. For
DEBUG, a PE'MCTL cell is used to save
the contents of register 14 when the
DEBUG packet is entered. DEBUG
packets are called by BALR 14,15.

Appendix J: Fields of the Global Table 437

PFMSAV

VN

PERFORM saved locations. Each is a
fullword used to contain an address.
For PERFORM, the cell is used to store
the address of the next sequential
instruction after the performed
procedure, when that procedure is
being executed because of a PERFORM.
This is to enable the procedure to be
executed in-line.

variable procedure-names. Each VN
cell is a fullword containing the
current address of a branch point
which may change during program
execution because of an ALTER or
PERFORM statement.

SAVE AREA-2
pointer to the save area provided for
label- and error-processing
declaratives.

SAVE AREA-3
variable number of fullwords used for
OPEN parameters.

XSASW

XSA

i-byte EXHIBIT switches. These are
used as first-time switches for the
coding generated for the EXHIBIT
CHANGED statement. They are also used
in certain types of SORT statements
and ON statements.

EXHIBIT saved area cells. These are
variable in length and are referred to
in the coding generated for an EXHIBIT
CHANGED statement. There is one XSA
for each operand to be exhibited with
a CHANGED option. These cells are
also used for SORT and RELEASE verbs.

PARAM
parameter area of fullwords,
containing parameter lists for macro
instruction expansions of certain
source statements. The size of the
parameter area equals the largest
number of words required for anyone
expansion.

RPTSAV
six words used to save branch
addresses during the execution of
Report Writer routines, if the Report
Writer is used.

CHECKPT CTR
fullword cells used to count the
number of file records processed for a
file for which checkpoints are to be
taken.

VCON TBL
8-byte V-type address constants for

438

nonresident segments. The format of
each entry is:

~y!:~
o
1-3
4-7

DEBUG TABLE

Contents
PrIorIty number
o
veON to independent segment

table used by the flow trace and
statement number and symbolic debug
COBOL library subroutines. The for~at
depends on the options specified.

• If the FLOW compiler option is
specified:

~Y!:~i~~ £Q~!:~~!:~
o Number of traces requested
1-3 Unused

• If the STATE option is specified:

4-7

8-11

12-15

16-19

Contents
Start-of Q-Routines, or if
none, start of INIT2.
Size of Declaratives (not
including Report Writer)
Section.
Starting address of PROCTAB
in object module.
Starting address of SE3INDX
in object module.
Ending address of SEGI~DX
in object ffiodule.

• If both the FLOW and STATE compiler
options are specifieJ:

~y£e(sL Contents
o Number of traces requested
1-19 The same as shown above for

the STATE option.

• If the SYMDMP option is specified:

Byte(s) contents
0-3 Start of Q-Routines, or if

none, start of INIT2.
4-5 Hashed compilation indicator.

• If both the SYMDMP and FLOW options
are specified:

~te(s) Contents
o Number of traces requested.
1-5 The same as shown above for

the SYMDMP option.

The Program Global Table <PGT) contains
data referenced by procedure instructions.
All the fields in the PGT are variable in
length. PGT data is never modified by

procedure instructions; rather, it remains
constant throughout program execution.

The fields in the PGT are illustrated in
Figure 126 and described in the text below.

r---,
jDEBUG LINKAGE AREA I
~---~
lOVERFLOW I
r---~
I VIRTUAL I
r----------~~~~~~~~-----------------------~
IVIRTUAL EBCDIC NAMES I
r---~
IPN I
~---~
IGN I
r---~
I DCBADR I
r---~
lVNI I
r---~
lLITERAL I
t---~
I DISPLAY LITERAL I
~---~
IPROCEDURE BLOCK I L ___ J

Figure 126. Fields of the Program Global
Table

DEBUG LINKAGE AREA
a 12-byte area that contains the
linkage for dynamic 1umps. If the
SYMDMP option is not specified, this
area does not exist.

OVERFLOW
if the entire PGT exceeds 4096 bytes
in length, there is one fullword
OVERFLOW cell pointing to each
4096-byte section after the first.
The cell is loaded into a register
when a base is neede1 to refer to the
section of the PGT.

VIRTUAL
each virtual is a full word containing
the address of an external procedure
(the result of an ESD and RLD in the
object module) unless either the DYNAM
or the RESIDENT option is in effect.
If either of these options is in
effect, the virtuals corresponding to
library subroutines are written as
EBCDIC'I 00 00 00';1 in addition, if
the DYNAM option is in effect, the
virtuals corresponding to user
subprograms contain the relative
displacement of the subprogram name
from the beginning of the PGT. It is
required because of a CALL statement
in the source program or a branch to a
COBOL library object-time subroutine.

VIRTUAL EBCDIC NAMES

PN

GN

indicates the EBCDIC names of library
subroutines and user sUbprograms. If
either the DYNAM or the RESIDENT
option is in effect, the cBCDIC names
of all liorary subroutines that are to
be dynamically loaded are listed; in
addition. if DYNAM is in effect, the
EBCDIC names of all user subprJgrams
that are to be dynamically called are
listed. Each VIRTUAL EBCDIC NAME cell
is a double~ord containing the name or
the subroutine or subprogram, left
justified and padded with blanks if
necessary. If neither DYNAM nor
RESIDENT is in effect, this field does
not exist.

source program procedure-names. When
the OPT option is in effect, only
those PN's associated with ALTER and
declaratives references receive PN
cells. Each PN cell is a fullword
containing the address of the first
instruction in a block of coding. The
addresses of the PN'S are in the same
order as their definition in the
source program. The program branches
by loading an address from the PGT and
th-en branchi~ t.o it.

compiler-generated procedure-names.
When the OPT is in effect, only those
GN's associated with AT END and
INVALID KEY references receive 3N
cells. Each GN is a fullword
containing the address of the first
instruction in a block of coding.
GN's are used in the same way as PN's.
They were generated to provide
addresses for branches implied but not
stated in the source program. They
are stored in the PGT in the order in
which they were generated.

DCBADR

VNI

DCB addresses. Each DCBADR cell is a
fullwor1 containing the address of a
data control block in the data area of
the program. There is one DCB~DR cell
for each DCB generated.

variable procedure-name initialization
cells. There is one fullword VN cell
for each variable procedure-name in
the program. It contains the initial
value of the VN; and is used to
initialize the VN values in the TGT.
VN's are generated to contain branch
addresses which vary because of
PERFORM or ALTER statements.

Appendix J: Fields of the Global Table 439

LITERAL
literals referred to by procedure
instructions. The literals are
variable in length. There is no
duplication in storage, since
duplicate literals were eliminated.

DISPLAY LITERAL

440

literals used by calling sequences
rather than instructions. They are
variable in length; duplication was

eliminated. each cell is a fullword
containing the address of a procedure
block. The compiler assigns these
cells only when the opr option is in
effect.

PROCEDURE BLOCK
each cell is a fullword containing the
address of a procedure block. rhe
compiler assigns these cells only when
the OPTIMIZE option is in effect.

INDEX

(Where more than one page reference is given. the major reference appears first.)

&&name subparameter 50,47,122
*.ddname subparameter 50,47,122
*.procstep subparameter 50 i 47 i 122
*.stepname subparameter 50,47,122
/*statement

description 18,61
under MVT 292

//* 61,49,20,21

A, as a device class 18,27,58
ABDUMP (see dumps)
abnormal termination

causes 190-196
for COBOL files 134-137
completion code 193-196
COlm parameter 32-34
dump

of data sets 60
definition 190
example 199-201
finailliJ records in 202-214
how to use 196-202
including problem program storage
area 60

including system nucleus 60
requesting 70
using 190
with spanned records 204-205

errors causing 191-195
EVEN subparameter 35-36
incomplete 204-205
INVALID KEY clause 135-137
ONLY subparameter 35-36

restarting a job 26-28
restarting a job step 42-43
resubmitting a job 26
size errors causing 420
USE AFTER ERROR declarative 135-137

ABSTR suoparameter
description 52
in QISAM 114,426

ACCEPT statement, relationship to SYSIN DD
statement 70

ACCEPT subroutine 395-396
accessing

a direct file
randomly 87-88,89
sequentially 87,89

an indexed file
randomly 119-121
sequentially 113-119

queue structures
queue Analyzer routine 248,249
RECEIVE statement 248,249
sample message retrieval options 248
SYMBOLIC QUEUE field 248

a relative file
randomly 100,102-103
sequentially 102

a standard sequential file 74-79
accounting information

EXEC statement 32,17
JOB statement 24,17

ACCT parameter 24
actual key 73,83-84

(see also ACTUAL KEY clause)
ACTUAL KEY clause

(see also actual key)
in BDAM 73,81-84,86-90
in BSAM 73,81,84-85,87
in file processing techniques 411,412
randomizing techniques 90-95

division/remainder method 91-95
indirect addressing 90-91
synonym overflow 90-91

ADCON table 420
address constant table 420
AFF parameter 51,47
ALIAS statement 266
allE>€-atinS fr-,a-s-s st-o-rage space

-""-SPACE parameter ::>2,53
SPLIT parameter 54
SUBALLOC parameter 54

allocation messages 173,175,182-184
ALX subparameter 53
APOST option 36
APPLY CORE-INDEX clause 220!121
APPLY RECORD-OVERFLOW clause 220
APPLY WRITE-ONLY clause 148,1~Of220

arguments
data-name passed as 257-259
file-name passed as 257,258
procedure-name passed as 257,258

arithmetic subroutines 395-397
ASCII file

block prefix 80,79
creating 79
description 79-81
error processing 81
label processing 80,143
numeric data items 81
opened as input 80
opened as output 80
sort for 307-308

assemnler language
programs, linkage to 257-259,270
using EXEC statement 34

ASSIGN clause
for ASCII file 79
in BDAM 72,96,108
in BSAM 72.108,96
in QSAM 75
relationship to DD statement 72
in Sort feature 302

assigning values to index names 241-~44

Ina.ex 441

A~TACH macro instruction 418
automatic call library 283,68
automatic restart

(see also Checkpoint/Restart)
at beginning of job step

EXEC statement 40-43
JOB statement 25-26

within a job step 329-330
automatic volume switching 88-89
average record-length subparameter

for SPACE 52
for SPLIT 54

B, as a device class
base and displacement
BASIS card

18,59
176

in a debug packet 190
use of 283-286,430

batch compilation 62-63
BATCH option 62,39,41
BCD 138-139
BDj....M

data sets 124
DD statement parameters 99,109
defining a data set in 74
definition 73
direct organization 83,85,86-90,116
error processing for 137-139,423
relative organization 100-101,102-103
permissible COBOL clauses 108,98
prograrr~ing techniques 220-221
with spanned records 175-176,216

beginning address of a file 53
beginning address of a word 53
binary

(see also computational fields)
i~termediate results 231-232
search of a table 244-246
subroutines 396-397

BISAM
(see also QISAM)
considerations when using 119-121,110
data sets 124
defining a data set in 74
definition 73,74
error processing for 135-137,424
processing with 117-121,110,124

BLKSIZE
with data sets 09-70
in file processing

techniques 76-79,410-413,416
in QSAM 115

BLOCK CONTAINS clause S2
description 52
in QSAH 75

block length (see BLKSIZE)
block prefix 80
block size

causing errors 193
description 52
for utility data sets 416,417

blocked records
fixed-length 144
spanned 149
variable length 145-148

442

BSAM
data sets 123-124
DD statement parameters 99,109
defining a data set in 74
definition 73,74,84-85
with direct file 73,74,84-8J,87,89
error processing for 132-137.423
permissible COBOL clauses 98,108
with relative file 100-101,102
subroutine 396-397
user label totaling 140,77
with spanned records 184-185,216

BUF option 35,36,41,417
buffer offset 79
buffer unit 359
buffers

allocating space to 410,417
specifying number

for indexed files 114
for standard sequential files 77

truncating 220
BUFNO subparameter 74-78,114,416,417
BUFOFF subpararneter 80

C (conditional severity level) 178,32,33
CALL

option 41
statement 252,253

CALL statement
and CANCEL statement 232
definition 232
dynamic 232
dynamic loading 232
and subprograms 232

called programs
additional input 272,280
identifiers 257,270
input

additional 272,273,280
primary 265,68,280

linkage 252-259
primary input 205,b8,280

calling programs
additional input 272,273,280
identifiers 257-258,265
input

additional 272,273,280
primary 265,68,280

linkage 252-257,258
primary input 265,68,280

CANCEL statement
and subprograms 232

capacity records 83-84,87
CATALG subparameter 59
catalog, system 15
cataloged data sets

creating 125
description 132
retrieving 128
on a volume 137

cataloged procedure
adding to the procedure library 289
bypassing steps within 32
calling 289
COBUC 291,292,293
COBUCG 291,294

COBUCL 291,292,293
COBUCLG 291,294,295
COBULG 291,293,294
with COND parameter 25,32-34
data sets produced by 289-290,292
DO statements 49
definition 18
dispatching priority 41
IBM-supplied 291~292
limiting execution time of 44
modifying 295-297
naming 292
overriding 295-297
PROC statement 61
programmer-written 290
relationship to SYS1.P~OCLIB 125
required device class names for 50, 51
restarting programs with 25,26,42-43
return code 32-33
using the DO statement 290-294
using the EXEC
statement 30,31,290,291.295-296

CATLG parameter 128,132
CD entries 222
character delimiters 21
checkid 26,329-330
checklist for job control

procedures 429-432
Checkpoint

(see also Checkpoint/Restart)
CHKPT macro
instruction 25,42-43,328,329

c-o-ns i-de-rat ie-fis 32-8- 329
data set 26
how taken 42-43,327
initiating 327
in a job 25-27
in a job step 42-43
messages 329
multiple 327
RERUN clause 25-26,42-43,327-329
restart 42-43,327-329

(see also Restart)
single 327

Checkpoint/Restart
checkpoint 327-333

see also Checkpoint)
data sets 331-333
DD statements 327
designing 328
in a job 26-27
in a job step 42-43
messages 329
methods 327
RD parameter

with checkpoint 329
for a job 25-27
in a job step 42-43

restart 321-333
(see also Restart)

with Sort/Merge 306
subroutine 399
SYSCHK DD statement 330-331

CHKPT macro
instruction 25-27,42-43,328-329

CLASS parameter 27,23
class test subroutine 402
classname subparameter 59

CLIST option 36,41
CLOSE REEL statement 7~

CLOSE statement
BSAM sUbroutine 396
creating multivolume files

with direct organization
with relative organization

efficient use 231-232

88-69
102

with error processing 13S,136,137
CLOSE UNIT statement 84,88,89,102
COBOL copy library

COBOL sequence numbers 285
entering source statements 283, 284
IEBUPDTB sequence nurLbers 28S
retrieving source statements

BASIS card 285,286,33
COpy statement 284,285,33

updating source statements 284
COBOL file processing (see file, proce~sing
techniques)

COBOL library subroutines 282,395-399
concatenating 287
sharing 287
(see also library)

COBOL RERUN clause 25,26,42-43,327-329
COBOL sample program 383-394
COBOL sequence numbers 285-286.36
COBOL subroutine library 281,414-418

(see also library)
COBUC 291,292,293
COBUCG 291,294
COBUCL 291,292,293
COEJJCL-G 291 i 29U-;-295
COBULG 291,293,294
CODE clause 239
command statement 61,17
comments

continuing 21
field 20,21
statement 61,17

communication with other languages 259
Communications Description (CD)
entries 222

and corununications section 222
format 222
and TeleproceSSing 222

Communication Section 222
and Communication Description (CD)
entries 222

and Message Control Program 222
and Teleprocessing 222

compare subroutine 398
compilation

(see also compiler)
batch 62-63
cataloged procedure 289!290
checklist for job control
procedures 429,430

data set requirements 64-66
definition of 15
example of job control
statements 429,430

invoking compiler at execution time 418
sample program 383-394
source program size assuming minimum
configuration 420

syntax checking 187
using the REGIO~ parameter 379

lndex 443

compiler
(see also compilation)
blocking factor for data sets 416
buffer space 416,417
calling 418,419
capacity 420,421
data set requirements 64-66
internal name 175
invoking 416,418
machine requirements 379
optimization 416,417
options 35-43
output

allocation messages 175
cross-reference dictionary 177
diagnostic messages 179
global table 176-177
glossary 175-176
job control statements 175
object code 177
object module 179
sample output 173-175
source module 179,175

PARM option 35-41
segmentation output 312
specifying in EXEC statement 30

completion codes
description 193-196
in Sort program 305,306

computational fields
conversions involving 220-228
conversion subroutines 394-399
description 228,229

COMPUTE statement 232-233
COND parameter

EVEN, ONLY subparameter 34,35
in cataloged procedures 295-296
in EXEC statement 32-34
in JOB statement 25,23

condensed listing, using CLIST 36
conditional, as a severity level

(C) 178,32
conditions terminating execution 25,32-34
configuration section 220
CONTIG subparameter

description 53
with direct files 89
with indexed files 114

continuation of job control statements 21
control cards, SY~~MP 158-1bO

example of 159
line 159-160
object-time 158-159
placement of 159
prognam 159

control program 15
control statements

character delimiters 21
command statement 61,17
comment statement 61,17
continuing 21

444

DD statement 46-60,17
delimiter statement 61,17
EXEC statement 29-45,17
fields 20
JOB statement 23-29,17
notation used for 22
null statement 61,17

preparing 20,21
PROC statement 61,17
processing 19
use 17

control transfer 'see calling programs and
called programs)

conversion subroutines 395-399
copy library (see COBOL copy library I
COPY statemEnt

DD statel!(ent requirements 430
use 284,286,33

core storage (see main storage)
creating a file

direct 67,70,83-87,124,88,89
indexed 113-116,124,427-429
relative 73-76,101-103,124
standard sequential 64-67,121-124

cross reference
dictionary 177,36,38
list

description 181,182
used in dumps 198-202

CYL subparameter
for SPACE

consideration for indexed files 114
description 52

for SPLIT 53
cylinder overflow area 110-112

D (disaster severity level_ 178,32-33
data alignment 227-230
data areas, locating in

a TCAM program 216-217
data control block

(see also DCB parameter)
description 133,134
fields 409-414
identifying 134
overriding fields 134

data conversion 226-228
data definition 46-60,17

(see also DD statement)
data description 222-230
Data Division, programming
techniques 221-230

Data Division dump (with SY!'1DMP)
and FD 158
and index-name 158
and RD 158
and SD 158

data extent block 63-64
data formats 228-230
DATA parameter

in DD statement 49,47
restriction with UNIT parameter 51

data set control block 138,50-59
data set labels

description 134-143
relationship to DD statement 134
specification of 74

data set member 73
data sets

adding records to 58
(see also MOD subparameterJ

allocating space for 52-53
blocked 69

cataloging
description 59,132
indexed files 117

checkpoint 327-329
concatenating 297-298
creating 121-127
definition 15
deletion of 58,132
delimiting in input stream 61
describing attributes of 47
direct 73,84-89,124
disposition of

after abnormal termination 216-219
description ~/,~~

errors involving 191-194
execution time 68-70
extending 129
qeneration data groups 132,133
identifying

description 50
for compilation or linkage
editing 49

in the input stream 49,64,129,132
in the output stream 59-60,63-65,124
indexed 109-113,119-121
intermediate, under MVT 380-381
labels 57,137-142
magnetic tape 122-124
names

description 133
relationship to file names 72

... __ PQD t~mpo.~~:r::Y ____ 54 ________________________ _
organization 73
partitioned 281-288
postponing definition of 49,50
produced by cataloged
procedures 289-294

relative 73,100-107
retaining 58-59
requirements

for compilation 58-65
for execution 68-70
for linkage editing 66-68
for loading 68-69

retrieving 128-131
scratching 218-219
sharing 58
standard sequential 73-81
system catalog of 15
temporary 54,55
unit record 122-123
used by Checkpoint/Restart 327-329
used by Sort 302-304

DATE-COMPILED paragraph 175
date subroutine 399
DeB macro instruction 409
DCB parameter

(see also data control block~
for defining checkpoint data
sets 327-329

description 133-134
error processing with 134,135,423
identifying information in 134
retrieving previously created data
sets 128,129

subparameters
for direct files

accessed randomly 412

accessed sequentially 411,99
for indexed files

accessed randomly 128-130,396
accessed
sequentially 113-117,413,414

for relative files
accessed randomly 412
accessed sequentially 109,411

for standard sequential
files 76-79,410

DD statement
adding to a cataloged procedure

description 17,46
error recovery option, for standard

sequential files 135,136
format 47,48
overriding in cataloged

procedures 296-301
parameters 46-60
requirements for

ASCII files 80,143
compilation, job step 429,430
compiler data sets 61-66
changing a liorary with 290
direct files 99
execution, job step 431,432
execution time data sets 129
extending data sets 129
indexed files 113-120,425-427
job run in MVT environment 380-381
linkage editing

data sets 66-68
--------------joo··-step··· --4··3-·0-~-··lr3·1··---- . --- -------------_._-----.. --

loader data sets 68,69
relative files 109
retrieving data sets 128-131
standard sequential files 76-81
unit record devices 132
using cataloged procedures 290-294
using COBOL copy library 283,284
using the Sort feature 302-305

relationship to ACCEPT statement
relationship to DISPLAY statement
relationship to SELECT statement
Sort feature, used in 302-305
used to complete the DCB 133,134

DDNAME parameter
in cataloged procedures 297-301
ddname sUbparameter 50

(see also ddname subparameter)
description 47,49,50
error message

use of 47,49,297-301
ddname subparameter

70
69-70

134

and calling and called programs 30,31
and cataloged procedures 296-301
checklist of use in JCL
procedures 430,431

with Checkpoint/Restart 327,329
and creating files 123
in DD statement format 47,48
as DDNAME subparameter 50

(see also DDr-IAME parameter)
as DSNA!VlE

subparameter 50,113,114,128,129,131
in EXEC statement format 30
as INCLUDE operand 271.265
and indexed files 113-118

Index 445

as LIB~ARY operand 271,265
in name field of DD
staten~nt 47-49,72,125-127,296-301,
327-329

as PG~ subparameter 30,31
and retrieving files 128-129,131
as stepnarne q~alifier 295-298
as SUBALLOC parameter 54
and subprogram linkage 272,273
used to allocate space 54
using with queue structures 249

DEB 64
DEBUG card 187
debugging facilities 202-203
debugging language 187-190

(see also TRACE statement and EXHIBIT
statement)

debugging packed 189-190
debugging a program (see program debugging I
debugging, symbolic 157-172

example 162-172
FLOW 157
STATE 157
SYMDMP 158-157

DECB
error conditions 423,424
linking with 252,253

decimal point alignment in PICTUqF
clause 223-225

DECK option 35,36,41,429,179
Declaratives, USE AFTER ERROR
option 135-137

DEFER subparameter 52
deferred restart 330-331
DELETE statement 127,285,286
DELETE subparameter

and cataloged data sets 132
definition 58

delimiter, Job Control Language
character 21

delimiter, job control statement 17,61
DEN subparameter 76
DEPENDING ON option, programming

techniques 241,242
describing files 72-156
determining file space 90,92
device allocation 175
device class

blocking restrictions 51-52
and compiler data sets 61-65
definition 15
examples of names 18
and execution time data sets 69
and linkage editing data sets 67,68
and UNIT parameter 51,52

diaqnostic messages
compilation 177,178,173
linkage editinq 183,179
with O~ statement 187

dictionary, cross-reference 177
direct access (see mass storage)
direct data sets

creating 124,84-86
description 81-83

direct file

446

creating 84-89,124
randomly 86-87,89
sequentially 84-85

description 81-84, 89
error processing 135
multivolume 88-89
randomizing technique 95
reading

randomly 87-88
sequentially 87;89

sample program 96-97
Direct SYSOUT Writer 124
directory-quantity JCL s1.lbparameter 52,53
disaster, as a severity level

(D) 178,32,33
disk (see mass storage)
DISP parameter

data set uses
cataloging 132
creating 122-124
retrieving 128-132

default values of 59
description 58-59
in JOBLIB DD statement 60
in Sort feature 303-305
subparameters 58,59

displacement and base 176
DISPLAY option of USAGE clause

and comparisons and moves 228,229
and data format conversion 226. 228
external decimal format 229

DISPLAY statement
and COBOL output files 72
conversions involving 228-229
relationship to DD statement 69-70
use of 186

DISPLAY subroutine 396-397
disposition messages from jon
scheduler 183-185

division/remainder method for
randomizing 91

Dl:I.tA.P compiler option 36,35,41,175
DPRTY parameter 43-44
DSNAIvlE parameter

definition 50
and file creation 121
and file processing techniques

direct 99
indexed 113,118,116
relative 109
standard sequential 78,79

format of 47,48
and single-volume files l1j-117
subparameters 50

DSORG
direct files 99
indexed files 116,119
relative files 109

DUMMY parameter
definition 50
format 47

dummy records
in direct files 83,84,85
in relative files 102,103,104

dumps
completion codes 191,193-196
DD statements to request 60,70
definition 60
determining location of error 196-19P
dynamic 190-191

and compile-time option 190

SYiSDMP 191
locating records in 202-214
locating working storage in 221,222
requesting

using SYSABEl:W DD statement
using SYSUDUMP DD statement

and symbolic debugging 157
types of

70,60
70,60

abnormal termination 190-191
indicative 191

use of 191,192
DYNAM option 267
dynamic subprogram linkage 253

CALL 253,254
DYNill~ option 254
example 254,255,256
NOYDNAH 254

E (error severity level) 178,32,33
EBCDIC 77,138,191
efficient programming (see programming
techniques)

entry name 264
entry-point

of called programs 264
of loaded programs 40-42

Environment Division, progran®ing
techniques 220,221

environments, operating system 16
EP option 41,42
EROPT--sUbpa-rametey--r34, 13-5~ -4To--
error

completion codes
conditions

input/output
invalid data

messages

with 27,191-196

191-196
191-192

condition code
compile time 177-178,186
linkage editor 183
loader 183
object time 284-285,186
system 186,178,33
severity codes 178,32-33

recovery
COBOL ERROR declarative 135-137
DD statement option 134,135,410
direct file 137
indexed file 135-137
relative file 137
standard sequential file 135
syste~ 134,135,137
table 136

as a severity level (E) 178,33,32
ESD (see external symbol dictionary)
establishing a priority

for a job (PRTY) 28
for a job step

(DPRTY) 43-44
EVEN subparameter 33-34
EXEC statement

accounting information (ACCT) 32
additional storage (ROLL) 45-46
bypass/execution conditons (COND)
compiler options of PARf1
parameters 35-42

32-34

definition 16
dispatching priority (DPHTYI 43-44
identifying

procedure (PROC) 30-32
program (PGM) 30-31
step (stepname) 30-32

linkage editing options of PP£M
parameter 35-42

loader options of PARM pararr.eter 37-42
PA~l parameter 35-42
passing information between
progra~ns 41-42

setting time limit (TIME) 43-44
specifying region size (KEGION) 44-45
requesting restart (Ril) 42-43

execution time
data sets 68-70
definition 16
job control checklist 431,432
options 42-44
output example 185,283-394
storage allocation 381, 382
with REGION parameter 379

EXHIBIT statement
and program debigging 188,189
and required DD statement 70

EXHIBIT subroutine 396-397
exit list codes 141-142
EXPDT subparameter 58
external decimal subroutines 330,331
external floating-point subroutine 39b
external name 364
e-xt"ern-ca -Ye-fereii-c-e 364
external symbol dictionary (ESDI 180

FD
prograMT~ng techniques 221,222
relationship to DCB 409-414
with W}(.I'IE ADVANCING 75

file
beginning address of 53
and COBOL
clauses 73,75,98,108,117-121,220-221

and DD
statement 73,70-81,99,109,113-116

definition 72
name 73,89-90
processing techniques 72-122

ASCII 80
direct 81-99,73
indexed 73,108-130
partitioned 73,281,289
relative 73,100-107
standard sequential 73-78

and SEL~CT sentence 73
space allocation
for 52-56,73,114-117,84,85,86

user defined 73-142
f ile-narr,e

argument in calling program 264
definition 72
prefixes used with 221,222
relationship with D0 stateruent 73

File section, programming
techniques 221,222

Index 447

fixed-length records 144
FLAGE option 37,41
FLAGWoption 37,41
floating-point

subroutines 396,397
floating-point data items

(see also computational fields)
intermediate results 231-232

FLOW option 202-203,157
and NUM 151
and PARM parameter 157
and PROGRAM-ID 157

generation data set 132,133,50
GIVING option of Sort feature 302
global table

description 116,111
MAP option 36,41

qlossary
description 175,176
requesting through EXEC statement 36,41

GO TO statement
causing errors 193
in debug packet 190

GOBACK statement 253

header labels 137-142
hierarchy

COBOL data description 221,222
system storage 28-29

holding a job 29

I/O (see input/output)
IBM-supplied cataloged procedures 291-295
IBM System/310 instruction set machine
considerations 382

identifiers in linkage argument
list 252-258

IEBUPDTE subroutine 283,284
IER sort messages 305
IF statement

and Teleprocessing applications 232-233
and QUEUE DEPTH field 233

IF statement, programming
techniques 231-232

IKFCBLOO routine 272
ILB subroutines 395-399
INCLUDE statement 271-272,265,288
incomplete abnormal T.ermination 218- 219
independent overflow area 111,112,113
:index

448

area 110,111,112
cylinder 110,111
data item 241

assigning values to 242
master 117
names 241,242

assigning values to 242
overflow area 111,112,113

prime area 112
quantity SPACE parameter 52
t.rack 110

indexed access metnods (see BIS!-V;~, ~1~,A.~·.)
indexed data sets (see indexed filES)
indexed files

(see also BISAM, QISJ..Pl)
adding to 119-120
creation of 113-117,124
DD statements required 113-116
description 109-124
error subroutine 396-398
index area 110-113
overflow area 112-113
prime area 112
random access 119
RECORD KEY clause 110
reorganizing 118
sequential access 117,118,119
updating 117,120

indexed sequential data sets (see indexed
files)

indexing a table 242-246
indicative dump

description 191
restriction for MVT 193

indirect addressing 90,91
informative messages 175,178,181-183
input/output

bypassing of 49
device allocation 51,52
error conditions

completion codes for 193-19b
INVALID KEY 135-137
standard error 135-137
summary of 423,424
USE AFTEK EHROR declarative 135-137

facilities described in DD
statement 45-59

subroutines 395-398
input stream

control statements for 18,49
defining data in 49

INSERT statement 285
in-stream procedures 61, 31
instruction addressing causing
interrupt 193,194

intermediate results 231-232
internal decimal sUbroutines 390,397
internal floating-point
subroutines 39b,397

interrupt address, examples 193-198
INTRO macro 359
invalid data causing abnormal
termination 191-193

invalid key error conditions 135-137
INVALID KEY option 135-137

job
accounting information 24
class assignment 27
control statement display 24-25
definition 15
holding for later execution 29
identifying 23
library 28b-288
priority assignment 28

request for restart 25-26
setting time limits 27
storage specification 28-29
terminating 25

Job Control Language
character delimiters 21
coding 19-22
examples of

compilation 173
linkage editing 181

fields of
comments 21
name 20
operand 20
operation 20

notation 22
statement continuation 21
types of statements

cow~nd statement 61,17
COll@ent statement 61,17
DD statement 45-60,17
delimiter statement 61,17
EXEC statement 29-45,17
JOB statement 23-29,17
null statement 61,17
PROC statement 61,17

iob control procedures 17-70,429-432
cataloged procedures 289-301
checklist for 429-432
Checkpoint/Restart 189-333
definition 17
libraries 281,283,284-288
-segmentat-ion----}t-o-----
sort 302-305
for USEr files (see file, processing
techniques)

iob management routines 19
job schedulers

description 19,21
dispOSition messages from 183-18S

JOB statement 23-29
accounting information 24
definition 23
format 23
parameters

CLASS 27
COND 25
MSGCLASS 28
MSGLEVEL 24-25
PRTY 28
RD 26-27
REGION 28-29
RESTART 26-27
ROLL 29
TIME 27
TYPRUN 29

programmer identification 24
job step

bypassing
using JOB statement 25
using EXEC statement 32-34
definition 15
dispatching priority 43-44
restarting 42-43

JOBLIB DD statement
description 60
example of use 431

restriction
procedures

restriction
parametEr

jobnarne 23

with cataloged
290

wi th DDNAI"~E

299,300

KEEP subparameter 58
KEY clauses (see ACTUAL KEY clause and

RECORD KEY clause)
keyword parameters 20-21

LABEL parameter
for creating data sets 122-123
definition 57
for retrieving data sets 128,129
for volun,e labeling 137
subparameters 57-58

labels
data set 137
nonstandard 137-138.140-142
standard 137-138,139
standard user 139
user 138-143
user totaling 140
volume

nonstandard 140
standard 139-140

LET option 41,42
-l-evel--nnmbers---- 22r----
LIB option 40,41-
library

automatic call 68,283
changing 288
COBOL copy 283
COBOL subroutine 282.395,399
compilation, use of 65-66
concatenating 60,65,286
copy 283
creating 288
directory 281
job 286
link 281-282,67
partitioned data set 73
for PGM parameter 30-31
private 30,60
procedure 30,282
for program checkout 190
relationship to JOBLIB DD
statement 60.68

relationship to SYSLIB DD
statement 65,66

sort 282
source program 21..3
subroutines

arithmetic 395,396
COBOL 282
conversion 395,396
input/output 395,396
intermediate results 231-232

system 30
temporary 30
user 282-283,60

LIBRARY statement 271,265
LINECNT option 36-37,41

Index 449

line control cards 159-160
format 159
line-num 159
verb-num 159

link library 281-282,67
LINK macro instruction 280,418
linkage conventions 252-258
linkage, dynamic sUbprogram

(see dynamic subprogram linkage)
linkage editor

additional input 265,272
calling compiled programs 419
capacity 421-422
checklist 430
data set requirements 66-68
definition 16
external names 264
input

additional 265,272
primary 265,272

with libraries 286-288
LIBRARY control statement 283
messages 185
options 40,41,42
output 179-183
PAru~ options 41,42
with preplanned overlay 273-275
primary input 265,272
processing 264-273
user-specified data sets 68

linkage registers 257,258
LINKLIB 67,281,282
LIST option 40,41
literal pool 116
literals, size considerations 421
LOAD macro instruction 418
load module

definition 15
as input to linkage editor 265,272,273
length of 202
output 183
specification in EXEC statement 30

LOAD option 36,41,179
loader

cataloged procedure 294,29S
data set requirements 68,280
definition 280
invoking 294,295
input

additional 280
primary 68,69,280
requirements 68,69

module map 183,le4,36,41
output 183-184
PARM options 35-41

loading programs
additional input 280
cataloged procedure 294,295
primary output 68,280

loqical record area 152,154,216
loqical record length 64-65,410-414
logical record size

for SYSIH 415
for SYSLIB 415
for SYSPRINT 415
for SYSPUNCH 415

LRECL 64-65,410,414

450

machine considerations 379-380
macro instructions

ATTACH 418
CHKPT 329,330
DCB 298
LINK 275,417
LOAD 417

magnetic tape
data sets

sharing devices 304
using DEN and TRTCH

subparameters 76,77,78
devices

compiler optimization using 41S
labels 137,138-139
in Sort feature 302,304,382

volume
private 55,56,51
removable 53-54
reserved 55,56
scratch 55,S6

main line routines 230-231
main storage

(see also storage allocation an~ storage
considerations)

additional for I~iVT CkOLL) 4::>-40
hierarchy support

hierarchy 0 28-29
hierarchy 1 28-29

REGION parameter 44-45,28-29
requirements for Sort/Merge 260-261

map
loader storage 183,184

174 memory
module

l'.tAP option
181-183

for linkage
for loader

mass storage

editor 40,41,182
40,41,183-184

device 90,92,93
space allocation

SPAC£ parameter 52-53
SPLIT parameter 53-54
SUBALLOC parameter 54

volume labels 157
volume status 54-56
volumes 54-56

master index 117
master schedulers 19
MCP 334
MCP and co~nunication between COBOL

programs 310,315
activating the interface 375
additional considerations 37~-376

defining the interface 370
defining process control blocks 37~

NCP macros
CLOSE 359
DCB 360
INTRa 3S9
INVLIST 361
OPEN 359
PCB 360
READY 359
RETURN 359
TERMINAL 361
TLIST 361
TPROCESS 3b1

TTABLE 361
message control program (MCP)

activating 359
building

assembling 365
executing 365-366
link-editing 365

data sets 360,366-367
checkpoint data sets 366
group data sets 366
message queue 366-367

defining buffers 359
defining terminal area 360-362
functions of 337
message flow 334-336
RECEIVE statement 234
SEND statement 234
user tasks 337
writing a 337-338

message handler (MCP) 359-365
for application programs 364-365
delimiter ITlacros 362,363
functional macros 362,363
for terminal line groups 363

messages
allocation

compiler 175
linkage editor 182-183

checkpoint 329,333
compiler, su~mary of 177,178
disposition

compiler 177
linkage--ed-i-tor-- ---1-82

error 32-33
identification codes 186
linkage editor 183,184
objett ti~e 284-285
operator 186 ,
severity level of

compiler 32-33
linkage editor 32-33

sort 305,307
~1FT (see multiprogramming with a fixed

number of tasks)
}lOD subparameter 58

in Checkpoint/Kestart 328,329
in compilation 65
definition 58

MODE subparameter 77
modular levels 230-231
module map 181-184
MOVE statement 231-233
!'lOVE subroutine 397-398
MSGCLASS parameter 28-29,23
lV1SGLEVEL pa rameter

d~scription 24-25
on J-OB card 23
with restart 329-331

ITultiple checkout 327
multiple OPEN and CLOSE statements 381
multiproqramming with a fixed. number of
tasks

assigning job class 27
data sets

marking end of 61
scratching 218-219
sharing 64-65

definition 1b

holding a job 29
JOB statement parameters 27-29
priority scheduler 19

multiprogramming with a variable number of
tasks

assigning a job class 27
bypassing I/O 49
causing errors 193
Checkpoint/Restart 327-333
data sets

interrrlediate 380
marking end of 61
scratching 218-219
sharing 64-65

definition 16
EXEC statement parameters 43-46
holding a job 29
input stream in 49
JOB statement parameters 23-29
job step

additional storage for 44-45
dispatching priority 43-44
time limits 43-44

machine considerations 380
main storage requirements 28-29,44-45
with multiple OPEN anj CLOSB
statements 380

priority schedulers 19
region code 16
REGION parameter 28-29,44-4S.379,380
Restart 26-27,42-43,329-333
ROLL parameter 29,45-46
_SPACE. pa.ram~ter. ____ 1JHi

multistep job 32-33
multivolume data sets

for direct files 88-89
for relative file 102-103
volume switching ~-

I

MVT (see multiprogramming with a variable
number of tasks)

~~IG subparameter 53

name field 20,49
NAME option 39,41
NAMZ statement 266
name subparameter Sl
names

cataloged procedure 50
data set, conventions used in 133
generation 50
procedure 420,421
qualification of 50,421
temporary 50

NEW subparaffieter S8
NL subparameter 58
N03ATCH option 39,41
NOCALL option 42,41
NOCLIST option 36,41
NODECK option 36,41
NODMAP opticn 36,41
NODYNAM option 268
NOFLOWoption 37,41
NOLET option 42,41
NOLIB option 39,41
NOLOAD option 36,41
NOl-~P option 4 0, 41

Inaex 4S:L

NOlvlINAL KEY 73
NONAI-iE; opt ion 39, 41
nonstandard labels 137,140-141
NONU~ option 38,41
NOPMAP option 36,41
NOPRINT option 39,41
NORES option 42,41
NORESIDEN'I' 268
NOSEQ option 36,41
NOSOURCE option 36,41
NOSTATE option 37,41
NOSUPf'.IAP option 37, 41
NOSXREF option 38,41
NOTE statement 233
NOTERM option 40,41
NOTRUNC option 37,41
NOXREF option 38,41
NSL subparameter 58
null statement 17,61
NUM option 38,41

object code listing 177
OBJECT-COhPUTER paragraph 220
object module

contents 179
deck 179
definition 15
dumps using 196-201
listing 179
size considerations 421

object-time control cards
continuation cards lJ9
control statement placement 159
example of 159
line-control cards 159-1bO
program-control catds 1~9
syntax rules 158-159

object time overlay 309
OCCURS clause

causing errors 192
DEPENDING ON option 241-242

OCCURS DEPE:NDING ON
claust 241-242,395,154-1~b

OLD suoparameter 58,b7
ON SIZ~ ERROR option

binary items 232
intermediate results 232

ON statement 187,188
ONLY subparameter 34
OPEN statement

multiple use of 381
for several files 233

operand field
bypassing I/O 49
on control statement 20
data definition 49

operating system environment
mUltiprogramming with a fixed number of
tasks 16

multiprogramming wi th a variable numbE!r
of tasks 16

operation field 20
operator

commands 61
messages 186

OPTeD subparameter 77,410,411

452

optimization, compiler 417,418
optional services (see 0PTCD sUbparameter)
options

for compilation 3S-39,41
for execution 42-44
for linkage editing 40,41
for loader 40,41,42

output
classes 27
compiler 173-179
definition 15
displaying control statements 24
linkage editor 179-186
loader 183
MAP option 40,41
requests for 186
sample program 383-394
storage on library 30
stream data sets 124
suppressing 41~-416
SYSOUT parameter 59-60
system 186

overflow
area (seE: QISAM)
index 111,112
synonym 91,95

overlay
dynamic 27';)
preplanned 273-274
statement 273-274
structures 273-274

overriding DD statements 296-301
OVFLOW 113,11~,11b,118

OVLYoption 40,41

page breaks, optirnizing""-iii xer:-0rt
Writer 238-239

PARM option
compiler options 35-42,41
with equal sign 3j
job card 42-43
linkage editor options 40,41
restrictions 3~

significant characters 3~
parameters

compared to arguments 257-2~8

keyword 20-21
positional 20
subpara~Eters 20

partitioned data set
description 73
directory 281,S3
member 73,281
primary quantity for 53-54
secondary quantity for 53-54
temporary libraries 30

partitions 1b
PASS subparameter S9,~3-55
PASSWORD subparameter J8
PDS (see partitioned data set'
PEaFORM verb 233-234

in a segrr~ented lJrograIr, 311
permanently resident volumes 5J-5b
PGI"j 30
PGT (see program global table)
physical records, size restrictloD ';)3-J~

PICTURE clause 223-224
efficient use of 223-224
storage allocation 223-224

PMAP option 36,41
prefixes 221-222
preplanned linkage ~ditor 273-274
PRESRES, merr~er of SYS1.PROCLIB 55-56
primary input, for called and calling

programs 264-265
PRIME, in QISAM 113-114
prime area (see QISAM)
prime number list 94
PRINT option 39,41
printer, determining line spacing 77
priority, assigning

for a job 28
for a job step 43-44

priority schedulers 19
priority scheduling system

EXEC statement parameters 29-30,43-45
JOB statement parameters 23,27-29,17
relationship to multiprogramming

environments 16
sharing data sets 58-59
SYSOUT parameter for 60

PRIVATE subparameter 56
private volume 55-56
PROC statement 17,61,20
Procedure Division

intermediate results 231-232
modular levels 230
programming techniques 230-246
s-egment-ati-cn----3-1-(}- 3-1-2------------- - -- --- --------- - - -- ----- -
verbs 232-235

procedure library 18,282,289
procedures, in-stream 61,30
processing programs 15
processing subroutines 231
procstep.ddname 49
procstep subparameter 53~54
proqram

see also programming techniques)
called 252-255
calling 252,419
checkout 187-219
debugging

completion code 193-196
dumps 190-191,196-198
errors

I/O 191
invalid data 191-192
other 193-198

I/O errors 191
incomplete abnormal
termination 216-219

invalid data errors 191-192
language 187
other errors 193-198

execution
multistep job 32
from private library 30
from system library 30
from temporary library 30

interrupt 196
linkage editing 264
sample 383-394
selective testing of 189-190
techniques (see programming techniques)

program-control cards
ddname 159
format 159
program-ID 159

program global table 177
PROGRAM-ID

and FLOW option 1S7
and STATE option 1S7

programmer identification 24
programming techniques

(see also program)
Data Division 221-230
Environment Division 220
general 220
Procedure Division 230-246
Report Writer 236-241
Sort Feature 305
Table Handling 236-246

PRTSP subparameter 77
PRTY parameter 28,23
pseudo data set 49
public volume 55,56

Q routines 395
QISAM

considerations when using 117-120
data control block 49,118-119
data sets

creating 110,113-117
definition 73
deleting records in 119
z;:eo-rga n; 7 i -lliJ-u---l1B ~ll9 ___________ _

DD statement paramaters 49,118-119
error processing for 135-137,423-424
indexes, description 110,112
master index 117
overflow area, description 111,112;113
prime area, description 112
single volume file 118-119

QSAJ.vl
data control block 49,118,119
data set 123,124,73
DD statement parameters 113-116
description 74-79
error processing for 135,423
Sort feature, uses of 302
user label totaling 140
with spanned records 148-151,216

Queue Analyzer Routine 248,249
queue blocks

and locating TCAM data areas 216-217
sample program 217

QUEUE DEPTH field 233
and IF statement 233

Queue structure considerations
accessing with COBOL 248-251
example 246,247
Queue Structure Description routine 2S1
SYMBOLIC QUEUE name 246

QUOTE option 36,39

randomizing techniques 90-91.9S
RD parameter

with checkpoint 329-330
for a job 25-20
for a job step 42-43

Index 4S]

READ INTO option 234
READ statement

in BISAH 120,117
causing errors 189-191
in QISAM 117-120

READY TRACE verb 72,187
RECEIVE statement 234
RECF~·1 suoparameter

in compilation 415-416
in DISPLAY statement 69-70

record
addressing 74,73
blocked 69
capacity 83
dummy 83
duplicate 423
fields 305
formats 74

fixed-length 144
spanned 148-154
unspecified 145
variable-length 145-148,151-152

segments 149-150
size, logical

for SYSIN 415-416
for SYSLIB 415-416
for SYSPRINT 415-416
for SYSPUNCH 415-416

size restriction, physical 53-54
RECORD CONTAINS clause 222
RECORD KEY clause

in BISAM 119-120
in QISAM 119

REDEFINES clause 222-223
REF parameter 48
REF subparameter 51,57
referencing tables 241-246
REGION parameter

in EXEC statement 44-45
in JOB statement 28-29
main storage 28-29
for MVT 28-29,44-45,380
used in compilation 380
used in execution 380

relative file
accessing 102
allocating space for 102
COBOL clauses for 108
creating 101-102
error processing 137
Job Control Language for 109
NOMINAL KEY, use of 100
sample program 104-107

releasing a job (RELEASE) 29
relocation list dictionary 179,180,423
removable volumes 55,56
Report Group descriptions 236-237
Report Writer

CODE clause 239
floating first detail 240-241
output floatings 240-241
output line overlay 238-239
size considerations 240-241,420
SUM 237-238

requesting a message class 28
requesting a unit 51
RERUN clause 327-330,25,42-43
RERUN subroutine 399

454

RES option 42,41
RESERVE clause 74
reserved volumes ~~-~6

RESET 'I'l{ACl:. 187
RESIDENT 267

example 267
linkage 267
specifying 2b7

Resta.rt
(see also Checkpoint/Restart)
automatic 330
for cataloged procedure 42,41
checkpoint 331

(see also Checkpoint)
deferred 330-331
initiating 327,329
in a JOD 26-27
in a job step 42-43
RD parameter 329-330
system routine 329

RESTAR'l' parameter 'see RD par ar".eter)
RETAIN subparameter 56
RETPD subparameter 58
retrieving data sets

cataloged 128
example of 131
noncataloged 129
passed 129
through an input stream 129-130
with additional output 129

return code 32-33,178
return register 258
REWRITE statement

in EISAN 120
in QISAN 118

RLD (see relocation list dictionary)
RLSE sunparameter 53
ROLL parameter

in EXEC statement 45-46
in JOB statement 45-46
for MVT 29,45-46

ROUND subparameter S3
run unit 258

sample program output 383-394
save area layout 265
schedulers

job 19
master 19
priority 19
sequential 19

SEARCH statement 244-24S
'searching a table 244-245

binary method 244-245
serially 245

secondary quantity subparameter
for SPACE 52
for SPLI'!' 54

segment work area 149,154,216
segmentation feature 309,310,311
SELEC'!' sentence

relationship to DD statement 134,72
with user files 72

SEND statement 234
SEP parameter 51,47

SEQ option 36,41
sequential data sets

DUMMY parameter 49
on mass storage devices 123-124

sequential schedulers 19
SEPARATE CHARACTERS option 224-225
serial search of a table 244-245
SER subparameter 57,48
SET statement 242-243
setting time limits

on a job 27
on a job step 42-43

severity levels 178,32-33
_~ __ ~ __ ~_~ ___ ~_ co
;:,ucuLu'::j UQ\....Q ;o1:::\....;O .JO

SHR subparameter 58
siqn, efficient use of 223-225,227
SIGN clause 224-225
sinqle checkpoint 327
sinqle-segment message 234
SIZE ERROR option 191
SIZE option

for compiler 36,41
for loader 41,42

SL subparameter 74-75
Sort feature

for ASCII files 307-308
cataloging 304
with Checkpoint/Restart 307-308
considerations 382
data sets 284
DD statements 302-304
linkage with SORT/~ERGE 305
-rnalfi---S'LOr age--r-eglsters- - 3 {) 6 ""3il7---- --
messages 304
multiple statement 304
proqrarr, example 304
record fields 305-306
sharinq devices 304
storage allocation _~
terminating 308
variable length records 308
with spanned records 302

sort library 303
SORT/I"li:::RGB 305- 30 6
sort subroutine 282
SORTLIB DO statement 303,304
SORTWORKnn 302
SORTWORKnn DO statement 302-304
source module 15,175
SOURCE, option 36,41
source program library 283

(see also COBOL copy library)
SOURCE-SUM correlation 236-237
SPACE parameter

in BSAH 78-79
in creating data sets 122-127,114
in MV'I' 380- 381,186
in QISAM 114
in Sort feature 303
SPACEn option 37,41
subparameters 52-53

SPACEn option 37,41
spacing 220-221
spanned records

blocked 149
description 148-154
direct processing 152-154
formatting 149

locating in dumps 215-216
logical record area 152, 153 216
segment work area 149,154.216
sequential processing 150-1~2

with Sort 302
special characters in job control

language 34,35
specifying data set status and
disposition 58-59

specifying loader input 68.2~0

SPLIT pararrleter
in creating data sets 122,123,124
description 47,53-54
l.n QISA1.!l 114

SPLIT subparameter 53-54
STACK subparameter 77
stacked items, in job control notation
standard labels 138-140
standard sequential file

accessing 14-19
error processing 135

standard user labels 139-140
START statement 234-235
STATE o?tion 157
STATE statereent 202
statistics 177
step restart

in a job 26-21
in a job step 42-43

STEPLIB DO statement 60
stepname 32,53-54
STOP RUN statement, wlder MVl 381

--s-torage--a:l-l-ocation ----- ----------- ------------
(see also main storage and storage
considerations)

for compilation 64,319,420,421
for execution, jOb step 44-45,380
for linkage editing 421-422
for overlay processing 273-219
for Sort feature 302,306;307-308,382
for source program 421-422

storage considerations 421
(see also main storage and storage
allocation)

storage map, for loader 183-184
storage, mass (see mass storage,
storage volume 55-56
STRING statement 235
SUBALLOC parameter 53-54
SUBALLOC subparameter

in creating data sets 122. 124
description 47,54

subparameters 21
subprogram

and CANCEL statement 267
and dynarr:ic ChLL
and static CALL

253,254
254

subroutine library (see libraryJ
subroutines

(see also library
arithmetic 395,396
conversion 395,39b-397
input/output 395

SUL subparanieter :)8

SUN statement 237-232
SUPfv1AP option 37.41,117,179.41~-416

SXREF option 38,41
SYi/iBOLIC QUEUE field

lno.ex 4::J:J

accessing queue structures 248,249
Queue Analyzer routine 248,249

SYMBOLIC SUB-QUEUE name 248,249
symbolic debugging 158-172
SY1wlDMP option

abnormal termination dump 158
abnormal termination message 158
Data Division dump 158
and data-names 158
qeneral considerations 160
operation of 160
sample program 162-172
specifying through PARM parameter 158

SYNCHRONIZED clause 228
synonym overflow 91,95
syntax-checking compilation 187
SYSABEND DD statement 60,70,190
SYSCHK DD statement 331
SYSCP 18
SYSDA 17,52,67,292
SYSDBOUT DD card 202
SYSIN DD statement

in cataloged procedures 292-293,295,298
for compilation 64-65,66
concatenating with SYSLIN 301
logical record size for 415-416
relationship to ACCEPT statement 70
under MVT 380

SYSIN-SYSOUT 380
SYSLIB DD statement

in cataloged procedures 299
for compilation 65
for linkage editing 68,67
for loading 68
logical record size for 415-416

SYSLIN DD statement
for compilation 65
concatenating with SYSIN 301
for linkage editing 66-67
for loading 68,280
logical record size for 415

SYSLMOD DD statement
with job library 286
for linkage editing 67-68

SYSLOUT DD statement
for loading 68-69

SYSOUT parameter
relationship to DISPLAY statement 69-70
in Sort feature 303-304
subparameters 59-60
under MVT 380
use of 58-60,48,65,67,124

SYSPRINT DD statement
for compiler 64-65,66,173
for linkage editor 67
for loading 69,183-184
logical record size for 415-416

SYSPUNCH DD statement
for compiler 64-65,66
logical record size for 415-416
relationship to DISPLAY statement 69-70
SiSSQ 18,52,67

system catalog, creating 15
system diagnostic messages 186
system error recovery 134
system-name 79,80
system output messages 186
system restart routine 329-330

456

SYSTERM DD statement 64
SYSUDUMP 60,70,190
SYSUT1

for compilation 79-80,379
for linkage editing 68,67

SYSUT2 (see SYSUT1)
SYSUT3 (see SYSUT1)
SYSUT4 (see SYSUT1)
SYS1.COBLIB 282,395-396
SYS1.LINKLIB 67,282
SYS1.PROCLIB

adding procedures to 290
description 289,282

SYS1.S0RTLIB
description 282
storage allocation for 382

table elements 241-246
tables

building 246
handling considerations 241-246
storage limitations 420-421
subscripts 241

tape (see magnetic tape)
tape volume state 56-57
task global table 176
TCAM <telecommunications access

method) 334
data areas 216-218

locating 216-218
queue blocks 216,217
SEND statement 216,217

service facilities 376-378
operator control 376
specifying operator commands 377

writing compatible programs 367
teleprocessing

and CD entries 222
and Communications Section 222
environment 334
and MCP 222

temporary data set
creating 125
description 54

temporary library 30
temporary names 50
temporary partitioned data sets 30
terminal error messages 32-33
termination of job 25
TESTRUN sample program 162-172
TGT (see task global table)
TIME parameter

for a job 27
for a job step 43-44

totaling, user label 140
TRACE statement

description 187-188
relationship to SYSOUT DO statement 70

'TRACE subroutine 396-397
track

addressing 73,81-82
capacity 90,92,93
identifier 81-82
index 110
space for 84,85,86,88,114,116

'I'RACK-AREA clause
in BSAH 121

TRACK-LIMIT clause 84,85,88,87
trailer labels 137-138
TRANSFOru~ statement 235
TRANSFORM subroutine 397-398
TRK subparameter 52
TRTCH subparameter 77
TRUNe option 37,41
two-part region 29

unblocked records
fixed-length 144
permissible file techniques 74
spanned 149
variable-length 145,147

UNCATLG subparameter 59
undefined length records

(see unspecified length records)
unequal fields 224
UNIT parameter

creating data sets with 121-127
description 51,47
multivolume data sets using 88-89
retrieving data sets with 129
sort programs using 303,304
subparameters 51,52

unit record data set 122
unit record device, DD statement for 132
unit, requesting 51
llnspe-ciiied- length--re-cords--- 1-45-
UNSTRING

definition 235
example 236

USAGE clause
causing errors 192
efficient use of 221,224-225
example 176

USE AFTER ERROR option
description 135
in file processing techniques

USE BEFORh LABEL option 132-133
user-defined files 72-73
user file processing

error processing 135-136
file processing techniques 73
labels 138-140
user-defined files 72-73

user lable
procedure 141
totaling 140

user labels 138-141
user libraries 282-283,60
user-specified data sets 68
USING option 302
utility data sets

for compilation 64
for linkage editing 66

utility programs
IEBUPDTE 190,283,286
IEHLIST 218-219
IEHlviO'V"'E
IEHPROGM
ILBDSRTO

281
218-219
304

410-414

variable elngth
records 145-148,150-152,307-308

verbs 232-237
volume

definition 15
labels

nonstandard 138
standard 138-139

magnetic tape 56
mass storage 55,56
nonspecific 55
parameter (see VOLUHE parameter)
permanently resident 55-56
private 55
public 55
reference

nonspecific 55
specific 55

removable 56
reserved 56
specific 55
state

allocation 55-56
magnetic tape 56
mass storage 55,5ti
mount 56

storage 53-56
volume

switching 88,87
volume-count subparameter 57
VOLUME parameter

creating data sets with 122-124
-descriptioD ___ 5J::::55 ________________________________ _
retrieving data sets with 129
sUbparameters 56-57
with UNIT parameter 51

volume-sequence number subparameter 5b

W (warning severity level) 178,32-33
warning, used as a severity level

(W) 178,32-33
word, beginning address of 53
Working Storage

locating in dumps 222-223
READ INTO option 234
separate modules 222
WRITE FROM option 234

WRITE AFTER ADVANCING option
restriction with PRTSP pararreter 77
use of 75

WRITE AFTER POSITIONING option
restriction with PRTSP parameter 77
use of 75

WRITE FROM option 234
WRITE statement, causing errors with 193

XREF option
for compilation 38,41
for linkage editing 40,41,le2

Index 457

TITLE:

READER'S COMMENTS

I BM as Full American
National Standard COBOL
Compiler and Library, Version 4
Programmer's Guide

ORDER NO. SC28-6456-0

Your comments assist us in improving the usefulness of our publications; they are an L'11portant part
of the input used in preparing updates to the publications. All comments and suggestions become
the property of IBM.

Please do not use this form for technical questions about the system or for requests for additional
publications; this only delays the response. Instead, direct your inquiries or requests to your IBM
representative or to the IBM Branch Office serving your locality.

Corrections or clarifications needed:

Page Comment

Please include your name and address in the space below if you wish a reply.

Thank you for your cooperation. No postage necessary if mailed in the U.S.A.

SC28-6456-0

fold fold

.e:-
• 0
• ::l
.lC!

§:
rJJ

... :

Attention: PUBLICATIONS

BUSINESS REPLY MAIL
NO POSTAGE NECESSARY IF MAILED IN THE UNITED STATES

POSTAGE WILL BE PAID BY ...

IBM CORPORATION
1271 Avenue of the Ameri cas
New York, New York 10020

FIRST CLASS
PERMIT NO. 33504
NEW YORK, N.Y.

I • I • ; ~ • • • • • • • ~ • • • • I • • • • • • • • • • , • • • • • • • • • • • • • • , • • • • • • • • • • • • •• •

fold

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, New York 10604
[U.S.A. only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International]

fold

to
s:
o
Ul
(")
o
to
o
r
<
~

=\'
o
'P
C)
c
a:
(1)

Ul
(")
I\,)
00

~
CJ1
(j)

6

	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	242
	243
	244
	245
	246
	247
	248
	249
	250
	251
	252
	253
	254
	255
	256
	257
	258
	259
	260
	261
	262
	263
	264
	265
	266
	267
	268
	269
	270
	271
	272
	273
	274
	275
	276
	277
	278
	279
	280
	281
	282
	283
	284
	285
	286
	287
	288
	289
	290
	291
	292
	293
	294
	295
	296
	297
	298
	299
	300
	301
	302
	303
	304
	305
	306
	307
	308
	309
	310
	311
	312
	313
	314
	315
	316
	317
	318
	319
	320
	321
	322
	323
	324
	325
	326
	327
	328
	329
	330
	331
	332
	333
	334
	335
	336
	337
	338
	339
	340
	341
	342
	343
	344
	345
	346
	347
	348
	349
	350
	351
	352
	353
	354
	355
	356
	357
	358
	359
	360
	361
	362
	363
	364
	365
	366
	367
	368
	369
	370
	371
	372
	373
	374
	375
	376
	377
	378
	379
	380
	381
	382
	383
	384
	385
	386
	387
	388
	389
	390
	391
	392
	393
	394
	395
	396
	397
	398
	399
	400
	401
	402
	403
	404
	405
	406
	407
	408
	409
	410
	411
	412
	413
	414
	415
	416
	417
	418
	419
	420
	421
	422
	423
	424
	425
	426
	427
	428
	429
	430
	431
	432
	433
	434
	435
	436
	437
	438
	439
	440
	441
	442
	443
	444
	445
	446
	447
	448
	449
	450
	451
	452
	453
	454
	455
	456
	457
	458
	459
	460

