
IBM

Programmed lnstructio11L C:ourse

SYSTEM/360 C:OBOL

C:OBOL Program Fundamentals

Reference Handbook

Copies of this publication can be obtained through IBM Branch Offices.
Address comments concerning the contents of this publication to:
IBM DPD Education Development, Education Center, Endicott, New York

©International Business Machines Corporation, 1966

(3/66}

PREFACE

This reference handbook provides useful
information for people who want to be
able to read COBOL programs with a high
degree of comprehension. It is designed
to be studied in conjunction with the
COBOL Program Fundamentals programmed
instruction textbook (Form R29-0205).

The reader of these publications is
expected to have prior experience in
data processing and computer programming,
as well as knowledge of System/360
features, but no prior knowledge of
COBOL.

This publication is not intended to
provide all of the information a
student needs in order to compose
original COBOL programs. Additional
information for that purpose is given
in the next course of this series,
Writing Programs in COBOL. The
publications that make up that course
are a programmed instruction text
(Form R29-0210) and a reference hand
book (Form R29-0211).

Complete specifications for System/360
COBOL may be found in the reference
manual, IBM Operating System/360 COBOL
Language (Form C28-6S16-3).

ACKNOWLEDGEMENT

The followinq information is reprinted from COBOL-61 EXTENDED, published
by the conference on Data Systems La.nquaqes {CODASYL), and printed by
the u. s. Government Printinq Office.

This publication is based on the
COBOL System developed in 1959 by
a commi·ttee composed of government
users and computer manufacturers.
The organizations participating
in the original development were:

Air Materiel Command,
United States Air Force

Bureau of Standard.s,
Department of Commerce

Dav.id Taylor Model Basin,
Bureau of Ships, u.s. Navy

Electronic Data Processing Divi
sion, Minneapolis-Honeywell
Regulator Company

Bur:roughs Corporation
International Business Machines

Corporation
Radio Corporation of America
Sylvania Electric Products, Inc.
Univac Division of Sperry-Rand

Corporation

In addition to the organizations
listed above, the following
organizations participated in the
work of the Maintenance Group:

Allstate Insurance Company
Bendix Corporation, Computer

Division
Control Data Corporation
DuPont Company
General Electric C1ompany
General Motors Corporation
Lockheed Aircraft Corporation
National Cash Register Company
Philco Corporation
Royal McBee Corpor.ation
Standard Oil Company (N.J.)
United States Steel Corporation

This manual is the result of
contributions made by all of the
above-mentioned organizations.
no warranty, express or implied,
is made by any contr:Lbutor or by
the committee as to 1l:he accuracy
and functioning of the programming
system and language. Moreover, no
responsibility is assumed by any
contributor, or by the committee,
in connection therewith.

(3/66) iii

It is reasonable to assume that a
number of improvements and addi
tions will be made to COBOL. Every
effort will be made to insure that
the improvements and corrections
will be made in an orderly fashion,
with due recognition of existing
users' investments in programming.
However, this protection can be
positively assured only by individ
ual implementors.

Procedures have been established
for the maintenance of COBOL.
Inquiries concerning procedures
and methods for proposing changes
should be directed to the Executive
Committee of the Conference on
Data Systems Languages.

The authors and copyright holders
of the copyrighted material used
herein: FLOW-MATIC (Trade-mark of
the Sperry-Rand Corporation) ,
Programming for the UNIVAC® I and
II, Data Automation Systems © 1958,
1959, Sperry-Rand Corporation7
IBM Commercial Translator, Form No.
F28-8013, copyrighted 1959 by IBM7
FACT, DSO 27A5260-2760, copyrighted
1960 by Minneapolis-Honeywell7 have
specifically authorized the use of
this material, in whole or in part,
in the COBOL specifications. Such
authorization extends to the repro
duction and use of COBOL specifi
cations in programming manuals or
similar publications.

Any organization interested in
reproducing the COBOL report and
initial specifications in whole or
in part, using ideas taken from
this report or utilizing this
report as the basis for an instruc
tion manual or any other purpose
is free to do so. However, all
such organizations are requested
to reproduce this section as part
of the introduction to the
document. Those using a short
passage, as in a book review, are
requested to mention "COBOL" in
acknowledgement of the source, but
need not quote ·this entire section.

TABLE OF CONTENTS

Introduction

Introduction to, COBOL • • 3
COBOL programming system

terms • • • • • • • • • • • 4

Language Elements

Language elements • • • 7
Reserved words. • • • 8-9
Programmer-supplied names •• 10
Symbols ••••••••••• 11

Program Structure and Contents

Program structure
Program contents.

. . .

Identification Division

Iden ti ficati<)n di vision

• 16-17
• •• 18

entries • o •••••••• 21

Environment Division

Environment division
entries • o • • • • • • 25-26

Data Division

Data division entries •• 28-30
System/360 COBOL terms

for uni ts c•f data • • • • • 31

Procedure Division

Procedure division
entries • • • • •

Procedures •••••

Case Study

. . • 44-45
• • • • • 4 7

Case study. • • • • • • • 61-67

(3/66) v

Literals ••••
Level numbers
Pictures. • •

.12

.13

.14

File description entry. • 32-34
Record descriptions •••••• 35
Item description entries. 36-42

Procedural words ••
Test conditions ••••
Flow of control • •

• 48-51
• 52-54
• 55-57

c

Introduction

,,

'

INTRODUCTION TO COBOL

Origt£s. COBOL (Common Business Oriented Language) is the result of
ane ort to establish a standard language for programming computers
to do business d,ata processing. The original specifications for COBOL
were drawn up in 1959 by representatives of several computer manu
facturers and users. The specifications have been revised and improved
several times since 1959.

Aims.

•

•

•

COBOL is designed for producing source programs that are

standardized, using standard language elements in standard
~g.g:y_JQJ::!Jl~.f:s within a ..c~~~.P-4~;r;~ _p~~grCl,_I,ll_ structure. - · COBOL
endeavors to provide one common language for all computers,
regardless c:>f make or model.

easy to understand, because they are written in English •
The bulk of every COBOL program is made up of English words
in entries that resemble English sentences. Good COBOL
programs are easy to read and comprehend, for non-programmers
as well as jcor programmers.

oriented to business procedures, not to the technology of
computing machinery. This makes it possible for business
people who are not computer experts to use COBOL.

Differences. In order to adjust to major differences in computers,
certain language differences are allowed in COBOL for individual
computer systems,, within the framework of one common language.
System/360 COBOL is different in some ways from COBOL for other
computers. (This handbook is concerned only with System/360 COBOL.)

(3/66) 3

COBOL PROGRAMMING SYSTEM TERMS

COBOL program: a source program written in COBOL, from which an
object program is compiled.

Object program: the machine language program compiled from a COBOL
program.

Compile: to use a computer to produce an object program from a COBOL
program. During compilation, listings of the source and object programs
are printed, as well as diagnostic messages that pinpoint errors the
compiler has discovered in the COBOL program.

COBOL compiler: a program supplied by IBM that directs the computer
during compilation.

Source computer: the computer used to compile the object program.

Object computer: the computer used to execute the object program.

(3/66) 4

Language Elements

LANGUAGE ELEMENTS

The COBOL language is made up of these elements:

• Reserved w1:>rds

• Programmer·· supplied names

• Symbols

• Literals

• Level numbers

• Pictures

Programmers compose programmer-supplied names, literals, and pictures.
Of course, there are rules that govern the choice and arrangement of
characters. Within the latitude permitted by the rules, however,
programmers are free to compose an almost infinite number:of names,
literals, and pictures to suit particular needs in programs.

By contrast, the reserved words, symbols, and level numbers are
provided in fix•::id s~ts, from which programmers select the ones they
need. Programmers are not: allowed to invent new reserved worQ.,~,
symbols, or lev•!l numbers. Even so, there are rules to follow --
for example, in determining which reserved word to use for a particular
entry.

Examples of elements. The sample COBOL program entry below contains
all six elementS:---

(3/66)

level
numbeP

pPogPammeP-supplied
name

7

ZitePal

piotuPe symbols

~SERVED WORDS

Approximately 250 English words and abbreviations have been set aside
to be used only for certain purposes. Special meanings have been
preassigned to the reserved words: therefore, the programmer

• does not define reserved words.

• has no way of changing the meanings of reserved words.

• cannot add words of his own to the reserved word list.

• cannot substitute other words for those on the list.

• must not alter or misspell reserved words.

• may use reserved words only for specified purposes.

Types of reserved words. Some of the main types of reserved words are:

• words that identify program units: for instance, SECTION,
ENVIRONMENT, and WORKING-STORAGE.

• words that identify or explain parts of entries1 for
instance, BLOCK, PICTURE, and VALUE.

• words that specify actions to be taken, like READ, MOVE,
and ADD.

• words with specific functional meanings, such as NEGATIVE,
COMPUTATIONAL, and EQUAL.

• words that represent certain data values: for instance,
ZERO, SPACES, and HIGH-VALUE. (See "Figurative constants" below.)

Figurative constants. As a rule, it is up to the programmer to define
data items and to supply names for them. However, a few data items
with predefined values have been built right into the COBOL language.
The names of these built-in data items are reserved words which are
called "figurative constants".

The most frequently used figurative constants are ZERO and SPACE.
These reserved words (and their plural forms, ZERO or ZEROES, and
SPACES) represent the data characters zero and blank, respectively.
The programmer may use these words whene'Ver zero or blank values are
required in a program; for instance, he might write MOVE ZEROS TO
TOTAL-WAGES in order to put all-zeros into a data item. Similarly, he
might write MOVE SPACE TO CONTROL-CODE in order to blank-out a data
item.

(Continued on next page)

(3/66) 8

RESERVED WORDS (continued)

Complete list of reserved words for System/360 COBOL.

ACCEPT
ACCESS
ACTUAL
ADD
ADVANCING,
AFTER
ALL
ALPHABETIC
ALTER
ALTERNATE
AND
APPLY
ARE
AREA
AREAS
ASCENDING
ASSIGN
AT
AUTHOR

BEFORE
BEGINNING
BLANK
BLOCK
BY

CALL
CF
CH
CHANGED
CHARACTERS
CHECKING
CLOCK-UNITS
CLOSE
COBOL
CODE
COLUMN
COMMA
COMPUTATIONAL
COMPUTATIONAL-1
COMPUTATIONAL-2
COMPUTATIONAL-3
COMPUTE
CONFIGURATION
CONSOLE
CON'l'AINS
CONTROL
CONTROLS
COPY
CORRESPONDING
CREATING
CYCLES

DATA
DATE-COMPILED
DATE-WRITTEN

(3/66)

DE
DECIMAL-POINT
DECLARATIVES
DEPENDING
DESCENDING
DETAIL
DIRECT
DIRECT-ACCESS
DISPLAY
DISPLAY-ST
DIVIDE
DIVISION

EJuSE
END
ENDING
ENTER
ENTRY
ENVIRONMENT
EQUAL
ERROR
EVERY
EXAMINE
EXHIBIT
EXIT

FD
FILE
FILES
FILE-CONTROL
FILE-LIMIT
FILLER
FINAL
FIRST
FOOTING
FOR
FORM-OVERFLOW
FROM

GENERATE
GIVING
GO
GREATER
GROUP

HE:ADING
HIGH-VALUE
HIGH-VALUES
HOLD

IBM-360
IDENTIFICATION
IF'
IN
INCLUDE

INDEXED
INDICATE
INITIATE
INPUT
INPUT-OUTPUT
INSTALLATION
INTO
INVALID
I-0
I-0-CONTROL
IS

JUSTIFIED

KEY

LABEL
LABELS
LAST
LEADING
LESS
LINE
LINE-COUNTER
LINES
LINKAGE
LOCK
LOW-VALUE
LOW-VALUES

MODE
MORE-LABELS
MOVE
MULTIPLY

NAMED
NEGATIVE
NEXT
NO
NOT
NOTE
NUMERIC

OBJECT-COMPUTER
OCCURS
OF
OH
OMITTED
ON
OPEN
OR
ORGANIZATION
OTHERWISE
OUTPUT
ov
OVERFLOW

9

PAGE
PAGE-COUNTER
PERFORM
PF
PH
PICTURE
PLUS
POSITIVE
PRINT-SWITCH
PROCEDURE
PROCEED
PROCESS
PROCESSING
PROGRAM-ID
PROTECTION

QUOTE
QUOTES

RANDOM
RD
READ
READY
RECORD
RECORDING
RECORDS
REDEFINES
REEL
RELATIVE
RELEASE
REMARKS
REPLACING
REPORT
REPORTING
REPORTS
RERUN
RESERVE
RESET
RESTRICTED
RETURN
REVERSED
REWIND
REWRITE
RF
RH
RIGHT
ROUNDED
RUN

SA
SAME
SD
SEARCH
SECTION
SECURITY

SELECT
SENTENCE
SEQUENTIAL
SIZE
SORT
SOURCE
SOURCE-COMPUTER
SPACE
SPACES
SPECIAL-NAMES
STANDARD
STOP
SUBTRACT
SUM
SYMBOLIC
SYS IN
SYS OUT
SYSPUNCH

TALLY
TALLYING
TERMINATE
THAN
THEN
THRU
TIMES
TO
TRACE
TRACK-AREA
TRACKS
TRANSFORM
TRY
TYPE

UNIT
UNIT-RECORD
UNITS
UNTIL
UPON
USAGE
USE
USING
UTILITY

VALUE
VARYING

WHEN
WITH
WORKING-STORAGE
WRITE
WRITE-ONLY

ZERO
ZEROES
ZEROS

PROGRAMMER-SUPPLIED NAMES

Names for data items, data conditions, and procedures are supplied by
programmers. These names must be defined within the program in which
they are used, sinc.e, unlike reserved words, they do not have pre
assigned meanings.

Rules governing programmer-supplied names.

• A name may be as many as 30 characters long.

• It may contain letters, digits, and hyphens.

• Names of procedures may be composed entirely of digits, but
names of data items and data conditions must contain at least
one letter.

• A name must not begin or end with a hyphen, although there may
be hyphens anywhere else in the name.

• Spaces (blanks) must not appear within a name.

• No name may be spelled exactly the same as a reserved word.

Examples of progranuner-supplied names in an entry.

(3/66) 10

SYMBOLS

Symbols are special characters which, individually, have particular
meanings for the compiler.

~nctuation symbols -- used to punctuate program entries.

period used to terminate entries

comma used to separate operands or
clauses in a series

semicc1lon used to separate clauses in a
series

quotat.ion mark used to enclose non-numeric literals

() parentheses used to enclose subscripts

Arithmetic Symbols found in arithmetic formulas.

+ plus

minus

* asterisk

I slash

** two asterisks

- equal

() parentheses

addition; "plus"

subtraction; "minus"

multiplication; "times"

division; "divided by"

exponentiation; "raised to the
power of"

"make equal to"

used to enclose quantities, to
control the sequence in which
operations are performed

Condition svnbols -- found in expr·essions which involve tests of
data conditions.

=

>

<

()

(3/66)

equal

greater than

less than

parentheses

"is equal to"

"is greater than"

"is less than"

used to enclose expressions,
to control the sequence in which
conditions are evaluated

11

LITERALS

A literal is an actual value used in a program. Literals are
supplied by programmers; but unlike a progranuner-supplied name, a
literal describes itself and needs no separate definition in the program.
The two main types of literals are "numeric" and "non-numeric" literals.

Rules governing nurneric literals.

• A numeric literal may be made up of digits, a plus sign or a
minus sign, and a decimal point.

• It may contain as many as 18 digits.

• If there is a sign, it must be the leftmost character of the
literal.

• If there is no sign, the number is assumed to be positive.

• A decimal point may appear anywhere in the nurnber, except as
the rightmost character. Whole numbers are written without
decimal points·.

An example of a numeric literal in an entry.

-, , , , Mu!LITftlPILlvl lslAILIE!s!/lelvl 1.1~5!2!5[IGl1fVldNIGI leloJN!uls(.1111.11 a
__ numei-ic

ti tei-at

Rules governing non-numeric literals.

• A non-numeric literal is always enclosed by quotation marks.
The quotation marks are not part of the literal.

• It may be as many as 120 characters long.

• It may contain any character except a quotation mark. So, digits,
letters, spaces, and all special characters except one, may be
found in non-numeric literals.

An example of a non-numeric literal in an entry.

(3/66)

'-~~~ non-numei-io
titei-at

12

LEVEL NUMBERS

Level numbers are found in entries that assign names to data items and
data values. The major purpose of level numbers is to designate the
levels of data items, in relation to each other. The numbers that may
be used are 01 through 49; 77; and 88.

Level numbers 01 through 49 are used to designate the levels of data
items that form records. Level number 01 is always assigned to the
record as a whole, while 02 through 49 are assigned to items that are
parts of records.

Level number 77 is used in entries that describe independent data items,
that is, items that are not records or parts of records.

Level number 88 is used in entries that assign names to specific values
that data items may assume.

When an entry contains a level number, the level number is always the
first element of the entry. The level number is followed either by a
programmer-supplied name or the reserved word FILLER.

Examples of levE~l numbers in entries •

1.eve 1.
nwnbszts

(3/66)

.&. ..;.L ..L

Ioid I JI RAN SA CII
I l I ,

02 BE CIC ___..,.~
03 _,... --- _.. -- "'7

~ .. -+,

tL 'J.Li~·Q3 ~
I l ·:a2 CU S[Ij

10 N 1- R Elclo
R D - ID ElN!T
R EC 0 R o-lc
88 .1 Nlc!o
88 i OUTG
ACCO UNTt-
OMER - l·DlE

13

' Ji R1D •. TT TI TT T T I
llFil c AIT 10 Nl.I I i I ! \ !
o!olE'-'- jp . I ·C 11 111 ' T1URIE Ix!.! l I l

Mlt N I ·1 I G .J V.A ·L ulE 1 IAI •!. i r 1
ol1IN,G J v A LUIE 'le!•!. ' I I

I ' i

NlUMB E!R!_,_
. i

PlllC!T ulRIET T J T 919191.
NIT IF 1IclA T 1blNI. , i I . ! i . T T I I

PICTURES

Pictures describe certain characteristics of data items, such as

• how many characters an item contains.

• whether the characters are numeric, alphabetic, or alphanumeric.

• whether the item has a sign.

• where an assumed decimal point is located.

• what editing (deletion, replacement, or insertion of characters)
is to be done to form the item.

Each picture is a string of characters, and may be from 1 to 30
characters long. Pictures are composed of one or more of the
characters listed below. (Each character or pair of characters has aL
symbolic meaning1 the meanings of some of these characters are
explained later in this book.)

A B CR DB E K P S V X Z 0 9 + $ * (
Pictures may also contain numeric literals (unsigned whole numbers
only) enclosed in parentheses. The literals provide an abbreviated
way of repeating a picture character1 for instance, X(20) means the
same as 20 Xs in a row. ·

In an entry, a picture is always preceded by the word PICTURE or by
the words PICTURE IS.

Examples of pictures in entries.

pi.OtM1''18

I

_!() 2 Fl LL E RI~ Pl C[T UR E xl1 81. l _l l

:o K-Iv CTIU lIJlU 2 ST oc AL UE _t_ Pl RE • 9 9.

I \
T l

(3/66) 14

I

Program Structure and Contents

PROGRAM STRUCTURE

COBOL programs are composed of entries arranged in divisions, sections,
and paragraphs. In general, a division is made up of sections, and a
section is made up of paragraphs.

Divisions. All COBOL programs are divided into four separate divisic>ns.
The divisions have fixed names -- IDENTIFICATION, ENVIRONMENT, DATA,
and PROCEDURE; and always appear in that order in a program.

The beginning of each division is marked by a division header entry,
which consists of the name of the division followed by the word DIVISION
and a period. A division header always appears on a line by itself.

Sections. Sections are not found in the Identification division.
The Environment and Data divisions always contain sections, and the
sections in those divisions ha~e fixed names. In the Procedure
division, sections are optional; there progranuners may, if they wish,,
create sections and supply names for them.

Each section is identified by a header entry which consists of the
section name followed by the word SECTION and a period. A section
header usually appears on a line by itself.

Paragraphs. All of the divisions except the Data division contain
paragraphs. In the Identification and Environment divisions, the names
of all paragraphs are fixed. In the Procedure division, paragraph ·
names are supplied by programmers.

Paragraphs are identified by header entries which consist of a name
followed by a period. Paragraph headers do not contain the word
PARAGRAPH. Also, a paragraph header does not have to appear on a line
by itself; it must be the first entry on a line, but it may be followed
on the same line by other entries of that paragraph.

Entries. An entry can be defined as a series of two or more language
el~ents, the last of which is a period. (However, the programmer
cannot arbitrarily string together a bunch of elements, and call them
an entry. The sequence of elements in each entry is dictated by
precise format rules.)

A paragraph header is probably the simplest entry, since it consists of
a reserved word or a programmer-supplied name, and a period. Likewise,
division and section headers are relatively simple entries. Most
entries, though, are longer and more complex.

(Continued on next page)

(3/66) 16

PROGRAM STRUCTURE (continued)

Sample division with structural units identified.

division entl'ies

seotions

pa1raag'1'aphs

c:
c
c c:

(3/66)

c
c c c:

c:
c:
[
[

1-111! If I l ! l

I I
1

I I i
T i
! I !
I I •

: I l
I l 1
\ ; !

! l

: I I : I I I u T 1 L 1 IT!Y 2l4!o!o lulNf 1 Tf s1. l
1 ls!E!L!E clT N Elti!-IMAlslTIE Ri-lF 1 LIE! !

I l 1 11 UiT 1 L 1 Tlvl 214ToTo u1Ntt TTs •. I

17

PROGRAM CONTENTS

Identification division. The Identification division contains
information that identifies the program. It is intended, for the most
part, to inform people who read the program.

At the very least, the division states the name of the program.
Usually it contains further information about the program, such as
when the program was written and who the programmers were. There ma~'
also be remarks that explain the. data processing job for which the
program was written.

Environment division. The Environment division contains information
about the equipment tha~ _will be used when the object program is
compiled and executed. Most importantly, it ties together the devicE~s ·
of the computer system and the data files that will be processed.

The model numbers of the System/360s on which the program will be
compiled and run may be given. Each data file, by name, is assigned
to an input-out9ut device. Sometimes, special input-output
techniques are specified.

Data division. The Data division describes the data to be processed
by the object program. It describes the data items that make up each
of the files named in the Environment division, and in addition,
describes the data items that make up working-storage -- such as
constants and work areas.

Entries in this division show how the data items are grouped and
organized into records and files. Data names, pictures, and other
information about the data items are given.

Procedure division. The Procedure division specifies the actions
that are required.to process the data. Also, it indicates the order
in which the actions are to be carried out, and provides for alterna·te
paths of~tion under given conditions.

The main types of actions that may be specified are input-output,
arithmetic, data movement, and sequence control.

(3/66) 18

Identification Division

IDENTIFICATION DIVISION ENTRIES

Unquestionably t:he simplest division, the Identification division is
only required to have the following three entries:

• Division header
• PROGRAM-ID paragraph header ~~- .~ ~~
e Program name, enclosed in quotation .marks. (F~ - r~ J/ _::.d).

Py "_Y ?.d 7-~ &27Vi..? P" Vd-"\ v'\7 O •

The division may also contain up to six additional paragraphs. Fixed
names are provided for these paragrraphs(AUTHOR, INSTALLATION, DATE
WRITTEN, DATE-COMPILED, SECURITY, and REMARKS), but the programmer is
free to write any number of entries in each paragraph, and to give any
desired information in the entries~ The entries may contain any
characters and words, including reserved words.

Sample Identificiation divisi:on.

I iDiEINTTI I F1 I cTA1T I OINi :o 1TvT11s I 1oTNT i i T i
1 ~ T T ! I l I , • l ! ' i i i

! I I I T I T TT T IT T T TT TTT ; ; J T ! TT T i I 1 T ! I l . 1 1 ; !

P!RJQ[GlRIA M rlol .! !
l

l I T ' ! TT l ! I ! ! l I ! 11 [- j I
! i i ••'p CHAS El' j i ! ! ! l l T r

I :
_i UR ·' I " I i ! !

f I I T i

! ! l ! j j I
! i I i I I .I_. ! ! : r

I I

rr HJQ I II ! I ;

i l I I ll ! [! I AU R. ! i

le L·11cHA
T ' ! ! TT !1 i !

l I i
A UL M E R!.i ! I ! ! I ! ...:. !

I ! 1 T T T T I TT !1 j ! 11 l T I I J_ ~ ~

IN ST~ LL A Tl 0 N • T l ! I T I T j I ! l i I I T I ' TT ' T !
m HA NGI IR Elc:oiR oTs. 1o E1P!AIR TMEiN :f T ! I 1 I ! r I T 1 I UR c SI T:. ~ I i

•• l I I I ! ! f I ! !
! I ; I I I I I I I I ' t ..1 ! ' \ \ I !

DA TEh-w RI TT E~. l I I i T I I T TT! i j T l -r 1 T 11
~ lG PIR OGIR!ATM ~ 1R!I TTIE1N TJ!ulL yl_.9_!1i9

I ! f T I RI IN AL s12i.i
I _:] HI s I s RE VI SI O.N 4 _t_I ~ Rlt T TlEINI siEIP:T E!M!BIE RI_. 1 9 6 5!.
I ' I I I 1 I I ' i I I i I I I l I I I l t I I

RiEMA:R T I T I TTT l I i I T 1 T KS. ! I
l !·lou TP UT OF T H tis! !P RO G!R A!M I sl IAJ R!Elp!o RIT! b F i I I I
;

:AIL H1A TF i~ I j ! I

OINT I T l L PU RC SE s OR T HE1 .P RE1 ,t,Q UlSI M H. J_
i

\ lTlH E RE p~ R T I S 1R EQ UI RE 0 B YI -f-r!H El i5!T HI lo :AY r ; !

l ! lO!F. EA~C H M O.N1T HI~\ AN D IS DI sl-rl8l1 eiuiT\E ol ITIQ
i I lA!LIL p!u HASil NlT All'l1Tv ElslJ 1IN ' RC NG iR EP RE SE p UT !

' ' I : .I
P U.RlclH tlN Gf

j
s! lclA R

1oi T -
I I i 1l'Si rT ·H!E. A.S RE c.o RJD 'F t 1LE1_._

: T lslo\R1T ElD! BY \PlU RlC!HA $El DATTE WlllTtH l'N c OM1M10 D·llT.Y J TT
'·

(3/66) 21

Environment Division

t

ENVIRONMENT DIVISION ENTRIES

The Environment division may have two sections, the Configuration
s~ction and the Input-Output section. The Configuration section ··
identifies the source and object computers. The Input-Output section
(required in all programs that process input or output files) assigns,

.files to input-output devices and may specify special input-output
techniques.

Sample Environment aivision.

EINMl:R!o .N M E.NITI ol1lvl1 s11 o1N. T T ! 1 i T f T 1 TT 1 T I
! ; j j I .

l _,_ I I I . , I l I : T , ' l l I ! I 1 I 1 I ! ! ' l ; ! i

clo!NTF 11 !G. IPI NI lslE c!T 1 lo I l I I I I i l ! U1R A T N • I I : !
l l I 11 I I I ! l l l ! : l l l ! I ! . ! ~ . l I

slolu!RlclE TTETRT. !TT 1 ! I

l T I 1 -c 0 M PU !

l1!s M - 36 0 Fl3 .0. ! ! I I ' l I ! I l I I
I ' ! ! ' I l 1 I T I

_l
I

i I I

OB
1
J ElC T -c 0 M PU

1 I T t
I I I I I 1 I I T1E!R.. ! 1 I

11 BM - 36!0 Fl31o}. l ! I I 11 I ! I I I 1 !
I I l I i 1 I l ' I l _l

1lNIP
I I

OU TP UT ls IE CT I o!N l ! I 111 I I I I I UiTI~ .. l I'' I

! T I l I I Tl I I !

Fl1!LE:-c. ON lI ROIL. I 11 l I I I ·I
i I, I

1S1EL EC T PU RC HA SI NG -F IL E I I I I I . ·1 I I
I I I AS SI GN TO 'p UR M AS I u N 1IT -R 1E!c10 ROI 12 5410 u-.N1IT I

I :s E.L EC T PU RC HA SE,...;. RE PO RT -F I LIE. j I I I I I iJ !

1

I

'

I

.i'
I I I I

. J_ AS SI G!N TO 'IR EP 02 7' ' I I UN liT.- RIEic!O RloT l1 40 3 u NI T •

I
T I !

I 1.
i I I I J_ I 1 I

I 1 O-lC10 NT RO L. I I l l - l

lA P.P LY L.A ST -L ljN E T 0 FO!RM- ov!EIR F 1L!o~ l
I OIN P[!J RC HAS E- RE PO RT -IF 1 IL!ET I I 1 1 .l ' '. I•

(Continued on next page)

(3/66) 25

ENVIRONMENT DIVISION ENTRIES (continued)

System/360 model numbers. The Source-Computer and Object-Computer
paragraphs may give a model number that consists of a letter followecl
by a number, for instance, F40. The letter designates the main core
storage capacity of the computer, according to the following code:

c = 8,192 bytes
D = 16,384
E = 32,768
F = 65,536

G = 131,072 bytes
H = 262,144
I = 524,288

The number that follows the letter designates the System/360 model.
The number SO, for example, means System/360 Model 50.

Assignment of files to input-output devices. Files are assigned to
devices In the File-Control paragraph. For every file, there is an
entry that selects the file by name, and assigns it to an "external"
name and to a device.

I • .1 I
1SlEL1ECT

~

fi 'Le
name

e3:te1-na'L
name

devioe
class

device
numbeza

• File name is the programmer-supplied name by which the file is
referred to in the COBOL prog~am.

• External name (always enclosed by quotation marks) is the name
by which the file will be identified on a job control card at the
time that the object program is executed.

• Device class can be UTILITY, DIRECT-ACCESS I or UNIT-RECORD.•
The UTILITY class is composed of machines that can read and write
data sequentially -- magnetic t~pe, disk, drum, and data cell
devices. The DIRECT-ACCESS class is composed of machines that c:an
read and write data randomly -- disk, drum, and data cell devicE~s.
The UNIT-RECORD class is composed of printers and card read/punc::hes.

• Device number is the IBM number of a specific device. For example,
2311 means the IBM 2311 Disk Storage Drive. An exception to this
rule is device number 2400, which stands for any of the magnetic:
tape units in the IBM 2400 series (2401, 2402, 2403, or 2404).
Device number is sometimes omitted.

(3/66) 26

' '

Data Division

DATA DIVISION ENTRIES

The most commonly used sections of the Data division are the File
section and the Working-Storage section. The File section contains
descriptions of the data files to be processed by the program, and
descriptions of the data records in those files. The Working-Storage
section contains descriptions of work areas and constants.

Sample Data division.

DAT Ai D 11v I S I lo N •
I i

FI LE: SECT ION. ~
I I I ! I i I I 1:

I

i

:LA e EL RE clo!Rlo s1 lAfR El 1oM 1lT1T E o. I ! I
!

: 1 . 1 I i

011 :P.U R c HA s I NIGl-IR E clo!R D •
;

I i· I . :012 co M~ olol 1 TY • I , ,
IT

~
I

I 1.1 : 03 1 o1Elsc R 1PT1 ON P.1 CT ulRTET xc :3lo >I.·
~
l
I
I

I I

I

l

I I .1 :o 2 u N I T s - p u R c HIA s E D p I c T ulRIE 9r(s!) •
! T 1 :o 2. u NI I [-Tc 0 s T p I c T u RTE 9T (4) v 9 9 •
I i :o 2 · T 0 TA L - C 0 ST P I CT U RJE gT (6 I)_ V 9 9 • I

I ~ol2 c A RJD -le 0 D E p I c T u.R E Xi (4) • I

(Continued on next page)

(3/66) 28

I

i

\

DATA DIVISION ENTRIES (·continued)

Sample Data division (continued).

FD ~p UR CH AS E- RE PO RT ~ Fl LE I
_:R EC OR DI NG MO DE IS ·F
I .c1_L AB EL RE co R.O S ARE; OM IT TE D
lD ATA RE co R.D IS PU RC HA SE -R E·P10 RT -L IN E • .. ,

I I .

...l

01 I _p UR CH AS E- RE PO RT -L IN E •
102 Fl LL ER p CT URE x (1.0) .
102 co MM OD IT Y- N.l.U M1B ER p CT U.R E 9 (5) 89 98 9 (5) •

102 Fl LL ER I p CT URE .x (6) .
102 co MM OD IT Y- N1A ME p CT URE x (,3 0) • .
:02 Fl LL ER p CT URIE x (6) • !
:02 PU RC HA SE -0 AT E p CT l.J.RE 9.9

. I

BJ9 98 99.
:02 Fl LL ER p CT URE x (41) • I

I :02 QU AN Tl TY p CT ORIE z~ zz z_,_ zz 9 •.
I :02 Fl LL ER p CT URE x:_c 6) •

Jo 2_ co ST' T.P ER -u NII T Pl CT l.JIRIE l~rs1~1s $$.9 9. I
)

:0 2' Fl LL ER Pl CT URE x (4) • I

·102 -P UR CH AS E~ cp ST Pl CT URE $$ -'-$ $$ __t $ $$.9 9 •
/ 102 Fl LL. ER Pl CT U.RE x (1~) ~

I.
_I

W·O RK:I NG -s TO RA GE SE ctr 10 N. I
I
I

77 -~o LO -N UM BER Pl CT URE 91 1 2 } .
77 lQ UA NT IT Y- TO .TA!L Pl clT U!RE 9 (7) __t_ ,V AL UE ZE RO.
77 Jp UR CH AS E-co ST- TO T1AL Pd.C TURE 91 7} V9 9.

l 'vlA LU E ZE RO.

I

(Continued on next page)

(3/66) 29

DATA DIVISION ENTRIES (continued)

Another sample Data division, with entry types identified.

file
descr-iption

entzty
L_

l'eCOl'd
desozti.ption

desoPiptiona
of

independent
items L.

r
l'ecoztd

desol'ip ti.on

L

(3/66)

o!A TA: lo 1. v I s I 0 N • l ! : ! t T t I ! I f

l :1 f 1 !Ti ii TTT ii
! I I I ' l I T I !

F1 I L E_t_ SECT I 10 N • 1 1 ! ! l l : I l ;
I l 111 I I ! i ! I l , ! ! ! f ! T

lRECORot1.NG! !Mioo!El 11 sl :Fr 1 IT i I IT T

lDIA TA REC OjR!D[I ls 1s Tlo!c!K -lTiR!A N!SIAIC Tl 110IN • I J !

l ~o 2 s r o.c K\- N u Me ER • T I l , 1 I 1 I I t ! I I 1 1
I I : o 3 T o'i 1 s!T RI 1 e u T 1 ON-ICIEIN r!E}R!..1. jpl 1 !c Tiu!RlE lg 9. TT

' ! : , 03. c\A.TALOG-NU.MBETRl I.· l ! J 1 I 1 I

l I . I 1 · 1 l i I I 1 I I·
/ o 1 ls!T·O c K - TR A!NlslA c T 110 N • . I I I i i ! I 1· I 1 I

I I : 1 1 0/4 CONTROLL 1lNG- PlATRTY!-'-! lp 1!c!TiuRlEi !9991.
.1 I I : o!4 Ale c:o u NT- Nfu Me ETR._t_ p!J lc!T u1RlE1 9. cTs > •

' i I 1 l 0:4 slH 1iP P 1.NG-lcoo El..1. P 1!ciTluR!El lgsl.

! I .!_I I ... ·r , Tl l 1 ! ! TT i ! ! I I !
T
j_

1 I
77 iPRI OR I TY- LE!YELi.._' p I CTURE 9.9!9!_,,_. TV!A_bU,E I 4fo·1 I.

: I i I
77 lsuM-OF-UN1I TS Pl CTUl.BE ·9(11>1~! v1A.LUE Z

1
ERO.

l ! I IT ,
77 lTOTA'l...-VAL!UE.i_ p 1!cr!u.RE 19(6)jy,9!(3)Lt. vlALUE ZERO.

l ! I I

l T I

ol 1 ls'u MM AR Y • T ! ! T I , 1
I t92 STOCKl-NUMBER-1. p I cln.iRE 19981919198·9,(6 >1B,99.

i I io12 TRANSIAcT I ON-T1YPE_1_ p I CTTU!RET A(2!0T>1. i
' I I :02 , F 1 LLElR-'- P 1 cruRE xxxx .l jVAL!u1ET s!PA!CEisl.

I I I :o 2 To TIA L -a u AN T1 1 TY -'- P 1 c T u RE zl , lz!z zl, lz!z z •
j I I lo 2 F I LL EfR _, Pl I iCTT uJR E xx xx -'- lY A LiUIEI S!P!Alc Els! •
11 T :02 TRAN s1A·CT 1 ON""."vlALU E..1_ P 1 ctt~ RE Ji z zz~zzz. 99.

30

item
diesc11iption

etitl'iss

..,..--1

..,.__J

...,_J

..,__J

......__J

_...;_J

..,..__J

,..__J

..,._j

..,._J

...,__J

...,__J .._.

..,..__J

_._J

...,..__J

_...;_J

.....--.1

..,__j

..,..__J

..,__J

\
f

~TEM/360 COBOL TERMS FOR UNITS OF DATA

Item: an area used to contain data of a particular kind.
an--""item" is the same as a "field".)

Group item: an .item that is composed of smaller items.

(In general,

Elementary item: an item that is ~ composed of smaller items.

Independent item: any item that is not a record and not a part of a
record. Must be an elementary item. Used as a work area or to contain
a constant.

Data record: the most inclusive item, usually (though not always) a
group item compr.ising several related items. Sometimes spoken of as
the "logical record". (Whenever the term "record" is used in COBOL,
~a record is implied -- unless label record is specified.)

Label record: a r·ecord that contains information about a file.
Label records are normally written in files stored on magnetic tape
or direct-access devices. Some files (such as card files) do not have
label records.

Block: . a unit o:f data, containing one or more data records, that is
transferred to o:c- from main storage at one time by an input-output
device. Sometimes spoken of as the "physical record". When data
records are stored on magnetic tape or direct-access devices, each
block generally contains more than one data record.

File: a collection of related data records. The records in a file
may have the same or different lengths and formats.

(3/66) 31

FILE DESCRIPTION ENTRY

For each file, there is a file description entry in the File section
of the Data division. The entry consists of a level indicator and the
file name, plus clauses that describe how many records or characters a
block contains, how many characters are in a record, what the recording
mode is, whether there are label records, and what data records are :ln
the file. The file description entry will be followed by a record
description for each type of record in that file.

FD p R c D UC T 1- us AG E-FI t E
lR EC 0 RD I IN G ,. IQ DE IS v I
:a L Ole ~ CIC NT Al NS I 8 RE co lB D s

l ~ E co ~D K; ON TA IN s 52 -II IQ ~ 06 CH AR IA Jc T IE RS
1 !LlA lB EL RE co lB DS AR E ST AN DA RD

i
'!OJA TA IR E ClQ RID IS 1P RO DU CIT -u SAG:E -.R!E co RD, !

-:: ...,..

Level indicator. File description entries always begin with a level
indicator. A level indicator is a special, two-letter reserved word.
The level indicator that is used most often is FD, which stands for
File Description.

File name. The progranuner-supplied name of the file always follows
the level indicator.

(Continued on next page)

(3/66) 32

FILE DESCRIPTION ENTRY (continued)

RECORDING MODE clause. The RECORDING MODE clause specifies whether the
recording mode in--:enI"s file is V, F, or u. The clause may appear as
RECORDING MODE IS u, but it can also be abbreviated to RECORDING MODE u,
or simply RECORDING u. The clause may be omitted when the recording
mode is v.
• "Recording mode" means the same as "data record format". The

three permissible recording modes are V (Variable length),
F (Fixed length), and U (Unspecified length).

• Recording mc•de V is the only mode in which blocks of two or more
vari-able-length records can be handled. However, it is also
possible to have just one record per block and to have fixed
record lengths in this mode. The distinguishing feature of mode V
is that each data record includes a record-length field and each
block includes a block-length field. These fields are not
described in the Data division, because provision is automatically
made for them.

• In recording mode F, all of the records in a file are the same
length. Blocks may contain more than one record, and there is
generally a fixed number of records per block. In this mode,
there are no record-length or block-length fields.

• Mode u reco:r~ds may be either fixed or variable in lengthr however,
there is only one record per block. There are no record-length or
block-length fields.

BLOCK CONTAINS clause. The BLOCK CONTAINS clause tells either how many records are in a block, or how many characters are in a block.

When the number of records per block is given, the clause may appear
as BLOCK CONTAINS 25 RECORDS, or simply BLOCK 8 RECORDS. If the
number of records in a block varies, the clause tells only how many of
the longest reco1~ds would form the longest possible block. The clause
may be omitted when there is only one record per block.

When the number of characters per block is given, the clause specifies
the number of bytes that the longest block will occupy in storage.

(Continued on next page)

(3/66) 33

FILE DESCRIPTION ENTRY (continued)

RECORD CONTAINS clause. The RECORD CONTAINS clause specifies how many
characters are in the longest data record in the file. More precisely,
it specifies how many bytes the longest record will occupy in storagE:!,
for instance, RECORD CONTAINS 140 CHARACTERS. It may also give the
range of record sizes, as RECORD CONTAINS 82 TO 540 CHARACTERS, or ill
abbreviated form RECORD 80 TO 160. This clause may be omitted, since
the compiler can determine the size of records from the record
descriptions.

LABEL RECORDS clause. A LABEL RECORDS clause is required to appear in
every file description entry. The clause may indicate that label
records are standard, it may give a name for label records, or it may
state that label records are omitted.

• When the clause states that LABEL RECORDS ARE STANDARD, it meam:;
that the labels have the standard System/360 label format. In this
case, the labels are checked or created automatically, and the
label records are !!2.:!:. described in the COBOL program.

• When a name is given, for example, LABEL RECORDS ARE
BALANCE-TOTALS, it means there are user labels in addition
to standard labels. Such additional label records are
described in the Linkage section of the Data division
(not in the File section), and are processed by "declarative"
procedures (separate from the main body of the Procedure
division).

• LABEL RECORDS ARE OMITTED means either that tne file has no
labels at all (as in the case of a card file), or that the
file has non-standard labels. (As a rule, non-standard label
records are treated as if they were data records. Each label
is defined as a separate file, described as a record in the
File section, and processed in the main body of the Procedure
division.)

DATA RECORD clause. The DATA RECORD clause gives the name of each
different kind of record in the file. For example, DATA RECORDS ARE
SALES, RETURNS, PAYMENTS, CHARGES. There must be at least one kind of
record in the file, and there may be several kinds, so this clause
appears in every file description entry. Below the file description
entry, there must appear a record description entry for every record
that is named in this entry.

(3/66) 34

RECORD DESCRIPTIONS

At least one record description will be found below each file description
entry. A recorcl description is written for each type of record in the
file; for. example, if a file contains four types of records, there will
be four record descriptions below the file description entry.

A record descrii;•tion shows the structure of the record: the order in
which items appear in the record, and how the items are related to each
other. For every item, there is an item description entry that begins
with the level number of the item.

£ --

ol1 1P UR c HA SI N G • l f
r

I :o 2 AC c OU N T. I _j_ l
l I I 03 CAT1E G OR y p IC T u RE, xx. ! ' _J_ '

11111 03 I N1U!MlB E.R ! I p I c!T U!R .E 9.(6) • I

j I 1012 ST A[IJ uTs-Tc 0To1E1 p tic T UR El x . ! l

I 110 2 TR AN s!A c T I OlN!. I I I

I : lQ 3 vlE1N Ji I I T 1 T I I I D 01R1. I
l 11 0141 NTATM E I 1 I l - PTI iC!T UR E x (2 5) •

_: T 0 4 NUfM B ETR I pTf CT U.R E 9 (6) .
I 03 PU R CH ATSIE. _J_

I I 04 DA T E • I
J I I

I 0 5 M ON TH p IC T URIEi 9.9~. I

I I I
05 DA y P.I CT URJE 9 91.l I ' i

l l 05 y EA.R Pl CT UR E 99 J I

I I
04 A M OU NT Pl _c T URIE. 9-1 4h V9 9. I I I

• Record descriptions always begin with an entry for the level 01
item, which is the record as a whole. Usually, the record is
subdivided, and entries for items that make up the record appear
below the level 01 entry.

• The item description entries are made in the order in which
items appeal~ in the record.

• An entry foi.· a group item is followed by entries for the i terns
that make it up. A group item comprises all the items described
under it, until a level number equal to or less than the level
numbers of the group item is encountered.

• Item description entries are usually indented to help the reader
comprehend_ t.he structure of the record. The entries for each
level are indented more than the entries for the preceding
level. Indenting is not required, however.

• Level 88 (condition name) ent:des may appear in a record
description. These are not it.em description entries, and can
be ignored when the structure of a record is being analyzed.

• Sometimes a record is treated as an elementary item, with no
subdivisions. In such a case, the level 01 entry is the only
item description entry in the record description.

(3/66) 35

"·

ITEM DESCRIPTION ENTRIES

There is a separate item description entry for each item. An item
description entry always begins with a level number, followed by
either a name or the word FILLER, and usually includes one or more
descriptive clauses that begin with words like USAGE, PICTURE, VALUE,
OCCURS, or REDEFINES.

item description
entry

Level number. A level number is always the first element found in an
item description entry.

Level number 01 indicates that the item is a record. A record is
generally a group of related items, but it may also be an elementary
item.

Level numbers 02 through 49 are used for items that are subdivisions
of records.

Level number 77 identifies an independent item, which is an elementary
item that is not related to other items. An independent item is not
a record, and not part of a record. Level 77 items are found only in
the Working-Storage section.

Level number 88 designates a condition-name entry, which strictly
speaking, is not -an item description at all. Instead, a condition
name entry gives a name to one of the values that the preceding item
can assume. Level 88 entries are found after elementary items only1
however, sometimes there are two or more consecutive level 88 entrien
after one elementary item.

(Continued on next page)

(3/66) 36

ITEM DESCRIPTION ENTRIES (continued)

Name or FILLER. Every item description entry contains either a
progranuner-supp.lied name or the reserved word FILLER, following the
level number.

A name is a data name if it follows level numbers 01-49 or 77; or it
is a condition name if it follows level number 88.

FILLER may be found in place of a name, following level numbers 01-49.
FILLER is not a name, and therefore, cannot be used to refer to an item
in a procedure. It is used in descriptions of items that will not be
referred to, usually because the items will not contain any information,
or because the information will not be processed.

l ! :o 2
! I
I _l

I I I

!o 2

data
name

\
SC
a Ta
88
Fl

0 RE
LO
HI

L LE .R

t
FILLER

I
~ 1--i

GH

(Continued on next page)

(3/66)

condition
names

ii
LI M IT
-L IM IT

p 1Ic
v AIL
v AIL
p 1lc

37

T u RE 91919 •
u El 0 sol.T I
u E 110 oT.
T UR E xix •

ITEM DESCRIPTION ENTRIES (continued)

USAGE clause. The USAGE clause indicates the code that will be used
to represent data that is stored in the item. It may be found in
descriptions of both elementary and group items. The usage that is
specified for a group i tern applies to all of the i terns in that group,.

The words that specify usage are DISPLAY, COMPUTATIONAL,
COMPUTATIONAL-1, COMPUTATIONAL-2, and COMPUTATIONAL-3. The word
USAGE, or the words USAGE IS, may also appear in the clause, but these
words are optional and generally not written. So if an item's usage
is computational, the usage clause will probably consist of the single
word, COMPUTATIONAL, but it may also be USAGE COMPUTATional, or USAG:E
IS COMPUTATIONAL.

The word DISPLAY is also optional, and is often not written. The
usage of an elementary item is assumed to be display if some other
usage is not specified for it or for any group item that it is part of.

USAGE clause

------------~-----------(\

I I
03 M IN IM u M- BA LA N CE c kl MP u TA T 10 N~ L- 3 I

I : Pl CT URE S9 { 5 J ._ I B
What the usage words indicate:

If the usaqe is Then the data code is Which means that

display external decimal --- one character is stored in each byte of th••
also called BCD (binary- item1 if the item is used to store a number,
coded decimal) , or EBCDIC the rightmost byte may contain an operation-
(extended binary coded al aiqn in addition to a decimal diqit
decimal interchanqe code)

computational binary one binary diqit is stored in each bit of
the item, except the leftmost bit, in which
the operational siqn is stored

computational-1 internal floatinq-point,
short (full word) format the item has a special format desiqned for

floatinq-point arithmetic operations1
part of the item is stored in binary code,

computational-2 internal floating-point, and part in hexadecimal code
lonq (double word) format

computational-3 internal decimal --- two decimal diqits are stored in each byte
also called packed of the item, except the riqhtmost byte,
decimal in which one diqit and the operational siqn

are stored

(3/66) 38

ITEM DESCRIPTION ENTRIES (continued)

PICTURE clause. PICTURE clauses are found only in descriptions of
elementary items. The are re uired for all elementary items except
those whose usa9e is computational- or computationa - J• ese -·
floating-point items are not given pictures because they have a definite
storage format.)

A picture always tells.how many characters will be stored and what
kinds of characters they will be. The characters that an item will
contain are rep1~esented by picture characters such as x, A, or 9.
The picture cha1~acter 9, for example, represents one decimal digit;
so, the picture 999 stands for three decimal digits.

In addition to characters with symbolic meanings, pictures often
include numeric literals (unsigned whole numbers only) enclosed in
parentheses. Such numbers are a shorthand way of repeating picture
characters. The number is parentheses tells how many consecuti.ve times
the character in front of the parentheses is repeated; in other words,
X(6) is another way of writing XXXXXX, and S9(9) means the same as
S999999999.

PICTURE oZause

,-----------,,,.._-~~~~--,

!!2,W to identify an item from its picture .•

If the picture and also For example ••• Then the item And will be used to store contains (possibly) is called

(xlx]x[I I I] T I T alphanumeric characters of any kind1 one or more Xs
letters, digits, special
characters, or spaces

one or more As -~ul3151>I1J DJ I alphabetic only letters or spaces

one or more 9a, s J~IsuM> [vl9]91 _I ~ numeric only digits, and possibly
but no editin9 v an operational sign
symbOls p

Siz[Jzlzlzl .]sJg[': numeric data that is one or more 9 report
editing eymbols 1 . v edited with a.paces or
z * $. p certain special characters , DB CR when the data is moved
+ - 0 B into the item

+ J1J.lgld~!> [E!+l91sr. external a decimal quantity in an an B,
in addition - f loatinq-point edited floatinq-point
to 9a . format that includes

v spaces or certain special
characters

Note 1 Pictures of all kinda of i tams may contain numbere in parentheses.

(Conbinued on next page)

(3/66) 39

ITEM DESCRIPTION ENTRIES (continued)

PICTURE clause (continued)

What some conunon picture characters mean.

x Each X stands for one character of any kind -- a letter, digit, special character,
or space. The picture X(l2) indicates that the item will contain twelve characters,
but gives no indication of what characters they will ber all twelve could be spaces,
or all could be digits, or there could be a mixture of various kinds of characters.

A Each A stands for one letter or space.

9 Each 9 stands for one decimal digit. Numbers are always described in terms of the
decimal digits they are the equivalent of - even. when the data code is binary.

s S indicates that the number has an operational sign. An "operationa~" siqn tells the
computer that the number is negative or positive1 it is not a separate character that
will print as "+" or "-".

v V shows the location of an assumed decimal point in the number. An "assumed" decimal
point is not a separate character in storage.

p Each P stands for an assumed zero. Ps are used to position the assumed decimal point
away from the actual number. For example, an item whose actual value is 25 will be
treated as 25000 if its picture is 99PPPV1 or as .00025 if its picture is VPPP99.

How picture and usage are related. Certain combinations of pictur~ and
usage are not compatible. For instance, an alphabetic item cannot
possibly be computational, because letters cannot be represented in
binary; this i tern -- in fact, any i tern that will store letters, spact:!S,
or special characters -- must have display usage •. Therefore, the
following kinds of items can only have display usage: alphanumeric,
alphabetic, report, and external floating-point. .

Digits, on the other hand, can be stored in any data code; so numeri~
items can have any usage: display, computational, computational-1,
computational-2, or computational-3.

Conversely, these rules mean that a displa3 item might have anl kind of
picture; but that an item with other thanisllay usage can on y hav1e a
numeric picture. (Except that computational- and computational-2
items have no pictures at all.)

(Continued on next page)

(3/66) 40

ITEM DESCRIPTION ENTRIES (continued)

VALUE clause. The VALUE clause consists of the word VALUE, or the
words VALUE IS, followed by a literal.

This clause is mainly used to assign initial values to certain
elementary data items, in particular, to constants. The value assigned
to an item remains constant during the execution of the object program,
unless it is changed by a procedure in the program. (This use of the
VAI~UE clause is permitted in the Working-Storage section, but not in
the File section.)

77 lo IS co UN TJ us A GEJ co M PU TJA T 10 N1A L ..
JP IC T UR E s1v 99 ~ vlA LU E • 0!2. I

t ____ ---)
V'

VALUE a Zause

A different use of the VALUE clause is found in level 88 (condition
narne) entries. There the clause specifies the data value which the
condition name will represent. (This use of the VALUE clause is
permitted in both the File section and the Working-Storage section.)

H
.

s1J IP 1lc1T I 03 sulBCRI PT I o!N -B A]S I UR E x. I

: a.sI REG.u LA}R ~L VIAL uTE11' 1 T• I.
l. J
___ """" __ _
VALUE aZause

OCCURS clause. An OCCURS clause indicates that an item is repeated
nth no change in its usage or picture. It specifies the number of
times the item is repeated, for instance, OCCURS 100 TIMES, or just,
OCCURS 100. OCCURS clauses are used to define groups of identical
items that will store related information, such as data tables.

HI I lol2! I lslcFR E_. lp 1 b!uRIE ls 999 - 111 I
u1RTs1 50 1T IM ES. . : COMPUTA}T 1}0NTALl-3l.i_ pee

\.)

OCCURS aZause

(Continued on next page)

(3/66) 41

ITEM DESCRIPTION ENTRIES (continued)

REDEFINES clause. A REDEFINES clause signifies that this entry givee1
another name and description to an item that was just previously
described. The word REDEFINES is written right after the data name,
and is followed by the name of the item that is being redefined.

When an item is redefined, a new area of storage is not set aside for
it1 instead, the same area of storage may be called by9this name as
well as by the previous name. Redefining is done when different namE!S
or descriptions are desired for the same item, for instance, when thE!
item may hold different kinds of information, or may be processed in
different ways, under different conditions.

-.

"ACCOUNT" is being
r-edefined.

I
l l :ot2 AC c OU NT ~ Pl CTiulRIE 9 (7) .

l I I :ofa LE DG E R RE

I
\.

DE F llN!Els AC c 0

""" REDEFINES oZ.ause

"LEDGER" wi l'L oooupy the same
stor-age ar-ea as "ACCOUNT"

(3/66) 42

UN

I . I I
T i Pl CT ulR E Ix 1 7 >1. H
J

Procedure Division

.PROCEDURE DIVISION ENTRIES

The Procedure division generally consists of a series of paragraphs,
which may optionally be grouped into sections. Each paragraph has
a programmer-supplied name, and may contain a varying number of
entries.

Sample Procedure division.

PR 0 c:E 0 URE D IV IS 10 N • T! T
I I 1 T i I I l

BIE G 11N Jl N IN G -0 F-IJ.OiB ·1 I 1 I
10 p EN IN P uTTT TP U!R!C1H A:S~ I NG -lFT1 LEl.l !
Jo PE N 0 u TP ·u T Plu!Ric H1AIS:E -;RE p olRlT - Fll LE.
~ r1oT !p U1RJClH ATs!E RTE[P .0 I

. L IN E • 0 VE SP AC1E s - R1T~-

-~R EA D PU RC HA S l!N GJ- F!llLIE 1l
! I ! l

I AT EN D!_.1_. Glo IT ol !EJN ! ' ~1 -!J!QIB • I _l D!-•O.F
1

DIE . T A:I L- PR OC ES SI NG • I I I

I i :M ov E NU M BE R 0 F co M M IQ 0 IT y !TTd OlL .0 1- N,U M !B ER .1.

T I co M M OD IT Yt- NU M BE R • _l

I ~ Ol\I E 01E S CjR1I PTil ON .0 F coJM M 0 0}1lT Y! TO !

I CdM MOlo I T Y-f-,N,A M!Ei •! I 1l _J_

~ TEI To1F Tp1ulR clHTAis ITIO plu!R C,HIA
- .

0 VE DA E SE -- DA TE .•
':M ov E UN IT sl- PU RC HA SEO TO Q UA NT 1fT y •.
!Mio VE u NI T -c O.S T 1r 0 co S!T -P E RI- UN I Ti. I
:Mo VE T OT AL -c 0 ST T 0 PU R1C HA SE -c olslT .

I :A
i

l .0 0 UN IT s- PU RC HA SE 0 TO QU AN Tl TY!- TO T AL.
I :A 0.0 . TO TA L!- co ST TO PU RC HA SE -c O.S Tl- T O,T !ALI. I

I : I F IL AS T- LI NE _t_ IW RI TE PU RC H A.S E-!RlE .PO.RT -L IN E
I I AF TE R AO VA NC IN G 01 E L1SE rMR IT E !

I . I
I PU RC HA SE - RE PO RT 1- LI NE AF TEIR ~D VAIN C.1 NG 1 • _L

(Continued on next page)

(3/66) 44

~~EDURE DIVISION ENTRIES (continued)

Sample Procedure division (continued) •

RE IA oi- NE XT - CA RD. l ! !
:R El~ D PU RC HA SI NG -F IL E-1

l ! i l I ! I . I I
! : I

I AT E:N D._, G lQJ TO EN D-QF l olB • I j_ -IJ

11 F NU M BE R OF CIO IM M.O DI TY! !1 s !NlO Tl IE,Q u!AIL. T Qi
I

. I OL D- NU MB E1R PTE R1F: OR IM T or-r A L8RIO uiT1 liN E • j_ _l_

lG 0 TO DE TA IL -IP RO ciEisls l.N G • I ! I I
I I TT T T I

.1 l 1 ~ . i I
TO T A!_L RO UT IN E • T i !

1- j I !

:M ov E SP AC ES T 0 pu1R CH A!S E- R1E1P 0 Rfrl-J~. 11N1E! I I '. ! I
~ ov E Q UA NT IT Y- TO TA L TO QU AN T llTlYI. I T
M ov E PU RC HA SE -c OS T- TO TA L IT Id PU RC HlA slE -le OS T •
~ 0 VE ZE RO s TO QU AN Tl TY -T 0 TA l L _J T I

I

' I I 1 ·, 1 PU R CH AS E-IC OS T - TO TA L • I I ! ; !

:w R IT E. -PU RC HA SE
, __

RE PO RT 1- LI NE A FJT Ef R lAIDJv AN,C ING 1 •
I
I I

EN - I F- JIO B • I I D-_._o f • - l

lP ER FO R M T 0 T AL - RO u Tl NE. ! I
lC LO SE PU R CH AS IN G- Fl LE ..! PU RC HA S1E -R E plo R1T - Fl LE.
lD IS PL A y t PU RC HA SE RE PO RT Fl NI SHiE DI'
I UP ON co NS OL E • 1 -I

:s TO p RU N • I

(3/66) 45

PROCEDURES

A ~ocedure is a paragraph or section in the Procedure division.
Procedures contain two kinds of entries: header entries and sentences.
Hence, any entry (in a procedure) that is not a header is a sentence.
A sentence, in turn, is composed of one or more statements that specify
actions. Most statements begin with a verb that indicates the action
to be taken (for instance, MOVE, ADD, READ, GO, or STOP)J some
statements begin with the word IF, which calls for the testing of a
condition.

• The shortest procedure is a paragraph consisting of a header
entry and om~ sentence.

• A longer procedure may contain several sentences. The paragraph
header may optionally appear on a line by itself.

I NSE~T-NEIW-RECIORD. l l
t.10VE CAR ol-IRE c O,RID Tio oulTP UT

1

~R ECORD.
~ R 1 TE o u TIPlulT-TRIE!c o!RID:. I l I
:B£ AD c AR D\d_F 1 L E!j_ · I ! T 1 T T T
1 AT ENDT_i_ G,o TolTF1N!1sH-1RulN.1
l§o TIQ TE s Tl-.R ETcTo.B D -Ic[g DE • I

• A sentence may contain only one statement (as in the above
examples), or more than one statement (as shown below).

-L -'- _L

1 !M MEl
< '

EEL_ 0 ~E l ov E NA TO EM p LO y M

1 Is oc IA L-SEfC u R IT Y- N UM BE!R T 0 ~ c co UN T _,J
1 lA DD 1 T 0 1N u M BE R 0 F TR}A NS A [QJ tr I ON s. l

~ ' ~-~- ~·

• Every procedure has a programmer-supplied name, which is
given in the header entry. This name is used to refer to
the procedure, for instance, when specifying a branch to
the procedure1.

PROCEDURAL WORDS

The most commonly used actions are listed below, alphabetically.
The function of each word is summarized, and a sample sentence using
the word is given.

\ ACCEPT. Input. Obtains up to 80 characters of data from the system
input device (which might be a disk file, tape drive, card reader, E!tc.),
or up to 72 characters from the console keyboard. Used to read low··
volume data, such as information needed to initialize program switches,
balance totals, or serial numbers. Not used to read files of data
(see READ).

·."I ADD. Arithmetic. Adds two or more numbers. Puts the sum into the
data item named after the word TO, unless there is a GIVING clause.
If GIVING is specified, the sum is put into the data item named aftt:!r
the word GIVING, and it is edited according to the item's picture; 1the
value of this item is not added. (Numbers can also be added by using
the verb COMPUTE.)

JA 0 0 RE GU LA R- PA y--'- ov ER Tl M E -P A y-'- BO N u s._._
I AL -E AR NE D •

:

_J GI VI NG T OT

\CLOSE.· Input-output. Terminates the processing of one or more data
files. Such actions as checking and creating end-of-file labels are
done automatically when a file is closed. Used after processing is
finished for any file that was opened (see OPEN).

~COMPUTE. Arithmetic. Computes the value of the data item, literal,
or formula written to the right of the equal sign; and puts that value
into the item named after the verb. Can add, subtract, multiply,
divide, or exponentiate numbers; or combine these operations.
(May be used in place of the other arithmetic verbs: ADD, SUBTRACT,
MULTIPLY, DIVIDE.) Edits the result according to the receiving item's
picture.

- -

~c ~ !QJ p ~ T E w f T HH [Q L QI N G I-tr ~ lK = .!1 8 "' l< !G R 0 s s- I-

I NU M BE R-OF -o EP EN ~ E N[I s . I* I1 3) • J .
~ - .

i l

(Continued on next page)

(3/66) 48

PROCEDURAL WORDS (continued)

\J DIS:PLAY. Output. Puts data out on the system output device (which
might be a disk f:ile, tape drive, etc.), for printing later. Can also
punch out data, or type it on the console typewriter. Data displayed
can.not exceed 120 characters when put on the system output device,· but
can.not exceed 72 characters if punched or typed. Used for low-volume
out:put, such as e.xception records or messages to the operator.
Not generally used to write files of data (see WRITE) •

...
lOISPLAY 'RECORD NUMBER I 1 lrE M- NU M18 ER
: I Is OUT OF SEQUE.NCE I UPON C01NSOLE.

I DIVIDE. Arithmet.ic. Divides one number into another. Puts the quotient
v into the data i tern named after the word INTO, unless there is a GIVING

clause. If GIVING is specified, the quotient is put into the data item
named after the word GIVING, and it is edited according to the item's
picture1 the value of this item is not used in the division.
(Nwnbers can also be divided by using the verb COMPUTE.)

-;;;.

llN r\ol 1 lo IV ID E ~ UIM a·E R-OF ... ,s TU D!E!N T s
I SUM-- OF-A LL -G RA DE sl_,_ G I VllN G 1 _l !

I AVER AGE- GR AD E. I 1I l I l I !

~ GO TO. Sequence control. Causes a branch to a procedure in the program.
The normal flow of control is resum.ed at the beginning of that procedure.
(Contrast with PERFORM, which causes a return branch as well.)

IF. Sequence control. Causes alternate paths of action to be taken,
depending on whether it finds the description of a data condition to
be true or false when it evaluates the data. The word IF is followed
by the description of the condition, followed by the actions to be taken
if the descriptio.n of the condition is true. Then, optionally, may
come to the word .ELSE or OTHERWISE, followed by the actions to be taken
if the description of the condition is false.

..
: I F 1o EM A, ND IS GRE A T ER TH A N ST oc!K - ON- HA ND ..l_

.JJ ' AD D DE MA ND Jr 0 BA CK 0 RTo ER S, 1
I 1- I

. I I M ov E BA CK -0 RD ER ED TO AC T 11o1N f- c·o1o!E _l l
I :a ~ TH ER IS E_,

I SU err RA CT DE MA ND FR OM iS TO CK -0 N.- HA ND I" ~

1 N ov E OR DE R- Fl LL ED TO AC Tl ON -c OD E.

(Continued on next page)

(3/66) 49

PROCEDURAL WORDS (continued)

~ MOVE. Data movement. Moves data from one area of main storage to
another. Converts the data (for instance, from decimal to binary) if
required to fit the description of the receiving i tern. Edi ts the d.a ta
(inserts, deletes, or replaces characters) if the picture of the
receiving item calls for it.

1.1 OIV E cu tR R EN T- BA IL1 AN CE T~I A~ o!u N1TT- DU ET I NT
I cu sttoM IER -B IL L • l 1 1 11 I J J ..l

\~ MULTIPLY. Arithmetic. Multiplies one number by another. Puts the
product into the data item named after the word BY, unless there is a
GIVING clause. If GIVING is specified, the product is put into the
data item named after the word GIVING, and it is edited according t.o
the item's picture; the value of this item is not multiplfed.
(Numbers can also be multiplied by using the verb COMPUTE.)

-"-
. . -- - .

N UL Tl PL y QU AN Tl TY BY UN IT -lclo ST • 1
l GI VI NG EXT EN D .E D- co ST • ll J

- - --=- -- .

NOTE. Program comments. Allows programmers to write explanatory
sentences which will be printed in the program listing, but which
serve no other purpose during compilation. A note can be any length
and can contain any words or characters. If NOTE is the first word of
a paragraph, all of the sentences in the paragraph are treated as notes •

.-

>J 0 TE - - T HI s RO UT l N E co M Plu}IiE s TH E 'la * g'
I 1 NI !DIE

..

.J. FU DG E FA CT 0 R_s_ us ED TE RM IN IN G
: RE 0 RD ER p 01 ~T S F OR w 1j>lGl1 TiS.

"""
_...,..

-~OPEN. Input-output. Makes one or more data files ready for reading
or writing. Input files are named after the word INPUT; output files
after OUTPUT. Such actions as checking and creating beginning-of-file
labels are done automatically when a file is opened. Opening does not
make input records available for processing; a READ statement is
required for that. A file must be open before a READ or WRITE
statement can act on it. (See READ, WRITE, CLOSE.)

-~ -

·. I 1 ... 1-

IN PU T ~ L 01-M AS TE R- Fl L ELt. . iCJ tr' IC. ~
f

IT lR AN ls AC T·I ON Fl LE I l..;;.. l -. OIUTte IU T lN EW ~M AS TE R- Fl L E. I

(Continued on next page)

(3/66) 50

~EDURAL WORDS (continued)

~ PERFORM. Sequence control. Causes a branch to a procedure or series of
Vprocedures, and following their execution, a return branch to the state

ment after the PER.FORM statement. Sets up the linkage for procedures to
serve as closed subroutines. Also used to control the execution of
loops. (Contrast with GO TO, which causes a branch but not a return.)

\ READ. Input. Makes a data record from an input file available for
processing. For sequential files, such as tape and card files, the
READ statement contains an AT END clause, which specifies actions that
are to be taken after the last record of the file has been processed.
A READ statement is valid only if the file is open (see OPEN).

:R EA D BE ~ M -L oAJo IN G- Fl LE1
J AT EN D~ Glo TO CL oslE -F IL E s •

STOP. Sequence control. Stops the execution of the object program,
,,~either permanently or temporarily. If STOP is followed by the word R~
e~ution is stopped permanently1 this would be done at the end of the
job, or when a serious data error made it impossible to continue the
run. If STOP is 1:ollowed by a literal, such as a message to the
operator, the literal is typed out and then execution is delayed until
the operator takes required steps1 execution is resumed at the statement
after the STOP statement.

m I is!Tlo[Pl IR[ulNI. J J I] . , 111 [I ! I. J 11 I_ 1111 . , I 11 · 11 I [I ul I I I I I l

\ SUBT'.RACT. Ari thmeitic. Subtracts one or more numbers from another
nwnber. Puts the difference into the data item named after the word
FROM, unless there is a GIVING clause. If GIVING is specified, the
difference is put into the data item named after the word GIVING, and
it is edited according to the item's picture; the value of this item
is not used in the~ subtraction. (Numbers can also be subtracted by
using the verb COMPUTE •

.
ls UB T RA CT SA VI NG s- BO ND S...1. B LU1E - CR ,OS s.
: CHA RITY~ CON TRI BU Tl ON s F1R O.M ~ARNINGS.

-- -

~ WRITE. Output. Releases a record for an output file. The actual
transfer of this record to an output device may not occur until sometime
later1 in particul.ar, if there are to be two or more records per block,
the :record may be held until there are enough records to fill a block.
When the record is to be printed or punched, the WRITE statement contains
an A:FTER or AFTER ADVANCING clause to specify carriage control or stacker
selection. A WRITE statement is valid only if the file is open (see OPEN).

I

(3/66) 51

TEST-CONDITIONS

Types of conditions that can be tested in IF statements.

Relation test. Consists of two "operands" with relational words or·
symbols written between them. Compares the values of the operands to
see if their relation is the same as specified.

Relations that can be specified: EQUAL TO [=], NOT EQUAL TO [NOT =:],
GREATER[>], NOT GREATER [NOT>], LESS [<],NOT LESS [NOT<].

The operands may be data items, literals, and arithmetic expressions.
A data item may be compared with another data item, with a literal, or
with an arithmetic expression. An arithmetic expression may also be
compared with a literal, or with another arithmetic expression. Two
literals may not be compared.

When an arithmetic expression is written in a conditional statement,
the value of the expression is calculated first, before the compari.son
is made.

__._ -'-

j1F p AV M ENlTl I sf l· E sls! !T HTA N P1RIEJv 1ToTuTs -18 A LA N}CE
I cu RR EINIT.- AMlou NTTl-D ulE - 1DT11s cToTuTN T T -1. --'-
I G}of T ol lP.A R!Tll:A Ll-!PIA v_ME1N Tl.I T T , _J_

--

Sign test. Consists of the name of a data item, or an arithmetic
expression, followed by the specification of a sign condition.
Determines whether the number, or the value of the arithmetic
expression, matches the specified condition.

H-

Sign conditions that can be specified: POSITIVE, NOT POSITIVE,
NEGATIVE, NOT NEGATIVE, ZERO, NOT ZERO. The value zero is considered
to be neither positive nor negative. (For a zero item in storage,
the sign, if any, is ignored.)

__._

I -
F D"I FF ER EN CE IS PO SI Tl v E _t I -1

I DI v ID E DIFF ER ENC E IN T 0 A c· cu ~ u LA IJJ ED -T 0 T -1

Note: A sign test is another way of stating a relation test for n~mbers,
since "positive" means greater than zero, "negative" means less than
zero, and "zero" is, of course, equal to the literal "O".

(Continued on next page)

(3/66) 52

TEST-CONDITIONS (c:ontinued)

Condition-name test. Consists of a name called a "condition name".
with no other words or symbols. Tests whether a data item has a
specific value; however, neither the name of the data item nor the
value are written in the IF statement.

: I F co MP UT ER -P RO GR A M M ER~ !
1 PE RF OR M SA LIA RY -I NC RE A

-y

SE!.
=-

The condition name represents the condition that exists when the data
item has a specific value. It is defined in the Data division, where
the condition name) and the value may be found in a level-88 entry,
following the description of the data item which is to be tested.

Here is how the condition name used in the above example might be
defined:

--"'- ~

10 2 JOB -c LA s sl1 Fl CAIT I OIN -c OD E __,_ 1P IC TU RE 9 9.
I 88 co MP UTlE R- PR]Q G R]A ~M ER

' v1A LU E 72 _l .
~

Interpretation of this example: A job-classification code is one of
the data items in the records tnat are to be processed. The name
COMPUTER-PROGRAMMER represents the code value 72. Therefore, the IF
sentence above means, "If the record contains job code 72, perform
the salary-increase procedure."

Note: A condition-name test is another way of testing whether a data
item is equal to a literal.

(Con·tinued on next. page)

(3/66) 53

TEST-CONDITIONS (continued)

Overflow teste A special type of condition-name test. Determines
whether the forms in a printer are at the end of a page. (The end of
a page is recognized when the printer senses a hole punched in channel
12 of the carriage control tape.)

__:::; -"' - - = -

_11 F PA GE 1- IS -F UL L-'- l 11 1 l
I ~ RI TE ov ElR DU E-lA cc!ou N T1-TLTI N}E AF TER .1
I SK IP P l,N G- T 0 - NIE KT -!PlA GE 1 T I ! .1
I OT HE Rl\Y I SE rtli RI TE Jov ER DU E-TAC co UN T- LI NE _L ' "'!'

I lt' FT ER SP AC IN G- 2- Lii NE s • I _L

The form-overflow condition name is defined in an APPLY entry in the
Environment division. Here is how the name used in the above example
might be defined:

I! j j :AltlLIYI PAGE-IS-FULL To FORl'v1-0VER1notw
: 0 N 0 VE R D U E - A C C 0 U N T1-- L I SJT I N G ~ 1

- - .. - - - .. -- . - =

Class test. Consists of the name of a data item followed by the
specification of a class. Examines the item to see if the data it
contains belongs to the specified class. Classes that can be specified:
ALPHABETIC, NOT ALPHABETIC, NUMERIC, NOT NUMERIC.

I : I F AC T llV IT Y- RA Tl NG IS AL PH IAB ET tc t 1l
I I GO l] 0 HI GH -A CT IV IT Y- A NIA LY SI S a

. I I
_-t j I

= - -- - m
An item is

• alphabetic if it consists only of letters, and possibly spaces.
• not alphabetic if it contains any digits or special characters.
• numeric if it consists only of digits, and possibly an

operational sign.
• not numeric if it contains any spaces, letters, or special

characters.

(3/66) - 54

FLOW OF CONTROL

The way in which control flows through procedures in a COBOL program
represents the sequence in which instructions in the object program
will be executed. How control will flow depends on the kinds of
statements in the Procedure division, and their arrangement.

Starting point. Control starts at the first statement of the first
procedure in the division, provided that there are no declaratives.
If there are any declaratives, control starts at the first procedure
after the END DECLARATIVES entry.

• Declaratives are special, optional procedures that are grouped
together at the beginning of the Procedure division. Declarative
procedures are logically separate from the main body of the
Procedure division; that is, they cannot be affected by the
flow of control through other procedures.

• If the program contains declaratives, a DECLARATIVES header
will appear on the line after the PROCEDURE DIVISION header,
and an END DECLARATIVES header will appear on the line after
the last declarative procedure.

Sequence. Control automatically flows from one statement to the
next statement in sequence, and from one paragraph to the next,
except when

• a GO TO statement causes a branch.

• an IF senten1ce causes control to jump over certain statements.

• a PERFORM statement gives control temporarily to another
procedure.

• a STOP statement causes a delay in execution, or terminates
the run.

Branching. When a GO TO or PERFORM statement causes a branch to a
procedure, control is transferred to the first statement of that
proc:edure. It is permissible for a GO TO statement to send control
back to the beginning of the procedure that the GO TO is part of.

(Continued on next page)

(3/66) 55

FLOW OF CONTROL (continued)

Flow of control thrpugh an IF sentence that does not contain ELSE or
OTHERWISE.

Example.

1 : I F B ~L
2 I MO -1

3 1
4 M RI TE

DESCRIPTION OF
DATA CONDITION
IS FALSE

DESCRIPTION OF
DATA CONDITION
IS TRUE

STATEMENTS UP TO THE
PERIOD ARE ACTED ON

;"',: '
1
• -, ~~~, ~;-~" J:!t~~'f,P~~>l1ftJi~J:Zt1fl?f

: . "~~;~~~·-~: --~

AN CE IS NIE G AT IV E_. !
v E 'B AL AN CE IS IN y ~u R

T 0 M ES s~ GE -~ RE A.
cu ST OM ER -8 IL L-- RE co R D~~

FA v 0 R'

The data item (BALANCE) is evaluated to see if it .is negative. If it
is negative, the statements on lines 2-3 are acted on, and then control
passes to the next sentence (line 4). If BALANCE is either positi"Jre
or zero, control jumps directly to the next sentence (line 4).

(Continued on next page)

(3/66) 56

FLOW OF CONTROL (continued)

Flow of control through an IF sentence that contains ELSE or OTHERWISE.

Example.

.

1 11 F R EC 0 rt
12 :s CR A P- PO
3 I MO v E J

4 I
J

5 I AD D I

6 lo TH ER w IS
7

I
, I ~R llT

8 1A D D 1 Tfo

DESCRIPTION OF
DATA CONDITION
IS FALSE

DESCRIPTION OF
DATA CONDITION
IS TRUE

STATEMENTS UP TO
ELSE OR OTHERWISE

ARE ACTED ON

STATEMENTS AFTER ELSE
OR OTHERWISE, UP TO

THE PERIOD, ARE ACTED ON

'« ·.·: ~~··.: ,, :- "-~:'·,':>-:,~.'~1,~;:~~=-;•
''';.!;:.0:::~

' «~Tum
...... '~:.W~?~ ' ' ' ' ' ' .•'"\' '''~\,'t*•

ER y IS NO T .G RE AT ER T
IN T.~

IT EM -N u M BE R TIO
SC R AP -I TE M __l_

RE co v ERIY TO s1c RA p ;

E .. ~

HA

E co NS ER VA Tl ON -R E CJQ RD.
TR AN SA CT 10 N-co UN !r.

N

RECOVERY is compa.red with SCRAP-POINT. If RECOVERY is equal to or less
than SCRAP-POINT, the conditional description is true, so the statements
on lines 3-5 are acted on, and then control jumps to the next sentence
(line 8). If RECOVERY is greater than SCRAP-POINT, the conditional
description is false, in which case control jumps to lines 6-7, and
then passes to the next sentence (line 8).

(3/66) 57

Case Study

CASE STUDY. Customer billing program.

Ineu~. Billing record.

ACCOUNT IDENTIFICATION CREDIT STATUS I(
TYPE ACCOUNT NUMBER

BILLING CUSTOMER STREET CITY- RATING PURCHASE ·~ OF STORE l FILE CYCLE NAME ADDRESS STATE CODE LIMIT ~ ACCOUNT NUMBER NUMBER

f ACCOUNT HISTORY LAST YEAR l
YEAR HIGHEST MONTHS 'MONTHS TOTAL TOTAL (~ YEAR

OPENED
LAST

BALANCE ACTIVE
OVER

PURCHASES RETURNS ~ ACTIVE 90 l

(THIS YEAR TO DATE LAST MONTH

~ MONTHS MONTHS TOTAL TOTAL NUMBER

i ACTIVE
OVER PURCHASES RETURNS OF
90 TRANSACTIONS

THIS MONTH
PURCHASES \ NUMBER

~
Bl LUNG OF CURRENT

NUMBER I AMOUNT DATE BALANCE
(TRANSACTIONS·

RETURN$

NUMBER AMOUNT

COLLECTION HISTORY
OVERDUE BALANCES

30 60 90 120
DAY DAY DAY DAY

LAST PAYMENT

DATE AMOUNT

Outp~. Monthly statement.

1
2 1-.1-i..-i

3 ~ Jl~:l~l~)I ~~tC~i) ~'t jb!l!l~t
4

(

BALANCE :~
FORWARD ~

PAYMENTS

NUMBER I AMOUNT

DUNNING
CODE

I
CREDITS ~

NUMBER I AMOUNT ~

!--·
5

l-t-+1 H t-· t--+-1- t-- - '+ t· 1- t--- l-t--1 --H ~--

-+--....... -+-+--+-+-+-t--+-+ .. ~-<>--+-~f-l--•. + 1--- f-+--t- J .. +-t-
6

-t- ·t-- l--t--1 · -!-· t-+-1· t--t--t-· t-+·I -!-+- t- t· t--++t- -1--1 -H -

7
t-1- , .. ~¢¢OU~J [altltJ I ~' 3 .. r li::ll.lll1 !.lllrJrlF FRbM -.- ... ,,, ... ,..,,,,, ... ,.!''IClr1~ ·~40E ,.,t~ I~ MON ti

~+---l-l--+-l"'"-!A'-"is"-!!1r'-'-IB'-J.!llL"l-lt.~-t-l-+·1 ~IR!:;,_., ~~ t- -8

9
Lt'~l Yll N ~ . __ I'(LJll[:::li I++· H ~µM~ER _ IC>A1rl 1- t-H .

!--·
10
11

3~~1c-eoo4 H H1to1 ra 65 t--+---r-...-+-+-+--+-41-•~561 ~ tll7 t-t- ~~ _ ~~2 6 • 0t3H H-
1

12
" -t--; - t--1 t-· t-+- 1--+· ·r IH t-t

-i--"Hl"-rt--r-t""T"TT-t-H-H-t-H--t-t-i-t-t-t-t-t-r-T-t-t--t-t--+-t-+-t-++-++-r+-t-t-~H-1,..;--t-++-t-+-t-+++++++++++-++-+-1-I--+·· -+-+--t-+-t-t-t-t-t-t-+-+-+--+-+-.-

1·--f-

13 -t--t· 1-·-1- t--- ~- t-- t-- I I t--t--- j -t-1-t-T-t-· -1--t-t--1 -
14
15

- t-·++·+ ·t-+
1
-t-· t -t- I++- r

t--· i· f-+- . 1-- -

tl~t- H·
17

-l-'-'-+..-+-+-++-+-+--1-+-~+--I-+-- t--1 ·I-+· . . t ...
18

19
J-+-jf- +--1-++ t· I t+- 1-.. t · ··'· H - -++- · <-+-t-+-'r-+--•--+-+-+--+--t-+-<>--t--._

20
21

t-+-t- - t-H-il-t-- ··+1 t·-- t-t-- I·+· t-- -- i" - . +- !--- H I+

.. .,

(Continued on next. page)

(3/66) 61

CASE STUDY (continued)

Identification division.

r 1iolEINfTT1 Fh CAT I ofNl lo 1lvT1Js 1101NT.] I : ! i i i TT I 'TI IT! I !
11T: 'TT! I] ' : ! !: l 1 T Ill iT T!i i!i

' plRlo!GlRIAJM- I D • i ! ! ! I I ! ' ' I : ; l ! I I I i i l i :
, 1 11• ia 1 LL 1 N:G 0 i' : ! : ! ! 1 , 1 : • , , • ' : T : T l T I J 1 11 !

ll I ! : 1 '. IT i : : : ! I ! : ! i ! I l I I i r:-r
A u!I HlolR _t_ l l ! 1 , · ' ; ! : , 1 1 l i I ! l l 1 i I I I 1

T..J T '11 Iii 1::.!l 1.T ,, 1,:,'.T, I] T 11 ITT· .ltlA u L MEL ~ 1C!H A Rl. I ' ; ' I _:_ '. : i ' l ! ! ; i ' I ' ; ! i

, o.A!I,El-tw R 1 TT ElN • l . l I ! I l ! ! I i ! : ' i I I : : ! I l I ! ! ' 1 ,
~SE:PTEMBER\.'11ga1sT.1 I T i I I I i: · : 1 111 , ! I i TI 1 I , i 1 T \ : 1 I1 !
l 11 l Ill !!! 1: 1 !:I !II l !Ii l!! 1 i 11'!

RIEMAlBKlSL l J . 11 l f ! I : ! i l ! · 1 l I l I ! ! I ! l I ! i :

l . :s T ATTlE MIE'N T1sl ARE. iNIQ.iT Is E!NIT! Tlol : I N!A!ciT I 1V1E: A1c!clo u N:TTu . I !A1N o:T:H
1
E Rl !p'R 0 G R:A·M

I :HANDLES A!c:ciouNTls)w1:THI !N!EG 1A!TI V'E1 ~c'R1E 1Dl 1Tlll alA!L~~N 1 C!Eis.l Tl : i I 1 ii:
i ! :FOUR LIN ElsT1ARiE! !p Ri1 NlT Elo] !o N! 1EiA dH1 's T'At

1

EMiE!NiT -'-' 1ulNolE:RI clAiR!R I !A!G!E ;T!A'P1E
I I le o,N TR o.LJ. iLT1 iN El !11 1 !s! Ip R111NTT E :01 !A FiT'E'R ·A· s K! 1 'pl TioJ le H1A:N:N EiLl 1 Ll.i iLi 1 NE! ·2·

ii lATFTTER IA s!Kli1p lTJol tc.!H\AJNN!E1iJ 2_._ ;L 11NjE:S ;3i ~Nio! 1-4 !ATR!E 1 s!t 1N(3\~i-slp:A'ce:.0 1 • 1 .

(Continued on next page)

(3/66) 62

~SE STUDY (continued)

Environment division.

i
T 1 .: • ; i ! :

j

i

I · : i 11 111

:s 1E!LIE clTI !s 1 !LL 1 N Gi-F 1 L Ell Ass 1 G N To ' s 1 LL F 1 LE ' u\T 1 L 1 T v •
:s:EUEciTI !cu'sTOMER-B 1LL-F1 L ELI. Ass 1 GN To • custs 1 LL'

I i : i ! 1 uiN l 1 !T - R E c o Ro 1 4 o 3 u N 1 T • 1

(Continued on next page)

(3/66) 63

CASE STUDY (continued)

Data division.

; DiAI A: D I [yj I s i ~ N • ! : I : •

I l l Ii ! I

Fl 1.L El ,s E c T 1 o~ • [l ! 1 I i 1 l
~! 11! , T 1T: 11T 11

F:DI I lei I LL I N Gt- F1 Ill E T I I ' i . i
T I lBL[QCK ClQNITTA I NS 5 REICIORDS T

T 1L AB E L R E c 0 Rlt> s AlB E S[! A Nt_g A R lQ T

I I !
. I i

!

I I lD~T~ RECORD. l1S. ~I LL I NG-R EC.Q.RDl. I
l ! l I ! , , !

o 1 ie, 1 LL 1 N G - R E c~ R D .1 1 ! , T I
T 102 ACC.QU,NT1-1DIETNT1F1clAT1 o~. I 1 1 , 1 I

i j l I

I I T
I I

1
! i l ! l
l I I i

T I ;

I I r Qj3 TYPE-OF1-ACClQUiN[I ! I I pl1!cttu!RiE x .i l ! i !
i I I : _Q 3 A cc~ u NII - Nu MB ElR • _l . ! I ! : I I i I i I

I i l 04 STOREf-1NluMBER 1 1 I P111c)!julRE 99191. ! I 1

I !
i ! !
i ! I
I i !
! I
T

l l !
: !

I i i

I
I I
! l

I ! i

I I 04 F 11LE-NUMBERI i I 1 piffcrru!RIEI 91(141> .T ! 1 i T
i I I : Q 3 e 1 LL 1 !NiG1-i c v c L E 1 I I , P1 ilcl11ulR E 9 91. l I 1 1

I I 1 l Q3 CUSTOMEIR-NAME I I I ! Pl1!crruiR!E x (2!g >J.1 i I
l Q3 · STREET-ADDRESS I ! P 1 c[]uRE x1i2!21!.I I

T l g 3 c 1 T v~ S1T ATE I ! P 1 ctrJ u R E x < 2 2 > i •
~ 2 c R Ela 1 T- s T A!Tlu s . 1 l ! l i !

I_:_ I IQJ RAITll NG-iCODE I ! T Pd C[URE x.

1.

I
J

:
I

J

l
l

I _._.

:
T

. -1 . :02
I

l

I I
'_._ i

02
1
l
I
l

~CIC~UINT-HIStrJOIRY~ ·
Q3 YEA!Bt-IQJP~NED I I

i !

0 3 YE AB-LA~ T-A C [1 l!V E I I
IQ3 H.I Gll:tEST1-BAL[AJNCE

I I
p I c[IuTRE 99.
P IC[UR E 9 9 .
PIC[IU!ffE 9le_4)V99.

PICIURE 99.
P!1,cmuRE 99.
P

1f 1C!IURE 915ll V 99.
P 1 ctr u R.E 91511 v 9 9 •

r.:r:: J. i:.--: T T T T, · 1 b 3 IMU NlI H s-lA CIT I 1vEI ! ' p 1 ,ctr UIR E 9 9 •
lol3 ..Jl INl_ HS IA ll"'ln 9Joj 11 I leilci!i~IEI 9l9 •
~3 T!O!IIAL-leURCH!ASES ! I I p I clruR!EJ 9l15l V199.
oJ3 TDTAL-lBETURlNS ! ! te_.1 c!lulRE 9l151V99.
IL IAISII 1• ll'\!1. T!t:lu..· I I ! l i

o3 lN'utMeER-oF-TRIAJNslAJc!I1 oNsn PT1 cttuRE 99 ..
IQ3 lB!ALIANCE_-FIQJRWIAIRD I I ! , pl I C]IUlBJE
IIH 1 s~IM<>NTH_t_ 1 1 1 1 i ·1 I I

P I rdflU.~R E 9J_ 6~i

Q 3 c~RR E.N[!!- a AL~~ cTET T ! T I I pl I ctn u RTE 9 (4) v 9 9 •

(Continued on next paqe)

(3/66) 64

i

! :

I !

I i I
I : • l :
! i i I

I ! I I

I !

l 1 i

I !
i

'

i I
i i :

T T 1 ! I

I i I .
i l I

I ! i I I

i ; I I '

1 !
j

! ;

I

I i !
. I T

1
I

I l
I

T I
1 l I
[! l
.l
T1
i i
I

l T!
! ! I

TT
I

I

CASE STUDY (continued)

Oat.a di vision (continued) •

i ' ' _L' I ld3. PiUlR!C ttt'._A's!E s·;, I i ! 1 j i i I I I i. ! I

i i 'l I 04! NTu'Me E!Ri T T!T ! ! Pl ctt URE 9 9l._I !· -, T
! ! l l 014! i A~iOIU NIT ! I Pl c!T lu!REI. 19 iC 4 '.lj~ 19191._ ' I I I

: 1 i I; l Q3 PA YM EN TS • I I 11 I T I i I r I I I I I

I I I io_l4 NU t.t.ei ER '! P 1!cJrJ ulR_E 99. i I I 1 'j, l I I

'l i : i I 04 A~ OU NT P I cJI] URE 9l!_ 4ll V9 9. I I iT
I 11 ! I ~3 CR ED IT s. I i [I

I

I I : l. I I I 04 NU MB ER I ! P111cli] URE ,9 lt. ! 1T
t Ill! 04 AM 01u NT l I I P1 I \cJij IUJR'E 91 4l_l V9 9~

I i I

I 'TI!
: _t I IQJ3 RE TU RN s. Ti 11 I I
i l ! 04 NIU MiB ER p 1 clI lURE 99. ! I !

l
Ii 04 AM OU NIIJ I. p,1 ctr URE 91 411 V9 9. T I .l. I

li2 IQO LL EC Tl 0 1 N -li IS TlQ RY .1 I
;

T T
I l [Q3 ov ER DU E1-1 BA L~ NC ~s ·' i l I

11 04 30 -D AY ! l ! I I p,iic IJU RTE 91 4) V9 9. I

l 04 60 -._D AiY I ! ! I I Pil C !JU RE 9(4) V9 9. T
l 04 90 -~ A;Y ! I I ! pT1 C[UR E: 9'.{ 4) V9 9. 1i
I 04 1210!- D!A!Yl ! i I I Pil Cl! URE 9(4) V9 9,. .1 I

11 [Q 3 LAIS.I -1PTAIY MiE1NTT .T ! T ! ! i I I I
' 11 04 DATrE

I 1T T I i l ! I I Pl Cif' ~RIE 9 (:6 .) . i I I ;

I lQ41 I AM!o1u NlTi 1 . I I 1 ! ! : 11 Pll1ClT u1R1EI 9 (41) V1991 • I ' ;: ! r i ! I

_L I ' ! ' !
I:

.1. I ~3 DUNN I NGi- c:oio!E ! ! I:! I I pT1 1c:T UiRiE. x •. TH \ : I 1 Tl I I

(Continued on next paqe)

(3/66) 65

CASE STUDY (continued)

Data division (continued).

ED ~ u SIIIOM E IB - B I L L - F I L E I 1 I T i ! l i l ! ! · 1 ! 1
.,,... IWI i1N1G M1oio1E lE ' 1 : 1 . n . T 1 J
UABEL RECORtiS AIBJE O!M I T!IE DI i ii 1 i I

loAII!A R ECORD.S ARE BI LL-·L! I NE-l1} ieT1 L!L-!Ll N1E-2ts. le I LL- L 11.NE- 3~ l

l I l 1 T 1 l ! 1 ! I T i i ' TI
1oJ1 ..a, Lll..-lb 1 INE-~_._ 1 1 T , . 1 n 1 T 1 1 1

Jo2 -IEHIL IL ER I . I T Tl ! lPll CtrlUIRIE 1 Xl.l 41 _._ l
JQ2 IQLD-BAL!AJNCE I I P lldrJURE lt ~sit~ .199-.L I 11
J02 F ILLER I I 11 PI CtrlU.R!E XL(17lL. 1-
:02 leJURCHASIEIS I I I ! p I C!:rJUiR!EI lsl$l.1ilslic.Llils .. I l
JQ2 IBlll IL ER i I TT , I . P 1,ctrJu!RIE xli 411 • . . !
bl2I· 10tAL1m rNr u~1 I . I I lPJ1lctrJulRIE l~ls' .. l~lsTsL._l~l!T. l
:OL2 F lll ILER I ~lle!IIUIRIE IXl141L . ._ I ! I I

I]Q2 lf'ILLER ! PIC[U!B_E XlC_71}_-.L . l
:02 IA]ccQUNT-NUMBER I p!11c!IuRE 9~9B99.99. I i T

, JQ2 FtLlWER I 111 LeU_!cJilUJRlE lx!cl5lL ... 1 11 ! !
:o 2 e I [LIL 1 N~- o A!IJE. I T I 1.e.TLICJI1ulRIE l819191 I l i i
JQ 2 F I LL ER ! le-'1 cJrlulRIE xlL 5bl) L. i l

101 .~ IL L- L llN E-2. T I , I I I . I ! I I ! T ! T 1
ld2 FI LL ER I I I I P11 !cir UIRE x (2b) . T iT
:02 .. l&J MO UN T-DUE I ! I !

; ' I PICT UiRE $$ ~i$ $$.9 9 •
:02 Fl LL ER I I I p!1 lclr u!RE x (11) • I T
-~2 ,N ~ME I I I I T P 1!ciT URIE x (212) . I I 1
Jg2 . F. l L LER I ! I Pl ctrJ URE x (1l1) '. I I I I
I I _J_

~1 j:J JL Lt-LI ~E -3. l I!! i .

1Q2 F I L!::. ER i l i I \ P 1\c mu RlE x { 4~) .
.!Q2 ~D D~ ESS 1 ! I I Pil cir URE x (22) .
JQ2 Fl LL ER I ! T! I I PTI CT UR!E x (71)
l. I ; 11 _l l

01 'Bl LL -L llN E-4. I , l l I I : '

~2 lE I LL_ ER T : I I I I Pl CT URE X(4Q) .
,,2 Cl T!Y I ! I I Pl CT URE x (22) .
!Q2 F f LL ER ! Pl cir U!RE x (71) ..

! I i I T I I I

·tto HKh NG -s TO RA GE SE CT 10 N. I l I

I I I I I I I

.77 :s Kl Pl-I TO ~c AR RI AG E- CH AN NE L-1 111 p!1.cTr UIRE x VA LUE I 1 I
..I.

77 :sK l1P -T 0,..., CA RB] IA GE -c HA NN EL -2 I : ! T P 1Tc]] UIRE x VA LUE '2 I

.77 ls I !Nf G LE -s PA CE I I P1 1iclT uTRE x VA LUE SPACE~

(Continued on next page)

(3/66) 66

CASE STUDY (continued)

Procedure division.

P!R!ociE o uTR E To 1 v 1 :s 1 o N • 1 : ' : T
jt T T:1 . T iT· i: T

! I 11; : : 1 ! TI ! ! .: i i i I It
RIErA"o}-1ATN.o-c1HTEc!1<T-iREco!_Boi.TT , : 1 ! ! ~- ! T I T I,

i : lR'EAlD B ILLillNIG-!Fl!!LE:_;' lATT~E.ND1_1 GO' IT.O END-OF-RUN. T
, ! J1iF! TNUMIBER

1
-iQ!F-!TiRAN:s·A'CT!1lON S! illN !TH I S-MONTIH IS .ie:OUAL T10 ZERl()Lt_ ! I

: i : lo:RI cu RRE NIT!-:9 AILAIN ciEI i1 s! INIE GAT I VEl1_ GO TO R~AD-~ NID-,dH ETcK -RECOR:o:.l
: l.1 _!_ i I I I 1 l ! . I I ! 11

Li 1 iNIEJ-1 !- PR o c E o1u RE • 1 ! 1 T . i -r ! i I 1 1 1
' I IMolvlE slP1AcEs To e 1 LLT~LllNJE -1. . TI 1 i 1 1 1 1 : T ! 1

:MolvlE eAitAINicE-FOR!WARD TO OLD-BALANCE. I 1 ! ' ! I I , i :
:. ,. : _Mo1v1E 1A1M1QuiNT OF PURCHASES IN TH 1·s-~0NT.H 1 ! . I Ir 1 i .. t

'
1 ! : l l : Tlo Pu R c HA s Es 1 N e 1 LL - L 1 N El-!1 ! ~ ! I T I T · 1 i T T : \
I I _MoivE AM~ ulN.T O!F .PAYMENTS 1 N T Hi1!si-Mlo!NJTH i 1 i 1 ! : I

! ! ill·! Tio IPAIYMIEN!Tisl IN ~ILL-Lil~E-11!.!, i ! r I! I ! i I i l ! ! i !

i ~ovE AIM!ouiNTI OF CREO 1 Ts 1 N TlH 1 sT-}.ioNTH T . T I 1 ·1 1 '
l ~ T 0 c R E D I T s I N B I L L - L I !N!E:- 1 [.1 I I I ! I I I

i _Mo v E Ac c 0 u NT - N UM B ER 0 F B I 1LL I NiGl- .BE c o:R D l l i I T
I , J . To. A c.c,ou N:Tr--IN uMeE R 1 N Te 11L L-L 1 N.E-:1 • l 1 I , l
I I l MovE e 1 LLl11N:G-io!A!TE ,oF TIH 1 sl:MoN!TH I . ·

1
! 1 T 1

l I Ji To _e 1 LLi1 N!G!-10A:TIE: 1 NI e 1JLL-L 1 NIE-i1i.1 ! · , 1

~

'JW RI TE Bl LL -L IN Ei-1 AF TER' S'K'IP -!T!OT- cTAJR!R l:A'.G'E -:CiHjA N'N!E L- 1 i.
I I l T ;, ./ !: ;

! : I TT I 1 : I I ' i

Ll!N El- 2- PR oc ED.U Ri_E • l ! i I! ! ' I ! : I 1 I I l
I ~ OVE SP AciE'S T.O ~l.L Li-' Lj1 1NTE -!2i.1 i T ! 1 ! i -, 11 I I
~ OVE cu RR ENT -TB,A!L A

1
N C:E hTo AMOU N!Ti-ID u/Ei.I l 1

~ OVE cu ST OMlE RT-1Ni~ MEi T-fo' 'NTA MEI.I 1 ! T i T I
]W RI TE Bl LL -L I N!Ej- 2i ;A;F T.E.R! s11<i1lP - 1T1oT~ CIA R~ I AlG E- C.H IAN NE L- 2. T
l I ! ! I I I ! I I I ! I I ,

I I ! I
LI NE1

- 3-PR oc ED u!RiE .I I ! I l : ! I ! i ! ! I. I \ i I \'

~o l'J E SP AC Elsi TO iB I LL -Lil IN E-I~. I ! I ! l ! 1
MIO VE ST REJEIT -A ooiR ESS T!O AD _Q,R ES s!., ! i I I I I ! I ! I l I I '
~R ITE Bl LL --L IN E-:3 A.F T!EIR SI ~G LE\~!s PACIE. I l l I I r ! I ! !

! ! I I I i I TTI T 1, T: IT 1 I I

LI 1TNiEl-14.- PR oc E oTu RE. I I I I I T ! r T i
i ! :Mov!E Cl l! Yl- ST ATE TO Cl TY. I I I I I
I I i~Ril TE Bl LL -L IN E.-4 AF TER Sii ING LE-IS p,Afc/E • !
i I I :-I . ! T ! I I I ! I I

I
l i I I

GiEiTi-lNiE XT -R EC olR D . i I
TI' iG10 TO. RE AD ·-A ND -c HE CK -.R EC OR 0.

: ! ll I ! I I I
E Nlo!-loiF -!R ulN .• 1 I I ! i'

I . l ; i I

'l I ' I ' 1
• 1 :cuo!s E' 1B1 1 LIL!11N G- Fl LE_._ cu.SIT Ml I 0 E.R

.l :
-,Bii~ Li-:F,I LE. l l I 1

' '. T ' 1s'T1Q!p RiU'N ! T I T Tl l 1. ! : i I r i ! : ..

(3/66) 67

R29-0206-0

International Business Machines Corporation

Data Processing Division

112 East Post Road, White Plains, New York

