
IBM

PrDgramrned Instruction Course

SYSTEM/360 COBOL

COBOL Program Fundamentals

Text

Copies of this publication can be obtained through IBM Branch Offices.
Address comments concerning the contents of this publication to:
IBM DPD Education Development, Education Center, Endicott, New York

@International Business Machines Corporation, 1966

System/360 COBOL COBOL Program Fundamentals

(3/66)

PREFACE

The general objective of this book is to teach students
to read System/360 COBOL programs with a high degree of
comprehension. Some of the major topics dealt with are:
the elements of the COBOL language -- reserved words,
programmer-supplied names, symbols, literals, level
numbers, and pictures; the organization of COBOL programs,
and how the divisions of a program are related to each
other; and the interpretation, in detail, of entries in
each program division.

Additional information needed in order to compose
original COBOL programs has deliberately been omitted.
It will be found in other publications of this series.
The subject matter has been arranged in this way to give
the student a chance to see what makes up a complete
COBOL program, before he is required to write one. The
student can concentrate on the meaning and function of
program entries, without being concerned about their
formats and alternate options.

Several other topics are not discussed in this publication;
for instance, the Report Writer feature, the Sort feature,
floating-point operations, direct-access devices, and
so on. However, care has been taken to teach concepts in
a way that allows such topics to fall right into place
later, with no contradictions or inconsistencies.

This programmed instruction textbook is designed to be
studied in conjunction with the COBOL Program Fundamentals
reference handbook (Form R29-0206). The reference
handbook contains technical information, and is kept by
the student for reference purposes after he completes
his studies. This textbook gives the student reading
assignments in the reference handbook, explains the
concepts that make sense of the technical information,
and lets the student apply the information to practice
exercises and problems. In short, the textbook teaches
the student to find and to apply the information that is
in the reference handbook. The student learns to look up
information when he needs it, instead of memorizing it.

System/360 COBOL COBOL Program Fundamentals

ACKNOWLEDGEMENT

The following information is reprinted from COBOL-61 EXTENDED,
published by the conference on Data Systems Lanquaqes (CODASYL) ,
and printed by the u. s. Government Printing Office.

This publication is based on the
COBOL System developed in 1959 by
a committee composed of government
users and computer manufacturers.
The organizations participating
in the original development were:

Air Materiel Command,
United States Air Force

Bureau of Standards,
Department of Commerce

David Taylor ModE:ll Basin,
Bureau of Ships, U.S. Navy

Electronic Data Processing Divi
sion, Minneapolis-Honeywell
Regulator Company

Burroughs Corporation
International Business Machines

Corporation
Radio Corporation of America
Sylvania Electric Products, Inc.
Univac Division of Sperry-Rand

Corporation

In addition to the organizations
listed above, the following
organizations participated in the
work of the Maintenance Group:

Allstate Insurance Company
Bendix Corporation, Computer

Division
Control Data Corporation
DuPont Company
General Electric Company
General Motors Corporation
Lockheed Aircraft. Corporation
National Cash Register Company
Philco Corporation
Royal McBee Corporation
Standard Oil Company (N.J.)
United States Steel Corporation

This manual is the result of
contributions made by all of the
above-mentioned organizations.
no warranty, express or implied,
is made by any contributor or by
the committee as to the accuracy
and functioning of the programming
system and language. Moreover, no
responsibility is assumed by any
contributor, or by the committee,
in connection therewith.

(3/66) iii

It is reasonable to assume that a
number of improvements and addi
tions will be made to COBOL. Every
effort will be made to insure that
the improvements and corrections
will be made in an orderly fashion,
with due recognition of existing
users' investments in programming.
However, this protection can be
positively assured only by individ
ual implementors.

Procedures have been established
for the maintenance of COBOL.
Inquiries concerning procedures
and methods for proposing changes
should be directed to the Executive
Committee of the Conference on
Data Systems Languages.

The authors and copyright holders
of the copyrighted material used
herein: FLOW-MATIC (Trade-mark of
the Sperry-Rand Corporation) ,
Programming for the UNIVAC ® I and
II, Data Automation Systems © 1958,
1959, Sperry-Rand Corporation:
IBM Commercial Translator, Form No.
F28-8013, copyrighted 1959 by IBM:
FACT, DSO 27A5260-2760, copyrighted
1960 by Minneapolis-Honeywell: have
specifically authorized the use of
this material, in whole or in part,
in the COBOL specifications. Such
authorization extends to the repro
duction and use of COBOL specifi
cations in programming manuals or
similar publications.

Any organization interested in
reproducing the COBOL report and
initial specifications in whole or
in part, using ideas taken from
this report or utilizing this
report as the basis for an instruc
tion manual or any other purpose
is free to do so. However, all
such organizations are requested
to reproduce this section as part
of the introduction to the
document. Those using a short
passage, as in a book review, are
requested to mention "COBOL" in
acknowledgement of the source, but
need not quote this entire section.

System/360 COBOL COBOL Program Fundamentals

TABLE OF CONTENTS

STUDENT INSTRUCTIONS vi

LESSON 1 1

LESSON 2 13

L1ESSON 3 25

LESSON 4 39

LESSON 5 57

LESSON 6 69

LESSON 7 81

LESSON 8 101

LESSON 9 115

LESSON 10 131

(3/66) v

Systern/360 COBOL COBOL Program Fundamentals

STUDENT INSTRUCTIONS

1. This textbook must be used in conjunction with a reference
handbook, form R29-0206. If you don't have the reference hand
book, get one before you go any further.

2. The general objective toward which you will be studying, and the
division of information between this textbook and the reference
handbook, are explained in the Preface of this book. Have you
read it?

3. 'l~he purpose of this textbook is to guide and direct your study of
System/360 COBOL. It is not meant to serve as a reference book -
that's where the reference handbook comes in. In other words,
once you have read this textbook, the odds are that you will have
no further use for it; as a result, it is meant to be used by
more than one student. The point is: Don't make any marks or
notes in this book.

4. The reference handbook, on the other hand, is yours to keep. If
you care to make any notes, make them in the reference handbook.

5. There are ten lessons in this book. In general, the lessons
c:onsist of reading assignments and questions. You will read
specified parts of the reference handbook, and then answer
questions about what you just read, or about something that you
had previously read.

6. '!'here may be several reading assignments in a lesson, not just
one at the beginning. The reading assignments give the major
titles and subtitles of what you are to read, rather than page
numbers. The major titles appear in the table of contents in the
reference handbook.

7. A lesson may also give you new information to supplement or
explain what you read in the reference handbook.

a. Each lesson is broken up into a number of frames, which are
simply convenient instructional steps. You proceed through the
lesson one frame -- one step -- at a time. The format of a
frame usually looks like this (in miniature) :

First part of frame.
gives reading
assignment, other
instPuations, new
information; usuaZZy
asks a question or
requires you to
take some aation

(Continued on ne~t page)

(3/66) vii

eaond part of frame
(not present in
some frames) gives
aorreat answer to
question asked in
first part.

System/360 COBOL COBOL Program Fundamentals

9. The first part of every frame is ended by a group of three dots.
If the frame asks you a question, the correct answer is printed
on the same page, below the three dots. As you study each frame,
you must hide the correct answer from yourself, so that yc>u will
feel challenged to come up with your own answer -- and thereby
learn the subject, instead of just reading words.

10. Use an ordinary sheet of paper or a card to hide the correct
answers. Just make sure that the paper is heavy enough sc• you
cannot see through it. (No onion skin or tracing paper allowed I)

11. Start each page by putting your "hider sheet" at the top. Then
slide your sheet down until you just uncover a set of threie dots,
as illustrated below.

your "hider" aard
or sheet of paper

12. Then read the first part of the frame, and formulate your answer
to the question or problem it poses. When you have your answer
clearly in mind, slide the "hider" sheet down to the next set
of three dots. This will not only reveal the correct answer-;- but
also uncover the first part of the next frame.

.. ~----~~---- aorreat answer to
question in first
frame

first part of
next frame

13. Study at your own speed, but don't spend too much time with any
one frame. Too much concentration on an isolated detail may
destroy your comprehension of a general concept. (Which means:
Don't let the trees block your view of the forest.)

14. You will find additional instructions, along with helpful
remarks and the author's opinions, printed in italics in !>one of
the frames of the book.

(3/66) vi ii

System/360 C:OBOL COBOL Program Fundamentals

LESSON 1

• If you have ':?Ver studied a foreign language, it i13 possible that
somebody cha:i lenged you to say something in the language when
you had bareZy finished your first lesson! Well, this sort of
thing happens when you study programming languages too. AZ.though
people are not likely to challenge you to say something in COBOL,
you may get questions Zike, "What is COBOL, anyway?" For you to
say that you're not sure, would sound Zike a forestry student
admitting that he isn't sure what a tree isl In self defense,
the thing foP you to do first is to learn a few general facts
and ideas about COBOL. So, our first lesson is concerned with
introductol"y generalities.

In your reading, you should pick up the information that you need
in order to answer these two questions in your own words: What
is COBOL? What are its purposes?

:Reading assignment: INTRODUCTION TO COBOL
Origins
Aims
Differences

All read~ng assignments are in the reference handbook that
accompani.es this textbook. A. Zways comp Ze te the reading
assignment before going on to the next frame. The frames that
follow will ask you to apply what you have read, or will
supplement your reading with additional information •

•••
B There are sei>eraZ types of frames in this book. Most of them

have this much in common: they require you to foPmulate an
ans~er mentaZZy. This paPticuZar fPame asks you to criticize

(3/66)

a statement, based on what you have just read in the refePence
handbook. Your answer wiZZ pPobably be different from the
printed answel", but it should mean the same. Do not write your
ans~eP in the book.

What is wrong with this statement: "COBOL was invented by IBM" •

•••
No single person or company can take credit for inventing COBOL.
IBM participated in the development of COBOL, together with
several othe:t· computer manufacturers and users.

System/360 COBOL COBOL Program Fundamentals

Ill The answer that is required by a frame may be a matter of
opinion, judgment, or faat. In this frame, you are expeated to
reaaZZ a faat from your reading; however, if you aannot remember
it, you may Zook it up in your referenae handbook.

In what year were the original specifications for COBOL drawn up?

•••
1959

0 Frames Zike this one require you to think of one or more words
or numbers that aompZete the sentenae. The Zength of the blank
spaae wiZZ always be the same, so it wiZZ not be a aZue to the
Zength of the answer. Do not write your answer in the book.

The name "COBOL" is derived from the words

•••
COnunon Business Oriented Language

B In this type of frame, you are given a ahoiae of answers, whiah
are staaked in braaes. SeZeat the one best answer.

(3/66)

The name "COBOL" is pronounced KO-BALL.
In other words, "COBOL" should be pronounced to rhyme with

{

noble }
hobble
snowball
low bowl

snowball

•••

2

System/360 C:OBOL C:OBOL Program Fundamentals

B Here is anoth~~r kind of frame that offers you a choice of answers.
In this kind of frame, each choice is encZosed in brackets.
Your Job is to seZect aZZ the correct answers. To do this, you
must examine ~~very choice, instead of merely Zooking for a
correct answer, because more than one of the choices may be
correct. Perhaps aZZ of the choices are correct. Or none of them.

In an effort to standardize progranuning, COBOL provides the
·programmer with [a standard program structure] [standard entry
formats] [standard solutions for business data processing jobs] •

•••
a standard program structure AND standard entry formats

But not standard soZutions to data processing Jobs. Problem solving
is the programmer's Job; COBOL is a Zanguage in which he can express
his so Zutions ,.

B You can think of "Conunon Business Oriented Language" as COBOL' s
c>fficial title. Unfortunately, each one of the words of the
title can possibly be taken in various ways, so they require a
little explaining.

(3/66)

The title is intended to convey the basic purpose of COBOL:
to be one language for all computers -- a standard language for
progrmmning business problems.

COBOL is "common" in that it is i~~fi~~~~w~ }
conversational
shared

•••
!3hared (shared by all compute:rs)

3

Systern/360 COBOL COBOL Program Funidarnentals

II Although COBOL is conunon to all computers, you could not take a
COBOL program prepared for one computer (say, an IBM 1410) and
drop it into the card reader of a different computer (say, an IBM
System/360). You would not have to write a new program, starting
from scratch, but you would have to make some changes.

It would be a mistake, then, to say that COBOL is identical for
all computers. But it would be equally wrong to exaggerate the
differences in COBOL for different computers. What it amounts
to, is that there are several versions of a common language,
much like dialects of a spoken language.

Which statement best sums up this idea?

{

Several different programming languages bear the name "COBOL". }
All COBOL systems except System/360 COBOL are alike.

· The similarities of COBOL systems far exceed their differences.
It is a mistake to use the name "COBOL" for different la:nguages •

•••
The similarities of COBOL systems far exceed their differences.

II The words "business oriented" also require a little explaining.

(3/66)

They have three implications: first, that COBOL is business
procedure oriented, rather than machine oriented; second, that
COBOL is particularly applicable to business data processing
problems, as opposed to scientific problems; and third, that
COBOL is a language that businessmen can understand.

Because COBOL is not machine oriented, the COBOL programmer
does not need to know

[what the operation code for adding binary numbers is]
[what data items make up his input records]
[what the general registers are used for}
[whether the output data is to be punched, or written on
magnetic tape].

• ••
what the operation code for adding binary numbers is AND what
the general registers are used for

The COBOL programmer does need to know the layout of data
reaords, and the media on which they are reoorded.

4

System/360 COBOL COBOL Program Fundamentals

Ill Since it is machine independent to a large degree, COBOL

DI

J ~s outdate~l } by new developments in computer technology. l is not outdated.

• ••
is not outdated

Consider this statement: "COBOL must be obsolete, because there
have been revolutionary changes in computers since 1959". There
are at least a couple of good reasons why this statement is false.
One is the point made in the previous frame. Another reason why
COBOL is right up-to-date is that the COBOL specifications have
been SE!Veral times since 19 59 •

•••
:revised and improved

lfl We say that COBOL is oriented to business procedures because a
COBOL program consists of descriptions of (1) the procedures
according to which data files are to be processed, (2) what the
contents of the data files are, and (3) what input-output devices
the data files are to be assigned to.

(3/66)

You have undoubtedly seen definitions of "computer program" that
go something like this: A program is a series of machine
instructions that direct the computer to perform a sequence of
operations. Would you say that this definition applies to
COBOL programs?

•••
No. A COBOL program is a "program" in a broader sense -- it is
a solution for a problem. (Ultimately, to be sure, a series of
machine inst:ructions will be compiled from the COBOL program.)

5

System/360 COBOL COBOL Program Fundamentals

Ill COBOL is also business oriented in the sense that it is
particularly applicable to business data processing problems,
as opposed to scientific problems. Here I am paying lip se~rvice
to that unfortunately vague line between business and scie:ntific
computer applications. Tasks like preparing reports and updating
files fall into the business category, to which COBOL is oriented.
Tasks that involve trigonometric functions (sines, cosines, etc.)
or Boolean algebra (logical ands, logical ors, etc.) are e}(:amples
of tasks that fall into the scientific category.

Decide which category each of these tasks belongs to:

1. Calculating logarithms
2. Sorting records

•••
Calculating logarithms is a task that most people put into the
scientific category; sorting records is in the business category.

Ill For the most part, business data processing involves moving data
around -- putting data in and out, rearranging it, changing its
appearance, comparing items of data, locating desired items, etc.
Arithmetic operations are involved, but they are generally limited
to adding, subtracting, multiplying, dividing, and occasionally
exponentiating (raising a number to a power, or finding a root of
a number). COBOL is designed for these kinds of operations.

(3/66)

Jobs that involve complicated mathematics are harder to program
in COBOL. As a general rule, such tasks are in the scientific
category.

Categorize each of these tasks as business or scientific tasks:

1. Computing a hyperbolic tangent
2. Searching a table for a particular data item
3. Calculating the area of a circle

•••
The hyperbolic function involves mathematics that seems
complicated to me, so I would call it scientific. Searching a
table is definitely a business task. The formula for the area
of a circle ('11'r 2) really calls for two simple multiplications
(3.1416 x r x r), which puts it into the business category.

Notice that we begin to get into a gray area here. Finding the
area of a circle is simple to program in COBOL, while finding
the area under a hyperbola is not.

6

System/360 COBOL COBOL Program Fundamentals

m COBOL is "business oriented" in a third sense: a businessman
can understand COBOL programs 'after a short introduction to the
language, whether or not he is a programmer.

A sample COBOL sentence is printed below. Notice that it is
practically self-explanatory. It illustrates that the COBOL
language resembles the language.

1111
HUIL!TI I p L y u N I T -p R I c E B y Q UIA NIT 1}T y

~ 1 I I
L p R IC E I l j t ll : GIVING TOTA . !

l T

•••
English

m Computers can't understand English, so what's the point of
writing programs in English?

•••
Programs written in English serve to communicate data processing
procedures to people, in addition to serving as source programs
:for computers.

m When a programmer writes a program in machine language or in an
abstract symbolic language, he prepares a detailed explanation
of what the program does and how the program does it. This
supplementary write-up, called "documentation" of the program,
often takes as much time to prepare as it took to write the
program itself.

(3/66)

Since COBOL programs are similar to English, they

{

require more documentation than other programs}
require just as much documentation •
require less documentation
require no documentation at all

•••
require less documentation

Although COBOL programs are sometimes referred to as
"self-documenting", some documentation is almost always needed -
possibly Just remarks and notes added to the program.

7

System/360 COBOL COBOL Program Fundamentals

Ill There is danger of going overboard on the idea that COBOL i.s
Zike English. If COBOL were aompZeteZy self-explanatory, there
would be no point in studying a aourse on how to read COBOL,
would there? You have already seen one sample COBOL entry that
was an easily readable sentenae. In order to get a balanaed
point of view, let's look at some entries that are not quite so
readable:

1. Certain elements of the COBOL language have symbolia
meanings, as illustrated by the 03 and the 9(8)V99 found
in the entry below.

I I S1A!LiES1-NlOLU Ell l P 1 IC.TURE 91(6)VmJ

2. In some aases, the words are easy enough to read, but
their meaning is not obvious. For instanae, the words
below mean "the data in this item is reaorded in binary
aode" but a person must have studied System/380
COBOL in order to know that. ·

3. It is also possible for a programmer to misuse the
language, by writing entries that are hard to understand.
Perhaps the example below is a trifle ext~eme, but it
will serve to show what happens when programmers use
abbreviations that are meaningful only to themselves,
a common error.

• ••
m Even though a COBOL program is not exaatly the same as a story

written in English, at least COBOL makes an attempt to
approximate English. And one thing is aertain: writing
programs in COBOL is a far ary from writing programs in the
aatual language of the computer.

(3/66)

Of aourse, the idea that programs need not be written in maahine
language is one of the main ideas behind programming systemlJ in
general. Although those ideas are not new to you, it will be
worth your while to review some of the familiar terms -- and to
see how they apply to the COBOL system in partiauZar.

Reading assignment: COBOL PROGRAMMING SYSTEM TERMS

•••

8

System/360 COBOL COBOL Program Fundamentals

Ill The ultimate objective of using the COBOL system is to produce
c:orrect, effi,cient machine language programs, which are
c:alled •

• ••
c>b j ect programs

Ill Object programs are produced by

•••
computers

{
programmers}
computers

• COBOL programs are {
source programs}
object programs •

•••
source programs

• Source programs are produced by

•••
programmers

{ progr~mers} computers

• Can a COBOL 1>rogram be executed by a computer?

•••
No, because it is not in machine language.

•

•

• Every· programming system includes a processor -- a program that
directs the c:omputer to produce an object program from a source
program. In the COBOL system, the processor is called the

•••
COBOL compil~!r

(3/66) 9

System/360 COBOL COBOL Program Fundamentals

Ill The program that is compiled is the

{

COBOL program }
COBOL compiler .
source program
object program

object program

•••

Make sure that you have the relationship between these programs
straight. An objeat program is aompiZed from a COBOL progPam.
A COBOL program is a sourae program written in COBOL. The COBOL
aompiler is exeauted during aompilation 1 to aause an objeat
program to be aompiled.

Ill The System/360 used to compile an object program is the

{
object computer} .
source computer

source computer

•••

Ill The object computer is a System/360 that is used to [compile]
[execute] the object program •

•••
execute ONLY

Ill For a given System/360 COBOL program, the source computer and
the object computer

(3/66)

[may be the same System/360]
[must be the same System/360]
[may be different System/360s]
[must be different System/360s] .

•••
may be the same System/360 OR may be different System/360s

This is striatly a matter of hardware aonfigurations.
A System/360 may be used both as the sourae aomputer and as the
objeat aomputer provided that it aontains the hardware required
to exeaute the COBOL aompiler and the objeat program. On the
other hand, a System/360 Model 30 might be used to aompile a
program, while a System/360 Model 50 might be used to run the job.

10

System/360 COBOL COBOL Program Fundamentals

(3/66)

This review of terms was pretty superficiaZ -- and deZiberateZy
so. There is nothing to be gained by spending any more time on
a subject that you are aZready famiZiar with. However, you
shouZd feeZ fairZy confident of your knowZedge of these terms
before you continue. You may find it usefuZ to read the
definitions in the reference handbook once again. IncidentaZZy,
if you didn't recognize the terms, or if our discussion of them
seemed Zike a Zot of gibberish, then that is a good indication
that you do not have the background you need to put the rest of
this course to good use; in that case, you ought to put this
course aside for now, and study "Basic Computer Systems
Principles" instead.

• ••

11

System/360 COBOL COBOL Program Fundamentals

LESSON 2

Ill So far, ~e have talked about COBOL in general terms. No~, let's
get do~n to specifics, and find out ~hat elements ·make up the
COBOL language. I use the term "element" for the basic units
that are found in COBOL programs: the various kinds of ~ords,
numbers, and symbo Zs. "Element" is not an "officia Z" term, but
it ~iZZ do the job in the absence of a better term.

Find out ho~ many elements there are, ~hat they are caZZed, and
where they come from.

Reading assignment: LANGUAGE ELEMENTS
Example,s of elements

•••
m How many elements are there?

•••
six

Ill See how many of the elements you can name •

•••
%'eserved words, programmer-supplied names, symbols, literals,
level numbers, pictures

111 Which elements are composed by programmers, following certain
rules?

•••
progranuner-supplied names, literals, and pictures

Ill Which elements are selected from fixed sets as they are needed?

•••
reserved words, symbols, and level numbers

(3/66) 13

System/360 COBOL COBOL Program Fundlamentals

• At this point, you wiZZ leaPn detailed information and Pules
about each element in turn. Don't waste youP time memorizing
the rules; afteP aZZ, you can always Zook them up when you need
them. The important thing is to be awaPe of the areas in which
rules exist, and how much Zatitude they give the pPogrammers,
or how severely they Zimit him.

Reading assignment: RESERVED WORDS
Types of reserved words
Figurative constants
Complete list of reserved words

for System/360 COBOL

•••
111 Reserved words are {selected} by programmers.

composed

•••
selected

Ill Examine the reserved word list. Notice that most of the
reserved words are simple English words, made up of letters only.
A few of the words contain digits. .Some contain hyphens.

Spaces
{
are }
are not

found in some of the words.

•••
are not

Spaces, you wiZZ Zater Zearn, are used to separate words and
other elements in entries, so they are never found within words.

Iii The reserved words are an inherent part of the COBOL compiler's
vocabulary, but of course, the words must be spelled exactly
right in order for the compiler to recognize them. Exact
spelling includes hyphens, too.

(3/66)

Under this rule, is WORKING STORAGE equivalent to
WORKING-STORAGE?

•••
No, it is not.

14

System/360 COBOL COBOL Program Fundamentals

l&I No substitutions are allowed in the reserved word list.
Webster's Dictionary may prefer "numerical", but COBOL insists
on NUMERIC.

Refer to your reserved word list to pick the correct spelling in
each pair of words below:

1. ALPHABETIC or ALPHABETICAL?
2. PROGRAM-IDENTIFICATION or PROGRAM-ID?
3. IDENTIFICATION or ID?
4. ZEROS or ZEROES?

•••
1. ALPHABETIC
2. PROGRAM-ID
3. IDENTIFICATION
4. Both ZEROS and ZEROES are correct.

You can see that there is a certain arbitrariness about the list
of reserved words. COBOL programmers generally keep the list
right at thei~ elbows when they write a program.

Ill You will see many of the reserved words as you proceed through
this course, in the context of the entries in which they are used.
Therefore, we will not go down the list to discuss what each word
is used for. However, one type of reserved word, the figurative
constant, has been singZed out for a little extra .attention in
the reference handbook. This has been done because the
figurative constants ZERO and SPACE are found in many different
entries.

"Figurative constant" is a mouthful to say, but it is a
reasonable te:rm, since words like ZERO stand for constant data,
rather than actually being the data. In other words, they are
constants in a sense, rather than a literal sense •

•••
figurative

lfl The reference handbook discusses the figurative constants ZERO
and SPACE, and their respective plural forms. The other
figurative constants are HIGH·· VALUE, LOW-VALUE, QUOTE and ALL
(plus their pZurals); these figurative constants have
relatively specialized uses, which you will learn in due time •

•••

(3/66) 15

System/360 COBOL COBOL Program Fundamentals J. Now let's turn to the subject of programmer-supplied names.
"Programmer-supplied names" -- there is another mouthful for
you/ This term is useful to us, though, because we must
distinguish names that are composed by programmers from names
that are reserved words. We will give some attention first: to
the rules that govern the formation of programmer-supplied
names; then we will see how programmer-supplied names and
reserved words are used together.

Reading assignment: PROGRAMMER-SUPPLIED NAMES
Rules governing programmer-supplied names
Examples of programmer-supplied names in

an entry

•••
m Reserved words have preassigned meanings. By contrast,

programmer-supplied names must be within the program in
which they are used.

• ••
defined

Ill Programmers supply names for

•••
data items, data conditions, and procedures

m According to the rules, programmers may compose names like
PAYROLL, ACCOUNTS-RECEIVABLE, or 265. PAYROLL and ACCOUNTS
RECEIVABLE might be names of data items, data conditions, e>r
procedures; however, 265 could only be the name of a

•••
procedure (because names of data items and data conditions must
contain at least one letter, while procedure names can be
composed entirely of digits)

m Any letter or digit may be used in a name 1 but the only SpE~cial
character allowed is the •

•••
hyphen

{3/66) 16

System/360 COBOL COBOL Program Fundamentals

Ill A hyphen is not allowed to be [the first character]
[the last character] of a name •

•••
NEITHER the first character NOR the last character may be a
hyphen.

lfl The word CODE is not an acceptable programmer-supplied name.
Why not?

•••
CODE is a reserved word, and therefore cannot be used as a
programmer-supplied name. It violates the rule that a
programmer-supplied name must not be spelled exactly the same
as a reserved word.

lmJ Is RECORD-CODE an acceptable programmer-supplied name?

•••
Yes. Even though it contains two reserved words, RECORD and
CODE, they have been joined by a hyphen to form a new word whose
spelling is different from either of these words.

m Is the following statement true or false1 90-DAY-ACCOUNT is an
illegal name for a data item because the first character of a
name must be a letter.

(3/66)

• ••
False. The rule states that names of data items must contain at
least one letter, but does not specify that the first character
must be a letter. 90-DAY-ACCOUNT is a perfectly legal name.

17

Systern/360 COBOL COBOL Program FundeLrnentals

Check your understanding of the rules for programmer-supplied
names. For each name below, decide what rule, if any, is being
violated.

1. 5
2. SYSTEM/360
3. OVERFLOW
4. ECONOMIC-ORDER-QUANTITY-COMPUTATION
S. ENTRY-PROCESS
6. HEADING LINE
7. F.I.C.A.

• ••
1. O.K. (acceptable for procedures, though not for data items

or conditions).
2. Contains an illegal special character (SYSTEM-360 would

be correct).
3. Not allowed because OVERFLOW is a reserved word.
4. Exceeds 30 characters.
S. O.K.
6. No spaces are allowed.
7. Contains illegal special characters (FICA or F-I-C-A)

would be all right, but F-I-C-A- would violate still
anothe:r rule) •

m You can see that the rules for programmer-supplied names are not
especially restrictive. They permit programmers to invent just
about any name under the sun. In fact, they give the programmer
so much freedom to invent names, that he must learn to hold back
his inventive genius. Remember that one of the aims of COBOL is
to produce programs that read Zike English, which mean that the
programmer should either use English words for names (SALARY,
DEDUCTIONS, etc.), or compose names from two or more English
words, connecting them with hyphens (SOCIAL-SECURITY, FEDER.A.L
INCOME-TAX, etc.). Since names can be 30 characters long, there
is no need to abbreviate or to make up code names •

•••

(3/66) 18

System/360 COBOL COBOL Program Fundamentals

m But suppose that a programmer decides to use a name like ZQX-3.
First, is ZQX-3 a legal name (does it violate any rules)?
Second, is it a good name?

•••
ZQX-3 is a legal name, inasmuch as it does not violate any rules.

The answer to the second question is a matter of op~n~on. I hope
you agree that meaningless names have no place in a COBOL program
because they defeat the purpose of making programs easy to read
and understand. By this standard, ZQX-3 is a good name only if it
is readily understood by everyone who has to read the program.
It is a bad name if it makes sense only to the programmer.

For inetance, if the program has something to do with the
manufacture of self-starting 1rJharcoaZ briquets, and ZQX-3 is the
secret new ingredient that makes light fZ.uid obsolete, then
ZQX-3 is the name to use. But if the programmer decided to use
ZQX-3 in pl.ace of MINIMUM-BALANCE because it is shorter, or
because he once met a cab driver named Zarathustra Q. Xerxes III,
then it is a bad name.

m Reserved words and programmer-supplied names together account for
nearly all of every COBOL program. The reserved words may be
thought of as forming the skeleton, while the programmer-supplied
names are the meat of most program entries. To get the idea,
pick out the reserved words (with the aid of the reserved word
list) and the programmer-supplied names in the entry below •

•••
reserved words----

~@u ANT I TY-ON-~(sTOCK-BALANCE ~
' I proirammer-supplied names

(3/66) 19

System/360 COBOL COBOL Program Fundamentals

m Pick out the reserved words and programmer-supplied names :Ln the
entry below. Notice that this entry has the same framework. of
reserved words as the entry in the preced~ng frame •

•••
reserved words

~ 0 R ozs) ~ (YE AR -T 0- DATE -G ROSS.)

.. ?
programmer-supp~~eu names

liJ Here is a slightly longer program entry, with a considerably
different ratio of reserved words to programmer-supplied names.
Using the reserved word list, find out which words in the E~ntry
are reserved words, and which are programmer-supplied names.

(3/66)

Flo :p A vTR. pi L
r t I A BE L

I :0 A T A R

Reserved words

FD
LABEL
RECORDS
ARE
STANDARD
DATA
RECORD
IS

L -F IL E
R EC 0 R D s
E c 0 R D IS

A

I
I

R E s T A N D A R D
E IM p L 0 y EE - M A ST EJR ..
•••

Programmer-supplied names

PAYROLL-NAME
EMPLOYEE-MASTER

I
T
1 I

-T

In this example, the programmer has supplied the names of a data
file and a data record. You have read that names for data items,
data conditions, and procedures are supplied by programmers;
for the moment, you can think of the file and the record as
types of data items.

20

System/360 COBOL COBOL Program Fundamentals

m You can see that two of the main tasks involved in COBOL
programming are to select the reserved words required for the
framework of entries, and to supply names to fill in the frame
work -- especially names for data items. You know that it is up
to the progrrunmers to define the names that he uses.

You also know that there is an exception to this general rule:
namely, that ther~ are a few predefined data items with reserved
names, which are called ---

•••
figurative constants

If.I The most commonly used figurative constants are

•••
ZERO (ZEROS, ZEROES) and SPAC:E (SPACES)

m l'n the sample entraies that you have seen, you have undoubtedly
noticed some symbols -- specifically, periods and commas. These
are only two of a large number of symbols that play an important
~oze in COBOL programs. The typical procedure entries below
illustrate a few more of the symbols used in COBOL.

l 111. itltlN
I NP UT~ M A s TJEIRH lcltl~GIElsl;I l0iultltH I 111 E w- MAS T E R •

!c 0 M p u T E A v E R A G E - c 0 s T i (- (T ~T A L - u N IT s t-

1 N E ~ - u N IT s) * 0 LO - AIV E R A GIE - c 0 s T i±
I N E ~I 1-1 u N IT s * N E w - c o}s T) ltl T 0 T 'A L - u N IT s J_ ...!.

l 111 !ti~ ST E R - N u M B E R ~ T R AN s A c rr 10 N - N u M B E R _)_

0 rr1 0 w R I T E M A s T E R.

Learn what g~oups the symbols are divided into, and get a general
idea of what symbols are in each group. Look for symbols that
appear in moPe than one of the groups.

Reading assignment: SYMBOLS
Punctuation symbols
Arithmetic symbols
Condition symbols

(3/66) 21

System/360 COBOL COBOL Program Fund.amentals

I'll In the reference handbook, symbols are defined as "special
characters which, , have particular meanings for the
compiler".

• ••
individually

Efl Some of the special characters which are used as symbols also
appear in other elements, but there they are not used
individually, and there also, they have different meanings.
For example, a hyphen and a minus sign are the same character;
however, they are used differently and obviously have different
meanings. A hyphen is found embedded between other characters in
reserved words and programmer-supplied names, where it has no
special meaning, and serves only to improve readability. A minus
sign stands apart in an arithmetic formula, with spaces before
and after it,and signifies subtraction.

Accordingly, the correct way to read the formula for computing
CURVE in the entry below is

{
RANGE minus ARCH minus RADIUS}
RANGE-ARCH minus RADIUS .
RANGE minus ARCH-RADIUS

•••
RANGE minus ARCH-RADIUS

m COBOL symbols fall into three groups: symbols,
symbols, and symbols •

•••
punctuation, arithmetic, condition

(3/66) 22

System/36q COBOL COBOL Program Fundamentals

• Punctuation symbols make program entries more readable. In most
c~ases, the use of punctuation marks is left up to the programmer.
At his discre!tion, he may use commas to separate a series of
operands or c:lauses. Or he may use semicolons to separate a
series of clauses, in place of commas.

•

(3/66)

Certain punctuation is mandatory, though.
required in every program entry is the
entry.

• ••
period

A symbol that is
that terminates the

In this couPae, the tePm "entPy" is used in the pPecise sense of
a sePies of language elements, the last of which is a pePiod.
~hat is to say, an "entPy" will not be spoken of as just
something entePed on a coding sheet. This is discussed fuPtheP
in a ZateP lesson •

Arithmetic symbols allow the COBOL programmer to write formulas
in mathematical notation. There are, then, two general ways of
doing arithmetic in COBOL: narratives and formulas. The
difference between the two can easily be shown by an example;
these two entries mean the same in COBOL:

11 l I i~o~I IR!EIG~ILIA~I. I lo~IEIRITI 1 ~Ej IGI 1 lvl 1 l~GI IGIRlolslsl . J I I I I I
11 11 !c!oi!'IPlulTIEI IGIR!olslsl l=l IRIEIGlulLIAIRI l+l_ !o!v(EjR!TI 1 IMIEI. ! I I I 11

In this example, the entries are exactly the same length, but
you might guE~ss that, in most cases,

{
a narrative is shorter than the equivalent formula}
a formula is shorter than the equivalent narrative

•••
a formula is shorter than the equivalent narrative

23

System/360 COBOL COBOL Program Fund.amentals

m Like arithmetic symbols, condition symbols are shorthand
equivalents of written narratives. The two entries below have
identical meanings.

: I F M A s T E R I- N u M 8 E R K D E T A IL 1-i NU M B E RI. l
I w R I.II E M A s T E R R E c 0 R D I l - .

11 F M A s T E R 1--1 N u M 8 E R IS L E s s T HtA N
I D E T A IL N u M B E R w R I tJJ E M ~s T E R R E c 0 I -

·~
1-1

This example shows that the symbol < is equivalent to what
reserved words?

•••
IS LESS THAN

l'IJ Certain symbols appear in more than one group of symbols. For
instance, the equal sign is both an arithmetic symbol and a
condition symbol. I.n the first entry below, the equal sign is
used as a condition symbol; here it calls for two items to be
com~ared to see if they are equal. In the second entry, it: is
use as an arithmetic symbol; there it causes the data named at
the left of the equal sign to be made equal to the result of the
computation -- that is, it calls for the result to be moved into
that data item. ·

(3/66)

11 I) i 1 !Fl lelAILIAINlclEI 13 Ml 1 INI 1 IMlu,.,, I !Glol !Tl~ fhiAIRINI 1 !NIGi. I I I I l.
I I 11 :cloMIPlulTIEI IA}MlolulN!TI 13 lalu!A(NITI 1 ITlv I ~I IPiR! 1 lclE[[11 IlIJ
Which statement best sums up this idea?

An equal sign never has exactly the same meaning twice in
succession.

No matter what they mean, all equal signs look alike to t.he
untrained eye.

Equal signs are unpredictable, but the compiler can usually
figure them out~

Equal signs in arithmetic and conditional entries have
different meanings.

All equal signs are created equal, but some are more equal
than others.

• ••
Equal signs in arithmetic and conditional entries have different
meanings.

24

System/360 COBOL COBOL Program Fundamentals

LESSON 3

m By this time, you should feel quite at ease with the various
sampZe entries you have been looking at. You should be able to
identify the reserved words and the programmer-supplied names in
any entry, and you should be able to explain the difference
between those elements. You also have a general idea of the
kinds of symbols that you will run across in COBOL programs.

In this lesson, we will discuss the three remaining elements
literals, leVE~l numbers, and pictures. In contrast with the
first three etements you have studied, these elements have
comparatively specialized purposes, and do not occur as
frequently in a program. However, it is every bit as important
for you to know how these elements are used, and to be able to
recognize them in program entries.

You will study literals first. Learn what a literal is, and what
the two main types of literals are. Determine how you can tell
the differenc~~ between the two types.

Reading assignment: LITERALS
Rules governing numeric literals
An example of a numeric literal in an entry
Rules governing non-numeric literals
An example of a non-numeric literal

in an entry

•••
m A literal is an actual used in a program •

•••
value

m The two main types of literals are

•••

(3/66)

numeric and non-numeric

System/360 COBOL permits the use of a third type of literal, the
floating-point literal, which we will not deal with in this book.

25

System/360 COBOL COBOL Program Fundamentals

fJI Pick out the literal in the entry below. What type of literal
is it?

•••
The digit 1 in this entry is a numeric literal.

fll Which characters are not permitted in numeric literals?

•••
Letters and most special characters are not permitted. The only
special characters permitted are a plus or minus sign as the
leftmost character, and a decimal point as any character except
the rightmost.

m The correct way to write "minus one-half" as a numeric literal is

{-1/2}
-.OS •
• -5

•••
-.s

fZI One of the rules for numeric literals is that whole numbers are
written without decimal points. A decimal point may not be the
rightmost character of the literal. The entry below appears to
violate this rule, yet it is a correct entry. Can you explain
this discrepancy?

(3/66)

•••
The last character is not a decimal point; it is the period that
ends the entry. This becomes clear when the entry is rewr.rtten
as COMPUTE LOAD = 30 * WEIGHT.

This is another exampZe of a character having different meanings
in different contexts. However, this shouZd not seem unreasonabZe
to you, inasmuch as the same character is used in the same two
ways in everyday English.

26

System/360 COB.OL COBOL Program Fundamentals

fll Non-numeric l:iterals are easily recognized, because they are
enclosed in

•••
quotation marks

Notice that ~e use the single quotation mark (') and not the
double quotation mark ("). Single and double quotation marks
are distinctly different special characters, ~ith different data
codes in System/360. Non-numeric literals in System/360 COBOL
must be enclosed by single quotation marks, one before and one
after the literal.

fZI Don't be misled by the name "non-numeric". Non-numeric literals
may contain digits, and they may be numbers. Which of the
literals in this list are valid non-numeric literals?

'JANUARY, 1966'
'NOT IN FILE'
I 5 QI

I l'

•••
These are all valid non-numeric literals.

flJ Suppose that all of the items in the list below are literals.

(3/66)

Which are numeric literals and which are non-numeric literals?

50
30565
'-5.03'
3.1416
'TOTAL'

•••
The numeric literals are 50, 30565, and 3.1416. The non-numeric
literals are '-5.03' and 'TOTAL'.

I have reprinted the quotation marks here because they are
essential to the identification of the type of literal.
Remember, though, that the quotation marks merely enclose a
non-numeric l·iteraZ, and are tiot part of the literal.

27

System/360 COBOL COBOL Program Fund.amentals

m Which character is not permitted in non-numeric literals?

•••
The quotation mark is not permitted, because it signifies nend of
literal" to the compiler.

m In non-nuneric literals, you can write anything you want bE~tween
the quotation marks, as long as you don't throw in another
quotation mark. You might, for example, use a non-numeric
literal for the message 'NUMERIC SECURITY CONTROL IS OMITTED',
even though every word in this message is a word •

•••
reserved

m Can the last character of a non-numeric literal be a decimal
point, for example, '$4500.'?

•••
Yes

From time to time, I have mentioned that programmers must define
the names that they use in programs. To define the name of a
data item, the programmer merely includes the name in an item
description en try. Leve Z numbers and pictures are also found in
these item description entries. The subject of item description
entries wiZl be explored in depth in a Zater lesson, but we will
touch on it briefly at this point. The thing for you to learn
now is how to recognize level numbers and pictures in a program.

Reading assignment: LEVEL NUMBERS
Examples of level numbers in entries

PICTURES
Examples of pictures in entries

•••
m A number that designates the level of a data item, in relation

to other data items, is called a

•••
level number

(3/66) 28

System/360 COBOL COBOL Program Fundamentals

m Level numbers are found in entries that assign
and data values.

• ••
names

to data items

m 'l~he numbers 01 through 49' 77' and 88 may be used as level
numbers. Level numbers 01 through 49 are used for data items
that form

•••
records

m Level number 77 is used for items that are neither records nor
part of records. Such items ,are called

•••
independent items

m I.evel number 88 is used to assign names to
may assume.

• ••
values

that data i terns

m 'l~here are three elements in this entry. The last element, as
always, is a punctuation symbol -- the period that indicates the

(3/66)

end of an entry. The first element, 01, is a , while
PARTS-CATALOG-ITEM is a

level number
programmer-supplied name

•••

29

System/360 COBOL COBOL Program Fundamentals

n:w
a.I As in every entry that contains a level number, the level number

is the ___ element in this entry •

•••
first

m A string of characters with special meanings that describes
certain characteristics of a data item is called a

•••
picture

fm A picture is easy to recognize in a program because it is
preceded by the reserved word

•••
PICTURE (or PICTURE IS)

m The picture in this entry is PICTURE • {
PICTURE 99}

(3/66)

99

•••
99

The reserved word PICTURE mere"ly signa"ls that 99 is a picture,
just as on a sign that reads "SPEED LIMIT 50", 50 is the speed
"limit and the words that precede it are there mere"ly to
distinguish the number from other numbers on signs a'long the
road. The two e"lements PICTURE 99 together are called a
"picture cZause". The clause might also have been written as
PICTURE IS 99.

30

System/360 COBOL COBOL Program Fundamentals

fJI Pictures present us with the interesting situation of sometimes
having an elexoont within an element, since pictures may contain
numeric literals. These literals must be unsigned whole numbers,
and are easy to spot because they must be enclosed in

•••
parentheses

IJI The picture in the entry below is the abbreviated way of writing
56 xs. Aside from the fact that a programmer would be out of his
mind if he didn't write X(56) instead of 56 Xs, it would be
illegal to write a string of 56 Xs. Why?

•••
A picture mus·t not be over 30 characters long.

The picture X(56) is onZy five characters Zong, even though it
represents 56 Xs.

m The ZiteraZs he Zp to make the picturae morae readable. You see,
one of the things that a person might want to know when he is
checking out, debugging, ora ana&yzing a prograam, is just how
often a picture character of a certain kind is repeated. He
might miscount the repetitions if the picture we~e 9999999999,
~hiZe 9(10) practicaZZy eZiminates the possibility of a mistake.

(3/66)

The number in parentheses indicates the number of times the
picture character occurs without interruption by some other
character. Thus, the correct abbreviation of S999999V99999 is

{

SV9 (11) }
S9(ll)V
9(ll)SV •
S9 (6) V9 (5)

•••
S9 (6) V9 (5) (The character V interrupts to form two strings of 9s.)

31

System/360 C:OBOL COBOL Program Fundamentals

Pictures are found only in entries that begin with level numbers,
as the first entry below illustrates. However, as the second
example illustrates, an entry with a level number

{

does not necessarily contain a picture}
must always be written with a picture •
is not complete if it lacks a picture

i I
102 RE DUCIT I iON-F
I I

102

•••
does not necessarily contain a picture

11 11

You will Zearn much more about pictures in a later lesson, so
don't be concerned about not knowing what the Xs and 9s and
other picture characters actually mean. However, you should now
be aware that pictures appear in some item description entries,
and that they play a role in the process of defining data items.
And you should be able to recognize a picture when you see one •

•••
l1J You have now studied all six COBOL language elements. You will

find these elements in all COBOL entries, in all COBOL proqrams.
Knowledge of the elements has little value in and of itself,
though -- unless you can recognize each element when you see it
in a program.

(3/66)

To make the task a little harder, some of the elements may look
alike. For instance, the number 9 9 could be a [reserved w,ord]
[progranuner-supplied name] [literal] [level number] [picture] •

•••
programmer-supplied name OR literal OR picture

The number 99 might be the name of a procedure. It is also a
valid literal or picture. It is not a reserved word, since it
does not appear on the reserved word list. And it is not a
level number, beca~se it is not a number between 01 and 49;
77; or 88.

32

System/360 COBOL COBOL Program Fundamentals

m The meaning of a number in a COBOL program is determined by the
context in which it is used. It is possible for the same number
to be used in several different ways within one program.

Applying this general rule to a specific case, you can conclude
that the number 25

cannot be used as a literal because it is reserved for use
as a level number

can be used as a literal even though it is also used as a
level ntunber

can be used. as a literal only if it has not previously been
used as a level number

•••
can be used els a literal even though it is also used as a level
number

m Often it is fairly easy to identify an element. For example,
the number 999 in the entry below must be a because

•••
picture, because it is preceded by the word PICTURE

ID The task isnvt always as easy as it was in the previous example,
but it is usually possible to make a positive identification
based on the rules that you are already familiar with. See how
well you do in the following cases.

(3/66)

:In this entry, 15 is a because ---

•••
level number because it is the first element of the entry and is
"followed by a programmer-supplied name

33

System/360 COBOL COBOL Program Fund:amentals

El In this entry, 65 is a because ---

•••
non-numeric literal because it is enclosed in quotation marks

The rules for identifying piatures, leveZ numbers, non-num~?ric
literals, and reserved words are fairly simple. And you aan
generally identify other elements by a process of elimination.
If, for instance, you aome across a name that aontains lett:ers,
and it is neither a reserved word nor a non-numeric literal, then
it must be a programmer-supplied name. Similarly, if you find a
number that is not a level number, not a picture, and not a
non-numeric literal, then it must be either a numeria literaZ or
the programmer-supplied name of a procedure -- and the context
in which you find it will generally tell you whether the number
is a literal or a procedure name .

•••
Im In the entry below, you can determine that FD is definitely

(3/66)

a • Also, you can figure out that 32 must be a

FID 1111NTv E N T 0 F E 1 ! I !
!

! I l j
; I R y - IL ! i I

I I :elL!olc K c 0 N. T A IN s 3 2. R E c oTR s!·I i 1 ! I ! !
-; I

D ·....t..· 1 j ! i .
I] :L A 8 E L R E c 0 R D s A·R E T A D A T. tl ' l r l 1 l 1 ! s N R!O_<l I I

I I I -~D A T A R 'E c 0 R D IS 11 N v E N T 0 R y -IR!Elc olRlol. I I I I l ;

•••
reserved word; numeric literal

You should have identified FD easily and positively with the aid
of the reserved word list. And you should have figured out that
32 is a Ziteral from the sense of the entry, which says that a
block in the inventory file actually -- literally -- contains
32 re cords.

In certain entries, such as the one in this frame, literals are
required to be whole numbers, and to have no sign. You have
already seen such literals in pictures. You will find that these
unsigned whole numbers are called "integers" in COBOL manuals.
For the present time, the important thing for you to realize is
that the values of these numbers are taken literally by the
compiler, so we wiZZ caZZ them aZZ "literals".

34

System/360 C:OBOL C:OBOL Program Fundamentals

Im One of the number in this entry is a procedure name, and one is
a literal. Which is which?

•••
The procedure name is 582. The literal is 607.

Notice that the name 582 reveals nothing about the processing
done in that procedure. This entry would have meant more to the
reader: IF AREA-CODE = 607, (;0 TO COMPUTE-TOLL. This illustrates
why English words are usually preferred to numbers so far as
names are oonoerned.

Im In the next four frames, identify all of the elements in each
entry.

• ••

•••
reserved words punctuation symbol

I ~ .
SUBT~ACT 1 FROM (looP-COUNTJ./

.I \ . d
numer~c programmer-suppl~e
literal name

111 J°I' lsJP~IA v ' 1!N 1 rI1IAh }ER Ro,I PlR
l E}olu EI 3l' o!c R

T , l I l r !1 1 UPON c10Nslo1LTE. T, 1 T t ' '

•••
f -punctuation symbols t

DISPLAY 'GNITIATE ERROR PROCEDURE 3)•

I u_eoN CONSOLE. ' .
~ ~ \ non-nume~~c

reserved/~ punctuicztion "literal
words_.....,, symbol

(3/66) 35

System/360 COBOL COBOL Program Fundamentals

•••
Zevel number punctuation symbols~~--

o{ ~ v ER AG E-C osf)./p I c TUR E

I z· d \ d programmer-supp ~e reserve
name word picture

•••
punctuation symbols T---rl

7 7 §_p ___ T_O ___ C_H_A_N_N_E_L ___ 2_j P I C TU RE X ! V ALU E ; 2 l t
~veZ number '\\programmer-supplied ~ser~ Ziterfz

name words I
picture

B The information you have learned about the six COBOL e le men ts is,
of course, not an end in iteeZf. Rather, it provides you ~ith a
foundation of terminology, and with the ability to recogni.2e the
elements in programs. The elements will come up again and again
in future lessons; whenever a reference is made to an element,
and you are not quite sure of the facts about it, make a point
of looking back at the reference handbook. By repeatedly

(3/66)

looking up facts when you need them, you will solidify your
knowledge of them; in particular, you will see much more clearly
how new facts relate to facts you have previously studied •

•••

36

System/360 COBOL COBOL Program Fundamentals

1111 Let's quiokty revie~ some of the materiat you have been studying.

l.. Which elements are selected by the programmer from
fixed sets?

2. Which elements are composed by the programmer?

•••
l.. reserved words, symbols, level numbers
2. programmer-supplied names, literals, pictures

1111 One of the major restrictions imposed on elements composed by
t..he programmer is their length. See if you can recall the
maximum length of each of these elements:

l. programmer-supplied names
2. non-numeric literals
3. numeric literals
4. picbures

••••
1. 30 characters
2. 120 characters
3. 18 digits~
4. 30 characters

(3/66) 37

System/360 COBOL COBOL Program Fundamentals

1111

LESSON 4

i·n lesson 1, you Zeal'ned that standardized pl'ogramming is one of
the aims of the COBOL system. To this end, the system provides
standard language elements, standard entry fo!'mats, and a
standard program stl'ucture. Lessons 2 and 3 concerned themselves
with the COBOL language elements. In this lesson, ~e ~ill turn
to the COBOL program st!'ucture. As in the preceding lessons, the
emphasis ~ill reatly be on mastel'ing the vocabuZary of COBOL, in
preparation fol' further ~ol'k ~ith the language. This time, you
wilt learn terms such as "division" and "section". And as before,
I hope that you ~ill not ~aste your time and energy memorizing
the definitions of these terms. Rather, your efforts should be
directed to~ard learning to apply the definitions -- to recognize
a division in a program, for instance, and to perceive the
Pelationship bet~een divisions and sections.

Find out ho~ many divisions there are, their names, and their
sequence. Determine ho~ you ~ould recognize the beginning of a
division, section, and paragraph. Learn ~hat distinguishes an
entry.

Reading assigment: PROGRAM STRUCTURE
Divisions
Sections
Paragraphs
Entries
Sample division with structural

units identified

•••
B How many divisions are there in a COBOL program?

•••
four

1111 The four divisions are Data, Environment, Identification, and
Procedure, but this is not their correct order. What is their
correct orde17?

~· ..
:cdentificaticm, Environment, Data, Procedure

(3/66) 39

System/360 COBOL COBOL Program Fund:amentals

1111 The entries that comprise a COBOL program are divided into four
divisions according to the purpose served by the entries. This
allows the progranuner to give his full attention to one division
one set of entries -- at a time, instead of having to worry about
the whole program at once.

Since every program is divided into the same divisions, which
always appear in the same order, it is easy for someone other than
the author of the program to pick it up and know where to find
whatever he is looking for.

You can conclude that the standardized program structure is
[an aid to program writers] [an aid to program readers] •

•••
an aid to program writers AND an aid to program readers

llfJ Name the divisions of a COBOL program, in order •

•••
Identificat.ion, Environment, Data, Procedure

llEI As part of your reading assignment, you examined a sample
division. Which division was it?

•••
Environment division (The first entry of the division gives the
division name.)

1111 The beginning of a division is marked by a division header entry.
What marks the end of a division?

•••
There is no special •1 end of division" entry. You know that the
preceding division has ended when you come to the next division
header entry.

1B Every division header entry contains the word ---, and eviery
section header entry contains the word •

•••
DIVISION; SECTION

(3/66) 40

System/360 COBOL COBOL Program Fundamentals

1111 Note that all header entries begin to the left of the broken
vertical line on the program sheet, while all other entries are
written to the right of the broken line. The rules that govern
this are explained in detail in the next course in this series.
At this time, it will suffice to say that the headers are brought
out a ZittZe to the left for emphasis.

You also note that each header, like every other entry, is
terminated by a

•••
period

1.'here is no "official" definition for "entry" in COBOL, but the
definition given in the reference handbook does not contradict
anything you may Zater read in other COBOL publications. Most
COBOL manuals refer to some entries as "entries", to others as
"sentences", and have no term at aZZ for still others.
Throughout this course, however, we will use the term "entry"
in one, precise way.

1111 Which of these is a valid paragraph header entry:

(3/66)

SEQUENCE-CHECK-PROCEDURE. •
{

DATE-WRITTEN l
FILE-CONTROL PARAGRAPH
MINOR-TOTA!, PARAGRAPH

SEQUENCE-CHECK-PROCEDURE.

•••

DATE-WRITTEN is an acceptable paragraph name, but is not a valid
header entry because the period is missing. (If looking for
periods seems to you Zike picking nits, Zet me assure you that
one of the hallmarks of an effective COBOL programmer is his
meticulous attention to the smallest details.)

41

System/360 COBOL COBOL Program Fundamentals

ml Inasmuch as periods are so important to the compiler, it behooves
us to be able to tell the difference between a period and a
decimal point in an entry. A period is always followed by a
space; a decimal point is never followed by a space.

This distinction explains why a decimal point must never be
written as the rightmost character of a numeric literal. How
would the entry below appear to the cornpile:r if the literal were
written with a decimal point (66365.)?

111
1

OVE 66136151 ITO. CONTROLl-:D'ATIE'.! r I I 111

•••
The entry would appear as two entries, MOVE 66365. and TO CONTROL
DATE. Neither of these "entries" would make sense to the compiler,
of course, and both would be regarded as bein~ incomplete.

1111 The correctly written section header entry is

{

INPUT/OUTPUT SECTION.}
INPUT-OUTPUT SECTION.
INPUT-OUTPUT-SECTION.

INPUT-OUTPUT SECTION.

• ••

11D Every section begins with a section header entry. There iE; no
"section trailer entry", but you will know that you have passed
the end of a section when you come to the next

[division header entry]
[section header entry]
[paragraph header entry].

• ••
division header entry OR section header entry

Im One of the divisions is too small and too simple to require~
sectionalizing. This division, which never contains sectic•ns,
is the division.

• ••
Identification

(3/66) 42

System/360 C:OBOL C:OBOL Program Fundamentals

Al.though he is not required to do so, the programmer may, at his
own discretion, choose to establish sections in the
division of a program.

• ••
Px·ocedure

The Data division contains sections, but not paragraphs. In
place of paragraphs, the division contains entries arranged in a
form that somewhat resembles an outline. Most of the entries in
the Data division begin with numbers like 01, 02, etc. These
numbers are definitely not paragraph headers1 rather, as you
already know, they are •

•••
level numbers

Im The only division that always contains both paragraphs and
sections is the division •

•••
Environment

llB The di vision that always contains paragraphs, and sometimes

1111

contains sections, is the division •

•••
Procedure

There are always sections, but never paragraphs, in the
division.

• ••
Data

11111 There are always paragraphs, but never sections, in the
division.

• ••
Id.entif ication

(3/66) 43

System/360 COBOL COBOL Program Fundamentals

1111 It is necessary that you get a good idea of ho~ divisions,
sections, and paragraphs appear in an actual program. For this
purpose, turn to the CASE STUDY program at the end of the
reference handbook, and locate the four divisions. The ne~t
seven frames aZZ refer to that program •

•••
1111 The longest division in the case study program·is the

division.

• ••
Data

lllJI How many paragraphs are in the Identification division?

•••
four

Im How many paragraphs are in the Environment division?

•••
three (two in the Configuration section, and one in the
File-Control section)

1111 How many paragraphs are in the Data division?

•••
none (The Data division never contains paragraphs.)

ml What are the names of the sections of the Data division?

•••
File section and Working-Storage section

llfl How many sections are in the Procedure division?

•••
none

(3/66) 44

System/360 COBOL COBOL Program Fundamentals

llDJ How many paragraphs are in the Procedure division?

•••
eight

So far ~e have been Zooking at COBOL programs in bits and pieaes,
to beaome aonVE~rsant UJith the elements that a.tte found in p.ttog.ttams,
and ~ith the structure of programs. F.ttom this point on, ~e are
going to sta.ttt paying mo.tte attention to the content of COBOL
programs, and the meaning of va.ttious ent.tties. In you.tt next
.tteading assignment, you ~ill take an ove.ttalZ Zook at the four
divisions, to see ~hat kinds of information eaah one contains.

You should learn to desc.ttibe the kinds of information found in
the divisions, to name the division in ~hiah you ~ould Zook for
specified information, and to discuss ho~ the divisions are
.ttelated to each othe.tt.

Reading assignment: PROGRAM CONTENTS
Identification division
Environment division
Data division
Procedure division

•••
lllfl Their names are excellent clues to the kind of information in the

divisions. So if you remember the names of the divisions, the
rest is almost too easy.

As its name indicates, the Identification division the
program. The Environment division describes the machine
for compiling .and executing the program. The Data division
describes the to be processed. And the Procedure division
tells the _____ to be followed in processing the data •

•••
identifies; env·ironment; data; procedures

11111 While each division contains information of a different kind, all
of the divisions have certain functions in common. For example,
every division is intended, to a large extent, to inform people
who read the program. However, the division that exists almost
solely for that purpose is the division •

•••
Identification

(3/66) 45

System/360 COBOL COBOL Program Fundamentals

The name of the game is "data processing", so all of the divisions
have something to do with data. Only one division is called the
Data division, though, and in it you would see the

[assignment of data files to input-output devices]
[breakdown of data files into records]
[reading and writing of data files] •

•••
ONLY the breakdown of data files into records

1111 In which division would you look to find out:

How the output records are organized?
What actions will follow the processing of the last input

record?
What input-output devices are used in the program?
What the name of the program is?

•••
Organization of records: Data division
Actions: Procedure division
Input-output devices: Environment division
Program name: Identification division

Im While the divisions work together as a team, each division is
independent. That is, each has a separate and distinct role to
play. For example, the Data division describes data files and
records, but does not tell what input-outpu,t device will read or
write the data. Assigning files to input-output devi,ces is a
job of the division.

• ••
Environment

llm Likewise, the Procedure division uses the names of data itiems,
but does not describe the items. If you wanted to know how many
characters a data item contains, or where the item appears
within a data record, you would look in the division •

•••
Data

(3/66) 46

System/360 COBOL COBOL Program Fundamentals

1111 Let's get more specific, by taking a closer look at each division.
Remember that ~e are not concerned with the rules for composing
program entries, even though -- unavoidably -- some of the rules
will pop up in our discussion. You are not expected to be able
to write a program at the conclusion of this course; only to be
able to read a program, and comprehend what you read. The rules
for program entries have some bearing on this, for they help you
to realize the ways in which other programs may be different from
the sample programs.

Reading assignment: IDENTIFICATION DIVISION ENTRIES
Sample Identification division

•••
lllfl Although the sample Identification division given in the

reference handbook occupies several lines, only a small part of
it is actually required by COBOL rules. Determine which part is
required.

(3/66)

• ••
I lo EN:TJI F IC A T JO N D IV IS 10 N. I I I I
l

I , ! I l I I :

PIR OIG:RA M ID. I I T ! - J I I

1 I , ,
' l P,U R c H A s E,' • I I l l l ! l

~ .

AZl of the other entries are optional, but very useful. They all
faZl into the category of "program documentation", and are well
worth the few extra moments it takes to write them.

47

System/360 COBOL COBOL Program Fundamentals

Im Seven fixed paragraph names are mentioned in the reference
handbook. Each name is a reserved word. The reference handbook
makes it clear that

the programmer must write a Program-Id paragraph and no
more than six other paragraphs, for which he can
invent names or use fixed names.

no more than seven paragraphs may be written, and their
names must be chosen from among the seven fixed names ..

the programmer is allowed to write more than seven
paragraphs, provided that he uses reserved words for
the names of the paragraphs •

•••
no more than seven paragraphs may be written, and their names
must be chosen from among the seven fixed names.

One paragraph, the Program-Id paragraph is required. The
programmer is not allowed to invent names for the other
paragraphs. Nor is he aZZowed to use any reserved words for
names of paragraphs in the Identification division, other than
the seven fixed names that are provided.

,,..6,.e Im How manyAparagraphs might the sample division have had?

(3/66)

•••
two (Date-Compiled and Security)

The program name, which is required to appear in the Progrstm-Id
paragraph, is ~he name by which the program will be identified
on a job control card at the time that the object program i.s
executed. Program name is an example of a special kind of
non-numeric literal called an "external name". Like all ne>n
numeric literals, external names are enclosed in quotation marks.
Unlike other non-numeric literals (which can contain as many as
120 characters), external names are limited to eight characters
a letter followed by up to seven letters and/or digits •

•••

48

System/360 COBOL COBOL Program Fundamentals

Im There is not much more that can be said about the Identification
division, so we will go on to the Environment division. Here our
sample division involves a card input file and a printed output
file; however, the same sorts of entries are used for all
sequentially organised files, whether they are on tape, disk,
card, or printer devices. Additional entries, which we wiZZ not
dea'L with in t:his course, are used for non-sequentially organized
data files, on disk or other direct-access devices.

Reading assignment: ENVIRONMENT DIVISION ENTRIES
Sample E:nvironment di vision
System/360 model numbers
Assignment of files to input-output devices

•••
Im Knowing how to decipher the model number and storage capacity

codes in the Source-Computer and Object-Computer paragraphs is a
m·inor, but usE~fuZ bit of info11mation. The actual model number is
given, so only the storage capacity code represents a problem.

(3/66)

An easily solved problem, however, since you can Zook up the
meanings of the code letters whenever you need them.

Use the table of code letters in the reference handbook to
interpret the sample Environment division. Both the source
computer and the object computer are IBM System/360 Model
with a storage capacity of bytes.

301 65,536

The precise number of bytes in storage is rarely useful to anyone.
It is sufficient to know the approximate number. So, we
generally talk in terms of round numbers; for instance, the
letter E can be said to stand for 32, 000 (32KJ bytes of storage.
These code letters are used in many references to System/380 -
not merely in System/360 COBOL. Reference manuals, for example,
may speak of "F compilers", by which they mean compilers that
require a system with 84K bytes of storage. One way to remember
the approximate values of the code letters is to remember that
the table starts with C, which stands for 8,000 (BK). Then just
double the number of bytes for each succeeding letter; D is 18K,
E is 32K, F is 64K, and so on. By this method, you will be off
by several thousand bytes by the time you get to I, but at least
you will know what ball park you are playing in.

49

System/360 C:OBOL COBOL Program Fundamentals

Im Turn to the Environment division of the case study program in
your reference handbook. What is the source computer for that
program?

•••
An IBM System/360 Model 50 with 128K (actually 131,072) bytes
of storage

The File-Control paragraph of the Environment division is
important because in it every input or output is assigned
to an input or output

•••
file (data file) 1 device

Im Each entry in the File-Control paragraph begins with the wc>rd
SELECT, followed immediately by the file name. The file name is

the name by which that file will be identified on a job
control card.

a name which indicates the type of input-output device
used for that file.

the name which that file is called in the Data and
Procedure divisions.

a name which has been filed with the Program Registrar
in Washington.

• ••
the name which that file is called in the Data and Procedure
divisions

ml The external name that appears in each SELECT entry is the
job-control-card name for

(3/66)

{
the file }
the device to which the file is assigned

•••
the file

You encountered another external name earlier -- the program
name given in the Program-Id paragraph of the Identification
division.

50

Systern/360 COBOL COBOL Program Fundamentals

The file name and the external name are, then, two names for the
same data file. It is permissible for these names to be the
same1 however, external names are limited to eight characters,
whereas file names (like all progranuner-supplied names) may be
up to characters long •

•••
30

llm The SELECT entry below states that a file known as within

(3/66)

the program will be called on a job control card.

] ~s EL E c T p A R T s - E x PL 0 s 10 N - F 11L1El 1 f I
1 I s• ' I

t i A s s IG N T 0 'p A R T
I ,, ! \

l I I UT IL IT Y1 2 4 0 0 u NI T S: ,, ,1 I 1 T I !

•••
PARTS-EXPLOSION-FILE; PARTS

The assigning of a file to a device consists of naming a device
class and a device number. Which statement below gives the
correct rule regarding device classes and numbers?

Both device class and device number must be specified for
every f i.le.

Device class must be given for every file; number is
sometimes omitted.

Device number is required for every file; device class
may be omitted.

Device class and device number are optional; both may
be omitted.

• ••
Device class must be given fo1r every file; number is sometimes
omitted.

Device number is sometimes omitted in order to make the program
"device independent". This means that an obJect program may be
compiled without specifying exactly which input-output devices
are to be used. The choice of devices can then be made when the
object program is executed.

51

System/360 COBOL

Im What are the three device classes?

•••
UTILITY, DIRECT-ACCESS, and UNIT-RECORD

Im Magnetic disk devices are included in

[UTILITY]
[DIRECT-ACCESS]
[UNIT-RECORD].

• ••

COBOL Program Fundamentals

BOTH UTILITY AND DIRECT-ACCESS (because they can read and
write data both sequentially and randomly)

ml In which device class or classes does each of the following
devices belong?

(3/66)

1.
2.
3.
4.
s.

1. IBM 2540 Card Read Punch
2. IBM 7320 Drum Storage
3. IBM 2403 Magnetic Tape Unit
4. IBM 2302 Disk Storage
s. IBM 1403 Printer

•••
UNIT-RECORD
Both UTILITY and DIRECT-ACCESS
UTILITY
Both UTILITY and DIRECT-ACCESS
UNIT-RECORD

52

System/360 COBOL COBOL Program Fundamentals

We have seen it:.hat there are three classes of devices 1 UTILITY,
DIRECT-ACCESS, and UNIT-RECORD. But our main concern is with
data files rather than the devices used for reading and writing.
Files basically fall into two categories: sequential and non
sequential. In sequential files, records are read or written in
the order in which they are physically stored. In non-sequential
files, records are not read or written in the order in which they
physically appear on the storage medium.

Sequential files can be assigned to all three device classes.
Non-sequential files can be assigned only to DIRECT-ACCESS
devices. This means that devices can be used only for
sequential files, while devices can be used for both
sequential and non-sequential files •

•••
UTILITY and UNIT-RECORD devices can be used only for sequential
li!es, while DIRECT-ACCESS devices can be used for both sequential
and non-sequential files.

(Card files and printed files must be assigned to UNIT-RECORD;
only these files may be assigned to this device class.)

jsequential } 1111 The file named in the entry below is a lnon-sequential file •

(3/66)

•••
sequential (A file must be sequential if it is assigned to a
UTILITY devic:e.)

As it is used he't'e, the te't'm "sequential file" does not
necessari ty i.mp ty that the reco't'ds in the fi Ze a.rte "in sequence".
It does mean that the .r»eco.r»ds a.rte .r»ead f.r»om the storage medium
(for instance?, magnetic tape) one afte't' anothe'l', in the order in
~hioh they appear; or» that the .r»ecords a.r»e W'l'itten in consecutive
places on the sto't'age medium. Note, howeve't', that the records
might be out of o't'de't' as far as thei't' control numbers a.r»e
oonce.r»ned; a simpZs e~ampZe of this is a file of unsorted .r»eco.r»ds
on magnetic tape -- these records wit'L be .r»ead sequentially by
the so.r»t p.r»og.r»am, but they are not in sequence.

53

System/360 C:OBOL C:OBOL Program Fundamentals

11'11 SELECT entries {~~ not} specify whether a file is to serve as
input or as output.

• ••
do not

The fiZe will be identified as input or output in the Procedure
division entry that "opens" the file (makes it ready for reading
or writing). This arrangement makes it possible for the COBOL
programmer to use the same SELECT entry in at least a couple of
programs -- the program that creates the file, and any program
that uses that file as input.

1111 Read the SELECT entry below, and then answer the following
questions.

(3/66)

ls EILJE c T I NlvlElN Tlo!RlY -IMiAlS T;EiRI -i ! I ! ! I

'

!

! T l l

I l NI TT oT I 1 I1 N1v1MTs Tl'I 1 T l I 1 T T A s s I G l

1 ~ l i l

I I
1 l u T I L I TfY! 2f4!0!0 !ulN!I Tls1. I ! l ! T 1 I I T J_ !

1. Is the file a sequential file, or a non-sequential file? Why?
2. Is it an input file, or an output file? How can you tell?
3. What class of device is assigned to the file? What specific

device?
4. What is the file's external name?
s. What name will be used in the Procedure division to re:fer to

the file?

1.
2.

3.

4.
s.

•••
A sequential file, because it is assigned to a UTILITY device.
There is no way of telling from the SELECT entry whether

this is an input or output file1 it would be necessary
tc> examine the Procedure division of the program to
see how the file is processed.

UTILITY1 specifically, magnetic tape units of the IBM
2400 series.

INVMST
INVENTORY-MASTER

54

System/360 COBOL COBOL Program Fundamentals

Im Keeping in mind that there must be a SELECT entry for every file
that is processed by the program, look at the Environment division
of the case study program in the reference handbook.

1. How many files are processed by the program?
2. What are the file names?
3. No devic1e number is given for one of the files1 what

kinds of input-output devices might be used for
this file?

4. For each file, determine whether it is sequential or
non-sequential.

• ••
1. two
2. BILLING-FILE, CUSTOMER-BILL-FARE
3. Magnetic tape, disk, drum, or data cell devices might be

used for the BILLING-FILE.
4. Both files are sequential.

IE A final word about sequential and non-sequential files: This
aourse is restricted to COBOL programs that process sequential
files. This has been done because the logic of sequential input,
processing, and output is familiar to even the beginning
programming student -- which makes it possible for us to
concen·trate on COBOL instead of taking excursions into the worlds
of systems de.sign, data management, and so on, to explain ~hat
the COBOL program is trying to accomplish.

(3/66)

Non-sequential file processing is not necessaraily more difficult
to program in COBOL than sequential file processing, but many
people are unfamiliar ~ith its underlying principles. Besides,
there are different methods of non-sequential file organiaation:
"indexed", "direct", and "relative" -- each ~ith its own
processing logic. So, ~e ~iz.z steer cleara of non-sequential files
·in this course, just to keep your introduction to COBOL from
being complicated by too many other programming considerations.

, ...

55

System/360 COBOL COBOL Program Fundamentals

LESSON 5

lfJI The Data division of most COBOL pPogPams is quite a bit longeP
than the EnviPonment division OP the Identification division.
But don't get the idea that this division is haPdeP to undePstand
just because ·it is longeP. The fact is that the Data division
consists of many entPies of similaP types, Pepeated again and
again; when you get the hang of one OP two item descPiption
entPies, foP ·instance, you will be able to cope .,,,,ith most of the
item descPiption entPies that you may find in any pPogPam -- and
these account foP the bulk of the Data division.

As you examine the sample Data divisions in the PefePence hand
book, it will be woPth your while to Pead evePy entPy
individually, instead of mePely glancing at the page. That will
help you to g~asp the pattePn of entPies.

Reading assig:nment: DATA DIVISION ENTRIES
Sample Data division
Another sample Data division, with

entry types identified

•••
Ifill File description entries are found in the

•••
section •

P'ile

Bl E'ile description entries are made up of

[record descriptions]

(3/66)

[item description entries]
[descriptions of independent items]

•••
NONE of these

File descPiption entPies aPe cleaPly sepaPate fPom otheP entPies
and gPoups of entPies in the division.

57

System/360 C:OBOL

Im Record descriptions may appear in the

[Working-Storage section]
[File section]

•••

C:OBOL Program Fundamentals

BOTH the Working-Storage section AND the File section

The second sample Data division in the PefePence handbook
illustPates this.

lfJI Record descriptions are made up of

[file description entries]
[item description entries]
[descriptions of independent items]

•••
item description entries

lfZI The descriptions of .independent items are

{
record descriptions }
item description entries

•••
item description entries

Im Review the two previous frames. Is it logical to conclude that
record descriptions are made up of descriptions of independent
items?

(3/66)

•••
No

RecoPd descPiptions and independent item descPiptions aPe
sepaPate and distinct paPts of the Data division. This is sho~n
in the second sample division.

58

System/360 COBOL COBOL Program Fundamentals

We have been dealing with several terms in looking at the make-up
of a typical Data division -- terms like "file", "record", "item",
and "independent item". Each of these terms has a precise
meaning that you will need to know before you can go further in
your study of this division. Along with the definitions of the
above terms, I have included definitions of other terms that you
wiZZ be using very shortly, Zike "elementary item" and "group
item". I don't want you to Zearn the definitions ~ord for word;
just make sure that you can explain to yourself the differences
and similarities between the various terms.

Reading assignment: SYSTEM/360 COBOL TERMS FOR UNITS OF DATA

•••
lflJ An item is

{
aa piece of data }

storage area that will hold a piece of data •

•••
a storage area that will hold a piece of data

This is a useful distinction to make. What the COBOL programmer
actually accomplishes in the Data division is to reserve areas
in which data wiZZ be stored while it is being processed. The
data itself wilt change with each record that is put in or out -
except in the case of constants.

lllmJ Suppose that an item named DATE is made up of three smaller items,
MONTH, DAY, and YEAR. The three smaller items are not made up
of still smaller items.

In COBOL terms, DATE is

{
a group item }
an elementary item '

while MONTH, DAY, and YEAR are

{
group items }
.elementary i.tems •

•••
a group item; elementary items

(3/66) 59

System/360 COBOL COBOL Program Fundamentals

11111 A record is [a group item) [an elementary item) [not an item] •

•••
EITHER a group ltem OR an elementary item

A record is nearly al~ays a group item, in that it aonsists of
smaller items. Ho~ever, the programmer may sometimes decide to
define a record as an elementary item; that is, he may choose not
to describe any of the smaller items that make up the record,
and treat it as one big item.

Im Earlier we noted that descriptions of independent items a2m
separate from record descriptions in the Data division. The
reason for this should now be clearer to you, since an
independent item, by definition, is any item that is
[not a part of the record) [not a record) •

•••
not a part of a record AND not a record

1111 Thus, there are three possible things that an item can be:

(3/66)

1. a record
2. a part of a record
3. an independent item

It is possible for an elementary item to fall into any one of
these three categories. However, a group item can only be

[a record]
[a part of a record]
[an independent item].

• ••
EITHER a record OR a part of a record

60

System/360 COBOL COBOL Program Fundamentals

11111 Any group item can be made up of elementary items and/or other
group items. For example, there might be an item called CATALOG
NUMBER which is made up of AVAILABILITY-CODE, SHIPPING-CODE, and
WAREHOUSING-NUMBER. WAREHOUSING-NUMBER might be further sub
divided into WAREHOUSE-LOCATION, MANUFACTURER, PRIORITY, and
BIN-NUMBER. One or another of these subdivisions might be still
further subdivided.

Sooner or later, however, we will arrive at the point where no
item can be subdivided any further. That is, any group item can
ultimately be reduced to a group of items •

•••
elementary

IDB PE~rhaps this notion of items-within-items will be easier for you
to see if we look at it from the opposite point of view. We can
bE~gin with a number of elementary i terns, and combine them into
group i terns. , The group i terns can then be combined into larger
group items. When we have combined all of our items into one,
all-inclusive group item, that item is called a •

•••
record

By going one step further, and collecting an entire set of all
similar records, we will create a

j block} .
lfile

file

•••

Im I:n addition to data records, a file may include
which contain information about the file •

records

(3/66)

•••
label

Label Pecords (often spoken of simply as "labels") are generally
~ritten at the beginning and end of a file. Labels are also
written at the beginning and end of each physical volume,
especially when a file occupies more than one volume; for
instance, Zabets would be written at the beginning and end of
each magnetic tape reel if the file occupied more than one reel.

61

System/360 COBOL COBOL Program Fundlamentals

ft!T!ll
UiU When ten data records are written at one time by an output device,

those ten records constitute a •

•••
block

Im Which statement is correct?

{

A record must contain more than one i tern. }
A block must contain more than one record.
A group item must contain more than one elementary item.
An elementary item must contain more than one independent: item •

•••
A group item must contain more than one elementary item.

The fouz-th statement above is r-idicu:'tous, but the fir-st tbJo ver-ge
on being corr-ect. HobJever, a r-ecord may itself be an eZementar-y
item (although most Pecor-de are gr-oup items); and a block may
contain just one r-ecord. When it comes to blocks, ther-e is a
similar- but conflicting term that you should bJatch out for-:
"blocked". Recor-de ar-e sometimes said to be "blocked" bJhen t'lJJo
or mor-e r-ecor-ds ar-e combined into one physical data unit.
In COBOL, 'lJJe do not use this ter-m: instead, 'lJJe have the ter-m
"block", bJhich is used only as a noun, meaning a physical data
unit that compr-ises one or- mor-e r-ecor-ds.

Im In your next r-eading assignment, bJhich deals 'lJJith file descr-iption
entries ("FD entr-ies"), you bJill encounter- seV•Pal of the ter-ms

(3/66)

bJe have just definede You may, of cour-se, look back at the
definitions of terms bJhenever- you need to. You 'lJJill r-ead many
details about clauses of FD entr-ies, but don't tr-y to memor-ise
these details. As you read about each clause, you should look
for- that clause in the sample FD entry, and in the FD entries of
the sample Data divisions in the r-efer-ence handbook. Tr-y to
explain the meaning of each clause to your-self. By the bJay, be
sur-e to note that even the absence of a clause fr-om an FD entr-y
has some significance.

Reading assignment: FILE DESCRIPTION ENTRY
Level indicator
File name
RECORDING MODE clause
BLOCK CONTAINS clause
RECORD CONTAINS clause
LABEL RECORDS clause
DATA RECORD clause

•••

62

System/360 COBOL COBOL Program Fundamentals

A file description entry always gives the file name. We have
previously studied file names (in lesson 4), because the file
name also appears in a entry in the division •

•••
SELECT; Envir<)nment

Im FD entries {~~ not} specify whether a file is to serve as

input or as output.

• ••
do not

Im The level indicator and the file name are always required in a
file description entry. Which clauses are always required?

•••
LABEL RECORDS and DATA RECORD clauses

Im The LABEL RECORDS clause in the FD entry below signifies that
there are

(3/66)

[no label records of any kind in the file]
[standard label records in the file, but no additional user labels]
[non-standard label records in the file].

FD I lAlc c 0 u N T -6 -RJE c EJI v A 8 LIE 1 1 1 T ! I I I i l 1 J i l '

ldA 8 E L R E colR D sl A R E 0 M I T1TE D 111 I -, l
1DIA T A R E C01R1D 1ls c 0 LL E C T!I ~O N -IA c cfo!u!N T . I 11

-.- '

•••
EITHER no label records of any kind OR non-standard label records

If there are no Zabel records (as in a card file), no further
~ork is required of the programmer. If there are non-standard
Zabets~ the programmer doesn't get off quite so easily, since he
must provide for the input or output, and processing, of these
records. Even though the handling of non-standard labels is
interesting, and often quite challenging, it ~ould take us out
of our ~ay to discuss ho~ it is done; suffice it to say that the
programmer's tife is simpler ~hen label records are standard.

63

System/360 COBOL COBOL Program Fundamentals

Im The file described in the entry below contains

[standard label records]
[non-standard label records]
[user label records].

FD :p ,R 0 D u c T - u s A G E - F IL E T I l I ! l T 1 ' \ '

:R E c 0 R D IN G M 0 D E ~I 1 111 1 l T i I i ! I I 1

I I OiC K c 0 N,T,A I N,S_ !2 0 R E c 0 R1o sT I I Tl 1 1 J_B.L
I . lLlA B E L R E c!olR!o sT ,ATR Ei _A,U 011ir!- I, L l D.AmA I I I ' T T

lDA oTRol 1TsT Ip T J. cTr-Tu s!A!GIE -lRIElc ' T l I T A R E c R,OD1U OJR!D.
,.- .

•••
BOTH standard label records AND user label records

Whenever a programmer-supplied name appears in the LABEL R.~CORDS
clause, there are user labels in addition to standard labels in
the file. The user labels provide information about the file
beyond that given in the standard labels.

Standard label records must meet the format standards spec~lfied
by IBM for the System/360. These labels provide information
used by the input-output control system (IOCSJ, and so are
sometimes called "System standard" labels.

Both user and non-standard label records are created and
processed by the user. Use"'r' (sometimes cal led "user standard")
labels are those that meet certain minimum format standards
specified by IBM; "'hereas non-standard (sometimes called "user non
standard") labels are those that do not folio"' IBM System/380
standards.

• ••
Im The DATA RECORDS clause [names] [describes] each kind of record

in the file.

• ••
names ONLY

ml The three recording modes are

•••
v, F, and u

(3/66) 64

System/360 COBOL COBOL Program Fundamentals

Im The letters V, F, and U stand for

•••
---, respectively.

variable length, fixed length, and unspecified length

Im ESlock-length and record-length fields are found only in mode

•••
v

ml The length of a mode U record is "unspecified" in the sense that

there is no definite way of determining how many
characters it contains

the programmer has been given no idea of how long
the record might be

the length is not specified in a record-length or
block-lEmgth field

the length might vary unpredictably anywhere from
zero to infinity

•••
'the length is not specified in a record-length or block-length
:field

EiD Variable len~Jth records are permitted in recording mode
[VJ [F] [U].

• ••
BOTH v and u

- Which statement is true?

In recording mode v, there must be more than one record
in each block.

In recordi:ng mode u, there must be more than one record
in each block.

In recording mode v, there must be only one record in
each bl1ock.

In recording mode u, there must be only one record in
each block.

• ••
In recording mode u, there must be only one record in each block.

(3/66) 65

System/360 COBOL COBOL Program Fundamentals

El The names of the recording modes are a little deceptive.
In particular, the mere fact that each block of a file contains
one fixed-length record does not necessarily mean that the
recording mode is F. Besides F, the recording mode for such a
file might also be [V] [U] •

•••
EITHER V OR U

HotiJevex-~ this choice is not available for- files that ar-e assigned
to UNIT-RECORD devices. The r-ecor-ding mode for- unit-r-ecor-d files
(car-d files and pr-inter- files) can only be F.

II!1I In which mode or modes can there be one variable-length record
per block?

•••
either V or U

B In which mode or modes can there be more than one variable-length
record per block?

•••
V only

ll1J True or false: Records written in mode V need not be variable
length.

• ••
True. (Fixed-length records may be written in mode V.)

B True or false: Records written in mode F need not be fixed·
length.

• ••
False. (Variable-length records cannot be written in mode l~.)

(3/66) 66

System/360 COBOL COBOL Program Fundamentals

IImJ Turn to the case study program at the back of the reference
handbook, and locate the FD entry for the BILLING-FILE. The next
five frames refer to that ent:'l'y •

•••
fJIJ How many records are in each block of the BILLING-FILE?

•••
five

BD How many different types of records are in this file?

•••
one (BILLING-RECORD)

1111 Did the progranuner make an error in omitting the RECORD CONTAINS
clause?
No. (It is permissible to omit this clause, for the compiler
can determine how many characters the record contains from the
pictures given in the record description.)

1111 The recording mode of the BILLING-FILE is

(3/66}

{:~~= ~ not specified -- hence,
unknown

mode u} ·
•••

mode V (Whene~ver the RECORDING MODE clause is omitted, the mode
:Ls V.)

67

System/360 COBOL COBOL Program Fundamentals

1111 Does the BILLING-FILE therefore contain variable-length records?

•••
No. Either fixed or variable-length records can be written in
mode V.

This par-tiaulai- file happens to aontain fixed-length :tteoor-ds.
You could not tell that fr-om the FD entry, however. You will
learn shortly how to recogniae a variable-length reoord by its
reaord desaription. (Of course, if the recording mode had been
F, you would have known at onae that reaord length was fixed.)

- Now Zoaate the FD entry for the CUSTOMER-BILL-FILE in the ('Jase
study program. The next three frames refer to that entry •

•••
1111 How many records are in each block of the CUSTOMER-BILL-FII~E?

•••
one (The BLOCK CONTAINS clause is omitted when there is only
one record per block.)

llfJ How many different types of records are in this file?

•••
four (BILL-LINE-!, BILL-LINE-2, BILL-LINE-3, and BILL-LINE-·4)

1111 The recording mode of the CUSTOMER-BILL-FILE is F. Suppose that
a record of the first type (BILL-LINE-!) contains 133 characters.
From this you can conclude that

(3/66)

[all records of the first type must contain 133 characters]
[records of the other three types must also contain 133 chclracters]
[every record in the file contains exactly 133 characters] •

•••
ALL of these statements are correct. In recording mode F, all
records in the file are the same length.

68

System/360 COBOL COBOL Program Fundamentals

LESSON 6

ElfJ When you exami:ned the samp"le Data divisions in the r-eference
handbook, you saw that ther-e are comparative"ly few kinds of
entr-ies that make up the division. First of aZZ, there are the
division and section header entries (DATA DIVISION, FILE SECTION,
WORKING-STORAGE SECTION), whose meaning is obvious. Next, there
are fiZe desc~iption entries, which we have just finished
discussing in some detaiZ.

AZZ remaining entries in the division are item description
entries. These may either be found in recor-d descriptions, or
they may be descriptions of independent items. In this Zesson,
we wiZZ discuss the concept of a "record description" and its
relation to the structure of a record. (You wiZZ study specific
detai"ls of item description entries in Lesson 7.)

Reading Assignment: RECORD DESCRIPTIONS

•••
ml How many record descriptions will you find in a Data division?

(3/66)

.f g~: for each file }
lone for each type of record in each file

•••
One for each type of record in each file

Suppose that a program is being written to process one input file
and one output file. There are three types of input records, and
one type of output record. Using "FD" to represent a file
description entry, and "01" to represent a record description,
the correct sequence of the File section for this program is

{
FD , FD , 0 1, 0 1, 01 }
FD , 0 1, 0 1, 0 l 1 FD , 0 l ·
01, 01, 01, 01, FD, FD

FD, 01, 01, 01, FD 01 (The record descriptions for each file
must follow right after the file description entry for that file.
The input file need not have been described first, so FD, 01, FD,
01, 01, 01 is another correct sequence.)

69

System/360 COBOL COBOL Program Fundamentals

Em A PecoPd descPiption telZ.s the stPuctuPe of a Pecor-d. It 7.UiZZ
help you a gr-eat dsaZ in your study of COBOL if you aPe able to
visuaZiae that recor-d str-uctuPe. This is simple to do -- once
you kno'l.U ho7.U; and pPobabZy the simplest 7.Uay to do it is by making
a dr-a'l.Uing of the PecoPd. We 7.Uill pPoceed to make such a dPa'l.Uing,
based on the sample PecoPd descPiption given in the Pefer-ence
handbook undeP RECORD DESCRIPTIONS (youP latest r-eading assign
ment). TuPn to that sample r-ecord descr-iption •

(3/66)

•••
We couZ.d dra'l.U various kinds of diagrams to repPesent the Pecor-d.
The one I 7.Uill develop here is the one that seems to me to
cor-respond most cZoseZy to the way the r-ecord description itself
is oPganiaed.

The first thing I will do is dPa'l.U a box that PepPesents the 7.Uhole
PecoPd. A pecor-d, you 7.Uill r-emembeP, is the most inclusive data
item. It is a stor-age ar-ea that wiZl contain data when the
pPogram is executed. The name of this particular Pecord is
PURCHASING.

PURCHASING

The level number of this record, like all records, is

•••
01

70

. --

System/360 COBOL COBOL Program Fundamentals

lf!ll The record is now subdivided. This means that the same storage
area that is known as PURCHASING is divided into smaller areas.
In fact, certain parts of this storage area will be divided again
and again, but the dividing is done one step at a time -- or in
COBOL terms, one level at a time. The next level of this record
is level 02. The three items at level 02 are

IEm

(3/66)

•••
ACCOUNT, STATUS-CODE, and TRANSACTION

This dPawing shows ho~ the record has been subdivided so far.
The three items shown below coincide with the oPiginal record.

D
~~
TRANSACTION

•••

71

Systern/360 COBOL COBOL Program Fund.arnentals

E!ZI But we can still refer to the record as a whole by the name
PURCHASING, so I will put the original box back into the drawing
that we are developing.

(3/66)

The large box (on the left) and the three smaller boxes (on the
right) represent

{

the same, identical area in storage }
two adjacent areas in storage ·
two separate storage areas of equal size

PURCHASING D
I STATUS-CODE I

TRANSACTION

•••
the same, identical area in storage

In a record description, an entry for a group item is followed by
entries for the items that make it up. A group item compri.ses
all the items described under it, until a level number equal to
or less than the level number of the group item is encountered.

This means that the items that make up a group item

[must be described right after the group item]
[must have level numbers that are equal to or less than the
group item]

[must have level numbers that are greater than the group item] •

•••
must be described right after the group item AND must have level
numbers that are greater than the group item

72

System/360 COBOL COBOL Program Fundamentals

In the record description on which we are basing our drawing, a
le~vel 02 item which is further subdivided is followed by items
with level number 03 or greater.

Which items defined at level 02 in this record description are
further subdivided?

•••
ACCOUNT and TRANSACTION are further subdivided; STATUS-CODE
is not.

~ When level 03 is brought into our drawing, this is the result:

LEVEL---+- 01

PURCHASING FJ~T I CATE:RY

L I NUMBER

~.---TAT-U-~-CO-DE......,

TRANSACTION LJ
PURCHASE

•••
m Since STATUS-CODE is not further subdivid·ed, it is

(3/66)

{

an independe~t i tern}
a non-group item
an elementary item ·
a group item

an elementary item

•••

73

System/360 COBOL COBOL Program Fundamentals

You can tell which items are group items and which are elementary
items by examining the level numbers that follow thein in a record
description. Group items are followed by items with higher level
numbers. Elementary items are followed by items with equal or
smaller level nwnbers.

Which of the level 03 items in our sample record description are
group items? Which are elementary items?

•••
VENDOR and PURCHASE are group items1 CATEGORY and NUMBER are
elementary items.

You may have noticed that there is a level 04 item named NUMBER,
and a Zevel 03 item with the same name. Duplication of names is
perfectly alt right in COBOL, as long as the names are "qualified"
when they are used in procedures, so the compiler wilt know
precisely which item is being referited to. Qualification i.s done
by naming the group item which the item with a duplicate name is
part of; in the record description we are working with, the items
would be qualified by calling them NUMBER OF ACCOUNT and NUMBER
OF VENDOR, to make it clear which is which. You will study the
rules for qualifying names in the next book of this series.

mJ Here is our drawing with the level 04 items added.

(3/66)

LEVEL___. 01

PURCHASING
02 03 04

D I CATEGORY

I NUMBER

r-1 S-TAT-U-S--C0-0---.E I

TRANSACTION ~ l.__N_AM_E _ __,

L_JjNUMBER

~P-UR-CH-A-SE~ D
'------~ ,___ __ __, '-----~ I AMOUNT

Which level 04 item is a group item? What items does it contain?

•••
DATE is a group item, containing MONTH, DAY, and YEAR.

74

System/360 COBOL COBOL Program Fundamentals

(3/66)

Finally, we have a complete diagram of the structure of this
record. In our diagram, the sizes of the boxes do not indicate
the sizes of the items; actually, NAME contains 25 characters,
7J.)hiZe STATUS-CODE contains just 1 -- but the boxes for these two
items are the same size. The reason for this is that we are not
concerned about the sizes of items at this moment. Instead, we
are concerned with the order in which the items appear in the
record, and how the items are related to each other.

LEVEL- 01

PURCHASING

02 03 04

DE~
INUM~

~, S-TAT-U-S--CO-DE~I

TRANSACTION I VEND°"! ~' N_AM_E_~
__JI NUMBER

05

..--P-UR_C:_H_A-SE~ D 1..--M-ON_T_H _ ___,

I DAY

I YEAR

~--~~~--~'--~-~~,A-MO-U-NT-~]

The diagram shows us the breakdown of a record into group and
elementary items. Any item that is divided into smaller items
at the next level is a group item. An item that is not divided
into smaller .items is an elementary item.

Pick out the group items and the elementary items in the record •

Group items

PURCHASING
ACCOUNT
TRANSACTION
VENDOR
PURCHASE
DATE

•••
Elementary items

CATEGORY
NUMBER
STATUS-CODE
NAME
NUMBER
MONTH
YEAR
DAY
AMOUNT

75

System/360 COBOL COBOL Program Fundamentals

ml Now let's put our diagram side by side with the record description.

01 02 03

FJT I CATEGORY

L I NUMBER

05 04
PURCHASING 0!1 1

' :P'UlRICHAS I NiGI.! ; ! : 7
I I I 1 T - : 1 ' i : : j_012, : A c1c10 u'NiT~. : , 1

~~ i I I :0:2; I ST!AITu1s:-co:o;E: '1

TRANSACTION DENDOR I NAME

-, N-UM-8-ER--

..-P-UR-CH-A-SE----. D ..-I M-0-NT_H_---.

I DAY

I YEAR

'-----~ '---------' .__ __,. -1 A-MO-U-NT--,

. 1 i 1oi2i , 1TiRIA
1

N siATclT 1 loiNl. i 1 ! 1

1

: ; : T 1 i ol3 v!E!N1o oJRI. 1 I I
' . : ~ : : I 1 0!4i ! NIATM E I 1 :
: ! : i ! ~ ol4! I N1u1M s E!RT J 1

1 1 : I I I o 3 plu1R1c HlA1s,E • i 1 \
1 1 1 i 1 I T 0141 1 olAITIE • I 11 - ~
ii! 111 I 111 oJs1l MONITHJ
! 1 ' 1 • 1 I I I 1 I j olsl l o A v1
i 1 1

1
1 ! 1 111 i] I olsi 1 Y E A1R

· 1 ! , ; l 1 I 1 0141 I A]MJolu N T] 0

Which statement best describes the sequence in which the item
description entries appear?

The level 01 entry appears first, followed by a level 02
entry, then entries for the items contained within
the 02 item; then another 02 entry, and so on.

The level 01 entry appears first, followed by all of
the level 02 entries, then all of the level 03 entries,
04 entries, and 05 entries.

The level 01 entry appears first, followed by a level 02
entry, then an 03 entry; and then a rhythmic cycle is
repeated: 02, 03, 04; 03, 04, 05; and so on •

•••
The level 01 entry appears first, followed by a level 02 entry,
then entries for the items contained within the 02 item; then
another 02 entry, and so on.

lf!ll The item description entries are made

(3/66)

{

in any convenient sequence }
in the sequence of the items in the record .
in numerical order by level number

•••
in the sequence of the items in the record

76

System/360 COBOL COBOL Program Fundamentals

E!rl True or false: The higher the level number, the smaller the
size of the item1 for instance, a level 03 item is always
smaller than a level 02 item •

•••
False. The level number and size of an item are two completely
separate considerations. Earlier we noted that there was a
one-character level 02 item in our record, as well as a 25-
character le"el 04 item.

1111 ~rhe point made in the previous frame applies to items in general.
But suppose we were dealing with a group item and the items that
make it up. Then we would have a situation in which

[the group item must be larger than any item within it]
[the size of the group item is not related to the size of the
items within it]

[the size of the group item is equal to the sum of the items
within it].

• ••
the group i tE~m must be larger than any i tern within it AND the
ilize of the group item is equal to the swn of the items within it

And, as we have already seen, the items that make up a group item
must have higher ZeveZ numbers than the group item. For example,
in the record that we have been working with, DATE (level number
04) contains MONTH, DAY and YEAR (aZZ Z.eveZ number 05); each of
the Z.eveZ. 05 items happens to contain 2 digits, so DATE contains
6 digits.

ml Some record descriptions contain entries that begin with level
number 88. The reference handbook suggests that when you are
analyzing the structure of the record, you can

(3/66)

{

treat level 88 entries as if they were 01 entries l
deal with level 88 entries just the same as other entries .
ignore the level 88 entries

•••
ignore the level 88 entries

77

System/360 COBOL COBOL Program Fundamentals

1111 Before we go on to Zook at the clauses that make up item
description entries, I want you to try your hand at drawing a
diagram to represent the structure of a record. Turn to the
sample Data division in the reference handbook which is printed
under the title, Another sample Data division, with entry types
identified. Draw a diagram of the STOCK-TRANSACTION record.
Make the same kind of diagram that you have seen in the preceding
frames. Use scratch paper. Neatness doesn't count •

01

STOCK
TRANSACTION

02

STOCK- NUMBER

•••
03

I
DISTRIBUTION

. CENTER

CATALOG-NUMBER

04

fCONTROLLING
~

~-NUMBER I

~---~'------~~-CODE

I

DATE 11 YEAR

'---· ---~· .__I D_AY ___ ~
I TRANSACTION-CODE I
I QUANTITY

~----~ JuNIT-VALUE

Bm Turn to the first page of the case study at the back of thE!
reference handbook. There you will find another kind of diagram
that is sometimes used to show the structure of a record. The
horizontal format of the diagram is awkward in that we are
forced to break off several times, but the sequence of items
within the record is easy to see, as is the subdivision of items
into smaller items.

(3/66)

Although the levels of items are harder to see, some programmers
prefer this sort of diagram because it corresponds more closely
to the way the record would actually appear on tape or disk.
On the next page in this textbook, the BILLING-RECORD has been
diagrammed using the vertical format you have been taught.
Compare the two kinds of diagrams.

Also, examine the reoord description of the BILLING-RECORD in the
Data division of the case study program. It should be easy for
you to pick out the item description entry for each of the items
within the record structure. Simply keep in mind that evePy item
description entry begins with a level number •

•••

78

Systern/360 COBOL

(3/66)

LEVEL-... 01

BILLING-RECORD

02

ACCOUNT
IDENTIFICATION

COBOL Program Fundamentals

03 04

I TYPE-OF-ACCOUNT I

ACCOUNT-NUMBER I STORE-NUMBER

~---·-~ I FILE-NUMBER

I BILLING-CYCLE

I CUSTOMER-NAME

I STREET-ADDRESS

~-----~ I CITY-STATE

CREDIT-STATUS

J
I RATING-CODE

PURCHASE-LIMIT
~-----

ACCOUNT-HISTOR] YEAR-OPENED

YEAR-LAST-ACTIVE

HIGHEST-BALANCE

D
MONTHS-ACTIVE

MONTHS-OVER- 90

TOTAL-PURCHASES

TOTAL-RETURNS

THIS-YEAR-TO
DA TE

l:::L~PU:~
]

MONTHS-ACTIVE

~----- I TOTAL-RETURNS

~L-A-ST---M-ON_T_H __ J NUMBER-OF-

THIS-MONTH

TRANSACTIONS

I BALANCE-FORWARD I
I BILLING-DATE

NUMBER-OF
TRANSACTIONS

I CURRENT-BALANCE I
PURCHASES I NUMBER

~----~ ~I A_M_o_uN_T ___ ~I

I

PAYMENTS 11 NUMBER I

I AMOUNT I
~----~

I
~ ,-R-ED-IT_S ___ _,11 NUMBER I

~. ------'· ~I A_M_o_uN_T ___ ~I

~-----~ I RETURNS J I NUMBER I
- . I AMOUNT -- _ __I

COLLECTION
HISTORY

~o-V-ER_D_U_E_--~ G)::OA'(____ .I

BALANCES ~ -

I so-DAY ~==1
~--~,

~---~ ~i 1_20_-D_A_Y ___ /

LAST-PAYMENT l~DA_TE ___ J

~---------' I AMOUNT

~----~ ~-----~ I DUNNING-CODE

79

System/360 COBOL COBOL Program Fundamentals

LESSON 7

Bii This Zesson Zooks at item desaription entries in detail. Some
item desaription entries are quite simple, aonsiating only of a
Zevel number and a programmer-supplied name. Others aontain one
oP more alauses, in addition to a level number and a name. We
~ill explore eaah aZause in some depth.

To keep you fr-om being s~amped by a great many faats, the
r4ading assignment has been ahopped up into a number of little
pieaes. You wiZl first read about the leveZ number and name.
Then, in suaaeeding reading assignments, you ~ill study the
important alauses one at a time.

Reading assignment: ITEM DESCRIPTION ENTRIES
Level number
Name or FILLER

(Do not go on to the USAGE alause yet.)

•••
tlfl Where would yC>u look for the level number in an item description

entry?

•••
At the beginning; a level number is always the first element of
the entry.

mJ What level number signifies that the item is an independent item?

•••
7'7

Which level number is associated with an entry that is not,
strictly speaking, an item description? What type of entry is it?

•••
88: condi tion-·name entry

Condition names ~iZZ be disaussed in a later lesson.

lllflD Where would yc>u look for the name of an i tern?

•••
Just after the level number.

(3/66) Bl

System/360 COBOL COBOL Program Fundamentals

{ is } Brl The word FILLER is not a name •

•••
is not

BfJ The word FILLER is most often used to indicate that a portion of
a record contains no information. For instance, suppose that we
are processing a file of punched cards, and that one of the card
records contains only the current date plus an identifying code.
The record description of the date card might look like this:

(3/66)

T !
:o!A -lclAIR ol. I I I I I I I j I l !' : l l i ! I

; !

0111 T E l 1 l I J_ ! ..l.

I l !012 AIR -iclofo Ef
! l 1 T P! llc!T U!R[E! xl .1 T I i

! T c D 1 I t

T l 1012. c u R R EIN!Ti- olA 1T~E ! l ! pl11c1T U!R1E! gl (!5!} l I r T i • ! j

T I I lo fa ETRI I l I ! l ' ; 1 ! j I

x1(!1l3 1! .1 l I ! l F I L L _L
p:1!ClT U!RE1

This record description indicates that a card code is the first
character of the record, with the current date in the next six
positions. Even though there is no more data, it is necessary to
show that the record is 80 positions long; in order to "fill out"
the record, the programmer has defined 73 additional positions
and has called them ---

•••
FILLER

82

System/360 COBOL COBOL Program Fundamentals

mJ Let's take a slightly different case. Suppose we are processing
a file of magnetic tape records: Each record contains 200
characters of data. The processing consists merely of splitting
the file into two smaller files. The splitting is to be done on
the basis of the control number in the first 12 positions of each
record. If the control number falls within certain limits, the
record is to be moved to one output area: otherwise, the record
is to be moved to a different output area.

(3/66)

Examine the record description below and decide whether the word
FILLER has been used properly in this case.

01 1C10 M M 0 D IT Yi-IRE COiR D l I

"

I

I ! I
i

• l

10,2 c 0 N T R'O!Li- NlU!M B EIR Pd!C.T UIRIE! 91-(l1 l2) ' • j
I l

EIRI j Pl 1lc!T ' I l11a al> l F I L L I ! ! I UlR!EI Xl ;

The use of the word FILLER in this record description is

right, because there is no need for a procedure to refer
separately to the data in the last 188 positions of
the record.

wrong, because the word FILLER can only be used for blank
positions, never for positions that contain data
characters.

wrong, beca,use there is no name by which a procedure can
move all 200 characters of the record to an output area •

•••
right, because there is no ne.ed for a procedure to refer
separately to the data in the last 188 positions of the record.

The control number is the only item within the record that will
be examined separately by the program. The only other processing
required is to move the entire record to an output area, and foP
that purpose a proceduPe will use the name COMMODITY-RECORD.

83

System/360 COBOL COBOL Program Fundatmentals

BD I think it may be useful to pursue this "file-splitting" problem,
to e~plore other aspects of its solution, and especially to see
what kinds of item description entries are involved.

Suppose that the COMMODITY-RECORD is to be written in files
called PLANT-l-PRODUCTS-FILE and PLANT-2-PRODUCTS-FILE. The
whole record is moved to one file or the other with no changes
being made to any of the items in the record. Here is what the
file description entry and the record description might Zook Zike
for one of these files:

FIDI I lP;L A N T -1 PlRIO D u c TiS JF1 Ti El 11 l i l t ! ! I T l
'

i
;

- -: !l1L i ~ 1 i i

1 ! ! :eiL NlT!A lRlElC o!Rlols l l i

I l I I I ! T I 0 c K c 0 I N s 5 I l
I

' :LIA
I l

AIR Ts 1 T i RTo! l i l ' ! l l

I B E L R E CIOlR D s E T A1N1D:A I I i

i
~ .

A R E c oTR!D I s p A -111- R1olo!u c!r1sT I I I I l ; 1D!A.T L N T p : .· ; . 1 _;._

' l ' l I I I f I (I t I l (I T f ' l

I 1 I l i I l ; ~ ~

'
! !

011! I :PIL P.Rlo
I i j I l I I u!RIE! , I : I I ; i I 1 AN T - 1- D UlCIT!S P1I C1T ! ~ ; xl(·2:0 o:) i. i i

The record description consists of a single item description
entry that defines a storage area large enough to hold 200
characters. The PLANT-1-PRODUCTS record is not subdivided at all:
in other words, here is an example of a record that is treated as
an item.

• ••
elementary

mJ For the PLANT-2-PRODUCTS-FILE, we could have a fi Ze descripif;ion
entry and a record description almost e~actly Zike the one shown
above. The record for that file could be called PLANT-2-PRODUCTS.

(3/66)

You can visualize statements in the Proceduve division of this
program, saying MOVE COMMODITY-RECORD TO PLANT-1-PRODUOTS o~ MOVE
COMMODITY-RECORD TO PLANT-2-PRODUCTS depending on the control
number.

Suppose that records whose control numbers range from
309463552078 through 790084659302 are to be written in the first
file, and all other records in the second file. These numbers
are a little unwieldy, and the people in our firm don't go around
with them on the tips of their tongues; it would mean more if we
were to say that the first number is the control number for
wheelbarrows, and that the second is the control number for
pickup trucks.

• ••

84

System/360 COBOL COBOL Program Fundamentals

(3/66)

To sum it up, we would Zike to be able to write the following
entry in the Procedure division:

: I F c 0 N T R 0 L - N u M B E R IS N 0 T ILIE!S sl lT H A N T I
i H EE LB A R R 0 Wi -'- A N D c 0 N T RO l J1 -l L,-!N!U MlBlE R 1ls , I

!N 0 T G R E A T E R T H A N p IC K u Pi- 1 TRU1C Kl)
I l M 0 v E le 0 M M10 D IT y - R E cio R 01 1Tlo I l 1 ! !

l I p L A N Tl- 1.- P,R 0 D ulcfT s I I l .J. -'- I

I ' W_ R IT E p L A N.T - 1 -,P R orou c TS,;_ I j_ ! 1

! lo T H E RIW IS E1_1. M 0 v E c o!M M olol1 T vi- R!E I 1!. C:O,R D IT 0 !

T I p L A N Tl- 2 - p R 0 D u CT _S ,J ' ! T 1 .1 _l '

I w R IT E p L AN Ti- 2 p R Oiolulc
I l ! i 1

.1 l - TIS.

The entry uses the name WHEELBARROW in place of 3094635520?8,
and PICKUP-TRUCK in place of 790084659302. In order to use
these names, they must be defined; the required item description
entries would Zook Zike this:

-
·d1 1 c!TTuTR El 19 21> ! T I ! l l I ~H EE L B A R R ow p (1

! , -'- l
l I I v A L u E '3 0 9 4 6 315 5f2 0 7 a' I I l I [i I
l ' I • J j i l

1T1I I :p u
1

c R { 11 ~1> _J i

T 1 I I I IC K u p - T R K p IC T u E 9 l
-'. l

I iT '7 2' I

T I I 1 T I l I I I v A L u Ei 9 0 0 8 4 6 5_9 3 0 • I

From their level numbers, you can identify these entries as
descriptions of items •

•••
i.ndependent

These entries actually cause the values to be stored as constants.
The procedural entry at the top of the page causes the control
number of a Pecord to be compared with the constant values.
We wiZZ have much more to say about procedural entries later
in this book.

85

System/360 COBOL COBOL Program Fund.amentals

(3/66)

During our brief Zook at the hypothetical "file-splitting"
problem, we have seen several item description entries. We will
carry this just one more step further, by combining all of the
entries into a division, as they would appear in a program ..

DiAitlA~ ;011 !v 1Isl1To N1 .I 1 T T 1
: I

l

1 T

T 1
1

T

I T

I

I
l

Before you proceed to the next frame, take some time to Zook
through the above division. Be sure that you can distinguish
file description entries from item description entries. BE? able
to identify where each entry begins and ends. Recognize the.ct the
two sections of the division serve different purposes •

•••

86

System/360 COBOL COBOL Program Fundamentals

mJ No'IJJ 'IJJe 'IJJi ZZ discuss the clauses that are found in item
description entries, beginning 'IJJith the USAGE clause. We 1'Jill
concentrate on USAGE before going on to clauses such as PICTURE
and VALUE, 1'Jhich you have seen in several item description entries.
Although the USAGE clause has not appeared in the entries that
you have seen, you 'IJJill discover that every item has a
particuZar usage -- even 1'Jhen the clause is omitted.

The reading assignment contains a number of specialized terms
~ith 1'Jhich you are expected to be familiar: bits, bytes,
floating-point, packed decimal, binary, hexadecimal, etc. Don't
get the impression that 'IJJe are suddenly changing the rules of
the game, and making COBOL "machine-oriented"; 'IJJe have simply
come to the point 1'Jhere the programmer must specify precisely
ho'IJJ the data appears. Also, don't be concerned if you can't
remember the exact definitions of these terms; as long as you
have a general. idea of their meaning, you 1'Jill get along fine.

,
Reading assignment: ITEM DESCRIPTION ENTRIES (continued)

USAGE clause
What the usage words indicate

(Do not go on to the PICTURE clause yet.)

•••
flll The reserved word USAGE {

must appear l in a USAGE clause.
need not appearj

•••
need not appear

Since the word USAGE may be missing, you must look for one of
the fi·ve reserved words that specify the usage of the item.
Those five words are

•••
DISPLAY, COMPUTATIONAL, COMPUTATIONAL-!, COMPUTATIONAL-2, and
COMPUTATIONAL-3

lf.l!I Which one of the five usage words may be omitted?

•••
DISPLAY

(3/66) 87

System/360 COBOL COBOL Program Fundamentals

Em Match the list of terms below. (Two or more of the terms on
the right may apply to a usage word.)

COMPUTATIONAL-1
COMPUTATIONAL-2
DISPLAY
COMPUTATIONAL-3
COMPUTATIONAL

internal decimal
external decimal
packed decimal
binary-coded decimal
binary
floating-point
EBCDIC
BCD

•••
COMPUTATIONAL-! and COMPUTATIONAL-2 = floating-point
DISPLAY = external decimal, binary-coded decimal, EBCDIC, BCD
COMPUTATIONAL-3 = internal decimal, packed decimal
COMPUTATIONAL = binary

ml The basic idea should be clear to you: In System/360 COBOZ~,
we can process data in five different formats. Thus, we can take
advantage of the flexibility of data representation that is
built into the System/360. It is not our purpose in this aourse,
though, to discuss the reasons for having different data codes,
nor to explain which codes are best for which purposes -- those
are "system design" considerations, not COBOL considerations.

The question that we want to tackle is, how can you figure out
what the usage of an item is by reading the item description
entry? Sometimes the answer is simple; for example, if thE~ entry
says COMPU'l.'ATIONAL-3, there is no doubt at aZ Z -- the data is in
packed decimal. But what if there is no usage word in th~ entry,
as in the entry below? What is the data code in that case?
We will explore this next.

• ••
llfJ There are two key facts to keep in mind. The first is that the

usage specified for a group item

(3/66)

{

has no bearing on the usage of the items in the group }
applies to the first i tern in the group, but not to the r~!st ·
applies to all of the items in the group

•••
applies to all of the items in the group

88

System/360 COBOL COBOL Program Fundamentals

f1!I The second fact is that when no usage at all is specified for an
elementary item or for a group it is part of,

{
the item has no usage }
the usage can be any one of the five possibilities
the usage is assumed to be DISPLAY

•••
the usage is assumed to be DISPLAY

ml So, if no usage is specified for an elementary item, the first
thing to do is to see if usage has been specified for a group
item that this item is part of. What is the usage of AMOUNT
PAID in the illustration below?

!o 2 p A y M E N T ...t. c 0 M p u T A T 10 N A L -3 ...L

J 0 3 A M 0 u N T t-D u E ...I.
p IC T u R E s 9 (6 }V 9 9.

I 0 3 A M 0 u N T - p A . I D p IC T U!R E s 9 (6 }V 9 9. J_ ...1

•••
COMPUTATIONAL-3, because that is the usage of the group item
that AMOUNT-PAID is part of; .AMOUNT-DUE has the same usage.

I

Eifl E:xamine the item description entry below, and then select the
most accurate statement regarding the usage of the item.

(3/66)

Since no usage has been specified for this item, it must
be DISPLAY.

To determine its usage, you. must see the entry for the
group item it is part of.

This item has whatever usage is specified for the record
it is part of.

There is no way of determining its usage without a large
crystal ball.

41 ••

Since no usage has been specified for this item, it must be
DISPLAY.

The level number informs you that this is an independent item,
and therefore not part of a g·roup item. What we have here,
then, is a self-contained item description entry; there is
absolutely no point in looking at the descriptions of any other
·items to find out the usage of an independent item.

89

System/360 COBOL COBOL Program Fundamentals

mJ The rt~cord description below seems to indicate conflicting
usages. No usage is specified for the group item, nor for most
of the items within the group, yet one of the items within the
group is COMPUTATIONAL.

(3/66)

There is reallv no conflict. It is permissible for items within
a group to have varying usages. Avoid the misirnpression that the
usage of a group item must be DISPLAY unless otherwise spec:ified;
in fact, the usage of a group item is the same as the combi.ned
usages of the elementary items it contains. Thus, the usage of
STOCK-TRANSFER in the example below is

{

COMPUTATIONAL, since that is the only specified usage}
DISPLAY, since that is the only specified usage .
part DISPLAY and part COMPUTATIONAL

011 :s]T 0 c K- T R A N1sJF ElRl J I T T] ! I l 11 T ! 1 .I J 1 ~ i ~

l02 ST 0 CK -!NIU MiBiE!R I l
Pl 1lcT ulRlEI x1<111 > .. 1 I 1 I ! I

! !

!oi2 ! ' . !

p!1Jc u1RfE1 xl<l11s)1 1 r DE SC RI PT l!01Ni I T f • I l

J ~o 2 UN IT s- 0 F-Js TO c K I P1 1lc T u RfE1 s]9!< la) l] I ,

I ! l I
C:O M P uJT AT 10 N-A LJ.] J 11 l I I 1 I I

l I , I

•••
part DISPLAY and part COMPUTATIONAL

There would be a conflict only if one usage were specified for
the group item, and a different usage were speaified for the
elementary items within the group -- for example, if the word
DISPLAY had actually been written in the level OZ entry above.
Suah a conflict, inaidentally, would be diagnosed as a programmer
error by the COBOL aompiler.

90

System/360 COBOL COBOL Program Fundamentals

lm::I When you are trying to figure out the usage of an elementary

(3/66)

item whose description does not contain a USAGE clause, you first
look for a USAGE clause in the description of a group item that
contains the elementary item. If you don't find a USAGE clause
in those item description entries, you can conclude that the
u:sage is DISPJAY.

I·t will be useful to keep in mind what you have already learned
about the structure of records, in particular the idea that items
can be subdivided several times. Or, from another point of view,
that an item can be part of several group items. In the example
below (which you may recall seeing before), MONTH is part of
DATE, which is part of PURCHASE, which is part of TRANSACTION,
which is part of PURCHASING. In other words, the elementary item
MONTH is part of four group items.

01 I ! :P1U RlC H A s I NlG. 1 l 111 1 ! I I l 1 i
1.

11 I J ulN Tl. I l l 1] i 1 1 1 \ i l 10;21 A c c 0 j I !

. 11 I 1 C!AiTlE GlO.R 1 i 11
UIREl

I

• I 11 I , I ! 0 3 y ' p llC:T XIX
l I i 0 31 NIUJMlB EIR! i p t!clT , I 1 9! csl > l I I l U!RE1 .

I I :012 s T A T ulsl-lc o!olEl I P11!dT ulR!EI xl.1 l !

1 ! 1 :012 T R A N slAlclT l .1 ! I I l i1 I I 1 I I I 101N1
•

l I !)

j !
l I I VIEN I I 1 I Ti i r !

1 I 0 3· D OIR. I i I I
! 11 I 0141 NlA ME I ! 1 p 1TclT I T x (2.5 >T. I I l ' UiRJE.
I l I I ' l 0141 NIU Mia ElR !

' 1 T
uTRIE (6) • T T ! I , I I P!llCIT 9

I I I I T .T P!UIR!c 1! . l I l I I] 1 ! T I T I
! T 1 I 03 I

! I I I I H1A!S1E •J_ i I ~ ! ! I '

l
; .

Of4 o1A TiE • ! 1 11 I 1 ! I ! I T
I t ! I I I I ! l _J_ l ! l l ; ~ I

i T I I ! j I ois MIOINIT HI l p lldT UlRIEI 919
T l 1 I l l I l _l

.,
I I I I I l

I l DiA}Y T p111c!T u!R!EI 919\.l I l I I 0 5 I
I I I I 1

v1ETA 1!ciT
"T .,. 1

I ~ I I l I j
I 1 I 0 5 R p UiRIEi ! I 9i9 .• ,

I l ! I l I ! 0 41 AjM 0 UNiTI p .1lclT u!R!E. 91 (41) vl9l9 • ~ I ! j

There is no USAGE clause in the item description entry for MONTH,
so we must look for a USAGE clause in the description entries for
all of the group items of which MONTH is a part. Since we find
no USAGE clause in any of these entries, we know that the usage
of MONTH must be ---

•••
DISPLAY

91

System/360 COBOL COBOL Program Fundamentals

Em Next, the PICTURE clause. You have seen PICTURE clauses .z:n
every record description, though not in every item description
entry. PICTURE clauses are easier to identify than USAGE
clauses, since they always contain the reserved word PICTURE.
Also, PICTURE clauses cannot optionally be omitted, as US.AGE
clauses sometimes can; the rules are cut and dried -- there must
be a PICTURE clause actually written in certain cases, and in all
other cases there must not be a PICTURE clause.

Learn which item description entries must contain picturesi, and
what you can tell about an item from its picture. Spend cl little
extra time with the six common picture characters that are~
explained in the reference handbook. Also note -- but don't try
to memorize -- the relationship of picture and usage.

Reading assignment: ITEM DESCRIPTION ENTRIES (continued)
PICTURE clause
How to identify an i tern from its pic:ture
What some common picture characters mean
How picture and usage are related

(Do not :ttead about the VALUE clause yet.)

•••
ml Group i terns sometimes

{
always }

have pictures.
never

•••
never

Elf.I Pictures are required in the item description entries of

(3/66)

{

all elementary i terns
all elementary items ~xcept those that are only one

character long
all elementary items except internal floating-point

•••
items}

all elementary items except internal floating-point items
(that is, all except COMPUTATIONAL-! and COMPUTATIONAL-2 items)

92

System/360 COBOL COBOL Program Fundamentals

From a pictux~e, you can tell what category an item falls into
(alphanumeric~, alphabetic, nwneric, etc.), how many characters
the item contains, and what kinds of characters they are.

From the picture in this entry, determine the category of the
item, as well as the number and type of characters •

•••
alphanumeric; 4 characters; may be letters, digits, special
characters, or spaces

Em The usage of SHIPPING-ROUTE (see entry in previous frame)

can be determined only by looking at the entries for
the group items that contain this item

is most likely to be COMPUTATIONAL because shipping
routes are generally numbers

must be DISPLAY because alphanumeric items can only
have DISPLAY usage

must be COMPUTATIONAL-l (packed decimal) because the
picture characters are packed together

•••
must be DISPI..AY because alphanumeric items can only have
DISPLAY usagE!

Translated fi•om COBOLese, thi.s means: the only data code in
~hich alphanumeric characters can be stored in the System/360
is BCD (or if you prefer, EBCDIC or external decimal).
All other ~ays of representing data in System/360 (binary, packed
decimal, and internal floating-point) can be used only to store
numeric data.

D '.l'he fact that SHIPPING-ROUTE is alphanumeric means that the
item may contain

(3/66)

[a number, st1ch as 1234]
[letters, such as QWTG]
[a combination of characters, such as EC25]

a number, such as 1234 OR letters, such as QWTG OR a combination
of characters, such as EC25

93

System/360 COBOL COBOL Program Fundamentals

ml The preceding frame makes the point that "alphanumeric" is a
catch-all category, and that the data stored in alphanumeric
items may be numeric, alphabetic, or mixed. This fact sometimes
leads beginning programmers to jump to the conclusion that they
can define aZZ data items as alphanumeric. Why should they
bother with As and 9s and aZZ those other symbols, when Xs can
stand for any characters imaginable?

Briefly,. the answer is that an item's picture affeats the t6'ay the
item can be proce$s~d. For instanae, an item can be involved in
an arithmetic operation only if it is a numeric item. Also, only
numeria data can be moved into a report item; that is, only
numeric data can be edited (punctuated). Similarly, data <1annot
be moved from an alphanumeric item into a numeric item. All of
these examples show how important it is for the picture to be an
accurate description of a data item; in particular, how important
it is to distinguish between "any old charaaters" (represented
by Xs) and "digits" (represented by 9s).

Rules of the sort that have just been mentioned are discussed in
later books of this series. In this book, we are concerned with
what pictures Zook Zike and what they mean, not with the whys and
wherefores of composing pictures •

•••
l1iJI Which if these might be the picture of a numeric item:

[99, 999. 99) [99V99] [9 (6)] [99099099) [+9999) [S9 (8)] •

•••
99V99 OR 9(6) OR S9(8) (All the rest are pictures of report
items.)

E1JI If an item's picture is 9999V999, how many digits does the item
contain? How many decimal places?

(3/66)

•••
seven digits; three decimal places

The actual value of the number in storage might be 12345670
The item in storage does not contain an actual decimal point
character, but because of the V in its picture~ that value would
be treated as if it were 1234.567.

94

System/360 COBOL COBOL Program Fundamentals

ml Suppose that the actual number stored in an item is 3975. As
what value ·wc>uld this number be treated if the i tern's picture
were:

1. 9 (4)
2. P(~l)9(4)
3. 999V9
4. 9999PPV
5. V9 (4)

•••
:L. 3975 (Ne> assumed decimal point or assumed zeros are

indicatE~d, so the value is treated as a whole number; the
result is the same as if the picture were 9999V).

2. .00003975 (This picture might also have been VP(4)9(4),
but the V is not necessary since its presence is implied
by the l,s. The Ps say, in effect, "the assumed decimal
point is located four positions in front of the first
actual digit"; thus, there are four assumed zeros.

:3. 397.5
4. 397500 (This picture might also have been written as

9999PP, without the V.)
5. .3975

Em Although group items do not have pictures, you can figure out
what a group item looks like by examining the pictures of the
elementary items that make it up. From the entries below, you
can determine that ACCOUNT-NUMBER is a -digit item made
up of STORE-NUMBER, which is a -digit item, and
FILE-NUMBER, which is a . -digit item •

.
I I I 0 3 A c c 0 u N T N .u M 8 E R. j_ -

I 0 4 s T 0 R E,- N u M .8 ER p IC T u R E 9 9 9. J_
I

0 4 F l.L E -IN u IM 8 E R p l:C T u R E 9 (4) . J_

•••

(3/66) 95

System/360 COBOL COBOL Program Fundamentals

Em According to the picture in the entry below, the number of digits
that will be stored in BALANCE is

l

:o 2 BA .L A N c!E • p11 .C T!u RE ls!9l1 41)~19 91.1 T J
I c O!M p u T1A T 1lo N.A LI .11 1 J] I I T I _l l '

' I ,

•••
6 (Each 9 represents a digit; neither s nor v represents a
character in storage.)

lllJ The item illustrated in the previous frame has COMPUTATIONAL
usage; therefore, the data code in which the digits will be
stored is binary. Instead of merely saying that BALANCE contains
six digits, it would be more accurate to say that BALANCE
contains

(3/66)

{
six binary digits }
the binary equivalent of six decimal digits
six digits in binary-coded decimal (BCD) format

•••
the binary equivalent of six decimal digits

When usage is COMPUTATIONAL, the data is stored in "true binary"
form, not in binary-coded decimal (BCD) -- b)hich, after all., is
b)hat iue call DISPLAY usage in COBOL. It takes far more than six
binary digits -- in fact, it takes twenty binary digits -- to store
the equivalent of six decimal digits.

For the most part, COBOL programmers are not concerned b)ith data
codes, or b)ith bits and bytes in storage. Instead they "think
decimal" -- even b)hen they are dealing b)ith packed decimal or
binary data items -- because the 9s in a picture represent
decimal digits.

96

System/360 C::OBOL C::OBOL Program Fundamentals

Jflil We have spent a generous amount of time studying the USAGE and
PICTURE cZause.s. The remaining clauses, VALUE, OCCURS, and
REDEFINES probably deserve equaZ time, but it would take us a
ZittZe afield -- into topics such as data tables -- if we were
to explore them thoroughly; therefore, we will Zimit ourselves
to a br~ef Zook at the finaZ three clauses.

Your objective is to learn how each clause appears, and what it
means; not to learn the applications for which a programmer would
use it -- except in the most general sense.

Reading assignment: ITEM DESCRIPTION ENTRIES (continued)
VALUE clause
OCCURS clause
REDEFINES clause

lfm One use of the VALUE clause is in ZeveZ 88 (condition-name)
entries. We wi lZ skip over th·is use for the time being, until a
later lesson in this book.

Another use of the VALUE clause is to assign initial values to
constants or work areas in sto.rage. Entries that use the VALUE
clause in this way are not allowed in the File section; you
would look for them in the section of the Data division.

Working-Storage

This is the reason behind COBOL's ban on VALUE clauses for items
in the File section: Items described in the File section
constitute input or output records. The values of such items are
not expected to be constant; they will vary with each record that
is processed. For instance, each time an input record is read,
a value enters each of the items in the record. There is there
fore no good reason to assign initial values to those items; to
do that would only mislead some programmers into thinking that
the initial values would remain constant.

EliDJ In a VALUE clause, the word VALUE (or VALUE IS) is followed
by

•••
a literal

(3/66) 97

System/360 COBOL COBOL Program Fundlamentals

Even though both examples of VALUE clauses in the reference
handbook show numbers as literals, any valid literal may appear
in a VALUE clause. The example below uses letters and spaces
for the literal value.

As you might have expected, the literal in the VALUE claus1e must
be consistent with the picture of the i tern. In the exampl1e above,
the picture tells us this is an alphabetic item containing 15
characters; hence, the literal must be non-numeric, and mu:st
contain no more than 15 letters and/or spaces.

If an item happened to be COMPUTATIONAL, and its picture was
S9(7)V99, you can guess that a literal would have to be
used in the VALUE clause.

• ••
numeric

l!il Another acceptable format of the VALUE clause makes use of
reserved words such as ZERO and SPACE. Here is an example:

Earlier, you learned that ZERO is a

{

literal constant }
reserved constant
numeric constant ·
figurative constant

figurative constant

•••

lllJ In an OCCURS clause, the word OCCURS is followed by a
literal.

(3/66)

• ••
numeric (more specifically, the numeric literal must be an
unsigned whole number)

98

System/360 COBOL COBOL Program Fundamentals

1111 The OCCURS clause specifies how many times an item appears, in
sequence, in storage. The entry below describes a situation in
which an item appears in storage 12 times in a row. That is,
there are 12 items, each one named MONTH, and each one containing
(how many?) ___ letters and/or spaces.

I 10121
I i i <

! I I I

•••
9

1111 When an item's name is followed by the word REDEFINES, an area of
storage is not reserved for the item; rather, a second name is
assigned to a previously defined item.

(3/66)

Examine these entries, and answer the questions below.

I
0 3 PlulRlc I l I lpl1 c!TlulR El 191(4f llvl9 9 1 l I l ! l H1A1SlE _t_l i l 1.' l

I 0 3 R}EIF!U NioI IR EloTElF llNIES !plulR cJt-ilATs ! l I I _l E ._1 I
I l ! t p! 1 Tclr u1R!EI 91 (j4.) vl9T91. r I l I r I r _l i l l I ~ 1 .l. ! i

1. For which item will an area of storage be reserved?
2. For which item will a new area of storage not ba reserved?
3. By what two names will the originally reserved area of

storage be known?

••••
l. An area of storage will be reserved for PURCHASE.
2. A new area of storage will not be reserved for REFUND.
3. The area of storage originally reserved for PURCHASE will

be known both as PURCHASE and as REFUND.

This is an exampie of an item that has a dual purpose in a reaord.
Sometimes the item contains the "purchase" amount, and sometimes
the "refund" amount. We would suppose that a aode somewhere in
the record indicates whether the transaation is a purchase or a
refund; based on that code, the program procedures would do
something either 1.11ith PURCHASE or UJith REFUND. Note that, in
this case, it is just a matter of having two names for an item,
so the appropriate name aan be used in procedures.

99

System/360 COBOL COBOL Program Fundamentals

LESSON 8

Im At last we have arrived at the final division, the Procedure
division. To some people the Procedure division represents
"the program", for it consists of procedures which the computer
is to follow in processing the data. The entries in this division
are very simiZar to English, so they will be easier for you to
comprehend at once than some of the Data division entries were;
also, there is very little in ithe way of special COBOL terminology,
as compared with the multitude of special terms that popped up
in your study of the Data division.

To be sure, there are a few such special terms, and the first one
that you will aome ac::oss is "procedure". In this reading
assignment, you will examine a sample Procedure division, and
then you wilZ learn exactly what we mean when we use the word
"procedure" in taZking about COBOL. At the same time, you will
Zearn what we mean in COBOL by "sentences" and "statements".

Reading assignment: PROCEDURE DIVISION ENTRIES
Sample Procedure division

PROCEDURES

lf!1J The six header entries that appear in the sample Procedure division
in the reference handbook are (Refer to the handbook, you
were not expected to remember this, of course.)

PROCEDURE DIVISION.
BEGINNING-OF-JOB.
DE!TAIL-PROCESSING.
RE~AD-NEXT-CARD.
TOTAL-ROUTINE.
END-OF-JOB.

lm:I You will recall that the structural units of COBOL programs are
divisions, sections, paragraphs, and entries.

The first of t.he six header entries you have just looked at is
a headei:· entry.. The other five are header entries •

•••
division1 paragraph

(3/66) 101

System/360 COBOL COBOL Program Fundamentals

l!.fJ Each paragraph in the Procedure division is called a

{
sentence }
procedure •
statement

•••
procedure

B In addition to paragraphs, the word "procedure" applies to
in the Procedure division.

• ••
sections

ml A "sentence" is any Procedure division entry that is not a
entry.

• ••
header

!iZI Like all entries, a sentence must be terminated by a

•••
period

EIJJ A procedure must contain

{
one sentence, or less }
one or mo.re sentences •
more than one sentence

one or more sentences

•••

---•

m:I Since a procedure might contain just one sentence, the shortest

imaginable procedure would contain {~}entries •

•••
2 (a header entry in addition to a sentence)

(3/66) 102

System/360 COBOL COBOL Program Fundamentals

Ifill The entry below calls for three actions: READ ••• CLOSE ••• and
GO TO ••• The COBOL term used for a specification of action, such
as READ OLD-MASTER, is

{

phrase }
clause
statement
sentence

ti 11 :RIEl4DI 'OLD-MASTER~ !AT END~ CLOSE}. -:::l::::O:LD-MASTER, G!O TO FINISH-NIEW-MASTE,R .

•••
statement

liZI The complete procedure entry i.llustrated in the preceding frame

(3/66)

is called a • ---
•••

sentence

Each statement begins ~ith a procedural ~oPd, Zike ADD, MOVE, etc.
Most procedural ~oPds are verbs, though one of the most impoPtant
~ords -- IF --· is technical Zy a conjunction. The reference hand
book lists the seventeen most commonly used pPoceduraZ ~ords in
alphabetical ordeP, but for study puPposes ~e ~iZZ Zook at just a
fe~ ~ords at a time. To begin ~ith, you ~ill read about four
input-output VePbs. Your objective is to learn enough about each
verb to be abZe to read and comprehend statements using that verb.
Keep in mind that you are not expected to be able to ~rite
o~iginaZ statements yet, so don't try to memorise the format
Pules.

Reading assignment:- PROCEDURAL WORDS
OPEN
READ
WRITE
CLOSE

(Be sure to Pead the summaries of these
verbs in this sequence.)

•••

103

System/360 COBOL COBOL Program Fundamentals

llflII Before a record may be written in a file, it is necessary to

{
READ }
OPEN
CLOSE

the file.

•••
OPEN

Em A CLOSE statement is required after processing is completed for
[input files] [output files] •

•••
input files AND output files

(3/66) 104

System/360 COBOL COBOL Program Fundamentals

Im The flowchart below shows the overall logic of processing
sequential files. In this example, there is one input file and
one output file. For simplicity's sake, an output record is
written for every input record.

(3/66)

PROCESS INPUT
RECORD AND

MOVE DATA INTO
OUTPUT RECORD

WRITE
AN OUTPUT

RECORD

CLOSE
BOTH
FILES

STOP RUN

This processing logic applies to sequential files that are stored
on [magnetic tape] [magnetic disk] [punched cards] [printed forms] •

•••
ALL of these storage media

Printed forms aould serve only for the output file, of aourse,
~hile the other media aould serve for both input and output.

105

System/360 COBOL COBOL Program Fundamentals

lml The f~.owchart you just looked at contains a decision block
testing whether the end of the input file has been reached ..
This AT END test is a clause of the

{~!E} statc..~~nt.
CLOSE

•••
READ

ID!J Which input-output statement is generally acted on at the
beginning of a run? At the end of a run?

•••
Beginning: OPEN; end: CLOSE

mJ OPEN and CLOSE statements are acted on once for each
whereas READ and WRITE statements are acted on once

for each {
file }
record

•••
fila; record

ml Turn to the Proaedure division of the aase study program in. the
referenae handbook. The next six frames aZZ refer to the aase
study program.

• ••
U What is the name of the procedure in which the files are opened?

•••
START-PROCESSING

(3/66) 106

System/360 COBOL COBOL Program Fundamentals

l&m What is the name of the input file? What is the name of the
output file?

•••
BILLING-FILE; CUSTOMER-BILL-FILE

When these files were named in the Environment division and
described in the Data division, no indication was given as to
which file would be used for input, and which for output. The
OPEN statement is where this is specified. This arrangement
permits the same Environment and Data division entries to be used
in other prog:ri1ams, where for instance, the input file of this
program might be the output file.

I& Find the READ statement. What. procedure is the computer told to
go to when the end of the input file is reached?

•••
END-OF-RUN

IEI Find the procedure named END-OF-.RUN. What does the first
sentence of that procedure say?

IBI

•••
CLOSE BILLING-·FILE, CUSTOMER-BILL-FILE.

Both the OPEN and CLOSE sta~ement gives the names of two files;
however, the OPEN statement tells which file is and which
is , while the CLOSE statement does not •

•••
INPUT, OUTPUT

lllB How many WRIT:fi~ statements are there?

•••
four

(3/66) 107

System/360 COBOL COBOL Program Fundamentals

Now let's go back to Pead about a couple of otheP pPoceduraZ
woPds that deaZ with input and output. DetePmine the diff'ePence
between these new woPds and READ and WRITE.

Reading assignment: PROCEDURAL WORDS
ACCEPT
DISPLAY

•••
1111 ACCEPT and DISPLAY are used for reading and writing

for
___ , not

•••
low-volume data; (not) files of data

Ill.I What is the maximum number of characters that can be read by an
ACCEPT statement, and written by a DISPLAY statement?

•••
maximum for ACCEPT: 80; maximum for DISPLAY; 120

1111 ACCEPT and DISPLAY statements are used to receive information
typed in on the console typewriter keyboard, and to type out
information on the typewriter. For this use, the number of
characters that can be read or written cannot exceed

•••
72

1111 No'IJJ that you have seen the vePbs that faZZ into the "input-output"
categoPy, Zet's Zook at the "data movement" categoPy. This
categoPy has just one basic vePb: MOVE. You 'IJJill find that this
vePb can do thPee main things, though not necessaPily all thPee

(3/66)

at one time.

Reading assignment: PROCEDURAL WORDS
MOVE

•••

108

System/360 COBOL COBOL Program Fundamentals

illrl A MOVE statement can ___ , , and --- data. ---
••••

move, convert, edit

Most people find a MOVE statement easy to understand, but let's
take a moment for you to double-check your understanding of it.
In the sentence below, what would you say is the name of the
"source field" -- the item from which data is to be moved?
What is the name of the "receiving field" -- the item to which
the data is to be moved?

~· ..
CATALOG-NUMBER is the source field; CONTROL-ITEM is the
Jt:'eceiving field.

11111 When the COBOL compiler generates machine language instructions
for a MOVE statement, it refers to the descriptions of the items
to be moved els given in the Data division. The i tern descriptions
will indicatE~ to the compiler how many characters are to be
moved, what the usage of each item is, etc.

In reference to the MOVE sentence printed in the previous frame,
suppose that CATALOG-NUMBER is a binary item (that is, its USAGE
IS COMPUTATIONAL). And suppose that the usage of CONTROL-ITEM
:is DISPLAY. In this case, the compiler will generate the
instructions required not only to move CATALOG-NUMBER to
CONTROL-ITEM, but also to convert the data from (which item?)

to external decimal (BCD) code.

, ...
CATALOG-NUMBl~R

llfJ A MOVE statement would cause data to be edited if the of
the receivinq item identified it as a report item.

~· ..
picture

(3/66) 109

System/360 COBOL COBOL Program Fund1amentals

"Arithmetic" is a larger category: five verbs. An interesting
thing about this group of verbs is that one of them can replace
the other four. It ~ould be possible, then, to use Just one
arithmetic verb for all arithmetic statements; ho~ever, you ~ill
have a look at the other four verbs as ~ell.

Reading assignment: PROCEDURAL WORDS
COMPUTE
ADD
SUBTRACT
MULTIPLY
DIVIDE

•••
mJ Which verb can be used for all arithmetic operations?

•••
COMPUTE

Im Whereas other statements use words like ADD, SUBTRACT, etc., to
specify arithmetic operations, COMPUTE statements use to
specify operations.

• ••
arithmetic symbols

mJ Notice that a COMPUTE statement not only computes a value, but
also edits that value if the result is to be put into a report
item. In the example below, into which item will be result be
put? How could you tell if it is a report item?

(3/66)

•••
The result will be put into RATE (the item named after the verb).
To find out if RATE is a report item, you would have to know
what its picture is.

110

System/360 COBOL COBOL Program Fundamentals

ml A DIVIDE statement might have been used to do the calculation
specified in the COMPUTE statement above. In order to obtain an
edited result, the DIVIDE statement would have to contain a

clause •. ---
•••

GIVING

Is this DIVIDE statement equivalent to the COMPUTE statement
illustrated above?

•••
No. The cor:rect equivalent would be DIVIDE TIME INTO DISTANCE
GIVING RATE.

In the COMPUTE statement, the! formula DISTANCE/TIME would be
read "distance divided by time"; the meanings of arithmetia
symbols are given in your referenae handbook under the topia
SYMBOLS.

IB1 A significant difference between COMPUTE and other verbs is that
a COMPUTE statement can call for more than one kind of arithmetic
<>peration. Name the operations that are called for in this
statement.

i

(3/66)

.

~c 0 lM p u T E c A p A c IT y (u TltlL
' ! j *I lsTP AINI) /f I l - I !T1Yi

I
I t± 1JolN

! J ' FIFT 1lc 1TEIN vl>l .T ! (R A N G E c 0 N s u M p T 1*1 lE c

•••
multipliaation division

COMPUTE CAPACITY = (UTILITY~* SPAN)\

(RANGE +\CONSUMPTION f EFFICIENCY).

addition multipliaation

111

System/360 COBOL COBOL Program Fundamentals

Im ADD, SUBTRACT, MULTIPLY, and DIVIDE statements perform only the
type of arithmetic operation specified by the verb. Furthermore,
MULTIPLY and DIVIDE statements operate on only two numbers1 they
multiply one number by another, or divide one number into another.

ADD and SUBTRACT, however, can operate on

{
only one number }
only two numbers .
more than two numbers

•••
more than two numbers

mJ An operation that can be done with a COMPUTE statement, but
cannot be done by any of the other arithemtic verbs is

•••
exponentiation

Exponentiation is the raising of a number to a aertain power.
To be sure, you aan square a number (raise it to the seaond
power) using a MULTIPLY statement -- multiplying the number by
itself. But higher powers would require several MULTIPLY
statements; and if the exponent varied, MULTIPLY statements would
be hard to use.

Im Another important aategory of proaedural words is "sequenae
control". These words enable the programmer to control the
sequenae in which other statements or procedures will be aated on
by the aomputer. There is IF, whiah permits different aations on
the basis of a test-aondition; GO TO and PERFORM, whiah aause
branahing; and STOP, whiah delays or halts the run.

(3/66)

You should get a general idea of the function of IF by read·ing
the summary in the referenae handbook; however, we will postpone
our discussion of IF until the next lesson, when we will study it
in detail. We will discuss GO TO, PERFORM, and STOP at thi.s time.
Make sure that you are able to describe the difference betwieen
GO TO and PERFORM. And learn what the two types of STOP state
ments are, and how you would tell them aparto

Reading assignment: PROCEDURAL WORDS
IF
GO TO
PERFORM
STOP

•••

112

System/360 COBOL COBOL Program Fundamentals

l&m A GO TO statement causes a branch to a sentence • {
statement}

procedure

•••
procedure

111111 A GO TO statement contains the name of the procedure to which a
branch is desired. You can see that this name must be the same
as the name given in the entry of the procedure •

•••
header

IDDI Hc>w does a GO TO differ from a PERFORM?

•••
A PERFORM causes a branch to a procedure or series of procedures,
just as a GO TO does.. But aft.er the procedure or procedures are
acted on, PERFORM causes a return branch to the statement after
the PERFORM statement.

11111 The fZow of contl'oZ thl'ough pri·ocedul'es, and ful'thel' study of GO
TO and PERFORM, wiZZ be taken up in the ne~t Zesson •

•••
1111 There are two kinds of STOP statements. One stops the execution

of the program permanently, the other tempora.rily. A permanent
stop is indicated when the verb STOP is followed by

•••
the word RUN

llD I:f the stop isJ temporary, that is, if execution is to be resumed
after the computer operator takes some corrective steps, the verb
STOP is fol lowed by . •

•••
a literal

(3/66) 113

System/360 COBOL COBOL Program Fundamentals

Im Here is an example of STOP followed by a literal. What will
happen to the literal when this stop is executed during the
running of the object program?

._....l_i--i-~:s~T~O_.,_P_.......,.1-+-H!-+-L_lT_.1 __ 11~2~'5-+-.~I s-+-E~E IR_i_U~,N..........,1_e~lo~!o~K_l_'!~··-'~--I ~l~IIJ]

•••
The literal will be typed out on the console typewriter.

llfJ The literal in the previous example is meant to be a

[message to the computer]
[conunent in the source program listing]
[message to the computer operator] •

•••
message to the computer operator

ml The fina Z oategorty of prtooedurta Z ~ortds is "prtogram comments".
This is anotheP one-~ortd oategorty, and desertves only bPief study •.

Reading assigrunent: PROCEDURAL WORDS
NOTE

•••
IJD NOTE entries are used for program documentation only. The

words written in a NOTE statement are

[converted .into machine language statements]
[loaded into core storage as constants]
[printed in the source program listing] •

•••
printed in ·the source program listing ONLY

Im A NOTE

{
has no size limit }
cannot exceed the width of the source program listing form
can be as long as 120 characters, like all non-numeric literals

•••
has no size limit

(3/66) 114

System/360 COBOL COBOL Program Fundamentals

LESSON 9·

EDI The brief summary of the proaeduraZ. UJord IF, UJhiah you read in
the previous lesson, indiaated in a general. UJay, that IF aauses a
condition to be tested, and causes aZ.ternate paths of aation to be
taken, depend-t:ng on UJhether the desaription of the aondition is
true or false~ In this Z.esson, UJe UJilZ. first study the various
kinds of conditions that can be tested in IF statements. There
are five kinds of conditions (calZ.ed "test-conditions" in COBOL
jargon); you ~iZ.Z study tUJo of these now, the other three a
little later.

Reading assignment: TEST-CONDITIONS
Relation test
Sign test

(Do not read about the aondition-name
test yet.)

•••
In this IF sentence, pick out the test-condition 1nd the
statement to be acted on if the test-condition is true. Also,
identify the test-condition.

M 1INd MIUM
I M I N I· U Ml l-1

•••
test-aondition (reZ.ation test)

t
IF(NET IS LESS THAN MINIMU~,

~OMPUTE DEFICIT =MINIMUM -NE9.

a~ion to be taken if condition is true

IJll A relation test causes two values to be

•••
compared

(3/66) 115

System/360 COBOL COBOL Program Fund.amentals

1111 The reason for comparing the two values in a relation test is to
determine whether the stated relationship is true or false.. In
the first example below, the stated relationship is true if the
values of the two data items are exactly equal, and false :if
either value is higher or lower than the other.

11 F p UR c H A}S E R T 1 1 OIN· ,TlR olL}Ll I NlGl-}P ATRIT .Y I 1==t JC .!
I 'M 0 v E 1 •

N,O ic1HIA RIG El' lrlol E!X!P!L A1N1A T 1Jo N. _l

In the next example, the stated relationship is true if
APPLICANT-AGE is [equal to] [less than] [greater than] 16: and
false if APPLICANT-AGE is (equal to] [less than] [greater than]l6.

: 1 I E x!c.E PIT 1 o N _,_ ~ Rl drlE IEJx c E PIT 1 01NJ .1
TJHANrm
I ! .

] .

~J NOVE ·APPLICiATJ1JolN-IRECOR!O ro11

•••
true if EITHER equal to OR less than 16: false ONLY if greater
than 16

When we take up "flow of aontrol" later in this lesson, we will
look alosely at what happens when the test-aondition is true or
false.

llLI In the sign test, ZERO is considered to be [positive] [negative] •

•••
NEITHER positive NOR negative

IIfl This means that an item whose value is zero

(3/66)

{

must not have an operational sign }
can have .a sign, but it is ignored
has a special t (plus-or-minus) sign

•••
can have a sign, but it is ignored

116

System/360 COBOL COBOL Program Fundamentals

ID The reference handbook points out that the sign test is another
way of stating a relation test that compares a number with zero.
What sign test would be equivalent to the relation test below?

•••
IF' TOTAL-DUE IS POSITIVE, GO TO WRITE-BILL.

lllEJ Both the reZation test and the sign test are easily aomprehended.
Next you wiZZ Zearn about three other tests, whose meaning --
at: Zeast the meaning of two of the three -- is not always obvious.

Re~ading assignment: TEST-CONDITIONS (continued)
Condition-name test
Overflow test
Class test

•••
lllD The class test is used to determine whether or not an i tern is

or

•••
alphabetic, numeric

ll!DJ A possibZe use for class tests is to aheak the vaZidity of aertain
data items. For example, it might be desired to determine ~hether
an item that is supposed to aontain numeria information aatually
contains digits. (Suah an item would have a picture identifying
it as a numeric item, but there is no automatic checking to verify
that data put into an item during the running of a program
corresponds to the item's picture.)

•••
1ml In a condi tion.-name test, the test-condition consists solely

of a

•••
programmer-supplied name

(3/66) 117

System/360 COBOL COBOL Program Fundamentals

Im The test resembles the condition-name test •

•••
overflow

Im Since a condition-name test is another way of testing whether a
data item is equal to a literal, any condition-name test could
be replaced by a

l r7lation test}
sign test
class test
overflow test

relation test

•••

The reason a programmer might use a condition-name test instead
of a relation test is to make the program more readable. If he
has done his job right, the name of the condition will explain
the meaning of the condition. For instance:

The condition name, APPLICANT-WILL-TRAVEL, actually represents a
specific value of a specific item. To find out what value, and
what item, you would look in the divis.ion •

•••
Data

Im A condition name is defined in a level number entry in
the Data division. -----

•••
88

(3/66) 118

System/360 COBOL COBOL Program Fundamentals

ID Suppose the following entry appeared in the Data division:

This entry gi"es the conditi.on name, and the value represented
by the conditlon name, but does not tell the name of the item.
Where would you look for the item description entry to which the
88-entry applies?

Above the 88-Emtry. Level-88 entries follow immediately after
the description of the entry to which they apply; there may,
however, be more than one level-88 entry for an item.

Em Here we see the condition-name entry in context.··

(3/66)

AT T I TluloTE -lT o~ AR oJ- TlR}ATv Eld ·~ Pl 1 lclT ulRlEl xi.! I
188

I :as ! .I l 1. : !. I I l T I 1 ! I ! i I
APPL 1 lc1A1N T1-;w 1 L:Ll-1T R!AME Ll i vlA1L1u El r 'lG '1 • l 4

Which one of the following relation tests is the equivalent of
IF APPLICANT-WILL-TRAVEL ••• ?

1
1 IS EQiU!A!L lTIOi APtPIL l1ClA1N T'-WI LiU-!TR!AlVEU

•••
(2)

"119

System/360 COBOL COBOL Program Fun.damentals

Whenever a programmer wants to test whether the value of a data
item is equal to a literal, he has the choice of using either a
relatron test or a condition-name test. His decision as to which
to use would be based in part on the readability of the r4~lation
test. A relation test such as IF TEST-SCORE= 100 ••• tells just
as much as IF PERFECT-TEST-SCORE ••• , so the programmer would
probably use the relation test.

On the other hand, if he had a choice of writing
IF MARITAL-STATUS = 7. • • or IF DIVORCED ••• I the programmeJ: would
certainly write IF DIVORCED ••• In this instance, then, the

{
relation test l

preferred test is the condition-name testf ·

•••
condition-name test

Im No similar choice exists when it comes to the overflow test.

(3/66)

The overflow test is the only way of testing whether the 12-punch
has been sensed in the carriage tape. (The punch in channel 12
of the carriage tape indicates when the last normal printi.ng line
of the form has been reached, in order to leave a margin of blank
paper at the bottom of each form.)

This means that an overflow test will be found in most programs
where there is printed output. The logic of the IF sentence
containing the overflow test will nearly always be similar to the
sample sentence given in the reference handbook, but of course,
the programmer-supplied names will undoubtedly be different.

The programmer-supplied name that represents the form-overflow
condition is defined in an APPLY entry, which will be found in
the I-0-Control paragraph of the division •

•••
Environment

120

System/360 COBOL COBOL Program Fundamentals

Im Our discussion of test-conditions leads naturally to closer study
of the flow of control through COBOL procedures. After all, the
reason for having test-conditions is to permit control to flow
along alternate procedural paths.

The COBOL compiler, as you know, will cause the COBOL procedural
statements to be translated into actual machine language
instructions. When we talk about flow of control, we are "playing
computer", so to speak, and acting as though the COBOL statements
had already been translated and are now being executed by the
computer. In order to trace the flow of control, you must know
such things as where the starting point is, what sequence is
normaZZ.y followed, and what s·tatements cause deviations from
that sequence.

Reading assignment: FLOW OF CONTROL
Starting point
Sequence
Branching

(Don't study the flow of control through
IF statements yet.)

•••
"Declarative" procedures are used to alter the usual actions
performed by the input-output control system. One example of the
use of declaratives is in the processing of user Zabel records,
that is, labels that provide file information over~and-above that
provided by the standard label records.

In this book, our only concern with declaratives is their effect
on the place at which execution of a COBOL program begins. What
is the starting point of program execution when there are
declaratives? When there are no declaratives?

•••
When there are declaratives, control starts at the first
procedure after the declaratives. When there are no declaratives,
control starts at the first procedure of the Procedure division.

Im How can you tell whether a program contains any declarative
procedures? How can you tell where the declaratives end and the
Jregular procedures begin?

(3/66)

:cf a program contains declaratives, the line after the division
header will state: DECLARATIVES. And the line after the last
declarative procedure will state: END DECLARATIVES.

121

System/360 C:OBOL C:OBOL Program Fundamentals

Im Control normally flows from one statement to the next

{

in the order in which they are written in the program }
in alphabetical order according to the first letters of .

the verbs
in order by verb categories, input-output being done first

•••
in the order in which they are written in the program

Im When control comes to the end of a procedure, it normally

{

stops temporarily, until an operator presses the Start key} .
waits for the next command from the supervisor program
goes right on to the next procedure in sequence

•••
goes right on to the next procedure in sequence

Em The proaedural words whiah aan ahange the normal flow of aontro Z
are the familiar quartet of "sequenae aontroZ" words: GO TO, IP,
PERFORM, and STOP.

A GO TO statement causes control to branch unconditionally to
the of a procedure.

• ••
first statement

Im After a GO TO has caused control to branch to the beginning of
a procedure,

(3/66)

control irmnediately branches back to the statement after
the GO TO

the normal flow of control is resumed
control flows through that procedure, and then returns

to the GO TO

•••
the normal flow of control is resumed

122

System/360 COBOL COBOL Program Fundamentals

Ii& These drawings graphically illustrate the difference between
GO TO (drawing A) and PERFORM {drawing B). Each drawing consists
of four boxes that represent procedures. In each case, the flow
of control ·begins at procedure P-1; part way through the first
procedure a sequence control statement is acted on. The flow
arrows remind us that a branch is caused by [GO TO] [PERFORM].

P-1.

P-2.[~

_J

BOTH GO TO AND PERFORM

•••

P-1.

_...

P-2.

P-3.

P-4 .

,
jP!EIRiFlolRIM! IP!-!31. I

I '

J

lmJ In both cases, control flows through procedure P-3, but at that
point the difference occurs. In drawing A, control then flows
~---' whereas in drawing B, control flows

•••
(A) to the next pro·cedure in sequence, P-4
(B) back to procedure P-1, where it will next act on the

statement following the PERFORM statement

(3/66) 123

System/360 COBOL COBOL Program Fun.damentals

Im GO TO and PERFORM statements cause control to flow to the
beginning of a procedure, so the programmer must think in terms
of procedures when using these statements. IF sentences, on the
other hand, cause control either to flow through or to jump over
certain statements. Keep this difference in mind as you examine
the logic diagPams for IF statements, in the reference handbook.

Reading assignment: FLOW OF CONTROL (continued)
Flow of control through an IF sentence

that does not contain ELSE or OTHERWISE
Flow of control through an IF sentence

that contains ELSE or OTHERWISE

•••
EfiJ The logic diagrams you have just looked at ought to help you in

determining what processing is accomplished in an IF sentence.
The first step indicated in both diagrams is that the "data is
evaluated", to find out whether the description of the data
condition is true or false.

Of the five test-conditions that can be used in IF sentences,
one test-condition does not, strictly speaking, describe a. data
condition. Which one?

•••
overflow test

The logic diagrams apply to the overflow test, too, except that
the ~ords "data is evaluated" are not appropriate. For that test,
it ~ouZd be more appropriate to say something Zike "status of
electronic indicator in printer is tested". However, I am sure
we can get by with the diagrams as they stand; and might say that
the "status of an indicator" constitutes a piece of information,
and that it is therefore "data" -- in the Zarger sense of the
word.

llfJI It is also important to emphasize the difference between a "data
condition", which is a matter of fact, and a "description of a
data condition", which might be true or false at any given time.
It is certainly not possible to tell whether a test-condition,
such as STOCK-LEVEL IS LESS THAN MINIMUM-BALANCE, is true or
false merely by looking at the COBOL entry. It is necessary to
look at the data itself; and if we find that the value of STOCK
LEVEL is 355, and that the value of MINIMUM-BALANCE is 352, we

can then say that the test-condition is {}~~:e} at this time •

•••
false

(3/66) 124

System/360 COBOL COBOL Program Fundamentals

l&m When an IF sentence does not contain ELSE or OTHERWISE, control

jumps to the next

sentence

{statement}· if the test-condition is false. sentence

•••

IBI The end of a sentence is identified by a ---
•••

period

lml It should be c:lear from the logic diagrams how important the
distinction be~tween a "sentence" and a "statement" now becomes.
Previously, we~ have dealt with "unconditional" actions, where the
distinction was not so important. For example, the first sentence
below calls fc>r exactly the same actions as the two sentences
below it.

(3/66)

T ~A 0 D p E tN A L T y T 0 A M 0 u N T -lou E J M ofv!E!
! I ! I l I I A M 0 u N T - D u E Ir 0 p A y A BIL E • ! l ; ;

T l ! I l

I :A D 01 PE N A T y 0 A T
I i ! l

1 I 1
i I L T M 0 u N - D .U E .! I ; t I

' l~ fl. I l i ! j 1 1 I 0 v E A M 0 u N T - D u Ei T 0 p A y A B L ! I l -.-

But where the word IF is involved, the exact location of periods
is vital. Thus, the two sets of entries below do not mean the
same thing. Can you explain the difference between them?

--

ii F s A L E s ~ Q u 0 T !A ._ M 0 v E. ' eTE1L\o wr· T 0 M E M o.
T :A lAI T J T LlE1s. 0 D s L E s T 0 y E A R - T 0 - D A T E!-1SiA ;

I i , I ll j_ j_ .1

: I F s A L E s I< Q U.OT!A • M 0 Vi El • BiEtlo w· T o! M E M 0 •
:A D D SA L E sl T 0 TviElA R,-T 0 ~D.Ah E ~sJA L E s • I

•••
In the first set of entries, SALES will be added to YEAR-TO-DATE
SALES whether or not the value of SALES is less than the value of
QUOTA. In the second set, SALES will be added to YEAR-TO-DATE
SALES only if the value of SALES is less than QUOTA.

125

System/360 COBOL COBOL Program Fundamentals

Im What is wrong with this reasoning:

(3/66)

The two sets of entries below accomplish exactly the same purpose.
In each one, the EMPLOYEE-PLAN procedure will be performed if the
value of AGE is less than 65; and RETIREE-PLAN will be per:formed
if AGE is equal to or greater than 65.

.

11 F A G E ~ 6 5 x p E R F 0
lQ T HE R ~; IS E _._ p E R F 0 R M

l• F A GE ~ 6 5 _J
p E R F ()

_:_p !~ R F 0 :R M R E T IR EE - p L
~. - -

•••

R M E M p L
R E T IR E

R M E M p L
A N • -:::1

OY E El-
E1-" p LIA

Q YE E -

p L
N.

p L

A

A

N 1

N.

ffiH
ffiH

In the second set, RETIREE-PLAN will be performed no matter what
the value of AGE is.

The program-fZottJchart excerpts beZ.ottJ correspond to the tttJo sets
of COBOL entries that you studied in the previous frame. They
iZ.Z.ustrate the difference betttJeen the tttJo sets of entries. The
difference is precisely the same as the difference betttJeen the
tttJo Z.ogic diagrams in the reference handbook; you might ttJiah to
compare those general. Zogio diagrams ttJith these specific
application fZ.ottJcharts.

YES

PERFORM
EMPLOYEE-PLAN

PERFORM
RETIREE - PLAN

•••

126

YES

PERFORM
EMPLOYEE- PLAN

PERFORM
RETIREE - PLAN

System/360 COBOL COBOL Program Fundamentals

The flowcharts in the preceding frame show how a progPammer
thinks about the verb PERFORM. He treats PERFORM as if it we:tte
a p:ttocess done "in line" within a p:ttocedure. Of aourse, the
programme:tt is well aware -- just as you a:tte aware -- that PERFORM
actually cau~r es aon trao l to branah off to some other proaedu:tte.,
and then aauses contraol to come :ttight baak. This linkage to and
f:ttom the othE~1' procedure is completely taken aa:tte of by the COBOL
compile:tt., which peramits the prog:ttammer to take a simplified view
of things.

But, when you a:tte anaZyaing a p:ttog:ttam that someone else has
written, to see just what the p:ttog:ttam does, you must locate the
p:ttocedu:tte that is perfo:ttmed and examine the processing done in
that pPocedure. We are going to do just that next; we will trace
the fZow of oont:ttol th:ttough a po:tttion of the sample Proaedu:tte
~ivision in the refe:ttence handbook.

Turn to the sJample Procedure division -- the one you looked at
when you began detailed study of the division, not the case study
program. Locate the IF sentence in the READ-NEXT-CARD paragraph •

•••
This frame, and the next seven f:ttames, :ttefer to the sample
Procedure division.

~rhe IF statement states that TOTAL-ROUTINE is to be performed
JCF •

•••
NUMBER OF COMMODITY IS NOT EQUAL TO OLD-NUMBER

Im ~rOTAL-ROUTINE: is the programmer-supplied name of a

•••
procedure (paragraph)

(3/66) 127

System/360 COBOL COBOL Program Funda.mentals

IEDJ TOTAL-ROUTINE is the next procedure in sequence following
READ-NEXT-CARD.

A procedure to be performed {
must follow }
need not follow the procedure

that contains the PERFORM statement •

•••
need not follow

A little while ago, you studied a drawing that showed a PERFORM
statement in procedure P-1. The procedure to be performed did not
follow P-1; instead, it was procedure P-3, two procedures away.
And it would have been perfectly all right for a PERFORM
utatement in procedure P-4 to say, "PERFORM P-1".

ml TOTAL-ROUTINE consists of some MOVE statements and a WRITE
statement. It does not contain a GO TO statement. How will
control be returned to the statement following the PERFORM
statement in the READ-NEXT-CARD procedure?

•••
Instructions to cause control to return will be generated by the
COBOL compiler.

IIIJ To what sta·tement will control return after TOTAL-ROUTINE has
been performed?

•••
GO TO DETAIL-PROCESSING.

EEll DETAIL-PROCESSING is the name of a

•••
procedure

(3/66) 128

System/360 COBOL COBOL Program Fundamentals

li!D Thus, inunediately after control returns from TOTAL-ROUTINE, it is
SEmt o~f the DETAIL-PROCESSING. This would seem to suggest, why
not add a last statement to TOTAL-ROUTINE that says, "GO TO
Dl~TAIL-PROCESSING?" The main reason that this was not done is
because the TOTAL-ROUTINE is to be pe~formed at another point in
the program, and at that point, control is not to go to
Dl!:TAIL-PROCESSING. --

llm

(3/66)

Find the other "PERFORM TOTAL-ROUTINE" statement in the program.
To what statement will control return following the execution of
that PERFORM?

•••
The other "PERFORM TOTAL-ROUTINE" statement is in the END-OF-JOB
procedure. After it is executed, control will go to the
statement that reads, "CLOSE PURCHASING-FILE, PURCHASE-REPORT
FILE".

Let's continuE~ to trace the flow of control from the CLOSE
statement. After the CLOSE statement is executed, control goes
to a DISPLAY statement, and then to a STOP statement.

1. Each of these COBOL statements also happens to be a
sentence,. Does this fact alter the flow of control
in any way?

2. Exactly what will happen when the DISPLAY statement
is executed?

3. Where will control go following the execution of the
STOP statement?

l.

2.

3.

•••
No, not in this case1 but as you have seen earlier,
the distinction between statements and sentences is
crucial when you are dealing with IF sentences.

The words PURCHASE REPORT FINISHED will be typed on the
console typewriter.

Control will not go anywhere, as far as this program
is concerned. STOP RUN means the job is finished.
(Incidentally, this does not mean that the computer
stops running; control is simply turned over to the
operating system control program, which will probably
load the next program and process the next job.)

129

System/360 COBOL COBOL Program Fundamentals

LESSON 10

IIi?I This final lesson will give you a chance to find out whether you
have learned what you were expected to learn from the other
lessons, which is to read a COBOL program with a high degree of
comprehension. You can think of this lesson as a "self test",
inasmuch as you will be apply1:ng what you have previously
learned, rath~?r than learning new information.

.:r.l!W
lail;ll

Although there are no reading assignments in this lesson, you
should feel f~ee to Zook up information in the reference handbook
whenev-r you need to. We have covered a lot of ground in nine
lessons, and you were repeatedly urged not to memorize details,
so it would hardly be fair to expect you to rememoer any but the
most important facts! (You may be surprised to find how many of
the details have "stuck with you".) Anyway, the answers are what
count, not whether you have memorized them, or must look them up.

Most of our work in this lesson will be done with the case study
program. Turn to the Procedure division of the case study
program, and locate the third procedure.

The third procedure is

LINE-1-PROCEDURE

{
READ-AND-CHECK-RECORD}
LINE·-1-PROCEDURE

•••

The first sentence of that procedure is

{
LINE-1-PROCEDURE. }
MOVE SPACES TO BILL-LINE-1 •.

•••
MOVE SPACES TO BILL-LINE-1.

IJ!D I:f "LINE-1-PROCEDURE." is not a sentence, what is it?

•••
It is a paragraph header entry (procedure header entry).

(3/66) 131

System/360 COBOL COBOL Program Fundamentals

"MOVE SPACES TO BILL-LINE-1." is the first sentence of its
procedure. What is the first statement of that procedure?

•••
The sentence contains just one statement, "MOVE SPACES TO
BILL-LINE-!". (The sentence is terminated by a period, while the
statement is not; so the period is the only difference bet~een
the first sentence and the first statement, in this case.)

ml SPACES is one of a few reserved words that are called

•••
figurative constants

BILL-LINE-! is a programmer-supplied name of a data item.
In which division would you look to find the description of the
item?

•••
Data division

Find the item description entry for BILL-LINE-1. The level
number of that entry tells that BILL-LINE-1 is the name of a

•••
record

ml The level-01 entry for BILL-LINE-1, plus the string of level-02
entries that follow it, together make up a

•••
record description

Im BILL-LINE-1 is a record, and it is also
{

a group item }
an elementary ite.m .
an independent item

•••
a group item

(3/66) 132

System/360 COBOL COBOL Program Fundamentals

llfl'I How many elementary items are there in the BILL-LINE-1 record?

•••
thirteen -- Every level-02 item in this record is an elementary
item.

There are no USAGE clauses in any of the entries in the
BILL-LINE-1 record description. Do the items in this record have
a usage? If so, what is their usage?

•••
Yes -- all data items have a usage, since "usage" is the COBOL
term that means the data code in which data will be stored in
an item.

The usage of the items in this record is DISPLAY; when no usage
is specified, it is assumed to be DISPLAY.

lfJI Seven of the items in this record are called FILLER. What is
"FILLER"?

FILLER is a reserved word that can be used in place of a name
when the item is not going to contain any information or is not
going to be processed.

{

PICTURE \
PICTURE $$,$$$.$$
$$,$$$.$$ • ml The picture of the item named CREDITS is

••• $$,$$$.$$ •

$$,$$$.$$ (The final period is not part of the picture1 it is
the period that terminates the entry.)

IB The picture identifies CREDITS as a

•••
item •

report (that is, an item used to store edited data)

(3/66) 133

System/360 COBOL COBOL Program Fun.damentals

El What is the name of the file in which BILL-LINE-1 is a record?

•••
CUSTOMER-BILL-FILE

Im What does "FD" stand for?

•••
File Description

l:Dll The FD entry for CUSTOMER-BILL-FILE contains the following
clause: "RECORDING MODE F". What does "recording mode" mean?
What does "F" stand for?

•••
"Recording mode" is the COBOL term for the format (layout) of
records. "F" stands for "Fixed length".

IDJJ How many different kinds of data records are there in
CUSTOMER-BILL-FILE?

•••
four -- BILL-LINE-1, BILL-LINE-2, BILL-LINE-2, and BILL-LINE-4

Im Where would you look to find out what device CUSTOMER-BILL-FILE
is assigned to?

•••
In the Environment division

Im Locate the Environment division. CUSTOMER-BILL-FILE is assigned
to device number __

•••
1403 (uhe IBM 1403 Printer)

(3/66) 134

System/360 COBOL COBOL Program Fundamentals

ll:IifJ The Environment division also indicates that the object program

will be compiled and executed on l t~e same l computer models.
different ~

•••
different (Source computer is IBM-360 GS01 object computer is
IBM-360 F30.)

Im The name of this COBOL program is
{

BILLFILE }
CUSTBILL
BILLING .
not specified

•••
BILLING (See the Program-Id paragraph of the Identification
d:i.vision.)

~ {!!~~~d} . . .
~ The Data division is the third d1v1s1on of the program.

fourth

•••
third

1:111 Turn to the Data division once again. Where would you look to
find the descriptions of independent items?

•••
In the Working-Storage section

1111 Locate the Working-Storage section. Of the three items
described in the section, the [first] [second] [third] is an
independent item.

ALL THREE are independent items -- all have level number 77.

How many characters does the item named SKIP-TO-CARRIAGE
CHANNEL~l contain?

•••
one (Its picture is X.)

(3/66) 135

System/360 COBOL COBOL Program Fundamentals

1111 Just above the Working-Storage section header is the recoi:·d
description of the BILL-LINE-4 record. How many characters does
that record contain?

•••
133 (40 + 22 + 71)

1111 Does this mean that each of the other three records in the
CUSTOMER-BILL-FILE also contains 133 characters?

•••
Yes, it does -- in this instance. You previously observed that
the recording mode of the file is F, which means that all ,of the
records in the file have the same length.

1111 Turn to the Procedure division again. Where will the flow of
control through the procedures of this program begin?

•••
At the START-PROCESSING procedure (There are no declaratives
in this program.)

111':1 In a few words, what is the function of the OPEN statement in
the START-PROCESSING procedure? Also, what does the OPEN
statement tell you about BILLING-FILE and CUSTOMER-BILL-FILE?

•••
The OPEN statement makes the input and output files ready for
reading and writing. It also tells us that BILLING-FILE iu the
input file, and that CUSTOMER-BILL-FILE is the output file ..

llfJ Where will control flow when it comes to the end of the
START-PROCESSING procedure?

•••
To the next procedure in sequence: READ-AND-CHECK-RECORD

(3/66) 136

System/360 COBOL COBOL Program Fundamentals

1111 How many statements are in the first sentence of the
READ-AND-CHECK-RECORD procedure?

•••
two: READ BILLING-FILE and GO TO END-OF-RUN

1111 BILLING-FILE :Ls the name of a ---, and END-OF-RUN is the name
of a •

• ••
file; procedu:re

m Under what condition will control branch to END-OF-RUN?

•••
When the end of the file has been reached1 that is, when all of
the data records have been processed.

(AT END is a clause of the READ statement, and is mentioned in
the summary of the READ verb, under PROCEDURAL WORDS in the
reference handbook.)

lfll What actions are taken when control branches to the END-OF-RUN
procedure?

•••
The input and output files are closed, and the run is stopped.

(3/66) 137

, -·--·---------------------------------------

R29-1215-0

International Business Machines Corporation

Data Processing Division

112 East Post Road, White Plains, New York

