
Systems Reference Library

IBM as
COBOL (E,F) Language

Program Number (COBOL E) 3605-C0-503
(COBOL P) 3605-CB-524

COBOL <common Business Oriented Lan
guage) is a-programming language, similar
to English, that is used for commercial
data processing. It was developed by the
conference of Data Systems Languages
(CODASYL).

This publication provides the programmer
with rules for writing programs that are to
be compiled by the COBOL E and COBOL F com
pilers under system/360 Operating System.
Any violation of the rules for System/360
Operating System COBOL as defined in this
publication is considered an error. The
features implemented by the COBOL F compil
er and not by COBOL E, and the IBM exten
sions to COBOL, are listed in an appendix.

File No. 8360-24 OS
Order No. GC28-6516-8

Technical Newsletter File No. S360-24 (OS Release 20)

Re: OrderNo. GC28-6516-8

This Newsletter No. GN28-0427

Date: December 30, 1970

Previous Newsletter Nos. GN28-0266

IBM SYSTEM/360 OPERATING SYSTEM:
COBOL (E/F) LANGUAGE

© IBM Corporation 1966, 1968

This Technical Newsletter, a part of Release 20 of IBM
System/360 Operating System, provides replacement pages for
the subject publication. These replacement pages remain in
effect for subsequent OS releases unless specifically altered.

Cover, 2
11,12
35,36,36.1
43,44
53,54

69-72
75,76
101,102
145,146

A change to the text or a small change to an illustration is
indicated by a vertical line to the left of the change; a
changed or added illustration is denoted by the symbol • to the
left of the caption.

SUMMARY OF AMENDMENTS

All changes are maintenance in nature, that is, to either
clarify existing documentation or to correct typographical
errors.

Note: Please file this cover letter at the back of the manual
to provide a record of changes.

IBM Corporation, Programming Publications, 1271 Avenue of the Americas, New York, N.Y. 10020

PRINTED IN U.S.A.

Technical Newsletter File Number $360~24

Re: FormNo. GC28.-6516-8

IBM SYSTEM/360 OPERATING SYSTEM
COBOL LANGUAGE

This Newsletter No. GN 2 8-0 2 6 6

Dare June 1, 1970

Previous Newsletter Nos. None

This Technical Newsletter, a part of Release 19 of the IBM
System/360 Operating.System, provides replacement pages for the
subject publication. These replacement pages remain in effect
for subsequent OS releases unless specifically altered. Pages
to be inserted and/or removed are:

Cover,2
15,16
37,38
41 '42
49,50
55,56

73,74
89,90
93,94
103-108
129-137

A change to the text or a small change to an illustration is
indicated by a vertical line to the left of the change; a
changed or added illustration is denoted by the symbol• to the
left of the caption.

Summary of Amendments

All changes in this Technical Newsletter are maintenance in
nature. Areas affected are the VALUE clause, EXHIBIT CHANGED
statement, PAGE-COUNT.ER and LINE~COUNTER, JUSTIFIED RIGHT
clause, REWRITE statement, COPY clause, and the debugging
packets.

Note: Please file this cover letter at the back of the manual
to provide a record of changes.

IBM Corporation, Programming Publications, 1271 Avenue of the Americas, New York, N.Y. 10020

llNTED IN U.S. A.

Form GC28-6516-8, page revised by ~L GN28-0266, 6/1/70

This publication describes the IBM
System/360 Operating System COBOL language
as implemented for COBOL F and its subset,
COBOL E. Its purpose is to serve as a
reference manual for writing COBOL F and
COBOL E programs.

The reader should have some knowledge of
the COBOL language before using this publi
cation. Useful COBOL information can be
found in:

COBOL Program Fundamentals: Text, Form
R29-0205

COBOL Program Fundamentals: Reference
Handbook, Form R29-0206

Writing Programs in COBOL: Text, Form
R29-0210

Writing Programs in COBOL: Reference
Handbook, Form R29-0211

COBOL Programming Technigues: Text,
Form R29-0215

Detailed information and examples help
ful to the COBOL E and COBOL F programmer,
including information about compiling,
linkage editing, and executing COBOL E and
COBOL F programs can be found in IBM
System/360 Operating System: COBOL (E)
Programmer's Guide, Form GC24-5029, and IBM
System/3_§_Q._QJ2erating System: COBOL (F)
Programmer's Guide, Form GC28-6380.

A general knowledge of the IBM System/
360 Operating system is desirable, although
not mandatory. This knowledge can be
acquired by reading IBM System/360 Operat
ing System: Introduction, Form GC28-6534,
and IBM system/360 Operating system: con
cepts and Facilities, Form GC28-6535.

There are two Job Control Language
manuals. IBM System/360 Operating~ystem

PREFACE

Job Control Language User's Guide, Form
GC28-6703, is for those programmers with
little or no knowledge of IBM's Job Control
Language. It is to be used as a tutorial
manual. IBM System/360 Operating syst9m:
Job Control Language Reference, Form GC28-
6704, is for those programmers with a basic
knowledge of JCL. It is designed to be
used as a reference manual. In this manu~
al, reference will only be made to the Job
Control Language Reference, Form GC28-6704.

Most statements in this publication are
common to both COBOL E and COBOL F. When
these statements are processed by the
respective compilers, the results produced
are equivalent. Features implemented for
COBOL F and not for COBOL E are designated
throughout this publication by the symbol

r------,
IF ONLYI
L------J

When an entire chapter is implemented
only for COBOL F (for example, the
chapter entitled "Sort Feature">, the
heading for the chapter is preceded by
the above symbol.

When an entire paragraph is imple
mented only for COBOL F, the paragraph
begins with the above symbol.

Certain features in this publication are
IBM extensions to COBOL for System/360
Operating System; they are designated
throughout this manual by the symbol

r----,
IEXT. I
L----J

When an entire chapter describes an
extension to COBOL (for example, the
chapter entitled "COBOL Debugging Lan
guage">, the heading for the section
is preceded by the above symbol.

When an entire paragraph describes an
extension to COBOL, the paragraph
begins with the above symbol.

ACKNOWLEDG!1EN!

The following extract from Government
Printing Office Form Number 1965-0795689 is
presented for the information and guidance
of the user:

"Any organization interested in reproducing
the COBOL report and specifications in
whole or in part, using ideas taken from
this report as the basis for an instruction
manual or for any other purpose is free to
do so. However, all such organizations are
requested to reproduce this section as part
of the introduction to the document. Those
using a short passage, as in a book review,
are requested to mention "COBOL" in ac
knowledgement of the source, but need not
quote this entire section.

"COBOL is an industry language and is not
the property of any company or group of
companies, or of any organization or group
of organizations.

"No warranty, expressed or implied, is made
by any contributor or by the COBOL Commit
tee as to the accuracy and functioning of
the programming system and language.
Moreover, no responsibility is assumed by
any contributor, or by the committee, in
connection therewith.

"Procedures have been established for the
maintenance of COBOL. Inquiries concerning
the procedures for proposing changes should
be directed to the Executive Committee of
the Conference on Data Systems Languages.

"The authors and copyright holders of tne
copyrighted material used herein

FLOW-MATIC (Trademark of Sperry Rand
Corporation>, Programming for the
Univac (R) I and II, Data Automation
Systems copyrighted 1958,, 1959, by
Sperry Rand Corporation; IBM Commer
cial Translator, Form No. F28-8013,
copyrighted 1959 by IBM; FACT, DSI
27A5260-2760, copyrighted 1960 by
Minneapolis-Honeywell

nave specifically authorized the use of
this material in whole or in part, in the
COBOL specifications. such authorization
extends to the reproduction and use of
COBOL specifications in programming manuals
or similar publications."

BASIC FACTS
Character Set
Punctuation • • • •
Word Formation •
Types of Names •

Data-Names •
External-Names •
Procedure-Names
Paragraph-Nam~s
Other Names •

Qualification of Names • • • • • •
COBOL Program Sheet

9
9
9

• • 10
10

• 10
10

• • 10
10
10
10

• 11
Sequence Number: (Columns 1-6)
Continuation Indicator: (Column 7) •
source Program Statements: (Columns

• 11
11

8-72) •••• 11
Program Identification Code: (Columns
73-80) • • • 11
Margin Restrictions 12
Continuation of Non-Numeric Literals • 12

Format Notation 12

COBOL INPUT/OUTPUT PROCESSING
CAPABILITIES •

Data Organization
standard Sequential Data
Organization • •
Indexed Data Organization
Direct Data Organization • •
Relative Data Organization •

Access Methods • •
File-Processing Techniques • •

15
15

15
• 15

16
16

• • 16
• 16

St~ndard Sequential File-Processing
Technique • 16
Indexed File-Processing Techniques • 17
Direct File-Processing Techniques 19
Relative File-Processing Techniques 20
summary of File-Processing
Specifications • • • 21

IDENTIFIC~TION DIVISION

ENVIRONMENT DIVISION •
Configuration Section
Special-Names Paragraph
Input-Output Section • •

File-Control Paragraph
SELECT Sentence
ASSIGN Clause
ACCESS Clause
ORGANIZATION Clause
RESERVE Clause • • •
SYMBOLIC KEY Clause
ACTUAL KEY Clause
RECORD KEY Clause
TRACK-AREA Cl~use
FILE-LIMIT Clause

I-O-Control Paragraph
SAME Clause

. . . .

.

.
.

23

25
25
25
26
26
26
26
27
27
27
27
28
28
29
29
29
29

RERUN Clause •
APPLY Clause

DATA DIVISION
Organization • •
Data Description

Level Indicators
Data-Names • • • • • •

Qualification of Data-Names
Literals • • • • •

Non-Numeric Literals •
Numeric Literals ••
Floating-Point Literals • •

Figurative Constants •
Condition-Names
Types of Data Items

Group Items • • • •
Elementary Items • •
Alphabetic Item
Alphanumeric Item
Report Item • • • •
Fixed-Point Items
Floating-Point Items

File section •
Record Formats •

Data Division Entry Formats
File Section Entries •

File Description •
Sort Description • • • • •
File Section Notes •
Clauses • • • •

Record Description Entry •
Group Item Format
Formats for Elementary Items •
REDEFINES Clause •
USAGE Clause ••
PICTURE Clause •
Alpha-form Option
An-form Option • •
Numeric-form Option
Report-form Option •
Fp-Form Option • ·
Additional Notes on the PICTURE
Clause •
BLANK Clause • •
VALUE Clause • •
OCCURS Clause

.- 29
• 30

• 33
33

• 34
34
34
35

• 35
35
35

• 35
• 36

37
• 37

37
• 37

38
• 38

38
• 38

39
• 40

40
• 41

41
• 41

41
• 41

42
45
45

• 45
47
49
49

• 50
50

• 50
• 50

52

53
53

• 53
54

Subscripting • •
Subscripting A Qualified
JUSTIFIED RIGHT Clause •

• 55
Data-Name • 55

Working-Storage section
Linkage Section

PROCEDURE DIVISION •
Syntax ••

Statements • • • •
compiler-Directing Statement •
Imperative Statement •••••
conditional Statement

• 56
57

• 57

59
• 59
• 59
• 59

59
• 59

sentences • • • • 60
Paragraphs • • 60
Sections • • 60
IF .Statement • • • • • • • • • • • • • 60
Evaluation of Conditional Statements • 60
Nested IF Statements • • • 61
Test-Conditions 62

Relation Test • • . • 6 2
Sign Test • • • • 64
Class Test • • • • • 64
condition-Name Test • • • • 66
overflow Test 66

compound conditions 66
Implied Subjects and
Operators • • • • • • 67
Arithmetic Expressions 67
compiler~Directing Declarative
Sections • • • 68

USE Sentence • • • • • • • 68
COBOL verbs • • • • 69
Input/Output Statements • • o • • 69

OPEN Statement • 69
READ Statement • • • • • 71
WRITE Statement • 72
REWRITE Statement • • 74
CLOSE Statement • • • • • ~ 75
DISPLAY Statement • • 77
ACCEPT Statement • • • • • • • 78

Data Manipulation statements • 79
MOVE Statement • • • • • 79
EXAMINE Statement 81
TRANSFORM Statement 83

Arithmetic Statements • • • • 85
GIVING Option • • • • 8 5
ROUNDED Option • • • • • 85
SIZE ERROR Option 86
COMPUTE Statement • 86
ADD Statement • • • • • • • • 87
SUBTRACT Statement • 88
MULTIPLY Statement • • • • • 88
DIVIDE Statement • • 88

Procedure Branching StatemP~ts • • 89
GO TO statement • • • • 89
ALTER Statement • • 89
PERFORM Statement 90
STOP Statement • 93

compiler-Directing statements • • • • 93
ENTER Statement • • • • 93
EXIT Statement • 94
NOTE Statement • • • 95

REPORT WRITER FEATURE
Introduction • • • • • • • •
Data Division Considerations

File Section • • •
REPORT Clause

Report Section • •
CODE Clause
CONTROL Clause •
PAGE LIMIT Clause
Report Group Description Entry •
TYPE Clause • • • •
LINE Clause • • • •
NEXT GROUP Clause • • • •
COLUMN Clause • • • •

97
97
98
98
98
98
99

• • 99
•• 100
• • 101
•• 101
•• 102
•• 103
•• 103

GROUP INDICATE Clause .103
SOURCE Clause • • • • • • • • .104
SUM Clause • • • • • • • • • • • 10 4

PAGE-COUNTER and LINE-COUNTER .104
Procedure Division Considerations .105

INITIATE Statement • • • •••• 105
GENERATE Statement. • • • • • .105
TERMINATE Statement • • • • • .105
USE BEFORE REPORTING Sentence .106

sample Report Writer Program and output 107
Key Relating Report to Report
Writer Source Program ••••• 117

SORT FEATURE • • • • • • • • •
Elements of the Sort Feature

Sort Work Files • • • • •
Environment Division Statements

SELECT Entry • • • • • • • •
Data Division Statements ••••••

Sort Description Entry • •
Record Description Entry •
File Description Entry • •

Procedure Division Statements
SORT Statement • • • • • • • •
The Input Procedure • • • • •
RELEASE Statement • • • •
The output Procedure •
RETURN Statement • • • • • • •
Control of Input/Output Procedures

Control Flow • • • • • • • • • • • •
Examples of a SORT Statement •
Sample Program Using the Sort
Feature • • • • • • • • • • •

SOURCE PROGRAM LIBRARY FACILITY
COPY Clause • • • • •
INCLUDE Statement

Extended Source Program
Library Facility •••••

STERLING CURRENCY FEATURE AND
INTERNATIONAL CONSIDERATIONS •
Sterling Currency Feature

.119

.119

.119

.119

.119
• 120
.120
.120
.121
.121
.121
.123
.123
.124
.124
.124
.125
.125

.127

.129

.129

.130

.130

.131

.131

.131

.132

.132

Sterling Non-Report • • • •
Sterling Sign Representation •

sterling Report • • • • • • • •
Procedure Division Considerations

International Consider~tions •
•• 134

.134

COBOL DEBUGGING LANGUAGE •
TRACE • • • • • • •
EXHIBIT • • • • • • • • • • •
ON (Count-Conditional Statement) •

Compile-Time Debugging Packet • • • •

APPENDIX A: SYSTEM/360 OPERATING
SYSTEM COBOL WORD LIST

APPENDIX B: SLACK BYTES
Intra-Record Slack Bytes •
Inter-Record Slack Bytes • • • • •
Sununary of Data Division Requirements

.135

.135

.135

.136

.136

.139

.141

.141

.142

.142

APPENDIX C: INTERMEDIATE RESULTS • .145
Intermediate Results--E compiler ••• 145

Page of GC28-6516-8, Revised 1/15/72, by TNL: GN28-0465

Intermediate Results--F Compiler ••• 145
Compiler Treatment of Intermediate
Results •••••••••••••• 146

.PPENDIX D: EXAMPLES OF COBOL PROGRAMS .149

APPENDIX E: COBOL F ONLY FEATURES AND
EXTENSIONS • • • • • • • • ••••• 151

Cobol F Only Features .151
Cobol Extensions • • • • • • • • • 151

INDEX •• 153

ILLUSTRATIONS

FIGURES

Figure 1. Subdivisions of a Weekly
Time-Card Record • • • • • • • • • • 34
Figure 2. Example of Data Levels • • • 35
Figure 3. Condition-Name Example • • • 37
Figure 4. Internal Representation of
Numeric Items • • • • • • • • • • • 39
Figure 5. Relation Between Labels
and Device Assignment 42
Figure 6. Storage Layout for
Subscripting Example • 56
Figure 7. Evaluation of IF or ON
Conditional Statement • • • • • • • 61
Figure 8. Evaluation of Conditional
Statement other than IF or ON. • • • 61
Figure 9. conditional Statements
with Nested IF Statements • • • • • 62
Figure 10. Logical Flow of
Conditional Statement with Nested IF
Statements • • • • • • • • • • • • • 63
Figure 11. Data Movement Effected by
MOVE CORRESPONDING Statement • • • 81
Figure 12. Logical Flow of Option 4
PERFORM statement Varying One Data-Name 92

TABLES

Table 1. System/360 Operating System
COBOL File-Processing Techniques • •
Table 2. Permissible Data
Organization Clauses and Statements
Table 3. Values for Calculating
Record Length • • • • • • • • •

16

22

49

53
65

• 66
67
67

Table 4. Editing Applications of the
PICTURE Clause • • • • • • • • • • •
Table 5. Permissible Comparisons •
Table 6. Valid Forms of Class Test •
Table 7. Truth Table •••••••
Table 8. Formation of Symbol Pairs
Table 9. Error-Processing Sununary
Table io. Volume Positioning for
Intermediate Reels • • • •

• • 70

76
Table 11. Restrictions on Use of
Input/Output Statements • • • • • • • • 79
Table 12. Examples of Data Movement • • 80

Figure 13. Logical Flow of Option 4
PERFORM Statement Varying Two
Data-Names • • • • • • • • • • • • • • • 92
Figure 14. Logical Flow of Option 4
PERFORM Statement Varying Two
Data-Names ••••••••••••••• 92
Figure 15. Sample Portions of a
Report Produced by Report Writer
Feature • • • • • • • • • • • • •••• 96
Figure 16. COBOL Program with Report
Writer Feature ••••••••••••• 108
Figure 17. Report Produced by Report
Writer Feature • • • • • • •••• 112
Figure 18. Flow of Data Through a
Sorting Operation • • • • • • • • .126
Figure 19. COBOL Program Using sort
Feature •••••••••••••••• 127
Figure 20. Format of Sterling Report
PICTURE Clause • • • • • • • • .133
Figure 21. Example of a Calling
Program • • • • • • • • • • • • .149
Figure 22. Example of a Called
Program • • • • • • • • • • • • • .150

Table 13. Permissible Moves • • • • • • 82
Table 14. Examples of Data Examination 83
Table 15. Combinations of the FROM
and TO Options of the TRANSFORM
Statement • • • • • • • 84
Table 16. Examples of Data
Transformation • • • • • 85
Table 17. Rounding or Truncation of
calculations • • • • • • • • • • 86
Table 18. Restrictions for
Procedure-Branching Statements • 93
Table 19. Collating Sequence for
Specific Data Items • • • • .121
Table 20. Sterling Currency Editing
Applications •••••••••••••• 134
Table 21. Calculating Intermediate
Results Using the E Compiler. .146
Table 22. Compiler Action on
Intermediate ~esult • • • • • .147

This chapter contains those facts that
are basic to writing IBM System/360 COBOL
programs. It includes a listing of the
characters that are recognized by the COBOL
E and COBOL F compilers. Also included are
such special topics as punctuation, types
of names, qualification of names, and the
rules for writing COBOL source programs on
a program sheet. The final part of this
chapter contains an explanation of the sys
tem of notation used throughout the entire
publication.

The complete COBOL character set con
sists of the following 51 characters:

Digits 0 through 9
Letters A through z
Special char.acters:
+ Plus sign

Minus sign or hyphen
Blank or space

* Asterisk
/ Slash
= Equal sign
> Inequality s~gn <greater than)
< Inequality sign (less than)
$· Dollar sign

Conuna
Period or decimal point

., Quotation mark
< Left parenthesis
> Right parenthesis

semicolon

Of the previous set, the following
characters are used for words:

0 through 9
A through z
- (hyphen)

The following characters are used for
punctuation:

(
)

I

Quotation mark
Left parenthesis
Right parenthesis
Conuna
Period
Semicolon

BA.SIC FACTS

The following characters are used in
arithmetic expressions:

+ Addition
Subtraction

* Multiplication
/ Division
** Exponentiation

The following characters are used in
relational tests:

> Greater than
< Less than

Equal to

All of the preceding characters are con
tained in the COBOL character set. In
addition, the progranuner may use as charac
ters in non-numeric literals any characters
<except the quotation mark> included in the
IBM Extended Binary Coded Decimal Inter
change Code (EBCDIC); however, such charac
ters may be unacceptable to COBOL for other
computers.

PUNCTUATION

The following general rules of punctua
tion apply in writing COBOL source
programs:

1.. .When any punctuation mark is indicated
in a format in this publication, it is
required.

2. A period, semicolon, or comma, when
used, must not be preceded by a space,
but must be followed by a space.

3. A left parenthesis must not be fol
lowed inunediately by a space; a right
parenthesis must not be preceded imme
diately by a space.

4. At least one space must appear between
two successive words and/or parenthet
ical expressions and/or literals. Two
or more successive spaces are treated
as a single space, except in non
numeric literals.

Basic Facts 9

5. Except :in the case of a unary opera
tor, an arithmetic operator or an
equal sign must always be preceded by
a space and followed by another space.
A unary operator is a plus (+) or a
minus <-> sign that is prefixed to a
data-name, an arithmetic expression,
or a literal. A unary operator may be
preceded by a left parenthesis.

6. When the period, or comma, or arith
metic operator characters are used in
the PICTURE clause as editing charac
ters, they are governed by rules for
report items only.

7. A comma may be used as a separator
between successive operands of a
statement.

a. A comma or a semicolon may be used to
separate a series of clauses.

9. A semicolon, a comma, or the word THEN
may be used to separate a series of
statements.

WORD FORMATION

A word consists of not more than 30
characters chosen from the following set of
37 characters: the letters A through z,
the digits 0 through 9 1 and the hyphen <->,
which can appear anywhere in the word
except as the firs·t or last character.

A word is ended by a space, or by proper
punctuation. A word may contain more than
one embedded hyphen; consecutive embedded
hyphens are also permitted. All words in
COBOL are either reserved words, which have
preassigned meanings in COBOL, or
programmer-supplied ~· Each type of
name is discussed in the section of this
publication in which it is first mentioned.

TYPES OF NAM~.§

several types of names are used in writ
ing a COBOL program. Each must conf orrn to
specific requirements.

DATA-NAMES

A data-name must cnntain at least one
alphabetic character and must be formed
according to the rules for word formation.
It is used to identify a data item in the
Data Division.

10

EXTERNAL-NAMES

An external-name consists of single quo
tation marks enclosing no more than eight
alphabetic and numeric characters, the
first of which must be alphabetic.

PROCEDURE-NAMES

Procedure-names follow the rules for
word· formation.

Procedure-names may be composed solely
of numeric characters. When so written,
procedure-names are equivalent only if they
are composed of the same number of digits
having an equal numeric value. For
example, 00123 and 123, when used as
procedure-names, are not equivalent.

PARAGRAPH-NAMES

Paragraph-names are procedure-names and
therefore follow the rules for formation of
procedure-names.

OTHER NAMES

The following are formed according to
the rules for data-names:

• FILE-NAMES

• SORT-FILE-DESCRIPTION-NAMES

• REPORT-NAMES

• CONDITION-NAMES

• OVERFLOW-NAMES

QUALIFICATION OF NAMES

Every name used in a COBOL source pro
gram must be unique within the source pro
gram in either of two ways:

1. Because no other name has the identi
cal spelling.

2. Because the name exists w1thin a
hierarchy of names, so that the name
can be made unique by mentioning one
or more of the higher lev·~ls of the
hierarchy. The higher le;~els are
called gualif iers when th.ls method of
ensuring uniqueness is us•ed. The
process is called gualif ication.

Page Of GC28-6516-8, Revised 12/30/70, by TNL: GN28-0427

The following rules apply to the quali
fication of names:

1. The word OF or IN must precede each
qualifying name, and the names must
appear in ascending order of
hierarchy.

2. A qualifier must be of a higher level
and within the same hierarchy as the
name it is qualifying.

3. The same name must not appear at two
levels in a hierarchy in such a manner
that it would appear to qualify
itself.

4. The highest level qualifier must be
unique for all levels higher than the
level number of the data name being
qualified. Each qualifying name must
be unique at its own level within the
hierarchy of the immediately higher
qualifier.

s. Qualification when not needed is
permitted.

6. Qualifiers must not be subscripted,
although the entire qualified name may
be subscripted.

7. For COBOL E, the total number of
characters in a series of qualifiers
together with the qualified name may
not exceed 300.

8. No matter what qualification is avail
able, a procedure-name must not be the
same as any data-name.

9. A file-name is the highest level qual
ifier that can be used to qualify a
data-name.

10. A section-name is the highest level
qualifier (and the only qualifier)
that can be used to qualify a
procedure-name.

COBOL PROGRAM SHEET

The purpose of the program sheet is to
provide a standard way of writing COBOL
source programs.

The COBOL program sheet, despite its
necessary restrictions, is relatively free
form. The programmer should note, however,
that the rules for using it are precise and
must be followed exactly. These rules take

precedence over any other rules with
respect to spacing.

SEQUENCE NUMBER: (COLUMNS 1-6)

The sequence number must consist only of
digits; letters and special characters must
not be used. The sequence number has no
effect on the source program and need not
be written, unless the user wishes to refer
to a card with an INSERT or DELETE card
(see "Extended source Program Library Fa
cility"). If the programmer supplies
sequence numbers in each program card, the
compiler will check the source program
cards and will indicate any errors in their
sequence. If these columns are blank, no
sequence error will be indicated.
r-·-----,
IF ONLY!
L ______ J Sequence checking may be sup-
pressed via an EXEC statement parameter.
(See the publication IBM System/360 Operat
ing System: COBOL (F) PrograID!!!er'§_Guid~,
Form GC28-6380.)

CONTINUATION INDICATOR: (COLUMN 7)

A hyphen placed in this column indicates
the continuation of non-numeric literals
(see "Continuation of Non-numeric
Literals">.

SOURCE PROGRAM STATEMENTS: (COLUMNS 8-72)

These columns are used for writing the
COBOL source program. conceptually, one
blank is assumed to be appended after
column 72 on every line of a program sheet,
except where a non-numeric literal spans
more than one line. Hence, if the last
character of a word is in column 72, a
blank is assumed to be appended to it, thus
terminating the word.

PROGRAM IDENTIFICATION CODE:
73-80)

(COLUMNS

These columns can be used to identify
the program. Any character from the COBOL
character set may be used, including the
blank. The program identification code has
no effect on the object program or the
compiler.

Basic Facts 11

MARGIN RESTRICTIONS

There are two margins on the COBOL pro
gram sheet: Margin A (columns 8-11), and
Margin B (columns 12-72).

The names of divisions must begin in
Margin A. The division-name must be fol
lowed by a space, the word DIVISION, and a
period. This entry must appear on a line
by itself.

A section-name must begin in Margin A,
followed by a space, the word SECTION, and
then a period. This entry must appear on a
line by itself, except in the DECLARATIVES
portion of the Procedure Division, or when
an INCLUDE statement follows it. A
paragraph-name must also begin in Margin A,
and must be followed inunediately by a
period and a space. Statements may start
on the same line in Margin B. Succeeding
lines of the paragraph must be written in
Margin B.

The level indicators <FD, SD, and RD) of
the File, Sort, and Report Description
entries in the Data Division, must begin in
Margin A. Names and clauses within these
entries must not begin before column 12.
The level numbers (01-49, 77, 88) of data
description entries may begin in Margin A;
however, the rest of the entry (data-names
and/or clauses) must not begin before
column 12.

CONTINUATION OF NON-NUMERIC LITERALS

When a non-numeric literal occupies more
than one line of a coding sheet, the fol
lowing rules apply:

1. A hyphen is placed in column 7 of the
continuation line.

2. A quotation mark is placed in Margin B
preceding the continuation of the
literal.

3. All spaces at the end of the continued
line and any spaces following the quo
tation mark in the continuation line
and preceding the final quotation mark
of the literal are considered part of
the literal.

FORMAT NOTATION

Throughout this publication, basic for
mats are prescribed for various elements of

12

COBOL. These generalized descriptions are
intended to guide the programmer in writing
his own statements. They are presented in
a uniform system of notation, explained in
the following paragraphs. Although it is
not part of COBOL, this notation is useful
in describing COBOL.

1. All words printed entirely in capital
letters are reserved words. These are
words that have preassigned meanings
in COBOL. In all formats, words in
capital letters represent an actual
occurrence of those words.

2. All underlined reserved words are
required unless the portion of the
format containing them is itself
optional. These are ~words. If
any such word is missing or is incor
rectly spelled, it is considered an
error in the program. Reserved words
not underlined may be included or
omitted at the option of the program
mer. These words are used only for
the sake of readability. These words
are called optional words.

3. All punctuation and special characters
(except those symbols cited in the
following paragraphs) represent the
actual occurrence of those characters.
Punctuation is essential where it is
shown. Additional punctuation can be
inserted, according to the rules for
punctuation specified in this
publication.

4. Words printed in lower-case letters in
formats represent inf orrnation to be
supplied by the programmer. All
lower-case words that appear in a for
mat are defined in the accompanying
text.

5. In order to facilitate references to
them in text, some lower-case words
are followed by a hyphen and a digit
or letter. This modification does not
change the syntactical definition of
the word.

6. Certain hyphenated words in the for
mats consist of capitalized portions
followed by lower-case portions.
These designate clauses or statements
that are described in other formats,
in appropriate sections of the text.

7. Square brackets ([]) are used to in
dicate that the enclosed item may be
used or omitted, depending on the
requirements of the particular pro
gram. When two or more items are
stacked within brackets, one or none
of them may occur.

8. Braces ({ }) enclosing vertically
stacked items indicate that one of the
enclosed items is obligatory.

9. The ellipsis < •••) indicates that the
immediately ~receding unit may occur
once, or any' number of times in
succession. A unit means either a
single lower-case-word, or a group of
lower-case words and one or more

reserved words enclosed in brackets or
braces. If a term is enclosed in
brackets or braces, the entire unit of
which it is a part must be repeated
when repetition is specified.

10. Comments, restrictions, and clarif ica
tions on the use and meaning of every
f orrnat are contained in the appropri
ate portions of the text.

Basic Facts 13

Form GC28-6516-8, page revised by TNL GN28-0266, 6/1/70

System/360 COBOL supports various data
organizations, record formats, and access
methods. The facilities available to the
COBOL programmer are specified in this
chapter.

In this publication, the term file can
be considered equivalent to the term data
~ used in other IBM System/360 Operating
system publications.

A file is described to the operating
system by a data control block. The
sources of information for the construction
of this data control block are the Environ
ment Division and FD entry of the COBOL
program, the Data Set Label, and the DD
statement. A file is considered to be
created when it is opened as an output
file.

The DD statement is associated with the
System/360 Operating System control pro
gram. A number of file characteristics and
file-processing operations are controlled
by entries in the DD statement. In some
cases, the DD statement is used only when
the COBOL user does not specify his partic
ular choice among such characteristics and
operations.

Certain characteristics of files (for
example, the NTM parameter in files with
indexed organization) cannot be expressed
in the COBOL language, and may be specified
on the DD card. The following functions
can only be expressed by the DD card:

1. If it is desired that a file be cata
logued, this may be specified by means
of the DD card.

2. The amount of space allocated for a
direct-access output file must be
specified on the DD card.

Additional functions of the DD statement
are cited in the descriptions of statements
and clauses throughout this publication.

Further information concerning the DD
statement, the Data Set Label, and data
sets is found in the following
publications:

IBM System/360 Operating System: Super
visor and Data Management Services, Form
GC28-6646.

IBM System/360 Operating System: Job
Control Language Reference, Form
GC28-6704.

COBOL INPUT/OUTPUT PROCESSING CAPABILITIES

DATA ORGANIZATION

System/360 COBOL provides four types of
data organization: standard sequential,
indexed, relative, and direct.

The number and type of control fields
used to locate logical records in a file
differ, depending on which type of data
organization is used. Consequently, each
type of data organization is incompatible
with the others. For example, a file
created with standard sequential organiza
tion cannot also be read as a file with
indexed organization. Organization of an
input file is the same as the organization
of the file when it was created.

Standard Sequential Data Organization

When standard sequential data organiza
tion is used, the logical records in a file
are positioned sequentially in the order in
which they were created (or in sequentially
reversed order if the REVERSED option of
the OPEN statement is written). This type
of data organization is normally used for
tape or unit-record files, but it is
device-independent. Standard sequential
files may be assigned to utility, direct
access, or unit-record devices.

Standard sequential data organization is
assumed when the ORGANIZATION clause is not
writ.ten in the Environment Division.

Indexed Data Orga~ization

When indexed data organization is used,
the position of each logical record in a
file is determined by indexes maintained by
the operating system and created with the
file. The indexes are based on record keys
provided by the COBOL programmer. Indexed
files must be assigned to direct-access
devices.

Indexed data organization is specified
by writing the clause ORGANIZATION IS IN
DEXED in the Environment Division.

COBOL Input/Output Processing Capabilities 15

Direct data organization is charac
terized by use of the relative track
addressing scheme. When this addressing
scheme is used, the position of each logi
cal record in a file is determined by keys
supplied by the programmer. The ~£i~~!-~~y
specifies the track <relative to the first
track for a file) on which space to place a
record is first sought, or at which the
search for a record is to begin. A ~Y~Q2!=
i~ is used to identify a record on a
track.

It should be noted that the physical
tracks allocated to a file are not neces
sarily contiguous. Records are positioned
on each track in the order in which they
are written.

Files with direct data organization must
be assigned to direct-access devices.

Direct data organization is specified by
writing the clause ORGANIZATION IS DIRECT
in the Environment Division.

Relative data organization is charac
terized by use of the relative record
addressing scheme~ When this addressing
scheme is used, the position of the logical
records in a file is determined relative to
the first record of the file starting with
the initial value of zero. Symbolic keys
are used to identify the records. The
records are positioned on each track in the
order in which they are written.

Files with relative data organization
must be assigned to direct-access devices.

Relative data organization is specified
by writing the clause ORGANIZATION IS RELA
TIVE in the Environment Division.

ACCESS METHODS

Two access methods are provided by
System/360 COBOL: sequential access and
random access.

£~guential~ccess is the method of read
ing and writing records of a file in a
serial manner; the order of references is
implicitly determined by the position of a
record in the file.

Random access is the method of reading
and-writing-records of a file in a

16

programmer-specified manner; the control of
successive references to the files is
expressed by specifically defined keys sup
plied by the user.

FILE-PROCESSING TECHNIQUES

Each combination of data organization
and access method specified in the COBOL
language is defined as a fi1~=Ef2£~~~i~g
technique. Of eight possible combinations,
only seven are permitted. System/360
Operating System implements each file
processing technique with a specific Data
Management access method.

The Data Management techniques are
henceforth ref erred to as QSAM, QISAM,
BISAM BSAM, and BDAM. The manner in which
these techniques relate to COBOL program
ming is discussed in the following text.

Table 1 summarizes the relation between
COBOL access and data organization, Data
Management techniques, and file-processing
techniques.

Table 1. System/360 Operating System
COBOL File-Processing
Techniques.

r---------------------------1
I Access I

r-------------t------------,--------------~
!Organization I Sequential I Random I
t-------------+------------+--------------~
I Standard I QSAM I I
I Sequential I I I
t-------------+------------+--------------~
!Indexed I QISAM I BISAM I
~-------------t------------t--------------~
!Direct I BSAM<l) I BDAM(l) I
t-------------+------------+--------------~
!Relative I BSAM(2) I BDAM<2> I
~-------------~------------~--------------~
I (l)With relative-track addressing scheme I
1<2>With relative-record addressing scheme!
L---J

Standar~~uential File-Processing
Technigue

Only one file-processing tec~nique is
associated with standard sequential organi
zation, the Queued Sequential Access
Me:!:;ho~, QSAM.

QSAM supports three record formats:
format U records; format F records, blocked

or unblocked; and format V records, blocked
or unblocked. Record formats are explained
in the chapter "Data Division."

QSAM is assumed when the ORGANIZATION
clause is omitted and the clause ACCESS IS
RANDOM is not written. This file
processing technique is device-independent
and can be used in programs executed with
input/output devices assigned to direct
access, unit-record, or utility units,
except when certain options are contained
in the program. These options are: the
I-0 and REVERSED options of the OPEN state
ment, and the FORM-OVERFLOW option of the
APPLY clause. When any of these options is
written, the program is not device
independent and is valid only for those
devices to which these options are
applicable.

Use of the RESERVE clause in a SELECT
statement permits definition of more than
one buffer area, allowing overlap of input/
output operations with the processing of
data.

When QSAM is used, the READ, WRITE, and
REWRITE statements provide the following
functions for the following types of file:

output Files: output records are blocked
as required, and data is written sequen
tially on an output device.

Input Files: One logical record at a time
is made available, in the order in which
the records were written. QSAM can be used
to process input files created using QSAM,
or input files created using BSAM, whose
organization is standard sequential.

I-0 Files: For direct-access devices, a
logical record can be updated in place;
that is, the record is read, updated, and
rewritten from the same area. Alteration
of record length, insertion of new records,
or deletion of existing records is not
permitted.

Specification of checkpoints and user
error routines is permitted when using this
access method.

The ACTUAL KEY, SYMBOLIC KEY, and RECORD
KEY clauses cannot be associated with files
using QSAM.

Indexed File-Processing Technigues

Two file-processing techniques are pos
sible with files whose organization is
indexed:

1. The Queued Indexed Sequential Access
Method, QISAM.

2. !h~;!2asic Indexed_2~guential Access
Me!;hod, ~ISAM.

Both of these techniques support records
in format F, blocked and unblocked.

When a file is created using an indexed
file-processing technique, the RECORD KEY
clause must be written in the File-Control
paragraph of the Environment Division.
When indexed file-processing techniques are
used, the record is identified to the sys
tem by means of a ~ord k~. The record
key for each record must be unique. Record
keys must be ordered by the user when
creating the file in ascending order from
one record to the next. The record key for
a data record is the contents of the field
named in the RECORD KEY clause. The record
key field should not include the first byte
of the data record in the following cases:

'.l. If the records of the file are
unblocked, since the control program
requires special handling for the file
when records are unblocked.

2. If the file contains records that are
to be deleted.

3. If any record key in the file contains
the figurative constant HIGH-VALUE in
its first character position.

The use of indexed file-processing tech
niques is restricted to direct-access
devices.

QISAM:

QISAM is the file-processing technique
specified when the clause ORGANIZATION IS
INDEXED is written, and the ACCESS clause
is omitted or the clause ACCESS IS SEQUEN
TIAL is written. Although conceptually
similar to QSAM, QISAM differs from it in
two ways:

1. In QISAM, records must be presented in
ascending order according to a user
specif ied key (the record key>.

2. In QISAM, access to records is by
means of an indexed structure by which
the operating system associates· each
record key with a physical address.

When QISAM is used for reading or
rewriting the records of a file, the record
key is always read and rewritten in the
same relative position it was assigned when
the file was created. 1or this reason, the
field named in the R~CORD KEY clause must
appear in the data record description in

COBOL Input/Output Processing Capabilities 17

the same relative position as it had when
the file was created.

Writing of the RESERVE clause in a
SELECT statement permits definition of more
than one buff er area, allowing overlap of
processing operations and input/output
operations.

When QISAM is used., the READ, WRITE, and
REWRITE statements provide the following
functions for the following types of files:

Output Files: Indexed sequential files are
created. output records are blocked as
required, and data is written sequentially.
Room for insertion of new records at a
future time may be reserved by constructing
a dummy record whose first character is the
figurative constant HIGH-VALUE. When HIGH
VALUE is moved into the first character
position in a record, it marks the record
for deletion. The contents of the record
keys for such records must be in the proper
sequence.

Input Files: Make available one logical
record at a time, in the order in which the
records were written. Files must have been
created using QISAM. Records containing
the figurative constant HIGH-VALUE as a
first character are not made available.

I-0 Files: Updating-in-place or deletion
of a logical record is permitted. A logi
cal rec.ord is updated-in-place by reading,
updating, and rewriting it from the same
area. Alteration of record length or in
sertion of new records is not permitted. A
logical record is marked for deletion when
the figurative constant HIGH-VALUE is in
the first character position of the record.
Records in the file that contain this
delete code are not made available.

Specification of user error routines by
use of an error-processing declarative sec
tion in the Procedure Division is permitted
when using QISAM.

BISAM:

BISAM is specified when the clauses
ORGANIZATION IS INDEXED and ACCESS IS RAN
DOM are written. A file may be opened as
an input file· or an I-0 file using this
technique. Only files created by use of
QISAM can be referi::·ed to by use of BISAM.

Both symbolic keys and record keys are
required when using BISAM. The symbolic
key is the field named in the SYMBOLIC KEY
clause of the File-Control paragraph.

When a record is read or rewritten using
BISAM, the contents of the field named in
the SYMBOLIC KEY clause are used to locate

18

the record in the file with matching con
tents in the RECORD KEY field.

Since a record key is used to identify a
record to the system, the record keys asso
ciated with the logical records of the file
may be thought of as a table of arguments.
The symbolic key may be considered to be a
search argument that is compared with the
entries in the table.

When a new record is added to an exist
ing file, the contents of the field named
in the SYMBOLIC KEY clause are used to lo
cate the two records in the file between
which the new record is to be inserted.
The records sought are those whose respec
tive RECORD KEY field contents are less
than or greater than the value in the SYM
BOLIC KEY field.

The READ, WRITE, and REWRITE statements
with BISAM provide the following functions
with the following types of files:

Input Files: One logical record at a time
is made available, for files created in
QISAM. The records are retrieved randomly
on the basis of the symbolic key value.
Records containing the figurative constant
HIGH-VALUE as a first character are made
available in a BISAM READ unless they have
been displaced from their prime track dur
ing a previous update.

I-0 Files: Records can be updated or
deleted in the same manner as specified for
QISAM files with two exceptions: When a
BISAM file is opened as I-0 and a REWRITE
statement for the file-name is issued any
where in the program, a REWRITE statement
must be given after every READ statement,
and before any other input/output state
ment, for the same file-name; also, for
COBOL E only, when a BISAM file is opened
as I-0 anywhere in the program, a REWRITE
statement m~st be given after every READ
statement and before any other I-0 state
ment on this file. Therefore, when this
READ/REWRITE combination is required, the
file cannot be opened as input within the
same program. Use of the WRITE statement
causes a direct insertion of the logical
record. When a record is added, both the
record key and the symbolic key must have
the same value; this value must be unique
in the file.

Specification of user error routines is
permitted using this access method.

New records may be added to a BISAM I-0
file. However, each new record is inserted
so that the system maintains the ascending
order according to the record key. Records
that are displaced because of the insertion
of the new record will be placed in an
overflow area, if one exists. If the dis-

placed record has been marked for deletion,
it will not be placed into the overflow
area. If a file is later processed sequen
tially <using QISAM), the order in which
the records are processed is not affected
by their being in an overflow area, since
the records are made available according to
ascending record keys. The time required
to retrieve a record in the overflow area
is greater than that required to retrieve
other records. Therefore, when many over
flow records are developed, the programmer
should organize the file by creating a new
version, using the existing file as input.

Direct File-Processing Techniques

Two techniques are used with direct
organization:

1. The Basic sequential Access Method,
BSAM, with relative track addressing.

2. The Basic Direct Access MethodL_BDAM,
with relative track addressing.

BSAM is used to create files with direct
organization; BDAM is used to refer to
files with direct organization. A file
that is created with direct organization
must be referred to only with direct
organization. CA BSAM file with standard
sequential organization cannot be created
using COBOL.)

In COBOL, both BSAM and BDAM are appli
cable only to direct-access devices.
(Although within Data Management BSAM may
be used to create files with standard
sequential organization when it is used
with unit-record or magnetic-tape equip
ment., COBOL uses only QSAM for this
function.>

The direct file-processing techniques
support records in three formats: format
u, format F unblocked, and format V
unblocked.

When direct organization is specified
for a file, the contents of the field named
in the ACTUAL KEY clause mu~t be the rela
tive position of the track with respect to
the first track assigned to the file, and
the contents of the field named in the SYM
BOLIC KEY clause must be the· key that makes
the record unique on the track. The same
symbolic key may be specified for more than
one record, provided that the records are
not on the same track. If two or more such
records are on the same track, only the
first record is accessed. Both the actual
key and the symbolic key must be defined
outside the file with which they are
associated.

When direct organization is used with
random access in reading or rewriting the
records of a file, the actual key is used
to indicate the track on which the search
is begun for the record whose key matches
that specified in the SYMBOLIC KEY field.

When adding a new record to an already
existing file, the actual key indicates the
first track on which space will be sought
for the record, and the symbolic key is
used to distinguish the added record from
all other records on the track on which
space is found. If the search for space is
to extend beyond a single track, the sym
bolic key must be distinct from the keys of
all the records on all the tracks on which
space is sought.

When the file is referred to by sequen
tial access, the advance from one logical
record to the next is implicit. The key
associated with the logical record is
placed in the field named in the SYMBOLIC
KEY clause. Again, this field must be
defined outside the file with which it is
associated.

BSAM: (WITH RELATIVE TRACK ADDRESSING)

BSAM with relative track addressing is
assumed when ORGANIZATION IS DIRECT is
written, and either the ACCESS clause is
omitted or ACCESS IS SEQUENTIAL is written.

When the READ and WRITE statements are
used in conjunction with BSAM, the follow
ing functions are provided for the types of
files listed below:

o~tput Files: Data is written sequential
ly; a user-specified value (symbolic key>
is associated with each of the logical
records written. Only unblocked records in
formats F, u, and V are supported. When
the user wishes to switch tracks, he must
add a number equal to the number of tracks
to be advanced to the actual key. COBOL
will add dummy (format F) or capacity (for
mat v or U) records to complete the pre
vious track or tracks. An actual key value
of zero corresponds to the first track
assigned to the file. If the initial value
is not zero, COBOL will complete the inter
vening tracks with dummy or capacity reco
rds and write the first record on the track
indicated by the actual key. When no more
space is available on the specified track,
the compiler generates coding to advance to
the next track by adding a one to the con
tents of the field named in the ACTUAL KEY
clause. Data Management will automatically
replace the dummy or capacity records when
additions are made to the file. At the
time that the file is closed, dummy or
capacity records are added to the current
track and all following tracks as deter
mined by the FILE-LIMIT clause.

COBOL Input/Output Processing Capabilities 19

Files created with BSAM may not be
ref erred to by use of QSAM.

Input Files: One logical record is made
available for processing in the order in
which records were written for files
created in BSAM. Dummy records, if pres
ent, are also made available. When a file
is created using direct organization, it
must be read using direct organization.
The key associated with the logical record
is placed in the symbolic key field by the
compiler.

Specification of user error routines is
permitted when using BSAM by writing an
error-processing declarative section in the
Procedure Division.

BDAM: (WITH RELATIVE TRACK ADDRESSING)

BDAM with the relative track addressing
scheme is assumed when both ORGANIZATION IS
DIRECT and ACCESS IS RANDOM are written.

Searching for the requested record can
be limited to a specific number of tracks
as specified by t.he APPLY RESTRICTED SEARCH·
clause. If the clause is omitted, the
entire file is searched f orwar~, starting
with the track specified in the actual key.

The READ, WRITE, and REWRITE statements
used in conjunction with BDAM provide the
following functions:

Input Files: One logical record at a time
is made available for files created in
BSAM. The records are retrieved randomly
on the basis of the symbolic and actual
keys.

I-0 Files: Records can be updated by read
ing,. updating, and rewriting from the same
area. Use of a WRITE statement causes the
record to be added on the track specified.
When adding a record, the symbolic key must
be unique for the track(s) specified.

Specification of user error routines by
writing an error-processing declarative
section is permitted using this access
method.

Relative File-Processing Techniques

Two techniques are used with relative
organization:

1. The Basic Sequential Access Method,
BSAM, with relative record addressing.

2. The Basic Direct Access Method, BDAM,
with relative record addressing.~~

20

BSAM is used to create files with rela
tive organization; BDAM is used to refer to
files with relative organization. A file
that is created with relative organization
must be referred to only with relative
organization.

As explained above under "Direct File
Processing Techniques," in COBOL, both BSAM
and BDAM are applicable only to direct
access devices.

When a file with relative organization
is created, the compiler assumes that when
the logical records of the file are
referred to by random access, the contents
of the field specified in the SYMBOLIC KEY
clause indicate the position of the record
relative to the beginning of the file,
starting with an initial value of zero.
The symbolic key is defined outside the
file with which it is associated. When the
file is referred to by sequential access,
no symbolic key is used, since the advance
from one logical record to the next is
implicit.

The relative file-processing techniques
support records in only one format, format
F unblocked.

BSAM: (WITH RELATIVE RECORD ADDRESSING)

BSAM with the relative record addressing
scheme is assumed when ORGANIZATION IS
RELATIVE is written, and the ACCESS clause
is omitted or ACCESS IS SEQUENTIAL is
written.

When READ and WRITE statements are used
in conjunction with BSAM, the following
functions are provided for the types of
files listed below:

Output Files: Data is written sequential
ly, associating a relative record number
with each of the logical records written.
Only unblocked records. in format F are sup·
ported in this mode. Since Data Management
requires that all tracks be full, the com
piler adds dummy records to complete the
last track of the file when it is closed.
Dummy records are identified by the pres
ence of the figurative constant HIGH-VALUE
in the first position of the record. When
the file is used as an input file, the user
must be able to recognize these dummy rec
ords. These records are assigned relative
record numbers and can never be deleted,
only replaced. In order to allow for file
expansion, the user can write dummy records
in a similar manner by means of the figura
tive constant HIGH-VALUE.

Input Files: One logical record at a time
is made available, in the order in which
records were written for files created in
BSAM. Dummy records created by the compil-

er to complete the last track are also made
available. A file created uein9 relative
organization must be read U.$in9 relati.ve
organization •.

specification of u.ser erxror routines ie
permitted w~en using BS.AM, by writing ~n
error-pX'ocessing declaX'at.ive $ection in th.e
Procedure oivieion. ·

m?_AM: Ul*tH . Blt«AT;J;X!L ycop.Q_612J2iJ;itSS.;i;NG .~

BDAM.with the rel•tive :t:"ecQrd aqdresaing
scheme is as~\;lltled when·ORG~1'lIZATION IS
RELATIVE anQ..ACCESS IS ;RANOOt-1 (l~e written,

The READ and REWRITE· statements used in
conjunction with BDAM provide the following
functions:

Input ;fiJ;es: one logical record at a time
is made available for file$ created in
BSAM. The records ar• ~etrieved randomly
on the basi.s or'Ule symbolic key, which
cont~ins the position of tne reoord rela
tive to the beginning of the file, starting
with an initial V<illUre of zero. .

I-o F!J.es: Records oan be 1'.Pd~ted by l;'ead
Ing, updating; and rewdtin9 a reoord froin
the same area. :Records m~y not be added to

the file except by replacement of dummy
records specified by the user or the
compiler.

,Error routines may be specified by the
user when this file processing method is
used.

It snould be noted that the foregoing
disouseion applies specifically to files
referred to or created in a COBOL program.
It is possible in lower level languages to
orea,te files with different addressing
sche~es, that is, files that are created
using relative track and block identifica
tion, or actual device address. In gener
al, such files may not be used by COBOL
object programs.

SwntnH'Y of file-Processing Specifications

Table 2 S'\,Utlmarizes the clause and state
ment specifications allowed for each of the
file-processing techniques. In addition,
each f ile"name m~st be specified in a
SELECT clause in the Environment Division,
and must be defined by an FD entry in the
'ile section of the Data Division.

COBOL Input/Output Processing capabilities 21

~ •Table 2. Permissible Data Organization Clauses and Statements
~

r-----------------------T----------T----------T-----------T----------------T-----------------------y----------------T-------------~----------------------------1
I File-Processing I I I I I I I I I
I Technique I Data I I Permissible I Type of I I I I I
•-----------.,-----------i~anagementlAddressinglRecord !OPEN I Type of I-0 I Required I other Required I I
IORGANIZATIONIACCESS !Technique)Scheme !Formats !Statement I Statement I Key Clauses I Clauses I Optional Clauses I
·------------+---------+----------+----------+-----------+---------------+--------------------+----------------+-----------------+----------------------------i
!Standard ISEQUENTIALIQSAM I IF,U,V IINPUT [REVERSED] I READ I Not I ASSIGN I BLOCK CONTAINS
I Sequential I (or not I I I I I AT END I permitted I LABEL RECORDS I RECORD CONTAINS
I Cor not specified) ! ! I I I I DATA RECORDS j RERUN
I specified) I I I I I I CLOSE I SAME AREA
I I I ·----------------+-----------------------i I I RESERVE
I I I !OUTPUT I WRITE I I I APPLY Coption2, 3)
I I I I I [AFTER ADVANCING] I I I REPORTS ARE*
I I I •---------------+----------------------~ i-----------------1 USE (option 1•., 2)
I I I I I-0 I READ I I ASSIGN TO I {REEL}
I I I I I AT END I I DIRECT-ACCESS I CLOSE
I I I I I REWRITE I I LABEL RECORDS I UNIT
I I I I I I I DATA RECORDS I
I I I I I I I CLOSE I I
1-----------+---------+----------+----------+----------+----------------+--------------------+---------------+-----------------+-------------------------i
INDEXED ISEQUENTIALIQISAM I IF !INPUT I READ I RECORD KEY I ASSIGN TO I BLOCK CONTAINS I

I (or not I I I I I AT END I I DIRECT-ACCESS I RECORD CONTAINS I
I specified) I I I 1----------------+~---------------i I LABEL RECORDS I SAME AREA I
I I I I I OUTPUT I WRITE I I ARE STANDARD I RESERVE I
I I I I I I [INVALID KEY] u I I DATA RECORDS I APPLY (option 3) I
I I I I 1---------------+---------------i I CLOSE I USECoption 2) I
I I I I II-o I READ I I I I
I I I I I I AT END I I I I
I I I I I I REWRITE I I I I
1----------+----------+----------+----------+---------------+-------------------+----------------i 1----------------------------i
I RANDOM I BI SAM I IF I INPUT I READ I RECORD KEY I I BLOCK CONTAINS I
I I I I I I [INVALID KEY]** I SYMBOLIC KEY I I RECORD CONTAINS I
I I I I ·---------------+----------------------i I I TRACK-AREA I
I I I I II-0 I READ I I I SAME AREA I
I I I I I I WRITE I I I APPLYCoption 3) I
I I I I I I REWRITE I I I USECoption 2) I
I I I I I I [INVALID KEY]** I I I I

1----------+--------+----------+----------+---------+----------------+-----------------------+---------------i 1----------------------------i
DIRECT I SEQUENTIAL I BSAM I Re la ti ve IF, u, V I INPUT I READ I SYMBOLIC KEY I I RECORD CONTAINS I

I (or not I !Track I I I AT END I I I RERUN I
I specified> I I I •--------------+---------------------+----------------i I USE(option 2) I
I I I I !"OUTPUT I WRITE I SYMBOLIC KEY I I FILE-LIMIT I
I I I I I f I ACTUAL KEY I I <with output files> I
I I I I I I I I I I
I I I I I I I I I CLOSE UNIT I
I I I I I I I I I I
1---------+----------+----------+-----------+----------------+---------------------+-----------~--i ·---------------------------i
I RANDOM I BDAM I Relative IF, U, V I INPUT I READ I SYMBOLIC. KEY I I RECORD CONTAINS I
I I)Track I I I (INVALID KEY]** I ACTUAL KEY I I SAME AREA I
I I I I l----------------+------------------1 I I APPLY(option 1> I
I I I I II-0 I READ I I I USE(option 2> I
I I I I I I WRITE I I I I
I I I I I I REWRITE I I I I
I I I I I I [INVALID KEY]** I I I I

1----------+---------+----------+----------+-----------+----------------+----------------------+---------------i ·-------------------------i
RELATIVE ISEQUENTIALIBSAM !Relative IF !INPUT I READ I Not I I RECORD CONTAINS I

I {or not I I Record I I I AT END I permitted I I RERUN I
!specified> I I I !----------------+--------------------~ I I SAME AREA I
I I I I !OUTPUT I WRITE I I I USECoption 2> I
I I I I I I I I I CLOSE UNIT I
I I I I I I I I I I
1----------+----------+~---------+----------+----------------+--------------------+----------------i 1----------------------------i
!RANDOM IBDAM !Relative IF !INPUT I READ I SYMBOLIC KEY I I RECORD CONTAINS I
I I I Record I I I [INVALID KEY] I I I SAME AREA I
I I I I 1--------------+----------------------i I I USE(option 2) I
I I I I I I-0 I READ I .1 I I
I I I I I I REWRITE I I I I
I I I I I ; [INVALID KEY] I I I I

L-------"----------L----------.l.----------.l.-----------i----------------.1.----------------------L-----------~----L-----------------i---------------------------J
*F ONLY

**INVALID KEY required, E ONLY

The Identification Division appears as
the first of four parts of a COBOL program.
It is used to identify a program and to
provide other pertinent information con
cerning the program. The format of the
Identification Division is:

IDENTIFICATION DIVISION.
PROGRAM-ID. 'program-name•.
[AUTHOR. sentence •••]
[INSTALLATION. sentence •••]
[DATE-WRITTEN. sentence •••]
[DATE-COMPILED. sentence •••]
[SECURITY. sentence •••]
[REMARKS. sentence •••]

Program-name consists of single quota
tion marks enclosing no more than eight

IDENTIFICATION DIVISION

alphabetic and numeric characters, the
first of which must be alphabetic.
Program-name identifies the object program
to the control program.

IDENTIFICATION and the other COBOL words
in the Identification Division must begin
in Margin A. If sentences are written,
they must be contained within Margin B.
They may consist of any characters in the
Extended Binary Coded Decimal Interchange
code set.
r------1
IF ONLYI
L ______ J If DATE-COMPILED is specified, any
sentences in that paragraph will be
replaced in the program listing by the date
of compilation.

Identification Division 23

1. SYSIN--system logical input device

2. SYSOUT--system logical output device

3. SYSPUNCH--system logical punch device

4. CONSOLE--console

Mnemonic names associated with input/
output devices are used in ACCEPT and DIS
PLAY statements in the Procedure Division
(see the chapter entitled "Procedure Divi
sion"). Mnemonic names associated with a
single EBCDIC character are used in the
CODE clause in the Report Writer Feature
<see the chapter entitled "Report Writer
Feature").

If the ciause DECIMAL-POINT IS COMMA is
written, the functions of the comma and the
period are exchanged in report and
floating.-:point PICTURE character strings
and in decimal and floating-point literals.
When this clause :is written, the user must
represent the dec:imal point, when required
in a numeric literal or in the PICTURE
clause, by a comma <,>. The period must be
used for the function ordinarily served by
the comma. The purpose of this option is
to facilitate the use of COBOL in countries
where this convention is used. The f unc
tions are not interchanged for sterling
report pictures. These items are processed
as if the clause had not been specified.

Note: The DECIMAL-POINT IS COMMA facility
is provided in COBOL E by a parameter in
the EXEC statement.

INPUT-OUTPU~ SECT~_Q~

is:
The format of the Input-Output Section

INPUT-OU~PUT SECTION.
FILE-CONTROL.
~-sELicT~Ile-name ASSIGN-clause

[ACCESS-clause]
[ORGANIZATION-clause].t.
[RESERVE-clause]
[SYMBOLIC KEY-clause]
[ACTUAL KEY-clause]
[RECORD KEY-clause).t.
[TRACK-AREA-clause].t.
[FILE-LIMIT-clause] •••

[

I-0-CONTROL.]
(SAME-clause.] •••
[RERUN-clause.] •••
[APPLY-clause.] •••

The individual clauses that compose the
File-Control and I·-O-Control paragraphs may

.t.Extension

26

appear in any order within their respective
sentences or paragraphs, but must begin in
Margin B. They are described in the fol
lowing text. The Input-Output Section may
be omitted if no files are used in the
program.

The I-0-Control paragraph may be omitted
if none of the clauses in the paragraph are
written.

A period must follow the last clause in
each SELECT sentence written in the File
Control paragraph, and must follow each
clause written in the I-0-Control
paragraph.

FILE-CONTROL PARAGRAPH

SELECT Sentence

The SELECT sentence must begin with the
words SELECT file-name and must be given
for each file referred to in the COBOL
source program.

The name of each file must be unique
within a program, and must have a File
Description (FD) entry in the Data Division
of the source program. Conversely, every
file named in an FD entry must be named in
a SELECT sentence.

ASSIGN Clause

The ASSIGN clause is used to assign a
file to a particular device.

The format of the ASSIGN clause is:

r---1 I {DIRECT-ACCESS }I
IASSIGN TO •external-name' Q!!LITY ·I
I !:!~IT-RECORQ. I
I I
1 [device-number UNIT[Sll I
L---J

External-name specifies the name by
which the file is known to the Control Pro
gram. It is the name that appears in the
name field of the DD card (See the publica
tion IBM System/360 Operatigg_system:
COBOL (F) Programmer's Guide, Form C28-6380
or IBM System/360 operating System: COBOL
(E) Programmer's Gui'de, Form C-5029.

DIRECT-ACCESS, UTILITY, and UNIT-RECORD
specify device classes. Each file must be
assigned to a device class. Access to
files assigned to UNIT-RECORD or UTILITY
must be sequential; data contained on these
files is organized in the standard sequen
tial fashion. Files assigned to DIRECT
ACCESS may have standard sequential, in
dexed, direct, or relative organization.

Device-number is used to specify a par
ticular device type within a device class.
If device independence for a file is
desired, the device class should be UTILI
TY, no device nurriber may be specified, and
no device-dependent statements may be asso
ciated with the file-name of the file. At
object time, such a file may be assigned to
any device class <including UNIT-RECORD).

The allowable device numbers are:

DIRECT-ACCESS--2301, 2302, 2303 1 2311,
2314, 2321

UNIT-RECORD-1442R, 1442P1 1403, 1404
(for continuous forms only>,
1443, 2501, 2520R, 2520P,
2540, 2540P

Note: R indicates Reader: P indicates
'j?UnCh.

UTILITY--2400, 2301 1 2302, 2311, 2314, 2321
r-----,
IF ONLYI
L ______ J Note that a sort-file may be
assigned to any utility device except
device-number 2321.

ACCESS Clause

The ACCESS clause indicates the manner
in which the records of a file are read or
written.

The format of the ACCESS clause is:

r--1
I {SEQUENTIAL} I
I ~CCESS IS I
I RANDOM I
L---J

If this clause is not written, ACCESS IS
SEQUENTIAL is assumed. If ACCESS IS RANDOM
is written, the file must be assigned to a
direct-access device, and the ORGANIZATION
clause must be specified. A full explana
tion of the types of access available to
users of COBOL is provided in the chapter
"COBOL Input/Output Processing
Capabilities."

r---1
IEXTI ORGANIZATION Clause
L ___ J

The ORGANIZATION clause indicates the
organization of the data associated with a
particular file. The format of the ORGANI
ZATION clause is:

r---1
I {INDEXED } I
I ORGANIZATION IS QIREC! I
I RELATIVE I
L---J

INDEXED specifies indexed data organiza
tion; DIRECT specifies direct data organi
zation; and RELATIVE specifies relative
data organization.

If the ORGANIZATION clause is omitted, a
standard sequential file is assumed. A
full explanation of the types of data
organization available to users of COBOL is
provided in the chapter "COBOL Input/Output
Processing Capabilities."

This clause may only be written for
files assigned to direct-access devices.

RESERVE Clause

The format of the RESERVE clause is:

,--------{-~~------}------------------------!
!RESERVE ~ ALTERNATE AREA[S] I
I integer I
L---J

This clause specifies that the number of
buffers represented by integ~r be reserved
for a sequential file whose organization is
standard sequential or indexed, in addition
to the standard minimum of one required for
a file. If NO is written, no additional
buffers are reserved. If this clause is
omitted, the number of buffers assigned at
object time is taken from the DD card.

The value of inte;ger must not exceed
254.

The format of the SYMBOLIC KEY clause
is:

r---1
isYMBOLIC KEY IS data-name I
L---J

Environment Division 27

This clause specifies data-name as the
name of the item whose contents are used:

1. when reading or rewriting, to locate
the record with the matching key.

2. when writing to create the key asso
ciated with the record.

Data-name must never be defined in any
file or in the Linkage Section. When it is
desired to have the logical effect' of the
symbolic key in a file or in the Linkage
Section, a READ INTO or MOVE may be done to
an item in the Working-Storage Section
which is defined as the desired key.

If a record is added to an indexed
sequential file, and the TRACK-AREA clause
was not specified for the file, the con
tents of the SYMBOLIC KEY field are unpre
dictable after a WRITE statement is
executed.

The SYMBOLIC KEY clause is required for
sequential-access files whose organization
is direct. The symbolic identity of the
record is stored in data-name whenever a
READ statement is executed for the file.
Any changes the programmer may make to
data-name do not affect the order in which
records are read from the file.

If the file is specified as ACCESS IS
RANDOM, the symbolic identity of the record
to be read or written must be placed in
data-name before the READ or WRITE state
ment for that record is executed. The sym
bolic identity is transmitted to the Data
Management portion of the operating system,
and used to determine the physical location
from which the record is to be read, or
onto which it is to be written.

Data-name may specify any fixed-length
item less than 256 bytes in length, except
when used to specify a relative record
number for a file with relative organiza
tion. In this case, data-name must be
defined as an 8-integer binary item <that
is, whose description contains the clauses
PICTURE S9(8) and USAGE COMPUTATIONAL)
whose maximwn value does not exceed
16, 777, 215.

The SYMBOLIC KEY clause must precede all
OCCURS DEPENDING ON clauses in the Working
Storage section.

ACTUAL KEY Clause

This clause is used for files whose
organization is direct. It is required
except when access is sequential and the
file is opened as input.

28

This clause specifies the name of a data
item containing the relative track number
in a file on which a record is to be found
or placed. The relative track numbe~ for
the first track assigned to the file is
zero.

The format of the ACTUAL KEY clause is:

r---1
IACTUAL KEY IS data-name I
L---J

Data-name must never be defined in any
file or in the Linkage Section. When it is
desired to have the logical effect of the
actual key in a file or in the Linkage Sec
tion, a READ INTO or MOVE may be done to an
item in the Working-storage Section which
is defined as the desired key.

Dat~am~ must be defined as a 5-integer
binary data item (that is, whose descrip
tion contains the clauses PICTURE S9(5) and
USAGE COMPUTATIONAL) whose maximum value
does not exceed 65 1 535.

r---1
IEXTI RECORD KEY Clause
L ___ J

This clause, used with files whose
organization is indexed, specifies the item
within the data record that contains the
key for the record.

The format of the RECORD KEY clause is:

r---1 IRECORD KEY IS data-name I
L---J

Data-name must be defined to exclude the
first byte of the record in the following
cases:

1. Files with unblocked records

2. Files from which records are to be
deleted

3. Files containing a record key with the
figurative constant HIGH-VALUE in the
first character position

In all other cases, the item specified by
data-name may appear anywhere within the
record.

When more than one record description is
associated with a file, each description
must contain a field for the record key.
This field must be in the same relative
position from the beginning of each record.
It may be identified by different names in
different record descriptions.

Q~ta~ may be any fixed-length item
less than 256 bytes in length.

,---1
IEXTI TRACK-AREA Clause
L---J

When records are to be added to random
access files with indexed organization,
this clause specifies the area required.
Efficiency in adding records to such files
is considerably improved when the clause is
specified.

The format of the TRACK-AREA clause is:

r---1
J {data-name} I I TRACK-AREA IS CHARACTERS I
I integer~ I
L---J

The area must be no less than the size
of an entire track plus one logical record.

When the data-name option is written,
data-name must-specify an item described
with an 01 or 77 level number in the
Working-Storage Section.
r-----1
IF ONLYI L------J When the inieger option is £peci
fied, an area of inte~~ bytes is obtained
by the operating system when the file is
opened. It is released to the system when
the file is closed.

If a record is added to an indexed
sequential file, and the TRACK-AREA clause
was not specified for the file,, the con
tents of the SYMBOLIC KEY field are unpre
dictable after a WRITE statement is
executed.

The area defined by the TRACK-AREA
clause must be a multiple of 8 and must not
exceed 32,760 bytes.

FILE-LIMIT Clause

This clause specifies the number of
tracks to be initialized for the creation
of files with direct organization. This
clause does not cause track allocation,
which is the function of a DD card parame
ter (see the publication IBM System/360
Operating System: COBOL (F) Programmer's
Guide,, Form C28-6380).

The format of the FILE-LIMIT clause is:

~Implement for COBOL F only

r---1
!FILE-LIMIT IS integer !E~Q~§ I
L---J

If the relative number of the last track
used by the file when it is closed is less
than that specified in the FILE-LIMIT
clause, the tracks are initialized up to
the last track specified by the clause. If
the relative number of the last track is
equal to or greater than that specified, or
if the clause is omitted, the tracks are
initialized up to the last track written.
The remaining allocated tracks are not ini
tialized. The number of tracks initialized
is thus at least integer +1.

I-0-CONTROL PARAGRAPH

The SAME clause is used to specify that
two or more files are to use the same main
storage area for processing.

The format of the SAME clause is:

r---1
I§~ AREA FOR file-name-1 I
I I
I file-name-2 ••• • I
L·--J

No more than one of the files named in
this clause may be open (by means of an
OPEN statement> at one time.

More than one SAME clause may appear in
a COBOL program, but no file-name may
appear in more than one SAME clause.

A sequential file whose organization is
standard sequential or indexed, named in
this clause, must have a RESERVE clause
associated with it.

This clause cannot ref er to files whose
organization is direct and whose access is
sequential.

This clause specifies that checkpoint
records are to be written on the unit spec
ified by external-name. A checkpoint
record is a recording of the status of the
computer at a specific point in the execu
tion of the object program. It contains
all information necessary to restart the
program from that point.

Environment Division 29

The format of the RERUN clause is:

r--1
l ~ Q~ 'external-name• I
I I
J EVERY integer RECORDS OF file-name.1
l---J

External-name is the name by which the
file is known to the operating system's
control program, that is, the name that
appears in the name field of the DD state
ment. External-name should be unique for
RERUN clauses. (It should not be used in
an ASSIGN clause.) The purpose of this
stipulation is to prevent checkpoint rec
ords from being entered among other data
sets. However, several RERUN clauses may
specify either the same extg~nal-name or
different ones.

Integer indicates the number of READ or
WRITE statements to be executed on file
name between checkpoints. It must nor-
exceed 224-1 1 or 16 1 777,215. Checkpoint
records are written immediately preceding
execution of the first READ, WRITE, or
REWRITE statement after the first OPEN, and
thereafter. (Subsequent OPEN's and CLOSE's
of file-name will not affect the count of
integer-.->--

File-name must be unique for each RERUN
clause, i.e., it may have only one RERUN
clause associated with it.

Additional information concerning the
use of the checkpoint/Restart feature is
contained in the publications IBM System/
360 Operating System: COBOL (E) Program
mer's Guide., Form C24-5029, and IBM System/
360 Operationg system: COBOL <F> Program
mer• s Guide, Form C28-6380.

APPLY Clause

There are three options of the APPLY
clause, each with its own function.

Option 1

Option 1 of the APPLY clause relates to
files with direct organization. It is used
to limit the number of tracks involved in
searching for a record or in seeking space
for an output record. The format of Option
1 of the APPLY clause is:

r---1
!APPLY RESTRICTED SEARCH OF integer J
I J
I TRACKS ON file-name... • I
L---J

30

When a record is read or rewritten, a
search is made for that record whose key
matches the symbolic key. The search
starts with the relative track contained in
the actual key, and continues until either
the record is found or the number of tracks
specified by integer has been exhausted.
If the record is not found, an invalid key
condition exists. When a record is being
added to a file, the search for space
starts on the relative track contained in
the actual key, and continues until either
space is found or until the number of
tracks specified by integer has been
exhausted.

When Option 1 of the APPLY clause is not
written, searching starts with the relative
track specified by the actual key, and con
tinues until the condition is satisfied or
until the entire file has been searched.

Option 2 of the APPLY clause is used to
specify 2yerf!Q!!~, a condition-name
that may be used in a test for a form
overf low condition in a printer to which
the file named by fil~fil!!~ is assigned.
The condition is true if a form-overflow
condition exists. overflow-name follows
the rules for data-name formation. The
format of Option 2 of the APPLY clause is:

r---1
~~PPLY overflow-name TO FORM-OVERFLOW I
I I
I Qt:! file-name. I
L--J

A form-overflow condition exists when an
end-of-page is sensed on printer channel 12
by an on-line printer.

An overflow-name test may be written in
conjunction with a WRITE statement with an
ADVANCING option, in order to control spac~
ing of printed records.

Only one overflow-name may be applied to
a file and only one buff er reserved <see
the RESERVE clause in this section.>

The overflow-name test is discussed in
the chapter entitled "Procedure Division."

QEtion 3

Option 3 of the APPLY clause is used to
make optimal use of buff er and device space
allocated for a file whose record format is
v. The format of Option 3 of the .APPLY
clause is:

r---1
!APPLY WRITE-ONLY ON file-name... • I
L-----------------~----------------------J

Normally, a buffer is truncated when the
maximum size record no longer fits. Use of
this option will cause a buff er to be trun
cated only when the ne~~ record does not
fit in the unused portion.

For example, assume that variable length
records of from 200 to 500 characters are
to be written out with a blocking factor of
3. The buffer size would be 1,500 bytes
plus control bytes -- large enough to hold
three records of maximum length. However,
seven records, each 200 bytes in length,
could also be accommodated. But unless
APPLY WRITE-ONLY is specified for the file,
the buff er would be truncated after the
sixth record because the remaining space
(300 bytes) is not large enough to hold a
maximum size (500-byte) record. By using
Option 3, the size of each output record
would be inspected and the buffer filled
with as many complete records as it could
accommodate, regardless of their individual
sizes.

The files named in this clause must have
standard sequential or indexed organiza
tion.

For an output file, the data records
associated with each of the file-names may
be ref erred to only in a WRITE statement
containing the FROM option. None of the
subfields of these records may be referred

to; in any file for which APPLY WRITE-ONLY
was specified, the subfields of records can
be ref erred to only if the file is opened
for input or I-o.

If the APPLY WRITE-ONLY clause was orig
inally specified for the creation of an in
dexed file (QISAM file processing tech
nique), then APPLY WRITE-ONLY must be spec
ified if any records are later added by use
of the WRITE verb CBISAM file processing
technique>.

Sample coding for the ENVIRONMENT DIVI
SION would be as follows:

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.

I SOURCE-COMPUTER. IBM-360 G50.
OBJECT-COMPUTER. IBM-360 GSO.

INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT TRANSACT ASSIGN TO 'DDNAMEl'
UTILITY.

SELECT ACCOUNTS ASSIGN TO 'DDNAME2'
DIRECT-ACCESS

ACCESS IS RANDOM
ORGANIZATION IS DIRECT

I SYMBOLIC KEY IS ACCOUNT-NUMBER
ACTUAL KEY IS TRACK-NUMBER.

I-0-CONTROL.

I APPLY RESTRICTED SEARCH OF 1 TRACKS
ON ACCOUNTS.

Environment Division 31

The Data Division of a COBOL source pro
~ram describes the information to be
~recessed by the object program. This
information falls into the following
categories:

1. Data contained in files, entering or
leaving the internal storage of the
computer.

2. Data developed internally and placed
in intermediate or working storage and
data that has a constant value and is
defined by the user.

3. Linkage data descriptions for communi
cation between the main program and
subprograms and the operating system's
Data Management label area.

4. Report format specifications and data
to be included in a report.1

The Data Division begins with the header
DATA DIVISION in Margin A followed by a
period. Each of the sections of the Data
Division begins in Margin A with a fixed
section-name followed by the word SECTION
and a period. Division and section headers
must be on lines by themselves. The Data
Division is outlined as follows:

DATA DIVISION.
FILE SECTION.

File Description entries
Record Description entries

Sort Description entries1
Record Description entries

WORKING-STORAGE SECTION.
Record Description entries

LINKAGE SECTION.2
Record Description entries

REPORT SECTION. 1
Report Description entries

Report Group Description entries
Report Element Description entries

The sections must appear in this order.
If any section is not required, both it and
its section-name may be omitted.

The Data Division is subdivided into
sections, according to types of data. Each

~Implemented for COBOL F only
2Extension

DATA DIVISION

section consists of entries, rather than
sentences and paragraphs. An entry con
sists of a level indicator, a data-name or
other name, and a series of clauses def in
ing the data, that may be separated by com
mas or semicolons. The clauses may be
written in any sequence (except the REDE
FINES clause>. Each entry must terminate
with a period and a space.

The File Section describes the content
and organization of files and~ for COBOL F,
sort-files. Each such entry is followed by
related Record Description entries.

The Record Description entries used in
conjunction with a File Description and/or
Sort Description entry describe the indi
vidual items contained in a data record of
a file.

The Working-Storage Section consists
solely of Record Description entries.
These entries describe the areas of storage
where intermediate results are stored at
object program execution time and constants
with their values.
r---1
IEXTI
L ___ J The Linkage Section is a required
part of any COBOL subprogram that contains
an ENTRY statement with the USING option
and serves as a data-linking mechanism
between the main program and the subpro
gram. The Linkage Section consists only of
Record Description entries that provide
dummy names for linkage to data in the main
program. This is the only Data Division
section in which entries do not cause
object program data storage areas to be
allocated. Hence, constants defined by the
programmer cannot be included in this sec
tion as Record Description entries.
r------1
IF ONLY~
L---·---J The Report Section describes the
physical aspects of the report format and
the conceptual characteristics of the data.
It has three types of entries: the Report
Description entry, which specifies the
information pertaining to the overall for
mat of the named report: the Report Group
Description entry, which describes the
characteristics for a report group: and the
Report Element Description entry, which
defines the characteristics of each elemen
tary item included within a report group.

Data Division 33

The following material defines the basic
terms and concepts used in describing data.
The rules that govern the writing of data
descriptions appear later in this chapter.

LEVEL INDICATORS

Level indicators are used to show (in a
format similar to an outline) how data
items are related to each other. The most
inclusive grouping of data is the file.
The level indicator for an input/output
file is FD.
r------1
IF ONLYI
L ______ J For a sort file, the level indica-
tor is SD.

For purposes of processing., contents of
a file are divided into logical records,
with level number 01 specifying a logical
record. Subordinate data items that con
stitute a logical record are grouped in a
hierarchy and identified with level numbers
02 to 49. Level number 77 identif~es a
special type of entry in the Linkage Sec
tion or the Working-Storage Section. Level
number 88 is used to define a condition
name for a related conditional variable. A
level number less than 10 may be written as
a single digit preceded by a blank.

Levels allow specification of subdivi
sions of a :record necessary for referring
to data. Once a subdivision is specified,
it may be further subdivided to permit more
detailed data reference. This is illus
trated by F:igure 1 which is a weekly time
card record divided into four major items:
name, employee-number, date, and hours,
with more specific information appearing
for the name and the date.

Subdivisions of a record that are not
themselves further subdivided are called
elementary items. Data items that contain
subdivisions are known as group items.
When a Procedure Division statement refers
to a group item, the reference applies to
the area reserved for the entire group.
Less inclusive groups are assigned higher
level numbers. Level numbers of items
within groups need not be consecutive. A
group includes all groups and elementary
items described under it until a level
number less than or equal to the level
number of the group is encountered. Sepa
rate entries are written in the source pro
gram for each level. To illustrate level
numbers and group items, the weekly time
card record in the previous example may be
described by Data Division entries having
the level numbers and data-names shown in
Figure 2.

DATA-NAMES

A data-name is a name assigned by the
user to identify a data item used in' a pro
gram. A data-name always refers to .a kind
of data, not to a particular value;
the item referred to assumes a number of
different values during the course of a
program.

A data-name must contain at least one
alphabetic character. A data-name or the
key word FILLER must be the first word fol
lowing the level number in each Record
Description entry.

This data-name is the defining name of
the entry, and is the means by which
references to the associated data area
(containing the value of a data item) are
made. The key word FILLER may be used in
place of a data-name if the item is not to
be referred to directly or used as a qual
ifier. For example, if some of the charac
ters in a record are not used in the proc
essing steps of a program, then the data

r---1
I I
I TIME-CARD I
I I
~----------------·---------------------T-------------T--------------------------y--------~
I I I I I
I NAME I EMPLOYEE- I DATE I HOURS I
~--------------T--·---------T-----------i NUMBER ~---------T-------,.--------i I
I I I I I I I I I
I I FIRST- I MIDDLE- I I I I I I
I LAST I INITIAL I INITIAL I I MONTH I DAY I YEAR I I
I I I I I I I I I
L--------------~-----------.1-----------i-------------i---------i-------i--------i ________ J
Figure 1. Subdivisions of a weekly Time-card Record

34

Page of GC28-65:16-8, Revised 12/30/70, by TNL: GN28-0427

r---1
01 TIME-CARD. I

04 NAME. I
06 LAST-NAME. I
06 FIRST-INITIAL. I
06 MIDDLE-INITIAL. I

04 EMPLOYEE-NUMBER. I
04 DATE. I

05 MONTH. I
05 DAY. I
05 YEAR. I

03 HOURS. I ___ J

Figure 2. Example of Data Levels

description of these characters need not
include a data-name. In this case, FILLER
may be written instead of a data-name after
the level number.

Qualification of Data-Names

It should be noted that every data-name
in a COBOL source program must be unique.
For example, in Figure 1, qualification may
be necessary in order to make the data-name
YEAR distinct from another Data Division
entry (e.g., YEAR OF DATE IN TIME-CARD).

If the same data-name is assigned to
more than one item in a program, it must be
qualified in all references to it in the
Environment Division, Procedure Division,
or Data Division (except in the REDEFINES
clause where the position of the clause
will eliminate the possibility of
ambiguity).

Other rules for qualification of names
are given in the chapter entitled "Basic
Facts."

Note: For COBOL E, the programmer should
take care not to use a reserved word as a
data-name. Reserved words have preassigned
meanings in the COBOL language, and improp
er usage of a reserved word can cause pro
gram failure with unexpected diagnostic
messages.

LITERALS

A literal is a constant that is not
identified by a data-name in a program, but
is completely defined by its own identity.
(For example, in the sentence "MOVE 15 TO
NUMBER-OF-EMPLOYEES," 15 is a literal.) A
literal is either non-numeric (alphabetic
or alphanumeric), numeric, or floating
point.

Non-Numeric Literals

A non-numeric literal must be bounded by
quotation marks and may consist of any com
bination of characters in the EBCDIC set,
except quotation marks. All spaces en
closed by the quotation marks are included
as part of the literal. A non-numeric lit
eral must not exceed 120 characters in
length.

For non-numeric literals requiring more
than one line of a coding sheet, see "Con
tinuation of Non-Numeric Literals" in the
chapter "Basic Facts."

The following are examples of non
numer ic literals:

'EXAMINE CLOCK NUMBER'
'12565'
'PAGE 144 MISSING'

Numeric Literals

A numeric literal must contain at least
one and not more than 18 digits. A numeric
literal may consist of the characters O
through 9, the plus sign or the minus sign,
and the decimal point. It may contain only
one sign character and only one decimal
point. The sign, if present, must appear
as the leftmost character in the numeric
literal. If a numeric literal is unsigned,
it is assumed to be positive.

A decimal point may appear anywhere
within the numeric literal, except as the
rightmost character. If a numeric literal
does not contain a decimal point, it is
considered to be a whole number.

The internal representation of a numeric
literal is determined by its use in Proce
dure Division statements. For example, in
the statement MOVE 24 TO A where A is COM
PUTATIONAL, the value of 24 will be
generated in binary format.

The following are examples of numeric
literals:

+12572.6
-256.75
.16

Data Division 35

Page Of GC28-6516-8, Revised 12/30/70, by TNL: GN28-0427

r---1
IEXTl_Float!~g.=_Point: Literals
L---J

A floating-point literal must have the
form:

C±JmantissaEC±Jexponent

The plus or minus signs preceding the
mantissa and exponent are the only optional
characters within the format. The mantissa
consists of from 1 to 16 digits. A decimal
point is required.

Immediately to the right of the
mantissa, the exponent is represented by
the symbol E, followed by a plus or minus
sign (if a sign is given), and one or two
digits. The magnitude of the number repre
sented by a floating-point literal must not
exceed .72 *(10 ** 76). A zero exponent
must be written as 0 or 00. An unsigned
exponent is assumed to be positive.

The value of the literal is the product
of the mantissa and ten raised to the power
given by the exponent. A floating-point
literal must appear as a continuous string
of characters with no intervening spaces.

The following is an example of a
floating-point literal:

-.34566E+17

FIGURATIVE CONSTANTS

A figurative constant is a special type
of literal; it represents a value to which
a standard data-name has been assigned. A
figurative constant must not be bounded by
quotation marks.

ZERO may be used in many places in a
program as a numeric literal. The use of
ZERO as a non-numeric literal is permitted.
All other figurative constants are consid
ered non-numeric. 'l?he singular and plural
forms of figurative constants are equiva
lent and may be used interchangeably.

In COBOL E, ZERO may not be used in ar
ithmetic statements.

A figurative constant may appear any
where a literal may appear. When a figura
tive constant is associated with another
data item <e.g., when it is moved to or
compared with an item), the constant is
repeated until it contains the same number
of characters as the data item with which
it is associated.

The following are the figurative con
stants and their meanings:

36

ZERO
ZEROS
ZEROES

SPACE
SPACES

HIGH-VALUE
HIGH-VALUES

LOW-VALUE
LOW-VALUES

ALL 'character'

r------,
IF ONLY!
L------J

ALL figurative
constant

QUOTE
QUOTES

Represents one or more
zeros.

Represents one or more
blanks or spaces.

Represents one or more
appearances of the
highest value in the
computer's collating
sequence (hexadecimal
FF). A 1-character
field whose value is
HIGH-VALUE may be used
to operate as a delete
code or dummy-record
code character in files
with indexed data
organization and as a
dummy-record-code
character in files with
relative organization.

Represents one or more
appearances of the
lowest value in the
computer's collating
sequence (hexadecimal
00).

Represents one or more
occurrences of the
single EBCDIC character
bounded by quotation
marks. Character may
not be a quotation
mark.

Represents one or more
appearances of the
figurative constant.
Figurative constant may
be neither QUOTE
(QUOTES) nor a recur
rence of ALL. ALL
figurative constant is
not permitted in a
VALUE clause.

Represents the charac
ter • Note that the
use of the word QUOTE
to represent the char
acter ' at object time
is not equivalent to
the use of the symbol •
to bound a non-numeric
literal.

When a figurative constant is used in
such a way that the exact number of charac
ters required cannot be determined, only
one character is generated. For example,
the statement DISPLAY ZEROES would produce

Page of GC28-6516-8, Revised 12/30/70, by TNL: GN28-0427

one zero character since, in this case, the
length of the sequence of zeros to be dis
played cannot be determined.

The following are examples of the use of
figurative constants in the Data Division:

02 FILLER PICTURE A(10) VALUE SPACES.

02 HEADING PICTURE X(20) VALUE ALL'*'·

Data Division 36.1

Form GC28-6516-8, page revised by TNL GN28-0266, 6/1/70

CONDITION-NAMES

The general form of a condition-name
entry is:

r---1
188 condition-name ~~~Q~ IS literal. I
L---J

A ~Q~~iti2~=~~~~ is a name assigned by
the user to a value that may be assumed by
a data item. A condition-name must be
formed according to the rules for data-name
formation. A level 88 entry must be pre
ceded either by an elementary item or by
another level 88 entry (in the case of sev
eral consecutive condition-names pertaining
to an elementary item).

Every condition-name pertains to an ele
mentary item in such a way that the
condition-name may be qualified by the name
of the elementary item and the elementary
item's qualifiers. A condition-name is
used in the Procedure Division in place of
a simple relational condition.

A condition~name may pertain to an ele
mentary item (a conditional variable)
requiring subscripts. In this case, the
condition-name, when written in the Proce
dure Division, must be subscripted accord
ing to the same requirements 0£ the asso
ciated elementary item. Subscripting is
discussed later in this text.

Figure 3 is an example of Data Division
entries and a Procedure Division statement
that might be written using level 88 and
the condition-name-test. (Details on the
condition-name-test appear in the "Proce
iure Division" chapter under the subsection
wTest-Conditions.">

The type of literal in a condition-name
entry must be consistent with the data type
Jf the conditional variable. In the fol
lowing example, PAYROLL-PERIOD is the con-
1i tional variable. The picture associated
~ith it limits the value of the 88
:ondition-name to one digit.

02 PAYROLL-PERIOD PICTURE IS 9.
88 WEEKLY VALUE IS 1.
88 SEMI-MONTHLY VALUE IS 2.
88 MONTHLY VALUE IS 3.

rYPES OF DATA ITEMS

Several types of data items can be
1escribed in a COBOL source program. The
Eormat of the Record Description entry used
to describe each of these items appears
~nder the discussion of Record Description
2ntries.

r---1
!Data Division Portion: I
·---i
101 TIME-CARD. I
102 NAME, PICTURE X(20). I
102 PAY-CODE, PICTURE 9. I
I 88 MONTHLY, VALUE IS 1. I
I 88 HOURLY, VALUE IS 2. I
I 88 SUBCONTRACTOR, VALUE 3. I
102 SALARY, PICTURE 9999. I
102 RATE REDEFINES SALARY I
I PICTURE 9V999, DISPLAY. I
102 PER-DIEM, REDEFINES RATE I
I PICTURE 9999, DISPLAY. I
·---i
!Procedure Division Portion: I
·---~
IIF HOURLY COMPUTE GROSS = 40 * RATE I
IELSE IF MONTHLY COMPUTE GROSS = SALARY I
I I 4.334, I
!ELSE IF SUBCONTRACTOR COMPUTE GROSS = 5 I
I * PER-DIEM, I
IELSE PERFORM ERROR-PROCESS. I
L---J
Figure 3. condition-Name Example

r---·---1
IF ONLYI
L------J For COBOL F, the maximum length
for a group or elementary item is 32,767
bytes, except for a fixed-length Working
Storage or linkage section group item,
which may be as large as 131,071 bytes.

r------1
IE ONLY!
L------J For COBOL E, the maximum length
for any group item or elementary item is
4,092 bytes, except for a fixed-length
Working-Storage group item, which may be as
long as 32,767 bytes.

A group item is defined as one having
further subdivisions, that is, one or more
elementary items. In addition, a group
item may contain other groups. An item is
a group item if, and only if, its level
number is less than the level number of the
immediately succeeding item, unless the
immediately succeeding item has a level
number of 88. If an item is not a group
item, it is an elementary item, or, in the
case of level 88, it is a condition-name.

An elementary item is a data item con
taining no subordinate items. For example,
an 03 level followed immediately by another
03 level is an elementary item.

Data Division 37

Alphabetic Item

An alphabetic item may contain any com
bination of the characters A through Z and
the space. Each alphabetic character is
stored in a separate byte. (A byte is the
smallest addressable unit of storage in
System/360; it consists of eight binary
digits.)

An alphanumeric item consists of any
combination of characters in the IBM
Extended Binary Coded Decimal Interchange
Code set. Each alphanumeric character is
stored in a separate byte.

A report item is an alphanumeric item
containing only digits and/or special edit
ing characters. It must not exceed 127
characters in length. A report item can be
used only as a receiving field for numeric
data. Each report character is stored in a
separate byte <see "PICTURE Clause" and
"BLANK Clause">, except P and V which occu
py no storage, and CR and DB which occupy
two bytes each.

Fixed-point items may be defined as
external decimal, internal decimal, or
binary. External decimal corresponds to
the form in which information is repre
sented initially for card input, or finally
for printed or punched output. Such items
may be converted (by moving) to the inter
nal machine formats described as internal
decimal or binary. Except when an item is
a single digit in length, these formats
require less storage than the external
decimal format and can be used to save
space on input/output units. The binary
mode of representation is particularly
efficient for data-names used as sub-·
scripts. Computational results are the
same regardless of the particular format
selected, provided the intermediate compu
tational results do not require more than
18 digit positions.

38

External-Decimal Item: Decimal numbers in
the System/360 zoned format are external
decimal items. Each digit of a number is
represented by a single byte, with the four
low-order bits of each eight-bit byte con
taining the value of a digit. The four
high-order bits of each byte are zone bits;
the zone bits of the low-order byte repre
sent the sign of the item. The maximum
length of an external-decimal item is 18
digits. For items whose PICTURE does not
contain an s, the sign position is occupied
by a bit configuration interpreted as posi
tive but which does not represent an
overpunch.

Examples of external-decimal items are
shown in Figure 4.

Internal-Decimal Item: An internal-decimal
item-consists-of-numeric characters 0
through 9 plus a sign, and represents a
value not exceeding 18 digits in length.
It appears in storage as packed decimal.
One byte contains two digits with the low
order byte containing the low-order digit
followed by the sign of the item. For
items whose PICTURE does not contain an s,
the sign position is occupied by a bit con
figuration interpreted as positive but
which does not represent an overpunch.

Examples of internal-decimal items are
shown in Figure 4.

~i~~~Y-1~~~: A binary item may be consi
dered as consisting of numeric characters O
through 9 plus a sign. It occupies two
bytes (a halfword), four bytes (a full-
word>, or eight bytes (a doubleword),
corresponding to specified decimal lengths
of one to four digits, five to nine digits,
and 10 to 18 digits, respectively. The
leftmost bit of the reserved area is the
operational sign.

If the item is used as a resultant data
name in an arithmetic statement and no SIZE
ERROR option has been specified, the area
may be set to a number greater than that
specified in the PICTURE clause. If the
item is used as an operand, it is assumed
that the area contains a number less than
or equal to that specified in the PICTURE
clause.

An example of a binary item is shown in
Figure 4.

r-----------~------T---------T-------------------------T-------------------------------1 I Item I Value I Description I Internal Representation* I
t-------------------+---------+-------------------------+-------------------------------~
I I I I I
IExternal-Decimal l-1234 IDISPLAY PICTURE 9999 fJ.!11Z2llliF41 I
I I I I '-v-' I
I I I I Byte I
I I I I I
I I !DISPLAY PICTURE 89999 llZ1!Z2!Z3!-41 I
I I I I __., I
I I I I Byte I
I I I I I
~-------------------+~--------+-------------------------+-------------------------------i
I I I I I
Jinternal-Decimal 1+1234 JCOMPUTATIONAL-3 11Q1123!4F! I
I I I PICTURE 9999 I '-v-' I
I I I I Byte I
I I I I I
I I ICOMPUTATIONAL-3 110112314+1 I
I I I PICTURE 89999 I __., I
I I I I Byte I
I I I I I
t-------------------+---------+-------------------------+-------------------------------i
I I I I I
J Binary I +1234 I COMPUTATIONAL I lQOOO 0100I1101_QQ1Q.1 I
I I I PICTURE 89999 I ~ I
I I I I s Byte I
I I I I I
~-------------------+---------+-------------------------t-------------------------------~
I I I I I
tExternal Floating- 1+12.34E+2IDISPLAY PICTURE 99.99E-9911+!112!.13!41Elbl0!2! I
I Point I I I - I
I I I I Byte I
I I I I I
t-------------------+---------+-------------------------+-------------------------------~
I I I I I
1Internal Floating- I ICOMPUTATIONAL-1 llSfCharacteristic!Fraction I
!Point I J I o 1 7 a 31 I
I I I I I
I I ICOMPUTATIONAL-2 llS!Characteristic!Fraction I
I I I I o 1 1 a 63 I
t-------------------i---------i-------------------------.1.-------------------------------~
!*Codes used in the Internal Representation colum~: I
t z = zone I
1 Hexadecimal F = nonprinting plus sign I
I s = the sign position of a numeric field: internally a •·1 1 in position s means the I
I number is negative; whereas a •o• :in positions means the number is positive. I
I b = blank I
L---·--------------------------------------J Figure 4. Internal Representation of Numeric Items

r---,
IEXTL Floating-Point Items
L---J

External and internal floating-point
formats define data items whose potential
range of value is too great for fixed-point
representation. The magnitude of the n\im
ber represented by a floating-point item
must not exceed .72 * (10 ** 76).

External Floating-Point Item: An external
floating-point item consists of a combina
tion of .the characters plus (+), minus <->,
blank, decimal point <.>, the character E,
and digits 0 through 9 appearing in a 'spe
cific format that represents a number in

the form of a decimal number followed by an
exponent. The exponent specifies a power
of ten that is used as a multiplier.
External floating-point items (also called
scientific decimal items) are scanned at
object time for conversion to the equiva
lent internal floating-point value when
used as numeric operands (see "Fp-form
Option" under PICTURE Clause>. Each
character of the PICTURE, except v,, repre
sents a single byte of storage reserved for
the item. The PICTURE of an external
floating-point item includes the letter E
(see the example under the format of an
"External Floating-Ppint Item" and refer
also to "Fp-form Option" under PICTURE

Data Division 39

clause) • •rhe di.splay of an external
floating-point item includes the E <which
denotes the exponent) in the printout.

An example of an external floating-point
item (literal> is shown in Figure 4.

Internal Floating-Point Item: An internal
floating-point item may be considered
equivalent to an external floating-point
item in capability and purpose. Internal
floating-point numbers occupy four or eight
bytes, depending on the length of the
fractions.

In the short-precision format, the f rac
tion appears in the rightmost three bytes;
in the long-precision format, the fraction
appears in the rightmost seven bytes. The
sign of the fraction is the leftmost bit in
either format, and the exponent appears in
bit positions 1 through 7.

Examples of internal floating-point
items are shown in Figure 4.

FILE .SECTION

The File Section of the Data Division
describes the logical characteristics of
the files, and the organization of areas
used for receiving input or output data.

A file comprises one or more blocks on
input/output devices. A block may be
described by the programmer as comprising
one entity (one logical record>, or com
prising a group of smaller entities (logi
cal records). A buffer is the area into
which a block is read or from which a block
is written.

The descriptions of the kinds of logical
records that may be contained in a block
are specified in the File Section by a
level 01 Record Description entry and by
the entries subordinate to it. A block may
contain one or more logical records, each
of which may conform to any of the descrip
tions speci.f ied for the records in the
file.

The term vo:l ume is a term for a unit or
reel on which a file is recorded such as a
reel of magnetic tape or a disk pack. In
this context, volume and the COBOL reserved
words UNIT or REEL are identical in
meaning.

40

Record Formats

The operating system's Data Management
defines three record formats to be used:
format F, format V, and format u. A file
used within the operating system has rec
ords that are either fixed (F), variable
(V) or unspecified CU>.

1. A file with format F records is one in
which the size of all the logical rec
ords in the file is fixed, and in
which logical records are not preceded
by a control word.

2. A file with format V records is one in
which the sizes of the logical records
are not necessarily the same. Each
logical record is preceded by a con
trol word indicating the size of the
particular logical record. This con
trol word must not be described in any
record description entry and cannot be
referred to by the user~

3. A file with format U records is one in
which the sizes of the logical records
are not necessarily the same. Unlike
format V records, there is no control
word preceding the logical records
indicating the size of the record.
Files with format U records are con
sidered by the COBOL compiler to con
tain one logical record per block.
The READ statement makes one block
available for processing; if there is
more than one logical record per
block, the user must do his own
deblocking.

The choice of record format, which is
specified in COBOL via the RECORDING MODE
clause, is dependent on the record descrip
tions. Files for which there is only one
record description with an unchanging size
(that is, no entry in the record descrip
tion has an Option 2 OCCURS clause) or for
which all record descriptions indicate the
same unchanging size may have format F or
format v records.

The sizes of the logical records of a
file may vary (1) if there is more than one
data record description for the file so
that the size of each data recprd described
may differ or (2) if one or more elements
within the file is described with an Option
2 OCCURS clause. In the latter case, the
size of the same logical record may vary
from the execution of one READ or WRITE
statement of the record to the next. These
files may have records of format v or for
mat u.

This section describes the File Section
entries and the Record Description entries
within the Data Division. Each of the two
subjects is further subdivided into its
components.

FILE SECTION ENTRIES

This subsection briefly describes the
File Description <FD)and the sort Descrip
tion (SD). General notes are given about
these items, followed by a discussion of
the clauses that comprise them.

The following is the format of a File
Description entry, which must appear once
in the File Section for each file. There
may be a number of Record Description
entries associated with it.

The clauses associated with each File
Description entry may appear in any or3er.
FD must appear in Margin A. All associated
clauses must begin in Margin B.

FD file-name

~ RECORD IS) ~, STANDARDl
LABEL , \\ (--1 RECORDS ARE) lOMITTED J

[RECORDING MODE IS mode]

[~~Q£~ CONTAINS integer {CHARACTERS}]
R!!1£QRQ2

[RECORD CONTAINS [integer-1 !Q]
integer-2 CHARACTERS]

{

RECORD IS l
DATA 1 record-name

RECORDS AREl

[
f REPORT IS }]1
I report-name •••
{REPORTS ARE

~Qt~: If the REPORT clause appears in an
FD entry, the DATA RECORD clause is
optional.

An example of a File Description entry
is:

1Implemented for COBOL F only

FD FILE-1
RECORD CONTAINS 20 TO 80 CHARACTERS
RECORDING MODE IS U
LABEL RECORDS ARE STANDARD
DATA RECORD IS FILE-1-RECORD.

r------,
IF ONLYI Sort Description
L ______ J

The following is the format of a Sort
Description entry. The clauses associated
with each entry may appear in any order.
SD must appear in Margin A. All associated
clauses must begin in Margin B.

SD sort-file-description-name

is:

record-name •••

[g~~QRQI~~ MODE IS mode]

[RECORD CONTAINS [integer-1 TO]
integer-2 CHARACTERS].

An example of a Sort Description entry

SD SORT-FILE-1
DATA RECORD IS SORT-RECORD
RECORD CONTAINS 80 CHARACTERS
RECORDING MODE IS F.

For further discussion of the Sort
Description entry see the chapter "Sort
Feature."

Fi~e Section Notes

The following additional information
should be noted:

1. The FD entry must describe each data
file to be processed by the object
program.

2. The SD entry is used to describe each
sort-file used in the program. See
the chapter "Sort Feature."

3. file-name and sort-file-description
name are the highest-level qualifiers
for their respective Record Descrip
tion entries.

4. If more than one level 01 description
is given under an SD or FD entry, all
descriptions following the first are
consider~d to implicitly redefine the
first.

Data Division 41

Form GC28-6516-8, page revised by TNL GN28-0266, 6/1/70

The following are the formats and
descriptions of each of the clauses that
make up file and sort descriptions.

LABEL RECORDS Clause:

The LABEL RECORDS clause specifies the
presence of standard or nonstandard labels
on a file, or the absence of labels. The
format of this clause is:

r---1
I fRECORQ IS l (STANDARD! I
I LABEL) \ I
1-- lRECORDs ARE} loMITTED f I
l---J

The file LABEL specifications are speci
fied by the LABEL parameter of the DD card.
The COBOL equivalents of the four options
of the LABEL parameter are as follows:

1. NL (no labels)--OMITTED

2. NSL <nonstandard labels)--OMITTED

3. SL <standard labels)--STANDARD

Use of the LABEL RECORDS clause in a
COBOL source program does not eliminate the
necessity of the LABEL parameter in the DD
card or modify the operating system's Data
Management restrictions.

The OMITTED option must be specified for
files assigned to unit record devices. It
may be specified for files assigned to mag
netic tape units.

The STANDARD option must be specified
for files with indexed, direct, or relative
organization. It may be specified for any
files with standard sequential organiza
tion, except for files assigned to unit
record devices. The system will bypass

user labels appearing in the file if the
STANDARD option is specified.

Figure 5 is a chart showing available
options and their valid use. An "X" in the
figure indicates that the option is
permitted.

RECORDING MODE Clause:

The RECORDING MODE clause specifies the
format of the logical records comprising
the file. The format of this clause is:

r---1
!RECORDING MODE IS mode I l ___ J

~~~~ must be one of the three alphabetic 
characters F, u, or v. Each indicates the 
specification of a record format. 

The F mode (fixed-length format) may be 
specified when all the logical records in a 
file are the same length. This implies 
that no OCCURS clause with the DEPENDING ON 
option is written in a Record Description 
entry for the file. If more than one data 
record description is given following the 
FD entry, and tt2se descriptions are not 
all of the same length, the record length 
of the longest one is used for input/output 
operations such as WRITE, READ, and 
blocking. 

The V mode <variable-length format) may 
be specified for any combination of record 
descriptions. In this format, each logical 
record is preceded by a control field spec
ifying the length of the logical record. 

The u mode <unspecified format} may be 
used with any combination of record 
descriptions. Format U records are like 
format V records that are not blocked, 
except that they are not preceded by a 
count control field. 

r-----------·------T---------------------------------------------------------------------1 
I I Device I 
I ~---------------T--------T--------------------------------------------~ 
I LABEL RECORDS I Unit Record I Tape I Direct-Access Storage Device I 

I ARE options I I I Organization is: I 

I I I ~------------T------------7--------7---------~ 
I I I I Standard I Indexed I I I 
I I I I Sequential I Sequential I Direct I Relative! 
~-----------------+---------------+--------+------------+------------+--------+---------~ 
I OMITTED I x I x I I I I I 

~-----------·------+---------------+--------+------------+------------+--------+---------~ 
I STANDARD I I x I x I x I x I x I 
l-----------·------~---------------i ________ i ____________ i ____________ i ________ i _________ J 

Figure 5. Relation Between Labels and Device Assignment 

42 



When the RECORDING MODE clause is 
omitted, RECORDING MODE IS V is assumed. 

BLOCK CONTAINS Clause: 

The BLOCK CONTAINS clause specifies the 
number of characters or the number of logi
cal records in a block. The format of this 
clause is: 

r-----------------------------------------1 
I "'."_" {CHARACTERS} I 
!BLOCK CONTAINS integer I 
I RECORDS I 
L-----------------------------------------J 

The BLOCK CONTAINS clause must not be 
written for files with direct or relative 
organization or when format u records are 
used. When the RECORDS option of the 
clause is used, the assumption is made that 
the block size provides for integer records 
of maximum size. The compiler then pro
vides for additional space for any required 
control words. 

When the RECORDS option is not written, 
the compiler assumes that integer specifies 
the number of characters contained in the 
block. 

To determine the number of characters to 
be specified in the BLOCK CONTAINS clause, 
the following procedures should be used: 

output Files with Format F Records: Mul
tiply the logical record length by the 
number of records to be contained in the 
block. For example, if five card images 
(logical record length of 80)are to be 
blocked, BLOCK CONTAI~~ +00 or BLOCK CON
TAINS 400 CHARACTEF' .ould be specified. 

output Files wib. ormat V Records: The 
minimum value of integer must equal the 
size of the largest logical record defined 
for the file and must include the 4-byte 
count field that precedes each format V 
record, but not the 4-byte count field that 
precedes the block. (The latter count 
field is automatically generated at the 
time the program is being executed.) Note, 
too, that if the file contains records with 
COMPUTATIONAL, COMPUTATIONAL-1, or 
COMPUTATIONAL-2 entries, it is the program
mer• s responsibility to add any necessary 
inter-record slack bytes. These slack 
bytes are part of the record description 
and must be included in the value of inte
ger. (See Appendix B, "Slack Bytes •• -,----

Therefore, if two types of records are 
to be written, one 400 characters long and 
the other 200 characters long, the minimum 

integer that can be specified in the CHAR
ACTERS option of the BLOCK CONTAINS clause 
is 404 (BLOCK CONTAINS 404 or BLOCK CON
TAINS 404 CHARACTERS). 

It should be noted that Option 3 of the 
APPLY clause (APPLY WRITE-ONLY) is used to 
make optimal use of buffer space allocated 
for a file with format V records. In the 
above example, if a record 200 characters 
long was placed in the block specified, 
there would not be enough space allocated 
for another record even if the next record 
was also 200 characters long, because the 
4-byte count field preceding each format V 
record could not be accommodated. There
fore, given the above facts, the programmer 
should at least specify BLOCK CONTAINS 408 
and use the APPLY WRITE-ONLY option. If 
the APPLY WRITE-ONLY option is not speci
fied for a file, the buffer is truncated 
and the block is written out whenever the 
space remaining in the buffer is not suffi
cient for the maximum size record (400 
characters in the above example) defined 
for the file. 

The programmer can specify how many 
maximum size format V records are to fit 
into a block by means of the RECORDS option 
of the BLOCK CONTAINS clause. The compiler 
uses the value of integer to compute the 
length of the block by multiplying the 
length of the longest record by integer, 
adding enough space to accommodate a 4-byte 
count field for the block and a 4-byte 
count field for each record. Therefore, if 
two types of records are to be written, one 
400 characters long and the other 200 char
acters long, and if the programmer spec
ifies BLOCK CONTAINS 3 RECORDS, the compil
er reserves a block of 1216 characters. 
Depending on the actual size of the records 
written, more than integer records may be 
contained in the block. Given the above 
facts, it is possible for a block to con
tain five 200-character records 
(5*204+4<1216). 
r------, 
IF ONLY! L------J Note, however, in the case where 
there are two or more OCCURS ••• DEPENDING 
ON... clauses in the record and the 
programmer specifies RECORD CONTAINS 
integer-1 TO integer-2 CHARACTERS, the com
piler determines the record length from 
integer-2. 

Input Files with Format F Records: The 
value of integer for input files with for
mat F records should be the same as the 
value when the file was used as an output 
f:ile (see above>, provided that the same 
option of the BLOCK CONTAINS clause is 
specified. However, for QSAM files only, 
it is possible to specify an integral mul
tiple of the record length specified when 
the block was created. 

Data Division 43 



Page of GC28·-6516-8, Revised 12/30/70, by TNL: GN28-0427 

Input Files with Format V Records: The 
value of integer for input files with for
mat V records is the same as th~ value 
determined when the file was used as an 
output file, provided that the same option 
of the BLOCK CONTAINS clause is specified. 

However, if the RECORDS option was used 
for an output file and the programmer 
desires to use the CHARACTERS option on the 
same file when used as input, he must per
form the same calculations for the value of 
integer as the compiler does when the file 
is created, i.e., he must take the 4-byte 
count field preceding each record into con
sideration. Thus, if RECORD CONTAINS 5 TO 
10 CHARACTERS and BLOCK CONTAINS 5 RECORDS 
were specified for output, RECORD CONTAINS 
70 CHARACTERS (5*(10+4)) must be specified 
for input. This rule also applies when the 
order of the options is reversed, because 
the value of int~ger for the RECORDS option 
does not include the 4-byte count field for 
each record, whereas it does for the CHAR
ACTERS option. 

When the BLOCK CONTAINS clause is 
omitted, the file is considered to be 
unblocked. 

The value of integer must never exceed 
the maximum specified for a device type. 

The value of integer (within the RECORDS 
option Of the BLOCK CONTAINS clause) may be 
zero and the blocksize specified in the DD 
card (or JFCB if it is an input file) at 
execution time if the following conditions 
occur: 

1. The file is QSAM (F or V) and the SAME 
AREA clause is not specified, or 

2. For QISAM (For V), and no SAME AREA 
clause is specified. In this case the 
QISAM scan mode FD must also specify 
integer to be zero if the BLOCK CON
TAINS clause is zero. The BISAM FD 
used for this file must specify the 
maximum blocksize the file can 
contain. 

Note: The blocking factor for a QISAM out
put file must equal the blocking factor for 
the same file when it is used as input or 
I-O. The blocking factor must also remain 
the same if it is used as a BISAM input or 
I-0 file. This restriction also holds if 
the blocksize is specified at object time 
via a DD card rather than at compile time 
in an FD entry. 

RECORD CONTAINS Clause: 

The RECORD CONTAINS clause specifies the 
sizes of the logical records contained in a 
file. The format of this clause is: 

44 

r-----------------------------------------1 
!RECORD CONTAINS Cinteger-1 TO] I 
I I 
I integer-2 CHARACTERS I L_ ________________________________________ J 

When this clause is written, integer-1 
indicates the size of the smallest record 
described for the file, and integer-2 indi
cates the size of the largest record. 
Whether this clause is specified or 
omitted, the record lengths are determined 
by the compiler from the record descrip
tions unless more than one of the entries 
contains an OCCURS ••• DEPENDING ON ••• 
clause. If any of the entries contains 
this form of the OCCURS clause, the maximum 
value of the variable in that clause is 
used in calculating the record length. If 
more than one of the entries contains this 
form of the OCCURS clause and the maximum 
values of the variable in those clauses do 
not occur simultaneously, integer-2 may 
specify a maximum record size other than 
the size calculated from the maximum value 
of the variables. 

DATA RECORDS Clause: 

The DATA RECORDS clause specifies the 
names of the logical records in a file. 
The format of this clause is: 

r-----------------------------------------1 
I {RECORD IS } I 
I DATA record-name... I 
I -- RECORDS ARE I 
L----------------------------------------J 

Record-name is a data-name described 
with an 01 level-number following the FD 
entry in the File Section. 
.-----1 
IF ONLYI 
L------J REPORT Clause: 

The REPORT clause is required in the 
File Description entry only when the Report 
Writer feature is utilized, and the file is 
either an output report file or is used to 
contain output report records. 

The format of the REPORT clause is: 

r-----------------------------------------1 
I
I {REPORT IS } II 

report-name ••• 
I REPORTS ARE I L_ ________________________________________ J 

The appearance of two or more report
names in this clause indicates that the 
file contains more than one report. These 
reports may be of different sizes and for
mats, and the order in which they are 
described in the Data Division is not 
significant. 



Each report-name listed in the FD entry 
must have an RD <Report Description> entry 
in the Report Section of the Data Division. 
(Complete details concerning the Report 
Writer feature are contained in the chapter 
"Report Writer Feature.") 

The REPORT clause may be specified only 
for files whose organization is standard 
sequential. 

RECORD DESCRIPTION ENTRY 

A Record Description entry specifies the 
characteristics of each item in a data 
record. Every item must be described in a 
separate entry in the same order in which 
the item appears in the record. Each Rec
ord Description entry consists of a level
number, a data-name, and a series of inde
pendent clauses followed by a period. 

The general format of a Record Descrip
tion entry is: 

level-number [redefines-clause] 
{

data-name} 

FILLER 

(PICTURE-clause] [BLANK-clause] 

[OCCURS-clause] [VALUE-clause] 

[JUSTIFIED ~] [USAGE-clause]. 

When this format is applied to specific 
items of data,, it is limited by the nature 
of the data being described. The allowable 
format for the description of each data 
type appears below. Clauses not shown in a 
format are forbidden. Clauses that are 
mandatory in the description of certain 
data items are written without brackets. 

The format of the Record Description 
entry for a group item is: 

r-----------------------------------------1 
I {data-name} I 
!level-number [REDEFINES-clause11 
I E!~~~g I 
I I 
~ [OCCURS-clause] [USAGE-clause]. I 
L-----------------------------------------J 
Sample coding for a group item and its 
associated subordinate <elementary> items 
is: 

01 GROUP-NAME. 
02 FIELD-B PICTURE X. 
02 FIELD-C PICTURE X. 

Not~: A group item, by definition, must 
have items (FIELD-B and FIELD-C in the 
above example> that are subordinate to it. 
An item is subordinate to another by having 
a level number that is higher than the 
immediately preceding item. FIELD-B and 
FIEI .. D-C have 02 level numbers,, whereas 
GROUP-ITEM has an 01 level number. 

An elementary item is one having no 
items subordinate to it. 

Alphabetic Item: 

The format of the Record Description 
entry for an alphabetic item is: 

r-----------------------------------------1 
I I 
J {data-name} I 
~level-number · [REDEFINES-clause] I 
J FILLER I 
I I 
I [OCCURS-clause] PICTURE IS alpha-form! 
i I 
I [USAGE IS DISPLAY] I 
I I 
~ [~ IS alphabetic-literal] I 
~ I 
~ [JUSTIFIED B!§HT]. I 
L---·---------------.;_----------------------J 

Sample coding for an elementary alphabetic 
item is: 

02 EMPLOYEE-NAME PICTURE A(20). 

'I'he format of the Record Description 
entry for an alphanumeric item is: 

Data Division 45 



B or MOVE Y TO c could be executed at any 
point in the program. In the first case, B 
would assume the value of X and take the 
form specified by the description of B. In 
the second case, the same physical area 
would receive Y according to the descrip
tion of c. It should be noted, however., 
that if both of the above statements are 
executed successively in the order speci
fied, the value Y will overlay the value x. 
However, redefinition itself does not cause 
any data to be erased and does not super
sede a previous description. 

Altering the USAGE of an area through 
redefinition does not cause any change in 
existing data. Consider the example: 

02 B PICTURE 99 USAGE DISPLAY 
VALUE IS 8. 

02 C REDEFINES B PICTURE 99 
USAGE COMPUTATIONAL-3. 

The bit configuration of the value 8, 
when used as a display item, is 1111 0000 
1111 1000. Redefining B does not change 
its appearance in storage. Therefore, a 
great difference results from the two 
statements, ADD B TO A and ADD C TO A. In 
the former case, the value 8 is added to A 
because B is a display item. In the latter 
case, the bit configuration does not repre
sent a valid internal-decimal 
CCOMPUTATIONAL-3) number and the results of 
the addition are invalid. 

Moving a data item to a second data item 
that redefines the first one (for example, 
MOVE B TO C when C redefines B), may pro
duce results that are not those expected by 
the programmer. The reverse (MOVE B TO c 
when B redefines C) is also true. 

The KEDEFINES clause must not be used 
for logical records associated with the 
same file <i.e., it must not be used at the 
01 level in the F'ile section) since implied 
redefinition exists. However, the REDE
FINES clause may appear in 01 levels in the 
Working-Storage Section. The level number 
of data-name-2 must be identical to that of 
the-rtero-containing the REDEFINES clause. 

The entries giving the new description 
of the area must immediately follow the 
entries describing the area being rede
fined. The description of an area can mean 
a group item and all associated elementary 
items. However, in the case where more 
than one Record Description entry is rede
fining the same entry, these additional 
entries may intervene. For example both of 
the following are valid uses of the REDE
FINES clause: 

48 

02 ARRAY-1 DISPLAY. 
03 A PICTURE X(2). 
03 B PICTURE X(2). 

02 ARRAY-2 REDEFINES ARRAY-1 
USAGE COMPUTATIONAL-1. 

02 A PICTURE 9999. 
02 B REDEFINES A PICTURE 9V999. 
02 C REDEFINES A PICTURE 99V99. 

A REDEFINES clause may be specified for 
an item within the scope of an area being 
redefined; that is, REDEFINES clauses may 
be specified for items subordinate to items 
which are themselves redefined. The fol
lowing would therefore be a valid use of 
the REDEFINES clause: 

02 REGULAR-EMPLOYEE DISPLAY. 
03 LOCATION PICTURE ACS>. 
03 STATUS PICTURE X(4). 
03 SEMI-MONTHLY-PAY 

PICTURE 9999V99. 
03 WEEKLY-PAY REDEFINES SEMI

MONTHLY-PAY PICTURE 999V999. 

02 TEMPORARY-EMPLOYEE REDEFINES 
REGULAR-EMPLOYEE DISPLAY. 
03 LOCATION PICTURE A(8). 
03 FILLER PICTURE X(6). 
03 HOURLY-PAY PICTURE 99V99. 

REDEFINES clauses may also be specified 
for items subordinate to items containing 
REDEFINES clauses. For example: 

02 REGULAR-EMPLOYEE DISPLAY. 
03 LOCATION PICTURE A(8). 
03 STATUS PICTURE X{4). 
03 SEMI-MONTHLY-PAY 

PICTURE 9999V99. 
03 WEEKLY-PAY REDEFINES SEMI

MONTHLY-PAY PICTURE 999V999. 

02 TEMPORARY-EMPLOYEE REDEFINES 
REGULAR-EMPLOYEE. 
03 LOCATION PICTURE A{8). 
03 FILLER PICTURE X(6). 
03 HOURLY-PAY PICTURE 99V99. 
03 PAY-CODE REDEFINES HOURLY-

PAY PICTURE 9999. 

Between data-name-2 and data-name-1 
there may be-noentries having lower level 
numbers (numerically> than the level number 
of data-name-2 and data-name-1. 

Except for condition-name entries, 
entries containing or subordinate to a 
REDEFINES clause must not contain any VALUE 
clauses. 

The description of data-name-1 or of any 
item subordinate to data-name-1 may not 
contain an OCCURS clause with a DEPENDING 
ON option. Q~~~~me-1 may not be subor
dinate to an item containing an OCCURS 
clause. Data-name-2 may not contain an 
OCCURS clause in its description nor may it 
be subordinate to an item described by an 
OCCURS clause. No item subordinate to 



Form GC28-6516-8, page revised by TNL GN28-0266, 6/1/70 

g~ta=~~mg=£ may be described by an OCCURS 
clause with a DEPENDING ON option. 

The length of g~ta=~~m~!L multiplied by 
the number of occurrences of g~~~=~~~~=!L 
must be equal to or less than the total 
length of data-name-2. 

USAGE Clause 

The USAGE clause describes the form in 
which data is represented. 

The USAGE clause may be written at any 
level. At a group level, it applies to 
each elementary item in the group. The 
usage of an elementary item must not con
tradict the usage explicitly stated for a 
group to which the item belongs. If USAGE 
is not specified, the usage of an item is 
assumed to be DISPLAY. For this reason, 
~hen representing internal-decimal, binary, 
or internal floating-point items, the USAGE 
clause must be specified. The format of 
the USAGE clause is: 

r-----------------------------------------1 
I (DI~~!!~! ) I 
I '£Q~~~!~!!Q~~ ( I 
!USAGE IS <ICOMPUTATIONAL-1\' I 
I COMPUTATIONAL-2 I 
I COMPUTATIONAL-3 I 
L-----------------------------------------J 

The DISPLAY option specifies that the 
item is stored in character form, one 
character per byte. 

The COMPUTATIONAL option specifies a 
binary data item occupying two, four, or 
eight character positions corresponding to 
specified decimal lengths of 1-4, 5-9, and 
10-18, respectively. 

For example, if 

02 FICA PICTURE IS S999V99 COMPUTATIONAL. 

(a decimal length of five) is specified, 
the binary data item will occupy four 
character positions. The leftmost bit of 
the reserved area is the operational sign. 
Computational items are aligned at the next 
halfword or fullword boundary, as 
appropriate. 

The COMPUTATIONAL-1 option specifies a 
data item stored in short-precision 
floating-point format, aligned on the next 
fullword boundary. The COMPUTATIONAL-2 
option specifies a data item stored in 
long-precision floating-point format, 
aligned on the next doubleword boundary. 
rhe COMPUTATIONAL-3 option specifies that 
the item is stored in packed <internal> 

decimal format: two digits per character 
position, with the low-order half-character 
containing the sign. 

If a data hierarchy contains binary or 
floating-point items intermixed with other 
elementary items, slack bytes may be pres
ent. Slack bytes are introduced to assure 
the necessary byte alignment. 

Slack bytes exist in a record not only 
in main storage but on files. The compiler 
inserts slack bytes on output and expects 
them on input. A full discussion of slack 
bytes is contained in the appendix entitled 
"Slack Bytes." 

Table 3 shows the requirements pertain
ing to binary and floating-point items. m 
is the amount by which the address of the 
first byte of the item must be divisible. 

Table 3. Values for calculating Record 
Length 

r--------------------------T--------------1 
I Type of Data Item !Value of m I 
~--------------------------+--------------~ 
I Binary half word I 2 I 
I Binary fullword I 4 I 
I Binary doubleword I 4 I 

I Floating point, short I 4 I 

I Floating point, long I 8 I 

L--------------------------i--------------J 
When an item of the types listed in 

Table 3 immediately follows an item whose 
last byte is at X relative to the first 
byte of the COBOL record, then the first 
byte of this item is located at X+n, where 
n is the number which must be added to X in 
order to make X+n a multiple of m. 

The number of slack bytes <n>, may be 
zero or a positive number less than 8. 

PICTURE Clause 

The PICTURE clause specifies a detailed 
description of an elementary level data 
item and may include specification of spe
cial report editing. The general format of 
the PICTURE clause is: 
r-----------------------------------------1 
I lalpha-form ( I 
I ~an-form I 
!PICTURE IS )numeric-form( I 
I (report-form ' I 
I f p-f orm1 I 
L-----------------------------------------J r------, 
IF ONLYI L------J In the following discussion of the 
PICTURE clause, the rules for the period 
apply to the comma, and the rules for the 

1Extension 

Data Division 49 



Form GC28-6516-8, page revised by TNL GN28-0266, 6/1/70 

comma apply to the period, if the clause 
DECIMAL-POINT IS COMMA is present in the 
Special-Names paragraph of the Environment 
Division. 

This option represents an alphabetic 
item. The PICTURE of an alphabetic item 
can contain only the character A. An A 
indicates that the character position 
always contains one of the 26 letters of 
the English alphabet or a space. 

An-form Option 

This option applies to alphanumeric 
items. The PICTURE of an alphanumeric item 
can contain only the character x. An X 
indicates that the character position may 
contain any character from the Extended 
Binary Coded Decimal Interchange Code set. 

This option refers to a fixed-point nu
meric item. The PICTURE of a numeric item 
may contain a valid combination of the fol
lowing characters: 

Character ----9----

v 

p 

50 

~g~!!i!!g 
The character 9 indicates that 
the actual or conceptual digit 
position contains a numeric 
character. 

The character v indicates the 
position of an assumed decimal 
point. Since a numeric item 
cannot contain an actual deci
mal point, an assumed decimal 
point is used to provide the 
compiler with information con
cerning the scaling alignment 
of items involved in computa
tions. Storage is never 
reserved for the character v. 

The character P represents a 
numeric digit position for 
which storaqe is never reserved 
and which always is treated as 
if it contained a zero. P <or 
a group of Ps> is used to indi
cate the location of an assumed 
decimal point. For example, an 
item composed of the digits 123 
would be treated by an arith
metic procedure statement as 
123000 if its PICTURE were 
999PPPV; or as .000123 if its 
PICTURE were VPPP999. The 
character V may be used or 
omitted as desired. When used, 

s 

Meaning 
V must be placed in the posi
tion of the assumed decimal 
point, to the left or right of 
the P or Ps that have been 
specified. 

The character s indicates the 
presence of an operational 
sign. If used, it must be the 
leftmost character of the PIC
TURE. The presence of s is 
required where the USAGE clause 
is COMPUTATIONAL, since a sign 
is always present in a binary 
item. For internal and exter
nal decimal items, the presence 
of an S in the PICTURE indi
cates that the item contains a 
sign, i.e., the item can assume 
positive or negative values. 
The absence of an s in the PIC
TURE indicates that the item is 
to be treated as an absolute 
value, i.e., the item can 
assume only positive values. 
Its sign position is then occu
pied by a bit configuration 
which is interpreted as posi
tive, but does not represent an 
overpunch. 

This option refers to a report item. 
The editing characters that may be combined 
to describe a report item are as follows: 

9 v p • z * CR DB I 0 B $ + -

The characters 9, P, and V have the same 
meaning as for a numeric item. The mean
ings of the other allowable editing charac
ters are as follows: 

z 

Meaning 
The decimal point character<.> 
specifies that an actual deci
mal point is to be inserted in 
the indicated position and the 
source item is to be aligned 
accordingly. Numeric character 
positions to the right of an 
actual decimal point in a PIC
TUxE must consist of characters 
of one type (i.eD, *or Z or 9 
or $ or+ or->. 

The character Z is the zero 
suppression character. Each Z 
in a PICTURE represents a digit 
position. Leading zeros to be 
placed in positions defined by 
Z are suppressed, leaving the 
position blank. Zero suppres
sion also terminates upon 
encountering the actual decimal 



* 

CR 
DB 

I 

0 
B 

Meaning 
point or a v. z may appear to 
the right of an actual decimal 
point only if all digit posi
tions are represented by z•s. 
If all the digit positions are 
represented by z•s and the 
value of the data is zero, the 
entire data item will be 
blanks. A z cannot appear any
where to the right of a 9. The 
PICTURE zzz.zz is equivalent to 
a combination of the BLANK 
clause and the PICTURE ZZZ.99. 

Each asterisk in a PICTURE 
represents a digit position. 
If a digit position contains a 
leading zero, but is defined by 
•, the zero is replaced by an 
asterisk. An asterisk replaces 
each digit position so defined 
until the actual decimal point 
or a V is encountered. 
Asterisks may appear to the 
right of an actual decimal 
point only if all digit posi
tions are defined by asterisks. 
If all the digit positions are 
defined by asterisks, and the 
value of the data is zero, the 
entire data item, except for 
the actual decimal point, will 
be asterisks. If the decimal 
point character is present, the 
actual decimal point will 
always appear. An asterisk 
must not appear anywhere to the 
right of a 9. The BLANK WHEN 
ZERO clause may not be applied 
to an item having an * in its 
PICTURE. 

CR and DB are called credit and 
debit symbols, respectively, 
and may appear only at the 
right end of a picture. These 
symbols occupy two character 
positions and indicate that the 
specified symbol is to appear 
in the indicated positions if 
the value of a source item is 
negative. If the value is 
positive or zero, spaces will 
appear instead. 

The comma, zero, and B are 
insertion characters specify
ing insertion of comma, zero, 
or space, respectively. Each 
insertion character is counted 
in the size of the data item, 
but does not represent a digit 
position. The presence of zero 
suppression (Z) or check pro
tection <•> indicates suppres
sion of leading insertion char
acters, with replacement by 

!1~2.!!ing 
spaces or asterisks except for 
the insertion characters 
appearing to the left of the 
first Z or *· The comma, zero, 
and B may also appear in con
junction with a floating 
string. 

A floating string is defined as a lead
ing, continuous series of either $ or + or 
-, or a string composed of one, or a repe
tition of one such character interrupted by 
one or more insertion characters C, 0 B) 
and/or v or an actual decimal point. For 
example: 

$$,$$$,$$$ 
++++ 
-- --- --

' I $$$B$$$ 
+(8)V++ 
$$,$$$.$$ 

A floating string containing n + 1 
occurrences of $ or + or - defines !! digit 
positions. When moving a numeric value 
into a report item, the appropriate 
character floats from left to right, so 
that the developed report item has exactly 
one actual $ or + or - immediately to the 
left of the most significant nonzero digit, 
in one of the positions indicated by $ or + 
or - in the PICTURE. Blanks are placed in 
all character positions to the left of the 
single developed$ or+ or-. If.the most 
significant digit appears in a position to 
the right of positions defined by a float
ing string, then the developed item con
tains $ or + or - in the rightmost position 
of the floating string, and nonsignificant 
zeros may follow. The presence of an actu
al or implied decimal point in a floating 
string is treated as if all digit positions 
to the right of the point were indicated by 
the PICTURE character 9, and a BLANK WHEN 
ZERO clause was written for the item. In 
the following examples, b represents a 
blank in the developed items. 

PICTURE 
$$$999 
--,---,999 

Numeric Value 
14 
-456 

Developed Item 
bb$014 
bbbbbb-456 

A floating string need not constitute the 
entire PICTURE of a report item, as shown 
in the preceding examples. Restrictions on 
characters that may follow a floating str
ing are given later in this description. 

When B, comma, or zero appear to the 
right of a floating string, the string 
character floats through these characters 
in order to be as close to the leading 
digit as possible. 

Data Division 51 



The character B in a floating string 
indicates that an embedded blank is to 
appear in the indicated position, unless 
the position immediately precedes the non
zero, leading significant digit. Embedded 
Bs in a PICTURE need not be single charac
ters. Thus, $$BB$$$ is a valid PICTURE for 
a report item. The character comma or zero 
in a floating string operates similarly, 
except that the character comma or zero 
appears in the developed item instead of a 
blank. 

Character 
$ 
+ 

Meanil:!.9: 
The character $ or + or - may 
appear in a PICTURE either 
singly or in a floating string. 
As a fixed sign control 
character, the + or - must 
appear as either the first or 
last symbol in the PICTURE, but 
not both. The plus sign indi
cates that the sign of the item 
is indicated by either a plus 
or minus placed in the charact
er position, depending on the 
algebraic sign of the numeric 
value placed in the report 
field. The minus sign indi
cates that blank or minus is 
placed in the character posi
tion, depending on whether the 
algebraic sign of the numeric 
value placed in the report 
field is positive or negative, 
respectively. As a fixed ins
ertion character, the dollar 
sign may appear only once in a 
PICTURE. 

Other rules for a report item PICTURE are 
as follows: 

1. The appearance of one type of floating 
string precludes any other floating 
string. 

2. There must be at least one digit posi
tion character. 

3. If there are no 9s, BLANK WHEN ZERO is 
implied unless all numeric positions 
contain asterisks. 

4. The appearance of a floating string or 
fixed plus or minus sign insertion 
characters precludes the appearance of 
any other of the sign control inser
tion characters, namely, + - CR DB. 

5. The characters in a PICTURE to the 
left of an actual or assumed decimal 
point Cor in the entire PICTURE if no 
decimal point is given>, excluding the 
characters that comprise a floating 
string, are subject to the following 
restrictions: 

52 

a. Z may not follow * or 9 or a 
floating string. 

b. * may not follow 9 or z or a 
floating string. 

6. The characters to the right of a deci
mal point up to the end of a PICTURE, 
excluding the fixed insertion charac
ters + - CR DB Cif present>, are sub
ject to the following restrictions: 

a. Only one type of digit position 
character may appear. That is, 
asterisks, Zs, 9s, and floating
string digit position characters $ 
+ - are mutually exclusive. 

b. If any of the numeric character 
positions to the right of a deci
mal point is represented by + or -
or $ or Z or * then all the numer
ic character positions in the PIC
TURE must be represented by the 
same character. 

7. A floating string must begin with at 
least two consecutive appearances of 
the + or - or $ character. 

8. The PICTURE character 9 can never 
appear to the left of a floating or 
replacement character. 

9. Floating or replacement characters + -
z $ * cannot be mixed in a PICTURE 
description. They may appear with 
fixed characters as follows: 

a. * or Z with fixed $ 

b. $ (fixed or floating> with fixed 
rightmost + or -

c. * or z with fixed leftmost + or -

d. * or z with fixed rightmost + or -

r---, 
JEXTJ Fp-Form Option 
L ___ J 

This option refers to an external 
floating-point item. The PICTURE of an 
external floating-point item consists of 
all of the following: 

1. + or - C+ indicates that a plus sign 
represents positive values and that a 
minus sign represents negative values; 
- indicates that a blank represents 
positive values and that a minus sign 
represents negative values> 



Page of GC28-6516-8, Revised 12/30/70, by TNL: GN28-0427 

2. One to sixteen 9s representing the 
mantissa, with a leading, embedded, or 
trailing decimal point or V 

3. The letter E, which denotes the 
exponent, occupies one byte of storage 
and is included in the printout 

4. + or - (same as point 1 above) 

5. Two 9s representing the exponent 

Additional Notes on the PICTURE Clause 

The following considerations pertain to 
use of the PICTURE clause. 

1. A PICTURE clause may be used only at 
the elementary level. 

2. An integer enclosed in parentheses and 
following A X 9 Z * 0 P - B , $ or + 
indicates the number of consecutive 
occurrences of the PICTURE character. 

3. All characters, except P, v, and S are 
counted in the total size of a data 
item. CR and DB occupy two character 
positions. 

4. A maximum of 30 character positions is 
allowed in a PICTURE character string. 
For example, PICTURE A(79) consists of 
five PICTURE characters. 

5. A PICTURE must consist of at least one 
of the characters A X 9 * Z or at 
least two consecutive appearances of 
the + or - or $ character. 

6. The characters • s V CR and DB can 
appear only once in a PICTURE. CR and 
DB may not both appear in the same 
PICTURE. 

7. Except for a floating-point item, a 
report item can possess only one sign. 

The examples in Table 4 illustrate the 
use of PICTURE to edit data. In each 
example, a movement of data is implied, as 
indicated by the column headings. 

BLANK Clause 

This clause specifies that the item 
being described is filled with spaces 
whenever the value of the item is zero. 
The BLANK clause may be used only for 
report items specified at an elementary 
level. 

The format of the BLANK clause is: 

.-----------------------------------------, 
lf!LANK WHEN ZERO I 
L-----------------------------------------J 
Table 4. Editing Applications of the 

PICTURE Clause 
r---------------T-------------------------1 
I source Area I Receiving Area I 
~--------T-------f------------T------------~ 
I I Data I I Edited I 
!PICTURE! Value I PICTURE I Data I 
~-------+-------+------------+------------~ 
IS99999 I 12345 -ZZ,ZZ9.99 12,345.00 
IS99999V 00123 $ZZ,ZZ9.99 $ 123.00 
IS9(5) 00100 $ZZ,ZZ9.99 $ 100.00 
IS9(5)V 00000 -ZZ,ZZ9.99 o.oo 
19 ( 5) 00000 $ZZ, ZZZ. 99 $ • 00 
19(5) 00000 $ZZ,ZZZ.ZZ 
l999V99 12345 $ZZ,ZZ9.99 $ 123.45 
IV99999 12345 $ZZ,ZZ9.99 $ 0.12 
19(5) 12345 $**•**9.99 $12,345.00 
19(5) 00123 $**•**9.99 $***123.00 
19(5) 00000 $**•***.99 $******.00 
19(5) 00000 $**•***•** ********** 
l99V999 12345 $**•**9.99 $****12.34 
19(5) 12345 $$$,$$9.99 $12,345.00 
19(5) 00123 $$$,$$9.99 $123.00 
19(5) 00000 $$$,$$9.99 $0.00 
l9(4)V9 12345 $$$ 1 $$9.99 $1,234.50 
V9(5) 12345 $$$,$$9.99 $0.12 
S99999V -12345 -ZZZZ9.99 -12345.00 
S9(5)V 12345 -ZZZZ9.99 12345.00 
S9(5) -00123 -ZZZZ.99 - 123.00 
S99999 12345 ZZZZ9.99 12345.00 
S9(5) -12345 ZZZZ9.99- 12345.00-
89(5) 00123 ------.99 123.00 
S9(5) -00001 ------.99 -1.00 
S9(5) 12345 +ZZZZZ.99 +12345.00 
S9(5) -12345 +ZZZZZ.99 -12345.00 
S9(5) 12345 ZZZZZ.99+ 12345.00+ 
S9(5) -12345 ZZZZZ.99 12345.00 
S9(5) 00123 ++++++.99 +123.00 
S9(5) 00001 ------.99 1.00 
9(5) 00123 ++++++.99 +123.00 
9(5) 00123 ------.99 123.00 
9(5) 12345 99BB999 12 345 
9(5) 12345 9900999 1200345 
S9(5) -12345 ZZZZZ.99CR 12345.00CRI 

IS9(5) 12345 $$$$$$.99CR $12345.00 I 
L-------i--------'------------i------------J 
VALUE Clause 

The VALUE clause defines condition-name 
values and specifies the initial value of 
Working-Storage items. The format of this 
clause is: 

.-----------------------------------------, 
!VALUE IS literal I L_ _________________________________________ J 

The size of a literal given in a VALUE 
clause must be less than or equal to the 
size of the item as given in the PICTURE 

Data Division 53 



Page of GC28·-6516-8, Revised 12/30/70, by TNL: GN28-0427 

clause, with the provision that the literal 
must also include leading or trailing zeros 
to reflect Ps in the PICTURE. The posi
tioning of the literal within a data area 
is the same as the positioning that would 
result from specifying a MOVE of the liter
al to the data area. The type of literal 
written in a VALUE clause depends one the 
type of data item, as specified in the data 
item formats earlier in this text. 

If the literal specified is a figurative 
constant, the size of the item generated is 
the size specified in the PICTURE clause. 

When an initial value is not specified, 
no assumption should be made regarding the 
initial contents of an item in Working
Storage. 

The VALUE clause can only be specified 
for elementary items other than report and 
external floating point. 

In the File Section and Linkage Section 
the VALUE clause can appear only in con
junction with a level 88 item. 

The VALUE clause must not be written in 
a Record Description entry that also has an 
OCCURS or REDEFINES clause, or in an entry 
that is subo:rdinate to an entry containing 
an OCCURS or REDEFINES clause. In the 
latter case, an 88 level VALUE clause may 
be subordinate to the OCCURS or REDEFINES 
clause. The VALUE clause cannot be used to 
specify the initial value of an item fol
lowing a variable portion of a Working
storage record defined by the DEPENDING 
option of the OCCURS clause. 

OCCURS Clause 

The OCCURS clause is used in defining 
related sets of repeated data, such as 
tables, lists, vectors, matrixes, etc. It 
specifies the number of times that a data 
item with the same format is repeated. 
Record Description clauses associated with 
an item whose description includes an 
OCCURS clause apply to each repetition of 
the item being described. The subject of 
an OCCURS clause is the data-name described 
by this clause and represents a table ele
ment. A table element must be fewer than 
32,767 bytes. The subject of the OCCURS 
clause must be subscripted whenever it is 
referred to in any procedure division sta
tement. Further, if the subject of the 
OCCURS clause is the name of a group item, 
all data items within the group must be 
subscripted whenever they are used. 

The OCCURS clause must not be used in 
any Record Description entry having a level 

54 

'number 01 or 88. Option 1 of the OCCURS 
clause has the following format: 

Option 1 

r----------------------------------------1 
!OCCURS integer TIMES I L. ________________________________________ J 

Integer represents the exact number of 
occurrences. 

Option 2 of the OCCURS clause has the 
following format: 

Option 2 

,-----------------------------------------, 
!OCCURS integer TIMES DEPENDING ON I 
I I 
I data-name I l_ ________________________________________ J 

In Option 2, integer refers to the maxi
mum number of occurrences. The use of 
Option 2 does not imply that the length of 
the data item is variable, but that the 
number of occurrences of the item may vary. 
The record containing the variable number 
of occurrences 0f the item is, however, of 
variable length, as is any group containing 
the variable number of occurrences. 

In Option 2, the actual number of occur
rences is equal to the value at object time 
of the elementary item called data-name. 
This value must be a positive integer or 
zero. Hence, the PICTURE for data-name 
must describe an integer. Data-name must 
be an internal decimal, external decimal, 
or binary item. 

If data-name appears within the record 
in which the current Record Description 
entry also appears, then data-name must 
precede the variable portion of the record 
which depends on it. Data-name should be 
qualified, when necessary, but subscripting 
is not permitted. 

When a record description contains more 
than one Option 2 OCCURS clause, the record 
items affected by OCCURS DEPENDING ON 
should be initialized prior to making a 
reference to the record. 

Option 2 may be used in COBOL (E) with 
the following restrictions: 

1. Only one OCCURS clause per logical 
record is allowed. 

2. The clause must appear in the descrip
tion of either a group that contains 
the last elementary item of the rec-



ord, or in the description of the last 
elementary item itself. 

3. The item having an OCCURS clause with 
a DEPENDING ON option must not itself 
be contained in a group having any 
OCCURS clause. 

During the course of program execution, 
if the value of data-name changes, the fol
lowing should be noted: 

1. The size of any group described by or 
containing the related OCCURS clause 
will reflect the new value of 
data-name. 

r------, 
IF ONLYI 

2. L ______ J If the item described with 
the OCCURS clause is followed by any 
nonsubordinate items, their location 
will be affected by the new value of 
data-name. 

Not~: Data~ can also change because of 
a change in the value of an item that rede
fines it. In this case, the group size and 
the location of nonsubordinate items as 
described in the two preceding paragraphs 
cannot be determined. 

For more information on the use of the 
OCCURS ••• DEPENDING ON clause, see the fol
lowing publications: IBM System/360 
Operating System: COBOL (F) Programmer's 
Guide, Form GC28-6380, and IBM System/360 
Operating System: COBOL (E) Programmer's 
~. Form GC24-5029. 

Subscripting 

Subscripting provides the facility for 
referring to data items in a table or list 
that have not been assigned individual 
data-names. Subscripting is determined by 
the appearance of an OCCURS clause in a 
data description. If an item has an OCCURS 
clause or belongs to a group having an 
OCCURS clause, it must be subscripted 
whenever it is used. 

A subscript is a positive nonzero inte
ger whose value determines to which element 
a reference is being made within a table or 
list. The subscript may be represented 
either by a literal or a data-name that has 
an integral value. Whether the subscript 
is represented by a literal or a data-name, 
the subscript is enclosed in parentheses 
and appears after the terminal space of the 
name of the element. A subscript repre
s~.nted by a data-name must be an internal 
decimal, external decimal, or binary item. 

Tables may be defined so that more than 
one level of subscripting is required to 
locate an element within them. such a case 
exists when a group item described with an 
OCCURS clause contains one or more items 
also described with OCCURS clauses. A 
maximum of three levels of subscripting is 
permitted by COBOL. Multilevel subscripts 
are always written from left to right, in 
decreasing order of inclusiveness of the 
groupings in the table. Subscripts are 
written within a single pair of parentheses 
and are separated by a comma followed by a 
space. A space should also separate the 
data-name from the subscript expression. 
The following coding would result in a 
storage layout as shown in Figure 6. 

01 TABLE-A. 
02 ARRAY OCCURS 2 TIMES. 

03 VECTOR OCCURS 2 TIMES. 
04 ELEMENT OCCURS 3 TIMES USAGE 

COMPUTATIONAL PICTURE S9(9). 

TABLE-A contains three levels of subscript
ing. Reference to elementary items are 
made by subscripted name. In the Procedure 
Division a typical statement might be: 

ADD ELEMENT (2 1 1 1 3) TO SUM. 

A data-name may not be subscripted when 
it is being used as: 

1. A subscript 

2. A qualifier 

3. The defining name of a record descrip
tion entry 

4. Data-name-2 in a REDEFINES clause 

5. A data-name in the DEPENDING ON option 
of the OCCURS clause 

6. A data-name in a RECORD KEY, SYMBOLIC 
KEY, or ACTUAL KEY clause 

7. A data-name in a LABEL RECORDS clause 

8. The data-name option of a TRACK-AREA 
clause 

Subscripting A Qualified Data-Name 

Qualification is necessary when the same 
data-name is used for several different 
items of data; subscripting is necessary 
when some of the elements of a table or 
list have not been assigned individual 
names. 

In subscripting a qualified data-name 
the following rules are significant: 

Data Division 55 



Form GC28-6516-·8, page revised by TNL GN28-0266, 6/1/70 

r---------------------------------------------------------------------------------------1 
Byte number 4 bytes 

0 

4 

8 

r-----------------------11 I ELEMENT (1, 1, 1) I 
r-----------------------~ 
I ELEMENT ( 1, 1, 2) I 
r-----------------------~ 
I ELEMENT (1, 1, 3) I 

VECTOR (1 1 

ARRAY (1) 

I 
I 
I 
I 
I 
I 
I 
I 
I r-----------------------~ __, 

I ELEMENT (1, 2, 1) I) 12 

16 r--~~~~~;;-~~~-;~-;~----1 ~ 
r--;~~~~;;-<~~-2~-;>----1 \ 

VECTOR U, 2) 

20 TABLE-A 

24 
~-----------------------~ ~ 

~--:~:~~:-~~~-=~-=~----~ ) 
I ELEMENT ( 2, 1, 2) I ~ 28 

32 t--~~~;~~;-(;~-1~-;~----1 ' 
VECTOR (2, 

1) l 
ARRAY (2) 

36 
r-----------------------~ , 
~--~~~~~~~-~~~-~~-~~----~ ) 
I ELE~IBNT <2, 2, 2) I~ I 

40 2) 

44 r--;~;~;;;-<2~-2~-;>----1 \ 
VECTOR (2, 

L-----------------------J 
---------------------------------------------------------------------------------------J 

Figure 6. Storage Layout for Subscripting Example 

1. A data-name can be qualified even 
though it does not need qualification 
to make it unique. 

2. Data-names used as qualifiers are con
sidered part of the data-name being 
qualified and cannot be subscripted. 
In the example below, the higher level 
data-names 'VECTOR' and 'ARRAY' are 
used to qualify the data-name 'ELE
MENT', forming the new data-name 'ELE
MENT IN VECTOR IN ARRAY' followed by 
its subscripts. Neither 'VECTOR' nor 
'ARRAY' can be subscripted. 

As a result of these rules there are 
several correct ways of expressing sub
scripted data-names. For example, ref er
ring to Figure 6, the following expressions 
are all correct references to the 2nd ELE
MENT in the 2nd VECTOR in the 1st ARRAY: 

ELEMENT IN VECTOR IN ARRAY (1, 2, 2) 
ELEMENT IN VECTOR (1, 2, 2) 
ELEMENT IN ARRAY (1, 2, 2) 
ELEMENT Cl, 2, 2> 

The first three of these are examples of 
unnecessary, although permissible, qualifi
cation assuming that ELEMENT and VECTOR 
occur only in this hierarchy. However, if 
the name ELEMENT is used elsewhere, the 
qualification must be used. Note that the 

56 

following forms of expression are 
incorrect: 

ELEMENT (1, 2, 2) IN VECTOR IN ARRAY 
ELEMENT (2) IN VECTOR (2) IN ARRAY (1) 
ELEMENT (2) IN VECTOR <1, 2> 

JUSTIFIED RIGHT Clause 

This clause may be written only for an 
elementary alphabetic or alphanumeric item. 
Its format is: 

r-----------------------------------------1 
I JUSTIFIED RIGHT I 
L-----------------------------------------J 

When non-numeric data is moved to a 
field for which JUSTIFIED RIGHT has been 
specified, the data is so aligned that 
rightmost source characters are accommo
dated in the rightmost positions of the 
receiving field. If the receiving field is 
shorter than the source field an appropri
ate number of leftmost source characters 
are truncated. If the receiving field is 
longer than the source field excess left
most positions in the receiving field are 
filled with spaces. 



The Working-Storage Section is used to 
describe areas of storage reserved for 
intermediate processing of data. This sec
tion consists of a series of Record 
Description entries, each of which 
describes an item in a work area. 

An independent Working-Storage entry 
describes a single item that is not subdi
vided and is not itself a subdivision of 
some other item. Each of these items is 
defined in a separate Record Description 
entry, which begins with the special level 
number 77. All independent Working-Storage 
entries must precede any items having any 
of the level numbers 01 through 49. 

Data items in the Working-Storage Sec
tion that bear a definite relationship to 
each other must be grouped into records 
according to the rules for formation of 
record descriptions. All clauses that are 
used in Record Description entries may be 
used in Working-Storage Record Descriptions 
Each data-name in the Working-Storage Sec
tion that identifies a record (01 or 77 
level) must be unique, since it cannot be 
qualified by a file-name. subordinate 
data-names need not be unique, if they can 
be made unique by qualification. 

No assumption should be made about the 
initial values of Working-Storage items 
when these items have not had their initial 
values defined in a VALUE clause. 

r---1 
!EXT] LINKAGE SECTION 
L---J 

The Linkage Section describes data 
passed from another program. 

Record Description entries in the Link
age Section provide names and descriptions 
but storage within the program is not 
reserved, since the data exists elsewhere. 
Any Record Description clause may be used 
to describe items in the Linkage Section, 
with one exception: the VALUE clause may 
not be specified for other than level 88 
items. In the Linkage Section, level 01 
items are assumed to start on a doubleword 
boundary. 

The Linkage Section is required in any 
program in which an ENTRY statement with a 
USING option appears. A complete discus
sion of the ENTRY statement is contained in 
the chapter entitled "Procedure Division." 

Data Division 57 



Figure ·10 is a flowchart indicating the 
logical flow of the conditional statement 
in Figure 9. 

TEST-CONDITIONS 

A test-condition is an expression that, 
taken as a whole, may be either true or 
false, depending on the circumstances 
existing when the expression is evaluated. 

There are five types of simple test
conditions which when preceded by the word 
IF, constitute one of the five types or 
tests: relation test, sign test, class 
test, condition-name test, and overflow 
test. 

The word NOT may be used in any simple 
test-condition to make the relation specify 
the opposite of what it would express 
without the word NOT. For example, AGE NOT 
GREATER THAN 21 is the opposite of AGE 
GREATER THAN 21. NOT may also precede an 
entire condition, as in NOT (AGE GREATER 
THAN 21). AGE NOT GREATER THAN 21 and NOT 
(AGE GREATER THAN 21) are identical in 
meaning. 

Relation Test 

A relation test involves the comparison 
of two operands, either of which can be a 
data-name, a literal, or an arithmetic 
expression. Neither the comparison of two 
literals nor the comparison of an arithmet
ic expression to a non-numeric data-name is 
permitted. A figurative constant may be 
used instead of either literal-1 or 
literal-2 in a relation test. 

The format for a relation test is: 

r-----------------------------------------1 
i(data-name-1 ) I 
i,arithmetic-expression-1{ I 
I ' ~ IS [NOT] I 
j)figurative-constant-1 I 
l~literal-1 I 

\!> ' \ l < ( {data-name-2 J I I = arithmetic-expression-2 I 
I GREATER figurative-constant-2 I 
1 LESS THAN literal-2 I 
I EQUAL .!Q I 
L----------------------------------------J 

r---------------------------------------------------------------------------------------1 
' 

lF1 C1 S1 IF~ C2 IF3 C3 S2 ELSE S4 IF 4 IF5 C5 S5 ELSE 5 6 
,, 

L 
'--' 

c1 

..... 

~ \,,..,J 
el e2 

"""' 
d1 

b2"' 

62 



* 
* 

*************** 
START 

*************** 

*• 
*• 

* 
* * 

*• FALSE 
*• Cl •*•• •••••• •••• •••••••• ••. ••• •• •••• •• •••• ••• ••. ••••• ••• •••• 

*• •* 
*. . * 

*• • * * TRUE 

x 
***************** 
* * 

* 
* 
* 

Sl * 
* * ***************** 

x 
•*• 

·* *• 
•* *• 

***************** 
* * 

•*• 
·* *• 

•* *• • 
•* *• FALSE * * •* *• FALSE 

*• C2 • *• • • • • • • • X* S4 *•• ••• ••• X•. C4 •*••• ••• •••••• •••••• •••• •••••• •• 
*• •* * * *• •* * *• • * ***************** 

* TRUE 

***************** 
*• * 

*·· FALSE * 
*• C3 •*••••••••X* 

*• •* * 
S3 

* * 
* 
* *• •* 

*• ·* * * ***************** 
* TRUE 

x 
***************** 
* * 
* 
* 

S2 
* 
* * 
* 
* ***************** 

x 1 
***************** 

•* 
*• •* 

* TRUE 

***************** 
* •* *• FALSE * * 

*• C5 •*••••••••X* S6 * 
*• •* * * 

*• •* * * 
*· •* ***************** 

* TRUE 

x 
***************** 
* 
* 
* S5 

* 
* * 
* * * ***************** 

: x •••••••••• : 

: : x x • 
*NEXT SENTENCE *X••••••••••.••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
* * * * ***************** 

LControl flows to the next sentence unless otherwise directed 

Figure 10. Logical Flow of Conditional Statement with Nested IF Statements 

The symbol > is equivalent to the 
reserved words GREATER THAN. The symbol < 
is equivalent to the reserved words LESS 
THAN. The equal sign is equivalent to the 
reserved words EQUAL TO. 

COMPARISON OF NUMERIC ITEMS: For numeric 
items, a relation test determines that the 
value of one of the items is less than, 

equal to, or greater than the other, re
gardless of the length. Numeric items are 
compared algebraically after alignment of 
decimal points. Zero is considered a 
unique value, regardless of length, sign, 
or implied decimal-point location of an 
item. In the statement, IF SALES EQUAL TO 
QUOTA GO TO A, the relation test SALES 
EQUAL TO QUOTA would be evaluated as 
follows: 

Procedure Division 63 



r---------T---------T---------------------1 
JData-namel PICTURE l Value at time l 
I I I of compare I 
~---------+---------+---------------------~ 
fSALES I 9999V99 I 212.00 ~ 
!QUOTA I 999 I 212 I 
L---------i---------i---------------------J 
Evaluation is TRUE. 

COMPARISON OF NON-NUMERIC ITEMS: For non
numeric items, a comparison results in the 
determination that one of the items is less 
than, equal to, or greater than the other, 
with respect to the binary collating 
sequence of characters in the EBCDIC set. 

If the non-numeric items are of the same 
length, the comparison proceeds by compar
ing characters in corresponding character 
positions, starting from the high-order 
position and continuing until either a pair 
of unequal characters or the low-order 
position of the item is compared. The 
first pair of unequal characters encoun
tered is compared for relative position in 
the collating sequence. The item contain
ing the character that is positioned higher 
in the collating sequence is the greater 
item. The items are considered equal after 
the low-order position is compared. 

If the non-numeric items are of unequal 
length, comparison proceeds as described 
for items of the same length. If this 
process exhausts the characters of the 
shorter item, the shorter item is less than 
the longer, unless the remainder of the 
longer item consists solely of spaces, in 
which case the items are equal. In the 
statement, IF ALPHA EQUAL TO BETA GO TO A, 
the relation test ALPHA EQUAL TO BETA would 
be evaluated as follows: 

r---------T--------·-T---------------------1 
jData-namel PICTURE I Value at time I 
I i I of compare J 
~---------+---------+--------------------~ 
I ALPHA I x ( 4 ) I 0 212 I 
I BETA I x ( 3) I 212 I 
L---------i---------i---------------------J 
Evaluation is FALSE. 

Consider the following example Clower case 
b indicates blank): 

r---------T---------T---------------------1 
fData-NamelPICTURE I Value at time I 
I ~ I of compare l 
~---------+--------·-+---------------------1 
!ALPHA IX(5) I ABCDE I 
!BETA fX(7) I ABCDEbb I 
L---------L---------L---------------------J 
Evaluation is TRUE. 

Table 5 indicates the characteristics of 
the items being compared and the type of 

64 

comparison made. A blank box in Table 5 
indicates that the test is not permitted. 

Sign Test 

This type of condition tests whether or 
not the value of a numeric item is less 
than zero (NEGATIVE), greater than zero 
(POSITIVE), or is zero (ZERO). The value 
zero is considered neither positive nor 
negative. 

The format for a sign test is: 

r-----------------------------------------1 
l I 
!{data-name } {POSITIVE} I 
J IS [NOT] ZERO I 
~ arithmetic-expression NEGATIVE I L_ ________________________________________ J 

The following are examples of the use of 
the SIGN test: 

PERFORM A UNTIL RESULT IS NEGATIVE. 

IF A * B - C IS NOT ZERO GO TO D. 

When a class test is specified, deter
mination is made as to whether or not an 
item consists solely of: 

1. The characters 0 through 9 (NUMERIC) 

2. The characters A through Z and space 
(ALPHABETIC) 

The item to be tested must be an elemen
tary item and either alphanumeric, alpha
betic, internal decimal, or external deci
mal. The valid forms of the class test are 
shown in Table 6. 

The format for the class test is: 

r-----------------------------------------1 
I {NUMERIC } I 
~data-name IS [~OT] I 
] ALPHABETIC I L_ ________________________________________ J 

If the last character of an otherwise 
numeric field contains a digit with a sign 
overpunch, the field is considered numeric. 
For a single character alphanumeric field 
containing a digit with a sign overpunch, 
the tests IF NUMERIC and IF ALPHABETIC will 
both be considered true whereas the NOT 
form of the tests will both be considered 
false. For example,, if a 1-character 



alphanumeric field called FIELD is being 
tested and contains the hexadecimal conf ig
guration Cl, both of the following will be 
true because hexadecimal Cl could be inter
preted either as an A or as a +1: 

•Table 5. Permissible comparisons 

IF FIELD IS ALPHABETIC MOVE 'A' TO CODE-A. 

IF FIELD IS NUMERIC MOVE 'N' TO CODE-N. 

ALL 'character' 

figurative constant ALL 'character' 

Procedure Division 65 



The following five arithmetic operators 
may be used in arithmetic expressions: 

Operator Operation 

+ Addition 
subtraction 

* Multiplication 
/ Division 
** Exponentiation 

Parentheses may be used to indicate the 
hierarchy of operations on elements in an 
arithmetic expression. 

When the hierarchy of operations in an 
expression is not completely specified by 
parentheses, the order of operations is 
assumed to be: unary plus or minus, then 
exponentiation, then multiplication and 
division, and finally addition and subtrac
tion. Thus, the expression A + B / c + D 
** E * F - G is read as A+ (B / C) + ((D 
** E) * F) - G. 

When the order of a sequence of consecu
tive operations on the same hierarchical 
level (i.e., consecutive multiplications 
and divisions, consecutive additions or 
subtractions, or consecutive exponentia
tion> is not completely specified by paren
theses, the order of operation is assumed 
to be from left to right. Thus, certain 
expressions ordinarily considered ambiguous 
are permitted in COBOL. For example, A / B 
* C and A / B / C are taken to mean CA / B) 
* C and (A / B) / c, respectively. The 
expression A * B / c • D is taken to mean 
((A * B) / C) * D. The expression A ** B 
** c is taken to mean (A ** B) ** c. 

Exponentiation of a negative value is 
allowed only if the exponent is a literal 
or data-name having an integral value. 

Exponentiation .is perf orrned in floating
point when an exponent is a fractional lit
eral or is a data-name whose PICTURE 
describes a fractional number. 

The plus and minus signs are the only 
allowable unary operators. A unary opera
tor is an operator having only one operand. 
The unary plus or minus sign must be the 
first character of an arithmetic expres
sion, or must be immediately preceded by a 
left parenthesis. 

COMPILER-DIRECTING DECLARATIVE SECTIONS 

Declarative sections are identified by 
compiler-directing statements that specify 
the circumstances under which a procedure 
is to be executed in the object program. 

68 

A declarative section consists of a 
section-name, followed by the word SECTION 
and a period, and a USE sentence followed 
by procedural statements. Declarative sec
tions must be grouped together at the 
beginning of the Procedure Division, pre
ceded by the key word DECLARATIVES in Mar
gin A, and followed by the key words END 
DECLARATIVES, where END must also appear in 
Margin A. DECLARATIVES and END DECLARA
TIVES must each be followed by a period. A 
declarative section is terminated by the 
occurrence of another section or the words 
END DECLARATIVES. 

Although declarative sections are 
located at the beginning of the Procedure 
Division, execution of the object program 
starts with the first procedure following 
the termination of the declarative 
sections. 

The general form for a declarative sec
tion is: 

PROCEDURE DIVISION. 
DECLARATIVES. 
{section-name SECTION. USE-sentence. 
{paragraph-name. sentence •••• } ••• } 
END DECLARATIVE§. 

The procedure-branching statements 
ALTER, GO TO, PERFORM, STOP RUN, and STOP 
literal can refer to a declarative section 
or to paragraph names within it or can 
appear within declaratives. Restrictions 
on the appearance of these statements are 
given in Table 18. 
r------1 
IF ONLYJ 
L------J The SORT statement should not 
appear within a declarative section. 

The USE sentence identifies the type of 
declarative. 

There are two options of the USE sen
tence. Each is associated with one of the 
following types of procedures: 

1. Report-writing procedures 

2. Input/output error-checking procedures 
r------1 
IF ONLY! 
L------J option 1 

Option 1 of the USE declarative is used 
to designate procedures that are to be 
executed by the Report Writer before the 
report group specified by data-name is pro
duced~ data-name may be the name of any 
type of report group except DETAIL. The 



.at for this option of the USE declara
is: 

--------------------------------------, 
BEFORE REPORTING data-name. I ______________________________________ J 

eport Writer statements must not be 
in procedures associated with this 

on of the USE sentence. Further infor
on on the Report Writer is contained in 
chapter entitled "Report Writer 
ure." 

11 logical paths within the declarative 
ion must lead to a common exit point. 

PERFORM statements may refer to 
edure-names outside the section. 

ption 2 of the USE declarative is used 
rovide user input/output error-
essing procedures in addition to the 
edures supplied by the operating sys
s Data Management. The format of this 
on of the USE declarative is: 

--------------------------------------, 
AFTER STANDARD ERROR PROCEDURE I 

I 
N file-name. I ______________________________________ J 

ithin the section, the file associated 
the USE sentence may not be ref erred 

y an OPEN, READ, WRITE, or REWRITE • 
a CLOSE statement may be given for the 

n exit from this type of declarative 
ion can be effected by executing the 
statement in the section (normal 

rn>, or by means of a GO TO statement. 
e 9 summarizes the facilities and limi
ons associated with each file-
essing technique when an error occurs. 

ef erences to procedure-names outside 
declarative section are permitted, and 
mmon exit point is not required. 

L VERBS 

he COBOL verbs are the basis of the 
edure Division of a source program. 

he organization of the remainder of 
section is based on the classif ica

s used in the following list: 

Input/Output Verbs 
OPEN 
READ 
WRITE 
REWRITE1 
CLOSE 
DISPLAY 
ACCEPT 

Data Manipulation Verbs 
MOVE 
EXAMINE 
TRANSFORM1 

Arithmetic Verbs 
COMPUTE 
ADD 
SUBTRACT 
MULTIPLY 
DIVIDE 

Procedure-Branching Verbs 
STOP 
GO TO 
ALTER 
PERFORM 

compiler-Directing verbs 
EXIT 
ENTER 
NOTE 

INPUT/OUTPUT STATEMENTS 

The COBOL input/output verbs provide the 
means of storing data on an external device 
(such as magnetic tape, disk units, etc.> 
and getting such data from the external 
devices. The following is a discussion of 
the verbs associated with these functions. 

OPEN Statement 

The OPEN statement initiates the proc
essing of both input and output files; its 
format is: 

;---------------------[~;~;~-------]-----1 
IOPENCINPUT{file-name } ••• 11 
I WITH NO REWIND I 
I . I 
I [OUTPUT{file-name[WITH NO REWIND]} ••• 11 
I . I 
I CI-Q{file-name} ••• J I 

'-----------------------------------------J 
1Extension 

Procedure Division 69 



Page of GC28-6516-8, Revised 12/30/70, by TNL: GN28-0427 

Table 9. Error-Processing summary 
r------------·-------------T-------------------T---------T---------------------·----------1 
I File-Processing I I !Error-Processing Declarative I 
I Technique INo Error-ProcessinglType of !Section Written I 
~-----------T-------------~Declarative SectionlI-0 ~---------------T---------------~ 
!ACCESS !ORGANIZATION !Written IStatementlNormal Return IGO TO Exit I 
1-----------+-------------+-------------------f---------+---------------+---------------~ 
SEQUENTIAL !Standard IDD card option if IREAD IDD card option,IUser limited to 
(or not I Sequential lone is specified. !WRITE lif one exists. !CLOSE for file-
specified) ICQSAM) !Otherwise, end of !REWRITE !Otherwise, !name 

I jtask I lend of task(l> I 
~-------------+-------------------+---------+---------------~ 
I INDEXED I End of task I READ I Processing of I 
ICQISAM) I !REWRITE !The file I 
I I I lmay yield I 
I I I !unpredictable I 
I I I I results I 
I I ~---------+---------------~ 
I I I WRITE I Processing of I 
I I I I the file I 
I I I !may yield I 
I I I !unpredictable I 
I I I I results I 
~-------------~ 1---------+---------------i 
I DIREC'l' I I READ I Processing of I 
ICBSAM) I I !file is limited! 
I I I I to CLOSE I 
I I ~---------i I 
I I I WRITE I I 
~-------------i 1---------+---------------i 
I RELATIVE I I READ I Processing of I 
I (BSAM) I I I file is limited! 
I I ~---------ito CLOSE I 
I I I WRITE I I 

1-----------+------·-------+-------------------+---------+---------------+---------------i 
RANDOM I INDEXED I Error is ignored I READ I Processing of I Processing of I 

I :BISAM) I !REWRITE !the file !the file I 
I I I lmay yield jmay yield I 
I I I !unpredictable !unpredictable I 
I I I jresults jresults I 
I I 1---------+---------------+---------------~ 
I I !WRITE !Processing of !Processing of I 
I I I lthe file lthe file I 
I I I I may yield I may yield I 
I I I !unpredictable !unpredictable I 
I I I I results I results I 
~-------------+-------------------+---------+---------------+---------------i 
!DIRECT !End of task !READ !Continued !Continued I 
l<BDAM> I !WRITE !processing of !processing of I 

'I I !REWRITE !file permitted !file permitted I 
t·-------------i I I I I 
I RELATIVE I I I I I 
l<BDAM) I I I I I 
I I I I I I 

t-----------i-------------~-------------------..1---------~---------------~---------------i 1<1> File must not be closed if normal return is taken. I 
L------------------·---------------------------------------------------------------------J 

70 

The OPEN statement must be specified for 
all files, except sort-files, used by a 
COBOL program. A sort-file is the file 
referred to by sort-file-description-name 
in a SORT statement.~ The OPEN statement 
must be executed prior to any other state-

~Implemented for COBOL F only 

I ment referencing a file. A second OPEN 
statement for a given file cannot be 
executed until a CLOSE statement without 
the UNIT or REEL option has been executed 
for that file. 

The OPEN statement does not obtain or 
release the first data record. A READ or 



Page of GC28-6516-8, Revised 12/30/70, by TNL: GN28-0427 

WRITE statement, respectively, must be 
executed to perform these functions. A 
READ must be executed before any other 
reference can be made to a file opened for 
input. 

At least one of the options (INPUT, OUT
PUT, or I-0) must be specified; however, 
there may be no more than one instance of 
each option for a given OPEN statement. 
For example, if two files, AFILE and BFILE, 
are both to be opened as INPUT, the coding 
might be: 

OPEN INPUT AFILE BFILE. 

The INPUT option initiates Data Manage
ment label checking and permits reading the 
file. 

The OUTPUT option initiates Data Manage
ment label creation and permits creating 
the file. 

The I-0 option permits the opening of a 
direct-access file for reading, updating, 
or adding records. It also performs the 
same label checking functions as those for 
a file opened as INPUT. 

The NO REWIND option has no effect on 
file positioning at the time a file is 
opened. It appears in the format for lan
guage consistency. When either the NO 
REWIND option or no option whatever is 
specified, positioning of the file at the 
time the file is opened is controlled by 
the operating system in conjunction with 
the DD statement associated with the file. 

A file may be opened as INPUT and OUTPUT 
and I-0 (with intervening CLOSE statements 
without the UNIT or REEL option) unless it 
has both indexed organization and sequen
tial access. A file that has both indexed 
organization and sequential access may be 
opened as INPUT and I-0 (with intervening 
CLOSE statements without the UNIT or REEL 
option). 

The REVERSED Option: When the REVERSED 
option is specified, subsequent READ state
ments for the file make the data records of 
the file available in reverse order. 

The REVERSED option can be used only for 
sequential reel (i.e., magnetic tape) proc
essing. When the REVERSED option is speci
fied, the file must be positioned at its 
end; that is, the file must have been pre
viously closed with the NO REWIND option. 
Files with non-standard labels should not 
be opened for reversed reading unless the 
last label is followed by a tape mark. 
Otherwise, the system reads labels as if 
they were data records. 

The REVERSED option cannot be used for a 
file containing type V records. If the 
option is specified for a file containing 
type U records, doubleword boundary align
ment will be obtained only if the lengths 
of the logical records are divisible by 
eight. 

An example of an OPEN statement is: 

OPEN OUTPUT X-FILE, 
INPUT Y-FILE REVERSED, 
Z-FILE. 

Note: Z-FILE is not opened for reversed 
reading. 

READ Statement 

The functions of the READ statement are: 

1. For sequential file processing, to 
make available the next logical record 
from an input file, and to allow per
formance of specified imperative 
statements when the end-of-file is 
detected. 

The format for this option of the READ 
statement is: 

Option 1 

r-----------------------------------------1 IREAD file-name RECORD [INTO data-name] I 
I I 
I AT ~ND imperative-statement... I 
'-----------------------------------------J 
2. For nonsequential file processing, to 

make available a specific record from 
a direct-access file, and to allow 
execution of statements if the con
tents of the associated symbolic and/ 
or actual key is found to be invalid. 

The format for this option of the READ 
statement is: 

Option 2 

r-----------------------------------------1 IREAD file-name RECORD [INTO data-name] I 
I I 
I [INVALID KEY imperative-statement ••• 11 
L-----------------------------------------J 

When a READ statement is executed, the 
next logical record in the named file 
becomes accessible in the input area 
defined by the associated Record Descrip
tion entry. The file-name must be defined 
by a File Description entry in the Data 
Division. 

Procedure Division 71 



Page of GC28-6516-8, Revised 12/30/70, by TNL: GN28-0427 

The record is available in the input 
area until the next READ statement (or a 
CLOSE statement) for that file is executed. 

If more than one record description is 
given following the FD-entry for the file, 
it is the programmer's responsibility to 
recognize which record is in the input area 
at any given time. 

Regardless of the method used to overlap 
access time with processing time, an input 
record is made available by a READ state
ment prior to execution of the next 
statement. 

The INTO data-name option of the READ 
statement is equivalent to a READ statement 
and a MOVE statement. Data-name must be 
the name of a sort-file description1, a 
Working-Storage record, or a previously 
opened output. record. When this option is 
used, the current record becomes available 
in the area specified by data-name as well 
as in the input area. Data is moved into 
that area in accordance with the rules for 
the MOVE statement without the CORRESPOND
ING option. 

The AT END clause is required for files 
for which access is sequential. The 
imperative statements in this clause are 
executed when an end-of-file condition is 
detected. 

Once the imperative statements in the AT 
END clause of a READ statement have been 
executed for a file, any subsequent attempt 
to read from that file or to refer to logi
cal records in that file constitutes an 
error, unless subsequent CLOSE and OPEN 
statements for that file have been 
executed. In particular, when the Report 
Writer feature1 is used and REPORT FOOTING 
refers to the input (e.g., SOURCE from 
input>, a TERMINATE statement following the 
end-of-file is a violation of the above
mentioned rule. (The reason for this is 
that TERMINATE, by definition, produces 
REPORT FOOTING.) 

For COBOL F, the INVALID KEY option may 
be given for files specified as ACCESS IS 
RANDOM when no error-processing declarative 
sections have been specified for the files. 
For COBOL E, the INVALID KEY clause is 
required for files specified as ACCESS IS 
RANDOM. The error-processing declarative 
may also be specified. The statements fol
lowing INVALID KEY are executed when the 
contents of the actual key and/or symbolic 
key are invalid. 

The keys a.re considered invalid under 
the following conditions: 

1 Implemented :for COBOL F only 

72 

1. When indexed organization and random 
access are specified, and no record 
exists whose RECORD KEY field matches 
the contents of the SYMBOLIC KEY 
field. 

2. When relative organization and random 
access are specified, if the relative 
record number is outside the limits of 
the file. 

3. When direct organization and random 
access are specified, if the record; is 
not found within the search limits or 
the relative track number is outside 
the limits of the file. 

If ACCESS IS RANDOM is specified for the 
file, the symbolic key and/or the actual 
key of the file must be set to the desired 
values prior to the execution of the READ 
statement. 

Each time an end-of-volume condition 
occurs on a file, the READ statement causes, 
the following operations to take place: 

1. The volume trailer label-checking pro
cedures of Data Management are 
executed. 

2. A volume switch occurs. 

3. The volume header label-checking pro
cedures of Data Management are 
executed. 

4. The next logical record in the file is 
made available for processing. 

If the end-of-volume is also the logical 
end-of-file, only the operations specified 
in item 1, and then the statements follow
ing AT END, are executed. 

The following are examples of READ 
statements: 

READ INVENTORY AT END GO TO FINISH. 

READ PAYROLL-FILE INTO AREA-1 AT END GO TO 
CALC-2. 

READ PERSONNEL-FILE INVALID KEY GO TO 3. 

WRITE Statement 

The function of Option 1 of the WRITE 
statement is to release a logical record 
for a file specified as OUTPUT or I-0 in an 
OPEN statement and to allow performance of 
specified imperative statements if, for 
random access files, the contents of the 
associated actual key and/or symbolic key 
are found to be invalid. 



Option 1 of the WRITE statement has the 
following format: 

Option 1 

r-----------~----------------------------1 
IWRITE record-name [FROM data-name-1] i 
l I 
I C!~AL!~ KEY imperative statement ••• ]] 
l-----------~----------------------------J 

Option 2 of the WRITE statement is used 
for output destined to be printed or 
punched if the user wishes to control line 
spacing or pocket selection. 

Option 2 of the WRITE statement has the 
following format: 

Option 2 

r-----------------------------------------1 
IWRITE record-name CfEQ~ data-name-1] ] 
I 1 
I {data-name-2l J 
I AFTER ADVANCING ( LINES J 
I integer ) I l _________________________________________ J 

An OPEN statement must be executed prior 
to executing the first WRITE statement for 
a file. After the WRITE statement is 
executed, the logical record named by 
~ecord-name is no longer available. 

When the FROM option is used, data-name-
1 must not be the name of an item in the 
file containing recQ~d-~amg. This form of 
the WRITE statement is equivalent to the 
statement MOVE data-name-1 TO record-name 
followed by the statement WRITE record
name. Moving takes place according to the 
rules specified for the MOVE statement 
without the CORRESPONDING option. 

After execution of a WRITE statement 
with the FROM option, the information in 
record-name is no longer available, but the 
information in ~ata=~~mg-1 is available. 

When the end-of-volume condition occurs, 
the WRITE statement causes the following 
operations to take place: 

1. The trailer-label writing procedure of 
Data Management is executed. 

2. A volume switch occurs. 

3. The header-label writing procedure of 
Data Management is executed. 

4. The next logical record area in the 
output file is made availabl~. 

For COBOL F, the INVALID KEY option may 
be written for a file specified with either 
or both of the clauses ORGANIZATION IS IN-

DEXED and ACCESS IS RANDOM when no error
proces sing declarative has been written for 
that file. For COBOL E, the INVALID KEY 
clause is required for files specified with 
either or both of the clauses ORGANIZATION 
IS INDEXED and ACCESS IS RANDOM. The 
error-processing declarative may also be 
specified. The statements following INVAL
ID KEY are executed when the contents of 
actual key and/or symbolic key are invalid. 
The INVALID KEY sequence could be executed 
when: 

1. The file has been opened as OUTPUT, 
organization is indexed, and access is 
either sequential or not specified. 
In this case the INVALID KEY sequence 
would be executed when either Ca> the 
contents of the record key field are 
not in ascending order when compared 
with the contents of the record key 
field of the preceding record, or (b) 
the contents of the record key field 
duplicate that of the preceding 
record. 

2. The file has been opened as I-0, 
organization is indexed, access is 
random, and a record is being added to 
the file. In this case the INVALID 
KEY sequence would be executed when 
the contents of the SYMBOLIC KEY field 
associated with the record to be added 
duplicate contents of a record key 
field already in the file. 

3. The file has been opened as I-O, 
organization is direct, access is ran
dom, and a record is being added to 
the file. In this case the INVALID 
KEY sequence would be executed when 
either (a) the relative track speci
fied in the ACTUAL KEY field is out
side the limits of the file, or Cb) 
for files with format F records, the 
figurative constant HIGH-VALUE or its 
equivalent has been moved into the 
first character position of the con
tents of the SYMBOLIC KEY field. 

If ACCESS IS RANDOM is specified, the 
symbolic key and/or actual key must be set 
to the desired values prior to the execu
tion of the WRITE statement. 

When Option 2 of the WRITE statement is 
used, the first character in each logical 
record for the file must be reserved by the 
user for the control character. The com
piler will generate instructions to insert 
the appropriate carriage control character 
as the first character in the record. If 
the records are to be punched, the first 
character is used for pocket selection. It 
is the user's responsibility to see that 
the appropriate characters are punched on 
the carriage control tape. 

Procedure Division 73 



Form GC28-6516-8, page revised by TNL GN28-0266, 6/1/70 

If Option 2 of the WRITE statement is 
written for a record in a file, every WRITE 
statement for records in the same file must 
also contain this option. 

When Option 2 of the WRITE statement is 
used, integer must be unsigned, and must 
have the value O, 1, 2, or 3. The value 0 
designates a carriage-control "eject" 
(i.e., skip to channel 1 of the next page>. 
The value 1 designates single spacing; the 
value 2, double spacing; and the value 3, 
triple spacing. 

Data-name-2 must specify an alphanumeric 
item of length one (i.e., with PICTURE X). 
The following chart shows the values that 
data-name-2 may assume and their 
interpretations. 

Value 
b (blank> 
0 

+ 
1 through 9 

A,B,C 

v,w 

Interpretation 
single spacing 
double spacing 
triple spacing 
suppress spacing 
skip to channel 1 

through 9, respectively 
skip to channel 10, 

11, 12, respectively 
pocket select 1 or 2, 

respectively. 

The following are examples of WRITE 
statements: 

WRITE SALARY-RECORD FROM OLD-RECORD AFIE~ 
ADVANCING 0 LINES. 

WRITE NEW-WORK-CARD FROM WORK-CARD INVALID 
KEY GO TO END. 

r---, 
I EXT J._B:§~B!'.!'.!L§t~t§.!!!§.nt l ___ J 

The function of the REWRITE statement is 
to replace a logical record on a direct
access device with a specified record and 
to allow execution of a specified procedure 
if the contents of the associated actual 
key and/or symbolic key are found to be 
invalid. 

The format of the REWRITE statement is: 

r-----------------------------------------1 
!REWRITE record-name [FROM data-name] I 
I I 
I C!~~~!Q KEY imperative-statement ••• ] I l _________________________________________ J 

A REWRITE statement may be issu~d only 
after a READ statement for the file has 
been executed. A REWRITE statement can be 

74 

written only for files opened as I-0. In 
COBOL E, but not in COBOL F, if such a file 
has indexed organization and random access 
(BISAM), a REWRITE statement must be given 
after every valid READ and previous to any 
otner I-0 statement for the file. CA 
REWRITE statement should not be executed if 
an invalid READ occurs.> The user cannot 
change the size of a record between the 
time it is read and the time it is 
rewritten. 

When the FROM option is used, data-name 
must not be the name of an item in a file 
containing record-name. This form of the 
REWRITE statement is equivalent to the 
statement MOVE data-name TO record-name 
followed by the statement REWRITE record
name. Moving takes place according to the 
rules specified for the MOVE statement 
without the CORRESPONDING option. 

For COBOL F, the INVALID KEY option may 
be given for files specified as ACCESS IS 
RANDOM when no error-processing declarative 
sections have been specified for the files. 
For COBOL E, the INVALID KEY clause is 
required for files specified as ACCESS IS 
RANDOM. The error-processing declarative 
may also be specified. The statements fol
lowing INVALID KEY are executed when the 
contents of the actual key and/or symbolic 
key are invalid. 

The keys are considered invalid under 
tne following conditions: 

1. When organization is relative and 
access is random, if the relative 
record number given in the symbolic 
key field is outside the limits of the 
file. 

2. When organization is directw access is 
random, and the record is not found 
within the search limits of the file; 
or the relative track number in the 
actual key field is outside the limits 
of the file. 

Note: When a file's organization is in
dexed and access is random, the INVALID KEY 
clause may be used for language consisten
cy, thus allowing the programmer to change 
access methods without rewriting the Proce
dure Division statements. When the clause 
is specified for such a file, the state
ments following INVALID KEY are never 
executed. 

If ACCESS IS RANDOM is specified for the 
file, the actual key and/or the symbolic 
key must be set to the desired values prior 
to the execution of the REWRITE statement. 



Page of GC28-6516-8, Revised 12/30/70, by TNL: GN28-0427 

Since a REWRITE statement must always 
apply to the last record read, the values 
associated with the symbolic and/or actual 
key must be the same for the REWRITE state
ment as they were for the READ statement. 

The following is an example of the 
REWRITE statement: 

REWRITE SALARY-RECORD FROM HEAD-1 INVALID 
KEY GO TO RESTART. 

CLOSE Statement 

The CLOSE statement is used to terminate 
the processing of one or more units of 
files. The format of the CLOSE statement 
is: 

,-----------,-------------[-g;;~-]----------, 
I CLOS~ ~ file-name I 

l l } g~IT I 
I [WITH NO REWIND J I 
I WITH LOCK ••• I 
L--------------------------------~--------J 

A CLOSE statement may be executed only 
for files that have been opened. A CLOSE 
statement for a file that was opened with 
the I-0 option performs the same label
checking functions (on trailer labels) as a 
CLOSE statement for a file that was opened 
with the INPUT option. 

The effects of a CLOSE statement depend 
upon whether or not the REEL or UNIT option 
is specified. A CLOSE statement without 
the REEL or UNIT option .causes Da,ta Manage
ment closing procedures to be executed; a 
CLOSE statement with the REEL or UNIT 
option causes Data Management volume
switching procedures to be executed. 

The words REEL and UNIT are interchange
able; they are treated as the same COBOL 
reserved word. 

A CLOSE statement without the UNIT or 
REEL option must be specified to terminate 
processing of the file. Because a CLOSE 
statement without the UNIT or REEL option 
causes Data Management closing procedures 
to be executed for the current volume (that 
is, the volume just processed) of the file, 
once such a statement is executed, an OPEN 
statement must be executed before any other 
reference can be made to that file. 

Because a CLOSE statement written with 
the UNIT or REEL option causes volume-~~ 
switching procedures to be instituted, such 
a statement should be written only for 
multi-volume files assigned to specific 
devices on which removable volumes (e.g., 
tape reels) may be mounted. 

When a CLOSE statement with the UNIT or 
REEL option is executed for an OUTPUT file 
for which ORGANIZATION IS RELATIVE is spec
ified and ACCESS IS SEQUENTIAL is specified 
or assumed, Data Management volume-
swi tching procedures will be initiated. 

When a CLOSE statement with UNIT or REEL 
option is executed for an OUTPUT file for 
which ORGANIZATION IS DIRECT is specified, 
and ACCESS IS SEQUENTIAL is specified or 
assumed, the following actions will be 
taken: the current volume will be com
pleted with dummy or capacity records up to 
the end of the current extent (whose tracks 
are now considered to be part of the file>, 
Data Management volume-switching procedures 
will be initiated, and the contents of the 
ACTUAL KEY will be updated to reflect the 
relative track number of the last track of 
the old volume. 

The creation of multi-volume files is 
highly dependent upon the SPACE parameter 
of the associated DD statement and the 
number of records written by the program
mer. For further information, see the pub
lication IBM System/360 Operating System: 
COBOL (F) Programmer's Guide, Form GC28-
6380 under "Processing with BSAM" in the 
chapter "Execution Time Data Set 
Requirements." 

Note: A CLOSE statement with the UNIT or 
REEL option should not be written for a 
file for which either ACCESS IS RANDOM or 
ORGANIZATION IS INDEXED (or both) has been 
specified. 
r------, 
IF ONLYI L------J The WITH NO REWIND or WITH LOCK 
option can be specified in a CLOSE state
ment in conjunction with the UNIT or REEL 
option only in COBOL F. If more than one 
such statement is written for a file, the 
WITH NO REWIND or WITH LOCK option must be 
repeated in each statement. In other 
words, all CLOSE statements that institute 
volume switching for a file must specify 
identical options. 
r------, 
IF ONLYI L------J If a CLOSE statement with the UNIT 
or REEL option is written for a file any
where in the program, it specifies the 
positioning of the current volume at volume 
switching time whether or not the volume 
switching was initiated by the execution of 
this statement. 

VOLUME POSITIONING: The effects of the 
CLOSE statement on the positioning of the 
volumes depend on whether or not the WITH 
NO REWIND or the WITH LOCK option, or 
neither of these, is specified. When a 
CLOSE statement without the UNIT or REEL 
option is specified, the only volume 
affected by the statement is the volume for 

Procedure Division 75 



Page of GC28-6516-8, Revised 12/30/70, by TNL: GN28-0427 

which the Data Management closing proce
dures are executed. If a CLOSE statement 
with the UNIT or REEL option is specified, 
the volumes affected are all volumes for 
which Data Management volume switching pro
cedures are executed. Volume switching 
occurs when another volume is available and 
either an end-of-volume condition is 
detected during the execution of a READ or 
WRITE statement (automatic end-of-volume) 
or a CLOSE statement with the UNIT or REEL 
option is executed (forced end-of-volume>. 
The options specified in the CLOSE state
ment for a file assigned to a direct-access 
device do not affect the positioning of the 
file. 

If the CLOSE statement is specified 
without any option, there is an implied 
rewind of the current volume, and reposi
tioning to the beginning of the file on the 
current volume takes place. However, if 
the REVERSED option of the OPEN statement 
associated with the file has been speci
fied, repositioning to the end (i.e., the 
logical beginning) of the file on the cur
rent volume takes place. 

If the CLOSE statement is specified with 
only the WITH NO REWIND option, positioning 
to the end of the file on the current 
volume takes place~ If the REVERSED option 
of the OPEN statement has been specified, 
repositioning to the beginning (i.e., the 
logical end) of the file on the current 
volume takes place .. 

If the CLOSE statement is specified with 
only the WITH LOCK option, the action taken 
(e.g., rewind, unload, etc.) is a function 
of the DISP parameter of the associated DD 
statement. The action is the same whether 
or not the REVERSED option of the OPEN 
statement has been specified. 

If a CLOSE statement is specified with 
only the REEL or UNIT option, at end-of-

volume (automatic or forced) the current 
volume is rewound. However, if the 
REVERSED option of the OPEN statement has 
been specif1ed, positioning to the end of 
the file on the volume takes place. 
r------, 
IF ONLYI L------J If a CLOSE statement is specified 
with the REEL or UNIT option plus the WITH 
NO REWIND option, at the end-of-volume the 
current volume is positioned to the end of 
the file. If the REVERSED option of the 
OPEN statement has been specified, the 
volume is rewound. 
r------, 
IF ONLYI L------J If a CLOSE statement is specified 
with the REEL or UNIT option plus the WITH 
LOCK option, the action taken at automatic 
end-of-volume is a function of the DISP 
parameter. At forced end-of-volume, posi
tioning to the end of the file takes place 
unless the file was opened REVERSED, in 
which case the volume is rewound. 

The examples in Table 10 show the 
effects of different options of the CLOSE 
statement on the volume positioning for 
intermediate reels (i.e., any but the last 
reel in a multi-volume file). The words 
REEL and UNIT are interchangeable as noted 
previously; therefore, the CLOSE statements 
could be coded CLOSE UNIT... and the same 
volume positioning would occur. 

Note: The number of devices assigned to a 
multi-volume file may be less than the 
number of volumes in the file. In this 
case, units will be reused in serial order 
starting with the first. When specifying 
positioning options (e.g., CLOSE REEL WITH 
NO REWIND), the user should note that effi
ciency may be reduced due to the fact that 
positioning will take place before the 
volume is rewound and unloaded. 

Table 10. Volume Positioning for Intermediate Reels 
r----------------------------------T------------------------------------------------------1 
I CLOSE Option I Volume Positioning for Intermediate Reels I 
~--------------------------------+------------------------------------------------------i 
!CLOSE REEL WITH LOCK !Option determined from DISP parameter of I 
I I DD card I 
~--------------------------------+------------------------------------------------------i 
I I I 
!CLOSE REEL WITH NO REWIND ILOgical end of data on volume I 
~~-------------------------------+------------------------------------------------------i 
I I I 
!CLOSE REEL <no option) !Logical beginning of data on volume I 
~--------------------------------t------------------------------------------·------------i 
!No CLOSE REEL specified !Rewind; new volume determined from DISP parameter I 
I (end-of-volume detected as a I of DD card I 
I result of a READ or WRITE I I 
I statement) I I 
L-----------------·---------------i------------------------------------------------------J 

76 



EXAMPLES: 

If the programmer decides, at a point in 
the program, that no more information is 
needed from·the first volume of a three
tape file, he may force end-of-volume 
switching procedures for the current volume 
by specifying 

CLOSE INPUT-FILE-A REEL. 

Repositioning to the beginning of the 
file on the current volume will take place. 
CA rewind of the volume is implied.) If 
the second volume is to be read in its 
entirety, no CLOSE statement need be given 
for the volume. However, if the programmer 
wants to force volume switching for the 
second volume, he must specify CLOSE INPUT
FILE-A REEL once again. In either case, 
repositioning to the beginning of the file 
on the current <i.e., second) volume will 
take place. 

As stated previously, REEL or UNIT must 
be specified to force volume-switching pro
cedures, and a CLOSE statement without the 
REEL or UNIT option must be specified to 
terminate the processing of INPUT-FILE-A. 
Therefore, the CLOSE statement at the logi
cal end of the program might be written 

CLOSE INPUT-FILE-A WITH LOCK. 

Positioning of the current volume is 
then a function of the DISP parameter. 
r------, 
IF ONLYI 
L------J Another way of coding the above 
situation would be to specify the following 
CLOSE statement for the current volume: 

CLOSE INPUT-FILE-A REEL WITH NO REWIND. 

In this case, repositioning to the end 
of the file on the current volume will take 
place unless the device is needed for 
mounting the next volume. (Note that 
INPUT-FILE-A will not be rewound.) For the 
second volume, to force end-of-volume, the 
programmer would have to code an identical 
CLOSE statement, since all CLOSE statements 
that institute volume-switching for a file 
must specify identical options. Position
ing for the second volume will be the same 
as for the first, whether or not the CLOSE 
statement is executed for the second 
volume. 

DISPLAY Statement 

The function of the DISPLAY statement is 
to write data on a low-volume output 
device. The format of the DISPLAY state
ment is: 

r-----------------------------------------1 
.. ~ {data-name}... I 
~~ISPL~X I 
·J literal I 

l [ {f.Q!'!§Q!& }] I ~ UPO!,'! SYSPUNCH I 
i mnemonic-name1 I 
~----------------------------------------J 

When the UPON option is omitted, the 
system logical output device CSYSOUT) is 
assumed. When UPON CONSOLE is written, the 
system console device is specified. When 
UPON SYSPUNCH is written, the system logi
cal punch device is specified. 

If the input/output device specified by 
a DISPLAY statement is the same one desig
nated by a WRITE statement, the output 
resulting from the statements may not be in 
the order in which the statements were 
encountered. For example, puppose the sys
tem logical output device was designated 
and the statements 

WRITE WEEKS-PAY. 
DISPLAY 'ABC'. 

(where the contents of WEEKS-PAY is 123.00) 
were encountered. The output on SYSOUT 
might be 

ABC 
123.00 

The operands of the DISPLAY statement, 
after any required conversion to external 
form, appear from left to right with no 
spaces between them. Any spaces desired 
between multiple operands must be explicit
ly specified. 

For the system console and punch 
devices, a maximum logical record size is 
assumed. The maximum logical record size 
assumed for the system console device is 
either 72 characters (COBOL E) or 100 char
acters (COBOL F). The maximum logical 
record size assumed for the system logical 
punch device is 80 characters. (Positions 
73 through 80 of the record are reserved, 
however, for the PROGRAM-ID name.> In 
COBOL E, the logical record size must be 
specified, for the system logical output 
device, on the associated SYSOUT DD state
ment. In COBOL F, a maximum logical record 
size of 120 characters is assumed. This 
assumed size is overridden if a logical 
record size is specified on the associated 
SYSOUT DD statement. See the publications 
!fil:L§:i§.tem/}§.Q~rati!!!LSystem, COBOL CE> 
Programmers Guide, Form C24-5029 and !,!ll1 
System/360 Operating System: (COBOL CF) 
E!:ogrammers Guide, Form C28-6380 for 

1 Implemented for COBOL F only 

Procedure Division 77 



further information concerning the SYSOUT 
DD statement. 

In COBOL E the number of operands in the 
DISPLAY statement may not exceed 19 on any 
device, even if the sum of the sizes of the 
operands does not exceed the specified 
maximum. 

For both COBOL E and COBOL F, if the 
total character count of all the operands 
is less than the maximum logical record 
size or for SYSPUNCH, 72 characters, the 
remaining positions are padded with blanks. 
However, if the count exceeds the maximum 
logical record size or for SYSPUNCH, 72 
characters, the processing differs between 
COBOL E and COBOL F. 

Moreover, DISPLAY causes the printer to 
space prior to printing. WRITE AFTER 
ADVANCING also causes the printer to space 
before printing. However, a WRITE without 
the AFTER ADVANCING option does not cause 
the printer to space before printing. Pos
sibly,, mixed DISPLAYS and WRITES without 
the AFTER ADVANCING option may cause 
overprinting. 

In COBOL E truncation occurs at the end 
of the record if the DISPCK option has been 
used. Otherwise the result is unpredict
able. In COBOL F operands are continued in 
the next record. As many records as neces
sary are written to display all of the 
operands specified. Those operands pending 
at the time of the break which are not nu
meric are split between lines if necessary. 
Numeric operands are not split between 
lines. Rather., the line is padded out with 
blanks and the numeric item starts the next 
line. 
r------, 
1F ONLYI 
L------J Mnemonic-name must be specified in 
the Special-Names paragraph of the Environ
ment Division. Mnemonic-name may only be 
associated with the reserved words CONSOLE, 
SYSPUNCH, and SYSOUT. 

When data-name specifies an item whose 
description is USAGE COMPUTATIONAL, 
COMPUTATIONAL-1, COMPUTATIONAL-2, or 
COMPUTATIONAL-3, it is converted automati
cally to external format as follows: 

1. Internal decimal and binary items are 
converted to external decimal. Only 
negative values cause a low-order sign 
overpunch to be developed. 

2. Internal floating-point items are con
verted to external floating point. 

For example, if two binary items have 
values -32 and 32, then they will be dis
played as 3K and 32, respectively. 

78 

Note: Group items, however, are treated as 
alphanumeric items; no conversion of ele
mentary items within the group takes place. 

Literal may be any type of literal or 
figurative constant, with the exception of 
the figurative constant ALL. 

Note: It is the programmer's responsibili
ty to ensure that any characters within the 
data-name or literal being displayed are 
acceptable to the character set of the 
printer or device specified; otherwise, the 
data displayed is unpredictable. 

ACCEPT Statement 

The function of the ACCEPT statement is 
to obtain data from the system logical 
input device CSYSIN> or from the console. 

The format of the ACCEPT statement is: 

1-----------------~------{~;~~;~~-------}-] ___ 1 
IACCEPT data-name FROM . I 
~ mnemon1c-name1 I 
L-----------------------------------------J 

Dat~:.~ may be either a fixed-length 
group item or an elementary alphabetic, 
alphanumeric., external decimal, or external 
floating-point item. One logical record is 
read and the appropriate number of charac
ters is moved into the area reserved for 
data-name. No editing or error-checking of 
the incoming data is performed. 

If the input/output device specified by 
an ACCEPT statement is the same one as 
designated for a READ statement, the 
results may be unpredictable. 

When FROM CONSOLE is specified, data
~ must not exceed 72 character positions 
in length for COBOL E, and 255 character 
positions in length for COBOL F. 

When an ACCEPT statement with the FROM 
CONSOLE option is executed, the following 
actions are taken: 

1. A system-generated message code is 
automatically displayed followed by 
the literal 'AWAITING REPLY'. 

2. Execution is suspended. When a con
sole input message, preceded by the 
same message code as in point 1 above, 
is identified by the control program, 
execution of the ACCEPT statement is 
resumed and the message is moved to 
the specified data-name. 

1Implemented for COBOL F only 



The message code serves as a key by 
which the control program correlates con
sole input with the proper program. 
r------, 
IF ONLYI 
L ______ J Mnemonic-name must be specified in 
the Special-Names paragraph of the Environ
ment Division. ~emoni£:.!!~mg may only be 
associated with the reserved words CONSOLE 
and SYSIN. If it is associated with CON
SOLE, data-name must not exceed 255 
character-Positions in length. When the 
FROM CONSOLE option is not written and 
mnemonic-name is not associated with CON
SOLE;-c>ne logical record is read from the 
system logical input device (SYSIN). 

The following are examples of ACCEPT 
statements: 

ACCEPT CONTROL-CARD-AREA. 

ACCEPT IN-REC FROM CONSOLE. 

Table 11 states restrictions on use of 
input/output statements. X means that the 
statement may appear. 

DATA MANIPULATION STATEMENTS 

The MOVE statement is used to transfer 
data from one area of main storage to 
another and to perform conversions and/or 
editing on the data that is moved. Option 
1 of the MOVE statement has the following 
format: 

Option 1 

ir------a~~~=~~;~=~----------------------1 
l MOVE { } !Q data-name-2 ••• I 
I literal I 
'-----------------------------------------J 

If this option (the simple move) is 
used, the data represented by data-name-1 
or the specified literal is moved to the 
area designated by data-name-2. The same 
information is also moved to any additional 
receiving areas mentioned in the statement. 

When a group item is involved in a 
simple move, the data is moved without 
regard to the level structure of the group 
items involved and without editing. 

1 Table 11. Restrictions on Use of Input/Output Statements 
r--------------------------------·---------------------------------------1 
I Statement I 

r---------------f-------T--------T----------T-----------T----------T----------T---------~ 
I I I I I DISPLAY I I I I 
I I I I I UPON I I I I 
l I I I READ I CONSOLE I I ACCEPT I ACCEPT I 
I I I I WRITE I SYSOUT I EXHIBIT I FROM I (from I 
I Appearing in I OPEN I CLOSE I REWRITE I SYSPUNCHI TRACE I CONSOLE I SYSIN) I 
~~-------------+-------+--------+----------+-----------+----------+----------+---------~ 
I Report I I I I I I I I 
I writer I Y I Y 1 Y I Y I Y I Y I Y I 
~---------------+-------+--------+----------+-----------+----------+----------+---------~ 
I Error I I I I I I I I 
I Processing I Y(l)I Y I Y(l) I Y I Y I Y I Y I 
~---------------+~-----+--------+----------+----·-------+----------+----------+---------~ 
I Main Body I I I I I I I I 
I of I Y I Y I Y I Y I Y I Y I Y I 
I Procedure I I I I I I I I 
I Division I I I I I I I I 
~---------------+-------+--------+----------+-----------+----------+----------+---------~ 
I Debug I I I I I I I I 
~ Packet I Y I Y I Y I Y I Y I Y I Y I 
~---------------L-------L--------L----------L-----------L----------L----------L---------~ 1<1> Only permitted for files other than the one for which entry into the declarative I 
I section was made. I 
L---------------------------------------------------------------------------------------J 

Procedure Division 79 



The following considerations pertain to 
moving items: 

1. Numeric (external decimal, internal 
decimal, binary, external floating
point, internal floating-point, numer
ic literals, and ZERO) to numeric or 
report: 

a. 'rhe items are aligned by decimal 
points, with insertion of zeros or 
truncation on either end, as 
required. 

b. When the USAGE clauses of the 
source field and receiving field 
differ, conversion to the USAGE of 
the receiving field takes place. 

c. The items may have special editing 
performed on them with suppression 
of zeros, insertion of a dollar 
sign, commas, etc., and decimal 
point alignment, as specified by 
the receiving area. 

2. All other permissible combinations: 

3. 

Table 

a. The characters are placed in the 
receiving area from left to right, 
unless the receiving field is 
specified as JUSTIFIED RIGHT. 

b. If the receiving field is not com
pletely filled by the data being 
moved, the remaining positions are 
filled with spaces. 

c. If the source field is longer than 
the receiving field, the move is 
terminated as soon as the receiv
ing field is filled. 

The MOVE statement may be used with 
the Sterling currency feature. See 
the section entitled "Sterling Curren-
cy Feature. " 

12. Examples of Data Movement 

Table 12 contains several examples il
lustrating MOVE. Note that, in the fourth 
example, the information in any excess 
positions of a non-numeric receiving area 
is replaced by spaces at the right. 
r------, 
IF ONLYI 
L ______ J Option ~ 

When Option 2 of the MOVE statement is 
used, selected items within data-name-1 ar 
moved, along with any required editing, to 
selected areas within data-name-2. Items 
are selected by matching-the-data-names of 
areas defined within data-name-1 with like 
data-names of areas defined within data
name-2. Option 2 of the MOVE statement ha 
the following format: 

r-----------------------------------------
1 MOVE CORRESPONDING data-name-1 
I 
I TO data-name-2 ••• 
L----------------------------------------· 

The rules stated for the simple MOVE 
apply to each pair of corresponding items 
in the MOVE CORRESPONDING statement; thus, 
the effect of a MOVE CORRESPONDING state
ment is equivalent to a series of simple 
MOVE statements. 

The following rules apply to the CORRE
SPONDING option: 

1. At least one of the items of a pair o: 
matching items must be an elementary 
item. 

2. Items are corresponding data items if 
the respective data-names are the 
same, including all qualification up 
to but not including data-name-1 and 
data~~~· ~~ 

r---------------------------T-----------------------------------------------------------1 
I source Field I Receiving Field I 
~-------------T-------------f-------------T-----------------T---------------------------~ 
1 I I I Value I Value I 
I PICTURE I Value I PICTURE I before MOVE I after MOVE I 

1-------------+-------------+-------------+-----------------+---------------------------~ 
~ 99V99 I 1234 I 99V99 I 9876 I 1234 I 
I 99V99 I 1234 I 99V9 I 987 I 123 I 
l 9V9 1 12 I 99V999 I 98765 I 01200 I 
I xxx I A2B I xxxxx I Y9X8W I A2Bbb I 
I 9V99 I 123 I 99. 99 I 87. 65 ] 01. 23 I 
I AAAAAA I REPORT I AAA I JKL I REP I 
L-----------·--.L-------------.L-------------..1.------------------L-------·--------------------J 

80 



3. Data-name-1, data-name-2, etc., must 
be-'9rouP-Items:-----~---

4. Of the items subordinate to data-name
! or data-~~~£ the following are!iot 
considered CORRESPONDING items: 

a. An item named by the key word 
FILLER and any items subordinate 
to it. 

b. An item described by a REDEFINES 
or OCCURS clause, and any items 
subordinate to it. 

However, the items designated by g~ta
name-1 and data-name-2 may be 
described with-REDEFINES or OCCURS 
clauses or be subordinate to items 
described with REDEFINES or OCCURS 
clauses. 

5. If either data-name-1 or data-name-2 
is described with an OCCURS clause, it 
must be subscripted; each data item 
that corresponds will be subscripted 
by the compiler. 

6. In determining which are corresponding 
data items, only the first complete 
description of any area will be con
sidered in the case where a REDEFINES 
clause has been used. consider the 
following data organization: 

01 A 
02 B 
02 c 

03 
03 

02 F 

REDEFINES B 
D 
E 

Only B or F can be considered as 
potential corresponding items. This 
restriction does not preclude data
name-1 or data-name-2 from having 
REDEFINES clauses, or from being sub
ordinate to data-names with REDE
FINES clauses. 

7. Neither data-name-1 nor data-name-2 
can be data items with level numbers 
of 77 or 88. 

8. Each corresponding source item is 
moved in conformity with the descrip
tion of the receiving area. 

To illustrate the use of MOVE CORRE
SPONDING, suppose that the programmer 
wishes to transfer corresponding items from 
a work area named INVENTORY-POSTING to an 
output area designated INVENTORY-RECORD. 
He could write this statement: 

MOVE CORRESPONDING INVENTORY-POSTING TO 
INVENTORY-RECORD 

Figure 11 shows the movement of data 
that might result from this statement. 
Note that non-corresponding items in the 
source area are not moved and that non
corresponding items in the receiving area 
are not affected. 

Table 13 represents all permissible 
moves us'ing the MOVE statement. The letter 
Y indicates a valid move and the letter N 
Indicates an invalid move. A detailed -
description of the types of fields repre
sented may be found in the chapter entitled 
"Data Division". 

EXAMINE Statement 

The EXAMINE statement is used to replace 
certain occurrences of a given character 
and/or to count the number of such occur
rences in a data item. 

~rhe EXAMINE statement has the following 
two formats: 

.----------------------------------------1 
IEXAMINE data-name TALLYING I 
I I 

l {~i~DING } 'character-1' I 
I !;!NT!.!! E!.RS'.!'. I 
I I 
I [REPLACING BY 'character-2'] I 
L----------------------------------------J 

r-----------7------------T-----------y-----------T------------T--------------1 
INVENTORY- I I I I I I I 
POSTING I PART-NO I QTY-USED I ON-HAND I SHIPPED I RECEIVED I ORDER-PT I L-----i------'-----1------i-----i _____ i ___________ _,_ ____ t ______ i ______ i _______ J 

r----- -----T------------T-----------T·-----------T------------T--------------1 
INVENTORY- I I I I I I I 
RECORD I PART-NO I PART-NAME I ON-HAND I UNIT-COST I QTY-USED I ORDER-PT I 

L-----------i------------~-----------i ___________ J_ ___________ i ______________ J 

Figure 11. Data Movement Effected by MOVE CORRESPONDING Statement 

Procedure Division 81 



•Table 13. Permissible Moves 
r-·---------------------------------------------------------1 
I Receiving Field I r----------------------------f----T ____ T ______ T ____ T ____ T ____ T ____ T ____ T ____ T _____ T-----i 

J source Field I GR I AL I AN I ED I ID I BI I EF I IF I RP I SR I SN I 

~----------------·------------+----+----+------+----+----+----+----+----+----+-----+-----i 
I Group (GR) I Y I Y I Y I N I N I N I N I N I N I N I N I 

~----------------------------+----+----+------t----+----+----+----+----+----+-----+-----i 
I Alphabetic (AL) I Y l Y I Y I N I N I N I N I N I N I N I N I 

r----------------------------+----+----+------+----+----+----+----+----+----+-----+-----i 
I Alphanumeric (AN) I Y I Y I Y I N I N I N· I N J N I N I N I N I 

r----------------------------+----+----+------+----+----+----+----+----+----+-----+-----i 
] External Decimal (ED) I Y I N I Y(l) I Y I Y I Y I Y I Y I Y I Y I Y I 
r----------------------------+----+----+------+----+----+----+----+----+----+-----+-----i 
I Sterling Nonreport (SN) I Y I N I Y I Y I Y I Y I Y I Y I Y I Y I Y I 
r-----------------------------+----t----+------+----+----+----+----+----+----+--,---+-----i 
I Internal Decimal (ID) ] Y I N IY(l,2)~ Y I Y I Y I Y I Y I Y I Y I Y I 
r----------------------------+----+----+------+----+----+----+----+----+----+-----+-----i 
I Binary <BI) I Y i N IY<1,2>i Y I Y I Y I Y J Y I Y I Y I Y I 
r----------------~----------+----+----+------+----+----+----+----t----+----+-----+-----i 
I External Floating- J l I I I I I J I I I I 
I Point 1C EF) I Y l N I N J Y I Y I Y I Y I Y I Y I Y I Y I 
r------------------------------+----+----+------+----+----+----+----+----+----+--·---+-----i 
I Internal Floating- I I I I I I I I I I I I 
I Point <IF) I Y i N I N I Y I Y I Y I Y } Y I Y I Y I Y I 

r----------------------------+----t----+------+----+----+----+----+----+----+-----+-----i 
I Report (RP> I Y I N I Y I N I N I N I N I N I N I N I N I 
J----------------------------+----+----+------t----+----+----+----+----+----+-----+-----i 
I Sterling Report(SR) I Y l N I Y ~ N I N I N I N I N I N I N I N I 
r----------------------------+----+----+------+----+----+----+----+----+----+-----+-----i 
I ZEROS I y I N I y J y I y I y I y I y I y I y I y I 

1-----------------------------+----+----+------+----+----+----+----+----+----+-----+-----i 
1 SPACES I y I y I y ~ N 1 N I N I N I N I N I N I N I 

r----------------------------+----+----+------+----+----+----+----+----+----+-----+-----i 
I ALL 'character• , HIGH- I I I I I I I I I I I I 
I VALUES, LOW-VALUES, ]. y 1 N I y I N l N I N I N I N I N I N I N I 
I QUOTES I I I I I I I I I I I I 
1)-----------------------------i----i----i------i----i----i----i----i----i----i-----i-----i 
·~ ( 1 > For integers only I 
1<2> COBOL E converts to External Decimal, COBOL F does not I 
L---------------------------------------------------------------------------------------J 

Option 2 

.-----------------------------------------, 
I EXAMINE data-namE:! REPLACING J 

!~{~ING 1 .:=:::_11 l 
I UNTIL FIRST I 
I IlEfil: 1 
I ~ 
I BY 'character-2' J 

L-----------·------------------------------J 

Data-narnE~ in each option must refer to a 
data item containing the option USAGE IS 
DISPLAY. 

Character-1 and character-2 must be 
single-character non=numeric-Yiterals 
(i.e., enclosed in quotation marks) and 
members of the set of allowable characters 
for the data item. For example, a '2' can
not replace an •A• in an alphabetic i tern., 
but may do so in an alphanumeric item. 

82 

The use of figurative constants instead 
of character-1 or character-2 is permitted • 

When the Option 1 EXAMINE statement is 
used, a count is made at object time of the 
number of occurrences of the specified 
character in data-name, and this count 
replaces the value of the special binary 
data item TALLY, whose length is five deci
mal digits. TALLY may also be used as a 
data-name in other procedural statements. 

The count at object time depends on 
which of the following three TALLYING 
options is employed: 

1. If ALL is specified, all occurrences 
of character-1 in the data item are 
counted. 

2. If LEADING is specified, the count 
represents the number of occurrences 
of character-1 prior to encountering a 
character other than character-1. 



Examination proceeds from left to 
right. 

3. If UNTIL FIRST is specified, the count 
represents the number of characters 
other than character-1 encountered 
prior to the first occurrence of 
char~cter-1. Examination proceeds 
from left to right. 

When the REPLACING option is used (eith
er in Option 1 or Option 2 > .1 the replace
ment of characters depends on which of the 
following four REPLACING options is 
employed: 

1. If ALL is specified, character-2 is 
substituted for each occurrence of 
character-1. 

2. If LEADING is specified,, the substitu
tion of character-2 for character-1 
terminates-when a-character-other-than 
character-1 is encountered, or when 
the right-hand boundary of the data 
item is reached, Examination proceeds 
from left to right. 

3. If UNTIL FIRST is specified, the sub
stitution of character-2 terminates as 
soon as the first character-1 is 
encountered, or when the right-hand 
boundary is reached. Examination ·pro
ceeds from left to right. 

4. If FIRST is specified, only the first 
occurrence of character-1 is replaced 
by character-2;~Examination proceeds 
from-reft to-right. 

Table 14. Examples of Data Examination 

Sample EXAMINE statements showing the 
effect of each statement on the associated 
data item and the TALLY are shown in Table 
14. 

r---1 
IEXTI TRANSFORM Statement 
L ___ J 

The TRANSFORM statement is used to alter 
characters according to a transformation 
rule. For example, it may be used to 
change the characters in an item to a dif
ferent collating sequence. 

The format of the TRANSFORM statement 
is: 

r-----------------------------------------1 
I I 
!TRANSFORM data-name-3 CHARACTERS I 
I I 
I {figurative-constant-1} I 
JFROM non-numeric-literal-1 I 
l data-name-1 I 
I I 
i {figurative-constant-2} I 
l TO non-numeric-literal-2 I 
J data-name~2 I 
L-----------------------------------------J 
Data-name-3 must be an elementary alphabet
ic, alphanumeric, or report item, or a 
group item. 

The combination of the FROM and TO 
options determines what the transformation 
rule is. These combinations are shown in 
Table 15. 

r--------------------------------------------------------T--------T--------T------------1 
I I I I Resulting I 
I I ITEM-1 I Data I Value of I 
I EXAMINE Statement I Before I After I TALLY I 
·-------------------------------------------------·-------+--------+--------+------------~ I EXAMINE ITEM-1 TALLYING ALL '0' I 101010 I 101010 I 3 I 
1--------------------------------------------------------+--------+--------f------------~ I EXAMINE ITEM-1 TALLYING ALL '1' REPLACING BY 'O' I 101010 I 000000 I 3 I 
·--------------------------------------------------------+--------+--------+------------~ I EXAMINE ITEM-1 REPLACING LEADING '*' BY SPACE l **7000 I 7000 I unchanged I 
1--------------------------------------------------------f--------+--------+------------~ 
I EXAMINE ITEM-1 REPLACING FIRST '•' BY '$' I **1.94 I $*1.94 I unchanged I 
L-~------------------------------------------------------~--------~--------i------------J 

Procedure Division 83 



Table 15. Combinations of the FROM and TO Options of the TRANSFORM Statement 
r------------------·-----------T---------------------------------------------------------1 
I Operands I Transformation Rule I 
~------------------·-----------+---------------------------------------------------------~ 

I 
I 
! 
I 
I 
I 
I 
I 
I 
I 
t 
I 
I 
I 
I 
I 
1 
I 
I 
I 
I 
I 
I 
I 
I 
I 

FROM I All characters in data-name-3 equal to the 
figurative-constant-1 I single character figurative-constant-1 are 
TO I replaced by the single character figurative-
figurative-constant-2 I constant-2. 

FROM 
figurative-constant-1 
TO 
non-numeric-literal-2 

FROM 
figurative-constant-1 
TO 
data-name-2 

FROM 
non-numeric-literal-1 
TO 
figurative-constant-2 

FROM 
non-numeric-literal-1 
TO 
non-numeric-literal-2 

FROM 
non-numE~ric- literal-1 
TO 
data-name-2 

FROM 
data-name-1 
TO 
figurative-constant-2 

FROM 
data-name-1 
TO 
non-numeric-literal-2 

I 
I 
I 

All characters in data-name-3 equal to the 
single character figurative-constant-1 are 
replaced by the single char~cter non-nurneric
li teral- 2. 

All characters in data-name-3 equal to the 
single character figurative-constant-1 are 
replaced by the single character in data
narne-2. 

All characters in data-name-3 that are equal 
to any character in non-numeric-literal-1 are 
replaced by the single character figurative
constant-2. 

Non-numeric-literal-1 and non-numeric-literal-2 
must be equal in length or non-numeric-literal-
2 must ·be a single character. If equal in 
length, any character in data-name-3 equal to a 
character in non-numeric-literal-1 is replaced by the 
character in the corresponding position of 
non-numeric-literal-2. 

If the length of non-numeric-literal-2 is one, all 
characters in data-name-3 that are equal to any 
character appearing in non-numeric-literal-1 are 
replaced by the single character given in 
non-numeric-literal-2. 

Non-numeric-literal-1 and data-name-2 must be 
equal in length or data-name-2 must be a 
single-character item. 

If equal in length, any character in data-name-3 equal 
to a character in non-nurneric-literal-1 is replaced by 
the character in the corresponding position of 
data-name-2. 

If the length of data-narne-2 is one, all characters in 
data-name-3 that are equal to any character appearing 
in non-nurneric-literal-1 are replaced by the single 
character given in data-narne-2. 

All characters in data-name-3 that are equal 
to any character in data-name-1 are replaced by 
the single character figurative-constant-2. 

Data-name-1 and non-numeric-literal-2 must be 
of equal length or non-numeric-literal-2 must 
be one character. 

If equal in length, any character in data-name-3 equal 
to a character in data-name-1 is replaced by the 
character in the corresponding position of 
non-numeric-literal-2. 

If the length of non-numeric-literal-2 is one, ail 
characters in data-name-3 that are equal to any 
character appearing in data-name-1 are replaced by the 
single character given in non-numeric-literal-2. 

I FROM Any character in data-name-3 equal to a charac-
1 data-name-1 ter in data-name-1 is replaced by the character 
I TO I in the corresponding position of data-name-2. I 
I data-name-2 I These items can be one or more characters, but I 
I I must be equal in length. I 
L-----------------------------i---------------------------------------------------------J 

84 



The following rules pertain to the 
operands of the FROM and TO options: 

1. Non-numeric literals require enclosing 
quotation marks,, as specified in the 
section "Literals." 

2. Data-name-1 and data-name-2 must be 
elementary alphabetic, or alphanumeric 
items, or fixed length group items 
less than 257 characters in length. 

3. A character may not be repeated in 
non-numeric-literal-1 or in the area 
defined by-~~t~::.!!~ffie:-1. If a charac
ter is repeated, the results will be 
unpredictable. 

4. The allowable figurative-constants 
are: ZERO, ZEROS, ZEROES,, SPACE, 
SPACES, QUOTE, QUOTES, HIGH-VALUE, 
HIGH-VALUES, LOW-VALUE, and 
LOW-VALUES. 

When either data-name-1 or data-name-2 
appears as an operandofthe transformation 
rule, th~ user can in effect change the 
transformation rule during object time by 
changing data-name-1 or data-name-2. 

Table 16 contains examples of data-name-
1 results, using the f!gur~t!~::.£2U2t~!!~::.1 
to f igurat!~2gstant::.~, !!Q!!::.llilm~!£::. 
literal-2, and data-name-1 to data-name-2 
combinations, respectively. The lower-case 
letter b represents a blank. 

Table 16. Examples of Data Transformation 
r----------T----------T---------T---------1 
I Data- I i !Data- I 
I Name-3 I FROM I TO I Name-3 I 
I Before I ] I After ~ 

~~--------+----------+---------+---------~ 
11b7bbABC !SPACE !QUOTE l1'7''ABC I 
l1b7bbABC 1'17CB' l'QRST' JQbRbbATS I 
llb7bbABC lb17ABC ICBA71b IBCACC71b I 
11234WXY89 l98YXW4321 IABCDEFGHIIIHGFEDCBAJ 
L----------~----------~---------i _________ J 

ARITHMETIC STATEMENTS 

The following rules apply to the arith
metic statements: 

1. All data-names used in arithmetic 
statements must represent elementary 
numeric data items that are defined in 
the Data Division of the program, 
except that: 

a. If the data-name that follows GIV
ING is not used in the computation 
it may contain editing symbols. 

b. If the CORRESPONDING option is 
written, the operands must be 
group items. 

2. The maximum size of any data-name or 
literal is 18 decimal digits. 

3. Intermediate result fields generated 
for the evaluation of fixed-point ar
ithmetic expressions assure the 
accuracy of the result field, except 
where high-order truncation is neces
sary. A discussion of intermediate 
results is contained in Appendix D. 

4. Decimal point alignment is supplied 
automatically throughout the 
computations. 

5. In COBOL E, the figurative constant 
ZERO (ZEROS, ZEROES) may not be used 
in arithmetic statements. 

The ROUNDED and SIZE ERROR options apply 
to all the arithmetic statements. The GIV
ING option applies to all arithmetic state
ments but COMPUTE. 

GIVING Option 

If the GIVING option is written, the 
value of the data-name that follows the 
word GIVING will be made equal to the cal
culated result of the arithmetic operation. 

If the GIVING option is not written, the 
operand following the words TO, FROM, BY, 
and INTO in the ADD, SUBTRACT, MULTIPLY, 
and DIVIDE statements, respectively, must 
be a data-name. This data-name is used in 
the computation and is made equal to the 
result. 

ROUNDED Option 

If, after decimal-point alignment, the 
number of places calculated for the result 
is greater than the number of places in the 
data item that is to be set equal to the 
calculated result, truncation occurs unless 
the ROUNDED option has been specified. 

When the ROUNDED option is specified, 
the least significant digit of the resul
tant data-name has its value increased by 1 
whenever the most significant digit of the 
excess is greater than or equal to 5. 

Rounding applies only to COMPUTATIONAL, 
COMPUTATIONAL-3, DISPLAY, or edited result 
fields. However, for COBOL F only, if 
within the arithmetic statement one or more 

Procedure Division 85 



of the operands is in COMPUTATIONAL-1 or 
COMPUTATIONAL-2 format and this result 
field is in a format to which rounding ap
plies, automatic rounding will take place 
whether ROUNDED is specified or not. 

Rounding of a computed negative result 
is performed by rounding the absolute value 
of the computed result and then making the 
final result negative. 

When this option is not specified, trun
cation occurs if, after decimal-point 
alignment, the number of places calculated 
for the result is greater than the number 
of places in the data item that is to be 
set equal to the calculated result. 

Table 17 illustrates the relationship 
between a calculated result and the value 
stored in an item that is to receive it. 

SIZE ERROR Optio~ 

Whenever the number of integral places 
in the calculated result exceeds the number 
of integral places specified for the resul
tant data-name, a size error condition 
arises. 

If the SIZE ERROR option has been speci
fied and a size error condition arises, the 
value of the resultant data-name is not 
altered, and the series of imperative 
statements specified for the condition is 
executed. 

If the SIZE ERROR option has not been 
specified and a size error condition 
arises, no assumption should be made about 
the final result. 

It should be noted that the SIZE ERROR 
option applies only to final calculated 
results. When a size error occurs in the 
handling of intermediate results, no 
assumption should be made about the final 
result. 

An arithmetic statement, if written with 
a SIZE ERROR option, is not an imperative 
statement. Rather, it is a conditional 
statement and is prohibited in contexts 
where only imperative statements are 
allowed. 

A discussion of intermediate results 
appears in the appendix entitled "Interme
diate Results." 

The COMPUTE statement assigns to a data 
item the value of a numeric data item, lit
eral, or arithmetic expression. The format 
of a COMPUTE statement is: 

r-----------------------------------------1 
~£QMPU~~ data-name-1 I 
I I 

I [ROQND§Q] 1~~:~~~~~l~eral } l 
I floating-point-literal I 
I arithmetic-expression I 
I I 
~ CON §IZ~ §ggoR imperative statement ••• ] I 
L-----------------------------------------J 

The data-name specified to the left of 
the equal sign must be an elementary 
report, binary, internal decimal, external 
decimal, internal floating-point, or exter
nal floating-point item. 

The following are examples of the COM
PUTE verb: 

COMPUTE OVERTIME-PAY= REGULAR-PAY * 1.5. 

COMPUTE TOTAL-WAGE = A. 

Note that the second statement gives the 
same result as MOVE A TO TOTAL-WAGE. 

Table 17. Rounding or Truncation of Calculations 
r-------------------------------------------------·---------------1 
I Item to Receive Calculated Result I 

r----------------·------f-----------T------------------------T---------------------------1 
i Calculated Result I PICTURE I Value After Rounding I Value After Truncating I 
r----------------------+-----------+------------------------+---------------------------~ 
I -12.36 I S99V9 I -12.4 I -12.3 I 

I s • 4 3 2 I 9V9 I a. 4 I a. 4 I 

I 35.6 I 99V9 I 35.6 I 35.6 I 

I 65.6 I 99V I 66 I 65 I 
l .0055 I V999 I .006 I .005 I 
L----------------------i-----------i------------------------..1.---------------------------J 

86 



ADD Statement 

The ADD statement adds two or more nu
meric values and substitutes the resulting 
sum for the current value of an item. 
option 1 of the ADD statement has the fol
lowing format: 

Option 1 

r-----------------------------------------1 
I {numeric-literal } I 
IADD floating-point-literal ] 
I data-name-1 J 

I {TO } ' I GIVING data-name-n CgQQ~DEQJ ) 
I J 
i [ON SIZE ERROR imperative statement ••• ] I 
L------------~----------------------------J 

When the TO option is used, the values 
of all the data-names <including data:.nfiln~= 
u> and literals in the statement are added, 
and the resulting sum replaces the value of 
data-name-n. At least two data-names and/ 
or-numeric-literals must follow the word 
ADD when the GIVING option is written. 

The following are examples of Option 1 
of the ADD statements: 

ADD INTEREST, DEPOSIT TO BALANCE. 

ADD REGULAR-TIME OVERTIME GIVING 
NEW-WEEKLY. 

The first would result in the total sum of 
INTEREST, DEPOSIT, and BALANCE being placed 
at BALANCE, while the second would result 
in the sum of REGULAR-TIME and OVERTIME 
being placed at the location NEW-WEEKLY. 
r------1 
IF ONLYf 
L------' Option 2 

Option 2 of the ADD statement has the 
following format: 

r-----------------------------------------1 1rum CORRESPOND!~§ data-name-1 I 
I I 
1 *Q data-name-2 CROUNDfil:!] I 
I I 
I [ON SIZE ERROR imperative statement ••• ) I 
L-----------------------------------------J 

The CORRESPONDING option of the ADD 
statement allows the programmer to specify 
the addition of corresponding data items in 
one operation, similar to a MOVE statement 
with a CORRESPONDING option. 

Numeric elementary items within dat~= 
name-1 are added to numeric elementary 
items with matching data-names within data
name-2. The rules stated for arithmetic 
statements apply to each pair of items in 
the ADD CORRESPONDING option. 

Rules 2 through 7 listed for the MOVE 
statement with the CORRESPONDING option 
apply to Option 2 of the ADD statement. 

When ON SIZE ERROR is used in conjunc
tion with CORRESPONDING, the size error 
test is made only after the completion of 
all the ADD operations. If any of the 
additions produced a size error condition, 
the resultant field for that addition 
remains unchanged and the imperative state
ments specified in the SIZE ERROR clause is 
executed. 

When the ROUNDED option is used in con
junction with CORRESPONDING, it applies to 
all of the add operations. 

An example of Option 2 of the ADD state
ment is: 

ADD CORRESPONDING WORK-RECORD TO UPDATE. 

consider the case where both group items 
are subdivided as follows: 

01 WORK-RECORD DISPLAY. 
02 HOURS PICTURE 999V9. 
02 EMPLOYEE-NUMBER PICTURE 9(6). 
02 PAY-RATE PICTURE 9999V99. 
02 LOCATION PICTURE XX. 
02 PERIOD-OF-EMPLOYMENT 

PICTURE 999. 

01 UPDATE DISPLAY. 
02 MAN-NO PICTURE 9(6). 
02 HOURS PICTURE 999V9. 
02 DIVISION PICTURE XX. 
02 PAY-RATE PICTURE 9999V99. 
02 PERIOD-OF-EMPLOYMENT 

PICTURE 999. 

Elementary items with the same name (HOURS, 
PAY-RATE, and PERIOD-OF-EMPLOYMENT) are 
added and the result is placed at the 
corresponding location within UPDATE. 

Procedure Division 87 



The SUBTRACT statement subtracts one or 
a sum of two or more numeric data items 
from a specified item and sets the value of 
a data item equal to the difference. 

Option 1 of the SUBTRACT statement has 
the following format: 

Option 1 

r-----------~----------------------------1 
I I 
I {data-name-1 } I 
ISU~TR~~~ numeric-literal-1 ••• ] 
I floating-point-literal-1 I 
I I 
I I 
I ~1 data-name-m [GIVING data-name-nJ~' I 
I numeric-literal-m GIVING data- I 
1 FROM name-n I 
I f loating-point-literal-m I 
I QIVI~~ data-name-n / I 
I I 
I CgQUND~~J I 
I I 
I CON SIZE ERROI~ imperative statement ••• JI 
l-----------------------------------------J 

The effect of the SUBTRACT statement is 
to add the values of all the operands that 
precede FROM and then to subtract the sum 
from the value of the item following FROM. 
A literal can follow FROM only when the 
GIVING option is specified. 
r------1 
IF ONLYI 
L ______ J Qption_l 

Option 2 of the SUBTRACT statement has 
the following format: 

r-----------------------------------------1 
!SUBTRACT fORRESPONDING data-name-1 I 
J I 
I FRO~ data-name-2 [ROQNDEQJ I 
I I 
I CON~ ERRO~ imperative statement ••• Jf L_ ________________________________________ J 

The CORRESPONDING option of the SUBTRACT 
statement is analogous to the CORRESPONDING 
option of the ADD statement. 

MULTIPLY StatemeI!i 

The MULTIPLY statement multiplies two 
numeric data items and sets the value of a 
data item equal to the product. 

The format of the MULTIPLY statement is: 

88 

r-----------------------------------------1 
I 
I { da ta-name-1 } 
l~ULTIP~X numeric-literal-1 
~ floating-point-literal-1 
l 
I 
i 
J 
iBY 

1 
! 
I 
l 

data-name-2 C§.!VING data-name-3Jl 
numeric-literal-2 

GIVING data-name-3 
floating-point-literal-2 ( 

GIVING data-name-3 ) 

I [ROUNDED] 
1 
ICON ~!ZE ERROR imperative statement ••• ] 
L-----------------------------------------

When the GIVING option is omitted and 
the second operand is a data-name, the 
product replaces the value of the data
name. For example, the following would 
result in the product being placed at 
BALANCE. 

MULTIPLY INTEREST-RATE BY BALANCE. 

DIVIDE Statement 

The DIVIDE statement divides one numeric 
data item by another and sets the value of 
an item equal to the quotient. 

The format of a DIVIDE statement is: 

.-----------------------------------------, 
I {data-name-1 } I 
f DIVIDE numeric-literal-1 I 
~ floating-point-literal-1 I 
I I 
I ldata-name-2 [GIVING data-name-3)! I 
i numeric-literal-2 I 
I INTO GIVING data-name-3 I 
I floating-point-literal-2 I 
I GIVING data-name-3 I 
i I 
I cgouNDEQJ I 
I I 
~ [ON SIZE ERROR imperative statement ••• JI 
L----------------------------------------J 

If the GIVING option is not used, the 
second operand must be a data-name. 

Division by zero results in a SIZE ERROR 
condition. 

When the GIVING option is omitted and 
the second operand is a data-name, division 
results in this data-name being set equal 
to the quotient. For example, the follow
ing would result in the quotient being 
placed at HOURS: 

DIVIDE COUNT INTO HOURS. 



Form GC28-6516-8, page revised by TNL GN28-0266, 6/1/70 

PROCEDURE BRANCHING STATEMENTS 

In the GO TO, ALTER, and PERFORM state
ments, E~Q££~~E£=g~~£ signifies E~E~~E~h= 
name or section-name. 

GO TO Statement 

The GO TO statement transfers control 
from one portion of the program to another. 
The GO TO statement has the following 
formats: 

Option 1 

r-----------------------------------------1 
l~Q ~Q [procedure-name] I 
L-----------------------------------------J 
QEtiQg_£ 
r-----------------------------------------1 
IGO TO procedure-name-1 I 
I [procedure-name-2 ••• 1 I 
I I 
I DEPENDING ON data-name I 
L-----------------------------------------J 

Option 1 of the GO TO statement provides 
a means of transferring the path of flow of 
a program to a designated paragraph or 
section. 

When an unconditional GO TO (Option 1) 
is used and a procedure-name is not speci
fied, the GO TO statement must have a 
paragraph-name, be the only statement in 
the paragraph, and be modified by an ALTER 
statement prior to the first execution of 
the GO TO statement. The paragraph-name 
assiqned to the GO TO statement is ref erred 
to by the ALTER statement in order to modi
fy the sequence of the program. If 
2rocedure-name is omitted and the GO TO 
statement has not been preset by an ALTER 
statement prior to the first execution of 
the GO TO statement, execution of the pro
gram will lead to erroneous results. Refer 
to the discussion of the ALTER statement 
for its effect on the unconditional GO TO. 
The maximum number of paragraph-names or 
procedure-names is 2031. 

In Option 2 of the GO TO statement, 
data-name must be an elementary integral 
numeric item whose length does not exceed 
four digits and whose usage is either DIS
PLAY, COMPUTATIONAL, or COMPUTATIONAL-3. 

Option 2 specifies alternative branch 
points; control is transferred to the point 
specified by the value of ~~t~=g~~£· Con
trol goes to the 1st, 2nd, ••• , nth 
procedure-name as the value of data-name is 
1, 2, ••• , n. If data-name has-a-value
outside the range 1-to-n~J:lo transfer takes 

place, and control passes to the next 
statement after the GO TO statement. 

In COBOL E, data-name may not be 
subscripted. 

consider the following example: 

GO TO TOTAL DEVIATION ERR-ROUTINE DEPENDING 
ON ERRCODE. 

MOVE RATE TO CALC-AREA. 

If ERRCODE had a value at execution time of 
2, a branch to procedure-name DEVIATION 
would take place. If the value of ERRCODE 
exceeded 3, no branch would be taken and 
control would pass to the MOVE statement. 

The ALTER statement is used to modify an 
unconditional GO TO statement elsewhere in 
the Procedure Division, thus changing the 
sequence in which program steps are to be 
executed. 

The format of the ALTER statement is: 

r-----------------------------------------1 
I~~~~~ {procedure-name-1 I 
I I 
I ~Q PROCEED TO procedure-name-2}... I 
L-----------------------------------------J 

Procedure-name-1 designates a paragraph 
containing a single sentence consisting 
only of an unconditional GO TO <Option 1) 
statement. The effect of an ALTER state
ment is to replace the procedure-name spec
ified in the Option 1 GO TO statement with 
EEQ£££~E£=g~~£=£ of the ALTER statement, 
where the paragraph-name containing the GO 
TO statement is Erocedure-name-1 in the 
ALTER statement. 

The following are examples of the use of 
the ALTER statement: 

ALTER STEP-1 TO PROCEED ro 
PROCESS-2. 

STEP-1. GO TO PROCESS-1. 

ALTER STEP-1 TO PROCEED TO 
PROCESS-2. 

STEP-1. GO TO. 

Procedure Division 89 



In both cases, when STEP-1 is executed, an 
unconditional branch is taken to PROCESS-2. 

The PERFORM statement specifies a 
transfer of control from one portion of a 
program to another, in order to execute 
some procedure a specified number of times, 
or until a condition is satisfied. It 
directs that control is to be returned to 
the statement inunediately following the 
point from which the transfer was made. 

The PERFORM statement has four formats, 
each discussed below: 

QptiQ!!_! 
r-----------------------------------------1 
IPERFOR~ procedure-name-1 I 
I I 
I [THRU procedure-name-21 I 
L-----------------------------------------J 

Option 1 is the simple PERFORM state
ment. A procedure ref erred to by this type 
of PERFORM statement is executed once, and 
then control passes to the next statement 
after the PERFORM statement. All state
ments in the paragraphs or sections named 
by procedure-name-1 <through Qf..OCeQ~Eg= 
!!~~~=£> constitute the range of the PERFORM 
statement. 

QEt!.Q!!_£ 
r-----------------------------------------1 
IPERFOR~ procedure-name-1 I 
I I 

: [THRU procedure-name-21{integer } ~ 
I data-name TIMES I 
L-----------------------------------------J 

Option 2 is the TIMES option, of the 
PERFORM statement. When the TIMES option 
is used, the procedure is performed the 
number of times specified by data-!!amg_ or 
!.!!tegg_E. control is then transferred to 
the statement following the PERFORM state
ment. Data=.!!~~g must have an integral 
value and Q~~~~!!am~ or i!!teg~E must have a 
positive value, less than 32,768. If the 
value of the data-name is negative or zero, 
control is passed inunediately to the state
ment following the PERFORM statement. 

option 3 
r-----------------------------------------1 
I I 
!PERFORM procedure-name-1 I 
I I 
I [THRU procedure-name-2] I 
I I 
I UN±.!!:! test-condition I 
L-----------------------------------------J 

90 

Option 3 is the UNTIL option of the PER
FORM statement. Test-condition may be 
simple or compound. The procedures speci
fied by the procedure-names are performed 
until the condition specified by the UNTIL 
option is true. At this time, control is 
transferred to the statement following the 
PERFORM statement. If the condition speci
fied by the UNTIL option is true at the 
time the PERFORM statement is encountered, 
the specified procedure is not executed. 

The following is an example of an Option 
3 PERFORM statement: 

PERFORM ROUTINE-1 UNTIL ITEM-1 IS LESS 
THAN ITEM-2. 

r-----------------------------------------1 
PERFORM procedure-name-1 
--CTHRU procedure-name-2] 

Y~R!~~@ data-name-1 

{

numeric-literal-1} 
EB:Q~ 

data-name-2 

{
numeric-literal-2} 

BY 
data-name-3 

UNTIL test-condition-1 

l~E±.ER data-name-4 

{

numeric-literal-3l 
EB:Q~ ( 

data-name-5 ) 

{

'numeric-literal-4} 
BY 

data-name-6 . 

Q~±.~1 test-condition-2] 

[AFTER data-name-7 

{

numeric-literal-5} 
FROM 

data-name-8 

jnumeric-literal-6l 

ldata-name-9 ~ 
UNTIL test-condition-3] 

L----=====--------------------------------
Option 4 is the VARYING option, of the 

PERFORM statement. Test-condition may be 
simple or compound. --------------

The VARYING option may be used to incre
ment or decrement the value of one or more 
data-names depending on whether the BY 
value is positive or negativea 



When one data-name Cdata-name-1) is 
raried, gata=!!S.me-1 is set equal to its 
>tarting value (FROM) when commencing the 
?ERFORM statement. Then, test-condition-1 
Ls evaluated: if it is true, control 
)asses to the next statement following the 
?ERFORM statement; if false, procedur~ 
iame-1 through pf~g~rg~m~=~ is executed 
)nee. The BY value is added to data-name-1 
ind the condition (UNTIL) is evaluated ____ _ 
igain. The cycle continues until test
:ondi tion-1 is true, at which poin~control 
Ls passed to the statement following the 
?ERFORM statement. 

All data-names and literals used in 
)ption 4 of the PERFORM statement must 
~epresent numeric values but need not be 
Lntegers; they may be positive,, negative, 
'r zero. 

When two data-names are varied, Cdata-
1ame-1, data-name-4) the value of data-
1ame-4 goes through a complete cycle (FROM, 
3Y, UNTIL) each time that data-name-1 is 
iltered with its BY value. For three data-
1ames Cdata-name-1, data-name-4, data-name-
7), the value of data-name-7 goes through a 
:omplete cycle (FROM, BY, UNTIL) each time 
:hat data-name-4 is altered with its BY 
1alue;-Wfiich-rn-turn goes through a com
?lete cycle each time g~ta-~1 is 
1aried. 

Regardless of the number of data-names 
)eing varied, as soon as test-condition-1 
ls found to be true, control is transferred 
:o the next statement after the PERFORM 
:;tatement. 

Data-name-1, data-name-4 and data-name-7 
nust not be alternate names for the same 
lata item. For all options, the first 
:;tatement of procedure-name-1 is the point 
to which sequence control is transferred by 
the PERFORM statement. 

The return of control is from a point 
letermined as follows: 

1. If procedure~me-1 is a paragraph
name and procedur~:=!§!!!e-~ is not spec
ified, the return is made after the 
last statement of the procedure-name-1 
paragraph. 

2. If procedure-name-1 is a section-name 
and procedure-name-2 is not specified, 
the return is made after the last 
statement of the last paragraph of the 
procedure-name-1 section. 

3. If procedure-name-2 is specified and 
is a paragraph-name, the return is 
made after the last statement of the 
procedure-name-2 paragraph. 

4. If procgg~=nam~-2 is specified and 
is a section-name, the return is made 
after the last statement of the last 
paragraph of the procedure-name-2 
section. 

GO TO statements and other PERFORM 
statements are permitted between procgdurg= 
g~-1 and the last statement of proceduE~= 
name-2. The time sequence of execution of 
exitf3"established by PERFORM statements 
must be in the inverse order in which they 
were established. It is permissible for 
two or more PERFORM statements to have a 
common exit. 

The exact range of a PERFORM statement 
must not be activated again while the range 
is currently active. An active PERFORM 
statement whose execution point begins 
within the range of another PERFORM, must 
not contain the exit point of the other 
active PERFORM, except when the exit points 
are common. If the logic of a procedure 
requires a conditional exit prior to the 
final sentence, the EXIT sentence must be 
used. In this case, procedure-name-2 must 
be the name of the paragraph that consists 
solely of the EXIT sentence. 

A procedure can be ref erred to by more 
than one PERFORM statement and can also be 
executed by "dropping through;" that is, by 
entering the procedure through the normal 
passage of control from one statement to 
the next in sequence. Accordingly, if 
proc~du~name-1 were the next statement 
following the PERFORM statement, the proce
dure would be executed one time more than 
specified by the PERFORM statement because, 
after execution of the PERFORM statement, 
control would pass to ,P!Ocedure-name-1 in 
the normal continuation of the sequence. 

Figures 12, 13 and 14 illustrate the 
logical flow of Option 4 of the PERFORM 
statements, varying one, two., and three 
data-names, respectively. 

Procedure Division 91 



ENTRANCE 

********~**•***** * SET * * DA TA-NAME-1 * 
* EQUAL TO ITS * 
: FROM VALUE : 

***********•·•*••• 

* * • * Cl •.X. 
.. **** * x 

·*· ·* *· .......................... . 
•* *• * EXECUTE * 

•* TEST- *• FALSE •PROCEDURE-NAME-• 
*· CONDITION-1 •*•• •••••• X• 1 THRU * *. • * •PROCEDURE-NAME-• 

*• •* * 2 * *. . * ............................... . 
* TRUE 

x 
*************** 

EXIT 

x .......................... 
* * * AUGMENT 
* DATA-NAME-1 * 
* WITH ITS BY * 
: ....... ~!;~; ........ : 

x 
**** 

* * * Cl * 
* * ..... 

ENTRANCE 

x 
*** ************** • SET * 
•DATA-NAME-1 AND• 
•DA TA-NAME-4 TO * 
* INITIAL FROM * 

: ........ ~!;~; ....... : 
* :"' • 
• Cl •.X. 
* * x 

·*· •*• • * *. • * *. ***************** 
•* *• •* *• * EXECUTE * 

* :" coNJfHoN-1 ":.~~;:: ... x.: "coNJmoN-2 *: .. ~~::: ... x: m~~~u~RRu : 
*• •* X *• •* * PROCEDURE- * 

*• •* *• •* * NAME-2 * 
*· .• *· •* ***************** * TRUE * **** * * TRUE 

* C2 * 
* * 

x 
*************** 

********~******** 
* * 

EXIT 
•SET DATA-NAME-4• 
•TO ITS INITIAL * 
: FROM VALUE : 

***************** 

x 
***************** ..... * * 

* * * AUGMENT * 
* Cl •X••••* DATA-NAME-1 * 
* * * WITH ITS BY * 
**** : ...... ~!~~; ........ : 

........ ~ ............. . 
* * * AUGMENT * * DATA-NAME-4 * 
* WITH ITS BY * 
: ......... ~!~~; ••••• : 

... ~ .. 
* .. 
* C2 * 
* * 
**** 

Figure 12. Logical Flow of Option 4 PER
FORM statement Varying One 
Data-Name 

Figure 13. Logical Flow of Option 4 PER
FORM Statement Varying Two 
Data-Names 

Figure 14. 

92 

ENTRANCE 

x 
***************•* •SET OATA-NAME-1• 
* DATA-NAME-4 * 
•DA TA-NAME-7 TO * 
* INITIAL FROM * 
: ......... ~!;~;*****: 

x 
. *• . *. ·*. 

·*·* *· •• •·• •••• •••• •••• :····exECUTE**••: 
•* TEST- *• FALSE •* fEST- *• FALSE •* TEST- *• FALSE •PROCEDURE-NAME-• 

••• X*. CONDITION-1 ·*·· ...... x•. CONDITION-2 •*• ••••••• x•. CDNDITION-3 ·*·· ...... X* 1 THRU * 
*. • * X •. • • X *. • * •PROC EOURE-NAME-• 

*• •* *• •• *• ·* * 2 * 
*. • * *. • ... *. . * ***************** 

• TRUE • **** * • TRUE * """* * * TRUE 

EXIT 

: C2 : : C3 : 

x .............................. 
* * •SET DATA-NAME-4• 
•TO ITS INITIAL * 
• FROM VALUE * 
* * 
***************** 

x 
************••••• 
* AUGMENT 
* DATA-NAME-1 * 
* WITH ITS BY * 
* VALUE * ..................... 

x 
***************** 
* * •SET DATA-NAME-7• 

:roF~6~ mwL : 

* * ........................... 

.............. : ........ . 
* * * AUGMENT * 
* DATA-NAME-4 * 
* WITH ITS BY * 
• VALUE * .. ........................ . 

x 
**** 

* * * C2 * 
* * 

x 
***************** 
* * 
: DA ~~~~~~J-7 : 
* WITH ITS BY * 
: ........ ~!;~~ ....... : 

x ····· * * ! C3 : 

Logical Flow of Option 4 PERFORM Statement Varying Two Data-Names 



Table 18. Restrictions for Procedure-Branching Statements 
r--------------------T------------------------------------------------------------------1 I I statement I 
I ~----------,----------T-----------T------------T--------------------i 
I Appearing in: I ALTER I GO TO I PERFORM I STOP RUN I STOP LITERAL I 
~--------------------t----------t---------t-----------t------------+--------------------~ 
I Report I I I I I I 
I Declarative I Y I Y(l) I Y I Y I Y I 
~------------------~+----------t---------t-----------t------------t--------------------~ 
I Error I I I I I I 
I Declarative I Y I Y I Y I Y I Y I 
~-------------------t----------t---------t-----------t------------t--------------------~ 
I Debug I I I I I I 
I Packet I Y I Y I Y I Y I Y I 
~-------------------t----------t---------+-----------t------------t--------------------~ 
I Main Body of I I I I I I 
I the Procedure I I I I I I 
I Division I Y I Y I Y I Y I Y I 
~--------------------+----------+---------+------------t------------t--------------------i 
I SORT Input I I I I I I 
I or Output I Y(1} I Y(1) I Y(1) I N I Y I 
I Procedure I I I I I I 1--------------------i __________ i _________ ..._ __________ ..._ ___________ i ____________________ ~ 
1<1> Operands of these statements should be procedure-names appearing in the same I 
I section. I 
I I 
'----------------------------------------------------------------------------------------J 
STOP Statement 

The STOP statement is used to terminate 
or delay execution of the object program. 
The format of this statement is: 

r-----------------------------------------1 I {RUN ) I 
ISTOP ,,_ ~ I 
I l literal S I 
L-----------------------------------------J 

The STOP RUN statement terminates execu
tion of the object program. It returns 
control to the operating system or, if the 
program containing the STOP RUN has been 
invoked by another program, to the invoking 
program. 

The STOP literal statement causes a 
system-generated message code and the spec
ified literal to be displayed on the con
sole and the object program to pause. The 
program may be resumed only by operator 
intervention. A reply including the 
system-generated code must be keyed in on 
the console in order to resume execution. 
In COBOL E, the size of the literal is 
restricted to 72 characters. See the pub
lication IBM System/360 Operating System: 
Messages and Codes, Form GC28-6631. 

Table 18 states restrictions on the 
appearance of procedure-branching state
ments. Y means that the statement may 
appear; B indicates that it must not; the 
text indicates the outcome if the statement 
does appear. 

COMPILER-DIRECTING STATEMENTS 

Compiler-directing statements must be 
separate sentences. 

ENTER Statement 

The ENTER statement, used in conjunction 
with CALL or ENTRY statements, permits com
munication between a COBOL object program 
and one or more COBOL subprograms or other 
language subprograms. See the following 
publications for more information on call
ing and called programs: 

IBM System/360 Operating System: COBOL 
(F) Programmer's Guide, Form GC28-6380 
and IBM System/360 Operating System: 
COBOL (E) Programmer's Guide, Form 
GC24-5029. 

The ENTER statement has the following 
two formats: 

Format 1 (Used in calling program) 

.-----------------------------------------1 
!ENTER LINKAGE. I 
!CALL entry-name [USING argument ••• ]. I 
!ENTER COBOL. I 
L-----------------------------------------J 

Procedure Division 93 



Form GC28-6516-8, page revised by TNL GN28-0266, 6/1/70 

KQ~~~t-~ (Used in a COBOL subprogram) 

r-----------------------------------------1 
g~!gg ~!~~~§g. 
g~!B~ entry-name [~~!~§ data-name ••• 1. 
g~!~B QQ~Q~. 

subprogram statements 

g~!~B ~!~~~§g. 
gET~g~ 
ENTER COBOL. 
L=====-=====------------------------------J 

ggt~Y=~~~~ is an external-name; there
fore, it consists of single quotation marks 
enclosing no more than eight alphabetic and 
numeric characters, the first of which must 
be alphabetic. It must not be the same as 
the program-name specified in the PROGRAM
ID clause. 

Format 1 of the ENTER statement is used 
to effect transfer of control to a subpro
gram. Entry-name represents the name of 
the subprogram's entry point. 

In the USING clause of Format 1, an 
argument may be one of the following: 

1. A data-name when calling a COBOL 
subprogram 

2. A data-name, file-name, or a 
procedure-name when calling a subpro
gram written in a language other than 
COBOL 

Format 2 of the ENTER statement is used 
to establish an entry point in a COBOL sub
program. Control is transferred to the 
entry point by a CALL statement in another 
program. ~~t~y=g~~§ defines the entry 
point where linkage parameters are saved 
for eventual return and address parameters 
are obtained. In this form, each data-name 
in the USING portion of the ENTRY statement 
must be defined in the Linkage Section of 
the Data Division of the called program, 
must have a level-number of 01 or 77, and 
must not be subscripted. 

Computer base addresses of data items 
named in the USING list of an ENTRY state
ment are obtained from the USING list of 
the associated CALL statement. Names in 
the two USING lists <that of the CALL in 
the main program, and tha~ of the ENTRY in 
the subprogram> are paired in one-to-one 
correspondence. 

There is no necessary relationship 
between the actual names used for such 

94 

paired names, but the data descriptions 
must be equivalent. When a group data item 
is named in the USING list of an ENTRY 
statement, names subordinate to it in the 
subprogram's Linkage Section may be emp
loyed in subsequent subprogram procedural 
statements, when elementary items in the 
group are utilized. 

Data-names or other arguments specified 
in a CALL statement may be qualified or 
subscripted. When group items with level
numbers other than 01 are specif led, proper 
word-boundary alignment is required if sub
ordinate items are described as COMPUTA
TION~L, COMPUTATIONAL-1, or COMPUTATIONAL-
2. See the appendix entitled "Slack Bytes" 
for information on adjustment of word
boundary alignment. 

The RETURN statement enables restoration 
of the necessary registers saved at an 
entry point. The return from a subprogram 
is always to the first instruction after 
the calling sequence of the main program. 

There must be no path of program flow to 
an ENTRY statement within the program con
taining the ENTRY statement. Hence, the 
statement should not have a paragraph-name, 
unless it is the first statement to be 
executed. 

Refer to the appendix entitled "Examples 
of COBOL Programs" for sample coding il
lustrating linkage between a calling and a 
called program. 

The EXIT statement may be used when it 
is necessary to provide an end point for a 
procedure that is to be executed by means 
of a PERFORM statement or for a procedure 
that is a declarative. 

The format for the EXIT statement is: 

r-----------------------------------------1 
!paragraph-name. ~~I!· I 
L-----------------------------------------J 

EXIT must appear in the source program 
as a one-word paragraph preceded by a 
paragraph-name. 

When the PERFORM statement is used, an 
EXIT paragraph-name may be the procedure
name given as the object of the THRO 
option. In this case, a statement in the 
range of a PERFORM being executed may 
transfer to an EXIT paragraph, bypassing 
the remainder of the statements in the PER
FORM range. 



If control reaches an EXIT paragraph and 
no associated PERFORM or USE statement is 
active, control passes through the exit 
point to the first sentence of the next 
paragraph. 

NOTE Statement 

The NOTE statement permits the program
mer to write explanatory comments in the 
Procedure Division of a source program that 
will be produced on the listing but serve 
no other purpose. The format of the NOTE 
statement is: 

r-~~--------------------------------------1 
!NOTE comment... I 
L-----------------------------------------J 

NOTE, when used, must begin a sentence. 
Following the word NOTE, any combination of 
the characters from the EBCDIC set may 
appear. If NOTE is not the first word in a 
paragraph, the comments end with a period 
followed by a space. However, if NOTE is 
the first word of a paragraph, any subse
quent sentences within the paragraph are 
also considered notes. Proper format rules 
for paragraph structure must be observed. 
The paragraph-name should begin in margin A 
and one or more sentences should appear in 
margin B. NOTE itself should not start in 
margin A. 

Procedure Division 95 



--------------~--ACME MANUFACTURINri COMPl\NY 
CD 

--------------QUARTERLY EXPENDITURES REPORT 

®"'---------------· llfiN lJ AK Y EXPENDITURES 

MONTH DAY DEPT NO-PUPCH.l\SES TYPE COST CUMULJ\TIVE-Cf'IST 

Q)--JANUAKY 01 AOO 
A02 
A02 

2 
l 
2 

J\ 
A 
c 

2.00 
1. 00 

16.00 ®--
PURCHASES AND COST FOK 1-01 5 $19.00 $19.00 

~********************************************************************** 
~JANUAKY 02 ~01 2 D 2.00 

A04 10 A 10.00 
A04 10 C 80.00 

PURCli/ISES AND COST F0R 1-02 22 $92.00 $111.00 
********************************************************************** 
JANUARY 05 /1.0 l 

PURCHASES AND COST FOR 1-05 

2 

2 

B 2.00 

$2.00 $113.00 
********************************************************************** 
JANUARY 08 AOl 

AOl 
/\.0 l 

10 
8 

20 

PURCHASES AND COST FUR 1-08 38 

A 
8 
D 

10.00 
12.48 
38.40 

$60.88 $173.88 
********************************************************************** 

MARCH 29 AOl 6 c 48.00 

PURCHASES AND COST FOR 3-29 6 $48.00 $1950.02 
********************************************************************** 
~ARCH 31 A03 20 E 60.00 

PURCHASES AND COST FUR 3-31 20 $60.00 $2010.02 
********************************************************************** 

WAS $528.50 (})-------TOTAL COST FOi< MARCH 

([)1------------------------------R E Pf)R T- PAGE-05 

@--TOTAL COST FOR QU/IRTER WAS $2010.02 

([)-----------------------------REP0kT-PAGE-06 

@~------·--------END 0 F REPORT 

•Figure 15. sample Portions of a Report Produced by Report Writer Feature 

96 



INTRODUCTION 

The COBOL F Report Writer Feature 
enables the programmer to generate written 
reports with a minimum of Procedure Divi
sion co&lng, thus simplifying the task of 
writing programs to produce such reports. 

Figure 15, on the opposite page, shows 
several parts of a report produced by the 
Report Writer feature. (The complete 
report, as well as the coding used to pro
duce it, and detailed explanatory remarks, 
are presented in Figures 16 and 17, at the 
end of this chapter.) 

A report by the Report Writer feature 
may be thought of as consisting of seven 
distinct types of information, known as 
report groups. six of these are illus
trated by the circled numbers in Figure 15. 
The programmer specifies the content of 
each report group by means of special 
statements in the Report Section of the 
Data Division. These statements provide 
not only the content of the various report 
groups, but also their physical format on 
the page and instructions as to when each 
group is to be written. In the Procedure 
Division the programmer must include only 
three types of statements to cause the 
report to be written: an INITIATE state
ment, which is executed just before the 
report is to be started; any number of GEN
ERATE statements, which cause individual 
lines of the report to be written; and a 
TERMINATE statement, executed when the 
report is completed. 

The circled number 1 in Figure 15 points 
to a Report Heading report group, which is 
written once at the beginning of the 
report. Similarly, Number 6 is a Report 
Footing report group, written once at the 
end of the report. Number 2'is a Page 
Heading, written at the top of each page, 
and number 5 a Page Footing, written at the 
bottom. The Report Writer automatically 
handles the end-of-page condition Cat which 
time the Page Footing for the old page and 
the Page Heading for the new one are writ
ten) according to information supplied by 
the programmer in the Report section. The 
page number need not be maintained by the 
programmer; it is written from a counter 
that is kept by the Report Writer. 

The basic parts of the Report Writer 
feature are illustrated by the circled num-

r------, 
IF ONLYI REPQg!_~BI~~g_!:.~~TUR~ 
l ______ J 

hers 3 and 4. Number 3 points to two items 
of the report called Detail lines. Detail 
lines, which may occupy one or more physi
cal lines, consist of the actual data of 
the report gathered from one or more input 
files, or from information otherwise made 
available to the Report Writer. The Detail 
lines in Figure 15 were from punched card 
input, but were reformatted before being 
written. (The data used in this example, 
with explanatory text, is illustrated in 
Figure 16, at the end of this chapter.> 
The Detail line is the only one of the 
seven types of report information that the 
programmer specifically requests to be 
written, by the use of a GENERATE statement 
in the Procedure Division. 

The Detail line, like the other report 
groups, is formatted once in the Report 
section of the Data Division. 

In this illustration number 3 is point
ing to two separate Detail lines, even 
though they were both written Cat different 
times) by the same GENERATE statement. 

Number 4 points to two lines that make 
up a report group called a Control Footing. 
(As with the Detail line and all other 
report groups, the Control Footing may con
sist of any number of lines.) The Control 
Footing is essentially a summation of the 
data that has been presented in one or more 
previous Detail lines, or previous Control 
Footings. The programmer does not specif
ically call for the Control Footing to be 
written, but indicates through statements 
in the Report Section the circumstances 
under which the Report Writer is to auto
matically write the group. 

The writing of control Footings is 
governed by the values of data items known 
as control fields. A control field is a 
data item which may be expected to change. 
In Figure 15, the control field governing 
the Control Footing pointed to by number 4 
is the data item' in the column labeled DAY. 
This control Footing is written every time 
the value of the data item DAY changes, but 
before the Detail line with the new value 
is written. In addition to the text, "PUR
CHASES AND COST FOR (date>," and the line 
of asterisks, the Control Footing writes 
three totals: the number of purchases for 
the day, the cost of those purchases, and a 
running total of the cost for the month. 

Report Writer Feature 97 



Page of GC28-6516-8, Revised 1/15/72, by TNL: 

Number 7 points to a control Footing 
governed by the control field MONTH. Thus 
when the month changes, the total cost for 
the preceding month is written. Similarly, 
number 8 points to a control Footing which 
is written only when the report is ended by 
the execution of a TERMINATE statement. 
It writes the total expenditure for the 
quarter. 

The programmer does not code routines to 
compute any of the above-mentioned totals. 
He merely indicates in the Report Section 
that the source of certain information in 
the various control Footings is the sum of 
certain data items. The Report Writer 
generates the instructions which perform 
the necessary calculations. 

The writing of the seventh type of 
report group, called a Control Heading, 
<not illustrated>, is, like the control 
Footing, govE~rned by a control field. It 
is often written in conjuction with a con
trol Footing, and may be governed by the 
same control f ieldo In such case the Con
trol Heading would be written immediately 
following the control Footing and would 
appear above subsequent Detail lines, 
including the originally-referenced Detail 
line that caused both the control Heading 
and Control Footing to be written. 

The remainder of this chapter is devoted 
to a detailed presentation and explanation 
of the Report Writer verbs. and the rules 
governing their use. The reader may find 
it helpful to refer to the coding example 
<Figure 16) and Report Writer output 
<Figure 17) when reading this material. 

DATA DIVISION CONSIDERATIONS 

The names of all the reports to be pro
duced must be named in the File Section of 
the Data Division. A Report Section must 
be added at the end of the Data Division to 
define the format of each report. 

FILE SECTION 

Each FD entry in the File Section fur
nishes information concerning the physical 
structure, indentification and record-names 
pertaining to a 9iven file. 

GN28-0465 

General Format 

r-----------------------------------------1 
lfQ file-name I 
I I 
I LABEL RECORDS-CLAUSE I 
I [BLOCK CONTAINS-clause] I 
I [RECORD CONTAINS-clause] I 
I [RECORDING MODE-clause] I 
I [DATA RECORI5S=C'lause] I 
I [REPORT(§)-clause.] I 
L-----------------------------------------J 

A discussion of all the above-mentioned 
clauses appears in the "Data Division" 
chapter. In an FD entry with a REPORT 
clause, t_he RECORD CONTAINS clause has no 
effect and may be omitted. A description 
of the REPORT clause follows. 

When the Report Writer is used, the FD 
entries of the files on which the reports 
are to be written must include a REPORT 
clause containing the names of each of the 
reports to be produced. The reports may be 
of different sizes, formats, etc.c and the 
order in which their names appear is not 
significant. 

The format for the HEPORT clause is: 

r-----------------------------------------1 
l{REPORT IS } I I --~-- report-name-1... I 
I REPORTS ARE I 
L-----------------------------------------J 

The REPORT clause cross references the 
Report Description entries with their asso
ciated File Description <FD> entry. Each 
unique report-name must appear in one and 
only one FD entry and be the subject of one 
and only one RD entry in the Report 
Section. 

REPORT SECTION 

The Report Section must be the last sec
tion in the Data Division. It consists of 
two types of entries for each report; one 
describes the physical aspects of the 
report format -- number of li»es per pa9e. 
location on the page of various groupings, 
~tc. The other type describes the cOl'leep
tua 1 characteristics of the report -
descriptions of the group items which make 
up the document. There are seven classes 
of group items, which are called Report 
Group Description Entries: 



1. Report Heading 
2. Report Footing 
3. Page Heading 
4. Page Footing 
5. Control Heading 
6. control Footing 
1. Detail. 

A discussion of each of these items fol
lows. The REPORT Section must begin with 
the header REPORT SECTION. 

General Format 

r-----------------------------------------1 I REPORT SECTION. I 
I RD Report-name ~ 
I [CODE-clause] I 
I [CONTROL-clause] I 
I [PAGE LIMIT-clause]. I 
L-----------------------------------------J 
Jill is the level indicator. 

RepQrt-~ is the name of the report and 
must be unique. The report-name must 
be specified in a REPORT clause in the 
File Description entry for the file on 
which the report is to be written. 

CODE Clau:::e 

The CODE clause is used to specify an 
identifying character that is appended to 
each line produced. The identification is 
meaningful when more than one report is 
written on a file. The format for the CODE 
clause is: 

r-----------------------------------------1 I WITH CODE mnemonic-name I 
L-----------------------------------------J 
Mnemonic-name Must be associated with a 

single character in the Special-Names 
paragraph in the Environment Division. 
The identifying character is appended 
to the beginning of the line, preced
ing the carriage-control/line-spacing 
character. This clause should not be 
specified if the report is to be 
printed on-line. 

~Q!~: The first character of each print 
line is always reserved for a code even if 
one has not been specified. Thus the pres
ence or absence of a code has no effect on 
the size of the logical record, which will 
always be 144 characters. 

The CONTROL clause indicates the data
names which specify the control hierarchy 
for the report. 

A control is a data item in the printed 
report. All control items for the report 
are tested each time a Detail Report group 
is to be written. If the test indicates 
tha.t the value of a control item has 
changed, a control break is said to occur 
and special action (described below) is 
taken before the Detail group is written. 
The format for the CONTROL clause is: 

r-----------------------------------------1 
I {£0NTRO~ IS } fFINAL } I 
I data-name-1... I 
~ CONTROLS ARE tFINAL data-name-1... I 
l-------------------------~---------------J 

The data-names specify the control 
hierarchy of the report and are listed in 
order from major to minor. FINAL, when it 
is present, is the highest control item, 
data-name-1 is the major control, and sub
sequent data-names would be intermediate 
controls, down to the last, which would be 
the minor control. 

Although FINAL is the highest level con
trol item, its presence is never required 
in a CONTROL clause. 

For further discussion of FINAL, S'=:'e the 
sections pertaining to the CONTROL HEADING, 
CONTROL FOOTING and RESET clauses, below. 

The data-names must be defined in the 
File or Working-Storage Sections of the 
Data Division. FINAL is the exception to 
the rule that all control items must be 
data-names. 

In general, control items Cother than 
FINAL) are ordered by the frequency that 
their values are expected to change 
(although such ordering is not mandatory>. 
For example, if a report has three control 
items, Year, Month, Day, would most likely 
be the minor (lowest> control and Year the 
major (highest) control. 

The action to be taken as a result of a 
control break depends on what the program~ 
mer defines in the Report Section. He may 
def :ine a Control Heading Report group and/ 
or a Control Footing, or neither, for each 
control item. 

Control Headings and Footings represent 
action to be taken (data to be summed, 
lines to be written etc.) before or after 
Detail lines are written when a control 
break has occurred. Thus, if a report was 
being written listing daily expenditure for 

Report Writer Feature 99 



each department of a company for a period 
of three months, the Control Heading for 
the data item <control) Day might be a 
header, below which each of the Detail 
lines would be written. The Control Foot
ing for Day might be a line or lines sum
ming the total expenditure: 

Dept. ~t. Tota! 

March 26 Al. $23.92 $23.92 
A2 $6.07 

$7.13 $13.20 
B16 $105.90 $105.90 

************************************ 
Expenditure for March 26: $143.02 

In the above illustration, the line of 
asterisks and the line directly below it 
which begins "Expenditure ••• " is the Con
trol Footing for Day. It was written 
because the last input record to be proc
essed contained a date other than March 26. 
After the two Control Footing lines, a new 
header <Depi••••> will be written. 

The above example was produced as a 
result of a series of GENERATE statements 
and two control breaks. The GENERATE 
statements produced the four Detail lines 
(between the heading and the line of 
asterisks>. A control break for Day (when 
March 26 became March 27) resulted in the 
writing of the Control Footing (the 
asterisks and the line beginning "Expendi
ture"). The previous control break for Day 
(when March 25 became March 26) caused the 
he.ading to be written. 

The order of writing of control groups 
is as follows: first the Control Footing 
of the lowest-level control, followed in 
ascending order by the Control Footings, if 
any, up to and including the level at which 
the break occurred. Then Control Headings, 
if any, will be written starting with the 
Heading for the control which caused the 
break <the Footing of which had just been 
written) and proceeding in descending order 
down to the Heading of the lowest control. 
Then the original Detail group is written. 

For example, in the program with the 
controls Year, Month, and Day <each of 
which are assumed to have Control Headings 
and Footings), if a control break occurred 
for Year <i.e., if the input data for Year 
has changed), the first item to be written 
would be the control Footing for Day, fol
lowed by the Control Footings for Month and 
Year, then the Control Headings for Year, 
Month and Day. Finally, the Detail line 
would be written. When a control break at 
an intermediate or major level occurs, 
breaks at all lower levels are implicity 
assumed. 

100 

If, in the course of writing control 
Headings, Footings or Detail groups, a page 
overflow condition is detected, a Page 
Footing is written (if specified), the next 
page is skipped to and a Page Heading Cif 
specified> is written on the new page 

It should be noted that the only group 
that the programmer specifically requests 
to be written is the Detail group. Control 
Headings and Footings, Page Headings and 
Footings, and Report Headings and Footings 
are written automatically Cif they are 
specified> when the Report Writer deter
mines that they are required. 

PAGE LIMIT Clause 

The PAGE clause is used to describe the 
format of a page of the report. The format 
of the PAGE clause is: 
r-----------------------------------------1 
I [LIMIT IS J {LINE } I !PAGE integer-p I 
I -- LIMITS ARE LINES I 
I I 
·~ [HEADING integer-h] I 
1 I 
I [FIRST DETAIL integer-dl I 
I I 
I [~~ST DE!~!~ integer-el I 
I I 
1 C~QOTING integer-fl I 
L----------------------------------------J 
where: 

integer-h is the number of the first line 
on which anything may be written. No 
report group can start before line h· 
Integer-h in effect determines the 
size of the top margin of the page. 

integer-a is the number of the first line 
on which a Detail or a Control Heading 
line may be written. No Detail or 
control group can start before line g. 

integer-e is the number of the last line on 
which a Detail or Control Heading line 
may be written. No Detail or Control 
Heading extends beyond line ~· 

integer-£ is the number of the last line on 
which a Control Footing may be writ
ten. No Control Footing can start 
before line g or extend beyond line f. 
Page Footings follow line f, but do 
not extend beyond line p. 

integer-p is the number of the last line on 
which anything may be written. 
Integer-p in effect determines the 
size of the bottom margin of the page. 



~· LIMIT(S) is an optional word. 

~he PAGE clause entry values can be 
~ed up as follows: 

integer-h must be greater than or 
equal to 1. 

integer-d must be greater than or 
equal to h. 

integer-e must be greater than or 
equal to d. 

integer-£ must be greater than or 
equal to e. 

integer-p must be greater than or 
equal to f. 

:ndividual parts of the PAGE clause may 
>mitted. The following are assumed for 
omitted values: 

integer-h 1 

integer-d = 1 

integer-e = 48 

integer-£ = 48 

integer-p 52 

1rt Group Description Entry 

report may be devided into report 
~~· A report group is a set of data 
ts that is to be presented as an indi-
1al unit, irrespective of its physical 
tat. It may consist of several report 
~s containing many data items, or of one 
1rt line containing a single data item. 

'hree categories of report group def ini
s are provided: Heading groups, Foot
groups, and Detail groups. 

'he data items comprising a report group 
be identified by the level number 01 

a TYPE clause. All group description 
ies are located immediately following 
Report Description (RD) entry for the 
rt of which they are a part. 

'he description of the report group is 
ogous to that of a data record in that 
s formatted by level numbers. It con
s of a set of entries defining the 
acteristics of the elements. The 
ement of an item in relation to the 
re report group and to the overall for
as well as to any control factors 

ciated with the groups, is defined by 
report group description entry. 

The 01 level description indicates the 
type of report group being described. The 
02 level descriptions describe the inf orma
tion to be written when conditions indicate 
that a report group is to be written. 

The :Eormats of the 01 and 02 level 
descriptions of report groups are: 

r-----------------------------------------1 
I I 
101 Cdata-name-1] TYPE-clause I 
I [LINE-clause] [NEXT ~ROUP-clause] I 
I I 
102 [data-name-2] [LINE-clause] I 
I [COLUMN-clause][GROUP INDICATE] I 
I [~LANK=clause] [JUS!!~!ED RIGHT] I 
I I 
I l SOURCE-clause} I 
I PICTURE-clause SUM-clause I 
I VALUE-clause I L_ ________________________________________ J 

Data-name-1 is the name of the report group 
being defined. It need be specified 
only if either the USE BEFORE 
REPORTING or the GENERATE statement 
(both described below) is used within 
the Procedure Division to refer to it. 
If data-name-1 is specified, it must 
be unique and may not be qualified. 

Data-~~ is the name of the elementary 
item being defined. It need be named 
only if the description contains a SUM 
clause which is referred to in the 
Procedure Division, or by another SUM 
clause. Data-name-2, if specified, 
must be unique within the report 
description. If data-name-2 is common 
to more than one RD entry, any 
reference to it outside the Report 
Section must be qualified. 

The BLANK, JUSTIFIED RIGHT, PICTURE and 
VALUE clauses are described in the chapter 
"Data Division." 

Report group names are required when 
reference is made in the Procedure Division 
to: 

1. A DETAIL report group by a 
GENERATE statement. 

2. A HEADING or FOOTING report group 
by a USE statement. 

Note: level numbers greater than 02 should 
notbe used. 

TYPE Clause 

The TYPE clause specifies the type of 
report group being described. The format 
of the TYPE clause is: 

Report Writer Feature 101 



Page of GC28-6516-8, Revised 12/30/70, by TNL: GN28-0427 

r-----------------------------------------1 
1

1 

{ data-name-1} 1

1 
CONTRO!! HEADING 

I REPQR±. HEAQING FINAL I 
I PAG~ HEADING I 
ITYP~ IS DE±.AIL I 
I PAGE FOOTING I 
1

1 

CO~TRO!! fOOTIN~ {data-name-2} 
1

1 

CO~TROL FOOTING 
I FINAL I 
L-----------------------------------------J 

The following list of abbreviations may 
be used in the TYPE clause: 

RH REPORT HEADING 

PH PAGE HEADING 

CH CONTROL HEADING 

DE DETAIL 

CF CONTROL FOOTING 

PF PAGE FOOTING 

RF REPORT FOOTING 

A REPORT HEADING report group is written 
only once -- at the beginning of the 
report. The programmer does not 
expressly specify that it be written; 
if a Report Heading has been specified 
in the Report section, it will be 
written automatically when the first 
GENERATE statement is executed for the 
report. Only one Report Heading 
report group may be defined for a 
report. 

A PAGE HEADING report group is written at 
the beginning of each page. Only one 
Page Heading report group may be 
defined for a report. Like the Report 
Heading, the Page Heading is written 
automatically: the programmer does not 
specifically call for it. (On the 
first page the Page Heading is written 
after the Report Heading, if a Report 
Heading has been specified.) 

A CONTROL HEADING report group is written 
each time there is a control break in 
the control for which the Heading is 
specified. Only one control Heading 
report group may be defined for €·1.Ch 
control specified in the CONTROL 
clause of the Record Description 
entry. However, a Control Heading 
need not be defined for each control. 
Control Headings are not written auto
matically after a page break. If Con
trol Heading information is desired at 
the top of each page, it should be 
included as part of the Page Heading 
report group. When CONTROL HEADING 
FINAL is specified, the indicated 

102 

source material will be written after 
the first GENERATE statement is 
executed. If the GENERATE statement 
refers to a report-name, the Control 
Heading will be written after the 
Report Heading and Page Heading, if 
any. If the GENERATE statement refers 
to a Detail group, the Control Heading 
will be written before the desired 
Detail line, but after a Report Head
ing or Page Heading, if specified. 

Note that when CONTROL HEADING FINAL is 
not specified, a Control Heading will not 
be written above any Detail lines until a 
control break occurs for which a Control 
Heading has been specified. 

A DETAIL report group is written each time 
a GENERATE statement that refers to 
the report group is executed. The 
GENERATE statement refers to the data
name specified in the level 01 
description. There is virtually no 
limit to the number of Detail report 
groups that may be defined for a 
report. 

A CONTROL FOOTING report group is written 
automatically each time there is a 
control break in the control speci
fied. Only one Control Footing report 
group may be specified for each con
trol listed in the CONTROL clause of 
the Report Description entry. Howev
er, a control Footing need not be 
defined for each control. When CON
TROL FOOTING FINAL is specified, it is 
written upon execution of the TERMI
NATE statement, after all other Con
trol Footings, if any. 

A PAGE FOOTING report group is written at 
the end of each page. Only one Page 
Footing report group may be defined 
for a report. 

A REPORT FOOTING control group is written 
at the end of the report. It is 
printed only when the TERMINATE state
ment is executed. 

LINE Clause 

The LINE clause indicates the absolute 
or relative line number of the entry in 
reference to the page or previous entry. 
All data defined up to the next LINE clause 
<or up to the end of the report group 
description) is printed on the line speci
fied. The LINE clause must be specified 
for each line printed. A LINE clause must 
be specified in either the 01 or first 02 
level description of a report group. 



Page of GC28-6516-8, Revised 1/15/72, by TNL: GN28-0465 

If the LINE clause is specified at the 
report group (01) level, all entries for 
the first report line within the report 
group are presented on the specified line 
number, unless another LINE clause is pres
ent at the 02 level. 

The format for the LINE clause is: 

r-----------------------------------------1 
I {integer-1 } I 
ILINE IS PLUS integer-2 I 
I NEXT PAGE I 
L-----------------------------------------J 
Integer-1 is an absolute line number. It 

specifies the number of the line on 
which to write the first line of the 
group of data being defined. 

!nteger-l is a relative line number. It 
specifies the number of lines to be 
skipped before writing the group of 
data being defined. (If the group 
being defined is a Page Heading, then 
integer is relative to line h, where h 
is defined in the PAGE clause.) 

NEXT PAGE indicates that the group of data 
being defined is to appear on the next 
page. This option should be specified 
only for the 01 level entry of a 
report group. It causes the Page 
Footing and Page Heading, if speci
fied, to be written. 

If more than one LINE clause is speci
fied within the definition of a report 
group, the following restrictions apply: 
(1) absolute line numbers must be specified 
in ascending order and C2> an absolute line 
number must not follow a relative line 
number. 

~ote: LINE NEXT PAGE should not be speci
fied for Report Heading, Page Heading, Page 
Footing, or Report Footing report groups., 

The NEXT GROUP clause specifies line 
control following the writing of the report 
group being defined. The format of the 
NEXT GROUP clause is: 

r-----------------------------------------1 
I { integer-1 } I 
INEXT ~sou~ PLUS integer-2 I 
I NEXT PAG§ I 
L-----------------------------------------J 
Integer-1 is an absolute line number and 

indicates the number of the line to be 
skipped to. 

Integer-2 is a relative line number and 
indicates the number of lines to be 
skipped. Integer must be greater than 
O; a value of 0 will not cause 
overprinting. 

~~~!-~~~~ indicates that the next page is 
to be skipped to. The Page Footing
and Page Heading, if indicated, will
be written. NEXT PAGE may be speci
fied for an 01 level entry only.

Note: NEXT GROUP NEXT PAGE should not be
specified for Report Heading, Page Heading,
Page Footing, or Report Footing groups. If
NEXT GROUP is specified for an intermediate
control, it will be applied if a control
break occurs for a higher level control.

The COLUMN clause specifies the position
in the print line of the first character of
the data item being defined. The format of
the COLUMN clause is:

r---1
!COLUMN integer I
L---J

Integer specifies the position in the print
line where the leftmost character of
the data item is to be placed.

If the COLUMN clause is not specified,
the data item will not be written, although
SOURCE material will be moved and data will
be summed.

The GROUP INDICATE clause specifies that
the data item being defined is to be writ
ten only after a control break. This
clause may only be specified for a data
item within a Detail report group descrip
tion. Use of the clause will result in the
data item so specified being written only
once between control breaks governing the
Detail group being defined. The format of
the GROUP INDICATE clause is:

r--------------------~--------------------1
ll§RQQ~ INDICATE] I
L---J

GROUP INDICATE is not applied after a
page break.

Report Writer Feature 103

SOURCE Clause

The SOURCE clause specifies the source
of the data to be moved to the data item
being defined. <The moving is done in ac
cordance with the rules of the MOVE verb.)
The format of the SOURCE clause is:

r---1
I [SOURCE data-name] I
L---J

Data-name is the name of the data to be
-~--moved to the data item being defined

and must itself be defined in the
File, Working-Storage or Linkage Sec
tion. It may be qualified and/or
subscripted.

SUM Clause

The SUM clause is used to cause automat
ic summation of data and may only appear in
a CONTaOL FOOTING report group description.
The format of the SUM clause is:

r---1
!SUM data-name-1 ••• [UPON data-name-2] I
I I
I [f data-name-3 }] I
I RESET ON) I
I ~EINAL I
L---J

The data-names following SUM are the
names of the items to be summed. They must
be defined in the File, Working~Storage or
Linkage Sections, or may be the names of
other sum counters defined in the same
report. Data-name-1 and data-name-3 may be
qualified but not subscripted. The rules
that apply to data-names used in arithmetic
statements also apply to data-names used in
the SUM clause of the Report Writer.

When the SUM clause is specified, it
causes the definition of two data items:
one is within the print line (this is the
same type of field that is defined when the
VALUE or SOURCE clauses are specified rath
er than the SUM clause); the other is a sum
counter. The sum counter is used to con
tain the sum of the data-names specified in
the SUM clause. When the report group con
taining the SUM clause is printed, the
value from the sum counter is moved to the
print line.

If sum counters are operands of SUM
clauses in a higher position in the control
hierarchy, the lower hierarchy sum counters
are not reset until their values have been
summed by the higher level SUM clause.

104

Summing sum counters at an equal posi
tion in the control hierarchy is known as
cross footing and may occur in a Control
Footing report group.

A SUM clause causes the automatic summa
tion of data. The effect is as if the
programmer had calculated the sum himself
with one or more ADD statements and
referred to it in the Control Footing
report group by a SOURCE clause.

Each time a GENERATE statement that
refers to a Detail report group in the
report is executed, the values of data
name-1, etc., are added to the sum counter
(except as noted below>.

When the UPON option is used, the values
in data-name-1, etc., are added to the sum
counter only when a GENERATE statement that
refers to data-name-2 is executed.

When the RESET option is specified, the
automatic resetting of the sum counter is.
overridden; instead, the sum counter is
reset to zero only when a control break
occurs for the control item specified in
the RESET clause. Thus, data-name-3 must
be the the name of a control item and must
be a higher level control than the Control
Footing which contains the RESE'I option.
When RESET ON FINAL is specified, the coun
ter is not reset, and any accompanying Con
trol Footings are written upon execution of
the TERMINATE statement.

PAGE-COUNTER AND LINE-COUNTER

PAGE-COUNTER is a fixed data-name spec
ifying a compiler-generated counter to be
used by the Report Writer. PAGE-COUNTER is
initially set to 1 and is incremented by 1
each time a Page Break occurs.

LINE-COUNTER is also a fixed data-name
generated by the Report Writer. It is used
to format lines on the page and to deter
mine when Page Headings and Footings should
be produced. LINE-COUNTER is tested before
each individual group is written and is
reset to zero after every page break. At
any given time, the value of LINE-COUNTER
represents the number of the last line
written or skipped to.

One PAGE-COUNTER and LINE-COUNTER are
generated for each report. Both may be
referred to in Procedure Division state
ments. Both must be qualified by the
report-name if the program contains more
than one report.

If a starting value for PAGE-COUNTER
other than 1 is desired, it may be set by a
Procedure Division statement after the
INITIATE statement for the report has been
executed.

LINE-COUNTER is used by the Report Writ
er for test and control purposes. There
fore, the programmer should be careful when
changing its value by Procedure Division
statements because the ensuing page format
control may be unpredictable.

PROCEDURE DIVISION CONSIDERATIONS

To produce a report, the INITIATE, GEN
ERATE and TERMINATE statements must be used
in the Procedure Division. In addition, a
USE BEFORE REPORTING sentence may be writ
ten in the Declaratives portion of the the
Procedure Division. This option allows the
programmer to manipulate or alter data
immediately before it is written, or to
suppress writing entirely.

INITIATE Statement

The INITIATE statement is used to ini
tialize the PAGE-COUNTER and LINE-COUNTER
before producing the report. The format of
the INITIATE statement is:

r---1
I!~!~!~~~ report-name... I
L---J

The names of the reports to be initiated
must have been defined by Report Descrip
tion entries in the Report Section of the
Data Division.

Only one INITIATE statement should be
executed for each report-name. The INITI
ATE statement does not produce any written
lines, nor does it open the file with which
it is associated. An OPEN statement for
the file must be given prior to the INITI
ATE statement for the report. The INITIATE
statement must precede any GENERATE state
ments which ref er to the report to be
produced.

GENERATE Statement

A series of one or more GENERATE state
ments is executed to produce the report.
The format of the GENERATE statement is:

r---1
!GENERATE data-name I
L---J

Q~t~~~~~~ may be the name of a Detail
report group or the name of the
report.

If data-name is a report-name, the
Report Heading, Page Heading, and CONTROL
HEADING FINAL will be produced if they have
been specified. However, GENERATE report
name will ~2~ produce a Detail line.

If data-name is the name of a Detail
report-group~-the GENERATE statement will
recognize any control or page breaks and
will produce the appropriate Headings and
Footings. After any Control Headings and
Footings are produced, the GENERATE state
ment will write the Detail line. All data
items specified in the Detail report group
will be accumulated into the sum counters
before writing and the counters will be
reset after writing unless a RESET clause
has been specified. Any routines defined
by a USE statement (see below> will be
executed before generation of the asso
ciated report group.

If the first GENERATE data-name state
ment associated with a report refers to a
Detail report group, Report and Page Head
ings and CONTROL HEADING FINAL, if speci
fied, will be written before the first
Detail line.

Data is moved into the data items in the
Report Group Description entry of the
Report Section, and is edited under the
control of the Report Writer according to
the same rules for movement and editing as
described for the MOVE statement.

!~gMINATE Statement

The TERMINATE statement is used to end a
previously initiated report. It produces
all of the control Footings associated with
the report as if a control break had
occurred at the highest level. The format
of the TERMINATE statement is:

r---1
l!~g~!~~!~ report-name... I
L---J

Although the TERMINATE statement com
pletes all the Report Writer functions for
a given report, it does not close the file
with which the report is associated. A
CLOSE statement for the file must be
executed after the TERMINATE statement.

~eport Writer Feature 105

Form GC28-6516-8, page revised by TNL GN28-0266, 6/1/70

Only one TERMINATE statement may be
executed for each report-name.

A USE BEr'ORE REPORTING sentence is used
to perform procedures immediately before a
specified report group is produced. The
USE sentence, when present, must immediate
ly follow a section header in the Declara
tives portion of the Procedure Division.
The remainder of the section consists of
one or more procedural paragraphs that
define the procedures to be used.

The format of a USE BEFORE REPORTING
declarative is:

r---1
IQEC~~~T!Y~§. I
!Section-name §~£!!Q~. I
I ~§~ ~~~QRE g~~QRTIN~ data-name. I
I I
I I
I I
l~ND_Q~£~~TIVES. I
L---J

Data-name is the name of a report group
----other than a Detail report grup. It

must not appear in more than one USE
statement. A separate USE statement
must be written for each data-name.

Within a USE procedure there must not be
any reference to any non-declarative proce
dures. Conversely, in the non-declarative
portion there must be no reference to
procedure-names that appear in the declara
tive portion, except that PERFORM state
ments may refer to a USE declarative or to
the procedures associated with a USE
declarative.

A common use of the USE sentence is to
suppress writing of a specified report
group under certain conditions. To do
this, the statement

r---1
I MOVE 1 TO PRINT-SWITCH I
L---J

is used in the USE BEFORE REPORTING
declarative section. When this statement
is encountered, the PRINT-SWITCH will be
tested before printing takes place. Writ
ing is suppressed if the switch is 1.
After the USE BEFORE REPORTING section is
executed, the PRINT-SWITCH is automatically
reset to o. The user should not reset it
himself.

The following coding examples illustrate
the use and operation of this declarative

106

section. The coding below shows the
definition of two control Footing report
groups in the Report Section of the Data
Division.

01 MINOR TYPE CF C-1 LINE PLUS 2.

02 A SUMP PICTURE $$$.99

BLANK WHEN ZERO COLUMN 3.

02 SUM Q PICTURE $$$99.99CR COLUMN 10.

02 SOURCE E PICTURE**•***·**

COLUMN 25.

01 TYPE CF C-2 LINE PLUS 1.

02 SUM A PIC'I'URE $$$$$. 99

BLANK WHEN ZERO COLUMN 5.

P, Q, and E are assumed to have been
defined in either the File, Working
Storage, or Linkage Sections. The follow
ing coding shows a method of using the USE
BEFORE REPORTING declarative to suppress
writing of the above data under specified
conditions.

DECLARATIVES.

RW SECTION. USE BEFORE REPORTING MINOR.

IF P = 0 AND Q = 0 MOVE 1 TO PRINT

SWITCH.

END DECLARATIVES.

When a control break occurs for lower
level control C-1, the following operations
are performed:

1. The sum counter A is added to the sum
counter defined in the second report
group.

2. The RW Declarative Section is executed
immediately before the 01 group for
MINOR is entered. If P and Q are O,
the PRINT-SWITCH will be set to 1.

3. Upon entering the 01 group for MINOR,
the PRINT-SWITCH is tested. If it is
1, steps 3 and 4 are bypassed.

Form GC28-6516-8, page revised by TNL GN28-0266, 6/1/70

4. The print line is constructed by:

a. testing the line counter;

b. moving the correct character to
the first part of the record to
cause a double space;

c. moving the sum counters to the
print line (edited) and

d. moving E to the print line
(edited).

5. The line is written and 2 is added to
the LINE-COUNTER.

6. The sum counters in the first report
group are set to zero.

7. If the PRINT-SWITCH was set to 1, it
is reset to 0.

SAMPLE REPORT WRITER PROGRAM AND OUTPUT

Figures 16 and 17 illustrate a Report
Writer source program and the report it
would produce. In the program the input
data begins after line 001170. The records
are sorted by Date, Department Number and
Type of Purchase.

In Figure 16, the program coding is found
on the left-hand page. The coding is anno
tated on the right-hand page.

sections of the report illustrated in
Figure 17 are keyed by the circled numbers
to a table after the figure. This table
relates the sections to the statements in
the program that produce them.

Report Writer Feature 107

000000
000010
000020
000030
000040
000050
000060
000070
000080
000090
000100
000110
000120
000130
000140
000150
000180
000190
000200
000210
000220
000230
000240
000250
000260
000270
000280
000281
000290
000300
000310
000320
000330
000340
000380
000390
000400
000410
000420
000430
000440
000450
000460
000470
000480
000490
000500
000510
000520
000530
000540
000550
000560
000570
000580
000590
000600
000610
000620
000630
000640
000650
000660
000661
000670
000680
000690
000700
000710
000720
000730
000740
000750
000760
000770
000780
000790
000800
000810
000820
000830
000840
000850
000860
000870

IDENTIFICATION DIVISION.
PROGRAM-ID. 'ACME'.
INSTALLATION. ACME ACCOUNTING DEPARTMENT.
REMARKS. THE REPORT WAS PRODUCED BY THE REPORT WRITER FEATURE.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-360 F50.
OBJECT-COMPUTER. IBM-360 F50.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT INFILE ASSIGN TO 'SYSIN' UTILITY.
SELECT REPORT-FILE ASSIGN TO 'SYSPRINT' UTILITY.

DATA DIVISION.
FILE SECTION.
FD INFILE LABEL RECORDS ARE OMITTED DATA RECORD IS INPUT-RECORD

RECORDING MODE F.
01 INPUT-RECORD.

02 FILLER PICTURE AA.
02 DEPT PICTURE XXX.
02 FILLER PICTURE AA.
02 NO-PURCHASES PICTURE 99.
02 FILLER PICTURE A.
02 TYPE-PURCHASE PICTURE A.
02 MONTH PICTURE 99.
02 DAY PICTURE 99.
02 FILLER PICTURE A.
02 COST PICTURE 999V99.
02 FILLER PICTURE XC59).

FD REPORT-FILEL REPORT IS EXPENSE-REPORT
LABEL RECORuS ARE STANDARD.

WORKING-STORAGE SECTION.
77 SAVED-· MONTH PICTURE 99 VALUE 0.
77 SAVED-DAY PICTURE 99 VALUE O.
77 CONTINUED PICTURE X(ll) VALUE SPACE.
01 FILLER.

02 RECORD-MONTH.
03 FILLER PICTURE A(9) VALUE IS 'JANUARY
03 FILLER PICTURE A(9) VALUE IS 'FEBRUARY
03 FILLER PICTURE A(9) VALUE IS 'MARCH
03 FILLER PICTURE A(9) VALUE IS 'APRIL
03 FILLER PICTURE A(9) VALUE IS 'MAY
03 FILLER PICTURE A(9) VALUE IS 'JUNE
03 FILLER PICTURE A(9) VALUE IS 'JULY
03 FILLER PICTURE AC9) VALUE IS 'AUGUST •
03 FILLER PICTURE A(9) VALUE IS 'SEPTEMBER'.
03 FILLER PICTURE A(9} VALUE IS 'OCTOBER '•
03 FILLER PICTURE A(9) VALUE IS 'NOVEMBER'•
03 FILLER PICTURE A(9) VALUE IS 'DECEMBER'•

02 RECORD-AREA REDEFINES RECORD-MONTH.
03 MONTHNAME PICTURE A(9) OCCURS 12 TIMES.

REPORT SECTION.
RD EXPENSE-REPORT CONTROLS ARE FINALL MONTH, DAY

PAGE 59 LINES HEADING 1 FIRST D~TAIL 9 LAST DETAIL 48
FOOTING 52.

01 TYPE REPORT HEADING.
02 LINE 1 COLUMN 27 PICTURE AC26) VALUE IS
'ACME MANUFACTURING COMPANY'.
02 LINE 3 COLUMN 26 PICTURE A(29) VALUE IS
'QUARTERLY EXPENDITURES REPORT'.

01 PAGE-HEAD TYPE PAGE HEADING LINE 5.
02 COLUMN 30 PICTURE A(9) SOURCE MONTHNAME OF
RECORD-AREA (MONTH>.
02 COLUMN 39 PICTURE AC12) VALUE IS 'EXPENDITURES'.
02 COLUMN 52 PICTURE X(ll) SOURCE CONTINUED.
02 LINE 7 COLUMN 2 PICTURE X(35) VALUE IS
'MONTH DAY DEPT NO-PURCHASES'.
02 COLUMN 40 PICTURE XC33) VALUE IS

'TYPE COST CUMULATIVE-COST'.
01 DETAIL-LINE TYPE DETAIL LINE PLUS 1.

02 COLUMN 2 GROUP INDICATE PICTURE A(9) SOURCE MONTHNA~ill
OF RECORD-AREA (MONTH).
02 COLUMN 13 GROUP INDICATE PICTURE 99 SOURCE DAY.
02 COLUMN 19 PICTURE XXX SOURCE DEPT.
02 COLUMN 31 PICTURE Z9 SOURCE NO-PURCHASES.
02 COLUMN 42 PICTURE A SOURCE TYPE-PURCHASE.
02 COLUMN 50 PICTURE ZZ9.99 SOURCE COST.

01 TYPE CONTROL FOOTING DAY LINE PLUS 2
02 COLUMN 2 PICTURE X(22) VALUE,IS ~PURCHASES AND COST FOR'.
g~ ggtg~~ ~~ ~igg~~ ~9v~~g~ctss~~f~-MONTH.
02 COLUMN 27 PICTURE 99 SOURCE SAVED-DAY.
02 COLUMN 30 PICTURE ZZ9 SUM NO-PU'RCHASES.
02 MIN COLUMN 49 PICTURE S$S9.99 SUM COST.
02 COLUMN 65 PICTURE SS9.99 SUM COST RESET ON FINAL.
02 LINE PLUS 1 COLUMN 2 PICTURE X<70) VALUE ALL'*'·

Figure 16. COBOL Program with Report Writer Feature (Part 1 of 2>

108

000290-000300 File Description entry for
the file on which the report
is to be written. REPORT
clause lists the name-of-the
report., "Expense-Report".

000320-000330 Source Data to be used after
control and page breaks (see
below, lines 000810, 000830,
000900, 000910).

000540 Report Section header. In
this section the format of
the report is defined.

000550 Report Description entry for
the report. The three con
trols are listed in descend
ing order of significance.

000560-000570 Page format: 59 lines deep;
Heading on line 1; first
Detail line on line 9; last
Detail line on line 48; last
control Footing line on line
52. The Page Footing will
be printed on line 59. The
contents of these lines will
be described in the Report
Group Description entries.

0-0:0580-000620 Group description entry for
the Report Heading. On line
1 of page 1 "Acme Manufac
turing companyn will be
printed, starting in column
27. Line 2 will be skipped,
and line 3 will contain
"Quarterly Expenditures
Report", starting in column
26. These lines will be
printed when the first GEN
ERATE statement is executed.

000630-000700 Group Description entry for
the Page Heading. A name,
"Page-Head" is given to the
entry because it will be
ref erred to in the Declara
tives Section of the Proce
dure Division. This group
will be printed starting on
line 5 after the first GEN
ERATE statement and each
time a page break occurs.

000710-000780 Group Description entry for
the Detail group, the name
of which is "Detail-Line".
"Line plus 1" indicates that
a) the group is to be
printed on the next avail
able line, and b) the entire
group will be printed on one
line, since only one line
number is specified.

000720 The first item in the Detail
group is to start in column
2 and is to be printed only
by the first GENERATE state
ment executed after a con
trol break (GROUP INDICATE).
The source of the data to be
printed is the appropriate
entry of the array of month
names that was defined in
the Working-Storage Section
of the Data Division Clines
000380-000530). "Monthname"
is the name of 12 areas
which redefine 03-level
entries of "Record-Month".
"(Month)" is the subscript.
The remaining 02-level
entries format the data from
each input record (Input
data is listed following
line 001170).

000790-000870 This is the Control Footing
for the minor control,
"Day", and is printed each
time "Day" changes. All of
the information except the
line of asterisks (line
000870) is printed two lines
below the last Detail line.
There are three sum count
ers. Two Clines 000840 and
000850) are reset after the
break. One (line 000860)
keeps a running total of
cost for the quarter and is
not reset until FINAL. Note
that this counter is not fed
data from "Min", which sums
the daily expenditure Cline
000850>, but from cost, a
field in the input record.
The value of "Min" is added
to "Int" Cline 000930)
before it is reset. Note
also the the source for the
day of the month Cline
000830) is saved-Day rather
than Day. The control break
for Day occurred when the
value of Day changed. If
Day was used as the source
for its own Control Footing,
the wrong date would always
be printed. This is also
why saved-Month is the
source for the month name
Cline 000810). When a con
trol break occurs for Month,
one is assumed for Day as
well. Thus, the Control
Footing for Day would cause
the wrong month name to be
printed if its source was
Month.

Report Writer Feature 109

000880 01 TYPE CONTROL FOOTING MONTH LINE PLUS 1 NEXT GROUP NEXT PAGE.
000890 02 COLUMN 16 PICTURE A{14) VALUE IS 'TOTAL COST FOR'.
000900 02 COLUMN 31 PICTURE A{9) SOURCE MONTHNAME OF RECORD-AREA
000910 {SAVED-MONTH).
000920 02 COLUMN 40 PICTURE AAA VALUE 'WAS'.
000930 02 INT COLUMN 46 PICTURE S9.99 SUM MIN.
000940 01 TYPE CONTROL FOOTING FINAL i.!NE PLUS 1.
000950 02 COLUMN 16 PICTURE A{26) VALUE IS
000960 'TOTAL COST FOR QUARTER WAS'.
000970 02 COLUMN 45 PICTURE $55$9.99 SUM INT.
000950 01 TYPE PAGE FOOTING LINE 55.
001000 02 LINE 57 COLUMN 59 PICTURE XC12> VALUE IS, 'REPORT-PAGE- •
001010 02 COLUMN 71 PICTURE 99 SOURCE PAGE-COUNTER.
001020 01 TYPE REPORT FOOTING.
001030 02 LINE PLUS 1 COLUMN 32 PICTURE A{13) VALUE IS
001040 'END OF REPORT'.
001050 PROCEDURE DIVISION.
001060 DECLARATIVES.
001070 PAGE-HEAD-RTN SECTION. USE BEFORE REPORTING PAGE-HEAD.
001080 PAGE-HEAD-RTN-SWITCH. GO TO PAGE-HEAD-RTN-TEST.
001090 PAGE-HEAD-RTN-TEST. IF MONTH= SAVED-MONTH MOVE '(CONTINUED)'
001100 TO CONTINUED ELSE MOVE SPACES TO CONTINUED
001101 MOVE MONTH TO SAVED-MONTH.
001102 GO TO PAGE-HEAD-RTN-EXIT.
001103 PAGE-HEAD-RTN-SUPPRESS. MOVE 1 TO PRINT-SWITCH.
001104 PAGE-HEAD-RTN-EXIT. EXIT.
001110 END DECLARATIVES.
001120 OPEN INPUT INFILEL OUTPUT REPORT-FILE.
001121 READ INFILE AT END GO TO COMPLETE.
001130 INITIATE EXPENSE-REPORT.
001140 READATA. GENERATE DETAI:L-LINE MOVE DAY TO SAVED-DAY
001141 READ INFILE AT END GO TO
001150 COMPLETE. GO TO READATA.
001160 COMPLETE. ALTER PAGE-HEAD-RTN-SWITCH TO PROCEED TO
001161 PAGE-HEAD-RTN-SUPPRESS1_ TERMINATE EXPENSE-REPORT
001170 CLOSE INFILE, REPORT-FILE. STOP RUN.

AOO 02 A0101 0-0200
A02 01 A0101 00100
A02 02 C0101 01600
A01 02 B0102 00200
A04 10 A0102 01000
A04 10 C0102 08000
A01 02 B0105 00200
AOl 10 A0108 01000
A01 08 B0108 01248
A01 20 D0108 03840
A01 06 C0329 04800
A03 20 E0331 06000
A03 10 G0331 05000

Figure 16. COBOL Program with Report Writer Feature (Part 2 of 2)

110

000880:-000930 control Footing entry for
the major control "Month".
Following the printing of
this entry, a new page will
be skipped to and a Page
Heading will be printed
before the next Detail .line
(however, printing of the
Page Heading will be sup
pressed at the end of the
report, as is seen below).
Note that the source for the
month name Clines 000900-
000910) is Saved-Month rath
er than Month. A control
break for Month occurs when
its value changes. Thus, if
Month was used as the source
for its own control Footing,
the wrong month name would
always be printed.

000940-000970 When the TERMINATE statement
is executed, this group will
be printed.

000980-001010 The Page Footing is printed
automatically and the page
counter incremented automat
ically each time a page con
dition is detected.

001020-001040 This group is the last to be
printed.

001070-001110 These statements, when
executed, cause alteration
in, or suppression of the
printing of the Heading.
The various statements are
executed after a page break
or control break for
"Month", and before the Page
Heading is printed.

001080 This paragraph is included
because the GO TO is altered
under certain conditions
Clines 001160-001161).

0:01090-001102 These lines test the cause
of the break. If it was a
simple page break, the month
will not have changed, and
"(Continued)" will be
included in the Page Heading
<see lines 000630-000700 for
Page Heading format).
However, since the report
for each month starts at the

001103

001120-001170

001120

001121
001130

001140-001150

001160-001170

Following
001170

top of a new page, the new
month name must be included
in the Page Heading after a
control break for Month.

Upon completion of the
report, this instruction is
executed to suppress the
printing of a Page Heading
<see lines 001160-001161).

These statements read in
data, generate Detail lines
of the report, and close
files after
processing. First, input
and output files are opened
and the first data record
is read. Then the INITIATE
statement for the report is
executed.

This loop generates all
Detail lines and reads cards
2 - n. The control for
"Day" uses the day stored in
"Saved-Day" as part of its
output.

When all the data records
have been read, the report
is terminated. This
involves printing the Report
Footing on a new page
without printing a Page
Heading.

This is the input data used
in the report. Using the
first record as an example,
the data fields are arranged
in the following format:

Department Number of Type of
Number Purchases Purchase --xoo- ----c2- _A __ _

Month Q~ or- 01
Cost
00200

The decimal point in the
cost field is assumed to be
two places from the right.

The input qata are sorted by
Date, Department Number and
Type of Purchase <minor
key>.

Report Writer Feature 111

----------------ACME MANUFACTURING cn~PANY

0-----------------Q UART ERL Y EXPENl')!TURES REPORT

~MONTH JANUARY EXPENOITURFS

DAY DE PT NO-DURCH AS Ee; TYPF CO<>T c lJMUL AT I VF-COST

0---JANUARY 01 .A0rl
A02
AO?

2
1
2

A
A
c

2. O')

l. 00
16.00 ©- -

f':")---PURCHASES AND cr.c;T FOR l·-01 5 $19.00 $19.00

~**
JANUARY O? Af'Jl 2 B 2. 00

Af'J4 in A 10.0Q
A04 10 C 80.00

PllRCHASFS ANO COST FOR 1-02 n $lll.OO

**
JANUARY 05 AOl 2 B 2.00

PURCHAS 1='.S ANI') COST FOR l·-05 2 $2.00 $113.on
**
JANUARY 08 A')l 10 A 10.00

Af'Jl ~ B 12.48
AOl 20 n 38.40

PURCHA<>FS ANO CO<;T FnR 1-08 38 n 73. 88

**
JANUARY 13 AOO 4 R ti.24

AOO 1 C 8.00

PURCHASES ANO COST FOR 1-13 5 tl4. 24 $18A.12

**
JANUARY 15 A00 10 0 19.20

A02 1 C 8.00

PllRCHA<;ES AND roc;r FOR 1-1'5 11 $27.20 $?15.32

**
JANUARY 21 A0~ 10 ~ 30.00

A03 10 F 25.00
An~ 10 G 50.00

PUR(HA~ES AND COST FOR 1-21 3n 1;105. 00
**
JAl\!IJAR.Y ?3 AO() 5 A 5.00

PURCHASES AND COST FOR 1-23 5 $5.00 $325.~2

**

© REPORT-PAGE-01

Figure 17. Report Produced by Report Writer Feature <Part 1 of 5)

112

EXPENDITURES (CONTTNUEQ) ~----------~--~~--~~--~-JANUARY

MONTH DAY DEPT NO-PURCHASES COST ~UMULATIVF-COST

©-JANUARY 26 A04 5 A 5. on ©- A04 5 B 7.80
4

PURCHASES AND COST FOR 1-26 10 $12.An $318.12
**
JANUARY 27 AOO 6 B 9.36

AOO 15 C 120.00

PURCHASES AND COST FOR 1-27 21 $129.36 $467.48
**
JANUARY 30 AOO ~ ~ 3.12

An2 10 A 10.00
A02 1 C 8.00
A04 15 B 23.40
A04 10 C 80.00

PURCHASES AND COST FOR 1-30 38 $124.52 $59?..00
**
JANUARY ~1 AOO l A 1.00

A04 6 A 6.00

PURCHASES ANO COST FOR 1-31 7 H. 00 ~599.00

**
~~~~~~~~---TnTAL COST FOR JANUARY WAS $599.00 

Figure 17. Report Produced by Report Writer Feature (Part 2 of 5) 

Report Writer Feature 113 



~ 
FEBRUARY EXPENDITURES 

DAY DEPT NO-PUR r.H ASE S TYPE COST CUMULATIVF-COST 

0--FFBRUARY 15 A02 10 A 10.00 
An2 2 B 3.12 

© 
A02 1 c s.on 
A03 15 G 75. ()() 
A04 5 B 7.80 
A05 8 A 8. 01) 
A05 5 c 40. Of) 

(;\--PURr:HASES ANn COST !=QR 2-15 46 $151.92 $750 .• 92 

\::)--********************************************************************** 
l=FBRIJARY 16 A02 2 c 16. 00 

A06 l ') A 10.00 
A07 l. ') A 10.M 
A07 10 i:: 25.00 

PUP.CHASES ANO COST FOR 2-16 32 $61.00 $811.92 
********************************************************************** 
FEPRllARY 17 A07 10 E ~o.oo 

A07 10 G 50.00 

PURCHASES AND COST FOR 2-17 20 $8C.n0 $891.92 
********************************************************************** 
FF.BRllARY ?l A06 20 A 20. 00 

A06 20 8 31.20 
A06 20 C 160.00 
A06 20 D 38.40 
A06 20 E 60.00 
A06 ?O I= 50.00 
A06 20 G 100.00 

PlfRCHAS ES AND CO<;T FOR 2-21 140 $4'59.60 $1351.52 
****************************************************************'****** 
FJ:BRUARY 27 Al"ll 21 D 40.32 

Dl.JRCHASF:<; AND CO<;T FOR 2-27 21 cli40. 32 <1;1391.84 

********************************************************************** 
FEBRUARY 28 An2 1 A 4.68 

A02 5 C 40.00 
AO~ 15 E 45.00 

PURCHA~ES ANO cnsT ~OR 2-28 21 $89.68 

********************************************************************** 01-------- TnTAL COST FOR FEBRUARY WAS $8132.52 

Figure 17. Report Produced by Report Writer Feature (Part 3 of S> 

114 



©;:MONTH 
MARCH EXDENDITURFS 

DAY D~PT NO-PURCHASES TYPE COST CUMULATIVE-COST 

~MARCH Ol A02 5 A 5. Qr) 

A02 l c 8. on 
©- AO~ 25 G 125.00 

(;\-PU RC HAS ES ANO COST !=OR 3-0 l 31 $13 8. 0() $1619. 52 
~********************************************************************** 

MARCH 06 AO? 5 A 5.00 

PUP CHAS ES AND CflST !=OR 3-06 5 $5.00 $1624.52 
********************************************************************** 
MAP CH 07 A02 5 A 5.00 

PURCHASES ANO COST FOR 3-07 5 $5.00 $1629.52 
********************************************************************** 
MARCH 11 AO?. 10 A 10.00 

PURCHASES AND COST FOR 3-13 10 $1o.00 $1639.52 
********************************************************************** 
MARCH 15 AOl 21 A 21.00 

A02 1 A 1.00 
A03 15 F 37.50 
A06 5 F. 15.00 
A06 5 F 12.50 

PURCHASES AND COST FOR 3-15 47 $87.0() $1726.52 
********************************************************************** 
MARCH 20 A03 15 E 45.00 

PURCHASES AND COST FOR 3-20 15 $45.00 $1771.52 
********************************************************************** 
MARCH 21 An2 15 A 15.00 

AO~ 15 F 17.50 

PURCHASES AND COST !=OR 3-21 30 $52.50 $1824.02 
*******************~************************************************** 
MARCH 23 AO? 2 A ~.00 

PURCHASFS ANO COST FOR 3-23 2 $18?.6.1)2 

********************************************************************** 

© REPORT-PAGF.-04 

Figure 17. Report Produced by Report Writer Feature (Part 4 of 5) 

Report Writer Feature 115 



~H 
M~,RCH EXPENOITURES (CONTINUr:D) 

DAY DEPT NO-PURCHASFS TYPF. COST CUMULATIVE-COST 

©--MARCH 25 A'13 3 ") F 7'5.0" 

t:).--P!IRCHA<;ES AN11 COST FOR 3-25 30 t75.00 $1901.02 
~********************************************************************** 

~ARf.H ?6 A02 1 A 1.00 

PlJRCHAS!:S ANO COST FOR 3-26 1 $1.00 $l902.n2 
********************************************************************** 
~ARCH ?9 AOl 6 C 48.00 

PURCHASES AND COST FOR 3-29 6 $48.00 $1950.02 
********************************************************************** 
~ARCH 31 An3 ?O E 60.00 

PURCHASES AND COST FOR 3-31 20 $60.00 $2010.02 
********************************************************************** ©~~~~~~~~~TOTAL COST FOR MARCH WAS $528.50 

~~~~~~~~·~~~~~~~~~~~~~~~~~~~~~~~~~~KEPORT-PA~~-n? 

---.___... __ ________

©--- Tf'T AL COST J=OR QIJAPTFR WAS $2010.02

----------- ._. ______ ,,,,.... _________ _______________________ ___

Figure 17. Report Produced by Report Writer Feature (Part 5 of 5)

116

~~elating_R§2Qrt ~Q_Bfil2Q!~~!iter_£Q~!~
!12~~!!!

®

®

®

is the Report Heading resulting
from source lines 00580-00620.

is the Page Heading resulting from
source lines 00630-00700.

is the Detail line resulting from
source lines 00710-00780 (note that
since it is the first Detail line
after a control break, the fields
defined with ·•group indicate'
lines 00720-00740, appear).

is a Detail line resulting from the
same source lines as 3~ In this
case, however, the fields described
as 'group indicate' do not appear
(since the control break did not
immediately precede the Detail
line).

is the Control Footing (for Day)
resulting from source lines
0 0 7 9 0- 0 0 8 7 0.

®

is the Page Footing resulting from
source lines 00980-01010.

is the control Footing (for MONTH)
resulting from source lines
00880-00930.

is the control Footing (for FINAL>
resulting from source lines
00940-00970.

is the Report Footing resulting
from source lines 01020-01040.

Lines 01070-01104 of the example
illustrate a use of 'USE BEFORE REPORTING'.
The effect of the source is that each time
a new page is started, a test is made to
determine if the new page is being started
because a change in Month has been recog
nized (the definition for the Control Foot
ing for Month specifies 'NEXT GROUP NEXT
PAGE') or because the physical limits of
the page were exhausted. The calculation
involved sets up a fixed <'PAGE GROUP'>
which is referenced by a SOURCE clause in
the Page Footing description. Consequent
ly, two page counters can be maintained:
one indicating physical pages and one indi
cating logical pages.

Report Writer Feature 117

The COBOL programmer can obtain con
venient access to the SORT feature of the
Operating System/360 Sort/Merge Program by
writing a COBOL SORT statement and other
elements of the COBOL SORT feature in his
source program. The SORT feature permits
him to request execution of a sorting
operation within his program and to specify
in that operation the sorting of fixed
length or variable-length records that ·may
be in binary, floating-point, packed deci
mal, or EBCDIC mode. He can also sum
marize, insert, delete, shorten, or other
wise alter records during the initial and
final phases of the sort.

The basic elements of the SORT feature
are the SORT statement in the Procedure
Division and the sort-file description
entry with its associated record descrip
tion entries in the Data Division. A sort
is based on sort-keys named in the SORT
statement. sort-keys are defined only in
the record descriptions associated with the
soxt-f ile-description. When the SORT f ea
ture is being executed, these record
descriptions may be considered as redef in
ing the records being sorted. The records
may be sorted in ascending or descending
order or in a mixture of the two; that is,
the sort-keys may be specified as ascending
or descending independently of one another,
and the order of the records will conform
to the mixture specified. The standard
sequential file processing technique is
required for use of the SORT feature.
(Additional information concerning the SORT
feature is contained in the publication ~
System/360 0Eerating System: COBOL (F)
Programmer's Guide, Form C28-6380.)

ELEMENTS OF THE SORT FEATURE

To make use of the SORT feature, the
programmer must provide certain information
in the Environment, Data, and Procedure
Divisions of the COBOL source program.

In the Environment Division, he must
write SELECT sentences for files used as
input and output to the sort/Merge Program
whenever a USING or GIVING option
(described in "SORT Statement"> is to be
used in the Procedure Division.

In the Data Division, the programmer
writes File Description entries for all
files that are used to provide input to or
output from the SORT feature. He must also
write a sort Description entry to describe

r------1
IF ONLYj_ SORT FEATURE
l------J

the records that are to be sorted, includ
ing their sort-key fields.

In the Procedure Division the programmer
specifies the records to be sorted, the
sort-key names, whether the sort is to be
in ascending or descending sequence by key,
and whether records are to be processed
before or after the sort. If there is to
be such processing, he also includes in the
Procedure Division the program sections
that perform the processing.

Sort Work Files

At least three files must be available
for use as intermediate work files by the
Sort/Merge Program. A discussion is con
tained in the publication IBM System/360
0Eerati!!9,_Sys:!:;em.:._ COBQ~-1EL.~rogrfil00!~!'.~
§uide, Form C28-6380.

ENVIRONMENT DIVISION STATEMENTS

SELECT entries must be included in the
FILE-CONTROL paragraph Of the Input-output
section in the Environment Division for any
files named in the USING or GIVING options
in the Procedure Division. In this case,
all options for standard sequential files
are permitted with the restrictions indi
cated for the SELECT entry (see "File Proc
essing Techniques"). Note that no SELECT
entry is permitted for the sort-file
description entry itself.

SELECT Entry

The format of the SELECT entry as used
with the SORT feature is:

,r---1
~SELECT file-name I
l {DIRECT-ACCESS} I
i ASSIGN TO external-name I
I QTILITY I
I I
I [device-number UNIT CS]] I
I I
I [ACCESS IS SEQUENTIAL] I
1 I
I [RESERVE-clause] I
L--J

Sort Feature 119

The external-name must be 'SORTIN' or
'SORTOUT'. (For use of other external
names see the publication IBM System/360
Operating System: COBOL (F) Programmer's
Guide, Form C28-6380.) 'SORTIN' refers to
the sort input file and is related to the
USING option; •soRTOUT' refers to the sort
output file and is related to the GIVING
option.

DATA DIVISION STATEMENTS

Sort Description entries and reluted
Record Description entries must be written
in the File Section of the Data Division
(in addition to the File Description
entries for input/output files).

sort Description Entry

The Sort Description entry provides data
descriptions of the records to be processed
by the SORT feature. The Sort Description
entry and its record description (see
"Record Description Entry," which follows)
are similar in structure to a File Descrip
tion entry and its record description.
Unlike the File Description, however, the
sort Description does not describe any
physical file; rather, it provides a kind
of "template" that the SORT feature can
apply to all of the real files that are
involved in the sorting operation. The
format of the Sort Description entry is:

r~---------------------------------------1
1§12 sort-file-description-name
I
I [RECORDING MODE IS model
I
I [RECORD CONTAINS [integer-1 TO]
I
I integer-2 CHARACTERS]
I
I {RE£0RD IS } I ~ATA record-name •••
I B~CORQ§ ARE
L~---------------------------------------

~or!:_-file-de§.Qrip~io!!-n~~ is the name the
programmer assigns for communication
with the SORT feature. It follows.the
rules for data-name, and must not be
subscripted or qualified.

.RECORDING MODE IS specifies the format of
the logical records that are to be
sorted.,

120

~ode must be either F or v. F specifies
that all records are of the ~~ fixed
length; V should be used when the rec
ords are either variable length (con
tain an OCCURS DEPENDING ON clause) or
are of differing fixed lengths. If
neither is specified, V is assumed.
(For further information see "Record
Formats" in the chapter "Data
Division.">

The RECORD CONTAINS and DATA RECORDS
clauses are described under "File Section
Entries" in the chapter "Data Division."

The SORT feature assumes that all rec
ords to be sorted are described under the
Sort Description entry for the particular
sort-file-description-name given in the
SORT statement. For example, if the input
is provided by the USING clause of the SORT
statement, it is assumed that the record
descriptions given under the Sort Descrip
tion entry of the sort-file-description
name describe the input records, regardless
of how they were described under that input
file's File Description entry. Similarly,
the Sort Description record descriptions
are assumed to describe output file records
(the result of using the GIVING clause of
the SORT statement) and all other records
involved in the sorting operation. Thus,
the Sort Description entry does not
describe any one physical file, but rather
provides an overriding description for all
files involved in the sorting process.
Accordingly, a SELECT clause should not be
given for Sort Description entries.

The format of a Record Description entry
will vary according to the type of item
being described <see tlGroup Item Format"
and "Formats for Elementary Items" in the
chapter "Data Division">.

SORT-KEYS: Sort-keys must have a fixed
length, must not be subscripted, and must
be one of the types of data items listed
below. A collating sequence that corre
sponds to each type of data item is used
for sorting (see Table 19).

A character in the EBCDIC collating
sequence <used with alphabetic, alphanumer
ic, etc., data items> is interpreted as not
being signed. For packed decimal, zoned
decimal, fixed-point, and floating-point
data, characters are collated algebraically
(that is, as being signed>.

Table 19. Collating sequence for Specific Data Items
r---1
I
iData Item Collating Sequence
1
~Internal floating point Floating point
I
]External decimal {not exceeding Zoned Decimal
I 16 characters)
I
1Internal decimal Packed Decimal
I
]Binary Fixed point
I
I Alphabetic EBCDIC
I
JAlphanumeric EBCDIC
I
!Group EBCDIC
I
IExternal floating point EBCDIC
I
JReport EBCDIC
L---

Each of the preceding types of data
items is discussed in detail under "Types
of Data Items" in the chapter "Data
Division."

Sort-keys must be in the same relative
position and must be of the same length
within each record, and that position can
not be more than 41 092 bytes from the
beginning of the record. (The relative
position of the sort-keys can be determined
by using the formulas discussed under the
USAGE clause in the section "Data Divi
sion.") Records are limited to 9999 bytes
in length. From one to twelve keys may be
specified for a file. Sort-keys may over
lap, but they must not coincide in posi
tion; that is, no two sort-keys may have
precisely the same displacement and length
within a record. The sum of the lengths of
all the sort-keys must not exceed 256
bytes. An external decimal sort-key must
not exceed 16 digits.

Sort-keys are identified by the data
names assigned to each of the fields upon
which the sorting is to be based. This is
accomplished by the Record Description
entries that specify the characteristics of
each section (Record Description entries
are described in the chapter "Data
Division").

When assigned to sort-keys, data-names
may be qualified but must be unique. Also,
once a data-name has been assigned to a
sort-key, it is assumed that the key
appears in the same location in every rec
ord that is to be sorted.

File DescriptiQ!!_Entry

If the USING or GIVING options of the
SORT statement are used, a File Description
entry must be given for each file named in
these options.

A detailed description of each of the
clauses~ together with applicable addition
al information concerning their use with
standard sequential files, is contained
under "File Section" and "File section
Entries" in the chapter "Data Division."

PROCEDURE DIVISION STATEMENTS

The Procedure Division contains a SORT
statement to describe the sorting opera
tion, and INPUT or OUTPUT PROCEDURES to
describe any processing to be performed.

SORT Statement

The SORT statement provides information
that controls the SORT feature. The SORT
feature uses this information to obtain
records to be sorted from either an input
procedure or an input file, sorts the rec
ords on a set of specified keys, and in the
final phase of the sort operation, makes
each record available, in sorted order,
either to some output procedure or to an
output file.

sort Feature 121

The SORT statement specifies: (1) the
sort-file-description-name assigned to the
Sort Description entry, (2) whether the
records are to be sorted into an ascending
or descending sequence in relation to each
sort-key, (3) the data-names that have been
assigned to the sort-keys, and (4) the sec
tion names of any input or output proce
dures that are to be used before or after
the sorting operation or the names of the
input or output files. The format of the
SORT statement is:

r---1

!SOR:N~{o~:::~:::s}c:::t::::::::me} .. J ... l
l ~SC~ND!~~ ~ I

I

~
1

USING f ile-name-1 ~ I

!JiPIJ'.!: PRQ£EDUR~ section-name-1 !
[THRU section-name-2] , I

I

l
~!VING file-name-2) 1

OUTPUT PROCEDURE section-name-3(I
[THRU section-name-4 l) '

L--J
Sort-file-description-name is the name

given in the Sort Description entry
which describes the records to be
sorted.

ASCENDING and DESCENDING specify whether
the records are to be sorted, respec
tively, into an ascending or descend
ing sequence, based on one or more
sort-keys. The sequence specified is
applicable to all sort-keys immediate
ly following the clause. One of these
clauses must be specified. Both may
be specified in the same statement.

~~=.!!ame is the data-name assigned to a
sort-key and is required. More than
one data-name may be specified follow
ing either ASCENDING or DESCENDING.

122

If more than one data-name is speci
fied, the key associated with the
data-name specified first is checked
first, etc. Every data-name must have
been defined in a Record Description
entry associated with the Sort
Description entry. The same data-name
or coinciding data-names must not be
used twice in the same SORT statement.
sort-keys must be specified in the
logical order in which they are
referred to during the sorting opera
tion. This means that the key that is
to be checkea first is logically spec
ified first, the key that is to be
checked next is logically specified

second, etc. The sort-keys are speci
fied by entering, in the desired
order, the data-names assigned to them
in the SORT statement.

USING indicates that the records that are
to be sorted are on f ile-name-1 and
that they are all to be passed to the
sorting operation as one file when the
SORT statement is executed. If the
programmer specifies the USING option,
all the records to be sorted must be
in the same file. This file will be
automatically opened, read, and closed
by the SORT feature without the pro
grammer's having to provide any addi
tional coding.

File-name-1 is the name of the file that
~~-contains the records that are to be

sorted. This file must have been
described by a File Description entry.
It must have standard sequential
organization and can reside on any
input/output device that operates with
QSAM. The file must be named in a
SELECT sentence (See "Input-Output
Section">, and the external-name in
the ASSIGN clause must be 'SORTIN'.

INPUT PROCEDURE indicates that the program
mer has written an input procedure to
process records before they are sorted
and has included the procedure in the
Procedure Division in the form of one
or more distinct sections. The input
procedure passes records one at a time
to the SORT feature after it has com
pleted its processing.

Section-name-1 is the name of the first, or
only, section in the COBOL main pro
gram that contains the input proce
dure. It is required if INPUT PROCE
DURE is used.

Section-name-2 is the name of the last sec
~~"t:ion-that contains the input procedure

in the COBOL main program. It is
required if the procedure terminates
in a section other than that in which
it is started.

GIVING indicates that, after the records
have been sorted, they are to be writ
ten as a file on file-name-2. If the
programmer specifies the GIVING
option, all records that have been
sorted will be placed on one file.
This file will be automatically
opened, written into, and closed by
the SORT feature without the program
mer's having to provide additional
coding.

File-name-2 is the name of the file on
~---which-the records are to be written

after they have been sorted. This

must have been described by a File
Description entry. The file must be
named in a SELECT sentence and the
external-name entered in the ASSIGN
clause of the SELECT sentence. The
external-name must be 'SORTOUT' except
in the special case where file-name-1
and file-name-2 refer to the same
file. In this case the external-name
in the ASSIGN clause for the file will
be 'SORTIN'. For details on execution
DD statement requirements, refer to
the publication !~~-2Y2!~!!V360_Qp~f~!=
!g~tem~- COBQ1_!fl_E~g~~~
Guide, Form C28-6380. This file must
have-standard sequential organization
and can reside on any input/output
device that operates with QSAM.

OUTPUT PROCEDURE indicates that the
programmer has written an output pro
cedure to process records after they
have been sorted and has included the
procedure in the Procedure Division iri
the form of one or more distinct sec
tions. The output procedure returns
the records one at a time from the
SORT feature after they have been
sorted.

Section-name-3 is the name of the first, or
only, section in the main COBOL pro
gram that contains the output
procedure.

Section-name-4 is the name of the last sec
tion that contains the output proce
dure in the main program. It is
required if the procedure terminates
in a section other than that in which
it is started.

Note: The SORT statement and the input and
output procedure sections are permitted in
any part of the Procedure Di vision., excl ud
ing the declarative sections.

The Input Procedure

The input procedure consists of one or
more sections that are written in the pro
gram. The input procedure can include any
statements needed to select, create, or
modify records. Control must not be passed
to the input procedure except when a
related SORT statement is being executed,
since the RELEASE statements <see "RELEASE
Statement" below) in the input procedure
have no meaning unless they are controlled
by a SORT statement.

There are two restrictions on the proce
dural statements within the input proce
dure, as follows:

1. The input procedure must not contain
any SORT or CALL statements.

2. Any files in use as sort work files
may not be opened or ref erred to in
the input procedure. If f ile-name-2
is not a work file, it may be opened
and referred to, provided that it is
closed again before the end of the
input procedure.

The programmer must code the input pro
cedure so that it incorporates three spec
ific functions:

1. It must build the records that are to
be sorted, one at a time, in the data
record that has been described and
assigned data-names in the Record
Description entry associated with the
Sort Description. This can be accomp-
1 i shed by using COBOL instructions
such as READ ••• INTO ••• or MOVE. If the
input is to come initially from a
file, the programmer must write an
OPEN statement to open the file prior
to executing the SORT statement or in
the input procedure itself.

2. Once a record has been processed, the
input procedure must make that record
available to the sorting operation by
means of the RELEASE statement <see
"RELEASE Statement" below>, after
which the record just built is no
longer available and either step 1 or
step 3 is performed next.

3. When all the records have been
released, the input procedure must
direct control to the last statement
in the procedure in order to terminate
the procedure (see "Control of Input
and output Procedures").

RELEASE Statement

The RELEASE statement causes one record
to be transferred to the sorting operation.
It can only appear in an input procedure.
If an input procedure is specified, the
RELEASE statement must be included in that
procedure. The format of the RELEASE
statement is:

r---1
IRE~~ASE record-name I
L---------------------~-------------------J

Record-name is the name of the data record
-----that-has been described and assigned

data-names in the Record Description
entry associated with the Sort
Description entry. The record that is
to be sorted is automatically trans-

Sort Feature 123

ferred to the sorting operation. The
record-name must be defined at the 01
level under the Sort Description
entry.

The Output Proce~ure

The output procedure consists of one or
more sections that are written in the pro
gram. The output procedure may consist of
any statements needed to select, modify, or
copy the records that are being returned
one at a time, in sorted order, from the
sort-file. Control must not be passed to
the output procedure except when a related
SORT statement is being executed, since the
RETURN statements (see "RETURN Statement"
below> in the output procedure have no
meaning unless they are controlled by a
SORT statement.

There are two restrictions on the proce
dural statements within the output
p:r;:ocedure:

1. The output procedure must not contain
any SORT or CALL statements.

2. Any files in use as sort work files
may not. be opened or referred to in
the out.put procedure. Note that if
file-name-1 is not a sort work file,
it is not affected by this
restriction.

The programmer must code the output pro
c~dure so that it incorporates three spe
cific functions:

1. It must obtain sorted records, one at
a time, from the Sort/Merge Program
via the RETURN statement. Once a
record has been returned, the pre
viously returned record is no longer
available.

2. The output procedure must manipulate
the record just returned by ref erring
to the data record that has been
described and assigned data-names in
the Record Description entry. Such
manipulation, for example,, including a
record in a summary to be made of all
sorted records, may make use of COBOL
instructions such as MOVE and WRITE •••
FROM. If records are to be written
into an output file, the programmer
must write an OPEN statement to open
the file prior to execution of the

124

SORT statement or in the output proce
dure itself.

3. When the SORT feature has returned all
records and the output procedure
attempts to execute another RETURN
statement (as in step 1>, the AT END
clause of the RETURN statement will be
executed. The imperative statement in
the AT END clause must direct control
to the last statement of the output
procedure in order to terminate the
output procedure <see "Control of
Input and output Procedures">.

RETURN Statement

The RETURN statement causes individual
records to be obtained from the sorting
operation after all the records have been
sorted, and indicates what action is to be
taken with regard to each. The format of
the RETURN statement is:

.---,
IRETURN sort-file-description-name I
I I
J AT ~ND imperative statement... I
L--J

Sort-f ile-description-:name is the name
given in the Sort Description entry
which describes the records to be
sorted.

Imperative statement specifies what is to
be done once all the sorted records
have been disposed of. <Imperative
statements are discussed in detail
earlier in this publication in the
chapter "Procedure Division.")

Control of Input/Output Procedures

The INPUT and OUTPUT PROCEDURE clauses
function in a manner similar to the PERFORM
statement <option 1); for example, naming
one or more sections in an INPUT PROCEDURE
clause causes execution of that section
during the sorting operation to proceed as
if that section had been the subject of a
PERFORM statement. As in the PERFORM, the
execution of the section is terminated
after execution of its last statement.

The STOP RUN statement may not appear in
a Sort Input or Output procedure. Certain
other procedure branching statements may be
used with restrictions. see Table 18 in

the chapter "Procedure Division" for spe
cific qualifications.

The EXIT statement may be used as a com
mon end point for input and output proce
dures as with the PERFORM statement. When
used in this manner, it must appear as the
only statement in the last paragraph of the
input or output procedure. .. --,
lparagraph-name. ~· ~

L---J

CONTROL FLOW

The sequence through which control
passes during a sorting operation is shown
in Figure 18.

Examples of a SORT Statement

The following text contains three
examples of SORT statements. The next sec
tion, "Sample Program Using the Sort Fea
ture," contains an example of a complete
Sort program.

EXAMPLE 1: Consider a group of records
which represent sales to customers on
various days. If they are initially in no
particular order and they are to be placed
in order by customer number with the latest
date first within each customer's records,
the hierarchy of the sort becomes:

CUSTOMER-NUMBER, DATE

Since the lowest customer number is to come
first and the highest last, the order for
customer number is ascending, but for date
the latest date (highest numeric) comes
first and the earliest date (lowest numer
ic> comes last so the order for date is
descending. This can be stated as:

ASCENDING KEY CUSTOMER-NUMBER, DESCENDING
KEY DATE

If, in addition, the unsorted records
have been written on a file called FN-1
which is to be used by the sorting process
and the sorted records are desired to be
given on FN-2, this sorting requirement can
be stated as:

SORT SALES-RECORDS ON ASCENDING KEY
CUSTOMER-NUMBER, DESCENDING KEY DATE,

USING FN-1,

GIVING FN-2.

The name SALES-RECORDS and the two data
names must be defined in a sort Description
entry,, while the file-names FN-1 and FN-2
must be defined in File Description
entries.

EXAMPLE 2: The following is an example
containing an input procedure that could be
used in connection with a company net-sales
contest to exclude the records of salesmen
in two departments.

ELIM-DEPT-7-9-NO-PRINTOUT.
SORT NET-FILES ASCENDING KEY DEPT,

DESCENDING KEY NET-SALES, INPUT
PROCEDURE SCREEN-DEPT, GIVING
NET-FILE-OUT.

STOP RUN.
SCREEN-DEPT SECTION.
S-D-1. OPEN INPUT NET-FILE-IN.
S-D-2. READ NET-FILE-IN AT END GO TO

S-D-FINAL.
S-D-3. IF DEPT-IN = 7 OR 9 GO TO S-D-2

ELSE MOVE NET-CARD-IN TO
SALES-RECORDS, RELEASE
SALES-RECORDS, GO TO S-D-2.

S-D-FINAL. CLOSE NET-FILE-IN.

~PLE 3: The following is a variation on
the net-sales contest example referred to
and illustrates a simple report produced by
the use of the DISPLAY verb. The following
illustrates how this may be done in an out
put procedure:

SORT-NET-SALES SECTION.

S-N-S-1.

S-N-S-2.

SORT NET-FILES ON ASCENDING
KEY DEPT,

DESCENDING KEY NET-SALES,

USING NET-SALES-IN,

OUTPUT PROCEDURE REPORT-NET.

STOP RUN.

REPORT-NET SECTION.

R-N-1-1.

R-N-1-2.

R·-N-1-3.

DISPLAY 'NET SALES REPORT.'.

RETURN NET-FILES AT END GO
TO R-N-1-3.

DISPLAY NET-SALES, SPACE,
DEPT, SPACE, EMPL-NO,
SPACE, NAME-ADDR.

GO TO R-N-1-2.

EXIT.

Sort Feature 125

Figure 18.

126

* * * SORT • • • *
*VERB EXECUTION *
* START *
* * *****************

x

* * * ENTER *
* SORT/MERGE *
* PROGRAM *
* * *****************

x
•*•

•* *·
YES ·* INPUT *• NO

••••••••••••••••••*• PROCEDURE •*••••••••••••••••••

x

•OBTAIN INPUT BY*
* PERFORMING *
INPUT PROCEDURE
* SECT. OF MAIN *
* PROGRAM *

•SPECIFIED.

x

* * *READ INPUT FROM*
* FILE WHOSE DD *
* NAME IS *
* 'SORT IN' *

. . .
• • • • • • • • • • • ·-·. ·-· •••••••••• • x._ •• ·-· ••••••••••••••••••••

x

* SORT INPUT AS *
* SPECIFIED IN *
THE SORT STATE-
MENT TO PRODUCE
* OUTPUT *

•*•
·* *·

•* *•
YES •* OUTPUT *• NO

••••••••••••••••••*• PROCEDURE •*••••••••••••••••••

x

* RETURN OUTPUT *
* BY PERFORMING *
* OUTPUT PRO- *
CEDURE SECT. OF
* MAIN PROG. *

.SPECIFIED.
*. . *

x

* WRITE *
* OUTPUT ONTO *
* FILE WHOSE DD *
* NAME IS *
* 'SOR TOUT I *

. .
•••...•.•••••••.••••••••••• x •••••••.•••••••••.•••••••

x

* * * TO NEXT *
* STATEMENT IN *
* MAIN PROGRAM *
* * *****************

Flow of Data Through a Sorting Operation

The example in Figure 19 illustrates a
sort based on a sales contest. The records
to be sorted contain data on salesmen:

er prizes are awarded for second highest
sales, third highest, etc. The order of
sort is (1) by department, the lowest num
bered first; and (2) by net sales within
each department, the highest net sales
first.

name and address, employee number, depart
ment number, and pre-calculated net sales
for the contest period.

The salesman with the highest net sales
in each department wins a prize, and small-

The records for the employees of depart
ments 7 and 9 are eliminated before sorting
beg:ins. The remaining records are then
sorted, and the output is placed on another
file for use in a later job step.

01350
01360
01361
01370

01390

01420
01430
01440
01450

IDENTIFICATION DIVISION.
PROGRAM-ID. 'CONTEST!'.
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT NET-FILE-IN
SELECT NET-FILE-OUT

DATA DIVISION.

ASSIGN TO 'SYSIN' UTILITY.
ASSIGN TO 1 SORTOUT 1 UTILITY.

FILE SECTION.
FD NET-FILE-IN RECORDING MODE IS U LABEL RECORDS

01
02
02
02
02

FD

01
02
02
02
02

SD
01

02
02
02
02

ARE OMITTED, DATA RECORD· IS NET-CARD-IN.
NET-CARD-IN.

EMPL-NO-IN PICTURE 9(6).
DEPT-IN PICTURE 9(2).
NET-SALES-IN PICTURE 9(7)V99.
NAME-ADDR-IN PICTURE Xl55).

NET-FILE-OUT RECORDING MODE IS F LABEL RECORDS
ARE OMITTED, DATA RECORD IS NET-CARD-OUT.

NET-CARD-OUT.
EM PL-NO-OUT
DEPT-OUT
NET-SALES-OUT
NAME-ADDR-OUT

NET-FILES RECORDING
SALES-RECORDS.

PICTURE 9(6).
PICTURE 9(2).
PICTURE 9(7)V99.
PICTURE X(55).

MODE F DATA RECORDS SALES-RECORDS.

EMPL-NO PICTURE 9(6).
DEPT PICTURE 9(2).
NET-SALES PICTURE 9(7)V99.
NAMtt-ADDR PICTURE Xl55).

PROCEDURE DIVISION.

ELIM-DEPT-7-9-NO-PRINTOUT.
SORT NET-FILES ASCENDING KEY DEPT, DESCENDING KEY

NET-SALES, INPUT PROCEDURE SCREEN-DEPT,
GIVING NET-FILE-OUT.

CHECK-RESULTS SECTION.
C-R-1. OPEN INPUT NET-FILE-OUT.
C-R-2. READ NET-FILE-OUT AT END GO TO C-R-FINAL.

EXHIBIT NAMED EMPL-NO-OUT DEPT-OUT NET-SALES-OUT
NAME-ADDR-OUT.

C-R-3 • GO TO C-R-2.
. C-R-F I NAL.

CLOSE NET-FILE-OUT. STOP RUN.

SCREEN-DEPT SECTION.
S-D-1. OPEN INPUT NET-FILE-IN.
S-D-2. READ NET-FILE-IN AT END GO TO S-D-FINAL.

EXHIBIT NAMED EMPL-NO-IN DEPT-IN NET-SALES-IN
NAME-ADDR-IN.

S-D-3. IF DEPT-IN = 7 OR 9 GO TO S-D-2
ELSE MOVE NET-CARD-IN TO SALES-RECORDS,

RELEASE SALES-RECORDS, GO TO S-D-2.
S-D-FINAL. CLOSE NET-FILE-IN.

Figure 19. COBOL Program Using Sort Feature

Sort Feature 127

Form GC28-6516-8, page revised by TNL GN28-0266, 6/1/70

Prewritten source program entries can be
included in a COBOL program at compile
time. Thus, an installation can utilize
standard file descriptions, record descrip
tions, or procedures without having to
repeat programming them. These entries and
procedures are contained in a user-created
library. They are included in a source
program by means of a COPY clause or an
INCLUDE statement.

The COPY clause permits the user to
include prewritten Data Division entries or
Environment Division clauses in his source
program. The COPY clause is written in one
of the following forms:

Format 1 <within the Configuration
section>:

r---1
l§PE£!~~=~~2- 1 £Q~! library-name. I
L-------~---------------------------------J

KQ~ffi~~-£ <within the Input-Output Section):

r---1
rK!~~=£Q~~BQ~·} I
l!=Q=£Q~~BQ~· QQ~! library-name. I
L---J
Format 3 <within the File-control
paragraph>:

r---1
l§EL~£~ file-name £Q~! library-name. I
L---J
KQrm~~-~ <within the File Section>:

r---1
l{KQ file-name } I
I £QPY library-name. I
I SD sort-file-name1 I
L---J

Format 5 <within the Report section>: 1

r---1
IBQ report-name [WITH QQQ~ mnemonic-name] I
I £Q~! library-name. I
L---J
1 Implemented for COBOL F only

Format 6 <within a File or Sort Description
entry~-or within the Working-Storage or
Linkage Section):

r---1
101 data-name £Q~! library-name. I
L---J
Format 7 <within a Report Description1

entry>:-

r---1
101 [data-name] COPY library-name. I
L---J
Format 8 (within the Working-Storage or
Linkage-section>:

r---1
177 data-name COPY library-name. I
L---J

Library-name is the name of a member of
a partitioned data set contained in the
user's library; it identifies the entries
to be copied. Library-name is an external
name; therefore, it must be enclosed within
single quotation marks and contain no more
than eight alphabetic and numeric charac
ters, the first of which must be
alphabetic.

The words preceding COPY conform to mar
gin restrictions for COBOL programs. On a
given source program card containing the
completion of a COPY clause, there must be
no information beyond the clause
terminating period. The material intro
duced into the source program by the COPY
statement will follow the COPY statement on
the listing, beginning on the next line.

No COPY clause may be contained in the
information copied from the library.

A COPY clause with one of the required
formats may be written on one or more
cards.

When formats 1, 2, 3, or 4 are written,
the words COPY 1~Qra~y=£~~~ are replaced
internally by the information identified by
1~Q~~£Y~~~~~· This information comprises
the sentences or clauses needed to complete
the paragraph, sentence, or entry contain
ing the COPY clause.

When formats 5, 6, 7, or 8 are written,
the entire entry is replaced by the inf or
mation identified by library-name, except
that data-name Cif specified) replaces the
correspondfng-data-name from the library.

Source Program Library Facility 129

Form GC28-6516-8, page revised by TNL GN28-0266, 6/1/70

This information comprises a 01 or 77 level
entry and any inunediately subsequent
entries with level numbers higher than 01
or 77. The data-name replacement occurs
during compilation but is not shown in the
listing.

INCLUDE Statement

The INCLUDE statement permits the user
to include prewritten procedures in the
Procedure Division of his source program.
The INCLUDE statement has the following
formats:

Format 1 (For insertion of a paragraph):

.--------------------------------------1
!paragraph-name. INCLUDE library-name. I
L--J
Format 2 (For insertion of a section):

.----------·-----------------------------1
!section-name SECTION. INCLUDE library- I
I name. I
L-...... ---------·-------------------------------J

Library-name is the name of a member of
a partitioned data set contained in the
user's library. It identifies the entries
to be copied. It is an external name and
must follow the rules for external name
formation.

The words preceding INCLUDE library-name
must follow the rules for COBOL margina
tion. On a given source program card, con
taining the completion of an INCLUDE state
ment, there must be no information beyond
the clause-terminating period.

When the INCLUDE statement is written,
the words INCLUDE library-name are replaced
by the information identified by library
name. This information comprises the para
graphs or sentences needed to complete the
section or paragraph containing the INCLUDE
statement.

The library entries for paragraphs and
sections must not contain INCLUDE
statements.

A complete program may be included as an
entry in the user's library, and may be
used as the basis of compilation. Input to
the compiler is a BASIS card, followed by
any number of INSERT and/or DELETE cards,

130

and followed by any number of debugging
packets, if desired. Debugging packets are
described in the chapter entitled "COBOL
Debugging Language."

The format of the BASIS card is:

r---1
11 8 I
!---!
!BASIS library-name I
L---J

Library-name is an external name: it
names the complete program entry used as a
basis for the compilation.

If INSERT or DELETE cards follow the
BASIS card, the program entry is temporari
ly modified prior to being processed by the
compiler. The library member itself is not
affected and can be modified permanently
only with a utility program. See IBM
System/360 Operating System: COBOL CF>
Programmer's Guide, Form GC28-6380.

The format of the INSERT card is:

r---1
11 8-12 I
!---!
!INSERT sequence-number-field I
L---J

The format of the DELETE card is:

r--1
11 8-12 I
1---1
!DELETE sequence-number-field I
L---J

Each number in the seguence-number-f ield
must refer to a sequence number of the
basic library entry.

The sequence-number-field of an INSERT
card must be a single number. At least one
new source program card must follow the
INSERT card, for insertion after the card
specified by the sequence-number-field.

The entries comprising sequence-number
f ield of a DELETE card must be numbers or
ranges of numbers. Each entry must be
separated from the preceding entry by a
comma followed by a space. Ranges of num
bers are indicated by separating the two
bounding numbers of the range by a hyphen
(e.g., 000001-000005). Source program
cards may follow a DELETE card, for inser
tion before the card following the last one
deleted.

Form GC28-6516-8w page revised by TNL GN28-0266, 6/1/70

r---1
jEXTI STERLING CURRENCY F~ATURE AND INTERNATIONAL CONSIDERATIONS
L ___ J

_TERLING CURRENCY FEATURE

System/360 COBOL provides facilities for
andling sterling currency items by means
f an extension of the PICTURE clause.
dditional options and formats, necessi
ated by the non-decimal nature of ster
ing, and by the conventions by which
terling amounts are represented in punched
ards, are also available.

System/360 COBOL provides a means to
xpress sterling currency in pounds, shil
ings, and pence, in that order. There are
O shillings in a pound, and 12 pence in a
hilling. Although sterling amounts are
ometimes expressed in shillings and pence
nly <in which case the number of shillings
ay exceed 99>, within machine systems
hillings will always be expressed as a
-digit field. Pence, when in the form of
ntegers, likewise will be expressed as a
-digit field. However, provision must be
ade for pence to be expressed as decimal
~actions as well, as in the form
7s.10.237d.

The IBM method for representing sterling
nounts in punched cards uses two columns
Jr shillings and one for pence. Tenpence
LOd.) is represented by an '11' punch and
Levenpence <lld.> by a '12' punch. The
ritish Standards Institution (B.S.I.>
~presentation uses single columns for both
1illings and pence. The B.S.I. represen
~tion for shillings consists of a '12'
inch for ten shillings and the alphabetic
inches A through I for 11 to 19 shillings,
=spectively.

~t~: The B.S.I. representation for shil
Lngs precludes the use of more than 19
iillings in a sterling expression; there
)re, 22/10 <that is, 22 shillings 10
~nee) must be expanded, by the user, to
'2/10. Similarly, the guinea -- 21 shil
.ngs -- or any multiple thereof, must be
~panded to pounds and shillings.

The indicated representations may be
;ed separately or in combination, result
tg in four possible conventions.

IBM shillings and IBM pence

~. IBM shillings and B.s.I. pence

I. B.S.I. shillings and IBM pence

f. B. s. I. shillings and B. S. I. pence

Any of these conventions may be asso
ciated with any number of digits, (or none>
in the pound field and any number of deci
mal places <or none> in the pence field.
In addition, sign representation may be
present as an overpunch in one of several
allowable positions in the amount, or may
be separately entered from another field.

Two formats are provided by system/360
COBOL in the PICTURE clause for the repre
sentation of sterling amounts; sterling
report format (used for editing> and ster
ling non-report format (used for arithmet
ic>. In COBOL E, neither a sterling report
format nor a sterling non-report format can
contain more than 15 digits in the pound
and pence decimal-fraction fields combined.

In the formats that follow, n stands for
a positive integer other than zero. This
integer enclosed in parentheses and follow
ing the symbols 9, B, etc. indicates the
number of consecutive occurrences of the
preceding symbol. For example, 9(6) and
999999 are equivalent.

The characters 6 7 8 9 C D * , / B Z V
s d CR DB + - are the PICTURE charac

ters used to describe sterling items. (The
character is the sterling equivalent of
the character$.)

Note: The lower case letters "s" and "d"
are-represented by an 11-0-2 punch and a
12-0-4 punch, respectively.

STERLING NON-REPORT

The format of the PICTURE clause for a
sterling non-report data item is:

r---1
I f6C6ll I
1~1£!QR~ IS 9[(n)]D[8]8D) r I
I P l7J.l I
I I

I I [[V]9[(n)]] USAGE IS Ql§~~~X=§! I
L---J
~£t~: For a sterling non-report picture to
be valid, it must contain a pound field, a
shilling field, and a pence field.

The representation for pounds is 9[(n)]D
where:

Sterling Currency Feature 131

Form GC28-6516-8~ page revised by TNL GN28-0266, 6/1/70

1. The character 9 indicates that a
character position will always contain
a numeric character, and may extend to
!! positions .•

2. The character D indicates the position
of an assumed pound separator.

The representation for shillings is [8]8D
where:

1. The characters [8]8 indicate the posi
tion of the shilling field, and the
convention by which shillings are
represented in punched cards. 88
indicates IBM shilling representation
occupying a 2-column field. 8 indi
cates B.s.I. single-column shilling
representation.

2. The character D indicates the position
of an assumed shilling separator.

The representation for pence is

{

6 [6])
(ccvJ9C<n>ll

,7[7))

1. The character 6 indicates IBM single
column pence representation wherein
10d. is represented by an '11' punch
and 11d. by a 1 12' punch. The charac
ters 66 indicate 2-column representa
tion of pence, usually from some
external medium other than punched
cards.

2. The character 7 indicates B.S.I.
single-column pence representation
wherein lOd. is represented by a '12'
punch and lld. by an '11' punch. The
characters 77 indicate 2-column repre
sentation of pence. consequently, 66
and 77 serve the same purpose and are
interchangeable.

3. The character v indicates the position
of an assumed decimal point in the
pence field. Its properties and use
are identical with that of V in dollar
amounts. Decimal positions in the
pence field may extend to g positions.

4. The character 9 indicates that a
character position will always contain
a numeric character, and may extend to
g positions.

~~ame1~: Assume that a sterling currency
data item used in arithmetic expressions is
to be represented in IBM shillings and IBM
pence, and that this data item will never
exceed £ 99/19s/lld. Its picture should be:

PICTURE 9(2)08806 DISPLAY-ST.

132

Note: The VALUE clause may not be speci
fied for a sterling non-report item.

Signs for sterling amounts may be
entered as overpunches in one of several
allowable positions of the amount. A sign
is indicated by an embedded s in the non
report PICTURE irrunediately to the left of
the position containing the overpunch.
Allowable overpunch positions are the high
order and low-order positions of the pound
field, the high-order shilling digit in
2-column shilling representation, the low
order pence digit in 2-column pence repre
sentation, or the least significant decimaJ
position of pence.

The following are examples of sterling
currency non-report data items showing sig1
representation in each of the allowable
positions:

PICTURE S99D88D6V9(3) DISPLAY-ST

PICTURE 9S9D88D6V9(3) DISPLAY-ST

PICTURE 9(2)DS88D6V9(3) DISPLAY-ST

PICTURE 9(2)D88D6S6V9(3) DISPLAY-ST

PICTURE 9(2)D88D6V99S9 DISPLAY-ST

STERLING REPORT

The format for the PICTURE clause for a
sterling currency report data item is show
in Figure 20.

The sterling currency report data item
is composed of four portions: pounds,
shillings, pence, and pence decimal
fractions.

The delimiter characters C and D pri
marily serve to indicate the end of the
pounds and shillings portions of the pic
ture. In addition, they serve to indicate
the type of editing to be applied to
separator characters to the right of the
low-order digit <of the pounds and shil
lings integer portions of the item>.

r---1
~!£!Qg~ IS !pound-report-stringl!pound-separator-stringl f:}

99
Z9
zz
z0
*9
**
•8

99
Z9
zz
z0
•9
**
•8

[shilling-separator-string]

[
PdJ c. J t]
l.9(n) CdJC.l~

Figure 20. Format of Sterling Report PICTURE Clause

The delimiter character D indicates that
separator character<s> to the right of the
low-order digit position (of the field
delimited) are always to appear; that is,
no editing is performed on the separator
character< s-).

The delimiter character c indicates that
if the low-order digit position (of the
field delimited) is represented by other
than the edit character 9, then editing
continues through the separator
character(s). For example, a value of zero
moved to a sterling report item represented
by the picture

U/CZ9s/D99d

would result in

***bOs/OOd

whereas if the picture were

**/DZ9s/D99d

the result would be

**/bOs/OOd.

The delimiter c is equivalent to D when
the low-order digit position is represented
by a 9. That is, the following two pic
tures are equivalent:

ZZ9/CZ9/C99
ZZ9/DZ9/D99

The delimiters used for the pounds and
shillings portion of the picture need not
be the same.

Editing applications are shown in Table
20.

Not~: Although the pound-report-string and
the pound-separator-string are optional, a
delimiter character <either c or D) must be
present; thus, when programming for shil
lings and pence only, the PICTURE clause
must begin PICTURE [IS] c (or D> •••

The separator characters <those charac
ters required to distinguish one portion of
the data item from the next> that may be
used in a sterling currency report picture
are B : / £ s (for shillings) d (for
pence> and a period. Any of these charac
ters may be used in any position in which a
separator character is permitted.

The pound-report-string is subject to
the same rules as a 'normal' report picture

1. The allowable characters are £ 9 z * +
- 0 (zero) B and a comma.

2. The character £ is the sterling equi
valent of $.

3. Termination is explicitly specified by
the character c or D.

4. Editing of separator characters to the
right of the low order digit varies
(depending on the use of c or D as a
delimiter).

Sterling currency Feature 133

Form GC28-6516-8, page revised by TNL GN28-0266, 6/1/70

Table 20. Sterling Currency Editing Applications
r-----------·-----------T-------------------T-----------------------T--------------------1
I Picture I Nwneric Value I Sterling Equivalent I Result I
I I <in pence> I £ s a I I
~----------------------+-------------------+-----------------------+--------------------~

£££/D99s/D99d 3068 12 15 08 £12/15s/08d
£££/D99s/D99d 0668 2 15 08 b£2/15s/08d
£££/D99s/D99d 0188 0 l5 08 bbb/15s/08d
U£/C99s/D99d 0188 0 15 08 bbbb15s/08d

ZZZ/DZZs/DZZd 0000 0 00 00 bbb/bbs/bbd
ZZZ/CZZs/DZZd 0000 0 00 00 bbbbbbs/bbd
ZZZ/CZZs/CZZd 0000 0 00 00 bbbbbbbbbbd
***/C**D/C**.99d 1040.12 4 06 08.12 **4/*6s/•8.12d
/C**s/C••.99d 080.12 0 06 08.12 **6s/•8.12d
***/D**S/D**.99d 00001.23 0 00 01.23 ***/**S/*l.23d
U£/D•9s/D••.99d 00961.23 4 00 01.23 b£4/•0s/•1.23d
£••/D•9s/D••.99d 00961.23 4 00 01.23 £•4/•0s/•1.23d
£••/D*93/D**.99d 00001.23 0 00 01.23 £••/•Os/•1.23d

L----------------------i-------------------i-----------------------~--------------------J

A sterling report PICTURE may have a
BLANK WHEN ZERO clause associated with it
specifying that the item described is
filled with spaces whenever the value of
the item is zero. The VALUE clause may be
specified for a sterling report item if the
literal is alphanumeric.

The representation of digits positions
in both the shillings and pence integers
portion of the picture is identical. The
edit character 8 is treated as a 9, but if
the digits to the left of the edit charac
ter 8 are zeros, the 8 is treated as the
character that precedes it <either Z or •>.

PROCEDURE DIVISION CONSIDERATIONS

r------,
IF ONLY!
L ______ J MOVE, DISPLAY, ACCEPT, EXAMINE,
and TRANSFORM statements, arithmetic state
ments, and relation tests may be written
containing data-names that specify sterling
items.

134

In COBOL E, the MOVE, ADD, and SUBTKACT
statements may be written containing data
names described as sterling items.

Sterling items are not considered as
integral items and should not be used where
an integer is required.

INTERNATIONAL CONSIDERATIONS

r------,
IF ONLY!

1. L ______ J The functions of the period
and the comma may be exchanged in the
PICTURE character-string and in numer
ic literals by writing the clause
DECIMAL-POINT IS COMMA in the Special
Names paragraph of the Configuration
section of the Environment Division.

2. The PICTURE of report items may ter
minate with the currency symbol in
cases where the graphic $ is sup
planted by a particular national cur
rency symbol.

The following debugging statements may
appear anywhere in an System/360 COBOL pro
gram or in a compile-time debugging packet.

For the TRACE and EXHiaIT statements,
the output is written on thee system logical
output device fSYSOUT). In COBOL E, the
logical record size must be specified on
the associated SYSOUT DD statement. In
COBOL F, a maximum logical record size of
120 char:acters is assumed. This assumed
size is overridden if a logical record size
is specified cm the associated SYSOUT DD
statement. <See the publications IB~
System/360 Operating System,. COBOL (E) . Pro
grammer'$· Guide, Form GC24-5029 and IBM
System/ 360 0\3erating System, COBOL (F) Pro
grUUPer' S Guide, Form GC28-6380.>

The format of the TRACE statement is:

r--------.------------------------------1 I {READY} ' I
I ,--\ '!'RACE I
I tRESETJ .-· - I
L-------------------~-------------~------J

After a READY TRACE statement is
executed, a message is written each time
execution of a paragraph or section begins.

The execution of a RESET TRACE statement
terminates the functions of a previous
READY TRACE statement.

EXH.IBIT

The format of the EXHIBIT. statement is:

.-~------------...,._~~~-~---~------~--------,
I I
I iNAMED l I
I EXHIBIT .CHANGED Nl\MED.(I
I CH~NGED ' I
I I
I) data-name... l I
I)literal1 ••• (I
I lalphanumeric-literal) I
L--l
11mplemented for COBOL F only

r--~1

IEXTI COBOL DEBUGGING LANGUAGE
L ___ J

The execution of an EXHIBIT NAMED state
ment causes a formatted display of the
data-names (or non-numeric literals> listed
in the statement. The format of the output
for each data-name li'sted in the NAMED or
CHANGED NAMEP form of an EXHIBIT statement
is:

original data-name (including quali-
fiers, if written>

blank
equal sign
blank
value of data-name
blank

Literals listed in the statement are
preceded by a .blank, when displayed.

In COBOL E, if the sum of the operands
of an EXHIBIT statement, including the
inserted blanks, exceeds the maximum logi
cal record size for the system logical out
put device (SYSOUT), the action taken is as
described for the DISPLAY statement. In
COBOL F, the display of the operands is
continued as described for the DISPLAY
statement •.

For COBOL E, each EXHIBIT statement must
be the last statement in a sentence.

The CHANGED form of the EXHIBIT state
ment provides for a display of items when
they change value, compared to the value at
the previous time the EXHIBIT CHANGED
statement was executed. The initial time
such a statement is executed, all values
are considered changed; they are displayed
and saved for purposes of comparison.

Note that, if two distinct EXHIBIT
CHANGED data-name statements appear in a
program (data-name being the same in both
cases), changes in data-·name are associated
with the two separate statements. Depend
ing on the path of program flow, the values
of data-name saved for comparison may dif
fer for the two statements.

If the list of operands in an EXHIBIT
CHANGED statement includes literals, they
are printed as remarks and are preceded by
a blank.

COBOL Debugging Language 135

Form GC28-6516-8, page revised by TNL GN28-0266, 6/1/70

For COBOL E, only one data-name may be
listed in an EXHIBIT CHANGED statement.
r-----,
IF ONLYI L.-----J If there are two or more data
names as operands of EXHIBIT CHANGED, and
some but not all are changed from the pre
vious execution of the statement, only the
changed values are displayed. The posi
tions reserved for a given operand in the
data to be displayed are blank when the
value of the operand is not changed. The
programmer can thus create a fixed columnar
format for the data to be displayed by use
of the EXHIBIT CHANGED. The data-name
operands of the EXHIBIT CHANGED statement
must be less than 256 bytes in length.

If all operands in an EXHIBIT CHANGED
statement have not changed value from the
previous execution of the statement, a
blank line(s) will be printed. However,
for EXHIBIT CHANGED NAMED, no blank line(s)
will be printed.

Variable length data items are not per
mitted as operands when the CHANGED option
is used.

The CHANGED NAMED form of the EXHIBIT
statement causes a printout of each changed
value for items listed in the statement.
Only those values representing changes and
their identifying names are printed.

ON (Count-Conditional Statement)

The ON statement is a conditional state
ment. It specifies when the statements it
contains are to be executed.

The format of the ON statement is:

r-------------------------------------1 1.9!! integer-1 [AND EVERY integer-2] I
I I
I [UNTIL integer-3] I
I I
I fimperative-statement •••) I
I lNEXT SENTENCE f I
I I
I ELSE statement... I
I OTHERWISE NEX~ SENTENCE I
L.----~----------------------------------J

ELSE (or OTHERWISE) NEXT SENTENCE may be
omitted if it immediately precedes the
period for the sentence. All integers con
tained in the statement must be positive
and less than 231-1. When using the ON
statement, integral numeric literals cannot
exceed 231-1, or 2,147,483,647.

The count-condition (integer-1 AND EVERY
integer-2 UNTIL integer-3) is evaluated as
follows:

136

Each ON statement has a compiler
generated counter associated with it. The
counter is initialized in the object pro
gram with a value of zero.

Each time the path of program flow
reaches the ON statement, the counter is
advanced by 1. Where ~ is any positive
integer, if the value of the counter is
equal to integer-1 + (m * integer-2 >, but
is less than integer-3 (if specified), then
the imperative statements (or NEXT SEN
TENCE) are executed. Otherwise, the state
ments after ELSE (or NEXT SENTENCE) are
executed. If the ELSE option does not
appear, the next sentence is executed.

If integer-2 is not given, but integer-3
is given, it is assumed that integer-2 has
a value of 1. If integer-3 is not given,
no upper limit is assumed for it.

If neither integer-2 nor integer-3 is
specified, the imperative statements are
executed only once.

Examples:

ON 2 AND EVERY 2 UNTIL 10 DISPLAY A ELSE
DISPLAY B.

On the second, fourth, sixth, and eighth
times, A is displayed. B is displayed at
all other times.

ON 3 DISPLAY A.

On the third time through the count
condi tional statement, A is displayed.
No action is taken at any other time.

COMPILE-TIME DEBUGGING PACKET

Debugging statements for a given para
graph or section in a program may be
grouped together into a debugging packet.
These statements will be compiled with the
source language program, and will be
executed at object time. Each packet
refers to a specified paragraph-name or
section-name in the Procedure Division. In
COBOL E, compile-time debugging packets are
grouped together and are placed immediately
preceding the first card in the source pro
gram. See the publication IBM System/360
Operating System: COBOL E Programmer's
Guide, Form GC24-5029, for the proper DEBUG
JCL construction. In COBOL F, compile-time
debugging packets are grouped together and
are placed immediately following the last
card of the source program.

Each compile-time debug packet is headed
by the control card *DEBUG. The general
form of this card is:

Form GC28-6516-8, page revised by TNL GN28-0266, 6/1/70

r---1
11 s I
!---!
l*DEBUG location C,1 CTRY1 1 I • ___ J

1here the parameters are described as
:allows:

Location is the COBOL section-name or
>aragraph-name (qualified, if necessary)
.ndicating the point in the program at
1hich the packet is to be executed. Ef f ec
:i vely, the statements in the packet are
~xecuted as if they were physically placed
.n the source program following the
;ection-name or paragraph-name, but preced
_ng the text associated with the name. The
;ame location must not be used in more than
>ne DEBUG control card. Locatiog may not
>e a paragraph-name within the DEBUG packet
.tself.

~2t~: Location can start anywhere within
largin A.

·Implemented for COBOL F only.

r------,
IF ONLYI
L---·---J If the TRY option is used, immedi
ate loading and execution of the object
program will be allowed even if an error
appears within a debug packet. If TRY is
not specified, a significant source program
error, when encountered in the procedural
text of a debug packet, will prevent load
ing and execution of the object program.
The debug packet may ref er to paragraph and
section-names brought into the program as
the result of one or more INCLUDE
statements.

A debug packet may consist of any proce
dural statements conforming to the require
ments of System/360 COBOL. A GO TO, PER
FORM, or ALTER statement in a debug packet
may ref er to a procedure-name in any debug
packet or in the main body of the Procedure
Division. However, before an explicit
branch to a debug packet is executed, the
path of program flow must reach the loca
tion specified in the DEBUG statement~---

COBOL Debugging Language 137

ACCEPT DATE-WRITTEN INDEXED PAGE SELECT
ACCESS DE INDICATE PAGE-COUNTER SENTENCE
ACTUAL DECIMAL-POINT INITIATE PERFORM SEQUENTIAL
ADD DECLARATIVES INPUT PF SIZE
ADVANCING DEPENDING INPUT-OUTPUT PH SORT
AFTER DESCENDING INSTALLATION PICTURE SOURCE
ALL DETAIL INTO PLUS SOURCE-COMPUTER
ALPHABETIC DIRECT INVALID POSITIVE SPACE
ALTER DIRECT-ACCESS I-0 PRINT-SWITCH SPACES
ALTERNATE DISPLAY I-0-CONTROL PROCEDURE SPECIAL-NAMES
AND DISPLAY-ST IS PROCEED STANDARD
APPLY DIVIDE PROCESS STOP
ARE DIVISION JUSTIFIED PROGRAM-ID SUBTRACT
AREA SUM
AREAS ELSE KEY SYMBOLIC
ASCENDING END SYS IN
ASSIGN ENTER QUOTE SYSOUT
AT ENTRY LABEL QUOTES SYS PUNCH
AUTHOR ENVIRONMENT LAST

EQUAL LEADING RANDOM TALLY
BEFORE ERROR LESS RD TALLYING
BLANK EVERY LIMIT READ TERMINATE
BLOCK EXAMINE LIMITS READY THAN
BY EXHIBIT LINE RECORD THEN

EXIT LINE-COUNTER RECORDING THRU
LINES RECORDS TIMES

FD LINKAGE REDEFINES TO
FILE LOCK REEL TRACE

CALL FILE-CONTROL LOW-VALUE RELATIVE TRACK-AREA
CF FILE-LIMIT LOW-VALUES RELEASE TRACKS
CH FILLER REMARKS TRANSFORM
CHANGED FINAL MODE REPLACING TRY
CHARACTERS FIRST MOVE REPORT TYPE
CLOSE FOOTING MULTIPLY REPORTING
COBOL FOR REPORTS UNIT
CODE FORM-OVERFLOW RERUN UNIT-RECORD
COLUMN FROM NAMED RESERVE UNITS
COMMA NEGATIVE RESET UNTIL
COMPUTATIONAL GENERATE NEXT RESTRICTED UPON
COMPUTATIONAL-1 GIVING NO RETURN USAGE
COMPUTATIONAL-2 GO NOT REVERSED USE
COMPUTATIONAL-3 GREATER NOTE REWIND USING
COMPUTE GROUP NUMERIC REWRITE UTILITY
CONFIGURATION RF
CONSOLE HEADING RH VALUE
CONTAINS HIGH-VALUE OBJECT-COMPUTER RIGHT VARYING
CONTROL HIGH-VALUES OCCURS ROUNDED
CONTROLS HOLD OF RUN WHEN

.COPY OMITTED WITH
CORRESPONDING IBM-360 ON WORKING-STORAGE

ID OPEN SAME WRITE
IDENTIFICATION OR SD WRITE-ONLY
IF ORGANIZATION SEARCH ZERO

DATA IN OTHERWISE SECTION ZEROES
DATE-COMPILED INCLUDE OUTPUT SECURITY ZEROS

Appendix A: COBOL Word List 139

In IBM System/360, storage is organized
into Qyte2. Four bytes comprise a ~Q.f.g of
storage. Two bytes comprise a h~lf~QEg;
eight bytes comprise a g~Q!~~QEg• Certain
types of processing operations require that
data be aligned on a certain type of boun
dary -- halfword, fullword, or doubleword.
In order to ensure correct alignment in
such cases, it is sometimes necessary to
insert bytes containing no meaningful data
between data items or between records.
These are called 2la£~_Qyte2. In certain
cases, they are inserted by the compiler;
in other cases, it is the responsibility of
the user to insert them.

INTRA-RECORD SLACK BYTES

An item described with the COMPUTATION
AL, COMPUTATIONAL-1, or COMPUTATIONAL-2
option of the USAGE clause must be aligned
on the proper type of word boundary. When
necessary, slack bytes are added to ensure
this alignment.

These slack bytes are added on the
assumption that every level 01 data item
begins on a double-word boundary. In the
following cases, responsibility for arrang
ing such alignment rests with the user:

1. If the item is the argument of a CALL
statement, and corresponds to a data
name with a level 01 description in
the linkage section of the subprogram.

2. If the record-name of the item is
associated with a file containing
blocked records.

The user can insure double-word boundary
alignment in one of two ways:

1. By moving the item to a level 01
description in the Working-Storage
Section.

2. By the addition of inter-record slack
bytes to force proper alignment of
succeeding records in the block (see
below, "Inter-record Slack Bytes").

The following method is used by the com
piler to determine whether intra-record
slack bytes are required:

The total number of bytes contained in
all elementary data items preceding the
computational item under discussion are

added together, including any slack bytes
previously added. This sum is divided by
!!!• where:

m 2 for COMPUTATIONAL items Of 4-
digit length or less

m = 4 for COMPUTATIONAL items of 5-
digit length or more

m 4 for COMPUTATIONAL-1 items
m 8 for COMPUTATIONAL-2 items

If the remainder <E> of this division is
equal to zero, no slack bytes are required.
If the remainder is not equal to zero, the
number of slack bytes that must be added is
m - r.

These slack bytes are added following
the elementary data item immediately pre
ceding tµe computational item under discus
sion. They are defined with a level-nuwber
equal to that of the data item following
the elementary item. For example:

01 A.
02 B
02 c.

03
03
03

01 A.

PICTURE IS X(5).

D PICTURE IS X(2).
SLACK-BYTES PICTURE IS X.

E USAGE COMPUTATIONAL
PICTURE IS S9(6).

02 V PICTURE IS X(5).
02 C PICTURE IS X(2).
02 SLACK-BYTES PICTURE IS X.
02 D.

03 E USAGE COMPUTATIONAL
PICTURE IS S9(6>.

Slack bytes may also be added by the
compiler when a group item is defined with
an OCCURS clause and contains within it a
data item with USAGE defined as COMPUTA
TIONAL, COMPUTATIONAL-1, or
COMPUTATIONAL-2.

To determine whether slack bytes are
required, calculate the size of the group
including all the necessary intra-record
slack bytes. Divide this sum by the larg
est m required by any elementary item
within the group.

If r is equal to zero, no slack bytes
are required. If r is not equal to zero, m
- r slack bytes must be added.

The slack bytes are added at the end of
the group item containing the OCCURS
clause, with a level-number equal to one

Appendix B: Slack Bytes 141

Cl> greater than the level-number of the
group item. For example:

01 A.
02 B PICTURE IS X(7).
02 C OCCURS 10 TIMES.

03 D.
04 E PICTURE IS X.
04 F USAGE COMPUTATIONAL-2.

03 G.
04 H PICTURE IS XX.

03 SLACK-BYTES PICTURE IS X(5l.
02 I PICTURE IS X.

Where data items defined as CO~PUTATION
AL, COMPUTA~rIONAL-1 or COMPUTA'I'IONAL-2 fol
low a field containing an OCCURS clause
with the DEPENDING ON option, slack bytes
are added on the basis of the field occur
ring the maximum number of times. If the
length of this field is divisible by the rn
required for the computational data, all
values of the data-name specified in the
OCCURS clause are valid. If it is not
evenly divisible, the only values of the
data-name in the OCCURS clause that will
give proper alignment of the computational
fields are those where the length of the
data item times the number of occurrences
plus the slack bytes that have been calcu
lated based on the maximum number of occur
rences is evenly divisible by m. For
example:

01 A.
02 B
02 c

PICTURE 9(2).
PICTURE X OCCURS 99 TIMES DEPEND
ING ON B.

02 SLACK-BYTE PICTURE X.
02 D USAGE COMPUTATIONAL PICTURE IS

89(2).

In this example when references to D are
required, B is restricted to odd values
only.

01 A.
02 B PICTURE 9(3).
02 C PICTURE X (2) OCCURS 99 TIMES

DEPENDING ON. B.
02 SLACK-BYTE PICTURE X.
02 D USAGE COMPUTATIONAL PICTURE IS

S9(2).

In this example, all values of B give
proper references to D.

INTER-RECORD SLACK BYTES

If a file contains blocked logical rec
ords that are to be processed in a buffer,
the user must add any inter-record slack
bytes needed for proper aligrunent if any of
the records contain entries defined as COM
PUTATIONAL., COMPUTATIONAL-1, or
COMPUTATIONAL-2.

142

When intra-record slack bytes are added
in order to assure proper aligrunent of a
data item described with the COMPUTATIONAL,
COMPUTATIONAL-1, or COMPUTATIONAL-2 option
of the USAGE clause, it is assumed that
every level 01 data item starts on a
double-word boundary. This aligrunent is
automatic only in the case of level 01 data
items in the Working-Storage Section, and
of input/output buffers (excluding any con
trol bytes required by Data Management).

The following method should be used to
determine whether any inter-record slack
bytes are required:

Add the lengths of all the elementary
data items in the record, including all
intra-record slack bytes. If RECORDING
MODE IS V has been specified for the file,
it is necessary to add four bytes for the
count field. Divide the total by the high
est value of m for any one of the elemen
tary items in the record.

If r (the remainder) is equal to zero~
no inter-record slack bytes are required.
If r is not equal to zero, m - r slack
bytes are required. These slack bytes may
be specified by writing an 02 FILLER at the
end of the record.

If format u records are being read back
wards, double-word boundary alignment of
the I-0 buff er will be obtained only if the
lengths of the logical records are divis
ible by eight.

SUMMARY OF DATA DIVISION REQUIREMENTS

r------1
JF ONLY!
L------J REPORT SECTION: The compiler adds
all necessary slack bytes to insure proper
alignment of computational fields.

!iQBKI!'.!~-S'.!'.QE!&!L§EC'.!'.!Q~: The compiler adds
all necessary slack bytes to insure proper
alignment of computational fields.

r---,
IEXTI
L ___ J LINKAGE SECTION: All level 01 items
are assumed to begin on double-word boun
daries. It is the responsibility of the
user to insure that the arguments in a CALL
statement are properly aligned.

1. In the case of input files, it is the
responsibility of the user to make
sure that the logical records contain
any necessary intra-record slack
bytes.

If an input file contains blocked
records, and processing is done in a
buffer, the required inter-record
slack bytes must have been inserted
when the file was created.

2. In the case of output files., the com
piler adds the necessary intra-record
slack bytes to the logical records.

The user is responsible for insert
ing necessary inter-record slack bytes
to an output file if they will be
required when it functions as an input
file.

Appendix B: Slack Bytes 143

Page of GC28-65:16-8, Revised 12/30/70, by TNL: GN28-0427

In the case of an arithmetic statement
containing only a single pair of operands,
no intermediate results are generated.
Intermediate results are possible in the
following cases:

1. In an ADD or SUBTRACT statement con-
taining multiple operands immediately
following the verb.

2. In a COMPUTE statement specifying a
series of arithmetic operations.

3. In arithmetic expressions contained in
IF or PERFORM statements.

In such cases, the compiler treats the
statement as a succession of operations.
For example, the following statement:

COMPUTE Y = A + B * C - D / E + F ** G

is replaced by

MULTIPLY B BY c yielding irl
ADD A TO irl yielding ir2
DIVIDE E INTO D yielding ir3
SUBTRACT ir3 FROM ir2 yielding ir4

** F BY G yielding ir5
ADD ir4 TO ir5 yielding y

The conceptual compiler algorithms for
determining the number of integer and deci
mal places reserved for intermediate
results is discussed in this appendix.

When a statement applies to only one of
the compilers, it will be so noted. If no
restriction is noted, statements apply to
both COBOL E and COBOL F.

The following abbreviations will be
used:

i--number of integer places carried for an
intermediate result.

Q--number of decimal places carried for an
intermediate result.

dmax--maximum number of decimal places
defined for any operand (except for
exponents or divisors > in a particu
lar statement.

opl--f irst operand in a generated
arithmetic statement.

op2--second operand in a generated
arithmetic statement.

APPENDIX C: INTERMEDIATE RESULTS

dl,d£--number of decimal places defined for
opl or op2, respectively.

umber of decimal places in final result
field.

ir--intermediate result field obtained from
the execution of a generated arithmetic
statement or operation. irl, ir2, etc.
represent successive intermediate
results. These intermediate results
are generated either in registers or in

·storage locations. successive interme
diate results may have the same
location.

f r--number of integer and decimal places in
final result field.

INTERMEDIATE RESULTS--E COMPILER

In COBOL E, the number of integer and
decimal places contained in an ir is calcu-
lated as shown in Table 21. ---

INTERMEDIATE RESULTS--F COMPILER

In COBOL F, the number of integer places
contained in an ir is calculated as
follows: ~

The compiler first determines the maximum
value that the ir can contain by performing
the arithmetic statement in which the ir
occurs.

1. If an operand in this statement is a
data-name, the value used for the
data-name is equal to the numeric
value of the PICTURE for the data-name
(e.g., PICTURE 9V99 has the value
9. 99).

2. If an operand is a literal, the actual
value of the literal is used.

3. If an operand is an intermediate
result, the value determined for the
intermediate result in a previous ar
ithmetic operation is used.

4. If the operation is division:

a. If op2 is a data-name, the value
used for op2 is the minimum non
zero value of the digit in the
PICTURE for the data-name (e.g.,
PICTURE 9V99 has the value 0.01).

Appendix c: Intermediate Results 145

b. If op2 is an intermediate result,
the intermediate result is treated
as if it had a PICTURE, and the
minimum nonzero value of the
digits in this PICTURE is used.

When the maximum value of the ir is deter
mined by the above procedures, ! is set
equal to the number of integers in the
maximum value.

In COBOL F, the number of decimal places
contained in an ir is calculated as
follows:

Operation
+ or -

*
/

**

Decimal Places
dl or d2, whichever is greater
dl + d2
dl - d2 or dmax, whichever is
greater
dmax if op2 is nonintegral or a
data-name: dl * op2 if op2 is
an integral literal

Compiler Treatment of Intermediate Results

Table 22 indicates the action of the
compiler when handling intermediate
results.

Table 21. Calculating Intermediate Results Using the E compiler.
r-----------·---------------T----------------T--------------------T----------------------1
I I Statement I I I
I Operation I Type I Decimal Places I Integer Places I
~--------------------------+----------------+--------------------+----------------------~

+ or -
(internal
decima.1) 1

+ or -
(binary) 1

*
/
ifCi2+maxCdf+1,d2)
+d1)~30

/
ifCi2+maxCdf+1,d2)
+d1)>30

Arithmetic dl or d2, which- i1 + 1 or
ever is greater i2 + 1, which

ever is greater

dl or d2, which
ever is greater

dl + d2

df+1 or d2,
whichever is
greater

d2-d1

il + 1 or
i2 + 1
whichever is
greater

i1 + i2

i2+d1

i2+d1

** df fr - df
~-----------·---------------+----------------+--------------------+----------------------~
I + or - I IF or I d1 or d2, which- I 30 - d I
I I PERFORM I ever is greater I I
I I I I I
I * I I dl+d2 I 30-d I
I I I I I
I / I I d2 I 30-d I
I I I I I
I ** I I 12 I 1s I
~-----------·---------------~----------------~--------------------~----------------------~ l 1 The user should assume that ! will increase by 1 in all + or - operations if either I
I field is binary or packed. I
L---J

146

rable 22. Compiler Action on Intermediate Result

~---------------T-----------T-----------T----------------T------------------------------1 I I Value l Value I Value t I
I I of I of I of I I
1 compiler I I I I I
I I i + d I d I i + dmax I Action taken I
~---------------t-----------t-----------t----------------+------------------------------~
I F 1 <30 I Any I Any value I i integer and d I
I ~-----------~ I I I
I I =30 I value I I decimal places are I
I I 1 I I carried for ir I

I ~-----------+-----------+----------------+------------------------------~ l I >30 I <dmax I Any value i 30 - d integer and d I
I I ~-----------~ l I I I I =dmax I l decimal places are I
I I I I) carried for ir I
1 l ~-----------+----------------+------------------------------~
J I I >dmax I <30 I i integer and 30 - i I
I I I ~----------------~ I
I I I I =30 I decimal places are I
I l I I I carried for ir I
l I I ~----------------+------------------------------~
I I I I >30 I 30 - dmax integer and I
I I I I I dmax decimal places I
I I I I I are carried for ir I

~---------------+-----------+-----------+----------------+------------------------------~ I E I <30 1 Any I Not I i integer and d I
I ~~----------~ I I I
I I =30 I value I applicable I decimal places are I
I I I I I carried for ir. (If I
I I I I I operation is / or **• I
I I I I I i + d never exceeds 30). I
I ~-----------+-----------+---------·-------+------------------------------~
l I >30 I Any I Not I 30 - df integer and I
I I 1 value I applicable I df decimal places I
I I I I I are carried I
l I I I I I
L---------------~-----------~-----------~----------------~------------------------------J
I~: If ROUNDED is specified, the value of df is df + 1. I
L---J

Appendix C: Intermediate Results 147

This appendix contains two sample COBOL
rograms. Figure 21 is a calling program;
he other, Figure 22, is a subprogram which

ALLING PROGRAM

APPENDIX D: EXAMPLES OF COBOL PROGRAMS

is linked by the calling program. The
linkage subprogram illustrated need not be
a COBOL program.

---,
1 s 12 I
---~
001001 IDENTIFICATION DIVISION.
001002 PROGRAM-ID. 'CALLPROG'.
001003 REMARKS. EXAMPLE OF A CALLING PROGRAM.

001008 DATA DIVISION.

001014
001015
001016
001017
001018
001019

WORKING-STORAGE SECTION.
01 RECORD!.

02 JONES-J.
03 SALARY PICTURE IS 9(5)V99.
03 RATE PICTURE IS 9V99.
03 HOURS PICTURE IS 99V9.

001021 PROCEDURE DIVISION.

1001025
1001026
1001027
I •
I •
I •

ENTER LINKAGE.
CALL 'PAYMASTR' USING JONES-J.
ENTER COBOL.

L---
~igure 21. Example of a Calling Program

Appendix D: Examples of COBOL Programs 149

CALLED PROGRAM
r--1
11 a 12 I
~---~
J002001 IDENTIFICATION DIVISION.
1002002 PROGRAM-ID. 'SUBPROG'.
I •
I •
I •
1002005 DATA DIVISION.
I •
I •
I •
I • •
J002012 LINKAGE SECTION.
I •
1002015 01 PAYOFF.
1002016 02 PAY PICTURE IS 9(5)V99.
1002017 02 RATEX PICTURE IS 9V99.
1002018 02 HOURS PICTURE IS 99V9.
I •
I •
1002025 PROCEDURE DIVISION.
I •
I •
I • .
1002040
1002041
1002042
I •
I •

ENTER LINKAGE.
ENTRY 'PAYMASTR' USING PAYOFF.
ENTER COBOL.

1002050 ENTER LINKAGE.
j002051 RETURN.
1002052 ENTER COBOL.

L----------------·---J Figure 22. Example of a Called Program

150

APPENDIX E: COBOL F ONLY FEATURES AND EXTENSIONS

~OBOL F ONLY FEATURES

The following COBOL 1965 features,
1escribed in this publication, are imple
nented only for COBOL F:

1. The CORRESPONDING option of the ADD,
SUBTRACT, and MOVE statements

2. The Report Writer feature (part of
this feature is an extension to COBOL,
see below>

3. The Sort feature

4. Implied subjects and relational opera
tors in compound conditions

5. The SPECIAL-NAMES paragraph

6. The mnemonic-name option of the DIS
PLAY statement

7. The mnemonic-name option of the ACCEPT
statement

8. The REEL/UNIT option in conjunction
with the NO REWIND/LOCK option Of the
CLOSE statement (both options may be
used in a statement)

(See "COBOL Extensions" below for other
COBOL F only features)

COBOL EXTENSIONS

The following features, described in
this publication, are IBM extensions to
COBOL 1965 for IBM System/360 Operating

System. Some are extensions to COBOL f ea
tures, while others are completely new for
COBOL E and COBOL F.

1. The ORGANIZATION clause

2. Internal and external floating-point
items and floating-point literals

3. The MOVE 1 TO PRINT-SWITCH statement
in the Report Writer feature (this
feature is implemented for COBOL F
only)

4. The Linkage Section of the Data
Division

5. The overflow-name test-condition

6. The REWRITE statement

7. The TRANSFORM statement

8. The debugging language (the TRY option
of the debugging packet is implemented
for COBOL F only; the EXHIBIT state
ment is available to COBOL E in
restricted form only>

9. The Sterling currency Feature (this
feature is available to COBOL E in
restricted form only>

10. The RECORD KEY clause

11. The TRACK-AREA clause (this feature is
available to COBOL E in restricted
form only)

12. The Extended source Program Library
Facility (this feature is implemented
for COBOL F only)

Appendix F: COBOL Restrictions and Extensions 151

(Where more than one page reference is given, the major reference is given first.)

Special characters
• (decimal point) 50

in sterling PICTURE clause 131-134
< <less than) 63
+ <plus>

in PICTURE clause 52
in sterling PICTURE clause

$ <dollar sign) 52
£ (pound symbol) 131-134
* (check protection) 51

in sterling PICTURE clause 131-134
(Minus)

in PICTURE clause 52
/ <slash)

in sterling PICTURE clause 131-134
(comma) 9-10

in PICTURE clause 51
in sterling PICTURE clause 131-134

> (greater than) 63
= (equal sign) 63

ACCEPT 78-79
sterling items 134

ACCESS clause 17-19,27,72-75
Access methods

(see Sequential access, Direct access)
ACTUAL KEY clause 71-74,16,19,28,55

not permitted under QSAM 17
ADD 87,145
ADD CORRESPONDING 87 1 150
Addressing

relative record 16
relative track 16

AFTER ADVANCING 78
<see also WRITE, Line spacing)

Algebraic comparisons 63
ALL 81-82
ALL 'figurative constant' 36
Allocation of space 15
Alpha-form option of PICTURE clause 50
ALPHABETIC 64
Alphabetic items 38

format 45
Alphanumeric items 38

format 45
ALTER 89,1 90 1 137

(see also TRANSFORM)
An-form option of PICTURE clause 50
AND 67
APPLY clause 30-31

(see also APPLY FORM-OVERFLOW option,
APPLY WRITE-ONLY option, APPLY
RESTRICTED SEARCH option)

APPLY FORM-OVERFLOW option 30
APPLY RESTRICTED SEARCH option 30,20
APPLY WRITE-ONLY option 30-31,43
Arithmetic expressions 9,67
Arithmetic operators 68

rules regarding 10

Arithmetic statements 85
Arithmetic verbs 69

<see also COMPUTE, ADD, SUBTRACT,
MULTIPLY, DIVIDE)

ASCENDING 122
ASSIGN clause 26,27,123
AT END 59,61,71-2,124
AUTHOR 23
Automatic end-of-volume 76

B
in PICTURE clause 51
in sterling PICTURE clause 131-134

BASIS 130
BDAM 16,20

with relative record addressing 21
with relative track addressing 20

Binary items 36
format 46

BISAM 16,18,19
BLANK WHEN ZERO 51-53,134
BLOCK CONTAINS clause 43-44
Blocked records 17
Blocks, definition of 40
Boundary alignment 94

(see also Slack bytes)
BSAM 16 1 19 1 20

with relative record addressing 20
with relative track addressing 19

BSI (British Standards Institution) 131
Buffer, definition of 40
BY 90-91
Byte alignment <see slack bytes)

C <character in sterling PICTURE
clause) 131-134

CALL 93,94~123,141
CALLED program 150
Calling Program 149
Capacity records <see Dummy records>
Carriage control <see Line spacing>
CF (see CONTROL FOOTING)
CH (see CONTROL HEADING)
CHARACTERS option 43-44
Check protection 51
Checkpoint records (see RERUN clause>
Checkpoint/Restart (see RERUN clause)
Class tests 62-64
Clauses

(see individidual clause name, i.e.,
LABEL RECORDS clause, LINE clause)

CLOSE 69-72,75-76
COBOL character set 9
COBOL program sheet, use of 11
COBOL programs, examples of 149-150
COBOL reserved words 139
COBOL subprograms <see subprograms)

Index 153

CODE clause 99
column clause 103
Comma, rules regarding 9-10
comparisons

algebraic 63
of non-numeric items 64
of numeric items 63

Compile-time debugging packets 136-139
Compiler-directing statements 59,68-69

(see also ENTER, EXIT, NOTE)
Compound conditions 66

relational operators in 150
<see also AND, OR, NOT)

COMPUTATIONAL 49,78,94,141-142
rounding of 85
(see also Binary items>

COMPUTATIONAL-1 49,78 1 94,141-142
rounding of 86

COMPUTATIONAL-2 49,78 1 94 1 141-142
rounding of 86

COMPUTATIONAL-3 78
rounding of 85

COMPUTE 86,145
Condition-name tests 37,62,66
Condition-names 10,34

subscripting of 37
conditional statements 59-60

evaluation of 60
configuration Section, format of 25
CONSOLE 25·-26, 77-79
Continuation indicator 11
Continuation of non-numeric literals 11-12
control breaks 99
CONTROL clause 99
CONTROL FOOTING 97-100,102
CONTROL HEADING 98,100,102
Controls 99,100,105

hierarchy of 100
Conversion 80
COPY 129
CORRESPONDING option 85,87,150
count control field 40,42-44
count-condition 59,136-137
CR (credit symbol) 51

in sterling PICTURE clause 131-134

D (shilling indicator) 131-134
Data control blocks CDCB's> 15
Data Division 33
Data items, maximum length of 37
Data maninipulation verbs 69

(see also MOVE~ EXAMINE, TRANSFORM)
Data organization 15

direct 16
<see also BDAMu BSAM)
indexed 15
(see also QISAM, BISAM)
relative 16
<see also BSAM, BDAM)
standard sequential 15
<see also QSAM)

DATA RECORDS clause 44
Data set label 15
Data sets

<see Files>
Data-names 10

154

definition 34
maximum size in arithmetic
statements 85

qualification of 11,35
DATE-COMPILED 23
DATE-WRITTEN 23
DB (debit symbol) 51

in sterling PICTURE clause 131-134
DD card 15,42,44,71,75-7,135
DE (see DETAIL>
Debugging language 135-137,150
Debugging packets 130,135
Decimal point alignment 62,80,85
DECIMAL-POINT IS COMMA clause 25-26,50

international considerations 134
Declarative sections 68-69,106

format 68
Declaratives 68,106
DELETE 11,130
Delete codes 36
Deletion of records 17
DEPENDING ON option 90,192
DECENDING 122
DETAIL 97,102
Detail line

(see DETAIL)
Device classes 27
Device dependence 15-17
Direct access 16
Direct data organization 16
Direct file processing techniques 19

(see also BSAM, BDAM)
DISP parameter 76-77
DISPCK option 78
Displaced records 18
Display items, rounding of 85
DISPLAY option 49
DISPLAY statement 77-78,150

sterling items 134
DISPLAY-ST 131-134
DIVIDE 88
Dummy records 18-20,36

E (symbol in floating-point
literal) 35-36,39-40,53

EBCDIC 9,95
Editing 79-80

sterling items 133
8 in sterling PICTURE clause 131-134
88 <see Condition-names>
Elementary items 34,37-38

format 45
ELSE 60-61,136
END DECLARATIVES 68
End-of-file 71-72
End-of-page 97
End-of-volume 72-73

automatic 76
forced 76

ENTER 93-94,59
ENTRY statement 93-94,33,57
Environment Division 25-31

sample coding 31
Equal sign 63
EQUAL TO 63
Error checking (see Error-processing>
Error-processing 68-69,72,74

valuation of conditional statements 60
vent-conditions 60
XAMINE 81-82

sterling items 134
,XHIBIT 135, 151
:XHIBIT CHANGED 135-136
:XHIBIT CHANGED NAMED 136
:XHIBIT NAMED 135
XIT 59,91,94~95,125

:xponentiation 68
:xponents 35-36, 53
:xpressions, arithmetic 9
:xtended Binary Coded Decimal Interchange
Code (see EBCDIC)
;xtended Source Program Library
Facility 131,151
~xtensions to COBOL 151
~xternal-decimal items 38

format 46
~xternal-names 10

~ Only features 151
~ record format (see Fixed format records>
?D 26,39,42,44,71

format 41
?igurative constants 85

definition 36
(see also ZERO, SPACE, QUOTE,
HIGH-VALUE, LOW-VALUE)

file description (see FD)
file processing 16

(see also QSAM, QISAM, BSAM, BISAM,
EDAM)

File Section 33,40
FILE-CONTROL 26,119
FILE-LIMIT clause 29
File-names 10

qualification 11
Files 5

creation 15
definition 40
I-o 17-18,20-21
input 17-18,20-21,69
multi-volume 75
output 17-20

FILLER 34-35,81
FINAL 99-100
FIRST 81-83
FIRST DETAIL 100
Fixed format records 17,19-20,40,42-43,120
Fixed length records

(see Fixed format records>
Fixed-point items 38

(see also Binary items,
External-decimal items,
Internal-decimal items)

Floating strings 51-52
Floating-point items 39

(see also External floating-point items,
Internal floating-point items)

Floating-point literals 35
maximum value 36

FOOTING 100
Forced-end-of-volume 76
FORM-OVERFLOW option 17,30
Format F (see Fixed format records)
Format notation 12

Format u (see Unspecified format records)
Format V (see Variable length records)
FF-form option of PICTURE clause 52
FROM option 73,78,83,85,88,90-91

GENERATE 97,105
GIVING option 85,87-88,119-122
GO TO 69 1 89 1 91,137
GREATER THAN 63
GROUP INDICATE 103
Group items

definition 37
format 45

HEADING 100
Hierarchy of operations 68
HIGH-VALUE 17-18,20,36,73

I-0 files 17-18,20-21
I-0 option 17,71
I-0-CONTROL Paragraph 21
IBM pence 131
IBM shillings 131
Identification Division 23
IF statement 23-59-60,195

format 60
nested 61

Imperative statements 59
Implicit redefinition 41
Implied operators 67
Implied subjects 67,150
IN (see Qualification)
INCLUDE 130,137
Indexed data organization 15
Indexed file processing techniques 17

(see also QISAM, BISAM)
INITIATE 97,105
INPUT option 71
Input files 17-18,20-21,43-44,69
INPUT PROCEDURE 121-124

control of 124
Input-output Section 26
Input/Output verbs

(see OPEN, READ, WRITE, REWRITE, CLOSE,
ACCEPT, DISPLAY)

INSERT 11,130
INS'l~ALLATION 2 3
Inter-record slack bytes

(see Slack bytes}
Intermediate results 85,145-147
Internal decimal items 38,46
Internal floating-point items 40,150

format 47
Internal representation of numeric-items

(chart) 39
International considerations 134
INTO 71-72
Intra-record slack bytes (see Slack bytes>
INVALID KEY 59,61 1 71-74

JUSTIFIED RIGHT Clause 56,80

Key words 12
Keys

actual 16,71-75
record 18,28,72-73,151
symbolic 16,18,21,71-75

Index 155

LABEL RECORDS clause 42,45
Labels

non-standard 42
omitted 42
standard 42

LAST DETAII, 10 0
LEADING 81-82
LESS THAN 63
Level numbers 12,34
Level 88

(see also Condition-names>
LINE clause 102
Line spacing 73-74
LINE-COUNTER 104-105,107
Linkage Section 33,57,94,151
Literals

definition 35
floating-point 35-36
maximum size in arithmetic

statements 85
non-numeric 11-12,35
numeric 35

Logical operators 66
Long-precision format

(see Internal floating-point items>
LOW-VALUE 36

Mantissas 35-36,53
Margin restrictions 12,23,33,41,59-60,68,95
Mnemonic-names 25-26

(see also CONSOLE, SYSOUT, SYSPUNCH,
SYS IN)

MOVE 79-80
sterling items 134

MOVE CORRESPONDING 80-81,151
MOVE 1 TO PRINT-SWITCH

<see Print-switch)
Multi-volume files 75
MULTIPLY 88

Names
qualification of 10-11
types of 10

NEGATIVE 64
Nested IF statements 61
NEXT GROUP 103
NEXT PAGE 103
NEXT SENTENCE 61,136
9 (digit position) 50

in sterling PICTURE clause 131-134
NO REWIND option 71,75-77,151
Non-numeric itemsp comparison of 64
Non-numeric literals 35-36

continuation of 11-12
Non-standard labels 42
NOT 62
NOTE 59,, 95
NUMERIC 64
Numeric form option of PICTURE clause 50
Numeric items, comparison of 63
Numeric literals 35

OCCURS clause 54-55,81
(see also Subscripting)

OCCURS DEPENDING ON

156

clause 28,40,43-44,54-55,120
OF (see Qualification>
OMITTED 42
ON 59

count-conditional 136-137
OPEN 69-73,15,76
Operators

arithmetic 10,68
implied 67
logical 66
relational 62,67
unary 10,68

Optional words, definition of 12
Options

CORRESPONDING 85
DISPCK 78
FORM-OVERFLOW 17
I-0 17
NO REWIND 71
REEL 70
REVERSED 71,15,69,76
TIMES 90
USE AFTER STANDARD ERROR 6.
USE BEFORE REPORTING 68-69,106
WITH LOCK 75-76

OR 67
ORGANIZATION clause 15-21,27,72-75,151
OTHERWISE (see ELSE)
OUTPUT 71
output files 15-21,43
OUTPUT PROCEDURE 121-124

control of · 124
overflow areas 19
overflow tests 62,66
overflow-name test 151
overflow-names 10
overprinting 78

P (assumed numeric digit position) 50
Packed decimal format (see COMPUTATIONAL-3)
Page break 102
PAGE FOOTING 102,97
PAGE HEADING 102,97
PAGE LIMIT clause 100-101
PAGE-COUNTER 104-105
Paragraph-names 60,10

definition 60
qualified 60

Parentheses, rules regarding 9
Pence(British currency> 131-134
PERFORM 90-91,69,95,137,145
Period 9-10
PH (see PAGE HEADING)
PICTURE clause 38-39,50,52

format 49
maximum size 53
sterling representation 131-134

PLUS 103
Pocket selection 73-74
POSITIVE 64
Pounds (British currency> 131~134
Procedure branching statements 68-69,89

use of section names in 60
(see also STOP, GO TO, ALTER, PERFORM)

Procedure-names 10
qualification 11

Procedure Division 59-95

Program identification code 11
PROGRAM-ID 23
Punctuation 9,12

QISAM 16-18,44
different from QSAM 17

QSAM 16-17 1 20 1 43-44
different from QISAM 17

Qualification 56-57,10-11,35,80
hierarchy 11
of data-names 35
of paragraph-names 60
of sort-keys 121
(see also Subscripting)

Qualifiers, length in COBOL E 11
<see also Qualification>

QUOTE 36

RD 99 1 45 1 101
READ 70-76,18,59
READY TRACE 135
RECORD CONTAINS Clause 43-44
Record deletion 17
Record description entries 33,40,57

format 45
Record displacement 18
Record formats 17,40
RECORD KEY clause 17-18,28,55,72-73,151
Record key field 18,28
RECORDING MODE clause 40-43,120
RECORDS option 43-44
REDEFINES clause 47,35,55,81

altering usage in 47-48
Redefinition, implicit 41
REEL option 75-77,40,70-71,151
Relation operators 62,67

in compound conditions 151
Relation tests 62,9
Relative data organization 16
Relative file processing techniques 20-21

(see also BDAM, BSAM)
Relative record addressing 16

(see also BDAM, BSAM>
Relative record number 72,74
Relative track addressing 16

(see also BDAM, BSAM)
Relative track number 72-75
RELEASE 123
REMARKS 23
REPLACING 81-83
REPORT clause 98,44-45
Report description entries

(see RD)
REPORT FOOTING 102,72,97
Report group description entries 101
Report groups, format of 101
REPORT HEADING 102 1 97
Report Items 38

format 46
Report section 97-105,33
Report Writer coding example 108-117
Report Writer feature 96-117,151
Report-form option of PICTURE clause 50
RERUN clause 29-30
RESERVE clause 17-18,27,29
Reserved words

list 139
definition 10,12

RESET 104
RESET TRACE 135
RETURN 59,94,124
REVERSED Option 71,15,17,76
REWRITE 74-75,18,59 1 69,71,151
RF (see REPORT FOOTING)
RH <see REPORT HEADING>

s (shilling indicator> 131-134
s (sign bit) 38, 50
SAME clause 29
scientific decimal items

<see External floating-point items>
SD 19-128,34,42

format 120
section headers, definition of 60
Section-names

in procedure branching statements 60
in SORT statement i22-123
qualification of 11

sections
definition 60
declarative 68
<see also PERFROM statement, Environment
Division, Data Division, Procedure
Division)

SECURITY 23
SELECT 26,119-23
Semicolon 9-10
sentences, definition of 60
sequence checking 11
Sequence errors 11
seq~ence numbers 11,130
Sequential access 15-19

(see also BISAM, BSAM, QISAM, QSAM)
7 in sterling PICTURE clause 131-134
Shillings <British currency> 131-134
short-precision format

<see Internal floating-point items>
Sign position 50
Sign tests 62,64
6 in sterling PICTURE clause 131-134
SIZE ERROR option &6-88,38,59,61
Slack bytes 141-143,43,99,94
sort description entry

<see SD)
Sort feature 119-128
SORT statement 121-123

coding examples 125,127
format 122

So:r:t-f ile-description-names 120
sort-keys 119-122
SORTIN 120
SORTOUT 120
SOURCE clause 104
source Program Library Facility u29-130
SPACE 36
Space allocation 15
SPECIAL-NAMES 25,151
Standard labels 42
Standard sequential data organization 15-19
Standard sequential file processing

(see QSAM)

Index 157

statements
compiler-directing 59
conditional 59
definition 59
imperative 59
procedure-branching 68

Sterling currency feature 131-134,151
Sterling items

editing of 133
non-report 131-132
report 132
sign representation 132

STOP 93
STOP RUN 93,124
Subjects, implied 67
Subprogram linkage 93-94,33
Subscripting 55-56,81

not permitted of qualifiers 11
of condition-names 37
<see also OCCURS clause>

SUBTRACT 88,145
SUBTRACT CORRESPONDING 88,151
SUM clause 104
Symbol pairs 67
SYMBOLIC KEY clause 71-75,16-21 27-28,55
SYSIN 25-26,78-79
SYSOUT 25-26,77-78
SYSPUNCH 25-26,77-78

TALLY 81-82
TALLYING

(see TALLY)
TERMINATE 105-106,72,97
Test-conditions 60-62
Tests

class 6:2,64
condition-name 62,66
overflow 62,66,151
relation 62,9
sign 62
truth 66

THEN 10
THRU Option 90,94
TIMES Option 90
TO 83,85
TRACE 135
Track addressing, relative 16
Track allocation 16
TRACK-AREA clause 29,55,151
TRANSFORM 83,85,151

sterling items 134
Truncation 80,86
Truth table 67
Truth tests 66

158

TRY option
TYPE clause

137,151
101

u format records
<see Unspecified format records>

Unary operators 10,68
Unblocked records 17
UNIT (see REEL)
Unspecified format records 40-43,17,71,102
UNTIL FIRST 81-83
UNTIL option 90-91
UPON 104,77
USAGE clause 48-49,80,82

format 49
USE

AFTER STANDARD ERROR 68-69
BEFORE REPORTING 68-69,105-106

User error routines 68-69,17-21
USING lists 94
USING option 94,11-12,33,57

V <assumed decimal point> 50
V record format

(see variable length records>
VALUE clause 53-54,57
Variable length records 40-44,17,71,120,142
VARYING option 90
Verbs

arithmetic 69
compiler-directing 69
data manipulation 69
input/output 69

Volume, definition of 40
Volume positioning 75
Volume switching 75-77

WITH LOCK option 75-76,151
Words 9

definition 10
key 12
optional 12
reserved 10,12
rules regarding 9

Working-Storage Section 57,33,48
WRITE 72-74 1 59,69,76-78.

in sterling PICTURE clause 131-134

Z (zero suppression) 50
O used in PICTURE clause 51
ZERO 36,64,86

GC28-6516-8

International Business Machinas Corporation
Data ProceBBing Division
1133 Westchester Avenue, White Plains, New York 10604
[U.S.A. only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International]

Each report-name listed in the FD entry
must have an RD (Report Description> entry
in the Report section of the Data Division.
(Complete details concerning the Report
Writer feature are contained in the chapter
"Report Writer Feature.")

The REPORT clause may be specified only
for files whose organization is standard
sequential.

RECORD DESCRIPTION ENTRY

A Record Description entry ~pecif ies the
characteristics of each item in a data
record. Every item must be described in a
separate entry in the same order in which
the item appears in the record. Each Rec
ord Description entry consists of a level
nurnber, a data-name, and a series of inde
pendent clauses followed by a period.

The general format of a Record Descrip
tion entry is:

level-number [redefines-clause]
{

data-name}

FILLER

(PICTURE-clause] [BLANK-clause]

[OCCURS-clause] [VALUE-clause]

[JUSTIFIED~] [USAGE-clause].

When this format is applied to specific
items of data,, it is limited by the nature
of the data being described. The allowable
format for the description of each data
type appears below. Clauses not shown in a
format are forbidden. Clauses that are
mandatory in the description of certain
data items are written without brackets.

3roup Item [~

The format of the Record Description
~ntry for a group item is:

r---1
i {data-name} I
llevel-number . [REDEFINES-clause]j
I E!~~~g I
I I
~ [OCCURS-clause] [USAGE-clause]. I
L---J
Sample coding for a group item and its
associated subordinate (elementary> items
is:

01 GROUP-NAME.
02 FIELD-B PICTURE X.
02 FIELD-C PICTURE X.

Note: A group item, by definition, must
have items (FIELD-B and FIELD-C in the
above example) that are subordinate to it.
An item is subordinate to another by having
a level number that is higher than the
immediately preceding item. FIELD-B and
FIELD-C have 02 level numbers,, whereas
GROUP-ITEM has an 01 level number.

An elementary item is one having no
items subordinate to it.

Alphabetic Item:

The format of the Record Description
entry for an alphabetic item is:

r---1
I
l {data-name}
~level-number · [REDEFINES-clause]
J FILLER
I
I [OCCURS-clause] PICTURE IS alpha-form
~
I [USAGE IS DISPLAY]
I
U [~ IS alphabetic-literal]
1
~ [JUSTIFIED E!2!,!!1.
L---J
Sample coding for an elementary alphabetic
item is:

02 EMPLOYEE-NAME PICTURE A(20).

The format of the Record Description
entry for an alphanumeric item is:

Data Division 45

,-----------------·------------------------,
I I
1 {data-name} J
I level-number· (REDEFINES-clause l I
I FILLER l
I I
I [OCCURS-clause] f!fTUR~ IS an-form 1
I I
I [USAGE IS DISPLAY] '

J ' I [VALUE IS alphanumeric-literal] I
! 1
1 [JUSTIFIED~]. l
L~---------------------------------------J
sample coding for elementary alphanumeric
items is:

02 MISC-1 PICTURE X(53).
02 MISC-2 PICTURE XXXX VALUE '25 A'.

Report It~m:

The format of the Record Description
entry for a report item is:

r---1
1 {data-name} I
]level-number CREDEFINES-clausell
I FILLER I
I I
ICOCCURS-clause] I
I J
I {numeric-form BL~ WHEN ~RO}I
I PICTURE IS. I
1--- report-form [~WHEN !fililll I
I I
![USAGE IS DISPLAY]. I
L~---------------------------------------J
Sample coding for elementary report items
is:

02 TOTAL PICTURE $999 1 999.99-.
02 SUBTOTAL PICTURE S9999V99

BLANK WHEN ZERO.

External-Decimal Item:

The format of the record Description
entry for an external-decimal item is:

r----------~----------------------------1
I {data-name} I
I level-number [REDEFINES-clauselt
I FILYB I
I I
I [OCCURS-clause] I
I I
I [USAGE IS DI~] I
I I
I PICTURE IS numeric-form I
I I
I [VALUE IS numeric-literal]. I
L---------------·-------------------------J

Sample coding for elementary external
decimal items is:

4i

02 HOURS-WORKED PICTURE 99V9, DISPLAY.

02 HOURS-SCHEDULED PICTURE 99V9.

02 ACCOUNTING-CODE PICTURE 99V9 DIS
PLAY VALUE 25. L~.

Internal-Decimal Item:

The format of the Record Description
entry for an internal-decimal item is:

r---1
i {data-name)
~level-number 5~[REDEFINES-clausel I FILLER
I
I [OCCURS-clause]
I
I PICTURE IS numeric-form
I
~ USAGE IS COMPUTATIONAL-3.
I
I [~ IS numeric-literal].

L-------~---------------------------------
Sample coding for an elementary internal
decimal item is: ·

02 YEAR-TO-DATE PICTURE S99999999V99
COMPUTATIONAL-3.

~inary Item:

The format of the Record Description
entry for a binary item is:

r---1
I {data-name} I
1level-number [REDEFINES-clause] I
I FILLER I
I I
I [OCCURS-clause] PICTURE IS numeric-form I
1 I
I USAGE IS COMPUTATIONAL I
I I
i [~IS numeric-literal]. I
L---J
Sample coding for an elementary binary item
is:

03 SUBSCRIPT PICTURE S999
COMPUTATIONAL.

03 TABLE-INDEX PICTURE S99
VALUE 01.

External Floating-Point It~m:

The format of the Record Description
entry for an external floating-point item
is:

r~---------------------------------------1

I {data-name}]
flevel-number [REDEFINES-clausell
I f !~LEB I
I J
J [OCCURS-clause] PICTURE IS fp-form !
I J
I [USAGE IS DISPLAY]. I
L---J
Sample coding for an elementary external
floating-point item is:

02 GAMMA PICTURE +.9(8)E+99.

Internal Floating-Point Item:

The format of the Record Description
entry for an internal floating-point item
is:

r~---------------------------------------1

I {data-name} I
llevel-number CREDEFINES-clauseJJ
I FILLER I
I I
I [OCCURS-clause] J

I I
I {.£QMPU!ATIONAL=!} J
I USAGE IS I
I COMPUTATIONAL-2 J

J I
I [~IS floating-point-literal]. I
L---J
Sample coding for an elementary internal
floating-point item is:

02 DEVIATION COMPUTATIONAL-1.

REDEFINES Clause

The REDEFINES clause specifies
same area is to contain different
items, or provides an alternative
)r description of the same data.
nat of the REDEFINES clause is:

that the
data
grouping
The for-

r-----------~----------------------------1

!level-number data-name-1 I
I REDEFINES data-name-2 I
~---a

Data-name-2 is the name associated with
:he previous data description entry of
~qual level number. Data-name-1 is an
Llternate name for the same area. When
rritten, the REDEFINES clause must be the
:irst clause following data-name-1.

The REDEFINES clause provides the capa
bility of using the same storage location
for different types of data. Data items
within an area can be redefined (in order
to change their names> without changing
their lengths as follows:

02 NAME-2 USAGE DISPLAY.
03 SALARY PICTURE XXX.
03 SO-SEC-NO PICTURE X(9).
03 MONTH PICTURE XX.

02 NAME-1 REDEFINES NAME-2.
03 WAGE PICTURE XXX.
03 MAN-NO PICTURE X(9).
03 YEAR PICTURE XX.

SALARY SO-SEC-NO MONTH

~---------------~ r-T-T_T_T_T_T_T_T_T_T_T_T_T_1
NAME-2 I I I I

L-...L-i-i-i-i-i-i-i-i-...L-i-i-i-J

WAGE MAN-NO YEAR

~~~ r-T"""T_T_T_T_T_T_T_T_T_T_T_T_1 
NAME-1 J I I I 

L--'-i-i-i-...L-i-i-i-i--'-i-i-i_J 

Data items can also be rearranged within 
an area, as follows: 

02 NAME-2 USAGE DISPLAY. 
03 SALARY PICTURE XXX. 
03 SO-SEC-NO PICTURE X(9). 
03 MONTH PICTURE XX. 

02 NAME-1 REDEFINES NAME-2 USAGE 
DISPLAY. 

03 WAGE PICTURE 999V999. 
03 MAN-NO PICTURE X(6). 
03 YEAR PICTURE XX. 

NAME-2 

SALARY SO-SEC-NO MONTH 

WAGE MAN-NO YEAR 

___.............~~ r-T-T_T_T_T_T_T_T_T_T_T_T_T_1 
NAME-1 I I I I 

L-i-i-i-i-i-i-i-i-i-i-i-i-i-J 

In addition, the usage of data items 
within an area can be redefined. 

When an area is redefined, all descrip
tions of the area remain in effect. Thus, 
if B and c are two separate items that 
share the same storage area due to redef
inition, the procedure statements MOVE X TO 

Data Division 47 



B or MOVE Y TO c could be executed at any 
point in the program. In the first case, B 
would assume the value of X and take the 
form specified by the description of B. In 
the second case, the same physical area 
would recei v 1e Y according to the descrip
tion of c. It should be noted, however., 
that if both of the above statements are 
executed successively in the order speci
fied, the value Y will overlay the value x. 
However, redefinition itself does not cause 
any data to be erased and does not super
sede a previous description. 

Altering the USAGE of an area through 
redefinition does not cause any change in 
existing data. Consider the example: 

02 B PICTURE: 99 USAGE DISPLAY 
VALUE IS 8. 

02 C REDEFINES B PICTURE 99 
USAGE COMPUTATIONAL-3. 

The bit configuration of the value 8, 
when used as a display item, is 1111 0000 
1111 1000. Redefining B does not change 
its appearance in storage. Therefore, a 
great difference results from the two 
statements, ADD B TO A and ADD c TO A. In 
the former case, the value 8 is added to A 
because B is a display item. In the latter 
case, the bit configuration does not repre
sent a valid internal-decimal 
(COMPUTATIONAL-3) number and the results of 
the addition are invalid. 

Moving a data item to a second data item 
that redefines the first one (for example, 
MOVE B TO c when c redefines B), may pro
duce results that are not those expected by 
the programmer. The reverse (MOVE B TO c 
when B redefines C) is also true. 

The rtEDEFINES clause must not be used 
for logical records associated with the 
same file (i.e., it must not be used at the 
01 level in the File Section) since implied 
redef ini ti on exists. However., the REDE
FINES clause may appear in 01 levels in the 
Working-Storage Section. The level number 
of data-name-2 must be identical to that of 
the-rtern"containing the REDEFINES clause. 

The entries giving the new description 
of the area must immediately follow the 
entries describing the area being rede
fined. The description of an area can mean 
a group item and all associated elementary 
items. However, in the case where more 
than one Record Description entry is rede
fining the same entry, these additional 
entries may intervene. For example both of 
the following are valid uses of the REDE
FINES clause: 

48 

02 ARRAY-1 DISPLAY. 
03 A PICTURE X(2). 
03 B PICTURE X(2). 

02 ARRAY-2 REDEFINES ARRAY-1 
USAGE COMPUTATIONAL-1. 

02 A PICTURE 9999. 
02 B REDEFINES A PICTURE 9V999. 
02 C REDEFINES A PICTURE 99V99. 

A REDEFINES clause may be specified for 
an item within the scope of an area being 
redefined; that is, REDEFINES clauses may 
be specified for items subordinate to items 
which are themselves redefined. The fol
lowing would therefore be a valid use of 
the REDEFINES clause: 

02 REGULAR-EMPLOYEE DISPLAY. 
03 LOCATION PICTURE ACS>. 
03 STATUS PICTURE X(4). 
03 SEMI-MONTHLY-PAY 

PICTURE 9999V99. 
03 WEEKLY-PAY REDEFINES SEMI

MONTHLY-PAY PICTURE 999V999. 

02 TEMPORARY-EMPLOYEE REDEFINES 
REGULAR-EMPLOYEE DISPLAY. 
03 LOCATION PICTURE A(8). 
03 FILLER PICTURE X(6). 
03 HOURLY-PAY PICTURE 99V99. 

REDEFINES clauses may also be specified 
for items subordinate to items containing 
REDEFINES clauses. For example: 

02 REGULAR-EMPLOYEE DISPLAY. 
03 LOCATION PICTURE A(8). 
03 STATUS PICTURE X(4). 
03 SEMI-MONTHLY-PAY 

PICTURE 9999V99. 
03 WEEKLY-PAY REDEFINES SEMI

MONTHLY-PAY PICTURE 999V999. 

02 TEMPORARY-EMPLOYEE REDEFINES 
REGULAR-EMPLOYEE. 
03 LOCATION PICTURE A(8). 
03 FILLER PICTURE X(6). 
03 HOURLY-PAY PICTURE 99V99. 
03 PAY-CODE REDEFINES HOURLY-

PAY PICTURE 9999. 

Between data-name-2 and data-name-1 
there may be-no-entries having lower level 
numbers (numerically) than the level number 
of data-name-2 and data-name-1. 

Except for condition-name entries, 
entries containing or subordinate to a 
REDEFINES clause must not contain any VALUE 
clauses. 

The description of data-name-1 or of any 
item subordinate to data-name-1 may not 
contain an OCCURS clause with a DEPENDING 
ON option. Q~t~!@me-1 may not be subor
dinate to an item containing an OCCURS 
clause. Data-name-2 may not contain an 
OCCURS clause in its description nor may it 
be subordinate to an item described by an 
OCCURS clause. No item subordinate to 



The Working-Storage Section is used to 
describe areas of storage reserved for 
intermediate processing of data. This sec
tion consists of a series of Record 
Description entries, each of which 
describes an item in a work area. 

An independent Working-Storage entry 
describes a single item that is not subdi
vided and is not itself a subdivision of 
some other item. Each of these items is 
defined in a separate Record Description 
entry, which begins with the special level 
number 77. All independent Working-Storage 
entries must precede any items having any 
of the level numbers 01 through 49. 

Data items in the Working-Storage sec
tion that bear a definite relationship to 
each other must be grouped into records 
according to the rules for formation of 
record descriptions. All clauses that are 
used in Record Description entries may be 
used in Working-Storage Record Descriptions 
Each data-name in the Working-Storage Sec
tion that identifies a record (01 or 77 
level> must be unique, since it cannot be 
qualified by a file-name. subordinate 
data-names need not be unique, if they can 
be made unique by qualification. 

No assumption should be made about the 
initial values of Working-Storage items 
when these items have not had their initial 
values defined in a VALUE clause. 

r---, 
IEXT) LINKAGE SECTION 
t ___ J 

The Linkage Section describes data 
passed from another program. 

Record Description entries in the Link
age Section provide names and descriptions 
but storage within the program is not 
reserved, since the data exists elsewhere. 
Any Record Description clause may be used 
to describe items in the Linkage Section, 
with one exception: the VALUE clause may 
not be specified for other than level 88 
items. In the Linkage Section, level 01 
items are assumed to start on a doubleword 
boundary. 

The Linkage Section is required in any 
program in which an ENTRY statement with a 
USING option appears. A complete discus
sion of the ENTRY statement is contained in 
the chapter entitled "Procedure Division." 

Data Division 57 





The Procedure Division of a source pro
gram specifies those actions needed to 
solve a given problem. These steps (compu
tations, logical decisions, input/output, 
etc.) are expressed in meaningful state
ments, similar to English, which employ the 
concept of verbs to denote actions, state
ments and sentences to describe procedures. 
The Procedure Division must begin with the 
words PROCEDURE DIVISION in margin A fol
lowed by a period. This heading must 
appear on a line by itself. The end of the 
Procedure Division (and the physical end of 
the program) is that physical position in a 
COBOL source program after which no further 
procedures appear. 

The discussion that follows describes 
the units of expression that constitute the 
Procedure Division and the way in which 
they may be combined. · The smallest unit of 
expression in the Procedure Division is the 
statement. Sentences, paragraphs, and sec
tions are the larger uni ts of expression.-

STATEMENTS 

A statement consists of a COBOL verb or 
the word IF-or ON, followed by any appro
priate operands (data-names, file-names, or 
literals) and other COBOL words that are 
necessary for the completion of the state
ment. The three types of statements are: 
compiler-directing, imperative, and 
conditional. 

compiler-Directing Statement 

A compiler-directing statement directs 
the compiler to take certain actions at 
compilation time. A compiler-directing 
statement contains one of the compiler
directing verbs (ENTER, EXIT, NOTE) and its 
operands. Compiler-directing statements 
<except for NOTE) must appear as separate, 
single sentences. 

Imperative Statement 

An imperative statement specifies an 
unconditional action to be taken by the 
object program. An imperative statement 

PROCEDURE DIVISION 

consists of a COBOL verb and its operands, 
excluding the compiler-directing verbs and 
the conditional statements. 

Conditional Statement 

A conditional statement is a statement 
containing a condition that is tested to 
determine which of the alternate paths of 
program flow is to be taken. 

The following are conditional 
statements: 

1. A READ statement 

2. A RETURN statement in the Sort 
Feature1. 

3. A WRITE statement with the INVALID KEY 
option 

4. A REWRITE statement2 with the INVALID 
KEY option 

5. An arithmetic statement with the SIZE 
ERROR option 

6e An ON statement2 

7~ An IF statement 

Although IF and ON are not verbs in the 
grammatical sense, they are regarded as 
such in COBOL, inasmuch as they are the key 
words associated with a particular state
ment form. 

The conditions evaluated in conditional 
statements are: 

1~ AT END or INVALID KEY in a READ or 
RETURN statement 

2. INVALID KEY in a WRITE or REWRITE 
statement 

3. SIZE ERROR in an arithmetic statement 

4. The count-condition in an ON statement 

5. one of five tests in an IF statement 

~Implemented for COBOL F only 
2Extension 

Procedure Division 59 



The conditions in 1 to 4 above are 
called event-conditions. The conditions in 
5 above are called test-cong!tions. 

The formats for the conditions named in 
1 to 4 above are discussed in the text with 
their respective statements. The types of 
conditions evaluated in an IF statement are 
discussed below, under "Test-conditions." 

SENTENCES 

A sentenc~ is a single statement or a 
series of statements terminated by a period 
and followed by a space. A single comma, a 
semicolon, or the word THEN may be used as 
a separator between statements. A sentence 
must be contained within Margin B. 

PARAGRAPHS 

A paraqraEh is a logical entity consist
ing of one or more sentences. Each para
graph must begin with a paragraph-name. 

Paragraph-names are procedure-names and 
as such follow the rules for word formation 
(see "Word Formation" in the chapter "Basic 
Facts">. A paragraph-name must begin in 
Margin A but need not be on a line by 
itself. 

A paragraph-name must not be duplicated 
within the same section. When used as 
operands in Procedure Division statements, 
non-unique paragraph-names may be uniquely 
qualified by writing IN or OF after the 
paragraph-name, followed by the name of the 
section in which the paragraph is 
contained. 

A paragraph ends at the next paragraph
name or section-name, or at the end of the 
Procedure Division. In the case of 
declarative sections, a paragraph ends at 
the next paragraph-name, section-name, or 
at END DECLARATIVES. 

A paragraph-name need not be qualified 
when referred to from within the section in 
which it is contained. 

SECTIONS 

A section is composed of one or more 
successive paragraphs, and must begin with 
a section header. A section header con
sists of a section-name conforming to the 
rules for procedure-name formation,, fol-

60 

lowed by the word SECTION and a period. A 
section header must begin in Margin A and 
appear on a line by itself, except in the 
Declaratives portion of the Procedure Divi
sion, where it may only be followed immedi
ately by a USE sentence or an INCLUDE sta
tement. The INCLUDE statement is discussed 
in the chapter "Source Program library 
facility." A section-name need not immedi
ately follow the words PROCEDURE DIVISION 
or END DECLARATIVES. 

A section ends at the next section-name, 
at the end of the Procedure Division, or, 
in the case of declarative sections, at END 
DECLARATIVES. 

Note: section-names may be used like 
paragraph-names as operands in procedure
branching statements. In these statements. 
the section-name only is to be used, not 
the word SECTION. For example, the state
ment PERFORM UPDATE SECTION is incorrect. 
The correct statement is PERFOIWlUPDATE~-

IF STATEMENT 

The format of the IF statement is: 

r-----------------------------------------1 
J { statement-1 ••• } I 
~IF condition [THEN] I 
I NEXT SENTENCE I 
I I 
I [{ELSE } {statement-2 •• ·}] I 
I 'OTHERWISE NEXT SENTENCE I L_ ________________________________________ J 

ELSE (or OTHERWISE) NEXT SENTENCE may be 
omitted if it immediately precedes the 
period for the sentence. The following are 
examples of the IF statement: 

IF SALES ARE NOT EQUAL TO SALES-QUOTA COM
PUTE STANDARD-RATE = SALES * BASE. 

IF AMOUNT IS LESS THAN 2000 MOVE 'INVENTORY 
COUNT' TO PRINTER-AREA ELSE NEXT 
SENTENCE. 

IF MONTH IS EQUAL TO 10 GO TO CALC-1 ELSE 
GO TO LOOP. 

EVALUATION OF CONDITIONAL STATEMENTS 

When a condition is evaluated, the fol
lowing action is taken: 

1. If the condition is true,, the state
ments immediately following the condi
tion are executed. 



2. If the condition is false and the con
ditional is an IF or ON statement, the 
statements following ELSE or OTHERWISE 
(or the next sentence if the ELSE/ 
OTHERWISE option is omitted) are 
executed. 

The AT END, INVALID KEY, and SIZE ERROR 
conditions are followed by a series of 
imperative statements. In an ON count
conditional statement, the count-condition 
is followed by a series of imperative 
statements (or NEXT SENTENCE), and may be 
followed by the words ELSE or OTHERWISE 
followed by a series of statements (or NEXT 
SENTENCE). 

A series of imperative statements is 
terminated by one of the following: 

1. A period 

2. An ELSE or OTHERWISE associated with a 
previous IF or ON 

In a series of imperative statements 
executed when a condition is true, only the 
last statement may be an unconditional GO 
TO statement or a STOP RUN statement; 
otherwise, the series would contain state
ments to which control cannot flow. 

For example, in the following paragraph, 
the statement MOVE A TO B could never be 
executed whether or not the AT END condi
tion were found to be false: 

W. READ PAYROLL-RECORD AT END GO TO 
Y MOVE A TO B. 

Figure 7 is a flowchart showing how an 
IF or ON conditional statement is evalu
ated. Figure 8 is a flowchart showing how 
a conditional statement other than IF or ON 
is evaluated. 

NESTED IF STATEMENTS 

Statement-1 and statement-2 in IF state
ments may consist of one or more imperative 
statements and/or a conditional statement. 
If a conditional statement appears as 
statement-1 or as part of statement-1, it 
is said to be nested. Nesting statements 
is much like specifying subordinate arith
metic expressions enclosed in parentheses 
and combined in larger arithmetic 
expressions. 

*************** 
* * * START * 
* *************** 

x 
·*· •* *• ***************** 

•* *• * * •* *• FALSE *STATEMENT-2 ••• * 
*• CONDITION •*••••••••X* (OR NEXT * 

*• •* SENTENCE) 

x 
***************** 
* * *STATEMENT-1 ••• * 
* (OR NEXT * 
* SENTENCE) * 

***************** 

* ***************** 

Figure 7. Evaluation of IF or ON Condi
tional Statement 

*************** 
START 

*************** 

·* ***************** 
•* *• 

•* *· FALSE * * 
*• CONDITION •*••••••••X* NEXT SENTENCE * 

*• •* * * 
*• •* 

* TRUE 

x 
***************** 

* * IMPERATIVE • * 
* STATEMENT... * 
* * 
* * ***************** 

* ***************** 

Figure 8. Evaluation of Conditional 
Statement other than IF or ON. 

IF statements contained within IF state
ments must be considered as paired IF and 
ELSE combinations, proceeding from left to 
right. Thus, any ELSE encountered must be 
considered to apply to the immediately pre
ceding IF that has not already been paired 
with an ELSE. In the conditional statement 
in Figure 9, c stands for condition; s 
stands for any number of imperative state
ments; and the pairing of IF and ELSE is 
shown by the lines connecting them. 

Procedure Division bl 



Figure 10 is a flowchart indicating the 
logical flow of the conditional statement 
in Figure 9. 

TEST-CONDITIONS 

A test-condition is an expression that, 
taken as a whole, may be either true or 
false, depending on the circumstances 
existing when the expression is evaluated. 

There are five types of simple test
conditions which when preceded by the word 
IF, constitute one of the five types of 
tests: relation test, sign test, class 
test, condition-name test, and overflow 
test. 

The word NOT may be used in any simple 
test-condition to make the relation specify 
the opposite of what it would express 
without the word NOT. For example, AGE NOT 
GREATER THAN 21 is the opposite of AGE 
GREATER THAN 21. NOT may also precede an 
entire condition, as in NOT (AGE GREATER 
THAN 21). AGE NOT GREATER THAN 21 and NOT 
(AGE GREATER THAN 21) are identical in 
meaning. 

Relation Test 

A relation test involves the comparison 
of two operands, either of which can be a 
data-name, a literal, or an arithmetic 
expression. Neither the comparison of two 
literals nor the comparison of an arithmet
ic expression to a non-numeric data-name is 
permitted. A figurative constant may be 
used instead of either literal-1 or 
literal-2 in a relation test. 

The format for a relation test is: 

r-----------------------------------------1 
i(data-name-1 ) I 
l)arithmetic-expression-1{ I 
I ' ~ Is [NOT] I 
IJfigurative-constant-1 I 
J~literal-1 I 

\l> ' \ l < i 1data-name-2 } I I = arithmetic-expression-2 I 
.. I GREATER figurative-constant-2 I 
i LESS THAN literal-2 I 
·I EQUAL !Q I 
L----------------------------------------J 

r---------------------------------------------------------------------------------------1 

f ,, i i 
S~ IF2 C2 IF3 C3 S2 ELSE S3 ELSE 54 IF4 IF5 C5 S0 ELSE S 8 

L 
~ ~ 

cl c2 

..... 

\-._..) ~ 
el e2 

--dl 
._ 

b2 

1-----------------------------------------~I---------------------------------------------~ I al--Statement-1 for IF1 (If C1 is false, the next sentence is executed, since there isl 
I no ELSE for it.) I 
I bl--Statement-1 for IF2 I 
I b2--Statement-2 for IF2 I 
I cl--Statement-1 for IF3 I 
I c2--Statement-2 for IF3 I 
1 dl--Statement-1 for IF4 (If C4 is false, the next sentence is executed, since there isl 
' no ELSE for it.) I 
I el--Statement-1 for IFs I 
I e2--Statement-2 for IFe I 
L------------·---------------------------------------------------------------------------J 
Figure 9. Conditional Statements with Nested IF Statements 

62 



alphanumeric field called FIELD is being 
tested and contains the hexadecimal conf ig
guration Cl, both of the following will be 
true because hexadecimal Cl could be inter
preted either as an A or as a +1: 

•Table 5. Permissible Comparisons 

IF FIELD IS ALPHABETIC MOVE 'A' TO CODE-A. 

IF FIELD IS NUMERIC MOVE 'N' TO CODE-N. 

or ALL 'character' 

figurative constant ALL 'character' 

Procedure Division 65 



Table 6. Valid Forms of Class Test 
r---------------T-------------------------1 
I I Only Valid Forms 1 
lType of Item I of Class Test I 
r---------------f----------T--------------i 
!Alphabetic IALPHABETICINOT ALPHABETIC] 
r---------------+----------+--------------~ 
!Alphanumeric IALPHABETICINOT ALPHABETIC! 
I !NUMERIC !NOT NUMERIC ) 
r---------------+----------+--------------~ 
~Internal or Ex-}NUMERIC INOT NUMERIC I 
I ternal Decimal! I I 
L---------------~----------~--------------J 

The format for a condition-name test is: 

r-----------------------------------------1 
1C~Q!l condition-name J 

L-----------------------------------------J 
A condition-name test is one in which a 

conditional variable is tested to see 
whether or not its value is equal to the 
value specified for a condition-name asso
ciated with it. For example, in a program 
processing a payroll, the data item 
MARITAL-STATUS (the conditional variable) 
might be a code indicating whether an em
ployee is married, divorced, or single. 
Assume that if MARITAL-STATUS has the value 
of 1, the employee is single; if it has the 
value of 2, he is married; and if it has 
the value of 3~ he is divorced. To deter
mine whether or not an employee is married, 
the programmer could test this condition by 
using a simple relational condition in a 
conditional statement such as IF MARITAL
STATUS = 2 SUBTRACT MARRIED-DEDUCTION FROM 
GROSS. Alternatively, he can associate a 
condition-name with each value that 
MARITAL-STATUS might assume. Thus, in the 
Data Division, the condition-names SINGLE, 
MARRIED,, and DIVORCED might be associated 
with values 1, 2, and 3, respectively. For 
example: 

02 MARITAL-STATUS PICTURE 9. 
88 SINGLE VALUE 1. 
88 MARRIED VALUE 2. 
88 DIVORCED VALUE 3. 

Then, instead of writing 

IF MARITAL-STATUS = 2 SUBTRACT 
MARRIED-DEDUCTION FROM GROSS, 

the programmer would write 

66 

IF MARRIED SUBTRACT 
MARRIED-DEDUCTION FROM GROSS 

The condition-name test, then., is an 
alternative way of expressing certain con
ditions that could be expressed by a simple 
relational condition. 

r---1 
IEXTJ_Qverflow Te~~ 
L--J 

This is a test for form-overflow of a 
printer where overflow-name is the 
condition-name specified-in the option 2 
APPLY clause for a file. A form-overflow 
condition exists when an end-of-page is 
sensed by an on-line printer. 

Use of the overflow test causes the 
form-overflow indicator to be turned off. 

The format for the overflow test is: 

r-----------------------------------------1 
~[NOT] overflow-name I 
L-----------------------------------------J 

The overflow test is true if a form
overf low condition exists. overflow-name 
follows the rules for data-name formation. 

The following statement could be written 
(with a programmer-supplied overflow-name> : 

IF OVERFLOW-NAME-ONE WRITE X AFTER ADVANC
ING 0 LINES ELSE WRITE X AFTER ADVANCING 
2 LINES. 

Form overflow condition should not be 
tested unless the associated file has been 
opened. 

COMPOUND CONDITIONS 

Simple test-conditions can be combined 
with logical operators according to speci
fied rules to form compound conditions. 
The logical operators are AND, OR, and NOT. 
Two or more simple conditions combined by 
AND and/or OR make up a compound condition. 

The word OR is used to mean either or 
both. Thus, the expression, A OR B, is 
true if A is true or B is true, or both A 
and B are true. The word AND is used to 
mean both. Thus, the expression, A AND B, 
is true only if both A and B are true. The 
word NOT is used in the manner described in 
the subsection "Test-conditions." Thus, 
the expression NOT CA OR B> is true if A 
and B are false; and the expression NOT CA 
AND B) is true if A is false, B is false, 
or if both A and B are false. 

The logical operators and truth values 
are shown in Table 7, where A and B repre
sent simple test-conditions. 



Table 7. Truth Table 
r-----------------------T---------------------------------------------------------------1 
I Condition I Related conditions I 
~-----------T-----------+---------T---------T-------T-----------------T-----------------~ 
I A I B I NOT A J A AND B I A OR B I NOT (A AND B) I NOT (A OR B) I 
~-----------+-----------+---------+---------+-------+-----------------+-----------------~ 
i True I True 1 False I True I True I False I False I 
t False I True I True I False I True I True I False I 
J True I False I False I False I True I True I False I 
I False I False I True I False I False I True I True I 
L-----------i-----------i---------i---------i-------i-----------------i-----------------J 

Parentheses may be used to specify the 
order in which conditions are evaluated. 
Parentheses must always be paired. Logical 
evaluation begins with the innermost pair 
of parentheses and proceeds to the outer
most. If the order of evaluation is not 
specified by parentheses, the expression is 
evaluated in the following way: 

1. AND and its surrounding conditions are 
evaluated first, starting at the left 
of the expression and proceeding to 
the right. 

2. OR and its surrounding conditions are 
then evaluated, also working from left 
to right. 

Thus, the expression: A IS G~~ATER THAN 
B OR A IS EQUAL TO C AND D IS POSITIVE 
would be evaluated as if it were parenthe
sized as follows: 

(A IS GREATER THAN B) OR ((A IS EQUAL TO C) 
AND (DIS POSITIVE)). 

The rules for formation of symboi pairs 
are shown in Table 8. The letter c stands 
for conditional expression. P means that 
the combination is permissible. A dash 
means that the combination is not 
permissible. 

Table 8. Formation of Symbol Pairs 
r-----------------------------1 I Second Symbol I 
~---T----T-----T-----T---T----~ 
I c I OR I AND I NOT I ( 1 ) I 

r---T-------f---f----f-----f-----f---f----~ 
IFI c I-IP IP 1- I-IP I 
I i ~-------+---+~--+-----+-----+---+----~ 
I r I OR I P ] - I - I P I P I - I 
I s ~-------+---+----+-----+-----+---t----i 
I t I AND I p I - I - I p I p I - i 
I ~-------+---+----+-----+-----+---+----~ 
J s I NOT I p J - I - I - I p I - I 
I Y r-------+---+----+-----+-----+---+----~ 
lml < IPI- I- IP IPI- I 
' b r-------+---+----+-----+-----+---+-----t 
Joi > I-IP IP I- I-IP 1 
Ill I I I I I I 1 
L---i-------"'---i----L-----i-----i---L----J 

r------1 
IF ONLY) IMPLIED SUBJECTS AND OPERATORS 
L------J 

Simple relation test test-conditions may 
have implied first operands <subjects> when 
combined to form compound conditions. The 
following is the format for a series of 
relation tests forming a compound condition 
with implied first operands. The relation
al operators are GREATER THAN, LESS THAN, 
>, etc. 

operand-1 IS [~OT] 
relational-operator operand-2 

{:~} (NOT] 

relational-operator operand-3 ••• 

Thus, the following statement could be 
made: 

IF ACCOUNT-NUMBER IS GREATER THAN COUNT-A 
AND NOT LESS THAN COUNT-B OR = COUNT-C GO 
TO Z. 

A relational operator can be implied 
only when a first operand is also implied. 
The following is the format for a series of 
relation tests forming a compound condition 
with implied first operand and relational 
operators. 

operand-1 IS [~OT] relational-operator 

r::~}n:::rand-3 ... 
Thus, the following statement could be 
made: 

IF ACCOUNT-NUMBER GREATER THAN COUNT-A AND 
COUNT-B OR COUNT-C GO TO Z. 

ARITHMETIC EXPRESSIONS 

An arithmetic expression consists of 
arithmetic operators, data-names, and/or 
literals representing items on which arith
metic may be performed. 

Procedure Division 67 



The following five arithmetic operators 
may be used in arithmetic expressions: 

Operator Operation 

+ Addition 
Subtraction 

* Multiplication 
/ Division 
** Exponentiation 

Parentheses may be used to indicate the 
hierarchy of operations on elements in an 
arithmetic expression. 

When the hierarchy of operations in an 
expression is not completely specified by 
parentheses, the order of operations is 
assumed to be: unary plus or minus, then 
exponentiation, then multiplication and 
division, and finally addition and subtrac
tion. Thus, the expression A + B / c + D 
** E * F - G is read as A+ CB/ C) + CCD 
** E) * F) - G. 

When the order of a sequence of consecu
tive operations on the same hierarchical 
level Ci.e., consecutive multiplications 
and divisions, consecutive additions or 
subtractions, or consecutive exponentia
tion> is not completely specified by paren
theses, the order of operation is assumed 
to be from left to right. Thus, certain 
expressions ordinarily considered ambiguous 
are permitted in COBOL. For example, A / B 
* c and A / B / c are taken to mean CA / B) 
* c and CA / B) / c, respectively. The 
expression A * B / c * D is taken to mean 
((A * B) / C) * D. The expression A ** B 
** c is taken to mean <A ** B) ** c. 

Exponentiation of a negative value is 
allowed only if the exponent is a literal 
or data-name having an integral value. 

Exponentiation is performed in floating
point when an exponent is a fractional lit
eral or is a data-name whose PICTURE 
describes a fractional number. 

The plus and minus signs are the only 
allowable unary operators. A unary opera
tor is an operator having only one operand. 
The unary plus or minus sign must be the 
first character of an arithmetic expres
sion, or must be immediately preceded by a 
left parenthesis. 

COMPILER-DIRECTING DECLARATIVE SECTIONS 

Declarative sections are identified by 
compiler-directing statements that specify 
the circumstances under which a procedure 
is to be executed in the object program. 

68 

A declarative section consists of a 
section-name, followed by the word SECTION 
and a period, and a USE sentence followed 
by procedural statements. Declarative sec
tions must be grouped together at the 
beginning of the Procedure Division, pre
ceded by the key word DECLARATIVES in Mar
gin A, and followed by the key words END 
DECLARATIVES, where END must also appear in 
Margin A. DECLARATIVES and END DECLARA
TIVES must each be followed by a period. A 
declarative section is terminated by the 
occurrence of another section or the words 
END DECLARATIVES. 

Although declarative sections are 
located at the beginning of the Procedure 
Division, execution of the object program 
starts with the first procedure following 
the termination of the declarative 
sections. 

The general form for a declarative sec
tion is: 

PROCEDURE DIVISION. 
DECLARATIVES. 
{section-name SECTION. USE-sentence. 
{paragraph-name. sentence •••• } ••• } 
END DECLARATIVE§. 

The procedure-branching statements 
ALTER, GO TO, PERFORM, STOP RUN, and STOP 
literal can refer to a declarative section 
or to paragraph names within it or can 
appear within declaratives. Restrictions 
on the appearance of these statements are 
given in Table 18. 
r------, 
IF ONLYl 
L------J The SORT statement should not 
appear within a declarative section. 

USE Sentence 

The USE sentence identifies the type of 
declarative. 

There are two options of the USE sen
tence. Each is associated with one of the 
following types of procedures: 

1. Report-writing procedures 

2. Input/output error-checking procedures 
r------, 
IF ONLYI 
L------~ Option 1 

Option 1 of the USE declarative is used 
to designate procedures that are to be 
executed by the Report Writer before the 
report group specified by data~ is pro
duced; data-name may be the name of any 
type of report group except DETAIL. The 




