

Program Product

GC28-6431-0

IBM as Full American
National Standard COBOL
Compiler and Library,
Version 4, Planning Guide
Program Numbers:

5734-CB2 (Compiler & Library)
5734-LM2 (Library only)

The IBM as Full American National Standard COBOL
Compiler and Library, Version 4, is a Program Product
that accepts as input source programs written in as Full
American National Standard COBOL, Version 4. Each of
the new features of the Version 4 Compiler is described
in a separate chapter of this publication. The features are:

Symbolic Debugging
Optimized Object Code
Teleprocessing
COBOL Library Management Facility
Dynamic Subprogram Linkage
Syntax~Checking Compilation
String Manipula ticm

System considerations and a description of the COBOL
Object-time Subroutine Library are also included.

The Version 4 Compiler also contains all of the features
of previous versions and is compatible with the highest
level of American National Standard COBOL, X3.23-1968,
as approved by ANSI; American National Standard
COBOL is compatible with, and identical to, the proposed
international standard of the language, Draft ISO
Recommendation No. 1989 -- Information Processing -
Programming Language COBOL. The new COBOL
language elements of the Version 4 Compiler are IBM
extensions to those standards.

This publication is a planning aid for system planners
and analysts, and for COBOL programmers. It is intended
for use prior to the availability of the Version 4 Compiler,
and will be supplemented with reference documentation
when the Version 4 Compiler becomes available.

First Edition (April 1972)

This edition corresponds to Version 4 of the IBM OS Full American
National Standard COBOL Compiler.

Changes are periodically made to the specifications herein; any such
changes will be reported in subsequent revisions or Technical
Newsletters.

Requests for copies of IBM publications should be made to your IBM
representative or to the IBM branch office serving your locality.

A form for readers' comments is provided at the back of this
publication. If the form has been removed, comments may be addressed to
IBM Corporation, Programming publications, 1271 Avenue of the Americas,
New York 10020. Comments become the property of IBM.

~ Copyright International Business Machines corporation 1972

The IBM OS Full American National standard
COBOL Compiler and Library, Version 4, is a
Program Product that accepts as input
source programs written in IBM OS Full
American National Standard COBOL, Version
4. The Version 4 Object-time Subroutine
Library contains COBOL subroutines which,
when required, are combined by the Linkage
Editor with the object modules produced by
the Version 4 Compiler. Also part of the
subroutine library is a set of transient
routines that can be dynamically fetched
during object program execution. The
Version 4 Object-time Subroutine Library is
also being made available as a separate
Program Product.

This publication describes the new
features of the Version 4 compiler and
Library, which are:

Symbolic Debugging
optimized object Code
Teleprocessing
string Manipulation
COBOL Library Management Facility
Dynamic Subprogram Linkage
Syntax-Checking Compilation

The Version 4 Compiler also contains all
of the features of previous versions of the
compiler (Version 1, Version 2, and Version
3). The Version 4 Compiler is compatible
with the highest level of American National
Standard COBOL, X3.23-1968, as approved by
ANSI; American National Standard COBOL is
compatible with, and identical to, the
proposed international standard of the
language, Draft ISO Recommendation No.
1989 -- Information Processing -
Programming Language COBOL. The new COBOL
language elements of the Version 4 Compiler
are IBM extensions to those standards.

Each of the new features of the Version
4 Compiler is described in a separate
chapter of this publication. Detailed
planning information about new COBOL
language elements and general planning
information on other factors is given.
System considerations and a description of
the Version 4 Object-time Subroutine
Library are also included. Note that at
object program execution time the
object-time Subroutine Library is required
online; if the Library Management Facility
is not optioned, the subroutine library is
also required at link edit· time.

This publication is a planning aid for
system planners and analysts, and for COBOL
programmers. It is intended for use prior
to the availability of the Version 4
Compiler, and will be supplemented with
reference documentation when the version 4
Compiler becomes available.

A knowledge of the basic functions
provided by the Operating System is
necessary for the understanding of this
publication. Such information can be found
in the following pUblication:

IBM System/360 Operating System:
Introduction, Order No. GC28-6534

The COBOL programmer who uses this
publication must be familiar with the
capabilities of the operating system
implementation of IBM Full American
National Standard COBOL. This
implementation is described in the
publication:

IBM OS Full American National Standard
£OBo~~order-No~ GC28=6396------------

Detailed information about the
Telecommunications Access Method (TCAM) is
contained in the publications:

IBM System/360 operating System:

TCAM Concepts and Facilities, Order
No. GC30-2022

American National Standard COBOL
programs may be used as application
programs under all versions of the Customer
Information Control System (CICS). CICS is
a transaction-oriented, multiapplication
data base/data communication interface
between a System/360 or System/370
operating system and user-written
application programs. Further details are
given in the pUblication:

ACKNOWLEDGMENT

The following extract from Government
Printing Office Form Number 1965-0795689 is
presented for the information and guidance
of the user:

"Any organization interested in reproducing
the COBOL report and specifications in
whole or in part, using ideas taken from
this report as the basis for an instruction
manual or for any other purpose is free to
do so. However, all such organizations are
requested to reproduce this section as part
of the introduction to the document. Those
using a short passage, as in a book review,
are requested to mention 'COBOL' in
acknowledgment of the source, but need not
quote this entire section.

"COBOL is an industry language and is not
the property of any company or group of
companies, or of any organization or group
of organizations.

"No warranty, expressed or implied, is made
by any contributor or by the COBOL
Committee as to the accuracy and
functioning of the programming system and
language. Moreover, no responsibility is
assumed by any contributor, or by the
committee, in connection therewith.

"Procedures have been established for the
maintenance of COBOL. Inquiries concerning
the procedures for proposing changes should
be directed to the Executive Committee of
the Conference on Data Systems Languages.

"The authors and copyright holders of the
copyrighted material used herein

FLOW-MATIC (Trademark of Sperry Rand
corporation), Programming for the
UNIVAC (R) I and II, Data Automation
Systems copyrighted 1958, 1959, by
Sperry Rand Corporation; IBM
Commercial Translator, Form No.
F28-8013, copyrighted 1959 by IBM;
FACT, DSI 27A5260-2760, copyrighted
1960 by Minneapolis-Honeywell

have specifically authorized the use of
this material in whole or in part, in the
COBOL specifications. Such authorization
extends to the reproduction and use o,f
COBOL specifications in programming manuals
or similar publications."

INTRODUCTION • • • • • • • · . . 7

• • 13
• 14

• • • • • 14

SYSTEM CONSIDERATIONS •• • • •
Performance Considerations •
compatibility • • • • • •
Compiler Options • • • • •
System/370 Device Support

• • • • • • • 15
• • • • • 15

SYMBOLIC DEBUGGING • • • • • • •
Performance Considerations

OPTIMIZED OBJECT CODE

. . . • 17
• 18

• 21

TELEPROCESSING (TP) FEATURE 23
The Message Control Program (MCP) •• 23

Queue Processing • • • • • • • • • • 24
Interface Between the COBOL Program
and the MCP • • • • • • • • • • 25
communication Section 27

CD Entry • • • • • • • • • • 28
Procedure Division • • • 36

Message Condition • • • • 36
RECEIVE Statement • • • 37
SEND Statement • • • • • • • • • • • 39

Queue Structure Description and Use • 41
Specifying Queue Structures • • • • 42
Accessing Queue Structures Through
COBOL • • • • • • • • • • • • • • • 43
Specification of DDnames with
Elementary Sub-Queues • • • • 44
Rules For Queue Structure
Description • • • • • • • 45

Interface Considerations • • • • • • • 46
Execution Time Considerations • • • • 47

Testing the COBOL TP Program • 49

STRING MANIPULATION • • •
STRING Statement •
UNSTRING Statement

• • • • • • • 51
• 51

• • • • • • •. 53

FIGURES

Figure 1. Performance Improvement
Using version 3 SXREF • • • • • •
Figure 2. Example of Symbolic
Debugging output ••••••••
Figure 3. COBOL Communications
Environment • • • • • • • • • • •

· ·
· ·

9

· 19

• 27

COBOL LIBRARY MANAGEMENT FACILITY
Specifying the COBOL Library
Management Facility • • • •
Programming Considerations •

DYNAMIC SUBPROGRAM LINKAGE
Specifying the Dynamic
CALL Statement • •
CANCEL Statement
ENTRY Statement

CALL

USING Option • •

SYNTAX-CHECKING COMPILATION

APPENDIX A: VERSION 4 OBJECT-TIME
SUBROUTINE LIBRARY • • • • • • •

APPENDIX B: VERSION 4 CHANGES IN THE
COBOL RESERVED WORD LIST •

APPENDIX C: 3505/3525 CARD PROCESSING
3505 OMR Processing • • • •
3505/3525 RCE Processing • • • • • •
3525 Combined Function Processing

I -- Environment Division

57

58
59

61
61
62
66
67
67

71

• • 73

75

• 77
77
77
78

Considerations • • • • • • • • • • 78
SPECIAL-NAMES Paragraph • 78

II -- Data Division Considerations • • 78
III -- Procedure Division
Considerations • • • • • • • • • 79

OPEN Statement • • • • • • • • 79
WRITE Statement -- Punch Function
Files • • • • • • • • • • • • 79
WRITE Statement -- Print Function
Files • • • • • • • • • • • • • • • 80
CLOSE Statement • • • • • • • • 80

VERSION 4 GLOSSARY 81

INDEX 83

Figure 4. STATUS KEY Field --
Possible values . . . · · · · · . . · · 33
Figure 5. Queue Structure with Three
Levels of Sub-Queues · · · · · 42
Figure 6. Using DDnames with Queue
Structures · · · · · . . · · 45
Figure 7. Structure of TCAM Record · 49

INTRODUCTION

The IBM OS Full American National Standard COBOL Compiler and Library,
Version 4, is a Program Product that operates under the MFT and MVT
options of the Operating System. (The Version 4 Object-time Subroutine
Library is also being made available as a separate Program Product.)

The Version 4 compiler and Library contains new features and
improvements that give the user more powerful and more flexible
programming capabilities:

• Advanced Symbolic Debugging provides faster and easier debugging for
the COBOL programmer. At abnormal termination a formatted dump,
using COBOL source data-names, is produced. Execution-time dynamic
dumps at user-specified points in the Procedure Division can also be
obtained. When the symbolic debugging feature is requested,
optimized object code is automatically provided.

• Optimized Object Code can be requested, resul~ing in considerably
smaller object programs than are produced without optimization. For
COBOL programs that are not I/O bound, execution time is reduced.

• COBOL Teleprocessing (TP) programs can ~ow be written, using IBM
extensions to American National Standard COBOL. Such programs are
device-independent, and can be created more easily than Assembler TP
programs. The source language for such programs is a subset of the
CODASYL specifications for COBOL TP language.

• COBOL Library Management Facility allows installations running with
multiple COBOL regions/partitions to save considerable main storage
by sharing some or all of the COBOL library subroutine modules.

• ~ynamic subEfogram Linka~ gives the user object-time control of
main storage. At object time, COBOL subprograms can be loaded under
program control; when such a subprogram is no longer needed, the
calling program can free the storage it occupies for other use.

• Syntax-Checking compilation can be requested to save machine time
and money while debugging source syntax errors. When unconditional
syntax check~ng is requested, the source program is scanned for
syntax errors and such error messages are generated, but no object
code is produced. When conditional syntax checking is requested, a
full compilation is produced if no messages or only W-Ievel or
C-Ievel messages are generated; if one or more E-level or D-level
messages are generated, no object code is produced. Selected test
cases have shown that when object code is not generated, compilation
time may be reduced significantly.

• String Manipulation, providing for more flexible data manipulation,
can now be specified in COBOL. Contiguous data can be separated
into multiple logical subfields; two or more separate. subfields can
be concatenated into a single field.

Each of these features is described in a separate chapter of this
publication. (Note that all features contained in previous versions of
the compiler are retained in the Version 4 Compiler.) System
considerations are discussed in a separate chapter. The Version 4
Object-time Subroutine Library is discussed in Appendix A.

Introduction 7

Symbolic Debugging, Optimized Object Code, the COBOL Library
Management Facility and Syntax-checking Compilation are all implemented
through new control card options.

Teleprocessing and String Manipulation are implemented through new
COBOL language elements. These elements are a compatible subset of the
specifications for these items as approved by the CODASYL Programming
Language Committee.

Dynamic Subprogram Linkage is implemented through new control card
options as well as through IBM extensions to American National Standard
COBOL.

The new Version 4 COBOL language elements described in this
publication are all IBM extensions to American National Standard COBOL,
X3.23-1968.

All of the features developed for Version 3 of the IBM American
National Standard Full COBOL compiler are included in version 4. These
Version 3 Features are:

8

• ~~port of the Time Sharing~tion~~Ql -- for more effective
program development. Compiler output, including diagnostic
messages, etc., can be. directed to a terminal; the programmer can
use COBOL debugging facilities at the terminal; execution time
display output can be directed to the terminal.

• !mprovements in Object Code to save main storage:

1. System/370 Support -- can be requested to take advantage of the
System/370 instruction set. The System/370 instructions save
object program space.

2. OPEN Statement Improvement -- generated code for the OPEN
statement has been modified to give substantial savings in
object program space. .

3. Improvements in the MOVE statement and in Comparisons -- when a
MOVE statement or a comparison involves a i-byte literal,
generated code for the move and the comparison has been
improved.

• Optional Allocation of Compiler Data Sets -- to save compilation
time and main storage, SYSLIN, SYSPUNCH, SYSLIB, and SYSTERM are
opened by the compiler only if they are specifically requested by
the user.

• Alphabetized Cross-Reference Listing -- for easier reference to
user-specified. names in a program. Performance is much improved
over previous source-ordered cross reference listings. Performance
of the source-ordered cross-reference has also been significantly
improved. Figure 1 shows examples of actual test cases.

80~--~

COMPILE

75

70

65

60

55

50

45

TIME 40
(Minutes)

35

30

25

20

15

10

5 A B
.i

I
t VERSION 2 COMPILE TIME (XREF)

) SAVINGS IN COMPILE TIME

VERSION 3 COMPILE TIME (SXREF)

E

C I I

D

500 1000 1500 2000 2500 3000 3500 4000

PROCEDURE DIVISION STATEMENTS

Source Program Sizes:

G

F

4500 5000 5500 6000

Test Source Data Division Procedure Division
Case Cards Statements Statements

A 595 84 261

B 952 199 398

C 4216 824 2386

D 4771 852 3514

E 5991 1669 2814

F 8726 3131 4876

G 10077 3238 5508

Other Options in Effect:

For Version 2: SIZE=120000,BUF=12288,LINECNT=57,SpAcEl,FLAGE,
SEQ,NOSOURCE,NODMAP,NOPMAP,NOCLIST,NOSUPMAP,
NOLOAD,NODECK,APOST,NOTRUNC

For Version 3: All of the. above options are in effect, plus the following
additional Version 3 options.

NOFLOW,NOTERM,NONUM,NOBATCH,NONAME,COMPILE=Ol,NOSTATE

System Configuration: MVT1 initiator on Model 50, SYSIN on 2311, separate
2314 SYSUT files

Figure 1. Performance Improvement Using version 3 SXREF

Introduction 9

• Debugging Facilities that are more powerful and flexible:

1. Flow Trace option -- a formatted trace can be requested for a
variable number of procedures executed before abnormal
termination.

2. statement Number o~~on -- provides information about the COBOL
statement being executed at abnormal termination.

3. EXEanded CLIST ang_Q~ -- gives more detailed information about
the Data Division and Procedure Division.

4. Working-Storage Location and Size -- when the CLIST, DMAP, or
PMAP options are in effect, the starting address and size of
Working-Storage are printed.

• Batch ~Qmpilation -- saves machine time by allowing compilation of
more than one program with a single invocation of the compiler.

• SeEarately Signed Numeric Data Type -- for more flexible numeric
data description. The sign can be a separate character or an
overpunch, and can be leading or trailing.

• Dynamic Record Length SEecification -- for more programming
flexibility. Specification of record size for QSAM or QISAM files
can be deferred until execution time.

• Generic Key for Indexed Files -- use of a partial or full search
argument allows more efficient record retrieval.

• RERUN FacIlity at End-of-Volume --for sequentially accessed files,
checkpoints can be automatically taken at end-of-volume.

• ON statement Improvement -- count-conditional operands can be
identifiers, allowing the programmer to change the conditions of
execution of the statement at object time.

• Error Declarative Enhancement -- the GIVING phrase (which requests
statistics about the existing error) can now be specified for all
options of the Error Declarative.

• Increased I/O Error Diagnostic Facility -- I/O errors not handled by
the COBOL programmer are diagnosed by the system and an indicative
message· is displayed.

• New Sort Features -- COBOL Sort Special Registers have new and
improved functions when the IBM as Version 3 Compiler is used in
conjunction with the Program Product Sort/Merge (Program Number
5134-SM1). The COBOL programmer can dynamically specify maximum
sort core size, dynamically terminate a sort at an intermediate
point, and dynamically specify an alternate destination for sort
printer messages.

• ASCII S~port -- allows creation and retrieval of tapes written in
the American National Standard Code for Information Interchange
(ASCII).

More information on these Version 3 features can be found in the
Program Product publication IBM as Full American National Standard COBOL
compiler and Library, Version 3, General Information, Order
No. GC28-6401.

10

Programs written for previous versions of IBM American National
standard COBOL give identical functional results when compiled using the
Version 4 Compiler. However, the user must note that:

• The Version 4 Object-time Subroutine Library must be used in
conjunction with object programs produced by the Version 4 Compiler;
it must always be available (online) at program execution time. It
is also being made available as a separate Program Product. (The
Version 4 Object-time Subroutine Library is described in Appendix
A.)

• static main storage requirements are decreased when optimized Object
Code is requested.

• Dynamic storage requirements are increased when certain Version 4
Compiler features are use~. That is, in a region/partition, storage
in addition to that required by the COBOL object module will be
needed at object time. The following items must be considered:

1. Buffers and corltiol blocks for any TCAM or BSAM Teleprocessing
files present (see the chapter on Teleprocessing).

2. COBOL object-time subroutines not loaded into the link pack
area/resident reusable routine area (see the chapter on the
COBOL Library Management Facility).

3. Dynamically called user subprograms (see the chapter on Dynamic
Subprogram Linkage).

4. Dynamic storage obtained by certain library subroutines.

• A COBOL source program written for previous versions of the compiler
may contain names that appear in the version 4 reserved word list.
(The Version 4 reserved words are listed in Appendix B.) Such
reserved words must be changed before the program can be recompiled
using the Version 4 Compiler. (New version 4 reserved words are
given a warning message by the Version 3 compiler.)

This publication is a planning aid only. It is intended for use
prior to the availability of the Version 4 Compiler and Library, and
will be supplemented by reference documentation when the Compiler and
Library become available.

Introduction 11

SYSTEM CONSIDERATIONS

The Version 4 Compiler and Library operates under the control of the MFT
or MVT options of the Operating System. For further processing, object
modules produced by this compiler require subroutines from the OS Full
American National Standard COBOL Object-time Subroutine Library, Version
4 (see Appendix A). At execution time, programs using the SORT
statement (with ASCII-encoded files, separately signed numeric data, or
that use the 3330 device) require the Program Product OS Sort/Merge
Version 5, Program Number 5734-SMl.

Operation of the Version 4 Compiler requires at least 80K bytes of
main storage', as did previous versions of the compiler. (For MVT, an
86K region is no longer required.)

The machine configuration remains the same as for previous versions
of the compiler, and can be found in the publication:

IBM OS Full American National Standard COBOL Compiler and LibrarYL
Version 2, Programmer's Guide, Order No. GC28-6399.

Use of the symbolic debugging feature requires an additional data
set, SYSUT5. Either enough direct-access storage space must be
available to contain this data set, or an additional tape unit assigned
to SYSUTS must be available to contain it. When the feature is used,
this data set must be available at both compile time and execution time.
If the feature is specified at compile time, but the user does not wish
symbolic debug output at execution time, this additional data set need
not be present.

If object programs are executed using the teleprocessing feature of
the compiler, the minimum Operating System configuration for TCAM is
required. The user must supply a Message Control Program (MCP) in
Assembler language using TCAM macro instructions. Further information
on writing an MCP can be found in the following publications:

IBM System/360 Operatin~~y~~~~:

TCAM Programmer's Guide and Reference Manual, Order No. GC30-2024

For queued sequential data sets, the RECFM subparameter of the DD
statement may optionally be specified at object time, permitting the
programmer to specify the standard block option (for data sets with
recording mode F) or the track overflow option for the data set. (The
track overflow option is equivalent to writing an APPLY RECORD-OVERFLOW
clause in the source program.) Use of the standard block option
(particularly for direct-access devices having the Rotational positional
Sensing feature) results in significant I/O performance improvement.
Fixed-block single volume data sets as created by COBOL are sta~dard
(except possibly when extended using the DISP=MOD parameter of the DD
statement). Multivolume data sets as created by COBOL are standard if
the volume switching occurs through automatic end-of-volume procedures.
If, however, the programmer issues a CLOSE REEL/UNIT statement, then he
must ensure that the number of logical records in the volume is an
integral multiple of ~, where a BLOCK CONTAINS ~ RECORDS clause (or an
equivalent BLOCK CONTAINS CHARACTERS clause) has been specified in the
source program. The standard block option and the track overflow option
are mutually exclusive.

System considerations 13

PERFORMANCE CONSIDERATIONS

Optimized object code results in savings in main storage. For COBOL
programs that are not I/O-bound, execution time is reduced. Compilation
time is slightly increased if the feature is specified.

Use of the COBOL library management facility may result in savings in
main storage, secondary storage, and link edit time.

Dynamic invocation and release of COBOL subprograms results in
savings in main storage.

Programs using the symbolic debugging feature take longer to compile,
link edit, and execute, and require more main storage. The decrease in
object-time performance is directly proportional to the number of
dynamic symbolic dumps requested and the amount of data produced for
each debug request.

Syntax-only compilation saves machine time. Depending on the
compiler options chosen, and on source program characteristics,
compilation time may be reduced significantly.

In a TSO System, the Version 4 Compiler can most conveniently be
invoked using the current release of TSO COBOL Prompter, Program Number
5734-CP1. The symbolic debugging features are available from the TSO
terminal when executing in a TSO region. The TSO user can enter
symbolic debugging control statements in card image format, and can
receive symbolic debugging output at the terminal.

Programs written for previous versions of the IBM System/360 Operating
System Full American National Standard COBOL compiler can be compiled on
the Version 4 Compiler without modification, providing that new Version
4 reserved words have not been specified as user-defined names. Object
modules produced by the Version 3 Compiler can be link edited with
object modules produced by the Version 4 compiler, and with the Version
4 Object-time Subroutine Library. Object modules produced by the
Version 4 Compiler must be executed in conjunction with the Version 4
Object-time Subroutine Library.

Source programs written for the COBOL E and F Compilers must be
converted before compiling them on the Version 4 compiler. The Language
Conversion program described in the following publication facilitates
such conversions:

IBM Conversion Aids: COBOL-to-American National Standard COBOL
Language Conversion Pro~~am, Order NO. GC28-6400.

The differences in language and in implementation between COBOL E and
COBOL F and American National Standard COBOL are described in the
publication:

Data set compatibility exists going to the Version 4 compiler from
the other IBM Operating System Compilers: previous versions of the Full
American National Standard COBOL Compiler, the COBOL E Compiler, and the
COBOL F Compiler. That is, data sets created by a program compiled on
one of these compilers can be processed by a program compiled on the
Version 4 Compiler.

14

COMPILER OPTIONS

During the scan of compiler options, when an option and its negation
(such as XREF and NOXREF) are both specified, the last encountered is
the one chosen. This allows the programmer to change one of many
options without repunching the entire EXEC job control statement.

After completion of the scan of compiler optiqns, the following
actions are performed in the following order. No diagnostic messages
are given.

1. If oatch compilation is requested, symbolic debugging is negated.

2. If symbolic debugging is requested, optimized object code is also
requested, and the statement number option (STATE) is negated.

3. If dynamic subprogram linkage is requested, the COBOL library
management facility is also requested.

4. If conditional syntax-checking compilation is requested, then
unconditional syntax-checking is negated.

5. If unconditional syntax-checking compilation is requested, then the
incompatible compiler options are suppressed; or, if all such
options are not requested, then unconditional syntax-checking
compilation is requested.

See the chapters on Syntax-checking Compilation, Dynamic Subprogram
Linkage, and COBOL Library Management Facility.

SYSTEM/370 DEVICE SUPPORT

All System/370 devices are supported by the Version 4 Compiler; the
device for any data set is assigned through the DD statement for that
data set. (The device field in the ASSIGN clause system-name is treated
as comments.)

Special COBOL programming considerations for the 3505 and 3525 card
devices are given in Appendix c.

System Considerations 15

The symbolic debugging feature produces a symbolic formatted dump of the
object program's data area when the job step terminates abnormally. At
execution time, the user can also request dynamic dumps similar in
content to the abnormal termination dump at any point in the Procedure
Division. Therefore, by requesting a dump at a STOP RUN, EXIT PROGRAM,
or GOBACK statement, an end-of-job dump can be obtained. If a job step
terminates abnormally, then a formatted dump is produced for all COBOL
prog~ams compiled with the symbolic debugging feature, which could
include the abnormally terminating program and its callers, up to and
including the main program.

The abnormal termination dump consists of four parts:

1. Abnormal termination message -- including the program-name, and the
COBOL sequence number of the statement and of the verb being
executed.

2. An Optional Flow trace -- if requested, a time-sequenced trace of
the names of the last "n" COBOL procedures executed.

3. Selected areas in the Task Global Table.

4. Formatted dump of the Data Division including:

a. For SO's, the sort record

b. For FD's, the data record

c. For RD's, the report line, page counter, and line counter

d. For CD's (Communication Description entries), the CD itself in
its implicit format, and the area containing the message data
currently being buffered

No source language changes are required for the symbolic debugging
feature.

At compile time a new option on the EXEC control card signals that
the program currently being compiled is to be .executed using symbolic
debugging. An additional data set is needed to compile a COBOL source
program when symbolic debugging is requested. The fifth data set,
SYSUTS, contains the dictionary and statement number information needed
to produce the symbolic dump at execution time.

For each COBOL object program link edited together, the user provides
a set of control cards requesting a symbolic formatted dump of the
object program's data area in case of abnormal step termination. He can
also request dynamic dumps at specific points in the Procedure Division.
If he requests a dynamic dump when a STOP RUN, EXIT PROGRAM, or GOBACK
statement is encountered, an "end-of-job" dump results.

When the symbolic debugging feature is requested, optimized object
code is automatically provided.

When the symbolic debugging feature is requested, the user can
specify that the sequence numbers of the input program be checked; if
cards are out of sequence, the compiler resequences them with an
increment of one.

Symbolic Debugging 17

Figure 2 gives portions of a sample program compiled using the
symbolic debugging feature, and shows an example of the abnormal
termination dump that can be requested.

Performance Considerations

When the symbolic debugging feature is used, load module size is
increased by three factors:

1. Space needed for the symbolic debugging routine.

2. Additional inline instructions in the object program for each
branch out of the object code main line (such as branches to
object-time subroutines, data management routines, etc.».

3. Data and table space, which depends on the number of symbolic
debugging control cards specified.

18

tzj
lQ
s::
t1
(D

N

t'Ij

><
~
to
I-'
(D

0
HI

til
'<
~
0
I-'
0

0
(D
tr' s::

lQ
lQ
::s

lQ

0 s::
rT
to s::
rT

en
'< g.
0
I-'
1-'.
0

0
(D
tr' s::
lQ
lQ
::s
~

I-l
ID

Portions of TESTRUN source program, compiled using the Symbolic Debugging Feature

0!)038 0()0370 HORKING-STORAGE SECTION.

00055 ()1 RECORDA.
02 A PIC S9(4) VALUE 1234.

valid COMPUTATIONAL-3 ,. 00057
Field B does not contain 3- 00056

000530
000535
000540 02 n REDEFIUES A PIC S9(7) COHPUTATI0NAL-3.

data.

00059 0()0550 PROCEDURE DIVISION.

~
00066 Therefore, source sta e 00·067

ment 00069 is in error. 0006 B

00069

000620
000630
000640
000650

STEP-1. OPr.N OUTPUT FILE-1. M0VE ZERO TO connT, tJUHBR.
S'1"I.EP-2. ADD 1 TO COUNT, NllMBR.

HOVE ALPHA (COtr.lT) TO NO-OF'-DEPF.NDENTS.
COMPUTE n = n + 1.

Portions of symbolic formatted dump produced at abnormal termination .

Message giving source
statement and verb number
causing abnormal termination.

Fields A & B. (Invalid numeric
positions in field B shown as
asterisks (*).

NO·OT

NP-S

numeric display overpunch
sign trailing
numeric packed decimal
signed

COROL AnEND DIAGNOSTIC AIDS

PROGRAM TEST RUN LAST PSW BEFORE ABEND •••

COMPLETION CODE OC7

LAST CARD ~JUMBr:R/VERD tIUlIDER EXECUTED -- CARD NUMBER 000069/VERB NUMBER 01.

000055 01 Rr.CORDA
003E40
003E40 00005fl 02 A
003F.40 000057 02 n

(HEX) ~1F2F3C4
ND-OT +1234
NP-S +*1*2*3*

Note: In the complete dump, an explanation of the data codes used, and selected areas of the TGT are printed after the statement number message and
before the Data Division dump.

The object code generated by the Version 4 Compiler can be optionally
optimized as compared with code generated by previous American National
Standard COBOL compilers. If optimization is requested, a program
compiled with the Version 4 Compiler results in fewer machine
instructions than it would contain if it had been compiled with a
previous version of the compiler.

Use of the feature results in a considerable reduction in object
program main storage usage; selected test cases have exhibited main
storage reductions of up to 33%. The reduction in size is dependent
upon source program size and content. In -general, the larger the number
of source statements, the larger the percentage of reduction.
Compilation time is increased. Execution time for COBOL object programs
that are not I/O-bound is decreased.

Optimization is requested at compile time through a new parameter in
the PARM field of the EXEC job control statement.

Optimized object code is automatically provided when symbolic
debugging is specified. Optimized object code may be additionally
requested, but is not automatically provided, when the Flow Trace or the
statement Number options are requested.

optimized Object Code 21

The Teleprocessing (TP) feature permits the COBOL programmer to create
device-independent message processing programs for teleprocessing
applications.

A teleprocessing network consists of a central computer, remote (or
local) station(s), and the communication lines connecting such
station(s) to the central computer.

The central computer consists of the central processing unit (CPU),
and the equipment by which the CPU is connected to the communications
lines -- such as transmission control units (TCU) and line adapters.

A remote station consists of a control unit and one or more
input/output devices. A remote station may be a terminal device, or it
may be another computer. With TCAM a program within the same CPU can be
considered a "remote station", and can send data to and receive data
from another program. (However, in this discussion references to "the
computer" are to the central computer.)

communications lines connect the central computer and the remote
stations. The communications lines can be nonswitched or switched.

A nonswitched line links the remote station to the computer either
continuously or for regularly recurring periods. such lines are usually
for the exclusive use of one customer. A nonswitched line can connect
the central computer either with a single remote station, or with
several remote stations.

A switched line is one in which the connection between the central
computer and the remote station is established by dialing. As with a
telephone system, each remote station and each CPU has a unique number.

In TP applications, data flow into the system is random and proceeds
at relatively slow speeds. Data in the system exists as messages from
remote stations, or as messages generated by internal programs. Once
delivered to the computer, the messages can be processed at computer
speeds. Thus, TP applications require a Message Control Program (MCP)
that acts as an interface between the COBOL program and the remote
stations.

THE MESSAGE CONTROL PROGRAM (MCP)

The Message Control Program (MCP) is a user-written Assembler Language
program using TCAM macro instructions. The MCP acts as the logical
interface between the COBOL program and the entire network of
communications devices, in much the same manner as the system acts as an
interface between the COBOL object program and conventional input/output
devices. The MCP must also perform device-dependent tasks such as
character translation, and insertion of control characters, so that the
COBOL program itself is device-independent.

Teleprocessing (TP) Feature 23

By using Assembler Language TCAM macro instructions, the user can
produce an MCP tailored to his application requirements. Information on
planning an MCP is given in the publications:

IBM System/360 operating System:

TCAM Concepts and Facilities, Order No. GC30-2022

TCAM Programmer's Guide and Reference Manual, Order No. GC30-2024

The MCP and the COBOL TP program operate asynchronously; that is,
there is no fixed time relationship between the receipt of a message by
the MCP and its subsequent processing by the COBOL TP program. COBOL
processes messages sequentially, with the MCP storing each message until
the complete message is received, and until it can dispose of the
message -- either by sending it on to the remote stations, or by
transferring it to the COBOL TP program.

To store the messages until they can be processed, the MCP uses
destination queues, which are similar to sequential data sets. The
queues act as buffers between the COBOL TP program and the remote
stations. Thus, the COBOL TP program can accept messages from MCP
destination queues and place messages into MCP destination queues as if
the queues were sequential files within a conventional COBOL program.
To the COBOL program the messages appear to be contiguous; however, they
are always under the control of TCAM, and may actually be physically
discontinuous, and placed either in core storage and/or disk storage.

TCAM considers all queues as destination queues, with the destination
being either a remote terminal or a COBOL TP program. To the COBOL TP
program, however, the MCP queue from which it accepts messages is
logically an input queue; the queue into which it places messages is
logically an output queue. In this publication, these terms are used
with this meaning.

Queue Processing

As the interface between the COBOL object program and remote stations,
the MCP places messages from remote stations into input queues which the
COBOL program may subsequently access. Messages constructed by the
COBOL program are placed into output queues by the MCP for later
transmission to the remote stations. The names of both types of queues
must be defined to the MCP at some time before the execution of the
COBOL object program. In the COBOL source program, the user must
specify symbolic names for terminal destinations that are known to the
MCP. In the MCP, the user controls, through TCAM macro instructions,
the input queue to which a message is enqueued.

The names of the input queues· as defined to the MCP, and the symbolic
names of the message input queues in the COBOL program, need not be the
same, since their relationship is defined at object time through data
definition (DD) statements.

There is not necessarily a one-to-one relationship between a remote
station and a destination. Through the MCP, the user can establish a
list facility so that one symbolic name can represent one or many
destinations.

The MCP builds message queues on a FEFO (first ended/first out)
basis -- that is, if message A begins transmission to the MCP before
message B, but message B completes transmission first, then message B
will logically be placed first in the queue. Thus, portions of messages

24

are not logically available in queues until the entire message is
available to the MCP. That is, the MCP will not pass a message to a
COBOL object program until all of that message is in the queue. For
output messages from the COBOL program, the MCP will not transmit a
message to a remote station until all of the message is in the output
queue.

A ~gg is a string of characters that can be thought of as
analogous to a physical record, consisting of one or more logical
records, on tape or disk. When the MCP receives a message from a remote
station, the MCP program can extensively edit the data through various
TCAM macro instructions (including the translation of terminal code to
EBCDIC) and direct the message to a destination, which may be a COBOL TP
program.

Although a complete message must be present in an MCP queue before it
can be transferred, the COBOL program can request that the work unit be
transferred either as a complete message, or as a message segment (a
logical portion of the message). (A TCAM record is analogous to a COBOL
segment.) Each such transfer of message data has an end key associated
with it. For output, the end key may be associated with an end
indicator. The end key tells the receiving program -- whether the COBOL
program or the MCP -- how to treat this group of message characters.
There are four end keys and three end indicators:

~nd
~~code

o
1
2
3

Associated
End_Indicator

none
ESI
EMI
ETI

~eani!!g,
Uncompleted segment or message •.
End of message segment.
End of message.
Logical end of transmission
(EOF has been detected
MCP has issued SETEOF macro).

An end key of 0 (end indicator omitted) informs the receiving program
that more data for this work unit (segment and/or message) is still to
be transferred. Through the use of end keys, the COBOL program need not
provide a Data Division work area large enough to contain the requested
work unit, nor need it transfer a complete work unit to the MCP. Thus,
the COBOL program can receive work units of unknown length, and
construct unusually long messages for transmission.

It is possible that a message may be received by the MCP from a
remote station prior to the execution of the COBOL object program. As a
result, the MCP enqueues the message in an input queue until the COBOL
object program reguests dequeueing with a RECEIVE statement. It is also
possible that a COBOL object program may cause messages to be enqueued
in an output queue which cannot be transferred to the remote stations
until after the COBOL object program has terminated (as, for example,
when the COBOL object program creates output messages faster than the
destination(s) can receive them).

INTERFACE BETWEEN THE COBOL PROGRAM AND THE MCP

The COBOL object program communicates with the MCP when it is necessary
to send or to receive data, or to determine the status of the input
queues.

In the Data Division, provision for the necessary interface is
established through the Communication Section. The COBOL programmer
specifies a Communication Description (CD) entry, which describes fixed
record areas into which control information is placed.

Teleprocessing (TP) Feature 25

A CD entry FOR INPUT is valid for messages the COBOL program receives
from the MCP; this area specifies the queue from which a message is to
be received, as well as other control information (such as source, text
length, etc.). The input queue may be made up of sub-queues, in which
case the sub-queue structures to be used are completely described in a
predefined Queue Structure Description (see "Queue structure Description
and Use"». Once the sub-queue structures have been so defined, then at
execution time the COBOL program can access one or more levels of the
sub-queues through the SYMBOLIC SUB-QUEUE names of the CD FOR INPUT.

A CD entry FOR OUTPUT is valid for messages the COBOL program sends
to the MCP for transmission; the CD entry specifies control information
such as the destination(s) of the output message, the text length, etc.

In this way, the input and output CD entries establish an interface
between the COBOL program and the MCP.

Three Procedure Division statements control the interface thus
established:

• The MESSAGE condition, which causes the MCP to indicate to the COBOL
program the number of complete messages in the specified input
queue.

• The RECEIVE statement, which causes message data from an input queue
(or, if specified, from one or more levels of a sub-queue structure)
to be passed to a user-specified work area in the COBOL program.

• The SEND statement, which causes data from the COBOL program to be
placed in an output queue for subsequent transmission.

In addition, the STRING statement can be used by the COBOL program to
construct output messages from noncontiguous multiple subfields, and the
UNSTRING statement can be used to separate a single input data field
into multiple logical noncontiguous subfields.

The interfaces between the MCP and the COBOL program, and between the
MCP and the remote stations, are shown graphically in Figure 3.

26

CaBO L Program

RECEIVE

RECEIVE

SEND

SEND

I
-L

0-
g
c

.2 ~

.~
u
~

0 ~

'" c
.2
0
.~
c
::l
E
E e

U

!

A
COBOL/MCP

Interface

Message Control Program
(MCP)

Input Queues

i •

Output Queues

I

,

I

'" c
·2 u

~
..5
~
u

~
:E «
U
l-

""---

I

A

Communications
Devices

I

MCP/Cemmunications Device
Interface

Figure 3. COBOL Communications Environment

COMMUNICATION SECTION

The Communication Section of a COBOL program must be specified if the
program is to utilize the TP features of COBOL. The Communication
Section, through the definition of Communication Description (CD)
entries, establishes the interface between the COBOL object program and
the MCP.

When specified, the sections of the Data Division must appear in the
following order:

FILE SECTION.
WORKING-STORAGE SECTION.
LINKAGE SECTION.
COMMUNICATION SECTION.
REPORT SECTION.

Each of the sections is optional, and, when unnecessary, may be omitted
from the source program.

The Communication Section is identified by, and must begin with the
section header COMMUNICATION SECTION. The header is followed by
Communication Description (CD> entries. Specification of the CD entry
causes an implicitly defined data area to be created; that is, the

Teleprocessing (TP) Feature 27

generated data area has a fixed format. Level-Oi record description
entries may optionally follow the CD entry: these record description
entries implicitly redefine the fixed data areas of the CD.

When it is specified, the communication Section should contain at
least one CD entry. A single CD entry is sufficient if messages are
only of one type, that is, only FOR INPUT or only FOR OUTPUT. If the
COBOL TP program is to both receive and send messages, then at least two
CD entries are required -- one FOR INPUT and one FOR OUTPUT. However,
multiple input and/or output CD entries may be specified.

Th~ CD entry i p valid only in the Communication Section.

CD Entry

The CD entry represents the highest level of organization in the
Communication Section. The Communication Section header is followed by
CD entries, each consisting of a level indicator, a data-name, and a
series of optional independent clauses.

r--,
I Format 1 I
~---~--------------------------~

CD cd-name FOR INPQ!

[[[SYMBOLIC QUEUE
[SYMBOLIC SUB-QUEUE-i
[SYMBOLIC SUB-QUEUE-2
[SYMBOLIC SUB-QUEUE-3
[MESSAGE DATE
[MESSAGE TIME
[SYMBOLIC SOURCE
[TEXT LENGTH
[END KEY
[STATUSKEY
[QUEUE DEPTH

[data-name-i data-name-2

IS data-name-i]
IS data-name-2]
IS data-name-3]
IS data-name-4]
IS data-name-5]
IS data-name-6]
IS data-name-1]
IS data-name-8]
IS data-name-9]
IS data-name-iO]
IS data-name-ll]]

... data-name-il]]. I
I __ J

r--,
I Format 2 I
~--~
I I
I CD cd-name FOR OUTPUT I
I [DESTINATION-COU~! IS data-name-i] I
I [TEXT LENGTH IS data-name-2] I
I [STATUS KEY IS data-name-3] I
I [ERRO~KEY IS data-name-4] I
I [SYMBOLIC DEST!~~!!Q~ IS data-name-5]. I
I I L __ J

28

r--,
I Format 3 I
~--~
I I
I CD cd-name COpy library-name I
I I
I f word-1 } { word-2 l I
I [REPLACING) BY (I
I ~identifier-1 -- identifier-2J I
I I
: [{wOrd-3 } BY {WOrd-4 }] •••]. I
I identifier-3 -- identifier-4 I
I I L __ J

The CD entry serves as a storage area through which the COBOL program
and the MCP interface. The COBOL programmer moves information about the
message into the CD before initiating any request. The MCP, after
acting upon the request, returns through the same CD information
pertaining to the request.

The CD entry is defined in such a way that any number of message
queues may be accessed through the same CD entry. Conversely, different
portions of one message may be accessed through multiple CD entries in
the same program or in different COBOL subprograms residing in the same
region or partition. Thus, anyone COBOL TP program need specify only
one input CD entry and/or one output CD entry. Rules controlling the
accessing of MCP queues are specified in the detailed descriptions of
both input (Format 1) and output (Format 2) CD entries.

The level indicator CD identifies the beginning of a communication
Description entry, and must appear in Area A. It must be followed in
Area B by cd-name. Cd-name follows the rules for formation of a
data-name. Cd-name may be followed by a series of optional independent
clauses (as shown in Format 1 and Format 2).

The optional clauses may be followed by an optional level-01 record
description entry. This record description entry implicitly redefines
that of the fixed data area described by the CD entry. The total length
of the record description entry must be the same as or less than the
fixed data descriptions of the CD entry: if it is not, an error message
is produced. However, the MCP always references this data area
according to the implicit data descriptions of the CD entry: that is,
for an input CD the contents of positions 1 through 12 are always used
as the symbolic queue, the contents of positions 13 through 24 are
always used as symbolic sub-queue-1, and so forth.

The optional clauses of the CD entry may be written in any order.
Since the data areas of both the input CD and the output CD have
implicit definitions, the optional clauses are necessary only to assign
user names for those areas that the COBOL program will refer to.
However, if all the options of either format are omitted, then a
level-01 record description entry must follow the CD entry.

Except for a level-SS entry, the level-01 record description entry
must not contain any VALUE clauses.

FORMAT 1: This format is required if the CD entry is FOR INPUT. At
least one input CD entry must be specified if input messages are to be
received from a queue. Any number of queues may be accessed through the
same input CD entry. This is accomplished simply by moving a different
symbolic queue name into the input CD. Conversely, different portions
of one message may be accessed through different CD entries. Thus, CD

Teleprocessing (TP» Feature 29

entries in the same or different COBOL subprograms in the same run unit
may be used to access different portions of one message. The same CD
entry may be used to access a message from another queue before the
first message is completed. The following restrictions apply:

• Only one region (or partition) can have access to any particular
queue at one time •

• The data in a queue must be accessed sequentially. That is, a
second message in any queue cannot be accessed until the entire
first message in that queue is accessed. (However, a second message
from another queue may be accessed before the entire message in the
first queue is accessed.)

The specification of an input CD entry results in a record whose
implicit description is equivalent to the following:

~uivalent COBOL Record DeScr!E~!Qn

01 data-name-O.
02 data-name-1
02 data-name-2
02 data-name-3
02 data-name-4
02 data-name-5
02 data-name-6
02 data-name-7
02 data-name-8
02 data-name-9
02 data-name-10
02 data-name-11

PICTURE X(12).
PICTURE X(12)
PICTURE X(12)
PICTURE X(12)
PICTURE 9(6).
PICTURE 9(8).
PICTURE X(12).
PICTURE 9(4).
PICTURE X.
PICTURE XX.
PICTURE 9(6).

Symbolic Queue
Sub-queue-1
Sub-q~eue-2
Sub-queue-3
Message Date
Message Time
Symbolic Source
Text Length
End Key
Status Key
Queue Depth

For each input CD entry, a record area of 87 contiguous Standard Data
Format characters is ~lways generated, i~plicitly defined as previously
specified.

FORMAT 1 -- OPTION 1: The data names corresponding to the various
fields of the CD record area may be explicitly defined, through the use
of the optional clauses as follows:

SYMBOLIC QUEUE and SUB-QUEUE Clauses: These clauses define gat~=g~mg=!,
data-name-2, data-name-3, and dat~=game-4 as the names of alphanumeric
data items each of 12 characters in length, and occupying character
positions within the record as follows:

data-name-1
data-name-2
data-name-3
data-name-4

occupies character positions
" " "
" " "
" " "

1 through 12
13 ' " 24
25 " 36
37 " 48

The contents of the SYMBOLIC QUEUE can be specif ied as a queue'
structure. SUB-QUEUE-1, SUB-QUEUE-2, and SUB-QUEUE-3 specify the- levels
of such a structure. When a given level of such a structure is
specified, all higher levels must also be specified. However, no-given
queue structure need specify all four levels.

For example, if only a three-level queue structure is needed for a
given program, then the following COBOL statements adequately specify
the levels of the structure:

30

SYMBOLIC QUEUE IS QNAME
SYMBOLIC SUB-QUEUE-1 IS SUBQ1

SYMBOLIC SUB-QUEUE-2 IS SUBQ2

since SYMBOLIC SUB-QUEUE-2 is specified, both SYMBOLIC SUB-QUEUE-i and
SYMBOLIC QUEUE must also be specified. (It would be invalid to specify
SUB-QUEUE-2 without also specifying SUB-QUEUE-i.)

When symbolic sub-queues are used in the COBOL program, the
associated queue structures must be predefined. See "Queue Structure
Description and Use" for a detailed description of the methods used.

A RECEIVE statement causes the serial return of the next message (or
portion of a message) from the queue specified in data-name-i, and, if
SUB-QUEUE clauses are specified, from one of the sub-queues specified in
data~name-~, data-name-3, or da~~~~me-4.

Before the RECEIVE statement is executed, the data-name of the queue,
and, if specified, of the sub-queue(s) must contain the symbolic name(s)
of the wanted queue. All such symbolic names must be previously defined
to the MCP. (See "Queue Structure Description and Use" for the specific
method.) The symbolic name must match the queue or sub-queue name
previously defined in the queue structure. When any sub-queue name is
not being used, its contents must be spaces. The compiler initializes
the sub-queues to SPACES~ if a sub-queue has been accessed, then it is
the responsibility of the user to reinitialize each sub-queue name that
is not to be used to SPACES. .

When the RECEIVE statement is executed, the MCP uses the symbolic
name of the wanted queue to access the next message. After execution of
the RECEIVE statement the contents of ~~ta-nam~~~ remain unchanged; the
contents of data-name-2 through data-name-4 (if applicable) are updated
to contain the name of the sub-queue from which the message was
received.

MESSAGE DATE Clause: This clause defines data-name-5 as the name of an
unsigned 6-digit integer data item, occupying character positions 49
through 54 of the record.

Data-name-5 has the format YYMMDD (year, month, day). Its contents
represent the date on which the MCP received this message.

The contents of data-n~m~~ are updated by the MCP as part of the
execution of each RECEIVE statement.

MESSAGE TIME Clause: This clause defines data-name-6 as the name of an
unsigned a-digit integer data item, occupying character positions 55
through 62 of the record.

Data-name-6 has the format HHMMSSTT (hours, minutes, seconds,
hundredths of a second). Its contents represent the time of day the
message was received into the system by the MCP.

The contents of data-name-6 are updated by the MCP as part of the
execution of each RECEIVE statement.

SYMBOLIC SOURCE Clause: This clause defines data-name-7 as the name of
an elementary alphanumeric data item of 12 characterg;-occupying
character positions 63 through 74 of the record.

During execution of a RECEIVE statement, the MCP provides in
data-name-7 the symbolic name of the terminal that is the source of this
messa9'e. (The symbolic names the MCP uses are 1 through a characters in
length~ the remaining characters are set to SPACES.) However, if the
symbolic name of the source terminal is not known to the MCP, the
contents of data-name-7 are set to SPACES.

Teleprocessing (TP) Feature 31

TEXT LENGTH Clause: This clause defines data-name-8 as the name of an
unsigned 4-digit int~ger data item, occupying character positions 75
through 78 of the record.

The MCP indicates through the contents of da~a-~~~~g the number of
main storage bytes of the user's work area filled as a result of the
execution of the RECEIVE statement.

END KEY Clause: This clause defines data-name-9 as the name of a
i-character elementary alphanumeric data i tem;-Occupying cha.racter
position 79 of the record~

The MCP sets the contents of data-name-9, as part of the execution of
each RECEIVE statement, according to the following rules:

• When RECEIVE MESSAGE is specified, then the contents of da~~~n~~~~~
are:

3 if end-of-transmission has been detected

2 if end-of-message has been detected

o if less than a message has been moved into the user-specified
area

• When RECEIVE SEGMENT is specified, then the contents of data-name-9
are:

3 if end-of-transmission has been detected

2 if end-of-message has been detected

1 if end-of-segment has been detected

0 if less than a message segment has been moved into the
user-specified area

• When more than one of the above conditions is satisfied
simultaneously, the rule first satisfied in the order listed
determines the contents of data-name-9. An End Of Transmission is a
logical End Of File condition caused by the user coding a TCAM
SETEOF macro ip. the MCP. In general, depending on the size of the
work unit and the work area provided, End Keys may be associated
with a text length of zero. Most frequently, this will be the case
for End Of Transmission.

STATUS KEY Clause This clause defines data-name-10 as the name of a
2-character elementary alphanumeric data item, occupying character
positions 80 and 81 of the record.

The contents of data-name-10 indicate the status condition of the
previously executed RECEIVE or IF MESSAGE statement. The program
should, therefore, check the STATUS KEY immediately after each RECEIVE
operation to verify the status. The values data-name-10 can contain,
and their meanings, are defined in Figure 4.

Figure 4 indicates the possible values that the STATUS KEY field <for
both input and output CD entries) may contain at the completion of
execution for each statement. An X on a line in a statement column
indicates that the associated code on that line is possible for that
statement.

32

r-------T-------------------------T---------T------T-------------------,
I STATUS I I I I I

I KEY I I I I I
I Code I Meaning I RECEIVE I SEND I IF MESSAGE I

~------~-------------------------f---------f------~-------------------~
I 00 I No error detected. I X I X I X I
I I Request completed. I I I I

~------~-------------------------~---------f------~-------------------~
I 20 I Destination unknown. I I X I I
I I Data-name-5 gives I I I I
I I unknown destination. I I I I
I I Request cancelled. I I I I

~------~-------------------------~---------~---~--~-------------------i
I 20 I 1) In use by another I X I I X I
I I partitiqn/region. I I I I
I I 2) Queue name unknown I I I I
I I (No DD card). I I I I
I I 3) Invalid queue I I I I
I I structure. I I I I
I I Request cancelled. I I I I

~-------+-------------------------+---------f------+-------------------~
I 21 I Insufficent storage I X I X I X I
I I available for control I I I I
I I blocks and/or buffers. I I I I
I I Request cancelled. I I I I

~-------+-------------------------+---------+------+-----~-------------~
I 22 I Queue name unknown I I X I I
I I (No DD card). I I I I
I I Request cancelled. I I I I

~------+-------------------------+---------~------+-------------------~
I 29 I An input/output error I X I I X I
I I has occurred. Request I I I I
I I . cancelled. I I I I

~-------+-------------------------+---------+------+-------------------~
I 50 I Character count greater I I X I I
I I than sending field. I I I I
I I Request ignored. I I I I

~------+-------------------------+---------~------+-------------------~
I 60 I Partial segment with I I X I I
I I either zero character I I I I
I I count or no sending I I I I
I I area specified. I I I I
I I Request ignored. I I I I L _______ ~ _________________________ ~ _________ ~ ______ ~ ___________________ J

Figure 4. STATUS KEY Field -- possible Values

QUEUE DEPTH Clause: This clause defines data-name-ll as the name of an
unsigned 6-digit integer data item, occupying character positions 82
through 87 of the record.

The contents of data-name-ll indicate the number of messages that
exist in an input queu~-The MCP updates the contents of data-name-ll
only as part of the execution of an IF MESSAGE statement.

FORMAT 1 -- OPTION 2: The second option of Format 1 allows the
programmer to specify data-name-l through data-name-ll without the
descriptive clauses. If any data-names are to be omitted, the word
FILLER must be substituted for each omitted name, except that FILLER
need not be specified for any data-name that comes after the last name
referred to.

Teleprocessing (TP) Feature 33

For example, if the programmer wishes to refer to the SYMBOLIC QUEUE
as QUEUE-IN and to the MESSAGE DATE as DATE-IN, he can write the input
CD entry as follows:

CD INPUT-AREA FOR INPUT
QUEUE-IN FILLER FILLER FILLER DATE-IN.

In this case, data-name-6 through data-name-11 can be omitted; FILLER
need not be written in their place.

The same input CD entry can be written as follows (In this case, an
optional level-01 record description entry redefining the data areas is
also included.):

CD INPUT-AREA FOR INPUT
SYMBOLIC QUEUE IS QUEUE-IN
MESSAGE DATE IS DATE-IN.

01 INAREA-RECORD.
05 FILLER PICTURE X(78).
05 ENDKEY-CODE PICTURE X.

88 PARTIAL-SEGMENT VALUE "0" •
88 END-SEGMENT VALUE "1".
88 END-MESSAGE VALUE "2".
88 END-TRANSMISSION VALUE "3".

05 FILLER PICTURE X(8).

By naming the SYMBOLIC QUEUE and MESSAGE DATE fields of the CD the
programmer can refer to these data areas within his program without
further defining them. By redefining the END KEY data area, ,the
programmer can use condition-names to refer to the values contained in
that area.

FORMAT 2: This format is required if the CD entry is FOR OUTPUT. At
least one output CD entry must be specified if messages are to be placed
into an output queue. A number of output CD entries in the same program
or in different subprograms in the same run unit may be used ~o send
different portions of the same message, so that parts of one message may
be transferred to the MCP using different CD entries.

until the transfer of a first message from the COBOL program to the
MCP has been completed, the transfer of a second message may not begin.
Changing the destination before indicating End Of Message causes
unpredictable results.

The specification of an output CD entry always results in a record
whose implicit description is equivalent to the following:

~uivalent COBOL Record Descr!E£~on

01 data-name-O.
02 data-name-1 PICTURE 9 (4)>.
02 data-name-2 PICTURE 9(4).
02 data-name-3 PICTURE XX.
02 data-name-4 PICTURE X.
02 data-name-5 PICTURE X(12) •

Destination Couqt
Text Length
Status Key
Error Key
Symbolic Destination

For each output CD entry, a record area of 23 contiguous Standard
Data Format character positions is always generated. It is implicitly
defined as previously illustrated. Through the use of the optional
clauses, user data-names may be explicitly associated with the output CD
subfields as follows:

DESTINATION COUNT Clause: The DESTINATION COUNT clause defines
data-name-l as the name of an unsigned 4-digit integer data item,
occupying character positions 1 through 4 of the record. The CODASYL

34

specification for teleprocessing defines the DESTINATION COUNT clause as
shown in Format 2. However, since COBOL allows only one destination,
the DESTINATION COUNT clause, if specified, is treated as comments.

TEXT LENGTH Clause: This clause defines data-name-2 as the name of an
unsigned 4-digit integer data item, occupying-character positions 5
through 8 of the record.

As part of the execution of a SEND statement, the MCP interprets the
contents of data-name-2 as the user's indication of the number of
leftmost bytes of main storage of the identifier named in the SEND
statement to be t~ansferred (see SEND statement).

STATUS KEY Clause: This clause defines data-name-3 as the name of a
2-character elementary alphanumeric data item, occupying character
positions 9 and 10 of the record.

The contents of data-name-3 indicate the status condition of the
previously executed SEND statement. The values data"-name-3 can contain,
and their meanings, are defined in Figure 4.

ERROR KEY Clause This clause defines data-name-4 as the name of a
1-character elementary alphanumeric data item, occupying character
position 11 of the record.

If, during the execution of a SEND statement, the MCP determines that
the specified destination is unknown, the MCP updates the contents of
data-name~~. Data-name-4 will contain:

1 if the symbolic destination contained in g~~~name-~ is unknown
to the MCP.

o {f the symbolic destination is known to the MCP.

Note: T~e ERROR KEY field is updated only when the destination is
unknown (that is, when the STATUS KEY is anything other than zero).
Therefore, the programmer should not examine the ERROR KEY unless the
STATUS KEY field contains a nonzero value.

SYMBOLIC DESTINATION Clause: This clause defines data-name-5 as the
name of a 12-character elementary alphanumeric data item, occupying
character positions 12 through 23 of the record~

Data-name-5 contains a symbolic destination. The first 1 through 8
characters of data-name-5 must be previously defined to the MCP.

The following example illustrates an output CD entry, with an
optional level-01 re~ord description entry redefining the data areas:

CD OUTPUT-AREA FOR OUTPUT
TEXT LENGTH IS MSG-LGTH
SYMBOLIC DESTINATION IS Q-OUT.

01 OUTAREA-RECORD.
05 FILLER PICTURE X(10).
05 ERRKEY-CODE PICTURE X.

88 KNOWN VALUE "0".
88 UNKNOWN VALUE "1".

05 FILLER PICTURE X(12) •

By naming the TEXT LENGTH and SYMBOLIC DESTINATION fields of the CD
entry, the programmer can refer to those data areas within his program
without further" defining them. By redefining the ERROR KEY data area,
the programmer can use condition-names to refer to the values contained
in that area.

Teleprocessing (TP) Feature 35

Note: When a message is being sent to a remote station, TCAM adds the
proper End of Transmission line control character.

FORMAT 3: The CD entry may be pre-written and included in the
user-created library. The entry may then be included in a COBOL source
program by means of a COpy statement. (See "COpy Statement" in the
chapter on the Source Program Library Facility in the publication IBM OS
Full American National Standard COBOL, Order No. GC28-6396.)

PROCEDURE DIVISION

'In the Procedure Division, there is an additional condition which may be
used by a COBOL TP program: the message condition.

There are two additional input/output statements used by a COBOL TP
program to communicate with the MCP: the RECEIVE statement and the SEND
statement.

Each of these language elements is described in the sections that
follow.

Message Condition

The mess~ge condition determines whether or not one or more complete
messages exist in a designated queue of messages. The condition can
then be specified in an IF statement.

r--,
I Format I
~--~-------------i
I I
I [NOT] MESSAGE FOR cd-name I
I . I L __ ~ _________________ J

The cd-~~ must specify an input CD entry.

At the time of the test, the CD entry must contain the name of the
SYMBOLIC QUEUE to pe tested.

A MESSAGE condition exists only if one or more complete messages are
present in the named queue. A NOT MESSAGE condition exists if there are
no complete messages in the named queue.

Execution of the message condition causes the QUEUE DEPTH field of
the named input CD to be updated with the number of complete messages
present in the input queue or queue structure. Executing a message
condition to a queue structure returns a count of the number of complete
messages in the entire structure. Thus, the COBOL TP program can check
a queue or queue structure for a predetermined message count before
invoking a specific TP processing program.

When using compound IF statements, care must be taken to ensure that
the message condition is actually tested, so that the QUEUE DEPTH field
will actually be updated. For example, suppose the programmer writes:

IF A = B AND MESSAGE FOR QUEUE-IN •••

36

then when A is not equal to B, the message condition is not tested, and
the QUEUE DEPTH field for QUEUE-IN is not updated. To ensure that the
message condition is tested, the programmer must always write it as the
first condition tested within a multiple condition.

When the message condition is executed, the STATUS KEY field of the
named input CD is set as follows:

'00' for a valid request

'20' invalid queue name or queue structure

'21' insufficient storage for system control blocks

'29' input/output error

(See Figure 4 for a complete explanation.)

When a STATUS KEY other than '00' is returned, the QUEUE DEPTH field
is unchanged.

(For information on the message condition and testing the COBOL TP
program using BSAM, see "Testing the COBOL TP Program.")

RECEIVE statement

The RECEIVE statement makes available to the COBOL program a message,
message segment, or a portion of a message or message segment, and
pertinent information about that message data from a queue maintained by
the MCP.

r--,
I Format I
r---i
I I
I { MESSAGE } I
I RECEIVE cd-name !~!Q identifier-1 I
I SEGM~NT I
I I
I [NO QATA imperative-statement] I
I I L __ J

The cd-name must specify an input CD entry.

Before a RECEIVE statement is executed, this input CD entry must
contain, in its SYMBOLIC QUEUE field, a name of up to 12 characters.
The first 1 through 8 characters of this name must be unique, and must
match the DDname of the DO statement that specifies the queue.

Upon execution of the RECEIVE statement, data is transferred to the
receiving character positions of identifier-1, aligned to the left
without any SPACE fill and without any data format conversion. The
following data items in the input CD are appropriately updated when the
RECEIVE statement is executed: MESSAGE DATE field, MESSAGE TIME field,
SYMBOLIC SOURCE field, TEXT LENGTH field, END KEY field, STATUS KEY
field (see Figure 4, STATUS KEY Field -- Possible Values), and, if the
message was retrieved through a queue structure, SYMBOLIC SUB-QUEUE-1
through SYMBOLIC SUB-QUEUE-3.

Teleprocessing (TP) Feature 37

A complete message need not be received before another MCP queue is
accessed. Thus, messages from different MCP queues may be processed at
the same time by a COBOL program. (Note, however, that a message is not
made available to the COBOL program until it is completely received by
the MCP and placed in a queue.)

A single execution of a RECEIVE statement never returns more than a
single message (when the MESSAGE phrase is used) or a single segment
(when the SEGMENT phrase is used), regardless of the size of the
receiving area.

When the MESSAGE phrase is used the end-of-segment condition, if
present, is ignored, and the end-of-segment indicator is treated as a
data character. (This occurs only when the user, through the MCP,
segments the message, and the COBOL program uses MESSAGE mode to RECEIVE
the message.) The following rules apply to the data transfer:

• If a message is the same size as identifi~~~~, the message is stored
in identifier-i.

• If a message size is smaller than identifier-i, the message is
aligned to the leftmost character position of identifier-i with no
SPACE fill.

• If a message is larger than identifier-i, the message fills
identifier-i left to right, starting with the leftmost character of
the message. The remainder of the message can be transferred to
identifier-i with subsequent RECEIVE statements referencing the same
queue. Either the MESSAGE or the SEGMENT option may be specified
for the subsequent RECEIVE statements. '

When the SEGMENT phrase is used, the end-of-segment condition, if
present (or the end-of-message condition, if present), determines the
end of data transfer. In this case, the end-of-segment indicator is not
treated as a data character, and is not transferred with the data. The
following rules apply to the data transfer:

• If a segment is the same size as id~~~fier~~, the segment is stored
in identifier-i.

• If the segment size is smaller than identifier-i, the segment is
aligned to the leftmost character position of identifier-i with no
SPACE fill.

• If a segment size is larger than identifier-i, the segment fills
identifier-i left to right starting with the leftmost character
position of the segment. The remainder of the segment can be
transferred to identifier-i with subsequent RECEIVE statements
referencing the same queue. Either the MESSAGE or the SEGMENT
option may be specified for the subsequent RECEIVE statements.

Once the execution of a RECEIVE statement has returned a portion of a
message, only subsequent execution of RECEIVE statements in that run
unit can cause the remaining portions of the message to be returned.

After the execution of a STOP ~UN statement,or of a GOBACK statement
in" a main program, the disposition of the remaining portions of any
message only partially obtained is not defined.

When the NO DATA option is specified and the queue is empty (that is,
there are no complete messages in the input queue), then control passes
to the imperative-statement specified in the NO DATA option.

38

When the NO DATA option is not specified and the queue is empty,
execution of the COBOL object program is suspended (that is, placed in
wait status) until data is made available in identifier-i.

(For information on the RECEIVE statement and testing the COBOL TP
program using BSAM, see "Testing The COBOL TP Program.")

SEND Statement

The SEND statement causes a message, a message segment, or a portion of
a message or message segment to be released to the Message Control
Program.

r---, I Format 1 I
~---~--------~
I I
I SEND cd-name FROM identifier-i I
I I L-___ J

r--, I Format 2 I
~---~
I I
I)WITH identifier-2l I
I WITH ESI' I
I SEND cd-name [FROM identifier-1] ~ --- I
I WITH ~MI I
I WITH ~TI I
I I L __ J

Messages may be transferred to the MCP in segments, as complete
messages, or in parts of segments or messages. However, data is never
transmitted to the named destination until a complete message has been
transferred to the MCP.

The cd-name must specify an output CD entry.

Before a SEND statement is executed, this output CD entry must
contain:

• In the TEXT LENGTH field, the number of leftmost bytes of contiguous
data to be transferred to the output queue from identifier-i.

• In the SYMBOLIC DESTINATION field, the symbolic identification of
the remote station(s) that are to receive the message. (The first 1
through 8 characters of this field must be previously defined to the
MCP.) .

Upon execution of the SEND statement, data is transferred from
identifier-i to the MCP queue corresponding to the terminal identifier
contained in the SYMBOLIC DESTINATION field.

As part of the execution of the SEND statement, the MCP interprets
the contents of the TEXT LENGTH field to be the user's indication of the
number of leftmost character positions of identifier-i from which data
is to be transferred.

Teleprocessing (TP) Feature 39

If the contents of the TEXT LENGTH field are zero, no characters of '
data are transferred from identifier-i. (A zero TEXT LENGTH'field is
valid only with the Format 2 SEND statement.)

If the contents of the TEXT LENGTH field are outside the range of
zero through the size of identifier-l inclusive, an error is indicated
in the STATUS KEY field, no data is transferred, and the name in the
SYMBOLIC DESTINATION field is not validated. The contents of the STATUS
KEY field are updated by the MCP. (See Figure 4, STATUS KEY Field -
Possible Values.)

If the user causes special control characters to be embedded as data
characters within the message, these control characters are enqueued
with the message, and it is the user's responsibility to ensure that
these characters function as intended.

The disposition of a portion of a message not terminated by a
subsequent and associated EMI or ETI is undefined. (However, such a
message portion will not be transmitted to the destination.>

Format 2 considerations: This format of the SEND statement allows the
programmer to specify whether or not an end indicator is associated with
the message.

If the FROM identifier-l option is omitted, then an end indicator is
associated with the data enqueued by a previous SEND statement.

The hierarchy of end indicators, and their meanings, is as follows:

ETI End of Transmission Indicator -- the CODASYL specification
defines the ETI as indicating that the group of messages to be
transmitted is complete. However, for this implementation, the
ETI is regarded as equivalent to the EMI. Therefore, if ETI is
specified without a preceding EMI" the ETI is regarded as an
EMI; if the ETI is specified after a preceding EMI, the ETI is
treated as comments (that is, is ignored).

EMI End of Message Indicator -- the message to be transmitted is
complete.

ESI End of Segment Indicator -- the segment to be transmitted is
complete.

An ETI need not be preceded by an EMI or ESI. An EMI need not be
preceded by an ESI.

Identifier-2 must reference a i-character integer without an
operational sign. The contents of identifier-2 indicate that the
contents of identifier-l have an end indicator associated with them
according to the following codes:

If identifier-2
contains:

o
1
2
3

Then identifier-l has
associated with it:

No indicator
ESI
E~

ETI

Meaning

No indicator
End of Segment Indicator
End of Message Indicator
End of Transmission

Indicator

Any character other than 1, 2, or 3 is interpreted as o.

40

If the contents of identifier-2 are other than 1, 2, or 3, and
identifier-l is not specified, then an error is indicated in the STATUS
KEY field of the associated CD entry, and no data is transferred.

(For information on the SEND statement and testing the COBOL program
using BSAM, see nTesting the COBOL TP Progra~.n)

QUEUE STRUCTURE DESCRIPTION AND USE

In a COBOL TP program, a CD FOR INPUT allows the specification of one
through three levels of sub-queues from which data can be received; this
allows the COBOL object program, at execution time, to make use of
pre-defined queue structures, and to access all or parts of such
structures. For TP programs, such queue structures are analogous in
function and form to the FD entry and its associated 01 record
description for file processing programs. If pre-defined queue
structures are used, each lowest level sub-queue name in the structure
corresponds to a TCAM queue (and consequently must have a matching
TPROCESS entry in the MCP terminal table)., Figure 5 shows the
configuration of one such queue structure.

During program execution, when the user wishes to receive a message
from a queue (or sub-queue) he need not place the names of all
sub-queues in the input CD; he can specify only the SYMBOLIC QUEUE name,
which may be the name of a pre-defined queue structure, or he can
specify that name plus one or more sub-queue names which allows him to
access only part of the entire, structure. A COBOL object-time
subroutine uses thename(s) placed in the input CD to determine which
lowest level sub-queue(s) (and corresponding TCAM queue(s» can be used
to fulfill the request.

In order to do this, the user must have previously defined all his
queue structures in a form that is acceptable to the COBOL object-time
subroutine. A utility program that functions as the Queue Structure
Description routine (included in the Version 4 Library) makes this
possible. Input to the Queue Structure Description routine consists of
a series of statements that define queue structures. The statements are
written in a COBOL-like format, similar to an FD entry and its
associated record description entry. The Queue Structure Description
routine produces as output a partitioned data set with one member for
each complete queue structure.

Teleprocessing (TP) Feature 41

Specifying Queue Structures

A COBOL TP program allows the specification of up to three levels of
sub-queues. Figure 5 illustrates one such structure~ the queue
structure shoWn can be described to the Queue Strtrcture Description
routine as follows (FD entry equivalents are shown in parentheses):

QUEUE IS A.
SUB-QUEUE-l IS B.

SUB-QUEUE-2 IS D.
SUB-QUEUE-3 IS H.
SUB-QUEUE-3 IS I.

SUB-QUEUE-2 IS E.
SUB-QUEUE-3 IS J.
SUB-QUEUE-3 IS K.

SUB-QUEUE-l IS C.
SUB-QUEUE-2 IS F.

SUB-QUEUE-3 IS L.
SUB-QUEUE-3 IS M.

SUB-QUEUE-2 IS G.
SUB-QUEUE-3 IS N.
SUB-QUEUE-3 IS O.

(FD clause)
(01 entry)

(02 entry)
(03 entry)
(03 entry)

(02 entry)
(03 entry)
(03 entry)

(01 entry)
(02 entry)

(03 entry)
(03 entry)

(02 entry)
(03 entry)
(03 entry)

In general, the queue structure need not include all three levels of
sub-queues~ however, if a lower level is specified all higher levels in
that leg of the structure must also be specified. Any particular
sublevel of the structure should always have more than one sub-queue

0

SUB-QUEUE (3) H I

MESSAGE {

X3
X4
XS

B

E

J

A

K L

'fl.
n

F

M

Yl
Y2

C

Figure 5. Queue Structure with Three Levels of Sub-Queues

42

G

N 0

Z2
Z3
Z4
Y4

contained within it. (That is, if in the preceding example only
s~queues B through K were subordinate to queue A, then B as a
sub-queue would be superfluous, since it would not represent a
subdivision of A. In this case the logical presentation would be a
structure with sub-queues H through K at the SUB-QUEUE-2 level, with
sub-queues D and E at the SUB-QUEUE-1 level, and with either B or A at
the QUEUE level.) The lowest level defined (which corresponds to an
elementary data description entry) must be used as a DDname at object
time to point to an entry in the MCP terminal table, since such entries
correspond to TCAM queues.

Accessing Queue structures Thro~h COBOL

Once the queue structure(s) are defined and stored in a partitioned data
set, the user can create COBOL TP programs that utilize these predefined
structures. At execution time, the partitioned data set is described on
a DO card, and the MCP table entries and the lowest level sub-queue
names are linked by DD cards. The name of the DD card may be defined as
the sub-queue name itself (in the above example, as H, I, J, K, L, M, N,
or 0). Alternatively,DDnames that are equivalent to the lowest level
sub-queue names may be defined (that is, in the above example, that each
sub-queue name (H, I, J, K, L, M, N, or 0) would have its equivalent
DDname); this permits the COBOL program to reuse the symbolic sub-queue
names without ambiguity.

Before a RECEIVE statement is executed, the user places the needed
queue and sub-queue name(s) in the CD entry. When the RECEIVE statement
is executed, the RECEIVE subroutine first checks for the presence of the
partitioned data set describing these queue structures. If the data set
is present, the RECEIVE subroutine invokes a Queue Analyzer routine
which searches the partitioned data set for a member corresponding to
the name in the SYMBOLIC QUEUE field, reads that member into main
storage and uses it to validate the SYMBOLIC SUB-QUEUE name(s) in the
COBOL program input CD entry. The Queue Analyzer routine then
determines the first valid name for the structure specified and gives
this name to the RECEIVE routine.

Names at the SUB-QUEUE-1 level take priority over names at the
SUB-QUEUE-2 level. Names at the SUB-QUEUE-2 level take priority over
names at the SUB-QUEUE-3 level. At any given level, names at the left
take priority over, and are completely evaluated before, names at the
right. (Taking advantage of this retrieval technique, the user can
improve object-time performance by defining his most frequently used
sub-queues at the left of the structure.)

The RECEIVE routine then attempts to access the queue specified. If
the DD card for this queue is not present, or if there are no messages
in the associated MCP queue, the Queue Analyzer provides the RECEIVE
routine with another valid name. The procedure is repeated until the
RECEIVE routine accesses a message, or until there are no more queues to
access.

During a RECEIVE operation, a COBOL program using queue structures
need not specify all levels of sub-queues. The highest level (QUEUE)
must be specified; that level plus a SUB-QUEUE-1 may also be specified;
those two levels plus a SUB-QUEUE-2 may also be specified; or all four
levels may be specified. Note that if a lower level is specified, then
all higher levels must also be specified.

If the COBOL programmer wishes to access the next message in the
queue structure, regardless of which sub-queue that message may be in,
he specifies the queue name only, and ,initializes the sub-queue names to

Teleprocessing (TP) Feature 43

SPACES. The MCP, when supplying the message, returns to the COBOL
object program any applicable s.ub-queue names via the data items in the
associated input CD. If, however, the programmer desires the next
message in a given sub-queue, he must specify both the queue name and
any applicable sub-queue names. Once a program has begun receiving any
part of a message from a queue (or sub-queue), subsequent requests must
return all applicable names until end of message is indicated.

Referring to the queue structure shown in Figure 5, the following
examples illustrate several message retrieval options when a RECEIVE
statement is executed:

• Input CD contains: Queue A. MCP returns: Message Zl.

• Input CD contains: Queue A, sub-queue-l C. MCP returns: Message
Y7.

• Input CD contains: Queue A, sub-queue-l B, sub-queue-2 E. MCP
returns: Message Xl.

• Input CD contains: Queue A, sub-queue-l C, sub-queue-2 G,
sub-queue-3 N. MCP returns: Message X6.

Specification of DDnames with Elementary sub-2~~~~~

An application program is written to accept TP messages as input to an
inventory control process. Five different locations will each transmit
data on four different parts. To make this relationship explicit, a
diagram is prepared showing a queue structure containing all the
elements of the input. The queue structure for this application is
shown in Figure 6.

Each elementary, or lowest-level, queue in the structure must specify
the name of a DD card, which in turn will name a TPROCESS entry or TCAM
queue. While. the example shown in Figure 6 is unambiguous (that is,
INVENTORY.CHICAGO.PARTA is distinct from INVENTORY. LOS-ANGELES. PARTA),
the elementary queues by themselves are not (that is, the elementary
name PARTA, which corresponds to a DDname, can be anyone of five
different PARTA's). To eliminate this ambiguity·, the user of queue
structures can define DDnames in addition to the sub-queue names at the
lowest level when he defines the structure to the Queue structure
Description routine. Then the object-time Queue Analyzer routine will
automatically make the association from the fully qualified queue
structure. names to the DDnames required. Thus, in this example:

NEW-YORK.PARTA could have DDname DDl
NEW-YORK.PARTB n n n DD2
NEW-YORK.PARTC n n n DD3
NEW-YORK.PARTD n n n DD4
CHICAGO.PARTA n n n DD5
CHICAGO.PARTB n n n DD6

In this way, each elementary queue has a unique designation, yet the
COBOL program can refer to the sub-queue names without ambiguity.

Note: If a DDname is assigned to a sub-queue within a queue structure,
that same DDname cannot be used as a queue name to access the queue
directly.

44

QUEUE INVENTORY

SUB-QUEUE-l
NEW-YORK CHICAGO ST-LOUIS DENVER LOS-ANGELES

SUB-QUEUE-2

S - N' M ~ 10 ~ R co - N' M g: ~ ~ §' co 0::-0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 e. e. e. e. e. e. e. e. e. e. e. e. e. e. e. e. e. e.
~ CQ U 0 ~ CQ U 0 ~ al U 0 ~ CQ U 0 ~ CQ

~ I- ~ I- ~ l- t- l- t- ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.: 0.: ~

~ <{ <{ ~ ~ « ~ « ~ « ~ ~ ~ « ~ « ~ ~ 0- a.. a.. a.. 0- 0- 0-

Figure 6. using DDnames with Queue Structures

Rules For Queue structure Description

For each member of the partitioned data set, the input to the Queue
structure Description Routine must take the following format:

0::- S
0 N

0
e. e.
U 0
~ ~
~ ~

r--,
I Format I
~--~

{ :UEUE } IS data-name-l

{ {
{

SUB-QUEUE-l}
IS data-name-2[(DDname-l)]} •••

SUBQl

[[{SUB-QUEUE-2t

SUBQ2)
IS data-name-3[(DDname-2)]] •••

{
SUB-QUEUE-3 }

SUBQ3
IS data-name-4[(DDname-3)]] •••]}

L ___ _

Teleprocessing (TP) Feature 45

The clauses of the queue structure may be written free form; however,
only one clause may appear on each aO-character record. At least one
sub-queue level must be specified; no more than 200 sub-queue names may
be specified in one queue structure.

The sub-queues at each level must be specified to the Queue structure
Description routine in left-to-right order. When the queue structure is
referred to at object program execution time, names at a higher level
take priority over names at a lower level. At a given level in the
queue structure, names to the left take priority over names to the
right.

A queue structure need not include all levels of sub-queues.
However, if a lower level is included in one leg of a queue structure,
then that leg must include all higher levels.

Each clause of the structure may optionally be followed by a period.

Data-name-1 is the name of the queue structure, and becomes the name
of that member of the partitioned data set.

Data-name-2 through data-name-4 are sub-queue names within the data
set member.

Each data-~ used as a queue or sub-queue name may be up to 12
alphanumeric characters in length; the first character must not be
numeric.

Each DD~, if specified, may be up to a alphanumeric characters in
length; the first character must not be numeric.

Each data-name at the lowest (elementary) level of a leg of the queue
structure may be a DDname; alternatively, each such data-name may be
followed by a parenthesized DDname. If a parenthesized DDname follows a
sub-queue name, the left parenthesis must immediately follow the
sub-queue name with no intervening spaces. There must be no spaces
between the parentheses and the DDname.

INTERFACE CONSIDERATIONS

For input, the job control language in the COBOL TP program's job stream
must contain a DO card for each input queue accessed by the MCP; the
name by which the queue is known to the MCP appears as a parameter on
this control card. In addition, for each input message, the MCP must be
designed to perform the following functions:

• Inclusion of the date and time of message arrival

• Identification of the source terminal

• When desired, indication of end-of-segmentand/or logical
end-of-transmission

For output, the COBOL TP program's job stream can contain only one DO
card to define an output destination queue. A parameter on this card
contains the name by which this queue is known to the MCP. In addition,
the destination names used in the COBOL program must be known to the
·MCP; the destinations should be listed in the MCP terminal tables.

Other items used by COBOL, such as, for example, the TEXT LENGTH
field and the STATUS KEY field, are provided by TCAM and need not
concern the MCP programmer.

46

Note: While it is not necessary, it is more efficient if the message
processing system is planned so that the MCP and the COBOL TP program
treat messages and message segments in a consistent manner.

EXECUTION TIME CONSIDERATIONS

At execution time, one DO statement is required for each queue that the
COBO~ TP program accesses.

Through the DD statement the programmer equates the name placed in
the SYMBOLIC QUEUE field of an input CD entry with the. queue name used
in the MCP.

For an output CD, the name placed in the SYMBOLIC DESTINATION field
must be known to the MCP. All output messages are enqueued to the same
TCAM destination queue; thus only one DD statement is needed for output.

(Note that for a COBOL TP program the system regards all records as
variable in length and the organization as always physical sequential.)

The COBOL TP system maintains control and status information
pertinent to each message being processed, and to each active queue.
The information is maintained in Queue Blocks, which are created the
first time each queue is accessed by a COBOL TP run unit, whether by an
IF MESSAGE, a RECEIVE, or a SEND statement. Each Queue Block is chained
to all other Queue Blocks in the same regiOn/partition.

The system provides a single buffer of 200 characters for all queues;
the user can override this default size through the DD statement. Note,
however, that the size of the buffer places no restriction on the amount
of data the COBOL program can request. The amount o£ data moved into
the COBOL work area with each request is either the complete work unit
(message or segment>, or the size of the work area, whichever is
smaller. The amount of data moved out of the COBOL work area with each
request is the number of characters specified in the TEXT LENGTH field
of the output CD. Within a program, the fir2~ reference to any queue
(input or output) causes the system to obtain a buffer; the BLKSIZE
field of the DO card associated with that queue is used to determine if
the default buffer size is to be used.

Before the MESSAGE condition is executed, the name of the DO
statement that specifies the input queue or queue structure must be
moved into the SYMBOLIC QUEUE field of the input CD entry by the COBOL
programmer. When the IF MESSAGE statement is executed, the following
actions take place:

• If this is the initial reference in the run unit to the named queue,
the system constructs a Queue Block.

• The STATUS KEY field of this input CD entry is updated as shown in
Figure 4. If the STATUS KEY is '00' then the QUEUE DEPTH field of
this input CD entry is updated to contain the number of complete
messages contained in the named input queue.

Teleprocessing (TP) Feature 47

When a RECEIVE statement is executed, the following actions take
place:

• If this is an initial reference in the run unit to the named queue,
the system constructs a Queue Block

• The STATUS KEY field is updated as shown in Figure 4. If the STATUS
KEY is '00' then:

1. The appropriate fields of the input CD are updated.

2. The requested amount of data is trans~erred to the COBOL work
area. (In certain instances, no data will be transferred when
ETI (logical end-of-file) is indicated.)

However, if the queue is empty, the following actions take place:

1. If the NO DATA option is specified, control is transferred to the
appropriate imperative-statement. If ETI (logical end-of-file) is
concurrently indicated, the queue-empty condition is ignored, and
ETI is indicated.

2. If the NO DATA option is not specified, the system places the COBOL
program into the wait state. If data does not become available
before the end of the time interval specified for the job step, the
system terminates the run unit.

For a SEND statement the system permits the piecemeal construction of
messages and segments by multiple programs within one region/partition.
When a SEND statement is executed the following actions take place:

48

• If this is the initial SEND statement in the run unit the system
constructs a Queue Block.

• If this is the initial SEND statement of the message, the leftmost
eight characters of the SYMBOLIC-DESTINATION field are placed into
the appropriate field in the buffer.

• The STATUS KEY field of the output CD entry is updated as shown in
Figure 4.

• The number of characters indicated in the TEXT LENGTH field is
transferred from the COBOL work area into the output buffer. If ESI
is indicated, an end of record (EOR) delimiter is appended as the
last data character. The user's EOR delimiter is obtained from the
MCP. If ESI is not specified, no EaR delimiter is appended.

• The appropriate code (partial segment, end segment, or end message)
is placed in the TCAM control byte of the buffer.

Testing the COBOL TP Program

The user can test his COBOL TP program using physical sequential data
sets. By eliminating the MCP queue name on the DD card for a queue, the
user links to the Basic sequential Access Method (BSAM) instead of to
TCAM. The BSAM file must conform to the following:

- Each block must be an unblocked V mode record

- Each block may contain no more than one logical record

- A logical record may span a physical block

-End of Segment may be indicated in the TCAM control byte

- The format for each physical record must be as shown in Figure 7
(each block of each message contains the a-byte source ID field)

For BSAM files the DD card must specify the size of the largest
physical block in the file -- including the V prefix, the TCAM control
byte, and the source ID. The system obtains the DATE and TIME
information for the input CD entry (via the os TIME macro), and also a
unique buffer for the file. The user may intermix TCAM queues and BSAM
files in one program. In this instance all TeAM queues share a common
buffer as previously described, the buffer size being determined either
as the default size, or as the BLKSIZE of the DeB parameter on the DD
card for the first TeAM queue: each BSAM file has its own unique buffer,
the buffer size being determined from the BLKSIZE of the DCB parameter
on the DD card for each file.

The codes used in the TCAM control byte, and their meanings, are":

X'F1'
x' FS'
X'40'
x' F4'
X'F2'
X'F6'
X'F3'
X'F7'

Meaning

First block of multiblock message
First block of multiblock message, end of segment indicated
Intermediate data block
Intermediate data block, end of segment indicated
Last block of multiblock message
Last block of multiblock message, end of segment indicated
Single block message
single block message, end of segment indicated

Note: If the user prepares a SAM file for input, then he must insert
the TeAM V prefix and the TeAM control byte, using the codes specified.
The SEND statement can be used to create a properly formatted SAM file
for subsequent input: COBOL then adds bytes 1 through 13 automatically_

1 S 6 14

r-----------T--T-----------~-----------T---------]-l---------------' I I I I I
I I I I I L ___________ ~ __ ~ _______________________ ~________ _ ________________ J

~ '-v-'_ ~ _ "____ ~ ____

V
prefix

TeAM
control
byte

Source ID

Figure 7. Structure of TCAM Record

Data

Teleprocessing (TP) FeatUre 49

Execution of the IF MESSAGE statement, when the named. queue is
serviced by BSAM, always results in a message count of 1 until
end-of-file has been detected. After end-of-file has been detected, a
count of 0 is always returned.

When the RECEIVE statement is executed, and the named queue is
serviced by BSAM, the CD contains the source for the last block
transferred. The BSAM end-of-file condition is treated as an ETI.
Execution of a subsequent RECEIVE statement with the NO DATA option
causes the appropriate NO DATA exit to be taken. If the NO DATA option
is omitted, a STOP RUN is executed.

The user can create properly formatted messages for subsequent test
input by using the SEND statement. When the SEND statement is executed,
and ESI is indicated, the system sets the appropriate bit of theTCAM
prefix ON.

If the output (SEND) file is ·to be printed, the control characters
specified in the DD card for the file must indicate that ASA print
control characters are to be used. The TCAM control byte occupies the
print control position of the record, and the TCAM control characters
are valid ASA characters. The block size of the output record,
therefore, should not indicate a value greater than the print line of
the printer.

50

STRING MANIPULATION

String manipulation statements allow the COBOL programmer greater
flexibility in data manipulation. with the STRING statement he can
concatenate two or more subfields into a single field. With the
UNSTRING statement he can separate contiguous data in a single field
into multiple logical subfields. The subfields need not be contiguous.

STRING Statement

The STRING statement provides juxtaposition of the partial or complete
contents of two or more data items into a single data item.

r--------------~---,
I Format I
~--~

{
identifier-l} [identifier-2] {identifier-3}

STRING . • •• DELI~ITED BY literal-3
literal-l literal-2 §IZE

[{
identifier-4}[identifier-5] ••• { identifier-6}

DELIMITED BY literal-6]
literal-4 literal-5 SIZE

...
INTO identifier-7 [WITH POINTER identifier-8]

[ON OVERFLOW imperative-statement]
L ___ J

All literals must be described as nonnumeric literals. Each literal
may be any figurative constant without the optional word ALL.

All identifiers, except identif'ier-8, must be described implicitly or
explicitly as USAGE IS DISPLAY. Identifier-3 and identifier~~ must each
reference a fixed length data item.

Identifier-7 must represent an elementary data item without editing
symbols. If a SEPARATE SIGN clause is specifi.ed, it is ignored during
execution of the STRING statement.

Identifier-8 must represent an elementary numeric integer data item
of sufficient size to contain a value equal to the size plus 1 of the
area referenced by identifier-7.

All references to identifier-1, identifier-~, identifier-~,
literal~l, literal-2, and literal-3 apply equally to identifier~~,
identifier-5, identifier-6, litera!~~, l!te~I-5, and li~~~l-~,
respectively, and all repetitions thereof.

Identifier-1, literal-1, identifier-2, an4 literal-2 represent the
sending items. Identifier-7 represents the receiving item.

Literal-3 and identifier-3 indicate the character(s) delimiting the
move. If the SIZE phrase is used, the complete data item defined by
identifier-1, literal-1, identifier-2, literal-2 is moved.

String Manipulation 51

When a figurative constant is specified as !~~~~1-1, lil~~!~~, it
refers to an implicit 1-character data item whose USAGE IS DISPLAY.

When the STRING statement is executed, the transfer of data is
governed by the following rules:

• Those characters from the sending item(s) are transferred to the
receiving item in accordance with the rules for alphanumeric to
alphanumeric moves, except that no SPACE filling is provided. (See
the MOVE statement in "Procedure Division" of IBM OS Full American
National Standard COBOL, Order No. GC2S-6396.)

• If the DELIMITED phrase is specified without the SIZE option, the
contents of each sending item are transferred to the receiving data
item in the sequence specified in the STRING statement, beginning
with the leftmost character of the first sending item, and
continuing from left to right through each successive sending item
until either:

1. The delimiting character(s) (literal-3/identifier-3, or
literal-6/identifier-6) for this sending item are reached, or

2. The rightmost character of this sending item has been
transferred.

The delimiting character(s) are not transferred into the receiving
data item. When the receiving field is filled, or when all of the
DELIMITED data in all of the sending fields has been transferred,
the operation is ended.

• If the DELIMITED phrase is specified with the SIZE option, the
entire contents of each sending item are transferred, in the
sequence specified in the STRING statement, to the receiving data
item. The operation is ended either when all data has been
transferred or when the receiving field is filled.

The POINTER option may be used explicitly by'the programmer to
designate where data is to be placed in the receiving area. If the
POINTER option is specified, identifier-S is explicitly available to the
user, and he is responsible for setting its initial value. The initial
value ,must not be less than one and must not exceed the number of
character positions of the receiving item. (Note that the POINTER item
must be defined as of sufficient size to contain a value equal to the
size of the receiving item plus one. This precludes the possibility of
arithmetic overflow when the system updates the pointer.) The following
rule applies:

• Conceptually, when the STRING statement is executed, the following
actions occur. Characters are transferred into the receiving item
one at a time, beginning at the character position indicated by the
POINTER value. After each character is positioned, the value of the
POINTER item (identifier-S) is increased by one. The value
associated with the POINTER item is changed only in this manner. At
the termination of any STRING, operation, the value in the POINTER
item always points to one character beyond the last character moved
into the receiving item.

Note: The POINTER value may therefore be used in a subsequent STRING
statement to place additional characters immediately to the right of
those already placed in the receiving item.

If the POINTER option is not specified, the STRING statement acts as
if the user had specified a pointer with an initial value of one. When
the statement is executed, the implicit pointer is incremented as
described above. The implicit pointer is not available to the user.

52

At the end of execution of a STRING statement, only that portion of
the receiving item referred to during execution of the STRING statement
is changed. All other portions of the receiving item contain data that
was present before this execution of the STRING statement.

If at any time during or after initialization of the STRING
statement, but before execution of the STRING statement is completed,
the value associated with the POINTER item is less than one, or exceeds
the number of character positions in the receiving item, no (further)
data is transferred, and, if specified, the imperative-statement in the
ON OVERFLOW option is executed. If the ON OVERFLOW option is not
specified and the conditions described above are encountered, control
passes to the next statement as written.

UNSTRING Statement

The UNSTRING statement causes contiguous data in a sending field to be
separated and placed into multiple receiving fields.

r--,
I Format I
~--~

UNSTRING identifier-l

{
identifier-2}

[DELIMITED BY [ALL] [OR [ALL]
literal-l {

identifier-3 }
] ...]

literal-2

INTO identifier-4 [DE~!MITER IN identifier-5]

[COUNT IN identifier-61

[identifier-7 [DELIMITER IN identifier-S]

[COUNT IN identifier-9]] •••

[WITH POINTER identifier-10] [TALLYING IN identifier-ll]

[ON QVERFLOW imperative-statement]
L ___ _

Each l~teral must be described as nonnumeric. In addition, each
literal may be any figurative constant without the optional word ALL.

Identifier-l, identifier-2, identifier-3, identifier-5, and
identifier-S must each be described, implicitly or explicitly, as an
alphanumeric data item.

Identifier-4 and identifier-7 must each be described, implicitly or
explicitly, as USAGE-oISPLAY~---

Identifier-6, identifier-9, identifier-10, and identifier-ll must be
described as elementary numeric integer data items.

No ideniifier may name a level-SS entry.

The DELIMITER IN option and the COUNT IN option may be specified only
if the DELIMITED BY option is specified.

String Manipulation 53

All references to identifier-2, literal-i. identifier-4,
identifier-5, and identifier-6 apply equally to identifier-3, literal-2,
identifier-7, identifier-B, and identifier-9, respectively, and all
repetitions thereof.

Identifier-l represents the sending area.

Identifier-4 represents the data rece1v1ng area. Identifier-5
represents the receiving area for delimiters.

Literal-lor identifier-2 specifies a delimiter. No more than 15
delimiters may be specified.

Identifier-6 represents the count of the number of characters within
the sending area isolated by the delimiters for the move into the
current receiving area. This value does not include the count of the
delimiter character(s).

Identifier-l0 contains a value that indicates a relative character
position within the sending area.

Identifier-ll is a counter that records the number of receiving areas
acted upon during the execution of the UNSTRING statement.

When the ALL option is specified, two or more contiguous occurrences
of literal-lor of identifier-2 are treated as if they were only one
occurrence. However, identifier-5 (the receiving area for delimiters)
contains as many complete occurrences of the delimiter as are present or
as it can hold, whichever is smaller.

When ALL is specified, and two or more delimiters are found, as much
of the first occurrence of the delimiter as will fit is moved into
ident1fier-5. Each additional occurrence of the delimiter is moved into
identifier-5 only if the complete occurrence will fit.

When ALL is not specified, and the examination encounters two
contiguous occurrences of literal-lor identifier-2, the current
receiving area for data is either space-filled or zero-filled, according
to the description of the receiving area.

When a figurative constant is used as a delimiter, it stands for a
single character nonnumeric literal. Two or more occurrences of the
figurative constant are treated as if they were only one occurrence.
However, identifier-5 (the receiving area for delimiters) contains as
many occurrences of the figurative constant as are present or as it can
hold, whichever is smaller.

Literal-lor identi~ie~=~ may contain any characters in the EBCDIC
character set.

Each literal-lor identifier-2 represents one delimiter. When a
delimiter contains two or more characters, all of the characters must be
present in contiguous positions in the sending field, and in the
sequence specified, to be recognized as that delimiter.

When two or more delimiters are specified in the DELIMITED BY option,
an OR condition exists. Each non-overlapping occurrence of anyone of
them is considered a delimiter, and is applied to the sending field in
the sequence specified in the UNSTRING statement. For example, if
DELIMITED BY AB OR BC is specified, then an occurrence of either AB or
BC in the sending field is considered a delimiter; an occurrence of ABC
is considered an occurrence of AB.

54

When the UNSTRING statement is initiated~ the current rece1v1ng area
is identifier-4. Data is transferred from identifier-1 to identifier-4
according to the following rules:

• If the POINTER option is specified the string of characters in the
sending area is examined beginning with the relative character
position indicated by the contents of the POINTER item. If the
POINTER option is not specified, the character string is examined
beginning with the leftmost character position.

• If the DELIMITED BY option is specified, the examination proceeds
left to right until a delimiter specified by either literal-! or the
value in identifier-2 is encountered. If the end of the sending
item is encountered before the delimiting condition is met, the
examination terminates with the last character examined.

• If the DELIMITED BY option is not specified, the number of
characters examined is equal to the size of the current receiving
area. The size of the receiving area depends on its data category:

1. If it is alphanumeric or alphabetic (without SPACE insertion
characters), its size is equal to the size of the current
receiving area.

2. If it is alphanumeric edited, then its size is equal to the size
of the current receiving area less a number equal to the sum of
the number of simple, special, and fixed insertion characters.

3. If it is alphabetic (~~th SPACE insertion characters), then it
is treated as if it were alphanumeric edited.

4. If it is numeric, then the size is equal to the integer portion
of the current receiving field, including scaling characters.

5. If it is numeric edited, its size is equal to the size of the
integer portion of the current receiving field less a number
equal to the sum of the number of fixed, simple, and special
insertion characters, minus one, if the integer portion contains
floating insertion characters. (Simple insertion characters
embedded within the floating string are included in the count of
simple insertion characters.)

6. If it is described with one or more P'S in its PICTURE, then:

a. If the P's appear to the left in the PICTURE character
string, it is considered to be of zero length.

b. If the P's appear to the right in the PICTURE character
string, its total integer size is considered to be the
length of the PICTURE string, including the P·s. (For
example, if the sending area contains the value 1234 and the
receiving area is described with the PICTURE 99PP, then
after execution of the UNSTRING statement, the receiving
area contains the value 12. The UNSTRING statement bypasses
34.)

7. If it is described with the SEPARATE SIGN clause, one fewer than
the number of digit positions is placed in. the receiving area.

• The characters thus examined (excluding the delimiting character(s).
if any) are treated as an elementary alphanumeric data item, and are
moved into the current receiving area according to the rules for an
alphanumeric move. (See the MOVE statement in the Procedure
Division chapter of IBM OS Full American National Standard COBOL,
Order No. GC28-6396.) Note that if two delimiters are adjacent,

string Manipulation 55

that is, with no data characters between them, the null receiving
field is filled with zeros or spaces, depending on its description.

• If the DELIMITER IN option is specified, the delimiting character(s}
are treated as an elementary alphanumeric data item and are moved
into identifier-S according to the rules for an elementary move. If
the delimiting condition is the end of the sending area, then
identifier-S (the DELIMITER) is space-filled or zero-filled
according to its PICTURE character string.

• If the COUNT IN option is specified, a value equal to the number of
characters thus examined (excluding the delimiter character(s), if
any) is moved into identifier-6 according to the rules for an
elementary move.

• If the DELIMITED BY option is specified the string of characters is
further examined beginning with the first character to the right of
the delimiter. If the DELIMITED BY option is not specified the
string of characters is further examined beginning with the
character to the right of the last character transferred.

• After data is transferred to identifier-4, the current receiving
area becomes identifier-7. The procedure described is then repeated
either until all the characters in the sending area have been
transferred, or until there are no more unfilled receiving areas.

The initialization of the data items associated with the POINTER
phrase and the TALLYING phrase is the responsibility of the user.

The contents of the data item referenced by identifier-10 (the
POINTER item) behave as if incremented by one for each character
examined in the sending area. When the execution of an UNSTRING
statement with a POINTER option is completed, the contents of
identifier-10 contain a value equal to the initial value plus the number
of characters examined in the sending area.

When the execution of an UNSTRING statement with the TALLYING option
is completed, the contents of identifier-ll contain a value equal to the
initial value plus the number o~data:receiving areas acted upon
(including null fields).

Either of the following situations causes an overflow condition:

• An UNSTRING statement is initiated, and the value in the POINTER
item (identifier-10) is less than one or greater than the size of
the sending area.

• If, during the execution of an UNSTRING statement, all receiving
areas have been acted upon, and the sending area still contains
characters that have not been examined.

When an overflow condition exists, the UNSTRING operation is
terminated. If an ON OVERFLOW option is specified, the
imperative-statement included in the ON OVERFLOW option is executed. If
the ON OVERFLOW option is not specified, control passes to the next
statement as written.

56

COBOL LIBRARY MANAGEMENT FACI~ITY

under previous versions of Full American National Standard COBOL, all
programs and subprograms, plus their required COBOL library subroutines,
were linked into one load module for execution in one partition/region.
Thus, many copies of one COBOL library subroutine might be resident in
core storage at one time, one in each partition/region. The COBOL
Library Management Facility is an optional feature that allows a single
copy of the COBOL library subroutines to be shared by all COBOL programs
in the same or different partitions/regions.

When the library management facility is used, the COBOL library
subroutines may be wholly or partially resident in the MVT Link Pack
Area (LPA) or in the MFT Resident Reusable Routine area (RRR), or they
may be resident within each partition/region. (Four routines cannot be
so placed -- the subroutine used for intraregion/intrapartition
communication, the queue structure description routine, a STOP RUN
routine, and a special DISPLAY routine.) The actual physical location
of these routines is transparent to the executing program.

The primary advantage in the placement of the COBOL Library
Subroutines in the LPA/RRR area is the economy it allows in main storage
allocation. Though the LPA/RRR area must be made larger to accomodate
all the required COBOL library subroutines, each region/partition no
longer requires its own copy.

To be able to place the COBOL subroutines in the LPA/RRR area, the
user must execute a utility program to add two members to the system
parameter library. The members are:

1. A User List a list of all names and all aliases for those COBOL
subroutines the user wishes to place in the LPA/RRR area.

2. A Linkage Routine that allows the concatenation of the system link
library with the COBOL subroutine library, or with a private
library containing selected COBOL subroutines. (Note that if the
user wishes to place selected COBOL subroutines into his private
library, he must execute a utility program to catalog that
library.)

At initial program loading (IPL) time, the user identifies the ~
list to the system. The system then uses the linkage routine to place
the listed COBOL subroutines into the LPA/RRR area.

Note: If the user does not wish to place any COBOL subroutines.in the
LPA/RRR area, he need not execute the utility program mentioned above.
He may still make use of the COBOL Library Management facility; however,
all library subroutines will be loaded into his own region/partition
when they are needed by one or more programs, and deleted when they are
no longer needed. Thus, not all library subroutines needed by all
programs in the region need be resident at the same time. In this case,
however, the user must supply a job control card at execution time
pointing to the COBOL subroutine library, or to his own private library
of COBOL subroutines.

A complete discussion of load module location is included in the
publication:

IBM System/360 operating_§y~tem: supervisor Services, 'Order
No. GC28-6646.

COBOL Library Management Facility 57

Note that the required COBOL library subroutines are no longer part
of the COBOL program load module when this option is selected:
therefore, secondary storage needed for the COBOL load module is
decreased, due to the smaller size of the module. There is, however,
some additional overhead if required subroutines are not resident in the
LPA/RRR and must be loaded into the region/partition of the requesting
program.

Specifying the COBOL Library Management Facility

The COBOL Library Management Facility is optioned at compile time
through the PARM field of the EXEC job control statement. The option is
in the following form:

PARM=RESIDENT
which specifies that the COBOL Library Management Facility will be
used.

PARM=NORESIDENT
which ~pecifies that the COBOL Library Management Facility will not
be use~. NORESIDENT is the default option.

In any given region/partition, if the COBOL Library Management
Facility is used at all, it must be used by the main program and by all
subprograms in that region/partition. Otherwise, multiple copies of
COBOL library subroutines may be resident at the same time and cause
unpredictable results.

In a region/partition using the COBOL Library Management Facility, a
single eopy of each COBOL library subroutine selected at IPL time is
shared by all programs and subprograms loaded into that region/partition
(all such sharing programs must specify the COBOL Library Management
Facility). This ~ame single copy is also used by all programs and
subprograms loaded into other regions/partitions using the COBOL Library
Management Facility. The COBOL library subroutines are placed in the
LPA/RRR area.

For a region/partition not using the COBOL Library Management
Facility, the COBOL object program and the COBOL library subroutines it
uses are link edited together into one load module.

If COBOL library subroutines that were not loaded into the LPA/RRR
area at IPL time are required for execution of the program, and the
COBOL Library Management Facility is being used, then:

58

• For a main program, such subroutines are loaded into the
region/partition before execution of the main program.

• For a subprogram, those required subroutines that have not yet been
loaded are loaded into the region/partition directly.before
subprogram initialization. Thus, there is only one copy of the
subroutine resident in each region/partition.

Programming considerations

For the dynamic CALL and CANCEL functions, the COBOL Library Management
Facility is an implied required feature. (See "Dynamic Subprogram
Linkage.")

The dynamic CALL/CANCEL statements are used in conjunction with the
COBOL Library Management Facility. PARM=DYNAM implies the library
management facility, even when the parameter RESIDENT is omitted or
PARM=DYNAM,NORESIDENT is coded.

When NODYNAM and NORESIDENT are specified, or implied by default, and
a CALL identifier or CANCEL identifier statement occurs in the source
program~eing compiled, the librarY-management facility is automatically
optioned, and a printed indication is given in the compiler output.

Programs written and compiled with previous versions of the IBM OS
Full American National Standard COBOL compiler are compatible without
recompilation. such programs do not utilize the COBOL Library
Management Facility.

All programs and subprograms within one region/partition must be
compiled either using PARM=RESIDENT or using PARM=NORESIDENT.
otherwise, results may be unpredictable.

COBOL Library Management Facility 59

A new option of the CALL statement and the addition of the CANCEL
statement permit dynamic loading and deletion of COBOL subprograms in
the COBOL processing environment.

The CALL statement, as it has previously been specified for IBM OS
Full American National Standard' COBOL, has been static. That is, the
main COBOL program and all subprograms invoked with the CALL statement
must have been part of the same load module. Thus, when a subprogram
was called it was already core-resident, and a branch to it occurred.
Subsequent execution of CALL statements entered that subprogram in its
last-used state. If alternate entry points were specified, then any
CALL to the subprogram could select any of the alternate ENTRY points at
which to enter the subprogram. If the linking of all subprograms with
the main program resulted in a load module that required more main
storage than was available, then the user could utilize the Segmentation
feature. Now, with the implementation of the dynamic CALL and CANCEL
statements, the COBOL user can control the modules that are to be
core-res iden t.

For the Version 4 Compiler, the CALL statement can also be specified
as dynamic; that is, the called subprogram is not link edited with the
main program, but is instead link edited into a separate load module,
and at execution time is loaded only if and when it is required (that
is, when it is called).

Each subprogram invoked with a dynamic CALL statement may be part of
a different load module, which is a member of the system link library or
of a user-supplied private library. The execution of the dynamic CALL
statement to a subprogram that is not core-resident results in the
loading of that subprogram from secondary storage into the
region/partition containing the main program, and a branch to the
subprogram.

Thus, the first dynamic CALL to a subprogram obtains a fresh copy of
the subprogram. Subsequent calls to the same subprogram (either by the
original caller or by any other subprogram within the same
region/partition) result in a. branch to the same copy of the subprogram
in its last-used state. However, when a CANCEL statement is issued for
that subprogram, the storage occupied by the subprogram is freed, and a
subsequent CALL to the subprogram will function as though it were the
first. A CANCEL statement referring to a called subprogram may be
issued by a program other than the original caller. In order for the
CALL statement to function as de'fined by CODASYL, the user subprograms
must be link edited as non-reentrant and non-serially-reusable.

Specifying the Dynamic CALL

Through the PARM field of the EXEC job control statement, the user can
specify the mode (static or dynamic) of the CALL literal option. The
parameters are specified as follows:

I

PARM=DYNAM
indicates to the compiler that all subprograms are to be
dynamically loaded at object time.

Dynamic Subprogram Linkage 61

PARM=NODYNAM
indicates to the compiler that subprograms invoked through the CALL
literal statement are to be linked with the main program into a
single load module. PARM=NODYNAM is the default option. (Note
that subprograms invoked through the CALL identifier statement are
always dynamically loaded at object time.)

In the EXEC job control statement, when the combination
PARM=DYNAM,NORESIDENT occurs, the system overrides the NORESIDENT
option, since DYNAM implies the use of the COBOL Library Management
Facility.

When the dynamic CALL statement is used at object time, the COBOL
Library Management Facility must also be used by the main program and
all subprograms ill one region/partition. Otherwise, multiple copies of
library subroutines may be resident at one time and cause unpredictable
results.

User subprograms that are to be invoked at object time with the
dynamic CALL statement must be members of the system link library or of
a user-supplied private library.

In the sections that follow, the language for both the static and the
dynamic CALL statement is described. The CANCEL statement, which
functions only for programs that have been dynamically called, is also
described.

CALL statement

The CALL statement permits communication between a COBOL object program
and one or more COBOL subprograms or other language subprograms.

r---,
I Format 1 . . I
~--i I ., I
I CALL literal-l [USING identifier-2 [identifier-31 •••]'. I
I I l __ ~ _________ J

.. r--,
I Format 2 I
~--i
I I
I CALL identifier-l [USING identifier-2 [identifier-31 ••• 1 I
I I l __ J

Li~eral-l must be a nonnumeric literal.
s

Identifier-l must be defined in such a way that its value can be a
program-name.

62

Literal-lor the contents of identifier-l must conform to the rules
for the formation of a program-name. The first eight characters of
program-name are used as the identifying name of the program and should
therefore be unique. since the system expects the first character of
program-name to be alphabetic, the first character, if it is numeric, is
converted as follows:

o to J
1 through 9 to A through I

Since the system does not allow the hyphen as a' valid character, the
hyphen is converted to zero if it appears as the second through eighth
character of program-name.

Literal-lor the contents of identifier-l must be the name of the
program that is being called, or a name of an entry point in the called
program. The program in which the CALL statement appears is the calling
program. The first eight characters of literal-lor identifier-i are
used to make the correspondence between the calling program and the
called program.

When the called program is to be entered at the beginning of the
Procedure Division, literal-lor !dentifier-1 must specify the
program-name (in the PROGRAM-ID paragraph) of the called program. The
called program must have a USING clause as part of its Procedure
Division header if there is a USING clause in the CALL statement which
invoked it.

When the called program is to be entered at entry points other than
the beginning of the Procedure Division, these alternate entry points
are identified by an ENTRY statement and a USING option corresponding to
the USING option of the invoking CALL statement. In the case of a CALL
statement with a corresponding ENTRY, literal-lor identifier-i must be
a name other than the program-name, but they follow the same rules as
those for formation of a program-name.

Identifier-2, identifier-3, etc., specified in the USING option of
the CALL statement indicate those data items available to a calling
program that may be referred to in a called program. When the called
subprogram is a COBOL program, each of the operands in the USING option
of the calling program must be defined as a data item in the File
Section, Working-Storage Section, Linkage section, or Communication
Section. If the called program is written in a language other than
COBOL, the operands of the USING option may additionally be a file-name
or a procedure-name. If the operand of the USING option is a file-name,
the associated file must be opened in the calling program.

Names in the two USING lists (that of the CALL in the main program
and that of the Procedure Division header or of the ENTRY statement in
the called program) are paired in a one-to-one correspondenc~.

There is no necessary relationship between the actual names used for
such paired names, but the data descriptions must be equivalent. When a
group data item is named in the USING list of a Procedure Division
header or of an ENTRY statement, names subordinate to it in the
subprogram's Linkage Section may be employed in subsequent subprogram
procedural statements.

When group items with level numbers other than 01 are specified,
proper word-boundary alignment is required if subordinate items are
described as COMPUTATIONAL, COMPUTATIONAL-i, or COMPUTATIONAL-2.

Dynamic Subprogram Linkage 63

The USING option should be included in the CALL statement only if
there is a USING option in the called entry point, which is either
included in the Procedure Division header or in an ENTRY statement in
the called program. The number of operands in the USING option of the
CALL statement should be the same as the number of operands in the USING
option of the Procedure Division header or ENTRY statement. If the
number of operands in the USING option of the CALL statement is greater
than the number in the USING option of the called program, only those
specified in the USING option of the called program may be referred to
by the called program.

Called programs may contain CALL statements. However, a called
program must not contain a CALL statement that directly or indirectly
calls the calling program. If it does, the run unit is terminated.

A called program may not be segmented.

Format 1: When the literal-1 option is specified, th~n, depending on
the PARM field of the EXEC job control statement, the CALL statement may
be either static or dynamic.

If PARM=NODYNAM is specified in the EXEC statement, then the CALL
literal-1 statement is static, and the following considerations apply:

• The programmer may specify !!~eral-1 as a program-name or as an
alternate entry point, in any order.

• The first time a called program is entered, its state is that of a
fresh copy of the program. Each subsequent time the program is
entered, the state is as it was upon the last exit from the program.
Thus, the reinitialization of the following items is the
responsibility of the user:

GO TO statements that have been altered
TALLY
data items
ON statements
PERFORM statements
EXHIBIT CHANGED statements
EXHIBIT CHANGED NAMED statements

(EXHIBIT CHANGED and EXHIBIT CHANGED NAMED operands are compared
with the value of the item at the time of its last execution,
whether or not that execution was during another CALL to this
program. If a branch is made out of a PERFORM statement, after
which an exit is made from the program, the range of that PERFORM is
still in effect upon a subsequent entry.)

• The CANCEL literal statement may not be specified in this case. The
CANCEL identifier statement is accepted: however, the compiler then
options the PARM=RESIDENT parameter.

If PARM=DYNAMis specified in the EXEC job control statement, then
the CALL !iteral-1 statement is dynamic, and the following
considerations apply:

64

• A called program is in its initial state the first time it is called
within a run unit, and also the first time it is called after a
CANCEL statement for the called program has been executed.

• On all other entries into ·the called program, the state of the
called program remains unchanged from its state when last executed.
Thus, for such entries, it is the user's responsibility to
reinitialize certain items in the subprogram. The description of
the static CALL literal statement gives the list of specific items.

• Differing entry points for one subprogram should not be specified
unless an intervening CANCEL statement has been executed. (See note
after the Format 2 description.)

(For example, if subprogram A has been called using its program-name
as the entry point, then until a CANCEL statement for subprogram A
has been executed, subsequent CALL statements for subprogram A
should all use the program-name as the entry point. After a CANCEL
statement has been executed, however, some alternate entry point for
subprogram A may then be specified. That entry point should be the
one entry point specified until yet another CANCEL statement has
been executed.)

• Names prefixed by ILBO cannot be used as names of called
subprograms, or as names of alternate entry points.

Format 2: The CALL identifier-l statement is always dynamic, even when
PARM=NODYNAM is specified in the EXEC job control statement. The
following considerations apply:

• A called program is in its initial state the first time it is called
within a run unit, and also the first time it is called after a
CANCEL statement for the called program has been executed.

• On all other entries into the called program, the state of the
called program remains unchanged from its state when last executed.
Thus, for such entries, it is the programmer's responsibility to
reinitialize certain items in the subprogram. The description of
the static CALL literal-l statement gives the list of specific
items.

• Differing entry points for one subprogram should not be specified
unless an intervening CANCEL statement has been executed. (See Note
at the end of this description.)

• Names prefixed by ILBO cannot be used as names of called
subprograms, or as names of alternate entry points.

Note: Linking two load modules together results logically in a single
program with a primary entry point and an alternate entry point, each
with its own name. (Each name by which a subprogram is to be
dynamically invoked must be known to the system; each such name must be
specified in linkage editor control statements as either a NAME or an
ALIAS of the load module containing the subprogram.) Only if user
modules .are link edited with the attribute of non-reentrant and non
serially-reusable will a CANCEL statement guarantee a fresh copy of the
subprogram upon a subsequent CALL.

static and dynamic CALL statements may both be specified in the same
program. That is, when PARM=NODYNAM is specified, both the CALL
literal~l and CALL identifier-l options may be used. The CALL literal-l
statement results, in this case, in the subprogram so invoked being
link-edited with the main program into one load module. The CALL
identifier-l statement results in the dynamic invocation of a separate
load module. When a dynamic CALL statement and a static CALL statement
to the same subprogram are issued within one program, a second copy of
the subprogram is loaded. Therefore, care must be used to avoid
duplicate load modules.

Dynamic Subprogram Linkage 65

CANCEL statement

The CANCEL statement releases the main storage occupied by a called
'subprogram.

r--~-------,
I Format I
~--~-------------------i
I I
: CANCEL)literal-l t [literal-2] ••• :

I lidentifier-l) identifier-2 I
I I L __ J

Each literal specified in the statement must be a nonnumeric literal.

Each identifier specified in the statement must be defined in such a
'way that its value can be a program-name. (See the rules for
program-name in "CALL Statement.")

Each li~eral or identifier specified in the CANCEL statement must be
the same as the literal or identifier specified in the associated CALL
statement(s).

The CANCEL literal statement is invalid ~n a program in which NODYNAM
and NORESIDENT are either specified or implied. The CANCEL ~deg~ifi~~
statement is accepted under the same conditions, but the compiler then
options the RESIDENT parameter, and issues a warning message to that
effect.

Subsequent to the execution of a CANCEL statement, the program
referred to therein ceases to have any logical relationship to the
program in which the CANCEL statement appears. A subsequently executed
CALL statement by any program in the run unit naming the same program
will result in that program being entered in its initial state.

A logical relationship to a cancelled subprogram is established only
by execution of a subsequent CALL statement.

A called subprogram is cancelled either by being directly referred to
as the operand of a CANCEL statement' or by the termination of the run
unit of which the program is a member.

No action is taken when a CANCEL statement is executed naming a
program that has not been called in.this run unit or ,has been called and
is at present cancelled. Control passes to the next statement.

To guarantee the proper execution of the CANCEL statement for a
subprogram, then prior to the execution of the CANCEL statement, every
CALL statement for that subprogram should name the same entry point.
Following the execution of a CANCEL statement, a CALL statement may
specify a different entry point.

Called subprograms may contain CANCEL statements. However, a called
subprogram must not contain a CANCEL statement that directly or
indirectly cancels the calling program itself, or any other program
higher than itself in the calling hierarchy. In such a case, the run
unit is terminated.

·66

A program named in a CANCEL statement must not refer to any program
that has been called and bas not yet executed an EXIT PROGRAM or. GOBACK
statement. A program may, however, CANCEL a program that it did not
call, providing that in the calling hierarchy it is higher than or equal
to the program it is cancelling. For example, A calls B, and B calls C~
when A receives control it can cancel c; or A calls B, and A calls c~
when C receives control it can then cancel B.

ENTRY statement

The ENTRY statement establishes an entry point in a COBOL ~ubprogram.

r--, I Format I
~------~--~
I I
I ENTRY literal-l [USING identifier-l [identifier-21 ••• 1 I
I I L ___ ~ __________________________ J

Control is transferred to the entry point by a CALL statement in an
. invoking program.

Literal-l must be a nonnumeric literal. It must not be the name of
the called program, but it is formed according to the rules followed for
program-names.

Literal-l must not be the name of any other entry point or
program-name in the run unit.

A called program, once invoked, is entered at that ENTRY point whos~
operand literal-l is the same as the literal-lor identifier-l specified
in the CALL statement that invoked it.

USING Option

The USING option makes data items defined in the calling program
available in a called program.

The USING option may also be used at execution time to pass
parameters from the EXEC job control statement to a main COBOL p~ogram.

The USING option may be specified in a CALL stat.ement, an ENTRY
statement, or in the Procedure Division header. The three uses are
shown in the following formats:

r----------------~---~---,
I Format 1 (Within a Calling Program) I
~---~
I . I
I { literal-l } I
I CALL [USING identifier-2 [identifier-31 •••] I
I identifier-l I
I I L __ J

Dynamic Subprogram Linkage 67

r--,
I Format 2 (Within a Called Program) I
~--~
I I
I Option 1 I
I I
I ENTRY literal-1 [USIN§ identifier-2 [identifier-3] •••] I
I I
I Option 2 I
I I
I ~ROCEDUR~DIVISION [USING identifier-2 [identifier-3] •••]. I
I I L __ J

When the USING option is specified in the CALL statement, it must
appear on either the Procedure Division header of the called program, or
in an ENTRY statement in the called program.

The USING option may be present in the Procedure Division header or
ENTRY statement if the object program is to function under the control
of a CALL statement that contains a USING option. It may also be
present on the Procedure Division header when information is to be
passed from the EXEC job control statement to the main COBOL program.

The number of operands in the USING option of a called program must
be less than or equal to the number of operands in the corresponding
CALL statement of the invoking program.

When a called program has a USING option on its Procedure Division
header and linkage was effected by a CALL statement, where literal-lor
the contents of identifier-1 is the name of the called program,
execution of the called program begins with the first instruction in the
Procedure Division after the declaratives section.

When linkage to a called program is effected by a CALL statement,
where literal-lor the contents of identifier-1 is the name of an entry
point specified in an ENTRY statement of the called program, that
execution of the called program begins with the first statement
following the ENTRY statement.

When the USING option is present, the object program operates as if
each occurrence of identifier-2, identifier-3, etc., in the Procedure
Division had been replaced by the corresponding identifier from the
USING option in the calling program CALL statement. That is,
corresponding identifiers refer to a single set of data available to the

,calling program. The correspondence is positional, and not by name.

At execution time, the USING option may be used to pass parameters
from the EXEC job control statement to the main COBOL program. In this
case, a USING option on the Procedure Division header of a main program
may contain identifier-2 as its only operand. Information from the PARM
field of the EXEC job control statement is then available in the Linkage
Section at the location specified as identifier-2. The first two bytes
of identifier-2 contain a count (in binary) of the number of bytes of
information in the PARM field, and are set to zero if the PARM field was
omitted. The 2-bytefie1d should be described as PIC S9(4) COMP. Imme
diately following these two bytes is the information in the PARM field.

Each of the operands in the USING option of the Procedure Division
header or of the ENTRY statement must have been defined as a data item
in the Linkage Section of the program in which this header or ENTRY
statement occurs, and must have a level number of 01 or 77. Since the
compiler assumes that each level-01 item is aligned on a doub1eword
boundary, it is the user's responsibility to ensure proper alignment.

68

The following example shows a program using Format 1 of the CALL
statement with the USING option (PARM=NODYNAM has been specified):

IDENTIFICATION DIVISION.
PROGRAM-ID. CALLSTAT.

DATA DIVISION.

WORKING-STORAGE SECTION.
01 RECORD-l.

05 SALARY
05 RATE
05 HOURS

PICTURE S9(S)V99.
PICTURE S9V99.
PICTURE S99V9.

PROCEDURE DIVISION.

CALL nSUBPROGn USING RECORD-l.

CALL "PAYMASTR" USING RECORD-l.

STOP RUN.

The following example shows a program achieving the same results with
Format 2 -- the CALL identifier-l option:

IDENTIFICATION DIVISION.
PROGRAM-ID. CALLDYNA.

DATA DIVISION.

WORKING-STORAGE SECTION.
77 IDENT PICTURE XeS).

01 RECORD-l.
05 SALARY
05 RATE
05 HOURS

PICTURE S9(S)V99.
PICTURE S9V99.
PICTURE S 9 9V9.

PROCEDURE DIVISION.

MOVE nSUBPROq" TO IDENT •
CALL IDENT USING RECORD-l.

CANCEL IDENT.

MOVE "PAYMASTR" TO IDENT.
CALL IDENT USING RECORD-l •

•

STOP RUN.

Dynamic Subprogram Linkage 69

The following is an e~ample of a called subprogram which can be
associated with either of the preceding calling programs:

IDENTIFICATION DIVISION.
PROGRAM-ID. SUBPROG •

. .
DATA DIVISION •

•

LINKAGE SECTION.
01 PAYREC.

10 P.AY
10 HOURLY-RATE
10 HOURS

PICTURE S9(S)V99.
PICTURE S9V99.
PICTURE S99V9.

PROCEDURE DIVISION USING PAYREC.

GOBACK.
ENTRY "PAYMASTR" USING PAYREC •

•

GOBACK.

Processing begins in the calling program -- which may be either
CALLSTAT or CALLDYNA. When the first CALL statement is executed,
control is transferred to the first statement of the Procedure Division
in SUBPROG, which is the called program.

Note that in each of the calling programs the operand of the USING
option is identified as RECORD-1.

When SUBPROG receives control, the values withinRECORD-1 are made
available to SUBPROG; in SUBPROG, however, they are referred to as
PAYREC. Note that the PICTURE descriptions of the subfields within
PAYREC (described in the Linkage Section of SUBPROG) are the same as
those for RECORD-1.

When processing within SUBPROG reaches the first GOBACK statement,
control is returned to the calling program. Processing continues in
that program until the second CALL statement is issued.

Note that in CALLSTAT (statically linked) that the CANCEL statement
is not valid. In CALLDYNA, however, since the second CALL statement
refers to another entry point within SUBPROG, a CANCEL statement is
issued before the second CALL statement.

With the second CALL statement in the calling program, control is
again transferr.ed to SUBPROG, but this time processing begins at the
statement following the ENTRY statement in SUBPROG. The values within
RECORD-l.are again made available to SUBPROG through the matching USING
operand PAYREC. When processing reaches the second GOBACK statement,
control is returned to the calling program at the statement immediately
following the second CALL statement.

In any given execution of these two programs, if the values within
RECORD-1 are changed between the time of the first CALL and the second,
the values passed at the time of the second CALL statement will be the
changed, not the original, values. If the user wishes to use the
original values, then he must ensure that they have been saved.

70

with the Version 4 Compiler, the user can request a syntax-checking
compilation. Through the PARM field of the EXEC control statement, such
compilations can be requested unconditionally or conditionally.

When unconditional syntax-checking is requested, the compiler scans
the source text for syntax errors, and generates the appropriate error
messages, but does not generate object text.

When conditional syntax-checking is requested, the compiler scans the
source text for syntax errors, and generates the appropriate error
messages. If no message exceeds the W or C level, a full compilation is
produced. If one or more E-level or D-Ievel messages are produced, the
compiler generates the messages, but does not generate object text.

(A few syntax errors may not be detected when a syntax-checking
compilation is requested. When the compiler is released, a list of such
errors will be made available.)

Syntax-only compilation has the capability of considerably reducing
compile time. Unconditional syntax checking can reduce compilation time
more than conditional syntax checking.

When unconditional syntax checking is specified, all of the following
compile time options, if specified, are suppressed:

LOAD
XREF
SXREF
CLIST

NOSUPMAP
PMAP
DECK
TRUNC

FLOW
STATE
NAME

If optimized object code is requested, and unconditional syntax checking
is also requested, the object code is not produced. If symbolic
debugging is requested and unconditional syntax checking is also
requested, the symbolic debugging option is suppressed.

When conditional syntax checking is requested, the preceding options
are suppressed only if one or more E-Ievel or D-Ievel messages are
generated.

Unconditional syntax checking is assumed if all of the following
compile-time options are specified:

NOLOAD
NOXREF/NOSXREF

NOCLIST
NOPMAP

SUPMAP
NODECK

If neither unconditional nor conditional syntax checking is
specified, or if unconditional syntax checking is not assumed, a full
compilation -- including error messages, object text, and all other

.specified (or default) options -- is produced.

Syntax-Checking Compilation 71

APPENDIX A: VERSION 4 OBJECT-TIME SUBROUTINE LIBRARY

The Version 4 Object-time Subroutine Library is a partitioned data set
residing on a direct-access device, and contains the COBOL library
subroutines in load module form. The Version 4 Object-time Subroutine
Library is designed for use under the Operating System with object
modules produced by the Version 4 Compiler. The Version 4 Object-time
Subroutine Library is also being made available as a separate Program
Product.

COBOL library subroutines perform execution-time operations requiring
either repetitive or extensive coding. It is inefficient to place such
coding inline in the object module each time it is needed. Instead,
library subroutines are used to reduce the size of the object module.
Any library subroutines required to execute the problem program are
either combined with the object module at link-edit time or are
dynamically fetched during program execution.

To save even more main storage space, the Version 4 COBOL Library
Management Facility allows a single copy of such COBOL object-time
subroutines to be shared by problem programs in different partitions or
regions. This is controlled by the user through a compile-time option.
See the chapter on the COBOL Library Management Facility.

There are several major categories into which the object-time
subroutine library can be classified:

• Input/Output routines

o Conversion routines

• Arithmetic verb routines

• Sort feature interface routines

• Checkpoint/Restart routines

• Segmentation feature routines

• Teleprocessing routines

• Debugging routines

• other verb routines

The Version 4 Object-time Subroutine Library contains all subroutines
needed to support the new features of the Version 4 Compiler.

Appendix A: Version 4 Object-Time Subroutine Library 73

APPENDIX B: VERSION 4 CHANGES IN THE COBOL RESERVED WORD LIST

For Version 4, the following entries in the reserved word list must be
changed to appear as shown; the keys preceding the entries, and their
meanings, are:

(xa) before a word means that the word is an extension to American
National Standard COBOL.

(ca) before a word means that the word is a" CODASYL COBOL reserved word
not incorporated in American National Standard COBOL or in IBM
American National Standard COBOL.

(xac) before a word means that the word is an IBM extension to both
American National Standard COBOL and CODASYL COBOL.

(xa) CANCEL (xa) QUEUE
(xa) CD (xa) RECEIVE
(xa) COUNT (xac) RELOAD
(xa) DATE (xa) SEGMENT
(xa) DELIMITED (xa) SEND
(xa) DELIMITER (xac) SERVICE
(xa) DEPTH STATUS
(xa) DESTINATION (xa) STRING
(ca) DISABLE (xa) SUB-QUEUE-l
(xa) EMI (xa) SUB-QUEUE-2
(ca) ENABLE (xa) SUB-QUEUE-3
(xa) ESI (xa) SYMBOLIC
(xa) ETI (ca) TABLE
(ca) INITIAL (ca) TERMINAL
(xa) LENGTH (xa) TEXT
(xa) MESSAGE (xa) TIME
(xa) OVERFLOW (xa) UNSTRING
(xa) POINTER

Appendix B: Version 4 Changes in the COBOL Reserved Word List 75

The IBM 3505 card reader and the 3525 card punch are 80-column devices
that offer more flexible processing capabilities than former card
devices. The 3505 card reader can be used for sequential reading; it
can also be used for Optical Mark Read (OMR) processing. Both the 3505
and the 3525 support Read Column Eliminate (RCE) processing. The 3525
card punch, when equipped with appropriate special features, can be used
separately as a card reader, as a card punch, as an interpreting card
punch, and as a printer (either 2-line or multiline printing is
available); in addition, the read, punch, and print functions (any two
or all three) can be combined, so that those functions specified are all
performed during one pass of a card through the device.

Note: The interpreting card punch is considered one function. It
cannot be combined with the other functions, but is specified through
the DD statement for the data set.

The processing functions are all specified through new parameters of
the DD statement. For OMR and RCE processing, format descriptor card(s)
must also be included as the first card(s) of the data set. (For OMR
processing, the format descriptor specifies those columns that are
optically marked: for RCE processing, the format descriptor specifies
those columns that are to be ignored.) Detailed information on these
considerations is given in the publication IBM Systeml360 Planning_§~~g~
for IBM 3505 Card Reader and IBM 3525 Card Punch On §yst~mI~IQ, Order
No. GC21-5027.

The following paragraphs describe the special COBOL programming
considerations when these devices are used.

3505 OMR PROCESSING

FUnction-names SOl and S02 in the SPECIAL~NAMES Paragraph may be used to
select logical stacker 1 or logical stacker 2 under program control.

When stacker selection is specified, RESERVE NO ALTERNATE AREAS must
also be specified.

If the user wishes to inspect the substitution character (hexadecimal
"3F") placed in column 80 by the system for a defective optically marked
card, he must specify a record description of 80 characters. (Note that
the "3F" is place in both card column 80 and the defective (unreadable)
card column.

3505/3525 RCE PROCESSING

Function-names SOl and S02 in the SPECIAL-NAMES Paragraph may be used to
select logical stacker 1 or logical stacker 2 under program control.

When stacker selection is specified, RESERVE NO ALTERNATE AREAS must
also be specified.

When RCE processing is specified for input, the user must not refer
to the ignored columns (as specified by the format descriptor) or
results are unpredictable.

Appendix C: 3505/3525 Card Processing 77

When RCE processing is specified for output, any data in the COBOL
record that corresponds to the ignored columns (as specified by the
format descriptor) is not punched or printed.

3525 COMBINED FUNCTION PROCESSING

COBOL handles each of the separate functions to be combined as a
separate logical file. Each such logical file has its own file
structure and procedural processing requirements. However, because such
combined function files refer to one physical unit, the user must
observe certain restrictions during processing. The following sections
explain the programming requirements for combined function processing in
OS American National Standard COBOL.

The COBOL language does· not define the files as being combined
function files; instead, the combined functions are specified through
new parameters for the files'DD statements. (In this way, the user
can, if he so desires, process the same COBOL files as completely
separate read, punch, and print files.)

I -- ENVIRONMENT DIVISION CONSIDERATIONS

For each function, there must be a separate SELECT sentence written in
the Environment Division. Each read function file and each punch
function file must specify RESERVE NO ALTERNATE AREA(S).

SPECIAL-NAMES Paragraph

If stacker selection of punched output, or line control of printed
output is desired, mnemoni£~es for the purpose can be specified in
the SPECIAL-NAMES Paragraph. The mnemonic-names may be equated with the
following function-names:

Function-name
SOl
S02
COl
C02
C03

C12

Meaning
Stacker 1
Stacker 2
Line 1
Line 3
Line 5

•

Line 23

II -- DATA DIVISION CONSIDERATIONS

For each logical file defined in the Environment Division for the
combined function structure, there must be a corresponding FD entry and
01 record description entry in the File Section of the Data Division.

78

III -- PROCEDURE DIVISION CONSIDERATIONS

Input/output operations must proceed in a specified order in the
Procedure Division. In the 3525 device, the card passes first through
the reading station, next through the punching station, and last through
the printing station. Therefore, the following combined functions may
be specified, but only in the order shown:

Functions to be
combined

read/punch/print

read/punch

read/print

punch/print

Order of
Operations

read
punch

[print]

read
punch

read
[print]

punch
[print]

Associated COBOL
Statement

READ ••• AT END
WRITE ADVANCING/POSITIONING
WRITE ••• ADVANCING/POSITIONING

READ ••• AT END
WRITE ••• ADVANCING/POSITIONING

READ ••• AT END
WRITE ••• ADVANCING/POSITIONING

WRITE
WRITE

ADVANCING/POSITIONING
ADVANCING/POSITIONING

All required operations on one card must be completed before the next
card is obtained, or there is an abnormal termination of the job.

The following Procedure Division considerations in the COBOL source
program apply:

OPEN statement

For any specified function,. an OPEN statement must be issued before the
input/output operation for that function is attempted. The following
additional considerations apply:

• For the read function, the file must be opened INPUT.

• For the punch function and print function, the file must be opened
OUTPUT.

WRITE Statement -- Punch Function Files

If the user wishes to punch additional data into some of the cards and
not into others, he must issue a dummy WRITE statement for the null
cards, first filling the output area with SPACEs.

If stacker selection for the punch function file is desired, the user
can specify SOl (for stacker one) and S02 <for stacker two) as
function-names in the SPECIAL-NAMES Paragraph. He can then issue WRITE
ADVANCING statements using the associated mnemonic-names. Stacker
selection may be specified only for the punch function file.

Appendix C: 3505/3525 Card Processing 79

WRITE Statement -- Print FUnction Files

If the user wishes to print additional data on'some of the data cards
and not on others, he may omit the WRITE statement for the null cards.

Depending on the capabilities of the specific model in use, the print
file may be either a 2-line print file or a multiline print file. Up to
64 characters may be printed on each line.

For a 2-line print file, the lines are printed on line 1 (top edge of
card) and line 3 (between rows 11 and 12).

For a multiline print file· up to 25 lines of characters may be
printed.

If line control is not specified, then automatic single spacing is
provided. Any attempt to write beyond the limits of the card results in
abnormal termination of the job.

Line control is specified by issuing WRITE BEFORE/AFTER ADVANCING
statements, or WRITE AFTER POSITIONING statements for the print function
file. If line control is used for one such statement, it must be used
for all other WRITE statements issued to the file. The maximum number
of printable characters, including any SPACE characters, is 64. The
first character of the record defined must be reserved by the programmer
for the line control character; therefore, the record may be defined as
containing up to 65 characters.

Identifier and integer have the same meanings they have for other
WRITE ADVANCING or WRITE POSITIONING statements. However, such WRITE
statements must not increase the line position on the card beyond the
card limits, or abnormal termination results.

The mnemonic-name of the WRITE ADVANCING or WRITE POSITIONING
statement may also be specified. In the SPECIAL-NAMES Paragraph, the
following function-names may be associated with the mnemonic-names:

Function-name
COl
c02
C03

•

C12

Meaning
Line 1
Line 3
Line 5

Line 23

(Note that for a 2-line print file, only COl and C02 are valid as
function-names.)

CLOSE Statement

When processing is completed, a CLOSE statement must be issued for each
of the combined function files. After a CLOSE statement has been issued
for anyone of the functions, an attempt to perform processing for any
of the functions results in abnormal termination.

80

VERSION 4 GLOSSARY

For Version 4, the following additions to the glossary will be made.

communication Description: An implicitly defined fixed-format storage
area that serves as the interface between the COBOL object program and
the Message Control programCMCP). It is specified in the Communication
Section.

Communication Description Entry: An entry in the Communication Section
of the Data Division that is composed of the level indicator CD,
followed by a cd-name, and then optionally fOllowed by a set of
independent clauses. It describes the interface between the MCP and the
COBOL object program.

Communication Section: The section in the Data Division that describes
the interface area between the MCP and the COBOL program. It is
composed of one or more CD description entries that define the fields in
the interface area.

communications Device: a mechanism (hardware or hardware-software)
capable of sending data to a queue and/or receiving data from a queue.
This mechanism may be a computer or a peripheral device. One or more
programs containing Communication Description entries and residing
within the same computer define one or more of these mechanisms.

Delimiter: A character or sequence of contiguous characters that
identify the end of a string of characters and that separate the string
of characters from the following string of characters. A delimiter is
not part of the string of characters that it delimits.

Destination: The symbolic identification of the receiver of a
transmission (i.e., a message) from a queue.

Destination Queue: An MCP storage queue for one or more messages from
one or more remote stations or to one or more remote stations.
Destination queues serve as buffers between a COBOL Teleprocessing
program and the remote stations.

Input Queue: An MCP destination queue from which the COBOL
Teleprocessing program accepts messages from the remote stations.

Line-control Cards: A set of control cards that request a symbolically
formatted dump just before execution of user-selected COBOL statements .•
The format of the dump, and the number of times it is to be created can
also be controlled by the user.

Message: A string of characters associated with an end-of-message
indicator or end-of-transmission indicator. A message may consist of
one or more related message segments.

Message Control Program CMCP): A TCAM communications control program
that supports the processing of messages.

Message Indicators: Three message indicators are allowed in a COBOL
program. Each signals that some specific condition exists:

·ETI Indicates logical end-of-transmission of a group of messages
EMI Indicates end-of-message
ESI Indicates end-of-segment

version 4 Glossary 81

The hierarchy of message indicators is in the order of the preceding
list. Within this hierarchy an ETI is conceptually equivalent to an
ETI" EMI, and ESI; an EM! is conceptually eqpivalent to an EMI and an
ESI. Thus, a segment may be~erminated by an ESI, EMI, or ETI, and a
message may be terminated by an EMI or ETI.

Message Segment: A string of characters that forms a logical
subdivision of a message, and is normally associated with an
end-of-segment indicator. A message segment is the equivalent of a TCAM
record. (See "Message Indica~ors.")

Nonswitched Line: A line that is a continuous link between a remote
station and the computer. It may connect the central computer with
either a single station or more than one station.

output Queue: An MCP destination queue into which the COBOL
Teleprocessing program places messages for one or more remote stations.

Overflow Condition: In string manipulation, a condition that occurs
when the sending area(s) contain untransferred characters after the
receiving area(s) have been filled.

Program-Control cards: A set of control cards that at object time
requests a symbolically formatted abnormal termination dump, and
optionally outlines the scope of operations of the symbolic debugging
feature.

Queue: A logical collection of messages awaiting transmission or
processing.

Queue Blocks: Blocks containing status and control information
pertaining to the message being processed and to each active queue.
Created when a queue is first accessed by a COBOL Teleprocessing run
unit, all queue blocks in one region/partition are chained to each
other.

Queue Name: A symbolic name that indicates to the MCP the logical path
by which a message, or portion of a completed message, may be accessible
in a queue. (The first eight characters must match the DOna me of the DO
statement that specifies the queue.)

Remote Station: A control unit and one or more input/output devices
connected to the central computer through common carrier facilities. A
remote station may be a terminal device or it may be another computer.

Source: The symbolic identification of the originator of a transmission
to a queue.

Switched Line: In 'Teleprocessing, a ,communication line for which no
single continuous path between the central computer and the remote
station exists. Several alternative paths are available for
transmission; the common carrier switching equipment selects the path.
The remote station is continuously connected to the switching center by
an access line associated with a specific telephone number.

82

(Where more than one page reference is given, the major reference is first.)

abnormal termination
and CANCEL statement 66
and symbolic debugging 17

abnormal termination dump
example 19
symbolic debugging 17,19

accessing queue structures through COBOL
43-46

acknowledgment 4
alignment rules

RECEIVE statement 38
SEND statement 39
STRING statement 52
UNSTRING statement 55,56
USING option 68

ALL option
of STRING statement 51
of UNSTRING statement 53,54

alphanumeric data items in UNSTRING
statement 53

altered GO TO and CALL statement 64
alternate entry points

dynamically invoked subprograms 65
statically invoked subprograms 61,64

arithmetic verb subroutines, mentioned 73
ASA print control characters in COBOL TP
test program 50

ASSIGN clause, device field as comments 15

boundary alignment
in Linkage Section 68
in USING lists 63,68

BSAM (basic sequential access method) in
COBOL TP test programs 49,50

buffer
allocation restriction

for 3505 processing 77
for 3525 processing 77,78

in TP programs
default size 47
and end indicator 25
and end key codes 25
overriding default size 47
and SEND statement 48
in test programs 49

C-level messages and syntax-checking
compilation 71

CALL statement
description 62-65
dynamic 64,65
examples 69,70
formats 62

identifier option 65
and library management 59
literal option 64,65
reinitialization and 64
restrictions on 64,65
static 64

called program
object of CALL statement 63
entry point restrictions 64,65
reinitialization and 64,65
segmentation restriction 64
USING option in 67,68,63

CANCEL statement
action of 61,66,67
and alternate entry points 65
description 66,67
and dynamic CALL statement 64,65
example 69,70
execution of 66
forces on PARMFRESIDENT 64
format 66
and library management 59
restriction on use 66
and static CALL statement 64

card processing by 3505/3525 77~80
CD (communication description) entry

COBOL/MCP interface 25,26,29
and condition-names 29
and COpy statement 29,36
definition 81
entries required 29
examples 34,35
FOR INPUT 28-34
FOR OUTPUT 28,29,34-36
formats 28,29
and MESSAGE condition 36
minimum number 29
optional record description 29
and RECEIVE statement 37
and SEND statement 39,40
syntax rules 29
VALUE clauses in '29

CD FOR INPUT
access to 29,30
description of 28-34
END KEY clause 32
examples 34
execution time considerations 47,48
FILLER in 33,34
format 28
implicit description 30
and message condition 36
MESSAGE DATE clause ' 31
MESSAGE TIME clause 31
minimum number 28,29
multiple queues with 29,30

Index 83

omission of
data-names 33,34
descriptive clauses 33,34,29

QUEUE DEPTH clause 33
and queue structures 43,44

and RECEIVE statement 37
STATUS KEY clause 32,33
SYMBOLIC QUEUE clause 30,31
SYMBOLIC SOURCE clause 31
SYMBOLIC SUB-QUEUE clauses 30,31
and testing programs 50
TEXT LENGTH clause 32

CD FOR OUTPUT
description of 28,34-36
DESTINATION COUNT clause 34,35
ERROR KEY clause 35
example 35
execution time considerations 47,48
format 28

-implicit description 34
minimum number 28,29
and multiple queues 29
omission of descriptive clauses 29
and SEND statement 39
STATUS KEY clause 35

values in 33
SYMBOLIC DESTINATION clause 35
TEXT LENGTH clause 35

cd-name
in CD entry 28,29
and message condition 36
and RECEIVE statement 37
and SEND statement 39

central computer, definition 23
checkpoint/restart subroutines 73
CICS (Customer Information Control System),

and COBOL programs 3
CLOSE statement and 3525 combined function

processing 80
COBOL library management facility

compatibility 59
description 57-59
and dynamic subprogram linkage 62
programming considerations 59
specification of 58
when implied 59

COBOL library subroutines
description 73
link edited with object program 58
and link pack area (LPA) 57,58
and resident reusable routine (RRR)
area 57,58

COBOL main program with USING option 68
COBOL message segment

and RECEIVE stateme,nt 37,38
and SEND statement 39,40
and TCAM record 25

COBOL object program
and CICS 3
and library subroutines 57,58,73
and link pack area 57,58
and resident reusable routine area

57,58
COBOL object-time subroutine library

84

and COBOL library management 73,57-59
description 73
and queue structures 41,43
as separate program product 7

COBOL TP program
buffer size in 47
CD entry in 28-36
data retrieval by 37-39,47,48
efficient message processing in 47
execution time considerations 47-50
interface with MCP 24-26,46,47
job control language for 46,47
and MCP queues 24-26
MESSAGE condition in 35,36,50
and message transmission 24,25
physical sequential organization of 47
queue references in 47,48
queue structures and 41-45,31,37,47
RECEIVE statement in 37-39,50
records considered variable 47
SEND statement in 39-41,49,50
system termination of 48
testing of 49,50
work area in 47,48

COBOL/MCP interface
illustrated 27
and MESSAGE condition 26,47
and RECEIVE statement 26,48
and SEND statement 26,48

codes
END KEY 32
ERROR KEY 35
STATUS KEY 33
in TCAM control byte 49

combined function processing on 3525
description 78-80
order of operations 79
restrictions 78-80

communication description, definition 81
communication description (see .CD entry)
communication lines, definition 23
Communication Section

definition 81
description 27-36
interface with MCP 25,26
placement in COBOL program 27
record~description entry in 28,29
(see also CD entry)

communications device, definition 81
compatibility of Version 4 14
compilation timing

and optimized object code 14,21
and symbolic debugging 14
and syntax-checking compilation 14,71

compiler features listed
Version 3 8-10
Version 4 7,8

compiler options for Version 4
evaluation of 15
and syntax-checking compilation 71

compound IF statements with message
condition 36,37

conditional syntax-checking
description 71
and reduction in compilation time 14,71
and suppression of compiler options 71

condition, message (see message condition)
condition-names

in CD entry 29,34,35
invalid with UNSTRING statement 54

control characters for TP
end codes 25,32
end indicators 25,40,41
error keys 35
status key 33,35,37,40
in test program 49,50
treated as data 40

conversion subroutines 73
COPY statement and CD entry

description 29,35
format 29

core storage (see main storage)
COUNT IN option of UNSTRING statement

action taken 54,56
restriction on specification 54

D-level messages and syntax-checking
compilation 71

data, control characters treated as 40
Data Division considerations, 3525 combined
function processing 78

data items
allowed in STRING statement 51
allowed in UNSTRING statement 53
paired in calling parameters 63

data movement
and STRING statement 51-53
and UNSTRING statement 55,56

data receiving area
in STRING statement 51-53
in UNSTRING statement 53-56

space or zero filled 54
data retrieval

by COBOL TP program 47,48
and RECEIVE statememt 48
and STATUS KEY field 48

data sets needed for symbolic debugging 17
DCB (data control block) parameter and

COBOL TP test programs 49
DD statement

DDname and RECEIVE statement 37
and input queues 46,47
and output queue 46,47
and queue analyzer routine 43
and testing TP programs 49,50
and TP execution time 47,49
and 3505/3525 processing 77

DDname
example in queue structure 44,45
following sub-queue name 46
in format 45
and MCP terminal table 44
and queue analyzer routine 43
as queue-name 44,45
as sub-queue name 46
syntax rules 46
and TCAM queues 44,45

debugging subroutines 73
DELIMITED BY option

of STRING statement 52
of UNSTRING statement 54-56

delimiter, definition 81
DELIMITER IN option of UNSTRING statement

action taken 56
when valid 54
as receiving area 53,56

delimiters
in STRING statement 51,52
in UNSTRING statement 54

destination, definition 81
DESTINATION COUNT as comments 34,35
destination queue

accessed by MCP 46
definition 81
and MCP 24
and RECEIVE statement 37
and SEND statement 39

device field, treated as comments 15
DISPLAY items

in STRING statement 51
in UNSTRING statement 53

doubleword alignment in Linkage Section 68
dump, symbolic debugging 17,19
DYNAM option of PARM parameter

and COBOL library management 59,62
and subprogram linkage 61,62,64,65

dynamic CALL statement
description 64,65
formats 62
implementation 61
with static CALL 65

dynamic dump, symbolic debugging 17
dynamic storage requirements, Version 4 11
dynamic subprogram linkage

description 61-70,7
formats 61,62,66-68
performance considerations 14

E-level messages and syntax-checking
compilation 71

EMI (end of message indicator)
and SEND statement 40
and 2 as end key code 25

end indicator
and end key code 25
meaning 25
and SEND statement 40,41
and STATUS KEY 41

end key code
and end indicator 25
meaning of 25,32,40
and SEND statement 40,41
and STATUS KEY field 41

END KEY clause
codes in 32
description 32
format of contents 32
updated by RECEIVE statement 37

end of message
and EMI end key indicator 25,40
and 2 end key code 25,32,40

end of message indicator
and end of data transfer 38
equivalent to end of transmission
indicator 40

and RECEIVE statement 38
and SEND statement 40
and testing TP programs 48
and 2 end key code 25,32,40

end of record (EOR) delimiter
and ESI 48
and SEND statement 48

Index 85

end of segment
and end key indicator 25,40
indicated by MCP 46
and 1 end key code 25,32,40

end of segment indicator
as data character 37
and end of data transfer 38
and RECEIVE statement 37,38
and SEND statement 40
and testing TP programs 49,50
and 1 end key code 25,40

end of transmission
and ETI end indicator 25,40
indicated by MCP 46
and 3 end key code 25,32,40

end of transmission indicator
and data retrieval 48
equivalent to end of message indicator

25,40 .
ignored 40
and NO DATA option 48
and SEND statement 40
and SETEOF macro 32,25
and 3 end key code 25,40

end-of-file (EOF) and ETI 25,50
entry points

in called subprograms 67,68
and CANCEL statement 66
description 67,63
and dynamic CALL statement 65
example 70
ILBO invalid as name 65
and static CALL statement 64

ENTRY statement
description 67
and dynamic CALL statement 65
example 70
format 67
ILBO invalid as name 65
and static CALL statement 64

Environment Division considerations,
3525 combined function processing 78

EOR (see end of record delimiter)
ERROR KEY clause 35
ESI (end of segment indicator)

and SEND statement 40
and 1 end key code 25,40

ETI (end of transmission indicator>
equivalent to EMI 40
and SEND statement 40,41
and 3 end key code 25,40

examples of
alternate entry points 69,70
calling and called programs 69,70
CD FOR INPUT 34
CD FOR OUTPUT 35
passing parameters 69,70
queue structures 43-45
sorted cross referenpe performance 9
symbolic debugging output 19
USING option 69,70

execution of
STRING statement 52,53
UNSTRING statement 55,56

execution time optimized object code 21
EXHIBIT statement and CALL statement 64

86

EXIT PROGRAM statement
and CANCEL statement 67
and symbolic debugging 17

FD entry analogous to queue structure 42
FEFO (first ended/first out) and message

queues 24,25
figurative constants

in STRING statement 51,52
in UNSTRING statement 53,54

tiles intermixed with queues 49
'FILLER used in input CD 33,34
fixed storage areas for TP 29
flow trace option

and optimized object code 21
and symbolic debugging 17

function-name specification
and 3505 processing 77
and 3525 processing 77-80

glossary 81
GO TO statements and the CALL statement 64
GOBACK statement

and CANCEL statement 67
and message retrieval 38
and symbolic debugging 17

hierarchy of
called programs and CANCEL statement

66,67
end indicators 40

identifier
contents in CALL statement 62,63
as object of CANCEL statement 66
USAGE of in

STRING statement 51
UNSTRING statement 51

in USING option 67,68
IF MESSAGE statement

and COBOL TP test program .50
ensuring testing of 36,37
and STATUS KEY values 37,33

ILBO invalid as subprogram name 65
imperative-statement in NO DATA option of

RECEIVE statement 38
incomplete segment

and omitted end key indicator 25
and 0 end key code 25

initialization
of items in called programs 64,65
of POINTER in UNSTRING statement 56
of sub-queue names 31
of TALLYING in UNSTRING statement 56

input CD (see CD FOR INPUT)
input queue

accessed by MCP 46
and DD statement 46,47
definition 81
and MCP destination queue 24
and message condition 36,37
and RECEIVE statement 37-39

input/output subroutines 73
integer data items in UNSTRING 53

interface between COBOL and MCP
CD entry 25,26
Communication Section 25,26
illustrated 27
and MESSAGE condition 26,36
and RECEIVE statement 26,37,38
and SEND statement 26,39,40

interpreting card punch by' 3525 77
introduction 7-12

job control statements
COBOL library management 58
compiler option specification 15
and COBOL TP programs 46,47
and dynamic subprogram linkage 61,62

level-88 items
in CD entry 29,34,35
invalid in UNSTRING statement 54

library management facility .
description 57-59,7
and dynamic subprogram linkage 62
performance considerations 13
programming considerations 59

line-control cards, definition 81
link editing restriction on user

subprograms 65
link ·pack area (see LPA)
linkage routine in system library 57
Linkage Section in called programs 68
list of compiler features

Version 3 8-10
Version 4 7,8

literal
in CALL statement 62,63
in CANCEL statement 66
in ENTRY statement 67
in STRING statement 51
in UNSTRING statement 53,54

load module
and COBOL library management 58
and dynamic subprogram linkage 61,65
size and symbolic debugging 18

local station (see remote station)
LPA (link pack area)

and library management facility 57,58
and COBOL subroutine library 57,58

main program
and control of subprograms 61
and loading of library subroutines 58

main storage
released by CANCEL statement 66
savings in, by use of

COBOL library management 73
dynamic subprogram linkage 61
optimized object code 21

maximum number
sub~queue levels 30,42
UNSTRING statement delimiters 54

MCP (message control program)
definition 81
description 23-27
destination queues in 24

and MESSAGE condition 36,26
and RECEIVE statement 37,26
and SEND statement 39,26

efficient message processing 47
functions required 46,47,23,24
indication of

end-of-segment 46
end-of-transmission 46

as interface 23,25,26,46,47
need for 23
SETEOF and end-of-transmission 32
source terminal identification 46
SYMBOLIC DESTINATION predefined 35
terminal table

and queue structures 41
and TCAM queues 41

written in Assembler language 23
MCP/COBOL interface

illustrated 27
and MESSAGE condition 36,26
and RECEIVE statement 37,26
and SEND statement 39,26

message, definition 25,81
MESSAGE condition

description 36,37
format 36
and input queue 36,47
and queue block 47
and QUEUE DEPTH field updating 36,37
and queue structure 36,47
and STATUS KEY values 37,33

message control program (see MCP)
message date, handled by MCP 46
MESSAGE DATE clause

format of contents 31
updated by RECEIVE statement 37,31

message destination and ERROR KEY 35
message format, testing COBOL TP program

49
message indicators, definition 81,82
MESSAGE option of RECEIVE statement 38
message processing, efficiency of 47
message queues

and CD entry 29
first ended/first out processing 24,25
reasons for 25,26
(see also CD entry, CD FOR INPUT, CD FOR
OUTPUT, input queue, output queue)

message retrieval
example using queue structure 43,44
and GOBACK statement 38
of portions of messages 38
and RECEIVE statement 37-39
and STOP RUN statement 38

message segment, definition 82
MESSAGE TIME clause

description 31
format of contents 31
updated by RECEIVE statement 37,31

message time handled by MCP 46
message transmission

COBOL 24,25
and SEND statement 39-41

Index 87

movement of data
and STRING statement 51-53
and UNSTRING statement 55,56

multiline print files on 3525 77,80
multiple delimiters in UNSTRING 53,54
multiple entry points and CANCEL 66

names for subroutines in user list 57
NO DATA option of RECEIVE statement

and COBOL TP test program 50
description 38,39
and ETI 48
when activated 48

NODYNAM option of PARM parameter
and CANCEL literal statement 66
and COBOL library management 59
description and format 62

nonswitched line in TP 23,82
NORESIDENT option of PARM parameter

and CANCEL literal statement 66
description and format 58,59
and dynamic subprogram linkage 62

object-time subroutine library
and COBOL library management 57,58
description 73
queue routines in 41,.43
separately packaged 2,7

omitted data-names in input CD 33,34
o~itted end indicator 25,40
,OMR: ('optical mark read)' processing 77
ON OVERFLOW option

of STRING statement 51,53
of UNSTRING statement 53,56

ON statement and CALL statement 64
OPEN statement and 3525 combined function
processing 79

optical mark read (OMR) processing 77
optimized object code

compilation time 21
description 21,7
and flow trace option 21
performance considerations 14
and statement number option 21
and symbolic debugging 17,21
and syntax-checking compilation 71

OR condition, and UNSTRING delimiters' 54
output CD (see CD FOR OUTPUT)
output queue

accessed by MCP 46
and DD statement 46,47
definition 82
description 24-26
and MCP destination queue 24
reasons for use 25,26

overflow condition
definition 82
and STRING statement 53
and UNSTRING statement 56

overriding
compiler options 15
the NORESIDENT option 62

88

paired names for passing parameters 62
PARM parameter descriptions and formats

DYNAM/NODYNAN option 61,62
RESIDENT/NORESIDENT option 58,59

PARM=DYNAM/NODYNAM option
and CALL literal statement 64
and COBOL library management 59
description and format 61,62

PARM=RESIDENT/NORESIDENT option
and CANCEL statement 64,66
description and format 58,59
and dynamic subprogram linkage 62

partially' retrieved messages
and GOBACK statement 38
and STOP RUN statement 38

partitions
and COBOL library management 57,58
and COBOL library subroutines 57,58

passing parameters 67,68
PERFORM statement and CALL statement 64
performance considerations

COBOL library management 14,59
dynamic subprogram linkage 14,61,62
optimized object code 14,21
symbolic debugging 14,18
syntax-only compilation 14,71
and TP programs 47-50
with TSO system 14

physical block size and testing a COBOL TP
program 49

physical sequential organization of COBOL
TP programs 47

POINTER option
of STRING statement 51-53
of UNSTRING statement 53,56

preface 3
private library and dynamic CALL 61,62
Procedure Division

dynamic subprogram linkage 62-70
entry point in called program 63
string manipulation statements 51-56
teleprocessing statements 36-41
3525 combined function processing 79,80

processing functions
for 3505 reader

optical mark read (OMR) 77
read column eliminate tRCE) 77,78

for 3525 punch
combined functions 78-80
interpreting punch 77
read column eliminate (RCE) 77,78

program-control cards 82
program-name

and CALL statement 62,63
and CANCEL statement 66
rules for formation 63

punch function, restrictions on 3525 79

queue
definition of 82
description of 24
placement of 24

queue analyzer routine 43
queue block

chaining of 47
definition 82

information in 47
and MESSAGE condition 47
and RECEIVE statement 48
and SEND statement 48

QUEUE DEPTH clause
description 33
format of contents 33
updated by IF MESSAGE statement

33,36,37,47
queue name

definition 82
and MESSAGE condition 36
predefined to MCP 31
and RECEIVE statement 37,31
rules for formation 46

queue processing 24,25
queue structure

access to 43-45
analyzer routine 43
DDnames in 44,45
description 41-46
description routine 41
evaluation rules 43
examples 42-45
format 45
and MESSAGE condition 36
as partitioned data set 41,43,46
and RECEIVE statement 43,4q
retrieval of Q3,44
specification of 42,43
and SYMBOLIC QUEUE clause 43
and SYMBOLIC SUB-QUEUE clauses 43,31
syntax rules 45,46

queue structure description routine
function of Q3
partitioned data set as output 43,41

queues intermixed with files 49

read column eliminate (RCE) processing
77,78

READ statement and 3525 combined function
processing 79

RECEIVE MESSAGE, and END KEY contents 32
RECEIVE SEGMENT, and END KEY contents 32
RECEIVE statement

accessing queue structures 43,Q4
actions upon execution of 37,38,Q8
and BSAM test files 49,50
description 37-39
END KEY updated by 37,32
format 37
and input queues 37,25
MESSAGE DATE and TIME updated by 37,31
and queue analyzer routine 43,Q4
STATUS KEY updated by 37,32,33

table of possible values 33
and SYMBOLIC QUEUE clause 37,43,31
and SYMBOLIC SUB-QUEUE clauses 37,43,31
SYMBOLIC SOURCE updated by 37,31
TEXT LENGTH updated by 31
and TP test programs 50

receiving area
in RECEIVE statement 37,38
in STRING statement 51-53

and POINTER option 52,53

in UNSTRING statement
and data category 55
for data '53-56
for delimiters 53,56

record description entry
in Communication Section 29
input CD equivalent 30
output CD equivalent 34

record format
testing COBOL TP program 49
example of 49

regions
and COBOL library management 57,58
and COBOL library subroutines 57,58

release of storage by CANCEL 66
remote station

definition 82,23
andMCP queues 24,25

resequencing the source program 17
RESERVE clause

and 3505 processing 77
and 3525 processing 11,18

reserved words for Version 4
list of 75
warning on use of 11

RESIDENT option of PARM parameter
and COBOL library management 59
description 58,59
and dynamic subprogram linkage 62
forced by CANCEL statement 66

resident reusable routine area (see RRR)
restrictions

CANCEL statement 66
segmented called programs 64
UNSTRING statement

COUNT and DELIMITER options 5Q
number of delimiters 54

Version 4 reserved words 11
RRR (resident reusable routine) area

and library management facility 57,58
and COBOL subroutine library 57,58

SEGMENT option of the RECEIVE statement 38
segmentation subroutines 13
SEND statement

to create BSAM test files 49,50
description 39-41
end indicators in 40,48
formats 39
and queue block 48
and STATUS KEY 35,Q8

table of possible values 33
and SYMBOLIC DESTINIATION 39,40
and TEXT LENGTH 48
in TP test program 48-50

sending field
in SEND statement 39,40
in STRING statement 51,52
in UNSTRING statement 53-55

SEPARATE SIGN clause
ignored in STRING statement 51
and UNSTRING statement execution 55

SETEOF macro
in MCP 25
cause of ETI 32

sharing COBOL library subroutines 58
SIZE option use in STRING statement 51, 52

Index 89

sort interface subroutines 73
source, definition 82
source program library, and CD entry 36
source program resequencing 17
source terminal identified by MCP 46
spanned records allowed to test COBOL TP

program . 49
special TP control characters as data
characters 40

SPECIAL-NAMES paragraph
and 3505 processing 77
and 3525 processing 77-80

specifying dynamic CALL 61,62
specifying queue structures

description 41-46
examples 42-45

specifying static CALL 64
standard block option, object-time
specification 13

statement number option and optimized
object code 21

static CALL statement
implementation 61
specified with dynamic CALL 65 .

static storage requirements, Version 4 11
static subprogram linkage described 61
STATUS KEY clause

description 32,33,35
format of contents 32,33
possible values 33

STATUS KEY field
and message condition 37,33,47
provided by TCAM 46
and RECEIVE statement 37,48
and SEND statement 40,48
table of possible values 33

STOP RUN statement
and message retrieval 38
and symbolic debugging 17
in TP test program 50

string manipulation feature listed 7
string manipulation statements

description 51-56
formats 51,53

STRING statement
DELIMITED BY option 51,52
description 51-53
format 51
INTO identifier phrase 51,52
ON OVERFLOW option 51,53
receiving field in 51-53
sending fields in 51,52
WITH POINTER option 51-53

subprogram
ILBO invalid as name in 65
and library subroutine loading 58

subprogram linkage, dynamic and static 61
sub-queue name

contents of 31
and DDname 44-46
initialized to spaces 31
and MCP table entries 44
and RECEIVE statement 31
reinitialized by user 31
rules for formation 46

sub-queue structures
accessing 43-45
and CD entry 30,31

90

,description 41
examples 42-45
format for specifying 45
and input queues 26
and RECEIVE statement 37
specification 42,43
syntax rules 45,46

sub-queues
,and CD entry 31
hierarchy in queue structures 46
limits on number of 46
queue analyzer routine 43
queue structure description routine 41
and RECEIVE statement 37
and TCAM queues 44,45

symbolic debugging
data sets needed for 13,17
description 17-19,7
example 19
and optimized object code 17,21
and other compiler options 15
performance considerations 14,18
and source program resequencing 17
and syntax-checking compilation 71
and TSO COBOL prompter 14

symbolic debugging dump
example 19
four parts of described 17

SYMBOLIC DESTINATION clause
description 35
and SEND statement 39,48

symbolic names predefined to MCP 31
SYMBOLIC QUEUE clause

and message condition 36,37
and queue analyzer routine 43
and RECEIVE operation 37,43

symbolic queue name and RECEIVE statement
37,43

SYMBOLIC SOURCE clause
description 31
format of contents 31
updated by RECEIVE statement 31,37

symbolic sub-queues and queue structures
30,31

SYMBOLIC SUB-QUEUE fields
and queue analyzer routine 43
and RECEIVE statement

specification during 43,44
updated by 37

subroutines in COBOL subroutine library 73
suppressed compile time options and

syntax-checking compilation 71
switched line

definition 82
description 23

syntax-checking compilation
'description 71,7
and other Version 4 features 71
performance considerations 14

system information and USING option 68
system link library

and COBOL subprogram 61
and dynamic CALL 62

system termination
of COBOL TP program 48
and symbolic debugging 17

System/370 device support 15,77-80

TALLY register and CALL statement 64
TCAM (telecommunications access method)

and COBOL items 46
provides STATUS KEY field 46
provides TEXT LENGTH field 46

TCAM control byte
codes used in 49
created by SEND statement 48,49

TCAM queue
and BSAM files in one program 49
and COBOL queue structures 41
and sub-queues 44,45

TCAM record and COBOL program 25
TCAM V prefix created by SEND statement 49
teleprocessing (TP) buffer areas

and end codes 25
and end indicators 25

teleprocessing (TP), description 23-50,7
teleprocessing network, description 23
teleprocessing subroutines 73
terminal source, identified by MCP 46
testing the COBOL TP program 49-50
TEXT LENGTH clause in input CD

description 32
format of contents 32
updated by RECEIVE statement 32

TEXT LENGTH clause in output CD 35
TEXT LENGTH field

and RECEIVE statement
provided byTCAM 46
updated by 37

and SEND statement
contents used by MCP 39
data transfer controlled by 39,40,48
error in 40

track overflow option, object-time
specification 13

transfer of data
in STRING statement 51
in UNSTRING statement 55,56

TSO COBOL prompter and symbolic debugging
feature 14

two-line print files on 3525 77,80

unblocked BSAM records in TP program 49
unconditional syntax checking

description 71,7
when assumed 71

undetected syntax errors in syntax-checking
compilation 71

unknown message destination and ERROR KEY
clause 35

UNSTRING statement
COUNT field 53,54
delimiters in 53-56
description 53-56
format 53
ON OVERFLOW option 53,56
POINTER field 53,54,56
receiving and sending fields 53-55
TALLYING field 53,56

USAGE DISPLAY items
in STRING statement 51
in UNSTRING statement 53

user list in system parameter library 57

user subprograms, restriction on link
editing 65

user's partition/region and COBOL library
subroutines 57

USING option
in called programs 68,63,64
in calling programs 67,68,62-64
description 67,68
example 69,70
file-name in 63
formats 67,68,62
identifier in 63
number of operands allowed 68
paired names in 62
and PARM field of EXEC statement 68

V mode records to test TP programs 49
VALUE clause in CD entry 29
variable length record in COBOL TP program

47,49
Version 3 Features

included in Version 4 8
list 8-10

Version 4 Compiler
compatibility 14
compiler option scan 15
features

how implemented 8
list of 7
Version 3 features included 8

and object-time subroutine library 73
reserved word list 75
storage requirements 13
system considerations 13-15
teleprocessing requirements 13

W-level messages and syntax-checking
compilation 71

wait state, and RECEIVE statement 48
word-boundary alignment

in parameters to be passed 63,68
in USING lists 63,68

WRITE statement
3525 print function files 79
3525 punch function files 80

o end indicator code in SEND statement 40
o end key code and omitted end 'indicator
25,40

o as ERROR KEY code 35
o as TP END KEY code 25,32,40
00 as STATUS KEY code 33
1 end indicator code in SEND statement 40
1 end key code and ESI end indicator 25, 40
1 as ERROR KEY code 35
1 as TP end-of-segment 25,32,40
2 end indicator code in SEND statement 40
2 end key code and EMI end indicator 25,40
2 as TP end of message 25,32,40
2-line print files on 3525 80
3 end indicator code in SEND statement 40
3 end key code and ETI end indicator 25,40

Index 91

3 as TP end-of-transmission 25,32,40
20 as STATUS KEY code 33
21 as STATUS KEY code 33
22 as STATUS KEY code 33
29 as STATUS KEY code 33
50 as STATUS KEY code 33
60 as STATUS KEY code 33
3505 processing functions

optical mark read COMR) 77
read column eliminate CRCE) 77,78

92

3525 processing functions
combined 77-80
print 77-80
punch 77-79
punch-interpret 77
read 77-79
read column eliminate CRCE) 77,78

READER'S COMMENTS

TITLE: IBM as Full American
National Standard COBOL
Compiler and Library,
Version 4, Planning Guide

ORDER NO. GC28·6431·Q

Your comments assist us in improving the usefulness of our publications; they are an important part
of the input used in preparing updates to the publications. All comments and suggestions become
the property of IBM.

Please do not use this form for technical questions about the system or for requests for additional
publications; this only delays the response. Instead, direct your inquiries or requests to your IBM
representative or to the IBM Branch Office serving your locality.

Corrections or clarifications needed:

Page Comment

Please include your name and address in the space below if you wish a reply.

Thank you for your cooperation. No postage necessary if mailed in the U.S.A.

GC28·6431·Q

fold fold

· ()
• r= · :e.
• 0
:~

:!
• en
:5=
: ~

.. "

Attention: PUBLICATIONS

BUSINESS REPLY MAIL
NO POSTAGE NECESSARY IF MAILED IN THE UNITED STATES

POSTAGE WILL BE PAID BY •••

IBM CORPORATION
1271 Avenue of the Americas
New York, New York 10020

FIRST CLASS
PERMIT NO. 33504
NEW YORK, N.Y.

·

c
CJ ,
E
):
::
CJ
("

C . c
. C

r
<
~ .,
G
c
2
n ... , ... : .,

fold

llrn~
(!)

International Business Machines Corporation
Data Pro ceiling Division
1133 Westchester Avenue, White Plains, New York 10804
(U.S.A. only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(International)

fold

:": '~ .. "'i1ta>tnJ.1
:.~'::;I'~~'
" ".; '. :.$

t~~atlonaJ •• tne .. ·~aChln •• Corporation

':"'11'~ p ·~ ... ~~I .. I.,~t:;J*"1t8 Pi.,,,,,NeW York 10804

,,:::~;~.~,' ". I;' ~ .. ,~<.' I' ~I' / t: ~

;~.~.tr:h\~.i(';.'!:{':'; '" ":~) Ifi,~~~i::t;::k>:'~:~i;:.::'" ~~ffi·t!:;:\' ~:' ~!.~~~I, ;,~.,~ :;. ~"" ;:~'\~ .':, ~

OJ
3:
o
en

" c

» z
en
n o
OJ o
r-
<
~

:2
C)
c
a:
(1)

GC28-6431-Q

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, New York 10604
(U.S.A. only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(International)

OJ
s:
o
C/l
II
c:

~ z
C/l
()

o
OJ
o
r
<
~

31
C)
c:
c:
CD

