
Systems Reference Library

IBM OS Full American

National Standard COBOL

Program Numbers: (Version 2) 360S-CB-545

(Version 3) 5734-CBl

File No. S360-24
Order No. GC28-6396-6 OS

(Version 4) 5734-CB2 (Compiler and Library)

5734-LM2 (Library Only)

This publication gives the programmer the rules for
writing programs that are to be compiled by the IBM Full
American National Standard COBOL compiler' under the
Operating System. It is meant to be used as a reference
manual in the writing of IBM American National Standard
COBOL programs.

COBOL (Cammon Business Oriented Language) is a
programming-language, similar to English, that is used for
commercial data processing. It was developed by the
~onference 2n DAta SYstems Languages (CODASYL).

IBM as Full American National Standard COBOL is
designed according to the specifications of the following
industry standards:

* The highest level of American National Standard
COBOL, X3.23-1968, including all eight modules:
Nucleus, Table Handling, Sequential Access,
Random Access, Sort, Report Writer, Segmentation,
and Library.

* International Standard ISO/R 1989-1972 Programming
Language-COBOL (which is compatible with, and
identical to, American National Standard COBOL,
X3.23-1968) .

A significant number of IBM extensions are implemented as
well; these extensions are printed on a \~l~li.i~I~: background.

COBOL (COmmon Business Oriented
~anguage) is-a programming language,
51milar to English, that is used for
co~ercial data processing. It was
developed by the Conference On Rbta §Xstems
~an9~ages (CODASYL) -

Inaustry Standards

I:tH·1 OS Full American J.~ational standard
COBOL is designed according to the
speci~ications of the following industry
standards a~ understood and interpreted by
IBM as of April 1976:

* The highest level of American
National Standard COBOL, X3.23-1968,
including all eight modules: Nucleus,
Table Handling, Sequential Access,
Random Access, Sort, Report Writer,
Segmentation, and Library.

*International Standard ISO/R 1989-
1972 Programming Language COBOL
which is compatible with, and
identical to, American National
Standard COBOL, X3.23-19p8).

A significant number of IBM extensions
are implemented as well.

S~ventnEdition (Octobe~ 1981)

Manual Or~a~~zation
This publioation gives the programmer

the rules for writing programs that are to
be compiled by the IBM OS Full American
National COBOL compiler under the Operating
Sys~em. It is meant to be used as a
reference manual in the writing of IBM
American r.Jational Standard COBOL programs.

This manual describes all current
versions of IBM as Full American National
Standard COBOL -- Versions 2, 3, and 4.
Information relating only to the Version 3
and Versiqn 4 compilers is presented
within separate paragraphs. Such
paragraphs begin with the heading "Program
Product Information", followed by the
Version number of the compiler. Paragraphs
following these headings that contain
Program product information are indented.

In this publication, the term standard
COBOL means American National Standard
COBOL, X3.23~1968; the terms IBM Full Amer­
ican National Standard COBOL and this com­
ilermean the IBM implementation of the
highest level of American National Standard
COBOL and all extensions. There are two
types of extensions:

1. Those that represent features Dot
apptoved by American National Standard
CO BOL.

2. Those that represent an easing of thp
strict ~merican National standard
COBOL rules fo.}; greater programming
co n veni ence.

T~is is a major revision of, and makes obsol~te, the previous editions
anq. reprints; namely, GC28~63%-3 and its TNL GN28-1002; GC28-6396-4 and
its TNL GN28-1048; and GC28-6396-5 and its TNLs GN26-0808, GN26-0886,
and GN26-0907.

Tnis edition applies to IBM OS Full American National Standard COBOL,
Version ~, at the Release 21 level of the Operating System, and to
Version 3, and-Version 4·

The changes for this edition are summarized under "Summary of
Amendments:" Specific onanges are indicated by a vertical bar to the
.l,eft; of the change. These bars will be deleted at any subsequent
repUblication of the page affected. Editorial changes that have no
t;eonnical signifiCance are not noted.

Changes are periodically made to the information herein; before using
t;nis publication in con:nection with the operation of IBM systems,
consult t.he latest IBM System/370 and 4300 ProCessers BibliographY,
GC20~0001, for the ed~t~ons that are applicabl~ and current,

It is possible that th.is mat~rial may contain reference to, or
information about, IBM products (machines a~d programs), programming, or
serviceS that are not announced in your country. Suc4 references or
information must not be construed to mean that IBM intends to announCe
SUch IBM products, programming, or services in your country.

publicatiqns are not st.ocked at the address given below; requests for
IBM publications snould be made to your IBM representative Or to the IBM
branch office serving your locality.

Cqmments ~ay be addressed to IBM Corpo~ation, P.O. Box 50020,
Programming publisning, San Jose, California, U.S.A. 95150. IBM may use
or distribute any of the information you supply in any way it believes
appr9priate witnout i;nc;urring any obligation whatever. You may, of
course, oontinue to use the infor~ation you supply.

© c;:opyright International Business Mac;:hines Corporation 1968, 1969
1970, 1971, 1972, 1973, 1981

All such extensions are printed on a :=)!s.fiktet@.'iai!;
./-" background for the convenience of users \llho

l "wish to refer to the 1968 standard. If a
~ complete chapter is an extension, only the

page heading is shaded. These chapters are:

Use of features that are extensions may
result in incompatibilities between the
implementation represented by this document
and other implementations.

For the less experienced programmer, the
introduction summarizes the general
principles of COBOL, highlights features of
American National Standard COBOL and,
through an example, illustrates the logical
sequence and interrelationship of commonly
used elements of a COBOL program. The
balance of the publiqation gives the
specific rules for correct programming in
IBM Full American National Standard COBOL,
as implemented for the IBM Operating

C~\system. Appendixes provide supplemental
Jinformation useful in writing IBM American

/ National Standard COBOL programs.

Related Publications
Compiler output and restrictions,

programming examples, and information about
running an IBM American National Standarn
COBOL program are found in the
publications:

IBM as Full American National Standard
COBOL Compiler and Library, Version 2,
Programmer's Guide~ Order No. GC28-6399

IBM os Full American National Standard
COBOL Compiler and Library, Version 3,
Proqrammer's Guide, Order No. SC28-6437

IBM OS Full American National Standard
COBOL Compiler and Library, Version 4,
Programmer~s Guidew Order No. SC28-6456·

o

OS/VS COBOL information is documented in:

IBM VS COBOL for OS/VS, GC26-3857

IBM OS/VS COBOL Compiler and Library,
Programmer's Guide, Order No. SC28-6483

The appropriate programmer's guide and this
language reference manual are corequisite
publications.

A knowledge of basic data processing
techniques is mandatory for the
understanding of this publication. such
information can be found in the following
publications:

Introduction to IBM Data Processing
Systems, Order No. GC20-1684

Introduction to IBM System/360 Direct
Access Storage Devices and Organization
Methods, Order No. GC20-1649

The reader should also have a general
knowledge of COBOL before using this
manual. Useful background information can
be found in the following publications:

American National Standard COBOL Coding:

Card And Tape Applications Text, Order
No. SR29-0283

Coding Technigues And Disk Applications
Text, Order No. SR29-0284

Illustrations, Order No. SR29-0285

Student Reference Guide, Order
No.. SR29-0286

Where information in the foregoing
publications conflicts with information in
this publication, the contents herein
supersede any other in the writing of COBOL
programs. Any violation of the rules
defined in this publication for using the
Operating System is considered an error.

A general knowledge of the IBM Operating
Syste~ is desirable, although not
mandatory. The following publication gives
such information:

IBM System/360 Operating System:
Introduction, Order No_ GC28-6534

The following extract from Government Printing Office Form Number
1965-0795689 is presented for the information and guidance of the user:

"Any organization interested in reproducing the COBOL report and
specifications in whole or in part, using ideas taken from this report
as the basis for an instruction manual or for any other purpose is free
to do so. However, all such organizations are requested to reproduce
this section as part of the introduction to the document. Those using a
short passage, as in a book review, are requested to mention ICOBOL I in
acknowledgment of the source, but need not quote this entire section.

"COBOL is an industry language and is not the property of any company or
group of companies, or of any organization or group of organizations.

"No warranty, expressed or implied, is made by any contributor or by the
COBOL committee as to the accuracy and functioning of the programming
system and language. Moreover, no responsibility is assumed by any
contributor, or by the committee, in connection therewith.

"Procedures have been established for the maintenance of COBOL.
Inquiries concerning the procedures for proposing changes should be
directed to the Executive Committee of the Conference on Data Systems
Languages.

"The authors and copyright holders of the copyrighted material used
herein

FLOW-MATIC (Trademark of Sperry Rand Corporation),
Programming for the UNIVAC (R) I and II, Data
Automation Systems copyrighted 1958, 1959, by
Sperry Rand Corporation; IBM Commercial Translator,
Form No. F28-8013, copyrighted 1959 by IBMi FACT, DSI
27A5260-2760, copyrighted 1960 by Minneapolis- Honeywell

have specifically authorized the use of this material in whole or in
part, in the COBOL specifications. Such authorization extends to the
reproduction and use of COBOL specifications in programming manuals or
similar publications."

c'

o

Summary of Amendments Number 11

Date of Publication: October 1981
Form of Publication: Revision, GC28-6396-6

Program and Documentation

A number of corrections and clarifications have been made throughout the text, several
of which reflect AP AR fixes.

The section on OS/VS Considerations has been deleted. OS/VS COBOL information
is documented in IBM VS COBOL for OS/VS, GC26·3857.

Editorial changes that have no technical significance are not noted here.

Specific changes to the text made as of this publishing date are indicated by a vertical bar to left of
the text. These bars will be deleted at any subsequent republication of the page affected.

Summary of Amendments

Date of Publication: November 1, 1976
Form of Publication: TNL GN26-0S86 to GC28-6396-3, 4,-5

OS!VS COBO L, Release 2

Documentation Reference Added

Service Change

Number 10 (1 of 4)

Documentation for OS/VS COBOL in this manual applies only to Release 1. The
complete implementation of OS/VS COBOL is described in IBM VS COBOL for
OSjVS, Order No. GC26-3857.

IBM OS Full American National Standard COBOL, Version 2, 3, and 4

CURRENT-DATE, TIME-OF-DAY, and RETURN-CODE Special Registers

Service Change
Reference to Programmer's Guides has been removed.

COBO L Program Structure

Service Change

Documentation showing IBM extension allowing omission of procedure-names in
Procedure Division has been added.

Sequence Numbers

Service Change

When used, sequence numbers must consist of 6 digits in columns 1 through 6 of
the source card.

Data Organization

Service Change

Recording modes valid for each form of data organization are added.
(Clarification only)

ASSIG N Clause

Service Change

The first character in the name field must be alphabetic.

NOMINAL KEY Clause

Service Change

NOMINAL KEY USAGE must be the same as that for the RECORD KEY for
this file.

TRACK-AREA Clause

Service Change

Warning that NOMINAL KEY contents are unpredictable after executing a
REWRITE statement for an indexed file for which the TRACK-AREA clause is
not specified added.

Record Description Entry

Service Change

Restriction on references to data areas before open or first read for a file clarified
to indicate that the START USING KEY statement is not considered such a
reference.

o

Summary of Amendments

,BLOCK CONTAINS Clause

Service Change

Number 10 (2 of 4)

SAME AREA clause may not be specified for a file for which the BLOCK C,ONT AINS
clause is omitted and the RECORD CONTAINS 0 CHARACTERS clause is
specified.

Data Description and VALUE Clause

Service Challge

A condition-name may be a single value, several single values, a
range of values, or several ranges of values, or any combination of these
(Clarification only.)

REDEFINES ClalJse

Service Change

A redefined item or an item subordinate to it may be of variable length.

PICTURE Clause

Service Change

If the PICTURE does not contain an S a numeric item is assumed to be an absolute
value.

In floating insertion editing, two floating insertion symbols must be specified to the
left of any fixed editing symbol to be considered a floating insertion symbol.
(Clarification only.)

VALUE Clause and OCCURS Clause

Service Change

The VALUE clause must not be specified for an item whose size is variable.

Procedure Division Statement Categories

Service Change

COBOL verbs used in conditional statements are defined (Clarification only).

Relation Condition

Service Change

In the permissible comparisons table, an empty intersecting block indicates that the
comparison is not permissible.

ERROR Declarative

Service Change

Clarification on use of bytes 1 through 13 of the GIVING option data-name.

PERFORM Statement

Service Change

In a Format 4 PERFORM statement, a change in index-names and identifiers in
the FROM option can affect the number of times the procedures are executed.

Summary of Amendments

MOVE Statement

Service Change

Number 10 (3 of 4) .

In an alphanumeric to numeric move, the alphanumeric field is treated as an unsigned
external decimal integer field.

OPEN Statement

Service Change

The compiler does not check whether or not an OPEN statement is successful or
whether or not the file was already open when the OPEN statement was issued.
Either condition causes addressability errors.

READ and REWR ITE Statements

Service Change

After a READ statement AT END condition occurs, a REWRITE statement must
not be executed.

WRITE Statement

Service Change

For a sequentially accessed mass storage 1·0 file, the !NV ALID KEY condition exists
when no space is available to write a record.

(For standard sequential 1·0 files, the condition never occurs.) (Clarification only.)

REWRITE Statement

Service Change

Clarification of file organizations and access methods valid.

CALL Statement

Service Change

A USING operand may, with restrictions, be a procedure·name.

Sort·file SELECT Sentence

Service Change

The entire SELECT sentence for a sort file is treated as documentation
(Clarification only).

SORT·CORE·SIZE Special Register (Versions 3 and 4)

Service Change

When +999999 is coded, COBOL reserves 8K of main storage for data management
routines (instead of the 6K previously documented).

SORT·MODE·SIZE Special Register

Service Change

Reference to Programmer's Guide added. (Clarification only.)

PAGE LIMIT Clause (Report Writer)

Service Change

A maximum page limit of 99 lines is defined.

c

o

Summary of Amendments

LINE Clause (Report Writer)

Service Change

Number 10 (4 of 4)

If a PAGE FOOTING report group contains a relative LINE clause, the line is
relative to FOOTING integer-S plus one.

TYPE Clause (Report Writer)

Service Change

Identifier-n or FINAL must be qualified (or not qualified) in exactly the same
way as the corresponding CONTROL clause identifier.

so URCE Clause (Report Writer)

Service Change

A SOURCE data item may be any special register valid in a MOVE statement.

GENERATE Statement

Service Change

If a detail group is not specified within a summary report, Report Writer SUM
counters are not incremented (Clarification only).

TERMINATE Statement (Report Writer)

Service Change

At the time a TERMINATE statement is executed, all control data items and SOURCE/
SUM operands must be available. (Clarification only.)

OCCURS Clause (Table Handling)

Service Change

In a Format 1 OCCURS clause, the maximum number of occurrences is 32,767.
(Clarification only.)

READY /RESET TRACE Statement (Debugging Language)

Service Change

After a READY TRACE statement is executed, the procedure-name or card
number is displayed each time the procedure is entered. (Clarification only.)

EXHIBIT Statement

Service Change

Numeric or nonnumeric literals may be specified.

ON Statement

Service Change

Upper limit in the ON statement in all cases is one less than the integer specified.

Summary of Amendments Number 9

Date of Publication: December 1, 1975
Form of Publication: TNL GN26-0808 to GC28-6396-3, -4 and -5

Miscellaneous changes for OS/VS COBOL and IBM as Full American National Standard
COBOL, Versions 2, 3, and 4

Maintenance: Documentation

Minor technical changes and corrections

" ... '~

o

Summary of Amend ments Number 8

Date of Publication: May 15, 1974
Form of Publication: TNL GN28-1 048 to GC28-6396-3 and -4

IBM OS/VS CaBO L

New: Programming Fe,J:~ures

• WHEN-COMPILED special register
• OBJECT-COMPUTER paragraph -- automatic System/370 instruction generation

• VSAM file processing

• Merge facility
• 3886 OCR support
• FIPS Flagger support
• Miscellaneous processi::'~ considerations

(plus all features oflB~i OS Full American National Standard
COBOL, Version 4)

Miscellaneous changes for OS/VS COBOL and IBM as Full American National
Standard CaBO L, Versions 2, 3, and 4

Maintenance: Documen tatioil Only

Minor technical changes and corrections

Summary of Amendments Number 7

Date of Publication: July 15, 1972
Form of Publication: TNL GN28-1002 to GC28-6396-3

IBM as Full American National Standard COBOL, Version 4

New: Programming Changes
• EGI (End Of Group Indicator) substituted for ETI (End Of Transmission

Indicator) in the SEND statement.
• Changes in implementation for the UNSTRING statement, as well as

clarifications in documentation.

IBM as Full American National Standard COBOL, Versions 2, 3, and 4

Maintenance: Documentation only
Minor technical changes and corrections.

Summary of Amendments Number 6

Date of Publication: May 1972
Form of Publication: Revision, GC28·6396·3

IBM OS Full American National Standard COBOL, Version 4

New: Programming Features

• Special Registers DATE, DAY, and TIME.
• ASSIGN clause device field as comments.
o Dynamic Subprogram Linkage (dynamic CALL statement and CANCEL

statement).
o Teleprocessing Feature.
" String Manipulation Feature.
G Symbolic Debugging Feature and Example.
o 3525 Combined Function Processing.

IBM OS Full American National Standard COBOL, Versions 3 and 4

Maintenance: Documentation Only

ASCII tape me processing clarifications.

Miscellaneous Changes for Versions 2, 3, and 4

Maintenance: Documentation only

Minor technical changes and corrections.

c-~

/"-.-. L)

o

Summary of Amendments

Date of Publication: January 15, 1972
Form of Publication: TNL GN28-0478 to GC28-6396-2

IBM as Full American National Standard COBOL, Version 3

New: Programming Features
o SORT-MESSAGE special register implementation.

Number 5

o SORT-CORE-SIZE and SORT-RETURN special registers-added processing
capabilities.

Summary of Amendments Number 4

Date of Publication: June 1, 1971
Form of Publication: TNL GN28-0439 to GC28-6393-2

IBM as Full American National Standard COBOL, Version 3

New: Programming Features

o ASSIGN clause specification of new device numbers.
o USAGE COMPUTATIONAL-4 (system-independent binary).

IBM as Full American National Standard COBOL, Version 2

New: Documentation Only

o ASSIGN clause specification for new device numbers.

Miscellaneous Changes for Version 2 and Version 3

Minor technical changes and corrections.

c

c'----',
_.,/

FEATURES OF THE PROGRAM PRODUCT
COMPILERS • • • • • • • • • • • • • • • 11

INTRODUCTION • • • • • • • • • 15
Principles of COBOL • • • • 16
A Sample COBOL Program • • 18

Identification Division • • • • 19
Environment Division • • •• 19
Data Division • • • • • • • • • 20
Procedure Division • • • • 23
Beginning the Program -- Input
Operations • • • • • • • • • • •
Arithmetic Statements
Conditional Statements •
Handling Possible Errors • • •
Data-Manipulation Statements
Output Operations • • • • • • •
Procedure-Branching Statements •
Ending the Program • • • • • • •

l
~·, PART I -- LANGUAGE CONSIDERATIONS

'\
-_/ STRUCTURE OF THE LANGUAGE • • • •

COBOL Character Set
Characters Used in Words

23
• • 24

25
26
26

• • 27
27

• • 31

35

37
37
37
38
39

Characters Used for Punctuation
Characters Used for Editing • •
Characters Used in Arithmetic
Expressions • • • • • • • • • • • • 39
Characters Used for Relation
Conditions • • • • • • 39

Types of Words • • • • • • • • • 40
Res erved Words • • • • • • • • 40
Names • • • • • • • • • • • • 41
Special-names • • • • • 41

Constants 42
Literals • • • • • • • • • 42
Figurative Constants • • • • • 43

Special Registers • • • • • • • • 44

ORGANIZATION OF THE COBOL PROGRAM
Structure of the COBOL Program •

~£THODS OF DATA REFERENCE
Qualification
Subscripting •
Indexing • • • • • • • • •

47
• • 47

49
49
50
50

USE OF THE COBOL CODING FORM • 51

Osequence Numbers • • • • • • 51
Area A and Area B • • • • • • • • • 52

Division Header • • • • 52
Section Header • • • • • • • • • • • 52
Paragraph-names and Paragraphs • 52
Level Indicators and Level Numbers • 52

Continuation of Lines • • • • . • • •
continuation of Nonnumeric Literals
Continuation of Words an3 Numeric
Literals ••
Blank Lines
Comment Lines

FORMAT NOTA'IION

PART II -- IDENTIF1CATION AND
ENVIRONMENT DIVISIONS

53
53

:;3
53
53

54

57

IDENTIFICATION DIVISIOH
PROGRAi·1-ID Paragraph •
DATE-COr-~PILED paragraph

. . . . s g

ENVIRONMENT DIVISION -- F'ILi:.

59
60

PROCESSING SUM~~RY. • • • • 61
Data Organization • • . •. • • • . 61

Sequential Data Organization. . 61
Direct Data Organization • . 62
Relative Data organization . b2
Indexej Data organization . • • • . 62

Access Methods • • • • • • • • • 62
Accessing a Sequential File 62
Accessing a Direct File 62

Sequential Access 63
Random Access 63

Accessing a Relative File 64
Sequential Access 64
Random Access 64

Accessing an Indexed File
Sequential Access
Random Access

ORGANIZATION OF THE ENVIRONMEN~
DIVISION • • • • • • • • • • . •

ENVIRONMENT DIVISION -- CONFIGURATION

6::>
6~

6S

67

SECTION • • • • • • • • • • • • • • • . 68
SOURCE-COMPUTER Paragraph b8
OBJECT-COMPUTER Paragraph 69
SPECIAL-NAMES paragraph 63

ENVIRONMENT DIVISION -- INPUT-OUTPUT
SECTION • • • • • • • •
FILE-CONTROL Paragraph •

SELECT Clause
ASSIGN Clause
RESERVE Clause
FILE-LIMIT Clause
ACCESS MODE Clause • • • • . • • • .
PROCESSING NODE Clause
ACTUAL KEY Clause
NOMINAL KEY Clause
RECORD KEY Clause
TRACK-AREA Clause
TRACK-LIMIT Clause • •

I-o-CONTROL Paragraph
RERUN Clause • • • •
S~lE Clause • • • •
MULTIPLE FILE TAPE Clause . • • •

72
72
73
73
70
77
77
18
78
80
81
82
22
83
83
85
8u

APPLY Clause 8b

PART III -- DATA DIVISION • • • • 89

DATA DIVISION -- INTRODUCTIO~

Organization of External Data
Description of External Data • •

91
91
91

ORGANIZATION OF THE DATA DIVISION 92
Organization of Data Division Entries • 93

Level Indicator 93
Level Number • • • • •
Special Level Numbers
Indentation

File Section • • • • • • •

94
95
95
95

File Description Entry •
Record Description Entry • •

Working-Storage Section

• • • • 96

Data Item Description Bntries
Record Description Entries

Linkage Section
Report Section •

FILE DESCRIPTION BN'I'RY -- DE"IAILS OF

96
96
96
97

• • 97
97

CLAUSES • • • • • • • • • • 98
BLOCK CONTAINS Clause • • • • • 98
RECORD CONTAINS Clause. • • • .100
Recording Mode. • • • • .101
RECORDING MODE Clause •• 102
LABEL RECORDS Clause •••••••• 103
VALUE OF Clause •• 105
DATA RECORDS Cla.use • • • • • .106
REPOR'I Clause ••••••••••• 106

DATA DESCRIPTION • • .107

DATA DESCRIPTION ENTRY -- DETAILS OF
CLAUSES • • • • • • • • • .110

Data-name or FILLER Clause •• 110
REDEFINES Clause. • • .111
BLANK WHEN ZERO Clause. • .115
JUSTIFIED Clause. • .115
OCCURS Clause ••• 116
PICTURE Clause • • • • • .116
The Three Classes of Data •• 116
Character String and Item Size ••• 117
Repetition of Symbols ••••••• 117
Symbols Used in the PICTURE Clause .118
The Five categories of Data •• 119
Types of Editing • • • • • • • • • • 124
Insertion Editing ••••••••• 124
Zero Suppression and Replacement
Editing • • • • •
SIGN Clause • • • • • • • • •
SYNCHRONIZED Clause

• .126
.128

• .129
Slack Bytes
USAGE Clause • • • • •
DISPLAY Option • • • •
The Computational Options
VALUE Clause •
RENAMES Clause • • • • • •

PART IV -- PROCEDURE DIVISION

• • • 130
• •••• 135
• • • • • 136

.137
• •••• 141

.144

• • • 147

ORGiI.NIZA'I'ION OF THE PROCEDURE DIVISION .149
Categories of Statements. • •••• lS0

Conditional Statements • ~151
Imperative Statements ••• 151

Compiler-Directing Statements

ARITHHETIC EXPRESSIONS
Arithmetic Operators ••

CONDITIONS • • • • •
Test Conditions •••.

Class Condition • • • •
Condition-name Condition ••
Relation Condition.
Sign Condition •

Compound Conditions ••••
Evaluation Rules • •

.15:'

,154
• _ 154

.156
• .156
• . 157

.158
• • • . 159

• ,.162
• . 162
• . 163

Implied Subjects and
Relational-Operators • • • • • • . 164

Implied Subject
Implied Subject and
Relational-Operator

.16S

.16S
Implied SUbject, and Subject and
Relational-Operator · loS

CONDITIONAL SThTE~lliNTS • • •
IF Statement • • • • •
Nested IF Statements

• • • . 16b
• .166

• • .. . 167

DECLARA'IIVES • • • • • . . 169
Sample Label Declarative Program •••• 173

ARIThIvlETIC S'I'ATEHEN'I'S
CORRESPONDING Option • •
GIVING option
ROUNDED Option • • •
SIZE ERROR Option
Overlapping Operands
ADD Statement
COMPUTE Statement
DIVIDE statement • •
MULTIPLY statement •
SUBTRACT Statement •

PROCEDURE-oRANCHING STA'I'EMENTS •
GO TO Statement
ALTER Statement • .. • • • ..
PERFOR~ Statement
STOP Statement •
EXIT Statement • • ..

DATA-HANIPULATION STATEMENTS • •
MOVE Statement • • ..
EXAMINE Statement
TRANSFORH Statement

INPUT /OUTPU'I' S1'AT £~lENTS
OPEN Statement •
S'l'ART Statement
SEEK Statement • •
READ Statement •
WR.ITE Statement
REWRITE Statement
ACCEPT Statement •
DISPLAY Statement
CLOSE Statement
Sequential File Processing •
Random F'ile Processing • • •

.178

.178

.178

.178(~\

.179
· 179 "-_./

• . 179
• . 181

· 181
· 182

• .183

... 18S
• 18:)
.186
.187

• .19j
.195

.1-97
• 197

• . 200
.202

.20:::>

.20S

.208

.210

.210
• • .. . 212

• 217
.. 21E
.220
• 221
.222 · . 22jC.

SUBPROGRAI'1 LINKAGE STA'llEHENTS . .. • • .. 227 -~

CAL4.- Statement • • • 228
CANCEL Statement • . • 231

.232
• 233
.238

ENTRY statement • • • • • • • • •
USING Option • • • • • • • • • • •
Program Termination Considerations
EXIT PROGRAM Statement • .239

• • • 240 GOBACK Statement •
STOP RUN Statement • •• • • •

COMPILER-DIRECTING STATEMENTS
COpy Statement • •
ENTER Statement • • • •
NOTE Statement • •

P~~T V -- SPECIAL FEATURES •

SORT FEATURE • • • • • • •
Elements of the Sort Feature

Environment Division Considerations
for Sort • • • • • • • • •

• 240

.241
• 241

•• 241
• 241

• 243

• 245
.245

Input-Output Section • • • • • • • •
.246
• 246
.246 FILE-CONTROL Paragraph •

SELECT Sentence for Sort File
I-O-CONTROL paragraph

••• 247

RERUN Clause. • • • • •
SAME RECORD/SORT AREA Clause

Data Division Considerations for Sort
File Section • • • • • • • • •

Sort File Description
Procedure Division Considerations for
Sort • • • • • • • • •

SORT Statement • •
RELEASE Statement

.247
• • 247

.248

.248
• 248
• 249

.250

.250

.2S4
('."'\) RETURN sta,tement • • 255
~ EXIT Statement. • .256

special Registers for Sort. • •• 256
Sample Program Using the Sort Feature .258

REPORT WRITER FEATURE ••••••••• 260
Data Division -- Overall Desc~iption •• 260
Procedure Division -- Overall
Description • • • • • • • • • •• 261
Data Division Considerations' for
Report Writer ••••• 262

File Description. • • • .262
REPORT Clause • • • • .2b2
RECORDING MODE Clause • • • • .263
DATA RECORDS Clause •• 263
RECORD CONTAINS Clause. .263

Report Section. • • • •• 264
Report Description Entry. • .264
CODE Clause •• 264
CONTROL Clause • • • • • • • • 265
PAGE LIMIT Clause •• 266
Report Group Description Entry • • • 269
LINE Clause ••••• 271
NEXT GROUP Clause •• 273
TYPE Clause •• 275
USAGE Clause. .277
COLUf-j,N Clause • • • • • .277
GROUP INDICATE Clause •• 278
JUSTIFIED Clause. • .278
PICTURE Clause. • • • .278
RESET Clause • • • • • • 278
BLANK WHEN ZERO Clause ••••••• 279

O SOURCE, SUl-1, or VAIJUE CIa use • • • • 279
~ocedure Division Considerations .281

GENERATE Statement .281
Detail Reporting • • • • • .281
Summary Reporting • 281

Operation of the GENERATE Statement 282
INITIATE Statement • . 282
'l'ERMINA'I'E Statement • • • . .• 283
USE Sentence • • • • . • • • _ 284

Special Registers: PAGB-COUNT.r.:R and
LINE-COUl~TER •• • • • •

PAGE-COUNTER • • • • • •
LIHE-COUNTEh • • • • • •

Sample Report Writer Program.
Key ~elating ~eport to Report
Writer Source Program

TABLE HANDLING FEA'l'URE .
Subscripting • • • •
Indexing • • • • • •

.28::>

.28S

.28::>
• • . 287

.290

• • • . 297
• • • . 297

• . 298
Restrictions on Indexing,
Subscripting, and Qualification
Example of Subscripting and IndeKing

.299

.299
Data Division Considerations for Table
Handling • • • • • • ~ • • • .300

. 30u

.307
OCCURS Clause • • • • •
USAGE IS INDEX Clause

Procedure Division Considerations for
Table Handling • • • • • • • • . 308

. 308 Relation Conditions
SEARCH Statement • • • . 309
SET Statement • • • • • • • . . 313

Sample Table Handling Program . • • • . 314

SEGMENTATION FEATURE • • • • . 310
Organization • • • • .31b

Fixed Portion • .31b
Independent Segments

Segment Classification •
Segmentation Control • •
Structure of Program Segffients

. • • • . 310

Priori ty Numbers • • • • • • .
Segment Limit • • • •

Restrictions on Program Flow • .
ALTER statement

• • 317
• . 317
• . 317

.317

.318
• • • . 319

• . 319
PERFORt'l Statement
Called Programs

• • • • • 319

SOURCE PROGkAM LIB~ARY FACILI1Y
COpy St.atement • • • • • • •

Extended Source Program LiDrary
Facili ty • • • • •

BASIS Card.
INSERT Card
DELETE Card

• . 319

.320
• • • • 320

• • • . 324
• • • . 324

.324
• . 324

DEBUGGING LANGUAGE • • • • . 326
READY/RESET TRACE Statement •. 320
EXHIBIT Statement • • • •• • . 326
ON (Count-conditional) Statement •• 328

Compile-Time Debugging Packet • . 330
DEBUG Card • • • • • • • • • •••. 330

FORMAT CONTROL OF' 'lHE SOU}{CE PROGRAtvl
LISTING • • • • • • • • . • • • . 331

EJECT' Statement • • • • • . • ••. 331
SKIP1, SKIP2, and SKIP3 Statements . 331

STERLING CURRENCY FEATURE AND
INTERNATIONAL CONSIDERNi.'IOl~S • .

Sterling Nonreport • . • • * •

Sterling Sign Repres8ntation
Sterling Report • • • • • • .

• . 332
.333

• . 334
• • 33.J

Procedure Division considerations
International Considerations •

• .338
• •• 338

TELEPROCESSING (TP)
Communication Section

CD Entry • • • • •
Procedure Division •••

Message Condition
RECEIVE Statement
SEND Statement • •

STRING MANIPULATION
STRING Statement •
UNSTRING Statement • •

SUPPLEMEN'l'ARY MATERIAL

• • • • • • • 339
• •• 339

• 340
• •• 348

• • • • 348
• • • • • 349

• .350

.353
• •• 353
• •• 357

.363

APPENDIX A: INTER~ffiDIATE RESULTS
compiler Calculation of Intermediate

• .365

Results • • • • •••••• .366

APPENDIX B: SAMPLE PROGRAHS • .367

creation of a Direc~ File • 368

Creation of an Indexed File •• 370

Random Retrieval and Updating of an
Indexed File • • •• • • • • • • 371

APPENDIX C: AMERICAN NATIONAL ST&~DARD
COBOL FORtllAT SUMMARY AND RESERVED WORDS 373

APPENDIX D: SUMMARY OF FILE-PROCESSING
TECHNIQUES AND APPLICABLE STATEt1ENTS
AND CLAUSES •••••••• ••••• • 383

APPENDIX E: ASCI! CONSIDERATIONS . • •• 389
• .389 I --Environment Division.

ASSIGN Clause
RERUN Clause • • •

II -~ Data Division
File Section • • • •

BLOCK CONTAINS Clause

• • • • • • • 389
• • • • .390

• •• 390
.390

••••• 390

r~

LABEL .K.ECORDS Clause • • • • • ••. 390" _"
RECORDING MODE Clause • • • • • • . 391
compiler Calculation of Recording
Mode • • • • • • • • • •

Data Description Entries • •
PICTURE Clause • ••• .
SIGN Clause •• • • • •
USAGE Clause • • • • • •

III -- Procedure Division
LABEL PnOCEDURE Declarative
Relation Conditions

. .

391
• . 391

• • • • 391
• .391
• .391
• .391
• • 392

• • • • 392
• • 394
• • 394
• .39!)
• . 39.:>

IV -- Sort Feature •
ASSIGN Clause
RERUN Clause

Data Division
SIGN Clause
USAGE Clause •

• • • • • • • • 395
• • • • • • 395

APPENDIX F: SYHBOLIC DEBUGGING
Features (version 4) •••••.

Object-Time Control Cards
Sample Program -- TESTRUN

Debugging TESTRUN .

• 397
• • 397

• • • . 399
• • 400

APPENDIX G: 3505/3525 CARD PROCESSING • 413
3505 Ol1R Processing ••••••. 413
3505/3525 RCE Processing • • • • • • • . 413
3525 Combined Function Processing • • . 414

I -- Environment Division
Considerations • • • • • • • . • • • . 414

SPECIAL-NAMES Paragraph . 4~4 C~.
II -- Data Division Considerations • . 4L':>
III -- Procedure Division
Considerations • • • • • • • • . 41S .

OPEN Statement • • • • • • • . 415
WRITE Statement -- Punch Function
Files • • . • • • • • • • • . 41::>
WRITE Statement -- Print Function
Files • • • • • • .416
CLOSE Statement • • • • • 41b

AMERICAN NATIONAL STANDARD COBOL
GLOSSARY. • ••••••••• 417

INDEX • • • • 431

c

Figure 1. Illustration of Procedure
Branching • • • • • • • • • • • • • • • 28
Figure 2. Complete UPDATING Program
<Part 1 of 2) ••••••••••••• 32
Figure 3. Reference Format 51
Figure 4. Level Indicator Summary 93
Figure 5. Areas Redefined Without
Changes in Length •••••••
Figure 6. Areas Redefined and
Rearranged • • • • • • • • • •
Figure 7. Insertion of
Intra-occurrence Slack Bytes
Figure 8. 'Insertion of

.113

•• 113

.132

Inter-occurrence Slack Bytes •• 133
Figure 9. Logical Operators and the
Resulting Values Upon Evaluation •••• 163
Figure 10. Conditional Statements
With Nested IF Statements ••••••• 167
Figure 11. Information Supplied With
the GIVING Option When an Error
Declarative is Entered • • • • • • • • .176

Chart 1. Logical Flow of Conditional
Statement With Nested IF statements •• 168
Chart 2. Logical Flow of Option 4
PERFORM Statement Varyinq One
Identifier. • • • • • • • • •••••• 192
Chart 3. Logical Flow of Option 4
PERFORM Statement Varying Two
Identifiers •••••••••••••• 193

Figure 12. Collating Sequence Used
for Sort Keys • • • • .251
Figure 13. Sample Prog=am Using the
Sort Feature (Part 1 of 2) , 2S8
Figure 14. Page Format When the PhGE
LIMIT Clause is Specified , 268
Figure 15. Sample Program Using the
Report Writer Feature (Part 1 of 4) •. 287
Figure 16. Report Produced by heport
Writer Feature (Part 1 of 5) 292
Figure 17. Storage Layout for
PARTY-'I'ABLE • • • . . . 300
rigure 18. Sample Table Handling
Program (Part 1 of 2) •. 314
Figure 19. STATUS KEY Field --
Possible Values • • • • • 34::;
Figure 20. Using the TRAt~SFORr-~
Statement with ASCII Comparisons .393
Figure 21. EBC~IC and ASCII Collating
Sequences for COBOL Characters -- in
Ascending Order • • • • • • • . • • • . 394
Figure 22. Symbolic Debugging Option:

TESTRUN (Part 1 of 11) _ 402

Chart 4. Logical Flow of Option 4
PERFORM Statement Varying 'ThrE.e .
Identifiers • • • • • • • • • . • . . ,194
Chart ~. Format 1 SEAH.CH Operation
Containing Two WHEN Options 311

Table 1. Typical Ledger Records Used
for MASTER-RECORD • • • • • • • • • • • 21
Table 2. Typical DETAIL-RECORD • • • • 22
Table 3. File-processing Techniques • 66
Table 4. Choices of Function-name
and Action Taken • • • • • • • • • • • • 70
Table 5. Values for the Organization
Field for System-name • • • • • 76
Table 6. Class and Category of
Elementary and Group Data Items .117
Table 1. Precedence of Symbols Used
in the PICTURE Clause • • • • •• .120
Table 8. Editing Sign Control
Symbols and Their Results •••• 125
Table 9. Internal Representation of
Numeric Items (Part 1 of 2) .139
Table 10. Permissible Arithmetic
Symbol Pairs • • • • • • • • • • • 155
Table 11. Valid Forms of the Class
Test • • • • • • • • • .158
Table 12. Relational-Operators and
Their Meanings ••••••••••••• 159
Table 13. Permissible Comparisons ••• 161

"'--- Table 14. Permissible Symbol Pairs --

(
:ompound Conditions. • • • • • • • 164

_....__,'rable 15. Permissible [Iloves •••••• 199

o

Table 16. Examples of Data Exalrination 201
Table 11. Examples of Data
Transformation • . • • . • . . _ . • • . 202
Table 18. Combinations of Fl-:Ci'-.. and. TO
Options (Part 1 of 2) ...•.• 203
Table 19. Action Taken for
Function-names -- ADVANCING Option . . . 214
Table 20. Values of Identifier-2 and.
Interpretations -- ~OSITIONING Option . 21S
Table 21. Values of Integer and
Interpretations -- POSITIONING Option . 21~
Table 22. Relationship of Types of
Sequential Files and the Options of
the CLOSE Statement . • • . • . 22S
Table 23. kelationship of Types of
Random Files and the options of th~
CLOSE Statement • • • • • • . • . 220
Table 24. Effect of Program
Termination Statements Within ~~in
Programs and Subprograms . • • . . 239
Table 25. Index-names and Index Data
Items -- Permissible Comparisons •.•. 308
Table 26. sterling Currency Editing
Applications • • • • • • • • . 337
Table 21. Compiler Action on
Intermediate Results. • • • .36b
Table 28. Individual Type Codes Used
in SYMDMP Output • • • . • . 401

o

PROGRAM PRODUCT INFORMATION

FEATURES OF THE PROGRAM PRODUCT COMPILERS

Features available in each of the IBM OS COBOL Compiler and Library
program products are summarized in the following sections.

OS/VS COBOL

The Program Product OS/VS COBOL Compiler and Library, Release 2,
includes the following features:

Expanded Language Capabilit.ies -- (Release 2 only) OS/VSCOBOL Release
2 is the only IBM COBOL compiler that accepts source language in support
of American National Standard COBOL, X3.23 -1974. It also accepts source
language in support of American National Standard COBOL, X3.23-1968. IBM
extensions are also supported. The additional language capabilities make
possible programming applications not feasible previously.

Vi::-tual System Support, through OS/Vs1 and OS/VS2, and the eMS
component of VM/370, makes use of the performance improvements<and
storage capacity of the Virtual Systems.

• EnhancedVSAM. Support. -- VSAM isa high~perfo.rmance VSaccess method
with a high degree of data security. The following file organizations
are supported:

Program Product Information 11

I/'

12 Program Product Information

C)

o

• Verb Profiles -- facilitates identifying and locating verbs in the
COBOL source program. Options provide verb summary or verb cross­
reference 'listing which includes verb summary.

• Execution-Time Statistics -- maintains a count of the number of
times each verb in the COBOL source program is executed during an
individual program execution.

• Backgrohnd Symbolic Debug -- during program execution, COBOL­
formatted snapshots and maps of the Data Division can be obtained,
either at specified points during execution or at abnormal
termination. Any number of debugging runs can be executed without
recompilation. No COBOL source language changes are needed.

• Flow Trace -- shows program flow up to the point of abnormal
termination. The path of execution within and between user­
specified modules can be traced. No COBOL source changes are
needed.

• Syntax-Checking Compilation -- reduces compile time as much as 70%
by scanning the source code for syntax errors but (conditionally or
unconditionally) produces no other compiler output.

• Statement Number Option -- provides information about the COBOL
statement being executed at abnormal termination.

• Interactive Capabilities under OS/VS2 TSO or VM/370 CMS, compiler
output can be directed to a terminal, and COBOL background debugging
facilities are available at a terminal. (In addition, the TSO COBOL
Prompter is available to the TSO COBOL user, and the as COBOL
Interactive Debug Program Product is available to the TSO COBOL user,
and the OS COBOL Interactive Debug Program Product is available to
the TSOor CMS COBOL user.)

Efficient object-time performance can be achieved with OS/VSCOBOL.
The following features make it possible.

• COBOL·Optimizer';"- can reduce generated Procedure Division code by
as much as 30%. Programs are divided into 4K procedure blocks.
Register> assignment is optimized.

COBOL.LibraryManagement -:-- allows COBOL object programs running in
separate regions or partitions to save virtual storage by sharing
COBOL library subroutine modules.

Subprogram Linkage -~ gives object-time control of virtual
resources. When a subprogram is no longer needed, the
it occupies can be freed.

• SysteIIi/37 0 Support -..;. System/370 instructions save object program
spac19 and speed up execution. High-performance System/370 devices
also speed up execution, and allow advanced applications.

• StcmdardBlockSpecification-- is allowed at object time. Use of
the Fixed Standard Block option (particularly for mass storage
devices having the Rotational Positional Sensing feature) results
in much-improved input/output performance.

Productive compile-time performance is easy to achievewithOS/VS
COBOL. Thefol1owihgieatureoptimizes performance.

~S~eedyS6rted.·Cross~Reference..;.-·. alphabetIzed ··.cross-reference
l~stingsmakeiteasiertofind user-specified names.

Program Product Information 12.1

12.2

IBM OS/VS COBOL is packaged as a single Program Product, Program
Number 5740-CB1; the Library is also available as a separate
Program Product, Program Number 5740-LM1.

as FULL AMERICAN NATIONAL COBOL VERSION 4

The Version 4 Compiler and Library is a Program Product that
contains all of the features of the Version 2 and Version 3
Compilers, and also contains a number of added features, as well as
improved functions.

The Version 4 Compiler contains the following features:

Advanced Symbolic Debugging provides faster and easier debugging
for the COBOL programmer. At abnormal termination a formatted
dump, using COBOL source data-names, is produced. Execution-time
dynamic dumps at user-specified points in the Procedure Division
can also be obtained. When the symbolic debugging feature is
requested, optimized object code is automatically provided.
(Appendix F gives an exa~ple of Symbolic Debugging output.)

Ootimized Object Code can be requested, resulting in considerably
smaller object programs than are produced without optimization.
For COBOL programs that are not I/O bound, execution time is
reduced.

COBOL Library Manaqement Facility allows installations running with
mUltiple COBOL regions/partitions to save considerable main storage
by sharing some or all of the COBOL library subroutine modules.

Syntax-checking Compilation can be requested to save machine time
and money while debugging source syntax errors. When unconditional
syntax checking is requested, the source program is scanned for
syntax errors and such error messages are generated, but no object
code is produced. When conditional syntax checking is requested, a
full compilation is produced if no messages or only W-Ievel or
C-Ievel messages are generated; if one or more E-Ievel or.D-level
messages are generated, no object code is produced. Selected test
cases have shown that when object code is not generated,
compilation time may be reduced by as much as 70%.

All of the features of as Full American National Standard COBOL
Version 3 continue to be suppprted by Version 4. The Version 4
Compiler and Library is packaged as a single Program Product
(Program Number 5734-CB2); the Library is also available as a
separate Program Product (Program Number 5734-LM2).

(
"...--

"---'

(
I

,--~,/

G

OS FULL AMERICAN NATIONAL STANDARD COBOL VERSION 3

The Version 3 Compiler and Library is a Program Product that
contains a number of improvements in function and performance over
Version 2. The compiler may be used with or without the Time
Sharing Option (TSO) of the IBM Operating System.

FEATURES DEPENDENT ON TSO

with TSO, the terminal user may choose options to determine the
characteristics of compiler output to the terminal. He may direct
to the terminal:

• Compilation progress and diagnostic messages •

• The compiler's entire listing data set.

The user may suppress either category or may suppress all output to
the terminal.

In addition, if the user has recorded line numbers in the input
data set, the compiler may be instructed to substitute these
numbers for internal statement numbers in any diagnostic messages
printed on the ~erminal. Also, when diagnostic messages are
printed on the terminal, a message stating the total number of
statements in error can be included at the request of the user.

FEATURES NOT DEPENDENT ON TSO

with or without TSO. programmers can use the following features:

optional alphabetically ordered cross-reference listings.
Significant performance improvement has been made to the current
cross-reference option which preserves source statement order.

A flow trace option, which prints a formatted trace of the last
procedures executed before an abnormal termination of execution.
The number of procedures to be traced is specified by the user.

A statement number option, which provides the user with the number
of the COBOL statement~ and of the verb within the statement, being
executed when an abnormal ter~ination of execution occurs.

Expansion of the functions of the CLIST and DMAP compiler optio~s.
In addition to the condensed listing (CLIST) and the glossary
(DMAP), global tables, literal pools, and register assignments are
included.

The ability to batch compile more than one program or subprogram
with a single invocation of the compiler, resulting in a reduction
in compilation time.

The ability to specify record size at object time for an input QSAM
or QISAM data set.

A checkpoint-rerun prov1s10n at end-of-volume for sequentially
accessed files with any file organization.

Program Product Information 13

14

Installation default options separately located from other coding
to improve maintainability and serviceability.

Implementation of ASCII, the American National Standard Code for
Information Interchange, X3.4-1968, which provides the user with
the capability at object time of accepting and creating magnetic
tape files written in this code.

Support for American Nati"onal Standard Magnetic Tape Labels for
Information Interchange, X3.27-1969. These labels may be used only
with tape files written in the American National Standard Code for
Information Interchange.

The ability to sort files using the ASCII collating seguence for
character data on a per sort basis.

System/370 Support can be requested, to take advantage of the
System/370 instruction set. When such support is specified,
certain system/370 instructions are generated to replace the
equivalent object-time subroutines and instructions needed when
running under System/360.

OPEN Statement improvement -- generated code for the OPEN statement
has been modified to give substantial savings in object program
space.

Additional Device Support -- The following mass-storage devices are
now supported: 2305-1, 2305-2, 2319, 3330. The 3211 printer is
also supported.

C'

o

INTRODUCTION

In 1959. a group of computer professionals" representing the U.s.
Government l manufacturers, universities. and users:l formed the
~onference On DAta SYstems ~anguage (CODASYL). At the first meeting.
the conference agreed upon the development of a common language for the
programming of commercial problems. The proposed language would be
capable of continuous change and development, it would be problem­
oriented and machine-independent, and it would use a syntax closely
resembling English, avoiding the use of special symbols as much as
possible. The COmmon Business Oriented Language (COBOL) which resulted
met most of these requirements.- -

As its name implies, COBOL is especially efficient in the processing
of business problems. such problems involve relatively little algebraic
or logical processing; instead, they usually manipulate large files of
similar records in a relatively simple way. Thus, COBOL emphasizes the
description and handling of data items and input/output records.

In the years since 1959, COBOL has undergone cons1derable refinement
and standardization. In 1968, an extensive subset for a standard COBOL
was approved by ANSI (the American National Standards Institute), an
industry-wide association of computer manufacturers and users; this
standard is called American National Standard COBOL X3.23-1968.

This publication explains IBM OS Full American National Standard
COBOL, which is compatible with the highest level of American National
Standard COBOL, X3.23-1968, and includes a number of IBM extensions to
it as well. The compiler supports the processing modules defined in the
1968 standard. These processing modules include:

NUCLEUS -- which defines the permissible character set and the basic
elements of the language contained in each of the four COBOL divisions:
Identification Division, Environment Division, Data Division, and
Procedure Division.

TABLE HANDLING -- which allows the definition of tables and making
reference to them through subscripts and indexes. A convenient method
for searching a table is provided.

SEQUENTIAL ACCESS -- which allows the records of a file to be read or
written in a serial manner. The order of reference is implicitly
determined by the position of the logical record in the file.

RANDOM ACCESS -- which allows the records of a file to be read or
written in a manner specified by the programmer. Progra~mer-specified
keys control successive references to the file.

SORT -- which provides the capability of sorting files in ascending
and/or descending order. This feature also includes procedures for
handling such files both before and after they have been sorted.

REPORT WRITER -- which allows the programmer to describe the format of a
report in the DATA DIVISION, thereby minimizing the amount of PROCEDURE
DIVISION coding necessary.

SEGMENTATION -- which allows large p~oblem programs to be split into
segments to be designated as permanent or overlayable core storage.
This assures more efficient use of core storage at object time.

LIBRARY -- which supports the retrieval and updating of pre-written
source program entries from a user's library, for inclusion in a COBOL

Introduction 15

program at compile time. The effect of the compilation of library text
is as though the text were actually part of the source program.

In this publication, the features included in the NUCLEUS, SEQUENTIAL
ACCESS, and RANDOM ACCESS modules are presented as part of the
discussion of "Language Considerations" and of the four divisions of a
COBOL program. The other five modules -- TABLE HANDLING, SORT, REPORT
WRITER6 LIBRARY, and SEGMENTATION -- are presented as separate features
of American National Standard COBOL.

This manual describes all versions of IBM as American National
Standard COBOL. All information relating to the Program Product Version
3 and Version 4 compilers is presented within separate paragraphs. Such
paragraphs begin with the heading "Program Product Information",
followed by the Version numbers and all following paragraphs pertaining
tp such information are indented. All information relating only to the
OS/VS COBOL (Release 1) Compiler and Library Program Product is included
in the separate chapter, "OS/VS COBOL (Release 1) Considerations."

This chapter gives the reader a general understanding of the
principles of IBM as Full American National Standard COBOL (hereinafter
simply termed "COBOL"). It introduces the reader to COBOL and
demonstrates some of the ways in which the language can be used in the
solution of commercial problems. This discussion does not define the
rules for using COBOL, but rather attempts to explain the basic concepts
of the language through relatively simple examples.

The reader who has an understanding of the principles of cu~rently
implemented versions of COBOL may wish to go directly to "Language
Considerations." other readers will find many concepts discussed in
this chapter of help in using the detailed instructions throughout the
rest of this manual.

PRINCIPLES OF COBOL

COBOL is one of a group of high-level computer languages. Such
languages are problem oriented and relatively machine independent,
freeing the programme~ from many of the machine oriented restrictions
assembler language, and allowing him to concentrate instead upon the
logical aspects of his problem.

of

'COBOL looks and reads much like ordinary business English. The
programmer can use English words and conventional arithmetic symbols to
direct and control the complicated operations of the computer. The
following are typical COBOL sentences:

ADD DIVIDENDS TO INCOME.
MULTIPLY UNIT-PRICE BY STOCK-aN-HAND

GIVING STOCK-VALUE.
IF STOCK-aN-HAND IS LESS THAN ORDER-POINT

MOVE ITEM-CODE TO REORDER-CODE ..

Such COBOL sentences are easily understandable, but they must be
translated into machine language -- the internal instruction codes -­
before they can actually be used.

A special systems program, known as a compiler, is first entered into
the computer. The COBOL program (referred to as the source program) is
then entered into the machine, where the compiler reads it and analyzes
it. The COBOL language contains a basic set of reserved words and
symbols. Each combination of reserved words and symbols is transformed
by the compiler into a definite set of usable machine instructions. In
effect, the programmer has at his disposal a whole series of
"prefabricated" portions of the machine-language program he wishes the
compiler to construct.

16 Introduction

(I

~/

When he writes a COBOL program, he is actually directing the compiler
to bring together, in the proper sequence, the groups of machine
instructions necessary to accomplish the desired result. From the
programmer's instructions, the compiler creates a new program in machine
language. This program is known as an object program.

Once the object program has been produced, it may be used at once, or
it may be recorded on some external medium and storea for future use.
When it is needed, it can then be called upon again and again to process
data.

Every COBOL program is processed first when the compiler translates
the COBOL program into machine language (compile time), then when the
machine language program actually processes the data (execution time).

A simple example illustrates the basic principles of translating a
COBOL sentence. To increase the value of an item named INCOME by the
value of an item named DIVIDENDS, the COBOL programmer writes the
following sentence:

ADD DIVIDENDS TO INCOME.

Before the compiler can interpret this sentence, it must be given
certain information. The programmer describes the data represented by
the names DIVIDENDS and INCOME in such a way that the compiler can
recognize it, obtain it when needed, and treat it in accordance with its
special characteristics.

First, the compiler examines the word ADD. It determines whether or
not ADD is one of the COBOL reserved words, that is, words that have
clearly defined meanings in COBOL <rather than a word like DIVIDENDS,
which is defined by the programmer). ADD is a special kind of reserved
word -- a COBOL key word. Therefore, the compiler generates the machine
instructions necessary to perform an addition and inserts tnem into the
object program.

The compiler next examines the word DIVIDENDS. Because the
programmer has supplied data information about DIVIDENDS, the compiler
knows where and how DIVIDENDS information is to be placed in core
storage, and it inserts into the object program the instructions needed
in order to locate and obtain the data.

When the compiler encounters the word TO, it again determines whether
or not this is a COBOL reserved word. It is such a word, and the
compiler interprets it to mean that the value represented by the name
following the word TO, in this case INCOME, must be increased as a
result of the addition.

The compiler next examines the word INCO~E. Again, it has access to
data information about the word. As a result, it is able to place in
the object program the instructions necessary to locate and use INCO~E
data.

The programmer placed a period after the word INCOME. rhe effect of
the period on the COBOL compiler is similar to its effect in the English
language. The period tells the compiler that it has reached the last
word to which the verb ADD applies, the end of the sentence.

The logical steps we have described are performed by the compiler in
creating the object program, although they might not be performed in
exactly this sequence. All these preparatory steps are required only in
creating the object program. Once created, the object program is used
for the actual processing and may be saved for future reference. The
source program is not required further, unless the programmer makes a
change in it; in that case, it must be compiled again to create a new
object program.

Introc.uction 17

When the machine-language instruction for ADD is actually performed
at execution time, the instruction is executed in either of two ways,
depending on the format of the data:

1. It directly adds the value of DIVIDENDS to the value of the data
representing INCOME, thus giving the new value of INCOME.

or

2. It moves the data representing INCOME into a special work area or
register; then DIVIDENDS is added to it to create the sum, after
which the new value of INCOME is returned to the proper area in
storage.

In this simple example, the object program could add the two specified
items with very few machine instructions. In actual practice, however,
some complex COBOL sentences produce dozens of machine instructions.
Then, too, a computer can be instructed to repeat a procedure any number
of times. A few COBOL sentences can start the computer on operations
that could process millions of data records rapidly and accurately.

COBOL is based on English; it uses English words and certain syntax
rules derived from English. However, because it is a computer language,
it is much more precise than English. The programmer must, therefore,
learn the rules that govern COBOL and follow them exactly. These rules
are detailed later, beginning in the next chapter. The rest of this
chapter gives a general picture of how a COBOL program is put together.

The basic unit of COBOL is the word -- which may be a COBOL reserved
word or a programmer-defined word. Reserved words have a specific
syntactical meaning to the COBOL compiler, and must be spelled exactly
as shown in the reserved word list (see Appendix C). Programmer-defined
words are assigned by the user to such items as data-names and
procedure-names; they must conform to the COBOL rules for the formation
of names.

Reserved words and programmer-defined words are combined by the
programmer into clauses (in the Environment and Data Divisions> and
statements (in the Procedure Division); clauses and statements must be
formed following the specific syntactical rules of COBOL. A clause or a
statement specifies only one action to be performed, one condition to be
analyzed, or one description of data. Clauses and statements can be
combined into sentences. sentences may be simple (one statement or one
clause), or they may be compound (a combination of statements or a
combination of clauses>. Sentences can be combined into paragraphs,
which are named units of logically related sentences, and paragraphs can
be further combined into named sections. In the Procedure Division,
both paragraphs and sections can be referred to as procedures, and their
names can be referred to as procedure names.

There are four divisions in each COBOL program. Each is placed in
its logical sequence, each has its necessary logical function in the
program, and each uses information developed in the divisions preceding
it. The four divisions and their sequence are:

IDENTIFICATION DIVISION.
ENVIRONMENT DIVISION.
DATA DIVISION.
PROCEDURE DIVISION.

To illustrate how a COBOL program is written, let us create a
simplified procedure to record changes in the stocks of office furniture

18 Introduction
(

G

offered for sale by a manufacturer. We will need such data items as an
item code to identify each type of product, an item name corresponding
to the code, the unit price of each item of stock, the reorder point at
which the manufacturer replaces each item, and the amount of stock on
hand plus its value for each item. Our procedure will update a
MASTER-FILE of all stocks the manufacturer carries by reading a
DETAIL-FILE of current transactions, performing the necessary
calculations, and placing the updated values in the MASTER-FILE. We
will also create an ACTION-FILE of items to be reordered. The
MASTER-FILE resides on a direct-access (mass storage) disk device; the
DETAIL-FILE and ACTION-FILE reside on tape devices.

Many of the examples used in the following discussion have Deen
simplified for greater clarity. Figure 2, at the end of this chapter.
shows how the entire UPDATING program would actually be written.

First we must assign a name to our program, presenting the
information like this:

IDENTIFICATION DIVISION.
PROGRAM-ID. UPDATING.

PROGRAM-ID informs the compiler that we have chosen the unique name
UPDATING for the program we have written.

In addition to the name of the program, the Identification Division
allows us to list the name of the programmer, the date the program was
written, and other information that will serve to document the program.

Although COBOL is, to a large degree, machine independent, there are
some aspects of any program that depend on the particular computer being
used and on its associated input/output devices. In the Environment
Division, the characteristics of the computer used may be identified.
The location of each file referenced in the program, and how each one of
them will be used, must be described.

First we will describe the source computer <the one the compiler
uses) and the object computer (the one the object program uses) as
follows:

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-360-H50.
OBJECT-COMPUTER. IBM-360-H50.

This tells us that both computers will be an IBM System/360 Model H50.

Next we must identify the files to be used in our program, and assign
them to specific input/output devices. This is done in the Input-Output
Section.

Introduction 19

INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT MASTER-FILE, ASSIGN TO •••
ACCESS MODE IS RANDOM
ACTUAL KEY IS FILEKEY.

SELECT DETAIL-FILE, ASSIGN TO •••
ACCESS MODE IS SEQUENTIAL.

SELECT ACTION-FILE, ASSIGN TO •••

The ellipses (•••) in the three foregoing ASSIGN clauses indicate the
omission of system-name, an item too complex to illustrate here.
System-name is in a special format, and it tells the compiler on which
symbolic unit the file will be found and in what way the data is
organized within the file.

Our MASTER-FILE resides on a disk pack, which is a mass storage
device. Access for these devices can be either RANDOM or SEQUENTIAL.
If ACCESS MODE IS RANDOM, then each record within the file can be
located directly through the use of a key (identified in the statement
ACTUAL KEY IS FILEKEY). For our program we have named this key FILEKEY,
and later in the Data Division we will describe it fully. During the
processing of our object program, each record will be made available to
the user in the sequence that the keys are presented to the system.

Our DETAIL-FILE and our ACTION-FILE reside on tape. This means that
ACCESS MODE must be sequential. On tape it is necessary to refer to
each successive record in the file in order to find any individual
record we might wish to access. Since the compiler assumes that the
ACCESS MODE is sequential unless specified otherwise, the ACCESS MODE
clause is never needed in describing a tape file.

Data Division

The Data Division of the COBOL program gives a detailed description
of all the data to be used in the program -- whether to be read into the
machine, used in intermediate processing, or written as output. To
simplify this discussion, we will describe only the two most important
aspects of data description.

1. We will inform the compiler that we intend to work with one kind of
input record, our detail record; one kind of update record, our
master record; and one kind of output record, our action record.

2. We will assign data-names to each of the items of data to be used.

First, we must organize the two input records -- a ~~STER-RECORD and
a DETAIL-RECORD. The MASTER-RECORD will be derived from ledger records
that look like those shown in Table 1.

20 Introduction

c

C'I

G

Table 1. Typical Ledger Records Used for MASTER-RECORD
r-----T----------------------------T--------T--------T---------T-------,
I I I stock I Unit I Stock I I
lItem I I on I Price I Value I Order I
ICode I Item Name I Hand I ($) I ($) I Point I
~-----+----------------------------+--------+--------+---------+-------~
IA10 I 2-drawer file cabinets I 100 I 50 I 5,000 I 50 I
IA11 I 3-drawer file cabinets I 175 I 80 I 14,000 I 80 I
IA12 I 4-drawer file cabinets I 200 I 110 I 22,000 I 150 I
I I I I I I I
IB10 I Secretarial desks I 150 I 200 I 30,000 I 120 I
IB11 I Salesmen's desks I 50 I 175 I 8,750 I 50 I
IB12 I Executive desks I 75 I 500 I 37,500 I 60 I
I I I I I I I
IC10 I Secretarial posture chairs I 125 I 50 I 6,250 I 140 I
IC11 I Side chairs I 50 I 40 I 2,000 I 60 I
IC12 I Executive swivel chairs I 25 I 150 I 3,750 I 20 I L _____ ~ ____________________________ ~ ________ ~ ________ ~ _________ ~ _______ J

There will be a MASTER-RECORD for each item in this list. In
defining the data for the compiler, we will make sure 'that each record
is in the same format as all the others. Thus, if we specify the
characteristics of a single record, we will have specified the
characteristics of the whole set. In this way, all of the master
records can be organized into a data set, or file, that we will name
MASTER-FILE. Each complete record within the file we will name the
MASTER-RECORD, with the individual items of data grouped within it.
Accordingly, we will begin our Data Division as follows:

DATA DIVISION.
FILE SECTION.
FD MASTER-FILE DATA RECORD IS MASTER-RECORD •••

01 MASTER-RECORD.
05 ITEM-CODE •••
05 ITEM-NAME •••
05 STOCK-ON-HAND •••
05 UNIT-PRICE •••
05 STOCK-VALUE •••
05 ORDER-POINT •••

The FILE SECTION entry informs the COBOL compiler that the items that
follow will describe the format of each file and of each record within
each file to be used in the program. The level indicator FD (File
Description) introduces the MASTER-FILE itself, and tells the compiler
that each entry within MASTER-FILE will be referred to as MASTER-RECORD.
The entry with level number 01 identifies the MASTER-RECORD itself, and
the subordinate entries with level number 05 describe the subdivisions
within the complete MASTER-RECORD. The concept of levels is a basic
attribute of COBOL. The highest level is the FD, the next highest level
is 01. Level numbers from 02 through 49 may subdivide the record, and
the subdivisions themselves can be further subdivided if need be. The
smaller the subdivision, the larger the level number must be.

Each of the data items would actually be described more fully than is
shown here. In an actual program, for example, we would inform the
compiler that each of the items identified as STOCK-ON-HAND, UNIT-PRICE,
STOCK-VALUE, and ORDER-POINT would represent postive numeric values of a
specific size in a specific form, and so forth. At this point, we need
not concern ourselves with these details.

Introduction 21

The MASTER-FILE is the main record of current inventory. Changes to
this record are made by entering the details of individual transactions
or groups of transactions. Thus, receipts of new stocks and shipments
to customers will change both STOCK-ON-HAND and S'I'OCK-VALUE. These
changes are summarized in the detail record for each item. A typical
record would appear in a ledger as shown in Table 2.

Table 2. Typical DETAIL-RECORD
r---------T-------------------------T-----------------T----------------,
I Item I I I I
I Code I Item Name I Receipts I Shipments I

~---------+-------------------------+-----------------+----------------~
I Bll I Salesmen's desks I 25 I 15 I L _________ ~ _________________________ ~ _________________ ~ ________________ J

We will therefore organize a DETAIL-FILE, made up of individual items
to be referred to as DETAIL-RECORD. DETAIL-FILE will be arranged by
ITEM-CODE in ascending numerical order.

FD DETAIL-FILE DATA RECORD IS DETAIL-RECORD •••
01 DETAIL-RECORD.

05 I'I'EM-CODE •••
05 ITEM-NAME •••
05 RECEIPTS •••
05 SHIPMENTS •••

The ACTION-FILE will contain a list of items to be reordered, plus
relevant data:

FD ACTION-FILE DATA RECORD IS ACTION-RECORD •••
01 ACTION-RECORD.

05 ITEM-CODE •••
05 ITEM-NAI"lE •••
05 STOCK-ON-HAND •••
05 UNIT-PRICE •••
05 ORDER-POINT •••

This completes the description of the files we will use.

Note that the names of data items contained within the files are in
many cases identical. Yet each name within each file must be unique, or
ambiguities in references to them will occur. Since identical names are
used in our data descriptions, we must use a special means of
distinguishing between them. The COBOL naming system, with its concept
of levels, allows us to make this distinction by reference to some
larger group of data of which the item is a part. Thus, ITEM-CODE OF
MASTER-RECORD, and ITEM-CODE OF DETAIL-RECORD, and ITEM-CODE OF
ACTION-RECORD can be clearly differentiated from each other. The use of
a higher level name in this way is called qualification. Qualification
is required in making distinctions between otherwise identical names.

Now we must construct the Working-Storage Section of our Data
Division. This section describes records and data items that are not
part of the files, but are used during the processing of the object
program.

22 Introduction

c,

o

u

For our program, we will need several entries in our Working-Storage
Section. Among them will be several items constructed with level
numbers, similar to those used to describe the file records.

WORKING-STORAGE SECTION.

77 QUOTIENT •••

01 FILEKEY •••
05 TRACK-ID •••
05 RECORD-ID •••

01 ERROR-MESSAGE.
05 ERROR-MESSAGE-1 •••
as ERROR-MESSAGE-2 •••
05 ERROR-MESSAGE-3 •••

We will use the FILEKEY record in constructing the FILEKEY. We will
use the ERROR-MESSAGE record to create warning messages when errors are
encountered during object time processing. We have assigned the level
number 77 to the data item named QUOTIENT. This level number informs
the compiler that QUOTIENT is a noncontiguous data item -- that is, that
this item has no relationship to any other data item described in the
Working-Storage section. Note that the data items related to each other
must be listed after all the noncontiguous data items.

The Procedure Division contains the instructions needed to solve our
problem. To accomplish this, we will use several types of COBOL
statements. In constructing our sample program, we will discover how
each type of statement can be used to obtain the results we want.

Our first step in building the Procedure Division is to make the
records contained in the MASTER-FILE and the DETAIL-FILE available for
processing. If we write the statements:

PROCEDURE DIVISION.

OPEN INPUT DETAIL-FILE.
OPEN 1-0 MASTER-FILE.

the system establishes a line of communication with each file, checks to
make sure that each is available for use, brings the first record of the
DETAIL-FILE file into special areas of internal storage known as
buffers, and does other housekeeping.

Introduction 23

The files can now be accessed. Our next statements will therefore
be: /"--"

READ DETAIL-FILE AT END GO TO END-ROUTINE.

READ MASTER-FILE INVALID KEY PERFORM INPUT-ERROR
GO TO ERROR-ROUTINE-l.

At this point in our program, these two statements make available for
processing the first record from each file. (Note that the AT END
phrase and the INVALID KEY phrase are necessary in these sentences.
Their use will be explained later.) We are now able to begin arithmetic
operations upon the data.

Arithmetic Statements

We have already seen that the COBOL language contains the verb ADD.
Using this verb, we can add RECEIPTS to STOCK-ON-HAND by writing the
COBOL statement:

ADD RECEIPTS TO STOCK-ON-HAND.

This instructs the program to find the value of RECEIPTS in the
DETAIL-RECORD and add it to the value of STOCK-ON-HAND in the
MASTER-RECORD. (For the sake of brevity, this example and the ones
following have been simplified by omitting the name qualification which
would be necessary in actual coding. Figure 2, at the entl of this
chapter, shows the actual coding necessary.)

Next we must reduce the new value of STOCK-ON-HAND by the amount of
SHIPMENTS. The COBOL verb SUBTRACT will accomplish this result for us,
and so we write:

SUBTRACT SHIPMENTS FROM STOCK-ON-HAND.

These two statements, carried out in succession, will produce a current
value for STOCK-ON-HAND.

Actually, there is a more concise way to perform this particular
calculation. We have broken it into two steps, but COBOL provides
another verb which allows us to specify more than one arithmetic
operation in a single statement. This is the verb COMPUTE.

COMPUTE STOCK-ON-HAND = STOCK-ON-HAND + RECEIPTS - SHIPMENTS.

A COMPUTE statement is always interpreted to mean that the value to
the left of the equal sign will be changed to equal the value resulting
from the calculation specified to the right. The calculation to the
right of the equal sign is evaluated from left to right. That is, in
our example, the addition is performed first and then the subtraction.

The name STOCK-ON-HAND occurs twice in this sentence, but this causes
no difficulty. The expression to the right is calculated first; thus,
it is the current value of STOCK-ON-HAND that is used as the basis for
computing the new value. When this new value has been calculated, it
replaces the old value of STOCK-ON-HAND in the MASTER-RECORD.

24 Introduction

o

So far we have brought only the value of STOCK-aN-HAND up to date,
but a change in this value will also cause a change in STOCK-VALUE. We
will assume that this figure does not include allowances for quantity
discounts, damage to stock, or other such factors, and that STOCK-VALUE
is nothing more than the unit price multiplied by the number of items
currently in stock. COBOL provides us with a MULTIPLY verb, which
permits us to accomplish this:

MULTIPLY STOCK-aN-HAND BY UNIT-PRICE GIVING STOCK-VALUE.

The result of the multiplication will be placed in the MASTER-RECORD as
the new value of STOCK-VALUE. Within the program, this statement must
be executed after the COMPUTE statement we wrote earlier, since
STOCK-aN-HAND must be the updated, not the original, value.

Conditional Statements

There are instructions in COBOL that examine data to determine
whether or not some condition is present and, depending on what is
found, to carry out an appropriate course of action.

The MASTER-RECORD contains an item called ORDER-POINT. An item is to
be reordered when its stock has been reduced either to or below its
order point. Let us assume that we have written a procedure for
initiating such an order, and that we have given the name
REORDER-ROUTINE to this procedure. We then write the following two
sentences:

IF STOCK-aN-HAND IS LESS THAN ORDER-POINT
PERFORM REORDER-l •••

IF STOCK-aN-HAND IS EQUAL TO ORDER-POINT
PERFORM REORDER-l •••

in order to compare the present value of STOCK-aN-HAND with the value of
ORDER-POINT. If STOCK-aN-HAND is a smaller value, the COBOL verb
PERFORM causes a transfer of control to the paragraph named REORDER-l.
If STOCK-aN-HAND is not less than ORDER-POINT, our next instruction is
evaluated. If the values are equal, control is transferred to
REORDER-l. If the values are not equal, control is transferred to the
next instruction.

It is permissible, in COBOL, to combine the two tests into one:

IF STOCK-aN-HAND IS LESS THAN ORDER-POINT OR EQUAL TO
ORDER-POINT PERFORM REORDER-l •••

Here we are writing a compound condition with an implied SUbject.
STOCK-ON-HAND, the subject of the first condition, is understood to be
the subject of the second condition as well. Compound conditions
increase the flexibility of COBOL and make the handling of many kinds of
problems easier.

In this example, we tested successively for two conditions out of
three. Unless the programmer has some need to distinguish between these
two conditions (and he might), it would be simpler to test for the third
condition instead:

IF STOCK-ON-HAND IS GRE~TER THAN ORDER-POINT NEXT SENTENCE
ELSE PERFORM REORDER-l •••

The words NEXT SENTENCE have a special meaning in COBOL. When IF
STOCK-ON-HAND IS GREATER THAN ORDER-POINT is true, NEXT SENTENCE takes
effect. Every instruction in the balance of the IF sentence is ignored,
and control is transferred to the sentence following.

Introduction 25

The test can be simplified even further, since COBOL allows us to
express negation:

IF STOCK-ON-HAND IS NOT GREATER THAN ORDER-POINT
PERFORM REORDER-l •••

If the value of STOCK-VALUE is less than or equal to that of
ORDER-POINT, control is transferred to REORDER-l. If the value is
greater, control automatically passes to the next successive sentence.

The actual rules for specifying tests and comparisons will be given
in a subsequent chapter.

Let us write one more conditional statement:

IF STOCK-ON-HAND IS LESS THAN ZERO ••.
GO TO ERROR-WRITE.

One would expect that the smallest value STOCK-ON-HAND could assume
would be zero. If a negative record were processed, the values found
would probably be completely erroneous. To prevent this, the programmer
could anticipate the possibility of error and write a special routine to
be executed whenever the value of STOCK-ON-HAND was found to be
negative. such a routine could stop the processing of this record,
print out the erroneous data, and proceed automatically to process the
following records. The more comprehensive a programmer makes his error
checking, the less likely it is that inaccurate information will pass
through without being marked for special attention.

Data-Man!Qulation Statements

We saw in the preceding paragraph that if the value of STOCK-ON-HAND
fell below a certain point, control would be passed to a special
sequence of instructions named REORDER-l. Our output ACTION-FILE has
been set up for just this purpose. The bulk of REORDER-l could consist
of data-manipulation statements; that is, instructions which move the
necessary data items from the MASTER-RECORD area in storage to that area
reserved for the ACTION-FILE records. The COBOL verb MOVE can be used
to accomplish this. We must explain here that the verb MOVE does ~Qt
mean an actual physical movement of data. Instead, it means that the
data items from MASTER-RECORD are copied into ACTION-RECORD. Items
within MASTER-RECORD are not destroyed when a MOVE statement is
executed, and are available for further processing. Individual items
contained in ACTION-RECORD before the operation, however, are replaced
when the statement is executed. Our MOVE statements will be written:

MOVE ITEM-CODE OF MASTER-RECORD TO ITEM-CODE
OF ACTION-RECORD.

MOVE ITEM-NAME OF MASTER-RECORD TO ITEM-NAME
OF ACTION-RECORD.

MOVE STOCK-ON-HAND OF MASTER-RECORD TO
STOCK-ON-HAND OF ACTION-RECORD.

MOVE UNIT-PRICE OF MASTER-RECORD TO UNIT-PRICE
OF ACTION-RECORD.

MOVE ORDER-POINT OF MASTER-RECORD TO ORDER-POINT
OF ACTION-RECORD.

26 Introduction

r~
I

c

o

With these five statements, we have set up the ACTION-RECORD to be
written in the ACTION-FILE. However, there is another and easier method
for the programmer to specify the five MOVE operations by taking
advantage of the qualification system in naming:

MOVE CORRESPONDING MASTER-RECORD TO ACTION-RECORD.

The word CORRESPONDING indicates that those data items with names which
are identical in both records are to be copied from MAST£R-RECORD into
ACTION-RECORD. Thus, five MOVE statements are replaced by one.

When all arithmetic and data-manipulation statements have been
executed, we will write the results in some form. COBOL allows us to do
this with a WRITE instruction.

WRITE MASTER-RECORD INVALID KEY •••
GO TO ERROR-WRITE.

Or, if we were to indicate that an item was to be reordered, we could
write the following:

WRITE ACTION-RECORD.

In either case, the record would be recorded on the output device
specified for the file in the Environment Division; its format would be
determined by the Data Division description of the file.

In our inventory problem, there will be as many master records as
there are kinds of furniture in stock, and there will be a varying
number of detail records. We must read each successive DETAIL-RECORD in
DETAIL-FILE, until everyone of the records in the file has been
processed.

Each time' a DETAIL-RECORD is read, we will perform calculations upon
its ITEM-CODE in order to produce our FILEKEY. FILEKEY will then be
used to find a matching record in MASTER-RECORD. If a matching record
cannot be found, either the DETAIL-RECORD is in error, or the
NASTER-RECORD is missing from the file and we must mark that record for
special processing. Consider the series of statements in Figure 1.

You will note that several new elements have been added to the
arithmetic statements and conditional phrases we have already discussed.
First, there are the elements that extend to the left of the other
statements. These elements are the procedure-names we described
earlier. Each procedure-name indicates the beginning of a paragraph or
a section within the program, and each indicates a reference point for
programmer-specified transfer of control. When a procedure is entered,
each logically successive instruction is processed in turn.

Introduction 27

r---~----------------------,
NEXT-DETAIL-RECORD-ROUTINE.

R.EAD DETAIL-FILE AT END GO TO END-ROUTINE-l.

READ MASTER-FILE INVALID KEY PERFORM INPUT-ERROR
GO TO ERROR-WRITE.

COMPUTATION-ROUTINE.

IF STOCK-ON-HAND IN ~ASTER-RECORD IS LESS THAN ZERO
PERFORM 9ATA-ERROR GO TO ERROR-WRITE.

IF STOCK-ON-HAND IN MASTER-RECORD IS NOT GREATER THAN
ORDER-POINT IN MASTER-RECORD PERFORM REORDE~-i
THRU REORDER-2.

WRITE-MASTER-ROUTINE.

GO TO NEXT-DETAIL-RECORD-ROUTINE.
REORDER-i.

GO TO SWITCH-ROUTINE.
SWITCH-ROUTINE.

ALTER REORDE~-l TO REORDER-2
END-ROUTINE-i TO END-ROUTINE-3.

OPEN OUTPUT ACTION-FILE.
REOR.DER-2.

MOVE CORRESPONDING MASTER-RECORD TO ACTION-RECORD.
WRITE ACTION-RECORD.

ERROR-WRITE.

GO TO NEXT-DETAIL-RECORD-ROUTINE.
INPUT-ERROR.

MOVE " KEY ERROR ON INPUT " TO ERROR-MESSAGE-i.

DATA- ERROR.
MOVE "DATA ERRO~ ON INPUT " TO ERROR-MESSAGE-i.

END-ROUTINE-1.
GO TO END-ROUTINE-2.

END-ROUTINE-3.
CLOSE ACTION-FILE.

IEND-ROUTINE-2.
I CLOSE DETAIL-FILE.
I CLOSE MASTER-FILE.
I STOP RUN. L __ J

Figure 1. Illustration of Procedure Branching

28 Introduction

\

\ ..

(~
........ ... /

c

o

The procedure-names give us a means of controlling the processing of
successiva items in our DETAIL-FILE. If, for example, we have finished
processing one complete DETAIL-RECORD and wish to begin processing the
next, control must be transferred to NEXT-DETAIL-RECORD-ROUTINE. rhis
is accomplished through the use of the COBOL verb GO TO, which transfers
control to the procedure indicated, as in the statement:

GO TO NEXT-DETAIL-RECORD-ROUTINE.

;

Processing then continues with the first sentence following the
procedure-name NEXT-DETAIL-RECORD-ROUTINE. Note the many other examples
of the GO TO statement in our program. Each gives us the means of
transferring control from one procedure to another.

Another way in which to control the processing of a series of records
is through the use of the COBOL verb PERFORM. Like the verb GO ro, the
verb PERFORM specifies a transfer to the first sentence of a routine.
In addition, PERFORM provides various ways of determining the manner in
which the procedure is to be processed.

Within the COMPUTATION-ROUTINE, there is a statement which uses the
COBOL verb PERFORM:

IF STOCK-ON-HAND IN MASTER-RECORD IS LESS THAN ZERO
PERFORM DATA-ERROR GO TO ERROR-WRITE.

When STOCK-ON-HAND is computed to be less than zero, an error condition
has occurred. First, the compiler is instructed to transfer control to
a procedure named DATA-ERROR. Within DATA-ERROR, there is a MOVE
statement which copies the characters within quotation marks ("DATA
ERROR ON INPUT ") into the area of storage reserved for ERROR-MESSAGE-i.
(The characters within quotation marks are what is known as a literal
because they literally mean themselves. When ERROR-MESSAGE is
displayed, these words will be an actual part of the error message.)
Control is now transferred back to the next statement following the
PERFORM statement, which is the GO TO ERROR-WRITE statement.

Note that within COMPUTATION-ROUTINE there is another PERFORM
statement that is processed in a similar manner:

IF STOCK-ON-HAND IN MASTER-RECORD IS NOT GREA~'ER THAN
ORDER-POINT IN MASTER-RECORD
PERFORM REORDER-i THRU REORDER-2.

This time, the PERFORM statement instructs the object program to
process several paragraphs before returning control to the next
successive statement. ThUS, when this PERFORM statement is executed,
control is transferred to REORDER-i. This paragraph is executed, the
next paragraph, SWITCH-ROUTINE, is also executed, and then all the
statements contained in REORDER-2 are executed, at which point control
is returned to the first statement in WRITE-MASTER-ROUTINE -- the next
successive statement after the PERFORM statement.

A PERFORM statement may specify that a single section or paragraph oe
processed, or, if the desired procedure consists of more than one
section or paragraph, it can specify two names that identify the
beginning and the end of the procedure.

GO TO and PERFORM statements may seem to do much the same job. Yet
there are specific reasons that will cause the programmer to choose one
over the other. On the one hand, the programmer may wish to transfer
control to the same procedure from two entirely different sections of

Introduction 29

the program. In this case, PERFORM offers the most convenient method of
returning to the point from which the transfer was made. On the other
hand, if the programmer wishes to proceed to a portion of the program
without specifying a return to the current routine, a GO TO statement
will provide the best method of making the transfer.

In addition to the GO TO and PERFORM statements, there is another
COBOL statement that affects procedure branching: the ALTER statement. ,

In any given execution of our object program, we mayor may not use
our ACTION-FILE. Only if some item in STOCK-ON-HAND has fallen below
REOR8ER-POINT will it be necessary to create an ACTION-RECORD.
Therefore, depending' upon the data that is being processed, we will open
ACTION-FILE only if and when such an operation is necessary.

Suppose that for the first time in a particular execution of our
object program we have encountered a value for STOCK-ON-HAND that
indicates it must be reordered. The statement:

IF STOCK-ON-HAND IN MASTER-RECORD IS NOT GREATER THAN
ORDER-POINT IN MASTER-RECORD
PERFORM REORDER-i THRU REORDER-2.

instructs the compiler, when STOCK-ON-HAND is not greater than
ORDER-POINT, to transfer control to the first sentence in REORDER-i.
REORDER-i consists of but one statement:

GO TO SWITCH-ROUTINE.

SWITCH-ROUTINE, as it happens, is the next paragraph, and it contains
an ALTER statement:

ALTER REORDER-i 'I'O REORDER-2
END-ROUTINE-i TO END-ROUTINE-3.

This statement instructs the compiler to substitute the words
REORDER-2 for SWITCH-ROUTINE (within REORDER-i), and END-ROUTINE-3 for
END-ROUTINE-2 <within END-ROUTINE-i). Since, at the time the ALTER
statement is executed, we are already beyond the point at which the
substitution is to be made in REORDER-i, we continue processing each
sequential statement until we reach the end of REORDER-2. We open
ACTION-FILE, and so forth, until we return control to the next statement
following the PERFORM statement.

However, in this execution of our object program, the next time we
must reorder an item, a different sequence of statements is performed.
The program transfers control to REORDER-i, but now the GO TO statement
within REORDER-i has a different operand. Instead of SWITCH-ROUrINE,
the program is now instructed to transfer control to the paragraph named
REORDER-2. Through use of the ALTER statement, we have created a switch
that bypasses the OPEN ACTION-FILE statement in subsequent processing of
reordered items, since the OPEN statement need be executed but once in
any execution of our object program.

Similarly, if ACTION-FILE was never opened in this execution of our
object program, it is not necessary to close it. Therefore, the second
part of the ALTER statement:

END-ROUTINE-i TO END-ROUTINE-3

allOWS alternate paths of program flow, depending on whether or not this
ALTER statement was ever executed. The precise rules for programming
the ALTER statement are given later in this publication: note, however,
the increased programming flexibility it offers.

30 Introduction

C)

o

One last step in the logic of our inventory program must now be
taken. We have obtained the update information from a record, performed
the needed arithmetic calculations, moved the data from one area of
storage to another, and written the decision-making and procedure­
branching instructions necessary to take care of special cases and to
process each succeeding record. Then we have written the updated
information into the ~~STER-FILE and, when necessary, have written the
ACTION-FILE. We must now terminate the program after all records nave
been acted upon. Remember that we wrote our first READ statement as
follows:

READ DETAIL-FILE AT END GO TO END-ROUTINE-1.

END-ROUTINE-1 will consist of the few instructions necessary to
terminate operations for this program.

Just as the programmer must make all the files available to the
system with a set of OPEN instructions, he must now disconnect these
same files with another series:

END-ROUTINE-1.
GO TO END-ROUTINE-2.

END-ROUTINE-3.
CLOSE ACTION-FILE.

END-ROUTINE-2.
CLOSE DETAIL-FILE.
CLOSE MASTER-FILE.

These instructions initiate necessary housekeeping routines. (Note here
that, in our program, ACTION-FILE will be closed only if REORDER-1 l'hRU
REORDER-2 has been performed and the ALTER statement has been executed.)
Once a file has been closed, it cannot be accessed by the program again.
The programmer now writes one last COBOL instruction, and it must be at
the logical end of his processing:

STOP RUN.

At this point, COBOL ending procedures are initiated, and the execution
of the program is halted.

This is only a general picture of the way in which a COBOL program
works. The following chapters in this manual give detailed descriptions
of all four divisions within a COBOL program, with explicit instructions
for correct programming in IBM Full American National Standard COBOL.

Introduction 31

r--,
IDENTIFICATION DIVISION.
PROGRAM-ID. UPDATING.
REMARKS. THIS IS A SIMPLIFIED UPDATE PROGRAM, USED AS AN

EXAMPLE OF BASIC COBOL TECHNIQUES. THE PROGRAM IS
EXPLAINED IN DETAIL IN THE INTRODUCTION TO THIS MANUAL.

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-360-H50.
OBJECT-COMPUTER. IBM-360-H50.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT HASTER-FILE ASSIGN TO DA-2311-D-MASTER
ACCESS MODE IS RANDOM
ACTUAL KEY IS FILEKEY.

SELECT DETAIL-FILE ASSIGN TO UT-2400-S-INFILE
ACCESS IS SEQUENTIAL.

SELECT ACTION-FILE ASSIGN TO UT-2400-S-0UTFILE.
DATA DIVISION.
FILE SECTION.
FD MASTER-FILE LABEL RECORDS ARE STANDARD

DATA RECORD IS MASTER-RECORD.
01 MASTER-RECORD.

05 ITEM-CODE PICTURE X(3).
05 ITEM-NAME PICTURE X(29).
05 STOCK-ON-HAND PICTURE S9(6)
05 UNIT-PRICE PICTURE S999V99
05 STOCK-VALUE PICTURE S9(9)V99
05 ORDER-POINT PICTURE S9(3)

FD DETAIL-FILE LABEL RECORDS ARE OMITTED
DATA RECORD IS DETAIL~RECORD.

01 DETAIL-RECORD.
05 ITEM-CODE PICTURE X(3).
05 ITEM-NAME PICTURE X(29).
05 RECEIPTS PICTURE S9(3)
as SHIPMENTS PICTURE S9(3)

FD ACTION-FILE LABEL RECORDS ARE OMITTED
DATA RECORD IS ACTION-RECORD.

01 ACTION-RECORD.
05 ITEM-CODE PICTURE X(3).
05 ITEM-NAME PICTURE X(29).
05 STOCK-ON-HAND PICTURE S9(6)
05 UNIT-PRICE PICTURE S999V99
as ORDER-POINT PICTURE S9(3)

WORKING-STORAGE SECTION.
77 SAVE PICTURE S9(10)
77 QUOTIENT PICTURE S9999
01 FILEKEY.

05 TRACK-ID
as RECORD-ID

01 ERROR-MESSAGE.

PICTURE S9(5)
PICTURE X(29).

05 ERROR-MESSAGE-1 PICTURE X(20).
05 ERROR-MESSAGE-2 PICTURE X(36).
05 ERROR-MESSAGE-3 PICTURE X(46).

USAGE COMP SYNC.
USAGE COMP SYNC.
USAGE COl>lP SYNC.
USAGE COMP SYNC.

USAGE COMP SYNC.
USAGE COMP SYNC.

USAGE COMP SYNC.
USAGE COMP SYNC.
USAGE COMP SYNC.

USAGE COMP SYNC.
USAGE COMP SYNC.

USAGE COMP SYNC.

L ___ _

Figure 2. Complete UPDATING Program (Part 1 of 2)

32 Introduction

\, .. ~~ .. - , '

c

C)

o

r--,
PROCEDURE DIVISION.
OPEN-FILES-ROUTINE.

OPEN INPUT DETAIL-FILE.
OPEN I-O MASTER-FILE.

NEXT-DETAIL-RECORD-ROUTINE.
READ DETAIL-FILE AT END GO TO END-ROUTINE-1.

NEXT-MASTER-RECORD-ROUTINE.
MOVE ITEM-CODE IN DETAIL-RECORD TO SAVE.
DIVIDE 19 INTO SAVE GIVING QUOTIENT

REMAINDER TRACK-ID.
MOVE ITEM-NAME IN DETAIL-RECORD TO RECORD-ID.
READ MASTBR-FILE INVALID KEY

PERFORM INPUT-ERROR GO TO ERROR-WRITE.
COMPUTATION-ROUTINE.

COMPUTE STOCK-ON-HAND IN MASTER-RECORD = STOCK-ON-HAND
IN MASTER-RECORD + RECEIPTS - SHIPMENTS.

IF STOCK-ON-HAND IN MASTER-RECORD IS LESS THAN ZERO
PERFORM DATA-ERROR GO TO ERROR-WRITE.

MULTIPLY STOCK-ON-HAND IN MASTER-RECORD BY UNIT-PRICE
IN MASTER-RECORD GIVING STOCK-VALUE
IN MASTER-RECORD.

IF STOCK-ON-HAND IN MASTER-RECORD IS NOT GREATER THAN
ORDER-POINT IN MASTER-RECORD PERFORM REORDER-l
THRU REORDER-2.

WRITE-MASTER-ROUTINE.
WRITE MASTER-RECORD INVALID KEY

PERFORM OUTPUT-ERROR GO TO ERROR-WRITE.
GO TO NEXT-DETAIL-RECORD-ROUTINE.

REORDER-1. GO TO SWITCH-ROUTINE.
SWITCH-ROUTINE.

ALTER REORDER-1 TO REORDER-2
END-ROUTINE-l TO END-ROUTINE-3.

DISPLAY "ACTION FILE UTILIZED".
OPEN OUTPUT ACTION-FILE.

REORDER-2.
,MOVE CORRESPONDING MASTER-RECORD TO ACTION-RECORD.
WRITE ACTION-RECORD.

ERROR-WRITE.
MOVE DETAIL-RECORD TO ERROR-MESSAGE-2.
DISPLAY ERROR-MESSAGE.
GO TO NEXT-DETAIL-RECORD-ROUTINE.

INPUT-ERROR.
MOVE " KEY ERROR ON INPUT " TO ERROR-MESSAGE-1.
MOVE SPACES TO ERROR-MESSAGE-3.

DATA-ERROR.
MOVE "DATA ERROR ON INPUT " TO ERROR-MESSAGE-1.
MOVE MASTER-RECORD TO ERROR-MESSAGE-3.

OUTPUT-ERROR.
MOVE "KEY ERROR ON OUTPUT " TO ERROR-MESSAGE-1.
MOVE SPACES TO ERROR-MESSAGE-3.

END-ROUTINE-1.
GO TO END-ROUTINE-2.

END-ROUTINE-3.
CLOSE ACTION-FILE.

END-ROUTINE-2.
CLOSE DETAIL-FILE.
CLOSE MASTER-FILE.
STOP RUN. L __ J

Figure 2. Complete UPDATING Program <Part 2 of 2)

Introduction 33

PART I -- LANGUAGE CONSIDERATIONS

• STRUCTURE OF THE LANGUAGE

• ORGANIZATION OF THE COBOL PROGRAM

• METHODS OF DATA REFERENCE

• USE OF THE COBOL CODING FORM

• FORMAT NOTATION

o
Part I -- Language Considerations 35

' , , ... ,,'

c

o

Character set

The COBOL language is so structured that the programmer can write his
individual problem program within a framework of words that have
particular meaning to the COBOL compiler. The result is the performance
of a standard action on specific units of data. For example, in a COBOL
statement such as MOVE NET-SALES TO CURRENT-MONTH, the words MOVE and TO
indicate standard actions to the COBOL compiler. NET-SALES and
CURRENT-MONTH are programmer-defined words which refer to particular
units of data being processed by his problem program.

The complete character set for COBOL consists of the following 51
characters:

Character

0,1, ••• ,9
A, B, ••• I Z

+

*
/

$

" or •
(

)

>
<

digit
letter
space
plus sign
minus sign (hyphen)
asterisk
stroke (virgule, slash)
equal sign
currency sign
comma
semicolon
period (decimal point)
quotation mark
left parenthesis
right parenthesis
"greater than" symbol
"_less than" symbol

Not~:ThisCompiier'sd.efauitoption fort-he quotation mark is the
apostrophe «') Unless.tp.~;4efaultoptionis overridden,the quotation
mar~.(f~)m(.\yn<Jt:.beu~g~.. If conformance with the standard COBOL
character set is desired, the progralrumer must specify the quotation mark
(") through an EXEC card at compile time. If the quotation mark is thus
specified, the apostrophe <I) may not be used.

The characters used in words in a COBOL source program are the
following:

o through 9
A tnrough Z
- (hyphen)

A ~Qrd is composed of a combination of not more than 30 characters
chosen from the character set for words. The word cannot begin or end
with a hyphen.

Structure of the Language 37

Character Set

The following characters are used for punctuation:

" f:brrI1I~:
(
)

Me~ging
space
comma
semicolon
period
quotation mark
left parenthesis
right parenthesis

The following general rules of punctuation apply in writing a COBOL
source program:

1. When any punctuation mark is indicated in a format in this
publication, it is required in the program.

2. A period, semicolon, or comma, when used, must not be preceded by a
space, but must be followed by a space.

3. A left parenthesis must not be followed immediately by a space;
a right parenthesis must not be preceded immediately by a space.

4. At least one space must appear between two successive words and/or
parenthetical expressions and/or literals. Two or more successive
spaces are treated as a single space, except within nonnumeric
literals.

5. An arithmetic operator or an equal sign must always be preceded by
a space and followed by a space. A unary operator may be preceded
by a left parenthesis.

6. A comma may be used as a separator between successive operands of a
statement. An operand of a statement is shown in a format as a
lower-case word.

7. A comma or a semicolon may be used to separate a series of clauses.
For example, DATA RECORD IS TRANSACTION, RECORD CONTAINS 80
CHARACTERS.

8. A semicolon may be used to separate a series of statements. For
example, ADD A TO B; SUBTRACT B FROM C.

, ~ (,

"-. /

9. C
38 Part I -- Language Considerations

()

o

Character Set

Editing characters are sinqle characters or specific two-character
combinations belonging to the-following set:

Character
B
o
+

CR
DB
Z

* ,$

r1eaning,
space
zero
plus
minus
credit
debit
zero suppression
check protection
currency sign
comma
period (decimal point)

(For applications, see the discussion of alphanumeric edited and numeric
edited data items in "Data Division.")

The characters used in arithmetic expressions are as follows:

£hara~~§.f.
+

*
/

**

Me~!!i!!g,
addition
subtraction
multiplication
division
exponentiation

Arithmetic expressions are used in the COMPUTE statement and in
relation conditions (see "Procedure Division" for more details>.

A f.§.la~iQ!!~haract§.f. is a character that belongs to the following
set:

~hara~tef.
>
<

Me~ni!!g
greater than
less than
equal to

Relation characters are used in relation conditions (discussed in
"Procedure Division").

structure of the Language 39

Words

'I'YPES OF WORDS

A word is composed of a combination of not more than 30 characters
chosen from the character set for words. The word cannot begin or end
with a hyphen.

The space (blank) is not an allowable character in a word; the space
is a word separator. Wherever a space is used as a word separator, more
than one may be used.

A word is terminated by a space, or by a period, right parenthesis,
comma, or semicolon.

ResgEYg~~ords exist for syntactical purposes and must not appear as
user-defined words. However, reserved words may appear as nonnumeric
literals, i.e., a reserved word may be enclosed in quotation marks.
When used in this manner, they do not take on the meaning of reserved
words and violate no syntactical rules.

There are three types of reserved words:

1. ~~ord~. A key word is a word whose presence is required in a
COBOL entry. Such words are upper case and underlined in the
formats given in this publication.

Key words are of three types:

a. Verbs such as ADD, READ, and ENTER.

b. Required words, which appear in statement and entry formats.
such as the word TO in the ADD statement.

c. Words that have a specific functional meaning, such as ZERO,
NEGATIVE, SECTION, TALLY, etc.

2. optional Words. Within each format, upper case words that are not
underlined are called optional words because they may appear at the
user's option. The presence or absence of each optional word in
the source program does not alter the compiler's translation.
Misspelling of an optional word, or its replacement by another word
of any kind, is not allowed.

3. Conng£tive~. There are three types of connectives:

a. Q~~!ifie~£Q~~g£t~yes, which are used to associate a data-name
or paragraph-name with its qualifier. The qualifier
connectives are OF and IN (see "Methods of Data Reference").

b. Series connectives, which link two or more consecutive
operands~-The series connective is the comma (,>.

c. ~Qgica!_co~~g£tiyg~ that are used in compound conditions. The
logical connectives are AND, OR, AND NOT, and OR NOT (see
"Conditions").

40 Part I -- Language Considerations

c

o

Names

There are three types of g~~~~ used in a COBOL program:

1. A data-name is a word that contains at least one alphabetic
character and identifies a data item in the Data Division. The
following are formed according to the rules for data-names:

file-names
index-names
mnemonic-names
record-names
report-names
sort-file-names
sort-record-names

2. A condition-name is a name given to a specific value, set of
values,--or-range of values within the complete sei: of values that a
particular data item may assume. The data item itself is called a
conditional variable. The condition-name must contain at least one
alphabetic character (see "Data Division" and the discussion of
"Special-names" in "Environment Division").

3. A pro~edure-name is either a paragraph-name or a section-name. A
procedure-name may be composed solely of numeric characters. Two
numeric procedure-names are equivalent if, and only if, they are
composed of the same number of digits and have the same value (see
"Procedure Division"). The following are formed according to the
rules for procedure-names;

library-names
program-names

Note: Abbreviations (such as PIC for PICTURE) are allowed for some
reserved words; the abbreviation is the equivalent of the complete word.
For the formats in which they are allowable, such abbreviations are
shown in the format. The reserved words THRU and THROUGH are
equivalent. In statement formats, wherever the reserved word THRU
appears, the word THROUGH is also allowed.

§peci~1-n~me§ are used in the SPECIAL-NAMES paragraph of tne
Environment Division. The term special-name refers to a mnemonic-name.
A ~g~mQ~i~~~me is a programmer-defined word that is associated in the
Environment Division with a function-name: function-names are names
with a fixed meaning, defined by IBM. --------------

In the Procedure Division, mnemonic-name can be written in place of
its associated function-name in any format where such substitution is
valid. The formation of a mnemonic-name follows the rules for formation
of a data-name (see "Special-names" in "Environment Division").

Structure of the Language 41

Constants

A cons~ant is a unit of data whose value is not subject to change.
There are two types of constants: literals and figurative constants.

Literals

A literal is a string of characters whose value is determined by the
set of characters of which the literal is composed. Every literal
belongs to one of two categories, numeric and nonnumeric.

NUMERI~#~!~~~~~; There are two types of numeric literals: fixed-point
oat~~g.;±1?9~l'l~~i

A fixed-Qoint nume~i~-1i~gral is defined as a string of characters
chosen from the digits 0 through 9, the plus sign, the minus sign, and
the decimal point. Every fixea-point numeric literal:

1. Must contain from 1 through 18 digits.

2. Must not contain more than one sign character. If a sign is used,
it must appear as the leftmost character of the literal. If the
literal is unsigned, the literal is positive.

3. Must not contain more than one decimal point. The decimal point is
treated as an assumed decimal point, and may appear anywhere in the
literal except as the rightmost character. If the literal contains
no decimal point, the literal is an integer.

(See the discussion of fixed-point numeric items in "Data Division.")

If the literal conforms to the rules for the formation of numeric
literals, but is enclosed in quotation marks, it is a nonnumeric
literal.

42 Part I -- Language Considerations

c

o

Constants

NONNUMERIC LITERALS: A g2ggg~~~ic-1i~eral is defined as a string of any
allowable characters in the Extended Binary Coded Decimal Interchange
Code (EBCDIC) set, excluding the quotation mark character. A nonnumeric
literal may be composed of from 1 through 120 characters enclosed in
quotation marks. Any spaces within the quotation marks are part of the
nonnumeric literal and, therefore, are part of the value. All
nonnumeric literals are in the alphanumeric category.

A figg~ative c2nst~nt is a constant to which a specific data-name has
been assigned. These data-names are reserved words. Such a data-naffi8
must not be enclosed in quotation marks when used as a figurative
constant. The singular and plural forms of a figurative constant are
equivalent and may be used interchangeably.

A figurative constant may be used in place of a literal wherever a
literal appears in a format. There is one exception to this rule: if
the literal is restricted to numeric characters, only the figurative
constant ZERO (ZEROES, ZEROS) is allowed.

The fixed data-names and their meanings are as follows:

ZERO
ZEROES
ZERO§

HIGH-VALUE
~IGH-VAbUES

LOW-VALUE
bQW-YAL1!ES

ALL literal

Represents the value 0, or one or more
occurrences of the character 0, depending on
context.

Represents one or more blanks or spaces.

Represents one or more occurrences of the
character that has the highest value in the computer's
collating sequence. The character for HIGH-VALUE is
the hexadecimal IFFI.

Represents one or more occurrences of the
character that has the lowest value in the computer's
collating sequence. The character for LOW-VALUE is
the hexadecimal '00'.

Represents one or more occurrences of the
quotation mark character. The word QUOTE (QUOTES)
cannot be used in place of a quotation mark to enclose
a nonnumeric literal.

Represents one or more occurrences of the string of
characters composing the literal. The literal must be
either a nonnumeric literal or a figurative constant
other than the ALL literal. When a figurative
constant is used, the word ALL is redundant and is
used for readability only.

Structure of the Language 43

Special Registers

SPECIAL REGISTERS

The compiler generates storage areas that are primarily used to store
information produced with the use of special COBOL features; these
storage areas are called ~Eecial registers.

TALLY

The word TALLY is the name of a special register whose implicit
description is that of an integer of five digits without an operational
sign, and whose implicit USAGE is COMPUTATIONAL. The primary use of the
'rALLY register is to hold information produced by the EXAMINE statement.
References to TALLY may appear wherever an elementary data item of
integral value may appear (see the "EXAMINE Statement" in "Procedure
Division") •

LINE-COUNTER

LINE-COUNTER is a numeric counter that is generated by the Report
Writer. (For a complete discussion, see "Report Writer.")

PAGE-COUNTER

PAGE-COUNTER is a numeric counter that is generated by the Report
Writer. (For a complete discussion, see ~Report Writer.")

44 Part I -- Language Considerations

~'.
'- .. /

c

c

c

o

Special Registers

values returned are conventionally in multiples of 4. However, the
maximum value the field can contain is 4095.

Structure of the Language 45

Special Registers (Version 4)

>Y'seetheaes~ription(){tb.EP:ACCEPT'statement in II Procedure
,~~ivision~for additionalinformiltion. '

Not~~, . Thes'p~cial're~i'sters,DATE~'DAYi and TIME are valid only as
sending fields in, ,'the ACCEPT statement; as opposed to the special

ix:egisters ,CURRENT-DATE and TlME-OF-DAY which,are,valid only as
. se~ding fieldsin<the,MOVE statement.

46 Part I -- Language Considerations

~

\,,--- --,'

c

o

COBOL Program Structure

Every COBOL source program is divided into four divisions. Each
division must be placed in its proper sequence, and each must begin with
a division header.

The four divisions, listed in sequence, and their functions are:

o IDENTIFICATION DIVISION, which names the program.

• ENVIRONMENT DIVISION, which indicates the machine equipment and
equipment features to be used in the program.

g DATA DIVISION, which defines the nature and characteristics of data
to be processed •

• PROCEDURE DIVISION, which consists of statements directing the
processing of data in a specified manner at execution time.

Note: In all formats within this publication, the required clauses and
optional clauses (when written) must appear in the sequence given in the
for.mat, unless the associated rules explicitly state otherwise.

Structure of the COBOL Prog~~m

{

IDENTIFICATION DIVISIO~.}

ID DIVISION.

PROGRAM..,.ID. program-name.

[AUTHOR. [comment-entry] •••]

[INSTALLATION. [comment-entry] •••]

[DATE..,.WRITTEN. [comment-entry] •••]

[DATE-COMPILED. [comment-entry] •••]

[SECURITY. [comment-entry] •••]

[REMARKS. [comment-entry] •••]

ENVIRONMENT DIVISION.

[CONFIGURATION SECTION.

SOURCE-COMPUTER. entry

OBJECT-COMPUTER. entry

[SPECIAL-NAMES. entry]]

[INPUT-OUTPUT SECTION.

FILE..,.CONTROL. {entry} •••

[I-O..,.CONTROL. entry]]

Organization of the COBOL Program 47

COBOL Program structure

Q~:!:~ Q.!YISION·

[fILE .§~CT.!ON.

{file description entry

{record description entry} ••• } •••]
I

[~QB~ING-STORA~~ SEQ:!:.!QN.

[data item description entry] •••

[record description entry] •••]

{report description entry

{report group description entry} ••• } •••]

~gOCEDQB~ DIY.!SIO~

[[DEQ1~R~!.!YES. ~

{section-name SECTIQ~. USE Sentence.

{paragraph-name. {sentence} ••• } ••• } •••

{section-name SE£!'!Q~ [priority].]

g{paragraph-name.g{sentence} ... } ... } ...

48 Part I -- Language Considerations

\ _ 1

c

C.'

o

Qualification

Every name used in a COBOL source program must be unique, either
because no other name has the identical spelling, or because it is made
unique through qualification, subscripting, or indexing.

~n i~~n!i~!~f is a data-name, unique in itself, or made unique by the
syntactically correct combination of qualifiers, subscripts, and/or
indexes.

A name may be made unique if the name exists within a hierarchy of
names and the name can be singled out by mentioninq one or more of the
hiqher levels of the hierarchy. The higher levels are called
qualifiers. Qualification is the process by which such a name is made
uni que.

Qualification is applied ty placing after a data-name or a
paragraph-name one or more phrases, each composed of a qualifier
preceded by IN or OF. IN and OF are logically equivalent. Only one
qual if ier is allowed for a paragra ph- na me.

Enouqh qualification must be mentioned to make the name unique;
however, it may not be necessary to mention all levels of the hierarchy.
For example, if there is more than one file whose records contain the
field EMPLOYEE-NO, yet there is but one file whose records are named
MASTER-RECORD, EMPLOYEE-NO OF MASTER-RECORD would sufficiently qualify
EMPLOYEE-NO. EMPLOYEE-NO OF MASTER-RECORD OF MASTER-FILE is valid hut
unnecessary (see the discussion of level indicators and level numbers in
"Data Division").

The name associated with a level indicator is the highest level
qualifier available for a data-name. (A 19.Y~l_i!lQ.i£~.tQf (FO, SO, RD)
specifies the beqinning of a file description, sort file description, or
report description.) A report-name is the only qualifier available for
subordinate report groups and sum counters. A section-name is the
highest (and the only) qualifier available for a procedure-name (see the
discussion of procedure-names in "Procedure Division"). Thus, level
indicator names and section-names must be unique in themselves since
they cannot be qualified.

The name of a conditional variable can be used as a qualifier for any
of its condition-names. In addition, a conditional variable may be
qualified to make it unique.

The rules for qualification follow:

1. Each qualifier must be of a successively higher level, and must be
within the same hierarchy as the name it qualifies.

2. The same name must not appear at two levels in a hierarchy.

3. If a data-name or a condition-name is assigned to more than one
data item in a source proqram, the data-name or condition-name must

Methods of Data Reference 49

Subscripting / Indexing

be qualified each time reference is made to it in the Procedure,
Environment, or Data Division (except in the REDEFINES clause
where, by definition, qualification is unnecessary). (See the
REDEFINES clause in "Data Division.")

4. A paragraph-name must not be duplicated within a section. When a
paragraph-name is qualified by a section-name, the word SECTION
must not appear. A paragraph-name need not be qualified when
referred to within the section in which it appears.

5. A data-name cannot be subscripted when it is being used as a
qualifier.

6. A name can be qualified even though it does not need qualificationi
if there is more than one combination of qualifiers that ensures
uniqueness, then any of these combinations can be used.

Although user-defined data-names can be duplicated within the Data
Division and Procedure Division, the following rules should be noted:

1. No duplicate section-names are allowed.

2. No data-name can be the same as a section-name or a paragraph-name.

3. Duplication of data-names must not occur in thOse places where the
data-names cannot be made unique by qualification.

Subscripts can be used only when reference is made to an individual
element within a list or table of elements that have not been assigned
individual data-names (see "Table Handling").

References can be made to individual elements within a table of
elements by specifying indexing for that reference. An index is
assigned to a given level of a table by using an INDEXED BY clause in
the definition of the table. A name given in the INDEXED BY clause is
known as an index-name and is used to refer to the assigned index (see
"Table Handling").

50 Part I -- Language Considerations

'-_ .. /

o

Reference Format

The reference format provides a standard method for writing COBOL
source programs. The format is described in terms of character
positions in a line on an input/output medium. Punched cards are the
initial input medium to the COBOL compiler. The compiler accepts source
programs written in reference format (see Figure 3) and produces an
output listing of the source program in the same reference format.

The rules for spacing given in the following discussion of the
reference format take precedence over any other specifications for
spacing given in this publication.

SEQUENCE NUMBERS

A sequence number is used to identify numerically each card image to
be compiled by the COBOL compiler. The use of sequence numbers is
optional. If used, a sequence number must consist of six digits in the
sequence number area, columns 1 through 6.

If sequence numbers are present, they must be in ascending order. An
~:t:"1:".<?E ~.~~.SCtq~ .. i.~ ~.~~uec3: ~l:.~.~.~g~:t:"S~ .. ~.Ct!?:g.~Ctge.~!?:P~E~.~.<?~t: <?; .. ~eg:~E:ms.~~
sequence.checkillg 'can besupg:t:"es~E!dat compile timfabys>v:erric3:ingtl1e'
!qomp~~ert.s ii~;c:t?~~,<?Pt:~<?~P;S?~S~~~?f~

r--1
I
I
I
I
I
I
I
I
I
I
I
I

IB"1
SYSTEM

I PROGRAM

PROGRAMMER

SEQUENCE
~~
t 34 ,

II ILjll
I I Iq21
I I I q3~
II I q41

f-OATE

~IA B

12 III 10 . " ,
I11I 11111111111 11111111
II I 1111111'"1 IlllllTI
III 11111111111 11111111

I I II IIlIlilllif iii I i III

COBOL Coding Form

I PUNCHING INSTRUCTIONS I PAGE OF I
I GRAPHIC IITIII II .
I PUNCH I I I I "

CARD FORM.

COBOL STATEMENT IDENTIFICATION

\I II II I I 1111'111 111 II' I I II! I' 1'1
TI II 1'1 11 TnTIT nT TT j I III II 'II I
II 11'1 II j I II II III III 'I I II II! II L I !
f I Ii II IT TnnT n n II III II III

~--4
I Columns 1-6 represent the sequence number area. I
I Column 7 is the continuation area. I
I Columns 8-11 represent Area At Used for writing COBOL source statements. I
I Columns 12-72 represent Area B ~ I
I Columns 73-80 are used to identify the program. I l __ J

Figure 3. Reference Format

Use of the COBOL Coding Form 51

Reference Format

~~ea A, columns 8 through 11, is reserved for the beginning of
division headers, section-names, paragraph-names, level indicators, and
certain level numbers. ~~~~_g occupies columns 12 through 72.

The division header must be the first line in a division. The
division header starts in Area A with the division-name, followed

the word DIVISION, and a period. ':€li:rs;"ii?g.i;~
§~$;~}l;;~!J2"i:~'i;'::Q§~~§;:'!2~~·P:~~:J!'~Y"'·';'<?,+~r', ... ,",., ,.,., ... , ... lj~.. .., , ,., ...•..• ~" ,~g
No other text may appear on the same line as the division

The name of a section starts in Area A of any line following the
division header. The section-name is followed by a space, the word
SECTION, and a period. If program segmentation is desired, a space and
a priority number may follow the word SECTION. No other text may appear
on the same line as the section-header, except USE and COpy sentences.

No~~: Although USE and COpy may appear in the Declaratives portion of
the Procedure Division, only USE is restricted to the Declaratives
portion. COpy may be used elsewhere in the COBOL program.

Paragraph-names and Par~~~Eh~

The name of a paragraph starts in Area A of any line following the
division header. It is followed by a period followed by a space.

A paragraph consists of one or more successive sentences. The first
sentence in a paragraph begins anywhere in Ar~~ of either the same
line as paragraph-name or the immediately following line. Each
successive line in the paragraph starts anywhere in Area B.

In those Data Division entries that begin with a level indicator, the
level indicator begins in Area A, followed in Area B by its associated
file-name and appropriate descriptive information.

In those data description entries that begin with a level number 01
or 77,. the level number begins in Area A, followed in Area B by its
associated data-name and appropriate descriptive information.

In those data description entries that begin with level numbers 02
through 49, 66, or 88, the level number may begin anywhere in Area A or
Area B, followed in Area B by its associated data-name and descriptive
information.

52 Part I -- Language Considerations

(~

c

" C
·_-

o

Reference Format

CONTINUATION OF LINES

Any sentence or entry that requires more than one line is continued
by starting subsequent line(s) in Area B. These subsequent lines are
called £2~tinuation_lines. The line being continued is called the
£on£inued_lig~. If a sentence or entry occupies more than two lines.
all lines other than the first and last are both continuation and
continued lines.

CONTINUATION OF NONNUMERIC LITERALS

When a nonnumeric literal is continued from one line to another, a
hyphen is placed in column 7 of the continuation line, and a quotation
mark preceding the continuation of the literal may be placed anywhere in
Area B. All spaces at the end of the continued line and any spaces
following the quotation mark of the continuation line and preceding the
final quotation mark are considered part of the literal.

When a word or numeric literal is continued from one line to another,
a hyphen must be placed in column 7 of the continuation line to indicate
that the first nonblank character in Area B of the continuation line is
to follow the last nonblank character on the continued line, without an
intervening space.

A blank line is one that contains nothing but spaces from column 7
through column 72, inclusive. A blank line may appear anywhere in the
source program, except immediately preceding a continuation line.

Use of the COBOL Coding Form 53

Format Notation

Throughout this publication, basic formats are prescribed for various
elements of COBOL. These generalized descriptions are intended to guide
the programmer in writing his own statements. They are presented in a
uniform system of notation, explained in the following paragraphs.
Although it is not part of COBOL, this notation is useful in describing
COBOL.

1. All words printed entirely in capital letters are reserved wor~g.
These are words that have preassigned meanings in COBOL. In all
formats, words in capital letters represent an actual occurrence of
those words. If any such word is incorrectly spelled, it will not
be recognized as a reserved word and may cause an error in the
program.

2. All underlined reserved words are required unless the portion of
the format containing them is itself optional. These are key
wordg. If any such word is missing or is incorrectly spelled, it
is considered an error in the program. Reserved words no~
underlined may be included or omitted at the option of the
programmer. These words are used only for the sake of readability;
they are called 2e~!2~~1 ~~~~g and, when used, must be correctly
spelled.

3. The characters +, -, <, >, =, when appearing in formats, although
not underlined, are required when such formats are used.

4. All punctuation and other special characters (except those symbols
cited in the following paragraphs) represent the actual occurrence
of those characters. Punctuation is essential where it is shown.
Additional punctuation can be inserted, according to the rules for
punctuation specified in this publication.

5. Words that are printed in lower-case letters represent information
to be supplied by the programmer. All such words are defined in
the accompanying text.

6. In order to facilitate references to them in text, some lower-case
words are followed by a hyphen and a digit or letter. This
modification does not change the syntactical definition of the
word.

7. Certain entries in the formats consist of a capitalized word(s)
followed by the word "Clause" or "Statement." These designate
clauses or statements that are described in other formats, in
appropriate sections of the text.

8. Square brackets ([]) are used to indicate that the enclosed item
may be used or omitted, depending on the requirements of the
particular program. When two or more items are stacked within
brackets, one or none of them may occur.

9. Braces ({ }) enclosing vertically stacked items indicate that one
of the enclosed items is required.

54 Part I -- Language Considerations

c

" C'

Format Notation

10. The ellipsis (•••) indicates that the immeaiately preceding unit
may occur once, or any number of times in succession. A unit means
either a single lower-case word, or a group of lower-ease-words and
one or more reserved words enclosed in brackets or oraces. If a
term is enclosed in brackets or braces, the entire unit of which it
is a part must be repeatea when repetition is specified.

11. Comments, restrictions, and clarifications on the use and meaning
of every format are contained in the appropriate portions of the
text.

Note: The required clauses and optional clauses (when written)
must be written in the sequence shown in the format, unless the
associated rules explicitly state otherwise.

Format Notation 55

'........ /

(~
"-.. ... '

• IDENTIFICATION DIVISION

e ENVIRONMENT DIVISION -- FILE PROCESSING SUMMARY

• ORGANIZATION OF THE ENVIRONMENT DIVISION

• ENVIRONMENT DIVISION -- CONFIGURATION SECTION

• ENVIRONMENT DIVISION -- INPUT-OUTPUT SECTION

o

o
Part II -- Identification and Environment Divisions 57

" " .. . '~

(~,
'--_/

c

c

~aent~t~cat~on D~vision Structure/PROGRAM-ID Paragraph

The Identification Division is the first division of a COBOL program.
It identifies the source program and the object program. A source
~~qram-is the initial problem program; an Qbject program is-the-output
from a compilation.

In addition, the user may include the date the program is written,
the date the compilation of the source program is accomplished, etc., in
the paragraphs shown.

Structure of the Identification Division

{.::.ID~NTIFICATI".;,.ON DIVI§'!'Q~.} '!!£,DIVISION.
~., ;,.: .. ;.:,,;:.::-.:: .•• ;,.;: .. : .. .;.,: . .;;.;:>:,:.:.i-:.:<:.::..:::~;.:;;:,:..:;,,;.;.:,:.,'..;.:,', ;~::~

PROGRAM-ID. program-name.

[AUTHOR. [comment-entry] •••]

(INSTALLATION. [comment-entry] •••]

[DATE-WRITTEN. [comment-entry] •••]

[DATE-£OMPILED. [comment-entry] •••]

[SECUR!.TY. [comment-entry] •••]

[REMARKS. [comment-entry] •••]

Specific paragraph~names identify the type of information contained
in the paragraph. The name of the program must be given in the first
paragraph, which is the PROGRAM-ID paragraph. The other paragraphs are
<?B~~o~~~ .. ~ ... ~~~~<:~:'lged, the m:'l~5",£,~"R:r:-,~sented, .. ~, .. ~., .. ~.~.e order shown. rHo" "m _u U"""'.'· "",-.' -- "',',' :::.:'-- -'em:."-';:6iae -

~:·:4:,;;t.Ii;

The Identification Division must begin with the reserved words
IDENTIFICATION DIVISION followed by a period. Each

characters from the EBCDIC set
h structure.

The PROGRAM-ID paragraph gives the name by which a program is
identified.

r--,
I Format I
~--~
I I
I PROGRAM-ID. program-name. I
I I L _____________ --------___ J

Identification Division 59

PROGRAM-ID/DATE-COMPILED Paragraphs

The PROGRAM-ID paragraph contains the name of the program and must be
present in every program.

Program-name identifies the object program to the control program.
Program-name must conform to the rules for format~.8 .. 2.,.8~<, .. , .. ~

o ed ure-na ":Qgr.amftn~:me\;: ;wEaJ.t'E'gn;1:1!il:/j::il
The first eight characters of program-name are

used as the identifying name of the program and should therefore be
unique as a program-name.

since the system expects the first character of program-name to be
alphabetic, the first character, if it is numeric, will be converted as
follows:

o to J

1-9 to A-I

since the system does not include the hyphen as an allowable
character, the hyphen is converted to zero if it appears as the second
through eighth character of the name.

The DATE-COMPILED paragraph provides the compilation date on the
source program listing.

r--,
I Format I
~--~
I I
I DATE-COMPILED. [comment-entry] I
I I L __ J

The paragraph-name DATE-COMPILED causes the current date to be
inserted during program compilation. If a comment-entry is present, it
is replaced with the current date.

60 Part II -- Identification and Environment Divisions

C~

c~

o

Data Organization

In COBOL, all aspects of the total data processing problem that
depend on the physical characteristics of a specific computer are given
in one portion of the source program known as the Environment Division.
Thus, a change in computers entails major changes in this division only.
The primary functions of the Environment Division are to describe the
computer system on which the object program is run and to establish the
necessary links between the other divisions of the source program and
the characteristics of the computer.

The exact contents of the Environment Division depend on the method
used to process files in the COBOL program. Before the language
elements used in the Environment Division can be discussed meaningfully,
some background in the file processing techniques available to the COBOL
user must be given.

Each combination of data organization and access method specified in
the COBOL language is defined as a file-processing technique. The
file-processing technique to be used for a particular file is determined
by the data organization of that file and whether the access method is
sequential or random. Table 3, at the end of this chapter, summarizes
the file-processing techniques.

Four types of data organization are made available to Operating
System COBOL users: sequential, direct~~ililtlllllllli::1:1;;;~;II;::tmll... The
means of creating or retrieving logical records in a file differ,
depending on which type of data organization exists (organization being
the structure of data on a physical file). Each type of data
organization is incompatible with the others. Organization of an input
file must be the same as the organization of the file when it was
created.

When sequential data organization is used, the logical records in a
file are positioned sequentially in the order in which they are created
and are read sequentially in the order in which they were created (or in
sequentially reversed order if the REVERSED option of the OPEN statement
is written for tape files). Such a file organization is referred to in
this publication as standard sequential organization.

This type of data organization must be used for tape or unit-record
files and may be used for files assigned to mass storage devices. No
key is associated with records on a sequentially organized file. The
recording mode may be F, U, V, or S. (See "Recording Mode" discussion
in the Data Division chapter.)

Environment Division -- File Processing summary 61

Access Methods

Direct Data Organization

Direct data organization is characterized by the use of the relative
track addressing scheme. When this addressing scheme is used, the
positioning of the logical records in a file is determined by an ACTUAL
KEY supplied by the user in the Environment Division. ACTUAL KEY is a
key which is used to locate a logical record of the file. The first
portion is tne track identifier, which specifies the track (relative to
the first track~or a-¥Ile)-on-which space to place a record is sought,
or at which the search for a record is to begin. The second portion is
the recor~_i~~~~ifier, which is a symbolic identifier for the record.
Files with direct data organization must be assigned to mass storage
devices. The recording mode may be P, U, V, or S. (See the "Recording
Mode" discussion in the Data Division chapter.)

Two access methods are available to users of Operating System COBOL:
sequential access and random access.

sequential access is the method of reading and writing records of a
file in a serial manner; the order of reference is implicitly determined
Dy the position of a record in the file.

Random access is the method 9f reading and writing records in a
progr2mmer-specified manner; the control of successive references to the
fiLe is expressed by specifically defined keys supplied by the user.

ACC~SSING A SEQUENTIAL FILE

A standard sequential file may only be accessed sequentially, i.e.,
records are read or written in order. Records can be created and
retrieved; for standard sequential files on mass storage devices,
records can also be updated.

ACCESSING A DIRECT FILE

Direct files may be accessed both sequentially and randomly. Records
can be created and retrieved sequentially; they can be created,
retrieved, updated, and added randomly.

62 Part II -- Identification and Environment Divisions

c

c

C~/'

o

Access Methods

When a direct file is being read sequentially, records are retrieved
in logical sequence; this logical sequence corresponds exactly to the
physical sequence of the records. Dummy records, if present, are also
made available.

When a"direct file is .being read' .sequentiallY·~· tli¢'ACTtJ~t
maybe specified. The track identifier(representingthere:l.atfv~
number) is not changed. The symbolic identifier for the record is
placed in the record-identifier portion of ACTUAL KEY,. e:x:cept when
input/outputerror occurs.

an

~direct file may
is required for this
When the user wishes
number oithetracks

be created . sequentially ,and theACTUAL.~EYC:l.au::;e··
type of.p!:,ocessing. Data is~ritten seqllel)t~a:t~y.
to .. switch .. tracks, . he ... must .•• adda· .• nwnpereq~?l'.~()'·' .•.. 1:~.~.
to be advanced~o.thetrack . numb~rportiono:f,the.

',ACTUAL KEY field.
, ":: .'~::;" :.:.',~: :,:",,: : .. ;:: :: i":.:::.: ,';,,:~, :":::":".::,:: .. ~::

~.r:e?qrgip9
A'rela.t

t.he\fir:st xt:ca4bk(.i·· •.. ·

c()B6t .. wilLadd·dutrut\y···.(redording~ode •••• ··.·F)/9~caPClcit¥
;tl •• ··.····V',· or .• · .• S)·.r~cords·. to.· ..•.. comi?le'te .. ·.·.t~e, pre'{i8W~ .. ·· .• ···'tx:a9k.(~~ ~
····· ••• ~fldr.e9siof.···.··z~:t'o.>itlt:he.·A<:Tu~L •.•. K;:Y<f.~~1.dc:orreE)p()~Cl13.'t9

aS9:tgned to the file •.. ' If1:h~initial value is notze
{"-ym,t:" , <the interveniIlg'tras~s with ca~pElc;Lt:lfre!cc)r(ls arid,~'r:iLtle

tra cki nd:tca t.edl{tIY< ttl9

Dummy records are identified by the figurative constant HIGH-VALUE in
the fifth position of the ACTUAL KEY. If no ACTUAL KEY is specified,
dummy records are not identifiable.

When a direct file is accessed randomly, the ACTUAL KEY clause is
required.

When records are being retrieved from a direct file randomly, the
ACTUAL KEY is used to determine the track and to locate a particular
record on that track. When a match is found, the data portion of the
record is read, or, for a rewrite operation, replaced by a new record.

E7~.~fie<l1::r:-ack is the onlyc)ne searched for the desired record.

Environment Division -- File Processing Summary 63

Access Methods

For a WRITE operation, after locating the track, the system searches
for the last record on the track, and writes the new record (with
control fields including a key field equal to the identifier found
within the ACTUAL KEY field) after the last record.

When a direct file is being created, all the tracks of the file are
initialized at open time with capacity records (mode U, v~ or S) or
dummy records (mode F). The number of tracks to be initialized is
determined by the TRACK-LIMIT clause, or by the SPACE parameter in the
DD card if the clause is omitted. Therefore, a WRITE statement issued
for an output file is processed in the same manner as a WRITE statement
that adds a record to an I-O file.

Appendix B contains an example of a program to create a direct file;
Figure 2, in the Introduction, contains an example of a program to
update a direct file.

64 Part II -- Identification and Environment Divisions

-- . ./

Access Methods

c

o
Environment Division -- File Processing Summary 65

Access Methods

~abl~ 3. File-processing Techniques
r:~~--~----~--~~~~T-~------------T-~-~-~---------T--~~------~----------,
,Data Management I , , I
I Technique I Device Type' Access I Organization I

, ~--~--~-~~--~--~--+-~-~---------~+---------------+------------------~--~
I QS1\M I Reader I (SEQUENTIAL] I standard sequential I

~-~~---~---~--~---4---~----------+-----~---------+---------------------~
I Q$AM I Punch I [SEQUENTIAL] I standard sequential I

~-----~--~--:-----+-~------------+---------------+---------------------~
I QSAM I Printer I [SEQUENTIAL] I standard sequentia~ I

~r~----r--r-~-----4---~----------f----------~----+---------------------~
I QSAM I Tape 'I [SEQUENTIAL) I standard seqUential I

.--~--------------+--------------+---------------+---------------------i I QSAM I Mass storage I [SEQUENTIAL] I standard sequential I
~-----~-----------+--------------f---------------+---------------------~ I BSAM I Mass storage I [SEQUENTIAL] I direct I

~-----------------+--------~-----+---------------+---------------------~
I aDAM I Ma~s storage I ;RANDOM I q.irect I

c~
66 Part II -~ Identification and Environment Divis~ons

C~

o

Environment Division--Structure

QBGA~!ZA!!QN OF THE ENVIRONMENT DIVISIO~

The Environment Division must begin in ~rea A, with the heading
ENVIRONMENT DIVISION followed by a period.

The Environment Division is divided into two sections: the
Configuration Section and the Input-Output Section. The sections and
paragraphs, when written, must appear in the sequence shown.

ENVIRONMENT DIVISION.

CONFIGUR~!IO~ SECTION.

SOURCE-COMPUTER par~graph

OBJECT-COMPUTER paragraph

[SPECIAL~NAMES paragraph)

[INPUT=.QUTPUT ~!ON.

FILE=.QQgTROL paragraph

[I-O-CO!ITB0L paragraph]]

Organization of .tM Environment Division 67

SOURCE-COMPUTER Paragraph

The Configuration Section deals with the overall specifications of
computers. It is divided into three paragraphs: the SOURCE-COMPUTER
paragraph, which describes the computer on which the source program is
compiled; the OBJECT-COMPUTER paragraph, which describes the computer on
which the program is executed; and, optionally, the SPECIAL-NAMES
paragraph, which relates the function-names used by the compiler to
mnemonic-names specified in the source program by the user.

r--,
I General Format I
~--~
I I
I CONFI~QRA~ION §ECTION. I
I I
I §OURCE-CO~PUTER. source-computer-entry I
I I
I OBJECT-COMPUTER. object-computer-entry I
I I
I [SPECI~L-NAME~. special-names-entryl I
I I l __________________________________ ~------------------_________________ J

section-names and paragraph-names must begin in Area A.

The SOURCE-COMPUTER paragraph serves only as documentation and
describes the computer upon which the program is to be compiled.

r--,
I General Format I
~--~
I I
I SOURCE-COMPUTER. computer-name. I
I I l __ J

£QillEutg~-n~m~ is IBM-360[-model-numberJ or IBM-370[-model-numberJ.

The SOURCE-COMPUTER paragraph is treated as comments by the COBOL
compiler.

'68 Part II -- Identification and Environment Divisions

c ._ . ./

C''\
.. /

o

OBJECT-COMPUTER Paragraph

OBJECT-COMPUTER Paragraph

The OBJECT-COMPUTER paragraph describes the computer on which the
program is to be executed.

r--,\
I General Format I \
~--~ ,

I I \
I OBJECT-COMPUTER. computer-name I
I I
I 1 WORDS ! I I [~MOR~ SIZE integer CHARACTERS I
I MQQULES I
I I
I [.§.~GME~T-~!.MIT IS priority-numberl. I
I I L __ J

~Qmputer-name is IBM-360[-model-numberl. Computer-name must be the
first entry in the OBJECT-COMPUTER paragraph.

If the configuration implied by computer-name comprises more or less
equipment than is actually needed by the object program, the MEMORY SIZE
clause permits the specification of the actual subset (or superset) of
the configuration.

With the exception of the SEGMENT-LIMIT clause, both the
SOURCE-COMPUTER and OBJECT-COMPUTER paragraphs are treated as comments
by the COBOL compiler.

The SEGMENT-LIMIT clause is discussed in "Segmentation."

ComQgter-name may also be specified as IBM-370[-model-numberl. If
IBM-370 is specified, System/370 instructions are generated by the
compiler.

The SPECIAL-NAMES paragraph provides a means of relating
function-names to user-specified mnemonic-names. The SPECIAL-NAMES
paragraph can also be used to exchange the functions of the comma and
the period in the PICTURE character string and in numeric literals. In
addition, the user may specify a substitution character which then must
be used in place of the currency sign ($) in the PICTURE character
string.

Environment Division -- Configuration Section 69

i

/

I
I

S(ECIAL-NAMES Paragraph

~---,
I General Format I
r---~
I I
I §PECI~L-NAMES. I

/1 I

/

1 [function-name IS mnemonic-name] I

I I
I J [QURRENCY SIGN IS literal] I
! I I I L ______ ~~:::~~~::::~_~_~~:~~~ ______________________________________ J

I
When the SPECIAL-NAMES paragraph is specified, the comma or the

, semicolon may optionally be used to separate successive entries; there I must be one and only one period, placed at the end of the paragraph.

I Furr£tiQn-rramg may be chosen from the following list:

I
I

SYSOUT
SYSIN
SYSPUNCH
CONSOLE
COl through
CSP

2'1
literal

C12

If SYSIN, SYSOUT, SYSPUNCH, or CONSOLE is specified, the associated
mnemonic-name may be used in ACCEPT and DISPLAY statements.

If COl through C12, CSP, ;; is specified, the associated
ill!!gmoni£=.!!ames may be used in a WRITE :s'EFORE/AFTER ADVANCING statement.
These furr£tion-names are the carriage control characters shown in rable
4.

Table 4. Choices of Function-name and Action Taken
r---------------------------------T------------------------------------,
I Function-name I Action Taken I

~---------------------------------+------------------------------------~
I CSP I Suppress spacing. I

~---------------------------------+------------------------------------~
I COl through C09 I Skip to channell through 9, I

I I respectively. I

~---------------------------------+------------------------------------~
I C10 through C12 I Skip to channel 10, 11, 12, I

I I respectively. I

The choice of literal indicates that function-name is to be used to
identify Report Writeroutput. The mnemonic-name should appear in a
CODE clause in a Report Description entry (RD) (see "Report Writer").
One such special-name entry may be given for each Report defined in a
source program. The literal must be a one-character nonnumeric literal.

The CURRENCY SIGN clause specifies the literal that is used in the
PICTURE clause to represent the currency symbo~- The literal must be

70 Part II -- Identification and Environment Divisions

c

o

SPECIAL-NAMES Paragraph

nonnumeric and is limited to a single character which must not be any of
the following:

1. Digits 0 through 9

2. Alphabetic characters A, B, C, 0, P, R, S, V, X, Z, or the space.

3. Special characters * + "or ,-

If the CURRENCY SIGN clause is not present, only the $ can be used as
the currency symbol ($) in the PICTURE clause.

The DECIMAL-POINT IS COMM~ clause means that the function of the
comma and the period are exchanged in the PICTURE character string and
in numeric literals. When this clause is written, the user must
represent the decimal point, when required in a numeric literal or in
the PICTURE clause, by a comma <,>i the period must be used for the
fUnctions ordinarily served by the comma.

Environment Division -- Configuration Section 71

FILE-CONTROL Paragraph

ENVIRONMENT DIVISION -- INPUT-OUTPUT SECTION

The Input-Output Section deals with the definition of each file, the
identification of its external storage media, the assignment of the file
to one or more input/output devices, and also deals with information
needed for the most efficient transmission of data between the media and
the object program. The section is divided into two paragraphs: the
FILE-CONTROL paragraph, which names and associates the files used in the
program with the external media; and the I-O-CONTROL paragraph, which
defines special input/output techniques.

r--,
I General Format I
~--~
I I
I lINRUT-OUTPUT SECTIO~. I
I I
I FILE-£Q~~gOL. {file-control-entry} I
I I
I [I-O-£QNTgOL. input-output-control-entry]] I
I I L __ J

Information that is used or developed by the program may be stored
externally. File description entries in the Data Division name the
files into which the information is arranged and specify their physical
characteristics. The FILE-CONTROL paragraph assigns the files (by the
names given in the file description entries) to input/output devices.

r------------------------------------~-----·---------------------------,
I General Format I
~--~

FILE-CONTROL.
---{SELECT Clause

ASSIGN Clause
[RESERVE Clause]
[FILE-LIMIT Clause]
[ACCESS MODE Clause]
[PROCESSING MODE Clause)

.} ...
L ___ -----------------

Each SELECT sentence must b~g~n~~~~~~~~~S!~~~,~~~ followed
immediately byc:,~.~~.?,!,~~, ... ~.!~.~,~.~; ;:·~lj~·9~9~~iri:·wtlipt!~q~ i:.§P~:!99~.\~ C'lauses are;wr.it€en .is ·92~,.~~~·H~!~~.S.~,5.~~!1 '.' . .,. , , ,,,,, " .

72 Part II -- Identification and ErtvironmentDivisions

c

c

o

SELECT/ASSIGN Clauses

SELECT Clause

The SELECT clause is used to 'name each file in a program.

r--,
I Format I
~--~
I I
I SELECT [QPTIONAL] file-name I
I I L __ J

Each file described in the Data Division must be named once and only
once as a fi1~-name following the key word SELECT. Each file named in a
SELECT clause must have a file description (FD) entry or sort-file
description (SO) entry in the Data Division of the source program.

The key word OPTIONAL may be specified only for input files accessed
sequentially. It is required for input files that are not necessarily
present each time the object program is executed. When a file is not
present at object time, the first READ statement for that file causes
control toe~ I?Cl::;~~d .. to th~~[l1p~:r:CI:!;~Y~: ?~a:t:eme~t .. ~5:>1!<?~~l1;.9" !;9~~':Y~<?E9:::;
.~':I:' ~.~.~ ... ~ ~pwey~r: •·.· •. · •••. ·.9J:>~:rqN~;.· ..• n~.¢~n.·?:t:-.. E~ •••. ·.~~e(i~~+~cl~B~··\.l.~l1./b~ .. · .. \.reat..ed·· •• as · ·.l

,~ •.. ·sC>~~tt.f.· .••.• ~j..n,B~· •• t:.P.~~ •• · .• ·~Y.09.~;9¥!~i.PeX'f~~IIl~~· .. ·'l;)y.·tbe.· .••••. ~per~ti~9··.·.0G~ •. ;etrt .
;:t:h!:2~.gh .. ~n,~ !?!?,., ,§~~!;~!n~:r!!: ... ~.f.~.~ .. !:h~ .. · .. 9~,~!, .. 2E.!'!!:!.~;g:!::H~,.: .. e~:s,~,ffi~t:..§!E.: "' ,.,:'C;;!'S;.;i.;;.;;

The ASSIGN clause is used to assign a file to an external medium.

r--,
, Format I

~---~--------------------~
I I
I ASSIGN TO [integer-i] system-name-i I
, I
,[system-name-2]... I
I I

'I [FOR {REEL}] II MULT!.~~~
I UNIT I
, I
L _______ ~---_________________ J

Integg~-i indicates the number of input/output units of a given
medium assigned to file-name. However, since the number of units is
automatically determined by the operating system, the integer-i option
need not be specified. When specified, it is treated as comments (see
IB~_§yste~~36Q_Q~~atig~§y~t~~~ __ Jo~control_Lan~~~, Form GC28-6539).

System-name specifies a device class, a particular input/output
device, the organization of data upon this device, and the external-name
of the file. All files used in a program must be assigned to an
input/output medium. Any system-name beyond the first for a file will
be treated as comments.

FOR MULTIPLE REEL/UNIT is applicable whenever the number of tape
units or mass storage devices assigned might be less than the number of
reels or units in the file. The operating system will automatically

Environment Division -- Input-Output Section 73

ASSIGN Clause

handle volume switching for sequentially processed files. All volumes
mUst be mounted for randomly accessed files. Therefore, when this
clause is specified, it is treated as comments.

System-name has the following structure:

class [-device]-organization-name

Class is a 2-character field that/specifies the device class;

DA (mass storage)
UT (utility)
UR (unit-record)

Files assigned to UT or UR must have standard sequential organization
and can be accessed only sequentially. Files assigned to DA may have
standard sequential or direct organization. When organization is
direct, access may be either sequential or random.

Device is used to specify a particular device within a device class. It
can be a 4- to 6-character field. If device independence for a file is
desired, the device class must be UT, no device number may be specified;
IBll)j~a:Qi!{lIJ~m'!,I,~~,~I~!jrill~~~lilj§j:;jtmlii~<l',fil::~111:lgi,mlyTI,~'2':RI(filjilThI[f~1!i!~!,II:II~1j At
execution time, such a file may be assigned to any device class
(including unit-record).

The allowable system devices for any given class are as follows:

Mass storage (DA) 2301, 2302, 2303, 2311, 2314, 2321.

Utility (UT) 2301, 2302, 2311, 2314, 2321, 2400.

Unit-record (UR) 1403, 1404 (for continuous forms only), 1442R, 1442P,
1443, 1445, 2501, 2520R, 2520P, 2540R, 2540P. (R indicates reader; ~
indicates punch.) --

Note: Sort input, output, or work files may be assigned to any utility
device except device number 2321 (see "Sort").

ffQgram-Pfodu£~Inform~tiQn_l~g~~ion-11

For Version 3 only, the following additional system devices are
allOwable:

Mass Storage (DA) 2305-1, 2305-2, 2319, 3330

Utility (UT) 2305-1, 2305-2, 2319, 3330

Unit Record (UR) 3211

Note: For the Version 1 and Version 2 Compilers, these devices (2305-1,
2305-2, 2319, 3330, or 3211) can be used, if the device field in
~y~te~m~ is omitted. At execution time, any of these devices can be
specified through the UNIT subparameter of the file's DO statement.
Note, however, that except for files containing spanned records the
de~ice field is treated as comments. For files containing spanned
records, the block length for the file is checked against the maximum
block length allowed for the device specified, and the smaller of the
two becomes the block size that is used.

74 IPart II -- Identification and Environment Divisions

c

o

ASSIGN Clause

The Q§Yi£§ field in system-name is treated as comments by the
version 4 Compiler. ht execution time, any valid device can be
specified through the UNIT subparameter of the file's DD statement.
The following considerations apply:

e If an invalid device number is specified, no error diagnostic is
produced •

• For an ASCII file, if 2400 (or other compatible tape device) is
not specified in the device field, no error diagnostic is
produced •

• For a direct file with spanned records, the Version 4 Compiler
always calculates buffer size from the COBOL record description.

organization is a 1-character field that indicates the file
organization. The following characters must be used:

files sequential organization

Table 5 can be used to determine the correct choice for the
organization field in system-name.

Name is a 1- to 8- character field specifying the external-name by which
the file is known to the system. The first character must be alphabetic.
It is the name that appears in the name field of the DD card for the file.

Note: ASCII considerations for the hSSIGN clause are given in
Appendix E.

Environment Division -- Input-Output Section 75

ASSIGN/RESERVE Clauses

Table 5. Values for the Organization Field for System-name
r---------------T---------------T-----------------------T--------------,
I I ACCESS MODE , I Organization I
I Device Type' Clause 'File Organization I Fielj I
~---------------t---------------t-----------------------t--------------~
I tape, punch I' I I
Ireader, printer I [SEQUENTIAL] I standard sequential I S I
~---------------t---------------t-----------------------t--------------~
Imass storage I I 'I
I device I [SEQUENTIAL] I standard sequential I S I
~---------------t--~------------t-----------------------t--------------~
Imass storage I I 'I
I device ,[SEQUENTIAL], direct I D ,
~---------------t---------------t-----------------------t--------------~
Imass storage I' I'
,device , RANDOM I direct I D ,
~--------------- --~~----~-~
I I , ,

The RESERVE clause allows the user to modify the number of
input/output areas (buffers) allocated by the compiler.

r--,
I Format . I
~--~
I I

RESERVE ~ ALTERNATE

'

I { NQ ") [AREA] I,

, integerS AREAS I
I I L __ J

This clause specifies that the number of buffers represented by
in t§ger£~::~~~,.;r.~.~~ ~~.:: ... ~ S ~~.!ldard s equenti al f i Ie §~.;::.:f!ij;~J.j.:~,llg~ig.g:1]'!\~~I~
·t;ij,{;l:lf1;(;;§'[;:i~gg;§~§:fFg.:~;:§gy:~!!:§~§~.~I.!'y.~ in addition to the one required buffer
which is reserved automatically.

This clause must not be specified for direct ;Q~;il;'~i':t:'§;';g~rx~1 files; if
specified, the clause is ignored and the one required buffer is
reserved.

The number of additional buffers is represented by the value of
integer which must not exceed 254. If NO is written, no additional
buffers are reserved, aside from the standard minimum of one.

76 Part II -- Identification and Environment Divisions

c'

c

o

FILE-LIMIT/ACCESS MODE Clauses

If the RESERVE clause is omitted, and the Sfu~E AREA clause is used
for the file, two areas are reserved. If the RESERVE clause is omitted,
and the SAME AREA clause is not used for the file, the number of buffers
assigned at execution time is taken from the DD card for the file. If
no buffers are specified on the DD card, two areas are reserved.

FILE-LIMIT Clause

The FILE-LIMIT clause serves only as documentation, and is used to
specify the logical beginning and the logical end of a file on a mass
storage device.

r--,
I Format I
~--~
I I I {FILE::'LI~!.! IS } f data-name-l} THRU ~ data-name-2} I
I FILE::.LIMITS AR§ tliteral-l ~literal-2 I
I I
: [{data-name-3} !tlgg {data-name-4} l... :

I literal-3 literal-4 I
I I L __ J

The logical beginning of a mass storage file is the address specified
by the first operand·of the FILE-LIMIT clause; the logical end of a mass
storage file is the address specified as·the last operand of the
FILE-LIMIT clause. Because file boundaries are determined at execution
time from the operating system's control cards, this clause need not be
specified and will be treated as comments.

The ACCESS MODE clause defines the manner in which records of a file
are to be accessed.

r--,
I Format I
~--~
I I

I
I {SEQQ~NT!.~~} II ACCESS MODE IS
I RANDQ~ I
I I L __ J

If this clause is not specified, ACCESS IS SEQUENTIAL is assumed.
For ACCESS IS SEQUENTIAL, records are placed or obtained sequentially.
That is, the next logical record is made available from the file when a
READ statement is executed, or the next logical record is placed into

Environment Division -- Input-Output Section 77

PROCESSING MODE/ACTUAL KEY Clauses

the file when a WRITE statement is executed. ACCESS IS SEQUENTIAL may
be applied to files assigned to tape, unit record, or mass storage
devices.

For r.;.~.~S~.f;.9R" +§?",.~ANDOM, storage and retrieval are on the basis of an
ACTUALiR:E;~~~ti~5~! KEY associated with each record. When the RANDOlvi
option~i~specifi~d, the file must be assigned to a mass storage device.
ACCESS IS RANDOM rna be specified when file organization is direct,

specified.

PROCESSING MODE Clause

The PROCESSING MODE clause serves only as documentation, and
indicates the order in which records are processed.

r--,
I Format I
~--~
I I
I PROQESSING MODE IS SEQQ~~~!~~ I
I I L __ J

This clause may be omitted. When specified, it is treated as
comments.

When creating or retrieving records from a randomly accessed file,
the programmer is responsible for providing the ACTUAL KEY for each
record to be processed.

An ACTUAL KEY is a key that can be directly used by the system to
locate a logical record on a mass storage device. The ACTUAL KEY is
made up of two components:

1. The t~ac~_identifieE, which contains the relative track number at
which the search is to start for a record or for a space in which
to place a new record.

2. The record identifier, which serves as a unique symbolic identifier
for the record and is associated with the record itself.

r--,
I Format I
~--~
I I
I ACTU~1 KEY IS data-name I
I I L __ J

78 Part II -- Identification and Environment Divisions

c

o

ACTUAL KEY Clause

The ACTUAL KEY clause must be specified for direct files when ACCESS
IS RANDOM is specified. The ACTUAL KEY field must be set to a desired
value before the execution of the READ and WRITE statements.

When a READ statement is executed ,for a file, a specific logical
record (located using the contents of ~~~~~~~~~) is made available from
that file.

When a WRITE statement is executed, a logical record is placed in the
file at a location found through the use of the contents of ~~~~=~~~~.

The ACTUAL, KEY clause'may be ·specIfl.eclWhenreadiiig'a:i:reCf files
sequentially.

The ACTUAL KEY clause must be specified when creC1~irlg a<'direct file!
~it":h .. ,?eq,~ent~ .. (:l .. ~~ a.c9~?<~ .•

Dai::,~-na!!!~ may be any fixed item from 5 through 259 bytes in length.
It must be defined in the File, Working-Storage, or Linkage Section.
However, if data-name is specified in the File section, it may not be
contained in the file for which it is the key. The following
considerations apply:

1. The first four bytes of data-name are the track identifier and must
be defined as a 5-integer binary data item whose maximum value does
not exceed 65,535.

2. The remainder of data-name -- 1 through 255 bytes in length -­
represents the record identifier. It is the user's responsibility
to select from 1 through 255 bytes for the symbolic portion of the
ACTUAL KEY field. Data within these bytes will be treated exactly
as specified.

The key word IS must be specified. Ig9~~y~g~;~!i~~,!:29.lijP!+~:;:i~!;h§~§.~~~t
~~Y ••••.• 'i!9;.5! .• ···.· ••. ·±§·····.·· •• ·.;t:;9· .••• • .•.• Q,~: .. 2m~EE,~9·~

Sample coding to represent the data-name specified in the ACTUAL KEY
clause would be as follows:

ENVIRONMENT DIVISION.

ACTUAL KEY IS THE-ACTUAL-KEY.

DATA DIVISION.

WORKING-STORAGE SECTION.
01 THE-ACTU~<.L-KEY.

05 RELATIVE-TRACK-KEY USAGE COMPUTATIONAL PICTURE IS S9(5)
VALUE IS 10 SYNCHRONIZED.

05 EMPLOYEE-NO PICTURE IS X(6) VALUE IS LOW-VALUE~'

RELATIVE-TRACK-KEY contains the relative track address at which the
record is to be placed, or at which to search for the record.
EMPLOYEE-NO serves as a unique identifier associated with the record
itself and represents the record identifier of the key field.

Environment Division -- Input-Output Section 79

c
80 Part II--Identification and Environment Divisions

o

When the NOMINAL KEY clause is used for a relative file that
either created or accessed randomly~

o Data-name may specify any 8-integer binary item in Working-Storage
whose maximum value does not exceed 15,728,640.

o Data-name must be at a fixed displacement from the beginning of. the
record description ~n which it appears; that is, it may not appear
in the entry subsequent to an OCCURS DEPENDING ON clause.

o The relative record number must be placed in ~~~~=g~ill~ before the
execution of the READ, WRITE, or REWRITE statement.

~ When a READ statement is executed, a specific logical record is
available from the file using the contents of £~~~=n~ill~.

o When a WRITE or REWRITE statement is executed, the relative
number is used to determine the physical location, relative
beginning of the file,at-which the record is written.

RECORD KEY Clause

A RECORD KEY
item within the

Environment Division -- Input-Output Section 81

c
82 Part II -- Identification and Environment Divisions

o

I-O-CONTROL Paragraph/RERUN Clause

greater than' t~a:f·.'specr~Iec1.rn"'~i1:~:t~AC~:,r;IM:ttr9Ia\~·s'e.~·.q~·.·'.' •• · •• 'f£.··.}~fie .. ' c l~us'e .. !
is . omitted, a 9apacii:y.r~90r:d ~r:Cill~yrecords~l3wL'ittenfo·:rthe .' ...
c~rre,lltt,ra9k ofthefileiand,~he.r~ma~n~ngaIIocated tracks: are not
initialized._ Note thatsi~ce'the,fi~Elt,r:elat~ve,track is,tracK.O •. , (it
least integer pIllS one track'wil1.beinitialized~

.' .. ': .•.•.•••..•.••. '.' •••••••••••••.•...•..•....•.•... ' •••••..••...••..•••• ' •••• , .. , •.••••.•...•.... ,•....••••..•••.•••. ' ..•..•••••.•.•••.••.. '\ •• ,.' ..•• ' .•. , ••••••. \ .••• '· •.•• ,.·· •• i·.· ••• '·' •... ·' •. •· •• ' •• ·· •••.•• '.': •• ' ... ' .•• ', ••.•...•..•..••. ' •...•••..••.. : ..••.•• , .• ' •.. ' ••...••.. ' •.•. :

Random';'Access>-~ ..•. When used' in ·cBrlj:~~ct.ion/:w~t~·~cq~~S\ISR,:A~Otv1,i:.he
T~AC~'" LIMIT;?lau~e .• specif"ie$··the.~as:t< relati vetr:a9kJ:lu.~~r't:0·.··be
ip.:it~aJ.~z~d .• , ••. '.a.t.,'op~,ll.t~m~.;t:.h~~r,~9kEl·\9-:r.,~/',:i.ni.t:.~?~i:z:~?W:ii:l1\'ql.:lnuny,., •. ·.(mC>q7>F)j
or •• ·'.·.·.capacity.(m()d~f>.· .. '· ... ··tJ'iy'·'··,.,·,·():r:,s)r~q()rp.EI.·.~···'· •. ;:tl1il3.,q.~f:illeElt.,4~.~o~aJ.'· .. ·.EI •. ~ .. ~'e.·()ti.j

i.the .. fil~i tb.at",isi·.···.·Il,()·.··.·.~<idit+?n~1···~~a9~sfu~yi~e~se~·.b~the~il~,Cl.nd;ap¥!
:t;efere~ces .. ·· .• t9 .. ·-t:rac.l<~'Out:.si~e~~is'a~~~'W':i.~t.>~~$.~1.t:. ··.·:i,nan.~Ny~:LIO ... KEY.' .. <i
cpJ:ldi t.:i.()n ••. ·.,•. I'f .•.... · ... t:;p~ .. ~· .. · •. · ... cl.a\ls~.···· .• ~.~,"9~.i~.'t:..~g~~,.t.Cl~,J:l'l1~~.:r;.·.·.·<:>~/t.:r;C78l<sip.At:.ia.l. •• ~.z~~i/>.I
is.· •. · •. determ:i.ned\f:r;()in· •• th~ ... pP2\c~;~~n¢\yp~pr.1~'{.yo,unt:I>~,J:'a.~~~~:r;f3;.?~i·t.p~>DPc:a:r;~~i!
T'he.··.firstv()lHtn~ •. ······.\ttil.l.BEa:il1it.i<;~~*~aCl99():r;.~:i,n.g.t:..9,.tP~.~:r;J..tnci:r;y' ·<l.1.1.89Clt:.;Lon;
quaJ:lt:.i:ty,.·.~nClsll9c:~edil1fJ:·y91.umEaf3.(~~:<~J:ly):Y1i.l.lili>~.:lll.:i.:t;~'~l.:i.~.~.<i fromtlle
seconda,ry·· •• ·.·.quantity·.i(on~.iquant::ity,'per:;';:.vo~Utne)~:.· .. ··.«iii.,;\i<.··.·· .. ·:.,x.· .. ···

" .. ', ~::; ,.,,::. ,,.:.: .. w,",;: <·:,' .. ,·.~ ." > i: ;,.', :.; .• ,';::.,; ::', .,;,~ ." i::, ... ,,,,;.~ ;';:t.,,~~.:~·,;.~.~:~~,;· .. ::. ;;~;;,~~.:#:<: . .;.~ ~;.:(;';.,;;;;:.;::~.,:;";':~:,;.;.;:"~:-J,,,.,; ::':.:.:\;:;.,.;.;;:~:;~X..:~;. :-:L.;.;:;c,~.i:J;::;;;~:>;x.;;:-x.;;;:.:..::;j};;:Ji,J...:,i..;~~~·~.;.::;;~>·:..:>';L,~ <"L.;L: ::;.:,.>.;;:.:.)..:;;)/:<:~.:.;:>};,..;:~::.: i :.::;:.;:::,:.: J,.;:.;~;:.: .. :.,~~:~ .. : .. :::~ .. :~,:~.:::-.. ~' ~;;

The I-O-CONTROL paragraph defines some of the special techniques to
be used in the program. It specifies the points at which checkpoints
are to be established, the core storage area which is to be shared by
different files, the location of files on multiple-file reels, and
optimization techniques. The I-O-CONTROL paragraph and its associated
clauses are an optional part of the Environment Division.

r--,
I Format I
r--~
I
I .!-O-CQ~TgOL.

I
I [RERUN Clause]
I
I [SAME AREA Clause]
I
I [MULTIPLE FILE TAPE Clause]
I
I
I l ___ _

The presence of a RERUN clause specifies that checkpoint records are
to be taken. A £hec~~Qi~~_~g£~~Q is a recording of the status of a
problem program and main storage resources at desired intervals. The
contents of core storage are recorded on an external storage device at
the time of the checkpoint, and can be read back into core storage to
restart the program from that point.

Environment Division -- Input-Output Section 83

RERUN Clause

r--,
I Format 1 I
~--~
I I
I RERUN ON system-name I

i) integer RECORDS! i
: EVERY [END OF] {g~~~} OF file-name I
I Q~~! I
I I L __ J

Checkpo~nt records are written sequentially and must be assigned to
tape or mass storage devices.

System-name specifies the external medium for the checkpoint file,
the file upon which checkpoint records are written. It must not be the
same as any system-name used in a File-Control ASSIGN clause, but it
follows the same rules of formation. system-name must specify a tape or
mass storage device.

File~name represents the file for which checkpoint records are to be
written. It must be described with a file description entry in the Data
Division.

FORMAT 1: More than one Format 1 RERUN clause may be specified in a
program. If multiple RERUN clauses are specified, they may be specified
either for the same or for different checkpoint files.

There are two options of the Format 1 RERUN clause. Each may be
specified once for any given filg~g~@g.

g~QORDs~etions: This option is valid for sequentially or randomly
accessed files. It specifies that a checkpoint record is to be written
for every integer records of file-name processed.

The value of inteqe~ must not exceed 16,777,215.

PrQgram Product Information (Version 3 and Version 4)

END QE-EEELLQNIT Q~iQg: This option is valid only for
sequentially accessed files with any organization. It specifies
that a checkpoint record is to be written whenever end-of-volume
for filg~gam~ occurs. Normal volume closing procedures are also
performed. END OF REEL is valid only for tape files; END OF UNIT
is valid only for sequentially accessed files residing on mass
storage devices.

'···Hbw~v~r·,·' •• ···.·.··.·.i~·.·.()#·~~¥tb···i~(3hiev:(¥d~v~(3~i/itid~p~fi~~~s~ij1~~,~,~~·····
allows· ·.··.·thex·?terms.REEL~hd3'JNITtQbe used ;P::t;fl;:9fi~p:<J~~§.r

84 Part II -- Identification and Environment Divisions

c

C~,

G

SAME Clause

FORMAT 2: Format.2'Is .used'fortaking checkpoint records for'sort'
files, and is described in "I-O-CONTROL paragraph" in the chapter on the!
SC)r:t .. :[~.g.tur,~ •

Note: ASCII considerations for the RERUN clause are given in
Appendix E.

SAME Clause

The SAME clause specifies that two or more files are to use the same
core storage area during processing.

r--,
I Format I
~--~
I I

I
I [RECORD] II SAME AREA FOR file-name-1 {file-name-2} •••
I §ORT I
I I L __ J

The discussion that follows pertains only to SAME AREA and SAME
RECORD AREA. The SAME clause with the SORT option is discussed in
"Sort."

The SAME RECORD AREA clause specifies that two or more files are to
use the same main storage area for processing the current logical
record. All of the files may be open at the same time. A logical
record in the shared storage area is considered to be:

• a logical record of each opened output file in this SAME RECORD AREA
clause, and

• a logical record of the most recently read input file in this SAMB
RECORD AREA clause.

If the SAME AREA clause does not contain the RECORD option, the area
being shared includes all storage areas assigned to the files;
therefore, it is not valid to have more than one of these files open at
one time.

More than one SAME clause may be included in a program; however:

1. A specific fil~=~~me must not appear in more than one SAME AREA
clause.

2. A specific file-~~~~ must not appear in more than one SAME RECORD
AREA cIa use.

3. If one or more iile-~~~~g of a SAME AREA clause appear in a SA~E
RECORD AREA clause, all of the file-names in that SAME AREA clause
must appear in that SAME RECORD AREA clause. However, that SAME
RECORD AREA clause may contain additional file-names that do not
appear in that SAME AREA clause.

Note: For a direct file with mode S records, the program is
device-dependent if both the SAME AREA clause and the device field of
system-name are specified. The compiler then determines the segment

Environment Division -- Input-Output Section 85

MULTIPLE FILE TAPE/APPLY Clauses

work area as either the track capacity of the device specified, or as
8 + logical-record-length, whichever is smaller.

If the SAME AREA clause is specified, and the device field of
system-name is not specified, the compiler calculates the segment work
area as 8 + logical-record-length, no matter which device is used.

If neither the SAME AREA clause nor the device field is specified,
then at execution time the segment work area is calculated as either the
track area of the device assigned, or 8 + logical-record-length,
whiqhever is smaller.

If the BLOCK CONTAINS 0 and/or the RECORD CONTAINS 0 clauses are
specified, then the SAME AREA clause or the SAME RECORD AREA clause
may not be specified.

The MULTIPLE FILE TAPE clause is used for documentation purposes and
indicates that two or more files share the same physical reel of tape.

r--,
I Format I
~--~
I I
I MULTIPLE FILE TAPE CONTAINS file-name-i [~Q§l~IQ~ integer-i] I
I I
I [file-name-2 [POSI!lQ~ integer-2]]... I
I I L __ J

The MULTIPLE FILE TAPE clause is required when more than one file
shares the same physical reel of tape.

However, this compiler treats the MULTIPLE FILE TAPE clause as
comments, since this function is performed by the system through the
LABEL parameter of the DD statement (see the ~£Qg£~~~~£~~_~~~£~).

There are several options of the APPLY clause. More than one of each
option may appear.

r--,
I Format for Option 1 I
~--~
I I
I APPLY ~glTE-ONLY ON file-name-i [file-name-2J ••• I
I I L __ J

86 Part II -- Identification and Environment Divisions

o
Environment Division -- Input~Output Section 87

C)

88 Part II -- Identification and Environment Divisions

• DATA DIVISION -- INTRODUCTION

• ORGANIZATION OF THE DATA DIVISION

• FILE DESCRIPTION ENTRY -- DETAILS OF CLAUSES

• DATA DESCRIPTION

• DATA DESCRIPTION -- DETAILS OF CLAUSES

o
Part III -- Data Division 89

\,"

c

(~"":
/

c

External Data-~Description

DATA DIVISION -- INTRODUCTION

The Data Division of a COBOL source program contains the description
of all information to be processed by the object program. Two types of
data may be processed by a COBOL program: information recorded
externally on files and information created internally. The second
type, which exists only during the execution of a program, will be
discussed later in this chapter in "Working-Storage Section."

ORGANIZATION OF EXTERNAL DATA

A file is a collection of records. There are two types of records:
physical records and logical records. A EhY~~£~1-E~£Q~g is a group of
characters or records which is treated as an entity when move~,into or

lout of storage. A logical record is a number of related data items. It
may itself be a physical record, i.e., contained within a single
physical unit, it may be one of several logical records contained within
a single physical record, or it may extend across physical units.

COBOL source language statements provide the means of describing the
relationship between physical and logical records. Once this
relationship is established, only logical records are made available to
the COBOL programmer. Hence, in this manual, a reference to records
means logical records unless the term "physical records" is used.

DESCRIPTION OF EXTERNAL DAT~

In the discussion of data description, a distinction must first be
made between a record's external description and its internal content.

External description refers to the physical aspects of a file, i.e.,
the way in which the file appears on an external medium. For example,
the number of logical records per physical record describes the grouping
of records in the file. The physical aspects of a file are specified in
file description entries.

A COBOL record usually consists of groups of related information that
are treated as an entity. The explicit description of the contents of
each record defines its internal characteristics. For example, the type
of data to be contained within each field of a logical record is an
internal characteristic. This type of information about each field of a
particular record is grouped into a record description entry.

Data Division -- Introduction 91

Data Division--Structure

ORGANIZATION OF THE DATA DIVI§~Q~

The Data Division is divided into four sections: the File section,
the Working-Storage Section, 0, !i.1:l\ and the Report
Section. ~

All data that is stored externally, for example, on magnetic tape,
must be described in the ~ilg_~g£~iog before it can be processed by a
COBOL program. Information that is develo ed for internal uS;;.~B.~~.2~
described in the Work!!!g::.§~Q~~gg~ection.;~·~Qm::9ij'~\
lRt:gg~~mj\It;;Q:f!~P;,§.~Q~;;Ii.rn:q§It;!::P~:'ig!¥.§.g;;~Q~g;~,. The
content and format of all reports that are to be generated the Report
Writer feature must be described in the ggQQ£~ection.

The Data Division is identified by, and must begin with, the header
DATA DIVISION. The File Section is identified by, and must begin with,
the header FILE SECTION. The header is followed by one or more file
description entries and one or more associated record description
entries~ The Working-Storage Section is identified by, and must begin
with, the header WORKING-STORAGE SECTION. The header is followed by
data item description entries for noncontiguous items, followed by
record description entries. The Linkage Section is identified by, and
must begin with, the header LINKAGE SECTION. The header is followed by
noncontiguous data item description entries, followed by record
description entries. The Report Section is identified by, and must
begin with, the header REPORT SECTION. The header is followed by one or
more report description entries, and one or more report group
description entries.

For the proper formats of Division and section headers, see "Use of
the COBOL coding Form" in "Language Considerations."

structure of the Data Division

Q~~&.Q!.y!.§ION.

FILE §§CTION.

{file description entry

{record description entry} ••• } •••

[data item description entryJ •••

[record description entryJ •••

92 Part III -- Data Division

c

o

Data Division Structure/Level Indicator

'LINKAGE· SECTION.

;: [qata i temdesC!riPti6n.:.e~~r~1~~(~,
[l."ecord des criptionent:I:'Y:l.+~

REPORT SECTION.

{report description entry

{report group description entry} ••• } •••

Each of the sections of the Data Division is optional and may be
omitted from the source program when the section is unnecessary. When
used, the sections must appear in the foregoing sequence.

ORGANIZATION OF DATA DIVISION ENTRIES

Each Data Division entry begins with a level indicator or a level
number, followed by one or more spaces, followed by the name of a data
item (except in the Report Section), followed by a sequence of
independent clauses describing the data item. The last clause is always
terminated by a period followed by a space.

There are two types of Data Division entries: those that begin with
a level indicator and those that begin with a level number.

Level Indicator

The level indicator FD is used to specify the beginning of a file
description entry. When the file is a sort-file, the level indicator SD
must be used instead of FD (see "Sort"). When a report is to be
generated by the Report Writer feature, the level indicator RD,
specifying the beginning of a report description entry, must be provided
for each report, in addition to the FD for the file from which the
report is generated (see "Report Writer"). Figure 4 summarizes the
level indicators.

r----------T---,
\Indicator \ Use I
~----------+---~
\ FD I file description entries I
\ I I
\ SD I sort-file description entries I

: t'66riifuiliirdWf" I \ I ",."."."".",.,.,., ... ,. I
I RD I report description entries I L __________ L ___ J

Figure 4. Level Indicator Summary

Organization of the Data Division 93

Level Numbers

Each level indicator must begin in Area A and be followed in Area B
by its associated name and appropriate descriptive information.

Level indicators are illustrated in the sample COBOL programs found
in Appendix B.

Level Number

Level_gumbgrs are used to structure a logical record to satisfy the
need to specify subdivisions of a record for the purpose of data
reference. Once a subdivision has been specified, it may be further
subdivided to permit more detailed data reference.

The basic subdivisions of a record, that is, those not further
subdivided, are called elgmgg£~£Y_i£gm2; consequently, a record may
consist of a sequence of elementary items, or the record itself may be
an elementary item.

In order to refer to a set of elementary items, the elementary items
are combined into groups. A g~ouE item consists of a named sequence of
one or more elementary items. Groups, in turn, may be combined into
larger groups. Thus, an elementary item may belong to more than one
group. In the following example, the group items MARRIED and SINGLE are
themselves part of a larger group named RETIRED-EMPLOYEES:

02 RETIRED-EMPLOYEES.
03 MARRIED.

04 NO-MALE PICTURE 9(8).
04 NO-FEMALE PICTURE 9(8).

03 SINGLE.
04 NO-MALE PICTURE 9(8).
04 NO-FEMALE PICTURE 9(8).

A system of level numbers shows the organization of elementary items
and group items. Since records are the most inclusive data items, the
level number for a record must be 1 or 01. Less inclusive data items
are assigned higher (not necessarily successive) level numbers not
greater than 49. There are special level numbers -- 66, 77, and 88
which are exceptions to this rule. Separate entries are written in the
source program for each level number used~

A group includes all group and elementary items following it until a
level number less than or equal to the level number of that group is
encountered. The level number of an item which immediately follows the
last elementary item of the previous group must be equal to the level
number of one of the groups to which a prior elementary item belongs.

St~ndard Nonstandard
01 A. 01 A.

05 C-l. 05 C-l.
10 D PICTURE x. 10 D PICTURE x.
10 E PICTURE x. 10 E PICTURE x.

05 B-1. 04 B-1.

In the foregoing example, the compiler will accept the nonstandard
use of 04 and treat it as though it had been written as an 05.

Level numbers 01 and 77 must begin in Area A, followed in Area B by
associated data-names and appropriate descriptive information. All
other level numbers may begin in either Area A or in Area B, followed in
Area B by associated data-names and appropriate descriptive information.

94 Part III --Data Division

(~'
,,---_./

C-"',
-'

o

Level Numbers/File Section

If the value of the level number is less rhan 10, the leaoing zero
digit can be omitted (that is, replaced with a blank). At least one
space must separate a level number from the word following the level
number.

Three types of data exist whose level numbers are not intended to
structure a record:

66: Names of elementary items or qroups described by a RENAMES clause
for the purpose of regrouping data items have been assigned the
special level number 66. For an example of the function of the
RENAMES clause, see "Data Description."

77: Noncontiguous Working-Storage items, which are not subdivisions of
other items and are not themselves subdivided, have been assigned
the special level number 77.

88: Entries that specify condition-names to be associated with
particular values of a conditional variable have been assigned the
special level number 88. For an example of level-S8 items, see
"Data Description."

Successive data description entries may have the same format as the
first such entry or may be indented according to level number.
Indentation is useful for documentation purposes and does not affect the
action of the compiler.

f!LE SECTION

The File section contains a description of all externally stored data
(FD), and a description of each sort-file (SD) used in the program.

The File section must begin with the header FILE SECTION followed by
a period. The File section contains file description entries and
sort-file description entries, each one followed by its associated
record description entry (or entries) •

I General Format
\--
J
I fI1~ ~]~!IQM.
I
I {file description entry
I
I {record descri ption entry} ••• 1 •••
I
L--

1

t
--~

f
1
t
1
I
I
J
J

organization of the Data Division 95

File Section/Working-Storage Section

In a COBOL proqram, the filfL~~2££iJ21iQ!!_E!!1!:!g§ (FD and SD)
represent the highest level of orqanization in the File section. The
file description entry provides information about the physical structure
and identification of a file, and gives the record-name(s) associated
with that file ..

For a complete discussion of the sort-file-description entry, see
"Sort."

The B~g~!g_D~§£~i~!ig~Rn!~~ consists of a set of data description
entries which describe the particular record(s) contained within a
particular file. For a full discussion of the format and the clauses
required within the record description entry, see "Da ta Description."

Data areas described in the File Section of the Data Division should
not be considered available for processing unless:

eThe file containing the data area is open.

• If the file is open for input, at least one successful read
request has been issued for that file.

• The first record read must not be an end-of-file record
indicating a null file.

The COBOL compiler restricts ~ references to record areas, direct or
indirect, if the above conditions have not been met.

Program Product Information (Version 3 and Version 4)

The Working-storage section may contain descriptions of records which
are not part of external data files but are developed and pr;ocessed
internall y.

The Working-Storage section must begin with the section header
WORKING-STORAGE SECTION followed by a period. The Working-storage
Section contains data description entries for noncontiguous items and
record description entries, in that order.

r----------'---------------------------
I General Format

,
J

~-­
I

----------------------~--------------------------f

I RQB~I!~2!QB!Q] ~~1ION·
I
J [data item description entry1
I
J r record description entry] •••
I

I
I
t
I
I
]

I , ____ .J

Noncontiguous items in Working-Storage that bear no hierarchical
relationship to one another need not be grouped into records, provided
they do not need to be further subdivided. Instead, they are classified
and defined as noncontiguous elementary items. Each of these items is
defined in a separate data item description entry that begins with the
spedial level number 77.

96 Part III -- Data Division

'\ ,,/

c

o

Linkage Section/Report Section

Record Description Entries

Data elements in Working-Storage that bear a definite hierarchical
relationship to one another must be grouped into records structured by
level number.

REPORT SECTION

The Report Section contains Report Description entries and report
group description entries for every report named in the REPORT clause.
The Report Section is discussed in "Report Writer."

Organization of the Data Division 97

FD Entry/BLOCK CONTAINS Clause

FILE DESCRIPTION ENTRY -- DETAILS OF CLAUSES

The file description entry consists of level indicator (FD), followed
by file-name, followed by a series of independent clauses. The entry
itself is terminated by a period.

r--,
I General Format I
~--~

FD file-name

[BLOCK CONTAINS Clause]

[RECORD CONTAINS Clause]

LABEL RECORDS Clause

[VALUE OF Clause]

[DATA RECORDS Clause]

[REPORT Clause].

The level indicator FD identifies the beginning of a file desc~iption
entry and must precede the f~±g-n~. The clauses that follow the name
of the file are optional in many cases, and their order of appearance is
not significant.

BLOCK CONTAINS Clause

The BLOCK CONTAINS clause is used to specify the size of a physical
record.

r--,
I Format I
~--~
I I
II { CHARACTERS } II

BLOCK CONTAINS [integer-l !Q] integer-2
I g~£QRQ§ I
I I L ___ ~ __ J

The BLOCK CONTAINS clause is unnecessary when a physical record
contains one and only one complete logical record. In all other
instances, this clause is required.

98 Part III -- Data Division

(~,

~/

c······,
_ . ./"

o

BLOCK CONTAINS Clause

The BLOCK CONTAINS clause need not be specified for:

• Direct files with F, U, or V-mode records.

•

•
• Files containing U-mode records.

For these types of files, the compiler accepts the clause and treats it
as comments, issuing a diagnostic message.

The RECORDS option may be used unless one of the following situations
exists, in which case the CHARACTERS option should be used:

1. The physical record contains padding (areas not contained in a
logical record).

2. Logical records are grouped in such a manner that an inaccurate
physical record size would be implied. such would be the case
where the user describes a mode V record of 100 characters, yet
each time he writes a block of 4, he writes a 50-character record
followed by three 100-character records. Had he used the RECORDS
option, the compiler would have calculated the block length as 420.

3. Logical records extend across physical records; that is, recording
mode is S (spanned).

When the RECORDS option is used, the compiler assumes that the block
size provides for integer~£ records of maximum size and then provides
additional space for any required control bytes.

When the CHARACTE~S option is used, the physical record size is
specified in Standard Data Format, i.e., in terms of the number of bytes
occupied internally by its characters, regardless of the number of
characters used to represent the item within the physical record. The
number of bytes occupied internally by a data item is included as part
of the discussion of the USAGE clause. !~~~g~~~l and ~~~~g~~~£ must
include slack bytes and control bytes contained in the physical record.

When the CHARACTERS option is used, and if only integer-2 is shown
and is not zero, integer-2 represents the exact size of the physical
record. If both integer-l and integer-2 are shown, they refer to the
minimum and maximum size of the physical record, respectively.

When both integer-l and i~~~gg~~£ appear, they must be positive
integers.

When the BLOCK CONTAINS clause is omitted, it is assumed that records
are not blocked. When neither the CHARACTERS nor the RECORDS option is
specified, the CHARACTERS option is assumed.

File Description Entry -- Details of Clauses 99

RECORD CONTAINS Clause

Note: ASCII consideratiohs for the BLOCK CONTAINS clause are given in
Appendix E.

RECORD CONTAINS Clause

The RECORD CONTAINS clause is used to specify the size of a file's
data records.

r----~---,
I Format I
~---------------~--~----~--~
I I
I RECORQ CONTAINS (integer-1 !Q] integer-2 CHARACTERS I
I I L _____________________________ ~ _______________________ --__________ ~ ____ J

Since the size of each data record is completely defined within the
record description entry, this clause is never required. When the
clause is specified, the following notes apply:

1. If both integer-1 and i~teger=~ are shown, they refer to the number
of characters in the smallest data record and the number in the
largest data record, respectively.

2. Integ~~=~, when nonzero, should not be used by itself unless all
th~ data records in the file have the same size. In this case,
integer-2 represents the exact number of characters in the data
record.

3. The size of the record must be specified in standard Data Format,
i.e., in terms of the number of bytes occupied internally by its
characters, regardless of the number of characters used to
represent the item within the record. The number of bytes occupied
internally by a data item is discussed in the description of the
USAGE clause. The size of a record is determined according to the
rules for obtaining the size of a group item.

When both int~ger=! and i~~~g~~=~ appear, they must be positive
integers.

£~Q~am Product Information (Version 3 and version

lob par~ III -~ Data Division

c

c

o

RECORD CONTAINS Clause/Recording Mode

\ the user;; ift.he actual record is' "sm~i.i~t:the~' the reco'id
!deseription,referencesto.areasbeyond the actual record prod'uee
I unpredictable results. .' '

i If the RECORD CONTAINS clause specifies integer~2 as zero and the"
;.BLOCKCONTAINS .• O;·.CHARACTERSelaus~is used.{ori~>tl1e'BLOCK
,CONTAINSpl(lus~~somi tt:ed),thell thebloSksizeis det:erminedat·!
1 objeet··· .. timefromthe .. DDparameters· ··orthedata ... setlaqeLfor.:the:J

i'" f il e ~ " ,., " ,.. , .. w,.,:;,., ..• ;., .. , ... ;;;"., , .• ;";.:.,w.:,.:;~,:.. .. '" ,;'.;, " ,,, ,',," .. ''' ... ,•. i, .. ,<.',' .• ,.,'' ,.,.,.~ •• " •. "" .. ";" .. >tw :,: .. : .•.• ::,,, .. :::,,;;,, .. ··, .•.. : " ~.:., .. ,.w." . .:,.,' •••.. ;.;.,<."., .•. , .. :<>.".; .•.• ".,.; ,.:", ,., .•.• ;<, .•. ; ', .. :, ': : .. ,,:.\: •• : •.•.• ':.' .• i

Whether this clause is specified or omitted, the record lengths are
determined by the compiler from the record descriptions. When one or
more of the data item description entries within a record contains an
OCCURS DEPENDING ON clause, the compiler uses the maximum value of the
variable to calculate the record length.

However, if more than one entry in a given record description
contains an OCCURS DEPENDING ON clause, and the maximum values of the
variables in these OCCURS clauses do not occur simultaneously,
integer-2, as specified by the user, may indicate a maximum record s"ize
other than the size calculated by the compiler from the maximum values
of the OCCURS clause variables. In this case, the user-specified value
of integer-2 determines the amount of storage set aside to contain the
data record.

For example, in a school whose total enrollment is 500, an unblocked
file of collective attendance records is being created, each record of
which is described as follows:

01 ATTENDANCE-RECORD.
05 DATE PICTURE X(6).
05 NUMBER-ABSENT PICTURE S999 COMPUTATIONAL SYNCHRONIZED.
05 NUMBER-PRESENT PICTURE S999 COMPUTATIONAL SYNCHRONIZED.
05 NAMES-OF-ABSENT OCCURS 0 TO 500 TIMES DEPENDING ON

NUMBER-ABSENT PICTURE A(20).
05 NAMES-OF-PRESENT OCCURS 0 TO 500 TIMES DEPENDING ON

NUMBER-PRESENT PICTURE A(20).

The programmer can save storage by taking advantage of the fact that
NUMBER-ABSENT plus NUMBER-PRESENT will never exceed the school's total
enrollment. Unless the programmer writes RECORD CONTAINS 10,010
CHARACTERS in the FD entry for the file, the compiler calculates the
record size to be almost twice as large.

;;:; .• ~~ii}:~h:~· '~~88~t~~ .. " ·::·§·~~I;::tg'J!,~e~g,~:~~ij~Ji~.i;~g~g?~·g~~ng;l
tmQ".,~;i~Q:,t;~L/;th,§ ~~~Q+,g§:i;hn.~,j the COBOL compiler scans each record
description entry to determine it. The recording mode may be F (fixed),
U (unspecified), V (variable), or S lspanned).

Recording Mode F -- All of the records in a file are the same length and
each is wholly contained within one block. Blocks may contain more than
one record, and there is usually a fixed number of records per block.
In this mode, there are no record-length or block-descriptor fields.

gecQ~~igg_~Q~~~ -- The records may be either fixed or variable in
length. However, there is only one record per block. There are no
record-length or block-descriptor fields.

Recordi~Mod~-y -- The records may be either fixed or variable in
length, and each must be wholly contained in one block. Blocks may
contain more than one record. Each data record includes a record-length

File Description Entry -- Details of Clauses 101

Recording

field and each block includes a block-descriptor field. These fields
are not described in the Data Division; provision is automatically made
for them. These fields are not available to the user.

Recording Mode S -- The records may be either fixed or variable in
length, and may be larger than a block. If a record is larger than the
remaining space in a block, a segment of the record is written to fill
the block. The remainder of the record is stored in the next block lor
blocks, if required). Only complete records are made available to the
user. Each segment of a record in a block, even if it is the entire
record, includes a segment-descriptor field, and each block includes a
block-descriptor field. These fields are not described in the Data
Division; provision is automatically made for them. These fields are
not available to the user.

For standard sequential files, the compiler determines the recording
mode for a given file to be:

F if all the records are defined as being the same size and the size
is smaller than or equal to the block size.

V if the records are defined as variable in size, or if the RECORD
CONTAINS clause specifies variable size records and the longest
record is less than or equal to the maximum block size.

S if the maximum block size is smaller than the largest record size.

For direct files, the compiler determines the recording mode for a
given file to be:

F if all the records are defined as being the same size, and the size
is smaller than or equal to the block size.

u if the records are defined as variable in-size, or if the RECORD
CONTAINS clause specifies variable size records and the longest
record is less than or equal to the maximum block size.

S if the maximum block size is smaller than the largest record size.

Note: ASCII considerations for compiler calculation of recording mode
are given in Appendix E.

102 Part III -- Data Division

c/

C-',' \,
)

o

RECORDING MODE/LABEL RECORDS Clauses

F mode~(fixed-length format) may be specified when all the logical
records in a file are the same length and each is wholly contained
within one physical block. This implies that no OCCURS DEPENDING ON
clause is associated with an entry in any record description for the
file. If more than'one record description entry is given following the
FD entry, all record lengths calculated from the record descriptions
must be equal.

V mode (variable-length format) may be specified for any combination
of record descriptions if each record is wholly contained in one
physical block. A mode V logical record is preceded by a control field
containing the length of the logical record. Blocks of variable-length
records include a block-descriptor control field. V mcde may not be
specified for files with indexed or relative organization.

U mode (unspecified format) may be specified for any combination of
record descriptions, if each record is wholly contained in one physical
block, and the block contains only one physical record. It is
comparable to V mode with the exception that U-mode records are not
blocked and have no preceding control field. U mode may not be
specified for files with indexed or relative organization.

S mode. (spanned format) may be specified for any combination of
record descriptions. If a record is larger than the remaining space in
a block, a segment of the record is written to fill the block;. rhe
remainder of the record is stored in the next block (or blocks, if
required). Only complete records are made available to the user. Each
segment of a record in a.block~ even if it is the entire record,
includes a segment-descriptor field, and each block includes a
b19ck~descriptor field. "These fields are not described in the Data
Division; provision is automatically made for them. These fields are
notavailablet9 the user. smodemaybespecifiedforstandard
sequential files or for direct files.

Note: ASCII con.siderationsfor the,RECORDING MODE clause are given in
AppendixE.

LABEL RECORDS Clause

The LABEL RECORDS clause specifies whether labels are present, and if
present, identifies the labels.

r--,
I Format I
~--~
I I
I SRECORD IS l (Q~!TTEQ J I
I LABEL (,STANDARD t I i (gECORD§ ARE) (dati~~;~:~~~~r~-~b*~~~·~~i~O~~LINGLA;EA') i
I I L __ J

The LABEL RECORDS clause is required in every FD.

The OMITTED option specifies that either no explicit labels exist for
the file or that the existing labels are nonstandard and the user does
not want them to be processed by a label declarative (i.e., they will be
processed as data records). The OMITTED option must be specified for
files assigned to unit record devices. It may be specified for files

File Description Entry -- Details of Clauses 103

LABEL RECORDS Clause

assigned to magnetic tape units. Use of the OMITTED option does not
result in automatic bypassing of nonstandard labels on input. It is the
user's responsibility to either process or bypass nonstandard labels on
input and create them on output.

The STANDARD option specifies that labels exist for the file and that
the labels conform to system specifications. The system will bypass
user labels appearing in the file if the STANDARD option is specified.

Note: ASCII considerations for the LABEL RECORDS clause are given in
Appendix E.

In the discussion that follows, all references to data-name-1 apply
equally to data-name-2.

The da~a-name-1 option indicates either the presence of user labels
in addition to standard labels, or the presence of nonstandard labels.
Data-name-l specifies the name of a user label record. Data-name-l must
appear as the subject of a record description entry associated with the
file, and must not appear as an operand of the DATA RECORDS clause for
the file.

If user la~~~.~ .. ~:7.:"~ ;?~:.~rocessed, data-name-1 may be specified for
direct files,l:I':~~:~'~~:!;'i,~~£~p.;~~(t or for standard sequential files with the
exception of 'files' assigned' to unit-record devices.

A user label is 80 characters in length. A user header label must
have UHL in character positions 1 through 3. A user trailer label must
have UTL in character positions 1 through 3. Both header and trailer
labels may be grouped, and each label must show the relative position
(1,2, •••) of the label within the user label group, in character
position 4. The remaining 76 characters are formatted according to the
user's choice. User header labels, follow standard beginning file
labels but precede the first data record; user trailer labels follow
standard closing file labels.

If nonstandard labels are to be processed, data-name-1 may be
specified only for standard sequential files, with the exception of
files assigned to unit-record devices. The length of a nonstandard
label may not exceed 4,095 character positions.

All Procedure Division references to ~~~~=~~~~-1, or to any item
subordinate to data-name-l, must appear within label processing
declaratives. ----

Note: In the discussion that follows, the term volume applies to all
input/output devices. Treatment of a mass storage device in the
sequential access mode is logically equivalent to the treatment of a
tape file.

104 Part III -- Data Division

c'

c

c)

o

VALUE OF Clause

. Data~name~3 ~. theTOTAtING····AREA,isdEifl.ne4irifhe' .Working:sforage
Se9t:ion" Data-name-3 is used by the programmer to store informClt:ion to;
ibeused ·in constructing the .. userlabels-,",: .inf()rmation\sucha~< .•..••...•....•.........••..•...•...
accumulated . totals for records, .. identification .. field~wj.thj.nttle<c~rr~llt'
recoJ;'d f . etc:. Befpreeach WRITE.s'\:.atementheis~ues ihemllststore•..•.•.•.• . .. i
.'information assoc:tatedwith.thecurrent:l:'eco.t:'d.·in,datCi"':'n(ime-3.; .. ·.· •... ';['tl¥re/';
,are .. t~o exc:~ptioIlS. '.' Ifb.~ha~Spe9ifiedtheS~E~J3GORn.AREA.·and/or'th~;
·APP!JY.WRITE~ONLYclausesf.··theJlheim~st.storErthE!cllrr:~I1t.r~.c()rd .' .;
. informa ti(jp- ill d(;).t~~~atn.e~3 afteri§i~u!ll~ .. th.C3'; WR.t1*~ .. S~(;).tC3~C3ll,t:~ .•. ';' :r'he . '"
information in .data name~3iEi· ..•. ··.alWays(;ls~ocii;l.tC3d>bY'; the: syst.cam :withi t:he"
;current WRITE statement. " , ,.' i<'

, ' i··.· ...•. •...•. •...• ,....... <.i.•............ ', ".': <' >.,

,.... D~t~~na~e-4,. ·~hefuTAi.~pA~~A,xn~~t.·:B~.hefl.tl~di~~·,t~~'.()l. ;i:,~~~i'tri.thef
Linkage section, and must contain fields ,described as identical with
,those·~ithindata-natt\e-3. . .• 'l'he~ysteUlallocatesthe.s;pacef()r: .. , .. ' >

,·data-name 4·· .. anduseEi .~:i.t.'t6 .saveuse:t".;lab~l informat.ion()bta~ned·i:rom· ..
dat(i-name ... 3)··.····.Cissoc:i.(itedwitl1th,e}nost;esent ... :r~c.0l:"d •. c:l9!-llallywri!-~e~O~·< .. ;
.·the.current ... volume.·.·.· ..• · Thlls~ •..... wh,en.·· ... av()1~.~.:sf((itch.·.·.occu:r.s,<li3.ta ... name ... 4.··.· ..•.•.. ·.· •....... i· .• "

.contaillsth;e.userlal:>el·· .• ·.inf()rUlatJo};lfor .. th~.la?t ... ·:rec9r<l.·a?tllallyw:r:i.t.t~n.;
(jn,the .·.cllrrent·volume, ·Clndt~e·· •. prqgrammercall.·.usedata;..naIne~4.··.·· •. to......... .
s()nstructallac9urate.t.:r:a:i.l~.:r: lClb~:l. for the 'current volume,an<1.a.n
'~cdurate header' label for the next.

;"E'0; • bO!-h'·. da ~a:~a~~:~ <i3.~(fd~ ~~:na~~:4'~,~he\l~~i ~ lTlllstdefine.···the first
::'tW.9l:>yt:.~S.·.·9f e(lch,·record.for .. ··.\lse.~.by.'<the system ..

. :
~::::\:; ... :;~ ::.::·~:::::::.::·.;::·:·:·:\: .. i::t; ;i:·~·: .:::;:: i::::·::}·;"·:<.::;~·:;:;:.:,/., : .. ;:::' , :: ... : ":.": ~.::" .. : .' " .. ,." ",:.":: ':. ~ !.:\. ' .. ':.:'~:'.: "," ",:'" "::". \\", .:; ":,:;.:' .

rc'\'1:~~~c~g~1Jt~G; ariiii~b:f;;i.~';~EA bp£f~;l~c~~(~6~ be~~~g~~~~d· fo~~~~g~~·
!Ee92.;-~~~ "".·:L.:,;:L~L /.;i>.·;···', .. ,'''",-""" '"'.""""" ".. .>, ." ,'., . ".,,'." ,

The VALUE OF clause particularizes the description of an item in the
label records associated with a file, and serves only as documentation.

r--,
\ Format \
~--~

1\ {literal-1 } 1\

VALUE OF data-name-1 IS
I data-name-2 I

II {literal-2 }l... III (data-name-3 IS
I data-name-4 \
I I L __ J

To specify the required values of identifying data items in the label
records for the file, the programmer must use the VALUE OF clause.

However, this compiler treats the VALUE OF clause as comments, since
this function is performed by the system through the LABEL parameter of
the DD statement for the file (see the R£Qg£~~m~£~~_~~ig~).

File Description Entry -- Details of Clauses 105

DATA RECORDS/REPORT Clauses

DATA RECORDS Clause

The DATA RECORDS clause serves only as documentation, and identifies
the records in the file by name.

r--, I Format I
~---~----------------------------~
I I

I
I {RECORD IS } II

DATA data-name-l [data-name-21 •••
I REQORDS ARE I
I I L ______________________ ~ ___ J

The presence of more than one data-name indicates that the file
contains more than one type of data record. That is, two or more record
descriptions for a given file occupy the same storage area. These
records need not have the same description. The order in which the
data-names are listed is not significant.

Data-name-i, data-name-2, etc., are the names of data records, and
each must be preceded in its record description entry by the level
number 01. This clause is never required.

REPORT Clause

The REPORT clause is used in conjunction with the Report Writer
feature. A complete description of the REPORT clause can be found in
"Report Writer."

106 Part III -- Data Division

C
'·_·· ,
........ /

o

Data Description--General Formats

DATA DESCRIPTION

In COBOL, the terms used in connection with data description are:

Data.Description Entry -- the clause, or clauses, that specify the
characteristics of any particular noncontiguous data item, or of any
data item that is a portion of a record. The data description entry
consists of a level number, a data-name (or condition-name), plus any
associated data description clauses.

Data Item Description Ent~ -- a data description entry that defines
a noncontiguous data item. It consists of a level number (77), a
data-name plus any associated data description entries. Data~tE:;m
desc:r:~pi::~c::>~eIl"t:r:ies are valid in the Working-Storage Section .ancl.irii:.n¢:
;';!1:.~.~SI~,,§.§.2!::~9,~,,!j

Record Description Entry -- the term used in connection with a
record. It consists of a hierarchy of data description entries. Record
description entries are valid in the File, Working-Storage, arid .J.~~~g3;i.~,~t
Sections.

The maximum length for a data description entry is 32,767 bytes,
except for a fixed-length Working-Storage 'p;:' ~~~~~g~.j' Section group item,
which may be as long as 131,071 bytes. '

r--,
I General Format 1 I
r--~

level number {
data-name}

EIL!:!§E

[REDEFINES Clause]
[BLANK WHEN ZERO Clause]
[JUSTIFIED Clause]
[OCCURS Clause]
[PICTURE Clause]
[··$·tGN":'G'I··~·i:l§'~I {Y~,~s~ons ..•• ~ ••••..••.•..•. ?;~§ •••.•••.. ~J.
[SYNCHRONIZED Clause]
[USAGE Clause]
[VALUE Clause].

I
I

r--,
I General Format 2 I
r--~
I I
I 66 data-name-1 RE~~E§ Clause. I
I I L __ J

Data Description 107

,Data Description--General Formats

r----~---------------------------~-----~-----------~----~----~-~~--.---,
I General Format 3 I
~----.------------------------------------~---------------------------.~
I I
I 88 condition-name VA~Q~ Clause. I
I I L ___ ~ __ ~ _____________________________ ~ _________ ~ ____________________ ~~_J

~~neral_KQE!!!~~ ~ ~~ .. ~~.~.~.for record description entries in the File;
Workil'lg-storage,:qng({,~~'g.lS~!tgJ: S~?~~q~~.~r:?> ... ~or data item description
ehtries in the Wo'rking":storage i~ij9':!i),~:~g~g~:i Sections. The following
rules apply:

1. Ley~!_gg!!!ber may be any number from 1 through 49 for record
description entries; or 77 for data item description entries.

2. The clauses may be written in, any order, with one exception: the
REDEFINES clause, when used,must immediately follow the data-name.

3. The PICTURE clause must be specified for every elementary item,
wi th the exception of index da ta items 1~II[illt:m.:g:fi'I.P.i:~::ml:IJlI:~wtl[gmlllll~
\!llll.~~J: Index data items are described in "Table Handling."

4. Each entry must be terminated by a period.

5. semicolons or commas may be used as separators between clauses.

General Format 2 is used for the purpose of regrouping data items.
The following rules apply:

1. A, level-66 entry cannot rename anotherlevel-66 ehtry, nor oan it
rename a level-17, level-88, or level-01 entry.

2. All level-66 entries associated with a given logical record must
immediately follow the last data description entry in the record.

3. The entry must be terminated by a period.

The RENAMES clause is discussed in detail later in this chapter.

Gerrgral_Forma~l is used to describe entries that specify
bo!!g!.tiQ1!::.!!am~2 to be associated with particular valUes of a conditional
variable. A condition-name is a name assigned by the user to a specifi6
value, specific values, and/or ranges of values a data item may assume
during object program execution. The following rules apply:

1. The £onditio!l::.m!!!!~ entries for a particular conditional variable
must immediately follow the conditional variable.

2. A condi~iog=nsmg can be associated with any elementary data
description entry except another condition-name, or an index data
item.

108 Part III -- Data Division

c

o

Data Description--General Formats

3. A condition-name can be associated with a group item data
description entry. In this case:

• The condition value must be specified as a nonnumeric literal or
figurative constant.

• The size of the condition value must not exceed the sum of the
sizes specified by the pictures in all the elementary items
within the group.

• No element within the group may contain a JUSTIFIED or
SYNCHRONIZED clause.

• No USAGE other than USAGE IS DISPLAY may be specified within the
group.

4. The specification of a condition-name at the group level does not
restrict the specification of condition-names at levels subordinate
to that group.

5. The relation test implied by the definition of a condition-name at
the group level is performed in accordance with the rules for
comparison of nonnumeric operands, regardless of the nature of
elementary items within the group.

6. Each entry must be terminated by a period.

Examples of both group and elementary condition-name entries are
given in the description of the VALUE clause.

Data Description 109

Data-name/FILLER Clause

DATA DESCRIPTION ENTRY -- DETAILS OF CLAUSES

The data description entry consists of a level number, followed by a
data-name, followed by a series of independent clauses. The clauses may
be written in any order, with one exception: the REDEFINES clause, when
used, must immediately follow the data-name. The entry must be
terminated by a period.

Data-name or FILLER Clause

A data-name specifies the neffie ... 8f1:~e data being described. The word
FILLER specifies an elementary:.8i7:gi78~P item of the. logical record that
is never referred to and therefore need not be named.

r--,
I Format I
~--~
I I
I level number {data-name} I
I FIL~ER I
I I L __ J

In the Working-Storage, iU;t;Ag~g§;~! or File Sections, a data-name or the
key word FILLER must be the first word following the level number in
each data description entry.

R~ogram-Product Information (Version 4)

~·§¥:· .• ¥~r~.~-9~··-r~~.··.·.··.:;~9().~R:: •• ~~.~ .• Sl:·~.t?~.~9~ •.•.• ·.·.·.~·~~~t-~~ ·-·.·~.~.·~.--:~±±9W:~q<[~ij:--~~'~ •. """-
S9~9l1,l9~.~.~8~·· .• ~§<:1:~9P;.· •• ••·· .• i.· ••• ·.·.~.·.d~£~::!!~!!!~.·· •.•• g;·))iT~~.·· •.• • •• ~f7'X ..•. · .• ·~8~~.-~+E~:e:B!)~.
lp!l~· •• ···.~ .. ~.:r:.~.1:.i.·.·y.1'9X;g.-~q:t.:t.p~,i:~.g.··.· .••.• §!9gh:.·.··:t.~y§!_:L. •.• • •• ·.l1gml::>~.;ri··~I1,§"ll:gJ:i·.(;\ll\~.n 1:;ry~<

A data-namg is a name assigned by the user to identify a data item
used in a program. A data-name refers to a kind of data, not to a
particular value; the item referred to may assume a number of different
values during the course of a program.

lilli~:i~~~~h~~y i:o~~v!;L~:~e;~e~s~~ ~~ ~b:c~;~g~~m~l:~~n~~~~e~~~: ~·~n~~e5e!i·-;[~.·;~tl!n~·lo~lt~D:b~·el.;~
named. Under no circumstances maya FILLER item be referred to
directly. In a MOVE, ADD, or SUBTRACT statement with the CORRESPONDING
option, FILLER items are ignored.

Note: Level-77 and level-01 entries in the Working-Storage sectionjill!lfttlJ;l!
~1~:~U~I~~~~~~~§~mmust be given unique ~~~~=!!~m~~, since neither can be
qua11f1ed. Subordinate data-names, if they can be qualified, need not
be unique.

110 Part III -- Data Division

c

(/.1

o

REDEFINES Clause

REDEFINES Clause

The REDEFINES clause allows the same computer storage area to contain
different data items or provides an alternative grouping or description
of the same data. That is, the REDEFINES clause specifies the
redefinition of a storage area, not of the data items occupying the
area.
r--,
I Format l
~--,
I J
I level number data-name-l REDEFINES data-name-2 1
I ,I L ______________________________________ '-_______________________________ J

The level numbers of data-name-1 and data-name-2 must be identical,
but must not be 66 or 88. Data-name-2 is the name associated with the
previous data description entry. Data-name-l is an alternate name for
the same area. When written, the REDEFINES clause must be the first
clause following data-name-l.

The REDEFINES clause must not be used in level-01 entries in the File
Section. Implicit redefinition is provided when more than one level-Ol
entry follows a file description entry.

Program product Information (Version 4)

Redefinition starts at data-name-2 and ends when a level number less
than or equal to that of data-name-2 is encountered. Between the data
descriptions of data-name-2 and data-name-l, there may be no entries
having lower level numbers (numerically) than the level number of
data-name-2 and data-name-l.

Example:

05 A.
10 A-1 PICTURE X.
10 A-2 PICTURE XXX.
10 A-3 PICTURE 99.

05 B REDEFINES A PICTURE X(6).

In this case, B is data-name-l, and A is data-name-2. When B redefines
A, the redefinition includes all of the items subordinate to A (A-l,
A-2, and A-3).

'The data description entry for data-name-2 cannot contain an OCCURS
clause, nor can data-name-2 be subordinate to an entry which contains an
OCCURS clause. An item subordinate to data-name-2 may contain an OCCURS
clause without the DEPENDING ON option. Data-name-l or any items
subordinate to data-name-l may contain an OCCURS clause without the
DEPENDING ON option.. Neither data-name-2 nor data-narne-l nor any of
their subordinate items may contain an OCCURS clause with the DEPENDING
ON option.

I' .. :.·.·.· .. ·· ..•. ·.·.· •.•.• ·.· •.. ·.· .. ".·.'. 'a,$W~y~ri·:t1i:~.·~.·.··l.·C"q~E;~~J:····.··~lfOw~"\i:~~ms•.. ~·i:iR6~qfIi~1:~~'·t:()··.··· •• ·.qa:~a:·~~~mef1··i~§· •• · •• ~.~ .
. o.:e ·&fl:f'j,.c:i121~.1.~l"l.<:1:t::l1. .. :<1c:it;a. ... n.a~e 1 •.• ·j,.tsE3:L.~.i(i~.· •• · •.. ·.it·· .. is·.·.·.l1ot· •.• a.· .. ·.· .. J,.eye.:L791·.· .• ·•·· •• · •• ·it:..E3fl\tJ~.~I1.
l!?~ ,9;*YeEj,.el:)l.E3l.E3l1gt;p.(~~~t~~~L~u95?E,t:.a.j,.Il.a.Il.·.999Y~~ DEPEND:rNG· .. · .. ON.·claus~.);

When data-name-l has a level number other than 01, it must specify a
storage area of the same size as data-name-2.

Data Description Entry -- Details of Clauses 111

REDEFINES Clause

If data-name-l contains an OCCURS clause, its size is computed by
multiplying-the length of one occurrence by the number of occurrences.

Note: In the discussion which follows, the term "computational" refers
to COMPUTATIONAL, n~QIEygr~':XQN~~;'~II;[;j:lf?J.ijg1~:gQ~~U:~;'~+~J~'~~;rr~';; items.

When the SYNCHRONIZED clause is specified for an item that also
contains a REDEFINES clause, the data item that is redefined must have
the proper boundary alignment for the data item that REDEFINES it. For
example, if 'the programmer writes:

05 A PICTURE X(4).
05 B REDEFINES A PICTURE S9(9) COMP SYNC.

he must ensure that A begins on a fullword boundary.

When the SYNCHRONIZED clause is specified for a computational item
that is the first elementary item subordinate to an item that contains a
REDEFINES clause, the computational item must not require the addition
of slack bytes.

Except for condition-name entries, the entries giving the new
description of the storage area must not contain any VALUE clauses.

The entries giving the new description of the storage area must
follow the entries describing the area being redefined, without
intervening entries that define new storage areas. Multiple
redefinitions of the same storage area should all use the data~name of
the entr that or inal defined the area.

05 A PICTURE 9999.
05 B REDEFINES A PICTURE 9V999.
05 C REDEFINES A PICTURE 99V99.

Data items within an area can be redefined without their lengths
being changed; the following statements result in the storage layout
shown in Figure 5.

05 NAME-2.
10 SALARY PICTURE XXX.
10 SO-SEC-NO PICTURE X(9).
10 MONTH PICTURE XX.

05 NAME-l REDEFINES NAME-2.
10 WAGE PICTURE XXX.
10 MAN-NO PICTURE X(9).
10 YEAR PICTURE XX.

112 Part III -- Data Division

' ,.,./

c

C~I

o

REDEFINES Clause

r------~---~-------,

NAME-2

NAME-l

SALARY SO-SEC-NO MONTH

,---....~ /'.-. -~
r--T--T--T--T--T--T--T--T--T--T--T--T--T--'
I I I I I I I I I I I I I I I
I I I I
I I I I I I I I I I I I I I I
L __ ~_-~--~--~--~--~--~--~-_~ __ ~ __ + __ ~ __ ~ __ J

WAGE MAN-NO YEAR

~- ~------.. ~
r--T--T--T--T--T--T--T--T--T--T--T--T--T--'
I I I I I I I I I I I I I I I
I I I I
I I I I I I I I I I I I I I I L __ ~ __ ~ __ ~ __ ~ __ ~ __ ~ __ ~ __ ~ __ ~ __ ~ __ ~ __ ~ __ ~ __ J

Figure S. Areas Redefined without Changes in Length

Data items can also be reqrranged within an area; the following
statements result in the storage layout shown in Figure 6.

OS ~AME-2.
10 SALARY PICTURE XXX.
10 SO-SEC-NO PICTURE X(9).
10 MONTH PICTURE XX.

OS NAME-1 REDEFINES NAME-2.
10 MAN-NO PICTURE X(6).
10 WAGE PICTURE 999V999.
10 YEAR PICTURE XX.

r-~--~-----~----~----------------------------~-------------------------,

NAME-2

~AME-l

SALARY SO-SEC-NO MONTH

~ ~-----------~----------

MAN-NO WAGE YEAR -------------~ ~
r--T--T--T--T--T--T--T--T--T--T~-T--T--T--'

I I I I I I I I I I I I I I I
I I I I
I I I I I I I I I I I I I I I L __ ~ __ ~ __ ~ __ ~ __ ~ __ ~ __ ~ __ ~ __ ~-_~ __ ~ __ ~ __ ~_-J

~---~~----_--_~-_--_--_--_--_--_--_--_--_-----------______ ~--_--_~_~J
Figure 6. Areas Redefined and Rearranged

When an area is redefined, all descriptions of the area remain in
eff~ct. Thus, if Band C are two separate items that share the same
storage area due to redefinition, the procedure statements MOVE X TO B
or MOVE Y TO C could be executed at any point in the program. In the
first case, B would assume the value of X and take the form specified by
the description of B. In the second case, the same physical area would
receive Y acoording to the description of C. It should be noted,
however, that if both of the foregoing statements are executed
successively in the order specified, the value Y will overlay the value
X. However, redefinition in itself does not cause any data to be erased
9nd do~s not supersede a previous description.

Data Description Entry -- Details of Clauses 113

REDEFINES Clause

The usage of data items within an area can be redefined.

Altering the USAGE of an area through redefinition does not cause any
change in existing data. Consider the example:

05 B PICTURE 99 USAGE DISPLAY VALUE IS 8.
05 C REDEFINES B PICTURE S99 USAGE COMPUTATIONAL.
05 A PICTURE S9999 USAGE COMPUTATIONAL.

Assuming that B is on a halfword boundary, the bit configuration of
the value 8 is 1111 0000 1111 1000, because B is a DISPLAY item.
Redefining B does not change its appearance in storage. Therefore, a
great difference results from the two statements ADD B TO A and ADD C TO
A. In the former case, the value 8 is added to A, because B is a
display item. In the latter case, the value -3,848 is added to A,
because C is a binary item (USAGE IS COMPUTATIONAL), and the bit
configuration appears as a negative number.

Moving a data item to a second data item that redefines the first one
(for example, MOVE B TO C when C redefines B)f may produce results that
are not those expected by the programmer. The same is true of the
reverse (MOVE B TO C when B redefines C).

A REDEFINES clause may be specified for an item within the scope of
an area being rede~ined, that is, an item subordinate to a redefined
item. The following example would thus be a valid use of the REDEFINES
clause:

05 REGULAR-EMPLOYEE.
10 LOCATION PICTURE A(8).
10 STA.TUS PICTURE X (4) •
10 SEMI-MONTHLY-PAY PICTURE 9999V99.
10 WEEKLY-PAY REDEFINES SEMI-MONTHLY-PAY

PICTURE 999V999.

05 TEMPORARY-EMPLOYEE REDEFINES REGULAR-EMPLOYEE.
10 LOCATION PICTURE A(8l.
10 FILLER PICTURE X(6).
10 HOURLY-PAY PICTURE 99V99.

REDEFINES clauses may also be specified for items subordinate to
items containing REDEFINES clauses. For example:

05 REGULAR-EMPLOYEE.
10 LOCATION PICTURE A(8).
10 STATUS PICTURE X(4).
10 SEMI-MONTHLY-PAY PICTURE 999V999.

05 TEMPORARY-EMPLOYEE REDEFINES REGULAR-EMPLOYEE.
10 LOCATION PICTURE A(8).
10 FILLER PICTURE X(6l.
10 HOURLY-PAY PICTURE 99V99.
10 CODE-H REDEFINES HOURLY-PAY PICTURE 9999.

114 Part III -- Data Division

............

('"
\.._-./

c

o

BLANK WHEN ZERO/JUSTIFIED Clauses

BLANK WHEN ZERO Clause

This clause specifies that an item is to be set to blanks whenever
its value is zero.

r--,
I Format I
~--~
I I
I BLANK WHEN ~ I
I I L __ J

When the BLANK WHEN ZERO clause is used, the item will contain only
blanks if the value of the item is zero.

The BLANK WHEN ZERO clause may be specified only at the elementary
level for numeric edited or numeric items. When this clause is used for
an item whose PICTURE is numeric, the category of the item is considered
to be numeric edited.

This clause may not be specified for level-66 and level-aa data
items.

The JUSTIFIED clause is used to override normal positioning of data
within a receiving alphabetic or alphanumeric data item.

r--,
I Format I
~--~
I I

I
I {JUSTIFIED} II

RIGHT
I JUST I
I I
~---____ - ____________ J

Normally, the rule for positioning data within a receiving
alphanumeric or alphabetic data item is:

• The data is aligned in the receiving field, beginning at the
leftmost character position within the receiving field. Unused
character positions to the right are filled with spaces. If
truncation occurs, it will be at the right.

The JUSTIFIED clause affects the positioning of data in the receiving
field as follows:

1~ When the receiving data item is described with the JUSTIFIED clause
and the data item sent is larger than the receiving data item, the
leftmost characters are truncated.

2. When the receiving data item is described with the JUSTIFIED clause
and is larger than the data item sent, the data is aligned at the
rightmost character position in the data item. Unused character
positions to the left are filled with spaces.

The JUSTIFIED clause may only be specified for elementary items.

This clause must not be specified for level-66 or level-aa data
items.

Data Description Entry -- Details of Clauses 115

PICTURE Clause

The OCCURS clause is used to define tables and other homogeneous sets
of data, whose elements can be referred to by subscripting or indexing.
The OCCURS clause is described in "Table Handling."

PICTURE Clause

The PICTURE clause describes the general characteristics and editing
r~quirements of an elementary item.

r--,
I Format I
~--~
I I
II {PICTURE} II IS character string
I PIC I
I I L __ J

The PICTURE clause can be used only at the elementary level.

The character string consists of certain allowable combinations of
characters in the COBOL character set. The maximum number of characters
allowed in the character string is 30. The allowable combinations
determine the category of the elementary item.

There are five categories of data that can be described with a
PICTURE clause. They are:

1. Alphabetic
2. Numeric
3. Alphanumeric
4. Alphanumeric edited
5. Numeric edited

The five categories of data items are grouped into three classes:
~lphabetic, numeric, and alphanumeric. For alphabetic and numeric, the
class and the category are synonymous. The alphanumeric class includes
the categories of alphanumeric <without editing), alphanumeric edited,
and numeric edited.

Every elementary item belongs to one of the three classes and to one
of the five categories. The class of a group item is treated at object
time as alphanumeric regardless of the class of the elementary items
subordinate to that group item.

Table 6 shows the relationship of the class and category for
elementary and group data items.

116 Part III -- Data Division

c

o

PICTURE Clause

Table 6. Class and category of Elementary and Group Data Items

r--------------------T---------------------T---------------------------,
I Level of Item I Class I category I
~--------------------+---------------------+---------------------------~
I I Alphabetic I Alphabetic I

I ~---------------------+---------------------------~
I Elementary I Numeric I Numeric I

I ~---------------------+---------------------------~
I I I Alphanumeric I

I I Alphanumeric I Alphanumeric Edited I

I I I Numeric Edited I

~--------------------+---------------------+---------------------------~
I I I Alphabetic I

I I I Numeric I
I Group I Alphanumeric I Alphanumeric I
I I I Alphanumeric Edited I
I I I Numeric Edited I L ____________________ ~ _____________________ ~ ___________________________ J

Character String and Item Size

In the processing of data through COBOL statements, the size of an
elementary item is determined through the number of character positions
specified in its PICTURE character string. In storage, however, the
size is determined by the actual number of bytes the item occupies, as
determined by its PICTURE character string, and also by its USAGE (see
"USAGE Clause") .

Normally, when an arithmetic item is moved from a longer field into a
shorter one, this compiler will truncate the data to the number of
characters represented in the PICTURE character string of the shorter
item.

For example, if a sending field with PICTURE S99999, and containing
the value +12345, is moved to a COMPUTATIONAL receiving field with
PICTURE S99, the data is truncated to +45.

Asacompile.timeoption, however,.thiscompilerIr\ay beiristruci:eCi,
insucha.noperation,tot:r;llncateonly such digitsas\¥ouldove:r:flo~the
·:r~ceiyirlgf~eld. If .. this:optionis used,the<result.>ofthemove in the
.. fq]:,egqing.example .is + 234 S .s~nce .aCOMPUTAT:rONALi tem.two bytes in .•.•
~~Ilgthsan··.c?ntain· UP.t.ofourd~cim~.ldigits ... qf "data~ Note ·that .···.·care

:11lt!~~}:)tallSeclV1hen llSi:ng.this option,E;incethere times when the data
,.JI!:§l y9op.}:.a.~n.· •... a..l}~ga.~?:.y.~ .•.•. ~?_:9!l:~

Repetition of Symbols

An integer which is enclosed in parentheses following one of the
symbols

A x 9 p z * B o +

indicates the number of consecutive occurrences of the symbol. For
example, if the programmer writes

A(40)

$

the four characters (40) indicate forty consecutive appearances of the
symbol A. The number within parentheses may not exceed 32,767.

Data Descriptio.n Entry -- Details of Clauses 117

PICTURE Clause

Note: The following symbols may appear only once in a given PICTURB
clause:

S v CR DB

Symbols Used in the PICTURE Clause

The functions of the symbols used to describe an elementary item are:

A Each A in the character string represents a character position that
can contain only a letter of the alphabet or a space.

BEach B in the character string represents a character position into
which the space character will be inserted.

p The P indicates an assumed decimal scaling position, and is used to
specify the location of an assumed decimal point when the point is
not within the number that appears in the data item. The scaling
position character P is not counted in the size of the data item.
Scaling position characters are counted in determining the maximum
number of digit positions (18) in numeric edited items or in items
that appear as operands in arithmetic statements.

The scaling position character P may appear only to the left or
right of the other characters in the string as a continuous string
of piS within a PICTURE description. The sign character S and the
assumed decimal point V are the only characters which may appear to
the left of a leftmost string of piS. Since the scaling position
character P implies an assumed decimal point (~o the left of the
piS if the piS are leftmost PICTURE characters and to the right of
the piS if the piS are rightmost PICTURE characters), the assumed
decimal point symbol V is redundant as either the leftmost or
rightmost character within such a PICTURE description.

S The symbol S is used in a PICTURE character string to indicate the
presence (but not the representation nor, necessarily, the
position) of an operational sign, and must be written as the
leftmost character in the PICTURE string. An operational sign
indicates whether the value of an item involved in an operation is
positive or negative. The symbol S is not cou ted i deter . .
the size of the elementary item,

-~

V The V is used in a character string to indicate the location of the
assumed decimal point and may appear only once in a character
string. The V does not represent a character position and,
therefore, is not counted in the size of the elementary item. When
the- assumed decimal point is to the right of the rightmost symbol
in the string, the V is redundant.

X Each X in the character string represents a character position
which may contain any allowable character from the EBCDIC set.

Z Each Z in the character string represents a leading numeric
character position; when that position contains a zero, the zero is
replaced by a space character. Each Z is counted in the size of
the item.

9 Each 9 in the character string represents a character position that
contains a numeral and is counted in the size of the item.

118 Part III -- Data Division

C·
~

o

o

o

~Rl
DB~

PICTURE Clause

Each zero in the character string represents a character position
into which the numeral zero will be inserted. Each zero is counted
in the size of the item.

Each comma in the character string represents a character position
into which a comma will be inserted. This character is counted in
the size of the item. The comma insertion character cannot be the
last character in the PICTURE character string.

When a period appears in the character string, it is an editing
symbol that represents the decimal point for alignment purposes.
In addition, it represents a character position into which a period
will be inserted. This character is counted in the size of the
item. The period insertion character cannot be the last character
in the PICTURE character string.

Note: For a given program, the functions of the period and comma
are exchanged if the clause DECIMAL-POINT IS COM~A is stated in the
SPECIAL-NAMES paragraph. In this exchange, the rules for the
period apply to the comma and the rules for the comma apply to the
period wherever they appear in a PICTURE clause.

These symbols are used as editing sign control symbols. When
used, each represents the character position into which the
editing sign control symbol will be placed. The symbols are
mutually exclusive in one character string. Each character used in
the symbol is counted in determining the size of the data item.

* Each asterisk (check protect symbol) in the character string
represents a leading numeric character position into which an
asterisk will be placed when that position contains a zero. Each
asterisk (*) is counted in the size of the item.

$ The currenci symbol in the character string represents a character
position into which a currency symbol is to be placed. The
currency symbol in a character string is represented either by the
symbol $ or by the single character specified in the CURRENCY SIGN
clause in the SPECIAL-NAMES paragraph of the Environment Division.
The currency symbol is counted in the size of the item.

Table 7 shows the order of precedence of the symbols used in the
PICTURE clause.

The following is a detailed description of the allowable
combinations of characters for each category of data.

ALPH~~ET!C ITEMS: An alphabetic item is one whose PICTURE
character string contains only the symbol A. Its contents, when
represented in Standard Data Format, must be any combination of the
26 letters of the Roman alphabet and the space from the COBOL
character set. Each alphabetic character is stored in a separate
byte.

If a VALUE clause is specified for an alphabetic item, the
literal must be nonnumeric.

Data Description Entry -- Details of Clauses 119

PICTURE Clause

Table 7. Precedence of Symbols Used in the PICTURE Clause
-~---------~-----------T------------------------T-----------------------T--------------, ~

I FIRST I NON-FLOATING I FLOATING I OTHER I I

I SYMBOL I INSERTION SYMBOLS I INSERTION SYMBOLS I SYMBOLS I \'-_,/'
I ~-T-T-T-T---T---T----T---+---T---T---T---T---T---+-T-T-T-T-T-
I SECOND I I I I I + I + I CR I I Z I Z I + I + I I I IAI I I I
I SYMBOL IBIOI,I. I -I - I DB Ics1 1 * I * I - I - Ics 1 1cs1 191XISIVIPIP
~------------T--------- -+-+-+-+---+---+----+---+---+---+---+---+---+---f-+-+-+-+-f-

I B IXIXIXIXI X I I IX I X I X I X I X IX IX IXIXI IXI IX
~----------+-+-+-+-+---+---+----+---+---+---+---+---+---+---+-+-+-+-+-+-01
I 0 IXIXIXIXI X I I IX I X I X I X I X IX IX IXIXI IXI IX

NON-FLOATING~----------+-+-f-+-+---+---+----+---+---+---f---f---+---+---f-+-+-+-+-+-
I , IXIXIXIXI X I I IX I X I X I X I X IX IX IXI I IXI IX

INSERTION. ~----------+-+-+-+-+---+---+----+---+---+---+---+-_-+---+---+-+-+-+-+-

SYMBOLS
I IXIXIXI I X I I IX I X I I X I IX I IXI I I I I
~----------+-+-f-+-+--~+---+----+---+---+---+---f---+---f---+-f-+-+-+-+-
I + or - I
~----------+-+-+-+-+---+---+----+---+---+---+---+---+---+---+-+-+-+-+-+­
I + or - IXlxlXIXI I I IX I X I X I I IX IX IXI I IXIXIX
~-~--------+-+-+-+-+---+---+----+---+---+---+---+---+---+---+-+-+-+-+-+­
I CR or DB IXIXIXIXI I I IX I X I X I I IX IX IXI I IXIXIX
~---~------+-+-+-+-+---+---+----+---+---+---+---+---+---+---+-+-+-+-+-+-
I cs1 I I I I I X I I I I I I I I I I I I I I I

~------------+----------+-+-f-+-+---+---+----+---+---+---+---+---+---+---+-+-+-+-+-+-
I I Z or * I X I X I X I I X I I I X I X I I I I I I I I I I I
I ~----~-----+-+-+-+-+---+---+----+---+---+~--+---+---+---+---+-+-+-+-+-+-
I FLOATING I Z or * IXIXIXIXI X I I IX I X I X I I I I I I I IXI IX
I ~----------f-+-+-+-+---+---+----+---+---+---+---f---+---+---f-+-+-+-+-+-
I INSERTION I + or - IXIXIXI I I I IX I I I X I I I I I I I I I
I ~----------+-+-+-+-+---+---+----+---+---+---+---+---+---+---+-+-+-+-+-+-
I SYMBOLS I + or - IXIXIXIXI I I IX I I I X I XI I I I I IXI IX
I ~----------+-+-+-+-+---+---+----+---+---+---+---+---+---+---+-+-+-+-+-+-
I I cs1 IXIXIXI I X I I I I I I , IX I I' I I , I
I ~----------+-+-+-+-+---+---+----+---+---+---+---+---+---+---+-+-+-+-+-+-
I I cs1 IXIXIXI~' X, I I I , I I 'X IX I I , IXI 'X
~------------+----------+-+-f-+-+---f---+----+---+---f---+---f---+---+---f-f-f-f-~-f-

I 9 IXIXIXIXI X I I IX I X I I X I IX, ,XIXIXIXI 'X
~----------+-+-+-+-+---+---+----+---+---+---+---+---+---+---+-+-+-+-+-+-
,A X IXIXI I I I I I I I I I I I IXIXI I I I
~----------+-+-+-+-+---f---+----f---+---f---+---f---f---+---+-+-+-+-+-f-

OTHER I S I I I I I I I I I I I I I I "I I I I
~----------+-+-+-+-+---+---+----+---+-~-+---+---+---+---+---+-+-+-+-+-+-

SYMBOLS I . V I X I X IX I I X, , I X 'X I I X I , X I , X, I X I I X I
~----------+-+-f-+-+---f---+----+---+---+---f---f---+---+---+-f-+-+-+-+-
I P IXIXIXI I X I I IX I X I I X I IX I IXI IXI IXI
~----------+~+-+-+-+---+---+----+---+---+---+---+---+---+---+-+-+-+-+-+-
, P I I I I I X I , IX I I I I I I' IXIXI I

I
I ,

-~--~ IAt least one of the symbols A, X, Z, 9, or *, or at least two of the symbols +, -, or I
I cs must be present in a PICTURE string. I
IAn X at an intersection indicates that the symbol(s) at the top of the column may, in al
I given character-string, appear anywhere to the left of the symbol(s) at the left of I
I the row. I
,Non-floating insertion symbols + and -, floating insertion symbols Z, *, +, -, and cs, I
, and other symbol P appear twice in the above PICTURE character precedence table. rhel
, leftmost column and uppermost row for each symbol represents its use to the left of I
I the decimal point position. The second appearance of the symbol in the table I
I represents its use to the right of the decimal point position. I
IBraces ({}) indicate items that are mutually exc~usive. I
L _____ ------_-----------_-----------------------------__________________________________ J ~

120 Part III -- Data Division

c/

o

P;I:CTPRE Clause

ALPHANUMERIC ITEMS: An alphanumeric item is one whose PICTURE character
string is restricted to combinations of the symbols A, X, and 9. The
item is treated as if the character string contained all XiS. Its
contents, when represented in Standard Data Format, are allowable
characters from the EBCDIC set.

A PICTURE character string which contains all A's or all 9 1 s does not
define an alphanumeric item.

If a VALUE clause is specified for an alphanumeric item, the l!t~f~l
must be nonnumeric.

NUMERIC ITEMS: There are two types of numeric items: fixed-point items
In~!!.l;!I;~g§:!S:~n.g:cr;gf!;¥mt;Hi;1l19i;

Fixed-Point Numeric Items: There are three types of fixed-point numeric
items: exte rna I dec ima 1, bi na ry, ;l.jng;l:;!:~D.j;~;rn.p;*\\\\[~gg.@i!p~~;j; See the
discussion of the USAGE clause for details concerning each.

The PICTURE of a fixed-point numeric item may contain a valid
combination of the following characters:

9 v p S

Examples of fixed-point numeric items:

PICTURE.
99gg--

S99
S999V9
PPP999
S999PPP

y~lid Rang~_Qf Val~~~
o through 9999
-99 through +99
-999.9 through +999.9
o through .000999
-1000 through -999000 and
+1000 through +999000 or zero

The maximum size of a fixed-point numeric item is 18 digits.

The contents of a fixed-point numeric item, when represented in
Standard Data Format, must be a combination of the Arabic numerals 0
through 9; the item may contain an operational sign. If the PICTURE
contains an S, the contents of the item are treated as positive or
negative values, depending on the operational sign; if the PICTURE does
not contain an Sf the contents of the item are assumed to be absolute
values.

If a VALUE clause is specified for an elementary numeric item, the
literal must be numeric. If a VALUE clause is specified for a group
item consisting of elementary numeric items, the group is considered
alphanumeric, and the litgf~l must therefore be nonnumeric.

Note: ASCII considerations for the PICTURE clause are given in Appendix
E.

Data Description Entry -- Details of Clauses 121

PICTURE Clause

c
122 Part III -- Data Division

o

PICTURE Clause

It'\r:'~(j.: .. VALtJE':'c~ause;:jriaY'\C6e 'l:iss'o~'i~t:ei1'';W;~~:';'i,ln~''e)t~~rnaI"t,£<t9atrng~'po';i(t;'P]
~5~~~ .. ;;· ... , ...• ;".,;,;" •. ;"·.<;;:.;c'".;.;;",,,· .. :· .. ,;"Z",,'~.,; ';, .. "" ",~'<,o;,~.;;,,,;.,;,,:,,;;,.; .• ·,:,,;,::;;,;;::.~.\.,::::.,,; .• ~, .. , .. >";.: .. ,:.::<· .. ,.,,:;':;.~,,:,;.,;.,,,:,::.L,.:.:;".:,.: ,. ,'iL::;;;,;;.:2:.'c.(,·j

ALPHANUMERIC EDITED ITEMS: An alphanumeric edited item is one whose
PICTURE character string is restricted to certain combinations of the
following symbols:

A x 9 B o

To qualify as an alphanumeric edited item, one of the following
conditions must be true:

1. The character string must contain at least one B and at least one
X.

2. The character string must contain at least one 0 and at least one
X.

3. The character string must contain at least one 0 (zero) and at
least one A. Its contents, when represented in Standard Data
Format, are allowable characters chosen from the EBCDIC set.

USAGE IS DISPLAY is used in conjunction with alphanumeric edited
items.

If a VALUE clause is specified for an alphanumeric edited item, the
literal must be nonnumeric. The literal is treated exactly as
specified; no editing is performed.

Editinq Rules: Alphanumeric edited items are subject to only one type
of editing: simple insertion using the symbols 0 and B.

Examples of alphanumeric edited items:

PICTURE
OOOX(12)
BBBX(12)
000A(12)
X(5)BX(7)

Value of Data
ALPHANUMER01-
ALPHA.NUMER01
ALPHABETIC
ALPHANUMERIC

Edited Result
OOOALPHANUMEROl

ALPHANUMER01
OOOALPHABETIC
ALPHA NUMERIC

NUMERIC EDITED ITEMS: A numeric edited item is one whose PICTURE
character string-rs-restricted to certain combinations of the symbols:

B P V z o 9 * + CR

The allowable combinations are determined from the order of
precedence of symbols and editing rules.

DB $

The maximum number of digit positions that may be represented in the
character string is 18.

The contents of the character positions that represent a digit, in
Standard Data Format, must be one of the numerals.

USAGE IS DISPLAY is used in conjunction with numeric edited items.

If a VALUE clause is specified for a numeric edited item the literal
must be nonnumeric. The literal is treated exactly as specified;-no--­
editing is performed.

The maximum length of a numeric edited item is 127 characters.

Editing Rule§.: All types of editing are valid for numeric edited items.

Data Description Entry -- Details of Clauses 123

PICTURE Clause

There are two general methods of performing editing in the PICTURE
clause: by insertion or by suppression and replacement.

There are four types of ~nseE~~Qg editing:

1. Simple insertion
2. Special insertion
3. Fixed insertion
4. Floating insertion

There are two types of 2~~~!ession and re~lacement editing:

1. Zero suppression and replacement with spaces
2. Zero suppression and replacement with asterisks

Insertion Editing

Sim~le insertion editigg is performed using the following insertion
characters:

, (comma) B (space) o (zero)

The insertion characters are counted in the size of the item and
represent the position in the item into which the character will be
inserted.

Examples of simple insertion editing:

~IC!URE
99,999

9,999,000
99B999BOOO
99B999BOOO

99BBB999

Y:§!!!!§_2LData
12345
12345

1234
12345

123456

Edited Result
12,345

2,345,000
01 234 000
12 345 000

23 456

Special insertion editigg is performed using the period (.) as the
insertion character. The result of special insertion editing is the
appearance of the insertion character in the item in the same position
as shown in the character string.

In addition to being an insertion character, the period represents a
decimal point for alignment purposes. The insertion character used for
the actual decimal point is counted in the size of the item.

The use of both the assumed decimal point, represented by the symbol
V, and the actual decimal point, represented by the period insertion
character, in one PICTURE character string is not allowed.

Examples of special insertion editing:

PICTURE
999:-gg-
999.99
999.99
999.99

Value of Data ------1:-234--
12.34

123.45
1234.5

124 Part III -- Data Division

Edited Result ---001:-23----
012.34
123.45
234.50 c·

o

PICTURE Clause

Fixed insertion editing is performed by using the following insertion
characters:

currency symbol $
editing sign control symbols + CR DB

Only one currency symbol and only one of the editing sign control
symbols can be used in a given PICTURE character string.

Fixed insertion editing results in the insertion character occupying
the same character position in the edited item as it occupied in the
PICTURE character string.

$ The currency symbol must be the leftmost character position to
be counted in the size of the item, unless it is preceded by
either a + or a - symbol.

+ or - When either symbol is used, it must represent the leftmost or
rightmost character position to be counted in the size of the
item.

CR or DB When either symbol is used, it represents two character
positions in determining the size of the item and must
represent the rightmost character positions that are counted
in the size of the item.

Editing sign control symbols produce results depending upon the value
of the data item as shown in Table 8.

Table 8. Editing Sign Control Symbols and Their Results
r---------------------------------T------------------------------------,
I I Result I
I ~--------------------T---------------~ I Editing Symbol in PICTURE I Data Item I Data Item I
I Character String I Positive or Zero I Negative I
~---------------------------------+--------------------+---------------~
I + I + I I
I I space I I
I CR I 2 spaces I CR I
I DB I 2 spaces I DB I L _________________________________ ~ ____________________ ~ _______________ J

Examples of fixed insertion editing:

RICTURE
999.99+

+9999.99
9999.99-
$999.99

-$999.99
$9999.99CR
$9999.99DB

Value of Data
--:;6555.556-

-5555.555
+1234.56
-123.45
-123.456
+123.45
-123.45

Edited Result
555.55+

-5555.55
1234.56
$123.45

-$123.45
$0123.45
$0123. 45DB

Floatin~insertiQ~_~~!~!~g is indicated in a PICTURE character string
by using a string of at least two of the allowable insertion characters
$ + or - to represent the leftmost numeric character positions into
which the insertion characters can be floated.

The currency symbol ($) and the editing sign symbols (+ or -) are
mutually exclusive as floating insertion characters in a given PICTURE
character string.

Data Description Entry -- Details of Clauses 125

PICTURE Clause

Any of the simple insertion characters <, B 0) embedded in the string
of floating insertion characters, or to the immediate right of this
string, are part of the floating string.

In a PICTURE character string, there are only two ways of
representing floating insertion editing:

1. Any or all leading numeric character positions to the left of the
decimal point are represented by the insertion character.

2. All of the numeric character positions in the PICTURE character
string are represented by the insertion character.

The result of floating insertion editing depends upon the
representation in the PICTURE character string:

1. If the insertion characters are only to the left of the decimal
point, a single insertion character is placed into the character
position immediately preceding the first nonzero digit in the data
represented by the insertion symbol string or the decimal point,
whichever is farther to the left of the PICTURE character string.

2. If all numeric character positions in the PICTURE character string
are represented by the insertion character, the result depends upon
the value of the data. If the value is zero, the entire data item
will contain spaces. If the value is not zero, the result is the
same as when the insertion characters are only to the left of the
decimal point.

To avoid truncation when using floating insertion editing, the
programmer must specify the minimum size of the PICTURE character string
for the receiving data item to be:

1. The number of characters in the sending item, plus

2. The number of insertion characters (other than floating insertion
characters) being edited into the receiving data item, plus

3. One character for the floating insertion character. Even if the
size of the PICTURE character string is larger than the minimum
needed to accommodate the sending field, the PICTURE character
string must be constructed so that the leftmost comma is
preceded by at least one numeric character position to represent
the digit and by one character to represent the floating insertion
character. For example, if the sending field is defined as:

01 SEND-FIELD PIC 9(5)V99

and the receiving field is defined as:

77 RECV-FLD PIC $,$$$,$$$,$$$.99

the edited result will not be correct. To yield the correct result,
the receiving field must be defined as:

77 RECV-FLD PIC $$,$$$,$$$,$$$.99

Examples of floating insertion editing:

PICTURE
-$$$$:99

$$$9.99
$$,$$$,999.99
++,+++,999.99
$$,$$$,$$$.99CR
$$,$$$,$$$.99DB
++,+++,+++.+++

y§!!.!:!g_Qf_Q.§!:!:'~
.123
.12

-1234.56
-123456.789

-1234567
+1234567

0000.00

126 Part III -- Data Division

Edited Result ---------$:-12
$0.12

$1,234.56
-123,456.78

$1,234,567.00CR
$1,234,567.00 c

c

c

o

PICTURE Clause
Zero Suppression and Replacement Editing

Zero suppression and replacement editin~ means the suppression of
leading zeros in numeric character positions and is indicated by the use
of the alphabetic character Z or the character * in the PICTURE
character string. If Z is used, the replacement character will be the
space; if * is used, the replacement character will be *.

The symbols + - * Z and $ are mutually exclusive as floating
replacement characters in a given PICTURE character string.

Each suppression symbol is counted in determining the size of an
item.

Zero suppression and replacement editing is indicated in a PICTURE
character string by using a string of one or more of either allowable
symbol to represent leading numeric character positions, which are to be
replaced when the associated character position in the data contains a
zero. Any of the simple insertion characters embedded in the string of
symbols or to the immediate right of this string are part of the string.
Simple insertion or fixed insertion editing characters to the left of
the string are not included.

In a PICTURE character string, there are only two ways of
representing zero suppression:

1. Any or all of the leading numeric character positions to the left
of the decimal point are represented by suppression symbols.

2. All of the numeric character positions in the PICTURE character
string are represented by suppression symbols.

If the suppression symbols appear only to the left of the decimal
point, any leading zero in the data which appears in a character
position corresponding to a suppression symbol in the string is replaced
by the replacement character. Suppression terminates at the first
nonzero digit in the data or at the decimal point, whichever is
encountered first.

If all numeric character positions in the PICTURE character string
are represented by suppression symbols, and the value of the data is not
zero, the result is the same as if the suppression characters were only
to the left of the decimal point.

If the value of the data is zero, the entire data item will be spaces
if the suppression symbol is Z, or it will be asterisks (except for the
actual decimal point) if the suppression symbol is *.

If the value of the data is zero and the asterisk is used as the
suppression symbol, zero suppression editing overrides the function of
the BLANK WHEN ZERO clause, if specified.

Examples of zero suppression and replacement editing:

PICTURE
ZZZZ.ZZ
•••••••
ZZZZ.99
···*.99
ZZ99.99

Z,ZZZ.ZZ+
,. •• **+

*.,***,***.*.+
$Z,ZZZ,ZZZ.ZZCR

$B*,***,***.**BBDB

Value of Data
0000.00
0000.00
0000.00
0000.00
0000.00
+123.456
-123.45

+12345678.9
+12345.67
-12345.67

Edited Result

****.**
.00

*·**.00
00.00

123.45+
**123.45-

*2,345,678.90+
$ 12,345.67

$ ***12,345.67 DB

Data Description Entry -- Details of Clauses 127

Program Product InfQ~m~~!Qn (Version 3 and Version 4)

c
128 Part III -- Data Division

(I

~'

o

SYNCHRONIZED Clause

• Af'ob]ecttime if oneof't:lie characters' + or - is not present
inth~ data an error .. ' occurs, and the program will terminate
abnormally.

Every numeric data description entry whose PICTORE contains the
characterS is a signed numeric data description entry. If the
SIGN91auseapp~ies to suchan entry, and >conversionis necessary
for .. purposesofcoI1\putation, or. for comparisons,conversiontake5
pl'ace·a utomatically .. ·

Ifno.SIGNClauseapplies tea numeric data description entry whose
PICTURE character string contains the character S,thenthe
positionofth~.operational 5igni5 determined as explained in
description of th~USAGE clause.

,Note: ASCII consideraticms for the
Appendix E.

SYNCHRONIZED Clause

given

The SYNCHRONIZED clause specifies the alignment of an elementary item
on one of the proper boundaries in core storage.

r--,
I Format I
~--~
I I I {§YNCHgONIZEQ } [LEFT] I
I SYNC BIGHT I
I I L __ J

The SYNCHRONIZED clause is used to ensure efficiency when performing
arithmetic operations on an item.

'fh~.~.~!'1 .. SH~9.~!~~!). <?!Cl~~~It\ay aI>I>~Cl.:J:" ... ?~!XClt: .. t~~ ~l~It\~~t:Clry ... !~y~l .. g~ at
r·.leve1701 ... \· •..• · ... ·.~h~n •• · •. ·· •.. \l5~(:1 a.t ••..... ~~y~l~:O;~~y~:J:"X .. ~!~I1\~~~Cl:J:"Y;'!t:.~.I1\ .. \4'~t:.l}~r:t.· ••• ' .• ;t:~!.f3.
·level~Olitemis~X~<?h:r::gl'l;~~51~ . '.

If either the LEFT or the RIGHT option is specified, it is treated as
comments.

The length of an elementary item is not affected by the SYNCHRONIZED
clause.

When the SYNCHRONIZED clause is specified for an item within the
scope of an OCCURS clause, each occurrence of the item is synchronized.

When the item is aligned, the character positions between the last
item assigned and the current item are known as "slack bytes." These
unused character positions are included in the size of any group to
which the synchronized elementary item belongs.

The proper boundary used to align the item to be synchronized depends
on the format of the item as defined by the USAGE clause.

When the SYNCHRONIZED clause is specified, the following actions are
taken:

For a COMPUTATIONAL item:

1. If its PICTURE is in the range of S9 through S9(4), the item is
aligned on a halfword (even) boundary.

Data Description Entry -- Details of Clauses 129

SYNCHRONIZED CLAUSE/Slack Bytes

2. If its PICTURE is in the range of S9(5) through S9(18), the item is
aligned on a fullword (multiple of 4) boundary.

For a DISPLAY or
treated as comments.

item, the SYNCHRONIZED clause is

utational" refers
items.

When the SYNCHRONIZED clause is specified for an item that also
contains a REDEFINES clause, the data item that is redefined must have
the proper boundary alignment for the data item that REDEFINES it. For
example, if the programmer writes:

02 A PICTURE X(4).
02 B REDEFINES A PICTURE S9(9) COMP SYNC.

he must ensure that A begins on a fullword boundary.

When the SYNCHRONIZED clause is specified for a computational item
that is the first elementary item sUbordinate to an item that contains a
REDEFINES clause, the computational item must not require the addition
df slack bytes.

,~"u'v4.IZED is rrQ~ specified for binary
items, no space is reserved for slack bytes. However,
n is done on these fields, the compiler generates the

necessary instructions to move the items to a work area which has the
correct boundary necessary for computation.

In the File Section, the compiler assumes that all level-01 records
containing SYNCHRONIZED items are aligned on a doubleword boundary in
the buffer. The user must provide the necessary inter-record slack
bytes to ensure alignment.

In the Working-Storage Section, the compiler will align all level-Ol
entries on a doubleword boundary.

There are two types of slack bytes: intra-record slack bytes and
inter-record slack bytes.

Intra-record slack Qy~~ are unused character positions preceding
each synchronized item in the record.

Intef=~ecQ~£_~lack_byt~~ are unused character positions added between
blocked logical records.

INTRA-RECORD SLACK BYTES: For an output file, or in the Working-Storage
Section, the compiler inserts intra-record slack bytes to ensure that
all SYNCHRONIZED items are on their proper boundaries. For an input
file the compiler expects intra-record slack

130 Part III -- Data Division

c

c./

o

Slack Bytes

bytes to be present when necessary to assure the proper alignment of a
SYNCHRONIZED item.

Because it is important for the user to know the length of the
records in a file, the algorithm the compiler uses to determine whether
slack bytes are required and, if they are required, the number of slack
bytes to add, is as follows:

• The total number of bytes occupied by all elementary data items
preceding the computational item are added together, including
any slack bytes previously added.

• This sum is divided by ~, where:

m = 2 for COMPUTATIONAL items of 4-digit length or less

m 4 for COMPUTATIONAL items of 5-digit length or more
..........

m = 4 for COMPUTATIONAL...;1 items.

8 for COMPUTATIONAL~2 items:

• If the remainder (~) of this division is equal to zero, no
slack bytes are required. If the remainder is not equal to
zero, the number of slack bytes that must be added is equal to
ill - !:-

These slack bytes are added to each record immediately following the
elementary data item preceding the computational item. They are defined
as if they were an item with a level number equal to that of the
elementary item that immediately precedes the SYNCHRONIZED computational
item, and are included in the size of the group which contains them.

For example:

01 FIELD-A.
05 FIELD-B PICTURE X(5).
05 FIELD-C.

10 FIELD-D PICTURE XX.
[10 Slack-Bytes PICTURE X. Inserted by compiler]
10 FIELD-E COMPUTATIONAL PICTURE S9(6) SYNCHRONIZED.

01 FIELD-L.
as FIELD-M PICTURE X(5).
as FIELD-N PICTURE xx.

[05 Slack-Bytes PICTURE X. Inserted by compiler]
05 FIELD-O.

10 FIELD-P COMPUTATIONAL PICTURE S9(6) SYNCHRONIZED.

Slack bytes may also be added by the compiler when a group item is
defined with an OCCURS clause and contains within it a SYNCHRONIZED data
J~~~ .. ,.;;~~,t.Q ,!!.~,~~.~ ... def ined as COMPUTATIONAL, \;::gQ~F:;g~~~!g~~~~~r';~:';9,~
::r;;Q~Jl.~A~~Q~.~.t::2~. To determine whether slack bytes are to be added. the
following action is taken:

• The compiler calculates the size of the group, including all the
necessary intra-record slack bytes.

• This sum is divided by the largest ~ required by any elementary
item within the group.

• If ~ is equal to zero, no slack bytes are required. If ~ is not
equal to zero, ~ - ~ slack bytes must be added.

Data Description Entry -- Details of Clauses 131

Slack Bytes

The slack bytes are inserted at the end of each occurrence of the
group item containing the OCCURS clause. For example, if a record is
defined as follows:

D

01 WORK-RECORD.
OS WORK-CODE PICTURE X.
OS COMP-TABLE OCCURS 10 TIMES.

10 COMP-TYPE PICTURE X.
[10 Ia-Slack-Bytes PIC XX. Inserted by compiler]
10 COMP-PAY PICTURE S9(4)V99 COMP SYNC.
10 COMP-HRS PICTURE S9(3) COMP SYNC.
10 COMP-NAME PICTURE XCS).

The record will appear in storage as shown in Figure 7.

I I
114-.---First Occurrence of COMP-TABLE-----.. .-{!

w I I
81~ I
y I ~ I la !! I
~ I~! I I o I' 0 I Slack COMP- I
:: U I Bytes COMP-PA y I HOURS I COMP-NAME I

! I I I I

H

D = doubleword boundary
F = fullword boundary
H = halfword boundary

H H H

D

H

Figure 7. Insertion of Intra-occurrence Slack Bytes

In order to align COMP-PAY and COMP-HRS upon their proper boundaries,
the compiler has added two intra-occurrence slack bytes (shown above as
Ia-Slack-Bytes).

However, without fUrther adjustment, the second occurrence of
COMP-TABLE would now begin one byte before a doubleword boundary, and
the alignment of COMP-PAY and COMP-HRS would not be valid for any
occurrence of the table after the first. Therefore, the compiler must
add inter-occurrence slack bytes at the end of the group, as though the
record had been written:

01 WORK-RECORD.
OS WORK-CODE. PICTURE X.
OS COMP-TABLE OCCURS 10 TIMES.

10 COMP-TYPE PICTURE X.
[10 Ia-Slack-Bytes PIC XX. Inserted by compiler]
10 COMP-PAY PICTURE S9(4)V99 COMP SYNC.
10 COMP-HRS PICTURE S9(3) COMP SYNC.
10 COMP-NAME PICTURE xes).

[10 Ie-Slack-Bytes PIC XX. Inserted by compiler]

so that the second (and each succeeding) occurrence of COMP-TABLE begins
one byte beyond a doubleword boundary. The storage layout for the first
occurrences of COMP-TABLE will now appear as shown in Figure 8.

132 Part III -- Data Division

C~:

c'

o

Slack Bytes

Each succeeding occurrence within the table will now begin at the same
relative position as the first.

I
\. FIrst Occurrence of COMP-TABLE -,-, -----_ -----Second Occurrence of COMP-TABLE--.:..---~.I

D

~Iwi o Do.

Y ~ I la
~ Do. Slack o ~ I
~ U I

Bytes COMP-PAY

H

D .. doubleword boundary
F .. fullword boundary
H 0: halfword boundary

H

,
I I

,
,

I I Ie
I COMP-, Slack I

I I HOURS COMP-NAME Bytes I , I I

H H H H

D D

Figure 8. Insertion of Inter-occurrence Slack Bytes

H H

D

, ... ,.Wh~.r~ .. 9X~~tI:RQ~:r.pJ!:p,d,a,t~it~qls.?~Fined as COMPUTATIONAL,
~9~9!~,;[,!9f:\1~71.~.8E:Sq~P'~~'l;':r9~~.:t;.£?i follow an entry containing an OCCURS
DEPENDING'ON 'clause,' slaCk bytes' a.'re added on the basis of the field
occurring the maximum number of times. If the length of this field is
not divisible by the ill required for the data, only certain values of the
data-name that is the object of the DEPENDING ON option will give proper
alignment of the fields. These values are those for which the length of
the data field multiplied by the number of occurrences plus the slack
bytes that have been calculated based on the maximum number of
occurrences is divisible by ~.

For example:

01 FIELD-A.
05 FIELD-B PICTURE 99.
05 FIELD-C PICTURE XX OCCURS 20 TO 99 TIMES

DEPENDING ON FIELD-B.
[OS slack-Bytes PICTURE X. Inserted by compiler]
05 FIELD-D COMPUTATIONAL PICTURE S99 SYNCHRONIZED.

In this example, when references to FIELD-D are required, FIELD-B is
restricted to odd values only.

01 FIELD-A.
05 FIELD-B PICTURE 999.
05 FIELD-C PICTURE XX OCCURS 20 TO 99 TIMES

DEPENDING ON FIELD-B.
[OS Slack-Bytes PICTURE X. Inserted by compiler]
05 FIELD-D COMPUTATIONAL PICTURE S99 SYNCHRONIZED.

In this example all values of FIELD-B give proper references to
FIELD-D.

INTER-RECORD SLACK BYTES: If the file contains blocked logical records
that are to be processed in a bu~t~.r,,~p.q..C;PYQ.t~p.~ .. ::t:'~PPf&1.§., ... S:9~~'~i:li~"'\"
entries defined as COMPUTATION1-\L!.HR~9,£~l]:'+q~~~z:~·~:.B:t'.;F8~~H,£~,£f9~~E~t~'
for which the SYNCHRONIZED clause 'is specified~ the use~ must'~d~ any'
inter-record slack bytes needed for proper alignment.

Data Description Entry -- Details of Clauses 133

D

I
\
I ,
I
I

Slack Bytes

The lengths of all the elementary data
all intra-record slack bytes, are added.
necessary to add four bytes for the count
divided by the highest value of ~ for any
the record.

items in the record, including
For mode V records, it is
field. The total is then
one of the elementary items in

If r(the remainder) is equal to zero, no inter-record slack bytes
are required. If .!:.is not equal to zero, !!! - !: slack bytes are
required. These slack bytes may be specified by writing a level-02
FILLER at the end of the record.

If mode U records are being read backwards, doubleword boundary
alignment of the input/output buffer will be obtained only if the
lengths of the logical records are divisible by eight.

Example: The following example shows the method of calculating both
intra-record and inter-record slack bytes. Consider the following
record description:

01 COMP-RECORD.
05 A-1 PICTURE XeS).
05 A-2 PICTURE X(3).
05 A-3 PICTURE X(3).
05 B-1 PICTURE-S9999 USAGE COMP SYNCHRONIZED.
05 B-2 PICTURE S99999 USAGE COMP SYNCHRONIZED.
05 B-3 PICTURE S9999 USAGE COMP SYNCHRONIZED.

The number of bytes in A-1, A-2, and A-3 total 11. B-1 is a 4-digit
COMPUTATIONAL item and therefore one intra-record slack byte must be
added before B-1. with this byte added, the number of bytes preceding
B-2 total 14. Since B-2 is a COMPUTATIONAL item of five digits in
length, two intra-record slack bytes must be added before it. No slack
bytes are needed before B-3.

The revised record description entry now appears as:

01 COMP-RECORD.
05 A-l PICTURE X(S).
05 A-2 PICTURE X(3).
05 A-3 PICTURE X(3).

[OS Slack-Byte-l PICTURE X. Inserted by compiler]
05 B-1 PICTURE S9999 USAGE COMP SYNCHRONIZED.

[OS Slack-Byte-2 PICTURE XX. Inserted by compiler]
05 B-2 PICTURE S99999 USAGE COMP SYNCHRONIZED.
05 B-3 PICTURE S9999 USAGE COMP SYNCHRONIZED.

There is a total of 22 bytes in COMP-RECORD, but from the rules given
in the preceding discussion, it appears that ~ = 4 and E = 2.
Therefore, to attain proper alignment for blocked records, the user must
add two inter-record slack bytes at the end of the record.

The final record description entry appears as:

01 COMP-RECORD.
05 A-1 PICTURE XeS).
05 A-2 PICTURE X(3).
05 A-3 PICTURE X(3).

[OS Slack-Byte-l PICTURE X. Inserted by compiler]
05 B-1 PICTURE S9999 USAGE COMP SYNCHRONIZED.

[OS Slack-Byte-2 PICTURE XX. Inserted by compiler]
05 B-2 PICTURE S99999 USAGE COMP SYNCHRONIZED.
05 B-3 PICTURE S9999 USAGE COMP SYNCHRONIZED.
05 FILLER PICTURE XX. [Inter-record slack bytes added by user]

134 Part III -- Data Division

c

o

USAGE Clause

The USAGE clause specifies the manner in which a data item is
re prese nted in stoI:'aqe.

I

]

I-­
I
I
I
1
1
1 r !!.~AG] IS J
J
I
1
J
I
I
I

.FoI:'ma t 1

DISPLAY
COMPUTATIONAL
~Ql1g-------

,
1

• 1
I
J
I
I
I
J
1
I
I
I
I
I ____ --I

Format 2 (Version 3 and Version 4)

The USAGE clause can be specified at any level of data description.
However p if the USAGE clausa is wI:'itten at a group level, it applies to
each elementary item in the group. The usage of an elementary item
cannot contradict the usaqe Qf a group to which an elementaI:'Y item
belongs.

, ,

This clause specifies the manner in which a data item is represented
I in storage. However, the specifications for some statements in the

Procedure Division may restrict the USAGE clause of the operand referred
to.

If the USAGE clause is not specified for an elementary item, or for
anY' qroup to which the item belongs, it is assumed that the usage is
DISPI,A Y.

Note: ASCII considerations for the USAGE Clause are given in
Appendix E.

Data Description Entry -- Details of Clauses 135

USAGE Clause

The DISPLAY option can be explicit or implicit. It specifies that
the data item is stored in character form, one character per eight-bit
byte. This corresponds to the form in which information is represented
for initial card input or for final printed or punched output. USAGE IS
DISPLAY is valid for the following types of items:

• alphabetic

• alphanumeric

• alphanumeric edited

• numeric edited

• external decimal

Alphabetic, alphanumeric, alphanumeric edited, and numeric edited
items are discussed in the description of the PICTURE clause.

External Decimal Items: These items are sometimes referred to as zoned
decimal-rteiS:-~ac~diqit of a number is represented by a single byte.
The four high-order bits of each byte are zone bits; the four high-order
bi ts of the low-order byte represen t the sign of the item. The four
low-order bits of each byte contain the value of the digit. When
external decimal items are used for computations, the compiler performs
the necessary conversions.

The maximum length of an external decimal item is 18 digits.

Examples of external decimal items and their internal representation
are shown in Table 9.

136 Part III -- Data Division

C'"
/ -. ..-'

c

o

USAGE Clause

A. COMl?UTA~I ONAL ,[::qQ~~Y!~~!.Q~~~,=:~'~::,:,¢Q~p~A'l?~Q~?\;L:~;",',,¢:9~~Q~~rr;~2~,~~:E~,:;:
r;j?;~;'£'Q~,9~?~}g~;r;J~~~=,H~:jitem represents a value to be used in arithmetic
operations and must be numeric. If the USAGE of any group item is
described with any of these options, it is the elementary items within
this group which have that USAGE. The group item itself cannot be used
in computations.

COMPUTATIQNAL~PTION: This option is specified for binary data items.
Such items have a decimal equivalent consisting of the decimal digits 0
through 9, plus a sign.

The amount of storage occupied by a binary item depends on the number
of decimal digits defined in its PICTURE clause:

Digits in PICTURE Claus~
1 through 4
5 through 9
10 through 18

StQrage occupied
2 bytes (halfword)
4 bytes (fullword)
8 bytes (2 fullwords

not necessarily
a doubleword)

The leftmost bit of the storage area is the operational sign.

The PICTURE of a COMPUTATIONAL item may contain only 9's, the
operational sign character S, the implied decimal point V, and one or
more P's.

Note: The COMPUTATIONAL option is system dependent and normally is
assigned to representations that yield the greatest efficiency when
performing arithmetic operations on that system; for this compiler, the
COMPUTATIONAL option is binary.

An example of a binary item is shown in Table 9.

Data Description Entry -- Details of Clauses 137

USAGE Clause

,f"'" '
I

,.' "

USAGE INDEX is discussed in the cnapter on Table Handling.

'C~,
: ../

138 Part III -- Data Division

(----,
~J

~.

~.)

o

USAGE Clause

Table 9. Internal Representation of Numeric Items (Part 1 of 2)
r----------------T---------T---------------T---------------------------,
I Item I Value I Description I Internal Representation* I
~-_-M---_----__ --+---------+---------------+----------_________________ ~
External Decimal -1234 I DISPLAY IZ11Z21Z31F41

I PICTURE 9999 L __ ~ __ ~ __ ~ __ J

I
I byte
I
DISPLAY IZ11Z21Z31D41

PICTURE S9999 L __ ~ __ ~ __ ~ __ J

I

byte

Note that, internally,
the D4, which represents
-4, is the same bit
configuration as the
EBCDIC character M.

(Version3&d H) I ~
IDISPLAY ,'.'. ',i I I

1?ICTt:ffiE-··.,.'S9999I I
SIGN TRAILING I I

1..SEl?AR1\Tr;. ' .1 I
1/ \>.' , - "'.,» ,I I
\ (Version 3 " •. ~.'.'.4JI I
IP ISP LAX I I
1>- PICIJ:\URE , S99991 I r . SIGN LEADING ' I I
I I byte I
I I I
I I Note that internal.ly the I
r- I Dl~¥lr.:i?h :represents 71~: I
I I ,isthesClp:tebit I
\; I configurationasthe \

I r:):_i ... , .. ,··i:; .. '.',.· ... ·iii>.·'··.',·.··.··i"i .. ·,·"I' ••• ,.,.·,.,.r;13q1)+S;,,9.l}a . .r:.~c~~i ". >,0: •• < •••••• ' ..• ,.,'" '., •. ',. " •• ->",'1 ~ ________________ ~ _________ .L_ ... ,_, __ '_-... ' __ ' ______ J. ______ , __ ' _______ , ___ ' __ ' __ ' ____ .~

I*Codes used in this column are as follows:
I Z = zone, equivalent to hexadecimal F, bit configuration 1111
\
I
\

I
'I
I
I
I
I
I
I
I

Hexadecimal numbers and their equivalent meanings are:
F = non-printing plus sign (treated as an absolute value)
c internal equivalent of plus sign, bit configureation 1100
D = internal equivalent of minus sign, bit configuration 1101

s = sign position of a numeric field; internally,
1 in this position means the number is negative
o in this position means the number is positive

b = a blank

I 60 = minus sign, bit configuration 0110 0000 L~ __ _

Data Description Entry -- Details of Clauses 139

USAGE Clause

Table 9. Internal Representation of Numeric Items (Part 2 of 2)
r----------------T---------T---------------T---------------------------,
I Item I Value I Description I Internal Representation* I
~----------------+-------~-+---------------+---------------------------~
Binary 1 -1234 1 COMPUTATIONAL 1 111111101110 01 0 111101 I I 1 PICTURE 899991 Lf---.L----~ I

1 I I S byte I
I I 1 I
1 I 1 Note that, internally, 1
1 I I negative binary numbers 1
I I 1 appear in two's I
1 I 1 complement form. 1

*Codes used in this column are as follows:
Z = zone, equivalent to hexadecimal F, bit configuration 1111

Hexadecimal numbers and their equivalent meanings are:
F = non-printing plus sign (treated as an absolute value)
C = internal equivalent of plus sign, bit configuration 1100
D = internal equivalent of minus sign, bit configuration 1101

S = sign position of a numeric field; internally,
1 in this position means the number is negative
o in this position means the number is positive

b= a blank

140 Part III -- Data Division

c'

o

VALUE Clause

VALUE Clause

The VALUE clause is used to define the initial value of a
Working-Storage item or the value associated with a condition-name.

There are two formats of the VALUE clause: r--,
I Format 1 J
r--~
I 1
I VALUE IS literal]
I] L __ J

r--,
I Format 2 I
~--~
I 1
II {VALUE IS J 1] literal-1 [THRU literal-21
I VALUES ARE)
I 1
I [literal-3 [TIill!! literal-411...)
I 1 L __ J

The VALUE clause must not be stated for any item whose size,
explicit or implicit, is variable.

A figurative constant may be substituted wherever a literal is
specified.

Rules governing the use of the VALUE clause differ with the
particular section of the Data Division in which it is specified.

1. In the File Section?:Q.g~J:u~.J:..;t·t:l~<:t9~~~9..!;ion,,;~~~y~~uE clause must
~e '. u .. ~~ .. Clo~!.~ .. ~El ... c()!'lCl;t~;t()~:~<:t~rl~~.!'l:t:;:z:_~~.~... ...~()Y?~y~;r'.~9~s ~()~Ef;1.~#·:
Vl.;t~·.l!· •• ····~S9~pt..tliey~I.U~c:l:el.:tr.(a •. ·.·.· •. · .. ~~···.···?'Sli~~.·.:t:;t:l.r Section and Li:nJtCl,ge,\,
§~.£E~2.P.L:.~AE:E;t~.~ .. ·., .•.••.•.. ~.!!g:!:.F.~~.·~ ..• ·.:~!; .••. ~.§ .. :·.2.~.§.P~§.~,

Program Product Information (Version 4)

~qf5i~~~f~~'~.;~/:~.~·:~~~98m~~p:~.R~~~§A~ s~ction··.········th~tVALUEiE[aus~
~.li~~+~:;9~i:tl§e 8~fy.·i·~n<:on~iti()n~ame
Pc~7Cl· •• ·.·.·.·.~it9;t::9~.·.· i· .• ·nt:r:i·es!fr;li~Y~~~.~
.clause:'anditrea .. asi • .comments""
~~:;:: .. ",":,,::;:;.:,.:; :;: .: •.. ::-.:~,:~:»~;.:.;:.;::::~:..:~<::..;;;. .. :.:, :'., :: ;:;.:~' ... ".... . ,.~,. :. ·.,:.::..=<~::.:-::::,x:,:~:, ,:;::::,::~~;..;:::;.,::;::.::;}~ :~.::. :.:::::~;:':'" '.:~.

2. In the working-Storage Section, the VALUE clause must be used in
condition-name entries. and it may also be used to specify the
initial value of any data item. It causes the item to assume the
specified value at the start of execution of the object program.
If the VALUE clause is not used in an item's description, the
initial value is unpredictable.

3. In the Report Section, the VALUE clause causes the report data
item to assume the specified value each time its report group is
presented. This clause may be used only at an elementary level in
the Report Section. The Report Section is discussed in detail in
the "Report Writer" chapter.

The VALUE clause must not be specified in a data description entry
that contains an OCCURS clause or in an entry that is subordinate to an
entry containing an OCCURS clause. This rule does not apply to
condition-name entries.

Within a given record description, the VALUE clause must not be
specified for any item whose size is variable (the size of an item is
variable if the item itself, or any item subordinate to it, contains

Data Description Entry -- Details of Clauses 141

VALUE Clause

an OCCURS DEPENDING ON clause). In addition, the VALUE clause must not
be used in a data description entry that is subsequent to a data
description entry which contains an OCCURS clause with a DEPENDING
ON phrase.

The VALUE clause must not be specified in a data description entry
that contains a REDEFINES clause or in an entry that is subordinate to
an entry containing a REDEFINES clause. This rule does not apply to
condition-name entries.

If the VALUE clause is used in an entry at the group level, the
literal must be a figurative constant or a nonnumeric literal, and the
group area is initialized without consideration for the USAGE of the
individual elementary or group items contained within this group. The
VALUE clause then cannot be specified at subordinate levels within this
group.

The VALUE clause cannot be specified for a group containing items
with descriptions including JUSTIFIED, SYNCHRONIZED, or USAGE (other
than USAGE IS DISPLAY).

The following rules apply:

1. If the item is nUmeric, all literals in the VALUE clause must be
numeric literals. If the literal defines the value of a
Working-Storage item, the literal is aligned according to the
rules for numeric moves, except that the literal must not have a
value that would require truncation of nonzero digits ..

2. If the item is alphabetic or alphanumeric (elementary or group),
all literals in the VALUE clause must be nonnumeric literals. The
literal is aligned according to the alignment rules (see
"JUSTIFIED Clause"), except that the number of characters in the
literal must not exceed the size of the item.

3. All numeric literals in a VALUE clause of an item must have a
value that is within.the range of values indicateCi by the PICTURE
clause for that item. For example, for PICTURE 99PPP, the literal
must be within the range 1000 through 99000 or zero. For PICTURE
PPP99, the literal must be within the range .00000 through .00099 ..

4. The function of the editing characte~s in a PICTURE clause is
ignored in determining the initial appearance of the item
descri'bed. However, editing characters are included in
determining the size of the item.

5. A maximum of 65,535 bytes may be initialized by means of a single
VALUE clause.

Format 1 of the VALUE clause must not conflict with other clauses
either in the data descriptio~ of the item or in the data descriptions
within the hierarchy of this term.

Format 2 of the VALUE clause is used to describe a condition-name.
Each_condition-name requires a separate level-88 entry. A Format 2
VALUE clause associates a value, values, (and/or range(s) of values
with the condition-name.

In a condition-name entry, the VALUE clause is required and is 'the
only clause permitted in the entry. A condition-name is a name
assi'gned by the user to the values a data item may assume during object
program execution. A condition-name must be formed according to the
rules for data-name formation. The condition-name entries for a

142 Part III -- Data Division

c

o

VALUE Clause

particular conditional variable must follow the conditional variable.
Hence, a level-88 entry must always be preceded either by the entry for
the conditional variable or by another level-88 entry (in the case of
several consecutive condition-names pertaining to a given item).

The THRU option assigns a range of values to a condition-name.
Wherever used, litera!-l must be less than !!.:!:§£~!:.£, !!.:!:££~!:.~ less
than literal-4, etc.

The type of literal in a condition-name entry must be consistent
with the data type of the conditional variable. In the following
example, CITY-COUNTY-INFO, COUNTY-NO, and CITY are conditional
variables; the associated condition-names immediately follow the
level-number 88. The PICTURE associated with COUNTY-NO limits the
condition-name value to a 2-digit numeric literal. The PICTURE
associated with CITY limits the condition-name value to a 3-character
nonnumeric literal. Any values for the condition-names associated with
CITY-COUNTY-INFO cannot exceed 5 characters, and the literal (since
this is a group item) must be nonnumeric:

05

05

CITY-COUNTY-INFO.
88 BRONX
88 BROOKLYN
88 MANHATTAN
88 QUEENS
88 STATEN-ISLAND

10 COUNTY-NO
88 DUTCHESS
88 KINGS
88 NEW-YORK
88 RICHMOND

10 CITY
88 BUFFALO
88 NEW-YORK-CITY
88 POUGHKEEPSIE

POPULATION •••

VALUE "03NYC".
VALUE "24NYC".
VALUE II 31NYC".
VALUE "41NYC".
VALUE "43NYC".

PICTURE 99.
VALUE 14.
VALUE 24.
VALUE 31.
VALUE 43.

PICTURE X(3).
VALUE "BUF".
VALUE "NYC".

. VALUE "POK".

Every condition-name pertains to an item in such a way that the
condition-name may be qualified by the name of the item and the item's
qualifiers. The use of condition-names in conditions is described in
"Conditions."

A condition-name may pertain to an item (a conditional variable)
requiring subscripts. In this case, the condition-name, when written
in the Procedure Division, must be subscripted according to the
requirements of the associated conditional variable.

A condition-name can be associated with any elementary or group item
except the following:

1. A level-66 item.

2. A group containing items with descriptions which include
JUSTIFIED, SYNCHRONIZED, or USAGE other than DISPLAY.

3. An index data item (see "Table Handling").

Data Description Entry -- Details of Clauses 143

RENAMES Clause

RENAMES Clause

The RENAMES clause permits alternate, possibly overlapping,
groupings of elementary data.

r--,
I Format I
~--~
I I
I 66 data-name-1 RE~AMES data-name-2 [~ggQ data-name-3] I
I I L __ J

One or more RENAMES entries can be written for a logical record.

All RENAMES entries associated with a given logical record must
immediately follow its last data description entry.

Data-name-2 and gat~=Q~~~=l must be the names of elementary items or
groups of elementary items in the associated logical record and cannot
be the same data-name. Data-name-3 cannot be subordinate to
data-name-2.

When Q~t~name-3 is not specified, ~~t~=~~~~=~ can be either a group
item or an elementary item. When data-name-2 is a group item,
data-name-1 is treated as a group item, and when data-name-2 is an
elementary item, data-name-1 is treated as an elementary item.

When dat~=g~me-3 is specified, £~t~=g~~~=l is a group item that
includes all elementary items:

1. Starting with data-name-2 (if it is an elementary item); or
starting with the first elementary i~~m within data-name-2 (if it
is a group item), and

2. Ending with data-name-3 (if it is an elementary item); or ending
with the last elementary item within data-name-3 (if it is a group
item) •

A level-66 entry cannot rename another level-66 entry nor can it
rename a level-77, level-SS, or level-01 entry.

Data-name-1 cannot be used as a qualifier and can be qualified only
by the names of the level-01 or FD entries.

Program Product Information (Version 4)

Both dat~=game-2 and Q~t~=g~~e-3 may be qualified.

Neither ~~t~=gam~-2 nor £~t~=~-3 may have an OCCURS clause in its
data description entry nor may either of them be subordinate to an item
that has an OCCURS clause in its data description entry.

Data-n~me=~ must precede £~ta-n~~l in the record description;
after any associated redefinition, the beginning point of the area
described by data-name-3 must logically follow the beginning point of
the area described by data-name-2.

144 Part III -- Data Division

c

C'" \
I

---/

o

RENAMES Clause

For example, the following Working-Storage record is incorrect:

01 ERR-REC.
as GROUP-A.

10 FI ELD-1A.
15 ITEM-1A PICTURE xxxx.
15 ITEM-2A PICTURE xxx.

10 FIELD-2A.
15 ITEM-3A PICTURE xxx.
15 ITEM-4A PICTURE xxx.

as GROUP-B REDEFINES GROUP-A.
10 FIELD-lB.

15 ITEM-1B PICTURE xx.
15 ITEt-1-2B PICTURE xxx.
15 ITEM-3B PICTURE xx.

10 FIELD-2B.
15 ITEM-4B PICTURE xx.
15 ITEM-5B PICTURE xx.
15 ITEM-6B PICTURE xx.

66 NEW-ERR-REC- REN~iES ITEM-3A THRU ITEM-2B.

Although ITEM-3A precedes ITEM-2B in the record description, ITEM-2B
logically precedes ITEM-3A in storage. Thus this example is incorrect.

The following shows the corrected Working-Storage record:

01 CORRECTED-RECORD.
as GROUP-A.

10 FIELD-1A.
15 ITEM-1A PICTURE xx.
15 ITEM-2A PICTURE xxx.
15 ITEM-3A PICTURE xx.

10 FIELD-2A.
15 ITEM-4A PICTURE xx.
15 ITEM-SA PICTURE xx.
15 ITEM-6A PICTURE xx.

as GROUP-B REDEFINES GROUP-A.
10 FIELD-lB.

15 ITEM-1B PICTURE xxxx.
15 ITEM-2B PICTURE xxx.

10 FIELD-2B.
15 ITEM-3B PICTURE xxx.
15 ITEM-4B PICTURE xxx.

66 NEW-REC RENAMES ITEM-2A THRU ITEM-3B.

In this example ITEM-2A precedes ITEM-3B both in the record
description and logically in storage.

Data Description Entry -~ Details of Clauses 145

RENAMES Clause

The following example shows how the RENAMES clause might be used in
an actual program:

01 OUT-REC.
05 FIELD-X.

10 SUMMARY-GROUPX.
15 FILE-l PICTURE X.
15 FILE-2 PICTURE X.
15 FILE-3 PICTURE X.

05 FIELD-Y.
10 SUMMARY-GROUPY.

15 FILE-l PICTURE X
15 FILE-2 PICTURE X.
15 FILE-3 PICTURE X.

05 FIELD-Z.
10 SUMMARY-GROUPZ.

15 FILE-l PICTURE X.
15 FILE-2 PICTURE X.
15 FILE-3 PICTURE X.

66 SUM-X RENAMES FIELD-X.
66 SUM-XY RENAMES FIELD-X THRU FIELD-Y.
66 SUM-XYZ. RENAMES FIELD-X THRU FIELD-Z.

In the Procedure Division, the programmer may wish, for example, to
do a complete tally of files in each field of the foregoing record. If
all active files are represented by an A and all inactive fil~s are
represented by an I, the statement

EXAMINE SUM-XYZ TALLYING ALL "A"

would accomplish this purpose. The two additional RENAMES entries
<SUM-X and SUM-XY) allow a less inclusive tally, if desired. (The
EXAMINE statement is discussed in "Procedure Division.")

146 Part III -- Data Division

', __ ,.I'

c

c
• ORGANIZATION OF THE PROCEDURE DIVISION

• ARITHMETIC EXPRESSIONS

• CONDITIONS

• CONDITIONAL STATEMENTS

• DECLARATIVES

• ARITHMETIC STATEMENTS

• PROCEDURE BRANCHING STATEMENTS

• DATA-MANIPULATION STATEMENTS

• INPUT/OUTPUT STATEMENTS

• COMPILER-DIRECTING STATEMENTS

0'
Part IV -- Procedure Division 147

\ - .-'

c

c

o

Procedure Division--Description

The Procedure Division contains the specific instructions for
solving a data processing problem. COBOL instructions are written in
statements, which may be combined to form sentences. Groups of
sentences may form paragraphs, and paragraphs may be combined to form
sections.

The Procedure Division must beg.iIl .. W~:tll, .. :tJ'l~,:r~9:~~.;r .. :!?gQF;E:I)lT.~~.,[):I:.Y.~§:I:.91~.,
~.ol!?l.o1ec1.~xa.J)~~~?c1..~~c1. ~.~f>Clc.~ l~I1.~ess,.suRPl:'~9'r(lmLfnk.a.9'~ .. · .• i~ .•.... uf:)~ .. c1. •. <I.I1.~
f~ni~"·:p.~!Se'{>'l::lie l?r()~.~ .. ~.tire"·.~+Y.rsJ9'!lll.eCl.<:l~r.· >·~.~ ••.....•.• a · •.. ca,:tled···· •.. Pf09:r:Clt •... may · •.•.• · •• ·i····.· · ... ·.· .. ·.' J
t oppi6~allX.· g9n~(l!!l: .. "9:,"JI§!Ng.,,.£~qy:B..~.,: .. I?;r,§9.~g,;Rg .. ".:!:rh.~\ .. I?~.:t:;~.gc1..,; ~ .. ~~~ ~§~QE!;Qg;t;?m.l
\.~!.!!~e5l~.~J .• ,!.· !

The Procedure Division header is followed, optionally, by
Declarative Sections, which are in turn followed by procedures, each
made up of statements, sentences, paragraphs, and/or sections, in a
syntactically valid format. The end of the Procedure Division (and the
physical end of the program) is that physical position in a COBOL
source program after which no further procedures appear.

The statement is the basic unit of the Procedure Division. A
statement is a syntactically valid combination of words and symbols
beginning with a COBOL verb. There are three types of statements:
condition~!-~tate~ent~ containing conditional expressions (that is,
tests for a given condition), i~perative statements consisting of an
imperative verb and its operands, and £Qilleil~r-di~ting stateme~~~
consisting of a compiler-directing verb and its operands.

A sentence is composed of one or more ~'!=:Cl;~~~;I1.$s,.~ .•... ';t'!l~.~tatements
may optionally be separated by semicolons i9;.~·~:ti~·:';~<?:!;.S!;;,;t~.g~~·i A sentence
must be terminated by a period followed by a space.

several sentences that convey one idea or procedure may be grouped
to form a ~ragraph. A paragraph must begin with a paragraph-name
followed by a period. A paragraph may be composed of one or more
successive sentences. A paragraph ends immediately before the next
paragraph-name or section-name, at the end of the Procedure Division,
or, in the Declarative portion, at the key words END DECLARATIVES.

One or more paragraphs form a ~~£~iQ~. A section must begin with a
section header (section-name followed by the word SECTION, followed by
a period; if program segmentation is desired, a space and a priority
number followed by a period may be inserted after the word SECTION).
The general term procedure-name may refer to both paragraph-names and
section-names.

The Procedure Division may contain both declaratives and procedures.

Declar~tiy~~ction~ must be grouped at the beginning of the
Procedure Division, preceded by the key word DECLARATIVES followed by a
period and a space. Declarative sections are concluded by the key
words END DECLARATIVES followed by a period and a space. (For a more
complete discussion of declarative sections, see "Declaratives.")

A pro£~~~re is composed of a paragraph or group of successive
paragraphs, or a section or group of successive sections within the
Procedure Division. Paragraphs need not be grouped into sections.

If se£~io~~ are used within the Procedure Division, a section header
should immediately follow the Procedure Division header, except when a
declarative section is included, in which cas~ the section header
s,hould imme~~~:t;~!.X ~8~low END .. D~C:LARATIVES. fl"'>'>"" ~:~Ig;.' , ,., 4:'~'§$P.g'at';t" . ,~ .

.. ;~~.::::.:.:;:,;:.:,:::;;.:.:,:;::::;.;.:.;.: ::;.:~:;::::::.,::::::.;.:, ,) <;::·:c;.t~/:;·)~j

Organization of the Procedure Division 149

Procedure Division -- structure

A section ends immediately before the next section-name or at the
end of the Procedure Division, or, in the Declarative portion of the
Procedure Division, immediately before the next section-name or at the
words END DECLARATIVES, where END must appear in Area A.

If program segmentation is used, the programmer must divide the
entire Procedure Division into named sections. Program segmentation is
discussed in "Segmentation."

Execution begins with the first statement of the Procedure Division,
excluding declaratives. Statements are then executed in the order in
which they are presented for compilation, except where the rules in
this chapter indicate some other order.

PROCED!:!RE DIY!SION

[[DECL~RA~IVES.

{section-name SECTION. USE Sentence.

{paragraph-name. {sentence} ••• } ••• } •••

END DECLARATIVES.]

{section-name SEC~!ON [priority].]

{paragraph-name. {sentence} ••• } ••• } •••

There are three categories of statements used in COBOL: conditional
statements, imperative statements, and compiler-directing statements.

A conditional statement is a statement containing a condition that
is tested (see "Conditions") to determine which of the alternate paths
of program flow is to be taken.

An imp~~atiY§ statem~nt specifies that an unconditional action is to
be taken by an object program. An imperative statement may also
consist of a series of imperative statements.

A c0mP!l~~=girectig~~~~~gillgnt directs the compiler to take certain
actions at compile time.

150 Part IV -- Procedure Division

r. ', .. /

c

o

statement Categories

CONDITIONAL STATEMENTS

COBOL verbs used in conditional statements are:

IF
IN~

ADD I COt~PUTE

SUBTRACT (ON SIZE ERROR)
MULTIPLY
DIVIDE
GO TO (DEPENDING ON)
READ }
SEARCH (AT END)
RETURN
WRITE (AT END-OF-PAGE)

l~j~~gl { (INVALID KEY)

li.,~;lli)
PERFORM (UNTIL)
SEARCH (WHEN)
'~I!~II;:!!::::;:::::::i::;::::ili'li;:,:;':::::;;::::i'::i::';:~,;§liB,~;§!,l:l

The options,in parentheses cause otherwise imperative verbs to
be treated as conditionals at execution time. A discussion of these
options is included as part of the descriptipn of the associated
imperative statement.

IMPERATIVE STATEMENTS

COBOL verbs used in imperative statements can be grouped into the
following categories and subcategories:

A. DECL~g~1:IVES
USE

1. ~rithmetic
ADD
COMPUTE
DIVIDE
MULTIPLY
SUBTRACT

2. ~~Q£~gure-Br~!!chi!!g
GO TO
ALTER
PERFORM
STOP
EXIT

Organization of the Procedure Division 151

Statement Categories

3. Data-Manipulation
MOVE
EXAMINE
:~~~§EQ~M,I

Pro~~product Information (Version 4)

4. !!!2..!!t/Output
OPEN
l'$'f~~l
SEEK
READ
WRITE
[~iIffl;rl]m!
ACCEPT
DISPLAY
CLOSE

5. B~ort Writer
, GENERATE

INITIATE
TERMINATE

6. ~~Q!~g~nd!i!!g
SEARCH
SET

7. §.ort

8.

SORT
RETURN
RELEASE

Note:
statements are

Writer, Table Handling, and Sort
in separate chapters.

152 Part IV -- Procedure Division

c

o

Statement categories

Program Product Information (Version 4)
Q

COMPILER-DIRECTING STATEMENTS

COBOL verbs used in compiler-directing statements are:

COl?,Y
ENTER

, ... \J~9'1;'~."w.
t\Q~~q(;)t
~.;;,-";';;~,~:.: ... ;.~~~.i:i:;;.il;.-~i

"~:~~\~'':~'~O~~~~I! "'a[~~~~~~d:l'i~:~;:)~'§~*~~~;[:;l[g~~'iji'~~.:'f#~p~~:~·'
X statemetit.~9-.:~.~;:;~r~~~.~.·."SR~t~.<?;·~~~"iR()Jl.r

:~;~~~.,.~ , !!·.·····.·· .. ~~.~~~.~.~.·{ ;,.99H~.9 .. ~ •. ·.>~;.Qgx:·~.m.·.··.,~~l?;r:.~ .. r ... ' ail"
/.so:be::¢ti!isidered': q()mP.i;t~x;tai:re¢:t:i1l9 •. 9.ta;tenten:t:~
t:;\·:::::;'<:>;<;j;:~;::;';:;:;"~:;;;;::~::~:,:.ii .~;':::::;:.:.:~:,::~~:;;;: :~.:::::~:;:;;:dh;'::::NL~::<.:::.i;;..lA:::b:<.;~':j+j::~ ~~:~<:.:,::;;",:::::<~~:.,';".;;:;:.~~:,:~';:~:~':!:~:.::~.::;(~,>:~}~:~~~ ::,~j~~"';;';;i';':;"~;;<';:;:':"~:::::::~':':::"~':~~';:~.,:" ... ~,.~.: },':·;t:,::;:: ;~;~: ,:::·:::·~:.:,~:;:.;{:,;;;:i::.~~.;:; :.:i.:~:A:;.:::;..:;::::::: .::: .. :~.~

Organization of the Procedure Division 153

Arithmetic Operators

ARITHMETIC EXPRESSIONS

Arithmetic expressions are used as operands of certain conditional
and arithmetic statements.

An arithmetic expression may consist of any of the following:

1. An identifier described as a numeric elementary item

2. A numeric literal

3. Identifiers and literals, as defined in items 1 and 2, separated
by arithmetic operators

4. Two arithmetic expressions, as defined in items 1, 2, and/or 3,
separated by an arithmetic operator

5. An arithmetic expression, as defined in items 1, 2, 3, and/or 4,
enclosed in parentheses

Any arithmetic expression may be preceded by unary -

ARITHMETIC OPERATORS

There are five arithmetic operators that may be used in arithmetic
expressions. Each is represented by a specific character or character
combination that must be preceded by a space and followed by

.~8.!.~~;~~;.~ .. I~i.~:~;~~~~;;;.~;~.~ ,~U~'!;i}X~~! ~~'e~~~I[~~~,,,r:~¥" a ,,~.p~.ce
jf:.lie .•. ;ijriarY;Jop~r~'torit()pe:" om:it
~'~:' ':: ,:.: ,:: ::. '.::~ ;'::.: ;:. ,',: .:' :,:.::,::.::} :>.' :.,:::. ::::::'::: ,'\::.,,: ; .. ", :::.:::": :?'. ::;,: ',.:=: :,::',:: : .. :: .. :: \ : .. ,: ",/::: ":;, \,:. :.;':~.:: :;'): ':: '.'= ::': :.l~::!::;·,;:.f> .. ; ,,;,',

Arith~gt~~Q~g~ator
+

*
/

**

~gan~!!g
addition
subtraction
multiplication
division
exponentiation

Parentheses may be used in arithmetic expressions to specify the
order in which elements are to be evaluated.

Expressions within parentheses are evaluated first. When
expressions are contained within a nest of parentheses, evaluation
proceeds from the least inclusive to the most inclusive set.

When parentheses are not used, or parenthesized expressions are at
the same level of inclusiveness, the following hierarchical order is
implied:

1. unary -

2. **
3. * and /

4. + and -

When the order of consecutive operations on the same hierarchical
level is not completely specified by parentheses, the order of
operation is from left to right.

154 Part IV -- Procedure Division

c'

c

o

Arith~~tic Operators

Table 10 shows permissible symbol pairs~ A symbol ~air in an
arithmetic expression is the oCQurrence of two symbols that appear in
sequence.

Table 10. Permissible Arithmetic Symbol rairs
----------------T---------~--T------------T7:·;~~·~}7:,~.:~~~~,~,:,s::'7;~T-- ---,..T---~~~~,

I Second I Variable I * / ** + - I \,:i;\~(ilX;y,:/;h,,1 I (I) I
I Symbol I (identifie1= I l'Uijary-",::;:o",J I I I
I I or literal) I I I I I
I I I I I I I
I First I I I I I I
I Symbol I I I I I I
~--------------- -------~----+------------+---~-~~----+----~--+-------i
I Variable I I p I I I p I
I (identifier I I I I I I
I or literal) I I I I I
~----------------+------------f------------f-----------+-~---~-+-~-~---~
I * / ** + - I p I - I pip I - I
h::?,?,7T.zP,:::s:::-:::7·T----+------------+.;..-------:-----+-----------+-....... ----+--... "':'---~
I).'llAa.ry,::,t, ()r'! I I I I I I
I ""''''''iinar}t''';:'''''' I p I I I p I I
~----------------+------------+---------.... --+-----------+-------+-------i
I (I p I I pip I I
~----------------+------------f---------~--+------~----+-------+.;..~-----~
I) I I p I I I p I
~----------------~------------~--~---------~-----------~-~--~--~---~-"':'-~ I p indicates a permissible pairing I
I - indicates that the pairing ~s not permitted I
L _________________________ ~~-~---~~-_---~--_- --_----~_~~-~ _______ ~_~~~J

~J'lT.a:t"~'£,hmetic expression may begin only with a left parenthesi9 • a
~~fyt"'~j unary -, or a variable, and may end only .with a rignt
'parenthesis or a variable.

There must be a one-to-one correspondence between left and right
parentheses of an arithmetic expression.

Arithmetic ~xpreqsions 155

Test Conditions

CONDITIONS

A condition causes the object program to select between alternate
paths of control depending on the truth value of a test. Conditions
are used in IF, PERFORM, and SEARCH statements.

A condition is one of the following:

• Class condition

• Condition-name condition

• Relation condition

• Sign condition

Program Product Information (Version 4)

In addition, there are two constructions that affect the evaluation
of conditions. These are:

1. (condition)

parentheses may be used to group conditions (see "Compound
Conditions").

2. NOT condition

The construction -- NOT condition -- (where condition is one of
the four conditions listed above> is not permitted if the
condition itself contains a NOT.

conditions may be combined through the use of logical operators to
form compound conditions (for a full discussion, see "Compound
Conditions").

A test condition is an expression that, taken as a whole, may be
either true or false, depending on the circumstances existing when the
expression is evaluated.

There are four types of simple conditions which, when preceded by
the word IF, constitute one of the four types of tests: class test,
condition-name test, relation test, and sign test.

156 Part IV -- Procedure Division

\, .-'

c

(

I,

_ ,./

o

Class Condition

The construction -- NO! condition -- may be used in any simple test
condition to make the relation specify the opposite of what it would
express without the word NOT. For example, NOT (AGE GREATER THAN 21)
is the opposite of AGE GREATER THAN 21.

Each of the previously mentioned tests, when used within the IF
statement, constitutes a conditional statement (see "Conditional
Statements").

The class test determines whether data is alphabetic or numeric.

r--,
I Format I
~--1
I I
II { NUMERIC } II identifier IS [NOT]
I ~b~HABETIC I
I I L __ J

T1;e. identifier being tes:t:;~~,,'~o~~:t=:,f,?~,.9:!:,~~;Je~~':"!!.gEJici tly or
explJ.cJ.tly as USAGE DISPLAY,2E,q§:?2:~!t:COMPUT~TIONAL~3~

A numeric data item consists of the digits 0 through 9, with or
without an operational sign.

The identifier being tested is determined to be numeric only if the
contents consist of any combination of the digits 0 through 9. If the
PICTURE of the identifier being tested does not contain an operational
sign, the identifier being tested is determined to be numeric only if
the contents are numeric and an operational sign of hexadecimal C or D
is not present. If its PICTURE does contain an operational sign, the
identifier being tested is determined to be numeric only if the contents
are numeric and a valid operational sign is present; in this case,
valid operational signs are hexadecimal F, C, and D.

The NUMERIC test cannot be used with an ~g~gt~f!~~ described as
alphabetic.

An alphabetic data item consists of the space character and the
characters A through Z.

The idg~t~fie~ being tested is determined to be alphabetic only if
the contents consist of any combination of the alphabetic characters A
through Z and the space.

The ALPHABETIC test cannot be used with an identifier described as
numeric.

Conditions 157

Condition-name Condition

Table 11 shows valid forms of the class test.

Table 11. Valid Forms of the Class Test
r--------------------T---,
IType of Identifier I Valid Forms of the Class Test I
~--------------------+----------------------T--------------------------~
I Alphabetic I ALPHABETIC I NOT ALPHABETIC I
~--------------------+----------------------+--------------------------~
I Alphanumeric, I ALPHABETIC I NOT ALPHABETIC I
IAlphanumeric Edited I NUMERIC I NOT NUMERIC I

~--------------------+----------------------+--------------------------~
I§.~.~.~;::~~!:~.~~~,!.m~.! .. , ... " ... ". I NUMERIC I NOT NUMERIC I
I e;::U,f~~~!:~~!trQ~:g~~~~ I I I L ____________________ ~ ______________________ ~ __________________________ J

The condition-name condition causes a conditional variable to be
tested to determine whether or not its value is equal to one of the
values associated with condition-name.

r--~-----------------------,
I Format I
~--~
I I
I condition-name I
I I L __ J

An example of the use of the condition-name condition follows:

05 MARITAL-STATUS PICTURE 9.
88 SINGLE VALUE 1.
88 MARRIED VALUE 2.
88 DIVORCED VALUE 3.

MARITAL-STATUS is the conditional variable; SINGLE, MARRIED, and
DIVORCED are condition=g~~~~. Only one of the conditions specified by
condition-name can be present for individual records in the file. To
determine the marital status of the individual whose record is being
processed, IF SINGLE ••• can be coded, and its evaluation as true or
false determines the subsequent path the object program takes.

A condition-name is used in conditions as an abbreviation for the
relation condition, since the associated condition-name is equal to
only one of the values (or ranges of values) assigned to that
conditional variable. That is, to determine whether the condition
SINGLE is present, IF MARITAL-STATUS = 1 ••• would have the same effect
as using the condition-name test IF SINGLE ••••

If the condi~!on-na~~ is associated with a range of values (or with
several ranges of values), the conditional variable is tested to
determine whether or not its value falls within the range(s), including
the end values. The result of the test is true if one of the values
corresponding to the condition-name equals the value of its associated
conditional variable.

(An example of both group and elementary condition-name entries is
given in the description for the VALUE clause in "Data Division".)

158 Part IV -- Procedure Division

c

o

Relation Condition

Relation Condition

A relation condition causes a comparison of two operands, either of
which may be an identifier, a literal, or an arithmetic expression.

r--,
I Format]
r--1
I J
I {identifier-l } I
I literal-1 relational~operator 1
I arithmetic-expression-1 I
11

I {identifier-2} 1
I literal-2]
I arithmetic-expression-2]
I J L __ J

The first operand is called the SUbject of the condition; the second
operand is called the object of the condition.

The subject and object may not both be literals.

The subject and object must have the same USAGE, except when two
numeric operands are compared.

A relational-operator specifies the type of comparison to be made in
a relation condition. The meaning of the relational operators is shown
in Table 12.

Table 12. Relational-Operators and Their Meanings
r-----------------------T--, I Relational-operator I Meaning 1
r-----------------------+--~
J 1 l
lIS [NOT] GREATER THAN I Greater than or not greater than]
lIS [NOT] > I J

r-----------------------+--~
lIS [NOT] LESS THAN J Less than or not less than J
lIS [NOT] < 1 J

~-----------------------t--------~-------------------------------------,
lIS [~] EQUAL TO I Equal to or not equal to 1
I IS [NOT] I I L _______________________ ~ __ J

~h~X?8:r:;9,t'8,.,.~!l}"t-,h~." .. ~,~'lJ~.I:r, .. ,.t.8""., .. ,r;~+~1:~g~c:i:I..8I?T:t'c:i!;Pr;J,;:>:r:;:quir ed;
p()w~v~,r;,'<tpi si<.:9rn:p:i;,~~:!'fl,:1..~g~~<~9,~;~'?:r:;<i..*9:;t;p)".b~ ,omit te d.',;.'

The relational-operator must be preceded by, and followed by.. a
space.

Conditions 159

Relation Condition

COMPARISON OF NUMERIC OPERANDS: For operands whose class is numeric, a
comparison is made with respect to the algebraic value of the operands.

Zero is considered a unique value, regardless of sign.

Comparison of numeric operands is permitted regardless of the manner
in which their USAGE is described.

Unsigned numeric operands are considered positive for purposes of
comparison.

COMPARISON OF NONNUMERIC OPERANDS: For nonnumeric operands, or for one
numeric and one nonnumeric operand, a comparison is made with respect
to the binary collating sequence of the characters in the EBCDIC set.

The EBCDIC collating sequence, in ascending order, is:

1.
2.
3.
4.
5.
6.
7.
8 ..
9.

10.
11.
12.
13.
14.
15.
16.

17-42.
43-52.

<
(

+
$
*

/

(space)
(period or decimal point)
("less than" symbol)
(left parenthesis)
(plus sign)
(currency symbol)
(asterisk)
(right parenthesis)
(semicolon)
(hyphen or minus symbol)
(stroke, virgule, slash)

, (comma)
> ("greater than" symbol)
;':r;,.····(§ip~f§'f.ippt1Eir~?Jr;'·i2s·l:rlg~~;:·~"<;f~9~a:~J::9!j:.· ... m~:rk:)·i; (equal' sign)''' 1.1, '. • '/"1 '., I I I· I,,' , =
" (quotation mark)
A through Z
o through 9

(The complete EBCDIC collating sequence is given in the publication
IBM System/360 Reference Data, Form X20-1703.)

If one of the operands i.s described as numeric, i"t is treated as
though it were moved to an alphanumeric data item of the same size and
the contents of this alphanumeric data item were then compared to the
nonnumeric operand (see "MOVE Statement").

The size of an operand is the total number of characters in the
operand. All group items are treated as nonnumeric operands.

Numeric and nonnumeric operands may be compared only when their
USAGE is the same, implicitly or explicitly.

There are two cases of nonnumeric co~parison to consider: operands
of equal size and operands of unequal size.

160 Part IV -- Procedure Division

,~"'"
I

c

o

1 ..

Relation Condition

Comparison of Operands of Equal Size

Characters in corresponding character positions of the two
operands are compared from the high-order end through the
low-order end,.. The high-order end is the leftmost position; the
low-order end is the rightmost character position.

If all pairs of characters compare equally through the last pair,
the operands are considered equal when the low-order end is
reached ..

If a pair of unequal characters is e~countered, the two characters
are compared to determine their relative position in the collating
sequence.. The operand that contaIns the character higher in the
collating sequence is considered to be the greater operand ..

2.. Comparison of Operands of Unequal Si~e

If the operands are of unequal size, comparison proceeds as though
the shorter operand were extended on the right by a sufficient
number of spaces to make the operand.s of equal size ..

Conditions 160.1

(/1

o

Relation Condition

COMPARISONS INVOLVING INDEX-NAMES AND/OR INDEX DATA ITEMS: The
comparison of two index-names is equivalent-to the comparison of their
corresponding occurrence numbers.

In the comparison of an index data item with an index-name or with
another index data item, the actual values are compared without
conversion.

The comparison of an index-name with a numeric item is permitted if
the numeric item is an integer. The numeric integer is treated as an
occurrence number. All other comparisons involving an index-name or
index data item are not allowed. (For a discussion of indexing, see
"Table Handling.")

Permissible comparisons are shown in Table 13.

Table 13. Permissible Comparisons
-------------------------------T--T--T--T---T--T---T---T---T---T~~~,$t. ---T---'

I Second Operand I GR I AL I AN I ANE I NE I FC* I ZR I ED I BI 1\.·· ... ':.. ...••..••. IN 1101 I
I First Operand I I I I I I NNL I NL I I I) .••••. ,. '" . I I
~------------------------------ --+--+--+---+--+---+---+---+ . ---+---~

~::~~:-~:~~---------------------+~~~~~+~~+~~-+~~~~~-~~~-~~~-~--- ' ""\.; ---~---~
IAlphabetic (AL) INNINNINNINN INNINN INN INN I I I
~-------------------------------+--+--+--+---+--+---+---+---+-- ---~

~~::~:~~~=:~~-~~~~--------------+~~+~~+~~+~~-+~~+~~-+~~-+~~-~--- ---+---~
IAlphanumeric Edited (ANE) INNINNINNINN INNINN INN INN I 1 I
~-------------------------------+--+--+--+---+--+---+---+--- '. "'. "''''' "." '" .,. ---~

~~~~=:~:-:~~~:~-~~:~------------+~~+~~~~~+~~-~~~~~~-+~~-+~~-+--- . ",'. ---+---~ 
IFigurative Constant (FC)* and INNINNINNINN INNI I INN I I I I 
l Nonnumeric Literal (NNL) I I I I I I I I I I I 1 
~-------------------------------+--+--+--+---+--+---+---+---+--- <.' •• '" ---+---~ 
1 Fig. constant ZERO (ZR) and I NNI NNI NNI NN I NNI I I NU I NU 1,\,<., 101 1 I 
I Numeric Literal (NL) I I I I I I I I I I.d·:(>· I I 
~-------------------------------+--+--+--+---+--+---+---+---+---+~! ---+---~ 

r;~~;~;:~~~~::~::-~~~~----------t,~:F~F~t~~-t~t~~-t~~-t~~-t~~ 1;,,\ 
1 

.. , j \~l ~\\mi~~~1: ~~~~~~! 

---+---~ 
I I 

---+---~ 
I I 

---+---~ 
I I 

~------------~--------~~-~------ ---+---~ 
I Index Name (IN) I I I I I 1 1101110111011 .. /) I 1 I 110 IIV I 
~-------------------------------+--+--+--+---+--+---+---+---+---+~ -+--+--+--+--+---+---~ 
I Index Data Item (101) I 1 I 1 I I I I I I I I I I 11 V I IV I 
~-------------------------------~--~--~--~---~--~---~-__ ~ ___ i ___ i ___ ~ __ ~ __ ~ __ ~ __ ~ ___ i ___ ~ 

I*FC includes all Figurative Constants except ZERO. 1 
I~Valid only if the numeric item is an integer. 1 
I ~~~: I 
I An empty intersecting block indicates that the comparison I 
I is not permissible. I 
1 NN = comparison as described for nonnumeric operands I 
1 NU = comparison as described for numeric operands I 
1 10 = comparison as described for two index-names 1 
I IV = comparison as described for index data items I L _______________________________________________________________________________________ J 

Conditions 161 



Sign Condition/Compound Conditions 

. Sign condition 

The sign condition determines whether or not the algebraic value of a 
numeric operand (i.e., an item described as numeric) is less than, 
greater than, or equal to zero. 

r----------------------~-----------------------------------------------, 
I Format I 
~----------------------------------------------------------------------~ 
I I 
II {identifier } {POSITIVE} II 

IS [~OT] NEGATIVE 
I arithmetic-expression ZERO I 
I I L _______________________________ ~ ______________________________________ J 

An operand is positive if its value is greater than zero, negative if 
its value is less than zero, and zero if its value is equal to zero. An 
unsigned field is always positive or zero. 

" 

COMPOUND CONDITIONS 

Two or more simple conditions can be combined to form a compound 
condition. Each simple condition is separated from the next by one of 
the logical operators AND or OR. 

The logical operators must be preceded by a space and followed by a 
space. The meaning of the logical operators is as follows: 

Logical Operator 

Logical inclusive OR, i.e., either or both 
are true 

Logical conjunction, i.e., both are true 
Logical negation 

Figure 9 shows the relationships between the logical operators and 
simple conditions A and B, where A and B have the following values: 

Values for 
Condi~!Q!!~ 

True 
False 
True 
False 

Values for 
Condition B ---True----

True 
False 
False 

162 Part IV -- Procedure Division 

r 
' ...... , ... 

c 



o 

Compound Conditions 

r-------T------T-----T-------------T-----------T------------T----------, 
IA AND BIA OR BINOT AINOT (A AND B) I NOT A AND BINOT (A OR B) I NOT A OR BI 
~-------+------+-----+-------------+--------~--+------------+----------i 
ITrue ITrue IFalselFalse I False IFalse ITrue I 
~-------+------+-----+-------------+-----------+------------1----------i 
IFalse I True ITrue ITrue ITrue IFalse ITrue I 
~-------+------+-----+-------------+-----------+------------+----------i 
IFalse ITrue IFalselTrue I False IFalse IFalse I 
~-------+------+-----+-------------+-----------+------------+----------i 
I False IFalse ITrue ITrue I False I True I True I L _______ ~ ______ ~ _____ ~ _____________ ~ ___________ ~ ____________ ~ __________ J 

Figure 9. Logical Operators and the Resulting Values Upon Evaluation 

EVALUATION RULES 

Logical evaluation begins with the least inclusive pair of 
parentheses and proceeds to the most inclusive. 

If the order of evaluation is not specified by parentheses, the 
expression is evaluated in the following order: 

1. Arithmetic expressions 

2. Relational-operators 

3. [NOT] condition 

4. AND and its surrounding conditions are evaluated first, starting at 
the left of the expression and proceeding to the right. 

5. OR and its surrounding conditions are then evaluated, also 
proceeding from left to right. 

Consider the expression: 

A IS NOT GREATER THAN B OR A + B IS EQUAL TO C AND D IS POSITIVE 

This will be evaluated as if it were parenthesized as follows: 

(A IS NOT GREATER THAN B) OR «(A + B) IS EQUAL TO C) AND (D IS 
POSITIVE». 

The order of evaluation is as follows: 

1. (A + B) is evaluated, giving some intermediate result, for example, 
x. 

2. (A IS NOT GREATER THAN B) is evaluated, giving some intermediate 
truth value, for example, tl. 

3. (x IS EQUAL TO C) is evaluated, giving some intermediate truth 
value, for example, t2. 

4. (D IS POSITIVE) is evaluated, giving some intermediate truth value, 
for example, t3. 

5. (t2 AND t3) is evaluated, giving some intermediate truth value, for 
example, t4. 

6. (t1 OR t4) is evaluated, giving the final truth value, and the 
result of the expression. 

Conditions 163 



Compound Conditions 

Table 14 shows permissible symbol pairs. A symbol pair in a compound 
condition is the occurrence of two symbols appearing in sequence. 

Table 14. Permissible Symbol Pairs -- Compound Conditions 
-------------------T--------------T-------T-------T-------T-----T-----' 

I Second I Condition I OR I AND I NOT I ( I ) I 

I Symbol I I I I I I I 

I I I I I' I I I 
I First I I I I I I I 

I Symbol I I I I I I I 

~------------------- --------------+-------+-------+-------+-----+-----i 
I Condition I I pip I I I p I 
~-------------------f--------------f-------f-------+-------f-----f-----i 
I OR I p I I I pip I I 
~-------------------+--------------+-------+-------+-------+-----+-----i 
I AND I p I - I - I pip I - I 

~-------------------f--------------f-------+-------f-------f-----f-----i 
I NOT I p I I I I p I I 

~-------------------+--------------+-------+-------+-------+-----+-----i 
I ( I p I I I pip I I 

~-------------------f--------------f-------f-------f-------f-----f-----i 
I ) I I pip I I I p I 

~-------------------~--------------~-------~-------~-------~-----~-----i 
I p indicates a permissible pairing I 
I - indicates that the pairing is not permitted I L ______________________________________________________________________ J 

IMPLIED SUBJECTS AND RELATIONAL-OPERATORS 

When relation conditions are written in a consecutive sequence, any 
relation condition except the first may be abbreviated by: 

1. The omission of the subject of the relation condition, or 

2. The omission of the subject and relational-operator of the relation 
condition. 

Within a sequence of relation conditions, both forms of abbreviation may 
be used. The effect of using such abbreviations is as if the omitted 
subject was taken from the most recently stated subject, or the omitted 
relational-operator was taken from the most recently stated relational­
operator. 

r----------------------------------------------------------------------, 
IFormat of Implied Subject: I 
~----------------------------------------------------------------------i 
I ••• subject relational-operator object I 
I I 

! {::Q} [NOT] relational-operator object... ! 
I I L ______________________________________________________________________ J 

164 Part IV -- Procedure Division 

c 



L) 

o 

Compound Conditions 

r----------------------------------------------------------------------, 
lFormat of Implied Subject and Relational-operator: 1 
~----------------------------------------------------------------------~ 
I I 

! ... subject relational-operator object {::Q} [NOT] object... ! 
I I L ______________________________________________________________________ J 

Ambiguity may result from using NOT in conjunction with 
abbreviations. When only the subject is implied, NOT is interpreted as 
a logical operator rather than as part of the relational operator. For 
example, A NOT > BAND < C is equivalent to A NOT > B AND A < C. When 
both the subject and the relational operator are implied, NOT is 
interpreted as part of the relational operator. For example, A NOT > B 
AND C is equivalent to A NOT> B AND A NOT > C. 

The following are examples of implied ~~Qi~£~~, and E~l~~iQ~~l~ 
operators. Each example consists of two equivalent statements: 

A B OR NOT > C 

A B OR NOT A > C 

A = BAND C 

A = B AND A C 

A NOT BAND C 

A NOT = BAND 
A NOT = C 

A > B AND NOT < C AND 0 

A > B AND NOT A < C 
AND A < D 

(The subject, A, is implied.) 

(The subject, A, is explicit.) 

(Subject and relational-operator, A = 
are implied.) 

(Subject and relational-operator, A 
are explicit.) 

(Subject and relational-operator, A NOT 
are implied.) 

(Subject and relational-operator, A NOT 
are explicit.) 

(Subject, A, is implied in the second 
condition. Subject, A, and relational­
operator, <, are implied in the third 
condition.) 

(Subject, A, and relational-operator, <, are 
explicit.) 

The omitted subject is taken from the most recently stated subject, 
that is, A. 

The omitted relational-operator is taken from the most recently 
stated relational-operator, that is, <. 

Conditions 165 



IF Statement 

CONDITIONAL STATEMENTS 

A £QnditiQna~stat~men~ specifies that the truth value of a condition 
is to be determined and that the subsequent action of the object program 
is dependent on this truth value. Conditional statements are listed in 
"Categories of Statements." 

A condi~ional sente~ is a conditional statement optionally preceded 
by an imperative statement, terminated by a period followed by a space. 

Only the IF statement is discussed in this section. Discussion of 
the other conditional statements is included as part of the description 
of the associated imperative statements. 

IF ,Statement 

The IF statement causes a condition to be evaluated. The subsequent 
action of the object program depends upon whether the condition is true 
or false. 

r----------------------------------------------------------------------, 
I Format I 
~----------------------------------------------------------------------~ 
I I 

1 IF conditionMID t:::e:::::CE}{~~~~ t {::::e::::::CE} i 
l ______________________________________________________________________ J 

The phrase ELSE?§i~~~~~~~:'\: NEXT SENTENCE may be omitted if and only if 
it immediately precedestfie period 'for the sentence. 

When an IF statement is executed, the following action is taken: 

1. If the £o~.~.~.~i?n.is true, the statement immediately fo.! .. !.?~.~.ng, .... 'th,~ 
condition~;;'9!fii·:r+1~~1j: (statement-l) is executed. (If ELSEK.Q'.!;#~gW:r§.§' is 
omi tted, tJien° ,iiY irnperatT ve -statements following the condition and 
preceding the period for the sentence are considered to be part of 
statement-l.) Control is then passed implicitly to the next 
sentence unless GO TO procedure-name is specified in statement-l. 
If the condition is true and NEXT SENTENCE is written, control 
passes explicitly to the next sentence. 

2. If the condition is false, either the statement folloW~pg~~§;:l,~pz:; 
~'I~~J~~I (~tatem~!!!==~) is executed, or, if the ELSE b~19j£~~~~+e~ 

op 10n 1S omitted, the next sentence is executed. If the conditi6n 
1S false and NEXT SENTENCE is written following ELSE, control 
passes explicitly to the next sentence. 

When IF statements are not nested, stat~~~nt-l and statement-2 must 
represent imperative statements. 

166 Part IV -- Procedure Division 

,---.... 
/ ' 

I 
I, 

' .... 

c 



--, 
(.~) 

o 

IF Statement 

The presence of one or more IF statements within the initial IF 
statement constitutes a "nested IF statement." 

Statement-1 and staternent-2 in IF statements may consist of one or 
more imperative statements-and/or a conditional statement. If a 
conditional statement appears as statement-lor as part of statement-l, 
it is said to be nested. Nesting statements is much like specifying 
subordinate arithmetic expressions enclosed in parentheses and combined 
in larger arithmetic expressions. 

IF statements contained within IF statements must be considered as 
paired IF and ELSE combinations, proceeding from left to right. Thus, 
any ELSE encountered must be considered to apply to the immediately 
preceding IF that has not already been paired with an ELSE. 

In the conditional statement in Figure 10, C stands for condition; S 
stands for any number of imperative statements; and the pairing of IF 
and ELSE is shown by the lines connecting them. 

Chart 1 is a flowchart indicating the logical flow of the conditional 
statement in Figure 10. 

, 
IFI 

~ t t ~ ~ t t 
Cl Sl IF2 C2 IF3 C3 S2 E~SE S3 ELSE S4 IF4 C4 IF5 C5 85 ELSE S6 

cl c2 el e2 

dl 

bl b2 

al 

al - Statement-l for IFI (If Cl is false, the next sentence is executed, since there is no ELSE for it.) 
bi - Statement-l for IF2 
b2 - Statement-2 for IF2 
cl - Statement-l for IF3 
c2 - Statement-2 for IF3 
dl - Statement-l for IF4 (If C4 is false, the next sentence is executed, since there is no ELSE for it.) 

el - Statement-l for IF5 

e2 - Statex.nent-2 for.IF5 

, 

Figure 10. Conditional Statements With Nested IF Statements 

Conditional Statements 167 



IF Statement 

chart 1. Logical Flow of Conditional Statement With Nested IF 
Statements 

····Al······ .. · • EXECUTION OF • 
• IF STATEMENT • 
• BEGINS • · .. · .. T· .. · .. 

,., 
Bl ., 

•• t. 
,. ., FALSE ., Cl , .-------------___________________________________________________________________ _ .. .. .. . . .. .. 

1 """ 
·····Cl·········· • • • • 
• Sl • · . · . ·· .. ···T······· 

01···.. • •••• D2.......... D3··· •. 
I • •• •• •• FALSE : : ••• • • • •• FALSE ., C2 ,.-------->. S4 .-------->., C4 ,. ____________________________ > 
*... .•.• : : *.... •.• 

•• •• ••••••••••••••••• * ••• I TRUE fRUE 

El'·'., ..... E2.......... ..E3 .'.. : ...... E4 .•....... : 
• • •• ., •• FALSE : : , • •• FALSE· 56 : 

.'., C3 .' .-------->: 53 : .'., c5 ,.' .-----___ >: • .... ..... : ............... : .... .... : ............... : 1 TRUE I TRU, 

... ·.Fl·......... . .... 1"3 ......... . .. .. .. . 
• S2 • • 55 .. . .. .. ................. ..· .... r .... · .. 

<-------------------------------------------------------------------------------------

·····111· ••••• · ••• · . · . • NEXT SENTENCE • • • · . ••••••••••••••••• 

168 Part IV -- Procedure Division 

(~ 
\ 

c. \ " 



c······! 
/ 

C) 

Declaratives--General Format 

The Declaratives Section provides a method of including procedures 
that are invoked non-synchronously; that is, they are executed not as 
part of the sequential coding written by the programmer, but rather when 
a condition occurs which cannot normally be tested by the programmer. 

Although the system automatically handles checking and creation of 
standard labels and executes error recovery routines in the case of 
input/output errors, additional procedures may be specified by the COBOL 
programmer. The Report writer feature also uses declarative procedures. 

Since these procedures are executed only when labels of a file are to 
be processed. or at the time an error in reading or writing occurs or 
when a report group is to be produced, they cannot appear in the regular 
sequence of procedural statements. They must be written at the 
beginning of the Procedure Division in a subdivision called 
DECLARATIVES. A group of declarative procedures constitutes a 
declarative section. Related procedures are preceded by a USE sentence 
that specifies their function. A declarative section ends with the 
occurrence of another section-name with a USE sentence or with the key 
words END DECLARATIVES. 

The key words DECLARATIVES and END DECLAR~TIVES must each begin in 
Area A and be followed by a period. No other text may appear on the 
same line. 

r----------------------------------------------------------------------, 
I General Format I 
~----------------------------------------------------------------------~ 
I I 
I PROCEQ!:!RE DIVISION. I 
I I 
I QEC~~~T!VE§. I 
I I 
I {section-name SECTION. !:!SE sentence. I 
I I 
I {paragraph-name. {sentence} } ••• }... I 
I I 
I END DECL~RATIVES. I 
I I L ______________________________________________________________________ J 

The USE sentence identifies the type of declarative. There are three 
formats of the USE sentence. Each is associated with one of the 
following types of procedures: 

1. Input/output label handling 

2. Input/output error-checking procedures 

3. Report writing procedures 

A USE sentence, when present, must immediately follow a section 
header in the Declarative portion of the Procedure Division and must be 
followed by a period followed by a space. The remainder of the section 
must consist of one or more procedural paragraphs that define the 
procedures to be used. The USE sentence itself is never executed; 
rather, it defines the conditions for the execution of the USE 
procedure. 

Declaratives 169 



LABEL Declarative 

Format 1 is used to provide user label~handling procedures. There 
are two options of Format 1. 

r----------------------------------------------------------------------, 
I Format 1 I 
~----------------------------------------------------------------------~ , I 
,Option 1 I 

i USE. {BEFORE} STAND1\RD [BEGINNING] [ ;i~i ] i 
I 1\FTER UNIT I 
, I 
I { {file-name} ••• } I 
I OUTPUT , 
, L1\BEL PROCEDURE ON INPU! I 
I I~Q I 
~----------------------------------------------------------------------~ 
I 
JOption.2 
I , 
I 
I , 
I 
I 
I , , 

[
REEL] 

.~~~~ 

{. 

{file-name}··-1 
OUTPUT 
I~~!;Ff-· 
I~Q 

L ______________________________________________________________________ J 

When BEFORE is specified, it indicates that nonstandard labels are to 
be processed. Nonstandard labels may be specified only for tape files. 

When AFTER is specified, it indicates that user labels follow 
standard file labels, and are to be processed. 

Note: ASCII considerations for user label-handling procedures are given 
in 1\ppendix E. 

The labels must be listed as data-names in the L1\BEL RECORDS clause 
in the file description entry for the file, and must be described as 
level-01 data items subordinate to the file entry. 

If neither BEGINNING nor ENDING is specified, the designated 
procedures are executed for both beginning and ending labels. 

If UNIT, REEL, or FILE is not included, the designated procedures are 
executed both for REEL or UNIT, whichever is appropriate, and for FILE 
labels. The REEL option is not applicable to mass storage files. The 
UNIT option is not applicable to files in the random access mode, since 
only FILE labels are processed in this mode. 

If FILE is specified, the designated procedures are executed at 
beginning-of-file (on first volume) and/or at end-of-file (on last 
volume) only. If REEL or UNIT is specified, the designated procedures 
are executed at beginning-of-volume (on each volume but the first) 
and/or at end-of-volume (on each volume but the last •• Both BEGINNING 
and ENDING label processing is executed if BEGINNING or ENDING has not 
been specified. 

The same file-name may appear in different specific arrangements of 
Format 1. However, appearance of a file-name in a USE statement must 

170 Part IV -- Procedure Division 

c 



o 

LABEL Declarative 

not cause the simultaneous request for execution of more than one USE 
declarative. 

If the file-na~ option is used, the file description entry for 
file-name must not specify a LABEL RECORDS ARE OMITTED clause. 

The file-game must not represent a sort-file. 

The user label procedures are executed as follows when the OUTPUT, 
INPUT, or 1-0 options are specified: 

• When OUTPUT is specified, only for files opened as output. 

• When INPUT is specified, only for files opened as input. 

• When 1-0 is specified, only for files opened as 1-0. 

If the INPUT, OUTPUT, or 1-0 option is specified, and an input, 
output, or input-output file, respectively, is described with a LABEL 
RECORDS ARE OMITTED clause, the USE procedures do not apply. 

The standard system procedures are performed: 

1. Before or after the user's beginning or ending input label check 
procedure is executed. 

2. Before the user's beginning or ending output label is created. 

3. After the user's beginning or ending output label is created, but 
before it is written on tape. 

4. Before or after the user's beginning or ending input-output label 
check procedure is executed. 

Within the procedures of a USE declarative in which the USE sentence 
specifies an option other than file-name, references to common label 
items need not be qualified by a-¥ile=name. A common label item is an 
elementary data item that appears in every label record of the program, 
but does not appear in any data record of this program. Such items must 
have identical descriptions and positions within each label record. 

Within a Format 1 declarative section there must be no reference to 
any nondeclarative procedure. Conversely, in the nondeclarative portion 
there must be no reference to procedure-names that appear in the 
declaratives section, except that PERFORM statements may refer to a USE 
procedure, or to procedures associated with it. 

The exit from a Format 1 declarative section is inserted by the 
compiler following the last statement in the section. All logical 
program paths within the section must lead to the exit point. 

Declaratives 171 



LABEL Declarative 

After the nonstandard trailer labels are processed, the system 
determines from the DD statement if another reel is to be read or if the 
current reel is the end of the file. If the current reel is the last 
one for the file, the statement executed is the one specified in the AT 
END phrase of the READ statement that detected the end-of-reel 
condition. If the current reel is not the last, a volume-switch takes 
place, the header label is processed, and the first record on the reel 
is read. 

172 Part IV -- Procedure Division 

('" 
" ........... ,~ .... 

c 



o 

o 

LABEL Declarative--Sample Program 

SAMPLE LABEL DECLARATIVE PROGRhM 

The following program creates a file with user labels. To create the 
labels, the program contains a DECLARATIVES section, with USE procedures 
for creating both header and trailer labels. 

The program illustrates the following items: 

For the file requiring the creation of user labels, the LABEL 
RECORDS clause uses the data-name option. 

The USE AFTER BEGINNING/ENDING LABEL option is specified to create 
user labels. 

The information to be inserted in the user labels comes from input 
file records. Therefore, records containing the information must 
be read and stored before the output file is opened, and the header 
label procedures are invoked. 

IDENTIFICATION DIVISION. 
PROGRAM-ID. LABELPGM. 
ENVIRONMENT DIVISION. 
CONFIGURATION SECTION. 
SOURCE-COMPUTER. IBM-360-F50. 
OBJECT-COMPUTER. IBM-360-F50. 
INPUT-OUTPUT SECTION. 
FILE-CONTROL. 

SELECT NO-LBL ASSIGN TO UT-2400-S-INFILE. 
SELECT USER ASSIGN TO UT-2400-S-USRFILE. 

DhTA DIVISION. 
FILE SECTION. 
FD NO-LBL 

RECORD CONTAINS 80 CHARACTERS 
LABEL RECORD IS OMITTED. 

01 IN-REC. 
05 TYPEN PIC X(4). 
05 DEPT-ID PIC X(ll). 
05 BIL-PERIOD PIC X(5). 
05 NAME PIC X(20). 
05 AMOUNT PIC 9(6). 
05 FILLER PIC X(15). 
05 SECUR-CODE PIC xx. 
05 FILLER PIC 9. 
05 ACCT-NUM PIC 9(10). 
05 FILLER PIC 9(6). 

01 IN-LBL-HIST REDEFINES IN-REC. 
05 FILLER PIC X(4). 

FD 

01 

05 FILE-HISTORY PIC X(76). 
USER 
RECORD CONTAINS 80 CHARACTERS 
BLOCK CONTAINS 5 RECORDS 
LABEL RECORDS ARE USR-LBL USR-LBL-HIST. 
USR-LBL. 
05 USR-HDR PIC X(4). 
05 DEPT-ID PIC X(11). 
05 USR-REC-CNT PIC 9(8) COMP-3. 
05 BIL-PERIOD PIC X(5). 
05 FILLER PIC X(53). 
05 SECUR-CODE PIC XX. 

Declaratives 173 



LABEL Declarative--Sample Program 

01 USR-LBL-HIST. 
05 FILLER PIC X(4). 
05 LBL-HISTORY PIC X(76). 

01 USR-REC. 
05 TYPEN PIC X(4). 
05 FILLER PIC XeS). 
05 NAME PIC X(20). 
05 FILLER PIC X(4). 
05 ACCT-NUM PIC 9(10). 
05 AMOUNT PIC 9(6) COMP-3. 
05 FILLER PIC X(2S). 
05 U-SEQ-NUMB PIC 9(8). 

WORKING-STORAGE SECTION. 
77 U-REC-NUMB PIC 9(8) VALUE ZERO. 
77 SAV-DEPT-ID PIC X(11). 
77 LBL-SWITCH PIC 9 VALUE ZERO. 
77 USER-SWITCH PIC 9 VALUE ZERv. 
01 STOR-REC. 

05 DEPT-ID PIC X(II). 
,05 ElL-PERIOD PIC X(S). 

05 SECUR-CODE PIC XX. 
PROCEDURE DIVISION. 

DECLARATIVES. 
USR-HDR-LBL SECTION. USE AFTER BEGINNING FILE 

LABEL PROCEDURE ON USER. 
A. IF LBL-SWITCH = 0 

MOVE SPACES TO USR-LBL 
MOVE ZEROES TO USR-REC-CNT 
MOVE 'UHLl- TO USR-HDR 
MOVE CORRESPONDING STOR-REC TO USR-LBL 
ADD 1 TO I,BL- SWITCH GO TO MORE-LABELS 

ELSE MOVE 'UHL2' TO USR-HDR 
MOVE FILE-HISTORY TO LBL-IHISTORY. 

USR-TRLR-LBL SECTION. USE AFTER ENDING FILE 
LABEL PROCEDURE ON USER. 

B. MOVE SPACES TO USR-LBL. 
MOVE 'UTL1' TO USR-HDR. 
MOVE SAV-DEPT-ID TO DEPT-ID IN USR-LBL. 
MOVE U-REC-NUMB TO USR-REC-CNT. 

END DECLARATIVES. 

OPEN INPUT NO-LBL. 
READ-IN. 

READ NO-LBL AT END GO TO END-JOB. 
A. IF USER-SWITCH = 1 NEXT SENTENCE 

ELSE ADD 1 TO USER-SWITCH 
MOVE CORRECPONDING IN-REC TO STOR-REC 
MOVE DEPT-ID OF IN-REC TO SAV-IDEPT-ID 

PERFORM READ-IN 
OPEN OUTPUT USER 
GO TO READ-IN. 

MOVE SPACES TO USR-REC 
ADD 1 TO U-REC-NUMB 
MOVE CORRESPONDING IN-REC TO USR-REC 
MOVE U-REC-NUMB TO U-SEQ-NUMB 
WRITE USR-REC 
GO TO READ-IN. 

END-JOB. 
CLOSE NO-LBL USER 
STOP RUN. 

174 Part IV -- Procedure Division 

C' 
"/ 



c,; 

o 

ERROR Declarative 

A Format 2 USE sentence specifies procedures to be followed if an 
input/output error occurs during file processing. 

I 

1 
l­
I 
I 
I 
I 
1 
I 
I 
I 
I 
I 
1-

Format 2 

]~] !11!li STANDARD ]]B~] £EO£]DQ~] 

ON 

{

file-name-1 [file-name-2] ••• 1 
INPUT 
QUTPQ:I 
I-Q 

USE declaratives which specify error handling procedures are 
activated when an input/output error occurs during execution of a READ, 
W RI TE~:ill;ill;;lllp,.I:!::::::;Rlill::;;;II;ID st a tem ent. 

Automatic system error routines are executed ~~!g£~ user-specified 
procedures. 

User error handlinq procedures are executed for invalid key 
conditions if the INVAlID KEY option is not specified in the statement 
causinq the condition. 

, 
I 
I 
I 
I 
I 
I 
I 
1 
I 
I 
I 
I 

.J 

Within the error procedure, the allowable statements that may be 
executed depend on the orqanization and access specified for the file in 
error. 

Within a USE procedure there must not be any reference to 

~~ti~:n~~~~:~;~e~ 
reference to procedure-names that appear in the decla ra tives porti on, 
except that PERFORM statements may refer to a USE declarative or to 
procedures associated with such a declarative. 

When the til~=D~~~ option is used, error handling procedures are 
executed for input/output errors occurring for the named file(s) only. 

A !i1~=~~~ must not be referred to, implicitly or explicitly, in 
more than one Format 2 USE sentence. 

The user error procedures are executed, when the INPUT, OUTPUT, or 
I-a options are specified and an input/output error occurs, as follows: 

• When INPUT is specified, only for files opened as INPUT • 

• When OUTPUT is specified, only for files opened as OUTPUT. 

• When 1-0 is specified, only for files opened as 1-0. 

Declaratives 175 



ERROR Declarative 

r ....... _./ 

c 
176 Part IV -- Procedure Division 



o 

ERROR Declarative 

An exit from this type of declarative section can be effected 
executi the last statement in the section (normal return) ,i . 

A summary of the facilities, :t·:~ ··~".I~· .~·::I~~lfS~ 
.. ... .., .. and suggested u~~~response 

eac e-process1ng technique when an error occurs, is 
in the Programmer's Guide. 

A Format 3 USE sentence specifies Procedure Division statements that 
are executed just before a report group named in the Report Section of 
the Data Division is produced (see "Report Writer"). 

, -----------------------------------, 
I Format 3 
i-
t 
, Q~~ ]~lgR] B]~OR11liQ data-name. , 
L-_______________ _ 

I 
-f 
I 
I 
I 

__.J 

Declaratives 177 



CORRESPONDING/GIVING/ROUNDED Options 

The arithmetic statements are used for computations. Individual 
operations are specified by the ADD, SUBTRACT, MULTIPLY, and DIVIDE 
statements. These operations can be combined symbolically in a formula, 
using the COMPUTE statement. 

Because there are several options common to the arithmetic 
statements, their discussion precedes individual statement descriptions. 

The CORRESPONDI NG option ena.bles computations to be performed on 
elementary items of the same name simply by specifying the group item to 
which they belong. The word COERESPONDING may be abbreviated as CORR. 

Both identifiers following CORRESPONDING must refer to group items. 
For the purposes of this discussion, these identifiers will be called d 1 

and d 2 • 

Elementary data items from each group are considered CORRESPONDING 
when both data items have the same name and qualification, up to but not 
includinq d 1 and d 2 • 

Neither d 1 nor d 2 may be a data item with level number 66, 77, or 88, 
nor may either be described with the USAGE IS INDEX clause. Neither d 1 

nor d 2 may be a FILLER {tem. 

Each data item subordinate to d 1 or d 2 that is described with a 
REDEFINES, RENAMES, OCCURS, or USAGE IS INDEX clause is ignored; any 
items subordinate to such data items are also ignored. However, d 1 or 
d 2 may themselves be described with REDEFINES or OCCURS clauses, or be 
subordinate to items described with REDEFINES or OCCURS clauses. 

Each FI.LLER item subordinate to d 1 or d 2 is ignored. 11111111 
UllDj.K_iIIll];;Y,lj~ll ••• JlWilll.ll 

If the GIVING option is specified, the value of the identifier that 
follows the word GIVING is set equal to the calculated result of the 
arithmetic operation. This identifier, since not itself involved in the 
computation, may be a numeric edited item. 

After decimal point alignment, the number of places in the fraction 
of the result of an arithmetic operation is compared with the number of 
places provided for the fraction of the resultant identifier. 

When the size of the fractional result exceeds the number of places 
provided for its storage, truncation occurs unless ROUNDED is specified. 
When ROUNDED is specified, the least significan t digit of the resul tan t 
identifier has its value increased by 1 whenever the most significant 
digit of the excess is greater than or equal to 5. 

178 Part IV -- Procedure Division 

/~ 

\ ...... / 

c 



o 

SIZE ERROR Option/ADD Statement 

When the resultant identifier is described by a PICTURE clause 
containing pIS and when the number of places in the calculated result 
exceeds this size, rounding or truncation occurs relative to the 
rightmost integer position for which storage is allocated. 

INo€e':7T'rr.ff~'."."p.l;.~a-e'a:~·~g·}·RQ'q~D~QTa(Ti~p~.~'t)t:rgi{·aoer~.: .. n§~···.~ppIY"·'~fieii·'·tn~Tr'·;7':~' 
),~.~~~1:~(l.nt .•.•. fi~:Ld •. ~s •. f19(l.t~Ilg'·.··l'O~rii:.,·in: •.. whic:.h .• cas~.rotlndi~g.ha's~() 
;~~eriirig ~." " ... '. ~('~~Y~J:',./if.·a~:LeCl.~'t:.<:>~t??~:~b.e>.()p~ranq~c>fi .. O;ri· .• ar.i't:.~llletip ..•..........••.•... , 
1~t=>,~:t;'.(l.i:.lc9l}};i..~i: .• f1:c>C\~il1SJ.7t?c>~.lit .. \. e11;cl't:.ll~ .. >t~ f:1 ~.~ 1:.a~ t· .• ' .. f ~e:Ld •· ..• i~ ..... t i~~dTPO.ilt~'· .•. · •. ·,.·.··\ •••..... j 

I 
;j:t:'q~nCling' ~J.:w.ciY~:it.a}{:e~l?,~ac~.,,~li~.tg~:r.()r:ii().t.ROU~J:)EDi~S:··.iSpec*fieqrt.b..1~.~ 
:.n:*nilll*:e~ .. pOSS~l:>l.e. •.•. co~,,~r~~~.11.· •... ~rr:.t.~t·~~5:·Jn; •.•.... r~S.\lltiS.n():ri~c;SS~J:'*+1 
;<e:.~~!;~.:g,§t" .. ,;:.Q ... 'H;Q.g.,g,l;'t ..•.. :;:: .. ~.§'1l1J:; .. , .. ~" ... "."·"; .... ~,,, ... ~~,,,,"'o ..... :" .. ; .•.• ,,., ..• , ...••. ,., ...•. ",.: " .. , .... , •. «_ .... ,_ ...... " .......• , ........ , ...•..... «,.,.«, .... " .•... ,." .... "" ............. ,., ••. '" ·.M.· •..... · .. · •.•. ,·.,.·.· .... ~"' .. _ •.• ,"." ...• ,, .. '"., .. "' .. " ....... "." ......... " ..• ~ ....... , ..•. , . ..".,\ ... ,j 

SIZE ERROR Option 

If, after decimal point alignment, the value of a result exceeds the 
largest value that can be contained in the associated resultant 
identifier, a size error condition exists. Division by zero always 
causes a size error condition. The size error condition applies only to 
the final results of an arithmetic operation and does not apply to 
intermediate results. If the ROUNDED option is specified, rounding 
takes place before checking for size error. When such a size error 
condition occurs, the subsequent action depends on whether or not the 
SIZE ERROR option is specified. 

If the SIZE ERROR option is not specified and a size error condition 
occurs, the value of the resultant identifier affected ma.y be 
unpredictable. 

If the SIZE ERROR option is specified and a size error condition 
occurs, the value of the resultant identifier affected by the size error 
is not altered. After completion of the execution of the arithmetic 
operation, the imperative statement in the SIZE ERROR option is 
executed. 

When the sending and rece1v1ng operands of an arithmetic statement or 
a MOVE statement share a part of their storage (that is, when the 
operanns overlap), the result of the execution of such a statement is 
unpredictable. 

The ADD statement causes two or more numeric operands to be summed 
and the result to be stored. 

r----------------------------------------------------------------------, 
I Format 1 I 
~----------------------------------------------------------------------~ 
I I 

I
I _"DO {identifier-1} [identifier-2] II 
~ TO identifier-m [ROUND~Q] 

I literal-1 literal-2 I 
I I 
I [identifier-n [RQ~~Q~Q]] ••• [ON SIZE ERROR imperative-statement] I 
I I L ______________________________________________________________________ J 

Arithmetic Statements 179 



ADD Statement 

r----------------------------------------------------------------------, 
I Format 2 I 
~----------------------------------------------------------~-----------~ 
I I I ADD {identifier-l} {identifier-2} [identifier-3 ] I 
I literal-l literal-2 literal-3 I 
I I 
I GIVIN§ identifier-m [RQ~NDED] [ON SIZ~ ~gROR imperative-statement] I 
I I l ______________________________________________________________________ J 

r----------------------------------------------------------------------, 
I Format 3 I 
~----------------------------------------------------------------------~ 
I I 
II {CORR } II ADD identifier-l TO identifier-2 
I QQBg~§PONDI~§ I 
I I 
I [gQQNDED] [ON §!ZE ~gRQR imperative-statement] I 
I I l ______________________________________________________________________ J 

FORMAT 1 -- the values of the operands preceding the word TO are 
added together, and the sum is added to the current value of 
identifier-m (identifier-n), etc. The result is stored in identifier-m 
(identifier-n)-,-etc~-----

FORMAT 2 -- when the GIVING option is used, there must be at least 
two operands preceding the word GIVING. The values of these operands 
are added together, and the sum is stored as the new value of 
iden:t:ifie;:::.m. 

In Formats 1 and 2 each i~gntifier must refer to an elementary 
numeric item, with the exception of identifiers appearing to the right 
of the word GIVING. These may refer to numeric edited data items. 

Each literal must be a numeric literal. 

The maximum size of each operand is 18 decimal digits. The maximum 
size of the resulting sum, after decimal point alignment, is 18 decimal 
digits. 

FORMAT 3 -- when the CORRESPONDING option 1s used, elementary data 
items within identifier-l are added to and stored in corresponding 
elementary data items within identifier-2. Identifier-l and 
identifier-2 must be group items~--------

When ON SIZE ERROR is used in conjunction with CORRESPONDING, the 
size error test is made only after the completion of all the ADD 
operations. If any of the additions produces a size error condition, 
the resultant field for that addition remains unchanged, and the 
imperative statement specified in the SIZE ERROR option is executed. 

180 Part IV -- Procedure Division 

' ...... 

c 

c 



L 

o 

COMPUTE/DIVIDE Statements 

The COMPUTE statement assigns to a data item the value of a data 
item, literal, or arithmetic expression. 

r~--------------------~~----~--~-~~~----~-~-~-~~~~---------------~-----, 
I . Format I 
~--~---------------------~------------------~--------------~-----------~ 
I I 
I {ic;1entifier- 2 } I 
I £OMfY!~ identifier-l [BQQ~Q~Q] = literal-l I 
I arithmetic-expression I 
I I 
I [ON SIZE ~ imperative-statement] I 
I I L ______ ~ __ ~ _____ ~ ____ -_~ _________ ~--___ ~ __ ~ __ ~_~~_~-~-______ ~-__ -~ _____ J 

Literal=l must be a numeric literal. 

Identifier-2 must refer to an elementary n~meri9 item. Identifier-l 
may describe a numeric edited dc;lta item. 

The !de~tifier-2 and ~~t~E~~-l options provide a method for setting 
the value of identifier-l equal to the value pf identifier-2 or 
literal-l. 

The ~~ithm§~~xpr§2~i2~ option pe~mits the use of a meaningful 
compination of identifiers, numeric literals, and arithmetic operators. 
Hence, the user can combine arithmetic oper~tions withqut the 
restrictions imposed by the arithmetic statements A~D, SUBTRACT, 
MULTIPLY, and DIVIDE. 

As iq all arithmetic statements, the maximu~ size of each operand is 
18 decim~l digits. 

The DIVIDE statement is used to find the quot~ent res~lting from the 
division of one data item into another data item. 

r--------------------~-----~~--~--~~---~~~--~-~~-~-------~---~-~----~~-, 
I Format 1 I 
~-~-~~~--~-~~-~---~-~-~~~~--~--~-~-~-~~~~~-~~---~~-~---~-~-------------~ 
I I 
II {identifier-l} II 

Q!Y!Q~ I~!Q i4entifier-2 [gQQ~Q§Q] 
I literal-l I 
I I 
I [ON §!ZE ~RRog imperative~statement] I 
I I 
~-~ _______ ~-___ ~ ___ ~~ __ ~ ____ ~~ ______ ~--~---~-~~~--~~~~ ___ ~ _____________ J 

Arithmetic statements 181 



DIVIDE/MULTIPLY Statements 

r----------------------------------------------------------------------, 
I Format 2 I 
~----------------------------------------------------------------------~ 

i !iIVIDE {identifier-1} {IN~Q} {identifier-2} "IVING identifier-3 i 
I literal-1 BY literal-2 I 
I I 
I [ROUNDED] [REMA!~Q~g identifier-4] I 
I I 
I [ON SIZE ERROR imperative-statement] I 
I I L ______________________________________________________________________ J 

When Format 1 is used, the value of identifier-1 (or literal-1) is 
divided into the value of identifier-2.--The-value-of the-dividend 
(identifier-2) is replaced-by~he-value of the quotient. 

When Format 2 is used, the value of identifier-1 (or literal-1) is 
divided into or by ide~ti£i~E=£ (or ~i~~E~~=£)' the quotient is-stored 
in identifier-3, and the remainder optionally is stored in ~~~g~if!~E=~. 

remainder is defined as the result of subtractino the product of 
uoti~nt,., .. "~.~~.~'P~i.i:.g~~~~.2~.i.f~.~.2~ .. "t~.,~?,.~!,yidend. - ~.$~O 

It;j,;~I;tis.ti':eO:i[fliea:~,;;;hone: .. :ii£C:,:f;ii~'.,,,.1(j§n~~f:t...... .....~Q.93;;;i.; 
If the ROUNDED option is also specified, the quotient' ls"'roun'ded 

after the remainder is determined. 

Each identifier must refer to an elementary numeric item except the 
identifierfollowing the word GIVING which may be a numeric edited item. 

Each li~eralmust be a numeric literal. 

The maximum size of each operand is 18 decimal digits. The maximum 
size of the resulting quotient, after decimal point alignment, is 18 
decimal digits. The maximum size of the resulting remainder (if 
specified), after decimal point alignment is 18 decimal digits. 

Division by zero always results in a size error condition. 

The MULTIPLY statement is used to multiply one data item by another 
data item. 

r----------------------------------------------------------------------, 
I Format 1 I 
~----------------------------------------------------------------------~ 
I I 
I { identifier-1 } I 
I MULTIPLY ~X identifier-2 [gQQ~Q~Q] I 
I ----- literal-1 I 
I I 
I [ON SI~~ ERRQg imperative-statement] I 
I I L ______________________________________________________________________ J 

182 Part IV -- Procedure Division 

'_ .... ' 



( '\, 
I 

,/ 

o 

MULTIPLY/SUBTRACT Statements 

r------------------------------------~---------------------------------, 
I Format 2 I 
~----------------------------------------------------------------------~ 
I I 
I {identifier-l} {identifier-2} I 
I MULTIPLY ~~ §!Y!~§ identifier-3 1 
1 ---- literal-l literal-2 1 
1 1 
1 [ROUNDED] [ON §!£~ ~RRQg imperative-statement] 1 
I I L ______________________________________________________________________ J 

When Format 1 is used, the value of identifier-l (or literal-i) is 
multiplied by the value of identifier-2~--The-value of the-multiplier 
(identifier-2) is replaced by the-product. 

When Forlnat 2 is used, the value of i~~~~i£i~~=! (or li~~f~l=!) is 
multiplied by identifier-2 (or literal-2), and the product is stored in 
identifier-3. 

Each identifier must refer to an elementary numeric item except the 
identifier following the word GIVING which may be a numeric edited item. 

Each literal must be a numeric literal. 

The maximum size of each operand is 18 decimal digits. The maximum 
size of the resulting product, after decimal point alignment, is 18 
decimal digits. 

SUBTRACT Statement 

The SUBTRACT statement is used to subtract one, or the sum of two or 
more, numeric data items from another data item(s). 

r----------------------------------------------------------------------, 
I Format 1 I 
~----------------------------------------------------------------------~ 
I I 
II {identifier-l} [identifier-2 ] II 

SUBTRACT 
I literal-l literal-2 I 
I I 
I FROM identifier-m [gQQ~2~Q] I 
I .... - I 
I [identifier-n (BOUNQ~Q]] ••• [ON SI£~ ~BROR imperative-statement] I 
I I L _____________________________________________________________ - ____ ----J 

Arithmetic statements 183 



SUBTRACT Statement 

r----------------------------------------------------------------------, 
I Format 2 I 
~----------------------------------------------------------------------~ 
I I 

I
I {identifier-l} [ identifier-2J II 

SUBTRACT 
I literal-l literal-2 I 
I I 
II { identifier-m} II 

FROM ~!~!~~ identifier-n 
I literal-m I 
I I 
I [RO~NDEQ] [ON §!£~ ~RROg imperative-statement] I 
I I L ______________________________________________________________________ J 

r----------------------------------------------------------------------, 
I Format 3 I 
~----------------------------------------------------------------------~ 
I I 

I SUBTRACT {CaRR } identifier-1 [gaM identifier-2 I 
I CORRESPQ~Q!~~ I 
I I 
I [gOUNDED] [ON §IZ~ ~ggQg imperative-statement] I 
I I L ______________________________________________________________________ J 

Format 1 -- all literal~ or identifiers preceding the word FROM are 
added together, and this total is subtracted from identifier-m, and 
identifier-n (if stated), etc. The result of the subtraction is stored 
as the new value of identifier-m, identifier-n, etc. 

Format 2 -- all literal~ or identifier~ preceding the word FROM are 
added together, and this total is subtracted from literal-m or 
identifier-me The result of the subtraction is stored-as-the new value 
of identifier-n. 

Format 3 -- data items in identifier-1 are subtracted from, and the 
difference stored into corresponding data items in, identifier-2. When 
the CORRESPONDING option is used in conjunction with ON SIZE ERROR and 
an ON SIZE ERROR condition arises, the result for SUBTRACT is analogous 
to that for ADD. 

Each identifier must refer to an elementary numeric item except the 
identifier following the word GIVING which may be a numeric edited item. 

Each literal must be a numeric literal. 

The maximum size of each operand is 18 decimal digits. The maximum 
size of the resulting difference, after decimal point alignment, is 18 
decimal digits. 

184 Part IV -- Procedure Division 

C: 



o 

GO TO Statement 

Statements, sentences, and paragraphs in the Procedure Division are 
ordinarily executed sequentially. The procedure branching statements 
allow alterations in the sequence. These statements are ALTER, GO TO, 
PERFORM, STOP, and EXIT. 

GO TO statement 

The GO TO statement allows a transfer from one part of the program to 
another. 

r----------------------------------------------------------------------, 
I Format 1 I 
~----------------------------------------------------------------------~ 
I I 
I GO TQ procedure-name-l I 
I I L ______________________________________________________________________ J 

r----------------------------------------------------------------------, 
I Format 2 I 
~----------------------------------------------------------------------~ 
I I 
I GO TO procedure-name-l [procedure-name-2J I 
I I 
I DERENDING ON identifier I 
I I L ______________________________________________________________________ J 

r----------------------------------------------------------------------, 
I Format 3 I 
~----------------------------------------------------------------------~ 
I I 
I GO TQ. I 
I I L ______________________________________________________________________ J 

When Format 1 is specified, control is passed to E£ocedure-name-1 or 
to another procedure name if the GO TO statement has been changed by an 
ALTER statement. (If the latter is the case, the GO TO statement must 
have a paragraph name, and the GO TO statement must be the only 
statement in the paragraph.) 

If a GO TO statement represented by Format 1 appears in an imperative 
sentence, it must appear as the only or last statement in a sequence of 
imperative statements. 

When Format 2 is used, control is transferred to one of a series of 
procedures, depending on the value of the identifier. For example, when 
identifier has a value of 1, control is passed to procedure-name-1; a 
value of 2 causes control to be passed to procedure-name-2, ••• i a value 
of n causes control to be passed to procedure-name-n. For the GO TO 
statement to have effect, identifier must represent a positive or 
unsigned integer, i.e., 1, 2, ••• , n. If the value of the identifier is 
anything other than a value within the range 1 through n, the GO TO 
statement is ignored. The number of procedure-names must not exceed 
2031. 

Procedure-Branching Statements 185 



ALTER Statement 

Identifier is the name of a numeric elementary item described as an 
integer. Its PICTURE must be of four di its or less. Its USAGE must be 
DISPLAY, COMPUTATIONAL 

When Format 3 is used, an ALTER statement, referring to the GO TO 
statement, must have been executed prior to the execution of the GO TO 
statement. The GO TO statement must immediately follow a paragraph name 
and must be the only statement in the paragraph. 

ALTER Statement 

The ALTER statement is used to change the transfer point specified in 
a GO TO statement. 

r----------------------------------------------------------------------, 
I Format I 
~----------------------------------------------------------------------~ 
I I 
I ALTER procedure-name-l ~Q [PRQ£~~Q ~Ql procedure-name-2 I 
I I 
I I 
I [procedure-name-3 ~Q [~gQ£~~Q ~Ql procedure-name-41... I 
I I L ___________________ --_________________________________________________ J 

Procedure-name-l, Qrocg~gre-g~me-~, etc., must be the names of 
paragraphs that contain only one sentence consisting of a GO TO 
statement without the DEPENDING option. 

Procedure-name-2, Qroce~grg=game-4, etc., must be the names of 
paragraphs or sections in the Procedure Division. 

The effect of the ALTER statement is to replace the procedure-name 
operands of the GO TO statements with Erocgdure-n~-2, 
Qrocedure=nam~, etc., of the ALTER statement, where the paragraph-name 
containing the GO TO statement is procedure-name-l, procedure-name-3, 
etc. For example: 

PARAGRAPH-i. 
GO TO BYPASS-PARAGRAPH. 

PARAGRAPH-1A. 

BYPASS-PARAGRAPH. 

ALTER PARAGRAPH-l TO PROCEED TO PARAGRAPH-2. 

PARAGRAPH-2. 

Before the ALTER statement is executed, when control reaches 
PARAGRAPH-l, the GO TO statement transfers control to BYPASS-PARAGRAPH. 
After execution of the ALTER statement, however, when control reaches 
PARAGRAPH-l, the GO TO statement transfers control to PARAGRAPH-2. 

186 Part IV -- Procedure Division 

( " .. 
/' 



l., 

o 

PERFORM Statement 

segmgn~at!on Inform~~~Q~: A GO TO statement in a section whose 
priority is greater than or equal to 50 must not be referred to by an 
ALTER statement in a section with a different priority. All other uses 
of the ALTER statement are valid and are performed even if the GO TO to 
which the ALTER refers is in an overlayable fixed segment (see 
"segmentation"). 

R~RFORM.Statement 

The PERFORM statement is used to depart from the normal sequence of 
procedures in order to execute a statement, or a series of statements, a 
specified number of times: or until a predetermined condition is 
satisfied. After the statements are executed, control is returned to 
the statement after the PERFORM statement. 

r--------------------------~--~-------~---~~-----------------------~---, 
I. Format 1 I 
~------~------------------~----~---------------------------------------~ 
I I 
I PERFORM procedure-name-l [!RRU procedure-name-2J I 
L ____ -------~-----------------------------------------_________________ J 

r----------------------------------------------------------------------, I Format 2 I 
~----------------------------------------------------------------------~ 
I I 
I ~RM procedure-name-l (!~B~ procedure-name-2J I 
I I 

I
I {identifier-l} II 

~!~~§ 
I integer-l I L ______________________________________________________________________ J 

r----------------------------------------------------------------------, I Format 3 I 
~----------------------------------------------------------------------~ 
I I 
I ~QBM procedure-name-l [!HRg procedure-name-2J I 
I I 
I g~TIL condition-l I L ___________ - __________________________ - _______________________________ J 

Procedure-Branching statements 187 



PERFORM Statement 

r~---------------------------------------------------------------------, 
I Format 4 I 
~----------------------------------------------------------------------~ 

PERFORM procedure-name-l [THRU procedure-name-2J 

{
index-name-l } 

~ARYING FROM {
index-name-2 } 
literal-2 
identifier-2 ident.if ier-l 

{
literal-3 } 

~X QNTI~ 
identifier-3 

{
index-name-4} 

identifier-4 

condition-l 

{
index-name- 5} 

FROM literal-5 
identifier-5 

{

literal-6 } 
~X Q~!I~ condition-2 

identifier-6 

{

index-name-7} 

identifier-7 {

index-name-8} 
FROM literal-8 

identifier-8 

{

literal-9 } 
~X QNTI~ condition-3JJ 

identifier-9 l _____________________________________________________________________ _ 

Each ~oc~dure=name must be the name of a section or paragraph in the 
Procedure Division. 

Each iggnt~fie~ represents a numeric 
In Format 2, and Format 4 with 
sents a numeric item described as 

Each literal represents a numeric literal. 

item described in the 
AFTER option each 

Whenever a PERFORM statement is executed, control is transferred to 
the first statement of the procedure named EEocedure-name-l. Control is 
always returned to the statement following the PERFORM statement. The 
point from which this control is passed is determined as follows: 

1. If procedure-name-l is a paragraph-name and procedure-name-2 is not 
specified, the return is made after the execution of the last 
statement of procedure-name-l. 

2. If procedure-name-l is a section name and procedure-name-2 is not 
specified, the return is made after the execution of the last 
sentence of the last paragraph in procedure-name-l. 

3. If procedure-name-2 is specified and it is a paragraph name, the 
return is made after the execution of the last statement of that 
paragraph. 

4. If procedure-name-2 is specified and it is a section name, the 
return is made after the excecution of the last sentence of the 
last paragraph in the section. 

GO TO and PERFORM statements may be specified with performed 
procedure(s) • 

188 Part IV -- Procedure Division 

.......... ' 

c 



( -_ .. " 
\ ,,-/,1, 

o 

PERFORM Statement 

When a PERFORM statement includes within its range of procedures 
another PERFORM statement, this embedded PERFORM statement must have its 
range of procedures either totally included in or totally excluded from 
the range of procedures of the original PERFORM statement. That is, the 
exit point of the original PERFORM statement cannot be con wi 
the ran e of rocedures of the embedded PERFORM 

Control may be passed to a sequence of statements that lies between 
the entry and exit points of a PERFORM statement by means other than a 
PERFORM. In this case, control passes through the last statement of the 
procedure to the following statement as if no PERFORM statement referred 
to these procedures. 

FORMAT 1: When Format 1 is used, the procedure(s) referred to are 
executed once, and control returns to the statement following the 
PERFORM statement. 

FORMAT 2: When Format 2 is used, the procedure(s) are performed the 
number of times specified by i~entii!gf=! or !~~gggf=!. Once the TIMES 
option is satisfied, control is transferred to the statement following 
the PERFORM statement. 

The following rules apply to the use of a Format 2 PERFORM statement: 

1. If integer-lor identifier-1 is zero or a negative number at the 
time the PERFORM statement is initiated, control passes to the 
statement following the PERFORM statement. 

2. Once the PERFORM statement has been initiated, any reference to 
identifier-1 has no effect in varying the number of times the 
procedures are initiated. 

FORMAT 3: When Format 3 is used, the specified procedures are performed 
until the condition specified by the UNTIL option is true. Atthis 
time, control is transferred to the statement following the PERFORM 
statement. If the condition is true at the time that the PERFORM 
statement is encountered, the specified procedure(s) are not executed. 

FORMAT 4: Format 4 is used to augment the value of one or more 
identifiers or index-names during the execution of a PERFORM statement. 

When executing a Format 4 PERFORM statement, the initial values of 
identifier-2 (index-name-2) and identifier-5 (index-name-5) must be 

~f!2tl~ ....... ~n~§~;~~E:~.~ .. ±.: .. ~~.~~~ .. ~ ... ·:~,c?·P~":.:,!i~.g~ .. ~.~Y'~~ 
In the following discussion of Format 4, every reference to 

identifier-n also refers to index=~~~g=~ except when identifier-n is the 
object of the BY option. Also, when index-names are used, the FROM and 
BY clauses have the same effect as in a SET statement (see "Table 
Handling"). 

During execution of the PERFORM 'statement, changing the value of 
index-names or identifiers of the VARYING option or identifiers of 
the BY option, changes the number of times the procedures are executed. 

Procedure-Branching Statements 189 



PERFORM Statement 

When one identifier is va~, the following is the sequence of 
events: 

1. Identifier-1 is set equal to its starting value, identifier-2 or 
literal-2. 

2. If condition-1 is false, the specified procedure(s) are executed 
once. 

3. The value of identifier-1 is augnlented by the specified increment 
or decrement, identifier-3 or literal-3, and condition-1 is 
evaluated again. 

4. Steps 2 and 3 are repeated, if necessary, until the condition is 
true. When the condition is true, control passes directly to the 
statement following the PERFORM statement. If the condition is 
true for the starting value of identifier-i, the procedure(s) are 
not executed, and control passes directly to the statement 
following the PERFORM statement. 

chart 2 is a flowchart illustrating the logic of the PERFORM 
statement when one identifier is varied. 

When two identifiers are varied, the following is the sequence of 
events: 

1. Identifier-1 and identifier-4 are set to their initial values, 
identifier-2 (or literal-2) and identifier-5 (or literal-5), 
respectively. 

2. Condition-1 is evaluated; if true, control is passed to the 
statement following the PERFORM statement; if false, condition-2 is 
evaluated. 

3. If condition-2 is false, procedure-name-1 through procedure-name..:.2 
(if specified) is executed·once. 

4. Identifier-4 is augmented by identifier-6 (or literal-6), and 
condition-2 is evaluated again. 

5. If condition-2 is false, steps 3 and 4 are repeated. 

6. If condition-2 is true, identifier-4 is set to the value of 
identifier-5. 

7. Identifier-1 is augmented by identifier-3 (or literal-3). 

8. Steps 2 through 7 are repeated until condition-1 is trUe. 

At the termination of the PERFORM statement, if condition-1 was true 
when the PERFORM statement was encountered, identifier-l and 
identifier-4 contain their initial values. Otherwise, identifier-l has 
a value that differs from its last used setting by an increment or 
decrement, as the case may be. 

Chart 3 is a flowchart illustrating the logic of the PERFORM 
statement when two identifiers are vcried. 

For three identifiers, the mechanism is the same as for two 
identifiers except that identifier-7 goes through the complete cycle 
each time that identifier-4 is augmented by identifier-6 or literal-b, 
which in turn goes through a complete cycle each time identifier-1 is 
varied. 

190 Part IV -- Procedure Division 

(~~ 
'~"'" .. 

c 



o 

PERFORM Statement 

Chart 4 is a flowchart illustrating the logic of the PERFORM 
statement when three identifiers are varied. 

SEGMENTATION INFORMATION: A PERFORM statement appearing in a section 
whose priority is less than the segment limit can have within its range 
only one of the following: 

1. sections each of which has a priority number less than 50. 

2. Sections wholly contained in a single segment whose priority number 
is greater than 49. 

A PERFORM statement appearing in a. section whose priority number is 
equal to or greater than the segment limit can have within its range 
only one of the following: 

1. Sections with the same priority number as the section containing 
the PERFORM statement. 

2. Sections with a priority number less than the segment limit. 

When a procedure-name in an independent segment is referred to by a 
PERFORM statement contained in a segment with a different priority 
number, the segment referred to is made available in its initial state 
for each execution of the PERFORM statement. When a procedure-name in 
the fixed portion is referred to by a PERFORM statement in an 
independent segment, the. independent segment is reinitialized upon exit 
from the PERFORM statement. (See "Segmentation.") 

Procedure-Branching Statements 191 



PERFORM statement, 

Chart Logical Flow of Option 4 PERFORM Statement Varying One 
Identifier 

··.·A2···.····· • EXECUTION OF • 
• PERFORM STMT • 
• BEGINS • · .. ···1·· .... 
•••• ·B2 ••••••• • •• 
• SET • 
• IDENTIFIER-l • 
: E~a~ ~~L~IS : · . 
········1········ 

,', 
C2 " 

,.'. TEST .'., TRUE • • •• ·C3······.·· . ->'. CONDITION-l •• -------->. EXIT • .. .. . . " .' .............. . .. .. 
. rSE 

.... ·02·········· · . • EXECUTE • 
• PROCEOURE-l • 
• T"IRU • 
• PROCEDURE-2 • 

·······1···· .. · 
·····E2·········· • • 
• AUGMENT • 

---. IOENTIFIF.R-l • 
• WITH ITS BY • 
• VALUE • ................. 

192 Part IV -- Procedure Division 

' ........ _ .. ' 



Chart 3. 

o 

PERFORM Statement 

Logical Flow of Option 4 PERFORM Statement Varying Two 
Identifiers 

····1.1·· ••••.•• • EXECUTION OF • 
• PERFORM STMT • 
• BEGINS • ...... 1·· .. .. 
·····B1······· .. . · . • IDENTIFIER-1 • 
• IDENTIFIER-Ii • 
• SET TO INITIAL • 
• F'tOM VALUE • 

~::::~~:1········· · . .... .. , 
Cl •• 

•• +. ····C2······ ... , • TEST ., TRUE. • 
., CONOITION-l •• -------->. EXIT • .. .. . . .. .. . ............. . 

+ ••• r" ,. , 
01 ., 

.. + +. 
,. TEST ., TRUE 

->., CONOITION-2 ,.----------------1 +. •• 
+. •• 

+ ••• r" 
• •••• E1.......... • •••• E2 •••••••••• 
• • *I INITIALIZE '. 
: PR~~ggn-1 : :IDENTIFIER-4' TO: 

: PR6~~gURE- 2 : ~ ~~~~~~~~R~~ : · .. · .. ·1 .. ·.... ..· .... 1 .. · .... 
·····F1.·· •• ••••• • •••• F2 •••••• , •••• 
• • ~ AUGMENT -. 

___ : IDE~~~~-4 : ~ IDENTIFIER-1 : 

: WITUAg~ BY : tyIDLE~T:I~!;-i_30R: ................. ········1········ 
.... · . • Cl • · . .... 

Procedure-Branching Statements 193 



PERFORM Statement 

Chart 4. Logical Flo~ of Option 4 PERFORM statement Varying rhree 
Identifiers 

····A2··.······ 
• EXECUTION OF • 
• PERFORM STMT • 
• BEGINS • ,· .. ·· .. 1 ...... · 
••• ·.B2···· •••••• 
• IOENTIFIER-l • 
~ IOENTIFIER~1f • 
• IOENTIFIER-7 • 
'SET TO INITIAL • 
• FROM VALUES • ........ 1 ........ 

,', 
C2 " .... ...0 .... C3 ••••••••• 

: C2 :--->.:' cON6f~IoN.l·: .:~~:---->: tXIT : .. .. .. . . .... .". . ............. . .. .. . rSE 

,', 
02 " .... .. .. . • o. TEST " TRUE 

• 02 '-"'-->',. CONDITION-2 ,.----------------------------------------.. .. .. .... ." . .. .. rAts, 

,', 
E2 " .. .. 

" TEST '0 TRug 

-->', CONDITION-3 ,.--... --------------.[ .. .. .. . . . , ,. 
rs> 

..... F2.......... .ll~~Fl.!!~_~-.!.ll. 
• •• INITIALIZE • 
: PR~~g~~-l : : IOENTIFIER-7 : 
• THRU • .TO LITERAL-8 OR. : .. ~~~In;l .. : :.;~mrM"I": 

: .... G2 ......... : : .... Xdd:~N; .... : 
___ : IOEM¥~¥~i-1 : : IDENTIFIER-4 : 

• WITH ITS BY' • .BY LITERAL-6 OR. 
• VALUE' • IOENTIFIER- 6 • ................. ········1········ 

•••• • • 
• 02 • • • •••• 

• •••• FI" ••••••••• 
'-'NITIALIZE • 
:IOENTIFIER-4 TO! 
• LITERAL-S OR • 
• IDENTIFIER-S • ...... ·T .. · .... 
·····GIf········.· • AUGMENT • 
: IDENTIFIER-1 : 
.BY LITERAL-3 OR. 
• IDENTIFIER-3 • ········1········ . ... 

• • 
• C2 • • • • ••• 

194 Part IV -- Procedure Division 

,f" 
"-.. / 



C
·'·'' 

" 
I 

./ 

o 

STOP/EXIT Statements 

The STOP statement halts the object program either permanently or 
temporarily. 

r----------------------------------------------------------------------, 
\ Format \ 
~----------------------------------------------------------------------~ 

\: {RUN} :\ STOP 
\ literal \ 
\ \ L ______________________________________________________________________ J 

When the RUN option is used, the execution of the object program is 
terminated, and control is returned to the system. 

If a STOP statement with the RUN option appears in an imperative 
statement, it must appear as the only or last statement in a sequence of 
imperative statements. All files should be closed before a STOP RUN 
statement is issued. 

When the literal option is used, the literal is communicated to the 
operator. The program may be resumed only by operator intervention. 
continuation of the object program begins with the execution of the next 
statement in sequence. 

The litera~ may be numeric or nonnumeric, or it may be any figurative 
constant except ALL. 

The EXIT statement provides a common end point for a series of 
procedures. 

r----------------------------------------------------------------------, 
\ Format \ 
~----------------------------------------------------------------------~ 
\ \ 
\ paragraph-name. ~~!! \ 
I I L ______________________________________________________________________ J 

Procedure-Branching Statements 195 



EXIT Statement 

It is sometimes necessary to transfer control to the end point of ·a 
series of procedures. This is normally done by transferring control to 
the n~xt paragraph ot sedtion, bUt in sbme cases this does not have the 
required effect~ For instanbe, the point to which control is to be 
trarisferred may be at the etid of a ~artge of procedures governed bya 
PERFORM or at the end of a declarative section. rhe EXIT statement is 
provided to enable a procedure~name tb be associated with such a point. 

If control reaches an EXIT paragraph that is not the end of a range 
.of procedures governed by an active PERFORM or USE statement, control 
passes through the EXIT point to the first sentence of the next 
paragraph. . 

The EXIT statement must be preceded bY' a paragraph-name and be the 
only statement in the paragra~h~ 

~::§!.i·;:r~~ii~<~~"~'.··~~~#~m~~'.·.··'.'.' '" 
;:~;gs .. '4,~~,;8~~~m.'·:~~!I~,~ .. S~fc~ .• , 

196 Part IV -- Procedure Division 

c 



C' 
" 

c,! 

o 

MOVE Statement 

Movement and inspection of data are implicit in the functioning of 
several of the COBOL statements. These statements are: MOVE, EXAMINE, 
III%tll:1111 •• • 

The MOVE statement is used to transfer data from one area of storage 
to one or more other areas. 

,.-
1 
1--­
J 
I 
I .!tQ'y~ 
I 
I 
L-

,--
1 

{

ideo tif ier- 1 } 
lQ 

Ii teral 

~----------------------, 
I 

Format 1 

identifier-2 [identifier-3] ••• 

Format 2 

, 
I 

oJ 
I 
I 
) 

I 
I 

J 

, 
I 

oJ 
I 
I 

t MOY] 
I 
1 

{ 

~QR R]~£Ql!]l1!g } 
identifier-1 ~Q identifier-2 

~Q.BB 
::::(::w.I@;fi:ti:;'¥.:i.::~:$.itI:Wi:~:::!:;!:!:;~::::ll 

I 
J 

An index data item cannot appear as an operand of a MOVE statement. 

FORMAT 1: identifier-1 and litef~1 represent the sending area; 
~~~iiit1g~-2~-1~g!i!:!fJ:g£=J, represent the receiving areas. 

The data designated by literal or identifier-1 is moved first to
identifier-2, then to identifier-3 (if specified), etc.

FORM!T_l: the CORRESPONDING option is used to transfer data between
items of the same name simply by specifying the group items to which
they belonq.

Neit her j,g~.!!!i!.i,g~ may be a level-66, level-77, or level-88 data
item.

Data items from each qroup are considered CORRESPONDING when they
have the same name and qualification, up to but not including
!9§!} t! E! §f= 1, !9§!} t! E!§ f = ~ l:!:ill:!:i:I!l:B:!:!:!:!il!:~III:E~:!ii:~: .

.J

At least one of the data items of a pair of matching items must be an
elementary data item.

Each subordinate item containing an OCCURS, REDEFiNES, USAGE IS
INDEX, or BENAMES clause is ignored. However, either ig~n!.i1ig~ may

Data-Manipulation Statements 197

MOVE Statement

have a REDEFINES or OCCURS clause in its description or may be
subordinate to a data i·tem described with these clauses.

1. An y move in w bich the sending and recei ving items are both
elementary items is an elementary move. Each elementary item
belongs to one of the following categories: numeric, alphabetic,
alphanumeric. numeric edited. or alphanumeric edited (see "PICTURE
Clause" in "Data Division"). Numeric literals belong to the
cateqory numeric; nonnumeric literals belong to tbe category
a lpha numeric.

2. When an alphanumeric edited, alphanumeric, or alphabetic item is a
recei v ing i te m:

a. Justification and any necessary filling of unused character
positions takes place as defined under the JUSTIFIED clause.
Unused character positions are filled with spaces.

b. If the size o~ the sending item is greater than the size of the
receivinq item, the excess characters are truncated after the
receiving item is filled.

c. If the sending item has an operational sign, the absolute value
is used.

3. When a numeric or numeric edited item is a receiving item:

a. Alignment bV decimal point and any necessary zero filling of
unused character positions takes place, except when zeros are
replaced because of editing reguirements.

b. The absolute value of the sending item is used if the receiving
item has no operational siqn.

c. If the sendinq item has more digits to the left or right of the
decimal point than the receiving item can contain, excess
diqits are truncated.

Note: If at least one of the operands of an arithmetic
operation is floating-point and the resultant field is fixed­
point, rounding always takes place, whether or not ROUNDED is
specified.

d. The results at obiect time may be unpredictable if the sending
item contains any nonnumeric characters.

4. Any necessary conversion of data from one form of internal
representation to another takes place during the move, along with
any specified editing in the receiving item.

5. Any move that is not an elementary move is treated exactly as
thouqh it were an alphanumeric elementary move, except that there
is no conversion of data from one form of internal representation
to another. In such a move, the receiving area is filled without
consideration for the individual elementary or group items
contained within either the sending or the receiving area.

19B Part IV -- Procedure Division

c

o

HOVE Statement

6. When the sendinq and rece1v1nq operands of a MOVE statement share a
part of their storaqe (that is, when the operands overlap), the
result of the execution of such a statement is unpredictable.

There are certain restrictions on elementa~y moves. These are shown
in Table 15.

Table 15. Permissible Moves

-----------------~~~~i~i~;-;i~ldT;~T~~T~~T~~T~iT~~T~;~~i.~ •. ·.E···~lli;.~~ili>~·!~mj~;j·~·'·I··§·· .. ~-:-l
\ \ \ \ \ \ \ 1\'.:

r-------------------------------- --+--+--+--+--+--+---1"111111 IGroup (GR) IY IY IY \Y1 Iy1\Y1 IY1
r-------------~-------------------t--t--t--t--t--t--t---

~~::~~~==~=-~~~~------------------t:-t:-t:-t~-t~-t~-t:-- \
\~lphanumeric (AN) IY \Y IY IY 4 1Y4 1Y4 1Y
r---------------------------------t--t--t--t--t--t--t---
IExternal Decimal (ED) IY1 1N IY2 1Y IY IY IY2
r---------------------------------+--+--t--+--+--+--t---
IBinary (BI) IY1 1N IY2 1Y IY IY IY2
r---------------------------------t--t--t--t--t--t--t---
INumeric Edited (NE) IY IN IY IN IN IN \Y
r---------------------------------+--+--+--+--+--+--+--,
I~lphanumeric Edited (ANE) IY IY IY IN IN IN IY I
r---------------------------------t--t--t--t--t--t--t---t~~: ,
I ZEROS (numeric or alphanuneric) I YIN I Y I y3 I y31 y 3 1 Y I:: .. ·• '"
r---------------------------------+--+--+--+--+--+--+--- .
ISP~CES (~L) IY IY IY IN IN IN IY
r---------------------------------t--t--t--t--t--t--+---
IHIGH-VALUE, LOW-VALUE, QUOTES IY IN IY IN IN IN IY
r---------------------------------+--+--+--+--+--+--+--- ,.
I ~LL literal I Y I Y I Y I y5 I y5 1 y5 1 Y L.\ '"
r---------------------------------+ --t --t --t --t --t --t ---f.\. •• '.' .•...•... '.
INumeric Literal IY1 1N IY2 1Y IY IY IY2 L.\ \·····
r---------------------------------+--+--+--+--+--+--+---+ :. "
I Nonnumeric LiterallY 1 Y 1 Y 1 y5 1 y5 1 y 5 1 Y I......: ,.
~ .. -;--- - --- -- -:-: ~ .. -:-:- ~-: - ':"" - ----- - - - - - --- - ' ..

~----------------------------- -~,~~\ : '.

\1Move without conversion (like AN to ~N).
\20nly if the decimal point is at the ri~ht of the least significant
\ jigit.
\3Numeric move.
14The alphanumeric field is treated as an unsigned ED (integer) field.
15rhe literal must consist only of numeric characters and is treated asl
I an ED integer field. I L __ J

Data-Manipulation Statements 199

EXAMINE Statement

EX~MINE Statement

rhe EXAMINE statement is used to count the number of times a
specified character appears in a data item and/or to replace a character
with another character.

r--,
I Format 1 I
~--~
I I
I {Q!'!!:I~ [Ig~~} I
I ~K~MINE identifier r~~~~~~~ ~~~ literal-l I
I ~~~QI~~ I
I I
I [REPLAC!!'!@ §~ literal-21 I
I I l __ J

r--,
I Format 2 I
~--~
I I

I {ALL l I I LEADIN3 I
I ~~~MI~~ identifier B~~~~£~!'!~ FIRST-- literal-l I
I Q!'!!:I~ E~g~~ I
I I
I ~! literal-2 I
I I l __________________________________ ~ ___________________________________ J

In all cases, the descripti~n of i~~~~ifi~~ must be such that its
usage is display (explicitly or implicitly).

~hen i~~g~ifie~ represents a nonnumeric data item,
at the leftmost character and proceeds to the

When i~~ntifie~ represents a numeric data item, this data item must
consist of numeric characters, and may possess an operational sign.
Examination starts at the leftmost character and proceeds to the right.
Each character is examined in turn.

If the letter ·S· is used in the PICTURE of the data item description
to indicate the presence of an operational sign~ the sign is ignored by
the EXAMINE statement.

Each !i~~£~! must consist of a single character belonging to a class
consistent with that of the identifier; in addition, each literal may be
any figurative constant except ALL. If identifier is numeric, each
literal must be an unsigned integer or the figurative constant ZERO
(ZEROES, ZEROS).

~hen Format 1 is used, an integral count is created which replaces
the value of a special re~ister called TALLY, whose implicit description
is that of an unsigned integer of five digits (see "Language
Considerations").

200 Part IV -- Procedure Division

(~

c

C
"'"

I

;

o

EXAMINE Statement

1. When the ALL option is used, this count represents the number of
occurrences of l~t~~~l=l.

2. When the LEADING option is usea, this count represents the number
of occurrences of l~t~t~l=l prior to encountering a character other
than literal-l.

3. When the UNTIL FIRsr option is used, this count represents all
characters encounterea before the first occurrence of 1~~~£~1=1.

Whether Format 2 is usea, or the REPL~CIN3 option of Format 1, the
replacement rules are the same. They are as follows:

1. When the ALL option is used, l~te£~l=~ is substituted for each
occurrence of l~t~t~l=l.

2. When the LE~DING option is usea, the substitution of l~t~£~l=~ for
each occurrence of literal-l terminates as soon as a character
other than literal-i-~~-E~~-right-hand boundary of the data item is
encountered.

3. When the UNTIL FIRSr opti:m is used, the substi tution of !.~!:.~£~l=£
terminates as soon as l~t~£~!.=l or the right-hand boundary of the
data item is encountered.

4. When the FIRST option is used, the first occurrence of 1~!:.~£~1=1 is
replaced by li~g~~l-f.

Specific EXAMINE statements showing the effect of each statement on
the associated data item and the T~LLY are shown in Table 16.

Table 16. Examples of Data Examination
r---T--------T-------T-------,
I I ' I I Result-I
I I I I ing I
I I I I Value I
I IITEM-1 IData lof I
I EXAMINE statement I (Before) I(~fter) Ir~LLY I
~---+--------+-------+-------~'
IEXAMINE ITEM-l T~LLYING ~LL 0 1101010 1101010 I 3 I
~---+--------+-------+-------~
IEX~MINE ITEM-1 T~LLYING ~LL 1 REPLA:ING BY 0 1101010 1000000 I 3 I
~---+--------+-------+-------~
IEXAMINE ITEM-l REPLACIN3 LE~DING "*" BY SP~CEI**7000 I 7000 I + I
~---+--------+-------+-------~
I EXAMINE ITEM-1 REPL~CING FIRST "*" by n$" 1**1.94 1$*1.94 I + I
~---~--------~-------~-------~
1+ unchanged I L __ J

Data-Manipulation Statements 201

I

\ .. -

c
202 Part IV -- Procedure Division

"":':':';

t~~~;~.g,Qm;t,~§~.!;£!~~~:Sll

Table 18. Combinations, of FROM arid TO opti()ns Q?art.'l:of 2)
ir---·"*:··""' ... -"*:-,"*:.,... ... -,.,... ... -,"*:"*:.,... ... 7T"*:~~ ... ~"*:-,"*:.,...;.;.. 77, ... -..;.7;..,...,- ... 7-:-;."*:7-7-7-777 7-:-7-~
\1'. ' ... ', operand~.,·.·.. '•. ,. . ,1· •.. <·.\. ····i••..••.. ::.' : '.·· ••. :· ..•. ··T:t:'ansforllla t'ipllRule "" ,'.: .. , ::., : ' .. : '."'.', .. , , "' ... : .. '
j~---------------... 7 :--.,...+--.,....,...-.,...---.... -.,...-:,...;..------:·-.,....,...-.,...-,-... .,... ... "*:,...-.,.....;.--:-,,...-.,....-""'1
~I~ROM... ":"' .. ·»:L Allcllaract.e,rsinthet:lClta;temref?:t'esent~{lby I
ilfigu~at:.ive ... c:::9n~t.ant.,...11· •. identif,ier~3,,·.··equaltothesingle:.'·.,:.,ctla.ra.cter
I{TO . : "':" :' ,/.< .• : "'::, ... ,'., .. :.' .•.. ' •. ,:'.: ,·.,·.,::·.···,·.·: •. ·· .• ·i ·.1·: ... ; i gtl.:r-a.tive7consta.n,t.,...1 .. :. i:\re<repl a.ce<1.tJ¥'t.t1.e
!lfigurative-const:ant ... 21. single.· .. · characterfi9urativ·e-constant.,...2~

I! FROM r ~£;c~~~I~~~isin;~h~i~~f~;it~~<~1;1~ll~Jed o¥1

c.

'l figurative-constant-:-l1 identifier ... ~~qua.~tothE:!,single ... character I
iITO ., .. ' •........ ,>, :" '.:<:, I figurCltiV'e ,c.onf)t:.a.nt.7+ar~,r:epla.ce<1. 9y):he I'
lno nnume:t'iC: ... Ii tera.17 2 . J singlecharacternonnurneric~1ite:t'al.,...2.1 li'" .• ' •. ' , ... :: .••• "•.....••.•. , ...•....• :"·:.'·,"':\'1 .":" ,. , .. ' .. " .. ' ',

il FROM/i •.•• ', ;i'\,ul Al1chara",ter,sintbedatafte~\;"~pj~~!e~ted . o¥
1.£ig\l>:~ti.Y.~r?Otlst:.ant~:J.l l.f·1.~._e.n t_.i" ... f ... ier~3e=l1?-alt.O . t:.r~.~~1191fachaX'Clqt:.§r
,TO•......•..... >/ 1 Q.X:i9.,'C.:LVE!:-C:OIll'S tant-:--l -are:r-e{llClc;:ed the
identifie~-2 .: ~~,.':J '"'.:., q.b.~a~raqi;e.r/.r§pz:e.sellt~d.by

o
Data-Manipulation Statements 203

f"
I

\,,----,

c
204 Part IV ~~ Procedure Division

o

OPEN Statement

The flo~ of data through the computer is governei by the Operating
System. The COBOL statements discussed in this section are used t~
initiate the flo~ of data to and from files stored on external media and
to govern lOw-volume information that is to be obtained from or sent to
input/output devices such as a card reader or console typewriter.

The operating System is a record processing system. That is, the
unit of data made available by a RE~D or passed along by a WRITE is the
record. The COBOL user need be concerned only with the use of
individual records; provision is automatically made for such operations
as the movement of data into buffers and/or internal storage, validity
checking, error correction (~here feasible), unblocking and blocking,
and volume switching procedures.

Discussions in this section use the terms volume and reel. The term
YQlumg applies to all input and output devices. The term ~gel applies
only to tape devices. Treatnent of mass storage devices in the
sequential access mode is logically equivalent to the treatment of tape
files.

No~g: The WRITE statement with the BEFORE/~FTER ~DV~NCING option is
referred to in some of the discussions which follow as the WRITE
B~~9RE/AF:rER.~DV~NCIN~ ... s.~a~~men.t •.... ·Siitlilar~Yltl1eijRj:T1!:~~~t.~~~~t.>.~~t2l1.

\t.he .. ~l?r.EJ1PO$ITIONING •.... option ipreferred to >.in some .disc~SE>;()Q.s.Cts,tl1e:
!lg:J::r~A.J~\~E;g~OpI~:r()~ING .••. sta te~~n t:-

The OPEN statement initiates the processing of input, output, and
input-output files. It perforns checking and/or writing oE labels and
other input/output operations.

r--,
I Format 1 I
~--~
I I
I [REVERSED] I
: OPEN. [IN~UT {file-name ~~~:-;;-R~~I~Q l ...] I
I I
I [QrrK~rrT {file-name [~ITH ~Q ~~~f~Q]l •••] I
I I
I [!=Q {file-name} •••] I
I I l __ J

Input/Output Statements 205

OPEN Statement

The file-name must be defined by a file description entry in the Data
Division~-------

At least one of the options INPUT, OUTPUT, or 1-0 must be specified.
However, there must be no more than one instance of each option in the
same statement, although m~re than one file-name may be used with each
option. These options may appear in any-order~-

The I-O option pertains only to mass storage files.

The OPEN statement must n~t specify a sort-file, but an OPEN
statement must be specified for all other files. The OPEN statement for
a file must be executed prior to the first READ, ;:::§mllwi:::i:i:ili:iilm:II:I:lim'~:!; or
WRITE statement for that file. A file can be opened more than once.
However, a second OPEN statenent for a file cannot be ~xecuted prior to
the execution of a CLOSE statement for that file. The OPEN statement
does not obtain or release the first data record. A READ or WRIrE
statement must be executed to obtain or release, respectively, the first

\
data record. Note: A user must have successfully obtained a data
record before he can address data in the record area.

The.OPEN statement causes the user's beginning label subroutine to be
executed if one is specified by a USE sentence in the Declaratives
Section.

Note: The COBOL object program does not check whether or not an OPEN
statement is successful or whether or not the file is already open when
the OPEN statement is issuedi if processing is attempted after an
unsuccessful OPEN statement execution or when an OPEN statement has been
executed for an already-open file, addressability errors will occur.

The REVERSED and the NO REWIND
sequential single reel file. '~:! •• ' ~~ .<: •.• ,~ .. ! : .. : .. i:; .. : ..

\;s~~\ ·t~{ ·a:i{ie·\;'~~~f~~: ·······ng m·ocfe V records. If th;D o~~iO~n i~a~~~cif~ed
for a file containing mode U records, doubleword boundary alignment of
the logical record is obtained only if the length of the logical record
is divisible by eight. If there is no doubleword boundary alignment for
a record containing SYNCHRONIZED items, the record cannot be properly
processed.

Files with nonstandard labels should not be opened for reversed
reading unless the last label is follOwed by a tape mark. Otherwise,
the system reads labels as though they were data records. When the
REVERSED option is specified, subsequent READ statements for the file
make the data records of the file available in reversed order; that is,
starting with the last record.

When the REVERSED option is specified, execution of the OPEN
statement causes the file to be positioned at the end of the file.

When opening a file, the NO REWIND option has no effect on file
positioning. It appears in the format for language consistency. When
either NO REWIND or no option is specified, positioning of a file at
OPEN time is controlled by the operating system (see the ~E2~E~~~~E~~
Guide).

If a sequential inpqt file is designated with the OPTIONAL clause in
the File Control paragraph of the Environment Division, the clause is

206 Part IV -- Procedure Division

c

C)

o

OPEN Statement

treated as commentsa The desired effect is achieved by specifying the
DUMMY or NULLFILE parameter in the DD statement for the file. If the
parameter is specified, the first RE~D statement for this file causes
control to be passed to the imperat1ve statement after the key words ~T
ENDa

The 1-0 option permits the opening of a mass storage file for both
in~ut and output operations. since this o~tion implies the existence of
the file, it cannot be used if the mass storage file is being initially
created.

When the 1-0 option is used, the execution of the OPEN statement
includes the following steps:

1. The label is checked.

2. The user's label subroutine, if one is specified by a USE sentence,
is executed.

3. The label is written.

Input/Output Statements 207

208 Part IV -- Procedure Division

o

START Statement (Version 3 and 4)

~m~t2: When Format 2 is used, the programmer requests that
processing begin with t~e first record of a specified generic key
class.

If the first record of the specified key class has been deleted,
retrieval begins at the next nondeleted record regardless of key class.

Data~name must be the data-name specified in the RECORD KEY clause
for the file.

Iden~!fi~:contains the generic key value for the request, and may
be any data item less than or equal in length to the RECORD KEY for
the file. Identifier may not appear in the record description for
this file.

The USAGE of Q~na~~ and !~~g~!fi~~ should be the same.

When the USING KEY option is specified,then before a START
statement is issued,the user must place the desired value (the
generic key> into !'Q~g~hf!.~!:. When the START. statement is
executed, the contents ~f identifier are compared with the contents
of the RECORD KEY ~~t~=rr~~~. The comparison is non~algebraic. from
left to right. The length of the comparison is controlled by the
length of identifier. Sequential processing of the file begins at
the first record whose RECORD KEY contains a match with the
contents of identifier.

!~~a~!.t!.~~ of different lengths may be specified for ·different
START statements for the same file.

For example, ,if the ~ata records ina file contain a 10-character
RECORD KEY field,and the user wishes to process the file from the
beginning ofa generic class defined by the first five characters
within the RECORD KEY field~ then he specifi~s as-character
id§t!!!:!.fi~,field. If he later wishes to begin processing.from the
beginning of another generic class defined by the first th'ree
characters within the RECORD KEY field, his next START statement
may specify a3-character~identifier~field.

Note that upon execution ~f a Format 2 START statement the contents
of the NOMIN~L KEY field issociatedwith the file remain unchanged.

If identifi~E is.greater: in length than s!~t.~=g~!!!~, then the excess
low",;order characters of identifier are truncated.

In Format 2, when the INV~LID KEY option is specified, control is
passed to the ime§t!:~tiY~=§'~~t.~!!!~n.t. following INVALID KEY when the
contents of identifier are invalid. Identifier is ,considered
invalid when-the-generickey.classitcontainsisnot found in the
file.

Input/Output Statements 209

SEEK/READ Statements

rhe SEEK statement serves only as documentation, and is meant to
initiate the accessing of a mass storage data record for subsequent
reading or writing.

r---~--------------------,
I Format I
~--~
I I
I SEEK file-name RECORD I
I I L __ J

rhe file-name must be defined by a file description entry in the Data
Division:-------

~ SEEK statement pertains only to jirect files in the random access
mode and may be executed prior to the execution of a READ or WRIrE
statement.

rhe SEEK statement uses the contents of the data-name in the A:rUAL
KEY clause for the location of the record to be accessed. If the key is
invalid, when the next READ or WRITE statement for the associated file
is executed, control will be passed to .the imperative statement
following the INV~LID KEY option.

However, this statement (if specified) is treated as a comment.

The functions of the READ statement are:

1. For sequential file processing, to make available the next logical
record from an input file and give control to a specified
imperative statement when end-of-file is detected.

2. For random file processing, to make available a specific
from a mass storage file and give control to a specified
statement if the contents of the associated A:rUAL
KEY data item are found to be invalid.

r--,
I Format I
~--~
I I
I gEAD file-name RECORD [into identifier] I
I I

I { Ar ~ND } imperative-statement I
I I~~~LIQ KEY I
I I L __ J

An OPEN statement must be executed for the file prior to the
execution of the first READ for that file. when a READ statement is

210 Part IV -- Procedure Division

c

C
-,,·

\
I

o

READ Statement

executed, the next logical rec~rj in the named file becomes accessible
in the input area defined by the associated record descript10n entry.

The record remains in the input area until the next input/out~ut
statement for that file is executed. No reference can be made by any
statement in the Procedure Division to information that is not actually
present in the current rec~rd. rhus, it is not permissible to refer to
the gth occurrence of data that appears fewer than g times. If such a
reference is made, no assu~pti~n should be made about the results in the
obj ect program.

When a file consists of m~re than one type of logical record, these
records automatically share the same storage area; this is equivalent to
an implicit redefinition of the area. Only the information that is
present in the current rec~rd is accessible.

FILE=~~~~: The iilg=g~~g must be defined by a file description entry in
the Data Division.

I~!:Q_IDEN!:!.f.IER_QPTION: The INTO identifier option makes the READ
equivalent to a READ statenen~.~?~:l.~8~E statement. Identifier must be
the name of a Working-storage ~l::g;i:iill:::JdiP;li.g;iil Section e ntry;-or-an-out put
record of a previously opened file. When this option is used, the
current record becomes available in the input area, as well as in the
area specified by identifier. Data will be moved into identifier in
accordance with the COBOL rules for the MOVE statement without the
CORRESPONDING option.

~!:_§~~QPTION: The AT END option must be specified for all files in the
sequential access mode. If, during the execution of a REA.D statement,
the logical end of the file is reached, control is passed to the
imperative statement specified in the A.T END phrase. A.fter execution uf
the imperative statement ass~ciated with the A.T END phrase, a READ
statement for that file must not be given Nithout prior execution ~f a

If a DD card for a sequential file specifies the DUMMY or NuLLFILE
parameter, on the first READ f~r the file, control will be passed to the
imperative statement in the AT END phrase. For purposes of language
consistency, the OPTIONA.L clause should be specified for this type of
file.

If, during the processing of a multivolume file in the sequential
access mode, the end of tape reel or mass storage unit is recognized on
a sequential REA.D, the following operations are carried out:

a. The standard ending v~lume label procedure and the user's
ending volume label procedure if specified by the USE
statement. The order of execution of these two

the USE statement.

b. A volume switch.

Input/Output statements 211

READ Statement

c. The stanjard be~innin~ volume label procejure and the user's
beginning volume pr~cedure if specified. rhe order of
execution is again specifiej by the USE statement.

d. rhe first data record on the neN volume is made available.

INV~LIDKEY OPTION:
storage-iiies-in-the
H~~~;~~.8;R~~:~<'~n··
,~ai.;~Y'q.l*C!/· ••••• ·.~!f.YL
··~~~.~.B.\ ~~R.~t;.~
g~8.C~,~ .. ·· .. · .. · , .. ~X;~E7ef~.
~9gg*t:~9n!.~;JJ~ he

for mass

If ~CCESS IS R~NDOM is specified for the file, the contents of the
hcrU~L or NOMINhL KEY for the file must be set to the jesired value
before the execution of the RE~D statement.

Only the track specifiej in the hCTUhL KEY is searched for the record
being read.

Control is passed to the imperative statement following INV~LID KEY
when the contents of the ~CTU~L KEY Dr: N"OMINtQjREjy: field are invalid.

The key is considered invalid unjer the following conditions:

1. For a jirect file that is accessej ranjomly: when the record is
not found within the sear~h limits, or when the track address in
the ~CTUhL KEY field is outside the limits of the file.

2.

3.

The WRITE statement releases a logical record to an output file. It
can also be used for vertical p~sitioning of a print file. For
se~uentially accessej mass storage files, the WRITE statement passes
control to a specified imperative statement if no space is available in
which to write the recorj. For randomly accessed mass storage files,
the WRITE statement passes control to a s~~~~~~~~~mperative statement
if the contents of the associated ~CTUhL ibr:NQM3:NA.L KEY data item are
found to be invalid.

212 Part IV -- Procedure Division

'

c

o

WRITE statement

r--,
I Format 1 I
~--~

WRITE record-name [FROM identifier-l]

[
(BEFORE l
) ADVANCING l AFTER) {

~dentifier-2 LINES '}
~nteger LINES
mnemonic-name

r--,
I Format 3 I
~--~
I I
I WRITE record-name [FROM identifier-i] I
I I
I INVALID KEY imperative-statement I
I I L __ J

An OPEN statement for a file must be executed prior to executing the
first WRITE statement for that file.

For files in both the sequential and random access modes, the logical
record released is no longer available after the WRITE statement is
executed.

RECORD-NAME: The record-name is the name of a logical record in the
File Section of the Data Division and must not be part of a sort-file.

FROM OPTION: When ~he FROM option is written, it makes the WRITE
equivalent to the statement MOVE identifier-l TO record-name followed by
the statement WRITE record-name. Data is moved into record-name in
accordance with the COBOL rules for the MOVE statement without the
CORRESPONDING option. Identifier-l should be defined in the
Working,-Storage Section,' or in another FD.

Input/Output Statements 213

WRITE statement

Program Product Information (Version 4)

FORMAT 1
sequential

Formats 1 are used only with standard

The ADVANCING ::,)options allow control of the vert=ks~l
rI;?g;?,.!t;~g;g.~P.5J'i of each record"°C;;'''the printed page. If the ADVANCING " '
fl;~9g;;~g;.2~~~Si. option is not used, au.C?:;~~.q"1~.e;g;y:.~.n'~iing ~s p7"0vided to cause
""sJ;'ngle"'spa:c~ng. If the ADVANCING <PQSIT!ONINGi opt~on l.S used, auto-rna ti cad vanci n 9 is overri dd en. :;";.::::~:;}:<::~/;.::::~:.:~:>/;:.:;:~:;;:.>:():.~-.::~:~~:/.:.<:: .. :~:.:.;::

When the
file, every

ADVANCING::~9'§~:.~~~~~~~~ option is written for a record in a
WRITE sta emen€""foi' '~:~'~'9~8~ !l}~.9~

ftg~:~'~~J0 ,.~}y,~~~.9'~F,"8P.;t:rr+~~!~·.~y!Cl n~;:!i~~~~;tftoNIN"
peqi:f~~~!:;~~~,':;~!,t~~,j •

t::w:":·:;'>;V':·:<

When the ADVANCING ~"""",':rJ;~Q~~'~§l option is used, the first character
in each logical record for the file must be reserved by the user for the
control character. The compiler will generate instructions to insert
the appr9P;,t:A.~11.~,·.!;gF:;-E~~g 8;!?~.~~q,7\~:;;:t'??:'§"'7~.P.~ ,\~··J::.~·~ .. :t;:.!."ySq~f;F:q;t;~f~":+l'l:~e

'!;:i~ .. 8R.;.·9!':7'\f '·:t;:.q~}(~~S8~g$... ·........<:g~~gl;i~·~ •. ~;:~~~·i:~~;:~~.:,,',9h.~~eS:t~1:\L;~·~('·.'~.~~9:!
r:~~f:;;'gB~~~.'i."i~~'~}?~~t)~'r" 'Ii: l. uS~'r'§""'re"spOl1s:tHl"lft:y"to"~:l~e"tliat"tne'
tappiopr:tat:e~"cl'faririel's'" are punched on the carriage control tape.

Format 1: In the ADVANCING option, when identifier-2 is used, it must
be the name of a nonnegative numeric elementary item (less than 100)
described as an integer. If identifier-2 is specified, the printer page
is advanced the number of lines contained in the identifier.

When integer is used in the ADVANCING option, it must be nonnegative
and less than 100. If integer is specified, the printer page is
advanced the number of lines equal to the value of integer.

When the mnemonic-name option is used in the ADVANCING option, it
must be defined as a function-name
Environment Division.
,17:Q,;'T~~~~P;:~~;~' spacing.
~.!m~~g;~~'~,~~;l

the Special-Names ;paragraph of the
s iR:nR-rJ;~r::~.::;:~",l9,;::tffi",",~and

, lection'f <leard'
;:. c;:: t:;; .. =;i, :::::::,:/~.:::~;. ~\,~:j:,s.\/ .. ';~:/::~Xl:8

The action taken for each function-name is given in Table 19.

If the BEFORE ADVANCING option is used, the record is written before
the printer page is advanced according to the preceding rules.

If the AFTER ADVANCING option is used, the record is written after
the printer page is advanced according to the preceding rules.

Table 19. Action Taken for Function-names -- ADVANCING Option
r--~---r--------T--,
I Function-name I Action Taken I
~---------------f--~
ICSP I Suppress spacing I
~---------------+--~
le01 through C091 Skip to channell through 9, respectively I
~---------------t---~--~
IC10 through C121 Skip to channel 10, 11, and 12, respectively I

214 Part IV -- Procedure Division

c:~

c

WRITE Statement

u
Input/Output statements 215

WRITE Statement

simple WRITE statements or WRITE BEFORE ADVANCING statements within the
same proqram may cause overprintinq.

11!!1!IIQ1!!n!;2.§.QUElfTIAt_1ILES: The discussion below applies to all
multivolume tape files and mass stokage files in the sequential access
mode.

After the recognition of an end-of-volume on a multivolume OUTPUT
file in the sequential access mode. the WRITE statement performs the
followinq operations:

1. The standard endinq volume label procedure and the user's ending
volume label specified by a USE statement. The order
of execution ocedures is s ecified b the USE
sta temen t.

2. A vol ume switch.

3. The standard beginninq volume label procedures and the user's
beqinninq volume label procedure if specified by the USE statement.
The order is specified by the USE statement.

FORHAT 3: Format 3 is used for randomly or sequentially accessed mass ;.toraqe- f i 1 es.

For standard sequential files opened as OUTPUT. the WRITE statement
can be specified only to create the file. For such files opened as 1-0,
a READ statement must be executed before the WRITE statement is issued;
the WRITE statement updates the record retrieved by the previous READ
sta tement.

If ACCESS IS RANDOM is specified for the file, the contents of the
ACTUAL !.)ilit_~.Ul KEY field for the file must be set to the desired
value before the execution of a WRITE statement. For a direct file, the
track specified in the ACTUAL KEY field is searched for space for the
record to be written.

1~!!11]_IJ!_Ql!lQN: The INVALID KEY option must be specified for a file
that resides on a mass storaqe device.

Control is passed to the im.Em;:~tiY!L2t~t~m,g.!!.!: followinq INVALID KEY
where the following conditions exist:

1. For a mass storage file in the sequential access mode and opened as
I-a or OUTPUT: when no space is available in which to write the
record. (Note that for standard sequential I-a files, a READ
statement must precede the WRITE statement, and thus the INVALID
KEY condition will never exist.)

2. For a direct file in th e ran dom access mode and opened as 1-0 or
OUTPUT: when a record is being added to the file, and anyone of
the followinq conditions occurs:

216 Part IV -- Procedure Division

c

C--",I

./

o

WRITE/REWRITE Statements

a. The track number specifie~ in the ~CTU~L KEY fiel~ is outside
the limits of the file.

b. For files with m~~e F recor~s, the figurative constant HI3H
VALUE (or its equivalent) has been moved into the first
character position ~f the symbolic portion of the ACTUAL KEY
field.

3. For a direct file in the random access mo~e. opened as I-~, and a
record is being updated: when the record is not found, or when the
track number in the ACTU~L KEY field is outside the limits ~f the
file.

RANDOMLY ~CCESSED DIRECT FILES: For a direct file in the rand~m access
mo1e that-rs-opened-I=6;-the-f~llowing consi3erations apply:

1. If Q is specified in the ASSIGN clause system-name, then:

a. a WRITE statement updates a recor~ if the preceding READ
statement was for a record ~ith the same ~:rUAL KEY.

b. a WRITE statement adds a new record to the file, whether or not
a duplicate recor~ exists, if the preceding READ statement ~as
~ot for a record ~ith the same ACTU~L KEY.

Input/Output Statements 217

REWRITE/ACCEPT Statements

The function of the ACCEPT statement is to obtain ~ata from the
system logical input device (SYSIN), or from the CONSOLE.

218 Part IV -- Procedure Division

c

r---~,

1 Format 1 1
~---7--------------------------~-~

! ~CCEPT identifier (~~Q~ {~~-name}] i

I I
L ___ -----------------J

o
Input/Output Statements 218.1

c

o

ACCEPT Statement

FORM1\T 1: !.~~!1:!::.!.fier may be either a fiKed-length gr,()upit~m,.Qr.an
r~lemep:1:arY·'·'ialptl:abet:.:i.c" alphanumeric, external decimalf()r§J<:'t:~;p:a~:
'flqCl,t+ng~I?p~n't:ii~e~~~ Identifier may not be any speciai 're~'ister' e~cept
T~Lr.Y;The''''data'is' read and the appropriate number of characters is
moved into the area reserved f~r identifier. No editing or error
checking of the incoming data is done.

If the input/output device specified by an 1\Cc~pr statement is the
same one designated for a RE1\D statement, the results may be
unprejJictable.

Mnemonic-name may assume either the meaning SYSIN or CONSOLE.
Mnem~nic-name must be specifiej in the SPE:I1\L-N~MES paragraph of the
Environment Division. If mnem~nic-name is associatej with CONSOLE,
ijentifier must not exceed 114 character positions in length. If the
FROM option is not specified, SYSIN is assumed.

when an ~CCEpr statement with the FROM mnemonic-name for CONSOLE
option r9'rF:~f(:rt:4'!r~O~$Q~E\ is executed, the following actions are taken:

;;:~:,::.: .:;:.:,:.;.;:;.;.:,:";:.:~:: :.: ... :';,::.:.;:-x:~;:. :;.:.;: ~;~ "::;:""·";;;:~:':·i';:;'~&·'·;;::: :': .::";:{i;~.~;;,.~':':;':';i-:. '~.\l

1. ~ system generated message coje is automatically jisplayed,
followed by the literal "~W1\ITING REPLY".

2. Execution is suspenjej. When a console input message, preceded by
the same message code as in point 1 above, is ijentified by the
control pro~ram, execution of the ~:CEPT statement is resumej and
the message is moved to the specified ijentifier and left
justified, regardless of the PICTURE. If the field is not filled,
the low-order positions may contain invalij data.

If mnemonic-name, is associated with SYSIN r'f::~!i~':',1"E'R9~'::"S~'$~i4;;':()ptLll'q'p;i
n;~:'~~~~~~~~~ran-i npu t record size of 8 a is ass umeir:""I£"'tne""'s':L'z"e""'5£"tfl'e\
"a'cceptTng" '::"i'ata item is less than 80 characters, the jata must appear as
the first set of characters within the input record; any characters
beyond the length of the accepting identifier are truncated. If the
size of the accepting jata item is greater than 80 characters, as many
in~ut records as necessary are read until the storage area all~cated to
the jata item is fillej. If the acceptin~ data item is greater than 80
characters, but is not an exact multiple of 80, the remainder ~f the
last input record is not accessible.

Input/Output Statements 219

DIS~LAY Statement

rhe fur=tion of the DISPL~Y statement is to write data on an output
device.

r--,
I Format I
~--~

I DISPLAY G:::::~::r-J G:::::~::r-2J· .. [~~Q~ tr~ll-n3mJ 11
I I L __ J

~~gmQni2=~amg must be specified in the SPECIAL-NAMES paragraph of the
Environment Division. Mnemonic-name may be associated only with the
reserved ~ords CONSOLE, SYSPON~H, or sysour.

when the UPON option is onitted, the system logical output device
(S~SOUr) is assumed.

A maximum logical record size is assumed for each device. For
CONSOLE (the system logical console device), the maximum is 100
characters. For SYSOUr (the system logical output device>, the maximum
is 120 characters. For SYSPUNCH (the system punch device), the maximum
is 72 characters, with positions 73-80 used for the PROGRAM-ID name.

If the total character count of all operands is less than the maximum
(ot 72 for SYSPUNCH), the remaining character positions are padded with
blanks. If the count exceeds the maximum size, operands are continued
in the next record. As many records as necessary are written to display
all the operands specified. rhose operands pending at the time of the
break are split between lines if necessary.

1.

to be

MPUTArIONAL,
are converte

binary items are converted to external
gned values cause a low-order sign overpunch

220 Part IV -- ProcedUre Division

'''-- ---_/ '

-r' \ '- .. _/

l/

o

DISPLAY/CLOSE Statements

3. No other data items require conversion.

"'tof:~xairiple~' i£three':int.ernal decimal 'items have values
~~'~;'~~!N,'!-~:x'~r~;,~~f:)p,~~¥e~,~s 3M,. 3~,,).arl{l 3.4, r~f:)l?~cti V"~l:Y,.

If a figurative constant is specified as one of the operan1s, only a
single occurrence of the figurative constant is displayed.

Idgg~ifie£ may not be any special register except T~LLY.

When a DISPLAY statement contains more than one operand, the 1ata
contained in the first operand is stored as the first set ~f characters,
and 50 on, until the output rec~rd is fille1. This operation continues
until all information is displayed. Data contained in an operan1 may
extend into subse~uent rec~r1s.

~Qt.~: DISPL~Y, ~·~HIKIT';;"l;~>w'i·iI.T'i~":~~~«EEi~:::~pps~1f~oi~IN~'l an1 wRITE AFTER
ADV~NC I NG s ta t emeri'ts'a:Ir~"ca'use""tne"p"r'rnte'r"~€'o"~spa c e be fore pri n t i ng •
However, a simple WRITE statement without any option given, or a wRITE
BEFORE ADVANCING statement both cause the printer to space.~~t~f~.
printing. Therefore, it is p~ssible that nixed DISPLAy,·E)C~IBJT.jan:l
simple wRITE statements or wRITE BEFORE ADV~NCING statements within the
same program may cause overprinting.

The CLOSE statement terminates the processing of input/output reels,
units, and files, with optional rewin1 and/or lock where applicable.

r--1
I Format 1 I
~--~
I I
II [~~~~ { t:!Q g~~!'~Q }' II

CLOS~ file-name-1 [WITH
I Q~!.r ~Q~~ I
I I
I [~£!£!~] { ~Q g£!~!'~Q } I I [file-name-2 [WITH]] ••• I
I Q~!.I ~Q~~ I
I I L __ J

r--1
I Format 2 I
~--~
I I

! ~LOSE file-name-l [WITH {ff§c~~~m!!} 1 !
I I

I [file-name-2 [WITH {":.~."'~' .. ~ .. g £! .. ~!.t:!Q }]] ••• I
I :Q.~\ I I ; .. ".~:;,:; .. : :''' .. :;, I
L __ J

Input/Output Statements 221

CLOSE Statement

r--~---------------1
I Format 3 I
~--~
I I

i CLOSg fil e-name-1 {::::} [WITH { 1!~!:!:!Ns. } 1 i
I I

! [file-name-2 { :::~ } [WITH {~~:;:!~~} lJ... !
I I L __ J

Each file-name is the name of a file upon which the CLOSE statement
is to operate;-it must not be the name of a sort-file.

The file-name must be defined in a file description entry in the Data
Division~-------

~ file may be closed more than once, but each CLOSE statement
(without the REEL/UNIr option) must logically be preceded by an OPEN
statement for that file. ~ file that is opened within a run unit must
be closed within that run unit.

Note: Duplicate records may be produced if a user doesn't execute a
CLOSE within his own unit.

rhe REEL, ,.D~~J?~Vf~~~1~q~!~~~fi~~~~ and WITH NO REWIND options are
applicable only to tape files~ The UNIT option is applicable only to
mass storage files in sequential access mode. Since device assignments
can be specified at execution time, the words REEL anj UNIr are
~.p,t;~5!cha.:ng~?g:Le., ... " .. :r:f: .. a ... ~:i:..+.~. is assigned to a mass storage device, the
,J::).!~J:>'.i~+.'J:.'l3:/J:>9~~~~g~I~(3"e~g.;. NO REWIND options will be ignored.

For purposes of showing the effect of various CLOSE options as
applied to various storage media, all input/output files are divijed
into the following categories:

1. Unit record volume. ~ file whose input or output medium is such
that rewinding, units, and reels have no meaning.

2.

3.

sequential single volume.
contained on one volume.
volume.

Sequential multivolume.
more than one volume.

~ sequential file that is entirely
There may be more than one file on this

~ sequential file that may be contained on

4. Random single volume. ~ file in the random access moje that may be
contained on a single mass storage volume.

5. Random multivolume. ~ file in the random access mode that may be
contained on more than one mass storage volume.

!!otg: See also "File Processing Summary" in the Environment Division,
and "~ppendix D: Summary of File Processing Techniques and ~pplicable
Statements and Clauses."

rhe results of executing each CLOSE option for each type of file are
summarized in Table 22. The definitions of the symbols in the
illustration are given below. Where the definition of the symbol
depends on whether the file is an input or output file, alternate

222 Part IV -- Procedure Division

c

o

CLOSE Statement

definitions are given; otherwise, a jefinition applies to files opened
as INPUT, OUTPUT, anj I-a.

~ll volumes in the file prior to the current volume are processed
according to standard volume switch procejures except those volumes
controlled by a prior CLOSE REEL/UNIT statement. The standarj switch
procedure positions the volumes as specified by the volume
positioning option of the OPEN statement.

The current volume is positioned at the logical enj of the file on
the volume.

File~QQgggg~~~~~_~~~_I~Q: If the file is positioned at its end,
anj label records are specified, the stanjard enjing label procedure
and the user ending label procedure (if specifiej by the USE
statement) are performej. The order of execution of these two
procedures is specified by the USE statement. Standard system
closing procejures are then performed.

If the file is positioned at its end, and label records are not
specified for the file, stanjarj system closing procedures are
performed.

If the file is positioned other than at its end, the standard system
closing procedures are performed. Even if label procedures are
specified, no label processing is performed.

(An INPUT or I-a file is considered to be at its enj if the ~T END
phrase of the READ statement has been executed, anj no CLOSE
statement has been executed.)

Eile~QQ~g~g_~s OUT~~~: If label recorjs are specified for the file,
standard ending label procejures and user ending label procedures (if
specified by the USE statement) are performed. The order of
execution of these two procedures is specified by the USE statement.
standarj system closing procedures are then performed.

If label records are not specifiej for the file, standard system
closing procedures are performed.

This feature has no meaning in this system and is treated as
comments.

The compiler ensures that this file cannot be openej again during
this execution of the object program.

F-- Standard Close VolUme

Eiles Q~ged~~~NPQ~_~~~_~~Q: The following operations are
performed:

1. A volume switch.

2. The standard beginning volume label procedure and the user1s
beginning volume label procedure (if specified by the USE

Input/Output Statements 223

CLOSE Statement

statement). The order of execution of these t~o procedures is
specified by the USE statement.

3. Makes the next data record on the new volume available to be
read.

~ile~Qe~g~g_~~_QQ~~rrT: The following operations are performed:

1. The standard endinq volume label procedure and the user's ending
volume label procedure (if specified by the USE statement). The
order of execution of these two procedures is specified by the
USE statement.

2. A volume switch.

3. The standard beginning volume label procedure and the user's
beginning volume label procedure (if specified by the USE
statement). The order of execution of these two procedures is
specified by the USE statement.

G -- Rewind

The current volume is positioned at its beginning.

This is an illegal combination of a CLOSE option and a file type.
The results at object time nay be unpredictable.

224 Part IV -- Procedure Division

c

o

CLOSE Statement

Table 22. Relationship of ry~es of Sequenti~l Files and the Options of
the CLOSE Statement

1 FILE
1 rypel
lCLOSE 1
IO~tion 1

Unit
Record

~--------------------~-.--.--.--.--.--.-~~--.--.--.-
1 1
1 :LOSE 1
1 1
1 :LOSE 1
1 WITH LOCK I
1 I
1 I

CLOSE REEL

CLOSE REEL
WIrH LOCK

:'LOSE REEL
WITH NO REWIND

C

C, E

x

c,' 3 C, G, 1\

C, G, E C, G, E, l\

C, B C, B, 1\

F, G

F, G, D

F, B

General CQ~~i~~ra~ion~: 1\ file is designated as optional by s~ecifying
the DUMMY or NULLFILE parameter on the DD card for the file. If an
optional file is not present, the standard end-of-file processing is not
performed. For purposes of l~nguage consistency, the OprION1\L phrase of
the SELECT clause should be specified for this type of file.

If a CLOSE statement Hithout the REEL or UNIT option has been
executed for a file, the next input/output statement to be executed for
that file must be an OPEN statement.

The results of executing each CLOSE option for each type of file are
summarized in Table 23. The definitions of the symbols in the figure
are given below. Where the definition depends on whether the file is an
in~ut or output file, alternate definitions are given; otherwise, a
definition applies to files opened as INPUT, OUTPUT and 1-0.

The standard ending label procedure and the user ending label
procedure (if specified by the USE statement) are performed. For 1-0
files and OUTPUT files the labels are written. Standard system
closing procedures are then performed.

Input/Output Statements 225

CLOSE Statement·

rhe compiler ensures that this file cannot be opened again during
this execution of this object program.

Table 23. Relationship of Types of Random Files and the Options of the
CLOSE statement

-----------------------T------------------------T---------------------,
I FILEI Random I Random I
I Typel Single-volume I Multivolume I
I CLOSE I I I
lo~tion I I I
~----------------------- ------------------------t---------------------~
I I I I
I CLOSE I K I K I
I I I I
I CLOSE I I I
I WI TH LOCK I K, L I K, L I L _______________________ ~ ________________________ ~ _____________________ J

226 Part IV -- Procedure Division

"- .• '

~"
(

\.--,/ .

o

Subprogram linkage statements are special statements that permit
communication between object programs. These statements are CALL,
ENrRY, GOBACK, and EXIr.

A new option of the :ALL statement and the addition of the
CANCEL statement permit dynamic loading and deletion of COBOL
subprograms in the COBOL processing environment.

The CALL statement, as it has previously been specified for as
Full American National Standard COBOL, has been static. rhat is,
the main COBOL program and all subprograms invoked with the C~LL
statement must have been part of the same load module. Thus, when
a subprogram was called it was already core-resident, and a branch
to it occurred. SUbsequent execution of CALL statements entered
that subprogram in its last-used state. If alternate entry points
were specified, then any :~LL to the subprogram could select any of
the alternate ENTRY points at which to enter the subprogram. If
the linking of all subprograms with the main program resulted in a
load module that required more main storage than was available,
then the user could utilize the Segmentation feature. Now, with
the implementation of the dynamic CALL and CANCEL statements, the
:OBOL user can control dynamically the modules that are to be
core-resident.

For the Version 4 Compiler, the :ALL statement can also be
specified as dynamic; that is, the called subprogram is not link
edited with the main program, but is instead link edited into a
separate load module, and at execution time is loaded only if and
when it is required (that is, when it is called).

Each subprogram invoked with a dynamic CALL statement may be
part of a different load module, which is a member of the system
link library or of a user-supplied private library. rhe execution
of the dynamic CALL statement to a subprogram that is not
core-resident results in the loading of that subprogram from
secondary storage into the region/partition containing the main
program, and a branch to the subprogram.

ThUS, the first dynamic CALL to a subprogram obtains a fresh
copy of the subprogram. Subsequent calls to the same subprogram
(either by the original caller or by any other subprogram within
the same region/partition) result in a branch to the same copy of
the sUbprogram in its last-used state. However, when a C~N:EL

statement is issued for that subprogram, the core storage occupied
by the subprogram is freed, and a subsequent CALL to the subprogram
will function as though it were the first. ~ CANCEL statement
referring to a called subprogram may be issued by a program other
than the original caller. In order for the CALL statement to
function as defined by :OD~SYL, the user subprograms must be
linkage edited as non-reentrant and non-serially-reusable.

The user can specify the mode (static or dynamic) of the CALL
!.ite£~! statement through new parameters of the EXEC job control
statement. Static mode is the default option. Subprograms invoked
through the CALL identifier statement are always dynamically loaded
at object time. ----------

When the dynamic CALL statement is used at object time, the
COBOL Library Management Facility must be used by the main program

Subprogram Linkage Statements 227

and all subprograms in one r~giort/partition. Otherwise, multiple
copies of library subroutihes may be resident at, one time ani cause
unpredictable results.

User subprograms that are to be invoked at object time with the
dynamic CALL statement nust be members of the system link library
or of a user-supplied private library.

In the sections that follow, the language for both the static
and dynamic CALL statement is describ~d. The CANCEL statement,
which functions only for programs that have been dynanically
called, is also described. '

(Additional information on the st~tic and dynamic CALL
statements, and the associated EXEC job control statement
parameters, can be found in Qg_[~~!_~m~~~£sg~~~~!QQ~!_~t~g~~~~
COBOL~£QmQiler~~na_~~Q~~~~L_~~r~!Qg_~L_R~Qgr~mmg~~§_@~!~~, order
No. SC28-6456.)

CP...LL Statement

The CALL statement permits communication between a COBOL object
program and one or more COBOL subprograms or other language subprograms.

r----------------------------w.--~---~~------~-~--~~~-~~---------------,
I Format 1 I
~-------------------------------~~.-----.------------~-----------------~
I I
I CALL literal-l [~~INGidehtifier-l [identifier-21 ••• 1 I
I I L _________________________ ~~ ______________ w _____ ~ ______________________ J

r----------------------------------~-----------------------------------, I Format 2 (Version 4) I
~------------------------------~----~--------------~----~--------------~
I I
I CP...LL identifier-l [Q~~~~ identifier-2 [identifier-31 ••• 1 I
I I L _____________________________ ~ __ ~ ___ ~_~~~~_~.~_~~_~~_~~ ___________ ~ ___ J

Literal-l is a nonnumeric literal and is the name of the program that
is being called, or the name of an entry point in the called program.
The program in which the C~LL statement appears is the calling program.
Literal-l must conform to the rules for format~bn of a program~name.
The first eight characters of literal-1 are used to make the
correspondence between the called and calling program.

I

When the called program is to be enterea at the beginhing of the
Procedure Division, lite~~~~l,must specify the program-name (in the
PROGRAM-ID paragraph) of the called program. The called program must
have a USING clause as part of its Procedure Division header if there is
a USING clause in the CALL statement which invoked it.

When the called program is to be entered at entry pOints other than
the beginning of the ProcedUre Division, these alternate entry points
are identified by an ENTRY statement and a USING option corresponding to
the USING option of the invoking CAtL st~tement. In the case of a CALL
with a corresponding ENTRY, ~~~~t~~~~ must be a name other than the
program-name but follows the same rules as those for the formation of a
program-name.

The id~rrtifi~ specified in the USING option of the CALL statement
indicate those data items available to a 'calling program that may be
referred to in a called program. When the called subprogram is a COBOL
program, each of the operands in the USING option of the calling program

228 Part IV -- Procedure Division

I~\

c

o

must be defined as a data item in the File Section, working-Storage
Section, or Linkage Section. If the called subprogram is written in a
language other than COBOL, a CALL statement USING identifier may be a
file-name for a physical sequential file, or a data-item defined in the
File, Working-Storage, or Linkage Section of the calling program. When
a file-name is specified, the file it identifies must be opened in the
calling program. If the USING option operand is a procedure-name, the
called program return to the calling program must conform to the IBM
system standard, or unpredictable results may occur.

~Q~ra~_~£g~ct_!nfo£~~!ion_jY~iQTI-~L

For Version 4 r each of the operands of the USING option in the
callinq proqram may additionally be defined as a data item in the
Communication Section.

Names in the tvo USING lists (that of the CALL in the main program
and that of the Procedure Division header or the ENTRY in the
suhproqram) are paired in a one-to-one correspondence. In the case of
index-names, no such correspondence is established.

There is no necessary relationship between the actual names used for
such paired names, but the data descriptions must be equivalent. When a
qroup data item is named in the USING list of a Procedure Division
h~ader or an ENTRY statement r names subordinate to it in the
subproqram's Linkaqe Section may be employed in subsequent subprogram
procedural statements.

When qroup items with level numbers other than 01 are specified,
proper vord-boundary aliqnment is required if subordinate items are
described as COMPUTATIONAL, COMPUTATIONAL-1, or COMPUTATIONAL-2.

The USING option should be included in the CALL statement only if
there is a USING option in the called entry point, vhich is either
included in the Procedure Division header of the called program or
included in an ENTRY statement in the called program. The number of
operands in the USING option of the CALL statement should be the same as
the number of operands in the USING option of the procedure Division
header, or ENTRY statement. If the number of operands in the USING
option of the CALL statement is greater than the number in the USING
option in the called program, only those specified in the USING option
of the called proqram may be referred to by the called program.

The execution of a CALL statement causes control to pass to the
called program. T he first time a call ed p rogr am is ent ered, its s ta te
is that of a fresh copy of the program. Each subsequent time a called
proqram is entered, the state is as it was upon the last exit from that
proqram. Thus, the reinitialization of the following items is the
responsibility of the programmer:

GO TO statements which have been altered
TALLY
Oa ta i terns
ON statements
PERFORM statements
EXHIBIT CHANGED statements
EXHIBIT CHANGED NAMED statements

EXHIBIT CHANGED and EXSIB IT CHANGED HAM ED operands vill be compared
aqainst the value of the item at the time of its last execution r whether
or not that execution was during another CALL to this program. If a
branch is made out of the ra nge of a PERFORf1" after which an exit is
made from the proqram, the range of that PERFOR~ is still in effect upon
a subsequent entry.

Called programs may contain c.u.L statements. However, a called
proqrafu must not contain a CALL statement that directly or indirectly
calls the callinq proqram.

Subprogram Linkage Statements 229

A called program may not be segmented.

For Version 4, the following additional considerations for the C1\ Lt
statement and for the CANCEL statement apply.

fQ~f!T_1: When the !it~~~l~l option is specified, then the CALL
statement ma V be either static or dynamic.

If the CALL !ite£~1-1 statement is static, the following
considerations apply:

• The proqrammer may specify !!i~!=l as a program-name or as an
alternate .entry point, in any order.

• T he first time a c::a lIed prog ra m is entered, its sta te is that
of a fresh copy of the proqram. Each subsequent time the
program is entered, the state is as it was upon the last exit
from the program.

• The CANCEL lii~£g! statement may not be specified in this case.
The CI\NCEL ig~!i!.i~ statement is accepted; however, the
compiler then options the COBOL Library Management Facility.

If the CALL !!te£~!=j statement is dynamic, the following
considerations apply:

• A called program is in its initial state the first time it is
called within a run unit, and also the first time it is called
after a CANCEL statement for the called program has been
executed.

• On all other entries into the called program, the state of the
called proqram remains unchanged from its state when last
executed •

• Differinq entry points for one subprogram should not be
specified unless an intervening CANCEL statement has been
executed. (See note after the Format 2 description.)

(For example, if subprogram A has been called usinq its
proqram-name as the entry point, then until a CANCEL statement
fcr subproqram A has been executed, subsequent CALL statements
for subprogram A should all use the program-name as the entry
point. After a CANCEL statement has been executed, however,
some alternate entry point for subprogram A may then be
specified. That entry point should be the one entry point
specified until yet another CANCEL statement has been
executed.)

• Names prefixed by ILBC cannot be used as names of called
subprograms, or as names of alternate entry points.

fQ~~!l_~: The contents of id~~lifier-1 must conform to the rules
for formation of a program-name. The first 8 characters of
identifier-1 are used to make the correspondence between the
calling and called program.

230 Part IV -- Procedure Division

c~

c

o

r-
J

The CALL identifier-1 statement is always dynamic. The
followinq consIderatIons apply:

• A called program is in its initial state the first time it is
called within a run unit, and also the first time it is called
after a CANCEL statement for the called program has been
executed.

• On all other entries into the called program, the state of the
called program remains unchanged from its state when last
executed.

• Differing entry points for one subprogram should not be
specified unless an intervening CANCEL statement has been
executed. (See Note at the end of this description.)

• Names prefixed by ILBO cannot be used as names of called
subproqrams, or as names of alternate entry points-

• Identifier-1 must be an elementary item (that is, it cannot be
subdivided) .

HQ!g: Linkinq two load modules together results logically in a
sinqle program with a primary entry point and an alternate entry
point, each with its own name. (Each name by which a subprogram is
to he dynamically invoked must he known to the system; each such
name must be specified in linkage editor control statements as
either a NAME or an ALIAS of the lead module containing the
subprogram.) only if user modules are link edited with the
attribute of non-reentrant and non-serially-reusable will a CANCEL
statement quarantee a fresh copy of the subprogram upon a
subsequen t CA Lt.

Static and dynamic CALt statements may both be specified in the
same program. The CALL literal-1 statement results, in this case,
in the subprogram so invoked being link-edited with the main
program into one load module. The CALL identifier-1 statement
results in the dynamic invocation of a separate-load module. Hhen
a dynamic CALI statement and a static CALL statement to the same
subprogram are issued within ene program, a second copy of the
subprogram is loaded. Therefore, care must be used to avoid
duplicate load modules.

The CANCEL statement releases the core storage occupied by a
called subprogram.

- -------------------,
Format (Version 4)

l-----------
I

of
I
J

I
I
I

J
J
I £ANCEl
I

{
literal-1 }

identifier-1 [

literal-2]

iden tifi er- 2
f
~------------------------

Each literal specified in the statement must be a nonnumeric
literal.-------

The contents of each ig~niiiigI specified must conform to the
rules for formation of a program-name. The first 8 characters of
the identifier are used to make the correspondence between the
calling and called program.

Each lite£~! or iden1iiier specified in the CANCEL statement
must he the same as the literal or identifier specified in the
associated CALL statement(s).

.J

Subprogram Linkage Statements 231

The CANCEL l!!~~sl statement is invalid in a program in which
the CALL !i.t~~i!! statement is static. Under the same conditions,
the CANCEL !i~ntif!~£ statement is accepted, hut the compiler then
options the COBOL Library Management facility.

Subsequent to the execution of a CANCEL statement, the program
referred to therein ceases to have any logical relationship to the
program in which the CANCEL statement appears. A subsequently
executed CALL statement by any program in the run unit naming the
same program will result in that program being entered in its
initial state.

A logical relationship to a cancelled subprog~am is established
only by execution of a subsequent CALL statement.

A called subproqram is cancelll':'d either by being directly
referred to as the operand of a CANCEL statement or by the
termination ~f the run unit Of which the program is a member.

No action is taken when a CANCEL statement is ~xecuted naming a
program that has not been called in this run unit or has been
called and is at present cancelled. Control passes to the next
sta tement.

To guarantee the proper execution of the CANCEL statement, prior
to the execution of a CANCEL statement for a subprogram, ~very CALL
statement for that subprogram should name the same entry point.
Pollowing the execution of a CANCEL statement, a CALL statement may
specify a different entry point.

Called subprograms may contain CANCEL statements. However, a
called subprogram must not contain a CANCEL statement that directly
or indirectly cancels the calling program itself, or any other
program higher than itself in the calling hierarchy. In such a
case the run unit is terminated.

A program named in a CANCEL statement must not refer to any
proqram that has been called and has not yet executed an EXIT
PROGRAM or GOBACK statement. A program may~ however, CANCEL a
proqram that it did not call, providing that in the calling
hierarchy it is hiqher than or equal to the program it is
cancellinq. For example~ A calls B, and B calls C; when A receives
control it can cancel c; or A calls B, and A calls C; when C
receives control it can then cancel B.

The ENTRY statement establishes an entry point in a COBOL subprogram.

r------------- --,
J Format 1
r--f
I I
I EN!].! literal-1 [.!!~11H~ identifier-1 [identifier-2] •••] I
I I L--_______________ ~ __ __ ______________________ .J

Control is transferred to the entry point by a CALL statement in an
invokinq program.

Literal-1 must not be the name of the called program, but is formed
accorcn::nq-to the same rules followed for proqram-na me s.

bil~£~l=.1 must not be the name of any other entry point ot:'
proqram-name in the run unit.

232 Part IV -- Procedure Division

I~

\
\.,

c

o

l called proqram, once invoked, is entered at that ENTRY statement
whose operand li1g~1=1 is the same as the literal-1 specified in the
CALL statement that invoked it.

The USING option makes data items defined in the calling program
available to a called proqram. The number of operands in the USING
option of a called program must be less than or equal to the number of
operands in the correspondinq CALL statement of the invoking program.

The USING option may also be used at execution time to pass
parameters from the EXEC statement to a main program.

The USING option may be specified in the CALL statement, the ENTRY
statement, or in the Procedure Division header. The three uses are
shoun in the followinq formats:

r '-----,
I Format 1 (Hithin a Calling Program)
L-
J
I £!11 literal-1r]~lli2 identifier-1 (identifier-2] •••]
I
1---

I
--l ,

I
I _____ .1

r- I

I Format 2 (Version 4 -- Within a Calling Program) I
1----------- 1
J 1
I ~A11 identifier-1 [USING identifier-2 (identifier-3] •••] I
I I
l- __ J

r-------------------------
J Format 3 (Within a Called Program)
L-
I
J Q.Q.tl:Q!Ll
1
J]li!RY lit eral-1 r !!~l]g ide ntifiel:-1 [iden t i fier- 2] •••]
J
I--
f
JQQ!iQ1L.l
J
f
1

RRQ£~Q~R~]!Y!~fQR r!!~!li~ identifier-1 [identifier-2] •••].

,
I .,
1
I
I
I
I

-i
I
I
I
I
J __ oJ

When the USING option is specified in the CALL statement, it must
appear on either the Procedure Division header of the called program, or
in an ENTRY statement in the called program.

The USING option may be present on the Procedure Division header or
in an ENTRY statement if the obiect program is to function under the
control of a CALL statement, and the CALL statement contains a USING
clause. It may also be present on the Procedure Division header when
information is to be passed from the EXEC statement to the main program.

Hhen a called program has a USING on its Procedure Division header
and linkaqe was effected by a CALL statement where !i!~~!~l is the name

Subprogram Linkage Statements 233

.11I~1.11.1
of the called program, execution of the called progra~ b~gins with the
first instruction in the Procedure Division a.fter the 'Oeclaratives
Section.

When linkage to a called program is effected by a CALL statement
where lii~!:E1-=j is the name of an entry point specified in the ENT RY
statement of the called program, that execution of the called program
beqins with the first statement following the EN~RYstatement.

When the USING option is present, the object program operates as
though each occurrence of jg~~ifi~!:=l, id~nlilieI:2, etc., in the
Procedure Division had been replaced by the corres~onding identifier
from the USING option in the CALL statement of the calling program.
That is, corresponding identifiers refer toa single set of data which
is available to the calling program. The correspondence is positional
and not by name. In the case of index-namesl no such correspondence is
established.

At execution time, the USING option may be used to pass parameters
from the EXEC iob control statement to a main COBOL program. In this
case, a USING option on the frocedure Division he'd~r of a main program
may contain .!g~!!.tiii~!:.l as its only operand.. Information from the PAR!'!
field of the EXEC statement is then available in the Linkage Section at
the location specified as identifier-1. The first two bytes of
identifier-1 contain a count of the number of bytes of ittformation in
the PARM field; the two bytes are set to zero if the PARM field was
omitted. This two-hyte field is binary and should be defined with PIC
S9(4) COMP. Immediately followinq these two bytes is the information in
the PARM field. The maximum lenqth of the field to be pass~d is 100
bytes.

BQ~~: When a valid execution-time option (for example, /FLOW=20) is
specified at the end of the PARM field, the count of the number of bytes
of information in the PARM field is decremented to exclude the slash and
all characters to its right before the PARM field is passed to amain
COBOL program compiled with any of the options FLOW, STATE, or SYMDMP in
effect. However, the count is not altered if an inValid ex~cution-tirne
option is coded, or if the program was compiled with NOFLOW, NOSTATE,
and NOSYMDMP in effect.

Each of the operands in the USING option o.f the procedure Division
header or the ENTRY statement ~ust have been defined as a data item in
the Linkaqe Section of the program in which this he~der or ENTRY
statement occurs, and must have a level number of 0, or 77.. Since the
compiler assumes that each level-01 item is align~d upon a double~ord
boundary. it is the prcgra mmer 's re sponsibili t yto ensure proper
aliqnment.

234 Part IV -- Procedure Division

c

o

The followinq is an example of a calling program with the USING
option:

IDENTIPICATION DIVISION.
PROGRAM-ID. CALLPROG.

OAT A DIVIS ION.

WORKING-STORAGE SECTION.
01 l1ECORD-1"

10 SALARY
10 RATE
10 ROURS

PROCEDURE DIVISION.

PICTURE S9(5)V99"
fICTURE S9V99.
PICTURE S99V9.

CALL "SUBPROG" USING RECORD-1.

CALL "PAYMASTR" USING RECORD-1.

STOP RUN.

Subprogram Linkage Statements 234.1

c)

o

The following is an example of a called subprogram associated with
the precejing calling progra~:

IDENTIFIC~TION DIVISION.
PROGR~M-ID. SOBPROG.

DArA DIVISION.

LINKAGE SECTION.
01 PAYREC.

as P~Y
as HOURLY-RArE
as HOURS

PICTURE S9(S)V99.
PIcrURE S9V99.
PICTURE S99V9.

PROCEDURE DIVISION USING P~YREC.

GOBACK.
ENTRY "P~YMASTR" USING PAYREC.

GOBACK.

Pr~cessing begins in CALLPR03, Which is the £~llig~ program. ~hen the
statement

CALL "SUBPROG" USING RECORD-l.

is executed, control is transferred to the first statement of the
Pr~cedure Division in SUBPROG, which is the £~11~~ program. In the
calling program, the operand of the USING option is identified as
RECORD-1.

when SUBPROG receives control, the values within ~ECORD-l are maje
available to SUBPROGi in SUBPROG, however, they are referred to as
PAYREC. Note that the descriptions of the subfields of PAYREC
<described in the Linkage Section of SUBPR~G) are the same as those for
RECORD-1.

When processing within SUBPROG reaches the first GOBACK statement,
control is returned to CALLPROG at the state~ent immediately following
the original C~LL statement. Processing then continues in CALLPROG
until the statement

CALL "PAYMASTR" USING RECORD-1.

is reached. Control is again transferred to SUBPROG, but this time
processing begins at the state~ent following the ENTRY statement in
SUBPROG. The values within RECORD-1 are again made available to SUBPROG
through the matching USING operand P~YREC. When processing reaches the
second GOBACK statement, control is returned to CALLPROG at the
statement immediately following the second CALL statement.

In any given execution of these two programs, if the values within
RECORD-1 are changed between the time of the first CALL and the second,
the values passed-at the time of the second CALL statement will be the
changed, not the original, values. If the programmer wishes to use the
original values, then he must ensure that they have been saved.

Subprogram Linkage statements 23S

The following example sho~s a program using Format 1 of the ~~LL
statement with the USIN3 option (the C~LL statement is static).

IDENTIFIC~TION DIVISION.
PROGRAM-ID. CALLST~T.

DATA DIVISION.

W:)RKING-STORAGE
01 RECORD-1.

as S~LARY

as RATE
as HOURS

SECTION.

PICTURE S9(S)V99.
PICTURE S9V99.
PICTURE S99V9.

PROCEDURE DIVISION.

CALL "SUBPR03" USING RECORD-1.

CALL "PAYM~STR" USING RECORD-1.

STOP RUN.

The following example shows a program achieving the same results
with Format 2 the CALL ~~gg~ifigr=l option (the CALL statement
is dynamic):

IDENTIFICATION DIVISION.
PR03R~M-ID. CALLDYN~.

DATA DIVISION.

WORKING-STORAGE SECTION.
77 IDENT PICTURE X(8).

01 RECORD-1.
as S~LARY
as RATE
as HOURS

PICTURE S9(S)V99.
PICTURE S9V99.
PICTURE S99V9.

236 Part IV -- Procedure Division

("
\.

......... _-

~
,~-,-.,./

c

o

PROCEDURE DIVISION.

MOVE "SUBPROG" TO IDENT.
C~LL IDENT USING RECORD-l.

CANCEL IDENT.

MOVE "PAYMASTR" ro IDENr.
CALL IDENT USING RECORD-l.

STOP RUN.

USING Option . (Vers:i~ri'~4Y!i
.1

1
..,..",,··, ... "v.'.,>, ;.;.\ .. "' ; .. :.w .. ,"'.", ·.,::., . .;..,\:: ... :i:.~ ... :,.y:.':.:.., >."",J:;"->"\";":';»i::

The following is an example of a called subprogram which can be
associated with either of the precejing calling programs:

IDENTIFICATION DIVISION.
PROGRAM-ID. SUBPR03.

DATA DIVISION.

LINKAGE SECTION.
01 PAYREC.

10 P~Y

10 HOURLY-RATE
10 HOURS

PICTURE S9(S)V99.
PICTURE S9V99.
PICTURE S99V9.

PROCEDURE DIVISION USING PAYREC.

GOBACK.
ENTRY "PAYMASTR" USING PAYREC.

GOBACK.

Processing begins in the £~llig~ program -- which may be either
CALLSTAT or CALLDYNA. Nhen the first C~LL statement is executed,
control is transferrea to the first statement of the Procedure
Division in SUBPROG, which is the £~~1~~ program.

Note that in each of the calling programs the operand of the aSING
option is identifiea as RECORD-i.

When SUBPROG receives control, the values within RECORD-l are
made available to SUBPROG: in SUBPR03, however, they are referrea
to as PAYREC. Note that the PICTURE jescriptions of the subfields
within PAYREC (describea in the Linkage section of SUBPROG) are the
same as those for RECORD-i.

Subprogram Linkage Statements 237

When processing within SUBPROG reaches the first G~BACK
statement, control is returned to the calling program. Processing
continues in that progran until the second CALL statement is
issued.

Note that in CALLsrAT (statically linked) that the CANCEL
statement is not valid. In CALLDYNA, however, since the second
CALL statement refers to another entry point within SUBPROG, a
CANCEL statement is issued before the second CALL statement.

With the second CALL statement in the calling program, control
is again transferred to subprog, but this time processing begins at
the statement following the ENTRY statement in SUBPROG.The values
within RECORD-l are again made available to SUBPROG through the
matching USING operand PAYREC. When processing reaches the second
GOBACK statement, control is returned to the calling program at the
statement immediately following the second CALL statement.

In any given eKecution of these two programs, if the values
within RECORD~l are changed between the ti~e of the first CALL and
the second, the values passed at the time of the second CALL
statement will be the changed, not the original, values. If the
user wishes to use the original values, then he must ensure that
they have been saved.

There are three ways in COB~L source language to terminate a program.
They are:

1. EXIT PROGRAM

2. GOBACK

3. STOP RUN

Table 24 shows the effect of each program termination statement,
based on whether it is issued within a main program or a subprograme

A main program is the highest level COBOL program invoked in a step.
A subprogram is a COBOL program that is invoked by another COBOL
program. (Programs written in other languages that follow COB~L linkage
conventions are considered COBOL programs in this sense.)

The use of the GOBACK statement allows any COBOL program to function
either as a main program or as a subprogr~m.

238 Part IV -- Procedure Division

c

o

Table 24. Effect of Program Term~nation Statements Within Main Pr~grams
and Subprograms

r-----------~--~-T-------~--------------T------------------------------,
I Termination I I I
I Statement I Main Program I Subprogram 1

~----------------+----------------------+------------------------------~
EXIT P~OGRAM

srop RUN

Non-operational

Return to invoker*
(may pe system
and cause end of
job step)

Return to invoking
program.

Return directly to
invoker of main program*
(may be system and cause
end of job step).

GOBACK Return to invoker* Return to invoking program.
(may be system
and cause end of
job step)

~----------------~r---------------------~~---~-------------------------~
I*If main prog+am is called by a ~rogram written in another language I
I that does nQ1.follow C9BOL linkage conventions, return will be to 1
I this calling program. 1
L ____ --________ ~~-------------------------------------_________________ J

If it is desired to pass a return code to the operating system ~r the
invoking program, the special register RETURN-CODE must be set by the
user prior to the termination statement. RETURN-CODE is a binary item
whose PICTURE is S9999. ~ne comp~ler initializes RETURN-CODE to 0
(zero), the normal return code for a successful completion; other values
returned ~re conveptionally in multiples of four. HOwever, the maximum
valu~ the field can c9ntain is 4095.

This form of the EXIT statemen~ marks the logical end of a called
program.

r---------------------------------~------~-----------------------------,
I Format I
~----------r~--~~--~-~-T--~-I-~-~--~~--~~-~----------------------------~
I I
I paragraph-pame. ~~I~ R~Q§~~~. I
I I L----------__________ r ____ ~---------~_~---~-_~---~- ___ _________________ J

rhe EXIT statemeQt must be preceded by a E~r~~~Eh=n~~g, and be the
only statement in the paragraph.

If control reaches an EXIT PROGRAM statement while operating under
the control Qf a C~LL statement, control returns to the point in the
calling prog~am immegiately follo~ing the C~LL statement.

If control ~eaches an EXI+ PROGRAM statement, and no CALL statement
is active, cont~ol passes trrough the exit point to the first sentence
of the next paragraph~

Subprogram Linkage Statements 239

The GOBACK statement narks the l03ical end of a callej program.

r--,
I Format I
~--~
I I
I GOBA£~. I
I I L __________________ ~ ___ J

A 30BACK statement must appear as the only statement, or as the last
of a series of imperative state~ents, in a sentence.

If control reaches a 30BA:K statement ~hile operating under the
control of a CALL statement, control returns to the point in the calling
program immediately followin~ the :ALL statement.

If control reaches a 30BA:K statement, and no CALL statement is
active, control will be returned to the invoking pro3ram, which may be
the system and cause end of job.

For a discussion of the srop statement ~ith the RUN opt~on, see
"procedure-Branching Statements."

240 Part IV -- Procedure Division

\ ".

C\:
/

o

ENTER/NOTE Statements

:ompiler-directing statements are special statements that provije
instructions for the COBOL compiler. The compiler-directing statements
are COPY, ENTER, and NOTE.

COpy statement

Prewritten source program entries can be included in a COBOL pr~gram
at compile time. Thus, an installation can utilize standard file
descriptions, record descriptions, or procedures without having to
repeat programming them. These entries anj procedures are contained in
user-created libraries. They are included in a source program by means
of a :OPY statement (see "Source Program Library Facility">.

ENTER statement

The ENTER statement serves only as docunentation, and is intended to
provide a means of allowing the use of more than one source language in
the same source program. This compiler allo~s no other source language
in the source program. .

r--,
I Format I
~--~-----~
I I
I ENTEg language-name [routine-name]. I
I I L ___ J

The ENTER statement is accepted as comments.

The NOTE statement allo~s the programmer to write commentary ~hich
will be produced on the source listing but not compiled.

r--,
I Format I
t--~
I I
I ~QTE character string I
I I L ___ ~------------J

Any combination of the characters from the EBCDI: set may be included
in the £h~E~££gE_~~E1n~.

Compiler-Directing Statements 241

NOTE Statement

If a NOTE sentence is the first sentence of a paraqraph, the entire
paragraph is considered to be part of the £h~£~££~£_~££!~[. Proper
format rules for paragraph structure must be observed.

If a NOTE sentence appears as other than the first sentence of a
paragraph, the commentary ends with the first instance of a period
followed by a space.

242 Part IV -- Procedure Division

c

c

\ (
~

I

/

o

• SORI FE~rURE

• REPORT WRITER FEATURE

• r~BLE HANDLING FE~TURE

• SEGMENT~rION FE~TURE

• SOURCE PROGR~M LIBRARY F~CILITY

Part V -- Special features 243

(~

c'

C\
/

o

Sort -- Description

rhe COBOL programmer can ~ain convenient access to the sorting
capability of the System/360 Operating System Sort/Mer~e Program by
inclu1ing a SORT statement an1 other elements of the Sort Feature in his
source program. rhe Sort Feature provides the capability for sorting
files and including ~rocedures for special handling of these files both
before and after they have been sorted. Within the limits of
object-time storage, a source program may have any number of SORr
statements, and each SORr statement may have its own special procedures.

rhe basic elements of the COBOL Sort Feature are the SORr statement
in the Procedure Division and the Sort-File-Description (SO) entry, with
its associate1 record description entries, in the Data Division. h
sorting operation is based on sort-keys nane1 in the SORr statement. ~
sort-key specifies the field within a recor1 on which the file is
sorted. Sort-keys are 1efine1 in the recor1 description associated with
the SD entry. The records of a file may be sorte1 in ascending or
descen1in~ or1er, or in a miKture of the tHo; that is, the sort-keys may
be specified as ascending or descen1ing, in1epen1ent of one another, and
the se~uence of the sorte1 records will conform to the miKture
specified.

For more information on using the Sort Feature, see the ~EQgE~~~~E~~
2~!.;!g·

Notg: Language consi1erations for an hSCII collated sort are given in
~ppendix E.

ELEMENrs OF rHE SORr FE~rURE

ro use the Sort Feature, the COBOL programmer must provide additional
information in the Environment, 8ata, an1 Procedure Divisions of the
source program.

rhe SORr statement in the Procedure Division is the prinary element
of a source program that performs one or more sortin~ operations. rhe
term "sorting operation" means not only the manipulation by the Sort
Program of sort-work-files on the basis of the sort-keys designate1 by
the COBOL programmer, but it also includes the meth01 of making records
available to, a:u.J. retrieving recorjs from, these sort-work-files. h
sort-work-file is the collection of recor1s that is involve1 in the
sorting-operation as it exists on an intermediate device(s). Records
are made available either by the USING or INPUT PROCEDURE options of the
SORT statement. Sorte1 records are retrieved either by the GIVINS or
ourpur PROCEDURE options of the SORr statenent.

In the Environment Division, the programmer must write SELE~r
sentences for all files used as input to and output from the sort

iE';;'~:~:;:~ffi, ~.Q~ £~E•.•. ~ ... ~ .. ~ :? .. ~ ... ~ .. ~:.~!! ... e. d~~;~~~.~~.~ •.. ?t·'
~.9~L;bnsr.~En.~ ,.§8.~~lB~l ... ,.~J;I.~·E~.E.i9. .'.

In the Data Division, the programmer must include file 1escription
entries (FD) for all files that are used to provide input to or output
from the sort proqram. He must also write a Sort-File-Description (SO)
entry and its associated recori description entries to describe the
records that are to be sorte1, including their sort-key fields.

In the Procedure Division, the programmer specifies in the SORr
statement the sort-file to be sorted, the sort-key names, whetner the
sort is to be in ascen1ing or 1escending sequence by key, and irlhether

Sort Feature 245

SELECT Clause

recor:is are to
processing, he
sections that

processing. If there is to be such
Proce:iure Division the

There are certain statements the programmer must use in the
Environment Division to use the Sort Feature. Detailed descriptions of
these statements follo~.

INPUT-OUTPUT SECTION

rhe Input-Output Section is compose:i of t~o parts: the FILE-20NTROL
paragraph an:i the I-O-CONrROL paragraph.

The FILE-CONTROL paragraph is specifiej once in a COBOL progr~m.
Within this paragraph, all files referred to in the source program must
be named in a SELECT sentence.

Files used within input an:i output procedures, an:i files name:i in the
USING and GIVING options of the SORr statement are name:i in the SELECT
sentence as described in "Environment Division."

rhe file name:i in the GIVING option of the SORr statement can
alternately be described in the following format:

r--,
I Format I
~---~-----------------.---~

§.!~.~~CT file-name

~§§!§~ TO [integer-i) system-name-l [system-name-2]

QE system-name-3 (FOR ~Q~~!~~~

{

integer-2 l
~Q)

ALTERNP..TE [
AREP..]

AREAS
].

- ___ J

rhe OR option is neither require:i nor use:i by this compiler an~ is
treate:i as comments.

246 Part V -- Special Features

~ ' ... ~ --",,"

c

o

SELECT sort-file?~g~i Clauses

rhe MULrIPLE clause function is specifiea by object time control
cards; hence, the MUL~IPLE clause is neither requirej nor usea by this
compiler. The RESERVE clause is applicable as described in "Environment
Division."

rhe following format for the SELECT sentence must be used f~r the
sort-file.

r----~---,
I Format I
~-~--~
I I
I ~ELECT sort-file-name I
I I
I AS~I2~ TO [inte~er-l] system-name-l [system-name-2J ••• I
I I L __ J

I The SELECT clause must be specified for the sort-tile.
Sort-file-name identifies the sort-file to the compiler.

I The ASSIGN clause must be specified, and may be used to describe the
sort work files; the integer and system-names can serve as documentation
to describe the number and class of work units. However, since the
system obtains this information at execution time, the compiler treats
the SELECT and ASSIGN clauses as documentation.

rhe I-O-CONTROL paragraph specifies when checkpoints are to be taken,
as well as what core storage area is to be shared by jifferent files.
The I-O-CONTROL paragraph is coded once in the source program. rhe
checkpoint interval associated with the stanjard RERUN fornat (specifiea
in the "Environment Division") is determined b the number of records
processed for the given file.

Sort Feature 247

SAME RECORD/SORT AREA Clauses

rhe SAME RECORD/SORr ~RE~ clause specifies that two or more files are
to use the same storage area juring processing.

r--,
.1 Format 1
~--~
1 1
1 { RECORD} 1
1 §AME ------ ARE~ FOR file-name-l {file-name-2}... 1
1 ~ORr 1
1 I L ___ J

When the RECORD option is usej, the named files, including any
sort-files, share only the area in which the current logical recorj is
processed. Several of the files may be open at the same time, but the
logical record of only one of these files can exist in the recorj area
at one time.

The function of the SORT option is to optimize the assignment of
storage areas to a given SORr statement. rhe system handles storage
assignment automatically; hence, the SORT option, if given, is treated
as comments.

In the Data Division the programmer must incluje file description
entries for files to be sorted, sort-file jescription entries for sort
work files, and record description entries for each.

FILE SECTION

rhe File Section of a program which contains a sorting operation must
furnish information concerning the physical structure, identification,
and record names of the records to be sorted. This is provided in the
sort-file-description entry.

248 Part V -- Special FeatUres

c

C)

o

SD Entry

~ sort-file-description entry must appear in the File section for
every file named as the first operand of a SORT statement •

.- --------------------,
I Format
~-----------------------------------,-------
I
I
I
J
I
I
I
1 ,
I
1
I
1
I
1

§Q sort-file-name

{

RECORD IS }

REfQ:Rllli ARE
data-name-1 [data-name-2] ...]

r]EC.Q]] CONT AI NS [in teger-1 1:Q] integer- 2 CHAR ACTERS]

) (Version 4)

§Q!t=f.il~::!!.~!1l~ is the name qiven to describe the records to be
sorted.

The DATA RECORDS clause specifies the names of the records in the
file to be sorted.]~t~=n~~~=j, g~1~=n~m~=~, •.. of the DATA RECORDS
clause refer to the records described in the record descriptions
associated ~ith this SD.

The RECORD CONTAINS clause specifies the size of data records in the
file to be sorted. This clause is optiona·.l. The actual size and mode
(fixed or variable) of the records to be sorted are determined from the
level-01 descriptions associated with a given SO entry. When the USING
and GIVING options of the SOBT statement are used, the record length
associated with the SO must be the same lenqth as the record associated
with the PO's for the USING and GIVING files. If any of the SD data
record descriptions contains an OCCURS clause with the DEPENDING ON
option, variable-Ienqth records are assumed. See "Data Division" for
the format assumptions that are made by the compiler when the RECORDING
MODE clause is not specified.

The minimum logical record lengths acceptable to be sorted are:

• disk data sets -- 1 byte
o tape data sets -- 18 bytes

I
-f
I
1
I
1
1
I
1 ,
I
I
I
I
I
I
I

.J

NQt~: Extreme caution should be used when sorting variable length
records with embedded objects of the OCCURS DEPENDING ON clause. See
the section on Sortinq 'variable Length Records in the R£.Qg~g.!!!~£.!.2_~ide
chapter on Using The Sort Feature.

E£Qg~~!1l_E~QQ~£!_!rrfQ£~g!iQn_J!~£§iQll_!l

The DATA RECORDS, LABEL RECORDS, and RECORD CONTAINS clauses are
described in "Data Division".

Sort Feature 249

SORT Statement

The procedure Division must contain a SORT statement to describe the
sortinq operation and, optionally, input and output procedures. The
procedure-names constitutinq the input and output procedures are
specified within the SORT statement.

The Proceaure Division may contain more than one SORT statement
appearinq anywhere except in the declaratives portion or in the input
and output procedures associated with a SORT statement.

The SORT statement provides informa~idn that controls the sorting
operation. This information directs the sorting operation to obtain
records to be sorted either from an input procedure or the USING file.
to sort the records on a set of specified sort keys, and in the final
phase of the sortinq operation to make each record available in sorted
order, either to an output procedure or to the GIVING file.

r------------------·-----------------J Format
I

I
r.----. ----------
J
I

--f
I ,

J ~Q!r file-name-1 ON KEY {dat a-name-1} •••
I ,
J
I
J
I
I
J
J
I
J
1
J

{

QES~]!1!]IN,g }
KEY rdata-name-2}

A~£~lLQ!NG
rON ...] ...

{
!NP!!.!: PROCEDURE IS section-name-1 [!.!!!!.!! section-name-2]}
YSIN,g file=name-2

{
OUTPUT gRO£]DUB] IS section-name-3 [!~g!! section-name-4]}
~IV1NG file-name-3

L---_____________________ , ______________ . _________________ ~ __________ __

I
I
J

File-name-1 is the name given in the sort-file-description entry that
describes-the-records to be sorted.

ASCENDING and DESCENDING: The ASCENDING and DESCENDING options specify
whether-records-are-to-be sorted into an ascending or descending
sequence, respectively, based on one or more sort keys.

Eachg~ta-n.s.~ represents a I'key" data item and must be described in
the records associated with the sort-file-name.

At least one ASCENDING or DESCENDING clauSe must be specified. Both
options may he specified in the same SORT statement, in which case,
records are sorted on gg!!!,:.!!.s!!!.,g=1, in ascending or descending order: and
then within data-name-1, they are sorted on the KEY data item
re presen ted tv ,ggt.s,::!!!!.!!!.§- 2, in ascend ing or descendin g otd er, etc.

Kevs are alwavs listed from left to right in order of decreasing
siqnificance, reqardless of whether they are ascending or descending.

250 Part V -- Special Features

~
I

"'-... /

c

c'

o

SORT Statement

rhe direction of the sort depends on the use of the ASCENDI~G ~r
DES:ENDIN3 clauses as follows:

1. when an ~SCENDING clause is used, the sorted sequence is fr~m the
lOwest value of the key t~ the highest value, according to the
collating sequence for the COBOL character set.

2. When a DESCENDING clause is used, the sorted sequence is fr~m the
highest value of the key to the lowest value, according t~ the
collating sequence of the COBOL character set.

Sort keys must be one of the types of data item listed in Figure 12.
corresponding to each type of 1ata item is a collating sequence that is
used with it for sorting.

A character in the EBCDIC c~llating sequence (used Nith alphabetic,
alphanumeric, etc., data itens) is interpreted as not being signed. For
fixed-point and internal floating-point numeric data items characters
are collated algebraically (that is, as being signed).

r--------------~-----------------------T-------------------------------,
I Type of Data Item Used for S~rt Key I Collating Sequence I
~--------------------------------------+-------------------------------~
I ~lphabetic I EBCDIC I
I ~lphanumeric I EBCDIC I
I Numeric Edited I EBCDIC I
I Group I EBCDIC I
I External Decimal I Zoned Decimal I
I Binary I Fixed-point I
1;l:~'~~'i£1}~jy:)?$S.~~~~\~' .. ·.o: :'.' 'I /?F'I;j{~C17 p~f#.~':·<·.. I
1~~~t;~FP:.rtJ. ... ~19~~i~~7t>()~P: ,> ..•.• I 'fl.Pqt; Hg;~l?9~Pt" I
I ·.~.~ .. !:·~~i~ed:;, .. m!5~~~;;!!<;T::g9 .. ~P;t:}• ·:.,2;it.:·.;i· .. ·: .. ·:.· ... :.·.·.;;;·y;.I· .. i;.~.f?Spt:EJ·.:.i.;.':.·......\: I L ______________________________________ ~ _______________________________ J

Figure 12. collating Sequence Used for Sort Keys

rhe EBCDIC collating sequence for COBOL characters in ascending order
is:

1.
2.
3.
4.
5.
6.
7.
8.
9.

10.
11.
12.
13.
14.
15.
16.

17-42.
43-52.

(space)
(period or decimal point)

< (less than)
((left parenthesis)
+ (plus symbol)
$ (currency synb~l)
* (asterisk)

(right parenthesis)
(semicolon)
(hyphen or minus symbol)

I (stroke, virgule, slash)
(comma)

eq
" (quotation mark)
A through Z
a through 9

(The complete EBCDIC collating sequence is given in ~~~_~y~~~~~~~~
Re~~rgQ£g~Qat~, Form X20-1103.)

Sort Feature 251

SORT Statement

The record description for every record that is listed in the D~rA
RECORDS clause of an SO description must contain the "key" items
data-name-l, data-name-2, etc. These "key" items are subject to the
following rules:

1. Keys must be physically l~cated in the same position and have the
same data format in every logical record of the sort-file. If
there are multiple record descriptions in an SD, it is sufficient
to describe a key in only one of the record descriptions.

2. Key items must not contain an OCCURS clause nor be subordinate to
entries that contain an OCCURS clause.

3. A maximum of 12 keys may be specified. The total len~th of all the
keys must not exceed 256 bytes.

4. All keys must be at a fixed displacement from the be~inning of a
record; that is, they cannot be located after a variable table in a
record.

5. All key fields must be located within the first 4092 bytes ~f a
logical record.

6. The data-names describing the keys may be qualified.

§~~IION-NAME=~_~N~§~Q~IQN=N~~~=~: Section-name-1 is the name of an
input procedure; ~g£~iQ~=~~~~=~ is the-name-;f-the last section that
contains the input procedure in the COBOL main program. Section-name-2
is required if the procedure terminates in a section other than that in
which it is started.

!NPur_RgQQ~QQRE: The presence of the INPUr PROCEDURE option indicates
that the programmer has written an input procedure to process records
before they are sorted and has included the procedure in the Procedure
Division as one or more distinct sections.

rhe input procedure must consist of one or more sections that are
written consecutively and do not form a part of any output procedure.
The input procedure must include at least one RELEASE statement in order
to transfer records to the sort-file.

control must not be passed to the input procedure except when a
related SORT statement is bein~ executed, because the RELEASE statement
in the input procedure has n~ meaning unless it is controlled oy a SORT
statement. The input procedure can include any procedures needed to
select, create, or modify records. rhere are three restrictions on the
procedural statements within an input procedure:

1. The input procedure must not contain any SORr statements.

2. to

r processing are not considered transfers of
control outside of an input procedure. Hence, they are allo~ed to
be activated within these procedures.

3. The remainder of the Pr~cedure Division must not contain any
transfers of control to points inside tne input procedure (~ith the
exception of the return of control from a Declaratives Section).

252 Part V -- special Features

~
\.. ... /'

c

o

SORT Statement

a6wever~'" this···compiier··· alfowSl-\LTER~GCrTOan:l PERFORM statements
,in the remainder of the Procedure Division to refer to'
;proced\lre~nameswithintheinput.·.procedure.... If. a SORT .. f)ta~ement~i~l
;actiyewhenthetransf er of controlismade;thellall s\lch' ,
ttransfers'are . valia;... Ifa SORT statement is not active, howevE:!r. ·:1
r then the user m\lst·· ensure ... ·that ··such atransfer-ofcontrol .. does:not
cause:

ia. '. A'.·RELEASE statement .to· be· ... execute:l
:\; .'.\.':' .·.·i\.,).. ..•................. : ·.·.i···.·· ···.".i •. i ·•.....• •· ... ·i. i i...\/
1l;)~'.'Cc:mtrolLJ:o· .. ··.reachthe.· end· .• ·.of .· •. ·.the.inputP~6ced~re
~·,~~:::: ... ,<"'~:.;:-;.;.,..;"M""'<·.,..;w:w..: ... :«.:.:·,·,.:,".:w.·.·,:.~·,:.;,:·>::A ,~." .. ,: ... :.»'".,:"':<.,: ... : .. : ;.. .. :,:, .. ::.~.« ... : : ,.:.::.:.:.: ...• ,., .. ':, ,., .. ,"." ... :.;.: ... : ... :.::;>:, .. :, .. :~ . .;.: : :" ... ·:···:.·.·:.,·.·.,;·.·.:.:.·.w ·.·,::.:::-·.;.,·.: ... ··.· .. '.:<N:,.:::• ~:·".: . .,. ...•.. : >:.::: •. :, •.•.. ,:: ::':w;'::<.,..',:::-,-'.< .. :' >:,., ...• .,.. .. : ..

If an input proce1ure is specifie1, control is passed to the in~ut
proce1ure when the SORT program input phase is rea1y to receive the
first recor1. The compiler inserts a return mechanism at the en1 of the
last section of the input proce1ure an1 when control passes the last
statement in the input procedure, the records that have been released to
file-name-l are sorte1. The RELEASE statement transfers records from
the Input Procedure to the in~ut phase of the sort operation (see
"RELEASE Statement").

USING: If the USING option is specified, all the records in f~l~~~~~~=£
are transferred automatically to file-name-1. At the time of execution
of the SORT statement, file-name-2 must not be open. File-name-2 must
be a stan1ard sequential file. For the USIN3 option, the compiler will
open, rea1, release, an1 close file-name-2 without the pro~rammer
s~ecifying these functions. If the user specifies error handling and/or
label processing 1eclaratives for file-name-2, the compiler will make
the necessary linkage to tne appropriate Declaratives Section.

~~~TIO~~~~ME=l_~~~~~Qr!Q~=~~~~=~: ~~£~~Q~=~~~g=1 represents the name 
of an output procedure; ~~£~iQ~=~~~~=~ is the name of the last section 
that contains the output procedure in the COBOL main program. 
Section-name-4 is required if the procedure terminates in a section 
other than that in which it is started. 

OUTPUT PROCEDURE: The output procedure must consist of one or more 
sectionS-that-are written consecutively an1 10 not form a part of any 
input procedure. The output proce1ure must include at least one RETURN 
statement in order to make sorted records available for processing. 

Control must not be passe1 to the output proce1ure exce~t when a 
related SORT statement is being execute1, because RETURN statements in 
the output procedure have no meaning unless they are controlled by a 
SORT statement. The output ~rocedure may consist of any proce1ures 
neede1 to select, modify, Dr copy the records that are being returne1 
one at a time, in sorted order, from the sort-file. There are three 
restrictions on the procedural statements within the output procedure. 

1. The output procedure must not contain any SORT statements. 

2. output procedure must not contain .. ".,.an :t:,;7i'~~m~~;t~t;g 
i?>~hE7}>9.8:t.~Hn/t?;-8S.~ .. ~Hli~~~ ....... ~@i~~\~~.> '.' .... · •. ~~Aubi;o,n, ' 

DR1rl!~.t-J .• ·.~.E8~!i('),.m.·.· •• · •.. ~ ... ~f~·)f:··().~~8·~·:i5·\.· .. · .• ~.t:.('),.n;!~~~if~,~K~SI~ 
'tne"executio'ri' arUSE' de'cI'ci'ratives for Tabel 

to 

n 1ng 0 rror processing are not considere1 transfers of 
control outside of an output procedure. Hence, they are allOwed 
be activated within these procedures. 

3. The remainder of the Procedure Division must not contain any 
transfers of control to pOints inside the output procedure (with 

to 

Sort Feature 253 



RELEASE Statement 

the exception of the return of control from a Declaratives 
Section). 

If an output procedure is specified, control passes to it after 
file-name-l has been placed in sequence by the SORr statement. rhe 
compiler inserts a return mechanism at the end of the last section in 
the output procedure. when control passes the last statement in the 
output procedure, the return nechanism provides for terminatidn of the 
SORr and then passes control to the next statement after the SORr 
statement. 

When all the records are sorted, control is passed to the output 
procedure. The RETURN statement in the output procedure is a request 
for the next record (see "RErURN Statement"). 

GI~IN3: If the GIVING option is use~, all sorted records in file-name-l 
are automatically transferre1 to f!lg~n~~~~1. At the time of-executIon­
of the SORr statement, fila-nane-3 must not be open. File-name-3 must 
name a standard sequential file. For th~ 3IVING optibn, the compiler 
will open, return, write, and close file-name-3 without the programmer 
specifying these functions. If the user sp~cifies error handling and/or 
label processing declaratives for file-name-3, the compiler will make 
the necessary linkage to the appropriate Declaratives Sectiort. 

CONTROL OF INPUT OR OUTPUT PROCEDURES: rhe INPUr or OUTPUr PROcED~RE 
o~tions-furiction-in-a-manner-similar-to Option 1 of the PERFORM 
statement; for example, naming a section in an INPUr PROCEDURE clause 
causes execution of that section during the sorting o~eration to proceed 
as though that section had been the subject of a PERFORM statement. As 
with a PERFORM, the execution of the section is terminated after 
execution of its last statement. rhe procedures may be terminate~ by 
using an EXIT statement (see "EXIT Statement"). 

The RELE~SE statement transfers records from the input procedure to 
the input phase of the sort operation. 

r-----------------------~-----~------~----~---~------~_w ____ ~ __________ , 
I Format I 
~-------------------------------------------------------~~--~---~--~---~ 
I I 
I RE~§~§~ sort-record-name [[BQ~ identifier] I 
I I L ______________________________________________________________________ J 

~ RELE~SE statement may be used only ~ithin the range of an in~ut 
procedure associated with a SORT statement. 

254 Part V -- Special Features 

'_ .•. '" 

c 



c.~: 

o 

RETURN Statement 

If the INPUT PROCEDURE option is specifiea, the RELEASE statement 
must be included within the ~iven set of procedures. 

Sort-record-name must be the name of a logical record in the 
associated:sort-file description. 

When the FROM identifier ~ption is usea, it makes the ~ELEASE 
statement equivalent to the statement MOVE iaentifier TO 
sort-record-name, followed by the RELEASE statement. 

§QE~~£g~Q£~~na~~.ana i~g~~ifi~E must not refer to the same storage 
area. A ~OVE with the rules for group items is effected from 
identifier, using the length of the recora-name associated with the SO 
entry. 

After the RELEASE statement is executed, the logical recora is no 
longer available. When control passes from the input procedure, the 
file consists of those rec~rds that were placed in it by the execution 
of the RELEASE statement. 

rhe RETURN statement obtains inaiviaual records in sorted order from 
the final phase of the sort program. 

r----------------------------------------------------------------------, 
I Format I 
r----------------------------------------------------------------------~ 
I I 
I RETU~~ sort-file-name RECORD [!~IQ iaentifier] I 
I I 
I AT ENQ imperative-statement I 
I I L _____________________________________________________ - ________________ J 

Sort~file-name is the name given in the sort-file-description entry 
that describes the records to be sorted. 

All references to records retrieved by a RETU~N statement must be in 
terms of the record descriptionCs) associated with the SO entry, unless 
the INTO option is specified. The retrieved record may, optionally, be 
moved to the user's own area and be referencea as appropriate. 

A RETURN statement may only be used within the range of an output 
procedure associated with a SORT statement for file-name-l. 

rhe i1gg~!fi~E must be the name of a Horking-storage area or an 
output record area. Use ~f the INTO option has the same effect as the 
MOVE statement for alphanumeric items. 

rhe imQgE~~i~~-st~tgm~g~ in the AT END phrase specifies the action to 
be taken Hhen all the sorted recoras have been obtained from the sorting 
operation. After execution of the imperative-statement in the AT END 

/
Phrase, additional RETURN statements within the current output procedure 
may lead to unpredictable results. 

Sort Feature 255 



Sort -- EXIT 

The EXIT statement may be used as a common end point for input or 
output procedures executed as with programs executed through a PERFORM 
statement. 

r----------------------------------------------------------------------, 
I Format I 
~--------------------------------------------------------------~-------~ 
I I 
I paragraph-name. ~~!l· I 
I I L ______________________________________________________________________ J 

When used in this manner, the EXIT statement must appear as the only 
statement in the last paragraph of the input or output procedure~ 

256 Part V -- Special Features 

\ '. 

c 

c 



c 

o 
Sort Feature 257 



Sort-- Sample Program 

Fiqure 13 illustrates a sert based on a sales contest. The records 
to be sorted contain data on salesmen: name and address, employee 
number, department number, and pre-calculated net sales for the contest 
period. 

The salesman with the hiqhest net sales in each department wins a 
prize, and smaller prizes are awarded fer second highest sales, third 
hiqhest, etc. The order of the SORT is (1) by department, the lowest 
numbered first (ASCENDING KEY DEPT); and (2) by net sales wi thin each 
department, the hiqhest net sales first (DESCENDING KRY NET-SALES). 

The records for the employees of departments 7 and 9 are eliminated 
in an input procedure (SCREEN-DEPT) before sorting begins. The 
remaininq records are then sorted, and the output is placed On another 
file for use in a later job step. 

r­
J000005 

---------------------------------------------- --, 

1000010 
000015 
000016 
000017 
000018 
000019 
000020 
000025 
000030 
000035 
000040 
000050 
000055 

1000060 
1000065 
1000070 
1000075 
1000080 
11)00085 
1000090 
1000095 
100096 
J000100 
1000105 
1000110 
1000115 
1000120 
1000125 
1000130 
1000131 
1000135 
1000140 
JOOO 145 
1000150 
1000155 
,000160 

IDENTIFICATION DIVISION. 
PROGRAM-ID. CONTEST. 
ENVIRONMENT DIVISION. 
CONFIGURATION SECTION. 
SOUBCE-COMPUTER. IBM-360-H50. 
OBJECT-COMPUTER. IBM-360-H50. 
SPECIAL-NAMES. SYSOU~ IS PRINTER. 
INPUT-OUTPUT SECTICN. 
FILE-CONTROL. 

SELECT NET-FILE-IN ASSIGN TO UT-2400-S-INFILE. 
SELECT NET-FILE-OUT ASSIGN TO UT-2400-S-S0RTOUT. 
SELECT NET-FILE ASSIGN TO UT-2400-S-NETFILE. 

DATA DIVIS ION. 
FILE SECTION. 
SO NET-PI LE 

DATA RECORD IS SALES-RECORD. 
01 SALES- RECORD. 

05 EMPL-NO 
05 DEPT 
05 NET-SALES 
05 NAME-ADDB 

FD NET-FI lE-I N 

PICTURE 9 (6) • 
PICTURE 9(2). 
PICTURE 9(7}V9Q. 
PICTURE X (55) • 

LAB EL RECO RDS AR E OMITTED 
DATA RECORD IS NET-CARD-IN. 

01 NET-CARD-IN. 
05 EMPL-NO-IN 
05 DE PT-IN 
05 NET-SALES-IN 
05 NAME-ADDR-IN 

FD NET-FILE-OUT 

PICTU.HE 9 (6) • 
PICTU HE 9 (2) • 
PICTURE 9(7) V99. 
PICTURE X (55) • 

LABEL RECORDS ARE OMITTED 
DATA RECORD IS NET-CARD-OUT. 

01 NET-CARD-OUT. 
05 EMPL-NO-OUT 
05 DEPT-OUT 
05 NET-SALES-CUT 
05 NAME-ADOR-OUT 

PICTURE 9 (6) • 
PICTURE 9 (2) • 
PICTURE 9(7)V99. 
PICTURE X (55) • L-________________________ . ____ _ 

Figure 13. Sample Program Using the Sort Feature (Part 1 of 2) 

258 Part V -- Special Features 

I 
J 
I 
I 
J 
1 
I 
I 
I 
J 
I 
I 
I 
1 
I 
J 
1 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
J 
1 
I 
I 
I 
I 
J 
I 
I , 
J 

./" 
I, 

\ ....... -

c~ 

c 



c 

o 

Sort -- Sample Program 

r---------------~------------------------------------------------------, 
000i65 PROCEDURS DlVISION. 
000170 ELIM-DEPT-7-9-NO-PRINTOUT~ 
000175 SORT NET-FILE 
000180 ASCENDING KEY DEPT 
000185 DESCffiNDING KEY NBT-SALES 
000190 INPUT PROCEDURE SCREEN-DEPT 
000195 GIVING NEr~FILE-OUr. 
000200 CHECK-RESULTS SeCTION. 
000205 C-R-1. 
000210 OPEN INPUT NET-FILE-our. 
000215 C-R-2. 
000220 READ NET-FILE-OUr ~T END 80 ro C-R-FINAL. 
000225 OIS?LAY EMPL-NO-OUT DEPT-OOT NET-SALEs-oor 
000230 N~ME-A~DR-OUr OPON PRINTER. 
000235 C-R-3. 
000240 GO TO C~R-2. 
000245 C-R-FINAL. 
000250 CLOSE NEr~FILE-OUT. 
000255 STOP RUN. 
000260 SCREEN-DEPT SECTION. 
000265 S-O-l. 
000270 OPEN INPUT NET-FILE-IN. 
000275 S-0-2. 
000280 READ NET-FILP-IN AT END GO TO S-D-FINAL. 
000285 DISPL~Y EMPL-NO-IN DEPT-IN NET-SALES-IN 
000290 NAME-ADDR-IN UPON PRINTER. 
000295 8-0-3. 

\000300 IF DEPT-IN = 7 DR 9 GO TO 5-0-2 
1000305 ELSE 
1000310 MOVE NET-CARD-IN TO SALES-RECORD 
1000315 REtE~SE SALES-RECORD 
1000320 GO TO 5-0-2. 
1000325 S-D-FINAL. 
1000330 CLOSB NET-FILE-IN. 
1000335 S-D-END. 
1000340 EXIT. L _______ ~ ____ ~~ ________ ~~ ______ ~ ______ • _______________ _________________ J 

Figure 13. Sample Program Using the Sort Feature <Part 2 of 2) 

Sort Feature 259 



Report Writer -- Description 

rhe keport writer Feature ~ermits the programmer to specify the 
format of a printe6 report in the Data Division, thereby minimizing the 
amount of Proc~dure Division coding he ~ould have to ~rite to create the 
report. 

~ printed report consists of the information reported and the format 
i~ ~hich it is printe1. Several reports can be produced ny one program. 

In the Data Divisidn, the programmer gives the name(s) and describes 
the format(s) of the report(s) he ~ishes produced. In the Procedure 
DiVision, he ~rites the statements that produce the report(s). 

~t program exe~ution time, the report in the format defined is 
proluc~d -- d~ca to be acdumulate~ is SUmmed, totals are produced, 
counters are step~ed and reset, and each line and each page is printed. 
Thus, the programmer need not concern himself with the details of these 
operations. 

In the Data DiVision, the programmer must write an FD entry that 
names the output file upon ~nich the report is to be ~ritten, and must 
also name the report itself. ~ report may be written on t~o files at 
the same time. 

~t the end of the Data Division, he must add a Report Section to 
define the format of e~ch re?ort named. In the Report Section, there 
are two types of ~ntries~ 

1. rhe B§.QQr:t._Q§.~£r!etiQ!l_~!ltrY (RD) ~hich describes the physical 
aspects of the report for~at. 

2.rhe r§'QQr:t3rO!!Q_;!g2£t!.et!'Q!!_g!!t;:i§.~ which describe the data items 
~ithin tne report and their relation to the report format. 

In the report description entry, the programmer specifies the maximum 
number of lines per page, ~here report groups are to appear on the page, 
anj Nhich 1ata items are to be consi1ered as controls. 

Q~QtrQl~ govern the basic format of the report. ~hen a control 
changes value -- that is, ~hen a £Qn~rQ!_~[~~~ occurs -- special actions 
will be taken before the next line of the report is printed. Controls 
are liste1 in a hierarchy, proceeding from the most inclusive down to 
the least inclusive. rhus, by specifying HE~DING anj FOOTING controls, 
the programmer is able to instruct the Report writer to pro1uce the 
report in ~hatever format he desires. 

For example, in the program at the en1 of this chapter, the hierarchy 
of controls proceeds from the highest (FIN~L) to an intermediate control 
(MONrrl) to the minor control (D~Y). D~Y is the minor control since if 
MONrH changes, DAY also ~~~:t change. Whenever any control changes, 
s~ecial actions are performe1 by the Report Writer -- sum information is 
totale1, counters are reset, special information is printed, and so 
forth -- before the next detail line is printed. 

rhe t§'QQ[:t_grQ~2_~§'~£tiQ~hQG_§.!!t[~§.~ describe the characteristics of 
all data items contained ~ithin the t~QQr~_i[Q!!Q: the format of each 
data item present, its placement in relation to the other data items 
within the report qroup, an1 any control factors associated with the 

260 Part V -- Special Features 

(~ 
\ 

.... -...... ,.~ 

('\ 
\ , 

'-. .. _./ 

c~ 



o 

Report Writer -- Description 

group. Information to be presente1 within ~ report ~roup can be 
described in three ways: 

• As §Q~B£~~~fQ£m~tiQ~, wnich is inforn~tion from outside the report • 

• As §Q~_i~fQrm3tion, whic~ is the result of addition operations upon 
any data present, wnetner SOURCE inform~tion or otner SUM 
information. 

rhrough the RD and the report group description entries, the 
programmer has thus defined conpletely the content, the format, and the 
summin~ operations necessary to produce the desired report. 

In the Procedure Division, the programmer instructs tne ~eport Nriter 
to produce the report througn the use of three Report Nriter statements: 
INITIATE, GENERATE, and TERMIN~TE. 

The INITIATE statement performs functions in the Report Writer 
analogous to the OPEN statement for individu~l files. 

The GENERATE statement autonatically produces the body of tne report. 
Necessary headings and footin~3 are printed, counters are incremented 
and reset as desired, source information is obtained, and sum 
information is produced, data is moved to the data item(s) in the report 
group description entry, controls are tested, anj Nhen a control break 
occurs, the additional lines requested are printed, as well as the 
detail line that cause1 the control break. ~ll of this is done 
automatically, thus relievin~ the pro~rammer of the responsibility for 
writing detailed tests and looping procedures that Nould otherwise be 
necessary. 

The TERMINATE statement completes the processing of a report. 
analogous to the CLOSE statenent for individual file3. 

It is 

In the Declaratives portion of the Proce1ure Division, the pro~rammer 
may also specify a USE BEFORE REPORTI~3 procedure for report group. In 
this procedure, he is able to specify any ~j1itional processing he 
wishes 10ne before a specific report group is printed. 

Two special registers are used by the Keport writer feature: 

LINE-COUNrER -- which is a numeric counter used by the R~port ~rit2r to 
----ietermine when a Pl\SE HE~DIN3 and/or a PhGE FOOTING report group is 

to be presented. The maximun value of LIN~-:OU~TLR is basei on the 
number of lines per page as specifie1 in the P~GE LI~IT(S) cl~use. 
LINE-COUNTER may be referre1 to in any Procedure Division 
statement. 

P~SE-COUNTER -- which is a numeric counter that may be used as a SOUKCE 
----data-item in order to 9resent the page number 0:1 3 report line. 

The maximum size of P~~E-:OUNr~~ is based on the SiZE specified in 
the PICTURE clause associated with an elementary item whose SJU~2E 
IS PhGE-COUNTER. This counter may be referrej to by ~ny Procedure 
Division statement. 

Figure 15, at the end of this chapter, gives an example of a Report 
Writer pro~ram for a manufacturer's quarterly report. 

Figure 16, which folloNs tilE:'! program, shoNS tne report that w::mLi be 
produced. 

Report ~riter Feature 2b1 



FD Entry/REPORT Clause 

rhe names of all the reports to be pro3uced must be named in the File 
section of the Data oivisi~n. ~n entry is require3 in tae FD entry to 
list the names of the reports to be produced on that file. A Report 
Section must be added at the end of the Data Division to define the 
f~rmat of each report. 

FILE DESCRIPTION 

rhe File Description furnishes information concerning the physical 
structure, identification, an~ rec~rd-names ~ertainin~ to a given file. 

r----------------------------------------------------------~-~--~------1 
I 3eneral Fotmat I 
~---------------------------------~----------------------~-------------i 
I I 
I EQ file-name I 
I I 
I [BLOCK CONTAINS Clause] I 
I ~~,~g~8BR:~:9g~'.I:'~f~y,::G.~e~?~1 I 
I ~g§9.Hgl?t~~~qp~,q~~.~se) ';1 I 
I LABEL R'ECORDS 'Clause I 
I ~yt}:J:,q~: ..... .9 . .R. ... S:l .. 3H.§.§} .';, I 
I [O~x:A.?,'REGqRP$>Cla·\i~Efj\: I 
I REPb~r"Cl'atise'~ ,.' I 
I I L ______________________________________________ ~ ____ ~ __________________ J 

~ 3iscussion of a 11 the ;:J bove-mentioned clau~~.§."\~£?gi.7.~.:;~c'v~.p. II 

Piy:~:.?+.pI').~.:.~ •.. 1\,~~:§srApt.iqH .. ~ .. ~ .. ,:t;:.9ir REPORT c I a us e, ;··t~.~;.l~~H.9.~.e~! .. ; 
cl~~~f7!:t?tieR~~~g~.88~D~ ... gteH§~! and the RECORD tONrAINEf cI"ciu.se a 
~il~ rih'~hich a repo~t is ~roduced follows. 

Each unique report-name must appear in the REPORr clause of the FO 
entry (or entries) for the file(s) on ~hich the report(s) is t~ be 
produced. The REPORT clause cross references the 3escription of report 
description entries with their associate~ file description entry. 

r---------------------------------------------------~---------~-------~, 
I Format I 
~--------------------------------------------------------~-------------~ 
I I 
I {REPORr IS l I 
I ( report-nane-l [report-name-2]... I 
I R~~OR~~ ~RE) I 
I I L _________________________________________________________________ ~ ____ J 

ga~h file description entry for standard sequential OUTPUT files 
within the File Section may include a REPORT clause containing the names 

262 Part V -- Special Features 



o 

:RECORDING MOD~/~ATA.REC()RDS/RECORD CONTAINS Clauses 

of one or more reports. These reports may be of 1ifferent sizes, 
formats, etc., an1 the or1er in whicn their names appear in the clause 
is not significant. 

Each unique £gport=rramg listed in an FD entry must be the subject of 
an RD entry in the Report section. ~ given report-name may appear in a 
maximum of two REPORT clauses. 

REC5ifDING~ MbD~E •. g,!.aus e· 
r 
..........•...•..• ±h~'g¢90ROlt-rG.M()riE ... c:iall~e •.. ·i.s.useitto· ••• sp~Ci.fy,thefo.rmat.?f the 
~q.g~Sa:L+·:r.;:esord.s . withinthe'file •. '. If>thi.sclau~~isomit:te.d, the 
~;~se~~,;~~, m?de' is determined as ge§9;;!?@d.i.~~J?Cl,!;e .• ·J?i.Yi.§i.9.n •. ~ 

The RECORD CONTAINS clause enables the user to specify the maximum 
size of his report recor1. 

r----------------------------------------------------------------------, 
I Format I 
~----------------------------------------------------------------------~ 
I I 
I RECORQ CONTAI~S [integer-1 rQ] integer-2 CHAR~crERS I 
I I L ______________________________________________________________________ J 

The specified size of each report recor1 must inclu1e the carriage 
control/line spacing character, arid the CODE character, if the CODE 
option is used. If the RECORD CONT~INS clause is omitte1, the compiler 
assumes a default size of 133 characters. 

For variable-length records, the size of each print line will be 
iU£~g~~2.characters, an1 the size of each blank line require1 for 
spacing will be 17 characters. For fixed-length records, the size of 
each print line and each blank line required for spacing will be 
integer-2 characters. 

For further information on the RECORD CONT~INS clause, see "Data 
Division." 

Report Writer Feature 263 



RD Entry 

REPORT SECTION 

The Report Section consists of two types of entries for each report; 
one ~escribes the physical aspects of the report format, the other type 
describes conceptual characteristics of the items that make up the 
report an~ their relationship to the report format. These are: 

1. Report Description entry (RD) 

2. Report group description entries 

The Report Section must begin with the header REPORT SECTION. 

The Report Description entry contains information pertaining to the 
overall format of a report named in the File Section ana is uniquely 
identified by the level indicator RD. The clauses that follow the name 
of the report are optional, and their order of appearance is significant. 
The CONTROL clause must precede the PAGE LIMIT clause. 

The entries in this section stipulate: 

1. The maximum number of lines that can appear on a page. 

2. where report groups are to appear on a page. 

3. Data items that act as control factors during presentation of the 
report. 

r----------------------------------------------------------------------, 
I 3eneral Format I 
~----------------------------------------------------------------------~ 
I I 
I gEPQRr 2~Q!IO~. I 
I I 
I RD report-name I 
I [CODE Clause] I 
I [CONTROL Clause] I 
I [P~GE LIMIT Clause]. I 
I I L ______________________________________________________________________ J 

RD is the level indicator. 

Rg~;:.!:.=-!!~mg is the name of the report and must be unique. The 
report-name must be specified in a REPORT clause in the file description 
entry for the file on which th~ report is to be written., 

The CODE clause is used to specify an identifying character added at 
the beginning of each line produced. The identification is meaningful 
when more than one report is written on a file. 

264 Part V -- Special Features 

c 



o 

I 
1----------
I 
I ;1:1:191 £.Q]~ mnemonic-name 
I 
'----

CODE/CONTROL Clauses 

Format J 
~ 
I 
i 
I 

.J 

~B~~Qni£=~~ must be associated with a single character literal used 
as function-name-1 in the SPECIAL-NAMES paragraph in the Environment 
Division. The identifyinq character is appended to the beginning of the 
line, preceding the carriage control/line spacing character. This 
cl~use should not be specified if the report is to be printed on-line. 

The CONTROL clause indicates the identifiers that specify the control 
hierarchy for this report, that is, the control breaks. 

r- --, 
1 Format I 
r------------------------------------------- ------------t 
I 
I {CONTROL IS } 

~ !;Q!I'!!Q1] ARE 
I '----------

{
FINAL } 
Identifier-1 [identifier-2] ••• 
PI.!!.!1 identifier-1 [identifier-2] ••• 

A control is a data item that is tested each time a detail report 
group is generated. If the test indicates that the value of the data 
item (i.e., CONTROL) has changed, a control break is said to occur, and 
special action (described below) is taken before printing the detail 
line. 

FINAL is the highest level con trol. (It is the one exception to the 
statement that controls are data items.) The identifiers specify t~e 
con trol hierarch V of the other controls. 19,§H~t.lfier=.l is the major 
control, identifier-2 is the intermediate control, etc. The last 
identifier-Sp~cifIed-is the minor control. The levels of the controls 
are indicated b the order which the are written. 

The control ig,~!l!.ifi~ must each specify different data items; that 
is, their descriptions must Dot be such that they occupy (partially or 
completel y) the same area of storage, or overlap in any way. 

When controls are tested, the highest level control specified is 
tested first, then the second highest level, etc. When a control break 
is found for a particular level, a control break is implied for each 
lower level as well. A control break for FINAL occurs only at the 
beginning and ending of a report (i.e., before the first detail line is 
printed and after the last detail is printed). 

I 
1 
I 
I 
I 

.J 

The action to be taken as a result of a control break depends on what 
the programmer defines. He may define a CONTROL HEADING report group 
and/or a CONTROL FOOTING group or neither for each control. 

Report Writer Feature 265 



PAGE LIMIT Clause 

The control footings and headings- that ar~ defined are printed prior 
to printinq the originally referenced detail. They are printed in the 
following order: lowest level control footing, next higher l~vel 
control footing, etc., up to and including the control footing for the 
level at which the control break occurred; then the control heading for 
that level, then the next lower level control heading, etc., down to and 
includinq the minor control heading; then the detail is printed. If, in 
the course of printing control headings and footings, a page condition 
is detected, the current page is ejected and a new page begun. If the 
associated report Qroups are given, a page footing and/or a page heading 
is also printed. To ensure that the source fields in the control 
footings and headings contain correct data during control break pro­
cessing, these fields should be included in the CONTROL clause. 

The CONTBOL clause is required when CONTROL HEADING or CONTROL 
FOOTING report groups :o~~~~tl!~~,'J1~~~:I;; are specified. 

The identifiers specified in the CONTROL clause are the only 
identifiers referred to by the BESET and TYPE clauses in a report group 
description entry for this report. The identifiers must be defined in 
the File or Workinq-Storaqe Section of the Data Division. 

The PAGE LIMIT clause indicates the specific line control to be 
maintained within the loqical presentation of a page, i.e., it describes 
the physical format of a page of the report. 

.--- ---------------------, 
I Format I 
r----------- ----~ 
I , 
I .f!2~ 
I 
I 
J 
I 
J 
I 
1 

[
LIMIT IS] 

L1 MITS AR E 
integer-1 

rH]!~INQ inteqer-21 
fl11!§! ,!!P.T!l.1 integer-3] 
r1!~! ~ET!l.1 integer-4] 
flQQ!IN2 integer-51 

{ 
LI NE } 

1IN~~ 

If this clause is not specified, PAGE-COUNTER and LINE-COUNTER 
special registers are not qenerated. 

I 
I 
1 
1 
J 
I 
I 
I 
1 
I 

---' 

The PAGE LIMIT clause is required when page format must be controlled 
bv the Report Writer. 

The PAGE LIMIT integer-1 LINES clause is required to 
specify the depth of the report page; the depth of. the 
report paqe mayor may not be equal to the physical 
perforated continuous form often associated in a report 
with the page length. The size of the fixed data-name, 
L1NE-COUNTEO, is the maximum numeric size based on 
inteqer-1 lines required for the counter to prevent 
overflow. 

Note: If integer-1 exceeds 99, unpredictable results may 
occur while spacing to a footing line. 

266 Part V -- Special Features 



c. o 

\ 
! C

~ 

-,' 

u 

PAGE LIMIT Clause 

The first line number of the first heading ~rint group is 
specified by integer-2. No print grou~ will start 
preceding integer-2, i.e., integer-2 is the first line on 
which anything m~y be printed. 

The first line number of the first normal print group 
(body group) is specified by integer-3. No DETAIL, 
CONrROL HEADING, or ~ONrROL FOOTING print group will start 
before integer-3. 

The last line nunber of the last nonfooting body group is 
specified by integer-4. No DErAIL or 20NTROL rtE~DING 
print group will extend beyond integer-4. 

The last line number of the last CDNTROL FOOrING print 
group is specified by ,integer-5. No 20NTKOL FOOrING print 
group will extend beyond integer-5. PAGE FOOTING print 
groups will follow integer-5. 

Using the parameters of the PAGE LIMIT clause, the keport Writer 
establishes the areas of the page where each type of report group is 
allowed to be printed. The following are the page areas for each type 
of report group: 

1. A REPORT HE~DING report group can extend from line integer-2 to 
line integer-l, inclusive. If the REPOaT HE~DING report group is 
not on a page by itself, the FIRST DETAIL integer-3 clause must be 
present in the PAGE LIMIT clause of the report. 

2. A PAGE HEADING report group may extend from line integer-2 to line 
integer-3 minus 1, inclusive. If a PAGE HEADING report group is 
specified in the report description, the FIRST DErAIL integer-3 
clause must be present in the P~GE LI~IT clause of tne report. A 
PA~E HEADING report group that follows a REPORT HEADING report 
group on the same page nust be able to be printed in the area of 
tne page defined in this rule. 

3. CONTROL HEADING report groups and DET~IL report groups must be 
printed in the area of the page that extends from line integer-3 to 
line integer-4, inclusive. 

4. ~ONrROL FOOTING report groups must be printed in the area of the 
page extending from line integer-3 to line integer-S, inclusive. 

5. A PAGE FOOTING report group may extenj from line integer-5 plus 1 
to line integer-l, inclusive. If PAGE FDOTING is sp~cified in the 
report description, either the FOOTING integer-5 or LAST DErAIL 
integer-4 clause must be present in the P~GE LIMIT clause of the 
report. 

6. A REPORT FOOTING report group can extend from line integer-2 co 
line integer-l, inclusive. If the REPORT FOOTING report grou2 is 
not on a page by itself, either the FOOTING inte~er-5 or LAST 
DETAIL integer-4 clause must be present in the PAGE LIMIT clause of 
the report, 

Figure 14 pictorially re~resents page format report group control 
when the PAGE LIMIT clause is specified. 

Report writer Feature 267 



PAGE LIMIT Clause 

integer-2 

integer-3 

integer-4 

integer-5 

integer-! 

REPORT 

HEADING! 

FOOTING 

, 

PAGE 

HEADING 

~ 

DETAIL & 

CONTROL 
HEADING 

~ 

CONTROL 
fOOTING 

, 

PAGE 

fOOTING 

~ 
Figure 14. Page Format when the P~GE LIMIT 2lause is specifiei 

The PAGE LI~IT clause nay be omitted when no association is desired 
between report groups and the physical format of an output page. In 
this case, relative line spacing must be indicated for all report ~roups 
of the report. 

If absolute line spacin~ is indicated for all the report groups, none 
of the integer-2 through integer-5 controls need be specified. If any 
of these limits are specified for a report lnat has only absolute line 
spacing, the limits are ignored. 

If relative line spacing is indicated for any report group, all LINE 
NUMBER and NEXT GRCUP spacin~ must be consistent with the control 
specified or implied in the P~3E LIMIT clause. 

If PAGE LIMITS integer-l is specified and some or all of the HEADING 
integer-2, FIRST DETAIL integer-3, LAST DET~IL integer-4, FOOrING 
integer-S clauses are omitted, the followin~ implicit control is assumed 
for all omitted specifications: 

1. If HEADING integer-2 is onitted, integer-2 is considered to be 
equivalent to the value 1, that is, LINE NUMBER one. 

2. If FIRST DET~IL integer-3 is omitted, inte~er-3 is considered to be 
equivalent to the value of integer-2. 

3. If L~ST DET~IL integer-4 is omitted, integer-4 is considered to be 
equivalent to the value of integer-5. 

4. If FOOTING integer-5 is omitted, integer-5 is considered to be 
equivalent to the value of integer-4. If both LAST DETAIL 
integer-4 and FOOTING integer-S are omitted, integer-4 and 
integer-5 are both considered to be equivalent to the value of 
inte~er-l. 

Only one PAGE-LIMIT clause may be specified for a Report Description 
entry. 

• Inte~er-l through integer-5 must be positive integers. 

• Integer-2 through integer-5 must be in ascending order. Integer-5 
must not exceed integer-i. 

268 Part V -- Special Features 

................ / 



C: 

o 

Report Group Description Entry 

~ report comprises one or m~re report ~roups. Each report group is 
described by a hierarchy of entries similar to the description of a lata 
record. There are three categ~ries of rep~rt groups: heading groups, 
detail groups, and footing groups. ~ CONT~OL HE~DING, DET~IL, or 
CONTROL FOOTING report group nay also be referrej to as a body grou~. 

The report group descri9tion entry defines the format and 
characteristics for a report group. The relative placement of a 
particular report group within the hierarchy of report g~oups, the 
format of all items, and any control factors associated with the group 
are defined in this entry. 

Schematically, a report group is a line, a series of lines, or d null 
(i.e., nonprintable) group. ~ report group is considered to De one unit 
of the report. Therefore, the lines of a report group are printed as a 
unit. 

~ null_~~Q~ is a report ~roup for which no LINE or COLUMN clauses 
have been specified (that is, a non8rintable report 3rouP). 

rhe report group description entry defines the format and 
characteristics applicable to the type of report group. 

1. For all report groups that are not null groups, the jescription 
entry indicates where and when the report group is to be presented. 

2. For all report groups, the description entry indicates when the 
nonprinting functions of the report group, such as summation, are 
to be performed. 

3. For all report groups except DEr~IL, the description entry allows 
for the execution of a user-specified procedure prior to printing a 
report group. If a report group is ~ null group, the execution of 
the user procedure occurs in the same manner as though the report 
group were printed. 

4. For CONrROL FOOrING rep~rt groups, the description entry indicates 
the user's summation algorithm. 

Report group names are required when reference is maie in the PrOCedure 
Division to: 

• A DET~IL report group by a GENER~rE statement 

• ~ HEADING or FOOTING report group by a USE sentence 

Report group names are required when reference is made in tne Re~ort 
Section to a DET~IL report group by a SUM UPON clause. 

Except for the data-name clause which, when present, must inmeJiately 
follow the level-number, the clauses may be written in any order. 

Report Writer Feature 269 



Report Group Description Entry 

r---------------------------~~---~~--~~------~~--~-----~~~-~-~--~------, 
I General Format 1 I 
~---------------------------------------------~------------------------~ 
I I 
I 01 [jata-name-l] I 
I [LINE Clause] I 
I [NEXT GROUP Clause] I 
I TYPE Clause I 
I [USAGE Clause]. I 
I I 
L _____________________ - ______ ~~~--~-------~~-----~--~-~~ ___ ~-------~---J 

r---------------------------~------------------------------------------, I General Format 2 I 
~-------------------------------r------------------~---~-_----~--------~ 
I I 
I level number [data-name-l] I 
I [LINE clause] I 
I [USAGE clause]. I 
I. I 

l ________________________________ ~--------~---~-~---~~_~-~~----~~------J 

r-----------------------~------~-~------~~-~~---------~~-~----~--------, 
I General Format 3 I 
~------------------------------------------~---------------------------~ 

level-number [jata-name-l] 
. [COLUMN Clause] 
[GROUP Clause] 
[JUSTIFIED Clause] 
[LINE Clause] 
[PICTURE Clause] 
[RESEr Clause] 
[BLANK WHEN ZERO Clause] 

[{
SOURCE l ] 
SUM. S Clause 
VALUE 

[USAGE Clause]. 
___________________________ ~ _____ ~ __ ~~_~ ____ ~-_~ ___ ~--______ ~---------J 

r---------~----~----------------------~~-~~~~----~----~-~---------~----, 
I General Format 4 I 
~-------------~----------------------------~------~-----------------~--~ 

01 [data-name-l] 
[BLANK WHEN ZERO Clause} 
[COLUMN Clause] 
[GROUP Ciause] 
[JUSTlFIED Clause] 
[LINE Clause] 
[NEXT GROUP ~lause] 
PICTURE Clause 
[RESET Clause] 

~ SUM Clause 
( SOURCE} 

~ VALUE 
TYPE Clause 
[US1\GE Clause]. 

------ _________________ ------------_-----~--~-------~- ________________ J 

270 Part V -- Special Features 

c\ 



o 

LINE Clause 

Format_l is used to indicate a report ~roup. ~ report ~roup 
description must contain a report group entry (level-Ol) and it must be 
the first entry. A report ~roup extends fron this entry either to the 
next report group level-Ol entry or to the beginning of the next report 
description. A null report group may contain only a Format 1 re~ort 
group entry. 

Format 2 is used to indicate a group item. A group item entry ~ay 
contain a-level number fron 02 through 49; this entry has the following 
functions: 

• If a report group has more than one line and one of the lines 
contains more than one elenentary item, a group item entry may be 
used to indicate the LINE number of the subordinate elementary 
items. 

• If a group item entry contains no LINE clause and there are no SUM 
counters subordinate to it, its only function is documentation. 

~Q£B~~~l is used to indicate an element~ry item. An elementary item 
entry may ~ontain a level number from 02 through 49; this entry has the 
following functions: 

• An elementary item entry may be used to describe an item that is to 
be presented on a printed line. In this case, a COLUMN clause, a 
PICTURE clause, and either a SOURCE, SU~, or VALUE clause must be 
present. 

• An elementary item entry in a DETAIL report group may be used to 
indicate to the Report Writer what operands are to be summed upon 
presentation of the DErAIL report group. 

• An elementary item entry in a CONTROL FOOTING report group may be 
used to define a SUM counter (see the discussion of the SUM ~lause). 

Format_~ is used to ind~cate a report ~roup that consists of only one 
elementary item. If Format 4 is used to define the report group instead 
of Format 1, it must be the only entry in tne group. 

rhe LINE clause indicates the absolute or relative line number of 
this entry in reference to the page or previous entry. 

r----------------------------------------------------------------------, 
I Format I 
~----------------------------------------------------------------------~ 
I I 

I LINE NU~BER IS {~~~~~~~~;ger- 2 } I 
I ~~~~ ~~~~ I 
I I L _____________________________________________________________ ~ ________ J 

Each line of a report must ~ave a LINE clause associated with it. 
For the first line of a report group, the LINE cl~use must be given 
either at the report group level or prior to or for the first ele~entary 
item in the line. For report lines other than the first in a report 
group, the LINE clause must be given prior to or for the first 
elementary item in the line. ~hen a LINE clause is encountered, 
subsequent entries following the entiy with the LINE clause are 

Report writer Feature 271 



LINE Clause 

implicitly presented on the same line until either another LINE clause 
or the end of the report group is encoun£ered. 

Integer-1 and integer-2 must be unsigned integers. 

LINE NUMBER IS integer-1 is an absolute LINE clause. It indicates 
the fixed line of the page on which this line is to be printed. 
LINE-COUNTER is set to the value of ~rr~~~~E=! and is used for printing 
the items in this and the following entries within the report group 
until a different value for the LINE-COUNTER is specified. 

LINE NUMBER IS PLUS integer-2 is a relative LINE clause. The line is 
printed relative to the previous line either printed or skipped. 
LINE-COUNTER is incremented by the value of ~g~g~~E=£ and is used for 
printing the items in this and the follo~ing entries within the report 
group until a different value for the LINE-COUNTER is specified. 
Exceptions to this rule are discussed later. 

LINE NUMBER IS NEXT P~3E in1icates that this report group is to be 
printed on the next page, not on the current page. This LINE clause may 
appear only in a report group entry or may be the LINE clause of the 
first line of the report group. 

Within any report group, absolute LINE NUMBER entries must be 
indicated in ascending order, and an absolute LINE NUMBER cannot be 
preceded by a relative LINE NUMBER. If the first line of the first body 
group that is to be printed on a page contains either a relative LINE 
clause or a LINE NUMBER IS NEXT P~GE clause, the line is printed ,on line 
FIRST DET~IL integer-3. However, if the LINE-COUNTER contains a value 
that is greater than or equal to FIRST DET~IL integer-3, the line is 
printed on line LINE-COUNTER plus 1. This value of LINE-COUNTER Nas set 
by an absolute NEXT GROUP clause in the previously printed body group 
(see rules for NEXT GROUP). 

If the report group entry of a body group contains a LINE NUMBER IS 
NEXT PAGE clause and the first line contains a relative LINE clause, the 
first line is printed relative to either FIRST DETAIL integer-3 or 
LINE-COUNFER, whichever is greater. This value of LINE-COUNTER ~as set 
by an absolute NEXT GROUP clause in the previously printed body group. 

The following are the rules for the LINE clause by report group type: 

1. REPORT HEADING 

• LINE NUMBER IS NEXT PAGE cannot be sp~ified in the report group. 

• The first line of the report group may contain an absolute or 
relative LINE clause • 

• If the first line contains a relative line clause, it is relative 
to HEADING integer-2. 

2. P~GE HEADING 

• LINE NUMBER IS NEXT P~GE cannot be specified in the report group. 

• The first line may contain either an absolute or relative LINE 
clause. 

• If the first line contains a relative LINE clause, it is relative 
to either HEADING integer-2 or the value of LINE-COUNTER, 
whichever is greater. The value in LINE-COUNTER that is greater 
than HEADING integer-2 can only result from a REPORT HE~DING 
report group being printed on the same page as the P~GE HEADING 
report group. 

272 Part V -- Special Features 

r 

\ 
~ .. / 

c 

c 



o 

NEXT GROUP Clause 

3. CONTROL HEADING, DETAIL, and CONTROL FOOTING 

• LINE NUMBER IS NEXT P~GE may be specified in the report group. 

• The first line of the report group may contain either an absolute 
or relative LINE clause. 

4. PAGE FOOTING 

• LINE NUMBER IS NEXT P~GE cannot be specified in the report group. 

• The first line of the report group may contain an absolute or 
relative LINE clause. 

• If the first line contains a relative LINE clause, it is relative 
to FOOTING integer-5 plus one. 

5. REPORT FOOTING 

• If the report group is to be printed on a page by itself, LINE 
NUMBER IS NEXT PAGE must be specified. 

• If LINE NUMBER IS NEXT PAGE is the only LINE clause in the report 
group description, the line will be printe~ on line HE~DING 
integer-2. 

• If the report group description does not contain a LINE NUMBER IS 
NEXT PAGE clause, the first line must contain an absolute or 
relative LINE clause. If it contains a relative LINE clause, the 
line is relative to either FOOTING integer-5 or the value of 
LINE-COUNTER, whichever is greater. The value in LINE-:OONTER 
that is greater than FOOTING integer-5 can only result from the 
printing of the PAGE FOOTING report group. 

The NEXT GROUP clause indicates the spacing con~ition following the 
last line of the report group. 

r----------------------------------------------------------------------, 
I Format I 
~----------------------------------------------------------------------~ 
I I 

I t!£!XT §~Q!!R IS { ~~~~g~~~;ger-2} I 
I t!§~! R~~§ I 
I I L ______________________________________________________________________ J 

The NEXT GROUP clause can appear only in a report group entry • 
.!.ntege~~l:and i!!!:.~gf:.~ must be positive integers. 

The following are the rules for the NEXT GROUP clause by report group 
type: 

1. REPORT HEADING 

• If the report group is to be printed on a page by itself, NEXT 
GROUP IS NEXT PAGE must be specified in the report group 
description. 

Report Writer Feature 213 



NEXT GROUP Clause 

• Integer-l indicates an absolute line number which sets the 
LINE-COUNTER to this value after printing the last line of the 
report group. 

• Integer-2 indicates a relative line number which increments the 
LINE-COUNTER by the integer-2 value after printing the last line 
of the report group. 

• An absolute or relative NEXT GROUP clause must not cause the 
LINE-COUNTER to be set to a value greater than FIRST DETAIL 
integer-3 minus 1. 

2. PAGE HEADING, PAGE FOOTING, and REPORT FOOTING 

o A NEXT GROUP clause cannot be specified in the report group. 

3. CONTROL HEADING, DET~IL, and CONTROL FOOTING 

• If a NEXT GROUP clause implies a page change, the change occurs 
only when the next body group is to be printed. 

• The NEXT GROUP IS NEXT PAGE clause indicates that no more body 
groups are ·to be printed on this page. 

• An absolute or relative NEXT GROUP clause may cause the 
LINE-COUNTER to be set to a value greater than or equal to FIRST 
DETAIL integer-3 and less than or equal to FOOTING integer-S. 
This is an exception to the rule which defines the page area of 
CONTROL HEADING and DET~IL report groups. 

o If a NEXT GROUP IS integer-l clause causes a page change, the 
value of LINE-COUNTER is set to the value of integer-l before the 
formatting of the first line of the next body group to be 
printed. This implies that if the first line of the next body 
group to be 'printed contains a relative LINE NUMBER clause, the 
line will be printed on l{ne LINE-COUNTER plus 1; if the first 
line contains an absolute LINE NUMBER clause that is less than or 
equal to integer-l, a page will be printed which contains only 
PAGE HEADING and FOOTING report groups, and the following page 
will contain the body group. 

o When the NEXT GROUP clause is specified for a CONTROL FOOTING 
report group, the NEXT GROUP clause functions are performed only 
when a control break occurs for the control that is associated 
with this report group. 

Ifithe USE ~.r(3c~crur~fp~arep()~~gfOiip~2)2esa1 t,6:p,RINT~SWI'i'CH I'the 
NEXT<GROUP clause':~un~'t?ions ar~.,B:9t.:!?c.~;:~5?J;;t51~8-2~8E: this,~~,J?9,:r-"~ Q':r-8~:rp." 

274 Part V -- Special Features 

,~ 
I 

\ 
'-. 

c 

c 



c' 

C" 

o 

TYPE Clause 

The TYPE clause specifies the particular type of report group that is 
described by this entry an~ in~icates the time at which the report group 
is to be generatej. 

r-"-------~------------------------------------------------------------, I Format I 
~----------~---------------~-------------------------------------------~ 

TYPE IS 
{i~entifier-n} ~~~~~ 

{
ijentifier-n} 
~l~~~ 

l~ _____________________________________________________________________ J 

The TYPE clause in a particular report ~roup entry indicates the 
point in time at which this report group will be generated as output. 

If the report group is ~escribed as TYPE DETAIL or DE, then a 
GENERATE statement in the Pr~cedure Division directs the Report Writer 
to projuce this report group. Each DETAIL report group must have a 
unique data-name at level-Ol in a report. 

If the report group is ~escribej as other than TYPE DET~IL or DE, the 
generation of this report ~roup is an automatic feature of the Report 
Writer, as detailed in the followin~ para~raphs. 

The REPORT HEADING or RH entry indicates a report group that is 
produced only once at the be~inning of a report durin~ the execution of 
the first GENERATE statement. There can be only one report group of 
this type in a report. SOURCE clauses used in REPORT HEADING report 
groups refer to the values of data items at the time the first GENERATE 
statement is executed. 

The PA3E HEADING or PH entry indicates a report group that is 
produced at the beginnin~ of each page according to PAGE condition rules 
as specified below. There can be only one report ~roup of this type in 
a report. 

The CONTROL HEADING or CH entry indicates a repo~t group that is 
produced at the beginning of a control group for a jesignated 
ijentifier, or, in the case of FINAL, is produced once before the first 
control group during the execution of the first GENERATE statement. 
There can be only one report group of this type for each identifier an~ 
for the fINAL entry specified in a report. In order to produce any 
CONTROL HEADING report groups, a control break must occur. SOURCE 
clauses used in CONTRQL HEADING FINAL report groups refer to the values 
of the items at the time the first GENERATE statement is executed. 

The CONTROL FOOTING or CF entry indicates a report ~roup that is 
produced at the end of a control group for a designated identifier or is 
produced once at the termination of a report ending a FINAL control 
group. There can be only one report ~roup of this type for each 

Report Writer Feature 275 



'1;'YPE Clause 

~dentifier and for the FIN~L entry specified in a report. In order to 
p~oduce any CONTROL FOOTING report groups, a control break must occur. 
SOORCE clauses used in CONTROL FOOTING FIN~L report groups refer to the 
values of the items at the time the TERMIN~TE statement is executed. 

The PAGE FOOTING or PF entry indicates a report group that is 
produced at the bottom of ~ach page according to P~GE condition rules as 
specified below. There can be only one report group of this type in a 
report:, 

The REPORT FOOTING or RF entry indicates a report group that is 
produced only at the termination of a report. There can be only one 
report group of this type in a report. SOURCE clauses used in TYPE 
REPORT FOOTING report groups refer to the value of items at the time the 
TE~MINATE statement is executed. 

Identifier-n, as well as FINAL, must be one of the identifiers 
described in the CONTROL clause in the report description entry. It 
must be qualified (or not qualified) in exactly the same way as the 
oorresponding identifier in the CONTROL clause. 

~ FI~AL type control break may be designated only once for :ONTROL 
HE~DING or CONTROL FOOTING entries within a particular report 
description. 

Nothing precedes a REPORT HE~DING entry and nothing follows a REPORT 
FOOTING entry within a report. 

The HE~DING or FOOTING report groups occur in the following Report 
Writer sequence if all exist for a given report: 

REPORT HE~DING (one occurrence only) 
P~GE HEADING 

CONTROL HEADING 
DETAIL 
CONTROL FOOTING 

P~GE FOOTING 
REPORT FOOTING (one occurrence only) 

CONTROL HE~DING report groups are presented in the following 
~ierarchical arrangemerit: 

Final Control Heading (one occurrence only) 
Major Control Heading 

Minor Control Heading 

CONTROL FOOTING report groups are presented in the following 
hierarcpical arrangement: 

Minor Control Footing 

Major Control Footing 
Final Control Footing (one occurrence only) 

276 Part V -- Special Features 

....... -.~ . 

c 



o 

COLUMN clause 

CONTROL HEADING report groups appear with the current values of any 
indicated SOURCE data itecs before the DE~AIL report groups of the 
CONTROL group are produced. CONTROL FOOTING report groups appear with 
the previous values of any indicated SOURCE data items specified in the 
CONTROL clauser just after the DETAIL report groups of that CONTROL 
group have been produced. 

~he USE procedures specified for a CONTROL FOOTING report group that 
refer to source data items that are specified in the CONTROL clause 
affect the previous value of the items. If the CONTROL FOOTING report 
refers to source data items that are not specified in the CONTROLS 
Clause, the USE procedures affect the current value of the items. These 
report groups appear uhenever a control break occurs. LINE NUMBER 
determines the absolute or relative position of the CONTROL report 
qroupsr exclusive of the other HEADING and FOOTING report groups. 

!!~!g]_~!i!~ 

DISPLAY is the only option that may be specified for group and 
elementary items in a Report Group Description entry (see "USAGE 
Clausell) • 

The COLUMN clause indicates the absolute column number on the printed 
page of the high-order (leftmost) character of an elementary item • 

.--
I Format 
!r-
t 
I ~Q1YnM NUMBER IS integer-1 
I 
'--

, 
I 

-~ 
I , 
J 

.J 

The COLUMN clause indicates that the leftmost character of the 
elementary item is placed in the position specified by integer. If the 
COLUMR clause is not specified r the elementary item, though included in 
the description of the report group, is suppressed when the report group 
is produced at object time. 

lnt,gg~£=j must be a positive integer. 

The COLUMN number clause is given at the elementary level within a 
report group even if the elementary level is a single level-01 entry, 
uhich alone constitutes the report group. 

Note: The COLUMN clause cannot specify an integer greater than the 
length of the report line (that is, the length of the report record 
minus the control character and, if specified, mlnus the code.) 

The number of characters in any item cannot exceed the remaining report­
line positions to the right of the COLUMN clause integer. 

Report Writer Feature 277 



GROUP INDICATE/RESET Clause 

The GROUP INDICATE clause specifies that this elementary item is to 
be produced only on the first occurrence of the item after any control 
or paq e break. 

r- -, 
Format I J 

f , 
I ~BQY~ INDICATE 
I 

~ 
I 
I 
J 

L- ___ -----------------J 
The GROUP INDICATE clause must be specified only at the elementary 

item level within a DETAIL report group. 

An elementary item is not only group indicated in the first DETAIL 
report group containing the item after a control break, but is also 
group indicated in the first DETAIL report group containing the item on 
a new page, even t hough a control break did not occ ur. 

The JUSTIFIED clause is applicable in report group description 
entries as described in "Data Division." 

The PICTURE clause is applicable in Report Group Description entries 
as described in "Data Division." 

The RESET clause indicates the CONTROL identifier that causes the SUM 
counter in the elementary item entry to be reset to zero on a CONTROL 
break. 

,-- ----, 
I Format 
.------------------------------------
I 
1 
I RE;~ET ON 
I 
I 

{ 

i dentifier--1} 

fl!!AL 

I .. 
I 
1 
I 
I 
1 

L.. 
______ J 

After presentation of the CONTROL FOOTING report group, the counters 
associated with the report group are reset automatically to zero, unless 
an explicit RESET clause is given specifying reset based on a higher 
level control than the .associated control for the report group. 

The RESET clause may be used for progressive totaling of identifiers 
where subtotals of identifiers may be desired without automatic 
resettinq upon producing the report group. 

278 Part V -- Special Features 

c 



Cl 

o 

SOURCE/SUM/VALUE Clause 

Identifier-1 must be one of the identifiers described in the CONTROL 
clause-in-the-Report Description entry (RD). Identifier-1 must be a 
hiqher level CONTROL identifier than the CONTROL identifier associated 
with the CONTROL FOOTING report group in which the SUM and RESET clauses 
appear. 

The RESET clause may be used only in conjunction with a SUM clause. 

The BLANK WHEN ZERO clause is applicable here as discussed in "Data 
Division. II 

The SOURCE, SUM, or VALUE clause defines the purpose of this 
elementary item vithin the report qroup. 

.--
1 
I 
I 
) 

1 
1 
I 
r 
J 
I 
J 
I 
I , 

Format 

{
~V'''''''''''~c; •. ~ } :~,'\.:):J. -.:'; ".(~-,,·;,-·:,tJ 

identifier-1 

{ 
W~'7i1!Z } ~ .. ~ 

identifier-2 
••• [QgON data-name] 

l!LUE IS literal-1 

, 
I 
~ 

I 
I 
I 
I 
I 
~ 
I 
I 
J 
1 
t , 
I 
1 
I 

--.l 

SOURCE: The SOURCE clause indicates a data item that is to be used as 
the-source for this report item. The item is presented according to the 
PICTURE clause and the COLUMN clause in this elementary item entry. 

The SOURCE clause has two functions: 

1. To specify a data item that is to be printed 

2. To specify a data item that is to be summed in a CONTROL FOOTING 
report qroup (see the discussion of the SUM clause) 

~a:#n\i,f·i~r""l.lnayaIs~·.b.~· ..•• ·• anYsp~cial.·· .• register .. wh.fchIs vall<'t 
I3.s.thes~ndingfieldin a}10VEstatemen;t ... TALLY maybeus~d; 
iU'placeofidentifier-1>ina SOURCE clause.' 

~!gg~~_~~odY£!_IQfQ~~atio~_J!~§!Qrr_~l 

Report Writer Feature 279 



SOURCE/SUM/VALUE Clause 

SOM: The SUM clause is used to cause automatic summation of data and may appear only in an elementary item entry of a CONTROL FOOTING report 
group. The presence of a SUM clause defines a SUM counter. If a SUM 
~ounter is to be referred to by a Procedure Division statement or Report 
section entry, a data-name clause must be specified with the SUM clause 
entry. The data-name then represents the summation counter generated by 
the Report Writer to total the operands specified immediately following 
SUM. When referred to in the report section, the SUM counter data­
name cannot be qualified. In the Procedure Division, it may be 
qualified by the appropriate report-name. If reference is never made 
to a summation counter, the counter need not be named explicitly by a 
data-name entry. 

Whether the elementary item entry that contains a SUM clause names 
the summation counter or not, the PICTURE clause must be specified for 
each SUM counter. Editing characters or editing clauses may be included 
in the description of a SUM counter. Editing of a SUM counter occurs 
only upon presentation of that SUM counter. At all other times, the SUM 
counter is treated as a numeric data item. The SUM counter must be 
large enough to accommodate the summed quantity without truncation of 
integral digits. 

An operand of a SUM clause must be an elementary numeric data item 
that appears in the pile, working-Storagei::::::::l.::::l::::g::g,llll~ Section, or is the 
name of a SUM counter. Identifier-2 and identifier-3 can be qualified, 
subscripted, or indexed unless they are names of SUM counters. A SUM 
counter that is an operand of a SUM clause must be defined in the same 
CONTROL FOOTING report group that contains this SUM clause or in a 
CONTROL FOOTING report group that is at a lower level in the cont~ol 

I 
hierarchy of the same report. Note: An invalid (misspelled or 
undefined) SUM operand will not be flagged by the compiler. 

A SOM counter is incremented by its operands in the following manner: 

• An operand that is an elementary numeric data item appearing in the 
File, iorkinq-storaqe~::j;i'Q.::~.~&~ •• j.; Section is added to the S UM 
counter upon the generation of a DETAIL report group that contains 
this operand as a SOURCE data item; even if the operand appears in 
more than one SOURCE clause of the DETAIL report group, it is added 
only once to the SUM counter. The operands must appear exactly as 
they are in the SOURCE clauses with rd to ualification, 
subscripting, and indexing. 

• An operand that is a SUM counter and is defined in a CONTROL FOOTING 
tha t is a t ~n..Y lower level in the con t.rol hierarchy of this re port 
is summed before presentation of the CONTROL FOOTING in which it is 
defined. This counter updating is commonly called rolling counters 
forward • 

• An operand that is a SUM counter and is defined in the same CONTROL 
FOOTING as this SUM clause, is su~med before presentation of this 
CONTROL FOOTING. This counter updating is commonly called 
cross-footing. SUM counter operands are added to their respective 
SUM counters in the order in which they physically appear in th~ 
CONTROL FOOTING report qroup description, i.e., left to right within 
an elementary item entry and down the elementary item entries. 

280 Part V -- Special Features 

.r----, 
I 

(~ 
'----_/ 

c 



o 

SOURCE/SUM/VALUE Clause 

The UPON g~!~=~g option is required to obtain selective summation for 
a particular data item that is named as a SOURCE item in two or more 
DETAIL report qroups. Iden!ifi~~~ and i~gntifier=l must be SOURCE data 

Data-name must be the name of a DETAIL report group. 

The followinq is the chronology of summing events. 

1. Cross-footinq and counter rolling. 

2. Execution of the USE BEFORE REPORTING procedure. 

3. Presentation of the control footing if it is not a null group. 

Report writer Feature 280.1 



~ 

\ ........ / 

c' 

c 



o 

o 

GENERATE statement 

4. SUM counter resetting unless an explicit RESEr clause appears in 
the entry that defines the SUM counter. 

~~LU~: The V~LUE clause causes the report data item to assume the 
specified value each time its report group is presented only if the 
elementary item entry does not contain a ~ROUP INDIc~rE clause. If the 
GROUP INDIC~TE clause is present and a given object time condition 
exists, the item will not assume the specified value (see ~ROUP INDIC~TE 
rules). 

To produce a report, the INIrI~TE, GENER~TE, anj TERMIN~TE statements 
must be specified in the Procedure Division. In addition, a USE BEFORE 
REPORTING declarative section nay be written in a jeclarative section of 
the Procedure Division. This option allows the programmer to manipulate 
or alter data immediately before it is printed. 

The GENERATE statement is used to produce a report. 

r----------------------------------------------------------------------, 
I Format I 
~----------------------------------------------------------------------~ 
I I 
I GENER&~~ identifier I 
I I L ________________ ~ _____________________________________________________ J 

!ggntifie£ is the name of either a DEr~IL report group or an RD 
entry. 

If iggntif~~~ is the name of a DEr~IL report group, the GENER~rE 
statement does all the automatic operations within a Report Writer 
program and produces an actual output detail report group on the output 
medium. ~t least one DET~IL report group must be specified. 

If identifier is the name of an RD entry, the GENERATE statement does 
all of the automatic operations of the Report Writer except producing 
any detail report group associated with the report. For summary 
reporting a DETAIL report group need not be specified. (Note, however, 
that in this case SUM counters are never incremented.) 

In summary reporting, SUM counters are algebraically incremented in 
the same manner as for detail reporting. 

Report Writer Feature 281 



GENERATE Statement 

If more than one DETAIL report group is specifie~ in a report, SUM 
counters are algebraically incremented as though consecutive GENERATE 
statements were issued for all the DETAIL report groups of the re~ort. 
This consecutive summing takes ~lace in the order of the physical 
ap~earance of the DETAIL report group descri~tions. Even if there is 
more than one DETAIL report ~roup within a report, only one test for 
control break is made for each ,GENERATE report-name. rhis test is made 
by the Report writer prior to the summary reporting. After initiating a 
report and before terminatin~ the same report, both detail reporting and 
summary reporting may be performed. 

A GENERATE statement, in both detail an~ summary reporting, 
implicitly produces the following automatic operations (if define~): 

1. steps and tests the LINE COUNTER and/or PAGE COUNrER to produce 
appropriate PAGE FOOTING and/or PAGE HEADING report groups, after a 
line is printed. 

2. Recognizes any specifie~ control breaks to pro~uce appropriate 
CONTROL FOOTING and/or CONTROL HEADING report groups. 

3. Accumulates into the SUM counters all s~ecifie~ identifier(s). 
Resets the SUM counters. 

4. Executes any specified routines defined by a USE statement before 
generation of the associated report ~roup(s). 

DUring the execution of the first GENERATE statement, the following 
report groups associated with the report (if specified) are produced in 
the order: 

1. REPORr HEADING report group 

2. PAGE HEADING report group 

3. All CONTROL HEADING report groups in the or~er FINAL, major to 
minor 

4. rhe DETAIL report group if specified in the GENERATE statement 

If a control break is recognized at the time of the execution of a 
GENERATE statement (other than the first that is executed for a report), 
all CONTROL FOOTING report groups specifie~ for the report are pro~uced 
from the minor report group, up to and including the report group 
specified for the identifier which cause~ the control break. rhen, the 
CONTROL HEADING report group<s) specified for the report are produced, 
starting with the report group specified for the i~entifier that caused 
the control break, and continuing down to and ending with the minor 
report group. Then, the DETAIL report group specified in the GENERATE 
statement is produced. ' 

Data is moved to the data item in the Report Group Description entry 
of the Report Section and is edited under control of the Report Writer 
according to the same rules for movement and editing as described for 
the MOVE statement (see "Procedure Division"). 

The INITIATE statement be~ins the processing of a report. 

282 Part V -- Special Features 

c' 

c 



o 

INITIATE/TERMINATE statements 

r----------------------------------------------------------------------, 
I Format I 
~----------------------------------------------------------------------~ 
I I 
I ItlITI~TE report-name-l [report-name-21 ••• I 
I I L ______________________________________________________________________ J 

Each E~eQEt-namg.must be defined by a Report Description entry in the 
Report Section of the Data Division. 

The INITIATE statement resets all data-name entries that contain SUM 
clauses associated with the report; the Report Writer controls for all 
the TYPE report groups that ~re associated with this report are set up 
in their respective order. 

The PA3E-COUNTER register, if specified, is set to 1 \one) during the 
eKecution of the INITI~TE statement. If a starting value other than 1 
is desired, the programmer may reset this PAGE-COUNTER following the 
INITI~TE statement. 

The LINE-COUNTER register, if specified, is set to zero during the 
eKecution of the INITI~TE statement. 

c,·'··TheiPRIN~~9VlJ:T¢H·£~gi:~ter.·is 'seEt,6 zero ··duririg··€heexe··cutiOli.· •.•• b( •• · .•• ~h$ 
INi.':C,:tl\i',~, .• ·R.~9-~.~m§g!;.~ .. L.:~"".~.;; .. :.>;.~L .. ;:·.· 'MC.,' ". '.e.; .. ' ...... ",' •.• ;c .. ; .... ;;; .•.. ;;.,., •.... ; •.•..••..•••••••...•.•.•.. ; 

The INITIATE statement does not open the file with which the report 
is associated; an OPEN statement for the file must be given by the user. 
The INITI~TE statement performs Report Writer functions for individually 
described reports analogous to the input/output functions that the OPEN 
statement performs for individually described files. 

~ second INITI~TE statenent for a particular ~~eQ~~=~~~~ may not be 
eKecuted unless a TERMIN~TE statement has been executed for that 
report-name subsequent to the first INITI~TE statement. 

TERMINATE Statement 

The TERMIN~TE statement completes the processing of a report. 

r---------·------------------------------------------------------------1 I Format I 
~~---------------------------------------------------------------------~ 
I I 
I TERMI~~TE report-name-l [report-name-2J ••• I 
I I L ______________________________________________________________________ J 

Each ~EQE~=name given in a TERMIN~TE statement must be defined by an 
RD entry in the Data Division. 

The TERMIN~TE statement produces all the CONTROL FOOTIN3 report 
groups associated with this report as though a control break had just 
occurred at the highest level, and completes the Report Writer functions 
for the named reports. The TERMIN~TE statement also produces the last 
REPORT FOOTING report group associated with this report. 

~ppropriate P~GE HE~DING and/or P~GE FOOTING report groups are 
prepared in their respective order for the report description. 

Report Writer Feature 283 



USE BEFORE REPORTING Declarative 

A second TERMINATE statement for a particular report may not be 
executed unless a secohd INIrIATE statement has been executed for the 
~eQrt-namg· 

The TERMINATE statement does not close the file with which the report 
is associated; a CLOSE statement for the file must be given by the User. 
The TERMINA~E statement perforns Report Writer functions for 
individually described report programs analogous to the input/output 
functions that the CLOSE statement performs for individually described 
files. 

If, at object time, no GENERATE statement is executed for a report, 
the TERMINATE statement of the report will not produce any report groups 
and will not perform any 'SUM processing. 

Because it forces and processes control breaks, a TERMINATE statement 
accesses all the data items that were specified as controls for the 
report. Also, in preparing headings and footings for presentation as a 
result of the forced control breaks, TERMINATE accesses the data items 
specified as SOURCE or SUM operands in those headings and footings. 
Therefore, the control data items and SOURCE/SUM operands must be 
available at the time the TERMINATE statement is executed. 

For example, if the cdntrol or SOURCE/SUM data items are in a data 
record of a file or in a sort record, the record must be available when 
TERMINATE is e~ecuted. It is the user's responsibility to ensure that 
such data items are available. 

USE~tence 

The USE sentence specifies Procedure Divisioh statements that are 
executed just before a report group named in the Report Section of the 
Data Division is produced. 

r----------------------------------------------------------------------~ 
I Format I 
~-------------------------------------------------~----~---------------~ 
I I 
I QSE ~~rQB~ REPOB~!N@ data-name. I 
I I L _________________________ ~ ___ ~.--.~----------- ________________________ J 

A USE sentence, when present, must immediately follow a section 
header in the dedlaratives portion of the Procedure Division and must be 
followed b~ a period followed by a space. The remainder of the sectioh 
must consist of one or more procedural paragraphs that define the 
procedures to be used. 

Data~rr~mg represents a report group named in the Report section of 
the Data Division. A data-name must not appear in more than one USE 
sentence. Data-name must be qualified by the report-name if data-name 
is not unique. 

No Report writer statement (GENERATE, INITI~TE~ or TERMINATE) may be 
written in a procedural paragraph(s) following the USE sentence in the 
declaratives portion. 

The USE sentence itself is never executed~ rather ~t defines the 
conditions calling for the e~ecution of the USE procedures. 

The designated procedures are executed by the Report Writer just 
before the named report is produced, regardless of page or control break 
associations with report groups. The report group may be any type 
except DETAIL. 

within a USE procedure, there must not be any reference to any 
nondeclarative procedures. converseiy, in the nondeclarative portion, 
there must be no reference to procedure names that appear in the 
Declaratives Section, except that PERFORM statements may refer to a USE 
procedure or to the procedures associated ~ith the USE procedure. 

284 Part V -~ Special Features 

c 



C:: 

o 

Report Writer -- Special Register$ 

When the iiser~ifshe$ to suppress' Ehep'iiritingofEtie 'specf£Ied"'repOrEI 
groups, the statement . ..... '! 

MOVE 1 TOPRINT-SWITca 

is used in the USE BEFORE. REPORTING declarative section.' 
~tat~men~~isencounter~d,only the.sp~cifiedreport grou~ is 
print~d;th~statement must be written£oreach report group 
print-ingis.· •• ·to·.··be suppressed •... 

Use of PRINT-8WITCH to suppress the printing of a report group 
implies that: 

1~ Nothing is 

.2. The LINE~COUNTERis 

.i 

3. The function of the NEXT GROUP clause, if one appears in the reportl 
ff.:::>.ll:I?; .• Cl~~c:::t:"il?:tic:>~, is nullified 

The fixed data-names, P~GE-COUNTER and LINE-COONTER, are numeric 
counters automatically generated by the Report Writer based on the 
presence of specific entries; they do not require data description 
clauses. The description of these two counters is included here in 
order to explain their resultant effect on the overall report format. 

P~GE-COUNTER 

~ PAGE-COUNTER is a counter generated b~ the Report Writer to be used 
as a source data item in order to present the page number on a report 
line. A PAGE-COUNTER is generated for a report by the Report Writer if 
a P~GE-LIMIT clause is spec~tiE':!::l .... ~[l .. ~Cl~ .... E}p>,:entry of the report. The 
numeric counter is a 3-byteGQMJ?UTAXIQNAt:::31 item that is presented 
according to the PICTURE clause associated with the elementary item 
whose SOURCE is P~GE-COUNTER. 

If more than one PAGE-COUNTER is given as a SOURCE data item within a 
given report, the number of nuneric characters indicated by the PICTURE 
clauses must be identical. If more than one PAGE-COUNTER exists in the 
program, the user must qualify PAGE-COUNTER by the report name. 

PAGE-COUNTER may be referred to in Report Section entries and in 
Procedure Division statements. After an INIrIATE statement, 
PAGE-COUNTER contains one; if a starting value for PAGE-COUNTER other 
than one is desired, the programmer may change the contents of the 
PAGE-COUNTER by a Procedure Division statement after an INITIArE 
statement has been executed. PAGE-COUNTER is automaticall~ incremented 
by one each time a page break is recognized by the Report Writer, after 
the production of any PAGE FOOTING report group but before production of 
any PAGE HEADING report group. 

A LINE-COUNTER is a counter used by the Report Writer to determine 
when a PAGE HEADING and/or a P~GE FOOTING report group is to be 
presented. One line counter is supplied for each report with a P~3E 

LIMIT(S) clause written in ~Q.~ .. g~P . .9.~t .... P.E':! .. :::if~~ption entry (RD). The 
numeric counter is a 3-byte ~C?,~.~,~.!~!.t.~~~~~3;j item that is presented 

Report Writer Feature 285 



Report Writer -- Special Registers 

according to the PICTURE clause associated with the elementary item 
whose SOURCE is LINE-COUNTER. 

LINE-COUNTER may be referred to in Report Section entries and in 
Procedure Division statements. If more than one Report Description 
entry (RD) exists in the Report Section, the user must qualify 
LINE-COUNTER by the report-name. LINE-COUNTER is automatically tested 
and incremented by the Report Writer based on control specifications in 
the PAGE LIMIT(S> clause and values specified in the, LINE NUMBER and 
NEXT GROUP clauses. After an INITIATE statement, LINE-COUNTER contains 
zero. Changing the value of LINE-COUNTER by Procedure Division 
statements may cause page format control to become unpredictable in the 
Report Writer. 

The value of LINE-COUNTER during any Procedure Division test 
statement represents the number of the last line .printed by the 
previously generated report group or represents the number of the last 
line skipped to by a previous NEXT GROUP specification. 

In a USE BEFORE REPORTING, if no lines have been printed or skipped 
on the current page, LINE-COUNTER will contain zero. In all other 
cases, LINE-COUNTER represents the last line printed or skipped. 

286 Part V -- special Features 



(-.. , 

"---..// 

c '" 'i 

o 

Report Writer -- Sample Program 

The program in Figure 15 illustrates a Report Writer source program. 
The recor~s used in the report <i.e., input ~ata) are shown after the 
STJP RUN card in the program. Using the first record as an example, the 
data fieljs are arranged in the following format: 

Col. 1 1 
3 8 1 7 ------- --------------
A 0 0 0 L A 010 1 002 0 0 

'-yo-' 

Department 
Nwnber 

~, 

Number of 
Purchases 

Type 
Purchase 

Month Cost 

The decimal point in the cost field is assumed to be two places from 
the right. 

r----------------------------------------------------------------------, 
000005 
000010 
000015 
000020 
000025 
000030 
000035 
000040 
000045 
000050 
000055 
000060 
000065 
000070 
000075 
000080 
000085 
000090 
000095 
000100 
000105 
000110 
000115 
000120 
000125 
000130 
000135 
000140 
000145 
000150 
000151 
000155 
000160 
000165 
000175 

IDENTIFICATION DIVISION. 
PROGRAM-ID. ACME. 
REMARKS. THE REPORT WAS PRODUCED BY THE REPORT WRITER. 
ENVIRONMENT DIVISION. 
CONFIGURATION SECTION. 
SOURCE-COMPUTER. IBM-360-H50. 
OBJECT-COMPUTER. IBM-360-H50. 
INPUT-OUTPUT SECTION. 
FILE-CONTROL. 

SELECT INFILE ASSIGN TO UT-S-INFILE. 
SELECT REPORT-FILE ASSIGN TO UT-S-OUTPRINT. 

DATA DIVISION. 
FILE SECTION. 
FD INFILE 

LABEL RECORDS ARE OMITTED 
DATA RECORD IS INPUT-RECORD. 

01 INPUT-RECORD. 
05 FILLER PICTURE AA. 
05 DEPT PICTURE XXX. 
05 FILLER PICTURE AA. 
05 NO-PURCHASES, PICTURE 99. 
05 FILLER PICTURE A. 
05 TYPE-PURCHASE PICTURE A. 
05 MONTH PICTURE 99. 
05 DAY-l PICTURE 99. 
05 FILLER PICTURE A. 
05 COST PICTURE 999V99. 
05 FILLER PICTURE X(59). 

FD REPORT-FILE 
LABEL RECORDS ARE STANDARD 
RECORD CONTAINS 121 CHARACTERS 
REPORT IS EXPENSE-REPORT. 

wORKING-STORAGE SECTION. 
77 SAVED-MONTH PICTURE 99 VALUE IS O. 
77 CONTINUED PICTURE X(ll) VALUE IS SPACE. L ______________________________________________________________________ J 

Figure 15. Sample Program Using the Report Writer Feature (Part 1 of 4) 

Report Writer Feature 287 



Report Writer -- Sample Program 

r----------------------------------------------------------------------, 
000180 
000185 
000190 
000195 
000200 
000205 
000210 
000215 
000220 
000225 
000230 
000235 
000240 
000245 
000250 
000255 
000260 
000265 
000270 
000275 
000280 
000285 
000290 
000295 
000300 
000305 
000310 
000315 
000320 
000325 
000330 
000335 
000340 
000345 
000350 
000355 
000360 
000365 
000370 
000375 
000380 
000385 
000390 
000395 
000400 
000405 
000410 
000415 
000420 
000425 
000430 
000435 

01 MONTH-TA.BLE. 
05 RECORD-MONTH. 

10 FILLER PICTURE ~(9) V~LUE IS "JANUARY " 
10 FILLER PICTURE ~(9) V~LUE IS "FEBRU~RY ". 
10 FILLER PICTURE ~(9) VALUE IS "M~RCH " 
10 FILLER PICTURE ~(9) VALUE IS "APRIL ". 
10 FILLER PICTURE ~(9) V~LUE IS "M~Y " 
10 FILLER PICTURE ~(9) V~LUE IS "JUNE ". 
10 FILLER PICTURE ~(9) VALUE IS "JULY " 
10 FILLER PICTURE ~(9) VALUE IS "AUGUST ". 
10 FILLER PICTURE A(9) V~LUE IS "SEPTEMBER". 
10 FILLER PICTURE ~(9) VALUE IS "OCTOBER " 
10 FILLER PICTURE A(9) V~LUE IS "NOVEMBER" 
10 FILLER PICTURE ~(9) V~LUE IS "DECEMBER ". 

05 RECORD-~RE~ REDEFINES REC~RD-MONTH. 
\ 10 MONTHN~ME PICTURE ~(9) OCCURS 12 TIMES. 

REPORT SECTION. 
RD EXPENSE-REPORT 

CONTROLS ~RE FIN~L MONTH DAY-l 
PAGE LIMIT IS 59 LINES 
HEADING 1 
FIRST DET~IL 9 
LAST DETAIL 48 
FOOTING 52. 

01 TYPE IS REPORT HE~DING. 
05 LINE NUMBER IS 1 

COLUMN NUMBER IS 27 
PICTURE IS ~(26) 
VALUE IS n~:ME MANUFACTURING COMPANY". 

05 LINE NUMBER IS 3 
COLUMN NUMBER IS 26 
PICTURE IS ~(29) 
VALUE IS "QU~RTERLY EXPENDITURES REPORT". 

01 PAGE-HE~D 
TYPE IS P~GE HE~DING. 
05 LINE NUMBER IS 5. 

10 COLUMN IS 30 
PICTURE IS A(9) 
SOURCE IS MONTHN~ME OF RECORD-~REA (MONTH). 

10 COLUMN IS 39 
PICTURE IS A(12) 
VALUE IS "EXPENDITURES". 

10 COLUMN IS 52 
PICTURE IS X(ll) 
SOURCE IS CONTINUED. 

05 LINE IS 7. 
10 COLUMN IS 2 

PICTURE IS X(35) 
V~LUE IS "MONTH D~Y DEPT NO-PURCH~SES". 

10 COLUMN IS 40 
PICTURE IS X(33) 
V~LUE IS "TYPE C~ST CUMUL~TIVE-COST". l ______________________________________________________________________ J 

Figure 15. Sample Program Using the Report writer Feature (Part 2 of 4) 

288 Part V -- Special Features 



o 

Report Writer -- Sample Program 

r----------------------------------------------------------------------, 
000440 
000445 
000450 
000455 
000460 
000465 
000470 
000475 
000480 
000485 
000490 
000495 
000500 
000505 
(>00510 
000515 
000520 
000525 
000530 
000535 
000540 
000545 
000550 
000555 
000560 
000565 
000570 
000575 
000580 
000585 
000590 
000595 
000600 
000605 
000610 
000615 
000620 
000625 
000630 
000635 
000640 
000645 
000650 
000655 
000660 
000665 
000670 
000675 
000680 
000685 
000690 
000695 
000697 
000698 

000700 
000705 
000710 
000715 
000720 

01 DET~IL-LINE TYPE IS DET~IL LINE NUMBER IS PLUS 1. 
05 COLUMN IS 2 GROUP INDIC~TE PICTURE IS ~(9) 

SOURCE IS MONTHN~ME OF RECORD-ARE~ (MONTH). 
05 COLUMN IS 13 GROUP INDIC~TE PICTURE IS 99 

SOURCE IS D!\Y-L 
05 COLUMN IS 19 PICTURE IS XXX SOURCE IS DEPT. 
05 COLUMN IS 31 PICTURE IS Z9 SOURCE IS NO-PURCH~SES. 
05 COLUMN IS 42 PICTURE IS ~ SOURCE' IS TYPE-PURCH~SE. 
05 COLUMN IS 50 PICTURE IS ZZ9.99 SOURCE IS COST. 

01 TYPE IS CONrROL FOOTING DAY-1. 
05 LINE NUMBER IS PLUS 2. 

10 COLUMN 2 PICTURE X(22) 
V~LUE "PURCH~SES AND COST FOR". 

10 COLUMN 24 PICTURE Z9 SOURCE S~VED-MONTH. 
10 COLUMN 26 PICTURE X VALUE "_H. 
10 COLUMN 27 PICT.URE 99 SOURCE D~Y-1. 
10 COLUMN 30 PICTURE ZZ9 SUM NO-PURCH~SES. 
10 MIN 

COLUMN 49 PICTURE $$$9.99 SUM COST. 
10 COLUMN 65 PICTURE $$$$9.99 SUM COST 

RESET ON FINAL. 
05 LINE PLUS 1 COLUMN 2 PICTURE X(71) 

V~LUE ~LL "*". 
01 TYPE CONTROL FOOTING MONTH 

LINE PLUS 1 NEXT 3ROUP NEXT P!\GE. 
05 COLUMN 16 PICTURE ~(14) V~LUE "TOT~L COST FOR". 
05 COLU~N 31 PICTURE ~(9) 

SOURCE MONTHN~ME OF RECORD-AREA (MONTH). 
05 COLUMN 43 PICTURE AA~ VALUE "WAS". 
05 INT 

COLUMN 48 PICTURE $$$9.99 SUM MIN. 
01 TYPE CONTROL FOOTING FIN~L LINE NEXT P~GE. 

05 COLUMN 16 PICTURE ~(26) 
V~LUE "TOT~L COST FOR QU~RTER W~S". 

05 COLUMN 45 PICTURE $$$$9.99 SUM INT. 
01 TYPE PAGE FOOTING LINE 57. 

05 COLUMN 59 PICTURE X(12) VALUE "REPORT-PAGE-". 
05 COLUMN 71 PICTURE 99 SOURCE PAGE-COUNTBR. 

01 TYPE REPORr FOOTING 
LINE PLUS 1 COLUMN 32 PICTURE ~(13) 
VALUE "END OF REPORT". 

PROCEDURE DIVISION. 
DECLARATIVES. 
P~GE-HEAD-RTN SECTION. 

USE BEFORE REPORTING P~3E-HE~D. 
PAGE-HE~D-RTN-SWIrCH. 

GO TO PAGE-HEAD-RTN-TEST. 
PAGE-HE~D-RTN-TESr. 

IF MONTH = SAVED-MONTH MOVE "(CONTINUED)h TO CONTINUED 
ELSE MOVE SPACES TO CONTINUED 

MOVE MONTH TO SAVED-MONTH. 
GO TO PAGE-HEAD-RTN-EXIT. 

P~GE-HE~O-RTN-~LTER. 

ALTER PAGE-HE~D-RrN-SWITCH 
TO P~GE-HEAD-RTN-SUPPRESS. 

PAGE-HE~D-RTN-SUPPRESS. 
MOVE 1 TO PRINT-SWITCH. 

P~GE-HE~D-RTN-EXIT. 

EXIT. 
END DECLAR~rIVES. L ______________________________________________________________________ J 

Figure 15. Sample Program Using the Report Writer Feature (Part 3 of 4) 

Report Writer Feature 289 



Report Writer -- Sample Program 

r----------------------------------------------------------------------, 
000725 OPEN-FILES. OPEN INPUT INFILE OUTPUT REPORT-FILE. 
000735 INITIATE EXPENSE-REPORT. 
000740 READATA. 
000745 READ INFILE AT END GO TO COMPLETE. 
000755 GENERATE DETAIL-LINE. 
000760 GO TO READATA. 
000765 COMPLETE. 
000770 PERFORM PAGE-HEAD-ROUTINE-ALTER. 
000780 TERMINATE EXPENSE-REPORT. 
000785 CLOSE INFILE REPORT-FILE. 
000790 STOP RUN. 

AOO 02 A010l 00200 
A02 01 A010l 00100 
A02 02 C010l 01600 
AOl 02 B0102 00200 
A04 10 A0102 01000 

AOl 06 C0329 04800 
A03 20 E0331 06000 L ______________________________________________________________________ J 

Figure 15. Sample Program Using the Report Writer Feature (Part 4 of 4) 

In the key, the numbers enclosed in circles (for example, 0) relate 
the explanation below to the corresponding output line in Figure 16. 

The 6-digit numbers (for example, 000615) show the source statement 
from the program illustrated in Figure 15. 

is the REPORT HEADIN~ resulting from source lines 000300-000340. 

is the PAGE HEADING resulting from source lines 000345-000435. 

is the DETAIL line resulting from source lines 000440-000480 (note 
that since it is the first detail line after a control break, the 
fields defined with the GROUP INDICATE clause, lines 
000445-000460, appear). 

is a DETAIL line resulting from the same source lines as (3). In 
this case, however, the fields described as GROUP INDICAfE(do not 
appear (since the control break did not immediately precede the 
detail line). 

is the CONTROL FOOTING (for DAY-l) resulting from source lines 
000485-000550. 

is the PAGE FOOTING resulting from source lines 000615-000625. 

is the CONTROL FOOTING (for MONTH) resulting from source lines 
000555-000575. 

290 Part V -- Special Features 

c 



o 

Report Writer -- Sample Program 

is the CONTROL FOOTING <for FINAL) resulting from source lines 
000595-000610. 

is the REPORTING FOOTING resulting from source lines 
000630-000640. 

Lines 000650-000715 of the example illustrate a use of USE BEFORE 
REPORTING. The effect of the source is that each time a new page is 
started, a test is made to determine whether the new page is being 
started because a change in MONTH has been recognized (the definition 
for the control footing for ~ONTH specifies NEXT GROUP NEXT PAGE) or 
because the physical limits of the page were exhausted. If a change in 
MONTH has been recogni~ed, spaces are moved to the PAGE HEADING; if the 
physical limits of the page are exhausted, "(CONTINUED)" is moved to the 
PAGE HEADING. 

Report Writer Feature 291 



Report Writer -- Sample Program 

(I)=~------------~---------=-~~ACME MANUFActURING COMPANY 

QUARTERLY EXPEf-IDITURES REPnPT 
G}-

- ~-'----------------JANU~RY EXPENDITURFS 

. MONTH DAY DFPr TYPE NO-PURCHASEC:; COST CUIvlULAfIVf-(OST 

~JANUAQV 01 A(lO 
-A02 

AO? 

? 
1. 
2 

A 
A 
C 

2.00 
1.00 

1('.00 Q)-
~~PURCHASES AND erST FOR 1-01 5 $19.00 $19.00 
~*********************************************************************** 

JANLIAPY 02 AOI 2 P, 2.00 
A04 10 A 10.00 
A04 10 C 80.00 

PURCHASF.S AND COST FOR 1-02 22 $92.00 $111.00 
********************************************************.************** 
JANu APY AOI 2 8 2.00 

PURCHASFS ANC COST FOR 1-05 2 $2.00 $113.00 
*******************************************************~*************** 
JANUARY AO 1 

A01 
A01 

10 
8 

20 

PURCHASFS 6NO COST FOR 1-0P 38 

A 
8 
o 

10.00 
12.48 
38.40 

$(,0.88 $173.88 
*************.***********************************.********************* 
JANU AR,Y 13 AO(' 

tWO 

PURfHAsES AND COST FOR 1-13 

4 
1 

5 

8 
C 

6.24 
8.00 

$14.24 'HAB.12 
********************************************************.*****~******** 
JANUAR.Y 15 Aoe 

A02 
10 

1 

PURC~~SES AND COST FOR 1-15 11 

[) 

C 
19.20 

R.OO 

$27.20 $215.32 
*********************************************************************** 
JA"'UARY 21 A03 

A03 
Ab? 

10 
10 
10 

E 
F 
r. 

30.00 
25.00 
50.00 

PUPCHASE~ AND crST FOq 1-21 30 1105.00 $320.32 
**********~************************************************************ 
JANIJAt<y 1'3 Aoe A 5.00 

PURCHASES ANn CCST FOR 1-23 5 $5.00 $325.32 
******************************************** •• ************************* 

(!) REPORT-PAGF-01 

FigUre 16. Report Produced by Report Writer Feature (Part 1 of 5) 

292 Part V -- special Features 



o 

Report Writer -- Sample Program 

EXPENDITURES (CONTINUED) ~---------------JANUAPY 

~MnNTH DAY DEFT NO-PURCHASES TYPE cnST CUMULATIVE-COST 

0-JANUARY A04 5 A 5.00 
A04 5 8 7.80 

26 

~0= PURCHASES ANn. ('OST FOR 1-26 10 $12.80 $33~.12 
*********************************************************************** 

5 JANUARY 27 AOO ~ B 9.36 
A00 15 C 120.00 

PURCHASES AND COST FOR 1-27 21 $12<?36 $467.48 
*********************************************************************** 
JANUARY 30 AOe 2 9 3.12 

A02 10 A 10.00 
AO'2 1 C 8.00 
A04 15 B 23.40 
A04 10 C 80.00 

PURCHA~. ES AND COST FOR 1-30 38 $124.52 $592.00 
*********************************************************************** 
JANUARY 31 Aoe 

A04 

PURCHASES AND CCST FOR 1-31 

1-
A 

7 

A 
A 

1.00 
6.00 

$7.00 $599.00 
*********************************************************************** 

(2)~---------------TOTAL COST FOR JANUARY WAS $599.00 

(!)~ __________________________ ~----~----------------- REPORT-PAGE-02 

Figure 16. Report Produced by Report Writer Feature (Part 2 of 5) 

Report Writer Feature 293 



Report Writer -- Sample Program 

~MONTH FEBRUARY EXPENDITURES 

TYPE CUMULATIVE-COST nAY DEPT NO-PURCHASES COST 

0-FEBRUARY 15 AO? 10 A. 10.00 
A02 2 B 3.12 
A02 1 C 8.00 
A03 15 G 75.00 
A04 5 B 7.80 
A05 8 A 8.00 
A05 5 C 40.00 

FEBRUARY 16 A02 2 C 16.00 
AOt-. 10 A 10.00 
A07 10 A 10.00 
A07 10 F 25.00 

PURCHAS ES AND COST F(lP 2-16 32 $61.00 $811.92 
*********************************************************************** 
FEBRUARY 17 A07 10 E 30.00 

A07 10 G 50.00 

PURCHASES At\ID COST FOP 2-17 20 $80.00 $891.92 
*********************************************************************** 
FEBRUARY 21 AOf:· 20 A 20.00 

A06 20 B "31.20 
A06 20 C 160.00 
AOf- 20 0 38.40 
A06 20 E 60.00 
A06 20 F 50.00 
A06 20 G 100.00 

PURCHASES AND COST FOR 2-21 140 $459.60 ¢j1351.52 
*********************************************************************** 
FFBR.UAP Y 27 AOI 21 D 40.32 

PURCHASF.S AND COST Fr.R 2-27 21 $40.32 $1391.84 
*********************************************************************** 
FEBRUARY 28 A02 

A02 
A03 

3 
5 

15 

PURCHASES AND CCST FOR 2-28 23 

B 
C 
E 

4.68 
40.00 
45.00 

$89.68 $1481.52 
*********************************************************************** 

(2)~--------------TOTAL COST FOR FEBRUARY WAS $882.52 

(!)~--------------------------------------------~---------REPORT-PAGE-03 

Figure 16. Report Produced by Report Writer Feature (Part 3 of 5) 

294 Part V -- Special Features 

,.,-......... 
( . 
\ .. -..•... ' 



c) 

o 

Report Writer -- Sample Program 

c:D.:::::MONTH 

MARC~ EXPENDITURES 

DAY DE PT NO-PUP (HAC:; ES TYDF. COST CUMULATIVE-COST 

G)-MARCH 01 A02 5 A 5.00 
A02 1 C P.OO 

0- AO? 2'5 G 125.00 

c:v=-= PUR C HAS E SAN D (0 S T F G P. 3- 0 1 31 $ 13 8. 00 $ 1 6 19 • 52 
5 *********************************************************************** 

MARCH 06 AQ? 5 A 5.00 

PUPCHASES AND C~ST FOR 3-06 $5.00 $1624.52 
*********************************************************************** 
MARCH 07 A02 5 A 5.00 

PURCHASES AND COST FOR 3-07 $5.00 $1629.52 
*********************************************************************** 
MARCH 13 AO"? 10 A 10.00 

PUPCHASES ANn COST FOF 3-13 10 $10.00 $1639.52 
*********************************************************************** 
MARCH 15 AOI 21 A 21.00 

/\02 1 A 1.00 
A03 15 F 37.50 
A.Ol: '5 E 15.00 
AOt: 5 F 12.50 

PURCHASES Af\ID COST FOR 3-15 47 $87.00 $1726.52 
*********************************************************************** 
MARCH 20 A03 15 E 45.00 

PURCHASES AND erST fOR 3-20 15 $45.00 $1771.52 
*********************************************************************** 
MARCH 21 A02 

AO? 
15 
15 

PURCHASES AND COST FOP 3-21 30 

A 
F 

15.00 
37.50 

$52.50 $1824.02 
*********************************************************************** 
MARCH 23 A02 2 A 2.00 

PURC~ASES AND enST FOP 3-23 2 $2.00 $1826.02 
******************.**************************************************** 
MARCH 25 A 0:: 30 F 75.00 

PURCHASES AND CCST FOR 3-25 30 $75.00 $1901.02 
*********************************************************************** 

CD REPORT-PAGE-04 

Figure 16. Report Produced by Report Writer Feature (Part 4 of 5) 

Report Writer Feature 295 



~epor~ wr~ter -- ~ampLe ~rogram 

~MDNT~ MARCH EXPENDITURES (CONTINUED) 

DAY DEPT ~JO-PUR CHAS ES TYPE COST CUMULATIVE-COST 

@-MARCH 26 A02 1 A 1.00 

~PURCHASFS AND COST FOP 3-26 1 $1.00 $1902.02 
~*********************************************************************** 

MARCH 29 AOI 6 C 48.00 

PURCHASES AND COST FOR 3-29 6 $48.00 $1950.02 
*********************************************************************** 
MARCH 31 AO? 20 E 60.00 

PURCHASFS AND COST FOR 3-31 20 $60.00 $2010.02 
*********************************************************************** (2) TOTAL COST FOR MARCH WAS $528.50 

® REPORT-PAGE-05 

" ",..., 

CD-TOTAL COST FOR QU.ARTER WAS $2010.02 

®1--------------------------~-----------------------------~EPORT-PAGE-06 (!), _______________________________ END OF REPORT 

f . '" • 

Figure 16. Report Produced by Report Writer Fe~ture (Part 5 of 5) 
I 

296 Part V -- Special Features 

c 

c 



c/ 

C" 
'\ 
I 

o 

Subso;f:ipting 

The Table Handling feature enables the programmer to process tables 
or lists of repeated data cOtlve~iently. ~ table may have up to three 
dimensions, i.e., three levels of subscripting or indexing can be 
handled. Such a case ex~sts when a group item described with an OCCURS 
clause contains another group item with an OCCURS clause, which in turn 
contains an item with an OCCURS clause. To make reference to any 
element within such a table. each level must be subscripted or indexed. 

SUBSCRIPTING 

Subscripts are used only to refer to an individual elemen~ within a 
list or table of elements that have not been assigned individual 
data-names. 

r----------------------------------------------------------------------, I Format ' I 
~-------------------------------~-----~------------------------~-------~ 
I I 
I data-name (subscript[. subscript][, subscript]) I 
I I 
L _______ ----------_--------------_---------------______________________ J 

The subscript, or set of subscripts, that identifies the table 
element is enclosed in parentheses immediately following the space that 
terminates data-name, which is the name of the table element. When more 
than one subscript appears within a pair of parentheses, each subscript 

1U,'7R,H?:&,~?,;~~~isf~j;·~S,,:.~:J.7:8:~ ~~,~,~li!x.j~"., .. "R~.\,,~.. .,2r.~";;:" 8.~~8.W.~:~ .• 95~ a space. 
w,~yFt;;i;~,:!±~"~'~',,,:S.8m~~!~,,' :~,±:9!~::,~a,~i:'.S9 '§l",.:E9" .,.,:2m;,E.~~~·;b~ No space may 

appear between the left parenthesis and the leftmost subscript or 
between the rightmost subscript and the right parenthesis. To identify 
an element in the table named SALARY by the set of subscripts YEAR, 
MOHTH, and WEEK, the programmer would write: SALARY (YEAR, 1-10NTH, 
WEEK) • 

The subscript ~8.R:P".,(,1J '~'~}'?~Y:"i a }:![n~r~(1 literal that is a 
positive integer, i,i1:B~H.i.!", E~.i.~~ :\p,~} or by a data-name. 
Restrictions on the use of a data-name as ;~ub~cript are: 

1. Data-name must be a numeric elementary item that represents a 
positive integer. 

2. The name itself may be qualified, but not subscripted~ 

'rhe 2!!Q§.£;:!.Q£ may contain a sign, but the lowest permissible 
subscript value is 1. Hence, the use of zero or a ne~ative subscript is 
not permitted. The highest permissible subscript value in any 
particular case is the maximum number of occurrences of the item as 
specified in the OCCURS clause. 

Qualification may be used in conjunction with subscri~ting, in ~hich 
case OF or IN follows the ~~~~=g~m~ being subscripted. 

Table Handling Feature 297 



Subscr~pting and Indexing 

r----------------------------------------------------------------------1 
I Format I 
~----------------------------------------------------------------------~ 
I I 

i cla ta - name 1: \ data- name-l [ 1 :~ ! :la ta -name-2 ) • • • ! 
I I 
I (subscript£, subscript] [, subscript]) I 
I I l ______________________________________________________________________ J 

~ot~: Dat~namg is the item being subscripted, nQ~ ~~ta-n~~g~l. rhat 
1S, in the statement SALAR~ ~F EMPLOYEE-RE:ORD (YEAR, MONTH, WEEK), the 
data item SALARY is subscripted by YEAR, MONrH, and WEEK. 

INDEXING 

References can be made to individual elements within a table of 
elements by specifying indexing for that reference. 

An index is assigned to a given level of a table by using an INDEXED 
BY clause in the definition of the table. A name given in the INDEXED 
BY clause is known as an index-name and is used to refer to the assigned 
index. An index-name must be initialized by a SET statement before it 
is used in a table reference. An index may be modified only by a SET, 
SEARCH, or PERFORM statement. 

r----------------------------------------------------------------------1 
I Format I 
~----------------------------------------------------------------------~ 
I I 
I data-name (index-name [ {±} integer] I 
I I 
I [, index-name [ {±} integer]](, index-name [ {±} integer]]) I 
I I l ______________________________________________________________________ J 

Q!rect·ing~in~ is specified by using an index-name in the form of a 
subscript. For example, 

ELEMENT (PRIME-INDEX) 

R~tiY~ind~~ing is specified when the terminal space of the 
data-name is followed by a parenthesized group of items: the 
index-name, followed by a space, followed by one of the operators + 
or -, followed by another space, followed by an unsigned integral 
numeric literal. For example, 

ELEMENT (PRIME-INDEX + 5) 

Qualification may be used in conjunction with indexing, in which case 
OF or IN follows the data-name being indexed. 

298 Part V -- special Features, 

c 



u 

o 

Subscripting and Indexing 

r----------------------------------------------------------------------, 
I Format I 
~----------------------------------------------------------------------~ 
I I 

! data-name 1~! data-name-l ( l:~! iata-name-21... 1 

I I 
I (index-name {±} integer][, index-name [ {±} integer]] I 
I I 
I [, index-name [ {±} integer]]) I 
I I l ______________________________________________________________________ J 

Notg: Data items described by the USAGE IS INDEX clause permit storage 
of the values of index-names as data without conversion. Such data 
items are called index data items. 

RESTRICTIONS ON INDEXING, SUBS:RIPTING, AND QUALIFICATION 

Tables may have one, two, or three dimensions. Therefore, references 
to an element in a table may require up to three subscripts or indexes. 

1. A data-name must not be subscripted or indexed when the data-name 
is itself being used as an index, subscript, or qualifier. 

2. When qualification, subscripting, or indexing are required for a 
given data item, the indexes or subscripts are specified after all 
necessary qualification is given. 

3. Subscripting and indexing must not be used together in a single 
reference. 

4. Wherever subscripting is not permitted, indexing is not permitted. 

5. The commas shown in the formats for indexes and 
required. 

EX~MPLE OF SUBSCRIPTING AND INDEXING 

are 

For a table with three levels of indexing, the following Data 
Division entries would result in a storage layout as shown in Figure 11. 

01 PARTY-TABLE REDEFINES T~BLE. 
05 PARTY-CODE OCCURS 3 TIMES INDEXED BY P~RTY. 

10 AGE-CODE OCCURS 3 TIMES INDEXED BY AGE. 
15 M-F-INFO OCCURS 2 TIMES INDEXED BY M-F 

PICTURE 9(1)V9 USAGE DISPLAY. 

P~RTY-T~BLE contains three levels of indexing. Reference to 
elementary items within PARTY-TABLE is made by use of a name that is 
subscripted or indexed. A typical Procedure Division statement might 
be: 

MOVE M-F-INFO (PARTY, ~GE, M-F) TO M-F-RECORD. 

In order to use the Table Handling feature, the programmer must 
provide certain information in the Data Division and Procedure Division 
of the program. 

Table Handling Feature 299 



Subscripting and Indexing 

r---------------------------------------------------------------------, 
8 bytes Byte 

PARTY-CODE(l) 

PARTY-TABLE PARTY-CODE(2) 

PARTY:-CODE(3) 

- /'-....~------

{r~=;=i;;;-(l~-l~-l)l AGE-CODE (1, 1) ~------------------~ 
IM-F-INFO (1, 1, 2) I 
/~------------------~ 
\IM-F-INFO (1, 2, 1) I 

AGE-COPE (1, 2) ltM=;=IN;~-(1~-2~-2)1 
~------------------~ 

AGE-CODE (1, 3) ~~~:~:~~:~-~:~-~~-:~~ 
tIM-F-INFO (1, 3, 2) I 

~
t~:;=i;;~-(2~-1~-1)1 

AGE-CODE (2, 1) ~------------------~ 
IM-F-INFO (2, 1, 2) I 
~------------------~ 

AGE-CODE (2, 2) ~~~::::~:~-~~~-~~-:~~ 
II M-F-INFO (2, 2 , 2) I 
'~------------------~ 

AGE-COPE (2, 3) f~~::::~:~-~~~-:~-:~~ 
tIM-F-INFO (2, 3, 2) I 

{t~:;:i;;~-(3~-1~-1)1 AGE-CODE (3, 1) ~------------------~ 
I M-F-INFO (3 , 1, 2) I 

AGE-COPE (3, 2) {t~~=~~~~~~~~~~~~~l 
AGE-COPE (3, 3) \t~~~~~~~~ii~~~~~~il 

tl M-F-INFO (3, 3, 2) I L __________________ J 

------~~,,----------------~~-~----- -------- ---..... -----
OCCURS 3 TIMES OCCURS 3 TIMES OCCURS 2 TIMES 

No. 

0 

8 

16 

24 

32 

40 

48 

56 

64 

72 

80 

88 

96 

104 

112 

120 

128 

136 

______________ ~~ ____ ~----~----------------------------_________ ~------J 
Figure 17. Storage Layout for PARTY-TABLE 

Note: Programming techniques for Table Handling are given in detail in 
the PrQg£~mm~£~~Gu!g~. 

The OCCURS and USAGE clauses are inclu~ed as part of the record 
description entries in a pro~ram utilizing the Table Handling feature. 

The OCCURS clause eliminates the need for separate entries for 
repeated data, since it indicates the number of times a series of 
records with identical format is repeated. It also supplies information 
required for the application of subscripts or indexes. 

300 Part V -- Special Features 

(' 
\ ..... _- .... ~ 

c 



" 
( I 

"-------' 

o 

OCCURS Clause 

The OCCURS clause has three formats. 

r----------------------------------------------------------------------, 
I Format 1 ] 
~----------------------------------------------------------------------~ 
I I 
I OCCURS integer-2 TIMES I 
I I 
II {ASCENDING } .. ... ] ..•• )1 KEY IS data~name-2 [data-name-3] 
I DESCENDING J 
I ) 
I [INDEXED BY index-name-l [index-name-2] ••• ] I 
I J L ______________________________________________________________________ J 

r----------------------------------------------------------------------, 
I Format 2 1 
~----------------------------------------------------------------------~ 
I I 
I OCCURS integer-l TO integer-2 TIMES [DEPENDING ON data-name-l] I 
I J 

II {ASCENDING } • • .. ] ..... II KEY IS data-name-2 [data-name-3] 
I DESCENDING I 
I I 
I [INDEXED BY index-name-l [index-name-21 ~ •• ] ) 
I J L ______________________________________________________________________ J 

r~---~----::-~::~---::-----~--~----~-.--.-~·-~·-----~------~-:::_-----------~---1 

L; . '. ' . . .' '. ...FOrmat3.;· . '" ... ' ' .. 1 
t---~'7:'~-------';"':''';'----:-';''~--7"'"--';''';''~'';'------''''''· '---:-..:.;...-----:-~-:~-..;.-:--:------.;..-1 

I [DEPENDING'ONdata-nam~l]J 
t J 
I I 
I [ KEY IS data-name-2 [data";'nam~3] ..... 1 1 
I J 
I I 
I [INDEXED BY,' i~dex-nam~-l [index-name-21· ..... ] J 

I: . ...... ......... .; .' . . .' '. . ,..'. 1. __________________ .:.. _________ .;. _____ :-_________ ..:.'-________ .....;.. __ ...;. _________ J 

The other data description clauses associated with an entry whose 
description includes an OCCURS clause apply to each occurrence of the 
item described. 

Since three subscripts or indexes a£e allowed, three nested levels of 
the OCCURS clause are allowed. That is, 3-dimensional tables can be 
specified. No table may be longer than 32767 bytes in length, except 
f:0:r-fixed-length tables in the Working-Storage section'()r,<~in]{ag~ 
~~.c,~~~<?~. which may be as long as 131071 bytes. L:~,'~,' " j 

The subject of an OCCURS clause is the data-name of the entry that 
contains this OCCURS clause. The subject of an OCCURS clause must be 
subscripted or indexed whenever it is referred to in any statement other 
than SEARCH. 

Table Handling Feature 301 



OCCURS Clause 

When subscripted, the 2QQig£t refers to one occurrence within the 
table. When not subscripted (permissible only in the SEARCH statement), 
the subject represents the entire table element. (~table element 
Gonsists of all occurrences of one level of a table.) A table element 
must be less than 32,767 bytes in length. 

The OCCURS clause may n~t be specifiea in a data description entry 
that: 

1. Has a level-Ol or level-77 number 

2. Describes an item whose size is variable 

(The size of an item is variable if the aata description of any 
suborainate item within it contains an OCCURS DEPENDING ON clause 
that is, an OCCURS clause with the DEPENDING ON option.) 

Except for conaition-name entries, a record description entry that 
contains an OCCURS clause must not also contain a V~LUE clause. 

Within a given record description, the VALUE clause must not be 
specified for any item whose size is variable (the size of an item is 
variable if the item itself, or any item subordinate to it, contains an 
OCCURS DEPENDING ON'clause). In addition, the VALUE clause must not be 
used in a data description entry that is subsequent to a data description 
entry that contains an OCCURS DEPENDING ON clause: 

COM~~T~~~O~~~~ fers to 

When a computational elementary item specifies both the OCCURS and 
SYNCHRONIZED clauses, any necessary slack bytes for each occurrence of 
the item are added by the conpiler. When a ~roup item specifies the 
OCCURS clause ana also contains SYNCHRONIZED computational elementary 
items, any necessary slack bytes for each ~ccurrence of the group are 
added by the compiler, as well as the necessary slack bytes for each 
occurrence of the computational elementary items. See "Slack Bytes" in 
"Data Division" for a complete discussion. 

In Format 1, integer-2 represents the exact number of occurrences. 
In this case, integer-2 must be greater than zero and less than 32,768. 

Q§~§~Q!~§~Q~_Q.~~!ON: In Fornat 2 llip;::::,;:le:lml;i~:':j::g':i! the DEPENDING ON option 
is usea. This inaicates that the subject of this entry has a variable 
number of occurrences. This d~es not mean that the length of the 
subject is variable, but rather that the number of times the subject may 
be repeatej is variable, the number of times being controlled by the 
value of ~~~~~n~illg~! at object time. 

In Format 2, intgggE-l represents the minimum number of occurrences, 
ana irr~gggE=~ represents the maximum number of occurrences. Integer-l 
may be zero or any positive integer. Inte~er-2 must be greater than 
zero, and also greater than integer-i. Integer-2 must be less than 
32,768 bytes. The value of ~~~~=~~illg=l must not exceea integer-2. 

302 Part V -- Special Features 

r"-, 
I 

c 



o 

OCCURS Clause 

Data-name-1, the object of the DEPENDING ON option: 

• Must be described as a positive integer 

• Must not exceed integer-2 in value 

• May be qualified, when necessary 

• Must not be subscripted (that is, must not itself be the subject of. 
or an entry within, a table) 

• Must, if it appears in the same record as the table it controls, 
appear before the variable portion of the record 

If the value of data-name-1 is reduced, the contents of data items 
whose occurrence numbers exceed the new value of data-name-1 become 
unpredictable. 

Unused character positions resulting f~om the DEPENDING ON option 
will not appear on external media. 

The DEPENDING ON option is required only when the last occurrence of 
the subject cannot otherwise be determined. 

Any Data Division entry which contains an OCCURS DEPENDING ON clause. 
or which has subordinate to it an entry which contains an OCCURS 
DEPENDING ON clause, cannot be the object of a REDEFINES clause. 

KEY OPTION: The KEY option is used in conjunction with the INDEXED BY 
option in the execution of a SEARCH ALL statement. The KEY option is 
used to indicate that the repeated data is arranged in ASCENDING or in 
DESCENDING order, according to the values contained in data-name-2, 
data-name-3, etc. 

Data-name-2 must be either the name of the entry containing an OCCURS 
clause, or it must be an entry subordinate to the entry containing the 
OCCURS clause. If data-name-2 is the subject of this table entry, it is 
the only key that may be specified for this table. If data-name-2 is 
not the subject of this table entry, all the keys identified by 
data-name-2, data-name-3, etc.; 

• Must be subordinate to the subject of the table entry itself 

• Must not be subordinate to any other entry that contains an OCCURS 
clause 

• Must not themselves contain an OCCURS clause 

When the KEY option is specified, the following rules apply: 

• Keys must be listed in dec~easing order of significance. 

• The total number of keys for a given table element must not exceed 
12. 

• The sum of the lengths of all the keys associated with one table 
element must not exceed 256. 

• A key may have the following usages: DISPLAYli]~!:,~,QM,~Y;'Xlm~<2!!I~ii~':1 or 
COMPUTATIONAL. 

Table Handling Feature 303 



OCCURS Clause 

INDEXED BY OPTION: The INDEXED BY option is required if the subject of 
this entry (the data-name described by the OCCURS clause, or an item 
within this data-name, if it is a group item) is to be referred to by 
indexing. The index-name(s) identified by this clause is not defined 
elsewhere in the program, since its allocation and format are dependent 
on the system, and, not being data, cannot be associated with any data 
hierarchy. 

The number of index-names for a Data Division entry must not exceed 
twelve. 

An index-name must be initialized through a SET or PERFORM statement 
before it is used. 

Each index-name is a fullword in length and contains a binary value 
that represents an actual displacement from the beginning of the table 

304 Part V -- Special Features 

c 



o 

OCCURS Clause 

that corresponds to an occurrence number in the table. The value is 
calculatej as the occurrence number minus one, multiplied by the length 
of the entry that is indexed by this index-name. 

For example, if the pro~rammer writes 

A OCCURS 15 rIMES INDEXED BY Z PIcrURE IS X(lO). 

on the fifth occurrence of ~, the binary value contained in Z will be: 

Z = (5 - 1) * 10 = 40 

Note that, for a table entry of variable length, the value contained in 
the index-name entry will become invalid when the table entry length is 
chanqed, unless the user issues a new SEr statement to correct the value 
contained in the index-name. 

The following example of the setting of values in index-name is 
incorrect: 

DArA DIVISION. 

77 E PIcrURE S9(5) COMP SYNC. 
01 

05 A OCCURS 10 INDEXED BY IND-1 ••• 
10 B OCCURS 10 DEPENDING ON E INDEXED BY IND-2 ••• 

PROCEDURE DIVISION. 

MOVE 8 TO E 
SEr IND-1 TO 3 
SEARCH A ••• 

MOVE lOrD E 
SEi\RCH A ••• 

(Moving 10 to E changes the length of the table entry A, so that IND-l 
now contains an invalid value.> 

Table Handling Feature 305 



OCCURS Clause 

The following example of the setting of values in index-name is 
correct: 

DATA DIVISION. 

77 E PICTURE S9(5) COMP SYNC. 
77 0 PICTURE S9(5) CO~P SYNC. 
01 

05 A OCCORS 10 INDEXED BY IND-l ••• 
10 B OCCURS 10 DEPENDING ON E INDEXED BY IND-2 ••• 

PROCEDURE DIVISION. 

MOVE 8 TO E 
SET IND-l TO 3 
SET 0 TO IND-1 
SEARCH A ••• 

MOVE 10 TO E 
SET IND-l TO 0 
SEARCH A ••• 

(Here the user has saved the occurrence nunber in 0, and then later 
reset IND-l to obtain the corrected value.) 

There are two types of indexing: direct indexing and relative 
indexing. 

Q!£g£~_ln~g~!~g: If a data-nane is used in the procedure text with 
index-names, the data-name-rtself must be the subject of an INDEXED BY 
option, or be subordinate to a group<s) that is the subject of the 
INDEXED BY option. 

In the following example 

A (INDEX-l, INDEX-2, INDEX-3) 

implies that A belongs to a structure with three levels of OCCURS 
.~.!3:.~ .. ~ .. ~ ... ~ .. ! .... < ...•.. ~ .• Cl ... ~.~ ........... ~.~ .. t: .. ~ ............ i3: .. ~ ......... ! .. ~.~ .. ~.~ ... ~ .. ~ ......... !?'! ... C)Pt:~.~ .. ~ .. ~ ........... '~9~~y~f;{ifg~~~;!i~~~·.{~ 
t:~~.~ •.• ·····.·f2!}{i3:1I1P!~l···· •. ·.P~1.?9gs·(~?<i3:1'1PGc;tJ~e ••• ·~t:~.H~~HJ:.~<.t:qi3:t:iqH~.~· ••• ··.·.·.9?~) ••• H.E;~.\F tl 
!~q~~E:H.Bti •. ?P:t;?l'l~· ••• i't:~;.~··· •. S?((lg;:t.~r: ••• ·· •• aspE(Pt:s·/.t:tl~····· •• ·~.P~q~~·~.S •. Cl;t:.~B~····.(?t Ii n.d. ex .. narne2,· •.. · .•• · •. (~rtt:~J~.·.· •••. ~.}{.EllIl~.1..E7.·.· ••. · ••• :r:~pE:~!7·~··.'.Ii:r .. ~9 t!J{ =~,!~BE:.~.2?~/.rt.i3:9:~ 

'~~·.~.t;.· •.. • •.•. ~c:t.f:) ••.•. ·· ••. ~.~t;;it:.9.~.rn·.·· •• t:.9· .. · ••.. \1'alue.s./t:hat:·.·pc:>J:'J:'~J3Pc:>n::'!·.·.· •. 't:q?i::;h.~"·pcqll.:t:'r.Ei!o,q$·· 
wishes to reference. 

Rg!~t!yg_I~Qg~in~: The !~~g~~~~~g is followed by a space, followed 
by one of the operators + or -, followed by another space, followed by 
an unsigned numeric literal. rhe numeric literal is considered to be an 
occurrence number, and is converted to an index value before being added 

Ito, or subtracted from, the corresponding index-name index. 

306 Part V -- Special Features 

(~ 
I 

C~\ 



o 

USAGE IS INDEX Clause 

Given the following eKample: 

A (Z + 1, J + 3, K + 4) 

where: 

table element indexed by Z has an entry length of 100 

table element indexed by J has an entry length of 10 

table element indexed by K has an entry length of 2 

the resulting address will be computed as follows: 

(ADDRESS of A) + Z +,100 * 1,+ J + ~O * 3,+ K +,4 * 2, 

I I I 
conversion of integers 

to index values 

rhe USAGE IS INDEX clause is used to specify the format of a data 
item stored internally. 

r----------------------------------------------------------------------, 
I Format I 
~----------------------------------------------------------------------~ 
I I 
I [US~Q~ IS] !~DEX I 
I I L ______________________________________________________________________ J 

rhe USAGE IS INDEX clause allows the programmer to specify index data 
items. 

An ind~~ Qat~ item is an elementary item (not necessarily connected 
with any table) that can be used to save index-name values for future 
reference. An index data item must be assigned an index-name value 
(i.e., (occurrence number - 1) * entry length) through the SEr 
statement. Such a value corresponds to an occurrence number in a table. 

The USAGE IS INDEX clause may be written at any level. If a group 
item is described with the USAGE IS INDEX clause, it is the elementary 
items within the group that are ig~~~_£~£~_i£~~~; the group itself is 
not an index data item, and the group name cannot be used in SEARCH and 
SEr statements or in relation conditions. rhe USAGE clause of an 
elementary item cannot contradict the USAGE clause of a group to which 
the item belongs. 

An i~~~~_~at~i~~~ can be referred to directly only in a SEARCH or 
SEr statement or in a relation condition. An index data item can be 
part of a group which is referred to in a MJVE or an input/output 
statement. When such operations are executed, however, there is no 
conversion of the contents of the index data item. 

rable Handling Feature 307 



Table Handling -- Relation Conditions 

The SE~RCH and the SET statements may be used to facilitate table 
han~ling. In addition, there are special rules involving Table Handling 
elements Nhen they are used in relation conditions. 

:omparisons involving index-names and/or index data items conform to 
the folloNing rules: 

1. The comparison of t~o index-names is actually the comparison of the 
corresponding occurrence numbers. 

2. In the comparison of an index-name Nith a data item (other than an 
index data item), or in the comparison of an index-name with a 
literal, the occurrence number that corresponds to the value of the 
index-name is compared Nith the data item or literal. 

3. In the comparison of an index data item with an index-name or 
another index data item, the actual values are compared without 
conversion. 

~ny other comparison involving an index data item is illegal. 

Table 25 gives permissible comparisons for index-names and index data 
items. 

Table 25. Index-names and Index Data Items -- Permissible Comparisons 
------------------T----------T----------T-------------T---------------, 

I Second IIndex-namel Index I Data-name INuneric literall 
I operandi IData Item I (numeric I (integer only) I 
I First I I I integer only) I I 
I Operand I I I I I 
~------------------ ----------+----------+-------------+-----------~---~ 
I Index-name ICompare I Compare I Compare I Compare I 
I loccurrencel~ithout I occurrence I occurrence I 
I I number Iconversionlnumber ~ith Inumber with I 
I I I I data-name I literal I 
~------------------+----------+----------+-------------+---------------~ 
IIndex Data I Compare I Compare IIllegal I Illegal I 
lItem I without I without I I I 
I Iconversionlconversionl I I 
~------------------+----------+----------+-------------~-------------~~~ 
I Data-name ICompare I Illegal I 
I <numeric loccurrencel I 
linteger I number I I 
lonly) Iwith I I 
I I data-name I I 
~------------------+----------+----------~ 
I Numeric I Compare IIllegal I 
Iliteral I occurrence I I 
I (integer I number I I 
lonly) I with I I 
I I literal I I l __________________ ~ __________ ~ __________ ~ ____________________________ -

308 Part V -- Special Features 

I. ,_./ 

c 



o 

SEARCH Statement 

SEARCH Statement 

The SEARCH statement is used to search a table for an element that 
satisfies a specified condition, and to adjust the value of the 
associated index-name to the occurrence number corresponding to that 
table element. 

r----------------------------------------------------------------------, 
I Format 1 ] 
~----------------------------------------------------------------------~ 
I 1 
1\ {indeX-name-l} I) 

SEARCH identifier-l [VARYING 
I identifier-2 I 
I ] 
I [AT END imperative-statement-ll ] 
\ 1 
II {imperative-statement-2} 1

J WHEN condition-l 
I NEXT SENTENCE I 
\ ] 
II {i

O

mperative-statement-3} ~ 
[~ condition-2 l... u 

I NEXT SENTENCE l 
I ] L ______________________________________________________________________ J 

r----------------------------------------------------------------------, 
I Format 2 I 
~----------------------------------------------------------------------~ 
I J 
I SEARCH ~ identifier-l [AT END imperative-statement-ll I 
I ] 
II {imperative-statement-2} II 

WHEN condition-l 
I NEXT SENTENCE J 
I 1 L ______________________________________________________________________ J 

The Data Division description of identi.fier-l must contain an OCCURS 
Fla~~,~, ... :~~.~,Q .... "t::.~~.,.~~[)~.Xl?p.,BY option. . IdeIitifi er~l' IrI~st..notHe desbribeci 
as' ~i;.~9§l.~~n<,;J:;P9fn~ ... f"t::~gt'~ 
~,.:~.:. ;:".,.; 

When written in the SEARCH statement. identifier-l must refer to all 
occurrences within one level of a table; that is, it must not be 
subscripted or indexed. 

Identifier-l can be a data item subordinate to a data item that 
contains an OCCURS clause, thus providing for a two or three dimensional 
table. An index-name must be associated with each dimension of the 
table through the INDEXED BY phrase of the OCCURS clause. Execution of 
a SEARCH statement causes modification only of the setting of the 
index-name associated with identiiier-l (and. if present. of 
index-narne-l or identifier-2). Th~refore. to search an entire two or 
three dimensional table, it is necessary to execute a SEARCH statement 
several times; prior to each execution, SET statements must be executed 
to adjust the associated index-names to their appropriate settings. 

In the AT END and WHEN options, if any of the specified imperative 
statementCs) do not terminate with a GO TO statement, control passes to 
the next sentence after execution of the imperative statement. 

Format 1 Considerations -- Identifier-2, when sp~cified,. must be 
described as an index data item, or it must be a fixed-point numeric 
elementary item described as an integer. When an occurrence number is 

Table Handling Feature 309 



SEARCH Statement 

incremented, identifier-2 is simultaneously incremented by the same 
amount .• 

Condition-i., condition-2, etc., may be any condition, as follows: 

relation condition 

class condition 

condition-name condition 

sign condition 

(condition) 

[NOT] condition {AONRD} 

(See Conditions section of "Procedure Division.") 

Upon the execution of a SEARCH statement, a serial search takes 
place, starting with the current index. setting. 

If, at the start of the SEARCH., the value of the index-name 
associated with identi£ier-l is not greater than the highest possible 
occurrence number for identifier-l, the following actions take place: 

1. The condition(s) in the WHEN option are evaluated in the order they 
are written. 

2. If none of the conditions is satisfied, the index-name for 
identifier-l is incremented to reference the next table element, 
and step 1 is repeated. 

3. If, upon evaluation, one of the WHEN conditions is satisfied, the 
search terminates immediately, and the imperative-statement 
associated with that condition is executed. The index-name points 
to the table element that satisfied the condition. 

4. If the end of the table is reached without the.WHEN condition being 
satisfied, the search te~minates as described in the next 
paragraph. 

If at the start of the sea~ch, the 'value of the index-name associated 
with identifier-l is greater than the highest permissible occurrence 
number for identifier-l, the search is terminated immediately, and if 
the AT END option is specified, imperative-statement-l is executed. If 
this option is omitted, control passes to the next sentence. 

When the VARYING index-name-l option is not specified, the index used 
for the search is the first (or only> index-name associated with 
identifier-i. 

When the VARYING index-name-l option is, specified, one of the 
following applies: 

• If index-name-l is one of the indexes for identifier-i. index-name-l 
is used for the search. Othe+wise, the first (or only> index-name 
for identifier-l is used. 

• If index-name-l is an index fo.r another table entry., then when the 
index-name for identifier-l is incremented to represent the next 
occurrence of the table, index-name-1 is simultaneously incremented 
to represent the next occurrence of the table it indexes. 

A flowchart of the Format 1 SEARCH operation containing two WHEN 
options is shown in Chart 5. 

310 Part V -- Special Features 

(~ 
........... 

C: 



C::: 

o 

SEARCH Statement 

Chart 5. Format 1 SE~RCH Operation Containing Two WHEN Options 

·.··1'.2 ••••••••• 
• EXECUTION • 
• OF SEARCH • 
• BEGI,iS • ............... 

---------,1 ,. , 
II2 ., ••••• B" •••••••••• .. .. .. 

, • ., GT AT END. • IMPERATIVE-. • • • , , .-------------------------------->. STATEMENT-l • ______ > .. .. .. .. .. .. .. .. . ............... . r 0' 

,. , 
c2 ., ••••• C" •••••••••• .. .. .. 

, • ., TRUE WHE.~ CONDITION-l • IMPERATIVE-. • • 
• , CONDITION-l ,.-------------------------------->. STATEMENT-2 • ____ > *. .• •• *. .• ., • . , ,. . ............... . rSE 

, ., 
,.02 .'., : •••• [1" ••••••••• : 

.:. CONDITION-2·: .~~: ____ ~~::~:;>..:.~~!:;>~3_: _________ >: §~~~~~t~¥~j =---~~-> .. .. .. 
*. .• •• .. .. . ............... . 

rOE 
····.E2 •• • •••• • •• 
• INCREMENT • 
• INDEX-NAME FOR. 
• IDENTIFIER-l • 
• 'INDEX-NAME-l • 
• IF APPLICABLE). · .. ·· .. T .... · .. 
··.··F2 •••••••••• 
• INCREMENT • 

---: t~gf<A~M~EA : 
• TABLE) OR • 
• IDENTIFIER-2 • ................. 

• THESE OPERATIONS ARE INCLUDED ONLY WHEN CA.LLED ?OR 
IN THE STATEMENT, 

•• EACH OF THESE CONTROL TRANSFE~S IS TO THF NEXT 
SENTENCE UNLESS THE IMPERATIVE-STATEM,.NT ENOS WITil 
A GO TO STATEMENT, 

Table Han~ling Feature 311 



SEARCH Statement 

Format 2 Considerations -- rhe first indeK-name assigned to 
identifier-l-wirr~e-used-for the search. 

rhe description of identifier-l must cont~in the KEY option in its 
OCCURS clause. 

~Qndit!on-l must consist of one of the following: 

• A relation condition incorporating the EQUAL, EQUAL TO, or equal 
sign ( = ) relation. Either the subject or the object (but not 
both) of the relation-condition must consist solely of one of the 
£at~g~~~~ that appear in the KEY clause of i~~~~ifi~£~1. 

• A condition-name condition in which the VALUE clause describing the 
condition-name consists of a single literal only. The conditional 
variable associated with the condition-n~me must be one of the 
~ata-~~~~ that appear in the KEY clause of i~~~~ifi~£~1. 

• A compound condition forned from simple conditions of the types 
described above, with ~ND as the only connective. 

~ny dat~-n~m~ that appears in the KEY clause of i~§~tifi§E~l may be 
tested in condition-i. However, all data-names in the KEY clause 
preceding the one to be tested must also be so tested in condition-i. 
No other tests may be made in condition-i. 

For example, if the following table were defined in the Data 
Division: 

77 VALUE-l PIcrURE 99. 

05 A OCCURS 10 rIMES ASCENDING KEY IS KEY1, KEY2, KEY3, KEY4 
INDEXED BY I. 
10 KEYl PIcrURE 9. 
10 KEY2 PICTURE 99. 
10 KEY3 PIcrURE 9. 
10 KEY4 PICTURE 9. 

88 BLUE VALUE 1. 

in the Procedure Division, valid WHEN phrases could be: 

WHEN KEYl (I) 3 AND KEY2 (I) 10 AND KEY3 (I) 

WHEN KEYl (I) = 3 AND KEY2 (I) VALUE-l 
AND KEY3 (I) = 5 AND BLUE CI) ••• 

5 ••• 

During eKecution of a Fornat 2 SEARCH statement, a binary search 
takes place; the setting 6f index-name is varied during the search so 
that at no time is it less than the value that corresponds to the first 
element of the table, nor is it ever greater than the value that 
corresponds to the last element of the table. If condition-l cannot be 
satisfied for any setting of the index within this-permitted-range, 
control is passed to imQ~£~tiY~~ ~t~t~m~~t~l when the AT END option 
appears, or to the next sentence when this clause does not appear. In 
either case, the final setting of the index is not predictable. If the 
index indicates an occurrence that allows condition-l to be satisfied, 
control passes to imQ~~~tiY~~~t~t§m§~t~~. 

312 Part V -- Special Features 



o 

SET Statement 

The SET statement establishes reference points for table handling 
operations by setting in~ex-nanes to values ~ssociate1 with table 
elements. The SET statement must be use1 Nhen initializin~ in1ex-name 
values before execution of a SE~RCH statement; it m~y also be use1 to 
transfer values between in1ex-names and other elementary d~ta items. 

r----------------------------------------------------------------------, 
I Format 1 I 
~---~------------------------------------------------------------------~ 
I I 
I 1 index-name-l [index-n~me-2J ••• \ 1 in1ex-name-3 \ I 
I SET ~Q identifier-3 I 
I --- identifier-l [identifier-2J... literal-1 I 
I I L ______________________________________________________________________ J 

r----------------------------------------------------------------------, 
I Format 2 I 
~----------------------------------------------------------------------~ 
I I 
II UP BY \ 1 identifier-4 \ II 

§.ET index-name-4 [index-name-S] ••• \ -- --
I ~Q~~ ~I literal-2 I 
I I L ______________________________________________________________________ J 

~ll ig~ntifi~~ must name either index dat~ items or fixed-point 
numeric elementary items described as inte~ers; hOwever, i~~~tif~~f~~ 
must not name an index dat~ item. When a literal is used, it must be a 
positive inte~er. l~~~~~~~~~~ are related-to-i-given table through the 
INDEXED BY option of the OCCURS clause; when index-names are specified 
in the INDEXED BY option, they are ~utomatically defined. 

All references to !ng~~=~~~g=1, !~~~t~figf=1, and ig~~~=g~~~=~ apply 
e~ually to inde~~~~e-£, i~gntifig£=£, an1 i~~~~=~~~~=~, respectively. 

Format 1 Considerations -- When the SET statement is executed, one of 
the-follo;ing-actions-occurs: 

1. Index-name-1 is converte1 to a value th~t corresponds to the same 
table element to which either index-name-3, identifier-3, or 
literal-1 corresponds. If i1entifier-3 is an in1ex 1~ta item, or 
if index-name-3 is relate1 to the same table as index-name-l, no 
conversion takes place. To be vali1, the resultant v~lue of 
index-name must correspond to an occurrence number of an element in 
the associated table. 

2. If identifier-1 is an index data item, it is set equal to either 
the contents of index-n~me-3 or i1entifier-3, where i1entifier-3 is 
also an index data item. Literal-1 cannot be used in this case. 

3. If identifier-1 is not ~n index data item, it is set to an 
occurrence number that corresponds to the value of in1ex-name-3. 
Neither identifier-3 nor literal-1 can be used in this case. 

Format 2 Considerations -- when the SET statement is executed, the 
contents-of-I~~~~-n~ill~=~-(and hn~~~=n~~~=~, etc., if present) are 
incremented (UP BY) or decrenented (DOWN BY) by a value that corresponds 
to the number of occurrences represented by the value of li~~f~±=£ or 
i~~ntifief~~. 

Table Handling Feature 313 



Table Handling -- Sample Program 

rhe program in Figure 18 illustrates the rable Han~ling feature, 
inclu~inq the use of in~exing, of the SET statement, and of the SEARCH 
statement (including the VARYING option an~ the SEARCH ALL format). 

The census bureau uses the program to compare: 

1. The number of births and deaths that occurred in anyone of the 50 
states in anyone of the past 20 years with 

2. The total number of births and deaths that occurred in the same 
state over the entire 20-year perio~ 

The input file, INCARDS, contains the specific information upon which 
the search of the table is to be conducted. INCARDS is formatted as 
follows: 

STATE-NAME a 4-character alphabetic abbreviation of the state name 

SEXCODE 1 = male: 2 = female 

YEARCODE a 4-digit field in the range 1950 through 1969 

A typical run might deternine the number of females born in New York 
in 1953 as compared with the total number of females born in New York in 
the past 20 years. 

r----------------------------------------------------------------------, 
IDENrIFICATION DIVISION. I 
PROGRAM-ID. TABLES. l 
ENVIRONMENT DIVISION. 
CONFIGURATION SECTION. 
SOUR~E-COMPUTER. IBM-360. 
OBJECr-COMPUTER. IBM-360. 
SPECIAL-NAMES. CONSOLE IS rYPEWRITER. 
INPUT-OUTPUT SECTION. 
FILE-CONTROL. 

SELECr INFILE ASSIGN ro Ur-2400-S-INrAPE. 
SELECT OUTFILE ASSIGN TD UR-S-PRTOUT. 
SELECT INCARDS ASSIGN TD UR-S-ICARDS. 

DATA DIVISION. 
FILE SECrION. 
FD INFILE LABEL RECORDS ARE OMITTED. 
01 rABLE-1 PIC X(28200). 
01 rABLE-2 PIC X(1800). 
FD OUTFILE LABEL RECORDS ARE OMITTED. 
01 PRTLINE PIC X(133). 
FD INCARDS LABEL RECORDS ARE OMITrED. 
01 CARDS. 

05 srArE-NAME PIC X(4). 
05 SEXCDDE PIC 9. 
05 YEARCODE PIC 9(4). 
05 FILLER PIC X(71). 

WORKING-STORAGE SECTION. 
101 PRTAREA-20. 
1 05 FILLER PIC X VALUE SPACES. 
1 05 YEARS-20 PIC 9(4). 
1 05 FILLER PIC X(3) VALUE SPACES. 
1 05 BIRTHS-20 PIC 9(7). 
I 05 FILLER PIC X(3) VALUE SPACES. 
1 05 DEATHS-20 PIC 9(7). 
I 05 FILLER PIC X(108) VALUE SPACES. L ______________________________________________________________________ J 

Figure 18. Sample Table Handling Program (Part 1 of 2) 

314 Part V -- Special Features 

c 



~'" 
( \, 
\ .I 

. '-..../ 

o 

Table Handling -- Sample Program 

r----------------------------------------------------------------------, 
01 PRTAREA. 

05 FILLER PIC X. 
05 YEAR PIC 9(4). 
05 FILLER PIC X(3) V~LUE SP~CES. 
05 BIRTHS PIC 9(5). 
05 FILLER PIC X(3) V~LUE SPACES. 
05 DE~THS PIC 9(5). 
05 FILLER PIC X(112) V~LUE SPACES. 

01 CENSOS-STATISTICS-TABLE. 
05 STATE-TABLE OCCURS 50 TIMES INDEXED BY ST. 

10 STATE-ABBREV PIC X(4). 
10 SEX OCCURS 2 TIMES INDEXED BY SEe 

15 STATISTICS ~CCORS 20 TI~ES ASCENDING KEY IS YEAR 
INDEXED BY YR. 
20 YEAR PIC 9(4). 
20 BIRTHS PIC 9(5). 
20 DEATHS PIC 9(5). 

01 STATISTICS-LAST-20-YRS. 
05 SEX-20 OCCURS 2 TIMES INDEXED BY SE-20. 

10 STATE-20 OCCURS 50 TIMES INDEXED BY ST-20. 
15 YEARS-20 PIC 9(4). 
15 BIRTHS-20 PIC ~(7). 
15 DEATHS-20 PIC 9(7). 

PROCEDURE DIVISION. 
OPEN-FILES. 

OPEN INPUT INFILE INCARDS OUTPUT OUTFILE. 
READ-TABLE. 

READ INFILE INTO CENSOS-STATISTICS-TABLE 
AT END GO TO READ-C~RDS. 

READ INFILE INTO STATISTI2S-LAST-20-YRS 
AT END GO TO RE~D-CARDS. 

READ-2ARDS. 
READ INCARDS 

AT END GO TO EOJ. 
DETERMINE-ST • 

SET ST ST-20 TO 1. 
SEARCH STATE-TABLE VARYING ST AT END GO TO ERROR-MSG-1 

WHEN STATE-NAME = ST~TE-ABBKEV (ST) NEXT SENTENCE. 
DETERMINE-SE. 

SET SE SE-20 TO SEXCODE. 
DETERMINE-YR. 

SEARCH ALL STATISTICS AT END GO TO ERROR-MSG-2 
WHEN YEAR OF STATISTI2S (ST, SE, YR) = YEARCODE 

GO TO WRITE-RECORD. 
ERROR-MSG-1. 

DISPLAY "INCORRECT STATE" STATE-NAME UPON TYPEWRITER. 
GO TO RE~D-CARDS. 

ERROR-MSG-2. 
DISPLAY "INCORRECT ~E~R" YEARCODE UPON TYPEW~ITER. 
GO TO READ-CARDS. 

WRITE-RECORD. 

EOJ. 

MOVE CORRESPONDING ST~TISTICS CST, SE, YR) TO PRTAREA. 
WRITE PRTLINE FROM PRTAREA AFTER ADV~NCING 3. 
MOVE CORRESPONDING ST~TE-20 (SE-20, ST-20) TO PRTAREA-20. 
WRITE PRTLINE FROM PRTAREA-20 AFTER ADVANCING 1. 
GO TO READ-CARDS. 

CLOSE INFILE INCARDS OUTFILE. 
STOP RUN. L ______________________________________________________________________ J 

Figure 18. Sample Program f~r the Table Han~ling Feature (Part 2 of 2) 

Table Han~ling Feature 315 



Segmentation -- Organization 

The Segmentation FeatUre ~llows the problem programmer to communicate 
with the compiler to specify object program overlay requirements. The 
segmentation feature permits segmentation of proce1ures only. The 
Procedure Division and Environment Division are considered in 
determining segmentation requirements for an object program. 

~lthough it is not mandatory, the Proce1ure Division for a source 
program is usually written as several consecutive sections, each of 
which is composed of a series of closely rel~te1 operations that are 
designed to perform collectively a particular function. However, ~hen 
segmentation is used, the entire Procedure Division must be in sections. 
In ~ddition, each section must be classified as belonging either to the 
fixed portion or to one of the independent segments of the object 
program. segmentation in no w~y affects the need for qualific~tion of 
procedure-names to ensure uniqueness. 

FIXED PORTION 

The fiKed portion is defined as that part of the object program that 
is logically treated as if it were always in computer storage. rhis 
portion of the program is conposed of two types of computer storage 
segments, permanent se~ments and overlayable fixed segments. 

~ permanent segment is a se~ment in the fixed portion that cannot be 
overlaid by any other part of the program. 

~n overlayable fixed se~ment is a segment in the fixed portion which, 
although logically treated as if it were alw~ys in storage, can be 
overlaid (if necessary) by another segment to optimize storage 
utilization. However, such ~ segment, if called for by the program, is 
always made avail~ble in the state it was in when it was last used. 

Depending.on the availability of storage, the number of permanent 
segments in the fixed portion can be varied through the use of a special 
f~cility called SEGMENT-LIMIT, which is discussed in "Structure of 
Program Segments." 

INDEPENDENT SEGME~TS 

~n independent segment is defined ~s that part of the object program 
which can overlay, and be overlaid by, either an overlayable fixed 
segment or ~nother indepen1ent segment. ~n independent se~ment is 
always considered to be in its initial state each time it is made 
av~ilable to the program. 

316 Part V -- Special Features 

'-.. ..... -

c 



o 

segmentation Control/Priority Numbers 

sections that ~re to be segmente~ are cl~ssifiej by means of a system 
of priority numbers. The following criteria shoul~ be use~: 

• Logi£~l_fggQirgm~~~~: Sections that must be available for 
reference at all times, or which are referre~ to very frequently, 
are norm~lly classifie~ as belonging to one of the permanent 
segments; sections that are less frequently use~ are normally 
classifie~ as belonging either to one of the overlayable fixe~ 
segments or to one of the in~ependent segments, depending on logic 
requirements. 

• Fr~g~~~£Y_Qf_~se: Generally, the more frequently a section is 
referred to, the lOwer its priority number shoul~ be; the less 
frequently it is referre~ to, the hi~her its priority number should 
be. 

• Rel~~iQ~~hie~Q_Q~h~f_~~£~iQ~~: Sections that frequently 
communicate with one another should be given equal priority 
numbers. All sections Nith the same priority number constitute a 
single program segment. 

The logical sequence of the program is the same as the physic~l 
sequence except for specific transfers of control. ~ reor~ering of the 
object mo~ule will be necessary if a given segment has its sections 
scattered throughout the source program. HOwever, the compiler will 
provi~e transfers to maintain the logic flow of the source program. The 
compiler Nill also insert instructions necess~ry to load and/or 
initialize a segment when necessary. Control may be transferred within 
a source program to any paragraph in a section; that is, it is not 
man~atory to transfer control to the beginning of a section. 

PRIORITY NUMBERS 

Section classification is accomplishe~ by means of a system of 
priority numbers. The priority number is inclu~e~ in the section 
header. 

r----------------------------------------------------------------------, 
I Format I 
~----------------------------------------------------------------------~ 
I I 
I section-name SE£!IO~ [priority-number]. I 
I I L _____________________________________________________ - ________________ J 

~ll sections that have the same efiQfi~y~~~m~~f constitute a program 
segment with that priority. 

The £fiQfi~Y~~umbef must be an integer r~nging in value from 0 
through 99. 

Segmentation Feature 317 



SEGMENT-LIMIT Clause 

Segments with eEiQ~!~Y~~~!Qg~~ 0 through 49 belong to the fixej 
portion of the object program. 

Segments with eEio~!ty~~~!Qg~~ 50 througb 99 are independent 
segments. 

Sections in the declaratives portion of the Procedure Division must 
rrot.contain Qriority-n~mQg~~ in their section headers. They are treated 
as fi~ed segments with a priority-number of zero. 

If the er!ori~y-n~mQg~ is onitted from the section header, the 
priority is assumed to be zero. 

When a procedure-name in an independent segment is referred to by a 
PERFORM statement contained in a segment with a different priority 
number, the segment referred to is made available in its initial state 
for each execution of the PERFORM st~tement. 

SE3MENT LIMIT 

Ideally, all program segments having priority-numbers ranging from 0 
through 49 are treated as permanent segments. However, when 
insufficient storage is available to contain all permanent segments plus 
the largest overlayable segment, it becomes necessary to decrease the 
number of permanent segments. The SE3MENT-LIMIT feature provides the 
user with a means by which he can reduce the number of permanent 
segments in his program, while these permanent segments still retain the 
logical properties of fixed portion segments <priority numbers 0 through 
49) • 

r----------------------------------------------------------------------, 
I Format I 
~----------------------------------------------------------------------~ 
I I 
I [SEG~EN!~LIMlr IS priority-number] I 
I I L ______________________________________________________________________ J 

The SEGMENT-LIMIT clause is coded in the OBJECT-COMPUTER paragraph. 

~Eiori~Y~~mQgf must be an integer that ranges in value from 1 
through 49. 

When the SEGMENT-LIMIT clause is specified, only those segments 
having EE!QEi~~~~mbers from 0 up to, but not including, the priority 
number designated as the segment limit are considered as permanent 
segments of the object program. 

Those segments having e~!Q~!~Y_~~mQgf~ from the segment limit through 
49 are considered as overlayable fixed segments. 

When the SEGMENT-LIMIT clause is omitted, all segments having 
QriQ~!~Y_~~mQer~ from 0 through 49 are considered to be permanent 
segments of the object program. 

318 Part V -- Special Features 

,~ 

\.-- . ..-

\." .. 

c 



o 

o 

Segmentation -- Restrictions 

When se~mentation is used, the followin~ restrictions are placed on 
the ~LTER and PE~FORM statements, and called programs: 

1. ~ GO TO statement in a section whose priority number is 50 or 
higher must not be referred to by an ~LrER statement in a section 
with a different priority number. 

2. ~ GO ro statement in a section whose priority number is lower than 
50 may be referred t~ by an ~LTER statement in any section, even if 
the 30 TO statement to which the ~LTER refers is in a segment of 
the program that has n~t yet been called for execution. 

1. ~ PERFORM statement that appears in a section whose priority number 
is lOwer than the se~nent limit can have within its range only the 
following: 

a. Sections with priority numbers lOwer than 50. 

b. Sections wholly contained in a sin~le segment whose priority 
number is higher than 49. 

2. ~ PERFORM statement that appears in a section whose priority number 
is equal to or higher than the se~ment limit can have within its 
range only the followin~: 

a. Sections with the same priority number as the section 
containing the PERFORM statement. 

b. Sections with priority numbers that are lOwer than the segment 
limit. 

When a procedure-name in a permanent se~ment is referred to by a 
PERFORM statement in an independent segment, the independent segnent is 
reinitialized upon exit from the performed procedures. 

Se~mentation Feature 319 



COpy St atemen t 

Prewritten source program entries can be included in a source program 
at compile time. Thus, an installation can use standard file 
descriptions, record descriptions, or procedures without recoding them. 
These entries and procedures are contained in user-created libraries; 
they are included in a source program by means of a COpy statement. 

rhe COpy statement permits the user to include prewritten Data 
Division entries, Environment Division clauses, and Procedure Division 
procedures in his source program. 

r----------------------------------------------------------------------, 
I Format I 
~----------------------------------------------------------------------~ 

:OPY library-name 

[word-3 ~X 

{ 
word-2 } 
literal-l 
identifier-l 

1 
word-4 
literal-2 
identifier-2 

] ... ] . 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I ______________________________________________________________________ J 

statement 

When the library teKt is c09ied from the library, compilation is the 
same as though the text ~ere actually part of the source program. 

rhe copy statement processing is terminated by the end of the library 
text. 

The text contained in the library must not contain any COpy 
statements. 

320 Part V -- Special Features 

\, -' 

c 



COpy statement 

r----------------------------------------------------------------------, 

c' 
I General Format I 
~----------------------------------------------------------------------~ 
IQetion_l (within the Configuration Section): I 
I I 
I SOUR~§=£OMPUTER. COpy statement. I 
I OBJE£r=£Q~PUrER. COpy statement. I 
I SP~£IAL=~~MEg. COpy statement. I 
~----------------------------------------------------------------------~ 
IQ2~ion~~ (within the Input-Output Section): I 
I I 
1 [ILE=~Q~TRQ~. COPY statenent. I 
\ I-O=£Q~~gQ~. COPY statement. I 
~--~-----~-~~-------~----~--~---~---------------~------------------~---~ 
I QE.tion. 3 . (within the .FILE~CONTROL Paragraph) : I 
I . '.' '. . . I 
I mn&£1:file-name> COpy· statement. I 
~_._ ...;.:..._._:......;;... _. ___________ .... :... . ...;;.. _· __ i;"_ :... ____ ;.. ___ . __ . __ . ____ .• ; ... _.,;.. ___ . _____ ._.;"_'_._._';'" _____ ~ 

\Q2tion 4 (within the File Section): I 
I I 
I FD file-name COPY statenent. I 
I gQ sort-file-narne COpy statement. I 
~----------------------------------------------------------------------~ 
\QE.~ion_2 (within the Report section): I 
\ I 
I RD report-name COpy statement. I 
\ RO~report-name[Wrra £QQ~mneinonic-name] COpy statement. .. I 
~---:...---:...--;..;...;...---.---.-.--.;...;.....;.---.- ... ..;. .... ..;.-----.--.;.;.-;...;...----.------.--.------.--------~ 
I Q2~ion 6 (wi thin a File ()r sort .. descr~ption entry, or wi thin the I 
I W:>rking-Storage Section .or .. t.l1.e.Lin~ag~ Sectign) : I I .<un • I 
I 01 data-name COPY statement. I 
~----------------------------------------------------------------------~ 
IQ2tion 7 (with a Report Group): I 
\ I 
I 01 [data-name] COPY statenent. I 
~-~--~ __ --~--~-~-.-__ ~--:-~-'*:"-~~-- .... ~-.:--.~~ ____ -:--.--~-:---.---:-__ ~ .... -""7--.... ----:--~-:---~-:--.~ 
l.O~ti~~ .• 8·.~ .. (~it.h~n ..• th~ .. ~.~Gkin~-stof~~~.~.~c.t~on. or~he.~inkagf;·.···.secti.o11) .••• : ... \ 
1 ... ·.< ........... ' ....•.• > ..... '."" ..•......•. ".,',.' , '.,' .'.""",.",',>:"". ' ......... '. """,.,"",'., •.. """ ',',,', .,',',',., ,... .' .•• ' ,."", ,.' ,.1 
I·, > .?7.',.da ta -name .. copy.st~~e.rIl'en-t~> ••. '> •. , '.',' ••• ,'".,.,'.,', ',,',' ".' •..•. ,' •... , .. ' ••• ' •. ' .•• ,.,.", ..•. ' '.'",." .•. """ ,·,.,.,·.·,'·, .. ".',·.'··'··>i"'·.," •. '·"·.,".·" ,',.. ." ' •• '.,' ',".',.' .""': , •. ,".,,'.' ", .. ".,.,',. ,,' •• ',1 
f~~-.- __ ~---- ..... -- __ ":'-~--~ __ ~~-":",-. ____ --- __ --":,,,--:,,,,-""7-:":'----.---- ~.:: --:":' -- ..... -""7~ ~~- ..... - ~,,~-.- - .... --:-. ..... --~ 
I oetion,;.9.(within>theWorking .... $torCigesection.qrtheLinkage Section).: I 
I I 
1 01 .. dat.a-narne-l .. ·REDEFINESdata-:":'natI\e::2 .. ·.• .. coPX· .• ·· .•. statement~ I 
1 ...•...•.....•...... <?7 ..•• datCl-~am~-~ ..•. ~E~EF~NE.?>dat~-name72co1?Yis~atement.. . ... ..1 
~-~---,----------,-----,- .... --,-----,-----------,-------'-------'--------'---------~ 
IQetion.1~ (within the Procedure Division): I 
I I 
I section-name §~£~!ON [priority-number]. COpy statement. I 
I paragraph-name. COpy statement. I 
~----------------------------------------------------------------------~ 
l~fQg~ill~~fQ~~£~_!rr~Qf~~~iQ~_l~~f~iQ~_~L I 
L I 
I . O~t:!2!!11\.(~gf}i~~\~.11~.¢?~~9#~@~·~··~.9~.'~~pfi.911>: 1 
, .... >...........\ ..............................•............................................................ > •••..•..•. ' ............................................... >\. i>.>·.·······.·.··.X·i·.···ii'.!·\> •• • .. \. i/ ,> •..... '( iiiii ..................................................... ..... ·.·.· .. ·i· ............ ....•.•....•••• •............ . .. 1 
lii··.··· .••.•• C~ •• 8d7nClIl\~ .•. ·· .•.• · .. ~.81?;·i~~i;lt..:~~t1;~.~?\)ii··\\i...i...'\· •••••••• ···· .... ·····i\ ... · .•• \ ..•............•. \ ...•.••...••......•.• : .••......•. >..... ........ . ... 1 L .... ___ ,_ ... _,_, ___ , ________ .... ____ ... _ ... ____ , __ :-,_~. ______ ,_, __ , ______ '_, _____________ ' ______ J 

o 
Source Program Library Facility 321 



COpy statement 

Librar~~n~mg is the name of a member of a partitioned data set 
contained in the user's libr~ry; it i~entifies the library subroutine to 
the control progr~m. Library-name must follow the rules of formation 
for a program-name. The first eight characters are used as the 
identifying name. 

rhe worjs preceding COpy conform to margin restrictions for COBOL 
programs. On a given source program carj containing tne completion of a 
COpy statement, there must be no information beyon~ the st~tement 
terminating perioj. rhe material introduced into the source program by 
the COpy statement will folloi~"" " 
)::>e,gino" 'iff 
[fidt~~! 
k·X"':·;.:.,/·:·.b;<).;·\ 

If the REPL~CING option is used, each Nord specified in the format is 
replacej by the stipulated ~Q~~, i~gn~ifig£, or !i~g~l which is 
associate~ with it in the form~t. 

~Qr1~!, ~QE£-2, etc., may be a data-name, procedure-name, 
condition-name, mnemonic-name, or file-name. 

Use of the REPL~CIN3 option joes not alter the m~terial as it appears 
in the library. 

When options 1, 2, .. ? 4, 5, or 10 are Volri t ten, the Volords COpy 
liQraEY::!!~me are replace'd by the information identified by library-name. 
This information comprises the sentences or clauses needed to complete 
the paragraph, sentence, or entry containing the COPY statement. 

when options 6, 7, ~re written, the entire entry is replaced 
by the information ident1 1ed by !iQ~~~Y~n~mg, except that £~t~~n~mg (if 
specified) replaces the corresponding data-n~me from the library. 

For example, if the library entry P~YLIB consists of the folloNing 
Data Division record: 

01 A. 
05 
05 
05 

B PIC S99. 
C PIC S 9 ( 5 ) V9 9 • 
D PIC S9999 OCCURS 0 ro 52 TIMES 

DEPENDING ON B OF ~. 

the programmer can use the COpy statement in the Data Division of his 
program as folloVols: 

01 PAYROLL COpy P~YLIB. 

In this program, the library entry is then copied; the resulting entry 
is treated as if it had been written as follows: 

01 ?~YROLL. 
05 B PIC S99. 
05 ePIC S9(S)V99. 
05 D PIC S9999 OCCURS 0 ro 52 TIMES 

DEPENDING ON B OF ~. 

Note that the data-name ~ has not been changed in the DEPENDING ON 
option. 

322 Part V -- Special Features 

~ 
I 

',-- ... / 

c 



c) 

o 

COpy statement 

To change some (or all) of the names within the library entry to 
names he wishes to reference in his program, the programmer can use the 
REPLA:ING option: 

01 PAYROLL COpy PAYLIB REPLA:ING A BY P~YROLL 
B BY PAY-CODE : BY GROSS PAY. 

In this program the library entry is then copied; the resulting entry is 
treated as if it had been written as follows: 

01 PAYROLL. 
OS PAY-:ODE PIC S99. 
OS GROSSPAY PIC S9(S)V99. 
OS D PIC S9999 OCCURS 0 TO 52 TIMES 

DEPENDING ON PAY-CODE OF PAYROLL. 

The entry as it appears in the library remains unchanged. 

~~~~~R~Qg~£~~!nfo~m~~iQg_i~g~~~Qg_~_~g~_~~~~~on_~L 

:ri: ~~,SI:~gnS,~'u:,p:Y:fup~i;:fu~i<.~ee~~;r;:,!~ •.. , •. gg!~m~.~.'.· .. ·.d~ ,~lf:r:9.~gh Q, of .• <: .. (;l:GQ.~.X ,q?(:r:c:l~l

Source Program Library Facility 323

~
I

', '

c
324 Part V -- Special Features

o

The word' INsERrai' DELErE.,f6lfowedbyaspaCe~fol10wed by
se:;Iuence~number~field.may ap[)ear.anywhere W'ithin columns. 1 through 12 on
:the card., There must be no other teKt on the > card ..

Each number in. the sequenpe-number-fiel:lmust re.fer:. toaseguence
number of th~basiclibrary entry~ .The.seq\lenc~ number is. t;-he6-digit
humber the programmer assigns incolumnsl.·.through6of .·thei.COBOL coding'
;form.

,The . numbers specified in the seCIuEmse-numb~r';"fielamustbein
ascending. numerical order from the firstINSERT/DELETE .. card to the last
INSERT/[).ELET~.ca.rdin.tl1epr:ogram~

The2gguell.9.~-riumber;;.gl~!gof an INSERT card must be<a Srb.glerl~mbe:r:
(e. 9.,<00931:0).. .. Atleast one new sour:ce pr;o;:rramcCirdI(lust follow the
:rNSERrcilrd>forinsertion after t.i1e.card specified by the
sequence-nllmber;..field.

:..rh~ •• er1trie~ ..• · ... cpmpri.si.~gsetIuEmc.e7'llu[[lb~J:-fiel~of.·.a .. DELETE •... card must be.!
:numb~r.s()J:r;anges.<.ofnumbe.r$ E:a\pherl-trY.rr:tust •. t>es.~I?(;\r;a-ted fro.m. the
precedingent:.rybyac0tnmaf o~l?wed.by.;aspac~.Rallgesof numbe:!:'s are
ii!l~it::Clt:.ed. ·.··l.>yis~PClJ:a1:.~ng.the t~o.· •.• ··bc>undingnumi:>eI:s.c>f5· •.. the •.•.. :!:,ange •• ·bY.(i
hyphen. Fgrexample:

00 OQ01~OOOOQ5~ •• · .• ·.·oo601()'
,

:" .. '(,'::;:::'::::;: ~:.';',::.;: .. :":":::'.'::'~:,::'::.:'::.: '.' :'::.:: .:':: , ... ::::; ... ::, :::: .. ;:,: .:":':';':::. (.::;':: :::: .. :\: .:'; :: .. :.:~: :':;:::.:,:' ;./:;,.:::.' , .. :., .. ,::.:: : :, : .. '.:; :.:: ," ,: ::.::/,: .. ,~

lea ra.;.'?!!q'!~~c;l,~h.E7.······.· ~~ ... ~ .. ~. o,ne ~l~·.:J;~.!;~q~L,

Source Program Library Facility 325

The following statements are provided for program debugging. They
may appear anywhere in a COBOL program or in a compile-time debugging
packet.

For the TRACE and EXHIBIT statements, the output is written on the
system logical output device (SYSOUT). A maximum logical record size of
120 characters is assumed. This assumed size is overridden if a logical
record size is specified on the associated SYSOUT DO statement.

r----------------------------------~--------------~--------------------, I Format I
~--------~---~
I I
II { READX } II

~B~~~
I RESET I
I I L _____________________________ ~ _____________________________________ w __ J

After a READY TRACE statement is executed, each time execution of a
paragraph or section begins, its name or compiler-generated card number
--depending on the compiler option chosen--is displayed. The execution
of a RESET TRACE statement terminates the functions of a previous READY
TRACE statement.

r------------------·---, I Format I
~--~
I } I I { NAHED } {identifier-l I I EXHIBI! §~~~~~g ~~M~Q literal-1 I
I I I [identifier-2] ••• I
I literal-2 I
I I L __ J

The execution of an EXHIBIT statement causes a formatted display of
the identifiers (or literals) listed in the statement.

Identifiers listed in the statement cannot be any special register
ex:ceptTALLY;-

326 Part V -- Special Features

.'

Literals listed in the statement are followed by a blank when displayed.

The display of the operan1s is continued ~s described for the DISPLAY
statement. A maximum logical record size of 120 characters is assumed.

EXHIBIr N~MED: Each time an EXHIBIT NAMED statement is executed, there
is a formatted display of each identifier listed and its v~lue. Since
both the identifying name and the-value-of the identifier are displayed,
a fixed columnar format is unnecessary. If the list of operands
includes literals, they are displayed as remarks each time the statement
is executed.

rhe format of the output for each i~~~~ifi~£ listed in the EXHIBIT
NAMED statement is:

original identifying na~e, including qualifiers if written
(no more than 120 characters in length)

space
equal sign
space
value of identifier (no more than 256 bytes in length)
space

EXHIBIT.CH~NGED NAMED: Each time an EXHIBIT CHANGED NAMED statement is
eKeouted;-there-rs-a-display of each i~~~~ifi~£ listed and its value
only if the value has changed since the previous time the statement, was
executed. The initial time such a statement is executed, all values are
considered changed and are displayed. If the list of operands includes
literals, they are displayed as remarks each time the statement is
executed.

Since both the identifying name and the v~lue of each identifier is
displayed, a fixed columnar format is unnecessary. If some of the
i~~~tifie£2 have not changed in value, no space is reserved for them.
If none of the identifiers h~ve changed in v~lue, no blank line(s) will
be printed.

rhe format of the output for each !de~ti[i~£ liste1 in the EXHIBIT
CHANGED NAMED statement is:

original identifying nane, including qualifiers if written
(no more than 120 characters in length)

space
equal sign
space
value of identifier (no more than 256 b~tes in length)
space

~~tl!§!~£tl~~§~Q: Each time an EXHIBIT CHANGED statement is executed,
there is a display of the current value of each ~~~~t~[i~£ listed only
if the value has changed since the previous time the statenent was
exec~ted. The initial time the statement is executed, all values are
considered changed and are displayed. If the list of operands includes
literals, they are printed as remarks each time the statement is executed.

The format of the output for a specific EXHIBIr :HANGED statement
presents each operand in a fixed columnar position. Since the operands
are displayed in the order the~ are listed in the statement, the
programmer can easily distinguish each operand.

Debugging Langu~ge 327

The follo~ing considerations apply: .

• If there are two or more i~~g~it~~~~ as operan~s, and some, but not
all, are changed from the previous eKecution of the statement, only
the'changed values are dis9layej. The positions reserved for a
given operana are blank when the value of the operand has not
changed.

• If none of the operan~s have changed in value from the previous
execution of the state~ent, a blank line(s) will be printed.

• Variable length identifiers are not permitted as operands.

• The storage reserve~ for any operand cannot exceed 256 bytes.

Note: The combined total length of all operands for all EXHIBIr :H~NGED
N~MED plus all EXHIBIT CH~NGED statements in one program cannot exceed
32,767 bytes.

If two jistinct EXHIBIT CH~~GED N~MED or two EXHIBIT CH~NGED
statements appear in one program, each specifying the same ig~g~!f~~~~,
the changes in value of those identifiers are associated with each of
the two separate statements. Depending on the path of program flow, the
values of the identifier savej for comparison may differ for each of the
two statements.

The ON statement allows the programmer to specify when the statements
it contains are to be executed.

r--,
I Format 1 I
~--~
I I
I ON integer-1 [~ND ~~~E~ integer-2] [Q~~f~ integer-3] I
I I
I { imperative-statement} { ELSE } {statement ••• } I
I NEXr ~~~~~~~ Qr~~R~f§~ ~~~r §~~~~~~~ I
I I L __ J

r--,
I Format 2 (Version 3 anj Version 4) I
~--~

ON {integer-1 }

identifier-l
[~ND EVERY]

{

integer-2 }

--- ----- identifier-2

{

integer-3 }
[UNTIL]
----- identifier-3 {

imperative-statement}

~~~r §~~r§~~§ 

______________________________________________________________________ J 

~ll in~~g~rs contained in the ON statement must be positive and no 
greater than 16,777,215. 

The phrase ELSE/OTHER~ISE NEXT SENTENCE may be omitted if it 
immediately precedes the perio~ for the sentence. 

328 Part V -- Special Features 

' . 
..... ~ -.. " 

c 



o 

R£Q~~ill_RfQQ~£~_~nfQfill~~iQn_i~~f~iQn~~_~n~_~~E~iQn_~t 

Format 2: All identifiers must be fiKe1-point numeric items 
1escribed as integers~--rheir values nust be positive and no 
greater than 16,777,215. 

At object time each i~~n~hfi~E must be initialized to a positive 
value before the first execution of the ON statement. Between 
executions of the ON statement, the values contained in the 
ijentifiers may be modified. The pro~rammer's manipulation of 
these values in no way affects the co~piler-generated counter 
associated with the ON statement. 

In the discussion that follows, each reference to ~n~~~~E~l applies 
equally to ~~~~~ifi~f~l. Similarly, each reference to ~n~~~~E=£ 
applies to iQgn~ifigf=£, an1 each reference to !n~~~~E=} applies to 
ifien~!figE=l. 

In Format 1 an1 Format 2 the ON statement is evaluated and executed 
as follows: 

• Each ON statement has a conpiler-generated counter associatefi ~ith 
it. The counter is initialized to zero in the object program. Each 
time the path of program flow reaches the ON statement, the counter 
is incremente1 by one, anfi the £Q~n~~£Qn~i~iQn (integer-1 AND EVER~ 
integer-2 UNTIL integer-3) is tested. 

• If the £Q~n~=£Qn~i~!Qn is satisfie1, the ~~E~E~~~~~~~~~£gmgn£ (or 
NEXT SENTENCE) preceding ELSE/OTHERWISE is executefi. (Note that an 
imperative-statement may consist of a series of imperative 
statements.) 

• If the count-condition is not satisfiefi, the statement(s) (or NEXT 
SENTENCE)-forlowrng~LSE/OTHERWISE is executej~--If-the-­
ELSE/OTHERWISE option 10es not appear, the next sentence is 
executed. 

The £Q~n~=£QnditiQn is evaluated as follows: 

• If only in~~g~=! has been specified, then the count-condition is 
satisfied only once: ~hen the path of program flow-has-reached the 
ON statement integer-l times -- that is, when the value in the 
counter equals integer-l. 

• When only in~~~r-l an1 in~~g~E=} are specified, then the value of 
intgg~E=£ is assumed to be one, an1 the £Q~n£=£Qn~i~iQn is satisfied 
when the value in the counter is any value within the range 
integer-1 through integer-3. 

• If only in£~g~-l anfi ~n£g~~E~£ are specified, then the 
count-con1ition,is satisfied each time the value in the counter is 
equaI-to-~u£g~r~l + (in£~a~f~£ * K), where K is any positive 
integer or zero. No upper limit for the execution of the ON 
statement is assumed. 

• When all three in£~~E~ are specifie1, then the £Q~n£=£Qn~~£iQn is 
satisfied as in the last preceding case, except that an upper limit 
at which the count-condition cannot be satisfied is specified. 
The upper limit is integer-3. 

Debugging Language 329 



Debugging statements for a given paragrapn or section ina program 
may be grouped together into a debugging packet. These statements will 
be compiled with the source language program and will be eKecuted at 
object time. Each packet refers to a specified paragraph-name or 
section-name in the Procedure Division. compile-time debugging packets 
are grouped together and are placed immediately following the source 
program. No reference to procedure-names in debug packets may be made 
in the body of the program. 

Each compile time debug packet is headed by the control card DEBUG. 

r----------------------------------------------------------------------, 
I Format I 
~---------------------------------------------------------------~------~ 
I I 
I QEBO@ location I 
I I L ______________________________________________________ ----- ___________ J 

The word DEBUG followed by ~Q£~~!Qg may appear any~here within 
columns 1 through 72 on the card. There must be no other text on the 
card. 

The lQ£~tiQrr is the section-name or paragraph-name (qualified, if 
necessary) indicating the point in the program at which the packet is to 
be eKecuted. Effectively, the statements in the packet are executed as 
though they were physically placed in the source program follo~ing the 
section-name or paragraph-nane, but preceding the text associated with 
the procedure. The same location must not be used in more than one 
DEBUG control card. Location cannot be a paragraph-name within any 
debug packet. 

~ debug packet may consist of any procedural statements conforming to 
the requirements of American National Standard COBOL. The following 
considerations apply: 

• A PERFORM or ALTER statenent in a debug packet may refer to a 
procedure-name in any debug packet or in the main body of the 
Procedure Division. 

• A GO TO statement in a debug packet may not refer to a 
procedure-name in another debug packet, but it may refer to a 
procedure-name in the main body of the Procedure Division. 

PrQ~~~E~QQ~£~_!nfQ~m~~iQ~_l~g~~~Qg_~_~~~_~g£~~Q~_~L 

On the DEBUG card, the sequence number may appear in columns 1 
through 6. 

330 Part V -- Special Features 

." ......... ,./ 

c 



C--' _/ 

\ 
! 

/ 

o 

!'~JEG~?s~ip.·.s£aterrtentf{'! 
~''' ... " K""'w. ··".M·'"'' .; .. ", ... ". '.M,·,'.· .. ". ".w.'.«' """"'"'';''' •. " •. '."""'".; .. \,' ... ,,,:.,, ..... .».') 

IfQB~at:'·CQN'TBQt;·'6:t2!li§I§QQg£Ef·pgQ§RA:M=!X!sTI!i~ 
""":' •• ,of: ,." •• ,.. :,. " ••• :: ,":, .:.w ,.:.:< •• : .• : •.•...•..•••.. " ..•.• :"., ... ,: .•.•..... ,.:,., .••••. :.: .. : .;.:, .• , .. ,:~. : .. ; .. ~,: .. : ,""""':Wo' : ••.• ':"' ..... ,.:.,",." .. ",;. .• :":' ,:.::,.w .. , .. ," .,'" ..... :.:',.: .. :.: , ... '.',. " .. ~,,' 'W":',': ,< •• ",:, •••• :::':""<':'.:. ':::"'~:"':"':""« ~".::,,::.:., .... :.~: .... : ".:.:~.,A 

rhere are four statements that allow the programmer to control the 
spacing of the source pro~ran listings pro~uced by the COBOL compiler. 
These statements are: EJECr, SKIP1, SKIP2, an~ SKIP3. 

The EJECT statement instructs the compiler to print the, next source 
statement at the top of the next page. 

r----------------------------------------------------------------------, 
1 Format I 

~----------------------------------------------------------------------~ 
1 I 
I 1 Area B I 
1 --------------------- 1 
1 §~~£! 1 
I I l ______________________________________________________________________ J 

rhe word EJECr may be written anywhere within Area B and must be the 
only statement on the card. There must be ~Q punctuation. 

rhese statements instruct the compiler to skip 1, 2, or 3 lines 
before printing the next source statement. 

r----------------------------------------------------------------------, 
I Format 1 

~----------------------------------------------------------------------~ 
1 1 
1 1 Area B I 

1 --------------------- 1 

I SKIP2 1 1 I §!SI
P1 ! 1 

1 SKIPl 1 
1 1 L _______________________________________________ - ______________________ J 

SKIPl tells the compiler to skip 1 line (~ouble s~acing). 

SKIP2 tells the compiler to skip 2 lines (triple spacin~). 

SKIP3 tells the com~iler to skip 3 lines (quadru~le spacing). 

SKIP1, SKIP2, or SKIP3 may be written anywhere within Area B an1 must 
be the only statement on the car~. There must be gQ ~unctuation. 

Format :ontrol of the Source Program Listing 331 



COBOL provides facilities for handling sterling currency items by 
means of an extension of the PICTURE 9lause. Additional options and 
formats, necessitated by the nondecimal nature of sterling and by the 
conventions by which sterling amounts are represented in punched cards, 
are also available. 

COBOL provides a means to express sterling currency in pounds, 
shillings, and pence, in that order. There are 20 shillings in a pound, 
and 12 pence in a shilling. Although sterling amounts are sometimes 
expressed in shillings and pence only (in which case the number of 
shillings may exceed 99), within machine systems, shillings will always 
be expressed as a 2-digit field. Pence, when in the form of integers, 
likewise will be expressed as a 2-digit field. However, provision must 
be made for pence to be expressed as decimal fractions as well, as in 
the form 17s.10.237d. 

The IBM method for representing sterling amounts in punched cards 
uses two columns for shillings and one for pence. Tenpence (10d.) is 
represented by an '11' punch and elevenpence (lld.) by a '12' punch. 
The British Standards Institution (B.S.I.) representation uses single 
columns for both shillings and pence. The B.S.I. representation for 
shillings consists of a • 1"2' punch for ten shillings and the alphabetic 
punches A through I for 11 through 19 shillings, respectively. 

Not~: The B.S.I. representation for shillings precludes the use of more 
than 19 shillings in a sterling expression; therefore, 22/10 (that is, 
22 shillings 10 pence) must be expanded by the user to 1/2/10. 
Similarly, the guinea -- 21 shillings -- or any multiple thereof, must 
be expanded to pounds and shillings. 

rhe indicated representations may be used separately or in 
combination, resulting in four possible conventions. 

1. IBM shillings and IBM pence 

2. IBM shillings and B.S.I. pence 

3. B.S.I. shillings and IB~ pence 

4. B.S.I. shillings and B.S.I. pence 

Any of these conventions nay be associated with any number of digits 
(or none) in the pound field and any number of decimal places (or none) 
in the pence field. In addition, sign representation may be present as 
an overpunch in one of several allowable positions in the amount, or may 
be separately entered from another field. 

rwo formats are provided in the PICTURE clause for the representation 
of sterling amounts: sterling report format (used for editing) and 
sterling nonreport format (used for arithmetic). 

In the formats that follow, ~ stands for a positive integer other 
than zero. This integer enclosed in parentheses and following the 
symbols 9, B, etc., indicates the number of consecutive occurrences of 
the preceding symbol. For eKample, 9(6) and 999999 are equivalent. The 
PICTURE characters used to describe sterling items are: 

6 7 8 9 C D * , / B Z V. £: s d CR DB + -

(The character £ is the sterling equivalent of the character $.) 

332 Part V -- special Features 

c 



o 

Note: The lower-case letters "s" and "d" are represented by an 11-0-2 
punch and a 12-0-4 punch, respectively. 

STERLING NONREPORr 

The format of the PIcrURE clause for a sterling nonreport data item is: 

r----------------------------------------------------------------------, 
I Format I 
~----------------------------------------------------------------------~ 
I I 
I {PICrURE} {6[6]} I I ----- IS 9 [ ( n) ] D [ 8] 80 I 
I ~~£ 7[7] I 
I I 

[[V]9[(n)]] [g§~@§ IS] ~~~~~~~~§~ I 
I I L ______________________________________________________________________ J 

Note: For a sterling nonreport picture to be valid, it must contain a 
pound field, a shilling field, and a pence field. 

The representation for pounds is 9[(n)]D where: 

1. rhe character 9 indicates that a character position will always 
contain a numeric character, and may extend to g positions. 

2. The character 0 indicates the position of an assumed pound 
separator. 

The representation for shillin~s is [8]8D where: 

1. rhe characters [818 indicate the position of the shilling field and 
the convention by which shillings are represented in punched cards. 
88 indicates IBM shilling representation occupyin~ a 2-column 
field, the character 8 indicates B.S.1. single-column shillin3 
representation. 

2. The character 0 indicates the position of an assumed shilling 
separator. 

The representation for pence is: 

{
6(71} [[V]9[(n)]] 
7[7] 

1. rhe character 6 indicates IBM sin3le-column pence representation 
wherein 10d. is represented by an '11' punch and 11d. by a '12' 
punch. The characters 66 indicate 2-column representation of 
pence, usually from some external medium other than punched cards. 

2. rhe character 7 indicates B.S.1. sin3le-column pence representation 
wherein 10d. is represented by a '12' punch and 11d. by an '11' 
punch. The characters 77 indicate 2-column representation of 
pence. Consequently, 66 and 77 serve the same purpose and are 
interchangeable. 

Sterling Currency and International Considerations 333 



3. The character V indicates the position of an assumed decimal point 
in the pence field. Its properties and use are identical with that 
of V in dollar amounts. Decimal, positions in the pence field may 
extend to g positions. 

4. The character 9 indicates that a character position will ~lways\ 
contain a numeric character, and may extend to g positions. 

Ex~mple: Assume that a sterling currency data item used in arithmetic 
expressions is to be represented in IBM shillings and IBM pence, and 
that this data item will never exceed 99/19s/11d.Its picture should 
be: 

PICTURE 9(2)D88D6 DISPLAY-ST. 

The VALUE clause must not be specified for sterling nonreport items •. 

Signs for sterling amounts nay be entered as overpunches in one of 
several allowable positions of the amount. A sign is indicated by an 
embedded S in the nonreport PICTURE immediately to the left of the 
position containing the overpunch. AlloNable overpunch positions are 
the high-order and low-order positions of the pound field, the high­
order shilling digit in 2-column shilling representation, the lOw-order 
pence digit in 2-column pence representation, or the least significant 
decimal position of pence. 

The following are examples of sterling currency nonreport data items 
showing sign representation in each of the allowable positions: 

PICTURE S99D88D6V9(3) DISPLAY-ST 

PICTURE 9S9D88D6V9(3) DISPLAY-ST 

PICTURE 9(2)DS88D6V9(3) DISPLAY-ST 

PICTURE 9(2)D88D6S6V9(3) DISPLAY-ST 

PICTURE 9(2)D88D6V99S9 DISPLAY-ST 

334 Part V -- Special FeatUres 

~\ 
I 



o 

Sterling'RepOrt 'Format! 
I.,.,· .. ' ... ,.' ..... ·".,.,"',.',·.,., ..• "',,,.,', ... , .... ,., .. , ......... ,., ... "', ........ ".,,, ... , 

STERLING REPORT 

The sterling currency rep~rt data item is composej of four portions: 
pounds, shillings, pence, an1 pence decimal fractions. 

r----------------------------------------------------------------------, 
I Format I 
~----------------------------------------------------------------------~ 

{

PICrURE} IS 

PIC 

[pound-report-strin~] [pound-separator-string] ielimiter 

shilling-report-string [shilling-separator-stringJ delimiter 

pence-report-strin~ [pence-separator-string] [sign-string] 

L ______________________________________________________________________ J 

Poung-RgEQ~t=~t~i~ - This string is optional. It is subject to the 
same rules as other numeric edited items, with the following exceptions: 

• The allowable characters are: £ (pound symbol) 9 Z * + 0 
(zero) B , (comma). 

• The total number of di~its in the poun1-report-string plus the 
fractional-pence field cannot exceed 15. (That is, if there are 11 
digits in the pound-report-string, there cannot be more than four 
digits in the fractional-pence-field.) 

• The character £ is the sterling equivalent of $. 

• Termination is controlle1 by the poun1-separator-strin~. 

~Q~nd-SgQ~~~tor-String - This string is optional. It may include one 
character, or any combination ~f the following characters: 

B / (period ~r decimal point) 

Editin~ of the separator characters is dependent upon the use of C ~r 
D as delimiters. 

The Delimiter Characters - The delimiter characters C and Dare 
required.--They-primarily serve to indicate the en1 of the pounds and 
shillings portions of the picture. In ad1ition, they serve to indicate 
the type of editing to be applied to separator characters to the right 
of the lOw-order digit (of the pounds and shillings integer portions of 
the item). 

rhe delimiter character D indicates that separator character(s) to 
the right of the low-order digit position (of the field delimited) are 
always to appear; that is, n~ editing is performe1 on the separator 
character(s). 

Sterlin~ Currency and International Considerations 335 



~he delimiter character C indicates that if the low-order digit 
position (of the field delimited) is represented by other than the edit 
character 9, editing continues through the separator character(s). 

The delimiter characters C and 0 are used for editing purposes only • 
. They do ug~ take up space in the printed result. 

~he followinq examples show the editing performed when a value of 
zero is moved to a sterling report item. 

**ICZ9s/D99:I 

\A7ould result in 

***bOs/OOd 

whereas, if the p~cture were 

**/DZ9s/D99d 

the result would be 

**/bOs/OOd 

rhe delimiter G is equivalent to D when the low-order digit position 
is represented by a 9. That is, the following two pictures are 
equivalent: 

ZZ9/DZ9/D99 
ZZ9/CZ9/C99 

rhe delimiters used for the pounds and shillings portion of the 
picture need not be the same. 

Not~: Although the EQgna=r~eQr~=~~r~~[ and the eQ~~~=~~Q~£~~~£~~~£~ll~ 
~re optional, a delimiter character (eitqer C or D) must be present; 
thus, ~hen programming for shillings and pence only, the PICTURE clause 
must begin PICTURE IS C (or D). 

2n!11in~B~EQ~~~~tring - This is a required two-character field. It is 
made up of the following characters: 

9 a Z * 
The valid combinations of these characters are: 

99 Z9 ZZ za ** *8 

The a is an edit character and is treated as a 9. However, if the 
digits to the left of the edit character 8 are zeros, the a is treated 
~s the character that precedes it <either Z or *). 

2h~!!inS=§~~~~~Q~st£!~ - rhis string is optional. It may inqlude qne 
character, or any combination of the follo~ing characters: 

B I s (period or decimal point) 

Editinq of the shilling-separator characters is dependent upon the. 
use of C or D as delimiters. 

336 Part V -- Special Features 

(--" 
\ 

c 



C) 

t,,§t. ,~ ... · •.... ·.r ..•... · .• ·.i .. · .• ' .•. l..·, .. " .. n.'· .. ·,.:.9'...... :R~por:t:.,·~olil:i~·\1 
" '" ',.., .. ),.:,.:~.: '.,", ' .:' .... ,. " .""',N:':"~""':""':"'"' ': .. ' .... : ;::' :'.:.~ I:. "" .. :,.; , .... ~;.,.: ... ," 

~~~-ReEo~~~~~~iug - rhis field is made up of two parts: a required 
whole-pence field, and an optional fractional-pence field.

The required whole-pence field is a two-character field, made up of
the following symbols:

9 8 z *
Valid combinations of these characters are:

99 Z9 ZZ Z8 **
The function of the editing character 8 is .the same as in the
shilling-report-string.

The optional fractional-pence field is indicated by a decimal point
followed by one or more 9's. It is used to specify fractional pence in
decimal form.

rhe total number of digits in the fractional-pence field plus the
pound-report-string cannot exceed 15.

pe~£~_~~e~~~~Q£~tring - This string is op.tional and may consist of one
or both of the following characters~

d (period or decimal point)

If both characters are used, they must be used in the order shown above.

Sign-Field - This field is optional and may consist of:

• optionally, one or more blanks (B), followed by

• one of the following one- or two-character combinations:

+ CR DB

Sterlinq Report editing applications are sho~n in rable 26.

rable 26. Sterling Currency Editing ~pplications
r-----------------T--------------T-------~-------------~----------~---,
\ Picture INumeric Value I sterling Equivalent \ Printed I
\ I (in pence) I £ s d I Result \

~-----------------+--------------+-----~---------------+--------------~
£££ /D99s/D99d 3068 12 15 08 £12/15s/08d I
£££ /D99s/D99d 0668 2 15 08 £2/155/08d I
£££/D99s/D99d 01B8 0 15 08 /lSs/08d I
£U/C995/D99d 0188 0 15 08 15s/08d I
ZZZ/DZZs/DZZd 0000 0 00 00 / 5/ d I
ZZZ/CZZs/DZZd 0000 0 00 00 5/ d \
£BD99sBD99.9d 080.5 0 06 08.5 06s 08~5d I
***/C**D/C**.99d 1040.12 4 06 08.12 **4/*6s/*8.12d\
;C**5:C**~99d 080.12 0 06 08.12 **65:*8.12d\
***/D**s/D**.99d 00001.23 0 00 01.23 ***/**5/*1. 23d\
S£/O*9s/D**.99d 00961.23 4 00 01.23 £4/*05/*1. 23dl
£.*/D*9s/D**.9~d 00961.23 4 00 01.23 £*4/*Os/*1.23dl
£**/D$9s/D**~99d 00001.23 0 00 01.23 £**/*05/*1. 23dl

I £££ /D99s/D99dCR -3068 12 15 08 £12/15s/0dCR \
L __________ ~------_~--------------~-------------------__ ~ _____________ J

~ sterling report PICrURE may have a BL~NK WHEN ZERO clause
associate~ with it specifying that the item ~escribed is filled ~ith
spaces whenever the value of the item is zero.

If the VALUE clause is specified for a sterling report item, the
literal must be alphanumeric. rhe V~LUE clause is treated exactly as it
is specifieq, with no editing performed.

Sterling Currency and International Considerations 337

The maKimum length of a sterling report item is 127 characters~

If the VALUE clause is specified for a sterling report item, the
literal must be alphanumeric.

PROCEDURE DIVISION CONSIDERArIONS

The MOVE, DISPLAY, ACCEPT, EXAMINE, and TRANSFORM statements,
arithmetic statements, and relation tests may be written containing
identifiers that represent sterling items.

Sterling items are not considered to be integers and should not be
used where an integer is required.

INrERNATIONAL CONSIDERATIO~§

1. The functions of the period and the comma may be exchanged in the
PICTURE character-string and in numeric literals by writing the
clause DECIMAL-POINT IS :OMMA in the SPECIAL-NAMES paragraph of the
Environment Division.

2. rhe PICTURE of report itens may terminate with the currency symbol
in cases where the graphic $ is supplanted by a particular national
currency symbol, through use of the CURRENCY SIGN IS literal clause
in the SPECIAL-NAMES paragraph of the Environment Division.

338 Part V -- special Features

'"

(
,_./

o

Program Product Information (Version: 4)

The Teleprocessing (rp) Feature of the Version 4 compiler
permits the COBOL Programmer to create device-independent message
processing programs for teleprocessing applications. A
teleprocessing network consists of a central computer, remote (or
local) station(s), an~ the communication lines connecting such
station(s) to the central computer.

In TP applications, ~ata flow into the system is random an~
proceeds at relatively slow speeds. Data in the system exists as
messages from remote stations, or as messages generated by internal
programs. Once delivered to the computer, the messages can be
processed at computer speeds. Thus, TP applications require a
Message Control Program (MCP) that acts as an interface between the
COBOL program and the remote stations.

The MCP acts as the logical interface between the entire network
of communications devices and the COBOL program, in much the same
manner as the system acts as an interface between the COBOL object
program and conventional input/output devices. The MCP also must
perform device-dependent tasks such as character translation, and
insertion of control characters, so that the COBOL program itself
is device-independent. The MCP and the COBOL TP program operate
asynchronously; that is, there is no fixed time relationship
between the receipt of a message by the MCP an~ its subsequent
processing by the COBOL TP program.

To store the messages until they are to be processed, the MCP
uses destination queues, which may be thought of as sequential data
sets. The queues act as buffers between the COBOL TP program and
the remote stations. To the COBOL TP program, the MCP queue from
which it accepts messages is logically an ~~eg~_gg~~~; the queue
into which it places messages is logically the Qg~eg~_gg~g~. In
this publication, these terms are use~ with this meaning.

More detailed information about requirements for an MCP are
given in the publication IBM OS Full ~merican National Standar~
COBQ~~Q~~l~f~~g~_~~Qf~fY~=~~~~~Q~=[~=~~Qg~~~~~E~~=~~~~~~-Or[er
No. SC28-6456.

COMMUNICATION SECTION

The Communication Section of a COBOL program must be specified
if the program is to utilize the TP features of COBOL. The
Communication Section, through the definition of Communication
Description <CD> entries, establishes the interface between the
COBOL object program an~ the MCP.

The Communication Section is identified by, an~ must begin with
the section header COMMUNIC~TION SECTION. The header is followed
by Communication Description <CD) entries. Specification of the CD
entry causes an implicitly defined data area to be created: that
is, the generated data area has a fixed format. Level-O! record
description entries may optionally follow the CD entry; these
record description entries implicitly redefine the fixed data areas
of the CD.

Teleprocessing (TP) 339

r--1 I General Format I
~--~
I I
I COMMQN!£~~!Q~ 2~£TIQ~. I
I I
I {communication description entry I
I I
I [record description entry] ••• }... • I
I I
L __ ~_~ _______ -----------~-----~---------~-------------~ ______ ~~~ ____ ~ __ J

When it is specified, the Communication section should contain
at least one CD entry. ~ single CD entry is sufficient if messages
are only of one type, that is, only FOR INPOr or only FOR OUTPUT.
If the COBOL TP program is to both receive and send messages, then
at least two CD entries are required -- one FOR INPUT and one FOR
OUTPUT. However, multiple input and/or output CD entries may be
specified.

The CD entry is valid only in the communication Section.

The CD entry represents the highest level of organi~ation in the
communication Section. The Communication Section header is
follo~ed by CD entries, each consisting of a level indicator, a
data-name, and a series of optional injependent clauses.

r--, I Format 1 I
~--i

CD· cd-name FOR !NPU~

IS data-name-i]
IS data-name-2]
IS data-name-3]
IS data-name,...4]
IS pata-name-S]
IS data-name-6]
IS data-name-7]
IS data-name-8]
IS data-name-9]
IS data~name-10]
IS data-name-ll]]

[data-name-l 1ata-name-2 ••• data-name-ll]].

r--, I Format 21
~--~.
I I
I CD-cd-name FOR OUTPUT I
I -- [DESTINATION-£QQ~I IS data-name-il I
I [TEXT-LENGTH IS data-name-2] I
I [STATUS-KEY- IS data-name-3] I
I [ERROR-KEY IS data-name-4] I
I [SYMBOLIC Q~§I!~~I!Q~ IS data-name-51. I
I I
L ___________ ~- __ -----------~~--------------~----------__ ~-~---------~_-J

340 Part V -- Special Features

~\
' , ..

o

r--~---~-~-,
I Format 3 I
~--~

CD. cd-name £QPY library-name [§Q~~~§§§l

{
word-1 } { word-2 }

[REPLACING BY
--------- identifier-1 -- identifier-2

{
word-3 } { word- 4 }

[BY 1 ••• 1.
identifier-3 ~dentif~er-4

The CD entry serves as a storage area through which the :OBOL
program and the MCP interface. The COBOL programmer moves
information about the message into the CD before initiating any
request. The MCP, after acting upon the request, returns through
the same CD information pertaining to the request.

The CD entry is defined in such a way that any number of message
queues may be accessed through the same CD entry. Conversely,
different portions of one message may be accessed through multiple
CD entries in the same pr~gram or in different COBOL subprograms
residing in the same region or partition. Thus, anyone :OBOL TP
program need specify only one input CD entry and/or one output CD
entry. Rules controlling the accessing of MCP queues are specified
in the detailed descriptions of both input (Format 1) and output
(Format 2) CD entries.

The level indicator :D identifies the beginning of a
communication Description entry. and must appear in Area A. It
must be followed in Area B by £~=g~m~. Cd-name follows the rules
for formation of a data-nane. Cd-name may be followed by a serie~
of optional independent clauses (as shown in Format 1 and Format
2) •

The optional clauses may be followed by an optional level-Ol
record description entry. This record description entry impl;citly
redefines that of the fixed data area described by the CD entry.
The total length of the record description entry must be the same
as or less than the fixed data descriptions of the CD entry; if i~
is not, an error message is produced. HOwever, the MCP always
references this data area according to the implicit data
descriptions of the CD entry; that is, for an input CD the contents
of positions 1 through 12 are always used as the symbolic queue,
the contents of positions 13 through 24 are always used as symbqlic
sub-queue-1, and so forth.

The optional clauses of the CD entry may be written in any
order. Since the data areas of both the input CD and the out~ut CD
have implicit definitions, the optional clauses are necessary only
to assign user names for those areas that the COBOL program will
reference. However, if all the options of either format are
omitted, then a level-01 record description entry must follow the
CD entry.

Except for a level-B8 entry, the level-01 record description
entry must not contain any VALUE clauses.

FORM~I-l: This format is required if the CD entry is FOR INPUT.
At least one input CD entry must be specified if input messages are
to be received from a queue. Any number of queues may be accessed
through the same input :0 entry. This is accomplished simply by
moving a different symbolic queue name into the input CD.

Teleprocessing (rp) 3~l

Conversely, different portions of one message may be accessed
through different CD entries. Thus, CD entries in the same or
different COBOL subprograms in the same run unit may be used to
access different portions of one message. The same CD entry may be
used to access a message from another queue before the first
message is completed. The following restrictions apply:

• Only one region (or partition) can have access to any
particular queue at one time •

• The data in a queue must be accessed sequentially. That is, a
second message in any queue cannot be accessed until the entire
first message in that queue is accessed. However, a second
message from another queue may be accessed before the entire
message in the first queue is accessed.

The specification of an input CD entry results in a record whose
implicit description is equivalent to the following:

~g~iy~~gnt_~Q~Q~_g~~Q£~_Qg~~EiEtiQg Q~~~£iEtiQrr_Qf_~~~
01 data-name-O.

02 data-name-1 PICTURE X(12). Symbolic Queue
02 data-name-2 PICTURE X(12) sub-queue-1
02 data-name-3 PICTURE X(12) sub-queue-2
02 data-name-!1 PICTURE X(12) Sub-queue-3
02 data-nalne-5 PICTURE 9 (6) • Message Date
02 data-name-6 PICTURE 9 (8) • t-1essage Time
02 data-name-7 PICTURE X(12). Symbolic Source
02 data-name-8 PICTURE 9 (4) • Text Length
02 data-name-9 PICTURE X. En:l Key
02 data-name-10 PICTURE XX. status Key
02 data-name-l1 PICTURE 9 (6) • Queue Depth

For each input CD entry, a record area of 87 contiguous standard
Data Format characters is always generated, implicitly definej as
previously specified. The data names corresponding to the various
fields of the CD record area may be explicitly defined, through the
use of the optional clauses as follows:

Fo£~~t_l_==_QetiQrr_l: The data names corresponding to the various
fields of the CD record area may be explicitly defined, through the
use of the optional clauses as foll6ws:

~~~~Q~I~_Q~~UE_~g~_~~~=Q~~~~_~~~g~~~: These clauses define 
data=g~~g=l, Q~t~=g~~~=£L_£~t~=g~~g=l, and ~~t~=g~~g=~ as the names 
of alphanumeric data items each of 12 characters in length, and 
occupying character positions within the record as follows: 

data-name-1 occupies character positions 1 through 12 
data-name-2 occupies character positions 13 through 24 
data-name-3 occupies character positions 25 through 36 
data-name-4 occupies character positions 37 through 48 

The contents of the SYMBOLIC QUEUE can be specified as a queue 
structure. SUB-QUEUE-1, SUB-QUEUE-2, and SUB-QUEUE-3 specify the 
levels of such a structure. When a given level of such a structure 
is specified, all higher levels must also be specified. However, 
no given queue structure need specify all four levels. 

For example, if only a three-level queue structure is needed for 
a given program, then the following COBOL statements adequately 
specify the levels of the structure: 

SYMBOLIC QUEUE IS ~N~ME 
SYMBOLIC SUB-QUEUE-1 IS SUBQl 

SYMBOLIC SUB-QUEUE-2 IS SUBQ2 ••• 

342 Part V -- Special Features 

c 



( 

I 
\, 

o 

since SYMBOLIC SUB-QUEUE-2 is specified, both SYMBOLIC SUB-QUEUE-l 
and SYMBOLIC QUEUE must also be specified. (It would be invalid to 
specify SUB-QUEUE-2 without also specifying SUB-QUEUE-1.) 

When symbolic sub-queues are used in the COBOL program, the 
associated',queue structures must be predefined to the MCP. Queue 
structures are described in the publication OS Full American 
National Standard COBOL Compiler and Library, Version 4, 
Programmer's Guide, Order No. SC28-6456~ 

A RECEIVE statement cau~es the serial return of the next message 
(or portion of a message) from the queue specified in ~at~=g~~~=!, 
and, if SUB-QUEUE clauses are specified, from one of the sub-queues 
specified in data-name-2, data-name-3, or data-name-4. 

Before the RECEIVE statement is executed, the data-name of the 
queue, and, if specified, of the sub-queue(s) must contain the 
symbolic name(s) of the wanted queue. All such symbolic names must 
be previously defined to the MCP. The compiler initializes the 
sub-queue names to SPACES; if a sub-queue has been accessed, then 
it is the responsibility of the user to reinitialize each sub-queue 
name that is not to be used to SPACES. 

When the RECEIVE statement is executed, the MCP uses the 
symbolic name of the wanted queue to access the next message. 
After execution of the RECEIVE statement the contents of 
data-name-l remain unchanged; the contents of data-name-2 through 
data-name-4 (if applicable) are updated to contain the name of the 
sub-queue from which the message was received. 

MESSAGE DATE Clause: This clause defines data-name-5 as the name 
of an unsigned 6-digit integer data item, occupying-Character 
positions 49 through 54 of the record. 

Data-name-5 has the format YYMMDD (year, month, day). Its 
contents represent the date on which the MCP received this message. 

The contents of data-name-5 are updated by the MCP as part of 
the execution of each RECEIVE statement. 

MESSAGE TIME Clause: This clause ((~efines data-name-6 as the name 
of an unsigned 8-digit integer data item, occupying character 
positions 55 through 62 of the record. 

Data-name-6 has the format HHl1MSSTT (hours, minutes, seconds, 
hundredths of a second). Its contents represent the time of day 
the message was received into the system by the MCP. 

The contents of data-name-£ are updated by the MCP as part of 
the execution of each RECEIVE statement. 

SYMBOLIC SOURCE Clause: This clause defines data-name-7 as the 
name of an elementary alphanumeric data item of 12 characters, 
occupying character positions 63 through 74 of the record. 

During execution of a RECEIVE statement, the MCP provides in 
data-name-7 the symbolic name of the terminal that is the(source of 
this message. (The symbolic names the MCP uses are one through 
eight characters in length; the remaining characters are set to 
SPACES.) However, if the symbolic name of the source terminal is 
not known to the MCP, the contents of data-name-7 are set to 
SPACES. 

TEXT LENGTH Clause: This clause defines data-name-8 as the name of 
an unsigned 4-digit integer data item, occupying-character 
positions 75 through 78 of the record. 

Teleprocessing (TP) 343 



The MCP indicates through the contents of data-name-8 the number 
of main storage bytes of the user's work area-¥illed-as-a result of 
~he execution of the RECEIVE statement. 

END KEY Clause: This clause defines data-name-9 as the name of a 
l-character elementary alphanumeric data-Item,-occupying character 
position 79 of the record. 

The MCP sets the contents of gata-n~~~-9, as part of the 
execution of each RECEIVE statement, according to the following 
rules: 

• When RECEIVE MESSAGE is specified, then the contents of 
data-name-9 are: 

3 if end-of-group has been detected 

2 if end-of-message has been detected 

o if less than a message has been moved into the user-specified 
area 

• When RECEIVE SEGMENT is specified, then the contents of 
data-name-9 are: 

3 if end-of-group has been detected 

2 if end-of-message has been detected 

i if end-of-segment has been detected 

o if less than a message segment has been moved into the 
user-specified area. 

• When more than one of the above conditions is satisfied 
simultaneously, the rule first satisfied in the order listed 
determines the contents of data-name-9. An End of Group is a 
logical End Of File condition-caused-Ey a user request in the 
MCP. In general, depending on the size of the work unit and 
the work area provided, End Keys ~~ be associated with a text 
length of zero. This is always the case for End Of Group, and 
may be for End Of Message when receiving a segmented message 
with the RECEIVE SEGMENT option. 

Note: The MCP never removes the End Of Transmission line 
control character. This character is translated to EBCDIC as 
X'37'~ COBOL assumes that the message is being translated and 
the user wants the X'31'removed. Therefore, the last data 
character of a message must never be X'31'. 

STATUS KEY Clause: This clause defines data-name-lO as the name of 
a 2-characte= elementary alphanumeric data-item;-occupying 
character positions 80 and 81 of the record. 

The contents of data-name-10 indicate the status condition of 
the previously executed RECEIVE or IF MESSAGE statement. The 
program should, therefore, check the STATUS KEY immediately after 
each RECEIVE operation to verify the status. The values 
data-name-10 can contain, and their meanings, are defined in Figure 
19. 

Figure 19 indicates the possible values that the STATUS KEY 
field (for both input and output CD entries) may contain at the 
completion of execution for each statement. An X on a line in a 
statement column indicates that the associated code on that line is 
possible for that statement. 

344 part V -- Special Features 



( .... 

~_/ 

o 

l/si'A'tUS KEY 'values:' (Y~rsibn: ,4} 
.\ ..... ,~,,~;: .. <.,,:, .:,w.,. ... :1-.- ",,' ',' ••• " • .;.,,, ...... ,.:;,., ••• :"'<, ~:<,.,,: :';,.: ~ ~ .. ,.:.,;,::<.~: ... .'.:: i:. < .. :.:',:,.:~~: •.. <,.,:.) 

r---------T----------------------------T-----------T--------T----------, 
I STATUS I I I I I 
I KEY I I I I I 
I Code I Meaning I RECEIVE I SEND ,IF MESSAGE I 
~---------+----------------------------+-----------+--------+----------~ 
I 00 I No error detected. I X I X 'X I 
I I Request completed. I I I I 
~-~-------+----------------------------+-----------+--------+----------~ 
I 20 I Destination unknown. I I X I I 
I I Data-name-5 gives I I , I 
I , unknown destination. I I I I 
I I Request canceled. I I I I 

~-~-------+----------------------------+-----------+--------t--------~-~ 
I 20 I 1) Queue name unknown I X I I X I 
I , (No DD card). , , I I 
, I 2) Invalid queue I , ! I 
I I structure. I I I , 
, I Request canceled. I I I I 
~---------+----------------------------+-----------+--------+----------~ I 21 ,Insufficient storage I X I X I X , 
I I available for control, I I I 

I I blocks and/or buffers. I I I I 
, I Request canceled. I I I I 
~---------+----------------------------t-----------+--------t----------~ 
I 22 I Queue name unknown.' 'X I I 
I I (No DD card.) I I I I 
I I Request canceled. I I , I 

~---------+------------------------~---t-----------+--------t----------~ 
I 29 I An input/output error I X I X 'X I 
I I has occurred. Request I I I I 

I I canceled. I I I I 
~---------+----------------------------+--~--------+--------+----------~ 
I 50 I Character count greater I I X I I 

I I than sending field. I I I I 
I I Request ignored. I I I I 

~---------+----------------------------t-----------+--------t----------~ 
I 60 I Partial segment with I I X I I 
I I either zero character I I I I 
I I count or no sending I I I I 
I I area specified. I I I I 
I I Request ignored. I I I I L _________ i ____________________________ i ___________ i ________ i __________ J 

Figure 19. STATUS KEY Field -- Possible Valu,es 

QUEUE DEPTH Clause: This clause defines data-name-11 as the name 
of an unsigned 6-digit integer data item, -occupying-character 
positions 82 through 87 of the record. 

The contents of data-name-11 indicate the number of messages 
that exist in an input queue. The MCP updates the contents of 
data-name-ll only- as part of the execution of an IF MESSAGE 
statement. 

Format 1 -- Option 2: The second option of Format 1 allows the 
programmer to specify data-name-l through data-name-l1 without the 
descriptive clauses. If any data-names are to be omitted, the word 
FILLER must be substituted for each omitted name, except that 
FILLER need not be specified for any data-name that comes after the 
last name to be referenced. 

For example, if the programmer wishes to refer to the SYMBOLIC 
QUEUE as QUEUE-IN and to the MESSAGE DATE as DATE-IN, he can write 
the input CD entry as follows: 

CD INPUT-AREA FOR INPUT 
QUEUE-IN FILLER FILLER FILLER DATE-IN. 

Teleprocessing (TP) 345 



In this case data-name-6 through data-name-ll can be omitted, 
nOr need FILLER be written in their place. 

The same input CD entry can be written as follows (in this case, 
an optional level-Ol record description entry redefining the data 
areas is also included.): 

CD INPUT-AREA FOR INPUT 
SYMBOLIC QUEUE IS QUEUE-IN 
MESSAGE DATE IS DATE-IN. 

01 INAREA-RECORD. 
05 FILLER PICTURE X(78). 
05 ENDKEY-CODE PICTURE X(l) • 

88 PARTIAL-SEGMENT VALUE "0" • 
88 END-SEGMENT VALUE nl". 
88 END-MESSAGE VALUE "2" • 
88 END-TRANSMISSION VALUE n3" • 

05 FILLER PICTURE X(8) • 

By naming the SYMBOLIC QUEUE and MESSAGE DATE fields of the CD 
the programmer can refer to these data areas within his program 
without further defining them. By redefining the END KEY data 
area, the programmer can use condition names to refer to the values 
contained in that area. 

FORMAT 2: This format is required if the CD entry is FOR OUTPUT. 
At least one output CD entry must be specified if messages are to 
be placed into an output queue. A number of output CD entries in 
the same program or in different subprograms in the same run unit 
may be used to send different portions of the same message, so that 
parts of one message may be transferred to the MCP using different 
CD entries. 

Until the transfer of a first message from the COBOL program to 
the MCP has been completed, the transfer of a second message may 
not begin. Changing the destination before indicating End Of 
Message causes unpredictable results. 

The specification of an output CD entry always results in a 
record whose implicit description is equivalent to the following: 

Equivalent COBOL Record Descrip~ion 

01 data-name-O. 
02 data-name-l PICTURE 9(4). 
02 data-name-2 PICTURE 9(4). 
02 data-name-3 PICTURE XX. 
02 data-name-4 PICTURE X. 

,02 data-name-5 PICTURE X(12) • 

Destination Count 
Text Length 
Status Key 
Error Key 
Symbolic Destination 

For each output CD entry, a record area of 23 contiguous 
Standard Data Format character positions is always generated. It 
is implicitly defined as previously illustrated. Through the use 
of the optional clauses, user data-names may be explicitly 
associated with the output CD subfields as follows: 

DESTINATION COUNT Clause: The DESTINATION COUNT clause defines 
data-name-l as the name of an unsigned 4-digit integer data item, 
occupying character'positions 1 through 4 of the record. The 
CODASYL specification for teleprocessing defines the DESTINATION 
COUNT clause as shown in Format 2. However, since COBOL allows 
only one destination, the DESTINATION COUNT clause, if specified, 
is treated as comments. 

TEXT LENGTH Clause: This clause defines data-name-2 as the name of 
an unsigned 4-digit integer data item, occupying character 
positions 5 through 8 of the record. 

346 Part V -- Special Features 

c' 



L
~r-..• :~ 

/ 

o 

As part of the execution of a SEND statement, the MCP interprets 
the contents of data-name-2 as the userls indication of the number 
of leftmost bytes of main storage of the identifier named in the 
SEND statement to be transferred (see SEND statement). 

STATUS KEY Clause: This clause defines data-name-3 as the name of 
a 2-character elementary alphanumeric data item, occupying 
character positions 9 and 10 of the record. 

The contents of data-name-3 indicate the status condition of the 
previously executed SEND state~ent. The values data-name-3 can 
contain, and their meanings, are defined in Figure 19. 

ERROR KEY Clause: This clause defines data-name-4 as the name of a 
1-character elementary alphanumeric data item;-occupying character 
position 11 of the record. 

If, during the execution of a SEND statement, the MCP determines 
that the specified destination is unknown, the MCP updates the 
contents of data-name-4. Data-name-4 will contain: 

1 if the symbolic destination contained in g~ta-n~~ is unknown 
to the MCP. 

o if the symbolic destination is known to the MCP. 

Note: The ERROR KEY field is set to III .only when the STATUS KEY 
is set to 120'~ Therefore, the programmer should not examine the 
ERROR KEY unless the STATUS KEY field is set to 120'~ 

SYMBOLIC DESTINATION Clause: This clause defines data-name-5 as 
the name of a 12-character elementary alphanumeric data item, 
occupying character positions 12 through 23 of the record. 

Data-name-5 contains a symbolic destination. The first 1 
through 8 characters of data-name-5· must be previously defined to 
the MCP. 

The following example illustrates an output CD entry, with an 
optional level-01 record description entry redefining the data 
areas: 

CD OUTPUT-AREA FOR OUTPUT 
TEXT LENGTH IS MSG-LGTH 
SYMBOLIC DESTINATION IS Q-OUT. 

01 OUTAREA-RECORD. 
05 FILLER PICTURE X(10). 
05 ERRKEY-CODE PICTURE X. 

88 KNOWN VALUE "0". 
88 UNKNOWN VALUE "1". 

05 FILLER PICTURE X(12). 

By naming the TEXT LENGTH and SYMBOLIC DESTINATION fields of the 
CD entry, the programmer can refer to those data areas within his 
program without further defining them. By redefining the ERROR KEY 
data area, the programmer can use condition-names to refer to the 
values contained in that area. 

~: When a message is being sent to a remote station, TCAM adds 
the proper End Of Transmission line control character. 

FORMAT 3: The CD entry may be pre-written and included in the 
user-created library. The entry may then be included in a COBOL 
source program by means of a COpy statement. (See "COPY Statement" 
in the chapter on the Source Program Library Facility.) 

Teleprocessing (TP) 347 



PROCEDURE DIVISION 

In the Procedure Division, there is an additional condition 
which may be used by a COBOL TP program: the message condition. 

There are two additionalinput/output statements used by a COBOL 
TP program to communicate with the MCP: the RECEIVE statement and 
the SEND statement. 

Each of these language elements is described in the sections 
that follow. 

Message Condition 

The message condition determines whether or not one or more 
complete messages exist in a designated queue of messages. The 
condition can then be specified in an IF statement. 

r------------------------------------------~---~------------------------, 
I Format I 
~--------------------------------------------------------~-------------~ I [NO~] MESSAGE FOR cd-name I L ________ ~ __________________ ~ __ ~_~ _____ ~ ___ ~ _________________ ~ ____ ~ ___ ~J 

The cd-name must specify an input CD entry. 

At the time of the test, the CD entry must contain the name of 
the SYMBOLIC QUEUE to be tested. 

A VillSSAGE condition exists only if one or more complete messages 
are present in the named queue. A NOT MESSAGE condition exists if 
there are no complete messages in the named queue. 

Execution of the message condition caUses the QUEUE DEPTH field 
of the named input CD to be updated with the number of complete 
messages present in the input queue or queue structure. Executing 
a message condition to a queue structure returns a count of the 
number of complete messages in the entire structure. Thus the 
COBOL TP program Can check a queue or queue structure for a 
predetermined message count before invoking a specific TP 
processing program. 

When using compound IF statements, care must be taken to ensure 
that the message condition is actually tested, so that the QUEUE 
DEPTH field will actually be updated. For example, suppose the 
programmer writes: 

IF A = B AND ~SSAGE FOR QUEUE-IN ••• 

then when A is not equal to B, the message condition is not tested, 
and the QUEUE DEPTH field for QUEUE-IN is not updated. To ensure 
that the message condition is tested, r.he programmer must always 
write it as the first condition tested within a multiple condition. 

When the message condition is executed, the STATUS KEY field of 
the named input CD is set as follows: 

'00' for a valid request' 

'20' invalid queue name or queue structure 

, 21' insufficient storage for system control blocks 

348 Part V -- Special Features 

c 



o 

'29' input/output error 

(See Figure 19 for a complete explanation.) 

When a ST~TUS KEY other than '00' :is returne1, the QUEUE DEPra 
field is unchanged. 

The RECEIVE statement makes available to the COBOL program a 
message, message segment, or a portion of a message or message 
segment, and pertinent information about that message data from a 
queue maintained by the M:P. 

r~~---------~---------------------------~------------------------------, I Format I 
~~---------------------------------------------------------------------~ 
I I 
I { MESS~GE } I 
IRE~~.cd-name ------- ~~~Q identifier-l I 
I §.EG~~NT I 
I I 
I [tlQDAT~ imperative-statement] I 
I I L _________________________________ ~ ___________________________ ~ _______ ~J 

The Qd-rr~must specify an input CD entry. 

Before a RECEIVE statement is executed, this input CD entry must 
contain, in its SYMBOLIC QUEUE field, a name of up to 12 
characters. The first 1 through 8 characters of this name must oe 
unique, and must matoh the DDname of the DD statement that 
specifies the queue. 

Upon execution of the RECEIVE statement, data is transferred to 
the receiving character p~sitions of i~~rr~~~~~£=~, aligned to the 
left without any SPACE fill and without any data format conversion. 
The following data items in the input CD are appropriately updated 
when the RECEIVE statement is executed: MESSAGE DATE field, 
MESS~GE TIME field, S~MBOLIC SOURCE field, TEXT LENGTH field, END 
KEY field, STATUS KEY field (see Figure 19), and if the message was 
retrieved through a queue structure, S~~BOLI~ SUB-QUEUE-l through 
S~MBOLIC SUB-QUEUE-3. 

A complete message need not be received before another MCP ~uetie 
is accessed. Thus, messages from different MCP queues may be 
processed at the same time by a COBOL program. (Note, however, 
that a message is not made available to the COBOL program until it 
is completely received by the MCP and placed in a queue.) 

A single execution of a RECEIVE statement never returns more 
than a single message (when the MESS~GE phrase is used) or a single 
segment (when the SEGMENT phrase is used), regardless of the size 
of the receiving area. 

When the MESSAGE phrase is used the end-of-segment condition, if 
present, is ignored, and the end-of-segment indicator is treated as 
a data character. (This occurs only when the user, through the 
MCP, segments the message, and the COBOL program uses MESSAGE mode 
to RECEIVE the message.) The following rules apply to the data 
transfer: 

• If a message is the same size as ~~~rr~i~~~~=~, the message is 
stored in identifier-1. 

Teleprocessing (rp) 349 



• If a message size is smaller than i~~lltifi~~=!, the message is 
aligned to the leftmost character position of identifier-i with 
no SPACE fill. 

• If a message size is larger than ~~~lltifi~~=!, the message 
fills identifier-i left to right, starting with the leftmost 
character of the nessage. The remainder of the message can be 
transferred to identifier-i with subsequent RECEIVE statements 
referencing the same ~ueue. Either the MESSA.3E or the SE3MENT 
option may be specified for the subsequent RECEIVE statements. 

When the SEGMENT phrase is used, the end-of-segment condition, 
if present (or the enj-of-message conjition, if present), 
det~rmines the end of data transfer. In this case, the 
end-of-segment indicator is not treated as a jata character, and, is 
not transferred with the data. The following rules apply to the 
data transfer: 

• If a segment is the same size as ~~~llt~fi~~=!, the segment is 
stored in identifier-i. 

• If the segment size is smaller than i~~lltifi~~=!, the segment 
is aligned to the leftmost character position of identifier-i 
with no SPACE fill. 

• If a segment size is larger than ~~~lltifi~~=!, the segment 
fills identifier-i left to right starting with the leftmost 
character position of the segment. The remainder of the 
segment can be transferred to identifier-i with subsequent 
RECEIVE statements referencing the same ~ueue. Either the 
MESSAGE or the SE3MENT option may be specified for the 
subsequent RECEIVE 'statements. 

Once the execution of a RECEIVE statement has returned a portion 
of a message, only subsequent execution of RECEIVE statements in 
that run unit can cause the remaining portions of the message to be 
returned. 

After the execution of a STOP RUN statement, or of a GOBA.CK 
statement in a main program, the disposition of the remaining 
portions of any message only partially obtained is not defined. 

When the NO DATA option is specified and the queue is empty 
(that is, there are no complete messages in the input queue), then 
control passes to the imQg£~tiyg=~t~t~ill~ll~ specified in the NO DATA. 
option. 

When the NO DATA option is not specified anj the queue is empty, 
execution of the COBOL object program is suspended (that is, placed 
in wait status) until data is made available in i~~lltifi~£=!. 

The SEND statement causes a message, a message segment, or a 
portion of a message or message segment to be released to the 
Message Control Program. 

r----------------------------------------------------------------------, 
I Format 1 I 
~----------------------------------------------------------------------~ 
I I 
I §gNQ cd-name ~RQ~ identifier-l I 
I I L ______________________________________________________________________ J 

350 Part V -- Special Features 

~, 

( 



o 

1'.·,· ... '·""''''"0·.''.:'···,.··, .. ····· ... ··,'...,· .. '',.·,.·,·".,.: ..... ",:.W ... , .. ::""" .,.,., .•.. , ... : ....... " ...••.•.... ~.,.' ... ', ..•....•. 

!~~~.~9~c:7~~~~~~.~y::t',~~~~ .: .. ~} 
r----------------------------------------------------------------------, 
I Format 2 I 
~----------------------------------------------------------------------~ 
I I 
I (WITH identifier- 2l I 
I , WITH ~§~ I 
I SEND cd-name [FROM identifier-i] l I 
I WITH ~~~ I 
I WITH ~GI I 
I I L ______________________________________________________________________ J 

Messages may be transferred to the MCP in segments, as complete 
messages, or in parts of segments or messages. However, data is 
never transmitted to the named destination until a complete message 
has been transferred to the MCP. 

The cd-name must specify an output CD entry. 

Before a SEND statement is executed, this output CD entry must 
contain: 

• in the TEXT LENGTH field, the number of leftmost bytes of 
contiguous data to be transferred to the output queue from 
identifier-i • 

• in the SYMBOLIC DESTINATION field, the symbolic identification 
of the remote station(s) that are to receive the message. (The 
first 1 through 8 characters of this field must be previously 
defined to the MCP.) 

Upon execution of the SEND statement, data is transferred from 
identifier-i to the MCP queue corresponding to the terminal 
identifier contained in the SYMBOLIC DESTINATION field. 

As part of the execution of the SEND statement, the MCP 
interprets the contents of the TEXT LENGTH field to be the user's 
indication of the number of leftmost character positions of 
identifier-l from which data is to be transferred. 

If the contents of the TEXT LENGTH field are zero, no characters 
of data are transferred from identifier-i. (A zero TEXT LENGTH 
field is valid only with the Format~-SEND statement.) 

If the contents of the TEXT LENGTH field are outside the range 
of zero through the size of identifier-l inclusive, an error is 
indicated in the STATUS KEY lield;-no-data is transferred, and the 
name in the SYMBOLIC DESTINATION field is not validated. The 
contents of the STATUS KEY field are updated by the MCP. (See 
Figure 19, STATUS KEY Field -- Possible Values.) 

If the user causes special control characters to be embedded as 
data characters within the message, these control characters are 
enqueued with the message, and it is the user's responsibility to 
ensure that these characters function as intended. 

The disposition of a portion of a message not terminated by a 
subsequent and associated EMI or EGI is undefined. (However, such 
a message portion will not be transmitted to the destination.) 

Format 2 Considerations: This format of the SEND statement allows 
the programmer to specify whether or not an end indicator is 
associated with the message. 

If the FROM identifier-l option is omitted, then an end 
indicator is associated with the data enqueued by a previous SEND 
statement. 

Teleprocessing (TP) 351 



The hierarchy of end indicators, and their meanings, is as 
follows: 

EGI End of Group Indicator -- the CODASYL specification defines 
the EGI as indicating that the group of messages to be 
transmitted is complete. However, for this implementation, 
the EGI is regarded as equivalent to the EMI. Therefore, if 
EGI is specified without a preceding EMI, the EGI is regarded 
as an EMI; if the EGI is specified after a preceding EMI, the 
EGI is treated as comments (that is, is ignored). 

EMI End of Message Indicator -- the message to be transmitted is 
complete. 

ESI End of Segment Indicator -- the segment to be transmitted is 
complete. 

An EGI need not be preceded by an EMI or ESI. An EMI need not 
be preceded by an ESI. 

Identifier-2must reference a i-character integer without an 
operational sign. The contents of identifier-2 indicate that the 
contents of identifier-l have an end indicator associated with them 
according to the following codes: 

If identifier-2 
contains: 

o 

1 

2 

3 

Then identifier-l has 
associated wit~it: 

no indicator 

ESI 

EMI 

EGI 

Which 
means: 

no indicator 

End of Segment 
Indicator' 

End of Message 
Indicator 

End of Group 
Indicator 

Any character other than 1, 2, or 3 is interpreted as o. 

If the contents of identifier-2 are other than 1, 2, or 3, and 
identifier-l is not specified, then an error is indicated in the 
STATUS KEY field of the associated CD entry, and no data is 
transferred. 

352 Part V -- Special Features 



o 

String manipulation statements allow the :OBOL programmer 
greater flexibility in data manipulation. With the STRING 
statement he can concatenate two or more sUbfields into a single 
field. With the UNSTRING statement he can separate contiguous data 
in a single field into muitiple logical subfields. rhe subfields 
need not be contiguous. 

The STRING statement ~rovides juxtaposition of the partial or 
complete contents of two or more data items into a single data 
item. 

r----------------------------------------------------------------------, 
I Format I 
~~------------~--------------------------------------------------------~ 

{

identifier-l} [identifier-~ 

literal-l literal-2 J 
I 

{
identifier-3} I 

~~~I~I!~~ BY literal-3 I 
§'I~~ I

[{. identifier-4} [identifier-Sl
literal-4 literal-S J

I
I

{

identifier-6} I
Q~~I~!~~Q BY literal-6] ••• I

§1~~ I

INTO.identifier-7 [WITH ~QI~!~R identifier-8]

[ON Q~ER~LO~ imperative-statement]

I
I
I
I
I ___________ ~ __ J

All literals must be described as nonnumeric literals. Each
lite£al may be any figurative constant without the optional word
l\LL.

All identifiers, exce~t i~~rrt~fi~E~~' must be 1escribed
implicitly or explicitly as US~GE IS DISPLAY. Ig~g~ifi~[~~ and
identifi~-6 must eacn reference a fixed length data item.

f~~n~~fier-7 must re~resent an elementary data item without
editing symbols. If a SEPAR~TE SIGN clause is specified, it is
ignored during execution of the STRING statement.

!~~~~ifier-8 must re~rese~t an elementary numeric integer data
item of sufficient size to contain a value equal to tne size ~lus 1
of the area referenced by i~~~~!f!~[~r.

String Manipulation 353

I~~ntif~~r-1, !~~~~~~=!, ~g~~~~f~~~=£, ana !~~~~al=~ represent
the sending items. !~~~~~f~~£=I represents the receiving item.

Literal-3 and identifier-3 indicate the character(s) aelimiting
the-move~-if the-siZE-phrase is used, the complete data item
aefined by ~~e~~~f~~~=l, ~~t~~~~=!, ~~~gt~f~~~=£, !~~~f~!=£ is
moved.

When a figurative constant is specified as !~t~ra!-l, !~~~£~!=£,
it refers to an implicit one-character data item whose US~GE IS
DISPL~Y •.

When the STRING statement is eKecuted, the transfer of data is
governed by the following rules:

• Those characters from the sending item(s) are transferre~ to
the receiving item in accordance with the rules for alphanumeric
to alphanumeric moves, except that no SP~CE filling is
provided. (See the MOVE statement in "Proce~ure Division".)

• If the DELIMITED phrase is specified without the SIZE option,
the contents of each sending item are transferred to the
receiving data item in the sequence specified in the SrRING
statement, beginning with the leftmost character of the first
sending item, and continuing from left to right through each
successive senaing item until either:

1. the delimiting character(s) (!~~~~~!=~L~~~g~~f~~f=~, or
li~gra!=£L~g~~~~f~~f=£) for this sen~ing item are reached,
or

2. the rightmost character of this sending item has been
transferred.

rhe delimiting character(s) are not transferred into the
receiving data item. When the rece1v1ng field is filled, or
when all of the DELIMITED ~ata in all of the sending fields has
been transferred the operation is ended.

• If the DELIMITED phrase is specifiea with the SIZE option, the
entire contents of each senaing'item are transferred, in the
sequence specifie~ in the STRING statement, to the receiving
data item. The operation is ended either when all data has
been transferred or when the receiving field is filled.

The POINTER option may be used eKplicitly by the programmer to
~esignate where data is to be placed in the receiving area. If the
POINTER option is specified, i~~g~if~g~=~ is eKplicitly available
to the user, and he is responsible for setting its initial value.
The initial value must not be less than one an~ must not eKceed the
number of character positions of the receiving item. (Note that
the POINTER item must be defined as of sufficient size to contain a
value equal to the size of the receiving item plus one. rhis
precludes the possibility of arithmetic overflow when the system
updates the pointer. The following rule applies:

• conceptually, when the STRING statement is eKecuted, the
following actions occur. Characters are transferred into the
receiving item one at a time, beginning at the character
position indicated by the POINTER value. ~ftereach character
is positioned, the value of the POINTER item (~~~g~~f~~£=~) is
increased by one. The value associated with the POINrER item
is changed only in this manner. ~t the termination of any
STRING operation, the value in the POINTER item always points
to one character beyond the last character moved into the
recei ving item.

354 Part V -- Special Features

o

STRING'State~ent(Versiori 4),
,'", "'~;"";"""" .""", ,.~" "" ~*',."::..,¥->\~"t:,,~-.. ,.,.~>.,, ,~,.·x " .. >"' • ," •• >

~Qtg: The POINTER value may therefore be used in a subse~uent
STRING statement to place ad3itional characters immediately to
the right of those ~lready place3 in the receivin~ item.

If the POINTER option ~s not specified, the STRING statement
acts as if the user had sp~cified a pointer with an initial v~lue
of one. When the statenent is executed, the implicit pointer is
incremented as described above. The implicit pointer is not
available to the programmer.

At the end of execution of a STRING statement, only that p~rtion
of the receiving item that was referenced during the execution of
the STRING statement is changed. All other portions of the
receiving item cont~in data that was present before this execution
of the STRING statement.

If at any time durin~ ~r after initialization of the SrRING
statement, but before execution of the STRING statement is
completed, the value associated with the POINTER item is less than
one, or exceeds the nunber of character positions in the receivinq
item, no (further) data is transferred, and, if specified, the
imEg!ative~t~tg~gQt in the ON OVERFLOW option is executed.

If the ON OVERFLOW option is not specified and the conditions
3escribed above are encountered, control passes to the next
statement as written.

Examelg: The followin~ example illustrates some of the
considerations that apply to the STRING statement.

In the Data Division, the programmer has defined the f~llowing
fields:

77 RPT-LINE PICTURE X(120).
77 LINE-POS PICTURE 99.
77 LINE-NO PICTURE 9(5) VALUE 1.
77 DEC-POINT PICTURE X Value ".".

In the File Section he has defined the following input record:

01 RCD-Ol.
05 CUST-INFO.

10 CUST-NAME
10 CUST-ADDR

05 BILL-INFO.
10 INV-NO
10 INV-AMT
10 AMT-PAID
10 DATE-PAID
10 BAL-,DUE
10 DATE-DUE

PICTURE X(lS)
PICTURE X(35)

PICTURE X(6).
PICTURE $$,$$$.99.
PICTURE $$,$$$.99.
PICTURE X(S).
PICTURE $$,$$$.99.
PICTURE X(S).

The programmer wishes to construct an output line consisting of
portions of the information from RCD-Ol. The line is to consist of
a line number, customer name and ad3ress, invoice number, next
billing date, and balance due, truncate3 to the dollar figure
shown.

The record as read in contains the following information:

J.B.bSMITHbbbbb
444bSPRINGbSr.,bCHICAGO,bILL.bbbbbb
A1472S
$4,736.85
$2,400.00
09/22/71
$2,336.S5
10/22/71

String Manipulation 355

Irtthe Procedure Division, the programmer initializes RPr-LiNE
to SPACES, and sets LINE-POS (which is to be use~ as the POINrER
fi~lj)to 4. Then he issues this STRING statement:

STRING LINE-NO SPACE CUST-INFO INV-NO SPACE DATE-DUE SPACE
DELIMITED BY SIZE BAL-DUE DELIMITED BY DEC-POINT INTO
RPT-.LINE WITH POINTER LINE-POS.

When the statement is executed, the following actions take
place:

1. The field LINE-NO is moved into positions 4 through 8 of
, RPT--LINE.

2. A space is move~ into position 9.

3. The group item CUST-INFO is movej into positions 10 through
59.

4. INV~NO is move~ into positions 60 through 65.

5. A spac~ is moved into position 66.

~. DATE~DUE is move1 into positions 67-74.

'7~ A space is moved into position 75.

B.rhe portiOn of BAL-DUE that precedes the decimal point is
moved into positions 76 through 81.

At the en1 of execution of the STRING statement, RPT-LINE
appears as follows:

column

4
I
I
V

J.B. SMITH

25
I
I
V

60
I
I
V

444 SPRING ST" CHICAGO, ILL.fJ,A14725 10/22/71 $2,336

356 Part V ~- Special Features

,'~,

1'-.,

u

o

.--
I

The UNSTRING statement causes contiguous data in a sending field
to be ,separated and placed into multiple receiving fields.

-----------------,
Fermat

r-------,-----------
t ,

I
I M]ST]ING identifier-1

I
I
I
I
J

I
I
I
, rD~1~11~] BY [!111
J

{

identifier-2} {identifier-3}

[OR [!11]
literal-1 literal-2

] ...]
I
J llIQ identifier-4 r~ELIMITER IN identifier-51
I
I
J
1
I
I
a
I
I
1
i

(COUN! IN identifier-6]

[identifier-7 rDF.1IMII~R IN identifier-8]

[fOUN! IN identifier-9]] •••

[WITH RQ!N1~] identifier-101 r1ALLYI]~ IN identiiier-11]

[ON Q1ERFLOW imperative-statement]
J ______ .J

Each literal must be described as a nonnumeric literal. In
addition;-each-literal may be any fiqurative constant except the
fiqurative constant ALL literal. (That is, the form ALL ALL
!i!~£.91 may no t be spec ii'i~d:-)-

Iggntifie£=!, i~g~!ifig~=l, igg~Si!!g£=1, 199B~i!igf=~' and
id~n!ifie~~ must each be described, implicitly or explicitly, as
an alphanumeric data item.

!g~tifie~=~ and igentifig£-7 must each be described, implicitly
or explicitly, as USAGE DISPLAY. Each may be described as
alphabetic, alphanumeric, or Dume~ic (without the symbol P in,the
PICTURE character string). Identifier-4 and identifier-7 cannot be
edited items.

Iggntifier-6, igen!ifier=2, igg!l!:l,!.~g£=l.Q, and l,ggn!jfi~=!l
must be described as elementary numeric integer data items.

No identifig£ may name a level-8S entry.

The DELIMITER IN option and the COUNT IN option may be specified
only if the DELIMITED BY option is specified.

All references to .iQ~!ifie,!;::'£4 lite,!;s.!=l, idg!!.tifi~f:=~,
if!~.!!!ifig~=.2, and iQg!!1ifi~=.§ apply equally to iQ~ntifig!:-3,
li!gn!=2, ig,,ggtiiier-7, i.9,g~~if!~£=f!, and id~!!i!fieE=2,
respectively, and all repetitions thereof.

I£~i!ii~~-1 represents the sending area.

l£~!if!g~=~ repre~eDts the data receiving area. I~ent!fi~-5
represents the receivinq area for delimiters.

biter~l=l or identifie~=~ specifies a delimiter. No more than
15 delimiters may be specified.

Id~~!!fi~~=~ repre~ents the count of the number of characters
within the sendinq area isolated by the delimiters for the move

String Manipulation 351

into the current receiving area. This value does not include the
count of the delimiter character(s).

!gentifier-1Q contains a value that indicates a relative
character position within the sending area.

Identifier-11 is a counter that records the number of receiving
areas-acted-upon during the execution of the UNSTRI~G statement.

When the ALL option is specified r two or more contiguous
occurrences of li!~ral-l or of ide~!ifl~£=~ are treated as if they
vere anI y one occurrence. However r !den.i!!ier-5 (the recei ving
area for delimiters) contains as many complete occurrences of the
delimiter as are present or as it can hold r whichever is smaller.

When ALL is specified r and two or more delimiters are found r as
much of the first occurrence of the delimiter as will fit is moved
into identifier-5. Each additional occurrence of the delimiter is
moved-into-Identifier-5 only if tht:! complete occurrence will fit.

When ALL is not specified, and the examination encounters two
contiquous occurrences of li~~~!=l or !g~niii!g~=l, the current
receiving area for data is either space-filled or zero-filled,
accordinq to the description of the receiving area.

Lite~~l=j or i~~ntifie£=~ may contain any characters in the
EBCDIC character set.

Each li1,g!:i!.!=1 or id.§n.:tifie.!:=~ represents one delimiter. When a
delimiter con taius two or more characters, all of the characters
must be present in contiguous positions in the sending field, and
in the sequence specified, to be recognized as that delimiter.
When a figurative constant is used as a delimiter, it stands for a
single character nonnumeric literal.

When two or more delimiters are specified in the DELIMITED BY
option, an OR condition exists. Each non-overlapping occurrence of
anyone of them is considered a delimiter, and is applied to the
sendinq field in the sequence specified in the UNSTRING statement.
For example, if DELIMITED BY AB OR BC is specified r then an
occurrence of either AB o~ BC in the sending field is considered a
delimiter; an occurrence of ABC is considered an occurrence of AB.

When the UNSTRING statement is initiated, the current receiving
area is identifier-4. Data is transferred from identifier-1 to
ig~!l.j:ifigI'=~-according to the following rules: -----------

• If the POINTER option is specified the string of characters in
the sending area is examined beginning with .the relative
character position indicated by the contents of the POINTER
item. If the POINTER option is not specified, the character
string is examined beginning with the leftmost character
position.

• If the DELIMITED BY option is specified, the examination
proceeds left to right until a delimiter specified by either
literal-1 or the value in identifier-2 is encountered. If the
end-at-the sending item is-encountered before the delimiting
condition is met r the examination terminates with the last
character examined.

• If the DELIMITED BY option is not specified, the number of
characters examined is equal to the size of the current

358 Part V -- Special Features

(-----\

U

o

receiving area. The size of the receiving area depends on its
data category:

1. If it is alphanumeric or alphabetic, its size is equal to
the size of the current receiving area.

2. If it is numeric, then its size is equal to the integer
portion of the current receiving field.

3. If it is described with the SEPARATE SIGN clause, the
characters examined are one fewer than the size of the
current receiving area.

4. If it is described as a variable-length data item, the
number of characters examined is determined by the current
size of the receiving area.

• The characters thus examined (excluding the delimiting
character(s), if any) are treated as an elementary alphanumeric
data item, and are moved into the current receiving area
according to the rules for an alphanumeric move. <See the MOVE
statement in the Procedure Division chapter.) Note that if two
delimiters are adjacent, that is, with no data characters
between them, the null receiving field is filled with zeroes or
spaces, depending on its description.

• If the DELIMITER IN option is specified, the delimiting
character(s) are treated as an elementary alphanumeric data
item and are moved into identifier-5 according to the rules for
an elementary move. If the delimiting condition is the end of
the sending area, then identifier-5 (the DELIMITER) is
space-filled or zero-filled according to its PICTURE character
string.

• If the COUNT IN option is specified, a value equal to the
number of characters thus examined (excluding the delimiter
character(s), if any) is moved into identifier-6 according to
the rules for an elementary move.

• If the DELIMITED BY option is specified the string of
characters is further examined beginning with the first
character to the right of the delimiter. If the DELIMITED BY
option is not specified the string of characters is further
examined beginning with the character to the right of the last
character transferred.

• After data is transferred to identifier-4, the current
receiving area becomes identifier-7. The procedure described
is then repeated either-until-all~he characters in the sending
area have been transferred, or until there are no more unfilled
receiving areas.

The initialization of the data items associated with the POINTER
phrase or the TALLYING phrase is the responsibility of the user.

The contents of the data item referenced by identifier-i0 (the
POINTER item) behave as if incremented by one for each character
examined in the sending area. When the execution of an UNSTRING
statement with a POINTER option is completed, the contents of
identifier-i0 contain a value equal to the initial value plus the
number of characters examined in the sending area.

When the execution of an UNSTRING statement with the TALLYING
option is completed, the contents of identifier-ii contain a value
equal to the initial value plus the number of data receiving areas
acted upon (including null fields).

String Manipulation 359

Either of the following situations causes an overflow condition:

• An UNSTRING statement is initiated, and the value in the
POINTER item (identifier-10) is less than one or greater than
the size of the sending area.

• If, during the execution of an UNSTRING statement, all
receiving areas have been acted upon, and the sending area
still contains characters that have not been examined.

When an overflow condition exists, the UNSTRING operation is
terminated. If an ON OVERFLOW option has been specified, the
imperative-statement included in the ON OVERFLOW option is
executed. If the ON OVERFLOW option is not specified, control
passes to the next statement as written.

Example: The following example illustrates some of the
considerations that apply to the UNSTRING statement.

In the Data Division, the programmer has defined the following
input record to be acted upon by the UNSTRING statement:

01 INV-RCD.
05 CONTROL-CHARS PIC xx.
05 ITEM-IDENT PIC X (20) •
05 FILLER PIC x.
05 INV-CODE PIC X(10).
05 FILLER PIC X.
05 NO-UNITS PIC 9(6).
05 FILLER PIC x.
05 PRICE-PER-M PIC 99999.
05 FILLER PIC X.
05 RTL-AMT PIC 9(6).99.

The next two records are defined as receiving fields for the
UNSTRING statement. DISPLAY-REC is to be used for printed output.
WORK-REC is to be used for further internal processing.

01 DISPLAY-REC.
05 INV-NO PIC X(6).
05 FILLER PIC X VALUE SPACE.
05 ITEM-NAIv".tE PIC X(20).
05 FILLER PIC X VALUE SPACE.
05 DISPLAY-DOLS PIC 9(6).

360 Part V -- Special Features

c

L

C
-- ..

)

o

01

lUi4STRiN(f State~ent. ,(v$rsIon:1f);
L ·,·.,;· .. , ;:.··.·:.;,v: .. ,,:·:.·>:,:~·,·, '.":.,~,: .. :.:,:.;~ ~,<.<\,:;,.~:.! ... :., ', .. :. ,.", :,:.;.' .. ~

WORK-REC.
05 M-UNITS
05 FIELD-A
05 WK-PRICE REDEFINES FIELD-A
05 INV-CLASS

PIC 9 (6).
PIC 9 (6) •

PIC 9999V99.
PIC X(3).

He has also defined the following fields for use as control
fields in the UNSTRING statement:

77 DBY-1 PIC x.
77 CTR-1 PIC 99.
77 CTR-2 PIC 99.
77 CTR-3 PIC 99.
77 CTR-4 PIC 99.
77 DLTR-1 PIC X.
77 DLTR-2 PIC x.
77 CHAR-CT PIC 99.
77 FLDS-FILLED PIC 99.

In the Procedure Division, the programmer writes the following
UNSTRING statement to move subfields of INV-RCD to the subfields of
DISPLAY-REC and WORK-REC:

UNSTRING INV-RCD DELIMITED BY ALL SPACES OR "I" OR DBY-1
INTO ITEM-NAME COUNT IN CTR-1

INV-NO DELIMITER IN DLTR-1 COUNT IN CTR-2
INV-CLASS
M-UNITS COUNT IN CTR-3
FIELD-A
DISPLAY-DOLS DELIMITER IN DLTR-2 COUNT IN CTR-4
POINTER IN CHAR-CT
TALLYING IN FLDS-FILLED
ON OVERFLOW GO TO UNSTRING-COY~LETE.

Before the UNSTRING statement is issued, the programmer places
the value 3 in CHAR-CT (the POINTER item), since he does not wish
to work with the two control characters at the beginning of .
INV-RCD. In DBY-l he places a period (.) for use as a delimiter,
and in FLDS-FILLED (the TALLYING item) he places the value 0
(zero). The following data is then read into INV-RCD:

Column:
1
I
I
V

10
I
I
V

ZYFOUR-PEN~Y-NAI~S

20
I
I
V

30
I
I
V

40
I
I
V

50
I
I
V

707890/BBA 475120 00122 000379.50

When the UNSTRING statement is executed, the following actions
take place:

1. Positions 3 through 18 (FOUR-PENNY-NAILS) of INV-RCD are
placed in ITEM-NAME, left-justified within the area, and the
unused character positions are padded with spaces. The value
16 is placed in CTR-1.

2. Since ALL SPACES is specifed as a delimiter, the 5 contiguous
SPACE characters are considered to be one occurrence of the
delimiter.

String Manipulation 361

3. Positions 24 through 29 (707890) are placed in INV-NO. The
delimiter character / is placed in DLTR-1, and the value 6 is
placed in CTR-2.

4. Positions 31 through 33 are placed in INV-CLASS. The
delimiter is a SPACE, but since no field has been defined as a
receiving area for delimiters, the SPACE is merely bypassed.

5. Positions 35 through 40 (475120) are examined, and are placed
in M-UNITS. The delimiter is a SPACE, but since no receiving
field has been defined as a receiving area for delimiters, the
SPACE is bypassed. The value 6 is placed in CTR-3.

6. Positions 42 through 46 (00122) are placed in FIELD-A, and
right-justified within the area. The h"igh-order digit
position is filled with a 0 (zero). The delimiter is a SPACE,
but since no field has been defined as a receiving area for
delimiters, the SPACE is bypassed.

7. Positions 48 through 53 (000379) are placed in DISPLAY-DOLS.
The period (.) delimiter character is placed in DLTR-2, and
the value 6 is placed in CTR-4. .

8. Since all receiving fields have been acted upon and two
characters of data in INV-RCD have not been examined, the ON
OVERFLOW exit is taken, and execution of the UNSTRING
statement is completed.

At the end of execution of the UNSTRING statement, DISPLAY-REC
contains the following data:

707980 FOUR-PENNY-NAILS 000379

WORK-REC contains the following data

475120000122BBA

CHAR-CT (the POINTER field) contains the value 55, and FLDS-FILLED
(the TALLYING field) contains the value 6.

362 Part V -- Special Features

c

L.
• ~PPENDIXES

~: Intermediate Results

B: Sample Programs

=: IBM ~merican National Standard COBOL Formats and Reserved Words

0: File-Processing Techniques and hpplicable Statements and ~lauses

E: ~SCII Considerations (Version 3 and Version 4)

F: SYMBOLIC DEBUGGING (Version 4)

(\

~/'
G: 3505/3525 Processing (Version 4)

• IBM American National Standard COBOL Glossary

c
Supplementary Material 363

c

L
/---"')

,/

o

This appendix discusses the conceptual compiler algorithms for
determining the number of integer and decimal places reserved for
intermediate results. The f~llowing abbreviations are used:

!- -- number of integer places carried for an intermediate result.

g- -- number of decimal places carried for an intermediate result.

maximum numqJ~)::" .. ~.~ .•.. ,~~.s .. ;ma]~ .. glaces, de~ ined f or any operand
(except forlflOrl:1:i:*gT'pp;nt.op~r~nd?, exponents, or divisors)
a particular"st:at'eitierH:':"'';''·''·''''''''''···'···'

op1 first operand in a generated arithmetic statement.

op2 -- second operand in a generated arithmetic statement.

in

d1,d2:-- number of decimal places defined for opl or op2, respectively.

intermediate result field obtained from the execution of a
generated arithmetic statement or operation. !~1, ~~~, etc.,
represent successive intermediate results. These intermediate
results are generated either in registers or in storage
locations. successive intermediate results may have the same
location.

In the case of an arithmetic statement containing only a single pair
of operands, no intermediate results are generated, except when the
TRONC option is specified for COMPUTATIONAL items. Intermediate results
are possible in the following cases:

1. In an ADD or SUBTRACT statement containing multiple operands
immediately following the verb.

2. In a COMPUTE statement specifying a series of arithmetic
operations.

3. In arithmetic expressions contained in IF or PERFORM statements.

In such cases, the compiler treats the statement as a succession of
operations. For example, the following statement:

COMPUTE Y = A + B * C - D / E + F ** 3

is replaced by

**F
MULTIPLY B
DIVIDE E
ADD A
SUBTRACT ir3
ADD ir5

BY G
BY C
INTO D
TO ir2
FROM ir4
TO irl

yielding irl
yielding ir2
yielding ir3
yielding ir4
yieldinCJ ir5
yielding Y

Appendix A: Intermediate Results 365

rhe number of integer places an i£ is calculated as follows:

• rhe compiler first determines the maKimum value that the i£ can
contain by performing the statement in which the !£ occurs.

1. If an operand in this statement is a data-name, the value used
for the data-name is equal to the numerical value of the
PICTURE for data-nane (e.g., PICTURE 9V99 has the value 9.99).

2. If an operand is a literal, the literal's actual value is used.

3. If an operand is an intermediate result, the value determined
for the intermediate result in a previous arithmetic operation
is used.

4. If the operation is division:

a. If op2 is a data-name, the value used for op2 is the
minumum nonzero value of the digit in the PIcrURE for the
data-name (e.g., PICTURE 9V99 has the value 0.01).

b. If op2 is an intermediate result, the intermediate result
is treated as though it had a PICTURE, and the minimum
nonzero value of the digits in this PIcrURE is used.

• When the maximum value of the if is determined by the above
procedures, i is set equal to the number of inte~ers in the maKimum
value.

• The number of decimal places contained in an ~£ is calculated as:

Q~£~~~Qn-
+ or -

*
/

**

Decimal Places
dl-or-d2~-whrchever is greater
dl + d2
dl - d2 or dmax, whichever is greater
drnax if op2 is nonintegral or a data-nane;

dl * op2 if op2 is an integral literal

Note that the number of decimal places contained in an ir is
increased by one if ROUNDED is specified.

Note: It is the user's responsibility to ensure that he defines the
operands of any arithmetic statement with enough decimal places to give
the desired accuracy in the final result.

366 Supplementary Material

r
\

c

o

rable 27 indicates the action of the compiler when handling
intermediate results.

Table 27. Compiler Action on Intermediate Results
r--------T---------T-------------T-------------------------------------,
I Value I V3.lue I Value I I

I of I of I of I I

I i + j I d I i + dm3.x I ~ction raken I

~--------t---------+-------------+-------------------------------------~
I <30 I Any I ~ny value I i inte~er and ~ decimal places I

~--------~ value I I are carried for ir I
I =30 I I I I

~--------+---------+-------------t-------------------------------------~
I >30 I <dmax I Any value I 30 - ~ integer and ~ decimal I

I ~---------~ I places are carried for ir I
I I =dmax I I I

I ~---------+-------------t-------------------------------------~
I I >dmax I <30 I i inte~er and 30 - i decimal placesl
I I ~-------------~ are carried for ir I
I I I =30 I I

I I ~-------------t-------------------------------------~
I I I >30 I 30 - d~ax integer and dmax decimal I
I I I I places are carried for ir I L ________ ~ _________ ~ _____________ ~ _____________________________________ J

Appendix A: Intermediate Results 366.1

c

u

rhe three programs in this appendi~ illustrate several ~ethDds of
a9ce9Sing ~ass $torage files. rhe progra~s are:

+, ~RE~TION OF A DIReCr FILE

2.

Appenjix B: Sample Programs 367

This program creates a file with direct organization through the use
of an ACTUAL KEY. The ACTUAL KEY consists of a relative track address
and a unique record identifier. In the program, a field in the input
record (CD-ITEM-CODE) is converted to a track address (TRACK-ID) through
the use of a simple remainder randomizing technique. This technique
consists of dividing the value in the field of the input record
(2D-ITEM-CODE) by 19, and using the resulting remainder (TRACK-ID) as
the relative track address.

IDENTIFICATION DIVISION.
PROGRAM-ID. CREATEDF.
REMARKS. ILLUSTRATE CREATION OF A DIRECT FILE.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-360-H50.
OBJECT-COMPUTER. IBM-360-H50.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT DA-FILE ASSIGN TO DA-2311-D-MASTER
ACCESS IS RANDOM
ACTUAL KEY IS FILEKEY.

SELECT CARD-FILE ASSIGN TO UR-1442R-S-INFILE
RESERVE 3 ALTERNATE AREAS.

DATA DIVISION.
FILE SECTION.
FD DA-FILE

DATA RECORD IS DISK
LABEL RECORDS ARE STANDARD.

01 DISK.
05 DISK-ITEM-CODE PICTURE
05 DISK-ITEM-NAME PICTURE
05 DISK-STOCK-ON-HAND PICTURE
05 DISK-UNIT-PRICE
05 DISK-STOCK-VALUE
05 DISK-ORDER-POINT

PICTURE
PICTURE
PICTURE

X(3).
X(29).
S9(6)
S999V99
S9(9)V99
S9(3)

USAGE 20MP SYNC.
USAGE COMP SYNC.
USAGE COMP SYNC.
USAGE COMP SYNC.

FD CARD-FILE
LABEL RECORDS ARE OMITTED
DATA RECORD IS CARDS.

01 CARDS.
05 CD-ITEM-CODE
05 CD-ITEM-NAME
05 CD-STOCK-ON-HAND
05 CD-UNIT-PRICE
05 CD-STOCK-VALUE
05 CD-ORDER-POINT
05 FILLER

WORKING-STORAGE SECTION.
77 SAVE
77 QUOTIENT
77 PRODUCT
01 FILEKEY.

05 TRACK-ID
05 RECORD-ID

PR02EDURE DIVISION.
BE3IN.

OPEN INPUT CARD-FILE.
OPEN OUTPUT DA-FILE.

368 Supplementary Material

PICTURE
PICTURE
PICTURE
PICTURE
PICTURE
PICTURE
PICTURE

PICTURE
PICTURE
PICTURE

PICTURE
PICTURE

X(3).
X(29).
S9(6).
S999V99.
S9(9)V99.
S9 (3) •
X(23).

S9(5) USAGE COMP SYNC RIGHT.
S9(4) USAGE COMP SYNC RIGHT.
S9(4) USAGE COMP SYNC RIGHT.

S9(5) USAGE COMP SYNC RIGHT.
X(29) •

(~

C··."
-.,/~

o

Pl\Rl\-l.

WR.

REl\D C~RD-FILE AT END 30 TO END-JOB.
MOVE CD-ITEM-CODE TO Sl\VE.
DIVIDE 19 INTO SAVE GIVING QUOTIENT

REM~INDER TR~CK-ID.
MOVE CD-ITEM-NAME TO RECORD-ID.
MOVE CD-ITEM-CODE TO DISK-ITEM-CODE.
MOVE CD-ITEM-NAME TO DISK-ITEM-N~ME.
MOVE CD-STOCK-ON-Hl\ND TO DISK-STOCK-ON-Hl\ND.
MOVE CD-UNIT-PRICE TO DISK-UNIT-PRICE.
MOVE :D-SrOCK-VALUE TO DISK-STOCK-VALUE.
MOVE CD-ORDER-POINT TO DISK-ORDER-POINT.

WRITE DISK INVALID K~Y GO TO ERROR-ROUTINE.
GO TO P~Rl\-l.

END-JOB.
CLOSE C~RD-FILE DA-FILE.
DISPLl\Y "END OF JOB".
STOP RUN.

ERROR-ROUTINE.
DISPLl\Y "UNABLE TO WRITE RECORD".
DISPLAY TRACK-ID.
GO TO P~Rl\-l.

~ppendix B: Sample Programs 369

This program creates an indexed file. These recprds are p~esented in
ascending sequence by RECORD KEY. The pperating system builds the
index,' prime, and overflow a~eas.

IDENTIFICATION DIVISION.
PR~GRAM-ID. CREATEIS.
REMARKS. ILLUSTRATE CREATION OF INDEXED SE~UE~TIAL FILE.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
S~URCE-COMPUTErt. IBM-360-HSO.
OBJECT-COMPUTER. IBM-360-HSO.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT IS-FILE ASSIGN TO D~-2311-I-M~STER
RESERVE NO ALTERNATE AREAS
ACCESS IS SEQUENTIAL
RECORD KEY IS REC-ID.

SELECT CARD-FILE ASsIGN TO UR-1442R-S-INFILE
RESERVE 10 ALTERNATE AREAS.

DATA DIVISION.
FILE SECTION.
FD IS-FILE

BLOCK CONTAINS 5 RECORDS
RE:ORDING MODE IS F
LABEL RECORDS ARE STANDARD
DATA RECORD IS DISK.

01 DISK.
05 DELETE-CODE
05 REC-ID
OS DISK-FLD1
OS DISK-NAME
OS DISK-BAL
OS FILLER

PICTURE
PICTURE
PICTURE
PICTURE
PICTURE
PICTURE

x.
9 (10) •
X(10).
X(20).
99999V99.
X(S2).

FD CARD-FILE
RE:ORDING MODE IS F
LABEL RECORDS ARE OMITTED
DATA RECORD IS CARDS.

01 CARDS.
OS KEY-IO
05 CD-NAME
05 CD-BAL
05 FILLER

PICTURE 9(10).
PICTURE X(20).
PICTURE 99999V99.
PICTURE X(43).

PR~CEDURE DIVISION.
BEGIN.

OPEN I~PUT CARD-FILE.
OPEN OUTPUT IS-FILE.

PA-RA-1.

ERR.

READ CARD-FILE AT END 30 TO END-JOB.
MOVE KEY-IO TO REC-ID.
MOVE LOW-VALUE TO DELETE-CODE.
MOVE CD-NAME TO DISK-NAME.
MOVE CD-BAL TO DISK-BAL~
WRITE DISK INVALID KEY GO TO ERR.
GO TO PARA-1.

DISPLAY "DUPLICATE OR SEQ-ERR~ UPON CONSOLE~
DISPLAY KEY-ID UPON CONS~LE.
GO TO PARA-1.

END-JOB.
CLOSE CARD-FILE IS-FILE.
DISPLAY "END ~F JOB" UPON :ONSOLE.
STOP RUN.

370 Supplementary ~aterial

c

This program randomly updates an eKisting indeKej file~ The RE~D
IS-FILE statement causes a search of indeKes for an equal compare
between the NOMIN~L KEY obtained from the input recorj and the RE:ORD
KEY of the I-O file. If an equal compare ocqurs, the ~ecord is upjated,
and the details of this update are printed. If a matching record is not
found, the invalij key branch is taken.

IDENTIFICArION DIVISION.
PROGR~~~ID. RANDOMIS.
REMARKS~ ILLUSTRArE RANDOM RErRIEV~L FRO~ IS-FILE.
ENVIRONMENT DIVISION.
CONFIGURATION SEcrION.
SOURCE-COMPUTER. IBM-360-H50.
OBJECr~COMPUTER. IBM-360-H50.
INPUT-OUTPUT SECTION.
FILE-CONrROL.

SELECr IS-FILE ASSIGN TO D~-2311-I-M~STER
ACCESS IS RANDOM
NOMINAL KEY IS KEY-ID
RECORD KEY IS REC-ID.

SELECT CARD-FILE ASSIGN TO UR-1442R-S-INFILE
RESERVE 10 ALTERNATE A~EAS.

SELECT PRINT-FILE ASSIGN TO UT-2400-S~PROUT
RESERVE NO ALrERNATE AREAS.

I-O-CONTROL.
RERUN ON UT-2400-S-CKPT EVERY 10000 RECORDS OF IS-FILE.

DArA DIVISION.
FILE SECTION.
FO IS-FILE

BLOCK CONrAINS 5 RECORDS
RECORD CONTAINS 100 CH~R~CTERS
LABEL RECORDS ARE STANDARD
RECORDING MODE IS F
DArA RECORD IS DISK.

01 DISK.
05 DELETE-CODE
05 REC-ID
05 DISK-FLO!
05 DISK-NAME
05 DISK-BAL
05 FILLER

FD C~RD-FILE
RECORDING MODE IS F

PICTURE
PICTURE
PICrURE
PICTURE
PICrURE
PICTURE

X.
9(10).
X(10).
X(20) •
99999v99.
X(52).

LABEL RECORDS ARE OMIrrED
DATA RECORD IS CARDS.

01 CARDS.
05 KEY-IDA
05 CD-NAME
05 CD-AMT
05 FILLER

FD PRINT-FILE
RE:ORDING MODE IS F

PICTURE 9(10).
PICTURE X(20).
PICTURE 99999V99.
PICTURE X(43).

LABEL RECORDS ARE STAND~RD
D~TA RECORD IS PRINTER.

Appendix B: Sample Programs 371

01 PRINTER.
05 FORMSC PICTURE X.
OS PRINT-ID PICTURE X(10) •
05 FILLER PICTURE X(10).
05 PRINT-NAME PICrURE X(20) •
05 FILLER PICTURE X(10).
05 PRINT-BAL PICrURE $ZZZ,999.99-.
05 FILLER PICTURE X(10).
05 PRINT-AMr PICTURE $ZZZ,ZZZ.99-.
05 FILLER PICTURE X(10).
05 PRINT-NEW-BAL PICTURE $ZZZ,ZZZ.99-.

WORKING-SrORAGE SECTION.
77 KEY-ID PIcrURE 9(10).
PROCEDURE DIVISION.
BE3IN.

OPEN INPUT CARD-FILE.
OPEN OUTPUT PRINT-FILE.
OPEN 1-0 IS-FILE.

Pf\.RA-1.
MOVE SPACES TO PRINrER.
READ CARD-FILE AT END 30 TO END-JOB.
MOVE KEY-IDA ro KEY-ID.
READ IS-FILE INVALID KEY GO TO NO-RECORD.
MOVE REC-ID ro PRINT-ID.
MOVE DISK-NAME TO PRINT-NAME.
MOVE DISK-BAL TO PRINr-BAL.
MOVE CD-AMT TO PRINT-AMT.
ADD CD-AMT TO DISK-BAL.
MOVE DISK-BAL TO PRINT-NEW-BAL.
REVlRlrE DISK.
WRITE PRINTER AFTER POSlrIONING 2 LINES.
GO TO PARA-1.

NO-RECORD.
DISPLAY 'NO RECORD FOUND' :UPON CONSOLE.
DISPLAY KEY-ID UPON CONSOLE.
GO TO PARA-1.

END-JOB.
CLOSE CARD-FILE PRINr-FILE IS-FILE.
DISPLAY 'END OF JOB' UPON CONSOLE.
srop RUN.

372 Supplementary Material

/' "-

l"

(
/'

\

"'----/

o

APPENDIX C: AMERICAN NATIONAL STANDARD COBOL FORMAT SU~RY AND RESERVED WORDS
The Formats and Reserved Words in this appendix have been printed in a specially reduced size with pages numbered in
sequence to make up a pocket-sized reference booklet for use when coding IBM Full American National Standard COBOL
programs. Although most readers may prefer to retain this reference material within the manual, the booklet can be
prepared as follows:

• cut along trim lines.
• place sheets so that page numbers at lower right-hand corner are in ascending order in odd-number progression

(i.e., 1,3, 5, etc.): lower left-hand page numbers will then be in descending order in even-number progre5sion
(i.e., 20,18,16, etc.). ~I

• fold trimmed sheets after collation. ~

• staple along fold if desired.

• punch for six-hole binder.
TRIM HFIIF

--~

WHEN
(xac) WHEN-COMPILED

WITH
WORDS
WORKING-STORAGE
WRITE

(xac) WRITE-ONLY
(spa) WRITE-VERIFY

ZERO
ZEROES
ZEROS

20

IlItll'lIaliollal BollllI'" Machin .. Carparallan
Dati Pran .. llI; Dlrillall
1133 W .. tchlltlr AUIIOI

Whlta P111l11., H •• Yark 10&04
(U.S.A. all1y)

IBM Warld Trade Carparallan
821 Unltld Hallalll Plaza
HI.Yark,HI.Yark 10017
Iinternallanall

Printed in U.S.A_ Extracted from GC28-6396-6.
Not orderable separately.

KIm~ Reference Data ©

Operating System

IBM Full
American
National
Standard
COBOL

Appendix C: IBM Full American National
Standard COBOL

Format Summary and
Reserved Words

The general format of a COBOL program is illustrated
in these format summaries. Included within the general
format is the specific format for each valid COBOL state­
ment. All clauses are shown as though they were required
by the COBOL source program, although within a given
context many are optional. Several formats are included
under special headings, which are different from, or addi­
tions to, the general formal. Under these speCial headings
are included formats peculiar to the following COBOL
features: Sort, Report Writer, Table Handling, Segmenta-

iitw&ifJlalti
4ipnf!! Each of these features is explained within a speCial"
chapter of this publication - IBM OS Full American
National Standard COBOL, Order No. GC28-6396-6.

~~-~~-~-~---~---~ TRIM HERE

Appendix C: American National Standard COBOL Format Sumrna:r;y and Reserved Words 373

o

2

TRIM HERE . , . ~.

~-~-----~---------~-----~-------------~-~---------------------------~--~~-~~
IDENTIFICATION DiViSION - BASIC' FORMATS

llEENT1FICAt!2N ~.}
~,",,-,¥m~,;;,j
PROGRAM.ro. program.name.

AUTHOR. [commenl-entl'l/l •••

INSTALLATION. [comment.enfl'l/l .••

DATE.WRITTEN. [comment-enfl'l/] •••

DAtE-COMPILED. [comment.ent'lll •••

SECURITY. [comment.entl'l/) •••

REMARKS. [comment.entl'l/) •••

ENVIRONMENT DIVISION - BASIC FORMATS

ENVIRONMENT ~.

CONFICURATION SECTION.

SOURCE.COMPUTER. computer-name.

ObJEer·COMPUTER. computer·name [MEMORY SIZE Integer Cit\iiAerERs l . {WORDS}

[SECMENT.I IMIT IS prioritv.number]. MODULES

SPECIAL.NAMES. [functkm·nome IS mnemonlc.nome) •••

[~SIGN ~ literal]

[DECIMAI·POINT IS ~].
INPUT·OUTPUT ~.

E!,!&gONTROL.

{SELECT [~] file name

~ TO [lntegeM] $fIstem·name-l [l!Istem.name-~l •••

[FOR MULTIPLE f~}]

~ {~Iler-l} ALTERNATE [!::sJ
{FILE-LIMIT IS } {data-nome.l} {data.ltlJme-~}

Fi'i:iN.:iMITSARE IIteral-l !!!!!!l IIteral-2

[f~ata.name-3} THRU {data.name.4})
Ilteral-3 -- IIteral-4 •••

ACCESS MODE IS fSE~UENTlAL}
--- - RA DOM
PROCESSING MODE !!! SEQUENTIAL

• •
• •

•

_ (ea)

(ea)

(ea)

<xa)

(ka)

(lac)
(II)

(sac)
(u)

(ca)
(ca)

(sac)

(ca)

(lac)

(aac)

(lac)

(xa)

(ea)

(xa)

(xa)

(ta)

(uc)

(uc)
(uc)
(sac)

(xac)
(nc)
(ca)
(uc)
(lac)
(spn)
(lac)

PRINTING
PROCEDURE
PROCEDURES
PROCEED
PROCESS
PROCESSING
PROGRAM
PROGRAM-ID

QUEUE
QUOTE
QUOTES

RANDOM
RD
READ
READY
RECEIVE
RECORD
RECORD-OVERFLOW
RECORDING
RECORDS
REDEFINES
REEL
REFERENCES
RELATIVE
RELEASE
RELOAD
REMAINDER
REMARKS
REMOVAL
RENAMES
REORG-CRITERIA
REPLACING
REPORT
REPORTING
REPORTS
REREAD
RERUN
RESERVE
RESET
RETURN
RETURN-CODE
REVERSED
REWIND
REWRITE
RF
RH
RIGHT
ROUNDED
RUN

SA
SAME
SD
SEARCH
SECTION
SECURITY
SEEK
SEGMENT
SECMENT·LIMn'
SELECT
SEND
SENTENCE
SEPARATE
SEQUENTIAL
SERVICE
SET
SICN
SIZE
SKlPl
SKIP!
SKIP3
SORT
SORT -CORE-SIZE
SORT-FILE·SIZE
SORT-MERCE
SORT-MESSAGE
SORT-MODE-SIZE
SORT-OPTION
SORT-RETURN

(sa)

(xa)
(u)
(Ia)
(XII)

(ea)
(xa)
(ea)
(xa)

(IP)
(spn)
(spn)
(IP)
(spo)
(GIl)
(IP)
(IP)

(cal

(ca)

(xa)

(lac)

(xo)
(tac)

(ca)
(lac)
(xac)
(xac)
hac)
(uc)
(I8C)
(lac)
(Ia)
(lac)

(ea)

(xa)

(IPn)
(spn)
(spo)
(spn)
(spn)
(spn)
(spo)
(spn)

SOURCE ' .
SOURCE.coMptI11!:it
SPACE
SPACES ,
SPECIAL-NAMEs
STANDAIU>
START
STATUS
STOP
STRING
SUB-QUEU£.l
SUB-QUEU£.!
SUB-QUEUE-:!
SUBTRACT
SUM
SUPERVlSOn
SUPPRESS
SUSPEND
SYMBOLIC:

~~gHRONlZw ,
SYSIN
SYSIPT
SYSLST
SYSOUT
SYSPCH
SYSPtJ'Ncii
SOl
502

TABLE
TALLY
'rALLYING

~~INAt.
TERMINAm
TEXT
THAN
THEN
THROUCH
THRU
TIME
TlME-Or.DAY
TIMES .
TO
TOP
TOTALED
TOTALING
'rRACE
TRACK
TnACK.Anl!':A
TRACK-LIMn
TRACIes

~~~~;~g"M 
TYPE 

UNEQUAL 
UNIT 
UNSTRING 
UNTIL 
UP 
UPON 
'OPSt-O 
UPSI·l 
UPSl·! 
UPSI-3 
UPSl-4 
UPSI-5 
UPSI-6 
UPSI·7 
USACI!: 
USE 
USlNG 

VALUl: 
VALUES 
VARYING 

111 

t 
I 
I 
I 
I. 
t 
I 
I 
t 
1 
I 
I 

'I 

t 

I 
I' 
I 
I 
I 
Iw 

f;' 
I' 
I~ 
,0>-

I , 
1 
I 
I 
I 
I , 
I 
1 
I 
1 

, . 
I· 
I 
I 
I 
1 
,I 
I 
I 

~~-~---~~---~~----~-~~~-~-~~---~-~---~~------~--------------------~~~~~~~~~. TRIM HEilE . . 

o 

e 
374 supplementary Material 



I 
,,r-°·o 

\ 
~// .... 

~ 
:z: 
:I 
iiii ... 

o 

TII~L .. 
-----~~--~---~--~-~-------~---~-------~------~-------------------__________ 1 

DECIMAL-POINT 
DECLARATIVES (sac) 

(xa) DELETE (ca) 
(xa) DELIMITED 
(xa) DELIMITER 

DEPENDING 
(la) DEPTH 

DESCENDING 
(xa) DESTINATION 

DETAIL 
(ca) DISABLE 
(xac) DISP 

DISPLAY 
(IIC) DlSpLAY·ST 
(ca) DlSPLAY·n (lac) 

DIVIDE 
DIVISION 
DOWN (xac) 

(ca) DUPLICATES 
(xa) DYNAMIC (xa) 

(xa) EGI 
(ca) 

(sac) EJECT 
ELSE (ca) 

(xa) EMI (ca) 
(ca) ENABLE 

END 
END-OF-PAGE 

(xa) ENDING (xs) 
ENTER 

(xac) ENTRY 
ENVIRONMENT 

(xa) EOP 
EQUAL (spn) 

(ca) EQUALS 
ERROn (xa) 

(xa) ESI (xa) 
EVEHY 
EXAMINE 

(ca) EXCEEDS (xac) 
(xa) EXCEPTION 
(xac) EX III DIT 

EXIT 
(la) EXTEND 
(spn) EXTENDED-SEARCH (nc) 

FD 
FILE 
FILE-CONTROL (xac) 
FILE-LIMIT 
FILE-LIMITS 
FILLER (spn) 
FINAL 
FIRST 
FOOTING (ca) 

I 
FOR 

(ca) FREE 
FROM 

(cal 
GENERATE 
GIVING 
GO 

(nc) CODACK 
GREATER 
GROUP 

HEADING (xa) 
HIGH-VALUE (lac) 
HlGH"VALUES 

(ca) HOLD (xa) 
1-0 
I-a-CONTROL 

(lac) OlD (xac) 
IDENTIFICATION 
IF 
IN 
INDEX 

(ea) INDEX-n 
INDEXED 
INDICATE (ta) 

(en) INITIAL 
(ca) INITIALIZE (lac) 

INITIATE 
INPUT (lac) 

18 

INPUT·OUTPUT 
INSERT 
INSPECT 
INSTALLATION 
INTO 
INVALID 
IS 

JUST 
JUSTIFIED 

KEY 

LADEl.. 
LADEL·RETURN 
LAST 
LEADING 
LEAVE 
LEFT 
LENGTH 
LESS 
LIBRARY 
LIMIT 
LIMITS 
LINAGE 
LINAGE·COUNTER 
LINE 
LINE·COUNTER 
LINES 
LINKACE 
LOCK 
LOW-VALUE 
LOW-VALUES 

MASTEn·INDEX 
MEMORY 
MEHGE 
MESSAGE 
MODE 
MODULES 
~IOHE-LAnELS 
MOVE 
MULTIPLE 
hlULTIPLY 

NAMED 
NEGATIVE 
NEXT 
NO 
NOMINAL 
NOT 
NOTE 
NSTD·REELS 
NUMDER 
NUMERIC 
:'\UMEIUC-EDlTED 

ODJECT-COMpUTER 
OIlIECT-PHOCRAM 
OCCURS 
OF 
OFF 
OMITTED 
ON 
OPEN 
OPTIONAL 
OR 
OHGANIZA'tlON 
OTHERWISE 
OUTPUT 
OVEHFLbW 
PAGE 
PACE-COUNTER 
PASSWORD 
PERFORM 
pF 
PH 
PIC 
PICTURE 
PLUS 
POINTER 
POSITION 
POSI'rIONING 
POSITIVE .. 
PRINT-SWITCH 

DATA DIVISION - BASIC FORMATS 

~~ 
~~. 
mfile-na~e 

D_LOCK CONTAINS [Integer-I T_O] Intener-2 CHARACTERSl 
b RECORDS I 

~ CONTAINS [Integer-I IQ] Integer-2 CHARACTERS 

RECORDING MODE IS mode 

~ ~~~g:gsI~nEl {~ } r data-name-I [data-name-21 ••• ~ AREA IS 
dDta-namo-3 TOTALED AREA is-~-4] 

VALUE OF data-name-l IS {dllteral-I 21 [data-name-3IS {dllteral-2 1] 
-- - ata-name- J ata-name-4 r ... 

{
RECORD IS 1 ~ RECORDS ARE data-name-l [data-name-2] •••• 

NOTE: i.,~:r~~ for the REPORT Clause Is Included with Formats for the REPORT WRITER 

01-49 fdata-name-l} 
~ 
~ data-name-2 

~WHENZERO 

n~~FFIED} RIGHT 

{
PICTURE} ~ IS character string 

{
LEADING 

~ISl TRAILING [~CHARAcrERl 

{SYNCHRONIZED} [LEFT ] 
l~ RIGHT 

[~IS] 

INDEX 
~ 
COMPUTATIONAL} 

=l!TATlONAL_11 

~TATIONAL-2 
QQ.M.e:2.. 
COMPUTATIONAL-3 
~ 
COMPUTATIONAL-4} 
COMP-4 (Version 3 &4) 
~-ST . 

88 0 d I {VALUE IS 1 0 con It on-name VALUES ARE( IIteral-l [1llllllllteral-2] 

[literal-3 [I!!!!!!.literal-4]] .•• 

66 dClta"name-l ~ data-name-2 [!:!!!!.!! data-name-3]. 

(Version 3&4) 

NOTE: Formats for the occuns Clallse are Included with Format. for the TABLE 
HANDLING feature. 

WORKING-STORAGE §]£!!QtI. 
77 data-name-l 

01-49 data-name-I l 
FILLER ( 

~ data-name-2 

~WHENZERO 

{J~lmGHT J~ ( 

{
PICTURE} ~ IS cllaraeter string 

[§!.Q!:! IS] {¥~~Pl~%} (SEPARATE. CHARACTER] (Version 3 &4) 

(SYNCHRONIZED} [J..EIT ] 
l~ .mmrr 

----------~--~---------------------~;-~H---------------------------___ M ___ ~ 

Q 

2 

Appendix C American National Standard COBOL Format Summary and Reserved Wdrds 375 



o 

2 

TRIM HERE ---------------------------------------------------------------------------j 

[~IS] 

VALUE IS literal 

COMPtITATlONAL_lj 
WMf::.l. 
COMPUIATIONAL-2 
COMP-2 
COMPijTATIONAI -3 
c.oMf:a 
~ATlONAL-4} (Version 3 & 4) 

DISPLAY-ST . 

{
VALUE IS 1 

88 condition-name VALUES AREf IIteral-l [THRU IIteral-2] 

[literal-3 [TIIRU Ilteral-4]] ••• 

66 data-name-l ~ data-name-2 [THRU data-name-3]. 

NOTE: Formats for the OCCURS Clause are included with Fonnats for the TABLE 
HANDLING feature. 

~~. 
77 data-name-l 

01-49 {diJta-nome-Il 
~r 

REDEFINES data-namo-2 

~ WHEN.ZIDill 

U~}RIGHI 
ffitCTURE} IS c1UIractor .strIng 

cmflli IS] {~gZRW£] [SEPARATE CHARACTER] (Version 3 & 4) 

{~NWJ2}[~] 
INDEX 
DISPLAY 
COMPUTATIONAL} 
COMP . 
CQMf!lIA.nQl::!Al.-l 
COMP-l 

[USAGE IS] COMPUTATIONAL-2 
COMP-2 
COMPUTATIONAL-3 
COMP-3 

rOMPUTATIONAL-4} 
~ 
IU~P!.AY-ST 

(Version 3 & 4) 

{
VALUE IS 1 

88 condition-name VALUES AREfliteral-l [I!:!!ll! IItaral-2] 

[literal-3 [TURU literal-4]] ••• 

66 data-name-l ~ data-name-2 [!!!ill! diJta-name-3]. 

NOTE: Formats for the OCCURS Clause are included with Formats for the TABLE 
HANDLING feature. 

PROCEDURE DIVISION - BASIC FORMATS 

{
PROCEDURE DIVISION. 
PROCEDURE DIVISIOl'! USING IJ."-Itlfier-l [ldentl/ier-2] •.. .l 

ACCEPT Statement 

FORMAT 1 

{
SYSIN } 

ACCEPT Identifier [FROM ~2.~c~me ] 

FOSMAT 2 (Version 4) 

ACCEPT Identifier FROM ~ --- --- 1!lli! [ 
4 

• • 
• • 

• • 

IBM AMERICAN NATIONAL STANDARD 
COBOL RESERVED WORDS 

ACCEPT 
ACCESS 
ACTUAL 
ADD 

(asn) ADDRESS 
ADVANCING 
AFTER 
ALL 
ALPHABETIC 

( ca) ALPHANUMERIC 

No word In the following list should IIppear as a 
programmer-defined name. The keys that appear before 
some of the word •• and their mennlngs. are: 

(xa) 

(xac) 

before a word means that the word Is an IBM 
extension to American National Standard 
COBOL. 

before a word means that tlfe word Is an IBM 
extension to both American National Stand­
ard COBOL and CODASYL COBOL. 

(ca) before a word means that the word Is a 
CODASYL COBOL reserved word not In­
corporated in American National Standard 
COBOL or in IBM American National 
Standard COBOL. 

(sp) before a word means that the word Is an 
IBM function-name established In support 
of the SPECIAL-NAMES funcHon. 

(spn) before a word means that the word Is used 
by an IBM American National Stnndard 
COBOL compiler. but not this compiler. 

(asn) before a word meanS that the word is deBned 
by American National Standard COBOL. 
but is not used by this compiler. 

(xa) COMP-3 
(xa) COMP-4 

COMPUTATIONAL 
(la) COMPUTATIONAL-l 
(xa) COMPUTATIONAL-2 
(la) COMPUTATIONAL-3 
(xa) COMPUT ATIONAL-4 

COMPUTE 
CONFIGURATION 

(sp) CONSOLE 
(ca) ALPHANUMERIC-EDITED CONTAINS 

ALTER 
ALTERNATE 
AND 

(xa) APPLY 
ARE 
AREA 
AREAS 
ASCENDING 
ASSIGN 
AT 
AUTHOR 

(xac) BASIS 
BEFORE 
BEGINNING 
BLANK 
BLOCK 

(ea) BOTTOM 
BY 

(xa) CALL 
(xa) CANCEL 
(xac) CBL 
(xa) CD 

CF 
CH 

(xac) CHANGED 
(xa) CHARACTER 

CHARACTERS 
(asn) CLOCK-UNITS 

CLOSE 
(asn) COnOL 

CODE 
COLUMN 

(spn) COM-REG 
COMMA 

(xa) COMMUNICATION 
COMP 

(xa) COMP-I 
(xa) COMP-2 

(xac) 

(xa) 
(sp) 

(xac) 
(~pn) 
(spn) 
(sp) 
(sp) 
(sp) 
(sp) 
(sp) 
(sp) 
(sp) 
(sp) 
(sp) 
(sp) 
(sp) 
(sp) 

(xa) 

(xa) 
(ca) 

(xac) 
(ca) 
(ca) 
(ca) 
(ca) 
(ca) 
(ca) 
(ca) 
(ca) 

CONTROL 
CONTROLS 
COpy 
CORE-INDEX 
CORR 
CORRESPONDING 
COUNT 
CSP 
CURRENCY 
CURRENT-DATE 
CYL-INDEX 
CYL-OVERFLOW 
COl 
CO2 
C03 
C04 
C05 
C06 
C07 
COB 
COg 
CIO 
Cll 
C12 

DATA 
DATE 
DATE-COMPILED 
DATE-WRITTEN 
DAY 
DAY-OF-WEEK 
DE 
DEBUG 
DEBUG-CONTENTS 
DEBUG-ITEM 
DEBUG-LINE 
DEBUG-NAME 
DEBUG-SUB-I 
DEBUG-SUB-2 
DEBUG-SUB-3 
DEBUGGING 

17 

---------------------------------T~~-H~E----------------------------------

o 

2 
376 Supplementary Material 

w 
~ 
% 

::E 

~ 

c 



o 

T,,:L .. 
---------------~-----------------------------------------------------------~-I 

16 

ADD Statement 

FORMAT 1 

{
Identifier-I} [ldentlfier-2] 

ADD IIteral-1 Ilteral-2 •.. IQ Identlfier-m [!!Q!lliQ.!ll>] 

[Identlfier-n [~]] ••• [ON SIZE !ill!!Q!! Imperallve-statement] 

FORMAT 2 

ADD {Identl/ier-I} {ldentl/ier-2} [ldentifier-3 ] 
llteral-I Ilteral-2 literal-3 ••• GIVING 

Identi/ier-m [~] [ON SIZE ERROR Imperatlve-slatement] 

FORMAT 3 

{
CORRESPONDING} 

lJll} COHn identl/ier-I IQ Identifier-2 [!!Qillill!ill] 

[ON SIZE .!ill!lQ!! imperative-statement] 

ALTER Statement 

ALTER procedure-name-I IQ [PROCEED IQ] procedure-name-2 

[procedure-name-3 IQ [PROCEED IQ] procedure-name-4] ••• 

FORMAT I 

CLOSE file-name-I [~~~i] [WITH {~CRKEWIND}] 

[file-name-2 [HEEL] [WITH Hill!l..!nYlliQ} ]] UNIT 1~ ... 
FORMAT 2 

{
NO REWIND} 

~ /ile-name-l [WITH ~K ] 

{
NO REWIND} 

[/ile-name-2 [WITH ~~ ]] ••• 

FORMAT 3 

{
NO REWIND} 

~/ile-name-I S~~~i1 [WITH LOC~ ... ] 
1__ POSITION1NG 

{
NO REWIND } 

[file-name-2 S~~7i1 [WITH LOC-K--. ]] ... 
1_ N5SITIONtNG 

COMPUTE Statement 

{

identifi er-2 } 
COMPUTE Identifier-I [!!Q.!lliQ!a>] = IIteral-1 

arithmetic-expression 

[ON ~ ~ imperative-statement] 

DECLARATIVE Section 

PROCEDURE ~. 

DECLARATIVES. 

A (section-name SECTION. USE sentence . 

• (paragraph-name. (sentence} ... } .•. } ••. 

END DECLARATIVES. 

DISPLAY Statement 

Sliteral-l } [/itcral-2 ] { } 
DISPLAY 1identifier-l identi/ier-2" . [UPON . ] 

mnemoniC· name 

-----------------------------------~~-~~-----------------------------------_. 

Q 

2 

Appendix c: American National standard COBOL Format Summary and Reserved Words 377 



DIVIDE Statement 

FORMAT 1, 

.. {'detJtI/ier-l} " '" DIVID", Ilteral-I lli!Q Idehtl/ler-2 [~] 

[ON ~ ERROR Imperatlv6-ItalemetJt] 

FORMAT lZ 

DIVIDE {'dentl/ier-I} Slli.TO} {'dentl/ie~·!21 GIVING Id II/ie"" -- IIteral-1 l!!!. IIteral-lI __ en r 

[!!Q.llliQ!ill] [REMAINDER Idcntl/ier·4] [ON ~ ERnOR Imperatlve-statelnent] 

ENTER Statement 

ENTER language·name [routine-name]. 

EN'I1tl' Statement· 

ENTRY IIteral-l CUSING Identlfier-l [ldentl/ier-2) ••• J 

EXAMINE Statement 

FORMAT 1 

{
UNTIL FIRST} 

~ Identl/ier TALLYING ALL -- Ilteral.l 
~ 

[REPLACING BY lIteral-lI] • FORMAT lZ 

{

ALL } WDIO EXAMINE Identl/ier REPLACING ~ Ilteral-1 !IT Ilteral.lI 

!lli!.!1~ 
EXIT Statement 

paragraph-name. ~ [PROGRAM]. 

COBACK Statement 

~. 

GO TO Statelilent 

FORMAT 1 

.QQ TO "rocedure-ndme-l 

FORMAT lZ 

m !Q procedure-name-l r"rocedure.name-lIl .•. DEPENDING ON Iclentlfier 

FORMAT 3 

IF Statement 

d {"tatement-t 1 {~ } {statement-2 } .!f con ltIon THEN ii!lliI. SENtENCEf OTHERWISE NEXT SJ::NTENCE 

MOVE: Statement 

FORMAT 1 

[Identl/ier-ll t" 
MOVE lIlteral-1 f TQ Identl/ier-S! Identl,.er-3] ••• 

FORMAT 2 

MOVE: {~ESPONDlNG} lelenll/itr-l J:Q Idenll{iet.!J 

MULTIPLY Statement 

FORMAT 1 

MULTIPLY {:1,:~~tr-l} !lX Identifier-ll [llQ!llilliill] 

o 
2 

• 
• 

• 

tlSAM FORMATS (OS/Vs COBOL Oniy) 
Environment DivisIon...; Flle-Controll:n+ry 

FOIlMAT 1 - Sequential VSAM Files 

FILE-CONTIlOL ; 

{~ [OPTIONAL] /ite-name 
~ TO system-name-l [svtum-nIlme·l!l .1. 

, [AREA] [RESERVE Integer AREAS ] 

[ORGANIZATION IS SEQUENTIAL] 

[ACCESS MODE 1S SEQUENTIAL] 

[PASSWORD IS data-itame-i1 
[FILE STATUS IS data-tidme-Jl]. }' ••• 

FORMAT lZ - Indexed VSAM Files 
FILE-CONTROL. 

{SELECT /ile-fI4me 
ASSIGN TO system-nome-l [system-natile-2] ••• 

[
AnEA J [~Inleger AREAS' ] 

ORGANIZATION IS INDEXED 

SE UENTIAL} 
[~MODl::IS , ] 

DYNA f 

RECORD KEY 15 data-nome-:1 
[~IS data-nome.l] 
[FILl:: STATUS IS JQta-natne-~J.} ••• 

Environment DivIsIon - I-O·Control Entry 
l-O-CONTROL. 

[lllill.).lli QN system-name EV1<:RY Integer ~ 
OF file-nome-I] ••. 
t~ [RECORDl AREA 

FOR foIe-name·2 [file-nome-31 .•• ] • .• • ' 

Data Division 

LABEL RECORDS Clause , , ' , 

{
RECORb IS } fST.ANDARD} .' "', ' 

~ RECORDS ARE OM'f'i"i'ED, ',' ". ' ' ' " . " 
Nona Other Data Dlvlsl6n clauses have the SlIlnl! syhtrut fbr "sAM ~ICi thai thi!1 

have fOr other flIes. . 

Procedure Division 

CLOSE Statement 

CLOSE file-name-1 [Wtnl Loctcl 
--[{ile-nanie-2 [WITIt t..Q!;;Kl] ••• 

D1<:LETE Statement 

DELETE fil~-Mm~ RECOnt) 
[INV ALtO K1<:Y IrriperatloNtaltmlent] 

OPEN SIatement 

eu /ile-nome-l tfile-tldrllt-Slj. I.} smm:r file'Mme-l r~le-name-Jl] , • • i 
OPEN, 1.:Q /ile..f'lame-1 [file-nam~-2J • ; ~ • • 

EXTEND file-name.! [fik·nome-Sl] • • • '. , ' 

READ Statemen.t 

I 

t 

t 
t 

I 
! 
j 
I 
j 

FORMAT 1 I 
[ON ~ Entlan Imperatlve·statement] !lliM? {ile-name [~J ttECOnO tlliIQ.lJendAerl f 

FORMAT 2 [AT E]Q imperaUt1c-slatementl I 
MULTIPLY {'dentl/ier-l l BY !Identl/ier-S!l GIVING Identl/ier-3 FORMAT lZ ~.! 
--- lIteral-1 f - lliteral-ll f -- ", ' " I 

llMQ file-name R1<:CORO [!l'iIQ identifier] /. i 
[ROUNDED] [ON ~ rumQ!!. Imperative-statement] [U:!YMJ.Q K1<:Y' Impel'lltlt1o-itatemenl] t" " ' . " 

e , " ~ 
~----------~-------~~-_~~~~~~_~_~~~~~~~~~~_~l - - .... -------------- .... --- ......... --------- fRIM HEI1E 

378 Supplem~ntary Material 



o 

",:1.." ·-------------------------------------~--------------------------------~~~~-~ I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

14 

STRING MANIPULATION - BASIC FORMATS 

STIUNG Statement 

{
ldentifier.1} [ldentfficr.2J . {ldentl fier-3 } 

• ~ literal.1 literal.2 00 0 ~ BY ~~~~I-3 

{
ldentffier.41 [Itlentffier.s] {ldentlfier.6} 

[literal-4 r literal-5 0 0 0 DELIMITED BY ~1-6 ] 0 0 0 

INTO Identifier·7 [WITH EQ.lliI!ill identifier·S] 

[ON ~ Imperatlve.statement] 

UNSTRING Statement 

UNSTRING identifier.1 

[DELIMITED BY [ALL] {ldentifie r.2l [OR [ALL' {identifier-31 ] 000 ] 

---- - l.teral·2 f = llteral.3 f 
lli!Q identlfier-4 [DELIMITER IN Identifier.S] 

[COUNT IN identlfier.6] 

[lden:ifier·7 [DELIMITER IN Identifier-8] 

[COUNT IN Identifier·9]) 0 0 0 

[WITH EQ.lliTIlli Identifier.10] 

[~IN identifier.ll] 

[ON OVERFLOW imperative·statement] 

NOTE Statement 

NOTE character string 

OPEN Statement' 

FORMAT 1 

, [REVERSED ] OPEN [INPUT {file·name WITH!ill!!!illTIill } 0 0 0] 

[Q.!l.!ElIT {file.name [WITH liQ BIDYllill] } 0 0 oj 

[!::Q {file.name} 0 0 0] 

FORMAT 2 

[
REVERSED ] [~ ] ~ [INPUT {file.name WITH NO REWIND ~EAD} ••• J 

[OUTPUT {file·name [WITH NO I.Ulli::lli!1] [k~*frXDJ } ••• J 
mE 

[eQ {file·name} 0 •• ] 

PERFORM Statement 

FORMAT 1 

PERFORM procedure·name·l [TIilll! procedure.name·2] 

FORMAT 2 

{
ldenli/ier.l 1 PERFOR~f procedure·name.I [TI!.B.!l procedure·name·2] Integer.1 r TIMES 

FORMAT 3 

PERFORM procedure·name·1 [THRU procedure·name.2] UNTIL condltlon·1 

FORMAT 4 

PERFORM procedure·name·l [I.HRU procedure·name·2] 

{
lndex.name.Il {index.name.2} {literal-3} 

VARYING Identifier.l r FROM :~:~~:fi!r.2 lIT Identifier-3 UNTIL condit/on·l 

r Index-name-4} { Index-name-s} {literal-6} 
[AFTER 1 identifier-4 FROM :~:~~:tr-S lIT Identlfier.6 UNTIL condltlon.1l 

r Index-name-71 { I~dex-name-B} (literal-9} 
[AFTER 1 identifier-7 f FRmf :~:~~:fi~r-B !IT lIdentifier-9 UNTIL condltlon..j)) 

READ Statement 

READ file-name RECORD [INTO Identifier] 

rAT END }. . 
llNVALlD KEY Imperative-statement 

REWRITE Statement 

REWRITE record-name [!ffiQM Identifier] [INVALID KEY Imperotloe.llalement] 

SEEK Statement 

SEEK file-name RECORD 

START Statement 

FORMAT 1 

.§!ill file-name [INVALID KEY Imperat;oe-.statemenl] 

FO ..... T 2 (Version 3 & 4) 

START file-name 

USING KEY data.name {EQU!L '!Q} Identifier 

[lliY6.!d!2 KEY Imperative-statement] 

STOP Statement 

rRUN
} STOP Fiteral 

-----------------------------------~~-~~------------------------------~----

Appendix C· American National Standard COBOL Format Summary and Reserved Words 379 



o 

2 

TRIM HERE -----------------------------------------------------------------------------

SUBTRACT Statement 

FORMAT 1 

[Identi!ier-ll [ldenti!ier-2 ] 
SUBTRACT lliteral-l J literal-2 ••• FROM Identi!ier-m [~] 

[Identi!ier-n [ROUNDED)) ... [ON SIZE ERROR Imperative-statement] 

FORMAT l! 

SUBTRACT [Identi!ier-ll [ldenti!ier-2] FROM {ldenti!ier-m1 GIVING Id i!i-
---- lliteral-l J IIteral-2 ••. -- literal-m J __ ent er n 

[ROUNDED] [ON SIZE ERROR imperative-statement] 

FORMAT 3 

SUBTRACT {~ESPONDING} Identifier-l.EBQM identifier-!.! [~] 

[ON SIZE ERROR Imperative-statement] 

TRANSFORM Statement 

. {figuratlve-constant-I} 
TRANSFORM Identlfier-3 CHARACTERS fl!QM nonnumerlc-lIteral-l 

Identifier-I 

USE Sentence 

FORMAT 1 

Option I. 

{

!igurative-constant-2} 
I.Q nonnumerlc-lIteral-2 

Identlfier-2 

USE {BEFORE} STANDARD [BEGINNING] [~~ELJ 
- AFTER ---- UNIT 

{

{file-name} ••• } 
LABEL PROCEDURE ON OUTPUT . 
-- INPUT 

!:Q 
Opt/on 2. 

USE [BEFORE) STANDARD [ENDING]' FILE 
[

REEL] 
-lAFTER f UNIT 

{ 

{!ile-name} ... } 
LABEL PROCEDURE ON OUTPUT • 

INPUT 
!:Q 

FORMAT 2 

USE AFTER STANDARD ERROR PROCEDURE 

{

{file-name-I} [file-name-2] ••. 

ON g'J'~lUT 
1-0 } 

[GIVING data-name-l [data-name-2]]. 

NOTE: Format 3 of the USE Sentence is included in Fonnats for the REPORT WRITER 
feature. 

WRITE Statement 

FORMAT 1 

[BEFORE} WRITE record-name [FROM identifier-I] [lAFTER ADVANCING 

{
ldenti!ier-2 LINES} {END-OF-PAGEl 
~~eeg~~;~~;!e ] [AT EOP f Imperative-statement] 

FOIIMAT l! 

{
ldentifier-2l ~ record-tlllme [FROM lelentilier-l] AFTER POSITIONING Integer r LINES 

{
END-OF-PAGE} [AT mE imperative-statement] 

FORMAT 3 

~record-name [!1!QM.ldenti!ier-l] INVALID KEY Imperative-statement 

A 
V 

FORMAT CONTROL - BASIC FORMATS 

EJECT Statement 

1 Area B 

SKIPl, SKIPl!. SKIP3 Statements 

1 Area B 

{~~~~} 
~ 

STERLING CURRENCY - BASIC FORMATS 
Data Division Sterling Formats 
Nonreport,PICTURE Clause 

mgruRE} IS [} [en)) D [8] 80 m~n [[V] 9 [en)]] [~IS] ~ 
Report PICTURE Clause . 

{~}IS 
[pound-repor/-strIng] rpound-sel1arator-strlng] delimiter shllllng-f'eporf.-string [,hilling-Iep­
~;Y~i~~~~y~:mlter pence-reporl-string [pence-IeparatONtrlng] [8Ign-str/ng] [~ 

PROGRAM PRODUCT INFORMATION - VERSION 4 

TELEPROCESSING - BASIC FORMATS 
Data Division Teleprocessing Formats 

CD Entry 

FORMAT 1 
m cd-name FOR 1.NOO' 

[[[SYMBOLIC QUEUE IS data-name-I] 
[SYMBOLIC SUB-QUEUE-I IS data·name-2] 
[SYMBOLIC SUB-QUEUE-2 IS data-name-3] 
[SYMBOLIC SUB-QUEUE-3 IS data-name-4] 
[MESSAGE!M:.rn IS data-name-5] 
[~mm. IS data-name-6] 
[SYMBOLIC SOURCE IS data-name-7J 
[TEXT I ENGTH IS data-name-B] 
[EN!? .KID: IS data-name-9] 
[STATUS m IS data-name-IO] 
[OUEUE ~ IS data-name-Il]] 
[data-name-I data-name-2 •• . data-name-ll]]. 

FORMAT l! 
CD cd-name FOR OUTPUT 
- [DESTINATION COUNT 

[n;n !&lliill! 
[~m 
[ERRORm 
[SYMBOLIC DESTINATION 

IS data-name-l] 
IS data-name-2] 
IS data-name-3] 
IS dat.l-name-4] 
IS data-rtame-5]. 

Procedure Division Teleprocessing Formats 

Message Condition 

[t:!Q!1 ~ FOR cd-name 

RECEIVE Statement 

{
MESSAGEl 

RECEIVE cd-name SEGMENTf lliIQ identl!ier-l 

[liQ ~ imperative-statement] 

SEND Statement 

FORMAT 1 
mlli.Q cd-name E!.illM. Identifier-I 

FORMAT l! 

SEND cd-name [E!!QM identl!ier-I] 
{

WITH ldentlfier-2 } 
WITHlill. 
WITHEMI 
WITHEm 

13 

·----------------------------------T~M-H~E----------------------------------

o 

2 
380 Supplementary Material 



.r 
( \ 
\ I 

,---/ 

o 

TRI~L" ----------------------------------------------------------------------------
SEGMENTATION - BASIC FORMATS 

Environment Division Segmentotion Formats 

OBJECT-COMPUTER PARAGRAPH 

SEGMENT-LIMIT Clause 

SEGMENT-LIMIT IS priority-number 

Procedure Division Segmentation Formats 

Priority Numbers 

section-name SECTION [priority-number]. 

SOURCE PROGRAM LIBRARY FACILITY 

COpy Statement 

COpy library-name [SUPPRESS] 

{
WOrd-2 } 

[REPLACING word-1M literal-l 
Identlfier-I 

Extended Source Program Library Facility 

BASIS Card 

BASIS 

INSERT Card 

library-name 

~ sequence-number-field 

DELETE Card 

!2!ll:.m. sequenc6-number-field 

DEBUGGING LANGUAGE - BASIC FORMATS 

Procedure Division Debugging Formats 

EXmBIT Statement 

{
WOrd-4 } 

[word-3M literal-2 ] •.• ] . 
Identifier-2 

{
NAMED } 

EXIDBIT CHANGED NAMED {ldentlfier-l 1 [identl/ier-2 J 
~ nonnumerlc-lIteral-l f nonnumerlc-literal-2 ••• 

ON (Count-Conditional) Statement 

FORMATl 

ON Integer-l [~§Y!illX integer-2] [UNTIL integer-3] 

{
imperative-statement} {~ 1 {statement. . . } 
NEXT ~ OTHERWISE! NEXT SENTENCE 

FORMAT 2 (Version 3 & 4) 

ON {integer-l 1 [AND EVERY {lnteg~-2 } ] [UNTIL {Integ~-J 1] 
- Identifier-If - identlfier-2 -- .dent.fier-3J 

{
Imperative-statement} {~ } fstatement... 1 
NEXT SENTENCE OTHERWISE 1 NEXT ~ 

TRACE Statement 

m~l}TRACE 

Complle.Time Debugging Packet 

DEBUG Card 

location 

12 

o 

o o 

SORT - BASIC FORMATS 

Environment Division Sort Formats 

FILE-CONTROL PARAGRAPH - SELECT SENTENCE 

SELECT Sentence (for GIVING option only) 

SELECT file-name 

ASSIGN TO [Integer-I] system-name-l [system-name-2] _ •• 

OR system-name-3 [FOR MULTIPLE {~~~i} ] 
[RESERVE {lnteger-2} ALTERNATE [AREA] ] --- !ill AREAS . 

SELECT Sentence (for Sort Work Files) 

SELECT sort-file-name 

ASSIGN TO [Integer] system-name-l [system-name-2] • " 

I-a-CONTROL PARAGRAPH 

RERUN Clause 

!!§!!!lli ON system-nama 

SAME RECORD/SORT AREA Clause 

{
RECORD} SAME SORT AREA FOR /ile-name-I (file-name-2) ... 

Data Division Sort Formats 

SORT-FILE DESCRIPTION 

ill sort-file-name 

RECORDING MODE IS mode 

{
RECORD IS } 

DATA RECORDS ARE data-name-I [data-name-2l ••. 

RECORD CONTAINf [integer-I IQ] integer-2 CHARACTERS 

{
RECORD IS 1 {STANDARD} 

[LABEL RECORDS ARE OMITTED ]. (Version 4) 

Procedure Division Sort Formals 

RELEASE Statement 

RELEASE sort-record-name [~ Identifier] 

RETURN Statement 

RETURN sort-file-name RECORD [INTO Identifier] 

AT END imperative-statement 

SORT Statement 

{
DESCENDING} SORT file-name-l ON ASCENDING KEY (data-name-I) ... 

~ [ON {~fgi~~~J~G} KEY (data-name-2) ••• ] ••• 

{
INPUT PROCEDURE IS sectlon-name-l [THRU section-name-2]} 
USING file-name-2 

{
OUTPUT PROCEDURE IS section-name-3 [THRU sectior.-name-4]} 
GIVIjI;G file-name-3 

REPORT WRITER - BASIC FORMATS 

Data Division Report Writer Formats 

NOTE: Formats that appear as Basic Formats within the general description of the Data 
Division are illustrated there. 

FILE SECTION - REPORT Clause 

{
REPORT IS 1 
REPORTS ARE r report-name-l [report-name-2] ... 

-----------------------------------~~-~~-----------------------------------. 

c 

2 

Appendix C: American National Standard COBOL Format Summary and Reserved Words 381 



o 

2 

.------------------------------------~~-~~~----------------------------------
REPORT SECTION 

REPORT SECTION. 
RD report:;;;';;;-
WITH CODE mnemonic·name 

{
CONTROL IS } {ill:ill.- } CONTROLS ARE idenlffier·1 [identifier.2] •.• 
---' Ell:lM. identifier.1 [identifier-2] .•• 

[
LIMIT IS ] {~ } ~ LIMITS ARE integer·1 .!.lli§ 

~ integer-2] 
[~DETAIL integer-3] 
[LAST DETAIL integer.4] 
[FOOTING integer-5]. 

REPORT GROUP DESCRIPTION ENTRY 

FORMA.T 1 
01 [data·name·l] 

{ 
integer·1 } 

~NUMBER IS PLUS integer.2 
NEXT PAGE 

{ 
integer·1 } 

NEXT GROUP IS PUTS integer-2 
NEXT~ 

JREPORT HEADING} 
111H 
PAGE HEADING} 
PH 
Q)lIT!!QI. HEADING} {ldentifier.n1 
CH FINAL f 

TYPE IS g~TAIL} 
CONTROL FOOTING} {ldentifier.n1 
CF FINAL f 
PAGE FOOTING} 
PF 
REPORT FOOTING} 
IIF 

USAGE Clause:-

FORMAT 2 
nn [data.name·l] 

LINE Clause - See Format 1 
USAGE Clause. 

FORMAT 3 
nn [data.name.1] 

COLUMN NUMBEII IS Integer.1 
GIIOUP INDICATE 
JUSTIFIED Clause 
LINE Clause - See Format 1 
PICTUIIE Clause 

RESET ON (ldentifier.l} 
-- 1 FINAL 
BLANK WHEN ZERO Clause 

~ IS {~~;ler'2} 
.u:r.· 1 r.r. ] 

~ lident; er-3( identifier.4 •.• [!LEQN data·name] 

VALUE IS literal·1 
USAGE Clause. 

FORMAT 4 

10 

01 data·name·1 
BLANK WHEN ZERO Clause 
COLUMN Clause - See Format 3 
GROUP Clause - See Format 3 
JUSTIFIED Clause 
LINE Clause - See Format 1 
NEXT CROUP Clause - Sec Format 1 
PICTURE Clause 
RESET Clause - See Format 3 

{
SOURCE ClaUSe} 
SUM Clause See Format 3 
VALUE Clause 

TYPE Clause - See Format 1 
USAGE Clause. 

.. 
• 
• 

• • 

Procedure Division Report Writer Formats 

GENERATE Statement 

~Identifier 

INITIATE Statement 

~ report-name.l [repor/-name-2] •.• 

TERMINATE Statement 

TERMINATE report-name-l [report-name-2] ... 

USE Sentence 

yg; ~ ~ data-name. 

TABLE HANDLING - BASIC FORMATS 

Data Division Table Handling Formats 

OCCURS Clause 

FORMAT 1 

OCCURS Integer-2 TIMES 

{
ASCENDING } 

[ DESCENDING KEY IS data-name-2 [data-name-3 • •• ] ••• 

[INDEXED BY index·name-I [index-name-2] ••• ] 

FORMAT 2 

OCCURS Integer-I 'IQ integer-2 TIMES [DEPENDING ON data-name-I] 

{
ASCENDING } 

[ DESCENDING KEY IS data-name-2 [data-name-3] •.• ] ••• 

[INDEXED BY index-name-I [lndex-name-2] ... ] 

FolWA.'r 3 

~ Intege,-.!! TIMES [DEPENDING'ON data.lllllIUI-l] 

. {ASCENDING } . '. dat' ." . '. . " 
[ DESCENDING KEY IS data-llllme-2 [ a-lIIIm0-31 ... 1 .. ~ 

[INDEXED BY index'lIIIme-1 f/ndex-nmne-.l!J ••• 1 

USAGE Clause 

[USAGE IS] INDEX 

Procedure Division Table Handling Formats 

SEARCH Statement 

FORMAT 1 

SEARCH identifier-l [VARYING {:~~~:Ifi::.~l;-I} ] 

[AT END imperative-statement-I] 

\VHEN d'" 1 {imperative-statement-2} 
__ con I IOn- NEXT SENTENCE 

[WHEN d 't' 2 {im perative-statement-3} ] 
__ con I IOn- NEXT SENTENCE ... 

FORMAT 2 

SEARCH ~ identifier·J [AT END imperatlve-statement-I] 

WHEN d 't' I {im perative-statement-2} 
__ can I lon- NEXT SENTENCE 

SET Statement 

FORMAT 1 

, { index-name-3 } SET {index-name-I [lndex-name-2] .•• } TO identifier-3 
- identifier-I [identlfier-2] • .. - IIteral-1 

FORMAT 2 

S IUP BY I lidentlfier.4} E inclex-name-4 [index-name-5] .,. DOWN.!!! IIteral-2 

I 
----------------------------------TRlM-H~E------------- _____________________ 1 

o 

2 
382 Supplementary Material 

c 



L 

o 

o 

THis ~~pendix stimmari~~s th~ statements and clauses that may be 
s~edified fbr eadh file~pr~cessing tedhhiqUe. In 3jjitioh, each 
file·rlamemust be specified in a SELECT clause in the Environment 
di~ision.an1 must be defined by ah F~ entr~ in the File section ~f the 
Data division. 

~pperijiK D~ Sum~aty of File-processihg rechniqde~ 383 



W 
CXl 
~ 

CIl 
s: 

'U 
'U 
I-' 
(]) 

3 
(]) 
:::s 
rt 
III 
Ii 

'0<; 

;3: 
III 
rt 
(]) 

Ii ..... 
III 
I-' 

STANDARI} SEQUENTIAL FILES - Required and Optional Entries 

Device Required Entries 

Type 

System-name LABEL RECORDS OPEN 

Reader UR [-xxxx]-S-name OMITTED INPUT 

Punch UR [-xxxx]-S-name OMITTED OUTPUT 

Prmter UR [-xxxx]-S-name OMITTED OUTPUT 

Tape UT [-xxxx]-S-name i~~DA~ i INPUT 
OMITTED [REVERSEDJ l dat~:name .. .• NO REWIND 

[TOTALING. ~EAVE ~ • TOTALED] REREAD 
DISP 

:----
OUTPUT 

[NO REWIND] 

~EAVE ~ REREAD 
DISP 

Mass {:} [-xxxx]-S-name r~DA~ l INPUT 

Storage OMITTED 

data-name .. '. 1-----
[TOTALlNG-
TOTALED] .. OUTPUT 

~---
I-a 

lCreate 

'--/"'\. 

\, ) 

Optional Entries 

I·' Other ENVIRONMENT BLOCK . RECORDiIilct 

CLOSE Access Verbs 'Ai'PLy3~ . RESERVE ACCESS DIVISION Oauses CONTAINS4 MODE. ; USE 
:. ". 

" .. · .... cc, 
[LOCK] READ [INTO] fnteger} SEQUENTIAL SAME [RECORD] AREA [nTO] m 

{H; 
ERROR 

AT END NO RERUN 
.. , .... : 

[LOCK} WRITE [FROM] WRITE-ONLY {m~~er}. SEQUENTIAL SAME [RECORD] AREA InTO] m ~{~} ; ERROR 

(V:m~de only) RERUN 

[{~~~~E} ADVANCING] i 
· 
.. 

''{AFTER ~oSIflONIN(;l' 
.. . .: 

[LOCK] WRITE [FROM] WRITE-ONLY tnteger} SEQUENTIAL SAME [RECORD] AREA InTO} m 

{~} 
.' ~ ERROR 

[{~~~~~} ADVANCING] I 
(V-mOde opJy) NO. RERUN REPORTING 

: (~krER p()~lfIONrN~); 1 

1-------- !-----

•. [Ei~D-OF-PAGEf I· NO 
· 

· 
[REEL] READ [INTO] WRlTE-ONLY fnteger} SEQUENTIAL SAME [RECORD] AREA [nTO] m 

l~l 
LABEL 

[,OCK ~ 
AT END (V-moJe only) NO RERUN ERROR 

NO REWIND ; MULTIPLE FILE TAPE tV 
'P03mONI~G '. ·S : DlSP .: . 

------------ 1------

[REEL] WRJTE I [FROM] 
; LABEL rK 

~ 
[{~~~~~E} ADVANCING] 

ERROR 
NO REWIND :. REPORTING 
POSITIONINC; 
DlSP [ AFTER rCisiTlo!,<IN(i} 

: 

[UNIT] READ [INTO] RECORD-OVERFLOW. tnteger} SEQUENTIAL SAME [RECORD] AREA [nTO] m 

)~{ 
AFTER LABEL 

[LOCK] AT END (not for S-mode) NO. RERUN : ERROR 
· 

I-- --- 1-------- G) 1------
[UNIT] WRITE I [FROM] \\'RITE-ONL Y 

'. AFTER LABEL 
[LOCK] INVALID KEY (V-mode only) ERROR I 

WRITE I [FROM] REPORTING 

[{!!~~~E} ADVANCING] 
I 

. [AFTER posrrioNING} 

: 'ArnRLABEL~ ~LOCK]- ---r RE~~[INrO) -'-'--

AT END 
: 

ERROR I 

WRITE 2 [FROM] 
• INVALID KEY 

REWRITE2 [FROM] 
'. : 

[INVALID KEY] .... 

2update 3These APPLY clauses have meaning only (or OUTPm nIes; however, the 4Nat for U mode 
compiler accepts them when the same me is opened for INPUT or 1-0. 

-------- " ) 
J J 



o 0 r 
DffiECT FILES (mass storage devices only) - Required and Optional Entries 

Required Entries Optional Entries 

r"'-'",:":";-',,-' '~:-'l""~" "'_'~_"_'A~"._' 
; RECORiJING " "'." . Other ENVIRONMENT 

ACCESS KEY System-name LABEL RECORDS I OPEN I (LOSE I Access Verbs I: .'. > MODE' ,.'.' ,'" APPLYS, I DIVISION Qauses USE 

data-name (LOCK) AT END ,U ; RERUN ERROR 
: V ,~ 
~ S' : 

[SEQUENTIAL) I ('{ACTUAL}"! I DA [-xxxx)-D-name "",{.,S",T, AN", ,D, .A""R""D,l,, ",I,INP. ,.,UT •• , [UNIT) ~ READ [INTO) ~ lFI ~ ;tSAME 

[RECORD) AREA t AFTER LABEL 

~ ~1;QUE;ilAil ,p ::A:--q· D~ [:~i~~~: 'IH(;;~DA~~"'I ~~~I ;~I~)" ~~El ~~~OM~ -F- - RE:ru:VE-:~ S:E[REC:J-:-RE~' ~~R:B; ~ 
(1) I fcl I'.,' ,IL ... ~._.l f1()('J{1 lNVAltnKFY ERROR 

::s 
QJ 
1-'­
~ 

o 

RANDOM ACTUAL DA [-xxxx)-D-name {STANDARD} I INPUT I [LOCK) I SEEK. I· (F) ., SAME [RECORD) AREA AFTER LABEL 
C/) data·name READ (INTO) " U { RERUN ON RECORDS ERROR 
~ INYALlDKEY 

:3 
III 

~ OUTPUT [LOCK) SEEK It' . F 1 --~~ .. --. ---- -_ .. i o WRITE I [FROM) • ,- - -, - - - --' ,~AME, (~c:OI~P) AREA 
HI NV ; 1 u) ,TRACK-LIMIT, I ALiD KEY : f. ' , .... , ...... , .... 
I-%j , V > . . RERUN ON RECORDS 

1-'- ;- S\ 
t-' ' -
(1) -,---, 
I-t:J 1-0 [LOCK) SEEK I C"" (F'f I ., SAME [RECORD) AREA 
Ii READ [INTO) : 'U - RERUN ON RECORDS 
o INVALID KEY ; )V 
~ WRlTE2 [FROM) , tS. 
C1l INY ALID KEY 
Ul 
1-'-
::s 

lQ RANDOM ACTUAL DA [-xxxx)·W-name {STANDARD} INPUT [LOCK) SEEK 1 F'l SAME [RECORD) AREA AFTER LABEL 
8 data-name READ [INTO) U RERUN ON RECORDS ERROR 
(1) INVALID KEY V 

OS 

5" -------- ---l-- --.------
1-" 
~ OUTPUT [LOCK) SEEK F RECORD·OVERFLOW i 
~ WRITE I [FROM) _ _ _ _ _ _ _ _ ,SAME [RECO~D) AREA 
(1) . TRACK-LIMIT . 

INVALID KEY ( ) .•... , ' ' 
Ul ,U I ' ~UNOO~~ 

~ ~---~--h~-~-t----i- --t----tJ~-r----~-~-~-r---U1 "'DA I-xxxxl.w.~ame {STANDARD} 1.0 [LOCK] SEEK (F'! SAME [RECORD) AREA AFTER LABEL 
data-name. READ I INTO) 'U RERUN ON RECORDS ERROR 

, INVALID KEY I V 
WRITE3 {FROM) <S, 

INVALID KEY 
REWRITE4 {FROM) 
[ INVALID KEY] 

.~+ ,. 
ICreate 2UPdate and add 3 Add 4Update SThcse APPLY clauses have me.aningonly fOl OUTPUT ftles;however, the compiler accepts them when the same ftle is opened for t".'PUf or 1-0. 



w 
00 

'" 
en 
c 

"0 
"0 
I-' 
CD 
:3 
CD ::s 
rt 
QI 
11 
"< 
~ 
QI 
rt 
CD 
11 ..... 
SlJ 
I-' 

(~ 
\, / 

INDEXED FllES{massstora~~:~~l~}S' R~uired and Op;jo~H:ntries 

/~ 
) 

"n.~. Al'PL Y d~l1se it .. rn .. ruag ~y fOfOon'liT m";h?~;'er. the comJrlkr ae~ep~ll WhM Ih~=e fll. is ~opened for .lNFirro~ 1-0,. 

') 
J 



P 
"0 
"0 
ro 
~ 
~J ..... 
X 

o 

Ul 
C 
3 
3 
III 
1"'\ 

"<; 

o 
H1 

1'1] ..... 
I-' 
(D 
I 
~ 
Ii 
o 
o 
CD 
Ul 
Ul ..... 
;:1 
lQ 

~ 
CD 
() 

::r 
;:1 ..... 

.,Q 
C 
CD 
U1 

w 
co 
-..J 

·0 (-~< 

f"" RE~ArIVE FlLEST~~~'st~"~ie devi~sw?~iy):: ~~q~i~~d~'ndOptional Entries 

CLOSE 

INPUT " [UNIT] 
[LOCK] 

OUTPUT " [UNIT] 
[LOCK} 

{STANDARD} .IINPurIIWCKJ 
data-name ' 

1·0 (LOCK) 

'( 

Optional Entries 

Other ENVIRONMENT RECORDING 

Access Verbs DIVISION Clauses MODE USE 

READ [INT01 SAME [RECORD] AREA F ERROR 
AT END RERUN AFTER 

LABELS 

WRITEl [FROM 1 
INVALID KEY APPLY RECOkD-OVERFLOW 

MID IOOOH SAME [RECORD] AREA F ERROR 
INVALID KEY RERUN ON RECORDS AFTER 

I MAD IINTO) 
LABELS 

INVALID KEY APPLY RECORD-OVERFLOW 
REWRITE2 [FROM] 

[INVALID KEY1 

lereate 2Update 





o 

ASCII Environment Division Considerations (Versions 3 and 4) 

Program Product Information (Version 3 and Version 4) 

The compiler supports the ~merican National Standard Code for 
Information Interchange (~SCII). Thus the programmer can create 
and process t~pe files recorded in accordance ~ith the following 
standards: 

• ~merican National Standard Code for Information Interchange, 
X3.4-1968 

• ~merican National Standard Magnetic Tape Labels for Information 
Interchange, X3.27-1969 

• ~merican National Standard Recorded Magnetic rape for 
Information Interchange (800 CPI, NRZI), X3.22-1967 

ASCII encoded tape files, when read into the systen, are 
automatically translated in the buffers into EBCDIC. Internal 
manip~lation of data is performed e~actly as if they were EBCDIC 
encoded files. For an output file, the system translated the 
~BCDIC characters into ~SCII in the buffers before writing the file 
out on tape. Therefore there are special considerations concerning 
~SCII encode~ files when they are processed in COBOL. The 
following paragraphs :liscllse these considerations. 

Environment Division clauses affected by the specification of 
~SCII files ~re the ~SSIGN clause and the RERUN clause. 

When hSCII files are to oe processed, the ~~~t~m~~~m~ in the 
~SSI3N clause has the follo~ing format: 

or[-device]~C[-offset]-name 

ggvi~~, if specified, must specify a nagnetic tape device. If this 
fie~d is omitted, the magnetic tape device must be specified 
through control cards at execution tine~ 

£ in the organization field specifies that an ~SCII encoded 
sequential file is to be processed, or that an ~SCII collated Sort 
is to be performed. 

off2~£ may be specified only for an hSCII file, and then only if a 
buffer offset in the range 01 through 99 exists. It is a 2-digit 
field, and may be specified as follo~s: 

01 through 99 for an inout fil~ 
04 for an output file (D-mode records only) 

~P8endi~ E: ~SCII Considerations 389 



ASCII FD Entries (Versions 3 and 4) 

~~me is a 1- to 8-character field specifying the external-name by 
which the file is known to the system. It is the name that appears 
in the name field of the DD card for the file. 

rhe ~~~~~m=~ame in a RERUN clause must not specify an hSCII encoded 
file. 

ASCII files containin~ checkpoint records cannot be processed. 

In the Data Division there are special consijerations for ~SCII 
files, both in the File Section and in Data Description Entries. 

FIL!!: SECTION 

f,.',',', .•.. ", •.• ,.,.',.,.'.,',',." .. ,'.',,'.',.:,,'',.,'"."' .. ',;1:, .. ".".,.,' ...... ,.,',.".,0,.,, .. ' .. , .• , .. , .. ', .... '.', .... ' .. ', .. ,t,', ... ,.,",'.',' .. ,~ .. "., ... ' ... , .. "e" .. , .. '., ......• ' .. '" .. ' ... ,.'.,',."f, .. " .. ~.'.,',.J.,'·.', ... ',.",.l,., .. ,.,., .. ".',.e,., ... ',.'.'"'.,'.'","".".','.'"','.,",,S,,, .. ,' .... ".,e, •.. ", •. " .. '.,' •.•. c .. ,."' .. " .. t" .. "., .. '.', .. ,',', •.. "l. .. ·.,'".,,.', ... '".0" .. " .. n, ... , .•.. ,.,'., .. " .... ',.' .. ,.',." ... ,.,.".t,." .... ' ..... , .•.. ".h"",.', ... "., .. " •. e" B LO:::: K C ONr A.I NS , the LA.BEL RECORD ScI a us ~ ,and:RECORDING;;MOOEclause are affecte::i. rhere are also specia,l 
~6ri~ia~~~ti6n~'r~~~~3ih~ ~he compiler default options for recording 
mode. ' 

For an A.SCII file that contains a Q~~fg~_Qff~~~ field, the 
following considerations apply: 

• If the BLOCK CONr~INS clause with the RE::::ORDS option is 
specifie::i, or if the BLOCK ::::ONTA.INS clause is omitted, the 
compiler compensates for the buffer offset field • 

• If the BLOCK CONrA.INS clause with the CHA.RhCrERS option is 
specifie::i. the pro~rammer must include the buffer offset area 
as part of the physic~l record. 

"~te: Ifi~h~,iB~qCK •.• c9NT~~.~·~·.'."(), •• Ra~~F~~~S •. , .•• ~Pt~r~~;,~ 
hI Celt .... ,~i:zei~Clete.t:',rnit\eacl~~l:? j~H;t,F~tl\~~79Wt;,~~,HJ? 
t·h~,., .. ,.Clat,~~~t;~apt~.·.·.··.·.·~,tll:'.·".t'r~,';il@"tt;J.~,l) ... t:~~(P:t?pgl:'~rpm~ 
rt;l1,e.i()f~setfl;el:l,'.·aE).pa:r:tiClf,tlJ.eit):i.()elt./~l;z~iI ' 

A.ll three options of the clause (O~IrrED/SrA.NDA.RD/data-name) are 
allowed. However, if the programmer specifies the data-name 
option, he must make sure that data-name refers only-Eo-user 
standard labels. Nonstandard labels are not allowed for ASCII 
files. 

390 Supplementary Material 

~,', 
( 

\ 
'-. 



( 
'---

/--, 
( 'I 

"'-/' 

o 

ASCII Data Description (Version 3 and ij) 

For ASCII files,mode :nay be specified as F, U, or V.S mode 
:maynot be specified:----

When the RECORDIN3 M~DE clause is not usejto sp~cify the mode 
of the records in an~SCII file, the COBOL compiler determines toe 
mode by scanning each recorj jescription entry. The 1efault option 
may be: 

F if all the recorjs are defined as being the same siz8. 

D if the records are :lefine::i as vari'lole in size, or if tb:.: 
RECORD C~NTAINS clause specifies v~riable size records. 
Internally D :node is the equivalent of V moje for EBCDI: 
encoded files. 

DATA DESCRIPTION ENrRIES 

For ASCII files th~ Data Description Entries affected are the 
PICTURE clause, the SIGN clause. ani the USAGS clause. 

For ASCII files all five categories of ::i~ta are v~lij. 

If a ::iata item is numeric, however, and the it~m is signej, tnen 
the SIGN clause with' theSEPARArE CHARACTER option :nust also be 
specified. 

If a data item in an ~SCII file i~ numeric anj h~s a sign, then 
the SIGN clause with the SEPARATE CHARACTER option must be 
speg~f:j.ed. 

For data items in ~S2II files, only the DISPLAY option of the 
USAGE clause is vali::i. 

For ASCII files, there 'lre s~eci~l con3~Jer~tions in L2q~rj to 
Label Declaratives an::i relation con::iitions. 

~ppendiK E: ~S:II :onsijerations 391 



ASCII LABEL Declaratives (Versions 3 and 4) 

Since the user may n~t specify nonstandard labels for an ~SCII 
file, the BEFORE option of the L~BEL PROCEDURE declarative is not 
alloNed. 

392 Supplementary Material 

c 



ASCII Comparisons (Version 3 and 4) 

r---------------------------------------------~--------~-----~--------~1 
I I 
I ,I 
II 
ID~T~ DIVISION. I 
I FILE SECTION. ,I 
IFD ASCII-FILE I 
101 ASCII-RECORD. I 
I 05 ASClI-1 I 
I 05 ASCII-2 I 
I I 
I I 
I I 
IWORKING-STORAGE SECTION. I 
177 IDENT-ASCII PICTURE X(51) VALUE I 
\ " $'()*+,-.10123456789;<=>ABCDEF3HIJKLMNOPQRSTUVWXYZ". I 
177 IDENT-EBCDIC PICTURE X(51) VALUE I 
\ " .«+$*1;-I,>'=ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789". I 
\77 DN-l I 
\77 DN-2 I 
II 

I I 
I I 
IPROCEDURE DIVISION. I 
I I 
I I 
I I 
I TEST-ASCII. I 
I MOVE ASClI-l TO ON-l. I 
I MOVE ASCII-2 TO ON-2. I 
\ TRANSFORM ON-l FROM IOENT_EBCOIC TO I 
I TRANSFORM DN-2 FROM IDENT-EBCOIC TO I 
I IF DN~l IS GREATER THAN OR EQUAL TO I 

( "-
I 

~/ 

1 PERFORM PROCESS-l I 
I ELSE PERFORM· PROCESS- 2. I 
I I 
I I 
I I 
IPROCESS~l. I 
I I 
I I 
I I 
IPROCESS-2. I 
I I 
I I 
L .,... . . . .. : ,.<. .. : •.... :.. ..;:.: .. ' ... :: .. : .... ,,;1 l ____________________________ ~ _________________________________________ J 

Figure 20. Using the rRANSFOR~ Statement Hith ASCII Comparisons 

o 
A~pendix E: ASCII Consi~erations 393 



ARC~I ~or~ (Version 3 anq 4) 

r~~~~~~~~~--~---~~~----------r~~---T-~---~~~~~~-~~ ~~~~-~~~~~~~~~"-~~~~, 

~~r-~-~~-~~~~~~-~~~~~~~~~~~~~~~~~:~~~-~-~-~-~~~~~~ ~!~:~~~~~~~~~=~E~~~~~ 
1, (space) 1. (epace~ . I 
2, (period) 2. ~ (guo~atio~ ~~rk) I 
3. < (less th(in) 3. $~p~rreflc¥~yml?o~).. I 
4. ( (left parentqesi s) 4~ t .. ' ~a.pe~t~qp~7,'l:Iiq~~.~. 
5. ... (plus symbol) " .,,', ··CI9Qta~iq~,·ro·~~)(;)·;i>·';·J.' I 
6. $ (currency symbol) 5. (l~ft par~nt:h.e~is, 
7, ~ (asterisk) 6, (r~ght parentl1~sis r 
8~ (right parenthesis) 7., * (qster;if'lk) 
9, (semicolon) 8~ + (pluS sympol) 

10. ~~yphen. m~nus symnql) 9. ~COmmq) . . 
11. I (stroke, virgqle," 10" (hyphen, min~~ symqo;p I 

slash)' I 1~. • (p!=riQ~, deoimfll' P9~rt. I' 
l~. f (oqrnma) 12. 1 (~t-rok.~,. vir~l'~;t~, ~l.astl~ 
13. > (:J;e=t .. t~J;".tJ~c:\nt...< D·3-22. 0 throllgjl 9 :. , 

I 
. ~4. ··(a.poS't:r;O,?h~rJ3~ng;~; I 23~ f (qemicolon) . I 

,q9qt.a,ttQrr'rn~.t'lt.l:':< I 24, ( (less tnan) . 
15r (equi;l:).. si9n) I 25. ::; (equa ~ sign) 

I lp, I, (quotation mal:"kl I ~b, > (Sfl:"eatel:" tnarq I 
1~7~~2. A th~ough Z 127~52. ~ thl:"oq~h Z I 
I ~3.,q2. 0 througl1 9 I I 
L,~_~ __ ~~ __ ~ ___ , _____ ~ ______ ~ _____ ~~ __ ~~._~_~~ ________ .~-~'-'-.~~~-~'7-i 
Figu~~ 21~ ~BCDIC and ASCII Collating Seguences for COBOL Ch~f~c~ers ~~ 

. in Ascending Order 

For ASCII collatej s~rts. ~~ere ara speoialGon~ideratiooa in 
the ~nvironment Division and in the Data Pivision~ , . 

POl:" ASClI-cOllatedport ...•... , •... S. , .. t .... ,herea,l"e ...... s.I?~ ... ~ ... iaJ.. cpnpideratiQn~ tOf 
toe ASSIGN cla~s€ :?J,no f?J;" .. tb~R~RQ~qta.9§~~, 

The ASSIGN clause ~~ the SEL~CT sent~nc~ fo~ ~ ~prt-file . 
specif~e~ the "se of the ~SCII coll~t~pg s~q~ence tp ·the ~o~~i~~. 
op~rat1on through the !~!~!m;n!m!. Svst~m~nam~ must t~~e ~ha' 
f~llQ~ing form: . 

C~qss[~dev~Ge]-C-name 

C must be encoded in the organ~zat~on fiel~ to snecity tha~ ~~~ 
fil~ is to be sorte~ on the ASCII qo~l~t~ng s~~uen9~. 

rne £!!§.§.. S!§lY;'gg, and !!!m~ ~~el~s h~ve toe same meaQd,ng~ t;.PfY 
~ave for SQ~~-fileSy~te~-p. ~me .. s ~or ~.,B~pIC. files, aqd. ca. h. be qp~~ 
~Q d~~cribe the SOl:"t ~prk fi~es. HD~eve~f e~¢~~t for t~e . 
orgapization fiel~. the compi~er t~eats the system~na]e ~s 
comments. 

NO~§l; F6~ an ~SCI~ cOll~te~ sort, the bQf~er Q!~~~£ fiet4 ae 
!~!t~m~n~m~ is not per~i~ted. 

3aq ~qpplementary MateriaJ 



(' I 

~// 

o 

ASCII Sort (Versions 3 and 4) 

Checkpoint recor~s f~r ~SCII collatea sort~ can be taken. 
However, the ~y§.~g!!!=m~.illg specified in the RERUN clause must not 
specify an ASCII enco:lea file. 

DATA DIVISION 

For ASCII-collated s~rts, there are special considerations for 
the SIGN clause and for the USAGE clause. 

If an S is specified in the PICTURE of a numeric item td be used 
as a· sort key in an ASClI-collat.ed sort, the SEPARA'rE option of the 
SIGN clause must be specif~ed. 

If an ASCII-collated s~rt is requested, the sort keys must, 
explicitly or implicitly, be DISPLAY items. 

Appendix E: AS:II :onsiderations 395 



c 



'c. 

Symbolic Debugging (Version 4) 

Program Product Information (Version 4) 

A programmer using the Full Americ~n N~tion~l Stan~ar~ COBOL 
Compiler, Version 4, un~er the IBM Operating System, has several 
metho~s available to hin for testing ~n~ debugging his programs. 
Use of the symbolic debugging features is the easiest and most 
efficient method for testing an~ ~ebugging ~n~ is ~escribed in 
~etail in this appen~ix. 

If symbolic debugging is in effect, a symbolic formatted ~ump of 
the object program's ~ata area is produced when the program 
abnormally terminates. rhis option also enables the 

~ynamic dumps of specified ~ata-names ~t 
am execution. ,', "",' '," 

Not~: The terminating program need not have been compiled with the 
symbolic debugging option. 

The abnormal termination dump consists of the following p~rts: 

1. An abnormal termin~tion message, including the number of ~he 
statement an~ of tne verb being execute~ ~t the time of ~n 
abnormal termination. 

2. Selected areas in the rask Global rable. 

3. A formatted ~ump of the Data Division including: 

(a) For an SD -- the card number, the sort-file-name, the 
type, and the sort record. 

(b) For an FD -- the card number, the file-name, the type, the 
DDname, the DECB ~nd/or DCB status, the contents of the 
DECB and/or DCB in hexadecimal, and the fields of tne 
record. 

(c) For an RD -- the car~ number, the report-name, tne type, 
the report line, ~n~ the contents of PAGE-COUNTER and 
LINE-COUNTER if present. 

(e) For an index name -- the name, the type, and the contents 
in decimal. 

The operation of the symbolic ~ebugging option is ~etermine~ by 
two types of control car~s placed in the input stream: 

Appendix F: Symbolic Debugging Features (Version 4) 397 



Prograrn-Control/Line-Control Cards (Version 4) 

Program-control car~ -- require~ if abnormal termination 
and/or dynamic ~un~s are requested. 

Line-control car~ 
requeste:1. 

requirej only if ~ynamic dumps are 

PrQgf~ffi=~QntfQl_~~f~~: ~ program-control car~ must be ~resent at 
eKecution time for any program requesting symbolic debugging. ~ 
~rogram-control car~ must contain the following information: 

The 1-8 character ~rogram-name of the COBOL program compiled 
using symbolic debugging. 

The DDname assi~ne~ to the file produced at compile time on 
SYSUT5. 

Additional o~tional parameters can also be specified: 

~n entry used to provide a trace of a program-name when 
several programs are link edite~ together. Each time the 
specified program is entered, its program name is displayed. 

Two formats of the Data Division area in the abnormal 
termination ~um~ are allowe~: 

1. Level-01 items are provided in hexadecimal. Items 
subordinate to level-01 items are printed in EBCDIC if 
possible. Level-77 items are printed both in 
hexadecimal and EBCDIC. 

2. Level-77 items and items subor~inate to level-01 items are 
provided in EBCDIC. If these items contain unprintable 
characters, heKadecimal notation is provided. rhis is the 
default option. 

Line-control Car~s: ~ line-control car~ must contain the following 
information:------

rhe card number associated with the point in the Procedure 
Division at Nhich the ~ynamic dum~ is to be taken. rhe number 
specified is either the compiler-generated car~ number, or, if 
NUM is in effect, the user's number in source card columns 1 
through 6. 

The specified card number must be that of a card containing 
a section-name, procedure name, conditional verb, or imperative 
verb. The verbs are listed in "Part IV -- Procedure Division" 
of this manual, under Categories of Statements. 

Additional optional ~arameters can also be specified: 

rhe pOSition of the verb in the specifie~ line number at which 
the dynamic dum~ is to be taken. When the verb position is 
not specified, the first verb in the line is assumed. ~ny 
verb position not excee~ing 15 may be specified. 

~n equivalent to the COBPL statenent "ON n ~ND EVERY m GNrIL k 
" rhis option limits the requested dynamic ~umps to 

specified times. For example "ON n" results in one dum~, 
produced the nth time the line number is reached during 
eKecution. "ON n ~ND EVERY m" results in a dump the first 
time at the gth execution of the specified line number, an~ 
thereafter at every ~th execution until end-of-job. 

rwo formats of the,Data Division areas displayed in the 
~ynamic dump are aiiowed: 

1. Level-Ol items are provided in heKadecimal. Items 
subordinate to level-Ol items are provided in EBCDI:, if 
possible. Level-77 items are provided both in hexadecimal 
and EBCDIC. 

398 Supplementary Material 

(~ 

\ 

c 



c. 

L
/'--· \ 

./ 

o 

TESTRUN Sample Program (Version 4) 

2. Level-77 items an:'! items subor:,!inate to level-01 items are 
provided in EBCDIC. If these items contain unprintable 
characters, heKadecimal notation is provided. Note that 
if a group iten is specifie:'!, neither the group nor the 
elementary items in the group are provi:'!ed in heKa1ecimal. 
This is the :'!efault option. 

Selected areas of the Data Division to be dumped. A single 
:lata-name or a range of consecutive :'!ata-names can be specified. 
(If the programmer wishes to see a subscripted item, he specifies 
the name of the item without the subscript; this results in a dump 
of every occurrence of the subscripte:'! item.) 

A dump of everything that would be dumped in the event of an 
abnormal termination can also be specified. rhis allows the 
programmer to receive a formatted dump at normal end-of-job. ro:'!o 
this, the pr~gra.[1\mer::,:t\l:ls.t;:., ... spEpSi.fy ... , ... t;t}~i genera ted statement number of 
the STOP RUN,' G()BAC~f:·Pt':EXIT:PR()GRA.~\ statement. 

~) •. ,,;>p;':.:.: <' .• ':'" '.,-('." , .. ",; .. :.}, ". ;.:.: ;.,,:; ........ , .• :,;' ", <, .. ~';:,: .. ',. L. '~.:.:~ : .. ~.:.::,,:::::; ;:,;: .;>.,:':~". ';i/,: .. ;.,;,;;.: ::~}~ 

Figure 22 is an illustration of a program that utilizes the 
symbolic debugging features. In the following description of the 
program and its output, letters identifying the text correspond to 
letters in the program listing. 

® 

® I 

® 

Because the SYMDMP option is requeste:'! in the P~RM parameter 
of the EXEC carq, the logical unit SYSUr5 must be assigned at 
compile time. 

The PARM parameter specifications on the EXEC in:,!icates that 
an alphabetically ordered cross-reference dictionary, a flow 
trace of 10 procedures, and the symbolic :'!ebug option are 
being requeste:'!. 

An alphabetically ordered cross-reference dictionary of 
data-names and proce:'!ure-names is produce:'! by the compiler as 
a result of the SXREF specification in the P~RM parameter of 
the EXEC car:'!. 

rhe file assigne:'! at compile time to SYSUr5 to store SYMDMP 
information is assigned to DD1 at execution time. 

The SYMDMP control cards place:'! in the input stream at 
eKecution time are printe:'! along with any :'!iagnostics. 

~ The first card is the program-control car:'! where: 

(a) TESTRUN is the PROGRAM-ID. 

(b) DOL is the DDname on the file SYSUr5. 

The second car:'! is a line-control car:'! which requests a 
(HEX) formatted 1ynamic dump of KOUNr, NAME-FIELD, 
NO-OF-DEPENDENrS, an:'! RECORD-N~ prior to the first and 
every fourth eKecution of generated card number 70. 

The thir:'! card is also a line-control card which requests 
a (HEX) formatte:'! dynamic :'!ump of WORK-RECORD an:'! B prior 
to the eKecution of generate:'! card number 81. 

The type code combinations used to i:'!entify data-names in 
abnormal termination an:'! dynamic :'!umps are defined. 
Individual codes are illustrated in Taole 28. 

Appendix F: Synbolic Debugging Features (Version 4) 399 



Debugging TESTRUN (Version 4) 

® 
® 
(!) 

o 

® 

® 

® 
® 

The dynamic dumps requested by the first line-control card. 

The dynamic dumps requested by the seconj line-control card. 

Program interrupt information is providej by the system when a 
program terminates abnormally. 

The statement number information indicates the number of the 
verb and of the statement being eKecuted at the time of the 
abnormal termination. The name of the program containing the 
statement is also provided. 

~ flow trace of the last 10 procedures eKecuted is provided 
because FLOW=10 was specified in the P~RM parameter on the 
EXEC card. 

Selected areas of the Task Global Table are provided as part 
of the abnormal termination dump. 

For each file-name, the generated card number, the file type, 
the file status, the file organization, the DCB status, and 
the fields of the DCB and DECB, if applicable, are provided. 

The fields of records associated with each FD are provided in 
the format requested on the program-control card. 

The contents of the fields of the Working-Storage Section are 
providei in the format requested on the program-control card. 

The value associated with each of the possible subscripts is 
provided for data items described with an OCCURS clause. 

~sterisks appearing within the EBCDIC representation of the 
value of a given field indicate that the type and the actual 
content of the field conflict. 

Note: When using the S~MDMP option, level numbers appear 
"normalized" in the symbolic dump produced. For eKample, a group 
of data items described as: 

01 RECORDA. 
05 FIELD-~. 

10 FIELD-~l PIC X. 
10 FIELD-~2 PIC X. 

will appear as follows in SYMDMP output: 

01 RECORDA ••• 
02 FIELD-A ••• 
03 FIELD-Al ••• 
03 FIELD-~2 ••• 

1. Reference to the statement number information aD provided by 
the SYMDMP option shows that the abend occurred during the 
eKecution of the first verb on card 81. 

2. 3enerated card number 81 contains the statement 
COMPUTE B = B + 1. 

3. Through verification of the contents of B at the time of the 
abnormal termination ®, it can ,be seen that the usage of B 
<numeric packed) conflicts with the value contained in the 
data area reserved for B <numeric display). 

400 Supplementary Material 

C'''' 
./ 



c 

o 

Symbolic Debugging Codes (Version 4) 

4. The abnormal termination occurre~ Nhile trying to perf~rm an 
addition on a ~isplay item. 

More complex errors may require the use of ~ynamic dumps t~ 
isolate the problem area. Line-control cards are included in 
TESTRUN merely to illustrate how they are use~ and the output they 
produce. 

-Table 28. Individual Type Codes Used in SYMDMP Output 
r----------T-----------------------------------------------------------1 
I Code I Meaning I 
~----------+-----------------------------------------------------------~ 

~ I ~lphabetic 
B I Binary 
D I Display 
E I Edited 
* I Subscripted Iten 
F I Floating Point 
N I Numeric 
P I Packed Decimal 
S I Signed 
OL I overpunch Sign Leading 
or I overpunch Sign Trailing 
SL I sepaiit~ sign Leading 
ST I Separate Sign Trailing __________ ~ ________________________ ~ __________________________________ J 

~ppendiK F: Symbolic Debugging Features (Version 4) 401 



TESTRUN Output (Version 4) 

Figure 22. 

IEF298I DEBUG SYSOUT=U. 
//DEBUG JOB 7074722674,'0. D~VIDSON',MSGLEVEL=l,MSGCLASS=G 
//JOSLIB DO DSN=DUMMYOS,UNIT=2314,VOL=SE~=DC156.DISP=SHR 
// DO DSN:;PRODVERII.OISP=SHR fi".-/ / EXE.C UCOBIICLG. P~RM. COB=' OAAP, PAAP, SXREF, FLOW= 10, SYMDMP. QIJOTE, NORES' 

\!I XXCOB EXEC PGM=IKFCBLOO.REGION=80K,P~M=(LO~DI 
//COB.SYSPRINT DO SYSOUT=G,OUTLIM=1000 
X/SYSPRINT DO SYSOUT=U,OUTLIM=1000 
XXSYSUDUMP DO SYSOUT=U,OUTLIM=1000 
XXSYSUT1 DO SPI\.CE= (CYL, ClO, 21 I, UNIT=;;!314 
XxSYSUT2 DD SPACE= (C~L, (10,2)), UNIT= (23111, SEP=SYSUT11 
XXSYSUT3 DO SP~CE=(CYL,UO,211,QNIT=(23111,SEP=(SYSUT1,SYSUT211 

~~ XXSYSUTII DD SP~CE= (CYL, (10,2) I, UNIT= (2314, SEI'= (SYSUT1, SYSUT2, SYSU'l'3)) 
\.!r--//COB. SYSUT5 DO OSNAME=HUT5, UNIT=SYSD~, SP~CE=(TRR, ClOO, 10)), 

// OISP=(NEW, P~SS) 
X/SYSUT5 DD S»~CE=(CYL, (10,21 I, UNIT=2311i, OSN='SYMOBG, OISP=(NEW, PASSI 
XXSYSLIN DD DSN=&LOADSE.T, DISP= (MOD, PASS), UNIT=2 314, SPACE= (CYL, (10,21) 
(/COB. SYSIN DO • 

Symbolic Debugging Option: TESTRUN <Part 1 of 11) 

402 Supplementary Material 

00000010 
SMF 

OOOOOSMF 
OOOOOSMF 
00000040 
00000050 
00000060 
00000070 

00000080 
00000090 



c.) 

o 

TESTRUN Output (Version 4) 

IEC130I SYSLIB DD STATEMENT MISSING 
IEF373I STEP ICOB I START 72144.0024 
IEF374I STEP ICOB I STOP 72144.0029 CPU OMIN 04.09SEC MAIN 78K LCS OK 
STEP COB ENDED. COMP CODE 0004 CORE REQUSTED= ooeOK. CORE USED= 0078K. 
XXLKED EXEC PGM=IEWL,PARM=(XRLF,LIST,LETI,COND=(5,LT,COBI, 00000100 
XX REGION=96K 00000110 
XXSYSLIN DO DSN=&LOADSET,DISP=COLD,DELETEI 00000120 
xx DO DDNAME=SYSIN 00000130 
XXSYSLMOO OD OSN=&GODA'IACRUNI,DISP=CNEW,PASSI, 00000140 
xx UNIT=2314,SPACE=(1024,C50,20,1» 00000150 
IILKED.SYSLIB DO DSN=NEWSYMJB,UNIT=2314.VOL=SER=DC157,DISP=SHR 
X/SYSLIB DO DSN=SYS1.DYNAMLIB,DISP=SHR 
II DD DSN~£=SYS1.DYNAMLIB,DISP=SHR 

XI DO DSN=SYS1.TELCMLIB,DISP=SHR 
XXSYSUT1 DD UNIT= (2314,SEP= (SYSLIN, SYSLMODI I. SPACE= (1024, (50,201) 
IILKED.SY3PRINT 00 SYSOUT=G,OUTLIM=1000 
X/SYSPRINT DD SYSOUT=U,OUTLIM=1000 
XXSYSUDUNP DO SYSOUT=U,OUTL1M=1000 

IEF3731 STEP iLKED I START 72144.0029 

00000160 

00000170 
0000018 0 

SMF 
OOOOOS!'.F 
OOOOOSMF 

IEF3741 STEP ILKED I STOP 72144.0030 CPU OMIN 00.67SEC !'Alil 96K LCS OK 
STEP LKED ENDED. COMP CODE 0000 CORE REQUSTED= 009bK. CORE USED= 0096K. 
XXGO EXEC PG~= •• LKED.SYSLMOD,COND=((5,LT,COBI, (5,LT,LKEDII 00000210 
IIGO.SYSUDUMP DO SYSOUT=G,OUTLIM=1000 SMF 
X/SYSUOUMP DD SYSOUT=U,OUTLIM=1000 OOOOO~MF 
XXSYSDBOUT DD SYSOUT=U,OUTLII",=1000 OOOOOSI';F 

I'jj'\----.-IIGO. DOl DO DSIl="UTS, UIHT=SYSuA, DISP=(oLD, DELETE) 
~X/DOl DO DSN=&SYMDBG,DISP=(OLD,DELETE) 00000240 

IIGO.SAMPLE DO UNIT=2400,LABEL=(,NLI,DISP=INEW,DELET~I,VOL=SER~TEhTEH 
IIGO.SYSOUT DD SYSOUT=G,OUTLIM=1000 S~F 

IIGO.SYSDBOUT OD SYSOUT=C"OUTLIM=1000 Sl-'F 
IIGO.STEPLIB DO DSN=NEWSYI1JR,UNIT=2314,VOL=SEF=DC157.0ISP=SHR 
II DO DSNA¥£=SYS1.~YNAMLIB,DISP=SHK 

IIGO. SYSDBG DO 
II 

Figure 22. Symbolic Debugging Option: TESTRUN (Part 2 of 11) 

MU= 2,02 

[·10= .00 

A.ppendix F: Symbolic Debugging Features (Versio~ 4) 403 



TESTRUN Output (Version 4) 

IEC130I SYSDTERM DO STATEMENT MISSING 
A 0001 [~YC 0 
B 0002 NYC 1 
C 0003 NYC 2 
o 0004 NYC 3 
E 0005 .NC 4 
F 0006 NYC 0 
G 0007 NYC 1 
H 0008 NYC 2 
I 0009 NYC 3 
IEF460I WTP MESSAGE LIMIT EXCEEDED 
COMPLETION CODE - SYSTEM=OC7 USER=OOOO 
IEF242I ALLOC. FOR DEBUG GO AT ABEND 
IEF237I 136 ALLOCATED TO JOBLIB 
IEF237I 355 ALLOCATED TO 
IEF237I 240 ALLOCATED TO PGM=*.DD 
IEF237I 242 ALLOCATED TO SYSUDUMP 
IEF237I 242 ALLOCATED TO SYSDBOUT 
IEF237I 2111 ALLOCATED TO DOl 
IEF237I 282 ALLOCATED TO SAMPLE 
IEF237I 242 ALLOCATED TO SYSOUT 
IEF237I 242 ALLOCATED TO SYSDBOUT 
IEF237I 137 ALLOCATED TO STEPLIB 
IEF237I 355 ALLOCATED TO 
IEF237I 241 ALLOCATED TO SYSDBG 
IEF285I DUMMYOS PASSED 
IEF285I VOL SER NOS= DC156 • 
IEF285I PRODVER4 PASSED 
IEF285I VOL SER NOS= DC160 • 
IEF285I SYS72144. T002347.RVOOO.DEBUG. GODATA PASSED 
IEF285I VOL SER NOS= 231400. 
IEF285I SYS72144.T002347.SVOOO.DEBUG.ROOOOOll SYSOUT 
IEF2B5I VOL SER NOS= 231402. 
IEF285I SYS72144. T002347. SVOOO. DEBUG. R0000012 SYSOUT 
IEF285I VOL SER NOS= 231402. 
IEF285I SYS72144. T002347.RVOOO. DEBUG. UT5 DELETED 
IEF285I VOL SER NOS= 231401. 
IEF285I SYS72144. TOO 2347. RVOOO. DEBUG. R0000013 DELETED 
IEI'285I VOL SER NOS= TESTER. 
IEF285I SYS72144. T002347. SVOOO. DEBUG. R0000014 DELETED 
IEF285I VOL SER NOS= 231402. 
IEF285I SYS72144. T002347.SVOOO. DEBUG. R0000015 DELETED 
IEF285I VOL SER NOS= 231402. 
IEF285I NEWSYMJB KEPT 
IEF285I VOL SER NOS= DC157 • 
IEF285I SYS1.DYlIAMLIB KEPT 
IEF285I VOL SER NOS= DC160 • 
IEF285I SYS72144.T002347.RVOOO.DEBUG.S0000016 SYSIN 
IEF285I VOL SER NOS= 231401. 
IEF285I SYS72144. T002347. RVOOO. DEBUG. S0000016 DELETED 
IEF285I VOL SER NOS= 231401. 
IEF373I STEP /GO / START 72144.0030 
IEF374I STEP /GO / STOP 72144.0033 CPU OMIN 03.20SEC MAIN 52K LCS OK 
STEP GO ENDED. CCMP CODE 00C7 CORE REQUSTED= 0052K. CORE USED= 0052K. 
IEF285I DUMMYOS KEPT 
IEF285I VOL SER NOS= DC156 • 
IEF285I PRODVER4 KEPT 
IEF2851 VOL SER NOS= DCl60 • 
IEF2851 SYS72144.T002347.RVOOO.DEBUG.GODATA DELETED 
IEF285I VOL SER NOS= 231400. 
IEF375I JOB /DEBUG / START 72144.0024 
IEF376I JOB /DEBUG / STOP 72144.0033 CPU OMIN 07. 96SEC 
JOB DEBUG ENDED. CODE= 00C7 JOB READ IN AT 00.40 ON 72144 JOB STRTED AT 00.41 

* * * THIS JOB WAS RUN ON MODEL 65NG 

r·m= 1. 16 

ON 72144 JOB ENDED A'l' 00.!>6 

Figure 22. Symbolic Debugging Option: TESTRUN <Part 3 of 11) 

404 Supplementary Material 

"'" 

ON 72144 



L 

c) 

o 

TESTRUN Sample Program (Version 4) 

I'P 5714-CB2 VII LVL76 IBII os AIIERICAN NATIONAL STANDARD COBOL 

IKF00111-11 SYSLII! NOT USABLE. COIIPlLATtON ::ONTI:IUING. 
SLHDIIP 7 X 
S LBDIIP H X 

2 

00001 
00002 
00003 
000011 
00005 
00006 
00007 
00008 
00009 
000 10 
00011 
00012 
000 13 
000111 
000 15 
00016 
00017 
00018 
00019 
00020 
00021 
00022 
00023 
00024 
00025 
00026 
00027 
00028 
00029 
00030 
00031 
00032 
00033 
000311 
00035 
000]6 
00037 
0003B 
00039 
000110 
000111 
000112 
00043 
000411 
00045 
00046 
00047 
00048 
00049 
00050 
00051 
00052 
00053 
00054 
00C55 
00056 
00057 

100010 
100020 
100030 
1000110 
100050 
100060 
100070 
100080 
100090 

100100 
100110 
100120 
100130 
1001110 
100150 
100160 
100170 

100 180 
100190 
100200 
100210 
100220 
100225 
100230 
1002110 
100250 
100260 
100270 
100280 
100 290 
100300 
100310 
100320 
100330 
1003110 

100350 
100360 
100370 
100175 
100380 
100395 
100405 
1001110-
1001120 
1001140 
100450 
1001160 
1001170 
100480 
1001190 
100500 
100510 
100520 
100521 

Figure 22. 

IDENTIFICATION DIVISION. 
PROGRAPI-Ill. TESTBUN. 

AUTIIOH. PROGRAIIIIER NAIIE. 
INSTALLATION. NEW YORK PROGRA!I!'IING CENTER. 
DATE-WRITTEN. JULY 12. 196B. 

DATE-COIIPILED. JAN 6.1972 
RE!'IARI\S. THIS PROGRA!'I HAS BEI'N WRITT l'N AS A SAIIPLE PROGRAII I'JR 

COBOL USERS. IT CREATES AN OUTPUT PILE AND READS IT BACK 1.5 
INPUT. 

ENVIRONIIENT DIVISION. 
CON PIGUR ATION SECTION. 

SOURCE-COIIPUTER. 1 E!'I-360-H50. 
OBJ ECT-CO!'lPUTER. IBII- 360-H 50. 

INPUT-OUTPUT SECTIOL 
PIL E-CONTROL. 

SELECT I'1L£-l ASSIGN TO UT-21100-S-SAIIPLE. 
SELECT 'FILE- 2 ASSIGN TO UT-21100-S-SAIIPLE. 

DATA CIVISIOlf. 
'FILE SECTION. 
H FILE-l 

lABEL RECORDS ARE O!'lITT£D 
BLOCK CONTAINS 100 CHARACTERS 
RECORD'CONTAINS 20 CHARACTERS 
RECORDING !'lODE IS I' 
DATA RECORD IS RECORD-l. 

01 RECORD- 1. 
02 PIELD-A PICTURP IS X (20). 

Fe FILE- 2 
lABEL RECORDS ARE OIlITTED 
BLOCK CONTAINS') RECORDS 
RECORD CONTAINS 20 CHARAC1'F.RS 
RECORDING IIODE IS P 
DATA RECORD IS RECORD-2. 

01 RECORD-2. 
02 I'1ELD-A PICTURE IS X (20). 

WORKI NG- STORAGE SECTION. 
77 KOUNT PICTURE S9'l COMP SYNC. 
77 NOIIRPcR . PICTURE S'l9 COIIP SYNC. 

a 1 FILLER. 
02 ALPHABET PICTURE X(26) VALUE "ABCDEPGHIJKLI'INOPQRSTUVWXYZ". 
02 ALPHA REDEPINES ALPHABET PICTURE X OCCURS 26 TIllES. 
02 DEPP!NDEHTS PICTURE 1(26) VALUE "012340123110123110123401234 
"0". 
02 DEPEND REDEFINES DEPENDENTS PICTURE X OCCURS 26 TIllES. 

01 WORK-RECORD. 
02 RAIIE-PIELD PICTU RE X. 
02 PILLER PICTURE X VALUE IS SPACE. 
02 RECORD-NO PICTURE 99'l9. 
02 l'ILLE& PICTURE X VALUE IS SPACE. 
02 LOCATION PICTURE AAA VALUE IS "NYC". 
02 PTIoLER PICTURE X VALUE IS SPACE. 
02 NO-OP-DEPENDENTS PIcrURE xx. 
02 FILLER PICTURE 1(7) VALUE IS SPACES. 
01 RECORDA. 

Symbolic Debugging Option: TESTRUN (Part 4 of 11) 

DATE .HIt 6.1972 

Appendix F: Symbolic Debugging Features (Version 4) 405 



TESTRUN Output (Version 4) 

(l005A 
00C59 
00060 
00C61 
00062 
OOCe3 
0006 .. 
00065 
(l0066 
00067 
0006A 
00069 
00070 
00071 
00072 
00C73 
0007 .. 
00075 
00076 
00077 
0007A 
00079 
00080 
00081 
00082 
000S3 
0008 .. 
00080; 
00086 

1B 

1000;22 02 .A PICTURF. S9(1I) VALUr. 12311. 
100523 02 B REIlEF'INES A PIcrnRF 59(7) COIIPIJUTIONAL-3. 
100530 PROCFIlURE DIVISION. 
1000;/10 BEGI N. READY TRACF.. 
100550 NOTI' THAT THE FOLLOWING OPENS THE OUTPUT FILE TO BE CREATED 
100560 AND INITIALIZES COUNTPRS. 
100570 STEP-1. OPEN OUTPUT FILE-I. IIOVP ZERO TO KOUNT NOIIIIER. 
100560 NOTE THAT THE FCLLOWING CRFATES INTERNALLY THF. RF.CORDS TO liE 
100590 CONTAINED IN THE F'ILF.. WRITF.S THP-II ON TAPE. AND illS PLAYS 
100600 THEil ON THE CONSOLE. 
100610 STEP-2. ADD 1 TO KOUNT. ADD 1 TO NOIIBER. /lOVE ALPHA (KOUNT) TO 
1 C0620 NAIIE-F'IF.LIl. 
100630 IIOVE DEPEND (KOUNT) TO NO-OF-DEPENDENTS. 
1006 .. 0 IIOVE NCIIBE R TO RECORD-NO. 
100650 ST!P-3. DISPLAY WORK-RECORD UPON CONSOLE. WRtTE RECORO-l PROII 
100660 IICRK-I<ECCRD. 
100670 STEP-/l. PERF'ORII STl':P-2 THRU STEP-3 UNTIL KOIJNT IS EQUAL TO 26. 
100680 NCTE TIIAT THE FOLLOWING CLOSES OUTPUT AHD RF.OPFNS IT AS 
100690 INPUT. 
100700 STEP-5. CLOSE PILE-I. OPEN INPUT FILE-2. 
100710 NOTF THAT THE FOLLOWING RF.ADS lUCK THE HLP. AND SINGLES our 
100720 EI'!PlCYEES WITH NO DEPFNIlENTS. 
100730 STEP-6. READ FILE-2 RECORD INTO WORK-RECORD AT END GO TO STEP-B. 
100731 COI!PUTE B = B + 1. 
1007/10 STEP-7. IF NO-Of-DEPENDENTS IS EQUAL TO "0" PlOVE "Z" TO 
100750 NO-Of-DEPENDENTS. EXHIBIT NA/IED WORK-RECORD. GO TO 
100760 STI!P-6. 
100770 STEP-6. CLOSE FttE-2. 
100780 stop RUN. 

CD ::ROSS-REFERENCE DICTIONARY 

DATA N &Ins DEF'N REFERENCE 

A 00005S 
ALPHA 00001l1l 000066 
ALPHAUT 0000113 
B 000059 0000A1 
DEPUD 0000117 000070 
DEPENDENTS 0000/15 
I'HLD-J 000029 
PIELD-J 000037 
PILI!-1 000017 00006/1 000072 000077 
I'ILE-2 000018 000077 000080 000085 
KOUIIT 0000/10 000061l 000068 000070 0000711 
LOCATION 000053 
lIAlI!-FHU 0000/19 000068 
1I0-0F- DEPE HOE NTS 000055 000070 000082 
Ie III! I!B 0000/11 0000614 000068 000071 
RECORD-NO 000051 000071 
SECOBD-1 000028 000072 
RECORD-2 000036 000080 
BI!COBDI 00000;7 
IIORK-RECORD 0000/18 000072 000060 OOOOA3 

Figure 22. Symbolic Debugging Option: TESTRUN (Part 5 of 11) 

406 Supplementary Material 

(~ 

c 



TESTRUN Output (Version 4) 

c_-

19 

PROC~O un HAilES DEPN 'RE1'I'HNCE 

llEGU 000061 
STEP-1 C 000611 
S'fEP-2 000068 0000711 
STEP-) 000072 0000711 
S'IEP-II 0000'711 
ST'P-<; 000077 
SUP-Ii OOOORO 000083 
ST !P-7 000082 
StEp- f! OOOOR '5 ooooao 

20 

CABO ERROR I'IESSAGE 

se IKP21901-\i PICTURE CLAUSF! IS SIGNED, VUUF CLAUSE UNSIGNED. ASSUIIED POSITIVE. 

I' HASE PILE1 PILE2 FIU3 I'ILEIl FILES 
1 00000000 00000000 OOOOOJIlC 00000000 00000000 
2 COOOOOOO 00000000 00000000 00000000 00000000 
) 00000000 00000206 00000000 00000000 00000000 
II 00000000 00000000 00000000 OOOOOIlOA 00000000 
5 00000000 00000000 000002C1 00000000 00000000 
6 00000000 00000000 00000000 000003V.F 00000000 
7 00000000 00000000 00000000 00000000 OOOOOqOO 
f! 00000000 00000000 00000351 000000711 00000000 
9 00000<;00 00000000 00000000 00000000 00000000 , 00000000 00000000 00000000 00000000 00000000 
B 00000000 00000B3C OOOOOOJ<; 00000000 00000000 

C~\ 
C 00000011 00000000 000002qli 00000001 00000000 
D 00000000 00000000 COOOOOOO 00000000 oooeoooo 
E 00000000 oeoooooo 00000000 00000000 00000000 
F 00000000 00000783 COOOOOOO 000000E2 00000000 
G 000C01 EB 00000000 00000 11 q 00000000 00000000 

00000000 00000000 oooooooe 00000000 00000600 

Figure 22. Symbolic Debugging Option: TESTRUN <Part 6 of 11) 

o 
Appendix F: Symbolic Debugging Features (versio~ 4) 407 



TESTRUN output (Version 4) 

(!)--rfSTRUR, [[1 

(!}-70,ON 1,4, (HEI) ,KOUNT ,NArlE-FIElD ,NO-OF-DEOE HDENTS ,RECORD-NC 

@-81, (HE J) ,IICRII-FECCRD, e 

TESTRUN UNIDENTIFIED ElErlENTS ON CONTROL CARDS 

UP160I 70 IDENTIfIER NOT FOUND 

TESTFUN IT CARe 000070 
LOC CARD LV NAIIE 

@-o00778 000040 11 KOUNT 

o DOH8 000049 02 NAIH-fIElD 

OD078A oe0051 02 RECOliD-NC 

TESTllUN AT CAR [ 000070 
tOC CARD lV RAilE 

000778 000040 17 KOUNT 

000788 000049 02 NAIIE-fIElD 

ODC7BA 000051 02 FEC01<D-NO 

THUUN J'I CARe 000070 
LCC CABO LV NAil £ 

ODC778 000040 17 KCUNT 

OD07B8 000049 O~ NAIIE-FIEll1 

CODE 

AN 
ANE 
o 
DE 
F 
FD 
NE 
NB-S 
NO 
ND-Ot 
ND-OT 
ND-SL 
ND-ST 
NE 
NP 
NP-S 

001 ERRORS FOUND IN CONTROL CnDS 

CD-TYPE CODES USED IN SYIIDrlP OUTPUT 

rlFANING 

ALPHABETIC 
ALPHANUIIERIC 
ALPHANUIIP.RIC EDITED 
DIS PLAY (ST ERLING NON REPORT) 
DISPLA 1 EDITED (STERLI NG REPORT) 
FLOATING POINT (COIIP-1/COIIP-2) 
FLOATING POINT DISPLAY (I'!XTERNAL PLOATING POINT) 
NUIIERIC BINARY UNSIGNED (COrlP) 

= NUIIERIC BINARY SIGNED 
,. NUIIFRIC DISPLAY UNSIGNED (EXTERNAL DECIIIAL) 

NUIIERIC DISPLAY OVERPUNCH SIGN LfADING 
NUrlFRIC DISPLAY OVERPUNCH SIGN TUILnG 
NUIIERIC DISPLAY SEPARATE SIGN LEADING 
NUIIFRIC DISPLAY SEPARATE SIGN TRAILING 
IiUIIERIC EDITI'!D 
NUrlERIC PACKEe DECIIIAL UNSIGNED (COIIP-J) 
NOIIERIC PACKED DECIIIAL SIGNED 
SUBSCRIPTED 

TYPE VAtUI' 

NB-S +01 
(HEX) 0001 

AN 

NC •••• 
(HE X) 47'iOCOFE 

TYPE VALUE 

NR-S +O'i 
(HEX) 000'3 

AN 

Nt 0004 

TYPE VALUP. 

NE-S +09 
(HEX) 0009 

liN 

Figure 22. Symbolic Debugging Option: TESTRUN (Part 7 of 11) 

408 Supplementary Material 

,~ 
\ 

'-. 

c 



TESTRUN Output (Version 4) 

L/ UD!;/IlA U(;IlU~1 Ul RECCRD-1I0 Nt UOOII 

TH1RON AT CARt 000070 
Lee ClRC LV NAil! TYPE VUOE 

ODC778 oeo 04 0 77 I!COJT NP.-S +13 
(HE X) ooon 

00 C ill e 000049 02 NAIIE-FIE1D AN 

o D07EA 000051 02 RECORD-NO 110 0012 

TESTBON AT CARD 000070 
LOC CARD tv IIA liE TYPE VALOE 

000778 000040 17 KOOIlT NB-S +17 
(HEX) 0011 

o t07l!8 000049 02 lUll E-fIELn AN 

ODCiBA 000051 02 RECODD-NO Nt 0016 

tES'fR ON IT CADt 000070 
Lec e IDD LV NAIIE TIPE VALOE 

OD077B oe0040 77 1I00NT N!!-S +21 
(HE X) 0015 

ODOiB 8 000049 02 IIA liE-FIE 10 AN 

OC07U 000051 02 RICORD-NO Nt 0020 

TEST ROil IT CARt 000070 
LOC CARD LV NAIIE TYP~ VALOE 

000178 000040 77 1(0 011 T NB-S +25 
(HEX) 001Q 

OD07B8 000049 02 IIAIH-fIELD All T 

OD07BA 000051 02 RECCDD-1I0 110 0024 

",' 

®-US'IROIi ( \ 
AT cnD 000081 

~/' 
Lee ORO LV IIA11E TYPF. VALOE 

000048 01 WORK-BECOR 0 
ODC7B 8 (REX) C140F01"O 1"01'14005 E8C3401"O 40404040 40404040 
000788 000049 02 UII E- fI EL 0 All A 
OD07B9 000050 02 FILLER AM 
o DOnA 000051 02 BIlCORn-1I0 110 0001 
ODC7DE 000052 02 FIllER AN 
o D071!l' 000053 02 LOCATIOIl A NYC 
ODOiC2 000054 02 FIllER AM 
o D07C3 000055 02 NO-OP-DEPENDENTS All 
OD07CS 000056 02 FILtER 1\11 

0007[0 000059 02 B IIP-S ·1·2·3· 
(HEX) P1F2PlC4 

Figure 22. Symbolic Debugging Option: TESTRUN (Part 8 of 11) 

o 
l\ppe ndi x r': Syrnoolic Debugging FeatUres (Versio~ 4) 409 



TESTRUN Output (Version 4) 

COBOl.; AB!IIP OIAGlfOSTIC AIOS 

Q)--PBOGRAII 'tESTRDII 

CCULE'l'IOIt COC! .. oc7 LAST PSI! BEPORI'! ABUO .. PPDo;000000000A06 

(D-UST CUD "OftB!R/VUB ~UI!BER EXECOtl!C -- CUD ItOft8ER 000001/VERB "OftIlI!R 01. 

nOli TR~CE 
@--'l'ESTRUII 000068 000072 0000e8 000072 000068 000072 000068 000072 000077 000090 

(!)--tASK GLOBAL TABlE 

SlY! 11111 

SWITCH 
'liLL! 
SOIlT-SIY! 
!If TRt- SA Y! 
S08'l'-COaE-S IZ! 
n'fOllf-CODE 
SCI1'l'-B!TOBH 
lOR KIRG CE LLS 

SOIl'1'-lIU-SlZE 
SOB T- 11002-SI ZE 
tGT-Vtt T I!L 
'lGT-llI 'lBL 
veOIl acu 
911 'rBL LUGTIf 
tABU IIttORIt 
COBREIIT ~RIORIt! 
nl!IJG S IU1" 
COBot IIIOIClTOR 
1 (IIIIT 1) 
OEB OG TABLE P'rl\ 
SOECOI'l ItCR 
SORT 1l0UII! 
OlltlSJ!Il 
OEDDG SAVE11 
UIIUS u: 
PBBAOB CELL 
GUC!! 'l'A1!L! 
tII0SEO 
'l'BAIISI!II'l' ABU LUetH 
IiNOSEO 
OY!BFLOII C!LLS 
8t CELLS 
nCeltB C!LtS 
'lEftP S'1'OBAG! 
ELL CELLS 

LOC 

OD0938 
OD09S8 
000978 
000980 
on098" 
000988 
00098C 
000990 
00099" 
000996 
OD0998 
000988 
0009D8 
0009P8 
ODOA 18 
000138 
OOOA 58 
000A78 
OIlOA 98 
ODOAB8 
000AC8 
OOOACC 
000100 
00010" 
0001D8 
OOOAOC 
OOOlOE 
OOOAOP 
OOOlEO 
OOOAE" 
000U8 
ooonc 
OOOA PO 
ODOAP" 
00011 PC 
000B10 
000D111 
000R18 
OD081C 
000B20 
000821 
000824 
(1I01l!) 
00082C 
(JOII!) 
000B38 
OOOBIlO 

OATI DIVISIoII OUIIP 01" 'l'1!S'l'BUIf 

'lILO I! 

009A9200 000oC768 000DlI2E8 70000l!B6 
00026C!!1I 00000000 700DOEOl! OOOo077B 
700DOEeE 000DOB70 
700000118 
00000000 
00000000 
OooeOBOc 
00000000 
05£1 
5891 
000D21156 000D2E11 PPPfPP2E 0000C7FB 
F2P~1I005 £8CJ40PO 02004020 401104040 
60081b99 50910000 111110COEI 117POC1tB 
70000COO 1RI!00700 PAJ060S8 COIlf!0700 
20001000 )0000000 00017788 00000000 
ooooosOc 010090EC 110000£811 00001081 
00000000 70000r; OE 0000077S ooonAII 14 
000 DO B70 000 to !!9£ 0001> 1 OBII 00000030 
11270B001 92110B002 9200B003 1131105000 
!!0081111l0 BOOCII 1C7 COO '4177 110019102 
00000000 
00000000 
860291112 
SOEOI)()OB 
50500000 
4177 
00 
00 
700noecr; 
AIISC 
000006PO 
000001178 
00000630 

58500000 00000000 1F711~'00 000C1S15 
000 tOBOC 
00011B15 
OOOOOB08 
1l0081P02 
06 
7e9~00 
50049600 80024140 

000011114 000DA400 000D0778 

OOOMOOO 0000026C 
00000000 00000000 

0000E2lA 700DOEC! 0000A400 000008~B 
000D&414 000011100 OOODOrp! 000D06tO 

00026B5c 00000000 0010MOO E94CP'OFO 
OOODOHO 000D06,0 000tlO870 60089202 
02001000 7000D200 OO~IIIIOOO D700DO~S 
58000108 07P811 000 OOOOOPIO 0000C658 
00000001 000A78CO 117tOPOO! 00000!96 
00000030 0000(\!9! oooooaoc 00026Ctli 
000006 PO 000 DO PP! 000006'0 OOOooeDC 
81"00CCl20 OODoosoe 00011&18 00000P!96 
44'109016 50608004 0/)70U70 917&soeO 

'5850500" 

Figure 22. Symbolic Debugging Option: TESTRUN <Part 9 of 11) 

410 Supplementary Material 

c 



(' \ 

"'----------/ 

o 

VLC CELLS I NONE) 
SEt C!LLS INOIlE) 
nou CELLS INORE) 
C'rHlB ISH !'l(!'lOBY !'lAP) 000811B 

000~6B 

LOC CARO LY NAill!: 

@ 1000017 FO PILE-l 

ODC8OC 
o coe2C 
ODOBIIC 

@-OCllll11 
000028 01 lIECOiO-l 
000029 02 fIILD-A 

® I OC001B FD FILE-2 

a COB fB 
OOOBOB 
ODcePB 

~c"", 0000]6 01 RICORD-2 
0000]7 02 FIEID-A 

P o D077B 0000110 77 J(OUNT 
00 C17A 0000111 77 1I0llBH 

0000112 01 PILLl!B 
0007BO 000011] 02 ALPHABET 

00001111 02 ALPHA 

TESTRUN Output (Version 4) 

OATA OIVISIOII on!'lP OF TESTRUR 

00000799 000007B1 00000090 00000090 8eOOOBBB 18141£11 1I101100C 00000001 
OAOOOBCl 20060AOA 

DCB 

DCB 

OATA OIVISION ouru OF T!STROII 

TIPI!' YALUE 

OSAII FILE: CLOSEO ORGAIIIZATION: PHYSICAL SEQUEIITIAL 

COOOOOOO 00000000 00000000 00000006 
116000001 900D07DC E2Cl0407 D3C54040 
COOOOOOO 00000000 00000000 00000001 

AN II 0002 IIYC 1 

00R10000 000DA391 OOCOIIOOO 00000001 
020000118 00000001 060D21156 00000064 
000000111 00000001 00000000 00000000 

OS A!! FILP.: OPEN ORGANIZATION: PHYSICAL SECUENTIAL 

00000000 00000000 00000000 00000002 
1160DOECB 90000888 007CIIBOO 00026CEII 
28012B2B 0000B030 000DAII64 OOOOAIIOO 

AN 
NB-S 
NE-S 

A 0001 NYC 0 
+26 
+26 

0081C300 0200A390 000011000 00000001 
1201'EEOO 0001'EC40 060D21156 000900611 
000000111 00000001 00000000 000FF.B9A 

ABcnEFGHIJJ(LI'INOPQR STUYIIXY'Z 

@--OC07BO 
(SUlll) 

OD07B 1 
000'82 
o C078 3 
ODc,ell 
a D07B'l 
ODC'86 
000787 
00C7e8 
o 007B9 
00 C18A 
o CO'B E 
OOO'BC 
o C07B C 
OOCHE 
o C07B F 
00 C1'3 0 
000791 
00092 
000793 
00C194 
000795 
00 C1'36 
o D0797 

Figure 22. 

1 
2 
] 

II 
'l 
6 
7 
e 
9 

10 
11 
12 
13 
111 
15 
16 
17 
lB 
19 
20 
21 
22 
23 
211 

Symbolic Debugging Option: 

A.ppendix F: 

c 
n 
E 
p 
G 
H 
I 
.1 
J( 
L 
!'I 
N 
o 
p 
Q 
R 
S 
T 
[J 

V 
II 
X 

TESTRUN <Part 10 of 11) 

Symbolic Debugging Features (Version 4) 411 



TESTRUN output (Version 4) 

nUA OIVISTON nul"IP 01' T~STRUH 

~-" 

LaC CARO LV NA I!~ TYPl' VALU~ 

000798 25 Y 
00C799 26 Z 
o 0079A 000045 02 OfPfHCENTS AN 0123110123110123110121110123110 

0000117 02 0El'~ NO ·AN 

00 C HA 
®---<SU~1) 

0 
OcC7ge 2 1 
o c07ge 3 ? 
00C7'30 4 3 
01:07<) ! II 
00(791' 6 0 
o C07 AD 7 1 
00 C 7A 1 8 2 
o C07A2 9 3 
00C7A3 10 II 
o C0714 11 0 
0007A 5 12 1 
o C07A6 13 2 
0007A 7 111 3 
0,007 A8 15 II 
ODC7A 9 16 0 

,0 C07 AI 17 1 
000718 18 2 
o C07 Ae 19 1 
0007AO 20 II 
on07H 21 0 
0007AI' 22 1 
onono 23 2 
00C781 24 3 
o C07 E!2 25 4 
OD07s3 

26 ----® 0 

000048 01 !laRK-RECORD P 
OD07R8 0000119 02 "AI!E-FIELO AN 
o C07 E9 000050 02 PILL ER AN 
00078A 000051 02 R~CORD-NO Nr 0001 
o C07EE 000052 02 PILLER All 
ODC7Sl' Oe0053 02 lCCATICN A NYC 
o c07C2 000054 02 PILL ER AN 
OD07c 3 000055 02 IIC-CI'-OEI'f.NOENT!; AN 
o n07e5 000056 02 fILL ER All 

000057 01 RECOFOA 
o n07 co 000058 02 A NO-OT +1234 ~ 
00C70 0 000059 02 R NI'-S .1.2.~. R 

(Hf.X) 1'1 1'2 1'3 CII 

(-~" 

\ 
"-

DATA OIV IS ION nul"lP OF TP.STR UN 

Lec (lRC LV NAI! f TYPE VA1.UF. 

ENO OF COIlOL PIA(JNOSTIC AlPS 

Figure 22. Symbolic Debugging Option: TESTRUN (Part 11 of 11) 

412 Supplementary Material 



o 

OMR/RCE Processing (Version 4) 

Program Product Information (Version 4) 

The IBM 3505 car1 reader and the 3525 car1 punch are 80-column 
devices that offer more flexible processing capabilities than 
former card jevices. rhe 3505 card reader can be used for 
sequential reading; it can also be used for optical Mark Read (OMR) 
processing. Both the 3505 and the 3525 support Read Column 
Eliminate (RCE) processing. rhe 3525 card punch, when equippei 
with appropriate special features, can be used separately as a card 
reader, as a card punch, as an interpreting card punch, and as a 
printer (either 2-line or multiline printing is available); in 
addition, the read, punch, and print functions (any two or all 
three) can be combined, so that those functions specified are all 
performed during one pass of a card through the device. 

Note: The interpreting card punch is considered one function. It 
cannot be combined with the other functions, but is specified 
through the DD statement for the data set. 

The processing functions are all specified through new 
parameters of the DO statement. For OMR and RCE processing, format 
descriptor card(s) must also be included as the first card(s) of 
the data set. (For OMR processing, the format descriptor specifies 
those columns that are optically marked; for RCE processing, the 
format descriptor specifes those columns that are to be ignored.) 
Detailed information on these considerations is given in the 
publication ~~M_~y~t~~~l~~_~~~~~i~g_~~i~g_f£~_f~~_~~~~_~~£~_~~~~g£ 
~g~~~~_35~~~~~~_~~~£h_Q~_§y~t~~~~I~, Order No. 3C21-5027. 

The following paragraphs describe the special COBOL programming 
consi~erations when these devices are used. 

Function-names SOl and S02 in the SPECI~L-N~MES paragraph may be 
used-to-select~ogical stacker 1 or logical stacker 2 under program 
control. 

When stacker selection is specified, RESERVE NO ~LrERN~TE ~RE~8 
must also be specified. 

If the user wishes to inspect the substitution character 
(hexadecimal "3F") placed in column 80 by the system for a 
defective optically marked card, he must specify a record 
description of 80 characters. (Note that the "3F" is placed in 
both card column 80 and the defective (unreadable) card column. 

Function-names SOl and 802 in the SPECIAL-NAMES paragraph may be 
used-to-select-logical stacker 1 Dr logical stacker 2 under program 
control. 

Appendix G: 3505/3525 Card Processing 413 



3525 Combined Function Processing (Version 4) 

When stacker selecti~n is s~ecified, RESERVE NO ALTERN~TE ~REAS 
must also be specified. 

When RCE processin~ is specified for input, the user must not 
refer to the ignored c~lunns (as specified by the format 
descriptor), or results are unpredictable. 

When RCE processing is specified for output, any data in the 
COBOL record that corresponds to the ignored columns (as specified 
by the format descriptor) is not punched or printed. 

COBOL handles each ~f the separate functions to be combined as a 
separate logical file. Each such logical file has its own file 
structure and procedural processing requirements. However, because 
such combined function files refer to one physical unit, the user 
must observe certain restrictions durin~ processin~. The following 
sections explain the programming requirements for combined function 
processing in OS ~merican National Standard COBOL. 

The COBOL language does n~t define the files as being combined 
function files; instead, the combined functions are specified 
through new parameters f~r the files' DD statements. (In this way, 
the user can, if he so desires, process the same COBOL files as 
completely separate read, punch, and print files.) The necessary 
parameters are given in the publication: 

I -- ENVIRONMENT DIVISI~N CONSIDERATIONS 

For each function, there must be a separate SELECT sentence written 
in the Environment Divisi~n. Each read function file and each 
punch function file must specify RESERVE NO ~LrERNATE ~RE~(S). 

If stacker selection of punched output, or line control of 
printed output is desired, ill~gillQgi£~g~IDg~ for ,the purpose can be 
specified in the SPECI~L-~~MES Para~raph. The mnemonic-names may 
be equated with the following f~g£tiQ~~g~illg~: 

Function-name ----50i-----
S02 
COl 
C02 
C03 

C12 

~g~g!.!EI. 
Stacker 1 
Stacker 2 
Line 1 
Line 3 
Line 5 

Line 23 

414 Supplementary Material 

~~, 



( 
~/ 

o 

3525 Combined Function Processing (Version 4) 

II -- DATA DIVISION CONSIDERATIONS 

For each logical file 1efined in the Environment Division for 
the combined function structure, there must be a corresponding FD 
entry and 01 record description entry in the File Section of the 
Data Division. 

III -- PROCEDURE DIVISION CONSIDERArIONS 

Input/out~ut operati~ns must proceed in a specified order in the 
Procedure Division. In the 3525 device, the card passes first 
through the reading stati~n, next thr~ugh the ~unching station, and 
last through the printing station. Therefore, the following 
combined functions may be specified, but only in the order shown: 

Functions to be 
Combined 

read/punch/print 

read/punch 

read/print 

~unch/print 

Order of 
Q£g~§!.tiQ~§' 
read 
punch 

[print] 

read 
punch 

read 
[print] 

punch 
[~rint] 

Associated COBOL 
___ §.!:.?tg!!!gg!:. ___ _ 
READ ••• AT END 
WRITEADVANCING/POSITIONING 
~RlrE ••• AFTER ADVANCINS/POSrTIONIN3 

READ ••• AT END 
WRITE ••• ADVANCrNG/POSITrONINS 

READ ••• AT END 
WRITE AFTER ADVANCING/POSrrrONIN3 

WRlrE 
WRITE 

'ADVANCING/POSITIONIN:; 
AFTERADVANCINGIPOSrrrONING 

All required operations on one card must be completed before the 
next card is obtained, ~r there is an abnormal terminati~n ~f the 
job. 

The following Procedure Division considerations in the COBOL 
source program ap~ly: 

For any specified function, an OPEN statement must be issued 
before the input/output o~eration for that function is attem~ted. 
rhe following additional considerations apply: 

• For the ~~_t~~~thQ~, the file must be opened INPUT. 

• For the ounch fUnction and e£i~~_tB~~~i2~ the file must be 
opened OUTPUT~--------

If the user wishes t~ ~unch additional data into some of the 
cards and not into others, he must issue a jummy ~RIrE statement 
for the null cards, first filling the output area with SPACES. 

I~s#.~6~e~sen~ctlbn"~pr<1:.11~:p!lhch:~unctfon filers ".,"',desi red, '.' the 
userC2ln>speqifY,~Ol·.{f~.r>stac,kerone)a.nd'."B02(fo.r,',stacker,two)"'as' 
functioa:.name§.,iqthe,SpE:8~?\:L:-~l}.MESpa:r:El,graph.. He can· then issue 

'!!.B:J:;r.~.~~y~~p~NG§~Clt:s!~f:!Ilt:s>~sil1t;1· the ... associated m!!~mQ.Q.f£:'Q.~!!l§'2.. 

~ppendix 3: 3505/3525 Carj Processing 415 



f'Al¥:~~ri~tl~~i'y:~'\I!'hti, ,si?~c£f ie~wR'ITE 'AFTERP6si'TioNiN(;~"'he must use 
tf;.he,~iden tifier-2i()'I?t.i<?,n~ " ' ... " Tti~' Yet1tles ,'i;'~a C~dirll(lentif~,er-2,"b~f8r.e'; 
tb~>st~'temen1: ',. is .'.,·issut?dmllst>be v~. (fOr .~stClc]{er' l)orW '(for stacker, 
;2) •• ,J3tacker sel'eCtion'may'be sp~cifiedonly>for:the punch 'function :£;il:e..'·" .' "'. ...... .' . '., '.. . . ... .... '.' .' ... ' ........... ' ..... . ...... , 

WRITE Statement -- Print Function Files 

After the punch function operations (if specified) are 
completed, the user can issue WRITE statement(s) for the print 
function file. 

If the user wishes to print additional data on some of the data 
cards and not on others, he may omit the WRITE statement for the 
null cards. 

Any attempt to w.rite beyond the liITlii:s c>f1:he ,c:a:r~r~sll~ts~Tl 
abnormal termination of the job:'1:.h'\ls"th'eEND-OF"':PAGE';mayiiot:'b~' 
i~J?~~~~~e4' • 

Depending on the capabilities of the specific model in use, the 
print file may be either a 2-line print file or a multi-line print 
file. Up to 64 characters may be printed on each lineu 

For a 2-line print file, the lines are printed on line 1 (top 
edge of card) and line 3 (between rows 11 and 12). Line control 
may not be specified. Automatic spacing is provided. 

For a mUlti-line print file up to 25 lines of characters may be 
printed. Line control may be specified. If line control is not 
specified, automatic spacing is provided. 

Line control is specified by issuing WRITE AFTER ADVANCING 
s ta temen ts:;'>'q'r;'~W~+~~:t1:{:FIllES}'1:l<?91l);'):Q~!:~~'::'~'~~t:'fH!i~rrt¥;": f or the pr in t 
function fffe:" ""If 'i1ne"'cori'troI' fsus'ec].' for one such statement, it 
must be used for all other WRITE statements issued to the file. 
The maximum number of printable characters, including any SPACE 
characters, is 64. The first character of the record defined may 
be reserved by the programmer for the line control character; 
therefore, the record may be defined as containing up to 65 
characters. Such WRITE statements must not specify space 
suppression. 

Identifier and integer hav~.th~!:)aITl~IIleani:n9st.h~y,have for 
other WRITE AFTER ADVANCING t"~'i~a[~;t~~;~~~~~$'$~:;~:~,Q$'I'J?:tQ,t{XJ~~{~ statements. 
However, such WRITE statements must not increase the line position 
on the card beyond the card limits, or abnormal termination 
results. 

The mnemonic-name of the WRITE AFTER ADVANCING statement may 
also be specified. In the SPECIAL-NAMES Paragraph, the following 
fUnction-names may be associated with the mnemonic-names: 

Function Name 
C02 
C03 
C04 

C12 

416 Supplementary Material 

Meaning 
Line 3 
Line 5 
Line 7 

Line 23 



L 

o 

CLOSE Statement 

When processing is completed, a CLOSE statement must be issued 
for each of the combined function files. After a CLOSE statement 
has been issued for anyone of the functions, an attempt to perform 
processing for any of the functions results in abnormal 
termination. 

Appendix G: 3505/3525 Card Processing 416.1 



c 



o 

ACCESS 

AC~E!SS:rhe manner in which files are referenced by the computer. 
Access can be sequential <records are referred to one after another in 
the order in which they appear on the file), or it can be random (the 
individual records can be referred to in a nonsequential manner). 

~£~ual De£i~~±-Poin~: The physical representation, using either of the 
decimal pOint characters (. or ,), of the decimal point position in a 
data item. When specified, it will appear in a printed report, and it 
requires an actual space in storage. 

AcrUAL.KEY: A key which can be directly used by the system to locate a 
logical-record on a mass storage device. An ACrUAL KEY must be a data 
item of 5 to 259 bytes in length. 

AlQhabeti£~haracte£: A character which is one of the 26 characters of 
the alphabet, or a space. In COBOL, the term does ~Q~ include any other 
characters. 

AlQhanu~g£ic~~h~£~£ter: Any character in the computer's character set. 

~b~h~Q~~g~i£_g~i~~~_~h~~~£t~~: A character within an alphanumeric 
character string which contains at least one B or O. 

Ari~hill~~i£_g~e£essiQg: A statenent containing any combination of data­
names, numeric literals, and figurative constants, joined together by 
one or more arithmetic operators in such a way that the statement as a 
whole can be reduced to a single numeric value. 

~~i~h~~~i£_Qe~£~~Q~: A symbol (single character or 2-character set) or 
COBOL verb which directs the system to perform an arithmetic operation. 
The following list shows arithmetic operators: 

MeanirB 
Addition 
Subtraction 
Multiplication 
Division 
Exponentiation 

* I 

** 
~~~~illed~Q~£imal~Qint: A decimal point position which does not involve 
the existence of an actual character in a data item. It does not occupy
an actual space in storage, but is used by the compiler to align a value
properly for calculation.

g~Q~~: In COBOL, a group of characters or records which is treated as
an entity when moved into or out of the computer. rhe term is
synonymous with the term Physical Record.

g~ff~~: A portion of main storage into which data is read or from which
it is written.

§y~~: A sequence of eight adjacent binary bits. When properly aligned,
two bytes form a halfword, four bytes a fullword, and eight bytes a
doubleword.

Chaggel: A device that directs the flow of information between the
computer main storage and the input/output devices.

£haracter: One of,a set of indivisible symbols that can be arranged in
sequences to express infornation. rhese symbols include the letters A
through Z, the decimal digits 0 through 9, punctuation symbols, and any
other symbols which will be accepted by the data-processing system.

IBM American National Standard COBOL Glossary 417

Character Set

~~~£~cter~~~~: ~ll the valid :OBOL characters. The complete set of 51 
characters is listed in "Language Considerations." 

~h~£~cter~~~~i~~: ~ connected sequence of characters. ~ll COBOL 
characters are valid. 

~h~£~eQin~: ~ reference point in a program at which infor~ation about 
the contents of core storage can be recorded so that, if necessary, the 
program can be restarted at an intermediate point. 

Class Condition: ~ statement that the content of an item is wholly 
alphabetic-or-wholly numeric. It may be true or false. 

Clause: ~ set of consecutive COBOL words whose purpose is to specify an 
attribute of an entry. rhere are three types of clauses: data, 
environment, and f~le. 

CO~QL Cha~~ct~~: ~ny of the 51 valid characters (see CHAR~CTER) in the 
COBOL character set. rhe conplete set is listed in "Language 
Considerations." 

Col!ati~_seg~gnc~: The arrangement of all valid characters in the 
order of their relative precedence. The collating sequence of a 
computer is part of the computer design -- each acceptable character has 
a predetermined place in the sequence. ~ collating sequence is used 
primarily in comparison operations. 

COLUMN Clause: A COBOL clause used to identify a specific position 
within-a-report line. 

~Q~~g~~: ~n annotation in the Identification Division or Procedure 
Division of a COBOL source program. ~ comment is ignored by the 
compiler. ~s an IBM extension, comments may be included at any point in 
a :OBOL source program. 

~Qillmunica~iQ~_Qg~cri~ion: In COBOL teleprocessing, an implicitly 
defined fixed-format storage area that serves as the interface between 
the COBOL object program and the Message Control Program (MCP). It is 
specified in the communication Section. 

Co~mu~i£~~iQ~~QescriQ~iQQ~~g~£y: ~n entry in the Communication Section 
of the Data Division that describes the interface between the MCP and 
the COBOL TP object program. The entry is composed of the level 
indicator CD, followed by a cd-name, and then optionally followed by a 
set of independent clauses. 

Communication section: The section in the Data Division that describes 
the-rnterface-area between the MCP and the COBOL rp progran. It is 
composed of one or more CD description entries that define the fields in 
the interface area. 

communications Device: ~ mechanism <hardware or hardware-software) 
capable of-sending data to a queue and/or receiving data from a queue. 
This mechanism may be a computer or a peripheral device. One or more 
programs containing Communication Description entries and residing 
within the same computer define one or more of these mechanisms. 

Co~pile-!i~g: The time during which a COBOL source program is 
translated by the COBOL conpiler into a machine language object program. 

~Q~eilg~: A program which translates a program written in a higher 
level language into a machine language object program. 

~Q~ei!~£~~i£g£~iQ~§t~~g~gQ~: A COBOL statement which causes the 
compiler to take a specific action at compile time, rather than the 
object program to take a particular action at execution time. 

418 Supplementary Material 

c 



\, 0
-·'· 

Compound Condition 

ComeQund_QQ~~itiQ~: A statenent that tests two or more relational 
ex~ressions. It may be true or false. 

• One of a set of specifiej values a jata item can assune. 

• A simple conjitional ex~ression: relation conjition, class 
conjition, conjition-name conjition, sign conaition, Nor conjition. 

Conditional statement: A statement which specifies that the truth value 
of-a-condition-is~be determined, anj that the subsequent action of 
the object.program is jependent on this truth value. 

Conditional Variable: A data item that can assume more than one value; 
the value(s) it assumes has a condition-name assigned to it. 

QQ~~ition_N~m§: The name assigned to a specific value, set of values, 
or range of values, that a data item may assume. 

Conjition~name Condition: A statement that the value of a conditional 
variable-is-one-of-a-set (or range) of values of a jata item identified 
by a condition-name. The statement may be true or false. 

CONFIGURATION SECTION: A section of the Environment Division of the 
COBoL-Program~-rt describes the overall specifications of computers. 

connective: A word or a punctuation character that does one of the 
following: 

• Associates a data-name or paragraph-name with its qualifier 

• Links two or more operands in a series 

• Forms a conditional expression 

CONSOL~: A COBOL mnemonic-name associatej with the console typewriter. 

QQ~~ig£Q~~_±iem~: Consecutive elementary or group items in the Data 
Division that have a definite relationship with each other. 

Control.Break: A recognition of a change in the contents of a control 
data-item-that governs a hierarchy. 

QQ~trol~~tes: Bytes associated with a physical recorj that serve to 
identify the record and indicate its length, blocking factor, etc. 

Con~rol~Q~~~_±igill: A data iten that is testej each time a report line 
is to be printed. If the value of the data item has changed, a control 
break occurs and special actions are performed before the line is 
printej. 

CONTROL. FOOTING: A report group that occurs at the end of the control 
group of-;;hich-it is a member. 

contEQ1~EQgQ: An integral set of related data that is specifically 
associated with a control jata item. 

CONTROL. HEADING: A report group that occurs at the beginning of the 
control-group-of which it is a member. 

CO~~Eol~igE~rchY: A designated order of specific control data items. 
The highest level is the final control; the lowest level is the minor 
control. 

IBM American National Standard COBOL Glossary 419 



Core Storage 

Co~~Stora~~; storage within the central processing unit of the 
computer, so called because this storage exists in the forn of magnetic 
cores. 

Da~~Desc~~e~~Qg_Entry: ~n entry in the Data Division that is used to 
describe the characteristics of a data item. It consists of a level 
number, followed by an optional data-name, followe1 by data clauses that 
fully describe the format the data will take. ~n elementary data 
description entry (or item) cannot logically be subdivided further. ~ 
group data description entry (or item) is made up of a number of related 
group and/or elementary items. 

D~T~DIVISION: One of the four main component parts of a COBOL program. 
The-Data-Division describes the files to be used in the program an1 the 
records contained within the files. It also describes any internal 
Workinq-storaqe records that will be needed (see "D~ta Division" for 
full details): 

Data Item: ~ unit of recorded information that can be identified by a 
symbolic name or by a combination of names and subscripts. Elementary 
data items cannot logically be subdivided. Group data items are made up 
of logically related group and/or elementary items, an1 can be a logical 
group within a record or can itself be a complete record. 

Qat~-n~me: ~ name assigned by the programmer to a data item in a :OBOL 
program. It must contain at least one alphabetic character. 

DE:L~R~TIVES: ~ set of one Dr more compiler-directing sections written 
at-the beginning of the Procedure Division of a COBOL program. The 
first section is preceded by the header DE:L~R~rIVES. The last section 
is followed by the header END DECL~R~rIVES. There are three options: 

1. Input/output label handling 

2. Input/output error-checking procedures 

3. Report Writing procedures 

Each has its standard format (see "Procedure Division"). 

Qel~mi~g~: A character or sequence of contiguous characters that 
identify the end of a string of characters and that separate the string 
of characters from the following string of characters. ~ delimiter is 
not part of the string of characters that it delimits. 

Destination: In teleprocessing. the symbolic identification of the 
receIver-of a transmission (i.e., a message) from a queue. 

Q~~ti~~iQg_Q~gue: In teleprocessing, an MCP storage queue for one or 
more messages from one or more remote stations or to one or more remote 
stations. Destination queues serve as buffers between a COBOL TP 
program and the remote stations. 

Qgy~~e~number: The reference number assigned to any external device. 

Di~it: Any of the numerals from 0 through 9. In COBOL, the term is not 
used in reference to any other symbol. 

Q!~!~ION: One of the four major portions of a COBOL program: 

• IDENTIFICATION DIVISION, which names the program. 

• ENVIRONMENT DIVISION, which indicates the machine equipment and 
equipment features to be used in the program. 

• DATA DIVISION, which defines the nature. and characteristics of data 
to be processed. 

4'20 Supplementary Material 

( 
: 



(' I 

~./ 

o 

Division Header 

• PROCEDURE DIVISION, which consists of st~tements directing the 
processing of data in a specified manner at execution time. 

Division Header: The COBOL words that indicate the oe~inning of a 
particular division of a COBOL program. rhe four division headers are: 

w IDENTIFIC~TION DIVISION. 

• ENVIRONMENT DIVISION. 

• D~rA DIVISION. 

• PROCEDURE DIVISION. 

Qivision-~~: The name of one of the four divisions of a COBOL 
program. 

~BCQI£_Ch~£~£te~: ~ny one of the symbols included in the eight-bit 
EBCDIC (Extended Binary-Coded-Decimal Interchange Code) set. All 51 
COBOL characters are included. 

Editi~~~£h~~~££~: A sin~le character or a fixed two-character 
combination used to create proper formats for output reports (see 
"Language Considerations" for ~ complete list of editing characters). 

§!g~nt~~Y~I£~~: A data iten that cannot logically by subdivided. 

Ent~~: Any consecutive set of descriptive clauses terminated by a 
period, written in the Identification, Environment, or Procedure 
Divisions of a COBOL program. 

~~!:.£y=.!!§!!!!g: A programmer-specified name th~t establishes an entry point 
into a COBOL suoprogram. 

~~~~RON~~N~_QI~!~ION: One of the four main component parts of a :OBOL 
program. rhe Environment Division describes the computers upon. which
the source program is compiled and tnose on which the object progr~m is
executed, and provides a linkage between the logical concept of files
and their records, and the physical aspects of the devices on which
files are stored (see "Environment Division" for full details).

Execution Time: rhe time at which an object program actually peiforms
the-Instructions coded in the Procedure Division, usin~ the actual data
provided.

Exponent: A number, indicating how many times another number (the ba.se)
is to be repeated as a factor. Positive exponents denote
multiplication, negative exponents denote division, fractional exponents
denote a root of a quantity. In COBOL, exponentiation is indicated with
the symbol ** followed by the exponent.

F-mode Records: Records of a fixed length. Blocks may contain more thin-0ne-record.
ri~ur~~ivg_£Qrr~tant: ~ reserved word that represents a numeric value, a
character, or a string of re~eatej values or characters. rhe word can
be written in a COBOL program to represent the values or characters
without being defined in the Data Division (see "Language
Considerations" for a complete list).

FI~E-CONTRQ~: The name and header of an Environment Division paragraph
in which the data files for a ~iven source program are named and
assigned to specific input/out9ut devices.

Ei!~Qgsc£~etio!!; An entry in the File Section of the Data Division
th~t provides information about the identification and physical
structure of a file.

IBM American National Standard COBOL Glossary 421

File-name

[i!g~naillg: A name assigned to a set of input data or output data.
file-name must include at least one alphabetic character.

A

FI~~SECTION: A section of the Data Division that contains descriptions
of all externally stored data (or files) used in a program. such
information is given in one or more file description entries.

FlQating~EQi~~_Litgra!: A numeric literal whose value is expressed in
floating-point notation -- that is, as a decimal number followed by an
exponen~ Nhich indicates the a~tual placement of the decimal point.

Function-name: A name, specified by IBM, that identifies system logical
units;-printer and card punch control characters, and report codes.
When a function-name is associated with a mnemonic name in the
Environment Division, the mnemonic-name may then be substituted in any
format in which such substitution is valid.

Gr~~ Iteill: A data item made up of a series of logically related
elementary items. It can be part of a record or a complete record.

~~~~~~.LaQg!: A record that identifies the beginning of a physical file 
or a volume. 

tligQ~Or~g~: The leftmost position in a string of characters. 

lQ~~r!r!£~rlQ~_DIVI~!Q~: One of the four main component parts of a 
C~BOL program. The Identification Division identifies the source 
program and the object program and, in addition, may include such 
documentation as the author's name, the installation where written, date 
written, etc., (see "I:1entification Division" for full details). 

Idgntifie~: A data-name, unique in itself, or made unique by the 
syntactically correct combination of qualifiers, subscripts, and/or 
indexes. 

ImQgratiyg-st~tgillent: A statement consisting of an imperative verb and 
its operands, which specifies that an action be taken, unconditionally. 
An imperative-statement may consist of a series of imperative­
statements. 

!rr~g~: A computer storage position or register, the contents of which 
identify a particular element in a table. 

In:1ex Data Item: A data item in which the contents of an index can be 
stored without-conversion to subscript form. 

!ndex~illg: A name, given by the programmer, for an index of a specific 
table. An index-name must contain at least one alphabetic character. 
It is one Nord (4 bytes) in length. 

Indexed-Data-name: A data-name identifier which is subscripted with one 
or-more-rnIex-names. 

INPUT-OUTPUT SECTION: In the Environment Division, the section that 
nameS-the-files-and-external media neede:1 by an object program. It also 
provides information required for the transmission and handling of data 
during the execution of an object program. 

IN~UT-RBQ£~QQB~: A set of statements that is executed each time a 
record is released to the sort file. Input procedures are optional; 
whether they are used or not depends upon the logic of the program. 

Ineut~Q~g~g: In teleprocessing, an MCP destination queue from which the 
C~BOL TP program accepts messages from the remote stations. 

422 Supplementary Material 

,f 
\ .... 



l 

o 

Integer 

Integer: A numeric data item or literal that does not include any 
character positions to the right of the decimal point, actual or 
assumed. Where the term "integer" appears in formats, "integer" must 
not be a numeric data item. 

INVALID KEY Condition: A condition that may arise at execution time in 
which the value of a specific key associated with a mass storage file 
does not result in a correct reference to the file (see the READ, 
REWRITE, START, and WRITE statements for the specific error conditions 
involved) • 

I-a-CONTROL: The name, and the header, for an Environment Division 
paragraph in which object program requirements for specific input/output 
techniques are specified. These techniques include rerun checkpoints, 
sharing of same areas by several data files, and multiple file storage 
on a single tape device. 

KEY: One or more data items, the contents of which identify the type or 
the location of a record, or the ordering of data. 

Key Word: A reserved word whose employment is essential to the meaning 
and structure of a COBOL statement. In this manual, key words are 
indicated in the formats of statements by underscoring. Key words are 
included in the reserved word list. 

Level Indicator: Two alphabetic characters that identify a specific 
type of file, or the highest position in a hierarchy. The level 
indicators are: FD, RD, SD. 

Level Number: A numeric character or 2-character set that identifies 
the properties of a data description entry. L'evel numbers 01 through 49 
define group items, the highest level being identified as 01, and the 
subordinate data items within the hierarchy being identified with level 
numbers 02 through 49. Level numbers 66, 77, and 88 identify special 
properties of a data description entry in the Data Division. 

Library-name: The name of a member of a data set containing COBOL 
entries, used with the COpy and BASIS statements. 

LINKAGE SECTION: A section of the Data Division that describes data 
made available from another program. 

Literal: A character string whose value is implicit in the characters 
themselves. The numeric literal 7 expresses the value 7, and the 
nonnumeric literal "CHARACTERS" expresses the value CHARACTERS. 

Logical operator: A COBOL word that defines the logical connections 
between relational operators. The three logical operators and their 
meanings are: 

OR (logical inclusive -- either or both) 

AND (logical connective -- both) 

NOT (logical negation) 

(See "Procedure Division" for a more detailed explanation.) 

Logical Record: The most inclusive data item, identified by a level-01 
entry. It consists of one or more related data items. 

Low-Order: The rightmost position in a string of characters. 

Main Program: The highest level COBOL program involved in a step. 
(Programs written in other languages that follow COBOL linkage 
conventions are considered COBOL programs in this sense.) 

IBM American National Standard COBOL Glossary 423 



Mantissa 

Mantissa: The decimal part of a logarithm. Therefore, the par·t of a 
floating-point number that is expresseQ as a decimal fraction. 

Mass storage: A storage medium -- disk, drum, or data cell -- in which 
data can be collected and maintained in a sequential, direct, indexed or 
relative organization. 

Mass storage File: A collection of records assigned to a mass storage 
device. 

Mass Storage File Segment: A part of a mass storage file whose 
beginning and end are defined by the FILE-LIMIT clause in the 
Environment Division. 

Message: In teleprocessing, a string of characters associated with an 
end-of-message indicator or end-of-group indicator. A message may 
consist of one or more related message segments. See "Message 
Indicators". 

Message Control Program (MCP): A TCAM communications control program 
that supports the processing of messages. 

Messaqe Indicators: In COBOL TP programs, three message indicators are 
allowed. Ea9h signals that some specific condition exists: 

EGI indicates logical end-of-group of a group of messages 
EMI indicates end-of-message 
ESI indicates end-of-segment 

The hierarchy of message indicators is in the qrder of the preceding 
list. Within this hierarchy an EGI is conceptually equiv~lent to an EGI 
EMI, and ESI; an EMI is conceptually equivalent to an EMI and an ESI. 
Thus a segment may be terminated by an EGI, EMI, or ESI, and a message 
may be terminated by an EGI or EMI. 

Message Segment: In teleprocessing, q string of oharacters that forms a 
logical subdivision of a message, and is normally associated with an 
end-of-segment indicator. A message segment is the equivalent of a TCAM 
record. See "Message Indicators". 

Mnemonic-name: A programmer-supplied word associated with a specific 
function-name in the Environment Division. It then may be written in 
place qf the function-name in any format where such a substitution is 
valid. 

MODE: The manner in which records of a file are accessed or processed. 

Namg: A word composed of not more than 30 characters, which defines a 
COBOL operand (see "Language Considerations" for a more complete 
discussion) • 

Noncontiguous Item: A data item in the Working-storage section of the 
Data Division which bears no relationship to other data items. 

Nonnumeric Literal: A character string bounded by quotation marks, 
which means literally itself. For example, "CHARACTER'~ is the literal 
for, and means, CHARACTER. The string of characters may include any 
characters in the computer's set, with the exception of the quotation 
mark. Characters that are not COBOL characters may be included. 

Nonswitched Line: In teleprocessing, a line that is a continuous link 
between a remote station and the computer. It may connect the central 
computer with either a single station or more than one station. 

Numeric Character: A character that belongs to one of the set of digits 
o through 9. 

424 Supplementary Material 

c' 



c-

C) 

o 

Numeric Edited Character 

Numeric-E~ited Character: A numeric character which is in such a form 
that-it-may-be-used in-a printe~ output. It may consist of external 
decimal diqits 0 throuqh 9, the decimal point, commas, the dollar sign, 
etc., as the programmer wishes (see "Data Division" for a fuller 
explanation). 

~~~gric ~~gill: An item whose ~escription restricts its contents t~ a 
value represente~ by characters ch~sen from the ~iqits 0 through 9; if
signe~, the item may also contain a + or -, or other representation of
an operational sign.

NUill~ic Li£~~~l: A numeric character or string of characters whose
value is implicit in the characters themselves. Thus, 777 is the
literal as well as the value of the numoer 777.

OBJECT-COMPUTER: The name ~f an Environment Division paraqraph in-which
the-computer-upon which the ~bject program will be run is ~escribed.

Object PrQ~~ill: The set of nachine languaqe instructions that is the
output from the compilation of a COBOL source program. The actual
processing of data is done by the object program.

Obi~~Tiillg: The time durinq which an object proqram is executed.

QQgra!!~: 'The "object" of a verb or an operator. rhat is, the data or
e~uipment qovernej or jirecte~ by a verb or operator.

Q~gration~1_§ig!!: An algebraic sign associated with a numeric data
item, which indicates whether the item is positive or negative.

Q~~iQ~al_~QE~: A reserved w~rj included in a specific format only to
improve the readability of a COBOL statement. If the programmer wishes,
optional words may be omitted.

OUTPUT PROCEDURE: A set of pr~grammer-defined statements that is
eKecuted-each~ime a sorted record is returned from the sort file.
Output procedures are optional; whether they are used or not depends
upon the logic of the program.

Ou~~ut Qg~~: In teleprocessing, an MCP destination queue into which a
COBOL TP program places messages for one or more remote stations.

Qyg~flow'~Q!!~itiQ!:!: In string manipulation, a conditi~n that ~ccurs
when the sending area(s) contain untransferred characters after the
receiving area(s) have been filled.

Ovgrlay: The technique of repeatedly usinq the same areas of internal
storage during different staqes in processing a problem.

PA~~: A physical separation of continuous data in a report. rhe
separation is based on internal requirements and/or the physical
characteristics of the reporting medium.

PAGE FOOTING: A report group at the end of a report page which is
prrnted~efore a page control break is eKecuted.

PA~~HE~Q~~~: A report group printed at the beginning of a report page,
after a page control break is executed.

~~ragra~~: A set of one or more COBOL sentences, making up a logical
processinq entity, an~ precedej by a paragraph-name or a paragraph
header.

~~E~gE~E~~tlg~~~E: A word followed by a period that identifies and
precedes all paragraphs in the Identification Division and Environment
Division.

IBM American National Standard COBOL Glossary 425

Paragraph-name

~~E~graeh~~~mg: ~ ~ro9rammer-jefined word that identifies and precedes
a paragraph.

~~E~met~E: A variable that is given a specific value for a s~ecific
purpose or process. In COBOL, ~arameters are most often used to pass
data values between calling and called programs.

~h~~ical_RgcoEQ: A physical unit of data, synonymous with a block. It
can be composed of a portion of one logical record, of one complete
logical record, or of a group ~f logical records.

~Eig~_§EQ~e: An integral set ~f related data within a report.

~EiQEity=~umQgE: A number, ranging in value from 0 to 99, which
classifies source program sections in the Procedure Division (see
"Segmentation" for more information).

~EQ~g~~g: One or more logically connected paragraphs or sections
within the Procedure Division, which direct the computer to perf~rm some
action or series of related actions.

PR02EDURE DIVISION: One of the four main component parts of a COBOL
program.--rhe-procedure Division contains instructions for solving a
~roblem. rhe Procedure Division may contain imperative-statements,
conditional statements, paragraphS, ~rocedures, and sections (see
"Procedure Division" for full details).

~~Q~~dure=~~mg: ~ word that precedes and identifies a procedure, used
by the programmer to transfer contr~l from one point of the program to
another.

fEQ~es~: Any operation ~r combination of operations on data.

~EQgram=g~mg: A word in the Identification Division that identifies a
COBOL source program.

f~~~~~~~iQ~_£haE~ctgE: ~ conma, semicolon, period, quotation mark, left
or right parenthesis, or a space.

Q~~lifier: A group data-nane that is used to reference a non-unique
data-name at a lOwer level in the same hierarchy, or a section-name that
is used to reference a non-uni~ue paragraph. In this way, the data-name
or the paragraph-name can be made unique.

~~g~g: In teleprocessing, a l~gical collection of messages awaiting
transmission or processing.

Q~g~~~lQ~~~: In tele~rocessing, blocks containing status and control
information pertaining to the message being processed and to each active
queue. Created when a queue is first accessed by a CO,BOL rp run unit,
all queue blocks in one region/partition are chained to each other.

Q~g~g_N~mg: In teleprocessing, a symbolic name that indicates to the
MCP the logical path by which a message, or portion of a completed
message, may be accessible in a queue. (rhe first eight characters must
match the DDname of the DD statement that specifies the queue.)

g~~iQffi-Ac~gsS: ~n access mode in which specific logical records are
obtained from or placed into a mass storage file in a nonsequential
manner.

R~~ORQ: ~ set of one or more related data items grouped f~r handling
either internally or by the input/output systems (see "Logical Rec~rd").

Rg~QE~_Qg~~Ei2~iQ~: The total set of data description entries
associated with a particular logical record.

426 Supplementary Material

c

o

Record-name

Record-name: A data-name that identifies a logical record.

REEL: A module of external storage associated with a tape device.

Relation Character: A character that expresses a relationship between
t~o operan~s~--The following are COBOL relation characters:

<

~g~!l!.!l9.
Greater than

Less than

Equal to

Relation Condition: A statement that the value of an arithmetic
expression or data item has a specific relationship to another
arithmetic expression or data item. The statement may be true or false.

R~~~tiona!_QQ~~~~or: A reserved word, or a group of reserved words, or
a group of reserved words and relation characters. A relational
operator plus programmer-defined operands make up a relational
expression. A complete listing is given in "Procedure Division."

Remote.StatiQ!l: In teleprocessing, a control unit and one or more
input/output devices connected to the central computer through common
carrier facilities. A remote station may be a terminal device, or it
may be another computer.

REPORT: A presentation of a set of processed data described in a Report
File.

Re~ort.Descrie~ion E!lt~y: An entry in the Report Section of the Data
Division that names and describes the format of a report to be produced.

R~Q£~Fil~: A collection of records, produced by the Report writer,
that can be used to print a report in the desired format.

REPORT.FOOTING: A report group that occurs, and is printed, only at the
end of a report.

Repor~QgQ: A set of related data that makes up a logical entity in a
report.

REPORT.HEADING: A report group that occurs, and is printed, only at the
beginning of a report.

Report.Li!l~: One row of printed characters in a report.

ReQort~name: A data-name that identifies a report.

RE~ORTSE~TIQ~: A section of the Data Division that contains one or
more Report Description entries.

Reserved.word; A word used in a COBOL source program for syntactical
purposes. It must not appear in a program as a user-defined operand.

Routine: A set of statements in a program that causes the computer to
perform-an operation or series of related operations.

Run Unit: A set of one or more object programs which function, at
object time, as a unit to provide problem solutions. rhis compiler
considers a run unit to be the highest level calling program plus all
called subprograms.

~Mod~R~£Q~g~: Records which span physical blocks. Records may be
fixed or variable in length; blocks may contain one or more segments.
Each segment contains a segment-descriptor field and a control field

IBM American National Standard COBOL Glossary 427

SECTION

indicating whether it is the first and/or last or ari intermediate
segment of the record. Each block contains a block-descriptor field.

SE~TION: ~ logically related sequence of one or more paragraphs. ~
section must always be named.

§g£~!~g~£g~: ~ combination of words that precedes and identifies
each section in the Environment, Data, and Procedure Divisions.

section~name: ~ word specified by the programmer that precedes and
identifies a section in the Procedure Division.

Se~~~: ~ sequence of one or more statements, the last ending ~ith a
period followed by a space.

§g~arator: An optional word or character that improves readability.

Se~uential-~ccess: An access mode in which logical records are obtained
from or placed into a file in such a way that each successive access to
the file refers to the next subsequent logical record in the file. rhe
order of the records is established by the programmer when creating the
file.

se~uential.Processirrg: rhe processing of logical records in the order
in which records are accessed.

2!g~Cond!tion: ~ statement that the algebraic value of a data item is
less than, equal to, or greater than zero. It may be true or false.

Simele.Condition: ~n expression that can have two values, and causes
the object program to select between alternate paths of control,
depending on the value found. The expression can be true or false.

Slack~§.: Bytes inserted between data items or records to ensure
correct alignment of some numeric items. Slack bytes contain no
meaningful data. In some cases, they are inserted by the compiler; in
others, it is the responsibility of the programmer to insert them. rhe
S~NCHRONIZED clause instructs the compiler to insert slack bytes ~hen
they are needed for proper alignment. Slack bytes between records are
inserted by the programmer.

,Sort. File: A collection of records that is sorted by a SORr statement •
. The-sor~file is created and used only while the sort function is
operative.

Sort-File~DescriQtioll-Ent~~: ~n entry in the File Section of the Data
Division that names and describes a collection of records that is used
in a SORT statement.

2~rt-file~nam~: ~ data-nane that identifies a Sort File.

§Q~~~key: The field within a record on which a file is sorted.

sor~~rk~filg: ~ collection of records involved in the sorting
operation as this collection exists on intermediate device(s).

So~rce: In teleprocessing, the symbolic identification of the
originator of a transmission to a queue.

SOURCE~COMPUTER: The name of an Environment Division paragraph. In it,
the-computer-upon which the source program will be compiled is
described.

§~££e.Pro~~m: ~ problem-solving program written in COBOL.

seecial.Character: A character that is neither numeric nor alphabetic.
Special characters in COBOL include the space (), the period (.), as
well as the following: + * / $ ") (

428 Supplementary Materiai

' ,.'

c

o

SPECIAL-NAMEE

SPE~I~L~N~MES: The name of an Environment Division paragraph, an~ the
paragraph itself, in which names supplie~ by IBM are related to
mnemonic-names specified by the programmer. In addition, this paragraph
can be used to exchange the functions of the comma an~ the period, or to
specify a substitution character for the currency sign, in the PIcrURE
string.

§£g£ial.Registe~: Compiler-generate~ storage areas primarily used to
store information produced with the use of specific COBOL features. rhe
special registers are: T~LLY, LINE-COUNTER, P~GE-COUNrER, CURRENr-D~TE,
TIME-OF-D~Y, L~BEL-RETURN, RETURN-CODE, SORT-RETURN, SORT-FILE-SIZE,
SORr-CORE-SIZE, and SORr-MJDE-SIZE.

Standard Data Format: The concept of actual physical or logical record
size in storage:--The length in the Standard Data Format is expressed in
the number of bytes a record occupies and not necessarily the number of
characters, since some characters take up one full byte of storage and
others take up less.

Statement: ~ syntactically valid combination of wor~s and symbols
written in the Procedure Division. ~ statement combines CJBOL reserved
words and programmer-~efined operands.

subject-of entry: A data-name or reserved word that appears immediately
after a level indicator or level number in a Data Division entry. It
serves to reference the entry.

Subprogram: ~ COBOL program that is invoked by another COBOL program.
(Programs written in other languages that follow COBOL linkage
conventions are COBOL programs in this sense.'

Subscript: ~n integer or a variable whose value references a particular
element in a table.

§~itcheg_~i~~: In teleprocessing, a communication line for which no
single continuous path between the central computer and the remote
station exists. Several alternative paths are available for
transmission; the common carrier switching equipment selects the path.
The remote station is continuously connected to the switching center by
an access line associated with a specific telephone number.

SYSI~: The system logical input device.

SYSOUT: The system logical output ~evice.

SYSPUNCH: The system logical punch device.

~~~em-nam~: A name that identifies any particular external device use~ 
with the computer, and characteristics of files contained within it. 

Table: A collection and arrangement of data in a fixe~ form for ready 
reference. such a collection followS some logical order, expressing 
particular values (functions) corresponding to other values (arguments) 
by which they are referenced. 

Table Element: ~ data item that belongs to the set of repeated items 
comprising a table. ~n argunent together with its corresponding 
function(s) makes up a table element. 

Test Condition: ~ statement that, taken as a whole, may be either true 
or false, ~epending on the circumstances eKisting at the time the 
expression is evaluated. 

Trailer-Label: A record that identifies the ending of a physical file 
or -of--aVol ume. 

~=~od~~gg£Q~Q~: Records of unspecified length. rhey may be fixed or 
variable in length; there is only one record per block. 

IBM American National Standard COBOL Glossary 429 



Unary Operator 

UnarYOEQE~tQf: ~n arithmetic operator (+ or -) that can precede a 
single ~ariable, a literal, Dr a left parenthesis in an arithmetic 
express1on. The plus sign multiplies the value by +1; the minus sign 
multiplies the value by -1. 

UNlr: A module of external storage. Its dimensions are determinej by 
IBM. 

V~mode.Records: Records of variable length. Blocks may contain more 
than-one-record. Each recorj contains a record length field, and each 
block contains a block length field. 

Variable: A data item whose value may be changej juring execution of 
the object program. 

Verb: A COBOL reserved Nord that expresses an action to be taken by a 
COBOL compiler or an object program. 

~Ql~m~: A module of external storage. For tape jevices it is a reel; 
for mass storage devices it is a unit. 

Volum~Swit£h_~roceduE~~: standard procedures executed automatically 
when the end of a unit or reel has been reached before end-of-file has 
been reached. 

1. ·In COBOL: ~ string of not more than 30 characters, chosen from the 
folloNing: the letters ~ through Z, the digits 0 through 9, and 
the hyphen (-). rhe hyphen may not appear as either the first or 
last character. 

2. In System/360: A fullworj is four bytes of storage; a doubleword 
is eight bytes of stora~e; a halfword is two bytes of storage. 

~Qrj~Bound~EY: Any particular storage position at which, data must be 
alignej for certain processing operations in System/360. rhe halfword 
boundary must be divisible by 2, the fullworj boundary must be divisible 
by 4, the doubleword boundary must be divisible by 8. 

W~RKIN3~STORAGE SECTION: ~ section-name <and the section itself) in the 
Data Division~--The section jescribes records and noncontiguous jata 
items that are not part of external files, but are developed and 
processed internally. It also defines data items whose values are 
assigned in the source program. 

430 Supplementary Material 

c 



o 

(Where more than one page reference is given, the major reference is first .• > 

Special Characters 

• (see period) 
< used in relation conditions 159 
( and ) used in 

arithmetic expressions 154,155 
compound conditions 163 
PICTURE clause 117 
subscripting and indexing 297-299 

+ (see plus symbol) 
$ (see currency symbol, dollar sign) 
* used in arithmetic expressions 154,155 

(see also asterisks, used in PICTURE 
clause) 

** used in arithmetic expressions 154,155 
used in COBOL entries 38 
(see also semicolon) 
(see either hyphen, or minus symbol) 

/ used in arithmetic expressions 154,155 
/ used in sterling report items 335-337 
, (see comma) 
> used in relation conditions 159 

used in the COMPUTE statement 181 
used in relation conditions 159 

, or " used in nonnumeric literals 38 
(see also quotation mark) 

A, used in a PICTURE clause 118,120 
alphabetic items 119 
alphanumeric edited items 123 
alphanumeric items 121 

abbreviations 
of compound conditions 164,165 
in CORRESPONDING option 178,180,184,197 
in END-OF-PAGE option 213 
in Identification Division Header 59 
in JUSTIFIED clause 115 
in PICTURE clause 116 
of relational operators 159 
in SYNCHRONIZED clause 129 
in TYPE clause 275 
in USAGE clause 135 

abnormal termination 
and CANCEL statement 232 
and symbolic debugging 397-399 

absolute 
column number 277 
LINE clause in a report 272 

ACCEPT statement 218-220 
access methods 

for direct files 62,63 
for indexed files 65 
for relative files 64,65 

for sequential files 62 
ACCESS MODE clause 77,78 
acknowledgment 4 
actual decimal point 

description 119,120 
in editing 123,124~127 

ACTUAL KEY clause 
description 78,79 
with direct files 63,64 
example 79 
format 78 
and READ statement 212,210 
and REWRITE statement 218,217 
and SEEK statement 210 
and WRITE statement 216,217 

ADD statement 
description 179~180 
examples 17,18,24 
formats 179,180 

addition operator 154~155 
addressing schemes 

indexed 62 
relative record 62 
relative track 62 
sequential 61 

algebraic value in a sign condition 162 
algorithm 

relative indexing 307 
slack bytes 

computational items 131-134 
with an OCCURS clause 131~133 
inter-record 133~134 
intra-record 130-132 

alignment of data items 
decimal point 119 
editing 124 
JUSTIFIED clause 115 
PICTURE clause 119,124 
RECEIVE statement 350 
STRING statement 354 
SYNCHRONIZED clause 129~130 
UNSTRING statement 359 
USING option 234 
VALUE clause 142 
Working-Storage items 130 

ALL literal figurative constant 
description 43 
in a MOVE statement 199 
in a STOP statement 195 

alphabetic class test 157,158 
alphabetic collating sequence for sort 251 
alphabetic data items 

allowable symbols 118 
in a class test 157,158 
description 119~118 
internal representation 119~118 
JUSTIFIED clause 115 

Index 431 



in a move 198,199 
as a receiving item 198,199,359 
in a relation condition 161 
in UNSTRING statement 359 
USAGE clause 136 
VALUE clause 142 

alphanumeric collating sequence for 
sort 251 

alphanumeric data item 
allowable symbols 121 
in a class test 138 
description 121,118 
internal representation 121,118 
JUSTIFIED clause 115 
in a move 198,199 
as a receiving item 198.199.359 
in a relation condition 161 
in UNSTRING statement 359 
USAGE clause 135 
VALUE clause 142 

alphanumeric edited item 
allowable symbols 123 
description 123,118.119 
in a move 198,199 
as a receiving item 198.199 
in a relation condition 161 
USAGE clause 136 

alphanumeric literals 43 
ALTER statement 

and called programs 229 
in debug packets 330 
description 186,187 
effect on GO TO statement 186 
example 30,33 
format 186 
with segmentation 319,187 
in a sort procedure 252-254 

altering characters 202-204 
altering execution sequence 185-196 
altering usage of data items 113,114 
alternative grouping of data 

REDEFINES clause 111-114 
RENAMES clause 144-146 

AND logical operator 
compound conditions 162-165 
order of evaluation 163 

apostrophe (see quotation mark) 
APPLY clause 

CORE-INDEX option 87 
RECORD-OVERFLOW option 87 
REORG-CRITERIA option 88 
WRITE-ONLY option 86,87 

Area A and Area B 
description 52 
in reference format 51 

arithmetic expressions 
characters used 39 
in the COMPUTE statement 181 
in conditions 159,162 
definition 154 
evaluation rules 154 

arithmetic operators 
definition 154 
list 154 

arithmetic statements 
ADD 179,180 

432 

COMPUTE 181 
CORRESPONDING option 178,180,184,197 
DIVIDE 181,,182 
GIVING option 178 
intermediate results 365-366 
MULTIPLY 182.183 
ROUNDED option 178,179 
SIZE ERROR option 179 
SUBTRACT 183,184 

ascending sequence 
ASCII character set 394 
EBCDIC character set 160,251,394 
sort 251 
tablp handling 303.10U 

ASCII description 389-395 
ASSIGN clause 

ASCII considerations 389,394 
description 73-76 
format 73 
with sort 

file in GIVING option 246,247 
sort work units 247 

system name 74 
Version 3 considerations 74 
Version 4 considerations 75 

aSSigning values to a 
condition-name 142,143 
conditional variable 143,158,108,109 
data item 141,142 
label 105 

assignment of priority numbers 317,318 
assumed 

decimal point 118 
numeric edited items 123 
numeric items 121 
sterling nonreport items 333,334 

decimal scaling positions 118,120,123 
pound separator 333 
shilling separator 333 

asterisk 
in arithmetic expressions 154,155 
for comments 53,242 
in a PICTURE clause 

check protect symbol 119,120 
numeric edited items 126,127,123 
sterling report items 335-337 

AUTHOR paragraph 59 
automatic 

advancing of printer page 214,215 
end-of-volume 207 
error procedures 175 
label handling 171 1,104 

B. used in a PICTURE clause 118,120 
alphanumeric edited items 123 
numeric edited items 124,123 
sterling report items 335.,336 

BASIS card 324 
binary collating sequence 160,251.,394 
binary data item 

description 137,138,121 
in DISPLAY statement 220 
internal representation 140 
in a move 199 



c) 

o 

in PICTURE clause 121 
in a relation condition 161 
SYNCHRONIZED clause 130 
USAGE clause 137,140 

blanks (see space) 
BLANK clause (see BLANK WHEN ZERO clause) 
blank figurative constant (see SPACE 
figurative constant) 

blank line in source program 53 
blank line for spacing reports 272 
blank (space) as word separator 40 
BLANK WHEN ZERO clause 

effect on editing 115 
format 115 
with sterling report items 337 

BLOCK CONTAINS clause 
ASCII considerations 390 
description 98-100 
format 98 

block-descriptor control field 101.102 
blocked records 

and BLOCK CONTAINS clause 99 
inter-record slack bytes 130,133.134 
and recording mode 101.102 

body print group 267 
boundary alignment 129-134 
braces in formats 54 -
brackets in formats 54 
British Standards Institution 332 
buffer 

allocation 85,86 
offset in ASCII files 389 
restriction 

for 3505 processing 413,414 
for 3525 processing 414 

in TP programs 339 
truncation 86 

bypassing label processing 
and LABEL RECORDS clause 103,104 
MULTIPLE FILE TAPE clause 86 
nonstandard labels 103,104.86 
user labels 103,104,86 

byte, contents of 
alphabetic and alphanumeric 
item 119.121 

binary item 137,140 
external decimal item 136.139 
internal decimal item 138,140 

C, used in PICTURE clause of sterling 
report items 335-337 

CALL statement 
boundary alignment of identifiers 234 
description 

dynamic 230,231 
static 228-230 

formats 228,,233 
limitations with segmentation 230,319 
USING option 233-236 

CANCEL statement 
description 231,232 
and dynamic CALL statement 231 
format 231 
and library management 227,228 
and static CALL statement 230 

capacity records 
closing a direct file 82 
creating a direct file 64 
identification of 64,65 
and relative files 64,65 

capitalized words in formats 54 
carriage control character 

definition 70 
in WRITE statement 214,215 
and 3505/3525 processing 413-416 

categories of data (see PICTURE clause) 
CD entry (see communication description 
entry) 

cd-name 
in communication description 
entry 340,341 

and message condition 348 
and RECEIVE statement 349 
and SEND statement 350,351 

changing description of data items in 
REDEFINES clause 113,114 

character set 
arithmetic expressions 39 
ASCII (American National Standard Code 
for Information Interchange) 394 

COBOL, list of 37 
EBCDIC (Extended Binary Coded Decimal 
Interchange Code) 37,160,251,394 

editing 39 
punctuation 38 
relation conditions 39 
words 37 

character string 
and item size 117 
in NOTE statement 241 
in PICTURE clause 117,,118 
truncation 115 

check protect symbol (see asterisk) 
checkpoint 83-85,247 1,248,390,,395 
class test 157,158 
classes of data 116,117 
CLOSE options, effect of 

random files 225,226 
sequential files 223-225 

CLOSE statement 
description 221-226 
example 27 
formats 221,222 
and 3525 processing 416 

COBOL acknowledgment 4 
COBOL message segment 

and RECEIVE statement 349,350,344 
and SEND statement 351-352 

COBOL library management 
description 13 
and dynamic subprogram linkage 227,,228 

COBOL program organization 47,48 
COBOL TP program 

CD entry in 340-347 
interface with MCP 339-347 
MESSAGE condition in 348,349 
and RECEIVE statement 349,350 
and SEND statement 350-352 

CODE clause in Report Writer 264,265,70 
codes for COBOL TP programs 

END KEY 344,352 
ERROR KEY 347 

Index 433 



line control 344 
STATUS KEY 344,345,348 

coding form 
sample 51 
use of 51-53 

collating sequence" ASCII 394 
collating sequence~ EBCDIC 37,160,251,394 
COLUMN clause 277 
combined function processing on 3525 

description 414-416 
order of operations 415 

combining conditions 162-165 
comma, exchanging with period 71,119 6 338 
comma, used in a data description 
entry 108 

comma 6 used in a PICTURE clause 
insertion of 119,120 
numeric edited items 123,124,126,127 

comma, used in a source program 38 
comment-entry 

in DATE-COMPILED paragraph 60 
in Identification Division 59~60 

comment lines 
in every division 53,242 
in Procedure Division 241,242 

common exit point for 
procedures 195,196,189 

communication 
operating system 44-46,195,218-221, 

256,257 
operator 195,218,219 
sort feature 256,257 
subprogram 233-237 

communication description entry 
and COpy statement 321,322,341 
description 340-347 
examples 345-347 
FOR INPUT 340-346 
FOR OUTPUT 340,341n 346,347 
formats 340"341 
and message condition 348,349 
and message control program (MCP) 339 
and RECEIVE statement 349,350 
record descriptions in 341,342,346 
and SEND statement 350-352 
and VALUE clause 141 

Communication Section 
description 339-347 
placement in COBOL program 92,93,48 
(see also communication description 
entry) 

COMP items (see binary data items) 
COMP-1 items (see short precision internal 

floating-point data items) 
COMP-2 items (see long precision internal 

floating-point data items) 
COMP-3 items (see internal decimal data 

items) 
COMP-4 items (see binary data items) 
comparison 

434 

index data items 308,161 
index-names 308,161 
nonnumeric operands 160 6 161 
numeric operands 159,161 

in relation conditions 159-161 
compilation of 

copied text 322 
debugging packet 330 

compile-time debugging packet 330 
compiler-directing statements 

COpy 320-323 
defined 150 
ENTER 241 
list of 153 
NOTE 241,242 

compiler features, Versions 3 and 4 11-13 
compiler features., OS/VS COBOL 11,12 
compiler options 

quotation mark 37 
sequence checking 51 
truncation 117 

compound conditions 
description 162-165 
evaluation rules 163 
implied subjects and 
relational-operators 164,165 

logical operators 162 
and MESSAGE condition 348 
permissible symbol pairs 164 
SEARCH statement 310 6 312 

COMPUTATIONAL items (see binary data items) 
COMPUTATIONAL-1 items (see short precision 
internal floating-point data items) 

COMPUTATIONAL-2 items (see long precision 
internal floating-point data items) 

COMPUTATIONAL-3 items (see internal decimal 
data items) 

COMPUTATIONAL-4 items (see binary data 
items) 

COMPUTATIONAL usage 137,140,133 
COMPUTATIONAL-1 usage 137,140,135 
COMPUTATIONAL-2 usage 137,140,135 
COMPUTATIONAL-3 usage 138,140,135 
COMPUTATIONAL-4 usage 138,140,135 
COII1PUTE statement· 

description 181 
example 24 
format 181 

computer-name 
OBJECT-COMPUTER paragraph 69 
SOURCE-COMPUTER paragraph 68 
System/370 instruction generation 69 

condition-name (see level number 88 items) 
condition-name condition 

description and format 158 
conditional statements 

in debugging 326-329 
definition 166 
example 25,26 
IF statement 166-168 
list of 151 
ON statement 328,329 

conditional syntax-checking compilation 13 
conditional variables 

assigning values to 108,109,143,158 
condition-name condition 158 
example 143,158 
and qualification 49 

............ ,.",' 

c 



o 

conditions 
class 157,158 
compound 162-165 
condition-name 158 
message 348 
in PERFORM statement 187,189 
relation 159-161 
in SEARCH statement 309,310,312 
sign 162 
test 156-162 

Configuration Section 
copying 321,322 
description 68-71 
format 68 
OBJECT-COMPUTER paragraph 69 
SOURCE-COMPUTER paragraph 68 
SPECIAL-NAMES paragraph 69-71 
and System/370 instruction 
generation 6q 

connectives" detinition 40 
CONSOLE 

in ACCEPT statement 218,219 
in DISPLAY statement 220 
in SPECIAL-NAMES paragraph 70 

constants 
definition 42 
figurative 43 
literals 42"43 

continuation area 
in comments lines 53,242 
in reference format 51 

continuation line 53 
continuation of 

ACCEPT operands 219 
comments 53"241,242 
DISPLAY operands 220 
messages 350 
nonnumeric literals 53 
numeric literals 53 
words 53 

continued line 53 
control breaks 260,265,266 (see also 

CONTROL clause) 
control bytes 

BLOCK CONTAINS clause 99 
and inter-record slack bytes 134 
in S-mode records 102 
in V-mode records 101,102 

control characters TP 344,345,347-349,352 
CONTROL clause 

CONTROL report 'groups 265 
description 265,266 
format 265 
GENERA'I'E statement 281,282 
LINE clause 272,273 
NEXT GROUP clause 273,274 
PAGE LIMIT clause 266-268 
RESET clause 278,279 
SOURCE clause 279 
SUM clause 280 
TERMINATE statement 283"284 
TYPE clause 275-277 

CONTROL report group 
GENERATE statement 281,282 
incrementing counters 280 
LINE clause 272,273 
NEXT GROUP clause 273,274 

PAGE LIHIT clause 267 
TERMINATE statement 283~284 

TYPE clause 275-277 
control hierarchy 265,266 
control of sort procedures 252-254 
controls in report writer (see CONTROL 
clause) 

conventions, sterling 332 
conversion of data 

with DISPLAY 220,221 
first character of program-name 60 
during a move 198,199 
in GIVING option 178 

COpy statement 
description 320-323 
formats 320,321 
in a source program 320-323,52 

copying 
entire program 324 
part of a program 320-324 

CORE-INDEX option of the APPLY clause 87 
core storage for sort 257 
CORRESPONDING option 

arithmetic statements 
ADD 180 
description 178 
SUBTRACT 184 

MOVE statement 197 
counter updating 278" 279 
counting character occurrences with the 

EXAMINE statement 200.,201 
CR, used in a PICTURE clause 

description 119~120 
numeric edited items 123,125-127 
sterling report items 335,337 

creating files 
direct 62,63,82,83 
indexed 65 
rela ti ve 64, 65 
sample programs 368-370 
standard sequential 62 
(see also output files> 

creating nonstandard 
labels 170-174~103,104 

credit symbol (see CR, used in a PICTURE 
clause> 

cross-footing 280 
CSP system-name defined 70 
CURRENCY-SIGN clause 

description 70,71 
format 70 
international considerations 338 
restriction 71 

currency symbol, used in a PICTURE clause 
description 119,120 
(see also insertion editing, CURRENCY 
SIGN clause> 

pound sign 335-338 
CURRENT-DATE special register 44 
cylinder overflow 87 
COl through C12 system-names defined 70 

D, used in a PICTURE clause 
sterling nonreport items 333,334 
sterling report items 335-337 

Index 435 



data description clauses 
BLANK WHEN ZERO 115,337 
data-name 110 
FILLER 110 
JUSTIFIED 115 
OCCURS 300-307,116 
PICTURE 116-127 
REDEFINES 111-114 
RENAMES 144-146 
SIGN 128,129 
SYNCHRONIZED 129-134 
USAGE 135-140,307,333-337 
VALUE 141-143,337 

data description entry, definition 107 
Data Division 

description 92-97 
example 20-23 
organization 92 
report writer considerations 

File Section 262~263 
Report Section 264-280 

sort considerations 248,249 
structure 92 
table handling considerations 300-307 
teleprocessing considerations 339-347 
(see also file description entry, record 
description entry> 

data item description entry 
definition 107 
Linkage Section 97 
Working-Storage Section 96 
(see also data description clauses> 

data management techniques 61-66 
data manipulation statements 

EXAMINE 200 17 201 
MOVE 197-199 
TRANSFORM 202-204 

data movement 
and STRING statement 353-356 
and UNSTRING statement 357-362 
and MOVE statement 197-199 
(see also input/output statements) 

data-name 
definition 41 
qualification of 49,50 
in reference format 52,,53 

data-name clause 110 
data organization 

definition 61 
direct 62 
indexed 62 
relative 62 
sequential 61 
specification of 74 g 75 

DATA RECORDS clause 
description 106 
format 106 
report writer 262,263 
sort 248 

data reference methods 49~50 
data sets for symbolic debugging 399 
data transformation example 202 
DATE special register description 46,219 

436 

DATE-COMPILED paragraph 60 
DATE-WRITTEN paragraph 59 
DAY special register description 46,219 
DB, used in a PICTURE clause 

description 119~120 
numeric edited items 123,125-127 

debit symbol (see DB, used in a PICTURE 
clause) 

DEBUG card 330 
debugging, symbolic 397-412.,1L; 
debugging language 

output 326-329 
packet 330 
statements 

DEBUG card 330 
EXHIBIT 326-328 
ON 328,329 
TRACE 326 

decimal point (see period, in a PICTURE 
clause) 

decimal point alignment 
during a move 198 
period insertion character 119#120 
in rounding 178 
in a size error 179 

DECIMAL-POINT IS COMMA clause 69-71 
declaratives 

ASCII considerations 392 
error processing 175-177 
label handling 170-174 
sample programs 173,174.,287-296 
report writer 284,285 
section 

description 169-177 
format 169,150#284 

USE sentence 170-177,284"285,289 
decrementing index-name 
values 306,307,298,299 

defaults 
ACCESS MODE clause 77 
OPEN statement default 207 
page format in Report Writer 268 
priority number 318 
quotation mark character 37 
record size 

for CONSOLE 219,220 
for SYSIN 219 
for SYSOUT 220 
for SYSPUNCH 220 

recording mode 101~102 
segment limit 318 
sequence checking 51 
truncation 117 
USAGE clause 135 

DELETE card for copying 324,325 
delete code for indexed files 81~65 
delimiter, description 353-355#357-360 
DEPENDING ON option 

of GO TO statement 185,186 
of the OCCURS clause 

description 301-303 
logical record size 
considerations 101 

and REDEFINES clause 111 

c 

c 



o 

and SYNCHRONIZED clause 133 
and VALUE clause 142 

depth of a report page 266-268 
descending sequence 

in sort 250,251 
in table handling 301J 303 

DETAIL report group 215 
GENERATE statement 281 6 282 
LINE clause 211,212 
NEXT GROUP clause 273,274 
SUM counters 279,280 
TYPE clause 275,276 

detail reporting 281,282 
device class 74 
device specification 

Versions 2 and 3 74 
Version L~ 15 

device type 74 
difference in subtraction 184 
digit positions in numeric edited 

items 123 
direct access device (see mass storage 
device) 

direct data organization, 
description 62,63 

direct files 
ACTUAL KEY clause 78,79 
ASSIGN clause 13-16 
BLOCK CONTAINS clause 98,99 
creation of 62-63,82-83 
file processing chart 385 
initiating access 210,211 
invalid key condition 

READ statement 212,210 
REWRITE statement 218 
WRITE statement 216,217,213 

labels 103,104 
random access 63 
READ statement 210,212 
record overflow 87 
recording mode 101,102 
REWRITE statement 217,218 
sequential access 63 
WRITE statement 216,217~213 

direct indexing 306,298 
DISPLAY usage 

alignment 130 
alphanumeric edited items 123 
ASCII considerations 391 
default 135 
description 136 
external decimal items 136,139 
external floating-point items 136,140 
numeric edited items 123 
SIGN clause 128 
STRIciG statement 353 
SYNCHRONIZED clause 130 
UNSTRING statement 357 

DISPLAY-ST usage 333-338 
DISPLAY statement 220,221,70 
disposition of a file 

and CLOSE statement 221-226 
and OPEN statement 205-207 

DIVIDE statement 
description 181~182 
formats 181,182 

division, definition 47 

division by zero 182,179 
division header, description 52 
division operator 154,155 
dollar sign (see currency symbol) 
double spacing 

printer page 212-215 
source program listing 331 

doubleword 
binary items 137 
SYNCHRONIZED clause 130 
and USING option 234 

dummy files 73,206,207,225 
dummy records 

direct files 63,82,83 
indexed files 65,81 
relative files 64,65 

dump, symbolic debugging 400-412 
dynamic CALL statement (see dynamic 

subprogram linkage) 
dynamic dump, symbolic debugging 397-400 
dynamic subprogram linkage 

CALL statement 228,230,231 
CANCEL statement 231,232 
description 227,228,13 
example 236-238 
formats 228,231-233 
and static CALL statement 230,231 

E, in external floating-point 
items 122,136,140 

in floating-point numeric literals 42 
EBCDIC collating sequence (see collating 

sequence EBCDIC) 
editing 

insertion 
fixed 125 
floating 125,126 
simple 124 
special 124 

replacement 126,127 
sign control symbols 

description 119,120 
in fixed insertion editing 125 
in floating insertion 
editing 125.,126 

in sterling report items 335.,337 
symbols 

in alphanumeric edited items 123 
in arithmetic statements 178 
description 119,120~39 
in numeric edited items 123 
in SUM counter description 280 

zero suppression 126,121 
editing character 

description 119.120,39 
insertion 

fixed 125 
floating 125,126 
simple 124 
special 124 

zero suppression and 
replacement 126,127 

EGI (end of group indicator) 351,352 
EJECT statement 331 
elementary item 

definition 94 

Index 437 



description (see also data description 
clauses) 94.95 

renaming 144-146 
slack bytes 130 

ellipsis ( ••• ) in formats 55 
EMI (end of message indicator) 351-352 
END DECLARATIVES 169.150 
end indicators in TP 351,352 
end key codes in TP 344,352 
end-of-file 

and EMI 352 
when reading 211,212 
when sorting 255 

end of group indicator (EGI) 351,352 
end of message indicator (EMI) 352 
end of page condition 215 
end of segment indicator (ESI) 351,352 
end of volume positioning 207,223-225 
ENTER statement 241 
ENTRY statement 232,233 
Environment Division 

and ASCII files 389,390 
Configuration Section 

OBJECT-COMPUTER paragraph 
as comments 69 
and System/370 instruction 

generation 69 
SOURCE-COMPUTER paragraph 68 
SPECIAL-NAMES paragraph 69-71 

Input-Output section 
FILE-CONTROL paragraph 72-82 
I-O-CONTROL par,agraph 83-88 

inte'rnational considerations 338 
sort consi~erations 246-248 
and 3505/3525 processi~g 413,414 

equal size operands in a relation 
condition 160 

error bytes 176 
~rror conditions, arithmetic operations 
(see SIZE ERROR option in arithmetic 
statements) 

error pr6ces-sfng declarati ves 
description 175-177 
format 175 
GIVING option information 175-177 
and READ 212 
and REWRITE 218 
and sort 252 0 253 
and WRITE 216 

ESI (end of segment indicator) 351,352 
evaluation rules 

aritrunetic expressions 154,155 
compound conditions 163,164 
IF statements 166-168 

EXAMINE statement 
description 200 0 201 
example 146 
formats 200 
with sterling items 338 

exchanging comma and. period 70,71,338 
EXEC card, PARM field data 234 
execution" order of in 'Procedure 
Division 150 

EXHIBIT statement 

438 

and CALL statement 229 
description 326-328 
format 326 

exit point for procedures 
error processing 177 
label handling 171~172 
PERFORM statement 188,189 
sort input/output procedures 256 

EXIT statement 
description 195,196 
format 195 
and the PERFORM statement 189 
with PROGRAM option 

description 239 
format 239 
and subprogram linkage 238,239 
and symbolic debugging 399 

with sort procedures 256 
explanatory comments 241,242,53 
exponent 

+ or - preceding 122 
definition 136 
external floating-point 
items 122,136,140 

floating-point numeric literals 42 
internal floating-point items 137,140 
representation 122 

exponentiation operation 154,155 
extended search for direct files 

when reading 63,212 
when writing 64,216 

extended source program library 
facility 324,325 

external data 91 
external decimal items 

class test 157,158 
collating sequence for sort 251 
description 136 
internal representation 139 
in a move 198,199 
and PICTURE clause 121 
in a relation condition 161 
in UNSTRING statement 359 
USAGE clause 135,136,139 

external floating-point items 
collating sequence 251 . 
description 122,136 
internal representation 140,122 
in a move 199 
and PICTURE clause 122 
in a relation condition 161 
and SEARCH statement 309 
USAGE clause 135 u 136,140 
VALUE clause 142 

external name of a file 75 

F-mode records 
description 101 
recording mode 101,102 
specification 102,103 

FD (see file description entry) 

r-'-
I 

\,. 

c 



C
-··, 

\ 
i 

o 

figurative constants 
description 43 
and dummy records 63-66.81 
in the EXAMINE statement 200 
in a move 199 
in a relation condition 161 
in the STRING statement 353,354 
in the TRANSFORM statement 202 
in the UNSTRING statement 357,358 
in the VALUE clause 141 

file 
definition 91 
and FD entry 95,96.98-106 
and FILE-CONTROL paragraph 72-82 
format of logical records 100,101 
inter-record slack bytes 133,134 

FILE-CONTROL paragraph 
ACCESS MODE clause 77,78 
ACTUAL KEY clause 78,79 
ASSIGN clause 73-76 
copying 320-322 
description 72-82 
FILE-LIMIT clause 77 
format 72 
NOMINAL KEY clause 80 
PROCESSING MODE clause 78 
RECORD KEY clause 81 
RESERVE clause 76,77 
SELECT clause 73 
sort considerations 246.247 
TRACK-AREA clause 82 
TRACK-LIMIT clause 82,83 

file description entry 
BLOCK CONTAINS clause 98-100 
content 98 0 96 
copying 320-322 
DATA RECORDS clause 106 
format 98 
LABEL RECORDS clause 103-105 
RECORD CONTAINS clause 100,101 
RECORDING MODE clause 102,103 
REPORT clause 262 
report writer 262,263 
sort 248 
VALUE OF clause 105 

file-processing technique 
definition 61 
input/output errors 175-177 
summary 

general 61-65 
statements and clauses 383·388 

File Section 
boundary alignment 130 
content 95,,96 
copying 320-323 
file description entry 98-106 
use of FILLER 110 
format 95 
naming data 110 

record description entry format 110,111 
sort consideration 248 
structure 93 
VALUE clause 141 

file size for sort 256 
fIles, sharing same storage areas 85,86 
FILLER clause 

and CORRESPONDING option 178 
in input CD entry 345,346 
in inter-record slack bytes 133,134 
in record description entry 110 

FINAL control 
definition 265 
TYPE clause 275,276 

final phase of sort 255 
fixed insertion editing 125 
fixed-length record format (see F mode 

records) 
fixed-length records 

and recording mode 101-103 
record overflow feature 87 
size of print line for reports 263 

fixed-point numeric items 135-140,122 
fixed-point numeric literal 42 
fixed portion of a segmented 

program 316-318 
fixed storage areas for TP 339-347 
floating insertion editing 125,126 
floating-point data items (see external 
floating-point items, internal 
floating-point items) 

floating-point numeric literal 
definition 42 
in a move 199 

flowchart 
nested IF statement 168 
PERFORM statements 

varying one identifier 192 
varying three identifiers 194 
varying two identifiers 193 

SEARCH statement 311 
footing report groups 275,276 
FOR MULTIPLE REEL-UNIT option of the ASSIGN 
clause 73,74 

format 
EXHIBIT statement output 327 
logical records 100,101 
report page 268 

format control of the source program 
listing 331 

format F records (see F-mode records) 
format notation 54,55 
format U records (see U-mode records) 
format V records (see V-mode records) 
fraction, internal floating-point 
items 138,140 

fullword 
binary item 137 
SYNCHRONIZED clause 130 

Index 439 



function-name 
in CODE clause 265 
description 41 
and SPECIAL-NAl'5ES paragraph 70 
in WRITE statement 214.213 
in 3505/3525 processing 413,414 

GENERATE statement 281.282 
generic key, ANS COBOL 208 n 209 
GIVING option 

arithmetic statements 
ADD 180 
description 178 
DIVIDE 182 
MULTIPLY 183 
SUBTRACT 184 

error handling declarative 175-177 
SORT statement 254,250 

glossary 417 
GO TO MORE-LABELS 171,172 
GO TO statement 

with the ALTER statement 186,185 
and CALL statement 229 
in a debug packet 330 
description 185,186 
in error processing procedures 175,177 
examples 23,25,26 
formats 185 
with the IF statement 166 
in label handling procedures 171,,172 
with PERFORM statement 188,189 
with segmentation 319 
in a sort procedure 252-254 

GOBACK statement 
and CANCEL statement 
format and description 
and message retrieval 
and symbolic debugging 

group 

232 
238-240 

350 
399 

collating sequence 251 
contents 94 
example 94 
report 269-271 

GROUP INDICATE clause 278,281 
group item 

definition 94 
~xample 94 
In a move 198,199 
in an OCCURS clause 302 
in a relation condition 161 
renaming 144-146~111-114 
in a report 269,270 
slack bytes 130-133 
USAGE clause 135 
VALUE clause 142 

halfword 
binary item 137 
SYNCHRONIZED clause 129 

halting execution 238-240~195 

440 

header labels and USE declaratives 170-172 
heading print groups 275,276 
hierarchy 

arithmetic expressions 154 
called program and CANCEL statement 231 
controls in report writ~L 265 
end indicators in TP 351 
qualification 49 
relations 163 
structure of a record 93 

HIGH-VALUE (HIGH-VALUES) flgurative 
constant 

delete code for indexed files 81,65 
description 43 
in dummy records 63 
indexed files 81,65 
in a move 199 

hyphen 
in collating sequence 160,251 
and continuing lines 53 
in program-names 60 
in words 37 
(see also minus symbol) 

I-O-CONTROL paragraph 
APPLY clause 86-88 
COPY statement 320-323 
description 83-85 
format 83 
MULTIPLE FILE TAPE clause 86 
RERUN clause 83-85 
SAME AREA clause 85,86 
sort considerations 247,248 

1-0 files 
effect of CLOSE options 222-226 
error handling 175-177 
label handling 170-172 
and OPEN statement 205-207 
and REWRITE statement 217,218 
and WRITE statement 216,217,213 

ID Division header 59 
Identification Division 

DATE-COMPILED paragraph 60 
example 19 
PROGRAM-ID paragraph 59,,60 
structure of 59 

identifier, definition 49 
identifying records 

dummy records 63 
by name 110 
in reports 264,265 

IF statement 
examples 25,26 
format and description 166-168 
and MESSAGE condition 348 
nested 167,168 

ILBO invalid as subprogram name 230,231 
imperative statements 

arithmetic 178-184 
data-manipulation 197-204 
declarative 169-177 
definition 150 
input/output 205-226 

", ... ,., 

(~; 



/00 0 

~-

o 

procedure branching 185-196 
report writer 281-284 
sort 250-256 
string manipulation 353-362 
table handling 309-313 
teleprocessing 349-352 
verbs 151 

implied suoJects and 
relational-operators 164,165 

IN qualifier connective 
used for indexes 299 
used for names 49 
used for subscripts 298 

incrementing 
index-name values 296,297,299 
LINE-COUNTER special 
register 285,286,282 

PAGE-COUNTER special register 285 0 282 
SUM counters 280-282 

indentation of level numbers 95 
independent overflow area for indexed 
files 88 

independent segment 316-318 
index data item 

in a relation condition 308,161 
MOVE statement and 197 
USAGE clause description 307 

index-name 
description 304,305 

in OCCURS clause 304-307 
in SEARCH statement 310-312 
in SET statement 313 

in a move 199 
in a relation condition 308,161 
value in 304#305 

INDEX option of the USAGE clause (see index 
data item) 

INDEXED BY option of the OCCURS clause (see 
index-name) 

indexed data organization 62 
indexed files 

access techniques 65 
APPLY clause 87,88 
ASSIGN clause 74-76 
blocking factor 100 
file processing chart 386 
index in core 87 
initiating processing 208,209 
invalid key condition 

READ 212 
REWRITE 217,218 
WRITE 216 .. 217 

LABEL RECORDS clause 103 
NOMINAL KEY clause 80,81 
overflow areas 88 
READ statement 210-212 
RECORD KEY clause 81 
recording mode 102 
reorganization criteria 88 
REWRITE statement 217 
START statement 208,209 
WRITE statement 212.213,216,217 

indexes used as qualifiers 298~299.50 
indexing tables 

description 298,299 
direct 306,298 
relative 306,307,298 

initial value of a data item 141,142 
initializing 

direct files 63,64,82 
index values 313 
items in called programs 229 
report writer special registers 283 
sort special registers 223 
sub-queue names 343 
and UNSTRING statement 360 

INITIATE statement 282,283.,261 
initiating 

access of a mass storage file 205-210 
file processing 205-210 
processing of a report 282,283 

input CD (see communication description 
entry) 

input files 
effect of close options 222-225 
error handling 175-177 
inter-record slack bytes 133,134 
intra-record slack bytes 131-133 
label handling 170-172 
and OPEN statement 205-207 
and READ statement 210-212 
record size 100,101 
and START statement 208,209 

input format for source programs 51-53 
input phase of sort 252,253 
input/output areas (buffers) shared 76,77 
input/output error (see invalid key 
conditions" INVALID KEY option) 

Input-Output Section 
copying 320-324 
example 19,20 
FILE-CONTROL paragraph 72-83 
I-O-CONTROL paragraph 83-88 
sort considerations 246-248 

input/output statements 
ACCEPT 218-220 
CLOSE 221-226 
DISPLAY 220,221 
OPEN 205-207 
READ 210-212 
REWRITE 217,,218 
SEEK 210 
START 208,209 
WRITE 212-217 

input queue 
and CD entry 340-346 
and MESSAGE condition 348 
and message control program (MCP) 339 
and RECEIVE statement 349 

INSERT card for copying 324~325 
insertion editing 

fixed insertion 125 
floating insertion 125,126 
simple insertion 124 
special insertion 124 

insertion of 
asterisks 126,127,119,120 

Index ~41 



commas 124,119,120 
periods 124,119,120 
spaces 123-127,118,120 
zeros 123,124,119,120 

INSTALLATION paragrap:1 59 
integer literals (see fixed-point numeric 
literals) 

inter-record slack bytes 133,134 
interface between COBOL and MCP 

CD entry 339-348 
and MESSAGE condition 348,349 
and RECEIVE statement 349,350 
and SEND statement 350-352 

intermediate results 
arithmetic statements 365,366 
compound conditions 163 

internal data 96,97 
internal decimal items 

allowable characters 138 
in a class test 157,158 
collating sequence 251 
definition 138 
internal representation 140,138 
in a move 199 
and PICTURE clause 121 
in a relation condition 161 
SYNCHRONIZED clause 130 
USAGE clause 138,140,'135 

internal floating-point items 
collating sequence 251 
definition 137,138 
internal representation 140,137 
in a move 199 
in a relation condition 161 
and SEARCH statement 309 
USAGE clause 137,140,135 

internal representation 
binary items 140,137 
external decimal Items 
external floating-point 
internal decimal items 
internal floating-point 
numeric items 139,140 
sterling items 332-337 

139,136 
items 140,136 
140,138 
items 140,137 

international currency considerations 338 
interpreting card punch by 3525 413 
intra~re-cord slack bytes 131-133 
introduction 15-33 
INVALID KEY option 

and error declaratives 175 
of the READ statement 212,210 
of the REWRITE statement 217,218 
of the START statement 208,209 
of the WRITE statement 216,217,213 

justification 
and JUSTIFIED clause 115 
and MOVE statement 198 
and RECEIVE statement 349,350 
and SEND statement 351 
and STRING statement 354 
and UNSTRING statement 359 

JUSTIFIED clause 115 

442 

KEY clauses 
ACTUAL 78,79 
NOMINAL 80,81 
RECORD 81 

key words 
definition 40 
in format notation 54 

keys 
for SORT statement 250-252 
for START statement 208,209 
for table SEARCH 310,312,303,304,301 

label handling 
ASCII considerations 390 
LABEL RECORDS clause 103-105,170 
when opening a file 205-207 
reading a multivolume file 211 
sample program 173,174 
for sort 248,249 
TOTALED/TO'I'ALING option 104,105 
USE declarative 170-174 
writing a multivolume file 216,103,104 

LABEL RECORDS clause 103-105,170 
ASCII considerations 390 

LABEL-RETURN special register 45 8 172 
leading zeros~ suppression 126-1i7 
left justification 115 
length 

and BLOCK CONTAINS clause 98,,99 
and RECORD CONTAINS clause 100,101 
binary items 137 
DISPLAY items 136 
external decimal items 136 
external floating-point items 136 
internal decimal items 138 
internal floating-point items 137 
and standard data format 100 

level indicator 
in Communication Section 340,341,93 
definition 52 
in file description entry 93 
in reference format 52 
in report writer feature 264,93 
in sort feature 249,93 
summary of 93 

level number 
data description entry 94 
indentation of 95 
in the reference format 52 
special 95,108,109 

level number 01 items 
boundary alignment 130 
CALL statement 234 
in the Communication Section 341 
COpy statement 320-323 
description 107~108~94 
in the File Section 96-108 
format 107 
in the Linkage Section 97,108 
in the Report Section 269#270 
SYNCHRONIZED clause 130 
in the Working-Storage Section 97,108 

level number 02-49 items 
description 94,107,108 
format 107 
and inter-record slack bytes 133,134 



(' " 

\ 

"'--_.....-/ 

o 

level number 66 items 
definition 95 
format 107 
in RENAMES clause 144-146 
rules for use 108 

level number 77 items 
boundary alignment in Linkage 
Section 234 

COpy statement 320-323 
description 107,108,96 
format 107 
noncontiguous data items 107 
VALUE clause 141,142 
in Working-Storage Section 96,108 

level number 88 items 
assigning values to 142,143,108~109 
in CD entry 141 
in condition-name condition 158 
description 142,143 
examples 143,158 
in FD entry 141 
format 108,141 
in Linkage section 141 
qualification 50,51 
range of values for 143,141 
and REDEFINES clause 111 
rules for use 108,109 
and UNSTRING statement 357 
and VALUE clause 141-143 
in Working-Storage Section 141 

library faciilty (see source program 
library facility) 

library management facility 
description 13 
and dynamic subprogram linkage 227,228 

library-name 320-322 
LINE clause 271,272 
line-control cards 398,399 
LINE-COUNTER special register 

description 285,286 
and GENERATE statement 282 
and INITIATE statement 283 

Linkage section 
boundary alignment 130,234 
content 97,107,108 
COpy statement 320-322 
data item description entry 107,108~97 
format 97 
intra-record slack bytes 130 
naming data 110 
record description entry 107,108,97 
structure 92 
use of FILLER 110 
USING option of the CALL 
statement 233-238 

VALUE clause 141 
list of compiler features 

OS/VS 11-14 
Version 3 13,14 
Version 4 12 ~ 14 

literal 
in CALL statement 228,230 
in CANCEL statement 231 
nonnumeric 43 
numeric 

fixed-point 42 
floating-point 42 
in STRING statement 353,354 
as system-name 70,265 

in UNSTRING statement 357,358 
in VALUE clause 141-143 

load module 
and COBOL library management 227,228 
and dynamic subprogram 
linkage 227,228~231 

and symbolic debugging 397 
local station 339 
location of slack bytes 132,133 
logical connectives 40 
logical operators 162-165,40 
logical record 

definition 91 
redefining 

description 111-114 
restriction in File Section 111 

renaming 144-146 
size of 100~101,107 
slack bytes in 130-134 

long-precision internal floating-point 
items 138.140 

LOW-VALUE (LOW-VALUES) figurative constan~ 
description 43 
in a move 199 

lower-case words in formats 54 

magnetic tape (see tape) 
magnitude of floating-point items 136,137 
main program, definition 238 
main storage 

released by CANCEL statement 231,232 
savings in by use of 

COBOL library management 13 
dynamic subprogram linkage 13 
optimized object code 13 

major control break 265 
mantissa 

+ or - preceding 122 
definition 136 
internal representation 140 
representation in PICTURE clause 122 

mass storage devices 
error information 176 
list of 74 
record overflow feature 87 

mass storage files 
function of CLOSE statement 
function of OPEN statement 
function of READ statement 
function of START statement 
function of WRITE 

222-226 
205-207 
210-212 
208,209 

statement 212,213,216,217 
maximum length 

arithmetic operands 179-184 
binary items 137 
data description entry 107 
elementary item 107 
external decimal items 136 
internal decimal items 138 
internal floating-point items 
keys in table handling 303 
numeric edited items 123 
PICTURE character string 117 

137 

Index 443 



record 
CONSOLE 219,220 
SYSIN 219 
SYSOUT 220 
SYSPUNCH 220 

table elements 302 
maXlmum nUlnLJer 

index-names 304 
keys 

sort 252 
table handling 303 
sub-queue levels 342,343 
UNSTRING delimiters 357 

maximum size (see maximum length) 
maximum value for a subscript 297 
MCP (message control program) 
description 339 

MCP/COBOL interface 
and CD entry 339,340 
and MESSAGE condition 348 
and R~CEIVE statement 349 
and SEND statement 351,352 

llliMORY SIZE clause 69 
IvJESSAGE conal tion 

description 348,34~ 
format 348 
and input CD updating 348,349,345 

message control program (MCP) 
description 339 

message queues 339-343 
message retrieval 349 8 350 
message transmission 350-352 
method of data reference 49,50 
minor control break 265 
minus symbol 

in arithmetic expressions 154,155 
in collating sequence 160,251 
in indexing 306,307,298,299 
in the PICTURE clause 

description 119,120 
external floating-point items 122 
numeric edited items 123,125 
sterling items 335,338 

and the SIGN clause 128 
as unary operator 154,155 

(see also hyphen) 
mnemonic-name 

in the ACCEPT statement 218,219 
in the CODE clause 265 
in the DISPLAY statement 220 
in SPECIAL-NAMES paragraph 70 
in the WRITE statement 213,214 

mode F records (see F-mode records) 
mode S records (see S-mode records) 
mode U records (see U-mode records) 
mode V records (see V-mode records) 
modification 

444 

library text 
DELETE and INSERT cards 324,325 

sort records 

after sorting 253,254 
before sorting 252,253 

MOVE statement 
description 197-199 
examples 26,27 
formats 197 
permissible moves 199 
rules 198 
with sort special registers 257 
with sterlinq items 338 

movement o::r data 
and MOVE statement 197-199 
and STRING statement 353-356 
and TT1\1STRING statement 357-362 

multiline print files on 3525 416 
multiple delimiters in UNSTRING 357 
multiple entry points and CANCEL 230-232 
MULTIPLE FILE TAPE clause 86 
multiple redefinition of data 112 
MULTIPLE REEL/UNIT option of the ASSIGN 
clause 73,74,246,247 

multiple results 
ADD statement 179,180 
SUBTRACT statement 183,184 

multiplication operator 154,155 
MULTIPLY statement 

description 182~183 
example 25 
formats 182.,183 

multivolume processing 
and options of CLOSE statement 221-225 
reading 211 
user labels 104,105,170-172 
writing 216 

name 
for a data item 110 
description 41 
field in system-name 75 
qualification of 49~50 
for a record 110 
for a subprogram 230,231 

negative operand in a sign condition 162 
negative value 

in DISPLAY statement 221 
in external floating-point items 122 
in numeric edited items 123,125-127 
in PERFORM statement 189 
and PICTURE clause 118-123,125-127 
and SIGN clause 128 
in sign condition 162 

nested 
IF statements 167,168 
OCCURS clauses 301,302 
PERFORM statement 188,189 
REDEFINES clauses 112 

NEXT GROUP clause 
description 273,274 
effect of PRINT-SWITCH 285,,274 
format 273 



o 

NOMINAL KEY clause 
description 80,81 
format 80 
indexed files 65 
and READ statement 212 
relative files 64 
and REWRITE statement 217 
and START statement 208,209 
and WRITE statement 212.215,216 

noncontiguous data items (see level number 
77 items) 

nonnumeric literals 
continuation of 53 
definition 43 
in the EXAMINE statement 200 
in a move 199 
in a relation condition 161 
VALUE clause 141-143 

nonnumeric operands 
in a move 198,199 
in a relation condition 161 

nonstandard labels 
GO TO MORE-LABELS 171,172 
LABEL RECORDS clause 103,104 
LABEL-RETURN special register 45,172 
reversed reading 206 
system procedures 171 
USE declarative 170-172 

NOT condition construction 
in compound conditions 162-165 
in test conditions 156 

NOT logical operator 
in compound conditions 162 
evaluation 163-165 

NOTE statement 241,242 
null report group 269 
NULLFILE parameter of the DD card (see 

dummy files) 
number of input/output units 73 
numeric character in a PICTURE 
clause 119,120 

numeric class test 157,158 
numeric data item 

BLANK WHEN ZERO clause 115 
in the class test 156,157 
in the EXAMINE statement 200 
fixed-point 

binary 137,140,135 
external decimal 136.139,135 
internal decimal 138,140,135 

floating-point 
external 136,140,135 
internal 137,140,135 

internal representation 139.140 
in a move 198~199 
as a receiving item 198.199,359 
in a relation condition 161 
in UNSTRING statement 359 
VALUE clause 142,143 

numeric edited items 
BLANK WHEN ZERO clause 115 
description 123-127 
in a move 198,199 
as a receiving item 198.199 
in a relation condition 161 
USAGE clause 136,123 

numeric literal 
continuation of 53 

definition 42 
in a move 199 
in a relation condition 161 
in VALUE clause 142,143 

numeric operanGs 
in ADD statement 179,180 
in COMPUTE statement 181 
in DIVIDE statement 181,182 
in MOVE statement 198,199 
in MULTIPLY statement 182,183 
in relation conditions 161 
in SUBTRACT statement 183,,184 

OBJECT-COMPUTER paragraph 
COPY statement 320-323 
description 69 
format 69 
SEGMENT-LIMIT clause 318~69 

object of a relation condition 159 
object program, definition 59 
object-time sUJroutine library 

and COBOL library management 13 
required with compiler 12 

OCCURS clause 
algorithm for slack bytes 131 
and CD entry 302 
description 300-307 
direct indexing 306 
examples 304,315 
formats 301 
redefining restriction 111,112 
relative indexing 304,305 
renaming restriction 144 
slack bytes 131-133 
value restriction 142 

OF qualifier connective 
with indexes and subscripts 298"299 
with a name 49 

omitted data names in input CD 345 n 346 
omitted end indicator 351 
OMR (optical mark read) processing 413 
ON statement 

and CALL statement 229 
formats and description 328,329 

OPEN statement 
combined function processing on 

3525 415 
description 205-207 
example 23 
formats 205,206 

operational sign (see sign, SIGN clause) 
operator communication 195.,218,219 
optical mark read (OMR) processing 413 
optimized object code 13 
optimizing sort performance 256~257 
optional words in formats 54,40 
OR condition and UNSTRING delimiters 358 
OR logical operator in compound 
conditions 162-165 

order of evaluation for compound 
conditions 163 

Index 445 



order of execution, in Procedure 
Division 150 

organization 
of COBOL program 47 
of dat.a 61,62 
Data Division 92 
Data Division entries 93-95 
Environment Division 67 
field of system-name 75 
Identification Division 59 
Procedure Division 149-153 

output CD (see communication description 
entry) 

output files 
effect of CLOSE options 223-226 
error handling 175-177 
inter-record slack bytes 133,134 
intra-record slack bytes 130-133 
label handling 170-174 
and OPEN statement 205-207 
and WRITE statement 213-217 

output listing format 
of compiler 51 
control of 331 

output queue 
and CD entry 346,347 
and message control program (MCP) 339 
and SEND statement 351,352 

overflow condition 
and STRING statement 355,353 
and UNSTRING statement 360,357 

overflow of records 87 
overlapping data groupings 144-146 
overlayable fixed segment 316,318 
overlaying programs 227,230-240 

P, in PICTURE clauses 118,120,142 
packed decimal format 138,140 
padding in a physical record 99 
page change in a report 266-268 
PAGE clause (see PAGE LIMIT clause) 
PAGE-COUNTER special register 

description 285.261 
GENERATE statement 282 
INITIATE statement 283 

PAGE FOOTING report group 
LINE clause 271-273 
NEXT GROUP clause 273,274 
PAGE LIMIT clause 266-268 
TERMINATE statement 283 
TYPE clause 275-277 

page format 266-268 
PAGE HEADING report group 

GENERATE statement 282 
LINE clause 271-273 
NEXT GROUP clause 273,274 
PAGE LIMIT clause 266-268 
TYPE clause 275-277 

page number of a report 285.,282,283 
paired names for passing 
parameters 228,229 

pairing parentheses 
in arithmetic expressions 154,155 

446 

ELSE in nested IF statements 167 
in subscripts and indexes 297-299 
symbols in compound conditions 164 

paragraph 
DATA-COMPILED 60 
FILE-CONTROL 72-83 
I-O-CONTROL 83-88 
OBJECT-COMPUTER 69 
in Procedure Division 149,150,52 
PROGRAM-ID 59 
SOURCE-COMPUTER 68 
SPECIAL-NAMES 69-71 

paragraph-name 
qualification 49,50 
in reference format 52 
rules for forming 41 

parentheses 
in arithmetic expression 154,155 
in compound condition 163,164 
in conditions 156 
in PICTURE clause 117 
punctuation rules 38 
in subscripting and indexing 297-299 

PARM field data from EXEC card 234 0 97 
passing information 

between programs 93,233-237 
from operating system 234~219 
to operating system 239,195 

pence 
nonreport items 333,334 
report items 335-337 

PERFORM statement 
and CALL statement 229 
in debug packets 330 
and declarative section 171,175 u 284 
description 187-194 
flowcharts 192-194 
formats 187,188 
with segmentation 319.186 
and sort procedures 252-254 

period 
and comma exchanged 70,71,119,338 
in a COPY statement 320,322 
in a data description entry 107-109 
after a division header 52 
after END DECLARATIVES 169 
to end section-header 52,149 
to end sentence 149 
in fixed-point numeric literals 42 
in floating-point numeric literals 42 
after paragraph-name 52,149 
in a PICTURE clause 119,120 

external floating-point items 122 
indicated by P or V 118,120 
numeric edited items 123-127 
sterling report items 335-337 

permanent segment 316,318 
permissible 

comparisons 161 
moves 199 
symbol pairs 

arithmetic expressions 155 
compound conditions 164 

PF (see PAGE FOOTING report group) 
PH (see PAGE HEADING report group) 

c 



o 

physical file, definition 91 
physical record 

definition 91 
size specification 98-100 

PICTUR.E clause 
allowable characters 118-120 
ASCII considerations 391 
categories of data 

alphabetic 119 
alphanumeric 121 
alphanumeric edited 123 
numeric 121,122 
numeric edited 123-127 

character string 117,118 
format 116 
precedence table 120 
repetition of symbols 117,118 

placement of a key 
in the sort file 252 
within a table 303 

plus symbol 
in arithmetic expressions 154,155 
in collating sequence 161,251 
as unary operator 154,155 
in indexing 306.307,298.299 
in the PICTURE clause 

external floating-point items 122 
numeric edited items 123-127 
sterling items 335-337 
in the SIGN clause 128,129 

pocket select characters 
in combined function processing 413-415 
definition 70 
in a WRITE statement 213,214 

positioning data 
within a field 115 

positioning a file 205-207.221-225 
positive operand in sign condition 162 
positive value 

in external floating-point items 122 
in PERFORM statement 189 
unsigned operands 162 

pound-report-string 335 
pound separator 333~335 
pound sign 

report item 335,337 
representation, internal 332 

precedence table for PICTURE clause 120 
preface 2,3 
print line size for report 263 
PRINT-SWITCH 285,274 
priority numbers 

and ALTER statement 319 
atid CALL statement 319 
description 317,318 
and PERFORM statement 319 
segment limit 318 

private library and dynamic CALL 228 
procedural statements 

(see compiler directing statements, 
conditional statements, imperative 
statements) 

procedure branching statements 
ALTER statement 186.187 

examples 186,27-30 
EXIT statement 195,196 
GO TO statement 185,186 
PERFORN statement 187-194 
STOP statement 195 

Procedure Division 
content 149-153 
COpy statement 320-323 
organization 149,150 
Report Writer considerations 

GENERATE statement 281,282 
INITIATE statement 282" 283. 
overall 261 
TERMINATE statement 283,284 

sort considerations 
EXIT statement 256 
RELEASE statement 254,255 
RETURN statement 255 
SORT statement 250-254 

statements (see compiler directing 
statements, conditional statements, 
imperative statements) 

sterling considerations 338 
string manipulation considerations 

STRING statement 353-356 
UNSTRING statement 357-362 

structure 150 
table handling considerations 

SEARCH statement 309-312 
SET statement 313 

teleprocessing considerations 
RECEIVE statement 349,350 
SEND statement 350-352 

USING option on the division 
header 233-235,237,150 

procedure-name, definition 41 
procedures in the declaratives section 169 
processing functions 

for 3505 reader 
optical mark read (O~~) 413 
read column eliminate (RCE) 413,414 

for 3525 punch 
combined functions 414-416 
interpreting punch 413 
read column eliminate (RCE) 413,414 

PROCESSING ~ODE clause 78 
prog~am-controi cards 398 
PROGRAM-ID paragraph 59,60 
program-name 

rules for formation 60 
and subprogram linkage 228,230,231 

program termination 238-240 
punctuation character 

used in formats 54 
used in a source program 38 

quadruple spacing in source program 
listing 331 

qualification 
and condition-names 143 
description 49,50 
index-names 298,299 
names 49,50 
subscripts 297,298 

Index 447 



qualifier connective~ definition 40 
queue 

and CD entry 341-347 
description 339 
and MCP 339 
and MESSAGE condition 348 
and RECEIVE statement 349,350 
and SEND statement 351,352 

queue name 
and CD entry 341-343 
and MESSAGE condition 348 
predefined to MCP 343 
and RECEIVE statement 349 
and SEND statement 351 

queue processing 339 
queue structure 

and input CD entry 342 
and MESSAGE condition 348 
and RECEIVE statement 349 

quotation mark 
default option 37 
and nonnumeric literals 43 
and program-name 60 

QUOTE (QUOTES) figurative constant 43,202 
quotient 181,182 

random access 
ACCESS MODE clause 77,78 
CLOSE statement 221,222~225,226 
definition 62 
direct files 63,64 
indexed files 65 
READ statement 210-212 
relative files 64,65 
REWRITE statement 217,218 
SEEK statement 210 
WRITE statement 212 0 2136 216,217 

random multivolume 
definition 222 
effect of CLOSE options 225#226 

random single-volume 
definition 222 
effect of CLOSE options 225,226 

range of a PERFORM statement 188.189#191 
range of values 

condition-name 141-143 
priority numbers 317 
sequence numbers on DELETE card 325 

RD (see report descxription entry) 
read column eliminate (RCE) 

processing 413,414 
READ statement 

description 210-212 
examples 24 
format 210 
and 3525 combined function 
processing 415 

reading backwards, boundary alignment 206 
reading nonstandard labels 170-172 
READY TRACE statement 326 
RECEIVE statement 

448 

description 349,350 
format 349 

and input CD entry 344 
receiving area 

in MOVE statement 198.199 
in RECEIVE statement 349,350 
in STRING statement 354-356 
in UNSTRING statement 

for data 357-361 
for delimiters 357-361 

receiving data item 
justification 115 
in MOVE statement 198~199 
in RECEIVE statement 349~350 
in STRING statement 353-356 
truncation 115 
in UNSTRING statement 357-362 

record 
description 100,101,110-146 
level number 94~95 
naming 110 
slack bytes 

between records 133,134 
within records 130-133 

RECORD CONTAINS clause 
description 100,101 
format 100 
for report writer 263 
for sort 249 

record description entry 
Communication Section 340,341 
definition 110 
File section 96 
Linkage Section 97 
sort records 96 
Working-Storage Section 97 
(see also data description clauses) 

RECORD KEY clause 81~65 

record length for sort records 249 
RECORD-OVERFLOW option of the APPLY 
clause 87 

record size for CD entries 342,346 
record size default 

for ACCEPT statement 219 
for DISPLAY statement 220 
for report writer 263 

recording mode 
ASCII considerations 391 
defaults 101,102 
specification 102,103 
types 101,,102 

RECORDING MODE clause 102,103 
ASCII considerations 391 

REDEFINES clause 
and CD entry 111 
description 111-114 
examples 111-114 
and file section 111 
format 111 
position when used 111,108 
and VALUE clause 142 

reference format 54~55 
regrouping data items 111-114~144~146 
relation character 

definition 39 
use in relation conditions 159-161 

c 



( . 
",---... 

o 

relation condition 
ASCII considerations 392-394 
characters used 39 
description 159-161 
format 159 
operands allowed 161 
in table handling 308 
use of condition-name 158 

relational-operators 
compound conditions 163-165 
definition 39 
implied 164,165 
in relation condition ·159 

relative files 
BLOCK CONTAINS clause 98,99 
file processing chart 387 
invalid key condition 

in a READ statement 212,210 
in a REWRITE statement 217,218 
in a WRITE statement 216.213 

label handling 103~104 
physical record size 99 
random access 64 
recording mode 102 
sequential access 64 

relative indexing 306,307,298,299 
relative LINE clause 271,272 
relative organization 62 
relative record addressing scheme 62 
relative track addressing scheme 62 
relative track number 62,78,79 
RELEASE statement in sort 254~255 
remainder, definition 182 
REMARKS paragraph 59 
remote station 339 
RENAMES clause 144-146.,107 .. 108 
renaming 

data items 144-146,107~108 
logical records 95,96 

REORG-CRITERIA option of the APPLY 
clause 88 

reorganization data for indexed files 88 
repetition of symbols in a PICTURE 

clause 117.,118 
replacement 

of a character 200-204 
and COpy statement 320-323 
editing 126.127 
of a record 217.,218. 

replacing zero with an asterisk 126,127 
replacing zero with a space 126,127,115 
REPORT clause 262,263 
report description entry 

CODE clause 264,265 
CONTROL clause 265,266 
COpy statement 320-323 
definition 264 
and GENERATE statement 281.,282 
PAGE LIMIT clause 266,267 

REPORT FOOTING report group 
description 267 
LINE clause 273 
NEXT GROUP.clause 274 
PAGE LIMIT clause 267 
TERMINATE statement 283 
TYPE clause 276 

report group descri~tion entry 

COLUMN clause 277 
COPY statement 320-323 
description 269-271 
formats 270 
GROUP INDICATE clause 278 
LINE clause 271-273 
NEXT GROUP clause 273,274 
RESET clause 278,279 
SOURCE clause 279 
SUM clause 279-281 
TYPE clause 275-277 
VALUE clause 281 0 279 

report groups 
definition 269 
page format 268 
sequence of printing 265,266 
types 275-277 
USE sentence 284~285 

REPORT HEADING report group 
description 267 
GENERATE statement 282 
LINE clause 272 
NEXT GROUP clause 273.,274 
PAGE LIMIT clause 267 
TYPE clause 275-277 

report-name 264,281 
report page format effect on 

LINE-COUNTER special register 286 
PAGE-COUNTER special register 285 
PAGE LIMIT clause 266-268 

Report section 
content 264-281,260,261 
COPY statement 320-323 
formats 

report description entry 264 
report group description entry 270 

report writer 
Data Division considerations 

File Section 262,263 
overall description 260,261 
Report section 264 
report description entry 264-268 
report group description 
entry 269-281 

Procedure Division considerations 
declaratives 284,285 
GENERATE statement 281,282 
INITIATE statement 282 0 283 
overall description 261 
TERMINATE statement 283,284 
USE statement 284,285 

sample program 
coding 287-290 
output 292-296 

special registers 285,286 
required words in formats 54,40 
RERUN clause 

ASCII considerations 390,395 
for processing programs 83-85 
at end-of-volume 84 
for sort feature 247~248 

RESERVE clause 
description 76,77 
format 76 
and RCE processing 414 
and 3525 processing 414 

Index 449 



reserved words 
definition 40 
in formats 54 
list of 374-376 

RESET clause, Report writer 278~279 
RESET TRACE statement 326 
restarting a program 83,84.247,248 
retrieving an indexed file 65 

and READ statement 210-212 
and START statement 208.,209 

return code 
for nonstandard labels 172,45 
to operating system 195 
for sort 257 
special register 44 
from subprogram 239 

RETURN-CODE special register 
and called programs 239 
description 44 
and STOP RUN 195 

RETURN statement in sort 255 
returning control to the operating 

system 195,239 
reversed reading of a file 205-207 
rewinding a tape file 

and CLOSE statement 221-225 
and OPEN statement 205-207 

REWRITE statement 217,218 
rewriting 

direct file 217,218,63 
indexed file 217,218,65 
relative file 217,218,64,65 

RF (see REPORT FOOTING report group) 
RH (see REPORT HEADING report group) 
right justification 115 
rolling counters forward 280 
ROUNDED option in arithmetic statements 

(see also intermediate results) 
ADD 179,180 
C orvlPUTE 181 
description 178,179 
DIVIDE 181.182 
MULTIPLY 182,183 
SUBTRACT 183,184 

rounding in a SIZE ERROR condition 179 

S, used in a PICTURE clause 
binary items 137,121 
and class test 157 
description 118,120 
external decimal items 121 
fixed-point numeric items 121 
internal decimal items 138,121 
and SIGN clause 128 
sterling nonreport items 333,334 

S-mode records 
definition 102 

450 

and record overflow 103~102 
recording mode 102,103 
sharing storage 85,86 
spanned format 102 

specification 103 
'SAME clause 85,86,248 
sample programs 

creation of a direct file 368~369 
creation of an indexed file 370 
random retrieval and updating of an 
indexed file 371,372 

report writer 287-296 
sort 258,259 
table handlinq 314,315 
updating a direct file 32,33 
user label procedure 173,174 

scaling, effect on rounding 179 
scaling position character (P) 

description 118,120 
example 142 

scientific decimal item (see external 
floating-point items) 

SEARCH statement 
description 309-312 
example 315 
flowchart 311 
formats 309 
index data items 307 
modifying indexes 310,312 

section 
classification in segmentation 317 
definition 149 
format 150 

section header 52~149 
section-name 52,150 
SECURITY paragraph 59 
SEEK statement 210 
segment classification 317 
SEGMENT-LIMIT clause 

description 318,316 
format 318,69 

segmentation 
and ALTER statement 319 
and CALL statement 319 
classifying segments 317 
control of 317 
fixed portion 316 
and GO TO statement 319 
independent segments 316 
and PERFORM statement 319 
priority numbers 317,318 
program organization 316 
restrictions on program flow 319 
segment limit 318 

SELEC-1'---c1.ause 
COPY statement 320-324 
description 73 
file named in GIVING option of SORT 
statement 246,247 

format 73,246,247 
sort-file 247 

semicolon 
in a data description entry 108 
in Procedure Division 149 
in source program 38 
in SPECIAL-NAMES paragraph 70 

( '-\ 

" ---' 



o 

SEND statement 
description 350-352 
formats 350,351 
and output CD entry 351 

sending field 
in MOVE.statement 197-199 
in SEND statement 351 
in STRING statement 353-356 
in UNSTRING statement 357-362 

sentence in procedure division 149 
SEPARATE CHARACTER option of SIGN clause 

and ASCII files 391,395 
ignored in STRING statement 353 
and UNSTRING statement 359 

separators 
of sentences 149 
in sterling items 333-336 
of words 38,40 

sequence 
of COBOL entries 

in Data Division 98,108 
in Environment Division 72,83 
general rule 47 
in Identification Division 59 
in Report Writer 264,270 

execution in Procedure Division 150 
execution of segmented programs 317 
sorting 250.251 

sequence checking compilation default 51 
sequence number in a source program 51 
sequence-number-field for copying 323-325 
sequential access 

ACCESS mode clause 77,78 
and BLOCK CONTAINS CHARACTERS 
clause 98-100 

definition 62 
direct files 63 
indexed files 65 
relative files 64 
sequential files 62 

sequential data organization 61 
sequential files (see standard sequential 
files) 

sequential multivolume files 
definition 222 
effect of CLOSE options 222-225 
label processing 170-172 
and READ statement 211 
and WRITE statement 216 

sequential single volume files 
definition 222 
effect of CLOSE options 222-225 

seriaL search of a table 309-311 
series connective, definition 40 
series of values for 

condition-name 141-143 
SET statement 

description 313 
format 313 
with index data items 307 
with indexes 298 

shading' in text, explained 3 
sharing 

COBOL library subroutines 13 
storage between files 85,86 

shilling representation 333 0 335-337 
shilling separator 333,335-337 
short-precision internal floating-point 

items 
internal representation 140 
USAGE clause description 137,135 

sign 
in ASCII files 391,395 
binary items 137,121 
and class condition 157 
description 118 
external decimal items 121 
external floating-point items 136 0 122 
fixed-point numeric literals 42 
floating-point numeric literals 42 
internal decimal items 138,121 
internal floating-point items 137 
internal representation 139,140 
and MOVE statement 198 
in PICTURE clause 118,120,121-123,125 
and relation condition 159,160 
in SIGN clause 128 
and sterling items 334,335 0 337 
and STRING statement 353 
in subscripts 297 
as unary operator 15~,155 
and UNSTRING statement 359 

SIGN clause 
ASCII considerations 3910395 
character S 128 
format and description 128 
and STRING statement 353 
and UNSTRING statement 359 

sign condition 162 
simple insertion editing 124 
single digit level number 95 
single spacing of the printer page 214 
SIZE ERROR option in arithmetic statements 

ADD 179,180 
COMPUTE 181 
description 179 
DIVIDE 181,182 
MULTIPLY 182,183 
and ROUNDED option 179 
SUBTRACT 183,184 

SKIP1/SKIP2/SKIP3 statements 331 
slack bytes 

definition 130 
and computational items 131 
and OCCURS clause 131-133 
inter-record 133",134,131 
intra-record 130-133 
and physical record size 99 

sort 
ASCII considerations 394,395 
collating sequence 251 
Data Division considerations 248,249 
elements of the feature 245 
Environment Division considerations 

FILE-CONTROL paragraph 246 u 247 
I-a-CONTROL paragraph 247,248 

keys 250,251 
Pr.ocedure Division considerations 

EXIT statement 256 

Index 451 



RELEASE statement 254.255 
RETURN statement 255 
SORT statenient 250- 254 
special registers 256.257 

sample prog~am 258.259 
SORT-CORE-SIZE special register 257 
sort-file 

COpy statement 320-324 
description entry 249 
SELECT clause 247 

SORT-FILE-SIZE special register 256 
sort-key. defi~ition 339 
SORT-MESSAGE special register 257 
SORT-MODE-SIZE special register 257 
SORT-RETURN special register 257 
SORT statement 

description 250-254 
and EXIT statement 256 
format 250 
and RELEASE statement 252~253 
and RETURN statement 254,255 

sort-work-file 249 0 250 
SOURCE clause 

description 279 
format 279 
with report groups 276 

SOURCE-COMPUTE~ paragraph 68,320-324 

I 

source listing 
EJECT statement 331 
SKIP1 thru SKIP3 statement 331 

source program 
definition 59 
and reference format 51-53 
resequencing 317 

source program lib~ary facility 
and CD entry 347,341.320-324 
COpy statement 320-324 
extended 

BASIS 324 
DELETE/INSERT 324 g 325 

space 
in alphabet~c items 119 
in BLANK WHEN ZERO clause 115 
in collating sequence 160.251 
in floating insertion editing 125"126 
as a replacement character 125-127 
in simple i~sertion editing 124 
as a word separator 40 
in zero suppression editing 126~127 

SPACE (SPACES) figurative constant 
definition 43 
in a move 199 

spacing source program listing 331 
spanned records 

definition 103 
recording mode 102 
specification 103 

special character in formats 54 
special insert·ion editing 124 
special level numbers 95 
special-names definition 41 

(see also m~e·moni.c-name) 
SPECIAL-NAMES paragraph 

452 

COpy statement 320-324 
CURRENCY SIGN clause 70.,710 338 
DECIMAL-POINT IS COMMA clause 70" 7,1,338 

description 69-71 
format 70 
system-name is mnemonic-name clause 70 

and 3505 processing 413 
and 3525 processing 413.414 

spec:Lal registers 
definition 44 
repol;'t writer 

LINE-COUNTER 285~286 
PAGE-COUNTER 285 

sort 
SORT-CORE-SIZE 257 
SORT-FILE-SIZE 256 
SORT-MESSAGE 257 
SORT-MODE-SIZE 257 
SORT-RETURN 257 

system 
CURRENT-DATE 44 
DATE 45,.219.220 
DAY 45,,220 
LABEL-RETURN 45,,11'2 
RETURN~CODE 44 u 195.239 
TALLY (see TALLY special register) 
TIME 45,.220 
TIME-OF-DAY 44 

special TP control characters as data 344 
squa~e brackets in formats 54 
stacked items in formats 54 
standard data format 

alphabetic items 119 
a£phanumeric edited items 123 
alphanumer.ic items 121 
fi.xed-point numeric items 121 
logical records 100 
numeric edited items 123 
physical records 99 

standard sequential file 
BLOCK CONTAINS clause 98~99 
CLOSE statement 221-225 
definition 61 
f~le processing chart 384 
labels 103-105.170-174 
OPEN statement 205-207 
READ statement 210~211 
r.ecord overflow feature 87 
recording mode 101-103 
spanned records 102,,103 
WRITE statement 212~216 
WRITE-ONLY option of APPLY clause 86,87 

standard system procedures 
er.ror routines 175 
label handling 171 

START statement 
description 208.209 
f.ormats 208 
indexed files 65.80 

. statement 
categories 150 

compiler-directing, list 153 
conditional. list 151 
imperative,. list ~51f1152 

d'efinition 149 
static CALL statement 

implementation 228-230 
specified with dynamic CALL 230,231 

'/"-"" 



1"' ... --...... ·, 

( \ 
",--,' 

o 

static subprogr.am linkage 
descrihed 228-230~232-235 

sterling currency 
international considerations 338 
nonreport items 

description 333,334 
in a move 199 
in a relation condition 161 

PICTURE symbols allowed 332 
Procedure Divis-ion considerations 338 
report items 

descript·ion 335-337 
in a move 199 
in a relation condition 161 

STOP statement 
in calling and called p~ograms 238,239 
format and description 195 

STOP RUN statement 
in calling and called programs 239 
description 195.239 
and message retrieval 
and symbolic debugging 

350 
399 

257 
13 

storage available for sort 
string manipulation feature 
STRING statement 

description 353-356 
example 355,356 
format 353 

structure of 
COBOL language 35-45 
COBOL program 47.48 
COBOL records 94.95 
Data Division 92~93 
Environment Division 67 
Identification Division 57 
Procedure Division 150 

sub-queue structures 
and input CD 341-343 
and MESSAGE condition 348 
and RECEIVE statement 349 

subdivisions of data records 94,95 
subject 

of a condition 159 
implied 164,,165 
of an OCCURS clause 301 

subp~ogram, ILBO invalid as name 
in 230,231 

subprogr;.lm linkage desc~iptions 
dynamic 227~230-234,236-240 
static 228-230~232-235.238-240 

subprogram linkage statements 
CALL 228-231 
CANCEL 231,232 
ENTRY 232 
EXIT PROGRAM 239 
GOBACK 240 
STOP RUN 195 
termination considerations 238,239 
USING option 233-237 

subscripts 
cond~tion-name 143 
description 297~298 
format 297,,298 
quali£ication of 297,298 
restrictions on use 299 

substitution 
comma for period 70,,71,338 

dollar sign 70,71 6 338 
subtotaling in a report 278",279 
SUBTRACT statement 

description 183,,184 
example 24 
f_ormats 183,184 

subtraction operator 15~"155 
SUM clause 279-281 
SUM counter 

de£inition 280 
INITIATE statement 283 
resetting to zero 278,279 

summary reporting 281,282 
summation in a report 278-281 
suppr.ess spacing 214",70 
suppression of 

leading zeroes 125-127 
library entry listing 320"322 
pr.inting of a report group 285,274 
sequence checking 51 

suppr.ession and replacement 
editing 126 0 127 

suppression symbols 126 
symbol pair in a compound condition 164 
symbolic debugging 

description 397-401 
dump example 402-412 
Version 4 feature 12 

symbolic portion of ACTUAL KEY 78,79 
symbolic queues and sub-queues 

and CD entry 341-343 
and MESSAGE condition 348 
and RECEIVE statement 349 

symbols 
in arithmetic expressions 15~w155 
in floating-point literals 42 
in PICTURE clause 118-120 
in relation conditions 159 
in sterling currency formats 332 

SYNCHRONIZED clause 
d-escription 129,130 
format 129 
index data items 307 
slack bytes 130-134 

syntax-checking compilation 12 
SYSIN 218,219,70 
SYSOUT 220,70 
SYSPUNCH 220#270 
system closing conventions 223 
syst-em features 

CURRENT-DATE special register 44 
DATE special register 45~219,220 
DAY special register 45,220 
LABEL-RETURN special register 45,,172 
RETURN CODE special register 44.,195" 239 
TALLY special register (see TALLY 
special register) 

TIME special register 45_220 
TIME-OF-DAY special r:egister 44 

system independent binary items 138 
system information and USING option 234 
system link library and dynamic CALL 227 
system logical input device 218~219 
system logical output device 220 
system-name 

in ASSIGN clause 74#75 

Index 453 



definition 73 
in the RERUN clause 84~248 

system routInes 
error 175 
label handling 171 

System/370 ,device support 413-416 
System/370 instruction generation 69 
SOl and S02 system-names" definition 64 

table, description 291 
table elements 302.,297 
table handling 

Data Division considerations 
OCCURS clause 303-307 
USAGE clause 307 

examples 299.30'0,304-307,312 
indexing 298.299 

direct 306 
relative 306.307 

Procedure D~vision considerations 
relation conditions 308 
SEARCH statement 309-312 
SET statement 313 

sample progr.am 314.315 
TALLY special register 

in the ACCEPT statement 219 
description 44 
and CALL statement 229 
in the DISPLAY statement 221 
in the EXAM~NE statement 200 
in a SOURCE clause 279 
as a subscript 291 
in a SUM clause 279.281 

tape devi'ce, er.ror information 175-177 
tape file 

label handling 170-172,103-105 
and NO REWIND option 206,211,224 
and REVERSED option 205-207 

teleprocessing (TPY considerations 
Data Division CD entry 

copying 341,347,320-324 
FOR INPUT' 340-346 
FOR OUTPUT 340,346,347 

and MCP (message control program) 339 
Procedure Division considerations 

MESSAGE condition 348,349 
RECEIVE statement 349,350 
SEND statement 350-352 

Version 4 feature 13 
TERMINATE statement 283,284 
termination of 

execution 195 
main programs 238,239,195 
report processing 283,284 
STRING statement 354,355 
subprograms 238-240 
UNSTRING statement 360 

test conditions 

454 

class 157,158 
condition-name 158 
definition 156 
message 348.349 
relation 159-161 
sign 162 

THEN 
in IF statement 166 
in sentences 38,149 

TIME special register description 45,220 
TIME-OF-DAY special register 
description 44 

TOTALED/TOTALING option for label 
records 104,,105 

TRACE statement 326 
track address in ACTUAL KEY 78.,79,,62 
TRACK-AREA clause 82 
TRAC~-LIMIT clause 82,63 
trailer labels 103-105,170-172 
transfer of control 

to operating system 195.237-240 
to operator 195.218,219 

transfer of data 
in: MOVE statement 197'-199 
in STRING statement 353-356 
in UNSTRING statement 357-362 

TRANSFORM statement 202-204.338 
and ASCII files 392-394 

trip~e spacing 
pr.inter page 215 
source program listing 331 

truncation 
in arithmetic operation 117,179 
of buffers 87 
in floating insertion editing 126 
in receiving field 117,198 

two-line print files on 3525 416 
TYPE clause 215-277 

U-mode records 
and BLOCK CONTAINS clause 99 
compiler determination for 101,102 
definition 103 
description 101.103 
and direct files 102 
in:ter-record slack bytes 134 
REVERSED option of the OPEN 

statement 206 
specification 102,103 

UHL (User Header Label) 104 
unar.y + and unary - 154,155 
unconditional syntax-checking 
compilation 13 

under.lined words in formats 54 
unequal size operands in a re.lation 
condition 160 

unique names 49,50 
unit in formats 55 
unit record volume 

definition 222 
effect of CLOSE options 223-225 
error information 175-177 
list 14 

unknown message destination 346,347 
unsigned numeric operands 

considered positive 159#162,42 
in relation condition 159 
in sign condition 162 

unspecified record format (see U-mode 
records) c 



o 

UNSTRING statement 
description 357-362 
example 360-362 
format 357 

updating a file 
REWRITE statement 217.218 
WRITE statement 216.217~213 

updating sample program 32.33 
USAGE clause 

alteration by r~defining 114 
ASCII considerations 391.395 
and class condition 157 
default option 135 
description 135-140..30.7 
formats 135 .. 30.7 
index data items 30.7 
and relation condition 159,160. 
and STRING sTatement 353 
and UNSTRING statement 357 

USE statement (see declaratives) 
user-created libra~ies 320.-325 
user error procedures 175-177 
User Header Label (UHLr 10.4 
user labels 

and ASCII files 390. 
and declarative procedures 170.-174 
description 10.4 
GO TO MORE-LABELS 171 .. 172 
and LABEL RECORDS clause 10.3-10.5 
sample prog:r:am 173.,174' 

User Trailer Label (UTL) 10.4 
USING option of subprogram linkage 

boundary alignment in 234 
in a called program 232-235~238 
in a calling program 228-238 
entry points in 228~2290232-234 
examples 234-238 
and EXEC statement PARM field 234 
formats and description 233-238 
paired operands in 229 

utility device list 74 
UTL (User Trailer Label) 10.4 

V'I used in a P'ICTURE clause 
deicription 11~.12D 
external floating-point items 122 
fixed point numeric items 121.137.L38 
numeric edited items 123 
with P 118 
sterling nonreport items 333.334 

V-mode records 
definition 10.3 
inte:r:-record slack bytes 133,134 
recording mode 10.1.10.2 
REVERSED option of the OPEN 
statement 20.6 

specification 10.2,10.3 
specification of physical re~ord 

siz.e 98 .. 99 
valid forms of the class test 158 
VALUE clause 

in Communication Section 141 

r:ondi tion-namps 142 .. 14"3." 158 .. 10.8 ,10.9 
description 141-143 
examples 143(1158 
in File Section 141 
formats 141 
in Linkage Section 
~eport data items 
in Report Section 
in Working-Storage 

VALUE OF clause 10.5 

141 
27.9,281 
141., 219,281 
Section 141 

variable-length reco:r:d format (see V mode 
records) 

variable-length records 
description 10.1-10.3 
and OCCURS DEPENDING ON 30.2,249 
size of print line in a r.eport 263 
in sort 249 

variable-length table 30.1-30.3 
Verbs, classes 

of Procedure Division 151-153 
Version 3 Compiler features 

included in Version 4 12 
Ii st of 1 3 , 1 4 
sort enhancements for 25"6.,257 

Version 4 Compiler features 
ASSIGN clause and 75 
DATE/DAY/TIME special 
~egisters 45»46~219,22o. 

dynamic subprogram 
linkage 227-232~2360237 

list of 12-14 
string manipulation 353-362 
symbolic debugging 397-412 
teleprocessing (TP) 339-352 
Version 3 features included 12 
150.5/3525 processing 413-416 

vertical positioning 
of printer file 213-215 
of 3525 card file 416 

volume-switch 
and CLOSE options 223 g 224 
label processing 10.3-10.5,170. 
and READ statement 211 
and WRITE statement 216 

wait state, and RECEIVE statement 350. 
word 

continuation of in a source program 53 
definition 40. 
types 

name 41 
reserved word 40. 
special name 41 

Working-Storage Section 
boundary alignment 130. 
content 96.97 .. 10.7-10.9 
in COpy statement 320.-324 
data item description entry 10.7, ID8!, 96 
example 22,23 
f.o rm at 96 
naming data 110. 
overall description 96.97 

Index 455 



record desc~iption entry 107,108,97 
structure 93 
use of FILLER 110 
used in error p:r:ocessing 177 
vaJues of items 141 

WRITE-ONLY option of the APPLY 
clause 86,87 

WRITE statement 
description 212-211 
error processing 175-177 
examples 27 
formats 213 
and 3525 combined function 

processing 415-416 
writing user labels 175-177.103~105 

X, used in a PICTURE 
clause 118n120~li1,123 

Z, used in a PICTURE clause 
oescription 118~120 
numez:ic edited items 123,,126,127 
sterling report items 335-337 
zero suppression editing 126,127 

zero divisor 182~179 
ZERO (ZEROES g ZEROS) figurative constant 

description 43 
in a move 199 
in place of numeric literal 43 
in a relation condition 161 

zero insertion 119 0 120 0 123 0 124 
zero operand 

and BLANK WHEN ZERO 115 
relation condit~on 
sign condition 162 

161 

and size erz:or 179 0 182 
zero suppression and replacement 

edi.ting 126,,127 
zone bits, external decimal items 
zoned decimal items 136~139 

0, alphanumeric'edited 123 
end indicator cede 34~"352 
ERROR KEY code 347 
numeric edited items 123-127 

136,139 

in PICTURE clause 119,120 u123-127 
00 as STATUS KEY code 345~348 

456 

01-·4:9, level numbers 94,,95 .. 108,52 

1, end indicator code 3~4.352 
ERROR KEY code 347 

2, end indicator code 344.352 

2-line print files on 3525 416 

3, end indicatqr code ~A4~352 

6, used in sterling items 332~333 

7, used in sterl~ng' items 333.,332 

8, used in sterling items 3'33-337,332 

9, used in a PICTURE string 
alphanumeric edited items 123 
description 118,120 
external fl.oating-point items 122 
fixed-point numeric items 121 
numeric edited items 123-127 
s~erling items 333-337.332 

20 as STATUS KEY code 345 

21 as STATUS KEY code 345 

22 as STATUS KEY code 345 

29 as STATUS KEY code 345 

50 as STATUS KEY code 345 

60 as STATUS KEY code 345 

66 l'evel number 107r,,108,.144-146,95 

77 level number 107~108~95 

88 level number 107-109"141-143.95 

3505 processing functions 413,414 

3525 processing functions 413-416 

"-.. , . 

c 



(' I 

'''--- ./ 



GC28-6396-6 

--..- ..... ----- -... -- --- --- ---..---.. ----- -- - ----~---- .. -­_~_'t'_ 

~ 

International Business Machines Corporation 
Data Processing Division 
1133 Westchester Avenue White Plains, N.Y. 10604 

IBM World Trade Americas/Far East Corporation 
Town of Mount Pleasant, Route 9, North Tarrytown, N.Y., U.S.A. 10591 

IBM World Trade Europe/Middle East/Africa Corporation 
360 Hamilton Avenue, White Plains, N.Y., U.S.A. 10601 

t:XJ 
$: 
0 
en 

" c: 

l> 
3 
~ 
C:;. 
Ql 

::J 

Z 
Ql 
.-t o· 
::J 
e:!.. 
en 
.-t 
Ql 

::J c.. 
Ql ..., 
c.. 
(") / 

0 ( 

t:XJ 
0 
r 

'Tl 

ell 

Z 
9 
en 
w 
(J) 
0 
~ 
~ 

~ 
:;' 
.-t 
ell c.. 
::J 

C 
en 
l> 
G) 

G 
00 
m w c.o 
(J) 

m 


