

subscripting is permitted by COBOL. Multilevel subscripts are always
written from left to right, in decreasing order of inclusiveness of the
groupings in the table. Subscripts are written within a single pair of
parentheses and are separated by a comma followed by a space. For
example:

01
02

03

ARRAY.
VECTOR, OCCURS 2 TIMES.

ELEMENT, OCCURS 3, PICTURE S9(9},
USAGE IS COMPUTATIONAL.

The above example would be allocated storage as follows:

Byte number
of element

o

4

8

12

16

20

4-- 4 bytes

r-----------------'} 1 ELEMENT (1, 1) 1
1-----------------1 I __ __ I
1 ELEMENT (1,3) 1
1-----------------1

1 ELEMENT (2, 2) 1
1-----------------1
1 ELEMENT (2, 3) I L-________________ J

VECTOR (1)

ARRAY

VECTOR (2)

A data-name may not be subscripted under the following circumstances:

1. When it is being used as a subscript.

2. When it is being used as a qualifier.

3. When it appears as the defining name of a record description entry.

4. When it appears as data-name-2 in a REDEFINES clause.

5. When it appears as data-name in the DEPENDING ON option of the OCCURS
clause.

6. When it is data-name in a SYMBOLIC KEY or in an ACTUAL KEY clause.

7. When it is data-name in a LABEL RECORDS clause.

JUSTIFIED RIGHT Clause

This clause may be written
alphanumeric item. Its format is:

[JUSTIFIED RIGHT)

only for an elementary alphabetic or

When non-numeric data is moved to a field for which JUSTIFIED RIGHT
has been specified, the rightmost character of the source field is
placed in the rightmost position of the receiving field. The moving of
characters continues from right to left until the receiving field is
filled. If the length of the source field is greater than tha,t of the

58

c

o

o

o

._-----------------

receiving field, truncation terminates the move after the leftmost
position of the receiving field is filled. If the source field is
shorter, the remaining leftmost positions of the receiving field are
filled with spaces.

SYNCHRONIZED Clause

The SYNCHRONIZED clause is never necessary in a System/360 COBOL program
since binary and floating-point data items are automatically synchron
ized. If the clause is specified, it is treated as comments by the
compiler.

The compiler assigns storage so that the starting byte of a binary or
internal floating-point item is on the next available half-word,
full-word, or ·double-word boundary, as appropriate. In this way, an
internal floating-point or binary item is properly aligned at the
storage location required by the computer.

The format of the SYNCHRONIZED clause is:

[SYNCHRONIZED {
LEFT }]
RIGHT

If a data hierarchy contains binary or floating point items inter
mixed with other elementary items, there may exist "slack bytes"
introduced to assure the necessary byte alignment (implicit
synchronization) • The following machine requirments pertain to binary
and floating point items:

r--,
I ITEM IMust begin at a byte address I
I laddress that is a multiple ofl
1----------------------------+-----------------------------1
I I I
I Binary half-word I k = 2 I
I Binary full-word I k = 4 I
I Binary double-word I k = 4 I
I Floating point, short I k = 4 I
I Floating point, long I k = 8 I L __ --J

When an item of the types listed in the above chart immediately
follows an item whose last byte is at address X, relative to the first
byte of the COBOL record, then the first byte of this item is at address
Z, where Z is computed as follows:

Z = k * y, where y is the truncated integral value of X + k.
k

Note that k is taken from the preceding chart.

The number of slack bytes is Z - X - 1, which may be zero or positive
and non-zero, depending on X and k.

Slack bytes exist in a record not only in main storage but on files.
The compiler inserts slack bytes on output and expects them on input.

Section 5: Data Division 59

WORKING-STORAGE SECTION

The Working-Storage Section is used to describe areas of storage
reserved for intermediate processing of data. This section consists of
a series of Record Description entries, each of which describes an item
in a work area.

An independent Working-Storage entry describes a single item that is
not subdivided and is not itself a subdivision of some other item. Each
of these items is defined in a separate Record Description entry, which
begins with the special level number 77. All independent Working
Storage entries must precede any items having any of the level numbers
01 through 49.

Data items in the Working-Storage Section that bear a definite
relationship to each other must be grouped into records according to the
rules for formation of record descriptions. All clauses that are used
in Record Description entries may be used in Working-Storage record
descriptions. Each data-name in the Working-Storage Section that
identifies a record (01 or 77 level) must be unique, since it cannot be
qualified by a file-name. Subordinate data-names need not be unique, if
they can be made unique by qualification.

In Working-Storage, level 01 items are adjusted to a double-word
boundary; level 77 binary or internal floating-point items are adjusted
to the next available half-word, full-word, or double-wor.d boundary, as
appropriate.

No assumption should be made about the initial values of Working
Storage items when these items have not had their initial values defined
in a VALUE clause.

Ext LINKAGE SECTION

The Linkage Section describes data passed from another program, or
user label record areas.

Record description entries in the Linkage Section provide names and
descriptions but storage within the program is not reserved, since the
data exists elsewhere. Any Record Description clause may be used to
describe items in the Linkage Section, with one exception: the VALUE
clause may not be specified for other than level 88 items.

The Linkage Section is required in any program in which a LABEL
RECORDS clause with a data-name option or an ENTRY statement with a
USING option appears. A complete discussion of ENTRY is contained in
Section 6.

60

c~

o

o

o

SECTION 6: PROCEDURE DIVISION

The Procedure Division of a source program specifies those procedures
needed to solve a given problem. These steps (computations, logical
decisions, input/output, etc.) are expressed in meaningful statements,
similar to English, which employ the concept of verbs to denote actions,
statements and sentences to describe procedures. The Procedure Division
must begin with the header PROCEDURE DIVISION followed by a period.

SYNTAX

The discussion that follows describes the units of expression that
constitute the Procedure Division and the way in which they may be
combined. The smallest unit of expression in the Procedure Division is
the statement. Sentences, paragraphs, and sections are the larger units
of expression.

STATEMENTS

A statement consists of a COBOL verb or the word IF or ON, followed
by any appropriate operands (data-names, file-names, or literals) and
other COBOL words that are necessary for the completion of the
statement. The three types of statements are: compiler-directing,
imperative, and conditional.

Compiler-Directing Statement

A compiler-directing statement directs the compiler to take certain
actions at compilation time. A compiler-directing statement contains
one of the compiler-directing verbs (ENTER, EXIT, NOTE) and its
operands. Compiler-directing statements (except for NOTE) must appear
as separate single sentences.

Imperative Statement

An imperative statement specifies an unconditional action to be taken
by the object program. An imperative statement consists of a COBOL verb
and its operands, excluding the Compiler-Directing verbs and the
conditional statements. An imperative statement may also consist of a
series of imperative statements.

Conditional Statement

A conditional statement is a statement containing a condition that is
tested to determine which of alternate paths of program flow is to be
taken.

Section 6: Procedure Division 61

1.
F Only 2.

3.
Ext 4.

5.
Ext 6.

7.

The following are conditional statements:

A READ statement
A RETURN statement in the Sort Feature
A WRITE statement with the INVALID KEY option
A REWRITE statement with the INVALID KEY option
An arithmetic statement with the SIZE ERROR option
An ON statement
An IF statement

Although IF and ON are not verbs in the grammatical sense, they are
regarded as such in COBOL, inasmuch as they are the key words associated
with a particular statement form.

The conditions evaluated in conditional statements are:

1. AT END or INVALID KEY in a READ or RETURN statement
2. INVALID KEY in a WRITE or REWRITE statement
3. SIZE ERROR in an arithmetic statement
4. The count-condition in an ON statement
5. One of four tests in an IF statement

The conditions in 1 to 4 above are called 'event-conditions.' The
conditions in 5 above are called 'test-conditions.'

The formats for the conditions named in 1 to 4 above ar.e discussed in
the text for their respective statements. The types of conditions
evaluated in an IF statement are discussed in the section
"Test-Conditions."

SENTENCES

A sentence is a single statement or a series of s~atements terminated by
a period and followed by a space. A single comma or semicolon may be
used as a separator between statements. A sentence must not begin in
margin A.

PARAGRAPHS

Paragraphs are logical entities conSisting of one or more sentences.
Each paragraph may begin with a paragraph-name or section-name.

Paragraph-names and section-names are procedure-names. Procedure
names follow the rules for word formation. Therefore, they may be
composed solely of numeric characters and are equivalent only if they
are composed of the same number of numeric digits and have the same
numeric value. Thus, 0023 is not equivalent to 23.

A paragraph need not begin with a paragraph-name in the Declaratives
section of the Procedure Division or with a paragraph-name or section
name after the words PROCEDURE DIVISION or END DECLARATIVES. In the
Declaratives section a paragraph begins after the USE sentence or after
a paragraph-name.

A paragraph-name must not be duplicated within the same section.
When used as operands in Procedure Division statements, nonunique
paragraph-names may be uniquely qualified by writing IN or OF after the
paragraph-name, followed by the name of the section in which the

62

('
\

o

o

paragraph is contained. A paragraph-name need not be qualified when
referred to from within the section ~n which it is contained. A
paragraph ends at the next paragraph-name or section-name r or at the end
of the Procedure Division. In the case of Declaratives, a paragraph
ends at the next paragraph-name, section-name, or at END DECLARATIVES.

SECTIONS

A section is composed of one or more successive paragraphs and must
begin with a section-header. A section-header consists of a section
name conforming to the rules for procedure-name formation, followed by
the word SECTION and a period. A section header must appear on a line
by itself, except in the Declaratives portion of the Procedure Division r
where it may only be followed immediately by a USE sentence or an
INCLUDE statement. The INCLUDE statement is discussed in Section 9.

A section ends at the next section-name or at
Procedure Division, or, in the case of Declaratives,
section-name or at END DECLARATIVES.

IF STATEMENT

For COBOL F the format of the IF statement is:

IF condition [THEN! f statement-1 ••• }
\ NEXT SENTENCE

[{
ELSE }
OTHERWISE {

statement-2 ••• }]
NEXT SENTENCE

the end of the
at the next

For COBOL E, only imperative statements can follow the condition.
Therefore the format for the IF statement for COBOL E is:

IF condition [THEm

[{
ELSE }
OTHERWISE

{
imperative-statement ••• }
NEXT SENTENCE

{
statement-2 ••• }]
NEXT SENTENCE

ELSE (or OTHERWIS~ NEXT SENTENCE may be omitted if it immediately
precedes the period for the sentence.

EVALUATION OF CONDITIONAL STATEMENTS

When a condition is evaluated the following action is taken:

1. If the condition is true, the statements immediately following the
condition are executed.

2. If the condition is false and the conditional statement is an IF or
ON statement, the statements following ELSE or OTHERWISE (or the
next sentence) are executed.

The AT END, INVALID KEY, and SIZE ERROR conditions are followed by a
series of imperative statements. In an ON count-conditional statement,
the count-condition is followed by a series of imperative statements ~r

section 6: Procedure Division 63

NEXT SENTENCE) and may be followed by the words ELSE or OTHERWISE
followed by a series of statements (or NEXT SENTENCE). The formats of
the IF statement describe what may follow the condition in the IF
statement.

A series of imperative statements is terminated by one of the
following:

1. A period.

2. ELSE or OTHERWISE associated with a previous IF or ON.

In a series of imperative statements executed if a condition is true,
only the last statement may be an Option 1 GO TO statement or a STOP RUN
statement; otherwise the series of statements would contain statements
to which control cannot flow.

For example, in the following paragraph, the statement MOVE A TO B
could never be executed whether or not the AT END condition were found
to be false.

W. READ PAYROLL-RECORD AT END GO TO Y MOVE A TO B.

Figure 6 is a flowchart showing how an IF or ON conditional statement
is evaluated.

Figure 7 is a flowchart showing how a conditional statement other
than IF or ON is evaluated.

****F3*********
* * *
*

START

.x.

* *

*****H2********** H3 *. *****H4**********
* * .* *. * * * * TRUE .* *. FALSE *STATEMENT-2 ••• *
*STATEMENT-l ** *X •••••••• *. CONDITION .* •••••••• X* (OR NEXT *
* * *. .* * SENTENCE) *
* * * * ***************** *****************

** For COBOL E, statement-1 is one or more imperative-statements.
For COBOL F, statement-1 is one or more statements.

Figure 6. Evaluation of IF or ON Conditional Statement.

64

c

o

o

o

****A3*********
* *
*
*

START

.
• X.

*
*

*****C2********** C3 *. *****C4**********
* * .* *. * * * IMPERATIVE
* STATEMENT •••
* *

* TRUE .* *. FALSE * *
*x •••••••• *. CONDITION .* •••••••• X* NEXT SENTENCE *
* *. .* * *
* *..* * *

***************** * •• * *****************
*

Figure 7. Evaluation of Conditional Statement other than IF or ON.

NESTED IF STATEMENTS

Statement-1 and statement-2 in IF statements may consist of one or
more imperative statements and/or a conditional statement. If a
conditional statement appears as statement-1 or as part of statement-1,
it is said to be nested. Nesting statements is much like specifying
subordinate arithmetic expressions enclosed in parentheses and combined
in larger arithmetic expressions.

IF statements contained within IF statements must be considered as
paired IF and ELSE combinations, proceeding from left to right. Thus,
any ELSE encountered must be considered to apply to the immediately
preceding IF that has not already been paired with an ELSE. In the
conditional statement in Figure 8, C stands for condition; S stands for
any number of imperative statements; and the pairing of IF and ELSE is
shown by the lines connecting them.

F only

Section 6: Procedure Division 65

Figure 9 is a flowchart indicating the logical flow of the
conditional statement in Figure 8.

1 ~ 1 1 ~ ~ !
Sl IF2 C2 IF3 C3 S2 EL S S E 3 EL S E S

4
I F4 C IF

4 5
Cs S

5
EL SE S

6
-..- - ----

cl c2 el e2

dl

bl b2

al

al - Staternent-l for IFI

(If Cl is false, the next sentence is executed, since there is no

ELSE for it.)

bl - Staternent-l for IF2

b2 - Staternent-2 for IF2

cl - Staternent-l for IF3

c2 - Staternent-2 for IF3

dl - Staternent-l for IFI

(If C4 is false, the next sentence is executed, since there is no

ELSE for it.)

el - Staternent-l for IFS

e2 - Staternent-2 for IFS

Figure 8. Conditional Statements with Nested IF Statements.

66

c

CI

---- --------------------------

o

c)

• ••• Bl ••••••••• · . START • ·

. x.
Cl ••

• * e.
•• C •• FALSE

*. 1 .- ••
. .

. .
..... *

• TRUE

X ··.·.01 · .. . · .
• S • ·1. · . ·

. x. .e.
El •• • •••• E2.......... E3 ••

• * *.* *.
•• C •• FALSE • S • •• C •• FALSE •

... 2 .* •••••••• X. 4 X*. 4 X.
. . tit .. *. .-
.. • .. *..* * •• * ••••••••••••••••• * •• *

• TRUE • TRUE

.x.
Fl •• • •••• F2 ••••••••••

• * *.
•• C •• FALSE • S •

*. 3 •••••••••• X. 3 ..
.
.. • .. * •. * •••••••••••••••••

• TRUE

X ·····Gl · .
• S • .2. · ·

X Hl···.···.·.

.x.
F3 *. • ••• *F4* •••••••••

.* *.
.:. C5 ·:.~~~:~ ••• X: S6

. . •
.. ··.·TRUE •••••••••••••••••

x
: •••• G3 ••••••••• :

• S •
• 5 • · ·

..

.. .. X • X.
: NEXT SENTENCE :X ••• x ••••••••••••••••••••••••••••••••••••• ·

Figure 9. Logical Flow of
statements.

TEST-CONDITIONS

Conditional statement with Nested IF

A test-condition is an expression that, taken as a whole, may be
either true or false, depending on the circumstances existing when the
expression evaluated.

There are four types of simple test-conditions. When preceded by the
word IF, each constitutes one of four types of tests: relation test,
sign test, class test, condition name test.

The word 'NOT may be used in any simple test-condition to make the
relation specify the opposite of what it would express without the word
NOT. For example, AGE NOT GREATER THAN 21 is the opposite of AGE
GREATER THAN 21. NOT may also precede an entire condition, as in NOT
(AGE GREATER THAN 21). AGE NOT GREATER THAN 21 and NOT (AGE GREATER

THAN 21) are identical in meaning.

Section 6: Procedure Division 67

._-----------------------------

Relation Test

A relation test involves the comparison of two operands, either of
which can be a data-name, a literal, or an arithmetic expression. The
comparison of two literals is not permitted. A figurative constant may
be used instead of either literal-lor literal-2 in a relation test.

The format for a relation test is:

data-name-1 <

{
fig urative-constant-1 } IS[NO~ GREATER THAN

{

> } arithmetic-expression-1 =

literal-1 LESS THAN

{

data-name-2 }
arithmetic-expression-2
figurative-constant-2
literal-2

EQUAL TO

The symbol > is equivalent to the reserved words GREATER THAN. The
symbol < is equivalent to the reserved words LESS THAN. The equal sign
is equivalent to the reserved words EQUAL TO.

COMPARISON OF NUMERIC ITEMS: For numeric items, a relation test
determines that the value of one of the items is less than, equal to, or
greater than the other, regardless of the length. Numeric items are
compared algebraically after alignment of decimal points. Zero is
considered a unique value, regardless of length, sign, or implied
decimal-point location of an item.

COMPARISON OF NON-NUMERIC ITEMS: For non-numeric items, a comparison
results in the determination that one of the items is less than, equal
to, or greater than the other, with respect to the binary collating
sequence of characters in the IBM Extended BCD Interchange Code.

If the non-numeric items are of the same length, the comparison
proceeds by comparing characters in corresponding character positions,
starting from the high-order position and continuing until either a pair
of unequal characters or the low-order position of the item is compared.
The first pair of unequal characters encountered is compared for
relative position in the collating sequence. The item containing the
character that is positioned higher in the collating sequence is the
greater item. The items are considered equal after the low-order
position is compared.

If the non-numeric items are of unequal length, comparison proceeds
as described for items of the same length. If this process exhausts the
characters of the shorter item, the shorter item is less than the
longer, unless the remainder of the longer item consists solely of
spaces, in which case, the items are equal. If desired, the characters
of an item may be altered prior to a comparison by use of a TRANSFORM
statement in order to reflect another collating sequence.

Figure 10 indicates the characteristics of the items being compared
and the type of comparison made. A blank box in Figure 10 indicates
that the test is not permitted.

68

o

o

o

SECOND OPERAND

GR AL AN ED 10 BI EF

Group Item (GR) NN NN NN NN NN NN NN

Alphabetic Item (AL) NN NN NN

Alphanumeric (non-
F report) Item (AN) NN NN NN
I
R External Decimal
S Item (ED) NN NU 10 10 IF
T

Internal Decimal
0 Item (10) NN 10 NU 10 IF
P
E Binary Item (BI) NN 10 10 NU IF
R
A External Floating-
N point Item (EP) NN IF IF IF NU
0

Internal Floating-
point Item (IP) NN IF IF IF IF

Report Item (RP) NN NN NN

Figurative Constant
(FC) NN NN* NN ZE ZE ZE ZE

*Permitted with the figurative constants SPACE and ALL 'character',
where character must be alphabetic.

Abbreviations for Types of Comparison

NN Comparison as described for non-numeric items.
NU Comparison as described for numeric items.
IF Comparison as described for numeric items.

If an item is not internal floating point, it is converted to
internal floating point before comparison.

10 Comparison as described for numeric items.
If an item is not internal decimal, it is converted to internal
decimal before comparison.

ZE Valid only is figurative constant is ZERO.

Figure 10. Permissible Comparisons.

Sign Test

IF RP FC

NN NN NN

NN NN*

NN NN

IF ZE

IF ZE

IF ZE

IF ZE

NU ZE

NN NN

ZE NN

This type of condition tests whether or not the value of a numeric
item is less than zero (NEGATIVE), greater than zero (POSITIVE), or is
zero (ZERO) The value zero is considered neither positive nor
negative.

The format for a sign test is:

{
data-name }
arithmetic-expression IS[NO~

{

POSITIVE}
ZERO
NEGATIVE

section 6: Procedure Division 69

Class Test

When a class test is specified, determination is made as to whether
or not an item consists solely of the following:

1. The characters 0 through 9 (NUMERIC)
2. The characters A through Z and space (ALPHABETIq

The item to be tested can be elementary alphanumeric, alphabetic,
internal decimal, or external decimal. The valid forms of the class
test are shown in Figure 11.

The format for the class test is:

data-name IS [NOT] {
NUMERIC }
ALPHABETIC

If the last character of an otherwise numeric field contains a digit
with a sign over punch, the field is considered numeric. For a single
character alphanumeric field containing a digit with a sign overpunch,
the tests IF NUMERIC and IF ALPHABETIC will both be considered true
while the NOT form of the tests will both be false.

Type of Item Only Valid Forms of Class Test
Alphabetl.c ALPHABETIC NOT ALPHABETIC
Alphanumeric ALPHABETIC NOT ALPHABETIC

NUMERIC NOT NUMERIC
Internal or
External Decimal NUMERIC NOT NUMERIC

Figure 11. Valid Forms of Class Test

Condition-name Test

The format for condition-name test is:

[NOT] condition-name

A condition-name test is one in which a conditional variable is
tested to see whether or not its value is greater than, equal to, or
less than the value specified for a condition-name associated with it.
For example, in a program processing a payroll, the data item MARITAL
STATUS (the conditional variable) might be a code indicating whether an
employee is married, divorced, or single. Assume that if MARITAL-STATUS
has the value of 1, the employee is single; if it has the value of 2, he
is married; and if it has the value of 3, he is divorced. To determine
whether or not an employee is married, the programmer could test this
condition by using a simple relational condition in a conditional
statement such as IF MARITAL-STATUS = 2 SUBTRACT MARRIED-DEDUCTION FROM
GROSS. Alternatively, he can associate a condition-name with each value
that MARITAL-STATUS might assume. Thus, in the Data Division, the
condition-names SINGLE, MARRIED, and DIVORCED might be associated with
values 1, 2, and 3, respectively. For example:

70

02 MARITAL-STATUS PICTURE 9.
88 SINGLE VALUE IS 1.
88 MARRIED VALUE IS 2.
88 DIVORCED VALUE IS 3.

o

o

o

Then, as a shorthand form of the simple relational condition
MARITAL-STATUS = 1, the programmer could write the single condition-name
SINGLE. Therefore, the following two statements would produce identical
results:

IF MARITAL-STATUS = 1 GO TO Z.
IF SINGLE GO TO Z.

The condition-name test,
certain conditions which could
condition.

COMPOUND CONDITIONS

then, is an alternative way of expressing
be expressed by a simple relational

Simple test-conditions can be combined with logical operators
according to specified rules to form compound conditions. The logical
operators are AND, OR, and NOT. Two or more simple conditions combined
by AND and/or OR make up a compound condition.

The word OR is used to mean either or both. ThUS, the expression A
OR B is true if: A is true, B is true, or both A and B are true. The
word AND is used to mean both. Thus, the expression A AND B is true
only if both A and B are true. The word NOT is used in the manner
described in the subsection "Test-Conditions." Thus, the expression NOT
(A OR B) is true if A and B are false; and the expression NOT (A AND B)
is true if A is false, B is false, or if both A and B are false.

The logical operators and truth values are shown in Figure 12, where
A and B represent simple test-conditions.

Condition Related Conditions

A B NOT A A AND B A OR B NOT (A AND B) NOT (A OR B)

True True False True True False False
False True True False True True False
True False False False True True False
False False True False False True True

Figure 12. Truth Table.

Parentheses may be used to specify the order in which conditions are
evaluated. Parentheses must always be paired. Logical evaluation
begins with the innermost pair of parentheses and proceeds to the
outermost. If the order of evaluation is not specified by parentheses,
the expression is evaluated in the following way:

1. AND and its surrounding conditions are evaluated first, starting at
the left of the expression and proceeding to the right.

2. OR and its surrounding conditions are then evaluated, also working
from left to right.

ThUS, the expression: A IS GREATER THAN B OR A IS EQUAL TO C AND D IS
POSITIVE would be evaluated as if it were parenthesized as follows:

(A IS GREATER THAN B) OR «A IS EQUAL TO C)
AND (D IS POSITIVE».

Section 6: Procedure Division 71

------------- --

The rules for formation of symbol pairs are shown in Figure 13. The
letter C stands for conditional expression. P means that the combina
tion is permissible. A dash means that the combination is not
permissible.

Second Symbol
C OR AND NOT ()

F
i C - P P - - P
r
s OR P - - P P -
t

AND P - - P P -
S
Y NOT P - - - P -
m
b (P - - P P -
0

1) - P P - - P

Figure 13. Formation of Symbol Pairs

F Only IMPLIED SUBJECTS AND OPERATORS

Simple relation test test-conditions may have implied first operands
(subjects) when combined to form compound conditions. The following is

the format for a series of relation tests forming a compound condition
with implied first operands. The relational operators are GREATER THAN,
LESS THAN, >, etc.

operand-1 IS [NOT] relational-operator operand-2

{~~D} [NOT] relational-operator operand-3 •••

Thus, the following statement could be made:

IF ACCOUNT-NUMBER IS GREATER THAN COUNT-A AND NOT LESS THAN COUNT-B OR =
COUNT-C GO TO Z.

A relational operator can be implied only when a first operand is
also implied. The following is the format for a series of relation
tests forming a compound condition with implied first operand and
relational operators.

operand-l IS [NOT] relational-operator

[NOT] operand-3 •••

Thus, the following statement could be made:

IF ACCOUNT-NUMBER GREATER THAN COUNT-A AND CQUNT-B OR COUNT-C GO TO Z.

72

c

o

o

o

ARITHMETIC EXPRESSIONS

An arithmetic
data-names, and/or
be performed.

expression consists of arithmetic operators,
literals representing items on which arithmetic may

The following five arithmetic operators may be used in arithmetic
expressions:

Operator Operation

+ Addition
Subtraction

* Multiplication
I Division
** Exponentiation

Parentheses may be used to indicate the hierarchy of operations on
elements in an arithmetic expression.

When the hierarchy of operations in an expression is not completely
specified by parentheses, the order of operations is assumed to be
exponentiation, then multiplication and division, and finally addition
and subtraction. Thus, the expression A+B/C+D**E*F-G is taken to mean
A+ (B/q + ((D* *E) *F) -G.

When the order of a sequence of consecutive operations on the same
hierarchical level (i.e., consecutive multiplications and divisions or
consecutive additions and subtractions) is not completely specified by
parentheses, the order of operation is assumed to be from left to right.
ThUS, certain expressions ordinarily considered ambiguous are permitted
in COBOL. For example, A/B*C and AlBIC are taken to mean (A/~ *c and
(A/B)/C, respectively. The expression A*B/C*D is taken to mean
((A*B) IC) *D.

One exception should be noted, however. An expression having a
succession of exponentiation operators separating a series of operands
is evaluated as though parenthesization were inserted from the right.
Thus, A**B**C is evaluated as though it were written (A**(B**C).

Exponentiation of a negative value is allowed only if the exponent is
a literal or data-name having an integral value.

Exponentiation is performed in floating-point when an exponent is a
fractional literal or is a data-name whose PICTURE describes a fraction
al number.

The minus sign is the only allowable unary operator (having only one
operand). The unary minus sign must be the first character of an
arithmetic expression or must be immediately preceded by a left
parenthesis.

COMPILER-DIRECTING DECLARATIVES

Declarative sections are identified by compiler-directing statements
that specify the circumstances under which a procedure is to be executed
in the object program. Declaratives consist of a section-name, followed
by the word SECTION and a period, and a USE sentence followed by
procedural statements. Declarative sections must be grouped together at
the beginning of the Procedure Division, preceded by the key word

Section 6: Procedure Division 73

._------------------

DECLARATIVES in Margin A, and followed by the
DECLARATIVES, where END must also appear in Margin A.
END DECLARATIVES must be followed by a period.

The general form for declaratives is:

PROCEDURE DIVISION.
DECLARATIVES.

{section-name SECTION. USE-sentence.
{[paragraph-name.] sentence ••••] •••]

END DECLARATIVES.

key words END
DECLARATIVES and

The occurrence of another section or the words END DECLARATIVES
terminates a previous USE section. If there are two or more logical
paths within a declarative procedure, these paths must lead to a common
path within the section containing them. An ALTER, PERFORM, or GO TO
statement within a declarative section must not refer to paragraph-names
or section-names outside that declarative section, except that a GO TO
statement in an Option 1 or Option 2 USE section may refer to the
reserved word MORE-LABELS.

A declarative section may not be referred to by any PERFORM or GO TO
statement outside the declarative. Within a given declarative section,
there may be no reference to a point outside the declarative.

USE

The USE sentence identifies the type of declarative.

There are four options of the USE sentence. Each identifies the
following types of procedures.

1. Label-checking procedures
2. Label-writing procedures
3. Asynchronous processing procedures
4. Report-writing procedures

The formats of the USE sentence are:

Ext Option 1

USE FOR CREATING [BEGINNING]
ENDING

LABELS ON OUTPUT [file-name •••].

Ext Option 2

USE FOR CHECKING [BEGINNING]
ENDING

LABELS ON INPUT [file-name •••].

Options 1 and 2 are used to provide user label processing procedures.
CHECKING refers to an input file; CREATING refers to an output file. In
this context, 'input' means all files opened as INPUT or I-O.

The word BEGINNING refers to user header labels; the word ENDING
refers to user trailer labels. Absence of either word indicates that
the USE section will process both headers and trailers.

74

c

o

'~

o

o

o

The exit from an Option 1 or Option 2 USE section is inserted by the
compiler following the last statement in the section. All logical
program paths within the section must lead to this point. One exception
to this rule is allowed: a special exit may be specified by the
statement GO TO MORE-LABELS. When an exit is made from a label
processing USE section by means of this statement, IOCS is directed to
do one of the following:

a. read an additional user header label or user trailer label and
then re-enter the USE section for further checking of labels. In
this case, IOCS will only re-enter the USE section if there
exists another user label to check. Hence, there need not exist
a program path that flows through the last statement in the
section. The point of return to the USE section, after exit by
means of a GO TO MORE-LABELS statement, is the beginning of the
section.

b. write the current user header label or user trailer label and
then re-enter the USE section for further creating of labels.

If no GO TO MORE-LABELS statement is executed, then the USE section
is not reentered to check or create any immediately succeeding user
labels.

The user label is contained in an IOCS area. If label processing is
desired, the label must be described as a data item in the Linkage
Section of the Data Division and must be listed as a data-name in the
LABEL RECORDS clause in the File Description entry for the file.

In case Ib l above, a label is written each time that an exit from the
USE section takes place. The label is created in an IOCS area.

In an Option 1 USE section, there must be a path of program flow
through the last statement of the section, so that writing of user
labels can be terminated.

Option 3

USE FOR RANDOM PROCESSING.

Option 3 is used to specify out-of-line procedural statements for
asynchronous processing. STOP, OPEN, and CLOSE statements are not
allowed in out-of-line procedures.

Option 4

USE BEFORE REPORTING data-name-1.

Option 4 is used to designate procedures to be executed by the Report
Writer before the Report group specified by data-name-1 is produced;
data-name-1 may be the name of any type of report group except DETAIL.

Report Writer verbs may not be used in procedures associated with the
USE option. Further information on the Report Writer is contained in
Section 7.

F Only

F Only

Section 6: Procedure Division 75

COBOL VERBS

The COBOL verbs are the basis of the Procedure Division of a source
program.

The organization of the remainder of this section is based on the
classifications used in the following list:

Input/Output Verbs
OPEN
READ
WRITE

Ext REWRITE
CLOSE
ACCEPT
DISPLAY

F Only Asynchronous Processing Verbs
PROCESS
HOLD

Data Manipulation Verbs
MOVE
EXAMINE

Ext TRANSFORM

Arithmetic Verbs
COMPUTE
ADD
SUBTRACT
MULTIPLY
DIVIDE

Procedure-Branching Verbs
STOP
GO TO
ALTER
PERFORM

Compiler-Directing Verbs
EXIT
ENTER
NOTE

INPUT/OUTPUT STATEMENTS

The OPEN statement initiates the processing of files. When applica
ble, execution of an OPEN statement initiates label checking for input
and output files, and label creation for output files. At this time,
appropriate label-handling procedures specified by a USE declarative are
executed.

76

The format of an OPEN statement is:

{

INPUT
OUTPUT
I-O

[

[INPUT]
[OUTPUT]
[I-O)

file-name
file-name
file-name
file-name
file-name
file-name

[WITH NO REWIND]
[WITH NO REWIND]

[WITH NO REWIND]
[WITH NO REWIND]

[REVERSED)}

[REVERSEDl]
• • •

c

o

c
. I

----------- ------------------------------

o

o

o

The OPEN statement must be executed prior to any other input/output
statement for any file. The OPEN statement, by itself, does not make an
input record available for processing; a READ statement must be executed
to obtain the first data-record. For an output file, an OPEN statement
makes available an area for development of the first output record. A
second OPEN statement for a given file cannot be executed prior to the
execution of a CLOSE statement for that file.

The 1-0 option permits the opening of a direct-access file for both
input and output operations.

An OPEN statement for an 1-0 file performs the same label checking
functions as for an input file.

The NO REWIND option should only be written for files assigned to
UTILITY device-numbers for which rewinding is possible, e.g., 2400,
7340, etc. This option suppresses the rewinding normally associated
with opening a file.

The REVERSED option can only be applied to files assigned to specific
devices for which the reverse-read feature is available. If the
device-number is not written in the ASSIGN clause of the Environment
Division, the REVERSED option is not permitted. The REVERSED option may
not be used for a file containing blocked type V records.

An example of the OPEN statement is:

OPEN INPUT X-FILE, OUTPUT Y-FILE Z-FILE NO REWIND INPUT R-FILE NO
REWIND REVERSED.

Note that Y-FILE is not opened with no rewind.

The functions of the READ statement are:

1. For sequential file processing, to make available the next logical
record from an input file and to allow performance of specified
imperative statements when end-of-file is detected.

2. For nonsequential file processing, to make available a specific
record from a direct-access file and to allow execution of
statements if the contents of the associated symbolic and/or actual
key is found to be invalid.

The format of the READ statement is:

READ file-name RECORD [INTO data-nam~

{
AT END } imperative statement •••
INVALID KEY

When a READ statement is executed, the next logical record in the
named file becomes accessible in the input area defined by the
associated Record Description entry. The file-name must be defined by a
File Description entry in the Data Division.

Section 6: procedure Division 77

The record remains available in the input area until the next READ
statement (or a CLOSE statement) for that file is executed. No
reference can be made by any statement in the Procedure Division to
information that is not actually present in the current record. Thus,
it is not permissible to refer to the nth occurrence of data that
appears fewer than n times. If such a reference is made, no assumption
should be made about-results in the object program.

If more than one logical record is described for the file, implicit
redefinition of the area exists. It is the programmer's responsibility
to identify which record is present in the area at any given time.

Regardless of the method used to overlap access time with processing
time, an input record is made available by a READ statement prior to
execution of the next READ statement.

The INTO data-name option is equivalent to a READ statement and a
MOVE statement. The data-name specified must be the name of a Working
Storage or Saved-Area record or a previously opened output record. When
this option is used, the current record becomes available in the input
area, as well as in the area specified by data-name. Data will be moved
into the data-name area in accordance with the rules moving an item to a
receiving field which is a group item.

The AT END option is required for files for which access is
sequential. The AT END portion of the READ statement is executed when
an end-of-file condition is detected.

Once the AT END portion of a READ statement has been executed for a
file, any subseque~t attempt to read from that file or to re£er to
logical records 1n that file constitutes an error, unless subsequent
CLOSE and OPEN statements have been executed.

The INVALID KEY option is required for files specified as ACCESS
RANDOM. The statements following INVALID KEY are executed when the
contents of actual key and/or symbolic key are invalid.

If ACCESS RANDOM is specified for the file, the symbolic key and/or
the actual key of the file must be set to the desired values prior to
the execution of the READ statement.

Each time an end-of-volume condition occurs on a file, the READ
statement causes the following operations to take place:

1. The volume trailer label checking procedure of IOCS is executed.
The user trailer label checking procedures specified in a USE
Option 2 sentence are executed, if such labels exist.

2. A volume switch occurs.
3. The volume header label checking procedure subroutine of IOCS is

executed. The user header label checking procedures specified in a
USE Option 2 sentence declarative are executed, if such labels
exist.

4. The next logical record in the file is made available for
processing.

If the end-of-volume is also
operations specified in item
following AT END are executed.

78

the
1

logical
are done

end
and

of file, only the
then the statements

c

C
!

o

o

o

WRITE

The function of the WRITE statement is to release a logical record
specified as OUTPUT or I-O in an OPEN statement and to allow performance
of specified imperative statements if, for random access files, the
contents of the associated actual key and/or symbolic key is found to be
invalid.

The format of the WRITE statement is:

WRITE record-name [FROM data-name-1]

(INVALID KEY imperative statement •••]

AFTER ADVANCING{data-name-2}
integer LINES

An OPEN statement must be executed prior to executing the first WRITE
statement for a file. After the WRITE statement is executed, the
logical record named by record-name is no longer available.

When the FROM option is used, data-name-1 must not be the name of an
item in the file containing record-name. This form of the WRITE
statement is equivalent to the statement MOVE data-name-1 TO record-name
followed by the statement WRITE record-name. Moving takes place
according to the rules specified for moving an item to a receiving field
which is a group item.

After execution of a WRITE statement with the FROM option, the
information in record-name is no longer available, but the information
in data-name-1 is available.

When the end-of-volume condition occurs, the WRITE statement causes
the following operations to take place:

1. The volume trailer label writing procedure of IOCS is executed.
The user trailer label creating procedure, if specified in a USE
Option 1 declarative, is executed.

2. A volume switch occurs
3. The volume header label writing procedure of IOCS is executed. The

user header label writing procedure, if specified in a USE option 1
declarative, is executed.

4. The next logical record area in the output file is made available.

If ACCESS RANDOM is specified, the symbolic and/or actual key must be
set to the desired values prior to the execution of the WRITE statement.

The AFTER ADVANCING option is used for output destined to be printed
or punched. When this option is used, the first character in each
logical record for the file must be reserved for the control character.
When the AFTER ADVANCING option is used, integer must be unsigned and
have the value 0, 1, 2, or 3. The value 0 designates a carriage-control
lejectl (i.e., skip to next page). The value 1 designates single
spacing; the value 2, double spacing; and the value 3, tr.iple spacing.

Data-name-2 must be an alphanumeric item of length one (i.e., must
have PICTURE X). The following chart shows the values that data-name-2
may assume and their interpretations.

Value ---
b (blank)
o

Interpretation

single spacing
double spacing
triple spacing

Section 6: Procedure Division 79

Value

+

Interpretation

suppress spacing
1 through 9
A,B,C
V,W

skip to channel 1 through 9, respectively
skip to channel 10, 11, 12, respectively
pocket select 1 or 2, respectively on the IBM
1442, and 4 or 8 on the IBM 1402

Ext REWRITE

The function of the REWRITE statement is to replace a logical record
on a direct-access device with a specified record, and to allow
execution of a specified procedure if the contents of the associated
actual key and/or symbolic key is found to be invalid.

The format of the REWRITE statement is:

REWRITE record-name [FROM data-name]

[INVALID KEY imperative-statement •••]

A READ statement for a file must
statement for a file can be executed.
written for files opened as 1-0.

be executed before a REWRITE
A REWRITE statement can only be

When the FROM option is used, data-name must not be the name of an
item in a file containing record-name. This form of the REWRITE
statement is equivalent to the statement MOVE data-name TO record-name
followed by the statement REWRITE record-name. Moving takes place
according to the rules specified for moving an item to a receiving field
which is a group item.

For sequential access files, the INVALID KEY procedure is executed
when the end of file is reached.

For random access files, the INVALID KEY procedure is executed when
the contents of the actual key and/or the symbolic key are not within
file limits.

If ACCESS RANDOM is specified for the file, the actual key and/or the
symbolic key must be set to the desired values prior to the execution of
the REWRITE statement.

CLOSE

The CLOSE statement is used to terminate the processing of one or
more units or files. The format of the CLOSE statement is:

CLOSE{file-narne [UNITJ[WITHI~gc~EWINDI]} •••

When a CLOSE statement is specified, IOCS closing procedures are
executed for the current unit of the file. The CLOSE statement may only
be specified for a file that is open. After a CLOSE statement has been
executed for a file, an OPEN statement must be executed before any other
reference can be made to that file.

If the UNIT option is specified, the IOCS volume switching procedures
are instituted.

A CLOSE statement for a file opened as 1-0 performs the same label
checking functions as for an input file.

80

c

o
~

o

o

o

A CLOSE statement with the UNIT option or with the UNIT WITH LOCK
option should only be written for files assigned to specific devices on
which removable volumes may be mounted. The LOCK option causes the
current volume of the file to be removed.

The NO REWIND option should only be written for files assigned to
UTILITY device-numbers for which rewinding is possible, e.g., 2400,
7340, etc. This option suppresses rewinding normally associated with
closing a file.

DISPLAY

The function of the DISPLAY statement is to display data on an output
device. The format of the DISPLAY statement is:

DISPLAY {
data-name}
literal •.• [

UPON CONSOLE]
UPON SYSPCH

When UPON SYSPCH or UPON CONSOLE
output device (SYSOUT) is assumed. When
system logical punch device is assumed.

is omitted, the system logical
UPON SYSPCH is written, the

When UPON SYSPCH or UPON CONSOLE is written, the sum of the sizes of
the operands may not exceed 72 character positions. When UPON SYSPCH
and UPON CONSOLE are omitted, the sum of the sizes of the operands may
not exceed the maximum logical record length for the system logical
output device (SYSOUT).

Any spaces desired between displayed multiple operands must be
explicitly specified.

When SYSPCH is written, an 80 character output record is produced,
with positions 73 through 80 of the record containing the identification
of the originating program (program-name). If the message size exceeds
72 characters, it is truncated; if less than 72, the remaining positions
are filled with spaces.

Data-names described as USAGE COMPUTATIONAL,
COMPUTATIONAL-2, or COMPUTATIONAL-3 are converted
external format as follows:

COMPUTATIONAL-1,
automatically to

1. Internal decimal and binary items are converted to external
decimal. Only negative values cause a low-order sign overpunch to
be developed.

2. Internal floating point items are converted to external floating
point. No other data items require conversion.

For example, if two binary items have values -32 and 32, then they
will be displayed as 3K and 32, respectively.

ACCEPT

The function of the ACCEPT statement is to obtain data from the
system logical input d~vice (SYSI~, or from the console.

The format of the ACCEPT statement is:

ACCEPT data-name [FROM CONSOLE]

Section 6: Procedure Division 81

Data-name may be either a fixed-length group item or an elementary
alphabetic, alphanumeric, external decimal or external floating-point
item. One logical record is read and the appropriate number of
characters is moved into the area reserved for data-name. No editing or
error-checking of the incoming data is done.

When FROM CONSOLE is specified data-name may not exceed 72 character
positions in length.

When an ACCEPT statement with the FROM CONSOLE option is executed,
the following action is taken:

1. A system-generated message code is automatically displayed
followed by the literal 'AWAITING REPLY'.

2. Execution is suspended. When a console input message, preceded
by the same message code as in 1 above, is identified by the Control
Program, execution of the ACCEPT statement is resumed and the message is
moved to the specified data-name.

The message code serves as a key by which the Control Program
correlates console input with the proper program.

When the FROM CONSOLE option is not written, one logical record is
read from the system logical input device {SYSI~.

Figure 14 states restrictions of input-output statements.
that the statement may appear; ~ indicates that it must not.

82

Y means

c

o

c

o

o

o

Statement Appearing In:

Label Label Asynchronous Report Main Body Debug
Checking Creating Processing Writing of Procedure Packet
Declarative Declarative Declarative Declarative Division

OPEN y* y* N y* Y Y
CLOSE

READ
WRITE y* y* Y y* Y Y

REWRITE

Y Y Y Y Y Y
DISPLAY

ACCEPT Y Y Y Y Y Y
FROM
CONSOLE

ACCEPT
(from Y Y N Y Y Y
SYSIN)

*Only permitted for files other than the one for which entry into the declarative was made.

Figure 14. Restrictions for Input/Output Statements.

ASYNCHRONOUS PROCESSING STATEMENTS

PROCESS

The function of the PROCESS statement is to
out-of-line procedures associated with a direct-access
processed asynchronously.

The format of the PROCESS statement is:

PROCESS section-name

initiate a set of
file which may

The PROCESS statement may only be used when asynchronous processing
is used. It may only appear in the in-line p0rtion of a program.
Section-name must be the name of an out-of-line procedure written in a
USE FOR RANDOM PROCESSING declarative.

The saved area and the files to be processed by the out-of-line
procedure are specified in an Option 4 APPLY clause in the Environment
Division.

F Only

F Only

Section 6: Procedure Division 83

One saved area record is automatically associated at object time with
each out-of-line processing cycle. No more than one processing cycle
has access to a given saved area record at anyone time. The specific
saved area record associated with each out-of-line processing cycle is
automatically released for further storage assignment upon the comple
tion of the processing cycle.

The processing of data in the saved area by the out-of-line
procedural statements may be performed asynchronously. Thus, the
in-line procedures should not refer to other data being processed in the
out-of-line procedures and conversely the out-of-line procedures may not
refer to any data being processed by the in-line procedures.

F Only HOLD

The function of the HOLD statement is to provide a delay point so
that synchronous processing may be resumed.

The format of the HOLD statement is:

[ALL]
section-name •••

A HOLD statement is meaningful only when used with asynchronous
processing cycles initiated by a PROCESS statement.

A HOLD ALL statement may only be used in in-line procedures. The
statement assures that all previously initiated asynchronous cycles have
been completed before any statements following the HOLD ALL statement
are executed.

A HOLD appearing in-line must name one or more sections or ALL. The
statement assures that all previously initiated asynchronous cycles
pertaining to the sections named have been have been completed before
any sta~ements following the HOLD statement are executed. The section
names used as operands of the HOLD statement must be the names of
sections specified in a USE FOR RANDOM PROCESSING declarative.

An out-of-line HOLD must not have any operands. It causes out-of
line processing cycles to be processed in the order in which they were
initiated. There may only be one HOLD statement per out-of-line
declarative procedure. The logic of USE FOR RANDOM PROCESSING
declaratives must be such that every path flows through the out-of-line
HOLD.

DATA MANIPULATION STATEMENTS

MOVE

The MOVE statement is used to move data from one area of main storage
to another and to perform conversions and/or editing on the data that is
moved. The MOVE statement has the following two formats:

Option

{
data-name-1}
literal TO data-name-2 •••

84

c

0,
~

c'

o

o

o

If Option 1 (the simple move) is used, the data represented by
data-name-1 or the specified literal is moved to the area designated by
data-name-2. The same information is also moved to any additional
receiving areas mentioned in the statement.

When a group item is involved in a simple move, the data is moved
without regard to the level structure of the group items involved and
without editing.

The following considerations pertain to moving items:

1. Numeric (external decimal, internal decimal, binary, external
floating, internal floating, numeric literals, and ZER~ to numeric
or report:

a. The items are aligned by decimal points, with insertion of
zeros or truncation on either end, as required.

b. When the USAGE of the source field and receiving field differs,
conversion to the USAGE of the receiving field takes place.

c. The items may have special editing performed on them with
suppression of zeros, insertion of a dollar sign, commas, etc.,
and decimal point alignment, as specified by the receiving
area.

2. All other permissible combinations:
a. The characters are placed in the rece~v~ng area from left to

right, unless the receiving field is specified as JUSTIFIED
RIGHT.

b. If the receiving field is not completely filled by the data
being moved, the remaining positions are filled with spaces.

c. If the source field is longer than the receiving field, the
move is terminated as soon as the receiving field is filled.

Figure 15 contains several examples illustrating MOVE.

Source Field Receiving Field

Value Value
PICTURE Value PICTURE before MOVE after MOVE

99V99 1234 99V99 9876 1234
99V99 1234 99V9 987 123
9V9 12 99V999 98765 01200
XXX A2B XXXXX Y9X8W A2Bbb
9V99 123 99.99 87.65 01.23
AAAAAA REPORT AAA JKL REP

Figure 15. Examples of Data Movement.

Note that,in the fourth example, the information in any excess
positions of a non-numeric receiving area is replaced by spaces at the
right.

Option 2

MOVE CORRESPONDING data-name-1 TO data-name-2 •••

When Option 2 is used, selected items within data-narne-1 are moved
along with any required editing, to selected areas within data-name-2.
Items are selected by matching the data-names of areas defined withi'n
data-name-1 with like data-names of areas defined within data-name-2.

F Only

Section 6: Procedure Division 85

------ --

The rules stated for the simple MOVE apply to each pair of
corresponding items in the MOVE CORRESPONDING; thus, the effect of a
MOVE CORRESPONDING statement is equivalent to a series of simple MOVE
statements.

The following rules apply to the CORRESPONDING option:

1. At least one of the items of a pair of matching items must be an
elementary item.

2. Items are corresponding data items if the respective data-names are
the same, including all qualification up to but not including
data-name-1 and data-name-2.

3. Data-name-1, data-name-2, etc. must be group items.

4. There must be no OCCURS clauses governing any of the elementary
items altered or moved by a MOVE CORRESPONDING statement.

5. In determining which are corresponding data- items, only the first
complete description of any area will be considered in the case
where a REDEFINES clause has been used. Consider the following
data organization:

01 A
02 B
02 C REDEFINES B
03 D
03 E
02 F

Only B or F can be considered as potential corresponding items.
This restriction does not preclude data-name-1 or data-name-2 from
having REDEFINES clauses, or from being subordinate to data-names
with REDEFINES clauses.

6. Neither data-name-1 nor data-name-2 can be data items with level
numbers of 77 or 88.

7. Each corresponding source item is moved in conformity with the
description of the receiving area.

To illustrate the use of MOVE CORRESPONDING, suppose that the
programmer wishes to transfer corresponding items from a work area named
INVENTORY-POSTING to an output area designated INVENTORY-RECORD. He
could write this statement:

MOVE CORRESPONDING INVENTORY-POSTING TO INVENTORY-RECORD

Figure 16 shows the movement of data that might result from this
statement. Note that non-corresponding items in the source area are not
moved and that non-corresponding items in the receiving area are not
affected.

Figure 17 represents all permissible moves using the MOVE statement.
The letter Y indicates a valid move and the letter N indicates an
invalid move. A detailed description of the types of fields represented
may be found in Section 5.

86

c

o

c

o

o

o

---------- ------------------

INVENTORY
POSTING

INVENTORY
RECORD

SHIPPED

UNIT-COST

Figure 16. Movement of Data Resulting from Execution of MOVE CORRES
PONDING.

Receiving Field

Source Field GR AL AN ED 10 BI EF IF RP

Group (GR) y y y N N N N N N

Alphabetic (AL) y y y N N N N N N

Alphanumeric (AN) y y y N N N N N N

External Decimal (ED) y N N Y Y Y Y Y Y

Internal Decimal (10) y N N Y Y Y Y Y Y

Binary (BI) y N N Y Y Y Y Y Y

External Floating-
Point (EF) y N N Y Y Y Y Y Y

Internal Floating-
Point (IF) y N N Y Y Y Y Y Y

Report (RP) y N Y N N N N N N

ZEROS Y N Y Y Y Y Y Y Y

SPACES Y Y Y N N N N N N

ALL 'character', HIGH-
VALUES, LOW-VALUES,
QUOTES y N Y N N N N N N

Figure 17. Permissible Moves.

EXAMINE

The EXAMINE statement is used to replace certain occurrences of a
given character and/or to count the number of such occurrences in a data
item.

The EXAMINE statement has the following two formats:

Option 1

EXAMINE data-name {
ALL }

TALLYING ~ING
UNTIL FIRST

I character-1 '

REPLACING BY 'character-2'

Option 2

EXAMINE data-name REPLACING{~ING } 'character-1'
UNTIL FIRST
FIRST

BY 'character-2'
.....",,-

Section 6: Procedure Division 87

Data-name in each option must refer to a data item whose USAGE is
DISPLAY.

Character-l and character-2 must be single-character non-numeric
literals (i.e., enclosed in quotation marks) and members of the set of
allowable characters for the data item. For example, a '2' cannot
replace an 'A' in an alphabetic item.

The use of figurative constants instead of character-1 or character-2
is permitted.

When Option 1 is used, a count is made at object time of the number
of occurrences of the specified character in data-name, and this count
replaces the value of the special binary data item TALLY, whose length
is five decimal digits. TALLY may also be used as a data-name in other
procedural statements.

F Only A unique TALLY exists for each cycle of each Random Processing
Declarative as well as for the synchronously processed in-line procedure
in a program having random processing.

The count at object time depends on which of the following three
TALLYING options is employed:

1. If ALL is specified, all occurrences of character-1 in the data
item are counted.

2. If LEADING is specified, the count represents the number of
occurrences of character-1 prior to encountering a character other
than character-l. Examination proceeds from left to right.

3. If UNTIL FIRST is specified, the count represents the number of
characters other than character-l encountered prior to the first
occurrence of character-l. Examination proceeds from left to
right.

When the REPLACING option is used (either in option 1 or option 2),
the replacement of characters depends on which of the following four
REPLACING options is employed:

1. If ALL is specified, character-2 is substituted for each occurrence
of character-1.

2. If LEADING is specified, the substitution of character-2 for
character-l terminates when a character other than character-l is
encountered, or when the righthand boundary of the data item is
reached. Examination proceeds from left to right.

3. If UNTIL FIRST is specified, the substitution of character-2
terminates as soon as the first character-l is encountered, or when
the righthand boundary is reached. Examination proceeds from left
to right.

4. If FIRST is specified, only the first occurrence of character-l is
replaced by character-2. Examination proceeds from left to right.

Sample EXAMINE statements showing the effect of each statement on the
associated data item and the TALLY are shown in Figure 18.

88

c

o

o

o

Resulting
ITEM-l Data Value of

EXAMINE Statement Before After TALLY
EXAMINE ITE:M-l TALLYING
ALL '0' 101010 101010 3
EXAMINE ITEM-1 TALLYING
ALL '1' REPLACING BY '0' 101010 000000 3
EXAMINE ITEM-1 REPLACING
LEADING '*' BY SPACE **7000 7000 unchanqed
EXAMINE ITEM-1 REPLACING
FIRST '*' BY '$, **1.94 $*1.94 unchanged

Figure 18. Examples of Data Examination.

TRANSFORM Ext

The TRANSFORM statement is used to alter characters according to a
transformation rule. For example, it may be used to change the
characters in an item to a different collating sequence.

The format of the TRANSFORM statement is:

TRANSFORM data-name-3 CHARACTERS

{

fi gUrative-constant-1}
FROM non-numeric-literal-1

data-name-l {

fi gUrative-constant-2}
non-numeric-literal-2
data-name-2

Data-name-3 must be an elementary alphabetic, alphanumeric, or report
item, or a group item.

The combination of the FROM and TO options determines what the
transformation rule is. These combinations are:

FROM
figurative-constant-l
TO
figurative-constant-2

FROM
figurative-constant-l
TO
non-numeric-literal-2

FROM
figurative-constant-l
TO
data-name-2

FROM
non-numeric-literal-l
TO
figurative-constant-2

FROM
non-numeric-literal-l
TO
non-numeric-literal-2

TRANSFORMATION RULE

All characters in data-name-3
equal to the single character
figurative-constant-1 are replaced by the
Single character figurative-constant-2.

All characters in data-name-3
equal to the single character
figurative-constant-l are replaced by the
single character non-numeric-literal-2.

All characters in data-name-3
equal to the single character
figurative-constant-1 are replaced by the
Single character item, data-name-2.

All characters in data-name-3
that are equal to any character
in non-numeric-literal-l are replaced py the
single character figurative-constant-2.

Non-numeric-literal-l and non-numeric-literal-2
must be equal in length or non-numeric
literal-2 must be a Single character. If equal
in length, any character in data-name-3 equal
to a character in non-numeric-literal-l is

section 6: Procedure Division 89

---- ---.------- ---------_.

FROM
non-numeric-literal-1
TO
data-name-2

FROM
data-name-1
TO
figurative-constant-2

FROM
data-name-1
TO
non-numeric-literal-2

FROM
data-name-1
TO
data-name-2

replaced by the character in the corresponding
position of non-numeric-literal-2.

If the length of non-numeric-literal-2 is one,
all characters in data-name-3 that are equal to
any character appearing in
non-numeric-literal-1 are replaced by the sin
gle character given in non-numeric-literal-2.

Non-numeric-literal-1 and
data-narne-2 must be equal in length or
data-name-2 must be a single-character item.

If equal in length, any character in
data-name-3 equal to a character in
non-numeric-literal-1 is replaced by the char
acter in the corresponding position of
data-name-2.

If the length of data-name-2 is one, all
characters in data-name-3 that are equal to any
character appearing in non-numeric-literal-1
are replaced by the single character given in
data-name-2.

All characters in
data-name-3 that are equal to any character in
data-narne-1 are replaced
by the single character figurative-constant-2.

Data-name-1 and
non-numeric-literal-2 must be of equal length
or non-nurneric-literal-2
must be one character.

If equal in length, any character in
data-name-3 equal to a character in data-name-1
is replaced by the character in the correspond
ing position of non-numeric-literal-2.

If the length of non-numeric-literal-2 is one,
all characters in data-name-3 that are equal to
any character appearing in data-name-1 are
replaced by the single character given in
non-numeric-literal-2.

Any character in
data-name-3 equal to a character in data-name-1
is replaced by the character
in the corresponding position of data-name-2.
These items can be one or more characters, but
must be equal in length.

The following rules pertain to the operands of the FROM and TO options:

1. The non-numeric-literals require enclosing quotation marks, as
specified in the section, "Literals."

2. Data-name-1 and data-name-2 must be
alphanumeric items, or fixed length
characters in length.

elementary alphabetic, or
group items less than 257

3. A character may not be repeated in non-numeric-literal-1 or in the

90

c

o

c

()

o

o

area defined by data-name-1. If a character is repeated in
data-name-1 the results will be unpredictable.

4. The allowable figurative-constants are: ZERO, ZEROS, ZEROES, SPACE,
SPACES, QUOTE, QUOTES, HIGH-VALUE, HIGH-VALUES, LOW-VALUE, and
LOW-VALUES.

When either data-name-1 or data-name-2 appear as a determinant of the
transformation rule, the user can change the transformation rule during
object time.

Figure 19 contains examples of data-name-3 results, using the
figurative-constant-1 to figurative-constant-2, non-numeric-literal-1 to
non-numeric-literal-2, and data-name-1 to data-name-2 combinations,
respectively. (The small b represents a blank.)

Data-name-3 Data-name-3
Before FROM TO After

1b7bbABC SPACE QUOTE l' 7"ABC
1b7bbABC ' 17CB' 'QRST' QbRbbATS
1b7bbABC b17AEC CBA71b BCACC71b
1234WXY89 98YXW4321 ABCDEFGHI IHGFEDCBA

Figure 19. Examples of Data Transformation.

ARITHMETIC STATEMENTS

The following rules apply to the arithmetic statements:

1. All data-names used in arithmetic statements must represent elemen
tary numeric data items that are defined in the Data Division of
the program, except when they are the operands of the GIVING or
CORRESPONDING options.

2. The maximum size of any data-name or literal is 18 decimal digits.

3. Intermediate result fields generated for the evaluation of fixed
point arithmetic expressions assure the accuracy of the result
field, except where high order truncation is necessar.y.

4. Decimal point alignment is supplied automatically throughout
computations.

The ROUNDED and SIZE ERROR options apply to all the arithmetic
statements. The GIVING option applies to all arithmetic statements but
COMPUTE.

GIVING Option

If the GIVING option is written, the value of the data-name that
follows the word GIVING will be made equal to the calculated result of
the arithmetic operation. The data-name that follows GIVING is not used
in the computation and may contain editing symbols.

If the GIVING option is not written, the operand following the words
TO, FROM, BY, and INTO in the ADD, SUBTRACT, MULTIPLY, and DIVIDE
statements, respectively, must be a data-name. This data-name is used
the computation and is made equal to the result.

Section 6: Procedure Division 91

ROUNDED Option

If, after decimal-point alignment, the number of places in the
calculated result is greater than the number of places associated with
the data-name whose value is to be set equal to the calculated result,
truncation occurs unless the ROUNDED option has been specified.

When the ROUNDED option is specified, the least significant digit of
the resultant data-name has its value increased by 1 whenever the most
significant digit of the excess is greater than or equal to 5.

Rounding of a computed negative result is performed by rounding the
absolute value of the computed result and then making the final result
negative (unless the final result is zero) •

Figure 20 illustrates the relationship between a calculated result
and the value stored in an item that is to receive the calculated
result.

Item to Receive Calculated Result

Calculated Value After Value After
Result PICTURE Rounding Truncating

12.36 99V9 12.4 12.3
8.432 9V9 8.4 8.4
35.6 99V9 35.6 35.6
65.6 99V 66 65
.0055 V999 .006 .005

Figure 20. Rounding or Truncation of Calculations.

SIZE ERROR Option

Whenever the number of integral places
exceeds the number of integral places
data-name, a size error condition arises.

in the
specified

calculated result
for the resultant

If the SIZE ERROR option has been specified and a size error
condition arises, the value of the resultant .data-name is not altered
and the series of imperative statements specified for the condition is
executed.

If the SIZE ERROR option has not been specified and a size error
condition arises, no assumption should be made about the final result;
but the program flow is not interrupted.

It should be noted that\the SIZE ERROR option applies only to final
calculated results. When a size error occurs in the handling of
intermediate results, no assumption should be made about the final
result.

An arithmetic statement, if written with a SIZE ERROR option, is not
an imperative statement. Rather, it is a conditional statement and is
prohibited in contexts where only imperative statements are allowed.

92

o

o I

c

o

o

o

COMPUTE
The COMPUTE statement assigns to a data item the value of a numeric

data item, literal, or arithmetic expression. The format of a COMPUTE
statement is:

COMPUTE data-name-1 [ROUNDED] = {~~;:~~~~~i~eral }
floating-point-literal
arithmetic-expression

[ON SIZE ERROR imperative statement •••]

The data-name specified to the left of the equal sign must be an
elementary report, binary, internal decimal, external decimal, internal
floating-point, or external floating-point item.

The ON SIZE ERROR option applies only to the final result and not to
any of the intermediate results.

ADD

The ADD statement adds two or more numeric values and substitutes the
resulting sum for the current value of an item. The ADD statement has
the following formats:

Option 1

{

numeric-literal ~
ADD floating-point-litera ••• TO
--- data-name-1 {GivING}data-name-n

[ROUNDED) [ON SIZE ERROR imperative-statement •••]

When the TO option is used, the values of all the data-names
(including data-name-n) and literals in the statement are added, and the
resulting sum replaces the value of data-name-n. At least two data
names and/or numeric literals must follow the word ADD when the GIVING
option is written.

Option 2

ADD CORRESPONDING data-name-1 TO data-name-2

[ROUNDED] [ON S1 ZE ERROR imperative statement •••]

The CORRESPONDING option of the ADD statement allows the programmer
to specify the addition of corresponding data items in one operation
similar to MOVE statement with a CORRESPONDING option.

Numeric elementary items within data-name-1. are added to numeric
elementary items with matching data-names within data-name-2. The
data-names match if they and all their qualifiers up to, but not
including, data-name-1 and data-name-2 are the same. There must be no
OCCURS clauses governing any of the operands involved in an ADD
CORRESPONDING statement.

Data-name-1 and data-name-2 must be group items.
for arithmetic statements apply to each pair
CORRESPONDING option.

The rules stated
of items in the ADD

F Only

Section 6: Procedure Division 93

When ON SIZE ERROR is used in conjunction with CORRESPONDING, the
size error test is made only after the completion of all the ADD
operations. If any of the additions produced a size error condition,
the resultant field for that ADD remains unchanged, and the procedure
specified in the SIZE ERROR clause is executed.

When the ROUNDED option is used in conjunction with CORRESPONDING, it
applies to all the add operations.

SUBTRACT

The SUBTRACT statement subtracts one or a sum of two or more numeric
data items from a specified item and sets the value of a data item equal
to the difference.

The SUBTRACT statement has the following formats:

Option

{

data-name-1 }
SUBTRACT numeric-literal-1

floating-point-literal-1

{

data-name-m [GIVING data-name-n] }
FROM numeric-literal-m GIVING data-name-n
-- floating -point-literal-m GIVING data-name-n

[ROUNDED] [ON SIZE ERROR imperative statement .•.]

The effect of the SUBTRACT statement is to add the values of all the
operands that precede FROM and then to subtract the sum from the value
of the item following, FROM. A literal can follow FROM only when the
GIVING option is specified.

F Only Option 2

SUBTRACT CORRESPONDING data-name-1 FROM data-name-2

[ROUNDED] [ON SIZE ERROR imperative statement .•.]

The CORRESPONDING option of the SUBTRACT statement is analogous to
the CORRESPONDING option of the ADD statement.

The MULTIPLY statement multiplies two numeric data items and sets the
value of a data item equal to the product.

The format of the MULTIPLY statement is:

{

data-name-1 }
MULTIPLY nUmeric-literal-1

floating-point-literal-1

{

data-name-2 [GIVING data-name-3] }
BY numeric-literal-2 GIVING data-name-3
-- floating-point-literal-2 GIVING data-name-3

[ROUNDED] [ON SIZE ERROR imperative statement •..]

94

c

o

C'
,/

o

o

o

DIVIDE

The DIVIDE statement divides one numeric data item into another and
sets the value of an item equal to the quotient.

The format of a DIVIDE statement is:

{

data-name-1 }
DIVIDE numeric-literal-1

floating-point-literal-1

{

data-name-2 [GIVING data-name-3] }
numeric-literal-2 GIVING data-name-3
floating-point-literal-2 GIVING data-name-3

[ROUNDED] [ON SIZE ERROR imperative statement ...]

Division by zero results in a SIZE ERROR condition.

PROCEDURE BRANCHING STATEMENTS

In the GO TO, ALTER, and PERFORM statements, PFocedure-name signifies
paragraph-name or section-name.

The STOP statement is used to terminate or delay execution of the
object program. The format of this statement is:

STOP{gQ~ }
literal

The STOP RUN statement terminates execution of the object program and
returns control to the operating system.

The STOP literal statement causes a compiler-generated message code,
and the specified literal, to be displayed and causes the object program
to pause. The program may be resumed only by operator intervention.
The message code must be keyed in on the console in order to resume
execution.

GO TO

The GO TO statement transfers control from one portion of the program
to another. The GO TO statement has the following formats:

Option 1

GO TO [procedure-name]

Section 6: Procedure Division

95

Option 1 of the GO TO statement provides a means of transferring
path of flow of a program to a designated paragraph or section.

Option 2

GO TO procedure-name-1 [procedure-name-2 •••] DEPENDING ON data-name

the

When Option 1 (uncondi tional GO TO) is used and a procedure-name is
not specified, the GO TO statement must have a paragraph-name, be the
only statement in the paragraph, and be modified by an ALTER statement
prior to the first execution of the GO TO statement. The paragraph-name
assigned to the GO TO statement is referred to by the ALTER statement in
order to modify the sequence of the program. If procedure-name is
omitted and the GO TO statement has not been preset by an ALTER
statement prior to the first execution of the GO TO statement, execution
of the program is terminated.

In Option 2, data-name must be an elementary integral numeric item
whose length does not exceed four digits and whose usage is either
DISPLAY, COMPUTATIONAL, or COMPUTATIONAL-3.

Option 2 specifies alternative branch points; control is transferred
to the point specified by the value of data-name. Control goes to the
1st, 2nd, ••• ,nth procedure-name as the value of data-name is 1, 2, ••• ,n.
If data-name has a value outside the range 1 to n, no transfer takes
place, and control passes to the next statement after the GO TO
statement.

ALTER

The ALTER statement is used to modify an
statement elsewhere in the Procedure Division,
sequence in which program steps are to be executed.

The format of the ALTER statement is:

unconditional GO TO
thus changing the

ALTER {procedure-name-1 TO PROCEED TO procedure-name-2} •••

Procedure-name-1 designates a paragraph containing a single sentence
consisting only of an Option 1 GO TO statement. The effect of an ALTER
statement is to replace the procedure-name specified in Option 1 of the
GO TO statement with procedure-name-2 of the ALTER statement, where the
paragraph-name containing the GO TO statement is procedure-name-1 in the
ALTER statement.

PERFORM

The PERFORM statement specifies a transfer of control from one
portion of a program to another, in order to execute some procedure a
specified number of times, or until a condition is satisfied. It
directs that control is to be returned to the statement immediately
following the point from which the transfer was made.

The PERFORM statement has the following four formats:

Option 1

PERFORM procedure-name-1 [THRU procedure-name-2]

96

c'

o

o

o

o

o

Option 1 is the simple PERFORM statement. A procedure referred to by
this type of PERFORM statement is executed once, and then control passes
to the next statement after the PERFORM statement. All statements in
the paragraphs or sections named by procedure-name-1 through
procedure-name-2 constitute the range of the PERFORM statement.

Option 2

PERFORM procedure-name-1

{
integer }
data-name TIMES

[THRU procedure-name- 2]

Option 2 is the TIMES option. When the TIMES option is used, the
procedure is performed the number of times specified by data-name or
inteqer. Control is then transferred to the statement following the
PERFORM statement. Data-name must have an integral value and data-name
or inteqer must have a positive value, less than 32,768. If the value
of the data-name is negative, zero, or greater than 32,767, control is
passed immediately to the statement following the PERFORM statement.

Option 3

PERFORM procedure-name-1 [THRU procedure-name-2]

UNTIL test-condition

Option 3 is the UNTIL option. Test-condition may be simple or
compound. The procedures specified by the procedure-names are performed
until the condition specified by the UNTIL option is true. At this
time, control is transferred to the statement following the PERFORM
statement. If the condition specified by the UNTIL option is true at
the time the PERFORM statement is encountered, the specified procedure
is not executed.

Option 4

PERFORM procedure-name-1

VARYING data-name-2

BY {numeric-literal-3}
data-name-3

[AFTER data-name-4]

BY {nUmeric-literal-6}
da ta-name- 6

[AFTER data-name-7]

BY {numeric-literal-9}
da ta-name- 9

[THRU procedure- name - 2]

FROM{numeric-literal-2}
data-name- 2

UNTIL test-condition-1

FROM{numeric-literal-4}
data-name-5

[UNTIL test-condition-2]

FROM{numeric-literal-S}
data-name-8

[UNTIL test-condition-3]

Option 4 is the VARYING option.
compound.

Test-condition may be simple or

This option is used to augment the value of one or more data-names in
an orderly fashion during the execution of a PERFORM statement. When
one data-name is varied, data-name-1 is set equal to its starting value
(FRO~ when commencing the PERFORM statement. Then, test-condition-1 is
evaluated: if it is true, control passes to the next statement following

section 6: Procedure Division 97

the PERFORM statement; if false, procedure-name-l through
procedure-name-2 is executed once. The value of the decrement ~Y), and
the condition (UNTI~ is evaluated again. The cycle continues until
test-condition-l 1S true, at which point control is passed to the
statement following the PERFORM statement.

When two data-names are varied, the value of data-name-4 goes through
a complete cycle (FROM, BY, UNTI~ each time that data-name-l is
augmented with its BY value. For three data-names, the value of
data-name-7 goes through a complete cycle (FROM, BY, UNTIL) each time
that data-name-4 is augmented with its BY va~ue, which in turn goes
through a complete cycle each time data-name-l is varied.

Regardless of the number of data-names being varied, as soon as
test-condition-l is found to be true, control is transferred to the next
statement after the PERFORM statement.

All data-names and literals used in Option 4 must represent numeric
values, and need not be integers; they may be positive, negative, or
zero. If compatibility with previous COBOL compi~ers is desired and the
AFTER option is used, all data-names and literals must represent
integral values. Data-name-l, data-name-4, and data-name-7 must not be
alternate names for the same data items. For all options, the first
statement of procedure-name-1 is the point to which sequence control is
transferred by the PERFORM statement.

The return of control is from a point determined as follows:

1. If procedure-name-1 is a paragraph-name and procedure-name-2 is not
specified, the return is made after the last statement of the
procedure-name-l paragraph.

2. If procedure-name-l is a section-name and procedure-name-2 is not
specified, the return is made after the last statement of the last
paragraph of the procedure-name-1 section.

3. If procedure-name-2 is
return is made after
paragraph.

specified and is a paragraph-name, the
the last statement of the procedure-name-2

4. If procedure-name-2 is specified and is a section-name, the return
is made after the last statement of the last paragraph of the
procedure-name-2 section.

GO TO statements and
procedure-name-l and
FUrthermore, the time
PERFORM statements must
established.

other PERFORM statements are permitted between
the last statement of procedure-name-2.
sequence of execution of exits established by

be in the inverse order in which they were

The exact range of a PERFORM statement must not be activated again
while the range is currently active. An active PERFORM statement, whose
execution point begins within the range of another PERFORM, must not
contain the exit point of the other active PERFORM. If the log~c of a
procedure requires a conditional exit prior to the final sentence, the
EXIT sentence must be used. In this case, procedure-name-2 must be the
name of the paragraph that consists solely of the EXIT sentence.

A procedure referred to by one PERFORM statement can be referred to
by other PERFORM statements. Moreover, a procedure referred to by one
or more PERFORM statements can also be executed by "dropping through,"
that is, by entering the procedure through the normal passage of control
from one statement to the next, in sequence. Accordingly, if
procedure-name-l were the next statement following the PERFORM
statement, the procedure would be executed one time more than specified

98

c

o

c

o

o

o

- ---------------------- - ._---

by the PERFORM statement because, after execution of the PERFORM
statement, control would pass to procedure-name-1 in the normal continu
ation of the sequence.

At any time during the execution of an object program, no paragraph
name may be the terminus of the range of more than one active PERFORM
statement being executed.

Figures 21, 22,
PERFORM statements,
respectively.

and 23
varying

illustrate the
one, two,

logical flow of Option 4
and three data-names,

Figure 24 states restrictions on the appearance of
branching statements. Y means that the statement may
indicates that it must not; text indicates the outcome if the
does appear •

•••• A3········· · . • ENTRANCE • ·

X ... ·.B3·········· · . • SET DATA-NAME-l.
• EQUAL TO ITS •
: FROM VALUE :

X ····.C3· .• _ •..... • • ····C4 ..•••....
• TEST- .TRUE. • ••• X. CONDITION - I ••••••••• X. · .. ·

• FALSE

X ·····03·· ,,·. • EXECUTE •
• PROCEDURE-NAME-·
• I THRU •
• PROCEDURE-NAME-·
• 2. •

X ·····E3·········· • AUGMENT • • • DATA-NAME-l •
••••• WITH ITS •

: BY VALUE. :
.........••......

EXIT • .

procedure
appear; N

statement

Figure 21. Logical Flow of Option 4 PERFORM Statement Varying One Data-name.

Section 6: Procedure DLvis~on 99

****A3*********
* * * ENTRANCE *
* * ***************

X
*****B3**********
SET DATA-NAME-1
AND DATA-NAME-4
* TO INITIAL *
* FROM VALUE. *
* * *****************

X
*****C3**********

**** * * ****C4*********
* * * TEST- *TRUE * *
* C3 * •••• X* CONDITION - 1 * •••••••• X*
* * * * *

EXIT *
* ****

Figure

100

* * *********-*******
.FAlSE

X
*****03**********
* * * TEST- *TRUE

••• X* CONDITION - 2 * ••••••••••••••••••
* *
* * *****************

.FAlSE

X
*****E3**********
* EXECUTE *
PROCEDURE-NAME-
* 1 THRU *
PROCEDURE-NAME-
* 2. *

X
*****F3**********
* AUGMENT *
DATA - NAME - 4

•••• * WITH ITS *
* BY VALUE. *
* * *****************

22. Logical Flow
Data-names.

X
*****E4**********
* * *SET DATA-NAME-4*
*TO ITS INITIAL *
* FROM VALUE. *
* * *****************

X
*****F4**********
* AUGMENT *
DATA - NAME - 1
* WITH ITS *
* BY VALUE. *
* * *****************

of

x

* * * C3 *
* * ****

Option 4 PERFORM Statement Varying TWo

o

o

o

o

o

****A2*********
* * • ENTRANCE *
* * ***************

X
*****B2**********
SET DATA-NAME-l
: D~I~A~~~~E~7 :
* TO INITIAL *
* FROM VALUE *
.****************

X
*****C2**********

****. * ****C3*********
* * * TEST- * * *
• C2 ••••• X* CONDITION - 1 ••••••••• X* EXIT *
• • * • * * ••• * * • * ••••• ******** •

• * ••• * ••• ** ••••••
• FALSE

X
••• *·02***··*····

***. * •
• • • TEST- • • 02 * •••• X. CONDITION - 2 * •• · *. . •••• * •

•••••••• **** •• ***
.FALSE

X
••• *.E2*****·*·**

• * * TEST- *
••• X. CONDITION - 3 * ••••••••••••••••••

• * * * •• **.**.*****.* ••
• FALSE

X
•• ***F2··********
* EXECUTE *
.PROCEDURE-NAME-*
• 1 THRU *
.PROCEDURE-NAME-*
* 2. *

X
*****G2**********
• AUGMENT

• * DATA-NAME-7 *
••••• WITH ITS *

• BY VALUE *
* * -**.**.**********

X
*****F3··********
.SET DATA-NAHE-7*
*TO ITS INITIAL *
* FROM VALUE. •
* •
* **********.******

X
*****G3**********
* AUGMENT *
* DATA-NAME-4 *
* WITH ITS *
* BY VALUE *
* * *****************

**it*
* * * 02 *
* * ****

Figure 23. Logical Flow of Option 4
Data-names.

X
*****F4**********
SET DATA-NAME-4
*TO ITS INITIAL *
* FROM VALUE. *
* * * *****************

X
*****G4**********
* AUGMENT *
* DATA-NAME-l *
* WITH ITS *
* BY VALUE *
* * *****************

x

* * * C2 *
* * ****

PERFORM statement Varying Three

section 6: Procedure Division 101

Statement Appearing In:

Label Label Asynchronous Report Main Body Debug
Checking Creating Processing Writing of Procedure Packet
Declarative Declarative Declarative Declarative Division

GO TO y* y* y* y* y** y***
PERFORM
ALTER

STOP RUN N N N N end of abnormal end
execution of execution

STOP literal Y Y Y Y Y

*Operands of these statements must be procedure-names appearing in the declarative
containing the statement.

**Operand of these statements must be procedure-names appearing in the main body of
the Procedure Division.

***Operands of these statements may be procedure-names appearing either in the main
body or in any debug packet.

Figure 24. Restrictions for Procedure-Branching Statements.

COMPILER-DIRECTING STATEMENTS

Compiler-directing statements must be separate sentences.

ENTER

Y

The ENTER statement, used in conjunction with CALL or ENTRY
statements, permits communication between a COBOL object program and one
or more COBOL subprograms or other language subprograms.

102

c

o

o

o

The ENTER statement has the following two formats:

Option 1 (Used in calling program)

ENTER LINKAGE.
CALL entry-name [USING argument •••] •

Option 2 (Used in a COBOL subprogram)

ENTER LINKAGE.
ENTRY entry-name [USING data-name •••].
ENTER COBOL.

subprogram statements

ENTER LINKAGE.
RETURN ~ entry-name] •
ENTER COBOL.

Entry-name is an external name and must follow the rules for external
name formation.

Option 1 is used to effect transfer of control to a subprogram.
Entry-name represents the name of the subprogram's entry point.

In the USING option, an argument may be one of the following:

1. A data-name when calling a COBOL subprogram
2. A data-name, file-name, or a procedure-name when calling a

subprogram written in a language other than COBOL.

Option 2 is used to establish an entry point in a COBOL subprogram.
Control is transferred to the entry point by a CALL statement in another
program. Entry-name defines the entry point where link parameters are
saved for eventual return and address parameters are obtained.

Each data-name in the USING portion of the ENTRY statement must be
defined in the Linkage Section of the Data Division, and must have level
number 01 or 77.

Computer base addresses of data items named in the USING list of an
ENTRY statement are obtained from the USING list of the associated CALL
statement. Names in the two USING lists (that of the CALL in the main
program, and that of the ENTRY in the subprogra~ are paired in
one-to-one correspondence.

There is no necessary relationship between the actual names used for
such paired names, but the data descriptions must be equivalent. When a
group data item is named in the USING list of an ENTRY statement, names
subordinate to it in the subprogram's Linkage Section may be employed in
subsequent subprogram procedural statements, when elementary items in
the group are utilized.

RETURN VIA entry-name enables restoration of the necessary registers
saved at an entry point. The return from a subprogram is always to the
first instruction after the calling sequence of the main program.

There must be no path of program flow into an Option 2 ENTER
statement within the program containing the ENTER statement. Hence, the
statement should not have a paragraph-name.

Section 6: Procedure Division 103

The EXIT statement may be used when it is necessary to provide an end
point for a procedure that is to be executed by means of a PERFORM
statement or for a procedure that is a declarative.

The format for the EXIT statement is:

paragraph-name. EXIT.

EXIT must appear in the source program as a one-word paragraph
preceded by a paragraph-name.

When the PERFORM statement is used, an EXIT paragraph-name may be the
procedure-name given as the object of the THRU option. In this case, a
statement in the range of a PERFORM being executed may transfer to an
EXIT paragraph, bypassing the remainder of the statements in the PERFORM
range. In all other cases, EXIT paragraphs have no function and control
passes sequentially through them to the fir.st sentence of the next
paragraph.

The NOTE statement permits the programmer to write explanatory
comments, in the Procedure Division of a source program, which will be
produced on the listing but serve no other purpose. The format of the
NOTE statement is:

NOTE comment •••

NOTE, when used, must begin a sentence. Following the word NOTE, any
combination of the characters from the COBOL character set may appear.
If NOTE is the first word of a paragraph, any remaining sentences within
the paragraph are also considered notes. Proper format rules for
paragraph structure must be observed.

104

c

o

o

o

o

SECTION 7: REPORT WRITER FEATURE F Only

The Report Writer feature permits the programmer to specify the
format of his output, when that output is to be a printed report.

Previously, if a COBOL programmer wanted his output in report format,
he had to: specify that his headings, footings, and individual items be
printed each time they were to appear; keep track of the line count and
page count; accumulate totals; and provide for "overflow" situations,
where a page ended before an entire group of data had been printed.

When the Report writer feature is used, headings and footings are
described once ~n the Data Division and are printed automatically at
object time; line counters and page counters are incremented automati
cally; new pages are begun and page or overflow headings and footings
are printed automatically; data to be accumulated is summed and the
totals are printed automatically. In other words, after the programmer
has manipulated his input data, the Report Writer puts the data on tape
(or other intermediate storage media), in the specified format, for
off-line printing. It is also possible to print a report on-line.

Another useful aspect of the Report Writer feature is that several
reports can be generated within one program. A single-character
identification code can be added to each line of output to specify the
report to which it belongs. In this way, the output of several reports
can be interspersed on one output file and can then be selected by the
identification code for off-line printing.

The major entries of the Report Writer feature are made in the Data
Division; therefore, the programmer must be familiar with the material
covered in Section 5. When the Report Writer feature is used, an entry
is required in the File Section to list the names of the reports to be
produced, and a Report Section is required at the end of the Data
Division to define these reports.

The Report Section contains a format description of each report. The
entries in this section stipulate:

1. The maximum number of lines that can appear on a page.

2. The content of the headings and footings, when they are required,
and where they are to appear on the page.

3. The format of the data, the source of the data, and where it is to
appear on the page.

4. The data to be summed, and when and where the totals are to appear
on the page.

In a program that utilizes the Report Writer feature, records are
read and data is manipulated prior to entering the report phase. A
report is produced by the execution of the INITIATE, GENERATE, and
TERMINATE statements in the Procedure Division. The INITIATE statement
is used to initialize all counters associated with the Report Writer,
the GENERATE statement is used each time a detailed portion of the
report is to be produced, and the TERMINATE statement is used to end the
report. The Report writer feature allows additional manipulation of
data by means of a USE BEFORE REPORTING declarative in the Declaratives
portion of the Procedure Division.

Section 7: Report Writer Feature 105

ILLUSTRATIONS

Figure RW-1 and RW-2 illustrate the report concept, and the items
discussed in the following text are keyed within the figures. Figure
RW-1 is a listing of a COBOL source program that uses the Report Writer
feature. Figure RW-2 is the report produced by the program shown in
Figure RW-1.

DATA DIVISION CONSIDERATIONS

When the Report Writer feature is used, entries must be made in the
Data Division to describe the format and content of the report. An
entry must be made in the File Section to list the names of the repor.ts
to be produced by the Report Writer, and a Report Section must be
included at the end of the Data Division.

FILE SECTION REPORT CLAUSE

The name of each report to be produced by the Report Writer must
appear in a REPORTS clause in the File Section in a File Description
entry for an output file. The format of the clause is:

{
REPORT IS }
REPORTS ARE report-name •••

Figure RW-1 G) shows this clause used in a File Description entry.
The presence of two or more report-names in this clause indicates that
the file contains more than one report. These reports may be of
different sizes, formats, etc., and the order in which their names
appear in the clause is not significant.

A report may be incorporated in more than one file. In this case,
the report-name must appear in a REPORT Clause of the File Description
entry for each file that contains the report.

The report or reports are printed on-line by the object program when:

a. A REPORTS clause is written in a File Description entry having no
01 level record descriptions subordinate to it.

b. The file described with the REPORTS clause and named in the
SELECT sentence of the Environment Division is a printer assigned
to UNIT-RECORD.

REPORT SECTION

The Report Section must begin with the header REPORT SECTION,
followed by a period (line 01490 of Figure RW-1) •

The Report Section contains specifications for the physical layout of
each page of a report and reflects the user's logical organization of
the report. It consists of three distinct types of entries which are
described in the following text: Report Description entries, Report
Group Description entries, and Report Element Description entries.

106

c

o

c

C)

o

o

REPORT STRUCTURE

The structure of a report is specified by the three types of Report
Section entries. RD is the level indicator for a Report Description
entry. Such an entry specifies clauses which apply to the entire report
(Figure RW-1 0).

Each report is composed of items called report groups. A report
group is a unit of related data, regardless of its physical size or
layout. This unit can be a detail line (Figure RW-2 (0)), a set of
report ~~gs (Figure RW-2 ~), or a set of report'tootings (Figure
RW-2 ® ~~). A ~ort group may extend over several actual lines of
a page (F1gure RW-2 ~GD). There are four types of headings and
footings: control, page, ove)klow, and report. Examples of headings are
shown in Figure RW-2 0 (2) ~, examples of footings are shown in Figure
RW-2 ® ® ® ® ®, anKn example of a detail line is shown in Figure
RW-2 ~.

The type of report group and its location on a page is sp~ified by
the clauses of a Report Group Description entry (Figure RW-1 ~). Such
an entry has the level number 01. A detailed, element by element
description of the items that compose each report group is specifi~by
the clauses of a Report Element Description entry (Figure RW-1 '2J).
Such an entry may have the level number 02 through 49 and must appear
immediately after the corresponding Report Group Description entry.

From the preceding discussion, it can be seen that the level
structure employed in the Report Section resembles that used for File
and Record Description entries in the File and Working-Storage Sections,
but with important differences. Record Description entries, no matter
what their level indicator, are composed of the same set of clauses,
with certain minor restrictions. In the Report Section, a Report Group
Description entry is composed of one set of specific clauses, while the
Report Element Description entry is composed of a different set of
specific clauses. Unlike the level numbers 01-49 for a Record Descrip
tion entry, the level number 01 and the level numbers 02-49, when used
in the Report Section, identify two different types of entry. The level
numbers 02-49 in the Report Section, however, resemble the level numbers
02-49 of a Record Description in that an entry with a higher level
indicator is subordinate to an entry with a lower level indicator.

CONTROL BREAKS

When a change in the value of an item causes Report Writer to perform
functions other than its normal operations (that is, other than the
processing of Detail report groups), a control break is said to occur.
such functions as the summation of data and the resetting of sum
counters may be performed when a control break occurs.

The data-names associated with values that initiate control breaks
are called controls and are specified in the CONTROL clause of the
Report Description entry.

In example RW-2, DAY and MONTH are controls. Each time the item DAY
changes causing a control break, a summary line indicating the purchases
for the day is printed and a heading line for the new day follows.
Then, the Detail report group for the new day is printed. The same is
true when the item MONTH changes, causing another control break.

section 7: Report Writer Feature 107

--------_._---------_. ---- -----------------

REPORT DESCRIPTION ENTRY

A Report Description entry names a
identifying code for the report, the
description of the pages in a report.

report and can specify an
controls for a report, and a

Each report whose name appears in an output File Description entry
must be defined by a Report Description entry. All of the data-names
used in this entry must be defined in the File, Working-Storage, or
Linkage Section of the Data Division. The format of the Report
Description entry is:

RD report-name [CODE 'character'] [CONTROL-clause]

[PAGE-clause] •

RD is the level indicator and is required.

Report-name is the name of the report to be printed. The
report-name must be unique and is required.

The CODE, CONTROL, and PAGE clauses are optional, and are described
in the following text.

CODE Clause

The CODE clause is used when more than one report is to be generated
and the output from each report is to be stored on one intermediate
device for later printing. If an object program produces an output file
that contains interspersed records from several reports, the individual
reports can be separated by means of the identification code. The
format of the CODE clause is:

CODE 'character'

Character is a unique character that is attached, at object time,
to each logical record in the report. It must be a single
alphanumeric character enclosed by quotation marks, and may not
be a quotation mark.

The following example shows how this clause can be coded:

RD EXPENSE-REPORT CODE ·x'

After the object program has been run and the logical records are on
one output file, a print-selection program can be written to inspect
each record on the file, printing only those records that are identified
by X.

Note that it is possible to write such a print-selection program in
COBOL.

CONTROL Clause

The CONTROL clause specifies the controls in a report and the level
of the corresponding control breaks (i.e., major, intermediate, and
minoQ. This clause is required when CONTROL FOOTING or CONTROL HEADING
is specified since such footings and headings are printed only as a

108

-.

o

c

o

o

o

---------------.--~---- .

result of control breaks. The format of the CONTROL clause is:

[{
CONTROL IS {~!~:~name... }]

~C~O=N=T_R~O=L=S~~ FINAL data-name •••

FINAL is the highest control for a report. If a heading is to be
printed as a result of such a control, it must be classified in a TYPE
clause in a Report Group Description entry. It will be printed only the
first time that a GENERATE statement for a report is executed. If a
footing is to be printed as the result of such a control, it must also
be classified in a TYPE clause. If will be printed when a TERMINATE
statement for the report is executed.

The data-names are controls. These data-names must be fixed-length
items. The values of these items determine when control breaks occur in
the report. The value of the item specified by the first data-name
determines that point in the report when a major control break occurs.
Any other names specified represent the intermediate controls (and
associated control breaks); the last data-name represents the minor
control. All of the data-names used in this entry must be defined in
the File, Working-Storage, or Linkage Section of the Data Division. If
a heading or a footing is to be printed as the result of a control
break, it must be classified in a TYPE clause of a Report Group
Description entry.

The following example shows how this clause can be coded:

RD EXPENSE-REPORT CONTROLS ARE FINAL, MONTH, DAY.

A control break will occur when any of the values in MONTH or DAY,
changes. Line 01500 of Figure RW-1 shows how this coding is incorporat
ed in a typical source program.

PAGE Clause

The PAGE clause is used to specify the maximum number of lines in a
page and the rules for positioning report groups within the page. The
PAGE clause is required when page headings and footings and/or overflow
headings and footings are specified. The format of the PAGE clause is:

PAGE integer-p [LINES] [HEADING] integer-h)

[FIRST DETAIL integer-d)

[LAST DETAIL integer-e) (FOOTING integer-f)

(In the following text, p, h, d, e, and f refer to the integers
specified above.)

The maximum number of lines to be printed on a page is p LINES.

h is the number of the first line on which a heading can appear.
No report group can start before line h.

d is the number of the first line on which a detail report group
can appear. No detail or control report group can start before
line d. If headings extend beyond line d, the first detail or
control report group follows the last heading line.

Section 7: Report Writer Feature 109

e is the number of the last line on which a detail report group can
appear. No detail or control heading report group extends beyond
line e.

f is the number of the last line on which a control footing group
can appear. No control footings can start before line d or
extend beyond f. Page and overflow footings follow line f, but
do not extend beyond line p.

The PAGE clause entries can be summed up as follows:

h must be greater than or equal to one (1).

d must be greater than or equal to h.

e must be greater than or equal to d.

f must be greater than or equal to e.

p must be greater than or equal to f.

If the PAGE clause is specified, and
specifications (h, d, e, f) is missing,
implied:

one or more of the page
the following assumptions are

1. If h is not specified, it is assigned the value one (1).

2. If d is not specified, it is assigned the value h.

3. If e is not specified, it is assigned the value f, if f is
specified.

4. If f is not specified, it is assigned the value e. If ne·ither e
nor f is specified, e and f are set equal to p.

The following example shows how this clause can be coded:

RD EXPENSE-REPORT CODE 'X'.
PAGE 59 LINES HEADING 1 FIRST DETAIL 10
LAST DETAIL 48 FOOTING 52.

Lines 01500 through 01520 of Figure RW-1 show how this coding is
incorporated in a typical source program.

REPORT GROUP DESCRIPTION ENTRY

This entry is used to describe the characteristics of each report
group within a report. The order in which report groups are described
is not significant, because their position in the report is defined by
the TYPE clause. The format of a Report Group Description entry is:

01 [data-name] [LINE-clause] [NEXT GROUP-clause] [TYPE-clause] •

01 is the level number and is required. The level number 01
identifies the entry as a Report Group Description entry.

Data-name is the name of the report group being descri,bed. A
data-name need not always be specified in an entry; if it is, it must
follow the level number. A data-name must be specified when:

1. A report group is referred to by a GENERATE statement in the
Procedure Division (lines 02170 and 01740 in Figure RW-1) •

110

c'

c

o

o

2. A report group is referred to by a USE BEFORE REPORTING declarative
in the Declaratives Section of the Procedure Division.

3. A sum counter is referred to in the Procedure Division or in
another report group. A sum counter is a compiler-generated core
storage area into which values are accumulated at object time as
the result of a SUM clause.

LINE, NEXT GROUP and TYPE are described in the following text. LINE and
NEXT GROUP are optional clauses, and TYPE is a required clause.

LINE Clause

The LINE clause indicates the absolute or relative line number on
which the report group is to be printed. When the programmer wants data
to appear on a specific line, he uses absolute line numbering. If
absolute line numbering is indicated in all of the LINE clauses of the
Report Group Description entries, the PAGE clause need not be used. If
the programmer does not want data to appear on a specific line, but
wants the data to appear one or more lines beyond the previous data, he
uses relative line numbering. The format of the LINE clause is:

~ {
in teger-1 1]

LINE PLUS integer-2
NEXT PAGE

Integer-1 is an absolute line number. It must be within the range
specified by the PAGE clause. At object time, if inteqer-1 is not
greater than the previously specified value of the line counter, a page
or overflow condition will exist and the report group will be printed on
the next page. If integer-1 is specified, the line counter is set to
the value indicated by integer-1. page and overflow conditions and the
line counters are discussed later in this text.

Integer-2 is a relative line number. At object time, if integer-2 is
specified, the value indicated by integer-2 is added to the current
value of the line counter.

NEXT PAGE can only appear at the 01 level. It specifies that the
current report group is to be the first item that appears on the
following page. The appropriate page or overflow footings and headings
are produced before this report group is p~inted.

The LINE clause must be used in either the Report Group Description
entry or the first Report Element Description entry.

If a LINE clause is specified for an item, subsequent entries will be
printed on the same line unless a new LINE clause is specified.

Within a report group, entries must be assigned line numbers in
ascending order.
The following example shows how this clause can be coded:

01 DETAIL-LINE LINE PLUS 1 TYPE DETAIL.

Line 01740 of Figure RW-1 shows how this coding is incorporated in a
typical source program.

Section 7: Report Writer Feature 111

- ---- -------------------- - --------------------- -------- -- ---

NEXT GROUP Clause

The NEXT GROUP clause may be used to specify the number of print
lines to be skipped after the current report group. The format of this
clause is:

~EXT GROUP {
integer-1 }]
PLUS integer-2
NEXT PAGE

Integer-1 is an absolute line number and must be a positive integer.
At object time, the value specified by integer-1 is placed in the line
counter after the current group is printed. Integer-1 must be within
the range specified by the PAGE clause. If inteqer-1 is not greater
than the current value of the line counter, a page or overflow condition
exists.

Integer-2 is a relative line number and must be a positive integer.
If integer-2 is specified, the value indicated in integer-2 is added to
the line counter after the current report group is printed.

NEXT PAGE specifies that the current report'group is to be the last
item printed on the page. The appropriate page or overflow footings and
headings are produced whenever NEXT PAGE is executed.

The following example shows how this clause can be coded:

01 NEXT GROUP PLUS 1 TYPE OVERFLOW HEADING

Line 01660 of Figure RW-l shows how this coding is incorporated in a
typical source program.

TYPE Clause

The TYPE clause is required. It is used to specify the kind of
report group that is being described. A report group can be one of the
following nine types (when coding a program, the programmer can
abbreviate these report group types as shown) :

REPORT HEADING
PAGE HEADING
OVERFLOW HEADING
CONTROL HEADING
DETAIL

RH
PH
OH
CH
DE

CONTROL FOOTING
OVERFLOW FOOTING
PAGE FOOTING
REPORT FOOTING

The format of the TYPE clause is as follows:

TYPE

112

REPORT HEADING
PAGE HEADI NG
OVERFLOW HEADING

CONTROL HEADING

DETAIL

CONTROL FOOTING
OVERFLOW FOOTING
PAGE FOOTING
REPORT FOOTING

I data-name-1 }
FINAL

Idata-name-2}
FINAL

CF
OV
PF
RF

o

c

o

o

o

REPORT HEADING (RH) is a report group that is printed only once, at
the beginning of the report. There may be only one report group of this
type in a report (see line 01530 of Figure RW-1) •

PAGE HEADING (PH) is a report group that is printed at the
beginning of each page, following a page condition. There may be only
one report group of this type in a report (see line 01580 of Figure
RW-1). If PH is specified, the PAGE clause must appear in the Report
Description entry containing this Report Group Description entry.

OVERFLOW HEADING (OH) is a report group that is printed at the
beginning of the next page, following an overflow condition. There may
be only one report group of this tYRe in a report (see line 01660 of
Figure RW-1). If OH is specified, then LAST DETAIL integer-e must be
specified in the PAG~ clause for this report. OVerflow conditions are
discussed later in this text.

CONTROL HEADING (CH) has two options:

CH data-name-1 is a report group that is printed following the
control break specified by data-name-1 or by a higher-level control.
There may be only one report group of this type for each control
data-name.

CH FINAL is a report group that is printed only once, between the
report heading and the first control heading group. There may be only
one report group of this type in a report.

If this type of report group is used, data-neme-1 and/or FINAL must
be cited in the CONTROL clause of the relevant Report Description entr.y.

DETAIL (DE) is a report group that is printed each time a GENERATE
statement that refers to a detail report group is executed in the
Procedure Division. Each detail report group must have a unique
data-name at the 01 level in a report (see line 01740 of Figure RW-1) •
(Note that other report groups will be printed automatically, when
applicable, when the GENERATE statement is executed.)

CONTROL FOOTING (CF) has two options:

CF data-name-2 is a report group that is printed following the
control break deSignated by data-name-2 or by a higher level control
(see line 01820 of Figure RW-1). There may be only one report group of
this type for each control data-name.

CF FINAL is a report group that is printed only once, at the end of
the report before the report footing (see line 01960 of Figure RW-1).
There may be only one report group of this type in a report.

If this type of report group is used, data-name-2 and/or FINAL must
be cited in the CONTROL clause of the relevant Report Description entry.

OVERFLOW FOOTING (O~ is a report group that is printed at the end
of a page, following an overflow condition. There may be only one
report group of this type in a report (see line 02000 of Figure RW-1) •
If OV is specified, the PAGE clause, including LAST DETAIL integer-e
must be given in the Report Description entry for this report.

Section 7: Report Writer Feature 113

PAGE FOOTING (PF) is a report group that is printed at the end of a
page, following a page condition. There may be only one report group of
this type in a report (see line 02060 If Figure RW-2. of PAGE FOOTING
is written, the PAGE clause must appear in the Report Description entry
containing this Report Group Description entry.

REPORT FOOTING (RF) is a report group that is printed only once, at
the end of the report. There may be only one report group of this type
in a report (see line 02090 of Figure RW-1) •

Page and Overflow Conditions

If the current report group exceeds the limitation of LAST DETAIL
integer-e (described earlier in the subsection "PAGE Clause"), the
following object-time rules apply:

1. If the current report group is a detail report group and controls
are specified, an overflow condition exists.

2. If the current report group is a control heading, a page condition
exists.

3. If the current report group is a control footing, a test is made to
determine if the footing can be printed within the limits specified
in the PAGE clause. If the footing can be printed without
exceeding the established limits, the footing is printed and a page
condition exists. If the footing cannot be printed within the
established limits, an overflow condition exists.

4. Page footing and page heading, if specified, are printed whenever a
page condition exists.

5. Overflow footing and overflow heading, if specified, are printed
whenever an overflow condition exists. If not specified, the page
footing and page heading are printed. If page footing and page
heading are not specified, no footing or heading is printed.

REPORT ELEMENT DESCRIPTION ENTRY

A Report Element Description entry is used to describe a group item
or an elementary item within a report group. Report Element Description
entries must be written in the order in which the items they describe
are to be printed (from left to righ~. An item whose description
contains sUbordinate entries is called a group item. An item whose
description does not contain subordinate entries is called an elementary
item. The format of the Report Element Description entry is:

level-number [data-name] [LINE-clause] [COLUMN-clause]

114

[GROUP INDICATE] [BLANK-clause]

[RESET- cIa use] [PICTURE-clause]

{
SOURCE- cIa use}
SUM-clause ' [JUSTIFIED RIGHTI
VALUE-clause

Level-number can be from 02 to 49 and is required.

c

o

o

o

o

---- - ------------- --- ------------ ------ - -------- ---------------

Level-numbers 02 to 49 identify Report Element Description entries.
Subordinate items must have higher (but not necessarily successive)
level-numbers that are the items to which they are subordinate. Figure
RW-1 5 shows a Report Element Description entry with an 02 level-number.

Data-name is the na~e of the report item being described. Data
name, if specified, must follow the level number. Data-name is used
only if there are references to the elementary item(e.g., SUM clause) in
the Procedure Division or elsewhere in the Data Division. Data-names
are qualified automatically by higher-level data-names and report-names.
Therefore, data-names need not be unique within report group
descriptions if a unique higher-level name can be used for
qualification.

The BLANK clause is described in. Section 5 in the subsection "BLANK
Clause."

PICTURE is a required clause and is described in Section 5 in the
subsection "PICTURE Clause."

VALUE is described in Section 5 in the subsection "VALUE Clause."

JUSTIFIED RIGHT is described in Section 5 in the subsection
"JUSTIFIED RIGHT." RESET, SOURCE,SUM, LINE, COLUMN, and GROUP INDICATE
are described in the following text.

The level-number and either the SOURCE, SUM, or VALUE clause are
required. The PICTURE clause is required for elementary items, except
when the COLUMN clause does not appear. The LINE clause is required
only if it does not appear in the higher-level Report Group Description
entry or in a previous Report Element Description entry for the same
report group at an equal or higher level. All other clauses shown in
the Report Element Description entry format are optional. .

The LINE clause is described in the subsection "LINE Clause" under
"Report Group Description Entry." Note that a LINE clause must be
specified at or before the entry for the first elementary item of a
report group.

COLUMN Clause

The COLUMN clause is used to indicate the placement of an elementary
item within a print line. If this clause is not specified, the item is
not printed.The COLUMN clause may only appear in Report Element
Description entries that define elementary items. The format of the
COLUMN clause is:

[COLUMN integer]

Integer specifies the position in the print line where the leftmost
(high-order) character of the elementary item is to be placed.

The following example shows how this clause can be coded:

02 COLUMN 41 PICTURE A(9) VALUE IS 'CONTINUED'.

Line 01b90 of Figure RW-1 shows how this coding is incorporated in a
typical source program. In this example, CONTINUED will be printed
columns 41 through 49.

Section 7: Report Writer Feature 115

GROUP INDICATE

The GROUP INDICATE clause is used when an item is to be printed only
once following a control break or at the beginning of a new page. The
format of the GROUP INDICATE clause is:

[GROUP INDICATE]

The following example shows how this clause can be coded:

02 COLUMN 13 GROUP INDICATE PICTURE 99 SOURCE DAY.

In Figure RW-2 the day of the month is pri.nted only on the first
detail line of each group, because the GROUP INDICATE clause was used in
line 01770 of Figure RW-1.

RESET Clause

The RESET clause is used when the programmer wants to override the
automatic resetting of the sum counters after an associated control
break. If RESET is not specified, the sum counters are reset to zero
automatically, when an associated control break occur.s. It can only
appear at elementary level in association with a SUM clause.

The format of the RESET clause is:

r~ESET ON{data-name}] l FINAL

Data-name is the name of a higher-level contr.ol and must be one of
the data-names listed in the CONTROL clause of the Report Description
entry. This clause can be used if the programmer wants cumulative
totals to appear at the control break associated with data-name.

FINAL is used to indicate that the counter is not to be reset until
the final control footing has been printed. This clause can be used if
the programmer wants cumulative totals to appear throughout the report.

The following example shows how this clause can be coded:

02 COLUMN 65 PICTURE $$$$9.99 SUM COST
RESET ON FINAL.

Line 01890 of figure RW-1 shows how this coding is incorporated in a
typical source program.

SOURCE Clause and SUM Clause

The Report Writer "gathers" the required data and prepares
output according to its description in a PICTURE clause. The
clause is used to locate the data to be gathered. The Report
will also accumulate data to produce specified totals. The SUM
is used to specify the data to be totaled and may only appear
control footing report group. These clauses can only be given
elementary level.

116

it for
SOURCE
Writer
clause
in a

at the

c

o

o

o

The format of the SOURCE clause is:

SOURCE data-name

Data-name is the name of the data to be reported and represents the
current values of the data. Data-name must be described in the file,
Working-Storage, or Linkage Section of the Data Division. Data-name may
be subscripted, if applicable, and must be qualified where necessary to
make it unique.

The following example shows how this clause cain be coded:

02 LINE 5 COLUMN 32 PICTURE A(9)
SOURCE MONTH NAME OF RECORD-AREA (MONTH).

Line 01670 of Figure RW-1 shows how this coding is incorporated in a
typical source program.

The format of the SUM clause is:

SUM data-name-1 ••• [UPON data-name-n]

The data-names following SUM are the names of the items that are to be
summed. Each item being summed must appear as the operand of a SOURCE
clause in a detail report group or must be the name of an item
containing a SUM clause in an equal or lower-leve~ control report group.

The UPON option is used for selective summation of the data items.
Data-name-n must be the name of a detail report group. When this option
is used, the values of data-name-1, etc. are added to the sum counter
only when the detail report group designated by the data-name has been
referred to by a GENERATE statement in the Procedure Division. When the
UPON option is not used, each detail group reference causes all
specified summations. This causes the sum counter for the major total
to be updated after the minor control break and before the major sum
counter is reset.

If major and minor sums are to be labeled the name of a sum counter
at a lower control level may be the operand of a SUM clause at a higher
control level. The operands of the SUM clause may be subscripted, if
applicable, and must be qualified where necessary to make the named
items unique.

The following example shows how this clause can be coded:

02 COLUMN 30 PICTURE ZZ9 SUM NO-PURCHASES.

Line 01870 of Figure RW-1 shows how this coding is incorporated in a
typical source program.

PAGE AND LINE COUNTERS

PAGE-COUNTER is a fixed data-name specifying a compiler-generated
counter to be used by the Report Writer. Each time a new page is
started, PAGE-COUNTER is automatically incremented by one. PAGE-COUNTER
may be referred to by Procedure Division statements. A page counter is
generated for each report-name when more than one report entry appears
in the Report Section. Therefore, it must be qualified by the
report-name when more than one report description entry appears in the
Report Section.

Section 7: Report Writer Feature 117

PAGE-COUNTER is set to one initially. If a starting value other than
one is desired, it may be set by a Procedure Division statement after
the INITIATE statement has been executed. PAGE-COUNTER is incremented
automatically by one each time a page break is recognized, after
producing page or overflow footings (if applicable), but before produc
ing any page or overflow headings.

LINE-COUNTER is a fixed data-name. It is generated by the Report
Writer and used to determine when page headings and footings should be
produced. LINE-COUNTER may be referred to by Procedure Division
statements. Since a line counter is generated for each report described
in the Report Section, LINE-COUNTER must be qualified by the report-name
when more than one report entry appears in the Report Section.

LINE-COUNTER is set to zero initially and is reset to zero after
every page break. No additional setting takes place based on relative
line numbering after the counter is set to zero. At any given time, the
value of LINE-COUNTER represents one of the following.

1. The last line number produced from the previously generated report
group.

2. The last line number skipped to by a previous NEXT GROUP specifica
tion.

LINE-COUNTER is used by the Report Writer for test and control
purposes. Therefore, programmers should be cautious about changing the
value of LINE-COUNTER by Procedure Division statements, as the ensuing
page format control may be unpredictable.

PROCEDURE DIVISION CONSIDERATIONS

To produce a report, the INITIATE, GENERATE, AND TERMINATE statements
must be used in the Procedure Division. In addition, a USE BEFORE
REPORTING declarative may be written in the Declaratives portion of the
Procedure Division. This option allows the programmer to manipulate or
alter data immediately before it is printed.

INITIATE Statement

The INITIATE statement is used to initialize all counters preparatory
to producing a report. The format of the INITIATE statement is as
follows:

{
ALL }

INITIATE report-name •••

ALL specifies that all report-names defined in the Report Descrip
tion entries of the Report Section are to be initiated.

The report-names are the names of the reports to be initiated.
These reports must be defined by Report Description entries in the
Report Section of the Data Division.

Only one INITIATE statement can be executed for each report-name.
The INITIATE statement does not open the file with which the report is
associated. As shown in the coding example, an OPEN statement for that
file must be given.

118

c

o

c

o

o

o

--------- ------- - ---

OPEN INPUT INFILE, OUTPUT REPORT-FILE.
INITIATE EXPENSE-REPORT.

Lines 02140 and 02150 of Figure RW-1 show how this coding is
incorporated in a typical source program.

GENERATE statement

The GENERATE statement is used to produce a report. The format of
the GENERATE statement is:

GENERATE data-name

Data-name can be the name of a report or the name of a detail
report group.

1.

The GENERATE statement produces the following operations:

Produces the
report group.
is produced.

detail line, if data-name is the name of a detail
If data-name is the name of a report, no detail line

2. Produces the appropriate page or overflow footings and/or headings.

3. Recognizes specified control breaks and produces appropriate con
trol footings and/or headings.

4. Updates each set of sum counters for each detail line and resets
the counters on an associated control break.

When the first GENERATE statement referring to a report or a detail
report group is executed, specified report headings and page headings
are produced. Then, all specified control headings are produced in the
order FINAL, major, intermediate, minor, and are followed immediately by
any detail report group specified in the statement. If a control break
is recognized when a GENERATE statement is executed (other than the
first execution), the specified control footings are produced, from the
minor report group up to and including the report group specified for
the data-name that caused the control break. Then, the specified
control headings are produced, from the report group specified for the
data-name that caused the control break down to the minor report group.
The detail report group specified in the GENERATE statement is then
produced.

Under control of the Report Writer, data is moved into the data area
described in the Report Group Description entry according to the rules
described in Section 6 under the subsection "MOVE."

The following example shows how this statement can be coded:

READATA. READ INFILE AT END GO TO COMPLETE.
GENERATE DETAIL-LINE. GO TO READATA.

Lines 02160 and 02170 of Figure RW-1 show how this coding 1's
incorporated in a typical source program.

Section 7: Report Writer Feature 119

.----. ------ ---- --------------- --------

TERMINATE Statement

The TERMINATE statement is used to end a report. It produces all of
the control footings associated with the report and completes the Report
Writer functions. The control footings are the same as if a control
break occurred at the highest level. The format of the TERMINATE
statement is:

TERMINATE {
ALL }
report-name •••

ALL is used to terminate all previously initiated reports. The
report-names are used when the programmer wishes to terminate only
certain previously initiated reports. Each report-name given 1n a
TERMINATE statement must be defined by a Report Description entry in the
Data Division.

The TERMINATE statement produces the appropriate page footings and
report footings, but does not close the file with which the report is
associated. As shown in the coding example, a CLOSE statement for the
file must be executed subsequent to execution of a TERMINATE statement.
Only one TERMINATE statement can be executed for each report-name.

The following example shows how this statement can be coded:

COMPLETE. TERMINATE EXPENSE-REPORT.
CLOSE INFILE, REPORT-FILE. STOP RUN.

Lines 02180 and 02190 of Figure RW-1 show how this coding is
incorporated in a typical source program.

USE BEFORE REPORTING Declarative

The USE BEFORE REPORTING declarative is used to perform procedures
immediately before the specified report group is produced. It can also
be used to suppress printing of the specified report group. The format
of the USE BEFORE REPORTING declarative is:

section-name SECTION. USE BEFORE REPORTING data-name.

Data-name is the name of a report group (other than a detail report
group) •

When the user wishes to suppress the printing of the specified report
group, the statement

Ext MOVE 1 to PRINT-SWITCH

is used in the USE BEFORE REPORTING declarative. When this statement is
encountered, only the specified report group is not printed; the
statement must be written for each report group whose printing is to be
suppressed.

The following coding example illustrates the use and operation of
this declarative. Part 1 of the example shows the definition of two
control footing report groups in the Report Section of the Data
Division. Part 2 of the example shows a method of using the USE BEFORE
REPORTING declarative. In this example, the USE BEFORE REPORTING
declarative in Part 2 will be executed before the MINOR control footing
(described in Part 1) is produced.

120

•

o

o

o

Part 1
01 MINOR TYPE CONTROL FOOTING C-1 LINE PLUS 1.

32 A SUM P PICTURE 9 (9)
02 B SUM Q PICTURE 9(9).
02 C SOURCE E PICTURE 9(9).

01 MAJOR TYPE CONTROL FOOTING C-2 LINE PLUS 2.
02 R SUM A PICTURE 9(9).

P and Q are defined in the File Section and E is defined in the
Working-Storage Section.

Part 2
DECLARATIVES.
RW SECTION. USE BEFORE REPORTING MINOR.

COMPUTE E =P / Q.
MOVE E TO C OF MINOR.
IF E LESS 5, MOVE ZERO TO A.

END DECLARATIVES.

When a control break occurs for C-1, the following operations are
performed:

1. The value in P is added to the value in A, the value in Q is added
to the value in B, and the value in E is moved to C.

2. The USE BEFORE REPORTING declarative is executed.

3. The values in A,B, and C are each edited (if specified) , moved to
the print area, and printed.

4. The value in A is added to the value in R.

5. A and B are reset to zero.

Section 7: Report Writer Feature 121

01010
01020
01030
01040
01050
01060
01070
01080
01090
01100
01110
01120
01130
01140

IDENTIFICATION DIVISION.
PROGRAM-ID. ACME.
INSTALLATION. ACME ACCOUNTING DEPARTMENT.
REMARKS. THE REPORT WAS PRODUCED BY THE REPORT WRITER FEATURE.

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-360 F50.
OBJECT-COMPUTER. IBM-360 F50.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT INFILE ASSIGN TO UTILITY. SELECT REPORT-FILE ASSIGN TO
UTILITY.

01150 DATA DIVISION.
01160 FILE SECTION.
01170 FD INFILE BLOCK CONTAINS 25 RECORDS VALUE OF FILE-ID 'ACME0016'.
01180 01 INPUT-RECORD.
01190 02 FILLER
01200 02 DEPT
01210 02 FILLER
01220 02 NO-PURCHASES
01230 02 FILLER
01240 02 TYPE-PURCHASE
01250 02 MONTH
01260 02 DAY
01270 02 FILLER
01280 02 COST

r:P r 01290 FD REPORT-FILE VALUE
~01300 EXPENSE-REPORT.

PICTURE AA.
PICTURE XXX.
PICTURE AA.
PICTURE 99.
PICTURE A.
PICTURE A.
PICTURE 99.
PICTURE 99.
PICTURE A.
PICTURE 999V99.

OF FILE-ID 'ACME0133'

01310 WORKING-STORAGE SECTION.
01320 01 FILLER.
01330 02 RECORD-MONTH.

REPORT IS

01340 03 FILLER PICTURE A(9) VALUE IS 'JANUARY
01350 03 FILLER PICTURE A(9) VALUE IS 'FEBRUARY'.
01360 03 FILLER PICTURE A(9) VALUE IS 'MARCH
01370 03 FILLER PICTURE A(9) VALUE IS 'APRIL
01380 03 FILLER PICTURE A(9) VALUE IS 'MAY
01390 03 FILLER PICTURE A(9) VALUE IS 'JUNE
01400 03 FILLER PICTURE A(9) VALUE IS 'JULY
01410 03 FILLER PICTURE A(9) VALUE IS 'AUGUST

, . ,
, .
, .

01420 03 FILLER PICTURE A(9) VALUE IS 'SEPTEMBER'.
01430 03 FILLER PICTURE A(9) VALUE IS 'OCTOBER
01440 03 FILLER PICTURE A(9) VALUE IS 'NOVEMBER '.
01450 03 FILLER PICTURE A(9) VALUE IS 'DECEMBER '.
01470 02 RECORD-AREA REDEFINES RECORD-MONTH OCCURS 12 TIMES.

o

________________ ~0~1~4~8~0 ________ ~0~3~M~O~N~T~H~N~A~M~E~PICTUR~19J~ ________________ ----__ -------------

FIGURE RW-l. COBOL PROGRAM WITH REPORT WRITER FEATURE. (Continued)

c
122

o

o

o

2

01490

0{ 01500
3 01510

01520
(D-01530

~
01540

5 01550
01560
01570
01580
01590
01600
01610
01620
01630
01640
01650
01660
01670
01680
01690
01700
01710
01720
01730
01740
01750
01760
01770
01780
01790
01800

'--__ 01810

- ._----------.----_._--

REPORT SECTION.
RD EXPENSE-REPORT CONTROLS ARE FINAL, MONTH, DAY, DEPT

PAGE 59 LINES HEADING 1 FIRST DETAIL 10 LAST DETAIL 48
FOOTING 52.

01 TYPE REPORT HEADING.
02 LINE 1 COLUMN 27 PICTURE A(26) VALUE IS
'ACME MANUFACTURING COMPANY'.
02 LINE 3 COLUMN 26 PICTURE A(29) VALUE IS
'QUARTERLY EXPENDITURES REPORT'.

01 NEXT GROUP PLUS 1 TYPE PAGE HEADING.
2 LINE 5 COLUMN 30 PICTURE A(9) SOURCE MONTHNAME OF

RECORD-AREA (MONTH).
02 COLUMN 39 PICTURE A(12) VALUE IS 'EXPENDITURES'.
02 LINE 7 COLUMN 2 PICTURE X(3S) VALUE IS
'MONTH DAY DEPT NO-PURCHASES'.
02 COLUMN 40 PICTURE X(33) VALUE IS
'TYPE COST CUMULATIVE-COST'.

01 NEXT GROUP PLUS 1 TYPE OVERFLOW HEADING.
02 LINE S COLUMN 32 PICTURE A(9) SOURCE MONTHNAME OF
RECORD-AREA (MONTH).
02 COLUMN 41 PICTURE A(9) VALUE IS 'CONTINUED'.
02 LINE 7 COLUMN 2 PICTURE X(3S) VALUE IS
'MONTH DAY DEPT NO-PURCHASES'.
02 COLUMN 40 PICTURE X(33) VALUE IS
'TYPE COST CUMULATIVE-COST'.

01 DETAIL-LINE LINE PLUS 1 TYPE DETAIL.
02 COLUMN 2 GROUP INDICATE PICTURE A(9) SOURCE MONTHNAME
OF RECORD-AREA (MONTH).
02 COLUMN 13 GROUP INDICATE PICTURE 99 SOURCE DAY.
02 COLUMN 19 GROUP INDICATE PICTURE XXX SOURCE DEPT.
02 COLUMN 32 PICTURE Z9 SOURCE NO-PURCHASES.
02 COLUMN 42 PICTURE A SOURCE TYPE-PURCHASES.
02 COLUMN SO PICTURE ZZ9.99 SOURCE COST.

FIGURE RW-l. COBOL PROGRAM WITH REPORT WRITER FEATURE. (Continued)

Section 7: Report Writer Feature 123

---------------______ 0.0 _____ ._-- _ 0 ______________ • ___ _

2

01820
01830
01840
01850
01860
01870
01880

Iii\ .. 01890
~01900

01910
01920
01930
01940
01950
01960
01970
01980
01990
02000
02010
02020
02030
02040
02050
02060

liD' r 02070
~02080

02090
02100

L.....---02110
02120
02130
02140

®-02150
02160

01 LINE PLUS 2 NEXT GROUP PLUS 1 TYPE CONTROL FOOTING DAY.
02 COLUMN 2 PICTURE X(22) VALUE IS 'PURCHASES AND COST FOR'.
02 COLUMN 24 PICTURE Z9 SOURCE MONTH.
02 COLUMN 26 PICTURE X VALUE IS '_I.
02 COLUMN 27 PICTURE 99 SOURCE DAY.
02 COLUMN 30 PICTURE ZZ9 SUM NO-PURCHASES.
02 MIN COLUMN 49 PICTURE $$$9.99 SUM COST.
02 COLUMN 65 PICTURE $$$$9.99 SUM COST RESET ON FINAL.

01 LINE PLUS 1 NEXT GROUP PLUS 1 TYPE CONTROL FOOTING MONTH.
02 COLUMN 16 PICTURE A(14) VALUE IS 'TOTAL COST FOR'.
02 COLUMN 31 PICTURE A(9) SOURCE MONTHNAME OF RECORD-AREA
(MONTH).
02 COLUMN 39 PICTURE AAA VALUE IS 'WAS'.
02 INT COLUMN 46 PICTURE ~$$9.99 SUM MIN.

01 NEXT GROUP PLUS 1 TYPE CONTROL FOOTING FINAL.
02 LINE PLUS 1 COLUMN 16 PICTURE A(26) VALUE IS
'TOTAL COST FOR QUARTER WAS'.
02 COLUMN 45 PICTURE $$$$9.99 SUM INT.

01 TYPE OVERfLOW FOOTING.
02 LINE 55 COLUMN 32 PICTURE A(9} SOURCE MONTHNAME OF
RECORD-AREA (MONTH).
02 COLUMN 41 PICTURE A(9) VALUE IS 'CONTINUED'.
02 LINE 57 COLUMN 66 PICTURE X(5) VALUE IS 'PAGE-'.
02 COLUMN 70 PICTURE 99 SOURCE PAGE-COUNTER.

01 TYPE PAGE FOOTING.
02 LINE 57 COLUMN 66 PICTURE X(5) VALUE IS 'PAGE-'.
02 COLUMN 70 PICTURE 99 SOURCE PAGE-COUNTER.

01 TYPE REPORT FOOTING.
02 LINE PLUS 1 COLUMN 32 PICTURE A(13) VALUE IS
'END OF REPORT'.

PROCEDURE DIVISION.
OPEN INPUT INFILE, OUTPUT REPORT-FILE.
INITIATE EXPENSE-REPORT.

READATA. READ INFILE AT END GO TO COMPLETE.

FIGURE RW-l. COBOL PROGRAM WITH REPORT WRITER FEATURE. (Continued)

124

c

o·

o

o

o

0-02170
®-02180

02190

GENERATE DETAIL-LINE. GO TO READATA.
COMPLETE. TERMINATE EXPENSE-REPORT.

CLOSE INFILE, REPORT-FILE. STOP RUN.

9

AOO
ADO
AOO
AOO
ADO
ADO
AOO
AOO
AOO
A01
A01
A01

A07
A07
A07

gy

2 A0101
4 60101
1 COl13

10 00115
5 A0126

15 C0127
6 60127
2 60130
1 A0131
2 60102
2 60105
2 60106

10 F0216
10 E0217
10 G0217

200
624
800

1920
500

12000
936
312
100
200
200
200

2500
3000
5000

1 FILE DESCRIPTION ENTRY
2 REPORT SECTION OF DATA DIVISION
3 REPORT DESCRIPTION ENTRY
4 REPORT GROUP DESCRIPTION ENTRY
5 REPORT ELEMENT DESCRIPTION ENTRY
6 INITIATE STATEMENT
7 GENERATE STATEMENT
8 TERMINATE STATEMENT
9 INPUT DATA

10 ELEMENTARY ITEMS
11 CONTROL FOOTING ENTRY

FIGURE RW-l. COBOL PROGRAM WITH REPORT WRITER FEATURE. (Continued)

section 7: Report Writer Feature 125

~ ACME MANUFACTURING COMPANY

QUARTERLY EXPENDITURES REPORT C' cp
d-- MONTH

JANUARY EXPENDITURES
I

DAY DEPT NO-PURCHASES TYPE COST CUMULATIVE-COST

@>- JANUARY 01 AOO 2 A 2.00
A02 1 A 1.00
A02 2 C 16.00

®- PURCHASES AND COST FOR 1-01 5 $19.00 $19.00

JANUARY 02 A01 2 B 2.00
A04 10 A 10.00
A04 10 C 80.00

..

PURCHASES AND COST FOR 1-02 22 $92.00 $111.00

JANUARY 05 A01 2 B 2.00

PURCHASES AND COST FOR 1-05 2 $2.00 $113.00

JANUARY 08 A01 10 A 10.00
AOI 8 B 12.48
A01 20 D 38.40

PURCHASES AND COST FOR 1-08 38 $60.88 $191.88

JANUARY 13 AOO 4 B 6.24
AOO 1 C 8.00 C:

PURCHASES AND COST FOR 1-13 5 $14.24 $206.12

JANUARY 15 AOO 10 D 19.20
A02 1 C 8.00

PURCHASES AND COST FOR 1-15 11 $27.20 $233.32

JANUARY 21 A03 10 E 30.00
A03 10 F 25.00
A03 10 G 50.00

PURCHASES AND COST FOR 1-21 30 $105.00 $338.32

JANUARY 23 AOO 5 A 5.00

PURCHASES AND COST FOR 1-23 5 $5.00 $343.32

(j) JANUARY CONTINUED

@ PAGE-Ol

FIGURE RW-2. REPORT PRODUCED BY REPORT WRITER FEATURE. (Continued)

c
126

--------------------------- ---

0 JANUARY CONTINUED

MONTH DAY DEPT NO-PURCHASES TYPE COST CUMULAT IV E-COS T

C)
JANUARY 26 A04 5 A 5.00

A04 5 B 7.80

PURCHASES AND COST FOR 1-26 10 $12.80 $356.12

JANUARY 27 AOO 6 B 9.36
AOO 15 C 120.00

PURCHASES AND COST FOR 1-27 21 $129.36 $485.48

JANUARY 30 AOO 2 B 3.12
A02 10 A 10.00
A02 1 C 8.00
A04 15 B 23.40
A04 10 C 80.00

PURCHASES AND COST FOR 1-30 38 $124.52 $610.00

JANUARY 31 AOO 1 A 1.00
A04 6 A 6.00

PURCHASES AND COST FOR 1-31 7 $7.00 $617.00

® TOTAL COST FOR JANUARY WAS $617.00

FIGURE RW-2. REPORT PRODUCED BY REPORT WRITER FEATURE. (Continued)

0

..

o
Section 7: Report Writer Feature 127

------- -- ----- --- ---------------- ---------------------

@ FEBRUARY EXPENDITURES

MONTH DAY DEPT NO-PURCHASES TYPE COST CUMULATIVE-COST

FEBRUARY 15 A02 10 A 10.00 C"
A02 2 B 3.12
A02 1 C 8.00
A03 15 G 75.00
A04 5 B 7.80
A05 8 A 8.00
A05 5 C 40.00

PURCHASES AND COST FOR 2-15 46 $151.92 $768.92

FEBRUARY 16 A02 2 C 16.00
A06 10 A 10.00
A07 10 A 10.00
A07 10 F 25.00

PURCHASES AND COST FOR 2-16 32 $61.00 $829.92

FEBRUARY 17 A07 10 E 30.00
A07 10 G 50.00

PURCHASES AND COST FOR 2-17 20 $80.00 $909.92

FEBRUARY 21 A06 20 A 20.00
A06 20 B 31.20
A06 20 C 160.00
A06 20 D 38.40
A06 20 E 60.00
A06 20 F 50.00
A06 20 G 100.00 CI

PURCHASES AND COST FOR 2-21 140 $459.60 $1369.52

FEBRUARY 27 A01 21 D 40.32

PURCHASES AND COST FOR 2-27 21 $40.32 $1409.84

FEBRUARY 28 A02 3 B 4.68
A02 5 C 40.00
A03 15 E 45.00

PURCHASES AND COST FOR 2-28 23 $89.68 $1499.52
~

TOTAL COST FOR FEBRUARY WAS $882.52

FIGURE RW-2. REPORT PRODUCED BY REPORT WRITER FEATURE. (Continued)

c
128

MARCH EXPENDITURES

MONTH DAY DEPT NO-PURCHASES TYPE COST CUMULATIVE-COST

0 MARCH 01 A02 5 A 5.00
1 C 8.00

A03 25 G 125.00

PURCHASES AND COST FOR 3-01 31 $138.00 $1637.52

MARCH 06 A02 5 A 5.00

PURCHASES AND COST FOR 3-06 5 $5.00 $1642.52

MARCH 07 A02 5 A 5.00

PURCHASES AND COST FOR 3-07 5 $5.00 $1647.52

MARCH 13 A02 10 A 10.00

PURCHASES AND COST FOR 3-13 10 $10.00 $1657.5,2

MARCH 15 AOI 21 A 21.00
A02 1 A 1.00
A03 15 F 37.50
A06 5 E 15.00

5 F 12.50

PURCHASES AND COST FOR 3-15 47 $87.00 $1744.52

MARCH 20 A03 15 E 45.00

0
PURCHASES AND COST FOR 3-20 15 $45.00 $1789.52

MARCH 21 A02 15 A 15.00
A03 15 F 37.50

PURCHASES AND COST FOR 3-21 30 $52.50 $1842.02

MARCH 23 A02 2 A 2.00

PURCHASES AND COST FOR 3-23 2 $2.00 $1844.02

FIGURE RW-2. REPORT PRODUCED BY REPORT WRITER FEATURE. (Continued)

o
section 7: Report Writer Feature 129

MARCH CONTINUED

MONTH DAY DEPT NO-PURCHASES TYPE COST CUMULATIVE-COST

MARCH 25 A03 30 F 75.00 C'
PURCHASES AND COST FOR 3-25 30 $75.00 $1919.02

MARCH 26 A02 1 A 1.00

PURCHASES AND COST FOR 3-26 1 $1.00 $1920.02

MARCH 29 A01 6 C 48.00

PURCHASES AND COST FOR 3-29 6 $48.00 $1968.02

MARCH 31 A03 20 E 60.00
10 G 50.00

PURCHASES AND COST FOR 3-31 30 $110.00 $2078.02

TOTAL COST FOR MARCH WAS $578.58

® TOTAL COST FOR QUARTER WAS $2078.02

@ END OF REPORT

FIGURE RW-2. REPORT PRODUCED BY REPORT WRITER FEATURE. (Continued)

CI

c
130

"

o

o

o

ll:!:
1 REPORT HEADING
2 PAGE HEADING
3 GROUP INOICATE ITEMS
4 OVERFLOW HEADING
5 REPORT FOOTING
6 PAGE FOOTING
1 OVERFLOW FOOTING
& INTERMEDIATE CONTROL FOOTING
9 MAJOR CONTROL FOOTING

10 DETAIL LINE
11 FINAL CONTROL FOOTING

--- - -------

FIGURE RW-2. REPORT PRODUCED BY REPORT WRITER FEATURE~ (Continued)

Section 7: Report Writer Feature 131

F Only SECTION 8: SORT FEATURE

The Sort feature permits the programmer to include sort operations in
a COBOL program. The Sort feature also includes the optional use of
input and output procedures that can alter the data during the sorting
operation.

ILLUSTRATIONS

Figure S-1 shows the flow of data through the sorting operation.
Figure S-2 is an example of a typical sorting problem written in
System/360 COBOL. The items discussed in this section have been keyed
within the figure.

BASIC SORT CONCEPTS

A sort program is used to rearrange records according to one or more
specific fields in each record. These fields are called sort-keys. For
example, if a file contains individual records for each employee in a
firm, the programmer may want to rearrange these records in alphabetic
order according to the employees' names. The field in each record
containing the employee's name would then be a sort-key.

In a sort operation, records are read from the input-file and placed
in blocks of contiguous records (called strings) on the sort-file.
Sort-file is the generic term for several intermediate working files.
The programmer need not be concerned with these intermediate files,
since they are used by the internal Sort/Merge Program to perform the
actual sorting and merging operation. To the COBOL programmer, the sort
operation is automatic, and he can consider the sort-file to be one file
on which sorting and merging are accomplished.

When all of the records on the input-file have been transfer.red to
the sort-file, the records in each string are merged, forming longer
strings. The final operation merges the strings and places the sorted
records on the output-file.

ELEMENTS OF THE SORT FEATURE

There are three basic elements of the Sort feature: the SORT
statement, the input procedure, and the output procedure.

The SORT statement is used in the main body of the Procedure
Division. It specifies the file to be sorted, the sort-keys in order of
importance, whether the sequence controlled by each sort-key is ascend
ing or descending, and whether input and/or output procedures are to
intervene in the sorting operation. A detailed description of the SORT
statement format is in the sUbsection "SORT Statement" under "Procedure
Division Considerations."

132

o

c

o

•

o

o

The input and output procedures are optional. The input and output
procedures must be separate sections and may not refer to each other or
to other sections or paragraphs. They may only be referred to by a SORT
statement. Control is passed to each procedure only by execution of the
SORT statement.

Both the input and output procedures can be used to manipulate data.
The input procedure can be used to select, create, and merge certain
records from one or more files, for sorting; the output procedure can be
used to process sorted records and to place them on one or more output
files.

If INPUT PROCEDURE is specified in the SORT statement, control is
passed to the input procedure. The input procedure can contain any
statements to read, select, create, or modify records to be released to
the sort-file. If INPUT PROCEDURE is not specified Ln the SORT
statement, all of the records in the input-file are transferred to the
sort-file when the SORT statement is executed. If INPUT PROCEDURE is
specified in the SORT statement, the input procedure is performed as
soon as the SORT statement is executed, before the records are placed on
the sort-file. The input procedure must contain at least one RELEASE
statement, which puts the selected records in the sort-file. The
sorting operation begins when the input procedure terminates execution.
If, however, no input procedure has been specified, it begins at once.

If OUTPUT PROCEDURE is specified in the SORT statement, the output
procedure is performed in conjuction with the final merge If OUTPUT
PROCEDURE is not specified in the SORT statement, the final merge is
accomplished and the sorted records are placed on the specified
output-file. The output procedure can contain any statements to select,
modify, copy, or write the sorted records that are returned, one at a
time, from the sort-file. Before a sorted record can be processed, it
must be retrieved from the sort-file by executing a RETURN statement in
the output procedure. The output procedure must contain at least one
RETURN statement. When the output procedure terminates execution, the
sorting operation is completed and control ~eturns to the statement
following the SORT statement.

Section 8: Sort Feature 133

-----------. -------------------

******A3***********
INPUT

* PROCESSED *
BY INPUT

* PROCEDURE *

X
******B2*********** *****B3**********

*
*

INPUT -
FILE

* * * * •••••••• X*
* * *

SORT
INPUT

PROCEDURE
*
*
*
* *****************

......................... x.
x

******C2*;********* **C3*******
* * * OUTPUT - * *SORT I MERGE *

FILE X •••••••• * PROGRAM * •••••••• X*
* * * *

* * ************* ***********

X
*****03**********
* * * SORT *
* OUTPUT *
* PROCEDURE *
* * *****************

X
******E3***********

OUTPUT
* CREATED BY *

OUTPUT
* PROCEDURE *

C4*****
*

* SORT
FILE

*
*

Figure S-1. Flow of Data through a Sort Operation.

SORT-KEYS

*
*

*
*

*

A sort-key is that section of a record which is used as the basis for
sorting. It must have a fixed length and may be one of the following
types of items:

Internal floating-point
External decimal
Internal decimal
Binary
Alphanumeric
Alphabetic

These allowable data types are described in Section 5, under the
subsection "Elementary Items."

A sort-key can be located anywhere within the record, with one
limitation: the sort-keys of all records to be sorted in the same
operation must each have a constant displacement from the beginning of
all records. A displacement cannot exceed 4095 bytes.

134

c'

..

c

._------ ----- ---------------~------ --------------- - ---------

o

o

o

Data-names used as sort-keys must be unique; they define sort-key
locations in all records in a file. For example, for a file named
FILEA, A in RECl may be listed as a sort-key in a SORT statement. Then,
this sort-key, in all types of records in FILEA, will be defined by the
length and displacement of A in REC1, no matter what names identify the
area in other records in the file.

Sort-keys cannot be subscripted. As many as 12 sort-keys can be
specified for a file. These keys are specified in the SORT statement in
the order of major to minor (i.e., the order in which the programmer
wants them to be checked by the sort operation). The total length of
all sort-keys in a record must not exceed 256 bytes.

DATA DIVISION CONSIDERATIONS

When the Sort feature is used, Sort Description entries and related
Record Description entries must be written in the File Section of the
Data Division (in addition to the File Description entries for input
files and/or output files). Sort Description entries describe the
sort-files that are to be sorted; the Record Description entries are
used to define the data in the sort-file. These entries are described
in the following text.

Sort Description Entry

The name of a sort-file that is to be sorted must appear in the File
Section in a separate Sort Description entry. The format of this entry
is:

SD sort-file-name

VALUE OF FILE-ID IS external-name

(RECORD CONTAINS [integer-1 TO]

integer-2 CHARACTERS]

[{
RECORD IS}]

DATA RECORDS ARE record-name •••

SD is the level indicator and is required.

Sort-file-name is the name of a sort-file specified in a SORT
statement. The sort-file-name must be unique and is required. Every
sort-file named in a Sort Description entry must appear in a SELECT
clause in the File-Control paragraph of the Environment Division.

The RECORD CONTAINS clause is optional and is described in Section 5.
Only the form shown here is allowed.

Figure S-2 shows Sort Description entry.

Record Description Entry

Each Sort
Description

Description
entries. The

entry must be followed by one or more Record
Record Description entries are used to

Section 8: Sort Feature 135

describe the characteristics of each item in the data records that is to
appear on the sort-file. Record Description entries are described in
Section 5.

Figure S- 2 ® shows a sort-file Record Descri.ption entry.

PROCEDURE DIVISION CONSIDERATIONS

When the Sort Feature isused, a SORT statemen~s written in the main
body of the Procedure Division. (See Figure S-2~.)

If input and output procedures are used, they are written as separate
sections in the main body of the Procedure Division. The RELEASE and
RETURN statements are used in the input and output procedures (Figure
S-2 ® ®); these statements and the SORT statement are described in
the following text.

SORT Statement

The format of the SORT statement is:

{
DESCENDING}

SORT sort-file-name ASCENDING data-name-1 •••

[{
DESCENDING}
ASCENDING J {USING file-name-1 }

data-name-2... INPUT PROCEDURE section-name-1

{
OUTPUT PROCEDURE section-name-2}
GIVING file-name-2

Sort-file-name is the name of the sort-file associated with the
input-file that is to be sorted. It is required and must have a Sort
Description entry in the File Section of the Data Division.

The DESCENDING or ASCENDING clause is required. When DESCENDING is
specified for one or more sort-keys, the sorted sequence is from highest
value to lowest value. Similarly, when ASCENDING is specified, the
sorted sequence is from lowest to highest value.

Data-name-1 and data-name-2 designate sort-keys. Data-names are
listed in the SORT statement according to their significance.

Section-name-1 is the name of the input procedure.

The USING option is required if there is no input procedure.
File-name-1 is the name of the input-file that is to be sorted. If the
USING option is specified, all the records in file-name-1 are used as
input to the Sort/Merge Program. File-name-1 must not be open when the
SORT statement is executed. The SORT statement automatical1y performs
the necessary OPEN, READ, and CLOSE functions for file-name-1.
File-name-1 must have a File Description entry (not a Sort Description
entr~ in the File Section of the Data Division.

Section-name-2 is the name of the output procedure.

136

c

"

o

c

o

o

o

The GIVING option is required if there is no output procedure.
File-name-2 is the name of the output-file. If the GIVING option is
specified, all the records in sort-file-name are merged for output onto
file-name-2. File-name-2 must not be open when the SORT statement is
executed. The SORT statement automatically opens file-name-2 before
transferring the records and closes it after the last record in the
sort-file is returned. File-name-2 must have a File Description entry
(not a Sort Description entr~ in the File Section of the Data Division.

The following example shows how this statement can be written:

SORT SORT-FILE-1 ASCENDING FIELD-AA
DESCENDING FIELD-BB, ASCENDING FIELD-CC
INPUT PROCEDURE RECORD-SELECTION
OUTPUT PROCEDURE PROCESS-SORTED-RECORDS.

In this example, SORT-FILE-1 is the name of the sort-file associated
with the input-file that is to be sorted; FIELD-AA, FIELD-BB, and
FIELD-CC are sort-keys; RECORD-SELECTION is the name of the input
procedure; PROCESS-SORTED-RECORDS is the name of the output procedure.
Figure S-2 ® shows how this statement is used.

RELEASE Statement

The RELEASE statement is used in
records to the initial phase of
RELEASE statement is:

RELEASE record-name

the input procedure to transfer
a sort operation. The format of a

Record-name is the name of an 01-level Sort Description entry
associated with the particular sort file.

Figure S- 2 ® shows how this statement is used.

RETURN Statement

The RETURN statement is used in the output procedure to obtain sorted
records from the sort-file in conjunction with the final merge.The
format of a RETURN statement is:

RETURN sort-file-name [AT END imperative statement •••]

Sort-file-name is the name of a sort-file and has a Sort
Description entry in the File Section of the Data Division.

The AT END clause is required. The AT END portion of the RETURN
statement is executed when all sorted records have been retrieved.

Figure S-2 ® shows how this statement is used.

Section 8: Sort Feature 131

01010
01020
01030
01040
010S0
01060
01070
01080
01090
01100
01110
01120
01130
01140
011S0
01160
01170
01180
01190
01200
01210
01220
01230
01240
012S0
01260
01270
01280
01290
01300
01310
01320
01330
01340
013S0
01360

0-01370
01380
01390
01410
01420
01430
01440
014S0
01460
01470
01480
01490
01S00
01510
01S20
01S30
01S40
01SS0
01S60
01S70

IDENTIFICATION DIVISION.
PROGRAM-ID. 360S0RT.
REMARKS. THIS PROGRAM WAS WRITTEN TO DEMONSTRATE THE USE OF

THE SORT FEATURE. THIS PROGRAM PERFORMS THE FOLLOWING
TASKS -
1. SELECTS, FROM A FILE OF 1000-CHARACTER RECORDS,

THOSE RECORDS HAVING FIELD-A NOT EQUAL TO FIELD-B.
2. EXTRACTS INFORMATION FROM THE SELECTED RECORDS.
3. SORTS THE SELECTED RECORDS INTO SEQUENCE, USING

FIELD-AA, FIELD-BB, AND FIELD-CC AS SORT KEYS.
4. WRITES THOSE SORTED RECORDS HAVING FIELD-FF EQUAL

TO FIELD-EE ON FILE-3 AND WRITES SELECTED DATA OF
THE OTHER RECORDS ON FILE-2.

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-360 FSO.
OBJECT-COMPUTER. IBM-360 FSO.
INPUT-OUTPUT SECTION.
FILE-CONTROL. SELECT INPUT-FILE-l ASSIGN TO UTILITY. SELECT

SORT-FILE-1 ASSIGN TO UTILITY UNITS. SELECT FILE-2
ASSIGN TO UTILITY. SELECT FILE-3 ASSIGN TO UTILITY.

DATA DIVISION.
FILE SECTION.
FD INPUT-FILE-1 BLOCK CONTAINS S RECORDS

VALUE OF FILE-ID 'F401'.
01 INPUT-RECORD.

02 FIELD-A PICTURE X(20).
02 FIELD-C PICTURE 9(10).
02 FIELD-D PICTURE X(lS).
02 FILLER PICTURE X(900).
02 FIELD-B PICTURE X(20).
02 FIELD-E PICTURE 9(S).
02 FIELD-G PICTURE X(2S).
02 FIELD-F PICTURE 9(S).

SO SORT-FILE-I, VALUE OF FILE-ID IS 'SFl'.
01 SORT-RECORD.

02 FIELD-AA PICTURE X(20).
02 FIELD-CC PICTURE 9(10).
02 FIELD-BB PICTURE X(20).
02 FIELD-DO PICTURE X(lS).
02 FIELD-EE PICTURE 9(S).
02 FIELD-FF PICTURE 9(S).

FD FILE-2 BLOCK CONTAINS 10 RECORDS
VALUE OF FILE-ID 'F402'.

01 FILE-2-RECORD.
02 FIELD-EEE PICTURE $$$$$9.
02 FILLER-A PICTURE X(2).
02 FIELD-FFF PICTURE 9(S).
02 FILLER-B PICTURE X(2).
02 FIELD-AAA PICTURE X(20).
02 FIELD-BBB PICTURE X(20).

FD FILE-3 BLOCK CONTAINS IS RECORDS
VALUE OF FILE-ID 'F403'.

01 FILE-3-RECORD PICTURE X(7S).

FIGURE S-2. EXAMPLE OF COBOL SOURCE PROGRAM WITH SORT FEATURE. (Continued)

138

C'

o

C:

---------------------- - ---- -------- -------------

•

o

..

o

01580
01590

~
01591
01592

3 01593
01594
01595
01596
01597
01620
01630
01640
01650
01660
01670
01680
01690
01700
01710
01720
01730
01740
01750
01760
01770
01780

JS.ll

PROCEDURE DIVISION.

OPEN INPUT INPUT-FILE-I, OUTPUT FILE-2, FILE-3.
SORT SORT-FILE-l ASCENDING FIELD-AA DESCENDING FIELD-SS,
ASCENDING FIELD-CC INPUT PROCEDURE RECORD-SELECTION OUTPUT
PROCEDURE PROCESS-SORTED-RECORDS. CLOSE INPUT-FILE-I, FILE-2,
FILE-3. STOP RUN.

RECORD-SELECTION SECTION.
PARAGRAPH-I. READ INPUT-FILE-l AT END GO TO PARAGRAPH-2.

IF FIELD-A = FIELD-B GO TO PARAGRAPH-l ELSE
MOVE FIELD-A TO FIELD-AA MOVE FIELD-F TO FIELD-FF
MOVE FIELD-C TO FIELD-CC MOVE FIELD-S TO FIELD-BB
MOVE FIELD-D TO FIELD-DO MOVE FIELD-E TO FIELD-EE
RELEASE SORT-RECORD. GO TO PARAGRAPH-I.

PARAGRAPH-2. EXIT.
PROCESS-SORTED-RECORDS SECTION •
PARAGRAPH-3. RETURN SORT-FILE-1 AT END GO TO PARAGRAPH-4.

IF FIELD-FF = FIELD-EE WRITE FILE-3-RECORD FROM
SORT-RECORD GO TO PARAGRAPH-3 ELSE
MOVE FIELD-EE TO FIELD-EEE MOVE FIELD-FF TO FIELD-FFF
MOVE FIELD-AA TO FIELD-AAA MOVE FIELD-SS TO FIELD-SSS
MOVE SPACES TO FILLER-A, FILLER-B WRITE FILE-2-RECORD.
GO TO PARAGRAPH-3.

PARAGRAPH-4. EXIT.

1 SORT DESCRIPTION ENTRY
2 RECORD DESCRIPTION ENTRY
3 MAIN-BODY OF SOURCE PROGRAM (excluding Sort input and output sections)
4 INPUT PROCEDURE
5 OUTPUT PROCEDURE

FIGURE 5-2. EXAMPLE OF COBOL SOURCE PROGRAM WITH SORT FEATURE. (Continued)

Section 8: Sort Feature 139

--------------- --_._ .. _._-------

SECTION 9: SOURCE PROGRAM LIBRARY FACILITY

Prewritten source program entries can be included in a COBOL program
at compile time. Thus, an installation can utilize standard file
descriptions, record descriptions, or procedures without having to
repeat programming them. These entries and procedures are contained in
a user-created library. They are included in a source program by means
of a COpy clause or an INCLUDE statement.

COpy Clause

The COpy clause permits the user to include prewritten Data Division
entries or Environment Division clauses in his source program. The COpy
clause is written in the Data Division in one of the following forms:

Option 1
(Wi thin the Input-Output section of the Environment Divis-ion)

SELECT file-name COpy library-name [FROM LIBRARY] •

Option 2
(Within a File Description or Sort Description entry)

{~g}file-name COpy library-name [FROM LIBRARY] •

F Only Option 3
(Within a Saved Area Description entry)

SA saved-area-name COpy library-name [FROM LIBRARY] •

Option 4
(Within a Record Description entry)

01 data-name COpy library-name [FROM LIBRAR~ •

F Only Option 5
(Within a Report Description Entr~

RD data-name [CODE non-numeric-litera~

COpy library-name [FROM LIBRARY]

F Only Option 6
(Within a Report Group Description entry)

01 [data-name] COpy library-name [FROM LIBRAR~ •

Option 7
(Within a 77 Record Description entry)

77 data-name COpy library-name [FROM LIBRAR~ •

Library-name is contained in the user's library and identifies the
entries to be copied. It is an external-name and must follow the rules
for external-name formation.

140

•

o

c

o

o

o

--------- ---

A COpy clause may be preceded by other information on a source
program card, and may be written on more than one card; however on a
given card, containing the completion of a COpy clause, there must be no
information beyond the clause-terminating period. The material intro
duced into the source program by the COpy statement will follow the COpy
statement on the listing, beginning on the next line.

When Option 1 is written, the clauses that are copied are those in
the remainder of the Input-Output Section associated with the file
identified by library-name.

When Options 2, 3, or 5 are written, then the file, sort, saved-area,
or report description entry and its respective record or report groupand
report element description entries are copied from the library.

When Options 4 or 6 are written, the entries that are copied from the
library are those including and subordinate to the data-name with the 01
level number that begins the entries identified by library-name.

When Option 7 is written the entries that are copied from the library
are the 88 level entries associated with the 77 level data-name
identified by library-name.

In the Data Division and Environment Division of the source program,
file-name or data-name or saved-area-name in a COpy clause will replace
a corresponding file-name, data-name, or saved-area-name of the library
entry. It is assumed that each library entry will contain whatever
clauses are needed to complete the source program entry.

INCLUDE Statement

The INCLUDE statement permits the user to include prewritten proce
dures in the Procedure Division of his source program. The INCLUDE
statement has the following formats:

Option 1 (For insertion of a paragraph)

paragraph-name. INCLUDE library-name

Option 2 (For insertion of a section)

section-name SECTION. INCLUDE library-name

Library-name is contained in the user's library and identifies the
entries to be copied. It is an external name and must follow the rules
for external name formation.

An INCLUDE statement may be preceded by other information on a source
card, and may be written on more than one card; however on a given card,
containing the completion of an INCLUDE statement, there must be no
information beyond the clause-terminating period. The material from the
library will follow the INCLUDE statement on the listing.

The library entries for paragraphs and sections must not contain
INCLUDE statements.

In the source program, the library entry is included in its entirety,
including the paragraph-name or section-name of the library entry. No
substitution of names, within the library entry, is performed. The
library entry is included in its entirety.

Section 9: Source Program Library Facility 141

F Only EXTENDED SOURCE PROGRAM LIBRARY FACILITY

A complete program may be included as an entry in the user's library,
and may be used as the basis of compilation. When this is the case,
input to the compiler is a BASIS card, followed by any number of INSERT
and/or DELETE cards, and followed by any number of debugging packets, ij
desired. Debugging packets are described in Section 9.

The format of the BASIS card is:
1 8

BASIS library-name

Library-name is an external name: it names the complete program entry
used as a basis for the compilation.

If INSERT or DELETE cards follow the BASIS card, the library entry is
modified prior to being processed by the compiler.

The format of the INSERT card is:
1 8

INSERT sequence-number-field

The format of the DELETE card is:
1 8-72

DELETE sequehce-number-field

A sequence-number-field consists of entries of the form a-b, or c
separated by comma and a single blank, where a, h, and c are individual
sequence-numbers of the basic library entry (appearing in columns 1-6 of
the basic library entry) •

At least one new source program card must follow an INSERT card, for
insertion after the card specified by the sequence-number-field.

Source program cards may follow a DELETE card, for insertion before
the card following the last one deleted.

142

c

o

f.

c

o

o

o

SECTION 10: STERLING CURRENCY FEATURE AND INTERNATIONAL CONSIDERATIONS

STERLING CURRENCY FEATURE

Systeml360 COBOL provides facilities for handling sterling cur~ency
items by means of an expansion of the PICTURE clause. Additional
options and formats, necessitated by the non-decimal nature of sterling,
and by the conventions by which sterling amounts are represented in
punched cards, are also available.

Sterling amounts are normally expressed in pounds, shillings and
pence, in that order. There are twenty shillings in a pound, and twelve
pence in a shilling. Though sterling amounts are sometimes expressed in
shillings and pence only (in which case the number of shillings may
exceed 99), within machine systems shillings will always be expressed as
a two-digit field. Pence, when in the form of integers, likewise will
be expressed as a two-digit field. However, provision must be made for
pence to be expressed as decimal fractions as well, as in the form
17s. 10.237d.

The IBM method for representing sterling amounts in punched cards
uses two columns for shillings and one for pence. Tenpence (10d.) is
represented by an '11' punch and elevenpence (11d.) by a '12' punch.
The British Standards Institution (B.S.I.) representation uses single
columns for both shillings and pence. B.S.I. pence representatLon for
tenpence and elevenpence is the reverse of that of IBM: an '11' punch is
used for 11d. and a '12' punch for 10d. B.S.I. representation for
shillings consists of a '12' punch for 10 shillings and double punches A
to I for eleven to nineteen shillings.

The indicated representations may be used separately or in combina
tion, resulting in four possible conventions.

1. IBM pence - IBM shillings

2. IBM pence - B.S.I. shillings

3. B.S.I. pence - B.S.I. shillings

4. B.S.I. pence - IBM shillings

Any of these conventions may be associated with any number of digits,
or no digits, in the pound field; and any number of decimals, or no
decimals, of pence. In addition, sign representation may be present as
an over punch in one of several allowable positions in the amount, or may
be separately entered from another field.

Two formats are provided by System/360 COBOL in the PICTURE clause
for the representaion of sterling amounts, Sterling Non-Report forma and
Sterling Report format. In the formats that follow, n stands for a
positive nonzero integer. When such an integer is used, it must be
parenthesized. The characters 6 1 8 9 B Z V. : s d CR - are the
PICTURE characters used to describe Sterling items.

Ext

Section 10: Sterling Currency FeatUre 143

----- --_._--

STERLING NON-REPORT

The format for the Sterling non-report PICTURE is:

PICTURE IS 9 [(n)] [V] [8] 8 [V] {6 [6] } [[V] 9 (n)]
7 [7]

[USAGE IS DISPLAY)

The representation for pounds is 9 (n) [V] where:

a. The character 9 indicates that a character position will always
contain a numeric character, and may extend to ~ positions.

b. The character V indicates the position of an assumed pound
separator. In all other respects it is identical to V when used to
indicate an assumed decimal point. As each sterling field is
defined by the use of a different character, the use of V for this
purpose, in this format, is optional.

c. An entry must always appear in the pound field for a picture to
be valid.

The representation for shillings is [8] 8 [V] where:

a. The characters [8] 8 indicate the position of the shilling field,
and the convention by which shillings are represented in punched
cards. 88 indicates IBM shilling representation occupying a two
column field. 8 indicates B.S.I. single column shilling representa
tion. An entry must always appear in the shilling field for a
picture to be valid.

b. The character V indicates the position of an assumed shilling
separator. In ali other respects it is identical to V when used to
indicate an assumed decimal point.

The representation for pence is
{
6 [6]} [[V] 9 (n)]
7 [7]

a. The character 6 indicates IBM single column pence representation
wherein 10d. is represented by an '11' punch and lld. by a '12'
punch. The characters 66 indicate two column representation of
pence, usually from some external medium other than punched cards.

b. The character 7 indicates B.S.I. single column pence represen
tation wherein 10d. is represented by a '12' punch and l1d. by an
'11' punch. The characters 77 indicate two column representation of
pence. Consequently, 66 and 77 serve the same purpose and are
interchangeable. An entry must always appear in the pence field for
a picture to be valid.

c. The character V indicates the position of an assumed decimal
point in the pence field. Its properties and use are identical with
that of V in dollar amounts. Decimal positions in the pence field
may extend to n positions.

STERLING SIGN REPRESENTATION

Signs for sterling amounts may be entered as overpunches in one of

144

o

c

o

•

o

o

several allowable positions of the amount. A sign is indicated by an
embedded S in the non-report picture immediately to the left of the
position containing the overpunch. Allowable overpunch positions are
the high order and low order positions of the pound field, the high
order shilling digit in two column shilling representation, the low
order pence digit in two column pence representation, or the least
significant decimal position of pence. Examples of such a picture are:

9S98V6V99

9 (3) 8V6S6V9

STERLING REPORT

The format for the Sterling report PICTURE is:

PICTURE IS

[1
B (n))] { 9 9 } • (n) [B (n)] Z Z

pou~d- report- : [B (n)] Z 8
strl.ng /

B/B
V

[
[d] [.]]
9 (n) [d] [.]

USAGE IS DISPLAY-ST

B (n)
(n) [B (n)]

: [B (n)]
/
B/B
V
s [.]] B (n)]

The picture for STERLING REPORT is composed of a sequence of characters
representing the fields for, respectively, (i) pounds (ii) pound separa
tors (iii) shillings (iv) shilling separators (v) pence integers (vi)
pence decimal fractions and pence terminators. The USAGE IS DIS,PLAY-ST
clause is necessary to enable the compiler to distinguish between
sterling and decimal data in cases where their formats may be the same.

1. a. Pound-report-string for the representation of pounds is similar
to the report-form option for decimal fields. The editing charac
ters that may be combined to describe a pound report item are: 9 Z *
, B ~ + -. With the exception of the pound sign (.;t:) the editing
characters have the same meaning in pound-report-string as the
report form for decimal fields.

With one exception, the pound sign may be equated to the dollar
sign in terms of function and manner of use. Specifically, the
pound sign may be used as a floating string character and, as with
the dollar Sign, may be floated through Bs and/or Os and/or commas,
should they be embedded in the floating string. Examples of such
strings are:

.;t.,iii.,£99

~£Bi.£9

Section 10: Sterling Cu~rency Feature 145

h. The exception to equating the pound and dollar signs consists of
an option available in pound-report-strings. With this option the
floating pound sign may be suppressed when the value of the pound
field is zero. such suppression is the pound-report-string equival
ent of the BLANK WHEN ZERO clause. The floating pound string may be
described in either of two formats:

Format Values of Eounds fieJ:d OutEut

1) J... . • .t 1 b£l
0 bb ;t.

2) i.. (n) 1 bt..l
0 bbb

The use of parenthesis to indicate multiplicity of pound signs
in a picture, as in format 2, indicates the pound sign suppression
option is desired.

c. The single character£ indicates the position containing a fixed
pound sign.

2. The representation for pound separators is:

I
B (n)) • (n) [B (n)]
: [B (n)]
/
B/B
V

a. The characters B(~ specify n character positions in which
blanks will be inserted.

b.The characters: [B(n)] specify a colon which may be followed by n
character positions containing blanks.

c. The characters • (~
containing periods which
containing blanks.

[B(n)] specify n character positions
may be followed by n character positions

d. The character / may stand alone as a separator, or it may be
preceded by one blank and followed by another.

e. The character V must be used if no other pound separator is
specified. Its use is internal only and enables the compiler to
properly align pound and Shilling fields.

f. In cases where the pound sign suppression option has been
specified, and the pound field is equal to zero, suppression will be
extended. to include the pound separator. Stated generally, under
the pound sign suppression option the suppression of all digits to
the left of a separator will result in the suppression of the
separator as well. Consequently, an amount equal to zero will
result in output consisting only of spaces.

3. The representation for shillings is:

{H}
The character 8 is identical to Z when all digits to the left,

including those in the pound field, have been suppressed, and is
identical to 9 if they have not been.

146

c

,"

c~

o

•

o

o

4.

5.

The representation for shilling separators is:

B (n)
• (n) [B (n)]

[B (n)]
/
B/B
s [.] [B (n)]
V

a. Those characters which are used also as pound separators are
discussed under that heading.
b. The characters s or s. may stand alone as separators, followed
immediately by the high order pence digit, or they may be followed
by n spaces, when written in the formats sB(n) and s.B(n).
c. - The character V must be used if no other shilling separator is
specified. Its use is internal only and enables the compiler to
properly align pounds and shillings •

The representation for pence integers is:

a. The character 8 is identical to Z when all digits to the left,
including those in the pound and shilling fields, have been
suppressed, and is identical to 9 when they have not been. The
remaining characters have been explained under other headings. If
there are no positions of pence decimals, the pence terminator
follows immediately. If there are decimals, the terminators follow
the low order decimal position.

o. The representation for pence decimal fractions and ter.minators is:

a. The upper set of characters d and • represents pence terminators
which may be used if there is no pence decimal fraction. The
characters 9(n) indicate the number of positions the pence decimal
fraction will occupy, should there be one. The second set of
characters d and. indicates that these pence terminators may also be
used following a pence decimal fraction.

b. The characters B(n) CR and indicate terminators which may
follow those discussed above. The characters CR or - may append to
an amount to indicate a debit and may immediately fo~low a previous
pence terminator or low order pence digit, or they may be preceded
by ~ spaces. The + sign is not used in sterling amounts.

Both COBOL'E and COBOL F allow the user to employ sterling non-report
items as operands in connection with other numeric operands in MOVE,
ADD, and SUBTRACT statements.

For COBOL F, use of sterling non-report items in other arithmetic
statements is also permitted. Only use as an exponent in an arithmetic
statement is prohibited. Sterling report-items are used for editing
sterling amounts.

Section 10: Sterling Currency Feature 147

Decimal items moved to sterling report and sterling non-report are
considered as pence.

INTERNATIONAL CONSIDERATIONS

1. Installations may interchange the function of the comma and decimal
point characters in numeric literals and the PICTURE clause.

2. Installations may alter the compiler's character set for non-English
language requirements, so that, for example, data-names may be composed
of letters of a particular national alphabet.

3. The PICTURE of report items may terminate with the currency symbol
in cases where the graphic $ is supplanted by a particular national
currency symbol.

4. Sentences may be substituted to allow translation (by modification)
of output messages into any non-English language.

148

c

•

c

o

•

o

,

o

SECTION 11: COBOL DEBUGGING LANGUAGE Ext

The following statements are provided for program debugging. They
may appear anywhre in a System/360 COBOL program or in a compile-time
debugging packet.

TRACE

The format of the TRACE statement is:

{
READY}
RESET TRACE

After a READY TRACE statement is executed, each time execution of a
paragraph or section begins, a message is written of arrival at such a
point. The message is written on the system logical output device
(SYSOUT) •

The execution of a RESET TRACE statement terminates the functions of
a previous READY TRACE statement.

EXHIBIT

The format of the EXHIBIT statement is:

EXHI BIT {~:~gED NAMED} {~~~:~~::~i c-li teral)
CHANGED

The execution of an EXHIBIT NAMED statement causes a formatted
display of the data-names (or non-numeric literals) listed in the
statement. The system logical output device (SYSOUT) is used. The
format of the output for each data-name listed in the NAMED or CHANGED
NAMED form of an EXHIBIT statement is:

blank
original data-name (including qualifiers, if written)
blank
equal sign
blank
value of data-name

Literals listed in the statement are preceded by a blank, when
displayed.

The CHANGED form of the EXHIBIT statement provides for a display of
items when they change value, compared to the value at the previous time
the EXHIBIT CHANGED statement was executed. The initial time such a
statement is executed, all values are considered changed; they are
displayed and saved for purposes of comparison.

Section 11: COBOL Debugging Language 149

Note that, if two distinct EXHIBIT CHANGED data-name statements
appear in a program, changes in data-name are associated with the two
separate statements. Depending on the path of program flow, the values
of data-name saved for comparison may differ for the two statements.

If the list of operands in an EXHIBIT CHANGED statement includes
literals, they are printed as remarks and are preceeded by a blank.

For COBOL E, only one data-name may be listed in an EXHIBIT CHANGED
statement.

F Only If there are two or more data-names as operands of EXHIBIT CHANGED,
and some but not all are changed from the previous execution of the
statement, only the changed values are displayed. The positions
reserved for a given operand in the data to be displayed are blank when
the value of the operand is not changed. The programmer can thus create
a fixed columnar format for the data to be displayed by use of the
EXHIBIT CHANGED.

The CHANGED NAMED form of the EXHIBIT statement causes a p~intout of
each changed value for items listed in the statement. Only those values
representing changes and their identifying names are printed. A fixed
columnar format for the data to be displayed cannot be created with
EXHIBIT CHANGED NAMED.

ON (Count-Conditional Statement)

The format of the ON statement is:

ON integer-1 (AND EVERY integer-2] [UNTIL integer-3]

{
imperative-statement ••• }
NEXT SENTENCE

[{
ELSE } statement ••• 1]
OTHERWISE NEXT SENTENCE

The ON statement is a conditional statement. It specifies when the
statements it contains are to be executed. ELSE (OR OTHERWISE) NEXT
SENTENCE may be omitted if it immediately precedes the period for the
sentence.'

The count-condition (integer-1 AND EVERY integer-2 UNTIL integer-3)
is evaluated as follows:

Each ON statement has a compiler-generated counter associated with
it. The counter is initialized in the object program with a value of
zero.

Each time the path of program flow reaches the ON statement, the
counter is advanced by 1. Where K is any positive integer., if the value
of the counter is equal to integer-1 + (K*integer-2) , but is less than
integer-3 if specified, then the imperative statements (or NEXT
SENTENCE) are executed. Otherwise, the statements after ELSE (or NEXT
SENTENCE) are executed. If the ELSE option does not appear, the next
sentence is executed.

If
of 1.

integer-2 is not given, it is assumed that integer-2 has a value
If integer-3 is not given, no upper limit is assumed for it.

If neither integer-2 nor integer-3 is specified, the imperative
statements are executed only once.

150

c

•

c

o

o

,

o

Examples:

ON 2 AND EVERY 2 UNTIL 10 DISPLAY A ELSE DISPLAY B.

On the second, fourth, sixth, and eighth times, A is displayed.
B is displayed at all other times.

ON 3 DISPLAY A.

On the third time through the count-conditional statement, A is
displayed. No action is taken at any other time.

COMPILE-TIME DEBUGGING PICKET

Debugging statements for a given paragraph or section in a program
may be grouped together into a debugging packet. These statements will
be compiled with the source language program, and will be executed at
object time. Each packet refers to a specified paragraph-name or
section-name in the Procedure Division. Compile-time debugging packets
are grouped together and are placed immediately following the last card
of the source program.

Each compile-time debug packet is headed by the control card *DEBUG.
The general form of this card is

1 8
*"oEBUG :location -[;TRY]

where the parameters are described as follows:

location This is the COBOL section-name or paragraph-name (qualified, if
necessary) indicating the point in the program at which the
packet is to be executed. Effectively, the statements in the
packet are executed as if they were physically placed in the
source program following the section-name or paragraph-name,
but preceding the text associated with the name.

TRY If this option is used, immediate loading and execution of the
object program will be allowed even if an error appears within
a debug packet. If TRY is not specified a source program
error, when encountered in the procedural text of a debug
packet, will prevent loading and execution of the object
program.

A debug packet may consist of any procedural statements conforming to
the requirements of System/360 COBOL. A: GO TO, PERFORM, or ALTER
-statement in a debug packet may refer to a procedure-name in any debug
packet or in the main body of the Procedure Division.

Section 11: COBOL Debugging Language 151

--------------- -------

APPENDIX A: GLOSSARY OF LOWER-CASE WORDS IN COBOL,FORMATS

In this appendix, definitions are provided for certain elements of the
COBOL language. These definitions are presented in a uniform system of
notation, explained in the following paragraphs. This notation is
useful in describing the COBOL language, although it is not part of
COBOL. All definitions presented in this notation are syntactical
definitions. They define the structure, rather than the meaning, of the
defined element.

1. All words printed entirely in capital letters are reserved words.
These are words that bave preassigned meanings in the COBOL language.
Words in capital letters represent an actual occurrence of those words.

Example: ADD

When this is specified, the letters ADD are indicated.

2. All punctuation and special characters (except those symbols
described in the following paragraphs) represenu the actual occurrence
of those characters. Punctuation is essential where it is shown.
Additional punctuation can be inserted, accor.ding to the rules for
punctuation specified in this publication.

3. Lower-case words that appear in a definition are themselves
defined under the proper entry.

Example: integer

This specifies the appearance of an item of the class "integer."

4. (the or sign) The or sign indicates a choice.

Example: +1-

This specifies a plus sign or a minus sign.

5. ::= (the defined-as symbol) This symbol means "defined as."

Example: digit ::=1121314151617181910

6. •• (the ellipsis) The ellipSiS indicates that the immediately
preceding unit may occur one or more times in succession. A unit, in
this and succeeding paragraphs, means either a single reserved word, a
single lower-case word, or a group of lower-case words and one or. more
reserved words enclosed in brackets or braces. If an item is enclosed
in brackets or braces, the entire unit of which it is a part must be
repeated if repetition is specified.

Example: unsigned-integer::=digit.

This defines an unsigned integer as any number of sequential digits.

7. [] (brackets) Brackets are used to
optional. The programmer may use the item or
requirements of his program.

Example: non-negative-integer::= [+] digit.

indicate that an item is
not, depending on the

This defines a non-negative integer as a series of digits optionally
preceded by a plus sign.

152

C:

•

o

,.

c

o

o

o

8. When brackets surround items separated by the or sign, anyone of
the items enclosed, or none of them, may be chosen.

Example: integral-number::= [+1-] digit •••

This specifies that an integral number is a series of digits preceded by
a minus sign, a plus sign, or neither.

9. {} (braces) When braces surround items separated by the or sign,
one of the items shown must be chosen.

Example: signed-integer::= {+I-}digit.

This defines a signed integer as a series of digits that must be
preceded by either a plus sign or a minus sign.

10. Braces may also be used to indicate that the enclosed items are
to be treated as a unit.

Example: [letter] {digit letter} •

This specifies a sequence of any length consisting of digits alternating
with letters.

11. not (the not symbol) This symbol indicates that the unit
following it may not occur.

Example: digit not 0

This specifies any member of the class digit except o. Combined with
the definition of digit used above, it specifies the equivalent of

11213141516171819

12. min (the minimum symbol) This indicates the minimum number of
times that a unit may occur. When it is used without an accompanying
maximum symbol (defined below) , the implied maximum of times the unit
may occur is infinity.

Example: min 3 digit

This specifies a sequence of no less than three digits. Ther~ is no
upper limit on the length of this sequence.

Example: min 5{digitlletter}

This specifies a sequence of at least five letters and digits, in any
order.

13. max (the maximum symbol) This specifies the maximum number of
times that the following unit may appear in succession. When max
appears without an associated min, a minimum of zero occurrences is
assumed.

Example: max 18 digit

This specifies that no digits, one digit, or a sequence of up to 18
digits may be indicated at this pOint by the programmer.

Example: min 2 max 6{digitlletter}

This specifies that digits and letters, intermixed in any succession,
must occur in a sequence at least two long, or at most six long.

Example: min 7 max 7 digit

APPENDIX A: Glossary of Lower-Case Words in COBOL Formats 153

This specifies a sequence of exactly seven digits.

14. blank This symbol represents the occurence of a space.

Example: {.Iblank}

This specifies that either a period or a space must occur at this point.

15. FUrther restrictions and explanations will be found in the text.

16. Certain s~ecial restrictions and definitions that apply only to
the Sterling Currency Feature are not included in this glossary. They
are discussed in Section 10.

alphabetic-literal::=

alpha-form: :=

'min 1 max 120{letterlblankl-}

min 1 max 30 A [(integer)]

The sum of the value of integer plus the number of As must not exceed
30.

alphanumeric-literal::= 'min 1 max 120{character not' } ,

an-form: := min 1 max 30 X [(integer)]

The sum of the value of integer plus the number of xs must not exceed
30.

argument: :=

aritl~etic expression::=

data-name 1 file-name 1 procedure-name

[(] {{ {numeric-Ii terall floating
point-literalldata-namelarithrnetic
expression} arithmetic-operator} I-}
[numeric-literallfloating-point-literall
data-name 1 arithmetic-expression} [)]

The use of the) is obligatory if the (has been used. Data-names used
in arithmetic-expressions must refer to numeric data.

arithmetic-operator::=

character::=

clause::=

COBOL-character::=

comment: :=

compound-condition::=

compiler-directing-statement::=

condition: :=

conditional-statement::=

data-name::=

154

+1-1*1/1**

COBOL-character. 1
{EBCDIC-character not COBOL-character}

Individual clauses are described in
appropriate sections of the text.

letter Idigitl+I-I/I*I=I$I,1
(f) 1 • 1 ; 1 < 1 > 1 blank

COBOL-character ••• { • blank}

[NOT] {test-condition{AND/OR}
test-condi tion}

See ·Compiler-Directing Statements·
in text.

test-conditionfevent-conditian

See "Conditional Statements·
in text.

{[{digitlletter.}max n{digitl-I
letter}] letter [max m{digitl-I

•

o

c

•

--------------- - ---------------------_.

o

o

o

The sum of m plus n is 28.

device-number::=

digit: :=

direct-access-device::=

division-name::=

EBCDIC-character

elementary item::=

entry-name::=

event-condition::=

exponent: :=

external-name: :=

figurative-constant::=

file-name: :=

floating-point-literal::=

fp-form: :=

letter} {digit I letter)] } "not
reserved-word

._-_.- -------------

unit-record-devicelutility-devicel
direct-access-device

011121 3 14 15 16171819

130217320123011231112321

DATAl PROCEDURE I ENVIRONMENT I
IDENTIFICATION

Any character in the IBM Extended Binary
Coded Decimal Interchange Character set.

alphabetic-item I alphanumeric-item I
report-itemlexternal-decimal-iteml
internal-decimal-itemlbinary-iteml
external-floating-point-iteml
internal-floating-point-item

external-name

{[AT] END} I {INVALID KEY}
I { [ON] SIZE ERROR)

min 1 max 2 digit

Iletter max 7{dig~tlletter} I

{HIGH-VALUE I HIGH-VALUES} I {LOW-VALUE I
LOW-VALUES} I {QUOTE I QUOTES} I {SPACEI
SPACES} IALLI {character not I}II
{ZERO I ZEROES I ZEROS}

data-name

[+ 1-] mantissa E [+ 1-] exponent

{+ I-} max n 9 [(integer-1)] [VI.] min 1
minimax m 9 [(integer-2)] E{+J-}99

The sum of m plus n plus the values of integer.-1 plus integer-2 must
not exceed 1 6.

imperative-statement::=

integer: :=

The sum of m plus n is 17.

letter: :=

level-indicator::=

level-number: : =

library-name: :=

See "Imperative Statements" in text •

[max n digit] digit not 0 [max m
digit]

AIBICIDIEIFIGIHIIIJI
KILIMINIOIPIQIRISITI
UIVIWIXIYIZ

FDISDISAIRDllevel-number

{ {O I 1 I 2 I 3 I 4 } digit} I 771 88

external-name

APPENDIX A: Glossary of Lower-Case Words in COBOL Formats 155

literal: :=

logicaloperator::=

mantissa: :=

The sum of m plus n is 15.

model-number: : =

name: :=

non-numeric-literal::=

numeric-form: :=

numeric-literallnon-numeric-literall
floating-point-literal

ANDIORINOT

max m digit • dig~t max n digit

The model number of an IBM 360/
series computer.

data-name I procedure-name I external
name I program-name

alphabetic-literal 1 alphanumeric
Ii teral

{min 1 9 (P •••] (V]} 1
{[V] [P •••] min 1 9} 1
{9 ••• [V] 9 ••• }

The form (integer) placed after a 9 or a P specifies the equivalent of
the appearance of that character integer times. The sum of all 9s and
Ps plus the value of all integers must not exceed 18.

numeric-literal::=

The sum of m plus n is 17.

operand: :=

paragraph: :=

paragraph-name::=

procedure-name::=

program-name: :=

qualifier::=

record-name: :=

relational-operator::=

report- form: : =

[+ 1-] max m digit [.] digit max n
digit

literal I figurative-constant 1 data
name 1 arithmetic-expression

[paragraph-name.] sentence. • •

I-O-CONTROLIFILE-CONTROLISOURCE
COMPUTER I OBJECT-COMPUTER I procedure
name

{{digiti letter} [max 28 [digiti letter 1-]
{digitlletter}]}not reserved-word

letter max 7{digitlletter}

{OFIIN} {data-name 1 section-name}

data-name

{GREATER [THAN) >} 1 {EQUAL TO I =} 1
{LESS f:l'HAN) <}

{ + 1- I $ 1 [* 1 Z] I PI, I B I 0 1 9 IlY I .] I
[CR 1 DB]} • • •

The valid combinations of these characters
"Report-Form Option." The form (integer) placed
characters except V CR and DB specifies
appearance of that character integer times.

are described under
after any of these
the equivalent of the

report-name: :=

reserved-word: :=

156

---- --- ---------- ---- --- -- -----

data-name

Any word in the System/360 COBOL Word
List, Appendix B in this publication. c~

o

o

o

----------------------------,-------------- ----------

saved-area-name::=

section: :=

section-header::=

section-name: : =

sentence: :=

simple-condition::=

sort-file-name::=

statement: :=

data-name

section-header paragraph

section-name SECTION.

CONFIGURATION 1 INPUT-OUTPUT 1 FILE
1 WORKING-STORAGE 1 LINKAGE 1 procedure-name

{statement ••• 1 USE-sentence 1
SELECT-sentence}.

[NOT] {relation-test 1 sign-test
Iclass-testlcondition-name-test}

data-name

imperative-statement 1 conditional-statement
Icompiler-directing-statement

These types of statements are defined in the appropriate portions of the
text.

test-condition::= simple-condition 1 compound-condition

unit-record-device::= 1402114031140411442114431144512201

utility-device::= 1302124001230112311123211732017340

word: := name 1 reserved-word

APPENDIX A: Glossary of Lower-Case Words in COBOL Formats 157

APPENDIX B: SYSTEMV360 COBOL WORD LIST

The words listed below make up the complete System/360 COBOL
vocabulary of reserved words.

158

ACCEPT
ACCESS
ACTUAL
ADD
ADVANCING
AFTER
ALL
ALPHABETIC
ALTER
ALTERNATE
AND
APPLY
ARE
AREA
AREAS
ASCENDING
ASSIGN
AT
AUTHOR

BEFORE
BEGINNING
BLANK
BLOCK
BY

CALL
CF
CH
CHANGED
CHARACTERS
CHECKING
CLOCK-UNITS
CLOSE
COBOL
CODE
COLUMN
COMPUTATIONAL
COMPUTATIONAL-1
COMPUTATIONAL-2
COMPUTATIONAL-3
COMPUTE
CONFIGURATION
CONSOLE

CONTAINS
CONTROL
CONTROLS
COPY
CORRESPONDING
COUNT
CREATING
CYCLES

DATA
DATE-COMPILED
DATE-WRITTEN
DE
DECLARATIVES
DEPENDING
DESCENDING
DETAIL
DIRECT-ACCESS
DISPLAY
DISPLAY-ST
DIVIDE
DIVISION

ELSE
END
ENDING
ENTER
ENTRY
ENVIRONMENT
EQUAL
ERROR
EVERY
EXAMINE
EXHIBIT
EXIT

FD
FILE
FILES
FILE-CONTROL
FILE-ID
FILLER
FINAL
FIRST
FOOTING

FOR
FORM-OVERFLOW
FROM

GENERATE
GIVING
GO
GREATER
GROUP

HEADING
HIGH-VALUE
HIGH-VALUES
HOLD

IBM-360
IDENTIFICATION
IF
IN
INCLUDE
INDEXED
INDICATE
INITIATE
INPUT
INPUT-OUTPUT
INSTALLATION
INTO
INVALID
1-0
I-O-CONTROL
IS

JUSTIFIED

KEY

LABEL
LABELS
LAST
LEADING
LEFT
LESS
LIBRARY
LINE-COUNTER

c

c

LINE RANDOM TERMINATE
LINES RD THAN
LINKAGE READ THEN

0 LOCK READY THRU
LOW-VALUE RECORD TIMES
LOW-VALUES RECORDS TO

RELATIVE TRACE
RELEASE TRACKS

MORE-LABELS REMARKS TRANSFORM
MOVE REPLACING TYPE
MULTIPLY REPORT

REPORTING UNIT
NAMED REPORTS UNIT-RECORD
NEGATIVE RERUN UNITS
NEXT RESERVE UNTIL
NO RESET UPON
NOT RESTRICTED USE
NOTE RETURN USING
NUMERIC REVERSED UTILITY

REWIND
OBJECT-COMPUTER REWRITE VALUE
OCCURS RF VARYING
OF RH VIA
OH RIGHT
OMITTED ROUNDED WHEN
ON RUN WITH
OPEN WITHOUT
OR SA WORKING-STORAGE
ORGANIZATION SAME WRITE
OTHERWISE SD
OUTPUT SEARCH ZERO
OV SECTION ZEROES
OVERFLOW SECURITY ZEROS

0 SELECT
PAGE SENTENCE
PAGE-COUNTER SEQUENTIAL
P~RFORM SIZE
PF SORT
PH SOURCE
PICTURE SOURCE-COMPUTER
PLUS SPACE
POSITIVE SPACES
PRINT-SWITCH STOP
PROCEDURE SUBTRACT
PROGRAM-ID SUM .. PROCEED SYMBOLIC
PROCESS SYNCHRONIZED
PROCESSING SYSPCH
PROTECTION

• TALLY
TALLYING

QUOTE
QUOTES

o
APPENDIX B: System/360 COBOL Word List 159

------ ----------------- - --------

APPENDIX C: ASYNCHRONOUS PROCESSING SAMPLE PROGRAM

This program (RANDOM) is an example of an asynchronous processing. It
is a simple banking example in which transactions (deposits and
withdrawals) are read in from tape and processed asynchronously against
a direct-access accounts file with relative data organization.

Two files and a saved area (SA) are used by the program. One
file,the transactions file TRANSACT is a tape file with 80 character,
card image records blocked 5 to a physical record. Each record contains
a ten-digit naccount-numbern in columns 11 to 20, a one digit ncode"
indicating deposits (D) or withdrawal (~ in column 26, and an
eight-digit "amount" in columns 32 to 39. The last two digits are
assumed to be the cents portion of the amount. All eight digits of the
"amount" field, including leading zeros, must be punched.

The second file is the master-file ACCOUNTS. It is an asynchronously
processed direct access file with relative data or.ganization and is
contained on three direct-access units. Its symbolic key is SA-ACCOUNT
NUMBER and its actual key is SA-TRACK-NUMBER. Both of these fields are
in the saved area. More than one unit is used in order to provide
greater asynchronous processing. With only one unit, true asynchronous
proceSSing is not possible because the device must complete one
operation before the next can be initiated and, therefore, the records
will be read and processed in the order in which they are accessed.
With multiple units, greater asynchronous processing can be obtained
because records which are on different units can be accessed
simultaneously and the record which is found first can be processed
first. The file ACCOUNTS contains twenty-two character unblocked
records. Each record contains an assigned eight-digit internal decimal
balance field (ACC-BALANCE), a twelve-character. name field (ACC-NAME)
and a sixty- character address field (ACC-ADDRESS).

The saved area TRANSFER AREA is used to pass data from the main
body(in-line procedure) of the program to the asynchronous processing
(out-of-line) procedure. It contains one record (SA-REq consisting of

a transaction area (SA-TRANS-IN) and a work area (SA-W-S). The
transaction area contains an account-number field, a code field, and an
amount field, corresponding to the fields in the records in TRANSACT.
It is used to pass a record from TRANSACT to the out- of-line procedure.
The work area is used by the out-of-line procedure as temporary storage
during its operation. The work area contains three fields, SA-OLD
BALANCE, SA-NEW-BALANCE, and SA-ERR-NO used by the out-of-line procedure
to produce error messages, and a fourth field, SA-TRACK-NUMBER, which is
the actual key of the ACCOUNTS file. The value for this field is
calculated by the out-of-line procedure and is used when reading in
order to locate the desired record in the direct-access f·ile.

RANDOM is divided into two main segments, the in-line and
out-of-line procedures. The in-line procedure (the main body of
Procedure Division) opens the transactions file TRANSACT, and
accounts file ACCOUNTS, reads a transaction record, moves it into
saved area (TRANSFER-AREA), and initiates the out-of-line procedure
means of a PROCESS statement). It then reads the next transaction

160

the
the
the
the
(by

c

o

c

,
. ,

o

o

1

,.

o

o

record. When an end of file is reached on the transaction file, the
in-line procedure waits (by means of a HOLD statement) for the
completion of any out-of-line procedures which are still active; it then
closes the files (TRANSACT and ACCOUNTS), and stops.

The RANDOM UPDATE Section is the out-of-line procedure in the
Declaratives portion of the Procedure Division. This procedure
calculates the actual key for this record from the account number in the
saved area, reads the record from ACCOUNTS, updates the record, and
writes it back by means of a REWRITE statement onto the file. An
out-of-line HOLD is also provided to force completion of the out-of-line
cycles in the order in which they were initiated.

RANDOM provides for eight out-of-line cycles to be asynchronously
processed with the in-line procedure. Each of these cycles is provided
with a copy of the saved area and the input area of the ACCOUNTS file.
When RANDOM is started, the in-line procedure is entered. The in-line
procedure performs its functions and effectively runs continously until
it executes the HOLD statement, independent of the out-of- line cycles.
During the in-line processing, the PROCESS statement is executed many
times. At each execution, a new out-of-line cycle also operates
independently of the in~line procedure and any other out-of-line cycles.

Although the in-line procedure and the out-of-line cycles operate as
though they are continuous and independent, operation is actually
interleaved. The in-line procedure or an out-of-line cycle retains
control until it has to wait for the completion of an input/output
operation or, because of a HOLD statement, until it has to wait for
another cycle. Control is then passed to another cycle or to the
in-line procedure that is not in a wait status. The in-line procedure
or an out-of-line cycle that gives up control will be resumed at some
later time after the condition it is waiting for is satisfied.

APPENDIX C: Asynchronous Processing Sample Program 161

-------- - - "------- -- -----------------------

IDENTIFICATION DIVISION.
PROGRAM-ID. RANDOM.

REMARKS.
THIS PROGRAM IS AN EXAMPLE OF AN ASYNCHRONOUS
PROCESSING PROGRAM. IT IS A SIMPLE BANKING PROBLEM IN WHICH
TRANSACTIONS (DEPOSITS AND WITHDRAWALS) ARE ASYNCHRONOUSLY
PROCESSED AGAINST A 'RELATIVE' ORGANIZED DIRECT-ACCESS
MASTER FILE.

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.

SOURCE-COMPUTER. IBM-360.
OBJECT-COMPUTER. IBM-360.

INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT TRANSACT ASSIGN TO UTILITY.
SELECT ACCOUNTS ASSIGN TO DIRECT-ACCESS UNITS

ACCESS IS RANDOM
ORGANIZATION IS RELATIVE
SYMBOLIC KEY IS SA-ACCOUNT-NUMBER
ACTUAL KEY IS SA-TRACK-NUMBER.

I-O-CONTROL.
APPLY RANDOM-UPDATE TO TRANSFER-AREA, ACCOUNTS FOR 8 CYCLES.

DATA DIVISION.
FILE SECTION.
FD TRANSACT

BLOCK CONTAINS 5 RECORDS
RECORD CONTAINS 80 CHARACTERS
VALUE OF FILE-ID 'E403'.

01 TRANSACTION-RECORD.
02 FILLER PICTURE X(10).
02 ACCOUNT-NUMBER PICTURE X(10).
02 FILLER PICTURE X(5).
02 TRANSACTION-CODE PICTURE X.
02 FILLER PICTURE X(S).
02 AMOUNT PICTURE 9(6)V99.
02 FILLER PICTURE X(41).

FD ACCOUNTS
RECORD CONTAINS 77 CHARACTERS

VALUE OF FILE-ID 'E404'.
01 ACCOUNT-RECORD.

02 ACC-BALANCE PICTURE S9(7)V99 COMPUTATIONAL-3.
02 ACC-NAME.

03 LAST PICTURE X(10).
03 FIRST-INIT PICTURE X.
03 MIDDLE-INIT PICTURE X.

02 ACC-ADDRESS.
03 STREET PICTURE X(20).
03 CITY PICTURE X(20).
03 STATE PICTURE X(20).

SA TRANSFER-AREA.
01 SA-REC.

02 SA-TRANS-IN.
03 ACCOUNT-NUMBER PICTURE X(10).

162

c

o

c

o

o

03 SA-ACCOUNT-NUMBER REDEFINES ACCOUNT-NUMBER OF SA-REC.
04 SA-ANI PICTURE 9(4).
04 SA-AN2 PICTURE 9(4).
04 SA-AN3 PICTURE 9(2).

03 T~ANSACTION-CODE PICTURE X.
88 DEPOSIT VALUE '0'.
88 WITHDRAWAL VALUE 'W'.

03 AMOUNT PICTURE 9(6)V99.
02 SA-W-S.

03 SA-TRACK-NUM6ER PICTURE S999 COMPUTATIONAL.
03 SA-ERR-NO PICTURE 9.
03 SA-WORK PICTURE S9999 COMPUTATIONAL.
03 SA-OLD-BALANCE PICTURE $*,***,**9.99-.
03 SA-NEW-BAlANCE PICTURE $*,***,**9.99-.

PROCEDURE DIVISION.

DECLARATIVES.
RANDOM-UPDATE SECTION.

USE FOR RANDOM PROCESSING.
OUT-OF-lINE.

NOTE THIS IS THE START OF THE OUT-OF-lINE PORTION OF THE
PROGRAM.

INITIALIZE.
MOVE ZERO TO SA-ERR-NO.

CALCULATE-ACTUAL-KEY.
IF ACCOUNT-NUMBER IN SA-TRANS-IN IS NOT NUMERIC

MOVE 4 TO SA-ERR-NO GO TO FORCE-SEQUENTIAL.
COMPUTE SA-WORK = SA-ANI - SA-AN2.
IF SA-WORK IS NEGATIVE

COMPUTE SA-WORK = 9999 + SA-WORK ELSE
COMPUTE SA-WORK = 9999 - SA-WORK.

IF SA-AN3 = 0
COMPUTE SA-TRACK-NUMBER = SA-WORK / 10 ELSE
COMPUTE SA-TRACK-NUMBER = SA-WORK / SA-AN3 * 10.

NOTE THIS PARAGRAPH CONVERTED THE SYMBOLIC KEY
(SA-ACCOUNT-NUMBER) INTO THE ACTUAL KEY
(SA-TRACK-NUMBER), THE VALUES FOR THE ACTUAL KEY ARE
BETWEEN 0 AND 999 (1000 TRACKS ARE ASSIGNED TO THE
FILE).

READ-ACCOUNT-RECORO.
READ ACCOUNTS INVALID KEY MOVE 1 TO SA-ERR-NO GO TO

FORCE-SEQUENTIAL.
MOVE ACC-BAlANCE TO SA-OLD-BAlANCE.

UPDATE- BAlANC E.
IF DEPOSIT NEXT SENTENCE ELSE GO TO UPDATE-I.

ADD AMOUNT IN SA-REC TO ACC-BALANCE ON SIZE ERROR
MOVE 2 TO SA-ERR-NO GO TO FORCE-SEQUENTIAL.
GO TO SAVE-RECORD.

UPDAT E-l.
IF WITHDRAWAL

SUBTRACT AMOUNT IN SA-REC FROM ACC-BAlANCE ELSE
MOVE 5 TO SA-ERR-NO GO TO FORCE-SEQUENTIAL.
IF AMOUNT IN SA-REC IS NEGATIVE

MOVE 6 TO SA-ERR-NO GO TO FORCE-SEQUENTIAL.
SAVE-RECORD.

MOVE ACC-BAlANCE TO SA-NEW-BALANCE.
REWRITE ACCOUNT-RECORD INVALID KEY MOVE 3 TO SA-ERR-NO.

APPENDIX C: Asynchronous processing Sample Program 163

FORCE-SEQUENTIAL.
HOLD.
NOTE THE HOLD IS USED TO FORCE SYNCHRONOUS PROCESSING SO

THAT ANY ERROR MESSAGES PRODUCED WILL APPEAR IN THE
SAME ORDER AS THE TRANSACTIONS WERE ENTERED AND TO
PREVENT INTERMIXING LINES OF MESSAGES (I.E. TO INSURE
THAT WHEN ONE CYCLE DISPLAYS AN ERROR MESSAGE,
ANOTHER CYCLE DOES NOT GET CONTROL AND ALSO GENERATE A
MESSAGE).

ERROR-CHECK.
GO TO EI E2 E3 E4 ES E6 DEPENDING ON SA-ERR-NO.
GO TO END-RANDOM.

EI. DISPLAY 'ACCOUNT IS NOT IN ACCOUNTS FILE.'.
GO TO END-2.

E2. DISPLAY 'BALANCE EXCEEDS $9,999,999.99.'.
GO TO END-I.

E3. DISPLAY 'INVALID KEY ERROR TRYING TO REWRITE ACCOUNTS.'.
DISPLAY 'NEW BALANCE IS ' SA-NEW-BALANCE.
GO TO END-I.

E4. DISPLAY 'ACCOUNT NUMBER IS NOT NUMERIC.'.
GO TO END-2.

ES. DISPLAY 'ILLEGAL TRANSACTION CODE IS SPECIFIED.'.
GO TO END-2.

E6. DISPLAY 'BALANCE OVER-DRAWN.'.
GO TO END-2.

END-I.
DISPLAY 'OLD BALANCE IS ' SA-OLD-BALANCE.

END-2.
DISPLAY 'TRANSACTION IS •

ACCOUNT-NUMBER IN SA-REC' 'TRANSACTION-CODE IN SA-REC
• AMOUNT IN SA-REC.

END-RANDOM.
EXIT.

END DECLARATIVES.

IN-LINE.
NOTE THIS IS THE START OF THE IN-LINE PORTION OF THE

PROGRAM.
START.

OPEN INPUT TRANSACT 1-0 ACCOUNTS.
INITIATE-RANDOM-PROCESSING.

READ TRANSACT AT END GO TO IN-LINE HOLD.
MOVE CORRESPONDING TRANSACTION-RECORD TO SA-TRANS-IN.
PROCESS RANDOM-UPDATE.
GO TO INITIATE-RANDOM-PROCESSING.

IN-LINE-HOLD.

164

HOLD RANDOM-UPDATE.
CLOSE TRANSACT ACCOUNTS.
STOP RUN. · I

c

o

)

o

A (PICTURE character) 48
ACCEPT 81
ACCESS 26
Access methods 19
Actual decimal point (PICTURE) 49
ACTUAL KEY 27
ADD 93
Addition

Arithmetic operator 73
AFTER 79
ALL

EXAMINE 87
Figurative constant 36
INITIATE 1}8
TERMINATE 120

Alpha-form (PICTURE) 48
ALPHABETIC

Class test 70
Alphabetic item 37

Format 45
PICTURE 48

Alphanumeric item 37
Format 45
PICTURE 48

ALTER 96
(See GO TO)

An-form (PICTURE) 48
AND (logical operator) 71
APPLY 29
Arithmetic expression 73

COMPUTE 93
Arithmetic operators 73
Arithmetic statements 91
Argument 103
ASCENDING 136
ASSIGN 25
Assumed decimal point (PICTURE) 49
Asterisk (PICTURE Character) 50
Asynchronous processing 17
Asynchronous processing verbs 83
Asynchronously processed file areas 18
AT END

READ 77
RETURN 137

B (PICTURE character) 50
Basic facts 12
BEFORE 120
BEGINNING 74
Binary item 38

Format 46
Blank (PICTURE character) 50
BLANK WHEN ZERO 54
BLOCK CONTAINS 41
Braces in formats 16
Brackets in formats 16
Branching

(See GO TO and PERFOru~)

CALL 103
CF (Control Footing) 112
CH (Control Heading) 112
Character set 12
Check protection (PICTURE) 50
Class test 70

CLOCK-UNITS 28
CLOSE 80
COBOL character set 12
COBOL Program Sheet 14
CODE 108
COLUMN 115
Comma (PICTURE character) 50

Punctuation 13
Comments (NOTE) 104
Comparison of data items 68
Compiler-directing declaratives 73
Compiler-directing statements 102
Compile-time debugging packet 151
Compound conditions 71
COMPUTATIONAL (DISPLAY statement) 81
COMPUTATIONAL 47
COMPUTATIONAL-l 47
COMPUTATIONAL-2 47
COMPUTATIONAL-3 47
COMPUTE 93
Concepts of data description 32
Conditions

Compound 71
Event conditions 62
Test conditions 67

Condition-name 33
Condition-name test 70
Condition-name values 55
Conditional statement 61

Evaluation 63
Configuration Section 24
CONSOLE

ACCEPT 81
DISPLAY 81

Constant (See Literals)

INDEX

Continuation of non-numeric literals 15
CONTROL 108
Control break 107
CONTROL FOOTING 112
CONTROL HEADING 112
COpy 140
CORRESPONDING

ADD 93
MOVE 85
SUBTRACT 94

Credit symbol (PICTURE character) 50
CYCLES 30

Data description concepts 32
DATA DIVISION 31
Data Division entry 32
Data Division sections

File Section 40
Linkage Section 60
Report Section 106
Working-Storage Section 60

Data items 37
Data management routines 18
Data manipulation statements 84
Data-name 34

Name qualification 14
Data organization 18
Data Set 18
DE (Detail) 112
Debit symbol (PICTURE character) 50

Index 165

Decimal point (PICTURE character) 49
Declaratives 73
DEPENDING ON

GO TO 95
OCCURS 56

DESCENDING 136
DETAIL 112
DIRECT-ACCESS 25
DISPLAY (usage) 47
DISPLAY (statement) 81
DISPLAy-ST 145
DIVIDE 95
Division-names (margins) 15
Dollar sign (PICTURE character) 51

E (Floating-point literal) 36
Editing

MOVE 84
PICTURE 48

Elementary items 37
Format 48

ELSE
IF 63
ON 150

End of Volume
READ 77
WRITE 79

ENDING 74
ENTER 103
ENTRY 103
Entry-name 103
Entry point 103
EQUAL 68
Evaluation of conditional statement 63
EXAMINE 87
EXIT 104
EXHIBIT 149
Exponent 36
Exponentiation 73
Extended source program library
facility 142

External decimal item 38
Format 46

External floating-point item 38
Format 47
PICTURE 52

External-name
ENTER 103
VALUE OF 43
COpy 140
INCLUDE 141

FD 40
Figurative constant 36
File-control paragraph 25
File-name

File description entry 40
Name qualification 14

File Section 40
FILLER 35
FINAL

CONTROL 108
RESET 116
TERMINATE 120
TYPE 112

FIRST 87
FIRST DETAIL 109
Eixed point item 38

166

Floating-point item 38
Floating-point literal 36
Floating string (PICTURE) 51
FOOTING 109
Footing controls 113
Format notation 16
FORM-OVERFLOW 29
Fp-forrn (PICTURE) 52
FROM

ACCEPT 81
SUBTRACT 94
TRANSFORM 89
WRITE 79

GENERATE 119
GIVING

Arithmetic statements 91
SORT 136

GO TO 95
GREATER 68
GROUP INDICATE 116
Group item 37

Format 44
Group Move 85

Header labels
LABEL RECORDS 42
MOVE 84

HEADING 109
Heading controls 113
HIGH-VALUES 36
HOLD 84
Hyphens 13

IDENTIFICATION DIVISION 23
IF 63

Evaluation 63
Nested IF statements 65

Imperative statement 61
Implied subjects and operators 72
IN 14
INCLUDE 141
Independent working-storage item 60
INDEXED 26
Indexed data organization 19
INITIATE 118
In-line procedures 17
INPUT 74
Input/Output processing 18
Input-Output Section 24
Input/Output statements 76
INPUT PROCEDURE 136
Internal decimal item 38

Format 46
Internal floating-point item 39

Format 47
International considerations 148
INTO

DIVIDE 95
READ 77

JUSTIFIED RIGHT 58

Keys 19
Actual 27
Sort 134
Symbolic 27

(

(

CJ

)

o

ON SIZE ERROR 92
OPEN 76
Operators

(See Logical operators, Arithmetic
operators, Relational operators)

Operational sign 49
OR 71
OTHERWISE

IF 63
ON 150

Out-of-line procedure 17
OUTPUT 74
OUTPUT PROCEDURE 136
OV (Overflow Footing) 112
Overflow Conditions 114
OVERFLOW FOOTING 112
OVERFLOW HEADING 112

Packed Decimal 38
COMPUTATIONAL-3 47

PAGE 109
Page condition 114
Page counter 117
Labels

Checking 74
Creation 74

LABEL RECORDS 42
LAST DETAIL 109
LEADING 87
LESS 68
Level 32
Library facility 140
Library-name 140
LINE III
Line Counter 117
Linkage Section 60
Literal 35
Logical operators 71
Long-precision 39

COMPUTATIONAL-2 47'
Looping (PERFORM) 96
LOW-VALUES 36
Low-volume data

ACCEPT 81
DISPLAY 81

Lower-case words 16

Major control 108
Mantissa 35
Margins (A,B) 15
Minor control 108
Minus sign

Arithmetic expression 91
PICTURE character 51

MORE-LABELS 75
MOVE 84
Multiplication

Arithmetic operator 73
MULTIPLY 94

Name qualification 14
NEGATIVE 69
NEXT GROUP 112
NEXT PAGE III
NEXT SENTENCE

IF 63
ON 150

Non-numeric
Comparison 68
Literals 35
Move 85

NOT
Conditions 71
Logical operators 70

Notation, Presentation of formats 16
NOTE 104
NUMERIC 70
Numeric

Comparison 68
Literals 35
Move 85

Numeric-form (PICTURE) 48

OBJECT-COMPUTER 24
OCCURS 56
OF 14
OH (Overflow Heading) 112
OMITTED 22
ON (Count-conditional statement) 150

PAGE FOOTING 112
Paragraph-name 62

Margins 15
Name qualification 14

Paragraphs 62
PAGE HEADING 112
Parenthesis

Arithmetic expressions 73
Compound conditions 71

Pence (Sterling) 143
PERFORM 96
Period 13
PF (Page Footing) 112
PH (Page Heading) 112
PICTURE 48
Plus sign

Arithmetic operator 91
PICTURE character 51

POSITIVE 70
Pound (Sterling) 143
Prewritten source program 142
PRINT-SWITCH 120
Procedure branching statements 95
PROCEDURE DIVISION 61
Procedure-name 62
PROCESS 83
PROGRAM-ID 23
Program identification code 15
Program sheet 14
Punctuation 13

Qualification of names 14
Qualifiers 14
QUOTE 36
Quotient 95

RANDOM 26
Random access 19
RD 108
READ 77
READY 149
RECORD CONTAINS 21
Record Description entry 135
Record types 40

- -- '-'-- - ,- ------

Index 167

Record-name
SORT 136
WRITE 79

REDEFINES 55
Relational operands 68
Relational operators 68
RELEASE 137
Relation Test 68
RELATIVE 26
Relative Data Organization 19
REPLACING 87
REPORT 106
Report Description entry 108
REPORT FOOTING 112
Report-form (PICTURE) 49
Report group

Format 110
GENERATE 119
TERMINATE 120

Report Group description 110
REPORT HEADING 112
Report item 38

Format 45
PICTURE 49

Report-name 106
Report Section 106
Report Writer ve~s

GENERATE 119
INITIATE 118
TERMINATE 120

RERUN 28
RESERVE 26
Reserved area 41
Reserved words 16
RESET

Report Writer 116
TRACE 149

RESTRICTED SEARCH 29
RETURN (Sort) 137
RETURN VIA (ENTER) 102
REWRITE 80
RF (Report Footing) 112
RH (Report Heading) 112
ROUNDED 92
RUN 95
Rules for notation 16

S (PICTURE character) 49
SA 41
SAME 28
Saved area 41
SD 135
sections 63
Section-name 63

Name Qualification 14
SELECT 25
Sentence 62
Separator 13
Sequence number 14
SEQUENTIAL 26
Sequential access 19
Series of imperative statements 63
Shillings (Sterling) 143
Short precision 39

COMPUTATIONAL-l 47

168

Sign test 69
Simple conditions 67
SIZE ERROR 92
Sort Description entry 135
SORT ,136
Sort file 132
SOURCE 117
SOURCE-COMPUTER 24
Source program library facility 140
SPACE 36
Space (PICTURE character) 50
Standard sequential data organization 19
Statements 61

Arithmetic 76
Compiler-directing 102
Conditional 63
Data manipulation 84
Imperative 61
Input/output 76
Procedure branching 95

Sterling currency feature 143
STOP 95
Structure of COBOL source program 15
Subscripting 57
SUBTRACT 94
Subtraction

Arithmetic Operator 73
SUM 117
Sum counter III
Symbol pairs 72
SYMBOLIC KEY 27
SYNCHRONIZED 59
Synchronous processing 17
Syntax 61
SYSPCH 80

Tables 57
TALLY 87
TALLYING 87
TERMINATE 120
THEN 39

IF 63
ON 150

THRU 96
TIMES 97
TO

ADD 94
TRANSFORM 89

TRACE 149
Trailer labels

IF 63
ON 150

Transfer (GO TO) 95
TRANSFORM 89
Transformation rule 89
Truncation 91
TYPE (Report group) 112
Types of data items 37

Unary sign 73
UNIT 80
UNTIL 87
UNTIL FIRST 87

c

c

/,
U

)

o

1

UPON
DISPLAY 81
SUM 117

USAGE 47
USE sentence 74
User labels

LABEL RECORDS 42
USE 74

USING
CALL 103
ENTRY 103
SORT 136

V (PICTURE character) 49
VALUE (File Description) 43

Record Description 55
Report Group Description 112

VARYING 97

Word formation 13
Word list 158
Working-Storage Section 60
WRITE 79

X (PICTURE character) 48

Z (PICTURE character) 49
ZERO

Figurative constant 36
Sign test 69

Zero (PICTURE character) 50
Zero suppression (PICTURE) 49
Zoned format 38

Index 169'

(

c

1

READER'S COMMENTS

Title: IBM Operating System/360 - COBOL

Is the material:
Easy to Read?
Well organized?
Complete?
Well illustrated?
Accurate?
Suitable for its intended audience?

How did you use this publication?
As an introduction to the subject

Yes

Other ______________________________ __

Please check the items that describe your position:

No

Form: C28-6516-2

___ For additional knowledge
f~

___ Customer personnel _Operator
_ IBM personnel _ Programmer
_ Manager _Customer Engineer

_Sales Representative
_ Systems Engineer
_Trainee

_ Systems Analyst _ Instructor Other ____________ __

Please check specific criticism(s), give page number(s),and explain below:
_ Clarification on page (s)
_ Addi tion on page (s)

til - Deletion on page (s)
~ ___ Error on page (s)
..:I
C,!) Explanation:
z

~
O~ u

Name ______________________________ __

Address __________________________ __

FOLD ON TWO LINES,STAPLE AND MAIL
No Postage Necessary if Mailed in U.S.A.

fold

staple

fold

r--, I BUSINESS REPLY MAIL I
I NO POSrAGE STAMP NECESSARY IF MAILED IN U. S. A. I L __ ---_J

POSTAGE WILL BE PAID BY

IBM CORPORATION
P. O. BOX 390
POUGHKEEPSIE, N. Y. 12602

ATTN: PROGRAMMING SYSrEMS PUBLICATIONS
DEPT. 058

staple

fold I)

r---------------------, I FIRST CLASS I
I PERMIT NO. 81 I
I I
I I
I POUGHKEEPSIE, N. Y. I L _____________________ J

IIIIII
rz.1

1111 II z
H
...:a

111111 t!)

z (-

111111
~ ,~-,,'
E-t

111111
c
u

111111

111111

111111

111111

111111

111111

--- t fold fold

staple staple

\

o

1 I

\~

C28-6516-2

TIJ]500
<!.l

International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, N. Y. 10601

l
(~ .'

.....

/

~
~

e" /

.11

'" 11
~.

::s
rt
en
0.

~.

::s
C1
• U , . / ?!

't');

" .~

I' (')

" ,II..)

··i 1~
A"'"

I ~

