
,., hy N N 

IBll· 
~ z. x h 

I 

Systems Reference Library 

IBM System/360 
Operating System 
COBOL (E) Programmer's Guide 

This reference public:a ti on describes how to 
compile, linkage edit, and execute a COBOL 
CE-Level subset) program. It also describes the 
output of compilation and execution, how to make 
optimal use of the cc>mpiler and a load module, and 
compiler and load module restrictions. 

The corequisite to this publication is IBM 
System/360 Operating System: COBOL Language, Form 
C28-6516. 

Other publications related to this one are: 
IBM System/360 Principles of Operation, Form 
A22-6821. 
IBM System/360 Operating System: Control 
Program Services, Form C28-6541. 
IBM System/360 Operating System: Job Control 
Language, Form C28-6539. 
IBM System/360 Operating system: Utilities, 
Form C28-6586. 
IBM System/360 Operating System: Linkage 
Editor, Form C28-6538. 
IBM system/360 Operating system: control 
Program Messages and Completion Codes, Form 
C28-6608. 

For a list of other associated system/360 
publications, see the IBM System/360 Bibliography, 
Form A22-6822. 

File Number 5360-24 OS 
Form C24-5029-2 



PREFACE 

The purpose of the Programmer's Guide is to 
enable programmers to compile, linkage 
edit, and execute COBOL <E-Level Subset) 
programs under control of IBM system/360 
Operating system. The COBOL (E-Level 
subset) language is described in the 
publication IBM System/360 Operating 
System: COBOL Language, Form C28-6516, 
which is a corequisite to this publication. 

The Programmer's Guide is organized to 
fulfill its purpose at three levels: 

1. Programmers who wish to use the 
cataloged procedures as provided by IBM 
need read only the Introduction and 
Job-Control Language sections to 
understand the job-control statements, 
and the Job Processing section to use 
cataloged procedures for compiling, 
linkage editing, and executing COBOL 
programs. The Progranuning 
considerations and System Output 
sections are recommended for 
programmers who want to use the COBOL 
language more effectively. 

Third Edition, February 1967 

This edition, Form C24-5029-2 is a major revision 
of Form C24-5029-1, which it obsoletes. Changes 
to this publication are indicated by a vertical 
line at the left of the text and portions of the 
figures affected. Significant changes and 
additions to the specifications contained in this 
publication will be reported in subsequent 
revisions or Technical Newsletters. 

Changes are indicated by a vertical line to the 
left of affected text and to the left of affected 
parts of figures. A dot (•) next to a figure 
title or page number indicates that the en~ire 
figure or page should be reviewed. 

2. Programmers who are also concerned with 
creating and retrieving data sets, 
optimizing the use of I/O devices, or 
temporarily modifying IBM-supplied 
cataloged procedures !:>hould read the 
entire Programmer's Guide. 

3. Programmers concerned with making 
extensive use of the <)perating system 
facilities, such as writing their own 
cataloged procedures, should also read 
the entire Programmer's Guide in 
conjunction with the publications 
listed on the front oJver of this 
publication. 

In addition to providing reference 
information on compiling, linkage editing, 
and executing programs, this publication 
contains appendices that: 

1. Give several examples of processing. 

2. Contain detailed desc:riptions of the 
diagnostic messages produced during 
compilation and load module execution. 

Specifications contained herein are subject to change from time 
to time. A:n.y such change will be reported in subsequent revisions 
or Technical Newsletters. 

Requests for copies of IBM publications shoQld be made to 
your IBM representative or to the: IBM branch office serving 
your locality. 

A form is provided at the back of this publication for readers' 
comments. If the form ha• been removed, comments may be addressed to 
IBM Corporation, Publications, Dept. 039, 1271 Avenue of the Americas 
New York, N.Y. 10020 

o International Business Machines Corporation 1966 



INTRODUC'I'ION • • 5 

Job and Job Step Relationship. 5 

Data Sets. • • • 5 

COBOL Processing • 7 

JOB-CONTROL LANGUAGE • • 10 

Coding Job-Control statements. • • • 10 

~rob Statement. • • • • 12 

Exec Statement • • • 14 

Data Definition (DD) Statement • • • 18 

Delimiter Statement •• 24 

JOB PROCESSING • • • • • • • 25 

Using Cataloged Procedures 25 

IJinkage Edi tor Processing. 30 

IJoad Module Execution .. • 34 

CREATING DATA SETS • 37 

Data set Name. • • 37 

Specifying I/O Devices • • • • 40 

Specifying Volumes • • • • • 40 

Specifying Space on Direct-Access 
Volumes • • • • • • • • • 41 

I,abel Information. • • • 43 

Disposition of a Data Set. • ... 43 

Writing a Unit Record Data Set on the 
Printer • • • • • • • 43 

DCB Parameter. ,. 

Allocating Space for Indexed 
Sequential Data Sets. • 

DCB for Creating Indexed Sequential 

43 

• • 4 7 

Data Sets • • • • • • • • ••••• 47 

Accessing Indexed Sequential Data Siets 48 

DCB For creating Direct or Relative 
Organization Data Set ••••••••• 49 

Accessing Direct or Relative 
Organization Data Sets. • • • • .• • • • 50 

CA~rALOGED PROCEDURES 

Compile ••• 

Linkage Edit and Exec~te • 
! 

CONTENTS 

• • 53 

• • • 53 

• • 53 

Compile, linkage Editf and Execute ••• 53 

UsE~r Cataloged Procedfres. • • • • • • • 54 

OVE~rriding Cataloged frocedures. • • • • 54 

PROGRAMMING CONSIDERATIONS 

Conserving Storage • i • • 
I 

• • 57 

• • • • 57 

Basic Principles of Effective COBOL 
Coding. • • • • • • ~ • • • • • • • 58 

I 

General Programming s~ggestions ••••• 58 

Data Forms • • • • • ~ • • 
! 

Examples Showing Eff e~t of Data 
DE~c lara ti ons. 

Relationals. • 

• 61 

65 

• • 66 

Arithmetics. • • • • , • • • • • 67 
I 

General Techniques fol Coding. • • 67 

Arithmetic Suggestionj • • • • • • • • • 67 

General Information--*ile Handling • • • 72 
! 

I/O Programming Consi~lerations • • • • • 74 
I 

Debugging Techniques .! • . • • • • • • • 76 
i 

USE OF SOURCE PROGRAMILIBRARY FACILITY • 79 

COBOL Source Program *ibrary • • • • • • 79 
i 

Example of Cataloging!Source Program 
Statements to a Library • • • 79 

! 

Copy <Data Division) .! .•. - • 79 
I 

INCLUDE (Procedure Division. • • • • 80 

· · · I be f Updating an Existing Mem r o a 
User-Created Library1 •• 80 

SYSTEM OUTPUT •• 

compile:c output. • • .I 

Linkage Editor Output.I 

Load Module Output • • 

82 

82 

• • • • • 8 9 

• • • • 91 

Contents 3 



APPENDIX A. EXAMPLES OF JOB PROCESSING . 95 

Default Options. . . . . . . 
Example 1. Compile, Linkage Edit, 
Execute . . . . . . . . . . . . . 

Example 2. Scratching a Data Set . 
Example 3. Cataloging a Procedure. 

APPENDIX B. ASSEMBLER LANGUAGE 
SUBPROGRAMS • • • • • .• • • 

Called and Calling Programs. 

Linkage conventions. • • • 

Lowest Level subprogram. 

95 

and . 95 

. . . 99 

99 

.102 

••• 102 

•• 102 

.104 

Accessing Information not Directly 
Available at the COBOL Language Level .105 

4 IBM S/360 OS COBOL (E) Programmer's Guide 

APPENDIX C. OVERLAY STRUCTURES . . .109 

Considerations for Overlay . . . .109 

Linkage Edit Without Overlay .109 

overlay Processing . . . . . . .110 

APPENDIX D. COBOL SYNTAX FORMATS •••• 112 

APPENDIX E. SUBROUTINES USED BY COBOL •• 118 

APPENDIX F. SYSTEM/360 DIAGNOSTICS ••• 124 

System Diagnostic Messages • • 

Compiler Diagnostic Messages • 

Load Module Execution Diagnostic 
Messages. • • • • • • • 

Debug Packet Error Messages. 

INDEX. • • • 

• •• 124 

• •• 124 

.145 

• .146 

.147 



The IBM System/360 Operating System 
(referred to here as the operating system) 
consists of a control program and 
processing programs. The control program 
supervises execution of all processing 
programsv such as the COBOL-E compiler, and 
all problem programs, such as a COBOL 
problem program. Therefore, to execute a 
COBOL program, the programmer must first 
communicate with the operating system. The 
medium of communication between thE~ 
programmer and the operating system is the 
job-control language. 

Job-control language statements define 
units of work to the operating system. Two 
units of work are recognized: the job and 
the job step. The statements that define 
these units of work are the JOB and the 
EXEC ( exe~cute) statements. Another 
important statement is the DD (data 
definition) statement, which gives the 
operating system information about data 
used in jobs and job steps. The flow of 
control statements and any data placed in 
the· flow of control statements is called 
the input stream. 

Note: Throughout this publication 
certain arbitrary options are given in 
illustrative examples. Some of the options 
used are a function of system generation; 
therefore, these examples may not be valid 
for all systems. 

~roB AND JOB STEP RELATIONSHIP 

When a programmer is given a problem, he 
analyzes that problem and defines a precise 
problem-solving procedure; that is, he 
writes a program or a series of programs. 
Executing a main program (and its 
subprograms) is a job step to the operating 
system. A job consists of executing one or 
more job stepso 

At its simplest, a job consists of one 
job step. For example, executing a payroll 
program is a job step. 

In another sense, a job consists of 
several interdependent job steps, such as a 
compilation, linkage edit, and execution. 
Job steps can be related to each other as 
follows. 

1.. one )ob step may pass intermediate 
results recorded on an external storage 
volume to a later job step. 

INTRODUCTION 

2. Whether or not a job step is executed 
may depend on res!ul ts of preceding 
steps. I 

In the series of job steps (compilation, 
linkage edit, and execution), each step can 
be a separate job witp one job step in each 
job. However, design~ting several related 
job steps as one job ~s more efficient: 
processing time is decreased because only 
one job is defined, a~d interdependence of 
job steps may be stated. (Interdependence 
of jobs cannot be stated.) Each step may 
be defined as a job s1tep within one job 
that encompasses all processing. 

,JOB: Compile, 
JOB STEP 1: 
JOB STEP 2: 

JOB STEP 3: 

link~ge edit, and execute 
Comp~le COBOL program 
Linkage edit compiled 
prog:l:-am 
Exechte linkage edited 
prog:l:-am 

! 
i 

! 

Figure 1 illustrat~s these three job 
St4~pS. I 

The important aspe~t of jobs and job 
steps is that they ar~ defined by the 
programmer. He defines a job to the 
op•:!rating system by using a JOB statement; 
he defines a job stepiby the EXEC 
statement. I 

DATA SETS 

I 
I 

i 
l 
i 

In Figure 1, one collection of input data 
(source program) and qne collection of 
output data (compiled:program) are used in 
job step 1. In the operating system, a 
collection of data th~t can be named by the 
programmer is called & data set. A. data 
set is defined to the:operating system by a 
DD statement. · 

i 

A data set resides\on a volume<s>, which 
is a unit of external :storage that is 
accessible to an inputf/output device. (For 
example, a volume may :be a reel of tape or 
a disk pack.) · 

Introduction 5 



Job Step 1 
Compile 

Job Step 2 
Linkage Edit 

Job Step 3 
Execute 

Output 

Figure 1. Job Example with Three Job Steps 

several I/O d~vices grouped together and 
given a single name when the system is 
generated constitute a device class. For 
example, a device class can consist of all 
the tape devices in the installation, 
another can consist of the printer, a 
direct-access device, and a tape device. 

The name of a data set and information 
identifying the volume<s> on which the data 
set resides may be placed in an index to 
help the control program find the data set. 
This index, which is part of an index 
structure called the catalog, resides on a 
direct-access volume. Any data set whose 
name and,volume identification are placed 
in this index is called a cataloged data 
set. When a data set is cataloged, the 
information needed to access the data set 
is its name, and disposition. Other 
information associated with the data set, 
such as device type, the position of the 
data set on the volume, and the format of 
records in the data set, is available to 
the control program. 

6 IBM S/360 OS COBOL(E) Programmer's Guide 

Furthermore, a hierarchy of indexes may 
be devised to classify data sets and make 
names for data sets unique. For example, 
an installation may divide its cataloged 
data sets into four goups: SCIENCE, 
ENGRNG, ACCNTS, and INVNTRY. In turn, each 
of these groups may be subdivided. For 
example, the ACCNTS group may be subdivided 
into RECEIVE and PAYABLE; PAYABLE may 
contain volume identification for the data 
sets PAYROLL and OVERHEAD. To find the 
data set PAYROLL, the programmer specifies 
all indexes beginning wi.th the largest 
group, ACCNTS; then the next largest group, 
PAYABLE; finally, the data set PAYROLL. 
The complete ident.if ication needed to find 
that data set PAYROLL is 
ACCNTS.PAYABLE.PAYROLL. 

Data set names are ot two 
classes: unqualified and qualified. An 
ungualif ied name is a data set name or an 
index name that is not preceded by an index 
name. A gualified name is a data set name 
or index name preceded by index names 
representing index levels; for example, in 
the preceding text, the qualified name of 
the data set PAYROLL is 
ACCNTS.PAYABLE.PAYROLL. 

Data set identification may also be 
based upon the time of 9eneration. In the 
operating system, a collection of 
successive, historically related data sets 
is a generation data grou2. Each of the 
data sets is a generation data set. A 
generation number is attached to the data 
group name to refer to a particular 
generation. The most rE~cent generation is 
O; the generation previous to 0 is -1; the 
generation previous to -·1 is -2; etc. An 
index describing a generation data group 
must exist in the catalog. 

For example, a data qroup named YTDPAY 
might be used for a payroll application. 
The generations for the generation data 
group YTDPAY are: 

YTDPAY (0) 
YTDPAY (-1) 
YTDPAY (-2) 

When a new generation is being created, it 
is called generation (+n), where n is an 
integer greater than O. For example, after 
a job step has created YTDPAY(+l), the 
operating system changes its name to 
YTDPAY(O). The data set that was YTDPAY(O) 
at the beginning of the job step becomes 
YTDPAY(-1), etc. 



COBOL PROCESSING 

In the operating system, a source program 
is called a source module; a compiled 
source module is an object module (object 
program) .. The object module cannot be 
executed until it is placed in· a format 
suitable for loading and all references to 
subprograms are resolved. This is done by 
an IBM-supplied program, the linkaSI§ 
_editor. 

The executable output of the linkage 
editor is a load module. However, the 
input to the linkage editor may be either 
object modules or load modules. Linkage 
editor execution can be expanded 
further: several object modules and/or 
load modules may be combined to form one 
load module. The linkage editor inserts 
the requested subroutines into the load 
module. For example, if the compiled 
object module TEST calls subroutines ALPHA 
and BETA, the linkage editor combines the 
object module TEST and the previously 
linkage edited load modules ALPHA and BETA 
into one load module. This process is 
illustrated in Figure 2. 

Linkage 
Editor 

Figure 2. Linkage Editor Execution 

A program written fin COBOL may call 
subprograms written i!n the assembler 
language as long as tihe assembler 
subprogram uses the l!inkage conventions 
shown in Appendix B: Assembler Language 
Subprograms. The lin1kage editor resolves 
the references betweeln assembler and COBOL 
modules. i 

After an object mddule is processed by 
the linkage editor, the resulting load 
module may be execute~. Therefore, to 
compile, linkage edit:, and execute a COBOL 
program, three or mor~ job steps are 
necessary: 

' 

1. Compile the COBOL! source module and any 
COBOL subprograms! not compiled 
previously to pro~uce one or more 
object modules. Note that each COBOL 
compilation requiFes a job step. 

' 

2. Linkage edit the kesulting object 
module(s) and any!modules needed to 
resolve external teferences to form a 
load module. 

3. Execute the load ~odule. 

i 
Figure 3 illustratts the problem program 

processing; COBOL subprograms and assembler 
subprograms Cload modules) are used to 
resolve external refefences. 

Each compilation, ihe linkage editor 
exE~cution, and the load module execution 
may be defined as sep~rate jobs, but 
combining the separate jobs into one job is 
more efficient. ' 

Introduction 7 



Subprogram 

Job Step 1 A, 18 
Compile 
Subprograms 

Object 
Modules 

Main Program 

JQb Step lC 
Compile Main 
Program 

Object Module 

Job Step 2 
Linkage Editor 

Load 
Module 

Figure 3. COBOL Processing Example 

Data Set Considerations 

A data set is defined as a collection of 
data. The COBOL compiler, linkage editor, 
and load modules process two types of data 
sets: sequential data sets and partitioned 
data sets. 

A sequential data set is organized in 
the same way as a data set that resides on 
a tape volume, but a sequential data set 
may reside on any type of volume. 

8 IBM S/360 OS COBOL(E) Programmer's Guide 

Assembler 
Subprogram 

Job Step 1 D, 1 E 
Assemble 
Subprograms 

Object 
Modules 

A partitioned data 5,et (PDS) is composed 
of named, independent groups of sequential 
data, and resides on a direct access 
yolume. A directory index resides in the 
PDS, and directs the operating system to 
any group of sequential data. Each group 
of sequeQtial data is called a member. 
Partitioned data sets a:re used for storage 
of any type of sequentially organized data. 
In particular, they are used for storage of 
source and load modules <each module is a 
member). In fact, a load module can be 
executed only if it is a member of a 
partitioned data set. A PDS of load 



modules is created by either the linkage 
editor or a utility program. 

Load modules originally written in COBOL 
can access only sequential data sets. 

gataloged Procedures 

An installation may have certain procedures 
to follow in its daily processing. To 
reduce the possibility of error in the 
daily reproduction of job-control 
statements for a job, a cataloged procedure 
may be written. A cataloged procedure is a 
set of EXEC and DD statements placed in a 
PDS accessed by the operating systE~m. (The 
JOB statement cannot be cataloged.) A 
cataloged procedure consists of a procedure 
step or a series of procedure steps that is 
defined by EXEC statements. A procedure 
ptep in a cataloged procedure is equivalent 
to a job step in a job. For a job step, 
data sets must be defined by DD statements. 
Because DD statements can be included in 
cataloged procedures, a minimum of DD 
statement information must be supplied by 
the programmer. 

An EXEC statement lin the input stream 
may invoke a cataloge~ procedure. 
Therefore, the defini~ion of job step is 
extended: executing ~ load module or 
invoking a cataloged procedure is a job 
st~ to the operatingj system. 

To simplify the st!eps involved in 
compiling and linkagei editing, three 
COBOL-E cataloged prdcedures are supplied 
by IBM. These three :cataloged procedures 
and their uses are: · 

COBEC compile : 
COBELG linkage edit and execute 
COBECLG compile, link~ge edit, and execute 

Any cataloged procbdure may be 
temporarily modified by EXEC and DD 
statements in the inpµt stream; this 
temporary modificatiop is called 
overriding. 

The DD statement for overriding a DD 
name in a ca ta log pro¢edure must have a 
DSNAME. 

Introduction 9 



JOB-CONTROL LANGUAGE 

The COBOL programmer uses the job-control 
statements shown in Table 1 to compile, 
linkage edit, and execute programs. 

Table 1. Job-Control Statements 
r---------T-------------------------------1 
ISTATEMENTI FUNCTION I 
~---------+-------------------------------~ 
!JOB !Indicates the beginning of a I 
I !new job and describes that job.I 
~---------+-------------------------------~ 
IEXEC !Indicates a job step and I 
I I describes that job step; I 
I !indicates the cataloged I 
I I procedure or load module to be I 
I I executed. I 
~---------+-------------------------------~ 
IDD !Describes data sets, and I 
I I controls device and volume I 
I I assignment. I 
~---------+-------------------------------~ 
ldelimiterlSeparates data sets in the I 
I I input stream from control I 
I !statements, it appears after I 
I leach data set in the input I 
I I stream i.e., after a COBOL I 
I !source program. I 
L---------i-------------------------------J 

CODING JOB-CONTROL STATEMENTS 

Job-control statements are identified by 
the initial characters // or /* in card 
columns 1 and 2, and may contain four 
fields: name, operation, operand, and 
comment (Figure 4). 

NAME FIELD 

The name contains between one and eight 
alphameric characters, the first of which 
must be alphabetic. The name begins in 
card column 3, and is followed by one or 
more blanks to separate it from the 
operation field. The name is used: 

1. To identify the control statement to 
the operating system. 

2. To enable other control statements in 
the job to ref er to information 
contained in the named statement. 

3. To relate DD statements to I/O 
statements in the load module. 

OPERATION FIELD 

The operation field contains one of the 
following operation codE~s: 

JOB 
EXEC 
DD 

or, if the statement is a delimiter 
statement, the operation field is blank. 
The operation code is preceded and followed 
by one or more blanks. 

OPERAND FIELD 

The operand field contains the parameters 
that provide required and optional 
information to the operating system. The 
parameters are separated by commas. The 

r------------------------------------T-----------------------------1 
I FORMAT !APPLICABLE CONTROL STATEMENTS! 
~------------------------------------+-----------------------------~ 
l//Name Operation Operand [Comment] IJOB,EXEC,DD I 
I I I 
I// Operation Operand [Comment] IEXEC,DD I 
I I I 
I/* [Comment] !delimiter I 
L------------------------·------------i-----------------------------J 

Figure 4. Job-Control Statement Formats 

10 IBM S/360 OS COBOL(E) Programmer's Guide 



operand field is ended by placing one or 
more blanks after the last parametE~r. 
There arE~ two types of parameters., 
positional and keyword. 

Positional :Parameters: Positional 
·parameters are placed first in the operand 
field and must appear in the specified 
order. If a positional parameter is 
omitted and other positional parameters 
follow, the omission must be indicated by a 
comma. 

Keyword Parameters: A keyword parameter 
may be placed anywhere in the operand field 
following the positional parameters. A 
keyword parameter consists of a keyword, 
followed by an equal sign, followed by a 
single value or a list of subparameters. 
If there is a list of subparameters, the 
list must be enclosed in parentheses or 
apostrophes, and the subparameters in the 
list must be separated by commas. Keyword 
parameters are not order dependent; that 
is, they may appear in any order. 

JSubparameters: subparameters are either 
positional or keyword. Positional and 
keyword subparameters are noted in the 
definition of control statements. 
:Positional subparameters appear first in 
the parameter and must appear in the 
specified order. If a positional 
:subparameter is omitted and other 
positional subparameters follow, the 
omission must be indicated by a comma. 

COMMENTS 

Comments must be separated from the last 
parameter (or the * in a delimiter 
:statement) by one or more blanks and may 
appear in the remaining columns up to and 
including column 71. 

CONTINUING CONTROL STATEMENTS 

A control statement can be written in card 
columns 1 through 71. If a control 
statement exceeds 71 columns, it may be 
con:tinued onto the next card. If a 
statement is continued, it must be 
:interrupted after the comma that follows 
the last parameter or subparameter on the 
card, and a nonblank character must be 
placed in column 72. The continuation card 
must contain // in columns 1 and 2, columns 
3 through 15 must be blank, and the 
continued portion of the statement must 
begin in column 16. Comments are continued 
by placing a nonblank character in column 
'72; the continued portion of the comment 

begins in any column after column 16. 
There is no limit to ·;the number of 
continuation cards us!ed for a single 
control statement. I 

Note: Excessive cbntinuation cards 
should be avoided, wh~never possible, to 
reduce processing tim~ for the control 
program. 

NOTATION FOR DEFINING' CONTROL STATEMENTS 

The notation used to define control 
statements in this puplication is described 
in the following paragraphs. 

1. The set of symbols listed below are 
used to define control statements, but 
are never written' in an actual 
statement. 

a. hyphen 
b. or 
c. underscore 
d. braces { } 

e. brackets [ ] 

f. ellipsis 
g. superscript i 

The special uses of tnese symbols are 
explained in paragraphs 4-10. 

2. Uppercase letters! and words, numbers, 
and the set of syJnbols listed below are 
written in an actµa1 control statement 
exactly as shown in the statement 
definition. (Anyr exceptions to this 
rule are noted in: the definition of a 
control statement;.) 

i 

a. apostrophe 
b. asterisk * c. comma 
d. equal sign = 
e. parentheses 
f. period 
g. slash / 

3. Lowercase letters!, words, and symbols 
appearing in a coptrol statement 
definition repres¢nt variables for 
which specific in~ormation is 
substituted in th~ actual statement. 

I 

Example: If name! appears in a 
statement definit~on, a specific value 
(e.g., ALPHA) is ~ubstituted for the 
variable in the a¢tual statement. 

i 

i 

4. Hyphens join lowefcase letters, words, 
and symbols to f o~ a single variable. 

I 
Example: If memb~r-name appears in a 
statement definitiion, a specific value 
(e.g., BETA) is shbstituted for the 
variable in the abtual statement. 

! 

I 
Jobi""Control Language 11 



5. Stacked items or items separated from 
each other by the "or" symbol represent 
alternat~ves. Only one such 
alternative should be selected. 

6. 

Example: The two representations 

{D and AIBIC 

have the same meaning and indicate that 
either A or B or c should be selected. 

An underscore indicates a default 
option. If an underscored alternative 
is selected, it need not be written in 
the actual statement. 

Example: The two representations 

have the same meaning and indicate that 
either A or B or c should be selected; 
however, if B is selected, it need not 
be written, because it is the default 
option .• 

7. Braces group related items, such as 
alternatives. 

Example: ALPHA=C{AIBl~},D) 

indicates that a choice should be made 
among the items enclosed within the 
braces. If A is selected, the result 
is ALPHA=CA,D). If C is selected, the 
result can be either ALPHA=C,D> or 
ALPHA= (C,D). 

8. Brackets also group related items; 
however, everything within the brackets 
is optional and may be omitted. 

Example: ALPHA=CCAIBICl,D) 

indicates that a choice can be made 
among the items enclosed within the 
brackets, or that the items within the 
brackets can be omitted. If B is 
selected, the result is ALPHA=CB,D). 
If no choice is made, the result is 
ALPHA= ( ,D). 

12 IBM S/360 OS COBOL(E) Programmer's Guide 

9. An ellipsis indicates that the 
preceding item or group of items can be 
repeated more than once in succession. 

Example: ALPHA[,BETA] ••• 

indicates that ALPHA. can appear alone 
or can be followed by ,BETA repeated 
optionally any number of times in 
succession. 

10. A superscript refers to a prose 
description in a footnote. 

Example: 

{
NEWjL} 
OLD 
MOD 

indicates that additional information 
concerning the grouped items is 
contained in footnote number 1. 

11. Blanks are used to improve the 
readability of control statement 
definitions. Unless otherwise noted, 
blanks have no meaning in a statement 
definition. 

JOB STATEMENT 

The JOB statement (Figure 5) is the first 
statement in the sequence of control 
statements that describe a job. The JOB 
statement contains the following 
information: 

11. Job name. 

2. Accounting information relative to the 
job. 

3. Programmer's name. 

4. Whether the job-control statements are 
printed for the programmer. 

5. Conditions for terminating the 
execution of the job. 

Examples of the JOB statement are shown in 
Figure 6. 



i r-------·--T--,-------T-------------·-------------·--------------------:---------------------1 
I NAME I OPERATION I OPERAND ' I 
~---------+---------+---------------------------------------------~---------------------i 
I I I Positional Parameters I 
I I I I 
I //jobname I JOB I [ C [account-number] [,accounting-information] P- 2 3 ] I 
I I I [ , programmer- name] '+ s 6 I 
I I I I 
I I I Keyword Parameters I 
I I I I 
I I I [MSGLEVEL=Ql I 
I I I \MSGLEVEL=lj I 
I I I l I 
I I ICCOND=CCcode,operator>C,Ccode,operator)J ••• 7)~] I 
~---------i---------i----------------------------------------------+---------------------i 

1. If the information specified C "account-numbe1:-" and/or "accounting-information"> I 
contains blanks, parentheses, or equal signs,, the information m~st be delimited by I 
apostrophes instead of parentheses. ! I 

2 If only "account-number" is specified, the dE~limiting parenthes~s may be omitted. I 
3 The maximum number of characters allowed between the delimitingiparentheses or I 

apostrophes is 144. I 
,,. If "programmer-name" contains commas, parentheses, apostrophes, lor blanks, it must bel 

enclosed within apostrophes. ! I 
s When an apostrophe is contained within "prog1:-ammer-name",, the a~ostrophe must be I 

shown as two consecutive apostrophes. t I 
6 The maximum number of characters allowed for "programmer-name" is 20. I 
7 The maximum number of repetitions allowed is 7. : I 

1 8 If only one test is specified, the outer pair of parentheses may be omitted. I 

L-----------------------------------------------------------------4---------------------J 

Figure 5. JOB Statement 

r---------------------------------·--------, 
I Example 1 I 
I I 
l//PROGRAM JOB C215,819,46W),'E.COBOL', 11 
I// COND=C7,LT),MSGLEVEL=1 I 
I I 
I I 
I Example 2 I 
I I 
l//PROG2 JOB 1087F-21,COND=C7,LT) I 
L-------·----------------------------------J 
Figure 6. Sample JOB Statements 

NAME FIELD 

The "jobname" must always be specified; it 
identifies the job to the operating system. 

OPERAND FIELD 

Account Number and Accounting Information 

The first positional parameter can contain 
the installation account number and any 
parameters passed to the installation 

accounting routines. , These routines are 
written by the insta].flation and inserted in 
the operating system:when it is generated. 
The format of the accounting information is 
specified by the ins~,allation. 

Programmer's Name 

The "programmer-name"! is the second 
positional parameter.; 

Control Statement Mesisaqes 

The MSGLEVEL paramet~r indicates the type 
of control statement fmessages the 
programmer wishes to :receive from the 
control program. t 

MSGLEVEL=O 

indicates that only qontrol statement 
errors and diagnostid messages are written 
for the programmer. , 

MSGLEVEL=1 

indicates that all cdntrol statements, as 
well, as control statehtent errors and 

! 

Jobi-Control Language 13 



diagnostic messages, are written for the 
programmer. 

Conditions for Terminating a Job 

At the completion of a job step that uses 
the COBOL compiler or the linkage editor, a 
code is issued indicating the outcome of 
the job step. Instructions in a COBOL load 
module cannot generate the code. The 
generated code is tested against the 
conditions stated in control statements. 
The error codes generated by the COBOL 
compiler or linkage editor are: 

O - No errors or warnings detected. 

4 - Level w <warning> diagnostic. Possible 
errors were detected. 

8 - Level c (conditional) diagnostic. 
Errors were detected. 

12 - Level E <error> diagnostic. serious 
errors were detected. 

For a description of these codes, refer to 
Source-Module Error Warning Diagnostics. 

The COND parameter specifies conditions 
under which a job is terminated. Up to 
eight different tests, each consisting of a 
code and an operator, may be specified to 
the right of the equal sign. The code may 
be any number between 0 and 4095. The 
operator indicates the mathematical 
relationship between the code placed in the 
JOB statement and the codes issued by 
completed job steps. If the relationship 
is true, the job is terminated. The six 
operators and their meanings are: 

14 IBM S/360 OS COBOL(E) Programmer's Guide 

Operator 

GT 
GE 
EQ 
NE 
LT 
LE 

Meaning 

greater than 
greater than or equal to 
equal to 
not equal to 
less than 
less than or equal to 

For example, if a codie 8 is returned by 
the compiler and the JOB statement 
contains: 

COND=C7,LT) 

the job is terminated. 

If more than one! condition is indicated 
in the COND parameter and any of the 
conditions are satisfied, the job is 
terminated. 

EXEC STATEMENT 

The EXEC statement (Figure 7) indicates the 
beginning of a job step and describes that 
job step. The statement contains the 
following information. 

1. Name of the cataloged procedure or load 
module to be executed. 

2. Compiler and/or linkage editor options 
passed to the job step. 

3. Accounting information relative to this 
job step. 

4. Conditions for bypassing the execution 
of the subsequent job step. 



r--------------T----------T--------------------------------------~---------------------· 
I NAME I OPERATION I OPERAND : j 
~--------------+----------+----------------------------------------·----------------------~ 

I Positional Parameter ! 

//[stepnamel 1 EXEC 
I ! 

ITT

ROC=cataloged-proced.ure-name } · 
I cataloged-procedure-name 

PGM=program-name 
I PGM=*~stepname.ddname 
I PGM=*.stepname.procstep.ddname 

Keyword Parameters 

[{::::. procstep•} =(option[ ,option] ••• ) 3: " s] 
[{ !~g;. procstep2} = (accounting-inf ormati~n) 3 • 7] 
{

COND l I 
[ COND.procstep21=CCcode,operatorC,stepname[.procstepll> 

[,(code,operator[,stepname[.procstep]])] ••• e)9] 
~--------------i __________ i----------------~----------------------~---------------------i 

1 "stepname" is required when information from this control statement is referenced inl 
a later job step. I I 

2 If this format is selected, it may be repeated in the EXEC statement once for each I 
step in the cataloged procedure. I 

3 If the information specified contains blanks, parentheses, or ~qual signs, it must I 
be delimited by apostrophes instead of parentheses. ! I 

4 If only one option is specified, and it does not contain any blanks, parentheses, orl 
equal signs, the delimiting parentheses may be omitted. ! I 

5 The maximum number of characters allowed between the delimiting apostrophes or I 
paremtheses is 40. ! I 

e If '"accounting-information" does not contain commas, blanks, pkrentheses, or equal I 
signs, the delimiting parentheses may be omitted. ! I 

7 The maximum number of characters allowed between the delimiting apostrophes or I 
parentheses is 144. I 

8 The maximum number of repetitions allowed i:s 7. : I 
19 If only one test is specified, the outer pair of parentheses may be omitted. I 
L-----------------------------------------------------------------L---------------------J 

I 

Figure 7. EXEC Statement 

r-----------------------------------------------------------------i---------------------1 I Example 1 · 
I 
I// EXEC PGM=IEHPROGM, ACCT= ( 896 I 427) I COND= (7 I LT) 
I 
I Example 2 
I I j//STEP4 EXEC COBECLG, 1 
I// PARM. COB=. DECK, LINECNT=64 I MAPS I :r.IST' I 2 
I// PARM.LKED=XREF, 3 
I// COND.LKED=C7,GT,STEP4.COB), 4 I 1/1 coND.GO=CC7,GT,STEP4.LKED>, C7,G~r,sTEP4.coB>>, I 5 
I// ACCT=l 0 8I,A t 

L----------------------------------------------·-------------------1---------------------J 

Figure 8. Sample EXEC Statements 

I 

I 

I 

Job-Control Language 15 
I 



Example 1 of Figure 8 shows the EXEC 
statement used to execute a program. 
Example 2 in Figure 8 shows an EXEC 
statement that invokes a cataloged 
procedure. 

NAME FIELD 

The "stepname" is the name of the job step. 

OPERAND FIELD 

Positional Parameter 

The options in the positional parameter of 
an EXEC statement specify either the name 
of the cataloged procedure or program to be 
executed. 

Each program (load module> to be 
executed must be a member of a PDS. 

Specifying a Cataloged Procedure: 

{
PROC=cataloged-procedure-name} 
cataloged-procedure-name 

indicate that a cataloged procedure is 
invoked. The "cataloged procedure name" is 
the unqualified name of the cataloged 
procedure. For example, 

PROC=COBEC 

indicates that the cataloged procedure 
COBEC is to be executed. 

Specifying a Program in a Library: 

PGM=program-name 

indicates that a program is executed. The 
"program-name" is an unqualified member 
name of a load module in the sytem library 
CSYSl.LINKLIB} or private library. For 
example, 

PGM=IEWL 

indicates that the load module IEWL is 
executed. CA load module in a private PDS 
is executed by joining the private library 
with the system library through the use of 
a JOBLIB DD statement. See the following 
discussion concerning JOBLIB.} 

Specifying a Program Described in a 
Previous Job Step: 

16 IBM S/360 OS COBOL(E} Programmer's Guide 

PGM=*.stepname.ddname 

indicates that a program is executed, but 
the program is taken from a data set 
specified in a DD statemE~nt of a previous 
job step. The * indicates the current job; 
"stepname" is the name of a previous step 
within the current job; and "ddname" is the 
name of a DD statement within that previous 
job step. (The "stepname" cannot refer to 
a job step in another job.) For example, 
in the statements, 

//LXIX JOB ,JOHNSMITH,COND=C7,LT} 

//STEP4 EXEC PGM=IEWL 
//SYSLMOD DD DSNAME=OBJECT(TESTl) 

//STEPS EXEC PGM=*. STEP4 .. SYSLMOD 

statement STEPS indicates that the name of 
the program is taken from the DD statement 
SYSLMOD in job step STEPL~. Consequently, 
the load module TESTl in the PDS OB~JECT is 
executed. 

Specifying a Program Described in a 
Cataloged Procedure: 

PGM=*.stepname.procstep.ddname 

indicates that a program is executed, but 
the program is taken from the data set 
specified in a DD statement of a previously 
executed cataloged procedure. The * 
indicates the current job; "stepname" is 
the name of the job step that invoked the 
cataloged procedure; "procstep" is the name 
of a step within the procedure; "ddname" is 
the name of a DD statement within the 
procedure step. (The "stepname" cannot 
refer to a job step in another job.) For 
example, consider a cataloged procedure 
PROGl. 

//COMPIL EXEC PGM=IEPCBLOO 
/ /SYSUTl DD UNI'T=TAPE 
//SYSPUNCH DD DSN.AME=LJNKINP 

//LKED EXEC PGM=IEWL 
//SYSLMOD DD DSN.AME=RESULTCANS} 

Furthermore, assume the following 
statements are placed in the input stream. 



//GO 
//S1 

//S2 

JOB ,SMITH,COND=(7,LT) 
EXEC PROC=PROGl 

EXEC PGM=*.Sl.LKED.SYSLMOD 

The statement 82 in the input stream 
indicates that the name of the program is 
taken from the DD statement SYSLMOD in the 
procedure step LKED in the procedure PROGl 
which was invoked by the EXEC statement S1. 
Consequently, the load module ANS in the 
PDS RESUL~r is executed. 

~~rd Parameters 

The keyword parameters may ref er to a 
program, to an entire cataloged procedure, 
or to a step within a cataloged procedure. 

If the parameter refers to a program, to 
the first step in a cataloged procedure 
Conly with the PARM parameter>, or to an 
entire cataloged procedure, the keyword is 
written followed by an equal sign and the 
list of subparameters. (In example 1, 
Figure 8, the parameter ACCT applies to the 
entire procedure.) When overriding 
parameters in a cataloged procedure step, 
the keyword is written, a period is placed 
after the keyword, and the stepname follows 
immediately. (In example 2, Figure 8, the 
cataloged procedure COBECLG is invoked. 
Two sets of PARM options apply to two 

I 

different procedure st\eps; one applies to 
the procedure step coa and the other to 
the! procedure step LK~D.) More information 
about overriding cata~oged procedures is 
given in the section, gob Processing. 

Options for the Compiler and Linkage 
Editor: The PARM par~meter is used to pass 
options to the compiler or linkage editor. 
(PARM has no meaning ~o COBOL load module.) 

PARM 

passes options to the 1compiler or linkage 
editor when either is :invoked by the PGM 
parameter in the EXEC istatement or to the 
first step in the cat~loged procedure and 
cancels all other paraimeters specified in 
the cataloged procedu~e. 

PARM.procstep 

passes options to a ctjmpiler or linkage 
editor step within the: named cataloged 
procedure step. Any FARM parameter in the 
procedure step is deldted, and the PARM 
parameter that is pass;ed to the procedure 
step is inserted. 1 

A maximum of 40 ch~racters may be 
written between the pa:rentheses or 
apostrophes that encloise the list of 
options. 1 

The format for compiiler options and 
linkage options most a

1

'pplicable to the 
COBOL programmer is s~own in Figure 9. 

; 

Detailed informatiojn concerning compiler 
and linkage editor opbions is given in the 
section, Job Processi~. 

! 

r-------------------------------------------------------------------~-------------------1 
Compiler:: ! 

{
PARM l r ~CK 1 r. FLAGE l 
PARM.procstepj=C[LINECNT=nn][,BUFSIZE=nnlt_rNODECIJ ~FLAGWJ 

i 

[ J ~ 'J t J t J ['. J ~ ! j , LIST , DMAP , PMAP .t.MAPS .·, DISPCK .L'R.EGED ) 1 

, NOLIST , NODMA~> , NOPMAP , NOMAPS , NODISPCK , f NVED 

:Linkage Edi tor 

{MRM ' ~ 
~--l::~~~.:::~==~::L:~~~~~::~:~~::~:~~:~:::~---------------------------~-------------------~ 
I :1 The subparameters (options) are keyword subparameters. I 
L------------------------------------·--------------------------------.,..-------------------J 

Figure 9. Compiler and Linkage Editor Options 

i 

Job-~ontrol Language 17 



Condition for Bypassing a Job Step: This 
COND parameter (unlike the one in the JOB 
statement> determines if the job step 
defined by the EXEC statement is bypassed. 

COND 

states conditions for bypassing the 
execution of a program or an entire 
cataloged procedure. If the EXEC statement 
invokes a cataloged procedure, the COND 
paraweter replaces all COND parameters in 
each step of the procedure. 

COND.procstep 

states conditions for bypassing the 
execution of a specific cataloged procedure 
step "procstep". The specified COND 
parameter replaces all COND parameters in 
the procedure step. 

The subparameters for the COND parameter 
are of the form: 

Ccode,operator[,stepname]) 

The subparameters "code" and "operator" 
are the same as the code and operator 
described for the COND parameter in the JOB 
statement. The subparameter "stepname" 
identifies the previous job step that 
issued the code. For example, the COND 
parameter 

COND= ( ( 5, LT, COBE) ,, (5, LT, LKED)) 

Indicates that the step in which the COND 
parameter appears is bypassed if 5 is less 
than the code returned by either of the 
steps COBE or LKED. 

If a step in a cataloged procedure 
issued the code, "stepname" must qualify 
the name of the procedure step; that is, 

Ccode,operator[,stepname.procstep]) 

If "stepname". is not given, "code" is 
compared to all codes issued by previous 
job steps. Again, only compiler or linkage 
editor execution steps issue the code. 

18 IBM S/360 OS COBOL(E} Programmer's Guide 

Accounting Information: The ACCT parameter 
specifies accounting information for a job 
step within a job. 

ACCT 

is used to pass accounting information to 
the installation accounting routines for 
this job step. 

ACCT.procstep 

is used to pass accounting information for 
a step within a cataloged procedure. 

If both the JOB and EXEC statements 
contain accounting information, the 
installation accounting routines decide how 
the accounting information shall be used 
for the job step. 

DATA DEFINITION CDD} STATEMENT 

The DD statement (Figure 10) describes data 
sets. The DD statement can contain the 
following information: 

1. Name of the data set to be processed. 

2. Type and number of I/O devices for the 
data set. 

3. Volume(s) on which the data set 
resides. 

4. Amount and type of space allocated on a 
direct-access volume. 

5. Label information for the data set. 

6. Disposition of the data set before and 
after execution of the job step. 

7. Allocation of data sets with regard to 
channel optimization. 



i 
! 

r-·-------·------------T---------T---·--------------·------------------~-------------------1 
I NAME I OPERATION I OPERAND1. ' I 
~-·--------------------+---------+---·"."-------------------------------.+-------------------~ 

{
ddname }2 

I'/ procstep.ddname 
JOBLIB3 

DD 

!Positional Parameter i I 
I I I 

I~ ]
4 

I I DUMMY I 
I ATA I 
I I 
!Keyword Parameters 15 6 

DDNAME=ddname 

dsname 
dsname CE~lement) 
*.ddname 

DSNAME= *.stepname.ddname 
*.stepname.procstep.ddname, 
&name 
&nameCelement) 

[UNIT= ( subparameter-list)] 

[DCB= CsubparametE~r-list) l 7 

[VOLUME=Csubparameter-list)] 

[

SPACE=Csubparameter-list) J 
SPLIT=Csubparameter-list) 
SUBALLOC=Csubparameter-list) 

[LABEL=Csubparameter-list)] 

[
DISP= C subparamet.er-list >l 
SY SO UT= A j 

[SEP= Csubparameter-list) l / 
~-·-------------------.L---------.L------------------------------------+-------------------~ 
lj· All parameters are optional to allow a programmer flexibility in.the use of the DD I 
I statement; however, a DD statement with a blank operand field is: meaningless. I 
12 The name field must be blank when concatenating data sets. i I 
13 The JOBLIB statement precedes any EXEC statements in the job. see the discussion I 
I concerning JOBLIB under Name Field in this section. ! I 
IC!lo If the positional parameter is specified, keyword parameters can~ot be specified. I 

I" If "subparameter-list" consists of only 2!!.§. subparameter and no leading comma I 
I (indicating the omission of a positional subparameter) is requir~d, the delimiting l 
I parentheses may be omitted. ! I 
16 If "subparameter-list" is omitted, the entire parameter must be ¢>mitted. I 
I-, All su.bparameters in the DCB parameter are keyword subparameters.~ I 
L-------------------------------------------------·-------------------~-------------------J 

Figure 10. Data Definition Statement 
i 

! 

NAME FIELD definitions in thejDD statement. The 
ddname must be the: same as the external 
name in the SELECT~ •• ASSIGN clause in 

ddname a COBOL program. 

is used: 

1.. To identify data sets defined by this 
DD statement to the compiler or linkage 
editor. 

2.. To relate files defined by a programmer 
in his source module to data set 

' I 
3. To identify this DP statement to other 

control statements! in the input stream. 
I 

The "ddname" formatiis given in Job 
Processing. / 

procstep.ddname I 

! 

i 
Job-Control Language 19 



is used to override DD statements in 
cataloged procedures. The step in the 
cataloged procedure is identified by 
"procstep". The "ddname" identifies 
either: 

1. A DD statement in the cataloged 
procedure that is to be modified by the 
DD statement in the input stream, or 

2. A DD statement that is to be added to 
the DD statement in the procedure step. 

JOB LIB 

is used to concatenate data sets with the 
operating system library; that is, the 
operating system library and the data sets 
specified in the JOBLIB DD statement are 
temporarily combined to form one library. 
The JOBLIB statement must immediately 
follow a JOB statement and the 
concatenation is in effect only for the 
duration of the job. However, if job steps 
other than the first job step are to use 
the data set specified in the JOBLIB DD 
statement, the DISP parameter must be 
specified with PASS as the second 
subparameter. (See the following text 
concerning the DISP parameter.) Only one 
JOBLIB statement may be specified for a 
job. 

The "PGM=program name" parameter in the 
EXEC statement refers to a load module in 
the system library. However, if this 
parameter refers to a load module in a 
private library, a JOBLIB statement 
identifying the PDS in which the module 
res1des must be specified for the job. The 
JOBLIB statement concatenates the private 
library with the system library. 

The library indicated in the JOBLIB 
statement is searched for a module before 
the system library is searched. 

A JOBLIB statement does not have to be 
entered for load modules created in this 
job, or for permanent members of the system 
library. 

20 IBM S/360 OS COBOL(E) Programmer's Guide 

If the name field iB omitted, the data 
set defined by the DD Btatement is 
concatenated with. the data set defined in 
the preceding DD statement. In effect, 
these two data sets ar'~ combined into one 
data set. (Data sets may also be 
concatenated with. the data set specified in 
the JOBLIB DD statement. Therefore, 
several data sets can be concatenated with 
the system library.) 

OPERAND FIELD 

For purposes of discussion, parameters for 
the DD statement are divided into six 
classes. Parameters are used to: 

• Specify unit record data sets. 

• Retrieve a previously created and 
cataloged data set. 

• Retrieve a data set created in a 
previous job step in the current job 
and passed to the current job step. 

• Retrieve a data set created but not 
cataloged in .a previous job. 

• Create data sets that reside on 
magnetic tape or direct access volumes. 

• Optimize I/O operations. 

The following text describes the DD 
statement parameters that apply to 
processing unit record data sets and 
retrieving data S·ets created in previous 
job steps or data sets created and 
cataloged in previous jobs (Figure 11). 
The method of retrieving uncataloged data 
sets created in previous jobs is also 
discussed in this section. Parameters 
shown in Figure 10 and not mentioned in 
this section are used to create data sets 
and optimize I/O operations in job steps. 



r---------·-----·---------------------·-------------·-------------..;..------i--------------------1 

{~ATA ~ . 
DUMMY j 
DDNAME=ddname 

dsname 
dsname(element) 
*.ddname 

DSNAME~= *. stepname. ddname 
*.stepname.procstep.ddname 
&name 
&name(element) 

UNIT=(name[,{nlP} 2 ])3 

DCB=Csubparameter-list)6 

SYSOUT=A 

{
OLD} DISP=( NEW 
MOD ~:~~~TE J ): 

,CATLG 
,UNCATLG 

LABEL=Csubparameter-list)6 

Volume=Csubparameter-list) 6 

~·----·--------------------------------·--------------------------------.--------------------~ 

1
1 :L If either of these three parameters is selected, it must be the ionly parameter I 
I selected. ! I 
12 If neither "n" nor "P" is specified, 1 is assumed. i I 
13 If only "name" is specified, thE~ delimiting parentheses may be oriutted. I 
1~ The assumption for the second sub parameter is discussed in Spedifyinq the I 
I Disposition of a Data Set in this section. I 
15 The subparameters are positional. I 
I cs see the section, Creating Data sets. . I 
L·---------------------------------------------------------------------1--------------------J 

Figure llo DD Staterrient Operands 

r·-------------------------------------------1 
I Example 1: Printer I 
I I 
l//SYSPRINT DD SYSOUT=A I 
I I 
I Example 2: Card Punch I 
I I 
l//SYSPUNCH DD UNIT=SYSCP I 
I I 
I Example 3: Card Reader I 
I I 
l//SYSIN DD * I 
L--------·--------------------------·-------J 

Figure 12. Unit Record Examples of DD 
Statements 

Unit Record Parameters: 

The UNIT and SYSOUT p~rameters are used for 
unit record data sets;/ the * or DATA 
parameters designate ~hat the data set for 
this job step follows .in the input stream. 
Examples of DD statem~nts for unit record 
data sets are shown in Figure 12. 

! 

i 
Spe:cifyinq r:ata in the Input Stream 

* 
I 

indicates that a data !set immediately 
follows this DD stateni)ent in the input 
stream. This paramete!r is used to specify 
a source deck or data iin the input stream. 
If the EXEC statement tf or the job step 
invokes a cataloged pDocedure, a data set 
may be placed in the ~nput stream for each 

Job~Control Language 21 
i 



procedure step. If the EXEC statement 
specifies execution of a program, only one 
data set may be placed :Ln the input stream. 
The DD * statement must be the last DD 
statement for the procedure step or 
program. The end of the data set must be 
indicated by a delimiter statement. The 
data cannot contain // in the first two 
characters of the record. 

DATA 

also indicates data in the input stream. 
The restrictions and use of the DATA 
parameter are the same as the *, except 
that // may appear in the first and second 
positions in ~he record. 

UNIT Parameter: 

UNIT=Cname[,{n!Pl]) 

specifies an input/output device, a type of 
device, or class of devices for a data set. 
When the system is generated, the "name" is 
assigned by the operating system or the 
installation. The programmer can use only 
the assigned names in his DD statements. 
For example, 

UNIT=190, UNIT=2311, UNIT=TAPE 

where 190 is a device address, 2311 is a 
device type, and TAPE is a device class. 

CnlPl 

specifies the number of devices allocated 
to the data set. If a number "n" is 
specified, the operating system assigns 
that number of devices to the data set. 
Parallel, "P", is used with cataloged data 
sets. The control program assigns as many 
devices as there are volumes indicated in 
the index and label fields of the cataloged 
data set. 

SYSOUT Parameter: A SYSOUT parameter may 
be specified for printer data sets. 

22 IBM S/360 OS COBOL m> Programmer's Guide 

SYSOUT=A 

indicates the device class A for the data 
set. The data set defined by the DD 
statement that contains the SYSOUT 
parameter is writ.ten on a device chosen by 
the operator. No parameter other than the 
DCB parameter has any meaning when the 
SYSOUT parameter is usc~d. 

Retrieving Previously Created Data Sets 

If a data set on a magnetic tape or a 
direct-access volume is created and 
cataloged in a previous job or job step, 
all information for thE~ data set such as 
device, volume, space, etc., is stored in 
the catalog and labels.. This information 
need not be repeated in other DD 
statements. To retrieve the data set, the 
name (DSNAME) and disposition CDISP) of the 
data set must be specified. 

If the data set was created in a 
previous job step in the current job, the 
information in the previous DD statement is 
available to the control program, and is 
accessible by ref erring to the previous DD 
statement. To retrieVE! the data set, a 
pointer to a data set created in a previous 
job step is specified by the DSNAME 
parameter. The disposition <DISP) of the 
data set is also specified. 

If the data set was created in a 
previous job but not cataloged, information 
concerning the data set, such as space, 
record format, etc., is stored in the 
labels. The volume and device information 
is not stored. To retrieve the data set, 
the name CDSNAME)t disposition CDISP), 
label (LABEL), volume (VOLUME), and device 
(UNIT) must be specified. The VOLUME and 
LABEL parameters are discussed in the 
section, Creating Data Sets. 

Examples of the use of DD statements to 
retrieve previously created data sets are 
shown in Figure 13. 



r------------------------------------------------------------------~--------------------1 
Example 1: Retrieving a Cataloged Data Set · I 

//CBL01 DD DSNAME=EXPCWKLY),DISP=(OLD,PASS) 

Example 2: Retrieving a Data Set Created in a Previous 

//CBLOS DD DSNAME=*.STEP4.CBL01,DISP=CMOD,KEEP) 

Example 3: Retrieving an Uncataloged Data Set Created 

//CBL09 DD DSNAME=DATA. SIM, DISP:=OLD, UNIT=180, VOLUME=SER=Zl 

~tep 

I 
! 

i~ a Previous Job 

I 
I 
I 
I 
I 
I 
I 
I 
I 

. I 
------------------------------------------------------------------~--------------------J 

! 

Figure 13. Retrieving Previously C:reated Data Sets 

IDENTIFYING A CREATED DATA SET: The DSNAME 
parameter indicates the name of a data set 
or refers to a data set defined in the 
current or a previous job step. 

Specifying a Cataloged Data Set by Name: 

DSNAME=dsname 

the fully qualified name of the data set is 
indicated by "dsname". If the data set was 
previously created and cataloged, the 
control program uses the catalog to find 
the data set and instructs the operator to 
mount the required volumes. 

Specifying a Generation Data Group or PDS: 

DSNAME=ds:nameCelement) 

indicates either a generation data set 
contained in a generation data group or a 
member of a partitioned data set. •rhe name 
of the generation data group or partitioned 
data set is indicated by "dsname"; :if 
"element" is either 0 or a signed integer, 
a generation data set is indicated. For 
example, 

DSNAME=ACCNTC-2) 

indicates the thirdmost recent member of 
the generation data group ACCNT. I:f 
"element" is a name, a member of a 
partitioned data set is indicated. 

R.eferring to a Data Set in the Current Job 
.§tep: 

DSNAME=*.ddname 

indicates a data set that is defined 
previously in a DD statement in this job 
step. The * indicates the current job. 
The name of the data set is copied :from the 
DSNAME parameter in the DD statement named 
"ddname". 

Ref erring to a Data S~t in a Previous Job 
Ste~ 

I 

DSNAME=•.stepname.ddnzj.me 
I 
I 

indicates a data set that is defined in a 
DD statement in a preyious job step in this 
job. The* indicates!the current job, and 
"stepname" is the nam~ of a previous job 
ste!p. The name of th~ data set is copied 
from the DSNAME param~ter in the DD 
statement named "ddna~e". For example, in 
the! control statementcl: 

! 

//SAMPLE JOB 
//JOBLIB DD DSNAME=CA~C,DISP=COLD,PASS) 
//81 EXEC PGM=INVNTRY! 
//COBL01 DD DSNAME=OU'1[1C+1) 
//COBL02 DD DSNAME=CU~NT,DISP=OLD 
//S2 EXEC PGM=UPDATE i 

//COBL05 DD DSNAME=*.S1.COBL01 
//C:OBL07 DD * ! 

I 

I 
! 

The! DD statement COBLQS in job step S2 
indicates the data sett COOT) is defined in 
the DD statement COBLQ1 in job step SL 

! 
Referring to a Data Set in a Cataloged 
Procedure: 

DSNAME=•.stepname.proqstep.ddname 
I 

indicates a data set ~hat is defined in a 
cataloged procedure i~voked by a previous 
job step in this job. The * indicates the 
current job; "stepnam~" is the name of a 
pre!V ious job step; "p:ti-ocstep" is the name 
of a step in the cata~oged procedure; and 
"ddname" is the name ~f the DD statement 
defining the data set.! 

Assigning Names to Temporary Data Sets: 
I 
I 

DSNAME=&name I 

assigns a name to a [temporary data set. 

Job->Control Language 23 



The control program assigns the data set 
a unique name which exists only until the 
end of the current joh. The data set may 
be accessed in following job steps by 
&name. This option is useful in passing 
an object module from a compiler job step 
to a linkage editor job step. 

DSNAME=&nameCelement) 
assigns a name to a member of a temporary 
PDS. The name is assigned in the same 
manner as the DSNAME=&name. This option 
is useful in storing object modules that 
will be linkage edited in a later job 
step in the current job. 

SPECIFYING THE DISPOSITION OF A DATA SET: 
The DISP parameter is specified for both 
previously created data sets and data sets 
being created in this job step. 

[

,DELETE J NEW ,KEEP 
DISP=c{oLD. } I PASS ) 

MOD I CATLG 
,UNCATLG 

is used for all data sets residing on 
magnetic tape or direct access volumes. 

The first subparameter indicates when 
the data set is (was) created. 

NEW 
indicates that the data set is created in 
this step. NEW is discussed in more 
detail in the section, Creating rata 
Sets. 

OLD 
indicates that the data set was created 
by a previous job or job step. 

MOD 
indicates that the data set was created 
in a previous job or job step, but 
records are to be added to the data set. 
Before the first I/O operation for the 
data set occurs, the data set is 
positioned following the last record. If 
a data set specified as MOD does not 
exist, the specification is assumed to be 
NEW. 

The second subparameter indicates the 
disposition of the data set. 

DELETE 
causes the space occupied by the data set 
to be released and made available at the 
end of the current job step. If the data 
set was cataloged and the catalog was 
used to retrieve it, it is removed from 
the catalog. 

24 IBM S/360 OS COBOL(E) Programmer's Guide 

KEEP 
ensures that the data set is kept intact 
until a DELETE option is specified in a 
subsequent job or job step. KEEP is used 
to retain uncataloged data sets for 
processing in future jobs. Keep does not 
imply PASS. 

PASS 
indicates that the data set is ref erred 
to in a later job step. When a 
subsequent reference to the data set is 
made, its PASS status lapses unless 
another PASS is issued. The final 
disposition of the data set should be 
stated in the last job step that uses the 
data set. When a data set is in PASS 
status, the volume(s) on which it is 
mounted is retained. If dismounting is 
necessary, the control program issues a 
message to mount the volume(s) when 
needed. PASS is used to pass data sets 
among job steps in the same job. 

CAT LG 
causes the creation of a catalog entry 
that points to the data set. The data 
set can then be ref erred to in subsequent 
jobs or job steps by name (CATLG implies 
KEEP). 

UNCATLG 
causes the data set to be removed from 
the catalog at the end of the job step. 

If the second subpar.ameter is not 
specified, no action is taken to alter the 
status of the data set. If the data set 
was created in this job (NEW), it is 
deleted at the end of the current job step. 
If the data set existed before this job 
(MOD or OLD), it exists after the end of 
the job. 

DELIMITER STATEMENT 

The delimiter statement (Figure 14) is used 
to separate data from subsequent control 
statements in the input stream, and is 
placed after each data set in the input 
stream. 

The delimiter statem1:.mt contains a slash 
in column 1, an asterisk in column 2, and a 
blank in column 3. The remainder of the 
card may contain comments. 

r----T------------------1 
INAMEIOPERATION OPERAND I 
~----+-------------------~ 
I/* I I 
L----.1.-------------------J 
Figure 14. Delimiter Statement 



Three steps are required to execute a COBOL 
p1:-ogram: compiling, linkage editing, and 
executing. 

For each of the three steps involved in 
processing, ddnames and device names are 
specified by the operating system. These 
ddnames, options for the compiler and 
linkage editor, and specifying additional 
libraries for the linkage editor are 
discussed in this section. 

The output of a single COBOL compilation 
is an object module made up of one control 
section. The name of the control section 
is derived from the PROGRAM-ID statement in 
the COBOL source program. A control 
SE~ction is a unit of coding (instructions 
and data) that is, in itself, an entity .• 
All elements of a control section are 
loaded and executed in a constant 
relationship to each other. A control 
section is, therefore, the smallest 
separately relocatable unit of a program. 

USING CATALOGED PROCEDURES 

BE~cause writing job-control statements can 
bE~come time-consuming work for the 
programmer, IBM supplies three cataloged 
procedures to aid in the compiling, linkage 
editing, and executing of COBOL-E programs. 
Each procedure requires that a 

//procstep.SYSIN DD 

statement be provided in the input stream, 
indicating the location of a source module 
or object module to the control program. 
The job-control statements needed to invoke 
the procedures, and deck structures used 
with the procedures, are described in the 
following text. 

COMPILE 

COBEC is the cataloged procedure for 
compilation. It is invoked by specifying 
the name COBEC as the first parameter in an 
EXEC statement. 

(The cataloged procedure, COBEC, 
consists of the control statements shown in 
Figure 27 in cataloged Procedures.) 

JOB PROCESSING 

With the procedure COBEC, a DD statement 
COB.SYSIN indicating t~e location of the 
source module must be ~upplied in the input 
stream. Figure 15 shows control statements 
that can be used to invoke the procedure. 

I 

I 
r---------------------~-------------------1 
l//jobname JOB I I 
I// EXEC COBEC ! I 
l//COB.SYSIN DD * i I 
I r--------------------t--1 I 
11 COBOL Source Modtilel I 
I L--------------------t--J I 
I/* i I 
L---------------------~-------------------J 

Figure 15. Invoking the Cataloged 
Procedure COBEC 

I 

A sample deck struclure to compile a 
source module is shownl in Figure 16. 

r---------------------+-------------------1 I //,JOBC JOB 00, COBOLPROG, MSGLEVEL=l I 
l//EXECC EXEC PROC=COBfC I 
l//COB.SYSIN DD * i I 
I r--------------------~--, I 
I I COBOL Source Mod1flle I I 
l~;-------------------r--J I 
L---------------------r-------------------J 

I 
Figure 16. Compiling a source Module 

! 
! 

The SYSIN data set ~ontaining the source 
mod1ile is defined as d~ta in the input 
str~:!am for the compilet. Note that a 
delimiter statement foflows the last COBOL 
statement. ' 

LINKAGE EDIT AND EXEcu±E 
I 

I 
COBELG is the cataloged procedure to 
linkage edit COBOL obj~ct modules and 
execute the resulting load module. It is 
invoked by specifying t.he name COBELG as 
the first parameter inf an EXEC statement. 

(The cataloged procedure to linkage edit 
and execute consists of the control 
statements shown in Fi9ure 28 in Cataloged 
Procedures.) I 

I 

With the procedure ¢0BELG, a DD 
statement LKED.SYSIN, which indicates the 
location of the objectimodule, must be 
supplied. 

Job Processing 25 



Figure 17 shows control statements that 
can be used to invoke the COBELG cataloged 
procedure. 

r-----------------------------------------1 
l//jobname JOB I 
I// EXEC COBELG I 
l//LKED.SYSIN DD * I 
I r----------------------·-1 I 
11 COBOL Object Module! I 
I L-----------------------J I 
I/* I 
. L----------------------------------------J 
Figure 17. Invoking the Cataloged 

Procedure COBELG 

A sample deck structure to linkage edit 
and execute, as one load module, several 
object modules entered in the input stream 
is shown: in Figure 18. 

r------------------------------------------1 
//JOBBLG JOB 00,ECOBOL,MSGLEVEL=l 
//EXECLG EXEC PROC=COBELG 
//LKED.SYSIN DD * 
r------------------------------1 
I First COBOL Object Module I 
L------------------------------J 

r------------------------------1 
I Last COBOL Object Module I 
L------------------------------J 

I/* 
L-----------------------------------------J 
Figure 18. Linkage Edit and Execute 

The object module decks were created by 
the DECK compiler option. The linkage 
editor recognizes the end of one module and 
the beginning of another, and resolves 
references between them. 

Figure 19 shows a sample deck structure 
to linkage edit object modules that are 
within a cataloged sequential data set, 
OBJMODS, and subsequently execute the 
program. 

r-----------------------------------------1 
l//JOBBLG JOB 00,ECOBOL,MSGLEVEL=l I 
l//EXECLG EXEC COBELG I 
I/ /LKED. SYS IN DD DSNAME=:OBJMODS I DISP=OLD I 
l//GO.SYSIN DD * I 
I r-----------------------1 I 
11 Data I I I L _______________________ J I 

I/* I 
L-----------------------------------------J 
Figure 19. Linkage Edit and Execute 

(Object Modules in a Cataloged 
Data Set> 

26 IBM S/360 OS COBOL(E) Programmer's Guide 

COMPILE, LINKAGE EDIT, AND EXECUTE 

The third cataloged procedure, COBECLG, 
passes a source module through three 
procedure steps: compile, linkage edit, 
and execute. The cataloged procedure is 
invoked by specifying the name COBECLG as 
the first parameter in an EXEC statement. 

(Figure 29 in Cataloged Procedures shows 
the statements that make up the cataloged 
procedure, COBECLG.) 

The SYSIN data set (source module) must 
be defined to the compiler. Figure 20 
shows statements that can be used to invoke 
the procedure, COBECLG. 

r-----------------------------------------1 
l//jobnarne JOB I 
I// EXEC PROC=COBECLG I 
l//COB.SYSIN DD * I 
I r-----------------------1 I 
I I COBOL source Module I I I L _______________________ J I 

I/* I 
L-----------------------------------------J 
Figure 20. Invoking the Cataloged 

Procedure, COBECLG 

Figure 21 shows a sc:tmple deck structure 
to compile, linkage edit, and execute a 
source module. 

r-------------------------------------------1 
l//JOBCLG JOB 00,ECOBOIJ,MSGLEVEL=l I 
l//EXECC EXEC COBECLG I 
l//COB.SYSIN DD * I 
I r-----------------------1 I 
11 COBOL Source Module! I 
I L---------------------·--J I 
I/* I 
L-----------------------------------------J 
Figure 21. Compile, Linkage Edit, and 

Execute 

COMPILER PROCESSING 

The names for DD statements Cddnames) 
relate I/O statements in the compiler with 
data sets used by the compiler. These 
ddnames must be used for the compiler. 
When the system is generated, names for I/O 
device classes are also established and 
must be used by the programmer. 



Compiler Name 

The program name for the compiler is 
IEPCB~QO. If the compiler is to be 
executed without using the supplied 
cataloged procedures in a job step, the 
EXEC statement parameter 

PGM=IEPCBLOO 

must be used. 

Compiler ddnames 

The compiler can use up to eight data sets. 
To establish communication between the 
compiler and the programmer, each data set 
is assigned a specific ddname. Each data 
s·et has a specific function and device 
requirement. Table 2 lists the ddnames, 
functions., and device requirements for the 
data sets .. 

I 

Table 2. Compiler ddriames 
r--------T-----------~----T---------------1 
I I i I DEVICE I 
lddname !FUNCTION i !REQUIREMENTS I 
~--·------+------------i----+---------------~ 
ISYSIN I reading the i I• card reader I 
I !source prog~am I• intermediate I 
I I i I storage I 
~--------+-----------~----+---------------i 
ISYSPRINTlwriting the I I• printer I 
I I storage map, 1 I• intermediate I 
I !listings, artd I storage I 
I I messages ! I I 
~--------+-----------~----+---------------i 
ISYSPUNCHlpunching the I• card punch I 
I !object module I• direct-access! 
I I deck, or cr~at- I• magnetic tapel 
I ling an objedt I I 
I !module data lset I I 
I las input to !the I I 
I !linkage editor I I 
~--------+------------:----+---------------i 
ISYSUTl !work data s~,t I• direct-access! 
I I needed by th!e I• magnetic tape I 
I I compiler dur'ing I I 
I I compilation i I I 
~--------+------------1----+---------------i 
ISYSUT2 !work data se~ I• direct-access! 
I I needed by thle I• magnetic tape I 
I I compiler durling I I 
I I compilation I I I 
~--------+------------1----+---------------i 
ISYSUT3 !work data se~ I• direct-access! 
I I needed by the I• magnetic tape I 
I I compiler dur:ing I I 
I I compilation I I I 
~--------+------------1---+---------------i 
ISYSUT4 !optional wor~ I• direct-access! 
I !data set nee~ed I• magnetic tapel 
I !when using I I I 
I I debug packet[Cs> I I 
~--------+------------~---+---------------i 
ISYSLIB joptional use~ I• direct-access! 
I I source progr:a.m I I 
I I library I I I 
L--------i------------~---i---------------J 

I 

I 
'To compile a COBOL ~ource module, five 

of these data sets are' necessary: SYSIN, 
SYSPRINT, SYSUTl, SYSUT2, and SYSUT3, along 
with the direct-access\ volume(s) that 
contains the operating! system. With these 
five data sets, only ai listing is generated 
by the compiler. If ah object module is to 
be punched or written bn a direct-access or 
magnetic tape volume, ~ SYSPUNCH DD 
statement must be suppiied. If the debug 
packet(s) is to be use~, a SYSUT4 DD 
statement must be supplied. If the 
compiler is to COPY or! INCLUDE a 
source-language module\ from the user's 
source program library~ a SYSLIB DD 
statement must be suppfied. 

I 

For the DD statement SYSIN or SYSPRINT, 
an :intermediate storag~ device may be 
specified instead of t~e card reader or 

Job Processing 27 



printer. The intermediate storage device 
usually is magnetic tape, but can be a 
direct-access device. 

If an intermediate device is specified 
for SYSIN, the compiler assumes that the 
source module deck was placed on 
intennediate storage by a previous job or 
job step. If an intermediate device is 
specified for SYSPRINT, the maps, listing, 
and error/warning messages are written on 
that device; a new job or job step can 
print the contents of the data set. 

Compiler Device Classes 

Names for input/output device classes used 
for compilation are also specified by the 
operating system when the system is 
generated. The class na.mes, functions, and 
types of devices are shown in Table 3. 

Table 3. Device Class Names 
r-----T-------~------T-------------------1 

I CLASS I I I 
!NAME !CLASS FUNCTIONSIDEVICE TYPE I 
~-----+---------------+-·------------------~ 
ISYSSQjwriting, I• direct-access I 
I !reading I• magnetic tape I 
~-----+~--------------+-------------------~ 
ISYSDAjwriting, I• direct-access I 
I I reading I I 
~-----+---------------+-·------------------~ 
ISYSCPlpunching cards I• card punch I 
~-----+---------------+-------------------~ 
I A I SYSOUT output I• printer I 
I I I• magnetic tape I 
L-----.L---------------.L-·------------------J 

The data sets used by the compiler must 
be assigned to the device classes listed in 
Table 4. 

28 IBM S/360 OS COBOL(E} Programmer's Guide 

Table 4. Correspondence Between Compiler 
ddnames and Device Classes 

r--------T-------------·-------------------1 
I ddname I POSSIBLE DEVI.CE CLASSES · I 
~--------+-------·------·-------------------~ 
ISYSIN ISYSSQ, or the input stream I 
I I device Cspeci.fi.ed by DD * or DD I 
I IDATA} I 
~--------+--------------------------------~ 
ISYSPRINTIA,SYSSQ,SYSDA I 
~--------+-------------·-------------------~ 
ISYSPUNCHISYSCP,SYSSQ,SYSDA I 
~--------+--------------------------------~ 
ISYSUTl ISYSSQ,SYSDA I 
~--------+--------------------------------~ 
ISYSUT2 ISYSSQ,SYSDA I 
~--------+--------------------------------~ 
ISYSUT3 ISYSSQ,SYSDA I 
~--------+-------------·-------------------~ 
ISYSUT4 ISYSSQ,SYSDA I 
~--------+--------------------------------~ 
ISYSLIB ISYSDA I 
L--------.L-------------------------------~J 

r----------------·------·-------------------1 

~AAM \ I 
PAAM. procstepJ = C [LINECNT=nnl [, BUFSIZE=nnl I 

I r, DECK J ,, FLAGE l [' LI ST J I I ~ NODEC~~ L' FLAGWJ , NOLIS:J I 
I j, DMAP ] j, P~.AP l ['MAPS l I 
I ~ NODMA:J l_i NOPMAPj , NOMAP~ I 
I I 

1
1 f, DISPCK l f, REGEDJ I 
I ~·No0Is1>c~ L' INVED > I 
L----------------·------·-------------------J 

Figure 22. Compiler Options 

Compiler Options 

Options (Figure 22> may be passed to the 
compiler through the Pl\.RM parameter in the 
EXEC statement. The following information 
may be specified: 

1. The number of linE=s to be printed per 
page on the compiler output listing. 

2. The size of each of the six work 
buffers used during a compilation. 

3. Whether an object module is created. 

4. The type of diagnostic messages to be 
generated by the compiler. 

5. Whether a list of the source 
statements is printed. 

6. Whether a list of data-name addresses 
is generated. 



7. Whether a list of object code is 
generated. 

8. Whether a list of both data-name 
addresses and object code is 
generated. 

9. Whether the compiler will generate 
object code to test length of fields 
to be DISPLAYed. 

110. The type of editing performed in the 
PICTURE clause and numeric literals. 

There is no specified order for compiler 
options in the PARM parameter. 

LINECNT=nn: The LINECNT option indicates 
the number-of lines to be printed on each 
page of the compilation output listing. 
The programmer specifies a number nn,, where 
nn is a 2-digit integer in the range of 10 
to 99. If the option is not specified, the 
number of lines per page will be that 
specified when the system was generated. 

.fil!FSIZ:E=nn: The BUFSIZE option indicates 
the size of each of the six work buffers 
used during a COBOL compilation. The 
BUFSIZE parameter should not be used on a 
32:K system.. The following f orroula can be 
used to determine the maximum value to be 
used for this parameter. 

S = C - 30000 - [(13 + L)(N)] 
6 

where: s is the size of each work buff er 
c is the total main storage 
L is the length of the average data 

name 
N is the number of data names. 

If the work buffers are for disk., the 
maximum value of s is 3625. If the work 
bu:Ef ers are for tape, the maximum value of 
s is 32670. If the option is not 
specified, the buffer size will be that 
sp1=cif ied when the system was generated .• 

DECK or NODECK: The DECK option specifies 
that the compiled source module (i.e., the 
object module) is written on the data set 
specified by the SYSPUNCH DD statement. 
NODECK specifies that no object module is 
written. A description of the deck i.s 
given in the section, system output. If 
neither option is specified, an object 
module is produced. 

:FL.AGE or FLAGW: The FLAGE option specifies 
that the compiler will suppress warning 
diagnostic messages.. The FLAGW option 
specifies that the compiler will generate 
diagnostic messages for actual errors in 
the source module, plus warning diagnostic 
messages for possible errors. Diagnostic 
messages are written on the data set 

specified by the SYSPRINT DD statement. If 
neither option is specified, the class of 
dia9nostic message pro~uced is that 
specified when the system was generated. 

! 
! 

LIST or NOLIST: The LlST option specifies 
that the source listin~ is written on the 
data set specified by t.he SYSPRINT DD 
statement. The NOLIST 1 option indicates 
that no source listing!is written.. A 
description of the souif'ce listing is given 
in the section, System'.output. If neither 
option is specified, aisource listing is 
produced. 1 

i 

DMAP or NODMAP: The DMAP option specifies 
that the compiler will :generate a listing 
Of the DATA DIVISION data-names and their 
addresses relative to ti.he load point of the 
obje!ct module. The lisiting is written on 
the data set specified \by the SYSPRINT DD 
statement. The NODMAP :option specifies 
that a data-name listidg will not be 
generated. If neither ,DMAP nor NODMAP is 
specified, the option tfaken will be that 
specified when the sys"tfem was generated. 

i 
PMAP or NOPlf.tAP: The PMAP option specifies 
that the compiler will 'generate a listing 
of object code for each: statement in the 
PROCEDURE DIVISION. Ttie listing is written 
on the data set specifi:ed by the SYSPRINT 
DD statement. The NOP.MAP option specifies 
that a listing of object code will not be 
generated. If neither ~MAP nor NOPMAP is 
specified, the option taken will be that 
specified when the system was generated. 

I 

! 

MAPS or NOMAPS: The MA~S option is 
equivalent to specifying both DMAP and 
PMAP. The NOMAPS optic~ is equivalent to 
specifying both NOD MAP :and NOP MAP. 

I 

! 

DISPCK or NODISPCK: Th~ DISPCK option 
specifies that the comp~ler will generate 
object code that will test, at execution 
time, to determine if a field to be 
DISP:LAYed exceeds the record length of the 
device on which it is tp be written. '!'he 
NODI:SPCK option specifies that no such code 
will be generated. If neither DISPCK nor 
NODI:SPCK is specified, ·~he option taken 
will be that specified when the system was 
generated. I 

I 
REGED or INVED: The RE~ED option specifies 
that the character"." ~epresents a decimal 
point and the characterl)I," represents an 
insertion character. T~e INVED option 
spec:if ies that the abov~ rolls of these 
characters ".", "," be reversed 

I 

I b . 29 Jo Processing 



LINKAGE EDITOR PROCESSING 

The linkage editor processes COBOL object 
modules, COBOL subroutines, resolves any 
references to subprograms, and constructs a 
load module. To communicate with the 
linkage editor, the programmer supplies an 
EXEC statement and DD statements that 
define all required data sets; he may also 
supply linkage editor control statements. 

LINKAGE EDITOR NAME 

The program name for the linkage editor is 
IEWL. If the linkage editor is executed 
without using cataloged procedures in a job 
step, the EXEC statement parameter 

PGM=IEWL 

must be used. 

LINKAGE EDITOR INPUT AND OUTPUT 

There are two types of input to the linkage 
editor: primary and secondary. 

Primary input is a sequential data set 
that contains object modules and linkage 
editor control statements. Any external 
references among object modules in the 
primary input are resolved by the linkage 
editor as the primary input is processed. 
Furthermore, the primary input contains 
references to the secondary input. These 
references are linkage editor control 
statements and/or COBO!, external references 
in the object modules. 

Secondary input resolves references and 
is separated into two types: automatic 
call library and additional input specified 
by the programmer. The automatic call 
library must always be the COBOL library 
(SYS1.COBLIB), which is the PDS that 
contains the COBOL object time subroutines. 
Through the use of DD statements, the 
automatic call library can be concatenated 
with other partitioned data sets. Three 
types of additional input may be specified 
by the programmer: 

1. An object module used as the main 
program in the load module being 
constructed. This object module, which 
can be accompanied by linkage editor 
control statementsi is either a member 
of a PDS or is a sequential data set. 
The first record in the primary input 
data set must be a linkage editor 
INCLUDE control statement that tells 

30 IBM S/360 OS COBOL(E) Programmer's Guide 

the linkage editor to process the main 
program. 

2. An object module used to resolve 
external references made in another 
module. The object module, which can 
be accompanied by linkage editor 
control statements, is a sequential 
data set. An INCLUDE statement that 
defines the data set must be given. 

3. A module used to resolve external 
references made in another module. The 
load module which can be accompanied by 
linkage editor control statements, is a 
member of a PDS. The module can be 
included from the call library. 

In addition, the secondary input can 
contain external references and linkage 
editor control statements. If a load 
module is not in the automatic call 
library, the linkage editor LIBRARY 
statement can be used to direct the linkage 
editor to reference additional libraries 
during the automatic library call process. 

The output load module of the linkage 
editor is always place!d in a PDS as a named 
member. The nam1e can be provided in the 
SYSLMOD DD statement for the linkage editor 
execution. For the execution of the load 
module, this namie can be used. Error 
messages and optional diagnostic messages 
are written on a:n inte!rmediate storage 
device or a printer. Also, a work data set 
on a direct-access device is required by 
the linkage editor to do its processing. 
Figure 23 shows the Il'O flow in linkage 
editor processing. 

LINKAGE EDITOR DDNAMES AND DEVICE CLASSES 

The programmer communicates data set 
information to the linkage editor through 
DD statements identified by specific 
ddnames <similar to the ddnames used by the 
compiler) • The ddnamE:!S, functions, and 
requirements for data sets are shown in 
Table 5. 

Any data sets specified by SYSLIB or 
SYSLMOD must be partitioned data sets. 
(Additional inputs are partitioned data 
sets or sequential data sets.) The ddname 
for the DD state:ment that defines any 
additional libraries or sequential data 
sets is written in INCLUDE and LIBRARY 
statements and is not fixed by the linkage 
editor. 



The device classes used by the compiler 
<see Table 3) are also used with the 
linkage editor. The data sets used by the 
linkage editor may be assigned to the 
device classes listed in Table 6. 

SYSLIB 

Automatic 
Cal I Library 

SYSLIN 

Additional 
Libraries 

SYSUTI 

Work Data 
Set 

Linkage 
Editor 

SYSLMOD 

·a Module 
Library 

Diagno~ 
DataS~ 

SYSPRINT 

Figure 23. Linkage Editor Input and Output 

Table 5. Linkage Editor 

i 
i 
I 

TablE~ 6. Correspondence Between Linkage 
Editor ddname~ and Device Classes 

r---------T------------t------------------1 
lddname !POSSIBLE DEVlCE CI.ASSES I 
~---------+------------+------------------~ 
ISYSLIN ISYSSQ, SYSDA~ or the input I 
I I stream devicf (specified I 
I lby DD * or D~ DATA) I 
~---------+------------+------------------~ 
ISYSLIB ISYSDA ! I 
~----------+------------+------------------~ 
ISYSUTl ISYSDA i I 
~---------+------------+------------------~ 
ISYSLMOD ISYSDA . I 
~---------+------------~------------------~ 
ISYSPRINT IA,SYSSQ I 
~---------+------------+------------------~ 
juser- ISYSDA,SYSSQ i I 
I specified I · I 
L---------..L------------~------------------J 

ADDrrIONAL INPUT 

The INCLUDE and LIBRARY1statements are used 
to specify additional s~condary input to 
the linkage editor. Moip.ules neither 
specified by INCLUDE or/LIBRARY statements 
nor contained in the pr~mary input are 
retrieved from the auto~atic call library. 

ddnames INCLUDE Statement 
r---------T---------------T---------------1 
I I I DEVICE I 
I ddname I FUNCTION I REQUIREMENTS I 
~---------+-----·----------+---------------~ 
ISYSLIN !primary input I• direct a.ccessl 
I I data., normally I • magnetic tape I 
I jthe output of I• card reader I 
I I the compiler I I 
~---------+---------------+---------------~ 
ISYSLIB !automatic call I• direct access I 
I I library I I 
I I (SYSL COBLIB) I I 
~----------+---------------+----------·-----~ 
ISYSUT1 lwork data set I• direct access! 
~·----------+---------------+----------·-----~ 
ISYSPRINT !diagnostic I• printer I 
I !messages I• intermediate I 
I I I storage I 
I I I device I 
~----------+--------------+----------·-----~ 
ISYSLMOD !output data setl• direct access! 
I I for the load I I 
I I module I I 
~-·---------+---------------+----------·-----~ 
I user- I additional I• direct access I 
lspecifiedllibraries and I• magnetic tapel 
I jobject modules I I 
L----------J.---------------..L----------·-----.ll 

r---------T------------~------------------1 
I Operation I Operand I 
~---·------+------------t------·-------------~ 
I INC:LUDE I ddname [ Cmemb~r-name I 
I I C, member-nrmel ••• > 1 I 
I I [,ddnameCCi;nember-name I 
I I C,member-n~me] ••• )]]... I 
L---·------..L------------i-------------------J 

The INCLUDE statemenit is used to include 
either members of addit~onal libraries 
CPDS) or sequential data sets. The 
"ddname" specified a DD/ statement that 
defines either a PDS coptaining object 
modules and control statements or just load 
modules, or defines a s~quential data set 
containing object modul~s. The "member 
name" is the name of a ~ember of a PDS and 
is not used when a sequ:ential data set is 
specified. ; 

The linkage editor p~ocesses the object 
module or load module w~en the INCLUDE 
statement is encountere~. 

Job Processing 31 



LIBRARY Statement 

r---------T-------------------------------1 
I Operation I Operand I 
~---------+-------------------------------~ 
!LIBRARY lddnameCmember-name I 
I I C ,member-name] ••• > I 
I I C, ddname (member-name I 
I I [,member-name] ••• )]... I 
L---------i-------------------------------J 

The LIBRARY statement is used to include 
members of additional libraries during the 
automatic library call process. The 
"ddname" must be the name of a DD statement 
that specifies a PDS that contains either 
object modules and linkage editor control 
statements, or just load modules. The 
"member name" is an external reference that 
is unresolved after primary input 
processing is complete. 

The LIBRARY statement differs from the 
INCLUDE statement in that external 
references specified in the LIBRARY 
statement are not resolved until all other 
processing, except references reserved for 
the automatic call library, is completed by 
the linkage editor. (INCLUDE statements 
resolve external references when the 
INCLUDE statement is encountered.) 

32 IBM S/360 OS COBOL(E) Programmer's Guide 

Example: Two subprograms, SUBl and 
SUB2, and a main program, MAIN, are 
compiled by separate job steps. In 
addition to the COBOL library, a private 
library, MYLIB, is used to resolve external 
references to the symbols X, Y, and z. 
Each of the object modules is placed in a 
sequential data set by the compiler, and 
passed to the linkage editor job step. 

Figure 24 shows the control statements 
for this job. (Note: Cataloged procedures 
are not used in this job.) In this job, an 
additional library, MYLIB, is specified by 
the LIBRARY statement and the ADDLIB DD 
statement. SUBl and SUB2 are included in 
the load module because SYSLIN input is the 
&GOFILE data set containing the MAIN, SUBl, 
and SUB2 object modul1es. The JY10D parameter 
of DISP in STEP2 and STEP3 cause the SUBl 
and SUB2 object modul1es to be added to the 
sequential data set containing the MAIN 
object module. The linkage editor input 
stream, SYSLIN, is two concatenated data 
sets. The first data set is the sequential 
data set &GOFILE, which contains the MAIN, 
SUBl, and SUB2 programs. The second data 
set is the input stream containing the 
LIBRARY statement. After linkage editor 
execution, the load module is placed in the 
PDS PROGLIB and given the name CALC, as 
specified on the SYSLMOD DD statement for 
STEP4. 



r------+---------------------------------------------------1 
//JOBX JOB 
//STEP:,t EXEC PGM=IEPCBLOO 

//SYSPUNCH 
//SYSI1'~ 

DD DSNAME=&GOFII,E,DISP= (MOD), UNIT=SYSSQ 

/* 
//STEP2 

DD * 
Source module for MAIN 

EXEC PGM=·IEPCBLOO 

//SYSPqNCH DD DSNAME=&GOFILE,DISP=(MOD),UNIT=SYSSQ 
//SYSIN DD * 
/* 
//STEP3! 

source module for SUBl 

EXEC PGM=IEPCBLOO 

//SYSPUNCH 
//SYSINi 

DD DSNAME=&GOFILE,DISP=(MOD),UNIT=SYSSQ 

/* 
//STEP4 

DD * 
Source module for SUB2 

EXEC PGM=IEWL 

//SYSLIB 
//SYSLM<DD 
//ADDLIB 
//SYSLitl 
// 

DD 
DD 
DD 
DD 

DSNAME=SYSl. COB LIB, DISP:::;:OLD 
DSNAME=PROGLIB(CALC),UNIT=SYSDA 
DSNAME=MYLIB,DISP=OLD 
DSNAME=&GOFILE,DISP=OLD 

I/* 

DD 
LIBRARY * ADDLIBCX,Y,Z) 

L---·-----;.--------------------------·-------------·-----------J 

Figure 24. Linkage Editor Example 

LINKAGE ~DITOR PRIORITY 

If contrql sections with the same name 
appear i~ the input to linkage editor, the 
linkage ~ditor inserts only one of the 
control s!ections. The following priority 
for contz'.01 sections is established by the 
linkage e!di tor: 

1.. Contr'ol sections appearing in SYSLIN or 
control sections appearing in modules 
identified by INCLUDE statements in 
SYSLIN. 

2. Contripl sections in modules identified 
by th1~ LIBRARY statement. 

3. Contr\:>l sections in modules appearing 
in SY$LIB. 

If conft:.rol sections with the same name 
appear inia single data set, only the 
module enct::ountered first is inserted in the 
output loc~d module. 

I 

OTHER LINKAGE EDITOR ¢oNTROL STATEMENTS 
! 

In addition to the LieRARY and INCLUDE 
statements, other control statements are 
available for use witr~ the linkage editor. 
These statements enable the user 
to:: specify additional names for load 
modules (ALIAS>, repla).ce control sections 
within a load module (REPLACE), and change 
control section names :and subprogram entry 
point names (CHANGE). · Also, two statements 
(O~~RLAY and INSERT) enable the programmer 
to overlay load modules. For a detailed 
description of these ~ontrol statements, 
see the publication, I:BM System/360 
Operating system: Linkage Editor. 

Job Processing 33 



ENTRY Statement 

The ENTRY statement specifies the first 
instruction to be executed. 

r---------T--------------1 
I Operation I Operand I 
~---------+--------------~ 
IENTRY texternal name I 
L---------i--------------J 

External name is defined as a control 
section name or an entry name in a linkage 
editor input module. It must be the name 
of an instruction, not of data. In an 
overlay program, the external name must be 
defined as the name of an instruction in 
the root segment. 

OPTIONS FOR LINKAGE EDITOR PROCESSING 

The linkage editor options are specified in 
an EXEC statement. The options that are 
most applicable to the COBOL programmer 
are: 

{
PARM l 
PARM.procstepj=<CXREF](,LET] [,LIST]) 

XREF: The XREF option informs linkage 
editor to produce a map of the load module; 
this map indicates the relative location 
and length of main programs and 
subprograms. .Also, a cross-reference list 
indicating all external references in each 
main program and subprogram is generated. 
Descriptions of the map and cross-reference 
listing are given in System output. 

LET: The LET option informs linkage editor 
to mark the load module ready for execution 
even though error conditions were found. 

LIST: The LIST option indicates that 
linkage editor control statements are 
listed in card-image format on the 
diagnostic output data set. 

Other options can also be specified for 
the linkage editor. For a detailed 
description of all linkage editor options, 
see the publication, IBM System/360 
Operating System: Linkage Editor. 

LOAD MODULE EXECUTION 

When the system is generated, device names 
are assigned by the operating system and 
the installation. The programmer chooses 
devices by specifying either the 
installation or operating system names. 

34 IBM S/360 OS COBOL(E) Programmer's Guide 

Program Name 

When "PGM=program name" is used to indicate 
the execution of a load module, the module 
must be in either the system library 
(SYSl.LINKLIB) or a private library. When 
the module is in a private library, a 
JOBLIB DD statement must be supplied to 
indicate the name of the private library. 
For example, assume that the load modules 
FICA, FITX, and SITX are in the PDS 
PAYROLL. These load modules are executed 
as follows: 

//JOBPAY JOB 00,ECOBOL 
//JOBLIB DD DSNAME=PAYROLL,DISP=(OLD,PASS) 
//STEPl EXEC PGM-FICA 

//STEP2 EXEC PGM=FITX 

//STEP3 EXEC PGM=SITX 

The JOBLIB DD statement concatenates the 
private library PAYROLL with the system 
library. 

Execution ddnames 

In the source module, data sets are 
identified by the external names specified 
in the environment division SELECT and 
ASSGN clause. These names must correspond 
to the ddname for the associated DD 
statement at execution time. 

When an error condition recognized by 
compiler-generated code arises during 
execution, an error message is written on 
the console typewriter. These messages, 
with accompanying format and descriptions, 
are shown in Appendix ~· 

SYSABEND Data Set 

During execution of a load module, there 
are various conditions that may arise to 
cause the abnormal terndnation of the 
execution. At this point, the programmer 
could utilize an object-program 



main-storage dump for debugging purposes. 
This is the function of a SYSABEND da.ta 
set. 

When a SYSABEND data set is specified: 

//SYSABEND DD SYSOUT=A 

in the exe¢ution job step, the system 
provides ar~ object-program main-storage 
dump on thE;~ SYSOUT device whenever the job 
sbep is ab~ormally terminated. 

Execution pevice Classes 

For load m9dule execution, the programmer 
can use the same names assigned to device 
classes used by the compiler (shown in 
Table 3). However, additional names for 
specific d~vices and device classes can be 
assigned by the installation. The 
programmer· can choose which device to use 
for his da::ta sets, and specify the name of 
the device or class of devices in the UNIT 
parameter of the DD statement. 

DCB Parameter 

The DCB pa:rameter may be specified for data 
sets when a load module is executed. For 
.informatio:n concerning the DCB parameter, 
see Crea ti.rig Data Sets. 

Scratching Disk Data Sets 

The catalqged procedures supplied by IBM 
inform th~ operating system to scratch, at 
the normali end of a job, the utility data 
sets and ~.he temporary data sets that are 
passed frdm one job step to another.. This 
means tha~. both the disk area and data set 
names are reusable for the next job to be 
p1:ocessed •. 

If a jc~b terminates abnormally, a dump 
of main st:'.orage is provided by the 
operating.system, after which the data sets 
are scrat<:hed. However, there may be 
instances where a job is abnormally 
terminatec;l without the system' s providing a 
dump of m~in storage, or an instance when 
the progr~tmmer or operator manually 
interrupt~; the complete generation of a 
dump by the system. In these cases, the 

data sets are not scrat9hed automatically 
by the operating system~ they must be 
scratched by a system utility program, 
IEHPROGM. For a descrirtion of this 
utility program, see the publication IBM 
System/360 Operating Sy~tem: Utilities. 
An example of scratching a data set is 
show:n in Appendix A of ~this publication. 

I:n some cases, the d~name is that which 
is provided in the DD s·tatement. However,· 
some utility data sets ~o not have external 
dsnames assigned (such ;as SYSUT1, SYSUT2, 
etc.) in the cataloged! procedures. In 
these cases, the operat:ing system assigns 
an internal temporary dsname in the format 

AAAAAAAA.AAAAAAAA.AAAAA~.AAAAAAAA. 
nnnnnnnn 

where n denotes a digit from 0 through 9. 

To obtain the internally assigned 
dsnames, the system uti!lity program IEHLIST 
must be executed. This utility program 
provides a listing of tfhe Volume Table of 
Contents (VTOC) on the !disk pack. All 
internal dsnames will aippear on the VTOC 
listing and will be in [the preceding 
format. These internali dsnames can then be 
specified to the scratdh utility program 
IEHPROGM. 

The following examplf e shows the control 
statements required to execute the IEHLIST 
utility program. 

//LIST JOB 123,DOE,MSG~EVEL=l 
// EXEC PGM=IEHLIST . 
//SYSPRINT DD SYSOUT=A. 
//DD1 DD UNIT=2311,DISP=OLD 
//DD2 DD UNIT=2311,DIS*=OLD, 
// VOLUME=$ER=222222 
//SYSIN DD * 

LISTVTO¢ VOL=2311=222222 
/* 

x 

~['he //SYSPRINT stat~ment specifies the 
device~ on which the li$ting will be 
created. The //DD1 st~tement specifies the 
system residence volum~. The //DD2 
statement specifies a *ountable volume. 
The LISTVTOC statement[specifies the 
specific device from which the VTOC is to 
be listed. If the VOLi operand is omitted, 
the system residence v~lume is assumed. 

•rhe fallowing example shows the control 
statements required to' execute the IEHPROGM 
utility program, which scratches the data 
set. 

Job Processing 35 



//SCR JOB ,SCRATCH,MSGLEVEL=l 
//STP EXEC PGM=IEHPROGM 
//SYSPRINT DD SYSOUT=A 
//DDl DD UNIT=2311,DISP=OLD 
//DD2 DD UNIT=2311,DISP=OLD, X 
// VOLUME=SER=222222 
//SYSIN DD * 

SCRATCH DSNAME=+.+.+.+.*, 1 
VOL=2311=222222 

SCRATCH DSNAME=LOADSET, 1 
VOL=2311=222222 
SCRATCH DSNAME=GODATA.RUN, 1 
VOL=2311=222222 

NOTE 
The entry for the DSNAME of the SCRATCH 
statement must be one continuous line of 
code. Therefore, for each + appearing in 
the statement just illustrated, substitute 
AAAAAAAA <four are required): for*• 
substitute 00000001. 

The last SCRATCH statement (GODATA.RUN) 
assumes that the COBECLG catalog procedure 
was used, and the job name given in the job 
card was RUN. 

36 IBM 5/360 OS COBOL(E) Programmer's Guide 



Data sets may be created in either of two 
ways: 

1. :Sy w~:-iting a COBOL source program and 
exec,:1ting it with the proper DD 
statE:~ments. 

2. By u$ing a data set utility program. 
<The publication, IBM system/360 

_Oped1tinq system: Utilities, discusses 
data~set utility programs.) 

•rhis sec1:ion discusses the use of the DD 
statemeni:. 

To create data sets, the DSNAME 0 UNIT, 
VOLUME, SPACE, LABEL, DISP, SYSOUTu and DCB 
parametets are of special significance (see 
.Figu:re 25>. These parameters specify: 

DSNAME - name of the data set 

UNIT - class of devices used for the data 
set 

VOLUME - volume on which the data set 
resides 

LABEL - Label specification 

DISP - the disposition of the data set 
before and after the job step 

SYSOUT - ultimate device for unit record 
data sets 

DCB - tape density, record format, 
record length, etc. 

Examp+.es of DD statements used to create 
data sets are shown in Figure 26. 

DUMMY 

is specified in the DD statement to 
inhibit ~rite operations specified for the 

CREATING DATA SETS 

i 
data set. The write !Statement is 
recognized, but no da!ta is transmitted. 
(When the programmer !specifies DUMMY in a 
DD statement used to ioverride a cataloged 
procedure, all parame:ters in the cataloged 
DD statement are ove~ridden.) The 
programmer should no~ specify DUMMY for a 
data set that is to be read: an end of 
data set condition reisul ts, and the 
execution of the loadi module is terminated. 
Because dummy is a poisitional parameter, no 
keyword parameters may be specified with 
it. . 

The DSNAME parametier specifies the name 
of the data set. Onl:y four forms of the 
DSNAME parameter are !Used to create data 
sets. 

f 

I 

DSNAME=dsname I 

DSNAME=dsname Celemenlt> 

dsname 
I 

specifies the fully !qualified name of a 
data set. This is thie name under which it 
can be cataloged or tiabulated. 

i 

I 
I dsname(element) 
I 

specifies a particul!ar generation of a 
generation data grou~, a member of a 
partitioned data set,i or an area of an 
indexed sequential d~ta set. To indicate a 
generation of a gene~ation data group, the 
element is a zero or ia signed integer. To 
indicate a member of ja partitioned data 
se~t, the element is ~ name. To indicate an 
area of an indexed s~quential data set, the 
element is PRIME, OV~LOW, or INDEX. The 
significance of the e/lements for indexed 
sequential data sets !is described under 
Allocating Space for iindexed Sequential 
Data Sets. 

i DSNAME=&name I 
DSNAME=&nameCelemen~> 

specify data sets thiat are temporarily 
created for the exec~tion of a single job 
or job step. 

Qreating Data Sets • 37 



r---------------------------------------------------------------·-----·------------------1 
{DUMMY} 

{ 

{

Cisname }} DSNAME= dsname(element) 
&name 
&name<element) 

DDNAME=ddname 

UNIT=Cname[,n])1 

VOLUME=([PRIVATEl [,RETAIN] £,volume-sequence-number] [,volume-count] 

[

,SER= <volume-s·erial-number C, volume-serial-number] ••• ) 2 ] 

, REJ*~~E::me. ddna~ } ) 3 ~=.stepname.procstep.ddname 

SPACE=(~~~ ).<primary-quantity!,secondary-quantityl 
average-record-length [,MXIG J . 

C , di rectory or index quantity l ) C , RLSE] , ALX C, ROUND] ) 4 

,CONTIG 

SPLIT=Cn,[{CYL t] ,[(primary quantity,Csecondary quantity])]) 
average record length} 

{
,NL l [' EXPDT=yydddl ) e 

LABEL=([data-set-sequence-numberl ,SLJ ,RETPD=xxxxj 

SYSOUT=A 

DISP=({~~~} [:~~~r ]• ) "' 
MOD ,CATLG 

,UNCATLG 

DCB= ( (DEN={~} ( , TRTCH={iT} l ( , CODE= 

I 
F 
B 
c 
A 
T 
N 

[,OPTCD={~ }1c,EROPT={~~~}1c,BUFNO=nn]) 
WC ABE 

---------------------------------------------------------------------·------------------J 

Figure 25. DD Parameters for Creating Data Sets (Part 1 of 2) 

38 IBM S/360 OS COBOL(E) Programmer's Guide 



r---~--~-------------------------------------------------------------------------------1 
1 If only "name" is specified, the delimiting parentheses may be omitted. 

2 If only one "volume-serial-number" is specified, the delimitingi parentheses may be 
omit-t!:ed. 

! 

i 
3 SER c).nd REF are keyword subparameters; the remaining subparamet·

1

ers are positional 
subp2\rameters. 

1 

All $ubparameters are positional subparameters. 

I 
5 EXPO~ and RETPD are keyword subparameters; the remaining subpar~meters are 

posit'.:.ional subparameters. ! 

. I le All $Ubparameters are keyword subparameters. I 

L----------------------------------·--------------------------------~--------------------

;~igure 25. DD Parameters for Creating Data Sets (Part 2 of 2) 

r-------~--------------------------·--------------------------------~-----, 
Example 1: Creating a Cataloged Data Set I 

//CALC DD DSNAME=PROCESS,DISP=CNEW,CATLG),LABEL=C,SL,EXPDT=66031) 1 
// UNIT=DACLASS,VOLUME=CPRIVATE,RETAIN,SER=AA69), 2 
// SPACE=C300C100,100),,CONTIG,ROUND) 

Example 

//SYSUTl 
// 
// 

Examwle 

2: 

DD 

3: 

Creating a Data Set for a Job 

DSNAME=&TEMP,UNIT=CTAPECLS,3),DISP=CNEW,PASS), 
VOLUME=C,RETAIN,1,9,SER=C777,888,999)), 
DCB= (DEN= 2) 

Specifying a SYSOUT Date Set 

//SYSPRINT DD SYSOUT=A 

1 
2 

ExamI,)le 4: Creating a Data Set that Is Kept, but Not Cataloged! 

//TEMPF,ILE DD DSNAME=FILE,DISP=C,KEEP), 1 
// DCB=CDEN=2) 

Example 5: Creating a Data Set on a 7-Track Tape 

//TEMPFILE DD DSNAME=FILE,DISP=COLD,KEEP), 
// VOLUME=CPRIVATE,,,.SER=222,J33), 

1 
2 

// DCB=CDEN=l,TRTCH=ET) ,UNIT=C2400,2) 

-------~--------------------------·-------------------------------,--~---J 

Figure 2~. Examples of DD Statements 

DDNAME=d(lname 

indicate~::; a DUMMY data set that will assume 
the charitcteristics specified in a 
:followin4 DD statement "ddname". The DD 
statemen~'.:. identified by "ddname" then loses 
.its identity; that is, it cannot be 
.referred· to by an *·· ••. ddname parameter. 
•rhe stat$ment in which the DDNAME parameter 
appears rpay be referenced by subsequent 
*·· ••. ddname parameters. If a subsE~quent 
statemen1::. identified by "ddname" does not 
appear, 1'.:.he data set defined by thE~ DD 
statemen1:. containing the DDNAME parameter 

is assumed to be an u:nused statement. The 
DDNAME parameter can !be used five times in 
any given job step ori procedure step, and 
no two uses can refei to the same "ddname". 
The DDNAME parameter is used mainly for 
cataloged procedures 

qreating Data Sets 39 



SPECIFYING I/O DEVICES 

The name of an input/output device or class 
of devices and the number of devices are 
specified in the UNIT parameter. 

UNIT= (name [, nl) 

name 

is the name assigned to the input/output 
device classes when the system is 
generated, or an absolute device address. 

(In] 

specifies the number-of devices allocated 
to the data set. If this parameter is 
omitted, 1 is assumed. 

SPECIFYING VOLUMES 

The programmer indicates the volumes used 
for the data set in the VOLUME parameter. 

VOLUME= ([PRIVATE] [,RETAIN] 

[,volume-sequence-number] 

C , volume-count] 

,SER=Cvolume-serial-number 
[,volume-serial-number] ••• > 

, REF= *. ddname 
{

dsname } 

*.stephame.ddname 
*.stepname.procstep.ddname 

identifies the volurne(s) assigned to the 
data set. 

PRIVATE 

is used only for direct-access volumes. 
This option indicates that the assigned 
volume is to contain only the data set 
defined by this DD statement. PRIVATE is 
overridden when the DD statement for a data 
set requests the use of the private volume 
with the SER or REF subparameter. Volumes 
other than direct-access volumes are always 

-considered PRIVATE. 

RETAIN 

indicates that this volume is to remain 
mounted after the job step is completed. 
Volumes are retained so that data may be 
transmitted to or from the data set, or so 
that other data sets may reside in the 
volume. If the data set requires more than 
one volume, only the last volume is 
retained; the other volumes are previously 

40 IBM S/360 OS COBOL(E) Programmer's Guide 

dismounted. Another job step indicates 
when to dismount the volume by omitting 
RETAIN. If each job step issues a RETAIN 
for the volume, th4: retained status lapses 
when execution of the job is completed. 

volume-sequence-number 

is a one-to-four digit number that 
specifies the sequence number of the first 
volume of the data set that is read or 
written. The volume sequence number is 
meaningful only if the data set is 
cataloged and earlier volumes omitted. 

volume-count 

specifies the number of volumes required by 
the data set. Unless the SER or REF 
subparameter is used this subparameter is 
required for every multi-volume output data 
set. 

SER 

specifies one or more serial numbers for 
the volumes required by the data sets. A 
volume serial number consists of one to six 
alphameric characters. If it contains less 
than six characters, the serial number is 
left adjusted and padded with blanks. If 
SER is not specified, and DISP is not 
specified as NEW, the data set is assumed 
to be cataloged and serial numbers are 
retrieved from the catalog. A volume 
serial number is not required for output 
data sets. 

REF 

indicates that the data set is to occupy 
the same volume<s> as the data set 
identified by "dsname", "*.ddname", 
"*. stepname. ddname'", or 
•.stepname.procstep.ddname. Table 7 shows 
the data set references. 



Table 7. Data Set References 
r------+--------T-------------------------1 
I OP'.rION I REFERS TO I 
~------+--------+-------------------------~ 
IREF=dsl[lame la data set named "dsname"I 
~------~--------+-------------------------~ 
IREF=*.<:}dname la data set indicated by I 
I IDD statement "ddname" in I 
I !the current job step I 
~--·----+--------+-------------------------~ 
IREF=*.$tepname.1 I 
I Qdname la data set indicated by I 
I IDD statement "ddname" in I 
I lthe job step "stepname" I 
~------~--------+-------------------------~ 
IREF=*.stepname. I I 
I procstep.I I 
I ~dname la data set indicated by I 
I IDD statement "ddname" in I 
I !the procedure step I 
I l"procstep" invoked in thel 
I I job step "stepname" I 
L---------------i-------------------------J 

When thE'~ data set resides on a tape volume 
and REF is specified, the data set is 
placed on the same volume, immediately 
behind the data set ref erred to by this 
subparan1eter. When this subparameter is 
used, tne UNIT parameter may be omitted. 

If S~R or REF is not specified, the 
control.program will allocate any 
nonprivatte volume that is available. 

SPECIFYING SPACE ON DIRECT-ACCESS VOLUMES 

SPACE PARAMETER 

SPACE= ( icYL {
!TRK } 

i.average-record-length , 

(primary-quantity 

[,secondary-quantity] 

[,directory or index quantity]) 

~ MXIG J [, RLSE] ALX [,ROUND]) 
CONTIG 

specif i~!S space on a direct-access volume. 
Althougllt SPACE has no meaning for tape 
volumes,: if a data set is assigned to a 
device dlass that contains both 
direct-~ccess devices and tape devices, 
SPACE stiould be specified. 

Note :1 For indexed sequential data 
sets-:-Orlly the CYL subparameter is 
permittd!d. Neither the TRK subparameter 
nor the average record length can be 

specified. When an indexed sequential 
data set is defined by more than one DD 
statement, all DD statements must contain 
a SPACE parameter. For the details on how 
to compute the space requirements of an 
Indexed Sequential Data Set, refer to the 
publication; IBM System/360 Operating 
System: Control Program Services. 

The SPACE specifies: 

1. Units of measurement in which space is 
allocated. 

2. Amount of space allocated.· 

3. Whether unused space can be released. 

4. In what format space is allocated. 

5. Whether space is to begin on a 
cylinder boundary. 

'TRK 
CYL 
.average-record-length 

specifies the units of measurement in 
which storage is assigned. The units may 
be tracks CTRK), cylinders CCYL), or 
records <average record length expressed 
in decimal numbers). 

C primary-quantity [,secondary-quantity] 
[,directory-quantity]) 

specifies the amount of space allocated 
for the data set. 

The "primary quantity" indicates the 
number of records, tracks, or cylinders to 
bi~ allocated when the job step begins. 
For indexed sequential data sets, this 
subparameter specifies the number of 
cylinders for the prime, overflow, or 
index area. For details of these 
parameters, refer to Allocating Space for 
Indexed Sequential Data Sets. 

The "secondary quantity" indicates how 
much space is to be allocated each time 
previously allocated space is exhausted. 
This subparameter must not be specified 
when defining an indexed sequential data 
set. 

The "directory quantity" is used only 
when writing a PDS, and it specifies the 
number of 256-byte records to reserve for 
the directory of the PDS. The "index 
quantity" s_pecifies the number of 
cylinders to be allocated for an index 
area embedded within the prime area, when 
a new indexed sequential data set is being 
defined. For details of these parameters, 
r«~fer to Allocating Space for Indexed 
Sequential Data Sets. 

Creating Data Sets 41 



For example, in the DD statement: 

//TEMPFILE DD SPACE=C120, (400,100}} 

space is reserved for 400 records, the 
average record length is 120 characters. 
Each time space is exhausted, space for 
100 additional records is allocated, for a 
maximum of fifteen times. 

In the statement: 

//FICAFILE DD SPACE=(CYL,(20,2,5)) 

20 cylinders are allocated to the data 
set. When previously allocated space is 
exhausted, two additional cylinders are 
allocated. In addition, space is reserved 
for five records in the directory of a 
PDS. Each record can contain seven 
members. 

RLSE 

indicates that all unused external storage 
assigned to this data set is released when 
processing of the data set is completed. 

r~XIG J 
L~~TIG 
specify the format of the space allocated 
to the data set. MXIG requests the 
largest single block of storage that is 
greater than or equal to the space 
requested in the "primary quantity". ALX 
requests up to five contiguous blocks of 
storage, each block greater than the 
"primary quantity". CONTIG requests that 
the space indicated in the "primary 
quantity" be contiguous. 

If the subparameter is not specified, 
or if any option cannot be fulfilled, the 
operating system attempts to assign 
contiguous space. If there is not enough 
contiguous space, up to five noncontiguous 
areas are allocated. 

For indexed sequential data sets, RLSE, 
MXIG, ALX, or ROUND must not be specified; 
only CONTIG or blank <none of these 
subparameters) is permitted. 

ROUND 

indicates that allocation of space for the 
specified number of records is to begin 
and end on a cylinder boundary. 

Note: The SPACE parameter in the DD 
statement must be used if a data set might 
be written on a direct-access device. For 
the compiler, the programmer should allow 
150 characters per source statement in the 
"primary quantity" for each data set 
except SYSPRINT. For SYSPRINT, he should 

42 IBM S/360 OS COBOL{E) Programmer's Guide 

allow approximately 220 characters per 
source statement. 

SPLIT PARAMETER 

SPLIT=Cn, [{;!~7age record.length}] 
[primary quantity, 
[secondary]}]) 

The split (SPLIT} parameter is specified 
when other data sets in the job step 
require space on the same volume, and the 
user wishes to minimize access arm 
movement by sharing cylinders with the 
other data sets. The de~vice is thE::n said 
to be operating in a split cylinder mode. 
In this mode, two or more data sets are 
stored so that portions of each occupy 
tracks within every allocated cylinder. 

A group of data sets that share 
cylinders on the same device is defined by 
a sequence of DD statements. The first 
statement in the sequence must specify all 
parameters except "secondary quantity," 
which is optional. Each of the statements 
that follow must specify only n, the 
amount of space required. 

n 

CYL 
average 
record 
length 

primary 
quantity 

secondary 
quantity 

Indicates the number of tracks 
per cylinder to be used for this 
data set if CYL is specified. 
If the average record length is 
specified, n is the percentage 
of the tracks per cylinder to be 
used for this data set. 

Indicates the units in which the 
space requirements are expressed 
in the next su.bparameter. The 
units may be cylinders CCYL) or 
physical records Cin which case 
the average record length in 
bytes is specified as a decimal 
number not exceeding 65,535). 
If the average· record length is 
given, and the data set is 
defined to have a key, the key 
length must be given in the DCB 
parameter of this DD statement. 

Defines the number of cylinders 
or space for records to be 
allocated to the entire group of 
data sets. 

Defines the number of cylinders 
or space for records to be 
allocated each time the space 



allocated to any of the data 
sets in the group has been 
exhausted and more data is to be 
written. This quantity will not 
be split. 

LABEL INFORMATION 

If the p:rogrammer wishes to catalog a data 
set so that he can refer to it without 
repeatin;g information that was supplied 
when thei data set was created, he must 
specify certain information in the LABEL 
parameter. If the parameter is omitted 
and the :data set is cataloged or passed, 
the label information is retrieved from 
data set' labels stored with the data set. 

{
,NL} 

LABEL=CCdata set sequence number] ,SL 

r, EXPDT=yydddl) 
~ RETPD=xxxx J 

data-set-sequence-number 

is a 4-d~git number that identifies the 
relative location of the data set with 
respect to the first data set on a tape 
volume. (For example, if there are three 
data set$ on a magnetic tape volume, the 
third da·:

1

ta set is identified by data set 
sequence number 3.) If the data set 
sequence number is not specified, the 
operating system assumes 1. (This option 
should n6t be confused with the volume 
sequence number, which represents a 
particular volume for a data set.) 

specif iei:; whether standard labels exist 
for a da{::.a set. SL indicates standard 
labels. NL indicates no labels. 

rEXPDT=yyddd l 
L RETPD=XlCXX J 
specif ief~ how long the data set shall 
,exist. 'J'):'he expiration date, EXPDT==yyddd, 
indicate* the year Cyy> and the day Cddd) 
the data set can be deleted. The period 
of reten1:.ion, RETPD=xxxx, indicates the 
period of time, in days, that the data set 
is to be retained. If neither is 
spec:if ie<!l, the retention period is assumed 
to be zeJ;o. 

DISPOSITION OF A DATA SET 

The disposition of a data set is specified 
by the DISP parameter; see Data Definition 
CDD) Statement. The same options are used 
for both creating data sets and using 
previously created data sets. When a data 
set is created, the subparameters used are 
NEW, KEEP, PASS, and CATLG. 

WRITING A UNIT RECORD DATA SET ON THE 
PH INTER 

A printed output data set may be written 
using the following parameter. 

SYS OUT= A 

DCB PARAMETER 

For load module execution, the COBOL 
programmer may specify the details of a 
data set by using COBOL source statements 
and DD statement subparameters of the DCB 
parameter. The illustrations given in the 
following are examples of DCB 
subparameters for processing these file 
organizations: 

• sequential 
• Indexed Sequential 
• Direct or Relative 

Sequentially organized data sets may 
re!side on magnetic tape or direct-access 
volumes. Direct relative or indexed files 
must reside on direct-acces$ volumes. 
Note that some DCB subparameter values 
<see Tables 10, 11, and 12) may be 
supplied by DD statements; other values 
are supplied either by certain COBOL 
source statements or by the COBOL 
compiler. 

DCB FOR PROCESSING SEQUENTIAL DATA SET 

DCB= ([DEN={01112}] 
C,TRTCH={CIEITIETIUIUC}] 
[,PRTSP={Ol11213}] 
C,MODE={CIE}][,STACK={112}] 
C,OPTCD=CWICIWC}] [ERROPT={ACCISKPIABE}] 
C,DSORG=PS][,MACRF=({GLIPLIGL,PL}) 
C,DDNAME=symbol][,RECFM={FIUIV} 
[,LRECL=absexp][,BLKSIZE=absexpl 
[,BFTEK=S] [,BUFNO=absexp] 
[,BFALN= FD ][,BUFL=absexpl 
[,BUFCB=relexpl[,EODAD=relexpl 
C,SYNAD=relexp]) 

Creating Data Sets 43 



A description of the DCB subparameters 
follows. 

DEN= {O 111 2} 

can be used with magnetic tape, and 
specifies a value for the tape recording 
density in bits per inch as listed in 
Table 8. 

Table 8. DEN Values 
r---~T---------~-------------------------1 
IDEN !TAPE RECORDING DENSITY (BITS/INCH) I 

I ~-----------------------------------~ 
IValuel Model 2400 I 
I ~-----------------------------------~ 
I I 7 Track 9 Track I 
~-----+-----------------------------------~ 
I o I 200 I 
I 1 I 556 I 
I 2 I 800 800 I 
L-----i-----------------------------------J 
TRTCH={CIEITIETIUIUCll 

is used as with 7-track tape to specify 
the tape recording technique, as follows: 

c - specifies that the data conversion 
feature is to be used; if data 
conversion is not available, only 
format-F and -u records are supported 
by the control program. 

E - specifies that even parity is to be 
used; if omitted, odd parity is 
assumed. 

T - specifies that BCDIC to EBCDIC 
translation is required. 

ET~ specifies that even parity is to be 
used and BCDIC to EBCDIC translation 
is required. 

u - unblock <permit) data checks on a 
printer with the Uni V·ersal Character 
Set feature. 

UC- unblock data checks on a printer and 
use chained scheduling. 

PRTSP= {O I 11 21 3} 

specifies the line spacing on a printer as 
0, 1, 2, or 3. 

MODE={CIEl 

can be used with a card reader, a card 
punch, or a card read punch and specifies 
the mode of operation as follows: 

c - the card image (column binary) mode 

E - the EBCDIC code 

44 IBM S/360 OS COBOL(E) Programmer's Guide 

If this information is not supplied by 
any source, E is assumed. 

STACK={112} 

can be used with a card read.er, a card 
punch, or a card read punch and specifies 
which stacker bin is to receive the card. 
Either 1 or 2 is specified. If this 
information is not supplied by any source, 
1 is assumed. 

OPTCD={WICIWC} 

specifies an optional service to be 
performed by the control program, as 
follows. 

W - perform a write validity check Con 
direct-access devices only>. 

c - process using the chained scheduling 
method. 

we- perform a validity check and use 
chained scheduling. 

If this information is not supplied by any 
source, none of the services are provided. 

EROPT={ACCISKPIABEJ 

specifies the option to be executed if an 
error occurs and either there is no 
synchronous exceptional error CSYNAD) exit 
routine or there is a SYNAD routine and 
the programmer wishes to return from it to 
his processing program. One of the 
following is specified: 

ACC - accept error block 

SKP - skip error block 

ABE - terminate the task 

Table 9 indicates the choices that are 
permitted for each type of data set 
processing. 

Table 9. Error Options for QSAM 
r-------T---------------------1 
I I PROCESS DATA SET FOR I 
IOPERAND~------------T-------~ 
I IINPUT,RDBACKIOUTPUT I 
~-------+------------+-------~ 
I ACC I x I Xi. I 
I SKP I x I I 
I ABE I x I x I 
~-------i------------L-------~ 
Ii.Valid for printer only. I 
L----------------------------J 

DSORG=PS 

specifies the organization of the data set 



as PS (~ physical sequential 
organiz~tion). 

MACRF= ( ~;GL I PLI GL, PL}) 

specif i¢s the types of macro instructions 
that wi+l be used in processing the data 
sets, w~ere: 

G indicates the GET macro instruct.ion, 
P indicdtes the PUT macro instruction, and 
L indic~tes locate-mode operation 

DDNA.t-'IB=$ymbol 

specifies the name of the DD statement 
that will be used to describe the data set 
to be p~ocessed. 

RECli'M= {FI u IV} 

specif i~s the characteristics of the 
records in the data set, where: 

F - fixed-length records 
u - undefined records 
V - var~able-length records 

LRECL=absexp 

specifies the length, in bytes, of a 
f ormat-F logical record or the maximum 
length qf a f ormat-V logical record. This 
operand'is omitted for format-U records, 
but must: be supplied for format-F and -v 
records. The maximum value is 32,760. 

BLKSIZE~absexp 

specifi~s the maximum length, in bytes, of 
a block.· For format-F records, the length 
must be an integral multiple of the LRECL 
value. For format-V records, the length 
must in¢lude the 4-byte block-length field 
that is recorded at the beginning of each 
block. The maximum value is 32,760. 

When writing records on magnetic tape, 
the bloc~k size should be at least 18 
bytes. :shorter blocks will be treated as 
noise r~cords by the control-program 
error-r~covery routines. 

BFTEK=S 

specif i~s the type of buffering to be 
supplieq by the control program is s 
(simple buffering). 

BUFNO=ansexp 

specifies the number.of buffers to be 
a:ssigned to the data ·control block. The 
maximum number is 255. 

BFALN={FID} 

specifies the boundary alignment, in 
bytes, of each buffer, as follows: 

F - the buff er starts on a full-word 
boundary (one that is not necessarily 
a double-word boundary>. 

D - the buff er starts on a double-word 
boundary. 

BUFL=absexp 

specifies the length in bytes of each 
buffer to be obtained for a buffer pool. 
The maximum value is 32.760. If this 
information is not supplied by any source, 
the control program calculates the length 
by using the value supplied for the 
B:LKSIZE operand. 

BUFCB= rel exp 

specifies the address of a buff er pool 
control block (i.e., the 8-byte field 
preceding the buffers in a buffer pool). 

EODAD=relexp 

specifies the address of the user's 
end-of-data set exit routine for input 
data sets. This routine is entered when 
the user requests a record and there are 
no more records to be retrieved. If no 
routine has been provided, the task is 
abnormally terminated. 

I SYNAD=relexp 

specifies the address of the user's 
synchronous error exit routine. The 
routine is entered if input/output errors 
result from an attempt to process data 
records. If no routine is specified and 
an error occurs, the option specified by 
the EROPT parameter is executed. 

Table 10 shows the values supplied for 
DCB subparameters by the COBOL compiler, 
b:y- statements in the COBOL source program, 
and those subparameters that may be 

I supplied by a DD statement for a 
s1equential data set. 

Creating Data Sets 45 



Table 10. DCB Subparameter Values For Sequential Data Set 
r--------T-----------------T-----------------T------------------------------------------1 
I DCB !Value Supplied !Value Supplied !Value Supplied I 
jParameterlUnconditionally lby COBOL source !by DD statement I 
I I by COBOL Compiler I Statement I I 
f---------+-----------------+-----------------+------------------------------------------i 
IDEN I I IDEN={O 1112} I 
f---------+-----------------+-----------------+-----------------------------------------i 
ITRTCH I I ITRTCH={CIEITIETIUIUC} I 
f---------+-----------------+-----------------+------------------------------------------i 
IPRTSP I I IPRTSP={Olll213} I 
f---------+-----------------+-----------------+-----------------------·------------------i 
IMODE I I IMODE={CIE} I 
f---------+-----------------+-----------------+---------------------------------------"---i 
I STACK I I ISTACK={112} I 
f---------+-----------------+----···-------------+------------------------------------------i 
I OPTCD I I 1·0PTCD={W I c I WC} I 
f---------+-----------------+-----------------+-----------------·------·------------------i 
I ERO PT I I I EROPT= {ACC I SKP I ABE} I 
f---------+-------------·---+-----------------+-----------------------·------------------i 
IDSORG I PS I I I 
f---------+-----------------+-----------------+-----------------------------------------i 
I MACRF I GL I OPEN INPUT I I 
I I PL I OPEN OUTPUT I I 
I I GL,PL IOPEN I-0 I I 
f--------+-----------------+-----------------+-----------------·------·------------------i 
IDDNAME I !External-name in I I 
I I I ASSIGN clause I I 
f---------+-----------------+-----------------+-----------------------------------------i 
I I l 1 RECORDING MODE I I 
IRECFM I !BLOCK CONTAINS, I I 
I I !ADVANCING clauses! I 
f---------+----------------+-----------------+-----------------·------·------------------i 
ILRECL I !RECORD CONTAINS I I 
I I I clause2 I I 
f---------+-----------------+-----------------+-----------------------------------------i 
IBLKSIZE I IBLOCK CONTAINS I I 
I I I clause 3 I I 
f---------+-----------------+-----------------+-----------------------·------------------i 
I BFTEK I s I I I 
f---------+----------------+-----------------+-----------------·------·------------------i 
IBUFN04 I !RESERVE clause IBUFNO=nn I 
f---------+-----------------+-----------------+-----------------------------------------i 
I BFLAN I D I I I 
f---------+-----------------+-----------------+-----------------·------------------------i 
I BUF L I 0 5 I I I 
f---------+-------------·---+-----------------+-----------------------·------------------i 
IBUFCB I ISAME AREA clause I I 
f---------+--------------·---+-----------------+-----------------·------·------------------i 
IEODAD I IAT END clause I I 
f---------+-----------------+-----------------+-----------------------·------------------i 
ISYNAD I IUSE statement I I 
I I I option s I I 
f---------.L ________________ _L _________________ .L-----------------·------·------------------i 
I Notes: I 
11 If RECORDING MODE is not specified in the source program, the compiler assumes a v I 
I format. I 
12 The record length is calculated by the compiler. I 
13 If this clause is omitted, the data set is considered to be unblocked. I 
14 This parameter may be specified optionally from the DD statement or the COBOL I 
I RESERVE clause. If the RESERVE clause is specified, the DD statement BUFNO I 
I parameter is considered noise and does not override the number inserted by the I 
I compiler. I 
15 When BUFL=O, the system makes the buffer size equal to the block s:ize. I l---------------------------------------------------------------------· ______ ..,.. ___________ J 

46 IBM S/360 OS COBOL(E) Programmer's Guide 



ALLOCATING SPACE FOR INDEXED SEQUENTIAL 
PATA SETS 

Inde:xed sequential data sets consist of 
one, two,, or three areas: 

• Prime area. This area contains data 
:records and the accompanying track 
inde~{es. It exists in all indexed 
sequE~ntial data sets. 

• Overflow area. This area contains data 
:recoicds that overflow from tracks of 
the prime area when records are added 
to t:fue data set. This area may or may 
not exist in an indexed sequential data 
set. 

• IndeJt area. This area contains the 
mastE~r and cylinder indexes for an 
.inde}ced sequential data set.. It exists 
for ~ny data set that has a prime area 
on more than one cylinder. 

The a~:-eas allocated and their locations 
depend 011 the parameters specified in the 
DD statement or statements that def:ine the 
data set.. For a description of the 
paramete+s and subparameters that can be 
used in DD statements defining a new 
indexed $equential data set or specifying 
an existing one, refer to the publication, 
_IBM System/360 Operating system: Jrob 
~ontrol tangua~. 

DCB FOR CREATING INDEXED SEQUENTIAIJ DATA 
_SETS 

DCB= ( [ I <~PTCD= {WLI}] , DSORG= Is 
[,MACtur=CPL)] [,DDNAME=symbol] 
C, RECF~'1= {FI FB}] [, LRECL=absexp] 
C,BLKSlZE=absexp] C,RKP=absexp] 
C, KEYLEN=abs exp] 
[, BUFNQ=absexp] 
[, SYNAID=relexpl > 

OPTCD 

OPTCD= {W:f .. I} 

specif ief3 an optional service to be 
perf orme~ by the program as follows: 

W - a ~rite validity check Con 
dire~t-access devices only) 

L ·- delete option: user marks records 
for c:Ieletion; records so marked may 
actually be deleted when new records 
are added to the data set. 

I - use independent overflow area. 

DSORG=IS 

specifies the organization of the data set 
as IS Can indexed sequential organization). 
This subparameter is required to be 
supplied by the programmer in the DD 
statement. 

MACRF=(PL) 

specifies the macro instruction that will 
be used in processing the data sets as 
follows: 

PL - indicates that locate mode PUT macro 
instructions are to be used. 

DD NAME= symbol 

specifies the name of the DD statement that 
will be used to describe the data set to be 
processed • 

RCFM={FIFB} 

specifies the characteristics of the record 
in the data sets as follows: 

F - fixed-length records 

FB - fixed-length, blocked records 

LRECL=absexp 

specifies the length of a logical record in 
bytes. 

BLKSIZE=absexp 

specifies the maximum length of a block in 
bytes. For fixed-length records, the block 
must be an integral multiple of the LRECL 
value. 

RKP=absexp 

.specifies the relative position of the 
f i:rst byte of the record key within each 
logical record. The value specified cannot 
exceed the logical record length minus the 
record key length. 

KEYLEN=absexp 

specifies the length of the record key, in 
bytes, associated with a logical record. 
The maximum length of the record key is 255 
bytes. 

BU:FNO=absexp 

specifies the number of buffers to be 
assigned to the data control block. The 
maximum number that can be specified is 
255; however, the number must not exceed 
the limit on input/output requests 
established during system generation. 'l'his 
information can be supplied by the DD 
statement or the user's problem program. 

Creating Data Sets • 4 7 



SYNAD=relexp 

specifies the address of the user's 
synchronous error exit routine. The 
routine is entered if input/output errors 
result from an attempt to process data 
records. If no routine is specified and an 
error occurs, the option specified by the 
EROPT parameter is executed. 

ACCESSING INDEXED SEQUENTIAL DATA SETS 

When accessing and/or updating indexed 
sequential data sets, the DCB subparameters 
specified for creating indexed sequential 
data sets are applicable with the following 
differences, and additions. 

DIFFERENCES 

[I MACRF={ (GL) I (GL, PU) I (R) I (RU, WUA)}] 

G - indicates GET macro instruction 
L - indicates locate mode 

P - indicates PUT macro instruction 
U - indicates sequential updating 

R - indicates READ macro instruction 
u - indicates read for update 

W - indicates WRITE macro instruction 
UA - indicates add new records, update 

existing records. 

ADDITIONS 

[I NCP=ll 

specifies the number of channel programs to 

• 48 IBM S/360 OS COBOL(E) Programmer's Guide 

be established for this data control block. 
The value 1 is supplied by the compiler. 

[, MSWA=relexpl 

specifies the address of a main storage 
work area reserved for the control program. 

If specified when fixed-length records 
are being added to the data set, the 
control program uses th•e work area to speed 
up record insertion. 

[, SMSW=absexpl 

specifies the number of bytes reserved for 
the main storage work area. For unblocked 
records, the work area must be large enough 
to contain the cou.nt, k«~y, and data fields 
of all the blocks on one track. For 
blocked records, the work area must be 
large enough to contain one logical record 
plus the count and data fields of all the 
blocks on one track. The maximum number of 
blocks on one track is 32,767. 

[, EODAD=relexpl 

specifies the address of the user's 
end-of-data set exit routine for input data 
sets. This routine is entered when the 
user requests a record and there are no 
more records to be retrieved. If no 
routine has been providE~d, the task is 
abnormally terminated. 

Table 11 shows the values supplied for 
DCB subparameters by thE~ COBOL compiler, by 
statements in the COBOL source program, and 
those subparameters that may be supplied by 
a DD statement for an indexed sequential 
data set. 



~rable 11. DCB Subparameter Values For Indexed Sequential Data Set 
r-------..,----T---------------T-------------------------------T--------------------------1 
IDCB !Value Supplied !Value Supplied by !Value Supplied I 
I Paramete~r I Unconditionally I COBOI. Source Statement I By DD Statement I 
I I By COBOL I I I 
I I Compiler I I I 
r-------------+---------------+-----·-------------·-------------+--------------------------~ 
I OPTCD I WLI I I I 
r------------+---------------+-------------------------------+--------------------------i 
I DSORG I IS I I DSORG=Is I 
r-------~----+---------------+-----·--------------------------+--------------------------~ 
IMACRF I I I I 
I SequentiallGL IOPEN INPUT I I 
I I GL, PU I OPEN I-0 I I 
I I PL I OPEN OUTPUT I I 
I r---------------+------------------·-------------+--------------------------i 
I Randon~ I R I OPEN INPUT I I 
I IRU,WUA IOPEN I-0 I I 
r-------~----+---------------+-------------------------------+--------------------------~ 
I DDNAME I I External-name in ASSIGN Clause I I 
r-------------+--------------+-----·-------------·-------------+--------------------------~ 
IRECFM I !RECORDING MODE Clause I I 
r------------+---------------+-----·-------------·-------------+--------------------------~ 
I LRECL I I RECORD CONTAINS Clause I I 
r------------+---------------+-------------------------------+--------------------------i 
IBLKSIZE I IBLOCK CONTAINS Clause I I 
r-------_.----+--------------+-----·-------------·-------------+--------------------------i 
IRKP I !RECORD KEY Clause I I 
r-------------+---------------+-----·-------------·-------------+--------------------------i 
I KEYLEN I I RECORD KEY Clause I I 
r-------_.----+---------------+-------------------------------+--------------------------i 
INCP 11 I I I 
r------------+---------------+-----·-------------·-------------+--------------------------~ 
'I MSWA I I TRACK AREA Clause I I 
r------------+---------------+-------------------------------+--------------------------i 
I BUFNO I I RESERVE Clause I BUFNo=nnn I 
r--------;.----+---------------+-----·-------------·-------------+--------------------------~ 
ISMSW I !TRACK AREA Clause I I 
r-------.... ----+---------------+------------------·-------------+--------------------------~ 
IEODAD I IAT END Clause I I 
r------------+---------------+-------------------------------+--------------------------i 
I SYNAD I I USE Statement Option 5 I I 
L------------J.---------------J.-----·-------------·------------..;..L--------------------------J 

DCB FOR GREATING DIRECT OR RELATIVE~ 
9RGANIZAjION DATA SET 

DCB=([,O~TCD=W] [,DSORG=PS] 
C, MAcm;·= < WL) l C , DD NAME= symbol l 
C, RECFt'I= {FI VI U} l [, LRECL=absexpl 
[,BLKSIZE=absexpl C,DEVD=DA,KEYLEN=value] 
[, NCP=11. l [, EODAD=relexpl 
C, SYNAO=relexpl > 

OPTCD=W 

specifie~: an optional service to be 
performe4 by the program as follows: 

w - a write validity check Con 
direct-access devices only) 

DSORG=PS 

specifies_; the organization of the data set 
as PS Ca physical sequential organization) 

MACRF=(WL) 

specifies the macro instruction that will 
be used in processing the data sets as 
follows: 

W - indicates use of WRITE macro 
instruction 

L - indicates LOAD mode for direct data 
set 

DDNAME=symbol 

specifies the name of the DD statement that 
will be used to describe the data set to be 
processed. 

RECFM={FIVIUl 

specifies the characteristics of the record 
in the data set as follows: 

F - fixed-length records 

Creating Data Sets • 4 9 



V - variable-length records 
u - undefined records 

LRECL=absexp 

specifies the length of a format-F logical 
record in bytes or the maximum length of a 
format-v or u logical record 

BLKSIZE=absexp 

specifies the maximum length of the block 
in bytes for format-F records. The length 
must be an integral multiple of the LRECL 
value. For format-V records, the length 
must include the four-byte block length 
field that is recorded at the beginning of 
each block. 

DEVD=DA,KEYLEN=value 

specifies the device or devices on which 
the data set resides 

DA - specifies a direct-access device 
KEYLEN - specifies the length of the 

key, in bytes, associated with a 
physical block. 

NCP=l 

specifies the maximum number of READ or 
WRITE macro instructions that are issued 
before a CHECK macro instruction. 

SYNAD=relexp 

specifies the address of the user's 
synchronous error exit routine. The 
routine is entered if input/output errors 
result from an attempt to process data 
records. If no routine is specified and an 
error occurs, the option specified by the 
EROPT parameter is executed. 

ACCESSING DIRECT OR RELATIVE ORGANIZATION 
DATA SETS 

When accessing and/or updating direct data 
sets, the DCB subparameters specified for 
creating direct data sets are applicable, 
with the following differences, and 
additions. 

DIFFERENCES 

[, OPTCD= {WE I WR} l 

w - indicates a write validity check be 

• 50 IBM S/360 OS COBOL(E) Programmer's Guide 

performed 
E - indicates an extended search be 

performed 
R - indicates that relative block 

addresses be used 

[I DSORG=DA] . 
DA - indicates direct or relative 

organization 

{
R } [ ,MACRF= WL 
(RKC, [WAKC]) , 
(RIC, [WAIC]) 

R - indicates use of READ macro 
instruction 

K - indicates that :search argument 
key 

I - indicates that search argument 
block identification 

w - indicates use o:f WRITE macro 
instruction 

A - indicates that blocks are to be 
added to the data set 

c - indicates use of check macro. 

ADDITIONS 

C, KEYLEN=absexpl 

is 

is 

specifies the length of the key for each 
physical record in bytes 

[, LIMCT=absexp] 

specifies the maximum number of blocks or 
tracks searched when the extended search 
option is chosen 

[, EODAD=relexpl 

a 

a 

specifies the address of the user's 
end-of-data set exit routine for input data 
sets. This routine is entered when the 
user requests a record and there are no 
more records to be retrieved. If no 
routine has been provided, the task is 
abnormally terminated. 

Table 12 shows the values supplied for 
DCB subparameters by the COBOL compiler, by 
statements in the COBOL source program, and 
those subparameters that may be supplied by 
a DD statement for a direct-access data 
set. 



Table 12. DCB Subparameter Values l~or Direct or Relative Organization Data Sets 
r-----------------------T---------------T-------------------------------T---------------1 
I DCB I Value Supplied I Value supplied by I Value Supplied I 
!Parameter jUnconditionallyjCOBOL Source Statement jBy DD Statement! 
I I By COBOL I I I 
I I Compiler I I I 
~-----------------------+---------------+-------------------------------+---------------~ 
I OPTCD I I I I 
I Direct organization I WE I I I 
I ~----------------+-------------------------------+---------------~ 
I Relative organizationlWR I I I. 
~----·-------------------+----------------+-------------------------------+---------------~ 
IDSORG I I I I 
I sequential access IPS I I I 
I ~----------------+-------------------------------+---------------~ 
I Random·-access I DA I I I 
~·-----------------------+---------------+-------------------------------+---------------~ 
MAC RF I I I I 

Sequential-access IR I OPEN INPUT I I 

Random-access 
Direct 

organization 

Relative 
organization 

~---------------+-------------------------------+---------------~ 
I WL I OPEN OUTPUT I I 
~----------------+-------------------------------+---------------~ 
I I I I 
IRKC !OPEN INPUT I I 
I I I I 
~---------------+-------------------------------+---------------~ 
IRKC,WAKC !OPEN I-0 I I 
~----------------+-------------------------------+---------------~ 
IRIC !OPEN INPUT I I 
I I I I 
~----------------+-------------------~-----------+-----~---------i 
I RIC, WAIC I OPEN I-0 I I 

~·-----------------------+---------------+----------~--------------------+---------------i 
I DDNAME I I External-name in ASSIGN clause I I 
~-----------------------+---------------+-------------------------------+---------------i 
IDEVD IDA,KEYLEN=nnn !SYMBOLIC KEY Clause I I 
I I <nnn=O - 2!>5> I I I 
~·-----------------------+----------------+-------------------------------+---------------i 
I :RECFM I I RECORDING MODE Clause I I 
~·------------------------+---------------+-------------------------------+---------------i 
ILRECL I !RECORD CONTAINS Clause I I 
~·-----------------------+---------------+-------------------------------+---------------~ 
I BLKSIZE I I BLOCK CONTAINS Clause I I 
~·--------------·---------+----------------+-------------------------------+---------------i 
INCP 11 I I I 
~-----------------------+---------------+------------------~------------+---------------~ 
I KEYLEN I I SYMBOLIC KEY Clause I I 
~-----------------------+---------------+-------------------------------+---------------~ 
ILIMCT I IAPPLY Clause Option 1 I I 
~------------------------+---------------+-------------------------------+---------------i 
I :EODAD I I AT END Clause I I 
~-----------------------+---------------+-------------------------------+---------------~ 
I SYN AD I I USE Statement Option 5 I I 
L.----·--------------------.L----------------.L-------------------------------.L---------------J 

The following DD statements are examples 
for processing indexed sequential, direct, 
relative, sets. 

Creating Data Sets • 51 



Example of DD statements for Indexed 
Sequential organization: 

//GO.SYSUT5 
// 

DD DSNAME=ISAM(PRIME), 
UNIT=2311, 
VOLUME=SER=111111, 
DCB=C,DSORG=IS), 
SPACE=(CYL,(3)), 
DISP= <NEW ,KEEP) 

// 
// 
// 
// 
// 
// 
// 
// 
// 
// 
// 
// 
// 
// 
// 
// 

DD DSNAME=ISAMCOVFLOW), 
UNIT=2311, 
VOLUME=SER=11111!, 
DCB=C,DSORG=IS), 
SPACE= ( CYL, C1)), 
DISP=(NEW,KEEP) 

DD DSNAME=ISAM(INDEX), 
UNIT=2311, 
VOLUME=SER=111111, 
DCB=C,DSORG=IS), 
SPACE=(CYL,(1)), 
DISP= (NEW I KEEP) 

This example specifies: 

• that an indexed sequential data set 
(named ISAM), is to be processed on a 
2311 disk pack; 

• that the volume serial number of the 
volumes required by the data set is 
111111; 

• that the data set is to be kept after 
execution of the run; 

• that the prime area consists of three 
cylinders, the overflow area, and the 
index area of one cylinder each, and 

• that the COBOL external name for the 
data set is SYSUT5. 

Example of DD statement for Direct -0r 
Relative organizations: 

x 
x 
x 
x 
x 

x 
x 
x 
x 
x 

x 
x 
x 
x 
x 

• 52 IBM S/36 0 OS COBOL CE) Programmer's Guide 

//GO. SYSUT6 DD DSNAME=lmANDOM, UNIT=SYSDA, X 
// SPACE=(TRK,(10,5)) 

This example specifies~ 

• that a temporary data set (named 
RANDOM) is to be processed on a direct 
access device; 

• that the data set be allocated a space 
of ten tracks, with a secondary 
allocation of 5 tracks, if needed; 

• that the COBOL extE~rnal name for this 
data set is SYSUT6. 

Example of DD statement for sequential 
organization: 

//GO.SYSUT7 
// 

DD DSNAME=SEQUENTIAL, 
UNIT=231.1, 
DISP=(NEW,DELETE), 
DCB ( I OP'l~CD=W) , 
SPACE=CTRK,(20,5)) 

// 
// 
// 

This example specifies: 

• that a data set (named SEQUENTIAL) is 
to be processed on a 2311 disk pack; 

• that the data set is to be deleted 
after execution; 

x 
x 
x 
x 

• that the data set be allocated 20 
tracks with a secondary allocation of 5 
tracks, if needed; and 

• that the COBO:L external name for the 
data set is SYSUT7 

Note: For sequential, direct, and 
relative organizations, essentially the 
same DD statements can be used. 



This section contains figures showing the 
job-control statements used in the COBOL 
CE-Level subset) cataloged procedures and a 
brief description of each procedure. This 
section also describes statements used to 
override statements and parameters in any 
cataloged procedure. CThe use of cataloged 
procedures is discussed under Job 
Processing.) 

COMPILE 

The cataloged procedure for compilation 
CCOBEC) is shown in Figure 27. 

r----------------·---------------------·------, 
l//COB EXEC PGM=IEPCBLOO I 
l//SYSPRINT DD SYSOUT=A I 
l//SYSPUNCH DD UNIT=SYSCP I 
l//SYSUTl DD UNIT=SYSDA, XI 
I// SPLIT=C2,CYL,(40,10)) I 
l//SYSUT2 DD UNIT=SYSDA,SPLIT=4 I 
l//SYSUT3 DD UNIT=SYSDA,SPLIT=4 I 
L-----------·--------------------------------J 

Figure 27. Compile Cataloged Procedure 
(COBEC) 

The EXEC statement that invokes the 
COBOL-E compiler is named COB; the EXEC 
statement indicates that the operating 
system is to execute the program IEPCBLOO 
(the name for the COBOL-E compiler). 
Compiler options are not explicitly 
supplied with the procedure: default 
options are assumed. The programmer can 
override these default options by using an 
EXEC statement that includes the opt.ions he 
desires. To execute.a compilation using 
the cataloged compile procedure, the 
programmer must add SYSIN and, if 
m~cessary, SYSLIB. 

LINKAGE EDIT AND EXECUTE 

The cataloged procedure to linkage edit 
COBOL object modules and execute the 
resulting load modul~s (COBELG) is shown in 
Figure 28. 

CATALOGED PROCEDURES 

r-----------------------------------------1 
//I.KED EXEC PGM=IEWL, 1 
// PARM=(XREF,LIST,LET) 
//SYSLIB DD DSNAME=SYSl. COB LIB, 1 
// DISP=COLD,KEEP) 
//SYSLMOD DD DSNA!VlE=&GODATA(RUN) I 1 
// DISP=(NEW,PASS), 2 
// UNIT=SYSDA, 3 
// SPACE=(1024,(50,20,1)) 
//SYSUTl DD UNIT=SYSDA, 1 
// SPACE=C1024,(50,20)) 
//SYSPRINT DD SYSOUT=A 
//SYSLIN DD DDNAME=SYSIN 
//GO EXEC PGM=*.LKED.SYSLMOD, 1 
// COND=CS,LT,LKED) 
//:SYSABEND DD SYSOUT=A 
//:SYSOUT DD SYSOU'I·=A, 1 
// DCB=(,BLKSIZE=120, 2 
I// LRECL=120) 
L-----------------------------------------J 

Figure 28. Linkage Edit and Execute 
Cataloged Procedure 

•rhe EXEC statement that invokes the 
linkage editor is named LKED and specifies 
that the operating system is to execute the 
program IEWL, the name for the linkage 
editor program. This statement also 
specifies the XREF, LIST, and LET options 
for the linkage editor. The programmer can 
override these options by using the EXEC 
statement in the input stream. 

•rhe EXEC statement named GO executes the 
load module produced by the linkage editor 
procedure step. The PGM parameter 
specifies that the operating system is to 
execute the data set defined by the DD 
statement SYSLMOD in the procedure step 
LKED. To execute a run using the cataloged 
linkage edit and execute procedure, the 
programmer must add SYSIN. 

COMPILE, LINKAGE EDIT, AND EXECUTE 

The cataloged procedure to compile, linkage 
edit, and execute a COBOL source module 
CCOBECLG) is shown in Figure 29. 

Cataloged Procedures 53 



r-------------------------------------------------------------------------1 
//COB EXEC PGM=IEPCBLOO 
//SYSPRINT DD SYSOUT=A 
//SYSUTl DD UNIT=SYSDA,SPLIT=C2,CYL,C40,10)) 
//SYSUT2 DD UNIT=SYSDA,SPLIT=4 
//SYSUT3 DD UNIT=SYSDA,SPLIT=4 
//SYSPUNCH DD DSNAME=&LOADSET,DISP=CMOD,PASS), 1 
// UNIT=SYSDA,SPACE=CTRK, (50,10)) 
//LKED EXEC PGM=IEWL,PARM=CXREF,LIST,LET),COND=C9,LT,COB) 
//SYSLIN DD DSNAME=&LOADSET,DISP=COLD,DELETE) 
// DD DDNAME=SYSIN 
//SYSLMOD DD DSNAME=&GODATACRUN),DISP=CNEW,PASS), 1 
// UNIT=SYSDA,SPACE=C1024,C50,20,1)) 
//SYSLIB DD DSNAME=SYSl.COBLIB,DISP= COLD, KEEP) 
//SYSUTl DD UNIT=(SYSDA,SEP=CSYSLIN,SYSLMOD)), 1 
// SPACE=C1024,C50,20)) 
//SYSPRINT DD SYSOUT=A 
//GO EXEC PGM=*.LKED.SYSLMOD,COND=((9,LT,COB),(5,LT,LKED)) 
//SYSABEND DD SYSOUT=A 

l//SYSOUT DD SYSOUT=A,DCB=(,BLKSIZE=120,LRECL=120) 
L--------------------------------------------------------------------·----J 
Figure 29. Compile, Linkage Edit, and Execute Cataloged Procedure 

The cataloged procedure COBECLG consists 
of the statements in the COBEC and COBELG 
procedures, with one exception. The DD 
Statement SYSLIN in the linkage editor 
procedure step LKED identifies the compiler 
output as the primary input. The 
programmer does not have to define the 
linkage editor input as he did with the 
procedure COBELG, but he must define the 
data set SYSIN for the compiler so that the 
source module can be read. 

USER CATALOGED PROCEDURES 

The programmer can write his own cataloged 
procedures and tailor them to the 
facilities in his installation. He can 
also permanently modify IBM-supplied 
cataloged procedures. For information 
about modifying cataloged procedures that 
are merobers of a symbolic library, see the 
publication, IBM System/360 Operating 
system: Utilities. An example of 
modifying cataloged procedures is shown in 
Appendix A of this publication. 

OVERRIDING CATALOGED PROCEDURES 

cataloged procedures are composed of EXEC 
and DD statements. A feature of the 
operating system is its ability to read 
control statements and modify a cataloged 
procedure for the duration of the current 
job. overriding is only temporary; that 
is, the parameters added or modified are in 
effect only for the duration of the job. 

54 IBM S/360 OS COBOL(E) Programmer's Guide 

The following text discusses the techniques 
used to modify cataloged procedures. 

OVERRIDING PARAMETERS IN THE EXEC STATEMENT 

Two forms of keyword parameters ("keyword" 
and "keyword.procstep") are discussed under 
Job-Control Language. The form 
"keyword.procstep" is used to add or 
override parameters in an EXEC statement in 
a cataloged procedure. 

Note: When the PARM parameter is 
overridden, all options stated in the EXEC 
statement in the procedure step are 
deleted. 

The COBOL programmer: can, for example, 
add Cor override) compiler or linkage 
editor options for an execution of a 
cataloged procedure, or he can state 
different conditions for bypassing a job 
step. 

Example 1: Assume the cataloged procedure 
COBEC is used to compile a program, and the 
programmer wants to spe~cify the NODECK 
option. The following statement can be 
used to invoke the procedure, and to supply 
the compiler options. 

//STEP! EXEC COBEC, 
// PARM,COB=NODECK 

The PARM option applies to the procedure 
step COB. 

x 

Example 2: Assume the cataloged procedure 
COBELG is used to linkage edit and execute 



a program. Furthermore, the MAP option 
overrides XREF, LET, and LIST in the 
linkage editor step and the COND parameter 
is changed for the execution of the load 
module. The following EXEC statement adds 
and overrides parameters in the procedure. 

//PERFORM EXEC COBELG,PARM.LKED=MAP, X 
// COND.G0=(3,LT,PERFORM.LKED) 

The PARM parameter applies to the 
linkage editor procedure step LKED, and the 
COND parameter applies to the execution 
procedure step GO. 

Example 3: Assume a source module i.s 
compiled, linkage edited, and executed 
using the cataloged procedure COBECLG. 
Furthermore, the compiler option BUF'SIZE 
and the linkage editor option MAP are 
specified. The following EXEC statement 
adds and overrides parameters in the 
procedure. 

//STEP1 EXEC COBECLG, 
// PARM.COB='BUFSIZE=600', 
// PARM.LKED=MAP 

OVERRIDING AND ADDING DD STATEMENTS 

1 
2 

A DD statement with the name 
"stepname.ddname" is used to override 
parameters in DD statements in cataloged 
procedures or to add DD statements to 
cataloged procedures. The "stepname" 
identifies the step in the cataloged 
procedure. If "ddname" is the name of a DD 
statement: 

L present in the step, the parameters in 
the new DD statement override 
parameters in the DD statement in the 
procedure step. 

2fl not present in the step, the new DD 
statement is added to the step. 

In any case, the modification is only 
effective for the current execution of the 
cataloged procedure. 

When overriding, the original DD 
statement in the cataloged procedure is 
copied, and the parameters specified in it 
are replaced by the corresponding 
parameters in the new DD statement. 
Therefore, only parameters that must. be 
changed are specified in the new DD 
statement. Therefore, only parameters that 
must be changed are specified in the new DD 
statement. Except for the DCB parameter, 
only an entire parameter may be overridden. 

If more than one DD statement is 
modified, the overriding DD statements must 

be in the same order as the DD statements 
appear in the cataloged procedure. Any DD 
statements added to the procedure must 
follow overriding DD statements. 

When the procedures COBEC and COBECLG 
are used, a DD statement must be added to 
define the SYSIN data set to the compile 
step in the procedures (see Figures 15 and 
20). When the procedure COBELG is used, a 
DD :statement must be added to define the 
SYSIN data set <see Figure 17). 

Example 1: Assume the data sets identified 
by ddnames CALC1 and CALC2 are named, 
cataloged, and assigned specific volumes. 
The following DD statements are used to add 
thi:s information and indicate the location 
of the source module. 

//JOB1 JOB MSGLEVEL=l 
//STEP1 EXEC COBECLG 
//COB.SYSIN DD * 
r----------------------1 
I COBOL Source Module I 
L----------------------J 
/* 
//GO.CALC1 DD DSNAME=FTAX, X 
// DISP=CNEW,CATLG), X 
// VOLUME=(PRIVATE,SER=987K) 
//GO.CALC2 DD DSNAME=STAX, X 
// DISP=(NEW,CATLG), X 
// VOLUME=(PRIVATE,SER=1020) 

Example 2: Assume the compile, linkage 
edit, and execute cataloged procedure 
(COBECLG) is used with: 

1. A COBOL main program MAIN in the input 
stream. 

2. A linkage editor control statement that 
specifies an additional library, MYLIB. 
MYLIB is used to resolve external 
references for the symbols A, B, and c. 

•rhe following example shows the deck 
structure. 

//JOBCLG JOB 00,COBOLPROG,MSGLEVEL=l 
/ /S'rEPl EXEC COBECLG 
//COB.SYSIN DD * 
r---------------------------1 I COBOL Source Module MAIN I 
L---------------------------J 
/* 
//LKED.ADDLIB DD DSNAME=MYLIB 
//LKED.SYSIN DD * 

LIBRARY ADDLIB (A,B,C) 
/* 
//GO.ddname DD statements 

The DD statement COB.SYSIN indicates to the 
compiler that the source module is in the 
input stream. The DD statement LKED.ADDLIB 
defines the additional library MYLIB to the 
linkage editor. The DD statement 
LKED.SYSIN defines a data set that is 

Cataloged Procedures 55 



concatenated with the primary input to the 
linkage editor. The linkage editor control 
statements and the object modules appear as 
one data set to the linkage editor. The DD 
statements GO.ddname define data sets for 
input ahd output for the load module. 

56 IBM S/360 OS COBOL(E) Programmer's Guide 



Th.is section is intended to help the 
programmer reduce the amount of storage 
required for a program, which should result 
in a reduction of execution time, and/or 
linkage editing time for tnat program. 
Th.is section discusses: 

• General COBOL programming suggestions 
for effective coding. 

• Descriptions of data forms, numeric 
data format usage and other related 
factors affecting the use of main 
storagE~. 

• Specific examples (of data definitions, 
relationals, arithmetics and complex 
instructions) to illustrate the effect 
they have on main storage. 

• Specific examples of good and bad 
coding techniques along with some 
important considerations when using 
certain types of data. 

• Effective techniques for handling files 
along with I/O considerations and 
debugging techniques. 

Application of the techniques and 
suggestions discussed should result in a 
more efficient program. 

CONSERVING STORAGE 

The data division is important in that the 
de:fini ti on of data can affect the number of 
program steps generated in the procedure 
division. 

The definition of data used in 
computationals is also important. The 
saving of one byte in the data division can 
cause a significant increase in the number 
of instructions generated in the procedure 
division. Conversely, a meaningful 
addition of one byte in the data division 
can result in a savings of 20 or more bytes 
of generated instructions for the procedure 
division. By judicious choice of such 
items as decimal-point alignment, sign 
declaration, and usage, the object code 
produced for the procedure division is more 
efficient. The compiler resolves all of 
the allowable mixed data usages 
encountered. If the programmer is 
unconcerned about the program's efficiency, 
the required additional instructions are 
generated and additional storage is used. 

PROGRAMMING CONSIDERATIONS 

A programmer, coding according to the 
suggestions set forth here, can effect a 
substantial savings in storage. Attention 
to decimal alignment Cone of the 
suggestions) saves storage as follows. 

To execute a statement, data must be 
aligned. Neglecting decimal alignment when 
defining data, forces the compiler to align 
decimal points, which costs 18 or more 
bytes for each alignment procedure 
executed, thus using storage unnecessarily. 

To give the programmer an idea of the 
effect data has on storage when data is 
defined without regard to optimization of 
data declarations, consider the following 
percentages and the ensuing example. 

In a typical source statement deck, the 
frequency of the most common verbs written 
in the procedure division of a COBOL 
program, averaged over a number of 
programs, is: 

MOVES - 503 
GO TO - 203 
IF - 153 
Miscellaneous (arithmetics, I/O PERFORMS, 

etc.) - 153 

Assume that the number of move 
statements, out of a total of 250 
procedural statements, is 125 and that all 
the .sending fields and related receiving 
fields are defined without decimal 
alignment (worst case). 

An example of one pair of fields is: 

77 A PICTURE 99V9 COMPUTATIONAL-3. 
(sending field) 

77 B PICTURE 999V99 COMPUTATIONAL-3. 
(receiving field) 

Because the receiving field is one 
decimal position larger than the sending 
field, decimal alignment must be performed. 

The cost in bytes of decimal alignment 
for these moves is: 125 moves times 18, or 
2,250 bytes of storage. Each time these 
moves are executed 2,250 bytes of storage 
are used. 

A programmer aware of the cost of 
nonalignment can conserve great amounts of 
storage by simply aligning decimals. Using 
one additional byte to align decimals in 
the data sending or receiving fields is 
small in cost, considering the savings 
possible in the procedure division. 

Programming Considerations 57 



The programming suggestions given in the 
ensuing text should result in a savings in 
storage and/or faster compilations. 

BASIC PRINCIPLES OF EFFEcrIVE COBOL CODING 

The techniques described in this section 
will help the programmer write efficient 
programs. If followed, the suggestions 
will reduce the number of bytes used by his 
program. The basic principles for writing 
efficient COBOL programs are: 

• Match decimal places in related fields 
(decimal-point alignment). 

• Match integer places in related fields 
(unequal-length fields). 

• Do not mix usage of data formats 
(mixed-data formats). 

• Include an s <sign) in all numeric 
pictures <sign control). 

• Keep arithmetic expressions out of 
conditionals <conditional statements>. 

GENERAL PROGRAMMING SUGGESTIONS 

The following is a list of general coding 
suggestions to aid the programmer in 
writing COBOL programs. Simple examples 
are given here to illustrate the use of the 
suggestions listed. The vast number of 
ways data can be defined and used makes it 
prohibitive to illustrate the cost (in 
bytes) of handling each situation. The 
values in number of bytes in the examples 
given are representative. They vary widely 
according to the way data is defined and 
used. 

Specific costs in number of bytes for 
several different methods of representing 
data are given under Examples Showing 
Effect of Data Declarations. 

DECIMAL-POINT ALIGNMENT 

The number of decimal positions should be 
the same whenever possible. If they are 
not, additional moves for padding, sign 
movement, and blanking-out result. The 
impact on storage is illustrated under 
Conserving Storage. 

Statements involving fields with an 
unequal number of digits require 

58 IBM S/360 OS COBOL(E) Programmer's Guide 

intermediate operations for decimal-point 
alignment. 

Define data efficiently, or move it to a 
work area to align data used in multiple 
operation. 

To get efficient code, the programmer 
should align decimal points wherever 
possible. As a general rule, two or four 
additional instructions (12 to 18 bytes) 
are required in basic arithmetic statements 
and IF statements when decimal-point 
alignment is necessary to process two 
COMPUTATIONAL-3 fields. 

Example: 
77 A PICTURE S999V99 
77 B PICTURE S99V9 

COMPUTATIONAL-3. 
COMPUTATIONAL-3. 

By adding one more decimal place to 
FIELD B, (PICTURE S999V99), the need for 
alignment instructions is eliminated, and 
no more bytes are required for field B. 
(Remember, hardware requires an odd number 
of digits for internal decimal fields. Use 
an odd number of nines when defining data 
in COMPUTATIONAL-·3 format. This practice 
results in more efficient object code 
without using additional storage for the 
item defined.) 

Example: ADD 1 TO A. 

The literal is compiled in internal 
decimal form, but decimal-point alignment 
instructions are necessary (4 instructions, 
18 bytes). If instead, the literal is 
written 1.00, only one byte is added in the 
literal area. The 18 bytes required for 
alignment of decimal points are eliminated. 

UNEQUAL-LENGTH FIELDS 

Use the same number of integer digits in a 
field. An intermediate operation may be 
required when handling fields of unequal 
length. For example, zeros may have to be 
inserted in numeric fields and blanks in 
alphabetic or alphameric fields in order to 
pad out to the proper length. To avoid 
these operations, be sure that the number 
of integer digits in fields used together 
are equal. Any increase in data field size 
is more than compensated for by the savings 
in generated object code. 

For example, if data is defined as: 

SENDFLD PICTURE S999 
RECEIVEFLD PICTURE S99999. 

and SENDFLD is moved to RECEIVEFID, the 
cost of zeroing high-order positions 
(numeric fields are justified right) is 10 



bytes. To eliminate these 10 bytes define 
SENDFLD as: 

SENDFLD PICTURE S99999. 

MIXED-DATA FORMATS 

Do not mix data formats. When fields are 
used together in move, arithmetic, or 
relational statements, they should be in 
the same format whenever possible. 
Conversions require additional storage and 
execution time. Any operations involving 
data items of different formats require 
conversion of one of the items to a 
matching data format before the operation 
can be executed. For example, when 
comparing a DISPLAY field to a 
COMPUTATIONAL-3 field, the code generated 
by the COBOL processor moves the DISPLAY 
field to an internal work area, converting 
it to a COMPUTATIONAL-3 field. It then 
executes the compare. This usage, although 
valid in COBOL, has the effect of reducing 
the efficiency of the program, by 
increasing its size. For maximum 
efficiency, avoid mixed data formats or use 
a onetime conversion; that is move the data 
to a work area, thus converting it to the 
matching data format. By referencing the 
wo:rk area in procedural statements, the 
data is converted only once instead of for 
each operation. 

The following example illustrates the 
conversions that take place when the 
components of a COMPUTE are defined: 

A COMPUTATIONAL-1. 
B :PICTURE S99V9 COMPUTATIONAL-3. 
C :PICTURE S9999V9 COMPUTATIONAL-3. 

and the following computation is specified, 

COMPUTE C = A * B. 

the internal decimal data (COMPUTATIONAL-3) 
i~ converted to floating-point format and 
then the COMPUTE is executed. 

The result <which is in floating point) 
is converted to internal decimal. The 
required conversion routines are time 
consuming and use storage unnecessarily,. 

The following examples show what must 
logically be done, before the indicated 
operations can be performed, when working 
with mixed·-data fields. 

DISPLAY to COMPUTATIONAL-3 

To Execute a MOVE: No Additional code is 
required Cif proper alignment exists) 
because one instruction can both move and 
conv,ert the data. 

To Execute a COMPARE: Before a COMPARE is 
executed, DISPLAY data must be converted to 
COMPUTATIONAL-3 format. 

To Perform Arithmetics: Before arithmetics 
are performed, DISPLAY data is converted to 
COMPUTATIONAL-3 data format. 

DISP,LAY to COMPUTATIONAL 

To Execute a MOVE: Before the MOVE is 
executed, DISPLAY data is converted to 
COMPUTATIONAL-3 data format, and then the 
COMPUTATIONAL-3 data to COMPUTATIONAL data 
format. 

To Execute a COMPARE: Before a compare is 
executed, DISPLAY data is converted to 
COMPUTATIONAL-3 data format, and the 
COMPUTATIONAL data to COMPUTATIONAL-3 
format. 

To Perform Arithmetics: Before arithmetics 
are performed, DISPLAY data is converted to 
COMPUTATIONAL-3 format, and then the 
COMPUTATIONAL-3 data to COMPUTATIONAL 
format. 

COMPUTATIONAL-3 to COMPUTATIONAL 

To Execute a MOVE: Before a MOVE is 
executed, COMPUTATIONAL-3 data is moved to 
a work field, and then converted to 
COMPUTATIONAL data format. 

To Execute a COMPARE: Before a COMPARE is 
executed, COMPUTATIONAL data is converted 
to COMPUTATIONAL-3 data format. 

To Perform Arithmetics: Before arithmetics 
are performed, COMPUTATIONAL-3 data is 
converted to COMPUTATIONAL data format. 

COMPUTATIONAL to COMPUTATIONAL-3 

To Execute a MOVE: Before a MOVE is 
executed, COMPUTATIONAL data is converted 
to COMPUTATIONAL-3 data format. 

To Execute a COMPARE: Before a COMPARE is 

Programming Considerations 59 



executed COMPUTATIONAL data is converted to 
COMPUTATIONAL-3 data format. 

To Perform Arithmetics: Before arithmetics 
are performed, COMPUTATIONAL data is 
converted to COMPUTATIONAL-3 data format. 

COMPUTATIONAL to DISPLAY 

To Execute a MOVE: Before a MOVE is 
executed, COMPUTATIONAL data is converted 
to COMPUTATIONAL-3 data format, and then 
the COMPUTATIONAL-3 data to DISPLAY data 
format. 

To Execute a COMPARE: Before a COMPARE is 
executed, COMPUTATIONAL data is converted 
to COMPUTATIONAL-3 data format, and DISPLAY 
data to COMPUTATIONAL-3 data format. 

To Perform Arithmetics: Before arithmetics 
are performed, COMPUTATIONAL data is 
converted to COMPUTATIONAL-3 data format, 
and DISPLAY data to COMPUTATIONAL-3 data 
format. The result is generated in a 
COMPUTATIONAL-3 work area, which is then 
moved to the DISPLAY result field. 

COMPUTATIONAL-3 to DISPLAY 

To Execute a MOVE: Before a compare is 
executed, DISPLAY data is converted to 
COMPUTATIONAL-3 data format. 

To Execute a COMPARE: Before a compare is 
executed, DISPLAY data is converted to 
COMPUTATIONAL-3 data format. 

To Perform Arithmetics: Before arithmetics 
are performed, DISPLAY data is converted to 
COMPUTATIONAL-3 data format. The result is 
generated in a COMPUTATIONAL-3 work area, 
which is then converted and moved to the 
DISPLAY result field. 

DISPLAY to DISPLAY 

To perform Arithmetics: Before arithmetics 
are performed, all DISPLAY data is 
converted to COMPUTATIONAL-3 data format. 
The result is generated in a 
COMPUTATIONAL-3 work area, which is then 
converted and moved to the DISPLAY result 
field. 

60 IBM S/360 OS COBOL(E) Programmer's Guide 

Conversion of COMPUTA'I'IONAL-1 or -2 Data 

For efficient object code, use of 
floating-point (COMPU'l~ATIONAL-1 or -2) 
numbers mixed with other usages should be 
held to a minimum. The conversion from 
internal to external floating point and 
vice-versa is done by subroutines. Fields 
used in conjunction with a floating-point 
number are converted to floating point, 
causing the object program to perform 
conversions. For example, assume a COMPUTE 
is specified as: 

COMPUTE A = B * C + D + E. 

Assume B is COMPlJTATIONAL-1 or -2 data and 
all other fields are defined as 
COMPUTATIONAL-3 data. Fields C, D, and E 
are converted to COMPUTATIONAL-1 or -2 data 
format, the calculation performed, and the 
result converted back from COMPUTATIONAL-1 
or -2 data format to COMPUTATIONAL-3 data. 
If field B is defined as COMPUTATIONAL-3, 
no conversion is necessary. Use of 
floating-point numbers is more efficient 
when used in programs with computational 
data that is practically all 
COMPUTATIONAL-1 or -2 type. If it is 
necessary to use floating-point data, be, 
careful not to mix data formats. 

SIGN CONTROL 

For numeric fields spe·cified as unsigned 
Cno S in the picture clause of decimal 
items>, the COBOL processor attempts to 
ensure that a special positive sign (F) is 
present so that the values are treated as 
absolute. 

The processor moves in a hexadecimal F 
whenever the possibility of the sign 
changing exists. Examples 
are: Subtracting unsigned fields, moving a 
signed field to an unsigned field, or an 
arithmetic operation on signed fields where 
an unsigned result field is specified. 

The sign is not checked on input data or 
on group level moves. The programmer must 
know what type of data is being used, under 
those circumstances. 

The use of unsigned numeric fields 
increases the possibility of error Can 
unintentional negative sign could cause 
invalid results> and requires additional 
generated code to control the sign. The 
use of unsigned fields should be limited to 
fields that are to be treated as absolute 
values. 



Note: The hexadecimal F, while treated 
as a plus, does not cause the digit to be 
printed or punched as a signed digit. 

The programmer should include a sign in 
numeric pictures unless absolute values are 
desired. The following example illustrates 
the additional instructions generated by 
the compiler each time an unsigned field is 
modified. 

If data is defined as: 

.A PICTURE 999. 
B PIC'l'URE S999. 
C PIC'I'URE S99 9. 

and the following moves are made, 

MOVE B TO A. 
MOVE B TO C. 

moving B to A causes four more bytes of 
storage to be used than moving B to c, 
because an absolute value is specified for 
receiving field A. 

CONDITIONAL STArrEMENTS 

Ke!ep arithmetic expressions out of 
conditional statements. Computing 
arithmetic values separately and then 
comparing them may produce mor~ accurate 
results than including arithmetic 
statements in conditional statements. The 
final result of an expression included in a 
conditional statement is limited to an 
accuracy of six decimal places. The 
following example shows how separating 
computations from conditionals can improve 
accuracy. 

If data is defined as: 

77 A PICTURE S9V9999 COMPUTATIONAL-3. 
77 B PICTURE S9V9999 COMPUTATIONAL-3. 
77 C PICTURE S999V99999999 COMPUTATIONAL-3. 

and the following conditional statement is 
written, 

IE' A * B = C GO TO EQUALX. 

the final result will be 99V999999. 
Although the receiving field for the final 
result (C) specifies eight decimal 
positions, the final result actually 
obtained in this example contains six: 
decimal places. For ·increased accuracy, 
define the final result field as desired, 
perform the computation, and then make the 
desired comparison as follows. 

77 X PICTURE IS S999V9(7} COMPUTATIONAL-3. 
COMPUTE X = A * B. 
IF' X = C GO TO EQUALX. 

OTHlm CONSIDERATIONS WHEN USING DISPLAY AND 
COMPUTATIONAL FIELDS 

DISPLAY (Non-Numeric and External Decimal) 
Fields 

Zeros and blanks are not inserted 
automatically by the logical instruction 
set.. A move requires coding to insert 
zeros or blanks. On compares, the smaller 
item must be moved to a work area where 
zeros or blanks are inserted before the 
compare. 

COMPUTATIONAL-3 (Internal Decimal) Fields 

The decimal feature provides for the 
automatic insertion of high-order zeros on 
adds, subtracts, and compares. 

When a blank field (40) is moved into a 
field defined as COMPUTATIONAL-3, the sign 
position is not changed; thus the invalid 
sign bits of the blank field are retained. 
An arithmetic operation with such a field 
results in a program check. Before moving 
a blank field into a COMPUTATIONAL-3 field 
to be operated on, the sign position must 
be converted to a valid COBOL sign CFO). 

COMPUTATIONAL Field 

Opei:ating System furnishes a large 
repe~rtoire of halfword and fullword 
instructions. Binary instructions require 
one of the operands to be in a register 
where a halfword is automatically expanded 
to a fullword. Therefore, handling mixed 
halfword and fullword fields requires no 
additional operations. 

COMPUTATIONAL 1 and 2 Fields 

A full set of short- and long-precision 
instructions are provided which enables 
operations involving mixed precision fields 
to be handled without conversion. 

DATl~ FORMS 

To conserve storage, the programmer must 
know COBOL data forms, and how they affect 
storage. Equally important is the way he 
organizes his data. The following 

Programming Considerations 61 



information illustrates the various types 
of COBOL data forms, and their respective 
costs in alignment. Characteristics and 
requirements are described for the possible 
usages of numeric data, along with symbolic 
illustrations of what forms they take 
within the machine. Also included is a 
brief discussion of how to organize data 
efficiently. 

ELEMENTARY ITEMS 

The number of bytes occupied by data in 
main storage depends on its format Cor 
mode). Table 13 illustrates the number of 

bytes required for each class of elementary 
item. 

If files and working storage are 
organized so that all halfwords, fullwords, 
and doublewords are grouped together, 
essentially no additional storage is used. 
However, if these item.s are not grouped 
together properly, the amount of storage 
required for alignment is: 

Halfword - 1 byte 
Fullword - 1 to 3 bytes 
Doubleword - 1 to 7 bytes 

Table 13. Number of Bytes Required for Each Class of Elementary Item 
r---------------------------------------------------------------------------------------1 I TYPE OF ITEM CALCULATION OF REQUIRED BYTES FROM PICTURE I 
~-----------------------------------------------------------------------------------------~ 

DISPLAY I 

Alphabetic 
Alphanumeric 
External Decimal 

(
External} 
floating 
point 

Report 

COMPUTATIONAL-3 
Internal Decimal 

COMPUTATIONAL 

Bytes 
Bytes 
Bytes 

Bytes 

Bytes 

Number of A's in picture 
Number of X's in picture 
Number of 9's in picture 

Number of characters in picture 

= Number of characters in picture 
except P, V 

Bytes = (Number of 9's +1 divided by 2, 
rounded up) 

Size Alignment 

{

2 if lsNs4 Halfword Machine Address 
4 if 5sNs9 Fullword Machine Address 

{Binary} Bytes = 8 if 10sNs18 Fullword Machine Address 
Where N=Number of 9's in picture 

COMPUTATIONAL-1 or 
COMPUTATIONAL-2 

{ Internal~ 
f l<;>ating Bytes 
point 

4 if short-
precision Fullword machine address 

Ccomputa-
tional-1) 

8 if long 
precision Doubleword machine address 

Ccomputa-
tional-2) 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

GROUP ITEM 

Group moves of 256 or less bytes cost less 
than a series of single alphanumeric moves 
of the elementary item within the group 
item. Any move of a group or elementary 
item greater than 256 bytes in size results 
in a subroutine being executed. 

When computational usage is specified in 
COBOL slack bytes are inserted to give 
proper halfword or fullword or double-word 
boundary alignment. 'I'his is necessary so 
that the elementary item can be handled 
properly in binary arithmetic. However, 
using group items that include slack bytes 
could cause problems. 

62 IBM S/360 OS COBOL(E) Programmer's Guide 



It is possible for two group items, 
defined exactly the same, to have a 
different number of slack bytes because 
they begin in different places, relative to 
word boundaries. Since group items use 
slack bytes as normal data, a move of the 
smaller of these to the larger can cause a 
loss of data. 

For example, assume two groups are 
defined as follows: 

01 RECORD-1. 
02 GOLD PICTURE XX DISPLAY. 
02 MINERALS COMPUTATIONAL,, 

Case 1 03 OPAL PicrURE 99. 
03 QUARTZ PICTURE 99999. 

01 RECORD-1. 
02 MINERALS COMPUTATIONAL .. 

Case 2 03 OPAL PICTURE 99. 
03 QUARTZ PICTURE 99999. 

Case 1 qroup <02 MINERALS) consists of a 
t.otal of six bytes <it does not contain 
slack bytes). 

case 2 group C02 MINERALS) consists of a 
total of eight bytes, including two slack 
byte~s. 

In case 2, 03 QUARTZ will be preceded by 
two slack bytes. Thus, if case 2 group (02 
MINERALS) is moved to case 1 group, the 
last two bytes of data will be lost. 

If case 1 group (02 MINERALS) is moved 
to case 2 group, no data will be lost but 
the elementary 03 QUARTZ will be improperly 
aligned. 

NUMERIC DATA FORMAT USAGE 

Figure 30 lists the common characteristics 
and special characteristics of numeric 
data. 

Programming Considerations •63 



r------------T----------T-----------------T-------------T-----·----T·--------------------1 
I I I I !Boundary I I 
I !Bytes I !Converted in IAlignmentl:Special I 
!Type of DatalRequired !Typical Usage !Arithmetics !Required !Characteristics I 
~------------+----------+-----------------+-------------+-----·----+·--------------------~ 
!DISPLAY 11 per digitlinput from cards !Yes INo !May be used for I 
I (External I !Output to cards, I I I numeric fields up tol 
I Decimal> I I listings I I 118 digits long. I 
I I I I I I I 
I I I I I !Fields over 15 I 
I I I I I !digits require extra! 
I I I I I I :instructions if used I 
I I I I I lin computations. I 
~------------+-----------+-----------------+-------------+---------+·--------------------~ 
I COMPUTA- 11 byte per I Input to a report I Not normally I No I Requires less s.pace I 
ITIONAL-3 12 digits !item I I !than display. I 
!<Internal !after the I I I I I 
!Decimal> llst byte !Arithmetic fields! I !Convenient form for I 
I !for low- I I I !decimal alignment. I 
I !order digitlWork areas I I I I 
I I I I I I The natural form I 
I I I I I !contains an odd I 
I I I I I I number of digits. I 
~------------+-----------+-----------------+-------------+-----·----+·--------------------~ 
ICOMPUTA- 1*2 bytes iflSubscripting IYes/No--for !Yes !Rounding and on-size! 
ITIONAL I l~N~4 I Arithmetic I mixed usages I I error tests are I 
I (Binary> I I I I I cumbersome. I 
I I I I I I I 
I 1*4 bytes ifl INo--for I !Always must be I 
I I 5~NS9 I I unmixed usage I I signed. I 
I I I I I I I 
I I *8 bytes if I I I j:l!'ields of over 8 I 
I 110~~18 I I I !digits require more I 
I I I I I I handling. I 
~------------+-----------+----------------+-------------+-----·----+·--------------------~ 
ICOMPUTA- 14 bytes !Fractional expo- !No !Yes !Tends to produce I 
I TIONAL-1 18 bytes I nentiation, or I I I less accuracy. I 
ICOMPUTA- I Ivery large or I I IComputational-2 is I 
I TIONAL-2 I I small values I I I more accurate than I 
I I I I I I computational-1. I 
I I I I I I I 
I (Floating) I I I I !Requires floating- I 
!Point) I I I I !point feature. I 
L------------i-----------i-----------------i-------------i---------i--------------------J 

*Where N= number of digits in PICTURE. 

Figure 30. Characteristics of Numeric Data 

64 IBM S/360 OS COBOL(E) Programmer's Guide 



----.-.----------------------------------------------------------~~~~~~~~~~~ 

MACHINE REPRESENTATION OF DATA ITEMS 

The following examples are machine 
representations of the various data items 
in COBOL. 

DISPLAY (External Decimal) 

If value i.s -1234, and: 

Picture and Usage are: 
PICTURE 9999. 

or 
PICTURE S9999. 

Machine Representation is: 
IF11F2IF3IF41 
L.--.L--.L--J. __ J 

Byte 
or 

IF1IF2IF3ID41 
L. __ ,L __ ,L __ J. __ J 

Byte 

The sign position of an unsigned 
receiving field is changed to a hexadecimal 
F. 

Hexadecimal F is arithmetically treated 
as plus in low-order byte. The character D 
represents a negative sign. This form of 
data is ref erred to as external decimal. 

COMPUTATIONAL-3 (Internal Decimal) 

If value is +1234, and: 

Picture and Usage are: 
PICTURE 89999 COMPUTATIONAL-~. 

or 
PICTURE 9999 COMPUTATIONAL-3. 

Machine Representation is: 
l0112314CI 
L--.L-·-.L--.1 

Byte 
or 

l0112314FI 
L--.L--.L--iJ 

Byte 

Hexadecimal F is arithmetically treated 
as plus. The character c represents a 
positive sign. This form of data is 
referred to as internal decimal. 

COMPUTATIONAL (Binary) 

If value is 1234, and: 

Picture and Usage are: 
PICTURE S9999 COMPUTATIONAL. 

Machine Representation is: 
100001010011101100101 
L-----.L-___ ,L ____ ,L ____ J 

t 
siqn Byte 

A 1 in sign position means number is 
negative. A 0 in sign position means 
number is positive. 

'rhis form of data is referred to as 
binary. 

COMPUTATIONAL-1 or COMPUTATIONAL-2 
(Internal Floating Point) 

If value is +1234, and: 

Picture and Usage are: 

COMPUTATIONAL-1. 

Machine Representation is: 
101100001110100 1101 0010 0000 0000 00001 
L-.L-------~-----------------------------J 
s 1 7 8 31 

s is the sign position of the number. A 
0 in the sign position indicates that the 
sign is plus. A 1 in the sign position 
indicates that the sign is minus. 

This form of data is ref erred to as 
floating point. The example is one of 
short precision. In long precision, the 
fraction length is 56 bits. For a detailed 
explanation of floating-point 
representation, refer to IBM System/360 
Principles of Operation. 

EXAMPLES SHOWING EFFECT OF DATA 
DECLARATIONS 

The specific series of instructions that 
are~ generated vary widely with the 
description of the data fields involved. 
Some examples of the range to be expected 
by slight differences in the data 
descriptions follow. The examples of 
possible expansions used are illustrative 
and should not be used for estimates of 
storage. 

Programming Considerations 65 



.MOVE 

Assume that data items A,B,C, and D are 
defined for the purpose of being moved as 
COMPUTATIONAL-3 fields or DISPLAY fields. 

A PICTURE S99V99. 
B PICTURE S99V99. 
C PICTURE S99V9. 
D PICTURE 599. 

COMPUTATIONAL-3 Fields 

If items A., B, C and D are defined as 
COMPUTATIONAL-3 fields, then the cost in 
bytes to: 

Move A to B is: (when both integer and 
decimal places are equal) 6 bytes for a 
simple move. 

Move c to B is: (The sign position must be 
moved, and the original sign changed.) 

6 bytes for a simple move, and 18 bytes 
for decimal alignment. Total = 24 bytes. 

Move C to D is: (The sign requires a 
separate move.) 

6 bytes for a simple move, and 18 bytes 
for decimal alignment. Total = 24 bytes. 

DISPLAY Fields 

If data items A, B, c, and D are defined as 
DISPLAY fields, then the cost in bytes to: 

Move A to B is: (When both integer and 
decimal places are equal) 6 bytes for a 
simple move. 

Move c to D is: 
6 bytes for a simple move, and 6 bytes 
for decimal alignment. Total = 12 bytes. 

Move DISPLAY to COMPUTATIONAL-3 

The cost in bytes of moving DISPLAY data to 
a COMPUTATIONAL-3 field is: 6 bytes for 
conversion, and up to 24 bytes for decimal 
alignment. 

66 IBM S/360 OS COBOL(E) Programmer's Guide 

Move COMPUTATIONAL-3 to Report 

The cost in bytes of moving COMPUTATIONAL-3 
data to a REPORT field is: 
24 bytes for a simple move, 
12 bytes for floating insertion character, 
24 bytes for non-floating digit position, 
18 bytes for decimal alignment, 
24 bytes for trailing characters, 
12 bytes for unmatched digit positions. 

RELATIONALS 

IF COMPUTATIONAL-3 COMPUTATIONAL-3 

The cost in bytes to execute an IF 
statement when all data is defined as 
COMPUTATIONAL-3 is: 
6 bytes for the comparE! and branch 
instruction Cno decimal alignment); 
42 bytes for the compare and branch with 
decimal alignment. 

IF DISPLAY = COMPUTATIONAL-3 

The cost in bytes to eJ1:ecute an IF 
statement when data is defined as DISPLAY 
and COMPUTATIONA~-3 is: 
6 bytes for conversion, 
18 bytes for the compare and branch 
instruction, and 
18 bytes for decimal alignment. 

COMPUTATIONAL COMPUT ll1TIONAL 

The cost in bytes to execute an IF 
statement when all data. is defined as 
COMPUTATIONAL is: 
18 bytes for the compare and branch 
instruction, when the number of decimal 
digits is 1 to 9. 

The number of bytes required to execute 
the IF statement is unpredictable when the 
number of decimal digits is from 10 to 18. 

IF A * B = C * D, ETC. 

For optimum use of storage when writing any 
IF statement, first make all computations, 
and then compare results. 



f\RITHMETICS 

ADD COMPUTATIONAL-3 TO COMPUTATIONAL·-3 

The cost in bytes to execute an ADD 
statement when all data is defined as 
COMPUTATIONAL-3 is: 
6 bytes to execute the add, up to 56 bytes 
for alignment of decimals, and 4 bytes for 
blanking the sign. 

GENERAL TECHNIQUES FOR CODING 

The following examples illustrate how COBOL 
data fields can be manipulated. Some of 
the techniques illustrated are basic, and 
can be used in most programs, while others 
are designed to give the programmer an 
insight into techniques applicable to more 
sophisticated programs. 

.INTERMEDIATE RESULTS IN COMPLEX EXPRESSIONS 

The compiler can process complicated 
statements, but not always with the same 
efficiency of storage utilization as the 
source programmer. Because truncation may 
occur during computations, unexpected 
intermediate results may be obtained. The 
rules for truncation are in the 
publication, IBM System/360 Operating 
§.Y.stem: COBOL Language. 

A method of avoiding unexpected 
intermediate results is to make critical 
computations by assigning maximum Cor 
minimum) values to all fields and analyzing 
the results by testing critical 
computations for results expected. 

Because of concealed intermediate 
results, the final result is not always 
obvious. 

Alternate Method of Solution (Unexpected 
Intermedia.te Results> 

The necessity of computing worst case Cor 
best case) results can be eliminated by 
keeping statements simple. This can be 
accomplished by splitting the expression, 
and controlling intermediate results to be 
sure unexpected final results are not 
obtained. Consider the following example: 

COMPUTE B = (A + 3) / C + 27.600. 

First define adequate intermediate result 
fields, e.g.: 

02 INTERMEDIATE-RESULT-A 
PICTURE S9(6)V999. 

02 INTERMEDIATE-RESULT-B 
PICTURE S9(6)V999. 

Then, split up the expression as follows. 

ADD A,3 GIVING INTERMEDIATE-RESULT-A. 

Then write: 

DIVIDE C INTO INTERMEDIATE-RESULT-A 
GIVING INTERMEDIATE-RESULT-B. 

Then, compute the final result by writing: 

ADD INTERMEDIATE-RESULT-B, 27.600 GIVING B. 

ARITHMETIC SUGGESTIONS 

ARI'l?HMETIC FIELDS 

Initialize arithmetic fields before using 
them in computations. If the user attempts 
to use a field without it being 
initialized, the contents of the field is 
uprE~dictable: therefore, invalid results 
might be obtained, or the job might 
terminate abnormally. 

EXPONENTIATION 

Avoid exponentiation to a fractional power. 
For example: V ** CP / N). 

This requires the use of the 
floating-point feature. Use of floating 
point can be avoided by dividing the 
statements into separate computations. The 
first example given requires the use of the 
floating-point feature. The second example 
rest.ates the problem, illustrating how the 
use of floating point can be circumvented. 

Assume data is defined: 

DATA DIVISION. 
WORKING-STORAGE SECTION. 
77 :r."'LD PICTURE S99V9, COMPUTATIONAL-3. 
77 l~XPO PICTURE S99, COMPUTATIONAL-3. 
77 1? PICTURE S99. 
77 N PICTURE S99. 
77 VALUEl PICTURE S99. 

Assume values used in the example were 
appropriately moved into their respective 
symbolic names as follows: VALUEl = 5, P 
10, and N = 5. 

Programming Considerations 67 



Example 1 

COMPUTE FLD =VALUE 1 ** CP / N). 

Because CP/N) = 10/5 = 2.00 Cwith 
decimal places), the floating-point feature 
is required to solve this statement even 
though the exponent is an integer. The use 
of thi~ type of statement involves the 
floating-point feature because it is not 
known whether decimal digits are· present 
when the exponent is developed. 

Example 2 

The statement in example 1 can be solved by 
writing: 

COMPUTE EXPO= CP / N). 

The result is truncated to two significant 
digits CS99). 

Then write: 

COMPUTE FLD = VALUEl ** EXPO. 

Thus, the statement written in example 1 
can be solved by dividing it into two 
separate computations, avoiding the need 
for floating-point instructions. 

Another occurrence that can affect final 
results is intermediate result truncation. 
For example: 

Assume that VALUEl = 101 and N = 2. 

If COMPUTE FLD = (VALUE1 ** N) - 2 is 
written, by substitution the result is: 

FLD = (VALUE1 ** N) - 2 
S99V9 (S99 ** S99) - 2 
S99V9 = (10 ** 2) - 2 
S99V9 100.0 - 2 By the rule for 

truncation: 
r---------, 

r--L-, r--L-, 
Sl99V91 = 1100.0I - 2. 

The most significant digit is truncated. 
The final result is then: 

FLD 00.0 - 2 
FLD 02.0, could be an unexpected result. 

The situation can be corrected by 
expanding the target field CFLD) as 
follows: 

77 FLO PICTURE S999V9. 

Then, when the statement is written 
<assuming VALUE1 = 10, and N = 2): 

68 IBM S/360 OS COBOL(E) Programmer's Guide 

COMPUTE FLD CVALUEl "'* N) - 2. 

The result is: 

FLD 
S999V9 
S999V9 

(VALUEl ** N) - 2 
(S99 ** S99) -· 2 
(10 ** 2) - 2. 

By the rule for truncation: 
r---------, 

r--L--, r--L--., 
Sl999V91 = 1100.0I - 2. 

The result is, 
+ 

FLD = 098.0, which is the expected result. 

SUBSCRIPTING 

Use a constant subscript instead of a 
variable (data-name) subscript whenever 
possible. Constant subscripts are resolved 
during compile time, whereas variable 
(data-name) subscripts are resolved at 
object time. 

Example 

Instead of NAME (Sl, S2:) use: NAME (1,23) 
where S1=1, and S2=23. 

The address of NAME Cin the latter case) 
is resolved at compile time, based on the 
given constant subscripts. 

When variable subscripting is used, the 
address of the field is computed each time 
a subscripted field is referenced. 

For efficient coding·, frequently 
referenced subscripted fields should be 
moved to a work area, manipulated, and if 
necessary, returned. 

Example 

{

ADD D TO TAB-FIELiD CA, B, C) • 
IF TAB-FIELD (A,B,C) = LIMIT-FLO 

Bad GO TO ERR .. 
Code MOVE TAB-FIELD (A,B,C) to F. 

COMPUTE TAB--FIELD CA,B,C) = TAB-FIELD 
(A,B,C) + F / G. 



This coding could be improved by 
writing: 

{

MOVE TAB-FIELD CA,B,C) TO WORK-FLO. 
ADD D TO WORK-FLO. 

Good IF WORK-FLO = LIMIT-FLO 
Code GO TO ERR. 

MOVE WORK-FLO TO F, COMPUTE TAB-FIELD 
CA,B,C) = WORK-FLD + F / G. 

~inafY_,§£bscriptinq 

Use binary mode items for subscripting. 
Data-name subscripts not in binary are 
converted to binary at object time .• 

COMPARISONS 

Numeric comparisons are usually done in 
COMPUTATIONAL-3 format; therefore, 
COMPUTATIONAL-3 is usually the most 
efficient data format. 

Because compiler inserted slack bytes 
can contain meaningless data, group 
compares should not be attempted when slack 
bytes are within the group unless the 
programme:r knows the contents of the slack 
bytes. 

REDUNDANT CODING 

To avoid :redundant coding of usage 
designators, use computational desiqnators 
at the group level (this does not affect 
the object program). 

Example 

Instead o:E: 
02 FULLER. 

03 .A COMPUTATIONAL-3 PICTURE 99V9 .. 
03 B COMPUTATIONAL-3 PICTURE 99V9 .. 
03 C COMPUTATIONAL-3 PICTURE 99V9 ,, 

Write: 
02 FULLER COMPUTATIONAL-3. 

03 A PICTURE 99V9. 
03 B PICTURE 99V9. 
03 C PICTURE 99V9. 

EDITING 

A high-order nonf loating digit position 
involves more instructions than a floating 
digit position. 

nonf loatinq floating 
999.99 vs $$$9.99 

The blank-when-zero is implied in certain 
pictures. For example: 

~rnz. zz 

If blank-when-zero is not required for 
low-order characters, much more efficient 
coding is generated by pictures such as: 

ZZZ.99 

OPENING FILES 

Open requires a work area that cannot be 
recovered in a COBOL program. Less storage 
is used if single-file opens are given 
<reusing the positions) instead of a 
multiple open, which requires approximately 
500 bytes of additional storage for each 
file-name. 

To conserve storage, use: 
OPEN INPUT FILEA OPEN INPUT FILEB. 

rather than: 
OPEN INPUT FILEA, FILEB. 

ACCEPT 

The ACCEPT verb does not provide for 
recognition of the last card being read 
from a card reader. When COBOL detects a 
/* card a system ABEND occurs (completion 
code 337). Because of this system action, 
an end-of-file detection requires special 
treatment. Thus the programmer must 
provide his own end card (some card other 
than /*) which can be tested to detect an 
end of file. 

PARAGRAPH NAMES 

Paragraph names use storage when the 
PERFORM verb is used in the program. Use 
of paragraph names for comments requires 
more storage than the use of NOTE or a 

Programming Considerations 69 



blank card. Use NOTE and/or a blank card 
for identifying in-line procedures where 
paragraph names are not required. 

Example 

Avoid. 
MOVE A TO B. 
PERFORM JOES-ROUTINE. 

JOES-ROUTINE. COMPUTE A = D + E * F. 

Recommended: 

ROUTINE. 

MOVE A TO B. 
PERFORM ROUTINE. 
NOTE JOE'S ROUTINE. 
COMPUTE A = D + E * F. 

I TRAILING CHARACTERS 

Pictures with a trailing period or comma 
require that punctuation follow, or the 
trailing picture character is treated as 
punctuation. 

Example 

77 A PICTURE IS 999., USAGE IS DISPLAY 

REDEFINITION 

The results of moving a field to itself 
through the use of redefinition are 
unpredicatable. 

To manipulate unusual data forms, use 
REDEFINES. For example, a technique for 
isolating one binary byte follows. 

02 A PICTURE S99 COMPUTATIONAL. 
02 FILLER REDEFINES A. 

03 FILLER PICTURE X. 
03 B PICTURE X. 

Explanation: 

COMPUTATIONAL sets up a binary halfword: 

I I I I 
L-~---------i------------J 
Sl 7 8 15 

'----v------' '----v------' 
t Byte 1 
A 

Byte 2 

70 IBM S/360 OS COBOLC:E) Programmer's Guide 

02 FILLER REDEFINES A. I states that A is to 
be redefined as follows. 

• Ignore first byte (03 FILLER PICTURE X) • 
• Name second byte B. (03 B PICTURE X). 

Now byte B can be moved to a work area, 
and operated on logically at the assembler 
level, or compared logically at the COBOL 
level. It can be stored on a file, and 
later moved back to its point in a 
similarly defined field. 

Use of data in this manner can present 
problems regarding signs and numeric 
values. These problems require a knowledge 
of both System/360, and COBOL. 

Another illustration of using REDEFINES 
to manipulate data concerns the test IF 
NUMERIC. A field is considered numeric 
(under normal language usage) if all the 
positions of the field are numeric with the 
exception of the sign position. 

If a field is to be considered numeric 
only when it is unsigned, the sign position 
must be tested. A technique for relocating 
the sign Cor "shifting") so that it can be 
tested as an unsigned numeric value 
follows. 

Assume a field is def in.ed: 

02 IF-NUM-FIELD PICTURE. X(5) VALUE '00000'. 
02 CHANGE-FIELD REDEFINES IF-NUM-FIELD. 

03 REAL-FIELD, PICTUIRE S9(4). 
03 FILLER, PICTURE X. 

IF-NUM-FIELD defines a 5-byte alphameric 
field. 
REAL-FIELD redefined th.is field to be 4 
bytes numeric. 

The fields appear in storage as follows: 



IF-NUM-FIELD 

I o I o I o I o I o I 
L---.L---L----L---L---J 

~':,, (_, Byte position 

REAL-FIELD FILLER 

'I'o make an IF NUMERIC, test true for only 
unsigned fields. 

l. Move the 4-byte value to be tested into 
REAL-FIELD. The value and its sign 
occupy bytes 1-4. 

For example: 

If +1234 is moved to REAL-FIELD, the 
resultant field appears in storage as 
follows: 

IF-NUM-FIELD 

I .A.--~~~~, 

Case A IF11F2IF31C4IFOI 
L--J.--.L--.L--.L--J 

1 2 3 4 5 Byte position 
~~ 
REAL-FIELD FILLER 

Note that the low-order byte <rightmost 
byte) of IF-NUM-FIELD retains its initial 
value of O. 

If 123lJ is moved to REAL-FIELD, the 
r 1esultant field appears in storage as 
follows: 

IF-NUM-FIELD 

I _,,,..._ 1 
Case B IF1IF2IF31F4IFOI 

L---L--..L--.L---L--J 

1 2 3 4 5 Byte position 
'---_____.} ~ 
REAL-FIELD FILLER 

2. Test IF-NUM-FIELD FOR NUMERIC. 
All four bytes of REAL-FIELD will be 
tested as an unsigned numeric value 
because the sign position was "shifted 
left one position," and is no longer in 
the units position of IF-NUM-FIE:LD. If 
the value is unsigned, a hexadecimal F 
appears in the sign position or fourth 
byte of the 4-byte field, and it 
appears as un unsigned numeric .• 

Thus in the preceding example, when the 
fourth byte is tested in case A, the 
numeric test fails, but when tested in case 
B the numeric test is satisfied. 

ALIGNMENT AND SLACK BYTES. - CA 
CONSIDERATION WHEN USING BINARY OR FLOATING 
POINT DATA.) 

Unless binary or floating-point data is 
used the user need no be concerned with 
slack bytes. The number of bytes of main 
storage necessary for the data division 
must include bytes added to produce valid 
boundary alignment for binary and 
floating-point data fields. 

Slack bytes required to align data are 
generated by the compiler. 

Example: 

01 RECORD. 
02 FLD-1 PICTURE IS X(2). 
02 FLD-2 PICTURE IS 599999 COMPUTATIONAL. 

Because FLD-2 is binary and five digits 
in length, the compiler sets aside one 
fullword which must be aligned on a 
fullword boundary. In this example, two 
slack bytes are required. The compiler 
inserts them automatically. 

A warning diagnostic is given when slack 
bytes are inserted by the compiler. 

Because COBOL aligns computational 
fields on output files and expects them to 
contain slack bytes <where required) on 
input files, a problem could exist when 
reading or writing a file. 

A file to be read that contains 
computational fields without slack bytes 
must be coded in the same manner. That is, 
it must be coded with the knowledge that it 
does not contain slack bytes. If the file 
contains computational data without slack 
bytes, the data will not be properly 
aligned when read from the file; thus it 
cannot be processed by the compiler. 

'The following is a technique for 
manipulating computational data not 
containing slack bytes so that it may be 
processed by the compiler. 

.~ssume a group record called RECORD-C 
exists on a file and consists of 2-bytes of 
alphameric data called GOLD, and 4-bytes of 
binary data called SILVER. The record on 
the file would look like: 

r-T·-y-T-T_T_1 
L_.L._.L_.L_..L_..L_J 

t t 
GOLDI 
I SILVER 
I 
RECORD-C 

Programming Considerations • 71 



If an FD were defined: 

01 RECORD-C. 
02 GOLD PICTURE XX. 
02 SILVER PICTURE S99999 COMPUTATIONAL. 

The compiler asswnes the following 
structure: 

r-T-T_T_T_T_T_T_1 
L_.L_J._.L_.L_.L_.L_.1._J 

t t 
I t SILVER 
I SLACK 
GOLD BYTES 
I 
I 
RECORD-C 

When the record on the file is read, it 
is placed in the area defined, left 
justified. The area thus contains the 
following: 

r-T-T_T_T_T_1 
L-.L-.L-.L~J.-.L_J 

t t 
GOLD t SILVER 
I SLACK 
I BYTES 
RECORD-C 

(This is the compiler
generated address for 
SILVER.) 

Thus the first 2-bytes of the 02 SILVER 
are lost because of misalignment. Hence, 
when the 02 SILVER is accessed, only the 
last 2-bytes are available. 

To circwnvent this problem, define 
RECORD-C as follows: 

01 RECORD-C. 
02 GOLD PICTURE XX. 
02 SILVER PICTURE XXXX. 

and a GROUP item such as: 

01 LEAD. 
02 DIAMOND PICTURE S99999 COMPUTATIONAL. 

Now, access the record CRECORD-C). This 
places it in the buffer, properly aligned. 
Then move the 4-byte elementary 02 SILVER 
(which is defined as alphameric but is 
actually binary data) to the record 01 
LEAD. Because the 01 LEAD is a group item, 
the data moved retains its original form 
(no data conversion takes place) and the 
elementaries 02 SILVER and 02 DIAMOND are 
properly aligned. Thus, by accessing 
DIAMOND, the binary data can be operated on 
as desired. 

Asswning the same record CRECORD-C} out 
on the file, an alternate method of 
obtaining proper alignment when reading the 
record follows. 

Define a record in an FD as follows: 

•72 IBM S/360 OS COBOL(E) Programmer's Guide 

01 RECORD-C. 
02 GOLD PICTURE XX. 
02 SILVER PICTURE XXXX. 

The area defined would look like: 

r-T-T_T_T_T_1 
L_J._J._J._J._.L_J 

t t 
GOLDI 
I SILVER 
RECORD-C 

Then define a record in the 
WORKING-STORAGE section as: 

01 BRASS. 
02 LEAD PICTURE XXXX. 
02 DIAMOND REDEFINES LEAD PICTURE, 

S99999 COMPUTATIONAL. 

As before, when the record is accessed, 
it is placed in the buff er properly 
aligned. Its structur·e in the buff er would 
be: 

r-T-T_T_T_T_1 
L_J._ J._J._.L_.L_ J 

t t 
GOLDI 
I SILVER 
RECORD-C 

Now move the 4-byte elementary 02 SILVER 
to the elementary 02 L:EAD. Because the 02 
SILVER and 02 LEAD elementaries are both 
defined as display, the data retains its 
original form and the ·elementaries are 
properly aligned. By accessing the 
REDEFINES CDIAMOND), the binary data can be 
operated on as desired. The same problem 
could exist when reading or writing 
floating-point data. 

For a complete discussion of slack 
bytes, refer to the publication, IBM 
System/360 Operating System: COBor;
Language. 

GENERAL INFORMATION--FILE HANDLING 

BUFFERS 

In IBM System/360 Operating System COBOL, a 
buff er is as a designated area in main 
storage for I/O transactions. When a file 
is read, a block is read into a buff er 
where the records are addressed directly as 
they are accessed. Use of the READ or 
WRITE directs a pointer to the appropriate 
record, or record area, of interest in the 
buffer. 



RECORD BLOCKING 

The size of the buff er area is computed by 
multiplying the number of records specified 
in the BLOCK CONTAINS clause by the maximum 
record size (slack bytes and control fields 
included). When fixed-length records are 
written each physical record contains the 
number of records specified in the BLOCK 
CONTAINS clause. The last physical record 
may be short. No padding records are 
generated for short records. As many 
variable-length records as can fit into the 
buffer area are written, providing that 
there is sufficient room for a 
maximum-length record. For example, where 
the number of records is 6 and the maximum 
record size is 500, a 3,000-position buffer 
is provided. Records are located in the 
buff er until such time as less than 500 
positions remain. 

For Example: 
r-·-·-T ___ T ___ T ___ T ___ T ___ T ___ 1 

I 1 I 2 I 3 I 4 I 5 I 6 I 7 I 
~---+---+---+---+---+---+---i 
l500j250j375j500j375j375j2501 3000 
L-.--.L---.L---.L---.L---.L---.L--- J 

Because the records occupy 2,625 
positions of the buffer, and it is not 
known if the next record is greater than 
375 positions, these seven records are 
written out as a 2,625-ch.aracter block. 
Record eight is generated as the first 
record in an empty buffer. This means that 
the actual blocking is variable, depending 
on record size. Again, no padding records 
are provided. 

This technique provides for good 
utilization of storage buffers in most 
ca.ses. Efficiency is lost if a smal! 
blocking factor is specified and there is a 
large variablility in record size. For 
example, if a 'BLOCK CONTAINS 2000 
CHARACTERS' clause is written with a 
ma.ximum record size of 1, 000 characters, 
the following situation could exist. 

r---T---T---T---1 
I 1 I 2 I 3 I 4 I 
~- --+---+-·--+---~ 
l250j250j250j3001 2000 
L---.L---.L---.L ___ J 

The fou:r records total 1,050 characters, 
but since a 1,000-character maximum size 
must be anticipated, the 4-record 
1,050-character block has to be written. 
Note that in any event, the records per 
block at least equal the number of records 
specified :in the BLOCK.CONTAINS clause. 

APPLY WRITE ONLY 

This clause permits the maximum use of a 
variable block. 

When this clause is specified, the 
compiler checks each record, before it is 
written, to determine if the record can fit 
into the area remaining in the block. If 
it fits, the record is written into the 
block. If the record is too large to fit, 
the block is written out and a new one is 
started. Thus, use of the APPLY WRITE ONLY 
results in the maximum record size 
specified being ignored. 

PROCESSING BUFFERS 

Files can be processed using multiple 
buffers. Logical records are referenced in 
the proper block by adjusting registers 
{using them as pointers). 

'l?his technique eliminates the need for 
moving a record from the buffer area to a 
separate record work area, as well as the 
record work area itself. The record can be 
operated on directly in the buffer area. 

When processing records in a buffer, the 
next read results in the previous record 
not being available. Because the previous 
record is no longer available, the 
technique of moving a high value to the 
control field of the last record {to force 
the processing of records remaining on the 
other file) cannot be used. 

Here! are several alternate approaches: 

1. A GO TO statement, prior to the 
compare, can be altered during the AT 
END procedure to GO TO the low compare 
procedure, thus bypassing the compare. 

2. A dwr~y record having a high value in 
its control field can be provided as 
the last logical record. This 
automatically causes the associated 
files to compare low. However, this 
can result in the AT END condition 
never occurring. 

3. The control field can be moved to a 
separate work area following the read, 
and compared in the work area. The 
control field is then available in the 
work area following an AT END 
condition. The AT END procedure can 
move a high value into the control 
field. 

Programming Considerations 73 



VARIABLE RECORD ALIGNMENT CONTAINING OCCURS 
DEPENDING CLAUSE 

Records are processed in the file's buffer 
area. The first record starts on a 
doubleword boundary. If there is no OCCURS 
DEPENDING clause, a diagnostic is given 
indicating the padding to be added to the 
record to assure proper alignment of 
succeeding records. 

To align blocked V-type records 
containing an OCCURS DEPENDING clause in 
the buff er: 

1. Determine the largest alignment factor 
within the record. 

Alignment 
factor is For 

2. 

3. 

2 COMPUTATIONAL (1-4 digits) 
4 COMPUTATIONAL-1 or COMPUTATIONAL 

(5-18 digits) 
8 COMPUTATIONAL-2 
0 OTHER 

For alignment factors of four or less, 
pad both the fixed and the variable 
portions of the record to an even 
multiple of the alignment factor. 

For an alignment factor of eight, move 
the record, as a group, to a 01 in the 
working storage section. 

I/O PROGRAMMING CONSIDERATIONS 

The following text discusses: 

• Use after standard error 
considerations. 

• Dummy record codes for direct 
organization files. 

• The use of rewrite with random indexed 
sequential files. 

• Considerations when updating or adding 
to a BISAM file. 

• The DD requirements,, and DCB parameters 
supplied Cby the compiler) when using 
ACCEPT and DISPLAY verbs. 

• The allocation of utility work space 
for the COBOL-E compiler. 

• Labeling requirements for compiling and 
executing. 

• The use of additional storage by the 
COBOL-E compiler. 

•74 IBM S/360 OS COBOL(E) Programmer's Guide 

USE AFTER STANDARD ERROR CONSIDERATIONS 

When an uncorrectable I/O error occurs, the 
USE AFTER STANDARD ERROR declarative is 
entered, and general registers 14, 15, 0 
and 1 are stored, respectively, in four 
words located at address: DCB - 20 bytes. 
A description of the contents of these 
registers can be found, under the 
appropriate access method, in the 
publication, IBM System/360 Operating 
System: Control Program Services. If a 
subprogram is called using file-name as a 
parameter, the address of the DCB is 
passed, and any action on the error can be 
taken at the user's discretion. 

DUMMY RECORD CODES FOR DIRECT ORGANIZATION 
FILES 

When reading direct files sequentially, 
dummy records are presented along with 
valid user records. They can be identified 
by the first byte of the symbolic key, 
which is hexadecimal FF. 

THE USE OF REWRITE WITH RANDOM INDEXED 
SEQUENTIAL FILES 

When using rewrite with random sequential 
files, each record read must be rewritten, 
otherwise the data set will be destroyed. 

CONSIDERATIONS WHEN UPDATING OR ADDING TO A 
BISAM FILE 

If a BISAM file is updated using a REWRITE 
statement, a REWRITE statement must be 
executed after every READ statement and 
prior to any other input/output statement 
on that file. A suggested sequence for 
reading a record in BISAM, inserting a 
different record into that file, and 
rewriting the updated original record is: 

READ record x 
REWRITE record x 
WRITE record y 
READ record x 
REWRITE record x 

If the TRACK-AREA clause is not 
specified for BISAM, and a record is added 
to the file, the contents of the SYMBOLIC 
KEY is unpredictable a:Eter the WRITE is 
executed. 



DD REQUIREMENTS AND DCB PARAMETERS FOR 
ACCEPT AND DISPLAY VERBS 

Tables 14 and 15 indicate the DD 
requirements, and DCB parameters supplied 
when using the ACCEPT and DISPLAY verbs. 

The parameters in Table 14 (and any 
other appropriate DCB parameters) can be 
specified by the user on his DD cards. 

Table 14. Relationship of ACCEPT and 
DISPLAY Verbs and DD Card 

r-----·-----------------------T------------1 
I IDD CARD I 
IVERB FORMAT !REQUIRED I 
~-----·------------------------+------------~ 
IDISPLAY ••• UPON CONSOLE jNo I 
~----------------------------+------·------~ 
IDISPLAY ••• UPON SYSPUNCH IYes I 
~-·----------------------------+------·------~ 
!DISPLAY ••• (Default option isl I 
I SYSOUT) !Yes I 
~----------------------------+------·------~ 
IACCEPT ••• FROM CONSOLE INo I 
~---------·--------------------+------·---..;,--~ 
!ACCEPT ••• (Default option isl I 
I SYSIN) I Yes I L----------------------------J. ____________ J 

The DISPLAY and ACCEPT data set DCB 
parameters given in Table 15 are filled in 
by the COBOL-E compiler. 

Those parameters not supplied by the 
compiler must be supplied by the user. 

Table 15. Compiler Supplied Data Set DCB 
parameters for ACCEPT and 
DISPLAY verbs. 

r---------·r------------------------T·------, 
I I DISPLAY I ACCEPT I 
IDCB PARM.ISYSPUNCH SYSOUT ISYSIN I 
~--------+------------------------+-------~ 
IDSORG I PS PS I PS I 
~---------+-----------------------+-------~ 
I MACRF I PL PL I GL I 
~-----·----+------------------------+-------~ 
IDDNAME jSYSPUNCH SYSOUT ISYSIN I 
~-----·----+-----------------------+-------~ 
I RECFM I F u I u I 
~---------+-----·-------------------+------~ 
j.LRECL I 80 * 1---- I 
~-·----·----+-----------------------+-------~ 
I BLKSIZE I 80 * 1-·-- I 
~-·--------+-----------------------+------~ 
I BFTEK i s s I s I 
L-·----·----.IL------------------------J. ______ J 

The parameters given in Table 15 are 
defined as follows: 

PS - specifies a physical sequential 
organization 

PL - specifies put-locate-mode operation 

GL ·- specifies get-locate-mode operation 
F ·· specifies fixed-length records 
U ·- specifies undefined records 

80 ·- for LRECL, specifies length in bytes 
of a format-F logical record 

80 ·- for BLKSIZE, specifies the length of a 
block in bytes 

s -- specifies simple buffering 
* ·- must be supplied in DD cards by user. 

The user must add an additional 
character for the purpose of forms 
control. 

ALLOCATION OF UTILITY WORK SPACE 

Table 16 is a guide to allocation of 
utility work space, and enables the 
pro9rammer to specify a reasonable number 
of tracks for utility files without using 
storage unnecessarily. 

Table 16. Track Allocation for Utility 
Work Space 

r-----------------------------------------1 
IThE! number of tracks required for: I 
I I 
I 150 500 1000 I 
I Source Source Source I 
I Cards Cards Cards I 
I Device are are are I 
I I 
12311 11 57 114 I 
L-----------------------------------------J 

The programmer can estimate the total 
number of 'tracks required for utility work 
space by extrapolating from the figures 
given in Table 16. The number of tracks 
needed for each utility can then be 
specified in the SPACE parameter of the 
appropriate DD statement as follows: 

SYSUT1 
SYSUT2 
SYSUT3 

203 of the total number of tracks 
403 of the total number of tracks 
403 of the total number of tracks, 

The SYSPUNCH and SYSOUT data sets on a 
direct-access device can be allocated space 
on a 10-track base with secondary 
allocation of 10-track increments, if 
needed. 

The parameter can be specified on the DD 
card for the data set as follows: 

SPAC:E= (TRK, (10, 10)) 

Programming Considerations 75 



LABELING FOR UTILITY WORI< FILES 

Labels for utility data sets are not 
required for compilation. The system OPEN 
routines process utility work files 
automatically. However, if labels are 
present, the programmer should be certain 
that they are specified in the appropriate 
utility DD statements. If they are not, 
compilation may be unsuccessful~ 

The compiler interprets the NO REWIND 
parameter of the OPEN clause as comments. 
When the file is opened at execution time, 
the operating system accesses the file as 
specified by the data set sequence number 
in the label parameter or the MOD parameter 
of the DD card. 

At object time, labels are the complete 
responsibility of the user in that the same 
label status must be indicated in the DD 
cards as specified in the COBOL source 
program. 

User labels are not supported by the 
control program for the initial release of 
COBOL-E. 

USE OF ADDITIONAL STORAGE BY THE COBOL-E 
COMPILER 

Additional storage is used by the compiler 
in one or both of two ways: 

• to increase table space, and/or 

• to increase buff er sizes 

If the initial space allocated for tables 
was completely used, and additional storage 
is needed and available, the table space is 
dynamically increased by the compiler. The 
user cannot control the allocation of 
additional storage space for tables. 

However, tne programmer can specify 
buff er sizes for a specific compilation by 
using the BUFSIZE parameter in the EXEC 
statement. This temporarily overrides the 
system generated buffer sizes for the one 

· compilation. 

DEBUGGING TECHNIQUES 

The DEBUG feature in the COBOL CE-Level 
subset) Language allows the programmer to 
use three new verbs Cas well as any other 
verb) for the purposes of debugging COBOL 
source programs. These verbs are TRACE, 
EXHIBIT, and ON. They can appear anywhere 

76 IBM S/360 OS COBOL(E) Programmer's Guide 

in the COBOL program or in a compile-time 
debugging packet~ Their formats and a 
description of their use is contained in 
the publication, IBM System/360 Operating 
system: COBOL Language. However, this 
section is included in this publication to 
give the programmer an idea of when to use 
the debugging language, and how to 
construct a debugging packet, and what 
job-control statements are needed to use 
the debugging packet(s). 

Appendix F contains a complete list of 
debugging packet error messages. These 
messages reflect errors in the debugging 
packet(s) only. They are not associated 
with compiling. 

The TRACE and EXHIBIT clauses cause 
compiler generated "DISPLAY's". Therefore, 
a DD card for SYSOUT is required for 
specifying the logical output device. 

TRACE 

When a job fails to execute correctly and 
the diagnostic messages fail to indicate 
how to correct the error, a READY TRACE 
statement can be inserted at a point known 
to be prior to the trouble area. The TRACE 
displays each paragraph name as control 
passes into that paragraph. To reduce the 
volume of such a trace, it is possible to 
turn on the trace with a READY TRACE 
statement and turn if off with a RESET 
TRACE if the area can be localized. The 
TRACE function can be used any number of 
times within the program. 

It would reduce the volume if RESET were 
issued upon entering a loop <containing a 
paragraph-name) and READY were issued upon 
leaving the loop. 

It is sometimE~s difficult to determine 
what the specific path of program logic is. 
This is especially true with a series of 
PERFORMS or nested conditions. A TRACE 
statement can be very beneficial as an aid 
to this problem. Also, if values are 
inconsistent, a TRACE statement will again 
aid in determining whether or not a program 
is actually going through a certain point. 

EXHIBIT 

To find out what specifically caused the 
error within the paragraph, additional data 
can be obtained from the fields within the 
specific paragraph by use of the EXHIBIT 
statement. The EXHIBIT statement displays 
the field and the source name for 



identification purposes. Its use can be 
restricted to display the field only if it 
has changed since the last time the program 
passed through that point. This permits 
the programmer to check on the value of the 
subscript name or other fields that are 
pertinent to a given field, and check out 
logic errors. An example of the various 
forms of this statement follows. 

DATA DIVISION. 
77 NO-CHANGE-NAME PICTURE XX VALUE 'AB'. 
77 SUB-SCRIPT-NAME PICTURE S999 

COMPUTATIONAL VALUE 30. 

PROCEDURE DIVISION. 

TEST-LOOP. 
EXHIBIT NAMED NO-CHANGE-NAME. 
EXHIBIT CHANGED NAMED SUB-SCRIPT-NAME. 
EXHIBIT CHANGED SUB-SCRIPT-NAME. 
EXHIBIT CHANGED NO-CHANGE-NAME. 
ADD 10 TO SUB-SCRIPT-NAME. IF 
SUB·-SCRIPT-NAME = 100 NEXT SENTENCE ELSE 
GO TO TEST-LOOP. 

The print out for this example is: 

ON 

NO-CHANGE-NAME = AB 
SUB-SCRIPT-NAME = 30 
30 
AB 
NO-CHANGE-NAME = AB 
SUB-SCRIPT-NAME = 40 
40 
NO-CHANGE-NAME = AB 
SUB-·SCRIPT-NAME = 50 
50 

It is possible, where large volumes of data 
are involved, to sample specific portions 
of a program by use of the ON statement. 
The ON statement allows the programmer to 
p4=rform a series of operations at certain 
times when a program passes a particular 

point. For example, a series of operations 
could be performed the·110th time through a 
loop and every 5th time thereafter until 
the 275th time. This allows the programmer 
to determine whether or not a given loop 
gets out of the expected range for a 
particular program. There can be any 
number of these statements, and there is a 
fiv1e-digit compiler counter generated for 
each one. The counter starts as zero, and 
is .increased by one each time the path of 
pro9ram execution falls through that 
specific point. For example, if the 
pro9rammer knows that the error occurs on 
the 500th record processed, the ON 
statement may be used to count records. 
Then a READY TRACE can be set as the 
counter approaches the point at which the 
error occurred. This eliminates tracing 
each statement up to that point. 

Note that this type of example could 
also have been done by a counter or a 
PERE"ORM, but this method is easier. 

THF. DEBUG PACKET 

The debug packet is a tool used for 
debugging COBOL object modules. It is 
positioned in the job input stream before 
the COBOL source module. The packet is 
combined (merged) with the COBOL source 
module before compilation begins. Where 
the packet is positioned within the COBOL 
source module is determined by the 
procedure division name specified in the 
*DEBUG card of the packet. 

Job Control Setup for Using Debug Packets 

Debug packets for a given compilation are 
processed, as separate job steps, 
immediately preceding the job step that 
executes the COBOL compiler program. 
Figure 31 contains the job-control 
statements, and data sets needed to use 
debug packets. 

Programming Considerations 77 



r-------------------------------------------------------------·-1 
//PACKCBL JOB 1234,BROWN,MSGLEVEL=l 
//DEBUG EXEC PGM=IEPDBGOO 
//SYSPRINT DD SYSOUT=A 
//SYSUTl DD UNIT=SYSDA,SPACE=CTRK,Cl0,10)) 
//SYSUT4 DD DSNAME=&COMPSET,DISP=(NEW,PASS), 1 
// UNIT=SYSDA,SPACE=CCYL,(10,10)) 
//SYSIN DD * 

/* 

DEBUG Packet(s) 
source Modules 

{COBOL source Module} 

//COMPILG EXEC PROC=COBECLG 
l//COB.SYSIN DD DSNAME=&COMPSET,DISP=COLD,DELETE) 
I DD cards for the execute step of the procedure if 
I needed. 
L---------------------------------------------------------------J 

Figure 31. Deck Setup For Debug Packet 

The functions of the job-control 
statements and the data sets needed to 
employ the debug packet are as follows. 

The //DEBUG statement specifies that the 
debug packet processing program be 
executed. 

The //SYSPRINT DD statement specifies 
the data set for DEBUG packet diagnostics. 

The //SYSUTl DD statement specifies a 
work data set on which the DEBUG packets 
are stored for future merging into the 
procedure division of the COBOL source 
module. 

The //SYSUT4 DD statement specifies a 
work data set on which the COBOL source 

78 IBM S/360 OS COBOL(E) Programmer's Guide 

module is written, with the DEBUG packets 
properly inserted in the procedure 
division. This data set then becomes 
SYSIN, the input data set to the compiler. 

The //COMPILG step specifies that the 
cataloged procedure to compile, linkage 
edit, and execute be executed. 

The //COB.SYSIN DD statement specifies 
that the input data set (SYSIN) to the 
compiler by SYSUT4 data set of the DEBUG 
step. 

Any diagnostic messages generated during 
the DEBUG step appear on the listing 
preceding the source listing produced by 
the compiler. Refer to Appendix E for a 
list of the debug diagnostic messages. 



COBOL SOURCE PROGRAM LIBRARY 

Incorporated in the COBOL language are 
clauses for utilizing the source program 
library facility. 

Prewritten source program entries in a 
user-created library can be included in a 
COBOL program at compile time. Thus, 
standard file descriptions, record 
descriptions, or procedures can be used 
without having to restate them. They are 
included in a source statement program by 
means of a COPY or INCLUDE clause. 

To catalog or update a source program in 
a user-created library, a utility program 
must be used. Following are examples of: 

• Cataloging some source statements to a 
user-created library, and what happens 
when they a.re retrieved. Included in 
this example is the job-control 
statement for automatically 
sequence-numbering the source 
statements cataloged. 

• Updating an existing member of the 
user-created library. 

EXAMPT .. E OE' CATALOGING SOURCE PROGRAIV! 
STATEMENTS TO A LIBRARY 

The job-control statements to catalog 
source statements to the source statement 
library are: 

//CATALOG JOB 
// EXEC 
// 
//SYSUT2 DD 
// 
// 
// 
// 
// 
// 
//SYSPRINT 
//SYSIN 
./ ADD 

• / NUMBR 

END UP 

PGM=IEBUPDAT, 
PARM= (NEW) 
DSNAME=COBOLLIB, 
UNIT=2311, 
DISP=(NEW,KEEP), 
VOLUME=SER=111111, 
SPACE=CTRK,(15,10,10)), 
DCB= ( I RECFM=F I 
BLKSIZE=80) 

DD SYSOUT=A 
DD * 
CFILEA,01,1,1 
BLOCK CONTAINS 13 RECORDS 
RECORD CONTAINS 
120 CHARACTERS 
00000000,00000000, 
00000010,00000010 

x 

x 
x 
x 
x 
x 
x 

USE OF SOURCE PROGRAM LIBRARY FACILITY 

:rn this example, IEBUPDAT is the name of 
the IBM-supplied utility program that 
accomplishes the cataloging. These 
statements are copied in an FD entry. The 
library entry does not include either FD o'r 
the file-name, but instead begins with the 
first clause following the file-name. 

'rhe NUMBR statement in this procedure 
results in the source statements being 
automatically sequence·numbered. The first 
source statement will be numbered 00000010, 
and each succeeding statement a number 
incremented by 00000010. 

•rhe same procedure can be used to 
catalog entire source programs, if desired. 

jNote: At compile time, the data set 
containing the cataloged source statements, 
must be assigned to SYSLIB. (In the 
example given, this data set DSNAME is 
COBOLLIB.) 

COPY (DATA DIVISION) 

The COBOL COPY clause permits the user to 
include prewritten data-division entries or 
environment-division clauses in this source 
proigram at compile time. An example 
illustrating what actually gets copied when 
the cataloged entry 'CFILEA' is retrieved 
from the user-created source program 
library follows. 

.~ssume the following source COBOL 
statement is written: 

FD FILEA COPY 'CFILEA'. 

COPY 'CFILEA' is replaced by the actual 
entries i.e., BLOCK CONTAINS 13 RECORDS, 
etc. within the compiler for compilation 
purposes. 

'The output listing would show the 
following: 

FD :FILEA COPY 'CFILEA' 
* BLOCK CONTAINS 13 RECORDS 
* RECORD CONTAINS 120 CHARACTERS. 

Internally (to the compiler) the output 
would look like: 

FD :FILEA BLOCK CONTAINS 13 RECORDS 
RECORD CONTAINS 120 CHARACTERS • 

'The source statement referencing the 
user-created library is followed by the 

Use of Source Program Library Facility • 79 



actual library entries, except for data 
entries which have a duplicate level number 
and data-name. Explicitly, CFILEA 
identifies the entries actually recorded in 
the library. This is the library name. It 
is the header record required for 
identification of the entries, and is not 
itself retrieved (not copied internally by 
the compiler). 

All entries associated with the library 
name are copied .. 

In the case of data entries which have a 
duplicate level number and data-name, the 
following results are obtained when issuing 
a COBOL COPY statement. 

Assume the job-control and COBOL 
statements written to catalog a file are: 

//CATALOG 
// 
//SYSUT2; 
// 
// 
// 
// 
// 
//SYSPRINT 
//SYSIN 
./ ADD 

JOB 
EXEC PGM=IEBUPDAT,PARM=CNEW) 
DD DSNAME=COBOLLIB, X 

UNIT=2311, X 
DISP=(NEW,KEEP), X 
VOLUME=SER=111111, X 
SPACE=(TRK, (1.5,10,10)) I x 
DCB=C,RECFM=F,BLKSIZE=80) 

DD SYSOUT=A 
DD * 
XFILEY,01,1,1 
01 PAYFILE USAGE IS DISPLAY. 

02 CALC PICTURE 99. 
02 GRADE PICTURE 9 OCCURS 1 

DEPENDING ON CALC OF 
PAYFILE. 

./ ENDUP 
/* 

and, the source COBOL statement written is: 

01 GROSS COPY 'XFILEY'. 

On the output listing, the statements would 
look like: 

01 GROSS COPY 'XFILEY'. 
01 PAYFILE USAGE IS DISPLAY. 

* 02 CALC PICTURE 9 9. 
* 02 GRADE PICTURE 9 OCCURS 1 
* DEPENDING ON CALC OF PAYFILE. 

Internally (within the compiler), the 
statements would look like: 

01 GROSS USAGE IS DISPLAY. 
02 CALC PICTURE 99. 
02 GRADE PICTURE 9 OCCURS 1 

DEPENDING ON CALC OF PAYFILE. 

INCLUDE (PROCEDURE DIVISION) 

The procedure for copying from the 
user-created source program library from 
within the procedure division is the same 

• 80 IBM S/360 OS COBOL(E) Programmer's Guide 

as that described for the data division. 
The results are identical. 

Assume a procedure named PROCESS is in 
the user-created sourcE! program library, 
and was cataloged as follows. 

//CATALOG 
// 
//SYSUT2 
// 
// 
// 
// 
// 
// 
//SYSPRINT 
//SYSIN 

JOB 
EXEC PGM=IEBUPDAT,PARM=CNEW) 
DD DSNAME.=COBOLLIB I x 

UNIT=2311, X 
DISP=(NEW,KEEP), X 
VOLUME-SER=111111, X 
SPACE=CTRK, (15,10,10)), X 
DCB= C, RECFM=F I x 
BLKSIZE=80) 

DD SYSOUT'=A 
DD * 

./ ADD PROCESS,01,1,1 

./ 
/* 

COMPUTE QTY-ON-HAND 
TOTAL-USED-NUMBER-ON-HAND. 

ENDUP 

To retrieve catalog entry PROCESS, write: 
Paragraph-name. INCLUDE 'PROCESS'. 

It is the user's responsibility to 
supply the name for paragraph-name. 

UPDATING AN EXISTING MEMBER OF A 
USER-CREATED LIBRARY 

Assume a member called CFILEA is cataloged 
to a user-created library. The following 
is an example of a procedure for updating 
this member. 

//UPDATE JOB 
.// EXEC PGM=IEBUPDAT, PARM= (MOD) 
//SYSUTl DD DSNAME=COBOLLIB, X 
// UNIT=2311, X 
// DISP=CNEW,KEEP), X 
// VOLUME=SER=111111, X 
// Sl?ACE=CTRK, (15,10,10)), X 
// DCB=C,RECFM=F, X 
// BLKSIZE=80) 
//SYSUT2 DD DSNAME=COBOLLIB, X 
// UNIT=2311, X 
/ / DISP= CNEW, KEEP) , X 
// VOLUME=SER=222222, X 
// SPACE=CTRK,(15,10,10)), X 
// DCB= (, RECFM=F, BLKSIZE=80) 
//SYSPRINT DD SYSOUT=A 
//SYSIN DD * 
./ CHNGE CFILEA,01,1,1 

BLOCK CONTAINS 
20 RECORDS •••••• 00000010 

./ REPRO XFILEY,01,1,1 

./ ENDUP 
/* 

To update a member of an existing 
library, another library is built. Thus 
Cas illustrated in the procedure> CFILEA is 



altered. Note that XFILEY is also copied 
into the new library in its entirety. 

The programmer should be sure to supply 
the appropriate sequence number (in columns 
73-80) for the member of the library that 

is changed. In the example, 00000010 is 
the sequence number supplied for the 
statement: BLOCK CONTAINS 20 RECORDS. It 
is assumed to be positioned in columns 
73-00. 

Use~ of Source Program Library Facility • 81 



. .:>YSTEM OUTPUT 

The compiler, linkage editor, and load 
modules produce aids that can be used to 
document and debug programs. This section 
describes the listings, maps, card decks, 
and error messages produced by these 
components of the operating system. 

COMPILER OUTPUT 

The compiler can generate a listing of 
source statements, a storage map, and an 
object module card deck. Source module 
diagnostic messages are also produced 
during compilation. 

SOURCE LISTING (LIST) 

A description of a source module listing 
follows~ The listing is obtained on 
SYSPRINT when LIST is specified in the PARM 
parameter of the EXEC statement. The 

82 IBM S/360 OS COBOL(E) Programmer's Guide 

header line printed across the top of the 
source listing is the first line on the 
first page of the listing. 

r----------T------------------------------1 
I PRINT I I 
I POSITIONS I PRIN'I'ED INFORMATION I 
~----------+-----·-----------------·---------~ 

1-13 ILEVEL: NMMMYY <where N = I 
I distribution number, MMMY = I 
!month and year of I 
I distribution) I 
I I 

PositionedlOfficial name and design point! 
centrally lof compiler (COBOL-E) I 
in print I I 
line I I 

I I 
106 - 117 IDATE: YY.DDD (where YY = yearl 

land ODD = day> I 
L----------i------------------------------J 

Figure 32 is a skelE:!ton example of a 
COBOL source listing. The associated job 
control cards are given in Figure 42 of 
Appendix A. 



r-------------------------------------------------------------------------1 
COBOL E DATE 66.021 

1 000000 IDENTIFICATION DIVISION. 
2 000010 PROGRAM-ID. 'TCECAPOO'. 
3 000020 REMARKS. 

35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 

S50 
51 
52 
53 
54 
55 
56 
57 
58 

000360 
000370 
000380 
000390 
000400 
000!~10 

000420 
OOOL~30 
000440 
000450 
000460 
000470 
000480 
000490 
000500 
000210 
000520 
000530 
000540 
000550 
000560 
000570 
000580 
000590 

In this example, 
Lines 4 through 34 were comments 

ENVIRONMENT DIVISION. 
CONFIGURATION SECTION. 
SOURCE-COMPUTER. IBM-360 E50. 
OBJECT-COMPUTER. IBM-360 E50. 
INPUT-OUTPUT SECTION. 
FILE-CONTROL. 

SELECT EQUAL-HETROGEN-FILE ASSIGN TO 
'DATASET1' 
UTILITY. 
SELECT EQUAL-HETROGEN-FILE-2 ASSIGN TO 
'DATASET1' 
UTILITY. 

DATA DIVISION. 
FILE SECTION. 
FD EQUAL-HETROGEN-FILE: 

BLOCK CONTAINS 800 CHARACTERS 
RECORD CONTAINS 80 CHARACTERS 
RECORDING MODE IS F' 
LABEL RECORDS ARE STANDARD 
DATA RECORDS ARE CHCK-RECORD-11 CHCK-RECORD-21. 

01 CHCK-RECORD-11. 
02 NAME1 PICTURE IS AC12). 
02 ADDRESS1 PICTURE IS XC10). 
02 FILLER PICTURE IS X(5). 

User written source statements 

97 000980 01 CHCK-RECORD-21. 
98 000990 02 FILLER PICTURE IS AA. 
99 001000 02 DEPT PICTURE IS X(3). 

100 001010 02 FILLER PICTURE IS 9(11). 
101 001020 02 MAN-NO PICTURE IS 9(6). 
102 001030 02 DATE-HIER PICTURE IS X(10). 
103 001040 02 FILLER PICTURE IS XC45). 
104 001050 02 STATE PICTURE IS 99. 
105 001060 88 PENNA VALUE IS 10. 
106 001070 88 NEW-YORK VALUE IS 15. 
107 001080 02 ID-CODE PICTURE IS 9. 
108 001090 88 RECORD-2 VALUE IS 2. 
109 001100 WORKING-STORAGE SECTION. 

1110 001110 77 WRITE-COUNTER 
L-------------------------------------------------·-------------------------J 

Figure 32. Example of COBOL Source Listing (Part 1 of 2) 

System output 83 



r-------------------------------------------------------------------------1 
111 001120 PICTURE IS 99 
112 001130 VALUE IS 00 
113 001140 USAGE IS DISPLAY. 
114 001150 77 READ-COUNTER 
115 001160 PICTURE IS 99 
116 001170 VALUE IS 00 
117 001180 USAGE IS DISPLAY. 
118 001190 77 GOOD-COMP-COUNTER 

User written source statements 

141 001420 02 COMP-DEPT 
142 001430 PICTURE IS X(3) 
143 001440 VALUE IS 'D43' 
144 001450 USAGE IS DISPLAY. 
145 001460 02 COMP-MAN-NO 
146 001470 PICTURE IS 9(6) 
147 001480 VALUE IS 960640 
148 001490 USAGE IS DISPLAY. 
149 001500 PROCEDURE DIVISION. 
150 001510 DISPLAY-HEADER. 
151 001520 DISPLAY I GROUP A LEVEL P TEST CASE 8 I 

152 001530 DISPLAY I 
I . 

153 001540 OPEN OUTPUT EQUAL-HETROGEN-FILE. 
154 001550 STARTl. 
155 001560 MOVE COMP-NAME TO NAMEl. 
156 001570 MOVE BORN-DATE TO BIRTH-DATEl. 
157 001580 MOVE 1 to IDENTl. 
158 001590 WRITE-RECl. 
159 001600 WRITE CHCK-RECORD-11. 
160 001610 ADD 1 TO WRITE-COUNTER. 
161 001620 START2. 
162 001630 MOVE COMP-DEPT TO DEPTl. 
163 001640 MOVE COMP-MAN-NO TO MAN-NOl. 
164 001650 MOVE 2 TO ID-CODEl. 

user written source statements 

239 002410 DISPLAY 'WRITE-COUNTER = I WRITE-COUNTER. 
240 002420 DISPLAY 'SHOULD BE= 20 '. 

1·241 002430 DISPLAY I READ-COUNTER = I READ-COUNTER. 
1242 002440 DISPLAY ' SHOULD BE= 21 '. 
1243 002450 DISPLAY I ERROR-COMP-COUNTER = I ERROR-COMP-COUNTER .. 
1244 002460 DISPLAY ' SHOULD BE= 00 '· 
1245 002470 DISPLAY I GOOD-COMP-COUNTER= I GOOD-COMP-COUNTER. 
1246 002480 DISPLAY ' SHOULD BE= 20 '. 
1247 002490 STOP RUN. 
L---------------------------------------------------------------------------

Figure 32. Example of COBOL Source Listing (Part 2 of 2) 

84 IBM S/360 OS COBOL(E) Programmer's Guide 



The components of a source listing are: 

1. A compiler generated line number which 
is shown in the leftmost columns 
followed by the source card image. The 
compiler generated line number is used 
in diagnostic and PMAP references. 

2. All COBOL words, punctuation, and other 
groups of characters on each line are 
referenced as elements on the line in 
diagnostics and PMAP listings. 

3. Sequence numbers out of order. If 
columns 1-6 of the source statement are 
not blank, they are sequence checked. 
The character "S" is placed to the left 
of a compiler-generated line number 
when a source sequence number is not in 
logical ascending order. 
Example: Assume that a statement 
numbered 50 <refer to Figure 32) was 
out of sequence. The compiler would 
list the source statement as: 

S50 BLOCK CONTAINS 800 CHARACTERS. 

4. Library cards. Cards coming from the 
source statement library as a result of 
a COPY or INCLUDE statement are noted 
with the character"*", which is 
printed to the right of the 
compiler-generated line number. 

STORAGE MAP 

The storage map consists o'f a data map 
(DMAP), and a procedure map (PMAP). 

pata Map (DMAP) 

A data map for a source listing is obtained 
when DMAP is specified in the PARM 
parameter of the EXEC statement. The data 
map is output by SYSPRINT. 

Figure 33 is an example of a data map. 
It is a portion of the data map generated 
for Figure 32. 

This listing shows each non-procedure 
name defined in the program and its 
relative address. File-names, 
record-names, and condition-names are 
identified in the name column. The 
relative location of each entry is shown 
(column headed LOCATION). Linkage and file 
entries are relative to the 01 or 77. 
Working storage is relative to the load 
point for the program. The relative 
addresses are expressed as hexadecimal 
numbers. 

r----T--------T---------------------------1 
ITYPEILOCATIONIDATA NAME I 
~----+--------+---------------------------~ 
FILE EQUAL-HETROGEN-FILE 
REC 000000 CHCK-RECORD-11 

000000 NAMEl 

COND 
REC 

COND 
COND 

OOOOOC ADDRESSl 
00001B WIFE1 
000021 BIRTH-DATEl 
000021 DAY1 
000023 MONTHl 
000025 YEAR1 
00004F IDENTl 

000000 
000002 
000010 
000016 
00004D 

REC11 
CHCK-RECORD-21 
DEPTl 
MAN-N01 
DATE-HIERl 
STATE1 
PENN Al 
NEW-YORKl 

00004F ID-CODE1 
COND RECORD-21 

IFILE EQUAL-HETROGEN-FILE-2 
L----~--------~---------------------------J 

Figure 33. Example of Data Map Generated 
for a COBOL Program 

Procedure Map CPMAP) 

A procedure map is obtained when PMAP is 
specified in the PARM parameter of the EXEC 
card. The details of PMAP are given for 
their debugging value to a programmer. 
Figure 34 is an example of a procedure map. 
It is a portion of the procedure map 
generated for Figure 32. 

LINE/POS - Contains the statement line 
number, and position of the COBOL verb 
on the line. These numbers are decimal 
numbers. The actual instruction(s) 
used to accomplish the COBOL statement 
is identified by the compiler-generated 
internal line number(s). If more than 
one instruction was generated, the 
compiler-generated line number for that 
COBOL statement would be repeated for 
each instruction listed. 

The line counter cannot exceed 4095. 
At this point it resets to zero. 

ADDR - Contains the relative address of 
each instruction in the procedure 
division in hexadecimal. The addresses 
are relative to the program's load 
point:. 

INS~rRUCTION - Contains the actual 
instruction generated for the COBOL 
statement. 

system output 85 



Note.line number 00167-01 and 00167-03. 
Line number 00167-01 refers to a verb which 
is the first item on the line, whereas 
00167-03 refers to a verb which is the 
third item on the line. 

r------~-T------T-------------------------1 
ILINE/POSIADDR !INSTRUCTION I 
~------~-+------+-------------------------~ 
100165 011000564158 FO 3 234 0 5EF 
100166 01100056Al41 10 4 050 
100166 Oll00056El58 FO 1 030 
100166 011000572105 EF 
100166 011000574118 51 
100167 011000576158 FO 3 234 0 5EF 
100167 03100057CIF2 Fl 3 168 4 000 
100167 0310005821FA FO 3 168 4 142 
100167 031000588jF3 lF 4 000 3 168 
100167 03I00058El96 FO 4 001 
100168 011000592158 FO 3 234 0 5EF 
l------~-i ______ i ________________________ _ 

Figure ~4. Example of a Procedure Map 
Generated for a COBOL Program 

OBJECT MODULE CARD DECK 

An object module card deck is produced 
unless ~ODECK is specified in the PARM 
paramet~r of the EXEC statement. 

An object module, the output of a COBOL 
(E) execution, consists of control 
dictionaries and text (instructions and 
data). The control dictionaries contain 
the information necessary to resolve 
cross-references between control sections 
and modules. Figure 35 illustrates the 
contents of an object module. 

86 IBM S/360 OS COBOL(E) Programmer's Guide 

External Symbol Dictionary 

Text 

Relocation Dictionary 

END 

Figure 35. Example of an Object Module 

The COBOL-E compiler also produces an 
END statement that marks the end of the 
object module. The deck is made up of four 
types of cards: TXT, RLD, ESD and END. A 
functional description of these cards is 
given in the following paragraphs. 

Object Module Cards 

Every card in the object module deck 
contains a 12-2-9 punch in column 1 and an 
identifier in columns 2 through 4. The 
identifier consists of the characters ESD, 
RLD, TXT or END. The first four characters 
of the name of the proqram are placed in 
columns 73 through 76 with the sequence 
number of the card in columns 77-80. 

EXTERNAL SYMBOL DICTIONARY: The external 
symbol dictionary contains entries for all 
external symbols def in«:!d or referred to 
within a module. (An •:!xternal symbol is 
one that is defined in one module so that 
it can be referred to in another.) Each 
entry identifies a symbol, or a symbol 
reference, and gives its location, if any, 
within the module. 

Three types of ESD {external symbol 
dictionary) cards are generated as follows: 

ESD, type 0 - contains the name of the 
compiled control section and indicates 
its compiled origin. 



ESD, type 1 - contains the name of a 
secondary entry point within a control 
section. These ESD's result from COBOL 
ENTRY statements. 

ESD, type 2 - contains the names of 
subprograms ref erred to by CALL 
statements, and names of COBOL object 
time subroutines to be linkage edited 
with the compiled control section. 

The type number: 0, 1 or 2 is placed in 
card column 25. 

RELOCATION DICTIONARY: The relocation 
dictionary lists all relocatable address 
constants that must be modified when the 
linkage editor produces an output load 
module. The RID is used to adjust the 
value of address constants. The RLD 
contains at least one entry for every 
relocatable address constant in a module. 
An RLD entry identifies an address constant 
by indicating its location within a control 
section and the external symbol Cin the 
ESD) whose value must be used to compute 
the value of the address constant. 

An RLD (relocation dictionary) card is 
generated for external references indicated 

END Card 

ESD Cards for Subprograms 
CALLED 

TXT Cards for 0 bj ect 
Module Instructions 

ESD, Type 2 Cards Identify 
COBOL Object Time Sub
routines 

TXT Cards for Working 
Storage 

[

ESD, Type 0 Cards Define 
the Program Name Control 
Section 

I 
./ 

I 
I 

I 

I 

in ESD, type 2 cards. When the linkage 
editor has resolved external references, 
the address constant at the address 
indicated in the RLD card contains the 
relative address assigned to the subprogram 
indicated in the ESD, type 2 card. RLD 
cards are also generated for branching and 
subroutine linkage. 

TXT Card: The TXT card contains the 
literals used by the programmer in his 
source module, and any literals generated 
by the compiler, coded information for 
DISPLAY statements, and machine 
instructions generated by the compiler from 
the source module. 

END Card: One END card is generated for 
each compiled source module. This card 
indicates the end of the object module to 
the linkage editor. It also contains the 
entry point of the object module. 

OBJECT MODULE DECK STRUCTURE: Figure 36 
illustrates the COBOL object module deck 
structure .. 

-"'\ 
I 

I I . 

j. The·se cards are generated 
I by 'the compiler randomly. 

Figure 36. COBOL Object Module Deck structure 

System output 87 



SOURCE MODULE DIAGNOSTICS 

Two types of diagnostic messages are 
written by the compiler: error and 
error-warning. 

When the FLAGE option is specified in 
the PARM parameter of the EXEC card, the 
compiler will not generate error warning 
diagnostic messages. 

When the FLAGW option is specified in 
the EXEC card, the compiler generates 
message$ for actual errors, plus warning 
diagnostic messages. 

Source Module Error-warning Messages 

All error-warning messages produced are 
written in a group following the source 
module listing and storage map. Figure 37 
shows the format of each message as it is 
written on the data set specified by the 
SYSPRIN~ DD statement. 

These diagnostics were generated by the 
compiler for the program shown in Figure 
32. For a complete list, and descriptions 
of the error messages refer to Appendix F. 

r---·-------------------------------------1 
I DIAGNOSTICS I 
~--------T-------T---------T--------------~ 
f LINE/POSIER CODEICLAUSE !MESSAGE I 
·~--------+-------+--------+--------------~ 
1129-1 IIEP051WIALIGNMENTIFOR PROPER I 
I I I !ALIGNMENT, A 51 
I I I I BYTE LONG I 
I I I I FILLER ENTRY I 
I I I IIS INSERTED I 
I I I I PRECEDING I 
I I I I ASTR. I 
~--------+-------+---------+--------------~ 
1132-1 IIEP05IWIALIGNMENTIFOR PROPER I 
I I I !ALIGNMENT, A 51 
I I I IBYTE LONG I 
I I I I FILLER ENTRY I 
I I I IIS INSERTED I 
I I I I PRECEDING I 
I I I I DATA-INFO. I 
L--------i-------~---------i--------------J 

Figure 37. Example of Source Module 
Diagnostics 

LINE/POS - Contains the internal line 
numbers of the source statements, and 
the element position of the COBOL verb 
on the line where the error was 
detected. When the compiler cannot 
locate the item in error on the line, 

88 IBM S/360 OS COBOL(E) Programmer's Guide 

it only identifies the line at fault. 
When the compiler generates the line 
number 0-0, it is referring to an 
entire section (the section may be 
missing). 

ER CODE - Contains a mE=ssage number and the 
severity level of the error: 

MESSAGE NUMBER - The format of the message 
number, and the associated message is 
described in Appendix F. 

Severity Code. 
W WARNING 
C CONDITIONAL 
E = ERROR 

W WARNING - Your attention is called 
to a condition that can cause a 
problem, but should permit a 
successful run .. 

c CONDITIONAL - ~rhe error statement 
is dropped or corrective action is 
taken. The compilation is 
continued as it may have debugging 
value, but the programs should not 
execute as intended. 

E ERROR - This condition seriously 
affects execution of the job. 
Execution should not be attempted. 

CLAUSE - This column identifies either the 
particular COBOL clause being processed 
at the time the diagnostic was 
discovered or the basic area that was 
involved, such as 1\LIGNMENT, FD, I-0 
CONTROL, or similar items. 

MESSAGE - The actual mE~ssage is given here. 
For specific details of these messages, 
ref er to ~ndix 1~. 

Working with Diagnostics 

1. Handle the diagnostics in the order in 
which they appear on the source 
listing. It is possible to get 
compound diagnostics. Frequently, an 
earlier diagnostic indicates the reason 
for a later diagnostic. For example, a 
messing quote for an alphabetic or 
alphameric literal could involve the 
inclusion of some clauses not intended 
in that particular literal. This could 
cause some apparently valid clause to 
be diagnosed as invalid because it is 
not complete, or is in conflict with 
something that preceded it. 

2. Check for missing or extra punctuation, 
or other errors of this type. 



3. Frequently, a seemingly meaningless 
message is clarified when the valid 
syntax or reference format is 
referenced. Diagnostics are coded 
directly from the reference format and 
are designed for use in conjunction 
with the particular type of reference. 
(See Appendix D.) 

How Diagnostic Messages Are Determined 

The compiler scans the statement ele!ment by 
element to determine whether the words are 
combined in a meaningful manner. Based 
upon the elements that have already been 
scanned, there are only certain words or 
elements that can be correctly encountered. 

If the anticipated elements are not 
encountered, a diagnostic message is 
produced. Some errors may not be uncovered 
until information from various sections of 
the program are combined and the 
inconsistency indicated. Diagnostics 
uncovered in this manner can produce a 
slightly different format than those 
uncovered when the actual source text is 
still available. The message that i.s made 
unique through that particular error may 
not have, for example, the actual source 
statement that produced the error. The 
position and sequence reference, however, 
indicates the place at which the error was 
uncovered. 

Errors appearing to be identical are 
diagnosed in a slightly different manner, 
depending on where they were encountered by 
the compiler and how they fit within the 
context o:f valid syntax. For example, a 
period missing from the end of the 
working-storage section clause, is 
diagnosed specifically as a period 
required. There is no other information 
that can occur at that point. However, if 
at the end of a record description entry, 
an element is encountered that is not valid 
at that point, such as the digits 02, they 
are diagnosed as invalid. Any clauses 
associated with the clause at that emtry, 
that conflict with the entries in the 
previous entry (the one that had the 
missing period>, are diagnosed. Thus, a 
missing period produces a different type of 
diagnostic in one case than in another. 

If a given compilation produces more 
than 25 diagnostic messages, they are 
presented in a batched sequence. The first 
25 messages are sorted in order, followed 
by the second series, which is also sorted 
in order. 

If an error occurs after the 4095 source 
statement the line sequence number of the 

sou:rce statement in error can usually be 
deb~rmined by adding 4d95 to the sequence 
number given in the diagnostic message. A 
message frequently suggests the division of 
a COBOL source program in which the error 
occurred. 

Examples of How Diagnostics Are Generated 

Each message has a general or skeleton 
form. Unique words for each message are 
inserted to identify the specific error 
that was encountered. The following two 
examples illustrate this form. 

Example 1: 

COBOL format is 

MOV~ data-name TO data-name ••• 
literal 

Error 1 
023 

MOVE FIELDA TOO FIELDB 

ERROR #178 

INSERT1 TO 

INSERT2 TOO 

Information 
passed to 
diagnostic 
out of phase. 

Skeleton Message #178 E SYNTAX REQUIRES 
WORD "Insertl". FOUND "Insert2". 

Message appears as: 
REQUIRES WORD "TO". 

Example 2: 

23-3 IEP178 E SYNTAX 
FOUND "TOO". 

Error 2 
023 NOVE F'IELDA TO FIELDB 

ERROR #549 
INSERT1 NOVE 

Skeleton message #549 E WORD 'Insert 1' WAS 
EITHER INVALID OR SKIPPED DUE TO ANOTHER 
DIAGNOSTIC. 

Message appears as: 23-1 IEP549E "NOVE" 
UNHANDLED. WORD NOVE WAS EITHER INVALID OR 
SKIPPED DUE TO ANOTHER DIAGNOSTIC. 

LINKAGE EDITOR OUTPUT 

The linkage editor produces a map of a load 
module <module map), or cross-reference 
list and a module map when the MAP or XREF 
options, respectively, are specified in the 
PARM parameter of the EXEC statement. The 
linkage editor also produces diagnostic 
messages. For a complete list of linkage 
editor diagnostics, refer to the 

system output 89 



publication IBM System/360 Operating 
System: Linkage Editor. 

MODULE MAP 

The module map is written on the data set 
specified in the DD statement called 
SYSPRINT. The module map is a listing of 
the control sections processed by the 
linkage editor. 

Each control section is listed giving: 

• Its ·name, origin, and length. The name 
is the program ID. The origin and 
length of the control section are 
listed in hexadecimal numbers. 

• Any entry points within the control 
section and their locations. 

Also listed are: 

• Any functions called from the data set 
specified by the SYSLIB DD statement. 
These functions are subprograms 
included in the main program by 
automatic library calls, and are 
identified by asterisks. 

• A segment number for each control 
section in an overlay structure. 

• The total length and entry point for 
the load module. 

Figure 38 is an example of a load module 
map. It is the load module map for the 
program shown in Figun~ 32. The map 
contains a main program CTCECAP08, the 
PROGRAM ID.) and four subprograms, each of 
which is a control section: IEP02300, 
IEP02800, IEP03000, and IEP00400. The 
asterisks following the names of these 
control sections indicate that the linkage 
editor obtained them from the automatic 
call library for the purpose of resolving 
references. The origin of the main program 
(TCECAP08) is the relative address 00 and 
its length is BBO. ThE~ entry point for the 
main program is at 490. The origin of 
subprogram IEP02300 is BBO and its length 
is 21E Call numbers are~ hexadecimal 
numbers). 

The entry points within a subprogram are 
listed in a string under the heading ENTRY. 
The entry points within subprogram IEP02300 
are IEP02301 at location BBO, IEP02302 at 
location CAC, RETURN at location CAC, and 
IEP02304 at location CDE. 

r---------------------------------------------------------------------------------------1 
I CONTROL SECTION ENTRY I 
jNAME ORIGIN LENGTH NAME LOCATION NAME LOCATION NAME LOCATION NAME LOCATION I 
~---------------------------------------------------------------------------------------~ 
TCECAP08 00 BBO 

IEP02300* BBO 21E IEP02301 BBO IEP02302 CAC RETURN CAC IEP02304 CDE 

IEP02800* DDO 19C IEP02801 DDO IEP02802 E46 

IEP03000* F70 3C IEP03001 F70 

IEP00400* FDO 2A4 IEP00401 FBO 

ENTRY ADDRESS 490 

!TOTAL LENGTH 1254 
L---------------------------------------------------------------------------------------J 
Figure 38. Example of a Module Map 

CROSS-REFERENCE TABLE 

The cross-reference table is written along 
with the module map, when the option XREF 
is specified. It lists the location from 
which an external reference is made, the 
symbol externally referenced, the control 
section in which the symbol appears, and 
the segment number of the control section 
in which the symbol appears. The 

90 IBM S/360 OS COBOL(E) Programmer's Guide 

cross-reference table appears after the 
module map for all control sections, unless 
the linkage editor is building an overlay 
structure. Figure 39 is an example of a 
cross-reference table. It is the 
cross-reference table for Figure 32. 

Location 478, in the cross-reference 
table, is the address where the CALL or 
reference is made to subprogram entry point 



IEP02301 given in the REFERS TO SYMBOL 
column. 

REFERS TO SYMBOL column lists all 
references to the entry points of each 
subprogram, and from one control section to 
another, for the entire load module (which 
is the entire program). 

The control sections that contain the 
entry points referenced are listed in the 
column' labeled IN CONTROL SECTION. Thus, 
entry point IEP02301 resides in control 
section IEP02300. 

The ENTRY ADDRESS Of the load module is 
490, and its entire length, including all 
subprograms, is 1,254 hexadecimal bytes. 

r--------------·-------------------------------------------------------------------------1 
I CROSS REFERENCE TABLE I 
~--------·-------------------------------------------------------------------------------~ 
!CONTROL SECTION ENTRY I 
jNAME ORIGIN LENGTH NAME LOCATION NAME LOCATION NAME LOCATION ~AME LOCATION I 
~-------------------------------------------------------------------~-------------------~ 
TCECAP08 00 BBO 

IEP02300* BBO 21E IEP02301 BBO IEP02302 CAC RETURN CAC IEP02304 COE 

IEP02800* ODO 19C IEP02801 ODO IEP02802 E46 

IEP03000* F70 3C IEP03001 F70 

IEP00400* FBO 2A4 IEP00401 FBO 

LOCA'rION REFERS TO SYMBOL IN CONTROL SECTION 

478 IEP02301 IEP02300 

47C IEP02302 

480 IEP02304 

484 IEP02801 

IEP02802 

1rno IEP03001 

CF4 IEP00401 

ENTRY ADDRESS 490 

IEP02300 

IEP02300 

IEP02800 

IEP02800 

IEP03000 

IEP00400 { 
I 
I 
I 

I TOTA!. LENGTH 1254 I 
L-------------------------------------------------------------------------------------:----J 

Figure 39. Example of a Cross-Reference Table 

LOAD MODULE OUTPUT 

The programmer defines the output data sets 
for load module execution through the 
appropriate source module statements and 
corresponding DD statements. The 
environment and data division statements 
define the data set. The WRITE and DISPLAY 
verbs in the procedure division generate 
·bhe creation of the data set. Two types of 
messages can be generated from a load 
module: object time messages and operator 
messages. 

OBJECT TIME MESSAGES 

When an error condition that is recognized 
by compiler generated c9de occurs during 
execution, an error message is written on 
the CONSOLE typewriter •. These messages and 
their descriptions are contained in 
Appe~ndix F. 

System Output 91 



OPERATOR MESSAGES 

A message is transmitted to the operator 
when a STOP 'literal' or an ACCEPT ••• 
FROM CONSOLE source statement is executed. 
The messages are written on the console 
typewriter. Refer to Appendix F for a 
description of these messages. 

OBJECT PROGRAM DUMPS 

An object program can dump before normal 
termination of a procedure. A dump could 
be caused by any of the errors listed here. 
Several of these errors can occur at the 
COBOL language level while others can occur 
at the job-control level. 

Typical Source Program Errors Initiating 
Dumps at Execution Time 

A dump can occur at the COBOL language 
level for the following reasons. 

1. A GO TO statement with no procedure 
name following it may not have been 
properly initialized with an ALTER 
statement. The execution of this 
statement would cause an invalid 
branch. 

2. Performing arithmetics or moves on 
numeric fields that have not been 
properly initialized could cause an 
interrupt and a dump. For example, 
neglecting to initialize an OCCURS 
DEPENDING ON name, or referencing data 
fields prior to the first read. 

3. Invalid data in a numeric field 
resulting from redefinition. 

4. Input/output errors that are 
nonrecoverable. 

5. Destroying a machine instruction in 
the program could move data fields 
into the procedure division. This 
could happen, for example, by using a 
subscript whose value exceeds its 
defined maximum. 

6. Attempting to execute an invalid 
operation code through a systems error 
or invalid program. 

7. Generating an invalid address to an 
area that has address protection. 

8. Subprogram linkage declarations that 
are not defined exactly as they are 
stated in the calling program. 

92 IBM S/360 OS COBOL(E} Programmer's Guide 

9. Data or instructions can be modified 
by entering a subprogram and 
manipulating data incorrectly. A 
COBOL subproqram could acquire invalid 
information from the main program; 
that is, a CALL using a procedure-name 
and an ENTRY using a data-name. 

10. There is no conversion, alignment, or 
error checking of incoming data 
associated with the clause ACCEPT FROM 
CONSOLE. Any assumptions made by the 
prog rarnrner concerning these functions 
could result in the initiation of a 
dump. 

11. Data records must be 80 characters in 
length for files in the input stream 
when the input device is a disk or 
tape unit. 

12. An input file contains invalid data 
such as a blank numeric field or data 
incorrectly specified by its data 
description. 

The compiler does not generate a 
test to check the sign position for a 
valid configuration before the item is 
used as an operand. The programmer can 
test for valid data by means of the 
numeric class test and, by use of the 
TRANSFORM statement, convert it to 
valid data under cE~rtain circumstances. 

For example, if the units position 
of a numeric data item described as 
USAGE IS DISPLAY contained a blank, the 
blank could be transformed to a zero, 
thus forcing a valid sign. 

Abnormal Termination Dumps 

The control program prints an abnormal 
termination dump if a task is abnormally 
terminated, and a DD statement with a data 
definition name of SYSl~BEND in the name 
field was specified. 

The abnormal termination dump is written 
in the SYSABEND data s12!t. The details for 
specifying the abnormal termination dump 
are given in the section Job Processing. 
This data set can be on a printer, so that 
the dump is printed as it is produced, or 
on any other type of d4evice, so that the 
dump can be printed later. 

Figure 40 gives the format of an 
abnormal termination dump. Only the items 
pertaining to the! module load address, and 
the program entry point are discussed here. 
For a complete description of the abnormal 
termination dump, refer to the publication, 
IBM Systern/360 Operating System: Control 
Program Messages and Completion Codes. 



How to Use a Dump 

Information regarding the error and the 
reason for an interrupt (and therefore a 
dump) can be obtained from the completion 
code, which appears at the beginning of the 
abnormal termination dump. The completion 
code indicates the reason for the SYSABEND 
dump, such as a permanent I/O error, 
incomplete job control, etc. A description 
of all the completion codes is given in the 
publication, IBM System/360 Operating 
System: Control Program Messages and 
Completion Codes. 

The INTERRUPT at hhhhhh entry, located 
approximately halfway down in the dump, 
gives the instruction address that follows 
the address at which the interrupt 
occurred. Thus the immediately preceding 
instruction is that which initiated the 
dump. The instruction address can be 
compared to the procedure map. A procedure 
map is obtained by specifying PMAP in the 
PARM parameter of the EXEC statement.. The 
load address of the module must be 
subtracted from the instruction address to 
obtain the relative instruction address as 
shown in the procedure map. 

The load address of the module (load 
module) can be obtained from the abnormal 
termination dump, ACTIVE RBS (request 
blocks) specification. The last six 
digits, hhhhhh, of the Addd hhhhhh 

specification under ACTIVE RBS, are the 
hexadecimal address of the first RB. The 
load address of the module (entire program, 
or object program) is 20 hexadecimal bytes 
beyond this point. The last six 
hexadecimal digits of the USE/EP hhhhhhhh 
specification under ACTIVE RBS are the 
entry point of the program. The address of 
the first generated instruction of the 
procedure division is located 52 bytes 
beyond the entry point, and is the first 
address given in the procedure map ( PlVJ.AP) • 
The first 52 bytes contain a COBOL 
initialization routine~ 

'rhe contents of PMAP provide a relative 
address for each statement. By using the 
error address and PMAP, the programmer can 
locate a specific statement appearing 
within a line of the source program, if the 

.interrupt was within the COBOL program. 
Examination 0f the statement and the fields 
associated with it, may produce information 
as to the specific nature of the error. 

STORAGE LAYOUT OF OBJECT PROGRAM 

Each COBOL program written is positioned in 
main storage in a prescribed manner. The 
relative position in storage of all the 
components of a program is given in Figure 
41. 

System Output 93 



• • • A B D U M P R E U U E S T E D • • • 

JOB cccccccc STEP cccccccc DATE ddddd PAGE dddd 

COMPLETION CODJ:; SYSTEM - hhh (or USER - dddd) 

PSW UPON ENTRY TO ABEND hhhhhhhh hhhhhhhh 

FL.PT. 0-6 hh.hhhhhh hhhhhhhh 

TCB hhhhhh 
MSS hhhhhhhh 
ID/FSA hhhhhhhh 

RB hhhhhh 
PK/1''LGS hhhhhhhh 

TCB hhhhhh 

hh.hhhhhh hhhhhhhh 

PIE hhhhhh DEB hhhhhh 
FLGS/LDP hhhhhhhh 

TME hhhhhh 

hh.hhhhhh hhhhhhhh 

TIOT hhhhhh 
LLS hhhhhh 

CMP hhhhhh 
JLB hhhhhh 

hh.hhhhhh hhhhhhhh 

TRN hhhhhhhh 
JSE hhhhhhhh 

PIE PICA hhhhhhhh PSW hhhhhhhh hhhhhhhh 14 hhhhhhhh 15 hhhhhhhh 00 hhhhhhhh Ol hhhhhhhh 02 hhhhhhhh 

ACTIVE RBS 

Addd hhhhhh 
!U:GS 0-7 
RJ:;GS 8-15 

NM cccccccc SZ/STAB hhhhhhhh USE/EP hhhhhhhh PSW hhhhhhhh hhhhhhhh 0 hhhhhh WT/LNK hhhhhhhh 
hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh 
hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh 

LOAD LIST 

Lddd hhhhhh NM cccccccc SZ/STAB hhhhhhhh USE/EP hhhhhhhh 

SAVE AREA TRACE 

cccccccc WAS ENTERED VIA LINK(CALL) ddddd AT EP cccccc ••• 

SA hhhhhhhh 
00 hhhhhhhh 
07 hhhhhhhh 

WDl hhhhhhhh HSA nhhhhhhh 
01 hhhhhhhh 02 hhhhhhhh 
08 hhhhhhhh 09 hhhhhhhh 

INCORRECT BACK CHAIN 

INTERRUPT AT hhhhhh 

PROCEEDING BACK VIA REG ll 

NEGS AT ENTRY TO ABEND 
NEG 0-7 nhhhhhhh 
NEG 8-15 hhhhhhhh 

llhhhhh hhhhhhhh 
nhhhhh hhhhhhhh 

hhhhhhhh 
hhhhhhhh 

hhhhhhhh 
hhhhhhhh 

LINES hhhhhh-hhhhhh SAME AS ABOVE 
hhhhhh hhhhhhhh hhhhhhhh 

J:;ND uF DUMP 

LSA hhhhhhhh 
03 hhhhhhhh 
10 hhhhhhhh 

RET hhhhhhhh 
04 hhhhhhhh 
ll hhhhhhhh 

hhhhhhhh hhhhhhhh 
hhhhhhhh hhhhhhhh 

hhhhhhhh hhhhhhhh 
hhhhhhhh hhhhhhhh 

hhhhhhhh hhhhhhhh 

Figure 40. Format of Abnormal Termination Dump 

r-----------------------------------------1 
!WORKING STORAGE AND DATA LITERALS I 
~-----------------------------------------~ 
IEDIT MASKS I 
~-----------------------------------------~ 
IDCB's I 
~-----------------------------------------~ 
!PROCEDURE LITERALS I 
~-----------------------------------------~ 
!WORK A~A & GLOBAL TABLE I 
~-----------------------------------------~ I INSTRUCTIONS I l _________________________________________ J 

Figure 41. Object Storage Layout 

94 IBM S/360 OS COBOL(E) Programmer's Guide 

EP hhhhhhhh 
05 hhhhhhhh 
12 hhhhhhhh 

06 hhhhhhhh 

hhhhhhl\h hhhhhhhh 
hhhhhhhh hhhhh~hh 

hhhhhhhh hhhhhhhh 
hhhhhhhh hhhhhhhh 

hhhhhhhh hhhhhhhh 

UB hhhhhh 

hhhhhhhh 
hhhhhhhh 

hhhhhhhh 
hhhhhhhh 

hhhhhhhh 

UB hhhhhh 

hhhhhhhh 
hhhhhhhh 

hhhhhhhh 
hhhhhhhh 

hhhhhhhh 



•rhe following examples show the job-control 
statements used to compile, linkage edit 
and execute a source module, scratch an 
existing data set, and catalog the 
programmer's own procedures. No attempt is 
made to describe all the parameters used in 
the job-control language. The assumption 
is made that the user has read, and is 
familiar with, the sections Job-Control 
]Language and Job Processing. 

The comments stress the major points of 
importance for the particular example 
given. 

DEFAULT OPTIONS 

li'or the examples given, it is assumed that 
LIST, PMAP, and DMAP are default options in 
the compiler. Because these parameters are 

APPENDIX A. EXAMPLES OF JOB PROCESSING 

established at system generation time for 
the examples given, they are absent from 
the parameter lists used in the examples. 

EX.~PLE 1 • COMPILE, LINKAGE EDIT, AND 
EXECUTE 

The example given in Figure 42 processes 
records by writing them on a disk pack, and 
th4::m reading them back. Illustrated are 
excerpts of the actual listing produced. 
The example iridicates the job-control 
statements required, and the system 
information provided regarding the data 
sets used. 

-----------------------------------------------------------------------, 
//EXAMPLEl JOB ,JOHNDOE,MSGLEVEL=l. 

//STPl EXEC PGM=IEPCBLOO 
//SYSUTl DD DSNAME=UTl,DISP=CNEW,DELETE) ,SPACE={TRK, (50,10)), 
// UNIT=2311,VOLUME=SER=111111 
//SYSUT2 DD DSNAME=UT2,DISP=CNEW,DELETE) ,SPACE=CTRK, (50, 10)), 
// UNIT=2311,VOLUME=SER=111111 
//SYSUT3 DD DSNAME=UT3, DISP= CNEW, DELETE), SPACE= {TRK, { 50, 10)), 
// UNIT=2311,VOLUME=SER=111111 
//SYSPRINT DD SYSOUT=A 
//SYSPUNCH DD DSNAME=PCH, DISP= {NEW, PASS), SPACE== {TRK, { 50, 10)) , 
// UNIT=2311,VOLUME=SER=111111 
//STPL SYS IN DD * 
IEF236I ALLOCATION FOR EXECUTE STPl 
IEF237I SYSUTl ON 190 
IEF2371 SYSUT2 ON 190 
IEF237I SYSUT3 ON 190 
IEF237I SYSPUNCH ON 190 
IEF237I SYSIN ON OOC 

Compilation listing 

EXAMPLEl 

} * 

*Control program messages indicating allocation. of data sets. 

**Control program messages indicating disposition of data sets. 

x 

x 

x 

x 

L----·--------------------------------------------------------------------J 

Figure 42~ Example of Job Control Statements for Compile, Linkage Edit and Execute 
{Part 1 of 3) 

Appendix A 9 5 



r----------------------------------------------------------------------1 

End compilation listing 

IEF285I UTl 
IEF285I VOL SER NOS= 111111. 
IEF285I UT2 
IEF285I VOL SER NOS= 111111. 
IEF285I UT3 
IEF285I VOL SER NOS= 111111. 
IEF285I SYSOUT 
IEF285I VOL SER NOS= 

IIEF285I SYSOUT 
IEF285I VOL SER NOS= 
IEF285I PCH 

FGG. 

FGG. 

IEF285I VOL SER NOS= 111111. 
//STP2 EXEC PGM=IEWL,PARM='XREF,LIST,LET' 

DELETED 

DELETED 

DELETED 

SY SO UT 

SY SO UT 

PASSED 

//SYSLIB DD DSNAME=SYS1.COBLIB,DISP=(OLD,KEEP),UNIT=2311, 
// VOLUME=SE:R=llllll 
//SYSLMOD DD DSNAME=OBJECT(TEST1),DISP=CNEW,PASS),UNIT=2311, 
// VOLUME=SER=llllll,SPACE=CTRK,(10,10,10)) 
//SYSUTl DD UNIT=2311,SPACE=CTRK, (10,10)), 
// VOLUME=SER=llllll,DISP=(NEW,DELETE),DSNAME=LINKU'rL 
//SYSLIN DD DSNAME=*.STP1.SYSPUNCH,UNIT=2311, 
// DISP=(OLD,DELETE),VOLUME=SER=llllll 
//SYSPRINT DD SYSOUT=A 
IEF236I ALLOCATION FOR EXECUTE STP2 
IEF237I SYSLIB ON 190 

IIEF237I SYSLMOD ON 190 
IEF237I SYSUTl ON 190 
IEF237I SYSLIN ON 190 

EXAMPLE! 

Module Map and Cross-Reference Table 

} . 

I End of Module Map and Cross-Reference Table 
I 
IIEF285I SYSl.COBLIB KEPT 
IIEF285I VOL SER NOS= 111111. 
IIEF285I OBJECT PASSED 

** 

x 

x 

x 

x 

IIEF285I VOL SER NOS= 111111. **I 
IIEF285I LINKUTL DELETED I 
IIEF285I VOL SER NOS= 111111. I 
IIEF285I PCH DELETED I 
L-------------------------------------~-------------------------------J 

Figure 42. Example of Job Control Statement for Compile, Linkage Edit and Execute (Part 
2 of 3) 

96 IBM S/360 OS COBOL(E) Programmer's Guide 



r----------------------------------------------------------------------1 
IEF285I VOL SER NOS= 111111. 
IEF285I SYSOUT 
IEF285I VOL SER NOS= 
IEF285I SYSOUT 

FGG. 

IEF285I VOL SER NOS= FGG. 
//STP3 EXEC PGM=*.STP2.SYSLMOD 

SYS OUT 

SYS OUT 

//SYSOUT DD SYSOUT=A,DCB=,BLKSIZE=120,LRECL=120) 
//SYSABEND DD SYSOUT=A 
//STP3.DATASET1 DD DSNAME=DISKTEST,UNIT=2311,VOLUME=SER=111111, c 
/I SPACE=(TRK,(10,10)),DISP=(NEW,KEEP) ). IEF236I ALLOCATION FOR EXECUTE STP3 EXAMPLE! 
IEF237I SYSLMOD ON 190 
IEF237I DATASET! ON 190 

GROUP A LEVEL P TEST CASE 8 

END TEST 
WRITE-COUNTER = 20 
SHOULD BE = 20 
READ-COUNTER = 21 
SHOULD BE = 21 
ERROR-COMP-COUNTER = 00 
SHOULD BE = 00 
GOOD-COMP-COUNTER 20 
SHOULD BE = 20 
GOOD-COMP-COUNTER 20 

IEF285I 
IEF285I 
IEF285I 
IEF285I 
IEF285I 
IEF285I 
IEF285I 
IEF285I 
IEF285I 
IEF285I 
IEF285I 
IEF285I 

OBJECT 
VOL SER NOS=111111. 
SYSOUT 
VOL SER NOS= FGG. 
SYSOUT 
VOL SER NOS= FGG. 
DISKTEST 
VOL SER NOS= 111111. 
OBJECT 
VOL SER NOS= 111111. 
DISKTEST 
VOL SER NOS= 111111. 

Output generated by 
load module execution 

PASSED 

SYS OUT 

SYSOUT 

KEPT 

DELETED 

DELETED 

**I 
I 
I 
I 
I 
I 
I ______________________________________________________________________ J 

Figure 42. Example of Job Control Statements for Compile, Linkage Edit and Execute 
(Part 3 of 3) 

STEP 1. COMPILATION 

. The //STP1 EXEC statement designates that 
the program to be executed is the COBOL-E 
compiler. 

The //SYSUTl DD statement defines the 
first utility data set. It is on a 2311 
disk pack. The DISP parameter (NEW,DELETE) 
specifies that this is a new data set, and 
it is to be deleted when the step is 
terminated. 

SYSUT2 and SYSUT3 are the second and 
third utility files needed for the 
compilation. Their parameters are 
identical to those used for SYSUT1. 

//SYSPRINT DD statement specifies that a 
source listing of the compilation be 

written on SYSOUT which could be a tape or 
printer • 

The //SYSPUNCH DD statement defines a 
data set that will receive the object 
module in card image format for subsequent 
linkage editor processing. Notice the DISP 
parameter PASS. This parameter specifies 
that this data set will be ref erred to in a 
subsequent job step. If several COBOL 
programs (e.g. a main program and some 
subprograms) are compiled in separate job 
steps and then linkage edited together as 
part of the same job, the DISP parameter 
NEW should be replaced by MOD for all but 
the! first compilation. 

The //STPl.SYSIN DD * statement defines 
the~ input to the compiler to be the source 
statements that immediately follow. 

Appendix A 97 



The information printed on the lines 
identified by IEF236I indicates the 
physical unit assignments Cat the addresses 
indicated in the listing) for the logical 
data sets during the compilation. 

The IEF285I lines are a history of the 
defined data sets for the compilation. For 
example: 

• The SYSU'I'l DD statement and DISP 
parameter specified that this data set 
(SYSUTl) be deleted. The listing 
indicates that it was deleted - CUTl 

DELETED). 

• The SYSPUNCH DD statement DISP 
parameter specified that this data set 
CSYSPUNCH) be passed. The listing 
indicates that it was passed -- (PCH 

PASSED). 

STEP 2. LINKAGE EDITOR PROCESSING 

The //STP2 EXEC statement designates that 
the program will be linkage edited with the 
following options exercised: 

1. XREF - This option specifies that a 
module map and cross·-reference table be 
printed in the listing. 

2. LIST - This option specifies that all 
linkage editor control statements be 
printed in the listing. 

3.. IET - This option specifies that the 
load module be executed even though 
errors are detected. 

The //SYSLIB DD statement defines the 
COBOL subroutine library for the linkage 
editor automatic call library as 
SYS1.COBLIB. 

The //SYSLMOD DD statement specifies the 
load module data set which is the result of 
linkage editor processing. Note that the 
DISP parameter specifies that the data ·set 
be passed. 

The //SYSUT1 DD statement defines a work 
data set. 

The //SYSLIN DD statement defines the 
input data set to the linkage editor. It 
is the SYSPUNCH data set of STPl, and is 
identified by the DSNAME parameter 
*.STP1.SYSPUNCH. This data set is the 
object deck produced as specified in STPl. 

The //SYSPRINT DD statement specifies 
that linkage editor diagnostics be output 
on the printer. 

98 IBM S/360 OS COBOL(E) Programmer's Guide 

The information printed on the lines 
identified by IEF236I indicates the 
physical unit assignments for the logical 
data sets during the linkage editing. 

The information printed on the lines 
identified by IEF285I is the history of the 
defined data sets for the linkage edit. 

STEP 3. LOAD MODULE EXECUTION 

The //STP3 EXEC statement specifies that 
the load module to be executed is the data 
set called *.STP2.SYSLMOD. 

The //SYSOUT DD statement is required 
because the DISPLAY verb option is used in 
the program. Each DISPLAY • • • verb results 
in the printing of a record on the printer. 
The block size and logical record size for 
this data set is 1.20 characters. 

The //SYSABEND DD statement specifies an 
abnormal termination dump for a job. Ref er 
to How To Use A Dump for a brief 
description of an abnormal termination 
dump. For complete details of the abnormal 
termination dump, refer to the publication, 
IBM System/360 Operating System: Control 
Program Messages and Completion Codes. 

The //STP3.DATASET1 DD statement defines 
the data set that is processed by the 
problem program. Notice that DATASETl in 
the STP3 DD statement is the external-name 
used in the ASSIGN clause of this program. 
(Refer to the environment division in 
Figure 32.) 

The information printed on the lines 
identified by IEF237I indicates the 
physical unit assignments for the logical 
data sets used for execution of the load 
module. 

The WRITE-COUNTER, READ-COUNTER, etc. 
are display data specified in the 
WORKING-STORAGE SECTION, and requested in 
the procedure division of the COBOL source 
program. (Refer to the source listing in 
Figure 32.) 

The information printed on the lines 
identified by IEF285I is a history of the 
data sets defined for execution of the load 
module. 

Figure 43 shows the I/O flow for this 
example. 



Execution 

TCECAPOS 
Load IVodule 

Output 

Print on SYSOUT 
Printer 

TCECAPOS ~ 
Source Statements ~ 

Write 

Read 

' Compile and 
',Linkage Edit 

2311 
Disk 
Pack 

Figure 43. I/O Flow Diagram For Example 1 

EXAMPLE 2. SCRATCHING A DATA SET 

In the event of an abnormal job 
termination, defined data sets might be 
retained by the system. When the same 
program or any other program is executed 
again, using the identically defined data 
sets, the system recognizes these data sets 
as duplicates and terminates the job. It 
checks each data set against those it 
already retains. It does not accept 
already recorded data sets; as a result, 
the job is terminated. 

The sc.ratch procedure ensures that a job 
is not terminated because of an already 
existing data set. 

Figure 44 is an example of a program 
that scratches existing data sets. 

r-----------------------------------------1 
/.ISCR JOB ,SCRATCH,MSGLEVEL=l 
/./STP EXEC PGM=IEHPROGM 
/./SYSPRINT DD SYSOUT=A 
//DD1 DD DISP=OLD, X 
// VOLUME=SER=111111, X 
// UNIT=2311 
//SYSIN DD * 

{
Specified data sets to be} 

scratched 

IEF236I ALLOCATION FOR SCR STP 
IEF237I DDl ON 190 

IIEF237I SYSIN ON 000 
L-----------------------------------------J 
Fiqure 44. Example of Job-Control 

Statements for Scratching Data 
Sets 

JOB STATEMENTS AND DATA SETS FOR SCRATCHING 
DA~rA SETS 

In example 2, //STP EXEC card parameter 
IEHPROGM is the name Of the IBM-supplied 
utility program that accomplishes the 
-scratch. That is, it erases the data sets 
specified after the //SYSIN DD * statement. 
Thus, the data sets defined in the program 
to be executed are accepted by the system, 
and the program can be executed. 

//SYSPRINT DD, //DD1 DD, and //SYSIN DD * 
are work data sets required by the utility 
program. 

For details on how to specify data sets 
to be scratched, refer to Scratching.Data 
Set~ in the Job Processing section. · 

EXAMPLE 3. CATALOGING A PROCEDURE 

Figure 45 illustrates how to catalog a 
procedure. The procedure being cataloged 
is a compile, linkage edit, and execute 
procedure. 

Once a procedure is cataloged, it is 
available to the user by merely specifying 
the~ name of the procedure in the / / EXEC 
statement. 

Appendix A 99 



r------------------------------------------------------------1 
//CATLG3 JOB ,CATLGPROC,MSGLEVEL=l 
//STEPA EXEC PGM=IEBUPDAT,PARM=(NEW) 
//SYSUT2 DD DSNM-'1..E=SYSl. PROCLIB,DISP= (OLD) 
//SYSPRINT DD SYSOUT=A 
//SYSIN DD DATA 
./ ADD CBLPROC3,00,01 
./ NUMBR 00000000,00000000,00000000, X 
./ 00000010 
//STPl EXEC PGM=IEPCBLOO 
//SYSLIB DD DSNAME=COBOLLIB,UNIT=2311, X 
// DISP=(OLD,KEEP),VOLUME=SER=llllll 
//SYSUTl DD DSNAME=UTl,DISP=(NEW,DELETE), X 
// SPACE=(TRK,(50,10)),UNIT=2311, X 
// VOLUME=SER=222222 
//SYSUT2 DD DSNAME=UT2,DISP=CNEW,DELETE), X 
// SPACE=(TRK,(50,10)),UNIT=2311, X 
// VOLUME=SER=222222 
//SYSUT3 DD DSNAME=UT3,DISP=(NEW,DELETE), X 
// SPACE=(TRK, (50,10)),UNIT=2311, X 
// VOLUME=SER=222222 
//SYSPRINT DD SYSOUT=A 
//SYSPUNCH DD DSNAME=PCH,DISP=(NEW,PASS), X 
// SPACE=(TRK,(50,10)),UNIT=2311, X 
// VOLUME=SER=222222 
//STP2 EXEC PGM=IEWL,PARM='XREF,LIST,LET' 
//SYSLIB DD DSNAME=SYSl.COBLIB,DISP=(OLD,KEEP), X 
// UNIT=2311,VOLUME=SER=111111 
//SYSLMOD DD DSNAME=&GODATACTEST),DISP=(NEW,PASS), X 
// UNIT=2311,VOLUME=SER=111111, X 
// SPACE=(TRK,10,10,10)) 
//SYSUTl DD UNIT=2311,SPACE=(TRK, (10,10)), X 
// VOLUME=SER=222222,DISP=(NEW,DELETE) 
//SYSLIN DD DSNAME=*.STP1.SYSPUNCH,UNIT=2311, X 
// DISP=(OLD,DELETE},VOLUiv1E=SER=222222 
//STP3 EXEC PGM=*.STP2.SYSLMOD 
//SYSOUT DD SYSOUT=A,DCB=C,BLKSIZE=120,LRECL=120) 
//SYSABEND DD SYSOUT=A 
./ENDUP 

I/* 
L------------------------------------------------------------J 

Figure 45. Example of Job-Control Statement for Cataloging a Procedure 

JOB-CONTROL STATEMENTS AND DATA SETS FOR 
CATALOGING A PROCEDURE 

In example 3, the //STEPA EXEC PGM 
parameter IEBUPDAT is the name of the 
IBM-supplied utility program that 
accomplishes the cataloging. The parameter 
NEW indicates that the input to the utility 
program consists of the SYSIN data set. 

//SYSUT2 defines the work file for the 
utility program. The parameter PROCLIB 
defines the PDS to be updated. 

The //SYSIN DD DATA statement indicates 
to the system that the job-control 
statements that follow are to be treated as 
data and are not to be interpreted. 

The ./ ADD CBLPROC3 statement is a 
utility statement and indicates that the 

100 IBM S/360 OS COBOL(E} Programmer's Guide 

f oliowing procedure (data set} is to be 
added to the library. The ./ENDUP 
statement Cat the end of the listing) is a 
utility statement signifying the end of the 
source statements to be cataloged .. 
(Neither ./ utility statements are entered 
in the library.) The name CBLPROC3 
specified in the .. / ADD statement 
identifies the procedure to be cataloged, 
and is the procedure name to be used in the 
// EXEC statement when the procedure is 
desired. 

The ./ NUMBR statement specifies to the 
utility program that sequence numbers be 
assigned to the records within the new 
catalog procedure. 

The //SYSLIB DD statement {in STPl of 
the procedure) indicates to the compiler 
that a program to be compiled might contain 
COPY or INCLUDE statemEmts. The remainder 



of the parameters on the //SYSLIB DD 
statement describes the source statement 
library. If this DD statement is omitted, 
the compiler terminates the job upon 
encountering a COPY or INCLUDE statement in 
the source statement program. 

The //SYSLIB DD statement (in STP2 of 
the linkage edit procedure) identifies the 
COBOL subroutine library for the linkage 
e~ditor. The parameter SYSl. COBLIB is the 
name of the COBOL subroutine library. 

The //SYSLMOD DD statement defines the 
output data set to the linkage editor. 

The //SYSUTl DD statement defines the 
work data set for the linkage editor. 

The //SYSLIN DD statement defines the 
primary input data set to the linkage 
editor. It is identified by the parameter 
STPl.SYSPUNCH. 

The //STP3 EXEC parameter .STP2.SYSLMOD 
identifies the load module to be executed 
by the system. 

For descriptions of the //SYSABBND DD 
statement and any other statements or 
parameters not covered in Figure 45, refer 
to Example 1 (Figure 42) in this appendix, 
the section, Creating Data Sets, or the 
publications IBM System/360 Operating 
.§.:i§;tem: Control Program Messages and 
Completion Codes, and IBM system/360 
Q_p,§~.rating system: Job Control Language. 

Appendix A 101 



APPENDIX B. ASSEMBLER LANGUAGE SUBPROGRAMS 

This appendix provides information needed 
to prepare and use subprograms written in 
assembler language with a main program 
written in COBOL. 

CALLED AND CALLING PROGRAMS 

Any program ref erred to by another program 
is a called subprogram. If this called 
subprogram refers to another subprogram, it 
is both a called and calling subprogram. 
In Figure 46, program A calls subprogram B; 
subprogram B calls subprogram C; therefore: 

1. A is considered a calling program by B. 

2. B is considered a called subprogram by 
A. 

3. B is considered a calling subprogram by 
c. 

4. c is considered a called subprogram by 
B. 

r-------------~--------------------------1 
A B C 

r---------1 r---------1 r---------1 
I Calling I I Called I I I 
I program 1->I subpro- I I I 
I of B I I gram of I I I 
I I I A I I I 
I I ~---------~ I I 
I I I Calling I I Called I 
I I I subpro- 1->I subpro- I 
I I I gram of I I gram of I 
I I I c I I B I 
L~-------J L---------J L---------J 

_________________________________________ J 

Figure 46. Called and Calling Programs 

There are three basic ways to use 
assembler-written subprograms with a main 
program written in COBOL: 

1. A COBOL main program or subprogram 
calling an assembler-written 
subprogram. 

2. An assembler-written subprogram calling 
a COBOL subprogram. 

3. An assembler-written subprogram calling 
another assembler-written subprogram. 

102 IBM S/36 0 OS COBOL (E) .Programmer Is Guide 

From these combinations, more 
complicated structures can be formed. 

The operating system has established 
certain conventions to give control to and 
return control from assembler-written 
subprograms. These conventions, called 
linkage conventions, are described in the 
following text. 

LINKAGE CONVENTIONS 

The save and return routines for assembler 
subprograms need not be written exactly the 
same as those generated by the COBOL 
compiler. However, there are basic 
conventions for COBOL programs to which the 
assembler programmer must adhere. These 
conventions include: 

1. Using the proper re9isters to establish 
linkage. 

2. Reserving, in the calling program, an 
area that is used by the called 
subprogram to ref er to the argument 
list. 

3. Reserving, in the calling program, a 
save area in which the registers may be 
saved. 

REGISTER USE 

The operating system has assigned functions 
to certain registers used in linkages. The 
function of each linkag1e register is shown 
in Table 17. 



Table 17. Linkage Registers 

r----·----·r--------T------------------------1 
IREGISTERIREGISTERI I 
!NUMBER INAME !FUNCTION I 
~----·----+--------+------------------------i 
I 1 IArgumentlAddress of the argument! 
I IRegisterllist passed to the I 
I I I called subprogram. I 
~----·----+--------+------------------------~ 
I 13 !Save !Address of the area I 
I IRegisterlreserved by the calling! 
I I !program in which the I 
I I !contents of certain I 
I I I registers are stored by I 
I I !the called program. I 
~--------+--------+-----------------------i 
I 14 !Return !Address of the location! 
I IRegisterlin the calling program I 
I I Ito which control is I 
I I !returned after I 
I I !execution of the called! 
I I I program. I 
~--------+--------+------------------------i 
I 15 !Entry !Address of the entry I 
I !Point !point in the called I 
I IRegisterlsubprogram. I 
L--------·1--------l.----------------·-------J 

ARGUMENT :LIST 

Every assembler-written subprogram that 
calls another subprogram must reserve an 
a.rea of storage (argument list) in which 
the argument list used by the called 
subprogram is located. Each entry in the 
parameter list occupies four bytes and is 
on a full-word boundary. 

In the first byte of each entry :in the 
parameter list, bits 1 through 7 contain 
zeros. However, bit 0 may contain a 1 to 
indicate the last entry in the parameter 
area. 

The last three bytes of each entry 
contain the 24·-bit address of the argument. 

SAVE AREA 

An· assembler subprogram that calls another 
subprogram must reserve an area of storage 
Csave area) in which certain registers 
Ci.e., those used in the called subprogram 
and those used in the linkage to the called 
subprogram> are saved. 

The maximum amount of storage reserved 
by the calling subprogram is 18 words. 
Figure 47 shows the layout of the save area 
and the contents of each word. 

A called COBOL subprogram does not save 
floating-point registers. The programmer 
is responsible for saving and resto~ing the 
contents of these registers in the calling 
program. 

r-----------------------------------------1 
AREA r---------------------------1 
(word 1) !This word is a part of the I 

!standard linkage convention! 
I established under the I 
!operating system. The wordl 
!must be reserved for proper! 
!addressing of the I 
!succeeding entries. I 
!However, an assembler I 
I subprogram may use the wordl 
lfor any desired purpose. I 

AREA+4 ~---------------------------i 
(word 2) !The address of the previous! 

!save area; that is, the I 
!save area of the subprogram! 
!that called this one. I 

AR.EA+8 ~---------------------------~ 
<word 3) !The address of the next I 

!save area; that is, the I 
!save area of the subprogram! 
Ito which this subprogram I 
I refers. I 

AR~A+12 ~---------------------------~ 
<word 4) !The contents of register I 

AREA+16 
<word 5) 

AR~EA+20 
(word 6) 
AREA+24 
<word 7) 

114; that is, the return I 
I address. I 
~---------------------------i 
!The contents of register I 
115; that is, the entry I 
I address. I 
~---------------------------~ 
I The contents of register O. I 
~---------------------------~ 
I The contents of register 1. I 
~---------------------------~ 
I I 
I I 
I I 

IAREA+68 ~---------------------------~ 
I (word 18) 
I 
I 

!The contents of register I 
112. I 
L---------------------------J 

L--·---------------------------------------J 

Fi9ure 47. Save Area Layout and Word 
Contents 

Appendix B 103 



r---------------------------------------------------------------------------------------1 
deckname START 0 

* save 
name1. 

* 
* 
* 
* 
* 

* 
* 
* 
* 
* 
AREA 

* 

ENTRY name 1 

EXTRN name2 
USING *,15 

Routine 
STM 14,r1 ,12C13) 

LR r2,13 

LA 13,AREA 

ST 13,8CO,r2> 

ST r2,4 C0,13) 

BC 15,probi.. 
DS 18F 

The contents of registers 14, 15, and 0 through 
r 1. are stored in the save! area of the calling 
program {previous save area). :r1 is any number 
from 0 through 12. 
Loads register 13, which points to the save area 
of the calling program, into any general 
register, r 2 , except 0 and 13. 
Loads the address of this program's save area 
into register 13. 
Store the address of this program's save area 
into word 3 of the save area of the calling 
program. 
Stores the address of the previous save area 
Ci.e., the same area of the calling program) into 
word 2 of this program's save area. 

Reserves 18 words for the save area. 
last statement of save routine. 

This is 

prob1. User-written program statements 
* Calling sequence 

LA 1,ARGLST First statement in calling sequence. 
L 15,ADCON 
BALR 14,15 

* Remainder of user-written program statements 
* Return Routine 

L 13,AREA+4 

* 
* LM 2 1 R1 1 28(13) 

* L 14,12(13) 
* 

* MVI 12(13),X'FF' 

* 
* 

BCR 15 ,14 
ADCON DC A(name2 ) 

* Parameter List 
IARGLST DC AL4Carg1.) 
I DC AL4Carg2 ) 

First statement in return routine. Loads the 
address of the previous save area back into 
register 13. 
The contents of registers 2 through r 1 , are 
restored from the previous save area. 
Loads the return address, which is in word 4 of 
the calling program's save area, into register 
14. 
Sets flag FF in the save area of the calling 
program to indicate that control has returned to 
the calling program. 
Last statement in return routine .• 
Contains the address of subproqram name 2 • 

First statement in parameter area setup. 

I DC X'80' First byte of last argument sets bit o to 1. 
I DC AL3Cargn> Last statement in parameter area setup. 
L----------------------------------------------------------------------------------------
Figure 48. Sample Linkage Routines Used with a Calling subprogram 

Example in-line parameter list may be used; see 
In-line Parameter List.) 

The linkage conventions used by an 
assembler subprogram that calls another 
subprogram are shown in Figure 48. The 
linkage should include: 

1. The calling sequence .. 

2. The save and return routines. 

3. The out-of-line parameter list. (An 

104 IBM S/360 OS COBOL1(E) Programmer. s Guide 

4. A save area on a fullword boundary. 

LOWEST LEVEL SUBPROGRAM 

If an assembler subprogram does not call 
any other subprogram ( i .. e. , if it is at the 
lowest level>, the programmer should omit 
the save routine, calling sequence, and 



parameter list shown in Figure 48. If the 
assembler subprogram uses any registers, it 
must save them. Figure 49 shows the 
appropriate linkage conventions used by an 
assembler subprogram at the lowest level. 

r---·---------------------------------------1 
deckname START 0 

ENTRY name 
USING *,15 

name STM 14,r1 ,12(13) 

User-written program statements 

LM 2,r1 ,28(13) 
MVI 12(13),X'FF' 
BCR 15,14 

~-----------------------------------------~ 
!Note: If registers 13 and/or 14 are usedl 
lin the called subprogram, their contents I 
I should be saved and restored by the I 
!called subprogram. I 
L-----------------------------------------J 
Figure 49. Sample Linkage Routines Used 

with a Lowest Level subprogram 

IN-LINE PARAMETER LIST 

The assembler programmer may establish an 
in-line parameter list instead of 
out-of-line list. In this case, he may 
substitute the calling sequence and 
parameter list shown in Figure 50 for that 
shown in Figure 48. 

r-------------·----------------------------1 
ADCON DC A(prob1> 

LA 
L 
CNOP 
BALR 
DC 
DC 

14,RETURN 
15,ADCON 
2,4 
1,15 
AL4Carg1 ) 
AL4Carg 2 ) 

DC X'80' 
DC AL3Cargn> 

I RETURN BC O,X'isn' 
l----------------------------------·-------J 

Figure 50. Sample In-Line Parameter List 

DATA FORMAT OF ARGUMENTS 

Any assembler-written subprogram must be 
coded with a detailed knowledge of the data 
formats of the arguments being passed. 
Most coding errors will probably occur 
because of the data-format discrepancies of 
the arguments. 

If one programmer writes both the main 
program and the subprogram, the data 
fo:rmats of the arguments should not present 
a problem when passed as parameters. 
However, when the programs are written by 
different programmers, the data-format 
specifications for the arguments must be 
clearly defined for the user. 

ACCESSING INFORMATION NOT DIRECTLY 
AVAILABLE AT THE COBOL LANGUAGE LEVEL 

Figures 51 and 52 are listings of a COBOL 
language source program and an assembler 
language subprogram, respectively. These 
programs illustrate how a COBOL programmer 
can access information in subprograms not 
directly available through the COBOL 
language. They allow the programmer to: 

• Obtain a value from the PARM parameter 
of the EXEC card 

n Obtain the date from the control 
program 

• Set a condition code to be used by the 
next job step. 

The documentation within the assembler 
subprogram explains what is accomplished 
within each segment of· the subprogram. 

Appendix B 105 



;-----------------------·---------------------------------------·------·------------------, 
001001 IDENTIFICATION DIVISION. 
001002 PROGRAM-ID. 'EXAMPLEA'. 
002001 ENVIRONMENT DIVISION. 
002002 CONFIGURATION SECTION. 
002003 SOURCE-COMPUTER. IBM-360 H50. 
002004 OBJECT-COMPUTER. IBM-360 H50. 
002005 INPUT-OUTPUT SECTION. 
002006 FILE-CONTROL. 
002007 SELECT INFILE ASSIGN 'CARDREAD' UTILITY. 
002008 SELECT OUTFILE ASSIGN 'TAPEOUT' UTILITY. 
003001 DATA DIVISION. 
003002 FILE SECTION. 
003003 FD INFILE RECORDING F LABEL RECORD OMITTED DATA RECORD INAREA. 
003004 01 INAREA. 
003005 02 PART-NUMBER PICTURE IS XC10). 
003006 02 QUANTITY PICTURE IS 9(6). 
003007 02 COST PICTURE IS 9(4)V99. 
003008 02 FILLER PICTURE X(58). 
003009 FD OUTFILE RECORDING F LABEL RECORD STANDARD DATA RECORD 
003010 OUTAREA BLOCK CONTAINS 10 RECORDS. 
003011 01 OUTAREA. 
003012 02 PART-NUMBER PICTURE IS X(10). 
003013 02 SERIAL-DAY PICTURE IS 9(3). 
003014 02 QUANTITY PICTURE IS S9(6) USAGE IS COMPUTATIONAL-3. 
003015 02 COST PICTURE IS 9(4)V99 USAGE IS COMPUTATIONAL-3. 
003016 02 EXTENSION PICTURE IS 9 (6)V99 USAGE IS COMPUTATIONAL-·3. 
003017 02 MFG-DAY PICTURE IS X(3). 
003018 02 FILLER PICTURE IS X. 
003019 WORKING-STORAGE SECTION. 
003020 77 MFG-DAY-LENGTH PICTURE S9 VALUE +3 COMPUTATIONAL. 
003021 77 DATA-ERROR-COUNT PICTURE S99 COMPUTATIONAL VALUE 0. 
003022 77 COND-CODE-FOR-NEXT-JOB-STEP PICTURE 99 COMPUTATIONAL. 
003023 77 GO-COND-CODE PICTURE 99 VALUE 4 COMPUTATIONAL. 
003024 77 STOP-COND-CODE PICTURE 99 VALUE 64 COMPUTATIONAL. 
003025 01 EXEC-PARM-VALUE. 
004001 02 PARM-LENGTH PICTURE S9 COMPUTATIONAL. 
004002 02 MFG-DAY-FROM-EXEC-PARM PICTURE IS 9(3). 
004003 01 SERIAL-DAY-FROM-TIME-MACRO PICTURE 9(3). 
005001 PROCEDURE DIVISION. 
005002 GO-TO-SUBROUTINE. 
005003 ENTER LINKAGE. 
005004 CALL 'GETPARM' USING EXEC-PARM-VALUE, 
005005 SERIAL-DAY-FROM-TIME-MACRO. 
005006 ENTER COBOL. 
005007 START-MAIN-PROGRAM. 
005008 IF PARM-LENGTH EQUAL TO MFG-DAY-LENGTH THEN NEXT SENTENCE, 
005009 OTHERWISE GO TO ABORT-JOB. 
005010 IF MFG-DAY-FROM-EXEC-PARM IS NOT NUMERIC GO TO ABORT-JOB. 

j005011 OPEN INPUT INFILE. OPEN OUTPUT OUTFILE. 
1005012 READFILE. 
1005013 READ INFILE AT END GO TO END-OF-JOB. 
1005014 IF COST OF INAREA NOT NUMERIC GO TO ERRORENTRY. 
1005015- IF QUANTITY OF INAREA NOT NUMERIC GO TO ERRORENTRY. 
1005016 MOVE QUANTITY OF INAREA TO QUANTITY OF OUTl\REA. 
1·00501 7 MOVE COST OF INAREA TO COST OF OUTAREA. 
1005018 MULTIPLY QUANTITY OF OUTAREA BY COST OF OUTAREA GIVING 
1005019 EXTENSION ON SIZE ERROR GO TO ERRORENTRY. 
1005020 MOVE PART-NUMBER OF INAREA TO PART-NUMBER OF OUTAREA. 
1005021 MOVE MFG-DAY-FROM-EXEC-PARM TO MFG-DAY. 
1005022 MOVE SERIAL-DAY-FROM-TIME-MACRO TO SERIAL-DAY. 
1005023 WRITE OUTAREA. GO TO READFILE. 
L----------------------------------------------------------~---------·-------------------

Figure 51. COBOL source Program (Part 1 of 2) 

106 IBM S/360 OS COBOL(E) Programmer's Guide 



--------------------------------------·------------------·----------~~~~~~~~~~~~~~-

r--------·-----------------------------------------,---------------------------------------1 
005024 ERRORENTRY. 
005025 ADD 1 TO DATA-ERROR-COUNT. 
006001 DISPLAY 'ERROR PN' PART-NUMBER OF INAREA. 
006002 GO TO READFILE. 
006003 ABORT-JOB. 
006004 DISPLAY 'IMPROPER PARM VALUE IN EXEC CARD, JOB TERMINATED'. 
006005 SET-STOP-CODE. 
006006 MOVE STOP-COND-CODE TO COND-CODE-FOR-NEXT-JOB-STEP. 
006007 GO TO EXIT-JOB. 
006008 END-OF-JOB. 
006009 DISPLAY 'END OF JOB'. 
006010 CLOSE INFILE, OUTFILE. 
006011 IF DATA-ERROR-COUNT GREATER THAN 5, GO TO SET-STOP-CODE. 
006012 MOVE GO-COND-CODE TO COND-CODE-FOR-NEXT-JOB-STEP. , 
006013 EXIT-JOB. 
006014 ENTER LINKAGE. 
006015 CALL 'SETCODE' USING COND-CODE-FOR-NEXT-JOB-STEP. 

1006016 ENTER COBOL. 
L--------·--------------------------·---:.__---------·---------------------------------------J 

Figure 51. COBOL Source Program (Part 2 of 2) 

Appendix B 107 



r----------------------------------------------------------------------------------------1 
GET PARM START 

ENTRY SETCODE 
* SAVE REGISTERS AND POST SAVE AREAS 

I 
I 

* 

* 
* 
* 

* 
* 

* 
* 
* 

* 
* 
* SET CODE 

I 
I* 
I* 
I* 

STM 
BALR 
USING 
LA 
ST 
ST 
L 
LR 

14,5,12(13) 
5,0 
*,5 
14,SAVEAREA 
14,8(13) 
13,4(14) 
2,4(0,13) 
13,14 

SAVE REGISTERS 
ESTABLISH BASE REGISTERS 

LOAD NEW SAVE AREA ADDRESS 
NEW SAVE AREA ADDR TO OLD SAVE AREA 
OLD SAVE AREA ADDR TO NEW SAVE AREA 
ADDR OF SAVE AREA USED BY COBOL 
NEW SAVE AREA ADDRESS T- REGISTER 13 

MOVE EXEC CARD PARM OPERAND TO COBOL PROGRAM 

L 4,24(0,2) ADD OF INITIATOR PARAMETER LIST 
L 2,0(0,4) ADDR OF EXEC CARD PARM OPEF~ND DATA 
L 4, OC0,1) ADDR OF COBOL NAME 'EXEC-PA.RM-VALUE' 
MVC 0 { 5, 4), 0 { 2) MOVE PARM DATA TO COBOL PROGRAM 
OBTAIN DATE AND PLACE SAME IN COBOL PROGRAM 

LR 
TIME 
ST 
L 
UNPK 

4,1 
DEC 
1,DATEAREA 
2,4<0,4) 
0(3,2),DATEAREA+2{2) 

SAVE ADDR OF COBOL PARAMETER LIST 
GET DATE 
SAVE DATE 
ADDR OF COBOL DATE RECEIVING FIELD 
MOVE DATE TO COBOL PROGRAM 

RESTORE REGISTERS, RETURN TO COBOL PROGRAM 

L 
LM 
BR 

13,4(13) 
14,5,12(13) 
14 

RESTORE REGISTER 13 
RESTORE REGISTERS 
RETURN TO COBOL PROGRAM 

SET CONDITION CODE AT TERMINATION OF COBOL PROGRAM 

L 
LH 
L 
L 
LM 
BR 

2,0(0,1) 
15,0C0,2) 
13,4(0,13) 
14I12 (13) 
0,12,20(13) 
14 

COND-CODE VALUE ADDR 
SET COND-CODE 
RESTORE REGISTER 13 
RETURN ADDR IN TERMINATOR 
RESTORE REGISTERS 
RETURN TO TERMINATOR 

CONSTANTS USED BY ASSEMBLER ROUT.INE 

IDATEAREA DS F WORK-AREA FOR DATE 
ISAVEAREA DS 18F 
I END GETP.ARM 
L-----------------------·----------------------------------------·------------------------J 

Figure 52. Assembler Subprogram 

108 IBM S/360 OS COBOL(E) Programmer's Guide 



The COBOL program itself is produced as one 
control section. However, there may be 
subprograms and other external references, 
such as entry points to subprogramsu to be 
resolved. The subprograms that a user may 
wish to combine with the main program can 
be obtained from SYSIN, the automatic call 
library (COBLIB), or one of his own 
libraries .. 

The following discussion illustrates the 
procedures available for processing COBOL 
subprograms. 'I'he first technique employs 
the linkage editor without using thE~ 
overlay facility. The second technique 
employs the linkage editor using an overlay 
technique. This technique allows the 
programmer to specify, at linkage edit 
time, the overlays required for a program. 
During execution of a program overlays are 
performed automatically for the programmer 
by the control program. The third 
technique 11 which is used during execution, 
requires that the programmer generate the 
needed macro instructions to effect the 
overlays. 

The largest load module that can be 
processed by Fetch is 524,248 bytes. 
If a load module exceeds this limit, 
it should be divided. 

CONSIDERATIONS FOR OVERLAY 

Assume a COBOL main program exists, called 
COBMAIN, that contains calls at one or more 
points in its logic to COBOL 
subprograms: CSUBl, CSUB2, CSUB3, CSUB4, 
and CSUB5. Also assume that the load 
module sizes for the main program and the 
subprograms are as given in Figure 53. 

r·-------T·-----------------------1 
IPROGRAMIMODULE SIZE (IN BYTES) I 
~-------+-----------------------1 
ICOBMAINI 20,000 I 
I CSUB1 I 4, 000 I 
ICSUB2 I 5,000 I 
ICSUB3 I 6,000 I 
ICSUB4 I 3,000 I 
ICSUBS I 4,000 I 
L·-------J.------------------------J 
Figure 530 Assumed Program Module Sizes 

Through the linkage mechanism, ENTER 
LINKAGE, CALL SUBl ••• , all subprograms plus 
COBMAIN must be linkage edited together to 
form one module 42,000 bytes in size. 
Thereforew COBMAIN would require 42,000 
bytes of storage in order to be executed. 

APPENDIX C. OVERIAY STRUCTURES 

Normally, all subprograms referenced by 
the COBOL source program, including the 
main program, will fit into main storage. 
Therefore, the linkage editor nonoverlay 
technique of processing can be used to 
execute the entire program. 

Figure 54 illustrates the storage layout 
for nonoverlay processing. 

r----------------------1 
I COBOL MAIN PROGRAM I 
~----------------------~ 
I SUBRTNX I 
~----------------------~ 
I SUBPROGRAM A I 
~----------------------~ 
I SUBPROGRAM B I 
~----~-----------------~ 
I SUBPROGRAM c I 
L----------------------J 

Figure 54. Storage Layout for Nonoverlay 
Processing 

LINKAGE EDIT WITHOUT OVERLAY 

Figure 55 shows a deck setup for a 
nonoverlay structure. In this case, all 
the subprograms (including MAIN PROGRAM) 
fit into main storage. 

DD CARDS 

EXEC PROGRAM 

JOB 

Figure 55. Example Deck for Linkage Editor 
Nonoverlay Structure 

Appendix C 109 



OVERLAY PROCESSING 

If the subprograms needed do not fit into 
main storage, it is still possible to use 
them. The technique that enables using 
subprograms that do not fit into main 
storage (along with the main program) is 
called overlay. 

Figure 56 illustrates storage layout for 
overlay processing. 

r----------------------1 
I COBOL MAIN PROGRAM I 
~----------------------~ 
I SUBRTNX I 
~----------------------~ I SUBPROGRAM I 
~----------------------~ 
I A or B or c I 
L----------------------J 

Figure 56. Storage Layout for Overlay 
Processing 

There are two techniques of overlay 
available to the COBOL programmer. They 
are: 

• Preplanned overlay using the linkage 
editor 

• Dynamic overlay using macro 
instructions during execution 

PREPLANNED LINKAGE EDITING WITH OVERLAY 

The preplanned linkage editor facility 
permits the reuse of storage locations 
already occupied. By judiciously 
segmenting a program, and using the 
preplanned linkage editor overlay facility, 
the programmer can accomplish the execution 
of a program too large to fit into storage 
at one time. 

In using the preplanned overlay 
technique, the programmer specifies, to the 
linkage editor, which subprograms are to 
overlay each other. The subprograms 
specified are processed, as part of the 
program, by the linkage editor so they can 
be automatically placed in main storage for 
execution when requested by the program. 
The resulting output of the linkage editor 
is called an overlay structure. 

It is possible, at linkage edit time, to 
set up an overlay structure by using the 
COBOL source language statement ENTER 
LINKAGE and the linkage editor OVERLAY 
statement. These statements enable a user 

110 IBM S/360 OS COBOL(E) Programmer's Guide 

to call a subprogram that is not actually 
in storage. The details for setting up the 
linkage editor control statements for 
accomplishing this procedure can be found 
in the publication, IBM System/36Q. 
Operating System: Linkage Editor. 

In a linkage editor run, the programmer 
specifies the ove.rlay points in a program 
by using OVERLAY statements. The linkage 
editor treats the entire input as one 
program, resolving all symbols and 
inserting tables into the program. 

These tables a:re use!d by the control 
program to bring the overlay subprograms 
into storage automatically, when called. 

Figure 57 shows the deck setup for an 
overlay structure using preplanned linkage 
editor overlay. The OVERLAY statements 
specify to the linkage editor that the 
overlay structure to be established is one 
in which SUBPROGA, SUBPROGB and SUBPROGC 
overlay each other when called during 
execution. 

DD CARDS 

Figure 57. Example Deck for Linkage Editor 
Overlay Structure 

DYNAMIC OVERLAY Fl!:ATURE 

In preparation for the dynamic overlay 
technique, each part of the program that is 
brought into storage independently should 
be processed separately by the linkage 



editor. (Hence, each part must be 
processed as a separate load module). To 
execute the entire program, the programmer 
must: 

1. Specify the main program Cin Figure 53 
COBMAIN) in the EXEC statement, and 

2. Bring the separately processed load 
modules into storage, when they are 
required, by using the appropriate 
supervisor linkage macro instructions. 
This is accomplished during execution. 

This technique can be used to overlay 
subprograms during execution. To 
accomplish dynamic overlay of subprograms, 
the programmer must write an assembler 
language subprogram that employs the LINK 
macro to call each COBOL subprogram. For a 
detailed description of the LINK macro 
instruction, ref er to the publication, IBM 
System/360 Operating System: Control 
Program Services. 

In using this technique, the main 
program Cin Figure 53, COBMAIN> 
communicates with the assembler lan<;Juage 
subprogram by using the COBOL language CALL 
statement. The COBOL CALL statement can be 

used to pass the name of the COBOL 
subprogram {to be linked), and the 
specified parameter list, to the assembler 
language subprogram. This procedure is 
effected with each CALL used in the main 
program. Hence, each CALL results in 
linking with a subprogram through the 
assembler language subprogram. 

When the COBOL subprogram is finished 
executing, it returns to the assembler 
language subprogram, which in turn returns 
to the main program Cin Figure 53, 
COBMAIN>. The process is repeated for each 
CAI.L to the assembler language subprogram. 

This technique requires that a 
programmer have detailed knowledge of the 
linkage conventions, assembler language, 
and the LINK macro with its features and 
res:trictions. 

Beyond this, the programmer must ensure 
tha.t the COBOL subprogram modules exist in 
a private library CPDS.) and are defined by 
a //JOBLIB DD statement in the job-control 
language for execution of the main program. 
Ref er to Job-Control Language for a 
description of the //JOBLIB DD statement. 

Appendix c 111 



APPENDIX D. COBOL SYNTAX FORMATS 

The following is a list of COBOL statements to be used with initial release version of 
the COBOL CE) compiler. 

IDENTIFICATION DIVISION. 

PROGRAM-ID. 'program-name'. 

[AUTHOR. sentence ••• ] 
[INSTALLATION. sentence ••• ] 
[DATE-WRITTEN. sentence ••• ] 
[DATE-COMPILED. sentence ••• ] 
[SECURITY. sentence ••• ] 
[REMARKS. sentence ••• ] 

ENVIRONMENT DIVISION. 

CONFIGURATION SECTION. 

[SOURCE-COMPUTER. IBM-360 [model-number].] 
[OBJECT-COMPUTER. IBM-360 [model-number].] 
INPUT-OUTPUT SECTION. [COPY library-name.] 
FILE-CONTROL. [COPY library-name.] 

SELECT file-name [COPY library-name] 

ASSIGN TO external-name UTILITY device-number 
{

DIRECT-ACCESS} 

UNIT--RECORD UNIT[S] 

[ RESERVE~~teger} ALTERNATE AREA!sJ] 

[ACCESS Is{sEQUENTIA~lJ 
\:RANDOM j 

{

INDEXED 
[ORGANIZATION IS DIRECT 

RELATIVE 

[SYMBOLIC KEY IS data-name] 

[ACTUAL KEY IS data-name] 

[RECORD KEY IS data-name] 

[TRACK-AREA IS data-name CHARACTERS] 

[FILE-LIMIT IS integer TRACKS] 

I-0-CONTROL .• 

[SAME AREA FOR file-name-1 file-name-2 •••• ] 
[APPLY overflow-name to FORM-OVERFLOW ON file-name.] 
[APPLY RESTRICTED SEARCH OF integer TRACKS ON file-name •••• ] 
[APPLY WRITE-ONLY ON file-name.... • ] 

DATA DIVISION. 

FILE SECTION. 

112 

file-name [COPY library-name.] 
[BLOCK CONTAINS integer { CHARACTERS} ] 

RECORDS 

! RECORDING MODE IS { ~ } l 

IBM S/360 OS COBOL(E) Programmer's Guide 



[RECORD CONTAINS [integer-1 TO] integer-2 CHARACTERS] 
[RECORD IS l rsTANDARD} 

LABEL (RECORDS are; lOMITTED 

{
RECORD IS } 
RECORDS ARE record-name •••• 

Record Description Entry. 
WORKING-STORAGE SECTION. 
R·ecord Description entries 
LINKAGE SECTION. 
Record Description entries 

{
data -name l 

level-number FILLER j [REDHFINES data-name-2] [COPY library-name.] 

[ {

alpha-form }~ an-form 
PICTURE IS numeric-form 

report-form 
_ fp-f orm 

[OCCURS integer TIMES [DEPENDING ON data-name]] 
[JUSTIFIED RIGHT] 
BLANK WHEN ZERO] 
C:VALU:§ IS literal] 

t { DISPLAY }~ COMPUTATIONAL 
USAGE IS COMPUTATIONAL-1 

COMPUTATIONAL-2 
COMPUTATIONAL-3 

PROCEDURE DIVISION. 
[Section-name SECTION.] 
Paragraph·-name • 

. ACCEPT data-name [FROM CONSOLE] 

.ADD 
{ 

numeric-literal } { ) 
floating-point-literal ••• TO 
data-name-1 GIVING data-name-n 

[ROUNDED] [ON SIZE ERRO~ imperative-statement ••• ] 

.ALTER {procedure-name-1 TO PROCEED TO procedure-name-2} ••• 

CLOSE {file-name IBEE~l fwITH NO REWINQl ) 
~ITj LWITH LOCK J 

fOMPUTE data-name-1 [ROUNDED] = 
{

data-name-2 } 
numeric-literal 
f loating-poi.nt-li teral 
ari thmetic-e~xpression 

[ON SIZE ERROR imperative-statement ••• ] 

{ d~t.a-name) [ {CONSOLE )] 
DISPIAY literal ••• UPON SYSPUNCH 

{ 
data-name-1 } { data-name-2 [GIVING data-name-3] ) 

pIVIDE numeric-literal-1 INTO numeric-literal-2 GIVING data-name-3 
floating..:.point-literal-1 -- floating-point-literal-2 GIVING data-name-3 

[ROUNDED] [ON SIZE ERROR imperative statement ••• ] 

Appendix D 113 



ENTER LINKAGE. 
CALL entry-name [USING argument ••. ]. 
ENTRY entry-name [USING data-name ••• ]. 
RETURN. 
ENTER COBOL. 

EXAMINE data-name TALLYIN~ LEADING 'character-1' [REPLACING .BY 'character-2'1 
{

ALL 

UNTIL FIRST 

EXAMINE data-name REPLACING LEADING 
{

ALL ) 'character-l'BY 'character-2' 
UNTIL FIRST 
FIRST 

{
NAMED } { } EXHIBIT CHANGED NAMED data-name 
CHANGED non-numeric-literal ••• 

paragraph-name. EXIT. 

GO TO procedure-name-1 l[procedure-name-2 ••• DEPENDING ON data-name] 

IF condition [THEN] 
{

statement-1 \. 
NEXT SENTENCEJ [{

ELSE \. fs ta tement- 2 •• :\] 
OTHERWISEj\_!'lEXT SENTENCE j 

CONDITIONS: 

{
data-name-1 } 
arithmetic-expression-1 IS [NOT] 
figurative-constant-1 

{data-name } 
larithmetic-expression IS [NOT] 

[NOT] condition-name 

[NOT] overflow-name 

{
NUMERIC } 

data-name IS [NOT] AI,PHABETIC 

{ ~REATER THANj 
LESS THAN 
EQUAL TO 

{
POSITIVE} 
ZERO 
NEGATIVE 

[section-name SECTION.} INCLUDE library-name. 
lparagraph-name. 

[data -name-1} 
MOVElliteral TO data-name-2 ••• 

{
data-name-1 } 

MULTIPLY numeric-literal-1 
floating-point-literal-1 

{ 

data-name-2 } 
ari thmetic-E~xpression-2 
figurative-constant-2 
literal-2 

{

data-narne-2 [GIVING data-name-3] } 
BY numeric-literal-2 GIVING data-name-3 
~ floating-point-literal-2 GIVING data-name-3 

[ROUNDED] [ON SIZE ERROR imperative statement ••• ] 

NOTE comment ••• 

ON integer-1 [AND EVERY integer-2] 

[{
ELSE } 
OT!!,ERWISE 

[UNTIL integer-3] 

{
statement. • • }] 
NEXT SENTENCE 

114 IBM S/360 OS COBOL(E) Programmer's Guide 

{
imperative-statement ••• } 
NEXT SENTENCE 



INPUT {file-name [with NO REWIND] [REVERSED]} 
----roljTPUT {file-name [with NO REWIND]} •••• ] 

[I-0 {file-name} ••• ] 
OPEN OUTPUT {file-name [with NO REWIND]} ••• 

[INPUT {file-name [with NO REWIND] [REVERSED]} ••• ] 
l-O{file-name} ••• ] ----

I-0 {file-name} ••• [OUTPUT {file-name [with NO REWIND]} ••• ] 
---[INPUT {file-name [with NO REWIND] [REVERSED]} ••• ] 

{
integer TIME~l 

PERFORM procedure-name-1 [THRU procedure-name-2] data-name j 
UNTIL condition 

PERFORM procedure-name-1 [THRU procedure-name-21 

VARYING data-name-1 FROM f numeric-literal-1} 
\_data-name-2 

~Y {numeric-literal-2} 
data-name-3 

[AFTER data-name-4 

BY {numer:ic-literal-4} 
data-name-6 

[AFTER data-name-7 

BY fnumeric-literal-6} 
\_data-name- 9 

UNTIL! test-condition-1 

FROM {numeric-liteJ~al-3} 
data-name-5 

UNTIL test-condition-21 

[FROM numeric-literal-5} 
\. data-name-8 

UNTIL test-condition-31 

READ file-name RECORD [INTO data-name] AT END imperative-statement ••• 

READ file-name RECORD [INTO data-name] 
INVALID KEY imperative statement ••• 

. STOP {RUN } 
)!-i teral 

{

data-name-1 } 
SUBTRACT numeric-literal-1 ••• 

floating-point-literal-L 

{

data-name-m [GIVING data-name-nl } 
EBQ~ numeric-literal-m GIVING data-name-n 

floating-point-li teral·-m GIVING data-name-n 

[ROUNDED] [ON .SIZE EROR ImpE!rative statement ••• ] 

{
READY:l 
RESETjTRACE 

"TRANSFORM data-name-3 CHARACTERS 

{ 
figurative-constant-1} {figurative-constant-2} 

FRO~ non-numeric-literal-1 TO non-numeric-literal-2 
data-name-1 data-name-2 

WRITE record-name [FROM data-name-11 [AFTER ADVANCING 

WRITE record-name [FROM data-name-1] 
-----INVALID KEY imperative statement ••• 

REWRITE record-name [FROM data-name] 
INVALID KEY imperative statement ••• 

{
<;lata-name-2} 
integer 

LINES] 

Appendix D 115 



Permissible values for data-name-2: Permissible Integers~ 

b Cblank) 
0 

+ 
1 through 9 
A, B, C, 
v, w 

Interpretation 0 - skip to next-page 
1 - skip 1 line 

single spacing 2 - skip 2 lines 
double spacing 3 - skip 3 lines 
triple spacing 
suppress spacing 
skip to channel 1 through 9, respectively 
skip to channels 10, 11, 12, respectively 
pocket select 1 or 2, respectively on the 
IBM 1442, or 2529 and P2 or RP3 on the IBM 2540. 

Permissible Comparisons. 
r--------------------------------------1 
I Second Operand I 

r---------------------+--T ___ T ___ T ___ T ___ T ___ T ___ T ___ T ___ T---~ 
IFirst Operand IGRIAL IAN IED IID IBI IEF IIF IRP IFC I 
~---------------------+--+---+---+---+---+---+---+---+---+---~ 
!Group Item {GR) INNINN INN INN INN INN INN INN INN INN I 
~---------------------+--+---+---+---+---+---+---+---+---+---~ 
!Alphabetic Item CAL) INNINN INN I I I I I I INN1 1 
~---------------------+--+---+---+---+---+---+---+---+---+---~ 
!Alphanumeric <non- I I I I I I I I I I I 
lreport) Item CAN) INNINN INN INN 5 I I I I INN INN I 
~---------------------+--+---+---+---+---+---+---+---+---+---~ 
!External Decimal I I I I I I I I I I I 
!Item CED) INNI INN 5 INU INU INU INU INU I INN 3 1 
~---------------------+--+---+---+---+---+---+---+---+---+---~ 
!Internal Decimal I I I I I I I I I I I 
!Item CID) INNI I INU INU INU INU INU I INU2 1 

~---------------------+--+---+---+---+---+---+---+---+---+---~ 
I Binary Item CBI) INN I I I NU I NU I NU jNU I NU I I NU 2 I 
~---------------------+--+---+---+---+---+---+---+---+---+---~ 
!External Floating- I I I I I I I I I I I 
!point Item CEF) INNI I INU INU INU INU INU I INU 2 1 
~---------------------+--+---+---+---+---+---+---+---+---+---~ 
!Internal Floating- I I I I I I I I I I I 
!point Item CIF) INNI I INU INU INU INU INU I INU2 1 
~---------------------+--+---+---+---+---+---+---+---+---+---~ 
!Report Item CRP) INNI INN I I I I I INN INN 4 1 
~---------------------+--+---+---+---+---+---+---+---+---+---~ 
!Figurative constant I I I I I I I I I I I 
I (FC) INNINN1 INN INN3 INU2 INU2 INU 2 INU 2 INN 4 1 I 
L---------------------~--~---~---~---~---i---i---~---i ___ i ___ J 

Abbreviations for Types of Comparison: 
NN--Comparison as described for non-numeric items. 
NU--Comparison as described for numeric items. 
1 Permitted with the figurative constants SPACE and ALL 'character' where character must 

be alphabetic. 
2 Permitted only if figurative constant is ZERO. 
3 Permitted only if figurative constant is ZERO or ALL 'character' where character must 

be numeric. 
4 Not permitted with figurative constant QUOTE. 
5 External decimal field must consist of integers. 

• 116 IBM S/360 OS COBOL(E) Programmer's Guide 



Permissible Moves. 
r--------------------------1 
I Receiving Field I 

r--·----·-----------------f--T--T--T--T·--T--T--T--T---~ 
!Source Field IGRIALIANIEDIIDIBIIEFIIFIRPI 
~-----------------------+--+--+--+--+--+--+--+--+--~ 
!Group (GR) IY IY IY IN IN IN IN IN IN I 
~-----------------------+--+--+--+--+--+--+--+--+--~ 
!Alphabetic CAL> IY IY IY IN IN IN IN IN IN I 
~------------------------+--+--+--+--+--+--+--+--+---~ 
!Alphanumeric CAN) IY IY IY IN IN IN IN IN IN I 
~-----------------------+--+--+--+--+--+--+--+--+--~ 
!External Decimal (ED) IY IN IY:i:ly IY IY IY IY IY I 
~-----------------------+--+--+--+--+--+--+--+--+--~ 
!Internal Decimal (ID) IY IN IY1 IY IY IY IY IY IY I 
~-----------------------+--+--+--+--+--+--+--+--+--~ 
!Binary CBI) IY IN IY1 IY IY IY IY IY IY I 
~---------------------+--+--+--+--+--+--+--+--+---~ 
I External Floating- I I I I I I I I I I 
!Point (EF) IY IN IN IY IY IY IY IY IY I 
~-----------------------+--+--+--+--+--+--+--+--+--~ 
!Internal Floating- I I I I I I I I I I 
!Point (IF) IY IN IN IY IY IY IY IY IY I 
~-----------------------+--+--+--+--+--+--+--+--+--~ 
!Report CRP) IY IN IY IN IN IN IN IN IN I 
~-----------------------+--+--+--+--+--+--+--+--+-·-~ 
IZEROS IY IN IY IY IY IY IY IY IY I 
~-----·------------------+--+--+--+--+--+--+--+--+-·-~ 
!SPACES IY IY IY IN IN IN IN IN IN I 
~-·----·-------------------+--+--+--+--+--+--+--+--+--~ 
!All 'character', HIGH- I I I I I I I I I I 
!VALUES, LOW-VALUES, IY IN IY IN IN IN IN IN IN I 
I QUOTES I I I I I I I I I I 
, _________________________ .L, __ .L, __ .L, __ .L __ J. __ .,L __ .L, __ .,L __ .L __ J 

1 For inteqers only 

Appendix D • 117 



APPENDIX E. SUBROUTINES USED BY COBOL 

A table of subroutines used by COBOL to accomplish the statements or actions specified 
follows. With the use of this table and the linkage editor cross-reference list, the 
programmer can determine the effect of his source statements. This table should guide 
the programmer in his efforts to conserve storage and isolate a trouble to a specific 
reason (debugging). 

TABLE OF COBOL SUBROUTINES 

r-------------~------------------T-----------------------------------------------------1 
!SUBROUTINE NAME !ACTION I 
~---------------------------------+-----------------------------------------------------i 
IIHDOOOOO !Required for manipulation of external I 
I Converts an external !floating-point data in: I 
I floating-point number I MOVE - When send field is external I 
I to an internal floating- I floating point in MOVE statement. I 
I point number. I COMPUTATIONAL - When one field is external, and onel 
I I field is internal floating point in I 
I I computational statE~ment. I 
~---------------------------------+---------------------------------------------·---------i 
IIHD00100 !Required for exponentiation to non-integer power. I 
I Floating-point I I 
I exponential subroutine. I I 
~---------------------------------+-----------------------------------------------------i 
IIHD00200 !Required for division of complex computes, I 
I Packed divides subroutine. !COMPUTATIONAL of over 9 digits and I 
I It divides 16-byte 30- ICOMPUTATIONAL-3 of over 16 digits. I 
I character dividend by I I 
I a 1-byte 30-character I I 
I divisor producing a 16-byte I I 
I 30-character quotient. I I 
I No registers are used. I I 
~---------------------------------+----------------------------·-----·--------------------i 
IIHD00300 !Required for complex computes, I 
I Packed multiply subroutine. !COMPUTATIONAL fields of over 9, or I 
I It multiplies two 30- ICOMPUTATIONAL-3 of over 16 digits. I 
I character packed fields I I 
I and produces a 60-character I I 
I packed product. I I 
~---------------------------------+-----------------------------------------------------i 
IIHD00400 !Required with floating-point. and I 
I Error message subroutine. !non-integer exponentiation. I 
I It outputs object time I I 
I messages. I I 
~---------------------------------+-----------------------------------------------------i 
IIHDOOSOO !Required for exponentiation to an I 
I Packed exponentiation !integer power. (Used with IEP00700 I 
I subroutine. I (floating-point exponentiation] subroutine.) I 
~---------------------------------+------------------------------------------------------i 
IIHD00600 !Required whenever floating conversion I 
I Floating-point lis needed. Used with IEP00700 (floating- I 
I logarithm subroutine. !point exponentiation> subroutine. I 
~---------------------------------+----------------------------·-------------------------i 
IIHD00700 !Required to set up floating-point conversion routines I 
I Floating-point exponen- !for non-floating point exponentiation. I 
I tiation subroutine. I I 
L---------------------------------i-----------------------------------------------------J 

118 IBM S/360 OS COBOL(E) Programmer's Guide 



r---------------------------------T-----------------------------------------------------1 
IIHD00800 !May be required when floating-point I 
I Converts packed decimal to land/or non-integer exponentiation is used. I 
I floating point. Conversion I ARITHMETIC - Required when packed and I 
I is accomplished by calling I floating-point operation I 
I two other subroutines I are in the same statement. I 
I IHD01600, which I MOVE - Required if the sending field is I 
I converts the number from I packed and the receiving field I 
I packed decimal to binary I is floating point in a move statement. I 
I and IHD01500, which converts I COMPUTATIONA.L - Required if one field is I 
I the binary number to floating I packed, and one field is floating point I 
I point and then returns. I in a computational statement. I 
~---------------------------------+-----------------------------------------------------i 
IHD00900 ARITHMETIC - Required when there is a floating-

Converts floating-point point operand and the receiving field is 
numbers to zoned decimal zoned in an arithmetic statement. 
numbers. conversion is MOVE - Required if the sending field is 
accomplished by calling floating point, and the receiving 
two other subroutines; field is zoned in a move statement. 
IHD01100, which 
converts the number from 
floating point to binary, 
and IHD01800, which 
converts the binary number 
to zoned decimal and returns. 

~---------------------------------+----------------------------------------~------------i 

I 
I 
I 
I 

IHDO'.LOOO Required for: I 
converts a binary number to ARITHMETIC - Required when multiplying a binary I 
a packed decimal number. field by a packed field or vice versa. I 
Used with IHD01300 (floating - Required if multiplication is done I 
point to packed decimal) in binary. I 
subroutine. MOVE - (Special Class) - If sending field is I 

internal floating point, and receiving field 
is binary. The binary number must fall 
within the limits specified. (9 decimal 
digit:s <binary number <18 decimal digits.) 
- If sending field is binary and receiving 
field is binary. 
- If sending field is less than 9 and 
Recehring field is less than or equal to 9, 
or both are greater than 9 decimal digits. 
- If sending field is binary and receiving 
field is packed, and sending field is 
greater than 9 decimal digits. 

COMPUTATIONA:L - If one field is binary and the 
other is zoned. 
- If one field is binary and the other is 
packE;:!<L 
- If both fields are binary and A is less 
than '.LO, B is less than 10, and the scales 
of both fields are equal. 
- If the scale of the sending field is 
greater than the scale of the receiving 
field,, and the real or implied integer 
positions of the receiving field plus the 
scale of the sending field is less than 10. 
- If the scale of the sending field is less 
than the scale of the receiving field, and 
the r~:!al or implied decimal positions plus 
the scale of the receiving field is less 
than 10. 

L----------·------------------------.L----------------------------------------------------·-J 

Appendix E 119 



r--------------------------------T----------------------------------------------·--------1 
IHD01100 I MOVE - Required when send field is external or I 

Converts an external floating-I internal floating point, and receiving I 
i:oint number to a binary I field is external floating point. I 
number. Used with IHD00900 I I 
Cf loating point to zoned I I 
decimal) subroutine, I I 
IEP01300 (floating point to I I 
packed decimal) subroutine, I I 
IHD01400 (floating point to I I 
binary) subroutine and I I 
IHD01900 <miscellaneous I I 
fields to external floating I I 
point) subroutine. I I 

~---------------------------------+-----------------------------------------------------~ 
IIHD01200 I MOVE - Required when send field I 
I Converts a zoned decimal I is zoned and receiving I 
I number of a floating point I field is floating point. I 
I number. Conversion is I COMPUTATIONAL - Required when I 
I accomplished by calling I one field is zoned and the I 
I the same subroutines used I other field internal floating point. I 
I by IHD00900. I I 
~---------------------------------+----------------------------·-------------------------~ 
IHD01300 MOVE - Required when send field is external 

Converts a floating point or internal floating point and 
number to packed decimal receiving field is packed. 
format. Conversion is 
accomplished by calling 
IHDOllOO, which 
converts a floating-point 
number to binary, and 
IHDOlOOO, which 
converts the binary number 
to packed decimal 
and then returns. 

~----------------------------------+----------------------------------·-------------------~ 
I IHD01400 I MOVE - Required when sending f iE~ld I 
I Converts an internal I is external or internal I 
I floating-point number I floating point and recei'7ing I 
I to a binary format. I field is binary. I 
I conversion is accomplished I I 
I by calling subroutine IHD011001 I 
I which does I I 
I the actual converting I I 
I of the floating-point number I I 
I to a binary number format. I I 
~----------------------------------+------------------------------------------------------~ 
IHD01500 MOVE - Required when sending fiE~ld is binary and 

Converts a binary number receiving field is floating point. 
into double precision ARITHMETIC - Required when one operand is binary 
floating-point. May be and one operand is floating point. 
required when floating- COMPUTATIONAL - Required when one field is binary 
point and/or non-integer and one is internal floating point. 
exponentiation are used. 
Used with IHD00800 (packed 
to floating point) sub-
routine, IHDOOOOO <external 
floating point) subroutine, 
IHD01200 (zoned decimal to 
floating point) subroutine, 
IHD01900 <miscellaneous 
field type to external 
floating point) subroutine. 

L---------------------------------i-----------------------------------------------------J 

120 IBM S/360 OS COBOL(E) Programmer's Guide 



r----------------------------------T-·-------------,---------------------------------------1 
IHDO:L 600 MOVE - Required: If the sending field is externa,l 

Converts either a packed decimal, and receiving field is packed, 
decimal or a zoned decimal recehring field must be 9 decimal digits. 
number to a binary COMPUTATIONAL - If one field is binary or zoned 
number when receiving field and one field is packed. 
is greater than 9 digits. - If both fields are binary and the 

following conditions are not met: 
• the length of the fields are unequal 
• A and B are both less than 10, and the 

scales of the fields are equal 

If the scale of the sending field is 
greater than the scale of the receiving 
field and the real or implied integer 
posit.ions of the receiving field plus the 
scale of the sending field is less than 10. 

- If the scale of the sending field is less 
than the scale of the receiving field and 
the real or implied decimal positions plus 
the scale of the receiving field is less 
than 10. 

~---------------------------------+-----------------------------------------------------~ 
IIHD01700 I COMPUTATIONAL - Required when either or both I 
I Compares two alphabetic I fields are 255 bytes. I 
I fields of different lengths, I I 
I no restriction on maximum I I 
I length, when either or both I I 
I fields are greater than 255 I I 
I bytes. I I 

t
1 ~i~~~s~~-------------------------t--~;~;~~;;~~~-=-;~~~i~~a-~~~~-~~~~~~i~~~-~;~---------1 

I Converts a binary number I performed in binary and the I 
I to a zoned decimal number. I receiving field is zoned. I 
I Used with IHD00900 I MOVE - Required when sending field is binary and I 
I (floating-point zoned I receiving field is zoned. I 
I decimal) subroutine. I MISCELLANY - Required if user displays binary item.I 
~---------------------------------+--------------·---------------------------------------~ 
IHD01900 MOVE - Required when receiving field is 

· Converts a field of any of external floating point. 
the following formats to MISCELLANY - Required if user displays 
external floating point: internal floating point. 
external decimal, internal 
decimal, binary, internal 
floating point, figurative 
constant of zero. Con-
version is accomplished in 
some cases by calling 
IHD01100, which 
converts internal floating 
point to binary, and IHD01500 
which converts binary 
to external floating point. 

~----------------------------------+------------------------------------------------------~ 
IIHD02000 !Used to move group items longer than 256 bytes. I 
~------·----,------------------------+------------------------------------------------------~ 
IIHD02100 !Performs the class test on alphameric as specified inl 
I lthe publication IBM System/360 Operating system: I 
I I COBOL Language.. I 
~---------------------------------+----~-------------------------------------------------~ 
I IHD02200 I ARITHMETIC - Required when the operations are I 
I Converts a packed I performed in packed, and the I 
I decimal number to a I recebring field is zoned. I 
I zoned decimal number. I MISCELLANY - Required if user displays I 
I I packed format. I 
L---------------------------------L------------------------------------------------------J 

Appendix E 121 



I ·~;;;;02;00-------------------------T~~i~:~~b~~~~~~~~~~~~~~~:~!-~~~~-~;~~:-~:::::::---, 
and end addresses of the PERFORM or nested 
PERFORMS and the return addres:s. It checks the 
validity of addresses. 

2. The second part checks to see if the PERFORM is 
complete by comparing return addresses. 

3. The third part deletes or eliminates the table 
entries by resetting pointers and counters. 

Required for object program compatibility with 
Version I COBOL. 

~---------------------------------+----------------------------------·-------------------i 
IIHD02400 jUsed to move fields when either, or both fields are I 
I jvariable groups. I 
I I Requirements: I 
I I Rl points to 'sending' field I 
I I R2 points to 'receiving' field I 
I I WORKA is length of 'sending' fie~ld I 
I I WORKA+2 is length of 'receiving' field I 
I I WORKA+4 is '01' if 'receiving' field is I 
I I right-justified. I 
~-------·-------------------------+----------------------------------·-------------------i 
JIHD02500 !Used to compare two fields either or both of which I 
I I are group variable. Used with fields defined with I 
I !occurs depending on I 
I !Requirements: I 
I I Rl points to FIELDl. I 
I I R2 points to FIELD2. I 
I I WORKA is the same length as FIELDl. I 
I I WORKA+2 is the same length as FIELD2. I 
~-------------------------------+----------------------------·------·-------------------i 
IIHD02600 !Checks length of field to be displayed to be sure it I 
I I fits into defined field, and moves display data to anl 
I !output buffer. Used if a display data fit check is I 
I I specified at object time. I 
I I Requirements: I 
I I WORKW - must be address of byte after buffer. I 
I I WORKA+4 - must be number of bytes to move minus 1. I 
I I Rl - points to next available buffer byte. I 
I I R2 - points to data to be moved. I 
~---------------------------------+---------~-------------------------------------------i 
IIHD02700 !Writes out display data on SYSPUNCH. Used when I 
I !display on SYSPUNCH is specified. I 
~-----------------------·----------+---·-------------------------·------·-------------------i 
I IHD02 800 I Writes out display data on SYSOUT .. Required when I 
I I EXHIBIT, TRACE, or standard DISPIJW statements are I 
I I used <i.e. , not UPON CONSOLE or UPON SYSPUNCH) • I 
~---------------------------------+----------------------------------·-------------------i 
IIHD02900 !Reads a record from SYSIN and moves data to the fieldl 
I I specified by data-name. I 
I I I 
I !Required when ACCEPT is specified (not ACCEPT FROM I 
I I CONSOLE). I 
~---------------------------------+------------------------------------------------------i 
IIHD03001 !Required when QSAM or QISAM files are used. I 
~-----------------------·----------+----------------------------·------·-------------------i 
IIHD03002 !Completes the creation of a relative file. Required I 
I I when access sequential and organi~.rntion relative I 
I !clauses are used. I 
~---------------------·----------+----------------------------------·-------------------i 
IIHD03004 !Structures buffers and directly organization files I 
I !accessed sequentially. Required when access I 
I !sequential and organization direct clauses are used. I 
L---------------------------------i----------------------------------·-------------------J 

122 IBM S/360 OS COBOL(E) Programmer's Guide 



r---------------------------------T--------------·---------------------------------------1 
IIHD03008 !Completes the creation of a direct file. Required I 
I I when access sequential and organization direct I 
I I clauses are us 1ed. I 
~---------------------------------+-----------------------------------------------------~ 
IIHD03101 !Synchronous error routine for QISAM. Required I 

·I I whenever QISAM files are used. I 
~---------------------------------+-----------------------------------------------------~ 
IIHD03102 !Check routine :for BISAM. Required whenever BISAM I 
I !files are used. I 
~----------·------------------------+--------------·---------------------------------------~ 
IIHD03104 !Synchronous error routine for QSAM and BSAM. I 
I !Required whenever QSAM or BSAM files are used. I 
~---------------------------------+-----------------------------------------------------~ 
IIHD03108 !Synchronous error routine for BDAM. Required I 
I I whenever BDAM :is used. I 
~----------------------------------+------------------------------------------------------~ 
IIHD03300 IIf one field is divided by another and the divisor isl 
I I zero, this subroutine links to the on size error I 
I I routine. I 
~----------------------------------+--------------·---------------------------------------~ 
IIHD03402 !Create direct organization files. Required when a I 
I !write is given for a file with access sequential and I 
I !organization direct. I 
L-----------------------------------.L--------------·---------------------------------------J 

Appendix E • 123 



APPENDIX F. SYSTEM/360 DIAGNOSTICS 

This appendix contains a detailed 
description of system diagnostics. They 
consist of: 

• System diagnostic messages 

• Compiler diagnostic messages 

• Load module execution diagnostic 
messages 

Object time messages 
Operator messages 

• Debug packet error messages 

These messages are produced during 
compilation and load module execution. 

Certain conditions that are present when 
a module is being processed can cause 
linkage editor diagnostics. For a complete 
description of these messages, refer to the 
publication, IBM Systern/360 Operating 
system: Linkage Editor@ 

SYSTEM DIAGNOSTIC MESSAGES 

system diagnostic messages consist of 
messages and completion codes, which are 
directed to the programmer by the IBM 
System/360 Operating System control 
program. The messages indicate coding 
e.rrors found in job-control statements, 
system macro instructions, and errors 
detected during processing by the job 
scheduler. The completion codes indicate 
conditions causing the control program to 
abnormally terminate execution of a task. 
Where possible, appropriate user responses 
are suggested. For a complete list of 
system diagnostic messages, ref er to the 
publication, 'IBM System/360 Operating 
system: Control Program Messages and 
completion Codes. 

COMPILER DIAGNOSTIC MESSAGES 

Explanations and the action taken on 
compiler diagnostic messages are placed, in 
each case, after the particular error 
message. Where no action is indicated, the 
statement causing the message may be 
dropped. Although the messages are 
arranged in ascending numeric order, they 
are not necessarily numbered consecutively. 

124 IBM S/360 OS COBOL(E) Programmer's Guide 

The sequence number counter associated 
with diagnostic messages cannot exceed 
4095. A;t this point the sequence counter 
resets to zero. The nature of the message 
usually indicates the COBOL division in 
which the error was detected. 

Accompanying each error message is a 
severity code: w = WARNING, c = 
CONDITIONAL, E = ERROR. For a description 
of these codes, refer to the discussion 
under source Module· Diagnostics. Where 
uniquely applicable, a System Actioµ and/or 
a User Response accompanies the message. 

UNEXPECTED DIAGNOSTICS 

It is possible for the user to write COBOL 
source statements that can result in 
diagnostics being generated that do not 
appear in the list given. These diagnostic 
messages cover features of the compiler not 
supported at this time. 

IEP001I C 

IEP002I W 

IEP003I C 

LITERAL EXCEEDS 120 CHARACTERS 

System Action: The element 
count begins following the next 
quote on the line, if there is 
one, or following the element 
beginning after the 120th 
character. 

User Response: Change the 
length of the literal so it 
does not exceed the allowed 
maximum, or insert the missing 
quote, or define the literal 
with two statements; execute 
the compilation again. 

LITERAL CONTINUATION QUOTE 
INVALID IN MARGIN A 

Explanation: The literal 
continuation quote should 
appear in Margin B. 

System Action: The 
continuation is allowed. 

LITERAL IM:PROPERLY CONTINUED OR 
CONTINUATION QUOTE IS MISSING 

ExplanatioQ: This may be the 
result of a missing quote sign 
on the preceding line. 



IEP004I C 

IE:POOSI C 

IE:P006I C 

System Action: The non-numeric 
literal is truncated at the end 
of the preceding line. The 
syntax scan resumes with the 
first element of the next line. 

User Response: Check for 
missing quote, column 7 
continuation hyphen, or 
improper formation of the 
non-numeric literal. 

SYNI'AX REQUIRES A BLANK AFTER A 
PERIOD OR THIS PERIOD IS 
INVALID DECIMAL POINT 

System Action: The inverted 
print edit word with the 
invalid decimal point is 
dropped, and processing 
continues with the next word. 

User Response: Check syntax of 
statement in error, and try 
again. 

XXX EXCEEDS 30 CHARACTERS 

Explanation: Any element that 
is not a non-numeric literal is 
truncated after 30 characters. 

System Action: Normal 
processing continues with a 
literal made up of the first 30 
characters. 

User Response: Alter the 
length of the literal to 
conform with the specifications 
for this class of literal. 

XXX REQUIRES QUALIFICATION 

Explanation: This indicates 
that the name is defined in 
more than one location, and 
requires qualification in order 
to be unique. 

§_ystem Action: The first name 
defined is used, and the 
compilation continues. If it 
is the name desired, the run 
will compile as desired. For 
further system action, see 
message IEP013I. It explains 
the handling for the procedure 
division statement. 

User Response: Correct the 
procedural statements in error, 
or change the duplicate data 
names so they are unique. 

IEP007I C 

IEL008I C 

IEP009I E 

IEP010I W 

IEP011I E 

IEP012I C 

Execute the job again. 

XXX HAS UNDEFINED QUALIFICATION 

Explanation: One or more of 
the names in the qualification 
hierarchy are not defined as a 
group containing the data-name. 
This may have resulted from the 
dropping of a data-name because 
of an error at its point of 
declaration, or because of a 
misspelling. 

System Action: The first name 
defined is used. If it is the 
name desired, the run will 
compile as desired. 

User Response: Check for 
misspelling of the data-name, 
or the data-name's qualifier in 
the hierarchy order. 

XXX REQUIRES MORE QUALIFICATION 

Explanation: The numbe~ of 
qualifiers or the names are not 
sufficient to make the subject 
name unique. Another name 
could have the same 
qualification. 

system Action: The first name 
defined is used, and the 
compilation continues. If it 
is the name desired, the run 
will compile as desired. For 
further system action, see 
message IEP013I. It explains 
the handling for the procedure 
division statement. 

SUBSCRIPTED 88 MUST HAVE A 
RIGHT PARENTHESIS. WILL BE 
TREATED AS A DATA NAME 

SYNTAX REQUIRES A BLANK AFTER A 
RIGHT PAREN, SEMICOLON AND OR 
COMMA 

Explanation: Normal processing 
continues. 

XXX IS UNDEFINED 

XXX HAS MORE SUBSCRIPTS THAN 
DECLARED IN THE DATA DIVISION 

Explanation: The Procedure 
Division reference to the 
data-name has too may 

Appendix F 125 



IEP013I C 

IEP023I C 

IEP024I C 

IEP025I C 

subscripts. The number of 
subscripts must match the 
number of OCCURS clauses in the 
definition hierarchy in the 
Data Division. 

§_ystem Action: Normal 
processing continues with the 
next word. 

RECORD-NAME 'XXX' IS ASSOCIATED 
WITH INVALID FD ENTRY 

Explanation: The FD associated 
with the SELECT clause is 
invalid. 

system Action: The error 
attribute for the record is 
output, and normal processing 
continues with the next word. 

User Response: Check FD 
entries for proper device 
labels, requires clauses, 
missing period terminator, etc. 

COPY AND INCLUDE MUST NOT BE 
USE'D WITHIN LIBRARY ENTRIES 

system Action: Words following 
the library name are diagnosed 
according to the clause being 
processed, up to the next 
required clause. 

PERIOD MISSING FOLLOWING XXX. 
THE NEXT CARD MAY BE SKIPPED. 

System Action: For the Data 
Division COPY statement - Any 
other entry following the name 
is diagnosed as the missing 
period and the return is made 
to the phase. The phase 
diagnoses all entries up to the 
next period according to the 
current clause string. Normal 
processing continues. For the 
Procedure Division INCLUDE 
statement - Interrogation of 
the library name continues to 
determine its validity and 
whether or not it is on the 
library. If the library name 
is valid, and it is found, 
normal processing continues. 

User Respanse: A period should 
be inserted following library 
book name. 

XXX IS AN INVALID LIBRARY NAME 
OR NOT FOUND ON LIBRARY 

126 IBM S/360 OS COBOL(E) Programmer's Guide 

IEP026I C 

IEP027I W 

IEP028I C 

IEP029I W 

IEP030I W 

Explanatioq: The library name 
may have be~en rnisspe lled, not 
previously cataloged or not 
properly terminated with a 
quote. 

System Action: Any word other 
than period inunediately 
following the library name is 
diagnosed according to the 
current clause string up to the 
next period. This includes the 
current card and the next card, 
if read. 

User Response: Check for the 
possible causes given in the 
explanation. 

FLOATING-POINT NUMBER XXX IS 
BELOW OR ABOVE VALID RANGE 

system Action: The value zero 
is assumed. 

NUMBE:R OF DECIMALS IN LITERAL 
XXX AND DA'l?A ENTRY DISAGREE 

system Action: Truncation or 
padding is performed according 
to the rules governing the MOVE 
verb. 

LITERAL XXX IS INVALID AND IS 
DROPPED 

Explanatior~: The value clause 
conflicts with the description 
of the entry. 

system Action: The value 
clause is dropped. 

LITERAL XXX AND PICTURE SIZE 
DISAGREE 

Explanatior!: This diagnostic 
indicates a literal that is 
larger than its picture. 

System Action: The literal is 
truncated to picture size from 
left to right, unless right 
justification is specified. 
The scan is continued as if no 
error occurred. 

LITERAL XXX WAS SIGNED, ENTRIES 
PICTURE WAS UNSIGNED 

ExplanatiOI!: The literal 
encountered in this entry 



IEP031I W 

IEP032I C 

IEP041I C 

IEP042I C 

II~P043I C 

I1~P44I C 

U;P045I C 

contains a sign, it does not 
appear as part of the entry 
because the picture is 
unsigned. 

NUMBER OF INTEGERS IN LITERAL 
XXX AND DATA ENTRY DISAGREE 

system Action: Same as for 
message IEP027I. 

LIBRARY NAME IS AN INVALID 
EXTERNAL NAME OR NOT ON THE 
LIBRARY. 

EXP.lanation: The library name 
may have been misspelled, not 
cataloged, or not properly 
terminated with a quote. 

system Action: The invalid or 
not found library name is 
dropped and the next card is 
read. 

THIS CLAUSE IGNORED AT THE 01 
LEVEL IN XXX ENTRY 

Explanation: The occurs clause 
not valid as an 01 or 88 entry. 

System Action: The clause is 
dropped. 

User Response: Alter the 
clause's level number to one 
that is valid or remove the 
occurs from the statement in 
error. 

THIS CLAUSE IGNORED IN XXX 
ENTRY AS IT PROVIDES MORE THAN 
3 LEVELS OF SUBSCRIPTING 

DEPENDING ON OPTION IN XXX 
ENTRY IS IGNORED DUE TO PRIOR 
USE 

DEPENDING ON OPTION IN XXX 
ENTRY IS IGNORED BECAUSE IT IS 
SUBORDINATE TO A PREVIOUS 
CLAUSE 

THE LEVEL OF XXX ENTRY 
INVALIDATES THE DEPENDING 
OPTION AT THE PRECEDING XXX 
ENTRY. THE DEPENDING OPTION IS 
DROPPED 

Explanation: The level number 
just encountered indicates that 

IEP046I C 

IEP047I E 

IEP048I W 

IEP049I W 

IEPOSOI W 

there was an occurs depending 
that did not include the last 
entry within the 01. 

System Action: The depending 
option is dropped. 

XXX ENTRY CONTAINS AN ILLEGAL 
LEVEL NUMBER OR REDEFINES 
CLAUSE WHICH IS IGNORED 

Explanation: A redefines 
clause must redefine an entry 
at the same level number. 

System Action: The level 
number or the redefines clause 
is ignored. 

User Response: Alter the level 
number or relocate the 
redefines clause to conform 
with the specification. 

INTERNAL QUALIFIER TABLE 
OVERFLOWED WHEN HANDLING XXX. 
RESTARTED QUALIFIERS WITH XXX. 

Explanation: The sum of all 
the characters in the data-name 
and all its qualifiers + 4 
times (the number of 
qualifiers+!) must not exceed 
300. 

ENTRY PRECEDING XXX IS OF 
VARIABLE LENGTH 

XXX IS LARGER THAN ENTRY 
REDEFINED 

Explanation: The current entry 
is larger than the area 
redefined. 

System Action: The drea is 
assumed to be expanded. 

User Response: The redefined 
area may be expanded. 

XXX ENTRY PRECEDING XXX IS 
LARGER THAN ENTRY REDEFINED 

Explanation: The same as for 
message IEP049I, only for a 
group entry 

System Action: Same as for 
message IEP049I. 

Appendix F 127 



IEP051I C 

IEP052I C 

IEP053I W 

IEP054I. W 

THIS CLAUSE INVALID IN XXX 
ENTRY AS REDEFINED AREA IS 
SUBSCRIPTED. 

Explanation: It is invalid to 
redefine an area containing an 
occurs clause. 

system Action: The 
redefinition clause is dropped. 

THIS CLAUSE IGNORED IN XXX 
ENTRY DUE TO REDEFINES OR 
OCCURS CLAUSE IN PRECEDING XXX 
I,EVEL 

Explanation: A value clause 
cannot appear in an entry 
subordinate to a redefines 
clause. 

System Action: The value 
clause is dropped. 

FOR PROPER ALIGNMENT, A XXX 
BYTE LONG FILLER ENTRY IS 
INSERTED PRECEDING XXX 

Explanation: Binary or 
floating point data improperly 
aligned for computations. 

system Action: Binary and 
floating-point data are aligned 
on an appropriate boundary by 
the compiler. The alignment is 
performed by inserting an 
assumed filler entry preceding 
the item requiring alignment. 

User Response: The number of 
slack bytes required can be 
reduced by the use of a 
different data format such as: 
internal decimal, grouping 
aligned items to the beginning 
of a record, or otherwise 
positioning them so that they 
will have the proper alignment 
within the record. A 
discussion of slack bytes can 
be found in the publication, 
IBM system/360 oeerating 
System: COBOL Language. 

FOR PROPER ALIGNMENT, A XXX 
BYTE LONG XXX FILLER ENTRY IS 
INSERTED PRECEDING XXX 

Explanation: Binary or 
floating-point data is 
improperly aligned for 
computations. 

system Action: Groups are 

128 IBM S/360 OS COBOL(E) Programmer's Guide 

IEP055I E 

IEP056I W 

IEP057I E 

IEP058I E 

aligned according to the 
alignment r•equirements of the 
first elementary within that 
group. The level number 
indicated in the diagnostic 
message shows exactly where the 
implied filler entry was 
inserted. For further 
explanation, see message 
IEP053I. 

XXX ENTRY PRECEDING XXX EXCEEDS 
MAXIMUM SIZE OF 4092 BYTES 

Explanation: The group defined 
at the indicated level 
preceding the point where this 
message was generated exceeded 
the maximum size permitted in 
the file or linkage section. 

system Action: The compilation 
is continued, but execution is 
not attempted. 

User Response: Reduce the 
record size to the allowable 
maximum size. 

XXX ENTRY PRECEDING XXX EXCEEDS 
MAXIMUN LENGTH OF 32,768 BYTES 

Explanation: See message 
IEP055I. It applies to 
Working-Storage section. 

system Action: See message 
IEP055I. It applies to the 
Working-Storage section. 

PROGRAM EXCEEDS 240 BASE 
LOCATORS MA.XIMUM AT XXX 

Explanation:: A base locator is 
assigned for each file for each 
01 or 77 in the linkage 
section, and for every 4,096 
bytes in the working-storage 
section. 

System Action: The base 
locator counter wraps around 
and the results are 
unpredictable. 

User Response: Reduce the 
numbe:r of base locators. 

ERRON:!!:OUS OR MISSING DATA 
DIVISION 

Explanation: No data division 
entries were present. 



IEP059I E 

IEP060I W 

IEP061I C 

IEP062I W 

IEP063I W 

System Action: All data 
division entries were present. 

System Action: All data 
division entries were dropped 
because of errors. 

SYMBOLIC KEY NOT ALLOWED WITH 
SEQUENTIAL ACCESS METHOD ON 
FILE I XXX' 

XXX LEVEL PRECEDING XXX IS OF 
VARIABLE LENGTH 

Explanation: The entry, 
defined at the level indicated, 
that preceded this clause, 
contained an occurs depending 
clause • 

.§.y_stem Action: The redefined 
clause is dropped because it is 
illegal to redefine a 
variable-length entry. 

XXX ENTRY EXCEEDS MAXIMUM 
LENGTH FOR ITS DATA TYPE 

IEP064I W 

Explanation: The maximum 
permitted length of an entry I 
depends on the type of data IEP076I W 
defined for that entry. 
Numeric data cannot exceed'18 
digit positions, report entries 
cannot exceed 127 character 
positions. 

system Action: The maximum 
size is used. 

XXX REQUIRED ALIGNMENT AND 
STARTS XXX BYTES PAST THE START 
OF THE ENTRY IT REDEFINBD 

Explanation: The entry 
containing the redefinen clause 
requires alignment that differs 
from the alignment of the 
clause redefined. If alignment 
is required, insert a filler 
the size of the number of bytes 
indicated in the message before 
the item being redefined. 

TO ALIGN BLOCKED RECORDS ADD 
XXX BYTES TO THE 01 CONTAINING 
DATA NAME XXX 

Explanation: The first record 
in a buff er is aligned on a 
double word boundary. All Ol's 
are assumed to start on a 
double word boundary. If 

IEP077I E 

IEP078I C 

IEP079I C 

IEP080I C 

binary or floating-point 
numbers are used in the record 
and if the records are blocked 
in a buffer, the succeeding 
records may not be properly 
aligned. Alignment can be 
obtained by padding each record 
by the indicated number of 
bytes and processing in the 
buffer, or by moving each 
record, as a group, to an 01 in 
the working storage section 
before processing the 
computational field. The 
pointer to this diagnostic 
indicates the last element 
within a record. The padding 
must go into the preceding 01 
record, not the 01 that may 
immediately follow the 
indicated data name. 

IF THE PRE.CEDING RECORD IS 
BLOCKED, IT MAY BE ALIGNED BY 
MOVING TO AN 01 IN THE 
WORKING-STORAGE SECTION 

Explanation: When records are 
variable and blocked, only the 
first record can be aligned. 

INTEGER OPTION IS NOT PERMITTED 

System Action: The clause is 
dropped. 

USER LABELS NOT SUPPORTED IN 
THIS VERSION 

INTERNAL FILE-NAME AND 
DESCRIPTION TABLE OVERFLOWED. 
XXX NOT PROCESSED 

Explanation: There is a fixed 
number of files that can be 
handled by a given COBOL 
compilation (25). If 
additional files must be 
handled, they can be processed 
in a subprogram and accessed 
via the linkage facility. 

System Action: Any files 
encountered after the maximum 
permitted are dropped. The 
maximum permitted is 25. 

RESTRICTED SEARCH INTEGER TOO 
LARGE ON XXX. CLAUSE DROPPED 

MORE THAN THREE FORMS OVERFLOW 
CLAUSES. OVERFLOW-NAME XXX 

Appendix F 129 



IEP081I W 

IEP082I W 

IEP083I W 

IEP084I W 

IEP087I C 

ENTRY IS DROPPED 

XXX APPEARED PREVIOUSLY IN A 
'SAME' CLAUSE. REMAINDER OF 
'SAME' CLAUSE DROPPED 

Explanation: A given filename 
can appear in only one 
same-area clause. Any 
duplication encountered is 
dropped. 

system Action: The entire 
same-area clause is dropped. 

User Response: Eliminate the 
duplicate statement. 

INTERNAL 'SAME' T.A.BLE OVERFLOW. 
ENTRIES AFTER XXX DROPPED 

Explanation: A fixed number of 
filenames and combinations of 
filenames are allowed in an 
internal same-area table. If 
reducing the number of 
filenames or the number of 
same-area clauses does not 
relieve the situation, it may 
require an entry to a 
subprogram to permit a large 
number of files to be 
referenced in this manner. 

RECORD LENGTH SPECIFIED 
DISAGREES WITH CALCULATED MAX. 
RECORD LENGTH OF XXX ON XXX. 
CALCULATED RECORD LENGTH 
ASSUMED. 

Explanation: The actual length 
of each record is calculated 
during compilation time by 
totaling all its components. 
If the length disagrees with 
the specified maximum, this 
warning diagnostic is given to 
indicate that the specified 
record size is ignored. 

BLOCK SIZE FOR XXX TOO BIG. 
32K ASSUMED 

Explanation: The integer 
specifying block size of the 
referenced files is too large. 

system Action: The maximum 
size allowed is used. 

THE XXX FILE MUST BE DESCRIBED 
IN A SELECT CLAUSE. CURRENT 
ENTRY IGNORED 

IEP088I C 

IEP090I C 

IEP093I E 

IEP094I E 

I IEP096I w 

IEP098I C 

IEP099I C 

IEPlOOI E 

IEP101I C 

130 IBM S/360 OS COBOL(E) Programmer's Guide 

Explanation: The subject file 
was ref eren.ced in the 
environment division or in an 
FD clause. There is no select 
clause to define this file. 
The filename referenced may be 
an invalid entry encountered at 
the point that a filename was 
expected. 

LABEL RECORD DATA-NAME MUST BE 
DEFINED IN LINKAGE SECTION 

System Action: Label records 
are assumed standard. 

THE DESCRIPTION OF XXX FILE 
CONFLICTS ON THE FOLLOWING 
POINTS --- XXX 

Explanation:: The description 
of the file referenced contains 
factors that conflict with each 
other.. The? factors can be in 
the description of the file in 
the environment division, in 
the FD of the file section, or 
in other areas such as the 
record description for that 
file. 

System Action: The points in 
conflict are defined by the 
trailing clauses of the 
diagnostic. 

XXX NOT HANDLED WITH PRESENT 
RELEASE 

XXX FILE WAS NOT DEFINED BY AN 
FD EN'rRY 

Explanatio~: No data control 
block is built for this file, 
therefore, it cannot be used. 

ONLY ONE CHECKPOINT FILE MAY BE 
SPECIFIED 

XXX FILE ASSUMED TO BE UTILITY 

XXX FILE UNIT MISSING AND 
ASSUMED TO BE 1403 PRINTER 

DIRECT-ACCE:ss ASSIGNED TO xxx 
NOT SUPPORTED IN THIS VERSION 

XXX FILE IS ASSIGNED TO UNIT 



IEP102I C 

IEP106I W 

IEP107I C 

IEP108I E 

IEPllOI E 

IEP112I C 

I.EP115I C 

IEP116I E 

IEP117I E 

I I:EP118I w 

I:EP119I C 

IEPl 76I C 

RECORD AND MUST BE RECORDING 
MODE IS F 

Explanation: Unit record must 
be fixed length. 

.§y_stem Action: The largest 
described length is assumed. 

A MAXIMUM OF 1 ALTERNATE AREA 
IS ALLOWED FOR XXX FILE 

.2Y::stem Action: One alternate 
area is reserved. 

ONLY ONE AREA SUPPORTED FOR 
INDEXED OR DIRECT ORGANIZATION. 
ONE AREA ASSIGNED FOR XXX 

RECORD KEY REQUIRED FOR INDEX 
ORGANIZATION FILE XXX 

LENGTH OF SYMBOLIC/RECORD KEY 
GREATER THAN 255 

INCORRECT DATA ITEM TYPE 
SPECIFIED FOR KEY 

SYMBOLIC AND RECORD KEY LENGTH 
FOR XXX DISAGREE 

LENGTH OF ACTUAL KEY IS 
GREATER/LESS THAN 5 

FILE LIMIT VALID FOR DIRECT 
ORGANIZATION, SEQUENTIAL ACCESS 
OUTPUT FILES ONLY 

SYMBOLIC KEY MUST BE SPECIFIED 
FOR XXX 

IEPl 77I W 

IEP178I C 

IEP179I W 

IEP180I E 

IEP181I W 

IEP183I C 

ACTUAL KEY MUST BE SPECIFIED I IEP184I w 
FOR OUTPUT FILES 

ONLY ONE AREA SUPPORTED FOR 
OTHER THAN STANDARD SEQUENTIAL, 
AND INDEXED ORGANIZATION -

IEP185I W 

SEQUENTIAL ACCESS FILES IEP186I W 

WORD RECORD OR RECORDS IS 
REQUIRED. FOUND XXX. 

Explanation: Syntax skips 
until the next clause, level I IEP187I C 
number, or period at the end of 
the file description is 

encountered. 

PERIOD REQUIRED AFTER WORD 
SECTION 

SYNTAX REQUIRES XXX. FOUND 
xxx. 

System Action: This clause is 
ignored. 

XXX IS AN INVALID FILE-NAME 
FORMAT 

Explanation: A filename must 
follow the format rules for 
data-names. 

System Action: Invalid names 
are truncated to 30 characters 
and assumed to be valid. 

XXX EXCEEDS 30 CHARACTERS AND 
IS DROPPED 

System Action: The picture is 
too long, and is dropped. 

THE OPTION WORD IS MISSPELLED 
OR OMITTED. FOUND XXX. 

System Action: The usage 
assumed is display. 

XXX IS AN INVAI,ID OR EXCESSIVE 
INTEGER 

Explanation: The integer 
indicated in this clause is 
determined to be invalid. 

System Action: The integer is 
not used. 

XXX IS AN INVALID LEVEL NUMBER 

LABEL RECORDS IS OMITTED. 
LABELS ASSUMED STANDARD. 

SYNTAX REQUIRES DATA RECORD 
CLAUSE 

System Action: Syntax scanning 
proceeds. 

MODE MUST BE V, F, OR U. FOUND 
xxx. 

Appendix F 131 



IEP190I W 

IEPl 91I W 

IEP192I W 

IEP194I C 

IEP195I E 

IEP196I W 

IEP197I W 

IEP201I C 

User Response: If v, F, or u 
was specified, check the 
element number on this line for 
a misspelled optional word~ 

XXX IS AN INVALID DATA-NAME 
FORMAT 

System Action: The invalid 
data-name(s) are truncated to 
30 characters and used. 

SD OR SA ENTRY REQUIRES F LEVEL 
COMPILER 

system Action: Syntax skips to 
next margin-A entry. 

XXX IS AN INVALID RECORD-NAME 
FORMAT 

System Action: Invalid record 
names are truncated to 30 
characters and assumed valid. 

XXX IS INVALID AT THIS POINT. 
CHECK FOR SYNTAX ERROR ON 
CURRENT/PREVIOUS STATEMENT 

Explanation: While processing 
a given clause or sentence, an 
unexpected element was 
encountered. The clause may be 
valid but misplaced. This 
diagnostic is also given for 
clauses that are not valid 
source input to this level 
compiler. 

User Response: Check for prior 
diagnostics, extra or missing 
period, invalid continuation of 
non-numeric literals or a 
misspelled word. 

SYNTAX REQUIRES AN FD ENTRY. 
FOUND XXX. 

SYNTAX REQUIRES AN 01 LEVEL 
ENTRY. FOUND XXX. 

NOT VALID FOR THIS LEVEL 
COMPILER. 

XXX IS AN INVALID DATA-NAME 
FORMAT BUT ASSUMED VALID. 

system Action: Invalid 
data-names are truncated to 30 

IEP202I C 

IEP203I C 

IEP204I C 

IEP205I W 

I IEP206I w 

IEP207I W 

IEP210I C 

IEP211I C 

132 IBM S/360 OS COBOI, (E) Programmer's Guide 

characters and assumed valid. 

XXX IS INVALID AT THIS POINT. 
CHECK FOR SYNTAX ERROR OR 
CURRENT/PRI~VIOUS STATEMENT. 

Explanatior~: The explanation 
and user n~sponse is the same 
as that for message IEP194I. 

THIS USAGE XXX CONFLICTS WITH 
THE GROUP USAGE AND IS IGNORED 

XXX IS AN INVALID OR EXCESSIVE 
INTEGER 

System Action: The invalid 
integer is dropped. 

XXX IS AN INVALID DATA-NAME 
FORMAT, Bm~ ASSUMED VALID. 

WORD ZERO IS REQUIRED. FOUND 
xxx. 

System Action: The clause is 
ignored. 

WORD RIGHT IS REQUIRED. FOUND 
xxx. 

System Action: The clause is 
ignored. 

THIS ENTRY CONFLICTS WITH THE 
FOLLOWING DESCRIPTIONS ---XXX. 

Explanatiorp Various clauses 
specified for a da~a c~ntry are 
compared with previous 
specifications for the entry. 
If there is any factor that 
conflicts with the subject 
clause, it is listed as a 
trailer to this entry. Factors 
included that are not 
themselves clauses would be 
elementary or group item usage, 
specified at a group level in 
previous clauses. This message 
can appear if a period is 
missing at the end of a data 
entry or (for example) when the 
picture clause for the second 
entry is encountered, and 
automatically conflicts with 
the picture clause for the 
previous entry. 

XXX EXCEEDS 30 CHARACTERS AND 



I.EP212I C 

I:EP213I W 

IEP214I C 

I:EP215I W 

IS TRUNCATED. 

ONLY LEVELS 77 OR 01 ARE 
PERMITTED AT THIS POINT. FOUND 
xxx. 

System Action: Syntax skips 
until a section name or level 
number is found. 

THE FOLLOWING DESCRIPTIONS 
INVALID AT GROUP LEVEL -·--XXX. 

Explanation: The data Emtry 
described is determined to be a 
group, although the entries 
specified as trailers to this 
diagnostic are invalid at the 
group level. This diagnostic 
can be produced by an invalid 
level number that was changed 
to an 01, or a misunderstanding 
as to how a group is defined 
and what clauses are valid at 
the group level. A missing 
period can also produce this 
diagnostic. 

XXX DATA ENTRY REQUIRES A 
PICTURE, COMPUTATIONAL-1 OR 
COMPUTATIONAL- 2. 

Explanation: This diagnostic 
can be produced by an error in 
the following level number 
which caused its level to be 
changed to an 01, thereby 
making this entry an 
elementary. 

System Action: Any statement 
in the procedure division 
containing a reference to this 
entry is diagnosed and dropped. 

User Response: Check for 
missing periods or other 
diagnostic messages. 

SYNTAX REQUIRES AN ENTRY IN 
MARGIN A. FOUND XXX IN MARGIN 
B 

System Action: Following 
certain entries in a source 
program, a specific clause must 
be encountered in margin A. If 
it is found in margin B, it is 
diagnosed but handled by the 
compiler. 

User Response: Appropriately 

IEP216I W 

IEP217I W 

IEP218I W 

IEP221I C 

IEP222I C 

locate the clause in margin A. 

SYNTAX REQUIRES AN ENTRY IN 
MARGIN B. FOUND XXX IN MARGIN 
A CHECK FOR MISSING PERIOD. 

Explanation: All entries in 
margin A must be preceded by a 
period. 

System Action: The compiler 
was in the'middle of processing 
a clause or sentence and 
encountered the indicated word 
in margin A, thus a diagnostic 
is issued and the word is 
processed as if valid. 

LEVEL 77 ENTRIES MUST PRECEDE 
OTHER LEVELS AND ARE ASSUMED TO 
BE 01 LEVEL. 

SYNTAX PERMITS ONLY LEVELS 77, 
88, OR 01 AFTER A 77 LEVEL. 
CHANGED XXX TO 01. 

SYNTAX FOR ALL REQUIRES XXX BE 
A SINGLE CHARACTER IN QUOTES 

System Action: The value 
clause is dropped. 

PICTURE XXX WAS FOUND INVALID 
WHILE PROCESSING XXX. THE 
PICTURE IS DROPPED 

Explanation: Any element that 
follows the word picture in a 
data description, other than 
the word that is dropped, is 
assumed to be a picture, and is 
passed to a later phase for 
analysis. The analysis 
proceeds from left to right on 
a character-by-character basis. 
The character identified in the 
message is the one processed at 
the time the picture is 
determined to be invalid. The 
specific character itself may 
be invalid or may.have 
indicated that a previous 
character or condition is 
invalid. For example, an E 
encountered in an external 
floating-point picture may 
indicate that a preceding 
decimal was omitted in the 
mantissa. 

System Action: The picture is 
dropped, and the entry 

Appendix F 133 



IEP227I E 

IEP228I E 

IEP229I E 

IEP233I C 

IEP234I W 

IEP235I W 

IEP237I E 

IEP238I W 

IEP239I W 

IEP241I C 

identified as an error. 

FILE SECTION OUT OF SEQUENCE 

SYNTAX PERMITS ONLY ONE XXX IN 
SOURCE PROGRAM 

sy:stem Action: Syntax scan 
proceeds. 

WORKING STORAGE SECTION OUT OF 
SEQUENCE 

REPORT SECTION REQUIRES F LEVEL 
COMPILER 

WORD SECTION MISSING 

PERIOD MUST FOLLOW WORD SECTION 

XXX IS MISPLACED 

Explanation: The statement is 
probably out of place in the 
source deck; i.e., FD is 
WORKING-STORAGE 

Sy:stem Action: The statement 
is processed as it is, however, 
execution may not be as 
desired. 

User Response: Properly locate 
the misplaced statement. 

XXX IS AN INVALID SECTION NAME, 
A MISSING FD OR AN 
INVALID/MISPLACED LEVEL 
INDICATOR 

Sy:stem Action: Syntax skips 
until a valid section-name or 
level number is found. 

SYNTAX REQUIRES 'DIVISION' 

LEVEL PRECEDING 88 MUST BE AN 
ELEMENTARY. 

Explanation: Any level number 
preceding an 88 entry must be 
an elementary. 

Sy:stem Action: If the level 
number preceding an 88 is not 
an elementary, it is assumed to 

134 IBM S/360 OS COBOL(E) Programmer's Guide 

IEP242I W 

IEP301I W 

IEP302I C 

IEP303I W 

IEP304I E 

IEP305I C 

IEP306I W 

be one and is processed. 

THE 88 ENTHY DOES NOT HAVE A 
VALUE, THEHEFORE, IT IS 
DROPPED. 

SYNTAX REQUIRES XXX IN MARGIN 
A. FOUND x·xx. RESTART WITH 
xxx. 

Explanatior!: Syntax requires 
the specific entry indicated to 
be in margin A. If the entry 
is found in margin B, 
compilation resumes. 

SYNTAX REQUIRES XXX. FOUND 
XXX. RESTART WITH XXX. IF 
WORDS REQUIRED AND FOUND ARE 
THE SAME, ']~HE ENTRY IS IN THE 
WRONG MARGIN. 

Sy:stem Action: Syntax skipped 
to the restart clause. 

XXX IS AN INVALID 
CONDITION-NAME FORMAT. 

Explanatio11~: The name shown is 
an invalid condition name. 

Sy:stem Action: The name is 
truncated to 30 characters and 
assum~d val.id. 

XXX IS AN INVALID EXTERNAL-NAME 
FORMA'r. RESTART WITH XXX. 

Explanatio~: An external name 
was expected at this point in 
the scan of the subject clause. 
An external name must be 
enclosed in quotes. It must 
start with an alphabetic 
character, cannot contain more 
than 1::dght characters, and the 
only valid characters are 
letters and numerals. A dash 
is not permitted. 

SYNTAX REQUIRES SAME, RERUN, 
APPLY,, OR XXX DIVIS ION. FOUND 
XXX. RESTA.RT WITH XXX. 

User Response: Check for 
invalid sequence of source 
program cards or extra periods. 

SYNTAX REQUIRES ENVIRONMENT OR 
XXX DIVISION IN MARGIN A. 
FOUND XXX. RESTART WITH XXX. 



IEP307I. E 

IEP308I W 

IEP309I C 

IEP310I W 

IEP311I E 

IEP3:l2I C 

IEP313I W 

User Response: Same as for 
message IEP305I. 

SYNTAX REQUIRES I-0-CON'TROL 
INPUT-OUTPUT, OR XXX DIVISION 
IN MARGIN A. FOUND XXX. 
RESTART WITH XXX. 

User Response: Same as for 
message IEP305I. 

XXX IS AN INVALID DATA-NAME 
FORMAT. RESTART WITH XXX. 

Explanation: A data-name was 
expected at this point in the 
scan of the subject clause. 

.§y_stem Action: Invalid fonnat 
is truncated to 30 characters 
and processed as if valid. 

ENVIRONMENT PARAGRAPHS OUT OF 
ORDER. 

System Action: Statements are 
handled anyway. 

XXX IS AN INVALID 360 
MODEL-NUMBER. RESTART WITH 
xxx. 

.§ystem Action: Syntax scan 
skips to the restart clause. 

SYNTAX REQUIRES FILE-CONTROL, 
XXX OR DATA DIVISION IN MARGIN 
A. FOUND XXX. RESTART WITH 
xxx. 

User Response: Same as for 
message IEP305I. 

XXX IS AN INVALID OR EXCESSIVE 
INTEGER. RESTART WITH XXX. 

Explanation: The syntax at 
this point of scan of the 
specified clause requires an 
integer. 

System Action: The element 
found was invalid and is 
dropped. 

XXX IS AN INVALID FILE-·NAME 
FORMAT. RESTART WITH XXX. 

Explanation: The syntax scan 
of the subject clause requires 

IEP314I E 

a filename at this point. 

system Action: The element 
found was invalid. It was 
truncated to 30 characters and 
used as if valid. 

XXX IS AN INVALID LIBRARY-NAME 
FORMAT. RESTART WITH XXX. 

Explanation: A library name is 
required at this point. 

System Action: The format is 
invalid. It is dropped. 

IEP315I W - MORE THAN THREE OVERLFOW OPTION 
CLAUSES ARE USED. 

IEP316I C 

IEP317I C 

IEP318I E 

IEP319I C 

Explanation: An internal table 
permits a maximum of three form 
overflow names to be assigned 
in any compilation. 

System Action: All form 
overflow names in excess of the 
maximum allowed (three> are 
dropped. 

SYNTAX REQUIRES INDEXED OR XXX. 
FOUND XXX. RESTART WITH XXX. 

Explanation: This message 
applies to a direct access 
storage device only • 

SYNTAX REQUIRES SEQUENTIAL OR 
XXX. FOUND XXX. RESTART WITH 
xxx. 

Explanation: This message 
applies to a direct access 
storage device only. 

SYNTAX REQUIRES XXX OR DATA 
DIVISION IN MARGIN A, OR SELECT 
IN MARGIN B. FOUND XXX. 
RESTART WITH XXX. 

Explanation: The syntax for 
the specific clause requires 
specific entries at this point. 

User Response: Check for 
misspelled words, or excessive 
periods. 

SYNTAX REQUIRES UTILITY, 
DIRECT-ACCESS OR XXX. FOUND 
XXX. RESTART WITH XXX. 

Explanation: Same as for 

Appendix F 135 



IEP320I W 

IEP321I E 

IEP322I W 

IEP323I W 

IEP324I E 

IEP401I C 

message IEP318I. 

XXX IS AN INVALID 
I-0-DEVICE-NUMBER. RESTART 
WITH XXX. 

Explanation: Same as for 
message IEP318I. 

NO PROCESSING OF THIS MULTIPLE 
SPECIFIED DIVISION OR SECTION. 
RESTART WITH XXX. 

Explanation: A section or 
division was encountered more 
than once. 

System Action: The additional 
section or division is dropped, 
rather than disturb the 
internal sequence of the 
compilation. 

FILE-NAME OR DATA-NAME EXCEEDS 
30 CHARACTERS. TREATED AS 
30-CHARACTER NAME. 

SYNTAX REQUIRES XXX OR 
CLAUSE-NAME. FOUND XXX. 
RESTART WITH XXX. 

System Action: Syntax scan 
skips to the restart clause. 

SYNTAX REQUIRES REEL OR XXX. 
FOUND XXX. RESTART WITH XXX. 

System Action: Syntax scan 
skips to restart clause. 

SYNTAX REQUIRES A DATA-NAME. 
FOUND XXX. 

Explanation: The syntax of the 
indicated clause requires a 
data-name. The element found 
was not defined as a valid 
data-name. The element may be 
indicated here, or, an 
indication given that it was an 
invalid name such as, filename, 
condition name, figcon, or 
overflow name. 

svstem Action: The compilation 
continues at the next verb or 
paragraph .label. 

User Response: Check for 
misspelled data-name in 
diagnostics, which would 
nullify the definition of a 

136 IBM S/360 OS COBOL(E) Programmer's Guide 

IEP402I C 

IEP403I C 

IEP404I C 

IEP405I C 

IEP406I C 

IEP407I C 

valid data-name, or the use of 
a COBOL word as a data-name. 

SYNTAX REQUIRES NEXT ITEM BE 
xxx. 

Explanation: The syntax for 
this clause requires a specific 
word that was not found. The 
i tern encountered was probably a 
data-name. The next item 
indicates that the syntax 
requires a :specific word or 
words. Non·e were found. 

System Action: The element 
found is displayed unless it 
was a name, in which case the 
word invalid name or data name 
is indicate•j. Compilation 
continues at the next verb or 
paragraph l1evel. 

User Response: The reference 
format for the clause specified 
should be consulted if the 
meaning of the message is not 
immediately clear. Also check 
for: missing periods, 
preceding diagnostic messages, 
invalid non-numeric literals, 
COBOL words used as data-names. 

SYNTAX REQUIRES A DATA-NAME OR 
NUMERIC-LITERAL. FOUND XXX. 

Explanation:: See message 
IEP402I. 

SYNTAX REQUIRES EITHER WORD TO, 
OR GIVING. FOUND XXX. 

Explanation:: See message 
IEP402I. 

SYNTAX REQUIRES A SINGLE 
CHARACTER IN QUOTES OR A 
FIGCON. FOUND XXX. 

Explanation:: See message 
IEP402I. 

SYNTAX REQUIRES A FILE-NAME. 
FOUND XXX. 

Explanation~ See message 
IEP402I. 

SYNTAX REQUIRES DATA-NAME OR 
INTEGER. FOUND XXX. 



IEP408I C 

IEP409I C 

IEP410I C 

IEP411I C 

IEP412I E 

IEP413I C 

IEP414I C 

IEP415I C 

IEP416I C 

Explanation: see message 
IEP402I. 

SYNTAX REQUIRES WORK INPUT, 
OUTPUT, OR I-0. FOUND XXX. 

Explanation: See message 
IEP402I. 

SYNTAX REQUIRES A 
PROCEDURE-NAME. FOUND XXX. 

Explanation: See message 
IEP402I. 

SYNTAX REQUIRES A DATA-NAME OR 
LITERAL. FOUND XXX. 

Explanation: See message 
IEP402I. 

SYNTAX REQUIRES WORD CALL, 
ENTRY, OR RETURN. FOUND XXX. 

Explanation: See message 
IEP402I. 

SYNTAX REQUIRES AND 
EXTERNAL-NAME. FOUND XXX. 

Explanation: See message 
IEP402I. 

SYNTAX REQUIRES =. FOUND XXX. 

Explanation: See message 
IEP402I. 

SYNTAX REQUIRES EXPRESSION TO 
BEGIN WITH EITHER A DATA-NAME, 
NUMERIC-LITERAL, +I -, OR (. 
FOUND XXX. TWO OPERATORS MAY 
NOT APPEAR ADJACENT TO ONE 
ANOTHER. 

Explanation: See message 
IEP402I. 

SYNTAX REQUIRES CALL PARAMETERS 
TO BE EITHER DATA-NAME, 
PROCEDURE-NAME OR FILE-NAME. 
FOUND XXX. 

Explanation: see message 
IEP402I. 

SYNTAX REQUIRES DATA-NAME, 
LITERAL, FIGCON~ +, -, ( OR 
NOT. FOUND XXX. 

IEP417I C 

IEP418I C 

IEJE>419I C 

IEP420I C 

IEP421I C 

IEP422I C 

Explanation: See message 
IEP402I. 

SYNTAX REQUIRES ARITHMETIC 
OPERATOR OR RELATIONAL. FOUND 
xxx. 

Explanation: See message 
IEP402I. 

SYNTAX REQUIRES A DATA-NAME, 
NUMERIC-LITERAL, OR ( AFTER AN 
OPERATOR. FOUND XXX. 

Explanation: See message 
IEP402I·. 

SYNTAX REQUIRES A DATA-NAME, 
LITERAL, FIGCON, ( , + OR -
AFTER A RELATIONAL. FOUND XXX. 

Explanation: See message 
IEP402I. 

SYNTAX REQUIRES A VERB, PERIOD, 
ELSE OR OTHERWISE. FOUND XXX. 

Explanation: The end of a 
valid clause was encountered. 
The element that followed the 
valid termination of this 
clause is not valid. 

System Action: Compilation 
continues at the next verb or 
paragraph label. 

User Response: If the 
preceding clause had some 
options, check the reference 
format to determine if the 
options were specified 
incorrectly. A COBOL word used 
as a data-name, or an extra 
period, can also produce this 
diagnostic. 

ENTRY PARAMETER MUST BE A 
DATA-NAME. FOUND XXX. 

Explanation: The only 
parameters that can be passed 
to a COBOL subprogram are 
data-names. The data-names 
must be defined in the linkage 
section of the subprogram. 

svstem Action: Compilation 
continues at the next verb or 
paragraph label. 

SYNTAX REQUIRES A RELATIONAL. 

Appendix F 137 



IEP423I C 

IEP424I C 

IEP425I C 

IEP427I C 

IEP428I C 

IEP429I C 

IEP430I C 

IEP431I C 

FOUND XXX. 

Explanation: Syntax requires 
that the next element be a 
relational. 

System Action: Compilation 
continues at the next verb or 
paragraph label. 

User Response: Check for 
invalid punching or a preceding 
error. 

SYNTAX REQUIRES WORD INPUT OR 
OUTPUT. FOUND XXX. 

Explanation: See message 
IEP402I. 

SYNTAX REQUIRES WORDS - TO 
PROCEED TO -. FOUND XXX. 

Explanation: See message 
IEP402I. 

SYNTAX REQUIRES WORD CONSOLE OR 
SYSPUNCH. FOUND XXX. 

Explanation: See message 
IEP402I. 

SYNT.AX REQUIRES A DATA-NAME, 
FIGCON OR NON-NUMERIC LITERAL. 
FOUND XXX. 

Explanation: See message 
IEP402I. 

SYNTAX REQUIRES A 
PROCEDURE-NAME AFTER -GO TO -
NOT PRECEDED BY A 
PARAGRAPH-NAME. FOUND XXX. 

Explanation: See message 
IEP402I. 

SYNTAX REQUIRES ALL, LEADING, 
UNTIL, OR FIRST. FOUND XXX. 

Explanation: See message 
IEP402I. 

SYNTAX REQUIRES WORD TALLYING 
OR REPLACING. FOUND XXX. 

Explanation: See message 
IEP402I. 

SYNTAX REQUIRES WORD -

138 IBM S/360 OS COBOL(E) Programmer's Guide 

IEP432I C 

IEP433I C 

IEP434I C 

IEP435I E 

IEP436I C 

IEP437I C 

IEP438I C 

IEP439I C 

DEPENDING ON - FOUND XXX. 

Explanation: See message 
IEP402I. 

DATA TYPE MUST BE ED, ID OR BI. 

Explanation: Valid syntax for 
the subject verb permits only 
specific data types. The data 
type as detE~rmined by the 
definition in the data division 
is invalid :f'.or its use here. 

System Action: The statement 
is dropped from the point of 
error. 

SYNTAX REQUIRES WORD TRACE. 
FOUND XXX. 

Explanation: See message 
IEP402.I. 

SYNTAX REQUIRES THAT A PERIOD 
OR SECTION :E'OLLOWS 
PARAGRAPH-NAME. FOUND XXX. 

Explanation: See message 
IEP402I. 

DATANAME AND ANY QUALIFIER MUST 
APPEAR WITHIN THE FIRST SEVEN 
OPERANDS OF STATEMENT FOR 
CHANGED OPTION. 

Explanation: See message 
IEP402.I. 

SYNTAX REQUIRES A DATA-NAME, 
FIGCON OR LITERAL. FOUND XXX. 

Explanation: See message 
IEP402I. 

SYNTAX REQUIRES A FIGCON. 
FOUND XXX. 

Explanation: See message 
IEP402I. 

SYNTAX REQUIRES DATA-ITEM TO BE 
NO LONGER THAN FOUR. 

Explanation: See message 
IEP402I. 

WRONG SUBSCRIPT SPECIFICATION. 

Explanation: Data names and 



IEP440I C 

IEP441.I C 

IEP442I C 

IEP443I E 

condition names can be 
subscripted to a depth of 
three. A subscript is required 
for each occurs clause 
specified at the specified data 
name or in groups containing 
that data name. 

System Action: The compilation 
continues at the next verb or 
paragraph label. 

User Response: Check for fewer 
or more subscripts than occurs 
clauses in the hierarchy. 
Subscripts must be enclosed in 
parentheses, and separated from 
each other by a comma or a 
blank. 

INCORRECT SPECIFICATION IN 
DECLARATIVE-SECTION. FOUND 
xxx. 

Explanation: See message 
IEP402I. 

SYNTAX REQUIRES AN INTEGER NOT 
LONGER THAN 5. FOUND XXX. 

Explanation: The integer 
exceeds the size permitted by 
language specifications. 

System Action: The compilation 
continues at the next verb or 
paragraph label. 

THE DECLARATION OF THIS 
DATA-NAME CAUSED IT TO BE 
FLAGGED AS AN ERROR. 

Explanation: The data-name 
encountered was flagged by the 
data division as containing an 
error in its declaration. 

System Action: Compilation 
continues at the next verb or 
paragraph label. 

User Response: Correct the 
declaration as indicated by the 
data division diagnostics and 
recompile .• 

SYNTAX REQUIRES A VERB. FOUND 
xxx. 

Explanation: A point was 
reached where a verb was 
required, and was missing. For 
example 'IF= B.' requires a 
verb between B and period. 

IEP1l44I E 

IEP500I W 

IEP501I W 

IEP502I W 

IEP5031 W 

IEP504I W 

IEP505I C 

System Action: The statement 
is skipped from the point of 
the error. 

SYNTAX REQUIRES A RECORD NAME. 
FOUND XXX. 

Explanation: See message 
IEP402I. 

AN OPERAND'S LENGTH EXCEEDS AND 
TRUNCATED TO 256 BYTES 

Explanation: The maximum 
number of bytes that can be 
displayed is 256. 

System Action: The operand is 
truncated to 256 bytes and 
displayed. 

IF THIS VARIABLE-LENGTH ENTRY 
EXCEEDS 256, RESULTS WILL BE 
UNPREDICTABLE. 

Explanation: A maximum of 256 
bytes can be displayed. 

System Action: The entry is 
truncated to 256 bytes and 
displayed. 

LITERAL EXCEEDS AND IS 
TRUNCATED TO 72 BYTES. 

system Action: In a 
stop-literal statement only the 
first 72 bytes of a longer · 
field are typed on the console. 

DATA EXCEEDS AND IS TRUNCATED 
TO 72 BYTES. 

Explanation: A maximum of one 
line C72 bytes) can be 
retrieved using the ACCEPT FROM 
CONSOLE statement. 

DATA EXCEEDS AND IS TRUNCATED 
TO 256 BYTES. 

Explanation: A maximum of 256 
bytes can be accepted from 
SYSIN. 

FILENAMES OR STERLING-DATATYPE 
NOT ALLOWED IN COMPARE. 

Explanation: see message 

Appendix F 139 



IEP506I C 

IEP507I W 

IEP508I E 

IEP509I C 

IEPSlOI C 

IEPSllI C 

IEP512I C 

IEP513I C 

IEP506I. 

USAGE OF DATA-TYPES CONFLICT. 
THE TEST DROPPED. 

Explanation: Only certain data 
types can be compared to each 
other. The types specified are 
invalid. Reference can be made 
to the compared table to 
determine the valid 
combinations. Logical compares 
of fields that are classified 
as invalid compares can of ten 
be made through a redefinition, 
and a description of one or 
both of the fields as 
alphanumeric. 

EXIT MUST BE ONLY STATEMENT IN 
PARAGRAPH. 

System Action: Compilation 
continues normally. 

THE STATEMENT CONTAINS AN 
UNDEFINED DATANAME. 

Explanation: See message 
IEP402I. 

AN ALPHABETIC DATA-NAME CAN BE 
TESTED ONLY FOR ALPHABETIC OR 
NOT ALPHABETIC, AND NUMERIC 
DATA-NAME ONLY FOR NUMERIC OR 
NOT NUMERIC, THE TEST IS 
DROPPED. 

COMP ARIS ON OF 'l'WO LITERALS OR 
FIGCONS IS INVALID. 

Explanation: See message 
IEP506I. 

DATA-TYPE IN ARITHMETIC 
STATEMENT IS NOT NUMERIC OR 
RECEIVING FIELD IS NOT NUMERIC 
OR REPORT. 

Explanation: See message 
IEP506I. 

DATA-NAME IN CLASS-TEST MUST BE 
AN, ED, OR ID. 

Explanation: See message 
IEP506I. 

DATA-NAME IN SIGN-TEST MUST BE 
NUMERIC. 

140 IBM S/360 OS COBOL(E) Programmer's Guide 

IEP514I W 

IEP515I W 

IEP516I C 

IEP517I C 

IEP518I E 

IEP519I C 

IEP520I C 

IEP521I C 

Explanatior:!: See message 
IEP506I. 

DATA EXCEEDS AND IS TRUNCATED 
TO 72 BYTES. 

System Action: If the data is 
longer than 72 bytes, only the 
first 72 bytes are printed for 
DISPLAY ON CONSOLE statement. 

DATA EXCEEDS AND IS TRUNCATED 
TO 120 BYTE:S. 

System Action: If the data is 
longer than 120 bytes, only the 
first 120 .bytes are printed for 
a DISPLAY statement. 

OPEN 'NO REWIND' OR 'REVERSED' 
CANNOT BE SPECIFIED FOR A UNIT 
RECORD, DIRECT-ACCESS OR 
DISK/DATA CELL UTILITY FILE. 

System Action: The options are 
ignored. 

'NO REWIND' OR 'LOCK' CANNOT BE 
SPECIFIED FOR A UNIT RECORD, 
DIRECT-ACCE:ss OR DISK/DATA CELL 
UTILI'rY FII,E. 

System Action: The options are 
ignored. 

MORE ~rHAN F'ORTY PARAMETERS ARE 
NOT ALLOWED WITH THE STATEMENT~ 

SYNTAX ALLOWS ZERO AS ONLY 
VALID FIGCON IN A COMPARISON 
WITH BI, ID, EF, AND IF. 

Explanation: See message 
IEP506I. 

SYNTAX ALLOWS SPACE OR ALL AS 
ONLY VALID FIGCONS IN 
COMPARISON WITH AN ALPHABETIC 
FIELD .. 

Explanation.: See message 
IEP506I. 

DATATYPE MUST BE ED, EF, AL, 
AN, OR GF. FOUND XXX. 

Explanation: The data types 
indicated are the only valid 
ones that can be used in the 



IE:P522I C 

IEP523I C 

IE:P524I C 

IE:P525I C 

IEP526I C 

clause indicated. 

System Action: Compilation 
continues at the next verb or 
paragraph label. 

SYNTAX REQUIRES WORD RUN OR 
LITERAL. FOUND XXX. 

System Action: The syntax scan 
skips the rest of the 
statement. 

RECEIVING FIELDS IN PRECEDING 
STATEMENT IS A LITERAL. 

Explanation: A procedure 
division literal cannot be 
changed as the result of 
arithmetic or a move. The 
statement, SUBTRACT data name 
FROM literal, would specify 
invalid action of this type. 

Svstem Action: Compilation 
continues at the next verb or 
paragraph label. 

SYNTAX REQUIRES AT LEAST TWO 
OPERANDS BEFORE GIVING OPTION. 

Explanation: For example, ADD 
A GIVING B. 

System Action: The statement 
is skipped. 

THE EXPRESSION HAS MORE RIGHT 
PARENS THAN LEFT PARENS TO THIS 
POINT. FOUND XXX. 

Explanation: The number of 
right parentheses and left 
parentheses in a statement must 
agree. At no point in time can 
there be more right parentheses 
than left parentheses. 

System Action: The statement 
is skipped from the point of 
the error. 

User Response: Check for extra 
periods or missing periods, an 
error in a non-numeric literal, 
or mispunched operators or 
subscripted fields that are 
invalidly packed together 
without an intervening blank. 

THE EXPRESSION HAS UNEQUAL 
NUMBER OF RIGHT AND LEFT' 
PARENS. 

IEP~>27I C 

IEP528I C 

IEP!529I C 

IEP!530I C 

IEP!531I E 

IEPS32I E 

Explanation: See message 
IEP525I. 

DATA-TYPE MUST BE ED, ID, OR 
BI, FOUND XXX. 

System Action: The statement 
is skipped from the point of 
error. 

VARYING OPTION EXCEEDS THREE 
LEVELS. 

Explanation: A maximum of 
three levels is permitted with 
the varying option of the 
PERFORM verb. 

System Action: The statement 
is dropped from the point of 
error. 

DATA-TYPE MUST BE ED, ID, BI, 
EF, OR IF. 

Explanation: The data types 
shown are the only valid ones. 
The data-name found is not one 
of these types. 

system Action: The statement 
is skipped from the point of 
error. 

NUMBER OF ELSES EXCEEDS NUMBER 
OF IFS. 

Explanation: Number of else 
must balance out with the 
appropriate number of else or 
otherwise. 

System Action: Statement is 
skipped from the point of 
error. 

User Response: Recount and 
make corrections. 

INTERNAL OCCURS-DEPENDING-ON 
TABLE OVERFLOWED AVAILABLE CORE 

STATEMENT HAS TOO MANY OPERANDS 

Explanation: The statement 
referenced is too large or 
complex for the internal tables 
needed for compilation. 

System Action: The statement 
is skipped from the occurrence 
of this condition. 

Appendix F 141 



IEP533I E 

IEP534I E 

IEP535I E 

IEP536I E 

IEP537I C 

I IEP549I E 

IEP550I C 

IEP551I C 

User Response: The statement 
should be divided into more 
than one statement. 

PARENTHESIZING REQUIRES SAVING 
TOO MANY OPERANDS. 

Explanation: See message 
IEP532I. 

PARENTHESIZING REQUIRES SAVING 
TOO MANY INTERNALLY GENERATED 
LABELS. 

Explanation: See message 
IEP532I. 

PARENTHESIZING REQUIRES SAVING 
TOO MUCH OF STATEMENT 

Explanation: See message 
IEP532I. 

ARITHMETIC EXPRESSION REQUIRES 
MORE THAN 9 INTERMEDIATE RESULT 
FIELDS. 

Explanation: See message 
IEP532I. 

NOT HANDLED IN THIS VERSION 

WORD XXX WAS EITHER INVALID OR 
SKIPPED DUE TO ANOTHER 
DIAGNOSTIC 

Explanation: The majority of 
these messages will probably be 
caused by words skipped because 
of another diagnostic that 
occurred earlier in the 
statement. This diagnostic 
also occurs because of 
misspelled words. 

User Response: In the case of 
words skipped, correct the 
previous error, or correct 
misspellings. 

A FIGURATIVE CONSTANT IS NOT 
ALLOWED AS A CALL OR ENTRY 
PARAMETER. 

System Action: The statement 
is skipped from the point of 
error. 

SYNTAX REQUIRES WORD TO. FOUND 

142 IBM S/360 OS COBOI,(E) Programmer's Guide 

IEP552I C 

IEP553I E 

IEP554I C 

IEPSSSI C 

IEP556I E 

IEP557I W 

IEP558I E 

xxx. 

System Action: Syntax scan 
skips the rest of the 
statement. 

RECEIVING lf!ELD MUST BE A 
DATA-NAME. FOUND XXX. 

system Action: The statement 
is skipped from the point of 
error. 

FIGURATIVE CONSTANT IS NOT 
ALLOWED AS A RECEIVING FIELD. 

System Action: The statement 
is skipped from the point of 
the error. 

THE XXX DA~rA-TYPE IS NOT A 
LEGAL RECEIVING FIELD. 

System Action: The statement 
is skipped from the point of 
the error. 

User Response: Check the table 
of permissible moves in the 
COBOL specification. 

OVERFLOW Nl\.ME IS NOT A VALID 
SENDING FIELD. 

System Action: The statement 
is skipped from the point of 
the error. 

END DECLARl\.TIVES IS MISSING 
FROM PROGR1~. 

Explanati01p The entire 
procedure division is treated 
as a declarative section. 

FLOATING-POINT CONVERSION MAY 
RESULT IN ~?RUNCATION. 

Explanatior~: Conversion of 
floating-point numbers can 
result in truncation of 
low-order digits. 

I-0 OPTION FOR FILE CONFLICTS 
WITH NO REWIND. 

System Action: The statement is 
skipped from the point of the 
error. 



IEP559I E 

IEP560I C 

IEP561I C 

IEP562I C 

IEP563I C 

IEP564I C 

IEP565I C 

OUTPUT OPTION FOR FILE 
CONFLICTS WITH REVERSED. 

Explanation: The output option 
conflicts with an opening of a 
file, reversed. 

System Action: The statement is 
skipped from the point of the 
error. 

SYNTAX REQUIRES WORD NAMED, 
CHANGED, OR CHANGED NAMED. 
FOUND XXX. 

System Action: The statement is 
skipped from the point of 
error. 

DATA TYPE MUST BE ED, ID, BI, 
EF, IF, RP, AL, AN, OR GF. 
FOUND XXX. 

Explanation: A filename, 
condition name, figcon, or 
variable-length group is not 
valid at this point. 

System Action: The statement is 
skipped from the point of the 
error. 

DATA ENTRY MUST NOT EXCEED 120 
CHARACTERS. 

Explanation: The data entry 
specified exceeds the maximum 
permitted for this type of 
output. 

System Action: The statement is 
skipped from the point of the 
error. 

DATA ENTRY MUST BE DISPLAY. 

System Action: The statement 
is skipped from the point of 
the error. 

SYNTAX REQUIRES ONE OF THE 
ALLOWABLE CHARACTERS. FOUND 
xxx. 

System Action: The statement 
is skipped from the point of 
the error. 

IF STATEMENT MUST BE TERMINATED 
BY A PERIOD. 

Explanation: This diagnostic 

IEP566I C 

IEP567I C 

IEP568I C 

IEP569I C 

IEP570I C 

IEP571I E 

IEP572I C 

is obtained when the IF 
statement is the last statement 
of a paragraph and a label is 
detected instead of a period. 

System Action: The statement 
is skipped from the point of 
error. 

DATA TYPE MUST BE AL, AN, RP, 
OR GROUP. 

System Action: The statement 
is skipped from the point of 
error. 

DATA TYPE MUST BE AL, AN, 
FIGCON OR FIXED-LENGTH GROUP. 

System Action: The statement 
is skipped from the point of 
the error. 

DATA ITEM MUST NOT EXCEED 256 
CHARACTERS. 

System Action: The statement 
is skipped from the point of 
the error. 

DATA ENTRIES MUST BE OF EQUAL 
LENGTH. 

System Action: The statement 
is skipped from the point of 
the error. 

THE LENGTH OF THE SECOND 
OPERAND MUST BE EQUAL TO THE 
FIRST OR A SINGLE CHARACTER 

System Action: The statement 
is skipped from the point of 
the error. 

A RECORD NAME MUST BE 
ASSOCIATED WITH THIS FILE. 
FOUND XXX. 

system Action: The statement 
is skipped from the point of 
the error. 

ONLY ONE DATA-NAME MAY BE 
ASSOCIATED WITH THE CHANGED 
OPTION. 

System Action: The statement 
is skipped from the point of 
the error. 

Appendix F 143 



IEP573I C 

IEP601I W 

IEP602I W 

IEP603I C 

IEP604I E 

IEP605I E 

DATA TYPE MUST BE ED, ID, BI, 
EF, IF, SN, SR, RP, AL, AN, FC, 
OR GROUP. 

System Action: The statement 
is skipped from the point of 
error. 

NO SIGNIFICANT POSITION MATCHES 
BETWEEN SENDING AND RECEIVING 
FIELDS IN MOVE. .RECEIVING 
FIELD IS SET TO ZERO. 

Explanation: There are no 
digit positions in common 
between the sending and 
receiving fields. This can be 
illustrated by moving a field 
with picture 99 to a receiving 
field with picture V99. 

System Action: The receiving 
field is set to zero. 

DESTINATION FIELD DOES NOT 
ACCEPT THE WHOLE SENDING FIELD 
IN MOVE. 

Explanation: The sending field 
is larger than the receiving 
field in either its integer or 
decimal positions or both. 

System Action: The sending 
field is truncated. 

AFTER ADVANCING OPTION NOT 
ALLOWED WITH REWRITE. 

System Action: The statement 
is skipped from the point of 
the error. 

SOURCE PROGRAM EXCEEDS INTERNAL 
LIMITS. 

Explanation: The program is 
too large. 

user Response: The user should 
do one of the following, and 
try again: 

• Divide the program into two 
or more parts 

• Simplify compound conditional 
statements~ 

PROCEDURE NAME MULTIPLY 
DEFINED. 

Explanation: Procedure name 

144 IBM S/360 OS COBOL(E) Programmer's Guide 

IEP606I E 

IEP607I E 

IEP608I E 

IEP609I E 

IEP610I E 

IEP611I E 

IEP612I E 

IEP613I W 

IEP614I E 

indicated was multiply defined 
and was not qualified properly 
by the appropriate section name 
when used. 

PROCEDURE-NAME XXX NOT DEFINED 

Explanation: The name 
indicated was incorporated into 
a GO TO or a PERFORM statement, 
and was never defined. 
Procedure names must begin in 
columns 8 through 11 at the 
point where they are defined. 

INVALID LITERAL XXX. 

User Response: Check for 
multiple decimal points, 
non-numeric characters not 
enclosed in quotes. 

XXX IS NOT .ALLOWED TO HANDLE 
MORE THAN 25 FILES IN ONE 
STATEMENT. 

System Action: The rest of the 
statement is skipped. Only 25 
files are handled. 

PROCEDURE-NAME XXX HAS ILLEGAL 
CONTENT AND IS DROPPED. 

'CONDITION NAME' WAS EITHER NOT 
ALLOWED IN 1rHIS STATEMENT OR 
SKIPPED DUE TO ANOTHER 
DIAGNOSTIC 

TOO MANY PARAGRAPH NAMES HAVE 
BEEN USED IN CALL STATEMENTS. 

OPEN STATEMENT CONTAINS MORE 
THAN 9 FILENAMES. OPEN WILL 
SPLIT. 

System Action: Handles 
multiple OPEN.statements each 
containing 9 filenames. 

USING STATEMENT HAS BEEN 
INCORRECTLY SPECIFIED. 

THIS CONDITIONAL HAS A MISSING 
RELATIONJU, OPERATOR. 

System Action: The statement 
is skipped :from the point of 
the error. 



IEP615I E 

IEP616I E 

IEP617I :E 

IEP618I E 

IEP619I E 

IEP620I E 

IEP6.21I 1~ 

IEP622I C 

IEP623I E 

READ 'AT END' REQUIRED FOR 
FILES WITH ACCESS SEQUENTIAL 

System Action: The entire 
statement is skipped. 

'INVALID KEY' REQUIRED FOR 
FILES WITH ACCESS RANDOM 

System Action: The entire 
statement is dropped. 

WRITE 'FROM' OPTION REQUIRED 
WITH APPLY WRITE-ONLY 

System Action: The entire 
statement is dropped. 

REWRITE INVALID ON DIRECT OR 
RELATIVE SEQUENTIAL FILES 

.§ystem Action: The entire 
statement is dropped. 

WRITE INVALID FOR RELATIVE 
RANDOM FILE 

System Action: The entire 
statement is dropped. 

WRITE 'INVALID KEY' REQUIRED 
FOR INDEXED SEQUENTIAL FILE 

System Action: The entire 
statement is dropped. 

OPEN 'I-O' INVALID FOR DIRECT 
OR RELATIVE SEQUENTIAL FILES 

Explanation: On OPEN and CLOSE 
no code is generated for the 
file in error. 

§_ystem Action: Syntax scan 
skips to the next file in the 
statement. 

OPEN 'OUTPUT' INVALID FOR FILES 
WITH ACCESS RANDOM, I-0 
ASSUMED. 

Explanation: See message 
IEP621I. 

OPEN 'REVERSED' VALID ONLY ON 
STANDARD SEQUENTIAL FII,ES 

Explanation: See message 
IEP621I. 

IEP625I E 

H~P626I E 

IEP627I E 

IE:f>628I E 

IEP700I E 

IEP701I E 

IEP702I E 

IEP703I E 

IEP704I E 

IEP705I 

IEP709I W 

OPEN 'REVERSED' INVALID FOR 
FILES WITH FORMAT V RECORDS 

CLOSE 'UNIT' OR 'REEL' VALID 
ONLY FOR STANDARD SEQUENTIAL 
FILES 

Explanation: see message 
IEP621I. 

'INVALID KEY' INVALID FOR 
STANDARD, DIRECT OR RELATIVE 
SEQUENTIAL FILES. 

System Action: The clause is 
skipped. 

'ACTUAL KEY' REQUIRED FOR 
DIRECT SEQUENTIAL OUTPUT FILES 

IDENTIFICATION DIVISION NOT 
FOUND 

DATA DIVISION NOT FOUND. 
COMPILATION CANCELED. 

PROCEDURE DIVISION NOT FOUND. 
COMPILATION CANCELED. 

SOURCE PROGRAM EXCEEDS INTERNAL 
LIMITS. COMPILATION CANCELED. 

DATA-NAME TABLE OVERFLOW. 
COMPILATION CANCELED. 

Explanation: The data-name 
attribute table has a maximum 
size of 64K bytes. 

User Response: Reduce the 
length of data-names, and 
recompile .. 

NO DIAGNOSTICS IN THIS 
COMPILATION. 

INCORRECT EXECUTE PARAMETER -
xxx. 

LO.rill MODULE EXECUTION DIAGNOSTIC MESSAGES 

Load module execution diagnostic messages 
are of two types: object time messages, 
and operator messages. 

Appendix F • 14 5 



OBJECT TIME MESSAGES 

Most object time messages are self 
explanatory. Where necessary, examples are 
included to explain the message. 

IEP999I MINUS BASE MADE POSITIVE & 
FLOATING POINT EXPONENTIATION 
CONTINUED. 

IEP998I ZERO BASE TO POSITIVE EXPONENT -
FLOATING-POINT ANSWER MADE ZERO. 

IEP997I ZERO BASE TO MINUS EXPONENT -
FLOATING-POINT ANSWER IS MAX F.P. 
NUMBER. 

IEP996I RESULT TOO BIG -- FLOATING-POINT 
EXPONENTIATION ANSWER IS MAX F.P. 
NUMBER. 

IEP993I ZERO BASE TO MINUS EXPONENT -
PACKED EXPONENTIATION RESULT MADE 
ALL NINES. 

OPERATOR MESSAGES 

In addition to system diagnostic and object 
time messages the COBOL load module may 
issue operator messages. 

The following message is generated by 
STOP 'literal'. 

IEPOOOD text provided by object program. 

Explanation: This message is 
issued at the programmer's 
discretion to indicate possible 
alternative action to be taken by 
the operator. 

Operator Response: Follow the 
instructions given both by the 
message and on the job request 
form supplied by the programmer. 

146 IBM S/360 OS COBOL(E) Programmer's Guide 

If the job is to be resumed, issue 
a REPLY command with a text field 
that contains any 1-character 
message. 

The following message is generated by an 
ACCEPT FROM CONSOLE. 

IEP990D 'AWAITING REPLY' 

Explanation: •rhis message is 
issued by the object program when 
operator inter11ention is required. 

Operator Response: Issue a REPLY 
command. (The contents of the 
text field should be supplied by 
the programmer on the job request 
form.> 

DEBUG PACKET ERROR MESSAGES 

The following is a complete list of 
precompile error messages. They apply to 
errors in the debugging packets only. 

IEP850I TABLE OF DEBUG REQUESTS 
OVERFLOWED. RUN TERMINATED. 

IEP851I THE FOLLOWING CARD DUPLICATES A 
PREVIOUS *DEBUG CARD. THIS PACKET 
WILL BE IGNORED. 

IEP852I THE FOLLOWING PROCEDURE DIVISION 
NAMES WERE NOT FOUND. INCOMPLETE 
DEBEG EDIT IS NOT TERMINATED. 

IEP853I THE FOLLOWING *DEBUG CARD DOES NOT 
CONTAIN A VALID LOCATION FIELD. 
THIS PACKET WILL BE IGNORED. 

IEP854I IDENTIFICATION DIVISION NOT FOUND. 
RUN TERMINATED .. 

IEP855I DEBUG EDIT RUN COMPLETE. INPUT 
FOR COBOL COMPILATION ON SYSUT4. 



A (Device Type) 28 
Abn.ormal Termination Dumps 92 
ACCEPT 69, 75 
Accessing Direct or Relative Organization 

Data Sets 50 
Additions 50 
Differences 50 

Accessing Indexed Sequential Data Sets 48 
Additions 48 
Differences 48 

Accessing Information Not Directly 
Available at the COBOL Language 
Level 105 

Account Number 13 
Accounting Information 13, 18, 23 
ACCT 18, 23 
ACCT. procstep 18 
Adding DD Statements 55 
ADDR (PMAP) 85 
Alignment and Slack Bytes 71 
Allocation of Utility Work Space 75 
Allocating Space for Indexed Sequential 

Data Sets 47 
Apostrophe 11 
Appendix A. Examples of Job 
Processing 95 

Appendix B. Assembler Language 
Subprograms 102 

Appendix c. Overlay Structures 109 
Appendix D. COBOL Syntax Format 112 
Appendix E. Subroutines used 

by COBOL 118 
Appendix F. System/360 Diagnostics 124 
APPLY WHITE ONLY 73 
Argument List 103 
Arithmetics 67 
A.ri thmetic Suggestions 6 7 
Assembler Subprograms 7, 108 
Assigning Names To Temporary Data Sets 23 
Asterisk 11, 21 
Automatic Call Library 30 

Basic ~rinciples of Effective COBOL 
Coding 58 

BFAI.N 45 
Binary Subscripting 69 
BLKSIZE 45, 47, 49 
Braces 11 
Brackets 11 
BUFCB 45 
Buffers 72 
BUFI, 45 
BUFNO 45, 47 
BUFSIZE 29 
BUF'I1EK 45 

C (Conditional) 88 
Called and Calling Programs 102 
Catalog 6 
Cataloged Data Set 6 
Cataloged Procedure 9 
Cataloged Procedure for Linkage Edit 53 

INDEX 

16 Cataloged Procedure Name 
CATALOGED PROCEDURES 53 
Cataloged Procedures, Using 25 
Cataloging a Procedure, Example 3 
Characteristics of Numeric Data 
Classes of Elementary Items 62 
Clause (Error message) 88 
COBEC 9 
COBECLG 9 
CO BELG 9 
COBOL Processing 7 
COBOL Source Listing, Example of 
COBOL Source Program Library 79 

99 
64 

83, 84 

COBOL Source Program (Example) 106, 107 
COBOL Subprograms 7 
Coding Job Control Statement 
Comma 11 
Comments 11 
Compile 5, 9, 25, 53 
Comparisons 69 

10 

Compile Cataloged Procedure (COBEC) 
Compile, Linkage Edit, and Execute, 

Example l· 95 

53 

Compile, Linkage Edit and Execute Cataloged 
Procedure (COBECLG) 54 

Compile, Linkage Edit, Execute 9, 26, 53 
Compiler and Linkage Editor Options 17 
Compiler ddnames 27 
Compiler Device Classes 28 
Compiler Diagnostics 124 
Compiler Name 27 
Compiler Options 28 
Compiler Output 82 
Compiler Processing 26 
Compiling a Source Module 25 
Computational (Binary} , Machine 
Representation 65 

Computational=Computational, 
Relationals 66 

Computational Field 61 
Computational to Computational-3 
Computational to Display 60 
Computational 1 and 2 Fields 61 
Computational-1 or -2 (Floating Point) , 

Machine Representation 65 
Computational-3 (Internal Decimal) , 

Machine Representation 65 
Computational-3 (Internal Decimal) 

59 

Fields 61 
Computational-3 Fields, Move 66 
Computational-3 to Computational 
Cc)mputat"ional-3 to Display 60 
COND Parameter 18 
COND.procstep 18 
Conditional 14, 88 
Conditional Statements 61 

59 

Conditions for Bypassing a Job Step 
Conditions for Terminating a Job 15 
Conserving Storage 57 
Considerations for Overlay 109 
Considerations when Updating or Adding 
to a BISAM File 72 

Index 

18 

147 • 



Continuing Control Statement 11 
Control Section 90 
Control Section, Name of 25 
Control Sections 33 
Control Statement Messages 13 
Correspondence Between Compiler ddnames 

and Device Classes 28 
Correspondence Between Linkage Editor 

ddnames and Device Classes 31 
Conversion of Computational-1 or -2 

Data 60 
COPY (Data Division) 79 
CREATING DATA SETS 37 
Cross-Reference Table 90 

DATA 22 
Data Definition (DD) Statement 18 
Data Format of Arguments 105 
Data Forms 61 
Data Map (DMAP) 85 
Data Set Considerations 8 
Data Set Name 37 
Data Set References 41 
Data Sets 5, 8 
DCB for Creating Direct or Relative 
Organization Data Sets 49 

DCB for Creating Indexed Sequential 
Data Sets 47 

DCB for Processing Sequential Data 
Set 43 

DCB Subparameter Values for Direct or 
Relative Organization Data Sets 51 

DCB Subparameter Values for Indexed 
Sequential Data Set 49 

DCB Parameter 35, 37, 43, 47, 49 
DCB Parameters for ACCEPT and DISPLAY 

Verbs 75 
DCB Subparameter Values for Sequential 

Data Set 46 
DDNAME 38, 45, 47, 49 
ddname 19 
DD Parameter for Creating Data Sets 38 
DD Requirements for ACCEPT and DISPLAY 

Verbs 75 
DD Statement 10, 23 
DD Statement Examples 21 
DD Statement Operands 21 
DD Statements, Examples of 39 
Debugging Techniques 76 
Debug Packet 77 
Debug Packet, Deck Setup 78 
Debug Packet, Job Control Statements 78 
Debug Packet Error Messages 124, 146 
Debug Packets, Job Control Setup 77 
Decimal-'Point Alignment 58 
DECK, NODECK 29 
Default Options 95 
Delimiter Statement 10, 24 
DEN Values 44 
Determining Diagnostics 88 
DEVD 50 
Device Class 6 
Device Class Names 28 
Device Classes, Lipkage Editor 31 
Directory Index 8 
DISP 19, 37 
DISPCK, NODISPCK 29 

~· 148 IBM S/360 OS COBOL-E Prog. Gd. 

DISPLAY 75 
Display (External Decimal), Machine 
Representation 65 

Display (Non-Numeric and External Decimal) 
Fields 61 

Display and Computational Fields, Other 
Considerations 61 

Display Fields, Move 66 
Display to Computational 
Display to Computational-3 
Display to Display 60 
Disposition of Data Set 
DMAP, NODMAP 29 
DSNAME 37 
DSNAME=*.ddname 23 
DSNAME=&name 23, 37 
DSNAME=&name(element) 24 

59 
59 

43 

DSNAME=*.stepname.ddname 23 
DSNAME=*.stepname.procstep.ddname 
DSNAME=dsname 37 
DSORG 44, 47, 49 
DUMMY 21, 37 

23 

Dummy Record Codes for Direct Organization 
Files 74 

Dynamic Overlay Feature 

E (Error) 88 
Editing 69 
Elementary Items 63 
Ellipsis 11 
END Card 87 
ENTRY Address 90 
ENTRY Statement 34 
EODAD 45 
Equal Sign ll 
ER CODE 88 
EROPT 45 
Error 14, 88 

llO 

Error Code (ER CODE) 88 
Error Codes, Compiler 15, 88 
Error Options for QSAM 44 
ESD Card 87 
Example, Linkage Editor Deck Structure 33 
Example of Cataloging Source Program 

Statements to a Library 79 
Example of How Diagnostics are 

Generated 89 
Examples of Use of Symbols 11, 12 
Examples Showing Effect of Data 
Declarations 65 

EXEC Statement 10, 14, 17 
EXEC Statement, Sample 15 
Execute 5, 10 
Execute Statement Parameters, Examples of 
Overriding 54 

Execution Device Classes 35 
Execution ddnames 34 
Execution Error MessagE!S 34 
Exhibit 77 
EXPDT 43 
Exponentiation 67 
External Symbol Dictionary 86 

File Handling, General Information 72 
Filler 70 
FLAG, FLAGW 29 

General Programming Suggestions 58 



General Techniques for Coding 67 
Generation Data Set 6 
Generation Data Group 6 
Generating Diagnostics 89 
Group Item 62 

How Diagnostics are Determined 89 
How to Use a. Dump 93 
Hyphen 11 

Identifying a Created Data Set 23 
If-Numeric Test 71 
If Statement 66 
INCLUDE (Procedure Division) 80 
INCLUDE Statement 31 
INCLUDE Statement (Secondary Input to 
Linkage Editor) 31 

Initiating Dumps at Execution Time, 
Source Program Errors 92 

In-Line Para.meter List 105 
INSTRUCTION (PMAP) 85 
Intermediate Results in Complex 
Expressions 6 7 

INVED (edit) 29 
Invoking a Cataloged Procedure 26 
I/O Programming Considerations 74 

Job ~; '10 
JOB CONTROL LANGUAGE 10 
Job-Control Statements and Data 
Cataloging a Procedure 100 

JOBLIB 20 
JOB PROCESSING 25 
JOB Statement 10, 12' 13 
Job Statement, Sample 13 
Job Step 5' 9 

KEYLEN 47 
Keyword Parameters 11, 17 

Label Information 37, 43, 76 
Labeling for Utility Work Fil~s 
LIBRARY Statement 32 

Sets 

76 

LIBRARY Statement (Secondary Input to 
Linkage Editor) 31 

LIMCT 50 
LINECNT 29 
Line-Position Number 
Linkage Conventions 
Linkage Edit 5 

85, 88 
102 

Linkage Edit and Execute 9, 26, 53 
Linkage~ Edit and Execute Cataloged 
Procedure (COBELG) 53 

Linkage Edit and Execute (Object Modules 
in a Cataloged Data Set) 26 

Linkage Edit Without Overlay 
Linkage Editor 7 

109. 

Linkage Editor (Additional Input) 
Linkage Editor Control Statements 

(Other) 33 
Linkage Editor ddnames 31 
Linkage Editor ddnames and Device 

Classes 30 
Linkqge Editor Example 33 
Linkage Editor Input and Output 
Linkage Editor Name 30 

30 

31 

Linkage Editor, Options for Processing 
Linkage Editor Outpu~ 89 

34 

Linkage Editor Priority 33 
Linkage Editor Processing 30 
Linkage Editor Processing (Options) 34 
LIST 35 
LIST, NOLIST 29 
Load Module 7 
Load Module Execution Diagnostic 

Messages 124, 145 
Load Module Execution 7, 34 
Load Module Output 91 
Lowest Level Subprogram 104 
LRECL 45, 47, 50 

Machine Instruction (Actual) 85 
Machine Representation of Data Items 65 
MACRF 45, 47, 49 
MAPS, NOMAPS 29 
Member of PDS 8 
Message Number 88 
Mixed-Data Formats 59 
MODE 44 
Module Map 90 
Move 66 
Move Computational-3 to Report 66 
Move Display to Computational-3 66 
MSGLEVEL 13 
MSWA 48 

Name Field 
NCP 50 

10' 13, 16, 19 

NL 43 
Notation for 
Statements 

Numeric Data 

Defining Control 
11 

Format Usage 63 

Object Program Dumps 92 
Object Module 7 
Object Module Cards 86 
Object Module Card Deck 86 
Object Module Deck Structure 87 
Object Storage Layout 94 
Object Time Messages 91, 124, 146 
On 77 

69 
10, 13, 16, 20 

Opening Files 
Operand Field 
Operation Field 
Operator Codes 
Operator Messages 
OPTCD 44, 47, 49 
Or 11 

10' 14 
14 

Overlay Processing 
Overriding 9 

92, 124, 146 

llO 

Overriding and Adding DD Statements 
Overriding Cataloged Procedures 54 
Overriding DD Statements 55 
Overriding Parameters in the EXEC 

Statement 54 

Paragraph Names 69 
Parentheses 11 
PARM 17, 34 
PARM.procstep 17, 34 
Partitioned Data Set 8 
PDS 8 
Period 11 
Permissible Comparisons 116 
Permissible Moves 117 
PGM 16 

~ndex 

55 

149 • 



PGM=*.stepname.ddname 16 
PGM=*.stepname.procstep.ddname 16 
PGM=IEWL 30 
PGM=program-name 16 
PMAP,NOPMAP 29 
Positional Parameters 11, 16, 19 
Preplanned Linkage Editing with 

Overlay 110 
Primary Input 30 
PRIVATE 40 
PROC 
PROC=cataloged-procedure-name 16 
Procedure Map (PMAP) 85 
Procedure Step 9 
Processing Buffers 73 
PROGRAM-ID 25 
PROGRAMMING CONSIDERATIONS 57 
Program Name 16, 34 
Programmer's Name 13 
PRTSP 44 

Qualified Name 6 

RECFM 45, 47, 49 
Record Blocking 73 
Redefinition 71 
Redundant Coding 69 
REGED, INVED (edit) 29 
REF 40 
Referring to a Data Set in a Cataloged 

Procedure 23 
Referring to a Data Set in a Previous 
Job Step 23 

Referring to a Data Set in the Current 
Job Step 23 

Register Use (Linkage Conventions) 102 
Relationals 66 
Relative Address (ADDR) 85 
Relocation Dictionary 87 
RETAIN 40 
RETPD 43 
Retrieving Data Sets (Previously 
Created) 22 

REWRITE (Use of with Random Indexed 
Sequential Files) 74 

RKP 47 
RLD Card 87 
RLSE 42 
ROUND 42 

Sample Deck Structure of Compile, Linkage 
Edit, Execute 26 

Sample Decks to Linkage Edit and 
Execute 26 

Save Area 103 
Scratching a Data Set, Example 2 99 
Scratching Disk Data Sets 35 
Secondary Input 30 
Sequential Data Set 8 
SER 40 
Severity Code 88 
Sign Control 60 
SL 43 
Slack Bytes 71 
Slash 11 
SMSW 48 
Source Listing (LIST) 82 
Source Module 7 

• 150 ~BM S/360 OS COBOL-E Prog. Gd. 

Source Module Diagnostics 88 
Source Module Error-Warning Messages 
SPACE 41 
Specifying a Cataloged Data Set by 

Name 23 
Specifying a Cataloged Procedure 16 
Specifying Disposition of a Data Set 
Specifying a Generation Data Group or 

PDS 23 
Specifying a Program Described in a 

Cataloged Procedure 16 
Specifying a Program Described in a 
Previous Job Step 16 

88 

24 

Specifying a Program in a Library 
Specifying Data in the Input Stream 
Specifying I/O Devices 40 
Specifying Space on Direct-Access 

16 
21 

Volumes 41 
Specifying Volumes 
SPLIT Parameter 42 
STACK 44 
Stepname 16 

40 

Storage Layout of Object Program 
Storage Map 85 
Subparameters 11 
Superscript 11 
Subscripting 68 
Symbols 11 
SYNAD 45 
SYSABEND Data Set 34 
SYSDA 28 
SYSCP 28 
SYSIN 27 
SYSLIB 27, 31 
SYSLIN 31 
SYSLMOD 31 
SYSNAD 48 
SYSOUT 22 
SYSOUT=A 22, 37, 53 
SYSOUT Parameter 22 
SYSPRINT 27, 31 
SYSPUNCH 27 
SYSSQ 28 
System Diagnostic Messages 124 
SYSTEM OUTPUT 82 
SYSUTl 27, 31 
SYSUT2 27 
SYSUT3 27 
SYSUT4 27 

Text Card 87 
The Debug Packet 77 

93 

The Use of Rewrite with Random Index 
Sequential Files 74 

Trace 76 
Track Allocation for Utility Work 

Space 75 
Trailing Characters 71 
TRK 41 
TRTCH 44 
TXT Card 87 
Typical Source Program Errors 92 

Underscore 11 
Unequal-Length Fields 
Unexpected Intermediate. 
Solution 67 

UNIT 22, 37 

58 
Results, Alternate 



UNIT Parameter 22 
Unit Record Parameters 21 
Updating an E~isting Member of a 
User-Created Library 80 

Updating or Adding to a BISAM File 
(Considerations) 72 

Use After Standard Error Considerations 74 
Use of Additional Storage by COBOL-E 

Compiler 76 
Use of Source.Program Library 
Facility 79 

User Cataloged Procedures 54 
Using Cataloged Procedures 25 
UTILITY 75 

Variable Record Alignment 
OCCURS DEPENDING Clause 

VOLUME 6, 37, 41 
Volume-count 40 
Vo 1 ume-seiquence-n umber 
VTOC 35 

W (Warning) 88 
Warning 14, 88 

Containing 
74 

40 

Working with Diagnostics 88 
Writing a Unit Record Data Set on a 
Printer 43 

XREF 34 

Index 151 • 



C24-5029-2 

International Business Machines Corporation 
Data Processing Division 
112 East Post Road, White Plains, N.Y.10601 
[USA Only] 

IBM World Trade Corporation 
821 United Nations Plaza, New York, New York 10017 
[International] 



.. · 

READER'S COMMENT FORM 

IBM Systern/360 
Operating System 
COBOL (E) Programmer's Guide C24-5029-2 

• Your comments, accompanied by answers to the following questions, help us produce better 
publications for your use. If your answer to a question is "No" or requires qualification, 
please explain in the space provided below. All comments will be handled on a non-confi
dential basis. Copies of this and other IBM publ,ications can be obtained through IBM 
Branch Offices. 

Yes No 

• Does this publication meet your needs? C::l c::J 

• Did you find the material: 
Easy to read and understand? C:l c:::J 
Organized for convenient use? C::l c::::J 
Complete? C:::::l c::::J 
Well illustrated? CJ c::::J 
Written for your technical level? C::l c::::J 

• Wh~isyouroccupatibn?~~~~~~~~~--~~~~~~~~~~~~~~~~~~ 
• How do you use this publication? 

As an introduction to the subject? c:::J As an instructor in a class? CJ 
For advanced knowledge of the subject? c:::J As a student in a class? c::I 
For information about operating procedures? c::::J As a reference manual? c::I 

Other 
• Please give specific page and line references with your comments when appropriate. 

COMMENTS: 

• Thank you for your cooperation. No postage necessary if m~iled in the U.S. A. 



Staple 

C24-5029-2 

Fold Fold _______________________________________________ _. _________________ _. 

BUSINESS REPLY MAIL 
NO POSTAGE NECESSARY IF MAILED IN THE UNITEQ STATES 

ATTENTION: PUBLICATIONS, DEPT. 039 

POSTAGE WILL BE PAID BY .•• 

IBM CORPORATION 

1271 AVENUE OF THE AMERICAS 
NEW YORK, N.Y. l 0020 

FIRST CLASS 
PERMIT NO. 33504 
NEW YORK, N.Y. 

-~------------------------------------------------------------! 
Fold 

International Business Machinas Corporation 
Data Processing Division 
112 East Post Road, White Plains, N.Y.10601 
[USA Only] 

IBM World Trade Corporation 
821 United Nations Plaza, New York, New York 10017 
[International I 

Fold 

: sluawwo8 pmomppv 



Technical Newsletter File Number S360-24 

Re: Form No. 

This Newsletter No. 

C24-5029-2 

N28-0229 

Date November 15, 19 Ci 7 

Previous Newsletter Nos. 

IBM System/360 Operating System 

~OBOL (E) Programmer's Guide 

This Technical Newsletter amends the publication IBM System/360 
9perating System: COBOL (E) Programmer's Guide, Form C24-5029-2. 

In the referenced publication, replace the pages listed below 
with the corresponding pages attached to this newsletter. 

Pages 

1- 4 
5- 6 

27- 28 

29- 30 

39- 40 
43- 44, 
47- 50 
51- 52 

103-104 
145-146 

Subject of Amendment 

Front matter 
Clarification of the term "job" rather than 

11 job step" with reference to data set and 
group generation 

Specification of Write Verify in COBOL 
work files 

Amends buff er size relating to the system 
utility device ~ 

Amends table showing form~t for UNIT 

Amends the DCB subparameter "OP'rCD" 
Amends example of DD statements for Indexed 

Sequential organization 
Amends example of statement in return routine 
Adds error messages 

A vertical line to the left of the column shows where text has 
been changed; changes to illustrations are shown by a bullet C•J 
to the left of the caption. 

The specifications contained in this publication correspond to 
Release #14 of the IBM System/360 Operating System. 

Please file this page at the back of the publication. It will 
provide a reference to changes, a method of determing that all 
amendments have been received, and a check that the publication 
contains the proper pages. 

None 

IBM Corporation, Programming Systems Publications, 1271 Avenue of the Americas, New York, N.Y. 10020 

PRINTED IN U.S.A. 





Systems Reference Library 

IBM System/360 

Operating System 
COBOL (E) Programmer's Guide 

This reference publication describes how to 
compile, linkage edit, and execute a COBOL 
CE-Level Subset) program. It also describes the 
output of compilation and execution, how to make 
optimal use of the compiler and a load module, and 
compiler and load module restrictions. 

The corequisite to this publication is IBM 
§~tem/360 Operating ~~tern: COBOL Language, 
Form C28-6516. 

Other publications related to this one are: 
IB~tem/360 PrincJ:.Eles of Operation, 
Form A22-6821. 
!~~-§Y§.!~~1£0 0~~9ting:_§ystem: control 
E~Qq~fil!!_Se~yi£g§.L Form C28-6541. 
!~~-§Y2!eroL}£Q_Q2erating System: . Job control 
1~ng~~g~, Form C28-6539. 
!~~-§ystem/360 Oper~ting System: Utilities, 
Form C28-6586. 
!g~_§Y§.!g!Q06Q_Q2~!:.~ting System: Linkage 
Editor, Form C28-6538. 
J~~=§y2!eroL36Q_Qperating System: Control 
~~Qg.;:am Me§_sa™-and Completion C<3des, 
Form C28-6608. 

For a list of other associated System/360 
publications, see the IBM system/360 Bibliography, 
Form A22-6822. 

File Number 8360-24 
Form C24-5029-2 as 



Form C24-5029-2 
Page Revised 11/15/67 by TNL N28-0229 

PREFACE 

The purpose of the Programmer's Guide is to 
enable programmers to compile, linkage 
edit, and execute COBOL CE-Level Subset> 
programs under control of IBM System/360 
Operating System. The COBOL CE-Level 
subset> language is described in the 
publication IBM System/360 Operating 
§ystem: COBOL Language, Form C28-6516, 
which is a corequisite to this publication. 

The Programmer's Guide is organized to 
fulfill its purpose at three levels: 

1. Programmers who wish to use the 
cataloged procedures as provided by IBM 
need read only the Introduction and 
Job~Control Languag~ sections to 
understand the job-control statements, 
and the Job Processi..Q9 section to use 
cataloged procedures for compiling, 
linkage editing, and executing COBOL 
programs. The Programming 
considerations and Sy£tem Output 
sections are recommended for 
programmers who want to use the COBOL 
language more effectively. 

Third Edition 

2. Programmers who ar 1e also concerned with 
creating and retrieving data sets, 
optimizing the use of I/O devices, or 
temporarily modifying IBM-supplied 
cataloged procedures should read the 
entire Programmer's Guide. 

3. Programmers concerned with making 
extensive USE! of the operating system 
facilities, such as writing their own 
cataloged procedures, should also read 
the entire Programmer's Guide in 
conjunction with the publications 
listed on the front cover of this 
publication. 

In addition to providing reference 
information on compiling, linkage editing, 
and executing programs, this publication 
contains appendices that: 

1. Give several examples of processing. 

2. Contain detailed descriptions of the 
diagnostic messages produced during 
compilation and load module execution. 

This edition, Form C24-5029-2, is a major revision of, and makes obso
lete, Form C24-5029-1. Changes to this publication are indicated by a 
vertical line to the left of the text that is affected. Changes to 
illustrations are indicated by a bullet (•) at the left of the caption. 

'

Significant changes and additions to the specifications contained in 
this publication will be reported in subsequent revisions or 
Technical Newsletters. 

Requests for copies of IBM publications should be made to your 
IBM representative or to the IBM branch office serving your locality. 

Comments may be addressed to IBM Corporation, Programming Publications, 
1271 Avenue of the Americas, New York, N.Y. 10020 

o International Business Machines Corporation, 1966 



Form C24-5029-2 
Page Revised 11/15/67 by TNL N28-0229 

INTRODUCTION • " 

Job and Job Step Relationship. • 

Data Sets. • • .. . 

COBOL Processing· •• 

JOB-CONTROL LANGUAGE 

Coding Job-control statements •• 

JOB Statement. 

EXEC Statement .. 

Data Definition (DD) Statement • 

Delimiter Statement. 

JOB PROCESSING Q • • 

Using cataloged Procedures • 

Linkage Editor Processing .• 

Load Module Execution. • 

CREATING DATA SETS • 

Data Set Name. • . . 

5 

5 

5 

7 

. 10 

• 10 

• 12 

. 14 

• 17 

• • 2 4 

• 25 

• 25 

• 30 

• 34 

• 37 

• • 37 

Specifying Input/Output Devices ••••• 40 

Specifying Volumes . . . . • • •• • 40 

Specifying Space on Direct-Access 
Volumes • • • • • • . 41 

Label Information •. • 43 

Disposition of a Data Set •• • • 43 

Writing a Unit Record Data Set on the 
Printer • • • • • 43 

DCB Parameter. 

Allocating Space for Indexed 
Sequential Data sets .• 

DCB for creating Indexed Sequential 

• • 43 

• • 46 

Data Sets • • . • • • • • • • • • • 46 

Accessing Indexed Sequential Data Sets . 48 

DCB for Creating Direct or Relative 
Organization Data Set ..•....•• 49 

Accessing Direct or Relative 
Organization Data Sets. • • • • • • • • 50 

CONTENTS 

CATALOGED PROCEDURES • 53 

compile .•• • • 53 

Linkage Edit and Execute • • • • 53 

Compile, L·inkage Edit, and Execute • • • 53 

User cataloged Procedures. 

overriding cataloged Procedures. 

PROGRAMMING CONSIDERATIONS • • 

Conserving Storage • • • • • 

Basic Principles of Effective COBOL 
coding. • • • • • • • • • • • • 

General Programming Suggestions. 

Data Forms • • • 

Examples Showing Effect of Data 
Declarations •. 

Relationals. 

Arithmetics. • • 

General Techniques for coding. 

Arithmetic Suggestions 

• • 53 

• • 53 

. . 57 

• • 57 

• 58 

• • 58 

. 61 

• 65 

. • 66 

. 67 

• • 6 7 

• 67 

General Infor~ation--File Handling • • . 72 

IIO Programming Considerations • . 74 

Debugging Techniques • • • • • • . 76 

USE OF SOUPCE PROGRAM LIBRARY FACILITY • 79 

COBOL Source Program Library 79 

Example of Cataloging Source Program 
Statements to a Library . . • • 79 

79 Copy (Data Division) • . 

INCI~UDE (Procedure Division} • • • • 80 

Updating an Existing Member of a 
User-Created Library •. 

SYS~['EM OUTPUT. • 

Compiler output. 

Linkage Editor Output. • 

Load Module output . . . 

• • 8 0 

• 82 

• 82 

89 

• • 91 



Form C24-5029-2 
Page Revised 11/15/67 by TNL N28-0229 

APPENDIX A. EXAMPLES OF JOB PROCESSING • 95 

Default Options •.• 

Example 1. compile, Linkage Edit, and 
Execute • 

Example 2. Scratching a Data Set • 

Example 3. Cataloging a Procedure. 

APPENDIX B. ASSEMBLER LANGUAGE 
SUBPROGRAMS • • • . • • • • 

called and Calling Programs. 

Linkage conventions ••• 

Lowest Level Subprogram. 

Accessing Information Not Directly 
Available at the COBOL Language 

• 95 

• 95 

. 99 

. 99 

. 102 

. 102 

. 102 

.103 

Level •••••••••••••.••• 105 

APPENDIX C. OVERLAY STRUCTURES • .109 

Considerations for overlay • • .109 

Linkage Edit Without Overlay • .109 

Overlay Processing . . . . . . .110 

APPENDIX D. COBOL SYNTAX FORMA'IS . .112 

APPENDIX E. SUBROUTINES USED BY COBOL. .118 

' APPENDIX F • SYSTEM/360 DIAGNOSTIC 
MESSAGES. . . . . . . . . .124 

System Diagnostic Messages • .. 124 

Compiler Diagnostic Messages • • .124 

Load Module Execution Diagnostic 
Messages. • • •••• •• 145 

Debug Packet Error Messages. • .146 

INDEX. • . • • .147 



The IBM System/360 Operating system 
(referred to here as the operating system) 
consists of a control program and 
processing programs. The control program 
supervises execution of all processing 
programs, such as the COBOL-E compiler, and 
all problem programs, such as a COBOL 
problem program. Therefore, to execute a 
COBOL program, the programmer must first 
communicate with the operating system. The 
medium of communication between the 
programmer and the operating system is the 
job-control language. 

Job-control language statements define 
units of work to the operating system. Two 
units of work are recognized: the job and 
the job step. The statements that define 
these units of work are the JOB and the 
EXEC (execute) statements. Another 
important statement is the DD {data 
definition> statement, which gives the 
operating system information about data 
used in jobs and job steps. The flow of 
control statements and any data placed in 
the flow of control statements is called 
the input strea@. 

~9te: Throughout this publication certain 
arbitrary options are given in illustrative 
examples. Some of the options used are a 
function of system generation; therefore, 
these examples may not be valid for all 
systems. 

JOB AND JOB STEP RELATIONSHIP 

When a programmer is given a problem, he 
analyzes that problem and defines a precise 
problem-solving procedure; that is, he 
writes a program or a series of programs. 
Executing a main program (and its 
subprograms> is a i212~ to the operating 
system. A job consists of executing one or 
more job steps. 

At its simplest, a job consists of one 
job step. For example, executing a payroll 
program is a job step. 

In another sense, a job consists of 
several interdependent job steps, such as a 
compilation, linkage edit, and execution. 
Job steps can be related to each other as 
follows. 

INTRODUCTION 

1. One job step may pass intermediate 
results recorded on an external storage 
volume to a later job step. 

2. Whether or not a job step is executed 
may depend on results of preceding 
steps. 

In the series of job steps (compilation, 
linkage edit, and execution), each step can 
be a separate job with one job step in each 
job. However, designating several related 
job steps as one job is more efficient: 
processing time is decreased because only 
one job is defined, and interdependence of 
job steps may be stated. (Interdependence 
of jobs cannot be stated.) Each step may 
be defined as a job step within one job 
that encompasses all processing. 

JOB: Compile, 
JOB STEP 1: 
JOB STEP 2: 

JOB STEP 3: 

linkage edit, and execute 
Compile COBOL program 
Linkage edit compiled 
program 
Execute linkage edited 
program 

Figure 1 illustrates these three job 
steps. 

The important aspect of jobs and job 
steps is that they are defined by the 
programmer. He defines a job to the 
operating system by using a JOB statement; 
he defines a job step by the EXEC 
statement. 

In Figure 1, one collection of input data 
(source program) and one collection of 
output data (compiled. program) are used in 
job step 1. In the operating system, a 
collection of data that can be named by the 
programmer is called a data set. A data 
set is defined to the operating system by a 
DD statement. 

A data set resides on a volume<s>, which 
is a unit of external storage that is 
accessible to an input/output device. (For 
example, a volume may be a reel of tape or 
a disk pack.) 

Introduction 5 



Form C24-5029-2 
Page Revised 11/15/67 by TNL N28-0229 

Job Step l 
Compile 

Job Step 2 
Linkage Edit 

Job Step 3 
Execute 

Output ] 

Figure 1. Job Example with Three Job Steps 

several I/O devices grouped together and 
given a single name when the system is 
generated constitute a rtevice class. For 
example, a device class can consist of all 
the tape devices in the installation, 
another can consist of the printer, a 
direct-access device, anj a tape device. 

The name of a data set and information 
identifying the volume(s) on which the data 
set resides may be placed in an index to 
help the control program find the data set. 
This index, which is part of an index 
structure called the catalQg, resides on a 
direct-access volume. Any data set whose 
name and volume ide~tif i~ation are placed 
in this index is called a cataloged data 
set. When a data set is cataloqed, the 
Information neede~ to access the data set 

l
is its name and disposition. Other 
information associated with the data set, 
such as device type, position of the data 
set on the volume, and format of records in 
the data set, is availaole to the control 
program. 

6 

Furthermore, a hierarchy of indexes may 
be devised to classify data sets and make 
names for data sets unique. For example, 
an installation may divide its cataloged 

ldata sets into four groups: SCIENCE, 
ENGRNG, ACCNTS, and INVNTRY. In turn, each 
of these groups may be subdivided. For 
example, the ACCNTS group may be subdivided 
into RECEIVE and PAYABLE; PAYABLE may 
contain volume identification for the data 
sets PAYROLL and OVERHEAD. To find the 
data set PAYROLL, the programmer specifies 
all indexes beginning with the largest 
group, ACCNTS; then the next largest group, 
PAYABLE; finally, the data set PAYROLL. 
The complete identification needed to find 
that data set PAYROLL is 
ACCNTS.PAYABLE.PAYROLL. 

Data set names are of two 
classes: unqualified and qualified. An 
ungualif ied name is a data set name or an 
index name that is not preceded by an index 
name. A gualifi~d name is a data set name 
or index name preceded by index names 
representing index levels; for example, in 
the preceding text, the qualified name of 
the data set PAYaOLL is 
ACCNTS.PAYABLE.PAYROLL. 

Data set identification may also be 
based upon the time of generation. In the 
operating system, a collec~ion of 
successive, historically related data sets 
is a generation d~~ro~E· Each of the 
data sets is a .9_§;nerat.ion dat~_se!:. A 
generation number is attached to the data 
group name to ref er to a particular 
generation. The most recent generation is 
O; the generation previous to O is -1; the 
generation previous to -1 is -2; etc. An 
index describing a generation data group 
must exist in the catalog. 

For example, a. data group named YTDP.AY 
might be used for a payroll application. 
The generations for the generation data 
group YTDPAY are; 

YTDPAY (0) 
YTDPAY (-1) 
YTDPAY (-2) 

When a new generation is being created, it 
is called generation C+n), where n is an 
integer with value greater than o: For 
example, after the data set YTDPAYC+1) has 
been created, at the end of the job the 
operating system changes the data set name 
to YTDPAY(O). The data set that was 
YTDPAYCO) at the beginning of the job 
becomes YTDPAYC-1) at the end of the job, 
and so on. 



Form C24-5029-2 
Page Revised 11/15/67 by TNL N28-0229 

The program name for the compiler is 
IEPCBLOO. If the compiler is to be 
executed without using the supplied 
cataloged procedures in a job step, the 
EXEC statement parameter 

PGM=IEPCBLOO 

must be used. 

The compiler can use up to eight data sets. 
To establish communication between the 
compiler and the programmer, each data set 
is assigned a specific ddname. Each data 
set has a specific function and device 
requirement. Table 2 lists the ddnames, 
functions, and device requirements for the 
data sets. 

To compile a COBOL source module, five 
of these data sets are necessary: SYSIN, 
SYSPRINT, SYSUTl, SYSUT2, and SYSUT3, along 
with the direct-access volume(s) that 
contains the operating system. With these 

'

five data sets, the compiler generates a . 
listing only. If an object module is to be 
punched or written on a direct-access or 
magnetic tape volume, a SYSPUNCH DD 
statement must be supplied. If the debug 
packet(s) is to be used, a SYSUT4 DD 
statement must be supplied. If the 
compiler is to COPY or INCLUDE a 
sourcE:!-language module from the user's 
source program library, a SYSLIB DD 
statement must be supplied. 

Table 2. compiler ddnarnes 
r--------T----------------T---------------1 
I I I DEVICE I 
lddname !FUNCTION !REQUIREMENTS I 
~--------+----------------+---------------i 
ISYSIN !reading the I• card reader I 
I !source program I• intermediate I 
I I I storage I 
~--------+----------------+---------------i 
ISYSPRINTlwriting the I• printer I 
I !storage map, I• intermediate I 
I jlistings, and I storage I 
I I messages I I 
~--------+----------------+---------------i 
ISYSPUNCHlpunching the I• card punch I 
I !object module I• direct-accessj 
I ldeck, or creat- I• magnetic tapej 
I ling an object I I 
I I module data set I I 
I I as input to the I I 
I !linkage editor I I 
~--------+----------------+---------------i 
ISYSUTl !work data set I• direct-access! 
I !needed by the I• magnetic tapel 
I !compiler during I I 
I I compilation I I 
~--------+----------------+---------------i 
ISYSUT2 !work data set I• direct-accessj 
I !needed by the I• magnetic tapel 
I jcompiler during I I 
I I compilation I I 
~--------+----------------+---------------i 
ISYSUT3 1work data set I• direct-access! 
I !needed by the I• magnetic tapel 
I !compiler during I I 
I I compilation I I 
~--------+----------------+---------------i 
ISYSUT4 !optional work I• direct-access! 
I !data set needed I• magnetic tapel 
I !when using I I 
I I debug packet Cs) I I 
~--------+----------------+---------------i 
ISYSLIB !optional user I• direct-access! 
I !source program I I 
I I library I I 
L--------~----------------~---------------J 

For the DD statement SYSIN or SYSPRINT, 
an intermediate storage device may be 
specified instead of the card reader or 

Job Processing 27 



Form C24-5029-2 
Page Revised 11/15/67 by TNL N28-0229 

printer. The intermediate storage device 
usually is magnetic tape, but can be a 
direct-access device. 

If an intermediate device is specified 
for SYSIN, the compiler assumes that the 
source module deck was placed on 
intermediate storage by a previous job or 
job step. If an intermediate device is 
specified for SYSPRINT, the maps, listing, 
and error/warning messages are written on 
that device; a new job or job step can 
print the contents of the data set. 

Compiler Device Classes 

Names for input/output device classes used 
for compilation are also specified by the 
operating system when the system is 
generated. The class names, functions, and 
types of devices are shown in Table 3. 

Table 3. Device Class Names 
r-----T---------------T-------------------1 
I CLASS I I I 
INAME I CLASS FUNCTIONSIDEVICE TYPE I 
~-----+---------------+-------------------i 
I SYSSQ I writing, I• direct-access I 
I !reading I• magnetic tape I 
~-----+---------------+-------------------i 
ISYSDAlwriting, I• direct-access I 
I I reading I I 
~-----+---------------+-------------------i 
ISYSCPlpunching cards I• card punch I 
~-----+---------------+-------------------i 
IA ISYSOUT output I• printer I 
I I I• magnetic tape I 
L-----~---------------i-------------------J 

l(P~~---------J----------------------------1 

!\:ARM.procstep =C[LINECNT=nn][,BUFSIZE=nn]I 
I f,DECK l f,FLAGEl j,LIST J I 
1 ~NODEC~ rFLAGWJ~NOLIST 1 
I I 
I I, DMAP l r, PMAP J f, MAPS l 1 
I ~NODMA:_j ~NOPMAP l!NOMAPSjl 
I I 
I r, DISPCK 1 ,, REGEDJ I 
I t NODISPC~ ~ INVED ) I 
L-----------------------------------------J 
Figure 22. Compiler Options 

28 

The data sets used by the compiler must 
be assigned to the device classes listed in 
Table 4. 

Table 4. Correspondence Between Compiler 
ddnames and Device Classes 

r--------T--------------------------------1 
lddname jPOSSIBLE DEVICE CLASSES I 
~--------+--------------------------------i 
ISYSIN ISYSSQ, or the input stream I 
I !device (specified by DD • or DD I 
I !DATA) I 
~--------+--------------------------------i 
I SYSPRI NT I A, SYSSQ, SY SD.A I 
~--------+--------------------------------i 
ISYSPUNCHjSYSCP~SYSSQ,SYSDA I 
~--------+--------------------------------1 
ISYSUTl ISYSSQ,SYSDA I 
~--------+--------------------------------i 
ISYSUT2 ISYSSQ,SYSDA I 
~--------+--------------------------------i 
ISYSUT3 ISYSSQ,SYSDA I 
~--------+--------------------------------i 
ISYSUT4 ISYSSQ,SYSDA I 
~--------+--------------------------------i 
ISYSLIB ISYSDA I 
L--------~--------------------------------J 

Compiler Options 

Options may be passed to the compiler 
through the PARM paramieter in the EXEC 
(Figure 22> .. The following information may 
be specified: 

1. The number of lines to be printed per 
page on the compiler output listing. 

2. The size of each of the six work 
buffers used during a compilation. 
For workf iles in COBOL, a write 
validity check is not specified. This 
can be overridden by specifying 
OPTCD=W on the SYSUT DD cards. 

3. Whether an object module is created. 

4. The type of diagnostic messages to be 
generated by the compiler. 

5. Whether a list of the source 
statements is printed. 

6. Whether a list of data-name addresses 
is generated. 



Form C24-·5029-2 
Page Revised 11/15/67 by TNL N28-0229 

7. Whether a list of object code is 
generated. 

8. Whether a list of both data-name 
addresses and object code is 
generated. 

9. Whether the compiler will generate 
object code to test length of fields 
to be DISPLAYed. 

10. The type of editing performed in the 
PICTURE clause and numeric literals. 

There is no specified order for compiler 
options in the PARM parameter. 

!:1INECNT=nn: The LINECNT option indicates 
the number of lines to be printed on each 
page of the compilation output listing. 
'I'he programmer specifies a number nn, where 
nn is a 2-digit integer in the range of 10 
to 99. If the option is not specified, the 
number of lines per page will be that 
specified when the system was generated. 

§UF~!ZE=n~i The BUFSIZE option indicates 
the size of each of the six work buffers 
used during a COBOL compilation. The 
BUFSIZE parameter should not be used on a 
32K system. The following formula can be 
used to determine the maximum value to be 
used for this parameter. 

S = C - 30000 - [(13 + L) (N)] 
6 

where: s is the size of each work buff er 
c is the total main storage 
L is the length of the average data 

name 
N is the number of data names. 

The maximum value of s can never exceed 
the block size of a particular utility file 
as specified for the device. For example, 
if the work buffers are for tape, the 
maximum value of s is 32670. If thE~ work 
buffers are for disk, the maximum value of 
s depends upon the type of direct-access 
device assigned to the system utility 
device: 

2301 
2302 
2303 
2311 
2314 
2321 

Maximum Value of s 

20483 
4984 
4892 
3625 
7294 
2000 

~ot~i If the assignments to the system 
utility devices are mixed Ci.e., SYSUTl 
assigned to 2311, SYSUT2 assigned to 2301, 
SYSUT3 assigned to 2314, etc.), the maximum 
value of s cannot exceed the smallest value 
corresponding to the assigned devices. For 

!
example, if SYSUTl is assigned to a 2311 
and SYSUT2 is assigned to a 2314, s cannot 
exceed 3625, the smaller of 3625 and 7294. 

DECK or NODECK: The DECK option specifies 
that the compiled source module Ci. e., the 
object module> is written on the data set 
specified by the SYSPUNCH DD statement. 
NODECK specifies that no object module is 
written. A description of the deck is 
given in the section, system Output. If 
neither option is specified, an object 
module is produced. 

FLAGE or FLAGW: The FLAGE option specifies 
that the compiler will suppress warning 
diagnostic messages. The FLAGW option 
specifies that the compiler will generate 
diagnostic messages for actual errors in 
the source module, plus warning diagnostic 
messages for possible errors. Diagnostic 
messages are written on the data set 
specified by the SYSPRINT DD statement. If 
neither option is specified, the class of 
diagnostic message produced is that 
specified when the system was generated. 

LIST or NOLIST: The LIST option specifies 
that the source listing is written on the 
data set specified by the SYSPRINT DD 
statement. The NOLIST option indicates 
that no source listing is written. A 
description of the source listing is given 
in the section, system Output. If neither 
option is specified, a source listing is 
produced. 

DMAP or NODMAP: The DMAP option specifies 
that the compiler will generate a listing 
of the DATA DIVISION data-names and their 
addresses relative to the load point of the 
object module. The listing is written on 
the data set specified by the SYSPRINT DD 
statement. The NODMAP option specifies 
that a data-name listing will not be 
generated. If neither DMAP nor NODMAP is 
specified, the option taken will be that 
specified when the system was generated. 

PMAP or NOPMAP: The PMAP option specifies 
that the compiler will generate a listing 
of object code for each statement in the 
PROCEDURE DIVISION. The listing is written 
on the data set specified by the SYSPRINT 
DD statement. The NOPMAP option specifies 
that a listing of object code will not be 
generated. If neither PMAP nor NOPMAP is 
specified, the option taken will be that 
specified when the system was generated. 

MAPS or NOMAPS: 'I'he MAPS option is 
equivalent to specifying both DMAP and 
PMAP. The NOMAPS option is equivalent to 
specifying both NODMAP and NOPMAP. 

DISPCK or NODISPCK: The DISPCK option 
specifies that the compiler will generate 
object code that will test, at execution 

Job Processing 29 





Form C24-5029-2 
Page Revised 11/15/67 by TNL N28-0229 

time, to determine if a field to be 
DISPLAYed exceeds the record length of the 
device on which it is to be written.. 'rhe 
NODISPCK option specifies that no such code 
will be generated. If neither DISPCR nor 
NODISPCK is specified, the option taken 
will be that specified when the system was 
g·enerated .. 

REGED or INVEO: The REGED option specifies 
that the character •.• represents a 
dec:imal point and the character •,• 
represents an insertion character. The 

I INV'ED option specifies that the above roles 
of these characters•.•, •,• be reversed. 

Job Processing 29.1 



LINKAGE EDITOR PROCESSING 

The linkage editor processes COBOL object 
modules, COBOL subroutines, resolves any 
references to subprograms, and constructs a 
load module. To communicate with the 
linkage editor, the prograrr~er supplies an 
EXEC statement and DD statements that 
defin~ all required data sets; he may also 
supply linkage editor control statements. 

LINKAGE EDITOR NAME 

The program name for the linkage editor is 
IEWL. If the linkage editor is executed 
without using cataloged procedures in a job 
step, the EXEC statement parameter 

PGM=IEWL 

must be used. 

LINKAGE EDITOR INPUT AND OUTPU'I 

There art two types of input to the linkage 
editor: primary and secondary. 

Primary input is a sequential data set 
that contains object modules and linkage 
editor control statements. Any external 
references among object modules in the 
primary input are resolved by the linkage 
editor as the primary input is processed. 
Furthermore, the primary input contains 
references to the secondary input. These 
references are linkage editor control 
statements and/or COBOL external references 
in the object modules. 

secondary input resolves references and 
is separated into two types: automatic 
call library and additional input specified 
by the programmer. The automatic call 
library must always be the COBOL library 
(SYSl.COBLIB), which is the PDS that 
contains the COBOL object time subroutines. 
Through the use of DD statements, the 
automatic call library can be concatenated 
with other partitioned data sets. Three 
types of additiQ!}al i~1t may be specified 
by the programmer: 

1. An object module used as the main 
program in the load module being 
constructed. This object module, which 
can be accompanied by linkage editor 
control statements, is Either a member 
of d PDS or is a sequential data set. 
The first record in the primary input 

30 

data set must be a linkage editor 
INCLUDE control statement that tells 
the linkage editor to process the main 
program. 

2. An object module used to resolve 
external reference!:: made in another 
module. The object module, which can 
be accompanied by linkage editor 
control statements, is a sequential 
data set. An INCLUDE statement that 
defines the data set must be given. 

3. A module used to resolve external 
references made in another module. The 
load module which can be accompanied by 
linkage editor control statements, is a 
member of a PDS. The module can be 
included from the call library. 

In addition, the secondary input can 
contain external references and linkage 
editor control statements. If a load 
module is not in the automatic call 
library, the linkage editor LIBRARY 
statement can be used to direct the linkage 
editor to reference additional libraries 
during the automatic library call process. 

The output load module of the linkage 
editor is always placed in a PDS as a named 
member. The name can be provided in the 
SYSLMOD DD statement for the linkage editor 
execution. For the execution of the load 
module, this name can be used. Error 
messages and optional diagnostic messages 
are written on an intermediate storage 
device or a printer. Also, a work data set 
on a direct-access device is required by 
the linkage editor to do its processing. 
Figure 23 shows the I/O flow in linkage 
editor processing. 

LINKAGE EDITOR DDNAMES AND DEVICE CLASSES 

The programmer communicates data set 
information to the linkage editor through 
DD statements identified by specific 
ddnames (similar to the ddnames used by the 
compiler). The ddnames, functions, and 
requirements for data sets are shown in 
Table 5. 

Any data sets specified by SYSLIB or 
SYSLMOD must be partitioned data sets. 
(Additional inputs are partitioned data 
sets or sequential data sets.) The ddname 
for the DD statement that defines any 
additional libraries or sequential data 
sets is written in INCLUDE and LIBRARY 
statements and is not fixed by the linkage 
editor. 



Form C24-5029-2 
Page Revised 11/15/67 by TNL N28-0229 

r---------------------------------------------------------------------------------------1 
~ If only "name" is specified, the delimiting parentheses may be omitted. 

2 

'• 
5 

If only one "volume-serial-number" is specifi,ed, the delimiting parentheses may be 
omitted. 

SER and REF are keyword subparameters; the remaining subparameters are positional 
subparameters. 

All subparameters are positional subparameters. 

EXPDT and RETPD are keyword subparameters; th1e remaining subparameters are 
positional subparameters. 

6 All subparameters are keyword subparameters. 
L----------------------------------------------------------------------------------------
Figure 25. DD Parameters for Creating Data Sets (Part 2 of 2) 

r---------------------------------------------------------------------------------------1 
Example 1: Creating a Cataloged Data Set 

//CALC DD DSNAME=PROCESS,DISP=(NEW,CATLG),LABEL==C,SL,EXPDT=66031), 1 
// UNIT=DACLASS,VOLUME=CPRIVATE,RETAIN,SER=AA69), 2 
// SPACE=C300(100,100),,CONTIG,ROUND) 

Example 2: Creating a Data Set for a Job 

//SYSUTl DD DSNAME=&TEMP,UNIT=CTAPECLS,3),DISP=(NEW,PASS), 1 
2 // VOLUME= (,RETAIN, 1, 9, SER= <777, 888 ,, 999)), 

// DCB=CDEN=2) 

Example 3: Specifying a SYSOUT Date Set 

//SYSPRINT DD SYSOUT=A 

Example 4: Creating a Data Set that Is Kept, but Not Cataloged 

//TEMPFILE DD DSNAME=FILE,DISP=C,KEEP), 1 
// DCB=CDEN=2) 

Example 5: creating a Data Set on a 7-Track Tape 

//TEMPFILE DD DSNAME=FILE,DISP=COLD,KEEP), 1 
// VOLUME= (PRIVATE,,, SER=2·22, 333), 2 
// DCB=CDEN=l,TRTCH=ET),UNIT=C2400-2) 

--------------·-------------------------------------------------------------------------J 
•.Figure 26. Examples of DD Statements 

DDNAME=ddname 

indicates a DUMMY data set that will assume 
the characteristics specified in a 
following DD statement "ddname". The DD 
statement identified by "ddname" then loses 
its identity; that is, it cannot be 
referred to by an • •••• ddname parameter. 
The statement in which the DDNAME parameter 
appears may be referenced by subsequent 

• ..... ddname parameters. If a subsequent 
statement identified by "ddname" does not 
appE~ar, the data set defined by the DD 
statement containing the DDNAME parameter 
is assumed to be an unused statement. The 
DDNAME parameter can be used five times in 
any given job step or procedure step, and 
no two uses can refer to the same "ddname". 
The DDNAME parameter is used mainly for 
cataloged procedures. 

Creating Data Sets 39 



SPECIFYING INPUT/OUTPUT DEVICES 

The name of an input/output device or class 
of devices and the number of devices are 
specified ~n the UNIT parameter. 

UNIT= (name [, n] > 

name 

is the name assigned to the input/output 
device classes when the system is 
generated, or an absolut~ device address. 

[, n] 

specifies the number-of devices allocated 
to the data set. If this parameter is 
omitted, 1 is assumed. 

SPECIFYING VOLUMES 

The programmer indicates the volumes used 
for the data set in the VOLUME parameter. 

VOLUME={[PRIVATE] [,RETAIN] 

[,volume-sequence-number] 

[,volume-count] 

,SER=<volume-serial-number 
[,volume-serial-number] ••• > 

{

dsname J ,REF= *.ddname 
*.stepname.ddname 
*.stepname.procstep.ddnam 

identifies the volumeCs) assigned to the 
data set. 

PRIVATE 

is used only for direct-access volumes. 
This option indicates that the assigned 
volume is to contain only the data set 
defined by this DD statement. PRIVATE is 
overridden when the DD statement for a data 
set requests the use of the private volume 
with the SER or REF subparameter. Volumes 
other than direct-access volumes are always 
considered PRIVATE. 

40 

RETAIN 

indicates that this volume is to remain 
mounted after the job step is completed. 
Volumes are retained so that data may be 
transmitted to or from the data set, or so 
that other data sets may reside in the 
volume. If the data set requires more than 
one volume, only the last volume is 
retained; the other volumes are previously 
dismounted. Another job step indicates 
when to dismount the volume by omitting 
RETAIN. If each job step issues a RETAIN 
for the volume, the retained status lapses 
when execution of the job is completed. 

volume-sequence-number 

is a one-to-four digit number that 
specifies the sequence number of the first 
volume of the data set that is read or 
written. The volume sequence number is 
meaningful only if the data set is 
cataloged and earlier volumes omitted. 

volume-count 

specifies the number of volumes required by 
the data set. Unless the SER or REF 
subparameter is used this subpararneter is~ 
required for every multi-volume output data 
set. 

SER 

specifies one or more serial numbers for 
the volumes required by the data sets. A 
volume serial number consists of one to six 
alphameric characters. If it contains less 
than six characters, the serial number is 
left adjusted and padded with blanks. If 
SER is not specified, and DISP is not 
specified as NEW, the data set is assumed 
to be cataloged and serial numbers are 
retrieved from the catalog. A volume 
serial number is not required for output 
data sets. 

REF 

indicates that the data set is to occupy 
the same volume(s) as the data set 
identified by "dsname", "*.ddname", 
"*.stepname.ddname", or 
*.stepname.procstep.ddname. Table 7 shows 
the data set references. 



allocated to any of the data 
sets in the group has been 
exhausted and more data is to be 
written. This quantity will not 
be split. 

L~BEL INFORMATION 

If the programmer wishes to catalog a data 
set so that he can refer to it without 
repeating information that was supplied 
when the data se~ was created, he must 
specify certain information in the LABEL 
parameter. If the parameter is omitted 
and the data set is cataloged or passed, 
the label information is retrieved from 
data set labels stored with the data set. 

{ ,NL) 
LABEL= C [data-set-sequence-number] ,§L 

r: EXPDT=yydddl ) 
~RETPD=xxxx J 

data-set-sequence-number 

is a 4-digit number that identifies the 
relative location of the data set with 
respect to the first data set on a tape 
volume. (For example, if there are three 
data sets on a magnetic tape volume, the 
third data set is identified by data set 
sequence number 3.) If the data set 
siequence number is not specified, the 
operating system assumes 1. (This option 
should not be confused with the volume 
sequence number, which represents a 
particular volume for a data set.) 

NL 
!3L 

specifies whether standard labels exist 
for a data set. SL indicates standard 
labels. NL indicates no labels. 

EXPDT=yyddd 
RETPD=xxxx 

specifies how long the data set shall 
exist. The expiration date, EXPDT=yyddd~ 
indicates the year Cyy) and the day Cddd) 
the data set can be deleted. The period 
of retention, RETPD=xxxx, indicates the 
period of time, in days, that the data set 
is to be retained. If neither is 
specified, the retention period is assumed 
to be zero. 

DISPOSITION OF A DATA SET 

The disposition of a data set is specified 
by the DISP parameter; see Data Definition 
CDD) statement. The same options are used 
for both creating data sets and using 
previously created data sets. When a data 
set is created, the subparameters used are 
NEW, KEEP, PASS, and CATLG. 

WRITING A UNI'l' RECORD DATA SET ON THE 
PRI~ 

A printed output data set may be written 
using the following parameter. 

SYSOUT=A 

DCB PARAMETER 

For load module execution, tbe COBOL 
programmer may specify the details of a 
data set by using COBOL source statements 
and DD statement subparameters of the DCB 
parameter. The illustrations given in the 
following are examples of DCB 
subparameters for processing these file 
organizations: 

• Sequential 
• Indexed Sequential 
• Direct or Relative 

Sequentially organized data sets may 
reside on magnetic tape or direct-access 
volumes. Direct relative or indexed files 
must reside on direct-access volumes. 
Note that some DCB subparameter values 
Csee Tables 10, 11, and 12) may be 
supplied by DD statements; other values 
are supplied either by certain COBOL 
source statements or by the COBOL 
compiler. 

DCB FOR PROCESSING SEQUENTIAL DATA SET 

DCB= {[DEN={01112}] 
C,TRTCH=CCIEITIETIUIUC}] 
[,PRTSP={0111213}] 
C,MODE={CIE}][,STACK=C112}] 
C,OPTCD=CWICIWC}][ERROPT={ACCISKPjABE}] 
[,DSORG=PS] C,MACRF={{GLIPLIGL,PL}) 
[,DDNAME=symbol][,RECFM={FIUIV} 
C,LRECL=absexp] C,BLKSIZE=absexpJ 
C,BFTEK=S] C,BUFNO=absexpl 
[,BFALN= FD ][,BUFL=absexp] 
C,BUFCB=relexp] C,EODAD=relexpl 
[,SYNAD=relexp]) 

Creating Data Sets 43 



Form C24-5029-2 
Page Revised 11/15/67 by TNL N28-0229 

A description of the DCB subparameters 
follows. 

DEN={Olll2} 

can be used with magnetic tape, and 
specifies a value for the tape recording 
density in bits per inch as listed in 
Table 8. 

Table 8. DEN Values 
r-----T-----------------------------------1 
IDEN ITAPE RECORDING DENSITY (BITS/INCH) I 
I ~-----------------------------------i 
IValueJ Model 2400 I 

I ~-----------------------------------~ 
I I 7 Track 9 Track I 
~-----+-----------------------------------i 
I o I 200 I 
I 1 I 556 I 
I 2 I soo soo I 
L-----i-----------------------------------J 

TRTCH={CIEITIETIUIUCI} 

is used as with 7-track tape to specify 
the tape recording technique, as follows: 

c - specifies that the data conversion 
feature is to be used; if data 
conversion is not available, only 
f orm:at-F and -U records are supported 
by the control program. 

E - specifies that even parity is to be 
used; if omitted, odd parity is 
assuIHed. 

T - specifies that BCDIC to EBCDIC 
translation is required. 

ET- specifies that even parity is to be 
used and BCDIC to EBCDIC translation 
is required. 

u - unblock (permit) data checks on a 
printer with the Universal Character 
Set feature. 

UC- unblock data checks on a printer and 
use chained scheduling. 

PRTSP={Oj11213} 

specifies the line spacing on a printer as 
0, 1, 2, or 3. 

MODE={CIE} 

can be used with a card reader, a card 
punch, or a card read punch and specifies 
the mode of operation as follows: 

c - the card image (column binary) mode 

E - the EBCDIC code 

44 

If this information is not supplied by 
any source, E is assumed. 

STACK={112} 

can be used with a card reader, a card 
punch, or a card read punch and specifies 
which stacker bin is to receive the card. 
Either 1 or 2 is specified. If this 
information is not supplied by any source, 
1 is assumed. 

OPTCD={WICIWC} 

specifies an optional service to be 
performed by the control program, as 
follows. 

W - perform a write validity check (on 
direct-access devices only>. 

c - process using the chained scheduling 
method. 

we- perform a validity check and use 
chained scheduling. 

If this information is not supplied by any 
source, none of the services are provided, 

!
except in the case of the IBM 2321 
direct-access device where OPTCD=W is 
specified by the operating system. 

EROPT={ACCjSKPIABE} 

specifies the option to be executed if an 
error occurs and either there is no 
synchronous exceptional error (SYNAD) exit 
routine or there is a SYNAD routine and 
the progra~mer wishes to return from it to 
his processing program. One of the 
following is specified: 

ACC - accept error block 

SKP - skip error block 

ABE - terminate the task 

Table 9 indicates the choices that are 
permitted for each type of data set 
processing. 



Form C24-5029-2 
Paqe Revised 11/15/67 by TNL N28-0229 

Table 9. Error Options for QSAM 
r-------T---------------------------------1 
I I PROCESS DATA SET FOR I 
10PERANDr------------T--------------------i 
I IINPUT,RDBACKIOUTPUT I 
~-------+------------+--------------------i 
I Ace I x I x1 I 
I SKP I x I I 
I ABE I x I x I 
r-------i------------i--------------------i 
l 1 Valid for printer only. I 
L-----------------------------------------J 
DSORG=PS 

specifies the organization of the data set 

Creating Data Sets 44.1 





Form C24-5029-2 
Page Revised 11/15/67 by TNL N28-0229 

~LLOCATING SPACE FOR INDEXED SEQUENTIAL 
P~.§E§ 

Indexed sequential data sets consist of 
one, two, or three areas: 

• Prime area. This area contains data 
records and the accompanying track 
indexes. It exists in all indexed 
sequential data sets. 

• overflow area. This area contains data 
records that overflow from tracks of 
the prime area when records are added 
to the data set. This area may or may 
not exist in an indexed sequential data 
set. 

• Index area. This area contains the 
master and cylinder indexes for an 
indexed sequential data set. It exists 
for any data set that has a prime area 
on more than one cylinder. 

The areas allocated and their locations 
depend on the parameters specified in the 
DD statement or statements that define the 
data set. For a description of the 
parameters and subparameters that can be 
used in DD statements defining a new 
indexed sequential data set or specifying 
an existing one, ref er to the publication 
bBM £ystem/360 Operating system: Job 
lcon!rol_b!!!Sluag~, Form C28-6539. 

DCB FOR CREATING INDEXED SEQUENTIAL_ DATA 
£ETS 

DCB=( [,OPTCD={WLI}] ,DSORG=IS 
[, MACRF== (PL)] [, DDNAME=symbol] 
[, RECFM== {FI FB}] [, LRECL=absexp] 
[, BLKSIZE=absexp] [ ,RKP=absexp] 
[ 'KEYLEN=absexp] 
[, BUFNO==absexp] 
[,SYNAD==relexp]) 

OPTCD 

OPTCD=={WLI} 

specifies an optional service to be 
performed by the program, as follows: 

w - a write validity check (on 
direct-access devices only> 

L - delete option: user marks records 
for deletion; records so marked may 
actually be deleted when new records 
are added to the data set. 

I - use independent overflow area. 

If this information is not supplied by 
any source, none of the services are pro
vided, except in the case of the IBM 2321 
direct-access device where OPTCD=W is 
specified by the operating system. 

DSORG=IS 

specifies the organization of the data set 
as IS Can indexed sequential organization). 
This subparameter is required to be 
supplied by the programmer in the DD 
statement. 

MACRF=CPL) 

specifies the macro instruction that will 
be used in processing the data sets, as 
follows: 

PL - indicates that locate mode PUT macro 
instructions are to be used. 

DDNAME=symbol 

spE!cifies the name of the DD statement that 
will be used to describe the data set to be 
processed. 

RCF'M=CFIFB} 

specifies the characteristics of the record 
in the data sets, as follows: 

F - fixed-length records 

FB - fixed-length, blocked records 

LRECL=absexp 

specifies the length of a loqical record in 
bytes. 

BLKSIZE=absexp 

specifies the maximum length of a block in 
bytes. For fixed-length records, the block 
must be an integral multiple of the LRECL 
value. 

RKP=absexp 

specifies the relative position of the 
first byte of the record key within each 
logical record. The value specified cannot 
exceed the logical record length minus the 
record key length. 

Creating Data sets 47 





Form C24-·5029-2 
Pa9~Revised 11/15/67 by TNL N28-0229 

l\EYLEN=absexp 

specifies the length of the record key, in 
bytes, associated with a logical record. 
The maximum length of the record key is 255 
bytes. 

BUF'NO=absexp 

specifies the number of buffers to be 
assigned to the data control block. The 
maximum number that can be specified is 
255; however, the number must not exceed 
the limit on input/output requests 
established during system generation. This 
information can oe supplied by the DD 
statement or the user's problem program. 

Creating Data Sets 47.1 



SYNAD=relexp 

specifies the address of the user's 
synchronous error exit routine. The 
routine is entered if input/output errors 
result from an attempt to process data 
records. If no routine is specified and an 
error occurs, the option specified by the 
EROPT parameter is executed. 

ACCESSING INDEXED S§QUENTIAL DATA SETS 

When accessing and/or updating indexed 
sequential data sets, the DCB subparameters 
specified for creating indexed sequential 
data sets are applicable with the following 
differences, and additions. 

DIFFE.RENCES 

[,MACRF={ (GL) I (GL,PU) I (R) I (RU,WUA) }] 

G - indicates GET macro instruction 
L - indicates locate mode 

P - indicates PUT macro instruction 
u - indicates sequential updating 

R - indicates READ macro instruction 
u - indicates read for update 

W - indicates WRITE macro instruction 
UA - indicates add new records, 

update existing records. 

ADDITIONS 

[,NCP=l] 

specifies the number of channel programs to 

48 

be established for this data control block. 
The value 1 is supplied by the compiler. 

[, MSWA=relexp] 

specifies the address of a main storage 
work area reserved for the control program. 

If specified when fixed-length records 
are being added to the data set, the 
control program m3es the work area to speed 
up record insertion. 

[,SMSW=absexp] 

specifies the number of bytes reserved for 
the main storage work area. For unblocked 
records, the work area must be large enough 
to contain the count, key, and data fields 
of all the blocks on one track. For 
blocked records, the work area must be 
large enough to contain one logical record 
plus the count and data fields of all the 
blocks on one track. The maxirrum numoer of 
blocks on one track is 32,767. 

[, EODAD=relexp] 

specifies the address of the user's 
end-of-data set exit routine for input data 
sets. This routine is entered when the 
user requests a record and there are no 
more records to be retrieved. If no 
routine has been provided, the task is 
abnormally terminated. 

Table 11 shows the values supplied for 
DCB.subparameters by the COBOL compiler, by 
statements in the COBOL source program, and 
those subparameters that may be supplied by 
a DD statement for an indexed sequential 
data set. 



F'orm c24-5029-2 
Page Revised 11/15/67 by TNL N28-0229 

Table 11. DCB Subparameter Values For Indexed Sequential Data set 
r------------y---------------T-------------------------------T--------------------------1 
IDCB !Value supplied !Value Supplied by !Value supplied I 
!Parameter IUnconditionallylCOBOL Source Statement IBy DD Statement I 
I I By COBOL I I I 
I I Compiler I I I 
t------------+---------------+-------------------------------+--------------------------i 
I OPTCD I WLI I I I 
~------------+---------------+-------------------------------+--------------------------i 
IDSORG IIS I IDSORG=IS I 
t--------·----+---------------+-------------------------------+--------------------------i 
I MACRF I I I I 
I sequential I GL I OPEN INPUT I I 
I I GL, PU I OPEN I-0 I I 
I I PL I OPEN OUTPUT I I 
I ~---------------+-------------------------------+--------------------------i 
I Random IR I OPEN INPUT I I 
I IRU,WUA IOPEN I-0 I I 
~------------+---------------+-------------------------------+--------------------------i 
I DDNAME I I External-name in ASSIGN Clause I I 
~------------+---------------+-------------------·------------+--------------------------i 
IRECFM I !RECORDING MODE Clause I I 
t------------+---------------+-------------------------------+--------------------------i 
I LRECL I I RECORD CONTAINS Clause I I 
~------------+---------------+-------------------------------+--------------------------i 
IBLKSIZE I !BLOCK CONTAINS Clause I I 
~----·--------+---------------+-------------------------------+--------------------------i 
IRKP I !RECORD KEY Clause I I 
t------------+---------------+-------------------------------+--------------------------i 
IKEYLEN I !RECORD KEY Clause I I 
~------------+---------------+-------------------·------------+--------------------------i 
INCP 11 I I I 
t------------+---------------+-------------------------------+--------------------------i 
IMSWA I ITRACK AREA Clause I I 
t·------------+---------------+-------------------------------+--------------------------i 
IBUFNO I !RESERVE Clause IBUFNO=nnn I 
t------------+---------------+-------------------·------------+--------------------------i 
ISMSW I !TRACK AREA Clause I I 
t------------+---------------+-------------------------------+--------------------------i 
I EODAD I I AT END Clause I I 
~------------+---------------+-------------------------------+--------------------------i 
I SYNAD I I USE Statement Option 5 I I 
L------------i---------------i-------------------------------L--------------------------J 

!2_CB_K_OR_£gEATING DIRECT OR RELATIVE 
Q..RGA.N~fATJ;.ON DATA SET 

DCB=([,OPTCD=W] [,DSORG=PS] 
[,MACRF=(WL)] [,DDNAME=symbol] 
[, RECFr,l== {FI VI U}] [, I,RECL=absexp] 
[,BLKSIZE=absexp] [,DEVD=DA,KEYLEN=value] 
[,NCP=l] [,EOD!ill=relexp] 
[ ,SYNAD==relexp]) 

OPTCD==W 

speciries an optional service to be 
performed by the program, as follows: 

W - a write validity check Con 
direct-access devices only> 

I 
If this information is not supplied by 

any source, the service is not provided, 
8xcept in the case of the IBM 2321 

ldirect-access device where OPTCD=W is 
spe·cif ied by the operating system. 

DSORG=PS 

specifies the organization of the data set 
as PS Ca physical sequential organization) 

MACRF=(WL) 

soecif ies the macro instruction that will 
b~ used in processing the data sets, as 
follows: 

w - indicates use of WRITE macro 
instruction 

L - indicates LOAD mode for direct data 
set 

Creating Data Sets 49 





Form C24·-5029-2 
Page Revised 11/15/67 by TNL N28-0229 

DDNAME=symbol 

spec:Lf ies the name of the DD statement that 
will be used to describe the data set to be 
processed. 

RECFM={FIVIU} 

specifies the characteristics of the record 
in the data set, as follows: 

F - fixed-length records 

Creating Data Sets 49.1 



V - variable-length records 
U - undefined records 

LRECL=absexp 

specifies the length of a format-F logical 
record in bytes or the maximum length of a 
format-V or format-U logical record. 

BLKSIZE=absexp 

specifies the maximum length of the block 
in bytes for format-F records. The length 
must be an integral multiple of the LRECL 
value. for format-V records, the length 
must include the four-byte block length 
field that is· recorded at the beginning of 
each block. 

DEVD=DA,KEYLEN=value 

specifies the device or devices on which 
the data set resides 

DA - specifies a direct-access device 
KEYLEN - specifies the length of the 

key, in bytes, associated with a 
physical block. 

NCP=l 

specifies the maximum number of READ or 
WRITE macro instructions that are issued 
before a CHECK macro instruction. 

SYNAD=relexp 

specifies the address of the user's 
synchronous error exit routine. The 
routine is entered if input/output errors 
result from an attempt to process data 
records. If no routine is specified and an 
error occurs, the option specified by the. 
EROPT parameter is executed. 

ACCESSING DI~ECT OR RELATIVE ORGANIZATION 
DATA SETS 

When accessing and/or updating direct data 
sets, the DCB subparameters specified for 
creating direct data sets are applicable, 
with the following differences and 
additions. 

DIFFERENCES 

[ ,OPTCD={WE I WR}] 

50 

w - indicates a write validity check be 
performed 

E - indicates an extended search be 
performed 

R - indicates that relative block 
addresses be used 

(, DSORG=DA] 
DA - indicates direct or relative 

organization 

R 
[ ,MACRF= WL 

(RKC I CWAKC]) 
CRIC, [WAIC]) 

R - indicates use of READ macro 
instruction 

K - indicates that search argument is a 
key 

I - indicates that search argument is a 
block identification 

W - indicates use of WRITE macro 
instruction 

A - indicates that blocks are to be 
added to the data set 

c - indicates use of check macro 
instruction 

ADDITIONS 

[, KEYLEN=absexpl 

specifies the length of the key for each 
physical record in bytes 

[,LIMCT=absexpl 

specifies the maximum number of blocks or 
tracks searched when the extended search 
option is chosen 

[, EODAD=relexp] 

specifies the address of the user's 
end-of-data set exit routine for input data 
sets. This routine is entered when the 
user requests a record and there are no 
more records to be retrieved. If no 
routine has been provided, the task is 
abnormally terminated. 

Table 12 shows the '7alues supplied for 
DCB subpararneters by the COBOL compiler, by 
statements in the COBOI .. source program, and 
those subparameters that may be supplied by 
a DD statement for a direct-access data 
set. 



Table 12. DCB subparameter Values for Direct-Access Data Sets 
r-----------------------T---------------T-------------------------------T---------------1 
I I Value Supplied I I I 
I I Unconditionally I I I 
IDCB lby COBOL !Value supplied by !Value Supplied I 
I Parameter I CompilEr I COBOL ~;ource Statement I by DD Statement I 
r-----------------------+---------------+-------------------------------+---------------i 
I OPTCD I I I I 
I Direct organization I WE I I I 
I r---------------+-------·------------------------+---------------i 
I Relative organizationlWR I I I 
r-----------------------+---------------+-------------------------------+---------------i 
I DSORG I I I I 
I Sequential access I PS I I I 
I r---------------t-------·------------------------+---------------i 
I Randorn-accE~ss I DA I I I 
r-----------------------+---------------+-------------------------------+---------------i 
I MACRF I I I I 
I Sequential-access IR IOPEN INPUT I I 

:K.andom-access 
Direct 
organization 

Relative 
organization 

r---------------+-------------------------------+---------------i 
I WL I OPEN OUTPUT I I 
r---------------+-------------------------------+---------------i 
I I I I 
I RKC I OPEN INPUT I I 
I I I I 
r---------------+-------------------------------+---------------i 
IRKC,WAKC IOPEN I-0 I I 
r---------------+-------·------------------------+---------------i 
IRIC !OPEN INPUT I I 
I I I I 
r---------------+-------------------------------+---------------i 
IRIC,WAIC IOPEN I-0 I I 

r-----------------------+---------------+-------·------------------------+---------------i 
IDDNAME I !External-name in ASSIGN clause I I 
r-----------------------+---------------+-------------------------------+---------------i 
IDEVD IDA,KEYLEN=nnn !SYMBOLIC KEY Clause I I 
I I Cnnn=o - 255) I I I 
r-----------------------+---------------+-------------------------------+---------------i 
IRECFM I I RECORDING MODE Clause I I 
r-----------------------+---------------+-------------------------------+---------------i 
ILRECL I !RECORD CONTAINS Clause I I 
r-----------------------+---------------+-------------------------------+------------·---i 
jBLKSIZE I !BLOCK CONTAINS Clause I I 
r---·--------------------+---------------+-------------------------------+---------------i 
I NCP 11 I I I 
r-----------------------+---------------+-------------------------------+---------------i 
IKEYLEN I !SYMBOLIC KEY Clause I I 
r-----------------------+---------------+-------------------------------+---------------i 
ILIMCT I !APPLY Clause Option 1 I I 
r-----------------------+----------------+-------------------------------+---------------i 
IEODAD I IAT END Clause I l 
r--------·---------------+---------------+-------------------------------+---------------i 
ISYNAD I IUSE Statement Option 5 I I 
l ________________________ i _______________ i _______________________________ i _______________ J 

The following DD statements are examples 
for processing Indexed sequential, Direct, 
Relative sets. 

Creating Data Sets 51 



Form C24-5029-2 
Page Revised 11/15/67 by TNL N28-0229 

Example of DD statements for Indexed 
Sequential organization: 

//GO.SYSUT5 
// 

DD DSNAME=ISAM(INDEX), 
UNIT=2311, 
VOLUME=SER=llllll, 
DCB= ( ,DSORG=IS) I 

SPACE= (CYL, ( 1)) I 

DISP=CNEW,KEEP) 

// 
// 
// 
// 
// 
// 
// 
// 
// 
// 
// 
// 
// 
// 
// 
// 

DD DSNAME=ISAM( PRIME) , 
UNIT=2311, 
VOLUME=SER=llllll, 
DCB= (, DSORG=IS) I 

SPACE= (CYL, (3)), 
DISP=(NEW,KEEP) 

DD DSNAME=ISAM(OVERFLOW), 
UNIT=2311, 
VOLUME=SER=llllll, 
DCB= (I DSORG=IS). 
SPACE=(CYL, (1)), 
DISP=(NEW,KEEP) 

This example specifies: 

• that an indexed sequential data set 
(named ISAM), is to be processed on a 
2311 disk pack; 

• that the volume serial number of the 
volumes required by the data set is 
111111; 

• that the data set is to be kept after 
execution of the run; 

• that the prime area consists of three 
cylinders, the overflow area, and the 
index area of one cylinder each, and 

• that the COBOL external name for the 
data set is SYSUT5. 

Example of DD statement for Direct or 
Relative organizations: 

52 

x 
x 
x 
x 
x 

x 
x 
x 
x 
x 

x 
x 
x 
x 
x 

//GO.SYSUT6 DD DSNAME=&RANDOM,UNIT=SYSDA,X 
// SPACE=(TRK,(10,5)) 

This example specifies: 

• that a temporary data set (named 
RANDOM) is to be processed on a direct
access device.; 

• that the data set be allocated a space 
of 10 tracks, with a secondary 
allocation of 5 tracks, if needed; 

• that the COBOL external name for this 
data set is SYSUT6. 

Example of DD statement for sequential 
organization: 

//GO.SYSUT7 
// 

DD DSNAME=SEQUENTIAL, 
UNIT=2311, 
DISP=(NEW,DELETE), 
DCB (I OP'I'CD=W) I 

SPACE= ('I'RK, ( 20 I 5)) 

x 
x 
x 
x 

// 
// 
// 

This example specifies: 

• that a data set (named SEQUENTIAL) is 
to be processed on a 2311 disk pack; 

• that the data set is to be deleted 
after execution; 

• that the data set be allocated 20 
tracks with a secondary allocation of 5 
tracks, if needed; and 

• that the COBOL external name for the 
data set is SYSUT7 

Note: For sequential, direct, and relative 
organizations, essentially the same DD 
statements can be used. 



Table 17. Linkage Registers 

r--------T--------T-----------------------1 
IREGISTERIREGISTERI I 
!NUMBER !NAME !FUNCTION I 
~--------+--------+-----------------------i 
I 1 IArgurnentlAddress of the argument! 
I IRegisterllist passed to the I 
I I !called subprogram. I 
~--------+--------+-----------------------i 
I 13 !Save !Address of the area I 
I IRegisterireserved by the ca~lingl 
I I jprogram in which the I 
I I jcontents of certain I 
I I !registers are stored byl 
I I I the called program. I 
~--------+--------+-----------------------i 
I 14 !Return !Address of the location! 
I IRegisterlin the calling program I 
I I Ito which control is I 
I I !returned after I 
I I !execution of the called! 
I I I program. I 
~--------+--------+-----------------------i 
I 15 !Entry !Address of the entry I 
I !Point !point in the called I 
I I Register I subprogram. I 
L--------i--------i-----------------------J 

ARGUMENT LIST 

Every assembler-written subprogram that 
calls another subprogram must reserve an 
area of storage (argument list> in which 
the argument list used by the called 
subprogram is located. Each entry in the 
parameter list occupies four bytes and is 
on a full-word boundary. 

In the first byte of each entry in the 
parameter list, bits 1 through 7 contain 
zeros. However, bit O may contain a 1 to 
indicate the last entry in the parameter 
area. 

The last three bytes of each entry 
contain the 24-bit address of the argument. 

SAVE AREA 

lm assembler subprogram that calls another 
subprogram must reserve an area of storage 
(save area) in which certain registers 
{i.e., those used in the called subprogram 
and those used in the linkage to the called 
subprogram) are saved. 

The maximum amount of storage reserved 
by the calling subprogram is 18 words. 
Figure 47 shows the layout of the save area 
and the contents of each word. 

A called COBOL subprogram does not save 
floating-point registers. The programmer 
is responsible for saving and restoring the 
contents of these registers in the calling 
program. 

r-----------------------------------------1 
AREA 
Cword 1) 

r---------------------------1 
!This word is a part of the I 
!standard linkage convention! 
!established under the I 
!operating system. The wordl 
!must be reserved for proper! 
!addressing of the I 
!succeeding entries. I 
!However, an assembler I 
!subprogram may use the wordl 
I for any desired purpose. I 

AREA+4 ~---------------------------i 
Cword 2) !The address of the previous! 

!save area; that is, the I 
!save area of the subprograwl 
lthat called this one. I 

AREA+8 ~-------------~-------------~ 
(word 3) IThe address of the next I 

!save area; that is, the I 
!save area of the subprogram! 
jto which this subprogram I 
jrefers. I 

AREA+12 ~---------------------------i 
(word 4) !The contents of register I 

114; that is, the return I 
Jaddress. I 

AREA+16 ~---------------------------i 
Cword 5) !The contents of register I 

llS; that is, the entry I 
!address. I 

IAREA+20 ~---------------------------4 
I <word 6) !The contents of register 0.1 
IAREA+24 ~---------------------------~ 
I (word 7) !The contents of register 1. I 
I ~---------------------------~ 
I I I 
I I I 
I I I 
IAREA+68 ~---------------------------i 
I (word 18) I The contents of register I 
I 112 • I 
I L---------------------------J 
L-----------------------------------------J 

Figure 47. save Area Layout and Word 
contents 

Appendix B 103 



Form C24-5029-2 
Page Revised 11/15/67 by TNL N28-0229 

r----------------------------------------------------------------------------------------1 
ldeckname START 0 
I ENTRY name1 

EXTRN name2 
USING *,15 

* Save 
name 1 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
AREA 

* 

Routine 
STM 

LR 

LA 

ST 

ST 

BC 
DS 

14,r1 ,12C13) 

r2,13 

13,AREA 

13,8(0,r2 ) 

15,prob1 
18F 

The contents of registers 14, 15, and O through 
r 1 are stored in the save area of the calling 
program (previous save area). r 1 is any number 
from 0 through 12. 

Loads register 13, which points to the save area 
of the calling program, into any general 
register, r 2 , except 0 and 13. 

Loads the address of this program's save area 
into register 13. 

Store the address of this program's save area 
into word 3 of the save area of the calling 
program. 

Stores the address of the previous save area 
Ci.e., the same area of the calling program) 
into word 2 of this program's save area. 

Reserves 18 words for the save area. 
last statement of save routine. 

This is 

prob1 User-written program statements 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

* calling Sequence 
LA 1,ARGLST First statement in calling sequence. 
L 15,ADCON 
BALR 14,15 

* Remainder of user-written ~rogram statements 
* Return Routine 

* 
* 
* 
* 
* 
* 
* 

L 13,4(0,13) 

LM 

L 14,12(13) 

MVI 12(13),X'FF' 

First statement in return routine. Loads the I 
address of the previous save area back into I 
register 13. I 

The contents of registers 2 through r 1 , are I 
restored from the previous save area. I 

Loads the return address, which is in word 4 of I 
the calling program's save area, into register I 
14. I 

Sets flag FF in the save area of the calling I 
program to indicate that control has retunred I 
to the calling program. I 

BCR 15,14 Last statement in return routine. I 
ADCON DC ACname 2 ) Contains the address of subprogram name 2 • I 
* Parameter List I 

IARGLST DC AL4Carg 1 ) First statement in parameter area setup. I 
I DC AL4Carg 2 ) I 
I DC X' 8 0' First byte of last argument sets bit 0 to 1. I 
I DC AL3Cargn) Last statement in parameter area setup. I 

L---------------------------------------------------------------------------------------J 
•Figure 48. Sample Linkage Routines Used with a Calling Subprogram 

Example 

The linkage conventions used by an 
assembler subprogram that calls another 
subprogram are shown in Figure 48. The 
linkage should include: 

1. The calling sequence. 

2. The save and return routines. 

104 

3. The out-of-line parameter list. 
(An in-line parameter list may be used; 
see In-line Parameter List.) 

4. A save area on a fullword boundary. 

LOWEST LEVEL SUBPROGRAM 

If an assembler subprogram does not call 
any other subprogram (i.e., if it is at the 
lowest level), the programmer should omit 
the save routine, calling sequence, and 



Form C24·-5029-2 
Page Revised 11/15/67 by TNL N28-0229 

.IEP6:L5I E 

IEP616I :E 

IEP617I E 

·IEP618I E 

IEP619I E 

IEP620I E 

IEP62lI E 

IEP622I C 

IEP623I E 

READ 'AT END' REQUIRED FOR 
FILES WITH ACCESS SEQUENTIAL 

§ystem Action: The entire 
statement is skipped. 

'INVALID KEY' REQUIRED FOR 
FILES WITH ACCESS RANDOM 

System Action: The entire 
statement is dropped. 

WRITE 'FROM' OPTION REQUIRED 
WITH APPLY WRITE-ONLY 

.2.Y.:stem Action: The entire 
statement is dropped. 

REWRITE INVALID ON DIRECT OR 
RELATIVE SEQUENTiAL FILES 

System Action: The entire 
statement is dropped. 

WRITE INVALID FOR RELATIVE 
RANDOM FILE 

system Action: The entire 
statement is dropped. 

WRITE 'INVALID KEY' REQUIRED 
FOR INDEXED SEQUENTIAL FILE 

system Action: The entire 
statement is dropped. 

OPEN 'I-0' INVALID FOR DIRECT 
OR RELATIVE SEQUENTIAL FILES 

Explanation: On OPEN and CLOSE 
no code is generated for the 
file in error. 

system Action: Syntax scan 
skips to the next file in the 
statement. 

OPEN 'OUTPUT' INVALID FOR FILES 
WITH ACCESS RANDOM, I-0 
ASSUMED. 

Explanation: see message 
IEP621I. 

OPEN 'REVERSED' VALID ONLY ON 
STANDARD SEQUENTIAL FILES 

Explanation: See message 
IEP621I. 

IEP624I W 

IEP625I E 

IEP626I E 

IEP627I E 

IEP628I E 

IEP700I E 

IEP701I E 

IEP702I E 

IEP703I E 

IEP704I E 

IEP705I 

IEP709I W 

A FILE WHOSE ORGANIZATION IS 
INDEXED AND ACCESS IS 
SEQUENTIAL (QISAM) OPENED AS 
OUTPUT MAY NOT ALSO BE OPENED 
AS INPUT OR I-0 IN THE SAME 
PROGRAM W I'I'H THE SAME 
FILE-NAME. 

OPEN 'REVERSED' INVALID FOR 
FILES WITH FORMAT V RECORDS 

CLOSE 'UNIT' OR 'REEL' VALID 
ONLY FOR STANDARD SEQUENTIAL 
FILES 

Explanation: See message 
IEP621I. 

'INVALID KEY' INVALID FOR 
STANDARD, DIRECT OR RELATIVE 
SEQUENTIAL FILES. 

System Action: The clause is 
skipped. 

'ACTUAL KEY' REQUIRED FOR 
DIRECT SEQUENTIAL OUTPUT FILES 

IDENTIFICATION DIVISION NOT 
FOUND 

DATA DIVISION NOT FOUND. 
COMPILATION CANCELED. 

PROCEDURE DIVISION NOT FOUND. 
COMPILATION CANCELED. 

SOURCE PROGRAM EXCEEDS INTERNAL 
LIMITS. COMPILATION CANCELED. 

DATA-NAME TABLE OVERFLOW. 
COMPILATION CANCELED. 

Explanation: The data-name 
attribute table has a maximum 
size of 64K bytes. 

User Response: Reduce the 
length of data-names, and 
recompile. 

NO DIAGNOSTICS IN THIS 
COMPILATION. 

INCORRECT EXECUTE PARAMETER -
xxx. 

Appendix F 145 





Form C24-5029-2 
Page Revised 11/15/67 by TNL N28-0229 

IEP710I W BUFSIZE GREATER THAN BLKSIZE -
TRUNCATED TO BLKSIZE 

Explanation: For the devices 
specified, the BUFSIZE exceeded 
the maximum allowable block 
size. A BUFSIZE equal to the 
allowable block size is used 
instead. 

For additional information, 
see "Compiler Options" under 
"Job Processing." 

LOAD MODULE EXECUTION DIAGNOSTIC MESSAGES 

Load module execution diagnostic messages 
are of two types: object time messages, 
and operator messages. 

Appendix F 145 .. 1 



OBJECT TIME MESSAGES 

Most object time messages are self 
explanatory. Where necessary, examples are 
included to explain the message. 

IEP999I MINUS BASE MADE POSITIVE & 
FLOATING POINT EXPONENTIATION 
CONTINUED. 

IEP998I ZERO BASE TO POSITIVE EXPONENT -
FLOATING-POINT ANSWER MADE ZERO. 

IEP997I ZERO BASE TO MINUS EXPONENT -
FLOATING-POINT,ANSWER IS MAX F.P. 
NUMBER. 

IEP996I RESULT TOO BIG - FLOATING-POINT 
EXPONENTIATION ANSWER IS MAX F.P. 
NUMBER. 

IEP993I ZERO BASE TO MINUS EXPONENT -
PACKED EXPONENTIATION RESULT MADE 
ALL NINES. 

OPERATOR MESSAGES 

In addition to system diagnostic and object 
time messages the COBOL load module may 
issue operator messages. 

The following messagE~ is generatt!d by 
STOP 'literal'. 

IEPOOOD text provided by object program. 

146 

Explanation: This message is 
issued at the programmer's 
discretion to indicate possible 
alternative action to be taken oy 
the operator. 

OpErator Response: Follow the 
instructions given both by the 
message and on the job request 
form supplied by the programmer. 

If the job is to be resumed, issue 
a REPLY command with a text field 
that contains any 1-character 
message. 

The following message is generated by an 
ACCEPT FROM CONSOLE. 

IEP990D 'AWAITING REPLY' 

Explanation: This message is 
issued by the object program when 
operator intervention is required. 

Operator Response: Issue a REPLY 
command. (The contents of the 
text field should be supplied by 
the programmer on the job request 
form.> 

DEBUG PACKET ERROR MES§AGES 

The following is a complete list of 
precompile error messages. They apply to 
errors in the debugging packets only. 

IEP850I TABLE OF DEBUG REQUESTS 
OVERFLOWED. HUN TERMINATED. 

IEP851I THE FOLLOWING CARD DUPLICATES A 
PREVIOUS *DEBUG CARD. THIS PACKET 
WILL BE IGNORED. 

IEP852I THE FOLLOWING PROCEDURE DIVISION 
NAMES WERE NOT FOUND. INCOMPLETE 
DEBEG EDIT IS NOT TERMINATED. 

IEP853I THE FOLLOWING *DEBUG CARD DOES NOT 
CONTAIN A VALID LOCATION FIELD. 
TnIS PACKET WILL BE IGNORED. 

IEP854I IDENTIFICATION DIVISION NOT FOUND. 
RUN TERMINATED. 

IEP855I DEBUG EDIT RUN COMPLETE. INPUT 
FOR COBOL COMPILATION ON SYSUT4. 




